Consent Manager Tag v2.0 (for TCF 2.0) -->

RS COMPONENTS Images.png

SMBJ Transil - PDF - Farnell Element 14

SMBJ Transil - PDF - Farnell Element 14 - Revenir à l'accueil

Branding Farnell element14 (France)

 

Farnell Element 14 :

Miniature

Everything You Need To Know About Arduino

Miniature

Tutorial 01 for Arduino: Getting Acquainted with Arduino

Miniature

The Cube® 3D Printer

Miniature

What's easier- DIY Dentistry or our new our website features?

 

Miniature

Ben Heck's Getting Started with the BeagleBone Black Trailer

Miniature

Ben Heck's Home-Brew Solder Reflow Oven 2.0 Trailer

Miniature

Get Started with Pi Episode 3 - Online with Raspberry Pi

Miniature

Discover Simulink Promo -- Exclusive element14 Webinar

Miniature

Ben Heck's TV Proximity Sensor Trailer

Miniature

Ben Heck's PlayStation 4 Teardown Trailer

See the trailer for the next exciting episode of The Ben Heck show. Check back on Friday to be among the first to see the exclusive full show on element…

Miniature

Get Started with Pi Episode 4 - Your First Raspberry Pi Project

Connect your Raspberry Pi to a breadboard, download some code and create a push-button audio play project.

Miniature

Ben Heck Anti-Pickpocket Wallet Trailer

Miniature

Molex Earphones - The 14 Holiday Products of Newark element14 Promotion

Miniature

Tripp Lite Surge Protector - The 14 Holiday Products of Newark element14 Promotion

Miniature

Microchip ChipKIT Pi - The 14 Holiday Products of Newark element14 Promotion

Miniature

Beagle Bone Black - The 14 Holiday Products of Newark element14 Promotion

Miniature

3M E26, LED Lamps - The 14 Holiday Products of Newark element14 Promotion

Miniature

3M Colored Duct Tape - The 14 Holiday Products of Newark element14 Promotion

Miniature

Tenma Soldering Station - The 14 Holiday Products of Newark element14 Promotion

Miniature

Duratool Screwdriver Kit - The 14 Holiday Products of Newark element14 Promotion

Miniature

Cubify 3D Cube - The 14 Holiday Products of Newark element14 Promotion

Miniature

Bud Boardganizer - The 14 Holiday Products of Newark element14 Promotion

Miniature

Raspberry Pi Starter Kit - The 14 Holiday Products of Newark element14 Promotion

Miniature

Fluke 323 True-rms Clamp Meter - The 14 Holiday Products of Newark element14 Promotion

Miniature

Dymo RHINO 6000 Label Printer - The 14 Holiday Products of Newark element14 Promotion

Miniature

3M LED Advanced Lights A-19 - The 14 Holiday Products of Newark element14 Promotion

Miniature

Innovative LPS Resistor Features Very High Power Dissipation

Miniature

Charge Injection Evaluation Board for DG508B Multiplexer Demo

Miniature

Ben Heck The Great Glue Gun Trailer Part 2

Miniature

Introducing element14 TV

Miniature

Ben Heck Time to Meet Your Maker Trailer

Miniature

Détecteur de composants

Miniature

Recherche intégrée

Miniature

Ben Builds an Accessibility Guitar Trailer Part 1

Miniature

Ben Builds an Accessibility Guitar - Part 2 Trailer

Miniature

PiFace Control and Display Introduction

Miniature

Flashmob Farnell

Miniature

Express Yourself in 3D with Cube 3D Printers from Newark element14

Miniature

Farnell YouTube Channel Move

Miniature

Farnell: Design with the best

Miniature

French Farnell Quest

Miniature

Altera - 3 Ways to Quickly Adapt to Changing Ethernet Protocols

Miniature

Cy-Net3 Network Module

Miniature

MC AT - Professional and Precision Series Thin Film Chip Resistors

Miniature

Solderless LED Connector

Miniature

PSA-T Series Spectrum Analyser: PSA1301T/ PSA2701T

Miniature

3-axis Universal Motion Controller For Stepper Motor Drivers: TMC429

Miniature

Voltage Level Translation

Puce électronique / Microchip :

Miniature

Microchip - 8-bit Wireless Development Kit

Miniature

Microchip - Introduction to mTouch Capacitive Touch Sensing Part 2 of 3

Miniature

Microchip - Introduction to mTouch Capacitive Touch Sensing Part 3 of 3

Miniature

Microchip - Introduction to mTouch Capacitive Touch Sensing Part 1 of 3

Sans fil - Wireless :

Miniature

Microchip - 8-bit Wireless Development Kit

Miniature

Wireless Power Solutions - Wurth Electronics, Texas Instruments, CadSoft and element14

Miniature

Analog Devices - Remote Water Quality Monitoring via a Low Power, Wireless Network

Texas instrument :

Miniature

Texas Instruments - Automotive LED Headlights

Miniature

Texas Instruments - Digital Power Solutions

Miniature

Texas Instruments - Industrial Sensor Solutions

Miniature

Texas Instruments - Wireless Pen Input Demo (Mobile World Congress)

Miniature

Texas Instruments - Industrial Automation System Components

Miniature

Texas Instruments - TMS320C66x - Industry's first 10-GHz fixed/floating point DSP

Miniature

Texas Instruments - TMS320C66x KeyStone Multicore Architecture

Miniature

Texas Instruments - Industrial Interfaces

Miniature

Texas Instruments - Concerto™ MCUs - Connectivity without compromise

Miniature

Texas Instruments - Stellaris Robot Chronos

Miniature

Texas Instruments - DRV8412-C2-KIT, Brushed DC and Stepper Motor Control Kit

Ordinateurs :

Miniature

Ask Ben Heck - Connect Raspberry Pi to Car Computer

Miniature

Ben's Portable Raspberry Pi Computer Trailer

Miniature

Ben's Raspberry Pi Portable Computer Trailer 2

Miniature

Ben Heck's Pocket Computer Trailer

Miniature

Ask Ben Heck - Atari Computer

Miniature

Ask Ben Heck - Using Computer Monitors for External Displays

Miniature

Raspberry Pi Partnership with BBC Computer Literacy Project - Answers from co-founder Eben Upton

Miniature

Installing RaspBMC on your Raspberry Pi with the Farnell element14 Accessory kit

Miniature

Raspberry Pi Served - Joey Hudy

Miniature

Happy Birthday Raspberry Pi

Miniature

Raspberry Pi board B product overview

Logiciels :

Miniature

Ask Ben Heck - Best Opensource or Free CAD Software

Miniature

Tektronix FPGAView™ software makes debugging of FPGAs faster than ever!

Miniature

Ask Ben Heck - Best Open-Source Schematic Capture and PCB Layout Software

Miniature

Introduction to Cadsoft EAGLE PCB Design Software in Chinese

Miniature

Altera - Developing Software for Embedded Systems on FPGAs

Tutoriels :

Miniature

Ben Heck The Great Glue Gun Trailer Part 1

Miniature

the knode tutorial - element14

Miniature

Ben's Autodesk 123D Tutorial Trailer

Miniature

Ben's CadSoft EAGLE Tutorial Trailer

Miniature

Ben Heck's Soldering Tutorial Trailer

Miniature

Ben Heck's AVR Dev Board tutorial

Miniature

Ben Heck's Pinball Tutorial Trailer

Miniature

Ben Heck's Interface Tutorial Trailer

Miniature

First Stage with Python and PiFace Digital

Miniature

Cypress - Getting Started with PSoC® 3 - Part 2

Miniature

Energy Harvesting Challenge

Miniature

New Features of CadSoft EAGLE v6

Documents PDF :

[TXT]

 Farnell-Portable-Ana..> 26-Mar-2014 18:02  2.8M  

[TXT]

 Farnell-Lubrifiant-a..> 26-Mar-2014 18:00  2.7M  

[TXT]

 Farnell-Circuit-Note..> 26-Mar-2014 18:00  2.8M  

[TXT]

 Farnell-Circuit-Note..> 26-Mar-2014 18:00  2.8M  

[TXT]

 Farnell-Current-Tran..> 26-Mar-2014 17:59  2.7M  

[TXT]

 Farnell-Current-Tran..> 26-Mar-2014 17:59  2.7M  

[TXT]

 Farnell-Current-Tran..> 26-Mar-2014 17:58  2.7M  

[TXT]

 Farnell-Current-Tran..> 26-Mar-2014 17:58  2.7M  

[TXT]

 Farnell-Supercapacit..> 26-Mar-2014 17:57  2.7M  

[TXT]

 Farnell-GALVA-MAT-Re..> 26-Mar-2014 17:57  2.7M  

[TXT]

 Farnell-GALVA-A-FROI..> 26-Mar-2014 17:56  2.7M  

[TXT]

 Farnell-1907-2006-PD..> 26-Mar-2014 17:56  2.7M  

[TXT]

 Farnell-ARALDITE-CW-..> 26-Mar-2014 17:56  2.7M  

[TXT]

 Farnell-06-6544-8-PD..> 26-Mar-2014 17:56  2.7M  

[TXT]

 Farnell-Miniature-Ci..> 26-Mar-2014 17:55  2.8M  

[TXT]

 Farnell-ARADUR-HY-13..> 26-Mar-2014 17:55  2.8M  

[TXT]

 Farnell-LOCTITE-3463..> 25-Mar-2014 08:19  3.0M  

[TXT]

 Farnell-LCW-CQ7P.CC-..> 25-Mar-2014 08:19  3.2M  

[TXT]

 Farnell-ATtiny20-PDF..> 25-Mar-2014 08:19  3.6M  

[TXT]

 Farnell-3M-VolitionT..> 25-Mar-2014 08:18  3.3M  

[TXT]

 Farnell-EMC1182-PDF.htm 25-Mar-2014 08:17  3.0M  

[TXT]

 Farnell-MC3510-PDF.htm  25-Mar-2014 08:17  3.0M  

[TXT]

 Farnell-Directive-re..> 25-Mar-2014 08:16  3.0M  

[TXT]

 Farnell-Loctite3455-..> 25-Mar-2014 08:16  3.0M  

[TXT]

 Farnell-LOCTITE-542-..> 25-Mar-2014 08:15  3.0M  

[TXT]

 Farnell-5910-PDF.htm    25-Mar-2014 08:15  3.0M  

[TXT]

 Farnell-china_rohs_o..> 21-Mar-2014 10:04  3.9M  

[TXT]

 Farnell-Cles-electro..> 21-Mar-2014 08:13  3.9M  

[TXT]

 Farnell-ARALDITE-201..> 21-Mar-2014 08:12  3.7M  

[TXT]

 Farnell-Premier-Farn..> 21-Mar-2014 08:11  3.8M  

[TXT]

 Farnell-celpac-SUL84..> 21-Mar-2014 08:11  3.8M  

[TXT]

 Farnell-S-TRI-SWT860..> 21-Mar-2014 08:11  3.8M  

[TXT]

 Farnell-3M-Polyimide..> 21-Mar-2014 08:09  3.9M  

[TXT]

 Farnell-Strangkuhlko..> 21-Mar-2014 08:09  3.9M  

[TXT]

 Farnell-Reglement-RE..> 21-Mar-2014 08:08  3.9M  

[TXT]

 Farnell-techfirst_se..> 21-Mar-2014 08:08  3.9M  

[TXT]

 Farnell-Septembre-20..> 20-Mar-2014 17:46  3.7M  

[TXT]

 Farnell-Telemetres-l..> 20-Mar-2014 17:46  3.7M  

[TXT]

 Farnell-Multi-Functi..> 20-Mar-2014 17:38  3.0M  

[TXT]

 Farnell-testo-470-Fo..> 20-Mar-2014 17:38  3.0M  

[TXT]

 Farnell-Novembre-201..> 20-Mar-2014 17:38  3.3M  

[TXT]

 Farnell-testo-205-20..> 20-Mar-2014 17:37  3.0M  

[TXT]

 Farnell-Panasonic-Ra..> 20-Mar-2014 17:37  2.6M  

[TXT]

 Farnell-Panasonic-Ne..> 20-Mar-2014 17:36  2.6M  

[TXT]

 Farnell-Panasonic-EC..> 20-Mar-2014 17:36  2.6M  

[TXT]

 Farnell-Panasonic-Id..> 20-Mar-2014 17:35  2.6M  

[TXT]

 Farnell-cree-Xlamp-X..> 20-Mar-2014 17:35  2.7M  

[TXT]

 Farnell-cree-Xlamp-X..> 20-Mar-2014 17:34  2.8M  

[TXT]

 Farnell-ADSP-21362-A..> 20-Mar-2014 17:34  2.8M  

[TXT]

 Farnell-AD524-PDF.htm   20-Mar-2014 17:33  2.8M  

[TXT]

 Farnell-MPXV7002-Rev..> 20-Mar-2014 17:33  2.8M  

[TXT]

 Farnell-cree-Xlamp-m..> 20-Mar-2014 17:32  2.9M  

[TXT]

 Farnell-cree-Xlamp-m..> 20-Mar-2014 17:32  2.9M  

[TXT]

 Farnell-50A-High-Pow..> 20-Mar-2014 17:31  2.9M  

[TXT]

 Farnell-cree-Xlamp-X..> 20-Mar-2014 17:31  2.9M  

[TXT]

 Farnell-Series-2600B..> 20-Mar-2014 17:30  3.0M  

[TXT]

 Farnell-ECO-Series-T..> 20-Mar-2014 08:14  2.5M  

[TXT]

 Farnell-PDTA143X-ser..> 20-Mar-2014 08:12  2.6M  

[TXT]

 Farnell-Panasonic-TS..> 20-Mar-2014 08:12  2.6M  

[TXT]

 Farnell-Radial-Lead-..> 20-Mar-2014 08:12  2.6M  

[TXT]

 Farnell-GN-RELAYS-AG..> 20-Mar-2014 08:11  2.6M  

[TXT]

 Farnell-Panasonic-Y3..> 20-Mar-2014 08:11  2.6M  

[TXT]

 Farnell-Panasonic-EZ..> 20-Mar-2014 08:10  2.6M  

[TXT]

 Farnell-ATMEL-8-bit-..> 19-Mar-2014 18:04  2.1M  

[TXT]

 Farnell-USB1T11A-PDF..> 19-Mar-2014 18:03  2.1M  

[TXT]

 Farnell-OSLON-SSL-Ce..> 19-Mar-2014 18:03  2.1M  

[TXT]

 Farnell-Atmel-ATmega..> 19-Mar-2014 18:03  2.2M  

[TXT]

 Farnell-PBSS5160T-60..> 19-Mar-2014 18:03  2.1M  

[TXT]

 Farnell-MICROCHIP-PI..> 19-Mar-2014 18:02  2.5M  

[TXT]

 Farnell-Ed.081002-DA..> 19-Mar-2014 18:02  2.5M  

[TXT]

 Farnell-Instructions..> 19-Mar-2014 18:01  2.5M  

[TXT]

 Farnell-Serie-PicoSc..> 19-Mar-2014 18:01  2.5M  

[TXT]

 Farnell-F42202-PDF.htm  19-Mar-2014 18:00  2.5M  

[TXT]

 Farnell-propose-plus..> 11-Mar-2014 08:19  2.8M  

[TXT]

 Farnell-Haute-vitess..> 11-Mar-2014 08:17  2.4M  

[TXT]

 Farnell-Controle-de-..> 11-Mar-2014 08:16  2.8M  

[TXT]

 Farnell-NXP-TEA1703T..> 11-Mar-2014 08:15  2.8M  

[TXT]

 Farnell-XPS-MC16-XPS..> 11-Mar-2014 08:15  2.8M  

[TXT]

 Farnell-MC21605-PDF.htm 11-Mar-2014 08:14  2.8M  

[TXT]

 Farnell-WetTantalum-..> 11-Mar-2014 08:14  2.8M  

[TXT]

 Farnell-ES2333-PDF.htm  11-Mar-2014 08:14  2.8M  

[TXT]

 Farnell-SB175-Connec..> 11-Mar-2014 08:14  2.8M  

[TXT]

 Farnell-Cannon-ZD-PD..> 11-Mar-2014 08:13  2.8M  

[TXT]

 Farnell-YAGEO-DATA-S..> 11-Mar-2014 08:13  2.8M  

[TXT]

 Farnell-ATMEL-8-bit-..> 11-Mar-2014 07:55  2.1M  

[TXT]

 Farnell-NXP-PCA9555 ..> 11-Mar-2014 07:54  2.2M  

[TXT]

 Farnell-MICREL-KSZ88..> 11-Mar-2014 07:54  2.2M  

[TXT]

 Farnell-Microship-PI..> 11-Mar-2014 07:53  2.2M  

[TXT]

 Farnell-EPCOS-Sample..> 11-Mar-2014 07:53  2.2M  

[TXT]

 Farnell-NXP-BT136-60..> 11-Mar-2014 07:52  2.3M  

[TXT]

 Farnell-NTE_SEMICOND..> 11-Mar-2014 07:52  2.3M  

[TXT]

 Farnell-L-efficacite..> 11-Mar-2014 07:52  2.3M  

[TXT]

 Farnell-LUXEON-Guide..> 11-Mar-2014 07:52  2.3M  

[TXT]

 Farnell-Realiser-un-..> 11-Mar-2014 07:51  2.3M  

[TXT]

 Farnell-SOT-23-Multi..> 11-Mar-2014 07:51  2.3M  

[TXT]

 Farnell-ZigBee-ou-le..> 11-Mar-2014 07:50  2.4M  

[TXT]

 Farnell-Les-derniers..> 11-Mar-2014 07:50  2.3M  

[TXT]

 Farnell-Conception-d..> 11-Mar-2014 07:49  2.4M  

[TXT]

 Farnell-Puissance-ut..> 11-Mar-2014 07:49  2.4M  

[TXT]

 Farnell-MOLEX-43160-..> 10-Mar-2014 17:21  1.9M  

[TXT]

 Farnell-MOLEX-87439-..> 10-Mar-2014 17:21  1.9M  

[TXT]

 Farnell-MOLEX-43020-..> 10-Mar-2014 17:21  1.9M  

[TXT]

 Farnell-NXP-PBSS9110..> 10-Mar-2014 17:21  1.9M  

[TXT]

 Farnell-TEKTRONIX-DP..> 10-Mar-2014 17:20  2.0M  

[TXT]

 Farnell-uC-OS-III-Br..> 10-Mar-2014 17:20  2.0M  

[TXT]

 Farnell-CIRRUS-LOGIC..> 10-Mar-2014 17:20  2.1M  

[TXT]

 Farnell-NXP-PSMN7R0-..> 10-Mar-2014 17:19  2.1M  

[TXT]

 Farnell-MOLEX-39-00-..> 10-Mar-2014 17:19  1.9M  

[TXT]

 Farnell-manual-bus-p..> 10-Mar-2014 16:29  1.9M  

[TXT]

 Farnell-Molex-Crimp-..> 10-Mar-2014 16:27  1.7M  

[TXT]

 Farnell-The-essentia..> 10-Mar-2014 16:27  1.7M  

[TXT]

 Farnell-OMRON-Master..> 10-Mar-2014 16:26  1.8M  

[TXT]

 Farnell-Proskit-SS-3..> 10-Mar-2014 16:26  1.8M  

[TXT]

 Farnell-BYV79E-serie..> 10-Mar-2014 16:19  1.6M  

[TXT]

 Farnell-NXP-74VHC126..> 10-Mar-2014 16:17  1.6M  

[TXT]

 Farnell-NXP-PSMN1R7-..> 10-Mar-2014 16:17  1.6M  

[TXT]

 Farnell-FICHE-DE-DON..> 10-Mar-2014 16:17  1.6M  

[TXT]

 Farnell-HUNTSMAN-Adv..> 10-Mar-2014 16:17  1.7M  

[TXT]

 Farnell-NXP-PMBFJ620..> 10-Mar-2014 16:16  1.7M  

[TXT]

 Farnell-Pico-Spox-Wi..> 10-Mar-2014 16:16  1.7M  

[TXT]

 Farnell-Tektronix-AC..> 10-Mar-2014 15:52  1.5M

 

SMBJ Transil™ Features ■ Peak pulse power: – 600 W (10/1000 μs) – 4 kW (8/20 μs) ■ Stand off voltage range: from 5 V to 188 V ■ Unidirectional and bidirectional types ■ Low leakage current: – 0.2 μA at 25 °C – 1 μA at 85 °C ■ Operating Tj max: 150 °C ■ High power capability at Tj max: – 515 W (10/1000 μs) ■ JEDEC registered package outline Complies with the following standards ■ IEC 61000-4-2 level 4: – 15 kV (air discharge) – 8 kV (contact discharge) ■ IEC 61000-4-5 ■ MIL STD 883G, method 3015-7 Class 3B: – 25 kV HBM (human body model) ■ Resin meets UL 94, V0 ■ MIL-STD-750, method 2026 soldererability ■ EIA STD RS-481 and IEC 60286-3 packing ■ IPC 7531 footprint Description The SMBJ Transil series has been designed to protect sensitive equipment against electrostatic discharges according to IEC 61000-4-2, and MIL STD 883, method 3015, and electrical over stress according to IEC 61000-4-4 and 5. These devices are more generally used against surges below 600 W (10/1000 μs). Planar technology makes these devices suitable for high-end equipment and SMPS where low leakage current and high junction temperature are required to provide reliability and stability over time. SMBJ are packaged in SMB (SMB footprint in accordance with IPC 7531 standard). TM: Transil is a trademark of STMicroelectronics K A Unidirectional Bidirectional SMB (JEDEC DO-214AA) www.st.com Characteristics SMBJ 2/10 Doc ID 5616 Rev 10 1 Characteristics Figure 1. Electrical characteristics - definitions Figure 2. Pulse definition for electrical characteristics Table 1. Absolute maximum ratings (Tamb = 25 °C) Symbol Parameter Value Unit PPP Peak pulse power dissipation (1) Tj initial = Tamb 600 W Tstg Storage temperature range -65 to +150 °C Tj Operating junction temperature range -55 to +150 °C TL Maximum lead temperature for soldering during 10 s. 260 °C 1. For a surge greater than the maximum values, the diode will fail in short-circuit. Table 2. Thermal resistances Symbol Parameter Value Unit Rth(j-l) Junction to leads 20 °C/W Rth(j-a) Junction to ambient on recommended pad layout 100 °C/W VCLVBR VRM IRM IR IPP V I IRM IR IPP VRMVBR VCL V CLVBR VRM IRM IR IPP V I IF VF Unidirectional Bidirectional Symbol Parameter V Stand-off voltage V Breakdown voltage V Clamping voltage I Leakage current @ V I Peak pulse current T Voltage temperature coefficient V Forward voltage drop R Dynamic resistance RM BR CL RM RM PP F D α Repetitive pulse current tr = rise time (μs) tp = pulse duration time (μs) tp t tr % Ipp 100 50 0 SMBJ Characteristics Doc ID 5616 Rev 10 3/10 Table 3. Electrical characteristics - parameter values (Tamb = 25 °C) Order code IRM max@VRM VBR @IR (1) VCL @IPP 10/1000 μs RD (2) 10/1000 μs VCL @IPP 8/20 μs RD (2) 8/20 μs αT (3) 25 °C 85 °C min typ max max max μA V V mA V A(4) Ω V A(4) Ω 10-4/ °C SMBJ5.0A/CA 20 50 5.0 6.4 6.74 10 9.2 68 0.031 13.4 298 0.021 5.7 SMBJ6.0A/CA 20 50 6.0 6.7 7.05 10 10.3 61 0.048 13.7 290 0.022 5.9 SMBJ6.5A/CA 20 50 6.5 7.2 7.58 10 11.2 56 0.058 14.5 276 0.024 6.1 SMBJ8.5A/CA 20 50 8.5 9.4 9.9 1 14.4 41.7 0.096 19.5 205 0.044 7.3 SMBJ10A/CA 0.2 1 10 11.1 11.7 1 17 37 0.127 21.7 184 0.051 7.8 SMBJ12A/CA 0.2 1 12 13.3 14 1 19.9 31 0.168 25.3 157 0.068 8.3 SMBJ13A/CA 0.2 1 13 14.4 15.2 1 21.5 29 0.191 27.2 147 0.076 8.4 SMBJ15A/CA 0.2 1 15 16.7 17.6 1 24.4 25.1 0.236 32.5 123 0.114 8.8 SMBJ16A/CA 0.2 1 16 17.8 18.7 1 26 23.1 0.276 34.4 116 0.127 8.8 SMBJ18A/CA 0.2 1 18 20.0 21.1 1 29.2 21.5 0.328 39.3 102 0.168 9.2 SMBJ20A/CA 0.2 1 20 22.2 23.4 1 32.4 19.4 0.404 42.8 93 0.196 9.4 SMBJ22A/CA 0.2 1 22 24.4 25.7 1 35.5 17.7 0.481 48.3 83 0.257 9.6 SMBJ24A/CA 0.2 1 24 26.7 28.1 1 38.9 16 0.587 50 80 0.256 9.6 SMBJ26A/CA 0.2 1 26 28.9 30.4 1 42.1 14.9 0.683 53.5 75 0.288 9.7 SMBJ28A/CA 0.2 1 28 31.1 32.7 1 45.4 13.8 0.802 59 68 0.363 9.8 SMBJ30A/CA 0.2 1 30 33.3 35.1 1 48.4 13 0.888 64.3 62 0.443 9.9 SMBJ33A/CA 0.2 1 33 36.7 38.6 1 53.3 11.8 1.08 69.7 57 0.512 10.0 SMBJ36A/CA 0.2 1 36 40.0 42.1 1 58.1 10.3 1.35 76 52 0.611 10.0 SMBJ40A/CA 0.2 1 40 44.4 46.7 1 64.5 9.7 1.59 84 48 0.728 10.1 SMBJ48A/CA 0.2 1 48 53.3 56.1 1 77.4 8.1 2.28 100 40 1.03 10.3 SMBJ58A/CA 0.2 1 58 64.4 67.8 1 93.6 6.7 3.34 121 33 1.51 10.4 SMBJ70A/CA 0.2 1 70 77.8 81.9 1 113 5.5 4.91 146 27 2.22 10.5 SMBJ85A/CA 0.2 1 85 94 99 1 137 4.6 7.18 178 22.5 3.29 10.6 SMBJ100A/CA 0.2 1 100 111 117 1 162 3.8 10.3 212 19 4.69 10.7 SMBJ130A/CA 0.2 1 130 144 152 1 209 3 16.5 265 15 7.03 10.8 SMBJ154A/CA 0.2 1 154 171 180 1 246 2.4 23.8 317 12.6 10.2 10.8 SMBJ170A/CA 0.2 1 170 189 199 1 275 2.2 30.0 353 11.3 12.7 10.8 SMBJ188A/CA 0.2 1 188 209 220 1 328 2 48.5 388 10.3 15.2 10.8 1. Pulse test : tp < 50 ms 2. To calculate maximum clamping voltage at other surge level,use the following formula: VCLmax = VCL - RD x (IPP - IPPappli) where IPPappli is the surge current in the application 3. To calculate VBR or VCL versus junction temperature, use the following formulas: VBR @ TJ = VBR @ 25°C x (1 + αT x (TJ – 25)) VCL @ TJ = VCL @ 25°C x (1 + αT x (TJ – 25)) 4. Surge capability given for both directions for unidirectional and bidirectional types. Characteristics SMBJ 4/10 Doc ID 5616 Rev 10 Figure 5. Clamping voltage versus peak pulse current (exponential waveform, maximum values) Figure 3. Peak pulse power dissipation versus initial junction temperature Figure 4. Peak pulse power versus exponential pulse duration (Tj initial = 25 °C) 0 100 200 300 400 500 600 700 0 25 50 75 100 125 150 175 Ppp (W) Tj(°C) 0.1 1.0 10.0 100.0 1.0E-03 1.0E-02 1.0E-01 1.0E+00 1.0E+01 PPP(kW) Tj initial = 25 °C tP(ms) IPP(A) 0.1 1.0 10.0 100.0 1000.0 1 10 100 1000 10/1000 μs Tj initial=25 °C 8/20 μs 10 ms SMBJ5.0A SMBJ188A SMBJ12A SMBJ24A SMBJ40A SMBJ85A VCL(V) SMBJ Characteristics Doc ID 5616 Rev 10 5/10 Figure 6. Junction capacitance versus reverse applied voltage for unidirectional types (typical values) Figure 7. Junction capacitance versus reverse applied voltage for bidirectional types (typical values) 10 100 1000 10000 1 10 100 1000 C(pF) F=1 MHz Vosc=30 mVRMS Tj=25 °C SMBJ5.0A SMBJ12A SMBJ24A SMBJ40A SMBJ85A VR(V) SMBJ188A 10 100 1000 10000 1 10 100 1000 C(pF) F=1 MHz Vosc=30 mVRMS Tj=25 °C SMBJ5.0CA SMBJ12CA SMBJ24CA SMBJ40CA SMBJ85CA SMBJ188CA VR(V) Figure 8. Peak forward voltage drop versus peak forward current (typical values) Figure 9. Relative variation of thermal impedance, junction to ambient, versus pulse duration Figure 10. Thermal resistance, junction to ambient, versus copper surface under each lead Figure 11. Leakage current versus junction temperature (typical values) IFM(A) 1.0E-02 1.0E-01 1.0E+00 1.0E+01 1.0E+02 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Tj =25 °C Tj =125 °C VFM(V) 0.01 0.10 1.00 1.0E-03 1.0E-02 1.0E-01 1.0E+00 1.0E+01 1.0E+02 1.0E+03 Zth(j-a) /Rth(j-a) tP(s) Recommended pad layout PCB FR4, copper thickness = 35 μm 0 10 20 30 40 50 60 70 80 90 100 110 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 R (°C/W) th(J-A) SCU(cm²) PCB FR4, copper thickness = 35 μm 1.E-01 1.E+00 1.E+01 1.E+02 1.E+03 25 50 75 100 125 150 VR=VRM VRM ≥ 10 V VR=VRM VRM< 10 V Tj(°C) IR (nA) Ordering information scheme SMBJ 6/10 Doc ID 5616 Rev 10 2 Ordering information scheme Figure 12. Ordering information scheme SM B J 85 CA - TR Surface mount Peak pulse power B = 600 WTransil in SMB Stand off voltage 85 = 85 V Type A = Unidirectional CA = Bidirectional Delivery mode TR = Tape and reel SMBJ Package information Doc ID 5616 Rev 10 7/10 3 Package information ● Case: JEDEC DO-214AA molded plastic over planar junction ● Terminals: solder plated - solderable per MIL-STD-750, Method 2026 ● Polarity: for unidirectional types the band indicates cathode ● Flammability: epoxy is rated UL94V-0 ● RoHS package In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. Table 4. SMB dimensions Ref. Dimensions Millimeters Inches Min. Max. Min. Max. A1 1.90 2.45 0.075 0.096 A2 0.05 0.20 0.002 0.008 b 1.95 2.20 0.077 0.087 c 0.15 0.40 0.006 0.016 D 3.30 3.95 0.130 0.156 E 5.10 5.60 0.201 0.220 E1 4.05 4.60 0.159 0.181 L 0.75 1.50 0.030 0.059 Figure 13. Footprint dimensions in mm (inches) Figure 14. Marking layout(1) 1. Marking layout can vary according to assembly location. E C L E1 D A1 A2 b 2.60 5.84 1.62 2.18 1.62 (0.064) (0.102) (0.23) (0.064) (0.086) y w w e z x x x e: ECOPACK compliance XXX: Marking Z: Manufacturing location Y: Year WW: week Cathode bar ( unidirectional devices only ) Package information SMBJ 8/10 Doc ID 5616 Rev 10 Table 5. Marking Order code Marking Order code Marking SMBJ5.0A-TR BUZ SMBJ5.0CA-TR BBZ SMBJ6.0A-TR BUA SMBJ6.0CA-TR BBA SMBJ6.5A-TR BUB SMBJ6.5CA-TR BBB SMBJ8.5A-TR BUC SMBJ8.5CA-TR BBC SMBJ10A-TR BUD SMBJ10CA-TR BBD SMBJ12A-TR BUE SMBJ12CA-TR BBE SMBJ13A-TR BUF SMBJ13CA-TR BBF SMBJ15A-TR BUG SMBJ15CA-TR BBG SMBJ16A-TR CUG SMBJ16CA-TR CBG SMBJ18A-TR BUH SMBJ18CA-TR BBH SMBJ20A-TR BUI SMBJ20CA-TR BBI SMBJ22A-TR BVA SMBJ22CA-TR CBH SMBJ24A-TR BUJ SMBJ24CA-TR BBJ SMBJ26A-TR BUK SMBJ26CA-TR BBK SMBJ28A-TR BUL SMBJ28CA-TR BBL SMBJ30A-TR BUM SMBJ30CA-TR BBM SMBJ33A-TR BUN SMBJ33CA-TR BBN SMBJ36A-TR CUN SMBJ36CA-TR CBN SMBJ40A-TR CUJ SMBJ40CA-TR CBJ SMBJ43A-TR CUW SMBJ43CA-TR CBW SMBJ48A-TR BUW SMBJ48CA-TR BBW SMBJ58A-TR BUO SMBJ58CA-TR BBO SMBJ70A-TR CUM SMBJ70CA-TR CBM SMBJ85A-TR BUQ SMBJ85CA-TR BBQ SMBJ100A-TR CUQ SMBJ100CA-TR CBQ SMBJ130A-TR BUS SMBJ130CA-TR BBS SMBJ154A-TR BUT SMBJ154CA-TR BBT SMBJ170A-TR BUU SMBJ170CA-TR BBU SMBJ188A-TR BUV SMBJ188CA-TR BBV SMBJ Ordering information Doc ID 5616 Rev 10 9/10 4 Ordering information 5 Revision history Table 6. Order codes Order code Marking Package Weight Base qty Delivery mode SMBJxxxA/CA-TR(1) 1. Where xxx is nominal value of VBR and A or CA indicates unidirectional or bidirectional version. See Table 3 for list of available devices and their order codes See Table 5 on page 8 SMB 0.11 g 2500 Tape and reel Table 7. Document revision history Date Revision Changes Oct-2001 4 Previous issue 10-Feb-2005 5 Reformatted to current template. Added directional (uni and bi) indications to graphics. Added ECOPACK statement. 16-Nov-2006 6 Add part numbers SMBJ36A-TR and SMBJ36CA-TR in Table 3. 14-May-2009 7 Reformatted to current standards. Updated ECOPACK statement. Added part number SMBJ43CA/A 17-Sep-2009 8 Document updated for low leakage current. 09-Jul-2010 9 Changed timescale in Figure 9. 20-Oct-2010 10 Updated Figure 13. SMBJ 10/10 Doc ID 5616 Rev 10 Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2010 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com CC2430 CC2430 Data Sheet (rev. 2.1) SWRS036F Page 1 of 211 A True System-on-Chip solution for 2.4 GHz IEEE 802.15.4 / ZigBee® Applications • 2.4 GHz IEEE 802.15.4 systems • ZigBee® systems • Home/building automation • Industrial Control and Monitoring • Low power wireless sensor networks • PC peripherals • Set-top boxes and remote controls • Consumer Electronics Product Description The CC2430 comes in three different flash versions: CC2430F32/64/128, with 32/64/128 KB of flash memory respectively. The CC2430 is a true System-on-Chip (SoC) solution specifically tailored for IEEE 802.15.4 and ZigBee® applications. It enables ZigBee® nodes to be built with very low total bill-ofmaterial costs. The CC2430 combines the excellent performance of the leading CC2420 RF transceiver with an industry-standard enhanced 8051 MCU, 32/64/128 KB flash memory, 8 KB RAM and many other powerful features. Combined with the industry leading ZigBee® protocol stack (Z-Stack™) from Texas Instruments, the CC2430 provides the market’s most competitive ZigBee® solution. The CC2430 is highly suited for systems where ultra low power consumption is required. This is ensured by various operating modes. Short transition times between operating modes further ensure low power consumption. Key Features • RF/Layout o 2.4 GHz IEEE 802.15.4 compliant RF transceiver (industry leading CC2420 radio core) o Excellent receiver sensitivity and robustness to interferers o Very few external components o Only a single crystal needed for mesh network systems o RoHS compliant 7x7mm QLP48 package • Low Power o Low current consumption (RX: 27 mA, TX: 27 mA, microcontroller running at 32 MHz) o Only 0.5 μA current consumption in powerdown mode, where external interrupts or the RTC can wake up the system o 0.3 μA current consumption in stand-by mode, where external interrupts can wake up the system o Very fast transition times from low-power modes to active mode enables ultra low average power consumption in low dutycycle systems o Wide supply voltage range (2.0V - 3.6V) • Microcontroller o High performance and low power 8051 microcontroller core o 32, 64 or 128 KB in-system programmable flash o 8 KB RAM, 4 KB with data retention in all power modes o Powerful DMA functionality o Watchdog timer o One IEEE 802.15.4 MAC timer, one general 16-bit timer and two 8-bit timers o Hardware debug support • Peripherals o CSMA/CA hardware support. o Digital RSSI / LQI support o Battery monitor and temperature sensor o 12-bit ADC with up to eight inputs and configurable resolution o AES security coprocessor o Two powerful USARTs with support for several serial protocols o 21 general I/O pins, two with 20mA sink/source capability • Development tools o Powerful and flexible development tools available Not Recommended for New Designs CC2430 CC2430 Data Sheet (rev. 2.1) SWRS036F Page 2 of 211 Table Of Contents 1 ABBREVIATIONS................................................................................................................................ 5 2 REFERENCES....................................................................................................................................... 7 3 REGISTER CONVENTIONS .............................................................................................................. 8 4 FEATURES EMPHASIZED ................................................................................................................ 9 4.1 HIGH-PERFORMANCE AND LOW-POWER 8051-COMPATIBLE MICROCONTROLLER ............................... 9 4.2 UP TO 128 KB NON-VOLATILE PROGRAM MEMORY AND 2 X 4 KB DATA MEMORY ............................ 9 4.3 HARDWARE AES ENCRYPTION/DECRYPTION ....................................................................................... 9 4.4 PERIPHERAL FEATURES......................................................................................................................... 9 4.5 LOW POWER.......................................................................................................................................... 9 4.6 IEEE 802.15.4MAC HARDWARE SUPPORT........................................................................................... 9 4.7 INTEGRATED 2.4GHZ DSSS DIGITAL RADIO ........................................................................................ 9 5 ABSOLUTE MAXIMUM RATINGS ................................................................................................ 10 6 OPERATING CONDITIONS............................................................................................................. 10 7 ELECTRICAL SPECIFICATIONS .................................................................................................. 11 7.1 GENERAL CHARACTERISTICS .............................................................................................................. 12 7.2 RF RECEIVE SECTION ......................................................................................................................... 13 7.3 RF TRANSMIT SECTION....................................................................................................................... 13 7.4 32 MHZ CRYSTAL OSCILLATOR.......................................................................................................... 14 7.5 32.768 KHZ CRYSTAL OSCILLATOR.................................................................................................... 14 7.6 32 KHZ RC OSCILLATOR..................................................................................................................... 15 7.7 16 MHZ RC OSCILLATOR ................................................................................................................... 15 7.8 FREQUENCY SYNTHESIZER CHARACTERISTICS ................................................................................... 16 7.9 ANALOG TEMPERATURE SENSOR........................................................................................................ 16 7.10 ADC ................................................................................................................................................... 16 7.11 CONTROL AC CHARACTERISTICS........................................................................................................ 18 7.12 SPI AC CHARACTERISTICS ................................................................................................................. 19 7.13 DEBUG INTERFACE AC CHARACTERISTICS ......................................................................................... 20 7.14 PORT OUTPUTS AC CHARACTERISTICS............................................................................................... 21 7.15 TIMER INPUTS AC CHARACTERISTICS................................................................................................. 21 7.16 DC CHARACTERISTICS........................................................................................................................ 21 8 PIN AND I/O PORT CONFIGURATION ........................................................................................ 22 9 CIRCUIT DESCRIPTION ................................................................................................................. 24 9.1 CPU AND PERIPHERALS ...................................................................................................................... 25 9.2 RADIO ................................................................................................................................................. 26 10 APPLICATION CIRCUIT ................................................................................................................. 27 10.1 INPUT / OUTPUT MATCHING................................................................................................................. 27 10.2 BIAS RESISTORS .................................................................................................................................. 27 10.3 CRYSTAL............................................................................................................................................. 27 10.4 VOLTAGE REGULATORS ...................................................................................................................... 27 10.5 DEBUG INTERFACE.............................................................................................................................. 27 10.6 POWER SUPPLY DECOUPLING AND FILTERING...................................................................................... 28 11 8051 CPU .............................................................................................................................................. 30 11.1 8051 CPU INTRODUCTION .................................................................................................................. 30 11.2 MEMORY............................................................................................................................................. 30 11.3 CPU REGISTERS.................................................................................................................................. 42 11.4 INSTRUCTION SET SUMMARY.............................................................................................................. 44 11.5 INTERRUPTS ........................................................................................................................................ 49 12 DEBUG INTERFACE......................................................................................................................... 60 12.1 DEBUG MODE ..................................................................................................................................... 60 12.2 DEBUG COMMUNICATION ................................................................................................................... 60 12.3 DEBUG COMMANDS ............................................................................................................................ 60 12.4 DEBUG LOCK BIT................................................................................................................................ 60 12.5 DEBUG INTERFACE AND POWER MODES ............................................................................................. 64 13 PERIPHERALS................................................................................................................................... 65 Not Recommended for New Designs CC2430 CC2430 Data Sheet (rev. 2.1) SWRS036F Page 3 of 211 13.1 POWER MANAGEMENT AND CLOCKS................................................................................................... 65 13.2 RESET ................................................................................................................................................. 71 13.3 FLASH CONTROLLER........................................................................................................................... 71 13.4 I/O PORTS............................................................................................................................................ 77 13.5 DMA CONTROLLER ............................................................................................................................ 88 13.6 16-BIT TIMER, TIMER1 ........................................................................................................................ 99 13.7 MAC TIMER (TIMER2)...................................................................................................................... 110 13.8 8-BIT TIMERS, TIMER 3 AND TIMER 4 ................................................................................................ 117 13.9 SLEEP TIMER..................................................................................................................................... 126 13.10 ADC ................................................................................................................................................. 128 13.11 RANDOM NUMBER GENERATOR ....................................................................................................... 134 13.12 AES COPROCESSOR .......................................................................................................................... 136 13.13 WATCHDOG TIMER ........................................................................................................................... 141 13.14 USART............................................................................................................................................. 143 14 RADIO................................................................................................................................................ 153 14.1 IEEE 802.15.4MODULATION FORMAT............................................................................................. 154 14.2 COMMAND STROBES ......................................................................................................................... 155 14.3 RF REGISTERS................................................................................................................................... 155 14.4 INTERRUPTS ...................................................................................................................................... 155 14.5 FIFO ACCESS .................................................................................................................................... 157 14.6 DMA ................................................................................................................................................ 157 14.7 RECEIVE MODE.................................................................................................................................. 158 14.8 RXFIFO OVERFLOW......................................................................................................................... 158 14.9 TRANSMIT MODE............................................................................................................................... 159 14.10 GENERAL CONTROL AND STATUS ...................................................................................................... 160 14.11 DEMODULATOR, SYMBOL SYNCHRONIZER AND DATA DECISION ..................................................... 160 14.12 FRAME FORMAT................................................................................................................................ 161 14.13 SYNCHRONIZATION HEADER ............................................................................................................. 161 14.14 LENGTH FIELD................................................................................................................................... 162 14.15 MAC PROTOCOL DATA UNIT ............................................................................................................. 162 14.16 FRAME CHECK SEQUENCE ................................................................................................................. 162 14.17 RF DATA BUFFERING........................................................................................................................ 163 14.18 ADDRESS RECOGNITION.................................................................................................................... 164 14.19 ACKNOWLEDGE FRAMES .................................................................................................................. 165 14.20 RADIO CONTROL STATE MACHINE ..................................................................................................... 166 14.21 MAC SECURITY OPERATIONS (ENCRYPTION AND AUTHENTICATION).............................................. 168 14.22 LINEAR IF AND AGC SETTINGS ........................................................................................................ 168 14.23 RSSI / ENERGY DETECTION.............................................................................................................. 168 14.24 LINK QUALITY INDICATION .............................................................................................................. 168 14.25 CLEAR CHANNEL ASSESSMENT......................................................................................................... 169 14.26 FREQUENCY AND CHANNEL PROGRAMMING..................................................................................... 169 14.27 VCO AND PLL SELF-CALIBRATION.................................................................................................. 169 14.28 OUTPUT POWER PROGRAMMING....................................................................................................... 170 14.29 INPUT / OUTPUT MATCHING.............................................................................................................. 170 14.30 TRANSMITTER TEST MODES ............................................................................................................. 171 14.31 SYSTEM CONSIDERATIONS AND GUIDELINES.................................................................................... 173 14.32 PCB LAYOUT RECOMMENDATION .................................................................................................... 175 14.33 ANTENNA CONSIDERATIONS............................................................................................................. 175 14.34 CSMA/CA STROBE PROCESSOR....................................................................................................... 176 14.35 RADIO REGISTERS............................................................................................................................. 183 15 VOLTAGE REGULATORS............................................................................................................. 202 15.1 VOLTAGE REGULATORS POWER-ON.................................................................................................. 202 16 EVALUATION SOFTWARE........................................................................................................... 202 17 REGISTER OVERVIEW................................................................................................................. 203 18 PACKAGE DESCRIPTION (QLP 48) ............................................................................................ 206 18.1 RECOMMENDED PCB LAYOUT FOR PACKAGE (QLP 48).................................................................... 207 18.2 PACKAGE THERMAL PROPERTIES....................................................................................................... 207 18.3 SOLDERING INFORMATION ................................................................................................................ 207 18.4 TRAY SPECIFICATION ........................................................................................................................ 207 Not Recommended for New Designs CC2430 CC2430 Data Sheet (rev. 2.1) SWRS036F Page 4 of 211 18.5 CARRIER TAPE AND REEL SPECIFICATION.......................................................................................... 207 19 ORDERING INFORMATION......................................................................................................... 209 20 GENERAL INFORMATION........................................................................................................... 210 20.1 DOCUMENT HISTORY........................................................................................................................ 210 21 ADDRESS INFORMATION............................................................................................................ 210 22 TI WORLDWIDE TECHNICAL SUPPORT................................................................................. 210 Not Recommended for New Designs CC2430 CC2430 Data Sheet (rev. 2.1) SWRS036F Page 5 of 211 1 Abbreviations ADC Analog to Digital Converter AES Advanced Encryption Standard AGC Automatic Gain Control ARIB Association of Radio Industries and Businesses BCD Binary Coded Decimal BER Bit Error Rate BOD Brown Out Detector BOM Bill of Materials CBC Cipher Block Chaining CBC-MAC Cipher Block Chaining Message Authentication Code CCA Clear Channel Assessment CCM Counter mode + CBC-MAC CFB Cipher Feedback CFR Code of Federal Regulations CMOS Complementary Metal Oxide Semiconductor CMRR Common Mode Ratio Recjection CPU Central Processing Unit CRC Cyclic Redundancy Check CSMA-CA Carrier Sense Multiple Access with Collision Avoidance CSP CSMA/CA Strobe Processor CTR Counter mode (encryption) CW Continuous Wave DAC Digital to Analog Converter DC Direct Current DMA Direct Memory Access DNL Differential Nonlineraity DSM Delta Sigma Modulator DSSS Direct Sequence Spread Spectrum ECB Electronic Code Book (encryption) EM Evaluation Module ENOB Effective Number of bits ESD Electro Static Discharge ESR Equivalent Series Resistance ETSI European Telecommunications Standards Institute EVM Error Vector Magnitude FCC Federal Communications Commission FCF Frame Control Field FCS Frame Check Sequence FFCTRL FIFO and Frame Control FIFO First In First Out HF High Frequency HSSD High Speed Serial Data I/O Input / Output I/Q In-phase / Quadrature-phase IEEE Institute of Electrical and Electronics Engineers IF Intermediate Frequency INL Integral Nonlinearity IOC I/O Controller IRQ Interrupt Request ISM Industrial, Scientific and Medical ITU-T International Telecommunication Union – Telecommunication Standardization Sector IV Initialization Vector JEDEC Joint Electron Device Engineering Council KB 1024 bytes kbps kilo bits per second LC Inductor-capacitor LFSR Linear Feedback Shift Register LNA Low-Noise Amplifier LO Local Oscillator LQI Link Quality Indication LSB Least Significant Bit / Byte LSB Least Significant Byte MAC Medium Access Control MAC Message Authentication Code MCU Microcontroller Unit MFR MAC Footer MHR MAC Header MIC Message Integrity Code MISO Master In Slave Out MOSI Master Out Slave In MPDU MAC Protocol Data Unit MSB Most Significant Byte MSDU MAC Service Data Unit MUX Multiplexer NA Not Available NC Not Connected OFB Output Feedback (encryption) O-QPSK Offset - Quadrature Phase Shift Keying PA Power Amplifier PCB Printed Circuit Board PER Packet Error Rate PHR PHY Header PHY Physical Layer PLL Phase Locked Loop Not Recommended for New Designs CC2430 CC2430 Data Sheet (rev. 2.1) SWRS036F Page 6 of 211 PM{0-3} Power Mode 0-3 PMC Power Management Controller POR Power On Reset PSDU PHY Service Data Unit PWM Pulse Width Modulator QLP Quad Leadless Package RAM Random Access Memory RBW Resolution Bandwidth RC Resistor-Capacitor RCOSC RC Oscillator RF Radio Frequency RoHS Restriction on Hazardous Substances RSSI Receive Signal Strength Indicator RTC Real-Time Clock RX Receive SCK Serial Clock SFD Start of Frame Delimiter SFR Special Function Register SHR Synchronization Header SINAD Signal-to-noise and distortion ratio SPI Serial Peripheral Interface SRAM Static Random Access Memory ST Sleep Timer T/R Tape and reel T/R Transmit / Receive TBD To Be Decided / To Be Defined THD Total Harmonic Distortion TI Texas Instruments TX Transmit UART Universal Asynchronous Receiver/Transmitter USART Universal Synchronous/Asynchronous Receiver/Transmitter VCO Voltage Controlled Oscillator VGA Variable Gain Amplifier WDT Watchdog Timer XOSC Crystal Oscillator Not Recommended for New Designs CC2430 CC2430 Data Sheet (rev. 2.1) SWRS036F Page 7 of 211 2 References [1] IEEE std. 802.15.4 - 2003: Wireless Medium Access Control (MAC) and Physical Layer (PHY) specifications for Low Rate Wireless Personal Area Networks (LR-WPANs) http://standards.ieee.org/getieee802/download/802.15.4-2003.pdf [2] NIST FIPS Pub 197: Advanced Encryption Standard (AES), Federal Information Processing Standards Publication 197, US Department of Commerce/N.I.S.T., November 26, 2001. Available from the NIST website. http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf Not Recommended for New Designs CC2430 CC2430 Data Sheet (rev. 2.1) SWRS036F Page 8 of 211 3 Register conventions Each SFR register is described in a separate table. The table heading is given in the following format: REGISTER NAME (SFR Address) - Register Description. Each RF register is described in a separate table. The table heading is given in the following format: REGISTER NAME (XDATA Address) In the register descriptions, each register bit is shown with a symbol indicating the access mode of the register bit. The register values are always given in binary notation unless prefixed by ‘0x’ which indicates hexadecimal notation. Table 1: Register bit conventions Symbol Access Mode R/W Read/write R Read only R0 Read as 0 R1 Read as 1 W Write only W0 Write as 0 W1 Write as 1 H0 Hardware clear H1 Hardware set Not Recommended for New Designs CC2430 CC2430 Data Sheet (rev. 2.1) SWRS036F Page 9 of 211 4 Features Emphasized 4.1 High-Performance and Low-Power 8051-Compatible Microcontroller • Optimized 8051 core, which typically gives 8x the performance of a standard 8051 • Dual data pointers • In-circuit interactive debugging is supported for the IAR Embedded Workbench through a simple two-wire serial interface 4.2 Up to 128 KB Non-volatile Program Memory and 2 x 4 KB Data Memory • 32/64/128 KB of non-volatile flash memory in-system programmable through a simple two-wire interface or by the 8051 core • Worst-case flash memory endurance: 1000 write/erase cycles • Programmable read and write lock of portions of Flash memory for software security • 4096 bytes of internal SRAM with data retention in all power modes • Additional 4096 bytes of internal SRAM with data retention in power modes 0 and 1 4.3 Hardware AES Encryption/Decryption • AES supported in hardware coprocessor 4.4 Peripheral Features • Powerful DMA Controller • Power On Reset/Brown-Out Detection • Eight channel ADC with configurable resolution • Programmable watchdog timer • Real time clock with 32.768 kHz crystal oscillator • Four timers: one general 16-bit timer, two general 8-bit timers, one MAC timer • Two programmable USARTs for master/slave SPI or UART operation • 21 configurable general-purpose digital I/O-pins • True random number generator 4.5 Low Power • Four flexible power modes for reduced power consumption • System can wake up on external interrupt or real-time counter event • Low-power fully static CMOS design • System clock source can be 16 MHz RC oscillator or 32 MHz crystal oscillator. The 32 MHz oscillator is used when radio is active • Optional clock source for ultra-low power operation can be either low-power RC oscillator or an optional 32.768 kHz crystal oscillator 4.6 IEEE 802.15.4 MAC hardware support • Automatic preamble generator • Synchronization word insertion/detection • CRC-16 computation and checking over the MAC payload • Clear Channel Assessment • Energy detection / digital RSSI • Link Quality Indication • CSMA/CA Coprocessor 4.7 Integrated 2.4GHz DSSS Digital Radio • 2.4 GHz IEEE 802.15.4 compliant RF transceiver (based on industry leading CC2420 radio core). • Excellent receiver sensitivity and robustness to interferers • 250 kbps data rate, 2 MChip/s chip rate • Reference designs comply with worldwide radio frequency regulations covered by ETSI EN 300 328 and EN 300 440 class 2 (Europe), FCC CFR47 Part 15 (US) and ARIB STD-T66 (Japan). Transmit on 2480MHz under FCC is supported by duty-cycling, or by reducing output power. Not Recommended for New Designs CC2430 CC2430 Data Sheet (rev. 2.1) SWRS036F Page 10 of 211 5 Absolute Maximum Ratings Under no circumstances must the absolute maximum ratings given in Table 2 be violated. Stress exceeding one or more of the limiting values may cause permanent damage to the device. Table 2: Absolute Maximum Ratings Parameter Min Max Units Condition Supply voltage –0.3 3.9 V All supply pins must have the same voltage Voltage on any digital pin –0.3 VDD+0.3, max 3.9 V Voltage on the 1.8V pins (pin no. 22, 25-40 and 42) –0.3 2.0 V Input RF level 10 dBm Storage temperature range –50 150 °C Device not programmed Reflow soldering temperature 260 °C According to IPC/JEDEC J-STD-020C <500 V On RF pads (RF_P, RF_N, AVDD_RF1, and AVDD_RF2), according to Human Body Model, JEDEC STD 22, method A114 700 V All other pads, according to Human Body Model, JEDEC STD 22, method A114 ESD 200 V According to Charged Device Model, JEDEC STD 22, method C101 Caution! ESD sensitive device. Precaution should be used when handling the device in order to prevent permanent damage. 6 Operating Conditions The operating conditions for CC2430 are listed in Table 3 . Table 3: Operating Conditions Parameter Min Max Unit Condition Operating ambient temperature range, TA -40 85 °C Operating supply voltage 2.0 3.6 V The supply pins to the radio part must be driven by the 1.8 V on-chip regulator Not Recommended for New Designs CC2430 CC2430 Data Sheet (rev. 2.1) SWRS036F Page 11 of 211 7 Electrical Specifications Measured on Texas Instruments CC2430 EM reference design with TA=25°C and VDD=3.0V unless stated otherwise. Table 4: Electrical Specifications Parameter Min Typ Max Unit Condition Current Consumption MCU Active Mode, 16 MHz, low MCU activity 4.3 mA Digital regulator on. 16 MHz RCOSC running. No radio, crystals, or peripherals active. Low MCU activity: no flash access (i.e. only cache hit), no RAM access. MCU Active Mode, 16 MHz, medium MCU activity 5.1 mA Digital regulator on. 16 MHz RCOSC running. No radio, crystals, or peripherals active. Medium MCU activity: normal flash access1, minor RAM access. MCU Active Mode, 16 MHz, high MCU activity 5.7 mA Digital regulator on. 16 MHz RCOSC running. No radio, crystals, or peripherals active. High MCU activity: normal flash access1, extensive RAM access and heavy CPU load. MCU Active Mode, 32 MHz, low MCU activity 9.5 mA 32 MHz XOSC running. No radio or peripherals active. Low MCU activity : no flash access (i.e. only cache hit), no RAM access MCU Active Mode, 32 MHz, medium MCU activity 10.5 mA 32 MHz XOSC running. No radio or peripherals active. Medium MCU activity: normal flash access1, minor RAM access. MCU Active Mode, 32 MHz, high MCU activity 12.3 mA 32 MHz XOSC running. No radio or peripherals active. High MCU activity: normal flash access1, extensive RAM access and heavy CPU load. MCU Active and RX Mode 26.7 mA MCU running at full speed (32MHz), 32MHz XOSC running, radio in RX mode, -50 dBm input power. No peripherals active. Low MCU activity. MCU Active and TX Mode, 0dBm 26.9 mA MCU running at full speed (32MHz), 32MHz XOSC running, radio in TX mode, 0dBm output power. No peripherals active. Low MCU activity. Power mode 1 190 μA Digital regulator on, 16 MHz RCOSC and 32 MHz crystal oscillator off. 32.768 kHz XOSC, POR and ST active. RAM retention. Power mode 2 0.5 μA Digital regulator off, 16 MHz RCOSC and 32 MHz crystal oscillator off. 32.768 kHz XOSC, POR and ST active. RAM retention. Power mode 3 0.3 μA No clocks. RAM retention. POR active. Peripheral Current Consumption Adds to the figures above if the peripheral unit is activated Timer 1 150 μA Timer running, 32MHz XOSC used. Timer 2 230 μA Timer running, 32MHz XOSC used. Timer 3 50 μA Timer running, 32MHz XOSC used. Timer 4 50 μA Timer running, 32MHz XOSC used. Sleep Timer 0.2 μA Including 32.753 kHz RCOSC. ADC 1.2 mA When converting. Flash write 3 mA Estimated value Flash erase 3 mA Estimated value 1 Normal Flash access means that the code used exceeds the cache storage (see last paragraph in section 11.2.3 Flash memory) so cache misses will happen frequently. Not Recommended for New Designs CC2430 CC2430 Data Sheet (rev. 2.1) SWRS036F Page 12 of 211 7.1 General Characteristics Measured on Texas Instruments CC2430 EM reference design with TA=25°C and VDD=3.0V unless stated otherwise. Table 5: General Characteristics Parameter Min Typ Max Unit Condition/Note Wake-Up and Timing Power mode 1 􀃆 power mode 0 4.1 μs Digital regulator on, 16 MHz RCOSC and 32 MHz crystal oscillator off. Start-up of 16 MHz RCOSC. Power mode 2 or 3 􀃆 power mode 0 120 μs Digital regulator off, 16 MHz RCOSC and 32 MHz crystal oscillator off. Start-up of regulator and 16 MHz RCOSC. Active 􀃆 TX or RX 32MHz XOSC initially OFF. Voltage regulator initially OFF 525 μs Time from enabling radio part in power mode 0, until TX or RX starts. Includes start-up of voltage regulator and crystal oscillator in parallel. Crystal ESR=16Ω. Active 􀃆 TX or RX Voltage regulator initially OFF 320 μs Time from enabling radio part in power mode 0, until TX or RX starts. Includes start-up of voltage regulator. Active 􀃆 RX or TX 192 μs Radio part already enabled. Time until RX or TX starts. RX/TX turnaround 192 μs Radio part RF Frequency Range 2400 2483.5 MHz Programmable in 1 MHz steps, 5 MHz between channels for compliance with [1] Radio bit rate 250 kbps As defined by [1] Radio chip rate 2.0 MChip/s As defined by [1] Not Recommended for New Designs CC2430 CC2430 Data Sheet (rev. 2.1) SWRS036F Page 13 of 211 7.2 RF Receive Section Measured on Texas Instruments CC2430 EM reference design with TA=25°C and VDD=3.0V unless stated otherwise. Table 6: RF Receive Parameters Parameter Min Typ Max Unit Condition/Note Receiver sensitivity -92 dBm PER = 1%, as specified by [1] Measured in 50 Ω single endedly through a balun. [1] requires –85 dBm Saturation (maximum input level) 10 dBm PER = 1%, as specified by [1] Measured in 50 Ω single endedly through a balun. [1] requires –20 dBm Adjacent channel rejection + 5 MHz channel spacing 41 dB Wanted signal -88dBm, adjacent modulated channel at +5 MHz, PER = 1 %, as specified by [1]. [1] requires 0 dB Adjacent channel rejection - 5 MHz channel spacing 30 dB Wanted signal -88dBm, adjacent modulated channel at -5 MHz, PER = 1 %, as specified by [1]. [1] requires 0 dB Alternate channel rejection + 10 MHz channel spacing 55 dB Wanted signal -88dBm, adjacent modulated channel at +10 MHz, PER = 1 %, as specified by [1] [1] requires 30 dB Alternate channel rejection - 10 MHz channel spacing 53 dB Wanted signal -88dBm, adjacent modulated channel at -10 MHz, PER = 1 %, as specified by [1] [1] requires 30 dB Channel rejection ≥ + 15 MHz ≤ - 15 MHz 55 53 dB dB Wanted signal @ -82 dBm. Undesired signal is an 802.15.4 modulated channel, stepped through all channels from 2405 to 2480 MHz. Signal level for PER = 1%. Values are estimated. Co-channel rejection -6 dB Wanted signal @ -82 dBm. Undesired signal is 802.15.4 modulated at the same frequency as the desired signal. Signal level for PER = 1%. Blocking / Desensitization + 5 MHz from band edge + 10 MHz from band edge + 20 MHz from band edge + 50 MHz from band edge - 5 MHz from band edge - 10 MHz from band edge - 20 MHz from band edge - 50 MHz from band edge -42 -45 -26 -22 -31 -36 -24 -25 dBm dBm dBm dBm dBm dBm dBm dBm Wanted signal 3 dB above the sensitivity level, CW jammer, PER = 1%. Measured according to EN 300 440 class 2. Spurious emission 30 – 1000 MHz 1 – 12.75 GHz −64 −75 dBm dBm Conducted measurement in a 50 Ω single ended load. Complies with EN 300 328, EN 300 440 class 2, FCC CFR47, Part 15 and ARIB STD-T-66. Frequency error tolerance ±140 ppm Difference between centre frequency of the received RF signal and local oscillator frequency. [1] requires minimum 80 ppm Symbol rate error tolerance ±900 ppm Difference between incoming symbol rate and the internally generated symbol rate [1] requires minimum 80 ppm 7.3 RF Transmit Section Measured on Texas Instruments CC2430 EM reference design with TA=25°C, VDD=3.0V, and nominal output power unless stated otherwise. Not Recommended for New Designs CC2430 CC2430 Data Sheet (rev. 2.1) SWRS036F Page 14 of 211 Table 7: RF Transmit Parameters Parameter Min Typ Max Unit Condition/Note Nominal output power 0 dBm Delivered to a single ended 50 Ω load through a balun and output power control set to 0x5F (TXCTRLL). [1] requires minimum –3 dBm Programmable output power range 26 dB The output power is programmable in 16 steps from typically -25.2 to 0.6 dBm (see Table 45). Harmonics 2nd harmonic 3rd harmonic 4th harmonic 5th harmonic -50.7 -55.8 -54.2 -53.4 dBm dBm dBm dBm Measurement conducted with 100 kHz resolution bandwidth on spectrum analyzer and output power control set to 0x5F (TXCTRLL). Output Delivered to a single ended 50 Ω load through a balun. Spurious emission 30 - 1000 MHz 1– 12.75 GHz 1.8 – 1.9 GHz 5.15 – 5.3 GHz -47 -43 -58 -56 dBm dBm dBm dBm Maximum output power. Texas Instruments CC2430 EM reference design complies with EN 300 328, EN 300 440, FCC CFR47 Part 15 and ARIB STDT- 66. Transmit on 2480MHz under FCC is supported by duty-cycling, or by reducing output power The peak conducted spurious emission is -47 dBm @ 192 MHz which is in an EN 300 440 restricted band limited to -54 dBm. All radiated spurious emissions are within the limits of ETSI/FCC/ARIB. Conducted spurious emission (CSE) can be reduced with a simple band pass filter connected between matching network and RF connector (1.8 pF in parallel with 1.6 nH reduces the CSE by 20 dB), this filter must be connected to good RF ground. Error Vector Magnitude (EVM) 11 % Measured as defined by [1] [1] requires max. 35 % Optimum load impedance 60 + j164 Ω Differential impedance as seen from the RF-port (RF_P and RF_N) towards the antenna2. 7.4 32 MHz Crystal Oscillator Measured on Texas Instruments CC2430 EM reference design with TA=25°C and VDD=3.0V unless stated otherwise. Table 8: 32 MHz Crystal Oscillator Parameters Parameter Min Typ Max Unit Condition/Note Crystal frequency 32 MHz Crystal frequency accuracy requirement - 40 40 ppm Including aging and temperature dependency, as specified by [1] ESR 6 16 60 Ω Simulated over operating conditions C0 1 1.9 7 pF Simulated over operating conditions CL 10 13 16 pF Simulated over operating conditions Start-up time 212 μs 7.5 32.768 kHz Crystal Oscillator Measured on Texas Instruments CC2430 EM reference design with TA=25°C and VDD=3.0V unless stated otherwise. 2 This is for 2440MHz Not Recommended for New Designs CC2430 CC2430 Data Sheet (rev. 2.1) SWRS036F Page 15 of 211 Table 9: 32.768 kHz Crystal Oscillator Parameters Parameter Min Typ Max Unit Condition/Note Crystal frequency 32.768 kHz Crystal frequency accuracy requirement –40 40 ppm Including aging and temperature dependency, as specified by [1] ESR 40 130 kΩ Simulated over operating conditions C0 0.9 2.0 pF Simulated over operating conditions CL 12 16 pF Simulated over operating conditions Start-up time 400 ms Value is simulated. 7.6 32 kHz RC Oscillator Measured on Texas Instruments CC2430 EM reference design with TA=25°C and VDD=3.0V unless stated otherwise. Table 10: 32 kHz RC Oscillator parameters Parameter Min Typ Max Unit Condition/Note Calibrated frequency 32.753 kHz The calibrated 32 kHz RC Oscillator frequency is the 32 MHz XTAL frequency divided by 977 Frequency accuracy after calibration ±0.2 % Value is estimated. Temperature coefficient +0.4 % / °C Frequency drift when temperature changes after calibration. Value is estimated. Supply voltage coefficient +3 % / V Frequency drift when supply voltage changes after calibration. Value is estimated. Initial calibration time 1.7 ms When the 32 kHz RC Oscillator is enabled, calibration is continuously done in the background as long as the 32 MHz crystal oscillator is running and SLEEP.OSC32K_CALDIS bit is cleared. 7.7 16 MHz RC Oscillator Measured on Texas Instruments CC2430 EM reference design with TA=25°C and VDD=3.0V unless stated otherwise. Table 11: 16 MHz RC Oscillator parameters Parameter Min Typ Max Unit Condition/Note Frequency 16 MHz The calibrated 16 MHz RC Oscillator frequency is the 32 MHz XTAL frequency divided by 2 Uncalibrated frequency accuracy ±18 % Calibrated frequency accuracy ±0.6 ±1 % Start-up time 10 μs Temperature coefficient -325 ppm / °C Frequency drift when temperature changes after calibration Supply voltage coefficient 28 ppm / mV Frequency drift when supply voltage changes after calibration Initial calibration time 50 μs When the 16 MHz RC Oscillator is enabled it will be calibrated continuously when the 32MHz crystal oscillator is running. Not Recommended for New Designs CC2430 CC2430 Data Sheet (rev. 2.1) SWRS036F Page 16 of 211 7.8 Frequency Synthesizer Characteristics Measured on Texas Instruments CC2430 EM reference design with TA=25°C and VDD=3.0V unless stated otherwise. Table 12: Frequency Synthesizer Parameters Parameter Min Typ Max Unit Condition/Note Phase noise −116 −117 −118 dBc/Hz dBc/Hz dBc/Hz Unmodulated carrier At ±1.5 MHz offset from carrier At ±3 MHz offset from carrier At ±5 MHz offset from carrier PLL lock time 192 μs The startup time until RX/TX turnaround. The crystal oscillator is running. 7.9 Analog Temperature Sensor Measured on Texas Instruments CC2430 EM reference design with TA=25°C and VDD=3.0V unless stated otherwise. Table 13: Analog Temperature Sensor Parameters Parameter Min Typ Max Unit Condition/Note Output voltage at –40°C 0.648 V Value is estimated Output voltage at 0°C 0.743 V Value is estimated Output voltage at +40°C 0.840 V Value is estimated Output voltage at +80°C 0.939 V Value is estimated Temperature coefficient 2.45 mV/°C Fitted from –20°C to +80°C on estimated values. Absolute error in calculated temperature –8 °C From –20°C to +80°C when assuming best fit for absolute accuracy on estimated values: 0.743V at 0°C and 2.45mV / °C. Error in calculated temperature, calibrated -2 0 2 °C From –20°C to +80°C when using 2.45mV / °C, after 1-point calibration at room temperature. Values are estimated. Indicated min/max with 1- point calibration is based on simulated values for typical process parameters Current consumption increase when enabled 280 μA 7.10 ADC Measured with TA=25°C and VDD=3.0V. Note that other data may result using Texas Instruments CC2430 EM reference design. Table 14: ADC Characteristics Parameter Min Typ Max Unit Condition/Note Input voltage 0 VDD V VDD is voltage on AVDD_SOC pin External reference voltage 0 VDD V VDD is voltage on AVDD_SOC pin External reference voltage differential 0 VDD V VDD is voltage on AVDD_SOC pin Input resistance, signal 197 kΩ Simulated using 4 MHz clock speed (see section 13.10.2.7) Full-Scale Signal3 2.97 V Peak-to-peak, defines 0dBFS 3 Measured with 300 Hz Sine input and VDD as reference. Not Recommended for New Designs CC2430 CC2430 Data Sheet (rev. 2.1) SWRS036F Page 17 of 211 Parameter Min Typ Max Unit Condition/Note ENOB3 5.7 bits 7-bits setting. Single ended input 7.5 9-bits setting. 9.3 10-bits setting. 10.8 12-bits setting. ENOB3 6.5 bits 7-bits setting. Differential input 8.3 9-bits setting. 10.0 10-bits setting. 11.5 12-bits setting. Useful Power Bandwidth 0-20 kHz 7-bits setting, both single and differential THD3 -Single ended input -75.2 dB 12-bits setting, -6dBFS -Differential input -86.6 dB 12-bits setting, -6dBFS Signal To Non-Harmonic Ratio3 -Single ended input 70.2 dB 12-bits setting -Differential input 79.3 dB 12-bits setting Spurious Free Dynamic Range3 -Single ended input 78.8 dB 12-bits setting, -6dBFS -Differential input 88.9 dB 12-bits setting, -6dBFS CMRR, differential input <-84 dB 12- bit setting, 1 kHz Sine (0dBFS), limited by ADC resolution Crosstalk, single ended input <-84 dB 12- bit setting, 1 kHz Sine (0dBFS), limited by ADC resolution Offset -3 mV Mid. scale Gain error 0.68 % DNL3 0.05 LSB 12-bits setting, mean 0.9 LSB 12-bits setting, max INL3 4.6 LSB 12-bits setting, mean 13.3 LSB 12-bits setting, max SINAD3 35.4 dB 7-bits setting. Single ended input 46.8 dB 9-bits setting. (-THD+N) 57.5 dB 10-bits setting. 66.6 dB 12-bits setting. SINAD3 40.7 dB 7-bits setting. Differential input 51.6 dB 9-bits setting. (-THD+N) 61.8 dB 10-bits setting. 70.8 dB 12-bits setting. Conversion time 20 μs 7-bits setting. 36 μs 9-bits setting. 68 μs 10-bits setting. 132 μs 12-bits setting. Power Consumption 1.2 mA Not Recommended for New Designs CC2430 CC2430 Data Sheet (rev. 2.1) SWRS036F Page 18 of 211 7.11 Control AC Characteristics TA= -40°C to 85°C, VDD=2.0V to 3.6V if nothing else stated. Table 15: Control Inputs AC Characteristics Parameter Min Typ Max Unit Condition/Note System clock, fSYSCLK tSYSCLK= 1/ fSYSCLK 16 32 MHz System clock is 32 MHz when crystal oscillator is used. System clock is 16 MHz when calibrated 16 MHz RC oscillator is used. RESET_N low width 250 ns See item 1, Figure 1. This is the shortest pulse that is guaranteed to be recognized as a complete reset pin request. Note that shorter pulses may be recognized but will not lead to complete reset of all modules within the chip. Interrupt pulse width tSYSCLK ns See item 2, Figure 1.This is the shortest pulse that is guaranteed to be recognized as an interrupt request. In PM2/3 the internal synchronizers are bypassed so this requirement does not apply in PM2/3. 1 2 2 RESET_N Px.n Px.n Figure 1: Control Inputs AC Characteristics Not Recommended for New Designs CC2430 CC2430 Data Sheet (rev. 2.1) SWRS036F Page 19 of 211 7.12 SPI AC Characteristics TA= -40°C to 85°C, VDD=2.0V to 3.6V if nothing else stated. Table 16: SPI AC Characteristics Parameter Min Typ Max Unit Condition/Note SCK period See section 13.14.4 ns Master. See item 1 Figure 2 SCK duty cycle 50% Master. SSN low to SCK 2*tSYSCLK See item 5 Figure 2 SCK to SSN high 30 ns See item 6 Figure 2 MISO setup 10 ns Master. See item 2 Figure 2 MISO hold 10 ns Master. See item 3 Figure 2 SCK to MOSI 25 ns Master. See item 4 Figure 2, load = 10 pF SCK period 100 ns Slave. See item 1 Figure 2 SCK duty cycle 50% Slave. MOSI setup 10 ns Slave. See item 2 Figure 2 MOSI hold 10 ns Slave. See item 3 Figure 2 SCK to MISO 25 ns Slave. See item 4 Figure 2, load = 10 pF Figure 2: SPI AC Characteristics Not Recommended for New Designs CC2430 CC2430 Data Sheet (rev. 2.1) SWRS036F Page 20 of 211 7.13 Debug Interface AC Characteristics TA= -40°C to 85°C, VDD=2.0V to 3.6V if nothing else stated. Table 17: Debug Interface AC Characteristics Parameter Min Typ Max Unit Condition/Note Debug clock period 128 ns See item 1 Figure 3 Debug data setup 5 ns See item 2 Figure 3 Debug data hold 5 ns See item 3 Figure 3 Clock to data delay 10 ns See item 4 Figure 3, load = 10 pF RESET_N inactive after P2_2 rising 10 ns See item 5 Figure 3 1 3 2 DEBUG CLK P2_2 DEBUG DATA P2_1 DEBUG DATA P2_1 4 RESET_N 5 Figure 3: Debug Interface AC Characteristics Not Recommended for New Designs CC2430 CC2430 Data Sheet (rev. 2.1) SWRS036F Page 21 of 211 7.14 Port Outputs AC Characteristics TA= 25°C, VDD=3.0V if nothing else stated. Table 18: Port Outputs AC Characteristics Parameter Min Typ Max Unit Condition/Note P0_[0:7], P1_[2:7], P2_[0:4] Port output rise time (SC=0/SC=1) 3.15/ 1.34 ns Load = 10 pF Timing is with respect to 10% VDD and 90% VDD levels. Values are estimated fall time (SC=0/SC=1) 3.2/ 1.44 Load = 10 pF Timing is with respect to 90% VDD and 10% VDD. Values are estimated 7.15 Timer Inputs AC Characteristics TA= -40°C to 85°C, VDD=2.0V to 3.6V if nothing else stated. Table 19: Timer Inputs AC Characteristics Parameter Min Typ Max Unit Condition/Note Input capture pulse width tSYSCLK ns Synchronizers determine the shortest input pulse that can be recognized. The synchronizers operate at the current system clock rate (16 or 32 MHz) 7.16 DC Characteristics The DC Characteristics of CC2430 are listed in Table 20 below. TA=25°C, VDD=3.0V if nothing else stated. Table 20: DC Characteristics Digital Inputs/Outputs Min Typ Max Unit Condition Logic "0" input voltage 0.5 V Logic "1" input voltage VDD-0.5 V Logic "0" input current NA –1 μA Input equals 0V Logic "1" input current NA 1 μA Input equals VDD I/O pin pull-up and pull-down resistor 20 kΩ Not Recommended for New Designs CC2430 CC2430 Data Sheet (rev. 2.1) SWRS036F Page 22 of 211 8 Pin and I/O Port Configuration The CC2430 pinout is shown in Figure 4 and Table 21. See section 13.4 for details on the configuration of digital I/O ports. P2_4/XOSC_Q2 P2_2 P0_7 P0_2 P0_3 P0_4 P0_5 P0_6 XOSC_Q2 DVDD P2_1 P2_3/XOSC_Q1 AVDD_DREG DCOUPL AVDD_SOC XOSC_Q1 RBIAS1 AVDD_RREG RREG_OUT AVDD_DGUARD DVDD_ADC AVDD_ADC AVDD_IF2 P2_0 Figure 4: Pinout top view Note: The exposed die attach pad must be connected to a solid ground plane as this is the ground connection for the chip. Not Recommended for New Designs CC2430 CC2430 Data Sheet (rev. 2.1) SWRS036F Page 23 of 211 Table 21: Pinout overview Pin Pin name Pin type Description - GND Ground The exposed die attach pad must be connected to a solid ground plane 1 P1_7 Digital I/O Port 1.7 2 P1_6 Digital I/O Port 1.6 3 P1_5 Digital I/O Port 1.5 4 P1_4 Digital I/O Port 1.4 5 P1_3 Digital I/O Port 1.3 6 P1_2 Digital I/O Port 1.2 7 DVDD Power (Digital) 2.0V-3.6V digital power supply for digital I/O 8 P1_1 Digital I/O Port 1.1 – 20 mA drive capability 9 P1_0 Digital I/O Port 1.0 – 20 mA drive capability 10 RESET_N Digital input Reset, active low 11 P0_0 Digital I/O Port 0.0 12 P0_1 Digital I/O Port 0.1 13 P0_2 Digital I/O Port 0.2 14 P0_3 Digital I/O Port 0.3 15 P0_4 Digital I/O Port 0.4 16 P0_5 Digital I/O Port 0.5 17 P0_6 Digital I/O Port 0.6 18 P0_7 Digital I/O Port 0.7 19 XOSC_Q2 Analog I/O 32 MHz crystal oscillator pin 2 20 AVDD_SOC Power (Analog) 2.0V-3.6V analog power supply connection 21 XOSC_Q1 Analog I/O 32 MHz crystal oscillator pin 1, or external clock input 22 RBIAS1 Analog I/O External precision bias resistor for reference current 23 AVDD_RREG Power (Analog) 2.0V-3.6V analog power supply connection 24 RREG_OUT Power output 1.8V Voltage regulator power supply output. Only intended for supplying the analog 1.8V part (power supply for pins 25, 27-31, 35-40). 25 AVDD_IF1 Power (Analog) 1.8V Power supply for the receiver band pass filter, analog test module, global bias and first part of the VGA 26 RBIAS2 Analog output External precision resistor, 43 kΩ, ±1 % 27 AVDD_CHP Power (Analog) 1.8V Power supply for phase detector, charge pump and first part of loop filter 28 VCO_GUARD Power (Analog) Connection of guard ring for VCO (to AVDD) shielding 29 AVDD_VCO Power (Analog) 1.8V Power supply for VCO and last part of PLL loop filter 30 AVDD_PRE Power (Analog) 1.8V Power supply for Prescaler, Div-2 and LO buffers 31 AVDD_RF1 Power (Analog) 1.8V Power supply for LNA, front-end bias and PA 32 RF_P RF I/O Positive RF input signal to LNA during RX. Positive RF output signal from PA during TX 33 TXRX_SWITCH Power (Analog) Regulated supply voltage for PA 34 RF_N RF I/O Negative RF input signal to LNA during RX Negative RF output signal from PA during TX 35 AVDD_SW Power (Analog) 1.8V Power supply for LNA / PA switch 36 AVDD_RF2 Power (Analog) 1.8V Power supply for receive and transmit mixers 37 AVDD_IF2 Power (Analog) 1.8V Power supply for transmit low pass filter and last stages of VGA 38 AVDD_ADC Power (Analog) 1.8V Power supply for analog parts of ADCs and DACs 39 DVDD_ADC Power (Digital) 1.8V Power supply for digital parts of ADCs 40 AVDD_DGUARD Power (Digital) Power supply connection for digital noise isolation 41 AVDD_DREG Power (Digital) 2.0V-3.6V digital power supply for digital core voltage regulator 42 DCOUPL Power (Digital) 1.8V digital power supply decoupling. Do not use for supplying external circuits. 43 P2_4/XOSC_Q2 Digital I/O Port 2.4/32.768 kHz XOSC 44 P2_3/XOSC_Q1 Digital I/O Port 2.3/32.768 kHz XOSC 45 P2_2 Digital I/O Port 2.2 46 P2_1 Digital I/O Port 2.1 47 DVDD Power (Digital) 2.0V-3.6V digital power supply for digital I/O 48 P2_0 Digital I/O Port 2.0 Not Recommended for New Designs CC2430 CC2430 Data Sheet (rev. 2.1) SWRS036F Page 24 of 211 9 Circuit Description Figure 5: CC2430 Block Diagram A block diagram of CC2430 is shown in Figure 5. The modules can be roughly divided into one of three categories: CPU-related modules, modules related to power, test and clock distribution, and radio-related modules. In the following subsections, a short description of each module that appears in Figure 5 is given. Not Recommended for New Designs CC2430 CC2430 Data Sheet (rev. 2.1) SWRS036F Page 25 of 211 9.1 CPU and Peripherals The 8051 CPU core is a single-cycle 8051- compatible core. It has three different memory access buses (SFR, DATA and CODE/XDATA), a debug interface and an 18- input extended interrupt unit. See section 11 for details on the CPU. The memory crossbar/arbitrator is at the heart of the system as it connects the CPU and DMA controller with the physical memories and all peripherals through the SFR bus. The memory arbitrator has four memory access points, access at which can map to one of three physical memories: an 8 KB SRAM, flash memory or RF and SFR registers. The memory arbitrator is responsible for performing arbitration and sequencing between simultaneous memory accesses to the same physical memory. The SFR bus is drawn conceptually in Figure 5 as a common bus that connects all hardware peripherals to the memory arbitrator. The SFR bus in the block diagram also provides access to the radio registers in the radio register bank even though these are indeed mapped into XDATA memory space. The 8 KB SRAM maps to the DATA memory space and to parts of the XDATA memory spaces. 4 KB of the 8 KB SRAM is an ultralow- power SRAM that retains its contents even when the digital part is powered off (power modes 2 and 3). The rest of the SRAM loses its contents when the digital part is powered off. The 32/64/128 KB flash block provides incircuit programmable non-volatile program memory for the device and maps into the CODE and XDATA memory spaces. Table 22 shows the available devices in the CC2430 family. The available devices differ only in flash memory size. Writing to the flash block is performed through a flash controller that allows page-wise (2048 byte) erasure and 4 byte-wise programming. See section 13.3 for details on the flash controller. A versatile five-channel DMA controller is available in the system and accesses memory using the XDATA memory space and thus has access to all physical memories. Each channel is configured (trigger, priority, transfer mode, addressing mode, source and destination pointers, and transfer count) with DMA descriptors anywhere in memory. Many of the hardware peripherals rely on the DMA controller for efficient operation (AES core, flash write controller, USARTs, Timers, ADC interface) by performing data transfers between a single SFR address and flash/SRAM. See section 13.5 for details. The interrupt controller services a total of 18 interrupt sources, divided into six interrupt groups, each of which is associated with one of four interrupt priorities. An interrupt request is serviced even if the device is in a sleep mode (power modes 1-3) by bringing the CC2430 back to active mode (power mode 0). The debug interface implements a proprietary two-wire serial interface that is used for incircuit debugging. Through this debug interface it is possible to perform an erasure of the entire flash memory, control which oscillators are enabled, stop and start execution of the user program, execute supplied instructions on the 8051 core, set code breakpoints, and single step through instructions in the code. Using these techniques it is possible to elegantly perform in-circuit debugging and external flash programming. See section 12 for details. The I/O-controller is responsible for all general-purpose I/O pins. The CPU can configure whether peripheral modules control certain pins or whether they are under software control, and if so whether each pin is configured as an input or output and if a pullup or pull-down resistor in the pad is connected. Each peripheral that connects to the I/O-pins can choose between two different I/O pin locations to ensure flexibility in various applications. See section 13.4 for details. The sleep timer is an ultra-low power timer that counts 32.768 kHz crystal oscillator or 32 kHz RC oscillator periods. The sleep timer runs continuously in all operating modes except power mode 3. Typical uses for it is as a real-time counter that runs regardless of operating mode (except power mode 3) or as a wakeup timer to get out of power mode 1 or 2. See section 13.9 for details. A built-in watchdog timer allows the CC2430 to reset itself in case the firmware hangs. When enabled by software, the watchdog timer must be cleared periodically, otherwise it will reset the device when it times out. See section 13.13 for details. Timer 1 is a 16-bit timer with timer/counter/PWM functionality. It has a programmable prescaler, a 16-bit period value and three individually programmable counter/capture channels each with a 16-bit compare value. Each of the counter/capture channels can be used as PWM outputs or to Not Recommended for New Designs CC2430 CC2430 Data Sheet (rev. 2.1) SWRS036F Page 26 of 211 capture the timing of edges on input signals. See section 13.6 for details. MAC timer (Timer 2) is specially designed for supporting an IEEE 802.15.4 MAC or other time-slotted protocols in software. The timer has a configurable timer period and an 8-bit overflow counter that can be used to keep track of the number of periods that have transpired. There is also a 16-bit capture register used to record the exact time at which a start of frame delimiter is received/transmitted or the exact time of which transmission ends, as well as a 16-bit output compare register that can produce various command strobes (start RX, start TX, etc) at specific times to the radio modules. See section 13.7 for details. Timers 3 and 4 are 8-bit timers with timer/counter/PWM functionality. They have a programmable prescaler, an 8-bit period value and one programmable counter channel with a 8-bit compare value. Each of the counter channels can be used as PWM outputs. See section 13.8 for details. USART 0 and 1 are each configurable as either an SPI master/slave or a UART. They provide double buffering on both RX and TX and hardware flow-control and are thus well suited to high-throughput full-duplex applications. Each has its own high-precision baud-rate generator thus leaving the ordinary timers free for other uses. When configured as an SPI slave they sample the input signal using SCK directly instead of some oversampling scheme and are thus well-suited to high data rates. See section 13.14 for details. The AES encryption/decryption core allows the user to encrypt and decrypt data using the AES algorithm with 128-bit keys. The core is able to support the AES operations required by IEEE 802.15.4 MAC security, the ZigBee® network layer and the application layer. See section 13.12 for details. The ADC supports 7 to 12 bits of resolution in a 30 kHz to 4 kHz bandwidth respectively. DC and audio conversions with up to 8 input channels (Port 0) are possible. The inputs can be selected as single ended or differential. The reference voltage can be internal, AVDD, or a single ended or differential external signal. The ADC also has a temperature sensor input channel. The ADC can automate the process of periodic sampling or conversion over a sequence of channels. See Section 13.10 for details. 9.2 Radio CC2430 features an IEEE 802.15.4 compliant radio based on the leading CC2420 transceiver. See Section 14 for details. Table 22: CC2430 Flash Memory Options Device Flash CC2430F32 32 KB CC2430F64 64 KB CC2430F128 128 KB Not Recommended for New Designs CC2430 CC2430 Data Sheet (rev. 2.1) SWRS036F Page 27 of 211 10 Application Circuit Few external components are required for the operation of CC2430. A typical application circuit is shown in Figure 6. Typical values and description of external components are shown in Table 23. 10.1 Input / output matching The RF input/output is high impedance and differential. The optimum differential load for the RF port is 60 + j164 Ω4. When using an unbalanced antenna such as a monopole, a balun should be used in order to optimize performance. The balun can be implemented using low-cost discrete inductors and capacitors. The recommended balun shown, consists of C341, L341, L321 and L331 together with a PCB microstrip transmission line (λ/2-dipole), and will match the RF input/output to 50 Ω. An internal T/R switch circuit is used to switch between the 4 This is for 2440MHz. LNA (RX) and the PA (TX). See Input/output matching section on page 170 for more details. If a balanced antenna such as a folded dipole is used, the balun can be omitted. If the antenna also provides a DC path from TXRX_SWITCH pin to the RF pins, inductors are not needed for DC bias. Figure 6 shows a suggested application circuit using a differential antenna. The antenna type is a standard folded dipole. The dipole has a virtual ground point; hence bias is provided without degradation in antenna performance. Also refer to the section Antenna Considerations on page 175. 10.2 Bias resistors The bias resistors are R221 and R261. The bias resistor R221 is used to set an accurate bias current for the 32 MHz crystal oscillator. 10.3 Crystal An external 32 MHz crystal, XTAL1, with two loading capacitors (C191 and C211) is used for the 32 MHz crystal oscillator. See page 14 for details. The load capacitance seen by the 32 MHz crystal is given by: L parasitic C C C C + + = 191 211 1 1 1 XTAL2 is an optional 32.768 kHz crystal, with two loading capacitors (C441 and C431), used for the 32.768 kHz crystal oscillator. The 32.768 kHz crystal oscillator is used in applications where you need both very low sleep current consumption and accurate wake up times. The load capacitance seen by the 32.768 kHz crystal is given by: L parasitic C C C C + + = 441 431 1 1 1 A series resistor may be used to comply with the ESR requirement. 10.4 Voltage regulators The on chip voltage regulators supply all 1.8 V power supply pins and internal power supplies. C241 and C421 are required for stability of the regulators. 10.5 Debug interface The debug interface pin P2_2 is connected through pull-up resistor R451 to the power supply. See section 12 on page 60. Not Recommended for New Designs CC2430 CC2430 Data Sheet (rev. 2.1) SWRS036F Page 28 of 211 10.6 Power supply decoupling and filtering Proper power supply decoupling must be used for optimum performance. The placement and size of the decoupling capacitors and the power supply filtering are very important to achieve the best performance in an application. TI provides a compact reference design that should be followed very closely. Refer to the section PCB Layout Recommendation on page 175. 35 34 33 32 31 30 29 28 27 26 25 36 13 14 15 16 17 18 19 20 21 22 23 24 48 47 46 45 44 43 42 41 40 39 38 37 1 2 3 4 5 6 7 8 9 10 11 12 R261 2.0 - 3.6V Power Supply C341 Antenna (50 Ohm) L331 L321 RESET_N P1_6 P1_5 P1_4 P1_3 DVDD P1_2 P1_1 P1_0 P0_0 P0_1 P1_7 P0_7 P0_2 P0_3 P0_4 P0_5 P0_6 XOSC_Q2 AVDD_SOC XOSC_Q1 RBIAS1 AVDD_RREG RREG_OUT AVDD_PRE RF_P RF_N AVDD_SW AVDD_RF1 TXRX_SWITCH AVDD_RF2 AVDD_IF1 AVDD_CHP VCO_GUARD RBIAS2 AVDD_VCO P2_4 P2_2 DVDD P2_1 P2_3 AVDD_DREG DCOUPL AVDD_DGUARD DVDD_ADC AVDD_ADC AVDD_IF2 P2_0 R221 C241 XTAL2 C441 C431 or L321 Folded Dipole PCB Antenna L331 XTAL1 C191 C211 C421 L341 optional /4 /4 Figure 6: CC2430 Application Circuit. (Digital I/O and ADC interface not connected). Decoupling capacitors not shown. Not Recommended for New Designs CC2430 CC2430 Data Sheet (rev. 2.1) SWRS036F Page 29 of 211 Table 23: Overview of external components (excluding supply decoupling capacitors) Component Description Single Ended 50Ω Output Differential Antenna C191 32 MHz crystal load capacitor 33 pF, 5%, NP0, 0402 33 pF, 5%, NP0, 0402 C211 32 MHz crystal load capacitor 27 pF, 5%, NP0, 0402 27 pF, 5%, NP0, 0402 C241 Load capacitance for analogue power supply voltage regulators 220 nF, 10%, 0402 220 nF, 10%, 0402 C421 Load capacitance for digital power supply voltage regulators 1 μF, 10%, 0402 1 μF, 10%, 0402 C341 DC block to antenna and match 5.6 pF, 5%, NP0, 0402 Not used Note: For RF connector a LP filter can be connected between this C, the antenna and good ground in order to remove conducted spurious emission by using 1.8pF in parallel with 1.6nH 1.8 pF, Murata COG 0402, GRM15 1.6 nH, Murata 0402, LQG15HS1N6S02 C431, C441 32.768 kHz crystal load capacitor (if lowfrequency crystal is needed in application) 15 pF, 5%, NP0, 0402 15 pF, 5%, NP0, 0402 L321 Discrete balun and match 6.8 nH, 5%, Monolithic/multilayer, 0402 12 nH 5%, Monolithic/multilayer, 0402 L331 Discrete balun and match 22 nH, 5%, Monolithic/multilayer, 0402 27 nH, 5%, Monolithic/multilayer, 0402 L341 Discrete balun and match 1.8 nH, +/-0.3 nH, Monolithic/multilayer, 0402 Not used R221 Precision resistor for current reference generator to system-on-chip part 56 kΩ, 1%, 0402 56 kΩ, 1%, 0402 R261 Precision resistor for current reference generator to RF part 43 kΩ, 1%, 0402 43 kΩ, 1%, 0402 XTAL1 32 MHz Crystal 32 MHz crystal, ESR < 60 Ω 32 MHz crystal, ESR < 60 Ω XTAL2 Optional 32.768 kHz watch crystal (if lowfrequency crystal is needed in application) 32.768 kHz crystal, Epson MC 306. 32.768 kHz crystal, Epson MC 306. Not Recommended for New Designs CC2430 8051 CPU : 8051 CPU Introduction CC2430 Data Sheet (rev. 2.1) SWRS036F Page 30 of 211 11 8051 CPU This section describes the 8051 CPU core, with interrupts, memory and instruction set. 11.1 8051 CPU Introduction The CC2430 includes an 8-bit CPU core which is an enhanced version of the industry standard 8051 core. The enhanced 8051 core uses the standard 8051 instruction set. Instructions execute faster than the standard 8051 due to the following: • One clock per instruction cycle is used as opposed to 12 clocks per instruction cycle in the standard 8051. • Wasted bus states are eliminated. Since an instruction cycle is aligned with memory fetch when possible, most of the single byte instructions are performed in a single clock cycle. In addition to the speed improvement, the enhanced 8051 core also includes architectural enhancements: • A second data pointer. • Extended 18-source interrupt unit The 8051 core is object code compatible with the industry standard 8051 microcontroller. That is, object code compiled with an industry standard 8051 compiler or assembler executes on the 8051 core and is functionally equivalent. However, because the 8051 core uses a different instruction timing than many other 8051 variants, existing code with timing loops may require modification. Also because the peripheral units such as timers and serial ports differ from those on a other 8051 cores, code which includes instructions using the peripheral units SFRs will not work correctly. 11.2 Memory The 8051 CPU architecture has four different memory spaces. The 8051 has separate memory spaces for program memory and data memory. The 8051 memory spaces are the following (see section 11.2.1 and 11.2.2 for details): CODE. A read-only memory space for program memory. This memory space addresses 64 KB. DATA. A read/write data memory space, which can be directly or indirectly, accessed by a single cycle CPU instruction, thus allowing fast access. This memory space addresses 256 bytes. The lower 128 bytes of the DATA memory space can be addressed either directly or indirectly, the upper 128 bytes only indirectly. XDATA. A read/write data memory space access to which usually requires 4-5 CPU instruction cycles, thus giving slow access. This memory space addresses 64 KB. Access to XDATA memory is also slower in hardware than DATA access as the CODE and XDATA memory spaces share a common bus on the CPU core and instruction pre-fetch from CODE can thus not be performed in parallel with XDATA accesses. SFR. A read/write register memory space which can be directly accessed by a single CPU instruction. This memory space consists of 128 bytes. For SFR registers whose address is divisible by eight, each bit is also individually addressable. The four different memory spaces are distinct in the 8051 architecture, but are partly overlapping in the CC2430 to ease DMA transfers and hardware debugger operation. How the different memory spaces are mapped onto the three physical memories (flash program memory, 8 KB SRAM and memorymapped registers) is described in sections 11.2.1 and 11.2.2. 11.2.1 Memory Map This section gives an overview of the memory map. The memory map differs from the standard 8051 memory map in two important aspects, as described below. First, in order to allow the DMA controller access to all physical memory and thus allow DMA transfers between the different 8051 memory spaces, parts of SFR and CODE memory space are mapped into the XDATA memory space. Not Recommended for New Designs CC2430 8051 CPU : Memory CC2430 Data Sheet (rev. 2.1) SWRS036F Page 31 of 211 Secondly, two alternative schemes for CODE memory space mapping can be used. The first scheme is the standard 8051 mapping where only the program memory i.e. flash memory is mapped to CODE memory space. This mapping is the default used after a device reset. The second scheme is an extension to the standard CODE space mapping in that all physical memory is mapped to the CODE space region. This second scheme is called unified mapping of the CODE memory space. Details about mapping of all 8051 memory spaces are given in the next section. The memory map showing how the different physical memories are mapped into the CPU memory spaces is given in the figures on the following pages for 128 KB flash memory size option only. The other flash options are reduced versions of the F128 with natural limitations. Note that for CODE memory space, the two alternative memory maps are shown; unified and non-unified (standard) mapping. For users familiar with the 8051 architecture, the standard 8051 memory space is shown as “8051 memory spaces” in the figures. Non-volatile program memory 56 KB CC2430-F128 XDATA memory space Physical memory 8 KB SRAM RF registers XDATA memory space DATA memory space SF R memory space 8051 memory spaces 0x0000 Registers Fast access RAM 0xFF00 Slow access RAM / program memory in RAM 0xE000 0xFFFF 0x0000 0xFF 0x80 0xFF 0x00 SFR registers 0xDFFF 0xDF00 0xDF80 0xDFFF 0xDEFF 0xDEFF 0x0000 lower 56 KB 0xFFFF 0xFFFF 0xDF00 128 KB Flash 0xFFFF Figure 7: CC2430-F128 XDATA memory space Not Recommended for New Designs CC2430 8051 CPU : Memory CC2430 Data Sheet (rev. 2.1) SWRS036F Page 32 of 211 Code memory space 8051 memory spaces 0xFFFF 0x0000 Physical memory MEMCTR.MUNIF = 0 CODE maps to flash memory only Non-volatile program memory 32 KB bank 0 0x0000 0x7FFF Non-volatile program memory 32 KB bank 0 - bank 3 0x8000 0xFFFF 0x07FFF 0x00000 32 KB bank 0 32 KB bank 1 0x08000 0x1FFFF 32 KB bank 2 32 KB bank 3 0x18000 0x10000 0x17FFF 0x0FFFF CC2430-F128 CODE memory space 128 KB flash Figure 8: CC2430-F128 Non-unified mapping of CODE Space Non-volatile program memory 32 KB bank 0 Non-volatile program memory 24 KB bank 0 - bank 3 Physical memory 8 KB SRAM RF registers 0x0000 Registers Fast access RAM 0xFF00 Slow access RAM / program memory in RAM 0xE000 SFR registers 0xDF00 0xDF80 0xDFFF 0xDEFF 128 KB Flash (0x8000 * (bank +1)) - 0x20FF 0x0000 32 KB bank 0 0xFFFF 0x7FFF MEMCTR.MUNIF = 1 CODE maps to unified memory CC2430-F128 CODE memory space 0x8000 * bank 0x7FFF 0x8000 24 KB bank 0-3 Figure 9: CC2430-F128 Unified mapping of CODE space Not Recommended for New Designs CC2430 8051 CPU : Memory CC2430 Data Sheet (rev. 2.1) SWRS036F Page 33 of 211 11.2.2 CPU Memory Space This section describes the details of each CPU memory space. XDATA memory space. The XDATA memory map is given in Figure 7. For devices with flash size above 32 KB only 56 KB of the flash memory is mapped into XDATA, address range 0x0000-0xDEFF. For the 32 KB flash size option, the 32 KB flash memory is mapped to 0x0000-0x7FFF in XDATA. Access to unimplemented areas in the memory map gives an undefined result (applies to F32 only). For all device flash-options, the 8 KB SRAM is mapped into address range 0xE000-0xFFFF. The SFR registers are mapped into address range 0xDF80-0xDFFF, and are also equal on all flash options. Another memory-mapped register area is the RF register area which is mapped into the address range 0xDF00-0xDF7F. These registers are associated with the radio (see sections 14 and 14.35) and are also equal on all flash options. The mapping of flash memory, SRAM and registers to XDATA allows the DMA controller and the CPU access to all the physical memories in a single unified address space (maximum of 56 KB flash, above reserved for CODE). Note that the CODE banking scheme, described in CODE memory space section, will not affect the contents of the 24 KB above the 32KB lowest memory area, thus XDATA mapps into the Flash as shown in Figure 7. One of the ramifications of this mapping is that the first address of usable SRAM starts at address 0xE000 instead of 0x0000, and therefore compilers/assemblers must take this into consideration. In low-power modes PM2-3 the upper 4 KB of SRAM, i.e. the memory locations in XDATA address range 0xF000-0xFFFF, will retain their contents. There are some locations in this area that are excepted from retention and thus does not keep its data in these power modes. Refer to section 13.1 on page 65 for a detailed description of power modes and SRAM data retention. CODE memory space. The CODE memory space uses either a unified or a non-unified memory mapping (see section 11.2.1 on page 30) to the physical memories as shown in Figure 8 and Figure 9. The unified mapping of the CODE memory space is similar to the XDATA mapping. Note that some SFR registers internal to the CPU can not be accessed in the unified CODE memory space (see section 11.2.3, SFR registers, on page 34). With flash memory sizes above 32 KB, only 56 KB of flash memory is mapped to CODE memory space at a time when unified mapping is used. The upper 24 KB follows the banking scheme described below and shown in Figure 9. This is similar to the XDATA memory space exept for the upper 24 KB that can change content. Using unified memory CODE data at address above 0xDEFF will not contain flash data. The 8 KB SRAM is included in the unified CODE address space to allow program execution out of the SRAM. Note: In order to use the unified memory mapping within CODE memory space, the SFR register bit MEMCTR.MUNIF must be 1. For devices with flash memory size of 128 KB (CC2430F128), a flash memory banking scheme is used for the CODE memory space. For the banking scheme the upper 32 KB area of CODE memory space is mapped to one out of the four 32 KB physical blocks (banks) of flash memory. The lower 32 KB of CODE space is always mapped to the lowest 32 KB of the flash memory. The banking is controlled through the flash bank select bit (FMAP.MAP) and shown in the non-unified CODE memory map in Figure 8. The flash bank select bits reside in the SFR register bits FMAP.MAP, and also in the SFR register bits MEMCTR.FMAP, (see section 11.2.5 on page 40). The FMAP.MAP bit and MEMCTR.FMAP bit are transparent and updating one is reflected by the other. When banking and unified CODE memory space are used, only the lower 24 KB in the selected bank is available. This is shown in Figure 9. DATA memory space. The 8-bit address range of DATA memory is mapped into the upper 256 bytes of the 8 KB SRAM. This area is also accessible through the unified CODE and XDATA memory spaces at the address range 0xFF00-0xFFFF. SFR memory space. The 128 entry hardware register area is accessed through this memory space. The SFR registers are also accessible through the XDATA address space at the address range 0xDF80-0xDFFF. Some CPUNot Recommended for New Designs CC2430 8051 CPU : Memory CC2430 Data Sheet (rev. 2.1) SWRS036F Page 34 of 211 specific SFR registers reside inside the CPU core and can only be accessed using the SFR memory space and not through the duplicate mapping into XDATA memory space. These specific SFR registers are listed in section 11.2.3, SFR registers, on page 34. 11.2.3 Physical memory RAM. The CC2430 contains static RAM. At power-on the contents of RAM is undefined. The RAM size is 8 KB in total. The upper 4 KB of the RAM (XDATA memory locations 0xF000-0xFFFF) retains data in all power modes (see exception below). The remaining lower 4 KB (XDATA memory locations 0xE000-0xEFFF) will loose its contents in PM2 and PM3 and contains undefined data when returning to PM0. The memory locations 0xFD56-0xFEFF (XDATA) consists of 426 bytes in RAM that will not retain data when PM2/3 is entered. Flash Memory. The on-chip flash memory consists of 32768, 655536 or 131072 bytes. The flash memory is primarily intended to hold program code. The flash memory has the following features: • Flash page erase time: 20 ms • Flash chip (mass) erase time: 200 ms • Flash write time (4 bytes): 20 μs • Data retention5:100 years • Program/erase endurance: 1,000 cycles The flash memory consists of the Flash Main Pages (up to 64 times 2 KB) which is where the CPU reads program code and data. The flash memory also contains a Flash Information Page (2 KB) which contains the Flash Lock Bits. The Flash Information Page and hence the Lock Bits is only accessed through the Debug Interface, and must be selected as source prior to access. The Flash 5 At room temperature Controller (see section 13.3) is used to write and erase the contents of the flash main memory. When the CPU reads instructions from flash memory, it fetches the next instruction through a cache. The instruction cache is provided mainly to reduce power consumption by reducing the amount of time the flash memory itself is accessed. The use of the instruction cache may be disabled with the MEMCTR.CACHDIS register bit, but doing so will increase power consuption. SFR Registers. The Special Function Registers (SFRs) control several of the features of the 8051 CPU core and/or peripherals. Many of the 8051 core SFRs are identical to the standard 8051 SFRs. However, there are additional SFRs that control features that are not available in the standard 8051. The additional SFRs are used to interface with the peripheral units and RF transceiver. Table 24 shows the address to all SFRs in CC2430. The 8051 internal SFRs are shown with grey background, while the other SFRs are the SFRs specific to CC2430. Note: All internal SFRs (shown with grey background in Table 24), can only be accessed through SFR space as these registers are not mapped into XDATA space. Table 25 lists the additional SFRs that are not standard 8051 peripheral SFRs or CPUinternal SFRs. The additional SFRs are described in the relevant sections for each peripheral function. Not Recommended for New Designs CC2430 8051 CPU : Memory CC2430 Data Sheet (rev. 2.1) SWRS036F Page 35 of 211 Table 24: SFR address overview 8 bytes 80 P0 SP DPL0 DPH0 DPL1 DPH1 U0CSR PCON 87 88 TCON P0IFG P1IFG P2IFG PICTL P1IEN - P0INP 8F 90 P1 RFIM DPS MPAGE T2CMP ST0 ST1 ST2 97 98 S0CON - IEN2 S1CON T2PEROF0 T2PEROF1 T2PEROF2 FMAP 9F A0 P2 T2OF0 T2OF1 T2OF2 T2CAPLPL T2CAPHPH T2TLD T2THD A7 A8 IEN0 IP0 - FWT FADDRL FADDRH FCTL FWDATA AF B0 - ENCDI ENCDO ENCCS ADCCON1 ADCCON2 ADCCON3 - B7 B8 IEN1 IP1 ADCL ADCH RNDL RNDH SLEEP - BF C0 IRCON U0DBUF U0BAUD T2CNF U0UCR U0GCR CLKCON MEMCTR C7 C8 - WDCTL T3CNT T3CTL T3CCTL0 T3CC0 T3CCTL1 T3CC1 CF D0 PSW DMAIRQ DMA1CFGL DMA1CFGH DMA0CFGL DMA0CFGH DMAARM DMAREQ D7 D8 TIMIF RFD T1CC0L T1CC0H T1CC1L T1CC1H T1CC2L T1CC2H DF E0 ACC RFST T1CNTL T1CNTH T1CTL T1CCTL0 T1CCTL1 T1CCTL2 E7 E8 IRCON2 RFIF T4CNT T4CTL T4CCTL0 T4CC0 T4CCTL1 T4CC1 EF F0 B PERCFG ADCCFG P0SEL P1SEL P2SEL P1INP P2INP F7 F8 U1CSR U1DBUF U1BAUD U1UCR U1GCR P0DIR P1DIR P2DIR FF Table 25: CC2430 specific SFR overview Register name SFR Address Module Description ADCCON1 0xB4 ADC ADC Control 1 ADCCON2 0xB5 ADC ADC Control 2 ADCCON3 0xB6 ADC ADC Control 3 ADCL 0xBA ADC ADC Data Low ADCH 0xBB ADC ADC Data High RNDL 0xBC ADC Random Number Generator Data Low RNDH 0xBD ADC Random Number Generator Data High ENCDI 0xB1 AES Encryption/Decryption Input Data ENCDO 0xB2 AES Encryption/Decryption Output Data ENCCS 0xB3 AES Encryption/Decryption Control and Status DMAIRQ 0xD1 DMA DMA Interrupt Flag DMA1CFGL 0xD2 DMA DMA Channel 1-4 Configuration Address Low DMA1CFGH 0xD3 DMA DMA Channel 1-4 Configuration Address High DMA0CFGL 0xD4 DMA DMA Channel 0 Configuration Address Low DMA0CFGH 0xD5 DMA DMA Channel 0 Configuration Address High DMAARM 0xD6 DMA DMA Channel Armed DMAREQ 0xD7 DMA DMA Channel Start Request and Status FWT 0xAB FLASH Flash Write Timing FADDRL 0xAC FLASH Flash Address Low FADDRH 0xAD FLASH Flash Address High FCTL 0xAE FLASH Flash Control FWDATA 0xAF FLASH Flash Write Data P0IFG 0x89 IOC Port 0 Interrupt Status Flag Not Recommended for New Designs CC2430 8051 CPU : Memory CC2430 Data Sheet (rev. 2.1) SWRS036F Page 36 of 211 Register name SFR Address Module Description P1IFG 0x8A IOC Port 1 Interrupt Status Flag P2IFG 0x8B IOC Port 2 Interrupt Status Flag PICTL 0x8C IOC Port Pins Interrupt Mask and Edge P1IEN 0x8D IOC Port 1 Interrupt Mask P0INP 0x8F IOC Port 0 Input Mode PERCFG 0xF1 IOC Peripheral I/O Control ADCCFG 0xF2 IOC ADC Input Configuration P0SEL 0xF3 IOC Port 0 Function Select P1SEL 0xF4 IOC Port 1 Function Select P2SEL 0xF5 IOC Port 2 Function Select P1INP 0xF6 IOC Port 1 Input Mode P2INP 0xF7 IOC Port 2 Input Mode P0DIR 0xFD IOC Port 0 Direction P1DIR 0xFE IOC Port 1 Direction P2DIR 0xFF IOC Port 2 Direction MEMCTR 0xC7 MEMORY Memory System Control FMAP 0x9F MEMORY Flash Memory Bank Mapping RFIM 0x91 RF RF Interrupt Mask RFD 0xD9 RF RF Data RFST 0xE1 RF RF Command Strobe RFIF 0xE9 RF RF Interrupt flags ST0 0x95 ST Sleep Timer 0 ST1 0x96 ST Sleep Timer 1 ST2 0x97 ST Sleep Timer 2 SLEEP 0xBE PMC Sleep Mode Control CLKCON 0xC6 PMC Clock Control T1CC0L 0xDA Timer1 Timer 1 Channel 0 Capture/Compare Value Low T1CC0H 0xDB Timer1 Timer 1 Channel 0 Capture/Compare Value High T1CC1L 0xDC Timer1 Timer 1 Channel 1 Capture/Compare Value Low T1CC1H 0xDD Timer1 Timer 1 Channel 1 Capture/Compare Value High T1CC2L 0xDE Timer1 Timer 1 Channel 2 Capture/Compare Value Low T1CC2H 0xDF Timer1 Timer 1 Channel 2 Capture/Compare Value High T1CNTL 0xE2 Timer1 Timer 1 Counter Low T1CNTH 0xE3 Timer1 Timer 1 Counter High T1CTL 0xE4 Timer1 Timer 1 Control and Status T1CCTL0 0xE5 Timer1 Timer 1 Channel 0 Capture/Compare Control T1CCTL1 0xE6 Timer1 Timer 1 Channel 1 Capture/Compare Control T1CCTL2 0xE7 Timer1 Timer 1 Channel 2 Capture/Compare Control T2CMP 0x94 Timer2 Timer 2 Compare Value T2PEROF0 0x9C Timer2 Timer 2 Overflow Capture/Compare 0 T2PEROF1 0x9D Timer2 Timer 2 Overflow Capture/Compare 1 T2PEROF2 0x9E Timer2 Timer 2 Overflow Capture/Compare 2 Not Recommended for New Designs CC2430 8051 CPU : Memory CC2430 Data Sheet (rev. 2.1) SWRS036F Page 37 of 211 Register name SFR Address Module Description T2OF0 0xA1 Timer2 Timer 2 Overflow Count 0 T2OF1 0xA2 Timer2 Timer 2 Overflow Count 1 T2OF2 0xA3 Timer2 Timer 2 Overflow Count 2 T2CAPLPL 0xA4 Timer2 Timer 2 Timer Period Low T2CAPHPH 0xA5 Timer2 Timer 2 Timer Period High T2TLD 0xA6 Timer2 Timer 2 Timer Value Low T2THD 0xA7 Timer2 Timer 2 Timer Value High T2CNF 0xC3 Timer2 Timer 2 Configuration T3CNT 0xCA Timer3 Timer 3 Counter T3CTL 0xCB Timer3 Timer 3 Control T3CCTL0 0xCC Timer3 Timer 3 Channel 0 Compare Control T3CC0 0xCD Timer3 Timer 3 Channel 0 Compare Value T3CCTL1 0xCE Timer3 Timer 3 Channel 1Compare Control T3CC1 0xCF Timer3 Timer 3 Channel 1 Compare Value T4CNT 0xEA Timer4 Timer 4 Counter T4CTL 0xEB Timer4 Timer 4 Control T4CCTL0 0xEC Timer4 Timer 4 Channel 0 Compare Control T4CC0 0xED Timer4 Timer 4 Channel 0 Compare Value T4CCTL1 0xEE Timer4 Timer 4 Channel 1 Compare Control T4CC1 0xEF Timer4 Timer 4 Channel 1 Compare Value TIMIF 0xD8 TMINT Timers 1/3/4 Joint Interrupt Mask/Flags U0CSR 0x86 USART0 USART 0 Control and Status U0DBUF 0xC1 USART0 USART 0 Receive/Transmit Data Buffer U0BAUD 0xC2 USART0 USART 0 Baud Rate Control U0UCR 0xC4 USART0 USART 0 UART Control U0GCR 0xC5 USART0 USART 0 Generic Control U1CSR 0xF8 USART1 USART 1 Control and Status U1DBUF 0xF9 USART1 USART 1 Receive/Transmit Data Buffer U1BAUD 0xFA USART1 USART 1 Baud Rate Control U1UCR 0xFB USART1 USART 1 UART Control U1GCR 0xFC USART1 USART 1 Generic Control WDCTL 0xC9 WDT Watchdog Timer Control RFR Registers. The RFR registers are all related to Radio configuration and control. These registers can only be accessed through the XDATA memory space. A complete description of each register is given in section 14.35 on page 183. Table 26 gives an overview of the register address space while Table 27 gives a more descriptive overview of these registers. Note that shaded areas in Table 26 are registers for test purposes only. Not Recommended for New Designs CC2430 8051 CPU : Memory CC2430 Data Sheet (rev. 2.1) SWRS036F Page 38 of 211 Table 26: RFR address overview (XDATA addressable with offset DF00h) DF+ 8 bytes DF+ 00 - - MDMCTRL0H MDMCTRL0L MDMCTRL1H MDMCTRL1L RSSIH RSSIL 07 08 SYNCHWORDH SYNCWORDL TXCTRLH TXCTRLL RXCTRL0H RXCTRL0L RXCTRL1H RXCTRL1L 0F 10 FSCTRLH FSCTRLL CSPX CSPY CSPZ CSPCTRL CSPT RFPWR 17 18 - - - - - - - - 1F 20 FSMTCH FSMTCL MANANDH MANANDL MANORH MANORL AGCCTRLH AGCCTRLL 27 28 AGCTST0H AGCTS0L AGCTST1H AGCTST1L AGCTST2H AGCTST2L FSTST0H FSTST0L 2F 30 FSTST1H FSTST1L FSTST2H FSTST2L FSTST3H FSTST3L - RXBPFTSTH 37 38 RXBPFTSTL FSMSTATE ADCTSTH ADCTSTL DACTSTH DACTSTL - TOPTST 3F 40 RESERVEDH RESERVEDL - IEEE_ADDR0 IEEE_ADDR1 IEEE_ADDR2 IEEE_ADDR3 IEEE_ADDR4 47 48 IEEE_ADDR5 IEEE_ADDR6 IEEE_ADDR7 PANIDH PANIDL SHORTADDRH SHORTADDRL IOCFG0 4F 50 IOCFG1 IOCFG2 IOCFG3 RXFIFOCNT FSMTC1 - - - 57 58 - - - - - - - - 5F 60 CHVER CHIPID RFSTATUS - IRQSRC - - - 67 68 - - - - - - - - 6F 70 - - - - - - - - 77 78 - - - - - - - - 7F Table 27 : Overview of RF registers XDATA Address Register name Description 0xDF00- 0xDF01 - Reserved 0xDF02 MDMCTRL0H Modem Control 0, high 0xDF03 MDMCTRL0L Modem Control 0, low 0xDF04 MDMCTRL1H Modem Control 1, high 0xDF05 MDMCTRL1L Modem Control 1, low 0xDF06 RSSIH RSSI and CCA Status and Control, high 0xDF07 RSSIL RSSI and CCA Status and Control, low 0xDF08 SYNCWORDH Synchronisation Word Control, high 0xDF09 SYNCWORDL Synchronisation Word Control, low 0xDF0A TXCTRLH Transmit Control, high 0xDF0B TXCTRLL Transmit Control, low 0xDF0C RXCTRL0H Receive Control 0, high 0xDF0D RXCTRL0L Receive Control 0, low 0xDF0E RXCTRL1H Receive Control 1, high 0xDF0F RXCTRL1L Receive Control 1, low 0xDF10 FSCTRLH Frequency Synthesizer Control and Status, high 0xDF11 FSCTRLL Frequency Synthesizer Control and Status, low 0xDF12 CSPX CSP X Data 0xDF13 CSPY CSP Y Data 0xDF14 CSPZ CSP Z Data 0xDF15 CSPCTRL CSP Control Not Recommended for New Designs CC2430 8051 CPU : Memory CC2430 Data Sheet (rev. 2.1) SWRS036F Page 39 of 211 XDATA Address Register name Description 0xDF16 CSPT CSP T Data 0xDF17 RFPWR RF Power Control 0xDF20 FSMTCH Finite State Machine Time Constants, high 0xDF21 FSMTCL Finite State Machine Time Constants, low 0xDF22 MANANDH Manual AND Override, high 0xDF23 MANANDL Manual AND Override, low 0xDF24 MANORH Manual OR Override, high 0xDF25 MANORL Manual OR Override, low 0xDF26 AGCCTRLH AGC Control, high 0xDF27 AGCCTRLL AGC Control, low 0xDF28- 0xDF38 - Reserved 0xDF39 FSMSTATE Finite State Machine State Status 0xDF3A ADCTSTH ADC Test, high 0xDF3B ADCTSTL ADC Test, low 0xDF3C DACTSTH DAC Test, high 0xDF3D DACTSTL DAC Test, low 0xDF3E- 0xDF41 - Reserved 0xDF43 IEEE_ADDR0 IEEE Address 0 (LSB) 0xDF44 IEEE_ADDR1 IEEE Address 1 0xDF45 IEEE_ADDR2 IEEE Address 2 0xDF46 IEEE_ADDR3 IEEE Address 3 0xDF47 IEEE_ADDR4 IEEE Address 4 0xDF48 IEEE_ADDR5 IEEE Address 5 0xDF49 IEEE_ADDR6 IEEE Address 6 0xDF4A IEEE_ADDR7 IEEE Address 7 (MSB) 0xDF4B PANIDH PAN Identifier, high 0xDF4C PANIDL PAN Identifier, low 0xDF4D SHORTADDRH Short Address, high 0xDF4E SHORTADDRL Short Address, low 0xDF4F IOCFG0 I/O Configuration 0 0xDF50 IOCFG1 I/O Configuration 1 0xDF51 IOCFG2 I/O Configuration 2 0xDF52 IOCFG3 I/O Configuration 3 0xDF53 RXFIFOCNT RX FIFO Count Not Recommended for New Designs CC2430 8051 CPU : Memory CC2430 Data Sheet (rev. 2.1) SWRS036F Page 40 of 211 XDATA Address Register name Description 0xDF54 FSMTC1 Finite State Machine Control 0xDF55- 0xDF5F - Reserved 0xDF60 CHVER Chip Version 0xDF61 CHIPID Chip Identification 0xDF62 RFSTATUS RF Status 0xDF63 - Reserved 0xDF64 IRQSRC RF Interrupt Source 0xDF65- 0xDFFF - Reserved 11.2.4 XDATA Memory Access The CC2430 provides an additional SFR register MPAGE. This register is used during instructions MOVX A,@Ri and MOVX @Ri,A. MPAGE gives the 8 most significant address bits, while the register Ri gives the 8 least significant bits. In some 8051 implementations, this type of XDATA access is performed using P2 to give the most significant address bits. Existing software may therefore have to be adapted to make use of MPAGE instead of P2. MPAGE (0x93) – Memory Page Select Bit Name Reset R/W Description 7:0 MPAGE[7:0] 0x00 R/W Memory page, high-order bits of address in MOVX instruction 11.2.5 Memory Arbiter The CC2430 includes a memory arbiter which handles CPU and DMA access to all physical memory. The control registers MEMCTR and FMAP are used to control various aspects of the memory sub-system. The MEMCTR and FMAP registers are described below. MEMCTR.MUNIF controls unified mapping of CODE memory space as shown in Figure 8 and Figure 9 on page 32. Unified mapping is required when the CPU is to execute program stored in RAM (XDATA). For the 128 KB flash version (CC2430-F128), the Flash Bank Map register, FMAP, controls mapping of physical banks of the 128 KB flash to the program address region 0x8000-0xFFFF in CODE memory space as shown in Figure 8 on 32. Please note that the FMAP.MAP[1:0] and MEMCTR.FMAP[1:0] bits are aliased. Writing to FMAP.MAP[1:0] will also change the contents of the MEMCTR.FMAP[1:0] bits, and vice versa. Not Recommended for New Designs CC2430 8051 CPU : Memory CC2430 Data Sheet (rev. 2.1) SWRS036F Page 41 of 211 MEMCTR (0xC7) – Memory Arbiter Control Bit Name Reset R/W Description 7 - 0 R0 Not used Unified memory mapping. When unified mapping is enabled, all physical memories are mapped into the CODE memory space as far as possible, when uniform mapping is disabled only flash memory is mapped to CODE space 0 Disable unified mapping 6 MUNIF 0 R/W 1 Enable unified mapping Flash bank map. These bits are supported by CC2430-F128 only. Controls which of the four 32 KB flash memory banks to map to program address 0x8000 – 0xFFFF in CODE memory space. These bits are aliased to FMAP.MAP[1:0] 00 Map program address 0x8000 – 0xFFFF to physical memory address 0x00000 – 0x07FFF 01 Map program address 0x8000 – 0xFFFF to physical memory address 0x08000– 0x0FFFF 10 Map program address 0x8000 – 0xFFFF to physical memory address 0x10000 – 0x17FFF 5:4 FMAP[1:0] 01 R/W 11 Map program address 0x8000 – 0xFFFF to physical memory address 0x18000 – 0x1FFFF 3:2 - 00 R0 Not used Flash cache disable. Invalidates contents of instruction cache and forces all instruction read accesses to read straight from flash memory. Disabling will increase power consumption and is provided for debug purposes. 0 Cache enabled 1 CACHDIS 0 R/W 1 Cache disabled 0 - 1 R/W Reserved. Always set to 1.6 FMAP (0x9F) – Flash Bank Map Bit Name Reset R/W Description 7:2 - 0x00 R0 Not used Flash bank map. Controls which of the four 32 KB flash memory banks to map to program address 0x8000 – 0xFFFF in CODE memory space. These bits are aliased to MEMCTR.FMAP[5:4] 00 Map program address 0x8000 – 0xFFFF to physical memory address 0x00000 – 0x07FFF 01 Map program address 0x8000 – 0xFFFF to physical memory address 0x08000– 0x0FFFF 10 Map program address 0x8000 – 0xFFFF to physical memory address 0x10000 – 0x17FFF 1:0 MAP[1:0] 01 R/W 11 Map program address 0x8000 – 0xFFFF to physical memory address 0x18000 – 0x1FFFF 6 Reserved bits must always be set to the specified value. Failure to follow this will result in indeterminate behaviour. Not Recommended for New Designs CC2430 8051 CPU : CPU Registers CC2430 Data Sheet (rev. 2.1) SWRS036F Page 42 of 211 11.3 CPU Registers This section describes the internal registers found in the CPU. 11.3.1 Data Pointers The CC2430 has two data pointers, DPTR0 and DPTR1 to accelerate the movement of data blocks to/from memory. The data pointers are generally used to access CODE or XDATA space e.g. MOVC A,@A+DPTR MOV A,@DPTR. The data pointer select bit, bit 0 in the Data Pointer Select register DPS, chooses which data pointer shall be the active one during execution of an instruction that uses the data pointer, e.g. in one of the above instructions. The data pointers are two bytes wide consisting of the following SFRs: • DPTR0 – DPH0:DPL0 • DPTR1 – DPH1:DPL1 DPH0 (0x83) – Data Pointer 0 High Byte Bit Name Reset R/W Description 7:0 DPH0[7:0] 0 R/W Data pointer 0, high byte DPL0 (0x82) – Data Pointer 0 Low Byte Bit Name Reset R/W Description 7:0 DPL0[7:0] 0 R/W Data pointer 0, low byte DPH1 (0x85) – Data Pointer 1 High Byte Bit Name Reset R/W Description 7:0 DPH1[7:0] 0 R/W Data pointer 1, high byte DPL1 (0x84) – Data Pointer 1 Low Byte Bit Name Reset R/W Description 7:0 DPL1[7:0] 0 R/W Data pointer 1, low byte DPS (0x92) – Data Pointer Select Bit Name Reset R/W Description 7:1 - 0x00 R0 Not used 0 DPS 0 R/W Data pointer select. Selects active data pointer. 0 : DPTR0 1 : DPTR1 11.3.2 Registers R0-R7 The CC2430 provides four register banks (not to be confused with CODE memory space banks that only applies to flash memory organization) of eight registers each. These register banks are mapped in the DATA memory space at addresses 0x00-0x07, 0x08- 0x0F, 0x10-0x17 and 0x18-0x1F (XDATA address range 0xFF00 to 0xFF1F). Each register bank contains the eight 8-bit register R0-R7. The register bank to be used is selected through the Program Status Word PSW.RS[1:0]. Not Recommended for New Designs CC2430 8051 CPU : CPU Registers CC2430 Data Sheet (rev. 2.1) SWRS036F Page 43 of 211 11.3.3 Program Status Word The Program Status Word (PSW) contains several bits that show the current state of the CPU. The Program Status Word is accessible as an SFR and it is bit-addressable. PSW is shown below and contains the Carry flag, Auxiliary Carry flag for BCD operations, Register Select bits, Overflow flag and Parity flag. Two bits in PSW are uncommitted and can be used as user-defined status flags. PSW (0xD0) – Program Status Word Bit Name Reset R/W Description 7 CY 0 R/W Carry flag. Set to 1 when the last arithmetic operation resulted in a carry (during addition) or borrow (during subtraction), otherwise cleared to 0 by all arithmetic operations. 6 AC 0 R/W Auxiliary carry flag for BCD operations. Set to 1 when the last arithmetic operation resulted in a carry into (during addition) or borrow from (during subtraction) the high order nibble, otherwise cleared to 0 by all arithmetic operations. 5 F0 0 R/W User-defined, bit-addressable Register bank select bits. Selects which set of R7-R0 registers to use from four possible register banks in DATA space. 00 Register Bank 0, 0x00 – 0x07 01 Register Bank 1, 0x08 – 0x0F 10 Register Bank 2, 0x10 – 0x17 4:3 RS[1:0] 00 R/W 11 Register Bank 3, 0x18 – 0x1F 2 OV 0 R/W Overflow flag, set by arithmetic operations. Set to 1 when the last arithmetic operation resulted in a carry (addition), borrow (subtraction), or overflow (multiply or divide). Otherwise, the bit is cleared to 0 by all arithmetic operations. 1 F1 0 R/W User-defined, bit-addressable 0 P 0 R/W Parity flag, parity of accumulator set by hardware to 1 if it contains an odd number of 1’s, otherwise it is cleared to 0 11.3.4 Accumulator ACC is the accumulator. This is the source and destination of most arithmetic instructions, data transfers and other instructions. The mnemonic for the accumulator (in instructions involving the accumulator) refers to A instead of ACC. ACC (0xE0) – Accumulator Bit Name Reset R/W Description 7:0 ACC[7:0] 0x00 R/W Accumulator 11.3.5 B Register The B register is used as the second 8-bit argument during execution of multiply and divide instructions. When not used for these purposes it may be used as a scratch-pad register to hold temporary data. B (0xF0) – B Register Bit Name Reset R/W Description 7:0 B[7:0] 0x00 R/W B register. Used in MUL/DIV instructions. Not Recommended for New Designs CC2430 8051 CPU : Instruction Set Summary CC2430 Data Sheet (rev. 2.1) SWRS036F Page 44 of 211 11.3.6 Stack Pointer The stack resides in DATA memory space and grows upwards. The PUSH instruction first increments the Stack Pointer (SP) and then copies the byte into the stack. The Stack Pointer is initialized to 0x07 after a reset and it is incremented once to start from location 0x08 which is the first register (R0) of the second register bank. Thus, in order to use more than one register bank, the SP should be initialized to a different location not used for data storage. SP (0x81) – Stack Pointer Bit Name Reset R/W Description 7:0 SP[7:0] 0x07 R/W Stack Pointer 11.4 Instruction Set Summary The 8051 instruction set is summarized in Table 28. All mnemonics copyrighted © Intel Corporation, 1980. The following conventions are used in the instruction set summary: • Rn – Register R7-R0 of the currently selected register bank. • direct – 8-bit internal data location’s address. This can be DATA area (0x00 – 0x7F) or SFR area (0x80 – 0xFF). • @Ri – 8-bit internal data location, DATA area (0x00 – 0xFF) addressed indirectly through register R1 or R0. • #data – 8-bit constant included in instruction. • #data16 – 16-bit constant included in instruction. • addr16 – 16-bit destination address. Used by LCALL and LJMP. A branch can be anywhere within the 64 KB CODE memory space. • addr11 – 11-bit destination address. Used by ACALL and AJMP. The branch will be within the same 2 KB page of program memory as the first byte of the following instruction. • rel – Signed (two’s complement) 8-bit offset byte. Used by SJMP and all conditional jumps. Range is –128 to +127 bytes relative to first byte of the following instruction. • bit – direct addressed bit in DATA area or SFR. The instructions that affect CPU flag settings located in PSW are listed in Table 29 on page 49. Note that operations on the PSW register or bits in PSW will also affect the flag settings. Not Recommended for New Designs CC2430 8051 CPU : Instruction Set Summary CC2430 Data Sheet (rev. 2.1) SWRS036F Page 45 of 211 Table 28: Instruction Set Summary Mnemonic Description Hex Opcode Bytes Cycles Arithmetic operations ADD A,Rn Add register to accumulator 28-2F 1 1 ADD A,direct Add direct byte to accumulator 25 2 2 ADD A,@Ri Add indirect RAM to accumulator 26-27 1 2 ADD A,#data Add immediate data to accumulator 24 2 2 ADDC A,Rn Add register to accumulator with carry flag 38-3F 1 1 ADDC A,direct Add direct byte to A with carry flag 35 2 2 ADDC A,@Ri Add indirect RAM to A with carry flag 36-37 1 2 ADDC A,#data Add immediate data to A with carry flag 34 2 2 SUBB A,Rn Subtract register from A with borrow 98-9F 1 1 SUBB A,direct Subtract direct byte from A with borrow 95 2 2 SUBB A,@Ri Subtract indirect RAM from A with borrow 96-97 1 2 SUBB A,#data Subtract immediate data from A with borrow 94 2 2 INC A Increment accumulator 04 1 1 INC Rn Increment register 08-0F 1 2 INC direct Increment direct byte 05 2 3 INC @Ri Increment indirect RAM 06-07 1 3 INC DPTR Increment data pointer A3 1 1 DEC A Decrement accumulator 14 1 1 DEC Rn Decrement register 18-1F 1 2 DEC direct Decrement direct byte 15 2 3 DEC @Ri Decrement indirect RAM 16-17 1 3 MUL AB Multiply A and B A4 1 5 DIV Divide A by B 84 1 5 DA A Decimal adjust accumulator D4 1 1 Not Recommended for New Designs CC2430 8051 CPU : Instruction Set Summary CC2430 Data Sheet (rev. 2.1) SWRS036F Page 46 of 211 Mnemonic Description Hex Opcode Bytes Cycles Logical operations ANL A,Rn AND register to accumulator 58-5F 1 1 ANL A,direct AND direct byte to accumulator 55 2 2 ANL A,@Ri AND indirect RAM to accumulator 56-57 1 2 ANL A,#data AND immediate data to accumulator 54 2 2 ANL direct,A AND accumulator to direct byte 52 2 3 ANL direct,#data AND immediate data to direct byte 53 3 4 ORL A,Rn OR register to accumulator 48-4F 1 1 ORL A,direct OR direct byte to accumulator 45 2 2 ORL A,@Ri OR indirect RAM to accumulator 46-47 1 2 ORL A,#data OR immediate data to accumulator 44 2 2 ORL direct,A OR accumulator to direct byte 42 2 3 ORL direct,#data OR immediate data to direct byte 43 3 4 XRL A,Rn Exclusive OR register to accumulator 68-6F 1 1 XRL A,direct Exclusive OR direct byte to accumulator 65 2 2 XRL A,@Ri Exclusive OR indirect RAM to accumulator 66-67 1 2 XRL A,#data Exclusive OR immediate data to accumulator 64 2 2 XRL direct,A Exclusive OR accumulator to direct byte 62 2 3 XRL direct,#data Exclusive OR immediate data to direct byte 63 3 4 CLR A Clear accumulator E4 1 1 CPL A Complement accumulator F4 1 1 RL A Rotate accumulator left 23 1 1 RLC A Rotate accumulator left through carry 33 1 1 RR A Rotate accumulator right 03 1 1 RRC A Rotate accumulator right through carry 13 1 1 SWAP A Swap nibbles within the accumulator C4 1 1 Not Recommended for New Designs CC2430 8051 CPU : Instruction Set Summary CC2430 Data Sheet (rev. 2.1) SWRS036F Page 47 of 211 Mnemonic Description Hex Opcode Bytes Cycles Data transfers MOV A,Rn Move register to accumulator E8-EF 1 1 MOV A,direct Move direct byte to accumulator E5 2 2 MOV A,@Ri Move indirect RAM to accumulator E6-E7 1 2 MOV A,#data Move immediate data to accumulator 74 2 2 MOV Rn,A Move accumulator to register F8-FF 1 2 MOV Rn,direct Move direct byte to register A8-AF 2 4 MOV Rn,#data Move immediate data to register 78-7F 2 2 MOV direct,A Move accumulator to direct byte F5 2 3 MOV direct,Rn Move register to direct byte 88-8F 2 3 MOV direct1,direct2 Move direct byte to direct byte 85 3 4 MOV direct,@Ri Move indirect RAM to direct byte 86-87 2 4 MOV direct,#data Move immediate data to direct byte 75 3 3 MOV @Ri,A Move accumulator to indirect RAM F6-F7 1 3 MOV @Ri,direct Move direct byte to indirect RAM A6-A7 2 5 MOV @Ri,#data Move immediate data to indirect RAM 76-77 2 3 MOV DPTR,#data16 Load data pointer with a 16-bit constant 90 3 3 MOVC A,@A+DPTR Move code byte relative to DPTR to accumulator 93 1 3 MOVC A,@A+PC Move code byte relative to PC to accumulator 83 1 3 MOVX A,@Ri Move external RAM (8-bit address) to A E2-E3 1 3-10 MOVX A,@DPTR Move external RAM (16-bit address) to A E0 1 3-10 MOVX @Ri,A Move A to external RAM (8-bit address) F2-F3 1 4-11 MOVX @DPTR,A Move A to external RAM (16-bit address) F0 1 4-11 PUSH direct Push direct byte onto stack C0 2 4 POP direct Pop direct byte from stack D0 2 3 XCH A,Rn Exchange register with accumulator C8-CF 1 2 XCH A,direct Exchange direct byte with accumulator C5 2 3 XCH A,@Ri Exchange indirect RAM with accumulator C6-C7 1 3 XCHD A,@Ri Exchange low-order nibble indirect. RAM with A D6-D7 1 3 Not Recommended for New Designs CC2430 8051 CPU : Instruction Set Summary CC2430 Data Sheet (rev. 2.1) SWRS036F Page 48 of 211 Mnemonic Description Hex Opcode Bytes Cycles Program branching ACALL addr11 Absolute subroutine call xxx11 2 6 LCALL addr16 Long subroutine call 12 3 6 RET Return from subroutine 22 1 4 RETI Return from interrupt 32 1 4 AJMP addr11 Absolute jump xxx01 2 3 LJMP addr16 Long jump 02 3 4 SJMP rel Short jump (relative address) 80 2 3 JMP @A+DPTR Jump indirect relative to the DPTR 73 1 2 JZ rel Jump if accumulator is zero 60 2 3 JNZ rel Jump if accumulator is not zero 70 2 3 JC rel Jump if carry flag is set 40 2 3 JNC Jump if carry flag is not set 50 2 3 JB bit,rel Jump if direct bit is set 20 3 4 JNB bit,rel Jump if direct bit is not set 30 3 4 JBC bit,direct rel Jump if direct bit is set and clear bit 10 3 4 CJNE A,direct rel Compare direct byte to A and jump if not equal B5 3 4 CJNE A,#data rel Compare immediate to A and jump if not equal B4 3 4 CJNE Rn,#data rel Compare immediate to reg. and jump if not equal B8-BF 3 4 CJNE @Ri,#data rel Compare immediate to indirect and jump if not equal B6-B7 3 4 DJNZ Rn,rel Decrement register and jump if not zero D8-DF 2 3 DJNZ direct,rel Decrement direct byte and jump if not zero D5 3 4 NOP No operation 00 1 1 Boolean variable operations CLR C Clear carry flag C3 1 1 CLR bit Clear direct bit C2 2 3 SETB C Set carry flag D3 1 1 SETB bit Set direct bit D2 2 3 CPL C Complement carry flag B3 1 1 CPL bit Complement direct bit B2 2 3 ANL C,bit AND direct bit to carry flag 82 2 2 ANL C,/bit AND complement of direct bit to carry B0 2 2 ORL C,bit OR direct bit to carry flag 72 2 2 ORL C,/bit OR complement of direct bit to carry A0 2 2 MOV C,bit Move direct bit to carry flag A2 2 2 MOV bit,C Move carry flag to direct bit 92 2 3 Not Recommended for New Designs CC2430 8051 CPU : Interrupts CC2430 Data Sheet (rev. 2.1) SWRS036F Page 49 of 211 Table 29: Instructions that affect flag settings Instruction CY OV AC ADD x x x ADDC x x x SUBB x x x MUL 0 x - DIV 0 x - DA x - - RRC x - - RLC x - - SETB C 1 - - CLR C x - - CPL C x - - ANL C,bit x - - ANL C,/bit x - - ORL C,bit x - - ORL C,/bit x - - MOV C,bit x - - CJNE x - - “0”=set to 0, “1”=set to 1, “x”=set to 0/1, “-“=not affected 11.5 Interrupts The CPU has 18 interrupt sources. Each source has its own request flag located in a set of Interrupt Flag SFR registers. Each interrupt requested by the corresponding flag can be individually enabled or disabled. The definitions of the interrupt sources and the interrupt vectors are given in Table 30. The interrupts are grouped into a set of priority level groups with selectable priority levels. The interrupt enable registers are described in section 11.5.1 and the interrupt priority settings are described in section 11.5.3 on page 57. 11.5.1 Interrupt Masking Each interrupt can be individually enabled or disabled by the interrupt enable bits in the Interrupt Enable SFRs IEN0, IEN1 and IEN2. The CPU Interrupt Enable SFRs are described below and summarized in Table 30. Note that some peripherals have several events that can generate the interrupt request associated with that peripheral. This applies to Port 0, Port 1, Port 2, Timer 1, Timer2, Timer 3, Timer 4 and Radio. These peripherals have interrupt mask bits for each internal interrupt source in the corresponding SFR registers. In order to enable any of the interrupts in the CC2430, the following steps must be taken: 1. Clear interrupt flags 2. Set individual interrupt enable bit in the peripherals SFR register, if any. 3. Set the corresponding individual, interrupt enable bit in the IEN0, IEN1 or IEN2 registers to 1. 4. Enable global interrupt by setting the EA bit in IEN0 to 1 5. Begin the interrupt service routine at the corresponding vector address of that interrupt. See Table 30 for addresses Figure 10 gives a complete overview of all interrupt sources and associated control and state registers. Shaded boxes are interrupt flags that are automatically cleared by HW when interrupt service routine is called. indicates a one-shot, either due to the level source or due to edge shaping. For the Not Recommended for New Designs CC2430 8051 CPU : Interrupts CC2430 revision E Data Sheet (rev. 2.1) SWRS036F Page 50 of 211 interrupts missing this they are to be treated as level triggered (apply to ports P0, P1 and P2). The switchboxes are shown in default state, and or indicates rising or falling edge detection, i.e. at what time instance the interrupt is generated. As a general rule for pulsed or edge shaped interrupt sources one should clear CPU interrupt flag registers prior to clearing source flag bit, if available, for flags that are not automatically cleared. For level sources one has to clear source prior to clearing CPU flag. Table 30: Interrupts Overview Interrupt number Description Interrupt name Interrupt Vector Interrupt Mask, CPU Interrupt Flag, CPU 0 RF TX FIFO underflow and RX FIFO overflow. RFERR 03h IEN0.RFERRIE TCON.RFERRIF7 1 ADC end of conversion ADC 0Bh IEN0.ADCIE TCON.ADCIF7 2 USART0 RX complete URX0 13h IEN0.URX0IE TCON.URX0IF7 3 USART1 RX complete URX1 1Bh IEN0.URX1IE TCON.URX1IF7 4 AES encryption/decryption complete ENC 23h IEN0.ENCIE S0CON.ENCIF 5 Sleep Timer compare ST 2Bh IEN0.STIE IRCON.STIF 6 Port 2 inputs P2INT 33h IEN2.P2IE IRCON2.P2IF8 7 USART0 TX complete UTX0 3Bh IEN2.UTX0IE IRCON2.UTX0IF 8 DMA transfer complete DMA 43h IEN1.DMAIE IRCON.DMAIF 9 Timer 1 (16-bit) capture/compare/overflow T1 4Bh IEN1.T1IE IRCON.T1IF7,8 10 Timer 2 (MAC Timer) T2 53h IEN1.T2IE IRCON.T2IF7,8 11 Timer 3 (8-bit) compare/overflow T3 5Bh IEN1.T3IE IRCON.T3IF7,8 12 Timer 4 (8-bit) compare/overflow T4 63h IEN1.T4IE IRCON.T4IF7,8 13 Port 0 inputs P0INT 6Bh IEN1.P0IE IRCON.P0IF8 14 USART1 TX complete UTX1 73h IEN2.UTX1IE IRCON2.UTX1IF 15 Port 1 inputs P1INT 7Bh IEN2.P1IE IRCON2.P1IF8 16 RF general interrupts RF 83h IEN2.RFIE S1CON.RFIF8 17 Watchdog overflow in timer mode WDT 8Bh IEN2.WDTIE IRCON2.WDTIF 7 HW cleared when Interrupt Service Routine is called. 8 Additional IRQ mask and IRQ flag bits exists. Not Recommended for New Designs CC2430 8051 CPU : Interrupts CC2430 revision E Data Sheet (rev. 2.1) SWRS036F Page 51 of 211 polling sequence Figure 10: CC2430 interrupt overview Not Recommended for New Designs CC2430 8051 CPU : Interrupts CC2430 revision E Data Sheet (rev. 2.1) SWRS036F Page 52 of 211 IEN0 (0xA8) – Interrupt Enable 0 Bit Name Reset R/W Description Disables all interrupts. 0 No interrupt will be acknowledged 7 EA 0 R/W 1 Each interrupt source is individually enabled or disabled by setting its corresponding enable bit 6 - 0 R0 Not used. Read as 0 STIE – Sleep Timer interrupt enable 0 Interrupt disabled 5 STIE 0 R/W 1 Interrupt enabled ENCIE – AES encryption/decryption interrupt enable 0 Interrupt disabled 4 ENCIE 0 R/W 1 Interrupt enabled URX1IE – USART1 RX interrupt enable 0 Interrupt disabled 3 URX1IE 0 R/W 1 Interrupt enabled URX0IE - USART0 RX interrupt enable 0 Interrupt disabled 2 URX0IE 0 R/W 1 Interrupt enabled ADCIE – ADC interrupt enable 0 Interrupt disabled 1 ADCIE 0 R/W 1 Interrupt enabled RFERRIE – RF TX/RX FIFO interrupt enable 0 Interrupt disabled 0 RFERRIE 0 R/W 1 Interrupt enabled Not Recommended for New Designs CC2430 8051 CPU : Interrupts CC2430 revision E Data Sheet (rev. 2.1) SWRS036F Page 53 of 211 IEN1 (0xB8) – Interrupt Enable 1 Bit Name Reset R/W Description 7:6 - 00 R0 Not used. Read as 0 P0IE – Port 0 interrupt enable 0 Interrupt disabled 5 P0IE 0 R/W 1 Interrupt enabled T4IE - Timer 4 interrupt enable 0 Interrupt disabled 4 T4IE 0 R/W 1 Interrupt enabled T3IE - Timer 3 interrupt enable 0 Interrupt disabled 3 T3IE 0 R/W 1 Interrupt enabled T2IE – Timer 2 interrupt enable 0 Interrupt disabled 2 T2IE 0 R/W 1 Interrupt enabled T1IE – Timer 1 interrupt enable 0 Interrupt disabled 1 T1IE 0 R/W 1 Interrupt enabled DMAIE – DMA transfer interrupt enable 0 Interrupt disabled 0 DMAIE 0 R/W 1 Interrupt enabled IEN2 (0x9A) – Interrupt Enable 2 Bit Name Reset R/W Description 7:6 - 00 R0 Not used. Read as 0 WDTIE – Watchdog timer interrupt enable 0 Interrupt disabled 5 WDTIE 0 R/W 1 Interrupt enabled P1IE– Port 1 interrupt enable 0 Interrupt disabled 4 P1IE 0 R/W 1 Interrupt enabled UTX1IE – USART1 TX interrupt enable 0 Interrupt disabled 3 UTX1IE 0 R/W 1 Interrupt enabled UTX0IE - USART0 TX interrupt enable 0 Interrupt disabled 2 UTX0IE 0 R/W 1 Interrupt enabled P2IE – Port 2 interrupt enable 0 Interrupt disabled 1 P2IE 0 R/W 1 Interrupt enabled RFIE – RF general interrupt enable 0 Interrupt disabled 0 RFIE 0 R/W 1 Interrupt enabled Not Recommended for New Designs CC2430 8051 CPU : Interrupts CC2430 Data Sheet (rev. 2.1) SWRS036F Page 54 of 211 11.5.2 Interrupt Processing When an interrupt occurs, the CPU will vector to the interrupt vector address as shown in Table 30. Once an interrupt service has begun, it can be interrupted only by a higher priority interrupt. The interrupt service is terminated by a RETI (return from interrupt instruction). When an RETI is performed, the CPU will return to the instruction that would have been next when the interrupt occurred. When the interrupt condition occurs, the CPU will also indicate this by setting an interrupt flag bit in the interrupt flag registers. This bit is set regardless of whether the interrupt is enabled or disabled. If the interrupt is enabled when an interrupt flag is set, then on the next instruction cycle the interrupt will be acknowledged by hardware forcing an LCALL to the appropriate vector address. Interrupt response will require a varying amount of time depending on the state of the CPU when the interrupt occurs. If the CPU is performing an interrupt service with equal or greater priority, the new interrupt will be pending until it becomes the interrupt with highest priority. In other cases, the response time depends on current instruction. The fastest possible response to an interrupt is seven machine cycles. This includes one machine cycle for detecting the interrupt and six cycles to perform the LCALL. TCON (0x88) – Interrupt Flags Bit Name Reset R/W Description URX1IF – USART1 RX interrupt flag. Set to 1 when USART1 RX interrupt occurs and cleared when CPU vectors to the interrupt service routine. 0 Interrupt not pending 7 URX1IF 0 R/W H0 1 Interrupt pending 6 - 0 R/W Not used ADCIF – ADC interrupt flag. Set to 1 when ADC interrupt occurs and cleared when CPU vectors to the interrupt service routine. 0 Interrupt not pending 5 ADCIF 0 R/W H0 1 Interrupt pending 4 - 0 R/W Not used URX0IF – USART0 RX interrupt flag. Set to 1 when USART0 interrupt occurs and cleared when CPU vectors to the interrupt service routine. 0 Interrupt not pending 3 URX0IF 0 R/W H0 1 Interrupt pending 2 IT1 1 R/W Reserved. Must always be set to 1. Setting a zero will enable low level interrupt detection, which is almost always the case (one-shot when interrupt request is initiated) RFERRIF – RF TX/RX FIFO interrupt flag. Set to 1 when RFERR interrupt occurs and cleared when CPU vectors to the interrupt service routine. 0 Interrupt not pending 1 RFERRIF 0 R/W H0 1 Interrupt pending 0 IT0 1 R/W Reserved. Must always be set to 1. Setting a zero will enable low level interrupt detection, which is almost always the case (one-shot when interrupt request is initiated) Not Recommended for New Designs CC2430 8051 CPU : Interrupts CC2430 Data Sheet (rev. 2.1) SWRS036F Page 55 of 211 S0CON (0x98) – Interrupt Flags 2 Bit Name Reset R/W Description 7:2 - 0x00 R/W Not used ENCIF – AES interrupt. ENC has two interrupt flags, ENCIF_1 and ENCIF_0. Setting one of these flags will request interrupt service. Both flags are set when the AES co-processor requests the interrupt. 0 Interrupt not pending 1 ENCIF_1 0 R/W 1 Interrupt pending ENCIF – AES interrupt. ENC has two interrupt flags, ENCIF_1 and ENCIF_0. Setting one of these flags will request interrupt service. Both flags are set when the AES co-processor requests the interrupt. 0 Interrupt not pending 0 ENCIF_0 0 R/W 1 Interrupt pending S1CON (0x9B) – Interrupt Flags 3 Bit Name Reset R/W Description 7:2 - 0x00 R/W Not used RFIF – RF general interrupt. RF has two interrupt flags, RFIF_1 and RFIF_0. Setting one of these flags will request interrupt service. Both flags are set when the radio requests the interrupt. 0 Interrupt not pending 1 RFIF_1 0 R/W 1 Interrupt pending RFIF – RF general interrupt. RF has two interrupt flags, RFIF_1 and RFIF_0. Setting one of these flags will request interrupt service. Both flags are set when the radio requests the interrupt. 0 Interrupt not pending 0 RFIF_0 0 R/W 1 Interrupt pending Not Recommended for New Designs CC2430 8051 CPU : Interrupts CC2430 Data Sheet (rev. 2.1) SWRS036F Page 56 of 211 IRCON (0xC0) – Interrupt Flags 4 Bit Name Reset R/W Description STIF – Sleep timer interrupt flag 0 Interrupt not pending 7 STIF 0 R/W 1 Interrupt pending 6 - 0 R/W Must be written 0. Writing a 1 will always enable interrupt source. P0IF – Port 0 interrupt flag 0 Interrupt not pending 5 P0IF 0 R/W 1 Interrupt pending T4IF – Timer 4 interrupt flag. Set to 1 when Timer 4 interrupt occurs and cleared when CPU vectors to the interrupt service routine. 0 Interrupt not pending 4 T4IF 0 R/W H0 1 Interrupt pending T3IF – Timer 3 interrupt flag. Set to 1 when Timer 3 interrupt occurs and cleared when CPU vectors to the interrupt service routine. 0 Interrupt not pending 3 T3IF 0 R/W H0 1 Interrupt pending T2IF – Timer 2 interrupt flag. Set to 1 when Timer 2 interrupt occurs and cleared when CPU vectors to the interrupt service routine. 0 Interrupt not pending 2 T2IF 0 R/W H0 1 Interrupt pending T1IF – Timer 1 interrupt flag. Set to 1 when Timer 1 interrupt occurs and cleared when CPU vectors to the interrupt service routine. 0 Interrupt not pending 1 T1IF 0 R/W H0 1 Interrupt pending DMAIF – DMA complete interrupt flag. 0 Interrupt not pending 0 DMAIF 0 R/W 1 Interrupt pending Not Recommended for New Designs CC2430 8051 CPU : Interrupts CC2430 Data Sheet (rev. 2.1) SWRS036F Page 57 of 211 IRCON2 (0xE8) – Interrupt Flags 5 Bit Name Reset R/W Description 7:5 - 00 R/W Not used WDTIF – Watchdog timer interrupt flag. 0 Interrupt not pending 4 WDTIF 0 R/W 1 Interrupt pending P1IF – Port 1 interrupt flag. 0 Interrupt not pending 3 P1IF 0 R/W 1 Interrupt pending UTX1IF – USART1 TX interrupt flag. 0 Interrupt not pending 2 UTX1IF 0 R/W 1 Interrupt pending UTX0IF – USART0 TX interrupt flag. 0 Interrupt not pending 1 UTX0IF 0 R/W 1 Interrupt pending P2IF – Port2 interrupt flag. 0 Interrupt not pending 0 P2IF 0 R/W 1 Interrupt pending 11.5.3 Interrupt Priority The interrupts are grouped into six interrupt priority groups and the priority for each group is set by the registers IP0 and IP1. In order to assign a higher priority to an interrupt, i.e. to its interrupt group, the corresponding bits in IP0 and IP1 must be set as shown in Table 31 on page 58. The interrupt priority groups with assigned interrupt sources are shown in Table 32. Each group is assigned one of four priority levels. While an interrupt service request is in progress, it cannot be interrupted by a lower or same level interrupt. In the case when interrupt requests of the same priority level are received simultaneously, the polling sequence shown in Table 33 is used to resolve the priority of each request. Note that the polling sequence in Figure 10 is the algorithm fond in Table 33, not that polling is among the IP bits as listed in the figure. IP1 (0xB9) – Interrupt Priority 1 Bit Name Reset R/W Description 7:6 - 00 R/W Not used. 5 IP1_IPG5 0 R/W Interrupt group 5, priority control bit 1, refer to Table 32: Interrupt Priority Groups 4 IP1_IPG4 0 R/W Interrupt group 4, priority control bit 1, refer to Table 32: Interrupt Priority Groups 3 IP1_IPG3 0 R/W Interrupt group 3, priority control bit 1, refer to Table 32: Interrupt Priority Groups 2 IP1_IPG2 0 R/W Interrupt group 2, priority control bit 1, refer to Table 32: Interrupt Priority Groups 1 IP1_IPG1 0 R/W Interrupt group 1, priority control bit 1, refer to Table 32: Interrupt Priority Groups 0 IP1_IPG0 0 R/W Interrupt group 0, priority control bit 1, refer to Table 32: Interrupt Priority Groups Not Recommended for New Designs CC2430 8051 CPU : Interrupts CC2430 Data Sheet (rev. 2.1) SWRS036F Page 58 of 211 IP0 (0xA9) – Interrupt Priority 0 Bit Name Reset R/W Description 7:6 - 00 R/W Not used. 5 IP0_IPG5 0 R/W Interrupt group 5, priority control bit 0, refer to Table 32: Interrupt Priority Groups 4 IP0_IPG4 0 R/W Interrupt group 4, priority control bit 0, refer to Table 32: Interrupt Priority Groups 3 IP0_IPG3 0 R/W Interrupt group 3, priority control bit 0, refer to Table 32: Interrupt Priority Groups 2 IP0_IPG2 0 R/W Interrupt group 2, priority control bit 0, refer to Table 32: Interrupt Priority Groups 1 IP0_IPG1 0 R/W Interrupt group 1, priority control bit 0, refer to Table 32: Interrupt Priority Groups 0 IP0_IPG0 0 R/W Interrupt group 0, priority control bit 0, refer to Table 32: Interrupt Priority Groups Table 31: Priority Level Setting IP1_x IP0_x Priority Level 0 0 0 – lowest 0 1 1 1 0 2 1 1 3 – highest Table 32: Interrupt Priority Groups Group Interrupts IPG0 RFERR RF DMA IPG1 ADC T1 P2INT IPG2 URX0 T2 UTX0 IPG3 URX1 T3 UTX1 IPG4 ENC T4 P1INT IPG5 ST P0INT WDT Not Recommended for New Designs CC2430 8051 CPU : Interrupts CC2430 Data Sheet (rev. 2.1) SWRS036F Page 59 of 211 Table 33: Interrupt Polling Sequence Interrupt number Interrupt name 0 RFERR 16 RF 8 DMA 1 ADC 9 T1 2 URX0 10 T2 3 URX1 11 T3 4 ENC 12 T4 5 ST 13 P0INT 6 P2INT 7 UTX0 14 UTX1 15 P1INT 17 WDT Polling sequence Not Recommended for New Designs CC2430 Debug Interface : Debug Mode CC2430 Data Sheet (rev. 2.1) SWRS036F Page 60 of 211 12 Debug Interface The CC2430 includes a debug interface that provides a two-wire interface to an on-chip debug module. The debug interface allows programming of the on-chip flash and it provides access to memory and registers contents and debug features such as breakpoints, single-stepping and register modification. The debug interface uses the I/O pins P2_1 as Debug Data and P2_2 as Debug Clock during Debug mode. These I/O pins can be used as general purpose I/O only while the device is not in Debug mode. Thus the debug interface does not interfere with any peripheral I/O pins. 12.1 Debug Mode Debug mode is entered by forcing two rising edge transitions on pin P2_2 (Debug Clock) while the RESET_N input is held low. While in Debug mode pin P2_1 is the Debug Data bi-directional pin and P2_2 is the Debug Clock input pin. 12.2 Debug Communication The debug interface uses an SPI-like two-wire interface consisting of the P2_1 (Debug Data) and P2_2 (Debug Clock) pins. Data is driven on the bi-directional Debug Data pin at the positive edge of Debug Clock and data is sampled on the negative edge of this clock. Debug commands are sent by an external host and consist of 1 to 4 output bytes (including command byte) from the host and an optional input byte read by the host. Command and data is transferred with MSB first. Figure 11 shows a timing diagram of data on the debug interface. The first byte of the debug command is a command byte and is encoded as follows: • bits 7 to 3 : instruction code • bits 2 : return input byte to host when high • bits 1 to 0 : number of bytes from host following command byte Figure 11: Debug interface timing diagram 12.3 Debug Commands The debug commands are shown in Table 35. Some of the debug commands are described in further detail in the following sub-sections. 12.4 Debug Lock Bit For software and/or access protection a set of lock bits can be written. This information is contained in the Flash Information page (section 11.2.3 under Flash memory), at location 0x000 and the flash information page can only be accessed through the debug interface. There are three kinds of lock protect bits as described in this section. The LSIZE[2:0] lock protect bits are used to define a section of the flash memory which is write protected. The size of the write protected area can be set by the LSIZE[2:0] lock bits in sizes of eight steps from 0 to 128 KB (all starting from top of flash memory and defining a section below this). The second type of lock protect bits is BBLOCK, which is used to lock the boot sector page (page 0 ranging from address 0 to 0x07FF). When BBLOCK is set to 0, the boot sector page is locked. The third type of lock protect bit is DBGLOCK, which is used to disable hardware debug support through the Debug Interface. When DBGLOCK is set to 0, almost all debug commands are disabled. When the Debug Lock bit, DBGLOCK is set to 0 (see Table 34) all debug commands except CHIP_ERASE, READ_STATUS and GET_CHIP_ID are disabled and will not function. The status of the Debug Lock bit can be read using the READ_STATUS command (see section 12.4.2). Not Recommended for New Designs CC2430 Debug Interface : Debug Lock Bit CC2430 Data Sheet (rev. 2.1) SWRS036F Page 61 of 211 Note that after the Debug Lock bit has changed due to a flash information page write or a flash mass erase, a HALT, RESUME, DEBUG_INSTR or STEP command must be executed so that the Debug Lock value returned by READ_STATUS shows the updated Debug Lock value. For example a dummy NOP DEBUG_INSTR command could be executed. After a device reset, the Debug Lock bit will be updated. Alternatively the chip must be reset and debug mode reentered. The CHIP_ERASE command is used to clear the Debug Lock bit. The lock protect bits are written as a normal flash write to FWDATA (see section 13.3.2), but the Debug Interface needs to select the Flash Information Page first instead of the Flash Main Pages which is the default setting. The Information Page is selected through the Debug Configuration which is written through the Debug Interface only. Refer to section 12.4.1 and Table 36 for details on how the Flash Information Page is selected using the Debug Interface. Table 34 defines the byte containing the flash lock protection bits. Note that this is not an SFR register, but instead the byte stored at location 0x000 in Flash Information Page. Table 34: Flash Lock Protection Bits Definition Bit Name Description 7:5 - Reserved, write as 0 Boot Block Lock 0 Page 0 is write protected 4 BBLOCK 1 Page 0 is writeable, unless LSIZE is 000 Lock Size. Sets the size of the upper Flash area which is writeprotected. Byte sizes and page number are listed below 000 128k bytes (All pages) CC2430-F128 only 001 64k bytes (page 32 - 63) CC2430-F64/128 only 010 32k bytes (page 48 - 63) 011 16k bytes (page 56 - 63) 100 8k bytes (page 60 - 63) 101 4k bytes (page 62 - 63) 110 2k bytes (page 63) 3:1 LSIZE[2:0] 111 0k bytes (no pages) Debug lock bit 0 Disable debug commands 0 DBGLOCK 1 Enable debug commands 12.4.1 Debug Configuration The commands WR_CONFIG and RD_CONFIG are used to access the debug configuration data byte. The format and description of this configuration data is shown in Table 36. 12.4.2 Debug Status A Debug status byte is read using the READ_STATUS command. The format and description of this debug status is shown in Table 37. The READ_STATUS command is used e.g. for polling the status of flash chip erase after a CHIP_ERASE command or oscillator stable status required for debug commands HALT, RESUME, DEBUG_INSTR, STEP_REPLACE and STEP_INSTR. Not Recommended for New Designs CC2430 Debug Interface : Debug Lock Bit CC2430 Data Sheet (rev. 2.1) SWRS036F Page 62 of 211 Table 35: Debug Commands Command Instruction code Description CHIP_ERASE 0001 0000 Perform flash chip erase (mass erase) and clear lock bits. If any other command, except READ_STATUS, is issued, then the use of CHIP_ERASE is disabled. WR_CONFIG 0001 1001 Write configuration data. Refer to Table 36 for details RD_CONFIG 0010 0100 Read configuration data. Returns value set by WR_CONFIG command. GET_PC 0010 1000 Return value of 16-bit program counter. Returns 2 bytes regardless of value of bit 2 in instruction code READ_STATUS 0011 0000 Read status byte. Refer to Table 37 SET_HW_BRKPNT 0011 1111 Set hardware breakpoint HALT 0100 0100 Halt CPU operation RESUME 0100 1100 Resume CPU operation. The CPU must be in halted state for this command to be run. DEBUG_INSTR 0101 01yy Run debug instruction. The supplied instruction will be executed by the CPU without incrementing the program counter. The CPU must be in halted state for this command to be run. Note that yy is number of bytes following the command byte, i.e. how many bytes the CPU instruction has (see Table 28) STEP_INSTR 0101 1100 Step CPU instruction. The CPU will execute the next instruction from program memory and increment the program counter after execution. The CPU must be in halted state for this command to be run. STEP_REPLACE 0110 01yy Step and replace CPU instruction. The supplied instruction will be executed by the CPU instead of the next instruction in program memory. The program counter will be incremented after execution. The CPU must be in halted state for this command to be run. Note that yy is number of bytes following the command byte, i.e. how many bytes the CPU instruction has (see Table 28) GET_CHIP_ID 0110 1000 Return value of 16-bit chip ID and version number. Returns 2 bytes regardless of value of bit 2 of instruction code Not Recommended for New Designs CC2430 Debug Interface : Debug Lock Bit CC2430 Data Sheet (rev. 2.1) SWRS036F Page 63 of 211 Table 36: Debug Configuration Bit Name Description 7-4 - Not used, must be set to zero. Disable timers. Disable timer operation. This overrides the TIMER_SUSPEND bit and its function. 0 Do not disable timers 3 TIMERS_OFF 1 Disable timers DMA pause 0 Enable DMA transfers 2 DMA_PAUSE 1 Pause all DMA transfers Suspend timers. Timer operation is suspended for debug instructions and if a step instruction is a branch. If not suspended these instructions would result an extra timer count during the clock cycle in which the branch is executed 0 Do not suspend timers 1 TIMER_SUSPEND 1 Suspend timers Select flash information page (2KB lowest part of flash) 0 Select flash main page (32, 64, or 128 KB) 0 SEL_FLASH_INFO_PAGE 1 Select flash information page (2KB) Table 37: Debug Status Bit Name Description Flash chip erase done 0 Chip erase in progress 7 CHIP_ERASE_DONE 1 Chip erase done PCON idle 0 CPU is running 6 PCON_IDLE 1 CPU is idle (clock gated) CPU halted 0 CPU running 5 CPU_HALTED 1 CPU halted Power Mode 0 0 Power Mode 1-3 selected 4 POWER_MODE_0 1 Power Mode 0 selected Halt status. Returns cause of last CPU halt 0 CPU was halted by HALT debug command 3 HALT_STATUS 1 CPU was halted by hardware breakpoint Debug locked. Returns value of DBGLOCK bit 0 Debug interface is not locked 2 DEBUG_LOCKED 1 Debug interface is locked Oscillators stable. This bit represents the status of the SLEEP.XSOC_STB and SLEEP.HFRC_STB register bits. 0 Oscillators not stable 1 OSCILLATOR_STABLE 1 Oscillators stable Stack overflow. This bit indicates when the CPU writes to DATA memory space at address 0xFF which is possibly a stack overflow 0 No stack overflow 0 STACK_OVERFLOW 1 Stack overflow 12.4.3 Hardware Breakpoints The debug command SET_HW_BRKPNT is used to set a hardware breakpoint. The CC2430 supports up to four hardware breakpoints. When a hardware breakpoint is enabled it will compare the CPU address bus with the breakpoint. When a match occurs, the CPU is halted. When issuing the SET_HW_BRKPNT, the external host must supply three data bytes that define the hardware breakpoint. The hardware breakpoint itself consists of 18 bits while three bits are used for control purposes. The format of the three data bytes for the SET_HW_BRKPNT command is as follows. Not Recommended for New Designs CC2430 Debug Interface : Debug interface and Power Modes CC2430 Data Sheet (rev. 2.1) SWRS036F Page 64 of 211 The first data byte consists of the following: • bits 7-5 : unused • bits 4-3 : breakpoint number; 0-3 • bit 2 : 1=enable, 0=disable • bits 1-0 : Memory bank bits. Bits 17-16 of hardware breakpoint. The second data byte consists of bits 15-8 of the hardware breakpoint. The third data byte consists of bits 7-0 of the hardware breakpoint. Thus the second and third data byte sets the CPU CODE address to stop execution at. 12.4.4 Flash Programming Programming of the on-chip flash is performed via the debug interface. The external host must initially send instructions using the DEBUG_INSTR debug command to perform the flash programming with the Flash Controller as described in section 13.3 on page 71. 12.5 Debug interface and Power Modes The debug interface can be used in all power modes, but with limitations. When enabling a power mode the system will act as normally with the exeption that the digital voltage regulator is not turned off, thus power consumption when debugging power modes is higher than expected. The limitation when debugging power modes 2 and 3 is that the chip will stop operating when woke up, thus a HALT and a RESUME command is needed to continue the SW execution. Pleas note that PM1 works as expected, also after chip is woke up. Not Recommended for New Designs CC2430 Peripherals : Power Management and clocks CC2430 Data Sheet (rev. 2.1) SWRS036F Page 65 of 211 13 Peripherals In the following sub-sections each CC2430 peripheral is described in detail. 13.1 Power Management and clocks This section describes the Power Management Controller. The Power Management Controller controls the use of power modes and clock control to achieve lowpower operation. 13.1.1 Power Management Introduction The CC2430 uses different operating modes, or power modes, to allow low-power operation. Ultra-low-power operation is obtained by turning off power supply to modules to avoid static (leakage) power consumption and also by using clock gating and turning off oscillators to reduce dynamic power consumption. The various operating modes are enumerated and are to be designated as power modes 0, 1, 2, and 3 (PM0..3). The CC2430 four major power modes are called PM0, PM1, PM2 and PM3. PM0 is the active mode while PM3 has the lowest power consumption. The power modes impact on system operation is shown in Table 38, together with voltage regulator and oscillator options. Table 38: Power Modes Power Mode Highfrequency oscillator Low- frequency oscillator Voltage regulator (digital) Configuration A None B 32 MHz XOSC C 16 MHz RCOSC A None B 32.753 kHz RCOSC C 32.768 kHz XOSC PM0 B, C B or C ON PM1 A B or C ON PM2 A B or C OFF PM3 A A OFF PM0 : The full functional mode. The voltage regulator to the digital core is on and either the 16 MHz RC oscillator or the 32 MHz crystal oscillator or both are running. Either the 32.753 kHz RC oscillator or the 32.768 kHz crystal oscillator is running. PM1 : The voltage regulator to the digital part is on. Neither the 32 MHz crystal oscillator nor the 16 MHz RC oscillator are running. Either the 32.753 kHz RC oscillator or the 32.768 kHz crystal oscillator is running. The system will go to PM0 on reset or an external interrupt or when the sleep timer expires. PM2 : The voltage regulator to the digital core is turned off. Neither the 32 MHz crystal oscillator nor the 16 MHz RC oscillator are running. Either the 32.768 kHz RC oscillator or the 32.753 kHz crystal oscillator is running. The system will go to PM0 on reset or an external interrupt or when the sleep timer expires. PM3 : The voltage regulator to the digital core is turned off. None of the oscillators are running. The system will go to PM0 on reset or an external interrupt. Note:The voltage regulator above refers to the digital regulator. The analog voltage regulator must be disabled separately through the RF register RFPWR. 13.1.1.1 PM0 PM0 is the full functional mode of operation where the CPU, peripherals and RF transceiver are active. The digital voltage regulator is turned on. This is also refered to as active mode. PM0 is used for normal operation. It should be noted that by enabling the PCON.IDLE bit while in PM0 (SLEEP.MODE=0x00) the CPU core stops from operating. All other peripherals will function as normal and CPU core will be waked up by any enabled interrupt. Not Recommended for New Designs CC2430 Peripherals : Power Management and clocks CC2430 Data Sheet (rev. 2.1) SWRS036F Page 66 of 211 13.1.1.2 PM1 In PM1, the high-frequency oscillators are powered down (32MHz XOSC and 16MHz RC OSC). The voltage regulator and the enabled 32 kHz oscillator is on. When PM1 is entered, a power down sequence is run. When the device is taken out of PM1 to PM0, the highfrequency oscillators are started. The device will run on the 16MHz RC oscillator until 32MHz is selected as source by SW. PM1 is used when the expected time until a wakeup event is relatively short (less than 3 ms) since PM1 uses a fast power down/up sequence. 13.1.1.3 PM2 PM2 has the second lowest power consumption. In PM2 the power-on reset, external interrupts, 32.768 kHz oscillator and sleep timer peripherals are active. I/O pins retain the I/O mode and output value set before entering PM2. All other internal circuits are powered down. The voltage regulator is also turned off. When PM2 is entered, a power down sequence is run. PM2 is typically entered when using the sleep timer as the wakeup event, and also combined with external interrupts. PM2 should typically be choosen, compared to PM1, when sleep times exeeds 3 ms. Using less sleep time will not reduce system power consumption compared to using PM1. 13.1.1.4 PM3 PM3 is used to achieve the operating mode with the lowest power consumption. In PM3 all internal circuits that are powered from the voltage regulator are turned off (basically all digital modules, the only exeption are interrupt detection and POR level sensing). The internal voltage regulator and all oscillators are also turned off. Reset (POR or external) and external I/O port interrupts are the only functions that are operating in this mode. I/O pins retain the I/O mode and output value set before entering PM3. A reset condition or an enabled external IO interrupt event will wake the device up and place it into PM0 (an external interrupt will start from where it entered PM3, while a reset returns to start of program execution). The content of RAM and registers is partially preserved in this mode (see section 13.1.6). PM3 uses the same power down/up sequence as PM2. PM3 is used to achieve ultra low power consumption when waiting for an external event. 13.1.2 Power Management Control The required power mode is selected by the MODE bits in the SLEEP control register. Setting the SFR register PCON.IDLE bit after setting the MODE bits, enters the selected sleep mode. An enabled interrupt from port pins or sleep timer or a power-on reset will wake the device from other power modes and bring it into PM0 by resetting the MODE bits. 13.1.3 Power Management Registers This section describes the Power Management registers. All register bits retain their previous values when entering PM2 or PM3 unless otherwise stated. Not Recommended for New Designs CC2430 Peripherals : Power Management and clocks CC2430 Data Sheet (rev. 2.1) SWRS036F Page 67 of 211 PCON (0x87) – Power Mode Control Bit Name Reset R/W Description 7:2 - 0x00 R/W Not used. 1 - 0 R0 Not used, always read as 0. 0 IDLE 0 R0/W H0 Power mode control. Writing a 1 to this bit forces CC2430 to enter the power mode set by SLEEP.MODE (note that MODE = 0x00 will stop CPU core, no peripherals, activity when this bit is enabled). This bit is always read as 0 All enabled interrupts will clear this bit when active and CC2430 will reenter PM0. SLEEP (0xBE) – Sleep Mode Control Bit Name Reset R/W Description 7 OSC32K_CALDIS 0 R/W Disable 32 kHz RC oscillator calibration 0 – 32 kHz RC oscillator calibration is enabled 1 – 32 kHz RC oscillator calibration is disabled. The setting of this bit to 1 does not take effect until high-frequency RC oscillator is chosen as source for system clock, i.e. CLKCON.OSC set to 1. Note: this bit is not retained in PM2 and PM3. After re-entry to PM0 from PM2 or PM3 this bit will be at the reset value 0 6 XOSC_STB 0 R XOSC stable status: 0 – XOSC is not powered up or not yet stable 1 – XOSC is powered up and stable. Note that an additionl wait time of 64 μs is needed after this bit has been set until true stable state is reached. 5 HFRC_STB 0 R High-frequency RC oscillator (HF RCOSC) stable status: 0 – HF RCOSC is not powered up or not yet stable 1 – HF RCOSC is powered up and stable 4:3 RST[1:0] XX R Status bit indicating the cause of the last reset. If there are multiple resets, the register will only contain the last event. 00 – Power-on reset 01 – External reset 10 – Watchdog timer reset 2 OSC_PD 1 R/W H0 High-frequency (32 MHz) crystal oscillator and High-frequency (16 MHz) RC oscillator power down setting. If there is a calibration in progress and the CPU attempts to set this bit, the bit will be updated at the end of calibration: 0 – Both oscillators powered up 1 – Oscillator not selected by CLKCON.OSC bit powered down 1:0 MODE[1:0] 00 R/W Power mode setting: 00 – Power mode 0 01 – Power mode 1 10 – Power mode 2 11 – Power mode 3 Not Recommended for New Designs CC2430 Peripherals : Power Management and clocks CC2430 Data Sheet (rev. 2.1) SWRS036F Page 68 of 211 Figure 12: Clock System Overview 13.1.4 Oscillators and clocks The CC2430 has one internal system clock. The source for the system clock can be either a 16 MHz RC oscillator or a 32 MHz crystal oscillator. Clock control is performed using the CLKCON SFR register. The system clock also feeds all 8051 peripherals (as described in section 6). There is also one 32 kHz clock source that can either be a RC oscillator or a crystal oscillator, also controlled by the CLKCON register. The choice of oscillator allows a trade-off between high-accuracy in the case of the crystal oscillator and low power consumption when the RC oscillator is used. Note that operation of the RF transceiver requires that the 32 MHz crystal oscillator is used. 13.1.4.1 Oscillators Figure 12 gives an overview of the clock system with available clock sources. Two high frequency oscillators are present in the device: Not Recommended for New Designs CC2430 Peripherals : Power Management and clocks CC2430 Data Sheet (rev. 2.1) SWRS036F Page 69 of 211 • 32 MHz crystal oscillator. • 16 MHz RC oscillator. The 32 MHz crystal oscillator startup time may be too long for some applications, therefore the device can run on the 16 MHz RC oscillator until crystal oscillator is stable. The 16 MHz RC oscillator consumes less power than the crystal oscillator, but since it is not as accurate as the crystal oscillator it can not be used for RF transceiver operation. Two low frequency oscillators are present in the device: • 32 kHz crystal oscillator • 32 kHz RC oscillator The 32 kHz crystal oscillator is designed to operate at 32.768 kHz and provide a stable clock signal for systems requiring time accuracy. The 32 kHz RC oscillator run at 32.753 kHz when calibrated. The calibration can only take place when 32 MHz crystal oscillator is enabled, and this calibration can be disabled by enabling the SLEEP.OSC32K_CALDIS bit. The 32 kHz RC oscillator should be used to reduce cost and power consumption compared to the 32 kHz crystal oscillator solution. The two low frequency oscillators can not be operated simultaneously. 13.1.4.2 System clock The system clock is derived from the selected system clock source, which is the 32 MHz crystal oscillator or the 16 MHz RC oscillator. The CLKCON.OSC bit selects the source of the system clock. Note that to use the RF transceiver the 32 MHz crystal oscillator must be selected and stable. Note that changing the CLKCON.OSC bit does not happen instantaneously. This is caused by the requirement to have stable clocks prior to actually changing the clock source. Also note that CLKCON.CLKSPD bit reflect the frequency of the system clock and thus is a mirror of the CLKCON.OSC bit. When the SLEEP.XOSC_STB is 1, the 32 MHz crystal oscillator is reported stable by the system. This may however not be the case and a safety time of additional 64 μs should be used prior to selecting 32 MHz clock as source for the system clock. Failure to do so may lead to system crash. E.g. a loop of CPU NOP instructions should be used to suspend further system operation prior to selecting XOSC as clock source. The oscillator not selected as the system clock source, will be set in power-down mode by setting SLEEP.OSC_PD to 1 (the default state). Thus the 16MHz RC oscillator may be turned off when the 32 MHz crystal oscillator has been selected as system clock source and vice versa. When SLEEP.OSC_PD is 0, both oscillators are powered up and running. When the 32 MHz crystal oscillator is selected as system clock source and the 16 MHz RC oscillator is also powered up, the 16 MHz RC oscillator will be continuously calibrated to ensure clock stability over supply voltage and operating temperature. This calibration is not performed when the 16 MHz RC oscillator itself is chosen as system clock source. 13.1.4.3 32 kHz oscillators Two 32 kHz oscillators are present in the device as clock sources for the 32 kHz clock: • 32.768 kHz crystal oscillator • 32 kHz RC oscillator By default, after a reset, the 32 kHz RC oscillator is enabled and selected as the 32 kHz clock source. The RC oscillator consumes less power, but is less accurate than the 32.768 kHz crystal oscillator. Refer to Table 9 and Table 10 on page 15 for characteristics of these oscillators. The 32 kHz clock runs the Sleep Timer and Watchdog Timer and used as a strobe in Timer2 (MAC timer) for when to calculate Sleep Timer sleep time. Selecting which oscillator source to use as source for the 32 kHz is performed with the CLKCON.OSC32K register bit. The CLKCON.OSC32K register bit must only be changed while using the 16 MHz RC oscillator as the system clock source. When the 32 MHz crystal oscillator is selected and it is stable, i.e. SLEEP.XOSC_STB is 1, calibration of the 32 kHz RC oscillator is continuously performed and 32kHz clock is derived from 32 MHz clock. This calibration is not performed in other power modes than PM0. The result of the calibration is a RC clock running at 32.753 kHz. The 32 kHz RC oscillator calibration may take up to 2 ms to complete. When entering low power modes PM1 or PM2 an ongoing calibration must be completed before the low power mode is entered. In some applications this extra delay may be unacceptable and Not Recommended for New Designs CC2430 Peripherals : Power Management and clocks CC2430 Data Sheet (rev. 2.1) SWRS036F Page 70 of 211 therefore the calibration may be disabled by setting register bit SLEEP.OSC32K_CALDIS to 1. Note that any ongoing calibration will be completed when a 1 is written to SLEEP.OSC32K_CALDIS. 13.1.4.4 Oscillator and Clock Registers This section describes the Oscillator and Clock registers. All register bits retain their previous values when entering PM2 or PM3 unless otherwise stated. CLKCON (0xC6) – Clock Control Bit Name Reset R/W Description 7 OSC32K 1 R/W 32 kHz clock oscillator select. The 16 MHz high frequency RC oscillator must be selected as system clock source when this bit is to be changed. 0 – 32.768 kHz crystal oscillator 1 – 32 kHz RC oscillator Note: this bit is not retained in PM2 and PM3. After re-entry to PM0 from PM2 or PM3 this bit will be at the reset value 1. 6 OSC 1 R/W System clock oscillator select: 0 – 32 MHz crystal oscillator 1 – 16 MHz high frequency RC oscillator This setting will only take effect when the selected oscillator is powered up and stable. If the XOSC oscillator is not powered up, it should be enabled by SLEEP.OSC_PD bit prior to selecting it as souorce. Note that there is an additional wait time (64 μs) from SLEEP.XOSC_STB set until XOSC can be selected as source. If RC osc is to be the source and it is powered down, setting this bit will turn it on. 5:3 TICKSPD[2:0] 001 R/W Timer ticks output setting, can not be higher than system clock setting given by OSC bit setting 000 – 32 MHz 001 – 16 MHz 010 – 8 MHz 011 – 4 MHz 100 – 2 MHz 101 – 1 MHz 110 – 500 kHz 111 – 250 kHz 2:1 - 00 R Reserved. 0 CLKSPD 1 R Clock Speed. Indicates current system clock frequency. The value of this bit is set by the OSC bit setting 0 – 32 MHz 1 – 16 MHz This bit is updated when clock source selected with the OSC is stable 13.1.5 Timer Tick generation The power management controller generates a tick or enable signal for the peripheral timers, thus acting as a prescaler for the timers. This is a global clock division for Timer 1, Timer 3 and Timer 4. The tick speed is programmed from 0.25 MHz to 32 MHz in the CLKCON.TICKSPD register. It should be noted that TICKSPD must not be set to a higher frequency than system clock. 13.1.6 Data Retention In power modes PM2 and PM3, power is removed from most of the internal circuitry. However parts of SRAM will retain its contents. The content of internal registers is also retained in PM2 and PM3. The XDATA memory locations 0xF000- 0xFFFF (4096 bytes) retains data in PM2 and PM3. Please note the exception as given below. The XDATA memory locations 0xE000- 0xEFFF (4096 bytes) and the area 0xFD56- Not Recommended for New Designs CC2430 Peripherals : Reset CC2430 Data Sheet (rev. 2.1) SWRS036F Page 71 of 211 0xFEFF (426 bytes) will lose all data when PM2 or PM3 is entered. These locations will contain undefined data when PM0 is reentered. The registers which retain their contents are the CPU registers, peripheral registers and RF registers, unless otherwise specified for a given register bit field. Switching to the lowpower modes PM2 or PM3 appears transparent to software with the following exceptions: • The RF TXFIFO/RXFIFO contents are not retained when entering PM2 or PM3. • Watchdog timer 15-bit counter is reset to 0x0000 when entering PM2 or PM3. 13.2 Reset The CC2430 has four reset sources. The following events generate a reset: • Forcing RESET_N input pin low • A power-on reset condition • A brown-out reset condition • Watchdog timer reset condition The initial conditions after a reset are as follows: • I/O pins are configured as inputs with pullup • CPU program counter is loaded with 0x0000 and program execution starts at this address • All peripheral registers are initialized to their reset values (refer to register descriptions) • Watchdog timer is disabled 13.2.1 Power On Reset and Brown Out Detector The CC2430 includes a Power On Reset (POR) providing correct initialization during device power-on. Also includes is a Brown Out Detector (BOD) operating on the regulated 1.8V digital power supply only, The BOD will protect the memory contents during supply voltage variations which cause the regulated 1.8V power to drop below the minimum level required by flash memory and SRAM. When power is initially applied to the CC2430 the Power On Reset (POR) and Brown Out Detector (BOD) will hold the device in reset state until the supply voltage reaches above the Power On Reset and Brown Out voltages. Figure 13 shows the POR/BOD operation with the 1.8V (typical) regulated supply voltage together with the active low reset signals BOD_RESET and POR_RESET shown in the bottom of the figure (note that signals are not available, just for ilustaration of events). The cause of the last reset can read from the register bits SLEEP.RST. It should be noted that a BOD reset will be read as a POR reset. 0 1.8V REGULATED UNREGULATED POR RESET ASSERT FALLING VDD BOD RESET ASSERT POR RESET DEASSERT RISING VDD VOLT POR OUTPUT BOD RESET POR RESET X X X X X X Figure 13 : Power On Reset and Brown Out Detector Operation 13.3 Flash Controller The CC2430 contains 32, 64 or 128 KB flash memory for storage of program code. The flash memory is programmable from the user software and through the debug interface. See Table 22 on page 26 for flash memory size options. Not Recommended for New Designs CC2430 Peripherals : Flash Controller CC2430 Data Sheet (rev. 2.1) SWRS036F Page 72 of 211 The Flash Controller handles writing and erasing the embedded flash memory. The embedded flash memory consists of 64 pages of 2048 bytes each (CC2430F128). The flash controller has the following features: • 32-bit word programmable • Page erase • Lock bits for write-protection and code security • Flash page erase timing 20 ms • Flash chip erase timing 200 ms • Flash write timing (4 bytes) 20 μs • Auto power-down during low-frequency CPU clock read access 13.3.1 Flash Memory Organization The flash memory is divided into 64 flash pages consisting of 2 KB each (all versions have 2 KB pages, but the number of pages differs and here 128 KB is referred). A flash page is the smallest erasable unit in the memory, while a 32 bit word is the smallest writable unit that may be addressed through the flash controller. When performing write operations, the flash memory is word-addressable using a 15-bit address written to the address registers FADDRH:FADDRL. When performing page erase operations, the flash memory page to be erased is addressed through the register bits FADDRH[6:1]. Note the difference in addressing the flash memory; when accessed by the CPU to read code or data, the flash memory is byteaddressable. When accessed by the Flash Controller, the flash memory is wordaddressable, where a word consists of 32 bits. The next sections describe the procedures for flash write and flash page erase in detail. 13.3.2 Flash Write Data is written to the flash memory by using a program command initiated by writing the Flash Control register, FCTL. Flash write operations can program any number of words in the flash memory, single words or block of words in sequence starting at start address (set by FADDRH:FADDRL). Each location may be programmed twice before the next erase must take place, meanaing that a bit in a word can change from 1-1 or 1-0 but not 0-1 (writing a 0 to 1 will be ignored). This can be utilized by writing to different parts of the word with masking without having to do a page erase before writing. After a page erase or chip erase (through debug interface), the erased bits are set to 1. A write operation is performed using one out of two methods; • Through DMA transfer • Through CPU SFR access. The DMA transfer method is the preferred way to write to the flash memory. A write operation is initiated by writing a 1 to FCTL.WRITE. The start address for writing the 32-bit word is given by FADDRH:FADDRL. During each single write operation FCTL.SWBSY is set high. During a write operation, the byte written to the FWDATA register is forwarded to the flash memory. The flash memory is 32-bit word-programmable, meaning data is written as 32-bit words. The first byte written to FWDATA is the LSB of the 32-bit word. The actual writing to flash memory takes place each time four bytes have been written to FWDATA, meaning that all Flash writes must be 4 bytes aligned. The CPU will not be able to access the flash, e.g. to read program code, while a flash write operation is in progress. Therefore the program code executing the flash write must be executed from RAM, meaning that the program code must reside in the area 0xE000 to 0xFEFF in Unified CODE memory space. When a flash write operation is executed from RAM, the CPU continues to execute code from the next instruction after initiation of the flash write operation (FCTL.WRITE=1). The FCTL.SWBSY bit must be 0 before accessing the flash after a flash write, otherwise an access violation occurs. This also means that FCTL.SWBSY must be 0 before program execution can continue from a location in flash memory. Not Recommended for New Designs CC2430 Peripherals : Flash Controller CC2430 Data Sheet (rev. 2.1) SWRS036F Page 73 of 211 13.3.2.1 DMA Flash Write When using DMA write operations, the data to be written into flash is stored in the XDATA memory space (RAM or FLASH). A DMA channel is configured to read the data to be written from memory, source address, and write this data to the Flash Write Data register, FWDATA, fixed destination address, with the DMA trigger event FLASH (TRIG[4:0]=10010 in DMA configuration) enabled. Thus the Flash Controller will trigger a DMA transfer when the Flash Write Data register, FWDATA, is ready to receive new data. The DMA channel should be configured to perform single mode, byte size transfers with source address set to start of data block and destination address to fixed FWDATA (note that the block size, LEN in configuration data, must be 4 bytes aligned). High priority should also be ensured for the DMA channel so it is not interrupted in the write process. If interrupted for more than 40 μs the write will not take place as write bit, FCTL.WRITE, will be reset. When the DMA channel is armed, starting a flash write by setting FCTL.WRITE to 1 will trigger the first DMA transfer (DMA and Flash controller handles the reset of the transfer). Figure 15 shows an example of how a DMA channel is configured and how a DMA transfer is initiated to write a block of data from a location in XDATA to flash memory, assuming the code is executed from RAM (unified CODE). DMA Flash Write from XDATA memory When performing DMA flash write while executing code from within flash memory, the instruction that triggers the first DMA trigger event FLASH (TRIG[4:0]=10010 DMA in configuration) must be aligned on a 4-byte boundary. Figure 14 shows an example of code that correctly aligns the instruction for triggering DMA (Note that this code is IAR specific). ; Write flash and generate Flash DMA trigger ; Code is executed from flash memory ; #include “ioCC2430.h” MODULE flashDmaTrigger.s51 RSEG RCODE (2) PUBLIC halFlashDmaTrigger FUNCTION halFlashDmaTrigger, 0203H halFlashDmaTrigger: ORL FCTL, #0x02; RET; END; Figure 14: Flash write using DMA from flash Not Recommended for New Designs CC2430 Peripherals : Flash Controller CC2430 Data Sheet (rev. 2.1) SWRS036F Page 74 of 211 Figure 15: Flash write using DMA 13.3.2.2 CPU Flash Write The CPU can also write directly to the flash when executing program code from RAM using Unified CODE memory space. The CPU writes data to the Flash Write Data register, FWDATA. The flash memory is written each time four bytes have been written to FWDATA, and FCTL.WRITE bit set to 1. The CPU can poll the FCTL.SWBSY status to determine when the flash is ready for four more bytes to be written to FWDATA. Note that all flash writes needs to be four bytes aligned. Also note that there exist a timeout periode for writing to one flash word, thus writing all four bytes to the FWDATA register has to end within 40 μs after FCTL.SWBSY went low in repeated writes, or after FCTL.WRITE set for first time write. The FCTL.BUSY=0 flag will indicate if the time out happened or not. If FCTL.BUSY= 0 the write ended and one have to start over again by enabling the FCTL.WRITE bit. The address is set for word to write to, but FWDATA has to be updated again with the 4 bytes that casuse the time out to happen. Performing CPU flash write The steps required to start a CPU flash write operation are shown in Figure 16 on page 75. Note that code must be run from RAM in unified CODE memory space. Setup DMA channel: SRCADDR= DESTADDRR=FWDATA VLEN=0 LEN= WORDSIZE=byte TMODE=single mode TRIG=FLASH SRCINC=yes DESTINC=no IRQMASK=yes M8=0 PRIORITY=high Arm DMA Channel Start flash write Setup flash address Not Recommended for New Designs CC2430 Peripherals : Flash Controller CC2430 Data Sheet (rev. 2.1) SWRS036F Page 75 of 211 Figure 16: Performing CPU Flash write 13.3.3 Flash Page Erase After a flash page erase, all bytes in the erased page are set to 1. A page erase is initiated by setting FCTL.ERASE to 1. The page addressed by FADDRH[6:1] is erased when a page erase is initiated. Note that if a page erase is initiated simultaneously with a page write, i.e. FCTL.WRITE is set to 1, the page erase will be performed before the page write operation. The FCTL.BUSY bit can be polled to see when the page erase has completed. Note: If flash page erase operation is performed from within flash memory and the watchdog timer is enabled, a watchdog timer interval must be selected that is longer than 20 ms, the duration of the flash page erase operation, so that the CPU will manage to clear the watchdog timer. Performing flash erase from flash memory The steps required to perform a flash page erase from within flash memory are outlined in Figure 17. Note that, while executing program code from within flash memory, when a flash erase or write operation is initiated, program execution will resume from the next instruction when the flash controller has completed the operation. The flash erase operation requires that the instruction that starts the erase i.e. writing to FCTL.ERASE is followed by a NOP instruction as shown in the example code. Omitting the NOP instruction after the flash erase operation will lead to undefined behavior. ; Erase page in flash memory ; Assumes 32 MHz system clock is used ; CLR EA ;mask interrupts C1: MOV A,FCTL ;wait until flash controller is ready JB ACC.7,C1 MOV FADDRH,#00h ;setup flash address high MOV FWT,#2Ah ;setup flash timing MOV FCTL,#01h ;erase page NOP ;must always execute a NOP after erase RET ;continues here when flash is ready Figure 17: Flash page erase performed from flash memory Not Recommended for New Designs CC2430 Peripherals : Flash Controller CC2430 Data Sheet (rev. 2.1) SWRS036F Page 76 of 211 13.3.4 Flash Write Timing The Flash Controller contains a timing generator, which controls the timing sequence of flash write and erase operations. The timing generator uses the information set in the Flash Write Timing register, FWT.FWT[5:0], to set the internal timing. FWT.FWT[5:0] must be set to a value according to the currently selected CPU clock frequency. The value set in the FWT.FWT[5:0] shall be set according to the CPU clock frequency. The initial value held in FWT.FWT[5:0] after a reset is 0x2A which corresponds to 32 MHz CPU clock frequency. The FWT values for the 16 MHz and 32 MHz CPU clock frequencies are given in Table 39. Table 39: Flash timing (FWT) values CPU clock frequency (MHz) FWT 16 0x15 32 0x2A 13.3.5 Flash DMA trigger The Flash DMA trigger is activated when flash data written to the FWDATA register has been written to the specified location in the flash memory, thus indicating that the flash controller is ready to accept new data to be written to FWDATA. In order to start first transfer one has to set the FCTL.WRITE bit to 1. The DMA and the flash controller will then handle all transfer automatically for the defined block of data (LEN in DMA configuration). It is further important that the DMA is armed prior to setting the FCTL.WRITE bit and that the trigger source set to FLASH (TRIG[4:0]=10010) and that the DMA has high priority so the transfer in not interrupted. If interrupted for more than 40 μs the write will not complete as write flag is reset (not allowed to access one word for write for more than 40 μs thus protection to turn the write off). 13.3.6 Flash Controller Registers The Flash Controller registers are described in this section. Not Recommended for New Designs CC2430 Peripherals : I/O ports CC2430 Data Sheet (rev. 2.1) SWRS036F Page 77 of 211 FCTL (0xAE) – Flash Control Bit Name Reset R/W Description 7 BUSY 0 R Indicates that write or erase is in operation 0 No write or erase operation active 1 Write or erase operation activated 6 SWBSY 0 R Indicates that current word write is busy; avoid writing to FWDATA register while this is true 0 Ready to accept data 1 Busy 5 - 0 R/W Not used. 4 CONTRD 0 R/W Continuous read enable mode 0 Avoid wasting power; turn on read enables to flash only when needed 1 Enable continuous read enables to flash when read is to be done. Reduces internal switching of read enables, but greatly increases power consumption. 3:2 0 R/W Not used. 1 WRITE 0 R0/W Write. Start writing word at location given by FADDRH:FADDRL. If ERASE is set to 1, a page erase of the whole page addressed by FADDRH, is performed before the write. 0 ERASE 0 R0/W Page Erase. Erase page that is given by FADDRH[6:1] FWDATA (0xAF) – Flash Write Data Bit Name Reset R/W Description 7:0 FWDATA[7:0] 0x00 R/W Flash write data. Data written to FWDATA is written to flash when FCTL.WRITE is set to 1. FADDRH (0xAD) – Flash Address High Byte Bit Name Reset R/W Description 7 - 0 R/W Not used 6:0 FADDRH[6:0] 0x00 R/W Page address / High byte of flash word address Bits 6:1 will select which page to access. FADDRL (0xAC) – Flash Address Low Byte Bit Name Reset R/W Description 7:0 FADDRL[7:0] 0x00 R/W Low byte of flash word address FWT (0xAB) – Flash Write Timing Bit Name Reset R/W Description 7:6 - 00 R/W Not used 5:0 FWT[5:0] 0x2A R/W Flash Write Timing. Controls flash timing generator. 13.4 I/O ports The CC2430 has 21 digital input/output pins that can be configured as general purpose digital I/O or as peripheral I/O signals connected to the ADC, Timers or USART peripherals. The usage of the I/O ports is fully configurable from user software through a set of configuration registers. The I/O ports have the following key features: Not Recommended for New Designs CC2430 Peripherals : I/O ports CC2430 Data Sheet (rev. 2.1) SWRS036F Page 78 of 211 • 21 digital input/output pins • General purpose I/O or peripheral I/O • Pull-up or pull-down capability on inputs • External interrupt capability The external interrupt capability is available on all 21 I/O pins. Thus external devices may generate interrupts if required. The external interrupt feature can also be used to wake up from sleep modes. 13.4.1 Unused I/O pins Unused I/O pins should have a defined level and not be left floating. One way to do this is to leave the pin unconnected and configure the pin as a general purpose I/O input with pull-up resistor. This is also the state of all pins after reset (note that only P2[2] has pull-up during reset). Alternatively the pin can be configured as a general purpose I/O output. In both cases the pin should not be connected directly to VDD or GND in order to avoid excessive power consumption. 13.4.2 Low I/O Supply Voltage In applications where the digital I/O power supply voltage pin DVDD is below 2.6 V, the register bit PICTL.PADSC should be set to 1 in order to obtain output DC characteristics specified in section 7.16. 13.4.3 General Purpose I/O When used as general purpose I/O, the pins are organized as three 8-bit ports, ports 0-2, denoted P0, P1 and P2. P0 and P1 are complete 8-bit wide ports while P2 has only five usable bits. All ports are both bit- and byte addressable through the SFR registers P0, P1 and P2. Each port pin can individually be set to operate as a general purpose I/O or as a peripheral I/O. The output drive strength is 4 mA on all outputs, except for the two high-drive outputs, P1_0 and P1_1, which each have 20 mA output drive strength. The registers PxSEL where x is the port number 0-2 are used to configure each pin in a port as either a general purpose I/O pin or as a peripheral I/O signal. By default, after a reset, all digital input/output pins are configured as general-purpose input pins. To change the direction of a port pin, at any time, the registers PxDIR are used to set each port pin to be either an input or an output. Thus by setting the appropriate bit within PxDIR, to 1 the corresponding pin becomes an output. When reading the port registers P0, P1 and P2, the logic values on the input pins are returned regardless of the pin configuration. This does not apply during the execution of read-modify-write instructions. The readmodify- write instructions are: ANL, ORL, XRL, JBC, CPL, INC, DEC, DJNZ and MOV, CLR or SETB. Operating on a port registers the following is true: When the destination is an individual bit in a port register P0, P1 or P2 the value of the register, not the value on the pin, is read, modified, and written back to the port register. When used as an input, the general purpose I/O port pins can be configured to have a pullup, pull-down or tri-state mode of operation. By default, after a reset, inputs are configured as inputs with pull-up. To deselect the pull-up or pull-down function on an input the appropriate bit within the PxINP must be set to 1. The I/O port pins P1_0 and P1_1 do not have pullup/ pull-down capability. In power modes PM2 and PM3 the I/O pins retain the I/O mode and output value (if applicable) that was set when PM2/3 was entered. 13.4.4 General Purpose I/O Interrupts General purpose I/O pins configured as inputs can be used to generate interrupts. The interrupts can be configured to trigger on either a rising or falling edge of the external signal. Each of the P0, P1 and P2 ports have separate interrupt enable bits common for all bits within the port located in the IEN1-2 registers as follows: • IEN1.P0IE : P0 interrupt enable • IEN2.P1IE : P1 interrupt enable • IEN2.P2IE : P2 interrupt enable In addition to these common interrupt enables, the bits within each port have interrupt enables located in I/O port SFR registers. Each bit within P1 has an individual interrupt enable. In P0 the low-order nibble and the high-order Not Recommended for New Designs CC2430 Peripherals : I/O ports CC2430 Data Sheet (rev. 2.1) SWRS036F Page 79 of 211 nibble have their individual interrupt enables. For the P2_0 – P2_4 inputs there is a common interrupt enable. When an interrupt condition occurs on one of the general purpose I/O pins, the corresponding interrupt status flag in the P0- P2 interrupt flag registers, P0IFG , P1IFG or P2IFG will be set to 1. The interrupt status flag is set regardless of whether the pin has its interrupt enable set. When an interrupt is serviced the interrupt status flag is cleared by writing a 0 to that flag, and this flag must be cleared prior to clearing the CPU port interrupt flag (PxIF). The I/O SFR registers used for interrupts are described in section 13.4.9 on page 82. The registers are summarized below: • P1IEN : P1 interrupt enables • PICTL : P0/P2 interrupt enables and P0-2 edge configuration • P0IFG : P0 interrupt flags • P1IFG : P1 interrupt flags • P2IFG : P2 interrupt flags 13.4.5 General Purpose I/O DMA When used as general purpose I/O pins, the P0 and P1 ports are each associated with one DMA trigger. These DMA triggers are IOC_0 for P0 and IOC_1 for P1 as shown in Table 41 on page 94. The IOC_0 or IOC_1 DMA trigger is activated when an input transition occurs on one of the P0 or P1 pins respectively. Note that input transitions on pins configured as general purpose I/O inputs only will produce the DMA trigger. Note that port registers P0 and P1 are mapped to XDATA memory space (see Table 24 on page 35). Therefore these registers are reachable for DMA transfers. Port register P2 is not reachable for DMA transfers. 13.4.6 Peripheral I/O This section describes how the digital I/O pins are configured as peripheral I/Os. For each peripheral unit that can interface with an external system through the digital input/output pins, a description of how peripheral I/Os are configured is given in the following subsections. In general, setting the appropriate PxSEL bits to 1 is required to select peripheral I/O function on a digital I/O pin. Note that peripheral units have two alternative locations for their I/O pins, refer to Table 40. Also note that as a general rule only two peripherials can be used per IO Port at a time. Priority can be set between these if conflicting settings regarding IO mapping is present. Priority among unlisted peripherial units is undefined and should not be used (P2SEL.PRIxP1 and P2DIR.PRIP0 bits). All combinations not causing conlicts can be combined. Not Recommended for New Designs CC2430 Peripherals : I/O ports CC2430 Data Sheet (rev. 2.1) SWRS036F Page 80 of 211 Table 40: Peripheral I/O Pin Mapping Periphery / P0 P1 P2 Function 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 4 3 2 1 0 ADC A7 A6 A5 A4 A3 A2 A1 A0 T USART0 SPI C SS M0 MI Alt. 2 M0 MI C SS USART0 UART RT CT TX RX Alt. 2 TX RX RT CT USART1 SPI MI M0 C SS Alt. 2 MI M0 C SS USART1 UART RX TX RT CT Alt. 2 RX TX RT CT TIMER1 2 1 0 Alt. 2 0 1 2 TIMER3 1 0 Alt. 2 1 0 TIMER4 1 0 Alt. 2 1 0 32.768 kHz XOSC Q2 Q1 DEBUG D C D D 13.4.6.1 Timer 1 PERCFG.T1CFG selects whether to use alternative 1 or alternative 2 locations. In Table 40, the Timer 1 signals are shown as the following: • 0 : Channel 0 capture/compare pin • 1 : Channel 1 capture/compare pin • 2 : Channel 2 capture/compare pin P2DIR.PRIP0 selects the order of precedence when assigning several peripherals to port 0. When set to 10 or 11 the timer 1 channels have precedence. P2SEL.PRI1P1 and P2SEL.PRI0P1 select the order of precedence when assigning several peripherals to port 1. The timer 1 channels have precedence when the former is set low and the latter is set high. 13.4.6.2 Timer 3 PERCFG.T3CFG selects whether to use alternative 1 or alternative 2 locations. In Table 40, the Timer 3 signals are shown as the following: • 0 : Channel 0 compare pin • 1 : Channel 1 compare pin P2SEL.PRI2P1 selects the order of precedence when assigning several peripherals to port 1. The timer 3 channels have precedence when the bit is set. 13.4.6.3 Timer 4 PERCFG.T4CFG selects whether to use alternative 1 or alternative 2 locations. In Table 40, the Timer 4 signals are shown as the following: • 0 : Channel 0 compare pin • 1 : Channel 1 compare pin P2SEL.PRI1P1 selects the order of precedence when assigning several peripherals to port 1. The timer 4 channels have precedence when the bit is set. Not Recommended for New Designs CC2430 Peripherals : I/O ports CC2430 Data Sheet (rev. 2.1) SWRS036F Page 81 of 211 13.4.6.4 USART0 The SFR register bit PERCFG.U0CFG selects whether to use alternative 1 or alternative 2 locations. In Table 40, the USART0 signals are shown as follows: UART: • RX : RXDATA • TX : TXDATA • RT : RTS • CT : CTS SPI: • MI : MISO • MO : MOSI • C : SCK • SS : SSN P2DIR.PRIP0 selects the order of precedence when assigning several peripherals to port 0. When set to 00, USART0 has precedence. Note that if UART mode is selected and hardware flow control is disabled, USART1 or timer 1 will have precedence to use ports P0_4 and P0_5. P2SEL.PRI3P1 and P2SEL.PRI0P1 select the order of precedence when assigning several peripherals to port 1. USART0 has precedence when both are set to 0. Note that if UART mode is selected and hardware flow control is disabled, timer 1 or timer 3 will have precedence to use ports P1_2 and P1_3. 13.4.6.5 USART1 The SFR register bit PERCFG.U1CFG selects whether to use alternative 1 or alternative 2 locations. In Table 40, the USART1 signals are shown as follows: UART: • RX : RXDATA • TX : TXDATA • RT : RTS • CT : CTS SPI: • MI : MISO • MO : MOSI • C : SCK • SS : SSN P2DIR.PRIP0 selects the order of precedence when assigning several peripherals to port 0. When set to 01, USART1 has precedence. Note that if UART mode is selected and hardware flow control is disabled, USART0 or timer 1 will have precedence to use ports P0_2 and P0_3. P2SEL.PRI3P1 and P2SEL.PRI2P1 select the order of precedence when assigning several peripherals to port 1. USART1 has precedence when the former is set to 1 and the latter is set to 0. Note that if UART mode is selected and hardware flow control is disabled, USART0 or timer 3 will have precedence to use ports P2_4 and P2_5. 13.4.6.6 ADC When using the ADC, Port 0 pins must be configured as ADC inputs. Up to eight ADC inputs can be used. To configure a Port 0 pin to be used as an ADC input the corresponding bit in the ADCCFG register must be set to 1. The default values in this register select the Port 0 pins as non-ADC input i.e. digital input/outputs. The settings in the ADCCFG register override the settings in P0SEL. The ADC can be configured to use the general-purpose I/O pin P2_0 as an external trigger to start conversions. P2_0 must be configured as a general-purpose I/O in input mode, when being used for ADC external trigger. Refer to section 13.9 on page 126 for a detailed description of use of the ADC. 13.4.7 Debug interface Ports P2_1 and P2_2 are used for debug data and clock signals, respectively. These are shown as DD (debug data) and DC (debug clock) in Table 40. When the debug interface is in use, P2DIR should select these pins as inputs. The state of P2SEL is overridden by the debug interface. Also, the direction is overridden when the chip changes the direction to supply the external host with data. Not Recommended for New Designs CC2430 Peripherals : I/O ports CC2430 Data Sheet (rev. 2.1) SWRS036F Page 82 of 211 13.4.8 32.768 kHz XOSC input Ports P2_3 and P2_4 are used to connect an external 32.768 kHz crystal. These port pins will be used by the 32.768 kHz crystal oscillator when CLKCON.OSC32K is low, regardless of register settings. The port pins will be set in analog mode when CLKCON.OSC32K is low. 13.4.9 Radio Test Output Signals For debug purposes and to some degree CC2420 pin compability, the RFSTATUS.SFD, RFSTATUS.FIFO, RFSTATUS.FIFOP and RFSTATUS.CCA bits can be output onto P1.7 – P1.4 I/O pins to monitor the status of these signals. These test output signals are selected by the IOCFG0, IOCFG1 and IOCFG2 registers. The debug signals are output to the following I/O pins: • P1.4 – FIFO • P1.5 – FIFOP • P1.6 – SFD • P1.7 – CCA Configuring this mode has precedence over other settings in the IOC, and these pins will be assigned the above signals and forced to be outputs. 13.4.10 I/O registers The registers for the I/O ports are described in this section. The registers are: • P0 Port 0 • P1 Port 1 • P2 Port 2 • PERCFG Peripheral control register • ADCCFG ADC input configuration register • P0SEL Port 0 function select register • P1SEL Port 1 function select register • P2SEL Port 2 function select register • P0DIR Port 0 direction register • P1DIR Port 1 direction register • P2DIR Port 2 direction register • P0INP Port 0 input mode register • P1INP Port 1 input mode register • P2INP Port 2 input mode register • P0IFG Port 0 interrupt status flag register • P1IFG Port 1 interrupt status flag register • P2IFG Port 2 interrupt status flag register • PICTL Interrupt mask and edge register • P1IEN Port 1 interrupt mask register P0 (0x80) – Port 0 Bit Name Reset R/W Description 7:0 P0[7:0] 0xFF R/W Port 0. General purpose I/O port. Bit-addressable. P1 (0x90) – Port 1 Bit Name Reset R/W Description 7:0 P1[7:0] 0xFF R/W Port 1. General purpose I/O port. Bit-addressable. Not Recommended for New Designs CC2430 Peripherals : I/O ports CC2430 Data Sheet (rev. 2.1) SWRS036F Page 83 of 211 P2 (0xA0) – Port 2 Bit Name Reset R/W Description 7:5 - 000 R0 Not used 4:0 P2[4:0] 0x1F R/W Port 2. General purpose I/O port. Bit-addressable. PERCFG (0xF1) – Peripheral Control Bit Name Reset R/W Description 7 - 0 R0 Not used Timer 1 I/O location 0 Alternative 1 location 6 T1CFG 0 R/W 1 Alternative 2 location Timer 3 I/O location 0 Alternative 1 location 5 T3CFG 0 R/W 1 Alternative 2 location Timer 4 I/O location 0 Alternative 1 location 4 T4CFG 0 R/W 1 Alternative 2 location 3:2 - 00 R0 Not used USART1 I/O location 0 Alternative 1 location 1 U1CFG 0 R/W 1 Alternative 2 location USART0 I/O location 0 Alternative 1 location 0 U0CFG 0 R/W 1 Alternative 2 location ADCCFG (0xF2) – ADC Input Configuration Bit Name Reset R/W Description ADC input configuration. ADCCFG[7:0] select P0_7 - P0_0 as ADC inputs AIN7 – AIN0 0 ADC input disabled 7:0 ADCCFG[7:0] 0x00 R/W 1 ADC input enabled P0SEL (0xF3) – Port 0 Function Select Bit Name Reset R/W Description P0_7 to P0_0 function select 0 General purpose I/O 7:0 SELP0_[7:0] 0x00 R/W 1 Peripheral function P1SEL (0xF4) – Port 1 Function Select Bit Name Reset R/W Description P1_7 to P1_0 function select 0 General purpose I/O 7:0 SELP1_[7:0] 0x00 R/W 1 Peripheral function Not Recommended for New Designs CC2430 Peripherals : I/O ports CC2430 Data Sheet (rev. 2.1) SWRS036F Page 84 of 211 P2SEL (0xF5) – Port 2 Function Select Bit Name Reset R/W Description 7 - 0 R0 Not used Port 1 peripheral priority control. These bits shall determine which module has priority in the case when modules are assigned to the same pins. 0 USART0 has priority 6 PRI3P1 0 R/W 1 USART1 has priority Port 1 peripheral priority control. These bits shall determine the order of priority in the case when PERCFG assigns USART1 and timer 3 to the same pins. 0 USART1 has priority 5 PRI2P1 0 R/W 1 Timer 3 has priority Port 1 peripheral priority control. These bits shall determine the order of priority in the case when PERCFG assigns timer 1 and timer 4 to the same pins. 0 Timer 1 has priority 4 PRI1P1 0 R/W 1 Timer 4 has priority Port 1 peripheral priority control. These bits shall determine the order of priority in the case when PERCFG assigns USART0 and timer 1 to the same pins. 0 USART0 has priority 3 PRI0P1 0 R/W 1 Timer 1 has priority P2_4 function select 0 General purpose I/O 2 SELP2_4 0 R/W 1 Peripheral function P2_3 function select 0 General purpose I/O 1 SELP2_3 0 R/W 1 Peripheral function P2_0 function select 0 General purpose I/O 0 SELP2_0 0 R/W 1 Peripheral function P0DIR (0xFD) – Port 0 Direction Bit Name Reset R/W Description P0_7 to P0_0 I/O direction 0 Input 7:0 DIRP0_[7:0] 0x00 R/W 1 Output P1DIR (0xFE) – Port 1 Direction Bit Name Reset R/W Description P1_7 to P1_0 I/O direction 0 Input 7:0 DIRP1_[7:0] 0x00 R/W 1 Output Not Recommended for New Designs CC2430 Peripherals : I/O ports CC2430 Data Sheet (rev. 2.1) SWRS036F Page 85 of 211 P2DIR (0xFF) – Port 2 Direction Bit Name Reset R/W Description Port 0 peripheral priority control. These bits shall determine the order of priority in the case when PERCFG assigns several peripherals to the same pins 00 USART0 has priority over USART1 01 USART1 has priority OVER Timer1 10 Timer 1 channels 0 and 1has priority over USART1 7:6 PRIP0[1:0] 00 R/W 11 Timer 1 channel 2 has priority over USART0 5 - 0 R0 Not used P2_4 to P2_0 I/O direction 0 Input 4:0 DIRP2_[4:0] 00000 R/W 1 Output P0INP (0x8F) – Port 0 Input Mode Bit Name Reset R/W Description P0_7 to P0_0 I/O input mode 0 Pull-up / pull-down (see P2INP (0xF7) – Port 2 Input Mode) 7:0 MDP0_[7:0] 0x00 R/W 1 Tristate P1INP (0xF6) – Port 1 Input Mode Bit Name Reset R/W Description P1_7 to P1_2 I/O input mode 0 Pull-up / pull-down (see P2INP (0xF7) – Port 2 Input Mode) 7:2 MDP1_[7:2] 0x00 R/W 1 Tristate 1:0 - 00 R0 Not used P2INP (0xF7) – Port 2 Input Mode Bit Name Reset R/W Description Port 2 pull-up/down select. Selects function for all Port 2 pins configured as pull-up/pull-down inputs. 0 Pull-up 7 PDUP2 0 R/W 1 Pull-down Port 1 pull-up/down select. Selects function for all Port 1 pins configured as pull-up/pull-down inputs. 0 Pull-up 6 PDUP1 0 R/W 1 Pull-down Port 0 pull-up/down select. Selects function for all Port 0 pins configured as pull-up/pull-down inputs. 0 Pull-up 5 PDUP0 0 R/W 1 Pull-down P2_4 to P2_0 I/O input mode 0 Pull-up / pull-down 4:0 MDP2_[4:0] 00000 R/W 1 Tristate Not Recommended for New Designs CC2430 Peripherals : I/O ports CC2430 Data Sheet (rev. 2.1) SWRS036F Page 86 of 211 P0IFG (0x89) – Port 0 Interrupt Status Flag Bit Name Reset R/W Description 7:0 P0IF[7:0] 0x00 R/W0 Port 0, inputs 7 to 0 interrupt status flags. When an input port pin has an interrupt request pending, the corresponding flag bit will be set. P1IFG (0x8A) – Port 1 Interrupt Status Flag Bit Name Reset R/W Description 7:0 P1IF[7:0] 0x00 R/W0 Port 1, inputs 7 to 0 interrupt status flags. When an input port pin has an interrupt request pending, the corresponding flag bit will be set. P2IFG (0x8B) – Port 2 Interrupt Status Flag Bit Name Reset R/W Description 7:5 - 000 R0 Not used. 4:0 P2IF[4:0] 0x00 R/W0 Port 2, inputs 4 to 0 interrupt status flags. When an input port pin has an interrupt request pending, the corresponding flag bit will be set. Not Recommended for New Designs CC2430 Peripherals : I/O ports CC2430 Data Sheet (rev. 2.1) SWRS036F Page 87 of 211 PICTL (0x8C) – Port Interrupt Control Bit Name Reset R/W Description 7 - 0 R0 Not used 6 PADSC 0 R/W Drive strength control for I/O pins in output mode. Selects output drive capability to account for low I/O supply voltage on pin DVDD (this to ensure same drive strength at lower voltages as is on higher). 0 Minimum drive capability. DVDD equal or greater than 2.6V 1 Maximum drive capability. DVDD less than 2.6V Port 2, inputs 4 to 0 interrupt enable. This bit enables interrupt requests for the port 2 inputs 4 to 0. 0 Interrupts are disabled 5 P2IEN 0 R/W 1 Interrupts are enabled Port 0, inputs 7 to 4 interrupt enable. This bit enables interrupt requests for the port 0 inputs 7 to 4. 0 Interrupts are disabled 4 P0IENH 0 R/W 1 Interrupts are enabled Port 0, inputs 3 to 0 interrupt enable. This bit enables interrupt requests for the port 0 inputs 3 to 0. 0 Interrupts are disabled 3 P0IENL 0 R/W 1 Interrupts are enabled Port 2, inputs 4 to 0 interrupt configuration. This bit selects the interrupt request condition for all port 2 inputs 0 Rising edge on input gives interrupt 2 P2ICON 0 R/W 1 Falling edge on input gives interrupt Port 1, inputs 7 to 0 interrupt configuration. This bit selects the interrupt request condition for all port 1 inputs 0 Rising edge on input gives interrupt 1 P1ICON 0 R/W 1 Falling edge on input gives interrupt Port 0, inputs 7 to 0 interrupt configuration. This bit selects the interrupt request condition for all port 0 inputs 0 Rising edge on input gives interrupt 0 P0ICON 0 R/W 1 Falling edge on input gives interrupt P1IEN (0x8D) – Port 1 Interrupt Mask Bit Name Reset R/W Description Port P1_7 to P1_0 interrupt enable 0 Interrupts are disabled 7:0 P1_[7:0]IEN 0x00 R/W 1 Interrupts are enabled Not Recommended for New Designs CC2430 Peripherals : DMA Controller CC2430 Data Sheet (rev. 2.1) SWRS036F Page 88 of 211 13.5 DMA Controller The CC2430 includes a direct memory access (DMA) controller, which can be used to relieve the 8051 CPU core of handling data movement operations thus achieving high overall performance with good power efficiency. The DMA controller can move data from a peripheral unit such as ADC or RF transceiver to memory with minimum CPU intervention. The DMA controller coordinates all DMA transfers, ensuring that DMA requests are prioritized appropriately relative to each other and CPU memory access. The DMA controller contains a number of programmable DMA channels for memory-memory data movement. The DMA controller controls data transfers over the entire address range in XDATA memory space. Since most of the SFR registers are mapped into the DMA memory space, these flexible DMA channels can be used to unburden the CPU in innovative ways, e.g. feed a USART with data from memory or periodically transfer samples between ADC and memory, etc. Use of the DMA can also reduce system power consumption by keeping the CPU in a low-power mode without having to wake up to move data to or from a peripheral unit (see section 13.1.1.1 for CPU low power mode). Note that section 11.2.3 describes which SFR registers that are not mapped into XDATA memory space. The main features of the DMA controller are as follows: • Five independent DMA channels • Three configurable levels of DMA channel priority • 31 configurable transfer trigger events • Independent control of source and destination address • Single, block and repeated transfer modes • Supports length field in transfer data setting variable transfer length • Can operate in either word-size or bytesize mode 13.5.1 DMA Operation There are five DMA channels available in the DMA controller numbered channel 0 to channel 4. Each DMA channel can move data from one place within the DMA memory space to another i.e. between XDATA locations. In order to use a DMA channel it must first be configured as described in sections 13.5.2 and 13.5.3. Figure 18 shows the DMA state diagram. Once a DMA channel has been configured it must be armed before any transfers are allowed to be initiated. A DMA channel is armed by setting the appropriate bit in the DMA Channel Arm register DMAARM. When a DMA channel is armed a transfer will begin when the configured DMA trigger event occurs. Note that the time to arm one channel (i.e. get configuration data) takes 9 system clocks, thus if DMAARM bit set and a trigger appears within the time it takes to configure the channel the trigger will be lost. If more than one DMA channels are armed simultaneously, the time for all channels to be configured will be longer (sequential read from memory). If all 5 are armed it will take 45 system clocks and channel 1 will first be ready, then channel 2 and lastly channel 0 (all within the last 8 system clocks). There are 31 possible DMA trigger events, e.g. UART transfer, Timer overflow etc. The trigger event to be used by a DMA channel is set by the DMA channel configuration thus no knowledge of this is available until after configuration has been read. The DMA trigger events are listed in Table 41. In addition to starting a DMA transfer through the DMA trigger events, the user software may force a DMA transfer to begin by setting the corresponding DMAREQ bit. Not Recommended for New Designs CC2430 Peripherals : DMA Controller CC2430 Data Sheet (rev. 2.1) SWRS036F Page 89 of 211 Figure 18: DMA Operation 13.5.2 DMA Configuration Parameters Setup and control of the DMA operation is performed by the user software. This section describes the parameters which must be configured before a DMA channel can be used. Section 13.5.3 on page 92 describes how the parameters are set up in software and passed to the DMA controller. The behavior of each of the five DMA channels is configured with the following parameters: Source address: The first address from which the DMA channel should read data. Destination address: The first address to which the DMA channel should write the data Not Recommended for New Designs CC2430 Peripherals : DMA Controller CC2430 Data Sheet (rev. 2.1) SWRS036F Page 90 of 211 read from the source address. The user must ensure that the destination is writable. Transfer count: The number of transfers to perform before rearming or disarming the DMA channel and alerting the CPU with an interrupt request. The length can be defined in the configuration or it can be defined as described next as VLEN setting. VLEN setting: The DMA channel is capable of variable length transfers using the first byte or word to set the transfer length. When doing this, various options regarding how to count number of bytes to transfer are available. Priority: The priority of the DMA transfers for the DMA channel in respect to the CPU and other DMA channels and access ports. Trigger event: All DMA transfers are initiated by so-called DMA trigger events. This trigger either starts a DMA block transfer or a single DMA transfer. In addition to the configured trigger, a DMA channel can always be triggered by setting its designated DMAREQ.DMAREQx flag. The DMA trigger sources are described in Table 41 on page 94. Source and Destination Increment: The source and destination addresses can be controlled to increment or decrement or not change. Transfer mode: The transfer mode determines whether the transfer should be a single transfer or a block transfer, or repeated versions of these. Byte or word transfers: Determines whether each DMA transfer should be 8-bit (byte) or 16-bit (word). Interrupt Mask: An interrupt request is generated upon completion of the DMA transfer. The interrupt mask bit controls if the interrupt generation is enabled or disabled. M8: Decide whether to use seven or eight bits of length byte for transfer length. This is only applicable when doing byte transfers. A detailed description of all configuration parameters are given in the sections 13.5.2.1 to 13.5.2.11. 13.5.2.1 Source Address The address in XDATA memory where the DMA channel shall start to read data. 13.5.2.2 Destination Address The first address to which the DMA channel should write the data read from the source address. The user must ensure that the destination is writable. 13.5.2.3 Transfer Count The number of bytes/words needed to be transferred for the DMA transfer to be complete. When the transfer count is reached, the DMA controller rearms or disarms the DMA channel and alerts the CPU with an interrupt request. The transfer count can be defined in the configuration or it can be defined as a variable length described in the next section. 13.5.2.4 VLEN Setting The DMA channel is capable of using the first byte or word (for word, bits 12:0 are used) in source data as the transfer length. This allows variable length transfers. When using variable length transfer, various options regarding how to count number of bytes to transfer is given. In any case, the transfer count (LEN) setting is used as maximum transfer count. If the transfer length specified by the first byte or word is greater than LEN, then LEN bytes/words will be transferred. When using variable length transfers, then LEN should be set to the largest allowed transfer length plus one. Note that the M8 bit (see page 92) is only used when byte size transfers are chosen. Options which can be set with VLEN are the following: 1. Transfer number of bytes/words commanded by first byte/word + 1 (transfers the length byte/word, and then as many bytes/words as dictated by length byte/word) 2. Transfer number of bytes/words commanded by first byte/word 3. Transfer number of bytes/words commanded by first byte/word + 2 (transfers the length byte/word, and then as many bytes/words as dictated by length byte/word + 1) Not Recommended for New Designs CC2430 Peripherals : DMA Controller CC2430 Data Sheet (rev. 2.1) SWRS036F Page 91 of 211 4. Transfer number of bytes/words commanded by first byte/word + 3 (transfers the length byte/word, and then as many bytes/words as dictated by length byte/word + 2) Figure 19 shows the VLEN options. LENGTH=n byte/word 1 byte/word 2 byte/word 3 byte/word n-1 byte/word n LENGTH=n byte/word 1 byte/word 2 byte/word 3 byte/word n-1 LENGTH=n byte/word 1 byte/word 2 byte/word 3 byte/word n-1 byte/word n LENGTH=n byte/word 1 byte/word 2 byte/word 3 byte/word n-1 byte/word n byte/word n+1 byte/word n+1 byte/word n+2 VLEN=001 VLEN=010 VLEN=011 VLEN=100 Figure 19: Variable Length (VLEN) Transfer Options 13.5.2.5 Trigger Event Each DMA channel can be set up to sense on a single trigger. This field determines which trigger the DMA channel shall sense. 13.5.2.6 Source and Destination Increment When the DMA channel is armed or rearmed the source and destination addresses are transferred to internal address pointers. The possibilities for address increment are : • Increment by zero. The address pointer shall remain fixed after each transfer. • Increment by one. The address pointer shall increment one count after each transfer. • Increment by two. The address pointer shall increment two counts after each transfer. • Decrement by one. The address pointer shall decrement one count after each transfer. 13.5.2.7 DMA Transfer Mode The transfer mode determines how the DMA channel behaves when it starts transferring data. There are four transfer modes described below: Single: On a trigger a single DMA transfer occurs and the DMA channel awaits the next trigger. After the number of transfers specified by the transfer count, are completed, the CPU is notified and the DMA channel is disarmed. Block: On a trigger the number of DMA transfers specified by the transfer count is performed as quickly as possible, after which the CPU is notified and the DMA channel is disarmed. Repeated single: On a trigger a single DMA transfer occurs and the DMA channel awaits the next trigger. After the number of transfers specified by the transfer count are completed, the CPU is notified and the DMA channel is rearmed. Repeated block: On a trigger the number of DMA transfers specified by the transfer count is performed as quickly as possible, after which the CPU is notified and the DMA channel is rearmed. Not Recommended for New Designs CC2430 Peripherals : DMA Controller CC2430 Data Sheet (rev. 2.1) SWRS036F Page 92 of 211 13.5.2.8 DMA Priority A DMA priority is configurable for each DMA channel. The DMA priority is used to determine the winner in the case of multiple simultaneous internal memory requests, and whether the DMA memory access should have priority or not over a simultaneous CPU memory access. In case of an internal tie, a round-robin scheme is used to ensure access for all. There are three levels of DMA priority: High: Highest internal priority. DMA access will always prevail over CPU access. Normal: Second highest internal priority. This guarantees that DMA access prevails over CPU on at least every second try. Low: Lowest internal priority. DMA access will always defer to a CPU access. 13.5.2.9 Byte or Word transfers Determines whether 8-bit (byte) or 16-bit (word) are done. 13.5.2.10 Interrupt mask Upon completing a DMA transfer, the channel can generate an interrupt to the processor. This bit will mask the interrupt. 13.5.2.11 Mode 8 setting This field determines whether to use 7 or 8 bits of length byte for transfer length. Only applicable when doing byte transfers. 13.5.3 DMA Configuration Setup The DMA channel parameters such as address mode, transfer mode and priority described in the previous section have to be configured before a DMA channel can be armed and activated. The parameters are not configured directly through SFR registers, but instead they are written in a special DMA configuration data structure in memory. Each DMA channel in use requires its own DMA configuration data structure. The DMA configuration data structure consists of eight bytes and is described in section 13.5.6 on page 93. A DMA configuration data structure may reside at any location decided upon by the user software, and the address location is passed to the DMA controller through a set of SFRs DMAxCFGH:DMAxCFGL, Once a channel has been armed, the DMA controller will read the configuration data structure for that channel, given by the address in DMAxCFGH:DMAxCFGL. It is important to note that the method for specifying the start address for the DMA configuration data structure differs between DMA channel 0 and DMA channels 1-4 as follows: DMA0CFGH:DMA0CFGL gives the start address for DMA channel 0 configuration data structure. DMA1CFGH:DMA1CFGL gives the start address for DMA channel 1 configuration data structure followed by channel 2-4 configuration data structures. Thus the DMA controller expects the DMA configuration data structures for DMA channels 1-4 to lie in a contiguous area in memory starting at the address held in DMA1CFGH:DMA1CFGL and consisting of 32 bytes. 13.5.4 Stopping DMA Transfers Ongoing DMA transfer or armed DMA channels will be aborted using the DMAARM register to disarm the DMA channel. One or more DMA channels are aborted by writing a 1 to DMAARM.ABORT register bit, and at the same time select which DMA channels to abort by setting the corresponding, DMAARM.DMAARMx bits to 1. When setting DMAARM.ABORT to 1, the DMAARM.DMAARMx bits for non-aborted channels must be written as 0. Not Recommended for New Designs CC2430 Peripherals : DMA Controller CC2430 Data Sheet (rev. 2.1) SWRS036F Page 93 of 211 13.5.5 DMA Interrupts Each DMA channel can be configured to generate an interrupt to the CPU upon completing a DMA transfer. This is accomplished with the IRQMASK bit in the channel configuration. The corresponding interrupt flag in the DMAIRQ SFR register will be set when the interrupt is generated. Regardless of the IRQMASK bit in the channel configuration, the interrupt flag will be set upon DMA channel complete. Thus software should always check (and clear) this register when rearming a channel with a changed IRQMASK setting. Failure to do so could generate an interrupt based on the stored interrupt flag. 13.5.6 DMA Configuration Data Structure For each DMA channel, the DMA configuration data structure consists of eight bytes. The configuration data structure is described in Table 42. 13.5.7 DMA memory access The DMA data transfer is affected by endian convention. This as the memory system use Big-Endian in XDATA memory, while Little- Endian is used in SFR memory. This must be accounted for in compilers. Not Recommended for New Designs CC2430 Peripherals : DMA Controller CC2430 Data Sheet (rev. 2.1) SWRS036F Page 94 of 211 Table 41: DMA Trigger Sources DMA Trigger number DMA Trigger name Functional unit Description 0 NONE DMA No trigger, setting DMAREQ.DMAREQx bit starts transfer 1 PREV DMA DMA channel is triggered by completion of previous channel 2 T1_CH0 Timer 1 Timer 1, compare, channel 0 3 T1_CH1 Timer 1 Timer 1, compare, channel 1 4 T1_CH2 Timer 1 Timer 1, compare, channel 2 5 T2_COMP Timer 2 Timer 2, compare 6 T2_OVFL Timer 2 Timer 2, overflow 7 T3_CH0 Timer 3 Timer 3, compare, channel 0 8 T3_CH1 Timer 3 Timer 3, compare, channel 1 9 T4_CH0 Timer 4 Timer 4, compare, channel 0 10 T4_CH1 Timer 4 Timer 4, compare, channel 1 11 ST Sleep Timer Sleep Timer compare 12 IOC_0 IO Controller Port 0 I/O pin input transition9 13 IOC_1 IO Controller Port 1 I/O pin input transition9 14 URX0 USART0 USART0 RX complete 15 UTX0 USART0 USART0 TX complete 16 URX1 USART1 USART1 RX complete 17 UTX1 USART1 USART1 TX complete 18 FLASH Flash controller Flash data write complete 19 RADIO Radio RF packet byte received/transmit 20 ADC_CHALL ADC ADC end of a conversion in a sequence, sample ready 21 ADC_CH11 ADC ADC end of conversion channel 0 in sequence, sample ready 22 ADC_CH21 ADC ADC end of conversion channel 1 in sequence, sample ready 23 ADC_CH32 ADC ADC end of conversion channel 2 in sequence, sample ready 24 ADC_CH42 ADC ADC end of conversion channel 3 in sequence, sample ready 25 ADC_CH53 ADC ADC end of conversion channel 4 in sequence, sample ready 26 ADC_CH63 ADC ADC end of conversion channel 5 in sequence, sample ready 27 ADC_CH74 ADC ADC end of conversion channel 6 in sequence, sample ready 28 ADC_CH84 ADC ADC end of conversion channel 7 in sequence, sample ready 29 ENC_DW AES AES encryption processor requests download input data 30 ENC_UP AES AES encryption processor requests upload output data 9 Using this trigger source must be aligned with port interrupt enable bits, PICTL.P0IENL/H and P1IEN. Note that all interrupt enabled port pins will generate a trigger and the trigger is generated on each level change on the enabled input (0-1 gives a trigger as does 1-0). Not Recommended for New Designs CC2430 Peripherals : DMA Controller CC2430 Data Sheet (rev. 2.1) SWRS036F Page 95 of 211 Table 42: DMA Configuration Data Structure Byte Offset Bit Name Description 0 7:0 SRCADDR[15:8] The DMA channel source address, high 1 7:0 SRCADDR[7:0] The DMA channel source address, low 2 7:0 DESTADDR[15:8] The DMA channel destination address, high. Note that flash memory is not directly writeable. 3 7:0 DESTADDR[7:0] The DMA channel destination address, low. Note that flash memory is not directly writeable. 4 7:5 VLEN[2:0] Variable length transfer mode. In word mode, bits 12:0 of the first word is considered as the transfer length. 000 Use LEN for transfer count 001 Transfer the number of bytes/words specified by first byte/word + 1 (up to a maximum specified by LEN). Thus transfer count excludes length byte/word 010 Transfer the number of bytes/words specified by first byte/word (up to a maximum specified by LEN). Thus transfer count includes length byte/word. 011 Transfer the number of bytes/words specified by first byte/word + 2 (up to a maximum specified by LEN). 100 Transfer the number of bytes/words specified by first byte/word + 3 (up to a maximum specified by LEN). 101 reserved 110 reserved 111 Alternative for using LEN as transfer count 4 4:0 LEN[12:8] The DMA channel transfer count. Used as maximum allowable length when VLEN = 000/111. The DMA channel counts in words when in WORDSIZE mode, and in bytes otherwise. 5 7:0 LEN[7:0] The DMA channel transfer count. Used as maximum allowable length when VLEN = 000/111. The DMA channel counts in words when in WORDSIZE mode, and in bytes otherwise. 6 7 WORDSIZE Selects whether each DMA transfer shall be 8-bit (0) or 16-bit (1). 6 6:5 TMODE[1:0] The DMA channel transfer mode: 00 : Single 01 : Block 10 : Repeated single 11 : Repeated block 6 4:0 TRIG[4:0] Select DMA trigger to use 00000 : No trigger (writing to DMAREQ is only trigger) 00001 : The previous DMA channel finished 00010 – 11110 : Selects one of the triggers shown in Table 41, in that order. 7 7:6 SRCINC[1:0] Source address increment mode (after each transfer): 00 : 0 bytes/words 01 : 1 bytes/words 10 : 2 bytes/words 11 : -1 bytes/words 7 5:4 DESTINC[1:0] Destination address increment mode (after each transfer): 00 : 0 bytes/words 01 : 1 bytes/words 10 : 2 bytes/words 11 : -1 bytes/words 7 3 IRQMASK Interrupt Mask for this channel. 0 : Disable interrupt generation 1 : Enable interrupt generation upon DMA channel done Not Recommended for New Designs CC2430 Peripherals : DMA Controller CC2430 Data Sheet (rev. 2.1) SWRS036F Page 96 of 211 Byte Offset Bit Name Description 7 2 M8 Mode of 8th bit for VLEN transfer length; only applicable when WORDSIZE=0. 0 : Use all 8 bits for transfer count 1 : Use 7 LSB for transfer count 7 1:0 PRIORITY[1:0] The DMA channel priority: 00 : Low, CPU has priority. 01 : Guaranteed, DMA at least every second try. 10 : High, DMA has priority 11 : Highest, DMA has priority. Reserved for DMA port access. 13.5.8 DMA registers This section describes the SFR registers associated with the DMA Controller DMAARM (0xD6) – DMA Channel Arm Bit Name Reset R/W Description 7 ABORT 0 R0/W DMA abort. This bit is used to stop ongoing DMA transfers. Writing a 1 to this bit will abort all channels which are selected by setting the corresponding DMAARM bit to 1 0 : Normal operation 1 : Abort all selected channels 6:5 - 00 R/W Not used 4 DMAARM4 0 R/W1 DMA arm channel 4 This bit must be set in order for any DMA transfers to occur on the channel. For non-repetitive transfer modes, the bit is automatically cleared upon completion. 3 DMAARM3 0 R/W1 DMA arm channel 3 This bit must be set in order for any DMA transfers to occur on the channel. For non-repetitive transfer modes, the bit is automatically cleared upon completion. 2 DMAARM2 0 R/W1 DMA arm channel 2 This bit must be set in order for any DMA transfers to occur on the channel. For non-repetitive transfer modes, the bit is automatically cleared upon completion. 1 DMAARM1 0 R/W1 DMA arm channel 1 This bit must be set in order for any DMA transfers to occur on the channel. For non-repetitive transfer modes, the bit is automatically cleared upon completion. 0 DMAARM0 0 R/W1 DMA arm channel 0 This bit must be set in order for any DMA transfers to occur on the channel. For non-repetitive transfer modes, the bit is automatically cleared upon completion. Not Recommended for New Designs CC2430 Peripherals : DMA Controller CC2430 Data Sheet (rev. 2.1) SWRS036F Page 97 of 211 DMAREQ (0xD7) – DMA Channel Start Request and Status Bit Name Reset R/W Description 7:5 - 000 R0 Not used 4 DMAREQ4 0 R/W1 H0 DMA transfer request, channel 4 When set to 1 activate the DMA channel (has the same effect as a single trigger event.). Only by setting the armed bit to 0 in the DMAARM register, can the channel be stopped if already started. This bit is cleared when the DMA channel is granted access. 3 DMAREQ3 0 R/W1 H0 DMA transfer request, channel 3 When set to 1 activate the DMA channel (has the same effect as a single trigger event.). Only by setting the armed bit to 0 in the DMAARM register, can the channel be stopped if already started. This bit is cleared when the DMA channel is granted access. 2 DMAREQ2 0 R/W1 H0 DMA transfer request, channel 2 When set to 1 activate the DMA channel (has the same effect as a single trigger event.). Only by setting the armed bit to 0 in the DMAARM register, can the channel be stopped if already started. This bit is cleared when the DMA channel is granted access. 1 DMAREQ1 0 R/W1 H0 DMA transfer request, channel 1 When set to 1 activate the DMA channel (has the same effect as a single trigger event.). Only by setting the armed bit to 0 in the DMAARM register, can the channel be stopped if already started. This bit is cleared when the DMA channel is granted access. 0 DMAREQ0 0 R/W1 H0 DMA transfer request, channel 0 When set to 1 activate the DMA channel (has the same effect as a single trigger event.). Only by setting the armed bit to 0 in the DMAARM register, can the channel be stopped if already started. This bit is cleared when the DMA channel is granted access. DMA0CFGH (0xD5) – DMA Channel 0 Configuration Address High Byte Bit Name Reset R/W Description 7:0 DMA0CFG[15:8] 0x00 R/W The DMA channel 0 configuration address, high order DMA0CFGL (0xD4) – DMA Channel 0 Configuration Address Low Byte Bit Name Reset R/W Description 7:0 DMA0CFG[7:0] 0x00 R/W The DMA channel 0 configuration address, low order DMA1CFGH (0xD3) – DMA Channel 1-4 Configuration Address High Byte Bit Name Reset R/W Description 7:0 DMA1CFG[15:8] 0x00 R/W The DMA channel 1-4 configuration address, high order Not Recommended for New Designs CC2430 Peripherals : DMA Controller CC2430 Data Sheet (rev. 2.1) SWRS036F Page 98 of 211 DMA1CFGL (0xD2) – DMA Channel 1-4 Configuration Address Low Byte Bit Name Reset R/W Description 7:0 DMA1CFG[7:0] 0x00 R/W The DMA channel 1-4 configuration address, low order DMAIRQ (0xD1) – DMA Interrupt Flag Bit Name Reset R/W Description 7:5 - 000 R/W0 Not used 4 DMAIF4 0 R/W0 DMA channel 4 interrupt flag. 0 : DMA channel transfer not complete 1 : DMA channel transfer complete/interrupt pending 3 DMAIF3 0 R/W0 DMA channel 3 interrupt flag. 0 : DMA channel transfer not complete 1 : DMA channel transfer complete/interrupt pending 2 DMAIF2 0 R/W0 DMA channel 2 interrupt flag. 0 : DMA channel transfer not complete 1 : DMA channel transfer complete/interrupt pending 1 DMAIF1 0 R/W0 DMA channel 1 interrupt flag. 0 : DMA channel transfer not complete 1 : DMA channel transfer complete/interrupt pending 0 DMAIF0 0 R/W0 DMA channel 0 interrupt flag. 0 : DMA channel transfer not complete 1 : DMA channel transfer complete/interrupt pending Not Recommended for New Designs CC2430 Peripherals : 16-bit timer, Timer1 CC2430 Data Sheet (rev. 2.1) SWRS036F Page 99 of 211 13.6 16-bit timer, Timer1 Timer 1 is an independent 16-bit timer which supports typical timer/counter functions such as input capture, output compare and PWM functions. The timer has three independent capture/compare channels. The timer uses one I/O pin per channel. The timer is used for a wide range of control and measurement applications and the availability of up/down count mode with three channels will for example allow implementation of motor control applications. The features of Timer 1 are as follows: • Three capture/compare channels • Rising, falling or any edge input capture • Set, clear or toggle output compare • Free-running, modulo or up/down counter operation • Clock prescaler for divide by 1, 8, 32 or 128 • Interrupt request generated on each capture/compare and terminal count • DMA trigger function 13.6.1 16-bit Timer Counter The timer consists of a 16-bit counter that increments or decrements at each active clock edge. The period of the active clock edges is defined by the register bits CLKCON.TICKSPD which sets the global division of the system clock giving a variable clock tick frequency from 0.25 MHz to 32 MHz (given the use of the 32 MHz XOSC as clock source). This is further divided in Timer 1 by the prescaler value set by T1CTL.DIV. This prescaler value can be from 1, 8, 32, or 128. Thus the lowest clock frequency used by Timer 1 is 1953.125 Hz and the highest is 32 MHz when the 32 MHz crystal oscillator is used as system clock source. When the 16 MHz RC oscillator is used as system clock source then the highest clock frequency used by Timer 1 is 16 MHz. The counter operates as either a free-running counter, a modulo counter or as an up/down counter for use in centre-aligned PWM. It is possible to read the 16-bit counter value through the two 8-bit SFRs; T1CNTH and T1CNTL, containing the high-order byte and low-order byte respectively. When the T1CNTL is read, the high-order byte of the counter at that instant is buffered in T1CNTH so that the high-order byte can be read from T1CNTH. Thus T1CNTL shall always be read first before reading T1CNTH. All write accesses to the T1CNTL register will reset the 16-bit counter. The counter produces an interrupt request when the terminal count value (overflow) is reached. It is possible to start and halt the counter with T1CTL control register settings. The counter is started when a value other than 00 is written to T1CTL.MODE. If 00 is written to T1CTL.MODE the counter halts at its present value. 13.6.2 Timer 1 Operation In general, the control register T1CTL is used to control the timer operation. The various modes of operation are described below. 13.6.3 Free-running Mode In the free-running mode of operation the counter starts from 0x0000 and increments at each active clock edge. When the counter reaches 0xFFFF (overflow) the counter is loaded with 0x0000 and continues incrementing its value as shown in Figure 20. When the terminal count value 0xFFFF is reached, both the IRCON.T1IF and the T1CTL.OVFIF flag are set. An interrupt request is generated if the corresponding interrupt mask bit TIMIF.OVFIM is set together with IEN1.T1EN. The free-running mode can be used to generate independent time intervals and output signal frequencies. Not Recommended for New Designs CC2430 Peripherals : 16-bit timer, Timer1 CC2430 Data Sheet (rev. 2.1) SWRS036F Page 100 of 211 0000h FFFFh OVFL OVFL Figure 20: Free-running mode 13.6.4 Modulo Mode When the timer operates in modulo mode the 16-bit counter starts at 0x0000 and increments at each active clock edge. When the counter reaches the terminal count value T1CC0 (overflow), held in registers T1CC0H:T1CC0L, the counter is reset to 0x0000 and continues to increment. Both the IRCON.T1IF and the flag T1CTL.OVFIF flag are set when the terminal count value is reached. An interrupt request is generated if the corresponding interrupt mask bit TIMIF.OVFIM is set together with IEN1.T1EN. The modulo mode can be used for applications where a period other then 0xFFFF is required. The counter operation is shown in Figure 21. 0000h T1CC0 OVFL OVFL Figure 21: Modulo mode 13.6.5 Up/down Mode In the up/down timer mode, the counter repeatedly starts from 0x0000 and counts up until the value held in T1CC0H:T1CC0L is reached and then the counter counts down until 0x0000 is reached as shown in Figure 22. This timer mode is used when symmetrical output pulses are required with a period other than 0xFFFF, and therefore allows implementation of centre-aligned PWM output applications. Both the IRCON.T1IF and the T1CTL.OVFIF flag are set when the counter value reaches 0x0000 in the up/down mode. An interrupt request is generated if the corresponding interrupt mask bit TIMIF.OVFIM is set together with IEN1.T1EN. Not Recommended for New Designs CC2430 Peripherals : 16-bit timer, Timer1 CC2430 Data Sheet (rev. 2.1) SWRS036F Page 101 of 211 0000h T1CC0 OVFL OVFL Figure 22 : Up/down mode 13.6.6 Channel Mode Control The channel mode is set with each channel’s control and status register T1CCTLn. The settings include input capture and output compare modes. 13.6.7 Input Capture Mode When a channel is configured as an input capture channel, the I/O pin associated with that channel, is configured as an input. After the timer has been started, a rising edge, falling edge or any edge on the input pin will trigger a capture of the 16-bit counter contents into the associated capture register. Thus the timer is able to capture the time when an external event takes place. Note: Before an I/O pin can be used by the timer, the required I/O pin must be configured as a Timer 1 peripheral pin as described in section 13.4.5 on page 79 . The channel input pin is synchronized to the internal system clock. Thus pulses on the input pin must have a minimum duration greater than the system clock period. The contents of the 16-bit capture register is read out from registers T1CCnH:T1CCnL. When the capture takes place the IRCON.T1IF flag is set together with the interrupt flag for the channel is set. These bits are T1CTL.CH0IF for channel 0, T1CTL.CH1IF for channel 1, and T1CTL.CH2IF for channel 2. An interrupt request is generated if the corresponding interrupt mask bit on T1CCTL0.IM, T1CCTL1.IM, or T1CCTL2.IM, respectively, is set together with IEN1.T1EN. 13.6.8 Output Compare Mode In output compare mode the I/O pin associated with a channel is set as an output. After the timer has been started, the contents of the counter are compared with the contents of the channel compare register T1CCnH:T1CCnL. If the compare register equals the counter contents, the output pin is set, reset or toggled according to the compare output mode setting of T1CCTLn.CMP. Note that all edges on output pins are glitch-free when operating in a given output compare mode. Writing to the compare register T1CCnL is buffered so that a value written to T1CCnL does not take effect until the corresponding high order register, T1CCnH is written. For output compare modes 1-3, a new value written to the compare register T1CCnH:T1CCnL takes effect after the registers have been written. For other output compare modes the new value written to the compare register takes effect when the timer reaches 0x0000. Note that channel 0 has fewer output compare modes because T1CC0H:T1CC0L has a special function in modes 6 and 7, meaning these modes would not be useful for channel 0. When a compare occurs, the interrupt flag for the channel is set. These bits are T1CTL.CH0IF for channel 0, T1CTL.CH1IF for channel 1, and T1CTL.CH2IF for channel 2, and the common interrupt flag IRCON.T1IF. An interrupt request is generated if the corresponding interrupt mask bit on T1CCTL0.IM, T1CCTL1.IM, or T1CCTL2.IM, respectively, is set together with IRCON.T1IF. When operating in up-down mode, the interrupt flag for channel 0 is set Not Recommended for New Designs CC2430 Peripherals : 16-bit timer, Timer1 CC2430 Data Sheet (rev. 2.1) SWRS036F Page 102 of 211 when the counter reaches 0x0000 instead of when a compare occurs. Examples of output compare modes in various timer modes are given in the following figures. Edge-aligned: PWM output signals can be generated using the timer modulo mode and channels 1 and 2 in output compare mode 6 or 7 (defined by T1CCTLn.CMP bits, wher n is 1 or 2) as shown in Figure 23. The period of the PWM signal is determined by the setting in T1CC0 and the duty cycle is determined by T1CCn, where n is the PWM channel 1 or 2. The timer free-running mode may also be used. In this case CLKCON.TICKSPD and the prescaler divider value in T1CTL.DIV bits set the period of the PWM signal. The polarity of the PWM signal is determined by whether output compare mode 6 or 7 is used. PWM output signals can also be generated using output compare modes 4 and 5 as shown in Figure 23, or by using modulo mode as shown in Figure 24. Using output compare mode 4 and 5 is preferred for simple PWM. Centre-aligned: PWM outputs can be generated when the timer up/down mode is selected. The channel output compare mode 4 or 5 (defined by T1CCTLn.CMP bits, wher n is 1 or 2) is selected depending on required polarity of the PWM signal. The period of the PWM signal is determined by T1CC0 and the duty cycle for the channel output is determined by T1CCn, where n is the PWM channel 1 or 2. The centre-aligned PWM mode is required by certain types of motor drive applications and typically less noise is produced than the edgealigned PWM mode because the I/O pin transitions are not lined up on the same clock edge. In some types of applications, a defined delay or dead time is required between outputs. Typically this is required for outputs driving an H-bridge configuration to avoid uncontrolled cross-conduction in one side of the H-bridge. The delay or dead-time can be obtained in the PWM outputs by using T1CCn as shown in the following: Assuming that channel 1 and channel 2 are used to drive the outputs using timer up/down mode and the channels use output compare modes 4 and 5 respectively, then the timer period (in Timer 1 clock periods) is: TP = T1CC0 x 2 and the dead time, i.e. the time when both outputs are low, (in Timer 1 clock periods) is given by: TD = T1CC1 – T1CC2 Not Recommended for New Designs CC2430 Peripherals : 16-bit timer, Timer1 CC2430 Data Sheet (rev. 2.1) SWRS036F Page 103 of 211 0000h FFFFh 0 - Set output on compare 1 - Clear output on compare 2 - Toggle output on compare 5 - Clear when T1CC0, set when T1CCn 6 - Set when T1CC0, clear when T1CCn T1CCn T1CC0 T1CCn T1CC0 3 - Set output on compare-up, clear on 0 4 - Clear output on compare-up, set on 0 T1CC0 T1CCn Figure 23: Output compare modes, timer free-running mode Not Recommended for New Designs CC2430 Peripherals : 16-bit timer, Timer1 CC2430 Data Sheet (rev. 2.1) SWRS036F Page 104 of 211 0000h T1CC0 0 - Set output on compare 1 - Clear output on compare 2 - Toggle output on compare 5 - Clear when T1CC0, set when T1CCn 6 - Set when T1CC0, clear when T1CCn T1CCn T1CC0 T1CCn T1CC0 3 - Set output on compare-up, clear on 0 4 - Clear output on compare-up, set on 0 Figure 24: Output compare modes, timer modulo mode Not Recommended for New Designs CC2430 Peripherals : 16-bit timer, Timer1 CC2430 Data Sheet (rev. 2.1) SWRS036F Page 105 of 211 0000h 0 - Set output on compare 1 - Clear output on compare 2 - Toggle output on compare 5 - Clear when T1CC0, set when T1CCn 6 - Set when T1CC0, clear when T1CCn T1CCn T1CC0 T1CCn T1CC0 T1CC0 T1CCn 3 - Set output on compare-up, clear on compare-down 4 - Clear output on compare-up, set on compare-down T1CCn T1CCn Figure 25: Output modes, timer up/down mode 13.6.9 Timer 1 Interrupts There is one interrupt vector assigned to the timer. An interrupt request is generated when one of the following timer events occur: • Counter reaches terminal count value (overflow, or turns around zero. • Input capture event. • Output compare event The register bits T1CTL.OVFIF, T1CTL.CH0IF, T1CTL.CH1IF, and T1CTL.CH2IF contains the interrupt flags for the terminal count value event, and the three channel compare/capture events, respectively. An interrupt request is only generated when the corresponding interrupt mask bit is set together witjh IEN1.T1EN. The interrupt mask bits are T1CCTL0.IM, T1CCTL1.IM, T1CCTL2.IM and TIMIF.OVFIM. If there are other pending interrupts, the corresponding interrupt flag must be cleared by software before a new interrupt request is generated. Also, enabling an interrupt mask bit will generate a new interrupt request if the corresponding interrupt flag is set. 13.6.10 Timer 1 DMA Triggers There are three DMA triggers associated with Timer 1. These are DMA triggers T1_CH0, T1_CH1 and T1_CH2 which are generated on timer compare events as follows: • T1_CH0 – channel 0 compare • T1_CH1 – channel 1 compare • T1_CH2 – channel 2 compare Not Recommended for New Designs CC2430 Peripherals : 16-bit timer, Timer1 CC2430 Data Sheet (rev. 2.1) SWRS036F Page 106 of 211 13.6.11 Timer 1 Registers This section describes the Timer 1 registers which consist of the following registers: • T1CNTH – Timer 1 Count High • T1CNTL – Timer 1 Count Low • T1CTL – Timer 1 Control and Status • T1CCTLx – Timer 1 Channel x Capture/Compare Control • T1CCxH – Timer 1 Channel x Capture/Compare Value High • T1CCxL – Timer 1 Channel x Capture/Compare Value Low The TIMIF.OVFIM register bit resides in the TIMIF register, which is described together with Timer 3 and Timer 4 registers on page 118. T1CNTH (0xE3) – Timer 1 Counter High Bit Name Reset R/W Description 7:0 CNT[15:8] 0x00 R Timer count high order byte. Contains the high byte of the 16-bit timer counter buffered at the time T1CNTL is read. T1CNTL (0xE2) – Timer 1 Counter Low Bit Name Reset R/W Description 7:0 CNT[7:0] 0x00 R/W Timer count low order byte. Contains the low byte of the 16-bit timer counter. Writing anything to this register results in the counter being cleared to 0x0000. T1CTL (0xE4) – Timer 1 Control and Status Bit Name Reset R/W Description 7 CH2IF 0 R/W0 Timer 1 channel 2 interrupt flag. Set when the channel 2 interrupt condition occurs. Writing a 1 has no effect. 6 CH1IF 0 R/W0 Timer 1 channel 1 interrupt flag. Set when the channel 1 interrupt condition occurs. Writing a 1 has no effect. 5 CH0IF 0 R/W0 Timer 1 channel 0 interrupt flag. Set when the channel 0 interrupt condition occurs. Writing a 1 has no effect. 4 OVFIF 0 R/W0 Timer 1 counter overflow interrupt flag. Set when the counter reaches the terminal count value in free-running or modulo mode, and when zero is reached counting down in up-down mode. Writing a 1 has no effect. Prescaler divider value. Generates the active clock edge used to update the counter as follows: 00 Tick frequency/1 01 Tick frequency/8 10 Tick frequency/32 3:2 DIV[1:0] 00 R/W 11 Tick frequency/128 Timer 1 mode select. The timer operating mode is selected as follows: 00 Operation is suspended 01 Free-running, repeatedly count from 0x0000 to 0xFFFF 10 Modulo, repeatedly count from 0x0000 to T1CC0 1:0 MODE[1:0] 00 R/W 11 Up/down, repeatedly count from 0x0000 to T1CC0 and from T1CC0 down to 0x0000 Not Recommended for New Designs CC2430 Peripherals : 16-bit timer, Timer1 CC2430 Data Sheet (rev. 2.1) SWRS036F Page 107 of 211 T1CCTL0 (0xE5) – Timer 1 Channel 0 Capture/Compare Control Bit Name Reset R/W Description 7 - 0 R/W Reserved. Always set to 0 6 IM 1 R/W Channel 0 interrupt mask. Enables interrupt request when set. Channel 0 compare mode select. Selects action on output when timer value equals compare value in T1CC0 000 Set output on compare 001 Clear output on compare 010 Toggle output on compare 011 Set output on compare-up, clear on 0 (clear on comparedown in up/down mode) 100 Clear output on compare-up, set on 0 (set on comparedown in up/down mode) 101 Not used 110 Not used 5:3 CMP[2:0] 000 R/W 111 Not used Mode. Select Timer 1 channel 0 capture or compare mode 0 Capture mode 2 MODE 0 R/W 1 Compare mode Channel 0 capture mode select 00 No capture 01 Capture on rising edge 10 Capture on falling edge 1:0 CAP[1:0] 00 R/W 11 Capture on all edges T1CC0H (0xDB) – Timer 1 Channel 0 Capture/Compare Value High Bit Name Reset R/W Description 7:0 T1CC0[15:8] 0x00 R/W Timer 1 channel 0 capture/compare value, high order byte T1CC0L (0xDA) – Timer 1 Channel 0 Capture/Compare Value Low Bit Name Reset R/W Description 7:0 T1CC0[7:0] 0x00 R/W Timer 1 channel 0 capture/compare value, low order byte Not Recommended for New Designs CC2430 Peripherals : 16-bit timer, Timer1 CC2430 Data Sheet (rev. 2.1) SWRS036F Page 108 of 211 T1CCTL1 (0xE6) – Timer 1 Channel 1 Capture/Compare Control Bit Name Reset R/W Description 7 - 0 R/W Reserved. Always set to 0. 6 IM 1 R/W Channel 1 interrupt mask. Enables interrupt request when set. Channel 1 compare mode select. Selects action on output when timer value equals compare value in T1CC1 000 Set output on compare 001 Clear output on compare 010 Toggle output on compare 011 Set output on compare-up, clear on 0 (clear on comparedown in up/down mode) 100 Clear output on compare-up, set on 0 (set on comparedown in up/down mode) 101 Clear when equal T1CC0, set when equal T1CC1 110 Set when equal T1CC0, clear when equal T1CC1 5:3 CMP[2:0] 000 R/W 111 Not used Mode. Select Timer 1 channel 1 capture or compare mode 0 Capture mode 2 MODE 0 R/W 1 Compare mode Channel 1 capture mode select 00 No capture 01 Capture on rising edge 10 Capture on falling edge 1:0 CAP[1:0] 00 R/W 11 Capture on all edges T1CC1H (0xDD) – Timer 1 Channel 1 Capture/Compare Value High Bit Name Reset R/W Description 7:0 T1CC1[15:8] 0x00 R/W Timer 1 channel 1 capture/compare value, high order byte T1CC1L (0xDC) – Timer 1 Channel 1 Capture/Compare Value Low Bit Name Reset R/W Description 7:0 T1CC1[7:0] 0x00 R/W Timer 1 channel 1 capture/compare value, low order byte Not Recommended for New Designs CC2430 Peripherals : 16-bit timer, Timer1 CC2430 Data Sheet (rev. 2.1) SWRS036F Page 109 of 211 T1CCTL2 (0xE7) – Timer 1 Channel 2 Capture/Compare Control Bit Name Reset R/W Description 7 - 0 R/W Reserved. Always set to 0. 6 IM 1 R/W Channel 2 interrupt mask. Enables interrupt request when set. Channel 2 compare mode select. Selects action on output when timer value equals compare value in T1CC2 000 Set output on compare 001 Clear output on compare 010 Toggle output on compare 011 Set output on compare-up, clear on 0 (clear on comparedown in up/down mode) 100 Clear output on compare-up, set on 0 (set on comparedown in up/down mode) 101 Clear when equal T1CC0, set when equal T1CC2 110 Set when equal T1CC0, clear when equal T1CC2 5:3 CMP[2:0] 000 R/W 111 Not used Mode. Select Timer 1 channel 2 capture or compare mode 0 Capture mode 2 MODE 0 R/W 1 Compare mode Channel 2 capture mode select 00 No capture 01 Capture on rising edge 10 Capture on falling edge 1:0 CAP[1:0] 00 R/W 11 Capture on all edges T1CC2H (0xDF) – Timer 1 Channel 2 Capture/Compare Value High Bit Name Reset R/W Description 7:0 T1CC2[15:8] 0x00 R/W Timer 1 channel 2 capture/compare value, high order byte T1CC2L (0xDE) – Timer 1 Channel 2 Capture/Compare Value Low Bit Name Reset R/W Description 7:0 T1CC2[7:0] 0x00 R/W Timer 1 channel 2 capture/compare value, low order byte Not Recommended for New Designs CC2430 Peripherals : MAC Timer (Timer2) CC2430 Data Sheet (rev. 2.1) SWRS036F Page 110 of 211 13.7 MAC Timer (Timer2) The MAC Timer is mainly used to provide timing for 802.15.4 CSMA-CA algorithms and for general timekeeping in the 802.15.4 MAC layer. When the MAC Timer is used together with the Sleep Timer described in section 13.9, the timing function is provided even when the system enters low-power modes. The main features of the MAC Timer are the following: • 16-bit timer up-counter providing symbol/frame period: 16μs/320μs • Adjustable period with accuracy 31.25 ns • 8-bit timer compare function • 20-bit overflow count • 20-bit overflow count compare function • Start of Frame Delimiter capture function. • Timer start/stop synchronous with 32.768 kHz clock and timekeeping maintained by Sleep Timer. • Interrupts generated on compare and overflow • DMA trigger capability 13.7.1 Timer Operation This section describes the operation of the timer. 13.7.1.1 General After a reset the timer is in the timer IDLE mode where it is stopped. The timer starts running when T2CNF.RUN is set to 1. The timer will then enter the timer RUN mode. The entry is either immediate or it is performed synchronous with the 32 kHz clock. See section 13.7.4 for a description of the synchronous start and stop mode. Once the timer is running in RUN mode, it can be stopped by writing a 0 to T2CNF.RUN. The timer will then enter the timer IDLE mode. The stopping of the timer is performed either immediately or it is performed synchronous with the 32 kHz clock 13.7.1.2 Up Counter The MAC Timer contains a 16-bit timer, which increments during each clock cycle. 13.7.1.3 Timer overflow When the timer is about to count to a value that is equal to or greater than the timer period set by registers T2CAPHPH:T2CAPLPL, a timer overflow occurs. When the timer overflow occurs, the timer is set to the difference between the value it is about to count to and the timer period, e.g. if the next value of the timer would be 0x00FF and the timer period is 0x00FF then the timer is set to 0x000. If the overflow interrupt mask bit T2PEROF2.PERIM is 1, an interrupt request is generated. The interrupt flag bit T2CNF.PERIF is set to 1 regardless of the interrupt mask value. 13.7.1.4 Timer delta increment The timer period may be adjusted once during a timer period by writing a timer delta value. When a timer delta value is written to the registers T2THD:T2TLD, the 16-bit timer halts at its current value and a delta counter starts counting. The delta counter starts counting from the delta value written, down to zero. Once the delta counter reaches zero, the 16- bit timer starts counting again. The delta counter decrements by the same rate as the timer. When the delta counter has reached zero it will not start counting again until the delta value is written once again. In this way a timer period may be increased by the delta value in order to make adjustments to the timer overflow events over time. 13.7.1.5 Timer Compare A timer compare occurs when the timer is about to count to a value that is equal or greater than the 8-bit compare value held in the T2CMP register. Note that the compare value is only 8 bits so the compare is made between the compare value and either the most significant byte or the least significant byte of the timer. The selection of which part of Not Recommended for New Designs CC2430 Peripherals : MAC Timer (Timer2) CC2430 Data Sheet (rev. 2.1) SWRS036F Page 111 of 211 the timer is to be compared is set by the T2CNF.CMSEL bit. When a timer compare occurs the interrupt flag T2CNF.CMPIF is set to 1. An interrupt request is also generated if the interrupt mask T2PEROF2.CMPIM is set to 1. 13.7.1.6 Capture Input The MAC timer has a timer capture function which captures at the time when the start of frame delimiter (SFD) status in the radio goes high. Refer to sections 14.6 and 14.9 starting on page 157 for a description of the SFD. When the capture event occurs the current timer value will be captured into the capture register. The capture value can be read from the registers T2CAPHPH:T2CAPLPL. The value of the overflow count is also captured (see section 13.7.1.7) at the time of the capture event and can be read from the registers T2PEROF2:T2PEROF1:T2PEROF0. 13.7.1.7 Overflow count At each timer overflow, the 20-bit overflow counter is incremented by 1. The overflow counter value is read through the SFR registers T2OF2:T2OF1:T2OF0. Note that the register contents in T2OF2:T2OF1 is latched when T2OF0 is read, meaning that T2OF0 must always be read first. Overflow count update: The overflow count value may be updated by writing to the registers T2OF2:T2OF1:T2OF0 when the timer is in the IDLE or RUN state. Note that the last data written to registers T2OF1:T2OF0 is latched when T2OF2 is written, meaning that T2OF2 must always be written last. 13.7.1.8 Overflow count compare A compare value may be set for the overflow counter. The compare value is set by writing to T2PEROF2:T2PEROF1:T2PEROF0. When the overflow count value is equal or greater than the set compare value an overflow compare event occurs. If the overflow compare interrupt mask bit T2PEROF2.OFCMPIM is 1, an interrupt request is generated. The interrupt flag bit T2CNF.OFCMPIF is set to 1 regardless of the interrupt mask value. It should be noted that if a capture event occurs when the T2PEROF2 is written to the three most significant bits will not be updated. In order to address this one should either write twice to this register while interrupts are disabled, or read back and verify that written data was set. 13.7.2 Interrupts The Timer has three individually maskable interrupt sources. These are the following: • Timer overflow • Timer compare • Overflow count compare The interrupt flags are given in the T2CNF registers. The interrupt flag bits are set only by hardware and may be cleared only by writing to the SFR register. Each interrupt source may be masked by the mask bits in the T2PEROF2 register. An interrupt is generated when the corresponding mask bit is set, otherwise the interrupt will not be generated. The interrupt flag bit is set, however disregarding the state of the interrupt mask bit. 13.7.3 DMA Triggers Timer 2 can generate two DMA triggers – T2_COMP and T2_OVFL which are activated as follows: • T2_COMP: Timer 2 compare event • T2_OVFL: Timer 2 overflow event 13.7.4 Timer start/stop synchronization This section describes the synchronized timer start and stop. Not Recommended for New Designs CC2430 Peripherals : MAC Timer (Timer2) CC2430 Data Sheet (rev. 2.1) SWRS036F Page 112 of 211 13.7.4.1 General The Timer can be started and stopped synchronously with the 32kHz clock rising edge. Note this event is derived from a 32kHz clock signal, but is synchronous with the 32MHz system clock and thus has a period approximately equal the 32kHz clock period. At the time of a synchronous start the timer is reloaded with new calculated values for the timer and overflow count such that it appears that the timer has not been stopped (e.g. im PM1/2 mode). 13.7.4.2 Timer synchronous stop After the timer has started running, i.e. entered timer RUN mode it is stopped synchronously by writing 0 to T2CNF.RUN when T2CNF.SYNC is 1. After T2CNF.RUN has been set to 0, the timer will continue running until the 32kHz clock rising edge is sampled as 1. When this occurs the timer is stopped and the current Sleep timer value is stored. 13.7.4.3 Timer synchronous start When the timer is in the IDLE mode it is started synchronously by writing 1 to T2CNF.RUN when T2CNF.SYNC is 1. After T2CNF.RUN has been set to 1, the timer will remain in the IDLE mode until the 32kHz clock rising edge is detected. When this occurs the timer will first calculate new values for the 16- bit timer value and for the 20-bit timer overflow count, based on the current and stored Sleep timer values and the current 16-bit timer values. The new MAC Timer and overflow count values are loaded into the timer and the timer enters the RUN mode. This synchronous start process takes 75 clock cycles from the time when the 32kHz clock rising edge is sampled high. The synchronous start and stop function requires that the system clock frequency is selected to be 32MHz. If the 16MHz clock is selected, there will be an offset added to the new calculated value. The method for calculating the new MAC Timer value and overflow count value is given below. Due to the fact that the MAC Timer clock and Sleep timer clocks are asynchronous with a non-integer clock ratio there will be an error of maximum ±1 in calculated timer value compared to the ideal timer value. Calculation of new timer value and overflow count value: N CurrentSleepTimerValue c = N StoredSleepTimerValue s = K = ClockRatio = 976.5625 ck 10 stw = SleepTimerWidth = 24 P = Timer2Period O CurrentOverflowCountValue c = T CurrentTimerValue c = T = Overhead = 75 OH t c s N = N − N t t d t stw t d N ≤ 0⇒N = 2 + N ;N > 0⇒N = N d ck C OH C = N ⋅ K +T +T (Rounded to nearest integer value) T = C mod P ( ) C O P O C T + − = Timer2Value = T Timer2OverflowCount = O 10 Clock ratio of MAC Timer clock frequency (32 MHz - XOSC) and Sleep timer clock frequency (32.768 kHz - XOSC) For a given Timer 2 period value, P, there is a maximum duration between Timer2 synchronous stop and start for which the timer value is correctly updated after starting. The maximum value is given in terms of the number of Sleep Timer clock periods, i.e. 32kHz clock periods, TST(max): ck OH ST K P T T − × + ≤ (220 1) (max) The maximum period controlled by T2CAPHPH and T2CAPHPL is defined when thes registers are 0x0000. When operation in power modes PM1 or PM2 this will always result in an overflow and both overflow and timer counter will be sett to 0xFFFF. The value 0x0000 in Not Recommended for New Designs CC2430 Peripherals : MAC Timer (Timer2) CC2430 Data Sheet (rev. 2.1) SWRS036F Page 113 of 211 T2CAPHPH and T2CAPHPL should be avoided when using Timer2 in PM1 or PM2. 13.7.5 Timer 2 Registers The SFR registers associated with Timer 2 are listed in this section. These registers are the following: • T2CNF – Timer 2 Configuration • T2HD – Timer 2 Count/Delta High • T2LD – Timer 2 Count/Delta Low • T2CMP – Timer 2 Compare • T2OF2 – Timer 2 Overflow Count 2 • T2OF1 – Timer 2 Overflow Count 1 • T2OF0 – Timer 2 Overflow Count 0 • T2CAPHPH – Timer 2 Capture/Period High • T2CAPLPL – Timer 2 Capture/Period Low • T2PEROF2 – Timer 2 Overflow Capture/Compare 2 • T2PEROF1 – Timer 2 Overflow Capture/Compare 1 • T2PEROF0 – Timer 2 Overflow Capture/Compare 0 T2CNF (0xC3) – Timer 2 Configuration Bit Name Reset R/W Description 7 CMPIF 0 R/W0 Timer compare interrupt flag. This bit is set to 1 when a timer compare event occurs. Cleared by software only. Writing a 1 to this bit has no effect. 6 PERIF 0 R/W0 Overflow interrupt flag. This bit is set to 1 when a period event occurs. Cleared by software only. Writing a 1 to this bit has no effect. 5 OFCMPIF 0 R/W0 Overflow compare interrupt flag. This bit is set to 1 when a overflow compare occurs. Cleared by software only. Writing a 1 to this bit has no effect. 4 - 0 R0 Not used. Read as 0 3 CMSEL 0 R/W Timer compare source select. 0 Compare with 16-bit Timer bits [15:8] 1 Compare with 16-bit Timer bits [7:0] 2 - 0 R/W Reserved. Always set to 0 1 SYNC 1 R/W Enable synchronized start and stop. 0 start and stop of timer is immediate 1 start and stop of timer is synchronized with 32.768 kHz edge and new timer values are reloaded. 0 RUN 0 R/W Dual function: timer start / timer status. Writing this bit will start or stop the timer. 0 stop timer 1 start timer Reading this bit the current state of the timer is returned. 0 timer is stopped (IDLE state) 1 timer is running (RUN state) Note when SYNC =1 (the reset condition), the timer status does not change immediately when the timer is started or stopped. Instead the timer status is changed when the actual synchronous start/stop takes place. Prior to the synchronous start/stop event, the read value of RUN will differ from the last value written. Not Recommended for New Designs CC2430 Peripherals : MAC Timer (Timer2) CC2430 Data Sheet (rev. 2.1) SWRS036F Page 114 of 211 T2THD (0xA7) – Timer 2 Timer Value High Byte Bit Name Reset R/W Description 7:0 THD[7:0] 0x00 R/W The value read from this register is the high-order byte of the timer value. The high-order byte read is from timer value at the last instant when T2TLD was read. The value written to this register while the timer is running is the highorder byte of the timer delta counter value. The low-order byte of this value is the value last written to T2TLD. The timer will halt for delta clock cycles. The value written to this register while the timer is idle will be written to the high-order byte of the timer. T2TLD (0xA6) – Timer 2 Timer Value Low Byte Bit Name Reset R/W Description 7:0 TLD[7:0] 0x00 R/W The value read from this register is the low-order byte of the timer value. The value written to this register while the timer is running is the loworder byte of the timer delta counter value. The timer will halt for delta clock cycles. The value written to T2TLD will not take effect until T2THD is written. The value written to this register while the timer is idle will be written to the low-order byte of the timer. T2CMP (0x94) – Timer 2 Compare Value Bit Name Reset R/W Description 7:0 CMP[7:0] 0x00 R/W Timer Compare value. A timer compare occurs when the compare source selected by T2CNF.CMSEL equals the value held in CMP. T2OF2 (0xA3) – Timer 2 Overflow Count 2 Bit Name Reset R/W Description 7:4 - 0000 R0 Not used, read as 0 3:0 OF2[3:0] 0x00 R/W Overflow count. High bits T2OF[19:16]. T2OF is incremented by 1 each time the timer overflows i.e. timer counts to a value greater or equal to period. When reading this register, the value read is the value latched when T2OF0 was read. Writing to this register when the timer is in IDLE or RUN states will force the overflow count to be set to the value written to T2OF2:T2OF1:T2OF0. If the count would otherwise be incremented by 1 when this register is written then 1 is added to the value written. T2OF1 (0xA2) – Timer 2 Overflow Count 1 Bit Name Reset R/W Description 7:0 OF1[7:0] 0x00 R/W Overflow count. Middle bits T2OF[15:8]. T2OF is incremented by 1 each time the timer overflows i.e. timer counts to a value greater or equal to period. When reading this register, the value read is the value latched when T2OF0 was read. Writing to this register when the timer is in IDLE or RUN states will force the overflow count to be set to the value written to T2OF2:T2OF1:T2OF0. If the count would otherwise be incremented by 1 when this register is written then 1 is added to the value written. The value written will not take effect until T2OF2 is written. Not Recommended for New Designs CC2430 Peripherals : MAC Timer (Timer2) CC2430 Data Sheet (rev. 2.1) SWRS036F Page 115 of 211 T2OF0 (0xA1) – Timer 2 Overflow Count 0 Bit Name Reset R/W Description 7:0 OF0[7:0] 0x00 R/W Overflow count. Low bits T2OF[7:0]. T2OF is incremented by 1 each time the timer overflows i.e. timer counts to a value greater or equal to period. Writing to this register when the timer is in IDLE or RUN states will force the overflow count to be set to the value written to T2OF2:T2OF1:T2OF0. If the count would otherwise be incremented by 1 when this register is written then 1 is added to the value written. The value written will not take effect until T2OF2 is written. T2CAPHPH (0xA5) – Timer 2 Period High Byte Bit Name Reset R/W Description 7:0 CAPHPH[7:0] 0xFF R/W Capture value high/timer period high. Writing this register sets the high order bits [15:8] of the timer period. Reading this register gives the high order bits [15:8] of the timer value at the last capture event. T2CAPLPL (0xA4) – Timer 2 Period Low Byte Bit Name Reset R/W Description 7:0 CAPLPL[7:0] 0xFF R/W Capture value low/timer period low. Writing this register sets the low order bits [7:0] of the timer period. Reading this register gives the low order bits [7:0] of the timer value at the last capture event. T2PEROF2 (0x9E) – Timer 2 Overflow Capture/Compare 2 Bit Name Reset R/W Description 7 CMPIM 0 R/W Compare interrupt mask. 0: No interrupt is generated on compare event 1: Interrupt is generated on compare event. 6 PERIM 0 R/W Overflow interrupt mask 0: No interrupt is generated on timer overflow 1: Interrupt is generated on timer overflow 5 OFCMPIM 0 R/W Overflow count compare interrupt mask 0: No interrupt is generated on overflow count compare 1: Interrupt is generated on overflow count compare 4 - 0 R0 Not used, read as 0 3:0 PEROF2[3:0] 0000 R/W Overflow count capture/Overflow count compare value. Writing these bits set the high bits [19:16] of the overflow count compare value. Reading these bits returns the high bits [19:16] of the overflow count value at the time of the last capture event. T2PEROF1 (0x9D) – Timer 2 Overflow Capture/Compare 1 Bit Name Reset R/W Description 7:0 PEROF1[7:0] 0x00 R/W Overflow count capture /Overflow count compare value. Writing these bits set the middle bits [15:8] of the overflow count compare value. Reading these bits returns the middle bits [15:8] of the overflow count value at the time of the last capture event. Not Recommended for New Designs CC2430 Peripherals : MAC Timer (Timer2) CC2430 Data Sheet (rev. 2.1) SWRS036F Page 116 of 211 T2PEROF0 (0x9C) – Timer 2 Overflow Capture/Compare 0 Bit Name Reset R/W Description 7:0 PEROF0[7:0] 0x00 R/W Overflow count capture /Overflow count compare value. Writing these bits set the low bits [7:0] of the overflow count compare value. Reading these bits returns the low bits [7:0] of the overflow count value at the time of the last capture event. Not Recommended for New Designs CC2430 Peripherals : 8-bit timers, Timer 3 and Timer 4 CC2430 Data Sheet (rev. 2.1) SWRS036F Page 117 of 211 13.8 8-bit timers, Timer 3 and Timer 4 Timer 3 and 4 are two 8-bit timers which support typical timer/counter functions souch as output compare and PWM functions. The timers have two independent compare channels each using on IO per channel. Features of Timer 3/4 are as follows: • Two compare channels • Set, clear or toggle output compare • Clock prescaler for divide by 1, 2, 4, 8, 16, 32, 64, 128 • Interrupt request generated on each compare and terminal count event • DMA trigger function 13.8.1 8-bit Timer Counter All timer functions are based on the main 8-bit counter found in Timer 3/4. The counter increments or decrements at each active clock edge. The period of the active clock edges is defined by the register bits CLKCON.TICKSPD which is further divided by the prescaler value set by TxCTL.DIV (where x refers to the timer number, 3 or 4). The counter operates as either a free-running counter, a down counter, a modulo counter or as an up/down counter. It is possible to read the 8-bit counter value through the SFR TxCNT where x refers to the timer number, 3 or 4. The possibility to clear and halt the counter is given with TxCTL control register settings. The counter is started when a 1 is written to TxCTL.START. If a 0 is written to TxCTL.START the counter halts at its present value. 13.8.2 Timer 3/4 Mode Control In general the control register TxCTL is used to control the timer operation. 13.8.2.1 Free-running Mode In the free-running mode of operation the counter starts from 0x00 and increments at each active clock edge. When the counter reaches 0xFF the counter is loaded with 0x00 and continues incrementing its value. When the terminal count value 0xFF is reached (i.e. an overflow occurs), the interrupt flag TIMIF.TxOVFIF is set. If the corresponding interrupt mask bit TxCTL.OVFIM is set, an interrupt request is generated. The freerunning mode can be used to generate independent time intervals and output signal frequencies. 13.8.2.2 Down mode In the down mode, after the timer has been started, the counter is loaded with the contents in TxCC. The counter then counts down to 0x00. The flag TIMIF.TxOVFIF is set when 0x00 is reached. If the corresponding interrupt mask bit TxCTL.OVFIM is set, an interrupt request is generated. The timer down mode can generally be used in applications where an event timeout interval is required. 13.8.2.3 Modulo Mode When the timer operates in modulo mode the 8-bit counter starts at 0x00 and increments at each active clock edge. When the counter reaches the terminal count value held in register TxCC the counter is reset to 0x00 and continues to increment. The flag TIMIF.TxOVFIF is set when on this event. If the corresponding interrupt mask bit TxCTL.OVFIM is set, an interrupt request is generated. The modulo mode can be used for applications where a period other than 0xFF is required. 13.8.2.4 Up/down Mode In the up/down timer mode, the counter repeatedly starts from 0x00 and counts up until the value held in TxCC is reached and then the counter counts down until 0x00 is reached. This timer mode is used when symmetrical output pulses are required with a period other than 0xFF, and therefore allows implementation of centre-aligned PWM output applications. Clearing the counter by writing to TxCTL.CLR will also reset the count direction to the count up from 0x00 mode. Not Recommended for New Designs CC2430 Peripherals : 8-bit timers, Timer 3 and Timer 4 CC2430 Data Sheet (rev. 2.1) SWRS036F Page 118 of 211 13.8.3 Channel Mode Control The channel modes for each channel; 0 and 1, are set by the control and status registers TxCCTLn where n is the channel number, 0 or 1. The settings include output compare modes. 13.8.4 Output Compare Mode In output compare mode the I/O pin associated with a channel shall be set to an output. After the timer has been started, the content of the counter is compared with the contents of the channel compare register TxCC0n. If the compare register equals the counter contents, the output pin is set, reset or toggled according to the compare output mode setting of TxCCTL.CMP1:0. Note that all edges on output pins are glitch-free when operating in a given compare output mode. For simple PWM use, output compare modes 4 and 5 are preferred. Writing to the compare register TxCC0 does not take effect on the output compare value until the counter value is 0x00. Writing to the compare register TxCC1 takes effect immediately. When a compare occurs the interrupt flag corresponding to the actual channel is set. This is TIMIF.TxCHnIF. An interrupt request is generated if the corresponding interrupt mask bit TxCCTLn.IM is set. 13.8.5 Timer 3 and 4 interrupts There is one interrupt vector assigned to each of the timers. These are T3 and T4. An interrupt request is generated when one of the following timer events occur: • Counter reaches terminal count value. • Output compare event The SFR register TIMIF contains all interrupt flags for Timer 3 and Timer 4. The register bits TIMIF.TxOVFIF and TIMIF.TxCHnIF, contains the interrupt flags for the two terminal count value events and the four channel compare events, respectively. An interrupt request is only generated when the corresponding interrupt mask bit is set. If there are other pending interrupts, the corresponding interrupt flag must be cleared by the CPU before a new interrupt request can be generated. Also, enabling an interrupt mask bit will generate a new interrupt request if the corresponding interrupt flag is set. 13.8.6 Timer 3 and Timer 4 DMA triggers There are two DMA triggers associated with Timer 3 and two DMA triggers associated with Timer 4. These are the following: • T3_CH0 : Timer 3 channel 0 compare • T3_CH1 : Timer 3 channel 1 compare • T4_CH0 : Timer 4 channel 0 compare • T4_CH0 : Timer 4 channel 1 compare Refer to section 13.5 on page 88 for a description on use of DMA channels. 13.8.7 Timer 3 and 4 registers T3CNT (0xCA) – Timer 3 Counter Bit Name Reset R/W Description 7:0 CNT[7:0] 0x00 R Timer count byte. Contains the current value of the 8-bit counter. Not Recommended for New Designs CC2430 Peripherals : 8-bit timers, Timer 3 and Timer 4 CC2430 Data Sheet (rev. 2.1) SWRS036F Page 119 of 211 T3CTL (0xCB) – Timer 3 Control Bit Name Reset R/W Description Prescaler divider value. Generates the active clock edge used to clock the timer from CLKCON.TICKSPD as follows: 000 Tick frequency /1 001 Tick frequency /2 010 Tick frequency /4 011 Tick frequency /8 100 Tick frequency /16 101 Tick frequency /32 110 Tick frequency /64 7:5 DIV[2:0] 000 R/W 111 Tick frequency /128 4 START 0 R/W Start timer. Normal operation when set, suspended when cleared 3 OVFIM 1 R/W0 Overflow interrupt mask 0 : interrupt is disabled 1 : interrupt is enabled 2 CLR 0 R0/W1 Clear counter. Writing high resets counter to 0x00 Timer 3 mode. Select the mode as follows: 00 Free running, repeatedly count from 0x00 to 0xFF 01 Down, count from T3CC0 to 0x00 10 Modulo, repeatedly count from 0x00 to T3CC0 1:0 MODE[1:0] 00 R/W 11 Up/down, repeatedly count from 0x00 to T3CC0 and down to 0x00 Not Recommended for New Designs CC2430 Peripherals : 8-bit timers, Timer 3 and Timer 4 CC2430 Data Sheet (rev. 2.1) SWRS036F Page 120 of 211 T3CCTL0 (0xCC) – Timer 3 Channel 0 Compare Control Bit Name Reset R/W Description 7 - 0 R0 Unused 6 IM 1 R/W Channel 0 interrupt mask 0 : interrupt is disabled 1 : interrupt is enabled Channel 0 compare output mode select. Specified action on output when timer value equals compare value in T3CC0 000 Set output on compare 001 Clear output on compare 010 Toggle output on compare 011 Set output on compare-up, clear on 0 (clear on comparedown in up/down mode) 100 Clear output on compare-up, set on 0 (set on comparedown in up/down mode) 101 Set output on compare, clear on 0xFF 110 Clear output on compare, set on 0x00 5:3 CMP[2:0] 000 R/W 111 Not used Mode. Select Timer 3 channel 0 compare mode 0 Compare disabled 2 MODE 0 R/W 1 Compare enable 1:0 - 00 R/W Reserved. Set to 00. T3CC0 (0xCD) – Timer 3 Channel 0 Compare Value Bit Name Reset R/W Description 7:0 VAL[7:0] 0x00 R/W Timer compare value channel 0 Not Recommended for New Designs CC2430 Peripherals : 8-bit timers, Timer 3 and Timer 4 CC2430 Data Sheet (rev. 2.1) SWRS036F Page 121 of 211 T3CCTL1 (0xCE) – Timer 3 Channel 1 Compare Control Bit Name Reset R/W Description 7 - 0 R0 Unused 6 IM 1 R/W Channel 1 interrupt mask 0 : interrupt is disabled 1 : interrupt is enabled Channel 1 compare output mode select. Specified action on output when timer value equals compare value in T3CC1 000 Set output on compare 001 Clear output on compare 010 Toggle output on compare 011 Set output on compare-up, clear on 0 (clear on comparedown in up/down mode) 100 Clear output on compare-up, set on 0 (set on comparedown in up/down mode) 101 Set output on compare, clear on T3CC0 110 Clear output on compare, set on T3CC0 5:3 CMP[2:0] 000 R/W 111 Not used Mode. Select Timer 3 channel 1 compare mode 0 Compare disabled 2 MODE 0 R/W 1 Compare enabled 1:0 - 00 R/W Reserved. Set to 00. T3CC1 (0xCF) – Timer 3 Channel 1 Compare Value Bit Name Reset R/W Description 7:0 VAL[7:0] 0x00 R/W Timer compare value channel 1 T4CNT (0xEA) – Timer 4 Counter Bit Name Reset R/W Description 7:0 CNT[7:0] 0x00 R Timer count byte. Contains the current value of the 8-bit counter. Not Recommended for New Designs CC2430 Peripherals : 8-bit timers, Timer 3 and Timer 4 CC2430 Data Sheet (rev. 2.1) SWRS036F Page 122 of 211 T4CTL (0xEB) – Timer 4 Control Bit Name Reset R/W Description Prescaler divider value. Generates the active clock edge used to clock the timer from CLKCON.TICKSPD as follows: 000 Tick frequency /1 001 Tick frequency /2 010 Tick frequency /4 011 Tick frequency /8 100 Tick frequency /16 101 Tick frequency /32 110 Tick frequency /64 7:5 DIV[2:0] 000 R/W 111 Tick frequency /128 4 START 0 R/W Start timer. Normal operation when set, suspended when cleared 3 OVFIM 1 R/W0 Overflow interrupt mask 2 CLR 0 R0/W1 Clear counter. Writing high resets counter to 0x00 Timer 4 mode. Select the mode as follows: 00 Free running, repeatedly count from 0x00 to 0xFF 01 Down, count from T4CC0 to 0x00 10 Modulo, repeatedly count from 0x00 to T4CC0 1:0 MODE[1:0] 00 R/W 11 Up/down, repeatedly count from 0x00 to T4CC0 and down to 0x00 Not Recommended for New Designs CC2430 Peripherals : 8-bit timers, Timer 3 and Timer 4 CC2430 Data Sheet (rev. 2.1) SWRS036F Page 123 of 211 T4CCTL0 (0xEC) – Timer 4 Channel 0 Compare Control Bit Name Reset R/W Description 7 - 0 R0 Unused 6 IM 1 R/W Channel 0 interrupt mask Channel 0 compare output mode select. Specified action on output when timer value equals compare value in T4CC0 000 Set output on compare 001 Clear output on compare 010 Toggle output on compare 011 Set output on compare-up, clear on 0 (clear on comparedown in up/down mode) 100 Clear output on compare-up, set on 0 (set on comparedown in up/down mode) 101 Set output on compare, clear on 0x00 110 Clear output on compare, set on 0x00 5:3 CMP[2:0] 000 R/W 111 Not used Mode. Select Timer 4 channel 0 compare mode 0 Compare disabled 2 MODE 0 R/W 1 Compare enabled 1:0 - 00 R/W Reserved. Set to oo T4CC0 (0xED) – Timer 4 Channel 0 Compare Value Bit Name Reset R/W Description 7:0 VAL[7:0] 0x00 R/W Timer compare value channel 0 Not Recommended for New Designs CC2430 Peripherals : 8-bit timers, Timer 3 and Timer 4 CC2430 Data Sheet (rev. 2.1) SWRS036F Page 124 of 211 T4CCTL1 (0xEE) – Timer 4 Channel 1 Compare Control Bit Name Reset R/W Description 7 - 0 R0 Unused 6 IM 1 R/W Channel 1 interrupt mask Channel 1 compare output mode select. Specified action on output when timer value equals compare value in T4CC1 000 Set output on compare 001 Clear output on compare 010 Toggle output on compare 011 Set output on compare-up, clear on 0 (clear on comparedown in up/down mode) 100 Clear output on compare-up, set on 0 (set on comparedown in up/down mode) 101 Set output on compare, clear on T4CC0 110 Clear output on compare, set on T4CC0 5:3 CMP[2:0] 000 R/W 111 Not used Mode. Select Timer 4 channel 1 compare mode 0 Compare disabled 2 MODE 0 R/W 1 Compare enabled 1:0 - 00 R/W Reserved. Set to 00. T4CC1 (0xEF) – Timer 4 Channel 1 Compare Value Bit Name Reset R/W Description 7:0 VAL[7:0] 0x00 R/W Timer compare value channel 1 Not Recommended for New Designs CC2430 Peripherals : 8-bit timers, Timer 3 and Timer 4 CC2430 Data Sheet (rev. 2.1) SWRS036F Page 125 of 211 TIMIF (0xD8) – Timers 1/3/4 Interrupt Mask/Flag Bit Name Reset R/W Description 7 - 0 R0 Unused 6 OVFIM 1 R/W Timer 1 overflow interrupt mask 5 T4CH1IF 0 R/W0 Timer 4 channel 1 interrupt flag 0 : no interrupt is pending 1 : interrupt is pending 4 T4CH0IF 0 R/W0 Timer 4 channel 0 interrupt flag 0 : no interrupt is pending 1 : interrupt is pending 3 T4OVFIF 0 R/W0 Timer 4 overflow interrupt flag 0 : no interrupt is pending 1 : interrupt is pending 2 T3CH1IF 0 R/W0 Timer 3 channel 1 interrupt flag 0 : no interrupt is pending 1 : interrupt is pending 1 T3CH0IF 0 R/W0 Timer 3 channel 0 interrupt flag 0 : no interrupt is pending 1 : interrupt is pending 0 T3OVFIF 0 R/W0 Timer 3 overflow interrupt flag 0 : no interrupt is pending 1 : interrupt is pending Not Recommended for New Designs CC2430 Peripherals : Sleep Timer CC2430 Data Sheet (rev. 2.1) SWRS036F Page 126 of 211 13.9 Sleep Timer The Sleep timer is used to set the period between when the system enters and exits low-power sleep modes. The Sleep timer is also used to maintain timing in Timer 2 (MAC Timer) when entering a lowpower sleep mode. The main features of the Sleep timer are the following: • 24-bit timer up-counter operating at 32kHz clock • 24-bit compare • Low-power mode operation in PM2 • Interrupt and DMA trigger 13.9.1 Timer Operation This section describes the operation of the timer. 13.9.1.1 General The Sleep timer is a 24-bit timer running on the 32kHz clock (either RC or XOSC). The timer starts running immediately after a reset and continues to run uninterrupted. The current value of the timer can be read from the SFR registers ST2:ST1:ST0. 13.9.1.2 Timer Compare A timer compare occurs when the timer value is equal to the 24-bit compare value. The compare value is set by writing to the registers ST2:ST1:ST0. When a timer compare occurs the interrupt flag STIF is asserted. The interrupt enable bit for the ST interrupt is IEN0.STIE and the interrupt flag is IRCON.STIF. When operating in all power modes except PM3 the Sleep timer will be running. In PM1 and PM2 the Sleep timer compare event is used to wake up the device and return to active operation in PM0. The default value of the compare value after reset is 0xFFFFFF. Note that before entering PM2 one should wait for ST0 to change after setting new compare value. The Sleep timer compare can also be used as a DMA trigger (DMA trigger 11 in Table 41). Note that if supply voltage drops below 2V while being in PM2, the sleep interval might be affected. 13.9.1.3 Sleep Timer Registers The registers used by the Sleep Timer are: • ST2 – Sleep Timer 2 • ST1 – Sleep Timer 1 • ST0 – Sleep Timer 0 ST2 (0x97) – Sleep Timer 2 Bit Name Reset R/W Description 7:0 ST2[7:0] 0x00 R/W Sleep timer count/compare value. When read, this register returns the high bits [23:16] of the sleep timer count. When writing this register sets the high bits [23:16] of the compare value. The value read is latched at the time of reading register ST0. The value written is latched when ST0 is written. ST1 (0x96) – Sleep Timer 1 Bit Name Reset R/W Description 7:0 ST1[7:0] 0x00 R/W Sleep timer count/compare value. When read, this register returns the middle bits [15:8] of the sleep timer count. When writing this register sets the middle bits [15:8] of the compare value. The value read is latched at the time of reading register ST0. The value written is latched when ST0 is written. Not Recommended for New Designs CC2430 Peripherals : Sleep Timer CC2430 Data Sheet (rev. 2.1) SWRS036F Page 127 of 211 ST0 (0x95) – Sleep Timer 0 Bit Name Reset R/W Description 7:0 ST0[7:0] 0x00 R/W Sleep timer count/compare value. When read, this register returns the low bits [7:0] of the sleep timer count. When writing this register sets the low bits [7:0] of the compare value. Not Recommended for New Designs CC2430 Peripherals : ADC CC2430 Data Sheet (rev. 2.1) SWRS036F Page 128 of 211 13.10 ADC 13.10.1 ADC Introduction The ADC supports up to 12-bit analog-todigital conversion. The ADC includes an analog multiplexer with up to eight individually configurable channels, reference voltage generator and conversion results written to memory through DMA. Several modes of operation are available. The main features of the ADC are as follows: • Selectable decimation rates which also sets the resolution (7 to 12 bits). • Eight individual input channels, singleended or differential • Reference voltage selectable as internal, external single ended, external differential or AVDD_SOC. • Interrupt request generation • DMA triggers at end of conversions • Temperature sensor input • Battery measurement capability input mux Sigma-delta modulator Decimation filter Clock generation and control AIN0 AIN7 . . . ref mux VDD/3 TMP_SENSOR Int 1.25V AIN7 AVDD AIN6-AIN7 Figure 26: ADC block diagram. 13.10.2 ADC Operation This section describes the general setup and operation of the ADC and describes the usage of the ADC control and status registers accessed by the CPU. 13.10.2.1 ADC Core The ADC includes an ADC capable of converting an analog input into a digital representation with up to 12 bits resolution. The ADC uses a selectable positive reference voltage. 13.10.2.2 ADC Inputs The signals on the P0 port pins can be used as ADC inputs. In the following these port pin will be referred to as the AIN0-AIN7 pins. The input pins AIN0-AIN7 are connected to the ADC. The ADC can be set up to automatically perform a sequence of conversions and optionally perform an extra conversion from any channel when the sequence is completed. It is possible to configure the inputs as singleended or differential inputs. In the case where differential inputs are selected, the differential inputs consist of the input pairs AIN0-1, AIN2- 3, AIN4-5 and AIN6-7. Note that no negative supply can be applied to these pins, nor a supply larger than VDD (unregulated power). It is the difference between the pairs that are converted in differential mode. In addition to the input pins AIN0-AIN7, the output of an on-chip temperature sensor can be selected as an input to the ADC for temperature measurements. Not Recommended for New Designs CC2430 Peripherals : ADC CC2430 Data Sheet (rev. 2.1) SWRS036F Page 129 of 211 It is also possible to select a voltage corresponding to AVDD_SOC/3 as an ADC input. This input allows the implementation of e.g. a battery monitor in applications where this feature is required. Alle these input configurations are controlled by the register ADCCON2.SCH 13.10.2.3 ADC conversion sequences The ADC can perform a sequence of conversions, and move the results to memory (through DMA) without any interaction from the CPU. The conversion sequence can be influenced with the ADCCFG register (see section 13.4.6.6 on page 81) in that the eight analog inputs to the ADC comes from IO pins that are not necessarily programmed to be analog inputs. If a channel should normally be part of a sequence, but the corresponding analog input is disabled in the ADCCFG, then that channel will be skipped. For channels 8 to 12, both input pins must be enabled. The ADCCON2.SCH register bits are used to define an ADC conversion sequence, from the ADC inputs. A conversion sequence will contain a conversion from each channel from 0 up to and including the channel number programmed in ADCCON2.SCH when ADCCON2.SCH is set to a value less than 8. The single-ended inputs AIN0 to AIN7 are represented by channel numbers 0 to 7 in ADCCON2.SCH. Channel numbers 8 to 11 represent the differential inputs consisting of AIN0-AIN1, AIN2-AIN3, AIN4-AIN5 and AIN6- AIN7. Channel numbers 12 to 15 represent GND, internal voltage reference, temperature sensor and AVDD_SOC/3, respectively. When ADCCON2.SCH is set to a value between 8 and 12, the sequence will start at channel 8. For even higher settings, only single conversions are performed. In addition to this sequence of conversions, the ADC can be programmed to perform a single conversion from any channel as soon as the sequence has completed. This is called an extra conversion and is controlled with the ADCCON3 register. 13.10.2.4 ADC Operating Modes This section describes the operating modes and initialization of conversions. The ADC has three control registers: ADCCON1, ADCCON2 and ADCCON3. These registers are used to configure the ADC and to report status. The ADCCON1.EOC bit is a status bit that is set high when a conversion ends and cleared when ADCH is read. The ADCCON1.ST bit is used to start a sequence of conversions. A sequence will start when this bit is set high, ADCCON1.STSEL is 11 and no conversion is currently running. When the sequence is completed, this bit is automatically cleared. The ADCCON1.STSEL bits select which event that will start a new sequence of conversions. The options which can be selected are rising edge on external pin P2_0, end of previous sequence, a Timer 1 channel 0 compare event or ADCCON1.ST is 1. The ADCCON2 register controls how the sequence of conversions is performed. ADCCON2.SREF is used to select the reference voltage. The reference voltage should only be changed when no conversion is running. The ADCCON2.SDIV bits select the decimation rate (and thereby also the resolution and time required to complete a conversion and sample rate). The decimation rate should only be changed when no conversion is running. The last channel of a sequence is selected with the ADCCON2.SCH bits. The ADCCON3 register controls the channel number, reference voltage and decimation rate for the extra conversion. The extra conversion will take place immediately after the ADCCON3 register is updated. The coding of the register bits is exactly as for ADCCON2. 13.10.2.5 ADC Conversion Results The digital conversion result is represented in two's complement form. For single ended configurations the result is always positive. This is because the result is the difference between ground and input signal which is always possivitely signed (Vconv=Vinp-Vinn, Not Recommended for New Designs CC2430 Peripherals : ADC CC2430 Data Sheet (rev. 2.1) SWRS036F Page 130 of 211 where Vinn=0V). The maximum value is reached when the input amplitude is equal VREF, the selected voltage reference. For differential configurations the difference between two pin pairs are converted and this differense can be negatively signed. For 12-bit resolution the digital conversion result is 2047 when the analog input, Vconv, is equal to VREF, and the conversion result is -2048 when the analog input is equal to –VREF. The digital conversion result is available in ADCH and ADCL when ADCCON1.EOC is set to 1. Note that the conversion result always resides in MSB section of combined ADCH and ADCL registers. When the ADCCON2.SCH bits are read, they will indicate the channel above the channel which the conversion result in ADCL and ADCH apply to. E.g. reading the value 0x1 from ADCCON2.SCH, means that the available conversion result is from input AIN0. 13.10.2.6 ADC Reference Voltage The positive reference voltage for analog-todigital conversions is selectable as either an internally generated 1.25V voltage, the AVDD_SOC pin, an external voltage applied to the AIN7 input pin or a differential voltage applied to the AIN6-AIN7 inputs. It is possible to select the reference voltage as the input to the ADC in order to perform a conversion of the reference voltage e.g. for calibration purposes. Similarly, it is possible to select the ground terminal GND as an input. 13.10.2.7 ADC Conversion Timing The ADC should be run when on the 32MHz system clock, which is divided by 8 to give a 4 MHz clock. Both the delta sigma modulator and decimation filter expect 4 MHz clock for their calculations. Using other frequencies will affect the results, and conversion time. All data presented within this data sheet are from 32MHz system clock usage. The time required to perform a conversion depends on the selected decimation rate. When the decimation rate is set to for instance 128, the decimation filter uses exactly 128 of the 4 MHz clock periods to calculate the result. When a conversion is started, the input multiplexer is allowed 16 4 MHz clock cycles to settle in case the channel has been changed since the previous conversion. The 16 clock cycles settling time applies to all decimation rates. Thus in general, the conversion time is given by: Tconv = (decimation rate + 16) x 0.25 μs. 13.10.2.8 ADC Interrupts The ADC will generate an interrupt when an extra conversion has completed. An interrupt is not generated when a conversion from the sequence is completed. 13.10.2.9 ADC DMA Triggers The ADC will generate a DMA trigger every time a conversion from the sequence has completed. When an extra conversion completes, no DMA trigger is generated. There is one DMA trigger for each of the eight channels defined by the first eight possible settings for ADCCON2.SCH . The DMA trigger is active when a new sample is ready from the conversion for the channel. The DMA triggers are named ADC_CHsd in Table 41 on page 94, where s is single ended channel and d is differential channel. In addition there is one DMA trigger, ADC_CHALL, which is active when new data is ready from any of the channels in the ADC conversion sequence. 13.10.2.10 ADC Registers This section describes the ADC registers. ADCL (0xBA) – ADC Data Low Bit Name Reset R/W Description 7:2 ADC[5:0] 0x00 R Least significant part of ADC conversion result. 1:0 - 00 R0 Not used. Always read as 0 Not Recommended for New Designs CC2430 Peripherals : ADC CC2430 Data Sheet (rev. 2.1) SWRS036F Page 131 of 211 ADCH (0xBB) – ADC Data High Bit Name Reset R/W Description 7:0 ADC[13:6] 0x00 R Most significant part of ADC conversion result. ADCCON1 (0xB4) – ADC Control 1 Bit Name Reset R/W Description 7 EOC 0 R H0 End of conversion Cleared when ADCH has been read. If a new conversion is completed before the previous data has been read, the EOC bit will remain high. 0 conversion not complete 1 conversion completed 6 ST 0 R/W1 Start conversion. Read as 1 until conversion has completed 0 no conversion in progress 1 start a conversion sequence if ADCCON1.STSEL = 11 and no sequence is running. 5:4 STSEL[1:0] 11 R/W Start select. Selects which event that will start a new conversion sequence. 00 External trigger on P2_0 pin. 01 Full speed. Do not wait for triggers. 10 Timer 1 channel 0 compare event 11 ADCCON1.ST = 1 3:2 RCTRL[1:0] 00 R/W Controls the 16 bit random number generator. When written 01, the setting will automatically return to 00 when operation has completed. 00 Normal operation. (13x unrolling) 01 Clock the LFSR once (no unrolling). 10 Reserved 11 Stopped. Random number generator is turned off. 1:0 - 11 R/W Reserved. Always set to 11. Not Recommended for New Designs CC2430 Peripherals : ADC CC2430 Data Sheet (rev. 2.1) SWRS036F Page 132 of 211 ADCCON2 (0xB5) – ADC Control 2 Bit Name Reset R/W Description Selects reference voltage used for the sequence of conversions 00 Internal 1.25V reference 01 External reference on AIN7 pin 10 AVDD_SOC pin 7:6 SREF[1:0] 00 R/W 11 External reference on AIN6-AIN7 differential input Sets the decimation rate for channels included in the sequence of conversions. The decimation rate also determines the resolution and time required to complete a conversion. 00 64 decimation rate (7 bits resolution) 01 128 decimation rate (9 bits resolution) 10 256 decimation rate (10 bits resolution) 5:4 SDIV[1:0] 01 R/W 11 512 decimation rate (12 bits resolution) Sequence Channel Select. Selects the end of the sequence. A sequence can either be from AIN0 to AIN7 (SCH<=7) or from the differential input AIN0-AIN1 to AIN6-AIN7 (8<=SCH<=11). For other settings, only single conversions are performed. When read, these bits will indicate the channel number plus one of current conversion result. 0000 AIN0 0001 AIN1 0010 AIN2 0011 AIN3 0100 AIN4 0101 AIN5 0110 AIN6 0111 AIN7 1000 AIN0-AIN1 1001 AIN2-AIN3 1010 AIN4-AIN5 1011 AIN6-AIN7 1100 GND 1101 Positive voltage reference 1110 Temperature sensor 3:0 SCH[3:0] 0000 R/W 1111 VDD/3 Not Recommended for New Designs CC2430 Peripherals : ADC CC2430 Data Sheet (rev. 2.1) SWRS036F Page 133 of 211 ADCCON3 (0xB6) – ADC Control 3 Bit Name Reset R/W Description Selects reference voltage used for the extra conversion 00 Internal 1.25V reference 01 External reference on AIN7 pin 10 AVDD_SOC pin 7:6 EREF[1:0] 00 R/W 11 External reference on AIN6-AIN7 differential input Sets the decimation rate used for the extra conversion. The decimation rate also determines the resolution and time required to complete the conversion. 00 64 dec rate (7 bits resolution) 01 128 dec rate (9 bits resolution) 10 256 dec rate (10 bits resolution) 5:4 EDIV[1:0] 00 R/W 11 512 dec rate (12 bits resolution) Extra channel select. Selects the channel number of the extra conversion that is carried out after a conversion sequence has ended. This bit field must be written for an extra conversion to be performed. If the ADC is not running, writing to these bits will trigger an immediate single conversion from the selected extra channel. The bits are automatically cleared when the extra conversion has finished. 0000 AIN0 0001 AIN1 0010 AIN2 0011 AIN3 0100 AIN4 0101 AIN5 0110 AIN6 0111 AIN7 1000 AIN0-AIN1 1001 AIN2-AIN3 1010 AIN4-AIN5 1011 AIN6-AIN7 1100 GND 1101 Positive voltage reference 1110 Temperature sensor 3:0 ECH[3:0] 0000 R/W 1111 VDD/3 Not Recommended for New Designs CC2430 Peripherals : Random Number Generator CC2430 Data Sheet (rev. 2.1) SWRS036F Page 134 of 211 13.11 Random Number Generator 13.11.1 Introduction The random number generator has the following features. • Generate pseudo-random bytes which can be read by the CPU or used directly by the Command Strobe Processor (see section 14.34). • Calculate CRC16 of bytes that are written to RNDH. • Seeded by value written to RNDL. The random number generator is a 16-bit Linear Feedback Shift Register (LFSR) with polynomial X 16 + X 15 + X 2 +1 (i.e. CRC16). It uses different levels of unrolling depending on the operation it performs. The basic version (no unrolling) is shown in Figure 27. The random number generator is turned off when ADCCON1.RCTRL= 11. 15 + 14 13 12 11 10 9 8 7 6 5 4 3 2 + 1 0 in_bit + Figure 27: Basic structure of the Random Number Generator 13.11.2 Random Number Generator Operation The operation of the random number generator is controlled by the ADCCON1.RCTRL bits. The current value of the 16-bit shift register in the LFSR can be read from the RNDH and RNDL registers. 13.11.2.1 Semi random sequence generation The default operation (ADCCON1.RCTRL is 00) is to clock the LFSR once (13x unrolling) each time the Command Strobe Processor reads the random value. This leads to the availability of a fresh pseudo-random byte from the LSB end of the LFSR. Another way to update the LFSR is to set ADCCON1.RCTRL is 01. This will clock the LFSR once (no unrolling) and the ADCCON1.RCTRL bits will automatically be cleared when the operation has completed. 13.11.2.2 Seeding The LFSR can be seeded by writing to the RNDL register twice. Each time the RNDL register is written, the 8 LSB of the LFSR is copied to the 8 MSB and the 8 LSBs are replaced with the new data byte that was written to RNDL. When a true random value is required, the LFSR should be seeded by writing RNDL with random values from the IF_ADC in the RF receive path. To use this seeding method, the radio must first be powered on by enabling the voltage regulator as described in section 15.1. The radio should be placed in infinite TX state, to avoid possible sync detect in RX state. The random values from the IF_ADC are read from the RF registers ADCTSTH and ADCTSTL (see page 196). The values read are used as the seed values to be written to the RNDL register as described above. Note that this can not be done while radio is in use for normal tasks. 13.11.2.3 CRC16 The LFSR can also be used to calculate the CRC value of a sequence of bytes. Writing to the RNDH register will trigger a CRC calculation. The new byte is processed from the MSB end and an 8x unrolling is used, so that a new byte can be written to RNDH every clock cycle. Note that the LFSR must be properly seeded by writing to RNDL, before the CRC calculations start. Usually the seed value should be 0x0000 or 0xFFFF. Not Recommended for New Designs CC2430 Peripherals : Random Number Generator CC2430 Data Sheet (rev. 2.1) SWRS036F Page 135 of 211 13.11.3 Random Number Generator Registers This section describes the Random Number Generator registers. RNDL (0xBC) – Random Number Generator Data Low Byte Bit Name Reset R/W Description [7:0] RNDL[7:0] 0xFF R/W Random value/seed or CRC result, low byte When used for random number generation writing this register twice will seed the random number generator. Writing to this register copies the 8 LSBs of the LFSR to the 8 MSBs and replaces the 8 LSBs with the data value written. The value returned when reading from this register is the 8 LSBs of the LSFR. When used for random number generation, reading this register returns the 8 LSBs of the random number. When used for CRC calculations, reading this register returns the 8 LSBs of the CRC result. RNDH (0xBD) – Random Number Generator Data High Byte Bit Name Reset R/W Description [7:0] RNDH[7:0] 0xFF R/W Random value or CRC result/input data, high byte When written, a CRC16 calculation will be triggered, and the data value written is processed starting with the MSB bit. The value returned when reading from this register is the 8 MSBs of the LSFR. When used for random number generation, reading this register returns the 8 MSBs of the random number. When used for CRC calculations, reading this register returns the 8 MSBs of the CRC result. Not Recommended for New Designs CC2430 Peripherals : AES Coprocessor CC2430 Data Sheet (rev. 2.1) SWRS036F Page 136 of 211 13.12 AES Coprocessor The CC2430 data encryption is performed using a dedicated coprocessor which supports the Advanced Encryption Standard, AES. The coprocessor allows encryption/decryption to be performed with minimal CPU usage. The coprocessor has the following features: • Supports all security suites in IEEE 802.15.4 • ECB, CBC, CFB, OFB, CTR and CBCMAC modes. • Hardware support for CCM mode • 128-bits key and IV/Nonce • DMA transfer trigger capability 13.12.1 AES Operation To encrypt a message, the following procedure must be followed (ECB, CBC): • Load key • Load initialization vector (IV) • Download and upload data for encryption/decryption. The AES coprocessor works on blocks of 128 bits. A block of data is loaded into the coprocessor, encryption is performed and the result must be read out before the next block can be processed. Before each block load, a dedicated start command must be sent to the coprocessor. 13.12.2 Key and IV Before a key or IV/nonce load starts, an appropriate load key or IV/nonce command must be issued to the coprocessor. When loading the IV it is important to also set the correct mode. A key load or IV load operation aborts any processing that could be running. The key, once loaded, stays valid until a key reload takes place. The IV must be downloaded before the beginning of each message (not block). Both key and IV values are cleared by a reset of the device. 13.12.3 Padding of input data The AES coprocessor works on blocks of 128 bits. If the last block contains less than 128 bits, it must be padded with zeros when written to the coprocessor. 13.12.4 Interface to CPU The CPU communicates with the coprocessor using three SFR registers: • ENCCS, Encryption control and status register • ENCDI, Encryption input register • ENCDO, Encryption output register Read/write to the status register is done directly by the CPU, while access to the input/output registers should be performed using direct memory access (DMA). When using DMA with AES coprosessor, two DMA channels must be used, one for input data and one for output data. The DMA channels must be initialized before a start command is written to the ENCCS. Writing a start command generates a DMA trigger and the transfer is started. After each block is processed, an interrupt is generated. The interrupt is used to issue a new start command to the ENCCS. 13.12.5 Modes of operation When using CFB, OFB and CTR mode, the 128 bits blocks are divided into four 32 bit blocks. 32 bits are loaded into the AES coprocessor and the resulting 32 bits are read out. This continues until all 128 bits have been encrypted. The only time one has to consider this is if data is loaded/read directly using the CPU. When using DMA, this is handled automatically by the DMA triggers generated by the AES coprocessor, thus DMA is preferred. Both encryption and decryption are performed similarly. The CBC-MAC mode is a variant of the CBC mode. When performing CBC-MAC, data is downloaded to the coprocessor one 128 bits block at a time, except for the last block. Before the last block is loaded, the mode must Not Recommended for New Designs CC2430 Peripherals : AES Coprocessor CC2430 Data Sheet (rev. 2.1) SWRS036F Page 137 of 211 be changed to CBC. The last block is then downloaded and the block uploaded will be the MAC value. CCM is a combination of CBC-MAC and CTR. Parts of the CCM must therefore be done in software. The following section gives a short explanation of the necessary steps to be done. 13.12.5.1 CBC-MAC When performing CBC-MAC encryption, data is downloaded to the coprocessor in CBCMAC mode one block at a time, except for the last block. Before the last block is loaded, the mode is changed to CBC. The last block is downloaded and the block uploaded is the message MAC. CBC-MAC decryption is similar to encryption. The message MAC uploaded must be compared with the MAC to be verified. 13.12.5.2 CCM mode To encrypt a message under CCM mode, the following sequence can be conducted (key is already loaded): Message Authentication Phase This phase takes place during steps 1-6 shown in the following. (1) The software loads the IV with zeros. (2) The software creates the block B0. The layout of block B0 is shown in Figure 28. Name B0 Designation First block for authentication in CCM mode Byte 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Name Flag NONCE L_M Figure 28: Message Authentication Phase Block 0 There is no restriction on the NONCE value. L_M is the message length in bytes. For 802.15.4 the NONCE is 13 bytes and L_M is 2 bytes. The content of the Authentication Flag byte is described in Figure 29. L is set to 6 in this example. So, L-1 is set to 5. M and A_Data can be set to any value. Name FLAG/B0 Designation Authentication Flag Field for CCM mode Bit 7 6 5 4 3 2 1 0 Name Reserved A_Data (M-2)/2 L-1 Value 0 x x x x 1 0 1 Figure 29: Authentication Flag Byte (3) If some Additional Authentication Data (denoted a below) is needed (that is A_Data =1), the software creates the A_Data length field, called L(a) by : • (3a) If l(a)=0, (that is A_Data =0), then L(a) is the empty string. Note that l(a) is the length of a in octets. • (3b) If 0 < l(a) < 216 - 28 , then L(a) is the 2- octets encoding of l(a). The Additional Authentication Data is appended to the A_Data length field L(a). The Additional Authentication Blocks is padded with zeros until the last Additional Authentication Block is full. There is no restriction on the length of a. AUTH-DATA = L(a) + Authentication Data + (zero padding) (4) The last block of the message is padded with zeros until full (that is if its length is not a multiple of 128 bits). (5) The software concatenates the block B0, the Additional Authentication Blocks if any, and the message; Input message = B0 + AUTH-DATA + Message + (zero padding of message) (6) Once the input message authentication by CBC-MAC is finished, the software leaves the uploaded buffer contents unchanged (M=16), or keeps only the buffer’s higher M bytes Not Recommended for New Designs CC2430 Peripherals : AES Coprocessor CC2430 Data Sheet (rev. 2.1) SWRS036F Page 138 of 211 unchanged, while setting the lower bits to 0 (M != 16). The result is called T. Message Encryption (7) The software creates the key stream block A0. Note that L=6, with the current example of the CTR generation. The content is shown in Figure 30. Note that when encrypting authentication data T to generate U in OFB mode, the CTR value must be zero. When encrypting message blocks using CTR mode, CTR value must be any value but zero. The content of the Encryption Flag byte is described in Figure 31. Name A0 Designation First CTR value for CCM mode Byte 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Name Flag NONCE CTR Figure 30: Message Encryption Phase Block Name FLAG/A0 Designation Encryption Flag Field for CCM mode Bit 7 6 5 4 3 2 1 0 Name Reserved - L-1 Value 0 0 0 0 0 1 0 1 Figure 31: Encryption Flag Byte Message Encryption (cont.) (8) The software loads A0 by selecting a Load IV/Nonce command. To do so, it sets Mode to CFB or OFB at the same time it selects the Load IV/Nonce command. (9) The software calls a CFB or an OFB encryption on the authenticated data T. The uploaded buffer contents stay unchanged (M=16), or only its first M bytes stay unchanged, the others being set to 0 (M-16). The result is U, which will be used later. (10) The software calls a CTR mode encryption right now on the still padded message blocks. It has to reload the IV when CTR value is any value but zero. (11) The encrypted authentication data U is appended to the encrypted message. This gives the final result, c. Result c = encrypted message(m) + U Message Decryption CCM Mode decryption In the coprocessor, the automatic generation of CTR works on 32 bits, therefore the maximum length of a message is 128 x 232 bits, that is 236 bytes, which can be written in a six-bit word. So, the value L is set to 6. To decrypt a CCM mode processed message, the following sequence can be conducted (key is already loaded): Message Parsing Phase (1) The software parses the message by separating the M rightmost octets, namely U, and the other octets, namely string C. (2) C is padded with zeros until it can fill an integer number of 128-bit blocks; (3) U is padded with zeros until it can fill a 128- bit block. (4) The software creates the key stream block A0. It is done the same way as for CCM encryption. (5) The software loads A0 by selecting a Load IV/Nonce command. To do so, it sets Mode to CFB or OFB at the same time as it selects the IV load. (6) The software calls a CFB or an OFB encryption on the encrypted authenticated data U. The uploaded buffer contents stay unchanged (M=16), or only its first M bytes stay unchanged, the others being set to 0 (M!=16). The result is T. Not Recommended for New Designs CC2430 Peripherals : AES Coprocessor CC2430 Data Sheet (rev. 2.1) SWRS036F Page 139 of 211 (7) The software calls a CTR mode decryption right now on the encrypted message blocks C. It does not have to reload the IV/CTR. Reference Authentication tag generation This phase is identical to the Authentication Phase of CCM encryption. The only difference is that the result is named MACTag (instead of T). Message Authentication checking Phase The software compares T with MACTag. 13.12.6 Sharing the AES coprocessor between layers The AES coprocessor is a common resource shared by all layers. The AES coprocessor can only be used by one instance one at a time. It is therefore necessary to implement some kind of software semaphore to allocate and deallocate the resource. 13.12.7 AES Interrupts The AES interrupt, ENC, is produced when encryption or decryption of a block is completed. The interrupt enable bit is IEN0.ENCIE and the interrupt flag is S0CON.ENCIF. 13.12.8 AES DMA Triggers There are two DMA triggers associated with the AES coprocessor. These are ENC_DW which is active when input data needs to be downloaded to the ENCDI register, and ENC_UP which is active when output data needs to be uploaded from the ENCDO register. The ENCDI and ENCDO registers should be set as destination and source locations for DMA channels used to transfer data to or from the AES coprocessor. 13.12.9 AES Registers The AES coprocessor registers have the layout shown in this section. Not Recommended for New Designs CC2430 Peripherals : AES Coprocessor CC2430 Data Sheet (rev. 2.1) SWRS036F Page 140 of 211 ENCCS (0xB3) – Encryption Control and Status Bit Name Reset R/W Description 7 - 0 R0 Not used, always read as 0 Encryption/decryption mode 000 CBC 001 CFB 010 OFB 011 CTR 100 ECB 101 CBC MAC 110 Not used 6:4 MODE[2:0] 000 R/W 111 Not used Encryption/decryption ready status 0 Encryption/decryption in progress 3 RDY 1 R 1 Encryption/decryption is completed Command to be performed when a 1 is written to ST. 00 encrypt block 01 decrypt block 10 load key 2:1 CMD[1:0] 0 R/W 11 load IV/nonce 0 ST 0 R/W1 H0 Start processing command set by CMD. Must be issued for each command or 128 bits block of data. Cleared by hardware ENCDI (0xB1) – Encryption Input Data Bit Name Reset R/W Description 7:0 DIN[7:0] 0x00 R/W Encryption input data ENCDO (0xB2) – Encryption Output Data Bit Name Reset R/W Description 7:0 DOUT[7:0] 0x00 R/W Encryption output data Not Recommended for New Designs CC2430 Peripherals : Watchdog Timer CC2430 Data Sheet (rev. 2.1) SWRS036F Page 141 of 211 13.13 Watchdog Timer The watchdog timer (WDT) is intended as a recovery method in situations where the CPU may be subjected to a software upset. The WDT shall reset the system when software fails to clear the WDT within a selected time interval. The watchdog can be used in applications that are subject to electrical noise, power glitches, electrostatic discharge etc., or where high reliability is required. If the watchdog function is not needed in an application, it is possible to configure the watchdog timer to be used as an interval timer that can be used to generate interrupts at selected time intervals. The features of the watchdog timer are as follows: • Four selectable timer intervals • Watchdog mode • Timer mode • Interrupt request generation in timer mode • Clock independent from system clock The WDT is configured as either a watchdog timer or as a timer for general-purpose use. The operation of the WDT module is controlled by the WDCTL register. The watchdog timer consists of an 15-bit counter clocked by the 32.768 kHz clock. Note that the contents of the 15-bit counter is not user-accessible. The contents of the 15-bit counter is reset to 0x0000 when power modes PM2 or PM3 is entered. 13.13.1 Watchdog mode The watchdog timer is disabled after a system reset. To set the WDT in watchdog mode the WDCTL.MODE bit is set to 0. The watchdog timer counter starts incrementing when the enable bit WDCTL.EN is set to 1. When the timer is enabled in watchdog mode it is not possible to disable the timer. Therefore, writing a 0 to WDCTL.EN has no effect if a 1 was already written to this bit when WDCTL.MODE was 0. The WDT operates with a watchdog timer clock frequency of 32.768 kHz. This clock frequency gives time-out periods equal to 1.9 ms, 15.625 ms, 0.25 s and 1 s corresponding to the count value settings 64, 512, 8192 and 32768 respectively. If the counter reaches the selected timer interval value, the watchdog timer generates a reset signal for the system. If a watchdog clear sequence is performed before the counter reaches the selected timer interval value, the counter is reset to 0x0000 and continues incrementing its value. The watchdog clear sequence consists of writing 0xA to WDCTL.CLR[3:0] followed by writing 0x5 to the same register bits within one half of a watchdog clock period. If this complete sequence is not performed, the watchdog timer generates a reset signal for the system. Note that as long as a correct watchdog clear sequence begins within the selected timer interval, the counter is reset when the complete sequence has been received. When the watchdog timer has been enabled in watchdog mode, it is not possible to change the mode by writing to the WDCTL.MODE bit. The timer interval value can be changed by writing to the WDCTL.INT[1:0] bits. Note that it is recommended that user software clears the watchdog timer at the same time as the timer interval value is changed, in order to avoid an unwanted watchdog reset. In watchdog mode, the WDT does not produce an interrupt request. 13.13.2 Timer mode To set the WDT in normal timer mode, the WDCTL.MODE bit is set to 1. When register bit WDCTL.EN is set to 1, the timer is started and the counter starts incrementing. When the counter reaches the selected interval value, the timer will produce an interrupt request. In timer mode, it is possible to clear the timer contents by writing a 1 to WDCTL.CLR[0]. When the timer is cleared the contents of the counter is set to 0x0000. Writing a 0 to the enable bit WDCTL.EN stops the timer and writing 1 restarts the timer from 0x0000. The timer interval is set by the WDCTL.INT[1:0] bits. In timer mode, a reset will not be produced when the timer interval has been reached. 13.13.3 Watchdog and Power Modes In the two lowest power modes, PM2 and PM3, the watchdog is disabled and reset. After wake up it will still be enabled and configured as it was prior to entering PM2/3 mode, but Not Recommended for New Designs CC2430 Peripherals : Watchdog Timer CC2430 Data Sheet (rev. 2.1) SWRS036F Page 142 of 211 counting will start from zero. In PM1 the watchdog is still running, but it will not reset the chip while in PM1. This will not happen until it is woken up (it will wrap around and start over again when reset condition is reached). Also note that if the chip is woken in the watchdog timeout (reset condition) period the chip will be reset immediately. If woke up just prior to watchdog timeout the chip will be reset unless SW clears the watchdog immediately after waking up from PM1. As the sleep timer and the watchdog run on the same clock the watchdog timeout interval can be aligned with sleep timer interval so SW can be made able to reset the watchdog. For external interrupt wakeups the max watchdog time out period should be used and the sleep timer set so SW can be activated to clear the watchdog periodically while waiting for external interrupt events. 13.13.4 Watchdog Timer Register This section describes the register, WDCTL, for the Watchdog Timer. WDCTL (0xC9) – Watchdog Timer Control Bit Name Reset R/W Description 7:4 CLR[3:0] 0000 R/W Clear timer. When 0xA followed by 0x5 is written to these bits, the timer is loaded with 0x0. Note the timer will only be cleared when 0x5 is written within 0.5 watchdog clock period after 0xA was written. Writing to these bits when EN is 0 have no effect. Enable timer. When a 1 is written to this bit the timer is enabled and starts incrementing. Writing a 0 to this bit in timer mode stops the timer. Writing a 0 to this bit in watchdog mode has no effect. 0 Timer disabled (stop timer) 3 EN 0 R/W 1 Timer enabled Mode select. This bit selects the watchdog timer mode. 0 Watchdog mode 2 MODE 0 R/W 1 Timer mode Timer interval select. These bits select the timer interval defined as a given number of 32.768 kHz oscillator periods. 00 clock period x 32768 (typical 1 s) 01 clock period x 8192 (typical 0.25 s) 10 clock period x 512 (typical 15.625 ms) 1:0 INT[1:0] 00 R/W 11 clock period x 64 (typical 1.9 ms) Not Recommended for New Designs CC2430 Peripherals : USART CC2430 Data Sheet (rev. 2.1) SWRS036F Page 143 of 211 13.14 USART USART0 and USART1 are serial communications interfaces that can be operated separately in either asynchronous UART mode or in synchronous SPI mode. The two USARTs have identical function, and are assigned to separate I/O pins. Refer to section 13.1 for I/O configuration. 13.14.1 UART mode For asynchronous serial interfaces, the UART mode is provided. In the UART mode the interface uses a two-wire or four-wire interface consisting of the pins RXD, TXD and optionally RTS and CTS. The UART mode of operation includes the following features: • 8 or 9 data bits • Odd, even or no parity • Configurable start and stop bit level • Configurable LSB or MSB first transfer • Independent receive and transmit interrupts • Independent receive and transmit DMA triggers • Parity and framing error status The UART mode provides full duplex asynchronous transfers, and the synchronization of bits in the receiver does not interfere with the transmit function. A UART byte transfer consists of a start bit, eight data bits, an optional ninth data or parity bit, and one or two stop bits. Note that the data transferred is referred to as a byte, although the data can actually consist of eight or nine bits. The UART operation is controlled by the USART Control and Status registers, UxCSR and the UART Control register UxUCR where x is the USART number, 0 or 1. The UART mode is selected when UxCSR.MODE is set to 1. 13.14.1.1 UART Transmit A UART transmission is initiated when the USART Receive/transmit Data Buffer, UxDBUF register is written. The byte is transmitted on TXDx output pin. The UxDBUF register is double-buffered. The UxCSR.ACTIVE bit goes high when the byte transmission starts and low when it ends. When the transmission ends, the UxCSR.TX_BYTE bit is set to 1. An interrupt request is generated when the UxDBUF register is ready to accept new transmit data. This happens immediately after the transmission has been started, hence a new data byte value can be loaded into the data buffer while the byte is being transmitted. 13.14.1.2 UART Receive Data reception on the UART is initiated when a 1 is written to the UxCSR.RE bit. The UART will then search for a valid start bit on the RXDx input pin and set the UxCSR.ACTIVE bit high. When a valid start bit has been detected the received byte is shifted into the receive register. The UxCSR.RX_BYTE bit is set and a receive interrupt is generated when the operation has completed. At the same time UxCSR.ACTIVE will go low. The received data byte is available through the UxDBUF register. When UxDBUF is read, UxCSR.RX_BYTE is cleared by hardware. 13.14.1.3 UART Hardware Flow Control Hardware flow control is enabled when the UxUCR.FLOW bit is set to 1. The RTS output will then be driven low when the receive register is empty and reception is enabled. Transmission of a byte will not occur before the CTS input go low. 13.14.1.4 UART Character Format If the BIT9 and PARITY bits in register UxUCR are set high, parity generation and detection is enabled. The parity is computed and transmitted as the ninth bit, and during reception, the parity is computed and compared to the received ninth bit. If there is a parity error, the UxCSR.ERR bit is set high. This bit is cleared when UxCSR is read. The number of stop bits to be transmitted is set to one or two bits determined by the register bit UxUCR.SPB. The receiver will always check for one stop bit. If the first stop bit received during reception is not at the expected stop bit level, a framing error is signaled by setting register bit UxCSR.FE high. UxCSR.FE is cleared when UxCSR is read. Not Recommended for New Designs CC2430 Peripherals : USART CC2430 Data Sheet (rev. 2.1) SWRS036F Page 144 of 211 The receiver will check both stop bits when UxUCR.SPB is set. Note that the RX interrupt will be set when first stop bit is checked OK. If second stop bit is not OK there will be a delay in when the framing error bit, UxCSR.FE, is set. This delay is baud rate dependable (bit duration). 13.14.2 SPI Mode This section describes the SPI mode of operation for synchronous communication. In SPI mode, the USART communicates with an external system through a 3-wire or 4-wire interface. The interface consists of the pins MOSI, MISO, SCK and SS_N. Refer to section 13.1 for description of how the USART pins are assigned to the I/O pins. The SPI mode includes the following features: • 3-wire (master) and 4-wire SPI interface • Master and slave modes • Configurable SCK polarity and phase • Configurable LSB or MSB first transfer The SPI mode is selected when UxCSR.MODE is set to 0. In SPI mode, the USART can be configured to operate either as an SPI master or as an SPI slave by writing the UxCSR.SLAVE bit. 13.14.2.1 SPI Master Operation An SPI byte transfer in master mode is initiated when the UxDBUF register is written. The USART generates the SCK serial clock using the baud rate generator (see section 13.14.4) and shifts the provided byte from the transmit register onto the MOSI output. At the same time the receive register shifts in the received byte from the MISO input pin. The UxCSR.ACTIVE bit goes high when the transfer starts and low when the transfer ends. When the transfer ends, the UxCSR.TX_BYTE bit is set to 1. The polarity and clock phase of the serial clock SCK is selected by UxGCR.CPOL and UxGCR.CPHA. The order of the byte transfer is selected by the UxGCR.ORDER bit. At the end of the transfer, the received data byte is available for reading from the UxDBUF. A receive interrupt is generated when this new data is ready in the UxDBUF USART Receive/Transmit Data register. A transmit interrupt is generated when the unit is ready to accept another data byte for transmission. Since UxDBUF is doublebuffered, this happens just after the transmission has been initiated. Note that data should not be written to UxDBUF until UxCSR.TX_BYTE is 1. For DMA transfers this is handled automatically. For back-to-back transmits using DMA the UxGDR.CPHA bit must be set to zero, if not transmitted bytes can become corrupted. For systems requiring setting of UxGDR.CPHA, polling UxCSR.TX_BYTE is needed. Also note the difference between transmit interrupt and receive interrupt as the former arrives approximately 8 bit periodes prior to the latter. SPI master mode operation as described above is a 3-wire interface. No select input is used to enable the master. If the external slave requires a slave select signal this can be implemented through software using a general-purpose I/O pin. 13.14.2.2 SPI Slave Operation An SPI byte transfer in slave mode is controlled by the external system. The data on the MOSI input is shifted into the receive register controlled by the serial clock SCK which is an input in slave mode. At the same time the byte in the transmit register is shifted out onto the MISO output. The UxCSR.ACTIVE bit goes high when the transfer starts and low when the transfer ends. Then the UxCSR.RX_BYTE bit is set and a receive interrupt is generated. The expected polarity and clock phase of SCK is selected by UxGCR.CPOL and UxGCR.CPHA. The expected order of the byte transfer is selected by the UxGCR.ORDER bit. Not Recommended for New Designs CC2430 Peripherals : USART CC2430 Data Sheet (rev. 2.1) SWRS036F Page 145 of 211 At the end of the transfer, the received data byte is available for reading from UxDBUF The transmit interrupt is generated at the start of the operation. 13.14.3 SSN Slave Select Pin When the USART is operating in SPI mode, configured as an SPI slave, a 4-wire interface is used with the Slave Select (SSN) pin as an input to the SPI (edge controlled). At falling edge of SSN the SPI slave is active and receives data on the MOSI input and outputs data on the MISO output. At rising edge of SSN, the SPI slave is inactive and will not receive data. Note that the MISO output is not tri-stated after rising edge on SSn. Also note that release of SSn (rising edge) must be aligned to end of byte recived or sent. If released in a byte the next received byte will not be received properly as information about previous byte is present in SPI system. A USART flush can be used to remove this information. In SPI master mode, the SSN pin is not used. When the USART operates as an SPI master and a slave select signal is needed by an external SPI slave device, then a general purpose I/O pin should be used to implement the slave select signal function in software. 13.14.4 Baud Rate Generation An internal baud rate generator sets the UART baud rate when operating in UART mode and the SPI master clock frequency when operating in SPI mode. The UxBAUD.BAUD_M[7:0] and UxGCR.BAUD_E[4:0] registers define the baud rate used for UART transfers and the rate of the serial clock for SPI transfers. The baud rate is given by the following equation: Baudrate BAUD M F BAUD E ∗ + ∗ = 28 _ 2 (256 _ ) 2 where F is the system clock frequency, 16 MHz (calibrated RC osc.) or 32 MHz (crystal osc.). The register values required for standard baud rates are shown in Table 43 for a typical system clock set to 32 MHz. The table also gives the difference in actual baud rate to standard baud rate value as a percentage error. The maximum baud rate for UART mode is F/16 when BAUD_E is 16 and BAUD_M is 0, and where F is the system clock frequency. The maximum baud rate for SPI master mode and thus SCK frequency is F/8. This is set when BAUD_E is 17 and BAUD_M is 0. If SPI master mode does not need to receive data the maximum SPI rate is F/2 where BAUD_E is 19 and BAUD_M is 0. Setting higher baud rates than this will give erroneous results. For SPI slave mode the maximum baud rate is always F/8. Note that the baud rate must be set through the UxBAUD and registers UxGCR before any other UART or SPI operations take place. This means that the timer using this information is not updated until it has completed its start conditions, thus changing the baud rate take time. Table 43: Commonly used baud rate settings for 32 MHz system clock Baud rate (bps) UxBAUD.BAUD_M UxGCR.BAUD_E Error (%) 2400 59 6 0.14 4800 59 7 0.14 9600 59 8 0.14 14400 216 8 0.03 19200 59 9 0.14 28800 216 9 0.03 38400 59 10 0.14 57600 216 10 0.03 76800 59 11 0.14 115200 216 11 0.03 230400 216 12 0.03 Not Recommended for New Designs CC2430 Peripherals : USART CC2430 Data Sheet (rev. 2.1) SWRS036F Page 146 of 211 13.14.5 USART flushing The current operation can be aborted by setting the UxUCR.FLUSH register bit. This event will stop the current operation and clear all data buffers. It should be noted that setting the flush bit in the middle of a TX/RX bit, the flushing will not take place until this bit has ended (buffers will be cleared immediately but timer keeping knowledge of bit duration will not). Thus using the flush bit should either be aligned with USART interrupts or use a wait time of one bit duration at current baud rate before updated data or configuration can be received by the USART. 13.14.6 USART Interrupts Each USART has two interrupts. These are the RX complete interrupt (URXx) and the TX complete interrupt (UTXx). The USART interrupt enable bits are found in the IEN0 and IEN2 registers. The interrupt flags are located in the TCON and IRCON2 registers. Refer to section 11.5 on page 49 for details of these registers. The interrupt enables and flags are summarized below. Interrupt enables: • USART0 RX : IEN0.URX0IE • USART1 RX : IEN0.URX1IE • USART0 TX : IEN2.UTX0IE • USART1 TX : IEN2.UTX1IE Interrupt flags: • USART0 RX : TCON.URX0IF • USART1 RX : TCON.URX1IF • USART0 TX : IRCON2.UTX0IF • USART1 TX : IRCON2.UTX1IF 13.14.7 USART DMA Triggers There are two DMA triggers associated with each USART. The DMA triggers are activated by RX complete and TX complete events i.e. the same events as the USART interrupt requests. A DMA channel can be configured using a USART Receive/transmit buffer, UxDBUF, as source or destination address. Refer to Table 41 on page 94 for an overview of the DMA triggers. 13.14.8 USART Registers The registers for the USART are described in this section. For each USART there are five registers consisting of the following (x refers to USART number i.e. 0 or 1): • UxCSR USART x Control and Status • UxUCR USART x UART Control • UxGCR USART x Generic Control • UxDBUF USART x Receive/Transmit data buffer • UxBAUD USART x Baud Rate Control Not Recommended for New Designs CC2430 Peripherals : USART CC2430 Data Sheet (rev. 2.1) SWRS036F Page 147 of 211 U0CSR (0x86) – USART 0 Control and Status Bit Name Reset R/W Description USART mode select 0 SPI mode 7 MODE 0 R/W 1 UART mode UART receiver enable 0 Receiver disabled 6 RE 0 R/W 1 Receiver enabled SPI master or slave mode select 0 SPI master 5 SLAVE 0 R/W 1 SPI slave UART framing error status 0 No framing error detected 4 FE 0 R/W0 1 Byte received with incorrect stop bit level UART parity error status 0 No parity error detected 3 ERR 0 R/W0 1 Byte received with parity error Receive byte status. UART mode and SPI slave mode 0 No byte received 2 RX_BYTE 0 R/W0 1 Received byte ready Transmit byte status. UART mode and SPI master mode 0 Byte not transmitted 1 TX_BYTE 0 R/W0 1 Last byte written to Data Buffer register transmitted USART transmit/receive active status 0 USART idle 0 ACTIVE 0 R 1 USART busy in transmit or receive mode Not Recommended for New Designs CC2430 Peripherals : USART CC2430 Data Sheet (rev. 2.1) SWRS036F Page 148 of 211 U0UCR (0xC4) – USART 0 UART Control Bit Name Reset R/W Description 7 FLUSH 0 R0/W1 Flush unit. When set, this event will stop the current operation and return the unit to idle state. UART hardware flow enable. Selects use of hardware flow control with RTS and CTS pins 0 Flow control disabled 6 FLOW 0 R/W 1 Flow control enabled UART data bit 9 contents. This value is used when 9 bit transfer is enabled. When parity is disabled, the value written to D9 is transmitted as the bit 9 when 9 bit data is enabled. If parity is enabled then this bit sets the parity level as follows. 0 Even parity 5 D9 0 R/W 1 Odd parity UART 9-bit data enable. When this bit is 1, data is 9 bits and the content of data bit 9 is given by D9 and PARITY. 0 8 bits transfer 4 BIT9 0 R/W 1 9 bits transfer UART parity enable. 0 Parity disabled 3 PARITY 0 R/W 1 Parity enabled UART number of stop bits. Selects the number of stop bits to transmit 0 1 stop bit 2 SPB 0 R/W 1 2 stop bits UART stop bit level 0 Low stop bit 1 STOP 1 R/W 1 High stop bit UART start bit level. The polarity of the idle line is assumed the opposite of the selected start bit level. 0 Low start bit 0 START 0 R/W 1 High start bit Not Recommended for New Designs CC2430 Peripherals : USART CC2430 Data Sheet (rev. 2.1) SWRS036F Page 149 of 211 U0GCR (0xC5) – USART 0 Generic Control Bit Name Reset R/W Description SPI clock polarity 0 Negative clock polarity 7 CPOL 0 R/W 1 Positive clock polarity SPI clock phase 0 Data is output on MOSI when SCK goes from CPOL inverted to CPOL, and data input is sampled on MISO when SCK goes from CPOL to CPOL inverted. 6 CPHA 0 R/W 1 Data is output on MOSI when SCK goes from CPOL to CPOL inverted, and data input is sampled on MISO when SCK goes from CPOL inverted to CPOL. Bit order for transfers 0 LSB first 5 ORDER 0 R/W 1 MSB first 4:0 BAUD_E[4:0] 0x00 R/W Baud rate exponent value. BAUD_E along with BAUD_M decides the UART baud rate and the SPI master SCK clock frequency U0DBUF (0xC1) – USART 0 Receive/Transmit Data Buffer Bit Name Reset R/W Description 7:0 DATA[7:0] 0x00 R/W USART receive and transmit data. When writing this register the data written is written to the internal, transmit data register. When reading this register, the data from the internal read data register is read. U0BAUD (0xC2) – USART 0 Baud Rate Control Bit Name Reset R/W Description 7:0 BAUD_M[7:0] 0x00 R/W Baud rate mantissa value. BAUD_E along with BAUD_M decides the UART baud rate and the SPI master SCK clock frequency Not Recommended for New Designs CC2430 Peripherals : USART CC2430 Data Sheet (rev. 2.1) SWRS036F Page 150 of 211 U1CSR (0xF8) – USART 1 Control and Status Bit Name Reset R/W Description USART mode select 0 SPI mode 7 MODE 0 R/W 1 UART mode UART receiver enable 0 Receiver disabled 6 RE 0 R/W 1 Receiver enabled SPI master or slave mode select 0 SPI master 5 SLAVE 0 R/W 1 SPI slave UART framing error status 0 No framing error detected 4 FE 0 R/W0 1 Byte received with incorrect stop bit level UART parity error status 0 No parity error detected 3 ERR 0 R/W0 1 Byte received with parity error Receive byte status. UART mode and SPI slave mode 0 No byte received 2 RX_BYTE 0 R/W0 1 Received byte ready Transmit byte status. UART mode and SPI master mode 0 Byte not transmitted 1 TX_BYTE 0 R/W0 1 Last byte written to Data Buffer register transmitted USART transmit/receive active status 0 USART idle 0 ACTIVE 0 R 1 USART busy in transmit or receive mode Not Recommended for New Designs CC2430 Peripherals : USART CC2430 Data Sheet (rev. 2.1) SWRS036F Page 151 of 211 U1UCR (0xFB) – USART 1 UART Control Bit Name Reset R/W Description 7 FLUSH 0 R0/W1 Flush unit. When set, this event will immediately stop the current operation and return the unit to idle state. UART hardware flow enable. Selects use of hardware flow control with RTS and CTS pins 0 Flow control disabled 6 FLOW 0 R/W 1 Flow control enabled UART data bit 9 contents. This value is used 9 bit transfer is enabled. When parity is disabled, the value written to D9 is transmitted as the bit 9 when 9 bit data is enabled. If parity is enabled then this bit sets the parity level as follows. 0 Even parity 5 D9 0 R/W 1 Odd parity UART 9-bit data enable. When this bit is 1, data is 9 bits and the content of data bit 9 is given by D9 and PARITY. 0 8 bits transfer 4 BIT9 0 R/W 1 9 bits transfer UART parity enable. 0 Parity disabled 3 PARITY 0 R/W 1 Parity enabled UART number of stop bits. Selects the number of stop bits to transmit 0 1 stop bit 2 SPB 0 R/W 1 2 stop bits UART stop bit level 0 Low stop bit 1 STOP 1 R/W 1 High stop bit UART start bit level. The polarity of the idle line is assumed the opposite of the selected start bit level. 0 Low start bit 0 START 0 R/W 1 High start bit Not Recommended for New Designs CC2430 Peripherals : USART CC2430 Data Sheet (rev. 2.1) SWRS036F Page 152 of 211 U1GCR (0xFC) – USART 1 Generic Control Bit Name Reset R/W Description SPI clock polarity 0 Negative clock polarity 7 CPOL 0 R/W 1 Positive clock polarity SPI clock phase 0 Data is output on MOSI when SCK goes from CPOL inverted to CPOL, and data input is sampled on MISO when SCK goes from CPOL to CPOL inverted. 6 CPHA 0 R/W 1 Data is output on MOSI when SCK goes from CPOL to CPOL inverted, and data input is sampled on MISO when SCK goes from CPOL inverted to CPOL. Bit order for transfers 0 LSB first 5 ORDER 0 R/W 1 MSB first 4:0 BAUD_E[4:0] 0x00 R/W Baud rate exponent value. BAUD_E along with BAUD_M decides the UART baud rate and the SPI master SCK clock frequency U1DBUF (0xF9) – USART 1 Receive/Transmit Data Buffer Bit Name Reset R/W Description 7:0 DATA[7:0] 0x00 R/W USART receive and transmit data. When writing this register the data written is written to the internal, transmit data register. When reading this register, the data from the internal read data register is read. U1BAUD (0xFA) – USART 1 Baud Rate Control Bit Name Reset R/W Description 7:0 BAUD_M[7:0] 0x00 R/W Baud rate mantissa value. BAUD_E along with BAUD_M decides the UART baud rate and the SPI master SCK clock frequency Not Recommended for New Designs CC2430 Radio : USART CC2430 Data Sheet (rev. 2.1) SWRS036F Page 153 of 211 14 Radio LNA DIGITAL DEMODULATOR - Digital RSSI - Gain Control - Image Suppression - Channel Filtering - Demodulation - Frame synchronization DIGITAL MODULATOR - Data spreading - Modulation Σ AUTOMATIC GAIN CONTROL TX POWER CONTROL TXRX SWITCH ADC ADC DAC DAC 0 90 FREQ SYNTH Power Control PA FFCTRL Register bus CSMA/CA STROBE PROCESSOR RADIO REGISTER BANK RADIO DATA INTERFACE CONTROL LOGIC IRQ HANDLING SFR bus Figure 32: CC2430 Radio Module A simplified block diagram of the IEEE 802.15.4 compliant radio inside CC2430 is shown in Figure 32. The radio core is based on the industry leading CC2420 RF transceiver. CC2430 features a low-IF receiver. The received RF signal is amplified by the lownoise amplifier (LNA) and down-converted in quadrature (I and Q) to the intermediate frequency (IF). At IF (2 MHz), the complex I/Q signal is filtered and amplified, and then digitized by the RF receiver ADCs. Automatic gain control, final channel filtering, despreading, symbol correlation and byte synchronization are performed digitally. An interrupt indicates that a start of frame delimiter has been detected. CC2430 buffers the received data in a 128 byte receive FIFO. The user may read the FIFO through an SFR interface. It is recommended to use direct memory access (DMA) to move data between memory and the FIFO. CRC is verified in hardware. RSSI and correlation values are appended to the frame. Clear channel assessment, CCA, is available through an interrupt in receive mode. The CC2430 transmitter is based on direct upconversion. The data is buffered in a 128 byte transmit FIFO (separate from the receive FIFO). The preamble and start of frame delimiter are generated in hardware. Each symbol (4 bits) is spread using the IEEE 802.15.4 spreading sequence to 32 chips and output to the digital-to-analog converters (DACs). An analog low pass filter passes the signal to the quadrature (I and Q) up-conversion mixers. The RF signal is amplified in the power amplifier (PA) and fed to the antenna. The internal T/R switch circuitry makes the antenna interface and matching easy. The RF connection is differential. A balun may be used for single-ended antennas. The biasing of the PA and LNA is done by connecting TXRX_SWITCH to RF_P and RF_N through an external DC path. The frequency synthesizer includes a completely on-chip LC VCO and a 90 degrees phase splitter for generating the I and Q LO signals to the down-conversion mixers in receive mode and up-conversion mixers in transmit mode. The VCO operates in the frequency range 4800 – 4966 MHz, and the frequency is divided by two when split into I and Q signals. The digital baseband includes support for frame handling, address recognition, data buffering, CSMA-CA strobe processor and MAC security. An on-chip voltage regulator delivers the regulated 1.8 V supply voltage. Not Recommended for New Designs CC2430 Radio : IEEE 802.15.4 Modulation Format CC2430 Data Sheet (rev. 2.1) SWRS036F Page 154 of 211 14.1 IEEE 802.15.4 Modulation Format This section is meant as an introduction to the 2.4 GHz direct sequence spread spectrum (DSSS) RF modulation format defined in IEEE 802.15.4. For a complete description, please refer to [1]. The modulation and spreading functions are illustrated at block level in Figure 33 [1]. Each byte is divided into two symbols, 4 bits each. The least significant symbol is transmitted first. For multi-byte fields, the least significant byte is transmitted first. Each symbol is mapped to one out of 16 pseudo-random sequences, 32 chips each. The symbol to chip mapping is shown in Table 44. The chip sequence is then transmitted at 2 MChips/s, with the least significant chip (C0) transmitted first for each symbol. Bit-to- Symbol Symbolto- Chip O-QPSK Modulator Transmitted bit-stream (LSB first) Modulated Signal Figure 33: Modulation and spreading functions [1] The modulation format is Offset – Quadrature Phase Shift Keying (O-QPSK) with half-sine chip shaping. This is equivalent to MSK modulation. Each chip is shaped as a halfsine, transmitted alternately in the I and Q channels with one half chip period offset. This is illustrated for the zero-symbol in Figure 34. Table 44: IEEE 802.15.4 symbol-to-chip mapping [1] Symbol Chip sequence (C0, C1, C2, … , C31) 0 1 1 0 1 1 0 0 1 1 1 0 0 0 0 1 1 0 1 0 1 0 0 1 0 0 0 1 0 1 1 1 0 1 1 1 1 0 1 1 0 1 1 0 0 1 1 1 0 0 0 0 1 1 0 1 0 1 0 0 1 0 0 0 1 0 2 0 0 1 0 1 1 1 0 1 1 0 1 1 0 0 1 1 1 0 0 0 0 1 1 0 1 0 1 0 0 1 0 3 0 0 1 0 0 0 1 0 1 1 1 0 1 1 0 1 1 0 0 1 1 1 0 0 0 0 1 1 0 1 0 1 4 0 1 0 1 0 0 1 0 0 0 1 0 1 1 1 0 1 1 0 1 1 0 0 1 1 1 0 0 0 0 1 1 5 0 0 1 1 0 1 0 1 0 0 1 0 0 0 1 0 1 1 1 0 1 1 0 1 1 0 0 1 1 1 0 0 6 1 1 0 0 0 0 1 1 0 1 0 1 0 0 1 0 0 0 1 0 1 1 1 0 1 1 0 1 1 0 0 1 7 1 0 0 1 1 1 0 0 0 0 1 1 0 1 0 1 0 0 1 0 0 0 1 0 1 1 1 0 1 1 0 1 8 1 0 0 0 1 1 0 0 1 0 0 1 0 1 1 0 0 0 0 0 0 1 1 1 0 1 1 1 1 0 1 1 9 1 0 1 1 1 0 0 0 1 1 0 0 1 0 0 1 0 1 1 0 0 0 0 0 0 1 1 1 0 1 1 1 10 0 1 1 1 1 0 1 1 1 0 0 0 1 1 0 0 1 0 0 1 0 1 1 0 0 0 0 0 0 1 1 1 11 0 1 1 1 0 1 1 1 1 0 1 1 1 0 0 0 1 1 0 0 1 0 0 1 0 1 1 0 0 0 0 0 12 0 0 0 0 0 1 1 1 0 1 1 1 1 0 1 1 1 0 0 0 1 1 0 0 1 0 0 1 0 1 1 0 13 0 1 1 0 0 0 0 0 0 1 1 1 0 1 1 1 1 0 1 1 1 0 0 0 1 1 0 0 1 0 0 1 14 1 0 0 1 0 1 1 0 0 0 0 0 0 1 1 1 0 1 1 1 1 0 1 1 1 0 0 0 1 1 0 0 15 1 1 0 0 1 0 0 1 0 1 1 0 0 0 0 0 0 1 1 1 0 1 1 1 1 0 1 1 1 0 0 0 Not Recommended for New Designs CC2430 Radio : Command strobes CC2430 Data Sheet (rev. 2.1) SWRS036F Page 155 of 211 1 0 1 0 1 1 0 1 I-phase Q-phase 1 0 0 1 1 0 0 1 0 0 0 1 1 0 0 1 0 1 1 0 0 1 0 1 TC 2TC Figure 34: I / Q Phases when transmitting a zero-symbol chip sequence, TC = 0.5 μs 14.2 Command strobes The CPU uses a set of command strobes to control operation of the radio in CC2430. Command strobes may be viewed as single byte instructions which each control some function of the radio. These command strobes must be used to enable the frequency synthesizer, enable receive mode, enable transmit mode and other functions. A total of nine command strobes are defined for the radio and these can be written individually to the radio or they can be given in a sequence together with a set of dedicated software instructions making up a simple program. All command strobes from the CPU to the radio pass through the CSMACA/ Command Strobe Processor (CSP). Detailed description about the CSP and how command strobes are used is given in section 14.34 on page 176. 14.3 RF Registers The operation of the radio is configured through a set of RF registers. These RF registers are mapped to XDATA memory space as shown in Figure 7 on page 31. The RF registers also provide status information from the radio. The RF registers control/status bits are referred to where appropriate in the following sections while section 14.35 on page 183 gives a full description of all RF registers. 14.4 Interrupts The radio is associated with two interrupt vectors on the CPU. These are the RFERR interrupt (interrupt 0) and the RF interrupt (interrupt 12) with the following functions • RFERR : TXFIFO underflow, RXFIFO overflow • RF : all other RF interrupts given by RFIF interrupt flags The RF interrupt vector combines the interrupts in RFIF shown on page 156. Note that these RF interrupts are rising- edge triggered. Thus an interrupt is generated when e.g. the SFD status flag goes from 0 to 1. The RFIF interrupt flags are described in the next section. 14.4.1 Interrupt registers Two of the main interrupt control SFR registers are used to enable the RF and RFERR interrupts. These are the following: • RFERR : IEN0.RFERRIE • RF : IEN2.RFIE Two main interrupt flag SFR registers hold the RF and RFERR interrupt flags. These are the following: • RFERR : TCON.RFERRIF • RF : S1CON.RFIF Refer to section 11.5 on page 49 for details about the interrupts. The RF interrupt is the combined interrupt from eight different sources in the radio. Two SFR registers are used for setting the eight individual RFIF radio interrupt flags and interrupt enables. These are the RFIF and RFIM registers. Not Recommended for New Designs CC2430 Radio : Interrupts CC2430 Data Sheet (rev. 2.1) SWRS036F Page 156 of 211 The interrupt flags in SFR register RFIF show the status for each interrupt source for the RF interrupt vector. The interrupt enable bits in RFIM are used to disable individual interrupt sources for the RF interrupt vector. Note that masking an interrupt source in RFIM does not affect the update of the status in the RFIF register. Due to the use of the individual interrupt masks in RFIM, and the main interrupt mask for the RF interrupt given by IEN2.RFIE there is two-layered masking of this interrupt. Special attention needs to be taken when processing this type of interrupt as described below. To clear the RF interrupt, S1CON.RFIF and the interrupt flag in RFIF need to be cleared. If more than one interrupt source generates an interrupt the source that was not cleared will generate another interrupt after completing the interrupt service routine (ISR). A RFIF flag that was set and was not cleared during ISR will create another interrupt when ISR completed. If no individual knowlage of which interrupt caused the ISR to be called, all RFIF flags should be cleared. RFIF (0xE9) – RF Interrupt Flags Bit Name Reset R/W Description Voltage regulator for radio has been turned on 0 No interrupt pending 7 IRQ_RREG_ON 0 R/W0 1 Interrupt pending TX completed with packet sent. Also set for acknowledge frames if RF register IRQSRC.TXACK is 1 0 No interrupt pending 6 IRQ_TXDONE 0 R/W0 1 Interrupt pending Number of bytes in RXFIFO is above threshold set by IOCFG0.FIFOP_THR 0 No interrupt pending 5 IRQ_FIFOP 0 R/W0 1 Interrupt pending Start of frame delimiter (SFD) has been detected 0 No interrupt pending 4 IRQ_SFD 0 R/W0 1 Interrupt pending Clear channel assessment (CCA) indicates that channel is clear 0 No interrupt pending 3 IRQ_CCA 0 R/W0 1 Interrupt pending CSMA-CA/strobe processor (CSP) wait condition is true 0 No interrupt pending 2 IRQ_CSP_WT 0 R/W0 1 Interrupt pending CSMA-CA/strobe processor (CSP) program execution stopped 0 No interrupt pending 1 IRQ_CSP_STOP 0 R/W0 1 Interrupt pending CSMA-CA/strobe processor (CSP) INT instruction executed 0 No interrupt pending 0 IRQ_CSP_INT 0 R/W0 1 Interrupt pending Not Recommended for New Designs CC2430 Radio : FIFO access CC2430 Data Sheet (rev. 2.1) SWRS036F Page 157 of 211 RFIM (0x91) – RF Interrupt Mask Bit Name Reset R/W Description Voltage regulator for radio has been turned on 0 Interrupt disabled 7 IM_RREG_PD 0 R/W 1 Interrupt enabled TX completed with packet sent. Also for acknowledge frames if RF register IRQSRC.TXACK is 1 0 Interrupt disabled 6 IM_TXDONE 0 R/W 1 Interrupt enabled Number of bytes in RXFIFO is above threshold set by IOCFG0.FIFOP_THR 0 Interrupt disabled 5 IM_FIFOP 0 R/W 1 Interrupt enabled Start of frame delimiter (SFD) has been detected 0 Interrupt disabled 4 IM_SFD 0 R/W 1 Interrupt enabled Clear channel assessment (CCA) indicates that channel is clear 0 Interrupt disabled 3 IM_CCA 0 R/W 1 Interrupt enabled CSMA-CA/strobe processor (CSP) wait condition is true 0 Interrupt disabled 2 IM_CSP_WT 0 R/W 1 Interrupt enabled CSMA-CA/strobe processor (CSP) program execution stopped 0 Interrupt disabled 1 IM_CSP_STOP 0 R/W 1 Interrupt enabled CSMA-CA/strobe processor (CSP) INT instruction executed 0 Interrupt disabled 0 IM_CSP_INT 0 R/W 1 Interrupt enabled 14.5 FIFO access The TXFIFO and RXFIFO may be accessed through the SFR register RFD (0xD9). Data is written to the TXFIFO when writing to the RFD register. Data is read from the he RXFIFO when the RFD register is read. The RF register bits RFSTATUS.FIFO and RFSTATUS.FIFOP provide information on the data in the receive FIFO, as described in section 14.6 on page 157. Note that the RFSTATUS.FIFO and RFSTATUS.FIFOP only apply to the RXFIFO. The TXFIFO may be flushed by issuing a SFLUSHTX command strobe. Similarly, a SFLUSHRX command strobe will flush the receive FIFO. The FIFO may contain 256 bytes (128 bytes for RX and 128 bytes for TX). RFD (0xD9) – RF Data Bit Name Reset R/W Description 7:0 RFD[7:0] 0x00 R/W Data written to the register is written to the TXFIFO. When reading this register, data from the RXFIFO is read 14.6 DMA It is possible, and in most cases recommended, to use direct memory access (DMA) to move data between memory and the radio. The DMA controller is described in section 13.5. Refer to this section for a detailed description on how to setup and use DMA transfers. To support the DMA controller there is one DMA trigger associated with the radio, this is the RADIO DMA trigger (DMA trigger 19). The RADIO DMA trigger is activated by two events. The first event to cause a RADIO DMA trigger, is when the first data is present in the RXFIFO, i.e. when the RXFIFO goes from the empty state to the non-empty state. The second Not Recommended for New Designs CC2430 Radio : Receive mode CC2430 Data Sheet (rev. 2.1) SWRS036F Page 158 of 211 event that causes a RADIO DMA trigger, is when data is read from the RXFIFO (through RFD SFR register) and there is still more data available in the RXFIFO. 14.7 Receive mode In receive mode, the interrupt flag RFIF.IRQ_SFD goes high and the RF interrupt is requested after the start of frame delimiter (SFD) field has been completely received. If address recognition is disabled or is successful, the RFSTATUS.SFD bit goes low again only after the last byte of the MPDU has been received. If the received frame fails address recognition, the RFSTATUS.SFD bit goes low immediately. This is illustrated in Figure 35. The RFSTATUS.FIFO bit is high when there is one or more data bytes in the RXFIFO. The first byte to be stored in the RXFIFO is the length field of the received frame, i.e. the RFSTATUS.FIFO bit is set high when the length field is written to the RXFIFO. The RFSTATUS.FIFO bit then remains high until the RXFIFO is empty. The RF register RXFIFOCNT contains the number of bytes present in the RXFIFO. The RFSTATUS.FIFOP bit is high when the number of unread bytes in the RXFIFO exceeds the threshold programmed into IOCFG0.FIFOP_THR. When address recognition is enabled the RFSTATUS.FIFOP bit will not go high until the incoming frame passes address recognition, even if the number of bytes in the RXFIFO exceeds the programmed threshold. The RFSTATUS.FIFOP bit will also go high when the last byte of a new packet is received, even if the threshold is not exceeded. If so the RFSTATUS.FIFOP bit will go back to low once one byte has been read out of the RXFIFO. When address recognition is enabled, data should not be read out of the RXFIFO before the address is completely received, since the frame may be automatically flushed by CC2430 if it fails address recognition. This may be handled by using the RFSTATUS.FIFOP bit, since this bit does not go high until the frame passes address recognition. Figure 36 shows an example of status bit activity when reading a packet from the RXFIFO. In this example, the packet size is 8 bytes, IOCFG0.FIFOP_THR = 3 and MDMCTRL0L.AUTOCRC is set. The length will be 8 bytes, RSSI will contain the average RSSI level during receiving of the packet and FCS/corr contains information of FCS check result and the correlation levels. 14.8 RXFIFO overflow The RXFIFO can only contain a maximum of 128 bytes at a given time. This may be divided between multiple frames, as long as the total number of bytes is 128 or less. If an overflow occurs in the RXFIFO, this is signaled to the CPU by asserting the RFERR interrupt when enabled. In addition the radio will set RFSTATUS.FIFO bit low while the RFSTATUS.FIFOP bit is high. Data already in the RXFIFO will not be affected by the overflow, i.e. frames already received may be read out. A SFLUSHRX command strobe is required after a RXFIFO overflow to enable reception of new data. Not Recommended for New Designs CC2430 Radio : Transmit mode CC2430 Data Sheet (rev. 2.1) SWRS036F Page 159 of 211 Data received over RF Preamble SFD Length SFD FIFO FIFOP , if threshold higher than frame length FIFOP , if threshold lower than frame length SFD detected Length byte received Last MPDU byte received Data received over RF Preamble SFD Length SFD FIFO FIFOP Address regocnition completed MAC Protocol Data Unit (MPDU) with correct address MAC Protocol Data Unit (MPDU) with wrong address Address recognition OK Address recognition fails Figure 35: SFD, FIFO and FIFOP activity examples during receive Figure 36: Example of status activity when reading RXFIFO. 14.9 Transmit mode During transmit the RFSTATUS.FIFO and RFSTATUS.FIFOP bits are still only related to the RXFIFO. The RFSTATUS.SFD bit is however active during transmission of a data frame, as shown in Figure 37. The RFIF.IRQ_SFD interrupt flag goes high and the RF interrupt is requested when the SFD field has been completely transmitted. It goes low again when the complete MPDU (as defined by the length field) has been transmitted or if an underflow is detected. The interrupt RFERR is then asserted if enabled. See section 14.17.1 on page 163 for more information on TXFIFO underflow. As can be seen from comparing Figure 35 and Figure 37, the RFSTATUS.SFD bit behaves very similarly during reception and transmission of a data frame. If the RFSTATUS.SFD bits of the transmitter and the receiver are compared during the transmission of a data frame, a small delay between 3.076 μs and 3.284 μs can be seen because of bandwidth limitations in both the transmitter and the receiver. Not Recommended for New Designs CC2430 Radio : General control and status CC2430 Data Sheet (rev. 2.1) SWRS036F Page 160 of 211 Preamble SFD Lengt h Data transmitted over RF SFD SFD transmitted Last MPDU byte transmitted or TX underflow MAC Protocol Data Unit (MPDU) STXON command strobe 12 symbol periods Automatically generated preamble and SFD Data fetched from TXFIFO CRC generated Figure 37: SFD status activity example during transmit 14.10 General control and status In receive mode, the RFIF.IRQ_FIFOP interrupt flag and RF interrupt request can be used to interrupt the CPU when a threshold has been exceeded or a complete frame has been received. In receive mode, the RFSTATUS.FIFO bit can be used to detect if there is data at all in the receive FIFO. The RFIF.IRQ_SFD interrupt flag can be used to extract the timing information of transmitted and received data frames. The RFIF.IRQ_SFD bit will go high when a start of frame delimiter has been completely detected / transmitted. For debug purposes, the RFSTATUS.SFD, RFSTATUS.FIFO, RFSTATUS.FIFOP and RFSTATUS.CCA bits can be output onto P1.7 – P1.4 I/O pins to monitor the status of these signals as selected by the IOCFG0, IOCFG1 and IOCFG2 register. The polarity of these signals given on the debug outputs can also be controlled by the IOCFG0-2 registers, if needed. 14.11 Demodulator, Symbol Synchronizer and Data Decision The block diagram for the CC2430 demodulator is shown in Figure 38. Channel filtering and frequency offset compensation is performed digitally. The signal level in the channel is estimated to generate the RSSI level (see the RSSI / Energy Detection section on page 168 for more information). Data filtering is also included for enhanced performance. With the ±40 ppm frequency accuracy requirement from [1], a compliant receiver must be able to compensate for up to 80 ppm or 200 kHz. The CC2430 demodulator tolerates up to 300 kHz offset without significant degradation of the receiver performance. Soft decision is used at the chip level, i.e. the demodulator does not make a decision for each chip, only for each received symbol. Despreading is performed using over-sampling symbol correlators. Symbol synchronization is achieved by a continuous start of frame delimiter (SFD) search. When an SFD is detected, data is written to the RXFIFO and may be read out by the CPU at a lower bit rate than the 250 kbps generated by the receiver. The CC2430 demodulator also handles symbol rate errors in excess of 120 ppm without performance degradation. Resynchronization is performed continuously to adjust for error in the incoming symbol rate. The RF register MDMCTRL1H.CORR_THR control bits should be written to 0x14 to set the threshold for detecting IEEE 802.15.4 start of frame delimiters. Not Recommended for New Designs CC2430 Radio : Frame Format CC2430 Data Sheet (rev. 2.1) SWRS036F Page 161 of 211 Digital IF Channel Filtering ADC Digital Data Filtering Frequency Offset Compensation Symbol Correlators and Synchronisation RSSI Generator I / Q Analog IF signal Data Symbol Output RSSI Average Correlation Value (may be used for LQI) Figure 38: Demodulator Simplified Block Diagram 14.12 Frame Format CC2430 has hardware support for parts of the IEEE 802.15.4 frame format. This section gives a brief summary to the IEEE 802.15.4 frame format, and describes how CC2430 is set up to comply with this. Figure 39 [1] shows a schematic view of the IEEE 802.15.4 frame format. Similar figures describing specific frame formats (data frames, beacon frames, acknowledgment frames and MAC command frames) are included in [1]. Figure 39: Schematic view of the IEEE 802.15.4 Frame Format [1] 14.13 Synchronization header The synchronization header (SHR) consists of the preamble sequence followed by the start of frame delimiter (SFD). In [1], the preamble sequence is defined to be four bytes of 0x00. The SFD is one byte, set to 0xA7. In CC2430, the preamble length and SFD is configurable. The default values are compliant with [1]. Changing these values will make the system non-compliant to IEEE 802.15.4. A synchronization header is always transmitted first in all transmit modes. The preamble sequence length can be set with RF register bit MDMCTRL0L.PREAMBLE_LENGTH, while the SFD is programmed in the SYNCWORDH:SYNCWORDL registers. SYNCWORDH:SYNCWORDL is two bytes long, which gives the user some extra flexibility as described below. Figure 40 shows how the CC2430 synchronization header relates to the IEEE 802.15.4 specification. The programmable preamble length only applies to transmission, it does not affect receive mode. The preamble length should not be set shorter than the default value. Note that 2 of the 8 zero-symbols in the preamble sequence required by [1] are included in the SYNCWORDH:SYNCWORDL registers so that the CC2430 preamble sequence is only 6 symbols long for compliance with [1]. Two additional zero symbols in SYNCWORDH:SYNCWORDL make CC2430 compliant with [1]. In reception, CC2430 synchronizes to received zero-symbols and searches for the SFD sequence defined by the SYNCWORDH:SYNCWORDL registers. The least significant symbols in SYNCWORDH:SYNCWORDL set to 0xF will be ignored, while symbols different from 0xF will be required for synchronization. The default setting of 0xA70F thereby requires one additional zero-symbol for synchronization. This will reduce the number of false frames detected due to noise. PHY Layer Frame Control Field (FCF) Data Sequence Number Bytes: 2 1 Address Information 0 to 20 Frame payload n Frame Check Sequence (FCS) 2 MAC Header (MHR) MAC Payload MAC Footer (MFR) Frame Length MAC Protocol Data Unit (MPDU) Start of frame Delimiter (SFD) Bytes: 1 1 5 + (0 to 20) + n Preamble Sequence 4 Synchronisation Header (SHR) PHY Header (PHR) PHY Service Data Unit (PSDU) PHY Protocol Data Unit (PPDU) 11 + (0 to 20) + n MAC Layer Not Recommended for New Designs CC2430 Radio : Length field CC2430 Data Sheet (rev. 2.1) SWRS036F Page 162 of 211 In receive mode CC2430 uses the preamble sequence for symbol synchronization and frequency offset adjustments. The SFD is used for byte synchronization, and is not part of the data stored in the receive buffer (RXFIFO). IEEE 802.15.4 0 7 A Preamble SFD 2·(PREAMBLE_LENGTH + 1) zero symbols 0 0 0 0 0 0 0 SW0 SW0 = SYNCWORD[3:0] SW1 = SYNCWORD[7:4] SW2 = SYNCWORD[11:8] SW3 = SYNCWORD[15:12] SW1 SW2 SW3 if different from 'F', else '0' if different from 'F', else '0' if different from 'F', else '0' if different from 'F', else '0' Synchronisation Header Figure 40: Transmitted Synchronization Header 14.14 Length field The frame length field shown in Figure 39 defines the number of bytes in the MPDU. Note that the length field does not include the length field itself. It does however include the FCS (Frame Check Sequence), even if this is inserted automatically by CC2430 hardware. The length field is 7 bits and has a maximum value of 127. The most significant bit in the length field is reserved [1], and should be set to zero. CC2430 uses the length field both for transmission and reception, so this field must always be included. In transmit mode, the length field is used for underflow detection, as described in the FIFO access section on page 157. 14.15 MAC protocol data unit The FCF, data sequence number and address information follows the length field as shown in Figure 39. Together with the MAC data payload and Frame Check Sequence, they form the MAC Protocol Data Unit (MPDU). The format of the FCF is shown in Figure 41. Please refer to [1] for details. There is no hardware support for the data sequence number, this field must be inserted and verified by software. CC2430 includes hardware address recognition, as described in the Address Recognition section on page 164. Bits: 0-2 3 4 5 6 7-9 10-11 12-13 14-15 Frame Type Security Enabled Frame Pending Acknowledge request Intra PAN Reserved Destination addressing mode Reserved Source addressing mode Figure 41: Format of the Frame Control Field (FCF) [1] 14.16 Frame check sequence A 2-byte frame check sequence (FCS) follows the last MAC payload byte as shown in Figure 39. The FCS is calculated over the MPDU, i.e. the length field is not part of the FCS. This field is automatically generated and verified by hardware when the RF register MDMCTRL0L.AUTOCRC control bit is set. It is recommended to always have this enabled, except possibly for debug purposes. If cleared, CRC generation and verification must be performed by software. The FCS polynomial is [1]: x16 + x12 + x5 + 1 Not Recommended for New Designs CC2430 Radio : RF Data Buffering CC2430 Data Sheet (rev. 2.1) SWRS036F Page 163 of 211 The CC2430 hardware implementation is shown in Figure 42. Please refer to [1] for further details. In transmit mode the FCS is appended at the correct position defined by the length field. The FCS is not written to the TXFIFO, but stored in a separate 16-bit register. In receive mode the FCS is verified by hardware. The user is normally only interested in the correctness of the FCS, not the FCS sequence itself. The FCS sequence itself is therefore not written to the RXFIFO during receive. Instead, when MDMCTRL0L.AUTOCRC is set the two FCS bytes are replaced by the RSSI value, average correlation value (used for LQI) and CRC OK/not OK. This is illustrated in Figure 43. The first FCS byte is replaced by the 8-bit RSSI value. See the RSSI section on page 168 for details. The seven least significant bits in the last FCS byte are replaced by the average correlation value of the 8 first symbols of the received PHY header (length field) and PHY Service Data Unit (PSDU). This correlation value may be used as a basis for calculating the LQI. See the Link Quality Indication section on page 168 for details. The most significant bit in the last byte of each frame is set high if the CRC of the received frame is correct and low otherwise. r0 r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12 r13 r14 r15 Data input (LSB first) Figure 42: CC2430 Frame Check Sequence (FCS) hardware implementation [1] Length byte MPDU n MPDU1 MPDU2 MPDUn-2 RSSI (signed) CRC / Corr Bit number 7 6 5 4 3 2 1 0 CRC OK Correlation value (unsigned) Data in RXFIFO Figure 43: Data in RXFIFO when MDMCTRL0L.AUTOCRC is set 14.17 RF Data Buffering CC2430 can be configured for different transmit and receive modes, as set in the MDMCTRL1L.TX_MODE and MDMCTRL1L.RX_MODE control bits. Buffered mode (mode 0) will be used for normal operation of CC2430, while other modes are available for test purposes. 14.17.1 Buffered transmit mode In buffered transmit mode (TX_MODE=0), the 128 byte TXFIFO is used to buffer data before transmission. A synchronization header is automatically inserted before the length field during transmission. The length field must always be the first byte written to the transmit buffer for all frames. Writing one or multiple bytes to the TXFIFO is described in the FIFO access section on page 157. A DMA transfer can be configured to write transmit data to the TXFIFO. Transmission is enabled by issuing a STXON or STXONCCA command strobe. See the Radio control state machine section on page 166 for an illustration of how the transmit command strobes affect the state of CC2430. The STXONCCA strobe is ignored if the channel is busy. See section 14.25 on page 169 for details on CCA. The preamble sequence is started 12 symbol periods after the transmit command strobe. After the programmable start of frame delimiter Not Recommended for New Designs CC2430 Radio : Address Recognition CC2430 Data Sheet (rev. 2.1) SWRS036F Page 164 of 211 has been transmitted, data is fetched from the TXFIFO. The TXFIFO can only contain one data frame at a given time. After complete transmission of a data frame, the TXFIFO is automatically refilled with the last transmitted frame. Issuing a new STXON or STXONCCA command strobe will then cause CC2430 to retransmit the last frame. Writing to the TXFIFO after a frame has been transmitted will cause the TXFIFO to be automatically flushed before the new byte is written. The only exception is if a TXFIFO underflow has occurred, when a SFLUSHTX command strobe is required. 14.17.2 Buffered receive mode In buffered receive mode (RX_MODE 0), the 128 byte RXFIFO, located in CC2430 RAM, is used to buffer data received by the demodulator. Accessing data in the RXFIFO is described in the FIFO access section on page 157. The RF interrupt generated by RFSTATUS.FIFOP and also the RFSTATUS.FIFO and RFSTATUS.FIFOP register bits are used to assist the CPU in supervising the RXFIFO. Please note that these status bits are only related to the RXFIFO, even if CC2430 is in transmit mode. A DMA transfer should be used to read data from the RXFIFO. In this case a DMA channel can be setup to use the RADIO DMA trigger (see DMA triggers on page 94) to initiate a DMA transfer using the RFD register as the DMA source. Multiple data frames may be in the RXFIFO simultaneously, as long as the total number of bytes does not exceed 128. See the RXFIFO overflow section on page 158 for details on how a RXFIFO overflow is detected and signaled. 14.18 Address Recognition CC2430 includes hardware support for address recognition, as specified in [1]. Hardware address recognition may be enabled or disabled using the MDMCTRL0H.ADDR_DECODE control bit. Address recognition uses the following RF registers • IEEE_ADDR7-IEEE_ADDR0 • PANIDH:PANIDL • SHORTADDRH:SHORTADDRL. Address recognition is based on the following requirements, listed from section 7.5.6.2 in [1]: • The frame type subfield shall not contain an illegal frame type • If the frame type indicates that the frame is a beacon frame, the source PAN identifier shall match macPANId unless macPANId is equal to 0xFFFF, in which case the beacon frame shall be accepted regardless of the source PAN identifier. • If a destination PAN identifier is included in the frame, it shall match macPANId or shall be the broadcast PAN identifier (0xFFFF). • If a short destination address is included in the frame, it shall match either macShortAddress or the broadcast address (0xFFFF). Otherwise if an extended destination address is included in the frame, it shall match aExtendedAddress. • If only source addressing fields are included in a data or MAC command frame, the frame shall only be accepted if the device is a PAN coordinator and the source PAN identifier matches macPANId. If any of the above requirements are not satisfied and address recognition is enabled, CC2430 will disregard the incoming frame and flush the data from the RXFIFO. Only data from the rejected frame is flushed, data from previously accepted frames may still be in the RXFIFO. Incoming frames are first subject to frame type filtering according to the setting of the MDMCTRL0H.FRAMET_FILT register bit. Following the required frame type filtering, incoming frames with reserved frame types (FCF frame type subfield is 4, 5, 6 or 7) are however accepted if the RESERVED_FRAME_MODE control bit in the RF register MDMCTRL0H is set. In this case, no further address recognition is performed on Not Recommended for New Designs CC2430 Radio : Acknowledge Frames CC2430 Data Sheet (rev. 2.1) SWRS036F Page 165 of 211 these frames. This option is included for future expansions of the IEEE 802.15.4 standard. If a frame is rejected, CC2430 will only start searching for a new frame after the rejected frame has been completely received (as defined by the length field) to avoid detecting false SFDs within the frame. The MDMCTRL0.PAN_COORDINATOR control bit must be correctly set, since parts of the address recognition procedure requires knowledge about whether the current device is a PAN coordinator or not. 14.19 Acknowledge Frames CC2430 includes hardware support for transmitting acknowledge frames, as specified in [1]. Figure 44 shows the format of the acknowledge frame. If MDMCTRL0L.AUTOACK is enabled, an acknowledge frame is transmitted for all incoming frames accepted by the address recognition with the acknowledge request flag set and a valid CRC. AUTOACK therefore does not make sense unless also ADDR_DECODE and AUTOCRC are enabled. The sequence number is copied from the incoming frame. Frame Control Field (FCF) Data Sequence Number 2 1 Frame Check Sequence (FCS) 2 MAC Header (MHR) MAC Footer (MFR) Frame Length Start of Frame Delimiter (SFD) Bytes: 1 1 Preamble Sequence 4 Synchronisation Header (SHR) PHY Header (PHR) Figure 44: Acknowledge frame format [1] Two command strobes, SACK and SACKPEND are defined to transmit acknowledge frames with the frame pending field cleared or set, respectively. The acknowledge frame is only transmitted if the CRC is valid. For systems using beacons, there is an additional timing requirement that the acknowledge frame transmission may be started on the first backoff-slot boundary (20 symbol periods) at least 12 symbol periods after the last symbol of the incoming frame. When the RF register control bit MDMCTRL1H.SLOTTED_ACK is set to 1, the acknowledge frame is transmitted between 12 and 30 symbol periods after the incoming frame. The timing is defined such that there is an integer number of 20-symbol period backoff-slots between the incoming packet SFD and the transmitted acknowledge frame SFD. This timing is also illustrated in Figure 45. Using SACKPEND will set the pending data flag for automatically transmitted acknowledge frames using AUTOACK. The pending flag will then be set also for future acknowledge frames, until a SACK command strobe is issued. The pending data flag that is transmitted will be logically OR’ed with the value of FSMTC1.PENDING_OR. Thus the pending flag can be set high using this register control bit. When an acknowledge frame transmission completes, the RF Interrupt flag RFIF.IRQ_TXDONE will be set if this interrupt source is selected by setting RF register bit IRQSRC.TXACK to 1. Acknowledge frames may be manually transmitted using normal data transmission if desired. Not Recommended for New Designs CC2430 Radio : Radio control state machine CC2430 Data Sheet (rev. 2.1) SWRS036F Page 166 of 211 PPDU Acknowledge PPDU Acknowledge tack = 12 symbol periods tack = 12 - 30 symbol periods tbackoffslot = 20 symbol periods Last PPDU symbol Last PPDU symbol SLOTTED_ACK = 0 SLOTTED_ACK = 1 Figure 45: Acknowledge frame timing 14.20 Radio control state machine CC2430 has a built-in state machine that is used to switch between different operation states (modes). The change of state is done either by using command strobes or by internal events such as SFD detected in receive mode. The radio control state machine states are shown in Figure 46. The numbers in brackets refer to the state number readable in the FSMSTATE status register. Reading the FSMSTATE status register is primarily for test / debug purposes. The figure assumes that the device is already placed in the PM0 power mode. Before using the radio in either RX or TX mode, the voltage regulator and crystal oscillator must be turned on and become stable. The voltage regulator and crystal oscillator startup times are given in the section 7.4 on page 14. The voltage regulator for the radio is enabled by setting the RF register bit RFPWR.RREG_RADIO_PD to 0. The interrupt flag RFIF.IRQ_RREG_ON is set to 1 when the voltage regulator has powered-up. The crystal oscillator is controlled through the Power Management Controller. The SLEEP.XOSC_STB bit indicates whether the oscillator is running and stable or not (see page 67). This SFR register can be polled when waiting for the oscillator to start. It should be noted that an additional wait time after this event until selecting XOSC as source is needed. This is described in section 13.1.4.2. For test purposes, the frequency synthesizer (FS) can also be manually calibrated and started by using the STXCALN or ISTXCALN command strobe (see section 14.34 and Table 47). This will not start a transmission before a STXON command strobe is issued. This is not shown in Figure 46. Enabling transmission is done by issuing a STXON or STXONCCA command strobe. Turning off RF can be accomplished by using the SRFOFF command strobe. After bringing the CC2430 up to Power Mode 0 (PM0) from a low-power mode e.g. Power Mode 3 (PM3), all RF registers will retain their values thus placing the chip ready to operate at the correct frequency and mode. Due to the very fast start-up time, CC2430 can remain in a low-power mode until a transmission session is requested. Not Recommended for New Designs CC2430 Radio : Radio control state machine CC2430 Data Sheet (rev. 2.1) SWRS036F Page 167 of 211 Frame received and FSMTC1.RX2RX_TIME_OFF = 0 Figure 46: Radio control states Not Recommended for New Designs CC2430 Radio : MAC Security Operations (Encryption and Authentication) CC2430 Data Sheet (rev. 2.1) SWRS036F Page 168 of 211 14.21 MAC Security Operations (Encryption and Authentication) CC2430 features hardware IEEE 802.15.4 MAC security operations. Refer to section 13.12 on page 136 for a description of the AES encryption unit. 14.22 Linear IF and AGC Settings C2430 is based on a linear IF chain where the signal amplification is done in an analog VGA (variable gain amplifier). The gain of the VGA is digitally controlled. The AGC (Automatic Gain Control) loop ensures that the ADC operates inside its dynamic range by using an analog/digital feedback loop. The AGC characteristics are set through the AGCCTRLL:AGCCTRLH, registers. The reset values should be used for all AGC control registers. 14.23 RSSI / Energy Detection CC2430 has a built-in RSSI (Received Signal Strength Indicator) giving a digital value that can be read from the 8 bit, signed 2’s complement RSSIL.RSSI_VAL register bits. The RSSI value is always averaged over 8 symbol periods (128 μs), in accordance with [1]. The RSSI register value RSSI.RSSI_VAL can be referred to the power P at the RF pins by using the following equations: P = RSSI_VAL + RSSI_OFFSET [dBm] where the RSSI_OFFSET is found empirically during system development from the front end gain. RSSI_OFFSET is approximately –45. E.g. if reading a value of –20 from the RSSI register, the RF input power is approximately – 65 dBm. A typical plot of the RSSI_VAL reading as function of input power is shown in Figure 47. It can be seen from the figure that the RSSI reading from CC2430 is very linear and has a dynamic range of about 100 dB. -60 -40 -20 0 20 40 60 -100 -80 -60 -40 -20 0 RF Level [dBm] RSSI Register Value Figure 47: Typical RSSI value vs. input power 14.24 Link Quality Indication The link quality indication (LQI) measurement is a characterization of the strength and/or quality of a received packet, as defined by [1]. The RSSI value described in the previous section may be used by the MAC software to produce the LQI value. The LQI value is required by [1] to be limited to the range 0 through 255, with at least eight unique values. Software is responsible for generating the appropriate scaling of the LQI value for the given application. Using the RSSI value directly to calculate the LQI value has the disadvantage that e.g. a narrowband interferer inside the channel bandwidth will increase the LQI value although it actually reduces the true link quality. CC2430 Not Recommended for New Designs CC2430 Radio : Clear Channel Assessment CC2430 Data Sheet (rev. 2.1) SWRS036F Page 169 of 211 therefore also provides an average correlation value for each incoming packet, based on the eight first symbols following the SFD. This unsigned 7-bit value, which should be as high as possible, can be looked upon as a indication of the “chip error rate,” although CC2430 does not perform chip decision. As described in the Frame check sequence section on page 162, the average correlation value for the eight first symbols is appended to each received frame together with the RSSI and CRC OK/not OK when MDMCTRL0L.AUTOCRC is set. A correlation value of approx. 110 indicates a maximum quality frame while a value of approx. 50 is typically the lowest quality frames detectable by CC2430. Software must convert the correlation value to the range 0-255 defined by [1], e.g. by calculating: LQI = (CORR – a) · b limited to the range 0-255, where a and b are found empirically based on PER measurements as a function of the correlation value. A combination of RSSI and correlation values may also be used to generate the LQI value. 14.25 Clear Channel Assessment The clear channel assessment signal is based on the measured RSSI value and a programmable threshold. The clear channel assessment function is used to implement the CSMA-CA functionality specified in [1]. CCA is valid when the receiver has been enabled for at least 8 symbol periods. Carrier sense threshold level is programmed by RSSI.CCA_THR. The threshold value can be programmed in steps of 1 dB. A CCA hysteresis can also be programmed in the MDMCTRL0H.CCA_HYST control bits. All three CCA modes specified by [1] are implemented in CC2430. These are set in MDMCTRL0L.CCA_MODE, as can be seen in the register description. The different modes are: 00 Reserved 01 Clear channel when received energy is below threshold. 10 Clear channel when not receiving valid IEEE 802.15.4 data. 11 Clear channel when energy is below threshold and not receiving valid IEEE 802.15.4 data Clear channel assessment is available on the RFSTATUS.CCA RF register bit. RFSTATUS.CCA is active high. This register bit will also set the interrupt flag RFIF.IRQ_CCA. Implementing CSMA-CA may easiest be done by using the STXONCCA command strobe given by the CSMA-CA/strobe processor, as shown in the Radio control state machine section on page 166. Transmission will then only start if the channel is clear. The TX_ACTIVE status bit in the RFSTATUS RF register may be used to detect the result of the CCA. 14.26 Frequency and Channel Programming The operating frequency is set by programming the 10 bit frequency word located in FSCTRLH.FREQ[9:8] and FSCTRLL.FREQ[7:0]. The operating frequency FC in MHz is given by: FC = 2048 + FREQ[9:0] MHz where FREQ[9:0] is the value given by FSCTRLH.FREQ[9:8]:FSCTRLL.FREQ[7:0] In receive mode the actual LO frequency is FC – 2 MHz, since a 2 MHz IF is used. Direct conversion is used for transmission, so here the LO frequency equals FC. The 2 MHz IF is automatically set by CC2430, so the frequency programming is equal for RX and TX. IEEE 802.15.4 specifies 16 channels within the 2.4 GHz band, numbered 11 through 26. The RF frequency of channel k is given by [1] : FC = 2405 + 5 (k-11) MHz, k=11, 12, ..., 26 For operation in channel k, the FSCTRLH.FREQ:FSCTRLL.FREQ register should therefore be set to: FSCTRLH.FREQ:FSCTRLL.FREQ = 357 + 5 (k-11) 14.27 VCO and PLL Self-Calibration Not Recommended for New Designs CC2430 Radio : Output Power Programming CC2430 Data Sheet (rev. 2.1) SWRS036F Page 170 of 211 14.27.1 VCO The VCO is completely integrated and operates at 4800 – 4966 MHz. The VCO frequency is divided by 2 to generate frequencies in the desired band (2400-2483.5 MHz). 14.27.2 PLL self-calibration The VCO's characteristics will vary with temperature, changes in supply voltages, and the desired operating frequency. In order to ensure reliable operation the VCO’s bias current and tuning range are automatically calibrated every time the RX mode or TX mode is enabled, i.e. in the RX_CALIBRATE, TX_CALIBRATE and TX_ACK_CALIBRATE control states in Figure 46 on page 167. 14.28 Output Power Programming The RF output power of the device is programmable and is controlled by the TXCTRLL RF register. Table 45 shows the output power for different settings, including the complete programming of the TXCTRLL register and the current consumption in the whole device. For optimum link quality it is recommended to set TXCTRLL to 0x5F. Table 45: Output power settings Output Power [dBm] TXCTRLL register value Device current consumption [mA] 0.6 0xFF 32.4 0.5 0xDF 31.3 0.3 0xBF 30.3 0.2 0x9F 29.2 -0.1 0x7F 28.1 -0.4 0x5F 26.9 -0.9 0x3F 25.7 -1.5 0x1F 24.5 -2.7 0x1B 23.6 -4.0 0x17 22.8 -5.7 0x13 21.9 -7.9 0x0F 21.0 -10.8 0x0B 20.1 -15.4 0x07 19.2 -18.6 0x06 18.8 -25.2 0x03 18.3 14.29 Input / Output Matching The RF input / output is differential (RF_N and RF_P). In addition there is supply switch output pin (TXRX_SWITCH) that must have an external DC path to RF_N and RF_P. In RX mode the TXRX_SWITCH pin is at ground and will bias the LNA. In TX mode the TXRX_SWITCH pin is at supply rail voltage and will properly bias the internal PA. The RF output and DC bias can be done using different topologies. Some are shown in Figure 6 on page 28. Component values are given in Table 23 on page 29. If a differential antenna is implemented, no balun is required. If a single ended output is required (for a single ended connector or a single ended antenna), a balun should be used for optimum performance. Not Recommended for New Designs CC2430 Radio : Transmitter Test Modes CC2430 Data Sheet (rev. 2.1) SWRS036F Page 171 of 211 14.30 Transmitter Test Modes CC2430 can be set into different transmit test modes for performance evaluation. The test mode descriptions in the following sections requires that the chip is first reset, the crystal oscillator is selected using the CLKCON register and that the crystal oscillator has stabilized. 14.30.1 Unmodulated carrier An unmodulated carrier may be transmitted by setting MDMCTRL1L.TX_MODE to 2, writing 0x1800 to the DACTSTH:DACTSTL registers and issue a STXON command strobe. The transmitter is then enabled while the transmitter I/Q DACs are overridden to static values. An un-modulated carrier will then be available on the RF output pins. A plot of the single carrier output spectrum from CC2430 is shown in Figure 48 below. Figure 48: Single carrier output 14.30.2 Modulated spectrum The CC2430 has a built-in test pattern generator that can generate a pseudo random sequence using the CRC generator. This is enabled by setting MDMCTRL1L.TX_MODE to 3 and issuing a STXON command strobe. The modulated spectrum is then available on the RF pins. The low byte of the CRC word is transmitted and the CRC is updated with 0xFF for each new byte. The length of the transmitted data sequence is 65535 bits. The transmitted data-sequence is then: [synchronization header] [0x00, 0x78, 0xb8, 0x4b, 0x99, 0xc3, 0xe9, …] Since a synchronization header (preamble and SFD) is transmitted in all TX modes, this test mode may also be used to transmit a known Not Recommended for New Designs CC2430 Radio : Transmitter Test Modes CC2430 Data Sheet (rev. 2.1) SWRS036F Page 172 of 211 pseudorandom bit sequence for bit error testing. Please note that CC2430 requires symbol synchronization, not only bit synchronization, for correct reception. Packet error rate is therefore a better measurement for the true RF performance. Another option to generate a modulated spectrum is to fill the TXFIFO with pseudorandom data and set MDMCTRL1L.TX_MODE to 2. CC2430 will then transmit data from the FIFO disregarding a TXFIFO underflow. The length of the transmitted data sequence is then 1024 bits (128 bytes). A plot of the modulated spectrum from CC2430 is shown in Figure 49. Note that to find the output power from the modulated spectrum, the RBW must be set to 3 MHz or higher. Figure 49: Modulated spectrum plot Not Recommended for New Designs CC2430 Radio : System Considerations and Guidelines CC2430 Data Sheet (rev. 2.1) SWRS036F Page 173 of 211 14.31 System Considerations and Guidelines 14.31.1 SRD regulations International regulations and national laws regulate the use of radio receivers and transmitters. SRDs (Short Range Devices) for license free operation are allowed to operate in the 2.4 GHz band worldwide. The most important regulations are ETSI EN 300 328 and EN 300 440 (Europe), FCC CFR-47 part 15.247 and 15.249 (USA), and ARIB STD-T66 (Japan). 14.31.2 Frequency hopping and multi-channel systems The 2.4 GHz band is shared by many systems both in industrial, office and home environments. CC2430 uses direct sequence spread spectrum (DSSS) as defined by [1] to spread the output power, thereby making the communication link more robust even in a noisy environment. With CC2430 it is also possible to combine both DSSS and FHSS (frequency hopping spread spectrum) in a proprietary non-IEEE 802.15.4 system. This is achieved by reprogramming the operating frequency (see the Frequency and Channel Programming section on page 169) before enabling RX or TX. A frequency synchronization scheme must then be implemented within the proprietary MAC layer to make the transmitter and receiver operate on the same RF channel. 14.31.3 Data burst transmissions The data buffering in CC2430 lets the user have a lower data rate link between the CPU and the radio module than the RF bit rate of 250 kbps. This allows the CPU to buffer data at its own speed, reducing the workload and timing requirements. DMA transfers may be used to efficiently move data to and from the radio FIFOs. The relatively high data rate of CC2430 also reduces the average power consumption compared to the 868 / 915 MHz bands defined by [1], where only 20 / 40 kbps are available. CC2430 may be powered up a smaller portion of the time, so that the average power consumption is reduced for a given amount of data to be transferred. 14.31.4 Crystal accuracy and drift A crystal accuracy of ±40 ppm is required for compliance with IEEE 802.15.4 [1]. This accuracy must also take ageing and temperature drift into consideration. A crystal with low temperature drift and low aging could be used without further compensation. A trimmer capacitor in the crystal oscillator circuit (in parallel with C191 in Figure 6) could be used to set the initial frequency accurately. For non-IEEE 802.15.4 systems, the robust demodulator in CC2430 allows up to 140 ppm total frequency offset between the transmitter and receiver. This could e.g. relax the accuracy requirement to 60 ppm for each of the devices. Optionally in a star network topology, the fullfunction device (FFD) could be equipped with a more accurate crystal thereby relaxing the requirement on the reduced-function device (RFD). This can make sense in systems where the reduced-function devices ship in higher volumes than the full-function devices. 14.31.5 Communication robustness CC2430 provides very good adjacent, alternate and co channel rejection, image frequency suppression and blocking properties. The CC2430 performance is significantly better than the requirements imposed by [1]. These are highly important parameters for reliable operation in the 2.4 GHz band, since an increasing number of devices/systems are using this license free frequency band. 14.31.6 Communication security The hardware encryption and authentication operations in CC2430 enable secure communication, which is required for many applications. Security operations require a lot Not Recommended for New Designs CC2430 Radio : System Considerations and Guidelines CC2430 Data Sheet (rev. 2.1) SWRS036F Page 174 of 211 of data processing, which is costly in an 8-bit microcontroller system. The hardware support within CC2430 enables a high level of security with minimum CPU processing requirements. 14.31.7 Low cost systems As the CC2430 provides 250 kbps multichannel performance without any external filters, a very low cost system can be made (e.g. two layer PCB with single-sided component mounting). A differential antenna will eliminate the need for a balun, and the DC biasing can be achieved in the antenna topology. 14.31.8 Battery operated systems In low power applications, the CC2430 should be placed in the low-power modes PM2 or PM3 when not being active. Ultra low power consumption may be achieved since the voltage regulators are turned off. 14.31.9 BER / PER measurements CC2430 includes test modes where data is received infinitely and output to pins. The required test modes are selected with the RF register bits MDMCTRL1L.TX_MODE[1:0] and MDMCTRL1L.RX_MODE[1:0]. These modes may be used for Bit Error Rate (BER) measurements. However, the following precautions must be taken to perform such a measurement: • A preamble and SFD sequence must be used, even if pseudo random data is transmitted, since receiving the DSSS modulated signal requires symbol synchronization, not bit synchronization like e.g. in 2FSK systems. The SYNCWORDH:SYNCWORDL may be set to another value to fit to the measurement setup if necessary. • The data transmitted over air must be spread according to [1] and the description on page 154. This means that the transmitter used during measurements must be able to do spreading of the bit data to chip data. Remember that the chip sequence transmitted by the test setup is not the same as the bit sequence, which is output by CC2430. • When operating at or below the sensitivity limit, CC2430 may lose symbol synchronization in infinite receive mode. A new SFD and restart of the receiver may be required to re-gain synchronization. In an IEEE 802.15.4 system, all communication is based on packets. The sensitivity limit specified by [1] is based on Packet Error Rate (PER) measurements instead of BER. This is a more realistic measurement of the true RF performance since it mirrors the way the actual system operates. It is recommended to perform PER measurements instead of BER measurements to evaluate the performance of IEEE 802.15.4 systems. To do PER measurements, the following may be used as a guideline: • A valid preamble, SFD and length field must be used for each packet. • The PSDU (see Figure 39 on page 161) length should be 20 bytes for sensitivity measurements as specified by [1]. • The sensitivity limit specified by [1] is the RF level resulting in a 1% PER. The packet sample space for a given measurement must then be >> 100 to have a sufficiently large sample space. E.g. at least 1000 packets should be used to measure the sensitivity. • The data transmitted over air must be spread according to [1] and the description on page 154. Pre-generated packets may be used, although [1] requires that the PER is averaged over random PSDU data. • The CC2430 receive FIFO may be used to buffer data received during PER measurements, since it is able to buffer up to 128 bytes. • The MDMCTRL1H.CORR_THR control register should be set to 20, as described in the Demodulator, Symbol Synchronizer and Data Decision section. The simplest way of making a PER measurement will be to use another CC2430 as the reference transmitter. However, this makes it difficult to measure the exact receiver performance. Using a signal generator, this may either be set up as O-QPSK with half-sine shaping or as MSK. If using O-QPSK, the phases must be selected according to [1]. If using MSK, the Not Recommended for New Designs CC2430 Radio : PCB Layout Recommendation CC2430 Data Sheet (rev. 2.1) SWRS036F Page 175 of 211 chip sequence must be modified such that the modulated MSK signal has the same phase shifts as the O-QPSK sequence previously defined. For a desired symbol sequence s0, s1, … , sn-1 of length n symbols, the desired chip sequence c0, c1, c2, …, c32n-1 of length 32n is found using table lookup from Table 44 on page 154. It can be seen from comparing the phase shifts of the O-QPSK signal with the frequency of a MSK signal that the MSK chip sequence is generated as: (c0 xnor c1), (c1 xor c2), (c2 xnor c3), … , (c32n-1 xor c32n) where c32n may be arbitrarily selected. 14.32 PCB Layout Recommendation In the Texas Instruments reference design, the top layer is used for signal routing, and the open areas are filled with metallization connected to ground using several vias. The area under the chip is used for grounding and must be well connected to the ground plane with several vias. The ground pins should be connected to ground as close as possible to the package pin using individual vias. The de-coupling capacitors should also be placed as close as possible to the supply pins and connected to the ground plane by separate vias. Supply power filtering is very important. The external components should be as small as possible (0402 is recommended) and surface mount devices must be used. If using any external high-speed digital devices, caution should be used when placing these in order to avoid interference with the RF circuitry. A Development Kit, CC2430DK, with a fully assembled Evaluation Module is available. It is strongly advised that this reference layout is followed very closely in order to obtain the best performance. The schematic, BOM and layout Gerber files for the reference designs are all available from the TI website. 14.33 Antenna Considerations CC2430 can be used together with various types of antennas. A differential antenna like a dipole would be the easiest to interface not needing a balun (balanced to un-balanced transformation network). The length of the λ/2-dipole antenna is given by: L = 14250 / f where f is in MHz, giving the length in cm. An antenna for 2450 MHz should be 5.8 cm. Each arm is therefore 2.9 cm. Other commonly used antennas for shortrange communication are monopole, helical and loop antennas. The single-ended monopole and helical would require a balun network between the differential output and the antenna. Monopole antennas are resonant antennas with a length corresponding to one quarter of the electrical wavelength (λ/4). They are very easy to design and can be implemented simply as a “piece of wire” or even integrated into the PCB. The length of the λ/4-monopole antenna is given by: L = 7125 / f where f is in MHz, giving the length in cm. An antenna for 2450 MHz should be 2.9 cm. Non-resonant monopole antennas shorter than λ/4 can also be used, but at the expense of range. In size and cost critical applications such an antenna may very well be integrated into the PCB. Enclosing the antenna in high dielectric constant material reduces the overall size of the antenna. Many vendors offer such antennas intended for PCB mounting. Helical antennas can be thought of as a combination of a monopole and a loop antenna. They are a good compromise in size critical applications. Helical antennas tend to be more difficult to optimize than the simple monopole. Loop antennas are easy to integrate into the PCB, but are less effective due to difficult impedance matching because of their very low radiation resistance. For low power applications the differential antenna is recommended giving the best range and because of its simplicity. Not Recommended for New Designs CC2430 Radio : CSMA/CA Strobe Processor CC2430 Data Sheet (rev. 2.1) SWRS036F Page 176 of 211 The antenna should be connected as close as possible to the IC. If the antenna is located away from the RF pins the antenna should be matched to the feeding transmission line (50Ω). 14.34 CSMA/CA Strobe Processor The Command Strobe/CSMA-CA Processor (CSP) provides the control interface between the CPU and the Radio module in the CC2430. The CSP interfaces with the CPU through the SFR register RFST and the RF registers CSPX, CSPY, CSPZ, CSPT and CSPCTRL. The CSP produces interrupt requests to the CPU. In addition the CSP interfaces with the MAC Timer by observing MAC Timer overflow events. The CSP allows the CPU to issue command strobes to the radio thus controlling the operation of the radio. The CSP has two modes of operation as follows, which are described below. • Immediate Command Strobe execution. • Program execution Immediate Command Strobes are written as an Immediate Command Strobe instruction to the CSP which are issued instantly to the Radio module. The Immediate Command Strobe instruction is also used only to control the CSP. The Immediate Command Strobe instructions are described in section 14.34.7. Program execution mode means that the CSP executes a sequence of instructions, from a program memory or instruction memory, thus constituting a short user-defined program. The available instructions are from a set of 14 instructions. The instruction set is defined in section 14.34.8. The required program is first loaded into the CSP by the CPU, and then the CPU instructs the CSP to start executing the program. The program execution mode together with the MAC Timer allows the CSP to automate CSMA-CA algorithms and thus act as a coprocessor for the CPU. The operation of the CSP is described in detail in the following sections. The command strobes and other instructions supported by the CSP are given in section 14.34.8 on page 179. RFST (0xE1) – RF CSMA-CA/Strobe Processor Bit Name Reset R/W Description 7:0 INSTR[7:0] 0xC0 R/W Data written to this register will be written to the CSP instruction memory. Reading this register will return the CSP instruction currently being executed. 14.34.1 Instruction Memory The CSP executes single byte program instructions which are read from a 24 byte instruction memory. The instruction memory is written to sequentially through the SFR register RFST. An instruction write pointer is maintained within the CSP to hold the location within the instruction memory where the next instruction written to RFST will be stored. Following a reset the write pointer is reset to location 0. During each RFST register write, the write pointer will be incremented by 1 until the end of memory is reached when the write pointer will stop incrementing, thus writing more than 24 bytes only the last byte written will be stored in the last position. The first instruction written to RFST will be stored in location 0, the location where program execution starts. Thus a complete CSP program may contain a maximum of 24 bytes that is written to the instruction memory by writing each instruction in the desired order to the RFST register. Note that the program memory does not need to be filled, thus a CSP program may contain less than 24 bytes. The write pointer may be reset to 0 by writing the immediate command strobe instruction ISSTOP. In addition the write pointer will be reset to 0 when the command strobe SSTOP is executed in a program. Following a reset, the instruction memory is filled with SNOP (No Operation) instructions (opcode value 0xC0). While the CSP is executing a program, there shall be no attempts to write instructions to the instruction memory by writing to RFST. Failure to observe this rule can lead to incorrect program execution and corrupt instruction memory contents. However, Immediate Command Strobe instructions may be written to RFST (see section 14.34.3). Not Recommended for New Designs CC2430 Radio : CSMA/CA Strobe Processor CC2430 Data Sheet (rev. 2.1) SWRS036F Page 177 of 211 14.34.2 Data Registers The CSP has three data registers CSPT, CSPX, CSPY and CSPZ, which are read/write accessible for the CPU as RF registers. These registers are read or modified by some instructions, thus allowing the CPU to set parameters to be used by a CSP program or allowing the CPU to read CSP program status. The CSPT data register is not modified by any instruction. The CSPT data register is used to set a MAC Timer overflow compare value. Once program execution has started on the CSP, the content of this register is decremented by 1 each time the MAC timer overflows. When CSPT reaches zero, program execution is halted and the interrupt IRQ_CSP_STOP is asserted. The CSPT register will not be decremented if the CPU writes 0xFF to this register. Note: If the CSPT register compare function is not used, this register must be set to 0xFF before the program execution is started. 14.34.3 Program Execution After the instruction memory has been filled, program execution is started by writing the immediate command strobe instruction ISSTART to the RFST register. The program execution will continue until either the instruction at last location has been executed, the CSPT data register contents is zero, a SSTOP instruction has been executed, an immediate ISSTOP instruction is written to RFST or until a SKIP instruction returns a location beyond the last location in the instruction memory. The CSP runs at 8 MHz clock frequency. Immediate Command Strobe instructions may be written to RFST while a program is being executed. In this case the Immediate instruction will bypass the instruction in the instruction memory, which will be completed once the Immediate instruction has been completed. During program execution, reading RFST will return the current instruction being executed. An exception to this is the execution of immediate command strobes, during which RFST will return C0h. 14.34.4 Interrupt Requests The CSP has three interrupts flags which can produce the RF interrupt vector. These are the following: • IRQ_CSP_STOP: asserted when the processor has executed the last instruction in memory and when the processor stops due to a SSTOP or ISSTOP instruction or CSPT register equal zero. • IRQ_CSP_WT: asserted when the processor continues executing the next instruction after a WAIT W or WAITX instruction. • IRQ_CSP_INT: asserted when the processor executes an INT instruction. 14.34.5 Random Number Instruction There will be a delay in the update of the random number used by the RANDXY instruction. Therefore if an instruction, RANDXY, that uses this value is issued immediately after a previous RANDXY instruction, the random value read may be the same in both cases. 14.34.6 Running CSP Programs The basic flow for loading and running a program on the CSP is shown in Figure 50. When program execution stops due to end of program the current program remains in program memory. This makes it possible to run the same program again by starting execution with the ISSTART command. However, when program execution is stopped by the SSTOP or ISTOP instruction, the program memory will be cleared. It is also importat to note that a WAIT W or WEVENT instruction can not be executed between X register update and X data read by one of the following instructions: RPT, SKIP or WAITX. If this is done the CSPX register will be decremented on each MAC timer (Timer2) overflow occurrence. Not Recommended for New Designs CC2430 Radio : CSMA/CA Strobe Processor CC2430 Data Sheet (rev. 2.1) SWRS036F Page 178 of 211 Write instruction to RFST All instructions written? Setup CSPT, CSPX, CSPY, CSPZ and CSPCTRL registers Start execution by writing ISSTART to RFST yes no SSTOP instruction, end of program or writing ISTOP to RFST stops program Figure 50: Running a CSP program 14.34.7 Instruction Set Summary This section gives an overview of the instruction set. This is intended as a summary and definition of instruction opcodes. Refer to section 14.34.8 for a description of each instruction. Each instruction consists of one byte which is written to the RFST register to be stored in the instruction memory. The Immediate Strobe instructions (ISxxx) are not used in a program. When these instructions are written to the RFST register, they are executed immediately. If the CSP is already executing a program the current instruction will be delayed until the Immediate Strobe instruction has completed. For undefined opcodes, the behavior of the CSP is defined as a No Operation Strobe Command (SNOP). Not Recommended for New Designs CC2430 Radio : CSMA/CA Strobe Processor CC2430 Data Sheet (rev. 2.1) SWRS036F Page 179 of 211 Table 46: Instruction Set Summary Opcode Bit number Mnemonic 7 6 5 4 3 2 1 0 Description11 SKIP C,S 0 S N C Skip S instructions when condition (C xor N) is true. See Table 48 for C conditional codes WAIT W 1 0 0 W Wait for W number of MAC Timer overflows. If W is zero, wait for 32 MAC Timer overflows WEVENT 1 0 1 1 1 0 0 0 Wait until MAC Timer value is greater than or equal to compare value in T2CMP WAITX 1 0 1 1 1 0 1 1 Wait for CSPX number of backoffs. When CSPX is zero there is no wait. LABEL 1 0 1 1 1 0 1 0 Label next instruction as loop start RPT 1 0 1 0 N C Repeat from start of loop if condition (C xor N) is true. See Table 48 for C conditional codes INT 1 0 1 1 1 0 0 1 Assert interrupt INCY 1 0 1 1 1 1 0 1 Increment CSPY INCMAXY 1 0 1 1 0 M Increment CSPY not greater than M DECY 1 0 1 1 1 1 1 0 Decrement CSPY DECZ 1 0 1 1 1 1 1 1 Decrement CSPZ RANDXY 1 0 1 1 1 1 0 0 Load CSPX with CSPY bit random value. Sxxx 1 1 0 STRB Command strobe instructions ISxxx 1 1 1 STRB Immediate strobe instructions 11 Refer to Table 47 for full description of each instruction 14.34.8 Instruction Set Definition There are 14 basic instruction types. Furthermore the Command Strobe and Immediate Strobe instructions can each be divided into eleven sub-instructions giving an effective number of 34 different instructions. Table 47 describe each instruction. Note: the following definitions are used in this section PC = CSP program counter X = RF register CSPX Y = RF register CSPY Z = RF register CSPZ T = RF register CSPT ! = not > = greater than < = less than | = bit wise or Not Recommended for New Designs CC2430 Radio : CSMA/CA Strobe Processor CC2430 Data Sheet (rev. 2.1) SWRS036F Page 180 of 211 Table 47: CSMA/CA strobe processor instruction details NMONIC OPCODE Function Operation Description DECZ 0xBF Decrement Z Z := Z - 1 The Z register is decremented by 1. Original values of 0x00 will underflow to 0x0FF. DECY 0xBE Decrement Y Y := Y - 1 The Y register is decremented by 1. Original values of 0x00 will underflow to 0x0FF. INCY 0xBD Increment Y Y := Y + 1 The Y register is incremented by 1. An original value of 0x0FF will overflow to 0x00. INCMAXY 0xB0|M12 Increment Y !> M Y := min(Y+1, M) The Y register is incremented by 1 if the result is less than M otherwise Y register is loaded with value M. An original value of Y equal 0x0FF will result in the value M. RANDXY 0xBC Load random data into X X[Y-1:0] := RNG_DOUT[Y-1:0], X[7:Y] := 0 The [Y] LSB bits of X register are loaded with random value. Note that if two RANDXY instructions are issued immediately after each other the same random value will be used in both cases. If Y equals 0 or if Y is greater than 8, then 8 LSB bits are loaded. INT 0xB9 Interrupt IRQ_CSP_INT = 1 The interrupt IRQ_CSP_INT is asserted when this instruction is executed. WAITX 0xBB Wait for X MAC Timer overflows X := X-1 when MAC timer overflow true PC := PC while number of MAC timer compare true < X PC := PC + 1 when number of MAC timer compare true = X Wait until MAC Timer overflows the numbers of times equal to register X. The contents of register X is decremented each time a MAC Timer overflow is detected. Program execution continues with the next instruction and the interrupt flag IRQ_CSP_WT is asserted when the wait condition is true. If register X is zero when this instruction starts executing, there is no wait. WAIT W 0x80|W12 Wait for W MAC Timer overflows PC := PC while number of MAC timer compare true < W PC := PC + 1 when number of MAC timer compare true = W Wait until MAC Timer overflows number of times equal to value W. If W=0 the instruction will wait for 32 overflows. Program execution continues with the next instruction and the interrupt flag IRQ_CSP_WT is asserted when the wait condition is true. WEVENT 0xB8 Wait until MAC Timer compare PC := PC while MAC timer compare false PC := PC + 1 when MAC timer compare true Wait MAC Timer value is greater than or equal to the compare value in T2CMP. Program execution continues with the next instruction when the wait condition is true. LABEL 0xBA Set loop label LABEL:= PC+1 Sets next instruction as start of loop. If the current instruction is the last instruction in the instruction memory then the current PC is set as start of loop. Only one level of loops is supported. RPT C 0xA0|N|C12 Conditional repeat PC := LABEL when (C xor N) true PC := PC + 1 when (C xor N) false or LABEL not set If condition C is true then jump to instruction defined by last LABEL instruction, i.e. jump to start of loop. If the condition is false or if a LABEL instruction has not been executed, then execution will continue from next instruction. The condition C may be negated by setting N=1 and is described in Table 48. SKIP S,C 0x00|S|N|C12 Conditional skip instruction PC := PC + S + 1 when (C xor N) true else PC := PC + 1 If condition C is true then skip S instructions. The condition C may be negated (N=1) and is described in Table 48 (note same conditions as RPT C instruction). Setting S=0, will cause a wait at current instruction until (C xor N) = true 12 Refer to Table 46 for OPCODE Not Recommended for New Designs CC2430 Radio : CSMA/CA Strobe Processor CC2430 Data Sheet (rev. 2.1) SWRS036F Page 181 of 211 NMONIC OPCODE Function Operation Description STOP 0xDF Stop program execution Stop exec, PC:=0, write pointer:=0 The SSTOP instruction stops the CSP program execution. The instruction memory is cleared, any loop start location set by the LABEL instruction is invalidated and the IRQ_CSP_STOP interrupt flag is asserted. SNOP 0xC0 No Operation PC := PC + 1 Operation continues at the next instruction. STXCALN 0xC1 Enable and calibrate freq. synth. for TX STCALN The STXCALN instruction enables and calibrate frequency synthesizer for TX. The instruction waits for the radio to acknowledge the command before executing the next instruction. NOTE: Only for test purposes (see section 14.20). SRXON 0xC2 Enable and calibrate freq. synth. for RX SRXON The SRXON instruction asserts the output FFCTL_SRXON_STRB to enable and calibrate frequency synthesizer for RX. The instruction waits for the radio to acknowledge the command before executing the next instruction. STXON 0xC3 Enable TX after calibration STXON The STXON instruction enables TX after calibration. The instruction waits for the radio to acknowledge the command before executing the next instruction. STXONCCA 0xC4 Enable calibration and TX if CCA indicated a clear channel STXONCCA STXONCCA instruction enables TX after calibration if CCA indicates a clear channel. The instruction waits for the radio to acknowledge the command before executing the next instruction. Note that this strobe should only be used when FSMTC1.RX2RX_TIME_OFF is set to 1, if not time from strobe until transmit may not be 192 μs. SROFF 0xC5 Disable RX/TX and freq. synth. SRFOFF The SRFOFF instruction asserts disables RX/TX and the frequency synthesizer. The instruction waits for the radio to acknowledge the command before executing the next instruction. SFLUSHRX 0xC6 Flush RXFIFO buffer and reset demodulator SFLUSHRX The SFLUSHRX instruction flushes the RXFIFO buffer and resets the demodulator. The instruction waits for the radio to acknowledge the command before executing the next instruction. SFLUSHTX 0xC7 Flush TXFIFO buffer SFLUSHTX The SFLUSHTX instruction flushes the TXFIFO buffer. The instruction waits for the radio to acknowledge the command before executing the next instruction. SACK 0xC8 Send acknowledge frame with pending field cleared SACK The SACK instruction sends an acknowledge frame. The instruction waits for the radio to acknowledge the command before executing the next instruction. SACPEND 0xC9 Send acknowledge frame when pending field set SACKPEND The SACKPEND instruction sends an acknowledge frame with pending field set. The instruction waits for the radio to acknowledge the command before executing the next instruction. ISSTOP 0xFF Stop program execution Stop execution ISSTOP instruction stops the CSP program execution. The instruction memory is cleared, any loop start location set be the LABEL instruction is invalidated and the IRQ_CSP_STOP interrupt flag is asserted. ISSTART 0xFE Start program execution PC := 0, start execution The ISSTART instruction starts the CSP program execution from first instruction written to instruction memory. ISTXCALN 0xE1 Enable and calibrate freq. synth. for TX STXCALN ISTXCALN instruction immediately enables and calibrates frequency synthesizer for TX. The instruction waits for the radio to acknowledge the command before executing the next instruction. Not Recommended for New Designs CC2430 Radio : CSMA/CA Strobe Processor CC2430 Data Sheet (rev. 2.1) SWRS036F Page 182 of 211 NMONIC OPCODE Function Operation Description ISRXON 0xE2 Enable and calibrate freq. synth. for RX SRXON The ISRXON instruction immediately enables and calibrates frequency synthesizer for RX. The instruction waits for the radio to acknowledge the command before executing the next instruction. ISTXON 0xE3 Enable TX after calibration STXON_STRB The ISTXON instruction immediately enables TX after calibration. The instruction waits for the radio to acknowledge the command before executing the next instruction. ISTXONCCA 0xE4 Enable calibration and TX if CCA indicates a clear channel STXONCCA The ISTXONCCA instruction immediately enables TX after calibration if CCA indicates a clear channel. The instruction waits for the radio to acknowledge the command before executing the next instruction. ISRFOFF 0xE5 Disable RX/TX and freq. synth. FFCTL_SRFOFF_STRB = 1 The ISRFOFF instruction immediately disables RX/TX and frequency synthesizer. The instruction waits for the radio to acknowledge the command before executing the next instruction. ISFLUSHRX 0xE6 Flush RXFIFO buffer and reset demodulator SFLUSHRX ISFLUSHRX instruction flushes the RXFIFO buffer and resets the demodulator. The instruction waits for the radio to acknowledge the command before executing the next instruction. Note that for compete flush the command must be run twice. ISFLUSHTX 0xE7 Flush TXFIFO buffer SFLUSHTX ISFLUSHTX instruction immediately flushes the TXFIFO buffer. The instruction waits for the radio to acknowledge the command before executing the next instruction. ISACK 0xE8 Send acknowledge frame with pending field cleared SACK The ISACK instruction immediately sends an acknowledge frame. The instruction waits for the radio to receive and interpret the command before executing the next instruction. ISACKPEND 0xE9 Send acknowledge frame when pending field set SACPEND The ISACKPEND instruction immediately sends an acknowledge frame with pending field set. The instruction waits for the radio to receive and interpret the command before executing the next instruction. Not Recommended for New Designs CC2430 Radio : Radio Registers CC2430 Data Sheet (rev. 2.1) SWRS036F Page 183 of 211 Table 48: Condition code for C Condition code C Description Function 000 CCA is true CCA = 1 001 Transmiting or Receiving packet SFD = 1 010 CPU control true CSPCTRL.CPU_CTRL=1 011 End of instruction memory PC = 23 100 Register X=0 X = 0 101 Register Y=0 Y = 0 110 Register Z=0 Z = 0 111 Not used - 14.35 Radio Registers This section describes all RF registers used for control and status for the radio. The RF registers reside in XDATA memory space. Table 49 gives an overview of register addresses while the remaining tables in this section describe each register. Refer also to section 3 for Register conventions. Table 49 : Overview of RF registers XDATA Address Register name Description 0xDF00- 0xDF01 - Reserved 0xDF02 MDMCTRL0H Modem Control 0, high 0xDF03 MDMCTRL0L Modem Control 0, low 0xDF04 MDMCTRL1H Modem Control 1, high 0xDF05 MDMCTRL1L Modem Control 1, low 0xDF06 RSSIH RSSI and CCA Status and Control, high 0xDF07 RSSIL RSSI and CCA Status and Control, low 0xDF08 SYNCWORDH Synchronisation Word Control, high 0xDF09 SYNCWORDL Synchronisation Word Control, low 0xDF0A TXCTRLH Transmit Control, high 0xDF0B TXCTRLL Transmit Control, low 0xDF0C RXCTRL0H Receive Control 0, high 0xDF0D RXCTRL0L Receive Control 0, low 0xDF0E RXCTRL1H Receive Control 1, high 0xDF0F RXCTRL1L Receive Control 1, low 0xDF10 FSCTRLH Frequency Synthesizer Control and Status, high 0xDF11 FSCTRLL Frequency Synthesizer Control and Status, low 0xDF12 CSPX CSP X Data 0xDF13 CSPY CSP Y Data 0xDF14 CSPZ CSP Z Data 0xDF15 CSPCTRL CSP Control 0xDF16 CSPT CSP T Data 0xDF17 RFPWR RF Power Control Not Recommended for New Designs CC2430 Radio : Radio Registers CC2430 Data Sheet (rev. 2.1) SWRS036F Page 184 of 211 XDATA Address Register name Description 0xDF20 FSMTCH Finite State Machine Time Constants, high 0xDF21 FSMTCL Finite State Machine Time Constants, low 0xDF22 MANANDH Manual AND Override, high 0xDF23 MANANDL Manual AND Override, low 0xDF24 MANORH Manual OR Override, high 0xDF25 MANORL Manual OR Override, low 0xDF26 AGCCTRLH AGC Control, high 0xDF27 AGCCTRLL AGC Control, low 0xDF28- 0xDF38 - Reserved 0xDF39 FSMSTATE Finite State Machine State Status 0xDF3A ADCTSTH ADC Test, high 0xDF3B ADCTSTL ADC Test, low 0xDF3C DACTSTH DAC Test, high 0xDF3D DACTSTL DAC Test, low 0xDF3E - Reserved 0xDF3F - Reserved 0xDF40 - Reserved 0xDF41 - Reserved 0xDF43 IEEE_ADDR0 IEEE Address 0 (LSB) 0xDF44 IEEE_ADDR1 IEEE Address 1 0xDF45 IEEE_ADDR2 IEEE Address 2 0xDF46 IEEE_ADDR3 IEEE Address 3 0xDF47 IEEE_ADDR4 IEEE Address 4 0xDF48 IEEE_ADDR5 IEEE Address 5 0xDF49 IEEE_ADDR6 IEEE Address 6 0xDF4A IEEE_ADDR7 IEEE Address 7 (MSB) 0xDF4B PANIDH PAN Identifier, high 0xDF4C PANIDL PAN Identifier, low 0xDF4D SHORTADDRH Short Address, high 0xDF4E SHORTADDRL Short Address, low 0xDF4F IOCFG0 I/O Configuration 0 0xDF50 IOCFG1 I/O Configuration 1 0xDF51 IOCFG2 I/O Configuration 2 0xDF52 IOCFG3 I/O Configuration 3 0xDF53 RXFIFOCNT RX FIFO Count Not Recommended for New Designs CC2430 Radio : Radio Registers CC2430 Data Sheet (rev. 2.1) SWRS036F Page 185 of 211 XDATA Address Register name Description 0xDF54 FSMTC1 Finite State Machine Control 0xDF55- 0xDF5F - Reserved 0xDF60 CHVER Chip Version 0xDF61 CHIPID Chip Identification 0xDF62 RFSTATUS RF Status 0xDF63 - Reserved 0xDF64 IRQSRC RF Interrupt Source The RF registers shown in Table 50 are reserved for test purposes. The values for these registers should be obtained from SmartRF® Studio (see section 16 on page 202) and should not be changed. Table 50 : Overview of RF test registers XDATA Address Register name Reset value 0xDF28 AGCTST0H 0x36 0xDF29 AGCTST0L 0x49 0xDF2A AGCTST1H 0x08 0xDF2B AGCTST1L 0x54 0xDF2C AGCTST2H 0x09 0xDF2D AGCTST2L 0x0A 0xDF2E FSTST0H 0x10 0xDF2F FSTST0L 0x00 0xDF30 FSTST1H 0x40 0xDF31 FSTST1L 0x32 0xDF32 FSTST2H 0x20 0xDF33 FSTST2L 0x00 0xDF34 FSTST3H 0x92 0xDF35 FSTST3L 0xDD 0xDF37 RXBPFTSTH 0x00 0xDF38 RXBPFTSTL 0x00 0xDF3F TOPTST 0x10 0xDF40 RESERVEDH 0x00 0xDF41 RESERVEDL 0x00 Not Recommended for New Designs CC2430 Radio : Radio Registers CC2430 Data Sheet (rev. 2.1) SWRS036F Page 186 of 211 MDMCTRL0H (0xDF02) Bit Name Reset R/W Function 7:6 FRAMET_FILT 00 R/W These bits are used to perform special operations on the frame type field of a received packet. These operations do not influence the packet that is written to the RXFIFO. 00 : Leave frame type as it is. 01 : Invert MSB of frame type. 10 : Set MSB of frame type to 0. 11 : Set MSB of frame type to 1. For IEEE 802.15.4 compliant operation these bits should always be set to 00. 5 RESERVED_FRAME_MODE 0 R/W Mode for accepting reserved IEEE 802.15.4 frame types when address recognition is enabled (MDMCTRL0.ADDR_DECODE = 1). 0 : Reserved frame types (100, 101, 110, 111) are rejected by address recognition. 1 : Reserved frame types (100, 101, 110, 111) are always accepted by address recognition. No further address decoding is done. When address recognition is disabled (MDMCTRL0.ADDR_DECODE = 0), all frames are received and RESERVED_FRAME_MODE is don’t care. For IEEE 802.15.4 compliant operation these bits should always be set to 00. 4 PAN_COORDINATOR 0 R/W PAN Coordinator enable. Used for filtering packets with no destination address, as specified in section 7.5.6.2 in 802.15.4 [1] 0 : Device is not a PAN Coordinator 1 : Device is a PAN Coordinator 3 ADDR_DECODE 1 R/W Hardware Address decode enable. 0 : Address decoding is disabled 1 : Address decoding is enabled 2:0 CCA_HYST[2:0] 010 R/W CCA Hysteresis in dB, values 0 through 7 dB Not Recommended for New Designs CC2430 Radio : Radio Registers CC2430 Data Sheet (rev. 2.1) SWRS036F Page 187 of 211 MDMCTRL0L (0xDF03) Bit Name Reset R/W Description 7:6 CCA_MODE[1:0] 11 R/W Clear Channel Assessment mode select. 00 : Reserved 01 : CCA=1 when RSSI < CCA_THR-CCA_HYST CCA=0 when RSSI >= CCA_THR 10 : CCA=1 when not receiving a packet 11 : CCA=1 when RSSI < CCA_THR-CCA_HYST and not receiving a packet CCA=0 when RSSI >= CCA_THR or receiving a packet 5 AUTOCRC 1 R/W In packet mode a CRC-16 (ITU-T) is calculated and is transmitted after the last data byte in TX. In RX CRC is calculated and checked for validity. 4 AUTOACK 0 R/W If AUTOACK is enabled, all packets accepted by address recognition with the acknowledge request flag set and a valid CRC are acknowledged 12 symbol periods after being received if MDMCTRL1H.SLOTTED_ACK = 0. Acknowledgment is at the beginning of the first backoff slot more than 12 symbol periods after the end of the received frame if the MDMCTRL1H.SLOTTED_ACK = 1 0 : AUTOACK disabled 1 : AUTOACK enabled 3:0 PREAMBLE_LENGTH[3:0] 0010 R/W The number of preamble bytes (2 zero-symbols) to be sent in TX mode prior to the SYNCWORD. The reset value of 0010 is compliant with IEEE 802.15.4, since the 4th zero byte is included in the SYNCWORD. 0000 : 1 leading zero bytes (not recommended) 0001 : 2 leading zero bytes (not recommended) 0010 : 3 leading zero bytes (IEEE 802.15.4 compliant) 0011 : 4 leading zero bytes … 1111 : 16 leading zero bytes MDMCTRL1H (0xDF04) Bit Name Reset R/W Description 7 SLOTTED_ACK 0 R/W SLOTTED_ACK defines the timing of automatically transmitted acknowledgment frames. 0 : The acknowledgment frame is transmitted 12 symbol periods after the incoming frame. 1 : The acknowledgment frame is transmitted between 12 and 30 symbol periods after the incoming frame. The timing is defined such that there is an integer number of 20-symbol periods between the received and the transmitted SFDs. This may be used to transmit slotted acknowledgment frames in a beacon enabled network. 6 - 0 R/W Reserved 5 CORR_THR_SFD 1 R/W CORR_THR_SFD defines the level at which the CORR_THR correlation threshold is used to filter out received frames. 0 : Same filtering as CC2420, should be combined with a CORR_THR of 0x14 1 : More extensive filtering is performed, which will result in less false frame detections e.g. caused by noise. 4:0 CORR_THR[4:0] 0x10 R/W Demodulator correlator threshold value, required before SFD search. Not Recommended for New Designs CC2430 Radio : Radio Registers CC2430 Data Sheet (rev. 2.1) SWRS036F Page 188 of 211 MDMCTRL1L (0xDF05) Bit Name Reset R/W Description 7:6 - 00 R0 Reserved, read as 0. 5 DEMOD_AVG_MODE 0 R/W DC average filter behavior. 0 : Lock DC level to be removed after preamble match 1 : Continuously update DC average level. 4 MODULATION_MODE 0 R/W Set one of two RF modulation modes for RX / TX 0 : IEEE 802.15.4 compliant mode 1 : Reversed phase, non-IEEE compliant (could be used to set up a system which will not receive 802.15.4 packets) 3:2 TX_MODE[1:0] 00 R/W Set test modes for TX 00 : Normal operation, transmit TXFIFO 01 : Serial mode, use transmit data on serial interface, infinite transmission. 10 : TXFIFO looping ignore underflow in TXFIFO and read cyclic, infinite transmission. 11 : Send random data from CRC, infinite transmission. 1:0 RX_MODE[1:0] 00 R/W Set test mode of RX 00 : Normal operation, use RXFIFO 01 : Receive serial mode, output received data on pins. Infinite RX. 10 : RXFIFO looping ignore overflow in RXFIFO and write cyclic, infinite reception. 11 : Reserved RSSIH (0xDF06) Bit Name Reset R/W Description 7:0 CCA_THR[7:0] 0xE0 R/W Clear Channel Assessment threshold value, signed number in 2’s complement for comparison with the RSSI. The unit is 1 dB, offset is TBD [depends on the absolute gain of the RX chain, including external components and should be measured]. The CCA signal goes high when the received signal is below this value. The reset value is in the range of -70 dBm. Not Recommended for New Designs CC2430 Radio : Radio Registers CC2430 Data Sheet (rev. 2.1) SWRS036F Page 189 of 211 RSSIL (0xDF07) Bit Name Reset R/W Description 7:0 RSSI_VAL[7:0] 0x80 R RSSI estimate on a logarithmic scale, signed number in 2’s complement. Unit is 1 dB, offset is TBD [depends on the absolute gain of the RX chain, including external components, and should be measured]. The RSSI value is averaged over 8 symbol periods. SYNCWORDH (0xDF08) Bit Name Reset R/W Description 7:0 SYNCWORD[15:8] 0xA7 R/W Synchronization word. The SYNCWORD is processed from the least significant nibble (F at reset) to the most significant nibble (A at reset). SYNCWORD is used both during modulation (where 0xF’s are replaced with 0x0’s) and during demodulation (where 0xF’s are not required for frame synchronization). In reception an implicit zero is required before the first symbol required by SYNCWORD. The reset value is compliant with IEEE 802.15.4. SYNCWORDL (0xDF09) Bit Name Reset R/W Description 7:0 SYNCWORD[7:0] 0x0F R/W Synchronization word. The SYNCWORD is processed from the least significant nibble (F at reset) to the most significant nibble (A at reset). SYNCWORD is used both during modulation (where 0xF’s are replaced with 0x0’s) and during demodulation (where 0xF’s are not required for frame synchronization). In reception an implicit zero is required before the first symbol required by SYNCWORD. The reset value is compliant with IEEE 802.15.4. TXCTRLH (0xDF0A) Bit Name Reset R/W Description 7:6 TXMIXBUF_CUR[1:0] 10 R/W TX mixer buffer bias current. 00 : 690 uA 01 : 980 uA 10 : 1.16 mA (nominal) 11 : 1.44 mA 5 TX_TURNAROUND 1 R/W Sets the wait time after STXON before transmission is started. 0 : 8 symbol periods (128 us) 1 : 12 symbol periods (192 us) 4:3 TXMIX_CAP_ARRAY[1:0] 0 R/W Selects varactor array settings in the transmit mixers. 2:1 TXMIX_CURRENT[1:0] 0 R/W Transmit mixers current: 00 : 1.72 mA 01 : 1.88 mA 10 : 2.05 mA 11 : 2.21 mA 0 PA_DIFF 1 R/W Power Amplifier (PA) output select. Selects differential or single-ended PA output. 0 : Single-ended output 1 : Differential output Not Recommended for New Designs CC2430 Radio : Radio Registers CC2430 Data Sheet (rev. 2.1) SWRS036F Page 190 of 211 TXCTRLL (0xDF0B) Bit Name Reset R/W Description 7:5 PA_CURRENT[2:0] 011 R/W Current programming of the PA 000 : -3 current adjustment 001 : -2 current adjustment 010 : -1 current adjustment 011 : Nominal setting 100 : +1 current adjustment 101 : +2 current adjustment 110 : +3 current adjustment 111 : +4 current adjustment 4:0 PA_LEVEL[4:0] 0x1F R/W Output PA level. (~0 dBm) RXCTRL0H (0xDF0C) Bit Name Reset R/W Description 7:6 - 00 R0 Reserved, read as 0. 5:4 RXMIXBUF_CUR[1:0] 01 R/W RX mixer buffer bias current. 00 : 690 uA 01 : 980 uA (nominal) 10 : 1.16 mA 11 : 1.44 mA 3:2 HIGH_LNA_GAIN[1:0] 0 R/W Controls current in the LNA gain compensation branch in AGC High gain mode. 00 : Compensation disabled 01 : 100 μA compensation current 10 : 300 μA compensation current (Nominal) 11 : 1000 μA compensation current 1:0 MED_LNA_GAIN[1:0] 10 R/W Controls current in the LNA gain compensation branch in AGC Med gain mode. RXCTRL0L (0xDF0D) Bit Name Reset R/W Description 7:6 LOW_LNA_GAIN[1:0] 11 R/W Controls current in the LNA gain compensation branch in AGC Low gain mode 5:4 HIGH_LNA_CURRENT[1:0] 10 R/W Controls main current in the LNA in AGC High gain mode 00 : 240 μA LNA current (x2) 01 : 480 μA LNA current (x2) 10 : 640 μA LNA current (x2) 11 : 1280 μA LNA current (x2) 3:2 MED_LNA_CURRENT[1:0] 01 R/W Controls main current in the LNA in AGC Med gain mode 1:0 LOW_LNA_CURRENT[1:0] 01 R/W Controls main current in the LNA in AGC Low gain mode Not Recommended for New Designs CC2430 Radio : Radio Registers CC2430 Data Sheet (rev. 2.1) SWRS036F Page 191 of 211 RXCTRL1H (0xDF0E) Bit Name Reset R/W Description 7:6 - 0 R0 Reserved, read as 0. 5 RXBPF_LOCUR 1 R/W Controls reference bias current to RX band-pass filters: 0 : 4 uA 1 : 3 uA (Default) 4 RXBPF_MIDCUR 0 R/W Controls reference bias current to RX band-pass filters: 0 : 4 uA (Default) 1 : 3.5 uA 3 LOW_LOWGAIN 1 R/W LNA low gain mode setting in AGC low gain mode. 2 MED_LOWGAIN 0 R/W LNA low gain mode setting in AGC medium gain mode. 1 HIGH_HGM 1 R/W RX Mixers high gain mode setting in AGC high gain mode. 0 MED_HGM 0 R/W RX Mixers high gain mode setting in AGC medium gain mode. RXCTRL1L (0xDF0F) Bit Name Reset R/W Description 7:6 LNA_CAP_ARRAY[1:0] 01 R/W Selects varactor array setting in the LNA 00 : OFF 01 : 0.1 pF (x2) (Nominal) 10 : 0.2 pF (x2) 11 : 0.3 pF (x2) 5:4 RXMIX_TAIL[1:0] 01 R/W Control of the receiver mixers output current. 00 : 12 μA 01 : 16 μA (Nominal) 10 : 20 μA 11 : 24 μA 3:2 RXMIX_VCM[1:0] 01 R/W Controls VCM level in the mixer feedback loop 00 : 8 μA mixer current 01 : 12 μA mixer current (Nominal) 10 : 16 μA mixer current 11 : 20 μA mixer current 1:0 RXMIX_CURRENT[1:0] 10 R/W Controls current in the mixer 00 : 360 μA mixer current (x2) 01 : 720 μA mixer current (x2) 10 : 900 μA mixer current (x2) (Nominal) 11 : 1260 μA mixer current (x2) Not Recommended for New Designs CC2430 Radio : Radio Registers CC2430 Data Sheet (rev. 2.1) SWRS036F Page 192 of 211 FSCTRLH (0xDF10) Bit Name Reset R/W Description 7:6 LOCK_THR[1:0] 01 R/W Number of consecutive reference clock periods with successful sync windows required to indicate lock: 00 : 64 01 : 128 10 : 256 11 : 512 5 CAL_DONE 0 R Frequency synthesizer calibration done. 0 : Calibration not performed since the last time the FS was turned on. 1 : Calibration performed since the last time the FS was turned on. 4 CAL_RUNNING 0 R Calibration status, '1' when calibration in progress. 3 LOCK_LENGTH 0 R/W LOCK_WINDOW pulse width: 0: 2 CLK_PRE periods 1: 4 CLK_PRE periods 2 LOCK_STATUS 0 R PLL lock status 0 : PLL is not in lock 1 : PLL is in lock 1:0 FREQ[9:8] 01 (2405 MHz) R/W Frequency control word. Used directly in TX, in RX the LO frequency is automatically set 2 MHz below the RF frequency. [ ] ( [ ]) (2048 [9 : 0] 2 ) MHz 2048 9 : 0 MHz 4 2048 9 : 0 f FREQ RXEN f FREQ Frequency division FREQ LO RF = + − ⋅ = + ⇔ + = FSCTRLL (0xDF11) Bit Name Reset R/W Description 7:0 FREQ[7:0] 0x65 (2405 MHz) R/W Frequency control word. Used directly in TX, in RX the LO frequency is automatically set 2 MHz below the RF frequency. [ ] ( [ ]) (2048 [9 : 0] 2 ) MHz 2048 9 : 0 MHz 4 2048 9 : 0 f FREQ RXEN f FREQ Frequency division FREQ LO RF = + − ⋅ = + ⇔ + = CSPT (0xDF16) Bit Name Reset R/W Description 7:0 CSPT 0x00 R/W CSP T Data register. Contents is decremented each time MAC Timer overflows while CSP program is running. CSP program stops when is about to count to 0. Setting T=0xFF disables decrement function. CSPX (0xDF12) Bit Name Reset R/W Description 7:0 CSPX 0x00 R/W CSP X Data register. Used by CSP WAITX, RANDXY and conditional instructions Not Recommended for New Designs CC2430 Radio : Radio Registers CC2430 Data Sheet (rev. 2.1) SWRS036F Page 193 of 211 CSPY (0xDF13) Bit Name Reset R/W Description 7:0 CSPY 0x00 R/W CSP Y Data register. Used by CSP INCY, DECY, INCMAXY, RANDXY and conditional instructions CSPZ (0xDF14) Bit Name Reset R/W Description 7:0 CSPZ 0x00 R/W CSP Z Data register. Used by CSP DECZ and conditional instructions CSPCTRL (0xDF15) Bit Name Reset R/W Description 7:1 - 0x00 R0 Reserved, read as 0 0 CPU_CTRL 0 R/W CSP CPU control input. Used by CSP conditional instructions. RFPWR (0xDF17) Bit Name Reset R/W Description 7:5 - 0 R0 Reserved, read as 0. 4 ADI_RADIO_PD 1 R ADI_RADIO_PD is a delayed version of RREG_RADIO_PD. The delay is set by RREG_DELAY[2:0]. When ADI_RADIO_PD is 0, all analog modules in the radio are set in power down. ADI_RADIO_PD is read only. 3 RREG_RADIO_PD 1 R/W Power down of the voltage regulator to the analog part of the radio. This signal is used to enable or disable the analog radio. 0 : Power up 1 : Power down 2:0 RREG_DELAY[2:0] 100 R/W Delay value used in power-on for voltage regulator VREG_DELAY[2:0] Delay Units 000 0 μs 001 31 μs 010 63 μs 011 125 μs 100 250 μs 101 500 μs 110 1000 μs 111 2000 μs Not Recommended for New Designs CC2430 Radio : Radio Registers CC2430 Data Sheet (rev. 2.1) SWRS036F Page 194 of 211 FSMTCH (0xDF20) Bit Name Reset R/W Description 7:5 TC_RXCHAIN2RX[2:0] 011 R/W The time in 5 us steps between the time the RX chain is enabled and the demodulator and AGC is enabled. The RX chain is started when the band pass filter has been calibrated (after 6.5 symbol periods). 4:2 TC_SWITCH2TX[2:0] 110 R/W The time in advance the RXTX switch is set high, before enabling TX. Unit is μs. 1:0 TC_PAON2TX[3:2] 10 R/W The time in advance the PA is powered up before enabling TX. Unit is μs. FSMTCL (0xDF21) Bit Name Reset R/W Description 7:6 TC_PAON2TX[1:0] 10 R/W The time in advance the PA is powered up before enabling TX. Unit is μs. 5:3 TC_TXEND2SWITCH[2:0] 010 R/W The time after the last chip in the packet is sent, and the rxtx switch is disabled. Unit is μs. 2:0 TC_TXEND2PAOFF[2:0] 100 R/W The time after the last chip in the packet is sent, and the PA is set in power-down. Also the time at which the modulator is disabled. Unit is μs. MANANDH (0xDF22) Bit Name Reset R/W Description 7 VGA_RESET_N 1 R/W The VGA_RESET_N signal is used to reset the peak detectors in the VGA in the RX chain. 6 BIAS_PD 1 R/W Reserved, read as 0 5 BALUN_CTRL 1 R/W The BALUN_CTRL signal controls whether the PA should receive its required external biasing (1) or not (0) by controlling the RX/TX output switch. 4 RXTX 1 R/W RXTX signal: controls whether the LO buffers (0) or PA buffers (1) should be used. 3 PRE_PD 1 R/W Powerdown of prescaler. 2 PA_N_PD 1 R/W Powerdown of PA (negative path). 1 PA_P_PD 1 R/W Powerdown of PA (positive path). When PA_N_PD=1 and PA_P_PD=1 the up conversion mixers are in powerdown. 0 DAC_LPF_PD 1 R/W Powerdown of TX DACs. Not Recommended for New Designs CC2430 Radio : Radio Registers CC2430 Data Sheet (rev. 2.1) SWRS036F Page 195 of 211 MANANDL (0xDF23) Bit Name Reset R/W Description 7 - 0 R0 Reserved, read as 0 6 RXBPF_CAL_PD 1 R/W Powerdown control of complex band pass receive filter calibration oscillator. 5 CHP_PD 1 R/W Powerdown control of charge pump. 4 FS_PD 1 R/W Powerdown control of VCO, I/Q generator, LO buffers. 3 ADC_PD 1 R/W Powerdown control of the ADCs. 2 VGA_PD 1 R/W Powerdown control of the VGA. 1 RXBPF_PD 1 R/W Powerdown control of complex band pass receive filter. 0 LNAMIX_PD 1 R/W Powerdown control of LNA, down conversion mixers and front-end bias. MANORH (0xDF24) Bit Name Reset R/W Description 7 VGA_RESET_N 0 R/W The VGA_RESET_N signal is used to reset the peak detectors in the VGA in the RX chain. 6 BIAS_PD 0 R/W Global Bias power down (1) 5 BALUN_CTRL 0 R/W The BALUN_CTRL signal controls whether the PA should receive its required external biasing (1) or not (0) by controlling the RX/TX output switch. 4 RXTX 0 R/W RXTX signal: controls whether the LO buffers (0) or PA buffers (1) should be used. 3 PRE_PD 0 R/W Powerdown of prescaler. 2 PA_N_PD 0 R/W Powerdown of PA (negative path). 1 PA_P_PD 0 R/W Powerdown of PA (positive path). When PA_N_PD=1 and PA_P_PD=1 the up conversion mixers are in powerdown. 0 DAC_LPF_PD 0 R/W Powerdown of TX DACs. MANORL (0xDF25) Bit Name Reset R/W Description 7 - 0 R0 Reserved, read as 0 6 RXBPF_CAL_PD 0 R/W Powerdown control of complex band pass receive filter calibration oscillator. 5 CHP_PD 0 R/W Powerdown control of charge pump. 4 FS_PD 0 R/W Powerdown control of VCO, I/Q generator, LO buffers. 3 ADC_PD 0 R/W Powerdown control of the ADCs. 2 VGA_PD 0 R/W Powerdown control of the VGA. 1 RXBPF_PD 0 R/W Powerdown control of complex band pass receive filter. 0 LNAMIX_PD 0 R/W Powerdown control of LNA, down conversion mixers and front-end bias. Not Recommended for New Designs CC2430 Radio : Radio Registers CC2430 Data Sheet (rev. 2.1) SWRS036F Page 196 of 211 AGCCTRLH (0xDF26) Bit Name Reset R/W Description 7 VGA_GAIN_OE 0 R/W Use the VGA_GAIN value during RX instead of the AGC value. 6:0 VGA_GAIN[6:0] 0x7F R/W When written, VGA manual gain override value; when read, the currently used VGA gain setting. AGCCTRLL (0xDF27) Bit Name Reset R/W Description 7:4 - 0 R0 Reserved, read as 0. 3:2 LNAMIX_GAINMODE_O [1:0] 00 R/W LNA / Mixer Gain mode override setting 00 : Gain mode is set by AGC algorithm 01 : Gain mode is always low-gain 10 : Gain mode is always med-gain 11 : Gain mode is always high-gain 1:0 LNAMIX_GAINMODE[1:0] 00 R Status bit, defining the currently selected gain mode selected by the AGC or overridden by the LNAMIX_GAINMODE_O setting. Note that this value is updated by HW and may have changed between reset and when read. FSMSTATE (0xDF39) Bit Name Reset R/W Description 7:6 - 0 R0 Reserved, read as 0. 5:0 FSM_FFCTRL_STATE[5:0 ] - R Gives the current state of the FIFO and Frame Control (FFCTRL) finite state machine. ADCTSTH (0xDF3A) Bit Name Reset R/W Function 7 ADC_CLOCK_DISABLE 0 R/W ADC Clock Disable 0 : Clock enabled when ADC enabled 1 : Clock disabled, even if ADC is enabled 6:0 ADC_I[6:0] - R Returns the current ADC I-branch value. ADCTSTL (0xDF3B) Bit Name Reset R/W Function 7 - 0 R0 Reserved, read as 0. 6:0 ADC_Q[6:0] - R Returns the current ADC Q-branch value. Not Recommended for New Designs CC2430 Radio : Radio Registers CC2430 Data Sheet (rev. 2.1) SWRS036F Page 197 of 211 DACTSTH (0xDF3C) Bit Name Reset R/W Description 7 - 0 R0 Reserved, read as 0. 6:4 DAC_SRC[2:0] 000 R/W The TX DACs data source is selected by DAC_SRC according to: 000 : Normal operation (from modulator). 001 : The DAC_I_O and DAC_Q_O override values below.- 010 : From ADC, most significant bits 011 : I/Q after digital down mix and channel filtering. 100 : Full-spectrum White Noise (from CRC) 101 : From ADC, least significant bits 110 : RSSI / Cordic Magnitude Output 111 : HSSD module. This feature will often require the DACs to be manually turned on in MANOVR and PAMTST.ATESTMOD_MODE=4. 3:0 DAC_I_O[5:2] 000 R/W I-branch DAC override value. DACTSTL (0xDF3D) Bit Name Reset R/W Description 7:6 DAC_I_O[1:0] 00 R/W I-branch DAC override value. 5:0 DAC_Q_O[5:0] 0x00 R/W Q-branch DAC override value. IEEE_ADDR0 (0xDF43) Bit Name Reset R/W Description 7:0 IEEE_ADDR0[7:0] 0x00 R/W IEEE ADDR byte 0 (LSB) IEEE_ADDR1 (0xDF44) Bit Name Reset R/W Description 7:0 IEEE_ADDR1[7:0] 0x00 R/W IEEE ADDR byte 1 IEEE_ADDR2 (0xDF45) Bit Name Reset R/W Description 7:0 IEEE_ADDR2[7:0] 0x00 R/W IEEE ADDR byte 2 IEEE_ADDR3 (0xDF46) Bit Name Reset R/W Description 7:0 IEEE_ADDR3[7:0] 0x00 R/W IEEE ADDR byte 3 IEEE_ADDR4 (0xDF47) Bit Name Reset R/W Description 7:0 IEEE_ADDR4[7:0] 0x00 R/W IEEE ADDR byte 4 Not Recommended for New Designs CC2430 Radio : Radio Registers CC2430 Data Sheet (rev. 2.1) SWRS036F Page 198 of 211 IEEE_ADDR5 (0xDF48) Bit Name Reset R/W Description 7:0 IEEE_ADDR5[7:0] 0x00 R/W IEEE ADDR byte 5 IEEE_ADDR6 (0xDF49) Bit Name Reset R/W Description 7:0 IEEE_ADDR6[7:0] 0x00 R/W IEEE ADDR byte 6 IEEE_ADDR7 (0xDF4A) Bit Name Reset R/W Description 7:0 IEEE_ADDR7[7:0] 0x00 R/W IEEE ADDR byte 7 (MSB) PANIDH (0xDF4B) Bit Name Reset R/W Description 7:0 PANIDH[7:0] 0x00 R/W PAN identifier high byte PANIDL (0xDF4C) Bit Name Reset R/W Description 7:0 PANIDL[7:0] 0x00 R/W PAN identifier low byte SHORTADDRH (0xDF4D) Bit Name Reset R/W Description 7:0 SHORTADDRH[7:0] 0x00 R/W Short address high byte SHORTADDRL (0xDF4E) Bit Name Reset R/W Description 7:0 SHORTADDRL[7:0] 0x00 R/W Short address low byte IOCFG0 (0xDF4F) Bit Name Reset R/W Description 7 - 0 R0 Reserved, read as 0. 6:0 FIFOP_THR[6:0] 0x40 R/W Sets the number of bytes in RXFIFO that is required for FIFOP to go high. Not Recommended for New Designs CC2430 Radio : Radio Registers CC2430 Data Sheet (rev. 2.1) SWRS036F Page 199 of 211 IOCFG1 (0xDF50) Bit Name Reset R/W Description 7 - 0 R0 Reserved, read as 0. 6 OE_CCA 0 R/W CCA is output on P1.7 when this bit is 1 5 IO_CCA_POL 0 R/W Polarity of the IO_CCA signal. This bit is xor’ed with the internal CCA signal. 4:0 IO_CCA_SEL 00000 R/W Multiplexer setting for the CCA signal. Must be 0x00 in order to output the CCA status. IOCFG2 (0xDF51) Bit Name Reset R/W Description 7 - 0 R0 Reserved, read as 0. 6 OE_SFD 0 R/W SFD is output on P1.6 when this bit is 1 5 IO_SFD_POL 0 R/W Polarity of the IO_SFD signal. This bit is xor’ed with the internal SFD signal. 4:0 IO_SFD_SEL 00000 R/W Multiplexer setting for the SFD signal. Must be 0x00 in order to output the SFD status IOCFG3 (0xDF52) Bit Name Reset R/W Description 7:6 - 00 R0 Reserved, read as 0. 5:4 HSSD_SRC 00 R/W Configures the HSSD interface. Only the first 4 settings (compared to CC2420) are used. 00 : Off 01 : Output AGC status (gain setting/peak detector status/accumulator value) 10 : Output ADC I and Q values 11 : Output I/Q after digital down mix and channel filtering 3 OE_FIFOP 0 R/W FIFOP is output on P1.5 when this bit is 1. 2 IO_FIFOP_POL 0 R/W Polarity of the IO_FIFOP signal. This bit is xor’ed with the internal FIFOP signal 1 OE_FIFO 0 R/W FIFO is output on P1.4 when this bit is 1 0 IO_FIFO_POL 0 R/W Polarity of the IO_FIFO signal. This bit is xor’ed with the internal FIFO signal RXFIFOCNT (0xDF53) Bit Name Reset R/W Description 7:0 RXFIFOCNT[7:0] 0x00 R Number of bytes in the RX FIFO Not Recommended for New Designs CC2430 Radio : Radio Registers CC2430 Data Sheet (rev. 2.1) SWRS036F Page 200 of 211 FSMTC1 (0xDF54) Bit Name Reset R/W Description 7:6 - 00 R0 Reserved, read as 0. 5 ABORTRX_ON_SRXON 1 R/W Abort RX when SRXON strobe is issued 0 : Packet reception is not aborted when SRXON is issued 1 : Packet reception is aborted when SRXON is issued 4 RX_INTERRUPTED 0 R RX interrupted by strobe command This bit is cleared when the next strobe is detected. 0 : Strobe command detected 1 : Packet reception was interrupted by strobe command 3 AUTO_TX2RX_OFF 0 R/W Automatically go to RX after TX. Applies to both data packets and ACK packets. 0 : Automatic RX after TX 1 : No automatic RX after TX 2 RX2RX_TIME_OFF 0 R/W Turns off the 12 symbol timeout after packet reception has ended. Active high. 1 PENDING_OR 0 R/W This bit is OR’ed with the pending bit from FFCTRL before it goes to the modulator. 0 ACCEPT_ACKPKT 1 R/W Accept ACK packet control. 0 : Reject all ACK packets 1 : ACK packets are received CHVER (0xDF60) Bit Name Reset R/W Description 7:0 VERSION[7:0] 0x03 R Chip revision number. The relationship between the value in VERSION[7:0] and the die revision is as follows: 0x03 : Die revision D The current number in VERSION[7:0] may not be consistent with past or future die revisions of this product CHIPID (0xDF61) Bit Name Reset R/W Description 7:0 CHIPID[7:0] 0x85 R Chip identification number. Always read as 0x85. Not Recommended for New Designs CC2430 Radio : Radio Registers CC2430 Data Sheet (rev. 2.1) SWRS036F Page 201 of 211 RFSTATUS (0xDF62) Bit Name Reset R/W Description 7:5 - 000 R0 Reserved, read as 0. 4 TX_ACTIVE 0 R TX active indicates transmission in progress 0 : TX inactive 1 : TX active 3 FIFO 0 R RXFIFO data available 0 : No data available in RXFIFO 1 : One or more bytes available in RXFIFO 2 FIFOP 0 R RXFIFO threshold flag 0 : Number of bytes in RXFIFO is less or equal threshold set by IOCFG0.FIFOP_THR 1 : Number of bytes in RXFIFO is greater than threshold set by IOCFG0.FIFOP_THR Note that if frame filtering/address recognition is enabled this bit is set only when the frame has passed filtering. This bit is also set when a complete frame has been received. 1 SFD 0 R Start of Frame Delimiter status 0 : SFD inactive 1 : SFD active 0 CCA R Clear Channel Assessment IRQSRC (0xDF64) Bit Name Reset R/W Description 7:1 - 0000000 R0 Reserved, read as 0. 0 TXACK 0 R/W TX Acknowledge interrupt enable. 0 : RFIF interrupt is not set for acknowledge frames 1 : RFIF interrupt is set for acknowledge frames Not Recommended for New Designs CC2430 CC2430 Data Sheet (rev. 2.1) SWRS036F Page 202 of 211 15 Voltage Regulators The CC2430 includes two low drop-out voltage regulators. These are used to provide a 1.8 V power supply to the CC2430 analog and digital power supplies. Note: It is recommended that the voltage regulators are not used to provide power to external circuits. This is because of limited power sourcing capability and due to noise considerations. External circuitry can be powered if they can be used when internal power consumption is low and can be set I PD mode when internal power consumption I high. The analog voltage regulator input pin AVDD_RREG is to be connected to the unregulated 2.0 to 3.6 V power supply. The regulated 1.8 V voltage output to the analog parts, is available on the RREG_OUT pin. The digital regulator input pin AVDD_DREG is also to be connected to the unregulated 2.0 to 3.6 V power supply. The output of the digital regulator is connected internally within the CC2430 to the digital power supply. The voltage regulators require external components as described in section 10 on page 27. 15.1 Voltage Regulators Power-on The analog voltage regulator is disabled by setting the RF register bit RFPWR.RREG_RADIO_PD to 1. When the analog voltage regulator is powered-on by clearing the RFPWR.RREG_RADIO_PD bit, there will be a delay before the regulator is enabled. This delay is programmable through the RFPWR RF register. The interrupt flag RFIF.IRQ_RREG_PD is set when the delay has expired. The delayed power-on can also be observed by polling the RF register bit RFPWR.ADI_RADIO_PD. The digital voltage regulator is disabled when the CC2430 is placed in power modes PM2 or PM3 (see section 13.1). When the voltage regulators are disabled, register and RAM contents will be retained while the unregulated 2.0 to 3.6 power supply is present. 16 Evaluation Software Texas Instruments provides users of CC2430 with a software program, SmartRF® Studio, which may be used for radio performance and functionality evaluation. SmartRF® Studio runs on Microsoft Windows 95/98 and Microsoft Windows NT/2000/XP. SmartRF® Studio can be downloaded from the Texas Instruments web page: http://www.ti.com/lpw Not Recommended for New Designs CC2430 CC2430 Data Sheet (rev. 2.1) SWRS036F Page 203 of 211 17 Register overview ACC (0xE0) – Accumulator...................................................................................................................43 ADCCFG (0xF2) – ADC Input Configuration ........................................................................................83 ADCCON1 (0xB4) – ADC Control 1....................................................................................................131 ADCCON2 (0xB5) – ADC Control 2....................................................................................................132 ADCCON3 (0xB6) – ADC Control 3....................................................................................................133 ADCH (0xBB) – ADC Data High .........................................................................................................131 ADCL (0xBA) – ADC Data Low...........................................................................................................130 ADCTSTH (0xDF3A)...........................................................................................................................196 ADCTSTL (0xDF3B) ...........................................................................................................................196 AGCCTRLH (0xDF26) ........................................................................................................................196 AGCCTRLL (0xDF27).........................................................................................................................196 B (0xF0) – B Register............................................................................................................................43 CHIPID (0xDF61) ................................................................................................................................200 CHVER (0xDF60)................................................................................................................................200 CLKCON (0xC6) – Clock Control..........................................................................................................70 CSPCTRL (0xDF15) ...........................................................................................................................193 CSPT (0xDF16)...................................................................................................................................192 CSPX (0xDF12) ..................................................................................................................................192 CSPY (0xDF13) ..................................................................................................................................193 CSPZ (0xDF14)...................................................................................................................................193 DACTSTH (0xDF3C)...........................................................................................................................197 DACTSTL (0xDF3D) ...........................................................................................................................197 DMA0CFGH (0xD5) – DMA Channel 0 Configuration Address High Byte ...........................................97 DMA0CFGL (0xD4) – DMA Channel 0 Configuration Address Low Byte ............................................97 DMAARM (0xD6) – DMA Channel Arm ................................................................................................96 DMAIRQ (0xD1) – DMA Interrupt Flag .................................................................................................98 DMAREQ (0xD7) – DMA Channel Start Request and Status...............................................................97 DPH0 (0x83) – Data Pointer 0 High Byte..............................................................................................42 DPH1 (0x85) – Data Pointer 1 High Byte..............................................................................................42 DPL0 (0x82) – Data Pointer 0 Low Byte ...............................................................................................42 DPL1 (0x84) – Data Pointer 1 Low Byte ...............................................................................................42 DPS (0x92) – Data Pointer Select ........................................................................................................42 ENCCS (0xB3) – Encryption Control and Status ................................................................................140 ENCDI (0xB1) – Encryption Input Data...............................................................................................140 ENCDO (0xB2) – Encryption Output Data ..........................................................................................140 FADDRH (0xAD) – Flash Address High Byte .......................................................................................77 FADDRL (0xAC) – Flash Address Low Byte.........................................................................................77 FCTL (0xAE) – Flash Control................................................................................................................77 FSCTRLH (0xDF10)............................................................................................................................192 FSCTRLL (0xDF11) ............................................................................................................................192 FSMSTATE (0xDF39) .........................................................................................................................196 FSMTC1 (0xDF54)..............................................................................................................................200 FSMTCH (0xDF20) .............................................................................................................................194 FSMTCL (0xDF21)..............................................................................................................................194 FWDATA (0xAF) – Flash Write Data ....................................................................................................77 FWT (0xAB) – Flash Write Timing ........................................................................................................77 IEEE_ADDR0 (0xDF43)......................................................................................................................197 IEEE_ADDR1 (0xDF44)......................................................................................................................197 IEEE_ADDR2 (0xDF45)......................................................................................................................197 IEEE_ADDR3 (0xDF46)......................................................................................................................197 IEEE_ADDR4 (0xDF47)......................................................................................................................197 IEEE_ADDR5 (0xDF48)......................................................................................................................198 IEEE_ADDR6 (0xDF49)......................................................................................................................198 IEEE_ADDR7 (0xDF4A) .....................................................................................................................198 IEN0 (0xA8) – Interrupt Enable 0..........................................................................................................52 IEN2 (0x9A) – Interrupt Enable 2..........................................................................................................53 IOCFG0 (0xDF4F)...............................................................................................................................198 IOCFG1 (0xDF50)...............................................................................................................................199 Not Recommended for New Designs CC2430 CC2430 Data Sheet (rev. 2.1) SWRS036F Page 204 of 211 IOCFG2 (0xDF51)...............................................................................................................................199 IOCFG3 (0xDF52)...............................................................................................................................199 IP0 (0xA9) – Interrupt Priority 0 ............................................................................................................58 IP1 (0xB9) – Interrupt Priority 1 ............................................................................................................57 IRCON (0xC0) – Interrupt Flags 4 ........................................................................................................56 IRCON2 (0xE8) – Interrupt Flags 5.......................................................................................................57 IRQSRC (0xDF64) ..............................................................................................................................201 MANANDH (0xDF22)..........................................................................................................................194 MANANDL (0xDF23)...........................................................................................................................195 MANORH (0xDF24) ............................................................................................................................195 MANORL (0xDF25).............................................................................................................................195 MDMCTRL0H (0xDF02)......................................................................................................................186 MDMCTRL0L (0xDF03) ......................................................................................................................187 MDMCTRL1H (0xDF04)......................................................................................................................187 MDMCTRL1L (0xDF05) ......................................................................................................................188 MEMCTR (0xC7) – Memory Arbiter Control .........................................................................................41 MPAGE (0x93) – Memory Page Select ................................................................................................40 P0 (0x80) – Port 0 .................................................................................................................................82 P0DIR (0xFD) – Port 0 Direction...........................................................................................................84 P0IFG (0x89) – Port 0 Interrupt Status Flag .........................................................................................86 P0INP (0x8F) – Port 0 Input Mode........................................................................................................85 P0SEL (0xF3) – Port 0 Function Select ................................................................................................83 P1 (0x90) – Port 1 .................................................................................................................................82 P1DIR (0xFE) – Port 1 Direction...........................................................................................................84 P1IEN (0x8D) – Port 1 Interrupt Mask ..................................................................................................87 P1IFG (0x8A) – Port 1 Interrupt Status Flag.........................................................................................86 P1INP (0xF6) – Port 1 Input Mode........................................................................................................85 P1SEL (0xF4) – Port 1 Function Select ................................................................................................83 P2 (0xA0) – Port 2.................................................................................................................................83 P2DIR (0xFF) – Port 2 Direction ...........................................................................................................85 P2IFG (0x8B) – Port 2 Interrupt Status Flag.........................................................................................86 P2INP (0xF7) – Port 2 Input Mode........................................................................................................85 P2SEL (0xF5) – Port 2 Function Select ................................................................................................84 PANIDH (0xDF4B) ..............................................................................................................................198 PANIDL (0xDF4C)...............................................................................................................................198 PCON (0x87) – Power Mode Control....................................................................................................67 PERCFG (0xF1) – Peripheral Control...................................................................................................83 PICTL (0x8C) – Port Interrupt Control ..................................................................................................87 PSW (0xD0) – Program Status Word ...................................................................................................43 RFD (0xD9) – RF Data........................................................................................................................157 RFIF (0xE9) – RF Interrupt Flags .......................................................................................................156 RFIM (0x91) – RF Interrupt Mask .......................................................................................................157 RFPWR (0xDF17) ...............................................................................................................................193 RFSTATUS (0xDF62) .........................................................................................................................201 RNDH (0xBD) – Random Number Generator Data High Byte ...........................................................135 RNDL (0xBC) – Random Number Generator Data Low Byte.............................................................135 RSSIH (0xDF06) .................................................................................................................................188 RXCTRL0H (0xDF0C).........................................................................................................................190 RXCTRL0L (0xDF0D) .........................................................................................................................190 RXCTRL1H (0xDF0E).........................................................................................................................191 RXCTRL1L (0xDF0F)..........................................................................................................................191 RXFIFOCNT (0xDF53)........................................................................................................................199 S0CON (0x98) – Interrupt Flags 2 ........................................................................................................55 S1CON (0x9B) – Interrupt Flags 3........................................................................................................55 SHORTADDRH (0xDF4D) ..................................................................................................................198 SHORTADDRL (0xDF4E) ...................................................................................................................198 SLEEP (0xBE) – Sleep Mode Control...................................................................................................67 SP (0x81) – Stack Pointer.....................................................................................................................44 ST0 (0x95) – Sleep Timer 0................................................................................................................127 ST1 (0x96) – Sleep Timer 1................................................................................................................126 Not Recommended for New Designs CC2430 CC2430 Data Sheet (rev. 2.1) SWRS036F Page 205 of 211 ST2 (0x97) – Sleep Timer 2................................................................................................................126 SYNCWORDH (0xDF08) ....................................................................................................................189 SYNCWORDL (0xDF09).....................................................................................................................189 T1CC0H (0xDB) – Timer 1 Channel 0 Capture/Compare Value High................................................107 T1CC0L (0xDA) – Timer 1 Channel 0 Capture/Compare Value Low .................................................107 T1CC1H (0xDD) – Timer 1 Channel 1 Capture/Compare Value High ...............................................108 T1CC1L (0xDC) – Timer 1 Channel 1 Capture/Compare Value Low.................................................108 T1CC2H (0xDF) – Timer 1 Channel 2 Capture/Compare Value High................................................109 T1CC2L (0xDE) – Timer 1 Channel 2 Capture/Compare Value Low .................................................109 T1CCTL0 (0xE5) – Timer 1 Channel 0 Capture/Compare Control.....................................................107 T1CCTL1 (0xE6) – Timer 1 Channel 1 Capture/Compare Control.....................................................108 T1CCTL2 (0xE7) – Timer 1 Channel 2 Capture/Compare Control.....................................................109 T1CNTH (0xE3) – Timer 1 Counter High............................................................................................106 T1CNTL (0xE2) – Timer 1 Counter Low .............................................................................................106 T1CTL (0xE4) – Timer 1 Control and Status ......................................................................................106 T2CAPHPH (0xA5) – Timer 2 Period High Byte.................................................................................115 T2CAPLPL (0xA4) – Timer 2 Period Low Byte...................................................................................115 T2CMP (0x94) – Timer 2 Compare Value ..........................................................................................114 T2CNF (0xC3) – Timer 2 Configuration ..............................................................................................113 T2OF0 (0xA1) – Timer 2 Overflow Count 0 ........................................................................................115 T2OF1 (0xA2) – Timer 2 Overflow Count 1 ........................................................................................114 T2OF2 (0xA3) – Timer 2 Overflow Count 2 ........................................................................................114 T2PEROF0 (0x9C) – Timer 2 Overflow Capture/Compare 0 .............................................................116 T2PEROF1 (0x9D) – Timer 2 Overflow Capture/Compare 1 .............................................................115 T2PEROF2 (0x9E) – Timer 2 Overflow Capture/Compare 2..............................................................115 T2THD (0xA7) – Timer 2 Timer Value High Byte................................................................................114 T2TLD (0xA6) – Timer 2 Timer Value Low Byte.................................................................................114 T3CC0 (0xCD) – Timer 3 Channel 0 Compare Value ........................................................................120 T3CC1 (0xCF) – Timer 3 Channel 1 Compare Value.........................................................................121 T3CCTL0 (0xCC) – Timer 3 Channel 0 Compare Control..................................................................120 T3CCTL1 (0xCE) – Timer 3 Channel 1 Compare Control ..................................................................121 T3CNT (0xCA) – Timer 3 Counter ......................................................................................................118 T3CTL (0xCB) – Timer 3 Control ........................................................................................................119 T4CC0 (0xED) – Timer 4 Channel 0 Compare Value.........................................................................123 T4CC1 (0xEF) – Timer 4 Channel 1 Compare Value .........................................................................124 T4CCTL0 (0xEC) – Timer 4 Channel 0 Compare Control ..................................................................123 T4CCTL1 (0xEE) – Timer 4 Channel 1 Compare Control ..................................................................124 T4CNT (0xEA) – Timer 4 Counter ......................................................................................................121 T4CTL (0xEB) – Timer 4 Control ........................................................................................................122 TCON (0x88) – Interrupt Flags .............................................................................................................54 TIMIF (0xD8) – Timers 1/3/4 Interrupt Mask/Flag...............................................................................125 TXCTRLH (0xDF0A) ...........................................................................................................................189 TXCTRLL (0xDF0B)............................................................................................................................190 U0BAUD (0xC2) – USART 0 Baud Rate Control................................................................................149 U0CSR (0x86) – USART 0 Control and Status...................................................................................147 U0DBUF (0xC1) – USART 0 Receive/Transmit Data Buffer ..............................................................149 U0GCR (0xC5) – USART 0 Generic Control ......................................................................................149 U0UCR (0xC4) – USART 0 UART Control .........................................................................................148 U1BAUD (0xFA) – USART 1 Baud Rate Control................................................................................152 U1CSR (0xF8) – USART 1 Control and Status ..................................................................................150 U1DBUF (0xF9) – USART 1 Receive/Transmit Data Buffer...............................................................152 U1GCR (0xFC) – USART 1 Generic Control ......................................................................................152 U1UCR (0xFB) – USART 1 UART Control .........................................................................................151 WDCTL (0xC9) – Watchdog Timer Control ........................................................................................142 Not Recommended for New Designs CC2430 CC2430 Data Sheet (rev. 2.1) SWRS036F Page 206 of 211 18 Package Description (QLP 48) All dimensions are in millimeters, angles in degrees. NOTE: The CC2430 is available in RoHS leadfree package only. Compliant with JEDEC MS-020. Table 51: Package dimensions Quad Leadless Package (QLP) D D1 E E1 e b L D2 E2 QLP 48 Min Max 6.9 7.0 7.1 6.65 6.75 6.85 6.9 7.0 7.1 6.65 6.75 6.85 0.5 0.18 0.30 0.3 0.4 0.5 5.05 5.10 5.15 5.05 5.10 5.15 The overall package height is 0.85 +/- 0.05 All dimensions in mm Figure 51: Package dimensions drawing Not Recommended for New Designs CC2430 CC2430 Data Sheet (rev. 2.1) SWRS036F Page 207 of 211 18.1 Recommended PCB layout for package (QLP 48) Figure 52: Recommended PCB layout for QLP 48 package Note: The figure is an illustration only and not to scale. There are nine 14 mil diameter via holes distributed symmetrically in the ground pad under the package. See also the CC2430 EM reference design 18.2 Package thermal properties Table 52: Thermal properties of QLP 48 package Thermal resistance Air velocity [m/s] 0 Rth,j-a [K/W] 25.6 18.3 Soldering information The recommendations for lead-free solder reflow in IPC/JEDEC J-STD-020C should be followed. 18.4 Tray specification Table 53: Tray specification Tray Specification Package Tray Width Tray Height Tray Length Units per Tray QLP 48 135.9mm ± 0.25mm 7.62mm ± 0.13mm 322.6mm ± 0.25mm 260 18.5 Carrier tape and reel specification Carrier tape and reel is in accordance with EIA Specification 481. Not Recommended for New Designs CC2430 CC2430 Data Sheet (rev. 2.1) SWRS036F Page 208 of 211 Table 54: Carrier tape and reel specification Tape and Reel Specification Package Tape Width Component Pitch Hole Pitch Reel Diameter Units per Reel QLP 48 16mm 12mm 4mm 13 inches 2500 Not Recommended for New Designs CC2430 CC2430 Data Sheet (rev. 2.1) SWRS036F Page 209 of 211 19 Ordering Information Table 55: Ordering Information Ordering part number Description MOQ CC2430F128RTC CC2430, QLP48 package, RoHS compliant Pb-free assembly, trays with 260 pcs per tray, 128 Kbytes in-system programmable flash memory, System-on-chip RF transceiver. 260 CC2430F128RTCR CC2430, QLP48 package, RoHS compliant Pb-free assembly, T&R with 2500 pcs per reel, 128 Kbytes in-system programmable flash memory, System-on-chip RF transceiver. 2,500 CC2430ZF128RTC CC2430, QLP48 package, RoHS compliant Pb-free assembly, trays with 260 pcs per tray, 128 Kbytes in-system programmable flash memory, System-on-chip RF transceiver, including royalty for using TI’s ZigBee® Software Stack, ZStack ™, in an end product 260 CC2430ZF128RTCR CC2430, QLP48 package, RoHS compliant Pb-free assembly, T&R with 2500 pcs per reel, 128 Kbytes in-system programmable flash memory, System-on-chip RF transceiver, including royalty for using TI’s ZigBee® Software Stack, ZStack ™, in an end product 2,500 CC2430F64RTC CC2430, QLP48 package, RoHS compliant Pb-free assembly, trays with 260 pcs per tray, 64 Kbytes in-system programmable flash memory, System-on-chip RF transceiver. 260 CC2430F64RTCR CC2430, QLP48 package, RoHS compliant Pb-free assembly, T&R with 2500 pcs per reel, 64 Kbytes in-system programmable flash memory, System-on-chip RF transceiver. 2,500 CC2430F32RTC CC2430, QLP48 package, RoHS compliant Pb-free assembly, trays with 260 pcs per tray, 32 Kbytes in-system programmable flash memory, System-on-chip RF transceiver. 260 CC2430F32RTCR CC2430, QLP48 package, RoHS compliant Pb-free assembly, T&R with 2500 pcs per reel, 32 Kbytes in-system programmable flash memory, System-on-chip RF transceiver. 2,500 CC2430DK CC2430 DK Development kit. 1 CC2430ZDK CC2430 ZigBee® DK Development kit 1 CC2430EMK CC2430 Evaluation Module Kit 1 CC2430DB CC2430 Demonstration Board 1 MOQ = Minimum Order Quantity T&R = tape and reel Not Recommended for New Designs CC2430 CC2430 Data Sheet (rev. 2.1) SWRS036F Page 210 of 211 20 General Information 20.1 Document History Table 56: Document History Revision Date Description/Changes 2.1 2007-05-30 First data sheet for released product. Preliminary data sheets exist for engineering samples and pre-production prototype devices, but these data sheets are not complete and may be incorrect in some aspects compared with the released product. 21 Address Information Texas Instruments Norway AS Gaustadalléen 21 N-0349 Oslo NORWAY Tel: +47 22 95 85 44 Fax: +47 22 95 85 46 Web site: http://www.ti.com/lpw 22 TI Worldwide Technical Support Internet TI Semiconductor Product Information Center Home Page: support.ti.com TI Semiconductor KnowledgeBase Home Page: support.ti.com/sc/knowledgebase Product Information Centers Americas Phone: +1(972) 644-5580 Fax: +1(972) 927-6377 Internet/Email: support.ti.com/sc/pic/americas.htm Europe, Middle East and Africa Phone: Belgium (English) +32 (0) 27 45 54 32 Finland (English) +358 (0) 9 25173948 France +33 (0) 1 30 70 11 64 Germany +49 (0) 8161 80 33 11 Israel (English) 180 949 0107 Italy 800 79 11 37 Netherlands (English) +31 (0) 546 87 95 45 Russia +7 (0) 95 363 4824 Spain +34 902 35 40 28 Sweden (English) +46 (0) 8587 555 22 United Kingdom +44 (0) 1604 66 33 99 Fax: +49 (0) 8161 80 2045 Internet: support.ti.com/sc/pic/euro.htm Not Recommended for New Designs CC2430 CC2430 Data Sheet (rev. 2.1) SWRS036F Page 211 of 211 Japan Fax International +81-3-3344-5317 Domestic 0120-81-0036 Internet/Email International support.ti.com/sc/pic/japan.htm Domestic www.tij.co.jp/pic Asia Phone International +886-2-23786800 Domestic Toll-Free Number Australia 1-800-999-084 China 800-820-8682 Hong Kon 800-96-5941 India +91-80-51381665 (Toll) Indonesia 001-803-8861-1006 Korea 080-551-2804 Malaysia 1-800-80-3973 New Zealand 0800-446-934 Philippines 1-800-765-7404 Singapore 800-886-1028 Taiwan 0800-006800 Thailand 001-800-886-0010 Fax +886-2-2378-6808 Email tiasia@ti.com or ti-china@ti.com Internet support.ti.com/sc/pic/asia.htm Not Recommended for New Designs TAPE AND REEL INFORMATION *All dimensions are nominal Device Package Type Package Drawing Pins SPQ Reel Diameter (mm) Reel Width W1 (mm) A0 (mm) B0 (mm) K0 (mm) P1 (mm) W (mm) Pin1 Quadrant CC2430F32RTCR VQFN RTC 48 2500 330.0 16.4 7.3 7.3 1.5 12.0 16.0 Q2 CC2430F64RTCR VQFN RTC 48 2500 330.0 16.4 7.3 7.3 1.5 12.0 16.0 Q2 CC2430ZF128RTCR VQFN RTC 48 2500 330.0 16.4 7.3 7.3 1.5 12.0 16.0 Q2 PACKAGE MATERIALS INFORMATION www.ti.com 1-Aug-2013 Pack Materials-Page 1 *All dimensions are nominal Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm) CC2430F32RTCR VQFN RTC 48 2500 378.0 70.0 346.0 CC2430F64RTCR VQFN RTC 48 2500 378.0 70.0 346.0 CC2430ZF128RTCR VQFN RTC 48 2500 336.6 336.6 28.6 PACKAGE MATERIALS INFORMATION www.ti.com 1-Aug-2013 Pack Materials-Page 2 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed. TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications. In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms. No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949. Products Applications Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com Energy and Lighting www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID www.ti-rfid.com OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com Wireless Connectivity www.ti.com/wirelessconnectivity Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated Overview Freescale Semiconductor proudly introduces an addition to the 68K/ColdFire family of embedded controllers, a complete hardware and software solution for commercial VoIP applications based on the popular MCF532x products. The solution is designed to help embedded developers reduce time-tomarket by providing a complete hardware and software solution that can function as a reference design or a take-to-market product platform. This flexibility gives developers the option to integrate fully developed module boards or design their own application. The system includes all required software components to develop a feature-rich product and does not require an NRE, lowing overall system cost. The solution is supported by a stand-alone development kit that is ready to demo out-of-the-box. This easy to use, cost-effective solution will help simplify development and allow designers to enable more applications with VoIP capability. Target Markets • Commercial/Industrial Uses Gas pump Vending machine Toll booth ATM Medical equipment Production equipment Intercom • Residential Uses Security system Child monitor • Telephone Uses Basic VoIP telephone ColdFire ColdFire® Embedded Controllers MCF532x/7x Embedded VoIP Solution MCF53281CVM240 / MCF53721CVM240 Applications • Shell/telnet server • DHCP/NTP and networking applications • Webserver • Microwindows/NanoX for LCD GUI applications Full-Featured Bootloader • Persistent object support • Kernel API and CLI • TFTP client/server • Flash partitioning • Watchdog support Management Middleware • Device management API • WED UI, SSL remote provisioning, voice response VoIP/Media Middleware • Certified SIP signaling stack • Feature-rich telephony application • QoS and firewall traversal • Compatible with leading infrastructure equipment and open source PBX implementations • Simple command line API Protocol Stacks and Low Level Drivers Audio Internet CODEC Vocoders G.711, G.729, iLBC, AEC/LEC Call Control and Signaling (SIP) Ethernet MAC and PHY (Wired or Wireless) Hardware Software Hardware RTOS (μClinux) SSI API API API Analog to Digital and Digital to Analog Conversion Voice Compression and Decompression Call Setup and Control Packet Handling and Streaming Bit Transmission and Reception Ethernet Open source Linux (2.6) available separately as open source BSP Microphone Speaker Device Management Management Middleware from Arcturus including API, web user interface, remote provisioning, voice response Supplied by Encore Software as binary, with some parameters (such as echo cancelation) tunable. Suitable for 1 or 2 Audio channel applications. Algorithms supported: G. 168 LEC, AEC, DTMF, CPT, AGC, G.711, G.729AB, G.726, CID gen. iLBC & G.722 planned OpenSIP based telephony/media MiddleWare solution from Arcturus Networks with proprietary components. Open source portions supplied as source code, proprietary portions as binary. Telephony application includes support for: Caller-ID, Call Waiting, Hold/Retreive, Call Transfers, Conference, Hotline, Push-to-Call, Speed Dials, CID Privacy, Outgoing Call Blocking, Call Back on Busy... NRE-Free Software Solution BDM PLL SVGA LCD Controller 16-ch. DMA UART UART UART MiddleWare SIP SSI QSPI 4-ch., 32-bit Timer 4-ch. PWM I2C GPIO JTAG VoIP Software Vocoders System Bus Controller DDR/SDR SDRAM Controller and Chip Selects eMAC μClinux 32 KB SRAM USB Host USB h/d/OTG V3 ColdFire® Core 16 KB Unified Cache DMA CAN 10/100 FEC MCF532x Block Diagram ColdFire Learn More: For current information about Freescale products and documentation, please visit www.freescale.com/coldfire. Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2007 Document Number: CFM53281KITFS REV 0 VoIP Development System The ColdFire Embedded VoIP Development Kit, the M53281KIT, is a compact, easy-tointegrate development system designed by Freescale and Freescale Design Alliance Partner, Arcturus Networks, Inc., for enabling commercial VoIP functionality in embedded applications. The module is based on the 240 MHz Freescale ColdFire® MCF53281 microprocessor and includes all required system memory and terminations to enable most applications without the need for external circuitry. It features audio, Ethernet, CAN, serial, I/O and USB host communications systems as well as standard peripheral device connectivity using I2C or QSPI. The device also features an integrated SVGA LCD controller for applications requiring high-resolution graphical displays. Daughter cards are available for LCD-to-VGA scan conversion and FXS applications. The solution fits standard off-the-shelf enclosures to help accelerate proof-of-concept implementations and is certified by applicable regulatory agencies. Schematics and documentation are provided to assist customers with implementation or the creation of their own hardware designs. The development system includes an open source uClinuxTM embedded software BSP, complete with source code, GNU tools, kernel and broad collection of applications and drivers. A certified SIP telephony stack and audio subsystem is included with API, along with a device management middleware system. A host development board, power supply cable kit and manual are also included. Key ColdFire M53281KIT Features • Host board • M53281MOD Module • Video interface daughter card, audio headset, P&E BDM wiggler, power supply and GNU tools • VoIP and management software • All licenses for VoIP and management software use • Documentation and out-of-the-box VoIP demo • Part number: M53281KIT • Pricing: $749 (SRP) Key ColdFire M53281MOD Features • MCF53281CVM240 processor • 32 MB SDRAM and 16 MB NOR Flash • Ethernet PHY and CAN Transceiver • Audio codec/amplifier • VoIP and management software • All licenses for VoIP and management software use • Easy-to-integrate 50pin header or edge connector socket • Part number: M53281MOD • Pricing: $99 (SRP) at volume Key ColdFire MCF53281/ MCF53721 Features • V3 ColdFire core with EMAC offering up to 211 MIPS @ 240 MHz • 16 KB I/D cache and 32 KB SRAM • 16-bit DDR/32-bit SDR SDRAM controller • Integrated SVGA LCD controller (No LCD on MCF53721) • USB 2.0 low/full-speed host controller with on-chip transceivers • USB 2.0 low/full-speed On-The-Go controller with on-chip transceivers • 10/100 Fast Ethernet controller (FEC) • Enhanced CAN 2.0B controller • VoIP and management software • All licenses for VoIP and management software use • Part number: MCF53281CVM240 (256 MAPBGA) / MCF53721CVM240 (196 MAPBGA) • Pricing from: $12.94 (SRP) at volume Where to Go for Additional Information • M53281KIT Embedded VoIP Development Kit Webpage (design files, documentation and example code) • MCF532x Product Family Webpage (feature list, documentation, application notes) • ColdFire MCF53281 Reference Manual • Arcturus Networks, Inc.— Freescale Design Alliance Partner (www.arcturusnetworks.com) ColdFire M53281KIT ColdFire M53281MOD Ferric Chloride Etching Solution Description Ferric Chloride pellets for producing a solution for etching copper printed circuit boards and other metals. Preparation BEFORE HANDLING WEAR PROTECTIVE CLOTHING AND READ THE HEALTH AND SAFETY INFORMATION ON THE REAR OF THIS SHEET. For stainless steel, nickel and high nickel alloy use as supplied. For copper, brass and bronze use 30% water. Usage Use between 35ºC and 55ºC. For safe and efficient etching always use at the optimum temperature of approximately 45ºC in a Mega Temperature controlled etching tank. Part Numbers: 600-015 - 5 litres 600-016 - 25 litres Health and Safety Always wear protective clothing. Full Health and Safety details are on the rear of this instruction sheet. A report by an occupational hygienist concluded that under the test conditions, NO LOCAL VENTILATION IS REQUIRED using this etchant in Mega's PCB processing tanks. A copy of this report is available upon request. Ferric Stain Remover Stains left from drips or splashes of the etching solution can be removed with Mega's 600-039 Ferric Chloride Cleaner (1 Kg). Associated Products A range of associated products for use with this etchant are featured in our free product catalogue. Please telephone us for your free copy Mega Electronics Limited Mega House, Grip Industrial Estate, Linton, Cambridge, CB1 6NR. England. Telephone: +44 01223 893900 Fax: +44 01223 893894 email: sales@megauk.com Web: www.megauk.com E:6inst\ferric chloride etching solution (600-015-016).doc SECTION 1 PRODUCT IDENTIFICATION AND MANUFACTURE NAME: FERRIC CHLORIDE HEXAHYDRATE SOLUTION . PART NO: 600-015 5 Litres) 600-016 (25 Litres) (Molar aqueous solution) MANUFACTURER’S/SUPPLIERS NAME, REGISTERED ADDRESS AND EMERGENCY TEL NO: MEGA ELECTRONICS LTD., THE GRIP INDUSTRIAL ESTATE, LINTON, CAMBRIDGE. ENGLAND, CB1 6NR. TELEPHONE: +0044 01223 893900 ORGANISATIONS NAME & ADDRESS AT WHICH MANUFACTURED KEPETS GMBH. NORDSTRASSE 24 D-35641 SCHÖFFENGRUND LAUFDORF. GERMANY. TEL: 0049 064 45/50 23-4 SECTION 2 COMPOSITION/INFORMATION ON INGREDIENTS COMPONENT %BY WT CAS & EEC Nos.: HAZARD PHRASE NOS: FERRIC 100 N/A Xn R22, R36/38 CHLORIDE HEXAHYDRATE SECTION 3 HAZARDS IDENTIFICATION MAY BE CORROSIVE TO MUCOUS MEMBRANES, EYES AND SKIN. ITS EFFECTS ARE SIMILAR TO THOSE OF ANY CAUSTIC SUBSTANCE. THE ESTIMATED ONE TIME LETHAL DOSE FOR 70 kg MAN IS 30g. SECTION 4 FIRST AID MEASURES INHALATION: MOVE TO FRESH AIR AND KEEP AT REST. IF RECOVERY IS NOT RAPID, SEEK MEDICAL ATTENTION. SKIN CONTACT: REMOVE CONTAMINATED CLOTHING. WASH AFFECTED AREA WITH SOAP AND WATER. IF IRRITATION OCCURS AND PERSISTS, SEEK MEDICAL ATTENTION. EYE CONTACT: FLUSH WITH WATER FOR 15 MINUTES. SEEK MEDICAL ATTENTION INGESTION: RINSE MOUTH OUT WITH WATER. DO NOT INDUCE VOMITING. SEEK MEDICAL ATTENTION. MEDICAL NOTES: N/A SECTION 5 FIRE FIGHTING MEASURES EXTINGUISHING MEDIA NON FLAMMABLE, SO NO LIMITATIONS COMBUSTION PRODUCTS N/A FIRE/EXPLOSION SCENARIOS DECOMPOSES TO RELEASE CI AND HCI SPECIAL PROTECTIVE EQUIPMENT FOR FIRE FIGHTERS SELF CONTAINED BREATHING APPARATUS SHOULD BE WORN. SECTION 6 ACCIDENTAL RELEASE MEASURES PERSONAL PROTECTION REFER TO SECTION 8; PERSONAL PROTECTION ENVIRONMENTAL PRECAUTIONS . AVOID ENTRY INTO DRAINS & WATERWAYS. WORKPLACE PRECAUTIONS N/A METHODS FOR CLEARING UP: SWEEP AND GATHER PRODUCT; AVOID GENERATION OF DUST. SECTION 7 HANDLING AND STORAGE HANDLING PRECAUTIONS PREFERABLY HANDLE IN CONFINED SPACES. IF USING LARGE QUANTITIES, USE NON CORROSIVE EQUIPMENT. STORAGE INCLUDING ANY SPECIAL REQUIREMENTS (TEMPERATURE, VENTILATION, ETC) STORE IN COL DRY PLACE AWAY FROM CHILDREN AND FOODSTUFF. KEEP IN WELL VENTILATED AREA, AWAY FROM REACTIVE SUBSTANCES. SECTION 8 EXPOSURE CONTROL/PERSONAL PROTECTION ENGINEERING CONTROLS/ VENTILATION NORMAL GOOD ROOM VENTILATION SHOULD BE SUFFICIENT. RESPIRATORY PROTECTION N/A EYE PROTECTION RECOMMENDED SPLASHPROOF GOGGLES HAND PROTECTION RECOMMENDED IMPERVIOUS GLOVES e.g. NITRILE. SKIN PROTECTION RECOMMENDED IN FORM OF COVERALLS. SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES THE INFORMATION AND RECOMMENDATIONS CONTAINED HEREIN ARE BELIEVED TO BE ACCURATE - HOWEVER NO GUARANTEE OR WARRANTY EXPRESSED OR IMPLIED IS GIVEN APPEARANCE: ODOURLESS LIQUID COLOUR: DEEP AMBER ODOUR: NONE ACIDITY/ALKALINITY pH: 2.0 BOILING POINT 111ºC MELTING POINT ºC: FLASH POINT ºC (Open/Closed Cup): N.A. AUTOIGNITION TEMP ºC: N.A. THERMAL DECOMPOSITION TEMP ºC :WHEN STRONGLY HEATED WILL LIBERATE HYDROGEN CHLORIDE OXIDISING PROPERTIES: EXPLOSIVE PROPERTIES: NON FLAMMABLE EXPLOSIVE LIMITS AT 25ºC (% VOL IN AIR) LOWER: UPPER: RELATIVE DENSITY: 1.45g/ml SOLID CONTENT %: SOLUBILITY IN WATER: COMPLETELY IN WATER INSOLUBILITY IN ALCOHOL, ETHER AND ACETONE. VOLATILE CONTENT: AVOID CONTACT WITH STRONG ACIDS, ALKALIS, OXIDISERS VAPOUR PRESSURE mmHg at 20ºC RELATIVE VAPOUR DENSITY (air = 1): (of principle component and name): EVAPORATION RATE CONDUCTIVITY: (n-butyl acetate = 1): SECTION 10 STABILITY AND REACTIVITY PROPERTIES CONDITIONS TO AVOID: NONE MATERIALS TO AVOID: SOLUTIONS OF FERRIC CHLORIDE ACT AS AN ACID AND ARE POWERFUL OXIDISING AGENTS, DISSOLVING THE MAJORITY OF METALS (Cu, Ni, Sn, Pb, Mn, Fe, Co, etc) HAZARDOUS DECOMPOSITION PRODUCTS: INCLUDE DI AND HCI HAZARDOUS POLYMERISATION WILL NOT OCCUR SECTION 11 TOXICOLOGICAL INFORMATION EFFECT OF EYE CONTACT: IRRITATION, TEARING, REDNESS, RISK OF BURNS. EFFECT OF SKIN CONTACT: IRRITATION WHEN IN CONTACT WITH DAMP SKIN. RISK OF BURNS, RISK OF DERMATITIS AFTER REPEATED CONTACT. PERSISTENT PIGMENTATION OF SKIN ON REPEATED CONTACT. EFFECT OF INHALATION: IRRITATION OF NOSE AND THROAT. COUGHING AND DIFFICULTY BREATHING AFTER PROLONGED OR REPEATED EXPOSURE. ULCERATION OF THE NOSE AND BROWN STAINING OF THE TEETH. EFFECT OF INGESTION: LOW PROBABILITY OF RISK DUE TO ACRID TASTE. IRRITATION AND BURNS TO MOUTH, THROAT AND STOMACH. NAUSEA, VOMITING, STOMACH CRAMPS SHOCK. LD50 (ORAL HUMAN):30g / 70kg (est.) LD50 (ORAL RAT): 900mg / kg. LD50 (ORAL MOUSE):440mg / kg. SECTION 12 ECOLOGICAL INFORMATION Possible environmental effects and behaviour/ODP/aquatic toxicity. EC50 (DAPHNIA): 7.3mg / 1 (iron) LC50 (FISH): 26mg / 1 (iron) ODP: N.A. - No other data available. SECTION 13 DISPOSAL CONSIDERATIONS Safe disposal of product, its residues and packaging materials: In accordance with local regulations via licensed contractor. May be neutralised to neutral pH. Dispose in a controlled landfill site. See also Sections 7 & 8 for handling precautions and personal protection where applicable. SECTION 14 TRANSPORT INFORMATION Not restricted SECTION 15 REGULATORY INFORMATION INDICATION OF DANGER: BLACK St. ANDREW’S CROSS, HARMFUL CONTAINS: FERRIC CHLORIDE HEXAHYDRATE RISK PHRASE Nos. & WORDS: R22 Harmful if swallowed R36/38 Irritating to eyes and skin. SAFETY PHRASE Nos. & WORDS: S2 Keep out of reach of children S26 In case of contact with eyes / rinse immediately with plenty of water and seek medical advice S37/39 Wear suitable protective clothing, gloves and eye / face protection OTHER INFORMATION RECOMMENDED USES AND RESTRICTIONS: Use only as directed. CC2560 Bluetooth® single-chip solution Product Bulletin The CC2560 from Texas Instruments is a complete Bluetooth Host Controller Interface (HCI) solution enabling ease of design as well as decreased time to market for Bluetoothenabled devices in medical, industrial and consumer electronics applications. Based on TI’s seventh-generation Bluetooth core, the CC2560 brings a product-proven solution that supports the Bluetooth 2.1 + EDR release, while the CC2564 is upgradable to Bluetooth Version 3.0 and Bluetooth low energy Version 4.0. The CC2560 is the industry’s first Bluetooth solution manufactured with TI’s cutting-edge 65-nm CMOS process and DRP technology, delivering the industry’s smallest single-chip solution along with low power and cost. • Based on TI’s cutting-edge 65-nm CMOS process and DRP technology, delivering the industry’s smallest Bluetooth single-chip solution along with low power and cost • Supports Bluetooth 2.1 + EDR release (CC2564 upgradable to Bluetooth Version 3.0 and Bluetooth Low Energy (BLE) Version 4.0) • Flexibility for easy Bluetooth stack integration and validation into various microcontrollers, such as Stellaris® and low-end MSP430™ microcontrollers • Best-in-class Bluetooth RF performance (Tx power, Rx sensitivity, blocking) • Enhanced performance: - Improved Bluetooth link robustness supports power levels of Bluetooth Class 2 devices with increased output power capabilities - Improved adaptive frequency hopping algorithm with minimum adoption time Overview Key benefits Audio processor Bluetooth® processor Modem DRP 2.4 GHz filter CC2560 I/O I/F HCI Power management Clock management Power Shutdown Slow clock Fast clock PCM/I2S Bluetooth® RF UART I2C CC2560 Bluetooth single-chip solution Advanced power management hardware and software algorithms provide significant power savings in the most commonly used Bluetooth modes of operation: active, page and inquiry scans. RF performance The CC2560 offers best-in-class Bluetooth RF performance for Tx power, Rx sensitivity and blocking. In addition, internal temperature detection and compensation ensures minimal variation in RF performance over temperature. The CC2560 RF transmitter is capable of receiving -95 dBm or transmitting up to +12 dBm (with level control) without the need for external power amplifiers or a Tx/Rx switch. © 2010 Texas Instruments Incorporated The platform bar, MSP430 and Stellaris are trademarks of Texas Instruments. The Bluetooth word mark and logos are owned by the Bluetooth SIG, Inc., and any use of such marks by Texas Instruments is under license. All other trademarks are the property of their respective owners. SLYT377 Physical interfaces TI’s CC2560 offers flexible interfaces for easy integration into various host systems. These interfaces include: • Standard HCI over H4 UART with a maximum rate of 4 Mbps • Flexible pulse code modulation and I2S digital audio/voice interfaces: - Full flexibility of data format (linear, A-law, μ-law), data width, data order, sampling and slot positioning, master/slave modes, and high clock rates up to 15 MHz for slave mode or 4.096 MHz for master mode - Lost packet concealment for improved audio • I2C to external EEPROM, which can be used for storing application-specific scripts. Evaluation and development tools To start developing today with the CC2560 Bluetooth solution, TI offers two evaluation and development options: • eZ430-RF2560: a complete, low-cost TI Bluetooth evaluation and software development tool in a convenient USB stick See www.ti.com/ez430-rf2560-pb • PAN1315 evaluation module kit (EMK): an advanced connectivity board based on Panasonic’s PAN1315 Bluetooth module with direct connection to the MSP-EXP430F5438 experimenter board to take advantage of MSP430F5438 peripherals. See www.ti.com/pan1315-pb B042210 Important Notice: The products and services of Texas Instruments Incorporated and its subsidiaries described herein are sold subject to TI’s standard terms and conditions of sale. Customers are advised to obtain the most current and complete information about TI products and services before placing orders. TI assumes no liability for applications assistance, customer’s applications or product designs, software performance, or infringement of patents. The publication of information regarding any other company’s products or services does not constitute TI’s approval, warranty or endorsement thereof. Parameter Value Condition/notes Power supply voltage 1.7 to 4.8 V Battery or DC to DC Operating ambient temperature range -40 to 85C Industrial temperature range Output power +12 dBm GFSK, typical Receiver sensitivity -95 dBm GFSK, typical, dirty Tx on Shut-down current 1 μA Typical Deep sleep current 40 μA Typical Ultra-low-power scan 135 μA 1.28-second interval EDR full throughput 39.2 mA Tx = 3-DH1, Rx = 3-DH5 eSCO 8.3 mA 2-EV3 64 Kbps, no retransmission Technical Specifications Key benefits • Advanced power management for extended battery life and ease of design: - On-chip power management, including direct connection to battery or DC to DC - Low power consumption for active, standby and scan Bluetooth modes - Proprietary low-power scan algorithm achieves page and inquiry scans at one-third the normal power - Shut-down and sleep modes to minimize power consumption when Bluetooth is not used • Flexible clock management interface with support for: - Automatic fast-clock detection mechanism - Frequency adjustment to offset and drift IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications. TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: Products Applications Amplifiers amplifier.ti.com Audio www.ti.com/audio Data Converters dataconverter.ti.com Automotive www.ti.com/automotive DLP® Products www.dlp.com Communications and www.ti.com/communications Telecom DSP dsp.ti.com Computers and www.ti.com/computers Peripherals Clocks and Timers www.ti.com/clocks Consumer Electronics www.ti.com/consumer-apps Interface interface.ti.com Energy www.ti.com/energy Logic logic.ti.com Industrial www.ti.com/industrial Power Mgmt power.ti.com Medical www.ti.com/medical Microcontrollers microcontroller.ti.com Security www.ti.com/security RFID www.ti-rfid.com Space, Avionics & www.ti.com/space-avionics-defense Defense RF/IF and ZigBee® Solutions www.ti.com/lprf Video and Imaging www.ti.com/video Wireless www.ti.com/wireless-apps Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2010, Texas Instruments Incorporated Portable Analog Circuit Design Kit Dual Channel Oscilloscope • Fully differential inputs, up to 100 MSPS, 14-bit ADC, up to 16KSa/channel memory • 1MΩ/24pF inputs, ±20V Max • Real-time FFTs, X-Y plots, complex math and measurements on all channels • 5 MHz analog signal bandwidth Dual channel Function Generator • Single-ended outputs, up to 100 MSPS, 14-bit D/A, up to 16KSa/channel memory • Arbitrary and pre-defined waves up to ±5V • Sweeps, envelopes, AM and FM modulation • Bode plot feature using standard, Nyquist & Nichols coordinates • Can drive 50Ω Digital I/O • 16 signals, 100MSPS, 4KSa/channel memory • Any signal can be input (logic analyzer) or output (pattern generator or virtual I/O) • Supports cross-triggers with scope channels Power Supplies • Two fixed ±5V, 50mA Turn your PC into a powerful circuit learning platform that can measure, visualize, analyze, record and control mixed signal circuits! The Analog Discovery is small enough to fit in your pocket and costs less than a textbook, but it is powerful enough to replace a stack of lab equipment. Powered by a Hi-Speed USB port and the free WaveForms software, the Analog Discovery lets you build and test analog and digital circuits outside of the lab. Designed in cooperation with: Powered by WaveForms™ Circuit Note CN-0326 Circuits from the Lab™ reference circuits are engineered and tested for quick and easy system integration to help solve today’s analog, mixed-signal, and RF design challenges. For more information and/or support, visit www.analog.com/CN0326. Devices Connected/Referenced AD7793 3-Channel, Low Noise, Low Power, 24-Bit Sigma Delta ADC ADuM5401 Quad-Channel Isolators with Integrated DC/DC Converter AD8603 MicroPower RRIO Low Noise Precision Single CMOS Op Amp Isolated Low Power pH Monitor with Temperature Compensation Rev. 0 Circuits from the Lab™ circuits from Analog Devices have been designed and built by Analog Devices engineers. Standard engineering practices have been employed in the design and construction of each circuit, and their function and performance have been tested and verified in a lab environment at room temperature. However, you are solely responsible for testing the circuit and determining its suitability and applicability for your use and application. Accordingly, in no event shall Analog Devices be liable for direct, indirect, special, incidental, consequential or punitive damages due to any cause whatsoever connected to the use of any Circuits from the Lab circuits. (Continued on last page) One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2013 Analog Devices, Inc. All rights reserved. EVALUATION AND DESIGN SUPPORT Circuit Evaluation Boards CN0326 Evaluation Board (EVAL-CN0326-PMDZ) System Demonstration Platform (EVAL-SDP-CB1Z) SDP PMOD Interposer Board (SDP-PMD-IB1Z) Design and Integration Files Schematics, Layout Files, Bill of Materials CIRCUIT FUNCTION AND BENEFITS The circuit shown in Figure 1 is a completely isolated low power pH sensor signal conditioner and digitizer with automatic temperature compensation for high accuracy. The circuit gives 0.5% accurate readings for pH values from 0 to 14 with greater than 14-bits of noise-free code resolution and is suitable for a variety of industrial applications such as chemical, food processing, water, and wastewater analysis. This circuit supports a wide variety of pH sensors that have very high internal resistance that can range from 1 MΩ to several GΩ, and digital signal and power isolation provides immunity to noise and transient voltages often encountered in harsh industrial environments. Figure 1. pH Sensor Circuit (Simplified Schematic: All Connections and Decoupling Not Shown) AD7793GNDISOGND1VISOVDD1VOAVOBVOCVIDVIAVIBVICVODAIN1(+)AIN1(–)AIN2(+)AIN2(–)RFIN(+)/AIN3(+)RFIN(–)/AIN3(–)CSSCLKDINDOUT/RDYGNDDVDDAVDDpH SENSORIOUT2CSSCLKDINDOUT/RDY3.3V3.3VISO3.3VISO3.3VISOGNDISO10kΩ10kΩ10kΩ1μF1μF1μF5kΩTOPt1000RTDP1J11MΩAD8603FERRITE BEAD:MURATA BLM21PG331SN1DBEADADUM5401210μA11821-001 Circuit Note CN-0287 Circuits from the Lab™ reference circuits are engineered and tested for quick and easy system integration to help solve today’s analog, mixed-signal, and RF design challenges. For more information and/or support, visit www.analog.com/CN0287. Devices Connected/Referenced AD7193 4-Channel, 4.8 kHz, Ultralow Noise, 24- ADT7310 ±0.5°C Accurate, 16-Bit Digital SPI Temperature Sensor. AD8603 Precision Micropower, Low Noise CMOS R-to-R Input/Output ADR3440 4.096V, Micropower High Accuracy Voltage Reference. ADG738 CMOS, Low Voltage, 3-Wire Serially- Controlled, Matrix Switch. ADG702 CMOS Low Voltage 2 Ω SPST Switch. AD5201 33-Position Digital Potentiometer ADuM1280 3 kV RMS Dual Channel Digital Isolators ADuM5401 Quad-Channel, 2.5 kV Isolators with Integrated DC-to-DC Converter Isolated 4-Channel, Thermocouple/RTD Temperature Measurement System with 0.5°C Accuracy Rev. A Circuits from the Lab™ circuits from Analog Devices have been designed and built by Analog Devices engineers. Standard engineering practices have been employed in the design and construction of each circuit, and their function and performance have been tested and verified in a lab environment at room temperature. However, you are solely responsible for testing the circuit and determining its suitability and applicability for your use and application. Accordingly, in no event shall Analog Devices be liable for direct, indirect, special, incidental, consequential or punitive damages due to any cause whatsoever connected to the use of any Circuits from the Lab circuits. (Continued on last page) One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2013 Analog Devices, Inc. All rights reserved. EVALUATION AND DESIGN SUPPORT Circuit Evaluation Boards CN-0287 Circuit Evaluation Board (EVAL-CN0287-SDPZ) System Demonstration Platform (EVAL-SDP-CB1Z) Design and Integration Files Schematics, Layout Files, Bill of Materials CIRCUIT FUNCTION AND BENEFITS The circuit shown in Figure 1 is a completely isolated 4-channel temperature measurement circuit optimized for performance, input flexibility, robustness, and low cost. It supports all types of thermocouples with cold junction compensation and any type of RTD (resistance temperature detector) with resistances up to 4 kΩ for 2-, 3-, or 4-wire connection configurations. The RTD excitation current are is programmable for optimum noise and linearity performance. RTD measurements achieve 0.1°C accuracy (typical), and Type-K thermocouple measurements achieve 0.05°C typical accuracy because of the 16-bit ADT7310 digital temperature sensor used for cold-junction compensation. The circuit uses a four-channel AD7193 24-bit sigma-delta ADC with on-chip PGA for high accuracy and low noise. Input transient and overvoltage protection are provided by low leakage transient voltage supressors (TVS) and Schottky diodes. The SPI-compatible digital inputs and outputs are isolated (2500 V rms), and the circuit is operated on a fully isolated power supply. CN-0287 Circuit Note Rev. A | Page 2 of 9 Figure 1. 4-Channel Thermocouple and RTD Circuit (Simplified Schematic: All Connections and Decoupling Not Shown) CIRCUIT DESCRIPTION Temperature Measurement Introduction Thermocouples and RTDs (resistance temperature detectors) are the most frequently used sensors for temperature measurement in industrial applications. Thermocouples are able to measure very high temperatures up to about +2300°C and also have a fast response time (measured in fractions of a second). RTDs are capable of higher accuracy and stability than thermocouples, and the resistance of long wire lengths (hundreds of meters) to a remote RTD can be compensated for with 3- or 4-wire connections. A thermocouple consists of two wires of different metals joined at one end. This end is placed at the temperature which is to be measured, refered to as the measurement junction. The other end is connected to a precision voltage measurement unit, and this connection is referred to as the reference junction or alternately the cold junction. The temperature difference between the measurement junction and the cold junction generates a voltage AD7193REFIN2(–)REFIN2(+)AIN8AIN7AIN2AIN11.69kΩ1.69kΩ+5V300Ω300Ω300Ω300Ω300Ω1nF1nF+5V+5V27nF1nF1nF+5V+5V+5V+5V+5V+5V27nFDSINADG7021kΩR3C2C2C2S1S2S7S8SCLKDDINSYNCADG738DOUTPWR-ONPRESETAWBSHDNVDDVSSCSCLKSDIGNDAD5201LOGICCONTROL+5V+4.096VP2 P3ADR3440VOUTFORCESENSEFORCESENSEGND+5VREFIN1(+)REFIN1(0)+4.096VAD8603ADT7310SCLKDOUTDINCTINTSCLKDOUTDINCTINTCOLD JUNCTIONCOMPENSATIONSCLKGNDCSADT7310_CSSCLKDINADG738_CSSCLKDOUTDINCSSCLKSCLKDOUTDOUTDINDINAD7193_CSDGNDAGND+5VSCLKDIN+5V+5VV–V+0.1μF10μF+5VAINCOMAIN4AIN3AIN6AIN5JP1JP4ADuM5401AD7193_CSAD7193_CSISOGND1GNDISOGNDISOGNDISODINISOSCLKISODOUTISOGNDISO+5VISOVDD1VDD1VISOGND2VDD2VIAVIBVOAVOBGND2GND1VDD2GND1VDD1VOAVOAVOAVOCVIDVIAVIBVICVODVOBVIAVIBADuM1280+5V+5VISO+5V+5VISO+5VCTINTCTISOINTISOADuM1280ADT7310_CSADG738_CSADT7310_CSISOADG738_CSISO+5VRTD 4WTC, RTD 2,3WRTD 4WTC, RTD 2,3WCH 1CH 44.02kΩ0.1%10ppm+5V5.6VZENER DIODE0Ω:ANALOG GROUND: DIGITAL GROUNDDVDDAVDD10926-001 Circuit Note CN-0287 Rev. A | Page 3 of 9 (known as the Seebeck effect voltage) that is related to the difference between the temperatures of the two junctions. The signal generated is typically from several microvolts to tens of millivolt depending on the temperature difference. For example, K-type thermocouples are capable of measuring −200°C to +1350°C with an output range of approximately −10 mV to +60 mV. It is important for the signal chain to maintain as high impedance and low leakage as possible to achieve the highest accuracy for the voltage measurement. In order to convert this voltage to an absolute temperature, the cold junction temperature must be accurately known. Traditionally 1°C to 2°C has been considered sufficient, although since the cold junction measurement error contributes directly to the absolute temperature error, a higher accuracy cold junction temperature measurement is beneficial An RTD is made from a pure material, such as platinum, nickel or copper, that has a predictable change in resistance as the temperature changes.The most widely used RTD is platinum (Pt100 and Pt1000). One method used to accurately measure the resistance is to measure the voltage across the RTD generated by a constant current source. Errors in the current source can be cancelled by referring the measurement to the voltage generated across a reference resistor that is driven with the same current (i.e. a ratiometric measurement). Minimizing the leakage current through the current path is important for achieving high accuracy because the excitation current is typically only a few hundred microamps to prevent self heating. For the industrial field applications both high performance as well as protection against both high-voltage transient events and dc over-voltage conditions are important design considerations. How this Circuit Works The circuit shown in Figure 1 is designed for precision temperature measurement applications in the industrial field environment and is optimized for flexibility, performance, robustness, and cost. This circuit uses the AD7193, low noise, 24-bit sigma-delta ADC to ensure high resolution and linearity for the entire circuit. The AD5201, 33-position digital potentiometer, AD8603 op amp, and ADG702 single channel switch constitute a simple programmable current source and bias voltage buffer for the RTD and thermocouple measurements. The ADG738 routes the current source to the active RTD channel and allows wire resistance compensation for the 3-W RTD configuration. The ADT7310 digital SPI temperature sensor has ±0.8°C maximum accuracy (+5 V supply) from −40°C to +105°C and is used for cold-junction compensation for the thermocouple measurement. The ADR3440 is a low noise and high accuracy 4.096 V reference connected to REFIN1(+)/REFIN1(−) of the AD7193 for the thermocouple measurements. Analog-to-Digital Converter The AD7193 is a low noise, complete analog front end for high precision measurement applications. It contains a low noise, 24-bit sigma-delta (Σ-Δ) analog-to-digital converter (ADC). This ADC achieves high resolution, low non-linearity, and low noise performance as well as very high 50 Hz/60 Hz rejection. The data output rate can be varied from 4.7 Hz (24 bits effective resolution, Gain = 1), to 4.8 kHz (18.6 bits effective resolution, Gain = 1). The on-chip low noise PGA amplifies the small differential signal from the thermocouple or RTD with a gain programmable from 1 up to 128, thereby allowing a direct interface. The gain stage buffer has high input impedance and limits the input leakage current to ± 3 nA maximum. The gain of theAD7193 must be configured properly depending on the temperature range and type of sensors. The on-chip multiplexer allows four differential input channels to be shared with the same ADC core, saving both space and cost. Programmable Current Source for RTDs and Bias Voltage Generator Circuit for Thermocouples RTD measurements require a low noise current source that drives the RTD and a reference resistor. Thermocouple measurements, on the other hand, need a common-mode bias voltage that shifts the small thermocouple voltage into the input range of the AD7193. The circuit shown in Figure 2 meets both requirements and utilizes the AD8603 a low noise CMOS rail-to-rail input/output op amp with only 1 pA maximum input bias current and 50 μV maximum offset voltage, combined with the ADG702 single channel, CMOS low voltage 2 Ω SPST switch, and the ADG738 eight-channel matrix switch. Figure 2. External Programmable Current Source and Bias Voltage Generator With the ADG738 opened and the ADG702 closed, the AD8603 acts as a low noise, low output impedance unity-gain buffer for the thermocouple application. The voltage from the AD5201 digital potentiometer is buffered and is used for the thermocouple common-mode voltage, usually 2.5 V, which is one-half the supply voltage. The 33-position AD5201 digital AD7193REFIN2(–)REFIN2(+)AIN2AIN1DSADG7021kΩR3C2DS1ADG738AWBAD5201+4.096VAD8603+5VRTDTCVWIEXCIEXC=VWRREFRREF10926-002 CN-0287 Circuit Note Rev. A | Page 4 of 9 potentiometer is driven with the ADR3440 low drift (5 ppm/°C) 4.096 V reference for accuracy. With the ADG738 closed and the ADG702 opened, the AD8603 generates the RTD excitation current, IEXC = VW/RREF. Temperature measurement is a high precision and low speed application, therefore there is adequate settling time available to switch the single current source between all 4 channels, providing excellent channel-to-channel matching, low cost, and small PCB footprint. The ADG738 is an 8-to-1 multiplexer that switches the current source between channels. In order to support the 2-, 3-, and 4-wire RTD configurations, each of the four channels need two switches. In many applications, the RTD may be located remotely from the measurement circuit. The resistance from the long lead wires can generate large errors, especially for low resistance RTDs. In order to minimize the effect of the lead resistance, a 3-wire RTD configuration is supported as shown in Figure 3. Figure 3. Connector and Jumper Configuration for3-Wire RTD Sensor With S1 of the ADG738 closed and S2 opened, the voltage at the input of AD7193 is V1. With S1 opened and S2 closed, the voltage on the input of AD7193 is V2, The voltage across the RTD sensor is VRTD, the exciting current from the current source is IEXC. V1 and V2 contain the error generated by the lead resistance as shown below: EXCW3RTD1IRRV×+=)( (1) EXCW3RTDW22IRRRV×++=)( (2) EXCRTDRTDIRV×= (3) Assuming RW1 = RW2 = RW3 and combining Equations 1, 2, and 3 yields: VRTD = 2V1 – V2 (4) RRTD = VRTD/IEXC = (2V1 – V2)/IEXC (5) Equation 5 shows that the 3-wire configuration requires two separate measurements (V1 and V2) in order to calculate RRTD, thereby decreasing the output data rate. In most applications this is not a problem. The 4-wire RTD connection requires two extra sense lines, but is insensitive to wiring resistances and only requires one measurement. Figure 4 summarizes the connector configuration and jumper placements for RTD 2-wire, RTD 3-wire, RTD 4-wire, and thermocouple applications. Figure 4. Connector Configuration and Jumper Placements for EVAL-CN0287-SDPZ Board AD7193REFIN2(-)REFIN2(+)AIN2AIN1S1DADG738RTDIEXCIEXCS2JP[x]+5VRRTDRREFRW1RW2RW3CURRENT SOURCE+5V10926-003RTD2-WIRERTD3-WIRERTD4-WIRETHERMOCOUPLEJPx2132134CNxRTDRTDJPx2132134CNxJPx2132134CNxJPx2132134CNxTC+–RTD10926-004 Circuit Note CN-0287 Rev. A | Page 5 of 9 Protection Circuits Transient and overvoltage conditions are possible both during manufacturing and in the field. To achieve a high level of protection, additional external protection circuitry is necessary to compliment the IC’s internal integrated protection circuitry. The external protection adds additional capacitance, resistance, and leakage. These effects should be carefully considered to achieve a high level of accuracy. The additional protection circuitry is shown in Figure 5. Figure 5. Transient and Overvoltage Protection Circuit Leakage currents can have a significant effect on RTD measurements so should be carefully considered. Leakage currents can also create some error in thermocouple measurements in the case where long thermocouple leads have significant resistance. In this circuit, the PTVS30VP1UP transient voltage suppressor (TVS) quickly clamps any transient voltages to 30 V with only 1 nA typical leakage current at 25°C. A 30 V TVS was chosen to allow for a 30 V dc overvoltage. A 1.69 kΩ resistor followed by low leakage BAV199LT1G Schottky diodes are used to clamp the voltage to the 5 V power rail during transient and dc overvoltage events. The 1.69 kΩ resistor limits the current through the external diodes to about 15 mA during a 30 V dc overvoltage condition. In order to ensure the power rail is able to sink this current, a Zener diode is used to clamp the power rail to ensure it does not exceed the absolute maximum rating of any of the IC’s connected to the supply. The 5.6 V Zener diode (NZH5V6B) is selected for this purpose. A 300 Ω resistor limits any further current that could flow into the AD7193 or the ADG738. Isolation The ADuM5401 and the ADuM1280 use ADI iCoupler® technology provide 2500 V rms isolation voltage between the measurement side and the controller side of the circuit. The ADuM5401 also provides the isolated power for measurement side of the circuit. The isoPower technique used in the ADuM5401 uses high frequency switching elements to transfer power through a transformer. Special care must be taken with the printed circuit board (PCB) layout to meet emissions standards. Refer to AN-0971 Application Note for board layout recommendations. Thermocouple Configuration Test Results The performance of the circuit is highly dependent on the sensor and the configuration of the AD7193. The Type-K thermocouple output varies from −10 mV to +60 mV, corresponding to −200°C to +1350°C. The AD7193 PGA is configured for G = 32. The voltage swing out of the PGA is −320 mV to +1.92 V, or 2.24 V p-p. With chop enabled, 50 Hz/60Hz noise reduction enabled, and filter word FS[9:0] = 96, the noise distribution histogram for 1024 samples is shown in Figure 6. Figure 6. Noise Distribution Histogram of CN-0287 (VDD = 5 V, VREF = 4.096 V, Differential Input, Bipolar, Input Buffer Enable, Output Data rate = 50 Hz, Gain = 32, Chop Enable, 60 Hz Rejection Enable, Sinc4) The resolution of the AD7193 is 24 bits, or 224 = 16,777,216 codes. The full dynamic range of the AD7193 is 2 × VREF = 2 × 4.096 V = 8.192 V. The output voltage of the thermocouple after the PGA is only 2.24 V p-p and does not occupy all the dynamic range of the AD7193. Therefore the range of the system is decreased by a factor of 2.24 V/8.192V. The noise distribution is about 40 codes peak-to-peak. The noise-free code resolution over the 2.24 Vp-p range of measurement is given by: bits8.16V192.8V24.2400216,777,16log2=×=ResolutionFreeNoise (6) The full-scale temperature range of the Type-K thermocouple is −200°C to +1350°C, or 1550°C p-p. The 16.8 bits of noise-free code resolution therefore corresponds to 0.013°C of noise-free temperature resolution. +5V1.69kΩTVS30V, 600WPTVS30VP1UP300ΩOVERVOLTAGEUP TO 30VSCHOTTKY DIODESBAV199LT1G+5V15mA+6V,−1VADCINPUT+5.3V,−0.3V3mA5.6V ZENER DIODENZH5V6B10926-00511010090807060NUMBER OF OCCURENCESNUMBER OF OCCURENCES5040302010838851083885158388520838852583885308388535838854083885458388550010926-006 CN-0287 Circuit Note Rev. A | Page 6 of 9 Thermocouple Measurement Linearity Figure 7 shows the approximate linearity of the type K thermocouple system. The “cold junction” temperature is 0°C in this plot. Figure 7. Type K Thermocouple Temperature vs. Output Voltage with 0°C Cold-Junction The precision voltage for calibration as well as testing is provided by the Fluke 5700A Calibrator high precision dc voltage source with a resolution of 10 nV. The voltage error in Figure 8 is within 0.2 μV of ideal, corresponding to about 0.004°C. This result is the short time accuracy result just after a system calibration at 25°C without the effects of temperature drift.The dominant error for this circuit is from the cold-junction compensation measurement. In this circuit the ADT7310 is used for cold-junction compensation and has a typical error of −0.05°C, and a worst case error of ±0.8°C over the −40°C to +105°C temperature range for a 5 V supply. The device has a ±0.4°C maximum error over this temperature range if a 3 V supply is used. Figure 8. Error of CN-0287 Configured for Type K Thermocouple (VDD = 5 V, VREF = 4.096 V, Differential Input, Bipolar, Input Buffer Enable, Output Data Rate = 50 Hz, Gain = 32, Chop Enable. 60 Hz Rejection Enable, Sinc4) RTD Configuration Test Results For a Pt100 RTD, the default ADC gain setting is G = 8, and for a Pt1000 RTD the default gain setting is G = 1. The reference voltage to the ADC is equal to the voltage across the 4.02 kΩ reference resistor. The temperature coefficient of a Pt100 RTD is approximately 0.385 Ω/°C, and at +850°C the resistance can be as high as 400 Ω. With a 400 μA default excitation current, the maximum RTD voltage is therefore about 160 mV. The reference voltage to the ADC is 4.02 kΩ × 400 μA = 1.608 V. For G = 8, the maximum RTD voltage is 160 mV × 8 = 1.28 V which is approximately 80% of the available range. For a Pt1000 RTD, the maximum resistance at +850°C is approximately 4000 Ω. The default excitation current is 380 μA, yielding a maximum RTD voltage of 1.52 V. The reference voltage to the ADC is 4.02 kΩ × 380 μA = 1.53 V. A default gain setting of G = 1 is used, and the maximum RTD voltage utilizes nearly all of the available range. The general expression for the RTD resistance, R, in terms of the ADC code (Code), resolution (N), reference resistor (RREF), and gain (G) is given by: =GRCodeRREFN2 (7) The leakage current from TVS, diodes, clamping diodes, and ADC are the largest sources of errors in the RTD measurement circuit, even though nanoamp devices were selected for the design. The total leakage current for each of the inputs is 9 nA (3 nA from AD7193, buffer on), 5 nA from clamping diode and 1 nA from the TVS diode). All four channels will thus generate 36 nA maximum leakage current. The feedback loop in Figure 2 maintains a constant current through the reference resistor. This means that leakage currents affect the RTD excitation current, thereby producing an error. The default exciting current is 400 μA for Pt100 and 380 μA for Pt1000. The approximate worst case system error due to the leakage currents for Pt100 RTDs is: readingofError(%)%01.0100μA400nA63≈×= (8) For a Pt100 with measurable range from −200°C to +850°C, this corresponds to a system accuracy of approximately C1.00001.0C/385.0400(≈×ΩΩ=)CAccuracy (9) The amount of the error depends on the configuration of the input terminals. After an input configuration is established, a room temperature calibration can reduce the error even further. An experiment was conducted to show the effects of leakage current. Each channel was first configured as a 4-W RTD. A 100 Ω fixed resistor was connected to Channel 1 in the RTD position. Zero ohm resistors were connected to the inputs of the other three channels. 6050–5000500TEMPERATURE (°C)VOLTAGE (mV)10001500403020100–1010926-0070.200.150.0516111621263136414651INPUT VOLTAGE (mV)VOLTAGE ERROR (μV)0.100 10926-008 Circuit Note CN-0287 Rev. A | Page 7 of 9 The gain was set for G = 1, and the excitation current for 380 μA (Pt1000 configuration). Data was collected, then the jumpers connecting Channel 4, Channel 3, and Channel 2 were removed sequentially, and data collected for each condition. The results are shown in Figure 9. Figure 9. Error Generated by Leakage Current on Channel 1 for 4-Channel Pt100 RTD with G = 1 The ADC code changed from approximately 437,800 to 437,600 corresponding to a measurement change of 104.9015 Ω to 104.8627, or 0.0388 Ω. This represents a measurement error of approximately 0.1°C; however it can be removed by calibrating at room temperature with a fixed input configuration. COMMON VARIATIONS The AD779x low noise, low power, 16-/24-bit sigma-delta ADC family is more suitable for signal channel or low power applications. The ADT7311, ±0.5°C accurate, 16-bit digital SPI temperature sensor is qualified for automotive applications. The cold junction compensation circuit accuracy can be improved by using a digital temperature sensor, such as ADT7320, with ±0.25°C accuracy. RMS isolation up to 5 kV is be available in the ADuM6401 digital isolator with dc-to-dc converter. CIRCUIT EVALUATION AND TEST This circuit uses the EVAL-CN0287-SDPZ circuit board and the SDP-B (EVAL-SDP-CB1Z) system demonstration platform controller board. The two boards have 120-pin mating connectors, allowing for the quick setup and evaluation of the performance of the circuit. The EVAL-CN0287-SDPZ board contains the circuit to be evaluated, as described in this note, and the SDP-B controller board is used with the CN0287 Evaluation Software to capture the data from the EVAL-CN0287-SDPZ circuit board. Equipment Needed The following equipment is needed: • A PC with a USB port and Windows® XP (32 bit), Windows Vista®, or Windows® 7 • The EVAL-CN0287-SDPZ circuit board • The EVAL-SDP-CB1Z SDP-B controller board • The CN-0287 SDP Evaluation Software • The EVAL-CFTL-6V-PWRZ dc power supply or equivalent 6 V/1 A bench supply • A RTD or thermocouple sensor or sensor simulator. (The evaluation software supports the following RTDs: Pt100, Pt1000; Thermocouple: Type K, Type J, Type T, Type S.) Getting Started Install the evaluation software by placing the CN0287 Evaluation Software into the CD drive of the PC. Using My Computer, locate the drive that contains the evaluation software. Functional Block Diagram See Figure 1 for the circuit block diagram and the EVAL-CN0287-SDPZ-PADSSchematic.pdf file for the complete circuit schematic. This file is contained in the CN0287 Design Support Package located at www.analog.com/CN0287-DesignSupport A functional block diagram of the test setup is shown in Figure 10. Figure 10. Test Setup Functional Block Diagram Setup Connect the 120-pin connector on the EVAL-CN0287-SDPZ circuit board to the CON A connector on the EVAL-SDP-CB1Z controller board (SDP-B). Use nylon hardware to firmly secure the two boards, using the holes provided at the ends of the 120-pin connectors. With power to the supply off, connect a 6 V power supply to the +6 V and GND pins on the board. If available, a 6 V wall wart can be connected to the barrel connector J2 on the board and used in place of the 6 V power supply. Connect the USB cable supplied with the SDP-B board to the USB port on the PC. Do not connect the USB cable to the Mini-USB connector on the SDP-B board at this time. Turn on the 6 V power supply to power up the evaluation board and SDP board, then plug in the Mini-USB cable into the Mini-USB port on the SDP board. 43786043784043776043782043778043780043774043772043770043768043766043764043762043760043758010926-009ALLLEAKAGEINCLUDEDLEAKAGEFROM CH4REMOVEDLEAKAGEFROM CH3REMOVEDLEAKAGEFROM CH2REMOVEDSENSORSEVAL-CFTL-6V-PWRZ6VWALLWARTCN(x)JP(x)(x) = 1, 2, 3, 4EVAL-CN0287-SDPZBOARDCN5 OR J2120PINSUSB CABLEUSBEVAL-SDP-CB1ZSDP BOARDPCSDPCONNECTORORSIGNALGENERATORS1.000V10926-010 CN-0287 Circuit Note Rev. A | Page 8 of 9 Test Launch the evaluation software. After USB communications are established, the SDP-B board can be used to send, receive, and capture data from the EVAL-CN0287-SDPZ board. Figure 11 shows a photo of the EVAL-CN0287-SDPZ evaluation board connected to the SDP board. Information regarding the SDP-B board can be found in the SDP-B User Guide. Information and details regarding test setup and calibration, and how to use the evaluation software for data capture can be found in the CN-0287 Software User Guide. Connectivity for Prototype Development The EVAL-CN0287-SDPZ evaluation board is designed to use the EVAL-SDP-CB1Z SDP-B board; however, any microprocessor can be used to interface to the SPI interface through the PMOD connector J6. The pin definition of PMOD connector can be found in the schematics of CN0287 evaluation board in CN0287 Design Support Package. In order for another controller to be used with the EVAL-CN0287-SDPZ evaluation board, software must be developed by a third party. Figure 11. EVAL-CN0287-SDPZ Evaluation Board Connected to the EVAL-SDP-CB1Z SDP-B Board 10926-011 CN-0287 Circuit Note Rev. A | Page 9 of 9 LEARN MORE CN0287 Design Support Package: www.analog.com/CN0287-DesignSupport SDP-B User Guide AN-880 Application Note, ADC Requirements for Temperature Measurement AN-892 Application Note, Temperature Measurement Theory and Practical Techniques. AN-0970 Application Note, RTD Interfacing and Linearization Using an ADuC706x Microcontroller CN0172, High Accuracy Multichannel Thermocouple Measurement Solution. CN0206, Complete Type T Thermocouple Measurement System with Cold Junction Compensation. CN0209, Fully Programmable Universal Analog Front End for Process Control Applications. CN 0221, USB-Based Temperature Monitor Using the ADuCM360 Precision Analog Microcontroller and an External Thermocouple. CN0271, K-Type Thermocouple Measurement System with Integrated Cold Junction Compensation. Kester, Walt. 1999. Sensor Signal Conditioning. Analog Devices. Chapter 7, "Temperature Sensors." Matthew Duff and Joseph Towey. Two Ways to Measure Temperature Using Thermocouples Feature Simplicity, Accuracy, and Flexibility, Analog Dialogue 44-10, Analog Devices. Mary McCarthy, AN-615 Application Note, Peak-to-Peak Resolution Versus Effective Resolution. MT-049 Tutorial, Op Amp Total Output Noise Calculations for Single-Pole System. MT-004 Tutorial, The Good, the Bad, and the Ugly Aspects of ADC Input Noise—Is No Noise Good Noise? Analog Devices. MT-031 Tutorial, Grounding Data Converters and Solving the Mystery of “AGND” and “DGND”, Analog Devices. MT-035, Op Amp Inputs, Outputs, Single-Supply, and Rail-to-Rail Issues, Analog Devices. MT-101 Tutorial, Decoupling Techniques, Analog Devices. Data Sheets and Evaluation Boards CN-0287 Circuit Evaluation Board (EVAL-CN0287-SDPZ) System Demonstration Platform (EVAL-SDP-CB1Z) AD7193 Datasheet AD8603 Datasheet ADG738 Datasheet ADG702 Datasheet ADT7310 Datasheet ADuM5401 Datasheet ADuM1280 Datasheet AD5201 Datasheet ADR3440 Datasheet REVISION HISTORY 8/13—Rev. 0 to Rev. A Changes to Title ................................................................................. 1 8/13—Revision 0: Initial Version (Continued from first page) Circuits from the Lab circuits are intended only for use with Analog Devices products and are the intellectual property of Analog Devices or its licensors. While you may use the Circuits from the Lab circuits in the design of your product, no other license is granted by implication or otherwise under any patents or other intellectual property by application or use of the Circuits from the Lab circuits. Information furnished by Analog Devices is believed to be accurate and reliable. However, Circuits from the Lab circuits are supplied "as is" and without warranties of any kind, express, implied, or statutory including, but not limited to, any implied warranty of merchantability, noninfringement or fitness for a particular purpose and no responsibility is assumed by Analog Devices for their use, nor for any infringements of patents or other rights of third parties that may result from their use. Analog Devices reserves the right to change any Circuits from the Lab circuits at any time without notice but is under no obligation to do so. ©2013 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. CN10926-0-8/13(A) System pro M compact® Miniature Circuit Breaker S 200/S 200 M Data Sheet The miniature circuit breakers of the System pro M compact® series S 200 and S 200 M provide state-of-the-art safety and comfort. They stand out due to their high performance and the wide range of accessories and approvals. 2CDC021023S0012 Features −− Clear contact position indication in red/green (“real CPI”) −− Unique, patented twin terminal with captive screws and an increased opening for cables up to max. 35 mm2, finger-proof (IP20) −− Busbar slot in the back for best visibility during installation −− High performance at an increased rated voltage for marine and industrial applications: 10 kA/15 kA at Ue = 440 V AC acc. to IEC/EN 60947-2 −− Individual product identification code −− Approved acc. to IEC/EN 60898-1, IEC/EN 60947-2 and UL 1077/CSA 22.2 No. 235 for global use 2CDC021038S0012 2 - 2CDC002157D0202 Miniature Circuit Breaker S 200/S 200 M Technical data S 200 S 200 M General Data Standards IEC/EN 60898-1, IEC/EN 60947-2 UL 1077 IEC/EN 60898-1, IEC/EN 60947-2 UL 1077, CSA 22.2 No. 235 Poles 1P, 2P, 3P, 4P, 1P+N, 3P+N Tripping Characteristics B, C, D, K, Z Rated current In 0.5 up to 63 A Rated frequency 50/60 Hz Rated insulation voltage Ui 250 V AC (phase to ground), 500 V AC (phase to phase) Overvoltage Category III Pollution Degree 3 IEC/EN 60898-1 Rated operational voltage Un 1P: 230/400 V AC; 1P+N: 230 V AC; 2P, 3P, 4P: 400 V AC; 3P+N: 400 V AC Max. power frequency recovery voltage Umax 1P: 253 V AC; 1P+N: 253 V AC; 2P, 3P, 4P: 440 V AC; 3P+N: 440 V AC; 1P: 72 V DC; 2P: 125 V DC Min. operating voltage 12 V AC, 12 V DC Rated short-circuit capacity Icn 6 kA 10 kA Energy limiting class (B, C up to 40 A) 3 Rated impulse withstand voltage Uimp (1.2/50 μs) 4 kV (test voltage 6.2 kV at sea level, 5 kV at 2,000 m) Dielectric test voltage 2.0 kV (50/60 Hz, 1 min) Reference temperature for tripping characteristics B, C, D: 30 °C Electrical endurance In < 32 A: 20,000 ops. (AC), 1,000 ops. (DC); one cycle 2 s - ON, 13 s - OFF In ≥ 32 A: 10,000 ops. (AC), 1,000 ops. (DC); one cycle 2 s - ON, 28 s - OFF IEC/EN 60947-2 Rated operational voltage Ue 1P: 230 V AC; 1P+N: 230 V AC; 2P, 3P, 4P: 440 V AC; 3P+N: 440 V AC Max. power frequency recovery voltage Umax 1P: 253 V AC; 1P+N: 253 V AC; 2P, 3P,4P: 462 V AC; 3P+N: 462 V AC; 1P: 72 V DC; 2P: 125 V DC Min. operating voltage 12 V AC, 12 V DC Rated ultimate short-circuit breaking capacity Icu 10 kA 15 kA Rated service short-circuit breaking capacity Ics 7.5 kA ≤ 40 A: 11.25 kA 50, 63 A: 7.5 kA Rated impulse withstand voltage Uimp (1.2/50 μs) 4 kV (test voltage 6.2 kV at sea level, 5 kV at 2,000 m) Dielectric test voltage 2.0 kV (50/60 Hz, 1 min) Reference temperature for tripping characteristics B, C, D: 55 °C; K, Z: 20 °C Electrical endurance In < 32 A: 20,000 ops. (AC), 1,000 ops. (DC); one cycle 2 s - ON, 13 s - OFF In ≥ 32 A: 10,000 ops. (AC), 1,000 ops. (DC); one cycle 2 s - ON, 28 s - OFF UL/CSA Rated voltage 1P: 277 V AC, 60 V DC 2...4P: 480 Y/277 V AC, 110 V DC 1P: 277 V AC, 60 V DC 2...4P: 480 Y/277 V AC, 125 V DC Rated interrupting capacity 6 kA (AC), 10 kA (DC) Application Suppl. prot. for general use. Application Codes: TC2, OL0, SC: U1 Reference temperature for tripping characteristic B, C, D, K, Z: 25 °C Electrical endurance 6,000 ops. (AC), 6,000 ops. (DC); one cycle 1 s - ON, 9 s - OFF Mechanical data Housing Insulation group II, RAL 7035 Insulation group I, RAL 7035 Toggle Insulation group II, black, sealable Contact position indication Marking on toggle (I ON/0 OFF), Real CPI (red ON/green OFF) Protection degree acc. to EN 60529 IP201), IP40 in enclosure with cover Mechanical endurance 20,000 ops. Shock resistance acc. to IEC/EN 60068-2-27 25 g, 2 shocks, 13 ms Vibration resistance acc. to IEC/EN 60068-2-6 5 g, 20 cycles at 5…150…5 Hz with load 0.8 In Environmental conditions acc. to IEC/EN 60068-2-30 28 cycles with 55 °C/90-96 % and 25 °C/95-100 % Ambient temperature -25 ... +55 °C Storage temperature -40 ... +70 °C 1) Also fulfilling the requirements acc. to the protection degree IPXXB 2CDC002157D0202 - 3 Miniature Circuit Breaker S 200/S 200 M Technical data and tripping characteristics S 200 S 200 M Installation Terminal Failsafe bi-directional cylinder-lift terminal Cross-section of conductors (top/bottom) solid, stranded: 35 mm2 / 35 mm2 flexible: 25 mm2 / 25 mm2 14 – 4 AWG1) Cross-section of busbars (top/bottom) 10 mm2 / 10 mm2 14 – 8 AWG2) Torque 2.8 Nm 18 in-Ibs. Screwdriver No. 2 Pozidrive Mounting On DIN rail 35 mm acc. to EN 60715 by fast clip Mounting position any Supply optional Dimensions and weight Mounting dimensions acc. to DIN 43880 Mounting dimension 1 Pole dimensions (H x D x W) 88 x 69 x 17.5 Pole weight approx. 115 g Combination with auxiliary elements Auxiliary contact Yes Signal/auxiliary contact Yes Shunt trip Yes Undervoltage release Yes Motor Operating Device Yes Tripping characteristics Acc. to Tripping characteristics Rated current Thermal release 3) Electromagnetic release 4) In Currents: conventional non-tripping current I1 conventional tripping current I2 Tripping time Range of instantaneous tripping Tripping time IEC/EN 60898-1 B 6 to 63 A 1.13 · In 1.45 · In > 1 h < 1 h 5) 3 · In 5 · In 0.1 ... 45 s (In ≤ 32 A)/0.1 ... 90 s (In > 32 A) < 0.1 s C 0.5 to 63 A 1.13 · In 1.45 · In > 1 h < 1 h 5) 5 · In 10 · In 0.1 ... 15 s (In ≤ 32 A)/0.1 ... 30 s (In > 32 A) < 0.1 s D 0.5 to 63 A 1.13 · In 1.45 · In > 1 h < 1 h 5) 10 · In 20 · In 0.1 ... 4 s (In ≤ 32 A)/0.1 ... 8 s (In > 32 A) < 0.1 s IEC/EN 60947-2 K 0.5 to 63 A 1.05 · In 1.2 · In > 1 h < 1 h 5) 10 · In 14 · In > 0.2 s < 0.2 s Z 0.5 to 63 A 1.05 · In 1.2 · In > 1 h < 1 h 5) 2 · In 3 · In > 0.2 s < 0.2 s 3) The thermal releases are calibrated to a nominal reference ambient temperature; for B, C, D the reference value is 30 °C, for K and Z the reference value is 20 °C. In the case of higher ambient temperatures, the current values fall by approx. 6 % for each 10 K temperature rise. 4) The indicated tripping values of electromagnetic tripping devices apply to a frequency of 50/60 Hz. The thermal release operates independent of frequency. 5) As from operating temperature (after I1 > 1h) 1) AWG 18 – 4 acc. to UL 486A – 486B 2) AWG 18 – 8 acc. to UL 486A – 486B 4 - 2CDC002157D0202 Miniature Circuit Breaker S 200/S 200 M 2CDC022060F0211 Z characteristic Tripping characteristics 2CDC022006F0211 2CDC022008F0211 B characteristic C characteristic 2CDC022010F0211 K characteristic D characteristic 2CDC022108F0209 2CDC002157D0202 - 5 Miniature Circuit Breaker S 200/S 200 M Deviating ambient temperature For installations of miniature circuit breakers at other temperatures than the reference value derating factors have to be considered. The rated value of the current of a miniature circuit breaker refers to a reference ambient temperature of 30 °C for circuit Derating Influence of adjacent devices If several miniature circuit breakers are installed directly side by side with high load on all poles, a correction factor has to be applied to the rated current (see table). If distance pieces are used, the factor is not to be considered. No. of adjacent devices Factor F 1 1 2, 3 0.9 4, 5 0.8 ≥ 6 0.75 breakers with the characteristics B, C and D and 20 °C for circuit breakers with the characteristics K and Z. The following table contains the derating of the load capability at ambient temperatures from -40 °C to 70 °C for the characteristics B, C, D, K and Z. Example Installation of 8 adjacent miniature circuit breakers S201-C16 at 40 °C ambient temperature Rated current In = 16 A Max. operating current at 40 °C = 15,.1 A (see table above) Factor F = 0.75 (see left table) In = 15.1 A x 0.75 = 11.33 A Result: The operating current can only add up to max. 11.33 A Tripping Rated Maximum operating current at ambient temperature T charac- current teristics In A A - 40 °C - 30 °C - 20 °C - 10 °C 0 °C 10 °C 20 °C 30 °C 40 °C 50 °C 60 °C 70 °C B, C, D 0.5 0.67 0.65 0.62 0.60 0.58 0.55 0.53 0.50 0.47 0.44 0.41 0.37 1.0 1.33 1.29 1.25 1.20 1.15 1.11 1.05 1.00 0.94 0.88 0.82 0.75 1.6 2.13 2.07 2.00 1.92 1.85 1.77 1.69 1.60 1.51 1.41 1.31 1.19 2.0 2.67 2.58 2.49 2.40 2.31 2.21 2.11 2.00 1.89 1.76 1.63 1.49 3.0 4.0 3.9 3.7 3.6 3.5 3.3 3.2 3.0 2.8 2.6 2.4 2.2 4.0 5.3 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.5 3.3 3.0 6.0 8.0 7.7 7.5 7.2 6.9 6.6 6.3 6.0 5.7 5.3 4.9 4.5 8.0 10.7 10.3 10.0 9.6 9.2 8.8 8.4 8.0 7.5 7.1 6.5 6.0 10.0 13.3 12.9 12.5 12.0 11.5 11.1 10.5 10.0 9.4 8.8 8.2 7.5 13.0 17.3 16.8 16.2 15.6 15.0 14.4 13.7 13.0 12.3 11.5 10.6 9.7 16.0 21.3 20.7 20.0 19.2 18.5 17.7 16.9 16.0 15.1 14.1 13.1 11.9 20.0 26.7 25.8 24.9 24.0 23.1 22.1 21.1 20.0 18.9 17.6 16.3 14.9 25.0 33.3 32.3 31.2 30.0 28.9 27.6 26.4 25.0 23.6 22.0 20.4 18.6 32.0 42.7 41.3 39.9 38.5 37.0 35.4 33.7 32.0 30.2 28.2 26.1 23.9 40.0 53.3 51.6 49.9 48.1 46.2 44.2 42.2 40.0 37.7 35.3 32.7 29.8 50.0 66.7 64.5 62.4 60.1 57.7 55.3 52.7 50.0 47.1 44.1 40.8 37.3 63.0 84.0 81.3 78.6 75.7 72.7 69.6 66.4 63.0 59.4 55.6 51.4 47.0 K, Z 0.5 0.66 0.64 0.61 0.59 0.56 0.53 0.50 0.47 0.43 0.40 0.35 0.31 1.0 1.32 1.27 1.22 1.17 1.12 1.06 1.00 0.94 0.87 0.79 0.71 0.61 1.6 2.12 2.04 1.96 1.88 1.79 1.70 1.60 1.50 1.39 1.26 1.13 0.98 2.0 2.65 2.55 2.45 2.35 2.24 2.12 2.00 1.87 1.73 1.58 1.41 1.22 3.0 4.0 3.8 3.7 3.5 3.4 3.2 3.0 2.8 2.6 2.4 2.1 1.8 4.0 5.3 5.1 4.9 4.7 4.5 4.2 4.0 3.7 3.5 3.2 2.8 2.4 6.0 7.9 7.6 7.3 7.0 6.7 6.4 6.0 5.6 5.2 4.7 4.2 3.7 8.0 10.8 10.2 9.8 9.4 8.9 8.5 8.0 7.5 6.9 6.3 5.7 4.9 10.0 13.2 12.7 12.2 11.7 11.2 10.6 10.0 9.4 8.7 7.9 7.1 6.1 13.0 17.2 16.6 15.9 15.2 14.5 13.8 13.0 12.2 11.3 10.3 9.2 8.0 16.0 21.2 20.4 19.6 18.8 17.9 17.0 16.0 15.0 13.9 12.6 11.3 9.8 20.0 26.5 25.5 24.5 23.5 22.4 21.2 20.0 18.7 17.3 15.8 14.1 12.2 25.0 33.1 31.9 30.6 29.3 28.0 26.5 25.0 23.4 21.7 19.8 17.7 15.3 32.0 42.3 40.8 39.2 37.5 35.8 33.9 32.0 29.9 27.7 25.3 22.6 19.6 40.0 52.9 51.0 49.0 46.9 44.7 42.4 40.0 37.4 34.6 31.6 28.3 24.5 50.0 66.1 63.7 61.2 58.6 55.9 53.0 50.0 46.8 43.3 39.5 35.4 30.6 63.0 83.3 80.3 77.2 73.9 70.4 66.8 63.0 58.9 54.6 49.8 44.5 38.6 6 - 2CDC002157D0202 Miniature Circuit Breaker S 200/S 200 M Internal resistance and power loss Rated Tripping characteristic current B, C1) D K Z Internal resistance Power loss Internal resistance Power loss Internal resistance Power loss Internal resistance Power loss In Ri Pv Ri Pv Ri Pv Ri Pv A mΩ W mΩ W mΩ W mΩ W 0.5 5500 1.4 4300 1.1 4300 1.1 8100 2.4 1.0 1440 1.4 1250 1.25 1250 1.25 2100 2.3 1.6 630 1.6 600 1.5 600 1.5 1000 2.8 2.0 460 1.8 410 1.6 410 1.65 619 2.5 3.0 150 1.3 130 1.2 130 1.2 235 2.4 4.0 110 1.8 105 1.7 105 1.7 149 2.4 6.0 55 2.0 52 1.9 52 1.9 75 3.2 8.0 23 1.5 24 1.5 24 1.5 27 2.0 10.0 19 2.1 16 1.6 13.5 1.4 24 2.7 13.0 14 2.3 14 2.2 13.5 1.4 — — 16.0 8.5 2.5 8.5 2.5 7.7 2.0 10.9 2.8 20.0 6.25 2.5 6.1 2.3 6.7 2.7 6.0 2.4 25.0 5.0 3.2 4.3 3.1 4.6 2.9 4.5 3.3 32.0 3.6 3.7 3.5 3.6 3.5 3.6 3.5 3.6 40.0 3.0 4.8 2.2 4.2 2.2 4.2 2.5 4.1 50.0 1.3 3.25 1.25 2.9 1.25 3.1 1.5 4.1 63.0 1.2 4.8 1.2 4.8 1.0 4.4 1.3 5.2 1) Current ratings 0.5 – 4 A, 8 A apply to C characteristic only Internal resistances are subject to application-specific and environment-specific conditions and are therefore to be considered as typical values. Internal resistance and power loss per pole 2CDC002157D0202 - 7 Miniature Circuit Breaker S 200/S 200 M Let-through energy I2t Characteristics B, C - 230/400 V let-through energy 8 - 2CDC002157D0202 Miniature Circuit Breaker S 200/S 200 M Let-through energy I2t Characteristics D, K - 230/400 V let-through energy 2CDC002157D0202 - 9 Miniature Circuit Breaker S 200/S 200 M Let-through energy I2t Characteristic Z - 230/400 V let-through energy 10 - 2CDC002157D0202 Miniature Circuit Breaker S 200/S 200 M Accessory overview Dimensional drawing 2CDC022007F0010 Accessories and dimensional drawing H Auxiliary contact S2C-H6R (change-over contact) H-R Auxiliary contact S2C-H6-...R S/H Signal/Auxiliary contact S2C-S/H6R S/H (H) Signal/Auxiliary contact used as auxiliary contact S2C-S/H6R ST Shunt trip S2C-A... UR Undervoltage release S2C-UA OR Overvoltage release S2C-OVP 2CDC092002F0212 H-L Auxiliary contact S2C-H...L H-BF Auxiliary contact for bottom fitting S2C-H01 (1 per pole) S2C-H10 BP Mechanical tripping device S2C-BP NT Neutral disconnector S2C-Nt MOD-S1) Motor operating device S2C-CM DDA 200 RCD-block DDA 20... 1) In case of using S 200/S 200 M coupled with DDA 200, MOD-S does not operate in case of earth-leakage fault. 2CDC002157D0202 - 11 Miniature Circuit Breaker S 200/S 200 M Ship approvals Approval mark Description Country BV France GL Germany RINA Italy ABS USA Country approvals Approval mark Description Country RCM Australia ÖVE Austria CEBEC Belgium CSA Canada (S 200 M only) CCC China EZU Czech Republic DEMKO Denmark FIMKO Finland NF France VDE Germany IMQ Italy SIRIM Malaysia KEMA Netherlands NEMKO Norway BBJ Poland CERTIF Portugal GOST Russia GOST Fire HDB Singapore SIQ Slovenia AENOR Spain SEMKO Sweden S+ Switzerland UL1077 USA Approvals Not all approvals are printed on the MCBs. The indicated approvals generally cover all available approvals worldwide. To verify the approval status in your country please get in touch with your ABB contact person. ABB STOTZ-KONTAKT GmbH Eppelheimer Straße 82 69123 Heidelberg, Germany Phone: +49 (0) 6221 7 01-0 Fax: +49 (0) 6221 7 01-13 25 E-Mail: info.desto@de.abb.com You can find the address of your local sales organization on the ABB home page http://www.abb.com/contacts -> Low Voltage Products and Systems Contact us Note: We reserve the right to make technical changes or modify the contents of this document without prior notice. With regard to purchase orders, the agreed particulars shall prevail. ABB AG does not accept any responsibility whatsoever for potential errors or possible lack of information in this document. We reserve all rights in this document and in the subject matter and illustrations contained therein. Any reproduction, disclosure to third parties or utilization of its contents – in whole or in parts – is forbidden without prior written consent of ABB AG. Copyright© 2012 ABB All rights reserved Brochure number 2CDC002157D0202 (08/12-0.5-ZVD) ARADUR HY 1300 GB IDENTIFICATION DE LA SUBSTANCE/DU MÉLANGE ET DE LA SOCIÉTÉ/ENTREPRISE FICHE DE DONNÉES DE SÉCURITÉ Nom du produit ARADUR HY 1300 GB Conforme au règlement (CE) n° 1907/2006 (REACH), Annexe II - France 1. Numéro de téléphone d'appel d'urgence : Fournisseur : : Identification de la substance ou du mélange Type de produit : Liquide. Pour toutes questions de Sécurité, Hygiène et Environnement relatives à ce document ou son contenu, veuillez contacter: E-Mail: global_product_ehs_admat@huntsman.com Utilisation de la substance/du mélange : Composant utilisé pour la fabrication de parties pour l'isolation électrique EUROPE: +32 35 75 1234 France ORFILA: +33(0)145425959 ASIA: +65 6336-6011 China: +86 20 39377888 Australia: 1800 786 152 New Zealand: 0800 767 437 USA: +1/800/424.9300 Huntsman Advanced Materials (Europe)BVBA Everslaan 45 3078 Everberg / Belgium Tel.: +41 61 299 20 41 Fax: +41 61 299 20 40 Description du produit : Préparation 2. IDENTIFICATION DES DANGERS Classification Xn; R21/22 C; R34 R43 : Le produit est classé dangereux selon la directive 1999/45/CE et ses amendements. Dangers pour la santé : humaine Nocif par contact avec la peau et par ingestion. Provoque des brûlures. Peut entraîner une sensibilisation par contact avec la peau. Pour plus de détails sur les conséquences en termes de santé et les symptômes, reportez-vous à la section 11. 3. COMPOSITION/INFORMATIONS SUR LES COMPOSANTS Substance/préparation Préparation polyoxypropylenetriamine 39423-51-3 60 - 100 Xn; R21/22 C; R34 [1] triéthylènetétramine 112-24-3 13 - 30 Xn; R21 C; R34 R43 R52/53 [1] acide-salicylique 69-72-7 3 - 7 Xn; R20/22 Xi; R41 [1] : Numéro CAS Nom des composants % Nombre Classification Voir section 16 pour le texte intégral des phrases R mentionnées ci-dessus Dans l'état actuel des connaissances du fournisseur et dans les concentrations d'application, aucun autre ingrédient présent n'est classé comme dangereux pour la santé ou l'environnement, et donc nécessiterait de figurer dans cette section. Date d'édition/Date de révision : 8/19/2010. 1/10 ARADUR HY 1300 GB COMPOSITION/INFORMATIONS 3. SUR LES COMPOSANTS Les limites d'exposition professionnelle, quand elles sont disponibles, sont énumérées à la section 8. [1] Substance classée avec un danger pour la santé ou l'environnement [2] Substance avec une limite d'exposition au poste de travail [3] Substance PBT [4] Substance vPvB Consulter un médecin immédiatement. Rincez la bouche avec de l'eau. Enlever les prothèses dentaires s'il y a lieu. Transporter la personne incommodée à l'air frais. Garder la personne au chaud et au repos. Si une personne a avalé de ce produit et est consciente, lui faire boire de petites quantités d’eau. Si la personne est indisposée, cesser de la faire boire car des vomissements pourraient entraîner un risque supplémentaire. Ne pas faire vomir sauf indication contraire émanant du personnel médical. En cas de vomissement, maintenez la tête vers le bas pour empêcher le passage des vomissures dans les poumons. Les brûlures chimiques doivent être traitées sans tarder par un médecin. Ne rien faire ingérer à une personne inconsciente. En cas d'évanouissement, placez la personne en position latérale de sécurité et appelez un médecin immédiatement. Assurez-vous d'une bonne circulation d'air. Détacher tout ce qui pourrait être serré, comme un col, une cravate, une ceinture ou un ceinturon. Contact avec la peau Consulter un médecin immédiatement. Rincer immédiatement les yeux à grande eau, en soulevant de temps en temps les paupières supérieures et inférieures. Vérifier si la victime porte des verres de contact et dans ce cas, les lui enlever. Continuez de rincer pendant 10 minutes au moins. Les brûlures chimiques doivent être traitées sans tarder par un médecin. Consulter un médecin immédiatement. Rincer la peau contaminée à grande eau. Retirer les vêtements et les chaussures contaminés. Laver abondamment à l'eau les vêtements contaminés avant de les retirer, ou porter des gants. Continuez de rincer pendant 10 minutes au moins. Les brûlures chimiques doivent être traitées sans tarder par un médecin. En cas d'affections ou de symptômes, évitez d'exposer plus longuement. Laver les vêtements avant de les réutiliser. Laver les chaussures à fond avant de les remettre. 4. Premiers secours Consulter un médecin immédiatement. Transporter la personne incommodée à l'air frais. Si l'on soupçonne que des fumées sont encore présentes, le sauveteur devra porter un masque adéquat ou un appareil de protection respiratoire autonome. Garder la personne au chaud et au repos. S'il ne respire pas, en cas de respiration irrégulière ou d'arrêt respiratoire, que le personnel qualifié pratique la respiration artificielle ou administre de l'oxygène. Il peut être dangereux pour la personne assistant une victime de pratiquer le bouche à bouche. En cas d'évanouissement, placez la personne en position latérale de sécurité et appelez un médecin immédiatement. Assurez-vous d'une bonne circulation d'air. Détacher tout ce qui pourrait être serré, comme un col, une cravate, une ceinture ou un ceinturon. En cas d’inhalation de produits de décomposition lors d’un incendie, les symptômes peuvent être différés. La personne exposée peut avoir besoin de rester sous surveillance médicale pendant 48 heures. Note au médecin traitant En cas d’inhalation de produits de décomposition lors d’un incendie, les symptômes peuvent être différés. La personne exposée peut avoir besoin de rester sous surveillance médicale pendant 48 heures. Ingestion Inhalation Contact avec les yeux : : : : : PREMIERS SECOURS Pour plus de détails sur les conséquences en termes de santé et les symptômes, reportez-vous à la section 11. Protection des sauveteurs : Aucune initiative ne doit être prise qui implique un risque individuel ou en l’absence de formation appropriée. Si l'on soupçonne que des fumées sont encore présentes, le sauveteur devra porter un masque adéquat ou un appareil de protection respiratoire autonome. Il peut être dangereux pour la personne assistant une victime de pratiquer le bouche à bouche. Laver abondamment à l'eau les vêtements contaminés avant de les retirer, ou porter des gants. Date d'édition/Date de révision : 8/19/2010. 2/10 ARADUR HY 1300 GB MESURES DE LUTTE 5. CONTRE L'INCENDIE En présence d'incendie, circonscrire rapidement le site en évacuant toute personne se trouvant près des lieux de l'accident. Aucune initiative ne doit être prise qui implique un risque individuel ou en l’absence de formation appropriée. Risque lié aux produits de décomposition thermique Risques particuliers liés à l’exposition au produit L’augmentation de pression résultant d’un incendie ou d’une exposition à des températures élevées peut provoquer l’explosion du conteneur. Les pompiers devront porter un équipement de protection approprié ainsi qu'un appareil de protection respiratoire autonome avec masque intégral fonctionnant en mode pression positive. Équipement de protection spécial pour le personnel préposé à la lutte contre l'incendie Utiliser un agent extincteur approprié pour étouffer l'incendie avoisinant. Moyens d'extinction : : : Aucun connu. Utilisables : Non utilisables : Oxydes de carbone., La combustion produit des fumées nauséabondes et toxiques., Oxydes d'azote. Précautions relatives à l'environnement Précautions individuelles Arrêter la fuite si cela ne présente aucun risque. Écarter les conteneurs de la zone de déversement accidentel. S'approcher des émanations dans la même direction que le vent. Bloquer toute pénétration possible dans les égouts, les cours d’eau, les caves ou les zones confinées. Laver le produit répandu dans une installation de traitement des effluents ou procéder comme suit. Contenir les fuites et les ramasser à l'aide de matières absorbantes non combustibles telles que le sable, la terre, la vermiculite, la terre à diatomées. Les placer ensuite dans un récipient pour élimination conformément à la réglementation locale (voir section 13). Élimination par une entreprise autorisée de collecte des déchets. Les matériaux absorbants contaminés peuvent présenter les mêmes risques que le produit répandu. Nota : Voir section 1 pour le contact en cas d'urgence et voir section 13 pour l'élimination des déchets. 6. MESURES À PRENDRE EN CAS DE REJET ACCIDENTEL : : Aucune initiative ne doit être prise qui implique un risque individuel ou en l’absence de formation appropriée. Évacuer les environs. Empêcher l'accès aux personnes non requises et ne portant pas de vêtements de protection. NE PAS TOUCHER ni marcher dans le produit répandu. Ne pas respirer les vapeurs ou le brouillard. Assurer une ventilation adéquate. Porter un appareil de protection respiratoire approprié lorsque le système de ventilation est inadéquat. Revêtir un équipement de protection individuelle approprié (voir Section 8). Évitez la dispersion des matériaux déversés, ainsi que leur écoulement et tout contact avec le sol, les cours d'eau, les égouts et conduits d'évacuation. Informez les autorités compétentes en cas de pollution de l'environnement (égouts, voies d'eau, sol et air) par le produit. Grand déversement accidentel : Arrêter la fuite si cela ne présente aucun risque. Écarter les conteneurs de la zone de déversement accidentel. Diluer avec de l'eau et éponger si la matière est soluble dans l'eau. Sinon, ou si la matière est insoluble dans l'eau, absorber avec un matériau sec inerte et placer dans un conteneur à déchets approprié. Élimination par une entreprise autorisée de collecte des déchets. Petit déversement accidentel : Méthodes de nettoyage Manipulation 7. MANIPULATION ET STOCKAGE Revêtir un équipement de protection individuelle approprié (voir Section 8). Il est interdit de manger, boire ou fumer dans les endroits où ce produit est manipulé, entreposé ou mis en oeuvre. Il est recommandé au personnel de se laver les mains et la figure avant de manger, boire ou fumer. Les personnes ayant des antécédents de sensibilisation cutanée ne doivent pas intervenir dans les processus utilisant ce produit. Ne pas mettre en contact avec les yeux, la peau ou les vêtements. Ne pas respirer les vapeurs ou le brouillard. Ne pas ingérer. Si au cours d'une utilisation normale, la substance présente un danger respiratoire, une ventilation adéquate ou le port d'un appareil respiratoire est obligatoire. Garder dans le conteneur d'origine ou dans un autre conteneur de substitution homologué fabriqué à partir d'un matériau compatible et tenu hermétiquement clos lorsqu'il n'est pas utilisé. Les conteneurs vides retiennent des résidus de produit et peuvent présenter un danger. Ne pas : Date d'édition/Date de révision : 8/19/2010. 3/10 ARADUR HY 1300 GB MANIPULATION 7. ET STOCKAGE Stockage réutiliser ce conteneur. Matériaux d'emballage Stocker entre les températures suivantes:Stocker conformément à la réglementation locale. Stocker dans le récipient d'origine à l'abri de la lumière directe du soleil dans un endroit sec, frais et bien ventilé à l'écart des matériaux incompatibles (cf. la section 10). Garder le récipient hermétiquement fermé lorsque le produit n'est pas utilisé. Les récipients ayant été ouverts doivent être refermés avec soin et maintenus en position verticale afin d'éviter les fuites. Ne pas stocker dans des conteneurs non étiquetés. Utiliser un récipient approprié pour éviter toute contamination du milieu ambiant. : Recommandé : Utiliser le récipient d'origine. Classe de danger de stockage Huntsman Advanced Materials : Classe de stockage 8, Matériel corrosif Nom des composants Limites d'exposition professionnelle Procédures de surveillance recommandées Valeurs limites d'exposition Si ce produit contient des ingrédients présentant des limites d'exposition, il peut s'avérer nécessaire d'effectuer un examen suivi des personnes, de l'atmosphère sur le lieu de travail ou des organismes vivants pour déterminer l'efficacité de la ventilation ou d'autres mesures de contrôle ou évaluer le besoin d'utiliser du matériel de protection des voies respiratoires. Il importe de vous reporter à la norme européenne EN 689 concernant les méthodes pour évaluer l'exposition par inhalation aux agents chimiques et aux documents de politique générale nationaux relatifs aux méthodes pour déterminer les substances dangereuses. 8. CONTRÔLE DE L'EXPOSITION/PROTECTION INDIVIDUELLE Porter un appareil de protection respiratoire muni d'un purificateur d'air ou à adduction d' air, parfaitement ajusté et conforme à une norme en vigueur si une évaluation du risque indique que cela est nécessaire. Le choix de l'appareil de protection respiratoire doit être fondé sur les niveaux d'expositions prévus ou connus, les dangers du produit et les limites d'utilisation sans danger de l'appareil de protection respiratoire retenu. Protection respiratoire Aucune valeur de limite d'exposition connue. : : Contrôle de l'exposition professionnelle : Si les manipulations de l'utilisateur provoquent de la poussière, des fumées, des gaz, des vapeurs ou du brouillard, utiliser des enceintes fermées, une ventilation par aspiration à la source, ou d'autres systèmes de contrôle automatique intégrés afin de maintenir le seuil d'exposition du technicien aux contaminants en suspension dans l'air inférieur aux limites recommandées ou légales. Se laver abondamment les mains, les avant-bras et le visage après avoir manipulé des produits chimiques, avant de manger, de fumer et d'aller aux toilettes ainsi qu'à la fin de la journée de travail. Il est recommandé d'utiliser les techniques appropriées pour retirer les vêtements potentiellement contaminés. Laver les vêtements contaminés avant de les réutiliser. S'assurer que les dispositifs rince-oeil automatiques et les douches de sécurité se trouvent à proximité de l'emplacement des postes de travail. Contrôle de l'exposition Mesures d'hygiène : Alcool éthylvinylique laminé (EVAL), caoutchouc butyle Protection des mains : Matériaux pour gants pour utilisation à long terme (BTT>480 min): Matériaux pour gants pour utilisation à court terme/projection (10 min200°C (>392°F) PROPRIÉTÉS PHYSIQUES ET CHIMIQUES État physique Point d'ébullition Pression de vapeur Liquide. <0.1 kPa (<0.75 mm Hg) Odeur Amine. pH Couleur Brun clair. Point d'éclair Coupe fermée: >150°C (>302°F) [DIN 51758 EN 22719 (Pensky-Martens Closed Cup)] 9. 11 [Conc. (% poids / poids): 50%] Viscosité Dynamique: 160 à 200 mPa·s (160 à 200 cP) : : : : : : : : Informations générales Aspect Informations importantes relatives à la santé, à la sécurité et à l'environnement 25 deg C 20 deg C 20 deg C Masse volumique : 1 g/cm3 [25°C (77°F)] Solubilité dans l'eau : partiellement miscible Température de décomposition : >200°C (>392°F) Eau Produits de décomposition dangereux Conditions à éviter Aucune donnée spécifique. STABILITÉ ET RÉACTIVITÉ Dans des conditions normales de stockage et d'utilisation, aucun produit de décomposition dangereux ne devrait apparaître. Stabilité chimique Le produit est stable. 10. acides forts, bases fortes, agents oxydants forts : : : Matières à éviter : Risque de réactions dangereuses : Dans des conditions normales de stockage et d'utilisation, aucune réaction dangereuse ne se produit. Oxydes de carbone., La combustion produit des fumées nauséabondes et toxiques., Oxydes d'azote. Non disponible. 11. INFORMATIONS TOXICOLOGIQUES Toxicocinétique Absorption : Distribution : Contient des produits causant des lésions aux organes suivants : reins, système nerveux central (SNC), pancréas. Métabolisme : Non disponible. Élimination : Non disponible. Date d'édition/Date de révision : 8/19/2010. 5/10 ARADUR HY 1300 GB INFORMATIONS 11. TOXICOLOGIQUES Effets chroniques potentiels pour la santé Effets aigus potentiels sur la santé Inhalation : Dégagement possible de gaz, vapeur ou poussière très irritants ou corrosifs pour le système respiratoire. L'exposition aux produits de décomposition peut présenter des risques pour la santé. Les effets graves d’une exposition peuvent être différés. Nocif en cas d'ingestion. Peut causer des brûlures à la bouche, à la gorge et à l'estomac. Ingestion : Contact avec la peau : Corrosif pour la peau. Provoque des brûlures. Nocif par contact avec la peau. Peut entraîner une sensibilisation par contact avec la peau. Contact avec les yeux : Corrosif pour les yeux. Provoque des brûlures. Une fois sensibilisé, une vive réaction allergique peut éventuellement se déclencher lors d'une exposition ultérieure à de très faibles niveaux. Effets chroniques : Cancérogénicité : Aucun effet important ou danger critique connu. Mutagénicité : Aucun effet important ou danger critique connu. Tératogénicité : Aucun effet important ou danger critique connu. Toxicité aiguë polyoxypropylenetriamine DL50 Cutané Lapin 610 mg/kg - DL50 Orale Rat 220 mg/kg - acide-salicylique DL50 Cutané Lapin >2000 mg/kg - DL50 Orale Rat 891 mg/kg - CL50 Inhalation Poussière et brouillards Rat 0.9 mg/L 4 heures ARADUR HY 1300 GB DL50 Orale Rat 265 mg/kg - Nom du produit/composant Résultat Espèces Dosage Exposition Conclusion/Résumé : Non disponible. Toxicité chronique Conclusion/Résumé : Non disponible. Cancérogénicité Conclusion/Résumé : Non disponible. Mutagénicité Conclusion/Résumé : Non disponible. Tératogénicité Conclusion/Résumé : Non disponible. Toxicité pour la reproduction Conclusion/Résumé : Non disponible. Effets sur le développement : Aucun effet important ou danger critique connu. Effets sur la fertilité : Aucun effet important ou danger critique connu. Signes/symptômes de surexposition Peau Ingestion Inhalation Aucune donnée spécifique. Les symptômes néfastes peuvent éventuellement comprendre ce qui suit: douleurs stomacales Les symptômes néfastes peuvent éventuellement comprendre ce qui suit: douleur ou irritation rougeur la formation d'ampoules peut éventuellement apparaître : : : Irritation/Corrosion Conclusion/Résumé : Non disponible. Sensibilisant ARADUR HY 1300 GB peau cobaye Sensibilisant Nom du produit/composant Voie d'exposition Espèces Résultat Conclusion/Résumé : Non disponible. Date d'édition/Date de révision : 8/19/2010. 6/10 ARADUR HY 1300 GB INFORMATIONS 11. TOXICOLOGIQUES Yeux : Les symptômes néfastes peuvent éventuellement comprendre ce qui suit: douleur larmoiement rougeur 12. INFORMATIONS ÉCOLOGIQUES Autres effets nocifs : Aucun effet important ou danger critique connu. Écotoxicité en milieu aquatique Conclusion/Résumé : Non disponible. Biodégradabilité Conclusion/Résumé : Non disponible. Effets sur l'environnement : Aucun effet important ou danger critique connu. 13. CONSIDÉRATIONS RELATIVES À L'ÉLIMINATION 070204 Catalogue Européen des Déchets : Déchets Dangereux : Il se peut que la classification du produit satisfasse les critères de déchets dangereux. Il est recommandé d'éviter ou réduire autant que possible la production de déchets. Les conteneurs vides ou les sachets internes peuvent retenir des restes de produit. Ne se débarrasser de ce produit et de son récipient qu'en prenant toutes précautions d'usage. Élimination des produits excédentaires et non recyclables par une entreprise autorisée de collecte des déchets. La mise au rebut de ce produit, des solutions et des sous-produits devra en permanence respecter les exigences légales en matière de protection de l'environnement et de mise au rebut des déchets ainsi que les exigences de toutes les autorités locales. Évitez la dispersion des matériaux déversés, ainsi que leur écoulement et tout contact avec le sol, les cours d'eau, les égouts et conduits d'évacuation. Méthodes d'élimination des : déchets 07 02 04* autres solvants, liquides de lavage et liqueurs mères organiques Il faut dans tous les cas appliquer toutes les lois locales régionales et nationales ainsi que les directives européennes. Il appartient à l'utilisateur final de déterminer le code des déchets spécifique à chaque secteur industriel en utilisant le code Européen approprié du catalogue européen des déchets. Il est recommandé que tous les détails soient indiqués par le responsable des déchets. 14. Réglementation internationale du transport INFORMATIONS RELATIVES AU TRANSPORT Nom d'expédition ADR : Liquide organique corrosif, basique, n.s.a. ALIPHATIC POLYAMINE IMDG : Corrosive liquid, basic, organic, n.o.s. (ALIPHATIC POLYAMINE) IATA : Corrosive liquid, basic, organic, n.o.s. (ALIPHATIC POLYAMINE) Informations réglementaires Numéro ONU Classes Groupe d'emballage Étiquette Autres informations Terre- UN3267 8 III Route/Chemin de fer Classe ADR/RID Voie maritime Classe IMDG UN3267 8 III Emergency schedules (EmS) F-A, S-B Code de classificationC7 Numéro d'identification du danger 80 Date d'édition/Date de révision : 8/19/2010. 7/10 ARADUR HY 1300 GB 14. INFORMATIONS RELATIVES AU TRANSPORT Passenger and Cargo Aircraft Quantity limitation: 5 L Packaging instructions: 818 Cargo Aircraft OnlyQuantity limitation: 60 L Packaging instructions: 820 Air UN3267 8 III Classe IATA 15. INFORMATIONS RÉGLEMENTAIRES Conseils de prudence S26- En cas de contact avec les yeux, laver immédiatement et abondamment avec de l'eau et consulter un spécialiste. S36/37/39- Porter un vêtement de protection approprié, des gants et un appareil de protection des yeux/du visage. S45- En cas d'accident ou de malaise, consulter immédiatement un médecin (si possible lui montrer l'étiquette). R21/22- Nocif par contact avec la peau et par ingestion. R34- Provoque des brûlures. R43- Peut entraîner une sensibilisation par contact avec la peau. Symbole(s) de danger Phrases de risque Réglementations de l'Union Européenne Réglementations nationales Contient du (de la) : : : : Corrosif polyoxypropylenetriamine triéthylènetétramine Déterminés en accord avec les directives de l'UE 67/548/EEC et 1999/45/EC (y compris les amendements), la classification et l'étiquetage prennent en compte l'usage prévu du produit. Surveillance médicale renforcée : Arrêté du 11 Juillet 1977 fixant la liste des travaux nécessitant une surveillance médicale renforcée: non concerné Réglementations Internationales Listes internationales C Tous les composants sont répertoriés ou exclus. Tous les composants sont répertoriés ou exclus. Tous les composants sont répertoriés ou exclus. Tous les composants sont répertoriés ou exclus. Tous les composants sont répertoriés ou exclus. Tous les composants sont répertoriés ou exclus. Tous les composants sont répertoriés ou exclus. Tous les composants sont répertoriés ou exclus. Inventaire d'Europe : Inventaire des États-Unis (TSCA 8b) : Inventaire du Canada : Inventaire des substances chimiques d'Australie (AICS) : Inventaire des substances chimiques existantes en Chine (IECSC) : Inventaire du Japon (ENCS) : Inventaire de Corée (KECI) : Inventaire des substances chimiques des Philippines (PICCS) : Date d'édition/Date de révision : 8/19/2010. 8/10 ARADUR HY 1300 GB AUTRES DONNÉES 8/19/2010. Historique 16. Date d'impression Date d'édition/ Date de révision Version Avis au lecteur Date de la précédente édition : : : : R21- Nocif par contact avec la peau. R20/22- Nocif par inhalation et par ingestion. R21/22- Nocif par contact avec la peau et par ingestion. R34- Provoque des brûlures. R41- Risque de lésions oculaires graves. R43- Peut entraîner une sensibilisation par contact avec la peau. R52/53- Nocif pour les organismes aquatiques, peut entraîner des effets néfastes à long terme pour l'environnement aquatique. Texte complet des phrases : R citées dans les sections 2 et 3 - France Référence du texte complet des classifications se trouvant dans les Sections 2 et 3 - France : C - Corrosif Xn - Nocif Xi - Irritant Indique quels renseignements ont été modifiés depuis la version précédente. 8/19/2010. 2/19/2010. 2 Epoxy Resins and Curing Agents; Toxicology, Health, Safety and Environmental Aspects (Plastics Europe, May 2006) Les informations et recommandations figurant dans cette publication sont fondées sur notre expérience générale et sont fournies de bonne foi au mieux de nos connaissances actuelles, MAIS RIEN DANS LES PRESENTES NE DOIT ÊTRE INTERPRETE COMME CONSTITUANT UNE GARANTIE OU UNE DECLARATION, EXPRESSE, IMPLICITE OU AUTRE. DANS TOUS LES CAS, IL INCOMBE A L'UTILISATEUR DE DETERMINER ET DE VERIFIER L'EXACTITUDE, AINSI QUE LE CARACTERE SUFFISANT ET APPLICABLE DE TELLES INFORMATIONS ET RECOMMANDATIONS, DE MEME QUE L'ADEQUATION ET L'ADAPTATION D'UN QUELCONQUE PRODUIT A UNE UTILISATION SPECIFIQUE OU DANS UN BUT PARTICULIER. LES PRODUITS MENTIONNES PEUVENT PRESENTER DES RISQUES INCONNUS ET DOIVENT ETRE UTILISES AVEC PRECAUTION. MEME SI CERTAINS RISQUES SONT DECRITS DANS CETTE PUBLICATION, IL N'EXISTE AUCUNE GARANTIE QU'IL S'AGIT DES SEULS RISQUES EXISTANTS. Les risques, la toxicité et le comportement des produits peuvent différer lorsque ceux-ci sont utilisés avec d'autres matériaux et dépendent des conditions de fabrication et d'autres processus. Ces risques, cette toxicité et ces comportements doivent être déterminés par l'utilisateur et portés à la connaissance des personnes ou entités chargés du transport ou de la manutention, du traitement ou de la transformation, ainsi que de tous utilisateurs finaux. Pour toute demande, contactez le bureau commercial Huntsman Sales le plus proche ou directement Huntsman (Belgium) BVBA, Everslaan 45, B-3078 Everberg, Belgique. Tél. +32 2 758 9211 - Fax +32 758 9946. Huntsman Belgium (BVBA) Everslaan 45 B-3078 Everberg Belgium Tel.:+32-(0)2-758-9211 NO PERSON OR ORGANIZATION EXCEPT A DULY AUTHORIZED HUNTSMAN EMPLOYEE IS AUTHORIZED TO PROVIDE OR MAKE AVAILABLE DATA SHEETS FOR HUNTSMAN PRODUCTS. DATA SHEETS FROM UNAUTHORIZED SOURCES MAY CONTAIN INFORMATION THAT IS NO LONGER CURRENT OR ACCURATE. NO PART OF THIS DATA SHEET MAY BE REPRODUCED OR TRANSMITTED IN ANY FORM, OR BY ANY MEANS, WITHOUT PERMISSION IN WRITING FROM HUNTSMAN. ALL REQUESTS FOR PERMISSION TO REPRODUCE MATERIAL FROM THIS DATA SHEET SHOULD BE DIRECTED TO HUNTSMAN, MANAGER, PRODUCT SAFETY AT THE ABOVE ADDRESS. Références Date d'édition/Date de révision : 8/19/2010. 9/10 ARADUR HY 1300 GB Date d'édition/Date de révision : 8/19/2010. 10/10 3M FRANCE Boulevard de l'Oise 95006 Cergy Pontoise Cedex ======================================================================== Fiche de Données de Sécurité ======================================================================== Numéro de document: 06-6544-8 Fiche établie le : 30/03/2001 Version : 1.01 Annule et remplace : 26/01/1999 Statut du document: Final Format : 17 ------------------------------------------------------------------------ 1 IDENTIFICATION DU PRODUIT ------------------------------------------------------------------------ Nom du produit : RUBAN FILM PLASTIQUE SCOTCH N°5413 ET 5433 Code d'identification : Identification de la société : Adresse : 3M FRANCE Boulevard de l'Oise 95006 Cergy Pontoise Cedex Téléphone : 01.30.31.61.61 N° d'appel d'urgence : ORFILA Téléphone : 01.45.42.59.59 ------------------------------------------------------------------------ 2 INFORMATIONS SUR LES COMPOSANTS ------------------------------------------------------------------------ Nom chimique Numéro CAS Pourcentage ------------------------------------- ------------------ ------------- RESINE 56275-01-5 15 - 40 SILOXANES ET SILICONES, DI-ME, DI-PH 68083-14-7 15 - 40 POLYMERE DE L'ANHYDRIDE 25038-81-7 15 - 40 PYROMELLITIQUE ET DE L'OXYDE DE 4,4'-DIAMINODIPHENYLE Nature chimique : Voir ci-dessus. RUBAN FILM PLASTIQUE SCOTCH N°5413 ET 5433 ------------------------------------------------------------------------ Classification des ingrédients : ------------------------------------------------------------------------ 3 IDENTIFICATION DES DANGERS ------------------------------------------------------------------------ Principaux dangers : ------------------------------------------------------------------------ 4 PREMIERS SECOURS ------------------------------------------------------------------------ En cas d'inhalation : En cas d'inhalation , il n'est pas nécessaire de prévoir des soins d'urgence. En cas de contact avec la peau : En cas de contact avec la peau, il n'est pas nécessaire de prévoir de soins d'urgence. En cas de contact avec les yeux : En cas de contact avec les yeux, il n'est pas nécessaire de prévoir de soins d'urgence. En cas d'ingestion : En cas d'ingestion, il n'est pas nécessaire de prévoir des soins d'urgence. ------------------------------------------------------------------------ 5 MESURES DE LUTTE CONTRE L'INCENDIE ------------------------------------------------------------------------ Moyens d'extinction appropriés : Eau. Dioxyde de carbone. Agent extincteur chimique sec. Mousse. Dangers spécifiques : Pas de risques particuliers d'incendie ou d'explosion. Mesures particulières d'intervention : Néant ------------------------------------------------------------------------ 6 MESURES A PRENDRE EN CAS DE DISPERSION ACCIDENTELLE ------------------------------------------------------------------------ RUBAN FILM PLASTIQUE SCOTCH N°5413 ET 5433 ------------------------------------------------------------------------ Précautions individuelles : Observer les mesures de précaution indiquées dans les autres sections. Mesures après fuite ou déversement : non applicable Méthodes de nettoyage : Mise en décharge agréée des déchets de produits. Autre méthode d'élimination: Mélanger avec un matériau inflammable et incinérer dans une installation industrielle appropriée. ------------------------------------------------------------------------ 7 MANIPULATION ET STOCKAGE ------------------------------------------------------------------------ Conseils d'utilisation : Prévention des incendies et des explosions : Non applicable. Conditions de stockage recommandées : Matières incompatibles : ------------------------------------------------------------------------ 8 CONTROLE DE L'EXPOSITION / PROTECTION INDIVIDUELLE ------------------------------------------------------------------------ Protection respiratoire : Eviter l'inhalation des produits de décomposition thermique. Protection des yeux : Non applicable. Protection de la peau et du corps : Eviter le contact prolongé ou répété avec la peau. Ingestion : Non applicable. Ventilation recommandée : Fournir une ventilation locale appropriée quand le produit est chauffé. RUBAN FILM PLASTIQUE SCOTCH N°5413 ET 5433 ------------------------------------------------------------------------ ------------------------------------------------------------------------ 9 PROPRIETES PHYSIQUES ET CHIMIQUES ------------------------------------------------------------------------ Etat physique,couleur,odeur : Ruban en rouleau marron, inodore. pH : non applicable Point/intervalle d'ébullition (°C) : non applicable Point/intervalle de fusion : non déterminé Point d'éclair - Coupe fermée (°C) : non applicable Température d'auto-inflammation : non applicable Limites d'explosivité dans l'air : - Inférieure (% en volume) : non applicable - Supérieure (% en volume) : non applicable Pression de vapeur (hPa) : non applicable Hydrosolubilité : nulle Densité relative (Eau=1) : non déterminé Densité de vapeur (Air=1) : non applicable Composés organiques volatils (g/l) : non déterminé Vitesse d'évaporation (Eau=1) : non applicable Viscosité (mPa.s) : non applicable Teneur en matières volatiles (%) : non déterminé ------------------------------------------------------------------------ 10 STABILITE ET REACTIVITE ------------------------------------------------------------------------ Stabilité : Stable. Pas de polymérisation dangereuse. RUBAN FILM PLASTIQUE SCOTCH N°5413 ET 5433 ------------------------------------------------------------------------ Matières à éviter : Eviter d'exposer le produit à 200°C sans une ventilation appropriée. Produits de décomposition dangereux : Monoxyde et dioxyde de carbone. Aldéhyde formique. ------------------------------------------------------------------------ 11 INFORMATIONS TOXICOLOGIQUES ------------------------------------------------------------------------ Effets en cas d'inhalation : Considéré sans effet sur la santé sauf si le produit est trop chauffé. Effets en cas de contact avec la peau : Le contact avec la peau est vraisemblablement sans effet sur la santé. Une exposition prolongée ou répétée peut causer: Irritation mécanique de la peau: les symptômes peuvent inclure démangeaisons et rougeurs. Effets en cas de contact avec les yeux : Le contact avec les yeux est peu probable dans les conditions normales d'utilisation. Effets en cas d'ingestion : L'ingestion n'est pas une voie d'exposition probable pour ce produit. Données complémentaires : Ce produit ne présente pas de risque d'émission ou d'exposition à des produits chimiques dangereux dans les conditions normales d'utilisation. Cependant, une utilisation anormale de ce produit peut affecter sa performance et présenter des dangers potentiels pour la santé et la sécurité. ------------------------------------------------------------------------ 12 INFORMATIONS ECOLOGIQUES ------------------------------------------------------------------------ Données et informations complémentaires : Non déterminé. Etant donné la diversité des réglementations, vérifier celles qui sont applicables ou consulter les autorités compétentes avant élimination. RUBAN FILM PLASTIQUE SCOTCH N°5413 ET 5433 ------------------------------------------------------------------------ ------------------------------------------------------------------------ 13 CONSIDERATIONS RELATIVES A L'ELIMINATION ------------------------------------------------------------------------ Déchets résultant de l'utilisation : Collecte et incinération par des sociétés spécialisées. Emballages souillés : Collecte et incinération par des sociétés spécialisées. Nomenclature des déchets : 20 01 03 ------------------------------------------------------------------------ 14 INFORMATIONS RELATIVES AU TRANSPORT ------------------------------------------------------------------------ Numéro ONU : Groupe d'emballage : VOIES TERRESTRES (RTMD, ADR/RID) - Classe,Chiffre de l'énumération : Non réglementé MARITIME (IMDG) - Classe : Non réglementé AERIEN (ICAO/IATA) - Classe : Non réglementé ------------------------------------------------------------------------ 15 INFORMATIONS REGLEMENTAIRES ------------------------------------------------------------------------ Etiquetage réglementaire : Symbole(s) Contient : Phrases de risque : Conseils de prudence : RUBAN FILM PLASTIQUE SCOTCH N°5413 ET 5433 ------------------------------------------------------------------------ Tableau des maladies professionnelles: ------------------------------------------------------------------------ 16 AUTRES INFORMATIONS ------------------------------------------------------------------------ Utilisation du produit : Raison de la réédition : Révision globale de la fiche. ARALDITE CW 1312 CH IDENTIFICATION DE LA SUBSTANCE/PRÉPARATION ET DE LA SOCIÉTÉ/ENTREPRISE FICHE DE DONNÉES DE SÉCURITÉ Nom du produit ARALDITE CW 1312 CH Conforme au règlement (CE) n° 1907/2006 (REACH), Annexe II - France 1. Numéro de téléphone d'appel d'urgence : Fournisseur : : Identification de la substance ou de la préparation Type de produit : Liquide. Pour toutes questions de Sécurité, Hygiène et Environnement relatives à ce document ou son contenu, veuillez contacter: E-Mail: global_product_ehs_admat@huntsman.com Utilisation de la substance/préparation : Composant utilisé pour la fabrication de parties pour l'isolation électrique EUROPE: +32 35 75 1234 France ORFILA: +33(0)145425959 ASIA: +65 6336-6011 China: +86 20 39377888 Australia: 1800 786 152 New Zealand: 0800 767 437 USA: +1/800/424.9300 Huntsman Advanced Materials (Europe)BVBA Everslaan 45 3078 Everberg / Belgium Tel.: +41 61 299 20 41 Fax: +41 61 299 20 40 Description du produit : Préparation 2. IDENTIFICATION DES DANGERS Classification R43 R52/53 : Le produit est classé dangereux selon la directive 1999/45/CE et ses amendements. Dangers physiques ou chimiques : Non applicable. Dangers pour la santé : humaine Peut entraîner une sensibilisation par contact avec la peau. Dangers pour : l'environnement Nocif pour les organismes aquatiques, peut entraîner des effets néfastes à long terme pour l'environnement aquatique. Pour plus de détails sur les conséquences en termes de santé et les symptômes, reportez-vous à la section 11. 3. COMPOSITION/INFORMATIONS SUR LES COMPOSANTS Substance/préparation Préparation produit de réaction: bisphénol-A-épichlorhydrine; résines époxydiques (poids moléculaire moyen < 700) 25068-38-6 13 - 30 Xi; R36/38 R43 N; R51/53 [1] diglycidylether de polypropyleneglycol 9072-62-2 7 - 13 R43 [1] : Numéro CAS Nom des composants % Nombre Classification Voir section 16 pour le texte intégral des phrases R mentionnées ci-dessus Date d'édition/Date de révision : 11/4/2009. 1/9 ARALDITE CW 1312 CH COMPOSITION/INFORMATIONS 3. SUR LES COMPOSANTS Les limites d'exposition professionnelle, quand elles sont disponibles, sont énumérées à la section 8. [1] Substance classée avec un danger pour la santé ou l'environnement [2] Substance avec une limite d'exposition au poste de travail Dans l'état actuel des connaissances du fournisseur et dans les concentrations d'application, aucun autre ingrédient présent n'est classé comme dangereux pour la santé ou l'environnement, et donc nécessiterait de figurer dans cette section. [3] Substance PBT [4] Substance vPvB Rincez la bouche avec de l'eau. Enlever les prothèses dentaires s'il y a lieu. Transporter la personne incommodée à l'air frais. Garder la personne au chaud et au repos. Si une personne a avalé de ce produit et est consciente, lui faire boire de petites quantités d’eau. Si la personne est indisposée, cesser de la faire boire car des vomissements pourraient entraîner un risque supplémentaire. Ne pas faire vomir sauf indication contraire émanant du personnel médical. En cas de vomissement, maintenez la tête vers le bas pour empêcher le passage des vomissures dans les poumons. Appelez un médecin en cas de persistance ou d'aggravation des effets néfastes sur la santé. Ne rien faire ingérer à une personne inconsciente. En cas d'évanouissement, placez la personne en position latérale de sécurité et appelez un médecin immédiatement. Assurez-vous d'une bonne circulation d'air. Détacher tout ce qui pourrait être serré, comme un col, une cravate, une ceinture ou un ceinturon. Contact avec la peau Rincer immédiatement les yeux à grande eau, en soulevant de temps en temps les paupières supérieures et inférieures. Vérifier si la victime porte des verres de contact et dans ce cas, les lui enlever. Continuez de rincer pendant 10 minutes au moins. En cas d'irritation, consulter un médecin. Rincer la peau contaminée à grande eau. Retirer les vêtements et les chaussures contaminés. Laver abondamment à l'eau les vêtements contaminés avant de les retirer, ou porter des gants. Continuez de rincer pendant 10 minutes au moins. Consulter un médecin. En cas d'affections ou de symptômes, évitez d'exposer plus longuement. Laver les vêtements avant de les réutiliser. Laver les chaussures à fond avant de les remettre. 4. Premiers secours Transporter la personne incommodée à l'air frais. Garder la personne au chaud et au repos. S'il ne respire pas, en cas de respiration irrégulière ou d'arrêt respiratoire, que le personnel qualifié pratique la respiration artificielle ou administre de l'oxygène. Il peut être dangereux pour la personne assistant une victime de pratiquer le bouche à bouche. Appelez un médecin en cas de persistance ou d'aggravation des effets néfastes sur la santé. En cas d'évanouissement, placez la personne en position latérale de sécurité et appelez un médecin immédiatement. Assurez-vous d'une bonne circulation d'air. Détacher tout ce qui pourrait être serré, comme un col, une cravate, une ceinture ou un ceinturon. Note au médecin traitant Pas de traitement particulier. Traitement symptomatique requis. Contacter immédiatement un spécialiste pour le traitement des intoxications, si de grandes quantités ont été ingérées ou inhalées. Ingestion Inhalation Contact avec les yeux : : : : : PREMIERS SECOURS Pour plus de détails sur les conséquences en termes de santé et les symptômes, reportez-vous à la section 11. Protection des sauveteurs : Aucune initiative ne doit être prise qui implique un risque individuel ou en l’absence de formation appropriée. Il peut être dangereux pour la personne assistant une victime de pratiquer le bouche à bouche. Laver abondamment à l'eau les vêtements contaminés avant de les retirer, ou porter des gants. Date d'édition/Date de révision : 11/4/2009. 2/9 ARALDITE CW 1312 CH MESURES DE LUTTE 5. CONTRE L'INCENDIE En présence d'incendie, circonscrire rapidement le site en évacuant toute personne se trouvant près des lieux de l'accident. Aucune initiative ne doit être prise qui implique un risque individuel ou en l’absence de formation appropriée. Ce produit est nocif pour les organismes aquatiques. L'eau du réseau d'extinction d'incendie qui a été contaminée par ce produit doit être conservée en milieu fermé et ne doit être déversée ni dans le milieu aquatique, ni aucun égout ou conduit d'évacuation. Risque lié aux produits de décomposition thermique Risques particuliers liés à l’exposition au produit L’augmentation de pression résultant d’un incendie ou d’une exposition à des températures élevées peut provoquer l’explosion du conteneur. Les pompiers devront porter un équipement de protection approprié ainsi qu'un appareil de protection respiratoire autonome avec masque intégral fonctionnant en mode pression positive. Équipement de protection spécial pour le personnel préposé à la lutte contre l'incendie Utiliser un agent extincteur approprié pour étouffer l'incendie avoisinant. Moyens d'extinction : : : Aucun connu. Utilisables : Non utilisables : La combustion produit des fumées nauséabondes et toxiques., Oxydes de carbone. Précautions relatives à l'environnement Précautions individuelles Arrêter la fuite si cela ne présente aucun risque. Écarter les conteneurs de la zone de déversement accidentel. S'approcher des émanations face au vent. Bloquer toute pénétration possible dans les égouts, les cours d’eau, les caves ou les zones confinées. Laver le produit répandu dans une installation de traitement des effluents ou procéder comme suit. Contenir les fuites et les ramasser à l'aide de matières absorbantes non combustibles telles que le sable, la terre, la vermiculite, la terre à diatomées. Les placer ensuite dans un récipient pour élimination conformément à la réglementation locale (voir section 13). Élimination par une entreprise autorisée de collecte des déchets. Les matériaux absorbants contaminés peuvent présenter les mêmes risques que le produit répandu. Nota : Voir section 1 pour le contact en cas d'urgence et voir section 13 pour l'élimination des déchets. 6. MESURES À PRENDRE EN CAS DE REJET ACCIDENTEL : : Aucune initiative ne doit être prise qui implique un risque individuel ou en l’absence de formation appropriée. Évacuer les environs. Empêcher l'accès aux personnes non requises et ne portant pas de vêtements de protection. NE PAS TOUCHER ni marcher dans le produit répandu. Éviter de respirer les vapeurs ou le brouillard. Assurer une ventilation adéquate. Porter un appareil de protection respiratoire approprié lorsque le système de ventilation est inadéquat. Revêtir un équipement de protection individuelle approprié (voir Section 8). Évitez la dispersion des matériaux déversés, ainsi que leur écoulement et tout contact avec le sol, les cours d'eau, les égouts et conduits d'évacuation. Informez les autorités compétentes en cas de pollution de l'environnement (égouts, voies d'eau, sol et air) par le produit. Matière propre à polluer l’eau. Grand déversement accidentel : Arrêter la fuite si cela ne présente aucun risque. Écarter les conteneurs de la zone de déversement accidentel. Diluer avec de l'eau et éponger si la matière est soluble dans l'eau ou absorber avec un matériau sec inerte et placer dans un contenant à déchets approprié. Élimination par une entreprise autorisée de collecte des déchets. Petit déversement accidentel : Méthodes de nettoyage Manipulation 7. MANIPULATION ET STOCKAGE Revêtir un équipement de protection individuelle approprié (voir Section 8). Il est interdit de manger, boire ou fumer dans les endroits où ce produit est manipulé, entreposé ou mis en oeuvre. Il est recommandé au personnel de se laver les mains et la figure avant de manger, boire ou fumer. Les personnes ayant des antécédents de sensibilisation cutanée ne doivent pas intervenir dans les processus utilisant ce produit. Ne pas mettre en contact avec les yeux, la peau ou les vêtements. Ne pas ingérer. Éviter de respirer les vapeurs ou le brouillard. Garder dans le conteneur d'origine ou dans un autre conteneur de substitution homologué fabriqué à partir d'un matériau compatible et tenu hermétiquement clos lorsqu'il n'est pas utilisé. Les : Date d'édition/Date de révision : 11/4/2009. 3/9 ARALDITE CW 1312 CH MANIPULATION 7. ET STOCKAGE Stockage conteneurs vides retiennent des résidus de produit et peuvent présenter un danger. Ne pas réutiliser ce conteneur. Matériaux d'emballage Stocker conformément à la réglementation locale. Stocker dans le récipient d'origine à l'abri de la lumière directe du soleil dans un endroit sec, frais et bien ventilé à l'écart des matériaux incompatibles (cf. la section 10). Garder le récipient hermétiquement fermé lorsque le produit n'est pas utilisé. Les récipients ayant été ouverts doivent être refermés avec soin et maintenus en position verticale afin d'éviter les fuites. Ne pas stocker dans des conteneurs non étiquetés. Utiliser un récipient approprié pour éviter toute contamination du milieu ambiant. : Recommandé : Utiliser le récipient d'origine. Température de stockage : Stocker conformément à la réglementation locale. Stocker dans le récipient d'origine à l'abri de la lumière directe du soleil dans un endroit sec, frais et bien ventilé à l'écart des matériaux incompatibles (cf. la section 10). Garder le récipient hermétiquement fermé lorsque le produit n'est pas utilisé. Les récipients ayant été ouverts doivent être refermés avec soin et maintenus en position verticale afin d'éviter les fuites. Ne pas stocker dans des conteneurs non étiquetés. Utiliser un récipient approprié pour éviter toute contamination du milieu ambiant. Stocker entre les températures suivantes: 2 à 40°C (35.6 à 104°F). Classe de danger de stockage Huntsman Advanced Materials : Classe de stockage 12, Liquide non dangereux Nom des composants Limites d'exposition professionnelle Procédures de surveillance recommandées Valeurs limites d'exposition Si ce produit contient des ingrédients présentant des limites d'exposition, il peut s'avérer nécessaire d'effectuer un examen suivi des personnes, de l'atmosphère sur le lieu de travail ou des organismes vivants pour déterminer l'efficacité de la ventilation ou d'autres mesures de contrôle ou évaluer le besoin d'utiliser du matériel de protection des voies respiratoires. Il importe de vous reporter à la norme européenne EN 689 concernant les méthodes pour évaluer l'exposition par inhalation aux agents chimiques et aux documents de politique générale nationaux relatifs aux méthodes pour déterminer les substances dangereuses. 8. CONTRÔLE DE L'EXPOSITION/PROTECTION INDIVIDUELLE Aucune valeur de limite d'exposition connue. : Contrôle de l'exposition professionnelle : Aucune ventilation particulière requise. Une bonne ventilation générale devrait être suffisante pour contrôler l'exposition du technicien aux contaminants en suspension dans l'air. Si ce produit contient des composants pour lesquels des contraintes liées à l'exposition existent, utiliser des enceintes de protection, une ventilation locale par aspiration, ou d'autres moyens de contrôle automatiques intégrés afin de maintenir le seuil d'exposition du technicien inférieur aux les limites recommandées ou légales. Se laver abondamment les mains, les avant-bras et le visage après avoir manipulé des produits chimiques, avant de manger, de fumer et d'aller aux toilettes ainsi qu'à la fin de la journée de travail. Il est recommandé d'utiliser les techniques appropriées pour retirer les vêtements potentiellement contaminés. Laver les vêtements contaminés avant de les réutiliser. S'assurer que les dispositifs rince-oeil automatiques et les douches de sécurité se trouvent à proximité de l'emplacement des postes de travail. Contrôle de l'exposition Mesures d'hygiène : Date d'édition/Date de révision : 11/4/2009. 4/9 ARALDITE CW 1312 CH 8. CONTRÔLE DE L'EXPOSITION/PROTECTION INDIVIDUELLE Porter un appareil de protection respiratoire muni d'un purificateur d'air ou à adduction d' air, parfaitement ajusté et conforme à une norme en vigueur si une évaluation du risque indique que cela est nécessaire. Le choix de l'appareil de protection respiratoire doit être fondé sur les niveaux d'expositions prévus ou connus, les dangers du produit et les limites d'utilisation sans danger de l'appareil de protection respiratoire retenu. Utiliser une protection oculaire conforme à une norme approuvée dès lors qu'une évaluation du risque indique qu'il est nécessaire d'éviter l'exposition aux projections de liquides, aux fines particules pulvérisées ou aux poussières. Protection des yeux Protection respiratoire : : Protection de la peau L'équipement de protection personnel pour le corps devra être choisi en fonction de la tâche à réaliser ainsi que des risques encourus, et il est recommandé de le faire valider par un spécialiste avant de procéder à la manipulation du produit. : Contrôle de l'exposition de l'environnement : Il importe de tester les émissions provenant des systèmes de ventilation ou du matériel de fabrication pour vous assurer qu'elles sont conformes aux exigences de la législation sur la protection de l'environnement. Dans certains cas, il sera nécessaire d'équiper le matériel de fabrication d'un épurateur de gaz ou d'un filtre ou de le modifier techniquement afin de réduire les émissions à des niveaux acceptables. Alcool éthylvinylique laminé (EVAL), caoutchouc butyle Matériaux pour gants pour utilisation à long Protection des mains : terme (BTT>480 min): Matériaux pour gants pour utilisation à court terme/projection (10 min200°C (>392°F) PROPRIÉTÉS PHYSIQUES ET CHIMIQUES État physique Point d'ébullition Pression de vapeur Liquide. [Pâte.] <0.00001 kPa (<0.000075 mm Hg) Odeur Faible Couleur Blanc à crème Point d'éclair Coupe fermée: >200°C (>392°F) [DIN 51758 EN 22719 (Pensky-Martens Closed Cup)] 9. Viscosité Dynamique: 15000 à 22000 mPa·s (15000 à 22000 cP) : : : : : : : Informations générales Aspect Informations importantes relatives à la santé, à la sécurité et à l'environnement 25 deg C 20 deg C Masse volumique : 1.85 à 1.87 g/cm3 [20°C (68°F)] Solubilité dans l'eau : pratiquement insoluble Température de décomposition : >200°C (>392°F) Conditions à éviter Aucune donnée spécifique. STABILITÉ ET RÉACTIVITÉ Stabilité chimique Le produit est stable. 10. acides forts, bases fortes, agents oxydants forts : : Matières à éviter : Risque de réactions dangereuses : Dans des conditions normales de stockage et d'utilisation, aucune réaction dangereuse ne se produit. Date d'édition/Date de révision : 11/4/2009. 5/9 ARALDITE CW 1312 CH STABILITÉ 10. ET RÉACTIVITÉ Produits de décomposition dangereux Dans des conditions normales de stockage et d'utilisation, aucun produit de décomposition dangereux ne devrait apparaître. : La combustion produit des fumées nauséabondes et toxiques., Oxydes de carbone. Non disponible. Non disponible. Effets chroniques potentiels pour la santé 11. INFORMATIONS TOXICOLOGIQUES Effets aigus potentiels sur la santé Inhalation : Aucun effet important ou danger critique connu. Ingestion : Aucun effet important ou danger critique connu. Contact avec la peau : Peut entraîner une sensibilisation par contact avec la peau. Contact avec les yeux : Aucun effet important ou danger critique connu. Une fois sensibilisé, une vive réaction allergique peut éventuellement se déclencher lors d'une exposition ultérieure à de très faibles niveaux. Effets chroniques : Cancérogénicité : Aucun effet important ou danger critique connu. Mutagénicité : Aucun effet important ou danger critique connu. Tératogénicité : Aucun effet important ou danger critique connu. Toxicité aiguë ARALDITE CW 1312 CH DL50 Orale Rat >5000 mg/kg - Nom du produit/composant Résultat Espèces Dosage Exposition Conclusion/Résumé : Non disponible. Toxicité chronique Conclusion/Résumé : Non disponible. Cancérogénicité Conclusion/Résumé : Non disponible. Mutagénicité Conclusion/Résumé : Non disponible. Tératogénicité Conclusion/Résumé : Non disponible. Toxicité pour la reproduction Conclusion/Résumé : Non disponible. Effets sur le développement : Aucun effet important ou danger critique connu. Effets sur la fertilité : Aucun effet important ou danger critique connu. Signes/symptômes de surexposition Ingestion Inhalation Aucune donnée spécifique. : Aucune donnée spécifique. : Irritation/Corrosion Conclusion/Résumé : Non disponible. Sensibilisant ARALDITE CW 1312 CH peau cobaye Sensibilisant Nom du produit/composant Voie d'exposition Espèces Résultat Conclusion/Résumé : Non disponible. Toxicocinétique Absorption : Distribution : Métabolisme : Non disponible. Élimination : Non disponible. Date d'édition/Date de révision : 11/4/2009. 6/9 ARALDITE CW 1312 CH INFORMATIONS 11. TOXICOLOGIQUES Peau Les symptômes néfastes peuvent éventuellement comprendre ce qui suit: irritation rougeur : Yeux : Aucune donnée spécifique. 12. INFORMATIONS ÉCOLOGIQUES Autres effets nocifs : Aucun effet important ou danger critique connu. Écotoxicité en milieu aquatique Conclusion/Résumé : Non disponible. Biodégradabilité Conclusion/Résumé : Non disponible. Effets sur l'environnement : Nocif pour les organismes aquatiques, peut entraîner des effets néfastes à long terme pour l'environnement aquatique. 13. CONSIDÉRATIONS RELATIVES À L'ÉLIMINATION 070208 Catalogue Européen des Déchets : Déchets Dangereux : Il se peut que la classification du produit satisfasse les critères de déchets dangereux. Il est recommandé d'éviter ou réduire autant que possible la production de déchets. Les conteneurs vides ou les saches internes peuvent retenir des restes de produit. Ne se débarrasser de ce produit et de son récipient qu'en prenant toutes précautions d'usage. Élimination des produits excédentaires et non recyclables par une entreprise autorisée de collecte des déchets. La mise au rebut de ce produit, des solutions et des sous-produits devra en permanence respecter les exigences légales en matière de protection de l'environnement et de mise au rebut des déchets ainsi que les exigences de toutes les autorités locales. Évitez la dispersion des matériaux déversés, ainsi que leur écoulement et tout contact avec le sol, les cours d'eau, les égouts et conduits d'évacuation. Méthodes d'élimination des : déchets 07 02 08* autres résidus de réaction et résidus de distillation Il faut dans tous les cas appliquer toutes les lois locales régionales et nationales ainsi que les directives européennes. Il appartient à l'utilisateur final de déterminer le code des déchets spécifique à chaque secteur industriel en utilisant le code Européen approprié du catalogue européen des déchets. Il est recommandé que tous les détails soient indiqués par le responsable des déchets. 14. Réglementation internationale du transport INFORMATIONS RELATIVES AU TRANSPORT Informations réglementaires Numéro ONU Classes Groupe d'emballage Étiquette Autres informations Non - - réglementé. Classe ADR/RID Classe IMDG Not regulated. - - Emergency schedules (EmS) Not - - - regulated. Classe IATA - Date d'édition/Date de révision : 11/4/2009. 7/9 ARALDITE CW 1312 CH INFORMATIONS 15. RÉGLEMENTAIRES Conseils de prudence S24- Éviter le contact avec la peau. S37- Porter des gants appropriés. R43- Peut entraîner une sensibilisation par contact avec la peau. R52/53- Nocif pour les organismes aquatiques, peut entraîner des effets néfastes à long terme pour l'environnement aquatique. Symbole(s) de danger Phrases de risque Réglementations de l'Union Européenne Réglementations nationales Contient du (de la) : : : : Phrases d'avertissement supplémentaire : Non applicable. Irritant produit de réaction: bisphénol-A-épichlorhydrine; résines époxydiques (poids moléculaire moyen < 700) diglycidylether de polypropyleneglycol Déterminés en accord avec les directives de l'UE 67/548/EEC et 1999/45/EC (y compris les amendements), la classification et l'étiquetage prennent en compte l'usage prévu du produit. Surveillance médicale renforcée : Arrêté du 11 Juillet 1977 fixant la liste des travaux nécessitant une surveillance médicale renforcée: non concerné Réglementations Internationales Listes internationales : Inventaire des substances chimiques d'Australie (AICS): Tous les composants sont répertoriés ou exclus. Inventaire des substances chimiques existantes en Chine (IECSC): Tous les composants sont répertoriés ou exclus. Inventaire du Japon (ENCS): Tous les composants sont répertoriés ou exclus. Inventaire du Japon (ISHL): Indéterminé. Inventaire de Corée (KECI): Un composant au moins n'est pas répertorié. Inventaire néo-zélandais des substances chimiques (NZIoC): Indéterminé. Inventaire des substances chimiques des Philippines (PICCS): Tous les composants sont répertoriés ou exclus. Inventaire des États-Unis (TSCA 8b): Tous les composants sont répertoriés ou exclus. Inventaire d'Europe: Tous les composants sont répertoriés ou exclus. Inventaire du Canada: Tous les composants sont répertoriés ou exclus. Xi Etiquetage exceptionnel pour préparations spéciales : Contient des composés époxydiques. Voir les informations transmises par le fabricant. AUTRES DONNÉES 11/4/2009. Historique 16. Date d'impression : R36/38- Irritant pour les yeux et la peau. R43- Peut entraîner une sensibilisation par contact avec la peau. R51/53- Toxique pour les organismes aquatiques, peut entraîner des effets néfastes à long terme pour l'environnement aquatique. R52/53- Nocif pour les organismes aquatiques, peut entraîner des effets néfastes à long terme pour l'environnement aquatique. Texte complet des phrases : R citées dans les sections 2 et 3 - France Référence du texte complet des classifications se trouvant dans les Sections 2 et 3 - France : Xi - Irritant N - Dangereux pour l'environnement Epoxy Resins and Curing Agents; Toxicology, Health, Safety and Environmental Aspects (Plastics Europe, May 2006) Références Date d'édition/Date de révision : 11/4/2009. 8/9 ARALDITE CW 1312 CH 16. AUTRES DONNÉES Date d'édition/ Date de révision Version Avis au lecteur Date de la précédente édition : : : Indique quels renseignements ont été modifiés depuis la version précédente. 11/4/2009. Aucune validation antérieure. 1 Les informations et recommandations figurant dans cette publication sont fondées sur notre expérience générale et sont fournies de bonne foi au mieux de nos connaissances actuelles, MAIS RIEN DANS LES PRESENTES NE DOIT ÊTRE INTERPRETE COMME CONSTITUANT UNE GARANTIE OU UNE DECLARATION, EXPRESSE, IMPLICITE OU AUTRE. DANS TOUS LES CAS, IL INCOMBE A L'UTILISATEUR DE DETERMINER ET DE VERIFIER L'EXACTITUDE, AINSI QUE LE CARACTERE SUFFISANT ET APPLICABLE DE TELLES INFORMATIONS ET RECOMMANDATIONS, DE MEME QUE L'ADEQUATION ET L'ADAPTATION D'UN QUELCONQUE PRODUIT A UNE UTILISATION SPECIFIQUE OU DANS UN BUT PARTICULIER. LES PRODUITS MENTIONNES PEUVENT PRESENTER DES RISQUES INCONNUS ET DOIVENT ETRE UTILISES AVEC PRECAUTION. MEME SI CERTAINS RISQUES SONT DECRITS DANS CETTE PUBLICATION, IL N'EXISTE AUCUNE GARANTIE QU'IL S'AGIT DES SEULS RISQUES EXISTANTS. Les risques, la toxicité et le comportement des produits peuvent différer lorsque ceux-ci sont utilisés avec d'autres matériaux et dépendent des conditions de fabrication et d'autres processus. Ces risques, cette toxicité et ces comportements doivent être déterminés par l'utilisateur et portés à la connaissance des personnes ou entités chargés du transport ou de la manutention, du traitement ou de la transformation, ainsi que de tous utilisateurs finaux. Pour toute demande, contactez le bureau commercial Huntsman Sales le plus proche ou directement Huntsman (Belgium) BVBA, Everslaan 45, B-3078 Everberg, Belgique. Tél. +32 2 758 9211 - Fax +32 758 9946. Huntsman Belgium (BVBA) Everslaan 45 B-3078 Everberg Belgium Tel.:+32-(0)2-758-9211 NO PERSON OR ORGANIZATION EXCEPT A DULY AUTHORIZED HUNTSMAN EMPLOYEE IS AUTHORIZED TO PROVIDE OR MAKE AVAILABLE DATA SHEETS FOR HUNTSMAN PRODUCTS. DATA SHEETS FROM UNAUTHORIZED SOURCES MAY CONTAIN INFORMATION THAT IS NO LONGER CURRENT OR ACCURATE. NO PART OF THIS DATA SHEET MAY BE REPRODUCED OR TRANSMITTED IN ANY FORM, OR BY ANY MEANS, WITHOUT PERMISSION IN WRITING FROM HUNTSMAN. ALL REQUESTS FOR PERMISSION TO REPRODUCE MATERIAL FROM THIS DATA SHEET SHOULD BE DIRECTED TO HUNTSMAN, MANAGER, PRODUCT SAFETY AT THE ABOVE ADDRESS. Date d'édition/Date de révision : 11/4/2009. 9/9 FICHE DE DONNEES DE SECURITE Page : 1 Edition révisée n° : 6 BA ISO 9001 version 2008 Date : 17/4/2009 GALVA A FROID MAT Remplace la fiche : 21/10/2008 005801 www.lisam.com êF F+ : Extrêmement inflammable Producteur ITW Spraytec 5 bis, rue Retrou F-92600 Asnières sur Seine France Tel : 01.40.80.32.32 - Fax : 01.40.80.32.30 infofds@itwpc.com 1 IDENTIFICATION DE LA SUBSTANCE / PRÉPARATION ET DE LA SOCIÉTÉ / ENTREPRISE Nom commercial : GALVA A FROID MAT Identification du produit : Aérosol. Type de produit : Peinture. Identification de la société : Voir producteur. N° de téléphone en cas d'urgence : INRS : 01.45.42.59.59 2 IDENTIFICATION DES DANGERS Phrases relatives aux dangers : Extrêmement inflammable. Lors de l'utilisation, formation possible de mélange vapeur-air inflammable/explosif. Mode d'exposition dominant : Inhalation. Symptômes liés à l'utilisation - Inhalation : Essoufflement. Somnolence. Maux de tête. - Contact avec la peau : Le contact répété ou prolongé avec la peau peut provoquer une irritation. Peut provoquer un dessèchement ou gerçure de la peau. - Contact avec les yeux : Irritant au contact direct avec les yeux. Rougeur. Douleur. - Ingestion : L'ingestion de ce produit peut présenter un danger pour la santé. 3 COMPOSITION / INFORMATIONS SUR LES COMPOSANTS Ce produit est considéré comme dangereux et contient des composants dangereux. Nom de la substance Contenance (%) No CAS / No CE / Numéro index Symbole(s) Phrase(s) R Butane : 20 à 60 % 106-97-8 / 203-448-7 / 601-004-00-0 F+ 12 Propane : 10 à 30 % 74-98-6 / 200-827-9 / 601-003-00-5 F+ 12 Acétone : 1 à 20 % 67-64-1 / 200-662-2 / 606-001-00-8 F Xi 11-36-66-67 Xylène : 1 à 12,5 % 1330-20-7 / 215-535-7 / 601-022-00-9 Xn 10-20/21-38 Zinc en poudre - poussières de zinc ( : 1 à 30 % 7440-66-6 / 231-175-3 / 030-001-00-1 F N 15-17-50/53 stabilisés) 1-nitropropane : < 5 % 108-03-2 / 203-544-9 / 609-001-00-6 Xn 10-20/21/22 Nitroéthane : < 5 % 79-24-3 / 201-188-9 / 609-035-00-1 Xn 10-20/22 Oxyde de zinc : < 5 % 1314-13-2 / 215-222-5 / 030-013-00-7 N 50/53 Butanol : < 1 % 71-36-3 / 200-751-6 / 603-004-00-6 Xn 10-22-37/38-41- 67 ITW Spraytec 5 bis, rue Retrou F-92600 Asnières sur Seine France FICHE DE DONNEES DE SECURITE Page : 2 Edition révisée n° : 6 BA ISO 9001 version 2008 Date : 17/4/2009 GALVA A FROID MAT Remplace la fiche : 21/10/2008 005801 www.lisam.com 4 PREMIERS SECOURS Premiers secours - Inhalation : En cas de malaise par suite d'exposition, transporter immédiatement la victime à l'air frais. Mettre la victime au repos. Appeler un médecin. - Contact avec la peau : Enlever vêtements et chaussures contaminés. Laver abondamment la peau avec de l'eau savonneuse. - Contact avec les yeux : Rincer immédiatement et abondamment à l'eau. Consulter un médecin si l'indisposition ou l'irritation se développe. - Ingestion : Ingestion peu probable. Rincer la bouche. Consulter immédiatement un médecin. 5 MESURES DE LUTTE CONTRE L'INCENDIE Risques spécifiques : Les vapeurs se mélangent facilement à l'air en formant des mélanges explosifs. L'exposition à la chaleur ou la contamination par certaines impuretés peut provoquer une décomposition produisant des gaz très volatils, d'où un risque de surpression pouvant provoquer une violente rupture de conteneurs fermés. Moyens d'extinction - Agents d'extinction appropriés : Poudre. Dioxyde de carbone. Mousse. Brouillard d'eau. - Agents d'extinction non appropriés : Ne pas utiliser un fort courant d'eau. Protection contre l'incendie : Ne pas pénétrer dans la zone de feu sans équipement de protection, y compris une protection respiratoire. Procédures spéciales : Refroidir les conteneurs exposés par pulvérisation ou brouillard d'eau. 6 MESURES À PRENDRE EN CAS DE DISPERSION ACCIDENTELLE Précautions individuelles : Fournir une protection adéquate aux équipes de nettoyage. Précautions pour l'environnement : Avertir les autorités si le produit pénètre dans les égouts ou dans les eaux du domaine public. Méthodes de nettoyage : Ecarter toute source d'ignition. Nettoyer dès que possible tout épandage, en le récoltant au moyen d'un produit absorbant. Diluer les résidus et rincer. Sur le sol, balayer ou pelleter dans des conteneurs de rejet adéquats. Les mélanges de déchets contenant du propane/butane ne doivent pas pénétrer dans les canalisations ou les égouts où des vapeurs pourraient s'accumuler et s'enflammer. 7 MANIPULATION ET STOCKAGE Précautions lors du maniement et de : Conserver à l'écart de toute source d'ignition - Ne pas fumer. l'entreposage Stockage : Protéger du gel. Conserver à une température ne dépassant pas 50° C. Conserver dans un endroit sec, frais et bien ventilé. Prendre des précautions spéciales pour éviter des charges d'électricité statique. Ne pas fumer. Stockage - à l'abri de : Rayons directs du soleil. Sources de chaleur. Etincelles. Flamme nue. Manipulation : Produit à manipuler en suivant une bonne hygiène industrielle et des procédures de sécurité. Conserver à l'écart des aliments et boissons y compris ceux pour animaux. 8 CONTRÔLE DE L'EXPOSITION / PROTECTION INDIVIDUELLE Protection individuelle - Protection respiratoire : Aucun équipement de protection respiratoire n'est requis dans des conditions normales d'utilisation prévue avec une ventilation adéquate. - Protection des mains : Gants. Le choix d'un gant approprié est non seulement dépendant du matériel, mais aussi d'autres critères de qualité, qui peuvent varier d'un fabricant à l'autre. Puisque le produit représente une préparation composée de plusieurs substances, la résistance des matériaux de gants ne peut pas être calculée d'avance et doit être contrôlée avant l'utilisation. Le temps de pénétration exact du matériau des gants est à déterminer par le fabricant des gants de protection et à respecter. - Protection de la peau : Porter un vêtement de protection approprié. ITW Spraytec 5 bis, rue Retrou F-92600 Asnières sur Seine France FICHE DE DONNEES DE SECURITE Page : 3 Edition révisée n° : 6 BA ISO 9001 version 2008 Date : 17/4/2009 GALVA A FROID MAT Remplace la fiche : 21/10/2008 005801 www.lisam.com 8 CONTRÔLE DE L'EXPOSITION / PROTECTION INDIVIDUELLE (suite) - Protection des yeux : Lunettes de sécurité. Hygiène industrielle : Prévoir une ventilation suffisante pour réduire les concentrations de poussières et/ ou de vapeurs. Ne pas manger, ne pas boire et ne pas fumer pendant l'utilisation. Limites d'exposition professionnelle : Butane : VME (ppm) : 800 Butane : VME (mg/m3) : 1900 Acétone : VME (mg/m3) : 1210 Acétone : VME (ppm) : 500 Xylène : VME (ppm) : 50 Xylène : VME (mg/m3) : 221 Xylène : VLE (ppm) : 100 Xylène : VLE (mg/m3) : 442 Butanol : VLE (ppm) : 50 Butanol : VLE (mg/m3) : 150 Oxyde de zinc : VME (mg/m3) : 10 1-nitropropane : VME (mg/m3) : 90 1-nitropropane : VME (ppm) : 25 Nitroéthane : VME (mg/m3) : 310 Nitroéthane : VME (ppm) : 100 9 PROPRIÉTÉS PHYSIQUES ET CHIMIQUES Aspect : Liquide. Couleur : Gris(e). Odeur : Aromatique. Point d'ébullition [°C] : < 0°C Densité : 0.70 Solubilité dans : Solvant. Point d'éclair [°C] : < 0°C 10 STABILITÉ ET RÉACTIVITÉ Produits de décomposition dangereux : Aucun(es) dans des conditions normales. La décomposition thermique génère : Dioxyde de carbone. Monoxyde de carbone. Fumées toxiques. Oxydes d'azote. Réactions dangereuses : Lors de l'utilisation, peut former des mélanges vapeur-air inflammables/explosifs. Matières à éviter : Acides forts. Bases fortes. Oxydants forts. Conditions à éviter : Chaleur. Rayons directs du soleil. Flamme nue. Etincelles. 11 INFORMATIONS TOXICOLOGIQUES Informations toxicologiques : Aucune donnée disponible. Toxicité aiguë : Aucune donnée disponible. Toxicité chronique - Inhalation : L'inhalation de vapeurs peut irriter les voies respiratoires. L'inhalation de vapeurs peut provoquer somnolence et vertiges. Maux de tête. Vertige. - Cutanée : L'exposition répétée peut provoquer déssèchement ou gerçures de la peau. - Oculaire : Le contact direct avec les yeux est probablement irritant. Sensation de brûlure. - Ingestion : L'ingestion peut provoquer des nausées, vomissements et diarrhée. 12 INFORMATIONS ÉCOLOGIQUES * Sur le produit : Toxique pour les organismes aquatiques, peut entraîner des effets néfastes à long terme pour l'environnement aquatique. ITW Spraytec 5 bis, rue Retrou F-92600 Asnières sur Seine France FICHE DE DONNEES DE SECURITE Page : 4 Edition révisée n° : 6 BA ISO 9001 version 2008 Date : 17/4/2009 GALVA A FROID MAT Remplace la fiche : 21/10/2008 005801 www.lisam.com 13 CONSIDÉRATIONS RELATIVES À L'ÉLIMINATION Généralités :Récipient sous pression - Ne pas percer ou brûler même après usage. S'il n'est pas vide éliminer ce récipient dans un centre de collecte des déchets dangereux ou spéciaux. Détruire conformément aux règlements de sécurité locaux/nationaux en vigueur. Ne pas jeter les résidus à l'égout. 14 INFORMATIONS RELATIVES AU TRANSPORT Shipping name : UN1950 AÉROSOLS, 2.1, 5F No ONU : 1950 Transport terrestre ADR/RID : Groupe d'emballage : 5F Classe : 2 Transport par mer - Code IMO-IMDG : Classe 2.1 - N° de fiche de sécurité : 2-13 - IMDG-Pollution marine : Non. Transport aérien - IATA - Classe ou division : Classe 2.1 - Etiquette IATA : Flamm. Gas 15 INFORMATIONS RÉGLEMENTAIRES - Symbole(s) F N : F+ : Extrêmement inflammable - Phrase(s) R : R12 : Extrêmement inflammable. R51/53 : Toxique pour les organismes aquatiques, peut entraîner des effets néfastes à long terme pour l'environnement aquatique. - Phrase(s) S : S2 : Conserver hors de portée des enfants. S16 : Conserver à l'écart de toute flamme ou source d'étincelles - Ne pas fumer. S23 : Ne pas respirer les aérosols. S29 : Ne pas jeter les résidus à l'égout. S46 : En cas d'ingestion, consulter immédiatement un médecin et lui montrer l'emballage ou l'étiquette. S51 : Utiliser seulement dans des zones bien ventilées. Conseils de sécurité : Récipient sous pression. A protéger contre les rayons solaires et à ne pas exposer à une température supérieure à 50°C. Ne pas percer ou brûler même après usage. Ne pas vaporiser vers une flamme ou un corps incandescent. Utiliser cet aérosol uniquement pour les applications auxquelles il est destiné. France : Tableaux des maladies professionnelles prévus à l'article R, 461-3 du code du travail. Tableau n°84 - Affections engendrées par les solvants organiques liquides à usage professionnel. Tableau n° 4 BIS : Affections gastro-intestinales provoquées par le benzène, le toulène, les xylènes et tous les produits en renfermant. 16 AUTRES INFORMATIONS Utilisations recommandées & : Voir fiche technique pour des informations détaillées. restrictions Texte des Phrases R du § 3 : R10 : Inflammable. R11 : Facilement inflammable. R12 : Extrêmement inflammable. R15 : Au contact de l'eau dégage des gaz très inflammables. R17 : Spontanément inflammable à l'air. R20/21 : Nocif par inhalation et par contact avec la peau. R20/21/22 : Nocif par inhalation, par contact avec la peau et par ingestion. ITW Spraytec 5 bis, rue Retrou F-92600 Asnières sur Seine France FICHE DE DONNEES DE SECURITE Page : 5 Edition révisée n° : 6 BA ISO 9001 version 2008 Date : 17/4/2009 GALVA A FROID MAT Remplace la fiche : 21/10/2008 005801 www.lisam.com 16 AUTRES INFORMATIONS (suite) R20/22 : Nocif par inhalation et par ingestion. R22 : Nocif en cas d'ingestion. R36 : Irritant pour les yeux. R37/38 : Irritant pour les voies respiratoires et la peau. R38 : Irritant pour la peau. R41 : Risque de lésions oculaires graves. R50/53 : Très toxique pour les organismes aquatiques, peut entraîner des effets néfastes à long terme pour l'environnement aquatique. R66 : L'exposition répétée peut provoquer déssèchement ou gerçures de la peau. R67 : L'inhalation de vapeurs peut provoquer somnolence et vertiges. Autres données : Révision - Voir : * Le contenu et le format de cette fiche de données de sécurité sont conformes au RÈGLEMENT (CE) N° 1907/2006 DU PARLEMENT EUROPÉEN ET DU CONSEIL DENEGATION DE RESPONSABILITE Les informations contenues dans cette fiche proviennent de sources que nous considérons être dignes de foi. Néanmoins, elles sont fournies sans aucune garantie, expresse ou tacite, de leur exactitude. Les conditions ou méthodes de manutention, stockage, utilisation ou élimination du produit sont hors de notre contrôle et peuvent ne pas être du ressort de nos compétences. C'est pour ces raisons entre autres que nous déclinons toute responsabilité en cas de perte, dommage ou frais occasionnés par ou liés d'une manière quelconque à la manutention, au stockage, à l'utilisation ou à l'élimination du produit. Cette FDS a été rédigée et doit être utilisée uniquement pour ce produit. Si le produit est utilisé en tant que composant d'un autre produit, les informations s'y trouvant peuvent ne pas être applicables. Fin du document ITW Spraytec 5 bis, rue Retrou F-92600 Asnières sur Seine France Supercapacitors Can Replace a Backup Battery for Power Ride-Through Applications − Design Note 450 Jim Drew 09/08/450 Figure 1. 5V Ride-Through Application Circuit Delivers 20W for 1.42 seconds Introduction Supercapacitors (or ultracapacitors) are fi nding their way into an increasing number of applications for short-term energy storage and applications that require intermittent high energy pulses. One such application is a power ridethrough circuit, in which a backup energy source cuts in and powers the load if the main power supply fails for a short time. This type of application has typically been dominated by batteries, but electric double layer capacitors (EDLCs) are fast making inroads as their price-per-farad, size and effective series resistance per capacitance (ESR/C) continue to decrease. Figure 1 shows a 5V power ride-through application where two series-connected 10F, 2.7V supercapacitors charged to 4.8V can support 20W for over a second. The LTC3225, a new charge-pump-based supercapacitor charger, is used to charge the supercapacitors at 150mA and maintain cell balancing while the LTC4412 provides automatic switchover between the supercapacitor and the main supply. The LTM4616 dual output DC/DC μModuleTM regulator creates the 1.8V and 1.2V outputs. With a 20W load, the output voltages remain in regulation for 1.42 seconds after the main power is removed. Supercapacitor Characteristics A 10F, 2.7V supercapacitor is available in a 10mm × 30mm 2-terminal radial can with an ESR of 25mΩ. One advantage supercapacitors offer over batteries is their long lifetime. A capacitor’s cycle life is quoted as greater than 500,000 cycles, whereas batteries are specifi ed for only a few hundred cycles. This makes the supercapacitor an ideal “set and forget” device, requiring little or no maintenance. Two critical parameters of a supercapacitor in any application are cell voltage and initial leakage current. Initial leakage current is really dielectric absorption current, which disappears after some time. The manufacturers of supercapacitors rate their leakage current after 100 hours of applied voltage while the initial leakage current in those fi rst 100 hours may be as much as 50 times the specifi ed leakage current. The voltage across the capacitor has a signifi cant effect on its operating life. When used in series, the supercapacitors must have balanced cell voltages to prevent overcharging of one of the series capacitors. Passive cell L, LT, LTC and LTM are registered trademarks of Linear Technology Corporation. μModule is a trademark of Linear Technology Corporation. All other trademarks are the property of their respective owners. VIN C+ C– SHDN VSEL COUT CX GND PROG LTC3225 C2 10F 2.7V C3 10F 2.7V R2 470k Q1 Si4421DY Q2 Si4421DY R1 12k C1 1μF C4 2.2μF 5V C5 22μF VIN GND CTL SENSE GATE STAT LTC4412 R3 4.78k R4 10k VIN1 VIN2 GND LTM4616 C6 100μF C8 100μF C7 100μF VOUT1 FB1 ITHM1 VOUT2 FB2 ITHM2 VOUT1 = IO1 = 7A 1.8V VOUT2 = IO2 = 6A 1.2V © LINEAR TECHNOLOGY CORPORATION 2007 dn450 LT/TP 0908 246K • PRINTED IN THE USA Linear Technology Corporation 1630 McCarthy Blvd., Milpitas, CA 95035-7417 (408) 432-1900 ● FAX: (408) 434-0507 ● www.linear.com For applications help, call (978) 656-3768 Data Sheet Download www.linear.com balancing, where a resistor is placed across the capacitor, is a popular and simple technique. The disadvantage of this technique is that the capacitor discharges through the balancing resistor when the charging circuit is disabled. The rule of thumb for this scheme is to set the balancing resistor to 50 times the worst case leakage current, estimated at 2μA/Farad. Given these parameters, a 10F, 2.5V supercapacitor would require a 2.5k balancing resistor. This resistor would drain 1mA of current from the supercapacitor when the charging circuit is disabled. A better alternative is to use a non-dissipative active cell balancing circuit, such as the LTC3225, to maintain cell voltage. The LTC3225 presents less than 4μA of load to the supercapacitor when in shutdown mode and less than 1μA when input power is removed. The LTC3225 features a programmable charging current of up to 150mA, charging two series supercapacitors to either 4.8V or 5.3V while balancing the individual capacitor voltages. To provide a constant voltage to the load, a DC/DC converter is required between the load and the supercapacitor. As the voltage across the supercapacitor decreases, the current drawn by the DC/DC converter increases to maintain constant power to the load. The DC/DC converter drops out of regulation when its input voltage reaches the minimum operating voltage (VUV). To estimate the requirements for the supercapacitor, the effective circuit resistance (RT) needs to be determined. RT is the sum of the capacitors’ ESRs plus the circuit distribution resistances, as follows: RT =ESR+RDIST Assuming 10% of the input power is lost in the effective circuit resistance when the DC/DC converter is at the minimum operating voltage, the worst case RT is: R V T MAX P UV IN ( ) . • = 0 1 2 The voltage required across the supercapacitor at the minimum operating voltage of the DC/DC converter is: V V P R C UV V UV IN T UV ( ) • = 2+ The required effective capacitance can then be calculated based on the required ride-through time (TRT), and the initial voltage on the capacitor (VC(0)) and VC(UV) shown by: C P T V V EFF IN RT C CUV = − 2 0 2 2 • • ( ) ( ) The effective capacitance of a series-connected bank of capacitors is the effective capacitance of a single capacitor divided by the number of capacitors while the total ESR is the sum of all the series ESRs. The ESR of a supercapacitor decreases with increasing frequency. Manufacturers usually specify the ESR at 1kHz, while some manufacturers publish both the value at DC and at 1kHz. The capacitance of supercapacitors also decreases as frequency increases and is usually specifi ed at DC. The capacitance at 1kHz is about 10% of the value at DC. When using a supercapacitor in a ride-through application where the power is being sourced for seconds to minutes, use the effective capacitance and ESR measurements at a low frequency, such at 0.3Hz. Figure 2 shows the ESR effect manifested as a 180mV drop in voltage when input power is removed. Conclusion Supercapacitors can meet the needs of power ride-through applications where the time requirements are in the seconds to minutes range. Supercapacitors offer long life, low maintenance, light weight and environmentally friendly solutions when compared to batteries. To this end, the LTC3225 provides a compact, low noise solution for charging and cell balancing series-connected supercapacitors, without degrading performance. 5V SUPERCAPACITOR RIDE-THROUGH VIN = 5V, VCAP = 4.8V, POWER = 20W 5V INPUT (1V/DIV) 1.8V OUTPUT (500mV/DIV) 1.2V OUTPUT (500mV/DIV) VCAP (1V/DIV) 180mV STEP DUE TO ESR 1.42 SECONDS 800ms/DIV Figure 2. 5V Ride-Through Application Timing I n d u s t r i e Réf ft005801 FICHE PRODUIT ET D'INFORMATIONS TECHNIQUES GALVA MAT Revêtement de protection anticorrosion Cette fiche technique a été établie le 30/03/09 et annule toutes les fiches précédentes. Les renseignements fournis sont basés sur nos connaissances et expérience à ce jour. L’attention des utilisateurs est attirée sur les risques éventuels encourus lorsque le produit est utilisé à d’autres usages que ceux pour lesquels il est conçu. Elle ne dispense en aucun cas l’utilisateur de connaître et d’appliquer l’ensemble des textes réglementant son activité. Il prendra sous sa seule responsabilité les précautions liées à l’utilisation qu’il fait du produit. Les Fiches Techniques & Fiches de Données de Sécurité sont disponibles sur Internet : http://www.itwpc.com ITW Spraytec - 5 bis rue Retrou - 92600 ASNIÈRES SUR SEINE -  01.40.80.32.32 Fax 01.40.80.32.40 1. CARACTERISTIQUES PRINCIPALES GALVA MAT est un agent de protection anti-corrosion, délivré en aérosol. Il est constitué d’additifs, de poudre de zinc de haute pureté et de résines synthétiques en dispersion dans des solvants. Il résiste ainsi 3000 heures au brouillard salin. Le zinc agit par protection électrochimique tandis que les résines synthétiques forment une barrière physique résistante aux agressions extérieures. GALVA MAT présente une remarquable adhérence sur support métallique grâce aux promoteurs d’adhérence incorporés dans sa formulation. Ses propriétés anti-corrosion sont excellentes grâce à la présence de zinc et d’agents anti-corrosion complémentaires dans le film sec. Ce dernier résiste à des températures montant jusqu'à 350°C. 2. DOMAINE D'APPLICATION Bâtiment : Protection des charpentes métalliques, couvertures, huisseries métalliques, pylônes, portes de garage, vérandas, abris de jardin, pattes d'ancrage... Sanitaire, Plomberie : Protection des tuyauteries, canalisations, chaudières, cuves, réservoirs, raccords, brides, boulonneries... Automobile : Protection des bas de caisse, pots d'échappement, bas de portières, crochets d'attelage, remorques, châssis de caravanes, intérieur des ailes, jerrycans... La protection peut servir de finition gris mat mais peut également servir d'apprêt pour être recouverte par d'autres peintures de finition de la gamme COLORJELT (Peintures de retouche professionnelle à la teinte exacte). 3. UTILISATION - MODE D'EMPLOI  Secouer l'aérosol tête en bas, vigoureusement de manière à décoller la bille de l'amalgame de zinc. La surface à traiter doit être exempte de graisse, de produit gras, et débarrassée de la rouille labile.  Pulvériser à environ 20-30 cm de la surface en couches croisées. Attendre 15 à 20 minutes pour la deuxième couche. Le séchage complet intervient sous 24 heures.  Purger l'aérosol tête en bas. En cas de bouchage, le diffuseur peut être nettoyé à l'acétone. 4. CARACTERISTIQUES PHYSICO-CHIMIQUES  Aspect : liquide épais gris conduisant à un film mat par séchage  Odeur : solvantée  Densité du produit actif à 20°C : 0,74 g/cm3  Test de résistance au brouillard salin : 3000 heures (test ASTM B117)  Pouvoir couvrant : 3 à 4 m² pour une protection optimale  Gaz propulseur : mélange d'hydrocarbures  Pureté du zinc : 99%  Epaisseur d’une couche :  35 μm  Vieillissement du zinc en atmosphère marine : 2 à 5 microns par année 5. PRECAUTIONS D'EMPLOI Consulter la fiche de données de sécurité. Récipient sous pression. Ne pas vaporiser vers une flamme ou un corps incandescent. Ne pas fumer. Conserver hors de la portée des enfants. 6. CONDITIONNEMENT ET STOCKAGE Aérosol de 650/500ml net (12 aérosols / carton). Référence 005801. A protéger contre les rayons solaires et à ne pas exposer à une température supérieure à 50°C. Conserver à l'écart de toute flamme, source d'étincelles ou d'ignition. Ne pas percer ou brûler après usage. Conserver à l'abri de l'humidité dans un endroit bien ventilé. Stocker à une température supérieure à 5°C. Current Transducer HAIS 50..400-P and HAIS 50..100-TP For the electronic measurement of currents : DC, AC, pulsed, mixed, with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit). All Data are given with a RL = 10 kW Electrical data Primary nominal Primary current, Type RoHS since current rms measuring range date code IPN (A) IPM (A) 50 ± 150 HAIS 50-P, HAIS 50-TP1) 45231, 46272 100 ± 300 HAIS 100-P, HAIS 100-TP1) 45231, 46012 150 ± 450 HAIS 150-P 46172 200 ± 600 HAIS 200-P 45231 400 ± 600 HAIS 400-P planned VOUT Output voltage (Analog) @ IP VREF ±(0.625·IP/IPN) V IP = 0 VREF ± 0.025 V VREF Reference voltage 2) - Output voltage 2.5 ± 0.025 V VREF Output impedance typ. 200 W VREF Load impedance ³ 200 kW R L Load resistance ³ 2 kW ROUT Output internal resistance < 10 W CL Capacitive loading < 1 μF VC Supply voltage (± 5 %) 5 V IC Current consumption @ VC = 5 V 22 mA Accuracy - Dynamic performance data X Accuracy 3) @ IPN , TA = 25°C £ ± 1 % of IPN eL Linearity error 0 .. 3 x IPN £ ± 0.5 % of IPN TCVOE Temperature coefficient of VOE @ IP = 0 £ ± 0.3 mV/K TCVREF Temperature coefficient of VREF £ ± 0.01 %/K TCVOUT / VREF Temperature coefficient of VOUT / VREF @ IP = 0 £ ± 0.2 mV/K TCVOUT Temperature coefficient of VOUT £ ± 0.05% of reading/K VOM Magnetic offset voltage@ IP = 0, after an overload of 3 x IPN DC < ± 0.4 % of IPN tra Reaction time @ 10 % of IPN < 3 μs tr Response time to 90 % of IPN step < 5 μs di/dt di/dt accurately followed > 100 A/μs Vno Output voltage noise (DC ..10 kHz) < 15 mVpp (DC .. 1 MHz) < 40 mVpp BW Frequency bandwidth (-3 dB) 4) DC .. 50 kHz Features · Hall effect measuring principle · Galvanic isolation between primary and secondary circuit · Isolation test voltage 2500V · Low power consumption · Single power supply +5V · Fixed offset & gain · Bus bar version available for 50A and 100A ratings. · Isolated plastic case recognized according to UL94-V0. Advantages · Small size and space saving · Only one design for wide current ratings range · High immunity to external interference. · VREF. IN/OUT Applications · AC variable speed drives · Static converters for DC motor drives · Battery supplied applications · Uninterruptible Power Supplies (UPS) · Switched Mode Power Supplies (SMPS) · Power supplies for welding applications. Application domain · Industrial IPN = 50 .. 400 A Notes : 1) -TP version is equipped with a primary bus bar. 2) It is possible to overdrive VREF with an external reference voltage between 2 - 2.8 V providing its ability to sink or source approximately 2.5 mA. 3) Excluding offset and hysteresis. 4) Small signal only to avoid excessive heatings of the magnetic core. 070827/7 LEM reserves the right to carry out modifications on its transducers, in order to improve them, without prior notice. www.lem.com Page 1/3 Current Transducer HAIS 50..400-P and HAIS 50..100-TP General data TA Ambient operating temperature - 40 .. + 85 °C TS Ambient storage temperature - 40 .. + 85 °C m Mass (in brackets : TP version) 20 (30) g Standards EN 50178: 1997 Isolation characteristics Vb Rated isolation voltage rms 300 V rms with IEC 61010-1 standards and following conditions - Single insulation - Over voltage category III - Pollution degree 2 - Heterogeneous field Vb Rated isolation voltage rms 600 V rms with EN 50178 standards and following conditions - Reinforced insulation - Over voltage category III - Pollution degree 2 - Heterogeneous field Vd Rms voltage for AC isolation test, 50 Hz, 1 min 2.5 kV Ve Partial discharge extinction voltage rms @ 10pC HAIS 50..400-P > 1 kV HAIS 50..100-TP > 1.4 kV Vw Impulse withstand voltage 1.2/50 μs 8 kV dCp Creepage distance > 8 mm dCl Clearance distance > 8 mm CTI Comparative tracking index (Group I) > 600 If insulated cable is used for the primary circuit, the voltage category could be improved with the following table : Cable insulation (primary) Category HAR 03 450V CAT III HAR 05 550V CAT III HAR 07 650V CAT III 070827/7 LEM reserves the right to carry out modifications on its transducers, in order to improve them, without prior notice. www.lem.com Page 2/3 Safety This transducer must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the following manufacturer's operating instructions. Caution! Risk of electrical shock When operating the transducer, certain parts of the module can carry hazardous voltage (eg. primary busbar, power supply). Ignoring this warning can lead to injury and/or cause serious damage. This transducer is a built-in device, whose conducting parts must be inaccessible after installation. A protective housing or additional shield could be used. Main supply must be able to be disconnected. 0.5 8 16 15 33 29 3 3.5 2-D1.0 1.5 6.5 11 6 14.5 11 33 29 0.5 2-D1.0 10 14.5 11 1.5 6.5 11 14 1.5 1.5 3 3.5 6 25.9 19.9 4 1 4 1 5 5 6 6 Terminal Pin Identification Recommended connection circuit 1...+5V HAIS 50..400-P HAIS 50..100-TP 2...0V 3...OUTPUT 4...Vref. (IN/OUT) 5...Core Earth 6...NC. 1 2 3 4 5 +5V 0V OUTPUT Vref. (IN/OUT) 47nF 47nF 4.3 3-P1.8 4.3 3-P1.8 4-0.25x0.45 (*) 4.7nF Front view Front view Right view Bottom view Bottom view (*) should be connected to 0V of Power Supply for better dv/dt immunity. Arrow indicates positive current direction. General tolerance : ±0.2mm Unit : mm Recommended PCB hole Pin 1-4 : 0.7 ±0.1mm Pin 5-6 : 1.5 ±0.1mm Primary bus bar : 2.3 ±0.1mm Ip 0V Vref.(IN/OUT) Vout +Vc Operation Principle Required Connection Circuit Dimensions HAIS 50..400-P and HAIS 50..100-TP (in mm. 1 mm = 0.0394 inch) 070827/7 LEM reserves the right to carry out modifications on its transducers, in order to improve them, without prior notice. www.lem.com Page 3/3 120425/12 LEM reserves the right to carry out modifications on its transducers, in order to improve them, without prior notice. www.lem.com Page 1/3 IPN = 50 .. 400 A Features ●● Hall effect measuring principle ●● Galvanic isolation between primary and secondary circuit ●● Isolation voltage 2500 V ●● Low power consumption ●● Wide power supply: ± 12 ..15 V ●● Primary bus bar option for 50 A and 100 A version for ease of connection Advantages ●● Small size and space saving ●● Only one design for wide current ratings range ●● High immunity to external interference. Applications ●● AC variable speed drives ●● Static converters for DC motor drives ●● Battery supplied applications ●● Uninterruptible Power Supplies (UPS) ●● Switched Mode Power Supplies (SMPS) ●● Power supplies for welding applications Application domain ●● Industrial Current Transducer HTB 50 .. 400 - P and HTB 50 .. 100 - TP For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit). Electrical data Primary nominal Primary current Type current rms measuring range IPN (A) IPM (A) ± 50 ± 150 HTB 50-P, HTB 50-TP1) ± 100 ± 300 HTB 100-P, HTB 100-TP1) ± 150 ± 450 HTB 150-P ± 200 ± 500 HTB 200-P ± 300 ± 600 HTB 300-P ± 400 ± 600 HTB 400-P VC Supply voltage (± 5 %) 2) ± 12 ..15 V IC Current consumption ± 15 mA Vd Rms voltage for AC isolation test, 50 Hz, 1 min 2.5 kV RIS Isolation resistance @ 500 VDC > 500 MW VOUT Output voltage (Analog)@ ± IPN, RL = 10kW, TA = 25°C ± 4 V ROUT Output internal resistance 100 W RL Load resistance > 10 kW Accuracy - Dynamic performance data X Accuracy @ IPN, TA = 25°C (excluding offset) < ± 1 % of IPN eL Linearity error (0 .. ± IPN) < ± 1 % of IPN VOE Electrical offset voltage @ TA = 25°C < ± 30 mV VOH Hysteresis offset voltage @ IP = 0; after an excursion of 1 x IPN < ± 1 % of IPN TCVOE Temperature coefficient of VOE HTB 50-(T)P < ± 2.0 mV/K HTB 100-(T)P .. 400-P < ± 1.0 mV/K TCVOUT Temperature coefficient of VOUT (% of reading) < ± 0.1 %/K tr Response time to 90% of IPN step < 3 μs BW Frequency bandwidth (- 3 dB) 3) DC .. 50 kHz General data TA Ambient operating temperature - 40 .. + 80 °C TS Ambient storage temperature - 40 .. + 85 °C m Mass < 30 ( < 36) g Standards EN 50178 : 1997 2 pins of Ø2mm diameter are available on transducer for PCB soldering Notes : 1) -TP version is equipped with a primary bus bar. 2) Operating at ±12V ≤ Vc < ±15V will reduce the measuring range. 3) Derating is needed to avoid excessive core heating at high frequency. 120425/12 LEM reserves the right to carry out modifications on its transducers, in order to improve them, without prior notice. www.lem.com Page 2/3 Current Transducer HTB 50 .. 400-P and HTB 50 .. 100-TP Isolation characteristics Vd Rms voltage for AC isolation test, 50 Hz, 1 min 2.5 kV Ve Partial discharge extinction voltage rms @ 10pC > 500 V Vw Impulse withstand voltage 1.2/50 μs 4 kV dCp Creepage distance > 4.5 mm dCl Clearance distance > 4.5 mm CTI Comparative tracking index (Group IIIa) 275 Application examples According to EN 50178 and CEI 61010-1 standards and following conditions : - Over voltage category III - Pollution degree 2 - Heterogeneous field EN 50178 IEC 61010-1 Single isolation 300 V 300 V Reinforced isolation 150 V 150 V Safety This transducer must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the manufacturer’s operating instructions. Caution, risk of electrical shock When operating the transducer, certain parts of the module can carry hazardous voltage (eg. primary busbar, power supply). Ignoring this warning can lead to injury and/or cause serious damage. This transducer is a built-in device, whose conducting parts must be inaccessible after installation. A protective housing or additional shield could be used. Main supply must be able to be disconnected. 120425/12 LEM reserves the right to carry out modifications on its transducers, in order to improve them, without prior notice. www.lem.com Page 3/3 Dimensions HTB 50 .. 400-P and HTB 50 .. 100-TP (in mm. 1 mm = 0.0394 inch) 第一视角 第三视角 第一视角 第三视角 第一视角 第三视角 第一视角 第三视角 100507/11 www.lem.com Page 1/3 Current Transducer HAIS 50..400-P and HAIS 50..100-TP For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit). Primary nominal Primary current Type RoHS since current rms measuring range date code IPN (A) IPM (A) 50 ± 150 HAIS 50-P, HAIS 50-TP 1) 45231, 46272 100 ± 300 HAIS 100-P, HAIS 100-TP 1) 45231, 46012 150 ± 450 HAIS 150-P 46172 200 ± 600 HAIS 200-P 45231 400 ± 600 HAIS 400-P 47096 VOUT Output voltage (Analog) @ IP VOE ± (0.625· IP/IPN) V GTH Theoretical sensitivity 0.625 V/IPN VREF Reference voltage 2) - Output voltage 2.5 ± 0.025 V VREF Output impedance typ. 200 W VREF Load impedance ≥ 200 kW RL Load resistance ≥ 2 kW ROUT Output internal resistance < 5 W CL Capacitive loading (± 20 %) =4.7 nF VC Supply voltage (± 5 %)3) 5 V IC Current consumption @ VC = 5 V 19 mA X Accuracy 4) @ IPN , TA = 25°C ≤ ± 1 % of IPN εL Linearity error 0 .. IPM ≤ ± 0.5 % of IPN TCVOE Temperature coefficient of VOE ≤ ± 0.3 mV/K TCVREF Temperature coefficient of VREF, +25°C...+85°C ≤ ± 0.01 %/K -40°C...+25°C ≤ ± 0.015 %/K TCVOE/VREFTemperature coefficient of VOE / VREF ≤ ± 0.2 mV/K TCG Temperature coefficient of G ≤ ± 0.05 % of reading/K VOE Electrical offset voltage @ IP = 0, TA = 25°C VREF ± 0.025 V VOM Magnetic offset voltage @ IP = 0, after an overload of IPM HAIS 50-(T)P < ± 0.5 % of IPN HAIS 100-(T)P..400-P < ± 0.4 % of IPN tra Reaction time @ 10 % of IPN < 3 μs tr Response time to 90 % of IPN step < 5 μs di/dt di/dt accurately followed > 100 A/μs Vno Output voltage noise (DC ..10 kHz) < 15 mVpp (DC .. 1 MHz) < 40 mVpp BW Frequency bandwidth (- 3 dB) 5) DC .. 50 kHz Notes: 1)-TP version is equipped with a primary bus bar. 2) It is possible to overdrive VREF with an external reference voltage between 1.5 - 2.8 V providing its ability to sink or source approximately 5 mA. 3) Maximum supply voltage (not operating) < 6.5 V 4) Excluding Offset and Magnetic offset voltage. 5) Small signal only to avoid excessive heatings of the magnetic core. LEM reserves the right to carry out modifications on its transducers, in order to improve them, without prior notice. IPN = 50 .. 400 A Features ●● Hall effect measuring principle ●● Galvanic isolation between primary and secondary circuit ●● Isolation test voltage 2500V ●● Low power consumption ●● Single power supply +5V ●● Fixed offset & gain ●● Bus bar version available for 50A and 100A ratings. ●● Isolated plastic case recognized according to UL94-V0. Advantages ●● Small size and space saving ●● Only one design for wide current ratings range ●● High immunity to external interference. ●● VREF. IN/OUT Applications ●● AC variable speed drives ●● Static converters for DC motor drives ●● Battery supplied applications ●● Uninterruptible Power Supplies (UPS) ●● Switched Mode Power Supplies (SMPS) ●● Power supplies for welding applications. Application domain ●● Industrial All data are given with a RL = 10 kW Accuracy - Dynamic performance data Electrical data 100507/11 LEM reserves the right to carry out modifications on its transducers, in order to improve them, without prior notice. www.lem.com Page 2/3 Current Transducer HAIS 50..400-P and HAIS 50..100-TP TA Ambient operating temperature - 40 .. + 85 °C General data TS Ambient storage temperature - 40 .. + 85 °C m Mass (in brackets : TP version) 20 (30) g Standards EN 50178: 1997 Isolation characteristics Vb Rated isolation voltage rms with EN50178, IEC61010-1 standards at following conditions - Over voltage category III - Pollution degree 2 - Heterogeneous field Vd Rms voltage for AC isolation test, 50 Hz, 1 min 2.5 kV Ve Partial discharge extinction voltage rms @ 10pC HAIS 50..400-P > 1 kV HAIS 50..100-TP > 1.4 kV Vw Impulse withstand voltage 1.2/50 μs 8 kV dCp Creepage distance > 8 mm dCl Clearance distance > 8 mm CTI Comparative tracking index (Group I) > 600 If insulated cable is used for the primary circuit, the voltage category could be improved with the following table : Cable insulation (primary) Category HAR 03 450V CAT III HAR 05 550V CAT III HAR 07 650V CAT III Safety This transducer must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the manufacturer’s operating instructions. Caution, risk of electrical shock When operating the transducer, certain parts of the module can carry hazardous voltage (eg. primary busbar, power supply). Ignoring this warning can lead to injury and/or cause serious damage. This transducer is a built-in device, whose conducting parts must be inaccessible after installation. A protective housing or additional shield could be used. Main supply must be able to be disconnected. 100507/11 LEM reserves the right to carry out modifications on its transducers, in order to improve them, without prior notice. www.lem.com Page 3/3 Dimensions HAIS 50..400-P and HAIS 50..100-TP (in mm) 0.5 8 16 15 33 29 3 3.5 2-D1.0 1.5 6.5 11 6 14.5 11 33 29 0.5 2-D1.0 10 14.5 11 1.5 6.5 11 14 1.5 1.5 3 6 3.5 25.9 19.9 4 1 4 1 5 5 6 6 Terminal Pin Identification Recommended connection circuit 1...+5V HAIS 50..400-P HAIS 50..100-TP 2...0V 3...OUTPUT 4...Vref. (IN/OUT) 5...Core Earth 6...NC. 1 2 3 4 5 +5V 0V OUTPUT Vref. (IN/OUT) 47nF 47nF 4.3 3-P1.8 4.3 3-P1.8 4-0.25x0.45 (*) 4.7nF Front view Front view Right view Bottom view Bottom view (*) should be connected to 0V of Power Supply for better dv/dt immunity. Arrow indicates positive current direction. General tolerance : ±0.2mm Unit : mm Recommended PCB hole Pin 1-4 : 0.7 ±0.1mm Pin 5-6 : 1.5 ±0.1mm Primary bus bar : 2.3 ±0.1mm Ip 0V Vref.(IN/OUT) Vout +Vc Operation Principle Required Connection Circuit Dimensions HAIS 50..400-P and HAIS 50..100-TP (in mm. 1 mm = 0.0394 inch) 080821/8 LEM reserves the right to carry out modifications on its transducers, in order to improve them, without prior notice. www.lem.com Page 3/3 I n d u s t r i e Réf ft005411 FICHE PRODUIT ET D'INFORMATIONS TECHNIQUES GRAISSE HAUTES TEMPERATURES Lubrifiant anti-grippant micro-métal Cette fiche technique a été établie le 30/03/09 et annule toutes les fiches précédentes. Les renseignements fournis sont basés sur nos connaissances et expérience à ce jour. L’attention des utilisateurs est attirée sur les risques éventuels encourus lorsque le produit est utilisé à d’autres usages que ceux pour lesquels il est conçu. Elle ne dispense en aucun cas l’utilisateur de connaître et d’appliquer l’ensemble des textes réglementant son activité. Il prendra sous sa seule responsabilité les précautions liées à l’utilisation qu’il fait du produit. Les Fiches Techniques & Fiches de Données de Sécurité sont disponibles sur Internet : http://www.itwpc.com ITW Spraytec - 5 bis rue Retrou - 92600 ASNIÈRES SUR SEINE -  01.40.80.32.32 Fax 01.40.80.32.40 1. CARACTERISTIQUES PRINCIPALES La GRAISSE HAUTES TEMPERATURES est un lubrifiant micro-métal de haute performance pour les cas extrêmes ; elle permet d'assurer une lubrification d'assemblages entre -20°C à +1200°C. Insensible à l'eau et à la corrosion, cette graisse sans silicone apporte en outre des propriétés d'étanchéité, d'anticorrosion, et demeure anti-grippante. 2. DOMAINE D'APPLICATION La GRAISSE HAUTES TEMPERATURES trouve son application dans les domaines suivants :  Joints et clapets de chaudières, brûleurs, régulateurs, convoyeurs,  Pièces automobiles, cosses de batterie, chaînes, câbles, mécanismes de grues,  Industrie chimique, matériels agricoles, travaux publics... 3. UTILISATION - MODE D'EMPLOI Bien agiter l'aérosol de manière à décoller la bille. Éliminer les anciennes graisses, vaporiser par pressions courtes sur les assemblages à protéger. Faire pénétrer la graisse en manoeuvrant les pièces lubrifiées. Après pulvérisation, purger l'aérosol la tête en bas pour éviter un bouchage par les particules métalliques. 4. CARACTERISTIQUES PHYSICO-CHIMIQUES Produit actif :  Aspect : liquide épais couleur métallique  Fluide de base : huile minérale  Viscosité de l'huile : 96 cSt à 40°C  Masse volumique à 20°C : 0.80 g/cm3  Tenue en température : -20°C à +1200°C  Épaississant : inorganique  Point de goutte : sans  Pénétrabilité : 310-340(NLGI 1)  Point d'écoulement : -10°C  Teneur en lubrifiants solides : 16%  Coefficient de friction : inférieur de 30% aux huiles ou graphite  Protection en chaleur humide : 5000 heures à 50°C - 100% H.R.  Inflammable  Ne contient pas de silicone 5. PRECAUTIONS D'EMPLOI Consulter la fiche de données de sécurité. Extrêmement inflammable. Nocif pour les organismes aquatiques, peut entraîner des effets néfastes à long terme pour l'environnement aquatique. L’inhalation de vapeurs peut provoquer somnolence et vertiges. Récipient sous pression. A protéger contre les rayons solaires et ne pas exposer à une température supérieure à 50°C. Ne pas percer ou brûler, même après usage. Conserver hors de portée des enfants. Ne pas vaporiser vers une flamme ou un corps incandescent. Conserver à l’écart de toute flamme ou source d’étincelles – Ne pas fumer. Ne pas respirer les aérosols. En cas de ventilation insuffisante, porter un appareil respiratoire approprié. En cas d’ingestion, consulter immédiatement un médecin et lui montrer l’emballage ou l’étiquette. Utiliser cet aérosol uniquement pour les applications auxquelles il est destiné. Bien ventiler après usage. 6. CONDITIONNEMENT ET STOCKAGE Aérosol de 650ml (12 aérosols / carton). Référence 005411. A protéger contre les rayons solaires et à ne pas exposer à une température supérieure à 50°C. Conserver à l'abri de l'humidité et sous abri, dans un endroit bien ventilé et aéré. http://www.farnell.com/datasheets/319343.pdf Fiche Technique LOCTITE® 542 Mai-2004 DESCRIPTION DU PRODUIT LOCTITE® 542 présente les caractéristiques suivantes: Technologie Acrylique Nature chimique Ester Diméthacrylate Aspect Liquide marronLMS Composants Monocomposant Viscosité Faible Polymérisation Anaérobie Polymérisation secondaire Activateur Application Etanchéité filetée Résistance Moyenne LOCTITE® 542 est conçu pour freiner et étancher les tubes et raccords filetés métalliques. Le produit polymérise lorsqu'il se trouve en l'absence d'air entre des surfaces métalliques avec un faible jeu, et il a pour fonction d'empêcher le desserrage et les fuites dus aux chocs et vibrations. Une des propriétés du LOCTITE® 542 est d'être thixotrope, ce qui lui évite de couler ou de migrer après application sur les surfaces. PROPRIETES DU PRODUIT LIQUIDE Densité à 25 °C 1,06 Point éclair - se reporter à la FDS Viscosité, Brookfield - RVT, 25 °C, mPa.s (cP): Mobile 2, vitesse 2,5 tr/min 1 200 à 2 750LMS Mobile 2, vitesse 20 tr/mn 400 à 800LMS Viscosité, EN 12092 MV, 25 °C, après 180 s, mPa.s (cP): Cisaillement 277 s-1 150 DONNEES TYPIQUES SUR LA POLYMERISATION Vitesse de polymérisation en fonction du substrat La vitesse de polymérisation dépend du substrat utilisé. Le graphique ci-dessous montre l'évolution du couple de rupture en fonction du temps sur des boulons M10 en acier, par comparaison avec d'autres métaux, tests effectués selon la norme ISO 10964. % résistance finale sur acier Polymérisation (h) 100 75 50 25 0 1min 5min10min 30min 1h 3h 6h 24h 72h Laiton Acier Acier Zn bichromaté Acier inoxydable Vitesse de polymérisation en fonction du jeu La vitesse de polymérisation dépend du jeu fonctionnel dans l'assemblage. Le jeu dans les assemblages filetés dépend du type de filetage, de la qualité des filets, et des dimensions. Le graphe ci-dessous montre l'évolution de la résistance au cisaillement en fonction du temps sur des éprouvettes axe-bague en acier avec différents jeux contrôlés, tests effectués selon la norme ISO 10123. % résistance finale sur acier Polymérisation (h) 100 75 50 25 0 1min 5min10min 30min 1h 3h 6h 24h 72h 0,15mm 0,25mm 0,05mm Vitesse de polymérisation en fonction de la température La vitesse de polymérisation dépend de la température à l'application. Le graphique ci-dessous présente l'évolution du couple de rupture en fonction du temps à différentes températures sur des boulons M10 en acier, tests effectués selon la norme ISO 10964. % résistance finale sur acier Polymérisation (h) 100 75 50 25 0 1min 5min10min 30min 1h 3h 6h 24h 72h 40°C 22°C 5°C Vitesse de polymérisation en fonction de l'activateur Lorsque la vitesse de polymérisation est beaucoup trop longue, ou que l'on est en présence de jeux importants, l'utilisation d'un activateur appliqué sur l'une des surfaces permettra d'augmenter cette vitesse. Le graphique ci-dessous montre l'évolution du couple de rupture en fonction du temps lors de l'utilisation de Loctite Activateur 7471 (T) ou 7649 (N) sur des boulons M10 en acier zingué bichromaté , tests effectués selon la norme ISO 10964. FT LOCTITE® 542, Mai-2004 % résistance finale sur acier Polymérisation (h) 100 75 50 25 0 1min 5min10min 30min 1h 3h 6h 24h 72h Activateur 7471 T Activateur 7649 N Sans Activateur PROPRIETES DU PRODUIT POLYMERISE Propriétés physiques: Coef. de dilatation linéique , ASTM D 696, K-1 80×10-6 Coef. de conductivité thermique, ASTM C 177, W/(m·K) 0,1 Chaleur spécifique, kJ/(kg·K) 0,3 PERFORMANCES DU PRODUIT POLYMERISE Propriétés de l'adhésif Après 24 heures à 22 °C Couple de dévissage, ISO 10964: Boulons M10 en acier N·m 15 (lb.in.) (130) Couple résiduel au dévissage, ISO 10964: Boulons M10 en acier N·m 9 (lb.in.) (80) Couple de rupture, ISO 10964, pré-charge à 5 N·m: Boulons M10 en acier N·m 25 (lb.in.) (220) Couple résiduel maxi après desserrage, ISO 10964, pré-charge à 5 N·m: Boulons M10 en acier N·m 25 (lb.in.) (220) Résistance au cisaillement, ISO 10123: éprouvettes axe-bague acier N/mm² ≥6,5LMS (psi) (940) PERFORMANCES DE TENUE A L'ENVIRONNEMENT Polymérisation 1 semaine à 22 °C Couple de rupture, ISO 10964, pré-charge à 5 N·m: Boulons M10 acier avec phosphatation zinc Résistance à chaud Mesurée à la température % Résistance , à T amb. Température, °C 100 75 50 25 0 0 50 100 150 Vieillissement à chaud Vieillissement à la température indiquée et mesure effectuée après retour à 22 °C % Résistance , T amb. Heures 100 75 50 25 0 0 1000 2000 3000 4000 5000 120°C 150°C Résistance aux produits chimiques Veillissement dans les conditions indiquées et mesure après retour à 22 °C. % de la résistance initiale conservée après Agent chimique °C 100 h 500 h 1000 h Huile moteur 125 100 100 100 Essence sans plomb 22 100 100 95 Liquide de frein 22 100 100 95 Eau/Glycol 50/50 87 90 90 90 Ethanol 22 100 100 95 Acétone 22 100 80 80 INFORMATIONS GENERALES L'utilisation de ce produit n'est pas recommandé dans des installations véhiculant de l'oxygène pur ou des mélanges riches en oxygène, et il ne doit pas être utilisé comme produit d'étanchéité vis à vis du chlore ou pour d'autres corps fortement oxydants. Pour obtenir les informations relatives à la sécurité de mise en oeuvre de ce produit, consultez obligatoirement la Fiches de Données de Sécurité (FDS). Lorsqu'un système de lavage en phase aqueuse est utilisé pour nettoyer les pièces avant collage, il est important de vérifier la compatibilité de la solution lessivielle avec l'adhésif utilisé. Dans certains cas, les nettoyages en phase aqueuse affectent la polymérisation et les performances de l'adhésif. Henkel Loctite Americas +860.571.5100 Henkel Loctite Europe +49.89.9268.0 Henkel Loctite Asia Pacific +81.45.758.1810 Pour contacter votre representant local ou obtenir une aide technique : www.loctite.com FT LOCTITE® 542, Mai-2004 Ce produit n'est normalement pas recommandé pour l'utilisation sur les plastiques (particulièrement sur les thermoplastiques, sur lesquels peut apparaître une fissuration suite à la libération de contraintes, appelée "stress cracking"). Il est recommandé aux utilisateurs de vérifier la compatibilité de ce produit avec de tels matériaux. Recommandations de mise en oeuvre Assemblage 1. Pour obtenir les meilleurs résultats, les surfaces doivent être propres et exemptes de graisse (surface interne et externe), utiliser un solvant de dégraissage Loctite, puis sécher parfaitement. 2. Dans le cas où le substrat est un métal peu actif, ou si la vitesse de polymérisation est trop lente, vaporiser l'activateur 7471 (T) ou l'activateur 7649 (N) sur tous les filetages, et laisser sécher. 3. Appliquer un cordon à 360° sur le filetage mâle en évitant de mettre du produit sur le premier filet. Appuyer suffisamment de façon à ce que le produit remplisse bien les filets. Dans le cas de filetage de gros diamètre ou grossier, appliquer une quantité de produit plus importante, et déposer aussi un cordon à 360° sur la partie femelle du filetage. 4. Assembler et serrer les parties à raccorder pour obtenir l'alignement souhaité. 5. Après serrage correct de l'assemblage, l'étanchéité est immédiate sous pression modérée. La résistance maximum à la pression ainsi que la résistance aux solvants sont obtenues après un temps de polymérisation de 24 heures minimum. Désassemblage 1. Démonter avec des outils à main conventionnels. 2. Lorsqu'il n'est pas possible de démonter à l'aide d'outils à main conventionnels, du fait d'une longueur d'engagement importante ou pour des filetages de grand diamètre (> 20 mm), il est nécessaire de chauffer localement l'assemblage vers 250 °C, pour démonter à chaud. Nettoyage de l'adhésif 1. Le produit polymérisé peut être éliminé en immergeant la pièce dans un solvant adapté Loctite et en frottant à l'aide d'une brosse métallique. Loctite Material SpecificationLMS LMS en date du Septembre-1, 1995. Les résultats des contrôles pour chaque lot de fabrication sont disponibles pour les caractéristiques identifiées LMS. Les rapports de contrôle LMS mentionnent aussi des contrôles qualité QC en accord avec les spécifications appropriées aux utilisations clients. De plus, des contrôles permanents existent en parallèle pour garantir la qualité du produit et la stabilité de la production. Toute demande spécifique liée à des exigences particulières d'un client sera transmise et gérée par le service Qualité Henkel Loctite. Stockage Conserver le produit dans son emballage d'origine fermé dans un local sec. Certaines informations de stockage peuvent être indiquées sur l'étiquettage de l'emballage. Température de stockage : 8 °C à 21 °C. Une température de stockage inférieure à 8 °C ou supérieure à 28 °C peut affecter les propriétés du produit. Pour éviter de contaminer le produit, ne jamais remettre dans son contenant d'origine un produit sorti de son emballage. Henkel Corporation n'assure aucune responsabilité pour les produits stockés dans d'autres conditions que celles indiquées, ou pour des produits contaminés par une mauvaise utilisation. Pour obtenir des informations supplémentaires, contacter votre Service Technique local ou votre représentant local. Conversions (°C x 1.8) + 32 = °F kV/mm x 25.4 = V/mil mm / 25.4 = inches N x 0.225 = lb N/mm x 5.71 = lb/in N/mm² x 145 = psi MPa x 145 = psi N·m x 8.851 = lb·in N·mm x 0.142 = oz·in mPa·s = cP Note Les données contenues dans ce document sont fournies à titre d'information seulement et sont considérées comme fiables. Nous ne pouvons pas assumer la responsabilité de résultats obtenus par des tiers à partir de méthodes sur lesquelles nous n'avons aucun contrôle. Il est de la responsabilité de l'utilisateur de déterminer l'adéquation à son besoin de toute méthode de production décrite dans ce document, et de mettre en oeuvre toutes les mesures qui s'imposent pour la protection des personnes et des biens contre tous risques pouvant résulter de la mise en oeuvre et de l'utilisation des produits. En fonction de ce qui précède, Henkel Corporation dénie toutes garanties implicites ou explicites, y compris les garanties liées à l'aptitude à la vente ou d'adéquation à un besoin particulier, résultant de la vente ou de l'utilisation de produits de Henkel Corporation. Henkel Corporation dénie notamment toutes poursuites pour des dommages incidents ou conséquents quels qu'ils soient, y compris les pertes financières d'exploitation. La présentation dans ce document de processus ou de composition ne doit pas être interprétée comme le fait qu'ils sont libres de tous brevets détenus par des tiers ainsi que comme une licence de brevet détenue par Henkel Corporation pouvant couvrir de tels procédés ou compositions. Nous recommandons ici à l'utilisateur potentiel de vérifier par des essais l'application envisagée avant de passer à une application répétitive, les données présentées ici ne servant que de guide. Ce produit peut être couvert par un ou plusieurs brevets ou licences ou demandes de brevet tant aux USA que dans d'autres pays. Marque commerciale LOCTITE est une marque de Henkel Corporation Référence 1 Henkel Loctite Americas +860.571.5100 Henkel Loctite Europe +49.89.9268.0 Henkel Loctite Asia Pacific +81.45.758.1810 Pour contacter votre representant local ou obtenir une aide technique : www.loctite.com Une filiale de Premier Farnell Développez avec le meilleur Directive relative aux produits consommant de l’énergie (Eup) Version 6 - Avril 2009 Mise à jour des études menées (phase 1) et détail des 17 études (phase 2) Web: www.global-legislation.com Q&R: glegislation@premierfarnell.com 1 L’éco-conception de la directive (2005/32/CE) relative aux produits consommant de l’énergie (EuP) a été adoptée au sein de l’Union européenne (UE) le 11 août 2005 et transposée en loi nationale par les Etats membres le 11 août 2007. Des mesures de mise en oeuvre spécifiques entreront en application courant 2009 et les années suivantes. Celles-ci impliqueront des obligations pour les fabricants. La première mesure de mise en oeuvre de la directive EuP concerne une réglementation qui est entrée en vigueur en janvier 2009. Cette réglementation EuP devrait avoir un impact significatif sur la phase conception d’une grande diversité de produits électriques. L’objectif principal de la directive EuP est d’apporter des améliorations dans l’efficacité énergétique des produits consommant de l’énergie, sur l’ensemble du cycle de vie, depuis l’extraction de la matière première jusqu’au recyclage en fin de vie. L’accent est mis sur la phase conception, qui est considérée comme l’étape déterminante affectant les ressources utilisées dans un produit. La directive ne s’applique pas aux moyens de transport (avions, automobiles, etc.) mais, à part cette exception, son champ d’application est délibérément étendu, couvrant, en principe, tout produit qui, lors de son utilisation, dépend de, génère, transfère ou mesure l’énergie (électricité, combustible fossile ou renouvelable). EuP est une directive « cadre » qui définit le contexte juridique au sein duquel des mesures d’exécution seront élaborées, visant des groupes de produits spécifiques. Lorsque ces mesures d’exécution seront présentées, elles exposeront clairement les exigences à respecter pour certains types de produits avant leur mise sur le marché au sein de l’UE. Une mesure d’exécution détaillera les exigences en matière de « éco-conception » , telles que les objectifs de consommation énergétique, et la réglementation devra être essentiellement la même dans tous les pays de l’UE, comme pour la directive RoHS (une directive de marché unique). Avant l’application d’une mesure d’exécution pour un secteur de produits particulier (ex., chaudières), il est primordial de se conformer à certains critères afin de s’assurer que celle-ci est réellement nécessaire et profitable. Ces critères sont les suivants : Un produit doit zz se vendre à plus de 200.000 unités par an dans l’UE zz avoir un impact environnemental significatif zz présenter un important potentiel d’évolution Les mesures d’exécution ne doivent pas avoir un « impact négatif significatif » sur zz le prix ou la performance d’un produit, ou zz sur la compétitivité de l’industrie de l’UE Après avoir tenu compte de tout ceci, il est possible que la Commission européenne (CE) décide de ne pas présenter de mesure d’exécution. Cela pourrait se produire dans le cas où elle considère que la croissance de l’industrie est satisfaisante (ex., par des accords volontaires ou des objectifs pour réduire la consommation d’énergie). La directive EuP définit une procédure d’application pour les mesures de mise en oeuvre, mais la Commission européenne a déjà identifié une liste de produits candidats offrant « …un potentiel élevé pour réduire de manière économiquement rentable les gaz à effet de serre », et pour lesquels un accord de mesures d’exécution pourrait intervenir plus tôt. Résumé 2 Des études sont en cours dont une vingtaine déjà finalisées. Il devient évident que la consommation d’énergie en fonctionnement sera l’objectif prioritaire de nombreuses mesures de mise en oeuvre. Plusieurs études ont déjà identifié des points importants en matière d’amélioration, comparé aux produits commercialisés les plus performants. Quand des avantages significatifs sont identifiés et réalisables, cela peut entraîner des mesures de mise en oeuvre. Des réglementations couvrant cinq catégories de produits ont été proposées jusqu’à présent et celle concernant les pertes d’énergie en mode veille et arrêt est déjà appliquée. Autres produits en vue d’une éventuelle inclusion : L’article 16(1) de la directive sur la démarche d’éco-conception impose à la Communauté européenne d’établir un plan d’action définissant pour les trois années à venir une liste indicative d’autres groupes de produits à considérer en priorité en vue de l’adoption de mesures d’exécution. Dans le cadre de ce plan, une évaluation a été réalisée par un groupe d’étude du réseau parlementaire européen d’évaluation technologique (EPTA, Grèce). Celle-ci visait à couvrir et classifier tous les produits consommant de l’énergie (EuP) potentiels. Plus de 1300 EuP ont été répertoriés et classés en 57 catégories. Parmi cellesci, 34 catégories de produits ont été considérées comme prioritaires, selon la directive. Un degré de priorité a donc été défini, avec répartition par groupes : Priorité A (25 catégories – la CE a indiqué qu’elle voulait une liste détaillée) et Priorité B (les 9 catégories restantes). Pour connaitre les dernières mises à jour des études EuP, rendez vous sur le Programme de Transformation du Marché (Market Transformation Programme): www.mtprog.com/cms/eup/ Les produits concernés sont : Statut Chaudières et chaudières mixtes (gaz/mazout/électrique) Radiateurs (gaz/mazout/électrique) Ordinateurs personnels (de bureau & portables) et moniteurs d’ordinateur Equipement d’imagerie : copieurs, fax, imprimantes, scanneurs, appareils multifonctions, etc. Electronique grand public : téléviseurs Pertes en mode veille et éteint des EuP Chargeurs de batterie et sources d’alimentation externes Eclairage des bureaux Eclairage domestique Eclairage public Appareils de climatisation grand public (climatiseurs et ventilateurs) Moteurs électriques 1-150 kW, pompes à eau (dans les bâtiments commerciaux, pompage eau potable, industrie alimentaire, agriculture), systèmes d’aération dans les bâtiments, machines soufflantes pour la ventilation (bâtiments non résidentiels) Réfrigérateurs et congélateurs professionnels, comprenant les compresseurs frigorifiques, meubles présentoir et distributeurs automatiques Réfrigérateurs et congélateurs à usage domestique Lave-vaisselle et lave-linge à usage domestique Petites installations à combustible solide (chauffage, en particulier) Séche-linge Aspirateurs Boîtiers multimédias (Set Top Boxe) Boîtiers de conversion simples pour la télévision numérique C C V V P R P P P P S C P C P P S S S C Symbole Statut / Février 2009 S Etude en cours C Etude achevée P Cadre législatif proposé V Accord volontaire possible R Réglementation UE en place Un « plan d’action » s’appuyant sur les travaux entrepris par Epta, basé à Athènes et qui regroupe des ingénieurs et consultants en environnement, a été adopté et la Commission européenne a annoncé que 17 autres études seraient réalisées selon le même modèle que les 20 études existantes, suivi d’une évaluation de l’impact, d’un débat sur la plate-forme dédiée à l’éco-conception et d’un projet de mesures de mise en oeuvre. Liste des 17 études prévues et contrats attribués concernant 11 d’entre elles : 3 Veuillez noter : Les informations contenues dans ce guide sont de nature générale et non destinées à répondre au cas particulier de toute personne ou entité. Malgré le soin apporté à fournir des informations précises et actuelles, nous ne pouvons pas garantir l’exactitude de ces informations, liée à la date de réception de celles-ci, ou qu’elles continueront à être exactes à l’avenir. Il n’est pas conseillé d’agir sur la base de ces informations sans avoir pris conseil auprès d’un professionnel compétent après un examen approfondi de la situation spécifique. Produits: Statut Equipement de réfrigération et de congélation : armoires frigorifiques, chambres froides, compresseurs frigorifiques, machines à glace, machines à crème glacée et milk-shake, minibars Transformateurs : transformateurs de distribution, transformateurs de puissance Equipement son & image : lecteurs enregistreurs de DVD, vidéoprojecteurs, consoles de jeux vidéo Produits de chauffage individuel Systèmes de chauffage central par air chaud pour la distribution de la chaleur (autre que les systèmes à chaleur et puissance combinées - CHP) Fours à usage domestique et commercial (électriques, gaz, micro-ondes), y compris ceux intégrés aux cuisinières Plaques chauffantes et grills à usage domestique et commercial, y compris ceux intégrés aux cuisinières Lave-linge, sèche-linge et lave-vaisselle à usage professionnel Machines à café hors secteur tertiaire Pertes en mode veille des EuP connectés en réseau Onduleurs et sources d’alimentation ininterrompue (UPS) à usage domestique Systèmes de ventilation et de climatisation Equipement de chauffage électrique et par combustibles fossiles Chaudières et fours industriels et de laboratoire Machines-outils Equipement de stockage de données, traitement de données et de réseau Equipement utilisant de l’eau S S S A A A A A A A A N N N N N N Point sur la situation : février 2009 Contrats attribués à des bureaux d’étude et de consultation : démarrage des projets prévu courant 2009 Appels d’offre pas encore émis si bien que les études ne devraient pas démarrer avant fin 2009, début 2010 S A Version 6. Rédigé en collaboration avec ERA Technology - www.era.co.uk/rfa © 2009 Premier Farnell plc. Toute reproduction intégrale ou partielle de ce document est soumise à l’accord préalable de Premier Farnell plc SMSC EMC1182 Revision 1.0 (07-11-13) DATASHEET PRODUCT FEATURES Datasheet EMC1182 Dual Channel 1°C Temperature Sensor with Beta Compensation and 1.8V SMBus Communications General Description The EMC1182 is a high accuracy, low cost, 1.8V System Management Bus (SMBus) compatible temperature sensor. Advanced features such as Resistance Error Correction (REC), Beta Compensation (to support CPU diodes requiring the BJT/transistor model including 65nm and lower geometry processors) and automatic diode type detection combine to provide a robust solution for complex environmental monitoring applications. The ability to communicate at 1.8V SMBus levels provides compatible I/O for the advanced processors found in today’s tablet and smartphone applications. The EMC1182 monitors two temperature channels (one external and one internal), providing ±1°C accuracy for both external and internal diode temperatures. REC automatically eliminates the temperature error caused by series resistance allowing greater flexibility in routing thermal diodes. Frequency hopping* and analog filters ensure remote diode traces can be as far as eight (8) inches without degrading the signal. Beta Compensation eliminates temperature errors caused by low, variable beta transistors common in today's fine geometry processors. The automatic beta detection feature monitors the external diode/transistor and determines the optimum sensor settings for accurate temperature measurements regardless of processor technology. This frees the user from providing unique sensor configurations for each temperature monitoring application. These advanced features plus ±1°C measurement accuracy provide a low-cost, highly flexible and accurate solution for critical temperature monitoring applications. Applications  Notebook Computers  Desktop Computers  Industrial  Embedded applications Features  Support for diodes requiring the BJT/transistor model — Supports 65nm and lower geometry CPU thermal diodes  Pin and register compatible with EMC1412  Automatically determines external diode type and optimal settings  Resistance Error Correction  Frequency hops the remote sample frequency to reject DC converter and other coherent noise sources*  Consecutive Alert queue to further reduce false Alerts  Up to 1 External Temperature Monitor — 25°C typ, ±1°C max accuracy (20°C < TDIODE < 110°C) — 0.125°C resolution — Supports up to 2.2nF diode filter capacitor  Internal Temperature Monitor — ±1°C accuracy — 0.125°C resolution  3.3V Supply Voltage  1.8V SMBus operation  Programmable temperature limits for ALERT/THERM2 (85°C default high limit and 0°C default low limit) and THERM (85°C default)  Available in small 8-pin 2mm x 3mm TDFN RoHS compliant package  Available in small 8-pin 3mm x 3mm DFN RoHS compliant package * Technology covered under the US patent 7,193,543. CPU / GPU EMC1182 Host DP DN SMDATA Thermal Junction SMCLK SMBus Interface THERM / ADDR ALERT / THERM2 Power Control VDD GND VDD = 3.3V 1.8V 1.8V – 3.3V THERM / ADDR ALERT / THERM2 Internal Temp Diode Switching Current Analog Mux Internal Temperature Register Digital Mux Digital Mux Limit Comparator Low Limit Registers High Limit Registers Conversion Rate Register Interupt Masking Status Registers Configuration Register SMBus Interface SMCLK SMDATA DP 1D N1 VDD GND External Temperature ΔΣADC Register(s) THERM Limit Register THERM Hysteresis Register SMBus Address Decode EMC1182 Ordering Information: This product meets the halogen maximum concentration values per IEC61249-2-21 For RoHS compliance and environmental information, please visit www.smsc.com/rohs Please contact your SMSC sales representative for additional documentation related to this product such as application notes, anomaly sheets, and design guidelines. ORDERING NUMBER PACKAGE FEATURES SMBUS ADDRESS EMC1182-A-AC3-TR 8-pin TDFN 2mm x 3mm (RoHS compliant) Two temperature sensors, ALERT/THERM2 and THERM pins, fixed SMBus address Selectable via THERM pull-up EMC1182-1-AIA-TR 8-pin DFN 3mm x 3mm (RoHS compliant) Two temperature sensors, ALERT/THERM2 and THERM pins, fixed SMBus address 1001_100(r/w) EMC1182-1-AC3-TR 8-pin TDFN 2mm x 3mm (RoHS compliant) Two temperature sensors, ALERT/THERM2 and THERM pins, fixed SMBus address 1001_100(r/w) EMC1182-2-AIA-TR 8-pin DFN 3mm x 3mm (RoHS compliant) Two temperature sensors, ALERT/THERM2 and THERM pins, fixed SMBus address 1001_101(r/w) EMC1182-2-AC3-TR 8-pin TDFN 2mm x 3mm (RoHS compliant) Two temperature sensors, ALERT/THERM2 and THERM pins, fixed SMBus address 1001_101(r/w) Dual Channel 1°C Temperature Sensor with Beta Compensation and 1.8V SMBus Communications Datasheet Revision 1.0 (07-11-13) 2 SMSC EMC1182 DATASHEET Copyright © 2013 SMSC or its subsidiaries. All rights reserved. Circuit diagrams and other information relating to SMSC products are included as a means of illustrating typical applications. Consequently, complete information sufficient for construction purposes is not necessarily given. Although the information has been checked and is believed to be accurate, no responsibility is assumed for inaccuracies. SMSC reserves the right to make changes to specifications and product descriptions at any time without notice. Contact your local SMSC sales office to obtain the latest specifications before placing your product order. The provision of this information does not convey to the purchaser of the described semiconductor devices any licenses under any patent rights or other intellectual property rights of SMSC or others. All sales are expressly conditional on your agreement to the terms and conditions of the most recently dated version of SMSC's standard Terms of Sale Agreement dated before the date of your order (the "Terms of Sale Agreement"). The product may contain design defects or errors known as anomalies which may cause the product's functions to deviate from published specifications. Anomaly sheets are available upon request. SMSC products are not designed, intended, authorized or warranted for use in any life support or other application where product failure could cause or contribute to personal injury or severe property damage. Any and all such uses without prior written approval of an Officer of SMSC and further testing and/or modification will be fully at the risk of the customer. Copies of this document or other SMSC literature, as well as the Terms of Sale Agreement, may be obtained by visiting SMSC’s website at http://www.smsc.com. SMSC is a registered trademark of Standard Microsystems Corporation (“SMSC”). Product names and company names are the trademarks of their respective holders. The Microchip name and logo, and the Microchip logo are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. SMSC DISCLAIMS AND EXCLUDES ANY AND ALL WARRANTIES, INCLUDING WITHOUT LIMITATION ANY AND ALL IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, AND AGAINST INFRINGEMENT AND THE LIKE, AND ANY AND ALL WARRANTIES ARISING FROM ANY COURSE OF DEALING OR USAGE OF TRADE. IN NO EVENT SHALL SMSC BE LIABLE FOR ANY DIRECT, INCIDENTAL, INDIRECT, SPECIAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES; OR FOR LOST DATA, PROFITS, SAVINGS OR REVENUES OF ANY KIND; REGARDLESS OF THE FORM OF ACTION, WHETHER BASED ON CONTRACT; TORT; NEGLIGENCE OF SMSC OR OTHERS; STRICT LIABILITY; BREACH OF WARRANTY; OR OTHERWISE; WHETHER OR NOT ANY REMEDY OF BUYER IS HELD TO HAVE FAILED OF ITS ESSENTIAL PURPOSE, AND WHETHER OR NOT SMSC HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Dual Channel 1°C Temperature Sensor with Beta Compensation and 1.8V SMBus Communications Datasheet SMSC EMC1182 3 Revision 1.0 (07-11-13) DATASHEET Table of Contents Chapter 1 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Chapter 2 Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Chapter 3 Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.1 Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.2 Electrical Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.3 SMBus Electrical Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Chapter 4 System Management Bus Interface Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4.1 Communications Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4.1.1 SMBus Start Bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4.1.2 SMBus Address and RD / WR Bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4.1.3 THERM Pin Considerations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4.1.5 SMBus Data Bytes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4.1.6 SMBus ACK and NACK Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4.1.7 SMBus Stop Bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4.1.8 SMBus Timeout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4.1.9 SMBus and I2C Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4.2 SMBus Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4.2.1 Write Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4.2.2 Read Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4.2.3 Send Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4.2.4 Receive Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4.3 Alert Response Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Chapter 5 Product Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 5.1 Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 5.2 Conversion Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 5.3 Dynamic Averaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 5.4 THERM Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 5.4.1 THERM Pin Considerations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 5.5 ALERT / THERM2 Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 5.5.1 ALERT / THERM2 Pin InterruptALERT Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 5.5.2 ALERT / THERM2 Pin ComparatorTHERM Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 5.6 Temperature Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 5.6.1 Beta Compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 5.6.2 Resistance Error Correction (REC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 5.6.3 Programmable External Diode Ideality Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 5.7 Diode Faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 5.8 Consecutive Alerts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 5.9 Digital Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 5.10 Temperature Measurement Results and Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Chapter 6 Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 6.1 Data Read Interlock. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 6.2 Temperature Data Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 6.3 Status Register 02h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Dual Channel 1°C Temperature Sensor with Beta Compensation and 1.8V SMBus Communications Datasheet Revision 1.0 (07-11-13) 4 SMSC EMC1182 DATASHEET 6.4 Configuration Register 03h / 09h. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 6.5 Conversion Rate Register 04h / 0Ah . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 6.6 Limit Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 6.7 Scratchpad Registers 11h and 12h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 6.8 One Shot Register 0Fh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 6.9 Therm Limit Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 6.10 Channel Mask Register 1Fh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 6.11 Consecutive ALERT Register 22h. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 6.12 Beta Configuration Register 25h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 6.13 External Diode Ideality Factor Register 27h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 6.14 Filter Control Register 40h. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 6.15 Product ID Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 6.16 SMSC ID Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 6.17 Revision Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Chapter 7 Typical Operating Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Chapter 8 Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 8.1 Package Markings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Chapter 9 Datasheet Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Dual Channel 1°C Temperature Sensor with Beta Compensation and 1.8V SMBus Communications Datasheet SMSC EMC1182 5 Revision 1.0 (07-11-13) DATASHEET List of Figures Figure 1.1 EMC1182 Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Figure 2.1 EMC1182 Pin Diagram, TDFN-8 2mm x 3mm / DFN-8 3mm x 3mm . . . . . . . . . . . . . . . . . . . 8 Figure 4.1 SMBus Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Figure 4.4 Isolating the THERM pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Figure 5.1 System Diagram for EMC1182 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Figure 5.2 Isolating THERM Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Figure 5.3 Isolating ALERT and SYS_SHDN Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Figure 5.4 Temperature Filter Step Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Figure 5.5 Temperature Filter Impulse Response. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Figure 8.1 2mm x 3mm TDFN Package Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Figure 8.3 2mm x 3mm TDFN Package PCB Land Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Figure 8.2 2mm x 3mm TDFN Package Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Figure 8.4 3mm x 3mm DFN Package Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Figure 8.5 3mm x 3mm DFN Package Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Figure 8.6 8 Pin DFN PCB Footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Figure 8.7 EMC1182-1 8-Pin TDFN Package Markings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Figure 8.8 EMC1182-2 8-Pin TDFN Package Markings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Figure 8.9 EMC1182-A 8-Pin TDFN Package Markings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Figure 8.10 EMC1182-1 8-Pin DFN Package Markings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Figure 8.11 EMC1182-2 8-Pin DFN Package Markings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Dual Channel 1°C Temperature Sensor with Beta Compensation and 1.8V SMBus Communications Datasheet Revision 1.0 (07-11-13) 6 SMSC EMC1182 DATASHEET List of Tables Table 2.1 EMC1182 Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Table 2.2 Pin Types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Table 3.1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Table 3.2 Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Table 3.3 SMBus Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Table 4.1 SMBus Address Decode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Table 4.1 Protocol Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Table 4.2 Write Byte Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Table 4.3 Read Byte Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Table 4.4 Send Byte Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Table 4.5 Receive Byte Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Table 4.6 Alert Response Address Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Table 5.1 Supply Current vs. Conversion Rate for EMC1182 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Table 5.2 Temperature Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Table 6.1 Register Set in Hexadecimal Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Table 6.2 Temperature Data Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Table 6.3 Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Table 6.4 Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Table 6.5 Conversion Rate Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Table 6.6 Conversion Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Table 6.7 Temperature Limit Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Table 6.8 Scratchpad Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Table 6.9 Therm Limit Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Table 6.10 Channel Mask Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Table 6.11 Consecutive ALERT Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Table 6.12 Consecutive Alert / Therm Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Table 6.13 Beta Configuration Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Table 6.14 Ideality Configuration Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Table 6.15 Ideality Factor Look-Up Table (Diode Model) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Table 6.16 Substrate Diode Ideality Factor Look-Up Table (BJT Model) . . . . . . . . . . . . . . . . . . . . . . . . . 36 Table 6.17 Filter Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Table 6.18 FILTER Decode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Table 6.19 Product ID Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Table 6.20 Manufacturer ID Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Table 6.21 Revision Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Table 9.1 Customer Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Internal Temp DiodeSwitchingCurrentAnalog MuxInternal Temperature RegisterDigital MuxDigital MuxLimit ComparatorLow Limit RegistersHigh Limit RegistersConversion Rate RegisterInterupt MaskingStatus RegistersConfiguration RegisterSMBus InterfaceSMCLKSMDATADPDNVDDGNDExternal Temperature Register(s)ΔΣADCTHERM Limit RegisterTHERM Hysteresis RegisterSMBus Address DecodeALERTEMC1182THERM / ADDR Dual Channel 1°C Temperature Sensor with Beta Compensation and 1.8V SMBus Communications Datasheet SMSC EMC1182 7 Revision 1.0 (07-11-13) DATASHEET Chapter 1 Block Diagram Figure 1.1 EMC1182 Block Diagram SMDATASMCLK1234ALERT / THERM2DNTHERM / ADDRGNDExposed padDPVDD8765EMC1182 Dual Channel 1°C Temperature Sensor with Beta Compensation and 1.8V SMBus Communications Datasheet Revision 1.0 (07-11-13) 8 SMSC EMC1182 DATASHEET Chapter 2 Pin Description Figure 2.1 EMC1182 Pin Diagram, TDFN-8 2mm x 3mm / DFN-8 3mm x 3mm Table 2.1 EMC1182 Pin Description PIN NUMBER NAME FUNCTION TYPE 1 VDD Power supply Power 2 DP External diode positive (anode) connection AIO 3 DN External diode negative (cathode) connection AIO 4 THERM / ADDR THERM - Active low Critical THERM output signal - requires pull-up resistor OD (5V) ADDR - Selects SMBus address based on pullup resistor OD (5V) 5 GND Ground Power 6 ALERT / THERM2 Active low digital ALERT / THERM2 output signal - requires pull-up resistor OD (5V) 7 SMDATA SMBus Data input/output - requires pull-up resistor DIOD (5V) 8 SMCLK SMBus Clock input - requires pull-up resistor DI (5V) Bottom Pad Exposed Pad Not internally connected, but recommend grounding. - Dual Channel 1°C Temperature Sensor with Beta Compensation and 1.8V SMBus Communications Datasheet SMSC EMC1182 9 Revision 1.0 (07-11-13) DATASHEET The pin types are described Table 2.2. Table 2.2 Pin Types PIN TYPE DESCRIPTION Power This pin is used to supply power or ground to the device. AIO Analog Input / Output -This pin is used as an I/O for analog signals. DI Digital Input - This pin is used as a digital input. This pin is 5V tolerant. DIOD Digital Input / Open Drain Output - This pin is used as a digital I/O. When it is used as an output, it is open drain and requires a pull-up resistor. This pin is 5V tolerant. OD Open Drain Digital Output - This pin is used as a digital output. It is open drain and requires a pull-up resistor. This pin is 5V tolerant. Dual Channel 1°C Temperature Sensor with Beta Compensation and 1.8V SMBus Communications Datasheet Revision 1.0 (07-11-13) 10 SMSC EMC1182 DATASHEET Chapter 3 Electrical Specifications 3.1 Absolute Maximum Ratings Note: Stresses at or above those listed could cause permanent damage to the device. This is a stress rating only and functional operation of the device at any other condition above those indicated in the operation sections of this specification is not implied. Note 3.1 For the 5V tolerant pins that have a pull-up resistor (SMCLK, SMDATA, THERM, and ALERT / THERM2), the pull-up voltage must not exceed 3.6V when the device is unpowered. 3.2 Electrical Specifications Table 3.1 Absolute Maximum Ratings DESCRIPTION RATING UNIT Supply Voltage (VDD) -0.3 to 4.0 V Voltage on 5V tolerant pins (V5VT_pin) -0.3 to 5.5 V Voltage on 5V tolerant pins (|V5VT_pin - VDD|) (see Note 3.1) 0 to 3.6 V Voltage on any other pin to Ground -0.3 to VDD +0.3 V Operating Temperature Range -40 to +125 °C Storage Temperature Range -55 to +150 °C Lead Temperature Range Refer to JEDEC Spec. J-STD-020 Package Thermal Characteristics for TDFN-8 Thermal Resistance (θj-a) 89 °C/W ESD Rating, All pins HBM 2000 V Table 3.2 Electrical Specifications VDD = 3.0V to 3.6V, TA = -40°C to 125°C, all typical values at TA = 27°C unless otherwise noted. CHARACTERISTIC SYMBOL MIN TYP MAX UNITS CONDITIONS DC Power Supply Voltage VDD 3.0 3.3 3.6 V Supply Current IDD 200 410 μA 0.0625 conversion / sec, dynamic averaging disabled 215 425 μA 1 conversion / sec, dynamic averaging disabled Dual Channel 1°C Temperature Sensor with Beta Compensation and 1.8V SMBus Communications Datasheet SMSC EMC1182 11 Revision 1.0 (07-11-13) DATASHEET 325 465 μA 4 conversions / sec, dynamic averaging disabled 890 1050 μA 4 conversions / sec, dynamic averaging enabled 1120 μA > 16 conversions / sec, dynamic averaging enabled Standby Supply Current IDD 170 230 μA Device in Standby mode, no SMBus communications, ALERT and THERM pins not asserted. Internal Temperature Monitor Temperature Accuracy ±0.25 ±1 °C -5°C < TA < 100°C ±2 °C -40°C < TA < 125°C Temperature Resolution 0.125 °C External Temperature Monitor Temperature Accuracy ±0.25 ±1 °C +20°C < TDIODE < +110°C 0°C < TA < 100°C ±0.5 ±2 °C -40°C < TDIODE < 127°C Temperature Resolution 0.125 °C Conversion Time all Channels tCONV 190 ms default settings Capacitive Filter CFILTER 2.2 2.7 nF Connected across external diode ALERT / THERM2 and THERM pins Output Low Voltage VOL 0.4 V ISINK = 8mA Leakage Current ILEAK ±5 μA ALERT / THERM2 and SYS_SHDN pins Device powered or unpowered TA < 85°C pull-up voltage < 3.6V Table 3.2 Electrical Specifications (continued) VDD = 3.0V to 3.6V, TA = -40°C to 125°C, all typical values at TA = 27°C unless otherwise noted. CHARACTERISTIC SYMBOL MIN TYP MAX UNITS CONDITIONS Dual Channel 1°C Temperature Sensor with Beta Compensation and 1.8V SMBus Communications Datasheet Revision 1.0 (07-11-13) 12 SMSC EMC1182 DATASHEET 3.3 SMBus Electrical Characteristics Table 3.3 SMBus Electrical Specifications VDD = 3.0 to 3.6V, TA = -40°C to 125°C, all typical values are at TA = 27°C unless otherwise noted. CHARACTERISTIC SYMBOL MIN TYP MAX UNITS CONDITIONS SMBus Interface Input High Voltage VIH 1.4 VDD V 5V Tolerant. Voltage threshold based on 1.8V operation Input Low Voltage VIL -0.3 0.8 V 5V Tolerant. Voltage threshold based on 1.8V operation Leakage Current ILEAK ±5 μA Powered or unpowered TA < 85°C Hysteresis 50 mV Input Capacitance CIN 5 pF Output Low Sink Current IOL 8.2 15 mA SMDATA = 0.4V SMBus Timing Clock Frequency fSMB 10 400 kHz Spike Suppression tSP 50 ns Bus Free Time Stop to Start tBUF 1.3 μs Hold Time: Start tHD:STA 0.6 μs Setup Time: Start tSU:STA 0.6 μs Setup Time: Stop tSU:STO 0.6 μs Data Hold Time tHD:DAT 0 μs When transmitting to the master Data Hold Time tHD:DAT 0.3 μs When receiving from the master Data Setup Time tSU:DAT 100 ns Clock Low Period tLOW 1.3 μs Clock High Period tHIGH 0.6 μs Clock/Data Fall time tFALL 300 ns Min = 20+0.1CLOAD ns Clock/Data Rise time tRISE 300 ns Min = 20+0.1CLOAD ns Capacitive Load CLOAD 400 pF per bus line Timeout tTIMEOUT 25 35 ms Disabled by default Dual Channel 1°C Temperature Sensor with Beta Compensation and 1.8V SMBus Communications Datasheet SMSC EMC1182 13 Revision 1.0 (07-11-13) DATASHEET Chapter 4 System Management Bus Interface Protocol 4.1 Communications Protocol The EMC1182 communicates with a host controller, such as an SMSC SIO, through the SMBus. The SMBus is a two-wire serial communication protocol between a computer host and its peripheral devices. A detailed timing diagram is shown in Figure 4.1. For the first 15ms after power-up the device may not respond to SMBus communications. . 4.1.1 SMBus Start Bit The SMBus Start bit is defined as a transition of the SMBus Data line from a logic ‘1’ state to a logic ‘0’ state while the SMBus Clock line is in a logic ‘1’ state. 4.1.2 SMBus Address and RD / WR Bit The SMBus Address Byte consists of the 7-bit client address followed by the RD / WR indicator bit. If this RD / WR bit is a logic ‘0’, the SMBus Host is writing data to the client device. If this RD / WR bit is a logic ‘1’, the SMBus Host is reading data from the client device. The EMC1182-A SMBus slave address is determined by the pull-up resistor on the THERM pin as shown in Table 4.1, "SMBus Address Decode". The Address decode is performed by pulling known currents from VDD through the external resistor causing the pin voltage to drop based on the respective current / resistor relationship. This pin voltage is compared against a threshold that determines the value of the pull-up resistor. Figure 4.1 SMBus Timing Diagram Table 4.1 SMBus Address Decode PULL UP RESISTOR ON THERM PIN (±5%) SMBUS ADDRESS 4.7k 1111_100(r/w)b 6.8k 1011_100(r/w)b SMDATA SMCLK TBUF P S S - Start Condition S P - Stop Condition P T LOW T HIGH T HD:STA T SU:STO T HD:STA T HD:DAT T SU:DAT T SU:STA T FALL T RISE Dual Channel 1°C Temperature Sensor with Beta Compensation and 1.8V SMBus Communications Datasheet Revision 1.0 (07-11-13) 14 SMSC EMC1182 DATASHEET The EMC1182-1 SMBus address is hard coded to 1001_100(r/w). The EMC1182-2 SMBus address is hard coded to 1001_101(r/w). 4.1.3 THERM Pin Considerations Because of the decode method used to determine the SMBus Address, it is important that the pull-up resistance on the THERM pin be within the tolerances shown in Table 4.1. Additionally, the pull-up resistor on the THERM pin must be connected to the same 3.3V supply that drives the VDD pin. For 15ms after power up, the THERM pin must not be pulled low or the SMBus address will not be decoded properly. If the system requirements do not permit these conditions, the THERM pin must be isolated from its hard-wired OR’d bus during this time. One method of isolating this pin is shown in Figure 4.4, "Isolating the THERM pin". 4.1.5 SMBus Data Bytes All SMBus Data bytes are sent most significant bit first and composed of 8-bits of information. 4.1.6 SMBus ACK and NACK Bits The SMBus client will acknowledge all data bytes that it receives. This is done by the client device pulling the SMBus data line low after the 8th bit of each byte that is transmitted. This applies to the Write Byte protocol. The Host will NACK (not acknowledge) the last data byte to be received from the client by holding the SMBus data line high after the 8th data bit has been sent. 10k 1001_100(r/w)b 15k 1101_100(r/w)b 22k 0011_100(r/w)b 33k 0111_100(r/w)b Figure 4.4 Isolating the THERM pin Table 4.1 SMBus Address Decode (continued) PULL UP RESISTOR ON THERM PIN (±5%) SMBUS ADDRESS +3.3V Shared THERM 22K 4.7K - 33K +2.5 - 5V EMC1182 8 7 6 5 SMDATA 1 SMCLK 2 3 4 ALERT / ADDR VDD DP DN THERM GND Dual Channel 1°C Temperature Sensor with Beta Compensation and 1.8V SMBus Communications Datasheet SMSC EMC1182 15 Revision 1.0 (07-11-13) DATASHEET 4.1.7 SMBus Stop Bit The SMBus Stop bit is defined as a transition of the SMBus Data line from a logic ‘0’ state to a logic ‘1’ state while the SMBus clock line is in a logic ‘1’ state. When the device detects an SMBus Stop bit and it has been communicating with the SMBus protocol, it will reset its client interface and prepare to receive further communications. 4.1.8 SMBus Timeout The EMC1182 supports SMBus Timeout. If the clock line is held low for longer than tTIMEOUT, the device will reset its SMBus protocol. This function can be enabled by setting the TIMEOUT bit (see Section 6.11, "Consecutive ALERT Register 22h"). 4.1.9 SMBus and I2C Compatibility The EMC1182 is compatible with SMBus and I2C. The major differences between SMBus and I2C devices are highlighted here. For more information, refer to the SMBus 2.0 and I2C specifications. For information on using the EMC1182 in an I2C system, refer to SMSC AN 14.0 SMSC Dedicated Slave Devices in I2C Systems. 1.EMC1182 supports I2C fast mode at 400kHz. This covers the SMBus max time of 100kHz. 2.Minimum frequency for SMBus communications is 10kHz. 3.The SMBus client protocol will reset if the clock is held at a logic ‘0’ for longer than 30ms. This timeout functionality is disabled by default in the EMC1182 and can be enabled by writing to the TIMEOUT bit. I2C does not have a timeout. 4.I2C devices do not support the Alert Response Address functionality (which is optional for SMBus). Attempting to communicate with the EMC1182 SMBus interface with an invalid slave address or invalid protocol will result in no response from the device and will not affect its register contents. Stretching of the SMCLK signal is supported, provided other devices on the SMBus control the timing. 4.2 SMBus Protocols The device supports Send Byte, Read Byte, Write Byte, Receive Byte, and the Alert Response Address as valid protocols as shown below. All of the below protocols use the convention in Table 4.1. Table 4.1 Protocol Format DATA SENT TO DEVICE DATA SENT TO THE HOST # of bits sent # of bits sent Dual Channel 1°C Temperature Sensor with Beta Compensation and 1.8V SMBus Communications Datasheet Revision 1.0 (07-11-13) 16 SMSC EMC1182 DATASHEET 4.2.1 Write Byte The Write Byte is used to write one byte of data to the registers, as shown in Table 4.2. 4.2.2 Read Byte The Read Byte protocol is used to read one byte of data from the registers as shown in Table 4.3. 4.2.3 Send Byte The Send Byte protocol is used to set the internal address register pointer to the correct address location. No data is transferred during the Send Byte protocol as shown in Table 4.4. 4.2.4 Receive Byte The Receive Byte protocol is used to read data from a register when the internal register address pointer is known to be at the right location (e.g. set via Send Byte). This is used for consecutive reads of the same register as shown in Table 4.5. Table 4.2 Write Byte Protocol START SLAVE ADDRESS WR ACK REGISTER ADDRESS ACK REGISTER DATA ACK STOP 1 -> 0 YYYY_YYY 0 0 XXh 0 XXh 0 0 -> 1 Table 4.3 Read Byte Protocol START SLAVE ADDRESS WR ACK REGISTER ADDRESS ACK START SLAVE ADDRESS RD ACK REGISTER DATA NACK STOP 1 -> 0 YYYY_ YYY 0 0 XXh 0 1 -> 0 YYYY_ YYY 1 0 XX 1 0 -> 1 Table 4.4 Send Byte Protocol START SLAVE ADDRESS WR ACK REGISTER ADDRESS ACK STOP 1 -> 0 YYYY_YYY 0 0 XXh 0 0 -> 1 Table 4.5 Receive Byte Protocol START SLAVE ADDRESS RD ACK REGISTER DATA NACK STOP 1 -> 0 YYYY_YYY 1 0 XXh 1 0 -> 1 Dual Channel 1°C Temperature Sensor with Beta Compensation and 1.8V SMBus Communications Datasheet SMSC EMC1182 17 Revision 1.0 (07-11-13) DATASHEET 4.3 Alert Response Address The ALERT output can be used as a processor interrupt or as an SMBus Alert. When it detects that the ALERT pin is asserted, the host will send the Alert Response Address (ARA) to the general address of 0001_100xb. All devices with active interrupts will respond with their client address as shown in Table 4.6. The EMC1182 will respond to the ARA in the following way: 1.Send Slave Address and verify that full slave address was sent (i.e. the SMBus communication from the device was not prematurely stopped due to a bus contention event). 2.Set the MASK_ALL bit to clear the ALERT pin. APPLICATION NOTE: The ARA does not clear the Status Register and if the MASK_ALL bit is cleared prior to the Status Register being cleared, the ALERT pin will be reasserted. Table 4.6 Alert Response Address Protocol START ALERT RESPONSE ADDRESS RD ACK DEVICE ADDRESS NACK STOP 1 -> 0 0001_100 1 0 YYYY_YYY 1 0 -> 1 Dual Channel 1°C Temperature Sensor with Beta Compensation and 1.8V SMBus Communications Datasheet Revision 1.0 (07-11-13) 18 SMSC EMC1182 DATASHEET Chapter 5 Product Description The is an SMBus temperature sensor. The EMC1182 monitors one internal diode and one externally connected temperature diode. Thermal management is performed in cooperation with a host device. This consists of the host reading the temperature data of both the external and internal temperature diodes of the EMC1182 and using that data to control the speed of one or more fans. The EMC1182 has two levels of monitoring. The first provides a maskable ALERT / THERM2 signal to the host when the measured temperatures exceeds user programmable limits. This allows theEMC1182 to be used as an independent thermal watchdog to warn the host of temperature hot spots without direct control by the host. The second level of monitoring provides a non-maskable interrupt on the THERM pin if the measured temperatures meet or exceed a second programmable limit. Figure 5.1 shows a system level block diagram of the EMC1182. 5.1 Modes of Operation The EMC1182 has two modes of operation.  Active (Run) - In this mode of operation, the ADC is converting on all temperature channels at the programmed conversion rate. The temperature data is updated at the end of every conversion and the limits are checked. In Active mode, writing to the one-shot register will do nothing.  Standby (Stop) - In this mode of operation, the majority of circuitry is powered down to reduce supply current. The temperature data is not updated and the limits are not checked. In this mode of operation, the SMBus is fully active and the part will return requested data. Writing to the oneshot register will enable the device to update all temperature channels. Once all the channels are updated, the device will return to the Standby mode. Figure 5.1 System Diagram for EMC1182 CPU / GPU EMC1182 Host DP DN SMDATA Thermal Junction SMCLK SMBus Interface THERM / ADDR ALERT / THERM2 Power Control VDD GND VDD = 3.3V 1.8V 1.8V – 3.3V Dual Channel 1°C Temperature Sensor with Beta Compensation and 1.8V SMBus Communications Datasheet SMSC EMC1182 19 Revision 1.0 (07-11-13) DATASHEET 5.2 Conversion Rates The EMC1182 may be configured for different conversion rates based on the system requirements.The conversion rate is configured as described in Section 6.5. The default conversion rate is 4 conversions per second. Other available conversion rates are shown in Table 6.6, "Conversion Rate". 5.3 Dynamic Averaging Dynamic averaging causes the EMC1182 to measure the external diode channels for an extended time based on the selected conversion rate. This functionality can be disabled for increased power savings at the lower conversion rates (see Section 6.4, "Configuration Register 03h / 09h"). When dynamic averaging is enabled, the device will automatically adjust the sampling and measurement time for the external diode channels. This allows the device to average 2x or 16x longer than the normal 11 bit operation (nominally 21ms per channel) while still maintaining the selected conversion rate. The benefits of dynamic averaging are improved noise rejection due to the longer integration time as well as less random variation of the temperature measurement. When enabled, the dynamic averaging applies when a one-shot command is issued. The device will perform the desired averaging during the one-shot operation according to the selected conversion rate. When enabled, the dynamic averaging will affect the average supply current based on the chosen conversion rate as shown in Table 5.1. 5.4 THERM Output The THERM output is asserted independently of the ALERT output and cannot be masked. Whenever any of the measured temperatures exceed the user programmed Therm Limit values for the programmed number of consecutive measurements, the THERM output is asserted. Once it has been asserted, it will remain asserted until all measured temperatures drop below the Therm Limit minus the Therm Hysteresis (also programmable). Table 5.1 Supply Current vs. Conversion Rate for EMC1182 CONVERSION RATE AVERAGE SUPPLY CURRENT (TYPICAL) AVERAGING FACTOR (BASED ON 11-BIT OPERATION) ENABLED (DEFAULT) DISABLED ENABLED (DEFAULT) DISABLED 1 / 16 sec 210uA 200uA 16x 1x 1 / 8 sec 265uA 200uA 16x 1x 1 / 4 sec 330uA 200uA 16x 1x 1 / 2 sec 395uA 200uA 16x 1x 1 / sec 460uA 215uA 16x 1x 4 / sec (default) 890uA 325uA 8x 1x 8 / sec 1010uA 630uA 4x 1x 16 / sec 1120uA 775uA 2x 1x 32 / sec 1200uA 1050uA 1x 1x 64 / sec 1400uA 1100uA 0.5x 0.5x Dual Channel 1°C Temperature Sensor with Beta Compensation and 1.8V SMBus Communications Datasheet Revision 1.0 (07-11-13) 20 SMSC EMC1182 DATASHEET When the THERM pin is asserted, the THERM status bits will likewise be set. Reading these bits will not clear them until the THERM pin is deasserted. Once the THERM pin is deasserted, the THERM status bits will be automatically cleared. 5.4.1 THERM Pin Considerations Because of the decode method used to determine the SMBus Address, it is important that the pull-up resistance on THERM pin be within ±10% tolerance. Additionally, the pull-up resistor on the THERMpin must be connected to the same 3.3V supply that drives the VDD pin. For 15ms after power up, the THERM pin must not be pulled low or the SMBus Address will not be decoded properly. If the system requirements do not permit these conditions, the THERM pin must be isolated from the bus during this time. One method of isolating this pin is shown in Figure 5.2. . 5.5 ALERT / THERM2 Output The ALERT / THERM2 pin is an open drain output and requires a pull-up resistor to VDD and has two modes of operation: interrupt mode and comparator mode. The mode of the ALERT / THERM2 output is selected via the ALERT / COMPALERT/THERM bit in the Configuration Register (see Section 6.4). 5.5.1 ALERT / THERM2 Pin InterruptALERT Mode When configured to operate in interrupt mode, the ALERT / THERM2 pin asserts low when an out of limit measurement (> high limit or < low limit) is detected on any diode or when a diode fault is detected, functioning as any standard ALERT in on the SMBus. The ALERT / THERM2 pin will remain asserted as long as an out-of-limit condition remains. Once the out-of-limit condition has been removed, the ALERT / THERM2 pin will remain asserted until the appropriate status bits are cleared. The ALERT/ THERM2 pin can be masked by setting the MASK_ALL bit. Once the ALERT / THERM2pin has been masked, it will be de-asserted and remain de-asserted until the MASK_ALL bit is cleared by the user. Any interrupt conditions that occur while the ALERT / THERM2 pin is masked will update the Status Register normally. There are also individual channel masks (see Section 6.10). The ALERT / THERM2 pin is used as an interrupt signal or as an SMBus Alert signal that allows an SMBus slave to communicate an error condition to the master. One or more ALERT / THERM2 outputs can be hard-wired together. 5.5.2 ALERT / THERM2 Pin ComparatorTHERM Mode When the ALERT / THERM2 pin is configured to operate in comparator mode, it will be asserted if any of the measured temperatures exceeds the respective high limit, acting as a second THERM function Figure 5.2 Isolating THERM Pin EMC1182 SMDATA SMCLK ALERT VDD DP DN THERM / ADDR GND 1 2 3 4 8 7 6 5 +3.3V Shared THERM 22 K 4.73K3 - K +2.5 - 5V Dual Channel 1°C Temperature Sensor with Beta Compensation and 1.8V SMBus Communications Datasheet SMSC EMC1182 21 Revision 1.0 (07-11-13) DATASHEET in. The ALERT / THERM2 pin will remain asserted until all temperatures drop below the corresponding high limit minus the Therm Hysteresis value. When the ALERT / THERM2 pin is asserted in comparator mode, the corresponding high limit status bits will be set. Reading these bits will not clear them until the ALERT / THERM2 pin is deasserted. Once the ALERT pin is deasserted, the status bits will be automatically cleared. The MASK_ALL bit will not block the ALERT / THERM2 pin in this mode; however, the individual channel masks (see Section 6.10) will prevent the respective channel from asserting the ALERT/ THERM2 pin. 5.6 Temperature Measurement The EMC1182 can monitor the temperature of one externally connected diode. The device contains programmable High, Low, and Therm limits for all measured temperature channels. If the measured temperature goes below the Low limit or above the High limit, the ALERTpin can be asserted (based on user settings). If the measured temperature meets or exceeds the Therm Limit, the THERM pin is asserted unconditionally, providing two tiers of temperature detection. 5.6.1 Beta Compensation The EMC1182 is configured to monitor the temperature of basic diodes (e.g., 2N3904) or CPU thermal diodes. For External Diode 1, it automatically detects the type of external diode (CPU diode or diode connected transistor) and determines the optimal setting to reduce temperature errors introduced by beta variation. Compensating for this error is also known as implementing the transistor or BJT model for temperature measurement. For discrete transistors configured with the collector and base shorted together, the beta is generally sufficiently high such that the percent change in beta variation is very small. For example, a 10% variation in beta for two forced emitter currents with a transistor whose ideal beta is 50 would contribute approximately 0.25°C error at 100°C. However for substrate transistors where the base-emitter junction is used for temperature measurement and the collector is tied to the substrate, the proportional beta variation will cause large error. For example, a 10% variation in beta for two forced emitter currents with a transistor whose ideal beta is 0.5 would contribute approximately 8.25°C error at 100°C. 5.6.2 Resistance Error Correction (REC) Parasitic resistance in series with the external diodes will limit the accuracy obtainable from temperature measurement devices. The voltage developed across this resistance by the switching diode currents cause the temperature measurement to read higher than the true temperature. Contributors to series resistance are PCB trace resistance, on die (i.e. on the processor) metal resistance, bulk resistance in the base and emitter of the temperature transistor. Typically, the error caused by series resistance is +0.7°C per ohm. The EMC1182 automatically corrects up to 100 ohms of series resistance. 5.6.3 Programmable External Diode Ideality Factor The EMC1182 is designed for external diodes with an ideality factor of 1.008. Not all external diodes, processor or discrete, will have this exact value. This variation of the ideality factor introduces error in the temperature measurement which must be corrected for. This correction is typically done using programmable offset registers. Since an ideality factor mismatch introduces an error that is a function of temperature, this correction is only accurate within a small range of temperatures. To provide maximum flexibility to the user, the EMC1182 provides a 6-bit register for each external diode where the ideality factor of the diode used is programmed to eliminate errors across all temperatures. Dual Channel 1°C Temperature Sensor with Beta Compensation and 1.8V SMBus Communications Datasheet Revision 1.0 (07-11-13) 22 SMSC EMC1182 DATASHEET APPLICATION NOTE: When monitoring a substrate transistor or CPU diode and beta compensation is enabled, the Ideality Factor should not be adjusted. Beta Compensation automatically corrects for most ideality errors. 5.7 Diode Faults The EMC1182 detects an open on the DP and DN pins, and a short across the DP and DN pins. For each temperature measurement made, the device checks for a diode fault on the external diode channel(s). When a diode fault is detected, the ALERT / THERM2 pin asserts (unless masked, see Section 5.8) and the temperature data reads 00h in the MSB and LSB registers (note: the low limit will not be checked). A diode fault is defined as one of the following: an open between DP and DN, a short from VDD to DP, or a short from VDD to DN. If a short occurs across DP and DN or a short occurs from DP to GND, the low limit status bit is set and the ALERT / THERM2 pin asserts (unless masked). This condition is indistinguishable from a temperature measurement of 0.000°C (-64°C in extended range) resulting in temperature data of 00h in the MSB and LSB registers. If a short from DN to GND occurs (with a diode connected), temperature measurements will continue as normal with no alerts. 5.8 Consecutive Alerts The EMC1182 contains multiple consecutive alert counters. One set of counters applies to the ALERT / THERM2 pin and the second set of counters applies to the THERM pin. Each temperature measurement channel has a separate consecutive alert counter for each of the ALERT / THERM2 and THERM pins. All counters are user programmable and determine the number of consecutive measurements that a temperature channel(s) must be out-of-limit or reporting a diode fault before the corresponding pin is asserted. See Section 6.11, "Consecutive ALERT Register 22h" for more details on the consecutive alert function. 5.9 Digital Filter To reduce the effect of noise and temperature spikes on the reported temperature, the External Diodechannel uses a programmable digital filter. This filter can be configured as Level 1, Level 2, or Disabled (default) (see Section 6.14). The typical filter performance is shown in Figure 5.4 and Figure 5.5. Dual Channel 1°C Temperature Sensor with Beta Compensation and 1.8V SMBus Communications Datasheet SMSC EMC1182 23 Revision 1.0 (07-11-13) DATASHEET Figure 5.4 Temperature Filter Step Response Figure 5.5 Temperature Filter Impulse Response Filter Step Response 0 10 20 30 40 50 60 70 80 90 0 2 4 6 8 10 12 14 Samples Temperature (C) Disabled Level1 Level2 Filter Impulse Response 0 10 20 30 40 50 60 70 80 90 0 2 4 6 8 10 12 14 Samples Temperature (C) Disabled Level1 Level2 Dual Channel 1°C Temperature Sensor with Beta Compensation and 1.8V SMBus Communications Datasheet Revision 1.0 (07-11-13) 24 SMSC EMC1182 DATASHEET 5.10 Temperature Measurement Results and Data The temperature measurement results are stored in the internal and external temperature registers. These are then compared with the values stored in the high and low limit registers. Both external and internal temperature measurements are stored in 11-bit format with the eight (8) most significant bits stored in a high byte register and the three (3) least significant bits stored in the three (3) MSB positions of the low byte register. All other bits of the low byte register are set to zero. The EMC1182 has two selectable temperature ranges. The default range is from 0°C to +127°C and the temperature is represented as binary number able to report a temperature from 0°C to +127.875°C in 0.125°C steps. The extended range is an extended temperature range from -64°C to +191°C. The data format is a binary number offset by 64°C. The extended range is used to measure temperature diodes with a large known offset (such as AMD processor diodes) where the diode temperature plus the offset would be equivalent to a temperature higher than +127°C. Table 5.2 shows the default and extended range formats. Table 5.2 Temperature Data Format TEMPERATURE (°C) DEFAULT RANGE 0°C TO 127°C EXTENDED RANGE -64°C TO 191°C Diode Fault 000 0000 0000 000 0000 0000 -64 000 0000 0000 000 0000 0000 -1 000 0000 0000 001 1111 1000 0 000 0000 0000 010 0000 0000 0.125 000 0000 0001 010 0000 0001 1 000 0000 1000 010 0000 1000 64 010 0000 0000 100 0000 0000 65 010 0000 1000 100 0000 1000 127 011 1111 1000 101 1111 1000 127.875 011 1111 1111 101 1111 1111 128 011 1111 1111 110 0000 0000 190 011 1111 1111 111 1111 0000 191 011 1111 1111 111 1111 1000 >= 191.875 011 1111 1111 111 1111 1111 Dual Channel 1°C Temperature Sensor with Beta Compensation and 1.8V SMBus Communications Datasheet SMSC EMC1182 25 Revision 1.0 (07-11-13) DATASHEET Chapter 6 Register Description The registers shown in Table 6.1 are accessible through the SMBus. An entry of ‘-’ indicates that the bit is not used and will always read ‘0’. Table 6.1 Register Set in Hexadecimal Order REGISTER ADDRESS R/W REGISTER NAME FUNCTION DEFAULT VALUE PAGE 00h R Internal Diode Data High Byte Stores the integer data for the Internal Diode 00h Page 27 01h R External Diode Data High Byte Stores the integer data for the External Diode 00h 02h R-C Status Stores status bits for the Internal Diode and External Diode 00h Page 28 03h R/W Configuration Controls the general operation of the device (mirrored at address 09h) 00h Page 28 04h R/W Conversion Rate Controls the conversion rate for updating temperature data (mirrored at address 0Ah) 06h (4/sec) Page 29 05h R/W Internal Diode High Limit Stores the 8-bit high limit for the Internal Diode (mirrored at address 0Bh) 55h (85°C) Page 30 06h R/W Internal Diode Low Limit Stores the 8-bit low limit for the Internal Diode (mirrored at address 0Ch) 00h (0°C) 07h R/W External Diode High Limit High Byte Stores the integer portion of the high limit for the External Diode (mirrored at register 0Dh) 55h (85°C) 08h R/W External Diode Low Limit High Byte Stores the integer portion of the low limit for the External Diode (mirrored at register 0Eh) 00h (0°C) 09h R/W Configuration Controls the general operation of the device (mirrored at address 03h) 00h Page 28 0Ah R/W Conversion Rate Controls the conversion rate for updating temperature data (mirrored at address 04h) 06h (4/sec) Page 29 Dual Channel 1°C Temperature Sensor with Beta Compensation and 1.8V SMBus Communications Datasheet Revision 1.0 (07-11-13) 26 SMSC EMC1182 DATASHEET 0Bh R/W Internal Diode High Limit Stores the 8-bit high limit for the Internal Diode (mirrored at address 05h) 55h (85°C) Page 30 0Ch R/W Internal Diode Low Limit Stores the 8-bit low limit for the Internal Diode (mirrored at address 06h) 00h (0°C) 0Dh R/W External Diode High Limit High Byte Stores the integer portion of the high limit for the External Diode (mirrored at register 07h) 55h (85°C) 0Eh R/W External Diode Low Limit High Byte Stores the integer portion of the low limit for the External Diode (mirrored at register 08h) 00h (0°C) 0Fh W One Shot A write to this register initiates a one shot update. 00h Page 31 10h R External Diode Data Low Byte Stores the fractional data for the External Diode 00h Page 27 11h R/W Scratchpad Scratchpad register for software compatibility 00h Page 31 12h R/W Scratchpad Scratchpad register for software compatibility 00h Page 31 13h R/W External Diode High Limit Low Byte Stores the fractional portion of the high limit for the External Diode 00h Page 30 14h R/W External Diode Low Limit Low Byte Stores the fractional portion of the low limit for the External Diode 00h 19h R/W External Diode Therm Limit Stores the 8-bit critical temperature limit for the External Diode 55h (85°C) Page 32 1Fh R/W Channel Mask Register Controls the masking of individual channels 00h Page 32 20h R/W Internal Diode Therm Limit Stores the 8-bit critical temperature limit for the Internal Diode 55h (85°C Page 32 21h R/W Therm Hysteresis Stores the 8-bit hysteresis value that applies to all Therm limits 0Ah (10°C) 22h R/W Consecutive ALERT Controls the number of out-of-limit conditions that must occur before an interrupt is asserted 70h Page 33 25h R/W External Diode1 Beta Configuration Stores the Beta Compensation circuitry settings for External Diode1 08h Page 35 27h R/W External Diode Ideality Factor Stores the ideality factor for the External Diode 12h (1.008) Page 35 Table 6.1 Register Set in Hexadecimal Order (continued) REGISTER ADDRESS R/W REGISTER NAME FUNCTION DEFAULT VALUE PAGE Dual Channel 1°C Temperature Sensor with Beta Compensation and 1.8V SMBus Communications Datasheet SMSC EMC1182 27 Revision 1.0 (07-11-13) DATASHEET 6.1 Data Read Interlock When any temperature channel high byte register is read, the corresponding low byte is copied into an internal ‘shadow’ register. The user is free to read the low byte at any time and be guaranteed that it will correspond to the previously read high byte. Regardless if the low byte is read or not, reading from the same high byte register again will automatically refresh this stored low byte data. 6.2 Temperature Data Registers As shown in Table 6.2, all temperatures are stored as an 11-bit value with the high byte representing the integer value and the low byte representing the fractional value left justified to occupy the MSBits. 29h R Internal Diode Data Low Byte Stores the fractional data for the Internal Diode 00h Page 27 40h R/W Filter Control Controls the digital filter setting for the External Diode channel 00h Page 37 FDh R Product ID Stores a fixed value that identifies the device 20h Page 37 FEh R Manufacturer ID Stores a fixed value that represents SMSC 5Dh Page 37 FFh R Revision Stores a fixed value that represents the revision number 07h Page 38 Table 6.2 Temperature Data Registers ADDR R/W REGISTER B7 B6 B5 B4 B3 B2 B1 B0 DEFAULT 00h R Internal Diode High Byte 128 64 32 16 8 4 2 1 00h 29h R Internal Diode Low Byte 0.5 0.25 0.125 - - - - - 00h 01h R External Diode High Byte 128 64 32 16 8 4 2 1 00h 10h R External Diode Low Byte 0.5 0.25 0.125 - - - - - 00h Table 6.1 Register Set in Hexadecimal Order (continued) REGISTER ADDRESS R/W REGISTER NAME FUNCTION DEFAULT VALUE PAGE Dual Channel 1°C Temperature Sensor with Beta Compensation and 1.8V SMBus Communications Datasheet Revision 1.0 (07-11-13) 28 SMSC EMC1182 DATASHEET 6.3 Status Register 02h The Status Register reports the operating status of the Internal Diode and External Diode channels. When any of the bits are set (excluding the BUSY bit) either the ALERT / THERM2 or THERM pin is being asserted. The ALERT / THERM2 and THERM pins are controlled by the respective consecutive alert counters (see Section 6.11) and will not be asserted until the programmed consecutive alert count has been reached. The status bits (except ETHERM and ITHERM) will remain set until read unless the ALERTpin is configured as a second THERM output (see Section 5.4). Bit 7 - BUSY - This bit indicates that the ADC is currently converting. This bit does not cause either the ALERT / THERM2 or THERM pin to be asserted. Bit 6 - IHIGH - This bit is set when the Internal Diode channel exceeds its programmed high limit. When set, this bit will assert the ALERT / THERM2 pin. Bit 5 - ILOW - This bit is set when the Internal Diode channel drops below its programmed low limit. When set, this bit will assert the ALERT / THERM2 pin. Bit 4 - EHIGH - This bit is set when the External Diode channel exceeds its programmed high limit. When set, this bit will assert the ALERT / THERM2 pin. Bit 3 - ELOW - This bit is set when the External Diode channel drops below its programmed low limit. When set, this bit will assert the ALERT / THERM2 pin. Bit 2 - FAULT - This bit is asserted when a diode fault is detected. When set, this bit will assert the ALERT / THERM2 pin. Bit 1 - ETHERM - This bit is set when the External Diode channel exceeds the programmed Therm Limit. When set, this bit will assert the THERM pin. This bit will remain set until the THERM pin is released at which point it will be automatically cleared. Bit 0 - ITHERM - This bit is set when the Internal Diode channel exceeds the programmed Therm Limit. When set, this bit will assert the THERM pin. This bit will remain set until the THERM pin is released at which point it will be automatically cleared. 6.4 Configuration Register 03h / 09h The Configuration Register controls the basic operation of the device. This register is fully accessible at either address. Table 6.3 Status Register ADDR R/W REGISTER B7 B6 B5 B4 B3 B2 B1 B0 DEFAULT 02h R-C Status BUSY IHIGH ILOW EHIGH ELOW FAULT ETHERM ITHERM 00h Table 6.4 Configuration Register ADDR R/W REGISTER B7 B6 B5 B4 B3 B2 B1 B0 DEFAULT 03h R/W Configuration MASK_ ALL RUN/ STOP ALERT/ THERM2 RECD - RANGE DAVG_ DIS - 00h 09h Dual Channel 1°C Temperature Sensor with Beta Compensation and 1.8V SMBus Communications Datasheet SMSC EMC1182 29 Revision 1.0 (07-11-13) DATASHEET Bit 7 - MASK_ALL - Masks the ALERT / THERM2 pin from asserting.  ‘0’ - (default) - The ALERT / THERM2 pin is not masked. If any of the appropriate status bits are set the ALERT / THERM2 pin will be asserted.  ‘1’ - The ALERT/ THERM2 pin is masked. It will not be asserted for any interrupt condition unless it is configured in comparator mode. The Status Registers will be updated normally. Bit 6 - RUN / STOP - Controls Active/Standby modes.  ‘0’ (default) - The device is in Active mode and converting on all channels.  ‘1’ - The device is in Standby mode and not converting. Bit 5 - ALERT/THERM2 - Controls the operation of the ALERT / THERM2 pin.  ‘0’ (default) - The ALERT / THERM2 acts as an Alert pin and has interrupt behavior as described in Section 5.5.1.  ‘1’ - The ALERT / THERM2 acts as a THERM pin and has comparator behavior as described in Section 5.5.2. In this mode the MASK_ALL bit is ignored. Bit 4 - RECD - Disables the Resistance Error Correction (REC) for the External Diode.  ‘0’ (default) - REC is enabled for the External Diode.  ‘1’ - REC is disabled for the External Diode. Bit 2 - RANGE - Configures the measurement range and data format of the temperature channels.  ‘0’ (default) - The temperature measurement range is 0°C to +127.875°C and the data format is binary.  ‘1’ -The temperature measurement range is -64°C to +191.875°C and the data format is offset binary (see Table 5.2). Bit 1 - DAVG_DIS - Disables the dynamic averaging feature on all temperature channels.  ‘0’ (default) - The dynamic averaging feature is enabled. All temperature channels will be converted with an averaging factor that is based on the conversion rate as shown in Table 6.6.  ‘1’ - The dynamic averaging feature is disabled. All temperature channels will be converted with a maximum averaging factor of 1x (equivalent to 11-bit conversion). For higher conversion rates, this averaging factor will be reduced as shown in Table 6.6. 6.5 Conversion Rate Register 04h / 0Ah The Conversion Rate Register controls how often the temperature measurement channels are updated and compared against the limits. This register is fully accessible at either address. Bits 3-0 - CONV[3:0] - Determines the conversion rate as shown in Table 6.6. Table 6.5 Conversion Rate Register ADDR R/W REGISTER B7 B6 B5 B4 B3 B2 B1 B0 DEFAULT 04h R/W Conversion Rate - - - - CONV[3:0] 06h 0Ah (4/sec) Dual Channel 1°C Temperature Sensor with Beta Compensation and 1.8V SMBus Communications Datasheet Revision 1.0 (07-11-13) 30 SMSC EMC1182 DATASHEET 6.6 Limit Registers Table 6.6 Conversion Rate CONV[3:0] HEX 3 2 1 0 CONVERSIONS / SECOND 0h 0 0 0 0 / 16 1h 0 0 0 1 1 / 8 2h 0 0 1 0 1 / 4 3h 0 0 1 1 1 / 21 4h 0 1 0 0 1 5h 0 1 0 1 2 6h 0 1 1 0 4 (default) 7h 0 1 1 1 8 8h 1 0 0 0 16 9h 1 0 0 1 32 Ah 1 0 1 0 64 Bh - Fh All others 1 Table 6.7 Temperature Limit Registers ADDR. R/W REGISTER B7 B6 B5 B4 B3 B2 B1 B0 DEFAULT 05h R/W Internal Diode High Limit 128 64 32 16 8 4 2 1 55h 0Bh (85°C) 06h R/W Internal Diode Low Limit 128 64 32 16 8 4 2 1 00h 0Ch (0°C) 07h R/W External Diode High Limit High Byte 128 64 32 16 8 4 2 1 55h 0Dh (85°C) 13h R/W External Diode High Limit Low Byte 0.5 0.25 0.125 - - - - - 00h Dual Channel 1°C Temperature Sensor with Beta Compensation and 1.8V SMBus Communications Datasheet SMSC EMC1182 31 Revision 1.0 (07-11-13) DATASHEET The device contains both high and low limits for all temperature channels. If the measured temperature exceeds the high limit, then the corresponding status bit is set and the ALERT / THERM2 pin is asserted. Likewise, if the measured temperature is less than or equal to the low limit, the corresponding status bit is set and the ALERT / THERM2 pin is asserted. The data format for the limits must match the selected data format for the temperature so that if the extended temperature range is used, the limits must be programmed in the extended data format. The limit registers with multiple addresses are fully accessible at either address. When the device is in Standby mode, updating the limit registers will have no effect until the next conversion cycle occurs. This can be initiated via a write to the One Shot Register (see Section 6.8, "One Shot Register 0Fh") or by clearing the RUN / STOP bit (see Section 6.4, "Configuration Register 03h / 09h"). 6.7 Scratchpad Registers 11h and 12h The Scratchpad Registers are Read / Write registers that are used for place holders to be software compatible with legacy programs. Reading from the registers will return what is written to them. 6.8 One Shot Register 0Fh The One Shot Register is used to initiate a one shot command. Writing to the one shot register when the device is in Standby mode and BUSY bit (in Status Register) is ‘0’, will immediately cause the ADC to update all temperature measurements. Writing to the One Shot Register while the device is in Active mode will have no effect. 08h R/W External Diode Low Limit High Byte 128 64 32 16 8 4 2 1 00h 0Eh (0°C) 14h R/W External Diode Low Limit Low Byte 0.5 0.25 0.125 - - - - - 00h Table 6.8 Scratchpad Register ADDR R/W REGISTER B7 B6 B5 B4 B3 B2 B1 B0 DEFAULT 11h R/W Scratchpad 7 6 5 4 3 2 1 0 00h 12h R/W Scratchpad 7 6 5 4 3 2 1 0 00h Table 6.7 Temperature Limit Registers (continued) ADDR. R/W REGISTER B7 B6 B5 B4 B3 B2 B1 B0 DEFAULT Dual Channel 1°C Temperature Sensor with Beta Compensation and 1.8V SMBus Communications Datasheet Revision 1.0 (07-11-13) 32 SMSC EMC1182 DATASHEET 6.9 Therm Limit Registers The Therm Limit Registers are used to determine whether a critical thermal event has occurred. If the measured temperature exceeds the Therm Limit, the THERM pin is asserted. The limit setting must match the chosen data format of the temperature reading registers. Unlike the ALERT / THERM2 pin, the THERM pin cannot be masked. Additionally, the THERM pin will be released once the temperature drops below the corresponding threshold minus the Therm Hysteresis. 6.10 Channel Mask Register 1Fh The Channel Mask Register controls individual channel masking. When a channel is masked, the ALERT / THERM2 pin will not be asserted when the masked channel reads a diode fault or out of limit error. The channel mask does not mask the THERM pin. Bit 1 - EXTMASK - Masks the ALERT / THERM2 pin from asserting when the External Diode channel is out of limit or reports a diode fault.  ‘0’ (default) - The External Diode channel will cause the ALERT / THERM2 pin to be asserted if it is out of limit or reports a diode fault.  ‘1’ - The External Diode channel will not cause the ALERT / THERM2 pin to be asserted if it is out of limit or reports a diode fault. Bit 0 - INTMASK - Masks the ALERT / THERM2 pin from asserting when the Internal Diode temperature is out of limit.  ‘0’ (default) - The Internal Diode channel will cause the ALERT / THERM2 pin to be asserted if it is out of limit.  ‘1’ - The Internal Diode channel will not cause the ALERT / THERM2 pin to be asserted if it is out of limit. Table 6.9 Therm Limit Registers ADDR. R/W REGISTER B7 B6 B5 B4 B3 B2 B1 B0 DEFAULT 19h R/W External Diode Therm Limit 128 64 32 16 8 4 2 1 55h (85°C) 20h R/W Internal Diode Therm Limit 128 64 32 16 8 4 2 1 55h (85°C) 21h R/W Therm Hysteresis 128 64 32 16 8 4 2 1 0Ah (10°C) Table 6.10 Channel Mask Register ADDR. R/W REGISTER B7 B6 B5 B4 B3 B2 B1 B0 DEFAULT 1Fh R/W Channel Mask - - - - - - EXT MASK INT MASK 00h Dual Channel 1°C Temperature Sensor with Beta Compensation and 1.8V SMBus Communications Datasheet SMSC EMC1182 33 Revision 1.0 (07-11-13) DATASHEET 6.11 Consecutive ALERT Register 22h The Consecutive ALERT Register determines how many times an out-of-limit error or diode fault must be detected in consecutive measurements before the ALERT / THERM2 or THERM pin is asserted. Additionally, the Consecutive ALERT Register controls the SMBus Timeout functionality. An out-of-limit condition (i.e. HIGH, LOW, or FAULT) occurring on the same temperature channel in consecutive measurements will increment the consecutive alert counter. The counters will also be reset if no out-of-limit condition or diode fault condition occurs in a consecutive reading. When the ALERT / THERM2 pin is configured as an interrupt, when the consecutive alert counter reaches its programmed value, the following will occur: the STATUS bit(s) for that channel and the last error condition(s) (i.e. EHIGH) will be set to ‘1’, the ALERT / THERM2 pin will be asserted, the consecutive alert counter will be cleared, and measurements will continue. When the ALERT / THERM2 pin is configured as a comparator, the consecutive alert counter will ignore diode fault and low limit errors and only increment if the measured temperature exceeds the High Limit. Additionally, once the consecutive alert counter reaches the programmed limit, the ALERT/ THERM2 pin will be asserted, but the counter will not be reset. It will remain set until the temperature drops below the High Limit minus the Therm Hysteresis value. For example, if the CALRT[2:0] bits are set for 4 consecutive alerts on an EMC1182 device, the high limits are set at 70°C, and none of the channels are masked, the ALERT / THERM2 pin will be asserted after the following four measurements: 1.Internal Diode reads 71°C and the external diode reads 69°C. Consecutive alert counter for INT is incremented to 1. 2.Both the Internal Diode and the External Diode read 71°C. Consecutive alert counter for INT is incremented to 2 and for EXT is set to 1. 3.The External Diode reads 71°C and the Internal Diode reads 69°C. Consecutive alert counter for INT is cleared and EXT is incremented to 2. 4.The Internal Diode reads 71°C and the external diode reads 71°C. Consecutive alert counter for INT is set to 1 and EXT is incremented to 3. 5.The Internal Diode reads 71°C and the external diode reads 71°C. Consecutive alert counter for INT is incremented to 2 and EXT is incremented to 4. The appropriate status bits are set for EXTand the ALERT / THERM2 pin is asserted. EXT counter is reset to 0 and all other counters hold the last value until the next temperature measurement. Bit 7 - TIMEOUT - Determines whether the SMBus Timeout function is enabled.  ‘0’ (default) - The SMBus Timeout feature is disabled. The SMCLK line can be held low indefinitely without the device resetting its SMBus protocol.  ‘1’ - The SMBus Timeout feature is enabled. If the SMCLK line is held low for more than tTIMEOUT, the device will reset the SMBus protocol. Bits 6-4 CTHRM[2:0] - Determines the number of consecutive measurements that must exceed the corresponding Therm Limit and Hardware Thermal Shutdown Limit before the SYS_SHDN pin is asserted. All temperature channels use this value to set the respective counters. The consecutive THERM counter is incremented whenever any of the measurements exceed the corresponding Therm Limit or if the External Diode measurement exceeds the Hardware Thermal Shutdown Limit. Table 6.11 Consecutive ALERT Register ADDR. R/W REGISTER B7 B6 B5 B4 B3 B2 B1 B0 DEFAULT 22h R/W Consecutive ALERT TIME OUT CTHRM[2:0] CALRT[2:0] - 70h Dual Channel 1°C Temperature Sensor with Beta Compensation and 1.8V SMBus Communications Datasheet Revision 1.0 (07-11-13) 34 SMSC EMC1182 DATASHEET If the temperature drops below the Therm Limit or Hardware Thermal Shutdown Limit, the counter is reset. If the programmed number of consecutive measurements exceed the Therm Limit or Hardware Thermal Shutdown Limit, and the appropriate channel is linked to the SYS_SHDN pin, the SYS_SHDNpin will be asserted low. Once the SYS_SHDN pin is asserted, the consecutive Therm counter will not reset until the corresponding temperature drops below the appropriate limit minus the corresponding hysteresis. Bits 6-4 - CTHRM[2:0] - Determines the number of consecutive measurements that must exceed the corresponding Therm Limit before the THERM pin is asserted. All temperature channels use this value to set the respective counters. The consecutive Therm counter is incremented whenever any measurement exceed the corresponding Therm Limit. If the temperature drops below the Therm Limit, the counter is reset. If a number of consecutive measurements above the Therm Limit occurs, the THERM pin is asserted low. Once the THERM pin has been asserted, the consecutive therm counter will not reset until the corresponding temperature drops below the Therm Limit minus the Therm Hysteresis value. The bits are decoded as shown in Table 6.12. The default setting is 4 consecutive out of limit conversions. Bits 3-1 - CALRT[2:0] - Determine the number of consecutive measurements that must have an out of limit condition or diode fault before the ALERT / THERM2 pin is asserted. Both temperature channels use this value to set the respective counters. The bits are decoded as shown in Table 6.12. The default setting is 1 consecutive out of limit conversion. 6.12 Beta Configuration Register 25h This register is used to set the Beta Compensation factor that is used for the external diode channel.  ‘0’ - The Beta Compensation Factor auto-detection circuitry is disabled. ‘1’ (default) - The Beta Compensation factor auto-detection circuitry is enabled. At the beginning of every conversion, the optimal Beta Compensation factor setting will be determined and applied. Table 6.12 Consecutive Alert / Therm Settings 2 1 0 NUMBER OF CONSECUTIVE OUT OF LIMIT MEASUREMENTS 0 0 0 1 (default for CALRT[2:0]) 0 0 1 2 0 1 1 3 1 1 1 4 (default for CTHRM[2:0]) Table 6.13 Beta Configuration Register ADDR. R/W REGISTER B7 B6 B5 B4 B3 B2 B1 B0 DEFAULT 25h R/W External Diode Beta Configuration - - - - ENABLE BETA[2:0] 08h Dual Channel 1°C Temperature Sensor with Beta Compensation and 1.8V SMBus Communications Datasheet SMSC EMC1182 35 Revision 1.0 (07-11-13) DATASHEET 6.13 External Diode Ideality Factor Register 27h This register stores the ideality factors that are applied to the external diode. Table 6.15 defines each setting and the corresponding ideality factor. Beta Compensation and Resistance Error Correction automatically correct for most diode ideality errors; therefore, it is not recommended that these settings be updated without consulting SMSC. For CPU substrate transistors that require the BJT transistor model, the ideality factor behaves slightly differently than for discrete diode-connected transistors. Refer to Table 6.16 when using a CPU substrate transistor. Table 6.14 Ideality Configuration Registers ADDR. R/W REGISTER B7 B6 B5 B4 B3 B2 B1 B0 DEFAULT 27h R/W External Diode Ideality Factor - - IDEALITY[5:0] 12h Table 6.15 Ideality Factor Look-Up Table (Diode Model) SETTING FACTOR SETTING FACTOR SETTING FACTOR 08h 0.9949 18h 1.0159 28h 1.0371 09h 0.9962 19h 1.0172 29h 1.0384 0Ah 0.9975 1Ah 1.0185 2Ah 1.0397 0Bh 0.9988 1Bh 1.0200 2Bh 1.0410 0Ch 1.0001 1Ch 1.0212 2Ch 1.0423 0Dh 1.0014 1Dh 1.0226 2Dh 1.0436 0Eh 1.0027 1Eh 1.0239 2Eh 1.0449 0Fh 1.0040 1Fh 1.0253 2Fh 1.0462 10h 1.0053 20h 1.0267 30h 1.0475 11h 1.0066 21h 1.0280 31h 1.0488 12h 1.0080 22h 1.0293 32h 1.0501 13h 1.0093 23h 1.0306 33h 1.0514 14h 1.0106 24h 1.0319 34h 1.0527 15h 1.0119 25h 1.0332 35h 1.0540 16h 1.0133 26h 1.0345 36h 1.0553 17h 1.0146 27h 1.0358 37h 1.0566 Dual Channel 1°C Temperature Sensor with Beta Compensation and 1.8V SMBus Communications Datasheet Revision 1.0 (07-11-13) 36 SMSC EMC1182 DATASHEET APPLICATION NOTE: When measuring a 65nm Intel CPU, the Ideality Setting should be the default 12h. When measuring a 45nm Intel CPU, the Ideality Setting should be 15h. Bit 1 - E1HIGH - This bit is set when the External Diode 1 channel exceeds its programmed high limit. Bit 0 - IHIGH - This bit is set when the Internal Diode channel exceeds its programmed high limit. Bit 1 - ELOW - This bit is set when the External Diode channel drops below its programmed low limit. Bit 0 - ILOW - This bit is set when the Internal Diode channel drops below its programmed low limit. Bit 1 - ETHERM - This bit is set when the External Diode channel exceeds its programmed Therm Limit. When set, this bit will assert the THERM pin. Bit 0- ITHERM - This bit is set when the Internal Diode channel exceeds its programmed Therm Limit. When set, this bit will assert the THERM pin. Table 6.16 Substrate Diode Ideality Factor Look-Up Table (BJT Model) SETTING FACTOR SETTING FACTOR SETTING FACTOR 08h 0.9869 18h 1.0079 28h 1.0291 09h 0.9882 19h 1.0092 29h 1.0304 0Ah 0.9895 1Ah 1.0105 2Ah 1.0317 0Bh 0.9908 1Bh 1.0120 2Bh 1.0330 0Ch 0.9921 1Ch 1.0132 2Ch 1.0343 0Dh 0.9934 1Dh 1.0146 2Dh 1.0356 0Eh 0.9947 1Eh 1.0159 2Eh 1.0369 0Fh 0.9960 1Fh 1.0173 2Fh 1.0382 10h 0.9973 20h 1.0187 30h 1.0395 11h 0.9986 21h 1.0200 31h 1.0408 12h 1.0000 22h 1.0213 32h 1.0421 13h 1.0013 23h 1.0226 33h 1.0434 14h 1.0026 24h 1.0239 34h 1.0447 15h 1.0039 25h 1.0252 35h 1.0460 16h 1.0053 26h 1.0265 36h 1.0473 17h 1.0066 27h 1.0278 37h 1.0486 Dual Channel 1°C Temperature Sensor with Beta Compensation and 1.8V SMBus Communications Datasheet SMSC EMC1182 37 Revision 1.0 (07-11-13) DATASHEET 6.14 Filter Control Register 40h The Filter Configuration Register controls the digital filter on the External Diode channel. Bits 1-0 - FILTER[1:0] - Control the level of digital filtering that is applied to the External Diodetemperature measurement as shown in Table 6.18. See Figure 5.4 and Figure 5.5 for examples on the filter behavior. 6.15 Product ID Register The Product ID Register holds a unique value that identifies the device. 6.16 SMSC ID Register The Manufacturer ID register contains an 8-bit word that identifies the SMSC as the manufacturer of the EMC1182. Table 6.17 Filter Configuration Register ADDR. R/W REGISTER B7 B6 B5 B4 B3 B2 B1 B0 DEFAULT 40h R/W Filter Control - - - - - - FILTER[1:0] 00h Table 6.18 FILTER Decode FILTER[1:0] 1 0 AVERAGING 0 0 Disabled (default) 0 1 Level 1 1 0 Level 1 1 1 Level 2 Table 6.19 Product ID Register ADDR R/W REGISTER B7 B6 B5 B4 B3 B2 B1 B0 DEFAULT FDh R Product ID 0 0 1 0 0 0 0 0 20h Table 6.20 Manufacturer ID Register ADDR. R/W REGISTER B7 B6 B5 B4 B3 B2 B1 B0 DEFAULT FEh R SMSC ID 0 1 0 1 1 1 0 1 5Dh Dual Channel 1°C Temperature Sensor with Beta Compensation and 1.8V SMBus Communications Datasheet Revision 1.0 (07-11-13) 38 SMSC EMC1182 DATASHEET 6.17 Revision Register The Revision register contains an 8-bit word that identifies the die revision. Table 6.21 Revision Register ADDR. R/W REGISTER B7 B6 B5 B4 B3 B2 B1 B0 DEFAULT FFh R Revision 0 0 0 0 0 1 1 1 07h Dual Channel 1°C Temperature Sensor with Beta Compensation and 1.8V SMBus Communications Datasheet SMSC EMC1182 39 Revision 1.0 (07-11-13) DATASHEET Chapter 7 Typical Operating Curves Temperature Error vs. Filter Capacitor (2N3904, TA = 27°C, TDIODE = 27°C, VDD = 3.3V) -1.0 -0.8 -0.5 -0.3 0.0 0.3 0.5 0.8 1.0 0 1000 2000 3000 4000 Filter Capacitor (pF) Temperature Error (°C) Temperature Error vs. Ambient Temperature (2N3904, TDIODE = 42.5°C, VDD = 3.3V) -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 -40 -25 -10 5 20 35 50 65 80 95 110 125 Ambient Temperature (°C) Temperature Error (°C) Temperature Error vs. External Diode Temperature (2N3904, TA = 42.5°C, VDD = 3.3V) -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 -40 -25 -10 5 20 35 50 65 80 95 110 125 External Diode Temperature (°C) Temperature Error (°C) Temperature Error vs. CPU Temperature Typical 65nm CPU from major vendor (TA = 27°C, VDD = 3.3V, BETA = 011, CFILTER = 470pF) -1 0 1 2 3 4 5 20 40 60 80 100 120 CPU Temperature (°C) Temperature Error (°C) Beta Compensation Disabled Beta Compensation Enabled Dual Channel 1°C Temperature Sensor with Beta Compensation and 1.8V SMBus Communications Datasheet Revision 1.0 (07-11-13) 40 SMSC EMC1182 DATASHEET Chapter 8 Package Information Figure 8.1 2mm x 3mm TDFN Package Drawing Dual Channel 1°C Temperature Sensor with Beta Compensation and 1.8V SMBus Communications Datasheet SMSC EMC1182 41 Revision 1.0 (07-11-13) DATASHEET Figure 8.2 2mm x 3mm TDFN Package Dimensions Figure 8.3 2mm x 3mm TDFN Package PCB Land Pattern Dual Channel 1°C Temperature Sensor with Beta Compensation and 1.8V SMBus Communications Datasheet Revision 1.0 (07-11-13) 42 SMSC EMC1182 DATASHEET Figure 8.4 3mm x 3mm DFN Package Drawing Dual Channel 1°C Temperature Sensor with Beta Compensation and 1.8V SMBus Communications Datasheet SMSC EMC1182 43 Revision 1.0 (07-11-13) DATASHEET Figure 8.5 3mm x 3mm DFN Package Dimensions Dual Channel 1°C Temperature Sensor with Beta Compensation and 1.8V SMBus Communications Datasheet Revision 1.0 (07-11-13) 44 SMSC EMC1182 DATASHEET Figure 8.6 8 Pin DFN PCB Footprint Dual Channel 1°C Temperature Sensor with Beta Compensation and 1.8V SMBus Communications Datasheet SMSC EMC1182 45 Revision 1.0 (07-11-13) DATASHEET 8.1 Package Markings The EMC1182 devices will be marked as shown in Figure 8.7, Figure 8.8., Figure 8.9, Figure 8.10 and Figure 8.11. Figure 8.7 EMC1182-1 8-Pin TDFN Package Markings Figure 8.8 EMC1182-2 8-Pin TDFN Package Markings BOTTOM LINE 1: Preface, First digit of Device Code LINE 2: Second digit of Device Code, Revision TOP PIN 1 E 3 BOTTOM MARKING IS NOT ALLOWED C R BOTTOM LINE 1: Preface, First digit of Device Code LINE 2: Second digit of Device Code, Revision TOP PIN 1 E 3 BOTTOM MARKING IS NOT ALLOWED D R Dual Channel 1°C Temperature Sensor with Beta Compensation and 1.8V SMBus Communications Datasheet Revision 1.0 (07-11-13) 46 SMSC EMC1182 DATASHEET Figure 8.9 EMC1182-A 8-Pin TDFN Package Markings Figure 8.10 EMC1182-1 8-Pin DFN Package Markings BOTTOM LINE 1: Preface, First digit of Device Code LINE 2: Second digit of Device Code, Revision TOP PIN 1 E 3 BOTTOM MARKING IS NOT ALLOWED A R BOTTOM LINE 1: Device Code, First two digits of 6 digits of lot number LINE 2: Last 4 digits of lot number TOP PIN 1 4 4 BOTTOM MARKING IS NOT ALLOWED L L L L L L Dual Channel 1°C Temperature Sensor with Beta Compensation and 1.8V SMBus Communications Datasheet SMSC EMC1182 47 Revision 1.0 (07-11-13) DATASHEET Figure 8.11 EMC1182-2 8-Pin DFN Package Markings BOTTOM LINE 1: Device Code, First two digits of 6 digits of lot number LINE 2: Last 4 digits of lot number TOP PIN 1 4 4 BOTTOM MARKING IS NOT ALLOWED L L L L L L Dual Channel 1°C Temperature Sensor with Beta Compensation and 1.8V SMBus Communications Datasheet Revision 1.0 (07-11-13) 48 SMSC EMC1182 DATASHEET Chapter 9 Datasheet Revision History Table 9.1 Customer Revision History REVISION LEVEL & DATE SECTION/FIGURE/ENTRY CORRECTION Rev. 1.0 (07-11-13) Formal document release 8235E–AVR–03/2013 Features  High performance, low power 8-bit AVR® microcontroller  Advanced RISC architecture  112 powerful instructions – most single clock cycle execution  16 x 8 general purpose working registers  Fully static operation  Up to 12 MIPS throughput at 12MHz  Non-volatile program and data memories  2K bytes of in-system programmable flash program memory  128 bytes internal SRAM  Flash write/erase cycles: 10,000  Data retention: 20 years at 85oC / 100 years at 25oC  Peripheral features  One 8-bit timer/counter with two PWM channels  One 16-bit timer/counter with two PWM channels  10-bit analog to digital converter  8 single-ended channels  Programmable watchdog timer with separate on-chip oscillator  On-chip analog comparator  Master/slave SPI serial interface  Slave TWI serial interface  Special microcontroller features  In-system programmable  External and internal interrupt sources  Low power idle, ADC noise reduction, stand-by and power-down modes  Enhanced power-on reset circuit  Internal calibrated oscillator  I/O and packages  14-pin SOIC/TSSOP: 12 programmable I/O lines  12-ball WLCSP: 10 programmable I/O lines  15-ball UFBGA: 12 programmable I/O lines  20-pad VQFN: 12 programmable I/O lines  Operating voltage:  1.8 – 5.5V  Programming voltage:  5V  Speed grade  0 – 4MHz @ 1.8 – 5.5V  0 – 8MHz @ 2.7 – 5.5V  0 – 12MHz @ 4.5 – 5.5V  Industrial temperature range  Low power consumption  Active mode:  200 μA at 1MHz and 1.8V  Idle mode:  25μA at 1MHz and 1.8V  Power-down mode:  < 0.1μA at 1.8V ATtiny20 8-bit AVR Microcontroller with 2K Bytes In-System Programmable Flash DATASHEET ATtiny20 [DATASHEET] 2 8235E–AVR–03/2013 1. Pin Configurations 1.1 SOIC & TSSOP Figure 1-1. SOIC/TSSOP 1.2 VQFN Figure 1-2. VQFN 1 2 3 4 5 6 7 14 13 12 11 10 9 8 VCC (PCINT8/TPICLK/T0/CLKI) PB0 (PCINT9/TPIDATA/MOSI/SDA/OC1A) PB1 (PCINT11/RESET) PB3 (PCINT10/INT0/MISO/OC1B/OC0A/CKOUT) PB2 (PCINT7/SCL/SCK/T1/ICP1/OC0B/ADC7) PA7 (PCINT6/SS/ADC6) PA6 GND PA0 (ADC0/PCINT0) PA1 (ADC1/AIN0/PCINT1) PA2 (ADC2/AIN1/PCINT2) PA3 (ADC3/PCINT3) PA4 (ADC4/PCINT4) PA5 (ADC5/PCINT5) 1 2 3 4 5 15 14 13 12 11 20 19 18 17 16 6 7 8 9 10 NOTE Bottom pad should be soldered to ground. DNC: Do Not Connect DNC DNC GND VCC DNC PA7 (ADC7/OC0B/ICP1/T1/SCL/SCK/PCINT7) PB2 (CKOUT/OC0A/OC1B/MISO/INT0/PCINT10) PB3 (RESET/PCINT11) PB1 (OC1A/SDA/MOSI/TPIDATA/PCINT9) PB0 (CLKI/T0/TPICLK/PCINT8) DNC DNC DNC PA5 (ADC5/PCINT5) PA6 (ADC6/PCINT6/SS) (PCINT4/ADC4) PA4 (PCINT3/ADC3) PA3 (PCINT2/AIN1/ADC2) PA2 (PCINT1/AIN0/ADC1) PA1 (PCINT0/ADC0) PA0 ATtiny20 [DATASHEET] 3 8235E–AVR–03/2013 1.3 UFBGA Figure 1-3. UFBGA Table 1-1. UFBGA Pin Configuration 1.4 Wafer Level Chip Scale Package Figure 1-4. WLCSP Table 1-2. WLCSP Ball Configuration 1 2 3 4 A PA5 PA6 PB2 B PA4 PA7 PB1 PB3 C PA3 PA2 PA1 PB0 D PA0 GND GND VCC A B C D 1 2 3 4 A B C D 4 3 2 1 TOP VIEW BOTTOM VIEW 1 2 3 4 5 6 A PA4 PA1 PA2 B PA6 GND VDD C PA5 PA7 PB1 D PB2 PB3 PB0 A B C D 1 2 3 4 A B C D 6 5 4 3 2 1 TOP VIEW BOTTOM VIEW ATtiny20 [DATASHEET] 4 8235E–AVR–03/2013 1.5 Pin Description 1.5.1 VCC Supply voltage. 1.5.2 GND Ground. 1.5.3 RESET Reset input. A low level on this pin for longer than the minimum pulse length will generate a reset, even if the clock is not running and provided the reset pin has not been disabled. The minimum pulse length is given in Table 20-4 on page 170. Shorter pulses are not guaranteed to generate a reset. The reset pin can also be used as a (weak) I/O pin. 1.5.4 Port A (PA7:PA0) Port A is a 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port A output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port A pins that are externally pulled low will source current if the pull-up resistors are activated. The Port A pins are tri-stated when a reset condition becomes active, even if the clock is not running. Port A has alternate functions as analog inputs for the ADC, analog comparator and pin change interrupt as described in “Alternate Port Functions” on page 47. 1.5.5 Port B (PB3:PB0) Port B is a 4-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port B output buffers have symmetrical drive characteristics with both high sink and source capability except PB3 which has the RESET capability. To use pin PB3 as an I/O pin, instead of RESET pin, program (‘0’) RSTDISBL fuse. As inputs, Port B pins that are externally pulled low will source current if the pull-up resistors are activated. The Port B pins are tri-stated when a reset condition becomes active, even if the clock is not running. The port also serves the functions of various special features of the ATtiny20, as listed on page 37. ATtiny20 [DATASHEET] 5 8235E–AVR–03/2013 2. Overview ATtiny20 is a low-power CMOS 8-bit microcontroller based on the compact AVR enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the ATtiny20 achieves throughputs approaching 1 MIPS per MHz allowing the system designer to optimize power consumption versus processing speed. Figure 2-1. Block Diagram STACK POINTER SRAM PROGRAM COUNTER PROGRAMMING LOGIC ISP INTERFACE INTERNAL OSCILLATOR WATCHDOG TIMER RESET FLAG REGISTER MCU STATUS REGISTER TIMER/ COUNTER0 CALIBRATED OSCILLATOR TIMING AND CONTROL INTERRUPT UNIT ANALOG COMPARATOR ADC GENERAL PURPOSE REGISTERS X Y Z ALU STATUS REGISTER PROGRAM FLASH INSTRUCTION REGISTER INSTRUCTION DECODER CONTROL LINES VCC RESET DATA REGISTER PORT A DIRECTION REG. PORT A DRIVERS PORT A PA[7:0] GND 8-BIT DATA BUS TIMER/ COUNTER1 TWI SPI DATA REGISTER PORT B DIRECTION REG. PORT B DRIVERS PORT B PB[3:0] ATtiny20 [DATASHEET] 6 8235E–AVR–03/2013 The AVR core combines a rich instruction set with 16 general purpose working registers and system registers. All registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one single instruction executed in one clock cycle. The resulting architecture is compact and code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers. ATtiny20 provides the following features:  2K bytes of in-system programmable Flash  128 bytes of SRAM  Twelve general purpose I/O lines  16 general purpose working registers  An 8-bit Timer/Counter with two PWM channels  A 16-bit Timer/Counter with two PWM channels  Internal and external interrupts  An eight-channel, 10-bit ADC  A programmable Watchdog Timer with internal oscillator  A slave two-wire interface  A master/slave serial peripheral interface  An internal calibrated oscillator  Four software selectable power saving modes The device includes the following modes for saving power:  Idle mode: stops the CPU while allowing the timer/counter, ADC, analog comparator, SPI, TWI, and interrupt system to continue functioning  ADC Noise Reduction mode: minimizes switching noise during ADC conversions by stopping the CPU and all I/O modules except the ADC  Power-down mode: registers keep their contents and all chip functions are disabled until the next interrupt or hardware reset  Standby mode: the oscillator is running while the rest of the device is sleeping, allowing very fast start-up combined with low power consumption. The device is manufactured using Atmel’s high density non-volatile memory technology. The on-chip, in-system programmable Flash allows program memory to be re-programmed in-system by a conventional, non-volatile memory programmer. The ATtiny20 AVR is supported by a suite of program and system development tools, including macro assemblers and evaluation kits. ATtiny20 [DATASHEET] 7 8235E–AVR–03/2013 3. General Information 3.1 Resources A comprehensive set of drivers, application notes, data sheets and descriptions on development tools are available for download at http://www.atmel.com/avr. 3.2 Code Examples This documentation contains simple code examples that briefly show how to use various parts of the device. These code examples assume that the part specific header file is included before compilation. Be aware that not all C compiler vendors include bit definitions in the header files and interrupt handling in C is compiler dependent. Please confirm with the C compiler documentation for more details. 3.3 Capacitive Touch Sensing Atmel QTouch Library provides a simple to use solution for touch sensitive interfaces on Atmel AVR microcontrollers. The QTouch Library includes support for QTouch® and QMatrix® acquisition methods. Touch sensing is easily added to any application by linking the QTouch Library and using the Application Programming Interface (API) of the library to define the touch channels and sensors. The application then calls the API to retrieve channel information and determine the state of the touch sensor. The QTouch Library is free and can be downloaded from the Atmel website. For more information and details of implementation, refer to the QTouch Library User Guide – also available from the Atmel website. 3.4 Data Retention Reliability Qualification results show that the projected data retention failure rate is much less than 1 PPM over 20 years at 85°C or 100 years at 25°C. 3.5 Disclaimer Typical values contained in this datasheet are based on simulations and characterization of other AVR microcontrollers manufactured on the same process technology. ATtiny20 [DATASHEET] 8 8235E–AVR–03/2013 4. CPU Core This section discusses the AVR core architecture in general. The main function of the CPU core is to ensure correct program execution. The CPU must therefore be able to access memories, perform calculations, control peripherals, and handle interrupts. 4.1 Architectural Overview Figure 4-1. Block Diagram of the AVR Architecture In order to maximize performance and parallelism, the AVR uses a Harvard architecture – with separate memories and buses for program and data. Instructions in the program memory are executed with a single level pipelining. While one instruction is being executed, the next instruction is pre-fetched from the program memory. This concept enables instructions to be executed in every clock cycle. The program memory is In-System Reprogrammable Flash memory. The fast-access Register File contains 16 x 8-bit general purpose working registers with a single clock cycle access time. This allows single-cycle Arithmetic Logic Unit (ALU) operation. In a typical ALU operation, two operands are output from the Register File, the operation is executed, and the result is stored back in the Register File – in one clock cycle. Flash Program Memory Instruction Register Instruction Decoder Program Counter Control Lines 16 x 8 General Purpose Registrers ALU Status and Control I/O Lines Data Bus 8-bit Data SRAM Direct Addressing Indirect Addressing Interrupt Unit Watchdog Timer Analog Comparator Timer/Counter 0 ADC TWI Slave SPI Timer/Counter 1 ATtiny20 [DATASHEET] 9 8235E–AVR–03/2013 Six of the 16 registers can be used as three 16-bit indirect address register pointers for data space addressing – enabling efficient address calculations. These added function registers are the 16-bit X-, Y-, and Z-register, described later in this section. The ALU supports arithmetic and logic operations between registers or between a constant and a register. Single register operations can also be executed in the ALU. After an arithmetic operation, the Status Register is updated to reflect information about the result of the operation. Program flow is provided by conditional and unconditional jump and call instructions, capable of directly addressing the whole address space. Most AVR instructions have a single 16-bit word format but 32-bit wide instructions also exist. The actual instruction set varies, as some devices only implement a part of the instruction set. During interrupts and subroutine calls, the return address Program Counter (PC) is stored on the Stack. The Stack is effectively allocated in the general data SRAM, and consequently the Stack size is only limited by the SRAM size and the usage of the SRAM. All user programs must initialize the SP in the Reset routine (before subroutines or interrupts are executed). The Stack Pointer (SP) is read/write accessible in the I/O space. The data SRAM can easily be accessed through the four different addressing modes supported in the AVR architecture. The memory spaces in the AVR architecture are all linear and regular memory maps. A flexible interrupt module has its control registers in the I/O space with an additional Global Interrupt Enable bit in the Status Register. All interrupts have a separate Interrupt Vector in the Interrupt Vector table. The interrupts have priority in accordance with their Interrupt Vector position. The lower the Interrupt Vector address, the higher the priority. The I/O memory space contains 64 addresses for CPU peripheral functions as Control Registers, SPI, and other I/O functions. The I/O memory can be accessed as the data space locations, 0x0000 - 0x003F. 4.2 ALU – Arithmetic Logic Unit The high-performance AVR ALU operates in direct connection with all the 16 general purpose working registers. Within a single clock cycle, arithmetic operations between general purpose registers or between a register and an immediate are executed. The ALU operations are divided into three main categories – arithmetic, logical, and bit-functions. Some implementations of the architecture also provide a powerful multiplier supporting both signed/unsigned multiplication and fractional format. See document “AVR Instruction Set” and section “Instruction Set Summary” on page 205 for a detailed description. 4.3 Status Register The Status Register contains information about the result of the most recently executed arithmetic instruction. This information can be used for altering program flow in order to perform conditional operations. Note that the Status Register is updated after all ALU operations, as specified in document “AVR Instruction Set” and section “Instruction Set Summary” on page 205. This will in many cases remove the need for using the dedicated compare instructions, resulting in faster and more compact code. The Status Register is not automatically stored when entering an interrupt routine and restored when returning from an interrupt. This must be handled by software. 4.4 General Purpose Register File The Register File is optimized for the AVR Enhanced RISC instruction set. In order to achieve the required performance and flexibility, the following input/output schemes are supported by the Register File:  One 8-bit output operand and one 8-bit result input  Two 8-bit output operands and one 8-bit result input  One 16-bit output operand and one 16-bit result input Figure 4-2 below shows the structure of the 16 general purpose working registers in the CPU. ATtiny20 [DATASHEET] 10 8235E–AVR–03/2013 Figure 4-2. AVR CPU General Purpose Working Registers Note: A typical implementation of the AVR register file includes 32 general prupose registers but ATtiny20 implements only 16 registers. For reasons of compatibility the registers are numbered R16:R31 and not R0:R15. Most of the instructions operating on the Register File have direct access to all registers, and most of them are single cycle instructions. 4.4.1 The X-register, Y-register, and Z-register Registers R26:R31 have some added functions to their general purpose usage. These registers are 16-bit address pointers for indirect addressing of the data space. The three indirect address registers X, Y, and Z are defined as described in Figure 4-3. Figure 4-3. The X-, Y-, and Z-registers In different addressing modes these address registers function as automatic increment and automatic decrement (see document “AVR Instruction Set” and section “Instruction Set Summary” on page 205 for details). 4.5 Stack Pointer The stack is mainly used for storing temporary data, local variables and return addresses after interrupts and subroutine calls. The Stack Pointer registers (SPH and SPL) always point to the top of the stack. Note that the stack grows from higher memory locations to lower memory locations. This means that the PUSH instructions decreases and the POP instruction increases the stack pointer value. 7 0 R16 R16 R17 R17 General R18 R18 Purpose … ... Working R26 R26 X-register Low Byte Registers R27 R27 X-register High Byte R28 R28 Y-register Low Byte R29 R29 Y-register High Byte R30 R30 Z-register Low Byte R31 R31 Z-register High Byte 15 XH XL 0 X-register 7 07 0 R27 R26 15 YH YL 0 Y-register 7 07 0 R29 R28 15 ZH ZL 0 Z-register 7 07 0 R31 R30 ATtiny20 [DATASHEET] 11 8235E–AVR–03/2013 The stack pointer points to the area of data memory where subroutine and interrupt stacks are located. This stack space must be defined by the program before any subroutine calls are executed or interrupts are enabled. The pointer is decremented by one when data is put on the stack with the PUSH instruction, and incremented by one when data is fetched with the POP instruction. It is decremented by two when the return address is put on the stack by a subroutine call or a jump to an interrupt service routine, and incremented by two when data is fetched by a return from subroutine (the RET instruction) or a return from interrupt service routine (the RETI instruction). The AVR stack pointer is typically implemented as two 8-bit registers in the I/O register file. The width of the stack pointer and the number of bits implemented is device dependent. In some AVR devices all data memory can be addressed using SPL, only. In this case, the SPH register is not implemented. The stack pointer must be set to point above the I/O register areas, the minimum value being the lowest address of SRAM. See Figure 5-1 on page 15. 4.6 Instruction Execution Timing This section describes the general access timing concepts for instruction execution. The AVR CPU is driven by the CPU clock clkCPU, directly generated from the selected clock source for the chip. No internal clock division is used. Figure 4-4. The Parallel Instruction Fetches and Instruction Executions Figure 4-4 shows the parallel instruction fetches and instruction executions enabled by the Harvard architecture and the fast access Register File concept. This is the basic pipelining concept to obtain up to 1 MIPS per MHz with the corresponding unique results for functions per cost, functions per clocks, and functions per power-unit. Figure 4-5 shows the internal timing concept for the Register File. In a single clock cycle an ALU operation using two register operands is executed, and the result is stored back to the destination register. Figure 4-5. Single Cycle ALU Operation clk 1st Instruction Fetch 1st Instruction Execute 2nd Instruction Fetch 2nd Instruction Execute 3rd Instruction Fetch 3rd Instruction Execute 4th Instruction Fetch T1 T2 T3 T4 CPU Total Execution Time Register Operands Fetch ALU Operation Execute Result Write Back T1 T2 T3 T4 clkCPU ATtiny20 [DATASHEET] 12 8235E–AVR–03/2013 4.7 Reset and Interrupt Handling The AVR provides several different interrupt sources. These interrupts and the separate Reset Vector each have a separate Program Vector in the program memory space. All interrupts are assigned individual enable bits which must be written logic one together with the Global Interrupt Enable bit in the Status Register in order to enable the interrupt. The lowest addresses in the program memory space are by default defined as the Reset and Interrupt Vectors. The complete list of vectors is shown in “Interrupts” on page 36. The list also determines the priority levels of the different interrupts. The lower the address the higher is the priority level. RESET has the highest priority, and next is INT0 – the External Interrupt Request 0. When an interrupt occurs, the Global Interrupt Enable I-bit is cleared and all interrupts are disabled. The user software can write logic one to the I-bit to enable nested interrupts. All enabled interrupts can then interrupt the current interrupt routine. The I-bit is automatically set when a Return from Interrupt instruction – RETI – is executed. There are basically two types of interrupts. The first type is triggered by an event that sets the Interrupt Flag. For these interrupts, the Program Counter is vectored to the actual Interrupt Vector in order to execute the interrupt handling routine, and hardware clears the corresponding Interrupt Flag. Interrupt Flags can also be cleared by writing a logic one to the flag bit position(s) to be cleared. If an interrupt condition occurs while the corresponding interrupt enable bit is cleared, the Interrupt Flag will be set and remembered until the interrupt is enabled, or the flag is cleared by software. Similarly, if one or more interrupt conditions occur while the Global Interrupt Enable bit is cleared, the corresponding Interrupt Flag(s) will be set and remembered until the Global Interrupt Enable bit is set, and will then be executed by order of priority. The second type of interrupts will trigger as long as the interrupt condition is present. These interrupts do not necessarily have Interrupt Flags. If the interrupt condition disappears before the interrupt is enabled, the interrupt will not be triggered. When the AVR exits from an interrupt, it will always return to the main program and execute one more instruction before any pending interrupt is served. Note that the Status Register is not automatically stored when entering an interrupt routine, nor restored when returning from an interrupt routine. This must be handled by software. When using the CLI instruction to disable interrupts, the interrupts will be immediately disabled. No interrupt will be executed after the CLI instruction, even if it occurs simultaneously with the CLI instruction. When using the SEI instruction to enable interrupts, the instruction following SEI will be executed before any pending interrupts, as shown in the following example. Note: See “Code Examples” on page 7. 4.7.1 Interrupt Response Time The interrupt execution response for all the enabled AVR interrupts is four clock cycles minimum. After four clock cycles the Program Vector address for the actual interrupt handling routine is executed. During this four clock cycle period, the Program Counter is pushed onto the Stack. The vector is normally a jump to the interrupt routine, and this jump takes three clock cycles. If an interrupt occurs during execution of a multi-cycle instruction, this instruction is completed before the interrupt is served. If an interrupt occurs when the MCU is in sleep mode, the interrupt execution response time is increased by four clock cycles. This increase comes in addition to the start-up time from the selected sleep mode. A return from an interrupt handling routine takes four clock cycles. During these four clock cycles, the Program Counter (two bytes) is popped back from the Stack, the Stack Pointer is incremented by two, and the I-bit in SREG is set. Assembly Code Example sei ; set Global Interrupt Enable sleep ; enter sleep, waiting for interrupt ; note: will enter sleep before any pending interrupt(s) ATtiny20 [DATASHEET] 13 8235E–AVR–03/2013 4.8 Register Description 4.8.1 CCP – Configuration Change Protection Register  Bits 7:0 – CCP[7:0]: Configuration Change Protection In order to change the contents of a protected I/O register the CCP register must first be written with the correct signature. After CCP is written the protected I/O registers may be written to during the next four CPU instruction cycles. All interrupts are ignored during these cycles. After these cycles interrupts are automatically handled again by the CPU, and any pending interrupts will be executed according to their priority. When the protected I/O register signature is written, CCP0 will read as one as long as the protected feature is enabled, while CCP[7:1] will always read as zero. Table 4-1 shows the signatures that are recognised. Table 4-1. Signatures Recognised by the Configuration Change Protection Register Notes: 1. Only WDE and WDP[3:0] bits are protected in WDTCSR. 2. Only BODS bit is protected in MCUCR. 4.8.2 SPH and SPL — Stack Pointer Registers  Bits 7:0 – SP[7:0]: Stack Pointer The Stack Pointer register points to the top of the stack, which is implemented growing from higher memory locations to lower memory locations. Hence, a stack PUSH command decreases the stack pointer. The stack space in the data SRAM must be defined by the program before any subroutine calls are executed or interrupts are enabled. In ATtiny20, the SPH register has not been implemented. Bit 7 6 5 4 3 2 1 0 0x3C CCP[7:0] CCP Read/Write W W W W W W W R/W Initial Value 0 0 0 0 0 0 0 0 Signature Group Description 0xD8 IOREG: CLKMSR, CLKPSR, WDTCSR(1), MCUCR(2) Protected I/O register Initial Value 0 0 0 0 0 0 0 0 Read/Write R R R R R R R R Bit 15 14 13 12 11 10 9 8 0x3E – – – – – – – – SPH 0x3D SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0 SPL Bit 7 6 5 4 3 2 1 0 Read/Write R/W R/W R/W R/W R/W R/W R/W R/W Initial Value RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND ATtiny20 [DATASHEET] 14 8235E–AVR–03/2013 4.8.3 SREG – Status Register  Bit 7 – I: Global Interrupt Enable The Global Interrupt Enable bit must be set for the interrupts to be enabled. The individual interrupt enable control is then performed in separate control registers. If the Global Interrupt Enable Register is cleared, none of the interrupts are enabled independent of the individual interrupt enable settings. The I-bit is cleared by hardware after an interrupt has occurred, and is set by the RETI instruction to enable subsequent interrupts. The I-bit can also be set and cleared by the application with the SEI and CLI instructions, as described in the document “AVR Instruction Set” and “Instruction Set Summary” on page 205.  Bit 6 – T: Bit Copy Storage The Bit Copy instructions BLD (Bit LoaD) and BST (Bit STore) use the T-bit as source or destination for the operated bit. A bit from a register in the Register File can be copied into T by the BST instruction, and a bit in T can be copied into a bit in a register in the Register File by the BLD instruction.  Bit 5 – H: Half Carry Flag The Half Carry Flag H indicates a Half Carry in some arithmetic operations. Half Carry is useful in BCD arithmetic. See document “AVR Instruction Set” and section “Instruction Set Summary” on page 205 for detailed information.  Bit 4 – S: Sign Bit, S = N V The S-bit is always an exclusive or between the Negative Flag N and the Two’s Complement Overflow Flag V. See document “AVR Instruction Set” and section “Instruction Set Summary” on page 205 for detailed information.  Bit 3 – V: Two’s Complement Overflow Flag The Two’s Complement Overflow Flag V supports two’s complement arithmetics. See document “AVR Instruction Set” and section “Instruction Set Summary” on page 205 for detailed information.  Bit 2 – N: Negative Flag The Negative Flag N indicates a negative result in an arithmetic or logic operation. See document “AVR Instruction Set” and section “Instruction Set Summary” on page 205 for detailed information.  Bit 1 – Z: Zero Flag The Zero Flag Z indicates a zero result in an arithmetic or logic operation. See document “AVR Instruction Set” and section “Instruction Set Summary” on page 205 for detailed information.  Bit 0 – C: Carry Flag The Carry Flag C indicates a carry in an arithmetic or logic operation. See document “AVR Instruction Set” and section “Instruction Set Summary” on page 205 for detailed information. Bit 7 6 5 4 3 2 1 0 0x3F I T H S V N Z C SREG Read/Write R/W R/W R/W R/W R/W R/W R/W R/W Initial Value 0 0 0 0 0 0 0 0 ATtiny20 [DATASHEET] 15 8235E–AVR–03/2013 5. Memories This section describes the different memories in the ATtiny20. The device has two main memory areas, the program memory space and the data memory space. 5.1 In-System Re-programmable Flash Program Memory The ATtiny20 contains 2K byte on-chip, in-system reprogrammable Flash memory for program storage. Since all AVR instructions are 16 or 32 bits wide, the Flash is organized as 1024 x 16. The Flash memory has an endurance of at least 10,000 write/erase cycles. The ATtiny20 Program Counter (PC) is 10 bits wide, thus capable of addressing the 1024 program memory locations, starting at 0x000. “Memory Programming” on page 159 contains a detailed description on Flash data serial downloading. Constant tables can be allocated within the entire address space of program memory. Since program memory can not be accessed directly, it has been mapped to the data memory. The mapped program memory begins at byte address 0x4000 in data memory (see Figure 5-1 on page 15). Although programs are executed starting from address 0x000 in program memory it must be addressed starting from 0x4000 when accessed via the data memory. Internal write operations to Flash program memory have been disabled and program memory therefore appears to firmware as read-only. Flash memory can still be written to externally but internal write operations to the program memory area will not be succesful. Timing diagrams of instruction fetch and execution are presented in “Instruction Execution Timing” on page 11. 5.2 Data Memory Data memory locations include the I/O memory, the internal SRAM memory, the non-volatile memory lock bits, and the Flash memory. See Figure 5-1 for an illustration on how the ATtiny20 memory space is organized. Figure 5-1. Data Memory Map (Byte Addressing) The first 64 locations are reserved for I/O memory, while the following 128 data memory locations (from 0x0040 to 0x00BF) address the internal data SRAM. 0x0000 ... 0x003F 0x0040 ... 0x00BF 0x00C0 ... 0x3EFF 0x3F00 ... 0x3F01 0x3F02 ... 0x3F3F 0x3F40 ... 0x3F41 0x3F42 ... 0x3F7F 0x3F80 ... 0x3F81 0x3F82 ... 0x3FBF 0x3FC0 ... 0x3FC3 0x3FC4 ... 0x3FFF 0x4000 ... 0x47FF 0x4800 ... 0xFFFF I/O SPACE SRAM DATA MEMORY (reserved) NVM LOCK BITS (reserved) CONFIGURATION BITS (reserved) CALIBRATION BITS (reserved) DEVICE ID BITS (reserved) FLASH PROGRAM MEMORY (reserved) ATtiny20 [DATASHEET] 16 8235E–AVR–03/2013 The non-volatile memory lock bits and all the Flash memory sections are mapped to the data memory space. These locations appear as read-only for device firmware. The four different addressing modes for data memory are direct, indirect, indirect with pre-decrement, and indirect with post-increment. In the register file, registers R26 to R31 function as pointer registers for indirect addressing. The IN and OUT instructions can access all 64 locations of I/O memory. Direct addressing using the LDS and STS instructions reaches the 128 locations between 0x0040 and 0x00BF. The indirect addressing reaches the entire data memory space. When using indirect addressing modes with automatic pre-decrement and post-increment, the address registers X, Y, and Z are decremented or incremented. 5.2.1 Data Memory Access Times This section describes the general access timing concepts for internal memory access. The internal data SRAM access is performed in two clkCPU cycles as described in Figure 5-2. Figure 5-2. On-chip Data SRAM Access Cycles 5.3 I/O Memory The I/O space definition of the ATtiny20 is shown in “Register Summary” on page 203. All ATtiny20 I/Os and peripherals are placed in the I/O space. All I/O locations may be accessed using the LD and ST instructions, enabling data transfer between the 16 general purpose working registers and the I/O space. I/O Registers within the address range 0x00 - 0x1F are directly bit-accessible using the SBI and CBI instructions. In these registers, the value of single bits can be checked by using the SBIS and SBIC instructions. See document “AVR Instruction Set” and section “Instruction Set Summary” on page 205 for more details. When using the I/O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses should never be written. Some of the status flags are cleared by writing a logical one to them. Note that CBI and SBI instructions will only operate on the specified bit, and can therefore be used on registers containing such status flags. The CBI and SBI instructions work on registers in the address range 0x00 to 0x1F, only. The I/O and Peripherals Control Registers are explained in later sections. clk WR RD Data Data Address Address valid T1 T2 T3 Compute Address Read Write CPU Memory Access Instruction Next Instruction ATtiny20 [DATASHEET] 17 8235E–AVR–03/2013 6. Clock System Figure 6-1 presents the principal clock systems and their distribution in ATtiny20. All of the clocks need not be active at a given time. In order to reduce power consumption, the clocks to modules not being used can be halted by using different sleep modes and power reduction register bits, as described in “Power Management and Sleep Modes” on page 23. The clock systems is detailed below. Figure 6-1. Clock Distribution 6.1 Clock Subsystems The clock subsystems are detailed in the sections below. 6.1.1 CPU Clock – clkCPU The CPU clock is routed to parts of the system concerned with operation of the AVR Core. Examples of such modules are the General Purpose Register File, the System Registers and the SRAM data memory. Halting the CPU clock inhibits the core from performing general operations and calculations. 6.1.2 I/O Clock – clkI/O The I/O clock is used by the majority of the I/O modules, like Timer/Counter. The I/O clock is also used by the External Interrupt module, but note that some external interrupts are detected by asynchronous logic, allowing such interrupts to be detected even if the I/O clock is halted. 6.1.3 NVM clock - clkNVM The NVM clock controls operation of the Non-Volatile Memory Controller. The NVM clock is usually active simultaneously with the CPU clock. CLOCK CONTROL UNIT GENERAL I/O MODULES ANALOG-TO-DIGITAL CONVERTER CPU CORE WATCHDOG TIMER RESET LOGIC CLOCK PRESCALER RAM CLOCK SWITCH NVM CALIBRATED OSCILLATOR clkADC SOURCE CLOCK clk I/O clkCPU clkNVM WATCHDOG CLOCK WATCHDOG OSCILLATOR EXTERNAL CLOCK ATtiny20 [DATASHEET] 18 8235E–AVR–03/2013 6.1.4 ADC Clock – clkADC The ADC is provided with a dedicated clock domain. This allows halting the CPU and I/O clocks in order to reduce noise generated by digital circuitry. This gives more accurate ADC conversion results. 6.2 Clock Sources All synchronous clock signals are derived from the main clock. The device has three alternative sources for the main clock, as follows:  Calibrated Internal 8 MHz Oscillator (see page 18)  External Clock (see page 18)  Internal 128 kHz Oscillator (see page 18) See Table 6-3 on page 21 on how to select and change the active clock source. 6.2.1 Calibrated Internal 8 MHz Oscillator The calibrated internal oscillator provides an approximately 8 MHz clock signal. Though voltage and temperature dependent, this clock can be very accurately calibrated by the user. See Table 20-2 on page 169, and “Internal Oscillator Speed” on page 200 for more details. This clock may be selected as the main clock by setting the Clock Main Select bits CLKMS[1:0] in CLKMSR to 0b00. Once enabled, the oscillator will operate with no external components. During reset, hardware loads the calibration byte into the OSCCAL register and thereby automatically calibrates the oscillator. The accuracy of this calibration is shown as Factory calibration in Table 20-2 on page 169. When this oscillator is used as the main clock, the watchdog oscillator will still be used for the watchdog timer and reset time-out. For more information on the pre-programmed calibration value, see section “Calibration Section” on page 162. 6.2.2 External Clock To use the device with an external clock source, CLKI should be driven as shown in Figure 6-2. The external clock is selected as the main clock by setting CLKMS[1:0] bits in CLKMSR to 0b10. Figure 6-2. External Clock Drive Configuration When applying an external clock, it is required to avoid sudden changes in the applied clock frequency to ensure stable operation of the MCU. A variation in frequency of more than 2% from one clock cycle to the next can lead to unpredictable behavior. It is required to ensure that the MCU is kept in reset during such changes in the clock frequency. 6.2.3 Internal 128 kHz Oscillator The internal 128 kHz oscillator is a low power oscillator providing a clock of 128 kHz. The frequency depends on supply voltage, temperature and batch variations. This clock may be select as the main clock by setting the CLKMS[1:0] bits in CLKMSR to 0b01. EXTERNAL CLOCK SIGNAL CLKI GND ATtiny20 [DATASHEET] 19 8235E–AVR–03/2013 6.2.4 Switching Clock Source The main clock source can be switched at run-time using the “CLKMSR – Clock Main Settings Register” on page 20. When switching between any clock sources, the clock system ensures that no glitch occurs in the main clock. 6.2.5 Default Clock Source The calibrated internal 8 MHz oscillator is always selected as main clock when the device is powered up or has been reset. The synchronous system clock is the main clock divided by 8, controlled by the System Clock Prescaler. The Clock Prescaler Select Bits can be written later to change the system clock frequency. See “System Clock Prescaler”. 6.3 System Clock Prescaler The system clock is derived from the main clock via the System Clock Prescaler. The system clock can be divided by setting the “CLKPSR – Clock Prescale Register” on page 21. The system clock prescaler can be used to decrease power consumption at times when requirements for processing power is low or to bring the system clock within limits of maximum frequency. The prescaler can be used with all main clock source options, and it will affect the clock frequency of the CPU and all synchronous peripherals. The System Clock Prescaler can be used to implement run-time changes of the internal clock frequency while still ensuring stable operation. 6.3.1 Switching Prescaler Setting When switching between prescaler settings, the system clock prescaler ensures that no glitch occurs in the system clock and that no intermediate frequency is higher than neither the clock frequency corresponding the previous setting, nor the clock frequency corresponding to the new setting. The ripple counter that implements the prescaler runs at the frequency of the main clock, which may be faster than the CPU's clock frequency. Hence, it is not possible to determine the state of the prescaler - even if it were readable, and the exact time it takes to switch from one clock division to another cannot be exactly predicted. From the time the CLKPS values are written, it takes between T1 + T2 and T1 + 2*T2 before the new clock frequency is active. In this interval, two active clock edges are produced. Here, T1 is the previous clock period, and T2 is the period corresponding to the new prescaler setting. 6.4 Starting 6.4.1 Starting from Reset The internal reset is immediately asserted when a reset source goes active. The internal reset is kept asserted until the reset source is released and the start-up sequence is completed. The start-up sequence includes three steps, as follows. 1. The first step after the reset source has been released consists of the device counting the reset start-up time. The purpose of this reset start-up time is to ensure that supply voltage has reached sufficient levels. The reset start-up time is counted using the internal 128 kHz oscillator. See Table 6-1 for details of reset start-up time. Note that the actual supply voltage is not monitored by the start-up logic. The device will count until the reset startup time has elapsed even if the device has reached sufficient supply voltage levels earlier. 2. The second step is to count the oscillator start-up time, which ensures that the calibrated internal oscillator has reached a stable state before it is used by the other parts of the system. The calibrated internal oscillator needs to oscillate for a minimum number of cycles before it can be considered stable. See Table 6-1 for details of the oscillator start-up time. 3. The last step before releasing the internal reset is to load the calibration and the configuration values from the Non-Volatile Memory to configure the device properly. The configuration time is listed in Table 6-1. ATtiny20 [DATASHEET] 20 8235E–AVR–03/2013 Table 6-1. Start-up Times when Using the Internal Calibrated Oscillator Notes: 1. After powering up the device or after a reset the system clock is automatically set to calibrated internal 8 MHz oscillator, divided by 8 2. When the Brown-out Detection is enabled, the reset start-up time is 128 ms after powering up the device. 6.4.2 Starting from Power-Down Mode When waking up from Power-Down sleep mode, the supply voltage is assumed to be at a sufficient level and only the oscillator start-up time is counted to ensure the stable operation of the oscillator. The oscillator start-up time is counted on the selected main clock, and the start-up time depends on the clock selected. See Table 6-2 for details. Table 6-2. Start-up Time from Power-Down Sleep Mode Notes: 1. The start-up time is measured in main clock oscillator cycles. 2. When using software BOD disable, the wake-up time from sleep mode will be approximately 60 μs. 6.4.3 Starting from Idle / ADC Noise Reduction / Standby Mode When waking up from Idle, ADC Noise Reduction or Standby Mode, the oscillator is already running and no oscillator start-up time is introduced. 6.5 Register Description 6.5.1 CLKMSR – Clock Main Settings Register  Bits 7:2 – Res: Reserved Bits These bits are reserved and will always read as zero.  Bits 1:0 – CLKMS[1:0]: Clock Main Select Bits These bits select the main clock source of the system. The bits can be written at run-time to switch the source of the main clock. The clock system ensures glitch free switching of the main clock source. The main clock alternatives are shown in Table 6-3. Reset Oscillator Configuration Total start-up time 64 ms 6 cycles 21 cycles 64 ms + 6 oscillator cycles + 21 system clock cycles (1)(2) Oscillator start-up time Total start-up time 6 cycles 6 oscillator cycles (1)(2) Bit 7 6 5 4 3 2 1 0 0x37 – – – – – – CLKMS1 CLKMS0 CLKMSR Read/Write R R R R R R R/W R/W Initial Value 0 0 0 0 0 0 0 0 ATtiny20 [DATASHEET] 21 8235E–AVR–03/2013 Table 6-3. Selection of Main Clock To avoid unintentional switching of main clock source, a protected change sequence must be followed to change the CLKMS bits, as follows: 1. Write the signature for change enable of protected I/O register to register CCP 2. Within four instruction cycles, write the CLKMS bits with the desired value 6.5.2 CLKPSR – Clock Prescale Register  Bits 7:4 – Res: Reserved Bits These bits are reserved and will always read as zero.  Bits 3:0 – CLKPS[3:0]: Clock Prescaler Select Bits 3 - 0 These bits define the division factor between the selected clock source and the internal system clock. These bits can be written at run-time to vary the clock frequency and suit the application requirements. As the prescaler divides the master clock input to the MCU, the speed of all synchronous peripherals is reduced accordingly. The division factors are given in Table 6-4. Table 6-4. Clock Prescaler Select CLKM1 CLKM0 Main Clock Source 0 0 Calibrated Internal 8 MHz Oscillator 0 1 Internal 128 kHz Oscillator (WDT Oscillator) 1 0 External clock 1 1 Reserved Bit 7 6 5 4 3 2 1 0 0x36 – – – – CLKPS3 CLKPS2 CLKPS1 CLKPS0 CLKPSR Read/Write R R R R R/W R/W R/W R/W Initial Value 0 0 0 0 0 0 1 1 CLKPS3 CLKPS2 CLKPS1 CLKPS0 Clock Division Factor 0 0 0 0 1 0 0 0 1 2 0 0 1 0 4 0 0 1 1 8 (default) 0 1 0 0 16 0 1 0 1 32 0 1 1 0 64 0 1 1 1 128 1 0 0 0 256 1 0 0 1 Reserved ATtiny20 [DATASHEET] 22 8235E–AVR–03/2013 To avoid unintentional changes of clock frequency, a protected change sequence must be followed to change the CLKPS bits: 1. Write the signature for change enable of protected I/O register to register CCP 2. Within four instruction cycles, write the desired value to CLKPS bits At start-up, the CLKPS bits will be reset to 0b0011 to select the clock division factor of 8. The application software must ensure that a sufficient division factor is chosen if the selected clock source has a higher frequency than the maximum frequency of the device at the present operating conditions. 6.5.3 OSCCAL – Oscillator Calibration Register .  Bits 7:0 – CAL[7:0]: Oscillator Calibration Value The oscillator calibration register is used to trim the calibrated internal oscillator and remove process variations from the oscillator frequency. A pre-programmed calibration value is automatically written to this register during chip reset, giving the factory calibrated frequency as specified in Table 20-2, “Calibration Accuracy of Internal RC Oscillator,” on page 169. The application software can write this register to change the oscillator frequency. The oscillator can be calibrated to frequencies as specified in Table 20-2, “Calibration Accuracy of Internal RC Oscillator,” on page 169. Calibration outside the range given is not guaranteed. The CAL[7:0] bits are used to tune the frequency of the oscillator. A setting of 0x00 gives the lowest frequency, and a setting of 0xFF gives the highest frequency. 1 0 1 0 Reserved 1 0 1 1 Reserved 1 1 0 0 Reserved 1 1 0 1 Reserved 1 1 1 0 Reserved 1 1 1 1 Reserved CLKPS3 CLKPS2 CLKPS1 CLKPS0 Clock Division Factor Bit 7 6 5 4 3 2 1 0 0x39 CAL7 CAL6 CAL5 CAL4 CAL3 CAL2 CAL1 CAL0 OSCCAL Read/Write R/W R/W R/W R/W R/W R/W R/W R/W Initial Value 0 0 0 0 0 0 0 0 ATtiny20 [DATASHEET] 23 8235E–AVR–03/2013 7. Power Management and Sleep Modes The high performance and industry leading code efficiency makes the AVR microcontrollers an ideal choise for low power applications. In addition, sleep modes enable the application to shut down unused modules in the MCU, thereby saving power. The AVR provides various sleep modes allowing the user to tailor the power consumption to the application’s requirements. 7.1 Sleep Modes Figure 6-1 on page 17 presents the different clock systems and their distribution in ATtiny20. The figure is helpful in selecting an appropriate sleep mode. Table 7-1 shows the different sleep modes and their wake up sources. Table 7-1. Active Clock Domains and Wake-up Sources in Different Sleep Modes Notes: 1. For INT0, only level interrupt. 2. Only TWI address match interrupt. To enter any of the four sleep modes, the SE bits in MCUCR must be written to logic one and a SLEEP instruction must be executed. The SM[2:0] bits in the MCUCR register select which sleep mode (Idle, ADC Noise Reduction, Standby or Power-down) will be activated by the SLEEP instruction. See Table 7-2 for a summary. If an enabled interrupt occurs while the MCU is in a sleep mode, the MCU wakes up. The MCU is then halted for four cycles in addition to the start-up time, executes the interrupt routine, and resumes execution from the instruction following SLEEP. The contents of the Register File and SRAM are unaltered when the device wakes up from sleep. If a reset occurs during sleep mode, the MCU wakes up and executes from the Reset Vector. Note that if a level triggered interrupt is used for wake-up the changed level must be held for some time to wake up the MCU (and for the MCU to enter the interrupt service routine). See “External Interrupts” on page 37 for details. 7.1.1 Idle Mode When bits SM[2:0] are written to 000, the SLEEP instruction makes the MCU enter Idle mode, stopping the CPU but allowing the analog comparator, ADC, timer/counters, watchdog, TWI, SPI and the interrupt system to continue operating. This sleep mode basically halts clkCPU and clkNVM, while allowing the other clocks to run. Idle mode enables the MCU to wake up from external triggered interrupts as well as internal ones like the timer overflow. If wake-up from the analog comparator interrupt is not required, the analog comparator can be powered down by setting the ACD bit in “ACSRA – Analog Comparator Control and Status Register” on page 106. This will reduce power consumption in idle mode. If the ADC is enabled, a conversion starts automatically when this mode is entered. Sleep Mode Active Clock Domains Oscillators Wake-up Sources clkCPU clkNVM clkIO clkADC Main Clock Source Enabled INT0 and Pin Change Watchdog Interrupt TWI Slave ADC Other I/O Idle X X X X X X X X ADC Noise Reduction X X X(1) X X(2) X Standby X X(1) X X(2) Power-down X(1) X X(2) ATtiny20 [DATASHEET] 24 8235E–AVR–03/2013 7.1.2 ADC Noise Reduction Mode When bits SM[2:0] are written to 001, the SLEEP instruction makes the MCU enter ADC Noise Reduction mode, stopping the CPU but allowing the ADC, the external interrupts, TWI and the watchdog to continue operating (if enabled). This sleep mode halts clkI/O, clkCPU, and clkNVM, while allowing the other clocks to run. This mode improves the noise environment for the ADC, enabling higher resolution measurements. If the ADC is enabled, a conversion starts automatically when this mode is entered. 7.1.3 Power-down Mode When bits SM[2:0] are written to 010, the SLEEP instruction makes the MCU enter Power-down mode. In this mode, the oscillator is stopped, while the external interrupts, TWI and the watchdog continue operating (if enabled). Only a watchdog reset, an external level interrupt on INT0, a pin change interrupt, or a TWI slave interrupt can wake up the MCU. This sleep mode halts all generated clocks, allowing operation of asynchronous modules only. 7.1.4 Standby Mode When bits SM[2:0] are written to 100, the SLEEP instruction makes the MCU enter Standby mode. This mode is identical to Power-down with the exception that the oscillator is kept running. This reduces wake-up time, because the oscillator is already running and doesn't need to be started up. 7.2 Software BOD Disable When the Brown-out Detector (BOD) is enabled by BODLEVEL fuses (see Table 19-5 on page 161), the BOD is actively monitoring the supply voltage during a sleep period. In some devices it is possible to save power by disabling the BOD by software in Power-Down and Stand-By sleep modes. The sleep mode power consumption will then be at the same level as when BOD is globally disabled by fuses. If BOD is disabled by software, the BOD function is turned off immediately after entering the sleep mode. Upon wake-up from sleep, BOD is automatically enabled again. This ensures safe operation in case the VCC level has dropped during the sleep period. When the BOD has been disabled, the wake-up time from sleep mode will be approximately 60μs to ensure that the BOD is working correctly before the MCU continues executing code. BOD disable is controlled by the BODS (BOD Sleep) bit of MCU Control Register, see “MCUCR – MCU Control Register” on page 26. Writing this bit to one turns off BOD in Power-Down and Stand-By, while writing a zero keeps the BOD active. The default setting is zero, i.e. BOD active. Writing to the BODS bit is controlled by a timed sequence, see “MCUCR – MCU Control Register” on page 26. 7.3 Power Reduction Register The Power Reduction Register (PRR), see “PRR – Power Reduction Register” on page 27, provides a method to reduce power consumption by stopping the clock to individual peripherals. When the clock for a peripheral is stopped then:  The current state of the peripheral is frozen.  The associated registers can not be read or written.  Resources used by the peripheral will remain occupied. The peripheral should in most cases be disabled before stopping the clock. Clearing the PRR bit wakes up the peripheral and puts it in the same state as before shutdown. Peripheral shutdown can be used in Idle mode and Active mode to significantly reduce the overall power consumption. See “Supply Current of I/O Modules” on page 174 for examples. In all other sleep modes, the clock is already stopped. ATtiny20 [DATASHEET] 25 8235E–AVR–03/2013 7.4 Minimizing Power Consumption There are several issues to consider when trying to minimize the power consumption in an AVR Core controlled system. In general, sleep modes should be used as much as possible, and the sleep mode should be selected so that as few as possible of the device’s functions are operating. All functions not needed should be disabled. In particular, the following modules may need special consideration when trying to achieve the lowest possible power consumption. 7.4.1 Analog Comparator When entering Idle mode, the analog comparator should be disabled if not used. In the power-down mode, the analog comparator is automatically disabled. See “Analog Comparator” on page 105 for further details. 7.4.2 Analog to Digital Converter If enabled, the ADC will be enabled in all sleep modes. To save power, the ADC should be disabled before entering any sleep mode. When the ADC is turned off and on again, the next conversion will be an extended conversion. See “Analog to Digital Converter” on page 109 for details on ADC operation. 7.4.3 Watchdog Timer If the Watchdog Timer is not needed in the application, this module should be turned off. If the Watchdog Timer is enabled, it will be enabled in all sleep modes, and hence, always consume power. In the deeper sleep modes, this will contribute significantly to the total current consumption. Refer to “Watchdog Timer” on page 31 for details on how to configure the Watchdog Timer. 7.4.4 Brown-out Detector If the Brown-out Detector is not needed in the application, this module should be turned off. If the Brown-out Detector is enabled by the BODLEVEL Fuses, it will be enabled in all sleep modes, and hence, always consume power. In the deeper sleep modes, this will contribute significantly to the total current consumption. See “Brown-out Detection” on page 30 and “Software BOD Disable” on page 24 for details on how to configure the Brown-out Detector. 7.4.5 Port Pins When entering a sleep mode, all port pins should be configured to use minimum power. The most important thing is then to ensure that no pins drive resistive loads. In sleep modes where the I/O clock (clkI/O) is stopped, the input buffers of the device will be disabled. This ensures that no power is consumed by the input logic when not needed. In some cases, the input logic is needed for detecting wake-up conditions, and it will then be enabled. Refer to the section “Digital Input Enable and Sleep Modes” on page 46 for details on which pins are enabled. If the input buffer is enabled and the input signal is left floating or has an analog signal level close to VCC/2, the input buffer will use excessive power. For analog input pins, the digital input buffer should be disabled at all times. An analog signal level close to VCC/2 on an input pin can cause significant current even in active mode. Digital input buffers can be disabled by writing to the Digital Input Disable Register (DIDR0). Refer to “DIDR0 – Digital Input Disable Register 0” on page 108 for details. ATtiny20 [DATASHEET] 26 8235E–AVR–03/2013 7.5 Register Description 7.5.1 MCUCR – MCU Control Register The MCU Control Register contains bits for controlling external interrupt sensing and power management.  Bit 5 – Res: Reserved Bit This bit is reserved and will always read as zero.  Bit 4 – BODS: BOD Sleep In order to disable BOD during sleep (see Table 7-1 on page 23) the BODS bit must be written to logic one. This is controlled by a protected change sequence, as follows: 1. Write the signature for change enable of protected I/O registers to register CCP. 2. Within four instruction cycles write the BODS bit. A sleep instruction must be executed while BODS is active in order to turn off the BOD for the actual sleep mode. The BODS bit is automatically cleared when the device wakes up. Alternatively the BODS bit can be cleared by writing logic zero to it. This does not require protected sequence.  Bits 3:1 – SM[2:0]: Sleep Mode Select Bits 2 - 0 These bits select between available sleep modes, as shown in Table 7-2. Table 7-2. Sleep Mode Select  Bit 0 – SE: Sleep Enable The SE bit must be written to logic one to make the MCU enter the sleep mode when the SLEEP instruction is executed. To avoid the MCU entering the sleep mode unless it is the programmer’s purpose, it is recommended to write the Sleep Enable (SE) bit to one just before the execution of the SLEEP instruction and to clear it immediately after waking up. Bit 7 6 5 4 3 2 1 0 0x3A ISC01 ISC00 – BODS SM2 SM1 SM0 SE MCUCR Read/Write R/W R/W R R/W R/W R/W R/W R/W Initial Value 0 0 0 0 0 0 0 0 SM2 SM1 SM0 Sleep Mode 0 0 0 Idle 0 0 1 ADC noise reduction 0 1 0 Power-down 0 1 1 Reserved 1 0 0 Standby 1 0 1 Reserved 1 1 0 Reserved 1 1 1 Reserved ATtiny20 [DATASHEET] 27 8235E–AVR–03/2013 7.5.2 PRR – Power Reduction Register  Bits 7:5 – Res: Reserved Bits These bits are reserved and will always read as zero.  Bit 4 – PRTWI: Power Reduction Two-Wire Interface Writing a logic one to this bit shuts down the Two-Wire Interface module.  Bit 3 – PRSPI: Power Reduction Serial Peripheral Interface Writing a logic one to this bit shuts down the Serial Peripheral Interface module.  Bit 2 – PRTIM1: Power Reduction Timer/Counter1 Writing a logic one to this bit shuts down the Timer/Counter1 module. When the Timer/Counter1 is enabled, operation will continue like before the shutdown.  Bit 1 – PRTIM0: Power Reduction Timer/Counter0 Writing a logic one to this bit shuts down the Timer/Counter0 module. When the Timer/Counter0 is enabled, operation will continue like before the shutdown.  Bit 0 – PRADC: Power Reduction ADC Writing a logic one to this bit shuts down the ADC. The ADC must be disabled before shut down. The analog comparator cannot use the ADC input MUX when the ADC is shut down. Bit 7 6 5 4 3 2 1 0 0x35 – – – PRTWI PRSPI PRTIM1 PRTIM0 PRADC PRR Read/Write R R R R/W R/W R/W R/W R/W Initial Value 0 0 0 0 0 0 0 0 ATtiny20 [DATASHEET] 28 8235E–AVR–03/2013 8. System Control and Reset 8.1 Resetting the AVR During reset, all I/O registers are set to their initial values, and the program starts execution from the Reset Vector. The instruction placed at the Reset Vector must be a RJMP – Relative Jump – instruction to the reset handling routine. If the program never enables an interrupt source, the interrupt vectors are not used, and regular program code can be placed at these locations. The circuit diagram in Figure 8-1 shows the reset logic. Electrical parameters of the reset circuitry are defined in section “System and Reset Characteristics” on page 170. Figure 8-1. Reset Logic The I/O ports of the AVR are immediately reset to their initial state when a reset source goes active. This does not require any clock source to be running. After all reset sources have gone inactive, a delay counter is invoked, stretching the internal reset. This allows the power to reach a stable level before normal operation starts. The start up sequence is described in “Starting from Reset” on page 19. 8.2 Reset Sources The ATtiny20 has four sources of reset:  Power-on Reset. The MCU is reset when the supply voltage is below the Power-on Reset threshold (VPOT)  External Reset. The MCU is reset when a low level is present on the RESET pin for longer than the minimum pulse length  Watchdog Reset. The MCU is reset when the Watchdog Timer period expires and the Watchdog is enabled  Brown Out Reset. The MCU is reset when the Brown-Out Detector is enabled and supply voltage is below the brown-out threshold (VBOT) 8.2.1 Power-on Reset A Power-on Reset (POR) pulse is generated by an on-chip detection circuit. The detection level is defined in section “System and Reset Characteristics” on page 170. The POR is activated whenever VCC is below the detection level. The POR circuit can be used to trigger the Start-up Reset, as well as to detect a failure in supply voltage. A Power-on Reset (POR) circuit ensures that the device is reset from Power-on. Reaching the Power-on Reset threshold voltage invokes the delay counter, which determines how long the device is kept in reset after VCC rise. The reset signal is activated again, without any delay, when VCC decreases below the detection level. DATA BUS RESET FLAG REGISTER (RSTFLR) POWER-ON RESET CIRCUIT PULL-UP RESISTOR BODLEVEL2...0 VCC SPIKE RESET FILTER EXTERNAL RESET CIRCUIT BROWN OUT RESET CIRCUIT RSTDISBL WATCHDOG TIMER DELAY COUNTERS S R Q WATCHDOG OSCILLATOR CLOCK GENERATOR BORF PORF EXTRF WDRF INTERNAL RESET CK TIMEOUT COUNTER RESET ATtiny20 [DATASHEET] 29 8235E–AVR–03/2013 Figure 8-2. MCU Start-up, RESET Tied to VCC Figure 8-3. MCU Start-up, RESET Extended Externally 8.2.2 External Reset An External Reset is generated by a low level on the RESET pin if enabled. Reset pulses longer than the minimum pulse width (see section “System and Reset Characteristics” on page 170) will generate a reset, even if the clock is not running. Shorter pulses are not guaranteed to generate a reset. When the applied signal reaches the Reset Threshold Voltage – VRST – on its positive edge, the delay counter starts the MCU after the time-out period – tTOUT – has expired. External reset is ignored during Power-on start-up count. After Power-on reset the internal reset is extended only if RESET pin is low when the initial Power-on delay count is complete. See Figure 8-2 and Figure 8-3. V TIME-OUT RESET RESET TOUT INTERNAL t VPOT VRST CC V TIME-OUT TOUT TOUT INTERNAL CC t VPOT VRST > t RESET RESET ATtiny20 [DATASHEET] 30 8235E–AVR–03/2013 Figure 8-4. External Reset During Operation 8.2.3 Watchdog Reset When the Watchdog times out, it will generate a short reset pulse. On the falling edge of this pulse, the delay timer starts counting the time-out period tTOUT. See page 30 for details on operation of the Watchdog Timer and Table 20-4 on page 170 for details on reset time-out. Figure 8-5. Watchdog Reset During Operation 8.2.4 Brown-out Detection ATtiny20 has an On-chip Brown-out Detection (BOD) circuit for monitoring the VCC level during operation by comparing it to a fixed trigger level. The trigger level for the BOD can be selected by the BODLEVEL Fuses. The trigger level has a hysteresis to ensure spike free Brown-out Detection. The hysteresis on the detection level should be interpreted as VBOT+ = VBOT + VHYST/2 and VBOT- = VBOT - VHYST/2. When the BOD is enabled, and VCC decreases to a value below the trigger level (VBOT- in Figure 8-6 on page 31), the Brown-out Reset is immediately activated. When VCC increases above the trigger level (VBOT+ in Figure 8-6), the delay counter starts the MCU after the Time-out period tTOUT has expired. CC CK CC ATtiny20 [DATASHEET] 31 8235E–AVR–03/2013 The BOD circuit will only detect a drop in VCC if the voltage stays below the trigger level for longer than tBOD given in “System and Reset Characteristics” on page 170. Figure 8-6. Brown-out Reset During Operation 8.3 Internal Voltage Reference ATtiny20 features an internal bandgap reference. This reference is used for Brown-out Detection, and it can be used as an input to the Analog Comparator or the ADC. The bandgap voltage varies with supply voltage and temperature. 8.3.1 Voltage Reference Enable Signals and Start-up Time The voltage reference has a start-up time that may influence the way it should be used. The start-up time is given in “System and Reset Characteristics” on page 170. To save power, the reference is not always turned on. The reference is on during the following situations: 1. When the BOD is enabled (by programming the BODLEVEL[2:0] Fuse). 2. When the internal reference is connected to the Analog Comparator (by setting the ACBG bit in ACSR). 3. When the ADC is enabled. Thus, when the BOD is not enabled, after setting the ACBG bit or enabling the ADC, the user must always allow the reference to start up before the output from the Analog Comparator or ADC is used. To reduce power consumption in Power-down mode, the user can avoid the three conditions above to ensure that the reference is turned off before entering Power-down mode. 8.4 Watchdog Timer The Watchdog Timer is clocked from an on-chip oscillator, which runs at 128 kHz. See Figure 8-7 on page 32. By controlling the Watchdog Timer prescaler, the Watchdog Reset interval can be adjusted as shown in Table 8-2 on page 34. The WDR – Watchdog Reset – instruction resets the Watchdog Timer. The Watchdog Timer is also reset when it is disabled and when a device reset occurs. Ten different clock cycle periods can be selected to determine the reset period. If the reset period expires without another Watchdog Reset, the ATtiny20 resets and executes from the Reset Vector. For timing details on the Watchdog Reset, refer to Table 8-3 on page 34. VCC RESET TIME-OUT INTERNAL RESET VBOTVBOT+ tTOUT ATtiny20 [DATASHEET] 32 8235E–AVR–03/2013 Figure 8-7. Watchdog Timer The Wathdog Timer can also be configured to generate an interrupt instead of a reset. This can be very helpful when using the Watchdog to wake-up from Power-down. To prevent unintentional disabling of the Watchdog or unintentional change of time-out period, two different safety levels are selected by the fuse WDTON as shown in Table 8-1 on page 32. See “Procedure for Changing the Watchdog Timer Configuration” on page 32 for details. Table 8-1. WDT Configuration as a Function of the Fuse Settings of WDTON 8.4.1 Procedure for Changing the Watchdog Timer Configuration The sequence for changing configuration differs between the two safety levels, as follows: 8.4.1.1 Safety Level 1 In this mode, the Watchdog Timer is initially disabled, but can be enabled by writing the WDE bit to one without any restriction. A special sequence is needed when disabling an enabled Watchdog Timer. To disable an enabled Watchdog Timer, the following procedure must be followed: 1. Write the signature for change enable of protected I/O registers to register CCP 2. Within four instruction cycles, in the same operation, write WDE and WDP bits 8.4.1.2 Safety Level 2 In this mode, the Watchdog Timer is always enabled, and the WDE bit will always read as one. A protected change is needed when changing the Watchdog Time-out period. To change the Watchdog Time-out, the following procedure must be followed: 1. Write the signature for change enable of protected I/O registers to register CCP 2. Within four instruction cycles, write the WDP bit. The value written to WDE is irrelevant WDTON Safety Level Initial State How to Disable How to Change Time-out Unprogrammed 1 Disabled Protected change sequence No limitations Programmed 2 Enabled Always enabled Protected change sequence OSC/2K OSC/4K OSC/8K OSC/16K OSC/32K OSC/64K OSC/128K OSC/256K OSC/512K OSC/1024K MCU RESET WATCHDOG PRESCALER 128 kHz OSCILLATOR WATCHDOG RESET WDP0 WDP1 WDP2 WDP3 WDE MUX ATtiny20 [DATASHEET] 33 8235E–AVR–03/2013 8.4.2 Code Examples The following code example shows how to turn off the WDT. The example assumes that interrupts are controlled (e.g., by disabling interrupts globally) so that no interrupts will occur during execution of these functions. Note: See “Code Examples” on page 7. 8.5 Register Description 8.5.1 WDTCSR – Watchdog Timer Control and Status Register  Bit 7 – WDIF: Watchdog Timer Interrupt Flag This bit is set when a time-out occurs in the Watchdog Timer and the Watchdog Timer is configured for interrupt. WDIF is cleared by hardware when executing the corresponding interrupt handling vector. Alternatively, WDIF is cleared by writing a logic one to the flag. When the WDIE is set, the Watchdog Time-out Interrupt is requested.  Bit 6 – WDIE: Watchdog Timer Interrupt Enable When this bit is written to one, the Watchdog interrupt request is enabled. If WDE is cleared in combination with this setting, the Watchdog Timer is in Interrupt Mode, and the corresponding interrupt is requested if time-out in the Watchdog Timer occurs. If WDE is set, the Watchdog Timer is in Interrupt and System Reset Mode. The first time-out in the Watchdog Timer will set WDIF. Executing the corresponding interrupt vector will clear WDIE and WDIF automatically by hardware (the Watchdog goes to System Reset Mode). This is useful for keeping the Watchdog Timer security while using the interrupt. To stay in Interrupt and System Reset Mode, WDIE must be set after each interrupt. This should however not be done within the interrupt service routine itself, as this might compromise the safety-function of the Watchdog System Reset mode. If the interrupt is not executed before the next time-out, a System Reset will be applied. Assembly Code Example WDT_off: wdr ; Clear WDRF in RSTFLR in r16, RSTFLR andi r16, ~(1< ; Address 0x0011 ... ATtiny20 [DATASHEET] 38 8235E–AVR–03/2013 If the low level on the interrupt pin is removed before the device has woken up then program execution will not be diverted to the interrupt service routine but continue from the instruction following the SLEEP command. 9.2.2 Pin Change Interrupt Timing A timing example of a pin change interrupt is shown in Figure 9-1. Figure 9-1. Timing of pin change interrupts 9.3 Register Description 9.3.1 MCUCR – MCU Control Register The MCU Control Register contains bits for controlling external interrupt sensing and power management.  Bits 7:6 – ISC01, ISC00: Interrupt Sense Control The External Interrupt 0 is activated by the external pin INT0 if the SREG I-flag and the corresponding interrupt mask are set. The level and edges on the external INT0 pin that activate the interrupt are defined in Table 9-2. The value on the INT0 pin is sampled before detecting edges. If edge or toggle interrupt is selected, pulses that last longer than one clock period will generate an interrupt. Shorter pulses are not guaranteed to generate an interrupt. If low level interrupt is selected, the low level must be held until the completion of the currently executing instruction to generate an interrupt. clk PCINT(0) pin_lat pin_sync pcint_in_(0) pcint_syn pcint_setflag PCIF PCINT(0) pin_sync pcint_syn pin_lat D Q LE pcint_setflag PCIF clk clk PCINT(0) in PCMSK(x) pcint_in_(0) 0 x Bit 7 6 5 4 3 2 1 0 0x3A ISC01 ISC00 – BODS SM2 SM1 SM0 SE MCUCR Read/Write R/W R/W R R/W R/W R/W R/W R/W Initial Value 0 0 0 0 0 0 0 0 ATtiny20 [DATASHEET] 39 8235E–AVR–03/2013 Table 9-2. Interrupt 0 Sense Control 9.3.2 GIMSK – General Interrupt Mask Register  Bits 7:6 – Res: Reserved Bits These bits are reserved and will always read as zero.  Bit 5 – PCIE1: Pin Change Interrupt Enable 1 When the PCIE1 bit is set (one) and the I-bit in the Status Register (SREG) is set (one), pin change interrupt 1 is enabled. Any change on any enabled PCINT[11:8] pin will cause an interrupt. The corresponding interrupt of Pin Change Interrupt Request is executed from the PCI1 Interrupt Vector. PCINT[11:8] pins are enabled individually by the PCMSK1 Register.  Bit 4 – PCIE0: Pin Change Interrupt Enable 0 When the PCIE0 bit is set (one) and the I-bit in the Status Register (SREG) is set (one), pin change interrupt 0 is enabled. Any change on any enabled PCINT[7:0] pin will cause an interrupt. The corresponding interrupt of Pin Change Interrupt Request is executed from the PCI0 Interrupt Vector. PCINT[7:0] pins are enabled individually by the PCMSK0 Register.  Bits 3:1 – Res: Reserved Bits These bits are reserved and will always read as zero.  Bit 0 – INT0: External Interrupt Request 0 Enable When the INT0 bit is set (one) and the I-bit in the Status Register (SREG) is set (one), the external pin interrupt is enabled. The Interrupt Sense Control bits (ISC01 and ISC00) in the MCU Control Register (MCUCR) define whether the external interrupt is activated on rising and/or falling edge of the INT0 pin or level sensed. Activity on the pin will cause an interrupt request even if INT0 is configured as an output. The corresponding interrupt of External Interrupt Request 0 is executed from the INT0 Interrupt Vector. ISC01 ISC00 Description 0 0 The low level of INT0 generates an interrupt request. 0 1 Any logical change on INT0 generates an interrupt request. 1 0 The falling edge of INT0 generates an interrupt request. 1 1 The rising edge of INT0 generates an interrupt request. Bit 7 6 5 4 3 2 1 0 0x0C – – PCIE1 PCIE0 – – – INT0 GIMSK Read/Write R R R/W R/W R R R R/W Initial Value 0 0 0 0 0 0 0 0 ATtiny20 [DATASHEET] 40 8235E–AVR–03/2013 9.3.3 GIFR – General Interrupt Flag Register  Bits 7:6 – Res: Reserved Bits These bits are reserved and will always read as zero.  Bit 5 – PCIF1: Pin Change Interrupt Flag 1 When a logic change on any PCINT[11:8] pin triggers an interrupt request, PCIF1 becomes set (one). If the I-bit in SREG and the PCIE1 bit in GIMSK are set (one), the MCU will jump to the corresponding Interrupt Vector. The flag is cleared when the interrupt routine is executed. Alternatively, the flag can be cleared by writing a logical one to it.  Bit 4 – PCIF0: Pin Change Interrupt Flag 0 When a logic change on any PCINT[7:0] pin triggers an interrupt request, PCIF becomes set (one). If the I-bit in SREG and the PCIE0 bit in GIMSK are set (one), the MCU will jump to the corresponding Interrupt Vector. The flag is cleared when the interrupt routine is executed. Alternatively, the flag can be cleared by writing a logical one to it.  Bits 3:1 – Res: Reserved Bits These bits are reserved and will always read as zero.  Bit 0 – INTF0: External Interrupt Flag 0 When an edge or logic change on the INT0 pin triggers an interrupt request, INTF0 becomes set (one). If the I-bit in SREG and the INT0 bit in GIMSK are set (one), the MCU will jump to the corresponding Interrupt Vector. The flag is cleared when the interrupt routine is executed. Alternatively, the flag can be cleared by writing a logical one to it. This flag is always cleared when INT0 is configured as a level interrupt. 9.3.4 PCMSK1 – Pin Change Mask Register 1  Bits 7:4 – Res: Reserved Bits These bits are reserved and will always read as zero.  Bits 3:0 – PCINT[11:8] : Pin Change Enable Mask 11:8 Each PCINT[11:8] bit selects whether pin change interrupt is enabled on the corresponding I/O pin. If PCINT[11:8] is set and the PCIE1 bit in GIMSK is set, pin change interrupt is enabled on the corresponding I/O pin. If PCINT[11:8] is cleared, pin change interrupt on the corresponding I/O pin is disabled. Bit 7 6 5 4 3 2 1 0 0x0B – – PCIF1 PCIF0 – – – INTF0 GIFR Read/Write R R R/W R/W R R R R/W Initial Value 0 0 0 0 0 0 0 0 Bit 7 6 5 4 3 2 1 0 0x0A – – – – PCINT11 PCINT10 PCINT9 PCINT8 PCMSK1 Read/Write R R R R R/W R/W R/W R/W Initial Value 0 0 0 0 0 0 0 0 ATtiny20 [DATASHEET] 41 8235E–AVR–03/2013 9.3.5 PCMSK0 – Pin Change Mask Register 0  Bits 7:0 – PCINT[7:0] : Pin Change Enable Mask 7:0 Each PCINT[7:0] bit selects whether pin change interrupt is enabled on the corresponding I/O pin. If PCINT[7:0] is set and the PCIE0 bit in GIMSK is set, pin change interrupt is enabled on the corresponding I/O pin. If PCINT[7:0] is cleared, pin change interrupt on the corresponding I/O pin is disabled. Bit 7 6 5 4 3 2 1 0 0x09 PCINT7 PCINT6 PCINT5 PCINT4 PCINT3 PCINT2 PCINT1 PCINT0 PCMSK0 Read/Write R/W R/W R/W R/W R/W R/W R/W R/W Initial Value 0 0 0 0 0 0 0 0 ATtiny20 [DATASHEET] 42 8235E–AVR–03/2013 10. I/O Ports 10.1 Overview All AVR ports have true Read-Modify-Write functionality when used as general digital I/O ports. This means that the direction of one port pin can be changed without unintentionally changing the direction of any other pin with the SBI and CBI instructions. The same applies when changing drive value (if configured as output) or enabling/disabling of pull-up resistors. Each output buffer has symmetrical drive characteristics with both high sink and source capability. The pin driver is strong enough to drive LED displays directly. All port pins have individually selectable pull-up resistors with a supply-voltage invariant resistance. All I/O pins have protection diodes to both VCC and Ground as indicated in Figure 10- 1 on page 42. See “Electrical Characteristics” on page 167 for a complete list of parameters. Figure 10-1. I/O Pin Equivalent Schematic All registers and bit references in this section are written in general form. A lower case “x” represents the numbering letter for the port, and a lower case “n” represents the bit number. However, when using the register or bit defines in a program, the precise form must be used. For example, PORTB3 for bit no. 3 in Port B, here documented generally as PORTxn. The physical I/O Registers and bit locations are listed in “Register Description” on page 56. Four I/O memory address locations are allocated for each port, one each for the Data Register – PORTx, Data Direction Register – DDRx, Pull-up Enable Register – PUEx, and the Port Input Pins – PINx. The Port Input Pins I/O location is read only, while the Data Register, the Data Direction Register, and the Pull-up Enable Register are read/write. However, writing a logic one to a bit in the PINx Register, will result in a toggle in the corresponding bit in the Data Register. Using the I/O port as General Digital I/O is described in “Ports as General Digital I/O” on page 42. Most port pins are multiplexed with alternate functions for the peripheral features on the device. How each alternate function interferes with the port pin is described in “Alternate Port Functions” on page 47. Refer to the individual module sections for a full description of the alternate functions. Note that enabling the alternate function of some of the port pins does not affect the use of the other pins in the port as general digital I/O. 10.2 Ports as General Digital I/O The ports are bi-directional I/O ports with optional internal pull-ups. Figure 10-2 shows a functional description of one I/Oport pin, here generically called Pxn. Cpin Logic Rpu See Figure "General Digital I/O" for Details Pxn ATtiny20 [DATASHEET] 43 8235E–AVR–03/2013 Figure 10-2. General Digital I/O(1) Note: 1. WEx, WRx, WPx, WDx, REx, RRx, RPx, and RDx are common to all pins within the same port. clkI/O, and SLEEP are common to all ports. 10.2.1 Configuring the Pin Each port pin consists of four register bits: DDxn, PORTxn, PUExn, and PINxn. As shown in “Register Description” on page 56, the DDxn bits are accessed at the DDRx I/O address, the PORTxn bits at the PORTx I/O address, the PUExn bits at the PUEx I/O address, and the PINxn bits at the PINx I/O address. The DDxn bit in the DDRx Register selects the direction of this pin. If DDxn is written logic one, Pxn is configured as an output pin. If DDxn is written logic zero, Pxn is configured as an input pin. If PORTxn is written logic one when the pin is configured as an output pin, the port pin is driven high (one). If PORTxn is written logic zero when the pin is configured as an output pin, the port pin is driven low (zero). clk RPx RRx RDx WDx WEx SYNCHRONIZER WDx: WRITE DDRx WRx: WRITE PORTx RRx: READ PORTx REGISTER RPx: READ PORTx PIN clkI/O: I/O CLOCK RDx: READ DDRx WEx: WRITE PUEx REx: READ PUEx D L Q Q REx RESET RESET Q D Q Q Q D CLR PORTxn Q Q D CLR DDxn PINxn DATA BUS SLEEP SLEEP: SLEEP CONTROL Pxn I/O WPx RESET Q Q D CLR PUExn 0 1 WRx WPx: WRITE PINx REGISTER ATtiny20 [DATASHEET] 44 8235E–AVR–03/2013 The pull-up resistor is activated, if the PUExn is written logic one. To switch the pull-up resistor off, PUExn has to be written logic zero. Table 10-1 summarizes the control signals for the pin value. Table 10-1. Port Pin Configurations Port pins are tri-stated when a reset condition becomes active, even when no clocks are running. 10.2.2 Toggling the Pin Writing a logic one to PINxn toggles the value of PORTxn, independent on the value of DDRxn. Note that the SBI instruction can be used to toggle one single bit in a port. 10.2.3 Break-Before-Make Switching In Break-Before-Make mode, switching the DDRxn bit from input to output introduces an immediate tri-state period lasting one system clock cycle, as indicated in Figure 10-3. For example, if the system clock is 4 MHz and the DDRxn is written to make an output, an immediate tri-state period of 250 ns is introduced before the value of PORTxn is seen on the port pin. To avoid glitches it is recommended that the maximum DDRxn toggle frequency is two system clock cycles. The Break- Before-Make mode applies to the entire port and it is activated by the BBMx bit. For more details, see “PORTCR – Port Control Register” on page 56. When switching the DDRxn bit from output to input no immediate tri-state period is introduced. DDxn PORTxn PUExn I/O Pull-up Comment 0 X 0 Input No Tri-state (hi-Z) 0 X 1 Input Yes Sources current if pulled low externally 1 0 0 Output No Output low (sink) 1 0 1 Output Yes NOT RECOMMENDED. Output low (sink) and internal pull-up active. Sources current through the internal pull-up resistor and consumes power constantly 1 1 0 Output No Output high (source) 1 1 1 Output Yes Output high (source) and internal pull-up active ATtiny20 [DATASHEET] 45 8235E–AVR–03/2013 Figure 10-3. Switching Between Input and Output in Break-Before-Make-Mode 10.2.4 Reading the Pin Value Independent of the setting of Data Direction bit DDxn, the port pin can be read through the PINxn Register bit. As shown in Figure 10-2 on page 43, the PINxn Register bit and the preceding latch constitute a synchronizer. This is needed to avoid metastability if the physical pin changes value near the edge of the internal clock, but it also introduces a delay. Figure 10-4 shows a timing diagram of the synchronization when reading an externally applied pin value. The maximum and minimum propagation delays are denoted tpd,max and tpd,min respectively. Figure 10-4. Synchronization when Reading an Externally Applied Pin value Consider the clock period starting shortly after the first falling edge of the system clock. The latch is closed when the clock is low, and goes transparent when the clock is high, as indicated by the shaded region of the “SYNC LATCH” signal. The signal value is latched when the system clock goes low. It is clocked into the PINxn Register at the succeeding positive clock edge. As indicated by the two arrows tpd,max and tpd,min, a single signal transition on the pin will be delayed between ½ and 1½ system clock period depending upon the time of assertion. out DDRx, r16 nop 0x02 0x01 SYSTEM CLK INSTRUCTIONS DDRx intermediate tri-state cycle out DDRx, r17 PORTx 0x55 0x01 intermediate tri-state cycle Px0 Px1 tri-state tri-state tri-state r17 0x01 r16 0x02 XXX in r17, PINx 0x00 0xFF INSTRUCTIONS SYNC LATCH PINxn r17 XXX SYSTEM CLK tpd, max tpd, min ATtiny20 [DATASHEET] 46 8235E–AVR–03/2013 When reading back a software assigned pin value, a nop instruction must be inserted as indicated in Figure 10-5 on page 46. The out instruction sets the “SYNC LATCH” signal at the positive edge of the clock. In this case, the delay tpd through the synchronizer is one system clock period. Figure 10-5. Synchronization when Reading a Software Assigned Pin Value 10.2.5 Digital Input Enable and Sleep Modes As shown in Figure 10-2 on page 43, the digital input signal can be clamped to ground at the input of the schmitt-trigger. The signal denoted SLEEP in the figure, is set by the MCU Sleep Controller in Power-down and Standby modes to avoid high power consumption if some input signals are left floating, or have an analog signal level close to VCC/2. SLEEP is overridden for port pins enabled as external interrupt pins. If the external interrupt request is not enabled, SLEEP is active also for these pins. SLEEP is also overridden by various other alternate functions as described in “Alternate Port Functions” on page 47. If a logic high level (“one”) is present on an asynchronous external interrupt pin configured as “Interrupt on Rising Edge, Falling Edge, or Any Logic Change on Pin” while the external interrupt is not enabled, the corresponding External Interrupt Flag will be set when resuming from the above mentioned Sleep mode, as the clamping in these sleep mode produces the requested logic change. 10.2.6 Unconnected Pins If some pins are unused, it is recommended to ensure that these pins have a defined level. Even though most of the digital inputs are disabled in the deep sleep modes as described above, floating inputs should be avoided to reduce current consumption in all other modes where the digital inputs are enabled (Reset, Active mode and Idle mode). The simplest method to ensure a defined level of an unused pin, is to enable the internal pull-up. In this case, the pull-up will be disabled during reset. If low power consumption during reset is important, it is recommended to use an external pull-up or pulldown. Connecting unused pins directly to VCC or GND is not recommended, since this may cause excessive currents if the pin is accidentally configured as an output. out PORTx, r16 nop in r17, PINx 0xFF 0x00 0xFF SYSTEM CLK r16 INSTRUCTIONS SYNC LATCH PINxn r17 tpd ATtiny20 [DATASHEET] 47 8235E–AVR–03/2013 10.2.7 Program Example The following code example shows how to set port B pin 0 high, pin 1 low, and define the port pins from 2 to 3 as input with a pull-up assigned to port pin 2. The resulting pin values are read back again, but as previously discussed, a nop instruction is included to be able to read back the value recently assigned to some of the pins. Note: See “Code Examples” on page 7. 10.3 Alternate Port Functions Most port pins have alternate functions in addition to being general digital I/Os. In Figure 10-6 below is shown how the port pin control signals from the simplified Figure 10-2 on page 43 can be overridden by alternate functions. Assembly Code Example ... ; Define pull-ups and set outputs high ; Define directions for port pins ldi r16,(1<?  >@$+JZ $%\ \J$ $< \J^_   ` j$ J$$J\%$_\>%J\> j\%^J $_>{_|$$k    #;& &# }+> &#*~ #&}+> #&&&+> #*** &# ; &#} &# } &#}}  &#&*    "   """ " # \!€`€!  ‚! ƒ!!` "" # \€€ "‚" „#    ; *  +   ^? _ * ;      _ > > _  _ &#;&&+> > &#;&&+>  &#&*   &#&*   + …`j  ‰kˆ ŠZ> j*;&k ATtiny20 [DATASHEET] 209 8235E–AVR–03/2013 25.2 14S1 2325 Orchard Parkway San Jose, CA 95131 TITLE DRAWING NO. R REV. 14S1, 14-lead, 0.150" Wide Body, Plastic Gull Wing Small Outline Package (SOIC) 2/5/02 14S1 A A1 E L Side View Top View End View E H b N 1 e A D COMMON DIMENSIONS (Unit of Measure = mm/inches) SYMBOL MIN NOM MAX NOTE Notes: 1. This drawing is for general information only; refer to JEDEC Drawing MS-012, Variation AB for additional information. 2. Dimension D does not include mold Flash, protrusions or gate burrs. Mold Flash, protrusion and gate burrs shall not exceed 0.15 mm (0.006") per side. 3. Dimension E does not include inter-lead Flash or protrusion. Inter-lead flash and protrusions shall not exceed 0.25 mm (0.010") per side. 4. L is the length of the terminal for soldering to a substrate. 5. The lead width B, as measured 0.36 mm (0.014") or greater above the seating plane, shall not exceed a maximum value of 0.61 mm (0.024") per side. A 1.35/0.0532 – 1.75/0.0688 A1 0.1/.0040 – 0.25/0.0098 b 0.33/0.0130 – 0.5/0.02005 D 8.55/0.3367 – 8.74/0.3444 2 E 3.8/0.1497 – 3.99/0.1574 3 H 5.8/0.2284 – 6.19/0.2440 L 0.41/0.0160 – 1.27/0.0500 4 e 1.27/0.050 BSC ATtiny20 [DATASHEET] 210 8235E–AVR–03/2013 25.3 14X 2325 Orchard Parkway San Jose, CA 95131 TITLE DRAWING NO. R REV. y . . 14X (Formerly "14T"), 14-lead (4.4 mm Body) Thin Shrink Small Outline Package (TSSOP) B 14X 05/16/01 5.10 (0.201) 4.90 (0.193) 1.20 (0.047) MAX 0.65 (.0256) BSC 0.20 (0.008) 0.09 (0.004) 0.15 (0.006) 0.05 (0.002) INDEX MARK 6.50 (0.256) 6.25 (0.246) SEATING PLANE 4.50 (0.177) 4.30 (0.169) PIN 1 0.75 (0.030) 0.45 (0.018) 0º~ 8º 0.30 (0.012) 0.19 (0.007) Dimensions in Millimeters and (Inches). Controlling dimension: Millimeters. JEDEC Standard MO-153 AB-1. ATtiny20 [DATASHEET] 211 8235E–AVR–03/2013 25.4 15CC1 TITLE GPC DRAWING NO. REV. Package Drawing Contact: packagedrawings@atmel.com R C CBC 15CC1, 15-ball (4 x 4 Array), 3.0 x 3.0 x 0.6 mm package, ball pitch 0.65 mm, Ultra thin, Fine-Pitch Ball Grid Array Package (UFBGA) 15CC1 07/06/10 A – – 0.60 A1 0.12 – – A2 0.38 REF b 0.25 0.30 0.35 1 b1 0.25 – – 2 D 2.90 3.00 3.10 D1 1.95 BSC E 2.90 3.00 3.10 E1 1.95 BSC e 0.65 BSC COMMON DIMENSIONS (Unit of Measure = mm) SYMBOL MIN NOM MAX NOTE TOP VIEW 123 4 A B C D E D 15-Øb D C B A Pin#1 ID 0.08 A1 A D1 E1 A2 A1 BALL CORNER e 123 4 SIDE VIEW b1 BOTTOM VIEW e Note1: Dimension “b” is measured at the maximum ball dia. in a plane parallel to the seating plane. Note2: Dimension “b1” is the solderable surface defined by the opening of the solder resist layer. ATtiny20 [DATASHEET] 212 8235E–AVR–03/2013 25.5 20M2 TITLE GPC DRAWING NO. REV. Package Drawing Contact: packagedrawings@atmel.com ZFC 20M2 B 20M2, 20-pad, 3 x 3 x 0.85 mm Body, Lead Pitch 0.45 mm, 1.55 x 1.55 mm Exposed Pad, Thermally Enhanced Plastic Very Thin Quad Flat No Lead Package (VQFN) 10/24/08 15 14 13 12 11 1 2 3 4 5 16 17 18 19 20 10 9 8 7 6 D2 E2 e b L K Pin #1 Chamfer (C 0.3) D E SIDE VIEW A1 y Pin 1 ID BOTTOM VIEW TOP VIEW A C C0.18 (8X) 0.3 Ref (4x) COMMON DIMENSIONS (Unit of Measure = mm) SYMBOL MIN NOM MAX NOTE A 0.75 0.80 0.85 A1 0.00 0.02 0.05 b 0.17 0.22 0.27 C 0.152 D 2.90 3.00 3.10 D2 1.40 1.55 1.70 E 2.90 3.00 3.10 E2 1.40 1.55 1.70 e – 0.45 – L 0.35 0.40 0.45 K 0.20 – – y 0.00 – 0.08 ATtiny20 [DATASHEET] 213 8235E–AVR–03/2013 26. Errata The revision letters in this section refer to the revision of the corresponding ATtiny20 device. 26.1 Rev. A Issue: Lock bits re-programming Resolution: Attempt to re-program Lock bits to present, or lower protection level (tampering attempt), causes erroneously one, random line of Flash program memory to get erased. The Lock bits will not get changed, as they should not. Workaround: Do not attempt to re-program Lock bits to present, or lower protection level. Issue: MISO output driver is not disabled by Slave Select (SS) signal Resolution: When SPI is configured as a slave and the MISO pin is configured as an output the pin output driver is constantly enabled, even when the SS pin is high. If other slave devices are connected to the same MISO line this behaviour may cause drive contention. Workaround: Monitor SS pin by software and use the DDRB2 bit of DDRB to control the MISO pin driver. ATtiny20 [DATASHEET] 214 8235E–AVR–03/2013 27. Datasheet Revision History Revision Date Comments 8235E 03/13 Updated WLCSP ball configuration on page 3. Updated WLCSP package drawing, “12U-1” on page 208 8235D 10/12 Updated Document template, and “Pin Configurations” on page 2 8235C 06/12 Updated “Ordering Information” on page 207. Added Wafer Level Chip Scale Package “12U-1” on page 208. 8235B 04/11 Removed Preliminary status. Updated Bit syntax throughout the datasheet, e.g. from CS02:0 to CS0[2:0], Idle Mode description on page 6, “Capacitive Touch Sensing” on page 7 (section updated and moved), “Disclaimer” on page 7, Sentence on low impedance sources in “Analog Input Circuitry” on page 116, Description on 16-bit registers on page 9, Description on Stack Pointer on page 10, List of active modules in “Idle Mode” on page 23, Description on reset pulse width in “Watchdog Reset” on page 30, Program code on page 37, Bit description in Figure 11-3 on page 62, Section “Compare Output Mode and Waveform Generation” on page 63, Signal descriptions in Figure 11-5 on page 64, and Figure 11-7 on page 67, Equations on page 65, page 66, and page 67, Terminology in sections describing extreme values on page 66, and page 67, Description on creating frequency waveforms on page 67, Signal routing in Figure 12- 1 on page 76, TOP definition in Table 12-1 on page 77, Signal names in Figure 12-3 on page 79, TWSHE bit description in “TWSCRA – TWI Slave Control Register A” on page 143, SPI slave assembly code example on page 129, Table 21-1 on page 174, Section “Speed” on page 168, Characteristics in Figure 21-3 on page 176, and Figure 21-8 on page 179. Added Note on internal voltage reference in Table 15-4 on page 121, PRADC in Table 21-2 on page 175, MISO output driver errata for device rev. A in “Errata” on page 213 8235A 03/10 Initial revision ATtiny20 [DATASHEET] i 8235E–AVR–03/2013 Table of Contents Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1. Pin Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1 SOIC & TSSOP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 VQFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 UFBGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.4 Wafer Level Chip Scale Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.5 Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3. General Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.1 Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.2 Code Examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.3 Capacitive Touch Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.4 Data Retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.5 Disclaimer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 4. CPU Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 4.1 Architectural Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 4.2 ALU – Arithmetic Logic Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 4.3 Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 4.4 General Purpose Register File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 4.5 Stack Pointer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 4.6 Instruction Execution Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 4.7 Reset and Interrupt Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 4.8 Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 5. Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 5.1 In-System Re-programmable Flash Program Memory . . . . . . . . . . . . . . . . . . 15 5.2 Data Memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 5.3 I/O Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 6. Clock System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 6.1 Clock Subsystems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 6.2 Clock Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 6.3 System Clock Prescaler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 6.4 Starting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 6.5 Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 7. Power Management and Sleep Modes . . . . . . . . . . . . . . . . . . . . . . 23 7.1 Sleep Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 7.2 Software BOD Disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 7.3 Power Reduction Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 7.4 Minimizing Power Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 7.5 Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 8. System Control and Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 8.1 Resetting the AVR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 8.2 Reset Sources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ATtiny20 [DATASHEET] ii 8235E–AVR–03/2013 8.3 Internal Voltage Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 8.4 Watchdog Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 8.5 Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 9. Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 9.1 Interrupt Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 9.2 External Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 9.3 Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 10. I/O Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 10.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 10.2 Ports as General Digital I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 10.3 Alternate Port Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 10.4 Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 11. 8-bit Timer/Counter0 with PWM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 11.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 11.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 11.3 Clock Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 11.4 Counter Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 11.5 Output Compare Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 11.6 Compare Match Output Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 11.7 Modes of Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 11.8 Timer/Counter Timing Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 11.9 Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 12. 16-bit Timer/Counter1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 12.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 12.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 12.3 Timer/Counter Clock Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 12.4 Counter Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 12.5 Input Capture Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 12.6 Output Compare Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 12.7 Compare Match Output Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 12.8 Modes of Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 12.9 Timer/Counter Timing Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 12.10 Accessing 16-bit Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 12.11 Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 13. Timer/Counter Prescaler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 13.1 Prescaler Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 13.2 External Clock Source. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 13.3 Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 14. Analog Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 14.1 Analog Comparator Multiplexed Input. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 14.2 Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 15. Analog to Digital Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 15.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 15.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 15.3 Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 ATtiny20 [DATASHEET] iii 8235E–AVR–03/2013 15.4 Starting a Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 15.5 Prescaling and Conversion Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 15.6 Changing Channel or Reference Selection. . . . . . . . . . . . . . . . . . . . . . . . . . 115 15.7 ADC Noise Canceler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 15.8 Analog Input Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 15.9 Noise Canceling Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 15.10 ADC Accuracy Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 15.11 ADC Conversion Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 15.12 Temperature Measurement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 15.13 Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 16. SPI – Serial Peripheral Interface . . . . . . . . . . . . . . . . . . . . . . . . . . 125 16.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 16.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 16.3 SS Pin Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 16.4 Data Modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 16.5 Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 17. TWI – Two Wire Slave Interface . . . . . . . . . . . . . . . . . . . . . . . . . . 135 17.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 17.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 17.3 General TWI Bus Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 17.4 TWI Slave Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 17.5 Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 18. Programming Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 18.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 18.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 18.3 Physical Layer of Tiny Programming Interface . . . . . . . . . . . . . . . . . . . . . . . 148 18.4 Access Layer of Tiny Programming Interface . . . . . . . . . . . . . . . . . . . . . . . . 152 18.5 Instruction Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 18.6 Accessing the Non-Volatile Memory Controller. . . . . . . . . . . . . . . . . . . . . . . 155 18.7 Control and Status Space Register Descriptions . . . . . . . . . . . . . . . . . . . . . 156 19. Memory Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 19.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 19.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 19.3 Non-Volatile Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 19.4 Accessing the NVM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 19.5 Self programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 19.6 External Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 19.7 Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 20. Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 20.1 Absolute Maximum Ratings* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 20.2 DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 20.3 Speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 20.4 Clock Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 20.5 System and Reset Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 20.6 Analog Comparator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 20.7 ADC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 20.8 Serial Programming Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 ATtiny20 [DATASHEET] iv 8235E–AVR–03/2013 21. Typical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 21.1 Supply Current of I/O Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 21.2 Current Consumption in Active Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 21.3 Current Consumption in Idle Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 21.4 Current Consumption in Power-down Mode . . . . . . . . . . . . . . . . . . . . . . . . . 180 21.5 Current Consumption in Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 21.6 Current Consumption of Peripheral Units . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 21.7 Pull-up Resistors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 21.8 Output Driver Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 21.9 Input Thresholds and Hysteresis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 21.10 BOD, Bandgap and Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 21.11 Analog Comparator Offset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 21.12 Internal Oscillator Speed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 22. Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 23. Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 24. Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 24.1 ATtiny20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 25. Packaging Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208 25.1 12U-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208 25.2 14S1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 25.3 14X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210 25.4 15CC1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 25.5 20M2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 26. Errata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 26.1 Rev. A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 27. Datasheet Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214 Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i ATtiny20 [DATASHEET] v 8235E–AVR–03/2013 Atmel Corporation 1600 Technology Drive San Jose, CA 95110 USA Tel: (+1) (408) 441-0311 Fax: (+1) (408) 487-2600 www.atmel.com Atmel Asia Limited Unit 01-5 & 16, 19F BEA Tower, Millennium City 5 418 Kwun Tong Roa Kwun Tong, Kowloon HONG KONG Tel: (+852) 2245-6100 Fax: (+852) 2722-1369 Atmel Munich GmbH Business Campus Parkring 4 D-85748 Garching b. Munich GERMANY Tel: (+49) 89-31970-0 Fax: (+49) 89-3194621 Atmel Japan G.K. 16F Shin-Osaki Kangyo Bldg 1-6-4 Osaki, Shinagawa-ku Tokyo 141-0032 JAPAN Tel: (+81) (3) 6417-0300 Fax: (+81) (3) 6417-0370 © 2013 Atmel Corporation. All rights reserved. / Rev.: 8235E–AVR–03/2013 Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life. Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, AVR®, tinyAVR® and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others. http://www.farnell.com/datasheets/1706822.pdf VolitionTM Category 5e RJ45 Patch Cables Part of the 3M™ Volition™ Networks Solutions, these Category 5e patch cables allow you to complete your system to EIA/TIA 568B, ISO 11801 and EN 50173-1 Class D levels of performance. The RJ45 patch cables are available in either UTP, FTP or SFTP cable and lengths of 0.5, 1, 2, 3 4, 5, 7, 10, 12, 15 and 20 metres. They are compliant with Flame Retardant standard IEC 60332-1 LSOH versions are required by European Standard EN 50173 and are compliant with Standard IEC 60754-1. - Category 5e UTP PVC - Category 5e UTP LSOH - Category 5e FTP LSOH - Category 5e SFTP LSOH A choice of 3 versions, UTP, FTP and SFTP, ensures the appropriate electromagnetic compatibility protection level your customer requires Category 5e RJ45 Patch cables Features 3M patch cords offer • Optimisation with 3M Volition RJ45 K5e jacks • Moulded boot • Available in 0.5, 1, 2, 3, 4, 5, 7, 10, 12, 15 and 20 m • UTP, FTP and SFTP versions Benefits • offers best channel performance • better mechanical protection and ensures the minimum bend radius is not exceeded • Flexibility to complete the system to your requirements • Solutions for all levels of EMC protection Specifications Features - 3M branded - Category 5e link component - Moulded boot - 4 pairs of flexible multi-stranded copper conductors - Polyethylene conductor insulation to NFC 32060 - Two types of outer jacket depending on user requirements: PVC or low smoke zero halogen (LS0H*) material with flame retardant properties to IEC 60332-1 * compliant with Standard IEC 60754-1 For SFTP version - Synthetic water-repellent tape. - General shielding by copper braid - Pair by pair shielding by aluminium/polyester tape Volition™ Category 5e RJ45 to RJ45 Patch Cable, UTP, PVC Length 0.5 m VOL-5EUP-L0.5 1.0 m VOL-5EUP-L1 2.0 m VOL-5EUP-L2 3.0 m VOL-5EUP-L3 4.0 m VOL-5EUP-L4 5.0 m VOL-5EUP-L5 7.0 m VOL-5EUP-L7 10.0 m VOL-5EUP-L10 12.0 m VOL-5EUP-L12 15.0 m VOL-5EUP-L15 20.0 m VOL-5EUP-L20 Volition™ Category 5e RJ45 to RJ45 Patch Cable, UTP, LSOH Length 0.5 m VOL-5EUL-L0.5 1.0 m VOL-5EUL-L1 2.0 m VOL-5EUL-L2 3.0 m VOL-5EUL-L3 4.0 m VOL-5EUL-L4 5.0 m VOL-5EUL-L5 7.0 m VOL-5EUL-L7 10.0 m VOL-5EUL-L10 12.0 m VOL-5EUL-L12 15.0 m VOL-5EUL-L15 20.0 m VOL-5EUL-L20 Volition™ Category 5e RJ45 to RJ45 Patch Cable, SFTP, LSOH Length 0.5 m VOL-5ESFL-L0.5 1.0 m VOL-5ESFL-L1 2.0 m VOL-5ESFL-L2 3.0 m VOL-5ESFL-L3 4.0 m VOL-5ESFL-L4 5.0 m VOL-5ESFL-L5 7.0 m VOL-5ESFL-L7 10.0 m VOL-5ESFL-L10 12.0 m VOL-5ESFL-L12 15.0 m VOL-5ESFL-L15 20.0 m VOL-5ESFL-L20 Volition™ Category 5e RJ45 to RJ45 Patch Cable, FTP, LSOH Length 0.5 m VOL-5EFL-L-L0.5 1.0 m VOL-5EFL-L-L1 2.0 m VOL-5EFL-L-L2 3.0 m VOL-5EFL-L-L3 4.0 m VOL-5EFL-L-L4 5.0 m VOL-5EFL-L-L5 7.0 m VOL-5EFL-L-L7 10.0 m VOL-5EFL-L-L10 12.0 m VOL-5EFL-L-L12 15.0 m VOL-5EFL-L-L15 20.0 m VOL-5EFL-L-L20 Important Notice 3M does not accept reponsibility or liability, direct or consequential arising from reliance upon any information provided and the user should determine the suitability of the products for their intended use. Nothing in this statement will be deemed to exclude or restrict 3M´s liability for death or personal injury arising from its negligence. All questions of liability relating to 3M products are governed by the seller´s terms of sale subject where applicable to the prevailing law. If any goods supplied or process ed by or on behalf of 3M prove on inspection to be defective in material or workmanship, 3M will (at its option) replace the same or refund to the Buyer the price of the goods or services. Except as set out above, all warranties and conditions, whether express or implied, statutory or otherwise are excluded to the fullest extent permissible at law. Ordering Information Ref.-No. Rights reserved to make technical alternations. Dr.Nr. 07-404-64800/06.2003-pdf 3M and Volition are trademarks of 3M. Quante is a trademark of Quante AG. Also available in red, yellow, green and blue 3M Telecommunications Europe, Middle East & North Africa c/o Quante AG Carl-Schurz-Straße 1 · 41453 Neuss · Germany Tel.: ++49 (0)2131 / 14-5999 Fax: ++49 (0)2131 / 14-5998 Internet: www.3MTelecommunications.com LCW CQ7P.CC OSLON SSL Ceramic package - 80° radiation pattern Lead (Pb) Free Product - RoHS Compliant Released 2011-12-23 1 Besondere Merkmale •Gehäusetyp: SMT-Keramikgehäuse mit Silikonverguss und Linse •Typischer Lichtstrom: 74 lm bei 350 mA und bis zu 127 lm bei 700 mA (4000 K) •Besonderheit des Bauteils: Kompakte Lichtquelle für platzsparende Designs •Farbtemperatur: 2700 K bis 4000 K •Farbwiedergabeindex: 95 (typ.) •Abstrahlwinkel: 80° •Typischer optischer Wirkungsgrad: 66 lm/W bei 350 mA (4000 K) •Gruppierungsparameter: Lichtstrom, Farbort, Durchlassspannung •Lötmethode: Reflow-Löten •Vorbehandlung: nach JEDEC Level 2 •Gurtung: 12-mm Gurt mit 600/Rolle, ø180 mm •ESD-Festigkeit: ESD-sicher bis 8 kV nach JESD22-A114-D •Erweiterte Korrosionsfestigkeit: Details siehe Seite 15 •Testergebnis zur Lichtstromerhaltung nach IESNA-LM-80 verfügbar Anwendungen •Ladenbeleuchtung •Lampen- und Leuchten-Retrofits •Spot-Lichtquellen •Museumsbeleuchtung •Bühnenbeleuchtung Features •package: SMt ceramic package with silicon resin with lens •typical Luminous Flux: 74 lm at 350 mA and up to 127 lm at 700 mA (4000 K) •feature of the device: small size high-flux LED for slim designs •typ. color temperature: 2700 K to 4000 K •color rendering index: 95 (typ.) •viewing angle: 80° •typical optical efficiency: 66 lm/W at 350 mA (4000 K) •grouping parameter: luminous flux, color coordinates, forward voltage •soldering methods: reflow soldering •preconditioning: acc. to JEDEC Level 2 •taping: 12-mm tape with 600/reel, ø180 mm •ESD-withstand voltage: up to 8 kV acc. to JESD22-A114-D •Superior Corrosion Robustness: details see page 15 •Lumen maintanance test report according to IESNA LM-80 available Applications •Shop lighting •Residential retrofits & fixtures •Spot lights •Museum lighting •Stage lighting 2011-12-23 2 Released LCW CQ7P.CC Bestellinformation Ordering Information Typ Type Farb- temperatur color temperature Lichtstrom 1) Seite 22 Luminous Flux1) page 22 IF = 350 mA ΦV(lm) Lichtstärke 2) Seite 22 Luminous Intensity2) page 22 IF = 350 mA IV (cd) Bestellnummer Ordering Code LCW CQ7P.CC-JUKQ-5U8X-1 LCW CQ7P.CC-JTKP-5U8X-1 2700 K 65.8 ... 82.0 61.0 ... 76.3 41.0 (typ.) 38.0 (typ.) Q65111A1898 Q65111A1897 LCW CQ7P.CC-KPKR-5R8T-1 LCW CQ7P.CC-JUKQ-5R8T-1 3000 K 71.0 ... 89.2 65.8 ... 82.0 45.0 (typ.) 41.0 (typ.) Q65111A1893 Q65111A1892 LCW CQ7P.CC-KQKS-5O8Q-1 LCW CQ7P.CC-KPKR-5O8Q-1 3500 K 76.3 ... 97.0 71.0 ... 89.2 48.5 (typ.) 45.0 (typ.) Q65111A1891 Q65111A1890 LCW CQ7P.CC-KQKS-5L7N-1 LCW CQ7P.CC-KPKR-5L7N-1 4000 K 76.3 ... 97.0 71.0 ... 89.2 48.5 (typ.) 45.0 (typ.) Q65111A1889 Q65111A1866 Released LCW CQ7P.CC 2011-12-23 3 Anm.:Die oben genannten Typbezeichnungen umfassen die bestellbaren Selektionen. Diese bestehen aus wenigen Helligkeitsgruppen (siehe Seite 10 für nähere Informationen). Es wird nur eine einzige Helligkeitsgruppe pro Gurt geliefert. Z.B.: LCW CQ7P.CC-JUKQ-5U8X-1 bedeutet, dass auf dem Gurt nur eine der Helligkeitsgruppen JU, KP oder KQ enthalten ist. Um die Liefersicherheit zu gewährleisten, können einzelne Helligkeitsgruppen nicht bestellt werden. Gleiches gilt für die Farben, bei denen Farbortgruppen gemessen und gruppiert werden. Pro Gurt wird nur eine Farbortgruppe geliefert. Z.B.: LCW CQ7P.CC-JUKQ-5U8X-1 bedeutet, dass auf dem Gurt nur eine der Farbortgruppen -5U bis -8X enthalten ist (siehe Seite 6 für nähere Information). Um die Liefersicherheit zu gewährleisten, können einzelne Farbortgruppen nicht bestellt werden. Gleiches gilt für die LEDs, bei denen die Durchlassspannungsgruppen gemessen und gruppiert werden. Pro Gurt wird nur eine Durchlassspannungsgruppe geliefert. Z.B.: LCW CQ7P.CC-JUKQ-5U8X-1 bedeutet, dass nach Durchlassspannung gruppiert wird. Auf einem Gurt ist nur eine der Durchlasspannungsgruppen 3, 4 oder 5 enthalten (siehe Seite 10 für nähere Information). Um die Liefersicherheit zu gewährleisten, können einzelne Durchlassspannungsgruppen nicht direkt bestellt werden. Note:The above Type Numbers represent the order groups which include only a few brightness groups (see page 10for explanation). Only one group will be shipped on each reel (there will be no mixing of two groups on each reel). E.g.LCW CQ7P.CC-JUKQ-5U8X-1means that only one group JU, KP or KQ will be shippable for any one reel. In order to ensure availability, single brightness groups will not be orderable. In a similar manner for colors where chromaticity coordinate groups are measured and binned, single chromaticity coordinate groups will be shipped on any one reel. E.g. LCW CQ7P.CC-JUKQ-5U8X-1 means that only 1 chromaticity coordinate group -5U to -8X will be shippable (see page 6 for explanation). In order to ensure availability, single chromaticity coordinate groups will not be orderable. In a similar manner for LED, where forward voltage groups are measured and binned, single forward voltage groups will be shipped on any one reel. E.g. LCW CQ7P.CC-JUKQ-5U8X-1 means that only 1 forward voltage group 3, 4 or 5 will be shippable. In order to ensure availability, single forward voltage groups will not be orderable(see page 10 for explanation). 2011-12-23 4 Released LCW CQ7P.CC Grenzwerte Maximum Ratings Bezeichnung Parameter Symbol Symbol Wert Value Einheit Unit Betriebstemperatur Operating temperature range Top – 40 … + 120 °C Lagertemperatur Storage temperature range Tstg – 40 … + 120 °C Sperrschichttemperatur Junction temperature Tj 135 °C Durchlassstrom(min.) Forward current(max.) (TS=25°C) IF IF 100800 mA mA Stoßstrom Surge current t ≤ 50 ms, D = 0.016, TS=25°C IFM 2000 mA Reverse Current* Sperrstrom*(max.) IR 200 mA * A minimum of 10 h of reverse operation is permissable in total. Eine Gesamtbetriebszeit von wenigstens 10 h in Sperrrichtung ist gewährleistet. Released LCW CQ7P.CC 2011-12-23 5 Kennwerte Characteristics (TS = 25 °C) Bezeichnung Parameter Symbol Symbol WertValue Einheit Unit Farbtemperatur 2) Seite 22)(min.) Color temperature 2) page 22 IF = 350mA (max.) T T 27004000 K K Abstrahlwinkel bei 50 % ΙV (Vollwinkel)(typ.) Viewing angle at 50 % ΙV 2ϕ 80 Grad deg. Durchlassspannung 4) Seite 22)(min.) Forward voltage4) page 22(typ.) IF = 350mA (max.) VF VF VF 2.753.23.5 V V V Reverse Voltage3) page 22) Sperrspannung 3) Seite 23 IR = 20 mA(max.) VR 1.2 V Wärmewiderstand Thermal resistance Sperrschicht/Lötpad(typ.) Junction/solder point(max.) Rth el JS Rth el JS 79.4* K/W K/W *Rth(max) basiert auf statistischen Werten Rth(max) is based on statistic values 2011-12-23 6 Released LCW CQ7P.CC Farbortgruppen3) Seite 22 Chromaticity Coordinate Groups3) page 22 OHA04327520530540550560570580590600610620630000.10.20.30.40.50.60.70.80.90.10.20.30.40.50.60.70.80.9510500490450CxCy0.32CyCxE4804604700.220.340.360.380.400.420.440.460.480.500.240.260.280.300.320.340.360.380.400.420.440.460.480.500.520.540.562700 K3000 K3500 K4000 K4500 K5000 KWXVUTSRQPONMLKJ5678IH567+ Released LCW CQ7P.CC 2011-12-23 7 Color temperature 2700K Farbtemperatur 2700 K Gruppe Group Cx Cy Gruppe Group Cx Cy Gruppe Group Cx Cy 5U 0.437 0.389 7V 0.453 0.409 8W 0.464 0.420 0.442 0.398 0.458 0.418 0.469 0.429 0.448 0.400 0.464 0.420 0.475 0.430 0.443 0.391 0.459 0.410 0.470 0.421 6U 0.442 0.398 8V 0.458 0.418 5X 0.454 0.393 0.447 0.408 0.462 0.427 0.459 0.402 0.453 0.409 0.469 0.429 0.465 0.404 0.448 0.400 0.464 0.420 0.459 0.394 7U 0.447 0.408 5W 0.448 0.392 6X 0.459 0.402 0.451 0.417 0.453 0.401 0.464 0.412 0.458 0.418 0.459 0.402 0.470 0.413 0.453 0.409 0.454 0.393 0.465 0.404 8U 0.451 0.417 6W 0.453 0.401 7X 0.464 0.412 0.456 0.426 0.459 0.410 0.470 0.421 0.462 0.427 0.464 0.412 0.476 0.423 0.458 0.418 0.459 0.402 0.470 0.413 5V 0.443 0.391 6W 0.453 0.401 7X 0.464 0.412 0.448 0.400 0.459 0.410 0.470 0.421 0.453 0.401 0.464 0.412 0.476 0.423 0.448 0.392 0.459 0.402 0.470 0.413 6V 0.448 0.400 7W 0.459 0.410 8X 0.4697 0.4211 0.453 0.409 0.464 0.420 0.4750 0.4304 0.459 0.410 0.470 0.421 0.4758 0.4225 0.453 0.401 0.464 0.412 0.4697 0.4211 2011-12-23 8 Released LCW CQ7P.CC Color temperature 3000 K Farbtemperatur 3000 K Gruppe Group Cx Cy Gruppe Group Cx Cy Gruppe Group Cx Cy 5R 0.415 0.381 5S 0.422 0.384 5T 0.430 0.387 0.419 0.390 0.426 0.393 0.434 0.396 0.426 0.393 0.434 0.396 0.442 0.398 0.422 0.384 0.430 0.387 0.437 0.389 6R 0.419 0.390 6S 0.426 0.393 6T 0.434 0.396 0.422 0.399 0.430 0.402 0.439 0.405 0.430 0.402 0.439 0.405 0.447 0.408 0.426 0.293 0.434 0.396 0.442 0.398 7R 0.422 0.399 7S 0.430 0.402 7T 0.439 0.405 0.426 0.408 0.435 0.411 0.443 0.414 0.435 0.411 0.443 0.414 0.451 0.417 0.430 0.402 0.439 0.405 0.447 0.408 8R 0.426 0.408 8S 0.435 0.411 8T 0.443 0.414 0.430 0.417 0.439 0.420 0.447 0.423 0.439 0.420 0.447 0.423 0.456 0.426 0.435 0.411 0.443 0.414 0.451 0.417 Color temperature 3500 K Farbtemperatur 3500 K Gruppe Group Cx Cy Gruppe Group Cx Cy Gruppe Group Cx Cy 5O 0.389 0.369 5P 0.398 0.373 5Q 0.406 0.377 0.392 0.377 0.401 0.381 0.410 0.386 0.401 0.381 0.410 0.386 0.419 0.390 0.398 0.373 0.406 0.377 0.415 0.381 6O 0.392 0.377 6P 0.401 0.381 6Q 0.410 0.386 0.394 0.385 0.404 0.390 0.413 0.394 0.404 0.390 0.413 0.394 0.422 0.399 0.401 0.381 0.410 0.386 0.419 0.390 7O 0.394 0.385 7P 0.404 0.390 7Q 0.413 0.394 0.397 0.393 0.407 0.398 0.416 0.403 0.407 0.398 0.416 0.403 0.426 0.408 0.404 0.390 0.413 0.394 0.422 0.399 8O 0.397 0.393 8P 0.407 0.398 8Q 0.416 0.403 0.400 0.401 0.410 0.406 0.420 0.412 0.410 0.408 0.420 0.412 0.430 0.417 0.407 0.398 0416 0.403 0.426 0.408 Released LCW CQ7P.CC 2011-12-23 9 Color temperature 4000 K Farbtemperatur 4000 K Gruppe Group Cx Cy Gruppe Group Cx Cy Gruppe Group Cx Cy 5L 0.367 0.358 5M 0.375 0.362 5N 0.382 0.367 0.369 0.368 0.377 0.373 0.385 0.376 0.377 0.373 0.385 0.378 0.393 0.383 0.375 0.362 0.382 0.367 0.390 0.372 6L 0.369 0.368 6M 0.377 0.373 6N 0.385 0.378 0.371 0.378 0.380 0.383 0.388 0.388 0.380 0.383 0.388 0.388 0.397 0.393 0.377 0.373 0.385 0.376 0.393 0.383 7L 0.371 0.378 7M 0.380 0.383 7N 0.388 0.388 0.374 0.387 0.383 0.393 0.392 0.399 0.383 0.393 0.392 0.399 0.401 0.404 0.380 0.383 0.388 0.388 0.397 0.393 2011-12-23 10 Released LCW CQ7P.CC Forward Voltage Groups6) page 22 Durchlassspannungsgruppen6) Seite 22 Group Gruppe Forward voltageDurchlaßspannung Unit Einheit min. max. 3 2.75 3.0 V 4 3.0 3.25 V 5 3.25 3.5 V Helligkeits-Gruppierungsschema Brightness Groups Helligkeitsgruppe Brightness Group Lichtstrom1) Seite 22 Luminous Flux1) page 22 ΦV (lm) Lichtstärke2) Seite 22 Luminous Intensity2) page 22 IV (cd) JT JU KP KQ KR KS 61.0 ...65.8 65.8 ...71.0 71.0 ...76.3 76.3 ...82.0 82.0 ...89.2 89.2 ...97.0 35.5 (typ.) 38.0 (typ.) 41.0 (typ.) 44.0 (typ.) 48.0 (typ.) 52.0 (typ.) Anm.:Die Standardlieferform von Serientypen beinhaltet eine Familiengruppe. Diese besteht aus nur wenigen Helligkeitsgruppen. Einzelne Helligkeitsgruppen sind nicht bestellbar. Note:The standard shipping format for serial types includes a family group of only a few individual brightness groups. Individual brightness groups cannot be ordered. Gruppenbezeichnung auf Etikett Group Name on Label Beispiel: JU-5U Example: JU-5U Helligkeitsgruppe Brightness Group Farbortgruppe Chromaticity Coordinate Group JU 5U Anm.:In einer Verpackungseinheit / Gurt ist immer nur eine Helligkeitsgruppe enthalten. Note:No packing unit / tape ever contains more than one brightness group. Released LCW CQ7P.CC 2011-12-23 11 Relative spektrale Emission2) Seite 22 Relative Spectral Emission2) page 22 V(λ) = spektrale Augenempfindlichkeit / Standard eye response curve Φrel = f (λ); TS = 25 °C; IF = 350 mA Abstrahlcharakteristik2) Seite 22 Radiation Characteristic2) page 22 Ιrel = f (ϕ); TS = 25 °C 04004020500600%8060relΦ100700nmλ800OHL04572λV OHL043250°20°40°60°80°100°120°0.40.60.81.0100°90°80°70°60°50°0°10°20°30°40°00.20.40.60.81.0ϕ Released LCW CQ7P.CC 2011-12-23 12 Durchlassstrom2) Seite 22 Forward Current2) page 22 IF = f (VF); TS = 25 °C Farbortverschiebung2) Seite 22 Chromaticity Coordinate Shift2) page 22 x, y = f (IF); TS = 25 °C Relativer Lichtstrom2) Seite 22 Relative Luminous Flux2) page 22 ΦV/ΦV(350 mA) = f (IF); TS = 25 °C OHL04578FIVmA2.8FV3.03.23.43.63.8200400600800 -0.006OHL04569FICxCymA200400600800-0.004-0.00200.0020.004Cx, Cy OHL04571IFΦ(350 mA)VVΦ0mA2004006008000.51.01.52.0 Released LCW CQ7P.CC 2011-12-23 13 Relative Vorwärtsspannung2) Seite 22 Relative Forward Voltage2) page 22 ΔVF = VF - VF(25 °C) = f (Tj); IF = 350 mA Farbortverschiebung2) Seite 22 Chromaticity Coordinate Shift2) page 22 x, y = f (Tj); IF = 350 mA Relativer Lichtstrom2) Seite 22 Relative Luminous Flux2) page 22 ΦV/ΦV(25 °C) = f (Tj); IF = 350 mA -40-0.3°CTjOHL04428VFVΔ-20020406080120-0.2-0.100.10.20.3 OHL04570-40°CjT-200204060801200.40CyCx0.410.420.430.440.450.46Cx, Cy OHL04576-40°CjT-200204060801200VV(25 °C)ΦΦ0.20.40.60.81.2 Released LCW CQ7P.CC 2011-12-23 14 Maximal zulässiger Durchlassstrom Max. Permissible Forward Current IF = f (TS) Zulässige Impulsbelastbarkeit IF = f (tp) Permissible Pulse Handling Capability Duty cycle D = parameter, TS = 25 °C Zulässige Impulsbelastbarkeit IF = f (tp) Permissible Pulse Handling Capability Duty cycle D = parameter, TS = 85 °C 020406080100120140TS [°C]0100200300400500600700800ΙF [mA]Do not use current below 100 mA 10100-2-3-4-5101010FIAPt=DT210-110tp10s10OHL04611TtPIF0.050.20.10.510.020.01D0.20.40.60.81.01.21.41.61.82.20.005= 10100-2-3-4-5101010FIAPt=DT210-110tp10s10OHL04611TtPIF0.050.20.10.510.020.01D0.20.40.60.81.01.21.41.61.82.20.005= Released LCW CQ7P.CC 2011-12-23 15 Maßzeichnung5) Seite 22 Package Outlines5) page 22 Anm.:Die LED enthält ein ESD-Bauteil, das parallel zum Chip geschalten ist. Note:LED is protected by ESD device which is connected in parallel to LED-Chip. Anm.:Das Gehäuse ist für Ultraschallreinigung nicht geeignet Note:Package not suitable for ultra sonic cleaning Kathodenkennung:Markierung Cathode mark:mark Gewicht / Approx. weight:2.5 mg Korrosionsfestigkeit besser als EN 60068-2-60 (method 4): mit erweitertem Korrosionstest: 40°C / 90%rh / 15ppm H2S / 336h Corrosion robustness better than EN 60068-2-60 (method 4): with enhanced corrosion test: 40°C / 90%rh / 15ppm H2S / 336h 2011-12-23 16 Released LCW CQ7P.CC Gurtung / Polarität und Lage5) Seite 22Verpackungseinheit 600/Rolle, ø180 mm Method of Taping / Polarity and Orientation5) page 22Packing unit 600/reel, ø180 mm Released LCW CQ7P.CC 2011-12-23 17 Empfohlenes Lötpaddesign5) Seite 22 Reflow Löten Recommended Solder Pad5) page 22 Reflow Soldering Anm.:Um eine verbesserte Lötstellenkontaktierung zu erreichen, empfehlen wir, unter Standard- stickstoffatmosphäre zu löten. Weitere Informationen finden Sie in der Applikationsschrift „Handling and Processing Details for Ceramic LEDs“ Note:For superior solder joint connectivity results we recommend soldering under standard nitrogen atmosphere. For further information please refer to our Application Note „Handling and Processing Details for Ceramic LEDs“ 2011-12-23 18 Released LCW CQ7P.CC LötbedingungenVorbehandlung nach JEDEC Level 2 Soldering ConditionsPreconditioning acc. to JEDEC Level 2 Reflow Lötprofil für bleifreies Löten(nach J-STD-020D.01) Reflow Soldering Profile for lead free soldering(acc. to J-STD-020D.01) Profile Feature Pb-Free (SnAgCu) Assembly Recommendation Max. Ratings Ramp-up Rate to Preheat*) 25 °C to 150 °C 2 K /s 3 K / s Time ts from TSmin to TSmax (150 °C to 200 °C 100 s min. 60 s max. 120 s Ramp-up Rate to Peak*) 180 °C to TP 2 K / s 3 K / s Liquidus Temperture TL 217 °C Time tL above TL 80 s max. 100 s Peak Temperature TP 245 °C max. 260 °C Time tP within 5 °C of the specified peak temperature TP - 5 K 20 s min. 10 s max. 30 s Ramp-down Rate* TP to 100 °C 3 K / s 6 K / s maximum Time 25 °C to Peak temperature max. 8 min. All temperatures refer to the center of the package, measured on the top of the component * slope calculation ΔT/Δt: Δt max. 5 sec; fulfillment for the whole T-range 00sOHA045255010015020025030050100150200250300tT°CSttPtTp240 °C217 °C245 °C25 °CL Released LCW CQ7P.CC 2011-12-23 19 Barcode-Produkt-Etikett (BPL) Barcode-Product-Label (BPL) Gurtverpackung Tape and Reel Tape dimensions in mm (inch) W P0 P1 P2 D0 E F 4 ± 0.1 (0.157 ± 0.004) 8 ± 0.1 (0.315 ± 0.004) 2 ± 0.05 (0.079 ± 0.002) 1.5 + 0.1 (0.059 + 0.004) 1.75 ± 0.1 (0.069 ± 0.004) 5.5 ± 0.05 (0.217 ± 0.002) Reel dimensions in mm (inch) A W Nmin W1 W2 max 180 (7) 12 (0.472) 60 (2.362) 12.4 + 2 (0.488 + 0.079) 18.4 (0.724) OHA04563(G) GROUP:1234567890(1T) LOT NO:(9D) D/C:1234(X) PROD NO:123456789(6P) BATCH NO:1234567890LX XXXXRoHS CompliantBIN1: XX-XX-X-XXX-XML2Temp ST260 °C RPack: R18DEMY 022B_R999_1880.1642 R9999(Q)QTY:SemiconductorsOSRAM OptoXX-XX-X-X D02PP01PWFEDirection of unreelingNW12WAOHAY0324LabelGurtvorlauf:Leader:Trailer:Gurtende:13.0Direction of unreeling±0.25160 mm160 mm400 mm400 mm 12+ 0.3– 0.1 2011-12-23 20 Released LCW CQ7P.CC Trockenverpackung und Materialien Dry Packing Process and Materials Anm.:Feuchteempfindliche Produkte sind verpackt in einem Trockenbeutel zusammen mit einem Trockenmittel und einer Feuchteindikatorkarte Bezüglich Trockenverpackung finden Sie weitere Hinweise im Internet und in unserem Short Form Catalog im Kapitel “Gurtung und Verpackung” unter dem Punkt “Trockenverpackung”. Hier sind Normenbezüge, unter anderem ein Auszug der JEDEC-Norm, enthalten. Note:Moisture-sensitve product is packed in a dry bag containing desiccant and a humidity card. Regarding dry pack you will find further information in the internet and in the Short Form Catalog in chapter “Tape and Reel” under the topic “Dry Pack”. Here you will also find the normative references like JEDEC. Kartonverpackung und Materialien Transportation Packing and Materials Dimensions of transportation box in mm (inch) Breite / Width Länge / length Höhe / height 200 ±5 (7,874 ±0,1968) 200 ±5 (7,874 ±0,1968) 30 ±5 (1,1811 ±0,1968) OHA00539OSRAMMoisture-sensitive label or printBarcode labelDesiccantHumidity indicatorBarcode labelOSRAMPlease check the HIC immidiately afterbag opening.Discard if circles overrun.Avoid metal contact.WETDo not eat.Comparatorcheck dotparts still adequately dry.examine units, if necessaryexamine units, if necessary5%15%10%bake unitsbake unitsIf wet,change desiccantIf wet,Humidity IndicatorMIL-I-8835If wet,Moisture Level 3Floor time 168 HoursMoisture Level6Floor time 6 Hoursa) Humidity Indicator Card is > 10% when read at 23 °C ± 5 °C,orreflow, vapor-phasereflow, or equivalent processing (peak package2. After this bag is opened,devicesthat will be subjected to infrared1. Shelflife in sealed bag: 24 months at < 40 °C and < 90% relative humidity (RH).Moisture Level 5aat factory conditions of(if blank, sealdate isidentical with date code).a)Mounted withinb) Stored atbody temp.3.Devicesrequire baking, before mounting, if:BagsealdateMoisture Level1MoistureLevel2Moisture Level 2a4. If bakingis required, b) 2aor2b isnot met.Date and time opened:reference IPC/JEDEC J-STD-033 for bake procedure.Floortime see belowIfblank, see bar code labelFloor time > 1 YearFloor time 1 YearFloortime 4 Weeks10% RH._ 10% when read at 23 °C ± 5 °C, orreflow, vapor-phase reflow, or equivalent processing (peak package2. After this bag is opened, devices that will be subjected to infrared1. Shelf life in sealed bag: 24 months at < 40 °C and < 90% relative humidity (RH).Moisture Level 5aat factory conditions of(if blank, seal date is identical with date code).a) Mounted withinb) Stored atbody temp.3. Devices require baking, before mounting, if:Bag seal dateMoisture Level 1Moisture Level 2Moisture Level 2a4. If baking is required, b) 2a or 2b is not met.Date and time opened:reference IPC/JEDEC J-STD-033 for bake procedure.Floor time see belowIf blank, see bar code labelFloor time > 1 YearFloor time 1 YearFloor time 4 Weeks10% RH._0,1% ou >0,01% de Cd par poids dans les matériaux homogènes, sauf pour les revêtements en métal où des substances RoHS ne doivent pas être ajoutées intentionnellement et des éléments de 4 mm3 ou moins considérés comme des matériaux homogènes simples. Exemptions 32 jusqu’à présent (sujet à modifications) Seront spécifiées dans le catalogue des produits avec les restrictions de substances Méthode de mise en conformité Auto-déclaration, essais par tierce partie non requis Auto-déclaration pour le marquage de tous les EIP Procédure de test des produits répertoriés par des laboratoires chinois autorisés Conditionnement Non inclus car couvert par la directive relative au conditionnement Doit être marqué pour signaler le contenu des matériaux, l’absence de substances toxiques et le caractère recyclable. Piles Non incluses car couvertes par la nouvelle Directive relative aux batteries Incluses car comprises dans les EIP Produits non électriques Exclus si le produit fini vendu à l’utilisateur ne dépend pas de l’électricité pour sa fonction principale Inclus si répertoriés dans les EIP Inclut les CD et DVD Utilisation militaire et de sécurité nationale uniquement Hors champ d’application Hors champ d’application « Mise sur le marché » Les produits doivent être totalement conformes au 1er juillet 2006 S’application à la production à compter du ou après le 1er mars 2007. 6 Q 1. Quels sont les produits concernés par la RoHS chinoise ? Réponse. Le champ d’application de la RoHS chinoise est plus étendu que celui de la RoHS européenne et couvre « tous les produits d’information électronique » (EIP). Ceuxci comprennent les équipements de radar, informatiques, de télécommunication, l’équipement de production utilisé pour fabriquer des EIP, certains types d’instruments de test, les appareils médicaux, les composants électroniques tels que résistances et circuits intégrés (CI), les batteries, PCB, matériaux et certains appareils ménagers. Le gouvernement chinois a publié un guide qui répertorie plus de 1800 EIP. Q 2. Quelles sont les restrictions de substances qui s’appliquent ? Réponse. Aucune restriction de substances pour le moment. Des restrictions s’appliqueront cependant à certains produits spécifiques qui seront répertoriés dans un « catalogue » . Les six substances de la RoHS européenne (plomb, cadmium, mercure, chrome hexavalent, PBB et PBDE) devraient être limitées quoique la législation stipule que d’autres substances additionnelles pourraient également être incluses dans le catalogue. Q 3. Quelles sont les valeurs de concentration maximale pour la RoHS chinoise ? Réponse. Le gouvernement chinois a publié une norme qui définit les valeurs de concentration maximale (MCV). Ce sont pratiquement les mêmes que pour la RoHS européenne, mais avec de légères différences. Pour la plupart des pièces, les seuils sont de 0,1% de Pb, Hg, Cr(6), PBB et PBDE (sauf le Deca-BDE) et de 0,01% de Cd dans les matériaux homogènes. Le placage métal est cependant différent et les substances dangereuses ne doivent pas être ajoutées délibérement. Néanmoins, si la substance peut être détectée par analyse, elle sera présumée avoir été ajoutée intentionnellement. Les très petites pièces de <4mm3 sont considérées comme des matériaux homogènes simples ayant les mêmes seuils de concentration que des matériaux homogènes individuels dans des pièces plus importantes. Q 4. Mes produits sont conformes à la RoHS européenne ; seront-ils donc conformes à la RoHS chinoise ? Réponse. Pour être conformes à la RoHS chinoise tous les EIP doivent être marqués. Pour le moment, aucune restriction de substances s’applique, mais en cas de présence de substances RoHS celles-ci doivent être signalées par les logos appropriés. La différence entre les RoHS européenne et chinoise est que les exigences de marquage de cette dernière n’impliquent aucune exemption ; la substance est présente ou non et donc, si Q 5. De quels logos de contrôle de pollution ai-je besoin ? Réponse. Si les matériaux homogènes ne contiennent aucune substance RoHS dans des teneurs dépassant les valeurs de concentration maximale (MCV) autorisées dans les EIP, alors le logo vert écologique « e » est apposé sur le produit et aucun tableau de « divulgation » n’est requis. Le vert est recommandé, mais toute couleur contrastée peut être utilisée. Si la teneur d’au moins une substance RoHS dans un matériau homogène dépasse le seuil MCV, alors le logo orange avec un chiffre au centre est apposé sur le produit. Un tableau des substances dangereuses et de leur emplacement devra également être imprimé dans le manuel. Le chiffre correspond à la période d’utilisation sans risques pour l’environnement (EFUP), précisant le nombre d’années avant tout danger de fuite d’une substance dans l’environnement. L’orange est recommandé, mais toute couleur contrastée peut être utilisée. Q 6. Dois-je étiqueter les composants ou pièces de rechange ? Réponse. Cela n’est pas encore bien défini. La norme chinoise stipule que le marquage des composants n’est pas nécessaire s’ils sont vendus aux OEM pour être utilisés dans des produits qui seront marqués. Cependant, les informations relatives à toute substance RoHS présente devront être transmises aux OEM. Les composants incluant les pièces détachées vendues séparément aux utilisateurs finaux devraient néanmoins être marqués car ce sont des EIP. Q 7. Comment dois-je étiqueter l’emballage ? Réponse. La réglementation RoHS chinoise stipule qu’une étiquette portant les « codes » des principaux matériaux d’emballage sera obligatoire pour les EIP. L’emballage des EIP doit comporter un marquage indiquant les matériaux utilisés. Apposer ou imprimer sur l’extérieur de l’emballage une étiquette portant les codes de matériau selon la norme chinoise GB 18455- 2001, qui indique quels matériaux sont présents. 7 Q 8. Comment dois-je présenter le tableau des substances dangereuses et quel format utiliser ? Réponse. La première étape consiste à déterminer quelles substances RoHS sont présentes dans chacune des principales pièces de l’équipement. Certaines sont connues, mais pour la grande majorité, il est préférable de s’adresser au fournisseur. Rappelez-vous qu’il n’y a pas d’exemptions et que les produits conformes à la RoHS européenne peuvent contenir des substances dans des teneurs dépassant les seuils de la RoHS chinoise. L’exemple suivant concerne un téléphone mobile hypothétique (nota : il ne s’agit pas d’un téléphone mobile moderne car la plupart utilisent des LCD plastique, sans plomb). Composants comportant des substances RoHS LCD – plomb dans le liant verre aux couches d’ahérence Puce-résistance - plomb dans le verre MLCC - plomb dans la céramique Plastique - PBDE Plomb dans la soudure pour connexion batterie Utilisé dans quelle pièce ? Module LCD PCB PCB Case Boîtier Pack batterie Parts containing at least one RoHS substance PCB Boîtier Pack batterie Dès que ces informations ont été déterminées, imprimer la tableau dans le manuel. Pièce Plomb Cadmium Mercure Chrome hexavalent PBB PBDE PCB X 0 0 0 0 0 Case 0 0 0 0 0 X LCD module X 0 0 0 0 0 Battery pack X 0 0 0 0 0 Le tableau doit être en chinois, selon la norme, et inclure les définitions des signes X et O. 8 Rédigé par Premier Farnell, en collaboration avec Cobham Technical Services (ERA Technology Ltd) - www.era.co.uk/rfa © 2008 Premier Farnell plc. Toute reproduction intégrale ou partielle de ce document est soumise à l’accord préalable de Premier Farnell plc. Q9. Comment puis-je savoir qu’un composant contient une substance RoHS ? Réponse. Le plus simple est de demander au fournisseur. S’il vous répond que la pièce est conforme à la RoHS européenne, attention ; cela ne signifie pas nécessairement qu’aucune substance RoHS n’est présente car celles-ci peuvent être utilisées sous forme d’exemption. Pour les fabricants d’équipement électrique, il est de plus en plus important de savoir si des substances dangereuses sont utilisées. En voici quelques exemples : Q 10. Que devrais-je faire si mon produit est inclus dans le catalogue ? Réponse. Les produits inscrits au catalogue ne peuvent pas être importés ou vendus en Chine après la date spécifiée tant qu’un laboratoire chinois agréé ne l’a pas testé en vue de l’obtention du « Certificat obligatoire chinois ». S’il satisfait aux exigences, le produit peut être étiqueté avec le cachet CCC et vendu en Chine. Il sera nécessaire de fournir un échantillon test au laboratoire pour l’analyse par méthode destructrice. Cependant, aucune consigne n’a été publiée à ce jour concernant la procédure détaillée que le laboratoire appliquera. Veuillez noter : Les informations contenues dans ce document sont de nature générale et non destinées à répondre au cas particulier de toute personne ou entité. Malgré le soin apporté à fournir des informations précises et actuelles, nous ne pouvons pas garantir l’exactitude de ces informations, liée à la date de réception de celles-ci, ou qu’elles continueront à être exactes à l’avenir. Il n’est pas conseillé d’agir sur la base de ces informations sans avoir pris conseil auprès d’un professionnel compétent après un examen approfondi de la situation spécifique. Substance RoHS Où est-elle utilisée Plomb Soudure, revêtements de terminaison, encres, PVC, céramique, certains types de verre (ex., enduit puce-résistance), laiton au plomb, etc. Cadmium Pigments, PVC, placage, contacts de commutation, matériaux à couches épaisses, batteries NiCd Mercure Diverses lampes, piles bouton Alkaline Chrome hexavalent Couches de passivation, pigment jaune brillant (normalement avec du plomb) PBB Très improbable. Seulement possible dans les câbles haute tension PBDE Retardateur de flamme courant dans de nombreux plastiques 8 www.facom.com F L E.306A30R 3148518349536 30 Nm 1,5 - 30 9 x 12 1/4" R.372 390 mm E.306A135J 3148518349611 135 Nm 6,7 - 135 9 x 12 3/8" J.372V 415 mm E.306A135S 3148518349703 135 Nm 7 - 135 9 x 12 1/2" S.372V 415 mm E.306A200S 3148518349888 200 Nm 10 - 200 14 x 18 1/2" S.382V 530 mm E.306A340S 3148518349963 340 Nm 17 - 340 14 x 18 1/2" S.382V 650 mm Clés électronique à lecture de couple Contrôleurs de couple Série E.2000 Le contrôle de couple à portée de tous ! SERRAGE CONTRÔLÉ Clés électroniques à lecture de couple Série E.306A PERFORMANCES : • Hautes Performances même en usage intensif : précision à ± 2% ±1 digit. • Préréglage possible de 9 valeurs de couple. • Mémoire 250 valeurs avec liaison USB. ERGONOMIE : • Visualisation des LED même dans les accès diffi ciles. • Utilisation ultra simple : auto test et remise à zéro à l’allumage. • Indicateur lumineux et sonore (leds et bipper). SIMPLE ET RAPIDE : • Appareil très simple d’utilisation avec réglages minimums pour éviter les erreurs. • Pour un test rapide avant utilisation d’une clé jusqu’à un certifi cat d’étalonnage ISO6789. • 3 appareils pour couvrir une grande plage de couple de 2 à 1000 Nm. Pour des serrages précis, du contrôle et de la traçabilité ! • ISO 6789 - DIN EN ISO 6789 – NF EN ISO 6789. • Précision : - ± 2% entre 20% et 100% de la capacité de la clé, • Mode de mesure : pic ou suiveur. • Unité de mesure N.m, ft.lb ; in.lb ; Kg.cm. • Attachements 9x12 ou 14x18. • Clé numérotée et livrée avec un certifi cat d’étalonnage ISO 6789 et livrée en coffret plastique intérieur mousse. L’utilisation ultra simple et le prix très accessible en font l’outil idéal tant en atelier qu’en laboratoire. Clé dynamo électronique Nm Min -max Attachement Cliquet Dimensions NOUVEAUTES SEPTEMBRE 2009 Une filiale de Premier Farnell Règlement REACH Règlement REACH sur les substances dans les articles (produits) Version 2 mars 2009 Obligations au sein de la chaîne logistique Web: www.global-legislation.com/fr Q/R : glegislation@premierfarnell.com/fr Farnell s’efforce au quotidien d’être pour ses clients une source fiable d’informations sur la législation liée à l’industrie électronique. A ce titre, elle fournit sur son site des données sur les substances extrêmement préoccupantes (substances SVHC) telles que définies dans le cadre du règlement REACH, présentes dans les produits qu’elle commercialise. Encore une fois, Farnell réalise une “première” dans l’industrie. 1 Avant-propos Le règlement (CE) Nー 1907/2006 (REACH) est le texte législatif qui a eu l’impact le plus significatif sur la fabrication au cours des 25 dernières années. Il remplace 40 mesures législatives existantes pour former un système harmonisé s’appliquant à l’ensemble des produits chimiques fabriqués, utilisés ou présents dans des produits, au sein de l’Union européenne (UE). On estime qu’il couvre environ 30.000 produits chimiques actuellement en utilisation. REACH déplace la charge qui incombait aux régulateurs vers l’industrie, qui doit prouver que les produits chimiques qu’elle utilise sont sûrs sur la base de « pas de données – pas de marché ». REACH est l’acronyme anglais pour enregistrement, évaluation, autorisation (et restriction) des substances chimiques, qui décrit son processus central. Certains ont supposé que du fait que ce règlement concernait les « produits chimiques », il n’avait aucun rapport avec le secteur des produits électriques et de l’ingénierie. Ce n’est absolument pas le cas. Tous les produits sont à base de produits chimiques et le réglement REACH a à la fois un impact juridique et indirect sur ce secteur. Pourquoi devrais-je m’intéresser au REACH ? REACH est complexe ; les réglementations ont été adoptées en décembre 2006 et sont entrées en vigueur le 1er juin 2007. L’élaboration définitive des 849 pages du texte d’origine a pris 7 ans. Il a ensuite été réduit à 280 pages, mais accompagné d’un guide pratique officiel en comportant des milliers. Des obligations juridiques concernent directement les importateurs de substances dans l’UE, les utilisateurs et distributeurs de substances, et également les fabricants et importateurs de produits – ce que le règlement REACH désigne par « articles ». REACH va accélérer l’obsolescence des composants et matériaux et augmenter le niveau d’informations requis sur la composition des produits, au-delà des 6 substances seulement couvertes par la directive RoHS (et éventuellement 4 nouvelles). L’industrie a besoin de connaître les implications de REACH. A propos de ce guide Ce guide de Farnell tente d’expliquer et de distiller les principales exigences imposées aux producteurs ou importateurs de ces « articles ». Il s’appuie sur les conseils officiels de l’Agence européenne des produits chimiques (ECHA) et le règlement REACH lui-même. Il existe également des obligations pour les importateurs et fabricants de substances, les utilisateurs de substances en aval et les distributeurs, mais cellesci ne sont pas traitées ici. Pour un guide complet sur les exigences REACH visant le secteur des produits électriques et d’ingénierie, nous recommandons le guide de mise en conformité REACH d’ERA. Qu’est-ce qu’un article ? Un article est le terme utilisé par REACH pour définir des éléments dont la forme définit leur fonction de manière plus importante que leur composition. Une tasse en polystyrène est un exemple illustrant parfaitement cette définition. Bien qu’elle soit en polystyrène pur, sa forme (une coupelle) implique que c’est un article et non une substance. Le conditionnement, les composants électroniques, les fils, les cartes de circuit imprimé (PCB) et l’équipement fini sont des exemples courant dans l’industrie. Par contre, les soudures, les alliages, les peintures et les colles sont des exemples de préparations ou de mélanges de substances. Dans certains cas, il ne sera pas évident de définir si un élément est un article (c.-à-d. la substance est une partie intégrante) ou une substance dans un récipient. Le guide pratique édité par l’ECHA fournit des critères détaillés permettant d’évaluer de tels cas. Les cartouches d’imprimante et les thermomètres remplis de liquide sont des cas ‘limite’ classiques. Les premières sont considérées comme contenant une substance (encre ou toner) dans un récipient, les seconds sont considérés comme des articles contenant une substance (le liquide indiquant la température) en tant que part entière. Cette distinction est importante du fait que les obligations imposées à un importateur/producteur de substances diffèrent et sont beaucoup plus étendues. Guide de mise en conformité avec la réglementation européenne REACH 2 Obligations des fabricants ou importateurs d’articles REACH impose des obligations aux entités juridiques qui commercialisent des articles au sein de l’UE ou les fabriquent en UE. En fonction des circonstances, celles-ci pourraient inclure : Enregistrer zz les substances auprès de l’ECHA si elles sont destinées à être relâchées dans les conditions d’utilisation normales ou raisonnablement prévisibles d’un article. zz Informer le destinataire de la présence d’une substance extrêmement préoccupante ou SVHC (>0,1%) dans tout article réceptionné et sur la façon de l’utiliser en toute sécurité, si nécessaire. zz Aviser l’ECHA de la présence d’une SVHC (>0,1% et > 1 tonne par an) dans un article si l’exposition de cette substance ne peut pas être exclue durant des conditions d’utilisation ou d’enlèvement normales ou raisonnablement prévisibles. A noter que les producteurs d’articles hors UE peuvent nommer des « Représentants exclusifs » en UE pour assumer les obligations à leur place. Les circonstances dans lesquelles cellesci s’appliquent sont détaillées ci-après. Obligation d’enregistrer les substances intentionnellement libérées. L’enregistrement des substances contenues dans les articles est obligatoire si tous les critères suivants sont respectés : 1. La substance est destinée à être relâchée de l’article / des articles dans les conditions d’utilisation normales et raisonnablement prévisibles 2. Le volume total de la substance présente dans le(s) article(s) avec dégagement prévu dépasse 1 tonne par an (tpa) par producteur ou importateur 3. La substance n’a pas encore été enregistrée pour cet usage. En supposant que ces trois critères sont respectés, le producteur ou l’importateur de l’article doit faire enregistrer cette substance. Ceux qui ont « pré-enregistré » bénéficieront d’un délai supplémentaire pour l’enregistrement (l’échéance la plus proche étant le 30 novembre 2010). Le concept de dégagement intentionnel du critère 1 nécessite quelques explications. Si le dégagement est la fonction principale, alors il est probable qu’elle puisse être considérée comme une substance dans un récipient (et dans ce cas les obligations d’enregistrement s’appliqueraient comme à un importateur/producteur de substances). Ainsi, en général, cette obligation s’appliquerait si le dégagement est une fonction intentionnelle mais non la fonction principale de l’article – le règlement donne l’exemple d’un effaceur parfumé ou d’un inhibiteur anticorrosion volatile qui se dégage lentement des matériaux d’emballage. Toutefois, les dégagements qui ne font pas partie de la fonction première de l’article – vieillissement, usure ou accidents – ne sont pas considérés comme des dégagements intentionnels. Cela implique que la formation de poussière sur des plaquettes de frein ou l’usure des roulements, la perte de fluide d’un condensateur électrolytique en cas de surchauffe ou d’un thermomètre cassé ne sont pas considérés comme des dégagements intentionnels. Obligation de fournir des informations sur la composition des articles L’exigence centrale de cette obligation est de fournir suffisamment d’informations pour garantir une utilisation sûre. Des informations doivent être fournies lorsque les critères suivants sont respectés : 1. Elle est inscrite sur la liste de demande d’autorisation (c’est une substance extrêmement préoccupante ou SVHC) 2. Le pourcentage de substance dans l’article est > à 0,1% du poids de l’article fabriqué en UE ou importé A noter qu’il n’y a aucun critère de tonnage et aucune exemption en raison de l’absence d’exposition ou parce que la substance est déjà enregistrée du fait qu’il s’agit d’un point de sécurité spécifique au destinataire – même si il est le seul destinataire. Lorsque la fourniture d’informations est requise, ce que le producteur, l’importateur ou le fournisseur de l’article doit faire dépend de la nature du destinataire de l’article : zz Grand public : Le fournisseur de l’article doit fournir des informations sur demande, nécessaires pour garantir une utilisation sûre pendant 45 jours, sans frais. zz Tout autre destinataire : Le fournisseur de l’article doit fournir automatiquement le nom de la substance, au moins, ainsi que toute autre information requise pour garantir une utilisation sûre. Les points susceptibles d’être inclus dans les Données d’utilisation sûre fournies avec les informations concernant les substances extrêmement préoccupantes dans les articles sont couverts par le guide pratique de l’ECHA. Il fait une différence entre les conseils aux consommateurs et les utilisateurs professionnels. Par exemple, les consommateurs pourraient être avisés de conserver une substance hors de portée des enfants en bas âge, d’éviter toute exposition dermique en ne portant pas certains vêtements en contact direct avec la peau ou d’éviter de manipuler des déchets dangereux. Il pourrait être conseillé aux utilisateurs professionnels de ne pas inhaler de poussières abrasives (en s’assurant qu’une protection individuelle appropriée est utilisée) et d’éviter toute fuite dans l’environnement en cas d’utilisation d’un produit en extérieur, sous la pluie. Une liste de contrôle de sécurité typique pourrait comporter : zz Contrôles d’exposition / protection individuelle zz Manipulation et stockage zz Considération de la procédure d’enlèvement zz Mesures de lutte contre les incendies zz Information sur le transport Des informations pourraient être incluses dans la fiche de données de sécurité ou les consignes pour un usage en toute sécurité et des étiquettes pourraient être utilisées dans certains cas. Cette obligation s’applique dès qu’une substance a été incluse à la liste de demande d’autorisation. Celle-ci s’applique à tout article livré après cette date. Le fabricant d’un produit doit donc s’assurer que ces informations sont bien transmises ensuite tout au long de la chaîne de distribution et indépendamment du produit qui a déjà été expédié. REACH considère les substances comme extrêmement préoccupantes si elles sont : zz cancérigènes, mutagènes ou toxiques pour la reproduction (CMR), de catégorie 1 et 2 selon la directive 67/548/EEC ou zz persistantes, bioaccumulables et toxiques (PBT) ou très persistantes et trés bioaccumulables (vPvP), selon l’Annexe XIII ou zz autres substances telles que perturbateurs endocriniens, PBT et vPvB ne répondant pas aux critères de l’Annexe XIII et pour lesquelles il existe une preuve scientifique d’effets graves irréversibles sur l’être humain ou l’environnement. La définition du seuil de pourcentage pour les SVHC dans les articles et des informations à fournir aux clients s’est révélée contentieuse. Le guide pratique stipule que la concentration de 0,1% s’applique à l’ensemble de l’article et non aux composants individuels ou au matériau composant le produit final. Plusieurs Etats membres ont fait pression pour renforcer les restrictions relatives aux articles individuels. A noter que la définition RoHS « par poids dans un matériau homogène » ne s’applique PAS dans le cadre de REACH. Obligation de notifier l’utilisation d’une SVHC L’obligation de notifier les autorités de l’utilisation d’une substance dans un article s’applique lorsque tous les critères suivants sont respectés : 1. Elle est inscrite sur la « Liste Candidate » (il s’agit d’une substance extrêmement préoccupante) 2. Le pourcentage de substance dans l’article est > à 0,1% du poids de l’article fabriqué en UE ou importé 3. La substance est présente dans les articles produits ou commercialisés en UE dans des quantités > à 1 tpa par producteur/importateur 4. Les risques d’exposition pour l’homme et l’environnement ne peuvent pas être exclus dans des conditions d’utilisation normales ou raisonnablement prévisibles, incluant la mise au rebut. La première liste candidate comportant 15 SVHC confirmées a été publiée en octobre 2008. Cette liste contient plusieurs substances qui sont utilisées dans ou pour fabriquer l’équipement électrique. La liste actuelle est la suivante : Substance CAS No. Utilisations dans l’industrie électronique Anthracene 120-12-7 Unlikely 4,4’- Diaminodiphenylmethane (or methylene dianiline) 101-77-9 Composant dans certaines colles Dibutyl phthalate (DBP) 84-74-2 Plastifiant dans le PVC souple et autres plastiques. Egalement utilisé dans les encres, les laques Cobalt dichloride 7546-79-9 Indicateur couleur dans les sachets de gel de silice et les cartes indicateur Diarsenic pentaoxide 1303-28-2 Intermédiaire chimique, non utilisé dans l’industrie électronique Diarsenic trioxide 1327-53-3 Intermédiaire chimique, non utilisé dans l’industrie électronique Sodium dichromate, dihydrate 7789-12-0 Utilisé pour réaliser des revêtements de passivation et de placage au chrome dur 5-tert-butyl-2,4,6-trinitro-mxylene (musk xylene) 81-15-2 Parfum Bis (2-ethyl(hexyl)phthalate) (DEHP) 117-81-7 Plastifiant dans le PVC souple et autres plastiques. Egalement utilisé dans les encres, les laques et les colles. Peut aussi servir dans les condensateurs électrolytiques Hexabromocyclododecane (HBCDD) 25637-99-4 Retardateur de flamme pour le polystyrène Alkanes, C10-13, chloro (Short Chain Chlorinated Paraffins) 85535-84-8 Retardateur de flamme rare et plastifiant pour peintures, caoutchoucs, colles et plastiques Bis(tributyltin)oxide (TBTO) 56-35-9 Biocide, peut être présent dans la mousse de polyuréthane Lead hydrogen arsenate 7784-40-9 Improbable, utilisé comme pesticide Triethyl arsenate 15606-95-8 Improbable, utilisé comme pesticide Benzyl butyl phthalate (BBP) 85-68-7 Plastifiant dans le PVC souple et autres plastiques. Egalement utilisé dans les encres, les laques et les colles Concernant l’exposition pour l’homme et l’environnement. Des conditions d’utilisation normales signifient « les conditions associées à la fonction prévue d’un article ». Les conditions normales sont généralement expliquées dans 3 4 le manuel ou les consignes d’utilisation. Des utilisations raisonnablement prévisibles signifient des conditions d’utilisation qui ne sont pas prévues à l’origine par le producteur « mais qui peuvent être anticipées comme susceptibles de se produire en raison de la forme, l’aspect ou la fonction de cet article ». Les exemples de conditions d’utilisation raisonnablement prévisibles incluent : accidents à « forte zz probabilité » (ex., casse de récipients fragiles où la substance est une partie intégrante de l’article – tel qu’un thermomètre rempli de liquide - relâchant la substance) zz usages non conformes à la fonction de l’article, « mais qui peuvent être anticipés car la fonction et l’aspect de l’article suggèrent également d’autres utilisations que celles prévues » zz « usages extrêmement intensifs (ex., une personne utilisant un outil 12 heures par jour pendant trois mois pendant la construction de sa maison) » zz processus de recyclage. Ces utilisations n’incluraient pas les utilisations professionnelles ou industrielles qui sont « clairement et nettement exclues » (c.-à-d. le fait d’être utilisé d’une manière non prévue), lorsque l’utilisation est spécifiquement déconseillée – signalée par étiquette ou avertissement clair, par exemple. Le règlement considère les concepts de dégagement et comment les aborder de manière détaillée. Il stipule que « l’exposition pour l’homme ou l’environnement peut être exclue dans les situations suivantes ». zz il n’y a aucun dégagement de la substance concernée durant les conditions d’utilisation normales et raisonnablement prévisibles ou mise au rebut zz il y a dégagement, mais l’article est intégré durant son utilisation et la substance ne s’écoulera pas dans l’environnement ou n’entrera pas en contact avec l’homme durant son utilisation ou sa mise au rebut. Cela pourrait être le cas, par exemple, des pièces électroniques à l’intérieur d’une machine. Les moyens de prouver l’absence d’exposition comprennent les arguments basés sur « la connaissance de l’article et de sa durée de service, ex. la SVHC est totalement contenue dans l’article, et l’article est récupéré et mis au rebut selon une procédure qui empêche tout dégagement dans l’environnement et toute exposition pour l’homme dans des conditions normales et raisonnablement prévisibles » (si elle n’est pas relâchée durant les processus de recyclage qui sont appliqués) zz « la connaissance des propriétés des substances, ex., la substance est totalement immobile dans l’article en raison de la façon dont elle est intégrée et de ses propriétés physicochimiques inhérentes. zz « la quantification basée sur des modèles d’exposition, démontrant l’absence d’exposition pendant la durée de service et la mise au rebut » zz « des mesures prouvant qu’il n’y a aucune émission provenant de l’article, y compris pendant sa mise au rebut. » Ces arguments sont d’une importance cruciale si, par exemple, vous êtes un fabricant/importateur de dissipateurs thermiques en oxyde de béryllium ou de condensateurs électrolytiques. Prenant effet à compter du 1er juin 2011, l’obligation de notifier s’appliquera six mois après l’inscription de la substance sur la liste de demande d’autorisation. La notification n’est pas requise pour une substance contenue dans des articles qui ont été fabriqués ou importés avant l’inclusion de la substance sur la liste des demandes d’autorisation. La notification nécessite de fournir vos coordonnées, le numéro d’enregistrement de la substance (si disponible), l’identité et la classification de la substance, une brève description de l’utilisation / des utilisations de la substance et des articles dans lesquels elle est présente, et la bande de tonnage de la substance. Ce n’est donc pas une obligation onéreuse. Quelle documentation est requise ? La documentation est d’une importance capitale pour remplir ses obligations dans le cadre REACH. Celui-ci enregistre la procédure et les critères utilisés, les évaluations effectuées et la base de celles-ci (références, justificatifs, etc.). C’est important, même si vous n’avez aucune obligation selon vous, dans le cas où cela est imposé par des autorités réglementaires, des clients ou des vérificateurs. REACH exige de conserver ces informations pendant au moins 10 ans. Il existe différentes méthodes pour se conformer au cadre REACH : intégrer ces exigences dans vos systèmes de management d’entreprise, réaliser une évaluation en conformité avec les flux de travail fournis dans le règlement REACH, ou appliquer un autre guide de bonnes pratiques (ex., approches courantes développées par l’industrie). Notification et informations Connaître la présence de SVHC dans vos articles est essentiel pour les besoins de notification et de fourniture d’informations. Il est difficile d’obtenir ces informations des fournisseurs, même si ceux basés en UE ont obligation de les transmettre. Il est conseillé d’informer en priorité ceux impliqués dans la production, la conception et l’approvisionnement au sein de votre entreprise, ainsi que votre chaîne logistique, au sujet des exigences REACH et de ce qu’ils doivent faire pour en garantir la conformité. Considérez également la façon dont 5 © 2009 Premier Farnell plc. Toute reproduction intégrale ou partielle de ce document est soumise à l’accord préalable de Premier Farnell plc. Rédigé en collaboration avec ERA Technologie Ltd (www.era.co.uk/rfa). Version 2 mars 2009 vous aller interagir avec votre chaîne logistique (ex., quel type de questionnaire devriez-vous utiliser) et quel cadre de données vous est nécessaire (ex., vous pouvez déjà vous baser sur ce qui a été réalisé pour la mise en conformité RoHS). Les éventuelles SVHC peuvent être déterminées par l’intermédiaire de leurs propriétés – en examinant les fiches de données de sécurité du matériel (MSDS) que vous recevez, qui vous informeront sur les substances que vous utilisez. Vous devriez également consulter la liste des demandes d’autorisation mentionnée plus haut. Concernant les articles, vous devrez demander à vos fournisseurs. L’estimation des quantités de SVHC présentes dans vos articles déterminera alors vos obligations. Veuillez noter : Les informations contenues dans ce guide sont de nature générale et non destinées à répondre au cas particulier de toute personne ou entité. Malgré le soin apporté à fournir des informations précises et actuelles, nous ne pouvons pas garantir l’exactitude de ces informations, liée à la date de réception de celles-ci, ou qu’elles continueront à être exactes à l’avenir. Il n’est pas conseillé d’agir sur la base de ces informations sans avoir pris conseil auprès d’un professionnel compétent après un examen approfondi de la situation spécifique. Pour en savoir plus : zz Site Web dédié de Farnell www.global-legislation.com/fr zz YVos questions à : glegislation@premierfarnell.com zz ERA Technology: info@era.co.uk www.era.co.uk/rfa zz Agence européenne des produits chimiques (ECHA) www.echa.europa.eu/home_en.asp 1 of 2 3 3M™ Polyimide Film Electrical Tape 1205 Polyimide Film Tape with Acrylic Pressure-Sensitive Adhesive Data Sheet October 2013 Description 3M™ Polyimide Film Electrical Tape 1205 is a 1-mil polyimide film backing with acrylic adhesive. Its acrylic pressure-sensitive adhesive allows it to be used at 311ºF (155ºC), and it is UL 510 Flame Retardant. Like most insulated tapes, form 3M, Tape 1205 is available in standard and custom widths and lengths. The standard length is 36 yards, and can be cut to widths ranging from 1/4” to 23”. Longer lengths up to several times normal length are possible, dependent upon width. Check with Customer Service. Agency Approvals & Self Certifications UL recognized component listing not to exceed 155°C (311°F), Meets flame retardant requirements of UL510, Product Category OANZ2, and 3M File No. E17385 UL File Number E17385 A and B, Guide OANZ2. Underwriters Laboratories (UL) recognized products have been evaluated for use as components of end-product equipment that is listed or classified by UL. To achieve Underwriters Laboratories recognition, component construction must meet UL specifications and conditions of acceptability for proper and safe use of the component or product. Product Category OANZ2, File E17385 RoHS 2011/65/EC "RoHS 2011/65/EU" means that the product or part does not contain any of the substances in excess of the maximum concentration values (“MCVs”) in EU RoHS Directive 2011/65/EU. The MCVs are by weight in homogeneous materials. This information represents 3M's knowledge and belief, which may be based in whole or in part on information provided by third party suppliers to 3M Applications Tape 1205 is used for high temperature electrical applications in which a tough, thin insulating material is required for wrapping coils, transformers, capacitors, wire harnesses, and for anchoring leads / terminal boards. It also is used in printed circuit board assembly as a wave solder masking tape. Specifications Tape 1205 is a polyimide film with thermosetting acrylic pressure-sensitive adhesive. The tape shall be coated on one side with pressure-sensitive adhesive, which shall not require heat, moisture or other preparation prior to or subsequent to application. The adhesive coating shall be smooth and uniform and be free of lumps and bare spots. There shall be no separator between adjacent layers of the roll. The tape shall perform at a temperature of -40°F (-40°C) to 311°F (155°C) without substantial loss of tensile or electrical properties 3M™ Polyimide Film Electrical Tape 1205 Page 2 of 2 3M Electrical Markets Division 6801 River Place Boulevard Austin, TX 78726-9000 800.676.8381 Fax: 800.828.9329 www.3m.com/oem Please recycle © 3M 2013 All rights reserved 78-8124-4706-4 Rev C Typical Properties Not for specifications. Values are typical, not to be considered minimum or maximum. Properties measured at room temperature 73°F (23°C) unless otherwise stated. Physical Property (Test Method) (ASTM D1000 unless noted) Typical Value US units (metric) Color Amber Adhesive Acrylic Backing Thickness 1.0 mils (0,025 mm) Overall Thickness 3.0 mils (0,076 mm) Tensile Strength 30 lbs / inch width (53 N / 10 mm) Elongation (% at break) 55% minimum Electrolytic Corrosion Factor (3M internal test method) 1.0 Adhesion to Steel 35 oz / inch width (3,8 N / 10 mm) Comparative Tracking Index (IEC Method 112) CTI Group IIIb Printable No Dielectric Breakdown > 7,500 V Insulation Resistance > 1 x106 Ohms Shelf Life & Storage This product has a 5-year shelf life from date of manufacture when stored in a humidity controlled storage (10°C/50°F to 27°C/80°F and <75% relative humidity). Availability Please contact your local distributor; available from 3M.com/electrical [Where to Buy] or call 1-800-676-8381. 3M is a trademark of 3M Company. Important Notice All statements, technical information, and recommendations related to 3M’s products are based on information believed to be reliable, but the accuracy or completeness is not guaranteed. Before using this product, you must evaluate it and determine if it is suitable for your intended application. You assume all risks and liability associated with such use. Any statements related to the product, which are not contained in 3M’s current publications, or any contrary statements contained on your purchase order, shall have no force or effect unless expressly agreed upon, in writing, by an authorized officer of 3M. Warranty; Limited Remedy; Limited Liability This product will be free from defects in material and manufacture at the time of purchase. 3M MAKES NO OTHER WARRANTIES INCLUDING, BUT NOT LIMITED TO, ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. If this product is defective within the warranty period stated above, your exclusive remedy shall be, at 3M’s option, to replace or repair the 3M product or refund the purchase price of the 3M product. Except where prohibited by law, 3M will not be liable for any indirect, special, incidental or consequential loss or damage arising from this 3M product, regardless of the legal theory asserted. Strangkühlkörper Extruded heatsinks Dissipateurs extrudés für Leiterplattenmontage for PCB mounting pour montage PCB A 97 Transistorhaltefedern Retaining springs for transistors Ressort de retenue pour transistors ➜ A 93 – 95 Einpressniet Snap rivet Rivet encastrable ➜ E 21 Montagesätze zur Isolation Mounting kits for insulating Jeux de montage pour isolation von Leistungstransistoren power transistors de transistors de puissance ➜ E 21 P = erhöhter Arretierungspunkt P = raised retaining stud P = point d’arrêt surélevé E = Einbauart E = fixing method E = manière de fixation für Halbleiter Clipmontage for semiconductor clip assembly pour semiconducteur fixé par clip Art. Nr. Art. No. Art. n° SK 104 25,4 … SK 104 38,1 … SK 104 50,8 … SK 104 63,5 … [mm] 25,4 38,1 50,8 63,5 RW [K/W] 14 11 9 8 TO 220 Oberfläche schwarz eloxiert Surface black anodised Surface anodisée noire Sonderlängen und Sondertransistor- Special lengths and transistor Longueurs et perçages de boîtier spéciales lochungen auf Anfrage. drillings on request. sur demande. bitte angeben: … Einbauart: STC = mit Lötstiften STIC = mit Lötstiften und Isolierring STCB = mit M3 Gewindebolzen, Messing please indicate: … fixing method: STC = with solder pins STIC = with solder pins and insulating washer STCB = with M3 threaded bolts, brass veuillez indiquer: … manière de fixation: STC = avec broches à souder STIC = avec broches à souder et bague d’isolation STCB = avec M3 boulon fileté, laiton 3 Ø 2,3 max. 6 max. Ø 6 4,5 max. Ø 2,3 max. 1,5 M3 6,5 Ø 7 …STC …STIC …STCB 10,8 18,3 3,2 25,4 P E 6,5 25,4 12,7 1,5 16 34,9 A Strangkühlkörper Extruded heatsinks Dissipateurs extrudés für Leiterplattenmontage for PCB mounting pour montage PCB A 98 Silikonscheiben Silicone washers Rondelles au silicone ➜ E 5 – 8 Transistorhaltefedern Retaining springs for transistors Ressort de retenue pour transistors ➜ A 93 – 95 Kapton-Unterlegscheiben Kapton rubber washers Rondelles Kapton für Halbleiter for semiconductors pour semiconducteurs ➜ E 12 E = Einbauart E = fixing method E = manière de fixation für Halbleiter Schraubmontage for semiconductor screw assembly pour semiconducteur fixé par vis Art. Nr. Art. No. Art. n° SK 104 25,4 … SK 104 38,1 … SK 104 50,8 … SK 104 63,5 … [mm] 25,4 38,1 50,8 63,5 RW [K/W] 14 11 9 8 TO 220 SOT 32 TO 3 P Oberfläche schwarz eloxiert Surface black anodised Surface anodisée noire Sonderlängen und Sondertransistor- Special lengths and transistor Longueurs et perçages de boîtier spéciales lochungen auf Anfrage. drillings on request. sur demande. A liegend für Halbleiter Schraubmontage horizontal for semiconductor screw assembly horizontal pour semiconducteur fixé par vis Art. Nr. Art. No. Art. n° SK 104 25,4 LS SK 104 38,1 LS SK 104 50,8 LS SK 104 63,5 LS [mm] 25,4 38,1 50,8 63,5 RW [K/W] 14 11 9 8 TO 220 SOT 32 TO 3 P bitte angeben: … Einbauart: STS = mit Lötstiften STIS = mit Lötstiften und Isolierring STSB = mit M3 Gewindebolzen, Messing please indicate: … fixing method: STS = with solder pins STIS = with solder pins and insulating washer STSB = with M3 threaded bolts, brass veuillez indiquer: … manière de fixation: STS = avec broches à souder STIS = avec broches à souder et bague d’isolation STSB = avec M3 boulon fileté, laiton 10,8 13,5 3,2 25,4 E 18,3 25,4 6,5 25,4 12,7 1,5 16 34,9 4,5 max. Ø 2,3 max. …STS 3 Ø 2,3 max. 6 max. Ø 6 …STIS 1,5 M3 6,5 Ø 7 …STSB 10,8 13,5 3,2 18,3 25,4 9,5 Strangkühlkörper Extruded heatsinks Dissipateurs extrudés für Leiterplattenmontage for PCB mounting pour montage PCB A 99 Transistorhaltefedern Retaining springs for transistors Ressort de retenue pour transistors ➜ A 93 – 95 Einpressniet Snap rivet Rivet encastrable ➜ E 21 Montagesätze zur Isolation Mounting kits for insulating Jeux de montage pour isolation von Leistungstransistoren power transistors de transistors de puissance ➜ E 21 P = erhöhter Arretierungspunkt P = raised retaining stud P = point d’arrêt surélevé E = Einbauart E = fixing method E = manière de fixation für Halbleiter Clipmontage for semiconductor clip assembly pour semiconducteur fixé par clip Art. Nr. Art. No. Art. n° SK 409 25,4 … SK 409 38,1 … SK 409 50,8 … SK 409 63,5 … [mm] 25,4 38,1 50,8 63,5 RW [K/W] 8,2 7,0 6,2 5,6 TO 220 TO 3 P Oberfläche schwarz eloxiert Surface black anodised Surface anodisée noire Sonderlängen und Sondertransistor- Special lengths and transistor Longueurs et perçages de boîtier spéciales lochungen auf Anfrage. drillings on request. sur demande. 3 Ø 2,3 max. 6 max. Ø 6 4,5 max. Ø 2,3 max. 1,5 M3 6,5 Ø 7 …STC …STIC …STCB 15 18,3 2,8 35,5 P E 16,5 25 14 9 6 12,7 3 26,2 45 bitte angeben: … Einbauart: STC = mit Lötstiften STIC = mit Lötstiften und Isolierring STCB = mit M3 Gewindebolzen, Messing please indicate: … fixing method: STC = with solder pins STIC = with solder pins and insulating washer STCB = with M3 threaded bolts, brass veuillez indiquer: … manière de fixation: STC = avec broches à souder STIC = avec broches à souder et bague d’isolation STCB = avec M3 boulon fileté, laiton A Strangkühlkörper Extruded heatsinks Dissipateurs extrudés für Leiterplattenmontage for PCB mounting pour montage PCB A 100 Lochbilder Perforations Perforations ➜ A 18 Isoliermontageteile für Leistungstransistoren Insulating mounting parts for power transistors Eléments de montage isolants pour transistors de puissance ➜ E 24 Silikonscheiben Silicone washers Rondelles au silicone ➜ E 5 – 8 Wärmeleitpaste Thermal transfer compound Pâte thermique ➜ E 17 E = Einbauart E = fixing method E = manière de fixation für Halbleiter Schraubmontage for semiconductor screw assembly pour semiconducteur fixé par vis Art. Nr. Art. No. Art. n° SK 409 25,4 … SK 409 38,1 … SK 409 50,8 … SK 409 63,5 … [mm] 25,4 38,1 50,8 63,5 RW [K/W] 8,2 7,0 6,2 5,6 TO 220 TO 3 P Oberfläche schwarz eloxiert Surface black anodised Surface anodisée noire Sonderlängen und Sondertransistor- Special lengths and transistor Longueurs et perçages de boîtier spéciales lochungen auf Anfrage. drillings on request. sur demande. A bitte angeben: … Einbauart: STS = mit Lötstiften STIS = mit Lötstiften und Isolierring STSB = mit M3 Gewindebolzen, Messing please indicate: … fixing method: STS = with solder pins STIS = with solder pins and insulating washer STSB = with M3 threaded bolts, brass veuillez indiquer: … manière de fixation: STS = avec broches à souder STIS = avec broches à souder et bague d’isolation STSB = avec M3 boulon fileté, laiton 3 Ø 2,3 max. 6 max. Ø 6 4,5 max. Ø 2,3 max. 1,5 M3 6,5 Ø 7 …STS …STIS …STSB 15 12,5 3,2 35,5 E 18,3 25,4 6 12,7 3 26,2 45 Strangkühlkörper Extruded heatsinks Dissipateurs extrudés für Leiterplattenmontage for PCB mounting pour montage PCB A 101 Lochbilder Perforations Perforations ➜ A 18 Isoliermontageteile für Leistungstransistoren Insulating mounting parts for power transistors Eléments de montage isolants pour transistors de puissance ➜ E 24 Silikonscheiben Silicone washers Rondelles au silicone ➜ E 5 – 8 Wärmeleitpaste Thermal transfer compound Pâte thermique ➜ E 17 E = Einbauart E = fixing method E = manière de fixation für Halbleiter Clipmontage for semiconductor clip assembly pour semiconducteur fixé par clip Art. Nr. Art. No. Art. n° SK 459 25 … SK 459 37,5 … SK 459 50 … [mm] 25 37,5 50 RW [K/W] 7,9 6,3 5,6 TO 218, TO 220, TO 247, TO 248 Oberfläche schwarz eloxiert Surface black anodised Surface anodisée noire Sonderlängen und Sondertransistor- Special lengths and transistor Longueurs et perçages de boîtier spéciales lochungen auf Anfrage. drillings on request. sur demande. bitte angeben: … Einbauart: STC = mit Lötstiften STIC = mit Lötstiften und Isolierring STCB = mit M3 Gewindebolzen, Messing please indicate: … fixing method: STC = with solder pins STIC = with solder pins and insulating washer STCB = with M3 threaded bolts, brass veuillez indiquer: … manière de fixation: STC = avec broches à souder STIC = avec broches à souder et bague d’isolation STCB = avec M3 boulon fileté, laiton 3 Ø 2,3 max. 6 max. Ø 6 4,5 max. Ø 2,3 max. 1,5 M3 6,5 Ø 7 …STC …STIC …STCB Ø 5 Ø 5 30,3 10,5 20 E 3 20 30,3 50 30,8 11,7 11,7 12,22 8,5 0,72 3,1 25,33 A ... ... ... Strangkühlkörper Extruded heatsinks Dissipateurs extrudés für Leiterplattenmontage for PCB mounting pour montage PCB A 102 Kühlkörper zur Verwendung auf Europakarten Heatsinks for applications on eurocards Dissipateurs pour application sur cartes euro ➜ A 83 Aufsetzkühlkörper und Winkel für TO 3 Set-up heatsinks and angle for TO 3 Dissipateurs de capôt et angle pour TO 3 ➜ A 125 Aufsetzkühlkörper für TO 220, 218 u.ä. Set-up heatsinks for TO 220, 218 and similar Dissipateurs de capôt pour transistors to 220, 218 ➜ A 84 Strangkühlkörper für Leiterplattenmontage Extruded heatsinks for PCB-mounting Dissipateurs extrudés pour montage PCB ➜ A 97 – 116 E = Einbauart E = fixing method E = manière de fixation für Halbleiter Schraubmontage for semiconductor screw assembly pour semiconducteur fixé par vis Art. Nr. Art. No. Art. n° SK 459 25 … SK 459 37,5 … SK 459 50 … [mm] 25 37,5 50 RW [K/W] 7,9 6,3 5,6 TO 218, TO 220, TO 247, TO 248 Oberfläche schwarz eloxiert Surface black anodised Surface anodisée noire Sonderlängen und Sondertransistor- Special lengths and transistor Longueurs et perçages de boîtier spéciales lochungen auf Anfrage. drillings on request. sur demande. A bitte angeben: … Einbauart: STS = mit Lötstiften STIS = mit Lötstiften und Isolierring STSB = mit M3 Gewindebolzen, Messing please indicate: … fixing method: STS = with solder pins STIS = with solder pins and insulating washer STSB = with M3 threaded bolts, brass veuillez indiquer: … manière de fixation: STS = avec broches à souder STIS = avec broches à souder et bague d’isolation STSB = avec M3 boulon fileté, laiton 3 Ø 2,3 max. 6 max. Ø 6 4,5 max. Ø 2,3 max. 1,5 M3 6,5 Ø 7 …STS …STIS …STSB M3 21,2 30,3 E 3 20 30,3 50 30,8 11,7 11,7 12,22 8,5 0,72 3,1 25,33 ... ... ... Strangkühlkörper Extruded heatsinks Dissipateurs extrudés für Leiterplattenmontage for PCB mounting pour montage PCB A 103 Kühlkörper zur Verwendung auf Europakarten Heatsinks for applications on eurocards Dissipateurs pour application sur cartes euro ➜ A 83 Aufsetzkühlkörper und Winkel für TO 3 Set-up heatsinks and angle for TO 3 Dissipateurs de capôt et angle pour TO 3 ➜ A 125 Aufsetzkühlkörper für TO 220, 218 u.ä. Set-up heatsinks for TO 220, 218 and similar Dissipateurs de capôt pour transistors to 220, 218 ➜ A 84 Strangkühlkörper für Leiterplattenmontage Extruded heatsinks for PCB-mounting Dissipateurs extrudés pour montage PCB ➜ A 97 – 116 E = Einbauart E = fixing method E = manière de fixation für Halbleiter Schraubmontage for semiconductor screw assembly pour semiconducteur fixé par vis Art. Nr. Art. No. Art. n° SK 459 25 M … SK 459 37,5 M … SK 459 50 M … [mm] 25 37,5 50 RW [K/W] 7,9 6,3 5,6 SIP Multiwatt Oberfläche schwarz eloxiert Surface black anodised Surface anodisée noire Sonderlängen und Sondertransistor- Special lengths and transistor Longueurs et perçages de boîtier spéciales lochungen auf Anfrage. drillings on request. sur demande. bitte angeben: … Einbauart: STS = mit Lötstiften STIS = mit Lötstiften und Isolierring STSB = mit M3 Gewindebolzen, Messing please indicate: … fixing method: STS = with solder pins STIS = with solder pins and insulating washer STSB = with M3 threaded bolts, brass veuillez indiquer: … manière de fixation: STS = avec broches à souder STIS = avec broches à souder et bague d’isolation STSB = avec M3 boulon fileté, laiton 3 Ø 2,3 max. 6 max. Ø 6 4,5 max. Ø 2,3 max. 1,5 M3 6,5 Ø 7 …STS …STIS …STSB 18 30,3 E M3 3 20 30,3 50 30,8 11,7 11,7 12,22 8,5 0,72 3,1 25,33 A ... ... ... Strangkühlkörper Extruded heatsinks Dissipateurs extrudés für Leiterplattenmontage for PCB mounting pour montage PCB A 104 Kühlkörper zur Verwendung auf Europakarten Heatsinks for applications on eurocards Dissipateurs pour application sur cartes euro ➜ A 83 Aufsetzkühlkörper und Winkel für TO 3 Set-up heatsinks and angle for TO 3 Dissipateurs de capôt et angle pour TO 3 ➜ A 125 Aufsetzkühlkörper für TO 220, 218 u.ä. Set-up heatsinks for TO 220, 218 and similar Dissipateurs de capôt pour transistors to 220, 218 ➜ A 84 Strangkühlkörper für Leiterplattenmontage Extruded heatsinks for PCB-mounting Dissipateurs extrudés pour montage PCB ➜ A 97 – 116 E = Einbauart E = fixing method E = manière de fixation für Halbleiter Schraubmontage for semiconductor screw assembly pour semiconducteur fixé par vis Art. Nr. Art. No. Art. n° SK 459 25 2 x TO 220 … SK 459 37,5 2 x TO 220 … SK 459 50 2 x TO 220 … [mm] 25 37,5 50 RW [K/W] 7,9 6,3 5,6 2 x TO 220 2 x SOT 32 Oberfläche schwarz eloxiert Surface black anodised Surface anodisée noire Sonderlängen und Sondertransistor- Special lengths and transistor Longueurs et perçages de boîtier spéciales lochungen auf Anfrage. drillings on request. sur demande. A bitte angeben: … Einbauart: STS = mit Lötstiften STIS = mit Lötstiften und Isolierring STSB = mit M3 Gewindebolzen, Messing please indicate: … fixing method: STS = with solder pins STIS = with solder pins and insulating washer STSB = with M3 threaded bolts, brass veuillez indiquer: … manière de fixation: STS = avec broches à souder STIS = avec broches à souder et bague d’isolation STSB = avec M3 boulon fileté, laiton Mit Kombinations-Lochbild – für die Montage von 2 x TO 220 oder 2 x SOT 32 With combined drilling – for mounting of 2 x TO 220 or 2 x SOT 32 Avec perforation combinée – pour la fixation de 2 x TO 220 ou 2 x SOT 32 3 Ø 2,3 max. 6 max. Ø 6 4,5 max. Ø 2,3 max. 1,5 M3 6,5 Ø 7 …STS …STIS …STSB M3 18,9 M3 18 30,3 E 3 20 30,3 50 30,8 11,7 11,7 12,22 8,5 0,72 3,1 25,33 ... ... ... Strangkühlkörper Extruded heatsinks Dissipateurs extrudés für Leiterplattenmontage for PCB mounting pour montage PCB A 105 Lochbilder Perforations Perforations ➜ A 18 Isoliermontageteile für Leistungstransistoren Insulating mounting parts for power transistors Eléments de montage isolants pour transistors de puissance ➜ E 24 Silikonscheiben Silicone washers Rondelles au silicone ➜ E 5 – 8 Wärmeleitpaste Thermal transfer compound Pâte thermique ➜ E 17 P = erhöhter Arretierungspunkt P = raised retaining stud P = point d’arrêt surélevé E = Einbauart E = fixing method E = manière de fixation für Halbleiter Clipmontage for semiconductor clip assembly pour semiconducteur fixé par clip Art. Nr. Art. No. Art. n° SK 129 25,4 … SK 129 38,1 … SK 129 50,8 … SK 129 63,5 … [mm] 25,4 38,1 50,8 63,5 RW [K/W] 7,8 6,5 5,3 4,5 TO 220 Oberfläche schwarz eloxiert Surface black anodised Surface anodisée noire Sonderlängen und Sondertransistor- Special lengths and transistor Longueurs et perçages de boîtier spéciales lochungen auf Anfrage. drillings on request. sur demande. bitte angeben: … Einbauart: STC = mit Lötstiften STIC = mit Lötstiften und Isolierring STCB = mit M3 Gewindebolzen, Messing please indicate: … fixing method: STC = with solder pins STIC = with solder pins and insulating washer STCB = with M3 threaded bolts, brass veuillez indiquer: … manière de fixation: STC = avec broches à souder STIC = avec broches à souder et bague d’isolation STCB = avec M3 boulon fileté, laiton 3 Ø 2,3 max. 6 max. Ø 6 4,5 max. Ø 2,3 max. 1,5 M3 6,5 Ø 7 …STC …STIC …STCB P 10 4 8 19,5 25,4 E 42 17 1,8 25 A ... ... ... Strangkühlkörper Extruded heatsinks Dissipateurs extrudés für Leiterplattenmontage for PCB mounting pour montage PCB A 106 Lochbilder Perforations Perforations ➜ A 18 Isoliermontageteile für Leistungstransistoren Insulating mounting parts for power transistors Eléments de montage isolants pour transistors de puissance ➜ E 24 Silikonscheiben Silicone washers Rondelles au silicone ➜ E 5 – 8 Wärmeleitpaste Thermal transfer compound Pâte thermique ➜ E 17 E = Einbauart E = fixing method E = manière de fixation für Halbleiter Schraubmontage for semiconductor screw assembly pour semiconducteur fixé par vis Art. Nr. Art. No. Art. n° SK 129 25,4 … SK 129 38,1 … SK 129 50,8 … SK 129 63,5 … [mm] 25,4 38,1 50,8 63,5 RW [K/W] 7,8 6,5 5,3 4,5 TO 220 SOT 32 TO 3 P Oberfläche schwarz eloxiert Surface black anodised Surface anodisée noire Sonderlängen und Sondertransistor- Special lengths and transistor Longueurs et perçages de boîtier spéciales lochungen auf Anfrage. drillings on request. sur demande. A bitte angeben: … Einbauart: STS = mit Lötstiften STIS = mit Lötstiften und Isolierring STSB = mit M3 Gewindebolzen, Messing please indicate: … fixing method: STS = with solder pins STIS = with solder pins and insulating washer STSB = with M3 threaded bolts, brass veuillez indiquer: … manière de fixation: STS = avec broches à souder STIS = avec broches à souder et bague d’isolation STSB = avec M3 boulon fileté, laiton 3 Ø 2,3 max. 6 max. Ø 6 4,5 max. Ø 2,3 max. 1,5 M3 6,5 Ø 7 …STS …STIS …STSB 3,2 25,4 13,5 18,3 25,4 E 17 25 42 1,8 ... ... ... A 107 Lochbilder Perforations Perforations ➜ A 18 Isoliermontageteile für Leistungstransistoren Insulating mounting parts for power transistors Eléments de montage isolants pour transistors de puissance ➜ E 24 Silikonscheiben Silicone washers Rondelles au silicone ➜ E 5 – 8 Wärmeleitpaste Thermal transfer compound Pâte thermique ➜ E 17 Strangkühlkörper für Leiterplattenmontage Extruded heatsinks for PCB mounting Dissipateurs extrudés pour montage PCB Longueurs et perçages de boîtier spéciales sur demande Sonderlängen und Sondertransistorlochungen auf Anfrage. Special lengths and transistor drillings on request Wärmewiderstand Thermal resistance Résistances thermiques Art. Nr. Art. No. Art. n° Art. Nr. Art. No. Art. n° SK 185 25 STC TO 220 SK 185 37,5 STC TO 220 SK 185 50 STC TO 220 4,6 K/W 4,2 K/W 3,9 K/W 25 37,5 50 TO 220 Ausführung Version Modèle Ausführung Version Modèle Oberfläche schwarz eloxiert Surface black anodised Finition anodisée noire [mm] SK 185 25 C TO 220 SK 185 37,5 C TO 220 SK 185 50 C TO 220 ohne Lötstifte without solder pins sans broches à souder mit Lötstiften with solder pins avec broches à souder Wärmewiderstand Thermal resistance Résistances thermiques Art. Nr. Art. No. Art. n° Art. Nr. Art. No. Art. n° SK 185 25 STS TO 220 SK 185 37,5 STS TO 220 SK 185 50 STS TO 220 4,6 K/W 4,2 K/W 4,2 K/W 3,9 K/W – 25 37,5 37,5 50 1000 TO 220 – TO 220 TO 220 – Ausführung Version Modèle Ausführung Version Modèle [mm] SK 185 25 TO 220 SK 185 37,5 SK 185 37,5 TO 220 SK 185 50 TO 220 SK 185 1000 ohne Lötstifte without solder pins sans broches à souder mit Lötstiften with solder pins avec broches à souder für Halbleiter-Schraubmontage for semiconductor screw assembly pour semiconducteur fixé par vis für Halbleiter-Clipmontage for semiconductor clip assembly pour semiconducteur fixé par clip 2 R 1,35 34,4 18 65 30 4,5 4 4 34,4 18,3 3,2 3,1 max. Lötstift solder pin brouche à soudure ➜ A 18 34,4 21,5 Ø 3,1 max. 4 Ø 5 10,25 Profil ➜ A 61 Heatsink ➜ A 61 Dissipateur ➜ A 61 A A 108 Longueurs et perçages de boîtier spéciales sur demande Sonderlängen und Sondertransistorlochungen auf Anfrage. Special lengths and transistor drillings on request Wärmewiderstand Thermal resistance Résistances thermiques Art. Nr. Art. No. Art. n° Art. Nr. Art. No. Art. n° SK 76 25 STS TO 220 SK 76 37,5 STS TO 220 SK 76 50 STS TO 220 10,0 K/W 10,0 K/W 8,0 K/W 8,0 K/W 7,0 K/W 7,0 K/W 5,9 K/W – 25 25 37,5 37,5 50 50 75 1000 – TO 220 – TO 220 – TO 220 – – für Halbleiter-Schraubmontage for semiconductor screw assembly pour semiconducteur fixé par vis Wärmewiderstand Thermal resistance Résistances thermiques Art. Nr. Art. No. Art. n° Art. Nr. Art. No. Art. n° SK 75 25 STS TO 220 SK 75 37,5 STS TO 220 mit Lötstiften with solder pins avec broches à souder 12,5 K/W 12,5 K/W 10,0 K/W 10,0 K/W 8,5 K/W 7,0 K/W – 25 25 37,5 37,5 50 75 1000 – TO 220 – TO 220 – – – ohne Lötstifte without solder pins sans broches à souder für Halbleiter-Schraubmontage for semiconductor screw assembly pour semiconducteur fixé par vis SK 75 25 SK 75 25 TO 220 SK 75 37,5 SK 75 37,5 TO 220 SK 75 50 SK 75 75 SK 75 1000 SK 76 25 SK 76 25 TO 220 SK 76 37,5 SK 76 37,5 TO 220 SK 76 50 SK 76 50 TO 220 SK 76 75 SK 76 1000 mit Lötstiften with solder pins avec broches à souder Ausführung Version Modèle Ausführung Version Modèle Ausführung Version Modèle Ausführung Version Modèle Oberfläche schwarz eloxiert Surface black anodised Finition anodisée noire [mm] [mm] ohne Lötstifte without solder pins sans broches à souder mit Lötstift / with solder pin / avec brouche à soudure Lochbild mittig zur Gesamtlänge des Kühlkörpers. Cut out centered on the length of the heatsink. Perforations sur le milieu de la longueur du dissipateur. TO 220 ohne Lötstift / without solder pin / sans brouche à soudure mit Lötstift / with solder pin / avec brouche à soudure Lochbild mittig zur Gesamtlänge des Kühlkörpers. Cut out centered on the length of the heatsink. Perforations sur le milieu de la longueur du dissipateur. TO 220 ohne Lötstift / without solder pin / sans brouche à soudure 4 max. Ø 1,3 Ø 3,2 18,3 15 14 5 3 17,78 32 4 max. Ø 1,3 Ø 3,2 18,3 15 7 4 17,78 32 20 Ø 3,2 14,75 5 13 Ø 3,2 14,75 5 13 A Lochbilder Perforations Perforations ➜ A 18 Isoliermontageteile für Leistungstransistoren Insulating mounting parts for power transistors Eléments de montage isolants pour transistors de puissance ➜ E 24 Silikonscheiben Silicone washers Rondelles au silicone ➜ E 5 – 8 Wärmeleitpaste Thermal transfer compound Pâte thermique ➜ E 17 Strangkühlkörper für Leiterplattenmontage Extruded heatsinks for PCB mounting Dissipateurs extrudés pour montage PCB A 109 Transistorhaltefedern Retaining springs for transistors Ressort de retenue ➜ A 93 – 95 Lochbilder Perforations Perforations ➜ A 18 Leiterplattenkühlkörper mit Gewindestreifen PC board heatsinks with threaded rail Dissipateurs sur platine avec réglettes taraudées ➜ A 92 Technische Erläuterungen Technical introduction Introduction Technique ➜ A 3 –12 Oberfläche schwarz eloxiert Sonderlängen und Sondertransistorlochungen auf Anfrage. Surface black anodised Special lengths and transistor drillings on request Surface anodisée noire Longueurs et perçages de boîtier spéciales sur demande L = lötbare Stifte für Halbleiter-Clipmontage L = picots soudables pour semiconducteur fixé par clip L = solderable pins for semiconductor clip assembly 15,5 25,4 29 12 3 ø 2,8 max. ø 3,2 25,4 4,5 18,3 L SK 145 25 STC SK 145 30 STC SK 145 50 STC Art. Nr. Art. No. Art. n° TO 218, TO 220 TO 247, TO 248 13,5 12,4 10,0 RW [K/W] 25 30 50 [mm] mit Lötstiften with solder pins avec broches à souder Ausführung Version Modèle L = lötbare Stifte für Halbleiter-Schraubmontage L = picots soudables pour semiconducteur fixé par vis L = solderable pins for semiconductor screw assembly RW [K/W] Art. Nr. Art. No. Art. n° Art. Nr. Art. No. Art. n° mit Lötstiften with solder pins avec broches à souder 15 15 13,5 12 12 10 20 20 25 37,5 37,5 50 TO 218 TO 220 TO 247 TO 248 ohne Lötstifte without solder pins sans broches à souder ➜ A 47 Ausführung Version Modèle Ausführung Version Modèle [mm] SK 145 20 SK 145 20 TO 220 SK 145 25 TO 220 SK 145 37,5 SK 145 37,5 TO 220 SK 145 50 TO 220 SK 145 25 STS TO 220 SK 145 37,5 STS TO 220 SK 145 50 STS TO 220 A Strangkühlkörper für Leiterplattenmontage Extruded heatsinks for PCB mounting Dissipateurs extrudés pour montage PCB ø 2,8 max. 4,5 L 15 ø 4,5 20,5 25,4 Strangkühlkörper Extruded heatsinks Dissipateurs extrudés für Leiterplattenmontage for PCB mounting pour montage PCB A 110 Transistorhaltefedern Retaining springs for transistors Ressort de retenue ➜ A 93 – 95 Lochbilder Perforations Perforations ➜ A 18 Leiterplattenkühlkörper mit Gewindestreifen PC board heatsinks with threaded rail Dissipateurs sur platine avec réglettes taraudées ➜ A 92 Technische Erläuterungen Technical introduction Introduction Technique ➜ A 3 – 12 mit Lötstift und M3 Gewinde with solder pin and M3 thread avec broche à souder et M3 taraudage TO 218 TO 220 TO 247 TO 248 ohne Lötstift mit M3 Gewinde without solder pin with M3 thread sans broche à souder avec M3 taraudage L = lötbarer Stift L = solderable pin L = picot soudable Surface anodisée noire SK 126 25 STS TO 220 SK 126 37,5 STS TO 220 Art. Nr. Art. No. Art. n° Ausführung Version Modèle Ausführung Version Modèle SK 126 25 TO 220 SK 126 25 2 x M3 SK 126 37,5 TO 220 SK 126 37,5 2 x M3 SK 126 25 SK 126 37,5 SK 126 1000 Art. Nr. Art. No. Art. n° Art. Nr. Art. No. Art. n° RW [K/W] 25 25 37,5 37,5 1000 8 8 6,5 6,5 – [mm] Oberfläche schwarz eloxiert Surface black anodised Longueurs et perçages de boîtier spéciales sur demand. Special lenghts and transistor drillings on request. Sonderlängen und Sondertransistorlochungen auf Anfrage. M3 8 M3 18,3 M3 6,35 6,35 M3 18,3 L Ø 2,3 4,5 max. 34,5 12,7 3 8 SK 126 25 2 x M 3 SK 126 37,5 2 x M 3 SK 126 25 TO 220 SK 126 37,5 TO 220 A Lochbilder Perforations Perforations ➜ A 18 Isoliermontageteile für Leistungstransistoren Insulating mounting parts for power transistors Eléments de montage isolants pour transistors de puissance ➜ E 24 Silikonscheiben Silicone washers Rondelles au silicone ➜ E 5 – 8 Wärmeleitpaste Thermal transfer compound Pâte thermique ➜ E 17 A 111 Wärmewiderstand Thermal resistance Résistances thermiques – SOT 32 – TO 220 SOT 32 2 x M 3 (TO 220) – 15 15 25 25 25 25 1000 38,5 K/W 38,5 K/W 36 K/W 36 K/W 36 K/W 36 K/W – Art. Nr. Art. No. Art. n° SK 95 15 SK 95 15 SOT 32 S SK 95 25 SK 95 25 TO 220 SK 95 25 SOT 32 SK 95 25 2 x M 3 SK 95 1000 SK 95 25 2 x M3 SK 95 15 SOT 32 S SK 95 25 TO 220 SK 95 25 SOT 32 Oberfläche schwarz eloxiert Surface black anodised Surface anodisée noire M3 15 11 25 18,3 M3 25 13,5 M3 15 11 M3 L 3,5 max. Ø 1,3 25 18,3 M3 L 3,5 max. Ø 1,3 25 13,5 M3 L 3,5 max. Ø 1,3 25 2,6 7 18,3 M3 M3 SK 95 15 STS SOT 32 S SK 95 25 STS TO 220 SK 95 25 STS SOT 32 Wärmewiderstand Thermal resistance Résistances thermiques SOT 32 TO 220 SOT 32 15 25 25 38,5 K/W 36 K/W 36 K/W Art. Nr. Art. No. Art. n° SK 95 15 STS SOT 32 S SK 95 25 STS TO 220 SK 95 25 STS SOT 32 L = lötbarer Stift L = solderable pin L = picot soudables Sonderlängen und Sondertransistorlochungen auf Anfrage. Special lengths and transistor drillings on request. Longueurs et perçages de boîtier spéciales sur demand. [mm] [mm] 3,9 6,3 6,5 4,4 10,6 12,6 1,3 1,1 A Strangkühlkörper für Leiterplattenmontage Extruded heatsinks for PCB mounting Dissipateurs extrudés pour montage PCB A 112 A Strangkühlkörper Extruded heatsinks Dissipateurs extrudés für Leiterplattenmontage for PCB mounting pour montage PCB Transistorhaltefedern Retaining springs for transistors Ressort de reteune pour transistors ➜ A 93 – 95 Lochbilder Perforations Perforations ➜ A 1835 U-Kühlkörper U-shaped heatsinks Dissipateurs en U ➜ A 122 – 124 Zuordnungstabelle Assignment table Tableau d'Adjonction ➜ A 15 – 17 Surface anodisée noire Versions spéciales de longueur et de fixation de boîtier sur demande. Surface black anodised Special lengths and transistor fixings on request. Oberfläche schwarz eloxiert Sonderlängen und Sondertransistorbefestigungen auf Anfrage. L = lötbarer Stift Profil ➜ A 23 L = solderable pin profile ➜ A 23 L = picot soudable profilé ➜ A 23 SK 437 25 STS SK 437 30 STS SK 437 35 STS SK 437 50 STS TO 218 TO 220 TO 247 TO 248 24 22 18 14 25 30 35 50 Art. Nr. Art. No. Art. n° RW [mm] [K/W] Ø 2,55 4,5 max. L 20 M3 16 5 16 3,5 SK 437 25 STC SK 437 30 STC SK 437 35 STC SK 437 50 STC TO 218 TO 220 TO 247 TO 248 24 22 18 14 25 30 35 50 Art. Nr. Art. No. Art. n° RW [mm] [K/W] 4,5 max. Ø 2,55 L 10,5 14,5 L = lötbarer Stift Profil ➜ A 23 L = solderable pin profile ➜ A 23 L = picot soudable profilé ➜ A 23 L = lötbarer Stift Profil ➜ A 23 L = solderable pin profile ➜ A 23 L = picot soudable profilé ➜ A 23 SK 437 25 STS 2 SK 437 30 STS 2 SK 437 35 STS 2 SK 437 50 STS 2 TO 218 TO 220 TO 247 TO 248 24 22 18 14 25 30 35 50 Art. Nr. Art. No. Art. n° RW [mm] [K/W] 20 4,5 max. Ø 1,45 L M3 16 10 16 3,5 Ø 1,45 4,5 max. L 20 M3 L SK 437 25 STC 2 SK 437 30 STC 2 SK 437 35 STC 2 SK 437 50 STC 2 TO 218 TO 220 TO 247 TO 248 24 22 18 14 25 30 35 50 Art. Nr. Art. No. Art. n° RW [mm] [K/W] 4,5 max. L 10,5 14,5 Ø 1,45 L L = lötbarer Stift Profil ➜ A 23 L = solderable pin profile ➜ A 23 L = picot soudable profilé ➜ A 23 Einzel-Lötstift Single solder pin Broche à souder seule Doppel-Lötstift Double solder pin Broche à souder double Strangkühlkörper Extruded heatsinks Dissipateurs extrudés für Leiterplattenmontage for PCB mounting pour montage PCB A 113 Einrast-Transistorhaltefeder Lock-in retaining spring for transistors Ressorts de retenue à encliqueter pour transistors ➜ A 85 Strangkühlkörper für Einrast-Transistorhaltefeder Extruded heatsinks for lock-in retaining spring Dissipateurs extrudés pour ressort de retenue à encliqueter ➜ A 86 – 89 Transistorhaltefedern Retaining springs for transistors Ressort de reteune pour transistors ➜ A 93 – 95 Technische Erläuterungen Technical introduction Introduction Technique ➜ A 3 – 12 SK 470 25 STS SK 470 30 STS SK 470 35 STS SK 470 50 STS TO 220 SOT 32 20,0 18,2 16,6 14,2 25 30 35 50 Art. Nr. Art. No. Art. n° RW [mm] [K/W] M3 18 3,5 max. Ø 1,3 L 2,5 1,25 5,9 11,8 8 SK 469 25 STS SK 469 30 STS SK 469 35 STS SK 469 50 STS TO 220 SOT 32 15,3 14,3 13,0 10,6 25 30 35 50 Art. Nr. Art. No. Art. n° RW [mm] [K/W] 15,24 3,5 1,75 6,75 13,5 M3 18 3,5 max. Ø 1,3 L Surface anodisée noire Versions spéciales de longueur et de fixation de boîtier sur demande. Surface black anodised Special lenghts and transistor fixings on request. Oberfläche schwarz eloxiert Sonderlängen und Sondertransistorbefestigungen auf Anfrage. – en tant que pièce de montage et de connexion – pour fixer les transistors par ressort – unité triple séparable – possibilité de montage par picots de soudure – usinages et versions spéciales selon indications du client L = lötbarer Stift Profil ➜ A 23 L = solderable pin profile ➜ A 23 L = picot soudable profilé ➜ A 23 L = lötbarer Stift Profil ➜ A 23 L = solderable pin profile ➜ A 23 L = picot soudable profilé ➜ A 23 SK 484 25 SK 484 37,5 SK 484 50 SK 484 75 TO 218 TO 220 TO 247 TO 264 TO 3P 6,0 4,5 3,7 2,8 25 37,5 50 75 Art. Nr. Art. No. Art. n° RW [mm] [K/W] 20 15 20 15 20 94 20,4 20,4 20,4 2 5,2 11,5 Ø 2,6 – als Montage- und Verbindungsstück – für Klammerbefestigung der Transistoren – Dreifacheinheit trennbar – Lötstiftmontage möglich – kundenspezifische Bearbeitungen und Sonderausführungen – as fastening and connecting piece – for transistor clip fastening – triple unit may be separated – may be fastened using soldering pin – customer-specific designs and special versions A Leiterplattenkühlkörper PC board heatsinks Dissipateurs de platine mit Lötstift with solder pin avec broche à souder A 114 Profil SK 454 Profile SK 454 Profilé SK 454 ➜ A 24 Profil SK 448 Profile SK 448 Profilé SK 448 ➜ A 24 Profil SK 400 Profile SK 400 Profilé SK 400 ➜ A 25 Profil SK 456 Profile SK 456 Profilé SK 456 ➜ A 26 – kompakte Leiterplattenkühlkörper – besonders geeignet für vertikalen Leiterplatteneinbau in Gehäusen, Racks etc. – einfache Einlötbefestigung – Sonderausführungen von Kühlkörperlängen und Transistorbefestigungen auf Anfrage – compact PCB heatsinks – particularly suited for vertical PCB insertion in cases, racks etc. – easy solder fixing – special heatsink lengths and transistor fixings on request – dissipateurs compacts de platine – conviennent particulièrement pour l’insertion verticale sur platines dans des boîtiers, des racks etc. – fixation simple par soudage – versions spéciales de longueur et de fixation de boîtier sur demande SK 454 20 1 x M3 L 10,1 K/W SK 454 40 2 x M3 L 8,8 K/W SK 454 60 3 x M3 L 7,5 K/W 21,45 9,5 19 20 ø 2,3 max 3,5 17,8 M3 10 20 10 M3 M3 3,5 17,8 ø 2,3 max ø 2,3 max 10 20 20 10 M3 M3 M3 3,5 17,8 TO 220 / SOT 32 L SK 448 20 1 x M3 L 11,8 K/W SK 448 40 2 x M3 L 9,8 K/W SK 448 60 3 x M3 L 7,1 K/W 27,95 6,25 12,5 20 ø 2,3 max 5,6 20,6 M3 10 20 10 M3 M3 ø 2,3 max 5,6 20,6 ø 2,3 max 10 20 20 10 M3 M3 M3 5,6 20,6 TO 218 / TO 220 / TO 247 / TO 248 / TO 3 P L SK 400 20 1 x M3 L 7,7 K/W SK 400 40 2 x M3 L 6,6 K/W SK 400 60 3 x M3 L 6 K/W 33 5 10 10 20 10 M3 M3 4 22,5 ø 2,3 max ø 2,3 max 10 20 20 10 M3 M3 M3 4 22,5 20 ø 2,3 max 4 22,5M3 TO 218 / TO 220 / TO 247 / TO 248 / TO 3 P L SK 456 20 1 x M3 L 13 K/W SK 456 40 2 x M3 L 10,5 K/W SK 456 60 3 x M3 L 8,5 K/W 40 3,4 6 20 ø 2,3 max 5 20,3 M3 10 20 10 M3 M3 5 20,3 ø 2,3 max ø 2,3 max 10 20 20 10 M3 M3 M3 5 20,3 TO 218 / TO 220 / TO 247 / TO 248 / TO 3 P L L = lötbarer Stift L = solderable pin L = picot soudables A Strangkühlkörper Extruded heatsinks Dissipateurs extrudés für Leiterplattenmontage for PCB mounting pour montage PCB A 115 Einrast-Transistorhaltefeder Lock-in retaining spring for transistors Ressorts de retenue à encliqueter pour transistors ➜ A 85 Strangkühlkörper für Einrast-Transistorhaltefeder Extruded heatsinks for lock-in retaining spring Dissipateurs extrudés pour ressort de retenue à encliqueter ➜ A 86 – 89 Transistorhaltefedern Retaining springs for transistors Ressort de reteune pour transistors ➜ A 93 – 95 Technische Erläuterungen Technical introduction Introduction Technique ➜ A 3 – 12 E = Einbauart E = fixing method E = manière de fixation für Halbleiter Clipmontage for semiconductor clip assembly pour semiconducteur fixé par clip Art. Nr. Art. No. Art. n° SK 460 25 … SK 460 37,5 … SK 460 50 … [mm] 25 37,5 50 RW [K/W] 9,0 7,9 7,0 TO 218, TO 220, TO 247, TO 248 SIP Multiwatt Oberfläche schwarz eloxiert Surface black anodised Surface anodisée noire Sonderlängen und Sondertransistor- Special lengths and transistor Longueurs et perçages de boîtier spéciales lochungen auf Anfrage. drillings on request. sur demande. bitte angeben: … Einbauart: STC = mit Lötstiften STIC = mit Lötstiften und Isolierring STCB = mit M3 Gewindebolzen, Messing please indicate: … fixing method: STC = with solder pins STIC = with solder pins and insulating washer STCB = with M3 threaded bolts, brass veuillez indiquer: … manière de fixation: STC = avec broches à souder STIC = avec broches à souder et bague d’isolation STCB = avec M3 boulon fileté, laiton 3 Ø 2,3 max. 6 max. Ø 6 4,5 max. Ø 2,3 max. 1,5 M3 6,5 Ø 7 …STC …STIC …STCB 2,25 18,16 14,54 7,1 E 34 5,1 18,16 20 4 A ... ... ... Strangkühlkörper Extruded heatsinks Dissipateurs extrudés für Leiterplattenmontage for PCB mounting pour montage PCB A 116 Transistorhaltefedern Retaining springs for transistors Ressort de retenue ➜ A 93 – 95 Lochbilder Perforations Perforations ➜ A 18 Leiterplattenkühlkörper mit Gewindestreifen PC board heatsinks with threaded rail Dissipateurs sur platine avec réglettes taraudées ➜ A 92 Technische Erläuterungen Technical introduction Introduction Technique ➜ A 3 – 12 E = Einbauart E = fixing method E = manière de fixation für Halbleiter Schraubmontage for semiconductor screw assembly pour semiconducteur fixé par vis Art. Nr. Art. No. Art. n° SK 460 25 … SK 460 37,5 … SK 460 50 … [mm] 25 37,5 50 RW [K/W] 9,0 7,9 7,0 TO 218, TO 220, TO 247, TO 248 SIP Multiwatt Oberfläche schwarz eloxiert Surface black anodised Surface anodisée noire Sonderlängen und Sondertransistor- Special lengths and transistor Longueurs et perçages de boîtier spéciales lochungen auf Anfrage. drillings on request. sur demande. A bitte angeben: … Einbauart: STS = mit Lötstiften STIS = mit Lötstiften und Isolierring STSB = mit M3 Gewindebolzen, Messing please indicate: … fixing method: STS = with solder pins STIS = with solder pins and insulating washer STSB = with M3 threaded bolts, brass veuillez indiquer: … manière de fixation: STS = avec broches à souder STIS = avec broches à souder et bague d’isolation STSB = avec M3 boulon fileté, laiton 3 Ø 2,3 max. 6 max. Ø 6 4,5 max. Ø 2,3 max. 1,5 M3 6,5 Ø 7 …STS …STIS …STSB 21,2 18,16 M3 E 34 5,1 18,16 20 4 ... ... ... All technical caracteristics are subject to change without previous notice. Caractéristiques sujettes à modifications sans préavis. Proud to serve you celduc r e l a i s page 1 / 7F/GB S/MON/SUL842070/A/10/07/2008 SUL842070 celpac ❏ Contacteur statique largeur 22,5mm prêt à l'emploi synchrone spécialement adapté aux charges résistives. 22,5mm Solid State Contactor for space-saving design. Ready to use with its heatsink Zero Cross Solid State Contactor specially designed for resistive loads. ❏ Sortie 12 à 275VAC 25A avec protection interne aux surtensions . Power output 12 to 275VAC 25A with internal voltage protection . ❏ Large plage de contrôle: 3 - 32VDC avec un courant de commande régulé. LED de visualisation sur l'entrée de couleur jaune. Protection aux surtensions sur l'entrée intégrée. Large control range: 3 -32VDC with input current limiter. Yellow LED visualization on the input. Input over-voltage protection. ❏ Protection IP20 avec volets amovibles IP20 protection with flaps ❏ Construit en conformité aux normes EN60947-4-3 (IEC947-4-3) et EN60950/VDE0805 (Isolement renforcé) -UL-cUL en cours Designed in conformity with EN60947-4-3 (IEC947-4-3) and EN60950/VDE0805 (Reinforced Insulation) -UL-cUL pending Output : 12-275VAC 25A(*) Input : 3-32VDC (*) : Thermo Mechanical Stress Solution Contacteur statique monophasé de puissance Power Solid State Contactor Dimensions : PRELIMINARY Install it & Forget it! (*) 20A AC-51 see derating curve SUL842070= SU842070 SSR + WF311100 heatsink Internal voltage protection Typical application: Motors, lamps, heaters,.... Application typique: moteurs, lampes, résistances.... r e l a i s Rue Ampère B.P. 4 42290 SORBIERS - FRANCE E-Mail : celduc-relais@celduc.com Fax +33 (0) 4 77 53 85 51 Service Commercial France Tél. : +33 (0) 4 77 53 90 20 Sales Dept.For Europe Tel. : +33 (0) 4 77 53 90 21 Sales Dept. Asia : Tél. +33 (0) 4 77 53 90 19 www.celduc.com page 2 / 7F/GB S/MON/SUL842070/A/10/07/2008 celpac celduc Caractéristiques d'entrée / Control characteristics (at 25°C) DC Paramètre / Parameter Symbol Min Typ Max Unit Tension de commande / Control voltage Uc 3 5-12-24 32 V Courant de commande / Control current (@ Uc ) Ic <10 <14 <14 mA Tension de non fonctionnement / Release voltage Uc off 2 V LED d'entrée / Input LED jaune / yellow Tension Inverse / Reverse voltage Urv 32 V Tension de transil d'entrée / Clamping voltage (Transil) Uclamp 36 V Immunité / Input immunity : EN61000-4-4 2kV Immunité / Input immunity : EN61000-4-5 2KV Caractéristiques de sortie / Output characteristics (at 25°C) Paramètre / Parameter Conditions Symbol Min Typ. Max Unit Plage de tension utilisation / Operating voltage range Ue 12 230 275 V rms Tension de crête / Peak voltage ( écrêtage/ clamp voltage) Up 600 (450) V Niveau de synchronisme / Zero cross level Usync 20 V Tension amorçage / Latching voltage Ie nom Ua 10 V Courant nominal / nominal current (AC-51) Ie AC-51 see derating curve ( page 3) A rms Courant surcharge / Non repetitive overload current tp=10ms (Fig. 3) Itsm 250 A Chute directe à l'état passant / On state voltage drop @ 25°C Vt 0,85 V Résistance dynamique / On state dynamic resistance rt 16 mΩ Puissance dissipée (max) / Output power dissipation (max value) Pd 0,9x0,85xIe + 0,016 x Ie2 W Résistance thermique jonction/semelle Thermal resistance between junction to case Rthj/c 1,8 K/W Courant de fuite à l'état bloqué / Off state leakage current @Ue typ, 50Hz Ilk 1 mA Courant minimum de charge / Minimum load current Iemin 5 mA Temps de fermeture / Turn on time @Ue typ, 50Hz ton max 10 ms Temps d'ouverture / Turn off time @Ue typ, 50Hz toff max 10 ms Fréquence utilisation/ Operating frequency range F mains f 0,1 50-60 800 Hz dv/dt à l'état bloqué / Off state dv/dt dv/dt 500 V/μs di/dt max / Maximum di/dt non repetitive di/dt 50 A/μs I2t (<10ms) I2t 340 A2s Immunité / Conducted immunity level IEC/EN61000-4-4 (bursts) 2kV criterion B Immunité / Conducted immunity level IEC/EN61000-4-5 (surge) 2kV criterion A with external VDR Emission conduite /Conducted & emitted interference IEC60947-4-3 Class A for Industrial applications Protection court-circuit / Short circuit protection voir/see page 5 Example Fuse Ferraz gRC 25A/32A/50A Input : Ic = f( Uc) Caractéristiques générales / General characteristics (at 25°C) Symbol Isolement entrée/sortie - Input to output insulation Ui 4000 VRMS Isolation sortie/ semelle - Output to case insulation Ui 4000 VRMS Résistance Isolement / Insulation resistance Ri 1000 (@500VDC) MΩ Tenue aux tensions de chocs / Rated impulse voltage Uimp 4000 V Degré de protection / Protection level / CEI529 IP20 Vibrations / Vibration withstand 10 -55 Hz according to IEC 60068-2-6 10/55Hz 1,5 mm Tenue aux chocs / Shocks withstand according to IEC 60068-2-27 Half sinus /11ms 30 gn Température de fonctionnement / Ambient temperature (no icing, no condensation) - -40 /+80 °C Température de stockage/ Storage temperature (no icing, no condensation) -40/+125 °C Humidité relative / Ambient humidity HR 40 to 85 % Poids/ Weight 230 g Conformité / Conformity EN60947-4-3 (IEC947-4-3) Conformité / Conformity EN60950 / UL/cUL plastique du boitier / Housing Material PA 6 UL94V0 Semelle / Base plate Aluminium 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 0 2 4 6 8 10 12 14 Uc (Vdc) Ic(mA) r e l a i s Rue Ampère B.P. 4 42290 SORBIERS - FRANCE E-Mail : celduc-relais@celduc.com Fax +33 (0) 4 77 53 85 51 Service Commercial France Tél. : +33 (0) 4 77 53 90 20 Sales Dept.For Europe Tel. : +33 (0) 4 77 53 90 21 Sales Dept. Asia : Tél. +33 (0) 4 77 53 90 19 www.celduc.com celduc page 3 / 7F/GB S/MON/SUL842070/A/10/07/2008 celpac Courbes thermiques & Choix dissipateur thermique / Thermal curves and heatsink choice Courbe de puissance dissipée en fonction du courant commuté et de la température ambiante pour un cycle de marche de 100%. Power Dissipation curve in compliance with nominal load current and ambient temperature for a duty cycle of 100% ( permanent current). La résistance thermique du dissipateur thermique utilisé sur ce contacteur dépend du montage qui doit être vertical, du confinement du relais, de la ventilation de l'armoire. La résistance thermique de ce dissipateur WF311100, en fonction de la puissance dissipée est comprise généralement suivant l'application et l'installation entre 2K/W et 3K/W. Thermal resistance of heatsink used on this contactor depends on mounting which must be vertical, confinement of the SSR,ventilation (fan) in the cabinet. Generally, thermal resistance (Rth) of this WF311100 heatsink is between 2 à 3 K/W depending on application and installation Courbes thermiques . La courbe "1" est donnée suivant les caractéristiqueslimites du produit. Les températures restent admissibles pour les composants utilisés. Cette valeur correspond aux valeurs admises par la plupart des fabricants de relais statiques. Dans une armoire avec un minimum de ventilation, ou des courants non permanent, ces valeurs sont adaptées. La courbe "2" est donnée selon la norme EN60947-4-3 qui définie une élévation de température maximale de 50°C (@40°C) pour un fonctionnement permanent de 8 heures et une ambiance en air calme. Pour des courants non permanent, vous pouvez calculer la puissance moyenne dissipée = Pd x cycle de marche et vérifier l'élévation de température : ΔTj = Pd xRthj/a. (Pd et Rthj/a sont données en page2 ). La température de jonction Tj ne doit pas dépasser 125°C à la température ambiante maximale. Le courant maximum admissible étant celui des thyristors La constante thermique du produit (Cth) est de 7 minutes, ce qui signifie que l'élévation de température est seulement de 63% de la température stabilisée après un fonctionnement de 7 minutes. Thermal specifications: Current according ambient temperature : The curve "1" gives the limits of the product. The temperature reached are acceptable for the components. These values are in compliance with most of SSRs manufacturers. In a cabinet with a minimum of ventilation or a non permanent current, these values are aceptable. The curve "2" gives the limits of the product according to EN60947-4-3 with a maximum rise temperature of 50°C (@ 40°C) for a permanent current and in air calm ( test during 8 hours). For a non permanent current, you can calcule the average power = Pd x duty cycle and check the rise temperature : ΔTj = Pd x Rthj/a (Pd and Rthj/a are given page 2). The junction temperature must not exceed 125°C at the maximum ambient temperature. The maximum current is limited to the size of the thyristors. The thermal constant (Cth) of the product is 7 minutes. That means the rise temperature is only 63% of the stabilized temperature after a running time of 7 minutes. 1 2 r e l a i s Rue Ampère B.P. 4 42290 SORBIERS - FRANCE E-Mail : celduc-relais@celduc.com Fax +33 (0) 4 77 53 85 51 Service Commercial France Tél. : +33 (0) 4 77 53 90 20 Sales Dept.For Europe Tel. : +33 (0) 4 77 53 90 21 Sales Dept. Asia : Tél. +33 (0) 4 77 53 90 19 www.celduc.com celduc page 4 / 7F/GB S/MON/SUL842070/A/10/07/2008 celpac fig 3 : Courants de surcharges / Overload currents −> Warning ! semiconductor relays don't provide any galvanic insulation between the load and the mains. Always use in conjunction with an adapted circuit breaker with isolation feature or a similar device in order to ensure a reliable insulation in the event of wrong function and when the relay must be insulated from the mains (maintenance ; if not used for a long duration ...). 1 -Itsm non répétitif sans tension réappliquée est donné pour la détermination des protections. 1 - No repetitive Itsm is given without voltage reapplied . This curve is used to define the protection (fuses). 2 -Itsm répétitif est donné pour des surcharges de courant (Tj initiale=70°C). Attention : la répétition de ces surcharges de courant diminue la durée de vie du relais. 2 - Repetitive Itsm is given for inrush current with initial Tj = 70°C. In normal operation , this curve musn't be exceeded. Be careful, repeated surge currents decrease life expectancy of the SSR. −> Attention ! les relais à semi-conducteurs ne procurent pas d'isolation galvanique entre le réseau et la charge. Ils doivent être utilisés associés à un disjoncteur avec propriété de sectionnement ou similaire, afin d'assurer un sectionnement fiable en amont de la ligne dans l'hypothèse d'une défaillance et pour tous les cas où le relais doit être isolé du réseau (maintenance ; non utilisation sur une longue durée...). M5 12,7mm M4 88±2mm Drill for vertical can be adjusted Mounting and dismounting on DIN rail without any tool. Panel Mounting DIN rail connected to protection wire (ground) . Mounting Dismounting vertical 80mm position Attention :. L'utilisateur doit veiller à protéger les matériaux sensibles à la chaleur ainsi que les personnes contre tout contact avec le dissipateur thermique.. Pour un bon refroidissement le montage doit permettre la convection naturelle . Dans le cas o les relais sont mont s c te c te, pr voir une r duction de courant. Une ventilation d'armoire améliore fortement la dissipation thermique. Dans tous le cas d'un courant l'utilisateur doit s'assurer que les dissipateurs thermiques n'excèdent pas une température de 90°C. Warning : The user should protect heat sensitive materials as well as persons against any contacts with the heatsink. For a good cooling, the SSR needs an air convection. Less convection air produces an abnormal heating. In case of no space between two SSR ( zero space between two SSRs) , please reduce the load current. A forced cooling ( fan inside the cabinet) improves significantly the thermal performances. In all cases please check the heatsink temperature never exceed 90°C. Surcharge de courant répétitive avec tension réappliquée / Repetive surge current with voltage reapplied. Surcharge de courant non répétitive sans tension réappliquée / No repetive surge current without voltage reapplied. 0,01 0,1 1 10 0 50 100 150 200 250 t(s) Itsm (Apeak) Surcharge de courant : Itsm (Apeak) = f(t) pour modéle 25A(Itsm=230A) Surge current : Itsm (Apeak) = f(t) for 25A models with Itsm =230A Fig.3 1 2 r e l a i s Rue Ampère B.P. 4 42290 SORBIERS - FRANCE E-Mail : celduc-relais@celduc.com Fax +33 (0) 4 77 53 85 51 Service Commercial France Tél. : +33 (0) 4 77 53 90 20 Sales Dept.For Europe Tel. : +33 (0) 4 77 53 90 21 Sales Dept. Asia : Tél. +33 (0) 4 77 53 90 19 www.celduc.com page 5 / 7F/GB S/MON/SUL842070/A/10/07/2008 celpac celduc celpac Raccordement de puissance / Power wiring Nombre de fils / Number of wires Modèle de tournevis / Screwdriver type Couple de serrage recommandé 1 2 Recommended Torque Fil rigide (sans embout) SOLID (No ferrule) Fil multibrins (avec embout) FINE STRANDED (With ferrule) Fil rigide (sans embout) SOLID (No ferrule) Fil multibrins (avec embout) FINE STRANDED (With ferrule) M5 N.m 1,5 ... 10 mm2 AWG16....AWG8 1,5 ... 6 mm2 AWG16....AWG10 1,5 ... 10 mm2 AWG16....AWG8 1,5 ... 6 mm2 AWG16....AWG10 POZIDRIV 2 2 Raccordement / Connections Directement avec fils avec ou sans embouts Direct connection with wires with or without ferrules Avec cosses/ With ring terminals Washer for vibrations celpac Raccordement de commande / Control wiring Référence /Reference avec connecteurs 2 points débrochable/ With 2 points pluggable connector 1Y020915 Weidmuller 0,13 ... 3,3 mm2 EN60999 a x b ; d BLZ5,08/2/90SN SW AWG26....AWG12 2,8mm x 2mm ; 2,4mm 155 271 0000 46 mm power input power output control Des étiquettes de repérage sont aussi disponibles. Montage sur volets (1MZ09000). Marking labels are also possible. Mounting on flaps (1MZ09000) r e l a i s Rue Ampère B.P. 4 42290 SORBIERS - FRANCE E-Mail : celduc-relais@celduc.com Fax +33 (0) 4 77 53 85 51 Service Commercial France Tél. : +33 (0) 4 77 53 90 20 Sales Dept.For Europe Tel. : +33 (0) 4 77 53 90 21 Sales Dept. Asia : Tél. +33 (0) 4 77 53 90 19 www.celduc.com page 6 / 7F/GB S/MON/SUL842070/A/10/07/2008 celpac Raccordement de commande par connecteur débrochable / Control connections by pluggable connector celduc Différentes possibilités de connecteurs et de sortie/ Different possibilities of connectors and outputs Connecteur à vis Screw solution Ref : 1Y022217 Weidmuller: BLZ5,08/2/225SN SW Ref : 1Y021660 Weidmuller: BLDT5,08/2 SN SW Single wire = 0,15...2,5mm2 26-12AWG Wire strip length = 7mm 2 points screw 270° screw 90° Ref : 1Y022715 Weidmuller: BLZ5,08/2/270SN SW Ref : 1Y020915 Weidmuller: BLZ5,08/2/90SN SW 1 2 Screw 45° 3 4 double Single wire = 0,15...2,5mm2 26-12AWG Wire strip length = 10mm Solution ressort Spring solutions Ref : 1Y022716 Weidmuller: BLZF5,08/2/270 SW Ref : 1Y020916 Weidmuller: BLZF5,08/2/90 SW 270° 90° 5 6 Cosses Crimp solutions Insulation Displacement Connection consult us Weidmuller: BLIDC consult us Weidmuller: BLC r e l a i s Rue Ampère B.P. 4 42290 SORBIERS - FRANCE E-Mail : celduc-relais@celduc.com Fax +33 (0) 4 77 53 85 51 Service Commercial France Tél. : +33 (0) 4 77 53 90 20 Sales Dept.For Europe Tel. : +33 (0) 4 77 53 90 21 Sales Dept. Asia : Tél. +33 (0) 4 77 53 90 19 www.celduc.com S/MON/SUL842070/A/10/07/2008 celpac page 7 / 7F/GB celduc Application typiques / Typical LOADS −> Les produit SU8 sont définis pour fonctionner sur la plupart des charges SU8 products are designed for most of loads. Protection /Protection : −> La protection d'un relais statique contre les court-circuits de la charge dépend du type de coordination souhaitée. Deux types de coordination sont admis, le type 1 ou le type 2. a) La coordination de type 1 exige qu’en conditions de court-circuit, l’appareil ne cause pas de danger aux personnes ou à l’installation et peut ne pas être en état de fonctionnement pour d’autres services sans réparation ou remplacement de pièces. Dans ce cas, mettre une protection adaptée à l'installation avec un risque de maintenance sur le relais. b) La coordination de type 2 exige qu’en conditions de court-circuit, l’appareil ne cause pas de danger aux personnes et à l’installation et doit convenir à un usage ultérieur. Dans le cas d'une coordination de type "2" en conformité avec la norme EN60947-4-1, la protection doit être faite par fusibles rapides avec des I2t = 1/2 I2t du relais . Un test en laboratoire a été effectué sur les fusibles de marque FERRAZ. Une protection par MCB ( disjoncteurs modulaires miniatures) est aussi possible. Voir notre note application ( protection SSR) et utiliser des relais avec I2t >5000A2s −> SSRs protection against short circuit of the load depends on the coordination wished. Two types of coordination are permissible, type 1 or type 2. a) Type 1 coordination requires that, under short-circuit conditions, the device shall cause no danger to persons or to the installation and may not be suitable for further service without repair and replacement of parts. In this case, use a protection adapted to the installation with the risk of SSR maintenance after a short circuit. b) Type 2 coordination requires that, under short-circuit conditions, the device shall cause no danger to persons or to the installation and shall be suitable for further use. In case of Type 2 coordination, to protect the SSR against a short-circuit of the load , use a fuse with an I2t value = 1/2 I2t value specified page 2. A test has been made with FERRAZ fuses . It is possible to protect SSR by MCB ( miniature circuit breaker). In this case, see application note ( SSR protection) and use a SSR with high I2t value (5000A2s minimum). EMC : −> Immunité : Nous spécifions dans nos notices le niveau d'immunité de nos produits selon les normes essentielles pour ce type de produit, c'est à dire EN61000-4-4 &5. Immunity : We give in our data-sheets the immunity level of our SSRs according to the main standards for these products: EN61000-4-4 &5. −> Emission: Nos relais statiques sont principalement conçus et conformes pour la classe d'appareils A (Industrie). L'utilisation du produit dans des environnements domestiques peut amener l'utilisateur à employer des moyens d'atténuation supplémentaires. En effet, les relais statiques sont des dispositifs complexes qui doivent être interconnectés avec d'autres materiels (charges, cables, etc) pour former un système. Etant donné que les autres materiels ou interconnexions ne sont pas de la responsabilité de celduc, il est de la responsabilité du réalisateur du système de s'assurer que les systèmes contenant des relais statiques satisfont aux prescriptions de toutes les règles et règlements applicables au niveau des systèmes. Consulter celduc qui peut vous conseiller ou réaliser des essais dans son laboratoire sur votre application. Emission: celduc SSRs are mainly designed in compliance with standards for class A equipment (Industry). Use of this product in domestic environments may cause radio interference. In this case the user may be required to employ additionnal devices to reduce noise. SSRs are complex devices that must be interconnected with other equipment (loads, cables, etc.) to form a system. Because the other equipment or the interconnections may not be under the control of celduc, it shall be the responsability of the system integrator to ensure that systems containing SSRs comply with the requirement of any rules and regulations applicable at the system level. Consult celduc for advices. Tests can be preformed in our laboratory. Ces spécifications peuvent évoluer sans préavis/ Specifcations are subject to change without notice • Zero cross AC output. For all types of loads • 8,5-30 VDC; 10-30VAC control voltage with LED • Internal protection by RC and clamping voltage. • IP20 page 1 / 3 F/GB S/TRI/SWT860330/B/12/06/2001 SWT860330 24 to 520 VAC - 3 x 5 ARMS All technical caracteristics are subject to change without previous notice. Caractéristiques sujettes à modifications sans préavis. celduc r e l a i s Circuit équivalent/Equivalent circuit : Dimensions / Dimensions: 72 83 100 25 LED Adaptateur / Adapter Adaptateur / Adapter Adaptateur / Adapter 7 + 8 - L1/R U L2/S V L3/T W Proud to serve you Caractéristiques de commande (à 20°C) / Control characteristics (at 20°C) AC-DC Paramètre / Parameter Symbol Min Nom Max Unit Tension de commande / Control voltage : DC Uc 8,5 24 30 VDC Tension de commande / Control voltage : AC Uc 10 30 VAC Courant de commande / Control current (@ Uc ) Ic 15 50 65 mA Tension de relachement/Release voltage Uc off 4 V Résistance interne / Input internal resistor fig.1 Rc 410 Ω Tension inverse / Reverse voltage Urv polarity free V Caractéristiques d'entrée-sortie (à 20°C) / Input-output characteristics (at 20°C) Isolement entrée-sortie/Input-output isolation @500m Ui 4000 VRMS Isolement sortie-semelle/Output-case isolation @500m Ui 3300 VRMS Tension assignée isolement/ Rated impulse voltage Uimp 4000 V Caractéristiques générales / General characteristics Paramètre / Parameter Conditions Symbol Typ. Unit Poids/Weight 500 g Plage de température de stockage / Storage temperature range -40 / +100 °C Plage de température de fonctionnement/Operating temperature range -40 / +100 °C 0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0 2 2 2 4 2 6 2 8 3 0 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 Uc(V) Ic(mA) fig. 1 :Caractéristique d'entrée / Control characteristic THREE PHASE SOLID STATE RELAYS Farnell order code celduc® relais code 399-6438 SWT860330 Caractéristiques de sortie(à 20°C) / Output characteristics (at 20°C) Paramètre / Parameter Conditions Symbol Typ. Unit Tension de charge / Load voltage Ue 400 V rms Plage tension de fonctionnement / Operating range ( 480Vrms + 10% ) Uemax 530 V rms Tension crête / Peak voltage Up 1200 V Niveau de synchonisation / Synchronizing level Usync 12 V Tension d'amorçage / Latching voltage Ie nom Ua 10 V Courant nominal AC-51 non permanent/ AC-51 no permanentnominal current ( see Fig. 2 ) Ie AC-51 25 A rms Courant nominal AC-51/ AC-51 nominal current @25°C ( see Fig. 2 ) Ie AC-51 3x5 A rms Courant nominal AC-53/ AC-53 nominal current ( see Fig. 2 ) Ie AC-53 3x5 A rms Puissance max (moteur triphasé) Max 3 pole motor power (400 VAC) Pn 2,2 kW Puissance max (moteur triphasé) 3 pole motor power(400VAC)/EN60947-2 Pn 1,1 kW Courant de surcharge non répétitif /Non repetitive overload current tp=10ms (Fig. 3) Itsm 230 A Chute tension directe crête/ On state voltage drop @ Ie nom Vd 1,4 V Courant de fuite état bloqué/ Off state leakage current @Ue, 50Hz Ilk <3 mA Courant de charge minimum / Minimum load current Ie min 5 mA Temps de fermeture/ Turn on time Uc nom DC ,f=50Hz ton max 10 ms Temps d'ouverture/ Turn off time Uc nom DC ,f=50Hz toff max 10 ms Plage de fréquence / Operating frequency range f 10-400 Hz dv/dt état bloqué / Off state dv/dt dv/dt 500 V/μs dI/dt maximum non répétitif/ Maximum di/dt non repetitive di/dt 50 A/μs I2t (<10ms) I2t 265 A2s EMC Test d'immunité conduite / Conducted immunity level IEC 1000-4-4 (burst) 4kV criterion A EMC Test d'immunité conduite / Conducted immunity level IEC 1000-4-5(schocks) 2kV crit.A Conformité / Conformity EN60947-4-x Précautions : * Les relais à semiconducteurs ne procurent pas d'isolation galvanique entre le réseau et la charge. Cautions : * Semiconductor relays don't provide any galvanic insulation between the load and the mains. page 2 / 3 F/GB S/TRI/SWT860330/B/12/06/2001 Surge current Itsm (Apeak) = f(t) for Itsm =230A 0,01 0,1 1 10 0 50 100 150 200 250 t(s) Itsm (Apeak) Fig.3 Courbes de surcharge de courant / Overload current curves 1 -Itsm non répétitif sans tension réappliquée est donné pour la détermination des protections. No repetitive Itsm is given without voltage reapplied for the determination of the protection. 2 -Itsm répétitif est donné pour des surcharges de courant (Tj initiale=70°C). La répétition de ces surcharges de courant diminue la durée de vie du Relais. Repetitive Itsm is given for inrush current with initial Tj = 70°C. The repetition of the surge current decrease the lifetime SSR's . No repetitive Itsm (Apeak)=f(t) without voltage reapplied Repetitive Itsm (Apeak)=f(t) with voltage reapplied for initial Tj =70°C Caractéristiques thermiques / thermal curves : 0 5 10 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 RMS load current (A) Total wasted power (W) Full on -state 70% duty cycle 50% duty cycle 30% duty cycle 0 10 20 30 40 50 60 70 80 90 100 Ambient temperature (°C) heatsink max =100°C heatsink max = 80°C in compliance with EN60947-1 All technical caracteristics are subject to change without previous notice. Caractéristiques sujettes à modifications sans préavis. celduc r e l a i s Proud to serve you r e l a i s Rue Ampère B.P. 4 42290 SORBIERS - FRANCE E-Mail : celduc-relais@celduc.com Fax +33 (0) 4 77 53 85 51 Service Commercial France Tél. : +33 (0) 4 77 53 90 20 Sales Dept.For Europe Tel. : +33 (0) 4 77 53 90 21 Sales Dept. Asia : Tél. +33 (0) 4 77 53 90 19 www.celduc.com celduc page 3 / 3 F/GB SVT Cablage commande / Wiring of the control circuit: nombre de fils/ NUMBER OF WIRES SCREWDRIVER TYPE MINIMUM TORQUE 1 2 tournevis tournevis couple serrage SOLID (No ferrule) rigide sans embout FINE STRANDED (With ferrule) multibrins avec embouts SOLID (No ferrule) rigide sans embout FINE STRANDED (With ferrule) multibrins avec embouts N.m 0,75 ... 2,5 mm2 0,75 ... 2,5 mm2 0,75 ... 2,5 mm2 0,75 ... 2,5 mm2 0,8 x 5,5 mm POZIDRIV 2 1,2 SVT Cablage puissance / Wiring of the power circuit: NUMBER OF WIRES SCREWDRIVER TYPE MINIMUM TORQUE 1 2 tournevis tournevis couple serrage SOLID (No ferrule) rigide sans embout FINE STRANDED (With ferrule) multibrins avec embouts SOLID (No ferrule) rigide sans embout FINE STRANDED (With ferrule) multibrins avec embouts N.m 1,5 ... 10 mm2 1,5 ... 6 mm2 1,5 ... 10 mm2 1,5 ... 6 mm2 0,8 x 5,5 mm POZIDRIV 2 1,8 R S T Resistive or inductive load R S T R S T M Application typique /Typical application: S/TRI/SWT860330/B/12/06/2001 Guide Législatif et Technique RoHS Premier Farnell Guide Pas-à-Pas (Version 2) Guide Législatif et Technique RoHS Premier Farnell Guide Pas-à-Pas (Version 2) Sommaire 1 Titre Introduction au RoHS 2 Champ d'application de la Directive 2, 9 Dérogations 2, 10, 11 Guide de mise en conformité 3-11 La mise en conformité en 6 étapes 3 Responsabilités 4 Valeurs de concentration maximales 4 Matière homogène 4 Producteurs / déclarations 5, 6 Analyse 7, 8 Catégories d'équipements devant se mettre en conformité 9 Substances 12-13 Où les trouve-t-on ? 12 Limitation des alternatives 13 Soudage sans plomb 14-20 Glossaire 14 Equivalents 15 Problèmes de fiabilité 16 Equipements et procédés 17, 18 Exemples de joints de soudure 18 Résolution des problèmes 19, 20 Environnement 21 Enjeux 21 Situation dans le monde 21 Guide de mise en conformité à la Directive RoHS © 2005 Premier Farnell plc. Reproduction totale ou partielle autorisée à condition de mentionner Premier Farnell plc. 2 Introduction aux exigences de la DirectiveRoHS2002/95/CERoHS La Directive sur la Restriction de l'Usage de certaines Substances Dangereuses (RoHS) réglemente l'utilisation de six substances : 􀀗 Le plomb - (Pb) 􀀗 Le mercure - (Hg) 􀀗 Le chrome hexavalent - (Cr(VI)) 􀀗 Le cadmium (Cd) 􀀗 Les ignifuges à base de diphényle polybromé - (PBB) 􀀗 Les ignifuges à base d'éther diphényle polybromé - (PBDE) L'utilisation de ces matières est réglementée dans les équipements entrant dans le champ d'application de la Directive : La Directive s'applique aux équipements électriques et électroniques dont le bon fonctionnement dépend d'un courant électrique ou d'un champ électromagnétique. Sont également concernés les équipements servant à générer, transférer ou mesurer ces courants et ces champs s'inscrivant dans les catégories répertoriées en page 9 du présent guide et dont la tension nominale d'utilisation ne dépasse pas 1000 V (courant alternatif) et 1500 V (courant continu). Le champ d'application englobe huit catégories parmi les dix répertoriées dans la Directive sur les Déchets d'Equipements Electriques et Electroniques (DEEE), à savoir : 1. Gros appareils ménagers 2. Petits appareils ménagers 3. Equipements informatiques et de télécommunications 4. Equipements grand public 5. Equipement d'éclairage (y compris les ampoules électriques et le luminaire ménager) 6. Outils électriques et électroniques (à l'exception des outils industriels fixes de grandes dimensions) 7. Jouets, équipements de sport et de loisir 8. Distributeurs automatiques La Directive RoHS s'applique aux produits finaux qui entrent dans son champ d'application : autrement dit, aucun des composants, ni aucune des combinaisons de composants associés pour former des sous-ensembles, ne doit contenir l'une des substances réglementées dans des quantités supérieures aux valeurs de concentrations maximales définies en page 4. Dérogations Il existe certaines dérogations : Plomb : Dans les soudures à point de fusion élevé Dans le verre des tubes cathodiques, tubes fluorescents et composants électroniques Dans les pièces électroniques en céramique Dans certains alliages dans des concentrations limitées Dans les soudures pour serveurs, systèmes de stockage et équipements d'infrastructure pour réseaux de télécommunications Mercure : Dans les tubes fluorescents et autres lampes Cadmium: Placage, sauf dans les applications interdites en vertu de la Directive 91/338/CEE (Directive sur le cadmium) Chrome hexavalent : Systèmes de refroidissement à l'acier au carbone pour les réfrigérateurs à absorption A l'heure de la mise sous presse, la Commission européenne examinait d'autres applications ayant fait l'objet d'une demande de dérogation. Les piles et batteries font l'objet d'une réglementation spécifique. Elles n'entrent donc pas dans le cadre de la Directive RoHS. Le gouvernement britannique estime que l'équipement militaire y déroge. Il n'existe toutefois aucune dérogation spécifique pour les avions : certains équipements utilisés dans un avion tombent sous le coup de la Directive. A noter également que de nombreuses autres substances sont proscrites en vertu de la Directive concernant les Substances Dangereuses. Parmi celles-ci figurent deux des ignifuges à base de PBDE - le penta et l'octa-BDE - dont la vente est interdite depuis août 2004. La plupart des autres ignifuges bromés peuvent toutefois être utilisés sans danger. Guide de mise en conformité à la Directive RoHS © 2005 Premier Farnell plc. Reproduction totale ou partielle autorisée à condition de mentionner Premier Farnell plc. 3 Les pages 3 à 11 contiennent le Guide Pas-à-Pas de mise en conformité à la Directive RoHS, préparé par Farnell InOne en collaboration avec ERA Technology et publié fin 2004. Guide de mise en conformité à la Directive RoHS 6 4 3 1 2 5 La Directive RoHS s’applique-t-elle à mon produit ? 􀀗 La Directive s’applique à tous les équipements électriques et électroniques fonctionnant via un champ électrique ou électromagnétique. Il en va de même pour l’équipement servant à générer, transférer et mesurer ces courants et ces champs, s’inscrivant dans les catégories répertoriées à l’Annexe A du présent guide et dont la tension nominale d’utilisation ne dépasse pas 1000 V (courant alternatif) et 1500 V (courant continu). Demandez à vos fournisseurs si leurs matériaux, pièces, composants, etc. contiennent l’une des six substances réglementées : 􀀗 Plomb, cadmium, mercure, chrome hexavalent, ignifuges à base de PBB ou PBDE. 􀀗 Les fournisseurs sont tenus de fournir une déclaration, celle-ci pouvant être présentée sous plusieurs formes différentes. Certains fournisseurs publieront ces informations sur leur site Internet. J’ai des doutes sur la présence d’une substance réglementée ? 􀀗 Utilisez l’arbre décisionnel figurant en page 7 de ce guide pour décider s’il y a lieu d’effectuer une analyse. 􀀗 La fréquence d’analyse dépendra de nombreux facteurs, notamment de la relation que vous entretenez avec vos fournisseurs. 􀀗 La fréquence d’analyse dépend également de l’impact éventuel sur l’environnement suite à l’utilisation accidentelle d’une substance réglementée. Les autorités attendront de votre part une analyse plus fréquente des composants présents dans les produits vendus en grandes quantités que dans ceux vendus en quantités relativement faibles. Certains fournisseurs pourront décider de ne pas modifier leur nomenclature. Il sera donc nécessaire de séparer les composants conformes RoHS des composants non conformes. Rassemblez les déclarations des fournisseurs et les résultats d’analyse dans un dossier technique 􀀗 Les autorités doivent pouvoir les consulter en cas de transgression présumée de la directive. Vos clients pourront éventuellement vous poser des questions sur la conformité RoHS. Vous devrez être en mesure de produire une déclaration. Guide de mise en conformité à la Directive RoHS © 2005 Premier Farnell plc. Reproduction totale ou partielle autorisée à condition de mentionner Premier Farnell plc. La Restriction de l’Usage de certaines Substances Dangereuses (RoHS) entrera en vigueur le 1er juillet 2006. A compter de cette date, les producteurs de certaines catégories d’équipements électriques et électroniques ne pourront plus commercialiser de produits renfermant six substances interdites, sauf dérogations explicites. Tout ceci est clair … Mais qu’est-ce que les autorités attendent des producteurs ? Qu’entend-on par produit conforme ? La Directive RoHS touche l’équipement qui entre dans son champ d’application (voir page 2). Aucun des "matériaux homogènes" entrant dans la composition d’un produit conforme ne doit contenir les six substances réglementées à des concentrations supérieures aux "valeurs de concentration maximales". Qui est responsable ? Il est de la responsabilité des producteurs d’équipements de faire en sorte que leurs produits ne contiennent pas les six substances réglementées. La Directive ne couvrant pas les composants ou les sous-ensembles, il appartient aux producteurs d’équipements de prendre toutes les mesures nécessaires pour veiller à ce que tous les composants et matériaux utilisés dans leurs produits ne renferment pas ces substances. Le terme "producteur" désigne toute personne qui, quelle que soit la technique de vente utilisée : 􀀗 (i) fabrique et commercialise des équipements électriques et électroniques sous sa propre marque ; 􀀗 (ii) revend, sous sa propre marque, des équipements produits par d’autres fournisseurs ; ou 4 La Directive RoHS : Introduction Matière homogène – Exemple de boîtier semiconducteur 􀀗 (iii) importe ou exporte à titre professionnel des équipements électriques et électroniques dans un Etat membre. Il est donc clair que, dans certaines circonstances, les responsabilités du "producteur" ne seront pas nécessairement assumées par le fabricant du produit. Quelles sont les valeurs de concentration maximales? A l’heure de la mise sous presse, celles-ci n’avaient pas encore été arrêtées. Elles devraient en toute probabilité s’établir à 0,1 % en poids de plomb, mercure, chrome hexavalent, PBB et PBDE et 0,01 % en poids de cadmium dans les matières homogènes. Qu’est-ce qu’une matière homogène ? Source de confusion dans le passé, la définition d’une matière homogène a été clarifiée dans les directives préliminaires publiées par la Commission européenne. Une matière homogène est une substance simple comme une matière plastique, par exemple l’isolant PVC sur un fil de cuivre isolé. Si les composants comme les condensateurs, les transistors ou les boîtiers de semiconducteurs ne sont pas des "matières" à proprement parler, ils sont néanmoins constitués de plusieurs matériaux différents. Ainsi, un boîtier de semiconducteur en contiendra au moins six, comme illustré ci-dessous. Guide de mise en conformité à la Directive RoHS © 2005 Premier Farnell plc. Reproduction totale ou partielle autorisée à condition de mentionner Premier Farnell plc. Quelles mesures devront adopter les Producteurs pour satisfaire à la réglementation RoHS ? En mettant leurs produits sur le marché, les producteurs déclarent effectivement que ceux-ci sont conformes à la réglementation RoHS. Il s’agit essentiellement d’une "auto-déclaration", une pratique utilisée pour plusieurs autres directives dans l’Union européenne qui ne nécessite ni l’apposition d’une marque particulière, ni la mise en oeuvre de contrôles par un organisme indépendant. Cela dit, les autorités dans chaque Etat membre exerceront la surveillance du marché et procèderont à l’inspection de certains produits. Si un produit enfreint la réglementation RoHS, le producteur devra prouver qu’il a fait preuve de toute la diligence voulue et qu’il a pris des "mesures raisonnables" pour se conformer à la réglementation. Si d’autres réglementations font appel à ce type de défense juridique, le concept de "mesures raisonnables" n’a toutefois pas été clairement défini. Dans le cadre du processus de mise en conformité, deux voies sont offertes aux producteurs : 􀀗 Obtention auprès des fournisseurs de déclarations de conformité pour les matériaux, composants et autres pièces. 􀀗 Analyses sélectives. En cas de non-conformité, les autorités examineront les registres du producteur. Ceux-ci prendront la forme d’un "dossier technique" qui doit être conservé pendant une durée d’au moins quatre ans. Déclarations de conformité Les producteurs d'équipements devront obtenir les déclarations ou certificats de conformité des matériaux appropriés auprès de leurs fournisseurs. A l’heure de la mise sous presse, aucun format spécifique n’a été arrêté mais plusieurs sont en cours de développement. Ces déclarations doivent certifier, au minimum, que les matériaux, pièces et composants peuvent être utilisés dans la fabrication d’équipements conformes à la réglementation RoHS. Cette confirmation doit obligatoirement porter sur les matériaux individuels, et non sur les composants complets (conformément aux exigences liées aux matières homogènes, évoquées en page 4). Certains fabricants de composants établissent une même déclaration pour toute une gamme de produits, par exemple pour tous les types de boîtiers QFP. Ceci est acceptable, dans la mesure où tous les boîtiers sont composés des mêmes matériaux (une déclaration relative à une référence de composant serait identique pour un autre composant dans la même gamme de produits) et où tous les matériaux ont la même composition. Il arrive parfois que des producteurs d’équipements aient recourt à d'autres sources d'approvisionnement pour certains composants. Il ne devrait pas être nécessaire d’obtenir des déclarations séparées pour chaque lot, sauf si le fabricant a modifié son processus de fabrication. Les producteurs d'équipements doivent toutefois savoir que des variations peuvent se produire d’un lot à l’autre. 5 La Directive RoHS : Introduction Guide de mise en conformité à la Directive RoHS © 2005 Premier Farnell plc. Reproduction totale ou partielle autorisée à condition de mentionner Premier Farnell plc. 6 La présence ou l’absence des six substances réglementées est contrôlée tout au long de la chaîne d’approvisionnement. A titre d’exemple, un fabricant d’ordinateurs portables se procurera les déclarations nécessaires pour tous les composants individuels ainsi que les sous-ensembles, et en plus effectuera une analyse sélective. Les déclarations sur les matières peuvent être établies sur papier ou sous forme électronique. Déclaration des matières Pour mise en conformité RoHS Guide de mise en conformité à la Directive RoHS © 2005 Premier Farnell plc. Reproduction totale ou partielle autorisée à condition de mentionner Premier Farnell plc. Il peut être prudent pour un producteur, dans certains cas, d’effectuer une analyse en vue d’établir la présence ou non d’une substance réglementée. Les raisons peuvent être nombreuses, mais la décision reste à la discrétion du producteur d’équipement. La société ERA Technology a mis au point un arbre décisionnel dans le but d’aider les producteurs à évaluer la nécessité d’une analyse. Cet arbre est incorporé dans les directives gouvernementales préliminaires concernant la réglementation RoHS au Royaume-Uni. En voici une version modifiée : 7 L’analyse sélective – quand faut-il l’effectuer ? *Certaines matières présentent un risque relativement élevé de contenir une substance réglementée. A titre d’exemple, le PVC provenant d’Extrême-Orient renferme souvent du plomb et du cadmium, substances que l’on retrouve parfois dans d’autres types de matières plastiques. Par ailleurs, un producteur d'équipements doit être conscient que des variations importantes peuvent éventuellement apparaître d’un lot à l’autre. Guide de mise en conformité à la Directive RoHS 8 L’analyse sélective – quand faut-il l’effectuer ? © 2005 Premier Farnell plc. Reproduction totale ou partielle autorisée à condition de mentionner Premier Farnell plc. La décision quant à la nécessité d’effectuer une analyse dépendra, dans une large mesure, des relations avec le fournisseur. Les produits provenant d’un fournisseur réputé dont la fiabilité ne fait plus de doute seront analysés moins souvent que ceux provenant de nouveaux fournisseurs "inconnus". Il peut même arriver, dans certains cas, qu’un producteur n’ait jamais à effectuer d’analyse. Comment analyser et que faut-il analyser ? Il est évidemment inutile, et trop onéreux, d’analyser chaque matière. Seules les matières risquant de contenir une substance réglementée doivent faire l’objet d’un contrôle. Ainsi, dans le cas d'un boîtier de semiconducteur illustré en page 4, seule la connexion étamée est susceptible de contenir une substance réglementée, soit sous forme d’impureté, soit parce qu’un alliage étain/plomb a été utilisé au lieu de l’étain seul. Les connecteurs peuvent éventuellement renfermer des substances réglementées, tant dans les pièces plastiques (plomb, cadmium ou PBDE) que dans les parties étamées par électrolyse. La procédure conseillée pour l’analyse périodique des composants et des matières passe par une approche en deux étapes. Un producteur devra, dans tous les cas, veiller à ce que l’analyste possède les compétences requises dans le domaine des composants électroniques. Etape 1 – Dépistage systématique. La première étape consiste à utiliser une technique de dépistage, comme l’analyse par rayons X à dispersion d'énergie (EDXRF) dont le degré de précision permet de déterminer : 􀀗 la présence de Pb, Cd, Cr, Hg ou de Br, ou 􀀗 la présence de Pb, Cd, Cr, Hg ou Br à des concentrations "significatives". Cette technique ne donne que des valeurs approximatives, à moins que la machine n’ait fait l’objet d’un pré-étalonnage approprié. En l’absence d'étalon, une analyse par une autre technique peut s’avérer nécessaire si le résultat est proche de la concentration maximale. La limite de détection pour le plomb dans l’étain est d’environ 0,03 % dans des conditions d’analyse optimales. Il existe deux types de matériel d’analyse EDXRF. Les instruments portatifs sont rapides et simples d’emploi mais pas aussi précis que les machines de laboratoire. Ces deux types ont leurs limites, que l’analyste doit parfaitement comprendre. D’autres méthodes de dépistage systématique sont également disponibles. Etape 2 – Analyse plus précise S’avèrera nécessaire dans les circonstances suivantes : 􀀗 Présence de Pb, Cd ou de Hg identifiée à des concentrations "limites". La méthode d’analyse utilisée dépendra de la matière à détecter. 􀀗 Détection de Cr. 􀀗 Détection de Br. Dans ces circonstances, il serait prudent de faire analyser les matières suspectes par un laboratoire d’analyse professionnel. Guide de mise en conformité à la Directive RoHS © 2005 Premier Farnell plc. Reproduction totale ou partielle autorisée à condition de mentionner Premier Farnell plc. 9 Liste des catégories d'équipements devant se conformer à la réglementation RoHS La liste des produits figurant dans chaque catégorie n’est donnée qu’à titre indicatif, et ne se veut pas exhaustive. 1. Gros appareils ménagers Tels que : gros appareils de réfrigération ; réfrigérateurs ; congélateurs ; autres gros appareils utilisés pour la réfrigération, la conservation et le stockage des aliments ; machines à laver ; sèche-linge ; lave-vaisselle ; cuisinières ; plaques électriques ; chauffe-plats ; fours micro-ondes ; autres gros appareils utilisés pour la cuisson et la préparation des aliments ; appareils de chauffage électriques ; radiateurs électriques ; autres gros appareils pour chauffer les pièces, les lits, les sièges ; ventilateurs électriques ; appareils de climatisation ; autres équipements de ventilation, d’aspiration et de climatisation. 2. Petits appareils ménagers Tels que : aspirateurs ; machines à brosser les tapis ; autres appareils de nettoyage ; appareils de couture, de tricotage, de tissage et autre traitement des textiles ; fers et autres appareils de repassage, d’essorage et autre entretien des vêtements ; grille-pain ; friteuses ; moulins à café, cafetières et équipements d’ouverture ou de fermeture hermétique de récipients ou de paquets ; couteaux électriques ; appareils pour la coupe des cheveux, le séchage des cheveux, le brossage des dents, le rasage, le massage et autres appareils pour les soins du corps ; horloges, montres et équipements servant à mesurer, indiquer ou enregistrer le temps ; balances. 3. Equipements informatiques et de télécommunications Tels que : traitement centralisé de l’information ; systèmes mainframe ; mini-ordinateurs ; dispositifs d’impression ; informatique personnelle ; ordinateurs personnels, y compris l’unité centrale de traitement, la souris et le clavier; ordinateurs portables, y compris l’unité centrale de traitement, la souris et le clavier ; ordinateurs bloc-notes ; ardoises électroniques ; imprimantes ; photocopieuses ; machines à écrire électriques et électroniques ; calculatrices de poche et de bureau ; autres produits et équipements de saisie, de mémorisation, de traitement, de présentation ou de communication d’informations par des moyens électroniques ; terminaux ; télécopieurs ; télex ; téléphones ; téléphones publics ; téléphones sans fil ; téléphones portables ; systèmes répondeurs ; autres produits ou équipements de transmission du son, des images ou d’autres informations par télécommunications 4. Equipements grand public Tels que : postes de radio, postes de télévision ; caméscopes ; magnétoscopes ; enregistreurs Hi-Fi ; amplificateurs ; instruments de musique ; autres produits ou équipements servant à enregistrer ou reproduire le son ou les images, notamment les signaux ou autres technologies de distribution du son et de l’image autrement que par télécommunications. 5. Equipements d’éclairage (y compris les ampoules électriques et le luminaire ménager) Tels que : luminaires pour lampes fluorescentes ; lampes fluorescentes droites ; lampes fluorescentes compactes ; lampes à décharge haute intensité, notamment lampes à sodium haute pression et lampes à iodures métalliques ; lampes à sodium basse pression ; autres équipements d’éclairage servant à diffuser ou à régler la lumière. 6. Outils électriques et électroniques (à l’exception des outils industriels fixes de grandes dimensions) Tels que : perceuses ; scies ; machines à coudre ; équipements de tournage, de fraisage, de ponçage, de meulage, de sciage, de coupe, de cisaillement, de forage, de perçage, de poinçonnage, de pliage, de cintrage ou de traitement similaire du bois, du métal ou d’autres matériaux ; outils de rivetage, de clouage, ou de vissage ou de retrait de rivets, de clous, de vis ou à usage similaire ; outils de soudage, de brasage ou à usage similaire ; équipements de pulvérisation, d’enduction, de dispersion ou de traitement similaire de substances liquides ou gazeuses par d’autres moyens ; outils de tonte ou pour d’autres activités de jardinage. 7. Jouets, équipements de sport et de loisir Tels que : trains électriques ou circuits de voitures de course; consoles de jeu vidéo de poche ; jeux vidéo ; ordinateurs pour le vélo, la plongée, la course à pied, l’aviron, etc. ; équipements de sport comportant des composants électriques ou électroniques ; machines à sous. 8. Distributeurs automatiques Tels que : distributeurs automatiques de boissons chaudes ; distributeurs automatiques de bouteilles ou de canettes chaudes ou froides ; distributeurs automatiques de produits solides ; distributeurs automatiques d’argent ; tous les appareils de distribution automatique de tous types de produits. Guide RoHS Annexe A Guide de mise en conformité à la Directive RoHS © 2005 Premier Farnell plc. Reproduction totale ou partielle autorisée à condition de mentionner Premier Farnell plc. 10 Guide RoHS Annexe B Dérogations La réglementation RoHS n’affecte pas : 􀀗 les outils industriels fixes de grandes dimensions (à savoir, machine ou système comprenant une combinaison d’équipements, de systèmes ou de produits, chacun fabriqué et destiné à être utilisé uniquement dans des applications industrielles fixes). 􀀗 les pièces détachées pour la réparation de tout Equipement Electrique et Electrique (EEE) mis sur le marché avant le 1er juillet 2006, ainsi que les composants de rechange qui augmentent la capacité et/ou mettent à niveau tout EEE mis sur le marché avant le 1er juillet 2006. 􀀗 le réemploi de tout EEE mis sur le marché avant le 1er juillet 2006. 􀀗 les applications spécifiques du mercure, du plomb, du cadmium et du chrome hexavalent précédemment cités. Applications du plomb, du mercure, du cadmium et du chrome hexavalent exemptées de la Directive RoHS. 1. Le mercure dans les lampes fluorescentes compactes, à hauteur de 5 mg par lampe. 2 Le mercure dans les tubes fluorescents à usage général, à hauteur de : — 10 mg d’halophosphate — 5 mg de triphosphate à durée de vie normale — 8 mg de triphosphate à longue durée de vie. 3. Le mercure dans les tubes fluorescents à usage spécialisé. 4. Le mercure dans d’autres lampes ne figurant pas explicitement dans cette Annexe. 5. Le plomb dans le verre des tubes cathodiques, des composants électriques et des tubes fluorescents. 6. Le plomb en tant que composant d’alliage dans l’acier contenant jusqu’à 0,35 % en poids de plomb, dans l’aluminium contenant jusqu’à 0,4 % en poids de plomb, et dans un alliage de cuivre contenant jusqu’à 4 % en poids de plomb. 7. Le plomb dans certaines soudures à température de fusion élevée (autrement dit, les alliages de soudure étain-plomb contenant plus de 85 % de plomb). 8. Le plomb dans les soudures pour serveurs, systèmes de stockage (dérogation accordée jusqu’en 2010). 9. Le plomb dans les soudures destinées à l’équipement d’infrastructure réseau pour la commutation, la génération de signaux et la transmission ainsi que la gestion de réseau pour les télécommunications. 10. Le plomb dans les pièces électroniques en céramique (par ex. les dispositifs piézoélectriques). 11. Le placage au cadmium, sauf dans les applications interdites en vertu de la Directive 91/338/EEC (1) modifiant la Directive 76/769/EEC (2) relative aux restrictions sur la commercialisation et l’usage de certaines substances et préparations dangereuses. 12. Le chrome hexavalent en tant qu’agent anti-corrosif du système de refroidissement dans les réfrigérateurs à absorption. A noter - La Commission examinera de façon plus approfondie les applications relatives : — au déca-BDE, — au mercure dans les tubes fluorescents à usage spécialisé, — au plomb dans les soudures pour les serveurs, systèmes de stockage, l’équipement d’infrastructure réseau pour la commutation, la génération de signaux, la transmission ainsi que la gestion de réseau pour les télécommunications (en vue d’arrêter une date limite pour cette dérogation), et — aux ampoules, à titre prioritaire, afin d’établir au plus vite s’il convient d’y apporter des modifications. Dérogations possibles A l’heure de la mise sous presse, la Commission européenne examinait le statut de deux des dérogations mentionnées plus haut ainsi que des ampoules, étudiait la possibilité de sept nouveaux cas susceptibles d’exemption et se penchait sur une clarification des dérogations existantes. Les sept nouveaux cas susceptibles d’exemption sont : 􀀗 Le plomb utilisé dans les systèmes de connexion VHDM (Very High Density Medium) à broches déformables 􀀗 Le plomb en tant que matière d’enrobage pour la conduction thermique 􀀗 Le plomb et le cadmium dans le verre optique et filtrant 􀀗 Le plomb dans les émetteurs-récepteurs optiques pour les applications industrielles 􀀗 Le plomb dans les soudures comprenant plus de deux éléments, assurant la connexion entre les broches et le boîtier du microprocesseur et dont la teneur en plomb de l’alliage étain-plomb est supérieure à 85 % (dérogation envisagée jusqu’en 2010) Guide de mise en conformité à la Directive RoHS © 2005 Premier Farnell plc. Reproduction totale ou partielle autorisée à condition de mentionner Premier Farnell plc. 11 􀀗 Le plomb dans les soudures permettant d’établir une connexion électrique viable à l’intérieur de certains boîtiers à circuits intégrés (Flip Chips) (dérogation envisagée jusqu’en 2010) 􀀗 Le plomb dans les bagues et paliers en alliage plombbronze. La dérogation existante en cours d’examen en vue d’une clarification et d’une prorogation possibles concerne le plomb dans certaines soudures à point de fusion élevé (autrement dit, les alliages de soudure étain-plomb contenant plus de 85 % de plomb). Elle pourrait être modifiée comme suit : 􀀗 Le plomb dans certaines soudures à température de fusion élevée (autrement dit, les alliages de soudure étain-plomb contenant plus de 85 % de plomb), et toute soudure à température de fusion inférieure devant être associée à une soudure à température de fusion élevée pour établir une connexion électrique viable. La Commission examine aussi actuellement le statut du déca-BDE qui, pour le moment, entre dans le champ d’application de la Directive. Une étude réalisée pour le compte de la Commission a récemment conclu que l’évaluation des risques posés par l’usage du déca-BDE devait prendre fin sans imposer aucune restriction, quelle que soit l’application considérée. Cette étude a par ailleurs conclu que les questions concernant l’impact du déca-BDE sur l’environnement en Europe devaient être résolues par le lancement d’un programme de contrôle et de suivi, accompagné d’un programme volontaire de réduction des émissions industrielles en association avec les industries européennes utilisant le déca-BDE. La Commission étudie actuellement comment interpréter ces conclusions dans le cadre de la Directive RoHS. Remarque importante : Les informations contenues dans ce guide sont de nature générale et ne s'adressent à aucune personne ou entité en particulier. Si nous nous efforçons de présenter des informations exactes et actualisées, aucune garantie n’est donnée quant à leur exactitude à la date de leur réception, ni quant à leur exactitude future. Aucune mesure ne doit être prise sur la foi de ces informations sans l’avis préalable d’un professionnel et sans examen approfondi de la situation. Guide de mise en conformité à la Directive RoHS © 2005 Premier Farnell plc. Reproduction totale ou partielle autorisée à condition de mentionner Premier Farnell plc. 12 Les substances réglementées - où se trouvent-elles ? Substance Application Plomb SoldersSoudures Revêtement des pattes de composants Peintures utilisées comme pigments et agents desséchants PVC utilisé comme stabilisant Piles et batteries (sortant du champ d'application de la Directive RoHS) Cadmium Revêtements déposés par électrolyse Soudures spéciales (par ex. dans certains types de fusibles) Contacts électriques, relais, commutateurs Stabilisant PVC Pigments à base de plastique, verre et céramique Certaines matières à base de verre et de céramique Mercure Lampes Capteurs Relais Chrome hexavalent Revêtements passivés sur métaux Dans les peintures anticorrosion PBB et PBDE Ignifuges dans les matières plastiques Un potentiomètre peut renfermer du cadmium Plomb dans une soudure ou le revêtement d'un contact Une ampoule, du verre ou une soudure peut contenir du plomb Boîtiers plastiques, PBB, PBDE, cadmium et plomb Un connecteur plastique ou l'isolant d'un câble peuvent contenir du plomb ou du cadmium Condensateur électrolytique ; plomb dans le revêtement des pattes et dans le capot en plastique si PVC Condensateur MLCC : le plomb présent dans la céramique est exempté, mais pas le plomb sur les pattes Cadmium ou plomb dans les matières plastiques et plomb dans les revêtements déposés par électrolyse Guide de mise en conformité à la Directive RoHS © 2005 Premier Farnell plc. Reproduction totale ou partielle autorisée à condition de mentionner Premier Farnell plc. Limitation des alternatives 13 Matière ou composant Substitut Limites du substitut Soudure étain/plomb Soudures sans plomb Toutes différentes de la soudure étain/plomb - voir chapitre suivant Contacts oxyde d'argent/cadmium Oxyde d'argent/étain Convient aux basses tensions, usure plus rapide aux tensions élevées Passivation au chromate Divers La plupart sont moins efficaces en tant qu'agents anticorrosion sur les métaux nus Commutateurs au mercure Contacts or Seul le mercure assure un contact sans rebondissement et sa durée de vie est bien plus grande Bornes revêtues d'étain/plomb par électrolyse iTn, alliages d'étain Risque de whiskers d'étain, différentes caractéristiques de mouillage Ignifuges PBDE Autres ignifuges Caractéristiques éventuellement différentes. Conformité obligatoire avec la réglementation anti-incendie A noter : Certaines de ces applications pourront faire l'objet d'une demande de dérogation de la part des fabricants. Les substituts pourront parfois s'avérer plus onéreux. Guide de mise en conformité à la Directive RoHS © 2005 Premier Farnell plc. Reproduction totale ou partielle autorisée à condition de mentionner Premier Farnell plc. 14 Soudure sans plomb Glossaire Que sont les Whiskers d'étain ? Les whiskers d'étain sont des filaments monocristallins conducteurs qui se forment à partir de surfaces en étain pur dépourvues de plomb. Que sont les dendrites ? Les dendrites sont des motifs en forme de sapin ou de flocon de neige qui se propagent le long d'une surface (plan x-y) plutôt que d'en sortir, comme les whiskers d'étain. Le mécanisme de formation des dendrites est bien connu et nécessite un certain type d'humidité capable de dissoudre le métal (par ex. l'étain) pour donner une solution d'ions métalliques qui sont ensuite redistribués par électromigration en présence d'un champ électromagnétique. Que signifie SIR ? Surface Insulation Resistance ou Résistance d'isolement de surface La migration de métal entre des conducteurs isolés sur un système assemblé peut créer des courts-circuits électriques. Ceux-ci se produisent lorsque des conducteurs, normalement séparés, sont reliés par des dendrites formées par des ions métalliques redéposés. Qu'est-ce que la réaction « popcorn » ? Les composants moulés peuvent emmagasiner de l'humidité lors d'une exposition à une forte chaleur. Au dessus de 100°C, cette humidité se dilate, se transforme en gaz et tente de s'échapper du composant. Lorsque cela n'est pas possible, le composant à tendance à se casser ou à éclater. Qu'est-ce que le mouillage ? C'est l'aptitude d'un liquide à s'étaler sur une surface plutôt qu'à rester compact. Le mouillage se produit lorsque la plage de connexion ou le conducteur possède une énergie superficielle supérieure à celle de la soudure, et forme en surface une couche de soudure d'épaisseur moléculaire. Comme le chauffage de la soudure accroît son énergie superficielle, plus la soudure est froide, meilleur sera le mouillage. Qu'est-ce que l'effet "Tomb-stoning"? Il s'agit du soulèvement d'une extrémité, voire du redressement total, d'un composant sans plomb par rapport à la pâte à braser. Ce phénomène est dû à un déséquilibre des forces de mouillage lors d'un soudage par refusion. Qu'est-ce que le pétrissage (« kneading ») ? Il s'agit du procédé de mélange de la poudre à braser et du flux à souder formant la pâte à braser. Qu'est-ce que l'encrassement (« drossing ») ? Il désigne la formation d'oxydes et d'autres éléments contaminants sur la soudure fondue. Premiers stades du phénomène dû à la force de déséquilibre créée par les différences de température Couple gauche Couple droite Guide de mise en conformité à la Directive RoHS © 2005 Premier Farnell plc. Reproduction totale ou partielle autorisée à condition de mentionner Premier Farnell plc. Remplacement de la soudure standard 15 En dépit de recherches approfondies, il n'existe pas d'équivalent parfait de la soudure étain/plomb standard. Tous les alliages sans plomb sont différents. Composition de l'alliage Point de fusion en °C Commentaires Soudure étain/plomb eutectique 183 Bon mouillage et faible température de fusion Sn0.7Cu 227 Applications de soudure à la vague (appelées 99C), température de fusion élevée et moins bon mouillage que SnAg Sn3.5Ag 221 Soudure à température élevée, moins bon mouillage que SnAgCu Sn3.5Ag0.7Cu (et variantes) 217 Alliage sans plomb le plus courant. Teneurs variées en argent et en cuivre. Température de fusion supérieure de 34°C à celle de l'étain/plomb. Moins bon mouillage. Alliages SnAgBi (certains avec Cu) Env. 210-215 Meilleures propriétés mouillantes que le SnAgCu mais ne doit pas être utilisé avec le plomb. Surtout utilisé comme pâte à braser, mais a été utilisé en soudure à la vague, notamment au Japon. Pas disponible en fil. Sn9Zn 198 Nécessite un flux spécial. Sensible à la corrosion. Sn8Zn3Bi Env. 191 Utilisé par plusieurs fabricants japonais avec des composants sensibles à la chaleur. Utilisation délicate. 58Bi42Sn 138 Alliage dur et cassant à faible point de fusion. Guide de mise en conformité à la Directive RoHS © 2005 Premier Farnell plc. Reproduction totale ou partielle autorisée à condition de mentionner Premier Farnell plc. 16 Problèmes de fiabilité avec les soudures sans plomb Les problèmes de fiabilité ne peuvent être évités que si l'on comprend bien les différences entre les alliages sans plomb et étain/plomb : Température de fusion plus élevée La température de soudure des alliages sans plomb est supérieure de 30 à 40°C à celle des alliages au plomb. Ceci peut occasionner toute une série de défauts, notamment : 􀀗 Fatigue thermique des joints de soudure - encore mal connue, recherches en cours 􀀗 Whiskers d'étain issus de l'étamage par électrolyse des bornes - encore mal connus, recherches en cours 􀀗 Décollement des cartes imprimées multicouches 􀀗 Endommagement des trous métallisés - notamment les trous étroits dans les stratifiés plus épais 􀀗 Déformation des cartes imprimées - endommagement éventuel des composants, coupures de circuits, défaut d'alignement 􀀗 Boîtiers de circuits intégrés plus sensibles à l'effet « popcorn ». Le niveau de sensibilité à l'humidité IPC/JEDEC-020B des composants à soudure sans plomb peut être de 1 ou 2, voire moins. 􀀗 Endommagement des composants sensibles à la chaleur. Bien vérifier la limite supérieure de température sur la fiche technique du fabricant. Mouillage Pour la plupart des soudures sans plomb, il est moins bon que celui de la soudure à l'étain/plomb. 􀀗 Le comportement des revêtements à l'étain est différent de celui d'un revêtement étain/plomb, même avec une soudure à l'étain/plomb 􀀗 Important de bien choisir le flux 􀀗 Avec les alliages sans plomb, il est encore plus important que les pattes des composants et les surfaces soudables soient propres et dépourvues d'oxydes 􀀗 Utiliser le bon profil de températures. Une augmentation trop lente de la température suite à une mauvaise régulation ou un manque de puissance conduira à l'oxydation des surfaces et à un mouillage difficile. Prendre garde à une élévation trop rapide de la température : le choc thermique risque d'endommager certains composants et circuitsimprimés 􀀗 La tension superficielle des soudures sans plomb est supérieure à celles des soudures étain/plomb. Ceci limite l'étalement de la soudure et accroît le risque d'un effet "Tomb-stoning". Exemple de l’effet "Tomb-stoning" On pourra éviter l'effet "Tomb-stoning" en alignant le composant perpendiculairement à la direction du transporteur et en utilisant une pâte conservant une consistance pâteuse sur un plus grand intervalle de températures (pour assurer ainsi que toutes les surfaces présentent une bonne aptitude au soudage). Composants : Températures maximales Condensateur électrolytique à l'aluminium - temp. max. selon la taille 240°C -250°C Condensateur au tantale - divers types 220°C -260°C Condensateur MLCC - taux de montée plus important 240°C -260°C Condensateur à film 230°C -300°C Relais monté en surface 226°C -245°C Oscillateur à quartz 235°C -245°C Connecteur - selon le type de plastique utilisé 220°C -245°C LED - pourra fonctionner mais intensité lumineuse affectée 240°C -280°C Dispositifs à boîtiers BGA et CSP 220°C -240°C Autres circuits intégrés 245°C -260°C Guide de mise en conformité à la Directive RoHS © 2005 Premier Farnell plc. Reproduction totale ou partielle autorisée à condition de mentionner Premier Farnell plc. Soudure manuelle 􀀗 Procédure relativement simple permettant des essais préalables avec des échantillons de fil. 􀀗 Les composants à masse thermique importante posent le plus de difficulté. 􀀗 Grand choix de fils sans plomb à base de SnCu, SnAgCu et SnAg. 􀀗 Alliages au bismuth peu répandus du fait de leur nature cassante et de la difficulté d'obtenir un fil (fabrication « à la demande » possible mais coûteuse). 􀀗 Nécessite une température légèrement plus élevée de la pointe du fer à souder. 􀀗 Les soudures et flux plus agressifs réduisent la durée de vie de la pointe - une élévation de 10°C pourrait réduire de moitié la durée de vie de la pointe. 􀀗 Préchauffage et mouillage plus longs sauf si une température très élevée est utilisée (ceci occasionnera toutefois une baisse de la productivité). 􀀗 Les fers à souder plus anciens ne permettent pas un bon réglage de la température - possibilité de surchauffe (cycle de température étendu). 􀀗 Les fers à souder plus récents offrent un réglage bien meilleur de la température. 􀀗 Des pointes de fer à souder « sans plomb » sont en cours de développement. 􀀗 Bien souvent, une température excessive est utilisée avec un alliage SnPb pour accélérer le mouillage - dans ces cas, les soudeurs pourront éventuellement utiliser la même température avec un fil sans plomb. 􀀗 Pour déterminer la température optimale de la pointe : démarrer à 350°C, réduire la température jusqu'à obtenir une soudure de mauvaise qualité et augmenter alors la température de 10°C (ou l'augmenter jusqu'à obtenir une soudure de bonne qualité). Soudure à la vague 􀀗 Les soudures sans plomb peuvent endommager les pièces en acier - demander conseil auprès du fabricant de la machine. 􀀗 Nécessite une température plus élevée. Choix d'un flux adéquat. 􀀗 Le passage sur la vague peut endommager certains composants. 􀀗 Plus grand risque d'encrassement - étudier la possibilité d'utiliser de l'azote sur la vague . 􀀗 Vérifier au départ la composition du bain, notamment si des composants à pattes étain/plomb sont utilisés. Equipements et procédés 17 Montage en surface 􀀗 Chauffage par convection forcée nécessaire pour assurer une meilleure régulation de la température. 􀀗 Minimiser les pics de température en assurant une bonne régulation et en prévoyant un grand nombre de zones de chauffage. Allonger éventuellement les fours et réduire la cadence de production pour obtenir de bons résultats. 􀀗 Un taux de refroidissement ménagé est conseillé du fait du risque de fissure du revêtement de certains composants en cas de refroidissement trop rapide. Un refroidissement trop rapide peut endommager certains composants cassants tels que les condensateurs MLCC. 􀀗 L'utilisation de l'azote est conseillée mais pas obligatoire. 􀀗 Choisir la pâte la mieux adaptée en effectuant des tests comparatifs avec des circuits-imprimés réalistes. Tester chaque pâte sur 8 heures. Cette opération peut être réalisée avec 12 circuits-imprimés : 􀀗 Imprimer 4 cartes (sans pétrissage), puis mettre les composants en place et mesurer l'adhésivité sur 2 de ces cartes. 􀀗 1 circuit-imprimé attend 1 heure avant refusion 􀀗 1 circuit-imprimé attend 3 heures avant refusion 􀀗 Attendre 6 heures puis mettre les composants en place, mesurer l'adhésivité, puis refusion. 􀀗 Répéter avec 4 autres cartes après 1 heure. 􀀗 Répéter les tests. 􀀗 Répéter avec 4 autres cartes après 1 heure. 􀀗 Répéter les tests. Guide de mise en conformité à la Directive RoHS © 2005 Premier Farnell plc. Reproduction totale ou partielle autorisée à condition de mentionner Premier Farnell plc. 18 Inspection L'aspect des soudures sans plomb étant différent de celui des soudures étain/plomb, les soudeurs devront éventuellement suivre une formation pour leur permettre de bien évaluer la qualité d'une soudure. Les critères figurant dans la norme IPC - 610C s'appliquent également à la soudure sans plomb, même si, à l'origine, ils concernaient l'alliage étain/plomb. Revêtements des circuits-imprimés 􀀗 Les revêtements classiques étain/plomb de nivelage à l'air chaud (HASL) sont proscrits. Equivalents possibles : Revêtement circuits-imprimés Limites HASL sans plomb Nouvel équipement nécessaire, cuisson préalable des cartes Nickel/or (ENIG) Bonne protection et soudabilité jusqu'à 1 an, mais option la plus coûteuse Agent de soudabilité organique Option économique, protection jusqu'à 6 mois, s'endommage très facilement Immersion bain d'argent Bon compromis mais se ternit (sulfures) Immersion bain d'étain Bon compromis mais se dégrade dans un milieu chaud ou humide Exemple de soudure étain/plomb Exemple de soudure étain/argent/cuivre Les pièces de rechange utilisées pour la réparation des équipements mis sur le marché avant le 1er juillet 2006 n'entrent pas dans le champ d'application de la Directive RoHS. Ces pièces peuvent donc contenir en toute légalité les six substances réglementées. Par déduction, toutes les pièces de rechange utilisées pour les réparations d'équipements et mises sur le marché après cette date ne peuvent pas contenir de substances réglementées. Les mêmes types d'outils de retouche utilisés pour l'alliage étain/plomb peuvent être utilisés pour les soudures sans plomb. Il est toutefois conseillé d'éviter de Retouches et réparations 19 Résolution des problèmes N° Défaut Cause Solution 1 Mauvais mouillage i. Flux mal adapté ii. Surfaces oxydées ou contaminées iii. Mauvaise régulation de la température i. Changer de flux ii. Veiller à ce que les surfaces soient propres et dépourvues d'oxydes - ne pas utiliser de pièces au-delà de leur date limite d'utilisation Assurer la rotation des stocks de composants et circuits-imprimés iii. Utiliser un équipement offrant une meilleure régulation de la température 2 Absence de mouillage Pièce pas suffisamment chaude Puissance de chauffage insuffisante, la pièce ne peut pas atteindre suffisamment rapidement la température de fusion de la soudure Utiliser un équipement offrant une meilleure régulation de la température et une puissance suffisante 3 Décollement du circuit-imprimé Présence d'humidité dans le stratifié et mauvais profil de température Augmenter la durée de préchauffage/la température pour sécher la carte avant la refusion 4 Déformation du circuit-imprimé Température de refusion excessive Réduire la température de refusion Utiliser un stratifié à Tg élevée Modifier le procédé pour éliminer les contraintes lors de la refusion 5 Effet popcorn dans les circuits intégrés Présence d'humidité dans le boîtier Vérifier le niveau de sensibilité à l'humidité du composant pour les procédés sans plomb. Entreposage éventuel dans un environnement sec ou cuisson éventuellement avant utilisation 6 Trou métallisé fissuré Contraintes dans le cuivre du fait du coeff. de dilatation thermique élevé du stratifié Les défauts de perçage accroissent les risques de fissures Revoir le procédé : stratifié plus mince, trou de plus grand diamètre, cuivre plus épais, stratifié à faible coeff. de dilatation selon l'axe z. Remplacer plus souvent les forets. mélanger les alliages : dans la mesure du possible, on veillera donc à effectuer les réparations avec la soudure d'origine. Certains mélanges produisent des résultats très peu fiables, notamment le plomb et le bismuth. La température devant être plus élevée, les composants sensibles à la chaleur ainsi que le circuit-imprimé (notamment les trous métallisés longs et étroits) risquent davantage d'être endommagés. Des flux plus agressifs peuvent s'avérer nécessaires. Ils pourront toutefois entraîner des problèmes liés à la SIR, à la corrosion et aux dendrites. © 2005 Premier Farnell plc. Reproduction totale ou partielle autorisée à condition de mentionner Premier Farnell plc. Guide de mise en conformité à la Directive RoHS Guide de mise en conformité à la Directive RoHS © 2005 Premier Farnell plc. Reproduction totale ou partielle autorisée à condition de mentionner Premier Farnell plc. 20 12 Courts-circuits i. Formation de whiskers d'étain après une certaine période d'utilisation ii. Dendrites i. Utiliser des revêtements peu sensibles aux whiskers ii. Utiliser un flux moins actif ou nettoyer les résidus de flux 13 Circuit ouvert dû à la fatigue thermique i. Joints de soudures soumis à de fortes contraintes ii. Mauvais mouillage de la soudure i. Revoir le procédé en vue de minimiser les contraintes ii. Améliorer le mouillage - voir 1. 7 Composants endommagés Dépassement de la température maximale Utiliser si possible d'autres composants Revoir le procédé pour éviter d'utiliser des composants sensibles à la chaleur Utiliser une température de refusion plus faible (nouvel équipement, au besoin) Retouche et réparation Résolution des problèmes 8 Courts-circuits sur le circuitimprimé (pontage) La tension superficielle des soudures sans plomb est supérieure à celle de la soudure au plomb Utiliser un couteau à air chaud après la refusion Prolonger la durée au-dessus de la température de fusion de la soudure Changer de flux 9 Billes de soudure trop nombreuses Mauvais profil de refusion de la soudure, mauvais flux Modifier le profil, utiliser un flux plus actif 10 Présence de bulles dans les joints de soudure Gaz piégé, issu des revêtements ou du flux Augmenter le temps de préchauffage et prolonger la durée au-dessus de la température de fusion de la soudure 11 Les joints se cassent facilement après la refusion Formation d'une couche intermétallique épaisse et cassante Réduire la température maximale et la durée au-dessus de la température de fusion de la soudure Utiliser une couche d'arrêt au nickel sous le revêtement soudable N° Défaut Cause Solution Guide de mise en conformité à la Directive RoHS © 2005 Premier Farnell plc. Reproduction totale ou partielle autorisée à condition de mentionner Premier Farnell plc. Enjeux La Directive RoHS a pour principal but d'éviter que des matières dangereuses ne se retrouvent dans les décharges. L'Union européenne a décidé de réglementer, à titre préventif, l'utilisation de six substances classées comme nuisibles ou toxiques. Pour les équipementiers, le passage aux matières de remplacement n'aura qu'un impact limité. Par exemple, les procédés de soudure nécessitent l'installation de systèmes d'aspiration des fumées, ceci afin d'évacuer les vapeurs de flux. La composition chimique des flux sans plomb étant similaire à celles des soudures étain/plomb, cette exigence reste valable. Les produits chimiques entrant dans la composition des revêtements à base de chrome hexavalent étant toxiques et cancérigènes, l'utilisation de substituts bien moins dangereux ne pourra qu'être bénéfique. A noter toutefois qu'il n'existe actuellement aucune preuve que les revêtements minces élaborés à base de chrome hexavalent posent un risque quelconque pour la santé dans le cadre d'une utilisation normale. Environnement 21 Version 2 - 2005. Situation dans le monde Europe : Entrée en vigueur de la Directive RoHS le 1er juillet 2006. Japon : aucune interdiction du plomb pour le moment, même si de nombreux fabricants ont déjà adopté la technologie sans plomb du fait de l'introduction de la législation liée au recyclage. Une interdiction totale des soudures au plomb est prévue. Chine : projet de législation similaire, mais pas identique, à la Directive RoHS européenne. Date d'entrée en vigueur prévue : 1er juillet 2006. Etats-Unis : projets de législation en Californie et dans d'autres Etats. 15 Etats disposent de lois en vigueur, ou sur le point de l'être, concernant la reprise de produits (législation similaire à la Directive DEEE). 5 Etats exigent que les fabricants fournissent une notification préalable de la teneur en mercure, et 5 autres exigent un étiquetage spécifique. Le reste du monde suivra probablement l'exemple. Remarque importante : Les informations contenues dans ce guide sont de nature générale et ne s'adressent à aucune personne ou entité en particulier. Si nous nous efforçons de présenter des informations exactes et actualisées, aucune garantie n'est donnée quant à leur exactitude à la date de leur réception ni quant à leur exactitude future. Aucune mesure ne doit être prise sur la foi de ces informations sans l'avis préalable d'un professionnel et sans examen approfondi de la situation. ARALDITE® 2014-1 SAFETY DATA SHEET Product name ARALDITE® 2014-1 Conforms to Regulation (EC) No. 1907/2006 (REACH), Annex II - United Kingdom (UK) : 1.1 Product identifier 1.3 Details of the supplier of the safety data sheet e-mail address of person responsible for this SDS : Global_Product_EHS_AdMat@huntsman.com Product description : Not available. 1.2 Relevant identified uses of the substance or mixture and uses advised against SECTION 1: Identification of the substance/mixture and of the company/undertaking Product code : 00057058 1.4 Emergency telephone number Supplier Telephone number : EUROPE: +32 35 75 1234 France ORFILA: +33(0)145425959 ASIA: +65 6336-6011 China: +86 20 39377888 Australia: 1800 786 152 New Zealand: 0800 767 437 USA: +1/800/424.9300 2-Component Product use : adhesive system Supplier : Huntsman Advanced Materials (Europe)BVBA Everslaan 45 3078 Everberg / Belgium Tel.: +41 61 299 20 41 Fax: +41 61 299 20 40 Classification Xi; R41, R38 R43 N; R51/53 : Human health hazards : Risk of serious damage to eyes. Irritating to skin. May cause sensitisation by skin contact. Environmental hazards : Toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment. See Section 11 for more detailed information on health effects and symptoms. SECTION 2: Hazards identification 2.1 Classification of the substance or mixture Product definition : Working pack (preparation) See Section 16 for the full text of the R phrases or H statements declared above. Classification according to Directive 1999/45/EC [DPD] The product is classified as dangerous according to Directive 1999/45/EC and its amendments. 2.2 Label elements Hazard symbol or symbols : Date of issue / Date of revision : 3 August 2011 1/17 ARALDITE 2014-1 Conforms to Regulation (EC) No. 1907/2006 (REACH), Annex II - United Kingdom (UK) Date of printing : Date of issue : 3 August 2011 3 August 2011 MSDS no. Version : : 00057058 1 2/17 SECTION 2: Hazards identification Other hazards which do : not result in classification Not available. Containers to be fitted with child-resistant fastenings Not applicable. Tactile warning of danger Not applicable. : : Special packaging requirements Safety phrases S26- In case of contact with eyes, rinse immediately with plenty of water and seek medical advice. S39- Wear eye/face protection. S61- Avoid release to the environment. Refer to special instructions/safety data sheet. R41- Risk of serious damage to eyes. R38- Irritating to skin. R43- May cause sensitisation by skin contact. R51/53- Toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment. Risk phrases Hazardous ingredients : : : Irritant, Dangerous for the environment reaction product: bisphenol A-(epichlorhydrin); epoxy resin (number average molecular weight < 700) bisphenol F-epoxy resin butanedioldiglycidyl ether N(3-dimethylaminopropyl)-1,3-propylenediamine Indication of danger : 2.3 Other hazards Supplemental label elements : Contains epoxy constituents. See information supplied by the manufacturer. Substance/mixture : Working pack (preparation) Product/ingredient Identifiers 67/548/EEC name SECTION 3: Composition/information on ingredients reaction product: bisphenol A- (epichlorhydrin); epoxy resin (number average molecular weight < 700) REACH #: 01- 2119456619-26 CAS: 25068-38-6 13 - 30 Xi; R36/38 R43 N; R51/53 Skin Irrit. 2, H315 Eye Irrit. 2, H319 Skin Sens. 1, H317 Aquatic Chronic 2, H411 [1] bisphenol F-epoxy resin REACH #: 01- 2119454392-40 CAS: 9003-36-5 3 - 7 Xi; R36/38 R43 N; R51/53 Skin Irrit. 2, H315 Eye Irrit. 2, H319 Skin Sens. 1, H317 Aquatic Chronic 2, H411 [1] butanedioldiglycidyl ether REACH #: 01- 2119494060-45 CAS: 2425-79-8 1 - 3 Xn; R20/21 Xi; R36/38 R43 R52/53 Acute Tox. 4, H312 Acute Tox. 4, H332 Skin Irrit. 2, H315 Eye Irrit. 2, H319 Skin Sens. 1, H317 [1] N(3- dimethylaminopropyl)- 1,3-propylenediamine CAS: 10563-29-8 1 - 3 Xn; R21/22 C; R34 R43 Acute Tox. 4, H302 Acute Tox. 4, H312 Skin Corr. 1B, H314 Eye Dam. 1, H318 [1] % Regulation (EC) No. Type 1272/2008 [CLP] Classification Date of issue / Date of revision : 3 August 2011 2/17 ARALDITE 2014-1 Conforms to Regulation (EC) No. 1907/2006 (REACH), Annex II - United Kingdom (UK) Date of printing : Date of issue : 3 August 2011 3 August 2011 MSDS no. Version : : 00057058 1 3/17 SECTION 3: Composition/information on ingredients Occupational exposure limits, if available, are listed in Section 8. There are no additional ingredients present which, within the current knowledge of the supplier and in the concentrations applicable, are classified as hazardous to health or the environment and hence require reporting in this section. Skin Sens. 1, H317 terephthalic acid diglycidylester CAS: 7195-44-0 0.1 - 1 Xi; R36/38 R43 N; R51/53 Skin Irrit. 2, H315 Eye Irrit. 2, H319 Skin Sens. 1, H317 Aquatic Chronic 2, H411 [1] trimellitic acid triglycidylester CAS: 7237-83-4 0.1 - 1 Xi; R36/38 R43 N; R51/53 Skin Irrit. 2, H315 Eye Irrit. 2, H319 Skin Sens. 1, H317 Aquatic Chronic 2, H411 [1] See section 16 for the full text of the Rphrases declared above See Section 16 for the full text of the H statements declared above. [1] Substance classified with a health or environmental hazard [2] Substance with a workplace exposure limit [3] Substance meets the criteria for PBT according to Regulation (EC) No. 1907/2006, Annex XIII [4] Substance meets the criteria for vPvB according to Regulation (EC) No. 1907/2006, Annex XIII Type Wash out mouth with water. Remove dentures if any. Remove victim to fresh air and keep at rest in a position comfortable for breathing. If material has been swallowed and the exposed person is conscious, give small quantities of water to drink. Stop if the exposed person feels sick as vomiting may be dangerous. Do not induce vomiting unless directed to do so by medical personnel. If vomiting occurs, the head should be kept low so that vomit does not enter the lungs. Get medical attention if adverse health effects persist or are severe. Never give anything by mouth to an unconscious person. If unconscious, place in recovery position and get medical attention immediately. Maintain an open airway. Loosen tight clothing such as a collar, tie, belt or waistband. Skin contact Get medical attention immediately. Immediately flush eyes with plenty of water, occasionally lifting the upper and lower eyelids. Check for and remove any contact lenses. Continue to rinse for at least 10 minutes. Chemical burns must be treated promptly by a physician. Flush contaminated skin with plenty of water. Remove contaminated clothing and shoes. Wash contaminated clothing thoroughly with water before removing it, or wear gloves. Continue to rinse for at least 10 minutes. Get medical attention. In the event of any complaints or symptoms, avoid further exposure. Wash clothing before reuse. Clean shoes thoroughly before reuse. 4.1 Description of first aid measures Remove victim to fresh air and keep at rest in a position comfortable for breathing. If not breathing, if breathing is irregular or if respiratory arrest occurs, provide artificial respiration or oxygen by trained personnel. It may be dangerous to the person providing aid to give mouth-to-mouth resuscitation. Get medical attention if adverse health effects persist or are severe. If unconscious, place in recovery position and get medical attention immediately. Maintain an open airway. Loosen tight clothing such as a collar, tie, belt or waistband. In case of inhalation of decomposition products in a fire, symptoms may be delayed. The exposed person may need to be kept under medical surveillance for 48 hours. Ingestion Inhalation Eye contact : : : : SECTION 4: First aid measures Date of issue / Date of revision : 3 August 2011 3/17 ARALDITE 2014-1 Conforms to Regulation (EC) No. 1907/2006 (REACH), Annex II - United Kingdom (UK) Date of printing : Date of issue : 3 August 2011 3 August 2011 MSDS no. Version : : 00057058 1 4/17 SECTION 4: First aid measures Notes to physician In case of inhalation of decomposition products in a fire, symptoms may be delayed. The exposed person may need to be kept under medical surveillance for 48 hours. : Specific treatments Protection of first-aiders : No action shall be taken involving any personal risk or without suitable training. It may be dangerous to the person providing aid to give mouth-to-mouth resuscitation. Wash contaminated clothing thoroughly with water before removing it, or wear gloves. 4.2 Most important symptoms and effects, both acute and delayed Potential acute health effects Inhalation : Exposure to decomposition products may cause a health hazard. Serious effects may be delayed following exposure. Irritating to Ingestion : mouth, throat and stomach. Skin contact : Irritating to skin. May cause sensitisation by skin contact. Eye contact : Severely irritating to eyes. Risk of serious damage to eyes. Over-exposure signs/symptoms Skin contact Ingestion Inhalation No specific data. No specific data. Adverse symptoms may include the following: irritation redness : : : Eye contact : Adverse symptoms may include the following: pain or irritation watering redness 4.3 Indication of any immediate medical attention and special treatment needed : Symptomatic treatment and supportive therapy as indicated. Following severe exposure the patient should be kept under medical review for at least 48 hours. Hazardous thermal decomposition products Hazards from the substance or mixture Decomposition products may include the following materials: carbon dioxide carbon monoxide nitrogen oxides sulfur oxides metal oxide/oxides In a fire or if heated, a pressure increase will occur and the container may burst. Use an extinguishing agent suitable for the surrounding fire. 5.1 Extinguishing media : : None known. Suitable extinguishing media : Unsuitable extinguishing media : SECTION 5: Firefighting measures 5.2 Special hazards arising from the substance or mixture 5.3 Advice for firefighters Date of issue / Date of revision : 3 August 2011 4/17 ARALDITE 2014-1 Conforms to Regulation (EC) No. 1907/2006 (REACH), Annex II - United Kingdom (UK) Date of printing : Date of issue : 3 August 2011 3 August 2011 MSDS no. Version : : 00057058 1 5/17 SECTION 5: Firefighting measures Promptly isolate the scene by removing all persons from the vicinity of the incident if there is a fire. No action shall be taken involving any personal risk or without suitable training. This material is toxic to aquatic organisms. Fire water contaminated with this material must be contained and prevented from being discharged to any waterway, sewer or drain. Fire-fighters should wear appropriate protective equipment and self-contained breathing apparatus (SCBA) with a full face-piece operated in positive pressure mode. Clothing for fire-fighters (including helmets, protective boots and gloves) conforming to European standard EN 469 will provide a basic level of protection for chemical incidents. Special protective equipment for fire-fighters : Special precautions for fire-fighters : 6.2 Environmental precautions Stop leak if without risk. Move containers from spill area. Approach the release from upwind. Prevent entry into sewers, water courses, basements or confined areas. Wash spillages into an effluent treatment plant or proceed as follows. Contain and collect spillage with non-combustible, absorbent material e.g. sand, earth, vermiculite or diatomaceous earth and place in container for disposal according to local regulations. Dispose of via a licensed waste disposal contractor. Contaminated absorbent material may pose the same hazard as the spilt product. Avoid dispersal of spilt material and runoff and contact with soil, waterways, drains and sewers. Inform the relevant authorities if the product has caused environmental pollution (sewers, waterways, soil or air). Water polluting material. May be harmful to the environment if released in large quantities. Large spill : Stop leak if without risk. Move containers from spill area. Dilute with water and mop up if water-soluble. Alternatively, or if water-insoluble, absorb with an inert dry material and place in an appropriate waste disposal container. Dispose of via a licensed waste disposal contractor. Small spill : 6.3 Methods and materials for containment and cleaning up SECTION 6: Accidental release measures 6.1 Personal precautions, protective equipment and emergency procedures For non-emergency personnel : For emergency responders : 6.4 Reference to other sections See Section 1 for emergency contact information. See Section 8 for information on appropriate personal protective equipment. See Section 13 for additional waste treatment information. No action shall be taken involving any personal risk or without suitable training. Evacuate surrounding areas. Keep unnecessary and unprotected personnel from entering. Do not touch or walk through spilt material. Avoid breathing vapour or mist. Provide adequate ventilation. Wear appropriate respirator when ventilation is inadequate. Put on appropriate personal protective equipment. If specialised clothing is required to deal with the spillage, take note of any information in Section 8 on suitable and unsuitable materials. See also Section 8 for additional information on hygiene measures. : : SECTION 7: Handling and storage The information in this section contains generic advice and guidance. The list of Identified Uses in Section 1 should be consulted for any available use-specific information provided in the Exposure Scenario(s). 7.1 Precautions for safe handling Protective measures : Put on appropriate personal protective equipment (see Section 8). Persons with a history of skin sensitization problems should not be employed in any process in which this product is used. Do not get in eyes or on skin or clothing. Do not ingest. Avoid breathing vapour or mist. Avoid release to the environment. Refer to special instructions/safety data sheet. Keep in the original container or an approved alternative made from a compatible material, kept tightly closed when not in use. Empty containers retain product residue and can be hazardous. Do not reuse container. Date of issue / Date of revision : 3 August 2011 5/17 ARALDITE 2014-1 Conforms to Regulation (EC) No. 1907/2006 (REACH), Annex II - United Kingdom (UK) Date of printing : Date of issue : 3 August 2011 3 August 2011 MSDS no. Version : : 00057058 1 6/17 SECTION 7: Handling and storage Store between the following temperatures: 2 to 40°C (35.6 to 104°F). Store in accordance with local regulations. Store in original container protected from direct sunlight in a dry, cool and well-ventilated area, away from incompatible materials (see section 10) and food and drink. Keep container tightly closed and sealed until ready for use. Containers that have been opened must be carefully resealed and kept upright to prevent leakage. Do not store in unlabelled containers. Use appropriate containment to avoid environmental contamination. Advice on general occupational hygiene : 7.2 Conditions for safe storage, including any incompatibilities 7.3 Specific end use(s) Recommendations : Industrial sector specific : solutions Not available. Not available. Eating, drinking and smoking should be prohibited in areas where this material is handled, stored and processed. Workers should wash hands and face before eating, drinking and smoking. Remove contaminated clothing and protective equipment before entering eating areas. See also Section 8 for additional information on hygiene measures. : Storage hazard class Huntsman Advanced Materials : Storage class 10, Environmentally hazardous liquids Recommended monitoring procedures Occupational exposure limits If this product contains ingredients with exposure limits, personal, workplace atmosphere or biological monitoring may be required to determine the effectiveness of the ventilation or other control measures and/or the necessity to use respiratory protective equipment. Reference should be made to European Standard EN 689 for methods for the assessment of exposure by inhalation to chemical agents and national guidance documents for methods for the determination of hazardous substances. : No exposure limit value known. No DELs available. Predicted effect concentrations No PECs available. SECTION 8: Exposure controls/personal protection The information in this section contains generic advice and guidance. The list of Identified Uses in Section 1 should be consulted for any available use-specific information provided in the Exposure Scenario(s). 8.1 Control parameters Derived effect levels Workplace exposure limits (for total dust and inhalable quartz dust) must be complied with. If this is not possible, then suitable dust masks must be worn. W A R N I N G ! This product contains quartz, which has been classified by IARC as carcinogenic for humans (Group 1), and which can cause silicosis and lung cancer following exposure to respirable dust. It is therefore important to take particular care to avoid inhalation exposure when mechanically processing cured material (e.g. grinding, sanding, sawing). QUARTZ (CAS RN 14808-60-7): United Kingdom: TWA: 0.1 mg/m³ 8 hour(s). Form: respirable dust Ireland: OELV-8hr: 0.1 mg/m³ 8 hour(s). Form: respirable dust Switzerland: TWA: 0.15 mg/m³ 8 hour(s). Form: respirable dust Australia: TWA: 0.1 mg/m³ 8 hour(s) Date of issue / Date of revision : 3 August 2011 6/17 ARALDITE 2014-1 Conforms to Regulation (EC) No. 1907/2006 (REACH), Annex II - United Kingdom (UK) Date of printing : Date of issue : 3 August 2011 3 August 2011 MSDS no. Version : : 00057058 1 7/17 SECTION 8: Exposure controls/personal protection Hand protection In case of inadequate ventilation wear respiratory protection. Respirator selection must be based on known or anticipated exposure levels, the hazards of the product and the safe working limits of the selected respirator. Chemical-resistant, impervious gloves complying with an approved standard should be worn at all times when handling chemical products if a risk assessment indicates this is necessary. Safety eyewear complying with an approved standard should be used when a risk assessment indicates this is necessary to avoid exposure to liquid splashes, mists or dusts. Eye/face protection Respiratory protection : : : Skin protection Personal protective equipment for the body should be selected based on the task being performed and the risks involved and should be approved by a specialist before handling this product. : Environmental exposure controls : Emissions from ventilation or work process equipment should be checked to ensure they comply with the requirements of environmental protection legislation. In some cases, fume scrubbers, filters or engineering modifications to the process equipment will be necessary to reduce emissions to acceptable levels. Appropriate engineering controls : No special ventilation requirements. Good general ventilation should be sufficient to control worker exposure to airborne contaminants. If this product contains ingredients with exposure limits, use process enclosures, local exhaust ventilation or other engineering controls to keep worker exposure below any recommended or statutory limits. Wash hands, forearms and face thoroughly after handling chemical products, before eating, smoking and using the lavatory and at the end of the working period. Appropriate techniques should be used to remove potentially contaminated clothing. Contaminated work clothing should not be allowed out of the workplace. Wash contaminated clothing before reusing. Ensure that eyewash stations and safety showers are close to the workstation location. 8.2 Exposure controls Hygiene measures : Individual protection measures Body protection : Other skin protection Appropriate footwear and any additional skin protection measures should be selected based on the task being performed and the risks involved and should be approved by a specialist before handling this product. Ethyl Vinyl Alcohol Laminate (EVAL), butyl rubber neoprene, Material of gloves for nitrile rubber short term/splash application (10min480min): Physical state Liquid. [Paste.] Odour Not available. Colour Not available. Odour threshold Not available. : : : : 9.1 Information on basic physical and chemical properties Appearance SECTION 9: Physical and chemical properties Date of issue / Date of revision : 3 August 2011 7/17 ARALDITE 2014-1 Conforms to Regulation (EC) No. 1907/2006 (REACH), Annex II - United Kingdom (UK) Date of printing : Date of issue : 3 August 2011 3 August 2011 MSDS no. Version : : 00057058 1 8/17 SECTION 9: Physical and chemical properties Not available. Melting point/freezing point Initial boiling point and boiling range Vapour pressure Relative density Vapour density Solubility(ies) Not available. Not available. Not available. Not available. pH Evaporation rate Not available. Auto-ignition temperature Flash point Not available. Closed cup: >100°C [DIN 51758 EN 22719 (Pensky-Martens Closed Cup)] Not available. Not available. Not available. Not available. Viscosity Not available. Partition coefficient: noctanol/ water Upper/lower flammability or explosive limits Explosive properties : : : : : : : : : : : : : Oxidising properties : Not available. 9.2 Other information Burning time Not applicable. Burning rate Not applicable. : : Decomposition temperature : Not available. Flammability (solid, gas) : Not available. Density : 1.4 g/cm3 [20°C (68°F)] Water solubility : 10.6 Hazardous decomposition products 10.4 Conditions to avoid No specific data. Under normal conditions of storage and use, hazardous decomposition products should not be produced. 10.2 Chemical stability The product is stable. No specific data. : : : 10.5 Incompatible materials : 10.3 Possibility of hazardous reactions : Under normal conditions of storage and use, hazardous reactions will not occur. SECTION 10: Stability and reactivity 10.1 Reactivity : No specific test data related to reactivity available for this product or its ingredients. Date of issue / Date of revision : 3 August 2011 8/17 ARALDITE 2014-1 Conforms to Regulation (EC) No. 1907/2006 (REACH), Annex II - United Kingdom (UK) Date of printing : Date of issue : 3 August 2011 3 August 2011 MSDS no. Version : : 00057058 1 9/17 Acute toxicity reaction product: bisphenol A-(epichlorhydrin); epoxy resin (number average molecular weight < 700) LC0 Inhalation Vapour Rat - Male 0.00001 ppm 5 hours LD50 Dermal Rat - Male, Female >2000 mg/kg - LD50 Oral Rat - Female >2000 mg/kg - bisphenol F-epoxy resin LD50 Dermal Rat - Male, Female >2000 mg/kg - LD50 Oral Rat - Male, Female >5000 mg/kg - butanedioldiglycidyl ether LD50 Dermal Rat - Male, Female >2150 mg/kg - LD50 Oral Rat - Male, Female 1163 mg/kg - N(3-dimethylaminopropyl)- 1,3-propylenediamine LD50 Dermal Rabbit 1310 mg/kg - LD50 Oral Rat 1670 mg/kg - Product/ingredient name Endpoint Species Result Exposure Irritation/Corrosion reaction product: bisphenol A-(epichlorhydrin); epoxy resin (number average molecular weight < 700) OECD 404 Acute Dermal Irritation/Corrosion Rabbit Mild irritant OECD 405 Acute Eye Irritation/Corrosion Rabbit Mild irritant bisphenol F-epoxy resin OECD 405 Acute Eye Irritation/Corrosion Rabbit Non-irritant. OECD 404 Acute Dermal Irritation/Corrosion Rabbit Mild irritant butanedioldiglycidyl ether OECD 404 Acute Dermal Irritation/Corrosion Rabbit Non-irritant. OECD 405 Acute Eye Irritation/Corrosion Rabbit Severe irritant Product/ingredient name Test Result Conclusion/Summary : Skin : reaction product: bisphenol A-(epichlorhydrin); epoxy resin (number average molecular weight < 700): Slightly irritating to the skin. bisphenol F-epoxy resin: Slightly irritating to the skin. butanedioldiglycidyl ether: Non-irritating to the skin. Eyes : reaction product: bisphenol A-(epichlorhydrin); epoxy resin (number average molecular weight < 700): Slightly irritating to the eyes. bisphenol F-epoxy resin: Non-irritating to the eyes. butanedioldiglycidyl ether: Severely irritating to eyes. Not available. Sensitiser reaction product: bisphenol A-(epichlorhydrin); epoxy resin (number average molecular weight < 700) OECD 429 Skin Sensitisation: Local Lymph Node Assay skin Mouse Sensitising bisphenol F-epoxy resin OECD 429 Skin Sensitisation: Local Lymph Node Assay skin Mouse Sensitising butanedioldiglycidyl ether OECD 406 Skin Sensitization skin Guinea pig Sensitising Product/ingredient name Test Route of exposure Result Species SECTION 11: Toxicological information 11.1 Information on toxicological effects Species Date of issue / Date of revision : 3 August 2011 9/17 ARALDITE 2014-1 Conforms to Regulation (EC) No. 1907/2006 (REACH), Annex II - United Kingdom (UK) Date of printing : Date of issue : 3 August 2011 3 August 2011 MSDS no. Version : : 00057058 1 10/17 SECTION 11: Toxicological information Carcinogenicity reaction product: bisphenol A- (epichlorhydrin); epoxy resin (number average molecular weight < 700) OECD 453 Combined Chronic Toxicity/Carcinogenicity Studies Rat 2 years; 7 days per week Negative Oral - OECD 453 Combined Chronic Toxicity/Carcinogenicity Studies Rat 2 years; 5 days per week Negative Dermal - OECD 453 Combined Chronic Toxicity/Carcinogenicity Studies Mouse 2 years; 3 days per week Negative Dermal - Product/ingredient name Test Species Exposure Result Mutagenicity reaction product: bisphenol A-(epichlorhydrin); epoxy resin (number average molecular weight < 700) OECD 471 Bacterial Reverse Mutation Test Positive OECD 476 In vitro Mammalian Cell Gene Mutation Test Positive OECD 478 Genetic Toxicology: Rodent Dominant Lethal Test Negative EPA OPPTS Negative bisphenol F-epoxy resin OECD 471 Bacterial Reverse Mutation Test Positive OECD 476 In vitro Mammalian Cell Gene Mutation Test Positive OECD 473 In vitro Mammalian Chromosomal Aberration Test Positive OECD 474 Mammalian Erythrocyte Micronucleus Test Negative OECD 486 Unscheduled DNA Synthesis (UDS) Test with Mammalian Liver Cells in vivo Negative butanedioldiglycidyl ether OECD 471 Bacterial Reverse Mutation Test Positive OECD 473 In vitro Mammalian Chromosomal Aberration Test Positive OECD 474 Mammalian Erythrocyte Micronucleus Test Negative Product/ingredient name Test Result Conclusion/Summary : Not available. Teratogenicity Reproductive toxicity Product/ingredient name Test Species Result/Result type Target organs reaction product: bisphenol A-(epichlorhydrin); epoxy resin (number average molecular weight < 700) OECD 416 Two-Generation Reproduction Toxicity Study Rat Oral: 540 mg/kg NOEL : - bisphenol F-epoxy resin OECD 416 Two-Generation Reproduction Toxicity Study Rat Oral: 540 mg/kg NOEL : - Conclusion/Summary : Not available. Route of exposure Target organs Date of issue / Date of revision : 3 August 2011 10/17 ARALDITE 2014-1 Conforms to Regulation (EC) No. 1907/2006 (REACH), Annex II - United Kingdom (UK) Date of printing : Date of issue : 3 August 2011 3 August 2011 MSDS no. Version : : 00057058 1 11/17 SECTION 11: Toxicological information Potential chronic health effects Potential acute health effects Inhalation : Exposure to decomposition products may cause a health hazard. Serious effects may be delayed following exposure. Irritating to Ingestion : mouth, throat and stomach. Skin contact : Irritating to skin. May cause sensitisation by skin contact. Eye contact : Severely irritating to eyes. Risk of serious damage to eyes. reaction product: bisphenol A-(epichlorhydrin); epoxy resin (number average molecular weight < 700) OECD 408 Repeated Dose 90-Day Oral Toxicity Study in Rodents NOAEL Subchronic NOAEL Oral 50 mg/kg - OECD 411 Subchronic Dermal Toxicity: 90-day Study NOEL : Subchronic NOEL : Dermal 10 mg/kg - OECD 411 Subchronic Dermal Toxicity: 90-day Study NOAEL Subchronic NOAEL Dermal 100 mg/kg - bisphenol F-epoxy resin OECD 408 Repeated Dose NOAEL Sub- 250 mg/kg - Product/ingredient name Test Result type Result Target organs reaction product: bisphenol A-(epichlorhydrin); epoxy resin (number average molecular weight < 700) OECD 414 Prenatal Developmental Toxicity Study Rat - Female >540 mg/kg NOEL : EPA CFR Rabbit - Female >300 mg/kg NOEL : OECD 414 Prenatal Developmental Toxicity Study Rabbit - Female 180 mg/kg NOAEL bisphenol F-epoxy resin EPA CFR Rabbit - Female >300 mg/kg NOEL : Product/ingredient name Test Species Result/Result type Symptoms related to the physical, chemical and toxicological characteristics Skin contact Ingestion Inhalation No specific data. No specific data. Adverse symptoms may include the following: irritation redness : : : Eye contact : Adverse symptoms may include the following: pain or irritation watering redness Information on the likely Not available. routes of exposure : Delayed and immediate effects and also chronic effects from short and long term exposure Short term exposure Long term exposure Potential immediate effects Potential delayed effects : : Potential immediate effects Potential delayed effects : : Not available. Not available. Not available. Not available. Date of issue / Date of revision : 3 August 2011 11/17 ARALDITE 2014-1 Conforms to Regulation (EC) No. 1907/2006 (REACH), Annex II - United Kingdom (UK) Date of printing : Date of issue : 3 August 2011 3 August 2011 MSDS no. Version : : 00057058 1 12/17 SECTION 11: Toxicological information Once sensitized, a severe allergic reaction may occur when subsequently exposed to very low levels. General : No known significant effects Carcinogenicity : or critical hazards. Mutagenicity : No known significant effects or critical hazards. Teratogenicity : No known significant effects or critical hazards. 90-Day Oral Toxicity Study in Rodents chronic NOAEL Oral butanedioldiglycidyl ether OECD 407 Repeated Dose 28-day Oral Toxicity Study in Rodents NOAEL Subchronic NOAEL Oral 200 mg/kg - Conclusion/Summary : Not available. Developmental effects : No known significant effects or critical hazards. Fertility effects : No known significant effects or critical hazards. Other information : Not available. 12.1 Toxicity reaction product: bisphenol A-(epichlorhydrin); epoxy resin (number average molecular weight < 700) - Acute EC50 72 hours Static Algae 9.4 mg/L OECD 202 Daphnia sp. Acute Immobilisation Test Acute EC50 48 hours Static Daphnia 1.7 mg/L - Acute IC50 3 hours Static Bacteria >100 mg/L OECD 203 Fish, Acute Toxicity Test Acute LC50 96 hours Static Fish 1.5 mg/L OECD 211 Daphnia Magna Reproduction Test Chronic NOEC 21 days Semistatic Daphnia 0.3 mg/L bisphenol F-epoxy resin OECD 201 Alga, Growth Inhibition Test Acute EC50 72 hours Static Algae 1.8 mg/L OECD OECD 202: Part I (Daphnia sp., Acute Immobilisation test) Acute EC50 48 hours Static Daphnia 1.6 mg/L - Acute IC50 3 hours Static Bacteria >100 mg/L OECD 203 Fish, Acute Toxicity Test Acute LC50 96 hours Semistatic Fish 0.55 mg/L OECD 211 Daphnia Magna Reproduction Test Chronic NOEC 21 days Semistatic Daphnia 0.3 mg/L butanedioldiglycidyl ether OECD 202 Daphnia sp. Acute Immobilisation Test Acute EC50 24 hours Static Daphnia 75 mg/L OECD 201 Alga, Growth Inhibition Test Acute EL50 72 hours Static Algae >160 mg/L OECD 209 Activated Sludge, Respiration Inhibition Test Acute IC50 3 hours Static Bacteria >100 mg/L OECD 203 Fish, Acute Toxicity Test Acute LC50 96 hours Static Fish 24 mg/L Product/ingredient name Exposure Species Result 12.2 Persistence and degradability SECTION 12: Ecological information Test Endpoint Date of issue / Date of revision : 3 August 2011 12/17 ARALDITE 2014-1 Conforms to Regulation (EC) No. 1907/2006 (REACH), Annex II - United Kingdom (UK) Date of printing : Date of issue : 3 August 2011 3 August 2011 MSDS no. Version : : 00057058 1 13/17 SECTION 12: Ecological information Mobility : Not available. LogPow BCF Potential 12.3 Bioaccumulative potential 12.6 Other adverse effects No known significant effects or critical hazards. Product/ingredient name reaction product: bisphenol A-(epichlorhydrin); epoxy resin (number average molecular weight < 700) 3.242 31 low bisphenol F-epoxy resin 2.7 to 3.6 - high butanedioldiglycidyl ether -0.269 - low Product/ingredient name Aquatic half-life Photolysis Biodegradability reaction product: bisphenol A-(epichlorhydrin); epoxy resin (number average molecular weight < 700) Fresh water 4.83 days Fresh water 3.58 days Fresh water 7.1 days - Not readily bisphenol F-epoxy resin - - Not readily butanedioldiglycidyl ether - - Not readily reaction product: bisphenol A-(epichlorhydrin); epoxy resin (number average molecular weight < 700) OECD Derived from OECD 301F (Biodegradation Test) 28 days 5 % bisphenol F-epoxy resin EU 28 days 0 % butanedioldiglycidyl ether OECD 301F Ready Biodegradability - Manometric Respirometry Test 28 days 43 % Product/ingredient name Test Result Conclusion/Summary : reaction product: bisphenol A-(epichlorhydrin); epoxy resin (number average molecular weight < 700): Not readily biodegradable. 12.4 Mobility in soil Soil/water partition coefficient (KOC) : Not available. 12.5 Results of PBT and vPvB assessment : 12.7 Other ecological information Period Not applicable. The generation of waste should be avoided or minimised wherever possible. Significant quantities of waste product residues should not be disposed of via the foul sewer but processed in a suitable effluent treatment plant. Dispose of surplus and non-recyclable products via a licensed waste disposal contractor. Disposal of this product, solutions and any by-products should at all times comply with the requirements of environmental protection and waste disposal legislation and any regional local authority requirements. Waste packaging should be recycled. Incineration or landfill should only be considered when recycling is not feasible. This Methods of disposal : SECTION 13: Disposal considerations The information in this section contains generic advice and guidance. The list of Identified Uses in Section 1 should be consulted for any available use-specific information provided in the Exposure Scenario(s). 13.1 Waste treatment methods Product Date of issue / Date of revision : 3 August 2011 13/17 ARALDITE 2014-1 Conforms to Regulation (EC) No. 1907/2006 (REACH), Annex II - United Kingdom (UK) Date of printing : Date of issue : 3 August 2011 3 August 2011 MSDS no. Version : : 00057058 1 14/17 SECTION 13: Disposal considerations European waste catalogue (EWC) Hazardous waste : Yes. material and its container must be disposed of in a safe way. Care should be taken when handling emptied containers that have not been cleaned or rinsed out. Empty containers or liners may retain some product residues. Avoid dispersal of spilt material and runoff and contact with soil, waterways, drains and sewers. Packaging Waste code Waste designation Methods of disposal : Special precautions : 07 02 08* other still bottoms and reaction residues The generation of waste should be avoided or minimised wherever possible. Waste packaging should be recycled. Incineration or landfill should only be considered when recycling is not feasible. This material and its container must be disposed of in a safe way. Care should be taken when handling emptied containers that have not been cleaned or rinsed out. Empty containers or liners may retain some product residues. Avoid dispersal of spilt material and runoff and contact with soil, waterways, drains and sewers. Environmentally hazardous substance, liquid, n.o.s. BISPHENOL A/F EPOXY RESIN 9 III Environmentally hazardous substance, liquid, n.o.s. (BISPHENOL A/F EPOXY RESIN) Marine pollutant (reaction product: bisphenol A-(epichlorhydrin); epoxy resin (number average molecular weight < 700), bisphenol F-epoxy resin) 9 III Environmentally hazardous substance, liquid, n.o.s. (BISPHENOL A/F EPOXY RESIN) UN3082 9 not available not available III UN3082 UN3082 Hazard identification number 90 Special provisions 274 335 601 Tunnel code E Emergency schedules (EmS) F-A, S-F Passenger and Cargo Aircraft Quantity limitation: 450 L Packaging instructions: 964 Cargo Aircraft Only Quantity limitation: 450 L Packaging SECTION 14: Transport information ADR/RID IMDG IATA 14.1 UN number 14.2 UN proper shipping name 14.3 Transport hazard class(es) 14.4 Packing group ADN/ADNR Additional information 14.5 Environmental hazards 14.6 Special precautions for user Yes. Yes. Yes. Not available. Not available. Not available. ADN/ADNR IMDG IATA ADR/RID Date of issue / Date of revision : 3 August 2011 14/17 ARALDITE 2014-1 Conforms to Regulation (EC) No. 1907/2006 (REACH), Annex II - United Kingdom (UK) Date of printing : Date of issue : 3 August 2011 3 August 2011 MSDS no. Version : : 00057058 1 15/17 SECTION 14: Transport information instructions: 964 14.7 Transport in bulk according to Annex II of MARPOL 73/78 and the IBC Code : Not applicable. National regulations Other EU regulations Annex XVII - Restrictions Not applicable. on the manufacture, placing on the market and use of certain dangerous substances, mixtures and articles : Europe inventory : All components are listed or exempted. Black List Chemicals : Not listed Priority List Chemicals : Not listed Integrated pollution prevention and control list (IPPC) - Air : Not listed Integrated pollution prevention and control list (IPPC) - Water : Not listed Chemical Weapons Convention List Schedule I Chemicals : Not listed Chemical Weapons Convention List Schedule II Chemicals : Not listed Chemical Weapons Convention List Schedule III Chemicals : Not listed International regulations References : The provision of Safety Data Sheets comes under Regulation 6 of CHIP (CHIP is the recognised abbreviation for the Chemicals Hazard Information and Packaging Regulations). This is an addition to the Health and Safety at Work Act 1974. SECTION 15: Regulatory information 15.1 Safety, health and environmental regulations/legislation specific for the substance or mixture EU Regulation (EC) No. 1907/2006 (REACH) Annex XIV - List of substances subject to authorisation 15.2 Chemical Safety Assessment This product contains substances for which Chemical Safety Assessments are still required. Substances of very high concern : None of the components are listed. Date of issue / Date of revision : 3 August 2011 15/17 ARALDITE 2014-1 Conforms to Regulation (EC) No. 1907/2006 (REACH), Annex II - United Kingdom (UK) Date of printing : Date of issue : 3 August 2011 3 August 2011 MSDS no. Version : : 00057058 1 16/17 Date of printing : 3 August 2011 R20/21- Harmful by inhalation and in contact with skin. R21/22- Harmful in contact with skin and if swallowed. R34- Causes burns. R41- Risk of serious damage to eyes. R38- Irritating to skin. R36/38- Irritating to eyes and skin. R43- May cause sensitisation by skin contact. R51/53- Toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment. R52/53- Harmful to aquatic organisms, may cause long-term adverse effects in the aquatic environment. Full text of abbreviated R : phrases C - Corrosive Xn - Harmful Xi - Irritant N - Dangerous for the environment Full text of classifications : [DSD/DPD] Indicates information that has changed from previously issued version. SECTION 16: Other information Full text of abbreviated H statements : Abbreviations and acronyms : ATE = Acute Toxicity Estimate CLP = Classification, Labelling and Packaging Regulation [Regulation (EC) No. 1272/2008] DNEL = Derived No Effect Level EUH statement = CLP-specific Hazard statement PNEC = Predicted No Effect Concentration RRN = REACH Registration Number Classification according to Regulation (EC) No. 1272/2008 [CLP/GHS] Procedure used to derive the classification according to Regulation (EC) No. 1272/2008 [CLP/GHS] Classification Justification Skin Irrit. 2, H315 Expert judgment Eye Dam. 1, H318 Expert judgment Skin Sens. 1, H317 Expert judgment Aquatic Chronic 2, H411 Expert judgment Full text of classifications [CLP/GHS] : H302 Harmful if swallowed. H312 Harmful in contact with skin. H314 Causes severe skin burns and eye damage. H315 Causes skin irritation. H317 May cause an allergic skin reaction. H318 Causes serious eye damage. H319 Causes serious eye irritation. H332 Harmful if inhaled. H411 Toxic to aquatic life with long lasting effects. Acute Tox. 4, H302 ACUTE TOXICITY: ORAL - Category 4 Acute Tox. 4, H312 ACUTE TOXICITY: SKIN - Category 4 Acute Tox. 4, H332 ACUTE TOXICITY: INHALATION - Category 4 Aquatic Chronic 2, H411 AQUATIC TOXICITY (CHRONIC) - Category 2 Eye Dam. 1, H318 SERIOUS EYE DAMAGE/ EYE IRRITATION - Category 1 Eye Irrit. 2, H319 SERIOUS EYE DAMAGE/ EYE IRRITATION - Category 2 Skin Corr. 1B, H314 SKIN CORROSION/IRRITATION - Category 1B Skin Irrit. 2, H315 SKIN CORROSION/IRRITATION - Category 2 Skin Sens. 1, H317 SKIN SENSITIZATION - Category 1 Skin Irrit. 2, H315 Eye Dam. 1, H318 Skin Sens. 1, H317 Aquatic Chronic 2, H411 MSDS no. : 00057058 Date of issue / Date of revision : 3 August 2011 16/17 ARALDITE 2014-1 Conforms to Regulation (EC) No. 1907/2006 (REACH), Annex II - United Kingdom (UK) Date of printing : Date of issue : 3 August 2011 3 August 2011 MSDS no. Version : : 00057058 1 17/17 SECTION 16: Other information Date of issue/ Date of revision Version Notice to reader Date of previous issue : : : 3 August 2011 No previous validation. 1 While the information and recommendations in this publication are to the best of our knowledge, information and belief accurate at the date of publication, NOTHING HEREIN IS TO BE CONSTRUED AS A WARRANTY, EXPRESS OR OTHERWISE. IN ALL CASES, IT IS THE RESPONSIBILITY OF THE USER TO DETERMINE THE APPLICABILITY OF SUCH INFORMATION AND RECOMMENDATIONS AND THE SUITABILITY OF ANY PRODUCT FOR ITS OWN PARTICULAR PURPOSE. THE PRODUCT MAY PRESENT HAZARDS AND SHOULD BE USED WITH CAUTION. WHILE CERTAIN HAZARDS ARE DESCRIBED IN THIS PUBLICATION, NO GUARANTEE IS MADE THAT THESE ARE THE ONLY HAZARDS THAT EXIST. Hazards, toxicity and behaviour of the products may differ when used with other materials and are dependent upon the manufacturing circumstances or other processes. Such hazards, toxicity and behaviour should be determined by the user and made known to handlers, processors and end users. ARALDITE® is a registered trademark of Huntsman Corporation or an affiliate thereof in one or more countries, but not all countries. NO PERSON OR ORGANIZATION EXCEPT A DULY AUTHORIZED HUNTSMAN EMPLOYEE IS AUTHORIZED TO PROVIDE OR MAKE AVAILABLE DATA SHEETS FOR HUNTSMAN PRODUCTS. DATA SHEETS FROM UNAUTHORIZED SOURCES MAY CONTAIN INFORMATION THAT IS NO LONGER CURRENT OR ACCURATE. NO PART OF THIS DATA SHEET MAY BE REPRODUCED OR TRANSMITTED IN ANY FORM, OR BY ANY MEANS, WITHOUT PERMISSION IN WRITING FROM HUNTSMAN. ALL REQUESTS FOR PERMISSION TO REPRODUCE MATERIAL FROM THIS DATA SHEET SHOULD BE DIRECTED TO HUNTSMAN, MANAGER, PRODUCT SAFETY AT THE ABOVE ADDRESS. Date of issue / Date of revision : 3 August 2011 17/17 • • • ••• Télémètres laser Fluke 424D, 419D et 414D Installations électriques Longues distances Disposition des salles réseau Disposition d'équipements Ventilation Installations électriques • Longueurs de goulottes • Longueurs de câbles • Espacement de prises • Espacement et emplacement des éclairages • Emplacements des armoires électriques Gestion d'usine (Industrie) • Disposition des équipements • Conduites/extractions/ventilation • Installation des équipements • Disposition et installation des conduites Climatisation • Aération et conduits • Position des équipements • Calculs des volumes d'air • Tuyauteries d'eau chaude/froide • Longueurs de câbles • Dimensions des conduites Aménagement d'espace • Disposition des espaces • Espacement des éclairages • Disposition au sol • Disposition des salles informatiques et réseau Pour plus d'informations, visitez : www.fluke.com/distance Les télémètres laser professionnels de Fluke conviennent à une multitude d'applications. . . ©2007-2012 Fluke Corporation. Caractéristiques susceptibles d'être modifiées sans préavis. Imprimé aux Etats-Unis 4/2012 11952-fre Toute modification du présent document est interdite sans le consentement écrit de Fluke Corporation. Test & Mesure 16 pages de nouveaux produits en provenance de tous les fabricants leaders Voir page 49 Les toutes dernières technologies en provenance des plus grands fabricants Septembre 2008 AU 04 74 68 99 99 www.farnell.fr Commandez dès maintenant Livraison GRATUITE le lendemain Pas de minimum de commande Rendez-vous à Electronica – Hall A5, stand 558 Du 11 au 14 novembre 2008 à Munich 􀁦 Les toutes dernières solutions de hautes performances, précision et fi abilité 􀁦 Plus de 1 000 nouveaux produits des fabricants leaders du marché 􀁦 Des solutions complètes pour vos applications de pointe *Ne couvre pas les semiconducteurs, les produits chimiques, les aérosols, les consommables, les pièces, les batteries, les livres et les logiciels. Une question supplémentaire ? Support technique Nos techniciens sont là pour vous aider, du lundi au vendredi, de 8h30 à 19h sans interruption Téléphone : 04 74 68 99 88 Email : technique@farnell.com Fax : 04 74 68 99 80 Besoin d’un meilleur prix ? Notre service cotations est à votre disposition pour vous proposer un meilleur tarif sur toute demande à partir de 500 €. Contactez-nous : Téléphone : 04 74 68 99 98 Email : cotations@farnell.com Fax : 04 74 68 99 80 SIMPLICITE de commande, livraison RAPIDE Garantie 100% SATISFAIT ! Livraison gratuite le lendemain : pour tous les articles en stock commandés avant 19h00, du lundi au vendredi. Besoin d’une livraison encore plus rapide ? Service de livraison express le lendemain MATIN : Coût forfaitaire de ce service : 6 € HT (dans les zones couvertes par les transports UPS pour ce service). Livraison “Newark Direct’’ stock aux USA Vous trouverez ces produits sur www.farnell.fr et dans l’index par références fabricants. Livraison en 2 à 3 jours – 18 € de frais d’expédition (par commande). Diverses options de paiement : compte client, chèque ou carte de crédit. 100% satisfait ! Si pour quelque raison que ce soit, vous n’êtes pas satisfait à 100% des produits que vous recevez, vous avez 30 jours pour nous les retourner* – voir conditions générales de vente sur www.farnell.fr. Pour tout retour de marchandise, faire une demande de numéro de retour – RMA – à notre service clientèle au 04 74 68 99 99 ou utilisez le formulaire de numéro de retour en fi n de notre catalogue général Téléphone 04 74 68 99 99 A votre disposition du lundi au vendredi de 8h30 à 19h sans interruption. En ligne www.farnell.fr Commande en ligne sécurisée, recherche rapide de produits, accès aux toutes dernières nouveautés, informations et offres spéciales. E-mail ventes@farnell.com Pour vos commandes, demandes d’informations ou nous adresser vos commentaires. Fax 04 74 68 99 90 Adresse 81 rue Henri Depagneux, B.P. 60426 – LIMAS, 69654 Villefranche sur Saône Cedex. PAS DE MINIMUM DE COMMANDE Hautes performance, précision et fiabilité sont des exigences fondamentales pour l’instrumentation et les applications électroniques médicales. Dans ce domaine qui présente une des plus fortes croissances de l’industrie électronique, les principaux fabricants de composants ont rapidement développé de nouvelles technologies afin de satisfaire ces exigences. Dans cette nouvelle édition de notre Select nous vous présentons les dernières innovations en matière de microprocesseurs (page 4), DSP (page 7) et FPGA Altera (page 9). Les progrès réalisés dans la conception des puces silicium améliorent grandement la précision des principaux semiconducteurs. Cette nouvelle puissance de traitement est complétée par l’évolution technologique des produits analogiques, en particulier, des amplificateurs d’instrumentation (page 18) et des composants de gestion de puissance tels que des régulateurs LDO (page 26), qui offrent une très grande précision pour le conditionnement des signaux et de nouvelles techniques d’économie d’énergie. Nous mettons aussi en avant, les dernières techniques d’imagerie et d’affichage (page 28) afin d’intégrer à vos conceptions les interfaces utilisateurs les plus sophistiquées. Pour en savoir plus sur ces technologies les plus récentes, consultez la 2ème édition de notre nouvelle revue Technology First ou visitez www.farnell.fr pour parcourir la version en ligne. Enfin, retrouvez également à l’intérieur de ce Select notre sélection de 16 pages de produits d’instrumentation (page 49) pour vos mesures de performances et de précision. Découvrez les dernières nouveautés et technologies en provenance d’Agilent, Lecroy, Tektronix, Fluke et Pico Technology, le nouveau Picoscope 9021 (page 57), avec ses 1,2GHz de bande passante, pour mesurer avec précision les circuits haut-débit ainsi que l’analyseur de puissance haute précision PM1000+ de Voltech (page 61). Si vous prévoyez de vous rendre à Electronica, le salon mondial de l’électronique qui se déroule à Munich au mois de Novembre, venez nous rencontrer sur notre stand. Nos experts seront sur place pour faire une démonstration des toutes dernières technologies et pour vous faire découvrir les derniers développements dans notre offre de services - notez cette date dans votre agenda, nous attendons avec impatience de vous rencontrer! Peter Davis Directeur du Développement Produits, Farnell Hall A5, stand 558 Du 11 au 14 novembre 2008 à Munich 􀁌􀁥􀁜􀀗􀃔􀀗􀁣􀁠􀁘􀁣􀁜􀀗􀁛􀁬􀀗􀁞􀁩􀁦􀁬􀁧􀁜􀀗􀁇􀁩􀁜􀁤􀁠􀁜􀁩􀀗􀀽􀁘􀁩􀁥􀁜􀁣􀁣 Semiconducteurs 4 Microcontrôleurs et Microprocesseurs 7 Mémoires 9 FPGA 10 Outils de développement 16 Capteurs 17 Amplifi cateurs et Comparateurs 19 Convertisseurs A/N 20 Convertisseurs N/A 21 Drivers de LED 22 Horloges 23 Interfaces et Références de tension 25 Contrôleurs de puissance Optoélectronique 27 LEDs 28 Affi cheurs 30 Emetteurs, Détecteurs et Capteurs 31 Non-Visible Discrets 32 Transistors 34 MOSFETs Passifs 35 CEM - Filtres 36 Condensateurs 38 Résistances Electromécanique 40 Alimentations AC/DC - Médicales 42 Relais 45 Commutateurs 47 Connecteurs Test & Mesure Instruments de table 49 Tektronix 50 Agilent 55 Anritsu 57 Pico 59 Lecroy 60 Le bon rapport qualité-prix 61 Analyseurs - Générateurs de fonctions Instruments portables 63 TTI 64 Fluke 65 Instruments portables 66 Testeurs de composants 67 Metrix 69 Chauvin Arnoux 70 Multimetrix 71 Sefram 73 ELC 75 TTI 76 Tenma 77 Bonnes Affaires Soudage 79 Stations Weller 80 OKI 81 Weller - Iroda 82 Consommables Produits chimiques 84 KF Outillage 85 Outils électroportatifs 87 Outils à main 93 Multicomp Commutateurs 94 Apem Connecteurs 95 Omron 96 ITT Amphenol Câbles 97 Câbles réseaux Produits bureautiques 98 Jelt 99 Informatiques Tous les prix de cette brochure sont en euros hors TVA www.farnell.fr Tél.: 04 74 68 99 99 Fax: 04 74 68 99 90 Microcontrôleurs 4 Semiconducteurs L’architecture de deuxième génération des processeurs ColdFire® permet une amélioration des performances sur une large gamme d’applications. Environ 2.8 fois plus rapide que les coeurs ColdFire V3 Le microprocesseur ColdFire est le successeur de la famille 68K de Freescale. La nouvelle architecture RISC à longueur variable fournit un rapport prix/performance compétitif exigé par le marché de l’électronique embarquée faible coût. L’architecture RISC à longueur variable donne une plus grande flexibilité puisque les instructions peuvent être de 16, 32 ou 48 bits. Le code utilse moins d’espace dans la mémoire ayant pour résultat une meilleure densité de code que les circuits 32 bits traditionnels ou les circuits 64 bits RISC. L’utilisation efficace de la mémoire interne permet de réduire la largeur du bus de mémoire externe. Les microprocesseurs ColdFire sont recommandés pour les systèmes industriels d’automation, les imprimantes jet d’encre et les lecteurs MP3. La série Flexis comprend les familles de microcontrôleurs 8 bits S08 et 32 bits ColdFire® V1 qui ont un jeu de périphériques et des outils de développement communs. RAM Température Tension Broches/ Interne Fréquence Interface série d’utilisation du coeur Code Réf. Fab. Boîtier (octets) (MHz) (°C) (V) Commande Prix Unitaire MCF5206EAB40 QFP/160 8 40 UART 0 à 70 3.3 114-8470● g13,10 MCF5216CVM66 MAP-BGA/256 64 66 FlexCAN, I2C, QSPI, UART -40 à 85 3.3 114-8474● g18,47 MCF5232CVM150 MAPBGA/196 64 150 CAN, I2C, UART -40 à 85 1.6 157-9860● g23,08 MCF5249LAG120 LQFP/144 96 120 I2C, QSPI, UART 0 à 70 1.8 114-8475● g18,90 MCF5249VM140 MAP-BGA/160 96 140 I2C, QSPI, UART 0 à 70 1.8 114-8476● g15,60 MCF5270CVM150 BGA/196 64 150 – -40 à 85 1.6 157-9862● g15,31 MCF5270VM100 BGA/196 64 100 – 0 à 70 1.6 157-9863● g12,79 MCF5271CVM100 BGA/196 64 100 – -40 à 85 1.6 157-9864● g16,18 MCF5271CVM150 BGA/196 64 150 – -40 à 85 1.6 157-9865● g17,86 MCF5272CVM66 MAP-BGA / 256/256 4 66 10/100MbT Ethernet, QSPI, TDM, UART, USB -40 à 85 3.3 114-8477● g23,10 MCF5272VM66 MAP-BGA/196 4 66 10/100MbT Ethernet, QSPI, TDM, UART, USB 0 à 70 3.3 114-8478● g22,97 MCF5272VM66R2 MAPBGA/196 4 66 – -40 à 85 – 157-9866● g17,28 MCF5274VM166 MAPBGA/256 64 166 UART, I2C, SPI, USB 0 à 70 – 157-9867● g17,45 MCF5275LCVM166 MAPBGA/196 64 166 UART, I2C, SPI, USB -40 à 85 1.6 157-9868● g17,45 MCF5280CVM66 MAP-BGA/256 64 66 FlexCAN, I2C, MAC (FEC) 10/100 Ethernet, QSPI, UART -40 à 85 3.3 114-8479● g24,30 MCF5282CVM66 MAP-BGA/256 64 66 FlexCAN, I2C, MAC (FEC) 10/100 Ethernet, QSPI, UART -40 à 85 3.3 114-8480● g25,90 MCF5307AI66B FQFP/208 4 66 I2C, UART 0 à 70 3.3 114-8481● g19,10 MCF5307AI90B FQFP/208 4 90 I2C, UART 0 à 70 3.3 114-8482● g34,99 MCF5328CVM240 MAPBGA/256 32 240 I2C, UART -40 à 85 1.6 157-9869● g20,43 MCF5329CVM240 MAPBGA/256 32 240 I2C, SPI, UART, USB, CAN -40 à 85 1.6 157-9870● g23,84 MCF5373LCVM240 MAPBGA/196 32 240 – -40 à 85 1.6 157-9871● g21,28 MCF5407AI162 FQFP/208 4 162 I2C, UART 0 à 70 1.8 114-8484● g35,43 MCF5407AI220 FQFP/208 4 220 I2C, UART 0 à 70 1.8 114-8486● g41,10 MCF5407CAI162 FQFP/208 4 162 I2C, UART -40 à 85 1.8 114-8487● g41,10 Boîtier/ ADC Interfaces Réf. Fab. broches RAM Flash Timers Entrées Bits E/S série Caractéristiques Code Commande Prix Unitaire MC9S08QE4CPG PDIP/16 256 Byte 4 Kb 1 12 I2C, SCI, SPI COP, DBG, RTC 156-1380● g1,78 MC9S08QE4CTG TSSOP/16 256 Byte 4 Kb 1 12 I2C, SCI, SPI COP, DBG, RTC 156-1381● g1,78 MC9S08QE4CWJ SOIC/20 256 Byte 4 Kb 2 16 I2C, SCI, SPI COP, DBG, RTC, Comparateur Analogique 156-1382● g1,86 MC9S08QE4CWL SOIC/28 256 Byte 4 Kb 2 22 I2C, SCI, SPI COP, DBG, RTC, Comparateur Analogique 156-1383● g1,92 MC9S08QE4CLC LQFP/32 256 Byte 4 Kb 2 10 12 26 I2C, SCI, SPI COP, DBG, RTC, Comparateur Analogique 156-1379● g1,95 MC9S08QE8CPG PDIP/16 512 Byte 8 Kb 1 12 I2C, SCI, SPI COP, DBG, RTC 156-1385● g2,08 MC9S08QE8CTG TSSOP/16 512 Byte 8 Kb 1 12 I2C, SCI, SPI COP, DBG, RTC 156-1386● g2,08 MC9S08QE8CWJ SOIC/20 512 Byte 8 Kb 2 16 I2C, SCI, SPI COP, DBG, RTC 156-1387● g2,15 MC9S08QE8CWL SOIC/28 512 Byte 8 Kb 2 22 I2C, SCI, SPI COP, DBG, RTC 156-1389● g2,22 MC9S08QE8CLC LQFP/32 512 Byte 8 Kb 2 10 12 26 I2C, SCI, SPI COP, DBG, RTC, Comparateur Analogique 156-1384● g2,22 MC9S08QE64CLH LQFP/64 4 KB 64Kb 3 24 12 54 I2C, SCI, SPI COP, DBG, RTC, Comparateur Analogique 156-1393● g5,56 MC9S08QE128CLH LQFP/64 8 KB 128Kb 3 24 12 54 I2C, SCI, SPI COP, DBG, RTC, Comparateur Analogique 156-1391● g6,45 MC9S08QE128CLK LQFP/80 8 KB 128Kb 3 24 12 70 I2C, SCI, SPI COP, DBG, RTC, Comparateur Analogique 156-1392● g6,84 • Pipelines indépendants et découplés -4 étages d’Instruction Fetch Pipeline (IFP) -5-étages d’execution -FIFO I-Buffer • Exécution superscalaire limitée par l’utilisation du ’pliage’ d’instruction -Performances d’approches ’dual-issue’ mais pour un coût de silicone inférieur Microprocesseurs 32 bits ColdFire Microcontrôleurs 8 bits HCS08 Flexis S08QE RAM Fréquence Interface Série Température Tension Broches / interne de fonctionnement d’utilisation du coeur Code Réf. Fab. Boîtier (octet) (MHz) (°C) (V) Commande Prix Unitaire MCF5407CAI220 FQFP/208 4 220 I2C, UART -40 à 85 3.3 116-5853● g42,40 MCF5472VR200 PBGA388 32 200 UART 0 à 70 – 157-9872● g29,65 MCF5475VR266 PBGA388 32 266 UART 0 à 70 – 157-9874● g40,15 Caractéristiques • Architecture amélioré pour un rendement plus élevé: plus de 200 Dhrystone 2.1 MIPS à 150 MHz • Nouveau jeu d’instruction plus petit pour une meilleure densité de code et plus de performances • MAC amélioré et fonction déboguage • Taille du coeur = 4.5 mm2 en process 0.25 micron Microprocesseurs 32 bits ColdFire V4 • Architecture mémoire Harvard • Plus d’instructions executées en 1 cycle • Les 2 mécanismes de niveau d’accélération des branches dans l’IFP réduisent au minimum le temps d’exécution du changement Et si vous pouviez L’étendue du portefeuille de microcontrôleurs 32 bits de NXP Semiconductors vous offre un choix tout simplement incomparable et vous permet de sélectionner le meilleur microcontrôleur pour votre application. Par exemple, vous pouvez instantanément donner un coup de fouet à vos commandes industrielles, appareils intelligents ou solutions PDA grâce à l’une de nos solutions LH7xxx hautes performances pour écrans couleur LCD tactiles. Intégrez l’un de nos nombreux microcontrôleurs LPC2000 / LPC2900 et bénéficiez de performances Flash à la pointe de la technologie, d’une structure dual bus pour une communication fluide et du plus large éventail de périphériques. Votre coprocesseur Vector Floating Point (VFP) de la prochaine génération pourrait également fonctionner avec l’ARM926 ayant la plus faible consommation du marché. Ou profitez de notre nouvelle famille de microcontrôleurs 32 bits d’entrée de gamme basés sur LPC1000 Cortex-M3, qui vous permet d’assurer facilement une transition de 8 à 32 bits. Plus que jamais, le choix vous appartient. NXP développe des technologies multimédias pointues pour que vous puissiez donner vie à vos idées. Nos solutions innovantes améliorent l’image, intensifient le son et simplifient le partage d’informations. Retrouvez-nous sur notre site pour en savoir plus sur notre portefeuille complet de microcontrôleurs 32 bits, et sur la manière dont ils peuvent vous donner le contrôle de vos applications. www.nxp.com/ad/microcontrollers Et si vous pouviez toujours intégrer un microcontrôleur 32 bits dédié pour vos besoins systèmes ? Le portefeuille complet de microcontrôleurs 32 bits Ext. Memory I/F (NAND, Memory Stick, SD, and DRAM) LPC3000 block diagram E-ICE/RTM Interface Embedded Trace Buffer 64 KB SRAM DMA Vector Floating - Point Coprocessor 32-bit ARM926EJ-S Bus Matrix Power management, RTC, WDT, PLL 2 x I2C Interrupt Controller D Cache 32K I Cache 32K 10-bit A/D converter USB 2.0 full speed/host/OTG Timers with Capture/Compare 2x PWM UART 0-7 IRDA 2x SPI I/O ports (45) Keyscan Tous les prix de cette brochure sont en euros hors TVA www.farnell.fr Tél.: 04 74 68 99 99 Fax: 04 74 68 99 90 Microprocesseurs 6 Semiconducteurs Les microcontrôleurs LH7A400 et LH7A404 sont puissants et flexibles basés sur un coeur ARM9, ils conviennent parfaitement aux applications industrielles, commerciales, médicales et automobiles. CAN CNA PWM 10 bits 10 bits Broches Boîtier Flash RAM Timers voies Ethernet USB UART I2C CAN SPI SSP I2S voies voies Réf. Fab. Code Commande Prix Unitaire 2102 48 LQFP 16K 4K 6 14 – – 2 2 – 1 – – 8 – LPC2102FBD48 152-4633● g4,12 2106 48 HVQFN 128K 64K 5 6 – – 2 1 – 1 – – – – LPC2106FHN48 152-4634● g15,64 2109 64 LQFP 64K 8K 5 6 – – 2 1 1 2 – – 4 – LPC2109FBD64 152-4635● g8,98 2141 64 LQFP 32K 8K 5 6 – 1 2 2 – 1 – – 6 – LPC2141FBD64 152-4638● g8,01 2144 64 LQFP 128K 16K 5 6 – 1 2 2 – 1 – – 8+6 1 LPC2144FBD64 152-4639● g11,22 2146 64 LQFP 256K 40K 5 6 – 1 2 2 – 1 – – 8+6 1 LPC2146FBD64 152-4640● g13,62 2364 100 LQFP 128K 34K 6 12 1 1 4 3 2 1 2 1 8 1 LPC2364FBD100 152-4643● g8,88 2366 100 LQFP 256K 58K 6 12 1 1 4 3 2 1 2 1 8 1 LPC2366FBD100 152-4644● g10,64 2368 100 LQFP 512K 58K 6 12 1 1 4 3 2 1 2 1 8 1 LPC2368FBD100 152-4645● g12,22 2378 144 LQFP 512K 58K 6 12 1 1 4 3 2 1 2 1 8 1 LPC2378FBD144 152-4646● g14,12 2468 208 LQFP 512K 98K 6 12 1 1 4 3 2 1 2 1 8 1 LPC2468FBD208 152-4647● g18,79 Série LPC2000 • 7A404 comme CAN 10 x 10 bits avec interface pour écran tactile • LH7A400N0F076B5 boîtier LFBGA-256 Les microcontrôleurs 32 bits STM32F10xxx disposent des performances élevées des coeurs ARM Cortex-M3 RISC. Ils possédent de la mémoire flash, une large gamme d’E/S, des péripheriques connectées à deux buses APB, des interfaces de communication standard (I2C, SPI, USART), un timer 16 bits générique. Le STM32F103 dispose aussi d’un port USB, CAN et d’un timer PWM. Avec une tension d’alimentation de 2.0 à 3.6 V le STM32F101(série entrée de gamme) offre une température d’utilisation de -40 à +85°C alors que le STM32F103xx (série hautes performances) peut fonctionner de -40 à +105 °C. Une gamme compléte de mode ’éconnomie d’énergie’ permet de réaliser des applications basse consommation. RAM Nbre d’E/S Interface série Réf. Fab. Code Commande Prix Unitaire 8 KB (I-cache), 8 KB (D-cache), 80 KB (frame buffer) 60 SPI/SSP, 3 x UART, IrDA, USB 2.0 device LH7A400N0F076B5 152-4627● g23,10 8 KB (I-cache), 8 KB (D-cache), 80 KB (frame buffer) 6060 SPI/SSP, 3 x UART, IrDA, USB 2.0 device LH7A400N0G000B5 152-4629● g24,79 8 KB (I-cache), 8 KB (D-cache), 80 KB (frame buffer) 64 SPI/SSP, 3 x UART, IrDA, USB 2.0 device et hôte LH7A404N0F000B3 152-4632● g31,48 Freq Flash RAM E/S Code Prix Freq Flash RAM E/S Code Prix BrochesBoîtier (MHz) (Kb) (kB) Lines Réf. Fab. Commande Unitaire BrochesBoîtier (MHz) (Kb) (kB) Lines Réf. Fab. Commande Unitaire Série entrée de gamme Série hautes performances 32F101C6 48 LQFP 36 6 32 STM32F101C6T6 144-7627● g5,15 32F103C6 48 LQFP 72 10 32 STM32F103C6T6 144-7635● g6,20 32F101R6 64 LQFP 36 6 49 STM32F101R6T6 144-7628● g5,50 32F103R6 64 LQFP 72 10 49 STM32F103R6T6 144-7636● g6,55 32F101C8 48 LQFP 36 10 32 STM32F101C8T6 144-7629● g5,95 32F103C8 48 LQFP 72 20 32 STM32F103C8T6 144-7637● g7,30 32F101R8 64 LQFP 36 10 49 STM32F101R8T6 144-7630● g6,35 32F103R8 64 LQFP 72 20 49 STM32F103R8T6 144-7638● g7,85 32F101V8 100 LQFP 36 10 80 STM32F101V8T6 144-7631● g7,30 32F103V8 100 LQFP 72 20 80 STM32F103V8T6 144-7639● g8,80 32F101RB 64 LQFP 36 16 49 STM32F101RBT6 144-7632● g7,65 32F103RB 64 LQFP 72 20 49 STM32F103RBT6 144-7640● g9,10 32F101VB 100 LQFP 36 16 80 STM32F101VBT6 144-7633● g8,55 32F103VB 100 LQFP 72 20 80 STM32F103VBT6 144-7641● g10,20 Basés sur un coeur ARM7TDMI-S fonctionnant à 75 MHz, ces microcontrôleurs 32 bits offrent de grandes performances et une faible consommation dans un boîtier économique. Il sont conçus pour un usage général spécialement dans les applications embarquées, comme le contrôle industriel, l’automobile, le médical, et la connectivité. Microcontrôleur 32 bits - STM32 ARM Cortex M3 Microcontrôleurs LH7A40x - ARM9 • Processeur ARM922T • Température d’utilisation -40 à 85°C • LH7A400N0G000B5 boîtier BGA-256 • LH7A404N0F000B3 boîtier BGA-324 RoHS Conforme Non-conforme Commandez du lundi au vendredi de 8h30 à 19h pour une livraison gratuite le lendemain DSP/ Mémoires 7 Semiconducteurs La famille des microcontrôleurs D.S.P. MSP430 est basée sur une architecture RISC 16 bits, idéals pour les applications fonctionnant sur batteries.Ils permettent aux concepteurs d’interfacer des signaux analogiques ou des capteurs directement avec des composants numériques. Interface un fil Broches/boîtier Description Réf. Fab. Code Commande Prix Unitaire 144 HTQFP Floating-Point Digital Signal Processor, ROM 384 KB, RAM 64 KB . . . . . . .TMS320C6720BRFP200 155-5284● g11,04 144 HTQFP Floating-Point Digital Signal Processor, ROM 384 KB, RAM 128 KB . . . . . .TMS320C6722BRFP200 155-5286● g16,32 144 HTQFP Floating-Point Digital Signal Processor, ROM 384 KB, RAM 128 KB . . . . . .TMS320C6722BRFP250 155-5287● g18,94 144 TQFP Floating-Point Digital Signal Processor . . . . . . . . . . . . . . . . . . . . . . . . . . . .TMSDC6722BRFPA225 155-5288● g18,94 144 TQFP Floating-Point Digital Signal Processor, ROM 384 KB, RAM 256 KB . . . . . .TMSDC6726BRFPA225 155-5289● g24,46 337 BGA Digital Media System-on-Chip, ROM 8 KB, RAM 32 KB . . . . . . . . . . . . . . .TMX320DM355ZCE216 155-5290● g24,21 337 BGA Digital Media System-on-Chip, ROM 8 KB, RAM 32 KB . . . . . . . . . . . . . . .TMX320DM355ZCE270 155-5291● g28,63 100 LQFP 32-Bit Digital Signal Controller, FLASH (32 kB), OTP (2 kB), ROM (8 kB) . .TMS320F28016PZA 155-5292● g5,95 100 BGA 32-Bit Digital Signal Controller, FLASH (256 kB), OTP (2 kB), ROM (8 kB) .TMS320F2809GGMA 155-5293● g22,01 100 LQFP 32-Bit Digital Signal Controller, FLASH (256 kB), OTP (2 kB), ROM (8 kB) .TMS320F2809PZA 155-5294● g22,01 176 LQFP Digital Signal Controller, FLASH (512 kB), OTP (2 kB), RAM (68 kB). . . . . .TMX320F28335PGFA 155-5295● g33,88 Ces circuits supportent le bus d’E/S séries à un fil, UNI/O™. En utilisant la technique du codage de Manchester, l’horloge et les données peuvent être transmisent en un seul train de bits séries (SCIO). Le signal d’horloge peut être extrait par le récepteur pour decoder correctement la valeur de chaque bit.La conception de ces circuits leur permet de fonctionner en basse tension, jusqu’à 1.8V pour les circuits 11AAXXX, avec un courant de Standby de 1μA et 1mA en mode actif. C2000, C5000, C6000 Broches/ Code Réf. Fab. Boîtier Mém. Prog. RAM ADC Commande Prix Unitaire MSP430F423AIPM 64/LQFP 8 KB 256 14 16-bit Sigma Delta 1 USART (SPI or UART) 155-5268● g8,51 MSP430FW423IPM 64/LQFP 8 KB 256 48 Slope Timer UART 155-5280● g7,08 MSP430F2252TDA 38/TSSOP 16KB 512 32 10-Bit SAR USCI 155-5266● g4,15 MSP430F2252TRHAT 40/QFN 16KB 512 32 10-Bit SAR USCI 155-5267● g4,15 MSP430F425AIPM 64/LQFP 16KB 512 14 16-bit Sigma Delta 1 USART (SPI or UART) 155-5269● g9,35 MSP430FW425IPM 64/LQFP 16KB 512 48 Slope Timer UART 155-5281● g7,66 MSP430P315SIDL 48/SSOP 16KB 512 14 Slope 155-5283● g9,92 MSP430F4260IDL 48/SSOP 24KB 256 32 16-bit Sigma Delta Timer UART 155-5270● g6,53 MSP430F4260IRGZT 48/QFN 24KB 256 32 16-bit Sigma Delta Timer UART 155-5271● g6,53 MSP430F157IPM 64/LQFP / 64 32KB 1024 48 12-bit SAR 1 SPI or UART, I2C,Timer UART 117-2225● g9,80 MSP430FW427IPM 64/LQFP 32KB 1024 48 Slope Timer UART 155-5282● g8,40 MSP430FG439IPN 80/LQFP 60 KB 2048 48 12-bit SAR 1 USART (SPI or UART) 155-5272● g15,00 MSP430FG4616IPZ 100/LQFP 92KB 4096 80 12-bit SAR 155-5274● g17,84 MSP430FG4616IZQWT 113/BGA 92KB 4096 80 12-bit SAR 1 USART (SPI or UART), USCI 155-5275● g17,84 MSP430FG4617IPZ 100/LQFP 92KB 8192 80 12-bit SAR 1 USART (SPI or UART), USCI 155-5276● g18,79 MSP430FG4617IZQWT 113/BGA 92KB 8192 80 12-bit SAR 1 USART (SPI or UART), USCI 155-5277● g18,79 MSP430FG4619IPZ 100/LQFP 120 KB 4096 80 12-bit SAR 1 USART (SPI or UART), USCI 155-5278● g18,79 MSP430FG4619IZQWT 113/BGA 120 KB 4096 80 12-bit SAR 1 USART (SPI or UART), USCI 155-5279● g18,79 Microcontrôleurs D.S.P. MSP430 -Très faible puissance Boîtier Taille Tension Température Code Fab. Broches mémoire Config d’utilisation (V) d’utilisation (°C) Réf. Fab. Commande Prix Unitaire 1 kb 11LC010 MCHIP SOT-23 1Kbit 128bit x 8 2.5 à 5.5 -40 à 85 11LC010T-I/TT 157-8278● g0,39 11LC010 MCHIP PDIP 1Kbit 128bit x 8 2.5 à 5.5 -40 à 85 11LC010-I/P 157-8279● g0,43 11LC010 MCHIP SOIC 1Kbit 128bit x 8 2.5 à 5.5 -40 à 85 11LC010-I/SN 157-8280● g0,43 11AA010 MCHIP SOT-23 1Kbit 128bit x 8 1.8 à 5.5 -40 à 85 11AA010T-I/TT 157-8281● g0,39 11AA010 MCHIP PDIP 1Kbit 128bit x 8 1.8 à 5.5 -40 à 85 11AA010-I/P 157-8282● g0,43 11AA010 MCHIP SOIC 1Kbit 128bit x 8 1.8 à 5.5 -40 à 85 11AA010-I/SN 157-8283● g0,43 2 kb 11LC020 MCHIP SOT-23 2Kbit 256bit x 8 2.5 à 5.5 -40 à 85 11LC020T-I/TT 157-8284● g0,43 11LC020 MCHIP PDIP 2Kbit 256bit x 8 2.5 à 5.5 -40 à 85 11LC020-I/P 157-8286● g0,47 11LC020 MCHIP SOIC 2Kbit 256bit x 8 2.5 à 5.5 -40 à 85 11LC020-I/SN 157-8287● g0,43 11AA020 MCHIP SOT-23 2Kbit 256bit x 8 1.8 à 5.5 -40 à 85 11AA020T-I/TT 157-8288● g0,43 11AA020 MCHIP PDIP 2Kbit 256bit x 8 1.8 à 5.5 -40 à 85 11AA020-I/P 157-8289● g0,47 11AA020 MCHIP SOIC 2Kbit 256bit x 8 1.8 à 5.5 -40 à 85 11AA020-I/SN 157-8290● g0,43 4 kb 11LC040 MCHIP SOT-23 4Kbit 512bit x 8 2.5 à 5.5 -40 à 85 11LC040T-I/TT 157-8291● g0,43 11LC040 MCHIP PDIP 4Kbit 512bit x 8 2.5 à 5.5 -40 à 85 11LC040-I/P 157-8292● g0,51 11LC040 MCHIP SOIC 4Kbit 512bit x 8 2.5 à 5.5 -40 à 85 11LC040-I/SN 157-8293● g0,47 11AA040 MCHIP SOT-23 4Kbit 512bit x 8 1.8 à 5.5 -40 à 85 11AA040T-I/TT 157-8294● g0,43 11AA040 MCHIP PDIP 4Kbit 512bit x 8 1.8 à 5.5 -40 à 85 11AA040-I/P 157-8295● g0,51 11AA040 MCHIP SOIC 4Kbit 512bit x 8 1.8 à 5.5 -40 à 85 11AA040-I/SN 157-8296● g0,47 8 kb 11LC080 MCHIP SOT-23 8Kbit 1Kbit x 8 2.5 à 5.5 -40 à 85 11LC080T-I/TT 157-8298● g0,51 11LC080 MCHIP PDIP 8Kbit 1Kbit x 8 2.5 à 5.5 -40 à 85 11LC080-I/P 157-8299● g0,54 11LC080 MCHIP SOIC 8Kbit 1K x 8bit 2.5 à 5.5 -40 à 85 11LC080-I/SN 157-8301● g0,54 11AA080 MCHIP SOT-23 8Kbit 1K x 8bit 1.8 à 5.5 -40 à 85 11AA080T-I/TT 157-8302● g0,51 11AA080 MCHIP PDIP 8Kbit 1K x 8bit 1.8 à 5.5 -40 à 85 11AA080-I/P 157-8304● g0,54 11AA080 MCHIP SOIC 8Kbit 1K x 8bit 1.8 à 5.5 -40 à 85 11AA080-I/SN 157-8305● g0,54 16 kb 11LC160 MCHIP SOT-23 16Kbit 2K x 8bit 2.5 à 5.5 -40 à 85 11LC160T-I/TT 157-8306● g0,54 11LC160 MCHIP PDIP 16Kbit 2K x 8bit 2.5 à 5.5 -40 à 85 11LC160-I/P 157-8307● g0,62 11LC160 MCHIP SOIC 16Kbit 2K x 8bit 2.5 à 5.5 -40 à 85 11LC160-I/SN 157-8308● g0,59 11AA160 MCHIP SOT-23 16Kbit 2Kbit x 8 1.8 à 5.5 -40 à 85 11AA160T-I/TT 157-8309● g0,54 11AA160 MCHIP PDIP 16Kbit 2K x 8bit 1.8 à 5.5 -40 à 85 11AA160-I/P 157-8310● g0,62 11AA160 MCHIP SOIC 16Kbit 2K x 8bit 1.8 à 5.5 -40 à 85 11AA160-I/SN 157-8311● g0,59 Mémoires EEPROM UNI/O 􀀳􀁔􀁢􀀁􀁢􀁞􀁛􀁤􀁣􀁘􀁞􀁝􀁢􀀁􀀵􀀿􀀶􀀰􀀁􀁼􀁥􀁞􀁛􀁤􀁼􀁔􀁢􀀁􀁟􀁞􀁤􀁡 􀁐􀁤􀁖􀁜􀁔􀁝􀁣􀁔􀁡􀀁􀁛􀁔􀁢􀀁􀁟􀁔􀁡􀁕􀁞􀁡􀁜􀁐􀁝􀁒􀁔􀁢􀀁􀁓􀁔􀀁􀁥􀁞􀁢􀀁􀁒􀁐􀁡􀁣􀁔􀁢 􀁃􀁜􀀗􀁧􀁦􀁩􀁫􀁜􀁝􀁜􀁬􀁠􀁣􀁣􀁜􀀗􀁧􀁩􀁦􀁛􀁬􀁠􀁫􀀗􀁚􀁦􀁤􀁧􀁣􀁜􀁫􀀗􀁛􀃋􀀸􀁣􀁫􀁜􀁩􀁘􀀗􀁜􀁪􀁫􀀗 􀁤􀁘􀁠􀁥􀁫􀁜􀁥􀁘􀁥􀁫􀀗􀁛􀁠􀁪􀁧􀁦􀁥􀁠􀁙􀁣􀁜􀀗􀁚􀁟􀁜􀁱􀀗􀀽􀁘􀁩􀁥􀁜􀁣􀁣 􀁘􀀁 􀀁􀁈􀁡􀁘􀀁􀁚􀁔􀁠􀁠􀁘􀀁􀃙􀁧􀁘􀁡􀁗􀁨􀁘􀀁􀂾􀀁􀁣􀁟􀁨􀁦􀀁􀁗􀁘􀀁􀀥􀀪􀀣􀀁􀁣􀁥􀁢􀁗􀁨􀁜􀁧􀁦􀀁􀁘􀁧􀀁􀁧􀁘􀁖􀁛􀁡􀁢􀁟􀁢􀁚􀁜􀁘 􀁖􀁢􀁠􀁣􀁥􀁘􀁡􀁔􀁡􀁧􀀁􀁟􀁘􀁦􀀁􀁖􀁜􀁥􀁖􀁨􀁜􀁧􀁦􀀁􀀶􀁬􀁖􀁟􀁢􀁡􀁘􀀁􀀼􀀼􀀼􀀁􀁘􀁧􀀁􀁀􀀴􀁫􀀼􀀼􀁍 􀁘􀀁 􀀁􀀴􀁦􀁦􀁢􀁖􀁜􀁔􀁧􀁜􀁢􀁡􀀁􀁦􀁔􀁡􀁦􀀁􀁣􀁥􀃙􀁖􀃙􀁗􀁘􀁡􀁧􀀁􀁗􀄡􀁨􀁡􀁘􀀁􀁙􀁔􀁜􀁕􀁟􀁘􀀁􀁖􀁢􀁡􀁦􀁢􀁠􀁠􀁔􀁧􀁜􀁢􀁡􀀟 􀁗􀁘􀀁􀁙􀁢􀁡􀁖􀁧􀁜􀁢􀁡􀁡􀁔􀁟􀁜􀁧􀃙􀁦􀀁􀃙􀁩􀁢􀁟􀁨􀃙􀁘􀁦􀀟􀀁􀁘􀁧􀀁􀁗􀄡􀁨􀁡􀀁􀁙􀁔􀁜􀁕􀁟􀁘􀀁􀁖􀁢􀄸􀁧􀀁􀁚􀁥􀂺􀁖􀁘 􀁔􀁨􀀁􀀶􀁬􀁖􀁟􀁢􀁡􀁘􀀁􀀼􀀼􀀼 􀁘􀀁 􀀁􀀿􀁔􀀁􀁧􀁢􀁨􀁧􀁘􀀁􀁗􀁘􀁥􀁡􀁜􀃞􀁥􀁘􀀁􀁧􀁘􀁖􀁛􀁡􀁢􀁟􀁢􀁚􀁜􀁘􀀁􀀹􀁃􀀺􀀴􀀁􀁣􀁢􀁨􀁥􀀁􀁖􀁢􀁠􀁣􀁟􀃙􀁧􀁘􀁥 􀁘􀁙􀃦􀀁􀁖􀁔􀁖􀁘􀁠􀁘􀁡􀁧􀀁􀁩􀁢􀁧􀁥􀁘􀀁􀁦􀃙􀁟􀁘􀁖􀁧􀁜􀁢􀁡􀀁􀁗􀁘􀀁􀁀􀁜􀁖􀁥􀁢􀁣􀁥􀁢􀁖􀁘􀁦􀁦􀁘􀁨􀁥􀁦 􀁘􀁧􀀁􀁗􀁘􀀁􀀷􀁆􀁃 􀁘􀀁 􀀁􀁇􀁢􀁨􀁧􀁘􀁦􀀁􀁟􀁘􀁦􀀁􀁦􀁣􀃙􀁖􀁜􀃦􀀁􀁖􀁔􀁧􀁜􀁢􀁡􀁦􀀁􀁘􀁧􀀁􀁟􀁘􀁦􀀁􀃦􀀁􀁖􀁛􀁘􀁦􀀁􀁧􀁘􀁖􀁛􀁡􀁜􀁤􀁨􀁘􀁦􀀁􀁗􀁘 􀁖􀁛􀁔􀁤􀁨􀁘􀀁􀁣􀁥􀁢􀁗􀁨􀁜􀁧􀀁􀁦􀁢􀁡􀁧􀀁􀁗􀁜􀁦􀁣􀁢􀁡􀁜􀁕􀁟􀁘􀁦􀀁􀁘􀁡􀀁􀁟􀁜􀁚􀁡􀁘 􀁉􀁜􀁫􀁩􀁦􀁬􀁭􀁜􀁱􀀗􀁤􀁘􀁠􀁥􀁫􀁜􀁥􀁘􀁥􀁫􀀗􀁣􀁘􀀗􀁞􀁘􀁤􀁤􀁜􀀗􀁚􀁦􀁤􀁧􀁣􀂅􀁫􀁜 􀁛􀁜􀀗􀀽􀁇􀀾􀀸􀀗􀁪􀁬􀁩􀀱􀀗􀁮􀁮􀁮􀀥􀁝􀁘􀁩􀁥􀁜􀁣􀁣􀀥􀁝􀁩 RoHS Conforme Non-conforme Commandez du lundi au vendredi de 8h30 à 19h pour une livraison gratuite le lendemain FPGA/GOLD 9 Semiconducteurs FPGA Cyclone III Nombre de Blocs Nbre Nbre de Alimentation Code Réf. Fab. Boîtier/Broches Blocs/Elements logiques RAM E/S Transceiver (Typ) Température Commande Prix Unitaire Stratix EP1S10F484C7N. . . . . . . . . . . .484/FBGA 10000 921 kb 335 0 1.50V 0 - 85°C 154-9494● g129,74 EP1S20F780C7N. . . . . . . . . . . .780/FBGA 20000 1669 kb 586 0 1.50V 0 - 85°C 154-9495● g241,11 EP1S25F780C6N. . . . . . . . . . . .780/FBGA 25000 1945 kb 597 0 1.50V 0 - 85°C 154-9496● g543,07 EP1S30F780C7N. . . . . . . . . . . .780/FBGA 30000 3317 kb 597 0 1.50V 0 - 85°C 154-9497● g474,18 Stratix II EP2S15F672C3N. . . . . . . . . . . .672/FBGA 15000 419 kb 366 0 1.20V 0 - 85°C 154-9486● g219,30 EP2S30F484C3N. . . . . . . . . . . .484/FBGA 30000 1370 kb 342 0 1.20V 0 - 85°C 154-9485● g413,33 EP2S30F672C3N. . . . . . . . . . . .672/FBGA 30000 1370 kb 500 0 1.20V 0 - 85°C 154-9487● g452,37 EP2S30F672C5N. . . . . . . . . . . .672/FBGA 30000 1370 kb 500 0 1.20V 0 - 85°C 154-9489● g284,74 Stratix GX, GX II EP1SGX25CF672C7N . . . . . . . .672/FBGA 25000 1945 kb 455 4 1.50V 0 - 85°C 154-9484● g485,67 EP2SGX30DF780C3N . . . . . . . .780/FBGA 30000 1370 kb 361 8 1.20V 0 - 85°C 154-9490● g489,11 EP2SGX60CF780C5N . . . . . . . .780/FBGA 60000 2544 kb 364 4 1.20V 0 - 85°C 154-9491● g544,22 EP2SGX60DF780C5N . . . . . . . .780/FBGA 60000 2544 kb 364 8 1.20V 0 - 85°C 154-9493● g562,59 Les dernières technologies ajoutées quotidiennement sur le site La famille ECP2/M de circuit FPGA de Lattice est optimisée pour offrir de hautes performances comme Stratix, Stratix II & Stratix GX / GXII un bloc DSP évolué, un SERDES rapide (uniquement pour la famille ECP2M) et des interfaces rapides pour sources synchrones. Ces circuits disposent d’une logique basée sur LUT, d’une mémoire embarquée, d’une PLL (Phase Locked Loop), d’une DLL (Delay Locked Loop) et d’un bloc sysDSP évolué. Ils supportent une configuration avancée comme un double ’boot’ et ils ont tous un port JTAG. Cette famille dispose aussi d’un oscillateur ’On-Chip’ et d’une détection d’erreurs logiciel. Boîtier/broches LUTs (K) Tension d’alimentation E/S Grade de vitesse Temp. Réf. Fab. Code Commande Prix Unitaire FPBGA / 256 12 1.2 193 -5 0 - 85°C LFE2-12E-5FN256C 157-1964● g37,05 TQFP / 144 12 1.2 93 -5 0 - 85°C LFE2-12E-5TN144C 157-1966● g29,81 FPBGA / 256 12 1.2 193 -6 0 - 85°C LFE2-12E-6FN256C 157-1967● g42,61 PQFP / 208 12 1.2 131 -6 0 - 85°C LFE2-12E-6QN208C 157-1968● g40,89 TQFP / 144 12 1.2 93 -6 0 - 85°C LFE2-12E-6TN144C 157-1969● g32,29 FPBGA / 484 20 1.2 331 -5 0 - 85°C LFE2-20E-5FN484C 157-1970● g55,06 PQFP / 208 20 1.2 131 -5 0 - 85°C LFE2-20E-5QN208C 157-1971● g44,73 FPBGA / 672 20 1.2 402 -6 0 - 85°C LFE2-20E-6FN672C 157-1972● g65,43 PQFP / 208 20 1.2 131 -6 0 - 85°C LFE2-20E-6QN208C 157-1973● g38,39 FPBGA / 484 35 1.2 331 -5 0 - 85°C LFE2-35E-5FN484C 157-1974● g60,22 FPBGA / 484 50 1.2 339 -5 0 - 85°C LFE2-50E-5FN484C 157-1975● g92,16 TQFP / 144 6 1.2 90 -5 0 - 85°C LFE2-6E-5TN144C 157-1976● g14,96 TQFP / 144 6 1.2 90 -6 0 - 85°C LFE2-6E-6TN144C 157-1978● g17,65 FPBGA / 900 70 1.2 583 -5 0 - 85°C LFE2-70E-5FN900C 157-1979● g137,64 FPBGA / 900 100 1.2 416 -5 0 - 85°C LFE2M100E-5FN900C 157-1980● g326,57 FPBGA / 1152 100 1.2 520 -6 0 - 85°C LFE2M100E-6FN1152C 157-1981● g501,44 FPBGA / 256 20 1.2 140 -5 0 - 85°C LFE2M20E-5FN256C 157-1982● g43,66 FPBGA / 256 20 1.2 140 -6 0 - 85°C LFE2M20E-6FN256C 157-1983● g52,27 FPBGA / 256 35 1.2 140 -5 0 - 85°C LFE2M35E-5FN256C 157-1984● g67,87 FPBGA / 672 35 1.2 410 -5 0 - 85°C LFE2M35E-5FN672C 157-1985● g82,63 FPBGA / 484 35 1.2 303 -6 0 - 85°C LFE2M35E-6FN484C 157-1986● g90,37 FPBGA / 900 50 1.2 410 -5 0 - 85°C LFE2M50E-5FN900C 157-1987● g145,00 FPBGA / 484 50 1.2 270 -6 0 - 85°C LFE2M50E-6FN484C 157-1988● g136,34 FPBGA / 900 70 1.2 416 -5 0 - 85°C LFE2M70E-5FN900C 157-1991● g196,62 FPBGA / 900 70 1.2 416 -6 0 - 85°C LFE2M70E-6FN900C 157-1992● g289,57 FPGA - Famille ECP2/M Boîtier/ Elements Mémoire Réseaux Température Circuit Broches logiques (Kbits) Multiplicateurs PLLs horloge globale Broches d’E/S d’utilisation Réf. Fab. Code Commande Prix Unitaire 3C5F256 256/FBGA 5,136 414 23 2 10 182 0 - 85°C EP3C5F256C8N 154-9367● g12,86 3C10E144 144/EQFP 10,320 414 23 2 20 94 - EP3C10E144C7N 154-9363● g19,86 3C10U256 256/UBGA 10,320 414 23 2 20 182 - EP3C10U256C8N 154-9368● g22,22 3C16Q240 240/PQFP 15,408 504 56 4 20 160 0 - 85°C EP3C16Q240C8N 154-9365● g24,84 3C16F256 256/FBGA 15,408 504 56 4 20 168 0 - 85°C EP3C16F256C8N 154-9366● g25,49 3C16F484 484/FBGA 15,408 504 56 4 20 346 0 - 85°C EP3C16F484C8N 154-9369● g28,30 3C40F484 484/FBGA 39,600 1,134 126 4 20 331 0 - 85°C EP3C40F484C8N 154-9370● g74,46 3C40U484 484/UBGA 39,600 1,134 126 4 20 331 0 - 85°C EP3C40U484C8N 154-9371● g81,98 La famille de FPGA Cyclone III offre une faible consommation et des fonctions élaborées pour un faible coût. Le traitement de vidéos ou d’images et les communications sans fils sont quelques-unes des applications, pour lesquelles il est possible d’utiliser ses FPGA. Tous les circuits Cyclon III supportent une migration verticale avec le même boîtier. Ils permettent aux concepteurs d’optimiser la densité et le coût de leur application. Tous les prix de cette brochure sont en euros hors TVA www.farnell.fr Tél.: 04 74 68 99 99 Fax: 04 74 68 99 90 Outils de développement 10 Semiconducteurs Seulement g525,76 CODE COMMANDE157-9879● Seulement g269,09 CODE COMMANDE143-0733● Seulement g87,84 CODE COMMANDE155-2954● Les dernières technologies ajoutées quotidiennement sur le site Contenu • Carte de base DEMOQE avec une carte fille MC9S08QE8 • 2 batteries AAA • Câble USB • Guide démarrage rapide Seulement g40,94 CODE COMMANDE143-0732● Réf. Fab. Typ Code Commande Prix Unitaire DEMO9S08QE8 Kit DEMO9S08QE8 156-1699● g62,16 DC9S08QE8 Carte fille DC9S08QE8 156-1700● g9,01 Ce kit d’évaluation permet de tester les microcontrôleurs MC9S08JM60. Il est constitué d’une carte de base DEMOJM et d’une carte fille DCJMSKT. La carte fille est équipée d’un support LQFP-64 pour acceuillir les circuits de la famille JM. La carte de base DEMOJML dispose d’un circuit Multilink P&E embarqué qui permet de programmer et déboguer le processeur en utilisant le port USB d’un PC. La carte peut aussi utiliser l’alimentation du port USB. La carte d’évaluation EVBQE128 est conçue pour évaluer, démontrer, et déboguer les microcontrôleurs Freescale Flexis QE128 (MC9S08QE128 et MCF51QE128). Elle peut être utilisée pour des applications autonomes ou contrôlées par un PC via l’interface microDART™. Le kit de développement i.MX31 Lite Kit offre une plateforme matérielle et logicielle prête à être utilisée pour évaluer les fonctionnalités des processeurs Freescale i.MX et des SoM (System on Module).Il vous permettra de développer rapidement des Carte de démonstration QE8 DEMOQE8: Contenu: • Carte de base DEMOJM • Carte fille DCJMSKT avec support LQFP-64 • Microcontrôleur MC9S08JM60 dans une boîte en plastique antistatique • DVD: "Breaking Bit Boundaries - Getting Started With the series of microcontrollers" • Câble USB A-B • Kit USB Mini-AB • Stylo pompe • Guide de démarrage rapide • Carte de garantie Freescale contenu du kit: • Carte d’évaluation EVBQE128 • Microcontrôleurs MC9S08QE128 et MCF51QE128 LQFP 80 broches • Pompe CI • Alimentation universelle 12VDC • Câble USB • DVD Système avec CodeWarrior™ Development Studio • Guide de démarrage rapide applications embarquées pour les secteurs: médical, industriel, wireless, consommable etc... Système de développement et de démonstration DEMOJMSKT • Carte de garantie • Guide de démarrage • Carte Freescale TIC La carte DEMOQE128 est un système de développement faible coût conçue pour démontrer, évaluer et déboguer les microcontrôleurs Freescale MC9S08QE128 et MCF51QE128. La circuiterie P&E’ embarquée sur la carte DEMOQE128 permet de programmer et déboguer avec un port USB. Elle peut aussi être alimentée par ce port USB. La carte de démonstration DEMO9S08QE8 est une carte cible pour l’évaluation des microcontroleurs.Elle peut être utilisée pour mettre en avant certaines fonctions des circuits MC9S08QE8. La carte dispose aussi d’une broche pour mesurer la très faible consommation des MC9S08QE8. La carte EVBQE128 supporte les circuits suivants: MC9S08QE128, MCF51QE128 et tous les autres circuits compatibles broche à broche. Contenu du kit: • Carte de base DEMOQE avec carte fille MC9S08QE 128 installée • Carte fille MCF51QE128 • DVD "Breaking Bit Boundaries"- Démarrer avec QE128 • Pack de batterie 2 x AAA • Câble USB • Guide de démarrage rapide Carte d’évaluation EVBQE128 Contenu: • Carte de base • SOM-LV • Carte d’extension • CD-ROM • Câble série Null-modem • Câble Ethernet croisés • Câble USB A vers mini-B • Alimentation 5 volts • License utilisateur final La carte DEMOQE128 Supporte les circuits suivants: MC9S08QE128CLH, MCF51QE128CLH Kit de développement Zoom i.MX31 LITEKIT Carte de démonstration DEMOQE128 RoHS Conforme Non-conforme Commandez du lundi au vendredi de 8h30 à 19h pour une livraison gratuite le lendemain Outils de développement 11 Semiconducteurs CM-BF533 Seulement g441,00 CODE COMMANDE125-9229● Seulement g342,86 CODE COMMANDE124-8346● Seulement g190,51 CODE COMMANDE135-5150● CM-BF537E TCM-BF537 CM-BF561 Le kit de développement ADSP-BF537 EZ-KIT Lite™ permet aux concepteurs d’évaluer les performances des processeurs Blackfin® ADSP-BF537 avec un faible coût . Le jeu de périphériques systèmes est très riche, il comprend des contrôleurs IEEE 802.3 10/100 Ethernet MAC et CAN 2.0B. Le kit EZ-KIT Lite comprend une carte d’évaluation équipée d’un processeur ADSP-BF537 avec une version d’évaluation de l’environnement de développement VisualDSP++® . Cet IDE dispose d’un compilateur C/C++, d’un assembleur, d’un linker, il dispose aussi d’exemples de programme pour les processeurs. Contenu: Alimentation approuvée CE, câble USB, câbles Ethernet droits et croisés, câble stéréo 3.5mm et une paire d’écouteurs stéréo. Caractéristiques: • OS Linux basé sur μClinux 2.6.x, Licence GPL, kernel complet code source driver • Supporte GNU gcc (C/C++) avec possibilité de débogage gdb/kgdb par Ethernet et JTAG • Bootloader DAS U-Boot • Pile IP Linux complète avec protocoles standard • Drivers pour les périphériques embarqués La carte ADSP-BF561 EZ-KIT Lite permet d’évaluer le processeur ADSP-BF561 pour les applications audio et vidéo avec le port USB d’un PC. Elle utilise les périphériques vidéo avancées disponibles sur la carte comme le traitement simultané d’entrées et de sorties vidéo grâce à l’architecture double coeurs des processeurs ADSP-BF561 Caractéristiques: • Processeur Blackfin ADSP-BF561 • SDRAM 64 MB (16 M x 16-bits x 2) et FLASH 8 MB (4 M x 16-bits) • Codec audio AD1836 multicanaux 96 kHz • Jacks RCA pour les E/S audio stéréo audio • Décodeur vidéo ADV7183A 10-bits • 3 jacks RCA pour les entrées vidéos composite (CVBS), differentiel (YUV) ou S vidéo (Y/C) • Encodeur vidéo ADV7179 chip scale NTSC/PAL • 3 jacks RCA pour les sorties vidéos composite (CVBS), differentiel (YUV) ou S vidéo (Y/C) • Alimentation approuvée CE et câble USB • Compatible avec les cartes filles EZ-Extender • Processeur Blackfin ADSP-BF537 • Fréquence max du coeur 600MHz • SDRAM 64 MB (32M x 16), FLASH 4 MB (2 M x 16) • SMSC LAN83C185 10/100 PHY avec connecteur RJ45 • Transceiver CAN TJA1041 avec 2 connecteurs RJ10 • CNA AD1871 96 KHz stéréo avec connecteur Jack 3.5mm Carte d’évaluation EZ-KIT Lite pour BF56 EVAL-BF5xx Carte ADSP BF537-Stamp DEV-BF5xxDA-Lite La carte BF537 STAMP BSP (Board Support Package) offre aux concepteurs un environnement de développement pour applications embarquées basées sur les processeurs Blackfin. Le STAMP BSP est conçu spécialement pour développer et porter des applications en open source avec μClinux. • CAN AD1854 96 KHz stéréo avec connecteur Jack 3.5mm • Driver de ligne RS-232 • Interface NI ELVIS (National Instruments Educational Laboratory Virtual Instrumentation Suite) • Différentes carte fille permettent d’étendre les fonctions de ce kit. (Voir plus bas) Kit de développement ADSP-BF537 EZ-KIT Lite™ Cartes Bluetechnix pour évaluation et développement basés sur Blackfin Les cartes EVAL-BF5xx et DEV-BF5xxDA-Lite sont conçues pour évaluer les processeurs Blackfin. La carte EVAL-BF5xx dispose juste de toutes les interfaces sur un connecteur dédié ou sur un connecteur d’extension, la carte DEV-BF5xxDA-Lite est fournie avec le "Debug Agent" intégré. Il sagit d’une interface de débogage USB qui est capable de programmer et déboguer les modules basés sur les coeurs Blackfin. Caractéristiques : • Connecteur JTAG • Debug Agent DEV-BF5xxDA-Lite sur la carte • Support pour CM-BF527, CM-BF533, CM-BF537E, TCM-BF537 & CMBF561 • Support pour carte SD • Convertisseur USB-UART • Connecteur Ethernet • Transceiver et Connecteur CAN • Connecteur USB2.0 • Boutons et LEDs • Alimentation 7V à 12V • Dimensions: 75x75mm Réf. Fab. Code Commande Prix Unitaire CM-BF533 149-5593● g176,39 CM-BF537E 149-5603● g208,46 TCM-BF537 149-5606● g176,39 CM-BF561 149-5607● g208,46 EVAL-BF5XX 149-5608● g155,00 DEV-BF5XXDA-LITE 149-5609● g481,04 Modules basés sur des coeurs Blackfin RoHS Conforme Non-conforme Commandez du lundi au vendredi de 8h30 à 19h pour une livraison gratuite le lendemain Outils de développement 13 Semiconducteurs Kit d’évaluation EKx-LM3S3768 Seulement g185,52 CODE COMMANDE150-2506▲ Seulement g37,98 CODE COMMANDE150-2504▲ ATA2270-EK1 ATAK2270 Kit de référence Stellaris pour afficheur intelligent connecté par Ethernet Contenu: • Module LCD intelligent Stellaris • Alimentation 24V avec adaptateurs internationaux • Câble Ethernet rétractable • Adaptateur de débogage • Guide, Manuels, Datasheet, codes sources, BOM, schémas & fichiers Gerber sur CD Outils de développement et d’évaluation pour les mictrocontrôleurs STM32 ARM basés sur les coeurs cortex M3. ATAK2270UG Contenu Logiciel: • Boîte à outils logiciel de développement RIDE7 avec gestionnaire de projet • Compilateur GNU C/C++ • Gestionnaire d’application CircleOS task scheduler • Code source en C pour tous les exemples d’applications & bibliothèques TMEB8704 • Alimentation USB • Connecteur série I2C, CAN, USB & 2 USART • Afficheur LCD (2x16) et 16 LEDs • Connecteur pour carte SD / MMC • Potentiomètre connecté à un CAN • 1 Bouton Reset + 2 utilisateur • Zone de prototypage Hardware Primer • Le Primer se connecte directement au port USB du PC • Afficheur LCD couleur 128x128 pixel • Capteur MEMs, • Buzzer • Transceiver IrDA Logiciel • μVision3 • Outils de compilation ARM RealView • Programmateur / débogueur ULINK USB/JTAG in-circuit • Carte d’évaluation • Connecteur JTAG 20 broches Les dernières technologies ajoutées quotidiennement sur le site Kit de démarrage pour STM3210B-PRIMER Kit de démarrage pour STM3210B 3 différents types de kit de développement et d’évaluation RFID sont disponibles. Les deux premiers TMEB8704 et ATAK2270 sont basés sur un PC et fourni avec un logiciel. La différence entre ces deux kits se situe au niveau des Tags RFID supportés (Voir table ci-après). Le troisième kit (ATA2270-EK1) est une nouvelle génération de kits RFID autonome. Les boutons et le joystick sur la carte permettent de faire fonctionner le kit qui est complété par un buzzer et un afficheur. Réf. Fab. Description Code Commande Prix Unitaire TMEB8704 Kit transpondeur RFID . . . . . . . . . . . . 155-1855● g658,75 ATAK2270 Kit de développement RFID LF . . . . . . 155-1853● g658,75 ATA2270-EK1 Kit d’évaluation RFID LF. . . . . . . . . . . 155-1852● g416,56 ATAK2270UG Kit de mise à jour RFID LF . . . . . . . . . 155-1854● g77,50 Kit de développement RFID Contenu: • Carte d’évaluation • Câble Min USB-B pour les fonctions débogage (1m) • Câble Mini USB-B pour le mode utilisation du circuit • Câble cible 20 voies • Clé USB • Câble ’Bleu’ longueur 7’’ (17cm) pour la fonction oscilloscope • Le CD contient les outils, la documentation, le guide et les exemples de codes sources Réf. Fab. Description Code Commande Prix Unitaire EKK-LM3S3748 Kit d’évaluation avec USB Host - outils MDK, ARM RealView avec limite d’adresse 16KB 156-6965● g95,95 EKI-LM3S3748 Kit d’évaluation avec USB Host - kit de démarrage IAR embarqué avec limite d’adresse 32KB 156-6966● g95,95 EKC-LM3S3748 Kit d’évaluation avec USB Host - code source G++ avec licence d’évaluation 30 jours 156-6967● g95,95 EKT-LM3S3748 Kit d’évaluation avec USB Host - suite de code avec licence d’évaluation complète 156-6968● g95,95 Réf. Fab. Description Code Commande Prix Unitaire EKK-LM3S3768Kit d’évaluation avec USB OTG - outils MDK, ARM RealView avec limite d’adresse 16KB 156-6971● g104,98 EKI-LM3S3768 Kit d’évaluation avec USB OTG - kit de démarrage IAR embarqué avec limite d’adresse 32KB 156-6972● g104,98 EKC-LM3S3768Kit d’évaluation avec USB OTG - code source G++ avec licence d’évaluation 30 jours 156-6973● g104,98 EKT-LM3S3768Kit d’évaluation avec USB OTG - suite de code avec licence d’évaluation complète 156-6974● g104,98 Réf. Fab. Description Code Commande Prix Unitaire RDK-IDM Intelligent Display Module RDK 156-6975● g192,28 Kit d’évaluation EKx-LM3S3748 • Contenu: • Carte d’évaluation • Câble Min USB-B pour les fonctions débogage (1m) • Câble Micro-A vers Std-A • Câble Std-A vers Micro-B • Câble cible 20 voies • Clé USB • Câble ’Bleu’ longueur 7’’ (17cm) pour la fonction oscilloscope • Le CD contient les outils, la documentation, le guide et les exemples de codes sources Tous les prix de cette brochure sont en euros hors TVA www.farnell.fr Tél.: 04 74 68 99 99 Fax: 04 74 68 99 90 Outils de développement 14 Semiconducteurs Seulement g771,13 CODE COMMANDE156-0816● Seulement g771,13 CODE COMMANDE156-0813● Seulement g154,92 CODE COMMANDE156-0812● Seulement g215,02 CODE COMMANDE142-8131● Seulement g405,40 CODE COMMANDE156-0814● Seulement g1313,63 CODE COMMANDE156-0817● Contenu: • Carte de développement FPGA Cyclone II • CD ROM avec ’Altera Kit de développement PCI Les kits économiques Cyclone III pour FPGA sont simple à utiliser.Ils permettent aux utilisateurs qui n’ont jamais utilisés de FPGA avant , une introduction simple. Pour les utilisateurs de FPGA plus expérimentés qui s’intéressent à l’architecture Cyclone III, le système offre en moyenne des performances 60% plus rapide avec 50% de consommation en moins que des solutions concurrantes. Un grande nombre d’exemple d’applications est fourni avec le kit pour une mise sur le marché plus rapide de vos produits. Cyclone III Edition Development Suite’ • Câbles et alimentation • Capot plastique transparent pour la carte Présenté dans la brochure Technology First Le kit de développement PCI Cyclone™ II Edition est un outil complet pour réaliser et tester des prototypes PCI ou PCI-X basés sur les circuits Cyclone II.Les échanges entre la carte et le PC hôte peuvent être effectués en utilisant soit la configuration d’origine soit un programme personnalisé par l’utilisateur. Kit de démarrage FPGA Le kit de développement Cyclone III Edition offre aux ingénieurs un environnement de développement complet pour les DSP. Il facilite la conception durant tout le process de la conception jusqu’à l’implémentation du matériel. Cyclone II Edition Cyclone II Edition Cyclone III Edition Contenu: • Carte Cyclone III • CD ROM Cyclone III FPGA Starter Kit • Instructions de téléchargement pour recevoir les mises à jour logiciel Le kit de développement NiosII, Cyclone II Edition dispose de tout le matériel nécessaire pour développer des SOPC (system-on-aprogrammable- chip). Basé sur les processeurs embarqués, faible coût de la famille Nios II, le circuit Cyclone II EP2C35 fait de ce kit un outil idéal pour développer un grand nombre d’applications pour lesquelles le coût est un facteur sensible. Contenu: • Carte de développement Cyclone III • Conversion de donnée HSMC • Outil de développement DSP Builder • Logicie Quartus II • Logiciel MATLAB/Simulink (évaluation) • Evaluation de coeur IP (intellectual property) • Alimentation et câbles Cyclone II Contenu: • Carte d’évaluation Nios II Embedded • CD ROM ’Nios II Embedded’ • Suite complète ’Altera Design Suite’ sur DVD • Lecteur de carte SD (USB 2.0) Kit de démarrage FPGA Cyclone III Contenu: • Carte de développement Cyclone II EP2C35 PCI • CD ROM PCI Development Kit, Cyclone II Edition Contenu: • Carte de développement Nios • Câble de téléchargement USB-Blaster™ • Câble Ethernet • Adaptateur Ethernet cross-over • Carte fille Ethernet PHY • Module LCD • Câble RS232 9 broches • Alimentation DC (avec adapteurs pour 3 pays) • Carte SD Flash • Câble USB • Alimentation DC • Logiciel Quartus II, Edition Development Kit • Outil de développement Jungo WinDriver • CD ROM PCI-X CORE avec applications PLD • CD ROM MegaCore Librairie IP • Câble de téléchargement USB-Blaster™ et câble USB • Alimentation Kit d’évaluation Nios II Kit d’évaluation Nios II Ce kit permet à l’utilisateur d’avoir un environnement de contrôle intégré, qui comprend un logiciel de contrôle, une commande USB, un contrôleur pour mémoire SRAM/DRAM/ FLASH et un circuit de démonstration spécifique au code Verilog. Ces caractéristiques permettent à l’utilisateur d’implémenter et de tester son application sans utiliser des APIs ou des contrôleurs hôtes complexes. Kit de développement pour DSP Le kit d’évaluation pour Nios II, Cyclone III Edition propose une carte de développement complète pour les FPGA. Elle dispose d’une carte fille multimédia, d’un LCD, d’outils matériels et logiciels, de documentation, des accessoires et de tout ce qui est nécessaire pour développer des systèmes embarqués utilisant des FPGAs. RoHS Conforme Non-conforme Commandez du lundi au vendredi de 8h30 à 19h pour une livraison gratuite le lendemain Outils de développement 15 Semiconducteurs Seulement g266,46 CODE COMMANDE157-1946 Seulement g775,00 CODE COMMANDE157-1995 Seulement g79,53 CODE COMMANDE157-1927● Seulement g997,89 CODE COMMANDE157-2006● Seulement g105,40 CODE COMMANDE155-1776● Ce kit de développement complet permet de développer et de programmer In-Situ les CPLDs de la famille ATF15xx et les CPLDs avec un brochage au standard de l’industrie. C’est un moyen simple et rapide pour les concepteurs de développer et d’évaluer leurs nouveaux prototypes ispLEVER est un environnement de développement complet pour les derniers circuits logiques programmables Lattice. Il comprend de puissant outils pour toutes les taches de conceptions comme un gestionnaire de projet, l’intégration d’IP, un planning de conception, des systèmes de placement et de routage, d’analyse logique et bien d’autres. Il est fourni sur un CD ROM et un DVD ROM pour Windows et livré avec un câble USB. Le kit de démarrage MachXO est une solution simple pour analyser de manière détaillée les performances et la technologie des circuits MachXO. La carte peut aussi servir de plateforme pour débuter vos propre applications. L’outil de développement ispLEVER de Lattice inclu dans le kit de démarrage MachXO offre un environnement de développement simple pour l’architecture MachXO. Contenu: • Carte de développement pour CPLD • Carte avec support TQFP-44 broches • Câble de programmation ISP Atmel • CD avec logiciel ’Atmel PLD Software’ • Deux circuits TQFP-44 La carte d’évaluation LatticeXP2 Standard est une plateforme flexible pour aider les utilisateurs à évaluer rapidement les performances des FPGAs Lattice XP2 ou de réaliser des produits ’Custom’.Cette carte dispose d’un système type ordinateur simple carte, de sources Analogique/ Numérique et Numérique/Analogique, d’un système pour évaluer les caractéristiques des E/S du FPGA. Caractéristiques: • Circuit MachXO LCMXO640C-3TN144C • Chargement par USB avec le contrôleur USB et le circuit MachXO256 • Alimentation et JTAG via USB • Oscillateur 24 Mhz • 8 LEDs pour l’utilisateur et une pour l’alimentation • 4 commutateurs DIP et un bouton de ’Reset’ Support OS: • Windows: 2000 / XP Support circuits: • Toutes les familles de logique programmable récentes de Lattice Contenu: • Un an de maintenance et de mise à jour logiciel • Câble USB La carte d’évaluation MachXO Standard est une plateforme pour évaluer les caractéristiques électriques des circuits MachXO, et pour évaluer, tester, et déboguer les circuits ’custom’. La carte permet de choisir la puissance pour utiliser plusieurs tensions de coeur et/ou d’E/S. Un oscillateur 33MHz et une PLL ispClock™ sont aussi présents sur la carte. Caractéristiques: • MachXO fpBGA-256 • Solution carte simple face • 8 LEDs • Commutateur pour entrée 8 bits • Boutons poussoirs • Programmation JTAG 1149.1 / Interface ’boundary-scan’ • Fonctionne avec une tension DC comprise entre 5V et 20V • Choix de la tension de coeur pour les MachXO • Choix de la tension de certaine banques d’E/S • Oscillateur ajustable pour une horloge de référence • PLL à sortie multiple Lattice ispClock5610 • Connecteur SMA (non implanté) - Broches d’entrée horloge MachXO • Connecteur RJ-45 (non implanté) • Empreinte pour LCD Logiciel ispLEVER Version de base pour Windows Kit de développement ATF15XX-DK3 Kit de démarrage MachXO USB Caractéristiques: • FPGA LatticeXP2 (LFXP2-17E-4F484C) • Solution carte simple face • 8 LEDs • Afficheur 7 segments • Commutateur 8 positions • Bouton poussoir • Mémoire SRAM • Connecteur Compact Flash • Connecteur RS232 DB9 Femelle • Connecteur LCD avec contrôles de rétro éclairage et contraste • Programmation JTAG IEEE 1149.1 Interface ’boundary-scan’ • Programmation ISP par USB avec le logiciel VM • Contrôleur d’alimentation pour tester le séquencement d’alimentation • Tension au choix pour 6 banques d’E/S • Oscillateur remplaçable pour l’horloge de référence • Connecteur SMA pour l’entrée horloge LatticeXP2 Carte d’évaluation MachXO™ Standard Carte d’évaluation LatticeXP2 Standard Tous les prix de cette brochure sont en euros hors TVA www.farnell.fr Tél.: 04 74 68 99 99 Fax: 04 74 68 99 90 Capteurs 16 Semiconducteurs ADI propose une gamme complète de capteur de température analogique ou numérique de précision. Ces capteurs faible coût ont une grande précision et peuvent disposer d’interfaces I2C, SPI, ‘mark-space’, et trippoint’. Pour les systèmes plus complexes ils peuvent aussi avoir des CAN/CNA des références de tension ou des registres d’alarme intégrés. Les contrôleurs de température multicanaux de Maxim surveillent leur propre température et jusqu’à six canaux externes. Ils ont tous des seuils d’alerte programmables. L’interface série deux fils supporte le protocole SMBus™. NSC présente des capteurs de température basse tension avec une grande précision. Ils disposent de deux ou quatre diodes et d’une interface SMBus de la famille PowerWise. Code Broches Boîtier Description Réf. Fab. Commande Prix Unitaire 8 SOIC Capteur de temp. avec traitement du signal, 22.5 mV/°C, -0°C to +100°C, acc 2% AD22100KRZ 143-8412● g2,90 8 SOIC Thermomètre/Thermostat numérique 3 fils avec EEPROM DS1626S+ 156-9965● g3,43 8 SOIC Thermomètre/Thermostat numérique haute précision DS1631Z+ 137-9816● g2,80 8 SOP Thermomètre numérique 1 fil avec Detect. Sequence et PIO DS28EA00U+ 143-3253● g4,70 8 SOIC Thermomètre & thermostat DS75LVS+ 143-3206● g2,05 8 μMAX Thermomètre & thermostat DS75LVU+ 143-3207● g2,05 8 μMAX Thermomètre & thermostat DS75LVU+ 143-3207● g2,05 8 SOIC Thermomètre et Thermostat numérique Basse Tension DS75LXS+ 143-3208● g1,35 8 μSOP Thermomètre et Thermostat numérique Basse Tension DS75LXU+ 143-3211● g1,35 5 SC70 Capteur de température analogique précision 1.2°C MAX6612MXK+ 156-9962● g4,20 5 SC70 Capteur de température analogique précision 1.3°C MAX6613MXK+T 156-9961● g4,20 6 SOT-23 Capteur de température O/P PWM 1.8kHz précision 1.5°C MAX6676AUT3+T 156-9963● g7,19 Capteur de température (ADI) ADI offre le plus large choix d’accéléromètre pour l’industrie. Disponible en version 1, 2 ou 3 axes et en configuration fortement ou faiblement sensible au G. Les accéléromètres ADI peuvent convenir à une large gamme d’utilisation y compris celles qui ont besoin de hautes performances, de basse consommation, de fonctions intégrées ou d’un boîtier de petite taille. Ils sont capables de mesurer précisément une position, un mouvement, un choc ou une vibration ou un basculement Broches Boîtier Réf. Fab. Code Commande Prix Unitaire Broches Boîtier Réf. Fab. Code Commande Prix Unitaire 14 LLP LM95213CISD 134-2334● g1,90 8 Mini SOIC LM95235CIMM 131-2802● g1,59 14 LLP LM95214CISD 134-2335● g1,58 8 Mini SOIC LM95235DIMM 131-2803● g3,84 8 Mini SOIC LM95231CIMM 131-2799● g1,89 8 Mini SOIC LM99-1CIMM 131-2804● g2,26 8 Mini SOIC LM95231CIMM-1 131-2800● g1,95 8 Mini SOIC LM99CIMM 131-2805● g2,88 8 Mini SOIC LM95231CIMM-2 131-2801● g2,04 Les capteurs de température TI ont une tension d’alimentation inférieure à 1.8V et une faible consommation. Faible coût mais avec une grande précision, ils disposent d’une diode de détection de défauts et sont recommandés pour les mesures de température de grande précision. Capteur de température (Maxim) Broches Boîtier Description Réf. Fab. Code Commande Prix Unitaire 16 QSOP Capteur de température digital de précision ±0.5°C et tension de sortie quadruple 12-Bit DAC ADT7316ARQZ 143-9052● g10,70 16 QSOP Capteur de température digital de précision ±0.5°C et tension de sortie quadruple 12-Bit DAC ADT7316ARQZ 143-9052● g10,70 16 QSOP Convertisseur A/D 8 voies et capteur digital de température 10-bit, compatible SPI-/I2C ADT7411ARQZ 143-9053● g4,95 16 QSOP Convertisseur A/D 8 voies et capteur digital de température 10-bit, compatible SPI-/I2C ADT7411ARQZ 143-9053● g4,95 Accéléromètre (ADI) Capteur de température (NSC) Broches Boîtier Description Réf. Fab. Code Commande Prix Unitaire 16 LGA Circuit Inclinomètre/accéléromètre deux axes programmable ADIS16201CCCZ 127-4171● g37,80 16 LFCSP Accéléromètre deux axes, +/-5g ADXL320JCP 133-6919● g8,70 16 LFCSP Accéléromètre iMEMS® avec sortie analogique, basse puissance, 3 axes ±3g ADXL330KCPZ 127-4125● g11,70 16 LFCSP Accéléromètre iMEMS® avec sortie analogique, basse puissance, 3 axes ±3g ADXL330KCPZ 127-4125● g11,70 Broches Boîtier Réf. Fab. Code Commande Prix Unitaire 6 SC70 TMP300AIDCKT 156-0646● g2,12 16 SSOP TMP400AIDBQT 156-0643● g3,89 8 SOT-23 TMP422AIDCNT 156-0644● g4,39 Capteur de température (TI) RoHS Conforme Non-conforme Commandez du lundi au vendredi de 8h30 à 19h pour une livraison gratuite le lendemain Amplificateurs, comparateurs 17 Semiconducteurs Les amplificateurs ADI ont une grande précision, un très faible bruit, une faible consommation, et un faible ‘Offset’. Ils sont recommandés pour les applications médicales ou d’instrumentation rapide, haute précision. Broches Boîtier Réf. Fab. Code Commande Prix Unitaire 8 NOIC LMP2015MA 154-2530● g2,28 5 SOT-23 LMP2015MF 154-2531● g2,22 8 SOIC LMP2231AMAE 155-2444● g3,57 5 SOT-23 LMP2231AMFE 155-2445● g3,57 8 SOIC LMP2231BMAE 155-2446● g2,82 5 SOT-23 LMP2231BMFE 155-2447● g2,82 8 SOIC LMP2232AMAE 155-2449● g4,87 8 MSOP LMP2232AMME 155-2450● g4,87 8 SOIC LMP2232BMAE 155-2451● g4,09 8 MSOP LMP2232BMME 155-2452● g4,09 14 SOIC LMP2234AMAE 150-6822● g4,19 14 TSSOP LMP2234AMTE 150-6823● g4,19 LT propose des amplificateurs très faible bruit, très faible distorsion, basse consommation, faible offset, avec des sorties CMOS ‘Rail to Rail’ d’une grande rapidité et d’une grande précision Broches Boîtier Réf. Fab. Code Commande Prix Unitaire Broches Boîtier Réf. Fab. Code Commande Prix Unitaire 8 SOIC AD548JRZ 143-8355● g2,65 14 TSSOP AD8504ARUZ 149-8685● g2,33 8 PDIP AD548KNZ 143-8356● g5,75 14 SOIC AD8644ARZ 143-8873● g5,30 14 PDIP AD704JNZ 143-8357● g8,50 8 SOIC AD8656ARZ 111-7887● g2,55 8 PDIP AD746JNZ 143-8363● g8,15 14 SOIC AD8664ARZ 149-8687● g4,48 28 TSSOP AD8392AAREZ 149-8681● g5,78 8 SOIC AD8667ARZ 143-8874● g1,75 8 SOT-23 AD8502ARJZ 149-8684● g1,95 Amplificateurs Opérationnels (NSC) NSC présente une famille d’amplificateurs offrant une précision sans précédent dans un boîtier miniature permettant d’économiser une grande place sur votre PCB. Ces circuits, très faible bruit et faible consommation utilisent une technologie brevetée pour mesurer et corriger en permanence la tension d’entrée : Erreur d’offset. les rendant incontournables pour les applications industrielles de precision. TI propose des amplificateurs avec des entrées ‘Rail à Rail’, un faible ‘Offset’, un faible bruit, un courant de repos inférieur à 1 mA max et une bande passante de 5.5MHz. Ces circuits, faible consommation sont très attrayants pour une grande variété d’applications portables. Amplificateurs Opérationnels (ADI) Les amplificateurs opérationnels Maxim offrent un très faible bruit, une très faible distorsion, une basse consommation, un faible ‘Offset’, et des sorties rapides ‘Rail à Rail’. Ils sont idéaux pour les applications médicales, d’instrumentations et industrielles de précision. BrochesBoîtier Réf. Fab. Code Commande Prix Unitaire BrochesBoîtier Réf. Fab. Code Commande Prix Unitaire 6 DFN LT6000IDCB#PBF 143-2092● g2,00 16 DFN LTC6082IDHC#PBF 143-2790● g7,75 8 MSOP LT6001IMS8#PBF 143-2094● g3,25 16 SSOP LTC6082IGN#PBF 143-2791● g7,75 16 SSOP LT6002IGN#PBF 143-2095● g5,20 8 SOIC LTC6240CS8#PBF 143-2090● g1,80 8 MSOP LTC6081IMS8#PBF 143-2122● g4,55 8 SOIC LTC6240HVCS8#PBF 143-2091● g3,35 16 DFN LTC6082CDHC#PBF 143-2787● g6,40 16 SSOP LTC6242HVCGN#PBF 146-2132● g4,85 16 SSOP LTC6082CGN#PBF 143-2788● g6,40 8 MSOP LTC6244IMS8#PBF 143-2088● g4,10 16 SSOP LTC6082HGN#PBF 143-2789● g7,75 Broches Boîtier Réf. Fab. Code Commande Prix Unitaire 8 TO-99 OPA2111AM 145-9551● g27,20 8 TO-99 OPA2111BM 145-9552● g52,80 8 TO-99 OPA2111KM 145-9553● g25,50 8 SOIC OPA211AIDG4 154-3760● g7,21 8 SOT-23 OPA2369AIDCNTG4 154-3762● g2,81 8 MSOP OPA2369AIDGKTG4 154-3765● g2,81 8 SOIC OPA2376AID 156-0640● g2,37 8 MSOP OPA2376AIDGKT 156-0641● g2,40 8 PDIP OPA277P 145-9584● g4,55 5 SOT-23 OPA335AIDBVT 145-9586● g2,55 14 TSSOP OPA4376AIPW 156-0642● g3,32 8 SOIC OPA637AU 154-4014● g19,67 Broches Boîtier Réf. Fab. Code Commande Prix Unitaire 48 TQFN MAX2034CTM+ 155-2894● g11,66 14 SO MAX4020ESD+ 155-0531● g4,57 8 SO MAX4237AESA+ 155-0520● g1,52 8 SO MAX4239ASA+ 155-0521● g1,57 14 SO MAX4249ESD+ 155-0516● g1,49 8 SO MAX4251ESA+ 155-0517● g1,64 8 μMAX MAX4252EUA+ 142-2321● g3,55 8 SO MAX4475ASA+ 155-0525● g1,19 8 SO MAX4477ASA+ 155-0527● g1,81 8 SO MAX4488ASA+ 155-0528● g1,19 6 SC70 MAX9911EXT+T 155-0529● g0,70 10 MicroMAX MAX9913EUB+ 155-0530● g0,93 Amplificateurs Opérationnels (LTC) Amplificateurs Opérationnels (TI) Amplificateurs Opérationnels (Maxim) Tous les prix de cette brochure sont en euros hors TVA www.farnell.fr Tél.: 04 74 68 99 99 Fax: 04 74 68 99 90 Amplificateurs, comparateurs 18 Semiconducteurs Maxim présente des amplificateurs d’instrumentation très faible offset et faible dérive. Ils offrent une précision exceptionnelle, une faible consommation, des sorties‘ rail-to-rail’ et un excellent gain /bande passante. La technique breveté utilisée leur permet d’avoir une forte capacité de détection de terre associée à une entrée très faible courant et d’augmenter les performances de rejection de mode commun Les comparateurs simples et doubles d’ADI ont un faible temps de propagation. Ils sont le choix idéal pour les applications de récepteur de ligne, de chronomètre ou de redressement d’horloge, quand le rapport cyclique en sortie doit être en phase avec celui en entrée. Broches Boîtier Réf. Fab. Code Commande Prix Unitaire 8 MicroMAX MAX4208AUA+T 155-0518● g3,05 8 MicroMAX MAX4209HAUA+T 155-0519● g3,05 8 SO MAX4460ESA+ 155-0515● g1,95 Les comparateurs simples, doubles ou quadruples de Maxim sont optimisés pour avoir la plus faible consommation tout en conservant un temps de réponse rapide, en sortie. Ils sont conçus pour utiliser une alimentation simple comprise entre 2.5V et 5.5V, mais ils peuvent aussi fonctionner avec une double alimentation. Grâce à leur faible consommation, leur tension d’alimentation de 2.5V et leur boîtier de petite taille ces circuits sont idéaux pour les applications portables. LTC propose les comparateurs simples et doubles UltraFast, avec des entrées rail-to-rail, des sorties rail-torail complémentaires et une sortie ‘latch’. En plus de la large plage d’alimentation très flexible, l’entrée railto- rail en mode commun est 100mV en dessous des rails d’alimentation et les sorties sont protégées contre les inversions de phase. TI présente des amplificateurs d’instrumentation offrant une excellente précision. Ils sont basse consommation, disposent d’une faible tension d’offset, et d’une forte réjection de mode commun. Grâce à leur très faible courant de repos ils sont idéaux pour les systèmes d’instrumentation portables et l’acquisition de données. Broches Boîtier Réf. Fab. Code Commande Prix Unitaire Broches Boîtier Réf. Fab. Code Commande Prix Unitaire 14 TSSOP AD8612ARUZ 143-8900● g7,00 20 QSOP ADCMP562BRQZ 143-8726● g5,50 14 TSSOP AD8612ARUZ 143-8900● g7,00 20 QSOP ADCMP564BRQZ 143-8728● g4,70 20 PLCC AD96687BPZ 143-8602● g6,50 32 LFCSP ADCMP566BCPZ 143-8729● g7,00 20 PLCC AD96687BPZ 143-8602● g6,50 Broches Boîtier Réf. Fab. Code Commande Prix Unitaire 8 MSOP LT1713CMS8#PBF 141-7740● g4,18 8 MSOP LT1713IMS8#PBF 141-7742● g4,70 5 SOT-23 LT1716CS5#PBF 141-7738● g2,07 5 SOT-23 LT1716HS5#PBF 141-7739● g2,55 Broches Boîtier Réf. Fab. Code Commande Prix Unitaire Broches Boîtier Réf. Fab. Code Commande Prix Unitaire 8 PDIP INA118PB 121-2403● g10,50 8 DIP INA126PA 141-7402● g4,04 8 SOIC INA118U 121-2404● g8,45 8 SOIC INA126UA 109-7401 g3,26 8 SOIC INA121U 121-2406● g7,20 8 PDIP INA128PA 121-2411● g5,90 8 DIP INA122PA 121-2848● g5,25 8 SOIC INA128UAE4 120-6896● g5,30 8 SOIC INA122UA 109-7394 g6,02 8 MSOP INA326EA/250G4 123-4688● g3,75 Comparateurs (ADI) Amplificateurs d’instrumentation (Maxim) Broches Boîtier Réf. Fab. Code Commande Prix Unitaire Broches Boîtier Réf. Fab. Code Commande Prix Unitaire 5 SOT-23 MAX9021AUK+T 155-0467● g0,70 SOIC / 8 MAX975ESA+ 156-9967● g3,78 8 SO MAX9022ASA+ 155-0468● g0,71 SOIC / 14 MAX977ESD+ 156-9968● g6,79 5 SOT-23 MAX9031AUK+T 155-0472● g0,74 8 SO MAX985ESA+ 155-0491● g1,15 8 SOIC MAX9032ASA+ 155-0474● g0,68 8 SO MAX989ESA+ 155-0496● g1,77 Amplificateurs d’instrumentation (TI) Comparateurs (LTC) Comparateurs (Maxim) RoHS Conforme Non-conforme Commandez du lundi au vendredi de 8h30 à 19h pour une livraison gratuite le lendemain Convertisseurs A/N 19 Semiconducteurs Les dernières technologies ajoutées quotidiennement sur le site Maxim propose une famille complète de convertisseurs analogiques-numériques avec des sorties tension et courant, des interfaces séries et parallèles et une résolution jusqu’à 14 bits pour les applications médicales et l’instrumentation de précision. Analog Devices propose une famille complète de convertisseurs analogiques-numériques avec des sorties tension et courant, des interfaces séries et parallèles et une résolution jusqu’à 24 bits pour les applications médicales et l’instrumentation de précision. Broches Boîtier Réf. Fab. Code Commande Prix Unitaire Broches Boîtier Réf. Fab. Code Commande Prix Unitaire 20 TSSOP MAX1147BCUP+ 143-3186● g20,20 48 TQFP MAX1183ECM+D 155-2849● g21,45 20 TSSOP MAX1148BCUP+ 143-3188● g22,20 48 TQFP MAX1196ECM+D 155-2852● g10,88 20 TSSOP MAX1149BEUP+ 143-3191● g26,10 12 TQFN MAX1276ETC+ 155-2853● g8,14 48 TQFP MAX1181ECM+D 155-2847● g31,95 12 TQFN MAX1279BETC+ 155-2854● g8,14 48 TQFP MAX1182ECM+D 155-2848● g28,12 48 TQFP MAX1421ECM+D 155-2858● g14,12 Broches Boîtier Réf. Fab. Code Commande Prix Unitaire Broches Boîtier Réf. Fab. Code Commande Prix Unitaire 6 TSOT ADC121C021CIMK 155-2428● g3,18 32 LQFP ADC14L020CIVY 155-4775● g33,79 6 TSOT ADC121C027CIMK 155-2431● g3,18 32 LQFP ADC14L040CIVY 155-4776● g41,83 32 LLP ADC12C105CISQ 143-3177● g54,10 48 LLP ADC14V155CISQ 147-1252● g122,60 32 LLP ADC14C105CISQ 143-3178● g92,40 48 TSSOP CLC5957MTD 155-4777● g52,29 60 LLP ADC14DS105AISQ 154-2534● g164,89 Broches Boîtier Réf. Fab. Code Commande Prix Unitaire Broches Boîtier Réf. Fab. Code Commande Prix Unitaire 28 SOIC AD1877JRZ 143-8337● g12,20 48 LQFP AD7677ASTZ 143-8849● g47,60 52 LQFP AD6644ASTZ-65 143-8342● g65,90 48 LQFP AD7679ASTZ 143-8535● g37,00 52 LQFP AD6645ASQZ-80 143-8343● g67,10 10 MSOP AD7693BRMZ 143-8850● g26,00 48 LQFP AD7634BSTZ 143-8844● g46,80 8 MSOP AD7694BRMZ 143-8851● g11,20 48 LQFP AD7650ASTZ 143-8845● g11,20 28 TSSOP AD7765BRUZ 144-0770● g13,30 48 LQFP AD7664ASTZ 143-8847● g26,90 10 MSOP AD7982BRMZ 149-8675● g26,65 48 LQFP AD7675ASTZ 143-8848● g17,90 Convertisseurs A/N (Maxim) TI propose une famille complète de convertisseurs analogiques-numériques avec des sorties tension et courant, des interfaces séries et parallèles et une résolution jusqu’à 24 bits pour les applications médicales et l’instrumentation de précision. Convertisseurs A/N Broches Boîtier Réf. Fab. Code Commande Prix Unitaire Broches Boîtier Réf. Fab. Code Commande Prix Unitaire 18 SOP ADS1212U 145-9252● g15,20 32 QFN ADS6124IRHBTG4 154-3744● g37,98 48 TQFP ADS1217IPFBT 145-9253● g9,30 32 QFN ADS6125IRHBTG4 154-3746● g45,91 80 HTQFP ADS5270IPFP 145-9257● g66,80 28 SOIC ADS7811U 145-9270● g54,10 80 HTQFP ADS5271IPFP 145-9258● g72,80 16 SOIC ADS7812UB 145-9275● g21,30 32 QFN ADS6122IRHBTG4 154-3739● g20,03 16 SOIC ADS7813UB 145-9277● g38,30 32 QFN ADS6123IRHBTG4 154-3742● g27,54 Convertisseurs A/N (NSC) Linear Technology propose une famille complète de convertisseurs analogiques-numériques avec des sorties tension et courant, des interfaces séries et parallèles et une résolution jusqu’à 24 bits pour les applications médicales, l’instrumentation de précision. Les CAN ‘high-speed’ ont des fréquences de sortie jusqu’à 50Msps National Semiconductor propose une famille complète de convertisseurs analogiquesnumériques avec des sorties tension et courant, des interfaces séries et parallèles et une résolution jusqu’à 14 bits pour les applications médicales et l’instrumentation de précision. Broches Boîtier Réf. Fab. Code Commande Prix Unitaire Broches Boîtier Réf. Fab. Code Commande Prix Unitaire 10 MSOP LTC1865IMS#PBF 155-6256● g18,69 28 SSOP LTC2424CG#PBF 133-0930● g7,35 28 SSOP LTC2404CG#PBF 133-0922● g12,10 10 MSOP LTC2433-1CMS#PBF 133-0933● g4,20 28 SSOP LTC2408CG#PBF 133-0923● g13,00 10 DFN LTC2480CDD#PBF 133-0938● g3,95 10 MSOP LTC2411CMS#PBF 133-0926● g11,10 10 DFN LTC2481CDD#PBF 133-0939● g3,95 10 MSOP LTC2421CMS#PBF 133-0928● g6,68 10 DFN LTC2484CDD#PBF 133-0942● g5,20 10 MSOP LTC2422CMS#PBF 133-0929● g7,05 Convertisseurs A/N (TI) Convertisseurs A/N (LTC) Tous les prix de cette brochure sont en euros hors TVA www.farnell.fr Tél.: 04 74 68 99 99 Fax: 04 74 68 99 90 Convertisseurs N/A 20 Semiconducteurs Convertisseur 16 bits, faible consommation National présente ses convertisseurs N/A basse consommation avec une résolution de 8 à 14 bits et un amplificateur de sortie embarqué avec sortie Rail-to-Rail. Ils disposent d’une interface série 3 fils et fonctionnent à une fréquence d’horloge jusqu’à 40 MHz sur toute la plage de tension d’alimentation. L’interface série est compatible avec les standards SPI, QSPI, MICROWIRE et les interfaces pour DSP. Maxim présente une large gamme de convertisseurs N/A pour les applications industrielles. Ces circuits offrent une résolution de 8 à 14 bits, une très faible consommation, une sortie en tension, et une fréquence jusqu’à 50Msps. Ils sont compatibles I²C, ont une interface série 2 fils et une interface série 3 fils compatible SP™I, QSPI™, et MICROWIRE™. La fréquence d’horloge max. est de 400 kHz. Les convertisseurs N/A de précision, proposés par TI, offrent une résolution de 14 ou 16 bits et une faible consommation. Ils fonctionnent jusqu’à une fréquence de 30MHz et utilisent une interface série 3 fils compatible avec les standards SPI™, QSPI™, Microwire™, et les interfaces pour DSP. ADI propose des convertisseurs N/A 12-14-16 bits, simple, double ou quadruple, basse consommation avec entrée série et tension de sortie avec ou sans référence de tension embarquée. Ils utilisent une interface 3 fils compatible SPI®, QSPI,™ MICROWIRE™, et une interface DSP standard idéale pour les applications de précision. Broches Boîtier Réf. Fab. Code Commande Prix Unitaire Broches Boîtier Réf. Fab. Code Commande Prix Unitaire 16 QSOP MAX5109EEE+ 155-2859● g7,35 12 TQFN MAX5525ETC+ 155-2863● g7,61 16 QSOP MAX5116EEE+ 155-2860● g14,17 12 TQFN MAX5535ETC+ 155-2864● g12,76 24 QSOP MAX5184BEEG+ 156-9953● g6,57 8 SOIC MAX5544CSA+ 145-5630● g12,30 24 QSOP MAX5190BEEG+ 156-9956● g5,64 8 SOIC MAX5544ESA+ 145-5632● g13,30 8 MicroMAX MAX5513EUA+ 155-2861● g5,21 40 TQFN MAX5853ETL+ 155-2866● g19,59 12 TQFN MAX5515ETC+ 155-2862● g4,79 Broches Boîtier Réf. Fab. Code Commande Prix Unitaire Broches Boîtier Réf. Fab. Code Commande Prix Unitaire 10 MSOP DAC082S085CIMM 131-2535● g3,85 10 MSOP DAC122S085CIMM 131-2539● g6,80 10 MSOP DAC102S085CIMM 131-2537● g4,28 10 MSOP DAC124S085CIMM 131-2540● g11,40 10 MSOP DAC104S085CIMM 131-2538● g6,64 16 TSSOP DAC128S085CIMT 149-5073● g13,60 16 TSSOP DAC108S085CIMT 149-5063● g7,65 Convertisseurs N/A (ADI) BrochesBoîtier Réf. Fab. Code Commande Prix Unitaire BrochesBoîtier Réf. Fab. Code Commande Prix Unitaire 48 TQFP DAC5672IPFBG4 139-0670● g27,24 38 TSSOP DAC8805QDBT 139-0684● g12,64 100 HTQFP DAC5687IPZPG4 139-0669● g46,25 16 TSSOP DAC8812ICPWG4 139-0687● g19,99 8 SOIC DAC7612UB 146-0208● g6,05 28 SSOP DAC8820ICDBG4 139-0688● g20,36 8 MSOP DAC8551IADGKTG4 139-0682● g6,07 38 TSSOP DAC8822QCDBTG4 139-0689● g20,45 8 MSOP DAC8560IDDGKTG4 139-0683● g11,51 Convertisseurs N/A (NSC) Convertisseurs N/A (TI) Convertisseurs N/A (Maxim) Broches Boîtier Réf. Fab. Code Commande Prix Unitaire Broches Boîtier Réf. Fab. Code Commande Prix Unitaire 16 TSSOP AD5531BRUZ 143-8908● g12,30 16 TSSOP AD5648ARUZ-2 143-8922● g18,50 74 CSPBGA AD5532ABCZ-3 143-8910● g62,10 14 TSSOP AD5665BRUZ 149-8713● g13,12 74 CSPBGA AD5532ABCZ-5 143-8911● g62,10 14 TSSOP AD5666BRUZ-2 143-8924● g18,80 28 SSOP AD5554BRSZ 143-8912● g20,10 10 MSOP AD5667BRMZ 149-8715● g10,41 14 TSSOP AD5645RBRUZ 149-8711● g11,22 16 TSSOP AD5668ARUZ-2 143-8925● g24,00 10 MSOP AD5647RBRMZ 149-8712● g10,11 8 SOIC AD7390ARZ 149-8718● g9,39 RoHS Conforme Non-conforme Commandez du lundi au vendredi de 8h30 à 19h pour une livraison gratuite le lendemain Drivers de LED 21 Semiconducteurs www.farnell.fr 04 74 68 99 99 Besoin d’un meilleur prix? Service de mise en bobine 04 74 68 99 98 cotations@farnell.com Optimisez vos stocks et accélérez le montage de vos composants CMS. Commande et plus d’informations: Les drivers de LED NSC sont basés sur des pompes de charge, à courant constant, capable de piloter 3 leds avec un courant de sortie total jusqu’à 90mA et un convertisseur boost en mode courant offre deux sorties séparées. Une interface compatible I2C permet un ajustement indépendant du courant de LED dans l’une ou l’autre sortie de 0 au courant max en 32 étapes exponentielles. Maxim introduit des drivers de LED à pompe de charge pour LED blanches, à courant constant, destinés à des applications d’affichage à haute performance. Les drivers de LED multicanaux de TI disposent de la fonction « correction de point » et sont compatibles pour des applications d’éclairages à LED monocolore, multicolore, afficheur à LED fullcolore, enseigne à LED, rétroéclairage d’afficheur. @ Broches Boîtier Réf. Fab. Code Commande Prix Unitaire 32 TSSOP TLC5923DAPG4 122-6304● g3,15 32 TSSOP TLC5922DAPG4 122-6303● g3,00 28 DIP TLC5940NTG4 122-6306● g4,25 30 SM-8 TPS68000DBTG4 122-6318● g5,55 28 TSSOP TLC5941PWPG4 122-6308● g3,65 48 SSOP TLC5920DLG4 122-6302● g2,45 Broches Boîtier Réf. Fab. Code Commande Prix Unitaire Broches Boîtier Réf. Fab. Code Commande Prix Unitaire 16 TQFN MAX16803ATE+ 155-2873● g2,95 44 TQFN MAX6961ATH+ 155-2884● g12,03 20 TQFN MAX16806ATP+ 155-2875● g4,28 44 TQFN MAX6962ATH+ 155-2885● g11,59 40 TQFN MAX6955ATL+ 155-2878● g17,72 44 TQFN MAX6963ATH+ 155-2886● g10,99 16 QSOP MAX6959BAEE+ 155-2882● g10,25 16 TSSOP MAX6977AUE+ 155-2889● g4,26 44 TQFN MAX6960ATH+ 155-2883● g14,55 24 TSSOP MAX6979AUG+ 155-2893● g7,35 Broches Boîtier Réf. Fab. Code Commande Prix Unitaire Broches Boîtier Réf. Fab. Code Commande Prix Unitaire 18 Micro Bump LM2755TM 153-5362● g3,15 10 LLP LM3509SD 134-2342● g4,05 12 Micro Bump LM2757TM 153-5363● g3,15 10 LLP LM3509SDE 149-5071● g4,30 6 TSOT-23 LM3405AXMKE 153-5360● g2,73 14 LLP LM3551SD 131-2580● g3,55 28 TSSOP LM3431AMH 153-5364● g3,98 Les drivers de LED LTC offrent une fréquence fixe en mode Buck et un convertisseur DC/DC en mode courant avec un commutateur interne 2.3A, 45V spécialement conçu pour piloter jusqu’à 10 leds. Une fréquence fixe, une architecture en mode courant permettent une stabilité de fonctionnement sur une large plage de tension d’entrée et de sortie. Drivers de LED (TI) Drivers de LED (Maxim) Broches Boîtier Réf. Fab. Code Commande Prix Unitaire Broches Boîtier Réf. Fab. Code Commande Prix Unitaire 16 QFN LT3518EUF#PBF 143-2694● g6,35 6 DFN LT3590EDC#PBF 155-6252● g3,78 16 QFN LT3518IUF#PBF 143-2695● g7,60 Drivers de LED (NSC) Drivers de LED (LTC) Notre service cotations est à votre disposition pour vous proposer un meilleur tarif sur toute demande à partir de 500g Tous les prix de cette brochure sont en euros hors TVA www.farnell.fr Tél.: 04 74 68 99 99 Fax: 04 74 68 99 90 Horloges 22 Semiconducteurs Les RTC d’Intersil sont des composants à faible consommation avec synchronisation, horloge/calendrier, ID 64-bits unique, indicateur de panne, deux alarmes périodiques ou chien de garde, commutation intelligent de batterie de sauvegarde, superviseur de CPU et EEPROM 512 x 8-bits intégrée, dans un format 16 octets par page et 2 octets de SRAM. Les horloges de ADI disposent de fonction de distribution d’horloge à sortie multiple avec des femtosecondes de sautillements avec un PLL et VCO sur-puce. Le VCO s’ajuste de 2.55 GHz à 2.95 GHz. Un VCO/VCXO externe optionel peut être utilisé. L’horloge de TI est l’une des plus petite et puissante PLL synthétiseurs / multiplicateur / diviseur disponible à ce jour. Il est capable de produire une fréquence de sortie presque indépendante à partir d’une fréquence donnée en entrée. La fréquence d’entrée peut être dérivée à partir d’un LVCMOS, d’une entrée d’horloge différentielle, ou d’un simple quartz. La forme d’onde d’entrée appropriée peut être sélectionnée via un contrôleur d’interface de données SMBus. Broches Boîtier Réf. Fab. Code Commande Prix Unitaire Broches Boîtier Réf. Fab. Code Commande Prix Unitaire 8 SOIC ISL12025IBZ 136-0965● g3,43 10 MSOP ISL1219IUZ 136-0970● g3,02 8 SOIC ISL12026IBZ 136-0967● g3,22 10 MSOP ISL1220IUZ 136-1048● g2,50 8 SOIC ISL12027IB27AZ 136-0968● g3,72 Broches Boîtier Réf. Fab. Code Commande Prix Unitaire 20 TSSOP CDCE706PWG4 139-0653● g7,19 20 TSSOP CDCE906PWG4 139-0654● g4,53 Les RTC série de Maxim sont des composants à faible consommation horloge/date avec deux alarmes programmables et une sortie de forme carré programmable ainsi qu’un oscillateur à quartz compensé en température et un espace mémoire nonvolatile (FRAM) dans un simple boîtier. Adresses et données sont transférées en série à travers un bus I²C. L’horloge/date fournit : seconde, minute, heure, jour, mois et année. Broches Boîtier Réf. Fab. Code Commande Prix Unitaire 64 LFCSP AD9516-0BCPZ 149-8700● g15,40 48 LFCSP AD9517-1BCPZ 149-8701● g14,26 Horloges temps réel (Intersil) Horloges (ADI) Horloges temps réel (Maxim) Horloges (TI) Broches Boîtier Réf. Fab. Code Commande Prix Unitaire Broches Boîtier Réf. Fab. Code Commande Prix Unitaire 8 MSOP DS1339U-33+ 137-9717● g3,15 20 SOIC DS32B35-33# 143-3232● g8,30 8 SOIC DS1340Z-33+ 137-9739● g3,15 20 SOIC DS32B35-33IND# 143-3233● g9,50 8 SOP DS1372U+ 143-3229● g2,30 20 SOIC DS32C35-33# 143-3235● g9,95 24 SOIC DS1685S-3+ 137-9820● g4,85 20 SOIC DS32C35-33IND# 143-3236● g11,50 RoHS Conforme Non-conforme Commandez du lundi au vendredi de 8h30 à 19h pour une livraison gratuite le lendemain Interfaces 23 Semiconducteurs Références de tension, haute précision Ethernets de NSC sont des composants robustes à couche physique caractérisés par un simple port 10/100 offrant une faible puissance de consommation. Ce mode basse puissance augmente la fiabilité globale du composant due à la réduction de la dissipation de puissance. Hautement fiable, ces composants sont appropriés pour des applications industrielles. Les drivers/récepteurs de ligne de TI se composent de deux drivers de ligne, deux récepteurs de ligne et un double circuit pompe de charge avec une protection ESD broche à broche de ±15-kV (connexion port série, GND inclus). Ces composants répondent aux exigeances de TIA/EIA-232-F et fournient une interface électrique entre un contrôleur de communication asynchrone et le connecteur port série. La pompe de charge et quatre petits condensateurs externes permettent le fonctionnement à partir d’une simple alimentation de 3V à 5.5V. Les transceivers sont des interfaces de communication alimentées en +3.0V- EIA/TIA-232 et V.28/V.24 caractérisées par une faible puissance de consommation, un débit de données élevé, avec arrêt/démarrage automatique et une protection ESD améliorée. La structure de la protection ESD protège toutes les sorties du transmetteur et les entrées du récepteur jusqu’à ±15kV en utilisant la décharge de fuite IEC 1000-4-2, jusqu’à ±8kV en utilisant la décharge de contact IEC 1000-4-2 (±9kV pour MAX3246E), et jusqu’à ±15kV utilisant le modèle du corps humain. Analog Devices offrent la plus large sélection de références de tension hautes performances. Une gamme de produit haute précision, faible bruit conçue pour des applications industrielles finales à usage général, application faible consommation, alimentée sur batterie. Broches Boîtier Réf. Fab. Code Commande Prix Unitaire Broches Boîtier Réf. Fab. Code Commande Prix Unitaire 20 TSSOP MAX3222EEUP+ 137-9920● g6,60 28 SSOP MAX3241CWI+ 142-2306● g8,15 20 TSSOP MAX3232EEUP+ 137-9929● g6,60 28 SSOP MAX3244ECAI+ 137-9934● g8,85 28 SSOP MAX3237CAI+ 137-9730● g7,65 28 SSOP MAX3245EEAI+ 142-2307● g13,00 Broches Boîtier Réf. Fab. Code Commande Prix Unitaire Broches Boîtier Réf. Fab. Code Commande Prix Unitaire 16 TSSOP MAX3221EIPWG4 149-4911● g1,02 16 SSOP MAX3232ECDBG4 149-4917● g1,20 20 TSSOP MAX3222CPW 146-0364● g1,60 16 SOIC MAX3232ECDG4 149-4916● g1,20 20 TSSOP MAX3222EIPWG4 149-4912● g1,49 16 SSOP MAX3232EIDBG4 149-4918● g1,20 20 TSSOP MAX3223ECPWG4 149-4913● g1,29 16 SOIC MAX3232EIDWG4 149-4919● g1,20 20 SSOP MAX3223EIDBG4 149-4914● g1,29 16 TSSOP MAX3232EIPWG4 149-4920● g1,20 16 SSOP MAX3227EIDBG4 149-4915● g1,49 16 TSSOP MAX3232IPW 146-0375● g1,20 16 TSSOP MAX3232CPWR 146-0372● g1,45 28 TSSOP MAX3243EIPWG4 149-4921● g1,10 Broches Boîtier Réf. Fab. Code Commande Prix Unitaire Broches Boîtier Réf. Fab. Code Commande Prix Unitaire 56 LLP DP83847ALQA56A 152-8404● g357,20 80 TQFP DP83849IDVS 127-1401● g13,10 48 LQFP DP83848CVV/NOPB 152-8379● g336,30 80 TQFP DP83849IFVS 127-1402● g15,60 48 LQFP DP83848IVV/NOPB 152-8380● g442,70 80 TQFP DP83849IVS 127-1403● g12,74 80 TQFP DP83849CVS 127-1400● g12,00 Drivers et récepteurs de ligne (TI) Ethernets (NSC) Broches Boîtier Réf. Fab. Code Commande Prix Unitaire Broches Boîtier Réf. Fab. Code Commande Prix Unitaire 8 PDIP AD584KNZ 143-8331● g10,10 3 SOT-23 ADR5040BRTZ 149-8669● g2,02 8 PDIP AD780BNZ 143-8532● g11,50 8 SOIC REF02HSZ 138-9152● g3,00 8 SOIC ADR425ARZ 143-8993● g5,40 8 PDIP REF195GPZ 143-8681● g2,50 8 SOIC ADR435ARZ 143-8995● g6,15 Transceivers (Maxim) Références de tension (ADI) Tous les prix de cette brochure sont en euros hors TVA www.farnell.fr Tél.: 04 74 68 99 99 Fax: 04 74 68 99 90 Références de tension 24 Semiconducteurs Le LM4120 est une référence de tension à faible perte LDO, faible puissance avec une sortie de courant jusqu’à 5mA. Cette série fonctionne avec une tension d’entrée de 2V à 12V avec un courant de consommation de 160μA (Typ.) Mise hors tension, le composant consomme moins de 2μA. La famille LM4132 des références de tension de précision sont comparables aux meilleures références bipolaires ajustées au laser, mais en technologie CMOS. Les circuits REF50xx forment une famille de référence de tension, faible bruit, faible dérive et d’une très grande précision. Ces références sont capable à la fois de limiter ou d’approvisionner, elles sont très robustes en ce qui concerne les changements d’alimentation ou de charge. Avec une excellente dérive en température (3ppm / ° C) et une grande précision (0,05%), leurs fonctionnalités combinées à un très faible bruit les rendent idéales pour une utilisation dans des systèmes d’acquisition de données haute-précision. Broches Boîtier Réf. Fab. Code Commande Prix Unitaire Broches Boîtier Réf. Fab. Code Commande Prix Unitaire 8 SOIC REF5020AIDG4 143-9621● g4,00 8 SOIC REF5040AIDG4 143-9624● g4,00 8 SOIC REF5025AIDG4 143-9622● g4,00 8 SOIC REF5045AIDG4 143-9626● g4,00 8 SOIC REF5030AIDG4 143-9623● g4,00 8 SOIC REF5050AIDG4 143-9628● g4,00 Broches Boîtier Réf. Fab. Code Commande Prix Unitaire Broches Boîtier Réf. Fab. Code Commande Prix Unitaire 5 SOT-23 LM4120IM5-2.0 131-2743● g2,47 5 SOT-23 LM4132BMF-4.1 131-2755● g4,11 5 SOT-23 LM4120IM5-2.5 131-2744● g2,59 5 SOT-23 LM4132CMF-2.5 131-2757● g3,73 5 SOT-23 LM4120IM5-4.1 131-2747● g2,42 5 SOT-23 LM4132DMF-2.5 131-2760● g3,32 5 SOT-23 LM4132AMF-2.5 131-2750● g8,24 5 SOT-23 LM4132DMF-4.1 131-2761● g2,84 5 SOT-23 LM4132BMF-2.5 131-2754● g3,97 5 SOT-23 LM4132EMF-2.5 131-2763● g2,97 LTC introduit la famille des références de tension micropower de précision qui combine haute performance, avec une faible dissipation de puissance et dans un boîtier extrêmement petit. Cette série de référence utilise la compensation de courbure pour obtenir un faible coefficient de température, des résistances à couche mince ajustées au laser permettent de réaliser une sortie précise, références idéales pour des applications de régulateurs de précision. Références de tension (TI) Références de tension (LTC) Références de tension (NSC) Broches Boîtier Réf. Fab. Code Commande Prix Unitaire Broches Boîtier Réf. Fab. Code Commande Prix Unitaire 3 DFN LT6660HCDC-2.5#PBF 143-2118● g2,65 8 MSOP LTC6652AHMS8-2.5#PBF 155-6273● g9,08 3 DFN LT6660HCDC-3#PBF 143-2119● g2,65 8 MSOP LTC6652AHMS8-3#PBF 155-6274● g9,08 3 DFN LT6660HCDC-3.3#PBF 143-2120● g2,65 8 MSOP LTC6652AHMS8-3.3#PBF 155-6275● g9,08 3 DFN LT6660HCDC-5#PBF 143-2121● g2,65 8 MSOP LTC6652BHMS8-2.5#PBF 155-6276● g4,45 RoHS Conforme Non-conforme Commandez du lundi au vendredi de 8h30 à 19h pour une livraison gratuite le lendemain Contrôleurs de puissance 25 Semiconducteurs Découvrez les toutes dernières technologies médicales et les tous derniers produits d’instrumentation dans notre nouvelles revue Technology First en ligne sur www.electronicsdesignworld.com Obtenez le meilleur prix Nos prix sont revus de manière régulière, afin de vous permettre d’obtenir le prix le plus adapté au marché Consultez nos tarifs en vigueur sur www.farnell.fr TI introduit une large gamme de convertisseurs DC/DC Boost & Buck de 1W&2W, irrégulés et faible courant de repos. Ils exigent un minimum de composants externes et incluent une protection de composant sur puce, avec des fonctions supplémentaires comme désactivation de sorties et synchronisation des fréquences de commutation. Maxim introduit des convertisseurs Step-down avec double régulateur linéaire LDO prévus pour alimenter des microprocesseurs basse tension et DSPs dans les appareils portables. Ils se caractérisent par une haute efficacité avec une petite taille de composant externe. Double LDO, faible courant de repos et faible bruit, fonctionne en basse tension jusqu’à 1.7V. Les circuits de gestion d’alimentation TPS206x sont prévus des applications où les charges lourdes et court-circuit sont suceptibles d’être produits. Ces composants intègrent des commutateurs MOSFET de puissance canal N, 50mΩ & 70mΩ pour un système de gestion d’alimentation qui exige de multiples commutateurs dans un simple boîtier. La pompe de charge n’exige aucun composant externe et permet un fonctionnement avec basse tension comme 2.7V. Broches Boîtier Réf. Fab. Code Commande Prix Unitaire Broches Boîtier Réf. Fab. Code Commande Prix Unitaire 8 SOIC TPS2062D. 156-0652● g1,49 8 SOIC TPS2021D 146-1429● g2,10 8 SOIC TPS2065D. 156-0653● g1,18 8 SOIC TPS2032D 146-1433● g2,10 8 SOIC TPS2066D 156-0654● g1,49 Maxim introduit des contrôleurs de niveau de charge haute précision, chargeurs et composants de gestion de batterie pour des applications de précision. Fournit des composants principaux pour une estimation précise de la capacité restante en intégrant basse puissance, précision de la mesure de température, tension, courant et accumulation de courant, ainsi que le stockage de données non-volatile (NV). Convertisseur DC/DC (TI) Broches Boîtier Réf. Fab. Code Commande Prix Unitaire Broches Boîtier Réf. Fab. Code Commande Prix Unitaire 16 TQFN MAX8667ETEAA+ 145-5612● g7,45 16 TQFN MAX8668ETEQ+ 145-5615● g7,45 16 TQFN MAX8668ETEA+ 145-5613● g7,45 16 TQFN MAX8668ETEU+ 145-5616● g7,45 16 TQFN MAX8668ETEP+ 145-5614● g7,45 Broches Boîtier Réf. Fab. Code Commande Prix Unitaire Broches Boîtier Réf. Fab. Code Commande Prix Unitaire 8 TSSOP DS2756E+ 145-5594● g4,75 8 TSSOP DS2782E+ 145-5598● g5,60 16 TSSOP DS2762BE+ 145-5595● g6,05 14 TDFN DS2784G+ 145-5599● g6,80 16 TSSOP DS2764BE+ 145-5596● g6,05 24 TQFN MAX8677CETG+ 145-5604● g5,15 8 TSSOP DS2781E+ 145-5597● g7,25 8 TDFN MAX8804ZETA+ 145-5605● g3,05 Convertisseur DC/DC (Maxim) Broches Boîtier Réf. Fab. Code Commande Prix Unitaire Broches Boîtier Réf. Fab. Code Commande Prix Unitaire 7 SOP DCP010512BP-U 146-1015● g9,15 12 SOP DCP020509U 146-1028● g11,90 7 SOP DCP010515BP-U 146-1017● g9,05 7 SOP DCV010505P-U 146-1041● g10,10 7 PDIP DCP011512DBP 146-1019● g9,95 7 PDIP DCV011515DP 146-1043● g9,95 7 SOP DCP011515DBP-U 146-1021● g9,35 10 QFN TPS61080DRCTG4 134-4378● g3,35 7 SOP DCP012405BP-U 146-1022● g9,15 10 QFN TPS61081DRCTG4 134-4379● g3,60 12 SOP DCP020503U 154-4011● g12,51 10 SON TPS61200DRCT 147-1238● g3,34 Commutateur de distribution d’énergie (TI) Gestion de batterie (Maxim) Tous les prix de cette brochure sont en euros hors TVA www.farnell.fr Tél.: 04 74 68 99 99 Fax: 04 74 68 99 90 Contrôleurs de puissance 26 Semiconducteurs Régulateur haute performance Les régulateurs de NSC sont conçus pour répondre aux exigences des applications portables et systèmes alimentés sur batteries, fournissant une tension de sortie régulée et un faible courant de repos. Basculé en mode « shutdown » via un signal logique sur la broche Enable, la consommation de puissance est réduite virtuellement à zéro. Le régulateur buck SIMPLE SWITCHER permet aux ingénieurs de conception de concevoir et optimiser l’alimentation en utilisant un minimum de composants. Régulateurs (NSC) Le LT3680 est un régulateur à découpage monolithique buck à fréquence variable (200 kHz à 2.4MHz), acceptant les tensions d’entrées jusqu’à 36V. Le LTC3407 est un double convertisseur DC/DC Step-down synchrone, à fréquence constante. Prévu pour des applications basse puissance, il fonctionne sur la plage de tension d’entrée de 2.5V à 5.5V, avec une fréquence de commutation constante de 1.5MHz. Ceci permet l’utilisation de condensateurs économiques et des inductances de 2mm ou moins de hauteur. LTC introduit des chargeurs complets pour une (4.2V) ou deux (8.4V) batteries au lithium-ion. Avec une fréquence de commutation de 500kHz, le LTC4002 est une solution simple et efficace pour la charge rapide des batteries Li-Ion sur une large plage de tension. Une résistance externe fixe la charge de courant avec une précision de ±5%. Une résistance-diviseur interne et une référence de précision fixent la tension flottante finale à 4.2V par pile avec une précision de ±1%. Intersil introduit des contrôleurs PWM, du monophasé au triphasé, fournissant un système de régulation de tension pour des microprocesseurs avancés. Avec un régulateur linéaire intégré, diode boot, drivers de grille MOSFET canal N, ils réduisent le nombre de composants externes ainsi que l’espace carte. Ces composants sont appropriés pour une large gamme d’applications. Broches Boîtier Réf. Fab. Code Commande Prix Unitaire Broches Boîtier Réf. Fab. Code Commande Prix Unitaire 10 DFN LT3680EDD#PBF 143-2696● g8,90 10 MSOP LT3680IMSE#PBF 143-2699● g11,00 10 MSOP LT3680EMSE#PBF 143-2697● g9,15 10 DFN LTC3407IDD-2#PBF 143-2765● g7,30 10 DFN LT3680IDD#PBF 143-2698● g10,70 10 MSOP LTC3407IMSE-2#PBF 143-2766● g7,30 Broches Boîtier Réf. Fab. Code Commande Prix Unitaire Broches Boîtier Réf. Fab. Code Commande Prix Unitaire 16 TSSOP LM5574MT 132-5419● g3,45 8 PSOP LP3879MR-1.2 155-4783● g1,90 16 TSSOP LM5575MH 132-5420● g4,40 6 LLP LP5900SD-3.3 131-2648● g0,92 20 TSSOP LM5576MH 132-5422● g5,90 5 SOT-23 LP5951MF-3.0 131-2657● g0,52 5 TO-263 LP38502TSX-ADJ 153-5366● g1,46 5 SOT-23 LP5951MF-3.0 131-2657● g0,52 5 TO-263 LP38512TS-1.8 153-5371● g2,93 10 LLP LP5996SD-0833 131-2659● g0,82 5 TO-220 LP38513S-1.8 149-5064● g3,10 10 LLP LP5996SD-3033 131-2664● g0,82 8 PSOP LP3879MR-1.0 155-4782● g1,85 10 LLP LP5996SD-3333 131-2666● g0,79 Broches Boîtier Réf. Fab. Code Commande Prix Unitaire Broches Boîtier Réf. Fab. Code Commande Prix Unitaire 16 QFN LTC4001EUF#PBF 155-6266● g5,98 11 DFN LTC4075EDD#PBF 155-6269● g4,46 8 SOIC LTC4002ES8-8.4#PBF 155-6268● g4,87 11 DFN LTC4077EDD#PBF 155-6271● g4,25 Régulateurs Broches Boîtier Réf. Fab. Code Commande Prix Unitaire Broches Boîtier Réf. Fab. Code Commande Prix Unitaire 8 SOIC ISL6545AIBZ 136-1010● g2,45 8 SOIC ISL8105AIBZ 136-1013● g2,69 40 QFN ISL6566AIRZ 136-1011● g4,54 8 SOIC ISL8105IBZ 136-1014● g2,69 14 SOIC ISL8104IBZ 136-1012● g2,96 16 QFN ISL8106CRZ 136-1015● g3,54 Contrôleurs PWM (Intersil) Gestion de batterie (LTC) RoHS Conforme Non-conforme Commandez du lundi au vendredi de 8h30 à 19h pour une livraison gratuite le lendemain LEDs 27 Optoélectronique ASMT-QxB2-Fxxxx ASMT-QYBE-Nxxxx Avec lentille bombée ASMT-QTB0-0AA02 • Angle de vue étroit 30° • Compatible avec les procédés de soudure IR et TTW • Température d’utilisation de -40°C à 100°C • Angle de vision extrêmement large: (160°) • Technologie: InGaAlP • Méthodes de soudage: refusion IR et TTW (à vague) • Boîtier industriel PLCC-4 standard • Boîtier haute fiabilité • Haute efficacité optique • Boîtier CMS, résine incolore diffuse • Longueur d’onde: 633 nm (super-rouge), 615 nm (ambre), 606 nm (orange), 587 nm (jaune) ASMT-QTC0-0AA02 Par Multiple de 5 Intensité lum. Couleur (mcd) à 50mA Code Commande Prix Unitaire Ambre 3000 110-8948● g0,38 Ambre 4700 110-8949● g0,43 Ambre 5000 110-8950● g0,23 Rouge 2300 110-8951● g0,43 Rouge 4000 110-8952● g0,48 Rouge/Orange 2300 110-8953● g0,42 Rouge/Orange 4500 110-8954● g0,35 Orange 6000 110-8956● g0,42 Vert 4500 110-8957● g1,18 Bleu 2400 110-8958● g0,93 Bleu 950 110-8959● g0,65 Rouge/Orange 360 110-8960● g0,81 Intensité/Flux Couleur Typ. (mcd) Réf. Fab. Boîtier Code Commande Prix Unitaire Super rouge 70 LSQ976-Z 0603 122-6390● g0,220 Super rouge 85 LSL296-P2Q2-1-Z 0603 122-6389● g0,290 Super rouge 105 LSR976 0805 122-6392● g0,220 Vert 10 LGQ971 0603 122-6372● g0,163 Vert vrai 65 LTL29S-N2Q1-25-Z 0603 122-6397● g1,610 Jaune 7 LYR971-Z 0805 122-6420● g0,088 Jaune 10 LYN971-Z 1206 122-6417● g0,088 Jaune 110 LYQ976-Z 0603 122-6419● g0,220 Jaune 135 LYL296-Q2R2-26-Z 0603 122-6427● g0,330 Bleu 12.5 LBL29S-K1L2-35-Z 0603 122-6366● g1,560 Vert 18 LGR971-Z 0805 122-6373● g0,088 Vert 26 LGN971 1206 122-6371● g0,163 Bleu 40 LBL293-M2P1-36-Z 0603 122-6359● g1,880 Blanc 125 LWL283-Q1R2-3K8L-1-Z 0603 122-6405● g1,880 Réf. Fab. en Code Commande HSMA-A430-W90M1=110-8948 HSMA-A431-X90M1=110-8949 HSMA-A431-Y00M1=110-8950 HSMC-A430-W50M1=110-8951 HSMC-A431-X90M1=110-8952 HSMJ-A430-W50M1=110-8953 HSMJ-A431-X90M1=110-8954 HSML-A431-X90M1=110-8956 HSMM-A430-W90M2=110-8957 HSMN-A430-U50M2=110-8958 HSMN-A431-T50M2=110-8959 HSMV-A430-Y90M1=110-8960 Simple couleur LED 0603, 0805 et 1206 Couleur Code Commande Prix Unitaire Ambre 155-4791● g0,70 Rouge-Orange 155-4792● g0,70 Rouge 155-4793● g0,70 Blanc froid 155-4794● g1,47 Blanc chaud 155-4795● g1,53 Bleu 155-4796● g1,47 Vert 155-4798● g1,94 RVB RVB 120° 155-4799● g1,35 RVB 115° 155-4800● g1,46 Led CMS - Boîter PLCC-4 Intensité Tension L.onde Lum. Vf Domin. Min Typ Max Courant If Typ Max Typ Code Couleur (mcd) (mcd) (mcd) (mA) (V) (V) (nm) Réf. Fab. Commande Ambre 9 11.4 15 150 2.7 3.25 594.5 ASMT-QAB2-FDE0E 155-4791 Rouge-Orange 11.5 14 19.5 150 2.7 3.25 617 ASMT-QHB2-FEF0E 155-4792 Rouge 7 9.8 11.5 150 3.1 3.55 624 ASMT-QRB2-FCD0E 155-4793 Blanc froid 15 19.5 33 150 3.6 4.1 - ASMT-QWBE-NFH0E 155-4794 Blanc chaud 11.5 18 25.5 150 3.6 4.1 - ASMT-QYBE-NEG0E 155-4795 Bleu 3.4 4.8 7 150 3.6 4.1 464.5 ASMT-QBBE-N0B0E 155-4796 Vert 11.5 17 25.5 150 3.6 4.1 522 ASMT-QGBE-NEG0E 155-4798 LED CMS PLCC-4 ASMT-QWBE-Nxxxx Tous les prix de cette brochure sont en euros hors TVA www.farnell.fr Tél.: 04 74 68 99 99 Fax: 04 74 68 99 90 Afficheurs 28 Optoélectronique Taille(") Réf. Fab. Code Commande Prix Unitaire TFT Displays 10.4 TCG104VG2AA-G00 150-0397● g406,42 8.5 TCG085WV1AB-G00 150-0398● g264,90 5.7 TCG057QVLBA-G00 150-0402● g228,59 5.7 TCG057QVLBB-G00 150-0403● g250,37 5.7 TCG057QVLAC-G00 150-0407● g283,04 5.7 THG057VG1AC-H00 150-0408● g254,00 5.7 TCG057VG1AD-G00 150-0409● g290,30 Afficheur CSTN 5.7 KHS057QV1CJ-G01 150-0400● g195,95 5.7 KCG057QVLDG-G77 150-0401● g224,96 Inverseur, compatible 6 à 13’’, simple — CX-L0612A 150-0410● g58,07 Inverseur, compatible 10 à 12’’, double — CX-A0308 150-0411● g90,71 Kit Evaluation (incluant afficheur 1500397) I-KIT TFT-I-KIT-001 150-0415● g1067,44 K-KIT TFT-K-KIT-001 150-0412● g678,11 Kit Evaluation (incluant afficheur 1500407) I-KIT TFT-I-KIT-007 150-0416● g912,43 K-KIT TFT-K-KIT-007 150-0413● g563,74 Kit Evaluation (incluant afficheur 1500406) I-KIT TFT-I-KIT-008 150-0418● g904,12 K-KIT TFT-K-KIT-008 150-0414● g495,30 Seulement g1,91 CODE COMMANDE124-1279● Ces afficheurs intégrent une technologie à matrice active permettant aux ingénieurs de conception d’adapter les afficheurs LCD compacts de haute qualité dans des applications jamais envisagées auparavant. Haute luminosité et fort contraste assurent une visibilité précise, offrant une interprétation de couleur et d’image hautes qualités. Résolution Luminosité (cd/m2) Réf. Fab. Code Commande Taille (’’) Inverseur Standard Afficheurs TFT 10.4 640 x 480 450 CXA-0308 (TDK) TFT-VGA TCG104VG2AA-G00 150-0397 8.5 800 x 480 400 TBD TFT-VGA TCG085WV1AB-G00 150-0398 5.7 320 x 240 300 N/A (LED) TFT-QVGA TCG057QVLBA-G00 150-0402 5.7 320 x 240 240 N/A (LED) TFT-QVGA TCG057QVLBB-G00 150-0403 5.7 320 x 240 350 N/A (LED) TFT-QVGA TCG057QVLAC-G00 150-0407 5.7 640 x 480 200 CXA-L0612A-VJL (TDK) TFT-VGA THG057VG1AC-H00 150-0408 5.7 640 x 480 280 CXA-L0612A-VJL (TDK) TFT-VGA TCG057VG1AD-G00 150-0409 Afficheurs CSTN 5.7 320 x 240 130 PH-BLC08-K3 CSTN KHS057QV1CJ-G01 150-0400 5.7 320 x 240 245 N/A(LED) CSTN KCG057QVLDG-G77 150-0401 • Commande de la luminosité • Compatible soude à la vague • Disponibles en 5 couleurs • Technologie CMOS faible puissance • Compatible TTL • Tension d’alimentation 3.3V Taille d’écran(") Réf. Fab. Code Commande Prix Unitaire 5.8 LTA065B0D0F 122-5914● g307,79 8.0 LTM08C351S 122-5915● g430,30 8.0 LTM08C351L 122-5916● g430,30 10.4 LTD104C11S 122-5917● g430,30 12.1 LTD121C30S 122-5918● g485,63 12.1 LTD121C33S 122-5919● g485,63 Brochage, *H151 1 = e 10 = g 2 = d 9 = f 3 = Cathode commune 8 = Cathode commune 4 = c 7 = a 5 = DP 6 = b 20mm, conçu pour visible jusqu’à une distance de 10m. Ces composants utilisent un brochage et une taille standard de l’industrie. Disponible en cathode commune ou en anode commune. • Performance optique: Très haute qualité, focus élevé sur l’angle de vision et contraste • Kyocera fabricant de haute qualité/précision Taille Typique écran(cm) Résol. Lumens(cd/m/2) Tech. Puissance(W) I/F Signal (Vs) Réf. Fab. 17 640 x 480 400 VGA 4.2 CMOS (3.3V) LTA065B0D0F 21 800 x 600 350 SVGA 6.4 CMOS (3.3V) LTM08C351S 21 800 x 600 350 SVGA 6.4 LVDS (3.3V) LTM08C351L 26 640 x 480 400 VGA 6.2 CMOS (3.3/5V) LTD104C11S 31 800 x 600 350 SVGA 7.2 CMOS (3.3V) LTD121C30S 31 800 x 600 350 SVGA 7.5 LVDS (3.3V) LTD121C33S • Simple d’utilisation • Interfaces directes avec Microprocesseurs • Hauteur 0.15" caractère dans un boîtier 4 caractères • Boîtier robuste empilable X et Y • Entrée série Intensité Lum./segment, typ. VFà IF Code Couleur mcd à Typ (mA) VR Connexion Réf. Fab. Commune Rouge 14 20 1.8V 40 3 Anode HDSP-N151 124-1281 Rouge 14 20 1.8V 40 3 Cathode HDSP-N153 124-1282 reconnu comme leader en terme de performance/technologie • Longue durée de vie (standard - 50K heures). Pour la gamme d’indicateur de panneau industriel, KC offre des durées de vie plus longue (50K hrs LED, 75K hrs CFL) • Point décimal à droite • Visible à la lumière solaire AlGaAs Réf. Fab. Couleur d’affichage Code Commande Prix Unitaire 4 caractères, 0.15" HCMS-3901 Jaune 124-1262● g28,29 HCMS-3903 Vert 124-1263● g36,35 4 caractères, 0.2" HCMS-3961 Jaune 124-1267● g27,28 8 caractères, 0.2" HCMS-2976 Bleu 124-1257● g133,37 HCMS-3973 Vert 124-1270● g56,91 8 caractères, 0.15" HCMS-2919 Bleu 124-1258● g131,04 HCMS-3913 Vert 124-1265● g53,17 • Taille standard industrielle • Brochage standard • Excellente apparence, angle de vision 50° Afficheur TFT, matrice active 10mm - Faible consommation Afficheur à LED, 4 à 8 caractères Réf. Fab. Code Commande Prix Unitaire HDSP-N151 124-1281● g4,28 HDSP-N153 124-1282● g3,21 Intensité Lumineux/segment, typ. VFà IF Couleur mcd à Typ (mA) VR Connexion Réf. Fab. Code Commande Rouge 16 20 1.8V 40 3 Cathode HDSP-H153 124-1279 Kit évaluation, Afficheur TFT, LCD Afficheur 14.2mm (0.56") Visible à la lumière solaire Developpez avec le meilleur Venez rencontrer Farnell Hall A5, Stand 558 NOUVEAU CENTRE DES EXPOSITIONS DE MUNICH Du 11 au 14 novembre 2008 Notez cette date dans votre agenda electronica 2008 Tous les prix de cette brochure sont en euros hors TVA www.farnell.fr Tél.: 04 74 68 99 99 Fax: 04 74 68 99 90 OPTO non LED 30 Optoélectronique Seulement g27,65 CODE COMMANDE149-5569● Seulement g50,07 CODE COMMANDE149-5584● Seulement g60,73 CODE COMMANDE149-5583● S9226/S9227 Seulement g33,42 CODE COMMANDE149-5564● Seulement g33,42 CODE COMMANDE149-5561● Photodiode boîtier céramique avec faible courant d’obscurité S10077 Caractéristiques • Grande surface active • Faible diaphonie • Large plage de réponse spectrale • Haute sensibité à l’UV • Large linéarité Caractéristiques • Haute sensibilité • Haute fiabilité Caractéristiques • Haute sensibilité • Faible courant d’obscurité • Haute linéarité Séries S1087/S1133 sont des photodiodes en boîtier céramique qui offre un faible courant d’obscurité. Boîtier céramique utilisé est opaque, ne laissant passer aucun rayonnement lumineux sur la partie active. Ceci permet d’avoir une mesure optique fiable pour une large plage de lumière visible à la lumière approchant de l’infrarouge, avec une faible à une haute intensité lumineuse. Code CommandeHauteur Largeur ProfondeurLong. broche Pas 149-5569 2.0mm10.1mm 8.9mm 10.5mm 7.4mm Caractéristiques • Haute puissance de rayonnement de sortie Caractéristiques • Haute sensibilité à l’UV • Faible capacité Réf. Fab. Code Commande Prix Unitaire S1087 149-5566● g5,16 S1133 149-5567● g5,77 • Réponse rapide • Faible capacité Caractéristiques • Haute puissance de rayonnement de sortie 16 élements photodiode Si - de l’UV à NIR Surface Tension L.onde Température active Vr max crête d’utilisation Réf. Fab. 1.3mm² 10V 560nm -10°C à +60°C S1087 2.4mm × 2.8mm 10V 560nm -10°C à +60°C S1133 Surface active Tension L.onde Température (1 par élément) Vr max crête d’utilisation Réf. Fab. 1.45 × 0.9 15V 960nm -20°C à +60°C S4111-16R Lumière visible à IR, photométrie de précision Longueur d’onde crête: 1.3μm Surface Tension L.onde Température active Vr max crête d’utilisation Réf. Fab. 5.8mm² 30V 960nm -20°C à +60°C S2387-66R De UV à IR, photométrie de précision Longueur d’onde crête: 1.45μm Réseau de photodiode Si - série S4111 La série L7850 est une Led à forte longueur d’onde utilisant comme puce InGaAs. Le pic d’émission se produit à 1.45μm, rendant cette série idéale pour la détection en teneur d’eau ou d’humidité. Photodiode Si - série S2387 Hauteur Largeur Profondeur Long. broche Pas 16.5mm 15.0mm 2.15mm 10.5mm 12.5mm Photodiode Si - séries S1087 et S1133 Tension L.onde Température Vr max crête d’utilisation Réf. Fab. 30V 960nm -40°C to +100°C S1223 Caractéristiques • Générateur d’horloge intégré permet le fonctionnement permet de fonctionner avec des entrées de deémarrage et d’implusion d’horloge • Plage de réponse spectral: 400nm à 1000nm La série L7866 est une Led à forte longueur d’onde utilisant comme puce InGaAs. Le pic d’émission se produit à 1.3μm, rendant cette série idéale pour la détection en teneur d’eau ou d’humidité. Réf. Fab. Code Commande Prix Unitaire S9226 149-5579● g50,44 S9227 149-5580● g59,55 S10077 149-5581● g80,35 Courant direct Puissance Tension directe, L.onde (If) dissipée Vf (max) (typ) Réf. Fab. 80mA 150mW 1.5V 1450nm L7850 Tension L.onde Température Vr max crête d’utilisation Réf. Fab. Code Commande 5V 690nm -20°C à +60°C S1337-1010BR 149-5583 Courant direct Puissance Tension directe, L.onde (If) dissipée Vf (max) (typ) Réf. Fab. 80mA 150mW 1.5V 1300nm L7866 Photodiode Si PIN - série S1223 Lumière visible à IR, photométrie usage général Led infrarouge L7866 Photodiode Si - série S1337 LED infrarouge L7850 Longueur d’onde crête 700nm Température d’utilisation-5°C à +60°C Les dernières technologies ajoutées quotidiennement sur le site Seulement g11,63 CODE COMMANDE149-5587● Puiss. Dimensions Code Minimum Consommée Haut. Prof. largeur Réf. Fab. Commande 5.25V 25mW 12.0mm 1.5mm 7.87mm S9226 149-5579 5.25V 150mW 12.0mm 1.5mm 7.87mm S9227 149-5580 5.25V 70mW 41.6mm 3.0mm 9.1mm S10077 149-5581 Capteur d’image linéaire CMOS Hauteur Dia. externe Dia. tête Long. broche Pas 4.1mm 9.1mm 8.1mm 20mm 5.08mm RoHS Conforme Non-conforme Commandez du lundi au vendredi de 8h30 à 19h pour une livraison gratuite le lendemain Non-Visible 31 Optoélectronique Seulement g295,73 CODE COMMANDE133-9015● Seulement g575,50 CODE COMMANDE124-4120● Seulement g5,40 CODE COMMANDE149-7897● • Technologie silicium monocristallin • Haute efficacité en extérieur et intérieur • Boîtier CMS pour la soudure à refusion • Mécanisme haute résistance • Température d’utilisation : -40 à +85°C Kit conçu pour présenter toutes les fonctionnalités du contrôleur de couleur ADJD-J823. Le kit de développement peut être utilisé de manière autonome avec une fonction de chargement automatique ou connecté directement à un PC IBM (via un port USB). Des exemples de programmes sont fournis pour illustrer les fonctions uniques de l’appareil. Code Commande Prix Unitire Cellule solaire XOD17 - 04B 142-6524● g0,26 XOD17 - 12B 142-6525● g0,95 XOD17 - 34B 142-6528● g2,93 Cellule solaire CMS (Solar Bits) XOB17 - 12X1 142-6531● g2,04 XOB17 - 04X3 142-6532● g2,26 Le kit contient les éléments suivants : • Carte de développement • Carte FPC (voir la fiche technique) • CD-ROM contenant le manuel utilisateur du matériel, le manuel du logiciel d’exploitation ICMv2, les notes d’application • Conçu pour fonctionner avec des tubes transparents de diamètres externes de 1/16” [1.6mm] 1/8” [3.2mm], 3/16” [4.8mm] et 1/4” [6.3 mm] • En complément de circuit de référence, les états de sorties peuvent être reconnus comme "présence de fluide", "absence de fliude" et "absence de tube" • Les tubes de plus petits diamètres externes peuvent être utilisés lorsqu’ils sont correctement adaptés sur l’ouverture du boîtier Code Prix Code Prix Réf. Fab. Commande Unitaire Réf. Fab. Commande Unitaire OPB610 149-7899● g1,70 OPB829AZ 149-7926● g4,82 OPB800L55 149-7913● g2,46 OPB829CZ 149-7927● g4,77 OPB804 149-7914● g1,69 OPB829DZ 149-7928● g4,63 OPB806 149-7915● g4,26 OPB830W11Z 149-7929● g6,65 OPB810W51Z 149-7916● g4,41 OPB830W55Z 149-7930● g4,47 OPB811L55 149-7917● g2,43 OPB840W11Z 149-7931● g5,72 OPB811W55Z 149-7918● g4,20 OPB840W51Z 149-7932● g5,56 OPB815WZ 149-7919● g5,33 OPB840W55Z 149-7933● g5,32 OPB818 149-7920● g2,43 OPB841W55Z 149-7934● g4,50 OPB819Z 149-7921● g6,05 OPB848 149-7936● g2,25 OPB821S5Z 149-7922● g5,32 OPB855 149-7937● g2,02 OPB822SD 149-7924● g5,87 OPB891T51Z 149-7938● g4,13 OPB825 149-7925● g1,66 Kit de développement, contrôleur de couleur • Source de rayonnement efficace pour le fonctionnement CW et pulsé • Fiabilité du matériau InGa(Al)As • Boîtier compact package protègeant le laser • Dimensions port optique (fenêtre) 7,0 mm x 0,3 mm • Réduit la divergence axiale en utilisant une lentille interne Dimensions (mm) Code Largeur fente H l P Terminaison Réf. Fab. Commande 3.81 8.125 8.89 5.33 Broche OPB610 149-7899 9.53 10.8 30.99 6.35 Broche OPB800L55 149-7913 3.94 11.68 12.57 6.34 Broche OPB804 149-7914 3.175 12.7 26.42 5.08 Broche OPB806 149-7915 9.525 10.8 30.99 6.35 Câble OPB810W51Z 149-7916 9.525 10.8 30.99 6.35 Broche OPB811L55 149-7917 9.525 10.8 30.99 6.35 Câble OPB811W55Z 149-7918 9.5 14.1 31.75 6.35 Câble OPB815WZ 149-7919 5.08 10.67 15.24 6.35 Broche OPB818 149-7920 32 41.28 76.2 7.92 Broche OPB819Z 149-7921 2.03 8.89 15.24 6.35 Câble OPB821S5Z 149-7922 2.29 16.0 24.13 11.18 Broche OPB822SD 149-7924 4.06 11.43 10.67 6.35 Broche OPB825 149-7925 3.18 10.03 24.64 6.35 Câble OPB829AZ 149-7926 3.18 10.03 24.64 6.35 Câble OPB829CZ 149-7927 3.18 10.03 24.64 6.35 Câble OPB829DZ 149-7928 3.18 10.54 23.75 12.95 Câble OPB830W11Z 149-7929 3.18 10.54 23.75 12.95 Câble OPB830W55Z 149-7930 3.18 10.54 23.75 12.95 Câble OPB840W11Z 149-7931 3.18 10.54 23.75 12.95 Câble OPB840W51Z 149-7932 3.18 10.54 23.75 12.95 Câble OPB840W55Z 149-7933 3.18 10.54 23.75 12.95 Câble OPB841W55Z 149-7934 2.54 10.8 12.7 6.35 Broche OPB848 149-7936 5.21 6.86 12.98 6.35 Broche OPB855 149-7937 3.11 10.73 24.63 6.35 Câble OPB891T51Z 149-7938 Capteur de liquide Short Circuit Puissance Longueur Largeur Courant crête mm mm mA mW Réf. Fab. 6 6 12 6 XOD17 - 04B 6 20 42 20 XOD17 - 12B 18.5 18.5 120 56 XOD17 - 34B Solar Bits 22 7 42 XOB17 - 12X1 22 7 12.6 XOB17 - 04X3 Optocommutateur à fourche Paramètre Valeur Cellule typ. Unités Tension circuit ouvert 630 mV Tension à Puis. max. 505 mV Courant à Puis. max 32.5 mA/cm2 Applications: • Traitement du matériel • Médical • Chauffage, illumination • Impression Commutation sans contact Selon le mode de fonctionnement, ces composants émettent une lumière non-visible hautement concentré qui peut être dangereux pour l’oeil humain. Note: Produits en conformité avec la norme IEC 60825-2 contact latéral arrière( + ) P. sortie Température Alimentation Code crête (W) ÒCrête (nm) d’utilisation typ, (V) Réf. Fab. Commande 15 808 10°C à 50°C 1.8V SPLLG81-P 124-4120 Cellule solaire haute efficacité IXOLAR™ Réseau de diode laser SIRILAS™ à conductivité refroidie contact latéral avant ( - ) Tous les prix de cette brochure sont en euros hors TVA www.farnell.fr Tél.: 04 74 68 99 99 Fax: 04 74 68 99 90 Transistors 32 Discrets Réf. Fab. Code Commande Prix Unitaire Réf. Fab. Code Commande Prix Unitaire NPN PNP ZXTN25012EFLTA 147-1182● g0,37 ZXTP25020DFLTA 147-1185● g0,37 ZXTN25020DFLTA 147-1183● g0,37 ZXTP25040DFLTA 147-1186● g0,37 ZXTN25040DFLTA 147-1184● g0,37 Seulement g1,65 CODE COMMANDE147-1150● SOT-23-6 Boîtier CMS contenant un transistor bipolaire et une diode séparément, réduisant l’espace carte • Circuit de gestion de puissance dans un simple boîtier • Coût et surface de montage peuvent réduit de moitié Gain élevé, SOT-23 SM-8 (8-broches SOT-223) Pour la gestion de puissance Polarité IC Diode, IF VCE(sat) max Code Transistor (mA) (mA) (V) Réf. Fab. Commande Prix Unitaire Bipolaire + Diode (UMT-5) PNP 150 100 0.5 UML1NTR 152-5595● g0,220 Bipolaire + Diode faible VCE(sat) (UMT-5) NPN 150 100 0.25 UML2NTR 152-5596● g0,220 PNP 500 200 0.25 UML4NTR 152-5597● g0,290 NPN 500 200 0.25 UML6NTR 152-5598● g0,290 Bipolaire + Diode faible VCE(sat) (EMT-5) PNP (R1=47k, R2=47k) 500 200 — EML17T2R 152-5455● g0,210 NPN (R1=2.2k, R2=46k) 500 200 — EML20T2R 152-5456● g0,198 Un process amélioré a été utilisé pour optimiser les performances du transistor. Le boîtier SOT23F est compatible avec l’empreinte SOT23 standard de l’industrie mais offre un plus bas profil et une dissipation plus élevée pour des applications où la densité de puissance est de la plus haute importance. Réf. Fab. Code Commande Prix Unitaire FMMT494TA 147-1187● g0,363 BCW66HTA 147-1188● g0,338 FMMT555TA 147-1189● g0,290 BCW68HTA 147-1190● g0,338 FMMTA56TA 147-1191● g0,313 Connexion ID IC Code Réf. Fab. résistance R1,R2 typ, (Ω) (mA) (mA) Commande Prix Unitaire MOSFET canal N + PNP-RET Bipolaire (EMT-6) EMF32T2R B 4.7k, N/A 100 100 152-5448● g0,260 EMF33T2R B + BE 1k,100 100 500 152-5449● g0,270 MOSFET canal N + PNP Bipolaire (EMT-6) EMF6T2R Sans résistance N/A 100 500 152-5452● g0,420 EMF9T2R Sans résistance N/A 100 500 152-5454● g0,450 NPN-RET + PNP (EMT-6) EMF5T2R B + BE 47k, 47k N/A 500(PNP), 100(NPN 152-5450● g0,310 EMF8T2R B + BE 47k, 47k N/A 500(PNP), 100(NPN 152-5453● g0,310 Double NPN (SMT-6) IMX1T110 Sans résistance N/A N/A 150 152-5457● g0,290 Double PNP (UMT-6) UMT1NTN Sans résistance N/A N/A 150 152-5599● g0,122 PD = 1.5W VCBE VCBO IC hFE (à IC) PDissipée Code Polarité (V) (V) (A) Min. Max.(W) Commande Réf. Fab. PNP* 45 — 0.8 100 0.33 147-1190 BCW68HTA NPN 45 75 0.8 100 0.33 147-1188 BCW66HTA PNP* 80 — 0.5 50 0.33 147-1191 FMMTA56TA NPN 120 140 1 20 0.5 147-1187 FMMT494TA PNP 150 160 1 50 0.5 147-1189 FMMT555TA PNP, SOT-23-6 Transistor bipolaire + Diode Boîtiers Hybrides Réf. Fab. Code Commande Prix Unitaire ZXTN08400BFFTA 147-1195● g0,50 ZXTP19100CFFTA 147-1196● g0,71 ZXTP08400BFFTA 147-1199● g0,50 ZXTP19060CFFTA 147-1201● g0,71 ZXTN19060CFFTA 147-1202● g0,71 ZXTN19100CFFTA 147-1203● g0,71 4eme génération de transistor à ultra faible saturation utilisant la structure matrice de Zetex combiné avec une technique d’assemblage avancée pour de très faible pertes. Idéal pour des applications à haute fréquence, commutation basse tension. SOT-23, à usage général VCEO 40V VCE (sat) max 0.5V IC 2A Polarité de Transmission NPN / PNP hFE 150 • Courant de crête élevé • Faible tension de saturation • Tension de blocage directe élevée • Faible Résistance On (équivalent) • Tension de saturation extrêmement faible • hFE caractérisé jusqu’à 6A VCBE IC VCE(sat) hFE (à IC) Polarité (V) (A) Max.(V) Min. Réf. Fab. PNP 60 4 0.27 30 ZXTP19060CFFTA NPN 60 5.5 0.175 30 ZXTN19060CFFTA PNP 100 2 0.95 20 ZXTP19100CFFTA NPN 100 4.5 0.235 130 ZXTN19100CFFTA PNP 400 0.2 0.9 100 ZXTP08400BFFTA NPN 400 0.5 0.95 10 ZXTN08400BFFTA Transistor double complémentarité, Gain élevé Un process amélioré a été utilisé pour réaliser un courant de gain élevé, idéal pour des applications exigeant des impulsions de courant élevées. PD=1.1W VCBO VCBE IC hFE (à IC) PD Polarité (V) (V) (A) Min. Max.(W) Réf. Fab. NPN 20 12 2 370 0.35 ZXTN25012EFLTA PNP 25 25 1.5 160 0.35 ZXTP25020DFLTA NPN 100 100 2 220 0.35 ZXTN25020DFLTA NPN 130 130 1.5 170 0.35 ZXTN25040DFLTA PNP 130 130 1.5 170 0.35 ZXTP25040DFLTA SOT-23F Réf. Fab. Code Commande Prix Unitaire ZXT10P12DE6TA 147-1192● g0,57 ZXT10P20DE6TA 147-1194● g0,57 Commutation à faible saturation VCBE IC VCE(sat) hFE (à IIC) Code (V) (A) Max.(V) Min. Commande Réf. Fab. 12 3 0.3 180 147-1192 ZXT10P12DE6TA 20 2.5 1.05 150 147-1194 ZXT10P20DE6TA Circuits intégrés Parmi les plus rapides... ... sur une large gamme de: 􀂋􀀃Contrôleur de puissance 􀂋􀀃􀀫􀁙􀁐􀁝􀁌􀁙􀀃􀁋􀁌􀀃􀁔􀁖􀁛􀁌􀁜􀁙 􀂋􀀃􀀺􀁖􀁓􀁜􀁛􀁐􀁖􀁕􀁚􀀃􀁗􀁖􀁜􀁙􀀃􀁴􀁊􀁓􀁈􀁐􀁙􀁈􀁎􀁌􀀃􀁮􀀃􀀳􀀬􀀫 􀂋􀀃􀀪􀁖􀁔􀁗􀁖􀁚􀁈􀁕􀁛􀁚􀀃􀀫􀁐􀁚􀁊􀁙􀁌􀁛􀁚􀀃􀁮􀀃 empreinte miniature ...􀀃􀀹􀁌􀁛􀁙􀁖􀁜􀁝􀁌􀁡􀀃􀁌􀁕􀁊􀁖􀁙􀁌􀀃􀁗􀁓􀁜􀁚􀀃􀁋􀁌􀀃􀁗􀁙􀁖􀁋􀁜􀁐􀁛􀁚􀀃􀁚􀁜􀁙􀀃􀁞􀁞􀁞.rohmeurope.com Tous les prix de cette brochure sont en euros hors TVA www.farnell.fr Tél.: 04 74 68 99 99 Fax: 04 74 68 99 90 MOSFETs 34 Discrets Seulement g1,72 CODE COMMANDE147-1158● TO-220-5 TUMT6 SOP-8 TO-220-7 P-DSO-20 S1 P-DSO-14 G1 P-TO252-5 S2 • MOSFET IntelliFET™ 60V, canal N, mode enrichissement, auto-protégé • Indication d’état et limite de courant programmable • Protection contre les conditions de surcharges avec une limite de surcourant interne, arrêt surchauffe et blocage de surtension • Utile pour piloter des charges inductives G2 PG-DSO-8 VDSS ID à Vin=5V RDS à Vin=5V RDS à Vin=10V EAS TJ Max.(V) Max. (A) Max. (Ω) Max. (Ω) (mJ) Max (°C) 60 1.4 0.675 0.5 550 150 60V IntelliFET™ SOT - 223 Power Switch D2 PG-SOT223-4 D1 D1 D2 • Remplace les relais électromécaniques, fusibles, et circuits discrets • Verrouillage de charge inductive intégré • Limitation de tension et courant • Faible résistance à l’état "on" • Température d’utilisation : -30 à +85°C • Arrêt thermique • Protection ESD • Option sortie simple ou multiple • ReverSave™ inclut une protection qui commute le transistor de puissance en cas d’inversion de polarité, résultant à une réduction de la dissipation de puissance. • Double canal N dans un boîtier compact • Faible résistance On • Idéal pour les applications de commutation portables • Protégé ESD, avec diode de roue libre VDS max (V) ID (A) VGS(th) max (V) Réf. Fab. Code Commande Prix Unitaire Double N, SOP-8, 5x3.9x1.75 30 1 1.5 QS6K1TR 152-5472● g0,38 30 5 2.5 SP8K1FU6TB 152-5576● g0,54 30 6 2.5 SP8K2FU6TB 152-5581● g0,62 30 7 2.5 SP8K3FU6TB 152-5582● g1,24 30 9 2.5 SP8K4FU6TB 152-5583● g1,24 30 3.5 2.5 SP8K5FU6TB 152-5584● g0,74 45 4.5 2.5 SP8K22FU6TB 152-5577● g1,16 45 6 2.5 SP8K24FU6TB 152-5579● g1,24 Double N, TUMT6, 2x1.7x0.77 30 1.5 0.5 US6K1TR 152-5601● g0,40 30 1.5 0.5 US6K1TR 152-5601● g0,40 Double N, TSMT5, 2.9x1.6x0.7 30 2 1.5 QS5K2TR 152-5458● g0,57 Double P, SOP-8, 5x3.9x1.75 30 5 -2.5 SP8J1FU6TB 152-5572● g1,95 30 4.5 -2.5 SP8J2FU6TB 152-5573● g1,29 30 3.5 -2.5 SP8J3FU6TB 152-5574● g1,33 30 7 -2.5 SP8J5FU6TB 152-5575● g3,15 N + P, SOP-8, 5x3.9x1.75 20 1.5 ±0.5 QS6M3TR 152-5473● g0,30 20 1.5 ±0.5 QS6M4TR 152-5474● g0,34 30 3.5 ±2.5 SP8M2FU6TB 152-5585● g0,98 30 4.5 ±2.5 SP8M3FU6TB 152-5586● g0,98 30 7 ±2.5 SP8M4FU6TB 152-5587● g1,58 Infineon a étendu sa gamme de produits concernant les commutateurs de puissance Smart High Side avec PROFET pour les exigeances de l’industrie. Pour la réduction du prix, Infineon fournit aujourd’hui une solution industrielle optimisée. Similaire au BTS/BSP, les familles ITS et ISP sont capables de piloter des charges élevées. Avec plusieurs fonctions de protection, idéal pour des applications industrielles tels que ascenseurs, commande de porte, imprimante, capteurs, mesures de niveau etc. Double transistor MOSFET Réf. Fab. Code CommandePrix Unitaire Réf. Fab. Code CommandePrix Unitaire ITS410E2 142-6194● g4,17 BTS5235-2L 144-0803● g4,50 ITS428L2 142-6195● g2,88 BTS5235-2G 144-0804● g4,38 ITS436L2S 142-6196● g3,96 BTS5242-2L 144-0806● g6,21 ITS5215L 142-6197● g3,06 BTS443P 144-0808● g3,88 ITS612N1 142-6198● g4,23 BTS6133D 144-0811● g4,18 ITS621L1 142-6200● g5,24 BTS6142D 144-0812● g3,55 ITS640S2 142-6201● g4,53 BTS6143D 144-0813● g3,68 ITS711L1 142-6202● g6,13 ITS4140N 144-0814● g1,36 ITS716G 142-6203● g4,94 ITS4141N 144-0815● g2,10 ITS724G 142-6204● g5,57 ITS4142N 144-0816● g2,16 ISP752R 144-0817● g1,97 BTS5231-2GS 144-0802● g2,85 ITS4880R 144-0818● g12,91 Etat -On Courant Protection Res, typ. par PD Limite VSUPPLY surtension, max. Code canal à 25°C, mΩ W A V V Boîtier Commande Réf. Fab. 10 59 33 5.5 to 38 67 P-TO252-5 144-0811 BTS6133D* 10 59 33 5.5 to 38 67 P-TO252-5 144-0813 BTS6143D* 12 50 27 5.5 to 24 39 P-TO252-5 144-0812 BTS6142D* 16 42 25 5 to 36 68 P-TO252-5 144-0808 BTS443P* 25 1.4 6 4.7 to 28 41 PG-DSO-12 144-0806 BTS5242-2L 35 75 40 4.75 to 43 52 TO-220-5 142-6196 ITS436L2S 30 85 24 4.7 to 43 43 TO-220-7 142-6201 ITS640S2 50 75 17 4.75 to 41 52 TO-252-5 142-6195 ITS428L2 60 1.6 3.5 0 to 28 41 PG-DSO-12 144-0803 BTS5235-2L 60 1.4 3.3 4.5 to 28 41 PG-DSO-20 144-0804 BTS5235-2G 90 3.1 12 4.7 to 43 52 P-DSO-12 142-6197 ITS5215L 90 3.6 12 4.7 to 43 52 DSO-20 142-6204 ITS724G 100 75 8 4.7 to 43 43 TO-220-7 142-6200 ITS621L1 140 3.6 6.5 4.7 to 43 52 DSO-20 142-6203 ITS716G 140 0.9 3.5 4.5 to 28 PG-DSO-14 144-0802 BTS5231-2GS 200 36 4 4.7 to 43 43 TO-220-7 142-6198 ITS612N1 200 3.6 4 4.7 to 43 43 P-DSO-20 142-6202 ITS711L1 200 1.4 1.4 12 to 45 47 PG-SOT223-4 144-0815 ITS4141N 200 1.4 3 12 to 45 48 PG-SOT223-4 144-0816 ITS4142N 200 1.5 1.3 6 to 52 62 PG-DSO-8 144-0817 ISP752R 200 3.3 11 to 45 47 PG-DSO-36 144-0818 ITS4880R 220 50 5 4.7 to 42 65 TO-220-5 142-6194 ITS410E2 1,500 1.7 1.2 4.9 to 60 62 PG-SOT223-4 144-0814 ITS4140N *Caractérisant ReverSave™ TSMT5 Commutateurs haute puissance RoHS Conforme Non-conforme Commandez du lundi au vendredi de 8h30 à 19h pour une livraison gratuite le lendemain CEM - Filtres 35 Passifs EMI • Montage à l’arrière avec fixation renforcée sur la carte • Ensemble compact avec éléments pré-câblés entre eux • Montage sur circuit imprimé Série DC21 avec fusibles et interrupteur lumineux ou non • Filtre haute performance d’atténuation • Haute atténuation mode différentiel • Conçu pour montage châssis, rapide et facile • Versions médicale (type B) en option • ReconnuUL, approuvés CSA et ENEC • Une gamme de filtres à faible courant de fuite destinés aux applications médicales • Approuvé CSA, VDE, UL • Montage à l’arrière avec fixation renforcée sur la carte • Ensemble compact avec élements pré-câblés entre eux • 2 pôles, 125/250 Vca Courant nominal Code Commande Prix Unitaire Fusible 2 Pôles Médical 1A 151-7965● g23,76 2A 151-7966● g23,76 4A 151-7967● g23,76 6A 151-7968● g23,76 8A 151-7969● g23,76 Courant nominal Code Commande Prix Unitaire Version médicale 1A 130-4850● g18,39 6A 130-4852● g21,13 10A 130-4853● g22,52 16A 130-4854● g32,01 30A 130-4855● g78,57 Gamme de températures -25°C à +85°C Fréquence Jusqu’ à 400Hz Tension c.a. Testé en tension P+N à la terre 2700V c.c. 2s Série DC22 avec interrupteur et embase IEC • Taux de courant jusqu’à 15A • Performance d’atténuation excellente Courant nominal Code Commande Prix Unitaire 1A 943-3880● g16,34 3A 943-3899● g16,75 6A 943-3902● g16,75 10A 943-3910● g16,52 Courant nominal 1-8A Tension nominale V AC à 50Hz 250 V AC à 60Hz Température de connexion 70°C Gamme de température-25°C à 70°C Test Diéléctrique >1.7 kVDC entre L-N >2.7 kVDC entre L/N-PE Tension nominale 250Vac Gamme de fréquence CC à 400Hz Température -25°C à 100°C Courant Nominal Code Commande Prix Unitaire Version médical 2A 151-7992● g37,33 4A 151-7993● g37,33 6A 151-7994● g37,33 10A 151-7996● g37,33 Courant nominal Inductance Réf. Fab. Code Commande Prix Unitaire Version médical 1A 22.5 FN9233B-1/06 139-0942● g18,47 3A 4.6 FN9233B-3/06 139-0943● g18,47 6A 1.6 FN9233B-6/06 139-0944● g18,47 10A 0.45 FN9233B-10/06 139-0945● g18,47 15A 0.2 FN9233B-15/06 139-0947● g18,47 Embase combinée 2 fonctions sur circuit imprimé Courant nominal 10Apour ENEC/VDE 8A pour UL/CSA Tension nominale 125V AC à 50Hz 250 V AC à 60Hz Température de connexion 70°C Gamme de température -25°C à 70°C Test Diélectrique >1.7 kVDC entre L-N >2.7 kVDC entre L/N-PE Tension nominale 250V Courant de fuite max./Phase 373μA Capacité Cx=0.1μF Cy=2 x 2.2nF Gamme de température -25°C à +85°C Filtre EMI avec Haute performance d’atténuation Inductance Courant de fuite Intensité (mH) à 250V / 50Hz Réf. Fab. Code Commande 1A 3.5 5μA SF4120M-1/01 943-3880 3A 2 5μA SF4120M-3/01 943-3899 6A 0.8 5μA SF4120M-6/01 943-3902 10A 0.2 5μA SF4120M-10/01 943-3910 Embase IEC filtrée haute performance Embase combinée 2 fonctions sur circuit imprimé Courant Inductance Courant Résistance Code nominal (mH) de fuite (mA) (kR) H l D Réf. Fab. Commande Version médicale 1 20 0.002 1000 64 35 24.3 FN2030B-1-06 130-4850 6 8 0.002 680 71 46.6 22.3 FN2030B-6-06 130-4852 10 8 0.002 680 85 54 30.3 FN2030B-10-06 130-4853 16 4 0.002 330 85 54 40.3 FN2030B-16-06 130-4854 30 2 0.002 330 85 54 40.3 FN2030B-30-08 130-4855 Filtre secteur - Montage sur châssis Filtre secteur Série FN2030 Tous les prix de cette brochure sont en euros hors TVA www.farnell.fr Tél.: 04 74 68 99 99 Fax: 04 74 68 99 90 Condensateurs 36 Passifs OxiCap™ Série NOJ • Applications : Filtrage, Alimentations • Faible dérive en tension Température d’utilisation -55°C à +125°C Tolérance ±10% Dimensions voir série TAJ (Produit Précédent) Capacité Code Prix Capacité Code Prix (μF) Boîtier (Ω) Réf. Fab. Commande Unitaire (μF) Boîtier (Ω) Réf. Fab. Commande Unitaire 1.8Vcc 6.3Vcc 330 Y 0.3 NOJY337M001RWJ 113-5188● g1,950 4.7 A 3.1 NOJA475M006RWJ 113-5086● g0,188 470 Y 0.3 NOJY477M001RWJ 143-2314● g1,560 6.8 P 5.2 NOJP685M006RWJ 143-2292● g0,330 2.5Vcc 10 P 4.5 NOJP106M006RWJ 143-2286● g0,330 10 P 4.5 NOJP106M002RWJ 113-5127● g0,350 15 A 2.2 NOJA156M006RWJ 143-2265● g0,161 15 S 2 NOJS156M002RWJ 143-2294● g0,400 22 A 1.8 NOJA226M006RWJ 143-2267● g0,161 22 T 1.9 NOJT226M002RWJ 113-5189● g0,390 33 B 1.7 NOJB336M006RWJ 113-5087● g0,380 33 A 1.7 NOJA336M002RWJ 113-5128● g0,188 47 B 1.6 NOJB476M006RWJ 143-2273● g0,300 100 W 0.4 NOJW107M002RWJ 143-2302● g0,970 68 C 0.5 NOJC686M006RWJ 113-5147● g0,650 150 X 0.4 NOJX157M002RWJ 143-2307● g1,470 100 C 0.4 NOJC107M006RWJ 143-2275● g0,590 330 C 0.3 NOJC337M002RWJ 143-2281● g0,680 150 Y 0.4 NOJY157M006RWJ 143-2312● g1,560 680 E 0.3 NOJE687M002RWJ 143-2285● g3,710 220 E 0.4 NOJE227M006RWJ 756-5160● g1,100 4Vcc 330 E 0.3 NOJE337M006RWJ 756-5178● g2,650 6.8 P 5.3 NOJP685M004RWJ 113-5131● g0,260 470 V 0.3 NOJV477M006RWJ 143-2301● g5,380 10 S 2.2 NOJS106M004RWJ 143-2293● g0,400 10Vcc 15 P 4.1 NOJP156M004RWJ 143-2287● g0,330 2.2 P 8.3 NOJP225M010RWJ 143-2288● g0,330 22 A 1.9 NOJA226M004RWJ 113-5135● g0,250 3.3 P 7 NOJP335M010RWJ 143-2289● g0,330 47 B 1.6 NOJB476M004RWJ 113-5085● g0,380 4.7 A 3.1 NOJA475M010RWJ 143-2268● g0,200 68 B 1.5 NOJB686M004RWJ 143-2274● g0,300 6.8 A 2.6 NOJA685M010RWJ 143-2269● g0,161 100 B 1.4 NOJB107M004RWJ 143-2271● g0,300 10 A 2.2 NOJA106M010RWJ 143-2264● g0,200 150 C 0.4 NOJC157M004RWJ 113-5138● g0,650 15 B 2 NOJB156M010RWJ 113-5150● g0,350 220 C 0.4 NOJC227M004RWJ 143-2277● g0,550 22 B 1.8 NOJB226M010RWJ 143-2272● g0,340 330 D 0.3 NOJD337M004RWJ 113-5140● g1,590 33 C 0.5 NOJC336M010RWJ 143-2279● g0,510 470 E 0.3 NOJE477M004RWJ 143-2284● g4,360 47 C 0.4 NOJC476M010RWJ 143-2282● g0,740 680 V 0.3 NOJV687M004RWJ 113-5141● g4,160 2.5 Volts c.c. Rés. série Prix 2.5 Volts c.c. Rés. série Prix μF max à 100KHz Courant de Type Code Unitaire μF max à 100KHz Courant de Type Code Unitaire (mΩ) fuite (μA) boîtier Réf. Fab. Commande (mΩ) fuite (μA) boîtier Réf. Fab. Commande 4 Volts c.c. 4 Volts c.c. 47 500 1.9 A TPSA476K004R0500 143-2573● g0,79 220 50 35.2 V TPSV227K016R0050 113-5208● g6,55 100 350 4 B TPSB107K004R0350 143-2578● g1,18 25 Volts c.c. 220 50 8.8 D TPSD227K004R0050 113-5097● g1,47 1.5 1800 0.5 B TPSB155K025R1800 143-2580● g1,18 470 45 18.8 D TPSD477K004R0045 143-2619● g8,05 2.2 1200 0.6 B TPSB225K025R1200 143-2582● g1,18 680 100 18.8 D TPSD687K004R0100 143-2623● g8,05 4.7 900 1.2 B TPSB475K025R0900 143-2589● g1,14 1000 60 40 E TPSE108K004R0060 143-2626● g11,41 6.8 600 1.7 C TPSC685K025R0600 143-2605● g1,46 1500 50 60 E TPSE158K004R0050 143-2629● g13,96 10 500 2.5 C TPSC106K25R0500 143-2595● g2,00 6.3 Volts c.c. 15 300 3.8 C TPSC156K025R0300 143-2597● g1,61 4.7 4000 0.5 S TPSS475K006R4000 143-2641● g0,80 22 100 5.5 D TPSD226K025R0100 113-5118● g1,55 10 1000 0.6 R TPSR106K006R1000 143-2638● g0,59 33 100 8.3 D TPSD336K025R0100 113-5213● g1,65 22 500 1.4 A TPSA226K006R0500 143-2569● g0,95 47 150 11.8 D TPSD476K025R0150 143-2617● g4,00 33 600 2.1 A TPSA336K006R0600 143-2571● g0,91 68 95 17 V TPSV686K025R0095 113-5122● g6,10 47 250 3 B TPSB476K006R0250 113-5100● g0,58 35 Volts c.c. 68 500 4.3 B TPSB686K006R0500 143-2593● g1,09 1 2000 0.5 B TPSB105K035R2000 143-2575● g0,98 100 400 6.3 B TPSB107K006R0400 143-2579● g1,18 2.2 1000 0.8 C TPSC225K035R1000 143-2599● g2,56 150 150 9.5 C TPSC157K006R0150 143-2598● g2,15 3.3 700 1.2 C TPSC335K035R0700 143-2602● g1,35 220 100 13.9 C TPSC227K006R0100 143-2601● g1,70 4.7 600 1.6 C TPSC475K35R0600 570-485● g3,26 330 45 20.8 D TPSD337K006R0045 113-5198● g2,05 68 125 17 E TPSE686K025R0125 113-5214● g3,50 470 100 29.6 D TPSD477K006R0100 113-5102● g2,90 10 200 3.5 E TPSE106K35R0200 301-8600● g4,00 680 45 42.8 E TPSE687K006R0045 143-2636● g13,23 15 100 5.3 D TPSD156K035R0100 143-2610● g3,18 1000 40 60 V TPSV108M006R0040 143-2649● g12,37 22 300 7.7 E TPSE226K35R0200 570-503● g9,48 16 Volts c.c. 33 200 11.6 D TPSD336K035R0200 143-2616● g4,45 2.2 1800 0.5 A TPSA225K016R1800 143-2568● g0,85 33 100 11.6 E TPSE336K035R0100 113-5217● g3,70 4.7 800 0.8 B TPSB475K016R0800 143-2587● g1,09 47 200 16.5 E TPSE476K035R0200 113-5125● g3,70 6.8 1200 1.1 B TPSB685K016R1200 143-2592● g1,10 50 Volts c.c. 10 600 1.6 W TPSW106K016R0600 143-2656● g2,44 1 2500 0.5 C TPSC105K050R2500 143-2594● g2,56 22 250 3.5 C TPSC226K016R0250 143-2600● g1,70 1.5 1500 0.8 C TPSC155K050R1500 143-2596● g2,56 33 225 5.3 C TPSC336K016R0225 143-2603● g1,61 2.2 1200 1.1 D TPSD225K050R1200 143-2613● g6,38 47 80 7.5 D TPSD476K016R0080 113-5205● g1,45 3.3 800 1.7 D TPSD335K050R0800 143-2615● g6,62 68 70 10.9 D TPSD686K016R0070 143-2622● g3,18 4.7 300 2.4 D TPSD475K050R0300 113-5218● g3,10 100 60 16 D TPSD107K016R0060 143-2609● g3,50 6.8 500 3.4 D TPSD685K050R0500 143-2621● g4,11 150 100 24 D TPSD157K016R0100 113-5114● g3,10 10 500 5 E TPSE106K050R0500 143-2624● g11,80 100 150 16 D TPSD107K16R0150 301-8568● g4,94 15 250 5 E TPSE156M050R0250 143-2627● g9,51 150 45 24 V TPSV157K016R0045 143-2650● g12,37 Condensateur Oxyde Niobium Condensateur tantale, Série TPS • Faible résistance série • Résistance série indiquée sur le boîtier RoHS Conforme Non-conforme Commandez du lundi au vendredi de 8h30 à 19h pour une livraison gratuite le lendemain Condensateurs 37 Passifs Boîtier 1812 Les dernières technologies ajoutées quotidiennement sur le site Boîtier 1808 • Condensateurs tantale CMS en boîtier 0603 • Convient aux applications portables, téléphonie, informatique • Bonne résistance série ESR, performant en haute fréquence • Mécanisme auto-curatif • Testé courant d’appel EIA • Excellent veillissement Code Code μF Type Boîtier Commande Prix Unitaire μF Type Boîtier Commande Prix Unitaire 16 Volts c.c. 35 Volts c.c. 10 B 135-8536● g1,47 1 B 135-8540● g1,34 20 Volts c.c. 10 D 135-8541● g3,98 4.7 B 135-8537● g1,34 22 X 135-8542● g11,75 25 Volts c.c. 50 Volts c.c. 1 A 135-8538● g1,08 10 D 135-8543● g8,13 15 D 135-8539● g3,98 Boîtier 1206 Type Code μF Tension μA Max (Ω) Boîtier Réf. Fab. Commande Prix Unitaire 2.5 Volts c.c. 10 2.5 0.5 15 K TACK106M002QTA 113-5269● g1,40 47 113-5044● g0,44 220 113-5045● g0,68 3 Volts c.c. 2.2 3 0.5 15 K TACK475M003QTA 121-6603● g2,99 4.7 3 0.5 R TACR107M003XTA 113-5270● g1,05 100 3 0.5 R TACR107M003XTA 113-5276● g1,50 220 3 0.5 1 T TACT227M003XTA 113-5285● g2,05 4 Volts c.c. 1.5 4 0.5 10 L TACL155M004XTA 121-6604● g2,59 22 4 0.5 7.5 L TACL226M004XTA 113-5273● g0,96 6.3 Volts c.c. 1 6.3 0.5 10 L TACL105M006XTA 121-6605● g2,78 15 6.3 0.5 7.5 L TACL156M006XTA 113-5274● g0,70 2.2 6.3 0.5 5 H TACH226M006XTA 113-5088● g1,05 22 6.3 0.5 5 H TACH226M006XTA 113-5093● g0,68 47 6.3 0.5 5 R TACR476M006XTA 113-5094● g1,15 100 6.3 0.5 1 T TACT107M006XTA 113-5286● g1,61 10 Volts c.c. 1 10 0.5 15 K TACK105M010QTA 113-5271● g0,96 2.2 10 0.5 5 U TACU225M010XTA 113-5095● g1,55 10 10 0.5 7.5 L TACL106M010XTA 113-5091● g0,70 22 10 0.5 5 R TACR226M010XTA 113-5277● g0,93 33 10 0.5 1 A TACA336M010XTA 113-5282● g1,50 47 10 0.5 1 T TACT476M010XTA 113-5287● g1,93 16.3 Volts c.c. 1 16.3 0.5 5 U TACU105M016XTA 113-5283● g1,65 2.2 16.3 0.5 7.5 L TACL225M016XTA 113-5275● g0,76 10 16.3 0.5 5 R TACR106M016XTA 113-5278● g1,01 20 Volts c.c. 4.7 20 0.5 5 R TACR475M020XTA 113-5279● g0,96 25 Volts c.c. 1 25 0.5 5 R TACR105M025XTA 113-5280● g0,96 Condensateur tantale, Série TAC Haute tension • Condensateur double couche avec large gamme de forte capacité • Sans entretien • Applications : support batterie dans l’automobile, technologie ferroviaire, éolienne, UPS... Tolérance ±10% Par Multiple de 1 Code F H l P Réf. Fab. Commande Prix Unitaire 100 36 48 16.5 SUPERCAP 100F/20/2.5 151-9314● g38,52 200 59 48 16.5 SUPERCAP 200F/20/2.5 151-9315● g73,90 300 59 48 26.5 SUPERCAP 300F/20/2.5 151-9316● g109,29 400 59 48 26.5 SUPERCAP 400F/20/2.5 151-9317● g136,42 Tantale haute température Kemet – Série T499 1000 Volt d.c. NPO, Boîtier 1206 Code pF nF Commande Prix Unitaire 120 0.12 335-1828● g0,49 180 0.18 335-1830● g0,63 220 0.22 335-1841● g0,26 330 0.33 335-1853● g0,87 Température d’utilisation -30°C à +65°C Tension nominale 2.5V Tolérance ±20% (Par multiple de 5) 3000 Volts c.c. NPO Code pF nF Commande Prix Unitaire 10 0.01 301-9950● g1,37 15 0.015 301-9962● g1,37 22 0.022 301-9974● g1,40 33 0.033 301-9986● g1,62 47 0.047 301-9998● g1,29 Série SuperCap (Par multiple de 5) 1000 Volts c.c. NPO Code pF nF Commande Prix Unitaire 100 0.1 302-0009● g0,80 150 0.15 302-0010● g0,85 220 0.22 302-0022● g0,78 330 0.33 302-0034● g0,97 470 0.47 302-0046● g1,22 680 0.68 302-0058● g1,07 1000 1 302-0060● g1,29 1500 1.5 302-0071● g1,24 (Par multiple de 5) 3000 Volts c.c. NPO Code pF nF Commande Prix Unitaire 10 0.01 302-0083● g1,84 15 0.015 302-0095● g1,78 22 0.022 302-0101● g1,84 33 0.033 302-0113● g2,17 47 0.047 302-0125● g2,62 68 0.068 302-0137● g3,13 100 0.1 302-0149● g3,27 Température d’utilisation -55°C à +125°C Tolérance ±5% Résistance d’isolation 100000MΩ Tenue diélectrique 2VR (1000V), 1.2VR (3000V) Céramique multicouches, Série CG N.B. Les valeurs sont indiquées en pF et nF pour faciliter la sélection • Céramique multicouches haute tension • Forte capacité par unité de volume • Conforme IEC 384-10 Tous les prix de cette brochure sont en euros hors TVA www.farnell.fr Tél.: 04 74 68 99 99 Fax: 04 74 68 99 90 Résistances 38 Passifs Pour en savoir plus sur la gamme complète de cette série, consultez www.farnell.com et recherchez "résistance DSC". Boîtier 1206 Seulement g2,30 CODE COMMANDE150-6199● Boîtier 0805 • Résistance haute tension • Fabrication couche mince et robuste Gamme E96 de résistances à couche métallique de précision offrant une tolérance précise, un faible coefficient de température et une excellente stabilité à long terme.Formées d’une couche métallique sur un générateur en céramique de pureté élevée avec bouchons en acier plaqué nickel. La valeur de résistance est obtenue grâce à une rainure hélicoïdale découpée dans la couche, le corps étant protégé par un revêtement époxy haute température. Entièrement certifié BSE911N001 et disponible conforme à CECC 40101-004. • Valeurs résistance de 10 Ohms à 2M Ohms • Boîtier 0402 et 0805 • Coefficient de température (TCR) 5ppm/°C Puissance nominale à 70°C1W Tolérance ±±1% Tension nominale 3kV Température d’utilisation -55°C à +155°C Coefficient de température ±±100ppm/°C 0.5 Watt, 0.75 Watt, 1.5 Watt & 2 Watt Série HVC – 2512, Boîtier 1 Watt ±1% Valeurs ohmiques disponibles: Boîtier 2010 Pour en savoir plus sur la gamme complète de cette série, consultez www.farnell.com et recherchez "résistance RC55". Série DSC 100K = 150-6199 1M = 150-6200 2M = 150-6202 3M = 150-6203 4M = 150-6204 10M = 150-6205 20M = 150-6206 40M = 150-6207 • 2 résistances en parallèle dans un boîtier • Tolérance jusqu’à 0.5% • Améliore la tension de fonctionnement • Améliore le taux de puissance Boîtier 0402 Tension 200V c.c. ou c.a. rms Température d’utilisation -55°C à +155°C Boîtier 2512 Pour en savoir plus sur la gamme complète de cette série, consultez www.farnell.com et recherchez "résistance PCF". Boîtier 0805 Boîtier 1206 Boîtier 2010 Boîtier 2512 Puissance nominale à 70°C 0.5W 2W 0,75W 1,5W Tolérance ±5% ±5% ±5% ±5% Coefficient de température ±100ppm/°C ±100ppm/°C ±100ppm/°C ±100ppm/°C Boîtier 1206 Code Commande Prix Unitaire 51R1 à 432K ● g1,19 475K à 1M ● g1,48 Boîtier 0805 100R 949-9865 1K 950-0723 10K 949-9938 47K5 950-2157 332K 950-3188 150R 950-0375 1K5 950-0901 15K 950-0421 68K1 950-2629 475K 950-3226 221R 950-1150 2K21 950-1517 22K1 950-1185 100K 949-9857 681K 950-3323 475R 950-2149 3K32 950-1924 33K2 950-1738 150K 950-0367 1M 950-3153 681R 950-2610 (Par multiple de 5) Boîtier Code Commande Prix Unitaire Boîtier 0805 Toutes valeurs ● g0,57 Boîtier 1210 Toutes valeurs ● g0,66 Boîtier 2010 Toutes valeurs ● g0,73 Boîtier 2512 Toutes valeurs ● g0,84 Boîtier 2010 10R 110-0081 220R 110-0090 2K2 110-0096 22K 110-0104 22R 110-0083 1K 110-0094 10K 110-0101 100K 110-0109 100R 110-0088 Série RC55 – 0,25W ± 0,1% ±15ppm Boîtier 2512 Boîtier 0402 Boîtier 0805 Puissance nominale à 70°C 0.5W 2W Tolérance ±0.1 ±0.1 Coefficient de température ±25ppm/°C ±5ppm/°C 10R 110-0110 680R 110-0122 6K8 110-0128 68K 110-0135 68R 110-0115 1K 110-0123 10K 110-0131 100K 110-0136 100R 110-0116 Boîtier Code Commande Prix Unitaire 0402 Toutes valeurs ● g1,02 0805 Toutes valeurs ● g1,38 (Par multiple de 5) Boîtier Code Commande Prix Unitaire 1206 Toutes valeurs ● g1,47 2010 Toutes valeurs ● g1,31 2512 Toutes valeurs ● g1,70 100R = 110-8755 680R = 110-8777 4K7 = 110-8799 33K = 110-8821 150R = 110-8759 1K = 110-8781 6K8 = 110-8804 47K = 110-8825 220R = 110-8764 1K5 = 110-8786 10K = 110-8808 68K = 110-8830 330R = 110-8768 2K2 = 110-8790 15K = 110-8812 100K = 110-8834 470R = 110-8772 3K3 = 110-8794 22K = 110-8817 10R 111-2212 470R 111-2222 4K7 111-2229 47K 111-2236 47R 111-2216 1K 111-2225 10K 111-2231 100K 111-2238 100R 111-2218 Puissance Tolérance Coefficient Température Boîtier à 70°C Température de fonct. 1206 0.33W 5% 100ppm/°C -55°C à 155°C 2010 0.75W 5% 100ppm/°C -55°C à 155°C 2512 1.5W 5% 100ppm/°C -55°C à 155°C 150R = 110-8841 1K = 110-8863 6K8 = 110-8886 33K = 110-8904 220R = 110-8845 1K5 = 110-8869 10K = 110-8892 47K = 110-8909 330R = 110-8849 2K2 = 110-8873 15K = 110-8896 68K = 110-8913 470R = 110-8854 3K3 = 110-8878 22K = 110-8900 100K = 110-8917 680R = 110-8859 4K7 = 110-8882 10R 111-2239 330R 111-2250 3K3 111-2256 33K 111-2264 33R 111-2242 1K 111-2253 10K 111-2261 100K 111-2267 100R 111-2245 10R 111-4644 150R 111-4652 1K 111-4658 Série PCF 10R 111-4673 100R 111-4679 3K3 111-4689 100K 111-4699 33R 111-4676 Série PWC 10R 111-4701 100R 111-4707 1K 111-4714 100K 111-4727 47R 111-4705 470R 111-4711 Résistance double • Résistances sur chip film épais résistant aux impulsions • Couche barrière en nickel • Les applications concernent la protection contre les impulsions dans les télécommunications et les circuits d’alimentation RoHS Conforme Non-conforme Commandez du lundi au vendredi de 8h30 à 19h pour une livraison gratuite le lendemain Résistances 39 Passifs Résistance LVK12 (Boîtier 1206) 0.25 Watt 5% (Boîtier 1206) LVK20 (Boîtier 2010) • Forte tension jusqu’à 3000 volts • Soudable par flux Série HB LVK24 (Boîtier 2412) • Spécification unique pour la plupart des applications • Conçu pour une haute fiabilité • Applications haute tension, diviseur de tension, filtre, équilibrage ... • Résistance haute tension • Disponible en boîtier 0805, 1206 et 2512 • Puissance nominale 0.125, 0.25 et 1 Watt Puissance 300mW Tension nominale 1500V Tolérance ±1% Coefficient de température ±100ppm/°C Température de fonctionnement -55°C à 150°C Boîtier 1206 x 0.063 x 0.125mm Boîtier 1206 Résistance Code Commande Prix Unitaire 2M 157-2802● g2,43 5M 157-2803● g2,43 10M 110-9055● g2,55 20M 157-2804● g2,43 50M 157-2806● g2,43 100M 110-9056● g2,55 1G 157-2807● g2,43 HBA 0.125 Watt 5% (Boîtier 0805) HB1 Résistance haute tension–Série CRHV LVK25 (Boîtier 1224) 1 Watt 5% (Boîtier 2512) HB3 Par Multiple de 1 Code Commande Prix Unitaire 0805 Toutes Valeurs ● g0,74 1206 Toutes valeurs ● g0,74 2512 Toutes Valeurs ● g0,74 LVK24 (2412) 100K = 137-6988 470K = 137-6992 1M5 = 137-6995 4M7 = 137-6999 150K = 137-6989 680K = 137-6993 2M2 = 137-6996 6M8 = 137-7001 220K = 137-6990 1M = 137-6994 3M3 = 137-6997 10M = 137-7002 330K = 137-6991 HBA HB1 HB2 Puissance nominale à 20°C 0.8W 2W 4W Coefficient de température ±100ppm/°C ±100ppm/°C ±100ppm/°C Température d’utilisation -55°C à +125°C -55°C à +125°C -55°C à +125°C Tolérance ±1% ±1% ±1% LVK20 (2010) 100K = 137-7003 470K = 137-7007 2M2 = 137-7011 10M = 137-7016 150K = 137-7004 680K = 137-7008 3M3 = 137-7013 15M = 137-7017 220K = 137-7005 1M = 137-7009 4M7 = 137-7014 22M = 137-7018 330K = 137-7006 1M5 = 137-7010 6M8 = 137-7015 27M = 137-7019 LVK12 (1206) Par Multiple de 1 Par Multiple de 1 HBA Toutes Valeurs ● g1,98 HB1 Toutes Valeurs ● g7,13 HB3 Toutes Valeurs ● g9,86 4M7 = 137-7020 6M8 = 137-7021 10M = 137-7022 15M = 137-7023 10M = 150-2903 22M = 150-2905 47M = 150-2908 100M = 150-2902 15M = 150-2904 33M = 150-2907 68M = 150-2909 Par Multiple de 1 Tolérance Code Commande Prix Unitaire LVK12 ±0.5% Toutes Valeurs g0,69 ±1% Toutes Valeurs g0,62 LVK20 ±0.5% Toutes Valeurs g1,13 ±1% Toutes Valeurs g1,01 LVK24 ±0.5% Toutes Valeurs g1,69 ±1% Toutes Valeurs g1,42 LVK25 ±1% Toutes Valeurs g2,02 Résistance - Série RV - 5% 10K = 150-2879 1M = 150-2882 20M = 150-2883 400M = 150-2887 100K = 150-2877 3M = 150-2886 50M = 150-2892 500M = 150-2891 300K = 150-2884 5M = 150-2893 100M = 150-2878 1G = 150-2881 500K = 150-2889 10M = 150-2880 300M = 150-2885 0R01 = 146-2284 0R03 = 146-2288 0R02 = 146-2292 0R012 = 146-2285 0R047 = 146-2289 0R03 = 146-2294 0R02 = 146-2286 0R05 = 146-2290 0R05 = 146-2296 0R024 = 146-2287 0R01 = 146-2291 1M = 150-2897 10M = 150-2895 100M = 150-2894 500M = 150-2899 5M = 150-2901 50M = 150-2900 330M = 150-2898 1G = 150-2896 0R01 = 146-2297 0R05 = 146-2304 0R015 = 146-2298 0R01 = 146-2305 0R02 = 146-2299 0R02 = 146-2306 0R027 = 146-2300 0R03 = 146-2307 0R03 = 146-2302 0R05 = 146-2308 0R039 = 146-2303 0R01 = 146-2309 0R047 = 146-2316 0R012 = 146-2310 0R05 = 146-2317 0R015 = 146-2311 0R01 = 146-2318 0R02 = 146-2312 0R02 = 146-2319 0R03 = 146-2314 0R02 = 146-2320 0R039 = 146-2315 0R05 = 146-2321 Résistance haute tension 0R001 = 146-2322 0R005 = 146-2326 0R002 = 146-2323 0R01 = 146-2327 0R003 = 146-2324 Série LVK Les caractéristiques de la série LVK à quatre terminaisons, connue sous la configuration de ’KELVIN’. Cette configuration permet au courant d’être appliqué à travers deux terminaisons opposées. Une détection de tension peut être mesuré à travers des deux autres terminaisons, éliminant la résistance et le coefficient de température pour une mesure de courant plus précise. Capteur de courant haute précision, 4 terminaisons Tous les prix de cette brochure sont en euros hors TVA www.farnell.fr Tél.: 04 74 68 99 99 Fax: 04 74 68 99 90 Alimentations AC/DC - Médicales 40 Electromécanique Réf Fab. Code Commande Prix Unitaire Homologation médicale LPS52-M 133-9441● g79,34 LPS53-M 133-9442● g59,51 LPS54-M 133-9443● g79,34 LPS55-M 133-9444● g79,34 LPS58-M 133-9445● g79,34 • Taille compact - Haute densité de puissance • Faible courant de fuite • Homologations industrielles et médiacles • Conforme EN61000-3-2, -3 • Convection refroidie Tension Charge Charge Code de sortie (V) maximale (A) de pointe (A) Réf. Fab. Commande Homologation médicale 5 11 12 LPS52-M 133-9441 12 5 5.4 LPS53-M 133-9442 15 4 4.4 LPS54-M 133-9443 24 2.5 2.75 LPS55-M 133-9444 48 1.25 1.35 LPS58-M 133-9445 Sortie simple ou multiple Réf. Fab. Code Commande Prix Unitaire Simple sortie Tous les Codes● g70,56 Triple sortie Tous les Codes● g98,49 Quadruple sortie Tous les Codes● g101,43 Accessoires Cache ECM100 100-5737● g16,17 Kit de raccordement ECM100S 100-5739● g5,51 Kit de raccordement ECM100 100-5738● g4,04 Approuvé pour les applications industrielles et médicales Ces alimentations à sortie simple ou multiple en version 130 watts sont homologuées pour les applications médicales selon UL2601-1 et EN60601-1. Courant de fuite de ces alimentations compacts : 250μA à 240V c.a., 60Hz, double protection par fusible. Accessoires : capots et kits de connecteurs. Réf. Fab. Sortie 1 Sortie 2 Sortie 3 Sortie 4 Code Commande ECM100US03 +3.3V, 15A – – – 100-5729 ECM100US05 +5V, 15A – – – 100-5731 ECM100US09 +9V, 8.8A – – – 100-5732 ECM100US12 +12V, 7.5A – – – 100-5733 ECM100US15 +15V, 6A – – – 100-5734 ECM100US24 +24V, 4.1A – – – 100-5735 ECM100US48 +48V, 2.1A – – – 100-5736 ECM100UT31 +5V, 10A +12V, 3A -12V, 0.8A – 128-9213 ECM100UT33 +5V, 10A +24V, 2A -12V, 0.8A – 128-9215 ECM100UQ41 +5V, 10A +3.3V, 5A +12V, 0.8A -12V, 0.5A 128-9216 ECM100UQ42 +3.3V, 10A +5V, 5A +12V, 0.8A -12V, 0.5A 128-9217 ECM100UQ43 +5V, 10A +24V, 2A +12V, 0.8A -12V, 0.5A 128-9218 ECM100UQ44 +5V, 10A +24V, 2A +15V, 0.8A -15V, 0.5A 128-9219 Une gamme d’alimentations industrielles nouvelle génération recommandées pour une grande variété d’applications industrielles et médicales. Simple sortie Ultra Compact - 100W • Taille réduite • Faible coût • Faible courant de fuite • Emissions conduite Niveau B • Isolation 4000Vac • Entrée universelle • Dimensions: 50.8 x 101.6 mm • Détection à distance • Protection contre les surcharges et les courts-circuits • Tension de sortie réglable (±20%) • Haut rendement • MTBF élevée • Filtre IEM incorporé (CISPR 22 Classe B) • Indicateur d’alimentation correcte à DEL • Puissance en entrée <74W • Conforme à EN61000- 3-2 • Homologations UL, CSA, TUV, CB, CE (LVD & EMC) • Isolement 4000V c.a. • Faible courant de fuite • Homologations officielles pour usage médical • Bruit conduit Classe B Série LPT50 Note: Kit pour simple sortie (Code Commande 117-6954), pour triple sortie (Code Commande 117-7009) • Rendement maxi. : 90% • Densité de puissance élevée • Technologie de commutation au zéro de la tension Réf. Fab. Tension de sortie Refroidissement par convection Code Commande JPS130PS05-M 5V 20A 133-7226 JPS130PS12-M 12V 9A 133-7227 JPS130PS15-M 15V 7A 133-7228 JPS130PS24-M 24V 4.5A 133-7229 JPS130PS28-M 28V 3.8A 133-7230 JPS130PS48-M 48V 2.3A 133-7231 Avec des produits concurrents un tiers plus volumineux, l’alimentation AC/DC simple sortie ECM100 de XP Power est la plus compacte de ce type sur le marché. Le faible encombrement de la ECM 100 a été obtenu en minimisant le nombre de composants et en utilisant uniquement deux refroidisseurs. La gamme de température de fonctionnement est de 0 °C à +80 °C et les alimentations comportent une protection en température, en courant et surtension. Réf Fab. Code Commande Prix Unitaire LPT51-M 129-7397● g98,53 LPT52-M 129-7398● g98,53 LPT53-M 129-7400● g98,53 LPT54-M 129-7402● g98,53 Réf. Fab. Code Commande Prix Unitaire Sortie simple ECM40 Tous les codes● g36,75 Sortie triple ECM40 Tous les codes● g48,51 Sortie simple ECM60 Tous les codes● g51,45 Sortie triple ECM60 Tous les codes● g64,68 Accessories: Capot ECM40/60 117-6953● g14,70 Kit ECM40/60S 117-6954● g4,41 Kit de connecteur ECM40/60 117-6955● g2,94 Kit ECM40/60DT 117-7009● g4,41 Alimentations 130W, applications médicales Tensions Charge Charge de sortie (V) maximale (A) de pointe (A) Réf. Fab. 3.3 / 5 / 12 0.5 / 8 / 8 9 / 4 / 1 LPT51-M 5 / 12 / -12 0.5 / 8 / 8 9 / 4 / 1 LPT52-M 5 / 15 / -15 0.5 / 8 / 8 9 / 3.2 / 0.7 LPT53-M 5 / 24 / 12 0.5 / 8 / 8 9 / 2 / 0.7 LPT54-M Réf. Fab. Sortie 1 Sortie 2 Sortie 3 Code Commande ECM40US05 5V / 8A - - 117-6956 ECM40US12 12V / 3.5A - - 117-6957 ECM40US15 15V / 2.7A - - 117-6958 ECM40US24 24V / 1.7A - - 117-6959 ECM40US48 48V / 0.9A - - 117-6960 ECM40UT31 5V / 6A 12V / 2A -12V / 0.5A 117-6970 ECM40UT32 5V / 6A 24V / 1A -12V / 0.5A 117-6971 ECM40UT33 5V / 6A 15V / 1.5A -15V / 0.5A 117-6974 ECM40UT34 3.3V / 6A 5V / 1.5A +12V / 0.5A 117-6975 ECM40UT35 5V / 6A 3.3V / 1.5A +12V / 0.5A 117-6976 ECM60US05 5V / 12A - - 117-6962 ECM60US12 12V / 5A - - 117-6963 ECM60US15 15V / 4A - - 117-6964 ECM60US24 24V / 2.5A - - 117-6965 ECM60US48 48V / 1.25A - - 117-6966 ECM60UT31 5V / 8A 12V / 3A -12V / 0.5A 117-6969 ECM60UT32 5V / 8A 24V / 1.5A -12V / 0.5A 117-6977 ECM60UT33 5V / 8A 15V / 2.5A -15V / 0.5A 117-6978 ECM60UT34 3.3V / 8A 5V / 1.5A +12V / 0.5A 117-6979 ECM60UT35 5V / 8A 3.3V / 1.5A +12V / 0.5A 117-6980 Homologations industrielles et médicales Alimentations 40-60W Sortie simple ou multiple Triple Sortie 50W Réf Fab. Code Commande Prix Unitaire JPS130PS-M Tous Codes● g116,13 Accessoires: JPS130-M Cache 100-5638● g20,58 JPS130PS Kit de Raccordement 111-0691● g4,04 RoHS Conforme Non-conforme Commandez du lundi au vendredi de 8h30 à 19h pour une livraison gratuite le lendemain Alimentations AC/DC - Médicales 41 Electromécanique • Ultra compacte • Entrée universelle 85-264 Vca • Modèle avec sortie simple et sortie double • Disponible en 2 versions de boîtiers : pour montage PCB (avec broches à souder) ou pour montage châssis (avec borne à vis) • Adaptateur pour montage sur rail DIN disponible (à commander séparément) • Classe II • Conforme à la norme EN/UL 60601-1 pour les applications médicales • Protection contre les surcharges et les courts-circuits • Garantie constructeur 3 ans Alimentation AC/DC conçue pour les applications médicales comme la surveillance de patients, les appareils de laboratoire ou portables. Boîtier externe en polycarbonate avec technologie à découpage. Puissance 24W, sorties 12V, 15V, 18V et 24V régulées et protégées avec une faible ondulation. Type Code Commande Prix Unitaire Type Code Commande Prix Unitaire Montage PCB TMT 15112C 128-4209● g63,24 TMT 15105 128-4201● g57,02 TMT 15115C 128-4210● g66,90 TMT 15112 128-4202● g57,02 TMT 15124C 128-4211● g63,24 TMT 15115 128-4203● g58,70 TMT 15212C 128-4212● g67,27 TMT 15124 128-4205● g42,77 TMT 15215C 128-4213● g66,30 TMT 15212 128-4206● g59,16 TMT 30105C 128-4221● g76,70 TMT 15215 128-4207● g59,16 TMT 30112C 128-4222● g76,81 TMT 30105 128-4214● g70,89 TMT 30115C 128-4223● g75,80 TMT 30112 128-4215● g70,89 TMT 30124C 128-4224● g76,70 TMT 30115 128-4217● g70,10 TMT 30212C 128-4225● g78,69 TMT 30124 128-4218● g70,89 TMT 30215C 128-4226● g78,69 TMT 30212 128-4219● g71,91 TMT 50105C 144-1245● g118,70 TMT 30215 128-4220● g71,91 TMT 50112C 144-1246● g118,70 TMT 50105 144-1239● g117,10 TMT 50115C 144-1247● g118,70 TMT 50112 144-1240● g117,10 TMT 50124C 144-1248● g118,70 TMT 50115 144-1241● g117,10 TMT 50148C 144-1249● g118,70 TMT 50124 144-1242● g117,10 Adaptateur pour Rail DIN (Modèle TMTxxxC) TMT 50148 144-1244● g117,10 TMT-MK1 (f. TMT 15xxxC) 128-4227● g12,85 Montage Châssis TMT-MK2 (f. TMT 30xxxC) 128-4229● g12,85 TMT 15105C 128-4208● g63,24 TMT-MK5 (f. TMT 50xxxC) 144-1250● g14,90 Alimentations médicales faible épaisseur offrant 1, 3 et 4 tensions de sorties. • Garantie constructeur 5 ans • Large plage de tension d’entrée AC • Protection contre les courts circuits, les surtensions, les surintensités et en température. • Testée à 100% • Approuvé pour l’international (US, Canada, CE) • Homologations médicales de sécurité • Convection de 100W -Boîtier intégrant un ventilateur • MTBF de 350 kHrs • Tension d’entrée = 90- 264Vac • Gamme de température = de 0 à 70°C • Dimensions (LxlxP): 101.6x38.1x177.8mm • Conforme aux préconisations de l’agence de sécurité médicale (EN 60601-1) • Connecteur 3 broches IEC320/C14t, sortie connecteur 2.5mm Modèle Puissance de sortie Sortie 1 Sortie 2 Réf. Fab. Montage PCB Montage Châssis (W) ( Vdc / mA) ( Vdc / mA) Montage PCB Montage Châssis TMT 15105 TMT 15105C 15 5/3000 - 128-4201 128-4208 TMT 15112 TMT 15112C 15 12/1250 - 128-4202 128-4209 TMT 15115 TMT 15115C 15 15/1000 - 128-4203 128-4210 TMT 15124 TMT 15124C 15 24/625 - 128-4205 128-4211 TMT 15212 TMT 15212C 15 +12/625 -12/625 128-4206 128-4212 TMT 15215 TMT 15215C 15 +15/500 -15/500 128-4207 128-4213 TMT 30105 TMT 30105C 30 5/6000 - 128-4214 128-4221 TMT 30112 TMT 30112C 30 12/2500 - 128-4215 128-4222 TMT 30115 TMT 30115C 30 15/2000 - 128-4217 128-4223 TMT 30124 TMT 30124C 30 24/1250 - 128-4218 128-4224 TMT 30212 TMT 30212C 30 +12/1250 -12/1250 128-4219 128-4225 TMT 30215 TMT 30215C 30 +15/1000 +15/1000 128-4220 128-4226 TMT 50105 TMT 50105C 50 5/9000 - 144-1239 144-1245 TMT 50112 TMT 50112C 50 12/4200 - 144-1240 144-1246 TMT 50115 TMT 50115C 50 15/3400 - 144-1241 144-1247 TMT 50124 TMT 50124C 50 24/2100 - 144-1242 144-1248 TMT 50148 TMT 50148C 50 48/1000 - 144-1244 144-1249 Réf. Fab. Puissance (W) Tension (V) Courant (A) Code Commande Prix Unitaire MW2412 24 12 2.0 150-2599 g39,79 MW2415 24 15 1.6 150-2600 g39,79 MW2418 24 18 1.33 150-2601 g39,79 MW2424 24 24 1.0 150-2602 g39,79 Homologations médicales Alimentation encapsulée 15 à 50W - Série TMT Tension d’entrée 90-264 Vac, 47/63 Hz Régulation de ligne ±1% Régulation de charge ±5% Ondulation ±1% pk - pk max Appouvé UL60601-1, CSA C22.2 No.601.1-M90, CB per IEC60601-1 CEM Emissions: CISPR11 et FCC Part 15, Classe B. Conduction et radiation EN61000-3-2, -3Immunité: EN61000-4-2, -3, -4, -5, -6, -8, -11 Rendement 85% typ. MTBF >550 000 Réf. Fab. Sortie 1 Sortie 2 Sortie 3 Sortie 5 Code Commande PBM200PS3V3-C +3.3V, 46A – – – 128-9220 PBM200PS05-C +5.1V, 35A – – – 128-9221 PBM200PS12-C +12V, 16.7A – – – 128-9222 PBM200PS15-C +15V, 13.4A – – – 128-9223 PBM200PS24-C +24V, 8.4A – – – 128-9224 PBM200PS48-C +48V, 4.2A – – – 128-9225 PBM200PT02-C +5.1V, 30A +12V, 8A -12V, 4A – 128-9227 PBM200PT03-C +5.1V, 30A +15V, 6A -15V, 4A – 128-9228 PBM200PQ02-C +5.1V, 30A +15V, 6A -15V, 4A F 24V, 4A 128-9229 PBM200PQ05-C +5.1V, 30A +12V, 8A -12V, 4A F 24V, 4A 128-9230 PBM200PQ06-C +3.3V, 30A +5.1V, 8A -12V, 4A F 12V, 4A 128-9231 15/30/50 W Alimentation 24W simple sortie - Médicale Code Commande Prix Unitaire Simple sortie Tous Codes● g185,22 Triple sortie Tous Codes● g205,80 Quadruple sortie Tous Codes● g227,85 Alimentations Triple et Quadruple sorties - Série PBM 200W Tous les prix de cette brochure sont en euros hors TVA www.farnell.fr Tél.: 04 74 68 99 99 Fax: 04 74 68 99 90 Relais 42 Electromécanique Code Commande Réf. Fab. 990-6819 ER114-5 990-6827 ER114-12 NOUVEAUTES? Configuration des contacts SPNO (1Forme A) Consommation bobines 200 mW Courant nominal contacts 2A Température d’utilisation -40°C à +85°C Matériaux contacts AgSnO Contacts 2RT Puissance bobine 140mW Courant 2A @ 30V c.c. Gamme de température -40°C à +85°C Contact material Argent doré Série G6S-2FY Plus de 600 produits sont ajoutés chaque semaine sur notre site internet! Visitez la rubrique NOUVEAUTES pour découvrir notre sélection des meilleurs produits et découvrir les toutes dernières technologies. Série IM 2,5 Ghz – Série G6W • Contacts DPCO • Faible consommation de puissance • Etanche • Agréé UL et CSA Série HF3, 50Ω • Isolement : 60 dB min. • Pertes d’insertion : 0,2 dB max. Code Commande Réf.Fab. Type Code Commande Réf.Fab. Type 132-6155 0-1462037-4 IM01TS 132-6157 0-1462037-1 IM01GR 117-5068 0-1462037-9 IM02GR 117-5066 1-1462037-8 IM03TS 117-5069 1-1462037-4 IM03GR 117-5067 2-1462037-7 IM06TS 117-5070 2-1462037-3 IM06GR 421-9211 3-1462037-0 IMO7TS 132-6154 4-1462037-7 IM07GR Tension Code Prix Tension Code Prix Bobine Ω Commande Unitaire Bobine Ω Commande Unitaire DPCO - série G62-2 12V c.c. 1028 995-0060● g6,89 5V c.c. 178 995-0052● g7,86 24V c.c. 2880 995-0079● g6,89 • Haute fiabilité • Capacité entre ciontacts faible • Haute résistance aux chocs et aux vibrations • Construction entièrement scellée Tension Code Tension Code Bobine Ω Commande Prix Unitaire Bobine Ω Commande Prix Unitaire Monostable - 1 bobine Bistable - 1 bobine 4.5V dc 145 991-3580● g4,59 4.5V dc 289 991-3602● g4,83 12V dc 1028 991-3599● g9,17 12V dc 2057 991-3610● g4,59 Configuration des contactsSPDT - 1 forme C Gamme de fréquence 3GHz Impédance 50Ohm Matériau contact Or Consommation bobine 140mW Gamme de température -55 à 85°C Tension Bobine Ω Code Commande Prix Unitaire DPDT C/O contacts - IM Series 3V dc 64 132-6155● g6,16 5V dc 178 117-5066● g4,26 12V dc 1028 117-5067● g5,66 24V dc 2880 421-9211● g5,11 3V dc 64 132-6157● g6,00 4.5V dc 145 117-5068● g5,66 5V dc 178 117-5069● g5,14 12V dc 1028 117-5070● g3,57 24V dc 2880 132-6154● g6,00 Code Commande Réf. Fab. 444-6367 G6W-1F 12DC 444-6379 G6W-1F 24DC • Relais CMS conforme aux exigences d’isolement de EN60950 • Haute tenue diélectrique 2kV (bobine-contacts), 1.5kV (contacts-contacts) • Versions à picots en "L" • Bobine haute sensibilité 140mW • Approuvé UL et CSA Capacité inter-contact faible et contact faibles pertes permettent un transfert de signal fiable à fréquence ultra haute UHF. Les relais série 114 sont bas profil (6.9mm), ultra-miniature, hermétiques, avec terminaisons de 2.54mm. Les contacts en alliage de métaux précieux et plaqués or assurent une commutation fiable du niveau bas à la pleine charge. Ces relais sont idéaux pour une commutation haute fréquence AC ou des signaux numériques à grande vitesse. Subminiature - Série G6S Unipolaire 1A - CMS Tension Bobine Ω Code Commande Prix Unitaire Picots en L - Série G6S-2FY 5V c.c. 125 995-0028● g7,03 12V c.c. 125 995-0036● g7,03 24V c.c. 125 995-0044● g7,03 5V c.c. 125 118-1055● g7,29 12V c.c. 125 118-1056● g7,29 24V c.c. 125 118-1057● g7,29 Tension Code Prix Tension Code Prix Bobine Ω Commande Unitaire Bobine Ω Commande Unitaire Monostable 24V c.c. 2880 444-6379● g60,27 12V c.c. 720 444-6367● g60,27 Ultraminiature - 2A Tension Prix Tension Prix Bobine Ω Code Commande Unitaire Bobine Ω Code Commande Unitaire 5V 50 990-6819● g34,09 12V 390 990-6827● g34,09 Contacts jumelés2RT Consommation (nom.) 140mW (5V, 12V), Intensité nom. 2A à 30V c.c., Gamme de Température -40°C à +85°C Matériau Argent doré V c.c.V c.a.220, 240 DPDT Bas Profil Subminiature - Série G6S Configuration des contacts SPDT Puissance bobine 200mW Résistance contacts (initiale) 100mΩ max. Intensité admissible nominale 0.5A Température d’utilisation -40 à 70°C • Gamme de fréquence DC à 3GHz • Courant commutable maximum de 2A • Lavable par immersion • Version étroite, bas profil • Disponible en version traversante et version montage en surface (CMS) • Occupe un minimum de place, 60mm2 • Haute sensibilité, 140mW • Haute résistance aux chocs mécaniques, 300G • Approuvé UL, CSA, CECC, IEC/ EN60950 Configuration des Contacts DPDT / 2 Form C Intensité nominale 1A à 28V dc Gamme de température -65°C à +125°C SPDT 0,5A – Haute fréquence DPCO CMS Code Commande Réf. Fab. 991-3580 HF3-52 991-3599 HF3-56 102-3960 PCD-112D2MH 991-3610 HF3-76 RoHS Conforme Non-conforme Commandez du lundi au vendredi de 8h30 à 19h pour une livraison gratuite le lendemain Relais 43 Electromécanique Homologations VDE, BEAB, UL,CSA, SEV, NF-USE, SETI, IMQ, SEMKO, DEMKO. Type c.c. Série PCD • Dimension compacte capable d’interrompre les charges à haute tension et à forte intensité • Etanche • Contacts à visser M 3.5 • Contacts SPST-NO Réf. Fab. RE030005=515-838, RE030012=515-840, RE030024=515-851 • Bas profil (10mm) • Boîtier plastique étanche • Sensibilité bobine (200mW) • Approuvé UL, CSA, TUV Séries G9EA-1 Type c.a. • Contacts SPNO • Boîtier extra plat 10.6mm, idéal pour système à 3 modules selon DIN41494 Série V23076 Série RE - Bobine sensible Verrouillable • Lavable par immersion (Etanche) • Montage traversant Tension Bobine Ω Code Commande Prix Unitaire Modèles Standard 12V dc 28.8 125-7570● g152,94 24V dc 115.2 125-7571● g152,94 48V dc 469.3 125-7573● g152,94 Modèles haute tension 12V dc 28.8 125-7574● g129,82 24V dc 115.2 125-7575● g129,82 48V dc 469.3 125-7576● g129,82 Cache bornes 125-7577● g2,61 Tension Bobine Ω Code Commande Prix Unitaire SPNO — Série RE (3.5-11) 125 515-838● g4,34 (8.4-27.6) 720 515-840● g4,17 (16.8-55.2) 2880 515-851● g4,34 Code Commande Réf.Fab. 102-3960 PCD-112D2MH 102-3961 PCD-124D2MH • Unipolaire, 1 contact NO • Bobine sensible 200 mW Tension Bobine Ω Code Commande Prix Unitaire SPNO - Série PCD 12V dc 720 102-3960● g3,89 24V dc 2880 102-3961● g3,89 • Lavable Configuration contacts SPNO (1T) Enclenchement/ déclenchement 200mW Pouvoir de coupure 6A à 250V c.a. Matériau des contacts Oxyde argent cadmium Gamme de température -40 à +70°C (+85°C @ 4A) Code Commande Réf.Fab. 102-4021 V23076A1001C133 102-4022 V23076A1022C133 Modèles standard Modèles haute tension Charge nominale - Modèles standard 30A à 400V dc 60A à 400V dc, 100A @ 120V dc Intensité admissible nominale 100A 60A Tension de commutation 30Aà 400V dc 60Aà 400V dc Tension commutée - Max. 400V dc 400V dc Consommation bobine nominale 5W 5W Collage/Décollage 50ms/30ms 50ms/30ms Gamme de température -40 à 70°C -40 à 70°C Miniature - Série RE Tension Bobine Ω Code Commande Prix Unitaire SPCO - Série V23076 12V 90 102-4021● g3,68 24V 362 102-4022● g3,86 Réf. Fab. Code Commande G9EA-1B 12DC = 125-7574 G9EA-1BCA 12DC = 125-7570 G9EA-1B 24DC = 125-7575 G9EA-1BCA 24DC = 125-7571 G9EA-1B 48DC = 125-7576 G9EA-1BCA 48DC = 125-7573 P9EA-C = 125-7577 Configuration des contacts: SPNO (1 Forme A) Courant nominal contacts: 15A à 125V ac, 10A à 24V dc Matériaux des contacts: AgSnO Consommation bobine: 200 mW Temperature d’utilisation -30°C à +70°C Note: Une tension inverse est nécessaire pour le reset des relais verrouillables Tension Code Bobine Ω Commande Prix Unitaire 5V dc 125 965-9676● g2,38 12V 720 965-9684● g2,38 24V 2880 965-9692● g2,38 Relais de puissance 100A Configuration des contacts SPNO Courant commutable 6A @ 240V ac Consommation bobine 200mW Matériau contact AgNi 0.15 Plaquage contact Or Température de service -40 à 70°C Tension Code Prix Tension Code Prix Bobine Ω Commande Unitaire Bobine Ω Commande Unitaire SPCO 10A - Série 40.31 24V c.c. 1200 116-9167● g3,39 24V c.a. 320 116-9152● g4,08 48V c.c. 3500 116-9168● g3,95 110V c.a. 6900 116-9155● g4,07 DPCO, 5A - Série 40.52 240V c.a. 31500 116-9156● g6,55 24V c.a. 320 116-9169● g4,25 6V c.c. 55 116-9157● g3,53 110V c.a. 6900 116-9170● g4,63 12V c.c. 300 116-9158● g3,25 240V c.a. 31500 116-9171● g7,38 24V c.c. 1200 116-9159● g3,25 6V c.c. 55 116-9172● g4,90 48V c.c. 3500 116-9160● g3,53 12V c.c. 300 116-9173● g3,91 SPCO 16A - Série 40.61 24V c.c. 1200 116-9174● g3,91 24V c.a. 320 116-9161● g3,84 48V c.c. 3500 116-9175● g4,90 110V c.a. 6900 116-9162● g4,03 DCPO 10A Serie 44.62 240V c.a. 31500 116-9163● g6,36 6V c.c. 75 116-9303● g4,90 6V c.c. 55 116-9164● g2,78 12V c.c. 300 116-9304● g6,27 12V c.c. 300 116-9165● g3,39 24V c.c. 1200 116-9305● g6,27 15A, Bas profil Configuration des contacts SPCO (1 Forme C) Courant nominal contacts 40A Courant de commutation minimal 1.0A Puissance nominale bobine 1.6W Matériaux contacts Argent 6A Configuration des contacts 1RT/2RT (1RT/2RT) Intensité nominale SPCO 10A @ 240V c.a., 30V c.c. 16A @ 240V c.a., 30V c.c. DPCO 5A @ 240V c.a., 30V c.c. Matériau de contacts 10A/5A Argent nickel (90/10) 16A Oxyde d’argent-cadmium Déclenchement Plage de Gamme de température -20°C à + 70°C Réf. Fab. Code Commande RE032005 965-9676 RE032012 965-9684 RE032024 965-9692 20/40A, Unipolaire Vertical - Série 40 SPST-NO - 6A @ 240V ac 5A/10A/16A • Contacts SPCO et DPCO • Economique • Isolation bobine - contacts 4kV - 8mm • Etanche selon IP40 Une simple rotation de ce connecteur M12 de nouvelle génération et c’est tout. Son mécanisme de fermeture innovant exige que les connecteurs à rattacher soient bien insérés l’un dans l’autre et une simple rotation d'un huitième de tour, jusqu’au « click » audible et sensible, vous prévient que la connexion est sure. Le mécanisme de blocage interne élimine toute chance de grippage par un liquide extérieur ou des éclaboussures de poussière (IP67) et le système de fermeture à baïonnette intégrée élimine le risque de desserrage. Avec toutes ces caractéristiques, cette nouvelle gamme de connecteurs voie son temps d’installation réduit de 75%! Soyez Smart – demandez Smartclick! www.omroncomponents.com BIG IDEAS For a Small World Smartclick XS5 est facile d’utilisation et entièrement compatible avec les connecteurs M12 conventionnels à vis. Nouveaux connecteurs de capteurs E/S étanches RoHS Conforme Non-conforme Commandez du lundi au vendredi de 8h30 à 19h pour une livraison gratuite le lendemain Commutateurs 45 Electromécanique Commutateurs IP67 Durée de vie électrique 500000 actionnements Résistance d’isolement <1MR Température de fonctionnement -40°C à +125°C (standard)Résistance de contact <50mR Course totale 1.5mm Effort d’actionnement 3N • Panneau étanche jusqu’à IP67 • Simple Pôle • Découpe panneau industrie standard 30 x 11mm • Epaisseur panneau de 1 à 3mm • Vendus avec joints d’étanchéité • Terminaisons : 6.3 x 0.8mm • Approuvés ENEC et CSA , Reconnu UL 16(6)A à 250V ac Couleur Réf. Fab. Code Commande Prix Unitaire Bleu IBR3SAD1 108-2436● g5,32 Noir IBR3SAD2 108-2438● g5,32 Vert IBR3SAD3 108-2439● g5,32 Rouge IBR3SAD6 108-2440● g5,32 • Etanche • Broches sur grille de 5.08 x 2.54mm(0.1") • Les contacts plaqués or permettent un faible niveau de commutation • Positions de commutation repérées 1 & 2 • Bouton dépassant de 2mm (standard) ou 6mm (long) • Versions montage traversant ou en surface (CMS) • Matériel haute température (UL 94V-0) Fonction de Commutation Couleur Déclencheur/LED Réf. Fab. Code Commande Prix Unitaire Non -Lumineux SPST On-Off Noir C6100FLAAA 138-8233● g4,13 SPST On-Off Noir, O/I C6100FLAAB 138-8234● g4,39 SPDT On-On Noir C6110FLAAA 138-8235● g5,04 SPDT On-On(Mom.) Noir C6111FLAAA 138-8236● g5,25 230V ca LED-Lumineux SPST On-Off Noir / Rouge C6108PLMAA 138-8237● g6,01 SPST On-Off Noir / Vert C6108PLMAB 138-8238● g6,01 12V cc LED-Lumineux SPST On-Off Noir / Rouge C6108PLLAA 138-8239● g6,60 SPST On-Off Noir / Vert C6108PLLAB 138-8240● g6,60 2A @ 250V ac (argent), 100mA 30V dc (or) 0.4VA à 20V ac/dc Etanche - IP67 Vertical Réf. Fab. Code Commande Prix Unitaire Montage vertical SPDT- On-On GT11MCBE 143-7674● g4,69 SPDT- On-Off-On GT13MCBE 143-7675● g5,41 DPDT- On-On GT21MCBE 143-7676● g6,30 DPDT- On-Off-On GT23MCBE 143-7678● g6,78 SPDT- On-On GT11MSCBETR 143-7679● g6,78 SPDT- On-Off-On GT13MSCBETR 143-7680● g6,02 DPDT- On-On GT21MSCBETR 143-7681● g6,94 DPDT- On-Off-On GT23MSCBETR 143-7682● g7,45 Action Horizontal SPDT- On-On GT11MABE 143-7683● g2,97 SPDT- On-Off-On GT13MABE 143-7684● g6,01 DPDT- On-On GT21MABE 143-7685● g4,69 DPDT- On-Off-On GT23MABE 143-7686● g7,60 SPDT- On-On GT11MSABETR 143-7687● g3,81 SPDT- On-Off-On GT13MSABETR 143-7688● g4,44 Action Vertical SPDT- On-On GT11MAVBE 143-7691● g5,28 SPDT- On-Off-On GT13MAVBE 143-7692● g6,04 DPDT- On-On GT21MAVBE 143-7693● g7,12 DPDT- On-Off-On GT23MAVBE 143-7694● g7,60 0.4VA @ 28V AC/DC (Maximum) Miniature, étanche, à encliquetage Contacts argent Code Commande Prix Unitaire UNI on-on, bouton standard 108-2284● g2,30 UNI on-on, bouton latéral 108-2289● g2,30 UNI on-on, bouton long 108-2285● g3,64 BIP on-on, bouton standard 108-2288● g4,48 BIP on-on, bouton latéral 108-2290● g4,06 Contacts or UNI on-on, bouton standard 108-2286● g3,61 UNI on-on, bouton long 108-2287● g3,61 • Taille miniature permettant un montage CI haute densité • Conception du mécanisme de détente à ressort hélicoïdal • Cosses moulées en époxy étanche prévenant l’entrée de flux et d’autres contaminants • Espacement des cosses de 2.54mm x 2.54mm conforme aux grilles de CI standards Pouvoir de coupure 0.4VA à 20V ac/dc Durée de vie 40000 Résistance des Contacts 50mOhm Résistance des Contacts 1000MOhm Force Dieléctrique 500V RMS Gamme de température -30 à 85°C 125 mA à 125 V c.a. Réf. Fab. = 25336NA=108-2289 25136NAH6=108-2285 25146NAH=108-2288 25546NA=108-2290 25136NLDH=108-2286 25136NLDH6=108-2287 Type Réf. Fab. Code Commande Prix Unitaire Droit à levier SPDT - On-On GW12LHP 152-4268● g1,47 DPDT - On-On GW22LHP 152-4269● g1,74 Coudé à levier SPDT - On-On GW12LHH 152-4270● g1,72 DPDT - On-On GW22LHH 152-4271● g2,15 Droit à bascule SPDT - On-On GW12RHP 152-4272● g1,47 DPDT - On-On GW22RHP 152-4273● g1,74 Coudé à bascule SPDT - On-On GW12RHH 152-4274● g1,72 DPDT - On-On GW22RHH 152-4275● g2,15 Miniature, montage CI • Interrupteurs compacts, montage par encliquetage • Protection IP67 • Réalisés en thermoplastique léger UL94-V0 • Disponible dans une large gamme de couleurs Ultraminiature Etanche Pouvoir de coupure (Charge résistive) 0.4 VA @ 28V ac/dc (Max.) Durée de vie électrique 50000 Cycles Température d’utilisation -30°C à 85°C Subminiature - Montage CI Tous les prix de cette brochure sont en euros hors TVA www.farnell.fr Tél.: 04 74 68 99 99 Fax: 04 74 68 99 90 Commutateurs 46 Electromécanique Seulement g1,06 CODE COMMANDE131-6988● Seulement g7,27 CODE COMMANDE143-7673● Série Navimec A pousser et à levier - CMS Code Prix Code Prix Réf. Fab. Commande Unitaire Réf. Fab. Commande Unitaire Boutons Noir Boutons Bleu NAVIKITTH09WL 139-0523● g12,18 NAVIKITTH30WL 139-0525● g12,18 NAVIKITSM09WL 139-0524● g12,88 NAVIKITSM30WL 139-0526● g12,88 Micro-Miniature - CMS - SPDT Actionnement sur le haut - CMS - SPDT Réf. Fab. Force (gf) Poussée/Glissière Code Commande Prix Unitaire MCPLJ-G2-K-V 150/40 131-6991● g1,22 MCPL3-AC-V 200/70 131-6992● g1,25 MCPL3-BC-V 200/70 131-6993● g1,25 Kits Interrupteur de navigation Multidirectionnel 5 voies - CMS - SPDT Balayage et Selection Angle droit et angle gauche - CMS - SPDT Micro-Miniature - SMD - SPDT Tension Courant Gamme de Nominale Nominal Temp. Code (Vcc) (mA) min/max (°C) Commande 5 10 -25 à 80 131-6991 5 1 -30 à 80 131-6992 5 1 -30 à 80 131-6993 • Commutateurs momentanés SPNO autonomes • 50mA à 24V dc • Durée de vie : 10,000,000 cycles • IP67 • Gamme de température de -40°C à 115°C • Choix dans la couleur du bouton Commutateur tactile horizontal à contact NO. Le commutateur possède une force de commande de 40gf. • Durée de vie mécanique 100 000 cycles Commutateur tactile multidirectionnel. La force de commande exigée pour les commutateurs latéraux est de 180gf et de 320gf pour le commutateur central. Ils • Trackerball miniature avec une bille de 8mm • Feedback positif • 12 pulsations par rotation • IP54 • Protection ESD Commutateur de détection tactile horizontal à contact NO. Le commutateur possède une partie à pousser de 2.15mm et force de commande de 40gf. • UL94V-0 • Durée de vie électrique 50 000 cycles Ces commutateurs multidirectionnels offrent une force de commande de 160gf. Ils possèdent une vie électrique très longue d’au moins 100.000 cycles. • UL94V-0 • Force de commande max. : 320gf au centre Style de Contact Réf. Fab. Code Commande Prix Unitaire NO MCFTE-2C-V 131-6984● g0,79 NC MCFTE-3C-V 131-6985● g0,79 possèdent une durée de vie électrique très longue d’au moins 200.000 cycles. UL94V-0 Interrupteur de navigation Tension Courant Gamme de Nominale Nominal temp. (Vcc) (mA) min/max (°C) 20 50 -10 à 60 Nbre de Directions Réf. Fab. Code Commande Prix Unitaire 4 MCMT4-F-V 131-6986● g1,06 5 MCMT5-F-V 131-6987● g1,06 • Boutons externes identifiés par la flèche blanche, bouton de centre identifié un "OK" blanc • Version montage en surface ou traversant disponibles Applications • Téléphones mobiles • Systèmes de navigation • Claviers, télécommandes, souris d’ordinateur Type de Levier Réf. Fab. Code Commande Prix Unitaire Long MCATE-1-V 131-6982● g0,79 Court MCATE-2-V 131-6983● g0,79 Tension Courant Gamme de Nominale Nominal temp. (Vcc) (mA) min/max (°C) 5 1 -10 à 60 Tension Courant Gamme de Nominale Nominal temp. (VDC) (mA) min/max (°C) 5 1 -20 à 70 Commutateur de détection - Horizontal Commutateur de détection • Appareils photo • PDA • Manette de jeux déclencheur et de 150gf sur le commutateur du centre • Le commutateur MCPLS exige une force d’action de 70gf sur le déclencheur et de 200gf sur le commutateur du centre • Le commutateur MCPL3-AC-V possède un bouton de montage intégré Tension Courant Gamme de Nominale Nominal temp. (Vcc) (mA) min/max (°C) 12 50 -25 à 85 Tension Courant Gamme de Nominale Nominal temp. (Vcc) (mA) min/max (°C) 12 50 -20 à 70 Puissance (Max.) 0.2VA Force d’action - Balayage 0.35N Force d’action - Select 2.2N Gamme de température -30 à 85°C • Commutateur intégré au centre • Durée de vie électrique d’au moins 100000 cycles • Le commutateur MCPLJ exige une force d’action de 40gf sur le Interrupteur de navigation Commutateur multidirectionnel Direction Réf. Fab. Code Commande Prix Unitaire Angle Droit MCTE-MRR-V 131-6980● g0,62 Angle Gauche MCTE-MRL-V 131-6981● g0,62 Commutateur tactile horizontal à contact NO ou NC. Le commutateur possède une force de commande de 50gf. • UL94V-0 • Durée de vie électrique : 100 000 cycles Commutateur de détection Trackerball Miniature RoHS Conforme Non-conforme Commandez du lundi au vendredi de 8h30 à 19h pour une livraison gratuite le lendemain Connecteurs 47 Electromécanique Boîtier pour contacts à sertir Le meilleur n’est pas forcément le plus cher Picot de polarisation Avec des milliers de prix déjà réduits, rendez-vous notre site internet pour consulter nos prix actualisés. www.farnell.fr Connecteurs KK au pas de 2,54mm • Pas de 3.0mm • Un clip anti-traction évite les déconnexions accidentelles • Contacts entièrement isolés • Jusqu’à 5A par contact • Corps en polyester UL94V-0 • Configuration en deux rangées Tension maximum 250V c.a. Tension d’essai 1500V c.a. Courant maximum 5A Contacts Bronze phosphoreux, étamé plated Résistance de contact 10mΩ max maxi. Boîtiers pour contacts à Code Commande Prix Unitaire 2 672-889● g0,404 4 672-890● g0,518 6 672-907● g0,630 8 672-919● g0,720 10 672-920● g0,686 12 629-285● g0,945 14 629-297● g1,250 16 996-1321● g1,080 18 996-1330● g1,240 20 629-303● g1,750 22 996-1348● g1,670 24 629-315● g2,000 2 307-6015● g0,471 3 307-6027● g0,520 4 307-6039● g0,495 6 307-6052● g0,676 2 672-932● g0,481 4 672-944● g0,572 6 672-956● g0,676 8 672-968● g0,780 10 672-970● g0,697 12 629-327● g0,967 14 634-694● g1,250 16 996-1283● g1,080 18 996-1305● g1,240 20 634-700● g1,310 22 996-1313● g1,250 24 634-712● g2,050 2 307-6064● g0,449 3 307-6076● g0,484 2 307-6118● g0,481 3 307-6120● g0,525 4 307-6131● g0,600 5 307-6143● g0,573 6 307-6155● g0,676 sertir (verrouillables) 43645-XX00 43640-XX00 43640-XX01 Embases Mâles KK • Broches carrées plaquées or • Le verrouillage par friction fournit un verrouillage passif au connecteur avec rampe • Résistant aux fortes vibrations • Approuvé UL, CSA Connecteurs de puissance à sertir Micro-Fit 3,0 Réf. Fab. 22-01-2xx5 =Contacts à sertir avec xx =Nbre de voies 15-04-9209 Picot de polarisation Réf. Tech. 6471 = Contacts à sertir 4161-1 = Picot de polarisation Nbre de voies Code Commande Prix Unitaire Contacts à sertir 2 143-126● g0,168 3 143-127● g0,250 4 143-128● g0,357 5 146-256● g0,389 6 143-129● g0,441 7 473-080● g0,290 8 143-130● g0,525 9 231-897● g0,380 10 143-131● g0,599 11 231-666● g0,430 12 257-345● g0,725 13 231-678● g0,470 14 231-680● g0,500 15 269-232● g0,540 16 473-091● g0,580 17 231-691● g0,590 18 231-708● g0,730 19 473-108● g0,750 20 473-110● g0,810 21 473-121● g0,800 Quantité Code Commande Prix Par Paquet Picot de polarisation 100 101-3095● g16,550 1000 101-2165● g103,850 Tension Nominale 250250V ac/dc Intensité 4.0A Gamme de température 0°C à 75°C Boîtier Nylon UL94V-0 Nbre de Voies Code Commande Prix Unitaire Broches carrées verticales 2 136-0130● g0,41 3 136-0131● g0,55 4 136-0132● g0,74 5 136-0133● g0,90 6 136-0134● g1,09 7 136-0135● g1,34 8 136-0136● g1,50 9 136-0137● g1,64 10 136-0138● g1,79 12 136-0141● g2,13 Broches carrées coudées 2 136-0142● g0,53 3 136-0143● g0,76 4 136-0144● g1,02 5 136-0145● g1,25 6 136-0146● g1,52 7 136-0147● g1,81 8 136-0148● g2,05 9 136-0149● g2,30 10 136-0150● g2,52 12 136-0151● g2,99 Boîtier Tension maximale 250V c.a. Contact Etamé Intensité maximale 2.5A Force d’enclenchement Résistance contacts 20mΩ max. par circuit 199g max. Rigidité diélectrique 1,5kV rms pendant 60s Force de déclenchement Gamme de températures -40°C à +105°C par circuit 57g min Matière Nylon blanc, UL94V-0 • Bornes serties Molex en porte à faux pour une faible résistance de contact • Connecteurs modulaires KK au pas de 2,54mm • Conçus pour s’enficher sur les embases à picots rigides • Verrouillage à friction Tous les prix de cette brochure sont en euros hors TVA www.farnell.fr Tél.: 04 74 68 99 99 Fax: 04 74 68 99 90 Connecteurs 48 Electromécanique • Facile à stérilisé - conçu pour faciliter le nettoyage et la désinfection • Montage à l’arrière avec fixation renforcée sur la carte • Ensemble compact avec élements pré-câblés entre eux • 2 pôles, 125/250 Vca • Accouplement facile via Push-Pull • Design compact • Poignée ergonomique • Boîtier plastique robuste et très léger Qualité médicale • Taux de courant jusqu’à 15A • Performance d’atténuation excellente Connecteurs Circulaires Fiches femelles Montage panneau Série DC22 avec interrupteur et embase IEC Nbre Code Prix de Voies Commande Unitaire Fiche mâle, Libre 2 152-0029● g9,91 4 152-0030● g11,22 5 152-0031● g11,86 6 152-0032● g12,46 8 152-0033● g13,65 10 152-0034● g15,20 Prix Par Paquet de 5 Douilles Rouge 152-0035● g1,70 Vert 152-0036● g1,70 Bleu 152-0037● g1,70 Jaune 152-0038● g1,70 Noir 152-0041● g1,70 Mixte 152-0042● g1,70 Medimate • Embase femelle • Montage panneau et arrière, codage 0° • Mariable avec connecteur mâle Intensité Inductance Réf. Fab. Code Commande Prix Unitaire 1A 22.5 FN9233B-1/06 139-0942● g18,47 3A 4.6 FN9233B-3/06 139-0943● g18,47 6A 1.6 FN9233B-6/06 139-0944● g18,47 10A 0.45 FN9233B-10/06 139-0945● g18,47 15A 0.2 FN9233B-15/06 139-0947● g18,47 Courant Nominal Code Commande Prix Unitaire 2 151-7988● g34,46 4 151-7989● g34,46 6 151-7990● g34,46 10 151-7991● g34,46 Médical 2 151-7992● g37,33 4 151-7993● g37,33 6 151-7994● g37,33 10 151-7996● g37,33 La série Medimate inclut des connecteurs push pull. Le design et la conception de la gamme de produits Medimate répond aux hautes exigences requises pour les applications médicales Fiches à monter sur câble et douilles à monter sur panneau, toutes isolées. • 1,5mm et 2,0mm • Conviennent à la stérilisation à la vapeur jusqu’à 134°C • Isolées, accouplées ou non • Homologations : DIN42802-1 DIN42802-2 Courant nominal 10Apour ENEC/VDE 8A pour UL/CSA Gamme de température -25°C à 70°C Tension nominale 125V AC à 50Hz 250 V AC à 60Hz Test Diélectrique >1.7 kVDC entre L-N >2.7 kVDC entre L/N-PE Température de connexion 70°C Tension nominale 250V Courant de fuite max./Phase 373μA Capacité Cx=0.1μF Cy=2 x 2.2nF Gamme de température -25°C à +85°C Nbre de Voies Code Commande Prix Unitaire Fiches femelles Montage panneau 2 152-0062● g10,78 4 152-0065● g12,54 5 152-0066● g13,42 6 152-0067● g14,39 8 152-0068● g16,36 10 152-0069● g18,35 Prix Par Paquet de 5 Ecrous Couleur Rouge 152-0070● g0,85 Vert 152-0071● g0,85 Bleu 152-0072● g0,85 Jaune 152-0073● g0,85 Mixte 152-0074● g0,85 Fiches mâles et Douilles 2 Voies 4 Voies 5 Voies 6 Voies 8 Voies 10 Voies Intensité à 45°C 9.9A 6.5A 5.2 3.5 3.0 2.2 Taille de fil max. 20 AWG 22 AWG 22 AWG 26 AWG 26 AWG 28 AWG Type de Paquet Code Commande Prix Par Paquet Fiches isolées 1,5mm Noire / Rouge 108-5510● g9,78 Multicolores 108-5511● g12,60 Fiches isolées 2,0mm Noire / Rouge 108-5512● g4,57 Multicolores 108-5513● g5,83 Douilles panneau isolées 1,5mm Noire / Rouge 108-5514● g5,82 Multicolores 108-5515● g7,49 Douilles panneau isolées 2,0mm Noire / Rouge 108-5516● g9,91 Multicolores 108-5518● g13,10 Adaptateur 2,0mm Adaptateurs 108-5519● g4,67 Embase IEC filtrée haute performance Embase combinée 2 fonctions sur circuit imprimé Medimate • Aucun câble de soutien de manchon • Connecteur mâle droit • A souder • Mariable avec embase femelle et connecteur mâle • Gamme de température : -40° à 100°C • IP50 Type de paquetContenu Noire / Rouge 2 de chaque - Noire, Rouge Multicolores 1 de chaque - Noire, Rouge, Bleue, Jaune, Verte, Blanche Adaptateurs 1 de chaque - Noir, Rouge Fiches et douilles isolées Medimate RoHS Conforme Non-conforme Commandez du lundi au vendredi de 8h30 à 19h pour une livraison gratuite le lendemain Tektronix 49 Test & Mesure Série AFG3000 • Fonctionnement multilingue et intuitif pour gagner du temps lors de la configuration • Signal impulsionnel avec déclenchement sur front variable • Balayage et salve • Modèle à deux voies pour une économie d’argent et de place • USB, GPIB et LAN • Connecteur pour périphériques de stockage USB • Signaux sinusoïdaux 25 MHz, 100 MHz ou 240 MHz • Signaux arbitraires 14 bits, 250 MS/s, 1 GS/s, ou 2 GS/s • Ecran 5.6" pour une vision globale des réglages et de la forme du signal • AM, FM, PM, FSK, PWM Seules les sondes Tektronix sont conçues pour une compatibilité optimale avec votre oscilloscope Tektronik; vous bénéficiez ainsi de mesures performantes et de qualité. Le choix de la bonne sonde est également important ; sondes passive ou active, sondes de courant, sondes différentielles et sondes haute tension. Toutes sont fabriquées avec soin, fiable et offrent une longue vie. Description Réf. Fab. Code Commande Prix Unitaire Description Réf. Fab. Code Commande Prix Unitaire 1 voie, 25MHz AFG3021B 142-5300 g1670,00 1 voie, 100MHz AFG3101 129-9081 g3300,00 2 voies, 25MHz AFG3022B 142-5301 g2500,00 2 voies, 100MHz AFG3102 129-9082 g4360,00 Sondes passives Réf Longueur Bande Pas- Rés. Cap. Tension Gamme de Fab. Câble Attén sante 3dB d’entrée d’entrée Max. Compensation Lecture Embout P3010 2m 10 100MHz 10MΩ 13pF 420 VRMS 15 à 35pF ✓ 5 mm (Min.) 312-3704 g127,00 P6109B 2m 10 100MHz 10MΩ 13pF 420 V 15 à 35pF ✓ 5 mm (Min.) 390-8549 g136,00 P6111B 2m 10 200MHz 10MΩ 14pF 420 V 15 à 35pF ✓ 5 mm (Min.) 320-4169 g182,00 P6112 2m 10 100MHz 10MΩ 13.3pF 300 VRMS 15 à 35pF ¤ 5 mm (Min.) 312-3716 g132,00 420 VRMS P6114B 2m 10 400MHz 10MΩ 14.1pF 300 VRMS 15 à 35pF ✓ 5 mm (Min.) 320-4170 g325,00 420 VRMS P6117 2m 10 200MHz 10MΩ 13.3pF 300 VRMS 15 à 35pF ¤ 5 mm (Min.) 312-3728 g158,00 420 VRMS P6131 1.3m 10 300MHz 10MΩ 10.8pF 300 VRMS 14 à 18pF ✓ 2.5 mm (Sub.) 390-8550 g307,00 150 VRMS P6139A 1.3m 10 500MHz 10MΩ 8pF 300 VRMS 8 à 12pF ✓ 3.5 mm (Comp.) 312-3730 g316,00 P2220 1.5m 1/10 6/200MHz 1/10MΩ 110/17pF 300 VRMS 15 à 25pF ✓ 5 mm (Min.) 798-4219 g87,00 Sondes passives haute tension P5120 3m 20 200MHz 5MΩ 11.2pF 1000 VRMS 15 à 25pF ¤ Divers fournis 798-4227 g351,00 P5100 3.1m 100 250MHz 10MΩ 2.75pF 1000 V/2500V 7 à 30pF ✓ CMS 207-470 g329,00 • Fonctions FFT et Trigger étendue • Fonctions déclenchements avancés, schémas logiques, état, déclenchement sur front, impulsions et temps de montée Sondes faible capacité 50Ω Réf. Longueur Bande Rés. Cap. Tension Entrée Fab. Câble Attén. Passante 3dB d’entrée d’entrée Max. Appareil Lecture Embout P6158 1.2m 20 3GHz 1kΩ 1.5pF 22 VRMS 50Ω ✓ 3.5 mm (Comp.) 390-8574 g386,00 Description Etalonnage Réf. Fab. Code Commande Prix Unitaire Description Etalonnage Réf. Fab. Code Commande Prix Unitaire Oscilloscopes 500MHz, 2 Voies SC20 / NC20TDS3052C 155-4159 g7330,00 100MHz, 2 Voies SC18 / NC18TDS3012C 155-4155 g3510,00 500MHz, 4 Voies SC20 / NC20TDS3054C 155-4160 g8770,00 100MHz, 4 Voies SC18 / NC18TDS3014C 155-4156 g4220,00 Accessoires 300MHz, 2 Voies SC18 / NC18TDS3032C 155-4157 g5090,00 Comms+Openchoice TDS3GV 369-3880 g356,00 300MHz, 4 Voies SC20 / NC20TDS3034C 155-4158 g6100,00 Sonde active 1GHz P6243 207-433 g711,00 Générateurs de fonctions arbitraires Sondes actives Réf Longueur Bande Rés. Cap. Tension Gamme Gamme Fab. Câble Attén. Passante 3dB d’entrée d’entrée Max. linéaire DC offset Embout P6243 1.3m 10 1GHz 1MΩ ≤1pF ±15V ±8V N/A CMS actif 207-433 g711,00 P6245 1.3m 10 1.5GHz 1MΩ ≤1pF ±15V ±8V ±10V CMS actif 390-8586 g1600,00 Code Commande 1554155 1554156 1554157 1554158 1554159 1554160 Réf. Fab. TDS3012C TDS3054C TDS3032C TDS3034C TDS3052C TDS3054C Bande passante 100MHz 500MHz 300MHz 300MHz 500MHz 500MHz Nbre de voies 2 4 2 4 2 4 Echantillonnage 1.25GS/s 5GS/s 2.5GS/s 2.5GS/s 5GS/s 5GS/s Base de temps 4ns-20s 1ns-20s 2ns-10s 2ns-20s 1ns-20s 1ns-20s Précision base de temps 20ppm 20ppm 20ppm 20ppm 20ppm 20ppm Limite bande passante 20MHz 20MHz 20, 150MHz 20, 150MHz 20, 150MHz 20, 150MHz Sondes et accessoires Tektronix • Echantillonnage jusqu’à 5 GS/s • 2 ou 4 voies • Ecran VGA LCD couleur • 25 mesures automatiques • Port Ethernet intégré • Interface utilisateur Multi-langues graphique QuickMenu facilitant l’utilisation • Commande à distance par le Web avec e*Scope™ • Détection automatique des anomalies du signal avec WaveAlert™ • Précision de la base de temps de 20ppm Longueur d’enregistrement 10K points sur tous les modèles Résolution verticale 9-bits sur tous les modèles Sensibilité verticale/div 1mV-10V sur tous les modèles Précision verticale +/-2% sur tous les modèles Tension d’entrée max. 150 Vrms CAT I sur tous les modèles (300 V CAT II avec sonde standard 10X) Gamme de position ± 5 div sur tous les modèles Couplage d’entrée AC, DC, GND sur tous les modèles Impédance d’entrée 1 MΩ en parallèle avec 13 pF ou 50Ω Oscilloscopes DPO - Séries TDS3000C Avec capacités de stockage USB Tous les prix de cette brochure sont en euros hors TVA www.farnell.fr Tél.: 04 74 68 99 99 Fax: 04 74 68 99 90 Agilent 50 Test & Mesure K-point • Modulations linéare & logarithmique • Amplitude 40 mVpp à 5 Vpp (50W) • USB 2.0 TMC 488.2 • Editeur de signaux arbitraire • Fonction d’enregistreur • Logiciel inclus La switch modulaire USB U2751A offre une solution de haute qualité de commutation pour test automatisé. Il possède 32 points à travers deux fils dans une configuration quatre rangs colonnes. Ceci permet le raccordement avec n’importe quelle combinaison de rangées et de colonnes, y compris les canaux multiples en même temps. Le switch offre un raccordement plage de courant et de tension • Résolution 100pA @ 1 uA • USB 2.0 TMC488.2 • Connectivité via USB 2.0 (480Mbps) Modulaire flexible entre l’appareil de test (DUT) et l’équipement testé, permettant aux différents instruments d’être reliés aux multiples points sur le DUT en même temps. L’unité est fournie avec le logiciel Agilent Measurement Manager (AMM). Le bornier à vis permet de connecter simplement et facilement le switch vers des applications de prototypage ou le déploiement de systèmes. Le switch est compatible avec: L’U2722A est un appareil polyvalent qui permet la mesure et le balayage de différentes régions d’opérations avec seulement un dispositif sans configuration supplémentaire. Le fonctionnement 4 quadrants (± 20 V) rend l’appareil bien adapté pour de nombreux tests comprenant la mesure de fuite, Bande passante Réf. Fab. Code Commande Prix Unitaire Générateur de fonction U2761A 157-7817 g1365,55 Accessoires Chassis U2781A 129-7812 g859,00 Câble BNC U2921A-100 157-9661 g16,12 Câble Secure USB 2m U2921A-101 157-9662 g16,12 • Agilent VEE et Agilent T & M Toolkit • Microsoft Visual Studio, NET, C/C++ et Visual Basic 6 • LabVIEW • MATLAB la gestion de pile solaire. L’ U2722A offre une sensibilité de mesure élevée avec la résolution et l’exactitude de 16 bits permettant une analyse et résultats de mesure précis. L’interface USB 2.0 fournit la connectivité et l’installation qui permet la détection automatique du dispositif. Avec la connectivité rapide et facile USB, l’U2722A est assez simple pour des applications de recherche et développement mais robuste et polyvalent • 2 voies ( échantillonnage simultané ) • Modèles 100MHz et 200MHz • Le logiciel fourni inclus l’analyse basique du spectre ( FFT, peak search, next peak ) • Echantillonnage jusqu’à 1GSa/s maximum • Mémoire d’acquisition jusqu’à 32Mpts • Déclenchement avancé incluant largeur d’implusion, vidéo et including edge, • Standard USB 2.0 TMC 488.2 • 4 fonctions mathématiques, incluant la fonction FFT • Possibilités autonomes et modulaires DUAL-PLAY pour des applications d’essais fonctionnels électroniques. La norme d’USBTMC 488.2 rend l’U2722A compatible avec n’importe quel système qui est équipé de ports USB. L’unité est :[para]• Agilent VEE et Agilent T & M Toolkit • Microsoft Visual Studio, NET, C/C++ et Visual Basic 6 • LabVIEW • MATLAB Modulaire Les oscilloscopes U2701A et U2702A sont fournis avec le logiciel utilisateur Agilent Modular Instrument Measurement Manager, lequel offre une interface simple pour un paramétrage, une configuration et un contrôle de mesure rapide. Ces ocsilloscopes sont compatible avec: • Agilent VEE et Agilent T & M Toolkit • Microsoft Visual Studio, NET, C/C++ et Visual Basic 6 • LabVIEW • MATLAB Générareur de fonction Modulaire USB Bande passante Réf. Fab. Code Commande Prix Unitaire Switch USB U2751A 157-7814 g775,00 Accessoires Chassis U2781A 129-7812 g859,00 bornier 32 canaux U2922A 157-7816 g129,13 Câble Secure USB, 2m U2921A-101 157-9662 g16,12 • Signaux sinusoïdal, carré, impulsionnel, triangulaire, rampe, arbitraire et DC • Modulation AM, FM, PM, ASK, FSK, PSK • Signaux sinusoïdal et carré 20 MHz • Signaux arbitraires 14-bit, 50 MSa/s, 64 Switch USB Fonctionnement 4 quadrants Bande passante Réf. Fab. Code Commande Prix Unitaire 100MHz U2701A 157-7812 g1100,50 200MHz U2702A 157-7813 g1356,25 Accessoires Chassis U2781A 129-7812 g859,00 Câble BNC U2921A-100 157-9661 g16,12 Câble Secure USB, 2m U2921A-101 157-9662 g16,12 Sonde passive 1:1 20MHz 10070C 157-9663 g135,63 Sonde passive 10:1 150MHz (U2701A) N2862A 157-9664 g79,83 Sonde passive 10:1 300MHz (U2702A) N2863A 157-9665 g104,63 Oscilloscope USB Réf. Fab. Code Commande Prix Unitaire Unité de mesure U2722A 157-7811 g1791,80 Accessoires Chassis U2781A 129-7812 g859,00 Câble Secure USB 2m U2921A-101 157-9662 g16,12 Unité de mesure de source 3 voies USB multiples fermés simultanément numériquement, cela réduisant la complexité du générateur tout en augmentant la stabilité. Ce choix produit un signal de sortie stable et précis pour des ondes sinusoïdales claires ayant peu de déformation; et cela avec une élévation rapide et un temps de réponse jusqu’à 20 mégahertz avec une rampe linéaire qui ondule jusqu’à 200kHz. L’ U2761A est compatible avec: • Agilent VEE et Agilent T & M Toolkit • Configuration 4x8 32 points à travers 2 fils • Bande passante 45MHz • Compteur de cycles de relais • Connection flexible: canaux • Microsoft Visual Studio, NET, C/C++ et Visual Basic 6 • LabVIEW • MATLAB • Fonctionnement 4 quadrants • 3 voies • Résolution 16 bits à travers toute la • Fonction d’enregistreur de commande • Connection USB2.0 (480 Mbps) • Autonome et modulaire • Supporte SCPI et IVI-COM • Standard USBTMC 488.2 L’U2761A adopte la dernière technologie de synthèse numérique directe (DDS) qui crée numériquement des signaux et des fréquences arbitraires à partir d’une fréquence simple et fixe. La DDS offre la précision de la logique contrôlée 􀀆􀀇􀀁􀀋􀀇􀀑􀀇􀀎􀀓􀀌􀀊􀀁􀀉􀀊􀀁􀀍􀀇􀀁􀀐􀀔􀀇􀀍􀀌􀀓􀀕􀀁􀀄􀀋􀀌􀀍􀀊􀀎􀀓􀀃 􀀁􀀁􀀁􀀁􀀁􀀁􀀁􀀁􀀁􀀁􀀁􀀁􀀁􀀁􀀁􀀁􀀁􀀁􀀁􀀁􀀁􀀁􀀁􀀁􀀆􀀂􀀇􀀒􀀏􀀊􀀈􀀓􀀁􀀏􀀑􀀇􀀓􀀌􀀐􀀔􀀊􀀁􀀉􀀊􀀁􀀅􀀇􀀑􀀎􀀊􀀍􀀍􀀃 􀀌􀀗􀀠􀀞􀀃􀀁􀀐􀀂􀀒􀀞􀀟􀀁􀀘􀀖􀀒􀀠􀀢 􀀌􀀗􀀠􀀞􀀁􀀑􀀒􀀁􀀐􀀕􀀚􀀖􀀢 􀀌􀀗􀀠􀀞􀀁􀀑􀀒􀀁􀀓􀀚􀀙􀀐􀀟􀀖􀀚􀀙􀀙􀀏􀀗􀀖􀀟􀀣􀀞 􀀌􀀗􀀠􀀞􀀁􀀑􀀒􀀁􀀐􀀚􀀙􀀙􀀒􀀐􀀟􀀖􀀡􀀖􀀟􀀣 Tous les prix de cette brochure sont en euros hors TVA www.farnell.fr Tél.: 04 74 68 99 99 Fax: 04 74 68 99 90 Agilent 52 Test & Mesure Seulement g773,00 CODE COMMANDE133-5866 Seulement g1344,00 CODE COMMANDE133-5878 34970A 34401A Un châssis 3 emplacements avec multimètre numérique intégré 61⁄2 chiffres. Chaque voie peut être configurée indépendamment pour mesurer une fonction parmi 11 fonctions différentes sans la nécessité d’accessoires de conditionnements de signaux. Une sélection parmi 8 modules embrochables optionnels permettant de créer un data logger compact, un système d’acquisition complet ou une unité de commutation économique. Les connexions par bornier à vis sur module éliminent la nécessité d’entretien et le relais unique est idéal pour compter chaque fermeture sur chaque commutateur. Logiciel Agilent BenchLink Data Logger livré avec le module 34970A. Ce logiciel fournit une interface Microsoft Windows connue pour la configuration de test et un affichage et analyse des données en temps réel. Il permet de faire des mesures rapides, d’exporter des données ou d’utiliser les graphes intégrés pour l’enregistrement des résultats. 33220A Offre les performances nécessaires pour tester un système de manière précise et rapide. Le multimètre 34401A offre une résolution, précision et vitesse rivalisant avec des multimètres beaucoup plus onéreux. • Châssis à 3 emplacements avec interfaces GPIB et RS232 intégrées • Multimètre interne 61⁄2 chiffres (22-bits), balayage jusqu’à 250 voies par seconde • Un choix entre 8 modules de commutation et de contrôle • Conditionnement de signaux intégré pour mesures de températures, tensions AC/DC, courant, résistance, fréquence et période • Mémoire rémanente de mesures 50k • Limites d’alarme haute/basse sur chaque voie, plus 4 sorties d’alarme TTL Utilise les techniques DDS (Synthèse numérique directe) pour créer des signaux de sortie stables et avec faible distorsion pour des résultats précis. Le générateur de fonctions 33220A offre un accès facile à des formes d’ondes standard sinusoïdales, carrées, rampes, triangulaires et pulsées et permet de créer des formes d’ondes personnalisées en utilisant la fonction de formes d’ondes arbitraires de 50Méch/s, 14 bits et 64 K-points. La fonction pulsée de front variable, avec PWM, offre une flexibilité inégalée pour la conception, la vérification, et applications de test. Le générateur 33220A est livré avec les interfaces USB, LAN et GPIB en standard et le logiciel Intuilink pour la génération simple de formes d’ondes personnalisées sur PC. Accessoires livrés: Manuels de fonctionnement et d’entretien, rapport de test et cordon d’alimentation. Logiciel Agilent Benchmark Data Logger, câble RS-232, thermocouple, vis. Les modules sont vendus séparément. • Mesure jusqu’à 1000V avec une résolution 61⁄2 digits • Précision V DC 0.0015% (24h) • Précision V AC 0.06% (1 an) • Bande passante de 3Hz à 300kHz • 1000 mesures/sec. directes sur le bus GPIB • Fonctions de test de diodes et continuité • Fonction Nulle, permet d’annuler la résistance au plomb et autres offsets fixes • Lectures Min / Max / Moy • Mesures directes dB et dBm • Gel de l’affichage • Mémoire interne de 512 mesures • Interfaces GPIB et RS-232 en standard • Fonctions voltmètre complet et déclenchement externe compris, permet la synchronisation à d’autres instruments • Sortie TTL indiquant Passage/Echec • 3 languages de commande (SCPI, Agilent 3478A et Fluke 8840A /42A) • Conforme LXI Classe C • Interfaces USB, GPIB et LAN • Mode graphique, vérification visuelle des réglages du signal • Logiciel IntuiLink • Formes d’onde 20 MHz sinus ou carré • Impulsion, Rampe, Triangulaire, Bruit, et DC • Formes d’onde arbitraires 4-bits, 50 Méch/s, 64 k-points • Types de modulation: AM, FM, PM, FSK, et PWM • Balayage linéaire et logarithmique et fonctionnement burst • Gamme d’amplitude 10 mVpp à 10 Vpp • Livré avec logiciel PC Agilent IntuiLink permettant un travail plus facile des données capturées • Composants ActiveX pouvant être utilisés par les programmeurs pour le contrôle du multimètre (en utilisant les commandes SCPI) Modules Gammes Précision Tension AC 100mV, 1V, 10V, 100V, 300V ±(0.04% lect. + 0.03 de gamme) Tension DC 100mV, 1V, 10V, 100V, 300V ±(0.0015% lect. + 0.0004 de gamme) Courant AC 10mA, 100mA, 1A ±(0.1% lect. + 0.04 de gamme) Courant DC 10mA, 100mA, 1A ±(0.01% lect. + 0.004 de gamme) Résistance 100Ω, 1kΩ, 10kΩ, 100kΩ, 1MΩ, 10MΩ, 100MΩ±(0.002% lect. + 0.0005 de gamme) Fréquence 3Hz à 300kHz ±0.006% Température-150°C à 1200°C 1.0°C Accessoires inclus: Kit de test avec sonde, pinces crocodiles et grippe-fils. Manuel de fonctionnement, manuel d’entretien, rapport de test et cordon d’alimentation. Accessoires inclus: Manuel d’instructions, manuel d’entretien, guide de référence, logiciel d’édition de formes Intuilink, données de test, câble USB et cordon d’alimentation. Multimètre numérique de table Générateur de fonctions arbitraires Modèle Description Type Vitesse Tension Ampères Bande Offset (voie/s) max. max. passante thermique 34901A Multiplexeur 20 voies armature 2 fils 60 300V 1A 10MHz <3μV 34902A Multiplexeur 16 voies reed 2 fils 250 300V 50mA 10MHz <6μV 34903A Actionneur/commutateur universel 20 voies SPDT / forme C 120 300V 1A 10MHz <3μV 34904A Matrice 4 x 8 armature 2 fils 120 300V 1A 10MHz <3μV 34905A Double multiplexeur 4 voies RF, 50Ω Bas commun 60 42V 0.7A 2GHz <6μV 34906A Double multiplexeur 4 voies RF, 75Ω Bas commun 60 42V 0.7A 2GHz <6μV 34907A Module multifonctions 2 ports E/S numériques 8-bits42V 400mA Totalisateur 26-bits, 100kHz 42V 100kHz 2 sorties analogiques 16-bits ±12V 10mA dc 34908A Multiplexeur unipolaire 40 voies armature 1 fil 60 300V 1A 10MHz <3μV Description Réf. Fab. Code Commande Prix Unitaire Module acquisition de données 34970A 133-5867 g1126,00 Multiplexeur - 20 voies 34901A 133-5869 g347,00 Multiplexeur - 16 voies 34902A 133-5871 g409,00 Actionneur/Commutateur - 20 voies 34903A 133-5872 g299,00 Matrice 4x8 34904A 133-5873 g347,00 Multiplexeur 4 voies RF - 50Ω 34905A 133-5874 g547,00 Multiplexeur 4 voies RF - 75Ω 34906A 133-5875 g547,00 Module multi-fonctions 34907A 133-5876 g259,00 Multiplexeur - 40 voies 34908A 133-5877 g347,00 Prix Unitaire Etalonnage standard S g51,83 Etalonnage NAMAS N g84,76 Module de commande / acquisition de données RoHS Conforme Non-conforme Commandez du lundi au vendredi de 8h30 à 19h pour une livraison gratuite le lendemain Agilent 53 Test & Mesure Les oscilloscopes portables de la série 5000 dépassent la 3è génération de la technologie de gestion de mémoire MegaZoom III des oscillscopes de laboratoire et sur table les plus performants d’Agilent, à un coût inférieur - profondeur multimètre 34411A: • 50,000 mesures/sec à 41⁄2 chiffres en continu vers le PC • Mémoire 1 Million mesures • Déclenchement analogique sur niveau • Déclenchement programmable pré/post de mémoire exceptionnelle, cadence de rafraîchissement rapide avec peu de "temps mort" et des systèmes d’affichage similaires à l’analogique. Série DSO3000 Gammes Précision Tension AC 100mV à 750V ±(0.06% lect. + 0.03% gamme) Tension DC 100mV, 1V, 10V, 100V, 1000V ±(0.003% lect. + 0.0005% gamme) Courant AC 100μA à 3A ±(0.1% lect. + 0.04% gamme) Courant DC 100μA à 3A ±(0.1% lect. + 0.04% gamme) Résistance 100Ω, 1kΩ, 10kΩ, 100kΩ, 1MΩ, 10MΩ, 100MΩ, 1GΩ ±(0.01% lect. + 0.001% gamme) Capacité 1nF, 10nF, 100nF, 1μF, 10μF ±(0.4% lect. + 0.1% gamme) Température -80 à 150°C ±0.08°C Fréquence 3Hz - 300kHz ±(0.007% lect. + 0% gamme) • Affichage XGA haute définition (1024 x 768) avec 256 niveaux de grade Multimètres numériques de table d’intensité • Commande à distance, y compris navigation web • Conforme LXI-classe C • Mémoire d’acquisition jusqu’à 1 Mpts • Un taux d’actualisation en temps réel jusqu’à 100,000 formes d’onde par seconde • Résolution verticale jusqu’à 12 bits, même dans des acquisitions pas à pas Les oscilloscopes de la série 3000 fournissent de remarquables performances et un écran couleur haute résolution à un prix très abordable. Ils sont parfaits pour les ingénieurs, les techniciens et les étudiants qui nécessitent une analyse de qualité de leurs circuits et de leurs produits finis. Livré avec manuel d’utilisation, CD-ROM, cordon d’alimentation, sacoche pour accessoires et deux sondes passives. Série 5000 Les 2 modèles sont livrés avec: kit de test avec sondes et attachement CMS, rapport de test, cordon d’alimentation, câble d’interface USB, CD-ROM avec documentation et logiciel. Comprend: Garantie constructeur 3 ans, guide d’utilisation, cordon d’alimentation, une sonde par voie, bibliothèque E/S Agilent, guide sur CD-ROM, capot de protection. 34410A et 34411A • Bande passante de 60 et 200MHz Description Réf. Fab. Code Commande Prix Unitaire Multimètre de table 34410A 144-0376 g936,00 Multimètre de table 34411A 144-0377 g1448,00 Kit de test 34138A 144-0379 g19,72 Prix Unitaire Etalonnage Standard S g131,10 Etalonnage NAMAS N g207,80 Caractéristiques DSO5012A DSO5014A DSO5032A DSO5034A DSO5052A DSO5054A Bande passante 100MHz 100MHz 300MHz 300MHz 500MHz 500MHz Voies 2 4 2 4 2 4 Taux d’échantillonage max. 2 Géch/s par voie 4 Géch/s (demi voie), 2 Géch/s par voie. Temps de montée3.5ns 3.5ns 1.17ns 1.17ns 700ps 700ps Profondeur de mémoire 500 kPts/voie 500 kPts/voie 500 kPts/voie Déclenchement Sources Toutes les voies, ligne, ext. Modes Auto, Normal, Simple Sélections Front, forme, largeur d’impulsion, TV, durée, séquence Mesures automatiques Tension cr-à-cr, max, min, amplitude, top, base, suroscillation positive, suroscillation négative, RMS, moyenne et déviation standard Temps fréquence, période, largeur, rapport cyclique, temps de montée, temps de chute, retard et déphasage Totalisateur fréquencemètre 5-digits intégré sur chaque voie Formes d’onde Maths 1-2, 1x2, FFT, differenciateur, integrateur FFT Rectangulaire, Hanning, et fenêtres Flat Top E/S Port de l’appareil USB2.0, 2 hôtes USB1.1, LAN, IEEE488.2 GPIB, Vidéo XGA • Fréquence d’échantillonnage de 1 Géch./s maximum • 2 voies • Grand écran couleur 5.7 pouces • Déclenchements avancés incluant Front, largeur d’impulsion, et vidéo sur ligne sélectionnable • Mémoire de formes d’ondes de 4 kpts/voie • 20 mesures automatiques • 4 fonctions mathématiques, dont l’analyse FFT en standard • Test de masque en standard • Connectivité USB en standard, GPIB et RS-232 en option • Interface utilisateur multilingue • Mode Sequence (mémoire segmentée) en standard Description Réf. Fab. Code Commande Prix Unitaire 100MHz, 2 voies DSO5012A 133-5879 g3413,00 100MHz, 4 voies DSO5014A 133-5880 g4130,00 300MHz, 2 voies DSO5032A 133-5882 g4635,00 300MHz, 4 voies DSO5034A 133-5883 g5816,00 500MHz, 2 voies DSO5052A 133-5884 g6912,00 500MHz, 4 voies DSO5054A 133-5885 g8425,00 Etalonnage Standard S g131,10 Etalonnage NAMAS N g207,80 Accessoires en option 112-0777 - Module de communication Fournit la connectivité GPIB et RS-232 et une sortie pour les tests automatiques bon/ mauvais. Inclut le logiciel de communication série 3000 (112-0776) Oscilloscopes portables Réf. Fab. Description Code Commande Prix Unitaire Oscilloscopes 60MHz DSO3062A 112-0771 g947,00 100MHz DSO3102A 112-0772 g1163,00 150MHz DSO3152A 112-0774 g1292,00 200MHz DSO3202A 112-0775 g1422,00 Accessoires Module de communication GPIB/RS232 N2861A 112-0777 g299,00 Kit de montage sur rack N2864A 112-0778 g214,00 34410A: • 10,000 mesures/sec à 51⁄2 chiffres (1,000 mesures/sec à 61⁄2 chiffres) en continu vers le PC • Précision DC de base 30 PPM pour 1 an • Interfaces LAN, USB et GPIB en standard • DCV, ACV, DCI, ACI, résistance 2-fils et 4- fils, fréquence, période, continuité, et test de diodes • Mesures de capacité et températures • Gammes de mesure étendues • Fonction d’enregistrement de données, avec mémoire rémanente de 50 000 mesures Caractéristiques supplémentaires pour le DSO3062A DSO3102A DSO3152A DSO3202A Affichage Ecran couleur 1/4 VGA LCD (320 x 240 pixels) Bande passante 60MHz 100MHz 150MHz 200MHz Nbre de voies 2 2 2 2 Echantillonnage 1 Géch./s 1 Géch./s 1 Géch./s 1 Géch./s Longueur d’enregistrement 4k points par voie Résolution verticale 8-bit Sensibilité verticale 2 mV à 5 V/div Tension d’entrée max. 300 Vrms CAT II Limite bande passante 20 MHz Couplage d’entrée AC, DC, GND Impédance d’entrée 1MΩ en parallèle avec 13pF Base de temps 2 ns/div à 50 s/div Précision base de temps 100 ppm Déclenchements CH1, CH2, Ext., Ext/5, Line (Mode Front seulement) Gamme de température 0 à +50°C Alimentation 100 - 240 Vc.a. 50VA. Oscilloscopes numériques Tous les prix de cette brochure sont en euros hors TVA www.farnell.fr Tél.: 04 74 68 99 99 Fax: 04 74 68 99 90 Agilent 54 Test & Mesure Multimètre numérique • Résolution 120 000 mesures • 16 fonctions de mesure, y compris température et capacité • Précision de la tension DC: 0.025% • Interface USB 2.0 (conformeTMC-488.2) • Compatible SCPI • Livré avec le logiciel Intuilink Description Réf. Fab. Code Commande Prix Unitaire Multimètre de table 34405A 120-9896 g541,00 Prix Unitaire Etalonnage Standard S g131,10 Etalonnage NAMAS N g180,65 Multimètres de poche avec de multiples fonctions offrant un maximum de polyvalence pour les besoins actuels et futurs. Multimètres avec affichage numérique double 41⁄2 digits, une précision jusqu’à 0.025%, vrai RMS, mesures de température, de capacité et de fréquence et une possibilité de connexion PC et d’enregistrement de données. U1241A et U1242A Multimètre de table double affichage • Résolution 50000 points sur les 2 affichages • 100 points en stockage de données manuel • Mesures en RMS vrai • Mesures dBm • Test de diodes • Rapport cyclique • Mesure de largeur d’impulsion • Fonction Max. • Connexion infra-rouge vers USB (câble de connexion U1173A en option) • Température de fonctionnement: -20°C à + 55°C • Conformes aux normes de sécurité IEC61010-1 Cat III 1000V • Design surmoulé robuste avec support multifonctions inclinable Caractéristiques supplémentaires du multimètre U1252A: • Fréquencemètre 20 MHz • Générateur d’ondes carrées programmable • Chargeur de pile intégré • Support pour thermocouple de type J U1251A et U1252A La série U1240A permet une meilleure vérification avec des gammes de mesure plus larges avec des mesures en RMS vrai avec un affichage 10 000 points. Le rétroéclairage réglable est idéale pour une visualisation identique quelques soient les conditions lumineuses ou pour prolonger la durée de vie des piles. Livré avec un certifcat d’étalonnage et rapport de test. Le multimètre U2142A possède des fonctions suplémentaires telles que l’enregistrement de données manuel, le ratio harmonique, double températures et température différentielle. Accessories inclus: Sacoche, pile, kit de test standard U1160A, guide de démarrage, guide d’utilisation, logiciel PC, drivers, • Affichage 10 000 points adaptateur AC (pour U1252A seulement). • Précision tension DC de base de 0.09% et mesures en RMS vrai • Fonctions standard: DCV, DCI, ACV, ACI, résistance, fréquence, continuité, test de diodes • Fonctions avancées pour multimètre U2141A: capacité, température, compteur commutateur • Fonctions avancées pour multimètre U2142A: capacité, température, compteur commutateur, ratio harmonique, double températures (T1, T2, T1-T2)• Gamme manuelle et automatique • Bip de continuité et test de diodes • Rétro-éclairage réglable • Enregistrement Min/Max • Support de sonde intégré • Boîtier moulé • Protection CAT III 1000V OV • Certifié CE, CSA et UL • Alimenté par 4 piles AAA • Dimensions (HxlxP): 194 x 92 x 58mm Livrés avec piles, certificat d’étalonnage, cordons de test, guide de démarrage et référence produit sur CD. Gammes Précision U1251A U1252A Tension AC 50mV, 500mV, 1V, 5V, 50V, 500V, 1000V ±0.6% + 20 points ±0.4% + 25 points Tension DC 50mV, 500mV, 1V, 5V, 50V, 500V, 1000V ±0.03% + 5 points ±0.025% + 5 points Courant AC 500μA, 5mA, 50mA, 440mA, 5A, 10A ±0.8% + 20 points ±0.7% + 20 points Courant DC 500μA, 5mA, 50mA, 440mA, 5A, 10A ±0.8% + 20 points ±0.7% + 20 points Résistance 500Ω, 5kΩ, 50kΩ, 500kΩ, 5MΩ, 50MΩ, 500MΩ ±0.08% + 5 points ±0.05% + 5 points Capacité 10nF - 100mF (9 gammes) ±1% + 5 points ±1% + 5 points Température-200 à 1372°C 0.3% + 3°C 0.3% + 3°C Fréquence 100Hz, 1kHz, 10kHz, 100kHz, 1MHz ±0.02% + 3 points ±0.02% + 3 points Piles 9V Alkaline 7.2V Rechargeable Description Réf. Fab. Code Commande Prix Unitaire Multimètre numérique U1251A 126-3217 g339,00 Multimètre numérique U1252A 126-3218 g373,00 Câble d’interface U1173A 126-3219 g21,82 Kit de test standard U1160A 126-3220 g43,64 Kit de test d’extension U1161A 126-3221 g30,55 Kit accessoire de température U1180A 126-3222 g25,44 Maximum Résolution max. Précision Tension DC 1000V 0.1mV ±(0.09%+2) Tension AC 1000V 0.1mV ±(1.0%+5) Courant DC 10A 0.1μA ±(0.1%+3) Courant AC 10A 0.1μA ±(1.5%+3) Résistance 100MΩ 0.1Ω ±(0.8%+3) Capacité 10mF 0.1nF ±(1.2%+4) Fréquence 100kHz 0.01Hz ±(0.03%+3) Température * -40 à 1000°C 0.1°C 1% + 1 °C/ * Thermocouple type K (pour U1241A et U1242A), type J (pour U1242A seulement) Multimètres numériques de poche Description Réf. Fab. Code Commande Prix Unitaire Multimètre U1241A U1241A 144-0381 g170,00 Multimètre U1242A U1242A 144-0382 g187,00 Accessoires Pinces crocodiles (paire) U1162A 144-0383 g7,27 Grippe-fils, CMS (paire) U1163A 144-0384 g7,27 Sondes de test, embout fin (paire) U1164A 144-0385 g7,27 Sonde de test, Immersion U1181A 144-0386 g42,87 Sonde de test, Surface U1182A 144-0387 g130,00 Sonde de test, Air U1183A 144-0388 g50,14 Adaptateur pour sonde de température U1184A 144-0389 g7,27 Thermocouple, type J U1185A 144-0390 g14,46 Thermocouple, type K U1186A 144-0392 g14,46 Multimètres numériques RoHS Conforme Non-conforme Commandez du lundi au vendredi de 8h30 à 19h pour une livraison gratuite le lendemain Anritsu 55 Test & Mesure Seulement g2010,00 CODE COMMANDE151-2746 • RSSI • Spectrogramme • Tonalité - identification du type d’interférence • Force de l’interférence MA24106A Série Spectrum Master MS272xB Réf. Fab. Description Code Commande Prix Unitaire MS2721B Analyseur 7.1GHz 151-2736 g12580,00 MS2723B Analyseur 13GHz 151-2737 g15950,00 MS2724B Analyseur 20GHz 151-2738 g18450,00 Accessoires 42N50A-30 Atténuateur 30dB 129-8834 g407,00 12N50-75B Broche de couplage, DC vers 3GHz 129-8843 g459,73 1091-27 Adaptateur mâle N vers femelle SMA 129-8836 g99,90 61532 Kit antennes 129-8844 g233,10 760-235 Sacoche de transport 129-8841 g249,75 Le capteur de puissance MA24106A est un capteur de puissance USB qui élimine le besoin d’un wattmètre traditionnel. C’est un instrument de haute précision et qui se connecte à un PC via le cordon USB. La capacité de mesure de puissance est destiné à s’y méprendre à celui d’un capteur de puissance thermique traditionnel (thermomécaniques électrique) avec une plus large gamme dynamique. Il est donc idéal pour mesurer la puissance moyenne de CW, les ondes RF modulées telles que 3G, 4G, OFDM et signaux multi-tons. Il mesure en RMS vrai quelque soit le type de signal d’entrée. La présence d’un micro-contrôleur avec un circuit de signal, ADC et alimentation dans un capteur lui permet d’être un wattmètre complet miniature. L’affichage des Analyseur de spectre portable avec une bande de fréquence de 100 kHz à 3.0 GHz et un préamplificateur. Alimenté par batterie, sa conception a été conçue pour une utilisation en extérieur. Compact, il se range facilement dans un sac à dos. Simple d’utilisation et avec nombreuses fonctionnalités, c’est la solution idéale pour des environnements et applications extérieurs nécessitant de la mobilité tels que dans les sites de recherche ou des tests de système sur site. Livré avec: logiciel d’analyse de données, sacoche de transport, batterie rechargeable/remplaçable, alimentation AC/DC, un adaptateur allume cigare 12.5V et manuel d’utilisation. données, l’acquisition et le processus suivant se font sur le PC. Il est livré avec un logiciel qui permet le contrôle et le fonctionnement du capteur. Kit d’antenne Comprend les antennes suivantes avec une sacoche de transport: • Antenne portable, 1.71 à 1.88 GHz, SMA (m), 50Ω • Antenne portable, 1.85 à 1.99 GHz, SMA (m), 50Ω • Antenne portable, 2.4 à 2.5 GHz, SMA (m), 50Ω • Antenne portable, 806-866 MHz, SMA (m), 50Ω • Antenne portable, 896-941 MHz, SMA (m), 50Ω • Antenne, 5725 à 5825 MHz, connecteur SMA mâle • Mesures en RMS vrai avec une gamme dynamique supérieure à 63dB, mesures précises • Idéal pour de nombreuses applications comme l’installation et l’entretien de stations de base, testant des appareils 3G et 4G, téléphones cellulaires et des appareils RF à usage général • Protection ESD, robuste et fiable • Basse consommation (100 mA typ), excède la durée de vie d’un ordinateur portable • Aucun étalonnage nécessaire, simplification de la procédure de mesure et réduction du temps de test en production • Léger, facile à utiliser avec un PC ou un ordinateur portable Le MS2724B est un analyseur de spectre ultra portable à hautes performances et une couverture continue de fréquence de 9 kHz à 20 GHz, à un prix très compétitif. Les analyseurs de spectre portables MS2721B et MS2723B présentent une couverture de fréquence respective jusqu’à 7.1 GHz et 13 GHz. Les hautes • Portable, léger et fonctionnement sur batterie • Pré-amplificateur intégré (standard) • Niveau sonore < -135 dBm typique • Rapide ’Zoom-in’, ’Zoom-out’ dans une séquence 1-2-5 • RBWs: 100 Hz à 1 MHz en 1-3 séquence • VBWs: 3 Hz à 1 MHz en 1-3 séquence • Contrôle automatique, manuel et dynamique de l’atténuateur • Précision d’amplitude ±0.5 dB typique • Mesures dédiées par pression d’un simple bouton • Moyennage et superposition de la trace • Offset du niveau de référence • Interface utilisateur multi-langues • Marquage en alphanumérique des mesures sauvegardées • Sauvegarde des données automatique avec heure et date • 6 marquages, lignes limite et lignes limite segmentées • Interface RS232 • AM, FM et démodulation SSB intégrées performances et les possibilités de mesure de la série MS272xB facilitent aux ingénieurs la conception, le déploiement et l’optimisation sur le terrain d’appareils et de réseaux sans fil. La couverture continue de fréquence de 9 kHz à 20 GHz (MS2724B) apporte aux professionnels la plage de fréquences nécessaire pour les environnements RF et physiques les plus exigeants. Son très faible bruit de phase, typiquement -104 dBc/Hz pour un écart de 10 kHz à 2 GHz, et sa gamme de Livré avec: cordon USB A vers Mini-B 1.8m et logiciel sur CD Réf. Fab. Description Code Commande Prix Unitaire MS2711D Analyseur de spectre 129-8839 g4225,00 Option 10A T polarisé variable Option 25 Analyse d’interférence S/W ´ Option 27 Scanner de voie S/W ´ Option 29 Wattmètre ´ Accessoires ´ 800-441 Câble série 129-8840 g416,25 760-235 Sacoche de transport 129-8841 g249,75 Capteur de puissance USB résolutions de bande passante (RBW) de 1 Hz à 3 MHz le destinent idéalement à la supervision de spectre, aux besoins de sécurité et de renseignement, aux mesures RF/ Hyperfréquences ou aux mesures de signaux cellulaires. Tous les modèles comprennent: cordon d’alimentation, 1 cordon de test 1.5m par voie, manuel d’utilisation et Certificat d’étalonnage. Analyseur de spectre 3GHz • Sauvegarde et manipule les données de test de production ou les rapports de laboratoire • Exporte ou sauvegarde des données de mesure en fichier texte ou graphique pour une utilisation dans les fichiers de calcul, rapports ou autres formats de présentation • Capture des traces en direct et les visualise sur PC Analyseurs de spectre SpectrumMaster MS2711D portables haute performance Logiciel Master Software Tools (MST) • Permet le transfert des mesures sauvegardées, avec marqueurs et lignes de limite, vers un PC pour faire des analyses • Modifie les paramètres d’affichage, superpose des traces multiples, télécharge des traces, imprime des traces et des données sur imprimantes seules ou en réseau • Modifie rapidement et ajoute des lignes de limite et marqueurs Pico Technology a lancé la nouvelle série PicoScope 2200, une révolution en termes de rapport qualité-prix, offerte par l'entreprise de pointe dans le domaine des oscilloscopes sur PC. PicoScope série 2200 Des prix sans compromis Disponible avec des bandes passantes de 5 MHz, 10 MHz et 25 MHz Extrêmement polyvalent et d'un excellent rapport qualité prix, chaque PicoScope est un appareil « 5 en 1 » : oscilloscope, analyseur de spectre, générateur de signaux, générateur d'ondes arbitraires et enregistreur de données Le logiciel très complet PicoScope 6 est synonyme de puissance et de simplicité. Des commandes de base au bout des doigts, des fonctions avancées et des commandes accessibles en deux niveaux de menu au maximum Des performances et une précision de mesure garanties sont le résultat du travail d'une équipe de conception basée au Royaume-Uni faisant appel à des méthodes de fabrication à la pointe de la technologie dans ce pays. PicoScope série 5200 Des performances sans compromis Les autres oscilloscopes de cette gamme de prix vous obligent à faire un compromis sur l'une des trois 5200, il n'y a plus de compromis. Bande passante de 250MHz Taux d'échantillonnage temps réel de 1Gé/s Mémoire tampon de 128Méchantillons Modèle PicoScope2203 PicoScope2204 PicoScope2205 PicoScope5203 PicoScope5204 Bande passante (MHz) 5 10 25 250 250 Taux d’échantillonnage 40 Mé/s 100 Mé/s 200 Mé/s 1 Gé/s 1 Gé/s Capacité demémoire 8 k 8 k 16 k 32 M 128 M Déclenchement avancé Non Non Oui Oui Oui Nombre de voies 2 2 2 2 www.farnell.com 2 C'est ce que votre PC attendait... Le nouvel oscilloscope sur PC PicoScope série 2200 RoHS Conforme Non-conforme Commandez du lundi au vendredi de 8h30 à 19h pour une livraison gratuite le lendemain Pico 57 Test & Mesure Analyseur de spectre Seulement g9292,25 CODE COMMANDE158-1562 Le PicoScope 2000 a été conçu pour offrir d’excellentes performances. La série PicoScope 5000 possède les performances d’un modèle de ’table’ tout en prenant peu d’espace. Idéal pour transférer des données sur le PC en utilisant l’interface USB 2.0. Il capture les coupures rapides et les formes d’onde complètes en même temps, grâce à la profondeur de mémoire exceptionnelle avec un taux d’échantillonnage de 1Géch/s à seulement 10ms/div. Si le buffer de 128 millions d’échantillons n’est pas suffisant, 6 millions d’échantillons par seconde peuvent être capturés directement sur le disque du PC ou RAM sans ralentir le processeur. Il offre la possibilité d’inspecter des évenements de longue durée dans un détail de minutes, jusqu’à que la mémoire du PC soit limitée. Instrument tout en un: Livré avec: sacoche de transport rigide, logiciel sur CD, câble USB, sondes: 2x 250MHz x1/x10 Chaque modèle est un appareil complet tout en un avec oscilloscope, analyseur de spectre, générateur de signaux et générateur d’ondes arbitraires (AWG), le rendant ainsi très polyvalent et d’un bon rapport qualité-prix. Réf. Fab. Code Commande Prix Unitaire PICOSCOPE 5203 129-6665 g1595,00 PICOSCOPE 5204 129-6666 g2396,00 Prix Unitaire Etalonnage Standard S g131,10 Etalonnage NAMAS N g180,65 Spécifications du PicoScope 9201: • Bande passante 12 GHz sur les 2 voies • Base temps 10 ps/div • Bande passante de déclenchement jusqu’à 10 GHz • Echantillonnage équivalent 5 TS/s • Mesure de signal automatique avec statistiques et curseur haute résolution • Signal comprenant la fonction FFT • Histogrammes tension et temps • Mesure de Eye-diagram pour NRZ et RZ • Masque de test automatisé • USB 2.0 ou LAN (optionnel) • Interface utilisateur Windows • Léger et conception optimale Modèle PicoScope 2203 PicoScope 2203 PicoScope 2203 Bande passante 5MHz 10MHz 25MHz Taux d’échantillonnage 40 Méch/s 100 Méch/s 200 Méch/s Longueur d’enregistrement 8K 8K 16K AWG Oui Oui Oui Série PicoScope 5000 Description Réf. Fab. Code Commande Prix Unitaire PicoScope 2203 2203 147-1475 g242,00 PicoScope 2204 2204 147-1476 g342,00 PicoScope 2204 2205 147-1477 g456,00 Picoscope 9201 Oscilloscope PC PicoScope 2000 Oscilloscopes PC haute précision • Bande passante de 250MHz • Taux d’échantillonnage en temps réel de 1Géch/s • Longueur d’enregistrement de 128M • Déclenchements avancés - largeur d’impulsion, fenêtre, renvoi, retard, niveau logique • Mesures automatiques: RMS, largeur d’impulsion et temps de montée et chute • Générateur de fonctions arbitraires intégré: 12 bits , 125Méch/s • Analyseur de spectre - visualisation de signaux jusqu’à 250MHz dans le domaine de fréquence • Acquisition de données en haute vitesse • Capture de visuel puissant et analyse • Buffer, sauvegarde des dernières 32 captures, permet de faire dérouler les mesures précédentes • Probe Manager: permet de paramétrer et de sauvegarder les réglages des sondes et des capteurs • Léger et compact, idéal pour un usage extérieur • Livré avec logiciel PicoScope 6 • Compatible avec LabVIEW, C/C++, Delphi et VB • Fonctionne avec Windows XP et Vista • Bande passante de 5 MHz à 25 MHz disponible en 3 modèles • Taux d’échantillonnage: 200 Méch/s en temps réel • Longueur d’enregistrement: 16 K • Connecté et alimenté via USB 2.0 (480 Mbps) RoHS Conforme Non-conforme Commandez du lundi au vendredi de 8h30 à 19h pour une livraison gratuite le lendemain Lecroy 59 Test & Mesure • Bandes passantes 250MHz et 500MHz • Mémoire 50 Mpts/voie, signaux rapides pouvant être capturés jusqu’à 25 ms à un taux d’échantillonnage allant jusqu’à 2 Géch/s • Jusqu’à 36 voies - idéal pour tous les ADDR, DATA, lignes de commande et bus de données série sur des microcontrôleurs 16-bits • Déclenchement croisé complet analogique/numérique • Synchronisation de la base de temps analogique/numérique • Curseurs affichant des valeurs de bus hexadécimales • Mesures de synchronisation sur une simple voie numérique, entre 2 voies numériques ou entre une voie analogique et une voie numérique • Déclenchement et décodage pour bus séries tels que I2C, SPI, UART, RS-232, et LIN • Bandes passantes 200 MHz, 400 MHz, 600 MHz et 1 GHz • Echantillonnage 2.5 Géch./s • 2 ou 4 voies • Ecran SVGA tactile couleur 10.4" • Mode de visualisation rapide WavestreamTM qui utilise un affichage rapide à 256 niveaux, idéal pour visualiser les formes d’onde avec leurs jitters et leurs anomalies • Mémoire étendue et fenêtre d’acquisition supérieure • Gagnez du temps grâce à la touche d’accès unique aux 23 mesures • Sauvegardez les formes d’onde et les réglages sur le disque dur local ou sur une mémoire USB externe ou envoyez grâce à la connectivité réseau • Fonctions Maths, FFT et zoom en standard • Garantie 3 ans et support technique 7 ans Séries WaveJet 300 Les boîtiers d’entrée de signaux mixtes s’utilisent avec les oscilloscopes WaveRunner Xi ou WaveSurfer Xs et permettent de visualiser des signaux de données analogiques, numériques et de série de manière simultanée en temps réel. La série WaveJet 300 fournit des performances et une portabilité inégalées dans cette catégorie d’oscilloscopes numériques. Ses oscilloscopes présentent une profondeur de seulement 105mm, un large écran couleur de 7.5", et une profondeur mémoire bien supérieure pour un prix très compétitif. Ils sont disponibles en 4 bandes passantes de 100 à Série MS Série WaveSurfer XS 500MHz. Réf. Fab. Code Commande Prix Unitaire 500MHz, 18 voies MSO-500 134-8273 g3690,00 500MHz, 36 voies MSO-500-36 134-8275 g4605,00 250MHz, 18 voies MSO-250 134-8276 g2750,00 Jeux de cordons numériques Jeu de cordon 18 voies D0-D17 MSO-DLS-18 134-8277 g915,00 Jeu de cordon 18 voies D18-D35 MSO-DLS-36 134-8278 g915,00 Réf. Fab. Code Commande Prix Unitaire Réf. Fab. Code Commande Prix Unitaire Oscilloscopes Oscilloscopes 200MHz, 4 voies WS24XS 130-0622 g5990,00 1GHz, 4 voies WS104XS 127-2489 g10490,00 400MHz, 2 voies WS42XS 146-8088 g5750,00 200MHz4 160-3949 g7455,50 400MHz, 4 voies WS44XS 113-2561 g7290,00 400MHz4 160-3950 g8517,25 600MHz, 2 voies WS62XS 113-2562 g7250,00 600MHz4 160-3951 g10330,75 600MHz, 4 voies WS64XS 113-2563 g8990,00 1GHz4 160-3952 g12787,50 Réf. Fab. Code Commande Prix Unitaire Réf. Fab. Code Commande Prix Unitaire 100MHz, 2 ch WAVEJET WJ312 113-2564 g2290,00 350MHz, 2 ch WAVEJET WJ332 113-2569 g4490,00 100MHz, 4 ch WAVEJET WJ314 113-2565 g2690,00 350MHz, 4 ch WAVEJET WJ334 113-2571 g5190,00 200MHz, 2 ch WAVEJET WJ322 113-2566 g2990,00 500MHz, 4 ch WAVEJET WJ354 113-2573 g6490,00 200MHz, 4 ch WAVEJET WJ324 113-2567 g3490,00 Modules d’oscilloscope signaux mixtes Oscilloscopes numériques Oscilloscopes numériques • 2 ou 4 voies • Grand écran couleur VGA TFT-LCD 7.5 pouces • Fréquence d’échantillonnage de 1Géch/s max. sur les modèles 100MHz et de 2Géch/s sur tous les autres modèles • Longueur d’enregistrement de 500kpts par voie • 26 mesures automatiques • Fonction Zoom • Compteur de fréquence intégré à 6 chiffres pour simplifier vos méthodes de mesure • Mode "Répéter" qui permet d’afficher un historique des formes d’onde capturées • 4 fonctions mathématiques dont FFT • Port USB • Une sonde passive 500MHz (PP006A) offerte par voie • Garantie 3 ans et support technique 7 ans • Se connecte à l’oscilloscope facilement grâce à l’interface bus de LeCroy • Affichage avec code couleur permettant une identification simple du signal Tous les prix de cette brochure sont en euros hors TVA www.farnell.fr Tél.: 04 74 68 99 99 Fax: 04 74 68 99 90 Le bon rapport qualité-prix 60 Test & Mesure Seulement g339,92 CODE COMMANDE156-3801 Seulement g463,45 CODE COMMANDE156-3727 Seulement g618,45 CODE COMMANDE156-3728 Seulement g162,75 CODE COMMANDE156-3805 Oscilloscope numérique 2 voies haute performance idéal pour remplacer les oscilloscopes analogiques en service dans les secteurs tels que l’éducation, la maintenance et le test qualité. • Ecran LCD couleur 5.7" (320x240) • Boîtier avec poignée • Echantillonnage temps réel Réf.Fab. Code Commande Prix Unitaire GDS-1022 25 MHZ 156-3796 g410,75 GDS-1042 40 MHZ 156-3797 g581,25 GDS-1062 60 MHZ 156-3799 g658,75 GDS-1102 100 MHZ 156-3800 g829,25 Oscilloscope numérique 25MHz Oscilloscopes numériques 500MS/s ou 25GS/s ET • Mémoire longueur 1Mb (2x 512k), profondeur 2 x 25K • Fonctions mathématiques FFT, ADD, SUB, MULT, DIV et REV • Mesures étendues • Stockage de 10 paramètres • Interface USB et RS232 pour une analyse étendue • Fourni avec 2 sondes et un manuel d’utilisation Oscilloscope 30MHz avec compteur de fréquence Oscilloscope numérique 2 voies haute performance remplaçant idéalement les oscilloscopes analogiques en service dans les secteurs tels que l’éducation, la maintenance et le test qualité. Oscilloscopes numériques 2 voies haute performance remplaçant idéalement les oscilloscopes analogiques en service dans les secteurs tels que l’éducation, la maintenance et le test qualité. Oscilloscope numérique couleur Modèle: 72-6802 Oscilloscope analogique ayant des fonctions innovantes telles que l’affichage sur écran LCD, le fréquencemètre, le paramètrage automatique de base de temps. L’oscilloscope comporte également un éventail de fonctions de déclenchements, axes XY, mode Z et MAG. Modèle: SFG-1013 Générateur de fonction DDS avec affichage de tension et sortie très stable et précise. La synthèse du signal est basée sur la technologie DDS et les signaux de sortie inclus les fonctions sinusoïdale, carrée, triangle et de type TTL. Idéal pour les services de recherche et développement, la maintenance et l’éducation. Réf. Fab. Code Commande Prix Unitaire UT-3062C 156-3733 g736,25 UT-3102C 156-3734 g928,45 Modèle: GDS-1000 Series Oscilloscopes 2 voies à usage général qui remplacent idéalement les oscilloscopes analogiques qui sont en service dans des secteurs tels que l’éducation, l’industrie et le test qualité. • Ecran LCD monochrome 5.7" (320x240) • Echantillonnage temps réel 500MS/s ou 25GS/s ET • Mémoire longueur 1Mb (2x 512k), profondeur 2 x 25K • Fonctions mathématiques FFT, ADD, SUB, MULT, DIV et REV • Mesures étendues • Stockage de 10 paramètres • Interface USB et RS232 pour une analyse étendue • Fourni avec 2 sondes et un manuel d’utilisation • Ecran LCD couleur 5.7" (320x240) • Echantillonnage temps réel 500MS/s ou 25GS/s ET • Mémoire longueur 1Mb (2x 512k), profondeur 2 x 25K • Fonctions mathématiques FFT, ADD, SUB, MULT, DIV et REV • Mesures étendues • Stockage de 10 paramètres • Interface USB et RS232 pour une analyse étendue • Fourni avec 2 sondes et un manuel d’utilisation Générateur de fonction Oscilloscopes numériques couleurs • Ecran couleur TFT 5.6" (320x234) classe ‘ A+’ • Echantillonnage temps réel 250MS/s ou 25GS/s ET • Mémoire 4k par voie • Déclenchement avancé • Mesures de tension étendue et curseur de temps • Compteur de fréquence temps 6 chiffres • Sauvegarde / rappel de 15 paramètres sur le panneau avant • Interface USB et lecteur de carte SD • Fourni avec 2 sondes et un manuel d’utilisation • Ecran LED 6 chiffres • Technologie DDS et FPGA design • Fréquence de 0.1Hz à 3MHz • Sortie avec fonctions sinusoïdale, carrée, triangle et TTL • Fréquence très précise et stable (+-20ppm) • Affichage de la tension • Ecran CRT 6" haute luminosité à graticule interne 8x12 internal graticule • Affichage LCD rétroéclairé pour lecture de la tension, de la base temps et de la fréquence • Compteur de fréquence 5 chiffres temps réel 30MHz • Base temps automatique intelligente • Alarme pour limite Horizontale/Verticale • Fourni avec sondes et manuel d’utilisation RoHS Conforme Non-conforme Commandez du lundi au vendredi de 8h30 à 19h pour une livraison gratuite le lendemain Analyseurs/Générateurs de fonctions 61 Test & Mesure Seulement g2224,25 CODE COMMANDE155-3887 Seulement g550,00 CODE COMMANDE136-7294 Seulement g550,00 CODE COMMANDE136-7294 Seulement g859,00 CODE COMMANDE137-1029 Seulement g980,00 CODE COMMANDE137-1028 • Mesure faibles consommations, courant de démarrage et fonction d’intégration (Whr) • interface à grande vitesse pour une utilisation automatisée • Idéal pour la conception et le test de tous les produits électriques TA320S • Générateur DDS (synthèse directe de fréquence) • Mode d’utilisation simplifiée Gammes de mesures Précision (%) Résolution Tension DC 0.1V à 600V 0.003 + 2 1 μV Tension AC 0.1V à 600V 0.08% + 0.08 1 μV Courant DC 100μA à 1A 0.02% + 0.002 1 nA Courant AC 100μA à 1A 0.1% + 0.08 100 pA Résistance 100Ω - 10MΩ 0.005% + 0.001 1mΩ - 100μΩ Fréquence/ période 1Hz - 100kHz 0.05% 0.00001Hz - 1Hz Température -200°C à +800°C ±0.05°C 0.01°C Micro- et Milliohmètre - Le TA320S est un analyseur logique très performant capable de capturer des événements synchronisés jusqu’à 25MHz sur 32 voies. Le mode de déclenchement sophistiqué ainsi que les • Précision jusqu’au facteur de crête de 20 - aucun compromis sur la spécification des distorsions des formes d’onde • Conception analogique robuste -supporte des surcharges jusqu’à 5kV • Transformée de Fourier discrète fournissant des harmoniques plus précisément que la FFT • Le système de détection de la fréquence Voltech permet d’éviter des problèmes avec la détection au niveau zéro • La haute fréquence d’échantillonnage capture toutes les données et évite les problèmes d’aliasing • Interfaces USB, IEEE 488-2, RS232, port imprimante, Aux / Trigger BS407 • Fonctions : Sinus , carré, triangle, DC • Fréquence max 15MHz • Offset et symétrie variables • Wobulation linéaire et logarithmique • Modulation AM/FM • Amplitude, offset et symétrie réglable • Affichage LCD graphique rétro éclairé • Interface RS232 • Fréquencemètre externe 100MHz Multimètre numérique de précision HM8112-3 horloges multiples offrent une extrême précision pour la capture d’événements. Pour la connexion sur un système l’AP01 fourni 38 entrées TTL hautes impédances (32 de données + 6 horloges). Les sondes de tests logiques sont également disponibles en option par paquet de 10. Gammes de fréquences Sinus 10mHz to 12.5MHz Carré 10mHz to 12.5MHz Impulsion 10mHz to 5MHz Rampe 10mHz to 25kHz Triangle 10mHz to 250kHz Fonctions arbitraires 10mHz to 250kHz Entrées Porte/trigger BNC, 5kΩ// 100pF ±30V Sortie BNC, protection contre les courtscircuits 50Ω, 20mVss to 20Vss Sortie trigger Vobulation : 0 - 5V (rampe) ou 5V TTL Offset DC 3 gammes: -7.5V à +7.5V (idlerunning) Balayage interne Tout signaux (linéaire de 20ms à 100s) Modulation d’amplitude DC - 20kHz (-3dB); 0 to 100% Porte asynchrone Modulation on/off via signal TTL externe Fonction trigger Mode burst via entrée trigger ou interface (≤500kHz) • Mémoire de données et de configuration non volatile • Affichage LCD pour diagrammes et listes d’état • Interface RS232 pour sortie sur imprimante Générateur de fonctions • Gamme de fréquence de 10mHz à 12.5MHz • Tension de sortie de 20mVss à 20Vss • Temps de montée/descente ≤10ns • Paramètres de largeur d’impulsion, générateur arbitraire 40Méch/s • Burst, synchronisation, trigger externe et vobulation • Interface RS-232, option : USB, IEEE-488 • Large plage de mesure de 1μΩ à 20kΩ • Mesure à quatre bornes à l’aide d’un jeu de conducteurs Kelvin • Haute précision de base de 0,1% • Commutateur d’inversion de courant pour détection de force thermoélectrique • Affichage 6.5 digits (1.2 MPoints) • Résolution 100 nV, 100 pA, 100 μΩ, 0.01 °C/F • Précision DC de base 0.003% • Mesures 2 fils / 4 fils DDS 15MHz • 32 voies allant du contenu à 25MHz • Mémoire d’acquisition de données de 2K mots • 4 séquences Trigger avec délai et redémarrage • Intervalles de mesures ajustables de 0.1s à 60s • Jusqu’à 100 mesures par seconde pour le PC • Valeur efficace vraie en AC + DC et AC; correction d’offset • Interface RS-232 , option : USB (HO870), IEEE-488 (HO880) • Fourni avec cordon secteur, manuel d’instructions, cordon de mesures HZ15 et câble RS-232 Générateur de fonction HM8150 Le BS407 est un appareil entièrement portable capable de mesurer de très faibles résistances avec une grande précision. La plage de mesure particulièrement large, associée à des fonctions telles qu’une pince de 20mV lui permettent d’être utilisé dans PM1000+ Réf. Fab. Code Commande Prix Unitaire TA320S 351-0920 g911,00 AP01 Pod 351-0931 g153,00 Sonde logique (Paquet de 10) 351-0943 g47,00 Arbitraire 12.5MHz SEFRAM 4415 une large plage d’applications. Fourni avec un jeu de cordons de test, un manuel d’utilisation et un cordon secteur. Analyseur logique 32 voies Le PM1000+ mesure des consommations de puissance du milliwatt au mégawatt, fournissant la puissance de précision et les données d’harmoniques sur les produits allant du plus petit chargeur de téléphone portable au dernier bus hybride électrique. Valable pour les mesures Energy Star et pour des mesures à faible puissance conformément aux directives internationales, par exemple la norme CEI 62301 qui exige également des mesures de facteur de crête jusqu’à 8 et 50 harmoniques. Type de mesure Gammes Puissance 90 kW Direct I/P Tension 600 V AC rms & ±1500V Courant AC/DC max 20 A rms & ±100A Fréquence 10Hz à 1MHz Harmoniques Jusqu’au 50ème Harmonique Facteur de puissance -1.000 à +1.000 THD 0 à 999% Impédance 5mΩ à 5MΩ Analyseur de puissance de précision Tous les prix de cette brochure sont en euros hors TVA www.farnell.fr Tél.: 04 74 68 99 99 Fax: 04 74 68 99 90 Analyseurs/Générateurs de fonctions 62 Test & Mesure Seulement g3952,50 CODE COMMANDE156-3802 Seulement g795,00 CODE COMMANDE136-7290● Seulement g181,82 CODE COMMANDE157-3429 Livré avec cordons de test, cordon d’alimentation, manuel d’utilisation (anglais), sonde de température, pinces crocodiles, borne de test multi-fonctions, câble d’interface RS232C et logiciel de communication. • Affichage LCD 5,999 points avec rétroéclairage • Mesure de courant jusqu’à 10A Une gamme d’oscilloscopes 20MHz double voie de haute qualité offrant de nombreuses fonctions. Le 72-6805 intègre également un générateur de fonctions 1MHz. Modèle: GSP-830 Un analyseur de spectre avec un excellent niveau de bruit de fond qui présente une extrême sensibilité pour mesurer les signaux faibles. D’autres • Affichage tension et courant (afficheur fluorescent) • 2x30V / 0-3A, 1x0-5V / 1A • Fonctionnement en mode série et parallèle • Programmable en courant et tension • Interface RS232 et USB en standard • Protection complète contre les courtscircuits et les élévations de température • Garantie 1 an fonctionnalités avancées telles que le paramètrage • Gamme automatique 72-6800 & 72-6805 • Tension et courant variable • Technologie Switch mode pour plus d’efficacité • Ondulation et bruit faible • Forme compacte et ergonomique pour un gain de place BK9130 • Mesure RMS vraie avec une bande passante 100kHz • Tests de diode, de continuité et de transistor • Mode Max/Min et sauvegarde des données • Affichage de l’autonomie faible de la batterie et mode Alimentation stabilisée triple programmable Régulation de ligne 20mV Régulation de charge 50mV Dimensions / Poids 150 x 70 x 250mm / 2kg automatique, l’écran partagé, les mesures de puissance et les paramètres de succès / échec font du SGP-830 la solution idéale pour l’analyse du spectre de fréquences. • Tension et courant variable • Technologie Switch mode pour plus d’efficacité • Ondulation et bruit faible • Forme compacte et ergonomique pour un gain de place Réf. Fab Code Commande Prix Unitaire 72-6800 491-1842 g298,38 72-6805 428-3958 g330,75 Etalonnage Standard S g51,83 Etalonnage NAMAS N g84,76 Simple sortie - 3 plages de courant / tension • 6.4" (640 x 480) écran TFT LCD couleur haute résolution • 10 marqueurs pour les fonctions de pic et 5 marqueurs veille • Se connecte à un PC via une interface RS232 (logiciel et cordon fournis) • Alimentation secteur ou par 6 piles C (non fournies) • Compartiment pour accessoires intégré Oscilloscopes double voie 20MHz Tension de sortie Courant de sortie PuissanceRéf. Fab. Code Commande 0V - 20V 5A 112W 72-8340 157-3426 0V - 36V 3A 126W 72-8345 157-3427 0V - 60V 1.6A 116W 72-8350 157-3428 pour les fonctions delta • L’utilisateur peut définir ses propres macros en séquence de 10 pas Description Réf. Fab. Code Commande Prix Unitaire Multimètre de table 72-1016 119-6432 g148,44 Etalonnage Standard S g51,83 Etalonnage NAMAS N g84,76 Régulation de ligne 4mV Régulation de charge 20mV Ondulatrion et bruit (Pk - Pk) 30mV Dimensions / Poids 127 x 54 x 330mm / 1.9kg Tension d’alimentation 230V Fréquence d’alimentation 50Hz Réf. Fab. Courant de sortie Code Commande Prix Unitaire 72-8340 0V - 20V 157-3426 g126,40 72-8345 0V - 36V 157-3427 g126,40 72-8350 0V - 60V 157-3428 g126,40 Plage Tension de sortie Courant de sortie 1 16V 5A 2 27V 3A 3 36V 2.2A • 20MHz, double voie • Ecran CRT 6" (Affichage 8x10 div.) • Haute sensibilité (1mV/div.) • Fonction X-Y • Entrée axe Z • Sortie CH1 72-1016 Alimentation de laboratoire - Tension variable • Modes pause, boucle ou simple • ACPR, OCBW, Cannal de puissance, N -dB, mesure de jitter de phase • Interface USB and RS232 • Sortie VGA Alimentation de laboratoire • Synchronisation TV • Déclenchements multiples dont la fonction ALT • Générateur de fonctions 1MHz (72- 6805 seulement) Analyseur de spectre 3GHz Multimètre de table – RMS vrai RoHS Conforme Non-conforme Commandez du lundi au vendredi de 8h30 à 19h pour une livraison gratuite le lendemain TTI 63 Test & Mesure - instruments portable Alimentation de laboratoire Code Commande Prix Unitaire PFM3000 160-1132 g178,25 Etalonnage Standard S g131,10 Etalonnage NAMAS N g207,80 Description Réf. Fab. Code Commande Prix Unitaire Analyseur de spectre portable PSA1301T 107-6496 g1193,00 Analyseur de spectre portable PSA2701T 134-7345 g1493,00 Prix Unitaire Etalonnage Standard S g159,77 Etalonnage NAMAS N g188,58 Affichage Type d’affichage 3.7" (9.4 cm) TFT couleur rétro-éclairé, 480 x 320 pixels (half VGA) Zone forme d’onde 300x320 pixels (320 échantillons), 8 x 10 graticule division Traces forme d’onde Trace temps réel et tracé de référence (sélectionnable) dans différentes couleurs Annotations par défauts Fréquence centrale, intervalle de mesure (ou Start & Stop), niveau de référence, RBW, fréquence marqueur, amplitude marqueur, type de balayage, réglage atténuateur Commande Modes Choix de contrôle par clavier ou écran tactile pour toutes fonctions Entrée numérique Par pavé numérique ou par pression et défilement Fréquence Gamme de fréquence 150 kHz à 1300 MHz (PSA1301T) 1MHz à 2700MHz (PSA2701T) Modes de réglages Centre + intervalle, ou Start + Stop, ou intervalle zéro avec démodulation Résolution de réglages 1 kHz (7 digits max.) Balayage Modes de balayage Continu, simple, crête, ou moyenne (2 à 256 balayages) Capacité mémoire Mémorisation des courbes Stockage d’un nombre illimité de courbes avec noms de fichier utilisateur Mémorisation des réglages Stockage d’un nombre illimité de courbes avec noms de fichier utilisateur Connecteurs Entrée RF Connecteur SMA, impédance 50W; ROS typique <1.5:1 Sortie audio Prise casque 3.5mm pour audio démodulée USB Embase mini USB - accès direct au port USB de l’ordinateur portable Entrée alimentation Fiche jack 1.3mm pour l’alimentation sur secteur et la mise en charge Type d’ordinateur portable Palm Tungsten, processeur Intel Xscale, mémoire Flash, écran portrait/paysage 480x320, Bluetooth, extension mémoire par carte SD/SDIO ou MMC, compatibilité Word, Excel, Outlook etc. Alimentation Fonctionnement sur batterie Batteries NiMh internes pour une autonomie de 4h Alimentation secteur Alimentation externe / chargeur,entrée universelle 100V à 240V • Commutable à distance ou capteur local • Réglage précis et approximatif de la sortie de tension et réglage logarithmique simple pour la sortie de courant • Utilise un ventilateur de refroidissement • 230V AC - 800VA maximum Fréquencemètre portable 3GHz • Poids: 3.6kg PSA1301T & PSA2701T L’alimentation PL303QMD est à double sorties avec 4 modes de fonctionnement: • Mode indépendant: les 2 sorties sont complètement indépendantes et électriquement isolées de chacune. • Mode de suivi isolé: les 2 sorties restent électriquement inchangées mais le contrôle de la tension de la sortie maître règle une tension identique sur la sortie esclave. • Mode de suivi ratio isolé: comme suivi normal mais avec une tension esclave pouvant être réglée à un certain pourcentage de la tension maître et conserver ce ratio lorsque la tension maître varie. • Mode parallèle vrai: toute la puissance arrive à la sortie maître pouvant ainsi fournir une puissance jusqu’à 6A. EX2020R PFM3000 Série PL Réf. Fab. Code Commande Prix Unitaire EX2020R 151-0525 g615,00 Etalonnage standard S g131,10 Etalonnage NAMAS N g207,80 Analyseurs de spectre portables 1.3GHz & 2.7GHz • Plage de fréquences de 3 Hz à > 3000 MHz en 2 gammes • Entrée à haute sensibilité sur toute la plage de fréquence • Mesure d’impédance jusqu’à 125 MHz Alimentation simple sortie 0-20V 0-20A Réf. Fab. Code Commande Prix Unitaire PL303 0 bis 30v 151-0521 g390,00 PL155 0 bis 15v 151-0522 g390,00 PL601 0 bis 60v 151-0523 g390,00 PL303QMD 0 bis 30v (dual) 151-0524 g780,00 Etalonnage Standard S g131,10 Etalonnage NAMAS N g207,80 Les PSA1301T et PSA2701T utilisent la puissance d’un ordinateur portable pour fournir un niveau de performance impossible auparavant pour un instrument de petite taille et à faible coût. Le résultat est un analyseur de spectre RF de haute performance dans un format compact et léger. Ils intégrent un Palm Tungsten TX dans le boîtier pour créer un seul instrument intégré. Livrés avec un accès ports USB et toutes les fonctionnalités sont maintenues et peuvent être désactivées de l’instrument si nécessaire. Alimentations de laboratoire DC Alimentation avec sortie tension constante et courant constant avec affichage 4 digits 14mm pour tension et courant. • Technique de comptage réciproque donnant une résolution supérieure • Mesure de période de 3 Hz à 125 MHz • Fonctionnement sur batterie • Arrêt automatique et fonction Push-to-measure • Large écran 8 chiffres comportant de nombreuses indications • Temps de mesure sélectionnable; fonction maintien de l’affichage • Filtre à bruits pour la mesure des basses fréquences Tous les prix de cette brochure sont en euros hors TVA www.farnell.fr Tél.: 04 74 68 99 99 Fax: 04 74 68 99 90 Fluke 64 Test & Mesure - instruments portable • Mesure de courant de fuite: comprend 2 impédances faibles et gammes de courant faibles pour la mesure de courants de fuite importants. • Effectue des tests fonctionnels courants de fabricant avec consistance: utilise des clés d’installation (S1 - S6) pour un accès rapide à des mesures répétitives. Les opérateurs n’ont plus besoin d’appuyer sur de multiple boutons pour faire des mesures de routine. • Elimine les défauts de production: possède un mode de comparaison de limite avec indicateurs intégrés qui montrent clairement si un test est dans ou hors limites. • Effectue des mesures 4 fils avec seulement 2 cordons: fiches jacks de division brevetés permettant des mesures de précision 4 fils en ohm faible avec 2 cordons au lieu de 4. • Test de diodes/de continuité • Fonctions comparaison de limite • Fonctions dBm, dB, Min, Max • Interface RS-232 (Version avec interface USB disponible 150-3748) • Compatible avec programmation en ASCII simplifié Kits de cordons de test silicone à haute flexibilité conformes IEC1010 CATII, 300V. Les kits sont fournis avec avec une paires de cordons rouge et noir 10A, ainsi qu’un assortiment de sondes et pinces crocodiles. Le modèle TL81A comprend en plus une paire de cordons de test modulaires, une paire de pointes de touche, une paire de pinces de types crochet et une paire de pinces de type grippe-fil. Sacoche vinyl. Certification UL de transitoires à une vitesse de 250μs Le Kit combiné pour applications électriques industrielles Fluke 87V/E comprend: • Jeu de cordons de mesure silicone SureGrip™ 0.5m TL224 • Jeu de sondes de test Slim Reach SureGrip™ TP238 (pointes isolées avec partie de touche 4 mm) • Jeu de pinces crocodile SureGrip™ AC220 • Sangle de suspension avec aimant • Sonde de température 80BK • Mallette C800 Etui H80M • Aimant de suspension • Crochet et sangles à velcro • Pince d’accrochage universelle Fluke 287 et Fluke 289 8808 Description Réf.Fab. Code Commande Prix Unitaire Kit Basic TL80 493-314 g53,00 Kit Deluxe TL81A 431-3902 g126,00 • Affichage numérique de grande dimension à 50 000 points, à une résolution de ¼ VGA avec rétro-éclairage blanc • Fonction d’enregistrement avec TrendCapture pour une révision facile des données enregistrées • Multiples mesures par affichage • Mesures en RMS vrai (AC et AC+DC) • Touches contextuelles et boutons déroulants pour une navigation aisée • Interface USB optique de communication, permet un téléchargement facile sur PC • Mémoire interne pour un enregistrement autonome sur plus de 200 heures • Mesure de courant jusquà 20A (30s), 10A en continue • Capture de crête pour l’enregistrement jusqu’à 250μs • Min/Max/Moy avec horodatage permettant d’enregistrer les fluctuations du signal • IP54 • Sorties protégées conformément à la norme EN61010-1 CAT III 1000V / CAT IV 600V • UL, CSA et TUV Caractéristiques supplémentaires du Fluke 289: • Filtre passe-bas pour des mesures précises de la fréquence et de la tension sur les variateurs de vitesse et autres équipements « bruités » • Fonction de faible impédance d’entrée pour éviter les mesures erronées causées par une tension « fantôme » • Gamme de 50Ω pour mesurer et comparer les différences de résistance des enroulements de moteur, ou effectuer des mesures de faibles résistances ou d’autres résistances de contact Accessoires inclus: Cordon de puissance en ligne LCI, kit de test TL71, fusible de puissance en ligne de rechange, Manuel de programmation / manuel d’utilisation sur CD-ROM, Logiciel Réf. Fab. Code Commande Prix Unitaire 83V 736-3486 g353,00 87V 736-3494 g432,00 Kit 87V/E2 127-2833 g489,00 Etui H80M 800-2223 g29,00 Etalonnage standard S g83,85 Etalonnage NAMAS N g112,80 Multimètres numériques Kit de cordons de test TL80A/TL81A FlukeView FVF-BASIC. Kit combo FlukeView 289FVF: comprend le multimètre Fluke 289, les accessoires cidessus et en plus: pinces crocodiles, thermocouple 80BK, logiciel de formes FlukeView, câble de données et valise de transport. Description Réf. Fab. Code Commande Prix Unitaire Multimètre de table 8808 150-3747 g625,00 Multimètre avec câble SW et USB 8808/SU 150-3748 g800,00 Etalonnage standard S g83,85 Etalonnage NAMAS N g112,80 Multimètres enregistreurs industriels hautes performances. Enregistrement et affichage graphique des données sur grand écran. Série 80-V Multimètres de table • Courant et tension TRMS pour des mesures précises sur des signaux non-linéaires • Afficheur de grande taille muni d’un bargraphe analogique et d’un rétroéclairage blanc lumineux à 2 niveaux • Sélection automatique et manuelle de gamme pour une flexibilité optimale • Mode de mesure relative pour soustraire la résistance des cordons pour les mesures de faibles résistances • Enregistrement Min/Max/Moyenne avec alerte Min/Max pour effectuer des captures automatiques de variations • Touch Hold pour obtenir des mesures stables • Mesure de diodes ,de continuité avec avertisseur sonore et rapport cyclique • Protection sonore des entrées Caractéristiques supplémentaires du 87V: • Filtre sélectionnable pour des mesures de tension et de fréquence précises au niveau des moteur • Thermomètre intégré • Capture de crête pour l’enregistrement Description Réf. Fab. Code Commande Prix Unitaire Multimètre 287 142-2691● g499,00 Multimètre 289 142-2692● g539,00 Kit combo FlukeView 289/FVF 142-2693● g621,00 Prix Unitaire Etalonnage standard S g131,10 Etalonnage NAMAS N g207,80 Multimètres enregistreurs numériques RoHS Conforme Non-conforme Commandez du lundi au vendredi de 8h30 à 19h pour une livraison gratuite le lendemain Instruments portables 65 Test & Mesure - instruments portable Seulement g158,02 CODE COMMANDE156-3719 Seulement g54,24 CODE COMMANDE156-3715 Seulement g247,92 CODE COMMANDE156-3726 Réf. Fab. Code Commande Prix Unitaire 72-7730 128-3642 g104,89 Etalonnage standard S g51,83 Etalonnage NAMAS N g84,76 72-7730 Modèle: Modèle: 72-7732 Un multimètre intelligent, haute performance, avec interface USB et enregistreur de données (jusqu’à 9999). Le multimètre dispose aussi de la fonction TRMS. • Fourni avec batterie 9V, logiciel, cordon USB, sonde type K et manuel d’utilisation Caractéristiques supplémentaires pour le 72-7715 • Alarme Max/Min et signal de sortie • Calibration utilisateur • Compatibilité également avec les sondes de type R, S et N Un oscilloscope portable DMM compact de haute performance. • Mesure en RMS vrai • Gamme automatique/manuelle sélectionnable • Enregistrement et rappel des données • Gel du max. et gel de l’affichage Thermomètre infrarouge sans contact Réf. Fab. Code Commande Prix Unitaire 72-7712 -250°C bis + 1372°C 156-3717 g70,18 72-7715 -250°C bis + 1767°C 156-3718 g81,77 • Ecran 40,000 points avec bargraphe • Ecran rétroéclairé • Sélection automatique ou manuelle • Mesure de tension et de courant CA/CC • Mesure de résistance et de capacité • Mesure de fréquence et de rapport cyclique • Mesure de température (sonde type K) °C/°F • Mesure 4-20mA (0-100%) • Modes Min/Max/Relatif • Fonctions Data hold et peak hold • Test de continiuté et de diode • Arrêt automatique et indicateur de pile faible • Fourni avec pile 9V, sacoche, cordon USB, sonde de température, cordon de test, une paire de pince de test et un manuel d’utilisationl Modèle: 72-820 Thermomètre infrarouge sans contact à usage général avec réglage d’émissivité. Visez simplement en utilisant le pointeur laser et appuyer sur la gâchette pour prendre des mesures rapides et précises de température de surface. • Afficheur LCD monochrome 60mm (résolution 160x160) avec rétroéclairage • Affichage 3999 points • Mémoires écran et paramètres x 10 • Mesures de tension et courant en AC/DC • Mesures de résistance, capacité et fréquence • Buzzer de continuité et test de diode • Mode veille et avertissement de batteries faibles • Interface USB et Logiciel PC Thermomètres numériques 2 canaux • Mode Max/min et modes relatifs • Mesure de boucle de courant 4 - 20mA • Livré avec un cordon USB opto-couplé 100mm, logiciel d’enregistrement de données, cordons de test standard, cordons à pince courts pour une mesure de capacité précise, adaptateur de pinces crocodiles, pile 9V, sacoche de transport et manuel d’instruction (en anglais) • Fourni avec cordons de test, pinces crocodiles, 4 piles AAA, étui de transport, cordon USB, logiciel, adaptateur secteur et manuel d’utilisation Multimètre offrant la précision d’un affichage 19,999 points et une interface USB opto-isolée. Il mesure la tension CA/CC, le courant CA/CC, la résistance, la capacité, la température, la fréquence et le rapport cyclique. Triple affichage rétroéclairé avec bargraphe analogique. Modèle: 72-823 Thermomètre infrarouge sans contact à usage général à large plage de température. Visez simplement en utilisant le pointeur laser et appuyer sur la gâchette pour prendre des mesures rapides et précises de température de surface. Gamme -18°C à +550°C Précision ±1.8% Résolution 0.1°C Répétabilité ±0.5% Emissivité 0.10 à 1.00 Temps de réponse 250ms Taille écran (lxH) 29x32mm Dimensions (lxHxP) 53x169x138mm Poids 270g • Ecran 4 digit LCD rétroéclairé • Mesure °C/°F • Résolution optique 20:1 • Ecran de température avec fonctions Hold/Max/Min/Dif/moy • Arrêt automatique et indicateur de baterie faible • Alimentation USB ou pile 9V • Montage trépied • Fourni avec pile 9V, sacoche de transport, cordon USB et manuel d’utilisation Oscilloscope portable 8MHz / DMM Multimètre TRMS USB avec enregistrement de données • Afficheur LCD 4digits avec lecture double et rétroéclairage • Mesures :°C/°F/°K • Double entrée sondes • Compatibilité avec les sondes type K, J, T et E • Affichage température Max/Min/Dif/Moy et fonction hold • Mode veille et avertissement batteries faibles • Transfert des données USB et enregistrement (logiciel fourni) • USB ou batterie 9V Multimètre RMS vrai avec interface USB Seulement g70,75 CODE COMMANDE156-3716 • Ecran 4 digit LCD rétroéclairé • Mesure °C/°F • Résolution optique 12:1 • Ecran de température avec fonctions Hold/Max/Min/Dif/moy • Arrêt automatique et indicateur de baterie faible • Alimentation USB ou pile 9V • Montage trépied • Fourni avec pile 9V, sacoche de transport, cordon USB et manuel d’utilisation Gamme -32°C to +650°C Précision ±1.8% Résolution 0.1°C Répétabilité ±0.5% Emissivité 0.10 à 1.00 Temps de réponse 250ms Ecran (lxH) 29x32mm Dimensions (lxHxP) 53x169x138mm Poids 270g Thermomètre infrarouge sans contact Tous les prix de cette brochure sont en euros hors TVA www.farnell.fr Tél.: 04 74 68 99 99 Fax: 04 74 68 99 90 Testeurs de composants 66 Test & Mesure - instruments portable LinearMaster Compact Pro Testeur digitale portable de CI, conçu pour de nombreux appareils analogiques telles que les comparateurs, amplis op, opto-isolateurs et régulateurs. • Test par entrée directe du numéro d’appareil • Affichage à l’écran des fonctions du CI et des sorties des broches • Compatible avec le logiciel CompactLink (129-6494) • Détecte les défauts intermittents et température connexes • Ecran LCD 2 lignes, 16 caratères • Tests jusqu’au appareils ayant 16 broches • Alimenté par 4 piles AA ou par adaptateur secteur (les • Identification automatique des composants • Sélection automatique de la fréquence de test (CC, ikHz, 15kHz, 200kHz) • Analyses instantanée et retardée (pour des opérations mains libres) • Arrêt automatique • Sondes non-volatiles avec compensation de l’impédance des cordons de mesure • Jeux de sondes interchangeables • Gamme et mise à l’échelle automatiques • Précision 1% ChipMaster Compact Pro Testeur digitale portable de CI, conçu pour le test de TTL, CMOS, LSI, mémoire et interface d’appareils. • Testeur d’inductance, capacité et résistance • 28 gammes utilisateurs • Testeur de continuité de transistor, de diodes et de diodes micro-ondes • Large affichage 31⁄2 digits, 1999 points, hauteur caractères 18mm • Gel de l’affichage, mémorisation de la valeur maximale et extinction automatique • Bouton réglage zéro (gamme 20Ω) • Créneaux de mesure de condensateur et fiche de test dédiée • Certifié IEC1010-1, Cat II, CE 2 inclus) • Dimensions (lxHxP): 100 x 45 x 195mm Un kit testeur est également disponible. Il comprend le testeur de composants LCR40, une sacoche de transport et l’analyseur de semiconducteurs DCA55. Analyseur de semiconducteurs DCA55 Identifie automatiquement les transistors, les Darlingtons, les transistors protégés par diode, les transistors shuntés par des résistances, MOSFETs JFETs, thyristors basse puissance et triacs, diodes, réseaux de diodes, LEDs et LEDs bicolores. Réf. Fab. Code Commande Prix Unitaire LCR55A 146-6450 g220,00 Etalonnage standard S g131,10 Etalonnage NAMAS N g207,80 • Test par entrée directe du numéro d’appareil • La recherche des dispositifs inconnus identifie les dispositifs non marqué dans une bibliothèque interne • Seuil de sortie analogique pour acrroître l’intégrité du test • Affichage à l’écran des fonctions du CI et des sorties des broches • Compatible avec le logiciel CompactLink (129-6494) • Détecte les défauts intermittents et température connexes • Ecran LCD 2 lignes, 16 caratères • Tests jusqu’au appareils ayant 40 broches Description Réf. Fab. Code Commande Prix Unitaire Testeur RLC LCR-40 470-5233 g98,83 Sacoche ATC55 521-5511 g18,77 Tweezers CMS SMD03 521-5481 g32,00 Pinces crocodiles CRC01 521-5493 g11,90 Grippe-fils longs XKM04 521-5500 g9,20 Kit de sondes (Comprend SMD03, CRC01,XKM04) PTP03 783-0262 g45,00 Kit testeur LCR40+DCA55+ATC55 783-0270 g162,64 Résistance 20Ω, 200Ω, 2 kΩ, 20 kΩ, 200 kΩ, 2 MΩ, 20 MΩ Inductance 200μH, 2 mH, 20 mH, 2 H, 20 H, 200 H Capacité 200 pF, 2 nF, 20 nF, 200 nF, 2 μF, 20 μF, 200 μF, 2000 μF Test de diodes micro-ondes 0.6 mA environ, 7.0 V DC typique Ton de continuité Gamme 2 kΩ: Ton à R < 30Ω Poids 311g • Alimenté par 4 piles AA ou par adaptateur secteur (les 2 inclus) • Dimensions (lxHxP): 100 x 45 x 195mm Logiciel CompactLink Un logiciel PC conçu pour une utilisation avec le LinearMaster Compact Pro et le ChipMaster Compact Pro. CompactLink se connecte au testeur via RS-232 ou USB link et permet le transfert des résultats de tests, les mises à jour de la bibliothéque. Logiciel CompactLink Un logiciel PC conçu pour une utilisation avec le LinearMaster Compact Pro et le ChipMaster Compact Pro. CompactLink se connecte au testeur via RS-232 ou USB link et permet le transfert des résultats de tests, les mises à jour de la bibliothéque. Testeur de composants Min. Typ. Max. Inductance Gamme 1μH 10H Résolution 0.4μH 0.8μH Précision ±1% ±0.8μH Capacité Gamme 0.4pF 10mF Résolution 0.1pF 0.3pF Précision ±1% ±0.3pF Résistance Gamme 1R 2MR Résolution 0.3R 0.6R Précision ±1% ±0.6R Tension de test crête -1.05V +1.05V Courant de test crête -3.25mA +3.25mA Précision Fréquence de Test 1kHz -11% +11% 15kHz -11% +11% 200kHz -100ppm +100ppm Pureté sinus -60dB 2nd harmonique Température de service 10°C 40°C Tension de service batterie 8.5V 13V • Les mises à jour de logiciel peuvent être téléchargées depuis internet et programmé dans Compact Pro unit .• De nouveaux tests CI peuvent être développés en utilisant PLIP (PremierLink IC Programming) et ajoutés dans la bibliothèque. • Les résultats des tests peuvent être téléchargé vers le PC pour une analyse complète .• Compilateur, deboggeur and l’aide activesont intégrés • Base de données Microsoft Access compatible • Connection vers PC via RS-232 ou USB (câble et adaptateur fournis) • Exige Windows XP • Les mises à jour de logiciel peuvent être téléchargées depuis internet et programmé dans Compact Pro unit .• De nouveaux tests CI peuvent être développés en utilisant PLIP (PremierLink IC Programming) et ajoutés dans la bibliothèque. • Les résultats des tests peuvent être téléchargé vers le PC pour une analyse complète .• Compilateur, deboggeur and l’aide activesont intégrés • Base de données Microsoft Access compatible • Connection vers PC via RS-232 ou USB (câble et adaptateur fournis) • Exige Windows XP LCR55A Testeur de composants RLC Description Code Commande Prix Unitaire Testeur LinearMaster CI 129-6493 g661,50 Logiciel CompactLink 129-6494 g439,53 Testeur portable de CI linéaire Description Code Commande Prix Unitaire ChipMaster Compact 129-6492 g586,53 Logiciel CompactLink 129-6494 g439,53 Testeur portable de CI RoHS Conforme Non-conforme Commandez du lundi au vendredi de 8h30 à 19h pour une livraison gratuite le lendemain Metrix 67 Test et mesure XXXX 2 voies 60MHz, 150MHz et 200MHz MTX MOBILE • Ecran LCD tactile N&B ou couleur • Ethernet + serveur web • Analyse FFT et calcul en temps réel • 2 multimètres TRMS 200kHz avec enregistreur • Sensibilité d’entrée de 150μV à 100V/div • Convertisseur 10 bits, 1 Géch/s monocoup, 50 Géch/s ETS • Stockage interne 2Mo + support de stockage SD card 2Go maxi • Garantie à vie* • LCD graphique orientable, avec menus bilingues (F, GB) • 4 afficheurs numériques 100.000 points, bargraphe, historique graphique des mesures • Précision de base 0,02 %, bandepassante 200 kHz • 3 bornes de mesure et sélection automatique, « AUTORANGING » • Mesures fréquentielles jusqu’à 2 MHz, durées, rapport cyclique, comptage d’événements • Mesures de température à partir de sondes Pt 100, Pt 1000, thermocouples J ou K • Mémorisation de 6500 mesures avec date et heure • Communication RS232 optique, USB ou Bluetooth, suivant les modèles • Alimentation par piles, batteries NiMH rechargeables, ou adaptateur secteur Réf. Fab. Code Commande Prix Unitaire Versions standard MTX3281 111-1458 g337,55 MTX3282 111-1459 g450,07 MTX3283 111-1460 g515,45 Versions RS232 MTX3281-COM 111-1461 g399,00 MTX3282-COM 111-1463 g540,61 MTX3283-COM 111-1464 g585,93 Versions Bluetooth MTX3281-BT 111-1465 g440,10 MTX3283-BT 111-1467 g713,35 Description Réf. Fab. Code Commande Prix Unitaire E-oscilloscope numérique 2x60MHz SD N&B OX6062E-MSD 155-8617 g1030,00 E-oscilloscope numérique 2x60MHz SD Couleur OX6062E-CSD 155-8618 g1130,00 E-oscilloscope numérique 2x150MHz SD Couleur OX6152E-CSD 155-8619 g1330,00 E-oscilloscope numérique 2x200MHz SD Couleur OX6202E-CSD 155-8620 g1630,00 * Conditions d’application sur www.chauvin-arnoux.com Oscilloscopes numériques OX6000 version SD Multimètres numériques graphiques TRMS Tous les prix de cette brochure sont en euros hors TVA www.farnell.fr Tél.: 04 74 68 99 99 Fax: 04 74 68 99 90 Metrix 68 Test et mesure • 4 appareils complémentaires pour une compacité et une efficacité record (Oscilloscope / Analyseur FFT / Analyseur d’Harmoniques / Enregistreur) • Vitesse d’échantillonnage 100 Gé/s et profondeur mémoire de 50 k par voie en mode « Oscilloscope » • Technologie d’affichage intelligent SPO (Smart Persistence Oscilloscope) • 4 voies de mesure et jusqu’à 8 courbes à l’écran • Analyse FFT « temps réel » standard et fonctions de calcul sur les voies • Ecran LCD orientable en version couleur • Ergonomie « Windows-like » : commandes directes à l’écran par souris • Réglages courants et raccourcis en face-avant (21 boutons + encodeur) • Liaisons RS232, Centronics et USB en standard • Réseau Ethernet et serveur HTML en standard • Garantie 3 ans • Accessoires fournis :2 ou 4 sondes 1/1 et 1/10, 1souris PS2, 1 cordon USB, 1 cordon croisé RJ45/RJ45 (2m), 1 cordon droit RJ45/RJ45 (2m), un câble d’alimentation et la notice de fonctionnement et de programmation (CD-ROM). 40, 60 et 100MHz Prix Unitaire Description Réf. Fab. Code Commande 1+ 2 x 60MHz MTX3252BE-C 161-5412 g1520,00 2 x 60MHz + sonde differentielle MTX3252BED 161-5413 g1820,00 2 x 100MHz MTX3352BE-C 161-5414 g1880,00 2 x 100MHz + sonde differentielle MTX3352BED 161-5416 g2280,00 Accessoires Cordon Ethernet droit HX0039. 774-2207 g54,00 Cordon croisé Ethernet HX0040. 774-2215 g54,00 Adaptateur Centronics HX0041. 774-2223 g149,00 Câble RS232C HX0042. 774-2231 g64,00 Adaptateur RS232-USB HX0055 978-4802 g42,00 Kit SX-METRO SX-METRO/P 774-2240 g245,00 • 5 outils complémentaires en un seul instrument : OSCILLOSCOPE ; MULTIMETRE ; ANALYSEUR FFT ; ANALYSEUR D’HARMONIQUES ; ENREGISTREUR • Vitesse d’échantillonnage 1Gé/s en monocoup et 50Gé/s en • Boîtier compact et robuste MX Concept© • Grande lisibilité • Accessibilité aux piles ainsi qu’aux fusibles ETS Oscilloscopes numériques analyseur Code Prix Unitaire Réf. Fab. Commande 1+ MX21 343-1290 g104,09 MX22 343-1307 g158,17 MX24 343-1320 g186,00 • Profondeur mémoire jusqu’à 50k par voie (OSCILLOSCOPE & RECORDER) (option) • 2 ou 4 voies de mesure isolées 600V CATIII et jusqu’à 8 courbes à l’écran • Analyse FFT « temps réel » standard et fonctions de calcul sur les voies • 2 ou 4 multimètres numériques TRMS, 8000 points, 200kHz, indépendants • Déclenchement sur seuils de mesure en mode Oscilloscope et Multimètre MX24 MX22 MX21 Affichage 5000 points 4000 points 2000 points Bargraphe 34 segments Oui Oui Oui Tension CC 5V à 1000V 40mV à 600V 20mV à 600V Tension CA 5V à 750V 40mV à 600V 200mV à 600V Nature de la tension CA TRMS CA, CA+CC Val. moyenne Val. moyenne Courant CC 50mA à 10A 400μA à 10A – Courant CA 50mA à 10A 400μA à 10A – Résistance 500Ω à 50MΩ 400Ω à 40MΩ 200Ω à 20MΩ Continuité Oui Oui Oui Test de diodes Oui Oui Oui Capacité 50nF à 50mF – – Fonctions Min, Max, AutoMem Min, Max, Mem MEM Particularités Entrée faible V Z et ADP 500mV Fréq 4kHz à 40MHz Lect. Directe avec pince MTX MX21, MX22, et MX24 • Ecran LCD monochrome ou couleur à dalle tactile • 33 touches de commande directes et menu « windows like » à l’écran • Bornes d’entrée Probix (plug & play) et capteurs intelligents associés • Communication multi-interfaces : RS232, USB, centronics et Ethernet • Installation simplifiée des options logicielles grâce à un code unique • Serveur WEB avec curseurs et mesures automatiques, serveur/client FTP • Garantie 3 ans • Accessoires fournis : 1 sonde Probix 1/10, 1 adaptateur banane Probix, 1 adaptateur BNC Probix, 1 jeu de cordons banane, 1 cordon ethernet croisé, 1 cordon RS232 liaison série. La version kit dispose en plus d’un cordon ethernet droit, 1 sonde Probix 1/10, 1 adaptateur BNC Probix, logiciel de traitement SXMETRO et 1 valise de transport . Prix Unitaire Description Réf. Fab. Code Commande 1+ 2 x 40MHz N&B OX7042B-M 161-5417 g1688,00 2 x 40MHz couleur OX7042B-C 161-5418 g2006,00 2 x60MHz N&B OX7062B-M 161-5419 g2324,00 2 x 60MHz couleur OX7062B-C 161-5420 g2642,00 2 x 100MHz couleur OX7102B-C 161-5421 g3385,00 Kit 2 x 40MHz N&B OX7042B-MK 161-5422 g2112,00 Kit 2 x 40MHz couleur OX7042B-CK 161-5423 g2430,00 Kit 2 x 100MHz couleur OX7102B-CK 161-5424 g3809,00 Kit 4 x 100MHz couleur OX7104B-CK 161-5425 g4552,00 Oscilloscopes numérique portable 60 et 100MHz RoHS Conforme Non-conforme Commandez du lundi au vendredi de 8h30 à 19h pour une livraison gratuite le lendemain Chauvin Arnoux 69 Test et mesure A partir de g148,15 CODE COMMANDE 324-6073 Seulement g353,00 CODE COMMANDE 324-6231 A partir de g6950,00 CODE COMMANDE 137-7460 A partir de g40,00 CODE COMMANDE 483-5270 Tension cc/ca 400mV à 600V (5 cal.) Résistance 400Ω à 40MΩ (6 cal.) Test sonore de continuité R < 40Ω et diode Capacité 4μF à 40μF (5 cal.) Intensité ca/cc 40mA à 10A (3 cal.) (sur CA 5220G et CA 5230G) Fréquence 100Hz à 200kHz (5 cal.) (sur CA 5220G et CA 5230G) CA 1880 et CA 1885 • Boîtier antidérapant et anti-choc • Echelle logarithmique pour une lecture aisée des valeurs d’isolement • Vérification automatique de l’absence de tension par mesure directe • Test d’autonomie des batteries • Continuité + bip sonore (courant de test: 200mA) • Norme IEC 1010-1 600V cat. III-2 • Homologué UL, GS, CSA • Conçue pour un usage industriel pour des applications électriques (courts- DDT - VAT Multifonction Multimètres numériques CA 5220G CA 6511 • Testeur de tension multifonction économique • Affichage des tensions à LEDs de 12V à 690 AC/DC • Contrôle de disjonction de disjoncteurs différentiels 30mA • Sens de rotation des phases, méthode 2 fils • Indication de position de phase • Test de continuité sonore et visuel protégé 600Veff. • Compatible pointe de touche IP2X, pointes fines ø 2mm ou 4mm • Autotest de l’appareil et des cordons • Option: Adaptateur 2P+T - Type CA 751 • Sécurité/Norme: IEC/EN 61010-1 - cat. III 600V - Pol. 2 Relative aux DDT/VAT: IEC 61243-3 - Classe B (type extérieur) • Indice de protection: IP 65 (selon IEC/EN 61010-1) Dimensions: 167 x 106 x 55mm Poids: 500g circuits), mécaniques (générateur) et thermique (fuite d’eau) • Robuste, compacte et hermétique • Ergonomique, forme pistolet offrant une excellente maniabilité • Accès direct aux fonctions permettant une utilisation d’une seule main • Ciblage rapide et précis de la zone à inspecter grâce à la visée laser, par simple pression sur la gâchette • Ajustement de la distance de mesure, de l’humidité relative, de la température ambiante et de l’émissivité CA 760 Affichage 7 LEDs "Tension", 2 LEDs "Polarité" 2 LEDs "Sens de rotation de phase" Test de tension AC / DC 12V à 690V AC / 750V DC avec indication de polarité Impédance d’entrée 390kΩ Bande passante DC et AC 50Hz - 60Hz et 400Hz Courant de crête Is<2mA Test de disjoncteurs (DDR) Contrôle de disjonction des disjoncteurs différentiels 30mA 230V Ph/T Test de continuité Contrôle sonore (Buzzer 2 kHz) et visuelle à LED - Protégé 600 Veff. Position de phase Indication de la position de phase (au delà de 127V) Imax<100μA et Bip sonore discontinu Conditions de fonctionnement Fonctionne sur régimes de Neutre TT, TN et IT CA 751 Format 2P+T - Idéal pour prise secteur 10/16A à éclipses de sécurité Adaptation Directe (embrochable) sur CA 704 et CA 760 - IEC/EN 61243-3 Présence secteur Indicateur de présence de tension visuelle et sonore Terre Vérification du raccordement à la Terre Neutre Vérification du raccordement au Neutre Position de phase Donne la position de la phase Alimentation Auto alimenté Sécurité, Norme IEC/EN 61010-1 - Cat. II 230V - Pol. 2 Isolement 0.1 à 1000MΩ (tension d’essai 500V) Continuité +10Ω et -10Ω (courant de court-circuit > 200mA) Tension 0 - 600V • 1000 images radiométriques enregistrables • Mesures à partir de 10cm • Reconnaissance automatique des points chauds ou froids • Ecran couleur protégé orientable, simplifie la visualisation des défauts dans les lieux difficiles d’accès • Un 2ème écran affichant la valeur du point ciblé par la visée laser, permet un résultat instantané • Logiciel RayCam facile à utiliser • Logiciel permettant l’analyse des mesures et la création de rapports personnalisés sous Word • L’utilisateur peut sélectionner le thermogramme à analyser parmi ceux qui sont enregistrés, puis le place directement à l’emplacement de son choix • Logiciel avec barre d’outils, idéal pour un accès direct à toutes les fonctionnalités du logiciel: positionnement de curseurs, profil thermique, palette de couleur, analyse isotherme (visualisation temps réel de valeurs comprises dans une gamme de température prédéfinie • Caméra CA1880 livrée avec logiciel RayCam, 1 batterie, 1 chargeur, 1 cordon USB et 1 cordon vidéo • Caméra CA1885 livré avec objectif, logiciel RayCam report, 2 batteries, 1 chargeur, 1 adaptateur trépied, 1 pare-soleil, 1 cordon USB et 1 cordon vidéo • Afficheur 4000 points et bargraphe 40 segments • Changement de gamme automatique ou manuel • Entrée basse impédance sur le calibre V élec (CA 5210G) • Affichage valeur Min/Max (CA 5220G et CA 5330G) • Rétro-éclairage (CA 5220G et CA 5230G) • Mesure de signaux déformés (CA 5230G) • Livrés avec gaine anti-choc et jeu de cordons • Mesure en RMS c.a. pour le CA 5230G • Norme: IEC 1010-1 600V cat. III-2 Dimension: 177 x 64 x 42mm Poids: 350g Prix Unitaire Réf. Fab. Code Commande 1+ CA 760 483-5270 g40,00 CA 751 483-5293 g10,00 CA 704 483-5300 g62,00 Pointe de touche 483-5347 g11,10 Mégohmmètres Code Prix Unitaire Réf. Fab. Commande 1+ CA1880 137-7460 g6950,00 CA1885 137-7702 g14950,00 Détecteur de tension CA760 Spécifications de l’objectif 0.1m 0.2m 0.3m 0.5m 0.8m 1.0m 1.2m 2.0m 4.2m 6.0m 10m 30m 100m 20° x 15° HFOV 0.03 0.07 0.10 0.17 0.28 0.35 0.42 0.70 1.48 2.11 3.52 10.57 35.26 Objectif VFOV 0.02 0.05 0.07 0.13 0.21 0.26 0.31 0.52 1.10 1.57 2.63 7.89 26.33 standard IFOV 0.22 0.44 0.66 1.10 1.76 2.20 2.64 4.40 9.25 13.22 22.04 66.12 220.40 HFOV: champ de vue horizontal (mètre), VFOV: champ de vue vertical (mètre), IFOV: résolution spatiale (millimètre) analogiques Caméra thermographique infra-rouge RayCam CA760 CA751 Attestation, délivrée selon un essai uniqueDisponible sur www.cnpp.comN° 2007 - 0009 Tous les prix de cette brochure sont en euros hors TVA www.farnell.fr Tél.: 04 74 68 99 99 Fax: 04 74 68 99 90 Multimetrix 70 Test et mesure DMM210 DMM220 DMM230 DMM240 AVG RMS Affichage 6000 points / rétro-éclairé avec bargraphe 40 000 points / rétro-éclairé avec bargraphe Bande passante 40Hz à 1kHz 45Hz à 1kHz Tension CA 0.001V à 1000V 0.1mV à 1000V Tension CC 0.1mV à 1000V 0.01mV à 1000V Courant CA 0.1μA à 10A (20A max.) Courant CC 0.1μA à 10A (20A max.) 0.01μA à 10A (20A max.) Résistance 0.1Ω à 60MΩ 0.01Ω à 40MΩ Continuité sonore Oui Test de diodes Oui Capacité – 0.01nF à 1000μF 0.001nF à 40mF Température – -45°C à +750°C Thermocouple type K -20°C à +1000°C Thermocouple type K Fréquence (électrique) 10,00 à 400,00Hz 40,00 à 400,00Hz Fréquence (électronique) 0.001Hz à 10,00MHz 0.01Hz à 100,00MHz Rapport cyclique 0.1% à 99.99% Sélection des calibres Auto / Manuel MIN / MAX Oui / Oui Pic – Oui / 1ms Mode relatif Oui Seulement g389,00 CODE COMMANDE 490-3985 Seulement g295,00 CODE COMMANDE 490-3997 Seulement g129,00 CODE COMMANDE 490-3961 30MHz Multimètres numériques 0.02Hz à 2MHz XA 3052 XA 1525 Générateur de fonctions Caractéristiques techniques Tension: 0 à 30V c.c. 0 à 30V c.c. Courant: 0 à 5A - 0.02% ±3mV 0 à 5A - 0.02% ±3mV Ondulation: <1mV RMS (I≤3A) Charge 0 à 90% <0.01% Caractéristiques générales Affichage: Numérique à LED Couplage: Série ou parallèle - Tracking (Maître/esclave) Sécurité: IEC/EN 61010-1 Dimensions (H x l x P): 260 x 160 x 270mm Alimentation secteur: 110-230V / 50-60Hz ±10% • Large bande passante 2 x 30MHz • Déclenchement automatique sur signaux de synchronisation TV-V et TV-H • Bonne protection des entrées 400V DC et CA. crête • Modulation Z (modulation d’intensité du signal) • Calibrateur de sonde intégré • Simplicité d’utilisation Caractéristiques techniques Tension: 0 à 15V c.c. Courant: 0 à 2.5A ±10% Ondulation: <1mV RMS (I≤3A) Caractéristiques générales Affichage: Numérique à LED Couplage: Sortie flottante Sécurité: IEC/EN 61010-1 - Cat I 50V - Pol 2 Dimensions (H x l x P):225 x 120 x 270mm Alimentation secteur: 110-230V / 50-60Hz ±10% Alimentation double Seulement g430,00 CODE COMMANDE 490-4011 • Multimètres numériques industriels • 600V CAT IV / 1000V CAT III • Etanches IP67 • Gaine anti-chocs surmoulée intégrée • Livrés avec pile, cordon pointe de touches, et sonde de température type K (sauf 131-4628) Alimentation simple Fréquencemètre - XG2102 Oscilloscope analogique - XO3002 Code Prix Unitaire Modèle Commande MULTIMETER, DIGITAL, 210, 6K 131-4628 g75,00 MULTIMETER, DIGITAL, 220, 6K+TEMP 131-4629 g85,00 MULTIMETER, DIGITAL, 230, 6K-RMS+TEMP 131-4630 g109,00 MULTIMETER, DIGITAL, 240, 40K-RMS+TEMP 131-4631 g149,00 • Générateur de fonction, générateur de balayage, générateur d’impulsion et fréquencemètre • Affichage numérique 6 digits plus LEDs "annonciateurs" • Signaux: Sinus, Carré, Triangle, Rampe, impulsion, TTL/CMOS • Rapport cyclique: 1:1 à 10:1 • Offset: -10V à +10V • Atténuateur: 20dB fixe et variable • Alimentation double sortie • Affichage digital simultané de la tension et du courant • Mode de régulation en courant ou tension • Protection contre les surcharges et les court-circuits • Sécurité confome à la norme IEC 61010-1 • Alimentation simple sortie • Affichage digital simultané de la tension et du courant • Mode de régulation en courant ou tension • Protection contre les surcharges • Sécurité confome à la norme IEC 61010-1 • Vobulation: INT et EXT 0 à 10V fixe et variable • Fréquencemètre: 200mHz à 50MHz - Filtre "Passebas" commutable • Sortie: TTL/CMOS • Sécurité conforme à la norme IEC/EN 61010-1 (2001) • Livré avec un câble BNC, un cordon secteur, un fusible et le manuel d’utilisation RoHS Conforme Non-conforme Commandez du lundi au vendredi de 8h30 à 19h pour une livraison gratuite le lendemain Sefram 71 Test et mesure Code Prix Unitaire Modèle Réf. Fab. Commande 1+ Oscilloscope numérique 2x25Mhz BK2530 153-2985 g399,00 Générateur de fonctions DDS 7MHz BK 4007DDS 136-7291● g320,00 Générateur de fonctions DDS 15MHz SEFRAM 4415 136-7294 g550,00 Générateur de fonctions DDS 120MHz BK4087 153-2987● g1490,00 Alimentation triple programmable BK 9130 136-7290● g795,00 BK 5491A, BK 5492 et BK5492 GPIB Code Prix Unitaire Description Réf. Fab. Commande Mini-enregistreur de températures IP68 SEFRAMLOG1501P 122-5538● g169,00 Mini-enregistreur de températures + humidité SEFRAMLOG1520P 122-5539● g287,00 Kit logiciel interface IR SI693 122-8156 g147,90 • Mesures AC RMS vrai et AC+DC • Affichage double • Bande passante 30Hz à 100kHz • Fonctions: mode relatif, MIN, MAX, HOLD et COMP A partir de g320,00 CODE COMMANDE 136-7291● • Mesure DBm • Test de diode et de continuité • Interface RS 232 • Conforme IEC61010-1 Cat II 600V Modèle 5491A: • Affichage LED 50 000 points Modèle 5492: • 51⁄2 chiffres, affichage sélectionnable 120 Mini-enregistreurs de températures et hygrométrie 000 / 40 000 / 4 000 points • Taux d’échantillonnage sélectionnable • Mesure de résistance en 2 ou 4 fils Modèle 5492 GPIB: • Idem au modèle 5492 en version IEEE SEFRAM LOG 1501P et 1520P Code Prix Unitaire Réf Fab. Commande BK5491A 122-5519● g416,75 BK5492 122-5520● g621,00 BK5492GPIB 122-5518● g870,00 • Mini-enregistreurs de grandeurs physiques telles que la température et l’humidité • Enregistrements faciles, pointus et fiables, pour des applications variées • Récupération des données par interface infra-rouge • 2 alarmes entièrement programmables • Valeurs récupérables à tout moment Multimètres de table numériques RMS vrai sans interrompre l’enregistrement • Kit logiciel interface infra-rouge avec câble USB disponible séparément (122- 8156) Nota: les 2 modèles sont compatibles avec les assistants personnels de type PALM PDA compatible (MI30, Zire 31, 72, Tungstène E2, T3, T5) Dimensions: 42x57x25mm, Poids = 52g Tous les prix de cette brochure sont en euros hors TVA www.farnell.fr Tél.: 04 74 68 99 99 Fax: 04 74 68 99 90 Sefram 72 Test et mesure Seulement g450,00 CODE COMMANDE 122-5523● • Affichage tension et courant sur 4 digits • Tension 0 à 30V - 3A (modèle 1735A) et 0 à 60V - 2A (modèle 1715A) • Puissance 180W (modèle 1735A) et 210W (modèle 1715A) • 2 alimentations peuvent être connectées en parallèle pour doubler le courant de sortie • 2 alimentations peuvent être connectées en série pour doubler la tension de sortie • Réglage fin de la tension et du courant Seulement g450,00 CODE COMMANDE 122-5523● • Excellente régulation • Fonctionnement tension constante et courant constant • Protection complète contre les surcharges, les inversions de polarité, les limitations de courant et les courts-circuits • Fonctionne en continu à pleine charge sans surchauffe • Conforme IEC61010-1 Cat II BK 2831D SEFRAM 4466 • Générateur de fonctions 40MHz • Générateur arbitraire : - Echantillonnage : 80MHz; - Mémoire 1Mpoints; - Résolution verticale : 14 bits • Grande simplicité d’utilisation • Modulation : AM, FM, FSK Prix Unitaire Réf. Fab. Code Commande 1+ BK1715A 122-5524● g350,00 BK1735A 122-5525● g300,00 Un multimètre polyvalent et fiable pour de nombreuses applications de laboratoire et de service. BK4017B BK1672 • Mesure CA RMS vrai pour des interprétations précises du signal • Affichage LED 41⁄2, 20000 points • Excellente protection contre les surcharges • Test de diode et de continuité • 50 mémoires de configuration • Interface RS232 et IEEE • Affichage : LCD graphique , rétro éclairé • Livré avec le logiciel WaveX (en anglais seulement) pour générer rapidement les formes d’ondes spécifiques, manuel d’utilisation et cordon secteur • Conformes CEI1010 cat I, EN55011 et EN55082 • Générateur DDS (synthèse directe de fréquence), génération de formes d’ondes très précises avec très peu de distorsion • Mode d’utilisation simplifiée • Reconnaissance des fonctions actives par LED en face avant • Fonctions : Sinus , carré, triangle, DC • Fréquence max 10MHz • Wobbulation linéaire et logarithmique • Affichage tension et courant pour chaque voie 0-30V • Affichage LED Vert et Rouge (4 afficheurs séparés) 3 digits • Tension 2 x 0 à 30V et 5V fixe • Courant 2 x 0 à 3A • Fonctionnement tension constante et courant constant • Modes tracking, série et Alimentations de laboratoire stabilisées • Atténuateur 20 dB • Fréquence externe intégré • Affichage LCD rétro éclairé • Interface RS-232 parallèle par commutation interne • Protection complète contre les court-circuits et les élévations de température • Conforme IEC61010-1 Cat II • Livrée avec bornes de sécurité 4mm • Fonctions: mode relatif, %, MIN, MAX, HOLD et PEAK HOLD • Fréquencemètre 200kHz • Conforme IEC61010-1 Cat II 600V Générateur de fonctions DDS 40MHz Alimentation stabilisée triple Seulement g350,00 CODE COMMANDE 122-5521● Générateur de fonctions DDS 10MHz Multimètre de table Caractéristiques en générateur de fonctions Sinus 1μHz à 40 MHz Carré 1μHz à 40 MHz Triangle 1μHz à 5MHz Impulsion 0.5Hz à 10MHz Précision en fréquence 10ppm Résolution 12 digits Caractéristiques en générateur arbitraire Résolution horizontale 1Mpoints Résolution verticale 14 bits Echantillonnage 12.5ns à 100s (résolution 4 digits) Formes d’ondes pré-définies sinus, carré, rampe, AM, FM, FSK, impulsion... Caractéristiques de sortie Précision ±10ppm (0.001%) Amplitude 10mVpp à 10Vpp sous 50Ω par pas de 1mV Distorsion Sinus -65dBc Décalage 10mV à ±5V sous 50Ω par pas de 1mV Impédance de sortie 50Ω Filtre de sortie Elliptique+Bessel Temps de montée (en carré) <8ns Symétrie variable 20% à 80% jusqu’à 10MHz 40% à 60% de 10MHz à 30MHz Mode de fonctionnement Continu, déclenché, porte, burst (de 1 à 999 999, phase de (-360°C à +360°C) Modulation d’amplitude Interne 0.1Hz à 20kHz Externe 5V c. à c. pour 100% de modulation Modulation de fréquence Interne 0.01Hz à 20kHz sinus, carré, triangle Externe 5V c. à c. pour 100% de déviation Modulation FSK 0.01Hz à 1Mhz Caractéristiques en mode balayage Type de balayage linéaire et log. Vitesse 10ms à 500s Déclenchement interne, externe, continu, burst Gammes Précision typique (1 an) Tension DC 2V - 1200V (4 gammes) ±(0.05%+5 chiffres) Tension AC 2V - 1000V (4 gammes) ±(0.75%+10 chiffres) Courant DC 2mA - 20A (5 gammes) ±(0.75%+5 chiffres) Courant AC (TRMS)2mA - 20A (5 gammes) ±(0.75%+5 chiffres) Résistance 500Ω - 50MΩ ±(0.1%+3 chiffres) Fréquence 20Hz à 200kHz (2 gammes)±(1.0%+5 chiffres) Seulement g1890,00 CODE COMMANDE 122-5536● RoHS Conforme Non-conforme Commandez du lundi au vendredi de 8h30 à 19h pour une livraison gratuite le lendemain ELC 73 Test et mesure Seulement g495,00 CODE COMMANDE 424-3547 Seulement g200,00 CODE COMMANDE 334-8295 H=90, L=218, P=238, Poids : 4kg Seulement g349,00 CODE COMMANDE 343-0455 H=71, L=75, P=99, Poids : 0.75kg Seulement g45,00 CODE COMMANDE 491-6141 Seulement g140,00 CODE COMMANDE 978-0130 3 - 4.5 - 6 - 7.5 - 9 - 12V / 1A 48W - Programmable par logiciel • Alimentation 3 voies : Alimentation A : 0 à ±15V symétrique (ou 0-30V en prenant le -15V comme référence) Alimentation B : +2V à 5.5V Alimentation C : réglage de -15V à +15V • Sorties flottantes sur douilles de sécurité 4mm • Alimentation commutable de petite puissance et d’encombrement réduit • Parfaitement stabilisée et filtrée, elle est protégée contre les courtscircuits et les surintensités • Sorties flottantes sur douilles de sécurité 4mm avec en option le cordon JC 841B (4 jacks) • Conforme EN61010-1 et EN50082-1 0 à 30V - 0 à 3A 90W "7 alimentations en 1" - 200W 0 à 30V et 0 à 10A/300W +15V et -15V / 500mA Tension 3V / 4.5V / 6V / 7.5V / 9V / 12V Précision ±5% Régulation <20mV pour une variation de charge de 0 à 100% <15mV pour une variation secteur de 10% Ondulation <5mV crête à crête ou 1.8mV eff Résistance interne<20mΩ Imax 1A • Incrémentation/décrémentation par bouton poussoir -1V; +1V; -0.1V; +0.1V • Affichage 3 digits par LED 14mm • Protection contre les courts-circuits et surintensités • Logiciel LG991S (inclus) pour le pilotage de l’alimentation depuis un PC (sous Windows) • Conforme EN61010-1 et EN50082-1 Alimentation multiple AL841B - 12W • Affichage digital de U et I • Réglage rapide et fin de la tension • Fonctionnement automatique à tension ou courant constant • Ventilation contrôlée • Transformateur torique: haut rendement • Alimentation réglable, puissante, à caractéristique rectangulaire avec affichage digital de la tension et du courant • Ajustage précis et rapide de la tension grâce aux 2 potentiomètres • Réglage précis du courant grâce à ses 2 gammes commutables • Conforme EN 61010-1, EN50082-1 • Alimentation stabilisée compacte symétrique très économique • Les tensions de sortie +15V et -15V permettent d’alimenter des montages à amplificateurs opérationnels • Fusible de protection accessible en face avant • Sorties protégées contre les courtscircuits • Conforme EN61010-1 et EN50082-1 Alimentation multiple - AL991S • Alimentation stabilisée avec affichage digital • 7 alimentations en 1 sur 3 voies • 3 voies sous 3A soit 200W utiles, sans échauffement inutile • Ventilation contrôlée et silencieuse: plus de dissipateur extérieur • Transformateur torique = haut rendement Alimentation triple - AL936N • Protection contre les courts-circuits, par régulation de courant • Protection contre les échauffements excessifs, par ventilateur commandé, relais et disjonction thermique • Protection contre les surintensités au primaire et au secondaire du transformateur,par fusible Sorties flottantes sur douilles 4mm Précision ±5% Régulation <25mV pour une variation de charge de 0 à 100% <5mV pour une variation de secteur de -6 à +7% Ondulation < crête à crête ou 1.8mV eff Résistance interne<50mΩ Imax. 500mA sur chaque sortie Tension 0 à 30V avec réglage fin Intensité 0 à 10A (ou 0 à 1A) Affichage 2 afficheurs de 3 digits à LED de 14mm Ondulation 1mV et 3.5mA eff. Résolution 100mV et 10mA Protection triple Courts-circuits par limitation de courant, échauffements par disjonction thermique et surintensités par fusible Dimensions 285 x 219 x 150mm Poids 10.8kg H=71, L=71, P=99 Poids : 0.75kg Alimentation réglable ALR3003 Alimentation simple - AL924A Seulement g40,00 CODE COMMANDE 334-6742 • Double isolation par rapport au secteur • Une véritable troisième voie avec affichage de la tension et du courant • Commandes digitalisées Alimentation fixe AL890NX - 15W. Tous les prix de cette brochure sont en euros hors TVA www.farnell.fr Tél.: 04 74 68 99 99 Fax: 04 74 68 99 90 ELC 74 Test et mesure H=90, L=218, P=238, Poids : 3.3kg Seulement g345,00 CODE COMMANDE 489-6403 Seulement g305,00 CODE COMMANDE 857-3883 0.18Hz à 5MHz 11μHz à 12MHz • Très grande précision de la fréquence (0.005% typique) et grande qualité du sinus • Menu direct de toutes les fonctions et réglage aisé de tous les paramètres grâce à la roue codeuse et aux touches de sélection avec mémorisation des paramètres • Distorsion sinus inférieure à 0.1% • Très grande précision de la fréquence (0.005% typique) et grande qualité du sinus • Menu direct de toutes les fonctions et réglage aisé de tous les paramètres grâce à la roue codeuse et aux touches de sélection avec mémorisation des paramètres • Distorsion sinus inférieure à 0.1% 0.01Hz à 3MHz • Modulation interne et externe AM, FM, FSK, PSK • Fréquencemètre externe 0.8kHz à 100MHz • Interface RS232 • Conforme aux normes de sécurité EN 61010-1 Cat. II • CEM conforme aux normes EN 50082-1 et EN 55011 • Sortie 50Ω et TTL protégées contre les réinjections de tension de ±60V • Offset indépendant de l’atténuateur • Balayage interne lin. ou log. de 0.18Hz à F max. • Modulation interne et externe AM, FM, FSK, PSK • Fréquencemètre externe 0.8kHz à 100MHz • Interface RS232 • Conforme aux normes de sécurité EN 61010-1 Cat. II • CEM conforme aux normes EN 50082-1 et EN 55011 • Sortie 50Ω et TTL protégées contre les réinjections de tension de ±60V • Offset indépendant de l’atténuateur • Balayage interne lin. ou log. sur toute la gamme de fréquence Réf. Fab. Code Commande Prix Unitaire GF467F 857-3883 g305,00 GF467AF avec ampli. 10W/4Ω 857-3875 g345,00 Générateur de fonctions - GF266 Seulement g490,00 CODE COMMANDE 489-6415 Générateur de fonction - GF467 Fonctions Fonctions Fonctions: Sinus, Carré, Triangle, Rampe Temps de montée/descente:<10ns Gamme de fréquences: 0.18Hz à 5MHz Fréquencemètre Affichage de la fréquence:9 digits (mode étendu), 4 digits (mode standard)Plage de fréquence: 0.8Hz à 100MHz Précision: ±50ppm + 10μHz Affichage: 5 digits Sortie principale Sensibilité typique 25mVeff. Impédance de sortie: 50Ω, précision ±5% Précision: ±0.025% ±1 digit Niveau de sortie: 20V crête-crête en circuit ouvert, 10V crête-crête sur charge 50Ω Autres caractéristiques Atténuation fixe: Commutable 0, -20 et -40dB Affichage: 2 lignes, 16 caractères Atténuation variable: 0dB à -20dB Interface: Liaison RS232 en standard par fiche Sub-D mâle 9 points Tension de décalage: ±10V en circuit ouvert, ±5V sur 50Ω indépendante de l’atténuateur fixe Alimentation: 230V, ±10%, 50/60Hz, protégé par fusible temporisé 200mA Sortie TTL Dimensions (L x H x l): 220 x 90 x 240mm Signal carré synchrone: 0-5V, sortance >10 Fonctions: Triangle, sinus, carré, offset, balayage interne linéaire ou logarithmique, vobulation externe VCF ou FM Gamme de fréquences: 0.01Hz à 3MHz en 7 gammes Réglage de la fréquence: Bouton de réglage rapide + réglage fin (10% du réglage rapide) Caractéristique des formes d’onde Taux de distorsion de la sinusoide: <1% et harmoniques<-30dB Non linéarité du triangle: 1% maxi (jusqu’à100kHz) Temps de montée/descente du signal carré:30ns maxi (10 à 90%) Sortie principale: Impédance de sortie: 50Ω, précision: ±5% Niveau de sortie: 20V crête à crête en circuit ouvert 10V crête à crête sur charge 50Ω Atténuation fixe: Commutable 0 ou -20dB Atténuation variable: 0dB à -40dB Tension de décalage ±10V en circuit ouvert ±5V sur 50Ω indépendante de l’atténuateur fixe Sortie 0,5Ω: Impédance de sortie: 0.5Ω, précision: ±10% Puissance de sortie: 15W sur 4Ω; courant maxi de 2A Tension de sortie: ±12.5V en circuit ouvert Atténuation variable 7.8V eff. sur 4Ω indépendant de l’atténuateur fixe Bande passante: DC à 100kHz Réglage de la puissance: de 0 au maxi par potentiomètre Entrée externe: Sensibilité de 5mV, impédance d’entrée de 47kΩ ±10%, gain de 500; bande passante: 0 à 100kHz SortieTTL: Signal carré synchrone: 0 - 5V Sortance: > 10 Temps de montée/descente: <20ns Fréquencemètre: Plage de fréquence: 0 à 50MHz en 8 gammes automatiques Affichage: 5 digits LED rouge de 14mm Entrée externe: Impédance: 1MΩ/20pF Sensibilité typique: 10mV efficace Précision à 100kHz: ±0.025% ±1 digit Fonctions Fonctions: Sinus, Carré, Triangle, Rampe Gamme de fréquences: 11μHz à 12MHz Affichage de la fréquence: 10 digits (mode étendu), 4 digits (mode standard) Précision: ±50ppm + 10μHz Sortie principale Impédance de sortie: 50Ω, précision ±5% Niveau de sortie: 20V crête-crête en circuit ouvert, 10V crête-crête sur charge 50Ω Atténuation fixe: Commutable 0, -20 et -40dB Atténuation variable: 0dB à -20dB Tension de décalage: ±10V en circuit ouvert, ±5V sur 50Ω indépendante de l’atténuateur fixe Sortie TTL Signal carré synchrone: 0-5V, sortance >10 Temps de montée/ descente: <10ns Fréquencemètre Plage de fréquence: 0.8Hz à 100MHz Affichage: 5 digits Sensibilité typique 25mVeff. Précision: ±0.025% ±1 digit Autres caractéristiques Affichage: 2 lignes, 16 caractères Interface: Liaison RS232 en standard par fiche Sub-D mâle 9 points Alimentation: 230V, ±10%, 50/60Hz, protégé par fusible temporisé 200mA Dimensions (L x H x l): 220 x 90 x 240mm Générateur de fonctions - GF265 • Offset indépendant de l’atténuateur • Balayage interne lin. ou log. et vobulation externe VCF ou FM • Fréquencemètre réciproque interne ou externe 50MHz • Amplificateur B.F. de 10W, sinus sur 4Ω (uniquement sur le GF467AF) • Conforme aux normes de sécurité EN 61010-1 Cat. II • CEM conforme aux normes EN 61000-6-1 et EN 55011, Classe B RoHS Conforme Non-conforme Commandez du lundi au vendredi de 8h30 à 19h pour une livraison gratuite le lendemain TTI 75 Test et mesure Seulement g1305,00 CODE COMMANDE 471-8458 l=260 H=88 P=235mm. Poids = 2kg H = 140, l = 220, P = 230 Seulement g534,00 CODE COMMANDE 493-272 Seulement g690,00 CODE COMMANDE 351-0840 H=130, l=210, P=350 Seulement g749,00 CODE COMMANDE 979-8960 Seulement g344,00 CODE COMMANDE 892-786 A partir de g915,00 CODE COMMANDE 864-286 Série EX • 2 sorties 35V/5A 105W max. • Sorties auxiliaires 2.7/3.3/5.0V à 1A • Sortie linéaire, précison et performances élevées • Résolution de 1mV et 0.1mA • Multigammes: fort courant et faible tension • Contrôle par clavier et roue codeuse CPX200 & CPX400 TGA2000 • Très haute qualité des signaux indépendamment de la fréquence • 20V cr-cr de 50Ω à 600Ω, plus sortie TTL/CMOS • Variation de la fréquence par vernier selon 1000:1 • Modulation de l’ amplitude interne ou externe jusqu’ à 100 % • Gamme de fréquences de 0.1Hz à 10MHz • Largeur d’impulsion min de 50ns • Largeur d’impulsions variable et mode double impulsions • Signaux carrés, doubles impulsions et impulsions retardées • Sortie 50Ω, 0.1V à 10V, TTL et sortie synchro • Sorties doubles isolées • Puissance totale de 350W ou 840W • Le système PowerFlex permet des intensités élevées pour de faibles tensions • Courant de sortie jusqu’à 10A (CPX200) ou 20A (CPX400) • Seuil de protection réglable • Résolution élevée, télédétection • Boîtier compact 1⁄2 rack 3U déclenchement intégré • Sortie 5mV-20V cr-cr à 50Ω ou 600Ω; plus sortie auxiliaire niveau fixe • Possibilité d’enregistrer jusqu’à 9 réglages complets de l’instrument dans une mémoire non volatile • Entièrement programmable par interfaces RS-232 ou USB Sortie Poids (kg) Multi-mode 2 x -75V à -2A ou -75V à 4A Double ou -150V à 2A 4.3 • Gamme de fréquences de 0,005Hz à 5MHz • Affichage simultané de la fréquence et de l’ amplitude • Blocage de la fréquence pour le contrôle d’ oscillateurs ou quartz • Précision interne linéaire ou logarithmique • Compteur de fréquence externe à 7 digits Montage sur rack • Plage de fréquence de 0.001Hz à 20MHz • Résolution de réglage à 6 chiffres ou 1mHz • Stabilité à 1ppm, exactitude à 1 an à 10ppm • Formes d’onde sinusoïdales, Régulation de charge (sortie principale) <0.01% pour 90% de changement de la charge Régulation de ligne <0.01% pour 10% de changement de ligne Ondulation et bruit (sortie principale) Typique <1mV rms, <10mV crête à crête Précision Tension 0.3% ±1 digit, courant 0.6% ±1 digit Générateur de fonctions - TG550 10MHz • Sécurité conforme à EN61010-1 • CEM conforme à EN61326 Un Rack 4U est disponible pour supporter 3 alimentations simples ou une unité simple plus une unité triple. Des caches sont également disponibles pour les positions non utilisées. Alimentation multiple EX752M • Mémorisation des réglages • Sortie isolée isolée, protections OVP et OCP • Sortie logique variable • Interfaces GPIB (IEEE-488), RS232 et USB incorporées • Montage rack, sorties avant et arrière carrées, triangulaires et pulsées • Ondes sinusoïdales à faible distorsion et haute pureté spectrale • Balayage interne, de phase continue, linéaire ou logarithmique, de 0,1Hz à 20MHz en une seule plage • Modes échantillonné, AM, FSK et commutation de tonalité; générateur de Générateur de fonctions et d’impulsions - TGP110 5MHz Réf. Fab. Code Commande Prix Unitaire CPX200 864-286 g915,00 CPX400A 114-7349 g1230,00 • Economique, hautes performances • Mode en tension constante ou courant constant avec limitation automatique • Mode multiple 0-150V/2A & 0-75V/4A • Affichage séparé de la tension et du courant • Sécurité conforme à EN61010-1 • CEM conforme à EN50081-1, EN50082-2-2 Générateur de fonctions Alimentation triple - QL355TP Le TG550 peut générer un grand nombre de signaux de précision sur une large gamme de fréquences allant du milli-Hz au méga-Hz. L’ affichage double affiche la fréquence et l’amplitude. Alimentations doubles 20MHz DDS Tous les prix de cette brochure sont en euros hors TVA www.farnell.fr Tél.: 04 74 68 99 99 Fax: 04 74 68 99 90 Tenma 76 Test et mesure l=310 H=142 P=254mm Poids = 4.3kg A partir de g42,18 CODE COMMANDE 743-0590 Seulement CODE COMMANDE 342-1521 A partir de g1012,10 CODE COMMANDE 491-1945 Seulement CODE COMMANDE 342-1545 A partir de g874,65 CODE COMMANDE 127-7402 H=171, l=86, P=38 H=171, l=86, P=38 H=171, l=86, P=38 Série GDS-2000 • Affichage 33⁄4 digits, 3999 points avec bargraphe • Mesure de fréquence • Mesure du Min./Max. • Fonction Hold • Mode Min / Max • Zéro ajustable • Affichage 4 digits, 9999 points • Mesure d’inductances, capacités, résistances, facteur Q et facteur de dissipation • Affichage double permettant la mesure simultanée de l’inductance et du facteur Q ou de la capacité et du facteur de dissipation • Fréquence de test sélectionnable 120Hz ou 1kHz • Mesure du Min./Max./Moy. • Mode relatif • Tolérance (1%, 5%, 10%) • Pile 9V, cordons et étui de protection inclus • Manuel en anglais • Protection contre les surcharges (tous calibres) • Marquage CE conforme IEC1010 600V Cat.III ou 1000V Cat.II 150MHz & 250MHz • Bandes passantes de 60 MHz, 100 MHz, et 200 MHz • 1Géch/s temps réel et 25Géch/s en temps équivalent • Longueur d’enregistrement max. de 25k points • Affichage couleur TFT 5.6" • Stockage de données • 2 voies, bande passante de 150MHz & 250MHz • Echantillonnage jusqu’à 25Géch/s ET • Longueur d’enregistrement de 125K par voie • Mode "apprentissage" intégré pour le marquage et l’entraînement • Fonction FFT intégrée • Fonction "Go-No-Go" intégrée • Interface RS-232, port USB et imprimante inclus • Protection contre les surcharges • Marquage CE • Ouverture de la mâchoire de 46mm • Livrée avec 2 piles AA 1.5V et sacoche de transport • Manuel en anglais Inductance 1mH à 10000H Capacité 1000pF à 10000μF Résistance 10Ω à 10MΩ Dimensions 88.9187.3338.1 (H) x (L) x (P) Courant AC 4A,400A Courant DC 4A-400A Fréquence 100Hz à 100KHz Ouverture mâchoire 23mm Mâchoire 63.5 (H) x 184.15 (L) x 38.1 (P) démontable / impression via le port USB en face avant • 27 mesures automatiques • 4 types de FFT: flattop, blackman, hanning et rectangulaire • Fonction de test Go/NoGo • Contrôle à distance via RS-232 ou USB Réf. Fab. Code Commande Prix Unitaire 72-7235 491-1945 g1012,10 72-7240 491-1969 g1317,97 LCR-Mètre Réf. Fab. Description Code Commande Prix Unitaire Oscilloscopes 60 MHz, 2 voies GDS-2062 127-7402 g874,65 100 MHz, 2 voies GDS-2102 127-7403 g1139,25 100 MHz, 4 voies GDS-2104 127-7404 g1315,65 200 MHz, 4 voies GDS-2204 127-7407 g1609,65 Mini pince de courant RMS vrai CA/CC Oscilloscopes numériques - 72-7235 & 72-7240 Oscilloscopes numériques Offre la possibilité de mémoriser 15 réglages utilisateur et de les rappeler sans restriction. Le mode "Program" très utile permet d’aider les utilisateurs à enregistrer toutes les étapes de mesure necessaires et de les réutiliser. La fonction spéciale "Go- No-Go" est utile pour distinguer les états Succès/Echec. 72-7735, 72-7740 et 72-7745 • Gamme commutable Auto/Manuel • Test de diode • Test de continuité sonore • Gel de l’affichage • Affichage de nombreuses icones • Mode relatif • Indicateur de pile faible • Livré avec cordons de test standard, cordons de test courts pour des mesures de capacité précises, pile 9V et manuel d’utilisation • Conforme à IEC-1010 600V CATIII, et 1000V CATII Caractéristiques supplémentaires du 72-7735 • Interface RS232C • Afficheur rétroéclairé Caractéristiques supplémentaires du 72-7240 • Mode veille • Mesure de température • Sonde de température pour thermocouple Caractéristiques supplémentaires du 72-7745 • TRMS • Interface RS232C • Afficheur rétroéclairé • Mesure de température • Sonde de température pour thermocouple Messbereich Genauigkeit Gamme 400mV, 4V, 40V, 400V, 1000V ±(0.8%+1) Gamme 4V, 40V, 400V, 750V ±(1%+5) Gamme 400μA, 4000μA, 40mA, 400mA, 4A, 10A ±(1%+2) AC StromGamme 400μA, 4000μA, 40mA, 400mA, 4A, 10A ±(1.5%+5) WiderstandGamme 400Ω, 4kΩ, 40kΩ, 400kΩ, 4MΩ, 40MΩ ±(1%+2) KapazitätGamme 40nF, 400nF, 4μF, 40μF, 100μF ±(3%+5) Temperatur (72-7740 und 72-7745 nur)Gamme -40°C - 1000°C ±(1%+3) FrequenzGamme 10Hz - 10MHz ±(0.1%+3) Réf. Fab. Code Commande Prix Unitaire 72-7735 743-0590 g42,18 72-7740 743-0604 g48,71 72-7745 743-0612 g65,36 Multimètres gamme automatique g148,44 g149,87 RoHS Conforme Non-conforme Commandez du lundi au vendredi de 8h30 à 19h pour une livraison gratuite le lendemain Bonnes affaires 77 Test et mesure l=255 H=105, P=305mm. Poids 3 kg L=256 H=106, P=383mm. Poids 5.6 kg L=380 H=80, P=210mm. Poids 5.6 kg Pour les dernières technologies en contrôle de mouvement et automation regroupant plus de 1000 nouveaux produits, consultez le Technology First en ligne : www.electronicsdesignworld.com Seulement g324,00 CODE COMMANDE 122-5527● A partir de g416,75 CODE COMMANDE 122-5519● Seulement g324,00 CODE COMMANDE 122-5527● BK1785B, BK1786B, BK1787B, BK1788 • Affichage tension et courant (afficheur fluorescent) avec résolution de 10mV et 10mA • Programmables en courant et tension • 16 modes opératoires préprogrammés • Contrôle des sorties par bouton on/off • Interface RS232 en standard • Protection complète contre les BK9120 et BK9122 BK 5491A, BK 5492 et BK5492 GPIB • Alimentation stabilisée simple programmable de grande précision • Haute stabilité, excellente régulation • Afficheur LCD avec rétro éclairage • Mémoire de 100 configurations • Résolution 10mV et 1mA • Boîtier compact anti-choc • Sortie en face avant et face arrière (bornier à vis) • Bornes de sécurité 4mm et bornier • Protection complète contre les court-circuits et les élévations de température • Interface RS232 en standard • Conforme IEC61010-1 Cat II • Programmation SCPI Driver LabView disponibles court-circuits et les élévations de température • Garantie 2 ans • Conforme IEC61010-1 Cat II • Mesures AC RMS vrai et AC+DC • Affichage double • Bande passante 30Hz à 100kHz • Fonctions: mode relatif, MIN, MAX, HOLD et COMP • Mesure DBm • Test de diode et de continuité • Interface RS 232 • Conforme IEC61010-1 Cat II 600V Modèle 5491A: • Affichage LED 50 000 points Modèle 5492: • 51⁄2 chiffres, affichage sélectionnable 120 000 / 40 000 / 4 000 points • Taux d’échantillonnage sélectionnable • Mesure de résistance en 2 ou 4 fils Réf. Fab. Code Commande Prix Unitaire BK9120 122-5530● g407,07 BK9122 122-5532● g666,00 Modèle 1785BModèle 1786BModèle 1787B Modèle 1788 Tension de sortie 0 à 18V 0 à 32V 0 à 72V 0 à 32V Courant de sortie 0 à 5A 0 à 3A 0 à 1.5A 0 à 6A Régulation en tension - variations secteur <0.1% +3mV - variations de charge <0.01% +3mV <0.02% +5mV - ondulation et bruit 5mVeff. typique Régulation en courant - variations secteur <0.1% +2mA - variations de charge <0.1% +2mA - ondulation et bruit 5mVeff. typique Coefficient de température <0.02% + 5mV (tension), <0.1% +5mA (courant) Température d’utilisation 0°C à 40°C (HR<75%) 5491A 5492 Gammes Précision Gammes Précision Tension DC 500mV - 1000V (5 gammes) ±(0.02%+4 chiffres)120mV - 1000V (5 gammes) ±(0.012%+5 chiffres) Tension AC 500mV - 750V (5 gammes) ±(0.5%+15 chiffres)120mV - 750V (5 gammes) ±(1.0%+40 chiffres) Courant DC 500μA - 10A (6 gammes) ±(0.05%+4 chiffres)12mA - 12A (4 gammes) ±(0.1%+3 chiffres) Courant AC (TRMS)500μA - 10A (6 gammes) ±(0.5%+25 chiffres)12mA - 12A (4 gammes) ±(0.5%+12 chiffres) Résistance 500Ω - 50MΩ ±(0.1%+3 chiffres) 1.2kΩ - 120MΩ ±(0.06%+3 chiffres) Fréquence 5Hz à 500kHz (4 gammes) ±(0.01%+3 chiffres)5Hz à 1MHz (4 gammes) ±(0.005%+2 chiffres) Réf. Fab. Code Commande Prix Unitaire BK1786B 122-5527● g324,00 BK1787B 122-5528● g324,00 Alimentations stabilisées programmables Réf. Fab. Code Commande Prix Unitaire BK5491A 122-5519● g416,75 BK5492 122-5520● g621,00 Multimètres de table numériques RMS vrai Alimentations de laboratoire stabilisées programmables Tous les prix de cette brochure sont en euros hors TVA www.farnell.fr Tél.: 04 74 68 99 99 Fax: 04 74 68 99 90 Bonnes affaires 78 Test et mesure † Disponible jusqu’à épuisement du stock † Disponible jusqu’à épuisement du stock † Disponible jusqu’à épuisement du stock Seulement g786,00 CODE COMMANDE 411-0213 A partir de g964,80 CODE COMMANDE 423-2410 Accessoires fournis dans la version standard: Un adaptateur/charge secteur, un pack de batteries NiMH 9.6V - 3.8A/h, 1 sonde 1/10 Probix, 1 adaptateur BNC Probix, un adaptateur banane diamètre 4mm Probix, 1 jeu de cordons à fiche banane diamètre 4mm, 1 cordon Ethernet croisé et une notice de fonctionnement sur CD-ROM. Accessoires fournis dans les kits: Un adaptateur/charge secteur, un pack de batteries NiMH 9.6V - 3.8A/h, 2 sondes 1/10 Probix, 2 adaptateurs BNC Probix, 1 adaptateur banane diamètre 4mm Probix, 1 jeu de cordons à fiche banane diamètre 4mm, 1 cordon Ethernet croisé, 1 cordon Ethernet droit, 1 kit SX-METRO/P incluant le câble RS232, une valise de transport et une notice de fonctionnement sur CD-ROM. A partir de g1252,80 CODE COMMANDE 468-3225 Seulement g1689,60 CODE COMMANDE 774-2088† • Affichage couleur • Tension TRMS AC+DC jusqu’à 600V • Courant TRMS AC+DC jusqu’à 3000V • Fréquence de 40 à 70Hz • Puissance active, réactive, apparente par phase et cumulée • Energie active, réactive, consommée et générée, apparente • Mesures : courant de neutre, facteur crête, facteur K, facteur de puissance, déséquilibre entre phase, taux de distorsion harmonique, valeur moyenne • Fonctions complémentaires : Traitement graphique, alarme, enregistrement, datation, caractéristiques des perturbations • Mesures selon EN50160 40, 60 et 100MHz • Design innovant, centré sur l’ergonomie, pour un confort et une efficacité d’utilisation inégalés • Appareil multifonction : oscilloscope, analyseur FFT, analyseur d’harmoniques, enregistreur • Vitesse d’échantillonnage de 20Géch/s et profondeur mémoire de 50k par voie en mode "oscilloscope" • 2 ou 4 voies de mesure et jusqu’à 8 courbes à l’écran • Analyse FFT "temps réel" standard et fonctions de calcul sur les voies • Ecran LCD orientable en version couleur ou monochrome • Ergonomie "Windows" : commandes directes à l’écran via une souris • Réglages courants et raccourcis en face avant (20 boutons + encodeur) • Liaison RS232 et Centronics en standard, USB en option • Réseau Ethernet et serveur HTML en option Réf. Fab. Code Commande Prix Unitaire CA8332 411-0201† g1262,84 CA8334 411-0213† g786,00 e-Oscilloscopes - Versions Ethernet • Cinq outils en un: Oscilloscope, multimètre, analyseur FFT, analyseur d’harmoniques et enregistreur Analyseur réseau CA8332 & CA8334 • Ecran LCD couleur ou noir et blanc 5"7 (115x86mm) à dalle tactile et rétroéclairage CCFL (mise en veille réglable) • Vitesse d’échantillonnage 1Géch./s en monocoup et 50Géch./s en ETS • Convertisseur 12 bits • Profondeur mémoire de 2.5k par voie en mode "Oscilloscope" • 2 ou 4 voies isolées 600V Cat III • Jusqu’à 8 courbes à l’écran • Analyse FFT "temps réel" standard et fonctions de calcul sur les voies • Déclenchements avancés et fonctions • Echange de fichiers géré par un PC local ou distant dans un « Réseau d’Entreprise» • Utilisation d’une Imprimante Réseau locale ou distante dans un « Réseau d’Entreprise » MATH • Système "One Click Winzoom" (zoom graphique direct à l’écran) • 2 ou 4 multimètres numériques, TRMS, 8000 points, 50kHz, indépendants • 33 touches de commande directes et menus "Windows-like" à l’écran • Bornes d’entrée Probix (plug and play) et capteurs intelligents associés • Connecteurs de communication multi-interface: RS232, Centronics et Ethernet avec serveur Web • Compatibilité Wifi Réf. Fab. Code Commande Prix Unitaire MTX3252-M 423-2410† g964,80 MTX3252-C 423-2525† g1409,60 MTX3352-M 423-2422† g1290,40 Oscilloscopes portables autonomes Réf. Fab. Code Commande Prix Unitaire MTX3252e-C 468-3225† g1252,80 MTX3354e-C 113-7146† g1796,80 MTX3252-MMTX3252-CMTX3352-MMTX3352-C MTX3354e-C Type d’affichage LCD 320 x 240 + rétroéclairage Affichage Mono Couleur Mono Couleur Couleur Courbes à l’écran 4 courbes + 4 références Choix de la langue Sélection de 5 langues par menu Bande passante 60MHz 100MHz 150MHz Nombre de voies 2 4 Tension d’entrée max Cat. II / 150V-400V (avec HX0003) Modes de déclenchement Auto, normal, monocoup Complexes Source de déclenchement CH1, CH2, EXT, SECT Echantillonnage répétitif 20Géch/s Echantillonnage monocoup 100Méch/s 200Méch/s Capacité mémoire Profondeur 50000 points - 4 réf. + 4 courbes de 50k Fonctions GLITCH, ENVELOPPE, MOY, XY, AUTOSET, FFT, MATH, Curseur Mesures automatiques 20 Communication RS232 + Centronics + Port souris USB + Port Souris Dimensions / Poids 210x177x200 / 2.5kg Garantie 3 ans Oscilloscopes numériques analyseurs MTX RoHS Conforme Non-conforme Commandez du lundi au vendredi de 8h30 à 19h pour une livraison gratuite le lendemain Stations Weller 79 Soudage Seulement g550,25 CODE COMMANDE 161-6498● Weller Seulement g287,00 CODE COMMANDE 144-7700● Seulement g1898,75 CODE COMMANDE 161-6497● • Station d’apiration WFE 2ES comprenant: - Filtre pour poussière fine de classe F5 - Filtre combiné à particules gaz HEPA H12 et mousse de charbon actif, garantie une filtration efficace à 99.5%. • Turbine sans entretien (1800 Pascal), permet une aspiration continue à un débit d’air maximal de 220m³/h • Niveau sonore faible, moins de 55dBA • Supporte jusqu’à 2 postes de travail avec un kit bras d’extraction simple en option (Code Commande: 137-8431) • Kit d’aspiration de fumée comprend un bras d’extraction de fumée Composition du modèle WR 3000M : bloc d’alimentation WR 3M ; fer à air chaud 200W HAP 200 et support de sécurité WDH 30 ; Fer à dessouder 80W DSX 80 avec buse DX 113HM et support de sécurité WDH 30; Fer à souder 80W WP 80 avec panne LT B et support de sécurité Stop + Go WDH 10 T ; pipette pneumatique WVP ; nettoyeur de pannes WDC 2 ; câble USB et logiciel. • Bloc avec large affichage LCD pour une lecture claire des informations • Anti-statique • Conçu pour le sans plomb • 3 températures fixes programmables par boutons permettent un ajustement facile et rapide au travail à effectuer • Blocage de température car une température trop élevée brûle le flux et peut oxyder le joint de soudure • Fonctions de blocage et de programmation pour applications ISO • Interface USB en option pour les applications ISO d’étalonnage, de configuration et de mesures précises • Outils reconnus automatiquement par le bloc WD1/ station WD1000 et les paramètres de contrôle assignés • Support Stop+Go WDH 10T anti-statique • Dry Cleaner WDC 2 avec laine métal, élimine le surplus de soudure et les résidus d’oxydation tout en maintenant une faible couche de soudure pour prévenir l’oxydation • Fer à souder 80W, WP80 pouvant s’utiliser avec les pannes de la série LT Le kit comprend: bloc d’alimentation WD1, cordon d’alimentation, cordon de fonctionnement, fiche jack, fer à souder WP80, support stop+go WDH 10T et nettoyeur de pannes Dry Cleaner WDC 2 Station de réparation WR 3M + système d’aspiration WFE 2ES à régulation électronique haute vitesse pour le micro-soudage Station de soudage WD 1000T Sur la base du best seller WD 1000, Weller propose une version spécialement conçue pour satisfaire vos besoins de qualité et vos contraintes de coût. Cette station comprend un support Stop+Go dry cleaner pour augmenter la durée de vie des pannes, protéger l’élément chauffant et économiser l’énergie. La station est composée de : Bloc de contrôle WD1 • Large affichage LCD + • Blocage de température • Mise en veille et programmation de la température de stand by • 3 températures fixes programmables Fer à souder WP 80 • Micro fer 80W avec de précision • Elément chauffant à l’argent • Changement de panne facile sans outil • Pannes faible masse de la série LT Support Stop+Go WDH 10T • Ergonomique et stable • Activation de la mise en veille immédiatement ou programmée • Rack de rangement pour pannes Dry cleaner WDC2 • Permet de conserver la mouillabilité de votre panne et optimise sa durée de vie • Applications: réparations sur des cartes électroniques, industrielle et laboratoire • 3 canaux d’outils indépendants avec détection automatique • Température de panne extrêmement précise gérée par microprocesseur • Mesure de température via des sondes ultra rapides, très grande réactivité • Compatibles avec tous les outils Weller High-Speed Micro: micro fer à souder WMRP, micro brucelles WMRT • Accepte le nouveau fer à air chaud HAP 200 de 200W et le WSP 150 • Mini port USB, pour applications ISO, mises à jour du logiciel de régulation, contrôle par PC des paramètres de la station (logiciel fourni) • 3 températures préprogrammées pour chaque canal, et des vérifications d’étalonnage en usine Station de soudage multifonctions 160W - WD2000M Tous les prix de cette brochure sont en euros hors TVA www.farnell.fr Tél.: 04 74 68 99 99 Fax: 04 74 68 99 90 OKi 80 Soudage Série MX-500 Seulement g359,10 CODE COMMANDE 127-7189● Seulement g169,00 CODE COMMANDE 127-7186● • Utilise la technologie SmartHeat • Détection de mise à la terre • Capteurs de mouvement du fer augmentant la durée de vie des pannes lors du soudage sans plomb • Tapis laiton pour le nettoyage des résidus de soudure sans plomb • Mise en veille et arrêt automatique • Axes de la pince réglables pour pouvoir accèder dans les espaces les plus restreints • Pince de précision légère et facile à utiliser • Permet le démontage des plus petits des composants discrets tels que les boîtiers 0201 • Double pivot de la pince assurant ‘un vrai effet de pince’ et un réglage du pas à 2 positions • Alignement de précision, les axes restent toujours parallèles • 220/240 V c.a., 50/60Hz • Pannes pour le fer à souder à cartouche MFR-HSR: série SFP • Pannes pour la pince de précision MFR-HPT: série TFP Les pannes mentionnées ci-dessus sont conçues pour être utilisées avec les substrats de CI en fibre de verre (FR4). Composition du système MFR-PTZ: Bloc d’alimentation universel MFR-PS1K à 2 sorties; pince de précision MFR-HPT; support de pince MFR-WSPT; Fer à souder à cartouche MFR-HSR; support MFR-WSSR. Réf. Fab. Code Commande Prix Unitaire MX-500S-21 495-0343 g450,00 MX-500TS-21 495-0355 g810,00 MX-500DS-21 495-0367 g885,00 Description Réf. Fab. Code Commande Prix Unitaire Système de soudage et de réparation à pince de précision MFR-PTZ 116-1523● g603,00 Particulièrement indiqué pour les environnements de fabrication où précision et répétabilité sont primordiales, le doseur DX-250 est équipé d’un minuteur digital et d’un venturi ajustable pour contrôler la formation de goutte entre chaque cycle de dosage. Fonctionnant à l’aide d’une alimentation continue de 24V et livré prêts à l’emploi avec un adaptateur secteur, un tuyau d’air, un échantillon d’aiguilles, une seringue, un adaptateur de seringue et un support de seringue, le doseur certifié CE est équipé d’un temporisateur variable de 0,0020 à 60,00 secondes, afin d’optimiser la flexibilité de l’opérateur. Grâce à une pression de fonctionnement de 0 à 6,9 bar (0 à 100 Psi), le modèle DX-250 est configuré pour des applications de dosage générales. Les applications du produit sont variées : de la dépose de précision d’adhésif et de pâte à braser pour montage en surface à la dépose de résine « underfill ». Le boîtier de la gamme DX-250, robuste et moderne à la fois, a une surface d’encombrement réduite pour préserver l’espace de travail, et il peut facilement être déplacé d’une station de travail à une autre. Les unités peuvent également être empilées et attachées les unes sur les autres par souci d’efficacité du poste de travail. Stations de soudage MX-500DS - Station de dessoudage et de réparation Le système utilise de l’air comprimé pour créer un vide venturi pour le nettoyage rapide et efficace des trous du circuit imprimé. La récupération de la soudure dans un papier absorbant à l’intérieur du réservoir de la poignée facilite la maintenance et constitue une amélioration par rapport aux tubes en verre conventionnels. Note: Requiert une source d’air comprimé Système de soudage et de réparation à pince de précision MFR-PTZ • Alimentation auto-ajustable acceptant une tension de 100-240 V c.a. • Faible empreinte • Affichage LCD • Design compact • Pas de calibration nécessaire • Technologie SmartHeat • Design unique en 2 parties, bobine d’induction séparée de la panne chauffante • Idéal pour les applications de soudage répétées • Répond aux exigences du soudage sans plomb avec des températures élevées Doseur numérique DX-250 Comprend: bloc alimentation, manche avec élément chauffant, support de fer avec éponge et tapis extracteur de panne Note: Utilise les pannes de la série SFV-Cxxxx • Plage de durée numérique de 0.008-99.999 sec • Connecteur 6mm push pour la connexion de l’air entrant • Interrupteur de pas micro inclus • Certifié CSA et CE Livré avec: interrupteur de pas micro, support de seringue, support pour l’air en ligne, tête receveur, aiguilles les plus utilisées et manuel d’utilisation. Tension 90-240 V ac 50-60Hz Puissance 50W Puissance de sortie 35W Dimensions (HxlxD) 100x70x161mm Système de soudage SmartHeat PS-800E MX-500TS - Station de réparation système Talon Le design de la pince Talon procure des performances supérieures, un confort et un contrôle optimum. Fournie avec pince Talon, fer à souder MX-RM3E avec cordon et support de fer MX-WS4 MX-500S - Station de soudage et réparation Fournie avec fer à souder MX-RM3E avec cordon et support de fer MX-WS4 RoHS Conforme Non-conforme Commandez du lundi au vendredi de 8h30 à 19h pour une livraison gratuite le lendemain Weller / Iroda 81 Soudage • Fourni dans une boîte métallique robuste, completé d’un support de fer, d’une éponge de nettoyage et d’une recharge de gaz Composition du kit SolderPro 50: Fer SolderPro 50 avec panne T-01, distributeur de soudure 60/40 Ø 1mm, éponge de nettoyage pour panne, support pour éponge, panne couteau S-05, panne chalumeau S-06, air chaud S-07 Kit fer à souder à piles BP860EU Cartouche de gaz Modèle SPI-16 SPI-27 SPI-41 SPI-81 Puissance (Watts) 15W 25W 40W 75W Température panne Mini-chalumeaux Micro-Therm Caractéristiques techniques Température de la panne 210 - 400°C Température chalumeau 1300°C Puissance équivalente 30 - 70W Réservoir de gaz 7ml Dimensions (LxDia.) 140x23mm Poids (plein) 60g • Cartouche de gaz butane 75ml pour la recharge de fers Pyropen Code Prix Unitaire Fers Commande SPI16 836-448 g28,00 SPI27 401-5060 g32,00 SPI41 401-5071 g35,00 SPI81 401-5083 g40,00 Pannes 0.4mm pour SPI16 458-041 g5,30 1.2mm pour SPI16 836-400 g3,93 1.2mm pour SPI27 401-5095 g5,30 3.0mm pour SPI27 458-089 g3,93 2.0mm pour SPI41 401-5125 g5,30 3.0mm pour SPI41 590-370 g5,30 5.0mm pour SPI41 590-381 g4,90 1.2mm pour SPI81 401-5137 g6,90 2.0mm pour SPI81 401-5149 g6,90 Fer à gaz • Idéal pour les applications de séchage, de chauffage et d’emballage thermorétractable • Chaleur de 650°C sans flamme • Verrouillage de sécurité • Alimenté par un briquet standard (inclus) - se recharge avec un gaz butane quelconque du commerce • Dimensions (H x l x P): 115x80x25mm • Poids : 95g • Livré avec déflecteur de chaleur (17mm de Ø latéral) pour professionnels et amateurs Kit Pyropen Piézo Prix Unitaire Description Code Commande SolderPro 50 129-6821 g18,77 Kit SolderPro 50 129-6822 g27,52 Composition du kit: Fer à souder à piles double puissance Panne conique 0.8mm Panne tournevis 1.8mm 4 piles AA Duracell Soudure sans plomb Outil d’extraction Etui de transport Seulement g4,00 CODE COMMANDE 800-454 Fer à souder - Série SPI Seulement g17,31 CODE COMMANDE 129-6827 Fer à gaz SolderPro 50 Non thermostaté • Sortie 8/11W • Température max. 450°C à 8W, 510°C à 11W • Température de travail atteinte en 15 secondes • Indicateur à LED rouge / vert, indique le niveau de puissance • Bouton de sélection: arrêt/élevé/faible • Lumière à LED blanche • Capuchon de protection avec arrêt automatique • Utilise 4 piles équivalentes à 180 soudures • Gamme de température 300°C - 500°C • Allumage Piezo • Fonction fer à souder ou pistolet à air chaud • Indicateur de niveau de gaz • Environ 3 heures d’autonomie • Utilise les pannes de la série WPT et de la série WHC pour la diffusion d’air chaud Seulement g34,90 CODE COMMANDE 148-9546 • Fer de poche alimenté par du gaz butane • Contrôle variable de la température, équivalent à un fer 70W • Léger et portable • Autonomie de 30 min. en fonctionnement (paramètres médium) • Auto-allumage • Facile à recharger • Livré avec panne T-01 • Disponible également en kit et livré en coffret • Fers à température fixe • Usage professionnel ou semi-professionnel • Alimentation 230-250V • Pannes plaquées longue durée Kit contenant: Un fer à souder piezo butane, une panne oblique 3mm (Réf. Fab. 0051612199), une pochette de rangement, une panne "tube", un diffuseur d’air chaud (Réf. Fab. 0051614299), une clé et une bouteille de butane. Seulement g123,00 CODE COMMANDE 434-3554 Tous les prix de cette brochure sont en euros hors TVA www.farnell.fr Tél.: 04 74 68 99 99 Fax: 04 74 68 99 90 Consommables 82 Soudage A partir de g6,89 CODE COMMANDE 127-0914● A partir de g18,84 CODE COMMANDE 101-5446● Soudure sans plomb Crystal 511™ Code Prix Par Bobine Ø fil (mm) Poids (g) Commande 0.5 100 840-0270● g11,72 0.5 250 840-0288● g27,74 0.8 100 840-0296● g8,60 0.8 250 840-0300● g20,71 1.0 100 840-0318● g8,38 1.0 250 840-0326● g13,13 1.0 500 840-0334● g25,26 1.5 100 840-0342● g8,36 1.5 250 840-0350● g13,03 Alliage Sn97.1Ag2.6Cu0.3 Températures de fusion 217°C - 224°C Température de la panne (Approx.) 350°C Alliage Sn99Ag0.3Cu0.7 Type de flux Flux activé - 2.2% Température de fusion 217°C Température pannes 340 - 400°C Alliage Alliage étain 99.3% cuivre 0.7% Type de flux 5 brins sans halogène, colophane 309 non-corrosive Température de fusion 227°C Température de panne (approx.) 350°C - 370°C Code Prix par Diamètre fil Commande Bobine Bobine de 250g 0.5mm 101-5443● g28,27 0.7mm 101-5444● g21,27 1mm 101-5445● g19,42 1.2mm 101-5446● g18,84 Bobine de 500g 0.7mm 101-5447● g41,32 1mm 101-5449● g37,67 1.2mm 101-5451● g37,47 Soudure sans plomb étain/ argent/cuivre 95.5/3.8/07 Code Prix par Bobine Diamètre Commande Bobine 500g 1mm 136-0468● g13,00 0.7mm 136-0469● g12,00 0.5mm 136-0470● g11,00 250g 1mm 136-0471● g10,94 0.7mm 136-0472● g11,44 0.5mm 136-0473● g12,66 Alliage Sn96.5Ag3Cu0.5 Type de flux No Clean - 1.6% Température de fusion 217°C Température pannes 340 - 400°C Code Prix Par Bobine Diamètre Commande Bobine de 250g 0.5mm 509-0866● g19,46 0.7mm 509-0878● g14,81 0.9mm 509-0880● g14,52 1.2mm 509-0891 g12,00 Bobine de 500g 0.7mm 509-0910● g27,57 0.9mm 509-0921● g26,73 1.2mm 509-0933● g25,68 96SC 511 3C Soudure sans plomb Code Prix par Bobine Bobine Diamètre Commande 500g 1mm 127-0907● g25,45 0.7mm 127-0908● g25,92 0.5mm 127-0909● g27,34 250g 1mm 127-0910● g18,90 0.7mm 127-0911● g20,00 0.5mm 127-0912● g21,20 100g 1mm 127-0913● g7,30 0.7mm 127-0914● g6,89 0.5mm 127-0915● g7,70 0.35mm 127-0917● g29,30 10g 0.20mm 136-0475● g35,00 Série TSC Soudure sans plomb • Soudure standard 3 canaux en combinaison avec l’alliage sans plomb SAC387 (96SC) • Idéale pour la réparation d’assemblages sans plomb ou pour la brasage manuel, compatibilité totale garantie avec les joints de soudure à fusion SMT • Distribution constante et égale du flux • Flux haute activité avec d’excellentes caractéristiques de mouillage sur les substrats difficiles Soudure sans plomb étain/cuivre 99.7/0.3 Etain (97.1%)/ Argent (2.6%)/ Cuivre (0.3%) SAC0307 Sn99 Ag0.3 Cu0.7 • Flux No Clean, sans nettoyage • Résidus translucides • Alliages: Etain (Sn 95.5%), Argent (Ag 3.8%), Cuivre (Cu 0.7%) • Point de fusion 217°C (Température de la panne: 350°C à 370°C) • Classification J-STD ROM1 • Disponible en bobine de 250g Ø0.23mm • Soudure sans plomb à alliage étain / argent / cuivre • Faible point de fusion des alliages à haute teneur en étain • Caractéristiques améliorées de mouillage • Conforme à la norme DIN EN 29454-1 1.1.2 FSW 26 • Point de fusion 217°C Flux colophane Soudure sans plomb • Résidus ne nécessitant pas de nettoyage • Capacités de mouillage élevées pour souder plus rapidement • Convient à tous assemblages électroniques et opérations de réparation • Conforme à toutes les réglementations sur le sans plomb Alliage Sn96.5Ag3Cu0.5 - Flux FXN 1.6% A partir de g8,36 CODE COMMANDE 840-0342● Seulement g37,05 CODE COMMANDE 111-5464● • Sans plomb • Un canal de flux à base colophane • Résidus de couleur ambre ne nécessitant aucun nettoyage • Convient pour tous les assemblages électroniques sans plomb et les applications de réparation • Conformes à la législation sans plomb • Convient pour des applications électriques, électromécaniques ou de réparation • Alliage brillant à faible teneur d’argent, donc plus économique • Flux résineux activé réparti en 5 canaux facilitant un très bon étalement • Convient aux surfaces oxydées et à soudabilité médiocre • Intervalle de fusion de 217-227°C - Température pannes : 340 - 400°C • Nouvelle génération de flux pour le sans-plomb • Convient pour les applications électroniques exigeantes • Flux sans-nettoyage • Flux réparti en 5 canaux : efficacité et quantité faible de résidus • Température de fusion de 217°C - Température pannes : 340 - 400°C A partir de g10,94 CODE COMMANDE 136-0471● RoHS Conforme Non-conforme Commandez du lundi au vendredi de 8h30 à 19h pour une livraison gratuite le lendemain Consommables 83 Soudage Pompe à dessouder Flux de réparation en gel Alliage Sn96.5Ag3Cu0.5 Type de flux SP027 SP029 Température de fusion 217°C Code Prix Unitaire Code Prix Unitaire Réf. Fab. Largeur Longueur Commande Réf. Fab. Largeur Longueur Commande Série 60 (No Clean) 8065 5.3 1.5 967-543● g3,64 6015 0.9 1.5 559-866● g3,28 80110 0.9 3 860-724● g5,02 6025 1.5 1.5 559-878● g3,28 80210 1.5 3 860-736● g5,18 6035 1.9 1.5 559-880● g3,59 80310 1.9 3 860-748● g5,23 6045 2.8 1.5 559-891● g3,79 80410 2.8 3 860-750● g6,05 6055 3.9 1.5 559-908● g4,00 80510 3.9 3 860-761● g6,66 6065 5.3 1.5 967-531● g6,05 Prix Par Boîte 60110 0.9 3 860-670● g9,01 Boîte sous vide Série 60 1+ 60210 1.5 3 860-682● g5,64 SW16015 0.9 957-150● g33,62 60310 1.9 3 860-694● g6,15 SW16025 1.5 957-161● g32,90 60410 2.8 3 860-700● g6,36 SW16035 1.9 957-173● g36,75 60510 3.9 3 860-712● g6,87 SW16045 2.8 957-185● g37,72 600210 1.4 3 635-194 g6,55 SW16055 3.9 957-197● g41,10 Série 80 (Rosin) Boîte sous vide Série 80 8015 0.9 1.5 559-969● g2,87 SW18015 0.9 957-203● g29,93 8025 1.5 1.5 559-970● g2,87 SW18025 1.5 957-215● g30,14 8035 1.9 1.5 559-982● g3,08 SW18035 1.9 957-227● g30,14 8045 2.8 1.5 559-994● g3,28 SW18045 2.8 957-239● g33,57 8055 3.9 1.5 560-005● g3,69 SW18055 3.9 957-240● g40,18 DURATOOL Code Prix Unitaire Commande Cartouche 75g 111-5453● g26,00 Seringue 25g 111-5454● g20,40 Stylo (pinceau) de flux de réparation FXL 248 Longueur 162mm Code Prix Unitaire Utilisation Commande Pot de 500g SP029 Sérigraphie 134-4761● g69,41 Seringue 30g (10cc) SP027 Dispensing 127-0931● g24,50 Kit avec seringue 30g SP027 Dispensing 127-0932● g29,90 • Flux en gel spécialement conçu pour la réparation et montage de compoants • Seringue optimisée pour une dépose précise • Sans halogène, formulation ne donnant qu’un minimum de résidus de couleurs claire et ne nécessitant pas de nettoyage Crème à braser sans plomb RP15 Tresse à dessouder Soder-Wick • Pour toutes applications de retouche ou de réparation • Flux sans-nettoyage développé spécialement : applications sans/avec plomb • Sans halogène, sans nettoyage, garantit la fiabilité des réparations • Contrôle parfait du volume déposé, facilité d’utilisation • Excellent mouillage, refusion sans microbillage autour du joint brillant • Adapté à tous types de finitions de composants ou circuits standards • Recharge disponible en flacon de 250ml, permet de recharger le stylo de 25 à 30 fois 96SC RP15 AGS 84 Crèmes à braser sans plomb • Corps en métal • Pointe antistatique Seulement g19,29 CODE COMMANDE 453-547 • Produit de grande qualité • Transfert rapide de la chaleur • Idéal pour la réparation et la maintenance • Série 60 : Pas de nettoyage, pas de résidus halogénés • Série 80 : Flux colophane non corrosif ne contaminant pas le circuit imprimé • Bobines plastiques antistatiques • Chaque boîte sous vide contient 10 bobines • Emballage sous vide permettant une longue conservation • Crème à braser sans plomb de dispensing • Peu de résidus, ne nécessite pas de nettoyage (No Clean) • Convient pour les pas fins (0.5mm) • Excellentes performances en pouvoir collant et en temps ouvert sur pochoir • Résiste à l’absorption d’humidité, temps entre 2 sérigraphies allongé • Haute activité permettant un excellent mouillage sur les plages cuivre OSP • Excellente résistance à l’étalement • Contient 84% de métal • Taille des particules métalliques: 45-25μm, code AGS • Etain (95.5%), Argent (3.8%), Cuivre (0.7%), Point de fusion 317°C • Disponible en cartouche 75g ou seringue 25g • Contient un flux révolutionnaire à activants étagés pour une plus grande efficacité • Convient à une très large gamme de finitions de circuits et composants • Fenêtre de travail large, facilité de mise en oeuvre • Pour le pot de 500g, le flux SP029 offre une durée de vie sur écran sérigraphique plus longue • Alliage standard Sn96.5Ag3Cu0.5 : température de fusion de 217°C • Pic de refusion : env. 240°C - Temps à l’état liquide <1 minute • Disponible en pot ou seringue (seule ou en kit : 1 seringue + 1 poussoir et 2 aiguilles) Seulement g4,91 CODE COMMANDE 312-5634 Seulement g27,20 CODE COMMANDE 136-0459● A partir de g20,40 CODE COMMANDE 111-5454● Code Prix Réf. Fab. Commande Unitaire Stylo de flux 8ml 4UFXL248_BRUSH 136-0459● g27,20 Recharge de flux 250ml 4UFXL248_RECH 136-0460● g24,65 Tous les prix de cette brochure sont en euros hors TVA www.farnell.fr Tél.: 04 74 68 99 99 Fax: 04 74 68 99 90 KF 84 Produits chimiques A partir de g10,50 CODE COMMANDE 391-6637 Seulement g12,30 CODE COMMANDE 391-6613 A partir de g8,90 CODE COMMANDE 146-7383 Seulement g7,00 CODE COMMANDE 391-6844 Seulement g17,20 CODE COMMANDE 129-7777 Seulement g5,85 CODE COMMANDE 391-6730 • Mélange de solvant dégraissant à séchage rapide, pour un rendement maximum, dépourvu de solvant chloré • Pénètre rapidement et dissout ou entraîne les saletés, poussières, graisses, huiles, lubrifiants divers…sans laisser de résidus • Utilisation possible en multipositions • Aérosol 650ml (500ml net) F2 spécial contacts • Nettoie les circuits imprimés après soudure et avant vernissage • Supprime les traces de chlorure et d’acides • Retire certains vernis de protection • Sans danger pour les composants et la plupart des marquages • Séchage rapide (8mn à 20 °C) • Livré avec un pinceau brosse adaptable • Aérosol 650ml (400ml net) Base acrylique KF 1280 Givrant • Nettoie, désoxyde, lubrifie tous les contacts mobiles • Pénètre et décolle les dépôts d’oxydes et de sulfures • Optimise le passage du courant électrique • Après évaporation, rétablit les constantes électriques et laisse un film protecteur • Multipositions Dégraissant à séchage rapide KF 5 (Biodégradable) Nettoyant de flux de soudure • Localisation des pannes par refroidissement sélectif des composants (-50°C à -65°C) • Repérage immédiat des mauvaises connexions au niveau des circuits • Ininflammable, permet d’effectuer des mesures sous tension • Ne laisse aucune trace après évaporation Aérosol 650ml (400ml net) Code Commande Prix Unitaire Aérosol 650ml (500ml net) 391-6560 g12,60 Aérosol 270ml (200ml net) 146-7383 g8,90 • 1 produit, 5 fonctions : chasse l’humidité, dégrippe les pièces, lubrifie, protège de la corrosion, nettoie • muni d’une valve multipositions (tête en haut tête en bas) pour faciliter tout type d’opération • Economique, 97% de produit actif • Biodégradable. Non classé inflammable • Aérosol 650ml (500 ml net) • Utilisable en environnement agressif (aéronautique, marine, armement) • Isole parfaitement en chaleur humide, tropicalisé. Supporte des températures extrêmes (-50°C à +130°C) • Permet la soudure • Sèche rapidement à l’air ambiant, accéléré en étuve • Avec traceur UV • 650ml (500ml net) Vernis isolant de protection C.I. Détecteur de pannes électriques Nettoyant lubrifiant contacts électriques Dégrippant lubrifiant multifonctions RoHS Conforme Non-conforme Commandez du lundi au vendredi de 8h30 à 19h pour une livraison gratuite le lendemain Outils électroportatifs 85 Outillage Seulement g61,50 CODE COMMANDE 107-5587 MICRO fraiseuse MF 70 Caractéristiques techniques Puissance 125W Tension 230V Vitesse à vide 10000-33000t/min Poids 550g • Base de la machine en fonte grise, Puissance 4.8V Type de batterie Ni-Mh Vitesse à vide 10.000 coupes/min Vitesse de coupe 22m/min de carton (1000g/m2) 13m/min de moquette 20m/min de carton ondulé Capacité pour 1 batterie 100m dans la moquette 200m dans du carton Capacité pour 1 tête de lame 3km avec du carton Changement de la lame Système Clic Système batterie pack oui Temps de charge 3h Puissance nominale 30W Tension 230V Deux températures 120/195°C Poids 360g Multi cutter sans fil 4.8V guidage vertical, table croisée en aluminium rigide • Glissière à queue d’aronde réglable pour tous les axes de déplacement Pistolet à colle • Changement des outils par simple appui sur le bouton entraînant le blocage de l’arbre • Boîtier robuste en polyamide renforcé fibre de verre et zone de prise de main en matière souple • Vitesse maximale de 20000tr/min pouvant être réduit à 5000tr/min avec un couple constant : ceci est particulièrement important Dremel Multipro 34 outils Modèle 2900 type 300-1/25 Type 1200JA • Moteur 24 pôles, assurant un travail sans vibration même à haut régime • Assortiment de pinces de serrage 1.0 - 1.5 - 2.0 - 2.35 - 3.0 - 3.2mm • Table dotée de 3 rainures longitudinales en T (12 x 6 x Kit gravure et modélisme pour le perçage de précision, le brossage et le polissage • Innovation SKIL, ciseaux sans fil 4.8V pour de mulltiples applications • Adapté à tous les types de matériaux • Batterie Ni-Mh • Poignée softgrip pour une meilleure prise en main et une vue sur la coupe effectuée • Livré avec 2 têtes de lame: 1 lame pour • Outil polyvalent pour des applications de précision et de contrôle • Nouveau et unique design, plus d’ergonomie et confort • Poignée soft grip, moins de vibrations • Léger et maniement facile • Vitesse variable entre 10000 à 33000 tr/mn, idéal pour des applications manuelles • Très performant, moteur 125W Kit comprenant la perceuse Micromot 50/E à variateur de vitesse électronique (40W - 5000 à 20000 tr./min) et 34 outils de qualité industrielle et dentaire : 1 meule diamantée sur tige, 1 fraise fine, 1 micro-foret 0.5 et 1.0mm, 1 brosse laiton, meules sur tige en corindon (cylindre, boule, roue et cône), 1 lame à tronçonner, 2 disques à meuler en corindon et 2 en carbure de silicium, 20 disques à tronçonner et 1 porte-outils. Comprend aussi 6 pinces de serrage Micromot de 1 à 3.2mm, 1 transformateur 220V (12V 1A) et une mallette plastique. • Deux températures • Embout anti-goutte • Eclairage par LED • Béquille actionnée d’une seule main, permet de poser l’outil de façon stable • Moteur spécial de qualité supérieure, équilibré et silencieux pour une longévité accrue • Collet 20mm pour une utilisation sur support MICROMOT • Complet avec 43 outils de qualité et mallette plastique 6mm) matériaux souples et flexible et 1 lame pour matériaux durs et rigides • Système clic pour un changement rapide et facile des lames • Livré dans un coffret avec 1 tête de lame pour matériaux souples, 1 tête de lame pour matériaux durs, 1 batterie et 1 chargeur Seulement g65,00 CODE COMMANDE 107-5591 • Règle coulissante facilitant le positionnement du chariot transversal • Toutes les manettes disposent d’un vernier repositionnable sur 0, 1 tour = 1mm, 1 graduation = 0.05mm • Grande gâchette 3 doigts, permet d’appliquer la colle avec précision • Témoins lumineux, indiquent lorsque l’outil est prêt à fonctionner • Commutateur à 3 voies, sélection de la bonne température pour le projet en cours • Livré avec 3 buses différentes et 6 tubes de colle (deux températures) • Coffret de rangement robuste • Pince porte-embout 3.2mm, écrou de blocage et clé de pince porte-outil • Livré avec coffret plastique et 25 accessoires Caractéristiques techniques: 5000 - 20000tr/ min; puissance absorbée maximale 100W; tension 220 - 240 V; Longeur 200 mm;Poids: 450 g; Isolation classe 2; Mandrin à serrage rapide sans clé 0.3 - 3.2mm Seulement g39,90 CODE COMMANDE 144-7670 Seulement g29,90 CODE COMMANDE 122-3530 Caractéristique technique: 220 - 240V, 100W, 50/ 60Hz. Régime 5,000 - 20,000tr/min. Table 200 x 70mm avec course X de 134 (longitudinale) et 46mm (transversale), course verticale de 80mm. Pied de la machine 130 x 225mm et hauteur totale 340mm. Poids approx. 7kg. Les brides figurés sont fournies. Seulement g68,60 CODE COMMANDE 112-1282 Seulement g279,00 CODE COMMANDE 107-5577 Meuleuse perceuse de précision FBS 240/E Tous les prix de cette brochure sont en euros hors TVA www.farnell.fr Tél.: 04 74 68 99 99 Fax: 04 74 68 99 90 Outils électroportatifs 86 Outillage Seulement g82,41 CODE COMMANDE 111-0807 Seulement g180,90 CODE COMMANDE 162-0771 Seulement g161,10 CODE COMMANDE 142-7666 • 4 angles d’inclinaison pour travaux de vissage en toute position • Plus de force et de stabilité au vissage • Rotation droite/gauche • Lampe activable/désactivable • Blocage de broche pour finir le vissage manuellement • Rotation droite/gauche • Poignée Softgrip • Batterie amovible NiCd • Livré avec un coffret comprenant un chargeur, un set d’embouts et une lampe PLI 3.6V Caractéristique technique: Diamètre du disque: 115mm Couple: 2.2Nm Vitesse, à vide: 10000 tr/min Puissance absorbée: 800W Puissance utile: 490 W Vitesse en charge: 7000 tr/min Filetage écrou: M 14 Poids: 1.8kg Réf. Fab. BSZ 12 Impuls 2.0Ah BSZ 12 Impuls 3.0Ah Tension 12V - 2Ah 12V - 3Ah Capacité mandrin 13mm 13mm Vitesse à vide 0-400/0-1350t/min 0-400/0-1350t/min Couple, maxi 52Nm - 20 positions 52Nm - 20 positions Capacité de perçage dans du bois 25mm 25mm Capacité de perçage dans de l’acier 10mm 10mm Poids 2kg 2kg • Absence d’effet mémoire et d’auto-décharge • Réglage de coupe avec 10 pré-sélections jusqu’à 18Nm • Chargeur 30min. • Réversible • Variateur électronique • 1 position de perçage • Poignée Soft grip • Porte embout magnétique • Livrée avec 2 batteries, chargeur rapide et sacoche de transport GSR 14.4 V + GLI 14.4V Perceuses-visseuses sans fil 12V • Moteur haute performance 42mm • Mandrin automatique, changement d’accessoires d’une main • 2 vitesses et un couple max. de 75Nm • 15 positions de présélection du couple et position de perçage • Frein d’arrêt immédiat • Interrupteur verrouillable • Batterie O-pack nouvelle génération, plus d’autonomie, plus de puissance, plus légère et compacte • Livrée en coffret avec 2 batteries 2.0Ah NiCd, un chargeur et une lampe de poche 14.4V Caractéristiques techniques Quantité d’air 250 / 350 / 500 l/m Température de l’air 50 / 350 / 550°C Puissance absorbée nominale 1600W Poids 0.7 kg Tension 3.6V Vitesse 170tr/min Couple max. (Nm) 3 Nm Ø max. des vis 6mm Temps de charge 5h Poids (g) 1kg Meuleuse d’angle 125mm - 800W Tension 10.8V Capacité 1.3Ah Vitesse à vide 0-400t/min Couple max. (Nm), vissage tendre/dur 7/18Nm Ø de perçage dans bois 8mm Ø de perçage dans acier 10mm Ø max. des vis 6mm Temps de charge 30min Poids 800g + • Meuleuse d’angle à refroidissement à air élevé pour un travail rapide même dans les conditions les plus dures • Moteur Marathon robuste protégé des poussières, roulements à billes à joint labyrinthe • Forme ergonomique • Débrayage Metabo S : limite le retour de couple lorsque la machine se bloque • Système Metabo "Quick" pour un changement de meule sans outil • Poignée Metabo VibraTech (MVT) évitant les vibrations endommageant les articulations • Frein à disque mécanique qui arrête la meule en quelques secondes après l’arrêt de la machines • Livrée avec capot de protection, poignée antivibrations et écrou Quick Série BSZ Pistolet à air chaud 1600W • Nouveaux moteurs plus performants • Générateur d’impulsions intégré permettant de desserrer les vis bloquées • Système Metabo ‘Quick’ : mandrin autoserrant et changement d’outil d’une seule main • Réducteur planétaire 3 étages avec engrenage métal • Refroidissement intégré du collecteur Perceuse-visseuse sans fil + lampe de poche 14.4 V Tournevis sans fil 3.6V Seulement g103,95 CODE COMMANDE 152-1866● • Blocs batterie rechargeable jusqu’à 2000 fois (3000 fois avec l’ICS 15) grâce au procédé ‘AIR COOLED’ • Livrée avec chargeur rapide C.A. 30, 2 batteries et coffret H 1600 PSR 3.6V Visseuse de poche Lithium-Ion Seulement g38,95 CODE COMMANDE 110-7105● • Longévité élevée grâce au filtre à air facile à nettoyer • Moteur performant bénéficiant d’un refroidissement optimal • 3 niveaux de soufflante • 3 niveaux de chauffage • Prise en main optimale grâce à la forme ergonomique • Travail en toute sécurité grâce à une importante surface d’appui antidérapante GSR 10.8 V-LI A partir de g180,18 CODE COMMANDE 836-0855 W 8-115 Quick Prix Unitaire Code Commande BSZ 12 IMPULS 2,0 AH 836-0855 g180,18 BSZ 12 IMPULS 3,0 AH 836-0863 g271,00 RoHS Conforme Non-conforme Commandez du lundi au vendredi de 8h30 à 19h pour une livraison gratuite le lendemain Outils à main 87 Outillage Outillage Capacité 150mm Longueur de becs 40mm Lecture 0.01mm Norme DIN862 Microscope stéreo longue portée Jeu de 35 cutters Pied à coulisse numérique • Idéal pour regarder la surface des articles qui ne s’adapteront pas sur un microscope plat conventionnel • Eclairage supérieur pivotant avec lampe 12V • Oculaires x10 avec réglages et bords caoutchoucs • Lentilles x2 donnant un grossissement x20 • Hauteur colonne 290mm • Bras articulé 290mm Télémètre laser 50m Seulement g396,51 CODE COMMANDE 722-2324 Caractéristiques techniques: Pression de l’étau : 150 kp Capacité : 70mm Profondeur : 38mm Largeur de mâchoires : 50mm Mors : Plastique (interchangeables) Réf. Fab. : A.402J2 A.404J2 Capacité : 0.5-2.5 Nm 2-10 Nm Embouts : Fente 4.5 - 6.5 - 8mm 4.5 - 6.5 - 8mm Pozidriv PZ 1 - 2 - 3 PZ 1 - 2 - 3 6 pans mâles 3 - 4 - 5mm 4 - 5 - 6mm Accessoires : Porte-embout, poignée et clé de réglage Seulement g8,72 CODE COMMANDE 132-8726 Avec grand affichage et sortie de données • En acier inoxydable • Permet la mesure extérieure, intérieure, mesure d’épaulement et de profondeur • Grand affichage LCD 11mm • Vis de blocage • Fonctions on/off, zéro, mm/inch, sortie de données Etau à socle à vis DLE 50 Code Prix Unitaire Réf. Fab. Commande A.402J2 442-1310 g222,00 A.404J2 442-1322 g224,00 • Etau pouvant-être monté rapidement et facilement sur un établi grâce à son socle à vis • Une légère pression sur le levier est suffisante pour que la pièce maintenue puissent -être bougée dans n’importe quelle position • Se tourne dans toutes les positions • S’installe sur les établis d’épaisseur max. de 80mm Tournevis dynamométriques à vernier Contient : étui, 1pile (SR44, 1,55V) • Télémètre laser d’une portée de 50m • Conçu pour les mesures en intérieur • Compact, robuste et fonctionnel • Permet de calculer des longueurs, des surfaces, des volumes et des mesures indirectes (fonction Pythagore) • Ecran d’affichage digital clair et précis • Clavier de prise de mesures et de calculs • Mise en mémoire de 20 mesures avec possibilité d’addition et de soustraction • Revêtement softgrip • Possibilité de mesurer à partir de la face avant, de la face arrière, du point central du trépied, de la tige de mesure (pour les angles) • Livré avec étui de protection avec sa sangle et 4 piles 1.5V LR03 AAA • Jeu de cutters de 35 pièces • Contient tout ce qu’il vous faut pour débuter • Convient au modéliste ou artisan • Brucelles pour le démontage sûr des lames • Livré avec : assortiment 23 lames, 2 manches, 1 rabot, bloc à poncer, brucelles, 3 pointes à tracer et manche • Livré dans une trousse de transport pratique Seulement g118,54 CODE COMMANDE 830-756 Seulement g45,89 CODE COMMANDE 393-2916 Seulement g169,00 CODE COMMANDE 130-5652 Tous les prix de cette brochure sont en euros hors TVA www.farnell.fr Tél.: 04 74 68 99 99 Fax: 04 74 68 99 90 Outils à main 88 Outillage Code Prix Unitaire Modèle Applications Commande Pinces coupantes de côté arrondies tête ovale 2412E Pour des fils doux et tendres 132-6105 g44,50 2422E Pour des fils doux et tendres, dureté moyenne 132-6106 g44,50 2432E Seulement pour des fils tendres 132-6108 g44,50 Pince coupante de côté tête effilée 2477E Pour des travaux dans les endroits difficiles d’accès 132-6109 g47,50 Pince coupante en pointe tête droite 2470E Pour coupe horizontale et pour faciliter l’accès aux endroits très fournis. Uniquement pour de petits fils. 132-6110 g53,50 Pinces coupantes en pointe coudées, 30° 2403E Tête assez large et robuste. Pour coupes universelles 132-6111 g57,50 2404E Comparable au 2403E, avec une tête fine et arrondie 132-6112 g59,50 Pinces coupantes en pointe coudées, 45° 2482E Taille moyenne. Idéale pour les travaux sur CI pour la coupe d’élément DIL etc. Utilisable à 90° aussi bien qu’à 180°. 132-6113 g50,50 2475E Pour travaux de précision sur circuits hybrides ou micro-modules. Pour les travaux dans des endroits difficiles d’accès. 132-6114 g53,50 Pince coupante en pointe tête effilée 2476TX1Pour un travail parfait aux endroits étroits. Pince haute précision pour des fils inoxydables, cathéters, spirales par ex. Adèquate pour les applications médicales. 132-6115 g135,00 Pinces de pliage et de préhension 2411P Pince à becs demi-ronds très fins en pointe 132-6116 g44,50 2411PD Comparable au 2411P, mais striée à l’intérieur pour un maintien sûr. 132-6117 g49,50 2442P Pince à becs plats avec arêtes et sections polies 132-6118 g44,50 2443P Pince à becs ronds très précise et fine pour plier les fils par exemple. 132-6121 g46,50 Tournevis de précision 12-en-1 avec flexible • Idéal pour les applications de précision et électroniques • Extensible de 120mm à 185mm, pour les endroits difficiles d’accès • Flexible se courbe facilement pour une meilleure accessibilité • Permet à l’utilisateur de travailler dans des zones étroites • Attache-ceinture pour un transport facile Pinces coupantes et de pliage • Jeu de tournevis ultra-fins • Tête rotative, utilisation facile et un meilleur contrôle • Longueur des lames 150mm Composition de 17 outils radio (1/4") Jeu de 5 tournevis longs • Composition radio ¼" comprenant 1 cliquet, 1 poignée tournevis, 1 rallonge de 100mm et 14 douilles 6 pans de 3.2 à 14mm. • Cliquet avec angle de reprise de 6° et poignée ergonomique antidérapante • Finition chromée, grenaillée • Fourni dans un coffret plastique Série MagicSense 2400 Nbre de Code Prix Unitaire Réf. Fab. Tournevis Commande AEF.J1 5 352-2702 g23,40 AEF.J3 8 352-2714 g40,60 AEF.J2 5 352-2726 g26,02 • Rangement des embouts de tournevis dans la poignée • 6 embouts tournevis à chaque extrémité: - Plat: 1.5, 2, 2.5mm - Phillips: PH000, 00, 0 - Torx: T4, 6, 7, 8, 10, 15 • Longueur: 120mm Seulement g39,16 CODE COMMANDE 412-1016 Coffrets de tournevis Seulement g3,33 CODE COMMANDE 125-7168 • Ressort Erem Magic intégré, breveté: tension constante du ressort, garanti plus de 1 millions d’opérations • Système de vissage autobloquant de très haute précision: mouvement libre, sans jeu des branches • coupe nette sans chevauchement des lames • Butée d’ouverture EMOS, limite d’ouverture Contenu : Tournevis plat (bout 2mm) Tournevis plat (bout 3mm) Tournevis plat (bout 4mm) Tournevis Phillips (bout PH00) Tournevis Phillips (bout PH0) des pointes à 5mm • Manche ergonomique pour un confort élevé et une bonne prise en main • Système de retenue des fils coupés • Lames trempées par induction avec une dureté Rockwell de 63-65 HRc • Protection ESD Micro-tech Seulement g3,13 CODE COMMANDE 132-8722 • AEF.J1 - Coffret de 5 tournevis dont 4 plat et 1phillips : AEF.1,5x35 - 1,8x35 - 2x35 - 2,5x35 et AEFP.00x35 • AEF.J3 - Coffret de 8 tournevis dont 5 plat et 3 phillips : AEF.2x75 - 2,5x75 - 3x75 - 3,5x75 - 4x75 et AEFP.00x75 - 0x75 - 1x75 • AEF.J2 - Coffret de 5 tournevis plat : 2x75 - 2,5x75 - 3x75 - 3,5x75 - 4x75 A partir de g23,40 CODE COMMANDE 352-2702 RoHS Conforme Non-conforme Commandez du lundi au vendredi de 8h30 à 19h pour une livraison gratuite le lendemain Prototypage 89 Circuits imprimés Seulement g246,76 CODE COMMANDE 133-2734 Seulement g374,00 CODE COMMANDE 133-2733● A partir de g4,04 CODE COMMANDE 126-7738● Seulement g597,00 CODE COMMANDE 126-7771● Contient: 25 pièces des longueurs suivantes: 0.1", 0.2", 0.3", 0.4", 0.5", 0.6", 0.7", 0.8",0.9", 1.0", 2.0", 3.0", 4.0" & 5.0" A partir de g2,71 CODE COMMANDE 147-2848● • Résine positive colorée bleue sans marbrure • Epoxy 1 ou 2 faces selon modèle • Epaisseur de résine : 2.5μ • Protection adhésive anti UV 147-2855 A partir de g6,00 CODE COMMANDE 147-2867● • Emballage individuel plastique • Garantie 5 ans 147-2848 Nbre de Code Prix Unitaire Format Face Réf. Fab. Commande 100 x 1601 AA16 126-7738● g4,04 200 x 3001 AA20 126-7739● g12,03 300 x 6001 AA60 126-7740● g33,98 100 x 1602 AB16 126-7741● g4,98 200 x 3002 AB20 126-7742● g15,95 300 x 6002 AB60 126-7743● g41,81 • Robuste (coffret tôle acier & PVC) • Contact sécurité à l’ouverture • Minuterie de 0 à 7 minutes faisant interrupteur avec bouton de commande • 2 tubes UV de 43 cm, 15W avec supports et 2 starters complets • 1 ballast pour alimenter les tubes, 1déflecteur, 1 glace de 3mm • Toutes les pièces détachées, visserie, cordon, fil de câblage • Mousse DCP18 pour BC6/BC10 460x200x40 en PUTN4F, 1 face adhésive AIR PULSE - BB4 • WJW-60B - 25 pieces par type de fil - 350 pièces de longueur et de couleur différentes • WJW-70B - 10 pieces par type de fil - 140 pièces de longueur et de couleur différentes • Large gamme de longueurs • Fils préformés de 22AWG isolés en PVC TECHNO 007 MR 147-2846 Réf. Fab. Code Commande Prix Unitaire BC10 133-2734 g246,76 DCP18 141-8448 g5,40 • Chauffage thermostaté avec thermomètre digital • Machine entièrement en PVC soudé • Robuste, idéale pour les collèges, lycées et labos • Surveillance de la gravure par transparence • S’utilise avec du perchlorure suractivé • Possibilité de juxtaposer 2 bacs (1 de chaque côté de la machine pour le révélateur et pour le rinçage) • Option : Fixation par pinces • Clapet anti-retour • Faible encombrement • Petite contenance • Visibilité du travail en cours • Accélération de la gravure grâce aux bulles • Temps de gravure 6 à 7 minutes avec un perchlorure de fer suractivé neuf à 25°C • Raccord pour l’aspiration des poussières de série • Grande surface utile de travail • Eclairage basse tension intégré • Descente de broche souple et précise 147-2850 Code Prix Unitaire Ref. Fab. Commande WJW-70B 147-2867● g6,00 WJW-60B 117-3677● g12,42 Format utile mm 200 x 300 Dimensions (LxlxH) mm 460 x 145 x 380 Masse net 3Kg Contenance 2.5 Litres Alimentation 220V Kit de connexion 147-2854 Format utile 180 x 400 mm Dimensions (LxlxH) mm 480 x 290 x 135 Masse net 5.5Kg Puissance 30 W Alimentation 230V - 50/60 Hz Caractéristiques techniques TECHNO 007 MR Vitesse de rotation réglable 10 000 à 33 000 tr/min Capacité Ø 0,8 à 3,2 mm Table de travail 250 x 150 mm Course de la broche 6 mm Dimensions extérieures 250 x 150 x 260 mm Masse nette 4,3 kg Puissance broche 125 W Raccordement électrique 230 V- 50/60 Hz Perceuse sensitive Machine à graver verticale Châssis d’insolation simple face à pression Cartes présensibilisées positives 16/10e - 35μ 147-2851 147-2852 147-2853 Caractéristiques de la série WB-1XX : • Carte montée sur une plaque d’aluminium • Contact à ressort bronze phosphore/argent nickel, 10 000 cycles • Permet l’insertion des broches de circuits traversant (DIP) • Gamme d’insertion acceptée: câble de 20-29AWG(psi 0.3-psi 0.8mm) • Matériau - plastique ABS Terminaison Distribution Code Commande Piste Trou Piste Trou Borne Borne alim. 147-2848 — — 2 200 — — 147-2850 1 640 — — — — 147-2846 1 640 1 100 — — 147-2853 2 1280 4 400 3 4 147-2852 2 1280 3 300 3 4 147-2851 2 1280 1 100 2 4 147-2854 3 1920 5 500 4 5 147-2855 4 2560 7 700 4 5 Code Prix Unitaire Taille Réf. Fab. Commande 175 x 15 x 10 mm WB-DJ 147-2848● g2,71 175 x 42 x 10 mm WB-TJ 147-2850● g4,89 175 x 53 x 10 mm WB-101J 147-2846● g6,19 185 x 110 x 10 mm WB-102L 117-3684● g19,25 220 x 150 x 31 mm WB-104+J 147-2853● g15,49 220 x 150 x 31 mm WB-104-1+J 147-2852● g14,56 220 x 120 x 31 mm WB-104-3+J 147-2851● g12,31 240 x 195 x 31 mm WB-106+J 147-2854● g16,74 260 x 240 x 31 mm WB-108+J 147-2855● g22,22 Plaques d’expérimentation - Série WB-1xx Tous les prix de cette brochure sont en euros hors TVA www.farnell.fr Tél.: 04 74 68 99 99 Fax: 04 74 68 99 90 Prototypage 90 Circuits imprimés A partir de g0,48 CODE COMMANDE 146-6875● A partir de g0,56 CODE COMMANDE 146-6942● A partir de g0,184 CODE COMMANDE 146-6825● A partir de g0,139 CODE COMMANDE 146-6721● Pour synthétique thermoplastique Matériau: acier cimentél Plaquage: plaqué Zinc μm (A2E) Entretoise de Type B Mâle - Femelle Code Prix Unitaire L. Ext.L. FiletageRéf. Fab. Commande Acier 5 5 05.02.051146-7010● g0,154 8.5 4.2 05.02.081146-7011● g0,330 10 5 05.02.101146-7012● g0,230 12 6 05.02.121146-7014● g0,230 15 6 05.02.151146-7015● g0,270 20 6 05.02.201146-6790● g0,240 30 6 05.02.301146-6821● g0,630 Laiton 4 4 05.02.043146-6721● g0,139 7 7 05.02.073146-6730● g0,154 4 4 05.02.083146-6740● g0,169 10 5 05.02.103146-6750● g0,154 11 5.5 05.02.113146-6760● g0,240 12 6 05.02.123146-6771● g0,184 15 6 05.02.153146-6780● g0,200 20 6 05.02.203146-6801● g0,240 25 6 05.02.253146-6810● g0,260 30 6 05.02.303146-6831● g0,240 Montage articulé pour une variété d’application, pour des tests, ils peuvent être placés dans différents angles. • Support de montage avec autocollant (épaisseur 0,8 mm) fait de mousse de polyuréthane et colle acrylique double-face (UL-listed Card File MH 16770) • Epaisseur de PCB 1.6 mm • Trou Ø 4.0 mm • Matériau: polyamide 6.6, 7 RMS-01 UL94 V-2 carte jaune E41938 Code Prix Unitaire Réf. Fab. L. A (mm) Commande Avec support de montage 06.21.046 4.8 146-6936● g0,59 06.21.066 6.4 146-6937● g0,57 06.21.096 9.5 146-6939● g0,59 06.21.126 12.7 146-6941● g0,60 Sans support de montage 06.21.404 4.8 146-6942● g0,56 06.21.406 6.4 146-6943● g0,56 06.21.409 9.5 146-7008● g0,56 06.21.412 12.7 146-6944● g0,59 Code Prix Fem-Fem Réf. Fab. Commande Unitaire Filetage L. M P Taille cléProf. filetage M3 1010.010.05.5 05.23.203146-6789● g1,39 M3 2010.010.05.5 5 05.23.201146-6779● g2,45 M3 2510.015.05.5 5 - 7 05.23.251146-6799● g2,39 M4 2512.512.57.0 8 - 8 05.24.251146-6809● g2,49 M5 3015.015.010.0 10 - 10 05.25.301146-6820● g3,06 M6 3015.015.010.0 10 - 10 05.26.301146-6830● g2,96 Mâle - FemL. M A Taille cléProf. filet.Taraud. M3 159.0 6.0 5.5 5 6 05.28.315146-6840● g1,94 M3 2010.010.05.5 6 6 05.28.320146-6850● g1,75 M3 2115.06.0 5.5 6 6 05.28.321146-6861● g2,10 M3 2515.010.05.5 6 6 05.28.325146-6862● g1,81 M3 2512.512.57.0 7 7 05.28.425146-6863● g1,60 Entretoise Hex M 2,5 Matériau • Acier 9SMnPb28K (conforme DIN 1.0718) • Laiton CuZn40Pb2 (conforme DIN 2.0402) Plaquage conforme DIN 267 • Plaqué Zinc 5μm (A2E) • Plaqué Nickel 3 μm (E1E) Tolérance de Production • Taille Hex conforme DIN 7168 medium (medium ±0.15 mm) • Longueur demi butée ca. ±0.25 mm • Filetage selon DIN 13 part 13 • Gorge de filetage conforme DIN 76 • Extrêmité du filetage similaire au DIN 85 (point plat) Code Prix Unitaire Réf. Fab. Commande 05.20.208 146-6870● g0,50 05.20.210 146-6871● g0,50 05.20.215 146-6873● g0,53 05.20.218 146-6874● g0,53 05.20.308 146-6875● g0,48 05.20.310 146-6876● g0,57 05.20.312 146-6877● g0,56 05.20.320 146-6878● g0,53 05.20.325 146-6879● g0,71 05.20.330 146-6880● g0,74 Description LCBSB CBSB Epaisseur de PCB 1.6 1.6 Trou PCB 4.0 4.0 Code Prix Unitaire Réf. Fab. Commande 05.12.053 146-6814● g0,300 05.12.083 146-6825● g0,184 05.12.103 146-6834● g0,240 05.12.123 146-6844● g0,260 05.12.173 146-6854● g0,300 Filetage Taille Dimensions en mm Acier Code G 1 G 2 clé Long. Interne Externe Plaqué Zinc Commande M 2.5 Ø 2.5 5 8.0 6 5 05.20.208 146-6870 M 2.5 Ø 2.5 5 10.0 7 5 05.20.210 146-6871 M 2.5 Ø 2.5 5 12.0 7 5 05.20.215 146-6873 M 2.5 Ø 2.5 5 15.0 7 5 05.20.218 146-6874 M 3 Ø 3 5.5 8.0 6 6 05.20.308 146-6875 M 3 Ø 3 5.5 10.0 8 6 05.20.310 146-6876 M 3 Ø 3 5.5 12.0 8 6 05.20.312 146-6877 M 3 Ø 3 5.5 20.0 8 6 05.20.320 146-6878 M 3 Ø 3 5.5 25.0 8 6 05.20.325 146-6879 M 3 Ø 3 5.5 30.0 8 6 05.20.330 146-6880 Entretoise articulée Entretoise Hex autotaraudeuse / Mâle - Femelle Entretoise Hex M 2,5 Entretoise, support de carte avec autocollant - LCBSB Le numéro 1 mondial des fabricants de DC/DC Le 3 septembre 2007, Murata complète et fi nalise l’ achat de la division électronique (PED) de C&D Technologies à la pointe de l’innovation depuis plus de 100 ans dans le domaine de la puissance. Ce nouvel ensemble constitue le numéro un mondial dans la fabrication de convertisseurs DC/DC et se classe au 5ème rang mondial des fabricants d’alimentations (AC/DC et DC/DC). Mesdames et Messieurs, Levons nos verres et trinquons à la naissance d’une nouvelle force dans le monde de la conversion d’énergie. P O W E R E L E C T R O N I C S D I V I S I O N Série UQQ 4 :1 large gamme d’entrée rendement élevé, 100W convertisseurs DC/DC au format 1/4 de brique. Série NMJ Format SIP miniature l’encombrement le plus faible du marche convertisseurs DC/DC 1W et certifi cations UL. Série D1U Alimentation AC/DC ultra compacte délivrant 2000W dans un format standard 1U. Les derniers produits: Pour plus de détails sur ces nouveaux produits et sur l’ensemble de notre gamme comprenant plus de 3000 références rendez-vous sur notre site web: www.murata-ps.com Tel: +33 (0)1 34 60 01 01 Fax: +33 (0)1 30 58 21 30 POWER ELECTRONICS DIVISION www.murata-ps.com Anciennement: Tous les prix de cette brochure sont en euros hors TVA www.farnell.fr Tél.: 04 74 68 99 99 Fax: 04 74 68 99 90 Hammond 92 Boîtiers Poignées noires pour chaque taille et kit de montage arrière pour le modèle de profondeur 457 mm disponibles séparément. Réf. Couleur Dimensions hors tout (mm) Prix Unitaire Réf. Couleur Dimensions hors tout (mm) Prix Unitaire Fab. du Boîtier H l P Code Commande Fab. du Boîtier H l P Code Commande Standard A poignées 1457C801 Clair 30.9 59 80 151-1095● g16,78 1457C802 Clair 30.9 59 80 151-1109● g17,33 1457C801BK Noir 30.9 59 80 151-1096● g16,78 1457C802BK Noir 30.9 59 80 151-1110● g17,33 1457C1201 Clair 30.9 59 120 151-1097● g18,70 1457C1202 Clair 30.9 59 120 151-1111● g19,18 1457C1201BK Noir 30.9 59 120 151-1098● g18,70 1457C1202BK Noir 30.9 59 120 151-1112● g19,18 1457K1201 Clair 44.1 84 120 151-1100● g24,08 1457K1202 Clair 44.1 84 120 151-1113● g24,65 1457K1201BK Noir 44.1 84 120 151-1101● g24,08 1457K1202BK Noir 44.1 84 120 151-1114● g24,65 1457K1601 Clair 44.1 84 160 151-1102● g26,78 1457K1602 Clair 44.1 84 160 151-1115● g27,45 1457K1601BK Noir 44.1 84 160 151-1103● g26,78 1457K1602BK Noir 44.1 84 160 151-1116● g27,45 1457N1201 Clair 54.6 104 120 151-1104● g26,72 1457N1202 Clair 54.6 104 120 151-1118● g27,33 1457N1201BK Noir 54.6 104 120 151-1106● g26,72 1457N1202BK Noir 54.6 104 120 151-1119● g27,33 1457N1601 Clair 54.6 104 160 151-1107● g29,49 1457N1602 Clair 54.6 104 160 151-1120● g30,13 1457N1601BK Noir 54.6 104 160 151-1108● g29,49 1457N1602BK Noir 54.6 104 160 151-1121● g30,13 Réf. Dimensions Prix Unitaire Réf. Dimensions Prix Unitaire Fab. H (U) P (mm) Code Commande Fab. H (U) P (mm) Code Commande Non-ventilé RM1U1918VBK 1 457 151-1133● g165,73 RM1U1908SBK 1 203 151-1122● g102,61 RM2U1908VBK 2 203 151-1134● g128,96 RM1U1913SBK 1 330 151-1123● g123,54 RM2U1913VBK 2 330 151-1135● g157,36 RM1U1918SBK 1 457 151-1124● g156,33 RM3U1908VBK 3 203 151-1136● g152,74 RM2U1908SBK 2 203 151-1125● g122,33 RM3U1913VBK 3 330 151-1137● g184,76 RM2U1913SBK 2 330 151-1126● g147,68 Accessoires RM3U1908SBK 3 203 151-1127● g146,13 1427B2BK 1 Poignée 151-1138● g8,96 RM3U1913SBK 3 330 151-1128● g175,06 1427E1BK 2 Poignée 151-1139● g11,53 Ventilé 1427P1BK 3 Poignée 151-1140● g15,81 RM1U1908VBK 1 203 151-1131● g107,48 RM1U18BRKT Modèle 457mm Kit de brides 151-1141● g35,62 RM1U1913VBK 1 330 151-1132● g130,20 Couleur Dimensions Réf. Fab. Code Commande Prix Unitaire (mm) Sans compartiment piles Noir 117x79x24 1553BBKBK 151-1156● g6,51 Bleu 117x79x24 1553BTBUBK 151-1157● g6,51 Rouge 117x79x24 1553BRDBK 151-1158● g6,51 Jaune 117x79x24 1553BYLBK 151-1159● g6,51 Noir 147x89x24 1553DBKBK 151-1160● g7,11 Bleu 147x89x24 1553DTBUBK 151-1161● g7,11 Rouge 147x89x24 1553DRDBK 151-1162● g7,11 Jaune 147x89x24 1553DYLBK 151-1163● g7,11 Avec compartiment piles Noir 117x79x24 1553BBKBKBAT 151-1164● g9,70 Bleu 117x79x24 1553BTBUBKBAT 151-1165● g9,70 Rouge 117x79x24 1553BRDBKBAT 151-1167● g9,70 Jaune 117x79x24 1553BYLBKBAT 151-1168● g9,70 Noir 147x89x24 1553DBKBKBAT 151-1169● g10,77 Bleu 147x89x24 1553DTBUBKBAT 151-1170● g10,77 Rouge 147x89x24 1553DRDBKBAT 151-1171● g10,77 Jaune 147x89x24 1553DYLBKBAT 151-1172● g10,77 Coffrets aluminium Boîtiers de commande ABS Boîtiers aluminium 19" Série 1457 Série RM • Convient à la protection des cartes électroniques ou des interfaces entre appareils. • Version standard ou à poignées disponibles. IP65 • Livrés avec accessoires et patins caoutchouc autocollants • Design ergonomique • 2 versions (avec ou sans compartiment piles) - en 2 tailles et 2 couleurs • Moulé en plastique ABS et coque en plastique gris souple • Retrait prévu pour l’insertion d’un clavier menbrane • Guides-cartes moulés dans le boîtier • Panneau avant démontable et accessoires d’assemblage • La version avec compartiment piles est livrée avec 4 clips (pour 2 piles AA) et un clip 9V (pour PP3) • Disponibles en 2 couleur, gris clair (RAL 7035) ou noir (RAL 9011) - et coque en plastique gris (RAL 7012) Boîtier de table pour instrument / Rack 19 ". Chassis en aluminium léger extrudé de haute résistance. Panneaux (chassis et capot) et brides amovibles (inclus, mais facultatif). Deux versions disponibles avec panneaux ventilés ou non. Les deux panneaux (supérieur et inférieur) sont ajourés sur la version ventilée. Livré en pièces détachées avec un montage / démontage simple. Disponible en finition noire. RoHS Conforme Non-conforme Commandez du lundi au vendredi de 8h30 à 19h pour une livraison gratuite le lendemain Multicomp 93 Ventilateurs Dimensions Tension Débit Bruit dBA à Code Prix Unitaire H x L x P Vcc Puissance (W) m3/h 1m Commande 40 x 40 x 20 12 1 12 26 960-6645● g14,30 40 x 40 x 20 24 0.96 10.53 25 960-6653● g17,17 60 x 60 x 25 12 1.4 30.6 31 960-6661● g17,09 60 x 60 x 24 24 1.9 30.6 31 960-6670● g18,61 80 x 80 x 25 12 2 59 32 960-6688● g14,72 80 x 80 x 25 24 1.4 59 32 960-6696● g17,03 92 x 92 x 25 12 2.1 76 34 960-6700● g16,94 92 x 92 x 25 24 2.9 76 34 960-6718● g18,11 119 x 119 x 25 12 3.6 136 41 960-6726● g23,48 119 x 119 x 25 24 4.8 136 42 960-6734● g12,21 119 x 119 x 38 12 6.8 183 42 960-6742● g25,85 119 x 119 x 38 24 5.5 167 36 960-6750● g24,88 Tension (V c.a.) Puissance (W) Débit Bruit Code Prix Unitaire m3/h dBA á 1m Roulements Commande 80mm, standard 115 12 51 35 SB 960-6599● g22,11 230 14 51 35 BB 960-6238● g10,61 119mm, faible bruit 115 11 129 38 SB 960-6602● g10,86 230 11 129 38 SB 960-6610● g21,73 119mm, standard 115 18 178 48 SB 960-6629● g23,36 230 18 182 50 SB 960-6637● g23,36 Dimensions (mm) Tension Puissance Débit Bruit Type de Vitesse Code Prix Uniaire H L P V ca Watts m3/h dB(A) Roulement tr/min Commande 80 80 25 115 11 37 34 BB 2450 960-6530● g22,45 80 80 25 230 14 37 34 BB 2450 960-6548● g22,45 80 80 38 115 14 40.8 32 BB 2400 156-8419● g16,71 80 80 38 115 12 51 35 SB 2450 960-6599● g22,11 80 80 38 230 14 51 35 BB 2675 960-6238● g10,61 92 92 25 115 12 63 40 BB 2350 960-6556● g11,06 92 92 25 230 14 63 40 BB 2350 960-6564● g22,11 92 92 25 115 7 39 31 BB 1800 156-8420● g16,71 92 92 25 240 14 59.5 38 BB 2700 156-8421● g16,71 119 119 25 115 18 133 46 BB 2150 960-6572● g12,57 119 119 25 230 18 133 46 BB 2150 960-6580● g25,13 119 119 38 115 11 129 38 SB 2150 960-6602● g10,86 119 119 38 115 18 178 48 SB 2150 960-6629● g23,36 119 119 38 230 11 129 38 SB 2150 960-6610● g21,73 119 119 38 230 18 182 50 SB 2150 960-6637● g23,36 120 120 25 115 12.5 79.9 37 BB 1700 156-8422● g16,71 120 120 25 240 13 91.75 40 BB 1900 156-8423● g16,71 120 120 38 115 11 132.5 39 BB 2300 156-8424● g16,71 120 120 38 115 20 147.8 45 BB 2750 156-8426● g16,71 120 120 38 240 10 122.3 37 BB 2150 156-8427● g16,71 120 120 38 240 20 147.8 45 BB 2750 156-8428● g16,71 Code Prix Unitaire Code Prix Unitaire Protège-doigts Commande 160mm, Métal 112-4763● g4,85 40mm, Métal 112-4757● g3,05 Grilles et filtres 60/62mm, Métal 112-4759● g3,25 60/62mm 117-1799● g15,63 80mm, Métal 112-4760● g3,51 80mm 117-1791● g19,14 80mm, Plastique 112-4771● g2,60 119mm 117-1796● g17,79 92mm, Métal 112-4761● g3,68 160mm 117-1808● g22,26 92mm, Plastique 112-4774● g1,33 Filtres de remplacement (Pqt 5) 119mm, Métal 112-4762● g3,88 60/62mm 117-1801● g2,25 119mm, Plastique 112-4772● g2,93 80mm 117-1797● g1,92 127mm, Métal 112-4773● g2,83 119mm 117-1798● g2,60 135mm, Métal 117-1803● g7,18 160mm 117-1809● g3,55 80mm 119mm Hauteur 80 119 Largeur 80 119 Epaisseur 38 38 Ø Découpe 77 116 Entraxe Fixations 71.5 x 71.5 105 x 105 Ø trous 4.3 4.3 Dimensions Puissance Débit Bruit Code Prix Unitaire H x L x P Type W m3/h dBA à 1m Commande 25 x 25 x 6 Faible bruit, 25mm 0.4 2.04 21 960-6114● g13,53 25 x 25 x 6 Standard,25mm 0.6 2.72 29 960-6106● g13,53 30 x 30 x 6 Faible bruit,30mm 0.45 4.07 20 960-6149● g13,53 30 x 30 x 6 Standard,30mm 0.65 5.1 25 960-6130● g13,53 40 x 40 x 6 Faible bruit,40mm 0.5 7.39 22 960-6173● g13,53 40 x 40 x 6 Standard,40mm 0.7 9.34 26 960-6165● g13,53 Ventilateurs plats, c.a. Ventilateurs miniatures Températures-10°C à +70°C Durée de vie >50000 hours à 40°C Ventilateur secteur c.a. Protège-doigts et grilles 5V c.c. 40mm 60mm 80mm 92mm 119mm Hauteur 40 60 80 92 119 Largeur 40 60 80 92 119 Epaisseur 20 25 25 25 25 Ø Découpe 38 58 77 89 116 Entraxe Fixation 32 x 32 50 x 50 71.5 x 71.5 82.5 x 82.5 104.8 x 104.8 Ø trous 4.5 4.5 4.5 4.3 4.3 112-4759 Axial Ventilateurs c.c. 112-4771 • Vendu avec fils volants • Pales en plastique UL94V-0 • Approuvé CSA et Reconnu UL • Protégé contre les surcharges • Roulement à palliers lisses (SB) ou roulement à billes (BB) • Ventilateurs miniatures 25, 30 et 40mm • Moteur monobobine 8 poles sans balai • Protégés contre le blocage du rotor • Roulement à billes de précision • Durée de vie 50000hrs • Température de -10°C à +70°C 40mm - 60mm - 80mm - 92mm - 119mm 112-4763 40mm 112-4760 60mm 117-1799 80mm 112-4761 92mm 112-4762 119mm • Ventilateurs économiques, faible bruit à roulements à billes et moteur sans balai • Cadre et pales en plastique UL94V-0 • Connexions par fils 22AWG de 300mm Tous les prix de cette brochure sont en euros hors TVA www.farnell.fr Tél.: 04 74 68 99 99 Fax: 04 74 68 99 90 Apem 94 Commutateurs Configuration de contact: 1N/O Pouvoir de coupure max. avec charge résistive: 2A / 24Vcc Résistance de contact initiale: 100mΩ maxi. Résistance d’isolement: >100MΩ sous 500Vcc Rigidité diélectrique: 1000Vca eff. Durée de vie électrique: 1000000 cycles en charge Epaisseur panneau: 5.0mm maxi. Course totale: 1.5mm Force de manoeuvre: 6.5N Température d’utilisation: -20°C à +65°C Matériau contact: Argent Matériau corps: Thermoplastique Matériau bouton: Polyuréthane Etanchéité des sorties: Résine époxy Poussoirs bas profil Valeur nominale des contacts 50mA à 24V Résistance des Contacts 10Ohm (Max.) Durée de vie 1000000 Cycles par touche Force d’opération 0.5N Course 0.5mm Gamme de température -20 à 70°C Inensité nominale 6A à 250V ac Type de Contact Inverseur Levier ±12° à partir du centre Durée de vie ≥5000000 Opérations Montage par canon 22mm Bush Gamme de température -20 à 50°C Configuration de contact: 1NO Pouvoir de coupure max. avec charge résistive: 48Vcc / 2A Résistance de contact initiale: 10mΩ maxi. Résistance d’isolement: >1000MΩ sous 500Vcc Rigidité diélectrique: 2000V eff. 50Hz entre sorties et masse Durée de vie électrique: 10000 cycles en charge Epaisseur panneau: 1.0mm min. - 11.0mm max. Découpe panneau: 19.2mm Durée de vie mécanique: 1000000 cycles Température d’utilisation: -30°C à +70°C Matériau contact: Laiton argenté Matériau corps: PBT Matériau bouton: Laiton nickelé Configuration de contact: 1NO Pouvoir de coupure max. avec charge résistive: 250Vca / 5A Résistance de contact initiale: 100mΩ maxi. Résistance d’isolement: >1000MΩ sous 500Vcc Rigidité diélectrique: 2000V eff. 50Hz entre sorties et masse Durée de vie électrique: 1000000 cycles (sous 1A 250Vca), 50000 en charge maxi. Epaisseur panneau: 1.0mm min. - 6.0mm max. Découpe panneau: 22.2mm Durée de vie mécanique: 3000000 cycles Température d’utilisation: -20°C à +55°C Matériau contact: Laiton argenté Matériau corps: PBT Matériau bouton: Laiton nickelé Clavier Métal - IP67 Joystick montage panneau Découpe Code Prix Unitaire Type de bouton panneau Réf. Fab. Commande Bombé 16.2mm AV1630C940 108-2435● g16,80 Plat 16.2mm AV0630C940 108-2430● g14,14 Bombé chanfreiné 16.2mm AV0830C940 108-2431● g17,92 Plat 19.2mm AV091003C900 108-6627● g10,58 Bombé 19.2mm AV191003C900 108-6628● g10,00 Bombé 22.2mm AV021003C900 108-6629● g13,27 Plat 22.2mm AV031003C900 108-6630● g15,53 Poussoirs de sécurité Série IA Eclairé et non-éclairé Poussoirs de sécurité • Poussoirs bas profil unipolaires à bouton plastique Ø22mm - Série AV IP 65 • Résistants au gel, au sable et aux hydrocarbures • Etanchéité frontale IP67 • Effet tactile • Sorties à fil • Découpe du panneau: Ø16.2mm • Pas mini. pour montage en matrice: 20 x 20mm • Accessoires fournis en standard: 1 écrou hexagonal et 1 joint torique • Esthétiques, robustes et endurants: -Inarrachables -Anti-blocage : jeu réduit pour éviter l’insertion de corps étrangers -Contact et mécanisme protégés contre l’écrasement -Résistants au feu -Longue durée de vie • Etanchéité frontale: IP65 • Design moderne • Montage à visser ou par canon 22mm • Construction basée sur l’utilisation du microrupteur V4 • Poignée conique noire en Nylon • Vendu avec un joint PVC Ø16, Ø19 et Ø22mm - Série AV 12 Touches - H = 13.7 (hors tout), l = 70, P = 70.4mm Seulement g14,45 CODE COMMANDE 108-6644● Seulement g34,06 CODE COMMANDE 108-6631● • Esthétiques, robustes et endurants: -Inarrachables -Anti-blocage : jeu réduit pour éviter l’insertion de corps étrangers -Contact et mécanisme protégés contre l’écrasement -Résistants au feu -Longue durée de vie • Indices de protection (poussoirs montés sur panneau vertical): IP54 Seulement g19,04 CODE COMMANDE 142-8454● 16 Touches - H = 12.1 (hors tout), l = 82, P = 70.4mm Ces claviers en acier inoxydable sont particulièrement résistants aux environnements sévères, aux conditions climatiques extrêmes, au vandalisme et à la salisure. Ils se composent d’une série de touches en acier inoxydable. Les versions lumineuses sont équipées de LED produisant une lumière jaune. Code Prix Unitaire Couleur Réf. Fab. Commande Bleu IAR3F1100 108-6644● g14,45 Noir IAR3F1200 108-6645● g12,35 Vert IAR3F1300 108-6646● g14,45 Rouge IAR3F1600 108-6648● g14,45 Blanc IAR3F17/100 108-6651● g14,45 Orange IAR3F1900 108-6652● g14,45 A partir de g52,71 CODE COMMANDE 139-0613● Réf. Prix Unitaire Description Fab. Code Commande Non-éclairé 12 Touches - 4 x 3 T12PQR 139-0613● g52,71 16 Touches - 4 x 4 T16PQR 139-0615● g69,86 Eclairé 12 Touches - 4 x 3 T12PQRL 139-0614● g63,63 16 Touches - 4 x 4 T16PQRL 139-0616● g84,63 RoHS Conforme Non-conforme Commandez du lundi au vendredi de 8h30 à 19h pour une livraison gratuite le lendemain Omron 95 Connecteurs A partir de g1,74 CODE COMMANDE 143-0942● A partir de g1,48 CODE COMMANDE 143-0935● A partir de g2,17 CODE COMMANDE 143-0928● A partir de g1,90 CODE COMMANDE 143-0933● A partir de g0,73 CODE COMMANDE 111-2555● • Connecteur Smartclick : pour réduire le temps d’installation • Dispositif de verrouillage compatible avec les connecteurs traditionnels M12 à vis • Verrouillage en seulement 1/8ème de tour • Clic positif pour confirmer le bon verrouillage • Offre la même protection (IP67) que les connecteurs traditionnels M12 à vis • Disponible en câble standard (terminaison A) ou type robot, anti-vibration (terminaison F) Pas de 0.5mm ZIF, Type verrouillage arrière rotatif Pas de 0.5mm - Série XF2U Pas de 0.5mm - Série XF2L Pas de 0.3mm - Série XF2C L. câble Nbre voies Connexion A Connexion B Réf. Fab. Code Commande Prix Unitaire 1m 4 M12 Mâle M12 Fem XS5WD421C81A 153-8239● g16,60 2m 4 M12 Mâle M12 Fem XS5WD421D81A 153-8241● g22,13 3m 4 M12 Mâle M12 Fem XS5WD421E81A 153-8242● g24,32 5m 4 M12 Mâle M12 Fem XS5WD421G81A 153-8243● g28,68 10m 4 M12 Mâle M12 Fem XS5WD421J81A 153-8244● g38,11 1m 4 M12 Mâle M12 Fem XS5WD421C81F 153-8245● g20,69 2m 4 M12 Mâle M12 Fem XS5WD421D81F 153-8246● g23,23 3m 4 M12 Mâle M12 Fem XS5WD421E81F 153-8247● g25,40 5m 4 M12 Mâle M12 Fem XS5WD421G81F 153-8248● g30,85 10m 4 M12 Mâle M12 Fem XS5WD421J81F 153-8249● g39,93 0.3m 4 M12 Mâle Câble XS5HD421A80A 153-8250● g9,97 1m 4 M12 Mâle Câble XS5HD421C80A 153-8252● g9,97 2m 4 M12 Mâle Câble XS5HD421D80A 153-8253● g13,42 3m 4 M12 Mâle Câble XS5HD421G80A 153-8254● g19,24 5m 4 M12 Mâle Câble XS5HD421J80A 153-8255● g34,47 1m 4 M12 Fem Câble XS5FD421C80A 153-8256● g9,97 2m 4 M12 Fem Câble XS5FD421D80A 153-8257● g9,97 3m 4 M12 Fem Câble XS5FD421E80A 153-8258● g15,25 5m 4 M12 Fem Câble XS5FD421G80A 153-8259● g17,33 10m 4 M12 Fem Câble XS5FD421J80A 153-8260● g30,85 0.3m 4 M12 Mâle Câble XS5HD421A80F 153-8261● g9,97 1m 4 M12 Mâle Câble XS5HD421C80F 153-8262● g11,73 2m 4 M12 Mâle Câble XS5HD421D80F 153-8264● g15,33 5m 4 M12 Mâle Câble XS5HD421G80F 153-8265● g24,26 1m 4 M12 Fem Câble XS5FD421C80F 153-8266● g9,97 2m 4 M12 Fem Câble XS5FD421D80F 153-8267● g13,07 3m 4 M12 Fem Câble XS5FD421E80F 153-8268● g16,69 5m 4 M12 Fem Câble XS5FD421G80F 153-8269● g19,96 10m 4 M12 Fem Câble XS5FD421J80F 153-8270● g32,66 Pas de 0.5mm - Série XF2J • Connecteur ultra mince - profondeur de 3.5mm • Les contacts à doubles côté • Plaqué Or, épaisse FPC de 0.2mm • Système de verrouillage • Profondeur de 4mm • Contact en haut • Tolérance d’insertion : 10 fois Tension Courant Température nominale nominal Protection d’utilisation 250V dc 4A IP67 -25 à 70°C Nbre de Voies Réf. Fab. Code Commande Prix Unitaire 10 XF2M10151A 111-2555● g0,73 20 XF2M20151A 111-2558● g0,99 24 XF2M24151A 111-2559● g1,19 30 XF2M30151A 111-2560● g1,40 35 XF2M35151A 111-2561● g1,47 40 XF2M40151A 111-2562● g1,59 45 XF2M45151A 111-2563● g2,34 50 XF2M50151A 111-2564● g1,84 • Verrouillage securisé • Bas profil, déplacement de seulement 4.15mm sur la carte • Tolérence d’insertion : 30 fois • Bas profil d’une épaisseur de seulement 1.2m • Verrouilage sécurisé • Tolérance d’insertion : 20 fois • Contacts vers le bas Connecteurs étanches pour E/S de capteur Intensité nominale 0.5A Boîtier Résine LCP, Naturelle Tension nominale 50V dc Glisseur Résine LCP, Noire Résistance des Contacts40mΩ(max) ContactsPlaqué Or Résistance d’isolement 100MOhm (at 250V DC) Nbre de Voies Réf. Fab. Code Commande Prix Unitaire 10 XF2L-1035-1A 143-0928● g2,17 18 XF2L-1835-1A 143-0929● g2,43 22 XF2L-2235-1A 143-0930● g2,52 30 XF2L-3035-1A 143-0931● g2,60 Nbre de VoiesRéf. Fab. Code Commande Prix Unitaire Terminaison standard 6 XF2J-0624-11A 143-0935● g1,48 12 XF2J-1224-11A 143-0936● g1,57 20 XF2J-2024-11A 143-0937● g1,83 30 XF2J-3024-11A 143-0938● g2,01 Terminaison inversée 6 XF2J-0624-12A 143-0939● g1,48 12 XF2J-1224-12A 143-0940● g1,57 20 XF2J-2024-12A 143-0941● g1,83 Nbre de Voies Réf. Fab. Code Commande Prix Unitaire 29 XF2C-2955-41A 143-0933● g1,90 39 XF2C-3955-41A 143-0934● g2,60 Nbre de Voies Réf. Fab. Code Commande Prix Unitaire 4 XF2U-0415-3A 143-0942● g1,74 11 XF2U-1115-3A 143-0943● g1,90 20 XF2U-2015-3A 143-0945● g2,01 30 XF2U-3015-3A 143-0946● g2,08 40 XF2U-4015-3A 143-0947● g2,17 Contacts Alliage de cuivreRésistance des Contacts30mΩ max Plaquage Or Gamme de température -30°C à +85°C Courant nominal0.5 Tension nominale 50°C Connecteurs FPC - Séries XF2M Contacts Alliage de cuivre Plaquage Or Courant nominal 0.5A Contacts Alliage de cuivreRésistance des Contacts80mΩ max Plaquage Or Gamme de température -30°C à +85°C Courant nominal0.2A Tension nominale 50A Contacts Alliage de cuivreRésistance des Contacts80mΩ max Plaquage Or Gamme de température -30°C à +85°C Taux de courant0.5A Tension nominale 50V Connecteurs bas profil - FFC Connecteurs Rotary Backlock Type ZIF Connecteurs bas profil - FFC 􀁅􀁦􀁪􀀗􀁪􀁦􀁣􀁬􀁫􀁠􀁦􀁥􀁪􀀗􀁄􀁀􀁃􀀤􀁊􀁇􀀼􀀺􀀗 􀀻􀁜􀁪􀀗􀁤􀁠􀁣􀁣􀁠􀁜􀁩􀁪􀀗􀁛􀁜􀀗􀁚􀁦􀁥􀁥􀁜􀁚􀁫􀁜􀁬􀁩􀁪􀀗􀁘􀁪􀁪􀁜􀁤􀁙􀁣􀂄􀁪􀀗 􀁩􀂄􀁧􀁦􀁥􀁛􀁘􀁥􀁫􀀗􀁘􀁬􀁯􀀗􀁪􀁧􀂄􀁚􀁠􀃔􀀗􀁚􀁘􀁫􀁠􀁦􀁥􀁪􀀗􀁤􀁠􀁣􀁠􀁫􀁘􀁠􀁩􀁜􀁪 }􀀗 􀀗􀀺􀁦􀁥􀁥􀁜􀁚􀁫􀁜􀁬􀁩􀁪􀀗􀁛􀁜􀀗􀁟􀁘􀁬􀁫􀁜􀀗􀁨􀁬􀁘􀁣􀁠􀁫􀂄􀀗􀁀􀁋􀁋􀀗􀀺􀁘􀁥􀁥􀁦􀁥􀀗􀁜􀁫􀀗􀀸􀁤􀁧􀁟􀁜􀁥􀁦􀁣􀀗 }􀀗 􀀗􀀸􀁪􀁪􀁜􀁤􀁙􀁣􀂄􀁪􀀗􀁞􀁩􀁘􀁫􀁬􀁠􀁫􀁜􀁤􀁜􀁥􀁫􀀗􀁜􀁫􀀗􀁣􀁠􀁭􀁩􀂄􀁪􀀗􀁜􀁥􀀗􀁪􀁜􀁬􀁣􀁜􀁤􀁜􀁥􀁫􀀗􀀬􀀗􀁡􀁦􀁬􀁩􀁪􀀗 􀁦􀁬􀁭􀁩􀂄􀁪 }􀀗 􀀺􀁘􀁩􀁘􀁚􀁫􀂄􀁩􀁠􀁪􀁫􀁠􀁨􀁬􀁜􀁪􀀗􀁜􀁫􀀗􀃔􀀗􀁚􀁟􀁜􀁪􀀗􀁫􀁜􀁚􀁟􀁥􀁠􀁨􀁬􀁜􀁪􀀗􀁛􀁠􀁪􀁧􀁦􀁥􀁠􀁙􀁣􀁜􀁪􀀗 􀁧􀁦􀁬􀁩􀀗􀁚􀁟􀁘􀁨􀁬􀁜􀀗􀁧􀁩􀁦􀁛􀁬􀁠􀁫 􀀸􀁚􀁚􀂄􀁛􀁜􀁱􀀗􀁝􀁘􀁚􀁠􀁣􀁜􀁤􀁜􀁥􀁫􀀗􀁾􀀗􀁛􀁜􀁪􀀗􀁤􀁠􀁣􀁣􀁠􀁜􀁩􀁪􀀗􀁛􀁜􀀗􀁚􀁦􀁥􀁥􀁜􀁚􀁫􀁜􀁬􀁩􀁪􀀗 􀁄􀁀􀁃􀀤􀁊􀁇􀀼􀀺􀀗􀁞􀁩􀁿􀁚􀁜􀀗􀁾􀀗􀁥􀁦􀁪􀀗􀁞􀁘􀁤􀁤􀁜􀁪􀀗􀂄􀁫􀁜􀁥􀁛􀁬􀁜􀁪 􀀸􀀗􀁇􀁩􀁜􀁤􀁠􀁜􀁩􀀗􀀽􀁘􀁩􀁥􀁜􀁣􀁣􀀗􀀺􀁦􀁤􀁧􀁘􀁥􀁰 􀁉􀁜􀁫􀁩􀁦􀁬􀁭􀁜􀁱􀀗􀁥􀁦􀁫􀁩􀁜􀀗􀁞􀁘􀁤􀁤􀁜􀀗 􀁚􀁦􀁤􀁧􀁣􀂅􀁫􀁜􀀗􀁪􀁬􀁩􀀗􀀱􀀗􀁮􀁮􀁮􀀥􀁝􀁘􀁩􀁥􀁜􀁣􀁣􀀥􀁚􀁦􀁤 RoHS Conforme Non-conforme Commandez du lundi au vendredi de 8h30 à 19h pour une livraison gratuite le lendemain Câbles réseaux 97 Câbles Les monoconducteurs de câblage SILFLEX SiF sont des câbles avec une âme à brins fins en cuivre étamé spécialement conçus pour être utilisés dans les endroits où la température est élevée. Ces câbles sont très résistants contre les huiles, l’alcool, les alcalins et les solutions alées. Ces câbles sont sans halogène. • Quatre paires torsadées avec conducteurs en cuivre pleins plats (Bobine de 100m) Code Prix (Bobine de 100m) Code Prix Description Commande Unitaire Description Commande Unitaire FLAMEX SH20 0.6mm² 914-1812● g32,22 FLAMEX SH20 0.93mm² 914-1820● g45,78 FLAMEX SH20 1.82mm² 914-1847● g72,89 FLAMEX SH20 1.34mm² 914-1839● g63,33 FLAMEX SH20 2.61mm² 914-1855● g93,11 L’UNITRONIC® LAN STP/S-H PiMF 600 MHz CAT. 7 est destiné aux réseaux hauts débits. Constitué de 4 paires blindées séparément (PiMF) et d’un blindage général, il satisfait aux exigences des normes CLASS F et EN 50173 mais aussi ISO/IEC IS 11801. Ce câble est utilisable jusqu’à 600 MHz et offre un taux de transfert jusqu’à 622 MBit/s. • Gamme de températures de -50°C à 180°C max • Ame à brins fins en cuivre étamés • Isolation en Silicone • Vendu en bobine de 100m UNITRONIC LAN STP/S-H 1.2 GHz sont des câbles à haute vitesse de transmission de données au blindage par tresse en cuivre étamé (TP) CATEGORY 7, chaque paire est blindé en aluminium. Ces câbles satisfont aux exigences des normes prEN 50288- 4-1, Août 2000, à la norme EN 50173 et aussi ISO/IEC IS 11801. Le câble est conçu pour un Gigabit Ethernet 1000 BaseT, ATM 155/622 Mbit/s et d’autres standards, spécifiés jusqu’à 1.2 GHz. • Nouvelle gamme de câbles FLAMEX avec une nouvelle isolation mince zéro halogène SH20 • Excellente résistance mécanique, à l’abrasion, à la traction et à l’entaille, mais également très bon comportement face aux agents chimiques • Grande flexibilité et dénudage facilité • Ils ne propagent pas la flamme, ni l’incendie (normes NFC 32070/C2 & C1 et IEC 332 1/3) • Ils sont conformes à la norme NFF 63808 et EN 50306 • Ils sont particulièrement recommandés pour le câblage de matériel roulant ferroviaire et de tous les équipements intérieurs • Polyuréthane isolé et blindé avec du polyester recouvert d’aluminium avec fil de drain en cuivre de 0.4mm • gaine en PVC gris • Recommandé pour les applications LAN avec un débit de Couleur Code Commande Prix Par Bobine Couleur Code Commande Prix Par Bobine 0.25mm Violet 128-5940● g32,64 Vert/Jaune 128-5906● g27,06 Rose 128-5941● g32,64 Noir 128-5908● g27,06 Orange 128-5942● g32,64 Bleu 128-5909● g27,06 Rouge 128-5943● g32,64 Marron 128-5910● g27,06 Blanc 128-5945● g32,64 Jaune 128-5911● g27,06 Gris 128-5946● g32,64 Vert 128-5912● g27,06 1mm Violet 128-5913● g27,06 Vert/Jaune 128-5948● g39,21 Rose 128-5914● g27,06 Noir 128-5949● g39,21 Orange 128-5915● g27,06 Bleu 128-5950● g39,21 Rouge 128-5916● g27,06 Marron 128-5951● g39,21 Blanc 128-5917● g27,06 Jaune 128-5952● g39,21 Gris 128-5918● g27,06 Vert 128-5953● g39,21 0.5mm Violet 128-5954● g39,21 Vert/Jaune 128-5921● g25,21 Rose 128-5955● g39,21 Noir 128-5922● g25,21 Orange 128-5957● g39,21 Bleu 128-5923● g25,21 Rouge 128-5958● g39,21 Marron 128-5924● g25,21 Blanc 128-5959● g39,21 Jaune 128-5925● g25,21 Gris 128-5960● g39,21 Vert 128-5926● g25,21 1.5mm Violet 128-5927● g25,21 Vert/Jaune 128-5961● g54,43 Rose 128-5928● g25,21 Noir 128-5962● g54,43 Orange 128-5929● g25,21 Bleu 128-5963● g54,43 Rouge 128-5930● g25,21 Marron 128-5964● g54,43 Blanc 128-5931● g25,21 Jaune 128-5965● g54,43 Gris 128-5933● g25,21 Vert 128-5966● g54,43 0.75mm Violet 128-5967● g54,43 Vert/Jaune 128-5934● g32,64 Rose 128-5969● g54,43 Noir 128-5935● g32,64 Orange 128-5971● g54,43 Bleu 128-5936● g32,64 Rouge 128-5972● g54,43 Marron 128-5937● g32,64 Blanc 128-5973● g54,43 Jaune 128-5938● g32,64 Gris 128-5974● g54,43 Vert 128-5939● g32,64 Ref. Fab. Jauge AWG Section Composition Diam. ext. Couleur 914-1812 20 0.6mm² 19 x 0.20mm 1.50mm Jaune 914-1820 18 0.93mm² 19 x 0.25mm 1.75mm Blanc 914-1839 16 1.34mm² 19 x 0.30mm 2.00mm Vert 914-1847 14 1.82mm² 37 x 0.25mm 2.40mm Jaune 914-1855 14 2.61mm² 37 x 0.30mm 2.80mm Blanc transmission jusqu’à 100Mbps • Vérifié CE et EIA/TIA568 TSB36 ISO/IEC DIS11801 • Livré en bobine de 305m dans une boîte ’distributeur’ pour un transport et un stockage plus simple. • Disponible en PVC ou LSOH (Low Smoke Halogen) sans halogène • Conducteurs acier, 0.55mm, (23AWG) • Tresse en cuivre étamé • Plage de températures de -20°C à 70°C max • Isolation et gaine sans halogène • Vendu en bobine de 100m • Ame massive de section 22 AWG • Impédance de 100Ω • Gamme de températures de -20°C à 75°C max • Gaine non propagateur de flamme et sans halogène (LSZH) • Vendu en bobine de 100m Capacité de charge courante- Section 30 Ampères°C Diamètre extérieur 0.25mm² 4 1.9mm 0.5mm² 9 2.1mm 0.75mm² 12 2.4mm 1mm² 15 2.5mm 1.5mm² 18 2.8mm Monoconducteurs sans halogène nus Diamètre extérieur 8.7mm Impédance 1-10MHz @ 100Ω ±15Ω Diamètre conducteur 1.6mm 1-10MHz @ 100Ω ±15Ω Vitesse de propagation 78% 250-1000MHz @ 100Ω ±25Ω Capacité nominale 45nF/km Réf. Fab. Code Commande Prix Par Bobine 2170614 128-5784● g160,94 Bobine de 305m Couleur Code Commande Prix par bobine PVC 135-0505● g156,73 LSOH 135-0506● g179,34 Diamêtre Résistance Capacité mutuelle Impédance à Section extérieur Max.Ω /km (Nom. pF/M) f = ≥1MHz 0.24mm² 7.9mm 160 42 110Ω Monoconducteurs de câblage en silicone - Plage de température étendue Diamètre ext. (Nom.) 4.75mm Capacitance 50pF/m Série Flamex SH20 Réf. Fab. Code Commande Prix Par Bobine 2170615 128-5785● g242,52 Câble FTP Categorie 5E Unitronic LAN 1.2GHz Sans halogène Isolant à base de silicone - Silflex SiF UNITRONIC® LAN STP/S-H PiMF 600MHz CAT.7 Tous les prix de cette brochure sont en euros hors TVA www.farnell.fr Tél.: 04 74 68 99 99 Fax: 04 74 68 99 90 Jelt 98 Produits bureautiques • Nettoyant pour clavier et surface plastique • Elimine en douceur et en profondeur poussière et saleté de votre clavier • Effet antistatique • Biodégradable • Ecologique • Laisse un film protecteur antistatique • Utiliser avec un chiffon JELT • Aérosol de 650ml • Dépoussiérants hautes performances • Forte pression • Dépoussiérent les endroits les plus inaccessibles • Sec et pur à 99.9% • Utilisable sous tension • Ininflammable • Permet de décoller tous types d’étiquettes sur tous supports • Ne laisse aucune traces ni résidus • Séchage très rapide • Nettoyant rapide et efficace pour écrans fragiles tels que les écrans TFT, plats, écrans d’ordinateurs portables, LCD, PDA, projecteurs, surfaces vitrées etc. • De grandes propriétés anti-statiques, pas d’accumulation rapide des poussières • Absorbe la saleté, efface les traces de doigts et les tâches • Flacon pulvérisateur de 250ml • A utiliser avec les chiffons blancs ouatés Jelt (code commande: 361-9205) • Chiffons absorbants très résistants • Non pelucheux, spécifiquement étudiés pour le nettoyage du matériel informatique, des écrans, claviers et de toutes surfaces plastiques • Lingettes destinées au nettoyage et à la désinfection de toutes les surfaces lisses et non poreuses • Boîte distributrice de 100 lingettes • Action bactéricide, virucide et fongicide • Totalement ininflammable et sans silicone • Testé par le service d’expertises et d’hygiène hospitalière de l’Institut Pasteur • Compatible alimentaire • Applications : matériel informatique, téléphones, hygiaphones, accoudoirs de siège, chaises, poignées, boutons, interrupteurs, sanitaires etc... Code Prix Unitaire Réf. Fab. Commande 1+ Boîte de 100 lingettes 103880 382-9406 g8,15 Code Prix Unitaire Réf. Fab. Commande 1+ E-Net Vapo 6831 110-4911 g5,25 Chiffons blancs ouatés 3824 361-9205 g10,75 Code Prix Unitaire Réf. Fab. Commande 1+ Aérosol 650ml (500ml) 6301 361-9229 g11,75 Code Prix Unitaire Réf. Fab. Commande 1+ Clavier Net, 650ml 006834 149-3948 g7,00 Chiffons blancs ouates 3824 361-9205 g10,75 Code Prix Unitaire Réf. Fab. Commande 1+ Paquet (50 chiffons) 3824 361-9205 g10,75 Code Prix Unitaire Réf. Fab. Commande 1+ Gaz sec Aérosol 650ml (400 grs net) 6903 361-9060 g13,00 Gaz sec toutes positions Aérosol 650ml (300 grs net) 6910 361-9072 g13,00 Spray nettoyant pour écrans, E-Net Vapo Solvant pour étiquette Décolnet Nettoyant pour clavier, CLAVIER NET, 650ml Lingettes nettoyantes, désinfectantes Bactonet Chiffons blancs ouates Dépoussiérants Gaz sec RoHS Conforme Non-conforme Commandez du lundi au vendredi de 8h30 à 19h pour une livraison gratuite le lendemain Informatique 99 Produits bureautiques A partir de g6,78 CODE COMMANDE 124-2281 Seulement g189,00 CODE COMMANDE 150-7896 A partir de g2,01 CODE COMMANDE 101-9951 Seulement g40,28 CODE COMMANDE 145-6571 Seulement g28,00 CODE COMMANDE 418-4683 Clavier noir standard Câbles USB A vers B ou A vers A pour une utilisation avec l’interface USB 2.0 plus rapide. • 4.7Go, simple couche, pour usage général • Technologie avancée AZO pour tous les DVD+R/-R – protection anti-UV et une plus grande fiabilité et performance • SERL pour tous les DVD +RW/-RW – une couche spéciale d’enregistrement sans parasite sonore • Livrés en spindle ou boîte Code Prix Code Prix Description Commande Unitaire Description Commande Unitaire Gris 0.5m 431-6459 g2,45 Jaune 3m 431-6587 g3,48 Gris 1m 431-6460 g2,77 Jaune 5m 431-6599 g4,30 Gris 2m 431-6472 g3,09 Vert 0.5m 431-6605 g2,45 Gris 3m 431-6484 g3,65 Vert 1m 431-6617 g2,77 Gris 5m 431-6496 g4,44 Vert 2m 431-6629 g3,01 Rouge 0.5m 431-6502 g2,45 Vert 3m 431-6630 g3,52 Rouge 1m 431-6514 g2,77 Vert 5m 431-6642 g4,30 Rouge 2m 431-6526 g3,01 Bleu 0.5m 431-6654 g2,52 Rouge 3m 431-6538 g3,65 Bleu 1m 431-6666 g2,77 Rouge 5m 431-6540 g4,44 Bleu 2m 431-6678 g3,09 Jaune 0.5m 431-6551 g2,45 Bleu 3m 431-6680 g3,52 Jaune 1m 431-6563 g2,77 Bleu 5m 431-6691 g4,30 Jaune 2m 431-6575 g3,01 • Permet de rallonger le cordon d’une souris série, XpertTouch • Souris optique pouvant s’utiliser sur toutes surfaces sans tapis • Molette de défilement • Logiciel IntelliPoint fourni • Pour droitiers et gauchers • Connecteur PS/2 ou USB • Compatible Win 98/ME/2000 pro/ Description Code Commande Prix Unitaire A mâle vers B mâle Type A mâle - B mâle, 2m 393-4251 g3,06 Type A mâle - B mâle, 3m 393-4263 g3,92 Type A mâle - B mâle, 5m 395-2782 g5,60 A mâle vers A mâle Type A mâle - A mâle, 2m 101-9939 g3,21 Type A mâle - A mâle, 3m 101-9953 g3,63 Type A mâle - A mâle, 5m 101-9954 g4,45 A mâle vers A femelle Type A mâle - A femelle, 0.5m 101-9951 g2,01 Type A mâle - A femelle, 1m 101-9952 g2,43 Type A mâle - A femelle, 2m 101-9940 g3,21 XP/NT4.0 (sp6 ou sup.-non USB), Mac OS8.6 à 9.x-OS10.1 • Commutation économique • Indicateur de faible batterie • Aucun dongle • Compatible Win 98SE/2000/2003/XP et Mac OSX 10.2.8 ou sup. • Comprend : souris, batteries et manuel Cordons RJ45 UTP Cat 6 Vitesse/ Code Prix par Paquet Description Imprimable Commande DVD+R Spindle x25 8x 869-5350 g66,50 Spindle x10 16x 110-3413 g29,70 Spindle x25 16x 110-3414 g67,00 Spindle x25 16x Imprimable 110-3415 g69,00 Spindle x50 16x Imprimable 110-3417 g139,00 Boîte x5 16x 110-3426 g15,00 Boîte x10 16x Imprimable 110-3423 g30,00 DVD+RW Boîte x10 4x 728-2540 g33,00 Spindle x25 4x 110-3433 g74,00 DVD-R Spindle x10 16x 110-3421 g28,00 Spindle x25 16x 110-3418 g67,00 Spindle x25 16x Imprimable 110-3419 g51,75 Spindle x50 16x Imprimable 110-3420 g139,00 Boîte x10 16x Imprimable 110-3422 g30,00 DVD-RW Boîte x5 2x 728-2552 g17,00 Boîte x5 2x-4x 110-3424 g17,20 Boîte x5 6x 110-3432 g17,80 moniteur vidéo CGA/EGA ou tout autre appareil doté de connecteur DB9 • Gaine de câble caoutchoutée en PVC Flextec • Contacts cuivre plaqués or • Installation facile grâce aux vis à oreilles • Garantie Belkin à vie • Clavier noir standard AZERTY, 108 touches • Compact avec configuration classique pour une frappe intuitive Modèle: TS902D • Résolution 1280x1024 (pas 0.294) • Temps de réponse: 8ms • Hauts-parleurs intégrés (1W par canal) • Base inclinable démontable • Fixation VESA • Garantie constructeur 3 ans • Comprend: écran, cordon VGA, cordon DVI, cordon secteur IEC, cordon audio et manuel d’utilisation. • 3 touches supplémentaires: alimentation, veille et sortie de veille • Compatible avec ordinateurs dotés d’une connexion PS/2 Code Description Commande Prix Unitaire 1.8m 124-2281 g6,78 3m 124-2282 g8,29 5m 124-2284 g10,56 Souris optique Navigator 900 DVD±R/RW Media Ecran TFT 19" VGA/DVI Câbles USB 2.0 Seulement g7,94 CODE COMMANDE 110-4982▲ Câble d’extension série DB9 Mini souris optique Bluetooth Oscilloscope numérique à écran large WaveJet 􀁠 Ecran couleur LCD 7.5 􀁠 Dispositif de relecture pour process de dépannage plus simple et plus rapide 􀁠 Léger pour une portabilité aisée Voir page 59 pour plus de caractéristiques techniques 16 pages de Test et Mesure à l’intérieur de cette brochure – voir page 49 Multimètre numérique haute performance Série 34410A 􀁠 Afficheur 6.5 digits, haute performance 􀁠 Jusqu’à 10000 mesures par seconde 􀁠 Précision DC de base 30PPM pour 1 an Voir page 53 pour plus de caractéristiques techniques Oscilloscope numérique TDS3000C Série TDS3000C Extension de la série TDS 3000 Connectivité USB pour un transfert de données, une analyse et un stockage facilité L’intensité de la trace fournie un apercu des signaux complexes Voir page 49 pour plus de caractéristiques techniques Spécial Test & Mesure Le plus grand choix des principaux fabricants CODE 144-0376 COMMANDE ¤936,00 A partir de CODE 155-4155 COMMANDE ¤3.510,00 A partir de CODE 113-2564 COMMANDE ¤2.290,00 A partir de Le concours Live EDGE 2008 comprend une compétition pour les étudiants à plein temps et une compétition plus générale, qui se déroulent en parallèle. Le gagnant de chaque compétition recevra un prix de 25 000 $ cash, ainsi qu’une dotation de 25 000 $ sous forme de prestation de conseils pour l’aider à passer de la phase de conception, à la production. Participez à notre concours de conception lié à l’environnement pour gagner un prix d’une valeur de 100 000 $ USD. Dépôt des dossiers à partir du 1er octobre 2008. Enregistrez-vous dès aujourd’hui sur www.live-edge.com pour recevoir les toutes dernières informations sur ce concours. 􀁄􀁥􀁪􀁨􀁛􀀁􀁗􀁬􀁛􀁤􀁟􀁨􀀁􀁚􀃜􀁦􀁛􀁤􀁚􀀁􀁚􀁛􀀁􀁌􀁥􀁩􀀁􀁙􀁥􀁤􀁙􀁛􀁦􀁪􀁟􀁥􀁤􀁩􀀤 Brochure réservée aux professionnels : tous les prix portés dans cette brochure s’entendent en euros hors TVA. Conditions générales de vente sur notre catalogue en vigueur. Prix, références et photos sous réserve d’erreurs typographiques. Offres valables pendant la durée de validité du présent document, jusqu’au 31 Octobre 2008. Les marques citées dans cette brochure appartiennent à leurs propriétaires respectifs. Nouveau Nouveau MEILLEUR RAPPORT QUALITÉ /PRIX OUTILS BONUS, FONCTIONS SOUDAGE HAUTE PUISSANCE VOIR PAGES 30-46 LIVRAISON LE LENDEMAIN PAS DE MINIMUM DE COMMANDE NOUVEAUX PRODUITS COMMANDEZ DÈS MAINTENANT ! Novembre 2012 TM farnell.com FAR-FRTM1112 DE VOTRE SOURCE EXHAUSTIVE LES PRODUITS TEST ET MESURE Un service de première qualité et des prix compétitifs, quel que soit le montant de votre commande Commander avec Farnell element14 ne peut pas être plus simple FR.FARNELL.COM VENTES : 04 74 68 99 99 Du lundi au vendredi, de 9h à 19h FAX : 04 74 68 99 90 VENTES@FARNELL.COM ADRESSE Farnell, 81-83 rue Henri Depagneux, 69400 Limas CRÉDIT CLIENTS Appel : 04 74 68 99 77 (Du lundi au vendredi, de 9h à 19h) Fax : 04 74 68 99 70 PAGE. CONTACTEZ-NOUS SOMMAIRE COMMANDEZ MAINTENANT FR.FARNELL.COM 2-7 Tektronix 9-11 Keithley 12-16 Agilent 17-20 Tenma 21 TTI 22 Lecroy 23 Pico 24-28 Fluke 30-33 34-35 36-37 38-46 SOUDAGE OUTILS RUBANS ALIMENTATIONS TEST ET MESURES Ce multimètre est un multimètre numérique portable très fiable. Il dispose d’un grand écran LCD 3,5" qui indique à l’utilisateur qu’elle fiche Réf. Code Prix Unitaire Fab. Description Commande 1+ SILV100 DMM4k Series, PWS2k Series, PWS, 4000 Series, TDS1K EDU, TPP0500 & TPP1k 207-0366 161.00 SILV200 DMM4k Series, PWS2k Series, PWS, 4000 Series, TDS1K EDU, TPP0500 & TPP1k 207-0367 274.00 SILV400 DMM4k Series, PWS2k Series, PWS, 4000 Series, TDS1K EDU, TPP0500 & TPP1k 207-0368 434.00 SILV600 DMM4k Series, PWS2k Series, PWS, 4000 Series, TDS1K EDU, TPP0500 & TPP1k 207-0369 648.00 SILV900 DMM4k Series, PWS2k Series, PWS, 4000 Series, TDS1K EDU, TPP0500 & TPP1k 207-0370 970.00 est connecté à un câble. L’appareil est livré complet avec cordons de test et mode d’emploi. Programme de maintenance Silver Care 72-9385 Résistance 20Mohm Courant AC 20A Température -40°C à +1000°C Courant DC 20A Affichage 1999 Tension AC 750V Alimentation Pile 9V 1000V Taille LCD 60 x 54mm Capacité 100μF Poids 350g Fréquence 20kHz Dimensions 179 x 88 x 39mm Minimiser les temps d’arrêt avec le programme de maintenance Silver Care de Tektronix. Un simple appel Réf Prix Unitaire Fab. Code Commande + 72-9385 206-0271 – – téléphonique permet de commencer votre programme de maintenance - sans devis, sans commandes, et sans délais d’approbation. Avec le programme Silver Care votre instrument de mesure est prioritaire dans la file d’attente au dépôt, devant les demande de réparations classiques. Ì Traitement rapide Ì Le programme couvre toutes les pièces, la main d’oeuvre, et les frais de transports Ì Vos appareils sont retournés avec leurs performances d’origine Ì Garantie 90 jours Multimètre Numérique Portable Contenu du Kit : Multimètre, cordon de test, piles, mode d’emploi en Anglais, sonde de Température de contact, embase polyvalente et étui. Ì Comprend les réglages et la calibration pour fournir des spécifications précises Ì Test de diode Ì Buzzer de Continuité Ì Gel de l’affichage Ì Indicateur de pile faible Ì Transistor Ì Nombreuses icones sur écran Ì Mode veille 30.60 farnell.com element14.com TEST ET MESURE 3 Tektronix Applications Ì Conception et débuggage numérique Ì Service et installation Video Ì Conception d’alimentation Ì Education et Formation Ì Test de Telecommunications Ì Test de Fabrication Ì Banc de test général Code Commande 1554155 1554156 1554157 1554158 1554159 1554160 Réf. Fab. TDS3012C TDS3054C TDS3032C TDS3034C TDS3052C TDS3054C Bande passante 100MHz 500MHz 300MHz 300 500MHz 500MHz Nbre de voies 2 4 2 4 2 4 Echantillonnage 1.25Géch./s 5Géch/s 2.5Géch./s 2.5Géch./s 5Géch./s 5Géch/s Base de temps 4ns-20s 1ns-20s 2ns-10s 2ns-20s 1ns-20s 1ns-20s Précision base de temps 20ppm 20ppm 20ppm 20ppm 20ppm 20ppm Limite bande passante 20MHz 20MHz 20, 150MHz 20, 150MHz 20, 150MHz 20, 150MHz TDS2001C TDS2002C TDS2004C TDS2012C TDS2014C TDS2022C TDS2024C Bande passante 50 MHz 70 MHz 70 MHz 100 MHz 100 MHz 200 MHz 200 MHz Nbre de voies 2 2 4 2 4 2 4 Taux d’échantillonnage sur chaque voie 500 Méch/s 1.0 Géch/s 1.0 Géch/s 2.0 Géch/s 2.0 Géch/s 2.0 Géch/s 2.0 Géch/s Longueur d’enregistrement 2.5k points à toute base de temps pour tous les modèles Résolution verticale 8 bits Sensibilité verticale 2 mV à 5 V/div sur tous les modèles avec un réglage calibré précis Limite bande passante 20 MHz pour tous les modèles Couplage d’entrée AC, DC, GND sur tous les modèles Gamme base temps 5 ns à 50 s/div 2.5 ns à 50 s/div Code Prix Unitaire Description Réf. Fab. Commande 1+ Oscilloscopes TDS1001B 40 MHz, 2 voies, Mono 122-5083 637.60 TDS1002B 60 MHz, 2 voies, Mono 122-5084 840.00 TDS1012B 100 MHz, 2 voies, Mono 122-5085 968.00 Oscilloscopes numériques Caractéristiques faciles à utiliser: Ì 16 mesures automatiques et analyse FFT pour une analyse simplifiée des formes d’onde Ì Gamme automatique, Autoset et Signal Ì Aide avec contexte sensitif, intégrée Ì Wizard de vérification de sonde Ì Interface utilisateur multilingues Ì Affichage TFT couleur actif 5.7 in. (144 mm) Ì Port hôte USB 2.0 sur la face avant pour une sauvegarde automatique et rapide, une impression, et une possibilité de connexion d’un clavier USB TDS 2000C Séries TDS1000B et 2000B Les oscilloscopes à mémoire numérique associent performance et convivialité. Avec une bande passante allant jusqu’à 200 MHz et un taux d’échantillonnage de 2 Géch/s max., les oscilloscopes TDS1000B et TDS2000B permettent une acquisition précise en temps réel maximum de leur bande passante, la même longueur d’enregistrement quels que soient les réglages de base de temps, des déclenchements évolués pour isoler les signaux intéressants et 11 mesures automatiques en standard sur tous les modèles. Les FFT (Fast Fourier Transform) et les fonctions mathématiques d’addition, de Oscilloscopes DPO - Séries TDS3000C Caractéristiques clés: Ì Taux d’échantillonnage jusqu’à 2 Géch/s sur toutes les voies Ì Longueur d’enregistrement de 2.5k points sur toutes les voies Ì Fonction de déclenchement avancé comprenant largeur d’impulsion et sélection de ligne Ì Déclenchement vidéo soustraction, de multiplication permettent d’analyser, de caractériser et de réparer les circuits. L’interface utilisateur simple disposant de commandes de style analogique classiques facilite l’utilisation de ces instruments, réduit le temps d’apprentissage et augmente l’efficacité. Avec des portes USB hôte et périphérique qui permettent le stockage de données amovibles, une connectivité facile pour les PC et l’impression directe. Ì Port Ethernet intégré Ì Commande à distance par le Web avec e*Scope™ Ì Détection automatique des anomalies du signal avec WaveAlert™ Ì Précision de la base de temps de 20ppm Ì Fonctions FFT et Trigger étendue Ì Fonctions trigger avancées, schémas logiques, état, déclenchement sur front, impulsions et temps de montée Ì Affichage plus clair avec un angle d’affichage plus large Ì Test de limite de forme d’ondes intégré Ì Fonction de sauvegarde automatique et étendue des données Ì Nouvelles sondes avec une charge capacité la plus basse disponible et une tête compacte pour un test rapide de CI haute densité Ì Garantie Tektronix à durée illimitée l=326 H=158 P=229mm Poids = 2kg Réf. Prix Unitaire Fab. Description Code Commande 1+ TDS2001C 50 MHz, 2 voies, 500 Méch/s 184-0961 540.80 TDS2002C 70 MHz, 2 voies, 1 Géch/s 184-0962 656.00 TDS2004C 70 MHz, 4 voies, 1 Géch/s 184-0963 1000.00 TDS2012C 100 MHz, 2 voies, 2 Géch/s 184-0965 789.60 TDS2014C 100 MHz, 4 voies, 2 Géch/s 184-0966 1184.00 TDS2022C 200 MHz, 2 voies, 2 Géch/s 184-0967 1120.00 TDS2024C 200 MHz, 4 voies, 2 Géch/s 184-0968 1384.00 Accessoires 1+ TPP0101 Sonde passive, 100MHz 184-0969 58.00 TPP0201 Sonde passive, 200MHz 184-0970 72.00 TPP0101-PK10 Sonde passive, 100MHz, Paquet de 10 184-0971 527.00 TPP0201-PK10 Sonde passive, 200MHz, Paquet de 10 184-0972 644.00 Ì Bande passante 100, 300 et 500MHz Ì Echantillonnage jusqu’à 5 GS/s Ì 2 ou 4 voies Ì Ecran VGA LCD couleur Ì 25 mesures automatiques Ì Résolution verticale 9 bits Ì Interface utilisateur Multi-langues graphique QuickMenu facilitant l’utilisation Oscilloscope TDS2024 Les oscilloscopes de la série TDS3000C offrent une technologie d’acquisition du signal au phosphore numérique, la détection des anomalies automatique, l’accès à distance par le Web et 7 modules d’applications spécifiques dans un boîtier léger pouvant être utilisé sur batterie. La nouvelle série 3000C est équipée d’un port USB hôte afin que vous puissiez facilement stocker et transférer des informations de mesure sur votre PC. Cette série offre une multitude de fonctionnalités destinées aux utilisateurs qui veulent travailler sur la conception électronique, la production et l’entretien et la détection automatique d’anomalies avec WaveAlert™. WaveAlert™ permet facilement la détection, l’affichage et la capture des événements qui n’entrent pas dans les schémas répétitifs normaux d’activité de formes d’ondes et peut également être programmé pour obtenir un signal sonore, puis arrêtez l’acquisition et geler l’anomalie sur l’écran, enregistrer l’onde anormale sur une clé USB ou imprimer une copie de celui-ci. La dernière version de l’oscilloscope le plus populaire. Il comprend les fonctions améliorées suivantes: L’e*Scope™ permet le contrôle à distance via un navigateur Internet, ainsi que le partage de l’information et de la surveillance. Les fonctionnalités de l’e*Scope™ facilitent les contacts avec les techniciens de service chez leurs clients, répartis à distance par les équipes d’ingénierie. Une connexion Ethernet intégré est également fournie. Accessoires Logiciel TDSPCS1 OpenChoice Logiciel offrant une interface simple et puissante entre l’oscilloscope et le PC, permet à l’utilisateur d’importer et de manipuler les données capturées via l’oscilloscope. Module de communication TDS3GV + logiciel OpenChoice Offre des interfaces GPIB, VGA et RS-232 ainsi que le logiciel OpenChoice. Sonde active P6243 1GHz Sonde active 1GHz (avec cordon de 1.3m) à utiliser avec le TDS3064 pour améliorer ses caractéristiques. Modules Application pour analyse spécialisée Ì Module d’analyse avancé Ì Module de test de limite Ì Module de tes de masque Telecommunications Ì Module Video étendu Ì Module video numérique série Avec capacités de stockage USB farnell.com element14.com 4 TEST ET MESURE Tektronix MSO3012 MSO3014 MSO3032 MSO3034 MSO3054 DPO3012 DPO3014 DPO3032 DPO3034 DPO3052 DPO3054 Voies d’entrée 2 analogiques + 16 numériques 4 2 4 2 4 Bande passante analogique (-3 dB) 100MHz 100MHz 300MHz 300MHz 500MHz 500MHz Temps de montée 5 mV/div (typical) 3.5ns 3.5ns 1.17ns 1.17ns 700ps 700ps Les oscilloscopes à phosphore numérique (DPO) MSO2000 et DPO2000 disposent des performances et des outils essentiels pour afficher les signaux et obtenir des réponses rapidement. Les oscilloscopes de la gamme DPO2000 sont les premiers à fournir 1 M points de longueur d’enregistrement disponible sur toutes les voies, des options d’analyse, de décodage et de déclenchement en série, ainsi qu’un filtre passebas variable qui permet également de voir les Voies numériques du système vertical - tous les modèles MSO3000 Voies d’entrée 16 numériques (D15 à D0) Seuils seuil par jeu de 8 voies Sélections du seuil TTL, CMOS, ECL, PECL, ou défini par l’utilisateur Gamme de seuil définie par l’utilisateur -15 V à +25 V Tension d’entrée max. -20 V à +30 V détails du signal sur la totalité de la bande passante de l’oscilloscope, le tout dans un ensemble compact. Les oscilloscopes de la gamme MSO2000 intègrent 16 voies numériques, ce qui permet d’afficher et de corréler dans le temps des signaux analogiques et numériques sur un seul instrument. Cette intégration étend la fonctionnalité de déclenchement aux 20 voies, ce qui est idéal pour la mise au point des appareils mixtes analogiques et numériques. Prix Unitaire Réf. Fab. Bande passante Voies Code Commande 1+ DPO3012 100MHz 2 185-6671 2620.00 DPO3014 100MHz 4 185-6672 3130.00 DPO3032 300MHz 2 185-6673 4940.00 DPO3034 300MHz 4 185-6675 5940.00 DPO3052 500MHz 2 185-6676 6660.00 DPO3054 500MHz 4 185-6677 8130.00 MSO3012 100MHz 2 analogiques + 16 numériques 185-6678 3720.00 MSO3014 100MHz 4 analogiques + 16 numériques 185-6679 4260.00 MSO2012 MSO2014 MSO2014 Système vertical: voies analogiques DPO2012 DPO2014 DPO2024 Voies d’entrée 2 4 4 Bande passante analogique* (-3 dB) 100 MHz 100 MHz 200 MHz Temps de montée 3.5 ns 3.5 ns 2.1 ns Limites de la bande passante sur le matériel 20 MHz Couplage d’entrée AC, DC, GND Impédance d’entrée 1 MΩ ±2%, 11.5 pF ±2 pF Plage de sensibilité d’entrée 2 mV/div à 5 V/div Résolution verticale 8 bits Système horizontal: voies analogiques Taux d’échantillonnage max. (toutes voies) 1 Géch/s Largeur de signal de détection de crête min. 7.0 ns 3.5 ns Longueur d’enregistrement max. (toutes voies) 1 M points Plage base de temps 4 ns à 100 s 2 ns à 100 s Plage temps de retard de la base temps -10 div à 5000 s Plage de compensation voie par voie ±100 ns Précision base de temps ±25 ppm *La bande passante est de 20 MHz à 2 mV/div sur tous les modèles Oscilloscopes à signaux mixtes Avec une bande passante de 500MHz et un taux d’échantillonnage de 2.5Géch/s, les oscilloscopes de la série MSO/DPO3000 offrent des performances adaptées à la plupart des applications de tous les jours. Avec 20 voies, ce seul instrument permet d’analyser des signaux analogiques et numériques. Celles-ci combinées à une analyse de bus automatique en série et parallèle, à des contrôles innovants de Wave Longueur d’enregistrement10k points sur tous les modèles Résolution verticale 9 bits sur tous les modèles Sensibilité verticale/div 1mV à 10V sur tous les modèles Précision verticale +/-2% sur tous les modèles Tension d’entrée max. 150 Vrms CAT I sur tous les modèles (300 V CAT II avec sonde standard 10X) Gamme de position ± 5 div sur tous les modèles Couplage d’entrée AC, DC, GND sur tous les modèles Impédance d’entrée 1 MΩ en parallèle avec 13 pF ou 50Ω Affichage LCD couleur DPO2024 Réf. Prix Unitaire Description Fab. Code Commande 1+ Oscilloscopes 100MHz, 2 Voies TDS3012C 155-4155 4530.00 100MHz, 4 Voies TDS3014C 155-4156 5540.00 300MHz, 2 Voies TDS3032C 155-4157 6680.00 300MHz, 4 Voies TDS3034C 155-4158 7950.00 500MHz, 2 Voies TDS3052C 155-4159 9630.00 500MHz, 4 Voies TDS3054C 155-4160 11400.00 Accessoires Module Communication+Openchoice TDS3GV 369-3880 682.00 Sonde active 1GHz P6243 207-433 966.00 Inspector et des mesures de puissance automatiques, la série MSO/DPO 3000 rend le débogage plus simple et plus rapide. DPO / MSO Caractéristiques clés: Fonctions faciles d’utilisation: Ì Contrôles Wave Inspector, offre une navigation facile et une recherche automatique des données Ì 29 mesures automatiques, et analyse FFT pour simplifier l’analyse Ì Interface sonde TekVPI compatible avec les sondes actives, différentielles et de courant pour une échelle et des unités automatiques Ì Affichage couleur écran large de 229 mm en WVGA Ì Compact (147 mm) et léger (4 kg) Garantie Fabricant de 3 Ans Caractéristiques et avantages des performances clés Ì Modèles avec bande passante de 100 MHz et 200 MHz Ì 2 ou 4 voies analogiques Ì 16 voies numériques (gamme MSO2000) Ì Fréquences d’échantillonnage allant jusqu’à 1 Géch./s sur toutes les voies Ì Longueur d’enregistrement de 1M points sur toutes les voies Ì Vitesse maximale d’acquisition de signaux : 5 000 signaux/s Ì Gamme de déclenchements évolués Réf. Prix Unitaire Fab. Description Code Commande 1+ P2221 Sonde passive, 1X/10X 200MHz 166-5109 113.00 RMD2000 Kit de montage en rack 166-5111 456.00 ACD2000 Valise de transport souple et capot de protection avant 166-5112 223.00 THDP0100 High Voltage Probe, 100X/1000X, 100MHz 207-2156 2640.00 THDP0200 High Voltage Probe, 50X/500X, 200MHz 207-2157 1540.00 TMDP0200 High Voltage Probe, 25X/250X, 200MHz 207-2158 1540.00 Réf. Prix Unitaire Fab. Description Code Commande 1+ DPO2012 Oscilloscope, DPO 2 voies 100MHz 165-0367 1217.00 DPO2014 Oscilloscope, DPO 4 voies 100MHz 165-0368 1805.00 DPO2024 Oscilloscope, DPO 4 voies 200MHz 165-0369 2133.00 MSO2012 Oscilloscope, MSO 2 voies 100MHz 165-0370 1789.00 MSO2014 Oscilloscope, MSO 4 voies 100MHz 165-0371 2377.00 MSO2024 Oscilloscope, MSO 4 voies 200MHz 165-0372 2703.00 Accessoires 1+ DPO2AUTO Module de déclenchement et d’analyse pour automobile 166-5104 559.00 DPO2COMP Module de déclenchement et d’analyse pour informatique 166-5105 559.00 DPO2CONN Module port Ethernet et moniteur externe 166-5106 317.00 DPO2EMBD Module de déclenchement et d’analyse en série intégré 166-5107 559.00 Connectivité Ì Port hôte USB 2.0 sur faces avant et arrière pour une sauvegarde facile et rapide, une impression et pour une connexion d’un clavier USB Ì Port device USB 2.0 en face arrière pour une connexion facile à un PC ou à une imprimante en directe compatible PictBridge® Ì Port ethernet intégré 10/100 pour une connexion réseau et port sortie vidéo pour exporter l’affichage de l’oscilloscope sur un moniteur ou projecteur Déclenchement série et Analyse en option: Ì Déclenchement série automatique, décodage, et options de recherche pour I2C, SPI, CAN, LIN, RS-232/422/485/UART, et I2S/LJ/RJ/TDM Oscilloscopes à phosphore numérique Conception signal mixte et analyse (série MSO): Ì Déclenchement automatique, décodage, et recherche sur bus parallèles Ì Installation multi voies et gel du déclenchement Ì Acquisition haute vitesse MagniVu™, offre une résolution temps affinée 121.2 ps s ur les voies numériques Ì Analyse de puissance Ì Bandes passantes de 500, 300, 100 MHz Ì 2 et 4 voies analogiques Ì 16 voies numériques (série MSO) Ì Taux d’échantillonnage de 2.5 Géch/s sur toutes les voies Ì Longueur d’enregistrement de 5 Megapoints sur toutes les voies Ì Taux de capture de >50,000 wfm/s max. Ì Suite de déclenchements avancés Ì HDTV et analyse vidéo personnalisée Support d’applications en option farnell.com element14.com TEST ET MESURE 5 Tektronix Réf. Canaux Échantillonnage Durée d’enregistrement Canaux Fab. Bande passante Analogiques 1 voie 2 voies 4 voies 1 voie 2 voies 4 voies numériques DPO4034B 350MHz 4 2.5 GS/s 2.5 GS/s 2.5 GS/s 20 M 20 M 20 M – MSO4034B 350MHz 4 2.5 GS/s 2.5 GS/s 2.5 GS/s 20 M 20 M 20 M 16 DPO4054B 500MHz 4 2.5 GS/s 2.5 GS/s 2.5 GS/s 20 M 20 M 20 M – MSO4054B 500MHz 4 2.5 GS/s 2.5 GS/s 2.5 GS/s 20 M 20 M 20 M 16 DPO4102B 1GHz 2 5 GS/s 5 GS/s – 20 M 20 M – – MSO4102B 1GHz 2 5 GS/s 5 GS/s – 20 M 20 M – 16 DPO4104B 1GHz 4 5 GS/s 5 GS/s 5 GS/s 20 M 20 M 20 M – Réf. Canaux Échantillonnage Durée d’enregistrement Canaux MSO4104B 1GHz 4 5 GS/s 5 GS/s 5 GS/s 20 M 20 M 20 M 16 DPO4102B-L 1GHz 2 5 GS/s 2.5 GS/s – 5 M 5 M – – MSO4102B-L 1GHz 2 5 GS/s 2.5 GS/s – 5 M 5 M – 16 DPO4104B-L 1GHz 4 5 GS/s 5 GS/s 2.5 GS/s 5 M 5 M 5 M – MSO4104B-L 1GHz 4 5 GS/s 5 GS/s 2.5 GS/s 5 M 5 M 5 M 16 Canaux numériques système vertical - tous les modèles MSO4000B Canaux d’entrées 16 numériques (D15 à D0) Seuils Seuils par canal Sélection des seuils TTL, CMOS, ECL, PECL, défini par l’utilisateur Plage de seuils défini par l’utilisateur ±40 V Tension d’entrée Max. ±42 V crête Prix Unitaire Réf. Fab. Bande passante Voies Code Commande 1+ MSO3032 300MHz 2 analogiques + 16 numériques 185-6680 6590.00 MSO3034 300MHz 4 analogiques + 16 numériques 185-6681 7970.00 MSO3054 500MHz 4 analogiques + 16 numériques 185-6682 10600.00 Modules d’application DPO3AUDIO Déclenchement série audio et module d’analyse 185-6683 851.00 DPO3AUTO Déclenchement série automobile et module d’analyse 185-6684 851.00 DPO3COMP Déclenchement série informatique et module d’analyse 185-6685 851.00 DPO3EMBD Déclenchement série embarqué et module d’analyse 185-6687 851.00 DPO3PWR Module d’analyse de puissance 185-6688 1060.00 DPO3VID Module de déclenchement vidéo personnalisée et HDTV 185-6689 538.00 DPO3AERO Aerospace Serial Triggering & Analysis Module 210-0026 851.00 DPO3FLEX Flexray Serial Triggering & Analysis Module 210-0027 851.00 THDP0100 High Voltage Probe, 100X/1000X, 100MHz 207-2156 2640.00 THDP0200 High Voltage Probe, 50X/500X, 200MHz 207-2157 1540.00 TMDP0200 High Voltage Probe, 25X/250X, 200MHz 207-2158 1540.00 Code Prix Unitaire Réf. Fab. Bande passante Commande 1+ Durée d’enregistrement 20M points DPO4034B 350MHz 185-6690 8210.00 MSO4034B 350MHz 185-6693 10400.00 DPO4054B 500MHz 185-6691 10700.00 MSO4054B 500MHz 185-6694 13200.00 DPO4102B 1GHz 207-9664 9600.00 MSO4102B 1GHz 207-9661 12300.00 DPO4104B 1GHz 185-6692 13000.00 MSO4104B 1GHz 185-6695 16300.00 Durée d’enregistrement 5M points DPO4102B-L 1GHz 207-9666 7670.00 MSO4102B-L 1GHz 207-9662 9830.00 MSO4104B-L 1GHz 207-9660 12600.00 DPO4104B-L 1GHz 207-9663 10200.00 Modules application DPO4AUDIO Déclenchement série audio et module d’analyse 185-6696 1110.00 DPO4AUTO Déclenchement série automobile et module d’analyse 185-6697 1110.00 DPO4AUTOMAX Déclenchement série automobile étendu et module d’analyse 185-6699 3870.00 DPO4COMP Déclenchement série informatique et module d’analyse 185-6700 1110.00 DPO4EMBD Déclenchement série embarqué et module d’analyse 185-6701 1110.00 DPO4USB Déclenchement série USB et module d’analyse 185-6702 1240.00 DPO4PWR Module d’application d’analyse de puissance 185-6703 1380.00 DPO4VID Module de déclenchement vidéo personnalisée et HDTV 185-6705 682.00 DPO4ENET Déclenchement série ethernet et module d’analyse 185-6706 1240.00 DPO4AERO Déclenchement série aérospace et module d’analyse 185-6707 1240.00 DPO4LMT Module d’application de test de limite et de masque 185-6708 682.00 Accessoires P6516 16 Channel Probe (MSO4000 Series) 207-0531● 944.00 ACD4000B Valise souple 185-6709 232.00 HCTEK54 Valise robuste (nécessite ACD4000B) 185-6710 850.00 RMD5000 Kit de montage rack 185-6711 753.00 THDP0100 High Voltage Probe, 100X/1000X, 100MHz 207-2156 2640.00 THDP0200 High Voltage Probe, 50X/500X, 200MHz 207-2157 1540.00 TMDP0200 High Voltage Probe, 25X/250X, 200MHz 207-2158 1540.00 Oscilloscopes à Domaines Mixtes Oscilloscopes signaux mixtes Offrant jusqu’à 1 GHz de bande passante et un taux d’échantillonnage de 5Gs/ s, la série d’osciloscopes mixtes MSO/DPO4000B offre les performances dont vous avez besoin pour voir les détails du signal en évolution rapide. Avec jusqu’à 20 canaux, vous pouvez analyser des signaux analogiques et numériques avec un seul instrument. Combinez cela avec l’analyse Série MDO4000 de bus série et parallèle automatisée, les contrôles innovants Wave Inspector et les mesures de puissance automatisés. La série MSO/DPO4000B fournit des outils riches en fonctionnalités dont vous avez besoin pour simplifier et accélérer de débogage de vos conceptions les plus complexes. La série MDO4000, le premier et le seul oscilloscope au monde avec un analyseur de spectre intégré. Pour la première fois, vous pouvez capturer de manière corrélé les signaux Analogique, Numérique et RF, pour une vue complète de votre système. Voir en une seule vue les signaux des domaines temporel et fréquentiel. Voir le spectre RF à n’importe quel moment, pour voir l’évolution dans le temps et en fonction de l’état du système. Résoudre les conceptions les plus complexes, rapidement et efficacement, avec un oscilloscope aussi complet que votre conception. Spécifications de performances Ì Bande passante: 1 GHz, 500 MHz, 350 MHz Ì 4 canaux analogiques Ì 16 canaux numériques (Série MSO) Ì Jusqu’à 5Gech/s sur tous les canaux Ì Durée d’enregistrement 5 Megapoints (seulement version L) 20 Megapoints sur les autres modèles Ì Débit de capture de Waveform >50,000 wfm/s Max. Ì sondes de tension passives standards avec moins de 4pF de charge capacitive et 500 MHz ou 1GHz de BP analogique Ì Déclenchement avancés Simplicité d’utilisation Ì Contrôle Wave Inspector permet une navigation facile et une recherche automatique des donnée Waveform Ì 41 mesures automatisées, histogramme Waveform et anlyse FFTpour simplifier l’analyse des signaux Ì Interface de sonde TekVPI supporte les sondes Active, Différentielles, de courant pour calibrage automatique. Ì Afficheur couleur XGA 264mm Ì petit et leger (147mm de profondeur et pods de 5Kg Ì Sonde de tension passive avec 3.9 pF de charge et une bande passante analogique de 500 MHz ou 1 GHz. Ì Aquisition de signaux Analogique, Numérique et RF en un seul instrument Ì Les commandes du "Wave Inspector" permettent une navigation facile des données corrélées dans les domaines temporel et fréquentiel Ì Amplitude, Fréquence et Phase par rapport au temps de la forme d’onde dérivé de l’entrée du signal RF Ì Spectre de temps sélectionnable pour découvrir et analyser comment le spectre RF change dans le temps, même dans une acquisition arrêté Ì Panneau de commande avant dédié pour les tâches courantes Ì Marqueurs automatique de crête, pour identifier les fréquences et amplitudes des crêtes du spectre Ì Marqueurs manuel pour les mesures non-crête du signal Ì Type de mesure incluant : Normal, moyenne, Maximum, and Minimum Ì Type de détection : Crête , Moyenne, et échantillonage Ì Affichage Spectrographe offre une observation facile et clair sur les changements lent de phénomène RF Connectivité Ì 2 ports USB 2.0 (Hôte) sur la face avant et 2 autres à l’arrière permet facilement de sauvegarder des données, imprimer ou brancher un clavier. Ì 2 ports USB 2.0 (Device) à l’arrière pour se connecter sur un PC ou imprimer directement à partir d’une imprimante compatible PictBridge® Ì Port Ethernet 10/100/1000BASE-T pour connexion réseau et port vidéo pour afficher sur un vidéoprojecteur. Déclenchement série et analyse en option Ì Déclenchement automatique série, décodage et recherche pour I2C, SPI, USB, Ethernet, CAN, LIN, FlexRay, RS-232/422/485/UART, MIL-STD-1553, et I2S/LJ/RJ/ TDM Conception et analyse signaux mixtes (Série MSO) Ì Déclenchement automatique série, décodage et recherche sur buses parallèle Ì Réglage des seuils par canal Ì Réglage multicanaux et maintient du déclenchement Ì Acquisition haute vitesse MagniVu™ offre 60.6 ps de résolution de temps sur les canaux numériques Support d’application en option Ì analyse de puissance Ì Test Limite et Masque Ì Analyses vidéo HDTV ou autre Série MSO4000B, DPO4000B farnell.com element14.com 6 TEST ET MESURE Tektronix Modèle MDO4014-3 MDO4034-3 Canaux Analogiques 4 Canaux Numériques 16 Canaux RF 1 Bande passante 100 MHz 350MHz Gamme de fréquence RF 50kHz à 6GHz Temps de montée 3.5ns 1ns Echantillonnage (1 Canal) 2.5 GS/s Echantillonnage (2 Canaux) 2.5 GS/s Echantillonnage (4 Canaux) 2.5 GS/s Longueur d’enregistrement (1 Canal) 20M Longueur d’enregistrement (2 Canaux) 20M Longueur d’enregistrement (4 Canaux) 20M Affichage TFT Couleur 264mm Résolution verticale Analogique 8 bits Résolution verticale Numérique 1 bit Limite bande-passante 20 MHz 20MHz ou 250MHz Couplage d’entrée AC, DC Tension d’alimentation 100 à 240V Dimensions (HxLxP) 229 x 439 x 147mm Poids 5kg Entrées 2 Formats SD, HD, Dual Link, 3G (Option 3G) Caractéristiques Quad Tile Mesures Affichage des temps, analyse des données (Option DATA) contrôle Deux entrées, Gamut, audio Générateur Signaux audio et vidéo basiques Tension d’entrée 10.75V à 20V dc Dimensions 216 x 208 x 36mm Poids 1.8kg THS3014 THS3024 Bande passante 100MHz 200MHz Nbre de voie 4 Echantillonage Max. 2.5GSPS 5GSPS Longueur d’enregistrement 10000 points par voiel (mode Roll 30000) par voie Capture de donnée Enregistrement et lecture de signaux, mesure TrendPlot Prix Unitaire Réf. Fab. Code Commande 1+ WFM2200 210-0679 4800.00 Réf. Prix Unitaire Fab. Description Code Commande 1+ THS3014 100MHz 4 Channel Oscilloscope 206-1362 3720.00 THS3024 200MHz 4 Channel Oscilloscope 206-1364 4210.00 Accessoires THP0301-Y 10X Passive Probe (Yellow) 206-1365 163.00 THP0301-B 10X Passive Probe (Blue) 206-1366 163.00 THP0301-M 10X Passive Probe (Magenta) 206-1367 163.00 THP0301-G 10X Passive Probe (Green) 206-1368 163.00 THSBAT Li-ion Rechargeable Battery 206-1369 279.00 HCHHS Hard Carry Case 206-1370 232.00 020-3085-00 Replacement Probes (Pk2) 206-4107 129.00 016-2050-00 Probe Carry Case 206-4109 52.00 Fab. Prix Unitaire Réf Fab. Bande Passante Code Commande 1+ MDO4014-3 100MHz 221-1315 12570.50 MDO4034-3 350MHz 221-1316 17205.00 Modules d’applications DPO4AERO Déclenchement série aérospace et module d’analyse 185-6707 1240.00 DPO4AUDIO Déclenchement série audio et module d’analyse 185-6696 1110.00 DPO4AUTO Déclenchement série automobile et module d’analyse 185-6697 1110.00 DPO4AUTOMAX Déclenchement série automobile étendu et module d’analyse 185-6699 3870.00 DPO4COMP Déclenchement série informatique et module d’analyse 185-6700 1110.00 DPO4EMBD Déclenchement série embarqué et module d’analyse 185-6701 1110.00 DPO4ENET Déclenchement série ethernet et module d’analyse 185-6706 1240.00 DPO4USB Déclenchement série USB et module d’analyse 185-6702 1240.00 DPO4PWR Module d’application d’analyse de puissance 185-6703 1380.00 DPO4LMT Module d’application de test de limite et de masque 185-6708 682.00 DPO4VID Module de déclenchement vidéo personnalisée et HDTV 185-6705 682.00 Sondes TPP0500 Passive Voltage, 10X, 500MHz 185-6712 561.00 TPP0502 Passive Voltage, 2X, 500MHz 187-7505 544.00 TPP0850 Passive High Voltage, 50X, 2.5kV, 800MHz 187-7506 697.00 TPP1000 Passive Voltage, 10X, 1GHz 185-6713 848.00 TAP1500 Voltage, Single Ended, 1.5GHz 185-6714 2150.00 TCP0030 Current, AC/DC, 30A, 120MHz 185-6718 3100.00 TCP0150 Current, AC/DC, 150A, 20MHz 185-6719 3650.00 TDP0500 Differentail Voltage, ±42, 500MHz 185-6715 3070.00 TDP1000 Differentail, ±42, 1GHz 185-6717 4320.00 THDP0200 High Voltage Probe, 50X/500X, 200MHz 207-2157 1540.00 THDP0100 High Voltage Probe, 100X/1000X, 100MHz 207-2156 2640.00 TMDP0200 High Voltage Probe, 25X/250X, 200MHz 207-2158 1540.00 P5100A Passive High Voltage, 100X, 2.5kV, 500MHz 187-7504 418.00 P5200A Differential High Voltage, 1.3kV, 50MHz 187-7507 836.00 Accessoires TPA-BNC Adaptateur interface TekVPI™ 185-6721 442.00 SIGEXPTE Software 129-5628 592.00 TEK-USB-488 Adapter 129-5623 688.00 ACD4000B Valise souple 185-6709 232.00 HCTEK54 Valise robuste (nécessite ACD4000B) 185-6710 850.00 RMD5000 Kit de montage rack 185-6711 753.00 Réception d’un email d’information contenant le statut de votre commande ainsi que la date prévue de livraison sur tous vos produits en reliquat Contrôleur de forme d’onde portable Livraison optimisée des reliquats de commande Oscilloscopes portables Série THS3000 WFM2200 Le contrôleur de forme d’onde WFM2200 est un outil idéal pour les applications sur le terrain offrant une qualité sans compromis avec la surveillance CRTcomme trace sur un large afficheur 6.5" rétro-éclairé et un système de batterie remplaçable et rechargeable. Il offre un éventail d’outils de suivi de base pour la vidéo (SD, HD, Dual Link et 3G en option), et audio (Embedded, AES) de surveillance qui peut être configuré dans l’affichage Quad Tile et complet pour permettre à l’utilisateur de voir tous l’information du signal nécessaire en un seul coup d’oeil. Inspecteur de donnée ANC, la liste des données et de décodage de sous-titrage sont très précieux pour la résolution des problèmes au sein de l’espace de données auxiliaires. Une vidéo et des générateurs audio permettent de trouver des problèmes de signalisation et un affichage de forme d’onde de référence externe peut aider à assurer la synchronisation vidéo correcte avec l’affichage Timing brevetée par Tektronix. Une gamme d’accessoires augmente la polyvalence du WFM2200 pour les opérations sur le terrain. Ì Modèles 100 MHz et 200 MHz Ì 4 voies complètement isolées et flottantes Ì Entrées 600 VRMS CAT III Ì Longueur d’enregistrement 10 Kpoints par voies Ì Échantillonnage max. jusqu’à 5GS/s Ì Déclenchement intelligent Ì 21 mesures automatiques Ì Fonction FFT sur tous les modèles Ì Autonomie de la batterie 7H en fonctionnement Ì USB 2.0 (Device et Hôte) Ì Léger et portable Ì Logiciel Tektronix OpenChoice™ desktop fourni Ì Garantie 3 ans Ì Facteur de forme portable Ì Système de batterie rechargeable et remplaçable Ì Contrôle 4 Tile Ì Inspecteur de donnée ANC, Liste Data, décodage Ì signal analogique de référence externe avec affichage de forme d’onde Ì Vidéo multi format, et générateur de signal audio Ì contrôle audio AES embarqué 16 voies Ì Applications: Production, vérification de systèmes, outils pour la distribution de signaux Tektronix présente les oscilloscopes portables séries THS3014 et THS3024. Ces produits sont recommandés pour les tests sur le terrain et la conception d’applications. Ils sont idéal pour tous ceux qui souhaitent une solutions portable fonctionnant sur batterie. De plus, les clients travaillant sur les applications de puissance trouveront les caractéristiques nécessaires pour effectuer des mesures flottante ou avec des tensions élevées. Cette famille offre des performances supérieures ainsi qu’un grand nombre de fonctions de mesure et d’analyse Ì Mesures automatiques incluant : Puissance du canal, mesure ACPR, et bande passante occupée Ì Déclenchement sur niveau de puissance RF Ì Analyse de spectre sur déclenchement ou libre Ì Garanti 3 ans Ì Reconnu Vainqueur plus de 10 fois lors de récompense Industrielle farnell.com element14.com TEST ET MESURE 7 Tektronix Comprend: multimètre, cordons de test TL710, fusible de remplacement, certificat d’étalonnage, certificat de garantie, guide de sécurité et installation, manuel d’installation des connexions, manuel d’utilisation sur CD-ROM (Anglais, Français, Italien, Allemand, Espagnol, Chinois simplifié, Chinois traditionnel, Coréen, Russe, Japonais), câble adapteur RS-232 vers USB, logiciel LabVIEW SignalExpress™. Cordons d’alimentation (prises européenne et anglaise). Trouvez vos produits en ligne, sur tablette ! H = 88mm, W = 217mm, D = 297mm AFG3011 AFG3021 / AFG3022 AFG3101 / AFG3102 AFG3251 / AFG3252 Bande passante de bruit (-3dB) 10MHz 25MHz 100MHz 240MHz DC (à 50Ω) -10V à +10V -5V à +5V -5V à +5V -2.5V à +2.5V Signaux arbitraires 1mHz à 5MHz 1mHz à 12.5MHz 1mHz à 25MHz 1mHz à 120MHz Modulation AM, FM, PM, FSK, balayage, salve Entrée / Sortie Entrée modulation voie 1 et voie 2, trigger externe / entrée gated Burst, Reference In 10MHz, Ext, entrée Voie 1 en plus Sortie trigger voie 1, sortie de référence 10MHz Consultez notre catalogue en ligne innovant avec mise à jour quotidienne des prix. Plus accessible, il rend vos recherches plus faciles. AFG3011 AFG3021 / AFG3022 AFG3101 / AFG3102 AFG3251 / AFG3252 Voies 1 1 / 2 1 / 2 1 / 2 Sinus 1μHz à 10MHz 1μHz à 25MHz 1μHz à 100MHz 1μHz à 240MHz Carré 1mHz à 5MHz 1mHz à 12.5MHz 1mHz à 25MHz 1mHz à 120MHz Impulsion 1mHz à 5MHz 1mHz à 12.5MHz 1mHz à 25MHz 1mHz à 120MHz Autres signaux 1μHz à 100kHz 1μHz à 250kHz 1μHz à 1MHz 1μHz à 2.4MHz AFG2021 Bande Passante 20MHz Voies 1 Caractéristiques de Forme d’onde Gamme de Fréquence Sinus 1μHz à 20MHz Gamme de Fréquence Carré 1μHz à 10MHz Gamme de Fréquence Impulsion 1mHz à 10MHz Gamme de Fréquence Rampe 1μHz à 200kHz Longueur d’onde arbitraire 1mHz à 10MHz Type de Modulation AM, FM, PM, Pulse, Sweep, Burst Caractéristiques de la voie Connecteur de Sortie BNC Impédance de Sortie 50Ω Général Affichage Ecran TFT LCD Couleur 3.5" Dimensions (HxWxD) 104.2x241.8x419.1mm Poids 2.87kg Prix Unitaire Ref Fab. Code Commande 1+ AFG2021 214-3351● 1440.00 Code Prix Unitaire Description Réf. Fab. Commande 1+ 1 voie, 10MHz AFG3011 207-0530● 3750.00 1 voie, 25MHz AFG3021B 142-5300 1740.00 2 voies, 25MHz AFG3022B 142-5301 2660.00 1 voie, 100MHz AFG3101 129-9081 3820.00 2 voies, 100MHz AFG3102 129-9082 5420.00 1voie, 240MHz AFG3251 185-6722 7710.00 2 voies, 240MHz AFG3252 185-6723 10600.00 Le multimètre de table 5.5 digits DMM4020 de Tektronix offre un large choix de fonctionnalités Générateur de Fonctions Arbitraire Générateurs de fonctions arbitraires dans un simple instrument. Le DMM4020 permet également de mesurer la fréquence, et de réaliser des tests de continuité et de diodes. Ceci est idéal pour remplacer en un seul instrument polyvalent, un fréquencemètre, un testeur de continuité et un multimètre numérique et permettre ainsi d’économiser espace et coût. (Compatible avec iPad et tablettes androïdes) Série AFG3000 AFG2021 Tektronix DMM4020 Ì Signal sinusoidal 20 MHz, Signal Carré et Impulsion 10 MHz, fournissent une solution pour la plupart des applications Ì Taux d’échantillonage de 250 Méch/s et résolution verticale de 14 bits Ì L’interface utilisateur intuitive et identique au AFG3000 permettent une prise en main rapide de l’utilisateur Ì Mémoire de 4×128K intégré et extension de mémoire USB pour les Caractéristiques et avantages: Ì Résolution 5.5 Digits Ì Précision de base VDC jusqu’à 0.015% (1 an) Ì Gamme de tension: 200 mV à 1000 V, jusqu’à une résolution de 10 μV Ì Gamme de courant: 200 μ à 10 A, jusqu’à une résolution de 1 nA Ì Gamme 200 Ω à 100 MΩ, jusqu’à une résolution de 1 mΩ Ì CAT I 1000 V, CAT II 600 V Ì Fonctions disponibles: Ì Mesures Volts, Ohms, et Amps Ì Test de diodes et de continuité Ì Mesures de fréquence Ì Technique de mesure: 4 fils 2×4 Ohms Ì Mesure de courant de fuite DC dédiée Ì 6 boutons pour un accès rapide aux paramétrages de l’instrument Ì Mode de comparaison de limite pour un test Echec/Passage Connexion: Ì 2×4 entrées en face avant Ì RS-232 à l’arrière pour une connexion PC rapide Ì Livré avec câble adaptateur d’interface USB vers RS-232 Ì Livré avec le logiciel LabVIEW SignalExpress[TradeMark] TE Limited de National Instrument Ì Guide de connexion Le générateur de fonction arbitraire AFG3000, avec son grand écran couleur et son interface utilisateur intuitive, est facile à utiliser et à comprendre. Les modèles à 2 voies permettent un choix complètement indépendant des signaux et des fréquences et représentent un grand avantage en terme de polyvalence et coût. Le connecteur USB sur le panneau avantpermet de sauvegarder et transférer facilement les signaux. formes d’ondes défini par l’utilisateur Ì Port USB Standard Hôte et Périphérique, option Interface GPIB et LAN Ì Plusieurs modes de fonctionnement et de modulation Ì Menus et Aide contextuelle en 8 langues Ì Hauteur 2U et largeur demi-rack pour s’adapter à la fois aux applications de table et monté en rack Ì Logiciel ArbExpress pour facilement créer et éditer des formes d’ondes Ì Logiciel SignalExpress permet de combiner les intruments de test Tektronix en une solution de test automatique Code Prix Unitaire Réf. Fab. Description Commande 1+ DMM4020 Multimètre numérique 177-1901 655.00 Accessoires 1+ TL725 Brucelles de test CMS, 2 X 4 fils Ohms 177-1904 86.00 196352001 Cordons de test, Standard TL710 177-1907 32.00 TL705 Cordons de test, Précision, 2X4 fils 177-1908 65.00 l=330 H=156 P=168mm Poids = 4.5kg Multimètres numériques Contenu du Kit: Générateur de Fonction Arbitraire, Mode d’emploil, Cable d’alimentation, Câble USB, CD-ROM (manuel de programmation,manuel d’entretien, Labview and IVI Drivers) , CD-ROM avec Logiciel ArbExpress Certificat de Calibration NIST. Comprend : Manuel d’utilisation rapide, cordon d’alimentation, CD-ROM avec guide de référence, manuel de service et logiciel ArbExpress, certificat de calibration NIST. Applications: Ì Conception et Test en électronique Ì Simulation de Capteur Ì Education et Formation Ì Test Fonctionnel Ì Intégration de Système Le logiciel ArbExpress est inclus pour créer des signaux facilement. Avec ce logiciel PC, les signaux peuvent être importés depuis n’importe quel oscilloscope Tektronix, ou définis par les fonctions standard, l’éditeur d’équation, et les signaux mathématiques. Ì Signaux sinusoïdaux 10MHz, 25 MHz, 100 MHz ou 240 MHz Ì Signaux arbitraires 14 bits, 250 MS/s, 1 Géch/s, ou 2 Géch/s Ì Ecran 5.6" pour une vision globales des réglages et de la forme du signal (sauf AFG3021B avec écran monochrome) Ì Fonctionnement multilingue et intuitif pour gagner du temps lors de la configuration Ì Signal impulsionnel avec déclenchement sur front variable Ì AM, FM, PM, FSK, PWM Ì Balayage et salve Ì Modèle à deux voies pour une économie d’argent et de place Ì Connecteur pour périphériques de stockage USB au niveau du panneau avant pour enregistrer les signaux Ì USB, GPIB et LAN farnell.com element14.com 8 TEST ET MESURE Tektronix Dimensions (HxlxP) = 88x217x297mm Modèle PWS4205 PWS4305 PWS4323 PWS4602 PWS4721 Tension sortie max. 20 V 30 V 32 V 60 V 72 V Courant sortie max. 5 A 5 A 3 A 2.5 A 1.2 A Ond. & Bruit (7 MHz) 1 mV RMS 1 mV RMS 1 mV RMS 1 mV RMS 1 mV RMS 3 mVP-P 4 mVP-P 4 mVP-P 5 mVP-P 3 mVP-P Modes commandes Tension constant, Courant constant Mémoires 50 Connectivité Port USB, compatible USBTMC Modèle PWS2185 PWS2323 PWS2326 PWS2721 Tension max. de sortie 18 V 32 V 32 V 72 V Courant max. de sortie 5 A 3 A 6 A 1.5 A Ond. & bruit (7 MHz) 1 mVRMS / 3 mVP-P Modes commande Tension constant, Courant constant Mémoires 16 Contrôle total des couts, réduction de la gestion administrative, visibilité sur vos dépenses, flexibilité et personnalisation selon les besoins de votre société. farnell.com/ibuy Prix Unitaire Réf. Fab. Code Commande 1+ PWS4205 18 Volts, 5 Amps 182-4787 724.00 PWS4305 30 Volts, 5 Amps 182-4789 853.00 PWS4323 32 Volts, 3 Amps 182-4791 724.00 PWS4602 60 Volts, 2.5 Amps 182-4792 853.00 PWS4721 72 Volts, 1.2 Amps 182-4793 724.00 Prix Unitaire Réf. Fab. Code Commande 1+ PWS2185 18 Volts, 5 Amps 182-4783 326.00 PWS2323 32 Volts, 3 Amps 182-4784 326.00 PWS2326 32 Volts, 6 Amps 182-4785 376.00 PWS2721 72 Volts, 1.5 Amps 182-4786 326.00 DMM4050 Solution gratuite d’achats intelligents en ligne Alimentation DC Comprend: multimètre, cordons de test TL710, fusible de remplacement, certificat d’étalonnage, certificat de garantie, guide de sécurité et installation, manuel d’installation des connexions, manuel d’utilisation sur CD-ROM (Anglais, Français, Italien, Allemand, Espagnol, Chinois simplifié, Chinois traditionnel, Coréen, Russe, Japonais), câble adapteur RS-232 vers USB, logiciel LabVIEW SignalExpress™. Cordons d’alimentation (prises européenne et anglaise). Alimentation DC Série PWS2000 DMM4040 Série PWS4000 Caractéristiques: Caractéristiques: Ì Faible bruit, Régulation linéaire Ì Large gamme de tension et de courant Ì Précision de la tension basique 0.03%, précision du courant basique 0.05% Ì Interface USB pour la programmation à distance Ì Affiche la tension et courant actuels et limite simultanément Ì Détection à distance, lignes de sorties arrières, Trigger/état Ì Garantie 3 ans Les multimètres de table 6.5 digits DMM4050 et DMM4040 de Tektronix intègrent de nombreuses fonctions et analyses dans un seul instrument, toutes avec une précision et des performances exceptionnelles. Avec un double affichage unique pour les DMM4050/4040, 2 paramètres différents peuvent être mesurés sur un même signal à partir d’une seule Ì Faible bruit, Régulation linéaire Ì Large gamme de tension et de courant Ì Résolution 10 mV/10 mA connexion de test. Les problèmes de qualité du signal tels que les transitions intermittentes, les chutes et la stabilité peuvent être révélés grâce à une visualisation des données en plot de tendance en temps réel ou un histogramme avec le mode d’affichage graphique ou grâce aux statistiques de mesure qui suivent les changements de paramètres du signal. Large gamme de tension et de courant, caractéristiques flexibles font de la série PWS4000 un complèment indispensable à votre banc. Excellente précision de la tension et courant, détection à distance pour les niveaux de sorties, réglage via boutons numérique pour un paramètrage direct ou par bouton rotatif pour un réglage en continu sur afficheur VFD. Mémoires de réglage intégrées, liste de fonctions permet une prise en main rapide. Programmation à distance via interface USB et livré avec logiciel NI Signal Express. Réglage de la tension max. peut être protègé par un code verrouillant ainsi le panneau avant pour éviter tout dommage. Ì Affichage VFD Ì 16 mémoires réglables Ì Garantie 3 ans Accessoires fournis Manuel utilisateur Quick Start CD de documentation Mémoire Modèle Description DMM4050/4040 Capacité de 10,000 mesures internes et jusqu’à 2 Gigabyte avec le module mémoire USB (disponible séparément) via le port USB sur face avant Tektronix DMM4040 et DMM4050 La série PWS2000 est conçue pour une haute performance et pour une utilisation intuitive. Avec une large gamme de tension et courant, plus une résolution de 10mV et 10mA, la série PWS2000 convient à une large gamme d’applications, réglage rapide et précis des tensions et courants grâce à son clavier numérique. Affichage VFD avec large digit permettant une excellente lecture, réglage de la tension max. peut être protègé par un code verrouillant ainsi le panneau avant pour éviter tout dommage. Caractéristiques et avantages: Ì Résolution 6.5 digits Ì Précision de base VDC jusqu’à 0.0024% (1 an) Ì Gamme de tension de 100 mV à 1000 V, jusqu’à une résolution de 100 nV Ì Gamme de courant de 100 μA à 10 A, jusqu’à une résolution de 100 pA Ì Gamme Ohm de 10 Ω à 1 GΩ, jusqu’à une résolution de 10 μΩ Ì CAT I 1000 V, CAT II 600 V Fonctions disponibles: Ì Mesures Volts, Ohms et Amps Ì Test de diodes et de continuité Ì Mesures de fréquence et de période Ì Mesure de température et de capacité (DMM4050) Ì Technique de mesure: 4 fils 2×4 Ohms Ì Mode d’enregistrement des données TrendPlot™ Ì Mesure statistiques Ì Mode histogramme Connexion: Ì 2×4 entrées en face avant Ì Port hôte USB sur face avant pour un stockage facile des données et des paramètrages Ì Ports RS-232, LAN et GPIB à l’arrière pour une connexion PC rapide Ì Livré avec câble adaptateur d’interface USB vers RS-232 Ì Livré avec le logiciel LabVIEW SignalExpress™ TE Limited de National Instrument Ì Guide de connexion Accessoires fournis Manuel utilisateur Quick Start CD de documentation Cordon d’alimentation Certificat d’étalonnage documentant la traçabilité: National Metrology Institute(s) Code Prix Unitaire Réf. Fab. Description Commande 1+ DMM4040 Multimètre numérique de précision 35PPM 177-1902 949.00 DMM4050 Multimètre numérique de précision 24PPM 177-1903 1180.00 Accessoires 1+ TL725 Brucelles de test CMS, 2 X 4 fils Ohms 177-1904 86.00 TP750 Sonde de température, 100 Ohm RTD (DMM4050 seulement) 177-1906 437.00 196352001 Cordons de test standard TL710 177-1907 32.00 TL705 Cordons de test de précision 2X4 fils 177-1908 65.00 Multimètres numériques Les multimètres Fluke, le choix des professionnels pour toutes les applications Usage général avec écran amovible Usage industriel avancé Applications industrielles et pour le terrain Mesures essentielles CVC Usage sur terrain Robustesse à l'épreuve de l'usage industriel 287 113 114 117 116 115 27-II 28-II 88V 289 83V 87V 233 175 177 179 Fluke Série 170 : Haute performance à prix abordable Automobile Précision extrême Sécurité intrinsèque 28 II EX farnell.com element14.com 10 TEST ET MESURE Keithley 2001 et 2002 Spécifications Tension AC 100mV, 1V à 750V Tension DC 100mV, 1V, 10V, 100V, 1000V Courant AC 1A, 3A Courant DC 10mA, 100mA, 1A, 3A Résistance 100Ω, 1kΩ, 10kΩ, 100kΩ, 1MΩ, 10MΩ, 100MΩ Température -100°C à 100°C / -200°C à 630°C Test de Diode 1V Continuité 1000Ω Spécifications générales Tension d’entrée 120V / 220V / 240V Température d’utilisation 5°C à 40°C Dimensions 112 x 256 x 375mm Poids 4.1kg Contenu du kit 2000/E/2000-SCAN: Multimètre/Scanner, Manuel d’instruction, cordons de sécurité Prix Unitaire Réf. Fab. Code Commande 1+ 2100/230-240 207-4728 763.00 2000 Spécifications: Tension AC 200mV, 2V, 20V, 200V, 750V Tension DC 200mV, 2V, 20V, 200V, 1000V Courant AC 200μA, 2mA, 20mA, 200mA, 2A Courant DC 200μA, 2mA, 20mA, 200mA, 2A Résistance 20Ω, 200Ω, 2kΩ, 20kΩ, 200kΩ, 2MΩ, 20MΩ, 200MΩ, 1GΩ Fréquence 1Hz à 15MHz Température Thermocouple J, K, N, T, E, R, S, B Spécification générales Tension d’entrée 90V à 134V / 180V à 250V Température d’utilisation 0°C à 50°C Dimensions 90 x 214 x 369mm Poids 4.2kg SUPPORT LEGISLATIF MONDIAL GRATUIT : Directives RoHS, REACH, DEEE, Eup, batteries : dernières mises à jour, livres blancs gratuits et questions-réponses en direct sur element14.com/legislation Prix Unitaire Réf. Fab. Description Code Commande 1+ 2001. 71⁄2 Digit Resolution 207-4726 4470.00 2002. 81⁄2 Digit Resolution 207-4727 5990.00 Accessoires 1600A High Voltage Probe 213-1299 190.00 1681 Clip On Test Lead Set 213-1296 38.00 2000-SCAN 10 Channel Scanner Card 213-1239 411.00 2001-SCAN 10 Channel Scanner Card with 2 High Speed Channels 213-1240 808.00 2001-TCSCAN 9 Channel Thermocouple Scanner Card 213-1241 1080.00 4288-1 Single Unit Rack Mount Kit 213-1276 102.00 4288-4 Dual Fixed Rack Mount Kit 213-1278 318.00 5805 Kelvin (4 Wire), Spring Loaded Probes, 0.9m 213-1246 253.00 5808 Kelvin probes, Single Pin 213-1247 122.00 5809 Kelvin Clip Lead Set 213-1248 186.00 8502 Trigger Link to BNC Break-Out Box 213-1254 934.00 KPCI-488LPA IEEE-488.2 Interface/Controller for the PCI Bus 207-7470 434.00 KUSB-488B IEEE-488.2 USB-to-GPIB Interface Adapter 207-7471 505.00 Multimètre numérique Support législatif Contenu du kit 2000/E: Multimètre, Manuel d’instruction, cordons de sécurité Le multimètre numérique modèle 2100 USB est un multimètre Spécifications Multimètre numérique Tension AC 100mV, 1V, 10V, 100V, 750V Tension DC 100mV, 1V, 10V, 100V, 1000V Courant AC 1A, 3A Courant DC 10mA, 100mA, 1A, 3A Résistance 100Ω, 1kΩ, 10kΩ, 100kΩ, 1MΩ, 10MΩ, 100MΩ Fréquence 3Hz à 500kHz Température -200°C à 760°C, -200°C à 1372°C, -200°C à 400°C Test de Diode 3V, 10V Continuité 1kΩ Spécifications générales Tension d’entrée 100V / 120V / 220V / 240V Température d’utilisation 0°C à 50°C Dimensions 104 x 238 x 370mm Poids 2.9kg Prix Unitaire Réf. Fab. Description Code Commande 1+ 2000/E Multimeter 207-4725 807.00 2000/E/2000-SCAN Multimeter/Scanner 213-1292 1140.00 Accessoires 1600A High Voltage Probe 213-1299 190.00 1681 Clip On Test Lead Set 213-1296 38.00 2000-SCAN 10 Channel Scanner Card 213-1239 411.00 2001-SCAN 10 Channel Scanner Card with 2 High Speed Channels 213-1240 808.00 2001-TCSCAN 9 Channel Thermocouple Scanner Card 213-1241 1080.00 4288-1 Single Unit Rack Mount Kit 213-1276 102.00 4288-2 Dual Unit Rack Mount Kit 213-1277 141.00 4288-4 Dual Fixed Rack Mount Kit 213-1278 318.00 4288-5 Single and Dual Fixed Rack Mount Kit 213-1279 382.00 7007-1 Shielded IEEE-488 Cable, 1m 213-1242 125.00 7007-2 Shielded IEEE-488 Cable, 2m 213-1243 138.00 7009-5 RS-232 Cable, 1.5m 213-1244 63.00 KPCI-488LPA IEEE-488.2 Interface/Controller for the PCI Bus 207-7470 434.00 KUSB-488B IEEE-488.2 USB-to-GPIB Interface Adapter 207-7471 505.00 haute performance. Sa grande précision (38 ppm), la résolution 61⁄2 digit est idéal pour les mesures critiques. Le modèle 2100 dispose de 11 fonctions de mesure et 8 fonctions mathématiques pour utiliser facilement les paramètres les plus couramment Multimètre numérique our les utilisateurs dont les applications exigent une résolution, une précision et une sensibilité combinée à un débit élevé avec maintenant deux alternatives. Ces mulitmètres 71⁄2 digit et 81⁄2 haute performance offrent non seulement des spécifications de Multimètre numérique mesurés. Avec sa haute précision, le modèle 2100 est conçu pour les ingénieurs R&D, les ingénieurs de test, les scientifiques et les étudiants pour faire des mesures de précision de base dans les applications système. Ce multimètre numérique offre une vitesse de mesure exceptionnelle à n’importe performance habituellement associés à des instruments qui coûtent plus cher, mais ils offrent également un large éventail de fonctions qui ne sont généralement pas disponibles sur des multimètres numériques. Le 2002 est basé sur la technologie de mesure supérieure comme le 2001, et les panneaux avant des deux instruments ont la même apparence et réponse. Ì Précision 61⁄2 digit pour les mesures critiques Ì 11 fonctions de mesure pour couvrir la plupart des besoins Ì Interface USB 2.0 conforme TMC pour utiliser avec les programmes de test SCPI Ì Logiciel fourni pour faire des graphiques et partager las données avec Microsoft Word et Excel Ì Construction solide pour une grande durée de vie même en utilisation portables Ì Possibilité de choisir des sortie en face avant ou arrière pour faciliter l’utilisation en labo ou Rack quelle résolution. A 6 ½ Digit, il offre 50 rdgs/s sur bus IEEE-488. À 4 ½ Digit, il peut lire jusqu’à 2000rdgs/s dans sa mémoire tampon de 1024 interne, ce qui en fait un excellent Ì Résolution 71⁄2 (Modèle 2001) ou 81⁄2 digit (Modèle 2002)True Ì Mesure exceptionnelle avec une très grande vitesse Ì Changement de fonction et de gamme rapide Ì Affichage mesure multiple Ì Option scaner 10 voies Ì Compatible IEEE-488.2 et SCPI Ì Mode émulation HP3458A (Modèle 2002) Contenu du kit: Multimètre, manuel d’utilisation sur CD, Spécifications, Driver LabVIEW, I/O Layer Keithley, Câble USB, Câble d’alimentation, cordons de tet sécurisés, KI-Tool et KI-Link Add-in (Version Microsoft Word et Excel pour les deux). Contenu du kit: Multimètre, cordons de test modulaires, manuel d’utilisation, Capot et info de calibration 2100 choix pour les applications où le débit est critique. Pour les applications stationnaires ou en mode autonome, le 2000 dispose d’une conception du panneau avant qui est simple à comprendre et facile à utiliser. Le 2000 dispose de 13 fonctions intégrées de mesure, y compris DCV, ACV, DCI, ACI, 2WW, 4WW, température, fréquence, période, dB, dBm, mesure de continuité, et le test de diodes. Une interface RS-232 se connecte à un ordinateur portable ou un port série de PC pour prendre, stocker, traiter, et afficher automatiquement les mesures. Ì Interface RS-232 et IEEE-488 Ì Set de commande Fluke 8840/42 Applications: Ì Ingénieurs de test: Manuel ou semi-automatique Ì Ingénieurs de développement: Validation de circuits électronique et de produits Ì Techniciens de maintenance ou calibration: Réparations et calibration de matériels électroniques Ì Chercheurs: Tests, expérimentations physiques et électriques Ì Étudiants Ingénieurs: Test et expérience sur circuits électroniques Ì 13 fonctions de mesure Ì 2000 lecture par seconde à 41⁄4 digits Ì Scanner de carte en option pour mesure multipoint farnell.com element14.com TEST ET MESURE 11 Keithley Trouvez vos produits en ligne, sur tablette ! Série 2200 2430 2440 Spécifications des gammes Tension 200Mv, 2V, 20V, 100V 200mV, 2V, 10V, 40V Courant 10μA, 100μA, 1mA, 10mA, 100mA, 1A, 3A, 10A 10μA, 100μA, 1mA, 10mA, 100mA, 1A, 5A Résistance 2Ω, 20Ω, 200Ω, 2kΩ, 20kΩ, 200kΩ, 2MΩ, 20MΩ, 200MΩ Spécifications Générales Tension d’entrée 100V à 240V Température de fonctionnement 0°C à 50°C Dimensions 104 x 238 x 370mm Consultez notre catalogue en ligne innovant avec mise à jour quotidienne des prix. Plus accessible, il rend vos recherches plus faciles. Tension d’entrée 110V / 220V Fréquence 50/60Hz Communications USB / GPIB Température d’utilisation 0 à 40 Dimensions 106 x 242 x 384mm Poids 2200-20-5, 2200-30-5, 2200-32-3, 2200-72-1: 7.3kg 2200-60-2: 7kg Fonction de vérification de Contact La fonction de vérification de contact permet de vérifier simplement et rapidement les bonnes connections avant qu’une séquence de test automatique commence. Ceci élimine les erreurs de mesure et les fausses défaillances des produits associés à la fatigue du contact, la rupture, la contamination, la connexion desserrée ou cassée, les défaillances de relais, etc Réf. Tension Courant de Puissance Fab. de sortie sortie de sortie (W) Code Commande 2200-20-5 20 5 100 207-4730 2200-30-5 30 5 150 207-4731 2200-32-3 32 3 96 207-4732 2200-60-2 60 2.5 150 207-4733 2200-72-1 72 1.2 86 207-4735 Série 2400 Prix Unitaire Réf. Fab. Description Code Commande 1+ 2200-20-5 Programmable Power Suppply, 20V, 5A 207-4730 790.00 2200-30-5 Programmable Power Suppply, 30V, 5A 207-4731 931.00 2200-32-3 Programmable Power Suppply, 32V, 3A 207-4732 790.00 2200-60-2 Programmable Power Suppply, 60V, 2.5A 207-4733 931.00 2200-72-1 Programmable Power Suppply, 72V, 1.2A 207-4735 790.00 Accessoires 7007-1 Shielded IEEE-488 Cable, 1m 213-1242 125.00 7007-2 Shielded IEEE-488 Cable, 2m 213-1243 138.00 KPCI-488LPA IEEE-488.2 Interface/Controller for the PCI Bus 207-7470 434.00 Applications: Ì Composants : Semiconducteurs Discrets, Composants passifs, Composants de Suppression, CI, CI RF, MMIC, Diodes et modules Laser, LED, Photo détecteurs, Circuit de protection: TVS, MOV, Fusible, Airbags, Connecteurs, commutateurs, relais Ì Tests: Fuite, Faible tension/résistance, Coéfficient de Température, Tension de transfert retour et claquage, fuite de courant, test de paramètre DC, source de puissance DC, tenue Diélectrique, caractérisation courant/tension, HIPOT, LIV, IDDQ (Compatible avec iPad et tablettes androïdes) 2420 2425 / 2425-C Spécifications des gammes Tension 200mV, 2V, 20V, 60V 200Mv, 2V, 20V, 100V Courant 10μA, 100μA, 1mA, 10mA, 100mA, 1A, 3A Résistance 2Ω, 20Ω, 200Ω, 2kΩ, 20kΩ, 200kΩ, 2MΩ, 20MΩ, 200MΩ Spécifications Générales Tension d’entrée 100V à 240V Température de fonctionnement 0°C à 50°C Dimensions 104 x 238 x 370mm Alimentations DC programmables 2400 2401 2410 / 2410-C Spécification des gammes Tension 200mV, 2V, 20V, 200V 200mV, 2V, 20V 200mV, 2V, 20V, 1000V Courant 1μA, 10μA, 100μA, 1mA, 10mA, 100mA, 1A 1μA, 10μA, 100μA, 1mA, 20mA, 100mA, 1A Résistance 2Ω, 20Ω, 200Ω, 2kΩ, 20kΩ, 200kΩ, 2MΩ, 20MΩ, 200MΩ Spécifications Générales Tension d’entrée 100V à 240V Température de fonctionnement 0°C à 50°C Dimensions 104 x 238 x 370mm Les alimentations programmables séries 2200 permettent de fournir un large éventail de tension de sorties DC pour répondre aux applications de caractérisation des composants, et de test des circuits, des modules et des dispositifs complets si vous êtes dans un laboratoire de recherche, dans la conception et le développement, ou en test de production. La série 2200 se compose de Ref Prix Unitaire Fab. Description Code Commande 1+ 2400. SourceMeter, 200V, 1A, 20W 207-4736 3850.00 2401 SourceMeter, 20V, 1A, 20W 207-4737 2820.00 2410. SourceMeter, 1100V, 1A, 20W 207-4738 5680.00 2410-C SourceMeter, 1100V, 1A, 20W, Contact Check 213-1300 6860.00 2420. SourceMeter, 60V, 3A, 60W 207-4739 5680.00 2425 SourceMeter, 100V, 3A, 100W 213-1301 6760.00 2425-C SourceMeter, 100V, 3A, 100W, Contact Check 213-1302 8050.00 2430 SourceMeter, 100V, 10A, 1000W 213-1303 9790.00 2440. SourceMeter, 40V, 5A, 50W 207-4740 6460.00 Accessoires KPCI-488LPA IEEE-488.2 Interface/Controller for the PCI Bus 207-7470 434.00 KUSB-488B IEEE-488.2 USB-to-GPIB Interface Adapter 207-7471 505.00 4288-1 Single Unit Rack Mount Kit 213-1276 102.00 4288-2 Dual Unit Rack Mount Kit 213-1277 141.00 4288-4 Dual Fixed Rack Mount Kit 213-1278 318.00 4288-5 Single and Dual Fixed Rack Mount Kit 213-1279 382.00 5804 Kelvin (4 Wire) Universal 10 Piece Test Lead Set 213-1245 227.00 5805 Kelvin (4 Wire), Spring Loaded Probes, 0.9m 213-1246 253.00 5808 Kelvin probes, Single Pin 213-1247 122.00 5809 Kelvin Clip Lead Set 213-1248 186.00 8501-1 Trigger Link, DIN-to-DIN, 1m 213-1252 72.00 8501-2 Trigger Link, DIN-to-DIN, 2m 213-1253 79.00 8502 Trigger Link to BNC Break-Out Box 213-1254 934.00 8503 Trigger Link, DIN-to-Dual BNC, 1m 213-1255 99.00 8505 Male DIN to 2 Female DIN Y Adapter, 0.3m 213-1256 99.00 CA-18-1 Dual Banana Plug, Shielded, Coax, 1.2m 213-1251 31.00 cinq modèles avec des tensions de sortie de 20V à 72V qui peuvent fournir 86W, 96W, 100W, 150W. En outre, ces alimentations peuvent agir en tant que sources de courant constant ainsi que de sources de tension constante. Les alimentations DC de la série 2200 offrent une excellente combinaison de performances, polyvalence et facilité d’utilisation qui vous permettra d’obtenir des données de test de qualité aussi rapidement que possible. Elles effectuent aussi efficacement des tests dans les systèmes de automatisés de la même façon que dans des configurations d’instruments manuels. SourceMeter Ì 5 modèles avec des puissances de 86W à 150W avecdes tensions de sortie de 20V à 72V. Ì Précision de la tension de sortie 0.03% et 0.05% pour le courant Ì Résolution élevée en sortie, 1mV et 0.1mA pour les tests sur des circuits faible puissance Ì Mesure à distance pour garantir que la tension programmée et appliquée à la charge Ì Double afficheur pour voir à la fois la tension programmé et la tension de sortie et ainsi avoir une vision continue de la puissance fournie à la charge Ì Interfaces GPIB et USB pour automatiser le contrôle Les SourceMeter Keithley sont des instruments de source et mesure conçus spécifiquement pour les applications de test qui demande de combiné source et mesure. Tous les modèles fournissent une source de tension/courant précise ainsi que des capacités de mesure. Chaque instrument est à la fois une source très stable en courant continu et un véritable Multimètre 61⁄2 digits. Les caractéristiques de la source d’alimentation comprennent un faible bruit, la précision, et relecture. Les capacités du multimètre comprennent répétabilité élevée et faible bruit. Le résultat est un système compact simple canal, de paramètre de test DC. En fonctionnement, ces instruments peuvent agir comme une source de tension, une source de courant, un voltmètre, un ampèremètre et un ohmmètre. Les fabricants de composants et de modules pour les communications, semi-conducteurs, l’informatique, l’automobile et les industries médicales trouvent intéressant d’utiliser les Sourcemeter pour un large éventail d’applications de test et de production. Ì 5 instruments en 1 Ì 7 modèles: de 20 à 100W DC, 1000W pulsé, 1100V à 1μV, 10A à 10pA Ì Fonctionnement Source et Puits (4 Quadrants) Ì Précision de mesure 0.012% avec une résolution de 6½ digits Ì Commande en 2, 4, et 6 fils de la source de tension et mesure de détection Ì 1700 lectures/seconde sur 41⁄2digits via GPIB Ì Comparateur Réussite/Echec pour un tri rapide Ì Fonction de vérification de contact disponible Ì Port DIO Programmable pour une commande par automatisation/Instruction/sonde (sauf le Modèle 2401) Ì Interfaces Standard SCPI GPIB, RS-232 et déclenchements Keithley Ì Logiciel de courbe Keithley LabTracer 2.0 I-V (en téléchargement) Contenu du Kit: SourceMeter, Cordon de Test, Driver Logiciel LabVIEW (téléchargeable) et Logiciel LabTracer (téléchargeable). farnell.com element14.com 12 TEST ET MESURE Keithley Applications: Ì Composant Discrets et passifs Ì CI simple: Optos, drivers, commutateurs et capteurs Ì Composants intégrés: small scale integrated (SSI) et large scale integrated (LSI) Ì Optoélectronique tel que les LED, les diodes lasers, les LED Hautes luminosités, les afficheurs.... Ì Fiabilité Wafer Ì Cellules Solaires Ì Batteries 3390 Série 2600A Caractéristiques signaux Plage de fréquence Sinus 1μHz à 50MHz Plage de fréquence carré 1μHz à 25MHz Plage de fréquence rampe, triangle 1μHz à 200kHz Plage de fréquence impulsion 500μHz à 10MHz Bande passante bruit 20MHz Arbitraire 1μHz à 10MHz Type de modulation AM, FM, PM, FSK, PWM, Sweep et Burst Général Alimentation 110V à 240V ac Consommation 50VA max. Température de fonctionnement 0°C à 50°C Température de stockage -30 à 70 Interface USB, LAN, LXI-C, GPIB Langage SCPI-1993, IEEE-488.2 Dimensions (l x H x P) 107 x 224 x 380mm Poids 4.08kg 2601A 2611A 2635A 2602A 2612A 2636A Spécification de Gammes Tension 100mV, 1V, 6V, 40V 200mV, 2V, 20V, 200V 200mV, 2V, 20V, 200V Courant 100nA, 1μA, 10μA, 100μA, 1mA, 10mA, 100mA, 1A, 3A, 10A 100nA, 1μA, 10μA, 100μA, 1mA, 10mA, 100mA, 1A, 1.5A, 10A 100pA, 1nA, 10nA, 100nA, 1μA, 10μA, 100μA, 1mA, 10mA, 100mA, 1A, 1.5A, 10A Spécifications Générales Tension d’entrée 100V à 250V Température de Fonctionnement 0°C à 50°C Dimensions 104 x 238 x 460mm Poids 4.75kg Prix Unitaire Réf. Fab. Description Code Commande 1+ 3390 Arbitrary Waveform/Function Generator 207-4753 1410.00 Accessoires 7007-1 Shielded IEEE-488 Cable, 1m 213-1242 125.00 7007-2 Shielded IEEE-488 Cable, 2m 213-1243 138.00 KPCI-488LPA IEEE-488.2 Interface/Controller for the PCI Bus 207-7470 434.00 KUSB-488B IEEE-488.2 USB-to-GPIB Interface Adapter 207-7471 505.00 Ref Prix Unitaire Fab. Description Code Commande 1+ Système 1 canal 2601A SourceMeter, 3A DC, 10A Pulse 207-4741 5170.00 2611A SourceMeter, 200V, 10A Pulse 207-4743 5170.00 2635A SourceMeter, 1fA, 10A Pulse 207-4745 8330.00 Système Double canaux 2602A SourceMeter, 3A DC, 10A Pulse 207-4742 7580.00 2612A SourceMeter, 200V, 10A Pulse 207-4744 7580.00 2636A SourceMeter, 1fA, 10A Pulse 207-4747 12800.00 Accessoires 2600-TLINK Digital I/O to TLINK Adapter, 1m 213-1269 127.00 3706A-S Mainframe 213-1294 2070.00 7007-1 Shielded IEEE-488 Cable, 1m 213-1242 125.00 7007-2 Shielded IEEE-488 Cable, 2m 213-1243 138.00 7078-TRX-1 Triax 3 Slot Low Noise Cable (0.3m) 207-7464 163.00 7078-TRX-3 Triax 3 Slot Low Noise Cable (0.9m) 207-7465 175.00 7078-TRX-5 Triax 3 Slot Low Noise Cable (1.5m) 207-7466 188.00 7078-TRX-10 Triax 3 Slot Low Noise Cable (3m) 207-7467 202.00 7078-TRX-BNC Triax 3 Slot Male BNC Adapter 207-7468 85.00 7078-TRX-GND Triax 3 Slot Male BNC Adapter (No Guard) 207-7469 72.00 CA-126-1A DB25 (male/female), Digital I/O, Shielded, 1.5m 213-1270 110.00 CA-180-3A RJ45, Crossover, Twisted Pair, 3m 213-1271 11.00 KPCI-488LPA IEEE-488.2 Interface/Controller for the PCI Bus 207-7470 434.00 KUSB-488B IEEE-488.2 USB-to-GPIB Interface Adapter 207-7471 505.00 Générateur de fonctions/ signaux arbitraires Systèmes d’instrumentations SourceMeter Le générateur modèle 3390 est un outil facile à utiliser, programmable avec de fonctions avancées. Une meilleure intégrité du signal supérieure, des temps de montée et descente plus rapide et moins de bruit, une mémoire plus grande se combinent pour fournir une haute qualité de signaux de sortie. La résolution élevée des formes Oscilloscopes numériques d’onde sont pris en charge par quatre fois plus de mémoire de forme d’onde que n’importe quel générateur de forme d’onde sur le marché. Avec son générateur de forme d’onde arbitraire (ARB) sa grande vitesse et sa facilité d’utilisation, le modèle 3390 est une solution complète pour générer des signaux pour toutes les applications de forme d’onde jusqu’à 50MHz. Ces systèmes Sourcemeter sont les dernières unité de source Courant/Tension de Keithley, pour utilisation comme outil de banc de test de caractérisation Courant/Tension ou comme bloc pour systèmes de tests Courant/Tension multi-canaux. Pour une utilisation en banc de test, les instruments de Ì Fréquence 50MHz signaux SIN Ì Fréquence de pulsation 25MHz Ì Générateur arbitraire avec 256k points, résolution 14 bits Ì Fonctions inclues: Sin, carré, triangle, bruit, DC, etc. Ì Impulsions précises et signaux carrés avec des tps de monté/Descente de 5ns Ì Base de temps externe intégrée pour synchroniser plusieurs unités Ì Modulation AM, FM, PM, FSK, PWM Ì Possibilité de Fréquence ’Sweep et Burst’ Ì Logiciel de création de signaux KiWAVE Ì Conforme LXI Classe C 1000A/B la série 2600A disposent d’un outil intégré (TSP Software Express) qui permet aux utilisateurs de créer rapidement et facilement effectuer des tests usuels Courant/Tension sans programmation ou installation de logiciels. Pour les applications système, l’architecture Test Script Proccessor (TSP), ainsi que d’autres nouvelles fonctionnalités telles que le parallèle entre exécution de test et timing précis, fournissent le plus haut débit dans l’industrie, et abaissent le coût du test. Pour simplifier le test, la vérification et l’analyse des composants semi-conducteurs, le logiciel ACS Basic Edition est également disponible en option. Contenu du kit: Générateur de signaux avec cordons d’alimentation, câble de bus universel série, câble générateur de Pattern, Câble Ethernet croisé, CD avec manuel d’utilisation Ì Combine une alimentation, une véritable source de Courant, un multimètre numérique 61⁄2 digits, un générateur de fonctions arbitraires, Un générateur de pulsation Courant ou Tension avec mesure, une charge électronique, et un contrôleur de déclenchement Ì Cette famille de produit offre une large gamme dynamique: 1fA à 50A et 1μV à 200V Ì Les 20000 lectures/s fournissent une vitesse de test rapide et la possibilité de capturer le comportement transitoire du composant Ì Chronométrage de précision et de synchronisation des canaux (<500ns) Ì Port USB pour la sauvegarde des données et des rapports de tests Ì La conformité LXI Class C prend en charge les transferts de données haute vitesse et permet d’effectuer rapidement et facilement des tests à distance, la surveillance et le dépannage Ì Logiciel: TSP Express pour des tests Courant/Tension rapide et simple (intégré), ACS Basic Edition pour la caractérisation des semiconducteurs (en option) DSO1002A Contenu du Kit: SourceMeter, Câble Triax faible bruit avec pince crocodile, Connecteurs bornes à vis avec clip anti-traction et capot, Câble TSP-Link/Ethernet (deux par unité), Logiciel TSP Express (intégré), Logiciel Test script builder (fourni sur le CD) et Logiciel ACS Basic edition software (en option). DSO1024A Ì Grand écran couleur LCD 5.7" permettant une meilleure visualisation des formes d’onde Ì Angle de vision large Ì Test de masque facile Ì Zone de visualisation des formes d’ondes 25% plus grande sans la barre du menu Ì Mémoire jusqu’à 20k Ì 23 mesures automatiques Ì Mode séquence pour l’enregistrement, lecture et sauvegarde des formes d’ondes Ì Filtre bande passante sélectionnable Ì Déclenchement avancé Ì Interface multi-langues: français, anglais, allemand, japonais, chinois simplifié, chinois traditionnel, coréen, espagnol, russe, portugais et italien Ì Promotion: Enregistrez l’achat sur www.agilent.com/find/5yrs-warranty et recevez 2 ans de garantie constructeur supplémentaire en plus des 3 ans de garantie standard - Offre disponible jusqu’à épuisement du stock et selon conditions du fabricant farnell.com element14.com TEST ET MESURE 13 Agilent Limite bande passante 20 MHz sélectionnable Couplage d’entrée AC, DC, GND Impédance d’entrée 1 MΩ ± 2% Sensibilité verticale 2 mV/div à 5 V/div Taux d’échantillonnage 1 Géch/s par voie, 2 Géch/s entrelaçé Profondeur mémoire (longueur d’enregistrement) 100 kpts Affichage 8.5" WVGA avec 64 niveaux d’intensité Taux d’actualisation formes d’onde (max) 500000 formes d’ondes/s Résolution verticale 8 bits Précision DC ±3% (≥ 10 mV/div); ±4% (< 10 mV/div) Dimensions 380.6 x 204.4 x 141.5 mm Poids 3.85 kg Limite bande passante 20 MHz sélectionnable Couplage d’entrée AC, DC, GND Impédance d’entrée Sélectionnable: 1 MΩ ± 1%; 50 Ω ± 1.5% Gamme de sensibilité entrée 2 mV/div à 5 V/div Taux d’échantillonnage 2 Géch/s par voie, 4 Géch/s entrelaçé Profondeur de mémoire (longueur d’enregistrement) Jusqu’à 4 Mpts Affichage 8.5" WVGA avec 64 niveaux d’intensité Taux d’actualisation des formes (max) 1000000 formes d’ondes/s Résolution verticale 8 bits Précision DC ±2% pleine échelle Dimensions 380.6 x 204.4 x 141.5 mm Poids 3.85 kg Nbre de Réf. voies Bande Code Prix Unitaire Fab. analogiques passante Commande 1+ DSOX2024A+DSO2WAVEGEN+DSOXDVM 4 200MHz 208-4581 2087.00 DSOX2022A+DSO2WAVEGEN+DSOXDVM 2 200MHz 208-4583 1695.00 DSOX2014A+DSO2WAVEGEN+DSOXDVM 4 100MHz 208-4584 1767.00 DSOX2012A+DSO2WAVEGEN+DSOXDVM 2 100MHz 208-4585 1192.00 DSOX2004A+DSO2WAVEGEN+DSOXDVM 4 70MHz 208-4586 1496.00 DSOX2002A+DSO2WAVEGEN+DSOXDVM 2 70MHz 208-4587 981.00 MSOX2024A+DSO2WAVEGEN+DSOXDVM 4 200MHz 208-4575 2646.00 MSOX2022A+DSO2WAVEGEN+DSOXDVM 2 200MHz 208-4576 2254.00 MSOX2014A+DSO2WAVEGEN+DSOXDVM 4 100MHz 208-4577 2326.00 MSOX2012A+DSO2WAVEGEN+DSOXDVM 2 100MHz 208-4578 1751.00 MSOX2004A+DSO2WAVEGEN+DSOXDVM 4 70MHz 208-4579 2055.00 MSOX2002A+DSO2WAVEGEN+DSOXDVM 2 70MHz 208-4580 1540.00 Réf. Nbre de voies Bande Code Prix Fab. analogiques passante Commande Unitaire DSOX3054A+DSO3WAVEGEN+DSOXDVM 4 500MHz 208-4566 8332.00 DSOX3052A+DSO3WAVEGEN+DSOXDVM 2 500MHz 208-4567 6384.00 DSOX3034A+DSO3WAVEGEN+DSOXDVM 4 350MHz 208-4568 6126.00 DSOX3032A+DSO3WAVEGEN+DSOXDVM 2 350MHz 208-4571 5092.00 DSOX3024A+DSO3WAVEGEN+DSOXDVM 4 200MHz 208-4572 3240.00 DSOX3014A+DSO3WAVEGEN+DSOXDVM 4 100MHz 208-4573 2697.00 DSOX3012A+DSO3WAVEGEN+DSOXDVM 2 100MHz 208-4574 2242.00 16 voies numériques intégrées MSOX3054A+DSO3WAVEGEN+DSOXDVM 4 analogiques + 16 numériques 500MHz 208-4559 9250.00 MSOX3052A+DSO3WAVEGEN+DSOXDVM 2 analogiques + 16 numériques 500MHz 208-4560 7301.00 MSOX3034A+DSO3WAVEGEN+DSOXDVM 4 analogiques + 16 numériques 350MHz 208-4561 7044.00 MSOX3032A+DSO3WAVEGEN+DSOXDVM 2 analogiques + 16 numériques 350MHz 208-4562 6010.00 MSOX3024A+DSO3WAVEGEN+DSOXDVM 4 analogiques + 16 numériques 200MHz 208-4563 4157.00 MSOX3014A+DSO3WAVEGEN+DSOXDVM 4 analogiques + 16 numériques 100MHz 208-4564 3615.00 MSOX3012A+DSO3WAVEGEN+DSOXDVM 2 analogiques + 16 numériques 100MHz 208-4565 3160.00 Oscilloscopes numériques portables Modèle 2 voies Bande passante Modèle 4 voies Bande passante DSO1052B 50 MHz DSO1002A 60 MHz DSO1004A 60 MHz DSO1072B 70 MHz DSO1012A 100 MHz DSO1014A 100 MHz DSO1102B 100 MHz DSO1152B 150 MHz DSO1022A 200 MHz DSO1024A 200 MHz Oscilloscopes + Wave- Gen et Voltmètre Offerts Oscilloscopes + Wave- Gen et Voltmètre Offerts Série InfiniiVision 2000 X Série U1610A/U1620A Taux d’échantillonnage temps réel 2 Géch/sec par demi voie3, 1 Géch/sec par voie Profondeur mémoire 20 kpts par demi-voie3, 10 kpts par voie Résolution verticale 8 bits Plage verticale 2 mV/div à 10 V/div Tension d’entrée max. CAT I 300 Vrms, 400 Vcr; surtension transitoire 1.6kVpk Plage base temps: DSO102xA: 1 nsec/div à 50 sec/div DSO101xA: 2 nsec/div à 50 sec/div DSO100xA: 5 nsec/div à 50 sec/div Limite bande passante sélectionnable 20 MHz Couplage entrée DC, AC et terre Impédance d’entrée 1 MΩ ±1% en parallèle avec 18 pF ± 3 pF Dimensions 32.46cm x 15.78cm x 12.92cm (lxHxP) Plage de températures Fonctionnement: 0°C à +40°C; Hors-fonctionnement -20°C à +60°C Série InfiniiVision 3000 X Ces oscilloscopes portables amènent les tâches de dépannage et de maintenance à un nouveau niveau en réalisant des formes d’onde visible dans toutes les conditions d’éclairage. Que vous travailliez dans un environnement de faible luminosité ou sous le soleil éblouissant, l’afficheur VGA TFT LCD révolutionnaire assure que vous pouvez analyser des signaux sans effort en choisissant parmi 3 modes de visualisation (intérieur, extérieur et le mode de vision nocturne). Couplé à une profondeur mémoire profonde de 2 Mpts, ils vous permettent de capturer de long signaux non répétitifs avec d’excellentes capacités de zoom sur les graphiques sélectionnés. De plus en complétant votre expérience visuelle, l’écran de 5,7 pouces permet des aperçus du signal à analyser dans plus de précision par rapport à d’autres oscilloscopes conventionnels. Ì Affichage 8.5" haute résolution sur écran large Ì Générateur de fonctions intégré Ì Port USB Ì Commandes de recherche et navigation en face avant, idéales pour une recherche et une visualisation facile de l’activité du signal avec fonctions pause, lecture rapide, remise en arrière et en avant rapide des Code Prix Unitaire Réf. Fab. Commande 1+ 2 Channel DSO1052B 50MHz 209-4428 635.00 DSO1002A 60MHz 170-4738 845.00 DSO1072B 70MHz 209-4429 805.00 DSO1012A 100MHz 170-4740 1017.00 DSO1102B 100MHz 209-4430 967.50 DSO1152B 150MHz 209-4431 1466.25 DSO1022A 200MHz 170-4742 1447.00 4 Channel DSO1004A 60MHz 170-4739 1283.00 DSO1014A 100MHz 170-4741 1525.00 DSO1024A 200MHz 170-4743 1783.00 Ì Affichage 8.5" haute résolution sur écran large Ì Générateur de fonctions intégré Ì Port USB Ì Commandes de recherche et navigation en face avant, idéales pour une recherche et une visualisation facile de l’activité du signal avec fonctions pause, lecture rapide, remise en arrière et en avant rapide des formes d’ondes formes d’ondes Ì Panoramique et zoom rapide pendant l’analyse grâce à MegaZoom IV qui offre une réponse instantanée et une résolution optimale Ì Mise à l’échelle automatique, permet l’affichage rapide des signaux actifs analogiques et numériques, l’installation automatique de contrôles verticaux, horizontaux et de déclenchement pour un meilleur affichage tout en optimisant la mémoire Ì Touches dédiées pour un accès rapide aux voies numériques, de série, fonctions math et formes d’onde de référence Ì Panoramique et zoom rapide pendant l’analyse grâce à MegaZoom IV qui offre une réponse instantanée et une résolution optimale Ì Mise à l’échelle automatique, permet l’affichage rapide des signaux actifs analogiques et numériques, l’installation automatique de contrôles verticaux, horizontaux et de déclenchement pour un meilleur affichage tout en optimisant la mémoire Ì Touches dédiées pour un accès rapide aux voies numériques, de série, fonctions math et formes d’onde de référence Ì Ecran 5.7" VGA TFT LCD avec 3 modes de visualisation sélectionnables (vision intérieure, extérieure et nuit) Ì 2 Mpts de profondeur mémoire et taux d’échantillonnage de 2 Géch/s permettant une analyse détaillée des graphiques capturés Ì Bande passante de 100/200 MHz avec des voies isolées Ì Résolution de 10000 points sur l’affichage farnell.com element14.com 14 TEST ET MESURE Agilent Le générateur de fonction/Arbitraire Agilent Technologies 33210A est la dernière addition à la famille 332XX. Les formes d’onde sont générées en utilisant la synthèse numérique directe la technologie DDS qui crée des ondes sinusoïdales stables et précises à faible distorsion ainsi que des ondes carrées avec la montée et descente rapide jusqu’à 10 MHz et des vagues de rampe linéaire jusqu’à 100 kHz. Pour les signaux définis par l’utilisateur, l’option 002 offre la génération de forme d’onde arbitraire de 14-bit, 50 Méch/s sur 8K. U1610A U1620A Fonction Oscilloscope, multimète et enregistreur de données Afficheur 5.7" VGA TFT LCD Couleur Voies 2 Bande passante 100MHz 200MHz Taux d’échantillonnage 1GSa/s, 500MSa/s chaque voie 2GSa/s, 1GSa/s chaque voie Longueur d’enregistrement 120Kpts, 60Kpts chaque voie 2Mpts, 1Mpts chaque voie Couplage DC, AC, réjection HF et réjection LF Temps de montée 3.5ns 1.75ns Impédance d’entrée 1Mohm Déclenchement Edge, Graph, TV, Nth Edge, CAN, LIN Modes de déclenchement Normal, Simple, Auto Résolution affichage 10000 Tension AC/DC, RMS vrai CAT ll 1000V, CAT lll 600V Résistance 100MΩ max. Capacité 10mF max. Interface USB 2.0 Full Speed Batterie 10.8V Li-Ion Autonomie Jusqu’à 3h Formes d’onde standard Sinus 1μHz à 20MHz Carré 1μHz à 20MHz Rampe 1μHz à 200kHz Triangulaire 1μHz à 200kHz Pulsé 500μHz à 5MHz Bruit 9MHz BW typiquel Formes d’onde arbitraires Intégré montée exponentielle, chute exponentielle, rampe négative, sin(x)/x, cardiac. Gamme de fréquences 1μHz à 6MHz Longueur de la forme d’onde 2 à 64k points Résolution d’amplitude 14-bits Taux d’échantillonnage 50Méch/s Caractéristiques générales Gamme Résolution Précision Fréquence 1μHz ±(10ppm + 3pHz) Amplitude 10mVpp à 10Vpp 4 digits ±(1% de réglage + 1mVpp) Offset DC ±5V 4 digits ±(2% de réglage + 0.5% d’amp. + 2mVpp) Offset de phase +360° à -360° 0.001° 20ns Modulation AM, FM, PM, PWM, FSK, balayage, Burst Prix Unitaire Réf. Fab. Bande passante Code Commande 1+ U1610A 100MHz 207-0920 2877.00 U1620A 200MHz 207-0919 3253.00 Description Réf. Code Commande Prix Unitaire Fab. 1+ Générateur de fonctions 33220A 133-5878 1562.00 Caractéristiques de l’oscilloscope U1602B U1604B Bande passante 20MHz 40MHz Taux d’échantillonnage max. 200 Méch/s (entrelaçage) Temps de montée 17.5ns 8.8ns Profondeur mémoire 125 kB / voie Système vertical Gamme verticale 5mV/div à 100V/div Résolution verticale 8 bits 8 bits Précision verticale DC 3% 3% Système horizontal Gamme horizontale 50ns/div à 50s/div 10ns/div à 50s/div Résolution horizontale 2ns 400ps Précision horizontale 3% 3% Déclenchement Source de déclenchement Voie 1 et Voie 2 Modes Auto, Normal, Single, Roll Déclenchements Edge, Pattern, largeur d’impulsion, vidéo Mesures automatiques Tension cr-à-cr, max, min, amplitude, top, base, overshoot, preshoot, RMS et moyenne Temps fréquence, période, largeur, rapport cyclique, temps de montée,temps de chute, retard et déphasage Maths CH1+CH2, CH1-CH2, CH2-CH1 FFT (U1604A seulement) Rectangulaire, Hanning, Hamming et Blackman-Harris windows Caractéristiques du multimètre Gammes Précision Tension AC 600mV à 600V ±(0.75% lect. + 0.2% gamme) Tension DC 600mV à 600V ±(0.3% lect. + 0.08% gamme) Résistance 600Ω à 600MΩ ±(0.5% lect. + 0.2% gamme) Capacité 60nF à 300μF ±(2% lect. + 0.2% gamme) Générateur de fonctions arbitraire Utilise les techniques DDS (Synthèse numérique directe) pour créer des signaux de sortie stables et avec faible distorsion pour des résultats précis. Le générateur de fonctions 33220A offre un accès facile à des formes d’onde standard sinusoïdales, carrées, rampes, triangulaires et pulsées et permet de créer des formes d’onde personnalisées en utilisant la fonction de Réf. Code Prix Unitaire Description Fab. Commande 1+ Oscilloscope 20MHz U1602B 178-0320 1210.00 Oscilloscope 20MHz avec USB U1602B-001 178-0321 1345.00 Oscilloscope 40 MHz U1604B 178-0322 1512.00 Oscilloscope 40MHz avec USB U1604B-001 178-0324 1647.00 Oscilloscopes numériques portables formes d’onde arbitraires de 50Méch/s, 14 bits et 64 K-points. La fonction pulsée de front variable, avec PWM, offre une flexibilité inégalée pour la conception, la vérification, et applications de test. Le générateur 33220A est livré avec les interfaces USB, LAN et GPIB en standard et le logiciel Intuilink pour la génération simple de formes d’onde personnalisées sur PC. Ì Isolement canal à canal avec normes de sécurité CAT III 600V Ì Capacité d’enregistrement de données et connexion USB Générateurs de fonctions arbitraires Contenu: Oscilloscope, guide de démarrage, adaptateur secteur, pack batterie, câble USB, cordon de test et sonde 10:1 (2 jeux). 33250A Ì Formes d’onde arbitraires 4-bits, 50 Méch/s, 64 k-points Ì Types de modulation: AM, FM, PM, FSK, et PWM Ì Balayage linéaire et logarithmique et fonctionnement burst Ì Gamme d’amplitude 10 mVpp à 10 Vpp Une solution 3 en 1: oscilloscope 2 voies, multimètre RMS vrai et enregistreur des données en temps réel. Un outil de qualité haute performance pour les techniciens dans les installations, maintenance, entreprises de services et industries automobiles. 33210A Ì Fonction d’enregistrement de données en temps réel Caractéristiques de l’oscilloscope: Ì Bande passante en version 20MHz et 40MHz Ì Mise à l’échelle automatique Ì Dual Waveform Math (DWM) et Fast Fourier Transform (FFT) Ì 22 mesures automatiques et avec curseur Caractéristiques du multimètre: Ì Multimètre numérique TRMS gamme automatique 6000 points Ì Mesure de tension, résistance et capacité Ì Test de diodes et de continuité l=261, H=104, P=303mm. Poids 3.4kg Ì Conforme LXI Classe C Ì Interfaces USB, GPIB et LAN Ì Mode graphique, vérification visuelle des réglages du signal Ì Logiciel IntuiLink Ì Formes d’onde 20 MHz sinus ou carré Ì Impulsion, Rampe, Triangulaire, Bruit, et DC Ì Grand affichage LCD couleur 4.5" 320x240 pixels Ì Contrôle à distance et transfert des données via le logiciel d’application PC Link Ì Connexion interface USB 1.1 Ì Support d’aide multi-langues Ì Profondeur de mémoire de 125k par voie Ì Sauvegarde de 10 formes d’onde et de configurations Ì Disponible en version avec le support pour clé USB pour un stockage de formes supplémentaires Ì Sorties 80 MHz signaux sinus et carré Ì Sinus, carré, rampe, bruit et autres signaux Ì Signaux à impulsion 50 MHz avec temps de montée/descente variables Ì Profondeur de signal arbitraire 12-bits, 200 Méch/s, 64K-points 33220A Série U1600B Accessoires inclus: Manuel d’instructions, manuel d’entretien, guide de référence, logiciel d’édition de formes Intuilink, données de test, câble USB et cordon d’alimentation. Accessories inclus: Sonde (1:1) CAT III 300 V, Sonde (10:1) CAT III 600 V, pince crocodile de mise à la terre, cordon de test, crochet, pince crocodile medium, cordon USB, cordon d’alimentation et adaptateur c.a., pack batterie Ni-MH, guide de démarrage, manuel d’utilisation sur CD et logiciel d’application PC Link. l=138, H=241, P=66mm. Poids 1.5kg farnell.com element14.com TEST ET MESURE 15 Agilent *Trueform technology: Génération de signaux révolutionnaire avec des capacités et une fidélité inégalées Contrôle total des couts, réduction de la gestion administrative, visibilité sur vos dépenses, flexibilité et personnalisation selon les besoins de votre société. farnell.com/ibuy 33509B 33510B 33519B 33520B 33511B 33512B 33521B 33522B Bande Passante 20MHz 20MHz 30MHz 30MHz Nombre de voies 1 2 1 2 Caractéristiques Signaux Gamme de Fréquence Sinus 1μHz à 20MHz 1μHz à 30MHz Gamme de Fréquence Carré 1μHz à 20MHz 1μHz à 30MHz Gamme de Fréquence Impulsion 1μHz à 20MHz 1μHz à 30MHz Gamme de Fréquence Triangle/Rampe 1μHz à 200kHz Longueur d’onde Arbitraire 8éch à 1Méch par canal Type de Modulation AM, FM, PM, FSK, BPSK, PWM, Sum, Burst, Sweep Caractéristiques des canaux Connecteur de Sortie BNC Caractéristiques des canaux Impédance de Sortie 50Ω Généralités Affichage Ecran TFT 4.3" Couleur avec rétroéclairage LED Dimensions 212.8x88.3x272.3mm Poids 3.3kg Solution gratuite d’achats intelligents en ligne Gammes Précision Tension AC 100mV à 750V ± (0.04% lect. + 0.02% de gamme) Tension DC 100mV à 1000V ± 0,001% + 0,0004% de la plage Courant AC 1A, 3A ± (0.1% lect. + 0.04% de gamme) Courant DC 10mA, 100mA, 1A, 3A ± (0.1% lect. + 0.04% de gamme) Résistance ± (0.002% lect. + 0.0005% de gamme) Fréquence 3Hz à 300kHz ± 0.006% Prix Unitaire Ref Fab. Bande Passante Nb de canaux Code Commande 1+ Générateur de Signaux 33509B 20MHz 1 214-2999 1232.00 33510B 20MHz 2 214-3000 1886.00 33519B 30MHz 1 214-3003 1382.00 33520B 30MHz 2 214-3004 2110.00 Générateur de Signaux avec Signaux Arbitraires 33511B 20MHz 1 214-3001 1456.00 33512B 20MHz 2 214-3002 2203.00 33521B 30MHz 1 214-3005 1456.00 33522B 30MHz 2 214-3006 2203.00 33250A Caractéristiques de fréquence Sinus 1 [mu]Hz à 80 MHz Carré 1 μHz à 80 MHz Impulsion 500 μHz à 50 MHz Arbitraire 1 μHz à 25 MHz Rampe 1 μHz à 1 MHz Bruit blanc Largeur de bande 50 MHz Résolution 1 μHz; excepté impulsion, 5 digits Précision (1 an) 2 ppm, 18°C à 28°C 3 ppm, 0°C à 55°C Général Alimentation 100-240 V, 50-60 Hz 100-127 V, 50-400 Hz Consommation 140 VA Température de fonctionnement 0°C à 55°C Température de stockage -30°C à 70°C Etat d’origine Configuration 4 utilisateurs Etat d’allumage défaut ou dernier Interface IEEE-488 et RS-232 Langage SCPI-1997, IEEE-488.2 Dimensions (lxHxP) posé sur table 254 x 104 x 374 mm Montage rack 213 x 89 x 348 mm Poids 4.6 kg Conforme EN61010-1, CSA1010.1, UL-311-1 Testé CEM IEC-61326-1 IEC-61000-4-3 critère B IEC-61000-4-6 critère B Vibration et choc MIL-T-28800E, Type III, Classe 5 Niveau sonore 40 dBA Description Réf. Code Prix Unitaire Fab. Commande 1+ Multimètre 34401A 133-5866 817.00 33210A Caractéristiques signaux Plage de fréquence Sinus 1 mHz à 10 MHz Plage de fréquence carré 1 mHz à 10 MHz Plage de fréquence rampe, triangle 1 mHz à 100 kHz Plage de fréquence impulsion 1 mHz à 5 MHz Bande passante bruit 7 MHz typique Général Alimentation Cat II 100 - 240 V @ 50/ 60 Hz (-5%, +10%) 100 - 120 V @ 400 Hz (± 10%) Consommation 50 VA max Environnement de fonctionnementIEC 61010 Pollution intérieure Degré 2 Température de fonctionnement 0°C à 55°C Humidité de fonctionnement 5% à 80% RH, sans condensation Altitude de fonctionnement jusqu’à 3000 mètres Température de stockage -30°C à 70°C Etat de stockage Eteint Mémoire 4 utilisateurs configurable Interface LAN LXI-C Ethernet 10/ 100 USB 2.0, GPIB Langage SCPI - 1993, IEEE-488.2 Dimensions (l x H x P) Posé sur table 261.1 mm x 103.8 mm x 303.2 mm Montage rack 212.88 mm x 88.3 mm x 272.3 mm Poids 3.4 kg (7.5 lbs) Conforme UL-1244, CSA 1010, EN61010 Testé CEM MIL-461C, EN55011, EN50082-1 Vibration et choc MIL-T-28800, Type III, Classe 5 Niveau sonore 30 dBa Temps de chauffe 1 heure Multimètre numérique de table Code Prix Unitaire Réf. Fab. Commande 1+ 33250A 163-7309 3489.00 33210A 163-7310 930.00 Générateurs de signaux l=254, H=104, P=374mm. Poids 3.6kg Ì Signaux arbitraires point par point vrais avec séquencement Ì Résolution de 16 bit avec gammes allant de 1mV à 10V Ì Capacité de combinaison et d’addition de signaux Ì Signaux sinusoidal avec 5x moins de distorsion d’harmonique Ì Bande passante d’impulsion élevée avec 10x moins de déviation (jitter) Ì Temps de montée et de descente de 8.4ns (plus de deux fois plus rapides que les autres générateurs) Offre les performances nécessaires pour tester un système de manière précise et rapide. Le multimètre 34401A offre une résolution, précision et vitesse rivalisant avec des multimètres beaucoup plus onéreux. Ì Mesure jusqu’à 1000V avec une résolution 61⁄2 digits Ì Précision V DC 0.0015% (24h) Ì Précision V AC 0.06% (1 an) Ì Bande passante de 3Hz à 300kHz Ì 1000 mesures/sec. directes sur le bus GPIB Ì Fonctions de test de diodes et continuité Ì Fonction Nulle, permet d’annuler la résistance au plomb et autres offsets fixes Ì Lectures Min / Max / Moy Ì Mesures directes dB et dBm Ì Gel de l’affichage Ì Mémoire interne de 512 mesures Ì Interfaces GPIB et RS-232 en standard Ì Fonctions voltmètre complet et déclenchement externe comprises, permet la synchronisation à d’autres instruments Ì Sortie TTL indiquant Passage/Echec Ì 3 languages de commande (SCPI, Agilent 3478A et Fluke 8840A /42A) Ì Livré avec logiciel PC Agilent IntuiLink, permet un travail plus facile des données capturées Ì Composants ActiveX peuvent être utilisés par les programmeurs pour le contrôle du multimètre en utilisant les commandes SCPI Ì Promotion: un jeu de test 34133A offert par Agilent pour l’achat de ce multimètre - - il suffit d’enregister son achat sur www.agilent.com/find/dmmoffer - Offre disponible jusqu’à épquisement du stock Série 33500B 34401A Les générateurs de signaux de la série 33500B avec génération de signal basée sur la technologie exclusive Trueform* offrent plus de capacités, de haute fidélité et de flexibilité que les générateurs traditionnels basés sur la synthèse numérique directe (DDS). Utilisez-les pour accélérer vos processus de développement, du début jusqu’à la fin. Accessoires inclus: Kit de test avec sonde, pinces crocodiles et grippe-fils. Manuel de fonctionnement, manuel d’entretien, rapport de test et cordon d’alimentation. La technologie Agilent Trueform offre une nouvelle alternative qui combine le meilleur de la DDS et de l’architecture point à point, vous permettant de bénéficier des deux technologies sans pour autant être entravé par leurs limites. La technologie Trueform fait appel à une technique d’échantillonnage numérique exclusive qui offre des performances inégalées au même prix réduit que celui auquel vous vous étiez habitué avec la DDS. Ì Signaux sinus et carré 10 MHz Ì Signaux à impulsion, rampe, triangle, bruit et DC Ì Générateur de signaux arbitraires 14-bits, 50 Méch/s, 8K points en option Ì Type de modulations AM, FM, et PWM Ì Opération linéaire, burst et logarithmique Ì Amplitude 10 mVpp à 10 Vpp Ì Mode graphique pour une vérification visuel des paramètres du signal Ì Connexion via USB, GPIB et LAN Ì Complètement conforme aux spécifications LXI Classe C farnell.com element14.com 16 TEST ET MESURE Agilent SUPPORT LEGISLATIF MONDIAL GRATUIT : Directives RoHS, REACH, DEEE, Eup, batteries : dernières mises à jour, livres blancs gratuits et questions-réponses en direct sur element14.com/legislation Modèle U1231A U1232A U1233A Tension DC 600mV à 600V 600mV à 600V 600mV à 600V Tension AC 600mV à 600V 600mV à 600V 600mV à 600V Courant DC – 60μA à 10A 60μA à 10A Courant AC – 60μA à 10A 60μA à 10A Résistance 600ohm à 60Mohm 600ohm à 60Mohm 600ohm à 60Mohm Fréquence 99.99Hz à 99.99kHz 99.99Hz à 99.99kHz 99.99Hz à 99.99kHz Capacité 1μF à 10mF 1μF à 10mF 1μF à 10mF Température – – -40°C à +1372°C Gammes Précision Tension AC 100mV, 1V, 10V, 100V, 300V ±(0.04% lect. + 0.03 de gamme) Tension DC 100mV, 1V, 10V, 100V, 300V ±(0.0015% lect. + 0.0004 de gamme) Courant AC 10mA, 100mA, 1A ±(0.1% lect. + 0.04 de gamme) Courant DC 10mA, 100mA, 1A ±(0.01% lect. + 0.004 de gamme) Résistance 100Ω, 1kΩ, 10kΩ, 100kΩ, 1MΩ, 10MΩ, 100MΩ ±(0.002% lect. + 0.0005 de gamme) Fréquence 3Hz à 300kHz ±0.006% Température -150°C à 1200°C 1.0°C Prix Unitaire Réf. Fab. Code Commande 1+ U1231A+U1177A 208-4544 88.13 U1232A+U1177A 208-4546 120.00 U1233A+U1177A 208-4547 147.00 Support législatif Gammes Précision Tension AC 100mV à 750V ± (0.06% lect. + 0.03% gamme) Tension DC 100mV à 1000V ± 0,003% + 0,0005% de la plage Courant AC 100μA à 3A ± (0.1% lect. + 0.04% gamme) Courant DC 100μA à 3A ± (0.1% lect. + 0.04% gamme) Résistance ± (0.01% lect. + 0.001% gamme) Capacité 1nF, 10nF, 100nF, 1μF, 10μF ± (0.4% lect. + 0.1% gamme) Température-80 à 150°C ±0.08°C Fréquence 3Hz à 300kHz ± (0.007% lect. + 0% gamme) Description Réf. Code Commande Prix Unitaire Fab. 1+ Multimètre de table 34410A 144-0376 989.00 Multimètre de table 34411A 144-0377 1574.00 Kit de test 34138A 144-0379 21.26 Multimètres numériques DMM + Adaptateur IR-vers- Bluetooth U1177A Offert Modèle Description Type Vitesse Tension Ampères Bande Offset (voie/s) max. max. passantethermique 34901A Multiplexeur 20 voies armature 2 fils 60 300V 1A 10MHz <3μV 34902A Multiplexeur 16 voies reed 2 fils 250 300V 50mA 10MHz <6μV 34903A Actionneur/ commutateur universel 20 voies SPDT / forme C 120 300V 1A 10MHz <3μV 34904A Matrice 4 x 8 armature 2 fils 120 300V 1A 10MHz <3μV 34905A Double multiplexeur 4 voies RF, 50Ω Bas commun 60 42V 0.7A 2GHz <6μV 34907A Module multifonctions 2 ports E/S numériques 8-bits 42V 400mA Totalisateur 26-bits, 100kHz 42V 100kHz 2 sorties analogiques 16-bits ±12V 10mA dc 34908A Multiplexeur unipolaire 40 voies armature 1 fil 60 300V 1A 10MHz <3μV Que ce soit sombre, bruyant, voire dangereux, le multimètre numérique de poche série U1230 vous permet de rester équipé avec des fonctions qui anticipent les pires scénarios. Le multimètre de poche à forme ergonomique vous permet déclairer la zone de test avec une lampe de poche intégrée tout en sélectionnant les fonctions de mesure en utilisant la molette rotative. Vsense effectue la détection de Multimètres numériques de table Description Réf. Code Commande Prix Unitaire Fab. 1+ Module acquisition de données 34970A 133-5867 1217.00 34972A 178-0338 1406.00 Multiplexeur - 20 voies 34901A 133-5869 366.00 Multiplexeur - 16 voies 34902A 133-5871 445.00 Actionneur/Commutateur - 20 voies 34903A 133-5872 316.00 Matrice 4x8 34904A 133-5873 395.00 Multiplexeur 4 voies RF - 50Ω 34905A 133-5874 577.00 Module multi-fonctions 34907A 133-5876 295.00 Multiplexeur - 40 voies 34908A 133-5877 377.00 l=261, H=104, P=303mm. Poids 3.72kg Module de commande / acquisition de données tension sans contact alors que la détection de continuité est rendue facile avec l’alerte sonore et le rétroéclairage clignotant. Avec la série U1230, vous travaillez mieux quelles que soient les conditions où vous vous trouvez. Ì Lampe de poche LED pour éclairer la zone de test Ì Rétroéclairage clignotant permettant une alerte visuelle supplémentaire lors des tests de continuité dans les environnements bruyants Ì Vsense pour effectuer une détection de tension sans contact Ì Capacité d’enregistrement des données (Enregistre jusqu’à 10 lectures) Ì Connectivité IR vers USB pour transférer des données vers le PC pour enregistrer Ì Stocke la valeur de mesure de courant Ì Faible impédance d’entrée pour éliminer la mesure de tension fantôme Ì Cadran anti-dérapant pour une sélection de la fonction de mesure facile Ì Indication graphique à barres et voie de mesure de fréquence l=254, H=104, P=374mm. Poids 3.6kg Les 2 modèles sont livrés avec: kit de test avec sondes et attachement CMS, rapport de test, cordon d’alimentation, câble d’interface USB, CD-ROM avec documentation et logiciel. système d’acquisition complet ou une unité de commutation économique. Les connexions de bornier à vis sur module éliminent la nécessité de blocs de borniers et la fonction d’entretien d’un relais unique est idéale pour compter chaque fermeture sur chaque commutateur permettant ainsi un entretien prévisible facile de relais. Logiciel Agilent BenchLink Data Logger livré avec le module 34970A. Ce logiciel fournit une interface Microsoft Windows connue pour la configuration de test et un affichage et analyse des données en temps réel. Il permet de faire des mesures rapides, d’exporter des données ou d’utiliser les graphes intégrés pour l’enregistrement des résultats. Ì Fonction d’enregistrement de données, avec mémoire rémanente de 50 000 mesures Caractéristiques supplémentaires pour le multimètre 34411A: Ì 50,000 mesures/sec à 41⁄2 chiffres en continu vers le PC Ì Mémoire 1 Million mesures Ì Déclenchement analogique sur niveau Ì Déclenchement programmable pré/post Ì Promotion: un jeu de test 34133A offert par Agilent pour l’achat de ce multimètre - - il suffit d’enregister son achat sur www.agilent.com/find/dmmoffer - Offre disponible jusqu’à épquisement du stock Ì Châssis à 3 emplacements avec interfaces GPIB et RS232 intégrées Ì Multimètre interne 61⁄2 chiffres (22-bits), balayage jusqu’à 250 voies par seconde Ì Un choix entre 8 modules de commutation et de contrôle Ì Conditionnement de signaux intégré pour mesures de température, tensions AC/DC, courant, résistance, fréquence et période Ì Mémoire rémanente de 50k mesures Ì Limites d’alarme haute/basse sur chaque voie, plus 4 sorties d’alarme TTL 34410A et 34411A 34970A 34410A: Ì Multimètres hautes performances 61⁄2 chiffres Ì 10,000 mesures/sec à 51⁄2 chiffres en continu vers le PC Ì 1,000 mesures/sec à 61⁄2 chiffres en continu vers le PC Ì Précision DC de base 30 PPM pour 1 an Ì Interfaces LAN, USB et GPIB en standard Ì DCV, ACV, DCI, ACI, résistance 2-fils et 4-fils, fréquence, période, continuité, et test de diodes Ì Mesures de capacité et températures Ì Gammes de mesure étendues Série U1230 Accessoires livrés: Manuels de fonctionnement et d’entretien, rapport de test et cordon d’alimentation. Logiciel Agilent Benchmark Data Logger, câble RS-232, thermocouple, vis. Les modules sont vendus séparément. Modules Un châssis 3 emplacements avec multimètre numérique intégré 61⁄2chiffres. Chaque voie peut être configurée indépendament pour mesurer une fonction parmi 11 fonctions différentes sans la nécessité d’accessoires de conditionnements de signaux. Une sélection parmi 8 modules embrochables optionnels permettant de créer un data logger compact, un farnell.com element14.com TEST ET MESURE 17 Agilent Ì Taux d’échantillonnage en temps réel de 2Géch/s et taux d’échantillonnage équivalent de 50G éch/s Ì Double fonction de base de temps d’observation des détails de forme d’onde et capacités d’analyse incomparables Ì Défilement de l’affichage en mode de balayage pour la surveillance continue des variations du signal Ì Mode XY unique qui affiche l’onde et le diagramme de Lissajous en même temps Ì Mise à jour logicielle du système par USB Ì Supporte les périphériques de stockage USB plug-and-play. Communication avec l’ordinateur à travers le dispositif USB Ì Stockage des configurations de courbes et des formes d’onde des cartes et reproduction des configurations Ì FFT intégrée Ì Multiples fonctions mathématiques des formes d’onde (y compris les additions, 25Mhz-60Mhz 4 voies Ì 2 voies Ì Affichage LCD couleur HD, résolution 320 x 240 Ì Compatible avec des accessoires de sauvegarde USB plug-and-play et capable de communiquer avec un ordinateur via cet accessoire de sauvegarde USB Ì Configuration automatique des formes d’ondes et du statut Ì Sauvegarde des formes d’ondes, installations et schéma bip, répétition des installations Ì Elargissement de la fenêtre, idéal pour l’analyse détaillée des formes et pour une vue d’ensemble avec précision Ì Mesure automatique de 19 paramètres Ì Mesure automatique de la trace du curseur Ì Enregistrement d’une simple forme et fonction rappel Ì FFT intégré Ì Multiples fonctions mathématiques (somme, soustraction, multiplication et division) Ì Fonctions Front, vidéo, largeur d’impulsion et déclenchement alternatif Ì Affichage du menu en multi-langues Les oscilloscopes DSO Tenma 4 voies à Maximum Résolution Max. Précision Tension DC 1000V 0.1mV ±(0.09%+2) Tension AC 1000V 0.1mV ±(1.0%+5) Courant DC 10A 0.1μA ±(0.1%+3) Courant AC 10A 0.1μA ±(1.5%+3) Résistance 100MΩ 0.1Ω ±(0.8%+3) Capacité 10mF 0.1nF ±(1.2%+4) Fréquence 100kHz 0.01Hz ±(0.03%+3) Température * -40 à 1000°C 0.1°C 1% + 1 °C/ * Thermocouple type K (pour U1241A et U1242A), type J (pour U1242A) Gammes Meilleur précision U1251A U1252A Tension AC 50mV à 1000V ± 0.6% + 20 points ± 0.4% + 25 points Tension DC 50mV à 1000V ± 0,03% + 5 chiffres ± 0,025% + 5 chiffres Courant AC 500μA, 5mA, 50mA, 440mA, 5A, 10A ± 0.8% + 20 points ± 0.7% + 20 points Courant DC 500μA, 5mA, 50mA, 440mA, 5A, 10A ± 0.8% + 20 points ± 0.7% + 20 points Résistance 500ohm à 500Mohm ± 0.08% + 5 points ± 0.05% + 5 points Capacité 10nF - 100mF (9 gammes) ± 1% + 5 points ± 1% + 5 points Température -200 à 1372°C 0.3% + 3°C 0.3% + 3°C Frequence 99.999Hz à 999.99kHz ± 0.02% + 3 points ± 0.02% + 3 points Batterie 9V Alcaline 7.2V Rechargeable mémoire numérique offrent une face avant conviviale avec des indications claires permettant l’accès à toutes les fonctions de base pour une utilisation facile. Les boutons de mise à l’échelle et de position de tous les canaux sont disposés de façon optimale pour une utilisation intuitive. La conception est basée sur les pratiques familières d’instruments traditionnels, les utilisateurs 72-8395 72-8225 72-8230 Bande passante 25 MHz 40 MHz 60 MHz Temps de montée <14ns <8.7ns <5.8ns 72-8240 72-8245 72-8250 Bande passante 100 MHz 150 MHz 200 MHz Réf. Code Commande Prix Temps de montée <3.5ns <2.3ns <1.8ns Unitaire Fab. 1+ U1241B+U1177A 208-4540 179.00 U1242B+U1177A 208-4541 197.00 Ref Code Commande Prix Unitaire Fab. 1+ U1251B+U1177A 208-4538 340.00 U1252B+U1177A 208-4539 365.00 peuvent utiliser les nouvelles unités sans avoir à passer beaucoup de temps dans l’apprentissage et la familiarisation avec le fonctionnement. Pour un ajustement plus rapide pour faciliter les tests, il ya une touche Auto pour afficher instantanément la forme d’onde appropriée et la position de gamme. Multimètre numérique portable + Adaptateur IR-vers- Bluetooth U1177A Offert Taux d’échantillonnage 500Méch/s Taux d’échantillonnage (72-8395) 250Méch/s Type de déclenchement Front, Impulsion, Vidéo et Alternatif Nbre mesures automatiques 28 Dimensions (lxHxP) 320x150x130mm Poids 4kg U1241B et U1242B Multimètre Numérique Portable + Adaptateur IR-vers- Bluetooth U1177A Offert Prix Unitaire Réf. Fab. Bande passante Code Commande 1+ 72-8395 25MHz 173-9448 333.52 72-8225 40MHz 173-9443 375.34 72-8230 60MHz 173-9444 438.07 72-8240 100MHz 173-9445 621.03 72-8245 150MHz 173-9446 707.24 72-8250 200MHz 173-9447 997.41 d’harmonique, double température (T1, T2, T1-T2) Ì Manuel ou auto-calibration Ì Beeper de continuité et test de diode Ì Rétroéclairage ajustable Ì Enregistrement Min/Max Oscilloscopes numériques Multimètres de poche complet qui offre un maximum de polyvalence pour répondre aux besoins actuels et futurs. Multimètre Portable double écran 41⁄2 digits avec précision jusqu’à 0,025%, valeur efficace vraie, la température, la capacité et les mesures de fréquence enregistrement des données et connectivité PC. Ì Affiche de 50000pts sur les 2 écrans Ì Mémoire manuel de 100pts Ì Mesure RMS vraie Ì Mesure dBm Ì Test de Diode Ì Mesure de rapport cyclique Ì Mesure de largeur de pulsation Ì Maintien de la valeur crête Ì Connectivité IR vers USB (Cable U1173B vendu séparément) Ì Température de Fonctionnement 20°C à + 55°C Ì Conforme norme IEC61010-1 Cat III 1000V Ì Conception surmoulé robuste avec support inclinable U1252B caractéristiques supplémentaires : Ì Compteur de Fréquence 20 MHz Ì Générateur programmable de signaux carré Ì Chargeur de batterie intégré Ì Supporte les thermocouples de type J Oscilloscopes numériques U1251B and U1252B La série de multimètres U1240B vous permet de vérifier plus avec des gammes de mesure plus large, elle dispose d’une lectures True-RMS sur un écran 10 000 points. Le rétro-éclairage ajustable permet de visualiser, même sous un éclairage réduit, et de prolonger la durée de vie de la batterie. Fourni avec un certificat d’étalonnage et un rapport d’essai. Le U2142B a des fonctionnalités supplémentaires telles qu’un datalogging manuel, rapport d’harmonique, deux températures et capacité de température différentielle. Ì Support de sonde intégré Ì Coque moulée Ì Protection CAT III 1000V OV Ì Certifié CE, CSA, et UL Ì Alimentation 4 piles AAA Ì Dimensions (HxLxp): 194 x 92 x 58mm Accessoires Inclus: Sacoche de transport, Batterie, kit de cordon de test standard U1160A, Guide de démarrage rapide, Mode d’emploi, Logiciel PC, Drivers, adaptateur secteur AC (U1252B seulement). Ì Afficheur 10 000 points Ì Précision de tension DC 0.09% basic et mesure true-RMS Ì Fonctions basiques: DCV, DCI, ACV, ACI, résistance, fréquence, continuité, test de diode Ì Fonctions avancées (U2141A): capacitance, température, compteur de switch Ì Fonctions avancées (U2142A): capacitance, température, compteur de switch rapport Livré avec piles, certificat d’étalonnage, cordons, guide de démarrage rapide et CD de référence produit farnell.com element14.com 18 TEST ET MESURE Tenma soustractions, multiplications et division) Ì Edge, vidéo, impulsion, pente et fonctions déclenchement alterné Ì Mesure automatique de 24 tests de paramètres de forme d’onde et personnalisation Ì Configurations multiples AUTO pour plus de flexibilité Ì Messages visuels d’aide du système 60Mhz - 2 ou 4 canaux 72-10155 72-10160 72-10165 72-10170 Nb de canaux 2 Bande Passante 40MHz 60MHz 100MHz 200MHz Impédance 1MΩ Taux d’échantillonage Max 100MEch/s 150MEch/s 250MEch/s 200MEch/s Couplage AC, DC, GND Résolution Verticale 8 bits Mode de déclenchement Auto, Normal, Single Déclenchement Pente +/- Type de déclenchement Front montant, Front descendant Source de déclenchement CH1, CH2, EXT Taille mémoireTampon 10K à 32KB par Canall Mathématique FFT, addition, soustraction, multiplication, division Système d’exploitation Windows Me, Windows NT, Windows 2000,Windows XP, VISTA Dimensions 190x100x35mm 72-9355 72-9360 72-9365 Bande-passante 60MHz 100MHz 200MHz Temps de montée 5.8ns 3.5ns 1.8ns Taux d’échantillonnage 250Méch/s 500Méch/s 1GSPS Type de déclenchement Niveau, impulsion, video et alterné Mesures d’onde auto 27 Compteur de fréquence Compteur de fréquence 6 digits Ports USB Math Addition, soustraction, multiplication, division, FFT Interface Affichage couleur ou mono sélectionnable Alimentation Batterie ou adaptateur secteur Autonomie de la batterie 3h Courant AC 6mA, 60mA, 600mA, 6A Courant DC 6mA, 60mA, 600mA, 6A Tension AC 600mV, 6V, 60V, 600V, 700V Tension DC 600mV, 6V, 60V, 600V, 1000V Capacité 6nF, 6mF, 60nF, 600nF, 6μF, 60μF, 600μF Résistance 600Ω, 6MΩ, 60MΩ, 6kΩ, 60kΩ, 600kΩ Nbr de points d’affichage 5999 Poids 1.8kg Dimensions 268 x 168x 60mm Prix Unitaire Réf Fab. Bande Passante Code Commande 1+ 72-10155 40MHz 214-6562● 292.95 72-10160 60MHz 214-6564● 339.45 72-10165 100MHz 214-6565● 447.95 72-10170 200MHz 214-6566● 509.95 Prix Unitaire Réf. Fab. Bande passante Code Commande 1+ 72-9355 60MHz 206-1825 806.82 72-9360 100MHz 206-1826 1027.14 72-9365 200MHz 206-1827 1174.02 Oscilloscopes DSO USB 72-10155 72-10160 Verticale Nb de Canaux 4 2 Bande Passante 60MHz Temps de montée 5.8ns Impédance 1MΩ Sensibilité 10mV/div à 5V/div Couplage AC, DC, GND Résolution Verticale 8 bit Largeur de Mémoire 10K à 16M par Canal Horizontal Taux d’échantillonage Temps réel 200Méch/s Précision base de temps 5ns/div à 1000s/div Déclenchement Source CH1, CH2, CH3, CH4, EXT Mode Edge, Pulse, Video, Alternative Mesures Mesure de Tension Vpp, Vamp, Vmax, Vmin, Vtop, Vmid, Vbase, Vavg, Vrms, Vcrms, Preshoot, Overshoot Mesure de Temps Frequence, Periode, Temps de Montée, Temps de Descente, Cycle Opération +, -, ×, ÷, FFT, Invert Gamme de Tension 10mV à 5V, 100mV à 50V, 1V à 500V, 10V à 5kV, 100V à 50kV, 200mV à 100V FFT Rectangle, Hanning, Hamming, Blackman Window Math Addition, soustraction, multiplication, division Signaux Arbitraire Fréquence 25MHz DAC 2K à 200MHz ajustable Résolution verticale 12 bit Impédance 50 Général Interface USB 2.0 Tension d’alimentation 8V à 36V Dimensions 255x190x45mm Poids 1kg Prix Unitaire Ref Fab. Nb de Canaux Code Commande 1+ 72-10177 4 214-6567● 618.45 72-10179 2 214-6568● 401.45 Ì Interface USB2.0 sans aucune alimentation externe requise Ì 23 fonctions de mesures Ì Test Réussite/Echec Ì Forme d’onde moyenne, persistance, intensité, inversion, addition, soustraction, multiplication, division, graphe X-Y Ì Sauvegarde de la forme d’onde dans les formats suivants : fichier texte, image jpg/bmp, MS Excel/Word Oscilloscope portable 72-8725 72-8727 Bande passante 100MHz 200MHz Gamme d’échantillonnage Méthode d’échantillonnage Temps réel Equivalent Taux d’échantillonnage 2Géch/s 50Géch/s Entrée Couplage d’entrée DC, AC ou mise à la terre (AC, DC, GND) Impédance d’entrée 1MΩ±2%, et 16±3pF Horizontal Longueur d’enregistrement 1024k Profondeur d’enregistrement 24k(Max) Fonctions multimètre Tension DC Gamme: 400mV, 4V, 40V, 400V Précision: ± (1% + 5 digits) Tension AC Gamme: 400mV, 4V, 40V, 400V Précision: ± (1.2% +5 digits) Affichage Type d’affichage LCD 5.7" Résolution 320xRGBx240 (TFT) Environment Température Temp. de fonctionnement: 0°C - +40°C Hors fonctionnement: -20°C - +60°C Oscilloscopes DSO USB 2 voies Ì Plusieurs DSO peuvent être connectés sur un seul PC, afin d’étendre le nombre de canaux Ì Labview\VB\VC\Delphi\C++ Ì Est adapté pour ordinateur portable, ligne de maintenance produit, peut être utilisé facilement en entreprise Ì Interface Multi-Langue Ì Générateur de signaux arbitraire Ì Sortie de signaux arbitraire 25MHz ,(sinus jusqu’à 75MHz) 200MEch/s DDS, résolution verticale de 12bits Ì Compteur de Fréquence, analyse de FFT Ì Tension d’entrée sélectionnable de 8 à 36V pour les tests sur alimentation véhicule Ì Interface "plug and play" USB 2.0 Ì Plus de 20 fonctions de mesures automatique, Test Echec/Réussite, est adapté pour les applications d’ingénierie Ì Excellent conception industriel, interface similaire au oscilloscope de table Ì Interface Multilangue Contenu du Kit: Oscilloscope, CD de Logiciel, Sondes, Mode d’emploi et cordon USB Ì Buzzer de continuité Ì Diode Ì Diagramme de tendance Ì Gamme manuelle / Auto Réf. Prix Unitaire Fab. Bande passante Code Commande 1+ 72-8725 100MHz 183-6063 749.53 72-8727 200MHz 206-1824 1211.76 Ì Bande Passante 60MHz Ì Déclenchement Externe Ì Taux d’échantillonnage Temps réel 200MEch/s Ì Largeur de mémoire de 10k à 16M par canal 40Mhz-200Mhz - 2 canaux Contenu: Oscilloscope portable, 2 sondes, 2 convertisseurs courant / tension , cordon d’alimentation, adaptateur DC, cordon de test et manuel. Contenu du Kit: Oscilloscope, CD de Logiciel, Sondes, Valise de Transport, Cordon USB, Adaptateur secteur et cordon BNC. Trois bonnes raisons de choisir les oscilloscopes et les sondes Tektronix © 2012 Tektronix, Inc. All rights reserved. Tektronix products are covered by U.S. and foreign patents, issued and pending. TEKTRONIX and the Tektronix logo are registered trademarks. © 2012 Keithley Instruments Inc. All rights reserved. Pour des mesures précises et fiables, rendez-vous sur les sites: www.farnell.com/tektronix Précision La precision des mesures commence à la pointe de la sonde. Il y a donc un avantage à posséder une sonde adaptée à votre oscilloscope et à votre application. Chaque sonde issue de notre portfolio étendu de produits, est conçue afin de fournir des mesures précises et est parfaitement adaptée aux meilleurs oscilloscopes du marché. Avec plus de 100 modèles disponibles, vous trouverez la sonde qui vous convient le mieux. Performances Les oscilloscopes MSO/DPO de Tektronix fournissent plus de 20 voies afin que vous puissiez analyser les signaux analogiques et numériques en n’utilisant qu’un seul instrument. Les modules d’analyse de bus série et parallèle et de mesure de puissance automatisée simplifient et accelerent le débogage de vos conceptions les plus complexes. Choix Gràce à l’ajout recent de la gamme Keithley au portfolio de Tektronix, vous avez désormais accès à l’une des gammes de produits les plus vaste du secteur. Ainsi, les performances et la facilité d’utilisation que vous attendez de nos oscilloscopes sont désormais disponibles pour tous vos besoins – générateurs de signaux, multimètres, alimentations et programmateurs/compteurs, instruments de test électrique, systèmes d’acquisition de données, commutateurs et accessoires. À VENIR : Nouveaux modèles d’oscilloscopes, Bandes passantes plus faibles, Des prix réduits, Garantie 5 ans farnell.com element14.com 20 TEST ET MESURE Tenma Prix Unitaire Réf. Fab. Code Commande 1+ 72-7730A 210-0035 99.65 72-7732A 210-0036 145.71 72-9380A 210-0037 207.78 210mm x 152mm x 305mm Trouvez vos produits en ligne, sur tablette ! Consultez notre catalogue en ligne innovant avec mise à jour quotidienne des prix. Plus accessible, il rend vos recherches plus faciles. Ce multimètre mesure: tensions et des courants AC/DC, résistance, fréquence, capacité, température, tachymetre et test de continuité et diodes Besoin d’un conseil technique 72-7730A 72-7732A 72-9380A Gamme de mesure Tension AC 2V, 20V, 200V, 1000V 4V, 40V, 400V, 1000V Tension DC 200mV, 2V, 20V, 200V, 1000V 400mV, 4V, 40V, 400V, 1000V Courant AC 200μA à 10A 400μA, 4000μA, 40A, 400mA, 10A Courant DC 200μA à 10A 400μA, 4000μA, 40A, 400mA, 10A Résistance 200ohm, 2kohm, 20kohm, 200kohm, 2Mohm, 20Mohm 400ohm, 4kohm, 40kohm, 400kohm, 4Mohm, 40Mohm Capacité 20nF, 200nF, 2μF, 20μF, 200μF, 2mF, 20mF 40nF, 400nF, 4μF, 40μF, 400μF, 4mF, 40mF Fréquence 20Hz à 200Hz 40Hz à 400Hz Température -40°C à +1000°C Puissance – – 2500W Général Nbre de point 19999 39999 Taille LCD 73 x 50mm Dimensions 200 x 93 x 40mm Poids 384g 72-9275 72-9280 Courant AC – 400μA, 4000μA, 40mA, 400mA, 4A, 10A Courant DC 200mA, 10A 400μA, 4000μA, 40mA, 400mA, 4A, 10A Tension AC 200V à 750V 4V, 40V, 400V, 1000V Tension DC 200mV, 2V, 20V, 200V, 1000V 4V, 40V, 400V, 1000V Capacité – 10nF, 100nF, 1000nF, 10μF, 100μF Fréquence 2kHz 10Hz à 1MHz Résistance 200ohm, 2kohm, 20kohm, 200kohm, 2Mohm, 20Mohm 400ohm, 4kohm, 40kohm, 400kohm, 4Mohm, 40Mohm Température -40°C à +1000°C -40°C à +537 °C Mode Max / Min ¤ ✓ Mode Veille ¤ ✓ Rétroéclairage ¤ ✓ RS232 (USB) ¤ ✓ Nb de points 1999 3999 Alimentation 9V Taille LCD 60 x 54mm 65 x 43mm Poids 352g 362g Dimensions 179 x 88 x 39mm 180 x 87 x 47mm l=105, H=240, P=310mm. Poids 2.4 kg Dialoguez en temps réel avec l’un de nos conseillers techniques sur farnell.com 72-8690 72-8695 72-8700 Tension sortie Voie 1, Voie 2 0-32V 0-32V 0-32V Voie 3 5V Courant de sortie Voie 1, Voie 2 0-1A 0-3A 0-5A Voie 3 2A Effet surcharge CV ≤ 1 x 10-4 +2mV, CC ≤ 2mA Ondulation et Bruit CV ≤ 1mVrms, CC ≤ 1mArms Régulation CV -20mV (Valeur typ.), CC -50mV (Valeur typ.) Erreur Tracking 5 x 10 -3 +2mV Ref Prix Unitaire Fab. Gamme Code Commande 1+ 72-9275 Manuel 205-9979 27.54 72-9280 Auto 205-9980 60.18 Réf. Prix Unitaire Fab. Code Commande 1+ 72-8690 183-6056 153.69 72-8695 183-6057 163.10 72-8700 183-6058 202.83 Gammes Précision Tension AC 600mV/6V/60V/600V/1000V ±(0.6%+5) Tension DC 600mV/6V/60V/600V/1000V ±(0.3%+2) Courant AC 600μA/6mA/60mA/600mA/10A ±(1.0%+5) Courant DC 600μA/6mA/60mA/600mA/10A ±(0.5%+3) Résistance 600Ω/6kΩ/60kΩ/600kΩ/6MΩ/60MΩ ±(0.5%+2) Capacité 6nF/60nF/600nF/6μF/60μF/600μF/6mF ±(2.0%+5) Température -40°C - 1000°C ±(1.0%+3) Fréquence 6kHz/60kHz/600kHz/6MHz/60MHz ±(0.1%+3) (Compatible avec iPad et tablettes androïdes) Multimètre numérique Ì RMS Vraie Ì Interface USB Ì Test de diode Réf. Prix Unitaire Description Fab. Code Commande 1+ Multimètre de table 72-1016 119-6432 157.59 Alimentations DC Ì Alimentations de laboratoire avec Multimètre Automobile Portable Multimètre de table – RMS vrai Ì Bande passante 100KHz Ì Gamme automatique Contenu du kit: Multimètre, batterie, cordons de test, pinces crocodiles, interface USB, logiciel PC, sacoche de transport, sonde de température, manuel d’utilisation (en anglais) Un multimètre de table numérique pour la mesure de signaux AC en RMS vrai avec un affichage à LED. Livré avec des cordons de test, un cordon d’alimentation, un manuel d’utilisation, une sonde de température, des pinces crocodiles, une borne de test multifonctions, un câble d’interface RS232C et un logiciel de communication. Contenu du kit 72-9275 : Cordon de test, batterie, Mode d’emploi Anglais, étui et sonde de température de contact ondulation et bruit faibles Ì 2 LEDs 3 digits pour indiquer la tension et le courant Ì Modes tension et courant constants Ì Fonctionnement en série ou en parallèle Ì Livré ave cordones de test, manuel (en anglais), cordons avec prises européenne et anglaise Contenu du Kit 72-9280 : Cordon de Test, batterie, Mode d’emploi Anglaisl, Cable d’interface RS232 et logiciel. Ì Affichage de l’autonomie faible de la batterie et mode veille Ì Se connecte à un PC via une interface RS232 (logiciel et cordon fournis) Ì Alimentation secteur ou par 6 piles C (non fournies) Ì Compartiment pour accessoires intégré Ì Manuel utilisateur en anglais Ì Test de Continuité (sonore) Ì Test de Diode Ì Fonction maintien des données Ì Indication batterie faible Ì Affichage LCD 5,999 points Ì Rétro-éclairage, affichage complet Ì Mesure de courant jusqu’à 10A Ì Gamme automatique Ì Mesure RMS vraie avec une bande passante 100kHz Ì Tests de diode, de continuité et de transistor Ì Mode Max/Min et sauvegarde des données 72-1016 farnell.com element14.com TEST ET MESURE 21 Tenma Thermomètre infra-rouge compact pour toutes les applications standard. 72-94XX Tension de Sortie 250V / 500V / 1000V Courant 250V / 500V 500V / 1000V 1000V / 2500V Mesure de Tension 1000VDC / 750VAC Alimentation 6 x 1.5V batterie Taille LCD 70.6 x 34mm Courant de Court Circuit <2mA Dimensions 150 x 100 x 71mm Mesure de résistance d’isolement 250V 500V 1000V Poids 500g Gamme de températures -18°C à 280°C Précision d’affichage ±2°C/±2% (Condition 23°C ±2°C) Répétabilité <±0.5°C / ±0.5% Résolution de l’affichage 0.1 D:S (Distance à la taille du Spot) 10 à 1 Temps de réponse 500mS Taille LCD 22 x 22m Dimensions 145 x 80 x 40mm Poids 185g Caractéristiques dynamiques Bande passante DC à 5MHz (petit signal) Temps de montée d’impulsion <70ns Abérrations d’impulsion <±5% (<1% avec réglage bande passante basse) Bruit 6mA rms en pleine bande passante ou 1.5mA rms en bande passante faible (équivalent en tore) Réglages de filtre Pleine bande passante, 500kHz ou 2Hz Mode en piste CI Echelle 1 Amp par Volt ou 2 Amp par Volt (avec réglage du contrôle pour convenir à la gamme de largeur de la piste 0·2mm à 6.5mm) Caractéristiques Générales Tension alimentation 5.2V DC avec adaptateur de ligne AC, 100V à 240V nominal 50/60Hz Tension de sortie max. ±10V, correspondant à ±2·5mT (mesure de champ) ou ±10A (fil) Tension de la piste max. 300Vrms CAT II (circuits connectés directement à la prise secteur basse tension) ou 600Vrms CAT I (circuits non connectés directement à la prise secteur basse tension) Température max. de la piste Temp de fonctionnement max. de la pointe de la sonde: 150°C Certifications Conformes EN61010-1 (Sécurité) et EN61326 (EMC) Ref Prix Unitaire Fab. Code Commande 1+ 72-9400 206-4096 60.18 Réf. Code Prix Unitaire Fab. Commande 1+ 72-7224 128-3640 52.79 72-7226 128-3641 79.97 Réf. Prix Unitaire Fab. Code Commande 1+ 72-8730 183-6064 48.30 Réf. Code Prix Unitaire Fab. Commande 1+ IPROBER 520 190-8148 615.17 Testeur de résistance d’Isolement 72-9480 72-9485 72-9490 Gamme de mesure Tension AC 4V, 40V, 400V, 600V 400mV, 4V, 40V, 400V, 600V 15V, 100V, 300V, 600V Tension DC 400mV, 4V, 40V, 400V, 600V 400mV, 4V, 40V, 400V, 600V – Courant AC – 40A, 1000A 40A, 100A, 400A, 1000A Courant DC 40A, 600A 40A, 1000A – Capacité 4nF, 40nF, 400nF, 4μF, 40μF, 100μF – – Fréquence 10Hz à 10MHz 4kHz, 40kHz, 400kHz, 4MHz, 40MHz 20Hz à 500Hz Température -40°C à +1000°C – – Résistance 400ohm, 4kohm, 40kohm, 400kohm, 4Mohm, 40Mohm 400ohm, 4kohm, 40kohm, 400kohm, 4Mohm, 40Mohm – Puissance active – – 0.01kW à 600kW Puissance apparente – – 0.01kVA à 600kVA Puissance réactive – – 0.01kVAr à 600kVAr Facteur de puissance – – 0.3 ∼ 1 Angle de phase – – 0° ∼ 360° Énergie active – – 1 ∼ 9999kWh Général Nbre de point 3999 9999 4000 Puissance 9V 9V 6V Dimensions 208 x 76 x 30mm 286 x 105 x 45mm 303 x 112 x 39mm Poids 260g 533g 601g Ì Alarme visuelle et sonore Ì Indication Batterie Faible prix Unitaire Réf. Fab. Code Commande 1+ 72-9480 209-9730 49.73 72-9485 209-9732 108.38 72-9490 209-9733 151.73 Thermomètre infra-rouge Sonde de courant pour piste CI l=90 H=260 P=45mm. Poids 530g Aim I-prober 520 Idéale pour les applications d’usage général, cette pince compacte mesure la tension CA/CC, le courant CA/CC, la résistance, la fréquence et le rapport cyclique. Ì Affichage 3999 points, gamme automatique Ì Impédance d’entrée 10MΩ Ì Diamètre de la pince: 25mm Ì Mode relatif Ì Test de diode et test de continuité sonore Ì Gel du max. et gel de l’affichage Ì Mode veille et indicateur de faible batterie Ì Alimentée par 1 pile 9V (livrée) Ì Livrée avec sacoche avec zip, cordons de test et manuel (en anglais) En plus, pour le modèle 72-7226: Ì Mesure AC en RMS vrai Pinces ampèremétriques avec fréquence La sonde Aim I-prober 520 est un testeur de courant unique. La mesure de courant nécessite normalement d’être passé au travers d’une boucle magnétique fermée, en utilisant typiquement une pince. Cette pince convient pour les câbles individuels mais ne peut être utilisée pour la mesure de courant sur des pistes CI. La sonde I-Prober 520 Pinces de mesure Ì Fonctions: résistance, résistance, tension DC et AC Ì Gamme Automatique Ì Gamme automatique Ì sauvegarde des données Ì RMS Vraie ( (72-9485 and 72-9490 seulement) Ì interface USB (72-9490 seulement) Ì Mono ou triphasé (72-9490 seulement) 72-7224 et 72-7226 utilise une mesure de champ H positionnelle. En positionnant la pointe isolée de la sonde sur la piste CI, le courant qui passe dans cette piste peut être observée et mesurée. La sonde I-Prober 520 est livrée avec un clip tore qui permet de la convertir en une sonde de circuit magnétique fermée pour la mesure du courant dans un fil. Ce testeur d’isolement mesure résistance, résistance d’isolement et tension AC/DC. Contenu du kit 72-9485: Multimètre, cordons de test, batterie, manuel et boite de transport Contenu du Kit: Mesureur d’isolement, cordon de test, sonde de test, pince crocodile, sac de transport, strap, 6 x 1.5 V batterie (LR14) et mode d’emploi. Contenu du kit 72-9480: Multimètre, cordons de test, batterie, manuel,sonde de température et sac de transport Ì Mesure de courant au travers d’une sonde isolée Ì Gamme dynamique de 10mA à 20A crête à crête Ì Large bande passantez de DC à 5MHz Ì Faible bruit équivalent à <6mA rms Ì 300V Cat II Ì Peut être connectée à tout oscilloscope Ì Haute précision de la sonde de champ H à usage général Ì Peut se convertir en une sonde de courant en circuit magnétique fermée Contenu du kit 72-9490: Multimètre, cordons de test, batterie, manuel, pinces crocodiles, câble d’interface USB avec logiciel et boite de transport farnell.com element14.com 22 TEST ET MESURE TTI WAVEACE 1001 WAVEACE 1002 WAVEACE 1012 WAVEACE 2002 WAVEACE 2004 Verticale Bande passante 40MHz 60MHz 100MHz 70MHz 70MHz Temps de montée 8.8ns 5.8ns 3.5ns 5ns 5ns Voies Entrée 2 2 2 2 4 Résolution verticale 8 bits Acquisition Échantillonnage 2 GS/s (interleave), 1 GS/s (toutes voies) CPX400D et CPX400DP Ref Prix Unitaire Fab. Code Commande 1+ Sortie Simple QL355.. 207-7420 439.00 QL355P.. 207-7421 622.00 QL564. 207-7424 439.00 QL564P. 207-7426 622.00 Sortie Triple QL355T. 207-7422 853.00 QL355TP. 207-7423 1061.00 QL564T 207-7427 853.00 QL564TP 207-7428 1061.00 Réf. Prix Unitaire Fab. Code Commande 1+ Générateurs avec interfaces USB et LAN uniquement TG5011 50 MHz 179-1442 1075.00 TG2511 25 MHz 182-5613 996.00 Générateurs avec interfaces USB, LAN et GPIB TG5011G 25 MHz 190-8150 1222.13 TG2511G 25 MHz 190-8151 1096.84 Alimentation de précision numérique QL Générateurs de fonctions/ arbitraire/Impulsion de 25MHz et 50MHz Ì Modèle Simple ou triple sorties Ì Mode de fonctionnement liés de sorties principales (modèles T) Ì Sortie Auxiliaire variable de 1V à 6V à 3A (modèles T) Ì 35V/5A 105W max. ou 56V/4A 112W max. Ì Régalage par entrée numérique directe ou par roue de sélection Ì Résolution de 1mV à la tension de sortie max Ì Multiple gammes pour augmenter la flexibilité de courant Ì Excellent bruit, régulation et dynamiques Ì Multiple réglage en mémoire Ì Protection incluant OVP et OCP Ì Commande à distance sélectionnable pour fournir une parfaite régulation de charge Ì Compact pour montage en rack Ì Duplique la puissance et les bornes de détection à l’arrière (modèles P) Ì Interface GPIB, RS232, LAN et USB (modèle P) Ì Interface Utilisateur avancée avec contrôle numérique et roue de sélection Ì Pour plus d’information, merci de vous référer à la fiche technique sur notre site www.farnell.com Série TG5xx11 Oscilloscopes numériques Réf. Prix Unitaire Fab. Interfaces Code Commande 1+ CPX400D — 185-3729 1037.00 CPX400DP RS-232, USB, LAN (LXI), GPIB 179-1444 1251.00 Ì Gamme de fréquence 1μHz à 25MHz ou 50MHz; résolution 14 digits ou 1μHz Ì Formes d’onde standard comprennent: sinus, carré, rampe, impulsion, sin(x)/x, exposants et bruit Ì Mode générateur d’impulsion vrai, avec délai variable et montée/descente variable Ì Formes d’ondes arbitraires jusqu’à 128K points à jusqu’à 125Méch/s Ì Possibilité de sauvegarde des formes d’onde sur clés USB Ì Large LCD avec affichage des formes d’ondes et du texte en simultané Ì Modulations interne/externe complètes qui comprennnent AM, FM, PM, PWM et FSK Ì Sortie crête-à-crête 20mV à 20V à partir de 50 Ohms ; plus sorties de fonctions auxiliaires multiples Ì Sauvegarde de nombreuses installations d’instrument dans une mémoire non-volatile Ì Demi-rack 2U avec buffer protégé et poignée multi-positions Ì Livré avec logiciel "Waveform Manager Plus" pour Windows Ì Programmable à partir des interfaces USB et LAN; Conforme LXI classe C Ì Conformes EN61010-1, EN61326 Ì Pour plus d’informations, merci de consulter la fiche technique sur www.farnell.com La série QL sont des alimentations linéaires régulées offrant des performances supérieures, y compris une très grande précision et un contrôle total numérique. La puissance de sortie est supérieure à 100 watts par sortie principale et des gammes sélectionnable permettent une augmentation du courant de sortie à des tensions inférieures. Les réglages peuvent être effectués par entrée numérique ou par roues de sélection. La Mémoire non volatile est prévue pour un rappel instantané des paramètres précédents. Les versions P intègre une interface de bus isolé supportant les normes GPIB, RS232, LAN et USB. Alimentations standard ou programmable, double sortie, 840W PowerFlex WaveAce™ Ì Bande passante 40 MHz, 60 MHz, 70 MHz, 100 MHz, 200 MHz et 300 MHz Ì Échantillonnage jusqu’à 2 GS/s Ì Mémoire ’Long Waveform’ jusqu’à 1 Mpts/ Voie (2 Mpts interleave) Ì Trigger avancé: Edge, Pulse Width, Video, Slope (Rise Time) Ì Afficheur 7" couleur sur tous les modèles La CPX400DP est une version programmable de l’alimentation CPX400A. Elle dispose de toute une gamme d’interfaces et de plusieurs fonctions de contrôle local comme le suivi isolé et verrouillé. L’alimentation CPX400D comprend une gamme complète d’interfaces de contrôle numérique et duplique les terminaux à l’arrière. l = 240mm, H = 100mm, L = 355mm, Poids = 2.55kg Rack de montage La série TG5xx11 est la dernière et la plus avancée des générateurs de fonctions numériques de TTi. Il utilise la dernière technologie FPGA qui permet de réaliser une fréquence beaucoup plus élevée que d’autres générateurs dans la même gamme de prix. Il incorpore un affichage graphique complet et offre des fonctions de formes d’ondes standard de haute qualité, des formes d’ondes arbitraires haute vitesse et un générateur d’impulsion complet. Les modulations numériques internes et externes sont disponibles en utilisant tout type de formes d’onde. Ì 32 mesures automatiques Ì Interface utilisateur Multi-langue Aide ’Context Sensitive’ Ì Espace de stockage interne large pour les signaux et la configuration Ì Quatre fonctions math plus FFT Ì USB host et device pour imprimantes, mémoires Flash et contrôle par PC Ì Pour plus d’informations techniques, merci de consulter la fiche technique sur www.farnell.com Un montage en rack 4U est disponible qui peut accepterun maximum de trois unités simples ou une simple plus une triple. Des obturateurs sont disponibles pour les postes inutilisés. Ì Deux sorties isolées, indépendantes ou en suivi Ì Régulation PowerFlex avec une puissance totale de 840 W Ì Jusqu’à 60V et 20A avec 420W pour chaque sortie Ì Suivi offrant jusqu’à 120V en série ou 40A en parallèle Ì Fonction S-Lock pour le réglage de la tension et du courant Ì Boutons de contrôle permettant d’avoir une gamme fixe ou de fonctionner en mode PowerFlex Ì Boîtier 3U demi-rack, connecteurs en face avant et arrière (CPX400DP uniquement) Ì Interfaces, RS232, USB, LAN (avec LXI) et GPIB (CPX400DP uniquement) Ì Sécurité & EMC conforme EN61010-1, EN61326 Ì Pour plus d’informations, merci de consulter la fiche technique sur www.farnell.com farnell.com element14.com TEST ET MESURE 23 Lecroy Acquisition Mémoire 1 Mpts/V 12 kpts/V Mémoire maximum 2 Mpts (interleave) Enregistrement Math et Signaux Mesure Amplitude, moyenne, Largeur salve de base,, cyclique RMS, facteur de marche +, - Duty Cycle, Temps de descente, Fréquence, maxi, Moyenne, Min, dépassement, crête à crête, période, phase, preshoot, temps de montée, RMS, Haut, + Largeur, -. Largeur Plus de 8 paramètres avancés pour bord à bord les mesures temporelles Math Additionner, Soustraire, Multiplier, Diviser, FFT (jusqu’à 1 kpts avec rectangulaire, Von Hann, de Hamming ou Blackman) WAVEACE 2012 WAVEACE 2014 WAVEACE 2022 WAVEACE 2024 WAVEACE 2032 WAVEACE 2034 Vertical Bande passante 100MHz 100MHz 200MHz 200MHz 300MHz 300MHz Temps de monté 3.5ns 3.5ns 1.75ns 1.75ns 1.2ns 1.2ns Nbre d’entrée 2 4 2 4 2 4 Résolution verticale 8 bits Acquisition Echantillonnage 2 GS/s (interleave), 1 GS/s (toutes voies) Mémoire 12 kpts/V Mémoire max 24 kpts Enregistreur mesure, mathématiques et Wave Mesure Amplitude, moyenne, Largeur salve de base,, cyclique RMS, facteur de marche +, - Duty Cycle, Temps de descente, Fréquence, maxi, Moyenne, Min, dépassement, crête à crête, période, phase, preshoot, temps de montée, RMS, Haut, + Largeur, -. Largeur Plus de 8 paramètres avancés pour bord à bord les mesures temporelles Additionner, Soustraire, Multiplier, Diviser, FFT (jusqu’à 1 kpts avec rectangulaire, Von Hann, de Hamming ou Blackman fenêtres) MXs-B Prix Unitaire Réf. Fab. Bande passante Nbre d’entrée Code Commande 1+ WAVEACE 1001 40MHz 2 210-2114 710.00 WAVEACE 1002 60MHz 2 210-2115 910.00 WAVEACE 1012 100MHz 2 210-2116 1140.00 WAVEACE 2002 70MHz 2 210-2117 1120.00 WAVEACE 2004 70MHz 4 210-2118 1480.00 WAVEACE 2012 100MHz 2 210-2119 1400.00 WAVEACE 2014 100MHz 4 210-2120 1780.00 WAVEACE 2022 200MHz 2 210-2121 1750.00 WAVEACE 2024 200MHz 4 210-2123 2020.00 WAVEACE 2032 300MHz 2 210-2124 2710.00 WAVEACE 2034 300MHz 4 210-2125 2830.00 Accessoires AP031 High Voltage Differential Probes, 15MHz, 700V 582-6810 520.00 PK400-1 Gripper Probe Set, Large 213-6273 210.00 PK400-2 Gripper Probe Set, Medium 213-6274 255.00 PPE1.2KV High Voltage Probe, 600V/1.2kV 213-6276 345.00 PPE2KV High Voltage Probe, 2kV 213-6277 295.00 PPE5KV High Voltage Probe, 5kV 213-6278 715.00 PPE6KV High Voltage Probe, 6kV 213-6279 850.00 PP016 Passive Probes, 300MHz/10MHz, 10MΩ/1MΩ 213-6286 180.00 Fonction Mathématiques Caractéristiques principales: Ì Bande passante 200 MHz, 400 MHz, 600 MHz et 1 GHz Ì Taux d’échantillonnage jusqu’à 5 Géch/sec en temps réel et 50Géch/sec entrelacé Ì 2 ou 4 voies Ì Ecran SVGA couleur 10.4" tactile Ì Interface utilisateur intuitive Windows Ì Mode de visualisation rapide Wavestream™, utilise un affichage 256 pour stimuler la visualisation d’un oscilloscope analogique: idéal pour visualiser des formes d’ondes avec des jitters ou des anomalies en utilisant 700 000 formes d’onde par seconde (jusqu’à 8 000 formes d’onde par seconde affichées) Ì Outil de débogage WaveScan™ Ì Longueur de mémoire de 12.5M points pour une meilleure capture et analyse Ì Meilleure vitesse de traitement, jusqu’à 150% plus rapide en réponse que d’autres oscilloscopes Ì Gain de temps avec une simple touche d’accès à 23 mesures automatiques Ì Sauvegarde des formes d’onde et réglages sur disques durs, clé USB ou sur LAN Ì Maths, FFT et zoom, mathsure et LabNotebook en standard Ì Livré avec logiciel de contrôle à distance Ì Options pour déclenchement série et décodage (SPI, I2C, I2S, LIN, CAN, RS232, UART); option signaux mixtes avec 18 ou 36 voies numériques (250 ou 500MHz); test de masque électrique/télécom; math étendu et fonction de déclenchement SMARTTM (advancé) Ì Garantie 3 ans Ì Interface utilisateur multi-langues Mesure C3 C4 Sinus lent 2 Oscilloscopes WaveSurfer Contenu du kit: Oscilloscope, une sonde passive par voie, interface utilisateur multilangue, câble USB, manuel de démarrage et certificat d’étalonnage et de performance. Fonction Zoom Modèle WJ 332-A WJ 334-A WJ 352-A WJ 354-A Code Commande 169-8112 169-8113 169-8115 169-8116 Nbre de voies 2 4 2 4 Taux d’échantillonnage 1Géch/s / 2Géch/s (entrelacé) Taux d’échantillonnage (RIS) 100Géch/s (Mode échantillonnage entrelacé aléatoire) Longueur d’enregistrement Sélectionnable de 500 à 500kpts par voie Temps de montée 1nS 750pS Résolution verticale 8 bits Base temps 1nS/div - 50S/div 500pS/div - 50S/div Modèle WJ 312-A WJ 314-A WJ 322-A WJ 324-A Code Commande 169-8108 169-8109 169-8110 169-8111 Nbre de voies 2 4 2 4 Taux d’échantillonnage 1Géch/s 1Géch/s / 2Géch/s (entrelacé) Taux d’échantillonnage (RIS) 100Géch/s (Mode échantillonnage entrelacé aléatoire) Longueur d’enregistrement Sélectionnable de 500 à 500kpts par voie Temps de montée 3.5nS 1.75nS Résolution verticale 8 bits Base de temps 5nS/div - 50S/div 2nS/div - 50S/div Code Prix Unitaire Réf. Fab. Commande 1+ WAVEJET WJ312-A Oscilloscope, 100MHz, 2 Channel 169-8108 2930.00 WAVEJET WJ314-A Oscilloscope, 100MHz, 4 Channel 169-8109 3600.00 WAVEJET WJ322-A Oscilloscope, 200MHz, 2 Channel 169-8110 3460.00 WAVEJET WJ324-A Oscilloscope, 200MHz, 4 Channel 169-8111 3970.00 WAVEJET WJ332-A Oscilloscope, 350MHz, 2 Channel 169-8112 4180.00 WAVEJET WJ334-A Oscilloscope, 350MHz, 4 Channel 169-8113 4780.00 WAVEJET WJ352-A Oscilloscope, 500MHz, 2 Channel 169-8115 5370.00 WAVEJET WJ354-A Oscilloscope, 500MHz, 4 Channel 169-8116 5960.00 Accessoires AP031 High Voltage Differential Probes, 15MHz, 700V 582-6810 520.00 PP006A Passive Probe, 500MHz, 10MΩ 213-6280 340.00 PP010-1 Passive Probe, 200MHz, 10MΩ 213-6283 145.00 PP016 Passive Probes, 300MHz/10MHz, 10MΩ/1MΩ 213-6286 180.00 PPE1.2KV High Voltage Probe, 600V/1.2kV 213-6276 345.00 PPE2KV High Voltage Probe, 2kV 213-6277 295.00 PPE5KV High Voltage Probe, 5kV 213-6278 715.00 PPE6KV High Voltage Probe, 6kV 213-6279 850.00 300-A Ì Garantie 3 ans Ì Interface en 9 langues Ì Pour plus d’informations techniques, merci de consulter la fiche technique sur www.farnell.com Caractéristiques principales: Ì Bandes passantes de 100 MHz, 200 MHz, 350 MHz et 500MHz Ì Jusqu’à 2 Géch/s en temps réel et 100Géch/s entrelacé Ì 2 ou 4 voies Ì Ecran couleur TFT 7.5" (VGA, résolution 640 x 480) Ì Intuitif, interface facile à utiliser, avec installation automatique Ì Taux d’actualisation de l’écran jusqu’à 3600 ondes par seconde Ì Fonction "Répéter" qui permet d’afficher un historique des formes d’ondes capturées jusqu’à 1024 ondes Ì Longueur d’enregistrement de 500kpts par voie, idéale pour la capture et l’analyse de signaux longs Ì 26 mesures automatiques dont fonctions mathématiques, FFT et zoom en standard Ì Sauvegarde des formes d’ondes et des installations sur la mémoire interne, carte mémoire USB externe ou par envoi USB, LAN, GPIB Ì Compteur de fréquence intégré à 6 chiffres Ì Comprend en standard une commande USB à distance et une impression directe USB Oscilloscopes WaveJet WaveJet WJ354-A farnell.com element14.com 24 TEST ET MESURE Lecroy Ì Entrées précises avec 8 bits de résolution Ì Bandes passantes de 60, 100 et 200 MHz Ì Protocoles I2C , SPI, RS232, UART et CAN, LIN (4 voies seulement) et FlexRay (4 voies seulement) Ì Décodage série Ì Échantillonnage répétitif de 10 Géch/s Ì Connexion et alimentation USB 2.0 24MXs-B 44MXs-B 42MXs-B 64MXs-B 62MXs-B 104MXs-B 186-4914 186-4912 186-4913 186-4910 186-4911 186-4909 Bande passante 200 MHz 400 MHz 400 MHz 600 MHz 600 MHz 1 GHz Temps de montée 1.75 nS 875 ps 875 ps 500 ps 500 ps 300 ps Nbre de voies 4 4 2 4 2 4 Résolution verticale 8 bits Taux d’échantillonnage 5 Géch/Sec 5 Géch/Sec (10 Géch/Sec entrelacé) Longueur d’enregistrement 12.5 Mpts/Ch (allchannels), 25 Mpts (interleaved) Gamme base temps 200 ps/div-1000 s/div (roll mode from 500 ms/div-1000 s/div) PicoScope 2204 PicoScope 2205 PicoScope 2206 PicoScope 2207 PicoScope 2208 Bande passante 10MHz 25MHz 50MHz 100MHz 200MHz Taux d’échantillonnage 100Méch/s 200Méch/s 500Méch/s 1GSPS 1GSPS Temps de montée 35ns 14ns 7ns 3.5ns 1.75ns Longueur d’enregistrement 8kS 16kS 24kS 32kS 40kS AWG Non Non Oui Oui Oui Prix Unitaire Bandwidth Code Commande 1+ WAVESURFER 24MXS-B 200MHz 186-4914 8600.00 WAVESURFER 44MXS-B 400MHz 186-4912 9540.00 WAVESURFER 42MXS-B 400MHz 186-4913 8890.00 WAVESURFER 64MXS-B 600MHz 186-4910 11850.00 WAVESURFER 62MXS-B 600MHz 186-4911 9940.00 WAVESURFER 104MXS-B 1GHz 186-4909 13960.00 4 voies 3404A 3404B 3405A 3405B 3406A 3406B 2 voies 3204A 3204B 3205A 3205B 3206A 3206B Résolution 8 bits Bande passante 60 MHz 60 MHz 100 MHz 100 MHz 200 MHz 200 MHz Taux d’échantillonnage temps réel 500MS/s 1 GS/s 500MS/s 1 GS/s 500MS/s 1 GS/s Mémoire Buffer (Modèle A) 4 MS 4 MS 16 MS 16 MS 64 MS 64 MS Mémoire Buffer (Modèle B) 8 MS 8 MS 32 MS 32 MS 128 MS 128 MS Caractéristiques d’éntrée 1 MΩ / 13pF1 MΩ / 14pF1 MΩ / 13pF1 MΩ / 14pF1 MΩ / 13pF1 MΩ / 14pF Gammes de tension ±50 mV à ±20 V Gammes base de temps 2 ns/div à 200 s/div 1 ns/div à 200 s/div 500 ps/div à 200 s/div Précision base de temps ±50 ppm Modes de déclenchement Auto, repeat, single, none, rapid (segmented memory) Mode d’affichage Magnitude, Moyenne, peak hold Taille de Buffer AWG N/A 8 kS N/A 8 kS N/A 16 kS Taus d’échantillonnage AWG N/A 20 MS/s N/A 20 MS/s N/A 20 MS/s Gamme de Fréquence DC à 60 MHz DC à 100 MHz DC à 200 MHz Dimmensions (2 voies) 200x140x40mm Dimmensions (4 voies) 190x170x40mm Connexion PC USB 2.0 hi-speed Réf. Prix Unitaire Description Fab. Code Commande 1+ PicoScope 2204 PICOSCOPE 2204 147-1476 192.39 PicoScope 2205 PICOSCOPE 2205 147-1477 301.29 PicoScope 2206 PICOSCOPE 2206 206-9951● 422.29 PicoScope 2207 PICOSCOPE 2207 206-9952● 543.29 PicoScope 2208 PICOSCOPE 2208 206-9953● 724.79 Accessoires Sondes 60MHz (Paquet de 2) PP787 206-9954 36.30 Sondes 150MHz (Paquet de 2) PP821 206-9955 48.40 Sondes 250MHz (Paquet de 2) PP822 206-9958 60.50 Contenu du kit (4 voies): Oscilloscope série PicoScope, 4 sondes, câble USB simple et Oscilloscope PC double, guide de démarrage rapide et logiciel, CD référence et alimentation AC. PicoScope 2000 PicoScope série 6000 Réf. Prix Unitaire Fab. Bande-Passante Voies Code Commande 1+ Générateurs de fonction PICOSCOPE 3204A 60MHz 2 188-7207● 482.79 PICOSCOPE 3205A 100MHz 2 188-7211● 724.79 PICOSCOPE 3206A 200MHz 2 188-7213● 966.79 PICOSCOPE 3404A 60MHz 4 211-8833● 928.45 PICOSCOPE 3405A 100MHz 4 211-8835● 1393.45 PICOSCOPE 3406A 200MHz 4 211-8837● 1858.45 Générateurs de fonction et AWG PICOSCOPE 3204B 60MHz 2 188-7209● 603.79 PICOSCOPE 3205B 100MHz 2 188-7212● 845.79 PICOSCOPE 3206B 200MHz 2 188-7214● 1087.79 PICOSCOPE 3404B 60MHz 4 211-8834● 1160.95 PICOSCOPE 3405B 100MHz 4 211-8836● 1625.95 PICOSCOPE 3406B 200MHz 4 211-8838● 2090.95 Accessoires Valise de transport 188-7215 36.30 Ì Taux d’échantillonnage en temps réel de 5 Géch/s Ì Pour plus d’informations techniques, merci de consulter la fiche technique sur www.farnell.com Oscilloscopes USB série PicoScope3000 Le PicoScope 2000 a été conçu pour offrir d’excellentes performances. Ì Bande passante de 5 MHz à 200 MHz Ì Taux d’échantillonnage jusqu’à 1Géch/s en temps réel Ì Longueur d’enregistrement: 8 to 40K Ì Connecté et alimenté via USB 2.0 (480 Mbps) Ì Léger et compact, idéal pour un usage extérieur Ì Livré avec logiciel PicoScope 6 Ì Compatible avec LabVIEW, C/C++, Delphi et VB Ì Fonctionne avec Windows XP et Vista Ì La série d’oscilloscopes USB PicoScope 3000 offre des performances inégalées et est un substitut efficace aux oscilloscopes de table traditionnels. La série PicoScope 3000 offre des oscilloscopes de haute performance alimentés en USB. Ces Ì Bande passante analogique de 350 MHz Ì Résolution verticale de 8 bits Ì 4 voies Ì Jusqu’à 1Géch de mémoire tampon Ì USB 2.0 Ì Générateur de fonctions arbitraires et analyseur de spectre intégré oscilloscopes à 2 canaux ont une résolution de 8 bits et sont précis à 3%. Ceci, combiné à leur grande mémoire, un taux d’échantillonnage élevé et des bandes passantes élevées permet une utilisation dans tous les domaines de test et de mesure, de la fabrication, de la réparation, de la recherche et du développement. Instrument tout en un: Chaque modèle est un appareil complet tout en un avec oscilloscope, analyseur de spectre, générateur de signaux et générateur d’ondes arbitraires (AWG), le rendant ainsi très polyvalent et d’un bon rapport qualité-prix. Le PicoScope 2000 impressionne par son empreinte 100x135mm et s’installe parfaitement dans un ordinateur portable et sac de voyage. Possède 3 connecteurs BNC, 2 voies d’entrée dédiées et un connecteur BNC dédié au générateur de signaux et générateur d’ondes arbitraires. Ì Fonctions avancées: décodage série et test de limite de masque intégrés Ì Compatible Windows XP, Windows Vista et Windows 7 (32 et 64-bits) Contenu du kit (2 voies): Oscilloscope série PicoScope, 2 sondes, câble USB, guide de démarrage rapide et logiciel et CD référence Puissance et vitesse L’oscilloscope PicoScope 2000 prend sa puissance directement du PC, et utilise une connexion USB 2.0 (480 Mbps) permettant ainsi une réactualisation rapide de l’affichage sans compromettre la précision et les détails. Logiciel Tous les oscilloscopes PC PicoScope utilisent le logiciel Windows PicoScope 6 avec des actualisations, extensions et améliorations téléchargeables gratuitement. Ce logiciel est facile à utiliser grâce à une interface Windows et un système de contrôle familier. Les données sont facilement sauvegardées dans une variété de formats tels que CSV, PNG et BMP, et les fichiers binaires MATLAB. Drivers et exemples sont inclus pour LabVIEW, C/C++, Delphi et VB pour intégration dans des applications personnalisées. farnell.com element14.com TEST ET MESURE 25 Pico Contenu du kit: valise de transport solide, oscilloscope, 4 sondes 500 MHz x10, un support de sonde, logiciel PicoScope, guide d’installation, câble USB, cordons d’alimentation avec prise anglaise et europénne. Modèle 6402A 6402B 6403A 6403B 6404A 6404B Nbre de voies 4 Résolution verticale 8 Bits Bande Passante 250 MHz 350 MHz 500 MHz Taux d’échantillonnage temps réel 5 GEch/s (1 canal), 2.5 GEch/s (2 canaux), 1.25 GEch/s (3 ou 4 canaux) Taille Mémoire Tampon 128 MS 256 MS 256 MS 512 MS 512 MS 1 GS Impédance d’entrée 1M // 15pF, ou 50Ω 1M // 10pF, 50Ω Gammes de tension ±50mV à ±20V (jusqu’à ±5V quand l’entrée 50Ω est sélectionnée) Gammes base de temps 10 ns/div à 1000 s/div Précision base de temps 5 ppm Modes de déclenchement None, Single, Repeat, Auto, Rapid, ETS Formats des données CAN, LIN, I2C, UART/RS-232, SPI Modes d’affichage Magnitude, average, peak hold Générateurs de fonctions: DC à 20 MHz Générateurs de fonctions (Modèle A): Sinus, carré, triangle, DC Générateurs de fonctions (Modèle B): Comme modèles A plus : rampe, sin (x)/x, Gaussian, half-sine, white noise, PRBS Taille tampon AWG N/A 16 ks N/A 16 ks N/A 16 ks Taux d’échantillonage AWG N/A 200 MS/s N/A 200 MS/s N/A 200 MS/s Fréquence DC à 250 MHz DC à 350 MHz DC à 500 MHz Dimensions 255x170x40mm 280x170x40mm Connexion PC USB 2.0 (compatible USB 1.1) 2 Voies 190-202 190-102 190-062 4 Voies 190-204 190-104 Modes d’enregistrement Balayage simple, datalogger continu, Déclenchement de démarrage (toute voie) Déclenchement d’arrêt (toute voie) Mémoire 2 enregistrements à entrée multiples TrendPlot peuvent être sauvegardés en interne pour rappel ultérieur et pour analyse. Stockage direct sur clé USB par le port USB. Multimètre RSM vrai 999 points, volts, amp, ohms, température Normes de sécurité (EN61010-1) 1000V CAT III / 600V CAT II (instrument et accessoires inclus) Batterie (installée) Li-Ion BP291 Puissance de ligne Adaptateur secteur/chargeur de batterie inclus Interface 2 ports USB fournis. Ports complètement isolés pour un circuit de mesure flottant. Le port USB hôte permet de connecter toute clé USB pour le stockage des données des formes d’onde, les résultats de mesure, réglages de l’instrument et copies d’écran. Un mini USB-B est fourni pour une interconnexion sur PC à distance et pour le transfert de données sur PC 2 Voies 190-202 190-102 190-062 4 Voies 190-204 190-104 Bande passante 200MHz 100MHz 60MHz Affichage LCD LCD 153mm couleur avec rétro-éclairage Comparateur de formes d’onde Référence visuelle Longueur d’enregistrement max. 10 000 échantillons par voie (x4) in mode oscilloscope 30 000 points par entrée en mode continu ScopeRecord™ Tension flottante max. CAT III 1000V, CAT IV 600V (tension max. entre tout contact et niveau de tension de terre) Sensibilité d’entrée 2mV/div à 100V/div Capture de transitoires 8ns Gamme base temps 5ns/div à 4s/div en séquence 1-2-4 Réglage temps/division plus lent en mode continu ScopeRecord™ Modes Connect-and-View™, non asservi (Free Run), Monocoup, bord, temps, vidéo, largeur d’impulsion sélectionnable et externe (voie A seulement), cycle N Fonctions math Une fonction math sur 2 voies d’entrée: addition/soustraction/ multiplication; résultat avec échelons; mode X-Y; spectre de fréquence avec analyse FFT Réf. Prix Unitaire Fab. Bande passante Code Commande 1+ Standard PICOSCOPE 6402A 250MHz 211-5766● 2493.75 PICOSCOPE 6403A 350MHz 211-5768● 3743.75 PICOSCOPE 6404A 500MHz 211-5770● 4993.75 Avec éditeur AWG inclus PICOSCOPE 6402B 250MHz 211-5767● 3118.75 PICOSCOPE 6403B 350MHz 211-5769● 4368.75 PICOSCOPE 6404B 500MHz 211-5771● 5618.75 Prix Unitaire Réf. Fab. Bande Passante Code Commande 1+ Version 2 voies - UK Version 2 voies - Europe Version 4 voies - UK Version 4 voies - Europe FLUKE-190-204/EU 200MHz 185-8006 4340.00 FLUKE-190-104/EU 100MHz 185-8008 3490.00 Accessoires BP291 Batterie Li-Ion 185-8010 275.00 VPS410-R Sonde de tension 10:1 (Rouge) 185-8011 170.00 VPS410-B Sonde de tension 10:1 (Bleu) 185-8012 170.00 VPS410-G Sonde de tension 10:1 (Gris) 185-8013 170.00 VPS410-V Sonde de tension 10:1 (Vert) 185-8015 170.00 VPS420-R Sonde haute tension 100:1 (Rouge/ Noir) 185-8016 220.00 C290 Valise de transport robuste 185-8017 175.00 SCC290 Kit logiciel et valise de transport 185-8018 350.00 RS400 Sonde de remplacement pour VPS410 185-8019 137.00 AS400 Jeu d’extension pour sonde pour VPS410 185-8020 90.00 SW90W Logiciel ScopeMeter FlukeView 431-4566 320.00 Bande passante 40MHz Taux d’échantillonnage 25 Méch./s Sensibilité d’entrée 5 mV - 500 V/div Gamme base temps 10 ns/div à 1 min/div Entrées et digitiseurs 2 Longueur d’enregistrement max. 512 min/max points par entrée Echelle de temps 40 ns Mesures 26 automatiques TRMS 5000 points, double entrée Connexion et déclenchement Oui Déclenchement vidéo avec compteur de lignes Oui Trendplot double entrée Oui Mémoire visualisation/installation 20 Puissance de ligne Adaptateur / chargeur de pile inclus Piles NiMH 7h autonomie ScopeMeters Série 190 II Ì 4 entrées isolées indépendantes, jusqu’à 1000V Ì Echantillonnage haute vitesse: jusqu’à 2.5 Géch/sec Ì Mémoire étendue : capture de forme d’onde avec 10 000 échantillons par voie permettant de zoomer sur les détails Oscilloscopes Scopemeter série 124 Ì Certifiés CAT III 1 000 V / CAT IV 600 V pour une plus grande sécurité dans les environnements haute tension Ì Autonomie standard de 7h grâce aux nouvelles batteries Li-ion Ì Ports USB isolés pour périphériques mémoire et connectivité PC Ì Remplacement rapide de la batterie grâce à sa trappe d’accès Ì Compact et seulement 2.2 kg Ì Dispositif de sécurité qui permet de bloquer et de verrouiller l’oscilloscope lorsqu’il est laissé sans surveillance Le ScopeMeter 124 compact est une solution robuste pour la résolution de problèmes industriels et pour les applications d’installation. C’est un outil de test complètement intégré avec un oscilloscope, multimètre et enregistreur ’sans papier’ dans un seul instrument facile à utiliser et d’un excellent rapport qualité/prix. Idéal pour trouver des solutions à des problèmes rapidement pour les machines, l’instrumentation, les systèmes de contrôle et puissance. Accessoires inclus: Chargeur de batteries/adaptateur secteur, batterie Li-Ion, sonde de test 10:1 (1 rouge, 1 bleu, 1 verte) comprenant des crochets de suspension, mini-pinces crocodiles, sonde de mise à la terre, embouts de protection des sondes, un logiciel de démonstration FlukeView, câble d’interface USB pour une connexion PC et manuel d’utilisation sur CD. Ì Oscilloscope numérique 40 MHz double entrée Ì 2 multimètres numériques TRMS 5,000 points Ì Un enregistreur TrendPlot double entrée Ì La fonction de déclenchement Connect-and-View permet de visualiser n’importe quel signal Ì Cordons de test blindés pour oscilloscope, pour des mesures de résistance et continuité Ì Livré avec sonde de tension 10:1 pour des mesures haute fréquence Ì Autonomie de la batterie jusqu’à 7h Ì Certifié 600 V CAT III Ì Interface optique RS-232 isolée Ì Livré avec valise robuste compacte Version II des oscilloscopes portables de la série 190C avec 4 ScopeMeter 124 voies isolées indépendantes, un indice de protection IP51 et répondant aux normes CAT III 1000 V / CAT IV 600 V. Ils sont disponibles en version 200MHz ou 100MHz et sont idéals pour les ingénieurs sur site et les techniciens qui nécessitent un oscilloscope 4 voies pour des applications électroniques industrielles dans des environnements difficiles. farnell.com element14.com 26 TEST ET MESURE Fluke Caractéristiques 175 177 179 Mesures TRMS AC AC AC Affichage, 4 actualisations par seconde 6000 6000 6000 Affichage avec rétroéclairage Ì Ì Bargraphe analogique, actualisations 40 fois par seconde 33 segments 33 segments 33 segments Gamme Automatique et Manuelle Ì Ì Ì Gel de l’affichage Ì Ì Ì Maximum Résolution Max. Précision Tension DC 600V 1mV ±(0.5%+2) Tension AC 600V 1mV ±(1.0%+3) Courant DC 10A 1mA ±(1.0%+3) Courant AC 10A 10mA ±(1.5%+3) Résistance 40MΩ 0.1Ω ±(0.9%+1) Capacité 10mF 1nF ±(1.9%+2) Fréquence 50kHz 0.01Hz ±(0.1%+2) Contrôle total des couts, réduction de la gestion administrative, visibilité sur vos dépenses, flexibilité et personnalisation selon les besoins de votre société. farnell.com/ibuy Réf. Prix Unitaire Description Fab. Code Commande 1+ Multimètre 117 127-4602 218.00 Kit combiné 117/322 KIT 127-4603 304.00 Accessoires Sacoche de transport C50 424-006 35.00 Sangle de suspension magnétique TPAK 302-9578 33.00 Cordons de test TL223-1 189-5826 61.00 Solution gratuite d’achats intelligents en ligne Code Prix Unitaire Réf. Fab. Commande 1+ Version anglaise FLUKE 124 438-3450 1566.00 Version Européenne FLUKE 124 444-8662 1566.00 Multimètres numériques Multimètre numérique avec tension sans contact Réf. Fab. Code Commande 1+ Accessoires SCC120E Kit 908-149 414.00 Caractéristiques 114 115 AutoVolt: sélection automatique c.a./c.c. Ì LoZ: impédance d’entrée faible en prévention des tensions ’fantôme’ Ì Mesures de tension AC/DC Ì Ì Mesures de courant AC/DC Ì Résistance / Continuité Ì Ì Fréquence et Capacité Ì Test de diodes Ì l=84 H=167 P=46mm. Poids 550g Série 170 Maximum Résolution Max. Précision 114 115 Tension DC 600V 1mV ±(0.5%+2) ±(0.5%+2) Tension AC 600V 1mV ±(1.0%+3) ±(1.0%+3) Courant DC 10A 1mA ±(1.0%+3) Courant AC 10A 10mA ±(1.5%+3) Résistance 40MΩ 0.1Ω ±(0.9%+1) ±(0.9%+1) Capacité 10mF 1nF ±(1.9%+2) Fréquence 50kHz 0.01Hz ±(0.1%+2) Les 3 modèles de la nouvelle série 170 sont la nouvelle référence pour les multimètres à usage général. Les 3 modèles, 175, 177, 179 deviennent le standard en combinant des mesures précises, une facilité d’utilisation, une sécurité et une fiabilité. Tous les modèles offrent des mesures de tension et de courant AC TRMS, une résolution 6000 points, un enregistement min-max-moyenne mais également des gammes de fréquence et capacité. Avec toutes caractéristiques utiles, la série 170 reste facile à utiliser. La valise ergonomique avec étui intégré protège l’équipement dans des environnements difficiles. Il n’est pas nécessaire d’ouvrir la valise pour changer les piles grâce à une ouverture facile du compartiment piles. Conforme à EN61010-1 CAT IV 600V/CAT 111 1000V, la série Fluke 170 est livrée avec le cordon de test TL75, batterie 9V installée, le manuel d’utilisation et l’unique Garantie à Vie de Fluke. Réf. Prix Unitaire Description Fab. Code Commande 1+ Multimètre RMS vrai 114 127-4598 157.00 Multimètre RMS vrai 115 127-4599 184.00 Accessoires Etui de transport C50 424-006 35.00 Kit ToolPak (accroche magnétique) TPAK 302-9578 33.00 Cordons de test TL223-1 189-5826 61.00 Idéal pour des applications électriques. Multimètre compact à valeurs efficaces vraies pour applications exigeantes telles que commerciales, dans les hôpitaux et écoles. Il comprend une fonction de détection de tension sans contact VoltAlert™ pour une exécution plus rapide. Multimètres numériques TRMS Ì Indicateur de la faible autonomie de la batterie Ì Test de diodes Ì Sacoche compacte avec étui détachable Comprend les accessoires suivants: Chargeur de batterie/adaptateur de tension de ligne, jeu de sondes de tensione, cordons de test, manuel d’instructions, batterie NiMH rechargeable (installée), pinces crocodiles industriels et sondes de test 2-mm Contenu du kit SCC120 (Optionel): Valise de transport solide, interface RS-232 optique isolée et logiciel FlukeView® pour Windows®. l=84 H=167 P=46mm. Poids 550g Ì CAT III 600 V Ì Autonomie de la pile alcaline 9V (fournie) de 400h en fonctionnement Ì Livré avec manuel d’utilisation et cordons de test TL75 Multimètre électrique 114, idéal pour les essais de fonctionnement. Il comprend toutes les fonctions de base permettant d’éviter les mesures erronées causées par une tension "fantôme". Multimètre sur site 115, solution idéale pour une large variété d’applications de tests électriques et électroniques. Ì Mesures AC en RMS vrai Ì Grand affichage 6000 points avec rétroéclairage à LED blanc Ì Bargraphe analogique Ì VoltAlert™ pour la détection de tension sans contact Ì Mesure de courant 20A (30 seconds de tension temporaire; 10A de tension continue) Ì Mesures de résistance, continuité, fréquence et capacité Ì LoZ: faible impédance d’entrée permettant d’éviter les mesures erronées causées par une tension "fantôme" Ì AutoVolt: sélection automatique de tension ac/dc Ì Gamme Automatique/Manuelle Ì Fonctions MIN/MAX/AVG Ì Touche maintien H=183, l=90, P=43 Ì Indicateur de la faible autonomie de la batterie Ì Sacoche compacte avec étui détachable Ì CAT III 600 V Ì Autonomie de la pile alcaline 9V (fournie) de 400h en fonctionnement Ì Livrés avec manuel d’utilisation et cordons de test TL75 117 Ì Mesures AC en RMS vrai Ì Grand affichage 6000 points avec rétroéclairage à LED blanc Ì Bargraphe analogique Ì Gamme Automatique/Manuelle Ì Fonctions MIN/MAX/AVG Ì Touche maintien Le Kit combiné pour applications électriques (117/322) regroupe le nouveau multimètre Fluke 117 DMM et une pince multimètre Fluke 322 pour un dépannage productif et efficace en une solution intégrale unique. Le kit combiné comprend: Ì Multimètre numérique Fluke 117 à valeurs efficaces vraies avec détection de tension sans contact Ì Pince multimètre compacte Fluke 322 (600V ac/dc, 400A ac, 400Ω Ì Jeu de cordons de mesure Hard Point (pointes dures) Ì Sangle de suspension magnétique ToolPak Ì Sacoche de transport C115 haut de gamme avec bandoulière 114 et 115 farnell.com element14.com TEST ET MESURE 27 Fluke Continuité / Diode Ì Ì Capacité: 10,000 uF Ì Ì Fréquence 200kHz Ì Ì Min/Max/Moy, Gel, Gamme Auto et Manuel Ì Ì Crête Min/Max Ì Température: -40 °C à +1090 °C (Affichage °C ou °F) Ì Filtre passe-bas pour un travail sur des drives à vitesse variable Ì Normes de sécurité EN61010-031, CAT III 1000 V CAT IV 600 V Autonomie de la pile 800h Caractéristiques techniques: Fluke 27 II Fluke 28 II Homologations: CSA, C-US, C-Tick, TUV Réponse moyenne RMS vrai Points 6000 6000 / 19,999 Tension: 1000 V AC/DC Ì Ì Courant: 10 A AC/DC Ì Ì Résistance: 50 MΩ Ì Ì Caractéristiques 175 177 179 Mode enregistrement Min-Max-Moy avec alerte min/max Ì Ì Ì Lectures température (sonde thermocouple comprise) Ì Le mode lissage permet de filtrer l’évolution rapide des entrées Ì Ì Ì Test de continuité et de diode sonore Ì Ì Ì Alerte cordon de test si branché incorrectement Ì Ì Ì Alerte de Tension non sécurisée pour tension>30V Ì Ì Ì Indication du statut de la batterie Ì Ì Ì Valise ergonomique avec étui intégré Ì Ì Ì Changement facile de la batterie sans ouvrir le compartiment principal Ì Ì Ì Mode veille sélectionnable Ì Ì Ì Garantie Garantie à Vie Garantie à Vie Garantie à Vie EN 61010-1 sur toutes les entrées CAT III 1000V CAT III 1000V CAT III 1000V CAT IV 600V CAT IV 600V CAT IV 600V Réf. Fab. Code Commande Prix Unitaire FLUKE-179/EDA2/EUR 189-5812 284.00 Gamme 83V 87V Fonctions Maximum Résolution max.Précision Résolution max.Précision Tension CC 1000V 0.1mV ±(0.1%+1) 10μV ±(0.05%+1) Tension CA 1000V 0.1mV ±(0.5%+2) 10μV ±(0.7%+2) Courant CC 10A 0.1μV ±(0.4%+2) 0.01μ ±(0.2%+2) Courant CA 10A 0.1μV ±(1.2%+2) 0.01μ ±(1.0%+2) Résistance 50MΩ 0.1Ω ±(0.4%+1) 0.01Ω ±(0.2%+1) Conductance 60nS 0.01nS ±(1.0%+10) 0.001nS ±(1%+10) Capacité 9999μF 0.01nF ±(1.0%+2) 0.01nF ±(1%+2) Fréquence >200kHz 0.01Hz ±(0.005%+1)0.01Hz ±(0.005%+1) Température -200 à 1090°C 0.1°C 1.0% Sonde de température 80BK-40 à 260°C 2.2°C ou 2% Les meilleures précisions pour chaque fonciton Autonomie de la pile Alkaline, 200h typipque Poids 420g Garantie à Vie Comprend: Manuel d’instruction, piles AA, cordons de test, pinces crocodiles AC72, sonde de température 80BK-A, CD-ROM (manuel d’utilisation en 16 langues, notes techniques et images d’application) Réf. Code Prix Unitaire Fab. Commande 1+ FLUKE-83-5/EUR 189-5830 386.00 FLUKE-87-5/EUR 189-5831 472.00 FLUKE-87-5/E2K/EURKit 189-5811 535.00 Etui H80M 800-2223 35.00 Prix Unitaire Réf. Fab. Code Commande 1+ FLUKE 175EGFID 355-8678 189.00 FLUKE 177 355-8680 224.00 FLUKE 179 355-8691 249.00 Combo Kit électronique - Fluke 179/EDA2/EUR Ì Mesure jusqu’à 1 000 V AC et DC Ì Mesure jusqu’à 10 A (20 A pendant 30 secondes) Ì Gamme de capacité de 10 000 μF Ì Fréquence de 200 kHz Ì Bande passante étendue : 15 Hz à 20 kHz (28 II), 40 Hz à 30 kHz (27 II) Ì Thermomètre intégré permettant d’effectuer des relevés de température en toute simplicité, sans instrument supplémentaire (28 II) Ì Mesures de résistance, de continuité et de diodes Ì Enregistrement des valeurs moyennes et min/max pour capturer automatiquement les variations Ì Crête min-max (28 II) Ì Fonction unique de mesure précise de la fréquence et de la tension sur les variateurs de vitesse et autres équipements "bruités" (28 II) Ì Conforme aux exigences de sécurité EN61010-031 Multimètre robuste 1000 V CAT III avec rétroéclairage et kit de sonde de test Multimètres numériques Réf. Fab. Code Commande Prix Unitaire FLUKE-27II/EUR 189-5818 392.00 FLUKE-28II/EUR 189-5819 424.00 industrielles dans un étui souple et léger pour le multimètre et ses accessoires. Conforme aux exigences de sécurité EN 61010-031. Série 80-V Le kit 179/EDA2/EUR comprend: Ì Le multimètre Fluke 179 RMS vrai Ì L’étui souple Fluke C35 Ì Un jeu de sondes de test TL910 Ì Un jeu de cordon de mesure en silicone TL224 SureGrip™ Ì Un jeu de pinces à crochet AC280 SureGrip™ Ì Une sonde de température intégrée Fluke 80BK Ì Accessoire ToolPak™ pour positionner et maintenir le multimètre sur des surfaces en acier La nouvelle série Fluke 80-V offre des fonctions améliorées de mesure et de dépannage, mais également une résolution et une précision supérieures pour mieux résoudre les problèmes des variateurs de vitesse, des automates de production, des systèmes d’alimentation électriques et de l’équipement électromécanique. Outre les fonctionnalités de la série 80 standard, la série 80-V offre une plus grande capacité de résolution, ainsi qu’un niveau accru de sécurité, de confort et de protection contre les impacts. Multimètres Fluke 27 II et 28 II Ì Conception « classique » avec nouvel étui amovible, cordon de mesure et compartiment pour sondes Ì Nouveau mode veille sélectionnable pour une plus grande autonomie des piles Ì Remplacement facile des piles et des fusibles sans ouvrir complètement le boîtier Ì Conforme aux exigences de sécurité EN61010-031 Caractéristiques supplémentaires du 87V: Ì Filtre sélectionnable pour des mesures de tension et de fréquence précises au niveau des moteur Ì Thermomètre intégré Ì Capture de crête pour l’enregistrement de transitoires à une vitesse de 250μs Le Kit combiné pour applications électriques industrielles Fluke 87V/E comprend: Ì Jeu de cordons de mesure silicone SureGrip™ 0.5m TL224 Ì Jeu de sondes de test Slim Reach SureGrip™ TP238 (pointes isolées avec partie de touche 4 mm) Ì Jeu de pinces crocodile SureGrip™ AC220 Ì Sangle de suspension avec aimant Ì Sonde de température 80BK Ì Mallette C800 Etui H80M Ì Etui jaune pour tous les multimètres numériques de la série 80 (les nouveaux comme les anciens) Ì Aimant de suspension Ì Crochet et sangles à velcro Les nouveaux multimètres numériques Fluke Ì Pince d’accrochage universelle 27 II et 28 II établissent une nouvelle norme en termes de fonctionnement dans des conditions extrêmes en offrant les fonctionnalités et la précision nécessaires au dépannage de la plupart des problèmes électriques. Ces deux multimètres sont certifiés IP 67 (résistance à l’eau et à la poussière) et sont homologués MSHA (demande en cours). Ils offrent une gamme de température de fonctionnement étendue, allant de -15 °C à +55 °C (-40 °C pour 20 minutes maximum) avec 95 % d’humidité et ont été conçus et testés pour supporter une chute de 3 m. Ì Courant et tension TRMS pour des mesures précises sur des signaux non-linéaires Ì Afficheur de grande taille muni d’un bargraphe analogique et d’un rétro-éclairage blanc lumineux à 2 niveaux Ì Sélection automatique et manuelle de gamme pour une flexibilité optimale Ì Mode de mesure relative pour soustraire la résistance des cordons pour les mesures de faibles résistances Ì Enregistrement Min/Max/Moyenne avec alerte Min/Max pour effectuer des captures automatiques de variations Ì Touch Hold pour obtenir des mesures stables Ì Mesure de diodes ,de continuité avec avertisseur sonore et rapport cyclique Ì Protection sonore des entrées farnell.com element14.com 28 TEST ET MESURE Fluke Gamme de mesure Tension AC 2V, 20V, 200V, 1000V Tension DC 200mV, 2V, 20V, 200V, 1000V Courant AC 200μA à 10A Courant DC 200μA à 10A Résistance 200ohm, 2kohm, 20kohm, 200kohm, 2Mohm, 20Mohm Capacitance 20nF, 200nF, 2μF, 20μF, 200μF, 2mF, 20mF Fréquence 20Hz à 200Hz Température -40°C à +1000°C Puissance – Général Afficheur 19999 Taille de LCD 73 x 50mm Dimensions 200 x 93 x 40mm Poids 384g Kit de test TLK287: conçu pour les ingénieurs concepteurs en électronique, les techniciens de test et de maintenance. Le kit comprend: pointes de touche montées sur ressorts sertis pour un contact maximum avec les points de test des circuits SMD, Cordons à micro-pince grippe-fil permettant un contrôle fin des SMD, mini-pinces crocodiles, grippe-fils et sondes convenant pour pratiquement tous les besoins électroniques. Prix Unitaire Réf. Fab. Code Commande 1+ FLUKE-28 IIEX 211-4748 1089.00 Gamme sans fil 10m Dimensions (H x l x L) cm 5.3 x 9.3 x 19.3 Niveau de sécurité CAT III 1000 V CAT IV 600 V Poids 604 g Kit de test TLK289: conçu pour les applications industrielles. Le kit comprend: Pinces crocodiles SureGrip™, grippe-fils, pinces à crochet et sondes de test industrielles offrant un contact fiable avec les différents points de test, sangle avec aimant pour suspendre le multimètre à une surface métallique, adaptateur avec thermocouple de type K pour mesurer directement la température à l’aide des fonctions de thermométrie du multimètre, sacoche de protection. Multimètre numérique Comprend: Manuel d’instruction, piles AA, cordons de test, pinces crocodiles AC72, sonde de température 80BK-A, CD-ROM (manuel d’utilisation, notes techniques et images d’application) Besoin d’un conseil technique Dialoguez en temps réel avec l’un de nos conseillers techniques sur farnell.com Il existe désormais un multimètre numérique à sécurité intrinsèque que vous pouvez Ì Courant et tension AC TRMS pour la mesure précise des signaux non linéaires Ì Mesure jusqu’à 1 000 V AC et DC Ì Mesure jusqu’à 10 A (20 A pendant 30 secondes) Ì Gamme de capacité de 10 000 μF Ì Fréquence allant jusqu’à 50 kHz Ì Thermomètre intégré permettant d’effectuer des relevés de température en toute simplicité, sans instrument supplémentaire Ì Mesures de résistance, de continuité et de diodes utiliser en zones IIC (gaz) 1 et 2 et en zones IIIC (poussière) 21 et 22. Que vous travailliez dans l’industrie pétrolière, chimique ou pharmaceutique, profitez de tout ce dont vous avez besoin pour vos tests et dépannages avec le multimètre numérique à sécurité intrinsèque (IS) le plus robuste jamais conçu par Fluke. Le Fluke 28 II Ex est également étanche, résistant à la poussière et aux chutes. Vous aurez toutes les cartes en main pour faire face à toutes les situations dans toutes les conditions, sans sacrifier la conformité ni la performance de vos mesures. Réf. Fab. Code Commande Prix Unitaire FLUKE 233 177-2092 275.00 Fonctions Gamme Résolution Précision VDC 50mV à 1000V 1μV ± 0,025% + 5 chiffres VAC 50mV à 1000V 1μV ± (0.4%+40 chiffres) ADC 10A 0.01μA ± (0.15%+2 chiffres) AAC 10A 0.01μA ± (0.7%+5 chiffres) Résistance 500ohm à 500Mohm 0.01Ω ± (0.05%+2 chiffres) Conductivité 50nS 0.01nS ±(1.0%+10 chiffres) Capacité 1nF à 100mF 0.001nF ± (1.0%+5 chiffres) Fréquence 99.999Hz à 999.99kHz 0.01Hz ± (0.005%+1 chiffre) Température -200°C à 1350°C°C 0.1°C (1% + 1°C) Précisions sont les meilleures précisions pour chaque fonction. Livré avec cordons de test siliconés TL71, porte-sondes, 6 piles AA (installées) et manuel Contenu du kit: Multimètre, pince crocodile, cordons de test, sonde de température, Manuel d’utilisation et de démarrage sur CD Ì Mode 4-1/2 digits pour des mesures précises (20 000 points) Ì Courant et tension AC TRMS pour mesurer avec précision des signaux non linéaires Ì Mesure jusqu’à 1 000 V et 10 A AC et DC (remarque : les zones ATEX nécessitent des mesures réduites) Réf. Prix Unitaire Description Fab. Code Commande 1+ Multimètre FLUKE-289/EUR 189-5816● 567.00 Multimètre FLUKE-289/FVF/EUR 189-5817● 652.00 Kit combo FlukeView FLUKE-289/FVF/EUR 189-5817● 652.00 Kit de test TLK287 150-3745 147.00 Kit de test TLK289 150-3746 147.00 Etui de protection FLUKE C280 177-2099 58.00 Multimètre à afficheur détachable Fluke 233 Le première multimètre numérique Fluke avec un afficheur détachable est désormais disponible. Le multimètre numérique 233 avec afficheur détachable sans fil est idéal pour la maintenance pour des sites de mesure inhabituels. Le nouveau Fluke 233 peut être utilisé pour les mesures les plus courantes et particulièrement dans des endroits exigus, difficiles d’accès, sur des machines ou panneaux physiquement séparés d’un commutateur de fin de course ou de sectionneur, ou dans des zones interdites au public telles les salles propres ou les environnements dangereux. Ì Filtre passe-bas permettant d’effectuer des mesures précises de la fréquence et de la tension sur les variateurs de vitesse Ì Fréquence jusqu’à 200 kHz et pourcentage de rapport cyclique pour vous aider à diagnostiquer les variateurs de vitesse et les convertisseurs d’alimentation Ì Mesure de résistance, de continuité et de diodes Ì Gamme de capacité de 10 000 μF Ì Mesures des grandes résistances ou des contrôles de fuite à l’aide de la conductance Ì Modes MIN/MAX/MOY et capture de crêtes pour enregistrer automatiquement les transitoires et les variations Ì Mode de mesure relative pour soustraire l’interférence des cordons de mesure des mesures de résistance Ì Sélection de gamme automatique et manuelle pour une flexibilité maximale Ì Alarme Input Alert avec bip sonore et message clignotant « Lead » (Cordon) lorsque les cordons ne sont pas reliés aux entrées adéquates Multimètres enregistreurs numériques Fluke 28 II Ex Fluke 287 et Fluke 289 H=254 l=194 P=76mm. Poids 1kg Ì IP54 Ì Sorties protégées conformément à la norme EN61010-1 CAT III 1000V / CAT IV 600V Ì UL, CSA et TUV Ì Conforme aux exigences de sécurité EN61010-031 Caractéristiques supplémentaires du Fluke 289: Ì Filtre passe-bas pour des mesures précises de la fréquence et de la tension sur les variateurs de vitesse et autres équipements « bruités » Ì Fonction de faible impédance d’entrée pour éviter les mesures erronées causées par une tension « fantôme » Ì Gamme de 50Ω pour mesurer et comparer les différences de résistance des enroulements de moteur, ou effectuer des mesures de faibles résistances ou d’autres résistances de contact Ì Affichage numérique de grande dimension à 50 000 points, à une résolution de ¼ VGA avec rétroéclairage blanc Ì Fonction d’enregistrement avec TrendCapture pour une révision facile des données enregistrées Ì Multiples mesures par affichage Ì Mesures en RMS vrai (AC et AC+DC) Ì Touches contextuelles et boutons déroulants pour une navigation aisée Ì Interface USB optique de communication, permet un téléchargement facile sur PC Ì Mémoire interne pour un enregistrement autonome sur plus de 200 heures Ì Mesure de courant jusquà 20A (30s), 10A en continue Ì Capture de crête pour l’enregistrement jusqu’à 250μs Ì Min/Max/Moy avec horodatage permettant d’enregistrer les fluctuations du signal Kit combo FlukeView 289FVF: comprend le multimètre Fluke 289, les accessoires cidessus et en plus: pinces crocodiles, thermocouple 80BK, logiciel de formes FlukeView, câble de données et valise de transport. Multimètres enregistreurs industriels hautes performances. Enregistrement et affichage graphique des données sur grand écran. farnell.com element14.com TEST ET MESURE 29 Fluke Fluke 434 II Fluke 435 II Fluke 437 II conforme aux normes IEC 61000-4-30 Classe S IEC 61000-4-30 Classe A IEC 61000-4-30 Classe A Volt Amp Hz ✓ ✓ ✓ Dips and swells ✓ ✓ ✓ Harmoniques ✓ ✓ ✓ Puissance et énergie ✓ ✓ ✓ Calculateur de pertes d’énergie ✓ ✓ ✓ Non équilibre ✓ ✓ ✓ Contrôle ✓ ✓ ✓ Inrush ✓ ✓ ✓ Capture de forme d’onde ✓ ✓ Flicker ✓ ✓ Transients ✓ ✓ Signal principal ✓ ✓ Onde de puissance ✓ ✓ Rendement inversseur de puissance ✓ ✓ ✓ 400Hz ✓ Caisse souple C1740 ✓ ✓ Caisse C437-II Hard avec roulettes ✓ Carte SD (32Go Max.) 8Go 8Go 8Go Prix Unitaire Réf. Fab. Description Code Commande 1+ Accessoires BC430 Adaptateur secteur/chargeur 921-0016 118.00 OC4USB Interface USB 921-0032 142.00 WC100 Pinces de couleur pour câbles 921-0059 32.00 TLS430 Jeu de cordons de mesure 921-0067 96.00 Résistance 60000 Ω 0.1 Ω 1% ± 5 digits Fréquence 500 Hz 0.1 Hz 0.5% ± 5 digits TRMS X Continuité X Gel X Rétroéclairage X Min/Max X Afflux X Filtre passe-bas X Afficheur sans fil amovible X Sonde de courant flexible - 18 in iFlex Livrée Sonde de courant flexible - 10 in iFlex Accessoire Capacité du câble 750 MCM ou 2-500 MCM Normes de sécurité CAT III 1000V, CAT IV 600V Fluke 381 Gamme Résolution Précision Courant AC avec mâchoire 1000 A 0.1 A 2% ± 5 digits Courant AC avec iFlex 2500 A 0.1 A 3% ± 5 digits Courant DC 1000 A 0.1 A 2% ± 5 digits Tension AC 1000 V 0.1 V 1.5% ± 5 digits Tension DC 1000 V 0.1 V 1% ± 5 digits Modèle FLUKE-321/E FLUKE-322/E Courant AC Gamme 0 à 400A 0 à 400A Précision 1.8% ± 5 digits(50/60Hz) 1.8% ± 5 digits (50/60Hz) Tension AC Gamme 0V à 600V 0V à 600V Précision 1.2% ± 5 chiffres 1.2% ± 5 chiffres Tension DC Gamme - 0V à 600V Précision - 1% ± 5 chiffres Résistance Gamme 0ohm à 400ohm 0ohm à 400ohm Précision 1% ± 5 chiffres 1% ± 5 chiffres Continuité ≤30Ω ≤30Ω Gel de l’affichage Oui Oui Dimensions 184 x 62 x 35mm Poids 227g Réf. Prix Unitaire Fab. Code Commande 1+ FLUKE 381 182-7174 514.00 EnergiMètre triphasé Température de fonctionnement -10°C à +50°C Norme de sécurité EN 61010-031 Piles 2 x AAA carbon zinc Cet outil de dépannage triphasé complet Pince multimètre à affichage distant TRMS AC/ DC Fluke 381 avec iFlex est conçu pour mesurer la quasi-totalité des paramètres d’un système de distribution électrique : tension, courant, fréquence, puissance, consommation électrique (énergie), déséquilibre et scintillement, harmoniques et inter- Prix Unitaire Réf. Fab. Code Commande 1+ FLUKE-321/E 189-5821 131.00 FLUKE-322/E 189-5822 144.00 Pinces de courant série Fluke 320 harmoniques. Ils capturent également des événements comme les bosses et les creux de tension, les transitoires, les interruptions et les variations rapides de tension Le nouveau modèle Fluke 381 Ì Mesure de résistance jusqu’à 400Ω Ì Continuité pour un contrôle rapide des courts-circuits Ì Indication automatique de charge insuffisante de la pile Ì Fonction de maintien de l’affichage Ì Garantie fabricant 2 ans accomplit tout ce que vous pourriez attendre d’une pince multimètre, et vous offre encore plus de flexibilité grâce à sa fonction d’affichage amovible. Désormais, un seul et même technicien peut se charger d’une tâche qui nécessitait auparavant l’intervention de deux personnes. Placez la pince multimètre Fluke 381 sur un conducteur, retirez l’écran et traversez la pièce pour activer des commandes ou ôter l’équipement de protection, tout en étudiant les relevés en temps réel. La nouvelle sonde de courant souple iFlex (incluse) élargit la gamme de mesure jusqu’à 2 500 A AC et offre une flexibilité d’affichage accrue, la capacité de mesurer les conducteurs encombrants et un meilleur accès pour le câble. Ì AutoTrend: ne perdez pas votre temps à configurer des graphiques de tendance supplémentaires car chaque mesure est automatiquement enregistrée. Vous analysez les tendances à l’aide des fonctions zoom et curseur, tandis que l’enregistrement se poursuit en arrière-plan. Ì System-Monitor: cette fonction donne instantanément un aperçu de la qualité du système d’alimentation. Cette fonction vérifie également la conformité du système aux limites spécifiées par la norme EN50160 ou par l’utilisateur Ì Quatre voies: vous pouvez mesurer simultanément la tension et le courant des trois phases et du neutre. Ì Affichage automatique des transitoires: vous capturez automatiquement jusqu’à 40 bosses, creux, interruptions ou transitoires. Ì Ces instruments sont conformes à la norme de sécurité 600 V CAT IV, 1 000 V CAT III relative aux mesures à l’origine des installations électriques. Ì Robuste et maniable, ils offre une autonomie de plus de 7 heures avec les batteries NiMH rechargeables (fournies). Ì L’interface à base de menus facilite également son utilisation Ì Doté de possibilités d’analyse étendues, il permet d’utiliser les fonctions zoom et curseur « à chaud », pendant la prise de mesures, ou bien « à froid » sur des données enregistrées. Les mesures enregistrées peuvent également être transférées sur un PC doté du logiciel FlukeView fourni. Ì Le kit comprend tout le matériel nécessaire pour une bonne mise en route : 4 pinces de courant, 5 cordons de mesure de tension (avec pinces), un adaptateur secteur/ chargeur et une mallette de transport. Ì Il est conforme aux normes de mesure IEC 61000-4-30. Ì Garantie 3 ans. Ì Pour plus d’informations techniques, merci de consulter la fiche technique sur www.farnell.com Ì Economiques, combinent une structure compacte et un puissant jeu de fonctions: nouvelle taille réduite pour s’adapter facilement aux espaces exigus Ì Mesures précises avec précision de base de 1,8% Ì Mesures de courant AC jusqu’à 400A avec une résolution de 0.1A ou 100mA Ì Gamme de courant de 400A avec une résolution de 0.01A ou 10mA (Fluke 322 uniquement) Ì Mesures de tension AC jusqu’à 600V avec une résolution de 0.1V jusqu’à 400V Ì Mesures de tension DC jusqu’à 600V avec une résolution de 0.1V jusqu’à 400V (Fluke 322 uniquement) Caractéristiques Ì Technologie sans fil permettant un affichage jusqu’à 9m de distance du point de mesure - flexibilité additionnelle sans interférence avec précision de mesure Ì Sonde de courant flexible, iFlex, idéale pour étendre la gamme de mesure AC jusqu’à 2500A tout en offrant une meilleure flexibilité d’affichage, possibilité de mesure des conducteurs de taille peu communes et un accès filaire amélioré Ì CAT IV 600V, CAT III 1000 V Ì Filtre passe-bas intégré et traitement de signal à la pointe de la technologie, idéale pour une utilisation dans les environnements électriques bruyants tout en fournissant une lecture stable Ì Technologie de mesure d’afflux brevetée pour filtrer le bruit et capturer le courant de démarrage du moteur tel que la protection de circuit le voit Ì Conception ergonomique, peut être utilisée même avec le port d’équipement de protection individuelle Ì Affichage magnétique détachable, peut être installé là où il est plus facilement vu Ì Arrêt automatique du transmetteur radio lorsque l’affichage est connecté à l’appareil même Ì Large affichage avec rétro-éclairage, lecture facile et affiche automatique de la gamme de mesure correcte - aucune nécessité de changer la position du commutateur lors de la prise d’une mesure Ì Garantie fabricant 3 ans Ì Livré avec valise de transport souple Ì Contenu: Analyseur de qualité de l’alimentation et de l’énergie, jeu de cordons de test, sondes de courant Flexi, batterie, alimentation secteur avec adaptateurs internationaux, câble USB, CD PowerLog et caisse Fluke 430 séries II farnell.com element14.com 30 TEST ET MESURE Fluke Contenu du kit: caméra infrarouge avec lentille infrarouge standard, alimentation AC et chargeur de batterie universel , 2 batteries au lithium-ion, carte mémoire SD, lecteur de carte mémoire multi-format USB, logiciel SmartView, mallete de transport rigide, sac de transport souple, dragonne ajustable, manuel utilisateurs imprimé et carte de garantie. Réf. Prix Unitaire Fab. Code Commande 1+ FLK-TI100 9HZ 209-4466 2495.00 FLK-TI110 9HZ 209-4467 3995.00 FLK-TI125 9HZ 209-4468 4995.00 Accessoires Sun Visor 209-4469 78.00 Tripod Mounting 209-4470 99.00 Rechargeable Battery 209-4471 129.00 Prix Unitaire Description Code Commande 1+ Caméra infrarouge Ti29 190-3547 7495.00 Caméra infrarouge Ti27 190-3549 6495.00 Accessoires Lentilles infrarouges Telephoto 190-3551 1743.75 Lentilles infrarouges angle large 190-3552 1743.75 Code Prix Unitaire Réf. Fab. Commande 1+ FLUKE TI9 170-0079 1995.00 Caméra infrarouge industrielle Caméra infrarouge industrielle 62 Max 62 Max+ Gamme de température -30°C à 500°C -30°C to 650°C Précision ±1.5°C ou derating de ±1.5% ±1.0°C ou derating de ±1.0% Temps de réponse (95%) <500ms <300ms Résolution optique 10:1 12:1 Résolution d’affichage 0.1°C Puissance Piles AA Durée de vie Batterie 10 heures 8 heures Dimensions 175x85x75mm Poids 255g Température d’utilisation 0°C à 50°C Indice IP IP54 Caméra infrarouge, Ti9 Accessoires inclus: Ì Logiciel SmartView™ Ì Carte mémoire SD 2Go Ì Lecteur de cartes SD (USB) pour le transfert des images vers l’ordinateur Ì Mallette de transport renforcée et sacoche souple Ì Sangle Ì Batterie rechargeable interne Ì Alimentation/chargeur de batterie AC (adaptateur secteur compris) Ì Manuel utilisateur Conçue pour des environnements industriels et commerciaux, la Ti32 est un outil que vous pouvez utiliser en toutes circonstances, du dépannage de défauts réels à la détection de pannes potentielles pendant le fonctionnement normal et la maintenance. Avec sa qualité d’image supérieure, ses objectifs en option, ses batteries rechargeables sur le terrain et son interface utilisateur intuitive, la Ti32 est idéale pour les ingénieurs de terrain très occupés qui sont toujours en déplacement. La plus grande avancée technologique en thermographie est peut-être la manière dont Fluke a simplifié à l’extrême la capture d’images et l’analyse de données, désormais possibles en un clin d’oeil. D’une simple pression du pouce, vous pouvez passer d’une mise au point manuelle SmartFocus à une seule main à une incrustation d’image et même ajouter des commentaires vocaux. Les caméras Fluke Ti27 et Ti29 sont les seule à proposer la fusion d’images des spectres IR grâce à la technologie brevetée IR-Fusion® pour un alignement précis des images dans les spectres IR et visible afin de mieux diagnostiquer les problèmes. Prix Unitaire Réf. Fab. Type Code Commande 1+ FLUKE-62 MAX Single Laser 211-8264 99.00 FLUKE-62 MAX + Dual Laser 211-8265 119.00 Thermomètres infrarouge La caméra infraouge Ti9 de Fluke délivre une image complète de points chauds qui indiquent souvent une panne imminente des équipements. Ì Fournit des images nettes et limpides pour localiser rapidement les problèmes Ì Capteur 320 x 240, offre des images nettes et limpides qui permettent de localiser rapidement les problèmes Ì Sensibilité thermique de référence (NETD), détection des écarts de température les plus infimes qui pourraient être symptomatiques de problèmes Ì Alignement automatique de thermogrammes et d’images visuelles (correction de parallaxe) grâce à la technologie brevetée IR-Fusion de Fluke Fluke 62 Max Ì Détecte les écarts de température les plus infimes qui pourraient être symptomatiques de problèmes Ì Alignement automatique des images visuelles et infrarouges (correction de parallaxe) grâce à la technologie brevetée IR-Fusion Ì Téléobjectif et objectif grand angle disponibles en option pour une plus grande polyvalence et lors d’applications plus spécifiques. (installation facile sur le terrain) Ì Batteries pouvant être remplacées sur le terrain et offrant une souplesse de déplacement maximal Ì Menu intuitif à trois boutons extrêmement convivial, la navigation se commande d’une simple pression du pouce. Ì Plus besoin de crayon et de papier - dictez simplement vos observations à la caméra. Un commentaire vocal peut être joint à chaque image prise. Les commentaires vocaux sont enregistrés avec les images individuelles pour référence future Ì Précision des mesures supérieure à la moyenne dans la plupart des situations grâce à sa mise au point manuelle à une seule main, sa correction de l’émissivité, sa compensation de la température d’arrière-plan réfléchie et sa correction de la transmission Ì Sangle réglable pour droitier ou gaucher Ì Optimisée pour le travail de terrain en environnement difficile Ì Conçue et testée pour résister à une chute de 2 m Ì Résiste à l’eau et à la poussière - testée conforme IP54 Ì Pour plus d’informations techniques, merci de consulter la fiche technique sur www.farnell.com Cela permet d’effectuer plus rapidement l’inspection, la réparation et la vérification des équipements électriques et (électro)mécaniques. Ì Résiste à l’eau et à la poussière Ì Chute de 3 mètres testé Ì Affichage en °C ou °F Ì Ergonomique Ì Clip pour boîte à outil ou pour ceinture Ì Technologie Laser précise, fait pour des mesures plus précises et répétées Ì Fluke 62 Max+ a deux lasers rotatifs pour identifier les zones de mesure Ì Large afficheur rétroéclairé Ì Affichage Min. Max., Moy, ou Diff. entre 2 températures Ì Alarmes Haute et basse pour un affichage rapide des dépassement de seuils Ì Lecteur de cartes SD 2Go pour faciliter le transfert des images Ì Solution complète comprenant la caméra et le logiciel, optimisée pour le travail de terrain Ì Garantie 2 ans Ì Pour plus d’informations techniques, merci de consulter la fiche technique sur www.farnell.com Ì Des téléobjectifs et des objectifs grand angle disponibles en option pour une plus grande polyvalence et des applications plus spécifiques Ì Batteries remplaceables facilement sur le terrain, permet une souplesse de déplacement maximale Ì Simple d’utilisation, menu intuitif à 3 boutons extrêmement convivial - la navigation se commande d’une simple pression du pouce Ì Plus besoin de crayon et de papier - dictez simplement vos observations à la caméra Ì Commentaires vocaux enregistrés avec les images individuelles pour référence future Ì Une précision des mesures supérieure à la moyenne dans la plupart des situations grâce à sa mise au point manuelle à une seule main, sa correction de l’émissivité, sa compensation de la température d’arrière-plan réfléchie et sa correction de la transmission. Ì Sangle adaptable pour droitier ou gaucher Ì Robuste, optimisée pour le travail de terrain en environnement difficile Ì Conçue et testée pour résister à une chute de 2m Ì Résiste à l’eau et à la poussière - testée conforme à la classe IP54 Ì Pour plus d’informations techniques, merci de consulter la fiche technique sur www.farnell.com Contenu du Kit: Caméra infrarouge Ti32, Logiciel SmartView, carte SD 2Go, lecteur de carte SD, valise de transport robuste, valise de transport souple, sangle, batterie rechargeable, alimentation/chargeur AC et manuel d’utilisation. Caractéristiques: Ì Conçue et testée pour résister à une chute de 2 mètres Ì Excellente sensibilité thermique afin de détecter les écarts de températures même infimes (qui pourraient être révélateurs de problèmes) Ì Affichage LCD couleur VGA (640 x 480) 9,1 cm en mode paysage Ì Gammes de mesure de températures pour les applications commerciales et industrielles Ì Logiciel d’analyse et de création de rapports SmartView™ (mises à jour gratuites à vie) Ti27 & Ti29 Série Ti100 www.farnell.com/weller 2 1 3 1 3 2 4 120 WATTS Fer à souder et à dessouder de forte puissance 15% de remise, valable à partir de novembre 2012 jusqu‘à épuisemement du stock 1 2 3 4 1 2 3 WR 2000 ER Référence: 2164916 composée de (supports inclus): WR 3000M ER Référence: 2164918 composée de (supports inclus): REPRISES EFFICACES AVEC LES NOUVEAUX KITS KITS WR POUR LES TRAVAUX DE SOUDAGE ET DE DESSOUDAGE NÉCESSITANT BEAUCOUP DE PUISSANCE WR 2 Bloc d‘alimentation Station de réparation à 2 canaux WP 65 Montée en température 30% plus rapide et durée de vie des pannes allongées de 50% DSX 120 Fer à dessouder très puissant de 120 W avec une montée en température impressionnante WR 3M Bloc d‘alimentation Station de réparation à 3 canaux DSX 120 Fer à dessouder très puissant de 120 W avec une montée en température impressionnante WP 120 Fer à souder de 120 W avec une montée en très rapide et une très grande stabilité de température HAP 200 Fer à air chaud très sécurisant farnell.com element14.com 32 Soudage Tension 230V / 50Hz Contrôle de la température +50°C à +550°C Puissance 200W Précision de température ± 9°C Classe de protection I Stabilité de température ± 2°C Dimensions (L x l x H) 170 x 151 x 130mm Tension d’entrée 230V Tension d’entrée 230V Consommation 80W précision de la température ± 9°C Indice de protection 1 Dimensions (LxllxH) 166 x 101 x 101mm Température: +50°C à +450°C Consommation 255 W Protection ESD Oui Voies 2 Afficheur LCD graphique avec rétroéclairage Interface Oui Tension 230V / 50Hz Contrôle de température +50°C à +550°C Puissance 200W Précision de la température ± 9°C (±17°F) Classe de protection I Stabilité en température ± 2°C (±9°F) Dimensions (LxlxH) 170 x 151 x 130mm Prix Unitaire Description Code Commande 1+ Bloc d’alimentation WX 2 185-1606● 369.00 Station de soudage WR 2020 185-1607● 715.00 Station de soudage WR 2021 185-1608● 880.00 Outils individuels Micro brucelles WXMT 185-1609● 122.00 Micro brucelles WXMT avec support de sécurité 185-1610● 267.00 Support de sécurité WDH 60 185-1611● 62.00 Fer à souder WXP 120 185-1612● 168.00 Fer à souder WXP 120 avec support de sécurité 185-1613● 177.00 Micro fer à souder WXMP 185-1614● 123.00 Micro fer à souder WXMP avec support de sécurité 185-1616● 234.00 Fer à souder WXP 200 185-1617● 199.00 Fer à souder WXP 200 avec support de sécurité 185-1618● 219.00 WDH 31 Safety Rest 189-9054● 18.50 WX Connecting Cable 196-1326● 9.90 WX Adapter for PC 196-1327● 17.90 WX Adapter for WFE/WHP 196-1328● 17.90 Tip Retaining Barrel 196-1423● 11.40 Prix Unitaire Description Code Commande 1+ 3+ WXD 2 Control Unit 209-7805● 535.00 519.00 WXD 2010 Soldering Station 209-7803● 817.00 792.00 WXD 2020 Soldering Station 209-7804● 994.00 964.00 Individuel WXDP 120 Soldering Iron with Safety Rest 209-7806● 282.00 274.00 Prix Unitaire Description Code Commande 1+ Bloc d’alimentation WX 1 189-9050● 329.00 Station de soudage WX 1010 189-9047● 513.00 Station de soudage WX 1011 189-9048● 570.00 Station de soudage WX 1012 189-9049● 529.00 Accessoires individuels Fer à souder WXP 65 189-9051● 179.00 Fer à souder WXP 65 avec support de sécurité 189-9052● 198.00 Fer à souder WXP 120 185-1612● 168.00 Fer à souder WXP 120 avec support de sécurité 185-1613● 177.00 Micro fer à souder WXMP 185-1614● 123.00 Micro fer à souder WXMP avec support de sécurité 185-1616● 234.00 WX Connecting Cable 196-1326● 9.90 WX Adapter for PC 196-1327● 17.90 WX Adapter for WFE/WHP 196-1328● 17.90 Prix Unitaire Réf. Fab. Code Commande 1+ WSD 81SE 211-5961● 228.00 La nouvelle génération de station de soudage «intelligentes» avec une capacité de travail et des Bloc d’alimentation WX 2 Station à souder WSD 81SE Station de soudage WXD 2 contrôle encore plus élevés. Cela permet de sélectionner et de contrôler en direct des outils supplémentaires sur le plan de travail comme les systèmes d’extraction de fumée WFE et les plaques chauffantes PVT offrant ainsi une zone de travail plus simple et plus efficace. L’unité dispose d’un Ì Station de soudage Ì Fonctionnement pneumatique (alimentation en air comprimé Contenu de la station WR2020: bloc d’alimentation WX 2, 2 fers à souder WXP 120 et 2 supports de sécurité WDH 10 externe nécessaire) Les plaques et les unités d’aspiration des fumées peuvent être contrôlées à partir de l’unité de puissance Ì Menu multilingue navigation et clique & tournez par roue pour plus de facilité d’utilisation Une charge totale de 255W peut être connecté à l’unité de numérique Ì Son rendement permet d’économiser jusqu’ 20% d’énergie Ì Fer à souder ultra rapide WP 65 temps de chauffe 30% plus rapide Ì Afficheur LED Ì Antistatique canal indépendant capable de piloter un outil WX pour souder jusqu’à 200W Contenu de la station WR2021: Bloc d’alimentation WX 2, micro fer à souder WXMP, micro brucelles WXMT, supports de sécurité WDH 50 et WDH 60 Contenu: Station PUD 81, fer à souder WP 65 et support WDH 10 Ì Un canal indépendant pour reconnaître et commander les outils WX Ì Menu et affichage des informations en sept langues ( D, GB, F, I, ES, P, CN) Ì Panneau tactile antistatique Ì Afficheur graphique LC avec rétroéclairage bleu Ì Menu de sélection avec molette et confirmation auditive Ì Interface pour une utilisation avec les robots de soudage Ì Fonction de calibration unique Ì Prise USB en façade pour la mise à jour du Firmware, le réglage des paramètres et le contrôle par clé USB Ì Système de transfert numérique des données pour un ajustement ultra précis Ì Contrôle et commande des autres éléments Weller connectés - Système d’extraction de fumée WFE Ì Antistatique Ì Gamme de température 50 - 500°C (dépend de l’outil) La nouvelle génération des systèmes de soudage intelligents de haute puissance comprend des puissance - deux fers 120 W peuvent être utilisés simultanément et indépendamment Ì Outils pour brancher/débrancher avec détrompeur Ì Données clés stockées sur l’outil que vous utilisez Pas d’étalonnage de l’unité de puissance Ì Tous les outils de la série WX peuvent être connectés à l’unité de puissance, les données stockées sur les pièces à main est numériquement transférées sans interférence extérieure Contenu de la station WR 1010: unité de contrôle WX1, Fer à souder WXP 120, Support WDH 10 fonctions de contrôles supplémentaires. Ces fonctions permettent le contrôle direct et la sélection d’outils supplémentaires tels que l’extracteur de fumée WFE et les platines chauffantes WHP. C’est idéal pour simplifier et rendre plus efficace la zone de travail. Le bloc possède 2 canaux indépendants qui sont Contenu des WXD 2010: Unité de contrôle WXD 2, Fer à déssouder WXDP 120 et support WDH 70 Contenu des WXD 2020: Unité de contrôle WXD 2, Fer à déssouder WXDP 120 fer à souder WXP 120 et support WDH 70 et WDH 10. capables de faire fonctionner 2 outils de soudage WX simultanément ou un outil 1200W. Contenu de la station WR 1011: unité de contrôle WX1, Fer à souder WXMP, Support WDH 50 Ì 2 canaux indépendants avec reconnaissance automatique de tous les outils WX Ì Menu et affichage des informations en plusieurs langues - Français, Anglais, Allemand, Italien, Espagnol, Portugais, Chinois Ì Panneau tactile en verre antistatique Ì Affichage graphique LC avec rétroéclairage bleu Ì Sélection du Menu à partir d’un bouton de contrôle ’Turn & Click’ (Tourne et Clique) avec confirmation acoustique Ì Interface conçue pour une utilisation avec des machines de soudage robotiques Ì Unique fonction de calibration du fer à souder Ì Prise USB en face avant pour mises à jour des logiciels, installations des paramètres et le contrôle à partir d’une clé USB Ì Système numérique de transfert des données pour un réglage ultra précis Ì Contrôle et suivi des autres blocs Weller connectés - extracteur de fumée WFE et les platines chauffantes Ì Antistatique Ì Gamme de températures: 50 - 500°C (selon l’outil) Contenu de la station WR 1012: unité de contrôle WX1, Fer à souder WXP 65, Support WDH 10 Station de soudage WX 1 farnell.com element14.com Soudage 33 Fournis: Station i-CON1,fer à souder I-Tool avec panne 0102CDLF16, support 0A50 et nettoyeur 0008M Donnée technique: Station 0IC113A: puissance continue: 80 W, Alimentation 230V / 50 Hz, tension secondaire 24 V, gamme de température : 150° - 450° Fer à souder i-Tool : Tension 24 V, puissance 150 W Code Prix Unitaire Réf. Fab. Commande 1+ I-CON PICO Station de soudage 205-7377● 133.15 Pièces de rechange I-TOOL PICO Fer à souder avec panne 205-7378● 91.22 013100J Elément chauffant pour i-TOOL 205-7379● 50.23 Contenu MFR-UK4 : Pince Tweezer (MFR-H4-TW) et support (MFR-WSPT). Caractéristiques techniques Caractéristiques techniques Puissance: 60W Poids du i-Tool NANO: 30 g (sans câble) Gamme de températures: +150°C à +450°C Contenu du MFR-UK2 : Fer à souder panne (MFR-H2-ST) et support (WS1). Station de soudage ERSA i-CON1 0IC1100A Prix unitaire Description Réf Fab. Code Commande 1+ Desoldering System Kit MFR-1150 207-8469● 418.00 Accessoires de remplacement Universal Workstand with Venturi Box MFR-WSDSX 207-8470● 152.00 Desolder Handpiece and Workstand MFR-UK5 207-8482● 266.00 Kit de conversion Solder Cartridge Handpiece and Workstand MFR-UK1 207-8484● 117.00 Solder Tip Handpiece and Workstand MFR-UK2 207-8485● 117.00 Tweezer Handpiece and Workstand MFR-UK4 207-8483● 189.00 Contenu du MFR-UK1 : Fer à souder cartouche(MFR-H1-SC) et support (WS1). Réf. Fab. Code Commande Prix Unitaire I-CON NANO 172-7686● 293.81 I-TOOL NANO 184-5781● 120.84 Système de Dessoudage MFR-1150 Ì Technologie SmartHeat fournit une puissance exceptionnelle pour les applications avec des exigences thermiques importantes Ì La forte puissance de sortie à une température constante fournit d’excellent rendement Ì 4 fers disponibles pour augmenter les solutions de soudage et de réparation sur une seul système Ì Chaque fer a une gamme complète de cartouche et de panne de soudage pour un maximum de flexibilité Ì Manche ergonomique pour la sécurité et le confort de l’utilisateur Ì Tension d’alimentation : 100- 240VAC Ì Fréquence d’alimentation secteur : 50/60Hz Ì Consommation : 65W max. Ì Puissance de Sortie : 60W max Ì Fréquence de Sortie : 450KHz Ì Température ambiante de fonctionnement : 10°C to 40°C Ì Température maximale de fonctionnement Interne: 55°C Station de soudage i-CON NANO Le système de déssoudage MFR-1150 et son support avec Réf. Prix Unitaire Description Fab. Code Commande 1+ Système de soudage/dessoudage avec pompe interne MFR-1350 190-9694● 545.00 Système de dessoudage avec pompe interne MFR-1351 190-9695● 665.00 Aceesoires de remplacement Outil de dessoudage MFR-H5-DS 190-9696● 118.99 Support de dessoudage MFR-WSDSU 190-9697● 48.08 Universal Workstand with Venturi Box MFR-WSDSX 207-8470● 152.00 Accessoires Optionnels Solder Cartridge Handpiece and Workstand MFR-UK1 207-8484● 117.00 Solder Tip Handpiece and Workstand MFR-UK2 207-8485● 117.00 Tweezer Handpiece and Workstand MFR-UK4 207-8483● 189.00 Récipient jetable (Paquet de 10) MFR-DC10 190-9698● 10.82 Poignée de remplacement pour outil de dessoudage MFR-PG 190-9699● 20.00 Filtre pour port d’aspiration AC-VPF 190-9700● 2.50 Kit de joints pour récipient (Paquet de 2) AC-SK1 190-9701● 7.50 Port d’aspiration AC-VP 190-9702● 6.95 Tube à air ESD AC-VL 190-9703● 21.50 Ì Station de soudage contrôlée par microprocesseur, idéale pour la production, maintenance et laboratoire Ì Fonctions mise en veille et arrêt automatique, permettent une économie d’énergie et une plus longue durée de vie de la station Ì 3 températures programmables et températures réglables Ì Temps de chauffe et rechauffe rapide grâce à la haute performance de l’élément chauffant Ì Pannes disponibles séparément en fonction des applications Station de désoudage MFR-1300 SmartHeat Venturi fournit une alternative pour l’alimentation en air de toute la gamme MFR.Le MFR-1150 est un système complet de dessoudage avec aspiration qui comprend une alimentation, un pistolet à dessouder et un support avec venturi.Le kit de conversion MFR-UK5 permet aussi de Livrée avec: station électronique i-CON1, fer à souder i-Tool avec panne 0102CDLF16, support 0A50 et nettoyeur de pannes 0008M. Caractéristiques: Ì Station électronique 0IC113A: puissance continue 80 W, tension d’alimentation 230V / 50 Hz, tension secondaire 24V, gamme de température de 150°C à 450°C Ì Fer à souder i-Tool: tension 24 V, puissance 150 W transformer les systèmes existants MFR-1100 ou MFR-2200 et les anciens systèmes MFR en système de dessoudage à la pointe de la technologie. Le venturi intégré fournit une pression de 0,85 Bar, ce qui accroît de façon significative les capacités de dessoudage. Le nouveau manche a été conçu pour être utilisé selon deux configurations. Le MFR-H5-DS peut être utilisé comme crayon ou comme pistolet en ajoutant simplement un clip sur l’embout fourni avec le manche. Les capacités de récupération des déchets de soudure ont été augmentées de 40 % par rapport au précédent système MFR et l’innovante chambre de récupération des déchets jetable permet de réduire les temps d’immobilisation et d’effectuer des changements rapides. La série MFR-1300 d’OK International propose un système de dessoudage et de réparation de nouvelle génération.La nouvelle alimentation offre une pompe interne de 0,7 bar dont la force d’aspiration combinée avec la technologie SmartHeat permettra de dessouder facilement tous les composants traversants et ainsi conserver vos produits à l’abri de Contenu du MFR-1150: Bloc d’alimentation, Fer à dessouder, Support, Kit d’accessoires et tuyaux d’air et nettoyeur de panne dommages sur la carte. La nouvelle poignée a été conçu pour être utilisé dans deux configurations. La MFR-H5-DS peut être utilisé comme un crayon ou comme un pistolet simplement en ajoutant un clip (fourni) sur la poignée. La capacité de collecte de la soudure a été augmenté de 40% par rapport aux anciens systèmes MFR et la chambre de collecte innovante et remplaçable permet de réduire les temps d’arrêt grâce à un changement plus rapide. Contenu du MFR-UK5 : Fer à déssouder (MFR-H5-DS) et Support (MFR-WSDSX). Ì Deux sorties commutables Ì Compatible avec la gamme MFR précédente Contenu du MFR-UK4 : Brucelles de dessoudage (MFR-H4-TW) et support (MFR-WSPT). Contenu du MFR-UK2 : Manche pour panne de soudage (MFR-H2-ST) et support (WS1). Contenu du MFR-UK1 : Manche pour Cartouche de soudage (MFR-H1-SC) et support (WS1) Ì Pompe puissante intégrée Ì Poignée ergonomique 2 en 1 (crayon ou pistolet) Ì Capacité de la chambre de collection 40% supérieure Contenu de MFR-1351: Alimentation, Poignée de dessoudage, Poignée de soudage Station de soudage et de dessoudage Contenu de MFR-1350: Alimentation, Poignée de dessoudage, Station de dessoudage farnell.com element14.com 34 Soudage Tension d’alimentation 220V Pompe à air Diaphragme Puissance 560W Tension de sortie 187 x 135 x 245mm Gamme de température +100°C à +480°C Poids 4.5g Volume 23l/min Tension d’alimentation 220V Gamme de température Fer à air chaud:+100°C à +500°C Puissance Fer à air chaud: 800w Fer à souder:+200°C à +480°C Pompe: 40W volume d’air 20-100% du max. Fer à souder: 50W Trouvez vos produits en ligne, sur tablette ! Tension d’alimentation 220V Volume 0.18m³/min Puissance 540W Tension de sortie 170 x 55 x 140mm Gamme de température +100°C à +350°C Poids 1.1kg Tension d’alimentation Tension de sortie Puissance Stabilité en température Gamme de température Afficheur LCD Tension d’alimentation 220V Tension de sortie 28V Puissance 60W Stabilité en température ±1°C (Static) Gamme de température +150°C à +450°C Afficheur Tension d’alimentation 220V Tension de sortie 24V Puisssance 60W Stabilité en température ±1°C (Static) Gamme de température +150°C à +450°C Afficheur LCD Réf. Prix Unitaire Fab. Code Commande 1+ 5+ 10+ 21-10135 UK 206-4552● 47.03 45.63 44.26 21-10135 EU 206-2634● 47.03 45.63 44.26 Element chauffant de remplacement CBB022791 211-3927● 11.16 10.52 10.08 Réf. Prix Unitaire Fab. Code Commande 1+ 5+ 10+ 21-10130 UK+EU 206-2633● 150.30 145.79 141.41 Element chauffant de remplacement CBB019822 211-3925● 6.25 5.87 5.61 Element de dessoudage de remplacement CBB020840 211-3926● 15.69 14.73 13.96 Réf. Prix Unitaire Fab. Code Commande 1+ 5+ 10+ 21-10125 UK 206-4551● 130.67 126.77 122.95 21-10125 EU 206-2632● 130.67 126.77 122.95 Element chauffant de remplacement CBB020837 211-3924● 11.16 10.52 10.08 Réf. Prix Unitaire Fab. Code Commande 1+ 5+ 10+ AT60D-EU 207-5392● 62.48 60.57 58.65 AT60D-UK 207-5393● 62.48 60.57 58.65 Element chauffant de remplacement CBB018722 211-3923● 8.48 7.97 7.59 Consultez notre catalogue en ligne innovant avec mise à jour quotidienne des prix. Plus accessible, il rend vos recherches plus faciles. Réf. Prix Unitaire Fab. Code Commande 21-10120 UK 206-4550● 79.42 77.04 74.74 Réf. Prix Unitaire Fab. Code Commande 1+ 5+ 10+ 21-10115 UK 206-4549● 47.03 45.63 44.26 21-10115 EU 206-2627● 47.03 45.63 44.26 Element chauffant de remplacement CBB018722 211-3923● 8.48 7.97 7.59 Station de réparation CMS Station de soudage Station à air chaud pour le préchauffage et la réparation Station de soudage à air chaud Station de soudage Station de soudage Ì Double afficheur LCD pour un affichage immédiat des Ì Antistatique de sécurité Ì Trois boutons programmables pour température prédéfinis Ì Asservissement du capteur, Contenu: Alimentation, Fer à souder, Support de fer, Éponge, Cordons d’alimentation et manuel d’utilisation Ì Chauffage rapide, jusqu’à 350°C en seulement 10 secondes Ì Capteur de température Ì Antistatique sécurité Ì Préréglages de température: 3 pour température précise et stable, permet de dessouder les composants sensibles à la température, en toute sécurité examinés comme les QFP, PLCC, SOP, BGA etc Ì Système de refroidissement intelligent, retard de souffle après l’opération , mise hors tension automatique lorsque la température de l’air est inférieure à 100°C Ì Élément chauffant puissant permet un temps de chauffage court, offrant de bonnes performances à une température constante ou réglable. (Compatible avec iPad et tablettes androïdes) des températures fréquemment utilisés Ì Fer amovible avec pointe de crayon de style Ì Comprend un support Ì Affichage numérique à Led température interchangeables entre Fahrenheit et Celsius Ì Idéal pour les ateliers, ou les dépannage sur site paramètres de travail Ì Température rapide Ì Conversion de unités de température °C/°F Ì Air froid, arrêt du chauffage Ì Compatible avec de nombreuses buses Ì Contrôle de la température précis et étalonnage de la température informatisé Ì Fer détachable aec panne stylo Ì Écran LED Ì Idéal pour les ateliers Ì Idéal pourra soudure sans plomb, la colophane-core, à base de plomb, d’argent ou de tout autre type maintient la température de sortie stable Ì Option Cool Flow pour faire un préchauffage et un refroidissement Ì Fonctionne avec les stations de réparation AT pour les BGA Ì Conception intelligente et compacte facile à transporter Ì Contrôle automatique de la température permet de fonctionner en continu pendant de longues heures de travail, sans incidence sur le fonctionnement de l’appareil et la température ne dépassera pas la température standard du panneau Ì Disponible avec cordon d’alimentation EU et UK Ì Mode ’Sleep’, se coupe automatiquement pour économiser de l’énergie Ì Touches pour le réglage de la température et du débit d’air placé à droite sur la poignée Ì Trois groupes de données stockées pour faciliter l’utilisation Ì Compensation de température Ì Alerte en cas de dysfonctionnement (Affiche H-E pour l’élément chauffant et S-E pour le capteur) Ì Fourni avec un cordon eU et UK Ì Disponible soit avec cordon d’alimentation européen ou du Royaume-Uni Ì Pompe à air de haute qualité avec un faible niveau sonore et vibratoire Ì Anti-statique pour ne pas endommager la carte de circuit imprimé en raison de charges statiques et ligne de fuite Ì Disponible avec cordon d’alimentation EU ou UK Ì Antistatique de sécurité Ì Trois boutons programmables pour Ì Affiche de la température réelle et de la consigne Ì Idéal pour la soudure sans plomb, à base de plomb, d’argent ou de tout autre type Ì Disponible soit avec un cordon d’alimentation européen ou UK température prédéfinis Ì Contrôle de la température précis et étalonnage de la température informatisé Ì Élément de chauffage deux-corps Ì Écran LCD Ì Température <°C/> / <°F/> Ì Disponible soit avec un cordon d’alimentation européen ou du Royaume-Uni farnell.com element14.com Soudage 35 Prix Unitaire Réf. Fab. Code Commande 1+ 5+ 10+ PC-40 136-0332 46.59 43.82 42.14 Prix Unitaire Réf. Fab. Description Code Commande 1+ DI LI 160 Fiche EU mini 188-8072● 220.84 Code Prix Unitaire Description Réf. Fab. Commande 1+ Kit de nettoyage de pannes 0051512799 167-6500 34.00 T0051384199 179-2732 4.20 Réf. Prix Unitaire Fab. Code Commande 1+ 3+ D01810 210-3227● 164.48 159.57 Kit de nettoyage de pannes Tension d’entrée 230V 48dB Pression Max. 2700Pa Dimensions (HxLxP) 320x320x395395 Volume Max 230m³/h Poids 1919 Prix Unitaire Description Réf. Fab. Code Commande 1+ 5+ 10+ Pompe antistatique D01699 179-2724 17.68 16.99 16.72 Buse de remplacement D01700 179-2725 4.94 4.77 4.68 Support pour circuits imprimés réglable Bain de soudure Di-Li 160 Pompe à dessouder antistatique Prix Unitaire Réf. Fab. Code Commande 1+ T0053664699 209-7819● 1739.00 Un ensemble de trois produits (WDC2, barre à polir les pannes, activateur de panne) qui prolongera la durée de vie des pannes utilisées avec la soudure sans plomb (uniquement compatible avec les nouveaux supports WD). Caméra d’inspection avec enregistrement Le bain de soudue Di-Li permet de préparer les composants pour la soudure. Compatible avec la soudure sans plomb. La température est contrôlable Applications: étamage de fils, composants ou câble. DISTELKAMP Ì Support universel pratique Ì Idéal pour équiper et réparer les plaques conductrices Ì Rotation de la plaque à 360° Ì Dimensions: 300 x 120x 120 mm Ì Taille max. de la plaque:: 250 mm Ì Livré sans plaque Permet d’effectuer facilement des inspections visuelles en zones difficiles à atteindre et même dans l’obscurité totale ou en milieu sous-marin. Idéal pour la plomberie, l’électricité, les industries de l’automobile et la construction. Résolution Agrandissements: Rack fourni Code Commande 1.3 M pixels (1280 x 1024) 10x à 50x, 200x AMITA 164-0612 1.3 M pixels (1280 x 1024) 10x à 50x, 200x AM35B 168-5819 1.3 M pixels (1280 x 1024) 10x à 20x, 20x à 92x AM35B 168-5821 1.3 M pixels (1280 x 1024) 10x à 50x, 200x AM35B 168-5822 1.3 M pixels (1280 x 1024) 500x AM35B 168-5823 640* 480pixels (VGA) 10x à 50x, 200x AM35B 186-1619 Ì Résistance électrique de 105 OHM Ì Buse en fibre de carbone conductrice et résistante à la chaleur Système d’extraction de fumée Ì Corps en métal avec un volume de 7.7cm3 Ì Conforme ESD Microscope numérique Kit évacuation de fumée 4V avec 2 embouts Ì Écran LCD-TFT 2.7" Ì Menu OSD Ì Tête de caméra de 17mm Ì Possibilité d’enregistrer sur carte micro SD 128Mo fournie (supporte jusqu’à 32Go) Contenu: Caméra, afficheur LCD, alimentation, Contenu du kit: Unité Zero-Smog 4V, Filtres, 2 extracteurs 60mm, 2 bras, 2 buses entonnoir, 2 stop, 2 x tuyau d’aspiration tube de 1m, 3 accessoires (crochet, miroir, aimant) Note: Nécessite 4 piles AA pour l’unité principale Étudiés et conçus pour un usage professionnel, le Dino-Lite est un microscope très compact et permet aux utilisateurs tout type de prises (photos et vidéos), même en temps réel et possède une fonction de zoom que permet d’agrandir jusqu’à 500 fois. Les caractéristiques de mesures telles que les lignes, les angles, les diamètres, les rayons et l’étalonnage sont disponibles. Tous les produits sont vendus avec le rack professionnel AM35B ou le rack standard AMITA. Le rack professionnel AM35B est également disponible en tant que pièce de rechange. Pour protéger la santé des opérateurs, Weller présente le zéro-Smog 4V, une petite unité d’extraction de fumée. Un système de surveillance visuelle du filtre (rouge / jaune / vert) avec un signal d’alarme sonore pour anticiper l’alerte de l’etat du filtre, garantissant une performance optimale. Le système de contrôle de la pression assure qu’un flux d’air constant est maintenu dans chaque bras d’extraction indépendamment du nombre de bras en fonctionnement. La vitesse du moteur est ajustée automatiquement pour que l’énergie soit économisée, le niveau de bruit est réduit et la durée de vie du filtre est prolongée. Le Zero-smog 4V a des points de connexion pour 4 bras et peut être équipé d’un simple clic. Si un plus grand nombre plus de connexions est nécessaire, elles peuvent être achetés séparément. Le nouveau système Easy-Click est conçu pour de nombreuses configurations différentes. Les paramètres de contrôle peuvent être chargés via un lecteur USB. Rétro-éclairage numérique. Facilité de navigation dans un menu multilangue. Applications: Ì Contrôle de la qualité dans les domaines industriels Ì Service après-vente Ì Téléconférences techniques Ì La recherche et la science Ì Permet d’inspecter facilement des petites surfaces difficiles à atteindre Ì Étanche à 1m Ì Éclairage à LED sur la caméra Ì IP67 Microscope numérique Microscope numérique avec Rack AMITA Rack AM35B Caractéristiques: Ì Prise de vue MicroTouch Ì Vidéo : jusqu’à 30 fps Ì Eclairage intégré à 8 LED blanches Ì Logiciels: DinoCapture avec support pour les fonctions de mesure, d’étalonnage et d’un autre zoom numérique Ì Interface: transmission d’images via USB haute vitesse (PC) farnell.com element14.com 36 Outillage à main Réf. Prix Unitaire Fab. Code Commande 1+ 5+ D01914 210-3231 106.95 103.77 Prix Unitaire Code Commande 1+ 3+ 6+ 12+ 722-2324 497.52 – – – – – – Ampoule 10W Halogène 344-0977 15.37 14.92 14.72 14.56 Réf. Prix Unitaire Fab. Code Commande 1+ 5+ D01919 210-3236 201.50 195.30 Contrôle total des couts, réduction de la gestion administrative, visibilité sur vos dépenses, flexibilité et personnalisation selon les besoins de votre société. farnell.com/ibuy Réf. Prix Unitaire Fab. Magnification Code Commande 1+ AM7013MZT-X Jusqu’à x200 209-8873 906.25 AM7013MZT4-X Jusqu’à x400 209-8874 1108.25 Table DI LI 1050 Coffret d’outils 78 pièces Solution gratuite d’achats intelligents en ligne Microscopes numériques Microscope stéreo longue portée Ensemble d’outils 120 pièces Ì Fendue 8 x150,6x100,5x75mm Ì Phllips: PH2 x 100,PH1 x 75mm Ì Poignée de tournevis Ì Embout 1/2" 10-11-12-13-14-15-17-19mm Ì Embout 21mm Ì Cliquet 1/2" Ì Adaptateur 1/4" Dr.Sockets: 5-6-7-8-9-10-11-12- 13mm Ì Clés plates 8-10-11-12-13-14-15-16-17-19mm Série7000 Ì Idéal pour regarder la surface des articles qui ne s’adapteront pas sur un microscope plat conventionnel Ì Eclairage supérieur pivotant avec lampe 12V Ì Oculaires x10 avec réglages et bords caoutchoucs Ì Lentilles x2 donnant un grossissement x20 Ì Hauteur colonne 290mm Ì Bras articulé 290mm DISTELKAMP Cet ensemble d’outils de qualité est fourni dans une boîte à outils en aluminium avec une poignée de transport, idéal pour la plupart des industries. Réf. Fab. Code Commande Prix Unitaire Microscope Zoom numérique DI LI 1001 D 181-4356 798.43 Accessoires Lentille 5X-35X DI LI 2001V 181-4359 52.75 Lentille 20X-105X DI LI 2001-2 181-4360 52.75 Table pour Microscope DI LI 1050 181-4361 158.83 Anneau lumineux Prise EU DI LI 1065 181-4362 63.52 Ì 1/4 "Dr Sockets: 4, 4.5, 5, 5,5, 6, 7, 8, 9, 10, 11, 12, 13, 14mm Ì 1/4 "Dr Barre T,joint universel, rallonge, moleté, 50, 100mm Ì 1/4 "Dr: Coupleur, adaptateur Ì 1/2 "Dr: rapide poignée à cliquet communiqué Ì 1/2 "Dr: Sockets: 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 24, 27, 32mm Ì 1/2 "Dr: barres d’extension, 125, 250mm Ì 1/2 "Dr: Cardan Ì 1/2 "Dr: prise de bougie, 16-21mm Ì 1/2 "x 3/8" Dr: Coulissante tête T Ì 1/2 "x 3M ruban à mesurer caoutchouc Ì Marteau Ì Gants Ì Chiffon de tissu Ì Caisse à outil aluminium, (LxPxH) 450 x 330 x 150mm Le microscope numérique Dino- Lite Premier Série 7000 est complet avec un AM35B. Convient pour une grande variété Cet ensemble d’outils de qualité est fourni dans une caisse avec une poignée de transport et des plateaux d’insertion pour ranger les outils en Code Prix Unitaire Description Réf. Fab. Commande 1+ Microscope numérique avec rack AMITA 413T-A 164-0612 378.23 Microscope numérique avec rack AM35B 413T-X 168-5819 460.23 Microscope numérique avec rack AM35B 413TL-X 168-5821 542.23 Microscope numérique avec rack AM35B 413ZT-X 168-5822 562.96 Microscope numérique avec rack AM35B 413T5-X 168-5823 468.80 Microscope numérique avec rack AM35B 2011-X 186-1619 252.61 Microscope numérique avec rack AM35B AD413ZTA-X 209-8867 606.25 Rack professionnel AM35B 164-0613 174.98 Microscope zoom numérique Di-Li 1000 Contenu du kit: Ì Pinces coupantes diagonales 150mm Ì Pinces à bec long 150mm Ì Pince combinés 175mm Ì Pince de pompe à eau 250mm Ì Pince à circlips 4-en-1 Ì Tournevis plat: 5 x 75, 6 x100mm Ì Tournevis cruciforme: PH1 x 75, PH2 x 100mm Ì Testeur, 100 ∼ 250V Ì Couteau Ì Niveau 200mm Torpedo Ì 4 Tournevis de précision Ì Outil de sertissage 200mm Ì 40 pièce isolée bornes Ì Boîte de tournevis Ì 1 x adaptateur Quick Ì Hexa: 1,5, 2, 2,5, 3, 4, 5, 6 mm Ì Fendue: 3, 4, 4,5, 5, 5,5, 6, 7 mm Ì Pozi: PZ0, PZ1, PZ2, PZ3, PZ4 Ì Phillips: PH0, PH1, PH2, PH3, PH4 Ì Torx de sécurité: T10-15-20-25-27-30 Ì Mini Monture de scie avec 2 lames Ì Cliquet 1/4 "à 3 voies tournevis à flex Ì Clés mixtes: 8, 10, 11, 12, 13, 14, 17, 19, 22mm Ì Clé 250mm réglable Ì Clés hexagonales: 1,5, 2, 2,5, 3, 4, 5, 6, 7, 8, 10mm Ì 1/4 "Dr poignée rapide cliquet d’applications et d’environnements, y compris la science, les travaux d’ingénierie, de réparation détaillée, d’assemblage et de contrôle de qualité, dans l’industrie électronique et mécanique. toute sécurité. Outils: Ì Pince 175mm Ì Pince à bec long 150mm Ì Pince coupante 150mm Ì Pince multiprise 250mm Ì Marteau 8oz Ì Pince ajustable 200mm Ì Torx T9-T40 Ì Cutter 18m Ì Hexa 2.5mm-10mm Ì Haute résolution 5m avec Microtouch II Snapshot disponible pour les utilisateurs de Windows. Ì Polarisé Ì 8 LEd blanches contrôle On/Off par logiciel Ì Grossissement x10, x50, x200 (AM7013MZT-X) ou x400 (AM7013MZT4-X) Ì débit jusqu’à 30 images par sec., 15 imag. /Sec. à 1.3mp Ì USB 2.0 compatible Windows 2000/XP, Vista, 7 et Mac X (10.4 ou supérieur) Ì Magnification: Zoom optique 10x-70x, avec accessoire de lentille 5x-105x Ì Objectif: 0.7x-4.5x Ì Support: Base avec étage pour gros microscope 270x240 mm Ì Moniteur: Haute résolution 8" Ì CCD: Haute résolution 1/3", 625 lignes Ì Focus: des deux cotés Ì Support: Stable en métal longueur 300 mm Ì Illumination: Lumière Incidente ajustable 48-LED fixé sur l’objecti f Spécifications Techniques: Connexion USB pour numériser les sources de signal analogique audio vidéo La table croisée est utile pour la dissection, l’inspection de circuits imprimés, et bien d’autres situations d’observation, qui nécessitent un déplacement définis et contrôlé. La lumière fluorescente en anneau fournit un éclairage froid sans ombre pendant 1000 heures (avec des ampoules longue durée de vie). Ce système d’éclairage est conçu pour s’adapter à la plupart des marques de microscopes farnell.com element14.com Outillage à main 37 Réf Prix Unitaire Fab. Code Commande 1+ 3+ MB-EDI-151 210-2057 147.56 143.15 Prix Unitaire Dimensions Réf. Fab. Code Commande 1+ 5+ 10+ 12mm x 16.5m FE510093357 177-6401● 33.88 30.17 29.10 25mm x 16.5m FE510093365 177-6402● 69.85 62.20 60.00 Prix Unitaire Dimensions Réf. Fab Code Commande 1+ 5+ 10+ 50mm x 16.5m FE510093332 177-6398● 131.73 125.14 123.84 Feuille de Cuivre 1182 avec adhésif conducteur sur les deux faces Fab. Prix Unitaire Réf Fab. Code Commande 1+ 5+ 10+ 1170 TAPE 15MM 213-5665● 62.00 58.13 53.66 1170 TAPE 19MM 213-5666● 78.26 73.36 67.72 1170 TAPE 25MM 213-5667● 102.44 96.04 88.64 Réf. Prix Unitaire Fab. Code Commande 1+ 6+ 12+ T4454 209-4416 20.38 19.75 19.19 kit de mesure numérique électronique Fab. Ruban Prix Unitaire Réf Fab. Largeur Code Commande 1+ 5+ 10+ 1183 TAPE 12MM 12mm 213-5669● 59.35 55.65 51.35 1183 TAPE 19MM 19mm 213-5671● 93.42 87.58 80.83 1183 TAPE 25MM 25mm 213-5672● 122.28 114.64 105.82 Réception d’un email d’information contenant le statut de votre commande ainsi que la date prévue de livraison sur tous vos produits en reliquat 3M™ Ruban de blindage Cuivre, 1183 Commutateur à clé universel 3M™ Ruban Aluminium, 1170 Réf. Prix Unitaire Fab. Taille Code Commande 1+ JOKER SW 10,0 SB 10mm 209-9651 14.95 JOKER SW 13,0 SB 13mm 209-9653 14.95 JOKER SW 17,0 SB 17mm 209-9654 17.09 JOKER SW 19,0 SB 19mm 209-9655 19.26 Kit de 4 pces JOKER SET 4TLG SB 209-9656 58.82 Le ruban 3M™ 1182 est généralement utilisé pour coller deux surfaces ensemble, à la fois électriquement et physiquement. Il peut être utilisé par exemple, pour coller un joint conducteur à une surface conductrice dans le cadre d’une solution de blindage EMI pour un boîtier électronique. MB-EDI-151 Livraison optimisée des reliquats de commande Feuille de Cuivre 1181 avec adhésif conducteur Le ruban 3M™ 1183 est constitué d’un support Le ruban 3M™ 1181 se compose d’une feuille de cuivre souple et d’un unique adhésif acrylique conducteur sensible à la pression. Clés à cliquet Ce kit contient 3 des outils de mesure et de réglage les plus populaires, fournis dans une mallette de rangement équipée sur mesure. Le kit comprend 1 x 150mm / 6 "étrier numérique, 1 x indicateur numérique électronique de 25mm (EDI-25) et 1 x embase magnétique avec réglage fin (MB-2). Le ruban 3M™ 1170 est constitué d’un support lisse en aluminium et d’un adhésif acrylique conducteur de construction unique. 6 en 1 Le ruban 3M™ 1181 est généralement utilisé pour des applications exigeant une excellente conductivité électrique du substrat par application de l’adhésif au support papier. Les utilisations courantes comprennent la terre et le blindage EMI dans les équipements, composants, pièces protégées, etc. La feuille de cuivre est soudable et résiste à l’oxydation et à la décoloration. Châssis en acier inoxydable et des mâchoires de mesure Ajustement par rouleau et vis de blocage moletée Tige profonde Afficheur LCD avec conversion pouces / métrique, réglage d’origine, 4 voies de mesures et bien plus Indicateur électronique dispose d’un diamètre de 57mm visage avec une taille de chiffre de 12.5mm Tige 8mm et patte centrale de serrage avec un type Serie Jocker Ì Fourni avec une doublure amovible pour faciliter lisse en cuivre étamé et d’un adhésif acrylique conducteur de construction unique. Commutateur à clé universel 6 en 1 pour toutes les La gamme de cliquet Joker permet son utilisation dans la plupart des situations imaginables rapidement et Ì Fourni avec une doublure amovible pour faciliter la manipulation et la découpe Ì Disponible en largeur 12, 19 et 25mm, en rouleau de 16.5m Ì Applications: Typiquement utilisé dans les applications qui requiert une excellente conductivité électrique entre le support aluminium et le substrat sur lequel est posé le ruban. Les applications les plus communes sont : Mise à la terre, blindage EMI ..... Le cuivre étamé facilite le soudage et la résistance contre la corrosion et l’oxydation. applications de blocage technique. Pour une utilisation dans les systèmes de verrouillage dans les consoles de puissance, de gaz et d’eau industrielle, les équipements techniques des bâtiments (climatisation par exemple), les robinets d’arrêt, consoles électriques, portes, etc de balle, filet M2.5mm comme un point de contact Précision 0,02 mm avec une temps de réponse inférieur à 0,5 m / 5 Température d’utilisation 0-40°C Base magnétique dispose de bras en croix solide, plongeur et indicateurs à levier Commutateur magnétique avec une force de 800N Longueur hors tout 230mm Le ruban 3M™ 1182 se compose d’une feuille de cuivre qui est recouverte sur les deux côtés d’un unique adhésif acrylique conducteur sensible à la pression. la manipulation et la découpe Ì Disponible en largeur 15, 19 et 25mm, en rouleau de 16.5m Ì Applications: Typiquement utilisé dans les applications qui requiert une excellente conductivité électrique entre le support aluminium et le substrat sur lequel est posé le ruban. Les applications les plus communes sont : Mise à la terre, blindage EMI ..... Ì Grâce à un mécanisme double tournant un total de 4 clés différentes peut être amené en position. Ì Équipés avec une touche carré de 5 mm et un porte-embout magnétique de ¼” Ì Poids: 70 g Ì Dimensions: 97 x 25 mm Contenu: (touches) carré: 5, 6, 7 et 8 mm, triangle: 9 mm et deux bits: 3-5 mm avec une grande précision. La fonction cliquet dispose à la fin du cycle d’un mécanisme de dent très fine, renforçant la flexibilité, même dans les environnements de travail confinés. Ì Haute résistance à l’usure Ì Grande protection contre la corrosion Ì Les écrous et boulons peuvent facilement être maintenus dans la mâchoire et positionnés au bon endroit Ì Angle de rotation très faible Ì Disponible en taille 10, 13, 17, 19mm et en kit de 4 pièces farnell.com element14.com 38 Rubans adhésifs Réf. Prix Unitaire Largeur Fab. Code Commande 1+ 10+ 36+ 12mm 92 TAPE 12MM X 33M 330-9691 39.31 38.08 37.24 19mm 92 TAPE 19MM X 33M 330-9708 47.37 44.09 42.44 25mm 92 TAPE 25MM X 33M 330-9710● 77.16 74.72 73.14 Prix Unitaire Description Réf. Fab. Code Commande 1+ 5+ 10+ FE510052924 177-6406● 112.53 100.27 96.69 FE510052890 177-6407● 26.94 24.00 22.91 FE510052916 177-6408● 57.16 50.91 49.13 Prix Unitaire Description Réf. Fab. Code Commande 1+ 5+ 10+ FE510053195 177-6404● 33.05 29.73 28.66 FE510052866 177-6405● 68.73 61.23 59.04 Trouvez vos produits en ligne, sur tablette ! Fab. Ruban Prix Unitaire Réf Fab. Largeur Code Commande 1+ 5+ 10+ 1205 TAPE 9MM 9mm 213-5653● 38.69 36.27 33.48 1205 TAPE 12MM 12mm 213-5654● 50.98 47.79 44.11 1205 TAPE 19MM 19mm 213-5655● 80.97 75.92 70.08 Ruban adhésif en polyimide Kapton, Scotch 92 Fab. Ruban Prix Unitaire Réf Fab. Largeur Code Commande 1+ 5+ 10+ 1316 TAPE 12MM 12mm 213-5647● 213.13 204.93 193.75 1316 TAPE 19MM 19mm 213-5648● 288.21 277.12 262.01 1316 TAPE 25MM 25mm 213-5649● 391.81 376.74 356.19 Fab. Ruban Prix Unitaire Réf Fab. Largeur Code Commande 1+ 5+ 10+ 92 TAPE 6MM 6mm 213-5662● 26.41 24.77 22.86 92 TAPE 9MM 9mm 213-5663● 39.51 37.05 34.19 92 TAPE 50MM 50mm 213-5664● 190.68 183.35 173.35 Consultez notre catalogue en ligne innovant avec mise à jour quotidienne des prix. Plus accessible, il rend vos recherches plus faciles. Feuille de Cuivre 1194 avec adhésif conducteur sur les deux faces Fab. Ruban Prix Unitaire Réf Fab. Largeur Code Commande 1+ 5+ 10+ 1345 TAPE 9MM 9mm 213-5676● 40.61 38.07 35.14 1345 TAPE 12MM 12mm 213-5677● 54.00 50.64 46.73 1345 TAPE 19MM 19mm 213-5678● 84.97 79.67 73.53 1345 TAPE 25MM 25mm 213-5679● 111.26 104.30 96.29 Feuille de Cuivre ondulée 1245 3M™ Ruban Film Polyimide, 92 Ruban Magnétique 3M™ , 1316 Le ruban 3M™ se compose d’une feuille de cuivre souple et d’un adhésif acrylique agressif sensible à la pression. Les bords du motif en relief de la feuille permettent à la couche de colle d’établir un Ì Ruban polyimide enduit sur une face d’adhésif silicone thermodurcissable, de classe H (180°C) Ì Retardateur de flamme Ì Couleur Ambre Ì Excellente résistance thermique et mécanique Ruban 3M™ Polyimide, 1205 3M™ Ruban, 1345 contact fiable métal-métal entre le support et le substrat d’application. Le ruban 3M™ 1205 est constitué d’un polyimide enduit sur un adhésif acrylique. Il est utilisé dans les applications Haute Température dans lesquelles une bonne résistance au solvent est requise, tel que Epaisseur 0.9mm Le ruban 3M™ 1345 est constitué d’un support cuivre gauffré étamé et d’un adhésif acrylique. Ce support gaufré permet lors de la pression d’obtenir un contact électrique direct Ì Utilisé dans des applications telles que la protection de bobines, condensateurs, faisceaux (haute température), la protection d’épingles et d’induits de moteurs de traction et de masquage pour la soudure à la vague Ì Nécessite un cycle de polymérisation de 3h à 260°C minimum, et 24h de traitement pour une résistance optimale aux solvants Ì Disponible en rouleau de 33m Le ruban 3M ™ Film Polyimide 92 est mince, Le ruban 3M™ Magnetique est constitué d’un polymère flexible sur une face et d’un adhesif. Le ruban est magnétisé par alternance de pôles Nord et Sud sur toute la longueur. Le ruban Le ruban 3M™ 1194 se compose d’une feuille de cuivre et d’un adhésif acrylique agressif non conducteur et sensible à la pression. (Compatible avec iPad et tablettes androïdes) résistant et destiné aux applications Haute Température, tels que bobines, condensateurs et faisceaux. Reconnu UL 510, non propagateur de flamme l’isolation de bobines, condensateurs et réalisation de faisceaux. entre le support cuivre et le substrat sur lequel est appliqué le ruban. Ì Support en polyimide Kapton Ì Adhésif Acrylique Ì Non Propagateur de Flamme Ì Support résistant aux solvants Ì Adhesif en Silicone Thermodurcissable Ì Disponible en largeur 6, 9 et 50mm, Rouleau de 33m Ì Fourni avec une doublure amovible pour faciliter la manipulation et la découpe Ì Haute résistance à la traction Ì Disponible en largeur 9, 12, 19 et 25mm, Rouleau de 16.5m (sauf 12mm en rouleau de 33m) magnétique peut être usiné, tordu et plié sans aucune perte d’énergie magnétique. Ì Applications: Utilisé dans les applications électriques Haute Température dans lesquelles un isolant mince et résistant est requis pour l’’enroulement de bobine, transformateurs, condensateurs et faisceaux. Aussi utilisé sur circuit imprimé comme masque pour soudure à la vague. Ì Applications: Typiquement utilisé dans les applications qui requiert une excellente conductivité électrique entre le support aluminium et le substrat sur lequel est posé le ruban. Les applications les plus communes sont : Mise à la terre, blindage EMI ..... Le cuivre étamé facilite le soudage et augmente la résistance à l’oxydation et la décoloration. Ì Epaisseur 0.9mm Ì Grande variété d’utilisation et d’application Ì Adhésif sensible à la pression Ì Disponible en largeur 12, 19, et 25mm, Rouleau de 30.5m Le ruban 3M™ 1245 est généralement utilisé pour des applications exigeant une excellente conductivité électrique du substrat par application de l’adhésif au support papier. Les utilisations courantes comprennent la terre et le blindage EMI dans les équipements, les composants, les pièces de blindage, etc. La feuille de cuivre est soudable et résiste à l’oxydation et à la décoloration. Ì Disponible en largeur 9, 12 et 19mm, Rouleau de 33m Ì Applications: Utilisé dans des applications électriques Haute Température, dans lesquelles un isolant fin et résistant aux solvents est requis, telles que l’isolation de bobines, transformateurs, condensateurs et la réalisation de faisceaux. farnell.com element14.com Rubans adhésifs 39 Dimensions(mm): H=9.9, W=25.4, D=25.4 Dimensions: H=31.2, l=101.6, P=50.8mm Dimensions: H=30.5, W=101.6, D=50.8mm VCS50US: H=36, L=110, P=78mm VCS70US: H=40, L=130, P=98.5mm Fab. Ruban Prix Unitaire Réf Fab. Largeur Code Commande 1+ 5+ 10+ 1317 TAPE 12MM 12mm 213-5650● 236.56 227.46 215.06 1317 TAPE 19MM 19mm 213-5651● 310.56 298.61 282.33 1317 TAPE 25MM 25mm 213-5652● 424.24 407.91 385.67 PIN CONNECTIONS Broche Sortie Simple Sortie Double 1 +Vin +Vin 2 -Vin -Vin 3 Remote On/Off Remote On/Off 4 +Vout +Vout 5 Trim Com 6 -Vout -Vout Ruban 3M™ Magnétique, 1317 Tension d’entrée 80-275 VAC (120-370 VDC) Fréquence d’entrée 47-400Hz (Les certificats de sécurité couvrent la gamme 47-63Hz) Régulation de ligne ±0.5% max. Régulation de charge ±1% Puissance d’entrée sans charge <0.5W Isolation Entrée vers Sortie: 2 x MOPP Entrée vers masse: 1 x MOPP Ondulation et charge 1% crête crête, BP 20MHz Rendement Jusqu’a 90% Température d’utilisation -20°C à +70°C ’derating’ lineaire de +50°C à 2.5%/°C à 50% de la charge à +70°C Refroidissement Convection Emissions EN55022, Niveau B en conduction. EN55022, niveaul B en radiation Approuvé IEC60950-1, CSA 22.2 No. 60950-1, UL60950-1, EN60950-1, IEC60601-1, CSA 22.2 No. 60601-1, ANSI/AMMI ES60601-1, EN60601-1, Inclu fichier Risk Management VCS100US: H=42, L=159, P=98.2mm Tension d’entrée 85-264 VAC Fréquence d’entrée 47 - 63 Hz Régulation de ligne ±0.5% max. Régulation de charge ±1% max. Ondulation et bruit 1% max. crête-crête, Bande passante 20 MHz Température d’utilisation -20°C à +70°C, avec ’derating’ de 100% de la charge à 50°C à 50% de la charge à 70°C Sécurité EN60950-1, EN60601-1, UL60950-1, UL60601-1, IEC60950-1, IEC60601-1 Emissions EN55022, Niveau B en conduction et Niveau A en radiation Tension d’entrée 24 V (9-36 VDC), 48 V (18-75 VDC) Régulation de ligne ±0.2% max. Régulation de charge Sortie simple: ±0.5% max, Sortie double ±1% max Ondulation et bruit 100mV crête-crête, Bande passante 20 MHz Tension d’isolation Entrée/Sortie: 1600 VDC, Entrée/Boîtier: 1600 VDC, Sortie/Boîtier: 1600 VDC Température d’utilisation -40°C à +100°C, derating de 100% de la charge à +65°C jusqu’à plus de charge à +100°C Protection contre les courts circuits Trip & restart (hiccup) with auto recovery MTBF >560 KHrs selon MIL-STD-217F at 25°C Réf. Tension Courant de sortie Sortie Fab. de sortie Convection Refroidissement forcé ventilateur Code Commande ECP150PS12 12V 8.33A 12.5A 12V / 0.5A 182-1473 ECP150PS15 15V 6.67A 10.0A 12V / 0.5A 182-1474 ECP150PS24 24V 4.17A 6.25A 12V / 0.5A 182-1475 ECP150PS28 28V 3.5A 5.40A 12V / 0.5A 182-1476 ECP150PS48 48V 2.08A 3.10A 12V / 0.5A 182-1478 Réf. Sortie Fab. Puissance Tension Courant Code commande ECS65US12 65W 12V 5.4A 182-1421 ECS65US15 65W 15V 4.3A 182-1422 ECS65US18 65W 18.5V 3.4A 209-9499 ECS65US24 65W 24V 2.7A 182-1423 ECS65US28 65W 28V 2.3A 182-1424 ECS65US48 65W 48V 1.4A 182-1425 Epaisseur 1.5mm Prix Unitaire Code Commande 1+ 5+ 10+ 25+ Série ECP150 Tous les codes● 107.31 104.09 100.87 96.58 Prix Unitaire Code Commande 1+ 5+ 10+ 25+ Série ECS65 Tous les Codes● 47.04 45.63 44.22 42.34 Accessoires Capot ECM40/60 117-6953● 15.07 14.62 14.16 13.56 Tension d’entrée 85-264 VAC (127-370 VDC) Fréquence d’entrée 47 - 63 Hz Rendement Régulation de ligne ±0.5% Régulation de charge ±0.5% (1% pour les versions 5V & 12V) Puissance d’entrée sans charge <0.5W Ondulation et bruit 1% max. pour toutes les tensions Température d’utilisation -10°C à +70°C, avec ’derating’ linéaire de +50°C à 2.5%/°C à 50% de la charge à +70°C, démarrage à -20°C Emissions EN55022 Classe B conduction & radiation Normes de sécurité IEC60950-1, CSA C22.2 No. 60950-1, UL60950-1, TUV, EN60950-1 Le ruban 3M™ Magnétique est constitué d’un polymère flexible sur une face et d’un adhesif. Le ruban est magnétisé par alternance de pôles Nord et Sud sur toute la longueur. Le ruban magnétique peut être usiné, tordu et plié sans aucune perte d’énergie magnétique. Réf. Puissance Tension Courant de Fab. de sortie (W) de sortie (V) sortie (A) Code Commande VCS50US05 40 5 8 182-1457 VCS50US12 50 12 4.2 182-1458 VCS50US15 50 15 3.3 182-1459 VCS50US24 50 24 2.1 182-1460 VCS50US48 50 48 1.05 182-1461 Alimentation 150W Simple sortie Alimentation 65W simple sortie Réf. Puissance Tension Courant de VCS70US05 50 5 10 182-1462 VCS70US12 70 12 5.83 182-1463 VCS70US15 70 15 4.67 182-1464 VCS70US24 70 24 2.92 182-1466 VCS70US48 70 48 1.46 182-1467 VCS100US05 80 5 14 182-1468 VCS100US12 100 12 8.33 182-1469 VCS100US15 100 15 6.67 182-1470 VCS100US24 100 24 4.17 182-1471 VCS100US48 100 48 2.08 182-1472 Ì Epaisseur 1.5mm Ì Grande variété d’utilisation et d’application Ì Adhésif sensible à la pression Ì Disponible en largeur 12, 19, et 25mm, Rouleau de 30.5m Conception Énergie Verte Design Ultra Compact Prix Unitaire Code Commande 1+ 5+ 10+ 25+ VCS50US Tous les codes● 36.75 35.65 34.55 33.08 VCS70US Tous les codes● 41.16 39.92 38.69 37.04 VCS100US Tous les codes● 45.57 44.20 42.84 41.01 Alimentation 50 - 100W Simple sortie Convertisseurs DC/DC 15W Sortie Simple ou double Ì Approuvé pour les normes de sécurité médicales et IT Ì 2 x MOPP avec fichier Risk Management Ì Mode ’Green’ avec consommation en veille <0.5 W Ì 65 W - Convection Ì Boîtier aux normes industrielles 2" x 4" Ì Classe I et Classe II Ì Garantie 3 ans Ì 100W en convection, 150W en refroidissement forcé Ì Sortie simple de 12V à 48V Ì Alimentation pour ventilateur intégré Ì Répond aux normes médicales et industrielles Ì Puissance d’entrée sans charge <0.5W Ì Empreinte 2” x 4” Ì Convient aux applications 1U Ì Garantie 3 ans Industrielle Ì Forte densité de puissance Ì Plage d’entrée 4:1 Ì Température d’utilisation -40°C à +100°C Ì Sortie Simple ou double Ì Isolation 1600Vdc Ì Rendement jusqu’à 89% Ì Garante 3 ans Ì Alimentation industrielles montage sur châssis Ì Mode ’Green’, avec ’Standby’ <0.5 W Ì Refroidissement par convection Ì Classe B en conduction et radiation Ì Tension de sortie de 5V à 48V farnell.com element14.com 40 Alimentations Ì La premiere alimentation 100 W sur un empreinte 2.0"x4.0" Ì Connecteur (Molex) Ì Entrée universelle 90-132 / 187-264 Vac, Autorange Ì Sécurité Classe II Ì Protection contre les cours circuits Ì Garantie constructeur 3 ans Réf.* Puissance de Sortie Sortie Sortie Code Commande Fab. sortie 2 3 Montage PCB Montage Châssis Trouvez vos produits en ligne, sur tablette ! Réf. Pour utiliser avec Fab. Pour utiliser avec Code Commande TMP-MK 1 TMP 15xxxC 208-0711 TMP-MK 2 TMP 30xxxC et TMP 60xxxC 208-0712 Contenu: Platine interface, Clip Rail DIN et vis Consultez notre catalogue en ligne innovant avec mise à jour quotidienne des prix. Plus accessible, il rend vos recherches plus faciles. Kit de montage sur Rail Din Caractéristiques: Régulation: Variation d’entrée: ±1% max. Variation de charge: ±1% max. Ondulation et bruit: 100mV crête-crête typ. (Bande Passante 20 MHz) Suppression EMI: EN 55022, classe B Immunité EMC: EN 61000-3-2 Protection Surcharge: > 150% I out max., Fold-back, Redressement automatique Standards/ Normes: IEC / EN 60950-1, UL 60950-1, CSA-C22.2 Nr. 60950-1-03 (in prep.) Température d’utilisation -25°C à +70°C au dessus de 50°C derating Rendement: 90% typ. Type CI Chassis Longueur Largeur Hauteur Longueur Largeur Hauteur TMPM 04xxx 36.5 27 17.1 TMP 07xxx 50.8 25.4 19.3 TMPM 10xxx 52.4 27.2 23.5 TMP 10xxx 64 45 19 TMP 15xxx 74 54 19.3 96 54 23.3 TMP 30xxx 89 63.5 21.5 112 63.8 25.6 d’entrée de sortie Réf. Fab. (Vdc) max. (A) Code Commande TOP 100-105 5-5.2 20 144-1235 TOP 100-112 12-13.0 8.3 144-1236 TOP 100-124 24-26.0 4.2 144-1237 TOP 100-148 48-52.0 2.1 144-1238 Prix Unitaire Réf. Fab. Code Commande 1+ 5+ 10+ 25+ TOP 100-105 144-1235● 57.50 55.78 54.10 52.47 TOP 100-112 144-1236● 54.30 52.68 51.09 49.55 TOP 100-124 144-1237● 52.50 50.93 49.39 47.91 TOP 100-148 144-1238● 54.30 52.68 51.09 49.55 (Compatible avec iPad et tablettes androïdes) Régulation de ligne: 1 % max. Régulation de charge: 1 % typ. sortie 1 3.0 % typ. sortie 2 et 3 Ondulation et bruit: < 1.8% de Vout [mv pic à pic max.] pour les sorties 3.3 et 5 VDC < 1.3% de Vout [mv pic à pic max.] pour les autres sorties Suppression EMI: EN 55011, classe B, EN 55022, classe B et FCC, niveau B Immunité EMI: EN 61000-6-2 Limitation du courant de sortie: > 120-180% Inorm, retours, recouvrement automatique Homologations: cUL/UL 60950-1, IEC/EN 60950-1, rapport CB Température d’utilisation: -25°C à +70°C, au dessus de 50°C, dérive de 3.75 %/K Rendement: 83% typ. Boîtier: plastique (UL94V-0) Réf. Fab. Tension d’entrée Sortie 1 Sortie 2 Code Commande JTK1524S3V3 9V à 36V à Vdc 3.3V, 4A – 173-8204 JTK1524S05 9V à 36V à Vdc 5V, 3A – 173-8205 JTK1524S12 9V à 36V à Vdc 12V, 1.3A – 173-8206 JTK1524S15 9V à 36V à Vdc 15V, 1A – 173-8207 JTK1524D05 9V à 36V à Vdc 5V, 1.5A -5V, -1.5A 173-8208 JTK1524D12 9V à 36V à Vdc 12V, 625mA -12V, -625mA 173-8209 JTK1524D15 9V à 36V à Vdc 15V, 500mA -15V, -500mA 173-8210 JTK1548S3V3 18V à 75V à Vdc 3.3V, 4A – 173-8211 JTK1548S05 18V à 75V à Vdc 5V, 3A – 173-8212 JTK1548S12 18V à 75V à Vdc 12V, 1.3A – 173-8213 JTK1548S15 18V à 75V à Vdc 15V, 1A – 173-8214 JTK1548D05 18V à 75V à Vdc 5V, 1.5A -5V, -1.5A 173-8216 JTK1548D12 18V à 75V à Vdc 12V, 625mA -12V, -625mA 173-8217 JTK1548D15 18V à 75V à Vdc 15V, 500mA -15V, -500mA 173-8218 JTK2024S3V3 9V à 36V à Vdc 3.3V, 4.5A 186-1077 JTK2024S05 9V à 36V à Vdc 5V, 4A 186-1073 JTK2024S12 9V à 36V à Vdc 12V, 1.67A 186-1075 JTK2024S15 9V à 36V à Vdc 15V, 1.33A 186-1076 JTK2024D12 9V à 36V à Vdc 12V, 833mA -12V, -833mA 186-1071 JTK2024D15 9V à 36V à Vdc 15V, 667mA -15V, -667mA 186-1072 JTK2048S3V3 18V à 75V à Vdc 3.3V, 4.5A 186-1083 JTK2048S05 18V à 75V à Vdc 5V, 4A 186-1080 JTK2048S12 18V à 75V à Vdc 12V, 1.67A 186-1081 JTK2048S15 18V à 75V à Vdc 15V, 1.33A 186-1082 JTK2048D12 18V à 75V à Vdc 12V, 833mA -12V, -833mA 186-1078 JTK2048D15 18V à 75V à Vdc 15V, 667mA -15V, -667mA 186-1079 Série TOP 100 Prix Unitaire Réf. Fab. Code Commande 1+ 5+ 10+ TMP 30512 167-2157● 56.80 55.10 53.44 TMP 30515 167-2158● 56.80 55.10 53.44 TMP 15105C 167-2159● 37.80 36.66 35.57 TMP 15112C 167-2160● 37.80 36.66 35.57 TMP 15124C 167-2161● 37.80 36.66 35.57 TMP 15148C 167-2163● 37.80 36.66 35.57 TMP 15212C 167-2164● 39.20 38.03 36.89 TMP 15215C 167-2165● 39.20 38.03 36.89 TMP 15512C 167-2166● 43.80 42.49 41.21 TMP 15515C 167-2167● 43.80 42.49 41.21 TMP 30105C 167-2168● 53.40 51.80 50.24 TMP 30112C 167-2169● 53.40 51.80 50.24 TMP 30124C 167-2170● 53.40 51.80 50.24 TMP 30148C 167-2171● 53.40 51.80 50.24 TMP 30212C 167-2172● 56.00 54.32 52.69 TMP 30215C 167-2173● 56.00 54.32 52.69 TMP 30512C 167-2175● 64.50 62.56 60.69 TMP 30515C 167-2177● 64.50 62.56 60.69 TMPM 04105 208-0706● 15.98 15.34 14.73 TMPM 04112 208-0707● 15.98 15.34 14.73 TMPM 04124 208-0708● 19.81 19.02 18.26 TMPM 10105 177-2175● 27.80 26.97 26.16 TMPM 10112 177-2176● 27.80 26.97 26.16 TMPM 10115 177-2177● 27.80 26.97 26.16 TMPM 10124 177-2178● 27.80 26.97 26.16 Accessoires TMP-MK 1 208-0711● 10.08 9.67 9.28 TMP-MK 2 208-0712● 14.11 13.55 13.00 Prix Unitaire Réf. Fab. Code Commande 1+ 5+ 10+ TMP 07105 167-2132● 27.40 26.58 25.78 TMP 07112 167-2133● 27.40 26.58 25.78 TMP 07124 167-2134● 27.40 26.58 25.78 TMP 10105 167-2135● 29.00 28.13 27.29 TMP 10112 167-2136● 29.00 28.13 27.29 TMP 10124 167-2138● 29.00 28.13 27.29 TMP 10212 167-2139● 30.40 29.49 28.61 TMP 10215 167-2140● 30.40 29.49 28.61 TMP 15105 167-2141● 30.80 29.88 28.98 TMP 15112 167-2142● 30.80 29.88 28.98 TMP 15124 167-2143● 30.80 29.88 28.98 TMP 15148 167-2144● 30.80 29.88 28.98 TMP 15212 167-2145● 32.20 31.24 30.30 TMP 15215 167-2146● 32.20 31.24 30.30 TMP 15512 167-2147● 36.90 35.79 34.72 TMP 15515 167-2148● 36.90 35.79 34.72 TMP 30105 167-2151● 46.20 44.82 43.47 TMP 30112 167-2152● 46.20 44.82 43.47 TMP 30124 167-2153● 46.20 44.82 43.47 TMP 30212 167-2155● 48.20 46.75 45.36 TMP 30215 167-2156● 48.20 46.75 45.36 Prix Unitaire Code Commande 1+ 5+ 10+ 25+ Simple Tous les codes 45.57 44.20 42.84 41.01 Double Tous les codes 48.51 47.05 45.60 43.66 Alimentation à découpage 100 W, châssis ouvert Modules AC/DC 7 à 30W Ì Boîtier en plastique, bas profil totalement encapsulé Ì 2 versions disponibles: - Pour montage CI avec broches à souder - Pour montage châssis avec bornier à vis Ì Modèles simple, double et triple sortie Ì Entrée universelle 85-264 VAC, 47-440 Hz Ì Protection conte les courts-circuits Ì Sécurité de classe II et les surcharges Ì Garantie 3 ans farnell.com element14.com Alimentations 41 Spécifications techniques: Régulation: de ligne ±5% max. de charge ±1.0% max. Ondulation & Bruit: 100mV cr-cr typ. (bande passante 20MHz) Isolation Entrée/Sortie: 4kV eff. (60 sec., 50 Hz) Température de service: -40°C à +85°C; déclassement de 4% / K au-delà de 75°C Caractéristiques: Régulation: Variation en entrée: ±1.0% max. Variation de charge: ±0.75% max. Ondulation et Bruit: 100mV crête-crête typ. (Bande passante 20 MHz) Isolation E/S 4kV eff. (60 sec., 50 Hz) Température d’utilisation: -40°C à +71°C; au dessus de 70°C derating de 3,5% / K Standards/ Normes: cUL/UL 60950-1, IEC/EN 60950-1, EN 50124-1&2, IEC/EN/UL 60601-1, CSA C22.2 Nr. 601-1 (évalué pour un tension d’utilisation de 300Vac/420Vdc) Tension Sortie Boîtier SIP Boîtier DIP d’entrée Tension Courant Code Commande Code Commande 5V 5V 200mA 207-9688 207-9687 5V 12V 84mA 207-9692 207-9691 5V 15V 66mA 207-9694 207-9693 12V 5V 200mA 207-9696 207-9695 12V 12V 84mA 207-9698 207-9697 12V 15V 66mA 207-9700 207-9699 24V 5V 200mA 207-9702 207-9701 24V 12V 84mA 207-9704 207-9703 24V 15V 66mA 207-9706 207-9705 Réf. Fab. Tension Tension de Courant de Rendement Code d’Entrée Sortie Sortie (max.) (%) Commande VCC VCC mA THP 3-2411 9 - 40 5 600 78 100-7498 THP 3-2412 12 250 83 100-7499 THP 3-2422 ±12 ±125 83 100-7500 THP 3-2423 ±15 ±100 83 100-7501 THP 3-4811 18 - 80 5 600 78 100-7502 THP 3-4812 12 250 83 100-7503 THP 3-7211 36 - 160 5 600 78 100-7507 THP 3-7212 12 250 83 100-7508 THP 3-7222 ±12 ±125 83 100-7509 THP 3-7223 ±15 ±100 83 100-7510 Réf. Fab. Tension d’entrée Tension de sortie Courant de sortie (max.) (%) Code Commande Vdc Vdc mA THB 3-0511 4.5 - 6 5 600 70 144-1203 THB 3-0515 24 125 76 144-1205 THB 3-0523 ±15 ±100 75 144-1208 THB 3-1211 9 - 18 5 600 74 144-1209 THB 3-1212 12 250 80 144-1210 THB 3-1215 24 125 81 144-1211 THB 3-1222 ±12 ±125 80 144-1212 THB 3-1223 ±15 ±100 80 144-1213 THB 3-2411 18 - 36 5 600 78 144-1214 THB 3-2412 12 250 83 144-1215 THB 3-2415 24 125 84 144-1216 THB 3-2423 ±15 ±100 83 144-1219 Broche Simple Double 13 +Usortie -Usortie 1 +Uentrée (Vcc) +Uentrée (Vcc) 15 Pas de broche +Usortie 11 Pas de broche Commun 23 -Uentrée (GND) -Uentrée (GND) 12 -Usortie Pas de broche 24 -Uentrée (GND) -Uentrée (GND) BROCHAGE BROCHAGE Broche Simple Double 13 +Vout -Vout 1 +Vin (Vcc) +Vin (Vcc) 15 NC +Vout 11 NC Commun 23 -Vin (GND) -Vin (GND) 12 -Vout NC 24 -Vin (GND) -Vin (GND) Prix Unitaire Réf. Fab. Code Commande 1+ 5+ 10+ 25+ THB 3-0511 144-1203● 34.10 33.08 32.09 31.13 THB 3-0515 144-1205● 34.10 33.08 32.09 31.13 THB 3-0523 144-1208● 35.90 34.86 33.95 33.03 THB 3-1211 144-1209● 34.10 33.08 32.09 31.13 THB 3-1212 144-1210● 34.10 33.08 32.09 31.13 THB 3-1215 144-1211● 34.10 33.08 32.09 31.13 THB 3-1222 144-1212● 35.90 34.97 33.97 33.07 THB 3-1223 144-1213● 35.90 34.82 33.77 32.77 THB 3-2411 144-1214● 34.10 33.08 32.09 31.13 THB 3-2412 144-1215● 34.10 33.08 32.09 31.13 THB 3-2415 144-1216● 34.10 33.08 32.09 31.13 THB 3-2423 144-1219● 35.90 34.82 33.77 32.77 Code Prix Unitaire Réf. Fab. Commande 1+ 5+ 10+ 25+ THP 3-2411 100-7498● 48.70 47.24 45.83 44.45 THP 3-2412 100-7499● 48.70 47.24 45.83 44.45 THP 3-2422 100-7500● 51.70 50.15 48.64 47.19 THP 3-2423 100-7501● 51.70 50.15 48.64 47.19 THP 3-4811 100-7502● 48.70 47.24 45.83 44.45 THP 3-4812 100-7503● 48.70 47.24 45.83 44.45 THP 3-7211 100-7507● 48.70 47.24 45.83 44.45 THP 3-7212 100-7508● 48.70 47.24 45.83 44.45 THP 3-7222 100-7509● 51.70 50.15 48.64 47.19 THP 3-7223 100-7510● 51.70 50.15 48.64 47.19 Convertisseurs DC/ DC 1W simple sortie Série THP 3 Ì Protection contre les cours-circuits Ì Isolation 1000Vdc Ì simlpe sorties Ì Brochage standard industriel Ì Boîtier SIP ou DIP Ì Température d’utilisation 40°C à +85°C Ì Garantie 2 ans Convertisseur DC/DC - Série THB 3 3 Watt, haute isolation 3 Watts Gamme d’entrée Nominal ±10% Régulation de ligne 1.2%/1% Δ Vin Régulation de charge 10% 20-100% (Changement de charge) Ondulation et bruit 100 mV pk-pk max, Bande passante 20 MHz Température d’utilisation -40°C à +85°C Température de stockage -40°C à +125°C Tension d’isolation 1000 VDC Ì Très large plage de tension d’entrée, rapport 4:1 Ì Tension d’entrée jusqu’à 160Vc.c. Ì Isolation Entrée/Sortie 4000Vc.a. Ì Isolation renforcée pour les tension de service jusqu’à 300Vc.a./420Vc.c. Ì Idéale pour les applications ferroviaires et médicales Ì Distance d’isolement E/S et ligne de fuite de 2,0mm min. Ì Tension d’entrée 2:1 Ì Tension d’isolement 4000 VAC Ì Isolation renforcée pour les tensions 300Vac/420Vdc Ì Conformes aux normes industrielles et médicales Ì Filtre d’entrée conforme EN 55022, classe A et FCC, Level A sans composant externes Ì Garantie constructeur 3 ans Ì Boîtier plastique Ì Filtre d’entrée conforme à EN 55022, Classe A et FCC, Niveau A sans composant externe Ì Protection permanente contre les court-circuits Ì Normes de sécurité: cUL/UL 60950, IEC/EN 60950, EN 50124-1&2, IEC/EN/UL 60601-1, CSA C22.2 (pour les tensions de service 300Vc.a./420Vc.c.) Ì Garantie 3 ans farnell.com element14.com 42 Alimentations Réf. Code Prix Unitaire Fab. Commande 1+ 5+ 10+ 25+ 100+ Boîtier SIP MCE05S05S 207-9688● 5.43 5.27 5.10 4.88 4.62 MCE05S12S 207-9692● 4.47 4.34 4.19 4.02 3.81 MCE05S15S 207-9694● 4.47 4.34 4.19 4.02 3.81 MCE12S05S 207-9696● 4.47 4.34 4.19 4.02 3.81 MCE12S12S 207-9698● 4.47 4.34 4.19 4.02 3.81 MCE12S15S 207-9700● 4.47 4.34 4.19 4.02 3.81 MCE24S05S 207-9702● 4.47 4.34 4.19 4.02 3.81 MCE24S12S 207-9704● 4.47 4.34 4.19 4.02 3.81 MCE24S15S 207-9706● 4.47 4.34 4.19 4.02 3.81 Boîtier DIP MCE05S05D 207-9687● 4.47 4.34 4.19 4.02 3.81 MCE05S12D 207-9691● 4.47 4.34 4.19 4.02 3.81 MCE05S15D 207-9693● 4.47 4.34 4.19 4.02 3.81 MCE12S05D 207-9695● 4.47 4.34 4.19 4.02 3.81 MCE12S12D 207-9697● 4.47 4.34 4.19 4.02 3.81 MCE12S15D 207-9699● 4.47 4.34 4.19 4.02 3.81 MCE24S05D 207-9701● 4.47 4.34 4.19 4.02 3.81 MCE24S12D 207-9703● 4.47 4.34 4.19 4.02 3.81 MCE24S15D 207-9705● 4.47 4.34 4.19 4.02 3.81 Connecteurde sortie: type Barrel Longeur 11mm, Dia. Ext. 5.5mm, Dia. Int. 2.5mm avec centre (+) masse (-) Connecteurde sortie: type Barrel Longeur 11mm, Dia. Ext. 5.5mm, Dia. Int. 2.5mm avec centre (+) masse (-) Tension de Gamme de Courant de Puissance de Réf. Fab. Sortie Tension de sortie Sortie Sortie Rendement Code Commande ZWS-50BAF-5 5V 4.5V à 5.5V 10A 50W 84% 199-5952 ZWS-50BAF-12 12V 10.8V à 13.2V 4.3A 51.6W 85% 199-5953 ZWS-50BAF-24 24V 21.6V à 26.4V 2.1A 50.4W 87% 199-5954 ZWS-75BAF-12 12V 10.8V à 13.2V 6.3A 75W 85% 199-5955 ZWS-75BAF-24 24V 21.6V à 26.4V 3.2A 76.8W 87% 199-5956 ZWS-75BAF-48 48V 43.2V à 52.8V 1.6A 76.8W 88% 199-5957 ZWS-100BAF-12 12V 10.8V à 13.2V 8.5A 102W 88% 199-5958 ZWS-100BAF-15 15V 13.5V à 16.5V 6.7A 100.5W 88% 199-5961 ZWS-100BAF-24 24V 21.6V à 26.4V 4.3A 103.2W 89% 199-5962 ZWS-150BAF-12 12V 10.8V à 13.2V 12.5A 150W 88% 199-5963 ZWS-150BAF-24 24V 21.6V à 26.4V 6.3A 151.2W 90% 199-5964 ZWS-150BAF-48 48V 39.5V à 52.8V 3.2A 153.6W 91% 199-5965 Prix Unitaire Réf. Fab. Code Commande 1+ 5+ 10+ 25+ ZWS-50BAF-5 199-5952● 83.75 78.52 72.49 62.84 ZWS-50BAF-12 199-5953● 83.75 78.52 72.49 62.84 ZWS-50BAF-24 199-5954● 83.75 78.52 72.49 62.84 ZWS-75BAF-12 199-5955● 62.80 58.62 54.95 51.72 ZWS-75BAF-24 199-5956● 94.53 88.61 81.81 70.92 ZWS-75BAF-48 199-5957● 62.80 58.62 54.95 51.72 Tension 90 - 264VAC Fréquence 47 - 63 Hz Rendement 87% typ Ondulation et bruit 1% crête-crête max, Bande Passante 20 MHz Puissance de l’entrée sans charge <0.5W Température d’utilisation 0°C à +40°C, sans ’derating’ Sécurité EN60950-1: UL/cUL60950-1, Marquage CE Emissions EN55022 Niveau B conduction & radiation Tension d’entrée 90 - 264VAC Fréquence d’entrée 47 - 63 Hz Rendement 87% typ Ondulation et bruit 200mV crête-crête max, Bande passante 20 MHz Régulation de ligne ±0.5% max. Régulation de charge ±5% max. Puissance de l’entrée sans charge <0.5W Température d’utilisation 0°C à +40°C, sans ’derating’ Sécurité EN60950-1:2001, UL/cUL60950-1, CE Mark Emissions EN55022 niveau B en conduction & radiation Tension d’entrée 90 - 264VAC Fréquence 47 - 63 Hz Rendement 76% typ Ondulation et bruit 1% crête-crête max, Bande passante 20 MHz Puissance d’entrée sans charge <0.3W Température d’utilisation 0°C à +40°C, sans ’derating’ Sécurité EN60950-1:2001, Marquage CE Emissions EN55022 Niveau B conduction & radiation Alimentation simple sortie 50-150W Réf. Puissance Tension Courant Fab. de sortie (W) de sortie (V) de sortie (A) Code Commande MCEXT5V25W 16.5 5 3.3 182-7430 MCEXT7V25W 24 7.5 3.33 182-7432 MCEXT9V25W 22 9 2.44 182-7433 MCEXT12V25W 25 12 2.08 182-7434 MCEXT24V25W 25 24 1.04 182-7435 Réf. Puissance Tension Courant Fab. de sortie (W) de sortie (V) de sortie (A) Code Commande MCEXT12V60W 60 12 5 182-7436 MCEXT15V60W 60 15 4 182-7437 MCEXT18V60W 60 18 3.33 182-7438 MCEXT24V60W 60 24 2.5 182-7439 Réf. Puissance Tension Courant Fab. de sortie de sortie de sortie Code Commande Prise UK MCPLG5V10WUK 8W 5V 1.6A 182-7440 MCPLG6V10WUK 8W 6V 1.33A 182-7441 MCPLG7V10WUK 8W 7V 1.14A 182-7442 MCPLG9V10WUK 10W 9V 1.11A 182-7444 MCPLG12V10WUK 10W 12V 830mA 182-7445 MCPLG24V10WUK 10W 24V 410mA 182-7446 Prise EU MCPLG5V10WEU 8W 5V 1.6A 182-7447 MCPLG6V10WEU 8W 6V 1.33A 182-7448 MCPLG7V10WEU 8W 7.5V 1.14A 182-7449 MCPLG9V10WEU 10W 9V 1.11A 182-7450 MCPLG12V10WEU 10W 12V 830mA 182-7451 MCPLG24V10WEU 10W 24V 410mA 182-7452 Prix Unitaire Code Commande 1+ 5+ 10+ 25+ Tous les codes● 39.73 38.55 37.35 35.76 Prix Unitaire Code Commande 1+ 5+ 10+ 25+ Tous les codes● 28.11 27.28 26.43 25.31 Ì Entrée universelle (85 - 265 VAC) Ì Facteur de puissance corrigé Ì Refroidissement par convection Ì Garantie 5 ans Ì Design compact Prix Unitaire Code Commande 1+ 5+ 10+ 25+ Tous les codes● 16.17 15.69 15.20 14.55 ZWS50BAF: L=50, H=26, P=132mm Alimentation 25W Simple sortie Alimentation 60W Simple sortie Alimentation 10W Simple sortie ZWS75BAF: L=50, H=33, P=150mm Ì Puissance de l’entrée sans charge 0.3 W Ì Dimensions compactes Ì Versions UK et EU Ì ’Energy Star’ niveau V, ≥ 15 V Ì Conforme CEC 2008 & EISA 2007 Ì Fort rendement Ì Puissance de l’entrée sans charge <0.5 W Ì Dimensions compactes Ì ’Energy Star’ niveau V Ì Conforme CEC 2008 & EISA 2007 Ì Fort rendement Ì Puissance de l’entrée sans charge <0.5 W Ì Dimensions compactes Dimensions: H=32, l=117.4, P=53mm ZWS100BAF: L=62, H=33, P=155mm Ì Energy Star niveau V Ì Conforme CEC 2008 & EISA 2007 Ì Tension de sortie de 5 à 24Vdc Ì Fort rendement Dimensions: H=31, l=104.4, P=42mm ZWS150BAF: L=75, H=37, P=160mm farnell.com element14.com Alimentations 43 Tension d’entrée 90-264 VAC. 127-300 VDC Efficacité 87% Fréquence d’entrée 47-63 Hz Plage de réglage ±20% minimum Courant d’appel 50A en pic à 230VAC à 25°C Tension d’entrée 90 à 264V AC, 120 à 370V DC Fréquence d’entrée 45 à 63Hz Courant en pointe entrée <40A max à 115V AC, 25°C ambiant Température d’utilisation0°C à 70°C Tension de Courant de Réf. Fab. Sortie Sortie Code Commande NPS62-M 5V 12A 188-6193 NPS63-M 12V 5A 188-6194 NPS65-M 24V 2.5A 188-6195 Tension 85 à 264V AC, 120 à 373V DC Fréquence 45 à 63Hz Courant d’appel 20A à 115V AC, 40A à 230V AC Température d’utilisation -25°C à 70°C Tension d’entrée 85V à 265V ac Régulation de charge 0.8% Rendement 89% typ Température d’utilisation -20°C à 70°C Régulation de ligne 0.4% Tension d’entrée 90 à 264V AC, 120 à 350V DC Fréquence 45 à 63Hz Facteur de puissance 0.97 Typ. Température d’utilisation 0°C à 50°C Tension de Gamme de Courant de Réf. Fab. Sortie Tension de sortie Sortie Efficacité Code Commande GWS-250-12 12V 10.8V à 13.2V 21A 92% 199-6023 GWS-250-24 24V 22V à 28.8V 10.5A 92% 199-6024 GWS-250-36 36V 32V à 40V 7A 93% 199-6025 GWS-250-48 48V 42V à 57.6V 5.3A 93% 199-6026 Réf. Tesnion de Courant de Puissance de Fuite à ORing On/Off Fab. sortie sortie sortie la terre FET ext. Code Commande EFE300-12-ECMDS 12V 25A 300W 858μA ¤ ¤ 199-6055 EFE300-24-ECMDS 24V 12.5A 300W 858μA ¤ ¤ 199-6056 EFE400-12-ECMDS 12V 33.3A 400W 858μA ¤ ¤ 199-6057 EFE400-24-ECMDS 24V 16.7A 400W 858μA ¤ ¤ 199-6059 Médicale EFE300M-12-5-ECMDL-YT 12V 25A 300W 300μA ✓ ✓ 199-6061 EFE300M-24-5-ECMDL-YT 24V 12.5A 300W 300μA ✓ ✓ 199-6062 EFE300M-48-5-ECMDL-YT 48V 6.25A 300W 300μA ✓ ✓ 199-6063 EFE400M-12-5-ECMDL-YT 12V 33.3A 400W 300μA ✓ ✓ 199-6064 EFE400M-24-5-ECMDL-YT 24V 16.7A 400W 300μA ✓ ✓ 199-6065 EFE400M-48-5-ECMDL-YT 48V 8.3A 400W 300μA ✓ ✓ 199-6066 Réf. Tension Courant Puissance Fab. de sortie de sortie de sortie Rendement Code Commande CSS-65-5 5V 8A 40W 81% 199-5983 CSS-65-12 12V 5A 60W 86% 199-5979 CSS-65-15 15V 4A 60W 86% 199-5980 CSS-65-24 24V 2.71A 65W 87% 199-5981 CSS-65-48 48V 1.36A 65W 87% 199-5982 Réf. Tension Courant Puissance Fab. de sortie de sortie de sortie Code Commande MWS65-5 4.5V5.5V 11A 55W 209-7822 MWS65-12 10.8V13.2V 5A 60W 209-7823 MWS65-15 13.5V16.5V 4.4A 66W 209-7824 MWS65-24 21.6V26.4V 2.8A 67.2W 209-7826 MWS65-48 43.2V52.8V 1.4A 67.2W 209-7827 Prix Unitaire Réf. Fab. Code Commande 1+ 5+ 10+ 25+ ZWS-100BAF-12 199-5958● 72.41 67.58 63.36 59.63 ZWS-100BAF-15 199-5961● 72.41 67.58 63.36 59.63 ZWS-100BAF-24 199-5962● 72.41 67.58 63.36 59.63 ZWS-150BAF-12 199-5963● 84.55 78.92 73.98 69.63 ZWS-150BAF-24 199-5964● 84.55 78.92 73.98 69.63 ZWS-150BAF-48 199-5965● 127.27 119.31 110.14 95.48 Réf. Prix Unitaire Fab. Code Commande 1+ 5+ 10+ 25+ 50+ EFE300-12-ECMDS 199-6055● 224.39 208.69 197.47 184.00 168.29 EFE300-24-ECMDS 199-6056● 266.95 248.26 234.92 218.89 200.21 EFE400-12-ECMDS 199-6057● 299.59 278.62 263.64 245.66 224.69 EFE400-24-ECMDS 199-6059● 299.59 278.62 263.64 245.66 224.69 Médicale EFE300M-12-5-ECMDL-YT 199-6061● 225.25 213.80 203.45 194.06 185.50 EFE300M-24-5-ECMDL-YT 199-6062● 299.59 278.62 263.64 245.67 224.69 EFE300M-48-5-ECMDL-YT 199-6063● 225.25 210.23 197.09 185.50 – – EFE400M-12-5-ECMDL-YT 199-6064● 353.90 331.77 306.29 265.51 – – EFE400M-24-5-ECMDL-YT 199-6065● 353.90 331.77 306.29 265.51 – – EFE400M-48-5-ECMDL-YT 199-6066● 266.09 248.35 232.83 219.13 – – Alimentation simple sortie 60W Réf. Prix Unitaire Fab. Code Commande 1+ 5+ 10+ 25+ CSS-65-5 199-5983● 65.08 61.01 56.33 48.83 CSS-65-12 199-5979● 65.08 61.01 56.33 48.83 CSS-65-15 199-5980● 65.08 61.01 56.33 48.83 CSS-65-24 199-5981● 65.08 61.01 56.33 48.83 CSS-65-48 199-5982● 40.45 37.75 35.39 33.31 Prix Unitaire Réf. Fab. Code Commande 1+ 10+ 25+ 50+ 100+ MWS65-5 209-7822● 49.42 43.06 41.30 38.42 36.33 MWS65-12 209-7823● 75.58 65.86 63.16 58.75 55.57 MWS65-15 209-7824● 49.42 43.06 41.30 38.42 36.33 MWS65-24 209-7826● 49.42 43.06 41.30 38.42 36.33 MWS65-48 209-7827● 75.58 65.86 63.16 58.75 55.57 Prix Unitaire Réf. Fab. Code Commande 1+ 5+ 10+ 25+ GWS-250-12 199-6023● 167.51 157.02 144.97 125.67 GWS-250-24 199-6024● 145.55 136.43 125.97 118.49 GWS-250-36 199-6025● 162.88 152.69 140.97 122.20 GWS-250-48 199-6026● 167.51 157.02 144.97 125.67 Alimentation simple sortie 300-400W Alimentation simple sortie 65W Dimensions: H=25.6, L=101.6, P=50.8mm Alimentation médicale AC/DC 40-65W Médicale Ì Empreinte standard de l’industrie Ì Large gamme d’entrée AC Ì Deux fusibles d’entrée Alimentation simple sortie 250W Ì Contrôle numérique complet Ì Tension de sortie 5, 12, 15, 24, 48 V Ì Approuvé médical (BF) Ì Deux fusibles d’entrées Ì Moins de 0.3W de puissance hors charge Ì Convection refroidie Ì Rendement jusqu’à 89% Ì Boîtier standard 2 x 4 pouces Ì Applications équipements médicaux, dentaire et d’optométrie, Serveur et Datacom, Test et Mesure, Broadcast, Afficheurs à LED et éclairage et des systèmes de sécurité Ì Rendement élevé Ì Bas profil Ì Convient aux applications 1U Ì Sécurités médicales et ITE Ì Entrée universelle Ì Empreinte 2"x4" Ì Puissance en veille <0,5 Watt Ì Construit pour répondre aux ErP Ì Hauteur 41mm (compatible 1U) Ì Refroidissement par convection Ì Alimentation auxiliaire 5V / 300mA Ì Programmation de sortie à distance Ì Permet une utilisation avec les appareils d’éclairage Ì Garantie 5 ans Ì Commande du sens Ì Protection contre les surtensions et les courtscircuits Ì Tension de sortie Sortie réglable Ì MTBF élevé Ì Moins de 300mW de consommation de puissance sans charge Ì Température d’utilisation de 0°C à +80°C Ì Puissance d’entrée <74W Ì Approuvé UL classe 1 Ì Approuvé classe 2 (avec EMI classe A) Ì Double fusible AC farnell.com element14.com 44 Alimentations Tension d’entrée 90-264 VAC et 120-300 VDC Fréquence d’entrée 47-63 Hz Courant d’appel 50A max. à 25°C Efficacité 88% typique à pleine charge Plage de réglage ± 10% minimum sur les sorties principales Sortie ventilateur 12V à 1A isolée, ± 10% Réf. Tension Tension Courant de Fab. d’entrée de sortie sortie Code Commande Température d’utilisation: -40°C à 105°C APTS003A0X-SRDZ 4.5V à 14V 0.59V5.5V 3A 207-6811 Température d’utilisation: -40°C à 85°C APTS003A0X-SRZ 4.5V à 14V 0.59V5.5V 3A 207-6812 APXK004A0X4-SRZ 8V à 16V 0.59V8V 4A 207-6817 PDT003A0X3-SRZ 3V à 14.4V 0.45V5.5V 3A 207-6904 PDT006A0X3-SRZ 3V à 14.4V 0.45V5.5V 6A 207-6905 PDT012A0X3-SRZ 3V à 14.4V 0.45V5.5V 12A 207-6906 PVX003A0X3-SRZ 3V à 14.4V 0.6V5.5V 3A 207-6907 PVX006A0X3-SRZ 3V à 14.4V 0.6V5.5V 6A 207-6908 PVX012A0X3-SRZ 3V à 14.4V 0.6V5.5V 12A 207-6909 Réf. Prix Unitaire Fab. Code Commande 1+ 5+ 10+ 25+ 50+ Température d’utilisation: -40°C à 105°C APTS003A0X-SRDZ 207-6811● 8.12 7.64 7.26 6.83 6.49 Température d’utilisation: -40°C à 85°C APTS003A0X-SRZ 207-6812● 10.40 9.79 9.29 8.74 8.30 APXK004A0X4-SRZ 207-6817● 17.58 16.69 15.86 15.07 14.31 PDT003A0X3-SRZ 207-6904● 7.86 7.40 7.03 6.61 6.29 Tension de Courant de sortie Réf. Fab. Sortie Convection Débit de 25m3/h Code Commande LPS102-M 5V 16A 24A 188-6182 LPS103-M 12V 8.3A 12.5A 188-6183 LPS104-M 15V 6.7A 10A 188-6184 LPS105-M 24V 4.2A 6.3A 188-6185 LPS108-M 48V 2.1A 3.1A 188-6187 Tension d’entrée 85-264V ac Fréquence d’entrée 47-440Hz Courent en pointe ≤25A crête, démarrage à chaud ou à froid Facteur de puissance Typ. 0.99 Rendement >89% à pleine charge Courant de fuite <0.3mA à 264V ac Transitoire sur ligne de puissance MOV directement après le fusible Température d’utilisation -40°C à +70°C, derating linéaire de 50% de 50°C à 70°C Tension d’entrée 85-264 VAC, 90-375 VDC Fréquence 47-67 Hz, 400 Hz Courant d’appel ADN5-24-1PM-C: < 15 A ADN10-24-1PM-C: < 30 A ADN20-24-1PM-C: < 40 A Efficacité > 90% Prix Unitaire Réf. Fab. Code Commande 1+ 5+ 10+ LPS102-M 188-6182● 114.52 107.64 102.70 LPS103-M 188-6183● 114.52 107.64 101.19 LPS104-M 188-6184● 114.52 107.64 102.70 LPS105-M 188-6185● 114.52 107.64 102.70 LPS108-M 188-6187● 114.52 107.64 102.70 Prix Unitaire Réf. Fab. Code Commande 1+ 5+ 10+ NPS62-M 188-6193● 48.91 45.53 42.79 NPS63-M 188-6194● 48.91 45.53 43.44 NPS65-M 188-6195● 48.91 45.53 43.44 Kit Capot 1+ LPX50 188-6208● 11.31 Réf. Tension de Plage de Courant de Fab. Sortie Réglage Sortie Code Commande Entrée IEC LCM600L 12V 9.6V à 14.4V 52A 211-5738 LCM600Q 24V 19.2V à 28.8V 27A 188-6217 LCM600U 36V 28.8V à 43.2V 16.7A 211-5737 LCM600W 48V 38.4V à 57.6V 14A 188-6218 Entrée à borne LCM600L-T 12V 9.6V à 14.4V 52A 211-5740 LCM600Q-T 24V 19.2V à 28.8V 27A 211-5741 LCM600U-T 36V 28.8V à 43.2V 16.7A 211-5739 LCM600W-T 48V 38.4V à 57.6V 14A 211-5742 Sortie Dimensions (mm) Réf. Fab. Puissance Tension Courant H L P Code Commande ADN5-24-1PM-C 120W 24V 5A 123 50 111 188-6250 ADN10-24-1PM-C 240W 24V 10A 123 60 111 188-6251 ADN20-24-1PM-C 480W 24V 20A 123 87 126 188-6252 Convertisseurs DC/ DC non-isolés Alimentation simple sortie 150W Prix Unitaire Réf. Fab. Code Commande 1+ 5+ 10+ ADN5-24-1PM-C 188-6250● 244.67 229.99 219.43 ADN10-24-1PM-C 188-6251● 356.42 335.03 319.66 ADN20-24-1PM-C 188-6252● 550.47 517.44 493.69 Prix Unitaire Réf. Fab. Code Commande 1+ 5+ 10+ Entrée IEC LCM600L 211-5738● 282.78 268.65 255.21 LCM600Q 188-6217● 307.85 289.38 276.09 LCM600U 211-5737● 282.78 268.65 255.21 LCM600W 188-6218● 307.85 289.38 272.01 Entrée à bornes LCM600L-T 211-5740● 282.78 268.65 255.21 LCM600Q-T 211-5741● 282.78 268.65 255.21 LCM600U-T 211-5739● 282.78 268.65 255.21 LCM600W-T 211-5742● 282.78 268.65 255.21 Ì Tunable Loop™ pour optimiser la tension dynamique de sortie Ì Fréquence de découpage fixe Ì Protection contre les surintensité Ì Commande On/Off Ì Interface numérique via protocole PMBus™ (série 9PDT uniquement) Ì Conception châssis ouvert Ì Puissance anciennement GE Energy Lineage Applications: Ì Sécurités médicales et ITE Ì Correction active du facteur de puissance Ì Empreinte 2"x4" Alimentation simple sortie 600W Alimentation rail din simple sortie 120-480W Ì Commande du sens Ì Défaut de puissance Ì Sortie principale réglable Ì Protection contre les surtensions Ì Protection contre les surcharges Ì Protection contre les surcharges thermiques Ì Protection contre les surtensions Ì Protection contre les surcharges et les courtscircuits Ì LED de diagnostique Ì 3 LED d’indication d’état: entrée, sortie et alarme Ì Relais DC Ì Capacité d’opération parallèle Ì Connexion à vis Ì Architectures puissance distribuée Ì Applications de tension de bus intermédiaire Ì Équipements de télécommunication 70°C avec déviation Ì Ventilateurs intelligents à vitesse variable Ì Contrôlée par DSP Ì Programmation de marge Ì Option FET Dimensions: H=33, L=101.6, P=50.8mm Ì Petit facteur de forme Ì Haute éfficacité > 90% typique Ì Pleine puissance à 60°C Ì Conception industrielle Ì Boîtier métallique Ì MTBF > 450,000h à 40°C Ì PFC Actif > 0.92 Ì Tension de sortie réglable Ì Applications de Serveur et stockage Ì Équipements réseaux Ì Équipements industriels Dimensions: H=61, L=190.5, P=114.3mm Ì Puissance de sortie 600W Ì 7,41 W / Cu-In Ì 5 V SVEZA en veille Ì Sécurité Industrielle/Médicale Ì Température d’utilisation de -40°C à farnell.com element14.com Alimentations 45 Prix Unitaire Réf. Fab. Code Commande 1+ 10+ 50+ 100+ 250+ HLG-240H-12 211-4205● 191.13 159.19 146.88 136.46 127.30 HLG-240H-12A 211-4206● 191.13 159.19 146.88 136.46 127.30 HLG-240H-24 211-4207● 191.13 159.19 146.88 136.46 127.30 HLG-240H-24A 211-4208● 191.13 159.19 146.88 136.46 127.30 Réf. Tension Tension de Courant de Courant Broche GND Fab. d’entrée sortie sortie partagé Supplémentaire Code Commande APTS030A0X3-SRPHZ 6V à 14V 0.8V à 3.63V 30A ✓ ✓ 207-6815 ATH030A0X3-SRHZ 4.5V à 5.5V 0.8V à 3.63V 30A ¤ ✓ 207-6825 ATH030A0X3-SRPHZ 4.5V à 5.5V 0.8V à 3.63V 30A ✓ ✓ 207-6826 ATM030A0X3-SRHZ 2.7V à 4V 0.8V à 2V 30A ¤ ✓ 207-6827 ATS030A0X3-SRHZ 6V à 14V 0.8V à 2.75V 30A ¤ ✓ 207-6829 ATS030A0X3-SRPHZ 6V à 14V 0.8V à 2.75V 30A ✓ ✓ 207-6830 ATS030A0X3-SRZ 6V à 14V 0.8V à 2.75V 30A ¤ ¤ 207-6831 Tension d’entrée 90-305 VAC, 127-431 VDC Régulation de ligne ±0.5% Température d’utilisation -40°C à 70°C Régulation de charge ±2.0% 12V versions, ±0.5% 24V versions SUPPORT LEGISLATIF MONDIAL GRATUIT : Directives RoHS, REACH, DEEE, Eup, batteries : dernières mises à jour, livres blancs gratuits et questions-réponses en direct sur element14.com/legislation Réception d’un email d’information contenant le statut de votre commande ainsi que la date prévue de livraison sur tous vos produits en reliquat Prix Unitaire Réf. Fab. Code Commande 1+ 10+ 50+ 100+ 250+ LPC-20-350 211-4209● 24.42 20.35 18.77 17.44 16.27 LPC-20-700 211-4210● 24.28 20.23 18.66 17.33 16.17 LPC-35-1050 211-4211● 37.84 31.50 29.06 27.00 25.19 LPC-35-1400 211-4212● 31.30 26.06 24.05 22.35 20.84 LPC-35-700 211-4213● 31.30 26.06 24.05 22.35 20.84 LPC-60-1050 211-4214● 38.43 32.01 29.54 27.45 25.59 LPC-60-1400 211-4216● 38.43 32.01 29.54 27.45 25.59 LPC-60-1750 211-4217● 38.43 32.01 29.54 27.45 25.59 Réf. Prix Unitaire Fab. Code Commande 1+ 5+ 10+ 25+ 50+ Température d’utilisation: -40°C à 85°C PDT006A0X3-SRZ 207-6905● 13.85 13.03 12.37 11.64 11.05 PDT012A0X3-SRZ 207-6906● 14.60 13.74 12.93 12.28 11.66 PVX003A0X3-SRZ 207-6907● 7.86 7.40 7.03 6.61 6.29 PVX006A0X3-SRZ 207-6908● 11.66 10.96 10.41 9.80 9.31 PVX012A0X3-SRZ 207-6909● 14.60 13.74 12.93 12.28 11.66 Livraison optimisée des reliquats de commande Support législatif Tension Sortie Réf. Fab. D’entrée Tension Courant Efficacité Code Commande MTU1S0505MC 5V 5V 200mA 83% 186-7135 MTU1S0509MC 5V 9V 111mA 86% 186-7136 MTU1S0512MC 5V 12V 83mA 87% 186-7137 MTU1S0515MC 5V 15V 67mA 87% 186-7138 MTU1S1205MC 12V 5V 200mA 84% 186-7139 MTU1S1209MC 12V 9V 111mA 87% 186-7140 MTU1S1212MC 12V 12V 83mA 88% 186-7141 MTU1S1215MC 12V 15V 67mA 88% 186-7142 Réf. Prix Unitaire Fab. Code Commande 1+ 5+ 10+ 25+ 50+ APTS030A0X3-SRPHZ 207-6815● 34.77 33.03 31.37 29.80 28.30 ATH030A0X3-SRHZ 207-6825● 36.21 34.39 32.67 31.05 29.50 ATH030A0X3-SRPHZ 207-6826● 36.21 34.39 32.67 31.05 29.50 ATM030A0X3-SRHZ 207-6827● 41.68 39.60 37.62 35.74 33.96 ATS030A0X3-SRHZ 207-6829● 28.65 27.22 25.85 24.57 23.34 ATS030A0X3-SRPHZ 207-6830● 28.65 27.22 25.85 24.57 23.34 ATS030A0X3-SRZ 207-6831● 26.87 25.52 24.24 23.04 21.88 Tension d’entrée 90-264 VAC, 127-370 VDC Régulation de charge ±2.0% Régulation de ligne ±1.0% Température d’utilisation -30°C à 70°C Réf. Sortie Courant Code Fab. Tension de sortie Puissance Rendement Commande HLG-240H-12 12V 16A 192W 90% 211-4205 HLG-240H-12A 12V 16A 192W 90% 211-4206 HLG-240H-24 24V 10A 240W 93% 211-4207 HLG-240H-24A 24V 10A 240W 93% 211-4208 Connexion des broches Broche 1 +Vin 3 -Vin 4 -Vout 5 0V 6 NC Ì Fonction PFC active Réf. Sortie Courant Code Fab. Tension de sortie Puissance Rendement Commande LPC-20-350 9V à 48V 350mA 16.8W 83% 211-4209 LPC-20-700 9V à 30V 700mA 21W 83% 211-4210 LPC-35-1050 9V à 30V 1.05A 31.5W 85% 211-4211 LPC-35-1400 9V à 24V 1.4A 33.6W 85% 211-4212 LPC-35-700 9V à 48V 700mA 33.6W 85% 211-4213 LPC-60-1050 9V à 48V 1.05A 50.4W 87% 211-4214 LPC-60-1400 9V à 42V 1.4A 58.8W 85% 211-4216 LPC-60-1750 9V à 34V 1.75A 59.5W 87% 211-4217 Prix Unitaire Réf. Fab. Code Commande 1+ 10+ 25+ 50+ MTU1S0505MC 186-7135● 7.13 6.49 5.92 5.39 MTU1S0509MC 186-7136● 5.89 5.35 5.10 4.94 MTU1S0512MC 186-7137● 5.89 5.35 5.10 4.94 MTU1S0515MC 186-7138● 5.89 5.35 5.10 4.94 MTU1S1205MC 186-7139● 5.89 5.35 5.10 4.94 MTU1S1209MC 186-7140● 5.89 5.35 5.10 4.94 MTU1S1212MC 186-7141● 5.89 5.35 5.10 4.94 MTU1S1215MC 186-7142● 5.89 5.35 5.10 4.94 Convertisseurs DC/DC Non-isolé Ì Protection: court circuit, surintensité, surtension, température Ì IP67 /IP65 (version A) Ì Fonction variateur 3 en 1 Ì Ajustement du point OCP par câble de sortie (toutes versions) ou potentiomètre interne( Version A) Alimentation simple sortie AC/DC Ì Convient pour les éclairages à LED et signalisation Ì Garantie 5 ans Ì Fourni jusqu’à 30A de courant de sortie Ì Rendement élevé Ì Commande On/Off Ì Capteur Ì Protection en courant et tension Ì option -P: Parallèle avec courant actif partagé Ì option -H:Broche de GND supplémentaire pour améliorer le derating thermique Ì Mode courant constant Ì Supporte 300V ac pendant 5 sec. Ì Protection: court circuit, surtension Ì IP67 Ì Classe II Ì Test de charge à 100% Ì Convient pour les éclairages à LED et signalisation Ì Garantie 2 ans Convertisseurs DC/DC simple sortie isolé - 1W Applications: La série MTU1 est une gamme de convertisseurs DC/DC 1W CMS miniature à haute performance. Avec une empreinte réduite de 50% par rapport à la génération précédente de Murata et offrant 1W de puissance disponible sur toute la gamme de température de -40°C à +85°C. Cette conception plus efficace offre des performances de régulations améliorées où une large variation de la tension de sortie n’est pas tolérable. Cette série convient pour toutes les applications où un fort volume de production est envisagé. Ì Architectures puissance distribuée Ì Applications de tension de bus intermédiaire Ì Équipements de télécommunication Ì Applications de Serveur et stockage Ì Équipements réseaux Alimentation simple sortie AC/DC Ì Densité de puissance de 1.71W/cm3 Ì Boîtier UL94V-0 Ì Entrée 5V et 12V Ì Sortie 5V, 9V, 12V et 15V Ì Aimants toriques Ì Empreinte de 0.69cm2 Ì Sortie simple isolée Ì Isolation 1KVdc Ì MSL niveau 1 farnell.com element14.com 46 Alimentations Tension d’ entrée Tension de Intensité à Code Pin 1 V nominale (V) sortie (V) la sortie Réf. Fab. Commande Pin 1 Vin 5 5 ±100 NMJ0505SC 102-1510 Pin 2 GND 5 9 ±55 NMJ0509SC 102-1511 Pin 5 -V 5 12 ±42 NMJ0512SC 102-1512 Pin 6 OV 5 15 ±33 NMJ0515SC 102-1513 Pin 7 +V 12 5 ±100 NMJ1205SC 102-1514 12 9 ±55 NMJ1209SC 102-1516 12 12 ±42 NMJ1212SC 102-1517 12 15 ±33 NMJ1215SC 102-1518 BROCHAGE Broches Sortie simple 1 -Vin 2 +Vin 3 -Vout 4 +Vout Contrôle total des couts, réduction de la gestion administrative, visibilité sur vos dépenses, flexibilité et personnalisation selon les besoins de votre société. farnell.com/ibuy Caractéristiques des broches n Pin 1 GND Pin 8 + V Pin 3 Vin Pin 10 NA Pin 5 NA Pin 12 NA Pin 7 OV Pin 14 NA NA – Non disponible pour connexion électrique Code Prix Unitaire Commande 1+ 10+ 25+ 50+ 100+ Série NMJ Tous Codes● 14.39 13.75 13.32 12.26 11.12 Réf. Tension Tension de Courant Fab. d’entrée Nom. sortie de sortie Code Commande MEE3S0505SC 5V 5V 600mA 208-3738 MEE3S0509SC 5V 9V 333mA 208-3739 MEE3S0512SC 5V 12V 250mA 208-3740 MEE3S0515SC 5V 15V 200mA 208-3741 MEE3S1205SC 12V 5V 600mA 208-3742 MEE3S1209SC 12V 9V 333mA 208-3743 MEE3S1212SC 12V 12V 250mA 208-3744 MEE3S1215SC 12V 15V 200mA 208-3745 Plage tension d’ entrée (nominal 5, 12V) ±10% Régulation de tension avale (10% to 100% à charge max.) Sortie 5V Sorties 12 et 15V 7% typ. 5% typ. Régulation de tension amont (10% à 100% à charge max.) %1.1 Précision tension sortie 5%, -2.5% Ondulation et bruit sur la sortie 125mV pic à pic Température d’utilisation -25°C à 70°C Réf. Prix Unitaire Fab. Code Commande 1+ 10+ 25+ 50+ 100+ MEE3S0505SC 208-3738● 11.13 10.28 10.16 9.91 9.41 MEE3S0509SC 208-3739● 11.13 10.28 10.16 9.91 9.41 MEE3S0512SC 208-3740● 13.80 12.74 12.60 12.29 11.67 MEE3S0515SC 208-3741● 11.13 10.28 10.16 9.91 9.41 MEE3S1205SC 208-3742● 11.13 10.28 10.16 9.91 9.41 MEE3S1209SC 208-3743● 11.13 10.28 10.16 9.91 9.41 MEE3S1212SC 208-3744● 11.13 10.28 10.16 9.91 9.41 MEE3S1215SC 208-3745● 11.13 10.28 10.16 9.91 9.41 Séries NMJ – 1W Sortie double Tension d’ entrée Tension de Intensité à Réf. Fab. Code nominale (V) sortie (V) la sortie (mA) Commande 5 5 200 NTE0505MC 102-1599 5 9 111 NTE0509MC 102-1600 5 12 83 NTE0512MC 102-1601 5 15 66 NTE0515MC 102-1602 12 5 200 NTE1205MC 102-1603 12 9 111 NTE1209MC 102-1604 12 12 83 NTE1212MC 102-1605 12 15 66 NTE1215MC 102-1607 Solution gratuite d’achats intelligents en ligne Code Prix Unitaire Commande 1+ 10+ 25+ 50+ 100+ Série NTE Tous Codes● 9.90 9.39 8.99 8.33 7.46 Ì Homologation EN 60950 Ì Sortie double Ì Isolation de 5.2Kv c.c. Ì Rendement <80% Ì Entrée de 5V et 12V Ì Sortie de 5V, 9V, 12V et 15V Ì Partage de la puissance Ve Courant Code (Nominal) Vs de sortie (mA) Réf. Fab. Commande Sortie simple 5 5 1A NMXS0505UC 102-1565 5 12 417mA NMXS0512UC 102-1567 5 15 333mA NMXS0515UC 102-1569 12 5 1A NMXS1205UC 102-1571 12 12 417mA NMXS1212UC 102-1573 12 15 333mA NMXS1215UC 102-1575 Sortie double 5 12 208mA NMXD0512UC 102-1554 5 15 167mA NMXD0515UC 102-1556 12 12 208mA NMXD1212UC 102-1560 12 15 167mA NMXD1215UC 102-1562 Isolation 5.2kV Code Prix Unitaire Commande 1+ 5+ 10+ 25+ 50+ Sortie simpleNMXS0505UC Tous Codes● 29.60 28.30 27.69 25.77 23.87 Sortie doubleNMXD0505UC Tous Codes● 32.73 31.25 30.59 28.49 26.39 Série NTE – 1W – Sortie simple Série NMXU- 5W – Sortie simple/double Convertisseurs DC/DC 3W isolé simple sortie Isolation 1kV Isolation 1kV Ì Sortie de 5V, 9V, 12V et 15V Ì Construction interne CMS Ì Ne requiert pas de radiateur Ì Matériau du boîtier conforme à UL 94V-0 Ì Refusion CECC00802 (280°C) Ì Conforme RoHS Ì Entrée 5V et 12V Ì Sortie 5V, 9V, 12V, & 15V Ì Entièrement encapsulé avec transfo magnétique Ì Pas besoin de composants externe Ì Pas de condensateurs électrolytique ou tantale Ì Entièrement enrobé Ì Brochage standard industriel Ì Broche compatible avec la série NMXSO Ì Isolation de 1kV c.c. Ì Sortie simple ou double Ì Boîtier ultra plat Ì Rendement de 85% Ì Encombrement de 5.88cm2 Ì Certifié UL94-VO Ì Rendement typique 83% Ì Densité de puissance 2.68W/cm3 Ì Large plage de température -40°C à 85°C à pleine puissance Ì Boîtier métallique UL 94V-0 Ì Pas besoin de dissipateur thermique Ì Brochage standard Ì En pleine charge, fonctionne entre -40°C et 85°C Ì Sortie simple isolée Ì Isolation de1kV c.c. Ì Rendement > 78% Ì Entrée de 5V et 12V Ì Construction CMS Ì Ne requiert ni radiateur ni composants externes Ì Conforme RoHS La série MEE3 est une nouvelle gamme de convertisseurs DC/DC haute performance offrant 3W de puissance en sortie disponible dans un boîtier déjà validé en 2W et capable de fonctionner sur la plage de température de -40°C à 85°C . Connexions Sortie simple Sortie double 1 +I/P +I/P 2 GND GND 3 +O/P +O/P 4 OV OV 5 -O/P -O/P Disponible dans un boîtier SIP standard de l’industrie, avec un brochage compatible à partir des modèles 1W NME/NKE et 2W série LNM. Ils sont idéaux pour fournir des alimentations locales sur des panneaux du système de contrôle avec l’avantage supplémentaire d’une isolation galvanique de 1kVdc. CB Scheme UL 60950-1 UL 508 www.tracopower.com Série TMP et TMPM avec une gamme de puissance allant de 4 à 60 Watt • Modèles avec sorties simple double et triple • Standards de Securité UL508 et UL60950-1 et IEC/EN60950-1 • Boitier plastique entièrement encapsulé • Disponible en montage PCB ou bornier à vis pour montage châssis • Montage Rail DIN en option • Tension d’entrée universelle 85 à 264 VAC ou 120 à 370VDC • Tensions de sorties de 3.3 VDC à 48VDC • Protection Sécurité Classe II, double isolation • Protection contre les courts circuits et les surcharges • Homologation sécurité et conformité CEM pour applications dans le commercial, le résidentiel et l’industriel • Garantie 3 ans Alimentation AC/DC compacte Sur element14 vous trouverez une mine d’informations techniques et législatives en provenance des plus grands fabricants mondiaux et des spécialistes de la législation, ainsi que des vidéos et des outils. L’EXPERTISE TECHNOLOGIQUE COMMENCE ICI element14.com/experts Easy one-hand operation Measurement of rpm, speeds and lengths Storage of mean, max. and min. values as well as the last measurement value Measurement distance up to 600 mm (optical measurement) Battery check "Low Batt" Robust design thanks to SoftCase (protective case) rpm measuring instrument testo 470 – For non-contact and mechanical measurement rpm The rpm measuring instrument testo 470, which can be operated with one hand, offers an optimum combination of optical and mechanical rpm measurerment. By simply attaching an adapter for a probe tip or a speed disc, the optical measurement becomes a mechanical one. This allows speeds and lengths to be measured additionally. For optical measurements, simply attach a reflective marker (optional) to the measurement object, point the visible measurement spot at the reflective marker, and measure. The distance to the measurement object is up to 600 mm. The testo 470 stores mean, min. and max. values as well as the last measurement value. The SoftCase included in delivery protects the instrument from impact, ensuring an especially long working life. www.testo.com We measure it. 0.1 m 6“ 12“ m/min 0.10-1999 0.10-1524 0.40-609.6 ft/min 0.40-6550 0.40-5000 0.40-2000 in/min 4.00-78700 4.00-60000 4.00-24000 m/sec 0.10-33.30 0.10-25.40 0.10-10.16 ft/sec 0.10-109 0.10-83.33 0.10-33.33 m 0.00-99999 0.00-99999 0.00-99999 ft 0.00-99999 0.00-99999 0.00-99999 in 0.00-99999 0.00-99999 0.00-99999 testo 470 Technical data / Accessories testo 470 testo 470, rpm measuring instrument set: instrument in transport case, incl. adapter, probe tip, surface speed disc, reflectors, batteries and calibration protocol Part no. 0563 0470 General technical data Oper. temp. 0 to +50 °C Storage temp. -20 to +70 °C Battery type 2 AA batteries Battery life 40 h Display 5-figure LCD display, 1-line Dimensions 175 x 60 x 28 mm Weight 190 g Warranty 2 years Units rpm, m/min, ft/min, in/min, m, ft, in Accuracy: (±1 digit/0.02 m/1.00 inch depending on resolution) Measuring wheels: 0.1m, 6" (included) Accessories Part no. Accessories for measuring instrument Reflectors, self-adhesive (1 pack = 5 off, each 150 mm long) 0554 0493 0554 4755 0554 4754 0520 0012 0520 0022 Measuring wheel 12" Measuring wheel 6" ISO calibration certificate/rpm optical and mechanical rpm measuring instruments; cal. points 500; 1000; 3000 rpm ISO calibration certificate/rpm optical rpm measuring instruments; calibration points 10; 100; 1000; 10000; 99500 rpm ISO calibration certificate/rpm Calibration points freely selectable from 10 to 99500 rpm DAkkS calibration certificate/rpm Optical rpm probes, 3 points in instrument measurement range (1 to 99,999 rpm) www.testo.com Sensor types Optically with mod. light beam Meas. range +1 to +99999 rpm +0.1 to +19.999 rpm Accuracy ±1 digit ±0.02% of mv ±0.02% of mv Resolution Mechanical Meas. range Accuracy ±1 digit 0.01 rpm (+1 to +99.99 rpm) 0.1 rpm (+100 to +999.9 rpm) 1 rpm (+1000 to +99999 rpm) 0981 9924/msp/A/01.2012 Subject to change without notice. 0520 0114 0520 0422 We measure it. Multi-Function Measuring Instrument for Ventilation and Indoor Air Quality Versatile instrument for air conditioning engineers testo 435 m³/h m/s ΔP CO2 %RH NEW! °C Lux The testo 435 is a multi-function instrument designed for the analysis of air quality. The instrument is suitable for ensuring employees' safety and well-being in workplace environments and the maintainance of optimum conditions in storage and production processes. The testo 435 can be used to measure CO2, relative humidity and air temperature to ensure conditions are at the correct level and to indicate whether air conditioning systems are working at optimum levels. Measurement of key air quality parameters A range of thermal probes, vane probes and Pitot tubes are available for the testo 435 to allow engineers to take measurements of air flow at various points in a building. The probe for Indoor Air Quality (IAQ) measures CO2, relative humidity and room air temperature in order to evaluate room air quality. If required, an absolute pressure probe is also available. When assessing the suitability of a workplace, assessments of draughts and light levels may also be needed. An objective evaluation of air velocity present in the room can be made using the comfort level probe and the lux probe reliably measures light conditions. If surface temperature measurements are required the patented testo cross-band probe offers outstanding performance, calculating the temperature of the object in only a few seconds. Temperature and humidity measurement have been integrated in a new thermal probe, for measurements in ducts. Flow speed, volume flow, air humidity and air temperature can thus be measured in one measurement sequence. The vane probe with a diameter of 60 mm is suited to integrated measurements, e.g. at outlets. For duct measurements, a 16 mm vane probe with a broad measurement range from 0.6 to 40 m/s is available. The Pitot tube is ideal for high air velocities and measurements of contaminated air. A 25 mbar differential pressure probe is integrated into 435-3 and 435-4 for this purpose. Also available are a range of probes to measure absolute pressure, comfort level, lux and surface temperature - making the testo 435 a truly multifunctional instrument. Whatever the measuring task, a range of probes are available to take effective measurements: As well as cable connected probes, the testo 435 can also be used with a range of wireless probes. Wireless probes offer users exceptional practicality as hindrance during measurement and potential damage to the probe cable are eliminated. To convert the instrument for use with the wireless probes an optional wireless module is required. Wireless probes are available for the measurement of temperature and (in some models) humidity. Exceptional practicality with wireless probes The testo 435 is designed for ease of use, with easy to follow menus. The 2 advanced models, testo 435-2 and testo 435-4, offer users the ability to allocate measured values to measurement locations. These instruments also offer the ability to switch between 2 User Profiles: User profile for channel measurement: The most important functions of a channel measurement such as time/point mean calculation and area input are directly accessed by the function buttons. Any area input, (circle, rectangle, area) is adjustable on location. 5 predefined dimensions are stored directly in the funtion buttons. Designed for ease of use The testo 435 is a robust and reliable measuring instrument with the protection class IP 54. The testo 435 has been designed to provide an instrument that is both easy to use and of strong construction. For example, the housing material offers built-in protection against knocks and jars and the large illuminated display is set back in the housing to offer protection. To assist everyday use the instrument features a carrying strap and magnets on the back panel for attachment at the measuring location. Robust design for durability User profile for Indoor Air Quality (IAQ): The most important function when monitoring room air quality is long-term measurement. The activation of the measurement programme is directly accessible via the function button. The testo 435 offers users 2 convenient documentation options; print out on-site or analysis and documentation on a PC. The testo printer offers a convenient and easy to use option for on-site documentation. The testo 435 transmits the data to the printer wirelessly via an infrared interface. Date, time and measured data are all documented on the printout. When using the testo 435-1 and testo 435-3 measured data can be printed to the Testo printer at regular intervals (from 1 minute to 24 hours), using the Cycle Printing function. In this way measurement series can be documented on paper without the need to store the data. The testo 435-2 and 435-4 models offers users the option to store both single measurents and measurement series (up to 10,000 measurement values). Data can then be Assurance through reliable documentation analysed and documented on PC in either tables or graphs, using Testo's ComSoft software. Common features of testo 435 series · WIDE SELECTION OF PROBES: · EASY USE WITH USER PROFILES · PRINTING ON THE TESTO REPORT PRINTER - IAQ probe for evaluating the indoor air quality via CO2, air temperature, indoor air humidity and absolute pressure - Thermal probe with integrated temperature and air humidity measurement - Vane and hot wire probes - Radio probes for temperature Features of specific models · INTEGRATED DIFFERENTIAL PRESSURE MEASUREMENT (435-3/-4, not retrofittable) - for flow measurement - for monitoring filters · EXTENDED INSTRUMENT FUNCTION (435-2/-4, not retrofittable) - Instrument store for 10,000 readings - PC software for analysing, archiving and documenting measurement data - Humidity probes with radio or wire - Lux probe connection possible - Comfort level probe connection possible ttestto 435--1 testo 435-1 multi-function measuring instrument for A/C, ventilation and Indoor Air Quality, with battery and calibration protocol Part no. 0560 4351 Part no. 0563 4352 Part no. 0560 4353 Part no. 0563 4354 testo 435-2 EXTENDED INSTRUMENT FUNCTION testo 435-2, multi-function measuring instrument for air conditioning, ventilation and Indoor Air Quality with readings memory, PC software, USB data transmission cable, battery and calibration protocol testo 435-3 INTEGRATED DIFFERENTIAL PRESSURE MEASUREMENT testo 435-3, multi-function measuring instrument with built-in differential pressure measurement for air conditioning, ventilation and Indoor Air Quality, with battery and calibration protocol testo 435-4 INTEGRATED DIFFERENTIAL PRESSURE MEASUREMENT EXTENDED INSTRUMENT FUNCTION testo 435-4, multi-function measuring instrument with built-in differential pressure measurement for A/C, ventilation and Indoor Air Quality with readings memory, PC software, USB data transmisstion cable, battery and calibration protocol Flow probe Illustration Meas. range Accuracy Part no. Vane measurement probe, 16 mm diameter, with telescopic handle max. 890 mm, e.g. for measurements in ducts +0.6 to +40 0635 9535 m/s ±(0.2 m/s +1.5% of mv) Vane measurement probe, 60 mm diameter, with telescopic handle max. 910 mm, e.g. for measurements at duct exit +0.25 to +20 0635 9335 m/s ±(0.1 m/s +1.5% of mv) Hot wire probe for m/s and °C, Ø probe head 7.5 mm, with telescopic handle (max. 820 mm) 0 to +20 m/s ±(0.03 m/s +5% of mv) 0635 1025 Probes 115 mm 50 mm Ø 5 mm Ø 4 mm 115 mm Ø 5 mm Ø 12 mm 350 mm Ø 7 mm 500 mm Ø 7 mm 1000 mm Ø 7 mm Multi-function probes Illustration Meas. range Accuracy 435-1/-2/-3/-4 435-2/-4 435-3/-4 Part no. IAQ probe to assess Indoor Air Quality, CO2, humidity, temperature and absolute pressure measurement 0 to +50 °C 0632 1535 0 to +100 %RH 0 to +10000 ppm CO2 +600 to +1150 hPa ±0.3 °C ±2 %RH (+2 to +98 %RH) ±(50 ppm CO2 ±2% of mv) (0 to +5000 ppm CO2) ±(100 ppm CO2 ±3% of mv) (+5001 to +10000 ppm CO2) ±5 hPa Thermal velocity probe with built-in temperature and humidity measurement, Ø 12 mm, with telescopic handle (max. 745 mm) -20 to +70 °C 0635 1535 0 to +100 %RH 0 to +20 m/s ±0.3 °C ±2 %RH (+2 to +98 %RH) ±(0.03 m/s +4% of mv) Comfort level probes Illustration Meas. range Accuracy Part no. Comfort level probe for degree of turbulence measurement with telescopic handle (max. 820 mm) and stand, meets DIN 1946 Part 2 requirements 0 to +50 °C 0628 0109 0 to +5 m/s ±0.3 °C ±(0.03 m/s +4% of mv) Lux probe, for measuring light intensity Accuracy to DIN 5032, Part 6: 0635 0545 f1 = 6% = V(Lambda) adjustment f2 = 5% = cos-like weighting Ø 12 mm Humidity probes Illustration Meas. range Accuracy Part no. Humidity/temperature probe -20 to +70 °C 0636 9735 0 to +100 %RH ±0.3 °C ±2 %RH (+2 to +98 %RH) Absolute pressure probes Illustration Meas. range Accuracy Part no. Absolute pressure probe 2000 hPa 0 to +2000 0638 1835 hPa ±5 hPa Prandtl's Pitot tubes Illustration Oper. temp. Part no. Pitot tube, 350 mm long, stainless steel, measures velocity in connection with pressure probes 0 to +600 °C 0635 2145 Pitot tube, 500 mm long, stainless steel, measures velocity in connection with pressure probes 0 to +600 °C 0635 2045 Pitot tube, 1000 mm long, stainless steel, measures velocity together with pressure probes 0638 1347 0 to +600 °C 0635 2345 Meas. range Accuracy tAir probes Illustration 99 Part no. Efficient, robust NTC air probe -50 to +150 °C ±0.5% of mv (+100 to +150 °C) 60 s 0613 1712 ±0.2 °C (-25 to +74.9 °C) ±0.4 °C (remaining range) Fast-action surface probe with sprung thermocouple strip, also for uneven surfaces, measurement range short-term to +500°C, T/C Type K -60 to +300 °C Class 2 3 s 0602 0393 Pipe wrap probe for pipe diameter 5 to 65 mm, with exchangeable measuring head. Measurement range short-term to +280°C, T/C Type K -60 to +130 °C Class 2 5 s 0602 4592 Clamp probe for measurements on pipes, pipe diameter 15 to 25 mm (max. 1"), meas. range short-term up to +130°C -50 to +100 °C Class 2 5 s 0602 4692 Meas. range Accuracy tSurface probes Illustration 99 Part no. 114 mm 50 mm Ø 5 mm Ø 3.7 mm Meas. range Accuracy tImmers./penetr. probes Illustration 99 Part no. Waterproof immerstion/penetration probe, T/C Type K -60 to +400 °C Class 2 7 s 0602 1293 Wireless Probes Technical data 435-1/-2/-3/-4 435-2/-4 Meas. range Accuracy t99 Wireless handle for attachable probe heads with T/C probe head for surface temperature measurement -50 to +350 °C 5 s Short-term to +500 °C Radio handle: ±(0.5 °C +0.3% of mv) (-40 to +500 °C) ±(0.7 °C +0.5% of mv) (remaining range) T/C probe head: Class 2 Resolution 0.1 °C (-50 to +199.9 °C) 1.0 °C (remaining range) Wireless handle with surface temperature probe head Wireless handle for plug-in probe heads (including T/C adaptor) 0554 0189 T/C probe head for surface temperature measurement (attachable to wireless handle), T/C Type K 0602 0394 869.85 MHz 869.85 MHz Radio freq. Part no. Meas. range Accuracy Resolution 0 to +100 %RH -20 to +70 °C ±2 %RH (+2 to +98 %RH) ±0.5 °C 0.1 %RH 0.1 °C Wireless handle with humidity probe head Wireless handle for attachable probe heads with humidity probe head Wireless handle for plug-in probe heads (including T/C adaptor) 0554 0189 Humidity probe head (attachable to wireless handle) 0636 9736 Radio freq. Part no. Upgrade module for wireless option Wireless probes: General technical data Wireless module for measuring instrument 869.85 MHz 0554 0188 Radio freq. Part no. Measuring rate 0.5 s or 10 s, Battery type adjustable on handle Battery life Wireless immerion/penetration probe, NTC 2 x 3V button cell (CR 2032) 2 AAA micro batteries 150 h (meas. rate 0.5 s) 2 months (meas. rate 10 s) 215 h (meas. rate 0.5 s) 6 months (meas. rate 10 s) Wireless handle Radio transmission Radio coverage Unidirectional Oper. temp. -20 to +50 °C Storage temp. -40 to +70 °C Up to 20 m (without obstruction) 40 mm Ø 12 mm 120 mm Ø 5 mm Accuracy ±1 digit ±0.2 °C (-25 to +74.9 °C) ±0.4 °C (-40 to -25.1 °C) ±0.4 °C (+75 to +99.9 °C) ±0.5% of mv (remaining range) Measuring range -40 to +150 °C Probe type NTC Resolution 0.1 °C ±0.3 °C (-60 to +60 °C) ±0.5% of mv (remaining range) -200 to +1370 °C Type K (NiCr- Ni) 0.1 °C 0 to +100 %RH Testo capacitive humidity sensor 0 to +10000 ppm CO2 CO2 (IAQ probe) 0 to +2000 mbar Absolute pressure probe 0 to +20 m/s Hot wire 435-2/-4 0 to +100000 Lux Lux 435-1/-2/-3/-4 435-3/-4 ±0.02mbar (0 to +2 mbar) 1% of mv (remaining range) 0 to +25 mbar Differential pressure probe, internal 0.01 mbar 1 Lux 0 to +60 m/s Vane Oper. temp. -20 to +50 °C Storage temp. -30 to +70 °C Battery life 200 h (typical vane measurement) Dimensions 225 x 74 x 46 mm 0.1% RH 0.01 (0635 9335) 0.01 (0635 9535) 0.01 m/s 1 ppm 0.1mbar Ordering data 0981 9513/msp/Si/07.2005 Subject to change without notice. System case Part no. Printer and Accessories Part no. testovent 410, volume flow funnel, Ø 340mm/330 x 330mm, incl. case 0554 0410 testovent 415, volume flow funnel, Ø 210mm/190x190mm, incl. case 0554 0415 Connection hose, silicone, 5m long, Max. load 700 hPa (mbar) 0554 0440 Handle for plug-in humidity probe head for connection to testo 635 and testo 435, probe cable included, measures/calibrates humidity probe head 0430 9735 Control and humidity adjustment set 11.3%RH/75.3%RH incl. adapter for humidity probes, Quick checks or calibration of humidity probe 0554 0660 PTFE sintered filter, Ø 12 mm, for corrosive substances, High humidity range (long-term measurements), high velocities 0554 0756 Stainless steel sintered cap, Ø 12 mm, is screwed onto humidity probe, For measurements at high velocity speeds or in dirt ingressed air 0554 0647 ISO calibration certificate/Temperature. For air/immersion probes, calibration points -18, 0, +60 °C 300520 0042 UKAS calibration certificate/Temperature. For immersion probes, calibration points 0, 50, 100 °C 300520 0214 ISO calibration certificate/Humiidity. Calibration points 11.3 / 45.3 / 75.3 %rh at 25 °C 300520 0078 UKAS calibration certificate/Humiidity. Calibration points 11.3 / 45.3 / 75.3 %rh at 25 °C 300520 0202 ISO calibration pressure. 5 points across range 300520 0018 ISO calibration certificate/air velocity. 5 points across range 300520 0012 ISO calibration/CO2. 0 and 5000 ppm 300520 0070 Other points and probe types available on request. testo 435-1, multi-function meas. instr., for A/C, ventilation and Indoor Air Quality, with battery and calibration protocol 0560 4351 testo 435-2, multi-function measuring instrument for air conditioning, ventilation and Indoor Air Quality with readings memory, PC software and USB data transmission cable, incl. battery and calibration protocol 0563 4352 testo 435-3, multi-function measuring instrument with built-in differential pressure measurement for air conditioning, ventilation and Indoor Air Quality, with battery and calibration protocol 0560 4353 testo 435-4, multi-function meas. instr. with built-in differential pressure measurement for A/C, ventilation and Indoor Air Quality with readings memory, PC software and USB data transmisstion cable, with battery and calibration protocol 0563 4354 Testo printer with wireless IRDA and infrared interface, 1 roll of thermal paper and 4 round cell batteries, For printout of reading on site 0554 0547 Spare thermal paper for printer (6 rolls), Measurement data documentation legible for up to 10 years 0554 0568 Spare thermal paper for printer (6 rolls) 0554 0569 External recharger incl. 4 Ni-MH rechargeable batteries with built-in, international mains adapter - 100-240 V, 300 mA, 50/60 Hz, 12 VA/instrument 0554 0610 Plug-in mains adapter for testo 735, testo 635, testo 435, 5 VDC 500 mA with European adapter 0554 0447 Service case for basic equipment of measuring instrument and probes, dimensions: 400 x 310 x 96 mm 0516 0035 Service case for measuring instrument, probes and accessories, dimensions: 490 x 420 x 110 mm 0516 0135 Part no. Part no. Measuring instrument Accessories for measuring instrument Part no. Accessories Calibration Certificates Part no. Testo Ltd Newman Lane Alton Hampshire GU34 2QJ Tel: 01420 544 433 Fax: 01420 544 434 Email: info@testo.co.uk Internet: www.testo.co.uk For further information, please contact: testo 205, 206, 230 Compact pH Measuring Instruments With innovative probe engineering pH °C The new pH measuring instruments with innovative probe engineering 2 Measurement of the pH value plays an important role in many areas. Anywhere where there are chemical and biochemical reactions, the pH value has an important indicator function. Although the technology to accurately measure pH value has been available for several years, instruments previously available have posed several problems for users: · Short life span of pH probes due to glass breakage and dirt ingress, for example · Sensitivity to dirt of the pH probe resulting in incorrect measurements · Spillage of storage solution · Handling problems when calibrating · Lack of one-hand penetration pH probes for liquid and semi-solid substances · Lack of combined temperature and pH measurement Together with experts from trade and industry, Testo has developed innovative instruments that resolve these problems. Instead of a liquid electrolyte, Testo pH probes have a gel electrolyte as a reference substance for pH measurement which facilitates the use of a hole diaphragm between the measurement electrode and housing in place of the microporous structure usually used in pH probes. The micro-porous structure becomes blocked up more quickly, similar to a finely woven sieve, consequently requiring regular service which in return results in a shorter life. Due to the large volume of gel electrolyte and the hole diaphragm, Testo pH probes are not only leakproof, they are almost completely maintenance-free, robust and unaffected by dirt and dust. The combination of the pH penetration tip and temperature probe in a one-hand instrument for accurate and fast temperature compensation is unique. Consequently, accurate readings are guaranteed in all ambient conditions. With the development of different, breakproof probe geometries, Testo is making available special solutions for liquid as well as for semi-solid substances. The leakproof storage solution is also new. pH probes must be stored in moist conditions when not in use, in order to prevent the glass membrane coating around the measurement electrode and the diaphragm from drying out. Pure water alone should not be used since water would release the conducting components contained in the probe electrolytes. A potassium chloride solution is usually used for this purpose. As with every liquid, it can leak which, particularly in the food branch, can lead to contamination of raw foodstuffs or products. Testo has produced a solution that has eliminated this disadvantage. The potassium chloride solution is available in a gel filled cartridge that does not drip or leak. pH1 probe head for liquids pH2 probe head for semi-solid substances Interchangeable probe The potassium chloride solution bonded in the gel cannot leak Robust food penetration pH/°C meter with automatic temperature compensation Fast and convenient measurement during production pH tip embedded in break-proof plastic Set case with testo 205, pH 4.0 and 7.0 buffers as well as storage cap pH buffer solution in the storage bottle with dosing container The professional pH measuring instrument for the food sector testo 205 is a pH measuring instrument, developed together with experts from the food sector, for measurements in semi-solid materials. Its main application is to be found in meat processing. Its ergonomic design and surface display make the testo 205 ideal for applications in production, incoming goods and for recurring measurements. The combination of the pH penetration tip and the temperature probe for fast and accurate temperature compensation is unique. Automatic recognition of a stable reading makes the whole measurement process much easier. Benefits • Combined penetration tip with temperature probe • Measurement tip can be changed by user • Maintenance-free gel electrode • Backlit display • Audible button feedback • 2 line display • Automatic full scale value recognition • 1, 2, or 3 point calibration possible Complete case for field use All of the required accessories are clearly arranged in the high-quality aluminium case together with the testo 205 measuring instrument. The containers with the buffer solutions can be set up in the case so that calibration can be carried out on site. Set contents • testo 205 • pH buffer 4 and 7 (each 250 ml) • Gel storage cap • Instruction manual • Batteries Instrument testo 205 Parameters pH / °C Sensor pH electrode / NTC Number of meas. channels 2 Measurement range 0 to 14 pH Resolution pH 0.01 pH Resolution Temperature 0.1 °C Accuracy Temperature ± 0.4 °C Temperature compensation Automatic Display LCD, 2 line, 0 to 70 °C Measurement rate 2 measurements per second Application temperature 0 °C to +60 °C Storage temperature -20 °C to +70 °C Battery type 4x lithium button cell LR44 Probes Screw-in pH / °C probe modules Accuracy pH ± 0.02 pH Technical Data Dimensions 197 x 33 x 20 mm Weight 69 g Battery life 80 h (Auto Off 10 Min) Housing ABS with soft coating in handle area, protection class IP 65 3 testo 205 testo 206-pH1 / pH2 / pH3 – Versatile pocket-size pH sticks 4 testo 206 pH1, pH2 and pH3 • The instrument is also suitable for outdoor applications or for tough industrial conditions thanks to the “TopSafe” protection case included. • 2 line display • Automatic full scale value recognition • 1, 2 or 3 point calibration possible testo 206 pH1 and pH2 • Insensitive to dirt on account of hole diaphragm and gel reference electrolyte • Large volume of the gel reference electrode guarantees a long life • No maintenance necessary. No need to fill up electrolyte solution. • So versatile it can be used for nearly all applications, including - for materials containing protein - highly contaminated solutions • Low membrane resistance results in fast and stable readings • Unique design makes breakage practically impossible • Combination: pH penetration tip with temperature measurement probe testo 206 pH3 • Connection of all external probes with BNC plug • Automatic and manual temperature compensation possible pH1 probe head for liquids pH2 probe head for semi-solid materials pH3 probe head with BNC interface Benefits Instrument testo 206-pH1 and pH2 Parameters pH / °C Sensors pH electrode / NTC Number of meas. channels 2 channel Measurement range 0 to 14 pH Resolution pH 0.01 pH Resolution Temperature 0.1 °C Accuracy Temperature ± 0.4 °C Temp. compensation Automatic Display LCD, 2 line, 0 to 70 °C Measurement rate 2 measurements per second Application temperature 0 °C to +60 °C Storage temperature -20 °C to +70 °C Battery type 1x CR2032 Probes Screw-in pH / °C probe modules Accuracy pH ± 0.02 pH Technical Data Dimensions 197 x 33 x 20 mm Weight Technical Data for testo 206-pH3: Refer to the corresponding probe for pH and temperature accuracy. 69 g Battery life 80 h (Auto Off 10 Min) Housing ABS with Top Safe, protection class IP 68 5 testo 206-pH1, compact pH tester for liquids Compact pH measuring instrument for measuring liquids. Built-in temperature probe for efficient temperature compensation. Automatic recognition of a stable reading makes it easier to measure. The "TopSafe" case included makes the instrument ideal for outdoor applications or for use in tough industrial conditions. Benefits • Versatile, accurate pH measuring instrument • Not affected by dust or dirt thanks to the TopSafe protection case • Maintenance-free gel electrode • Built-in temperature probe • 2 line display • Automatic full scale value recognition • 1, 2, or 3 point calibration possible testo 206-pH1 applications • pH measurement in the environmental sector (water, waste water,...) • Condensate neutralisation (heating engineering/condensing boilers) • pH applications in the industrial sector (e.g. pH value of lubricants) • pH measurement in the food sector (e.g. fruit juice production) • Generally: Liquids in all sectors testo 206-pH1 is ideal for measurements in liquids The “TopSafe” case protects in tough industrial conditions testo 206-pH1 – Instruments Set testo 206 instrument+probe module pH1 + TopSafe Leak-proof gel storage cap Belt/wall holder testo 206-pH1 – Starter Set testo 206 instrument+probe module pH1 + TopSafe Leak-proof gel storage cap High-standard aluminium storage case Belt/wall holder 2 x 250ml buffer solution with dosing chamber (pH 4 and pH 7) Part no. 0563 2061 Part no. 0563 2065 testo 206-pH1, compact pH tester for liquids testo 206-pH2, compact pH tester for semi-solid substances 6 testo 206-pH2, compact pH tester for semi-solid substances testo 206-pH2 is a pH measuring instrument for measurements in semi-solid materials, such as jelly, creams, meat, cheese, marmalade and fruit. The combination of a pH penetration tip and temperature probe for efficient temperature compensation is unique. Automatic recognition of a stable reading makes the whole measurement process easier. The "TopSafe" case supplied makes the instrument ideal for outdoor applications and for use in tough industrial conditions. Benefits • Compact pH measuring instrument with penetration tip • Not affected by dirt and dust thanks to TopSafe protection case • Maintenance-free gel electrode • Automatic full scale value recognition • Built-in temperature probe • 2 line display • 1, 2, or 3 point calibration possible testo 206-pH2 applications • Milk and dairy products (e. g. yoghurt,cheese) • pH value of mash during the production of spirits • pH value during food production (e.g. salad dressing) • Applications in the cosmetics sector (cream production) • pH monitoring during meat processing Automatic full scale value recognition and clear 2 line display. testo 206-pH2 is ideal for measurements in viscoplastic substances. testo 206-pH2 – Instruments Set testo 206 instrument +probe module pH2 + TopSafe Leak-proof gel storage cap Belt/wall holder EUR 169.- testo 206-pH2 – Starter Set testo 206 instrument +probe module pH2 + TopSafe Leak-proof gel storage cap High-standard aluminium storage case Belt/wall holder 2 x 250ml buffer solution with dosing chamber (pH 4 and pH 7) Part no. 0563 2062 Part no. 0563 2066 7 testo 206-pH3, pH tester for connecting external probes testo 206-pH3 is equipped with a BNC socket which makes it possible to connect all pH probes to the instrument. The temperature value supplied is automatically analysed if Testo pH probes with a built-in temperature sensor are used. In the case of probes without a temperature sensor, the temperature can be set manually. Automatic recognition of a stable reading makes the measurement easier. Thanks to the “TopSafe” protection case, the instrument is ideal for outdoor applications and for use in tough industrial conditions. Benefits • External pH probes can be connected • Not affected by dirt and dust thanks to the TopSafe protection case • 2 line display • Automatic full-scale value recognition • 1, 2, or 3 point calibration possible testo 206-pH3 applications • All of the probes with BNC plugs available on the market can be connected. • Testo probes with temperature measurement facilitate automatic temperature compensation. • Ideal for pH measurements in the lab • pH monitoring in the environmental sector (water quality, earth samples) • pH monitoring in the industrial sector (e.g. photo processing vats) testo 206-pH3 facilitates the connection of external pH probes Automatic temperature compensation in external probes with temperature sensor testo 206-pH3 – Instruments Set testo 206 instrument+BNC connection socket + TopSafe Belt/wall holder testo 206 pH3 – Affordable Set testo 206 instrument + BNC connection socket + Top Safe pH probe Type 01 High-standard aluminium storage case Belt/wall holder Leak-proof gel storage cap 2 x 250ml buffer solution with dosing chamber (pH 4 and pH 7) testo 206 pH3 – Versatile Set testo 206 instrument + BNC connection socket + TopSafe pH probe Type 14 (not shown) High-standard aluminium storage case Belt/wall holder Leak-proof gel storage cap 2 x 250ml buffer solution with dosing chamber (pH 4 and pH 7) Part no. 0563 2068 Part no. 0563 2067 Part no. 0563 2063 testo 206-pH3, compact pH tester with connection to external BNC probes Subject to change without notice. 0981.1123/hd/AC/Q/06.2004 Instruments Part no. testo 205 Starter Set: pH measuring instrument with penetration probe, gel storage cap, wall holder, pH4 buffer (250 ml), 0563 2052 pH 7 buffer (250 ml) in an aluminium case testo 205 Instruments Set: pH measuring instrument with penetration probe, gel storage cap and wall holder 0563 2051 testo 206-pH1 - Starter Set: pH measuring instrument with versatile probe, gel storage cap, TopSafe, wall holder, pH4 0563 2065 buffer (250 ml), pH 7 buffer (250 ml) in an aluminium case testo 206-pH1 - Instruments Set: pH measuring instrument with versatile probe, gel storage cap,TopSafe and wall holder 0563 2061 testo 206-pH2 - Starter Set: pH measuring instrument with penetration probe, gel storage cap, TopSafe, wall holder, pH4 0563 2066 buffer (250 ml), pH 7 buffer (250 ml) in an aluminium case testo 206-pH2 - Instruments Set: pH measuring instrument with penetration probe, gel storage cap, TopSafe and wall 0563 2062 holder testo 206-pH3 - Instruments Set: pH measuring instrument with BNC connection socket, TopSafe and wall holder 0563 2063 testo 206-pH3 - Affordable Set: pH measuring instrument with BNC socket, pH probe Type 01, gel storage cap, TopSafe, 0563 2067 wall holder, pH4 buffer (250 ml), pH 7 buffer (250 ml) in an aluminium case testo 206-pH3 - Versatile Set: pH measuring instrument with BNC socket, pH probe Type 14, gel storage cap, TopSafe, 0563 2068 wall holder, pH4 buffer (250 ml), pH 7 buffer (250 ml) in an aluminium case Ordering Data Qty. Accessories Part no. Spare pH probe for testo 205 incl. gel storage cap 0650 2051 Spare pH probe pH1 for testo 206 incl. gel storage cap 0650 2061 Spare pH probe pH2 for testo 206 incl. gel storage cap 0650 2062 Spare probe Type 01 for testo 206-pH3, incl. gel storage cap 0650 2063 Spare probe Type 14 for testo 206-pH3, incl. gel storage cap 0650 2064 Storage cap for testo 205 with KCl gel filling 0554 2051 Storage cap for testo 205 with KCl gel filling (pack of 3) 0554 2052 Storage cap for testo 206 with KCl gel filling 0554 2067 Storage cap for testo 206 with KCl gel filling (pack of 3) 0554 2068 pH buffer solution 4.01 in a dosing bottle (250 ml) 0554 2061 pH buffer solution 4.01 in a dosing bottle (pack of 3 each with 250 ml) 0554 2062 pH buffer solution 7.00 in a dosing bottle (250 ml) 0554 2063 pH buffer solution 7.00 in a dosing bottle (pack of 3 each with 250 ml) 0554 2064 pH buffer solution 10.01 in a dosing bottle (250 ml) 0554 2065 pH buffer solution 10.01 in a dosing bottle (pack of 3 each with 250 ml) 0554 2066 Qty. Subject to change without notice. Name Company Telephone/Fax Department Address Email Signature To: Sender testo Ltd Newman Lane, Alton Hampshire, GU34 2QJ Tel: 01420 544 433 Fax: 01420 544 434 Email: info@testo.co.uk Web: www.testo.co.uk testo 230, The Classic in the Compact Class testo 230 is a complete pH measuring instrument combined with a high standard thermometer in a compact, water-proof housing. The redox voltage can be measured via the redox electrode Type 06. The instrument has automatic temperature compensation and can be calibrated in the pH range using standard and DIN buffers. For more detailed information about testo 230, please send for the “pH measuring instrument plus thermometer” (Part no. 0981 3434). Part no. 0560 2304 Series 2600B System SourceMeter® SMU Instruments Scalable, integrated source and measure solutions Scalable, integrated source and measure solutions Built-in, Java-based test software runs directly from any web browser to boost productivity. SMU INSTRUMENTS A Greater Measure of Confidence www.keithley.com 1.888.KEITHLEY (U.S. only) Ordering Information 2601B Single-channel System SourceMeter SMU Instrument (3A DC, 10A Pulse) 2602B Dual-channel System SourceMeter SMU Instrument (3A DC, 10A Pulse) 2604B Dual-channel System SourceMeter SMU Instrument (3A DC, 10A Pulse, Benchtop Version) 2611B Single-channel System SourceMeter SMU Instrument (200V, 10A Pulse) 2612B Dual-channel System SourceMeter SMU Instrument (200V, 10A Pulse) 2614B Dual-channel System SourceMeter SMU Instrument (200V, 10A Pulse, Benchtop Version) 2634B Dual-channel System SourceMeter SMU Instrument (1fA, 10A Pulse, Benchtop Version) 2635B Single-channel System SourceMeter SMU Instrument (0.1fA, 10A Pulse) 2636B Dual-channel System SourceMeter SMU Instrument (0.1fA, 10A Pulse) Accessories Supplied Operators and Programming Manuals 2600-ALG-2: Low Noise Triax Cable with Alligator Clips, 2m (6.6 ft.) (two supplied with 2634B and 2636B, one with 2635B) 2600-Kit: Screw Terminal Connector Kit (2601B/ 2602B/2604B/2611B/2612B/2614B) 2600B-800A: Series 2400 Emulation Script for Series 2600B (supplied on USB memory stick) 7709-308A: Digital I/O Connector CA-180-3A: TSP-Link/Ethernet Cable (two per unit) TSP Express Software Tool (embedded) Test Script Builder Software (supplied on CD) LabVIEW Driver (supplied on CD) ACS Basic Edition Software (optional) Unmatched Throughput for Automated Test with TSP Technology For test applications that demand the highest levels of automation and throughput, the Model 2600B’s TSP technology delivers industry-best performance. TSP technology goes far beyond traditional test command sequencers… it fully embeds then executes complete test programs from within the SMU instrument itself. This virtually eliminates all the time-consuming bus communications to and from the PC controller, and thus dramatically improves overall test times. • Conditional branching • Advanced calculations and flow control • Variables • Pass/Fail test • Prober/Handler control • Datalogging/ Formatting Test Script DUT TSP technology executes complete test programs from the 2600B’s non-volatile memory. SMU-Per-Pin Parallel Testing with TSP-Link Technology TSP-Link is a channel expansion bus that enables multiple Series 2600B’s to be inter-connected and function as a single, tightly-synchronized, multi-channel system. The 2600B’s TSP-Link Technology works together with its TSP technology to enable high-speed, SMU-per-pin parallel testing. Unlike other high-speed solutions such as large ATE systems, the 2600B achieves parallel test performance without the cost or burden of a mainframe. The TSP-Link based system also enables superior flexibility, allowing for quick and easy system re-configuration as test requirements change. Model 2400 Software Emulation The Series 2600B is compatible with test code developed for Keithley’s Model 2400 SourceMeter SMU instrument. This enables an easier upgrade from Model 2400-based test systems to Series 2600B, and can improve test speeds by as much as 80%. In addition, it provides a migration path from SCPI programming to Keithley’s TSP technology, which when implemented can improve test times even more. For complete support of legacy test systems, the Model 2400’s Source-Memory-List test sequencer is also fully supported in this mode. Third-generation SMU Instrument Design Ensures Faster Test Times Based on the proven architecture of earlier Series 2600 instruments, the Series 2600B’s SMU instrument design enhances test speed in several ways. For example, while earlier designs used a parallel current ranging topology, the Series 2600B uses a patented series ranging topology, which provides faster and smoother range changes and outputs that settle more quickly. SMU1 <500ns SMU2 SMU3 SMU4 All channels in the TSP-Link system are synchronized to under 500ns. Scalable, integrated source and measure solutions Scalable, integrated source and measure solutions Series 2600B System SourceMeter® SMU Instruments Test 1 running To Device 1 GPIB, USB, or Ethernet TSP-Link Test 2 running To Device 2 Test 3 running To Device 3 SMU-Per-Pin Parallel Testing using TSP and TSP-Link improves test throughput and lowers the cost of test. SMU INSTRUMENTS www.keithley.com 1.888.KEITHLEY (U.S. only) A Greater Measure of Confidence The Series 2600B SMU instrument design supports two modes of operation for use with a variety of loads. In normal mode, the SMU instrument provides high bandwidth performance for maximum throughput. In high capacitance (high-C) mode, the SMU instrument uses a slower bandwidth to provide robust performance with higher capacitive loads. Simplify Semiconductor Component Test, Verification, and Analysis The optional ACS Basic Edition software maximizes the productivity of customers who perform packaged part characterization during development, quality verification, or failure analysis. Key features include: • Rich set of easy-to-access test libraries • Script editor for fast customization of existing tests • Data tool for comparing results quickly • Formulator tool that analyzes captured curves and provides a wide range of math functions For more information about the ACS Basic Edition software, please refer to the ACS Basic Edition data sheet. Powerful Software Tools In addition to the embedded Java-based plug & play software and optional ACS Basic Edition software, the free Test Script Builder software tool is provided to help users create, modify, debug, and store TSP test scripts. Table 1 describes key features of Series 2600B software tools. Three New Dual-Channel Bench- Top Models of Series 2600B Offer Industry-Best Value and Performance For applications that do not require leading-edge system-level automation capabilities, Keithley has expanded the Series 2600B to include 3 new value-priced “bench-top” models – the 2604B, 2614B, and 2634B. These models offer similar performance to Models 2602B, 2612B, and 2636B, respectively, however do not include TSPLink, Contact Check, and Digital I/O capabilities. Complete Automated System Solutions Keithley’s S500 Integrated Test Systems are highly configurable, instrument-based systems for semiconductor characterization at the device, wafer, or cassette level. Built on our proven Series 2600B System SourceMeter SMU instruments, our S500 Integrated Test Systems Scalable, integrated source and measure solutions Scalable, integrated source and measure solutions Series 2600B System SourceMeter® SMU Instruments When you need to acquire data on a packaged part quickly, the wizard-based user interface of ACS Basic Edition makes it easy to find and run the test you want, like this common FET curve trace test. Table 1. Series 2600B software tools Feature/ Functionality ACS Basic Edition Java-based Plug & Play Test Script Builder (TSB) Description Semiconductor characterization software for component test, verification, and analysis Quick Start Java-based Plug & Play Tool for fast and easy I-V testing, primarily for bench and lab users Custom script writing tool for TSP instruments Supported hardware Series 2400, Series 2600B, 4200-SCS Series 2600B Series 2600B, Series 3700 Supported buses GPIB, LAN/LXI LAN/LXI GPIB, RS-232, LAN/LXI, USB Functionality Intuitive, wizard-based GUI, Rich set of test libraries, curve trace capability Linear/Log Sweeps, Pulsing, Custom sweeps, Single point source-measures. Note: Uses new 2600B’s new API’s for precision timing and channel synchronization Custom scripts with total flexibility, full featured debugger Data management Formulator tool with wide range of math functions .csv export User defined Installation Optional purchase Not necessary. Embedded in the instrument. Free Download or CD Install on PC. The flexible software architecture of ACS Basic Edition allows configuring systems with a wide range of controllers and test fixtures, as well as the exact number of SourceMeter SMU instruments the application requires. provide innovative measurement features and system flexibility, scalable to your needs. The unique measurement capability, combined with the powerful and flexible Automated Characterization Suite (ACS) software, provides a comprehensive range of applications and features not offered on other comparable systems on the market. SMU INSTRUMENTS A Greater Measure of Confidence www.keithley.com 1.888.KEITHLEY (U.S. only) Typical Applications I-V functional test and characterization of a wide range of devices, including: • Discrete and passive components –– Two-leaded – Sensors, disk drive heads, metal oxide varistors (MOVs), diodes, zener diodes, sensors, capacitors, thermistors –– Three-leaded – Small signal bipolar junction transistors (BJTs), field-effect transistors (FETs), and more • Simple ICs – Optos, drivers, switches, sensors, converters, regulators • Integrated devices – small scale integrated (SSI) and large scale integrated (LSI) –– Analog ICs –– Radio frequency integrated circuits (RFICs) –– Application specific integrated circuits (ASICs) –– System on a chip (SOC) devices • Optoelectronic devices such as light-emitting diodes (LEDs), laser diodes, high brightness LEDs (HBLEDs), vertical cavity surface-emitting lasers (VCSELs), displays • Wafer level reliability –– NBTI, TDDB, HCI, electromigration • Solar Cells • Batteries • And more... Series 2600B System SourceMeter® SMU Instruments Scalable, integrated source and measure solutions Scalable, integrated source and measure solutions +1.5A +3A +5A –3A –5A +10A –10A –1A +1A –1.5A –20V –6V 0V +6V +20V +40V 0A –40V –35V +35V DC Pulse +1.5A +10A –10A –1A +1A +0.1A –0.1A –1.5A –20V –5V 0V +5V +20V +200V 0A –200V –180V +180V DC Pulse +1.5A +10A –10A –1A +1A +0.1A –0.1A –1.5A –20V –5V 0V +5V +20V +200V 0A –200V –180V +180V DC Pulse Models 2601B, 2602B, and 2604B I-V capability Models 2611B, 2612B, and 2614B I-V capability Models 2634B, 2635B, and 2636B I-V capability In the first and third quadrants, Series 2600B SMU instruments operate as a source, delivering power to a load. In the second and fourth quadrants, they operate as a sink, dissipating power internally. Model 2604B/2614B rear panel (Single channels 2601B, 2611B, 2635B not shown) Model 2636B rear panel SMU INSTRUMENTS www.keithley.com 1.888.KEITHLEY (U.S. only) A Greater Measure of Confidence SPECIFICATION CONDITIONS This document contains specifications and supplemental information for the Models 2601B, 2602B, and 2604B System SourceMeter® SMU instruments. Specifications are the standards against which the Models 2601B, 2602B, and 2604B are tested. Upon leaving the factory, the 2601B, 2602B, and 2604B meet these specifications. Supplemental and typical values are non-warranted, apply at 23°C, and are provided solely as useful information. Accuracy specifications are applicable for both normal and high capacitance modes. The source and measurement accuracies are specified at the SourceMeter CHANNEL A (2601B, 2602B, and 2604B) or SourceMeter CHANNEL B (2602B and 2604B) terminals under the following conditions: 1. 23°C ± 5°C, <70% relative humidity 2. After 2 hour warm-up 3. Speed normal (1 NPLC) 4. A/D auto-zero enabled 5. Remote sense operation or properly zeroed local operation 6. Calibration period = 1 year SOURCE SPECIFICATIONS Voltage Source Specifications VOLTAGE PROGRAMMING ACCURACY1 Range Programming Resolution Accuracy (1 Year) 23°C ±5°C ±(% rdg. + volts) Typical Noise (peak-peak) 0.1Hz–10Hz 100 mV 5 μV 0.02% + 250 μV 20 μV 1 V 50 μV 0.02% + 400 μV 50 μV 6 V 50 μV 0.02% + 1.8 mV 100 μV 40 V 500 μV 0.02% + 12 mV 500 μV TEMPERATURE COEFFICIENT (0°–18°C and 28°–50°C) 2: ±(0.15 × accuracy specification)/°C. Applicable for normal mode only. Not applicable for high capacitance mode. MAXiMUM OUTPUT POWER AND SOURCE/SINK LIMITS 3: 40.4W per channel maximum. ±40.4V @ ±1.0A, ±6.06V @ ±3.0A, four quadrant source or sink operation. VOLTAGE REGULATION: Line: 0.01% of range. Load: ±(0.01% of range + 100μV). NOISE 10Hz–20MHz: <20mV peak-peak (typical), <3mV RMS (typical), 6V range. CURRENT LIMIT/COMPLIANCE 4: Bipolar current limit (compliance) set with single value. Minimum value is 10nA. Accuracy same as current source. OVERSHOOT: <±(0.1% + 10mV) typical. Step size = 10% to 90% of range, resistive load, maximum current limit/compliance. GUARD OFFSET VOLTAGE: <4mV typical. Current <10mA. Current Source Specifications CURRENT PROGRAMMING ACCURACY Range Programming Resolution Accuracy (1 Year) 23°C ±5°C ±(% rdg. + amps) Typical Noise (peak-peak) 0.1Hz–10Hz 100 nA 2 pA 0.06% + 100 pA 5 pA 1 μA 20 pA 0.03% + 800 pA 25 pA 10 μA 200 pA 0.03% + 5 nA 60 pA 100 μA 2 nA 0.03% + 60 nA 3 nA 1 mA 20 nA 0.03% + 300 nA 6 nA 10 mA 200 nA 0.03% + 6 μA 200 nA 100 mA 2 μA 0.03% + 30 μA 600 nA 1 A 5 20 μA 0.05% + 1.8 mA 70 μA 3 A 5 20 μA 0.06% + 4 mA 150 μA 10 A 5, 6 200 μA 0.5 % + 40 mA (typical) TEMPERATURE COEFFICIENT (0°–18°C and 28°–50°C) 7: ±(0.15 × accuracy specification)/°C. MAXiMUM OUTPUT POWER AND SOURCE/SINK LIMITS8: 40.4W per channel maximum. ±1.01A @ ±40.0V , ±3.03A @ ±6.0V , four quadrant source or sink operation. CURRENT REGULATION: Line: 0.01% of range. Load: ±(0.01% of range + 100pA). VOLTAGE LIMIT/COMPLIANCE 9: Bipolar voltage limit (compliance) set with a single value. Minimum value is 10mV. Accuracy is the same as voltage source. OVERSHOOT: <±0.1% typical (step size = 10% to 90% of range, resistive load; see Current Source Output Settling Time for additional test conditions). ADDITIONAL SOURCE SPECIFICATIONS TRANSIENT RESPONSE TIME: <70μs for the output to recover to within 0.1% for a 10% to 90% step change in load. VOLTAGE SOURCE OUTPUT SETTLING TIME: Time required to reach within 0.1% of final value after source level command is processed on a fixed range. 100mV, 1V Ranges: <50μs typical. 6V Range: <100μs typical. 40V Range 10: <150μs typical. CURRENT SOURCE OUTPUT SETTLING TIME: Time required to reach within 0.1% of final value after source level command is processed on a fixed range. Values below for Iout × Rload = 1V unless noted. 3A Range: <80μs typical (current less than 2.5A, Rload >2W). 1A–10mA Ranges: <80μs typical (Rload >6W). 1mA Range: <100μs typical. 100μA Range: <150μs typical. 10μA Range: <500μs typical. 1μA Range: <2.5ms typical. 100nA Range: <25ms typical. DC FLOATING VOLTAGE: Output can be floated up to ±250VDC from chassis ground. REMOTE SENSE OPERATING RANGE 11: Maximum voltage between HI and SENSE HI = 3V . Maximum voltage between LO and SENSE LO = 3V . VOLTAGE OUTPUT HEADROOM: 40V Range: Max. output voltage = 42V – total voltage drop across source leads (maximum 1W per source lead). 6V Range: Max. output voltage = 8V – total voltage drop across source leads (maximum 1W per source lead). OVER TEMPERATURE PROTECTION: Internally sensed temperature overload puts unit in standby mode. VOLTAGE SOURCE RANGE CHANGE OVERSHOOT: <300mV + 0.1% of larger range (typical). Overshoot into an 100kW load, 20MHz BW. CURRENT SOURCE RANGE CHANGE OVERSHOOT: <5% of larger range + 300mV/Rload (typical with source settling set to SETTLE_SMOOTH_100NA). See Current Source Output Settling Time for additional test conditions. NOTES 1. Add 50μV to source accuracy specifications per volt of HI lead drop. 2. High Capacitance Mode accuracy is applicable at 23°C ±5°C only. 3. Full power source operation regardless of load to 30°C ambient. Above 30°C and/or power sink operation, refer to “Operating Boundaries” in the Series 2600B Reference Manual for additional power derating information. 4. For sink mode operation (quadrants II and IV), add 0.06% of limit range to the corresponding current limit accuracy specifications. Specifications apply with sink mode operation enabled. 5. Full power source operation regardless of load to 30°C ambient. Above 30°C and/or power sink operation, refer to “Operating Boundaries” in the Series 2600B Reference Manual for additional power derating information. 6. 10A range accessible only in pulse mode. 7. High Capacitance Mode accuracy is applicable at 23°C ±5°C only. 8. Full power source operation regardless of load to 30°C ambient. Above 30°C and/or power sink operation, refer to “Operating Boundaries” in the Series 2600B Reference Manual for additional power derating information. 9. For sink mode operation (quadrants II and IV), add 10% of compliance range and ±0.02% of limit setting to corresponding voltage source specification. For 100mV range add an additional 60mV of uncertainty. 10. Add 150μs when measuring on the 1A range. 11. Add 50μV to source accuracy specifications per volt of HI lead drop. Series 2600B System SourceMeter® SMU Instruments Series 2600B specifications Series 2600B specifications SMU INSTRUMENTS A Greater Measure of Confidence www.keithley.com 1.888.KEITHLEY (U.S. only) SOURCE SPECIFICATIONS (continued) PULSE SPECIFICATIONS Region Maximum Current Limit Maximum Pulse Width 12 Maximum Duty Cycle 13 1 1 A @ 40 V DC, no limit 100% 1 3 A @ 6 V DC, no limit 100% 2 1.5 A @ 40 V 100 ms 25% 3 5 A @ 35 V 4 ms 4% 4 10 A @ 20 V 1.8 ms 1% MINIMUM PROGRAMMABLE PULSE WIDTH 14, 15: 100μs. NOTE: Minimum pulse width for settled source at a given I/V output and load can be longer than 100μs. Pulse width programming resolution : 1μs. Pulse width programming accurac y 15: ±5μs. pulse width jitter : 2μs (typical). Quadrant Diagram : +1.5A +3A +5A –3A –5A +10A –10A –1A +1A –1.5A –20V –6V 0V +6V +20V +40V 0A –40V –35V +35V DC Pulse Pulse Pulse 4 4 3 3 3 3 2 2 1 2 2 NOTES 12. Times measured from the start of pulse to the start off-time; see figure below. Pulse Level Bias Level Start ton Start toff 90% 10% ton toff 10% 13. Thermally limited in sink mode (quadrants II and IV) and ambient temperatures above 30°C. See power equations in the reference manual for more information. 14. Typical performance for minimum settled pulse widths: Source Value Load Source Settling (% of range) Min. Pulse Width 6 V 2 W 0.2% 150 μs 20 V 2 W 1% 200 μs 35 V 7 W 0.5% 500 μs 40 V 27 W 0.1% 400 μs 1.5 A 27 W 0.1% 1.5 ms 3 A 2 W 0.2% 150 μs 5 A 7 W 0.5% 500 μs 10 A 2 W 0.5% 200 μs Typical tests were performed using remote operation, 4W sense, and best, fixed measurement range. For more information on pulse scripts, see the Series 2600B Reference Manual. 15. Times measured from the start of pulse to the start off-time; see figure below. Pulse Level Bias Level Start ton Start toff 90% 10% ton toff 10% 2601B, 2602B, 2604B System SourceMeter® SMU Instruments METER SPECIFICATIONS VOLTAGE MEASUREMENT ACCURACY 16, 17 Range Default Display Resolution 18 Input Resistance Accuracy (1 Year) 23°C ±5°C ±(% rdg. + volts) 100 mV 100 nV >10 GW 0.015% + 150 μV 1 V 1 μV >10 GW 0.015% + 200 μV 6 V 10 μV >10 GW 0.015% + 1 mV 40 V 10 μV >10 GW 0.015% + 8 mV TEMPERATURE COEFFICIENT (0°–18°C and 28°–50°C) 19: ±(0.15 × accuracy specification)/°C. Applicable for normal mode only. Not applicable for high capacitance mode. CURRENT MEASUREMENT ACCURACY 17 Range Default Display Resolution 20 Voltage Burden 21 Accuracy (1 Year) 23°C ±5°C ±(% rdg. + amps) 100 nA 100 fA <1 mV 0.05% + 100 pA 1 μA 1 pA <1 mV 0.025% + 500 pA 10 μA 10 pA <1 mV 0.025% + 1.5 nA 100 μA 100 pA <1 mV 0.02% + 25 nA 1 mA 1 nA <1 mV 0.02% + 200 nA 10 mA 10 nA <1 mV 0.02% + 2.5 μA 100 mA 100 nA <1 mV 0.02% + 20 μA 1 A 1 μA <1 mV 0.03% + 1.5 mA 3 A 1 μA <1 mV 0.05% + 3.5 mA 10 A 22 10 μA <1 mV 0.4% + 25 mA (typical) Current Measure Settling Time (Time for measurement to settle after a Vstep) 23: Time required to reach within 0.1% of final value after source level command is processed on a fixed range. Values for Vout = 1V unless noted. Current Range: 1mA. Settling Time: <100μs (typical). TEMPERATURE COEFFICIENT (0°–18°C and 28°–50°C) 24: ±(0.15 × accuracy specification/°C. Applicable for normal mode only. Not applicable for high capacitance mode. Contact Check 25 (not available on Model 2604B) Speed Maximum Measurement Time To Memory For 60Hz (50Hz) Accuracy (1 Year) 23°C ±5°C ±(%rdg. + ohms) FAST 1 (1.2) ms 5% + 10 W MEDIUM 4 (5) ms 5% + 1 W SLOW 36 (42) ms 5% + 0.3 W ADDITIONAL METER SPECIFICATIONS Maximum LOAD IMPEDANCE: Normal Mode: 10nF (typical). High Capacitance Mode: 50μF (typical). COMMON MODE VOLTAGE: 250VDC. COMMON MODE ISOLATION: >1GW, <4500pF. OVERRANGE: 101% of source range, 102% of measure range. MAXIMUM SENSE LEAD RESISTANCE: 1kW for rated accuracy. SENSE INPUT IMPEDANCE: >10GW. NOTES 16. Add 50μV to source accuracy specifications per volt of HI lead drop. 17. De-rate accuracy specifications for NPLC setting < 1 by increasing error term. Add appropriate % of range term using table below. NPLC Setting 100mV Range 1V–40V Ranges 100nA Range 1μA–100mA Ranges 1A–3A Ranges 0.1 0.01% 0.01% 0.01% 0.01% 0.01% 0.01 0.08% 0.07% 0.1% 0.05% 0.05% 0.001 0.8 % 0.6 % 1% 0.5 % 1.1 % 18. Applies when in single channel display mode. 19. High Capacitance Mode accuracy is applicable for 23°C ±5°C only. 20. Applies when in single channel display mode. 21. Four-wire remote sense only with current meter mode selected. Voltage measure set to 100mV or 1V range only. 22. 10A range accessible only in pulse mode. 23. Compliance equal to 100mA. 24. High Capacitance Mode accuracy is applicable for 23°C ±5°C only. 25. Includes measurement of SENSE HI to HI and SENSE LO to LO contact resistances. Series 2600B specifications Series 2600B specifications SMU INSTRUMENTS www.keithley.com 1.888.KEITHLEY (U.S. only) A Greater Measure of Confidence 2601B, 2602B, 2604B System SourceMeter® SMU Instruments GENERAL HIGH CAPACITANCE MODE26, 27, 28 Voltage Source Output Settling Time : Time required to reach 0.1% of final value after source level command is processed on a fixed range. Current limit = 1A. Voltage Source Range Settling Time with Cload = 4.7μF 100 mV 200 μs (typical) 1 V 200 μs (typical) 6 V 200 μs (typical) 40 V 7 ms (typical) Current Measure Settling Time : Time required to reach 0.1% of final value after voltage source is stabilized on a fixed range. Values below for Vout = 1V unless noted. Current Measure Range Settling Time 3 A – 1 A <120 μs (typical) (Rload > 2W) 100 mA – 10 mA <100 μs (typical) 1 mA < 3 ms (typical) 100 μ A < 3 ms (typical) 10 μ A < 230 ms (typical) 1 μ A < 230 ms (typical) Capacitor Leakage Performance Using HIGH-C scripts 29: Load = 5μF||10MW. Test: 5V step and measure. 200ms (typical) @ 50nA. Mode Change Dela y: 100μA Current Range and Above: Delay into High Capacitance Mode: 10ms. Delay out of High Capacitance Mode: 10ms. 1μA and 10μA Current Ranges: Delay into High Capacitance Mode: 230ms. Delay out of High Capacitance Mode: 10ms. Voltmeter Input Impedance : 10GW in parallel with 3300pF. Noise , 10Hz–20MHz (6V Range): <30mV peak-peak (typical). Voltage Source Range Change Overshoot : <400mV + 0.1% of larger range (typical). Overshoot into a 100kW load, 20MHz BW. NOTES 26. High Capacitance Mode specifications are for DC measurements only. 27. 100nA range is not available in High Capacitance Mode. 28. High Capacitance Mode utilizes locked ranges. Auto Range is disabled. 29. Part of KI Factory scripts. See reference manual for details. IEEE-488: IEEE-488.1 compliant. Supports IEEE-488.2 common commands and status model topology. USB Control (rear ): USB 2.0 device, TMC488 protocol. RS-232: Baud rates from 300bps to 115200bps. Ethernet : RJ-45 connector, LXI Class C, 10/100BT, no auto MDIX. EXPANSION INTERFACE: The TSP-Link expansion interface allows TSP enabled instruments to trigger and communicate with each other. (Not available on Model 2604B.) Cable Type: Category 5e or higher LAN crossover cable. Length: 3 meters maximum between each TSP enabled instrument. LXI Compliance : LXI Class C 1.4. LXI Timing : Total Output Trigger Response Time: 245μs min., 280μs typ., (not specified) max. Receive LAN[0-7] Event Delay: Unknown. Generate LAN[0-7] Event Delay: Unknown. DIGITAL I/O INTERFACE: (Not available on Model 2604B) +5VDC 5.1k 100 Solid State Fuse Read by firmware Written by firmware +5V Pins (on DIGITAL I/O connector) Digital I/O Pin (on DIGITAL I/O connector) GND Pin (on DIGITAL I/O connector) Rear Panel Connector: 25-pin female D. Input/Output Pins: 14 open drain I/O bits. Absolute Maximum Input Voltage: 5.25V. Absolute Minimum Input Voltage: –0.25V. Maximum Logic Low Input Voltage: 0.7V, +850μA max. Minimum Logic High Input Voltage: 2.1V, +570μA. Maximum Source Current (flowing out of Digital I/O bit): +960μA. Maximum Sink Current @ Maximum Logic Low Voltage (0.7V): –5.0mA. Absolute Maximum Sink Current (flowing into Digital I/O pin): –11mA (not including Model 2604B). 5V Power Supply Pins: Limited to 250mA total for all three pins, solid state fuse protected. Output Enable: Active high input pulled down internally to ground with a 10kΩ resistor; when the output enable input function has been activated, each SourceMeter channel will not turn on unless the output enable pin is driven to >2.1V (nominal current = 2.1V/10kΩ = 210μA). USB File System (Front ): USB 2.0 Host: Mass storage class device. POWER SUPPLY: 100V to 250VAC, 50–60Hz (auto sensing), 240VA max. COOLING: Forced air. Side intake and rear exhaust. One side must be unobstructed when rack mounted. EMC: Conforms to European Union Directive 2004/108/EEC, EN 61326-1. SAFETY: Conforms to European Union Directive 73/23/EEC, EN 61010-1, and UL 61010-1. DIMENSIONS: 89mm high × 213mm wide × 460mm deep (3½ in × 83⁄8 in × 17½ in). Bench Configuration (with handle and feet): 104mm high × 238mm wide × 460mm deep (41⁄8 in × 93⁄8 in × 17½ in). WEIGHT: 2601B: 4.75kg (10.4 lbs). 2602B, 2604B: 5.50kg (12.0 lbs). ENVIRONMENT: For indoor use only. Altitude: Maximum 2000 meters above sea level. Operating: 0°–50°C, 70% R.H. up to 35°C. Derate 3% R.H./°C, 35°–50°C. Storage: –25°C to 65°C. Series 2600B specifications Series 2600B specifications SMU INSTRUMENTS A Greater Measure of Confidence www.keithley.com 1.888.KEITHLEY (U.S. only) ADDITIONAL SOURCE SPECIFICATIONS TRANSIENT RESPONSE TIME: <70μs for the output to recover to within 0.1% for a 10% to 90% step change in load. VOLTAGE SOURCE OUTPUT SETTLING TIME: Time required to within reach 0.1% of final value after source level command is processed on a fixed range. Range Settling Time 200 mV <50 μs (typical) 2 V <50 μs (typical) 20 V <110 μs (typical) 200 V <700 μs (typical) CURRENT SOURCE OUTPUT SETTLING TIME: Time required to reach within 0.1% of final value after source level command is processed on a fixed range. Values below for Iout · Rload = 2V unless noted. Current Range Settling Time 1.5 A – 1 A <120 μs (typical) (Rload > 6W) 100 mA – 10 mA <80 μs (typical) 1 mA <100 μs (typical) 100 μ A <150 μs (typical) 10 μ A <500 μs (typical) 1 μ A <2 ms (typical) 100 nA <20 ms (typical) DC FLOATING VOLTAGE: Output can be floated up to ±250VDC from chassis ground. REMOTE SENSE OPERATING RANGE 11: Maximum voltage between HI and SENSE HI = 3V . Maximum voltage between LO and SENSE LO = 3V . VOLTAGE OUTPUT HEADROOM: 200V Range: Max. output voltage = 202.3V – total voltage drop across source leads (maximum 1W per source lead). 20V Range: Max. output voltage = 23.3V – total voltage drop across source leads (maximum 1W per source lead). OVER TEMPERATURE PROTECTION: Internally sensed temperature overload puts unit in standby mode. VOLTAGE SOURCE RANGE CHANGE OVERSHOOT: <300mV + 0.1% of larger range (typical). Overshoot into a 200kW load, 20MHz BW. CURRENT SOURCE RANGE CHANGE OVERSHOOT: <5% of larger range + 300mV/Rload (typical – With source settling set to SETTLE_SMOOTH_100NA). See Current Source Output Settling Time for additional test conditions. NOTES 1. Add 50μV to source accuracy specifications per volt of HI lead drop. 2. High Capacitance Mode accuracy is applicable at 23°C ±5°C only. 3. Full power source operation regardless of load to 30°C ambient. Above 30°C and/or power sink operation, refer to “Operating Boundaries” in the Series 2600B Reference Manual for additional power derating information. 4. For sink mode operation (quadrants II and IV), add 0.06% of limit range to the corresponding current limit accuracy specifications. Specifications apply with sink mode operation enabled. 5. Accuracy specifications do not include connector leakage. Derate accuracy by Vout/2E11 per °C when operating between 18°–28°C. Derate accuracy by Vout/2E11 + (0.15·Vout/2E11) per °C when operating <18°C and >28°C. 6. Full power source operation regardless of load to 30°C ambient. Above 30°C and/or power sink operation, refer to “Operating Boundaries” in the Series 2600B Reference Manual for additional power derating information. 7. 10A range accessible only in pulse mode. 8. High Capacitance Mode accuracy is applicable at 23°C ±5°C only. 9. Full power source operation regardless of load to 30°C ambient. Above 30°C and/or power sink operation, refer to “Operating Boundaries” in the Series 2600B Reference Manual for additional power derating information. 10. For sink mode operation (quadrants II and IV), add 10% of compliance range and ±0.02% of limit setting to corresponding voltage source specification. For 200mV range add an additional 120mV of uncertainty. 11. Add 50μV to source accuracy specifications per volt of HI lead drop. PULSE SPECIFICATIONS Region Maximum Current Limit Maximum Pulse Width 12 Maximum Duty Cycle 13 1 100 mA @ 200 V DC, no limit 100% 1 1.5 A @ 20 V DC, no limit 100% 2 1 A @ 180 V 8.5 ms 1% 3 14 1 A @ 200 V 2.2 ms 1% 4 10 A @ 5 V 1 ms 2.2% MINIMUM PROGRAMMABLE PULSE WIDTH 15, 16: 100μs. NOTE: Minimum pulse width for settled source at a given I/V output and load can be longer than 100μs. Pulse width programming resolution : 1μs. Pulse width programming accurac y 16: ±5μs. pulse width jitter : 2μs (typical). SPECIFICATION CONDITIONS This document contains specifications and supplemental information for the Models 2611B, 2612B, and 2614B System SourceMeter® SMU instruments. Specifications are the standards against which the Models 2611B, 2612B, and 2614B are tested. Upon leaving the factory the 2611B, 2612B, and 2614B meet these specifications. Supplemental and typical values are non-warranted, apply at 23°C, and are provided solely as useful information. Accuracy specifications are applicable for both normal and high capacitance modes. The source and measurement accuracies are specified at the SourceMeter CHANNEL A (2611B, 2612B, and 2614B) or SourceMeter CHANNEL B (2612B, 2614B) terminals under the following conditions: 1. 23°C ± 5°C, <70% relative humidity. 2. After 2 hour warm-up. 3. Speed normal (1 NPLC). 4. A/D auto-zero enabled. 5. Remote sense operation or properly zeroed local sense operation. 6. Calibration period = 1 year. SOURCE SPECIFICATIONS Voltage Source Specifications VOLTAGE PROGRAMMING ACCURACY1 Range Programming Resolution Accuracy (1 Year) 23°C ±5°C ±(% rdg. + volts) Typical Noise (Peak-Peak) 0.1Hz–10Hz 200 mV 5 μV 0.02% + 375 μV 20 μV 2 V 50 μV 0.02% + 600 μV 50 μV 20 V 500 μV 0.02% + 5 mV 300 μV 200 V 5 mV 0.02% + 50 mV 2 mV TEMPERATURE COEFFICIENT (0°–18°C and 28°–50°C) 2: ±(0.15 × accuracy specification)/°C. Applicable for normal mode only. Not applicable for high capacitance mode. MAXiMUM OUTPUT POWER AND SOURCE/SINK LIMITS 3: 30.3W per channel maximum. ±20.2V @ ±1.5A, ±202V @ ±100mA, four quadrant source or sink operation. VOLTAGE REGULATION: Line: 0.01% of range. Load: ±(0.01% of range + 100μV). NOISE 10Hz–20MHz: <20mV peak-peak (typical), <3mV RMS (typical), 20V range. CURRENT LIMIT/COMPLIANCE 4: Bipolar current limit (compliance) set with single value. Minimum value is 10nA. Accuracy is the same as current source. OVERSHOOT: <±(0.1% + 10mV) (typical). Step size = 10% to 90% of range, resistive load, maximum current limit/compliance. GUARD OFFSET VOLTAGE: <4mV (current <10mA). Current Source Specifications CURRENT PROGRAMMING ACCURACY 5 Range Programming Resolution Accuracy (1 Year) 23°C ±5°C ±(% rdg. + amps) Typical Noise (Peak-Peak) 0.1Hz–10Hz 100 nA 2 pA 0.06% + 100 pA 5 pA 1 μA 20 pA 0.03% + 800 pA 25 pA 10 μA 200 pA 0.03% + 5 nA 60 pA 100 μA 2 nA 0.03% + 60 nA 3 nA 1 mA 20 nA 0.03% + 300 nA 6 nA 10 mA 200 nA 0.03% + 6 μA 200 nA 100 mA 2 μA 0.03% + 30 μA 600 nA 1 A 6 20 μA 0.05% + 1.8 mA 70 μA 1.5 A 6 50 μA 0.06% + 4 mA 150 μA 10 A 6, 7 200 μA 0.5% + 40 mA (typical) TEMPERATURE COEFFICIENT (0°–18°C and 28°–50°C) 8: ±(0.15 × accuracy specification)/°C. Applicable for normal mode only. Not applicable for high capacitance mode. MAXiMUM OUTPUT POWER AND SOURCE/SINK LIMITS9: 30.3W per channel maximum. ±1.515A @ ±20V , ±101mA @ ±200V , four quadrant source or sink operation. CURRENT REGULATION: Line: 0.01% of range. Load: ±(0.01% of range + 100pA). VOLTAGE LIMIT/COMPLIANCE 10: Bipolar voltage limit (compliance) set with a single value. Minimum value is 20mV. Accuracy is the same as voltage source. OVERSHOOT: <±0.1% (typical). Step size = 10% to 90% of range, resistive load; see Current Source Output Settling Time for additional test conditions. 2611B, 2612B, 2614B System SourceMeter® SMU Instruments Series 2600B specifications Series 2600B specifications SMU INSTRUMENTS www.keithley.com 1.888.KEITHLEY (U.S. only) A Greater Measure of Confidence METER SPECIFICATIONS VOLTAGE MEASUREMENT ACCURACY 17, 18 Range Default Display Resolution 19 Input Resistance Accuracy (1 Year) 23°C ±5°C ±(% rdg. + volts) 200 mV 100 nV >10 GW 0.015% + 225 μV 2 V 1 μV >10 GW 0.02% + 350 μV 20 V 10 μV >10 GW 0.015% + 5 mV 200 V 100 μV >10 GW 0.015% + 50 mV TEMPERATURE COEFFICIENT (0°–18°C and 28°–50°C) 20: ±(0.15 × accuracy specification)/°C. Applicable for normal mode only. Not applicable for high capacitance mode. CURRENT MEASUREMENT ACCURACY 18, 21 Range Default Display Resolution 22 Voltage Burden 23 Accuracy (1 Year) 23°C ±5°C ±(% rdg. + amps) 100 nA 100 fA <1 mV 0.06% + 100 pA 1 μA 1 pA <1 mV 0.025% + 500 pA 10 μA 10 pA <1 mV 0.025% + 1.5 nA 100 μA 100 pA <1 mV 0.02% + 25 nA 1 mA 1 nA <1 mV 0.02% + 200 nA 10 mA 10 nA <1 mV 0.02% + 2.5 μA 100 mA 100 nA <1 mV 0.02% + 20 μA 1 A 1 μA <1 mV 0.03% + 1.5 mA 1.5 A 1 μA <1 mV 0.05% + 3.5 mA 10 A 24 10 μA <1 mV 0.4% + 25 mA (typical) Current Measure Settling Time (Time for measurement to settle after a Vstep) 25: Time required to reach 0.1% of final value after source level command is processed on a fixed range. Values for Vout = 2V unless noted. Current Range: 1mA. Settling Time: <100μs (typical). TEMPERATURE COEFFICIENT (0°–18°C and 28°–50°C) 26: ±(0.15 × accuracy specfication)/°C. Applicable for normal mode only. Not applicable for high capacitance mode. Contact Check 27 (not available on Model 2614B) Speed Maximum Measurement Time to Memory For 60Hz (50Hz) Accuracy (1 Year) 23°C ±5°C ±(%rdg. + ohms) FAST 1 (1.2) ms 5% + 10 W MEDIUM 4 (5) ms 5% + 1 W SLOW 36 (42) ms 5% + 0.3 W ADDITIONAL METER SPECIFICATIONS Maximum LOAD IMPEDANCE: Normal Mode: 10nF (typical). High Capacitance Mode: 50μF (typical). COMMON MODE VOLTAGE: 250VDC. COMMON MODE ISOLATION: >1GW, <4500pF. OVERRANGE: 101% of source range, 102% of measure range. MAXIMUM SENSE LEAD RESISTANCE: 1kW for rated accuracy. SENSE INPUT IMPEDANCE: >10GW. SOURCE SPECIFICATIONS (continued) PULSE SPECIFICATIONS (continued) Quadrant Diagram : +1.5A +10A –10A –1A +1A +0.1A –0.1A –1.5A –20V –5V 0V +5V +20V +200V 0A –200V –180V +180V DC Pulse Pulse Pulse 2 2 2 2 4 4 1 3 3 3 3 NOTES 12. Times measured from the start of pulse to the start off-time; see figure below. Pulse Level Bias Level Start ton Start toff 90% 10% ton toff 10% 13. Thermally limited in sink mode (quadrants II and IV) and ambient temperatures above 30°C. See power equations in the reference manual for more information. 14. Voltage source operation with 1.5 A current limit. 15. Typical performance for minimum settled pulse widths: Source Value Load Source Settling (% of range) Min. Pulse Width 5 V 0.5 W 1% 300 μs 20 V 200 W 0.2% 200 μs 180 V 180 W 0.2% 5 ms 200 V (1.5 A Limit) 200 W 0.2% 1.5 ms 100 mA 200 W 1% 200 μs 1 A 200 W 1% 500 μs 1 A 180 W 0.2% 5 ms 10 A 0.5 W 0.5% 300 μs Typical tests were performed using remote operation, 4W sense, and best, fixed measurement range. For more information on pulse scripts, see the Series 2600B Reference Manual. 16. Times measured from the start of pulse to the start off-time; see figure below. Pulse Level Bias Level Start ton Start toff 90% 10% ton toff 10% 2611B, 2612B, 2614B System SourceMeter® SMU Instruments Series 2600B specifications Series 2600B specifications SMU INSTRUMENTS A Greater Measure of Confidence www.keithley.com 1.888.KEITHLEY (U.S. only) 2611B, 2612B, 2614B System SourceMeter® SMU Instruments GENERAL IEEE-488: IEEE-488.1 compliant. Supports IEEE-488.2 common commands and status model topology. USB Control (rear ): USB 2.0 device, TMC488 protocol. RS-232: Baud rates from 300bps to 115200bps. Ethernet : RJ-45 connector, LXI Class C, 10/100BT, no auto MDIX. EXPANSION INTERFACE: The TSP-Link expansion interface allows TSP enabled instruments to trigger and communicate with each other. (Not available on Model 2614B.) Cable Type: Category 5e or higher LAN crossover cable. Length: 3 meters maximum between each TSP enabled instrument. LXI Compliance : LXI Class C 1.4. LXI Timing : Total Output Trigger Response Time: 245μs min., 280μs typ., (not specified) max. Receive LAN[0-7] Event Delay: Unknown. Generate LAN[0-7] Event Delay: Unknown. DIGITAL I/O INTERFACE: (Not available on Model 2614B) +5VDC 5.1k 100 Solid State Fuse Read by firmware Written by firmware +5V Pins (on DIGITAL I/O connector) Digital I/O Pin (on DIGITAL I/O connector) GND Pin (on DIGITAL I/O connector) Rear Panel Connector: 25-pin female D. Input/Output Pins: 14 open drain I/O bits. Absolute Maximum Input Voltage: 5.25V. Absolute Minimum Input Voltage: –0.25V. Maximum Logic Low Input Voltage: 0.7V, +850μA max. Minimum Logic High Input Voltage: 2.1V, +570μA. Maximum Source Current (flowing out of Digital I/O bit): +960μA. Maximum Sink Current @ Maximum Logic Low Voltage (0.7V): –5.0mA. Absolute Maximum Sink Current (flowing into Digital I/O pin): –11mA. 5V Power Supply Pins: Limited to 250mA total for all three pins, solid state fuse protected. Safety Interlock Pin: Active high input. >3.4V @ 24mA (absolute maximum of 6V) must be externally applied to this pin to ensure 200V operation. This signal is pulled down to chassis ground with a 10kW resistor. 200V operation will be blocked when the INTERLOCK signal is <0.4V (absolute minimum –0.4V). See figure below: * 10k Coil Resistance 145 ±10% Read by firmware INTERLOCK Pin (on DIGITAL I/O connector) Rear Panel Chassis Ground To output stage +220V Supply –220V Supply USB File System (Front ): USB 2.0 Host: Mass storage class device. POWER SUPPLY: 100V to 250VAC, 50–60Hz (auto sensing), 240VA max. COOLING: Forced air. Side intake and rear exhaust. One side must be unobstructed when rack mounted. EMC: Conforms to European Union Directive 2004/108/EEC, EN 61326-1. SAFETY: Conforms to European Union Directive 73/23/EEC, EN 61010-1, and UL 61010-1. DIMENSIONS: 89mm high × 213mm wide × 460mm deep (3½ in × 83⁄8 in × 17½ in). Bench Configuration (with handle and feet): 104mm high × 238mm wide × 460mm deep (41⁄8 in × 93⁄8 in × 17½ in). WEIGHT: 2611B: 4.75kg (10.4 lbs). 2612B, 2614B: 5.50kg (12.0 lbs). ENVIRONMENT: For indoor use only. Altitude: Maximum 2000 meters above sea level. Operating: 0°–50°C, 70% R.H. up to 35°C. Derate 3% R.H./°C, 35°–50°C. Storage: –25°C to 65°C. METER SPECIFICATIONS (continued) NOTES 17. Add 50μV to source accuracy specifications per volt of HI lead drop. 18. De-rate accuracy specifications for NPLC setting <1 by increasing error term. Add appropriate % of range term using table below. NPLC Setting 200mV Range 2V–200V Ranges 100nA Range 1μA–100mA Ranges 1A–1.5A Ranges 0.1 0.01% 0.01% 0.01% 0.01% 0.01% 0.01 0.08% 0.07% 0.1% 0.05% 0.05% 0.001 0.8 % 0.6 % 1% 0.5 % 1.1 % 19. Applies when in single channel display mode. 20. High Capacitance Mode accuracy is applicable at 23°C ±5°C only. 21. Accuracy specifications do not include connector leakage. De-rate accuracy by Vout/2E11 per °C when operating between 18°–28°C. Derate accuracy by Vout/2E11 + (0.15 * Vout/2E11) per °C when operating <18° and >28°C. 22. Applies when in single channel display mode. 23. Four-wire remote sense only and with current meter mode selected. Voltage measure set to 200mV or 2V range only. 24. 10A range accessible only in pulse mode. 25. Compliance equal to 100mA. 26. High Capacitance Mode accuracy is applicable at 23°C ±5°C only. 27. Includes measurement of SENSE HI to HI and SENSE LO to LO contact resistances. HIGH CAPACITANCE MODE 28, 29, 30 Voltage Source Output Settling Time : Time required to reach within 0.1% of final value after source level command is processed on a fixed range. Current limit = 1A. Voltage Source Range Settling Time with Cload = 4.7μF 200 mV 600 μs (typical) 2 V 600 μs (typical) 20 V 1.5 ms (typical) 200 V 20 ms (typical) Current Measure Settling Time : Time required to reach within 0.1% of final value after voltage source is stabilized on a fixed range. Values below for Vout = 2V unless noted. Current Measure Range Settling Time 1.5 A – 1 A <120 μs (typical) (Rload >6W) 100 mA – 10 mA <100 μs (typical) 1 mA < 3 ms (typical) 100 μ A < 3 ms (typical) 10 μ A < 230 ms (typical) 1 μ A < 230 ms (typical) Capacitor Leakage Performance Using HIGH-C scripts 31: Load = 5μF||10MW. Test: 5V step and measure. 200ms (typical) @ 50nA. Mode Change Dela y: 100μA Current Range and Above: Delay into High Capacitance Mode: 10ms. Delay out of High Capacitance Mode: 10ms. 1μA and 10μA Current Ranges: Delay into High Capacitance Mode: 230ms. Delay out of High Capacitance Mode: 10ms. Voltmeter Input Impedance : 30GW in parallel with 3300pF. Noise , 10Hz–20MHz (20V Range): <30mV peak-peak (typical). Voltage Source Range Change Overshoot (for 20V range and below): <400mV + 0.1% of larger range (typical). Overshoot into a 200kW load, 20MHz BW. NOTES 28. High Capacitance Mode specifications are for DC measurements only. 29. 100nA range is not available in High Capacitance Mode. 30. High Capacitance Mode utilizes locked ranges. Auto Range is disabled. 31. Part of KI Factory scripts, See reference manual for details. Series 2600B specifications Series 2600B specifications SMU INSTRUMENTS www.keithley.com 1.888.KEITHLEY (U.S. only) A Greater Measure of Confidence ADDITIONAL SOURCE SPECIFICATIONS TRANSIENT RESPONSE TIME: <70μs for the output to recover to within 0.1% for a 10% to 90% step change in load. VOLTAGE SOURCE OUTPUT SETTLING TIME: Time required to reach within 0.1% of final value after source level command is processed on a fixed range. Range Settling Time 200 mV <50 μs (typical) 2 V <50 μs (typical) 20 V <110 μs (typical) 200 V <700 μs (typical) CURRENT SOURCE OUTPUT SETTLING TIME: Time required to reach within 0.1% of final value after source level command is processed on a fixed range. Values below for Iout · Rload = 2V unless noted. Current Range Settling Time 1.5 A – 1 A <120 μs (typical) (Rload > 6W) 100 mA – 10 mA <80 μs (typical) 1 mA <100 μs (typical) 100 μ A <150 μs (typical) 10 μ A <500 μs (typical) 1 μ A <2 ms (typical) 100 nA <20 ms (typical) 10 nA <40 ms (typical) 1 nA <150 ms (typical) DC FLOATING VOLTAGE: Output can be floated up to ±250VDC. REMOTE SENSE OPERATING RANGE 10: Maximum voltage between HI and SENSE HI = 3V . Maximum voltage between LO and SENSE LO = 3V . VOLTAGE OUTPUT HEADROOM: 200V Range: Max. output voltage = 202.3V – total voltage drop across source leads (maximum 1W per source lead). 20V Range: Max. output voltage = 23.3V – total voltage drop across source leads (maximum 1W per source lead). OVER TEMPERATURE PROTECTION: Internally sensed temperature overload puts unit in standby mode. VOLTAGE SOURCE RANGE CHANGE OVERSHOOT: <300mV + 0.1% of larger range (typical). Overshoot into a 200kW load, 20MHz BW. CURRENT SOURCE RANGE CHANGE OVERSHOOT: <5% of larger range + 300mV/Rload (typical – With source settling set to SETTLE_SMOOTH_100NA). See Current Source Output Settling Time for additional test condtions. PULSE SPECIFICATIONS Region Maximum Current Limit Maximum Pulse Width 11 Maximum Duty Cycle 12 1 100 mA @ 200 V DC, no limit 100% 1 1.5 A @ 20 V DC, no limit 100% 2 1 A @ 180 V 8.5 ms 1% 3 13 1 A @ 200 V 2.2 ms 1% 4 10 A @ 5 V 1 ms 2.2% MINIMUM PROGRAMMABLE PULSE WIDTH 14, 15: 100μs. NOTE: Minimum pulse width for settled source at a given I/V output and load can be longer than 100μs. Pulse width programming resolution : 1μs. Pulse width programming accurac y 15: ±5μs. pulse width jitter : 50μs (typical). Quadrant Diagram : +1.5A +10A –10A –1A +1A +0.1A –0.1A –1.5A –20V –5V 0V +5V +20V +200V 0A –200V –180V +180V DC Pulse Pulse Pulse 2 2 2 2 4 4 1 3 3 3 3 SPECIFICATION CONDITIONS This document contains specifications and supplemental information for the Models 2634B, 2635B, and 2636B System SourceMeter® SMU instruments. Specifications are the standards against which the Models 2634B, 2635B, and 2636B are tested. Upon leaving the factory the 2634B, 2635B, and 2636B meet these specifications. Supplemental and typical values are non-warranted, apply at 23°C, and are provided solely as useful information. Accuracy specifications are applicable for both normal and high capacitance modes. The source and measurement accuracies are specified at the SourceMeter CHANNEL A (2634B, 2635B, and 2636B) or SourceMeter CHANNEL B (2634B, 2636B) terminals under the following conditions: 1. 23°C ± 5°C, <70% relative humidity. 2. After 2 hour warm-up 3. Speed normal (1 NPLC) 4. A/D auto-zero enabled 5. Remote sense operation or properly zeroed local sense operation 6. Calibration period = 1 year SOURCE SPECIFICATIONS Voltage Source Specifications VOLTAGE PROGRAMMING ACCURACY1 Range Programming Resolution Accuracy (1 Year) 23°C ±5°C ±(% rdg. + volts) Typical Noise (peak-peak) 0.1Hz–10Hz 200 mV 5 μV 0.02% + 375 μV 20 μV 2 V 50 μV 0.02% + 600 μV 50 μV 20 V 500 μV 0.02% + 5 mV 300 μV 200 V 5 mV 0.02% + 50 mV 2 mV TEMPERATURE COEFFICIENT (0°–18°C and 28°–50°C) 2: ±(0.15 × accuracy specification)/°C. Applicable for normal mode only. Not applicable for high capacitance mode. MAXiMUM OUTPUT POWER AND SOURCE/SINK LIMITS 3: 30.3W per channel maximum. ±20.2V @ ±1.5A, ±202V @ ±100mA, four quadrant source or sink operation. VOLTAGE REGULATION: Line: 0.01% of range. Load: ±(0.01% of range + 100μV). NOISE 10Hz–20MHz: <20mV pk-pk (typical), <3mV rms (typical), 20V range. CURRENT LIMIT/COMPLIANCE 4: Bipolar current limit (compliance) set with single value. Minimum value is 100pA. Accuracy is the same as current source. OVERSHOOT: <±(0.1% + 10mV) typical (step size = 10% to 90% of range, resistive load, maximum current limit/compliance). GUARD OFFSET VOLTAGE: <4mV (current <10mA). Current Source Specifications CURRENT PROGRAMMING ACCURACY Range Programming Resolution Accuracy (1 Year) 23°C ±5°C ±(% rdg. + amps) Typical Noise (peak-peak) 0.1Hz–10Hz 1 nA 20 fA 0.15% + 2 pA 800 fA 10 nA 200 fA 0.15% + 5 pA 2 pA 100 nA 2 pA 0.06% + 50 pA 5 pA 1 μA 20 pA 0.03% + 700 pA 25 pA 10 μA 200 pA 0.03% + 5 nA 60 pA 100 μA 2 nA 0.03% + 60 nA 3 nA 1 mA 20 nA 0.03% + 300 nA 6 nA 10 mA 200 nA 0.03% + 6 μA 200 nA 100 mA 2 μA 0.03% + 30 μA 600 nA 1 A 5 20 μA 0.05% + 1.8 mA 70 μA 1.5 A 5 50 μA 0.06% + 4 mA 150 μA 10 A 5, 6 200 μA 0.5 % + 40 mA (typical) TEMPERATURE COEFFICIENT (0°–18°C and 28°–50°C) 7: ±(0.15 × accuracy specification)/°C. Applicable for normal mode only. Not applicable for high capacitance mode. MAXiMUM OUTPUT POWER AND SOURCE/SINK LIMITS 8: 30.3W per channel maximum. ±1.515A @ ±20V, ±101mA @ ±200V, four quadrant source or sink operation. CURRENT REGULATION: Line: 0.01% of range. Load: ±(0.01% of range + 100pA). VOLTAGE LIMIT/COMPLIANCE 9: Bipolar voltage limit (compliance) set with a single value. Minimum value is 20mV. Accuracy is the same as voltage source. OVERSHOOT: <±0.1% typical (step size = 10% to 90% of range, resistive load, maximum current limit/compliance; see Current Source Output Settling Time for additional test conditions). 2634B, 2635B, 2636B System SourceMeter® SMU Instruments Series 2600B specifications Series 2600B specifications SMU INSTRUMENTS A Greater Measure of Confidence www.keithley.com 1.888.KEITHLEY (U.S. only) METER SPECIFICATIONS VOLTAGE MEASUREMENT ACCURACY 16, 17 Range Default Display Resolution 18 Input Resistance Accuracy (1 Year) 23°C ±5°C ±(% rdg. + volts) 200 mV 100 nV >1014 W 0.015% + 225 μV 2 V 1 μV >1014 W 0.02% + 350 μV 20 V 10 μV >1014 W 0.015% + 5 mV 200 V 100 μV >1014 W 0.015% + 50 mV TEMPERATURE COEFFICIENT (0°–18°C and 28°–50°C) 19: ±(0.15 × accuracy specification)/°C. Applicable for normal mode only. Not applicable for high capacitance mode. CURRENT MEASUREMENT ACCURACY 17 Range Default Display Resolution 20 Voltage Burden 21 Accuracy (1 Year) 23°C ±5°C ±(% rdg. + amps) *100 pA 22, 23 0.1 fA <1 mV 0.15% + 120 fA 1 nA 22, 24 1 fA <1 mV 0.15% + 240 fA 10 nA 10 fA <1 mV 0.15% + 3 pA 100 nA 100 fA <1 mV 0.06% + 40 pA 1 μA 1 pA <1 mV 0.025% + 400 pA 10 μA 10 pA <1 mV 0.025% + 1.5 nA 100 μA 100 pA <1 mV 0.02% + 25 nA 1 mA 1 nA <1 mV 0.02% + 200 nA 10 mA 10 nA <1 mV 0.02% + 2.5 μA 100 mA 100 nA <1 mV 0.02% + 20 μA 1 A 1 μA <1 mV 0.03% + 1.5 mA 1.5 A 1 μA <1 mV 0.05% + 3.5 mA 10 A 25 10 μA <1 mV 0.4 % + 25 mA * 100 pA range not available on Model 2634B. Current Measure Settling Time (Time for measurement to settle after a Vstep) 26: Time required to reach within 0.1% of final value after source level command is processed on a fixed range. Values for Vout = 2V unless noted. Current Range: 1mA. Settling Time: <100μs (typical). TEMPERATURE COEFFICIENT (0°–18°C and 28°–50°C) 27: ±(0.15 × accuracy specfication)/°C. Applicable for normal mode only. Not applicable for high capacitance mode. Contact Check 28 (Not available on Model 2634B) Speed Maximum Measurement Time to Memory For 60Hz (50Hz) Accuracy (1 Year) 23°C ±5°C ±(%rdg. + ohms) FAST 1 (1.2) ms 5% + 10 W MEDIUM 4 (5) ms 5% + 1 W SLOW 36 (42) ms 5% + 0.3 W ADDITIONAL METER SPECIFICATIONS Maximum LOAD IMPEDANCE: Normal Mode: 10nF (typical). High Capacitance Mode: 50μF (typical). COMMON MODE VOLTAGE: 250VDC. COMMON MODE ISOLATION: >1GW, <4500pF. OVERRANGE: 101% of source range, 102% of measure range. MAXIMUM SENSE LEAD RESISTANCE: 1kW for rated accuracy. SENSE INPUT IMPEDANCE: >1014W. SOURCE SPECIFICATIONS (continued) NOTES 1. Add 50μV to source accuracy specifications per volt of HI lead drop. 2. High Capacitance Mode accuracy is applicable at 23°C ±5°C only. 3. Full power source operation regardless of load to 30°C ambient. Above 30°C and/or power sink operation, refer to “Operating Boundaries” in the Series 2600B Reference Manual for additional power derating information. 4. For sink mode operation (quadrants II and IV), add 0.06% of limit range to the corresponding current limit accuracy specifications. Specifications apply with sink mode operation enabled. 5. Full power source operation regardless of load to 30°C ambient. Above 30°C and/or power sink operation, refer to “Operating Boundaries” in the Series 2600B Reference Manual for additional power derating information. 6. 10A range accessible only in pulse mode. 7. High Capacitance Mode accuracy is applicable at 23°C ±5°C only. 8. Full power source operation regardless of load to 30°C ambient. Above 30°C and/or power sink operation, refer to “Operating Boundaries” in the Series 2600B Reference Manual for additional power derating information. 9. For sink mode operation (quadrants II and IV), add 10% of compliance range and ±0.02% of limit setting to corresponding voltage source specification. For 200mV range add an additional 120mV of uncertainty. 10. Add 50μV to source accuracy specifications per volt of HI lead drop. 11. Times measured from the start of pulse to the start off-time; see figure below. Pulse Level Bias Level Start ton Start toff 90% 10% ton toff 10% 12. Thermally limited in sink mode (quadrants II and IV) and ambient temperatures above 30°C. See power equations in the Reference Manual for more information. 13. Voltage source operation with 1.5 A current limit. 14. Typical performance for minimum settled pulse widths: Source Value Load Source Settling (% of range) Min. Pulse Width 5 V 0.5 W 1% 300 μs 20 V 200 W 0.2% 200 μs 180 V 180 W 0.2% 5 ms 200 V (1.5 A Limit) 200 W 0.2% 1.5 ms 100 mA 200 W 1% 200 μs 1 A 200 W 1% 500 μs 1 A 180 W 0.2% 5 ms 10 A 0.5 W 0.5% 300 μs Typical tests were performed using remote operation, 4W sense, and best, fixed measurement range. For more information on pulse scripts, see the Series 2600B Reference Manual. 15. Times measured from the start of pulse to the start off-time; see figure below. Pulse Level Bias Level Start ton Start toff 90% 10% ton toff 10% 2634B, 2635B, 2636B System SourceMeter® SMU Instruments Series 2600B specifications Series 2600B specifications SMU INSTRUMENTS www.keithley.com 1.888.KEITHLEY (U.S. only) A Greater Measure of Confidence 2634B, 2635B, 2636B System SourceMeter® SMU Instruments METER SPECIFICATIONS (continued) NOTES 16. Add 50μV to source accuracy specifications per volt of HI lead drop. 17. De-rate accuracy specifications for NPLC setting <1 by increasing error term. Add appropriate % of range term using table below. NPLC Setting 200mV Range 2V–200V Ranges 100nA Range 1μA–100mA Ranges 1A–1.5A Ranges 0.1 0.01% 0.01% 0.01% 0.01% 0.01% 0.01 0.08% 0.07% 0.1% 0.05% 0.05% 0.001 0.8 % 0.6 % 1% 0.5 % 1.1 % 18. Applies when in single channel display mode. 19. High Capacitance Mode accuracy is applicable at 23°C ±5°C only. 20. Applies when in single channel display mode. 21. Four-wire remote sense only and with current meter mode selected. Voltage measure set to 200mV or 2V range only. 22. 10-NPLC, 11-Point Median Filter, <200V range, measurements made within 1 hour after zeroing. 23°C ± 1°C 23. Under default specification conditions: ±(0.15% + 750fA). 24. Under default specification conditions: ±(0.15% + 1pA). 25. 10A range accessible only in pulse mode. 26. Delay factor set to 1. Compliance equal to 100mA. 27. High Capacitance Mode accuracy is applicable at 23°C ±5°C only. 28. Includes measurement of SENSE HI to HI and SENSE LO to LO contact resistances. HIGH CAPACITANCE MODE29, 30, 31 Voltage Source Output Settling Time : Time required to reach within 0.1% of final value after source level command is processed on a fixed range. Current limit = 1A. Voltage Source Range Settling Time with Cload = 4.7μF 200 mV 600 μs (typical) 2 V 600 μs (typical) 20 V 1.5 ms (typical) 200 V 20 ms (typical) Current Measure Settling Time : Time required to reach within 0.1% of final value after voltage source is stabilized on a fixed range. Values below for Vout = 2V unless noted. Current Measure Range Settling Time 1.5 A – 1 A <120 μs (typical) (Rload >6W) 100 mA – 10 mA <100 μs (typical) 1 mA < 3 ms (typical) 100 μ A < 3 ms (typical) 10 μ A < 230 ms (typical) 1 μ A < 230 ms (typical) Capacitor Leakage Performance Using HIGH-C scripts 32: Load = 5μF||10MW. Test: 5V step and measure. 200ms (typical) @ 50nA. Mode Change Dela y: 100μA Current Range and Above: Delay into High Capacitance Mode: 10ms. Delay out of High Capacitance Mode: 10ms. 1μA and 10μA Current Ranges: Delay into High Capacitance Mode: 230ms. Delay out of High Capacitance Mode: 10ms. Voltmeter Input Impedance : 30GW in parallel with 3300pF. Noise , 10Hz–20MHz (20V Range): <30mV peak-peak (typical). Voltage Source Range Change Overshoot (for 20V range and below): <400mV + 0.1% of larger range (typical). Overshoot into a 200kW load, 20MHz BW. NOTES 29. High Capacitance Mode specifications are for DC measurements only. 30. 100nA range and below are not available in high capacitance mode. 31. High Capacitance Mode utilizes locked ranges. Auto Range is disabled. 32. Part of KI Factory scripts. See reference manual for details. GENERAL IEEE-488: IEEE-488.1 compliant. Supports IEEE-488.2 common commands and status model topology. USB Control (rear ): USB 2.0 device, TMC488 protocol. RS-232: Baud rates from 300bps to 115200bps. Programmable number of data bits, parity type, and flow control (RTS/CTS hardware or none). Ethernet : RJ-45 connector, LXI Class C, 10/100BT, no auto MDIX. EXPANSION INTERFACE: The TSP-Link expansion interface allows TSP enabled instruments to trigger and communicate with each other. (Not available on Model 2614B.) Cable Type: Category 5e or higher LAN crossover cable. Length: 3 meters maximum between each TSP enabled instrument. LXI Compliance : LXI Class C 1.4. LXI Timing : Total Output Trigger Response Time: 245μs min., 280μs typ., (not specified) max. Receive LAN[0-7] Event Delay: Unknown. Generate LAN[0-7] Event Delay: Unknown. DIGITAL I/O INTERFACE: (Not available on Model 2614B) +5VDC 5.1k 100 Solid State Fuse Read by firmware Written by firmware +5V Pins (on DIGITAL I/O connector) Digital I/O Pin (on DIGITAL I/O connector) GND Pin (on DIGITAL I/O connector) Rear Panel Connector: 25-pin female D. Input/Output Pins: 14 open drain I/O bits. Absolute Maximum Input Voltage: 5.25V. Absolute Minimum Input Voltage: –0.25V. Maximum Logic Low Input Voltage: 0.7V, +850μA max. Minimum Logic High Input Voltage: 2.1V, +570μA. Maximum Source Current (flowing out of Digital I/O bit): +960μA. Maximum Sink Current @ Maximum Logic Low Voltage (0.7V): –5.0mA. Absolute Maximum Sink Current (flowing into Digital I/O pin): –11mA. 5V Power Supply Pins: Limited to 250mA total for all three pins, solid state fuse protected. Safety Interlock Pin: Active high input. >3.4V @ 24mA (absolute maximum of 6V) must be externally applied to this pin to ensure 200V operation. This signal is pulled down to chassis ground with a 10kW resistor. 200V operation will be blocked when the INTERLOCK signal is <0.4V (absolute minimum –0.4V). See figure below: * 10k Coil Resistance 145 ±10% Read by firmware INTERLOCK Pin (on DIGITAL I/O connector) Rear Panel Chassis Ground To output stage +220V Supply –220V Supply USB File System (Front ): USB 2.0 Host: Mass storage class device. POWER SUPPLY: 100V to 250VAC, 50–60Hz (auto sensing), 240VA max. COOLING: Forced air. Side intake and rear exhaust. One side must be unobstructed when rack mounted. EMC: Conforms to European Union Directive 2004/108/EEC, EN 61326-1. SAFETY: Conforms to European Union Directive 73/23/EEC, EN 61010-1, and UL 61010-1. DIMENSIONS: 89mm high × 213mm wide × 460mm deep (3½ in × 83⁄8 in × 17½ in). Bench Configuration (with handle and feet): 104mm high × 238mm wide × 460mm deep (41⁄8 in × 93⁄8 in × 17½ in). WEIGHT: 2635B: 4.75kg (10.4 lbs). 2634B, 2636B: 5.50kg (12.0 lbs). ENVIRONMENT: For indoor use only. Altitude: Maximum 2000 meters above sea level. Operating: 0°–50°C, 70% R.H. up to 35°C. Derate 3% R.H./°C, 35°–50°C. Storage: –25°C to 65°C. See pages 23 and 24 for measurement speeds and other specifications . Series 2600B specifications Series 2600B specifications SMU INSTRUMENTS A Greater Measure of Confidence www.keithley.com 1.888.KEITHLEY (U.S. only) Measurement Speed Specifications 1, 2, 3 Maximum SWEEP OPERATION RATES (operations per second) FOR 60Hz (50Hz): A/D Converter Speed Trigger Origin Measure To Memory Using User Scripts Measure To Gpib Using User Scripts Source Measure To Memory Using User Scripts Source Measure To Gpib Using User Scripts Source Measure To Memory Using Sweep API Source Measure To Gpib Using Sweep API 0.001 NPLC Internal 20000 (20000) 10500 (10500) 7000 (7000) 6200 (6200) 12000 (12000) 5900 (5900) 0.001 NPLC Digital I/O 8100 (8100) 7100 (7100) 5500 (5500) 5100 (5100) 11200 (11200) 5700 (5700) 0.01 NPLC Internal 5000 (4000) 4000 (3500) 3400 (3000) 3200 (2900) 4200 (3700) 3100 (2800) 0.01 NPLC Digital I/O 3650 (3200) 3400 (3000) 3000 (2700) 2900 (2600) 4150 (3650) 3050 (2775) 0.1 NPLC Internal 580 (490) 560 (475) 550 (465) 550 (460) 575 (480) 545 (460) 0.1 NPLC Digital I/O 560 (470) 450 (460) 545 (460) 540 (450) 570 (480) 545 (460) 1.0 NPLC Internal 59 (49) 59 (49) 59 (49) 59 (49) 59 (49) 59 (49) 1.0 NPLC Digital I/O 58 (48) 58 (49) 59 (49) 59 (49) 59 (49) 59 (49) Series 2600B System SourceMeter® SMU Instruments Applicable to Models 2601B, 2602B, 2604B, 2611B, 2612B, 2614B, 2634B, 2635B, and 2636B. Maximum SINGLE MEASUREMENT RATES (operations per second) FOR 60Hz (50Hz): A/D Converter Speed Trigger Origin Measure To Gpib Source Measure To Gpib Source Measure Pass/Fail To Gpib 0.001 NPLC Internal 1900 (1800) 1400 (1400) 1400 (1400) 0.01 NPLC Internal 1450 (1400) 1200 (1100) 1100 (1100) 0.1 NPLC Internal 450 (390) 425 (370) 425 (375) 1.0 NPLC Internal 58 (48) 57 (48) 57 (48) Maximum Measurement RANGE CHANGE RATE: <150μs for ranges >10μA, typical. When changing to or from a range ≥1A, maximum rate is <450μs, typical. Maximum SOURCE Range CHANGE RATE: <2.5ms for ranges >10μA, typical. When changing to or from a range ≥1A, maximum rate is <5.2ms, typical. Maximum SOURCE FUNCTION CHANGE RATE: <1ms, typical. COMMAND PROCESSING TIME: Maximum time required for the output to begin to change following the receipt of the smux. source.levelv or smux.source.leveli command. <1ms typical. NOTES 1. Tests performed with a 2602B, 2612B, or 2636B on Channel A using the following equipment: PC Hardware (Pentium® 4 2.4GHz, 512MB RAM, National Instruments PCI-GPIB). Driver (NI-486.2 Version 2.2 PCI-GPIB). Software (Microsoft® Windows® 2000, Microsoft Visual Studio 2005, VISA version 4.1). 2. Exclude current measurement ranges less than 1mA. 3. 2635B/2636B with default measurement delays and filters disabled. Series 2600B specifications Series 2600B specifications TRIGGERING AND SYNCHRONIZATION SPECIFICATIONS 1 Triggering : Trigger in to trigger out: 0.5μs, typical. Trigger in to source change:2 10 μs, typical. Trigger Timer accuracy: ±2μs, typical. Source change2 after LXI Trigger: 280μs, typical. Synchroni zation : Single-node synchronized source change:4 <0.5μs, typical. Multi-node synchronized source change:4 <0.5μs, typical. NOTES 1. TSP-Link not available on Models 2604B, 2614B, and 2634B. 2. Fixed source range, with no polarity change. SMU INSTRUMENTS www.keithley.com 1.888.KEITHLEY (U.S. only) A Greater Measure of Confidence ACCESSORIES AVAILABLE Software ACS-BASIC Component Characterization Software Rack Mount Kits 4299-1 Single Rack Mount Kit with front and rear support 4299-2 Dual Rack Mount Kit with front and rear support 4299-5 1U Vent Panel Cables and Connectors 2600-BAN Banana Test Leads/Adapter Cable. For a single 2601B/2602B/2604B/2611B/261 2B/2614B SMU instrument channel 2600-KIT Extra screw terminal connector, strain relief, and cover for a single SourceMeter channel (one supplied with 2601B/2611B, two with 2602B/2604B/2612B/2614B) 2600-FIX-TRIAX Phoenix-to-Triax Adapter for 2 wire sensing 2600-TRIAX Phoenix-to-Triax Adapter for 4 wire sensing 7078-TRX-* 3-Slot, Low Noise Triax Cable, 0.3m–6.1m. For use with 2600-TRIAX Adapter 7078-TRX-GND 3-Slot male triax to BNC adapter (guard removed) 7709-308A Digital I/O Connector (model specific) 8606 High Performance Modular Probe Kit. For use with 2600B-BAN GPIB Interfaces and Cables 7007-1 Double Shielded GPIB Cable, 1m (3.3 ft.) 7007-2 Double Shielded GPIB Cable, 2m (6.6 ft.) KPCI-488LPA IEEE-488 Interface/Controller for the PCI Bus Digital I/O, Trigger Link , and TSP-Link 2600-TLINK Digital I/O to TLINK Adapter Cable, 1m CA-126-1A Digital I/O and Trigger Cable, 1.5m CA-180-3A CAT5 Crossover Cable for TSP-Link and direct Ethernet connection (two supplied) TEST FIXTURES 8101-PIV DC, Pulse I-V and C-V Component Test Fixture 8101-4TRX 4 Pin Transistor Fixture LR8028 Component Test Fixture – Optimized for device testing at up to 200V/1A Switching Series 3700A DMM/Switch Systems 707B Semiconductor Switching Matrix Mainframe Calibration and Verification 2600-STD-RES Calibration Standard 1GW Resistor for Models 2634B, 2635B, and 2636B SERVICES AVAILABLE FOR ALL SERIES 2600B MODELS Extended Warranties 26xxB-EW 1 Year Factory Warranty extended to 2 years 26xxB-3Y-EW 1 Year Factory Warranty extended to 3 years 26xxB-5Y-EW 1 Year Factory Warranty extended to 5 years CALIBRATION CONTRACTS C/26xxB-3Y-STD 3 Calibrations within 3 years C/26xxB-5Y-STD 5 Calibrations within 5 years C/26xxB-3Y-DATA 3 Calibrations within 3 years and includes calibration data before and after adjustment C/26xxB-5Y-DATA 5 Calibrations within 5 years and includes calibration data before and after adjustment C/26xxB-3Y-17025 3 IS0-17025 accredited calibrations within 3 years C/26xxB-5Y-17025 5 IS0-17025 accredited calibrations within 50A, High Power System SourceMeter® SMU Instrument • Source or sink: ––2,000W of pulsed power (±40V, ±50A) ––200W of DC power (±10V@±20A, ±20V@±10A, ±40V@±5A) • Easily connect two units (in series or parallel) to create solutions up to ±100A or ±80V • 1pA resolution enables precise measurement of very low leakage currents • 1μs per point (1MHz), 18-bit sampling, accurately characterizes transient behavior • 1% to 100% pulse duty cycle for pulse width modulated (PWM) drive schemes and devicespecific drive stimulus • Combines a precision power supply, current source, DMM, arbitrary waveform generator, V or I pulse generator with measurement, electronic load, and trigger controller—all in one instrument • Includes TSP® Express I-V characterization software, LabVIEW® driver, and Keithley’s Test Script Builder software development environment APPLICATIONS • Power semiconductor, HBL ED, and optical device characterization and testing • Solar cell characterization and testing • Characterization of GaN, SiC, and other compound materials and devices • Semiconductor junction temperature characterization • High speed, high precision digitization • Electromigration studies • High current, high power device testing High power System SourceMeter SMU instrument High power System SourceMeter SMU instrument SMU INSTRUMENTS www.keithley.com 1.888.KEITHLEY (U.S. only) A Greater Measure of Confidence 2651A 50A, High Power System SourceMeter® SMU Instrument Two A/D converters are used with each measurement mode (one for current and the other for voltage), which run simultaneously for accurate source readback that does not sacrifice test throughput. 7 6 5 4 3 2 1 0 0 25 50 75 100 125 150 175 200 Voltage (V) Current (A) Time (μs) Volts Current 60 50 40 30 20 10 0 The dual digitizing A/D converters sample at up to 1μs/point, enabling full simultaneous characterization of both current and voltage waveforms. High Speed Pulsing The Model 2651A minimizes the unwanted effects of self heating during tests by accurately sourcing and measuring pulses as short as 100μs. Additional control flexibility enables you to program the pulse width from 100μs to DC and the duty cycle from 1% to 100%. A single unit can pulse up to 50A; combine two units to pulse up to 100A. Expansion Capabilities Through TSP-Link Technology technology, multiple Model 2651As and selected Series 2600B SMU instruments can be combined to form a larger integrated system with up to 64 channels. Precision timing and tight channel synchronization are guaranteed with built-in 500ns trigger controllers. True SMU instrument-per-pin testing is assured with the fully isolated, independent channels of the SourceMeter SMU instruments. 26xxB 2651A 2651A Up to 100A TSP-Link LXI or GPIB to PC Controller Keithley’s TSP and TSP-Link Technologies enable true SMU-per-pin testing without the power and/or channel limitations of a mainframe-based system. Also, when two Model 2651As are connected in parallel with TSP-Link Technology, the current range is expanded from 50A to 100A. When two units are connected in series, the voltage range is expanded from 40V to 80V. Built-in intelligence simplifies testing by enabling the units to be addressed as a single instrument, thus creating an industry-best dynamic range (100A to 1pA). This capability enables you to test a much wider range of power semiconductors and other devices. 60 50 40 30 20 10 0 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 Vgs = 2.01V Vgs = 2.25V Vgs = 2.50V Vgs = 2.75V Vgs = 3.00V Vgs = 3.25V Vgs = 3.51V Vds (V) Id (A) Precision measurements to 50A (100A with two units) enable a more complete and accurate characterization. Standard Capabilities of Series 2600B SMU Instruments Each Model 2651A includes all the features and capabilities provided in most Series 2600B SMU instruments, such as: • Ability to be used as either a bench-top I-V characterization tool or as a building block component of multiple-channel I-V test systems • TSP Express software to quickly and easily perform common I-V tests without programming or installing software • ACS Basic Edition software for semiconductor component characterization (optional). ACS Basic now features a Trace mode for generating a suite of characteristic curves. • Keithley’s Test Script Processor (TSP®) Technology, which enables creation of custom user test scripts to further automate testing, and also supports the creation of programming sequences that allow the instrument to operate asynchronously without direct PC control. • Parallel test execution and precision timing when multiple SMU instruments are connected together in a system • LXI compliance • 14 digital I/O lines for direct interaction with probe stations, component handlers, or other automation tools • USB port for extra data and test program storage via USB memory device Ordering Information 2651A High Power System SourceMeter® SMU Instrument Accessories Supplied 2651A-KIT-1A: Low Impedance Cable Assembly (1m) CS-1592-2: High Current Phoenix Connector (male) CS-1626-2: High Current Phoenix Connector (female) CA-557-1: Sense Line Cable Assembly (1m) 7709-308A: Digital I/O Connector CA-180-3A: TSP-Link/Ethernet Cable Documentation CD Software Tools and Drivers CD 0.020 0.018 0.016 0.014 0.012 0.010 0.008 0.006 0.004 0.002 0.000 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 Vgs (V) Rds (ohms) Id = 10A Id = 20A Id = 30A Id = 40A Id = 50A 1μV measurement resolution and current sourcing up to 50A (100A with two units) enable low-level Rds measurements to support next-generation devices. Acce ssorie s Av ailable 2600-KIT Screw Terminal Connector Kit ACS-BASIC Component Charaterization Software 4299-6 Rack Mount Kit 8011 Test Socket Kit High power System SourceMeter SMU instrument High power System SourceMeter SMU instrument SMU INSTRUMENTS A Greater Measure of Confidence www.keithley.com 1.888.KEITHLEY (U.S. only) 2651A 50A, High Power System SourceMeter® SMU Instrument Specification Conditions This document contains specifications and supplemental information for the Model 2651A High Power System SourceMeter SMU instrument. Specifications are the standards against which the Model 2651A is tested. Upon leaving the factory, the Model 2651A meets these specifications. Supplemental and typical values are non-warranted, apply at 23°C, and are provided solely as useful information. Accuracy specifications are applicable for both normal and high-capacitance modes. Source and measurement accuracies are specified at the Model 2651A terminals under these conditions: • 23° ±5°C, <70 percent relative humidity • After two-hour warm-up • Speed normal (1 NPLC) • A/D autozero enabled • Remote sense operation or properly zeroed local operation • Calibration period: One year VOL TAGE ACCURA CY SPECIFICATIONS 1, 2 SOUR CE MEASUR E Range Programming Resolution Accuracy ±(% reading + volts) Noise (Vpp) (typical) 0.1 Hz to 10 Hz Default Display Resolution Integrating ADC Accuracy 3 ±(% reading + volts) High-Speed ADC Accuracy 4 ±(% reading + volts) 100.000 mV 5 μV 0.02% + 500 μ V 100 μV 1 μV 0.02% + 300 μ V 0.05% + 600 μ V 1.00000 V 50 μV 0.02% + 500 μ V 500 μV 10 μV 0.02% + 300 μ V 0.05% + 600 μ V 10.0000 V 500 μV 0.02% + 5 mV 1 mV 100 μV 0.02% + 3 mV 0.05% + 8 mV 20.0000 V 500 μV 0.02% + 5 mV 1 mV 100 μV 0.02% + 5 mV 0.05% + 8 mV 40.0000 V 500 μV 0.02% + 12 mV 2 mV 100 μV 0.02% + 12 mV 0.05% + 15 mV CURR ENT ACCURA CY SPECIFICATIONS 5 SOUR CE MEASUR E Range Programming Resolution Accuracy ±(% reading + amps) Noise (Ipp) (typical) 0.1Hz to 10Hz Default Display Resolution Integrating ADC Accuracy 3 ±(% reading + amps) High-Speed ADC Accuracy 4 ±(% reading + amps) 100.000 nA 2 pA 0.1 % + 500 pA 50 pA 1 pA 0.08% + 500 pA 0.08% + 800 pA 1.00000 μ A 20 pA 0.1 % + 2 nA 250 pA 10 pA 0.08% + 2 nA 0.08% + 4 nA 10.0000 μ A 200 pA 0.1 % + 10 nA 500 pA 100 pA 0.08% + 8 nA 0.08% + 10 nA 100.000 μ A 2 nA 0.03% + 60 nA 5 nA 1 nA 0.02% + 25 nA 0.05% + 60 nA 1.00000 mA 20 nA 0.03% + 300 nA 10 nA 10 nA 0.02% + 200 nA 0.05% + 500 nA 10.0000 mA 200 nA 0.03% + 8 μ A 500 nA 100 nA 0.02% + 2.5 μA 0.05% + 10 μA 100.000 mA 2 μA 0.03% + 30 μ A 1 μA 1 μA 0.02% + 20 μA 0.05% + 50 μA 1.00000 A 200 μA 0.08% + 3.5 mA 300 μA 10 μA 0.05% + 3 mA 0.05% + 5 mA 5.00000 A 200 μA 0.08% + 3.5 mA 300 μA 10 μA 0.05% + 3 mA 0.05% + 5 mA 10.0000 A 500 μA 0.15% + 6 mA 500 μA 100 μA 0.12% + 6 mA 0.12% + 12 mA 20.0000 A 500 μA 0.15% + 8 mA 500 μA 100 μA 0.08% + 8 mA 0.08% + 15 mA 50.0000 A 6 2 mA 0.15% + 80 mA N/A 100 μA 0.05% + 50 mA 7 0.05% + 90 mA 8 NOTES 1. Add 50μV to source accuracy specifications per volt of HI lead drop. 2. For temperatures 0° to 18°C and 28° to 50°C, accuracy is degraded by ±(0.15 × accuracy specification)/°C. High-capacitance mode accuracy is applicable at 23° ±5°C only. 3. Derate accuracy specification for NPLC setting <1 by increasing error term. Add appropriate typical percent of range term for resistive loads using the table below. NPLC Setting 100mV Range 1V to 40V Ranges 100nA Range 1μA to 100mA Ranges 1A to 20A Ranges 0.1 0.01% 0.01% 0.01% 0.01% 0.01% 0.01 0.08% 0.07% 0.1 % 0.05% 0.1 % 0.001 0.8 % 0.6 % 1 % 0.5 % 1.8 % 4. 18-bit ADC. Average of 1000 samples taken at 1μs intervals. 5. At temperatures 0° to 18°C and 28° to 50°C; 100nA to 10μA accuracy is degraded by ±(0.35 × accuracy specification)/°C. 100μA to 50A accuracy is degraded by ±(0.15 × accuracy specification)/°C. High-capacitance mode accuracy is applicable at 23° ±5°C only. 6. 50A range accessible only in pulse mode. 7. 50A range accuracy measurements are taken at 0.008 NPLC. 8. Average of 100 samples taken at 1μs intervals. Model 2651A specifications Model 2651A specifications SMU INSTRUMENTS www.keithley.com 1.888.KEITHLEY (U.S. only) A Greater Measure of Confidence 2651A 50A, High Power System SourceMeter® SMU Instrument DC POWER SPECIFICATIONS Maximum output power : 202W maximum. Source /Sink Limits 1: Voltage: ±10.1V at ±20.0A, ±20.2V at ±10.0A, ±40.4V at ±5.0A 2. Four-quadrant source or sink operation. Current: ±5.05A at ±40V 2, ±10.1A at ±20V, ±20.2A at ±10V Four-quadrant source or sink operation. CAUTION: Carefully consider and configure the appropriate output-off state and source and compliance levels before connecting the Model 2651A to a device that can deliver energy. Failure to consider the output-off state and source and compliance levels may result in damage to the instrument or to the device under test. Pulse SPECIFICATIONS Minimum programmable pulse width 3: 100μs. Note: Minimum pulse width for settled source at a given I/V output and load can be longer than 100μs. Pulse width programming resolution : 1μs. Pulse width programming accurac y 3: ±5μs. Pulse width jitter : 2μs (typical). Pulse Rise Time (typical ): Current Range Rload Rise Time (typical) 50 A 0.05 W 26 μs 50 A 0.2 W 57 μs 50 A 0.4 W 85 μs 20 A 0.5 W 95 μs 50 A 0.8 W 130 μs 20 A 1 W 180 μs 10 A 2 W 330 μs 5 A 8.2 W 400 μs +20A +30A +50A –50A –10A +10A +5A –5A –20A –30A –20V –10V 0V +10V +20V 0A –40V +40V Pulse DC 3 4 7 5 6 2 1 Region Region Maximums Maximum Pulse Width 3 Maximum Duty Cycle 4 1 5 A at 40 V DC, no limit 100% 1 10 A at 20 V DC, no limit 100% 1 20 A at 10 V DC, no limit 100% 2 30 A at 10 V 1 ms 50% 3 20 A at 20 V 1.5 ms 40% 4 10 A at 40 V 1.5 ms 40% 5 50 A at 10 V 1 ms 35% 6 50 A at 20 V 330 μs 10% 7 50 A at 40 V 300 μs 1% NOTES 1. Full power source operation regardless of load to 30°C ambient. Above 30°C or power sink operation, refer to “Operating Boundaries” in the Model 2651A Reference manual for additional power derating information. 2. Quadrants 2 and 4 power envelope is trimmed at 36V and 4.5A. 3. Times measured from the start of pulse to the start off-time; see figure below. Pulse Level Bias Level Start ton Start toff 90% 10% ton toff 10% 4. Thermally limited in sink mode (quadrants 2 and 4) and ambient temperatures above 30°C. See power equations in the Model 2651A Reference Manual for more information. Model 2651A specifications Model 2651A specifications The Model 2651A supports GPIB, LXI, Digital I/O, and Keithley’s TSP-Link Technology for multi-channel synchronization. SMU INSTRUMENTS A Greater Measure of Confidence www.keithley.com 1.888.KEITHLEY (U.S. only) 2651A 50A, High Power System SourceMeter® SMU Instrument ADDITIONAL SOUR CE SPECIFICATIONS Noise (10Hz to 20MHz): <100mV peak-peak (typical), <30mV RMS (typical), 10V range with a 20A limit. Overshoot : Voltage: <±(0.1% + 10mV) (typical). Step size = 10% to 90% of range, resistive load, maximum current limit/compliance. Current: <±(0.1% + 10mV) (typical). Step Size = 10% to 90% of range, resistive load. See Current Source Output Settling Time specifications for additional test conditions. Range change overshoot : Voltage: <300mV + 0.1% of larger range (for <20V ranges) (typical). <400mV + 0.1% of larger range (for ≥20V ranges) (typical). Overshoot into a 100kW load, 20MHz bandwidth. Current: <5% of larger range + 360mV/Rload (for >10μA ranges) (typical). Iout × Rload = 1V. Voltage source output settling time : Time required to reach within 0.1% of final value after source level command is processed on a fixed range. 1 Range Settling Time (typical) 1 V < 70 μs 10 V <160 μs 20 V <190 μs 40 V <175 μs Current source output settling time : Time required to reach within 0.1% of final value after source level command is processed on a fixed range. Values below for Iout × Rload. Current Range Rload Settling time (typical) 20 A 0.5 W <195 μs 10 A 1.5 W <540 μs 5 A 5 W <560 μs 1 A 1 W < 80 μs 100 mA 10 W < 80 μs 10 mA 100 W <210 μs 1 mA 1 kW <300 μ s 100 μA 10 kW <500 μ s 10 μA 100 kW < 15 ms 1 μA 1 MW < 35 ms 100 nA 10 MW <110 ms Transient response time : 10V and 20V Ranges: <70μs for the output to recover to within 0.1% for a 10% to 90% step change in load. 40V Range: <110μs for the output to recover to within 0.1% for a 10% to 90% step change in load. Guard offset voltage : <4mV, current <10mA. Remote sense operating range 2: Maximum Voltage between HI and SENSE HI: 3V. Maximum Voltage between LO and SENSE LO: 3V. Maximum impedance per source lead : Maximum impedance limited by 3V drop by remote sense operating range. Maximum resistance = 3V/source current value (amperes) (maximum of 1W per source lead). 3V = L di/dt. Voltage output headroom : 5A Range: Maximum output voltage = 48.5V – (Total voltage drop across source leads). 10A Range: Maximum output voltage = 24.5V – (Total voltage drop across source leads). 20A Range: Maximum output voltage = 15.9V – (Total voltage drop across source leads). Overtemperature protection : Internally sensed temperature overload puts unit in standby mode. Limit /compliance : Bipolar limit (compliance) set with single value. Voltage 3: Minimum value is 10mV; accuracy is the same as voltage source. Current 4: Minimum value is 10nA; accuracy is the same as current source. NOTES 1. With measure and compliance set to the maximum current for the specified voltage range. 2. Add 50μV to source accuracy specifications per volt of HI lead drop. 3. For sink mode operation (quadrants II and IV), add 0.6% of limit range to the corresponding voltage source accuracy specifications. For 100mV range add an additional 60mV of uncertainty. Specifications apply with sink mode enabled. 4. For sink mode operation (quadrants II and IV), add 0.6% of limit range to the corresponding current limit accuracy specifications. Specifications apply with sink mode enabled. Model 2651A specifications Model 2651A specifications Additi onal Measurement speci fic ati ons Cont act Check 1 Speed Maximum Measurement Time to Memory for 60Hz (50Hz) Accuracy (1 Year) 23° ±5°C ±(% reading + ohms) Fast 1.1 ms (1.2 ms) 5% + 15 W Medium 4.1 ms (5 ms) 5% + 5 W Slow 36 ms (42 ms) 5% + 3 W NOTES 1. Includes measurement of SENSE HI to HI and SENSE LO to LO contact resistances. Additi onal mete r speci fic ati ons Maximum load impedance : Normal Mode: 10nF (typical), 3μH (typical). High-Capacitance Mode: 50μF (typical), 3μH (typical). Common mode voltage : 250V DC. Common mode isolation : >1GW, <4500pF. Measure input impedance : >10GW. Sense high input impedance : >10GW. Maximum sense lead resistance : 1kW for rated accuracy. Overrange : 101% of source range, 102% of measure range. HIGH-CAPACITANCE mO DE 1,2 Accurac y specifications 3: Accuracy specifications are applicable in both normal and highcapacitance modes. Voltage Source Output Settling Time : Time required to reach within 0.1 % of final value after source level command is processed on a fixed range. 4 Voltage Source Range Settling Time with Cload = 4.7μF (typical) 1 V 75 μs 10 V 170 μs 20 V 200 μs 40 V 180 μs Mode change dela y: 100μA Current Range and Above: Delay into High-Capacitance Mode: 11ms. Delay out of High-Capacitance Mode: 11ms. 1μA and 10μA Current Ranges: Delay into High-Capacitance Mode: 250ms. Delay out of High-Capacitance Mode: 11ms. Measure input impedance : >10GW in parallel with 25nF. Voltage source range change overshoot : <400mV + 0.1% of larger range (typical). Overshoot into a 100kW load, 20MHz bandwidth. NOTES 1. High-capacitance mode specifications are for DC measurements only and use locked ranges. Autorange is disabled. 2. 100nA range is not available in high-capacitance mode. 3. Add an additional 2nA to the source current accuracy and measure current accuracy offset for the 1μA range. 4. With measure and compliance set to the maximum current for the specified voltage range. SMU INSTRUMENTS www.keithley.com 1.888.KEITHLEY (U.S. only) A Greater Measure of Confidence 2651A 50A, High Power System SourceMeter® SMU Instrument Measurement Speed Speci fic ati ons 1, 2 Maxim um SWEEP OPERA TION RA TES (operations per second) FOR 60Hz (50Hz): A/D Converter Speed Trigger Origin Measure To Memory Using User Scripts Measure To Gpi b Using User Scripts Source Measure To Memory Using User Scripts Source Measure To Gpi b Using User Scripts Source Measure To Memory Using Sweep API Source Measure To Gpi b Using Sweep API 0.001 NPLC Internal 20000 (20000) 9800 (9800) 7000 (7000) 6200 (6200) 12000 (12000) 5900 (5900) 0.001 NPLC Digital I/O 8100 (8100) 7100 (7100) 5500 (5500) 5100 (5100) 11200 (11200) 5700 (5700) 0.01 NPLC Internal 4900 (4000) 3900 (3400) 3400 (3000) 3200 (2900) 4200 (3700) 4000 (3500) 0.01 NPLC Digital I/O 3500 (3100) 3400 (3000) 3000 (2700) 2900 (2600) 4150 (3650) 3800 (3400) 0.1 NPLC Internal 580 (480) 560 (470) 550 (465) 550 (460) 560 (470) 545 (460) 0.1 NPLC Digital I/O 550 (460) 550 (460) 540 (450) 540 (450) 560 (470) 545 (460) 1.0 NPLC Internal 59 (49) 59 (49) 59 (49) 59 (49) 59 (49) 59 (49) 1.0 NPLC Digital I/O 58 (48) 58 (49) 59 (49) 59 (49) 59 (49) 59 (49) HS ADC Internal 38500 (38500) 18000 (18000) 10000 (10000) 9500 (9500) 14300 (14300) 6300 (6300) HS ADC Digital I/O 12500 (12500) 11500 (11500) 7500 (7500) 7000 (7000) 13200 (13200) 6000 (6000) High Speed ADC Burst MEASUR EMENT RA TES 3 Burst Length (readings) Readings per Second Bursts per Second 100 1,000,000 400 500 1,000,000 80 1000 1,000,000 40 2500 1,000,000 16 5000 1,000,000 8 Maxim um SINGLE MEASUR EMENT RA TES (operations per second) FOR 60Hz (50Hz) A/D Converter Speed Trigger Origin Measure To Gpi b Source Measure To Gpi b Source Measure Pass/Fail To Gpi b 0.001 NPLC Internal 1900 (1800) 1400 (1400) 1400 (1400) 0.01 NPLC Internal 1450 (1400) 1200 (1100) 1100 (1100) 0.1 NPLC Internal 450 (390) 425 (370) 425 (375) 1.0 NPLC Internal 58 (48) 57 (48) 57 (48) Maximum Measurement RANGE CHANGE RATE: >4000 per second for >10μA (typical). Maximum SOURCE Range CHANGE RATE: >325 per second for >10μA, typical. When changing to or from a range ≥1A, maximum rate is >250 per second, typical. COMMAND PROCESSING TIME: Maximum time required for the output to begin to change following the receipt of the smua.source.levelv or smua.source.leveli command. <1ms typical. NOTES 1. Tests performed with a Model 2651A on channel A using the following equipment: Computer hardware (Intel® Pentium® 4 2.4GHz, 2GB RAM, National Instruments™ PCI-GPIB). Driver (NI-488.2 Version 2.2 PCI-GPIB). Software (Microsoft® Windows® XP, Microsoft Visual Studio® 2010, VISA™ version 4.1). 2. Exclude current measurement ranges less than 1mA. 3. smua.measure.adc has to be enabled and the smua.measure.count set to the burst length. TRIGGERING AND SYNCHRO NIZATION SPECIFICATIONS Triggering : Trigger In to Trigger Out: 0.5μs (typical). Trigger In to Source Change 1: 10μs (typical). Trigger Timer Accuracy: ±2μs (typical). Source Change 1 After LXI Trigger: 280μs (typical). Synchroni zation : Single-Node Synchronized Source Change 1: <0.5μs (typical). Multi-Node Synchronized Source Change 1: <0.5μs (typical). NOTES 1. Fixed source range with no polarity change. Model 2651A specifications Model 2651A specifications SMU INSTRUMENTS A Greater Measure of Confidence www.keithley.com 1.888.KEITHLEY (U.S. only) 2651A 50A, High Power System SourceMeter® SMU Instrument SU PPLEMENTAL INFOR MATION FRONT PANEL INTERFACE: Two-line vacuum fluorescent display (VFD) with keypad and navigation wheel. Displa y: Show error messages and user defined messages. Display source and limit settings. Show current and voltage measurements (6½-digit to 4½-digit). View measurements stored in dedicated reading buffers. Keypad Operations : Change host interface settings. Save and restore instrument setups. Load and run factory and user defined test scripts that prompt for input and send results to the display. Store measurements into dedicated reading buffers. PROGRAMMING: Embedded Test Script Processor (TSP®) scripting engine is accessible from any host interface. Responds to individual instrument control commands. Responds to high speed test scripts comprised of instrument control commands and Test Script Language (TSL) statements (for example, branching, looping, and math). Able to execute high speed test scripts stored in memory without host intervention. Minimum User Memor y Available : 16MB (approximately 250,000 lines of TSP code). Test Script Builder : Integrated development environment for building, running, and managing TSP scripts. Includes an instrument console for communicating with any TSP enabled instrument in an interactive manner. Requires: VISA (NI-VISA included on CD), Microsoft® .NET Framework (included on CD), Keithley I/O Layer (included on CD), Intel® Pentium III 800MHz or faster personal computer, Microsoft Windows® 2000, XP, Vista®, or 7. TSP Express (embedded): Tool that allows users to quickly and easily perform common I-V tests without programming or installing software. To run TSP Express, you need: Java™ Platform, Standard Edition 6, Microsoft Internet Explorer®, Mozilla® Firefox®, or another Java-compatible web browser. Software Interface : TSP Express (embedded), direct GPIB/VISA, read/write with Microsoft Visual Basic®, Visual C/C++®, Visual C#®, LabVIEW™, CEC TestPoint™ Data Acquisition Software Package, NI LabWindows™/CVI, etc. READING BUFFERS: Nonvolatile memory uses dedicated storage areas reserved for measurement data. Reading buffers are arrays of measurement elements. Each element can hold the following items: Measurement Measurement status Timestamp Source setting (at the time the measurement was taken) Range information Two reading buffers are reserved for each Model 2651A channel. Reading buffers can be filled using the front panel STORE key and retrieved using the RECALL key or host interface. Buffer Size, with timestamp and source setting: >60,000 samples. Buffer Size, without timestamp and source setting: >140,000 samples. SYSTEM EXPANSION: The TSP-Link expansion interface allows TSP-enabled instruments to trigger and communicate with each other. See figure below. To Additional Nodes Node 1 Node 2 To Host Computer Each Model 2651A has two TSP-Link connectors to make it easier to connect instruments together in sequence. Once source-measure instruments are interconnected through the TSP-Link expansion interface, a computer can access all the resources of each source-measure instrument through the host interface of any Model 2651A. A maximum of 32 TSP-Link nodes can be interconnected. Each source-measure instrument consumes one TSP-Link node. TIMER: Free-running 47-bit counter with 1MHz clock input. Resets each time instrument power is turned on. If the instrument is not turned off, the timer is reset to zero every 4 years. Timestamp: TIMER value is automatically saved when each measurement is triggered. Resolution: 1μs. Timestamp Accuracy: ±100ppm. Model 2651A specifications Model 2651A specifications GENERAL Digital I/O Interface : +5VDC 5.1kW 100W 600mA Solid State Fuse Read by firmware Written by firmware +5V Pin (on DIGITAL I/O connector) Digital I/O Pin (on DIGITAL I/O connector) GND Pin (on DIGITAL I/O connector) Rear Panel Connector: 25-pin female D. Input/Output Pins: 14 open drain I/O bits. Absolute Maximum Input Voltage: 5.25V. Absolute Minimum Input Voltage: –0.25V. Maximum Logic Low Input Voltage: 0.7V, +850μA max. Minimum Logic High Input Voltage: 2.1V, +570μA. Maximum Source Current (flowing out of digital I/O bit): +960μA. Maximum Sink Current At Maximum Logic Low Voltage (0.7): –5.0mA. Absolute Maximum Sink Current (flowing into digital I/O pin): –11mA. 5V Power Supply Pin: Limited to 250mA, solid-state fuse protected. Output Enable Pin: Active high input pulled down internally to ground with a 10kW resistor; when the output enable input function has been activated, the Model 2651A channel will not turn on unless the output enable pin is driven to >2.1V (nominal current = 2.1V/10kW = 210μA). IEEE-488: IEEE-488.1 compliant. Supports IEEE-488.2 common commands and status model topology. RS-232: Baud rates from 300bps to 115200bps. Programmable number of data bits, parity type, and flow control (RTS/CTS hardware or none). When not programmed as the active host interface, the Model 2651A can use the RS-232 interface to control other instrumentation. Ethernet : RJ-45 connector, LXI, 10/100BT, Auto MDIX. LXI compliance : LXI Class C 1.2. Total Output Trigger Response Time: 245μs minimum, 280μs (typical), (not specified) maximum. Receive Lan[0-7] Event Delay: Unknown. Generate Lan[0-7] Event Delay: Unknown. Expansion interface : The TSP-Link Technology expansion interface allows TSP-enabled instruments to trigger and communicate with each other. Cable Type: Category 5e or higher LAN crossover cable. 3 meters maximum between each TSP-enabled instrument. USB: USB 2.0 host controller. Power suppl y: 100V to 250V AC, 50Hz to 60Hz (autosensing), 550VA maximum. Cooling : Forced air; side and top intake and rear exhaust. Warrant y: 1 year. EMC: Conforms to European Union EMC Directive. Safet y: UL listed to UL61010-1:2004. Conforms to European Union Low Voltage Directive. Dimensions : 89mm high × 435mm wide × 549mm deep (3.5 in. × 17.1 in. × 21.6 in.). Bench Configuration (with handle and feet): 104mm high × 483mm wide × 620mm deep (4.1 in. × 19 in. × 24.4 in.). Weight : 9.98kg (22 lbs). Environment : For indoor use only. Altitude : Maximum 2000 meters above sea level. Operatin g: 0° to 50°C, 70% relative humidity up to 35°C. Derate 3% relative humidity/°C, 35° to 50°C. Storage : –25° to 65°C. Product family data sheet Copyright © 2013 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo and XLamp® are registered trademarks of Cree, Inc. CLD-DS57 Rev 2B Cree® XLamp® XQ-B LED PRODUCT DESCRIPTION Cree XLamp XQ-B LEDs revolutionize mid-power LEDs by delivering lighting-class reliability and a wider spread of light than typical plastic packages. The XQ-B’s innovative wide light emission enables a smooth look in replacement tubes and panel lights while reducing system cost by using fewer LEDs. Using Cree’s newest generation of silicon carbide-based LED chips, XQ-B is optimized to dramatically lower system cost in non-directional and outdoor area lighting applications. FEATURES • Cree’s smallest lighting class LED: 1.6 X 1.6 X 1.6 mm • Available in white, 80-minimum CRI white and 70-minimum CRI cool white • 300 mA maximum drive current • Low thermal resistance: 17 °C/W • Wide viewing angle: 140° • Reflow solderable - JEDEC J-STD-020C compatible • Unlimited floor life at ≤ 30 °C/85% RH • RoHS- and REACh‑compliant • UL-recognized component (E349212) www.cree.com/Xlamp Cree, Inc. 4600 Silicon Drive Durham, NC 27703 USA Tel: +1.919.313.5300 Table of Contents Characteristics.......................... 2 Flux Characteristics.................... 2 Relative Spectral Power Distribution.............................. 3 Relative Flux vs. Junction Temperature............................. 3 Electrical Characteristics............. 4 Relative Flux vs. Current............ 4 Typical Spatial Distribution.......... 5 Thermal Design......................... 5 Reflow Soldering Characteristics.. 6 Notes....................................... 7 Mechanical Dimensions.............. 8 Tape and Reel........................... 9 Packaging............................... 10 Copyright © 2013 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo and XLamp® are registered trademarks of Cree, Inc. 2 xlamp xQ-B led Characteristics Characteristics Unit Minimum Typical Maximum Thermal resistance, junction to solder point °C/W 17 Viewing angle (FWHM) degrees 140 Temperature coefficient of voltage mV/°C -2.0 ESD classification (HBM per Mil-Std-883D) Class 1 DC forward current mA 80 300 Reverse voltage V -5 Forward voltage (@ 80 mA, 25 °C) V 3.0 3.4 LED junction temperature °C 150 Flux Characteristics (TJ = 25 °C) The following table provides several base order codes for XLamp XQ-B LEDs. It is important to note that the base order codes listed here are a subset of the total available order codes for the product family. For more order codes, as well as a complete description of the order-code nomenclature, please consult the XLamp XQ-B Binning and Labeling document. Color CCT Range Base Order Codes Minimum Luminous Flux @ 80 mA Calculated Minimum Luminous Flux (lm)* Order Code Min. Max. Group Flux (lm) 150 mA Cool White 5000 K 8300 K K2 30.6 52.5 XQBAWT-00-0000-00000L051 Neutral White 3700 K 5000 K K2 30.6 52.5 XQBAWT-00-0000-00000H0E5 J3 26.8 46 XQBAWT-00-0000-00000HXE5 Warm White 2600 K 3700 K J3 26.8 46 XQBAWT-00-0000-00000HXE7 Notes: • Cree maintains a tolerance of ±7% on flux and power measurements, ±0.005 on chromaticity (CCx, CCy) measurements and ±2 on CRI measurements. • Typical CRI for Neutral White, 3700 K - 5000 K CCT is 75. • Typical CRI for Warm White, 2600 K - 3700 K CCT is 80. • Minimum CRI for 70 CRI Minimum Cool White is 70. • Minimum CRI for 80 CRI Minimum White is 80. * Calculated flux values at 150 mA are for reference only. Copyright © 2013 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo and XLamp® are registered trademarks of Cree, Inc. 3 xlamp xQ-B led Relative Spectral Power Distribution Relative Flux vs. Junction Temperature (IF = 80 mA) Relative Spectral Power 0 20 40 60 80 100 380 430 480 530 580 630 680 730 780 Relative Radiant Power (%) Wavelength (nm) Cool White Neutral White Warm White Relative Flux Output vs. Junction Temperature 0 10 20 30 40 50 60 70 80 90 100 25 50 75 100 125 150 Relative Luminous Flux (%) Junction Temperature (ºC) Copyright © 2013 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo and XLamp® are registered trademarks of Cree, Inc. 4 xlamp xQ-B led Electrical Characteristics (TJ = 25 °C) Relative Flux vs. Current (TJ = 25 °C) Electrical Characteristics (Tj = 25°C) parallel 0 50 100 150 200 250 300 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 Forward Current (mA) Forward Voltage (V) Relative Intensity vs. Current (Tj = 25°C) parallel 0 50 100 150 200 250 300 0 50 100 150 200 250 300 Relative Luminous Flux (%) Forward Current (mA) Copyright © 2013 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo and XLamp® are registered trademarks of Cree, Inc. 5 xlamp xQ-B led Typical Spatial Distribution Thermal Design The maximum forward current is determined by the thermal resistance between the LED junction and ambient. It is crucial for the end product to be designed in a manner that minimizes the thermal resistance from the solder point to ambient in order to optimize lamp life and optical characteristics. Typical Spatial Radiation Pattern 0 10 20 30 40 50 60 70 80 90 100 110 -90 -70 -50 -30 -10 10 30 50 70 90 Relative Luminous Intensity (%) Angle (º) Thermal Design parallel 0 50 100 150 200 250 300 350 0 20 40 60 80 100 120 140 Maximum Current (mA) Ambient Temperature (ºC) Rj-a = 20°C/W Rj-a = 25°C/W Rj-a = 30°C/W Rj-a = 35°C/W Copyright © 2013 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo and XLamp® are registered trademarks of Cree, Inc. 6 xlamp xQ-B led Reflow Soldering Characteristics In testing, Cree has found XLamp XQ-B LEDs to be compatible with JEDEC J-STD-020C, using the parameters listed below. As a general guideline, Cree recommends that users follow the recommended soldering profile provided by the manufacturer of solder paste used. Note that this general guideline may not apply to all PCB designs and configurations of reflow soldering equipment. Profile Feature Lead-Based Solder Lead-Free Solder Average Ramp-Up Rate (Tsmax to Tp) 3 °C/second max. 3 °C/second max. Preheat: Temperature Min (Tsmin) 100 °C 150 °C Preheat: Temperature Max (Tsmax) 150 °C 200 °C Preheat: Time (tsmin to tsmax) 60-120 seconds 60-180 seconds Time Maintained Above: Temperature (TL) 183 °C 217 °C Time Maintained Above: Time (tL) 60-150 seconds 60-150 seconds Peak/Classification Temperature (Tp) 215 °C 260 °C Time Within 5 °C of Actual Peak Temperature (tp) 10-30 seconds 20-40 seconds Ramp-Down Rate 6 °C/second max. 6 °C/second max. Time 25 °C to Peak Temperature 6 minutes max. 8 minutes max. Note: All temperatures refer to topside of the package, measured on the package body surface. TP TL Temperature Time t 25˚C to Peak Preheat ts tS tP 25 Ramp-down Ramp-up Critical Zone TL to TP Tsmax Tsmin Copyright © 2013 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo and XLamp® are registered trademarks of Cree, Inc. 7 xlamp xQ-B led Notes Lumen Maintenance Projections Cree now uses standardized IES LM-80-08 and TM-21-11 methods for collecting long-term data and extrapolating LED lumen maintenance. For information on the specific LM-80 data sets available for this LED, refer to the public LM-80 results document at www.cree.com/xlamp_app_notes/LM80_results. Please read the XLamp Long-Term Lumen Maintenance application note at www.cree.com/xlamp_app_notes/lumen_ maintenance for more details on Cree’s lumen maintenance testing and forecasting. Please read the XLamp Thermal Management application note at www.cree.com/xlamp_app_notes/thermal_management for details on how thermal design, ambient temperature, and drive current affect the LED junction temperature. Moisture Sensitivity In testing, Cree has found XLamp XQ-B LEDs to have unlimited floor life in conditions ≤30 ºC/85% relative humidity (RH). Moisture testing included a 168-hour soak at 85 ºC/85% RH followed by 3 reflow cycles, with visual and electrical inspections at each stage. Cree recommends keeping XLamp LEDs in their sealed moisture-barrier packaging until immediately prior to use. Cree also recommends returning any unused LEDs to the resealable moisture-barrier bag and closing the bag immediately after use. RoHS Compliance The levels of RoHS restricted materials in this product are below the maximum concentration values (also referred to as the threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 2011/65/EC (RoHS2), as implemented January 2, 2013. RoHS Declarations for this product can be obtained from your Cree representative or from the Product Documentation sections of www.cree.com. REACh Compliance REACh substances of high concern (SVHCs) information is available for this product. Since the European Chemical Agency (ECHA) has published notice of their intent to frequently revise the SVHC listing for the foreseeable future, please contact a Cree representative to insure you get the most up-to-date REACh SVHC Declaration. REACh banned substance information (REACh Article 67) is also available upon request. UL Recognized Component Level 1 enclosure consideration. The LED package or a portion thereof has not been investigated as a fire enclosure or a fire and electrical enclosure per ANSI/UL 8750. Vision Advisory Claim WARNING: Do not look at exposed lamp in operation. Eye injury can result. See the LED Eye Safety application note at www.cree.com/xlamp_app_notes/led_eye_safety. Copyright © 2013 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo and XLamp® are registered trademarks of Cree, Inc. 8 xlamp xQ-B led Mechanical Dimensions All dimensions in mm. Measurement tolerances unless indicated otherwise: .xx = .25 mm, .xxx = .125 mm Measurement tolerance: .xx = .13 mm 1.60 0.30 0.50 1.60 0.65 0.50 RECOMMENDED PC BOARD SOLDER PAD XQ PCB SOLDER PAD DWG. NO. REV A SIZE TITLE: 5 4 3 2 1 Goleta, CA 93117 340 Storke Rd Fax (805) 968-9811 Phone (805) 968-9460 XQ_PCBSolderPad 50:1 SHEET 1 OF 1 SCALE M.Youmans TOLERANCE UNLESS SPECIFIED: MILLIMETERS & BEFORE FINISH. DIMENSIONS ARE IN UNLESS OTHERWISE SPECIFIED X° ± 1° .XX ± .13 FOR SHEET METAL PARTS ONLY .X ± .25 .XX ± .10 X° ± 2° .X ± 0.3 DRAWN BY APPROVED MATERIAL FINAL PROTECTIVE FINISH CHECK DATE DATE DATE NOTICE CONFIDENTIAL. THIS PLOT AND THE INFORMATION WITHIN ARE THE PROPRIETARY AND CONFIDENTIAL INFORMATION OF CREE, INC. THIS PLOT BE COPIED, REPRODUCED OR DISCLOSED TO ANY UNAUTHORIZED PERSON WITHOUT THE WRITTEN CONSENT THIRD ANGLE PROJECTION 8/7/2013 Santa Barbara Technology Center 0.30 1.32 1.32 0.51 RECOMMENDED STENCIL OPENING XQ STENCIL OPENING DWG. NO. REV A SIZE TITLE: 5 4 3 2 1 Goleta, CA 93117 340 Storke Rd Fax (805) 968-9811 Phone (805) 968-9460 XQ_StencilOpening 50:1 SHEET 1 OF SCALE M.Youmans TOLERANCE UNLESS SPECIFIED: MILLIMETERS & BEFORE FINISH. DIMENSIONS ARE IN UNLESS OTHERWISE SPECIFIED X° ± 1° .XX ± .13 FOR SHEET METAL PARTS ONLY .X ± .25 .XX ± .10 X° ± 2° .X ± 0.3 DRAWN BY APPROVED MATERIAL FINAL PROTECTIVE FINISH CHECK DATE DATE DATE NOTICE OF CREE INC. CREE CONFIDENTIAL. THIS PLOT AND THE INFORMATION CONTAINED WITHIN ARE THE PROPRIETARY AND CONFIDENTIAL INFORMATION OF CREE, INC. THIS PLOT MAY NOT BE COPIED, REPRODUCED OR DISCLOSED TO ANY UNAUTHORIZED PERSON WITHOUT THE WRITTEN CONSENT THIRD ANGLE PROJECTION 8/7/2013 Santa Barbara Technology Center Recommended PCB solder pad Recommended stencil opening 0.30 5.00 5.00 SOLDER PAD REFERENCE RECOMMENDED TRACE LAYOUT: MCPCB RECOMMENDED TRACE LAYOUT: MCPCB DWG. NO. REV A SIZE TITLE: Goleta, CA 93117 340 Storke Rd Fax (805) 968-9811 Phone (805) 968-9460 XQ_TraceLayout-MCPCB 20:1 SHEET 1 OF 1 SCALE M.Youmans TOLERANCE UNLESS SPECIFIED: MILLIMETERS & BEFORE FINISH. DIMENSIONS ARE IN UNLESS OTHERWISE SPECIFIED X° ± 1° .XX ± .13 FOR SHEET METAL PARTS ONLY .X ± .25 .XX ± .10 X° ± 2° .X ± 0.3 DRAWN BY APPROVED MATERIAL FINAL PROTECTIVE FINISH CHECK DATE DATE DATE AND THE INFORMATION PROPRIETARY AND CREE, INC. THIS PLOT REPRODUCED OR DISCLOSED TO ANY THE WRITTEN CONSENT THIRD ANGLE PROJECTION 8/7/2013 Santa Barbara Technology Center 0.30 10.00 10.00 4.85 SOLDER PAD REFERENCE RECOMMENDED TRACE LAYOUT: FR4 RECOMMENDED TRACE LAYOUT: FR4 DWG. NO. REV A SIZE TITLE: Goleta, CA 93117 340 Storke Rd Fax (805) 968-9811 Phone (805) 968-9460 XQ_TraceLayout-FR4 10:1 SHEET 1 OF 1 SCALE M.Youmans TOLERANCE UNLESS SPECIFIED: MILLIMETERS & BEFORE FINISH. DIMENSIONS ARE IN UNLESS OTHERWISE SPECIFIED X° ± 1° .XX ± .13 FOR SHEET METAL PARTS ONLY .X ± .25 .XX ± .10 X° ± 2° .X ± 0.3 DRAWN BY APPROVED MATERIAL FINAL PROTECTIVE FINISH CHECK DATE DATE DATE NOTICE OF CREE INC. CREE CONFIDENTIAL. THIS PLOT AND THE INFORMATION CONTAINED WITHIN ARE THE PROPRIETARY AND CONFIDENTIAL INFORMATION OF CREE, INC. THIS PLOT MAY NOT BE COPIED, REPRODUCED OR DISCLOSED TO ANY UNAUTHORIZED PERSON WITHOUT THE WRITTEN CONSENT THIRD ANGLE PROJECTION 8/7/2013 Santa Barbara Technology Center Recommended trace layout: MCPCB Recommended trace layout: FR4 SIZE TITLE OF REV. SHEET C DRAWING NO. DATE DATE DATE CHECK FINAL PROTECTIVE FINISH MATERIAL APPROVED DRAWN BY THIRD ANGLE PROJECTION SCALE 6 5 4 3 2 1 6 5 4 3 2 1 A B C D Phone (919) 313-5300 Fax (919) 313-5558 4600 Silicon Drive Durham, N.C 27703 UNAUTHORIZED PERSON WITHOUT THE WRITTEN CONSENT NOT BE COPIED, REPRODUCED OR DISCLOSED TO ANY CONFIDENTIAL INFORMATION OF CREE, INC. THIS PLOT CONTAINED WITHIN ARE THE PROPRIETARY AND CONFIDENTIAL. THIS PLOT AND THE INFORMATION CREE INC. NOTICE X° ± .5 ° .XXX ± .25 .XX ± .75 .X ± 1.5 FOR SHEET METAL PARTS ONLY .XX ± .25 .XXX ± .125 X° ± .5 ° UNLESS OTHERWISE SPECIFIED DIMENSIONS ARE IN MILLIMETERS AND AFTER FINISH. TOLERANCE UNLESS SPECIFIED: SURFACE FINISH: 1.6 1.60 1.60 1.41 .600 .600 .300 1.500 1.60± .05 .30 1.60 .65 1.60 .300 1.500 3.300 3.300 45.000 1 /1 2610-00026 A XQx OUTLINE -- -- -- -- -- -- D. CRONIN 5/23/12 REVISONS REV DESCRIPTION BY DATE APP'D RECOMMENDED PC BOARD SOLDER PAD RECOMMENDED TRACE LAYOUT SOLDER PAD REFERENCE NOTCH IS ON CATHODE (-) SIDE SIZE TITLE OF SHEET C DRAWING NO. DATE DATE DATE CHECK FINAL PROTECTIVE FINISH MATERIAL APPROVED DRAWN BY THIRD ANGLE PROJECTION SCALE A B C D 6 5 4 3 2 1 6 5 4 3 2 1 Phone (919) 313-5300 Fax (919) 313-5558 4600 Silicon Drive Durham, N.C 27703 UNAUTHORIZED PERSON WITHOUT THE WRITTEN CONSENT MAY NOT BE COPIED, REPRODUCED OR DISCLOSED TO ANY CONFIDENTIAL INFORMATION OF CREE, INC. THIS PLOT CONTAINED WITHIN ARE THE PROPRIETARY AND CREE CONFIDENTIAL. THIS PLOT AND THE INFORMATION OF CREE INC. NOTICE X° ± .5 ° .XXX ± .25 .XX ± .75 .X ± 1.5 FOR SHEET METAL PARTS ONLY .XX ± .25 .XXX ± .125 X° ± .5 ° UNLESS OTHERWISE SPECIFIED DIMENSIONS ARE IN MILLIMETERS AND AFTER FINISH. TOLERANCE UNLESS SPECIFIED: SURFACE FINISH: 1.6 1.60 1.60 1.41 .600 .600 .300 1.500 1.60± .05 .30 1.60 .65 1.60 .300 1.500 3.300 3.300 45.000 2610-00026 XQx OUTLINE -- -- -- -- -- -- D. CRONIN 5/23/12 REVISONS REV DESCRIPTION BY DATE APP'D RECOMMENDED PC BOARD SOLDER PAD RECOMMENDED TRACE LAYOUT SOLDER PAD REFERENCE NOTCH IS ON CATHODE (-) SIDE SIZE TITLE OF REV. SHEET C DRAWING NO. DATE DATE DATE CHECK FINAL PROTECTIVE FINISH MATERIAL APPROVED DRAWN BY THIRD ANGLE PROJECTION SCALE C D 6 5 4 3 2 1 6 5 4 3 2 1 Phone (919) 313-5300 Fax (919) 313-5558 4600 Silicon Drive Durham, N.C 27703 UNAUTHORIZED PERSON WITHOUT THE WRITTEN CONSENT MAY NOT BE COPIED, REPRODUCED OR DISCLOSED TO ANY CONFIDENTIAL INFORMATION OF CREE, INC. THIS PLOT CONTAINED WITHIN ARE THE PROPRIETARY AND CREE CONFIDENTIAL. THIS PLOT AND THE INFORMATION OF CREE INC. NOTICE X° ± .5 ° .XXX ± .25 .XX ± .75 .X ± 1.5 FOR SHEET METAL PARTS ONLY .XX ± .25 .XXX ± .125 X° ± .5 ° UNLESS OTHERWISE SPECIFIED DIMENSIONS ARE IN MILLIMETERS AND AFTER FINISH. TOLERANCE UNLESS SPECIFIED: SURFACE FINISH: 1.6 1.60 1.60 1.41 .600 .600 .300 1.500 1.60± .05 .30 1.60 .65 1.60 .300 1.500 3.300 3.300 45.000 2610-00026 XQx OUTLINE -- -- -- -- -- -- D. CRONIN 5/23/12 REVISONS REV DESCRIPTION BY DATE APP'D RECOMMENDED PC BOARD SOLDER PAD RECOMMENDED TRACE LAYOUT SOLDER PAD REFERENCE NOTCH IS ON CATHODE (-) SIDE Copyright © 2013 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo and XLamp® are registered trademarks of Cree, Inc. 9 xlamp xQ-B led Tape and Reel All Cree carrier tapes conform to EIA-481D, Automated Component Handling Systems Standard. All dimensions in mm. Measurement tolerances unless indicated otherwise: .xx = .25 mm, .xxx = .125 mm SIZE TITLE OF REV. SHEET C DRAWING NO. DATE DATE DATE CHECK FINAL PROTECTIVE FINISH MATERIAL APPROVED DRAWN BY THIRD ANGLE PROJECTION SCALE 5 4 3 2 1 A B C D Phone (919) 313-5300 Fax (919) 313-5558 4600 Silicon Drive Durham, N.C 27703 WRITTEN CONSENT DISCLOSED TO ANY INC. THIS PLOT PROPRIETARY AND INFORMATION X° ± .5 ° .XXX ± .25 .XX ± .75 .X ± 1.5 FOR SHEET METAL PARTS ONLY .XX ± .25 .XXX ± .125 X° ± .5 ° UNLESS OTHERWISE SPECIFIED DIMENSIONS ARE IN MILLIMETERS AND AFTER FINISH. TOLERANCE UNLESS SPECIFIED: SURFACE FINISH: 1.6 A A 3.50 ±.10 .30 ± .10 1.85 1.65 1.750 8.000 NOMINAL 8.30 MAX 1.000 +.10 -.00 1.500 4.000 2.000 REV DESCRIPTION BY DATE APP'D 4.000 1 /1 2402-00023 A Carrier Tape, 1.7X1.7 XPQ D. CRONIN 5/31/12 cumulative tolerance ± 0.2mm REFERENCE VENDOR PART NUMBER 021142 CATHODE SIDE ANODE SIDE Loaded Pockets (2,000 Lamps) Leader 400 mm (min) of empty pockets with at least 100 mm sealed by tape (50 empty pockets min.) Trailer 160 mm (min) of empty pockets sealed with tape (20 pockets min.) END START Cathode Side Anode Side (denoted by + and circle) 2.5 ±.1 1.5 ±.1 8.0 ±.1 4.0 ±.1 1.75 ±.10 12.0 .0 +.3 13mm 7" Cover Tape Pocket Tape User Feed Direction User Feed Direction Copyright © 2013 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo and XLamp® are registered trademarks of Cree, Inc. 10 xlamp xQ-B led Packaging The diagrams below show the packaging and labels Cree uses to ship XLamp XQ-B LEDs. XLamp XQ-B LEDs are shipped in tape loaded on a reel. Each box contains only one reel in a moisture barrier bag. Patent Label (on bottom of box) Label with Cree Bin Code, Qty, Reel ID Label with Cree Bin Code, Qty, Reel ID Label with Cree Order Code, Qty, Reel ID, PO # Label with Cree Order Code, Qty, Reel ID, PO # Label with Cree Bin Code, Qty, Reel ID Unpackaged Reel Packaged Reel Boxed Reel CREE Bin Code & Barcode Label Vacuum-Sealed Moisture Barrier Bag Label with Customer P/N, Qty, Lot #, PO # Label with Cree Bin Code, Qty, Lot # Label with Cree Bin Code, Qty, Lot # Vacuum-Sealed Moisture Barrier Bag Patent Label Label with Customer Order Code, Qty, Reel ID, PO # CLD-DS36 Rev 7A Product family data sheet/ bINNING AND lABELING dOCUMENT Cree® XLamp® MT-G EasyWhite® LEDs WWW.CREE.COM/XLAMP Copyright © 2010 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree, the Cree logo and XLamp are registered trademarks of Cree, Inc. Product Description The XLamp MT-G EasyWhite LED maximizes lumen density, eliminates chromaticity binning, and enables luminaire and bulb manufacturers to deliver consistent color and high efficacy light output in a new, compact, multi-die package. XLamp MT-G EasyWhite LEDs can reduce LED-to-LED color variation to within a 2‑step MacAdam ellipse, 94% smaller than the total area of the corresponding ANSI C78.377 color region. The XLamp MT-G EasyWhite LED is the perfect choice for lighting applications where high luminous flux output is required from a single, small point source. Example applications include: LED retrofit bulbs, commercial/retail display spotlights, and other indoor general illumination applications. FEATURES • Cree EasyWhite color temperatures from 2700 K to 5000 K CCT • Wide range of operating power - up to 25 W • 85 °C binning and characterization • Two voltage options: 6 V, 36 V • Low effective thermal resistance: 1.5 °C/W • High lumen density • Wide viewing angle: 120° • 80-minimum CRI at 2700 K and 3000 K CCT • 85- and 90-minimum CRI available in 2700 K and 3000 K CCT • Electrically neutral thermal path • RoHS- and REACh-compliant • UL-recognized component (E349212) Applications • MR, PAR and other directional retrofit bulbs • Commercial/residential directional lighting • General illumination www.cree.com/xlamp Copyright © 2011-2013 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo, XLamp® and EasyWhite® are registered trademarks of Cree, Inc. Cree, Inc. 4600 Silicon Drive Durham, NC 27703 USA Tel: +1.919.313.5300 Table of contents Characteristics........................... 2 Flux Characteristics, Standard Order Codes, Bins....................... 3 Relative Spectral Power Distribution............................... 6 Relative Luminous Flux vs. Junction Temperature.................. 6 Electrical Characteristics.............. 7 Relative Luminous Flux vs Current .8 Typical Spatial Distribution........... 9 Performance Groups – Brightness.9 Performance Groups – Chromaticity.............................10 Cree EasyWhite Color Temperatures Plotted on the 1931 CIE Curve....11 Bin and Order Code Format.........11 Standard Order Codes and Bins .12 Reflow Soldering Characteristics..13 Notes.......................................14 Mechanical Dimensions..............15 Tape and Reel...........................16 Packaging.................................17 xlamp MT-G EasyWhite LEDs 2010 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree, the Cree logo and XLamp are registered trademarks of Cree, Inc. 2 Copyright © 2011-2013 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo, XLamp® and EasyWhite® are registered trademarks of Cree, Inc. Characteristics Characteristics Unit Minimum Typical Maximum Viewing angle (FWHM) degrees 120 ESD withstand voltage (HBM per Mil-Std-883D) V 8000 Effective thermal resistance, junction to solder point °C/W 1.5 LED junction temperature °C 150 DC forward current (6 V) mA 1100 4000 DC forward current (36 V) mA 185 700 Forward voltage (6 V, 1100 mA, 85 °C) V 5.6 6.7 Forward voltage (36 V, 185 mA, 85 °C) V 33.5 40.2 Temperature coefficient of voltage (6 V) mV/°C -4.5 Temperature coefficient of voltage (36 V) mV/°C -27 Reverse voltage (6 V) V -5 Reverse current (6V, 36 V) mA 0.1 xlamp MT-G EasyWhite LEDs 2010 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree, the Cree logo and XLamp are registered trademarks of Cree, Inc. 3 Copyright © 2011-2013 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo, XLamp® and EasyWhite® are registered trademarks of Cree, Inc. Flux Characteristics, Standard Order Codes, Bins, 6 VolT MT-G (1100 mA, Tj = 85 °C) The following table provides several base order codes for 6 Volt XLamp MT-G EasyWhite LEDs. For a complete description of the order-code nomenclature, please reference page 11 of this document. Color CCT Range Base Order Codes Min. Luminous Flux @ 1100 mA 2-Step Order Code 4-Step Order Code Group Flux (lm) @ 85 °C Flux (lm) @ 25 °C* Chromaticity Region Chromaticity Region Standard CRI EasyWhite 5000 K H0 560 642 50H MTGEZW-00-0000-0B00H050H 50F MTGEZW-00-0000-0B00H050F J0 600 688 MTGEZW-00-0000-0B00J050H MTGEZW-00-0000-0B00J050F K0 650 745 MTGEZW-00-0000-0B00K050H MTGEZW-00-0000-0B00K050F 4000 K G0 520 596 40H MTGEZW-00-0000-0B00G040H 40F MTGEZW-00-0000-0B00G040F H0 560 642 MTGEZW-00-0000-0B00H040H MTGEZW-00-0000-0B00H040F J0 600 688 MTGEZW-00-0000-0B00J040H MTGEZW-00-0000-0B00J040F 3500 K F0 480 550 35H MTGEZW-00-0000-0B00F035H 35F MTGEZW-00-0000-0B00F035F G0 520 596 MTGEZW-00-0000-0B00G035H MTGEZW-00-0000-0B00G035F H0 560 642 MTGEZW-00-0000-0B00H035H MTGEZW-00-0000-0B00H035F 3000 K F0 480 550 30H MTGEZW-00-0000-0B00F030H 30F MTGEZW-00-0000-0B00F030F G0 520 596 MTGEZW-00-0000-0B00G030H MTGEZW-00-0000-0B00G030F H0 560 642 MTGEZW-00-0000-0B00H030H MTGEZW-00-0000-0B00H030F 2700 K E0 440 504 27H MTGEZW-00-0000-0B00E027H 27F MTGEZW-00-0000-0B00E027F F0 480 550 MTGEZW-00-0000-0B00F027H MTGEZW-00-0000-0B00F027F G0 520 596 MTGEZW-00-0000-0B00G027H MTGEZW-00-0000-0B00G027F Notes: • Cree maintains a tolerance of ±7% on flux and power measurements, ±0.005 on chromaticity (CCx, CCy) measurements and ±2 on CRI measurements. • Minimum CRI for EasyWhite color temperatures 27F, 27H, 30F, 30H is 80. • Minimum CRI for EasyWhite color temperatures 35F, 35H, 40F, 40H is 77. • Typical CRI for EasyWhite color temperatures 35F, 35H, 40F, 40H is 80. • Minimum CRI for EasyWhite color temperature 50F, 50H is 75. * Flux values @ 25 °C are calculated and for reference only. xlamp MT-G EasyWhite LEDs 2010 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree, the Cree logo and XLamp are registered trademarks of Cree, Inc. 4 Copyright © 2011-2013 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo, XLamp® and EasyWhite® are registered trademarks of Cree, Inc. Flux Characteristics, Standard Order Codes, Bins, 36 VolT MT-G (185 mA, Tj = 85 °C) The following table provides several base order codes for 36 Volt XLamp MT-G EasyWhite LEDs. For a complete description of the order-code nomenclature, please reference page 11 of this document. Color CCT Range Base Order Codes Min. Luminous Flux @ 185 mA 2-Step Order Code 4-Step Order Code Group Flux (lm) @ 85 °C Flux (lm) @ 25 °C* Chromaticity Region Chromaticity Region Standard CRI EasyWhite 5000 K H0 560 647 50H MTGEZW-00-0000-0N00H050H 50F MTGEZW-00-0000-0N00H050F J0 600 693 MTGEZW-00-0000-0N00J050H MTGEZW-00-0000-0N00J050F K0 650 751 MTGEZW-00-0000-0N00K050H MTGEZW-00-0000-0N00K050F 4000 K G0 520 601 40H MTGEZW-00-0000-0N00G040H 40F MTGEZW-00-0000-0N00G040F H0 560 647 MTGEZW-00-0000-0N00H040H MTGEZW-00-0000-0N00H040F J0 600 693 MTGEZW-00-0000-0N00J040H MTGEZW-00-0000-0N00J040F 3500 K F0 480 555 35H MTGEZW-00-0000-0N00F035H 35F MTGEZW-00-0000-0N00F035F G0 520 601 MTGEZW-00-0000-0N00G035H MTGEZW-00-0000-0N00G035F H0 560 647 MTGEZW-00-0000-0N00H035H MTGEZW-00-0000-0N00H035F 3000 K F0 480 555 30H MTGEZW-00-0000-0N00F030H 30F MTGEZW-00-0000-0N00F030F G0 520 601 MTGEZW-00-0000-0N00G030H MTGEZW-00-0000-0N00G030F H0 560 647 MTGEZW-00-0000-0N00H030H MTGEZW-00-0000-0N00H030F 2700 K E0 440 508 27H MTGEZW-00-0000-0N00E027H 27F MTGEZW-00-0000-0N00E027F F0 480 555 MTGEZW-00-0000-0N00F027H MTGEZW-00-0000-0N00F027F G0 520 601 MTGEZW-00-0000-0N00G027H MTGEZW-00-0000-0N00G027F Flux Characteristics, Standard Order Codes, Bins, 85 cri, 6 VolT MT-G (1100 mA, Tj = 85 °C) Color CCT Range Base Order Codes Min. Luminous Flux @ 1100 mA 2-Step Order Code 4-Step Order Code Group Flux (lm) @ 85 °C Flux (lm) @ 25 °C* Chromaticity Region Chromaticity Region 85 CRI EasyWhite 3000 K D0 400 458 30H MTGEZW-00-0000-0B0PD030H 30F MTGEZW-00-0000-0B0PD030F E0 440 504 MTGEZW-00-0000-0B0PE030H MTGEZW-00-0000-0B0PE030F F0 480 550 MTGEZW-00-0000-0B0PF030H MTGEZW-00-0000-0B0PF030F 2700 K D0 400 458 27H MTGEZW-00-0000-0B0PD027H 27F MTGEZW-00-0000-0B0PD027F E0 440 504 MTGEZW-00-0000-0B0PE027H MTGEZW-00-0000-0B0PE027F Notes: • Cree maintains a tolerance of ±7% on flux and power measurements, ±0.005 on chromaticity (CCx, CCy) measurements and ±2 on CRI measurements. • Minimum CRI for EasyWhite color temperatures 27F, 27H, 30F, 30H is 80. • Minimum CRI for EasyWhite color temperatures 35F, 35H, 40F, 40H is 77. • Typical CRI for EasyWhite color temperatures 35F, 35H, 40F, 40H is 80. • Minimum CRI for EasyWhite color temperature 50F, 50H is 75. * Flux values @ 25 °C are calculated and for reference only. xlamp MT-G EasyWhite LEDs 2010 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree, the Cree logo and XLamp are registered trademarks of Cree, Inc. 5 Copyright © 2011-2013 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo, XLamp® and EasyWhite® are registered trademarks of Cree, Inc. Flux Characteristics, Standard Order Codes, Bins, 85 cri, 36 VolT MT-G (185 mA, Tj = 85 °C) Color CCT Range Base Order Codes Min. Luminous Flux @ 185 mA 2-Step Order Code 4-Step Order Code Group Flux (lm) @ 85 °C Flux (lm) @ 25 °C* Chromaticity Region Chromaticity Region 85 CRI EasyWhite 3000 K D0 400 462 30H MTGEZW-00-0000-0N0PD030H 30F MTGEZW-00-0000-0N0PD030F E0 440 508 MTGEZW-00-0000-0N0PE030H MTGEZW-00-0000-0N0PE030F F0 480 555 MTGEZW-00-0000-0N0PF030H MTGEZW-00-0000-0N0PF030F 2700 K D0 400 462 27H MTGEZW-00-0000-0N0PD027H 27F MTGEZW-00-0000-0N0PD027F E0 440 508 MTGEZW-00-0000-0N0PE027H MTGEZW-00-0000-0N0PE027F Flux Characteristics, Standard Order Codes, Bins, 90 cri, 6 VolT MT-G (1100 mA, Tj = 85 °C) Color CCT Range Base Order Codes Min. Luminous Flux @ 1100 mA 2-Step Order Code 4-Step Order Code Group Flux (lm) @ 85 °C Flux (lm) @ 25 °C* Chromaticity Region Chromaticity Region 90 CRI EasyWhite 3000 K C0 370 424 30H MTGEZW-00-0000-0B0UC030H 30F MTGEZW-00-0000-0B0UC030F D0 400 458 MTGEZW-00-0000-0B0UD030H MTGEZW-00-0000-0B0UD030F E0 440 504 MTGEZW-00-0000-0B0UE030H MTGEZW-00-0000-0B0UE030F 2700 K B0 340 390 27H MTGEZW-00-0000-0B0UB027H 27F MTGEZW-00-0000-0B0UB027F C0 370 424 MTGEZW-00-0000-0B0UC027H MTGEZW-00-0000-0B0UC027F D0 400 458 MTGEZW-00-0000-0B0UD027H MTGEZW-00-0000-0B0UD027F Flux Characteristics, Standard Order Codes, Bins, 90 cri, 36 VolT MT-G (185 mA, Tj = 85 °C) Color CCT Range Base Order Codes Min. Luminous Flux @ 185 mA 2-Step Order Code 4-Step Order Code Group Flux (lm) @ 85 °C Flux (lm) @ 25 °C* Chromaticity Region Chromaticity Region 90 CRI EasyWhite 3000 K C0 370 428 30H MTGEZW-00-0000-0N0UC030H 30F MTGEZW-00-0000-0N0UC030F D0 400 462 MTGEZW-00-0000-0N0UD030H MTGEZW-00-0000-0N0UD030F E0 440 508 MTGEZW-00-0000-0N0UE030H MTGEZW-00-0000-0N0UE030F 2700 K B0 340 393 27H MTGEZW-00-0000-0N0UB027H 27F MTGEZW-00-0000-0N0UB027F C0 370 428 MTGEZW-00-0000-0N0UC027H MTGEZW-00-0000-0N0UC027F D0 400 462 MTGEZW-00-0000-0N0UD027H MTGEZW-00-0000-0N0UD027F Notes: • Cree maintains a tolerance of ±7% on flux and power measurements, ±0.005 on chromaticity (CCx, CCy) measurements and ±2 on CRI measurements. * Flux values @ 25 °C are calculated and for reference only. xlamp MT-G EasyWhite LEDs 2010 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree, the Cree logo and XLamp are registered trademarks of Cree, Inc. 6 Copyright © 2011-2013 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo, XLamp® and EasyWhite® are registered trademarks of Cree, Inc. Relative Spectral Power Distribution (6 V, 1100 mA; 36 V, 185 mA; TJ= 85 °C) The following graph represents typical spectral output of the XLamp MT-G EasyWhite LED. Relative Luminous Flux vs. Junction Temperature (6 V, 1100 ma; 36 V, 185 mA) The following graph represents typical performance of the XLamp MT-G EasyWhite LED. Relative Spectral Power Distribution White The following graph represents typical spectral output of each die of the MT-G 0 20 40 60 80 100 400 450 500 550 600 650 700 750 Relative Spectral Power (%) Wavelength (nm) Warm White Cool White Relative Flux Output vs. Junction Temperature (If = 1100 mA, or 183.33 if @ 36V) The following graph represents typical performance of each LED die in the XLamp MT-G 0% 20% 40% 60% 80% 100% 120% 20 40 60 80 100 120 140 Relative Luminous Flux Junction Temperature ( º C) xlamp MT-G EasyWhite LEDs 2010 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree, the Cree logo and XLamp are registered trademarks of Cree, Inc. 7 Copyright © 2011-2013 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo, XLamp® and EasyWhite® are registered trademarks of Cree, Inc. Electrical Characteristics (TJ = 85 °C) Electrical Characteristics (Tsp = 85ºC) 6V 0 500 1000 1500 2000 2500 3000 3500 4000 5 5.25 5.5 5.75 6 6.25 Current (mA) Forward Voltage V MT-G 6V 36V 0 100 200 300 400 500 600 700 31.00 32.00 33.00 34.00 35.00 36.00 37.00 38.00 Current (mA) Forward Voltage V MT-G 36V xlamp MT-G EasyWhite LEDs 2010 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree, the Cree logo and XLamp are registered trademarks of Cree, Inc. 8 Copyright © 2011-2013 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo, XLamp® and EasyWhite® are registered trademarks of Cree, Inc. Relative Luminous Flux vs Current (TJ = 85 °C) Relative Intensity vs. Current (Tsp = 85ºC) 0% 50% 100% 150% 200% 250% 300% 0 500 1000 1500 2000 2500 3000 3500 4000 Relative Luminous Flux (%) Forward Current, Pulsed (mA) MT-G 6V @ 36V) 0% 50% 100% 150% 200% 250% 300% 0 100 200 300 400 500 600 700 Relative Luminous Flux (%) Forward Current, Pulsed (mA) MT-G 36V xlamp MT-G EasyWhite LEDs 2010 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree, the Cree logo and XLamp are registered trademarks of Cree, Inc. 9 Copyright © 2011-2013 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo, XLamp® and EasyWhite® are registered trademarks of Cree, Inc. Typical Spatial Distribution The following graph represents typical performance of the XLamp MT-G EasyWhite LED. Performance Groups – Brightness (TJ = 85 °C) XLamp MT-G EasyWhite LEDs are tested for luminosity and placed into one of the following bins. Group Code Min. Luminous Flux @ 1100 mA, 6 V; @185 mA, 36 V Max. Luminous Flux @ 1100 mA, 6 V; @185 mA, 36 V A0 310 340 B0 340 370 C0 370 400 D0 400 440 E0 440 480 F0 480 520 G0 520 560 H0 560 600 J0 600 650 K0 650 700 Spatial Distribution 0 20 40 60 80 100 -90 -60 -30 0 30 60 90 Relative Luminous Intensity (%) Angle (º) xlamp MT-G EasyWhite LEDs 2010 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree, the Cree logo and XLamp are registered trademarks of Cree, Inc. 10 Copyright © 2011-2013 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo, XLamp® and EasyWhite® are registered trademarks of Cree, Inc. Performance Groups – Chromaticity (TJ = 85 °C) XLamp MT-G EasyWhite LEDs are tested for chromaticity and placed into one of the regions defined by the following bounding coordinates. EasyWhite Color Temperatures – 4-Step Code CCT x y 50F 5000K 0.3407 0.3459 0.3415 0.3586 0.3499 0.3654 0.3484 0.3521 40F 4000K 0.3744 0.3685 0.3782 0.3837 0.3912 0.3917 0.3863 0.3758 35F 3500K 0.3981 0.3800 0.4040 0.3966 0.4186 0.4037 0.4116 0.3865 30F 3000K 0.4242 0.3919 0.4322 0.4096 0.4449 0.4141 0.4359 0.3960 27F 2700K 0.4475 0.3994 0.4573 0.4178 0.4695 0.4207 0.4589 0.4021 EasyWhite Color Temperatures – 2-Step Code CCT x y 50H 5000K 0.3429 0.3507 0.3434 0.3571 0.3475 0.3604 0.3469 0.3539 40H 4000K 0.3784 0.3741 0.3804 0.3818 0.3867 0.3857 0.3844 0.3778 35H 3500K 0.4030 0.3857 0.4061 0.3941 0.4132 0.3976 0.4099 0.3890 30H 3000K 0.4291 0.3973 0.4333 0.4062 0.4395 0.4084 0.4351 0.3994 27H 2700K 0.4528 0.4046 0.4578 0.4138 0.4638 0.4152 0.4586 0.4060 xlamp MT-G EasyWhite LEDs 2010 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree, the Cree logo and XLamp are registered trademarks of Cree, Inc. 11 Copyright © 2011-2013 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo, XLamp® and EasyWhite® are registered trademarks of Cree, Inc. Cree EasyWhite Color Temperatures Plotted on the 1931 CIE Curve (TJ = 85 °C) Bin and Order Code Format Bin codes and order codes are configured as follows: Order Code B in Code 2700K 3000K 3500K 4000K 4500K 5000K 5700K 0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39 0.40 0.41 0.42 0.43 0.44 0.45 0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39 0.40 0.41 0.42 0.43 0.44 0.45 0.46 0.47 0.48 0.49 CCy CCx ANSI C78.377 Quadrangle EasyWhite 4-step EasyWhite 2-step SSSCCC-BB-HHHH-NNNRNNNNN Series MTG = MT-G Internal code Internal code CRI Specification U = 90 min CRI P = 85 min CRI 0 = standard CRI Kit code Vf class: B0 = 6-V class N0 = 36-V class Reel size 0 = 500 (standard) 1 = 100 (nonstandard) Color EZW = EasyWhite SSSCCC-BB-WWW-FF-NNRAAAA Series MTG = MT-G Internal code Flux bin CRI Specification U = 90 min CRI P = 85 min CRI H = 80 min CRI E = 77 min CRI D = 75 min CRI Internal Code Vf class: B0 = 6-V class N0 = 36-V class Chromaticity bin Color EZW = EasyWhite xlamp MT-G EasyWhite LEDs 2010 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree, the Cree logo and XLamp are registered trademarks of Cree, Inc. 12 Copyright © 2011-2013 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo, XLamp® and EasyWhite® are registered trademarks of Cree, Inc. Standard Order Codes and Bins (XLamp MT-G EasyWhite) XLamp MT-G EasyWhite LED Standard Order Codes Min. Luminous Flux (lm) @ Tj=85 °C, 6 V, 1100 mA @ Tj=85 °C, 36 V, 185 mA Chromaticity Regions 6V Order Code 36V Order Code Group Flux (lm) EasyWhite D0 400 27F MTGEZW-00-0000-0B00D027F MTGEZW-00-0000-0N00D027F 27H MTGEZW-00-0000-0B00D027H MTGEZW-00-0000-0N00D027H E0 440 27F MTGEZW-00-0000-0B00E027F MTGEZW-00-0000-0N00E027F 27H MTGEZW-00-0000-0B00E027H MTGEZW-00-0000-0N00E027H 30F MTGEZW-00-0000-0B00E030F MTGEZW-00-0000-0N00E030F 30H MTGEZW-00-0000-0B00E030H MTGEZW-00-0000-0N00E030H 35F MTGEZW-00-0000-0B00E035F MTGEZW-00-0000-0N00E035F 35H MTGEZW-00-0000-0B00E035H MTGEZW-00-0000-0N00E035H F0 480 27F MTGEZW-00-0000-0B00F027F MTGEZW-00-0000-0N00F027F 27H MTGEZW-00-0000-0B00F027H MTGEZW-00-0000-0N00F027H 30F MTGEZW-00-0000-0B00F030F MTGEZW-00-0000-0N00F030F 30H MTGEZW-00-0000-0B00F030H MTGEZW-00-0000-0N00F030H 35F MTGEZW-00-0000-0B00F035F MTGEZW-00-0000-0N00F035F 35H MTGEZW-00-0000-0B00F035H MTGEZW-00-0000-0N00F035H 40F MTGEZW-00-0000-0B00F040F MTGEZW-00-0000-0N00F040F 40H MTGEZW-00-0000-0B00F040H MTGEZW-00-0000-0N00F040H G0 520 27F MTGEZW-00-0000-0B00G027F MTGEZW-00-0000-0N00G027F 27H MTGEZW-00-0000-0B00G027H MTGEZW-00-0000-0N00G027H 30F MTGEZW-00-0000-0B00G030F MTGEZW-00-0000-0N00G030F 30H MTGEZW-00-0000-0B00G030H MTGEZW-00-0000-0N00G030H 35F MTGEZW-00-0000-0B00G035F MTGEZW-00-0000-0N00G035F 35H MTGEZW-00-0000-0B00G035H MTGEZW-00-0000-0N00G035H 40F MTGEZW-00-0000-0B00G040F MTGEZW-00-0000-0N00G040F 40H MTGEZW-00-0000-0B00G040H MTGEZW-00-0000-0N00G040H H0 560 30F MTGEZW-00-0000-0B00H030F MTGEZW-00-0000-0N00H030F 30H MTGEZW-00-0000-0B00H030H MTGEZW-00-0000-0N00H030H 35F MTGEZW-00-0000-0B00H035F MTGEZW-00-0000-0N00H035F 35H MTGEZW-00-0000-0B00H035H MTGEZW-00-0000-0N00H035H 40F MTGEZW-00-0000-0B00H040F MTGEZW-00-0000-0N00H040F 40H MTGEZW-00-0000-0B00H040H MTGEZW-00-0000-0N00H040H 50F MTGEZW-00-0000-0B00H050F MTGEZW-00-0000-0N00H050F 50H MTGEZW-00-0000-0B00H050H MTGEZW-00-0000-0N00H050H J0 600 40F MTGEZW-00-0000-0B00J040F MTGEZW-00-0000-0N00J040F 40H MTGEZW-00-0000-0B00J040H MTGEZW-00-0000-0N00J040H 50F MTGEZW-00-0000-0B00J050F MTGEZW-00-0000-0N00J050F 50H MTGEZW-00-0000-0B00J050H MTGEZW-00-0000-0N00J050H K0 650 50F MTGEZW-00-0000-0B00K050F MTGEZW-00-0000-0N00K050F 50H MTGEZW-00-0000-0B00K050H MTGEZW-00-0000-0N00K040H xlamp MT-G EasyWhite LEDs 2010 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree, the Cree logo and XLamp are registered trademarks of Cree, Inc. 13 Copyright © 2011-2013 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo, XLamp® and EasyWhite® are registered trademarks of Cree, Inc. Reflow Soldering Characteristics In testing, Cree has found XLamp MT-G EasyWhite LEDs to be compatible with JEDEC J-STD-020C, using the parameters listed below. As a general guideline, Cree recommends that users follow the recommended soldering profile provided by the manufacturer of solder paste used. Note that this general guideline may not apply to all PCB designs and configurations of reflow soldering equipment. Profile Feature Lead-Based Solder Lead-Free Solder Average Ramp-Up Rate (Tsmax to Tp) 3 °C/second max. 3 °C/second max. Preheat: Temperature Min (Tsmin) 100 °C 150 °C Preheat: Temperature Max (Tsmax) 150 °C 200 °C Preheat: Time (tsmin to tsmax) 60-120 seconds 60-180 seconds Time Maintained Above: Temperature (TL) 183 °C 217 °C Time Maintained Above: Time (tL) 60-150 seconds 60-150 seconds Peak/Classification Temperature (Tp) 215 °C 260 °C Time Within 5 °C of Actual Peak Temperature (tp) 10-30 seconds 20-40 seconds Ramp-Down Rate 6 °C/second max. 6 °C/second max. Time 25 °C to Peak Temperature 6 minutes max. 8 minutes max. Note: All temperatures refer to the topside of the package, measured on the package body surface. xlamp MT-G EasyWhite LEDs 2010 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree, the Cree logo and XLamp are registered trademarks of Cree, Inc. 14 Copyright © 2011-2013 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo, XLamp® and EasyWhite® are registered trademarks of Cree, Inc. Notes Lumen Maintenance Projections Cree now uses standardized IES LM-80-08 and TM-21-11 methods for collecting long-term data and extrapolating LED lumen maintenance. For information on the specific LM-80 data sets available for this LED, refer to the public LM-80 results document at www.cree.com/xlamp_app_notes/LM80_results. Moisture Sensitivity In testing, Cree has found XLamp MT-G EasyWhite LEDs to have unlimited floor life in conditions ≤ 30 ºC/85% relative humidity (RH). Moisture testing included a 168-hour soak at 85 ºC/85% RH followed by 3 reflow cycles, with visual and electrical inspections at each stage. Cree recommends keeping XLamp LEDs in their sealed moisture-barrier packaging until immediately prior to use. Cree also recommends returning any unused LEDs to the resealable moisture-barrier bag and closing the bag immediately after use. RoHS Compliance The levels of RoHS restricted materials in this product are below the maximum concentration values (also referred to as the threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 2011/65/EC (RoHS2), as implemented January 2, 2013. RoHS Declarations for this product can be obtained from your Cree representative or from the Product Ecology section of www.cree.com. REAC h Compliance REACh substances of high concern (SVHCs) information is available for this product. Since the European Chemical Agency (ECHA) has published notices of their intent to frequently revise the SVHC listing for the foreseeable future, please contact a Cree representative to insure you get the most up-to-date REACh Declaration. Historical REACh banned substance information (substances restricted or banned in the EU prior to 2010) is also available upon request. UL Recognized Component Level 4 enclosure consideration. The LED package or a portion thereof has been investigated as a fire and electrical enclosure per ANSI/UL 8750. Vision Advisory Claim WARNING. Do not look at exposed LED lamps in operation. Eye injury can result. For more information about LEDs and eye safety, please refer to the Cree LED Eye Safety Application Note (www.cree.com/xlamp_app_notes/led_eye_safety). xlamp MT-G EasyWhite LEDs 2010 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree, the Cree logo and XLamp are registered trademarks of Cree, Inc. 15 Copyright © 2011-2013 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo, XLamp® and EasyWhite® are registered trademarks of Cree, Inc. Mechanical Dimensions All measurements are ±.13 mm unless otherwise indicated. SIZE TITLE OF REV. SHEET C DRAWING NO. DATE DATE DATE CHECK FINAL PROTECTIVE FINISH MATERIAL APPROVED DRAWN BY THIRD ANGLE PROJECTION SCALE 5 4 3 2 1 5 4 3 2 1 A B C D Phone (919) 313-5300 Fax (919) 313-5558 4600 Silicon Drive Durham, N.C 27703 WITHOUT THE WRITTEN CONSENT REPRODUCED OR DISCLOSED TO ANY INFORMATION OF CREE, INC. THIS PLOT THE PROPRIETARY AND THIS PLOT AND THE INFORMATION NOTICE X° ± .5 ° .XXX ± .25 .XX ± .75 .X ± 1.5 FOR SHEET METAL PARTS ONLY .XX ± .25 .XXX ± .125 X° ± .5 ° UNLESS OTHERWISE SPECIFIED DIMENSIONS ARE IN MILLIMETERS AND AFTER FINISH. TOLERANCE UNLESS SPECIFIED: SURFACE FINISH: 1.6 9.113 9.113 .650 4.85 ±.25 R4.100 8.90 .950 .500 6.000 8.90 8.900 8.900 6.000 .950 .500 6.198 .889 1.090 1.905 1.072 1.905 8.839 .889 .937 .937 1.722 3.175 3.175 1.090 8.072 9.000 1 /1 2610-00011 C TIGER 9191 OUTLINE D. CRONIN 10/8/10 REVISONS REV DESCRIPTION BY DATE APP'D A INITIAL RELEASE DC 10/8/10 B CHANGED SOLDER PAD VIEW DC 1/11/11 C ADDED STENCIL VIEW DC 2/18/11 RECOMMENDED PC BOARD SOLDER PAD RECOMMENDED STENCIL PATTERN THIRD ANGLE PROJECTION A B C D 6 5 4 3 6 5 4 3 UNAUTHORIZED PERSON WITHOUT THE WRITTEN CONSENT MAY NOT BE COPIED, REPRODUCED OR DISCLOSED TO ANY CONFIDENTIAL INFORMATION OF CREE, INC. THIS PLOT CONTAINED WITHIN ARE THE PROPRIETARY AND CREE CONFIDENTIAL. THIS PLOT AND THE INFORMATION OF CREE INC. NOTICE X° .XXX .XX .X FOR SHEET METAL .XX .XXX X° UNLESS OTHERWISE DIMENSIONS MILLIMETERS AND TOLERANCE UNLESS SURFACE FINISH: 9.113 9.113 .650 4.85 ±.25 R4.100 8.900 8.900 6.000 .950 .950 .500 .500 6.198 .889 1.090 1.905 1.072 1.905 8.839 .889 .937 .937 1.722 3.175 3.175 1.090 8.072 RECOMMENDED PC BOARD SOLDER PAD RECOMMENDED STENCIL PATTERN SIZE TITLE OF REV. SHEET C DRAWING NO. DATE DATE DATE CHECK FINAL PROTECTIVE FINISH MATERIAL APPROVED DRAWN BY THIRD ANGLE PROJECTION SCALE 6 5 4 3 2 1 6 5 4 3 2 1 A B C D Phone (919) 313-5300 Fax (919) 313-5558 4600 Silicon Drive Durham, N.C 27703 UNAUTHORIZED PERSON WITHOUT THE WRITTEN CONSENT BE COPIED, REPRODUCED OR DISCLOSED TO ANY CONFIDENTIAL INFORMATION OF CREE, INC. THIS PLOT CONTAINED WITHIN ARE THE PROPRIETARY AND CONFIDENTIAL. THIS PLOT AND THE INFORMATION INC. NOTICE X° ± .5 ° .XXX ± .25 .XX ± .75 .X ± 1.5 FOR SHEET METAL PARTS ONLY .XX ± .25 .XXX ± .125 X° ± .5 ° UNLESS OTHERWISE SPECIFIED DIMENSIONS ARE IN MILLIMETERS AND AFTER FINISH. TOLERANCE UNLESS SPECIFIED: SURFACE FINISH: 1.6 8.90 8.90 .650 4.85 ±.25 R4.100 8.90 .950 .500 6.000 8.90 8.900 8.900 6.000 .950 .500 6.198 .889 1.090 1.905 1.072 1.905 8.839 .889 .937 .937 1.722 3.175 3.175 1.090 8.072 9.000 1 /1 2610-00011 D TIGER 9191 OUTLINE D. CRONIN 10/8/10 REVISONS REV DESCRIPTION BY DATE APP'D A INITIAL RELEASE DC 10/8/10 B CHANGED SOLDER PAD VIEW DC 1/11/11 C ADDED STENCIL VIEW DC 2/18/11 D CHANGED OVERALL DIM TO MATCH CUT LENGTH AND WIDTH DC 3/25/11 RECOMMENDED PC BOARD SOLDER PAD RECOMMENDED STENCIL PATTERN SIZE TITLE C DRAWING NO. DATE DATE DATE CHECK FINAL PROTECTIVE FINISH MATERIAL APPROVED DRAWN BY THIRD ANGLE PROJECTION SCALE 6 5 4 3 2 6 5 4 3 2 UNAUTHORIZED PERSON WITHOUT THE WRITTEN CONSENT BE COPIED, REPRODUCED OR DISCLOSED TO ANY CONFIDENTIAL INFORMATION OF CREE, INC. THIS PLOT WITHIN ARE THE PROPRIETARY AND CONFIDENTIAL. THIS PLOT AND THE INFORMATION INC. NOTICE X° ± .5 ° .XXX ± .25 .XX ± .75 .X ± 1.5 FOR SHEET METAL PARTS ONLY .XX ± .25 .XXX ± .125 X° ± .5 ° UNLESS OTHERWISE SPECIFIED DIMENSIONS ARE IN MILLIMETERS AND AFTER FINISH. TOLERANCE UNLESS SPECIFIED: SURFACE FINISH: 1.6 8.900 8.900 6.000 .950 .500 6.198 .889 1.090 1.905 1.072 1.905 8.839 .889 .937 .937 1.722 3.175 3.175 1.090 8.072 8.90 8.90 4.85 ±.25 R4.100 .650 8.90 8.90 .950 .500 6.000 9.000 2610-36V MT-G D. CRONIN 10/8/10 REVISONS REV DESCRIPTION A INITIAL RELEASE RECOMMENDED PC BOARD SOLDER PAD RECOMMENDED STENCIL PATTERN MT-G 6V MT-G36V ANODE ANODE xlamp MT-G EasyWhite LEDs 2010 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree, the Cree logo and XLamp are registered trademarks of Cree, Inc. 16 Copyright © 2011-2013 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo, XLamp® and EasyWhite® are registered trademarks of Cree, Inc. Tape and Reel All Cree carrier tapes conform to EIA-481D, Automated Component Handling Systems Standard. All dimensions in mm. SIZE TITLE OF REV. SHEET C DRAWING NO. DATE DATE DATE CHECK FINAL PROTECTIVE FINISH MATERIAL APPROVED DRAWN BY THIRD ANGLE PROJECTION X° ± .5 ° .XXX ± .010 .XX ± .03 .X ± .06 FOR SHEET METAL PARTS ONLY .XX ± .01 .XXX ± .005 X° ± .5 ° UNLESS OTHERWISE SPECIFIED DIMENSIONS ARE IN INCHES AND AFTER FINISH. TOLERANCE UNLESS SPECIFIED: SCALE A B C D 6 5 4 3 2 1 6 5 4 3 2 1 A B C D Phone (919) 313-5300 Fax (919) 313-5558 4600 Silicon Drive Durham, N.C 27703 UNAUTHORIZED PERSON WITHOUT THE WRITTEN CONSENT MAY NOT BE COPIED, REPRODUCED OR DISCLOSED TO ANY CONFIDENTIAL INFORMATION OF CREE, INC. THIS PLOT CONTANED WITHIN ARE THE PROPRIETARY AND CREE CONFIDENTIAL. THIS PLOT AND THE INFORMATION OF CREE INC. NOTICE SURFACE FINISH: 63 330 +.25 -.75 12.4 +1.0 -.5 MEASURED AT EDGE 16.4 +0.2 .0 MEASURED AT HUB 12.4 +.2 .0 MEASURED AT HUB 13.1 ±.2 1.9±.4 21±.4 60° 60° 0.500 1 /1 2400-00009 A REEL, 13" X 12MM, 3 PIECE SNAP - ANTI-STATIC HIPS -- -- -- -- D. CRONIN 09/29/09 2400-00009 INDEX QTY ITEM COMMENTS 1 1 2400-00009-CORE 2 2 2400-00009-REEL REVISONS REV DESCRIPTION BY DATE APP'D SIZE TITLE OF REV. SHEET C DRAWING NO. DATE DATE DATE CHECK FINAL PROTECTIVE FINISH MATERIAL APPROVED DRAWN BY THIRD ANGLE PROJECTION SCALE A B C D 6 5 4 3 2 1 6 5 4 3 2 1 A B C D Phone (919) 313-5300 Fax (919) 313-5558 4600 Silicon Drive Durham, N.C 27703 UNAUTHORIZED PERSON WITHOUT THE WRITTEN CONSENT MAY NOT BE COPIED, REPRODUCED OR DISCLOSED TO ANY CONFIDENTIAL INFORMATION OF CREE, INC. THIS PLOT CONTAINED WITHIN ARE THE PROPRIETARY AND CREE CONFIDENTIAL. THIS PLOT AND THE INFORMATION OF CREE INC. NOTICE X° ± .5 ° .XXX ± .25 .XX ± .75 .X ± 1.5 FOR SHEET METAL PARTS ONLY .XX ± .25 .XXX ± .125 X° ± .5 ° UNLESS OTHERWISE SPECIFIED DIMENSIONS ARE IN MILLIMETERS AND AFTER FINISH. TOLERANCE UNLESS SPECIFIED: SURFACE FINISH: 1.6 Trailer 160mm (min) of empty pockets sealed with tape (15 pockets min.) Loaded Pockets (500 Lamps) 12±.1 5.25 16 +.3 -.0 1.75 ±.10 4±.10 Leader 400mm (min) of empty pockets sealed with tape (35 pockets min.) 9.4 3.000 1 /1 2402-00016 B MTG LOADING SPEC -- -- -- -- -- -- D. CRONIN 1/28/11 REVISONS REV DESCRIPTION BY DATE APP'D A Initial Release DC 1/28/11 B Added missing sprocket holes DDS 10/17/11 END START User Feed Direction CATHODE SIDE ANODE SIDE 1.5± .1 xlamp MT-G EasyWhite LEDs 2010 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree, the Cree logo and XLamp are registered trademarks of Cree, Inc. 17 Copyright © 2011-2013 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo, XLamp® and EasyWhite® are registered trademarks of Cree, Inc. Packaging Label with Cree Bin Code, Qty, Lot # Vacuum-Sealed Moisture Barrier Bag Dessicant (inside bag) Humidity Indicator Card (inside bag) Patent Label Label with Customer Code, Qty, Reel ID, Patent Label Label with Cree Bin Code, Qty, Reel ID Label with Cree Bin Code, Qty, Reel ID Label with Cree Order Code, Qty, Reel ID, PO # Label with Cree Order Code, Qty, Reel ID, PO # Label with Cree Bin Code, Qty, Reel ID Unpackaged Reel Packaged Reel Boxed Reel CLD-DS60 Rev 5A Product family data sheet Cree® XLamp® MK-R LEDs WWW.CREE.COM/XLAMP Copyright © 2010 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree, the Cree logo and XLamp are registered trademarks of Cree, Inc. Product Description Built on Cree’s revolutionary SC³ Technology™ platform, the XLamp MK‑R LED brings new levels of price and performance to directional LED arrays, enabling lighting manufacturers to create the next generation of high-lumen indoor and outdoor LED lighting systems. In single-LED systems, the XLamp MK‑R, with EasyWhite® color binning, provides the LED industry’s tightest unit-to-unit color consistency. For systems using multiple LEDs, the MK-R enables manufacturers to use fewer LEDs while maintaining light output and color consistency, which translates to lower system cost. The XLamp MK‑R is optimized for directional lighting applications and is a welcome addition to applications requiring high lumen output, a compact optical source and a broad palette of color temperature and CRI values. FEATURES • Available in ANSI white bins as well as 4-step and 2-step EasyWhite bins at 2700 K, 3000 K, 3500 K, 4000 K, 4500 K and 5000 K CCT • Two voltage options: 6 V & 12 V • Low thermal resistance: 1.7 °C/W • Maximum junction temperature: 150 °C • Binned at 85 °C • Viewing angle: 120° • Available in cool white, 70-, 80- and 90‑CRI minimums • Unlimited floor life at ≤ 30 ºC/85% RH • Reflow solderable - JEDEC J‑STD‑020C • Electrically neutral thermal path • RoHS‑ and REACh‑compliant • UL-recognized component (E349212) Cree, Inc. 4600 Silicon Drive Durham, NC 27703 USA Tel: +1.919.313.5300 www.cree.com/xlamp Copyright © 2012-2014 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo, XLamp® and EasyWhite® are registered trademarks and SC3 Technology™ is a trademark of Cree, Inc. Table of Contents Characteristics....................................2 Flux Characteristics, Standard Order Codes and Bins - 6 V............................3 Flux Characteristics, ANSI White Order Codes and Bins - 6 V............................4 Flux Characteristics, Standard Order Codes and Bins -12 V...........................5 Flux Characteristics, ANSI White Order Codes and Bins - 12 V..........................6 Relative Spectral Power Distribution.......7 Relative Flux vs. Junction Temperature...7 Electrical Characteristics.......................8 Relative Flux vs. Current......................9 Relative Chromaticity vs. Current - Warm White......................................10 Relative Chromaticity vs. Temperature - Warm White......................................11 Typical Spatial Distribution..................11 Thermal Design.................................12 Performance Groups - Brightness.........13 Performance Groups - Chromaticity......14 Cree EasyWhite Bins Plotted on the 1931 CIE Color Space........................17 Cree ANSI White Bins Plotted on the 1931 CIE Color Space........................18 Bin and Order Code Formats...............19 Reflow Soldering Characteristics..........20 Notes...............................................21 Mechanical Dimensions......................22 Tape and Reel...................................23 Packaging.........................................24 xlamp MK-R leds 2010 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree, the Cree logo and XLamp are registered trademarks of Cree, Inc. 2 Copyright © 2012-2014 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo, XLamp® and EasyWhite® are registered trademarks and SC3 Technology™ is a trademark of Cree, Inc. Characteristics Characteristics Unit Minimum Typical Maximum Thermal resistance, junction to solder point °C/W 1.7 Viewing angle - full width half maximum (FWHM) degrees 120 Temperature coefficient of voltage (6 V, 1400 mA, 85 °C) mV/°C -4 Temperature coefficient of voltage (12 V, 700 mA, 85 °C) mV/°C -8 ESD withstand voltage (HBM per Mil-Std-883D) V 8000 DC forward current (6 V, 1400 mA, 85 °C) mA 2500 DC forward current (12 V, 700 mA, 85 °C) mA 1250 Reverse voltage V -5 Forward voltage (6 V, 1400 mA, 85 °C) V 5.85 7 Forward voltage (12 V, 700 mA, 85 °C) V 11.7 14 LED junction temperature °C 150 xlamp MK-R leds 2010 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree, the Cree logo and XLamp are registered trademarks of Cree, Inc. 3 Copyright © 2012-2014 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo, XLamp® and EasyWhite® are registered trademarks and SC3 Technology™ is a trademark of Cree, Inc. Flux Characteristics, Standard Order Codes and Bins - 6 V (If = 1400 mA, TJ = 85 °C) The following tables provide order codes for XLamp MK‑R EasyWhite LEDs. For a complete description of the order code nomenclature, please reference Bin and Order Code Formats (page 19). Color CCT Range Base Order Codes Min. Luminous Flux @ 1400 mA 2-Step Order Code 4-Step Order Code Group Flux (lm) @ 85 °C Flux (lm) @ 25 °C* Chromaticity Region Chromaticity Region 80-CRI EasyWhite 5000 K H2 900 1044 50H MKRAWT-00-0000-0B0HH250H 50F MKRAWT-00-0000-0B0HH250F G4 840 974 MKRAWT-00-0000-0B0HG450H MKRAWT-00-0000-0B0HG450F 4500 K H2 900 1044 45H MKRAWT-00-0000-0B0HH245H 45F MKRAWT-00-0000-0B0HH245F G4 840 974 MKRAWT-00-0000-0B0HG445H MKRAWT-00-0000-0B0HG445F 4000 K H2 900 1044 40H MKRAWT-00-0000-0B0HH240H 40F MKRAWT-00-0000-0B0HH240F G4 840 974 MKRAWT-00-0000-0B0HG440H MKRAWT-00-0000-0B0HG440F 3500 K G4 840 974 35H MKRAWT-00-0000-0B0HG435H 35F MKRAWT-00-0000-0B0HG435F G2 780 905 MKRAWT-00-0000-0B0HG235H MKRAWT-00-0000-0B0HG235F 3000 K G4 840 974 30H MKRAWT-00-0000-0B0HG430H 30F MKRAWT-00-0000-0B0HG430F G2 780 905 MKRAWT-00-0000-0B0HG230H MKRAWT-00-0000-0B0HG230F 2700 K G2 780 905 27H MKRAWT-00-0000-0B0HG227H 27F MKRAWT-00-0000-0B0HG227F F4 730 847 MKRAWT-00-0000-0B0HF427H MKRAWT-00-0000-0B0HF427F 90-CRI EasyWhite 3000 K E4 635 737 30H MKRAWT-00-0000-0B0UE430H 30F MKRAWT-00-0000-0B0UE430F E2 590 684 MKRAWT-00-0000-0B0UE230H MKRAWT-00-0000-0B0UE230F 2700 K E2 590 684 27H MKRAWT-00-0000-0B0UE227H 27F MKRAWT-00-0000-0B0UE227F D4 550 638 MKRAWT-00-0000-0B0UD427H MKRAWT-00-0000-0B0UD427F Notes: • Cree maintains a tolerance of ± 7% on flux and power measurements, ± 0.005 on chromaticity (CCx, CCy) measurements and ± 2 on CRI measurements. • Minimum CRI for 80-CRI White is 80. • Minimum CRI for 90-CRI White is 90. * Flux values @ 25 °C are calculated and for reference only. xlamp MK-R leds 2010 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree, the Cree logo and XLamp are registered trademarks of Cree, Inc. 4 Copyright © 2012-2014 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo, XLamp® and EasyWhite® are registered trademarks and SC3 Technology™ is a trademark of Cree, Inc. Flux Characteristics, ANSI White Order Codes and Bins - 6 V (If = 1400 mA, TJ = 85 °C) XLamp MK-R Standard ANSI Kit Codes Chromaticity Minimum Luminous Flux (lm) @ 1400 mA** Order Codes Kit CCT Code Flux (lm)@ 85 °C Flux (lm) @ 25 °C* 65 CRI Typical 70 CRI Minimum 80 CRI Minimum 90 CRI Minimum ANSI White (2700 K - 8300 K) 51 6200 K J2 1040 1206 MKRAWT-00-0000-0B00J2051 H4 970 1125 MKRAWT-00-0000-0B00H4051 MKRAWT-00-0000-0B0BH4051 H2 900 1044 MKRAWT-00-0000-0B0BH2051 E1 6500 K J2 1040 1206 MKRAWT-00-0000-0B00J20E1 H4 970 1125 MKRAWT-00-0000-0B00H40E1 MKRAWT-00-0000-0B0BH40E1 H2 900 1044 MKRAWT-00-0000-0B0BH20E1 E2 5700 K H4 970 1125 MKRAWT-00-0000-0B00H40E2 MKRAWT-00-0000-0B0BH40E2 H2 900 1044 MKRAWT-00-0000-0B0BH20E2 E3 5000 K H4 970 1125 MKRAWT-00-0000-0B00H40E3 MKRAWT-00-0000-0B0BH40E3 H2 900 1044 MKRAWT-00-0000-0B00H20E3 MKRAWT-00-0000-0B0BH20E3 MKRAWT-00-0000-0B0HH20E3 G4 840 974 MKRAWT-00-0000-0B0HG40E3 E4 4500 K H4 970 1125 MKRAWT-00-0000-0B00H40E4 MKRAWT-00-0000-0B0BH40E4 H2 900 1044 MKRAWT-00-0000-0B00H20E4 MKRAWT-00-0000-0B0BH20E4 MKRAWT-00-0000-0B0HH20E4 G4 840 974 MKRAWT-00-0000-0B0HG40E4 E5 4000 K H2 900 1044 MKRAWT-00-0000-0B00H20E5 MKRAWT-00-0000-0B0BH20E5 MKRAWT-00-0000-0B0HH20E5 G4 840 974 MKRAWT-00-0000-0B00G40E5 MKRAWT-00-0000-0B0BG40E5 MKRAWT-00-0000-0B0HG40E5 E6 3500 K H2 900 1044 MKRAWT-00-0000-0B0BH20E6 G4 840 974 MKRAWT-00-0000-0B0BG40E6 MKRAWT-00-0000-0B0HG40E6 G2 780 905 MKRAWT-00-0000-0B0HG20E6 E7 3000 K G4 840 974 MKRAWT-00-0000-0B0HG40E7 G2 780 905 MKRAWT-00-0000-0B0HG20E7 F4 730 847 F2 680 789 E4 635 737 MKRAWT-00-0000-0B0UE40E7 E2 590 684 MKRAWT-00-0000-0B0UE20E7 E8 2700 K G2 780 905 MKRAWT-00-0000-0B0HG20E8 F4 730 847 MKRAWT-00-0000-0B0HF40E8 F2 680 789 E4 635 737 E2 590 684 MKRAWT-00-0000-0B0UE20E8 D4 550 638 MKRAWT-00-0000-0B0UD40E8 ** Cree XLamp MK‑R order codes specify only a minimum flux bin and not a maximum. Cree may ship reels in flux bins higher than the minimum specified by the order code without advance notice. Shipments will always adhere to the chromaticity restrictions specified by the order code. * Flux values @ 25 °C are calculated and for reference only. • For information on chromaticity bins contained in the kits listed above, please reference the Performance Groups - Chromaticity section starting on page 13. • Minimum CRI for 70-CRI White is 70. xlamp MK-R leds 2010 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree, the Cree logo and XLamp are registered trademarks of Cree, Inc. 5 Copyright © 2012-2014 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo, XLamp® and EasyWhite® are registered trademarks and SC3 Technology™ is a trademark of Cree, Inc. Flux Characteristics, Standard Order Codes and Bins -12 V (If = 700 mA, TJ = 85 °C) The following tables provide order codes for XLamp MK‑R EasyWhite LEDs. For a complete description of the order code nomenclature, please reference Bin and Order Code Formats (page 19). Color CCT Range Base Order Codes Min. Luminous Flux @ 700 mA 2-Step Order Code 4-Step Order Code Group Flux (lm) @ 85 °C Flux (lm) @ 25 °C* Chromaticity Region Chromaticity Region 80-CRI EasyWhite 5000 K H2 900 1044 50H MKRAWT-00-0000-0D0HH250H 50F MKRAWT-00-0000-0D0HH250F G4 840 974 MKRAWT-00-0000-0D0HG450H MKRAWT-00-0000-0D0HG450F 4500 K H2 900 1044 45H MKRAWT-00-0000-0D0HH245H 45F MKRAWT-00-0000-0D0HH245F G4 840 974 MKRAWT-00-0000-0D0HG445H MKRAWT-00-0000-0D0HG445F 4000 K H2 900 1044 40H MKRAWT-00-0000-0D0HH240H 40F MKRAWT-00-0000-0D0HH240F G4 840 974 MKRAWT-00-0000-0D0HG440H MKRAWT-00-0000-0D0HG440F 3500 K G4 840 974 35H MKRAWT-00-0000-0D0HG435H 35F MKRAWT-00-0000-0D0HG435F G2 780 905 MKRAWT-00-0000-0D0HG235H MKRAWT-00-0000-0D0HG235F 3000 K G4 840 974 30H MKRAWT-00-0000-0D0HG430H 30F MKRAWT-00-0000-0D0HG430F G2 780 905 MKRAWT-00-0000-0D0HG230H MKRAWT-00-0000-0D0HG230F 2700 K G2 780 905 27H MKRAWT-00-0000-0D0HG227H 27F MKRAWT-00-0000-0D0HG227F F4 730 847 MKRAWT-00-0000-0D0HF427H MKRAWT-00-0000-0D0HF427F 90-CRI EasyWhite 3000 K E4 635 737 30H MKRAWT-00-0000-0D0UE430H 30F MKRAWT-00-0000-0D0UE430F E2 590 684 MKRAWT-00-0000-0D0UE230H MKRAWT-00-0000-0D0UE230F 2700 K E2 590 684 27H MKRAWT-00-0000-0D0UE227H 27F MKRAWT-00-0000-0D0UE227F D4 550 638 MKRAWT-00-0000-0D0UD427H MKRAWT-00-0000-0D0UD427F Notes: • Cree maintains a tolerance of ± 7% on flux and power measurements, ± 0.005 on chromaticity (CCx, CCy) measurements and ± 2 on CRI measurements. • Minimum CRI for 80-CRI White is 80. • Minimum CRI for 90-CRI White is 90. * Flux values @ 25 °C are calculated and for reference only. xlamp MK-R leds 2010 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree, the Cree logo and XLamp are registered trademarks of Cree, Inc. 6 Copyright © 2012-2014 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo, XLamp® and EasyWhite® are registered trademarks and SC3 Technology™ is a trademark of Cree, Inc. Flux Characteristics, ANSI White Order Codes and Bins - 12 V (If = 700 mA, TJ = 85 °C) XLamp MK-R Standard ANSI Kit Codes Chromaticity Minimum Luminous Flux (lm) @ 700 mA** Order Codes Kit CCT Code Flux (lm)@ 85 °C Flux (lm) @ 25 °C* 65 CRI Typical 70 CRI Minimum 80 CRI Minimum 90 CRI Minimum ANSI White (2700 K - 8300 K) 51 6200 K J2 1040 1206 MKRAWT-00-0000-0D00J2051 H4 970 1125 MKRAWT-00-0000-0D00H4051 MKRAWT-00-0000-0D0BH4051 H2 900 1044 MKRAWT-00-0000-0D0BH2051 E1 6500 K J2 1040 1206 MKRAWT-00-0000-0D00J20E1 H4 970 1125 MKRAWT-00-0000-0D00H40E1 MKRAWT-00-0000-0D0BH40E1 H2 900 1044 MKRAWT-00-0000-0D0BH20E1 E2 5700 K H4 970 1125 MKRAWT-00-0000-0D00H40E2 MKRAWT-00-0000-0D0BH40E2 H2 900 1044 MKRAWT-00-0000-0D0BH20E2 E3 5000 K H4 970 1125 MKRAWT-00-0000-0D00H40E3 MKRAWT-00-0000-0D0BH40E3 H2 900 1044 MKRAWT-00-0000-0D00H20E3 MKRAWT-00-0000-0D0BH20E3 MKRAWT-00-0000-0D0HH20E3 G4 840 974 MKRAWT-00-0000-0D0HG40E3 E4 4500 K H4 970 1125 MKRAWT-00-0000-0D00H40E4 MKRAWT-00-0000-0D0BH40E4 H2 900 1044 MKRAWT-00-0000-0D00H20E4 MKRAWT-00-0000-0D0BH20E4 MKRAWT-00-0000-0D0HH20E4 G4 840 974 MKRAWT-00-0000-0D0HG40E4 E5 4000 K H2 900 1044 MKRAWT-00-0000-0D00H20E5 MKRAWT-00-0000-0D0BH20E5 MKRAWT-00-0000-0D0HH20E5 G4 840 974 MKRAWT-00-0000-0D00G40E5 MKRAWT-00-0000-0D0BG40E5 MKRAWT-00-0000-0D0HG40E5 E6 3500 K H2 900 1044 MKRAWT-00-0000-0D0BH20E6 G4 840 974 MKRAWT-00-0000-0D0BG40E6 MKRAWT-00-0000-0D0HG40E6 G2 780 905 MKRAWT-00-0000-0D0HG20E6 E7 3000 K G4 840 974 MKRAWT-00-0000-0D0HG40E7 G2 780 905 MKRAWT-00-0000-0D0HG20E7 F4 730 847 F2 680 789 E4 635 737 MKRAWT-00-0000-0D0UE40E7 E2 590 684 MKRAWT-00-0000-0D0UE20E7 E8 2700 K G2 780 905 MKRAWT-00-0000-0D0HG20E8 F4 730 847 MKRAWT-00-0000-0D0HF40E8 F2 680 789 E4 635 737 E2 590 684 MKRAWT-00-0000-0D0UE20E8 D4 550 638 MKRAWT-00-0000-0D0UD40E8 ** Cree XLamp MK‑R order codes specify only a minimum flux bin and not a maximum. Cree may ship reels in flux bins higher than the minimum specified by the order code without advance notice. Shipments will always adhere to the chromaticity restrictions specified by the order code. * Flux values @ 25 °C are calculated and for reference only. • For information on chromaticity bins contained in the kits listed above, please reference the Performance Groups - Chromaticity section starting on page 13. • Minimum CRI for 70-CRI White is 70. xlamp MK-R leds 2010 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree, the Cree logo and XLamp are registered trademarks of Cree, Inc. 7 Copyright © 2012-2014 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo, XLamp® and EasyWhite® are registered trademarks and SC3 Technology™ is a trademark of Cree, Inc. Relative Spectral Power Distribution (6 V, 1400 mA; 12 V, 700 mA; TJ= 85 °C) Relative Flux vs. Junction Temperature (6 V, IF = 1400 mA; 12 V, IF = 700 mA) Relative Spectral Power 0 20 40 60 80 100 380 430 480 530 580 630 680 730 780 Relative Radiant Power (%) Wavelength (nm) Cool White Neutral White Warm White Relative Flux Output vs. Junction Temperature 0 20 40 60 80 100 120 25 50 75 100 125 150 Relative Luminous Flux (%) Junction Temperature (ºC) xlamp MK-R leds 2010 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree, the Cree logo and XLamp are registered trademarks of Cree, Inc. 8 Copyright © 2012-2014 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo, XLamp® and EasyWhite® are registered trademarks and SC3 Technology™ is a trademark of Cree, Inc. Electrical Characteristics (TJ = 85 °C) Electrical Characteristics (Tj = 85ºC) 0 500 1000 1500 2000 2500 5.25 5.50 5.75 6.00 6.25 Forward Current (mA) Forward Voltage (V) 6 V Electrical Characteristics (Tj = 85ºC) 0 250 500 750 1000 1250 10.5 11.0 11.5 12.0 12.5 Forward Current (mA) Forward Voltage (V) 12 V xlamp MK-R leds 2010 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree, the Cree logo and XLamp are registered trademarks of Cree, Inc. 9 Copyright © 2012-2014 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo, XLamp® and EasyWhite® are registered trademarks and SC3 Technology™ is a trademark of Cree, Inc. Relative Flux vs. Current (TJ = 85 °C) Relative Intensity vs. Current (Tj = 85ºC) 0 30 60 90 120 150 180 0 500 1000 1500 2000 2500 Relative Luminous Flux (%) Forward Current (mA) 6 V Relative Intensity vs. Current (Tj = 85ºC) 0 30 60 90 120 150 180 0 250 500 750 1000 1250 Relative Luminous Flux (%) Forward Current (mA) 12 V xlamp MK-R leds 2010 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree, the Cree logo and XLamp are registered trademarks of Cree, Inc. 10 Copyright © 2012-2014 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo, XLamp® and EasyWhite® are registered trademarks and SC3 Technology™ is a trademark of Cree, Inc. Relative Chromaticity vs. Current - Warm White (TJ = 85 °C) -0.006 -0.004 -0.002 0.000 0.002 0.004 0.006 0 500 1000 1500 2000 2500 Current (mA) ΔCCx ΔCCy 6 V Relative Chromaticity Vs. Current - Warm White -0.006 -0.004 -0.002 0.000 0.002 0.004 0.006 0 250 500 750 1000 1250 Current (mA) ΔCCx ΔCCy 12 V xlamp MK-R leds 2010 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree, the Cree logo and XLamp are registered trademarks of Cree, Inc. 11 Copyright © 2012-2014 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo, XLamp® and EasyWhite® are registered trademarks and SC3 Technology™ is a trademark of Cree, Inc. Relative Chromaticity vs. Temperature - Warm White (6 V, IF = 1400 mA; 12 V, IF = 700 mA) Typical Spatial Distribution Relative Chromaticity Vs. Temperature - Warm White ΔCCx -0.006 -0.004 -0.002 0.000 0.002 0.004 0.006 0 25 50 75 100 125 150 Tsp (°C) ΔCCx ΔCCy Typical Spatial Radiation Pattern 0 20 40 60 80 100 -100 -80 -60 -40 -20 0 20 40 60 80 100 Relative Luminous Intensity (%) Angle (º) xlamp MK-R leds 2010 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree, the Cree logo and XLamp are registered trademarks of Cree, Inc. 12 Copyright © 2012-2014 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo, XLamp® and EasyWhite® are registered trademarks and SC3 Technology™ is a trademark of Cree, Inc. Thermal Design The maximum forward current is determined by the thermal resistance between the LED junction and ambient. It is crucial for the end product to be designed in a manner that minimizes the thermal resistance from the solder point to ambient in order to optimize lamp life and optical characteristics. 0 500 1000 1500 2000 2500 3000 0 20 40 60 80 100 120 140 Maximum Current (mA) Ambient Temperature (ºC) Rj-a = 2°C/W Rj-a = 4°C/W Rj-a = 6°C/W Rj-a = 8°C/W 6 V Thermal Design 0 200 400 600 800 1000 1200 1400 0 20 40 60 80 100 120 140 Maximum Current (mA) Ambient Temperature (ºC) Rj-a = 2°C/W Rj-a = 4°C/W Rj-a = 6°C/W Rj-a = 8°C/W 12 V xlamp MK-R leds 2010 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree, the Cree logo and XLamp are registered trademarks of Cree, Inc. 13 Copyright © 2012-2014 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo, XLamp® and EasyWhite® are registered trademarks and SC3 Technology™ is a trademark of Cree, Inc. Performance Groups - Brightness (Tj = 85 °C) XLamp MK-R LEDs are tested for luminous flux and placed into one of the following bins. Group Code Min. Luminous Flux Max. Luminous Flux D2 510 550 D4 550 590 E2 590 635 E4 635 680 F2 680 730 F4 730 780 G2 780 840 G4 840 900 H2 900 970 H4 970 1040 J2 1040 1120 J4 1120 1200 K2 1200 1290 xlamp MK-R leds 2010 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree, the Cree logo and XLamp are registered trademarks of Cree, Inc. 14 Copyright © 2012-2014 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo, XLamp® and EasyWhite® are registered trademarks and SC3 Technology™ is a trademark of Cree, Inc. Performance Groups - Chromaticity (Tj = 85 °C) XLamp MK‑R LEDs are tested for chromaticity and placed into one of the regions defined by the following bounding coordinates. EasyWhite Color Temperatures – 4-Step Code CCT x y 50F 5000 K 0.3407 0.3459 0.3415 0.3586 0.3499 0.3654 0.3484 0.3521 45F 4500 K 0.3674 0.3772 0.3582 0.3710 0.3562 0.3573 0.3642 0.3625 40F 4000 K 0.3744 0.3685 0.3782 0.3837 0.3912 0.3917 0.3863 0.3758 35F 3500 K 0.3981 0.3800 0.4040 0.3966 0.4186 0.4037 0.4116 0.3865 30F 3000 K 0.4242 0.3919 0.4322 0.4096 0.4449 0.4141 0.4359 0.3960 27F 2700 K 0.4475 0.3994 0.4573 0.4178 0.4695 0.4207 0.4589 0.4021 EasyWhite Color Temperatures – 2-Step Code CCT x y 50H 5000 K 0.3429 0.3507 0.3434 0.3571 0.3475 0.3604 0.3469 0.3539 45H 4500 K 0.3643 0.3720 0.3597 0.3689 0.3587 0.3620 0.3628 0.3647 40H 4000 K 0.3784 0.3741 0.3804 0.3818 0.3867 0.3857 0.3844 0.3778 35H 3500 K 0.4030 0.3857 0.4061 0.3941 0.4132 0.3976 0.4099 0.3890 30H 3000 K 0.4291 0.3973 0.4333 0.4062 0.4395 0.4084 0.4351 0.3994 27H 2700 K 0.4528 0.4046 0.4578 0.4138 0.4638 0.4152 0.4586 0.4060 xlamp MK-R leds 2010 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree, the Cree logo and XLamp are registered trademarks of Cree, Inc. 15 Copyright © 2012-2014 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo, XLamp® and EasyWhite® are registered trademarks and SC3 Technology™ is a trademark of Cree, Inc. Performance Groups - Chromaticity (Tj = 85 °C) - cONTINUED ANSI White Bins Code CCT Bin Code x y Bin Code x y Bin Code x y Bin Code x y 051 6200 K 0A0 0.2920 0.3060 0R0 0.2950 0.2970 1A0 0.3048 0.3207 1R0 0.3068 0.3113 0.2984 0.3133 0.3009 0.3042 0.3130 0.3290 0.3144 0.3186 0.3009 0.3042 0.3037 0.2937 0.3144 0.3186 0.3161 0.3059 0.2950 0.2970 0.2980 0.2880 0.3068 0.3113 0.3093 0.2993 0B0 0.2895 0.3135 0S0 0.2870 0.3210 1B0 0.3028 0.3304 1S0 0.3005 0.3415 0.2962 0.3220 0.2937 0.3312 0.3115 0.3391 0.3099 0.3509 0.2984 0.3133 0.2962 0.3220 0.3130 0.3290 0.3115 0.3391 0.2920 0.3060 0.2895 0.3135 0.3048 0.3207 0.3028 0.3304 0C0 0.2962 0.3220 0T0 0.2937 0.3312 1C0 0.3115 0.3391 1T0 0.3099 0.3509 0.3028 0.3304 0.3005 0.3415 0.3205 0.3481 0.3196 0.3602 0.3048 0.3207 0.3028 0.3304 0.3213 0.3373 0.3205 0.3481 0.2984 0.3133 0.2962 0.3220 0.3130 0.3290 0.3115 0.3391 0D0 0.2984 0.3133 0U0 0.3009 0.3042 1D0 0.3130 0.3290 1U0 0.3144 0.3186 0.3048 0.3207 0.3068 0.3113 0.3213 0.3373 0.3221 0.3261 0.3068 0.3113 0.3093 0.2993 0.3221 0.3261 0.3231 0.3120 0.3009 0.3042 0.3037 0.2937 0.3144 0.3186 0.3161 0.3059 ANSI White Bins Code CCT Bin Code x y Bin Code x y Bin Code x y 051 6200 K 2A0 0.3215 0.3350 2R0 0.3222 0.3243 3A0 .3371 .3490 0.3290 0.3417 0.3290 0.3300 .3451 .3554 0.3290 0.3300 0.3290 0.3180 .3440 .3427 0.3222 0.3243 0.3231 0.3120 .3366 .3369 2B0 0.3207 0.3462 2S0 0.3196 0.3602 3B0 .3376 .3616 0.3290 0.3538 0.3290 0.3690 .3463 .3687 0.3290 0.3417 0.3290 0.3538 .3451 .3554 0.3215 0.3350 0.3207 0.3462 .3371 .3490 2C0 0.3290 0.3538 2T0 0.3290 0.3690 3C0 .3463 .3687 0.3376 0.3616 0.3381 0.3762 .3551 .3760 0.3371 0.3490 0.3376 0.3616 .3533 .3620 0.3290 0.3417 0.3290 0.3538 .3451 .3554 2D0 0.3290 0.3417 2U0 0.3290 0.3300 3D0 .3451 .3554 0.3371 0.3490 0.3366 0.3369 .3533 .3620 0.3366 0.3369 0.3361 0.3245 .3515 .3487 0.3290 0.3300 0.3290 0.3180 .3440 .3427 xlamp MK-R leds 2010 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree, the Cree logo and XLamp are registered trademarks of Cree, Inc. 16 Copyright © 2012-2014 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo, XLamp® and EasyWhite® are registered trademarks and SC3 Technology™ is a trademark of Cree, Inc. Performance Groups - Chromaticity (Tj = 85 °C) - cONTINUED ANSI White Bins Code CCT Bin Code x y 0E3 5000 K 3A0 .3371 .3490 .3451 .3554 .3440 .3427 .3366 .3369 3B0 .3376 .3616 .3463 .3687 .3451 .3554 .3371 .3490 3C0 .3463 .3687 .3551 .3760 .3533 .3620 .3451 .3554 3D0 .3451 .3554 .3533 .3620 .3515 .3487 .3440 .3427 ANSI White Bins Code CCT Bin Code x y 0E2 5700 K 2A0 0.3215 0.3350 0.3290 0.3417 0.3290 0.3300 0.3222 0.3243 2B0 0.3207 0.3462 0.3290 0.3538 0.3290 0.3417 0.3215 0.3350 2C0 0.3290 0.3538 0.3376 0.3616 0.3371 0.3490 0.3290 0.3417 2D0 0.3290 0.3417 0.3371 0.3490 0.3366 0.3369 0.3290 0.3300 ANSI White Bins Code CCT Bin Code x y 0E1 6500 K 1A0 0.3048 0.3207 0.3130 0.3290 0.3144 0.3186 0.3068 0.3113 1B0 0.3028 0.3304 0.3115 0.3391 0.3130 0.3290 0.3048 0.3207 1C0 0.3115 0.3391 0.3205 0.3481 0.3213 0.3373 0.3130 0.3290 1D0 0.3130 0.3290 0.3213 0.3373 0.3221 0.3261 0.3144 0.3186 ANSI White Bins Code CCT Bin Code x y 0E5 4000 K 5A0 .3670 .3578 .3702 .3722 .3825 .3798 .3783 .3646 5B0 .3702 .3722 .3736 .3874 .3869 .3958 .3825 .3798 5C0 .3825 .3798 .3869 .3958 .4006 .4044 .3950 .3875 5D0 .3783 .3646 .3825 .3798 .3950 .3875 .3898 .3716 ANSI White Bins Code CCT Bin Code x y 0E6 3500 K 6A0 .3889 .3690 .3941 .3848 .4080 .3916 .4017 .3751 6B0 .3941 .3848 .3996 .4015 .4146 .4089 .4080 .3916 6C0 .4080 .3916 .4146 .4089 .4299 .4165 .4221 .3984 6D0 .4017 .3751 .4080 .3916 .4221 .3984 .4147 .3814 ANSI White Bins Code CCT Bin Code x y 0E4 4500 K 4A0 .3530 .3597 .3615 .3659 .3590 .3521 .3512 .3465 4B0 .3548 .3736 .3641 .3804 .3615 .3659 .3530 .3597 4C0 .3641 .3804 .3736 .3874 .3702 .3722 .3615 .3659 4D0 .3668 .3957 .3771 .4034 .3736 .3874 .3641 .3804 xlamp MK-R leds 2010 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree, the Cree logo and XLamp are registered trademarks of Cree, Inc. 17 Copyright © 2012-2014 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo, XLamp® and EasyWhite® are registered trademarks and SC3 Technology™ is a trademark of Cree, Inc. Performance Groups - Chromaticity (Tj = 85 °C) - cONTINUED Cree EasyWhite Bins Plotted on the 1931 CIE Color Space (Tj = 85 °C) ANSI White Bins Code CCT Bin Code x y 0E7 3000 K 7A0 .4147 .3814 .4221 .3984 .4342 .4028 .4259 .3853 7B0 .4221 .3984 .4299 .4165 .4430 .4212 .4342 .4028 7C0 .4342 .4028 .4430 .4212 .4562 .4260 .4465 .4071 7D0 .4259 .3853 .4342 .4028 .4465 .4071 .4373 .3893 ANSI White Bins Code CCT Bin Code x y 0E8 2700 K 8A0 .4373 .3893 .4465 .4071 .4582 .4099 .4483 .3919 8B0 .4465 .4071 .4562 .4260 .4687 .4289 .4582 .4099 8C0 .4582 .4099 .4687 .4289 .4813 .4319 .4700 .4126 8D0 .4483 .3919 .4582 .4099 .4700 .4126 .4593 .3944 2700K 3000K 3500K 4000K 4500K 5000K 5700K 0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39 0.40 0.41 0.42 0.43 0.44 0.45 0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39 0.40 0.41 0.42 0.43 0.44 0.45 0.46 0.47 0.48 0.49 CCy CCx ANSI C78.377 Quadrangle EasyWhite 4-step EasyWhite 2-step xlamp MK-R leds 2010 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree, the Cree logo and XLamp are registered trademarks of Cree, Inc. 18 Copyright © 2012-2014 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo, XLamp® and EasyWhite® are registered trademarks and SC3 Technology™ is a trademark of Cree, Inc. Cree ANSI White Bins Plotted on the 1931 CIE Color Space (Tj = 85 °C) 2600K 2900K 2700K 3000K 3200K 3500K 3700K 4000K 4300K 4500K 4750K 5000K 5300K 3A 3B 3C 3D 4A 4B 4C 4D 5A 5B 5C 5D 6A 6B 6C 6D 7A 7B 7C 7D 8A 8B 8C 8D 0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39 0.40 0.41 0.42 0.43 0.44 0.45 0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39 0.40 0.41 0.42 0.43 0.44 0.45 0.46 0.47 0.48 0.49 CCy CCx ANSI C78.377A 5000K 5700K 6500K 8000K 0A 0B 0C 0D 0R 0S 0T 0U 1A 1B 1C 1D 2A 2B 2C 2D 3A 3B 1R 1S 1T 1U 2R 2S 2T 2U 3R 3S 0.28 0.29 0.30 0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39 0.40 0.28 0.29 0.30 0.31 0.32 0.33 0.34 0.35 0.36 CCy CCx ANSI C78.377A xlamp MK-R leds 2010 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree, the Cree logo and XLamp are registered trademarks of Cree, Inc. 19 Copyright © 2012-2014 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo, XLamp® and EasyWhite® are registered trademarks and SC3 Technology™ is a trademark of Cree, Inc. Bin and Order Code Formats Bin codes and order codes are configured as follows. Order Code B in Code SSSCCC-HH-HHHH-GHKLNNNNN Series = MKR Internal code Forward voltage class B = 6 V D = 12 V CRI specification B = 70-CRI minimum H = 80-CRI minimum U = 90-CRI minimum 0 = No minimum Kit code Internal code Color AWT = White SSSCCC-E-DDD-MM-HK-L-PP Series = MKR Internal code Luminous flux group Internal code CRI specification B = 70-CRI minimum H = 80-CRI minimum U = 90-CRI minimum 0 = No minimum Forward voltage class B = 6 V D = 12 V Chromaticity bin Color AWT = White xlamp MK-R leds 2010 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree, the Cree logo and XLamp are registered trademarks of Cree, Inc. 20 Copyright © 2012-2014 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo, XLamp® and EasyWhite® are registered trademarks and SC3 Technology™ is a trademark of Cree, Inc. Reflow Soldering Characteristics In testing, Cree has found XLamp MK-R LEDs to be compatible with JEDEC J-STD-020C, using the parameters listed below. As a general guideline, Cree recommends that users follow the recommended soldering profile provided by the manufacturer of solder paste used. Note that this general guideline may not apply to all PCB designs and configurations of reflow soldering equipment. Profile Feature Lead-Based Solder Lead-Free Solder Average Ramp-Up Rate (Tsmax to Tp) 3 °C/second max. 3 °C/second max. Preheat: Temperature Min (Tsmin) 100 °C 150 °C Preheat: Temperature Max (Tsmax) 150 °C 200 °C Preheat: Time (tsmin to tsmax) 60-120 seconds 60-180 seconds Time Maintained Above: Temperature (TL) 183 °C 217 °C Time Maintained Above: Time (tL) 60-150 seconds 60-150 seconds Peak/Classification Temperature (Tp) 215 °C 260 °C Time Within 5 °C of Actual Peak Temperature (tp) 10-30 seconds 20-40 seconds Ramp-Down Rate 6 °C/second max. 6 °C/second max. Time 25 °C to Peak Temperature 6 minutes max. 8 minutes max. Note: All temperatures refer to the topside of the package, measured on the package body surface. xlamp MK-R leds 2010 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree, the Cree logo and XLamp are registered trademarks of Cree, Inc. 21 Copyright © 2012-2014 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo, XLamp® and EasyWhite® are registered trademarks and SC3 Technology™ is a trademark of Cree, Inc. Notes Lumen Maintenance Projections Cree now uses standardized IES LM-80-08 and TM-21-11 methods for collecting long-term data and extrapolating LED lumen maintenance. For information on the specific LM‑80 data sets available for this LED, refer to the public LM-80 results document at www.cree.com/xlamp_app_notes/LM80_results. Please read the XLamp Long-Term Lumen Maintenance application note at www.cree.com/xlamp_app_notes/lumen_ maintenance for more details on Cree’s lumen maintenance testing and forecasting. Please read the XLamp Thermal Management application note at www.cree.com/xlamp_app_notes/thermal_management for details on how thermal design, ambient temperature, and drive current affect the LED junction temperature. Moisture Sensitivity In testing, Cree has found XLamp MK‑R LEDs to have unlimited floor life in conditions ≤30 ºC/85% relative humidity (RH). Moisture testing included a 168-hour soak at 85 ºC/85% RH followed by 3 reflow cycles, with visual and electrical inspections at each stage. Cree recommends keeping XLamp LEDs in their sealed moisture-barrier packaging until immediately prior to use. Cree also recommends returning any unused LEDs to the resealable moisture-barrier bag and closing the bag immediately after use. RoHS Compliance The levels of RoHS restricted materials in this product are below the maximum concentration values (also referred to as the threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 2011/65/EC (RoHS2), as implemented January 2, 2013. RoHS Declarations for this product can be obtained from your Cree representative or from the Product Documentation sections of www.cree.com. REAC h Compliance REACh substances of high concern (SVHCs) information is available for this product. Since the European Chemical Agency (ECHA) has published notice of their intent to frequently revise the SVHC listing for the foreseeable future, please contact a Cree representative to insure you get the most up-to-date REACh SVHC Declaration. REACh banned substance information (REACh Article 67) is also available upon request. UL Recognized Component Level 4 enclosure consideration. The LED package or a portion thereof has been investigated as a fire and electrical enclosure per ANSI/UL 8750. Vision Advisory Claim WARNING: Do not look at exposed lamp in operation. Eye injury can result. See the Eye Safety application note at www. cree.com/xlamp_app_notes/led_eye_safety. xlamp MK-R leds 2010 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree, the Cree logo and XLamp are registered trademarks of Cree, Inc. 22 Copyright © 2012-2014 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo, XLamp® and EasyWhite® are registered trademarks and SC3 Technology™ is a trademark of Cree, Inc. Mechanical Dimensions All measurements are ±.13 mm unless otherwise indicated. CHECK FINAL PROTECTIVE MATERIAL APPROVED DRAWN BY THIRD ANGLE PROJECTION A B C D 6 5 4 3 6 5 4 3 UNAUTHORIZED PERSON WITHOUT THE WRITTEN CONSENT MAY NOT BE COPIED, REPRODUCED OR DISCLOSED TO ANY CONFIDENTIAL INFORMATION OF CREE, INC. THIS PLOT CONTAINED WITHIN ARE THE PROPRIETARY AND CREE CONFIDENTIAL. THIS PLOT AND THE INFORMATION OF CREE INC. NOTICE X° ± .5 ° .XXX ± .25 .XX ± .75 .X ± 1.5 FOR SHEET METAL PARTS ONLY .XX ± .25 .XXX ± .125 X° ± .5 ° UNLESS OTHERWISE SPECIFIED DIMENSIONS ARE IN MILLIMETERS AND AFTER FINISH. TOLERANCE UNLESS SPECIFIED: SURFACE FINISH: 1.6 7.000 7.000 .73 4.08 R3.250 6.76 .70 6.70 .70 3.90 6.55 5.27 .55 3.00 1.23 6.70 6.70 .70 .70 3.90 D. CRONIN REV B RECOMMENDED STENCIL PATTERN SHADED AREA IS OPEN RECOMMENDED PCB SOLDER PAD Top View Side View Bottom View Recommended PCB Solder Pad Recommended Stencil Pattern (Shaded Area Is Open) Anode SIZE TITLE SHEET C DRAWING NO. DATE DATE DATE CHECK FINAL PROTECTIVE FINISH MATERIAL APPROVED DRAWN BY THIRD ANGLE PROJECTION SCALE 6 5 4 3 2 6 5 4 3 2 Phone Fax 4600 Durham, PERSON WITHOUT THE WRITTEN CONSENT COPIED, REPRODUCED OR DISCLOSED TO ANY INFORMATION OF CREE, INC. THIS PLOT WITHIN ARE THE PROPRIETARY AND CONFIDENTIAL. THIS PLOT AND THE INFORMATION NOTICE X° ± .5 ° .XXX ± .25 .XX ± .75 .X ± 1.5 FOR SHEET METAL PARTS ONLY .XX ± .25 .XXX ± .125 X° ± .5 ° UNLESS OTHERWISE SPECIFIED DIMENSIONS ARE IN MILLIMETERS AND AFTER FINISH. TOLERANCE UNLESS SPECIFIED: SURFACE FINISH: 1.6 7.000 7.000 .73 4.08 R3.250 6.76 .70 .70 6.70 .70 3.90 6.55 5.27 .55 3.00 1.23 6.70 .70 .70 3.90 11.000 2610-00031 MKR Marketing Spec D. CRONIN 11/7/12 REVISONS REV DESCRIPTION BY B VIEWS SHOW LATEST REVISION DC RECOMMENDED STENCIL PATTERN SHADED AREA IS OPEN RECOMMENDED PCB SOLDER PAD SIZE TITLE SHEET C DRAWING NO. DATE DATE DATE CHECK FINAL PROTECTIVE FINISH MATERIAL APPROVED DRAWN BY THIRD ANGLE PROJECTION SCALE 6 5 4 3 2 1 6 5 4 3 2 1 Phone (Fax (919) 4600 Silicon Durham, PERSON WITHOUT THE WRITTEN CONSENT REPRODUCED OR DISCLOSED TO ANY INFORMATION OF CREE, INC. THIS PLOT ARE THE PROPRIETARY AND THIS PLOT AND THE INFORMATION NOTICE X° ± .5 ° .XXX ± .25 .XX ± .75 .X ± 1.5 FOR SHEET METAL PARTS ONLY .XX ± .25 .XXX ± .125 X° ± .5 ° UNLESS OTHERWISE SPECIFIED DIMENSIONS ARE IN MILLIMETERS AND AFTER FINISH. TOLERANCE UNLESS SPECIFIED: SURFACE FINISH: 1.6 7.000 7.000 .73 4.08 R3.250 6.76 .70 .70 6.70 .70 3.90 6.55 5.27 .55 3.00 1.23 6.70 .70 .70 3.90 11.000 2610-00031 MKR Marketing Spec D. CRONIN 11/7/12 REVISONS REV DESCRIPTION BY DATE B VIEWS SHOW LATEST REVISION DC 8/RECOMMENDED STENCIL PATTERN SHADED AREA IS OPEN RECOMMENDED PCB SOLDER PAD xlamp MK-R leds 2010 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree, the Cree logo and XLamp are registered trademarks of Cree, Inc. 23 Copyright © 2012-2014 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo, XLamp® and EasyWhite® are registered trademarks and SC3 Technology™ is a trademark of Cree, Inc. Tape and Reel All Cree carrier tapes conform to EIA-481D, Automated Component Handling Systems Standard. All dimensions in mm. SIZE TITLE OF REV. SHEET C DRAWING NO. DATE DATE DATE CHECK FINAL PROTECTIVE FINISH MATERIAL APPROVED DRAWN BY THIRD ANGLE PROJECTION X° ± .5 ° .XXX ± .010 .XX ± .03 .X ± .06 FOR SHEET METAL PARTS ONLY .XX ± .01 .XXX ± .005 X° ± .5 ° UNLESS OTHERWISE SPECIFIED DIMENSIONS ARE IN INCHES AND AFTER FINISH. TOLERANCE UNLESS SPECIFIED: SCALE A B C D 6 5 4 3 2 1 6 5 4 3 2 1 A B C D Phone (919) 313-5300 Fax (919) 313-5558 4600 Silicon Drive Durham, N.C 27703 UNAUTHORIZED PERSON WITHOUT THE WRITTEN CONSENT MAY NOT BE COPIED, REPRODUCED OR DISCLOSED TO ANY CONFIDENTIAL INFORMATION OF CREE, INC. THIS PLOT CONTANED WITHIN ARE THE PROPRIETARY AND CREE CONFIDENTIAL. THIS PLOT AND THE INFORMATION OF CREE INC. NOTICE SURFACE FINISH: 63 330 +.25 -.75 12.4 +1.0 -.5 MEASURED AT EDGE 16.4 +0.2 .0 MEASURED AT HUB 12.4 +.2 .0 MEASURED AT HUB 13.1 ±.2 1.9±.4 21±.4 60° 60° 0.500 1 /1 2400-00009 A REEL, 13" X 12MM, 3 PIECE SNAP - ANTI-STATIC HIPS -- -- -- -- D. CRONIN 09/29/09 2400-00009 INDEX QTY ITEM COMMENTS 1 1 2400-00009-CORE 2 2 2400-00009-REEL REVISONS REV DESCRIPTION BY DATE APP'D SIZE TITLE OF REV. SHEET C DRAWING NO. DATE DATE DATE CHECK FINAL PROTECTIVE FINISH MATERIAL APPROVED DRAWN BY THIRD ANGLE PROJECTION SCALE A B C D 6 5 4 3 2 1 6 5 4 3 2 1 A B C D Phone (919) 313-5300 Fax (919) 313-5558 4600 Silicon Drive Durham, N.C 27703 UNAUTHORIZED PERSON WITHOUT THE WRITTEN CONSENT MAY NOT BE COPIED, REPRODUCED OR DISCLOSED TO ANY CONFIDENTIAL INFORMATION OF CREE, INC. THIS PLOT CONTAINED WITHIN ARE THE PROPRIETARY AND CREE CONFIDENTIAL. THIS PLOT AND THE INFORMATION OF CREE INC. NOTICE X° ± .5 ° .XXX ± .25 .XX ± .75 .X ± 1.5 FOR SHEET METAL PARTS ONLY .XX ± .25 .XXX ± .125 X° ± .5 ° UNLESS OTHERWISE SPECIFIED DIMENSIONS ARE IN MILLIMETERS AND AFTER FINISH. TOLERANCE UNLESS SPECIFIED: SURFACE FINISH: 1.6 Trailer 180mm (min) of empty pockets sealed with tape (15 pockets min.) Loaded Pockets (1000 Lamps) 12±.1 4.31 16 +.3 -.0 1.75 4±.10 ±.10 Leader 420mm (min) of empty pockets sealed with tape (35 pockets min.) 7.4 0.36 13" 13mm 3.000 1 /1 2402-00025 A MKR LOADING SPEC -- -- -- -- -- -- D. CRONIN 12/7/12 REVISONS REV DESCRIPTION BY DATE APP'D A Initial Release DC 12/7/12 END START User Feed Direction CATHODE SIDE ANODE SIDE User Feed Direction 1.5± .1 xlamp MK-R leds 2010 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree, the Cree logo and XLamp are registered trademarks of Cree, Inc. 24 Copyright © 2012-2014 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo, XLamp® and EasyWhite® are registered trademarks and SC3 Technology™ is a trademark of Cree, Inc. Packaging Label with Cree Bin Code, Qty, Lot # Vacuum-Sealed Moisture Barrier Bag Dessicant (inside bag) Humidity Indicator Card (inside bag) Patent Label Label with Customer Code, Qty, Reel Patent Label Label with Cree Bin Code, Qty, Reel ID Label with Cree Bin Code, Qty, Reel ID Label with Cree Order Code, Qty, Reel ID, PO # Label with Cree Order Code, Qty, Reel ID, PO # Label with Cree Bin Code, Qty, Reel ID Unpackaged Reel Packaged Reel Boxed Reel Precision Instrumentation Amplifier AD524 Rev. F Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2007 Analog Devices, Inc. All rights reserved. FEATURES Low noise: 0.3 μV p-p at 0.1 Hz to 10 Hz Low nonlinearity: 0.003% (G = 1) High CMRR: 120 dB (G = 1000) Low offset voltage: 50 μV Low offset voltage drift: 0.5 μV/°C Gain bandwidth product: 25 MHz Pin programmable gains of 1, 10, 100, 1000 Input protection, power-on/power-off No external components required Internally compensated MIL-STD-883B and chips available 16-lead ceramic DIP and SOIC packages and 20-terminal leadless chip carrier available Available in tape and reel in accordance with EIA-481A standard Standard military drawing also available FUNCTIONAL BLOCK DIAGRAM AD524 20kΩ – INPUT G = 10 + INPUT G = 100 G = 1000 4.44kΩ 404Ω 40Ω PROTECTION 20kΩ 20kΩ 20kΩ 20kΩ 20kΩ SENSE REFERENCE PROTECTION RG1 RG2 1 13 12 11 16 3 2 Vb OUTPUT 00500-001 Figure 1. GENERAL DESCRIPTION The AD524 is a precision monolithic instrumentation amplifier designed for data acquisition applications requiring high accu- racy under worst-case operating conditions. An outstanding combination of high linearity, high common-mode rejection, low offset voltage drift, and low noise makes the AD524 suitable for use in many data acquisition systems. The AD524 has an output offset voltage drift of less than 25 μV/°C, input offset voltage drift of less than 0.5 μV/°C, CMR above 90 dB at unity gain (120 dB at G = 1000), and maximum nonlinearity of 0.003% at G = 1. In addition to the outstanding dc specifications, the AD524 also has a 25 kHz bandwidth (G = 1000). To make it suitable for high speed data acquisition systems, the AD524 has an output slew rate of 5 V/μs and settles in 15 μs to 0.01% for gains of 1 to 100. As a complete amplifier, the AD524 does not require any exter- nal components for fixed gains of 1, 10, 100 and 1000. For other gain settings between 1 and 1000, only a single resistor is required. The AD524 input is fully protected for both power-on and power-off fault conditions. The AD524 IC instrumentation amplifier is available in four different versions of accuracy and operating temperature range. The economical A grade, the low drift B grade, and lower drift, higher linearity C grade are specified from −25°C to +85°C. The S grade guarantees performance to specification over the extended temperature range −55°C to +125°C. The AD524 is available in a 16-lead ceramic DIP, 16-lead SBDIP, 16-lead SOIC wide packages, and 20-terminal leadless chip carrier. PRODUCT HIGHLIGHTS 1. The AD524 has guaranteed low offset voltage, offset voltage drift, and low noise for precision high gain applications. 2. The AD524 is functionally complete with pin program- mable gains of 1, 10, 100, and 1000, and single resistor programmable for any gain. 3. Input and output offset nulling terminals are provided for very high precision applications and to minimize offset voltage changes in gain ranging applications. 4. The AD524 is input protected for both power-on and power-off fault conditions. 5. The AD524 offers superior dynamic performance with a gain bandwidth product of 25 MHz, full power response of 75 kHz and a settling time of 15 μs to 0.01% of a 20 V step (G = 100). MPXV7002 Rev 2, 1/2009 Freescale Semiconductor © Freescale Semiconductor, Inc., 2005, 2009. All rights reserved. Pressure + Integrated Silicon Pressure Sensor On-Chip Signal Conditioned, Temperature Compensated and Calibrated The MPXV7002 series piezoresistive transducers are state-of-the-art monolithic silicon pressure sensors designed for a wide range of applications, but particularly those employing a microcontroller or microprocessor with A/D inputs. This transducer combines advanced micromachining techniques, thinfilm metallization, and bipolar processing to provide an accurate, high level analog output signal that is proportional to the applied pressure. Features • 2.5% Typical Error over +10°C to +60°C with Auto Zero • 6.25% Maximum Error over +10°C to +60°C without Auto Zero • Ideally Suited for Microprocessor or Microcontroller-Based Systems • Thermoplastic (PPS) Surface Mount Package • Temperature Compensated over +10° to +60°C • Patented Silicon Shear Stress Strain Gauge • Available in Differential and Gauge Configurations ORDERING INFORMATION Device Name Package Options Case No. # of Ports Pressure Type Device None Single Dual Gauge Differential Absolute Marking Small Outline Package (MPXV7002 Series) MPXV7002GC6U Rails 482A • • MPXV7002G MPXV7002GC6T1 Tape & Reel 482A • • MPXV7002G MPXV7002GP Trays 1369 • • MPXV7002G MPXV7002DP Trays 1351 • • MPXV7002DP MPXV7002 Series -2 to 2 kPa (-0.3 to 0.3 psi) 0.5 to 4.5 V Output SMALL OUTLINE PACKAGE MPXV7002GC6U/C6T1 CASE 482A-01 MPXV7002DP CASE 1351-01 MPXV7002GP CASE 1369-01 Application Examples • Hospital Beds • HVAC • Respiratory Systems • Process Control MPXV7002 Sensors 2 Freescale Semiconductor Pressure Operating Characteristics Table 1. Operating Characteristics (VS = 5.0 Vdc, TA = 25°C unless otherwise noted. Decoupling circuit shown in Figure 3 required to meet specification.) Characteristic Symbol Min Typ Max Unit Pressure Range(1) 1. 1.0 kPa (kiloPascal) equals 0.145 psi. POP –2.0 — 2.0 kPa Supply Voltage(2) 2. Device is ratiometric within this specified excitation range. VS 4.75 5.0 5.25 Vdc Supply Current Io — — 10 mAdc Pressure Offset(3) (10 to 60°C) @ VS = 5.0 Volts 3. Offset (Voff) is defined as the output voltage at the minimum rated pressure. Voff 2.25 2.5 2.75 Vdc Full Scale Output(4) (10 to 60°C) @ VS = 5.0 Volts 4. Full Scale Output (VFSO) is defined as the output voltage at the maximum or full rated pressure. VFSO 4.25 4.5 4.75 Vdc Full Scale Span(5) (10 to 60°C) @ VS = 5.0 Volts 5. Full Scale Span (VFSS) is defined as the algebraic difference between the output voltage at full rated pressure and the output voltage at the minimum rated pressure. VFSS 3.5 4.0 4.5 V Vdc Accuracy(6) (10 to 60°C) 6. Accuracy (error budget) consists of the following: Linearity: Output deviation from a straight line relationship with pressure over the specified pressure range. Temperature Hysteresis: Output deviation at any temperature within the operating temperature range, after the temperature is cycled to and from the minimum or maximum operating temperature points, with zero differential pressure applied. Pressure Hysteresis: Output deviation at any pressure within the specified range, when this pressure is cycled to and from the minimum or maximum rated pressure, at 25°C. TcSpan: Output deviation over the temperature range of 10° to 60°C, relative to 25°C. TcOffset: Output deviation with minimum rated pressure applied, over the temperature range of 10° to 60°C, relative to 25°C. Variation from Nominal: The variation from nominal values, for Offset or Full Scale Span, as a percent of VFSS, at 25°C. — — ±2.5(7) 7. Auto Zero at Factory Installation: Due to the sensitivity of the MPXV7002 Series, external mechanical stresses and mounting position can affect the zero pressure output reading. Auto zero is defined as storing the zero pressure output reading and subtracting this from the device's output during normal operations. Reference AN1636 for specific information. The specified accuracy assumes a maximum temperature change of ± 5°C between auto zero and measurement. ±6.25 %VFSS Sensitivity V/P — 1.0 —- V/kPa Response Time(8) 8. Response Time is defined as the time for the incremental change in the output to go from 10% to 90% of its final value when subjected to a specified step change in pressure. tR — 1.0 —- ms Output Source Current at Full Scale Output IO+ — 0.1 —- mAdc Warm-Up Time(9) 9. Warm-up Time is defined as the time required for the product to meet the specified output voltage after the Pressure has been stabilized. — — 20 —- ms MPXV7002 Sensors Freescale Semiconductor 3 Pressure Maximum Ratings Figure 1 shows a block diagram of the internal circuitry integrated on a pressure sensor chip. Figure 1. Integrated Pressure Sensor Schematic Table 2. Maximum Ratings(1) 1. Exposure beyond the specified limits may cause permanent damage or degradation to the device. Rating Symbol Value Unit Maximum Pressure (P1 > P2) Pmax 75 kPa Storage Temperature Tstg –30 to +100 °C Operating Temperature TA 10 to 60 °C Sensing Element Thin Film Temperature Compensation and Gain Stage #1 Gain Stage #2 and Ground Reference Shift Circuitry VS Vout GND Pins 1, 5, 6, 7, and 8 are NO CONNECTS for Small Outline Package Device 2 4 3 MPXV7002 Sensors 4 Freescale Semiconductor Pressure ON-CHIP TEMPERATURE COMPENSATION, CALIBRATION AND SIGNAL CONDITIONING The performance over temperature is achieved by integrating the shear-stress strain gauge, temperature compensation, calibration and signal conditioning circuitry onto a single monolithic chip. Figure 2 illustrates the Differential or Gauge configuration in the basic chip carrier (Case 482). A gel die coat isolates the die surface and wire bonds from the environment, while allowing the pressure signal to be transmitted to the sensor diaphragm. The MPXV7002 series pressure sensor operating characteristics, and internal reliability and qualification tests are based on use of dry air as the pressure media. Media, other than dry air, may have adverse effects on sensor performance and long-term reliability. Contact the factory for information regarding media compatibility in your application. Figure 3 shows the recommended decoupling circuit for interfacing the integrated sensor to the A/D input of a microprocessor or microcontroller. Proper decoupling of the power supply is recommended. Figure 4 shows the sensor output signal relative to pressure input. Typical, minimum, and maximum output curves are shown for operation over a temperature range of 10° to 60°C using the decoupling circuit shown in Figure 3. The output will saturate outside of the specified pressure range. Figure 2. Cross-Sectional Diagram SOP (not to scale) Figure 3. Recommended Power Supply Decoupling and Output Filtering (For additional output filtering, please refer to Application Note AN1646.) Fluoro Silicone Gel Die Coat Wire Bond Die P1 Stainless Steel Cap Thermoplastic Case Differential Sensing Die Bond Element P2 Lead Frame +5 V 1.0 μF 0.01 μF GND 470 pF Vs Vout IPS OUTPUT MPXV7002 Sensors Freescale Semiconductor 5 Pressure Figure 4. Output versus Pressure Differential PRESSURE (P1)/VACUUM (P2) SIDE IDENTIFICATION TABLE Freescale designates the two sides of the pressure sensor as the Pressure (P1) side and the Vacuum (P2) side. The Pressure (P1) side is the side containing a gel die coat which protects the die from harsh media. The Pressure (P1) side may be identified by using the following table: MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS Surface mount board layout is a critical portion of the total design. The footprint for the surface mount packages must be the correct size to ensure proper solder connection interface between the board and the package. With the correct footprint, the packages will self align when subjected to a solder reflow process. It is always recommended to design boards with a solder mask layer to avoid bridging and shorting between solder pads. Figure 5. Small Outline Package Footprint Differential Pressure (kPa) Output Voltage (V) 5.0 4.0 3.0 2.0 1.0 0 0 2 TYPICAL MIN -2 -1 1 Transfer Function: Vout = VS × (0.2 × P(kPa)+0.5) ± 6.25% VFSS VS = 5.0 Vdc TA = 10 to 60°C MAX Part Number Case Type Pressure (P1) Side Identifier MPXV7002GC6U/GC6T1 482A-01 Side with Port Attached MPXV7002GP 1369-01 Side with Port Attached MPXV7002DP 1351-01 Side with Part Marking 0.660 16.76 0.060 TYP 8X 1.52 0.100 TYP 8X 2.54 0.100 TYP 8X 2.54 0.300 7.62 inch mm SCALE 2:1 MPXV7002 Sensors 6 Freescale Semiconductor Pressure PACKAGE DIMENSIONS CASE 482A-01 ISSUE A SMALL OUTLINE PACKAGE PIN 1 IDENTIFIER H SEATING PLANE -TW C M J K V DIM MIN MAX MIN MAX INCHES MILLIMETERS A 0.415 0.425 10.54 10.79 B 0.415 0.425 10.54 10.79 C 0.500 0.520 12.70 13.21 D 0.038 0.042 0.96 1.07 G 0.100 BSC 2.54 BSC H 0.002 0.010 0.05 0.25 J 0.009 0.011 0.23 0.28 K 0.061 0.071 1.55 1.80 M 0° 7° 0° 7° N 0.444 0.448 11.28 11.38 S 0.709 0.725 18.01 18.41 V 0.245 0.255 6.22 6.48 W 0.115 0.125 2.92 3.17 NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006). 5. ALL VERTICAL SURFACES 5° TYPICAL DRAFT. S D 8 PL G 4 5 8 1 0.25 (0.010) M T B S A -A- N -BS MPXV7002 Sensors Freescale Semiconductor 7 Pressure PACKAGE DIMENSIONS CASE 1351-01 ISSUE A SMALL OUTLINE PACKAGE MPXV7002 Sensors 8 Freescale Semiconductor Pressure PACKAGE DIMENSIONS MPXV7002 Sensors Freescale Semiconductor 9 Pressure PACKAGE DIMENSIONS CASE 1369-01 ISSUE B SMALL OUTLINE PACKAGE MPXV7002 Sensors 10 Freescale Semiconductor Pressure PACKAGE DIMENSIONS CASE 1369-01 ISSUE B SMALL OUTLINE PACKAGE MPXV7002 Rev. 2 1/2009 How to Reach Us: Home Page: www.freescale.com Web Support: http://www.freescale.com/support USA/Europe or Locations Not Listed: Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1-800-521-6274 or +1-480-768-2130 www.freescale.com/support Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support Japan: Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com Asia/Pacific: Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 010 5879 8000 support.asia@freescale.com For Literature Requests Only: Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2009. All rights reserved. Product family data sheet Copyright © 2012-2013 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo and XLamp® are registered trademarks of Cree, Inc. Cree, Inc. 4600 Silicon Drive Durham, NC 27703 USA Tel: +1.919.313.5300 CLD-DS51 Rev 8A Cree® XLamp® XP-G2 LEDs Product Description The XLamp XP-G2 LED builds on the unprecedented performance of the original XP-G by increasing lumen output up to 20% while providing a single die LED point source for precise optical control. The XP-G2 LED shares the same footprint as the original XP-G, providing a seamless upgrade path and shortening the design cycle. XLamp XP-G2 LEDs are the ideal choice for lighting applications where high light output and maximum efficacy are required, such as LED light bulbs, outdoor lighting, portable lighting, indoor lighting and solar-powered lighting. FEATURES • Available in white, outdoor white and 80-, 85- and 90-CRI white • ANSI-compatible chromaticity bins • Binned at 85 °C • Maximum drive current: 1500 mA • Low thermal resistance: 4 °C/W • Wide viewing angle: 115° • Unlimited floor life at ≤ 30 ºC/85% RH • Reflow solderable - JEDEC J‑STD‑020C • Electrically neutral thermal path • RoHS- and REACh‑ compliant • UL-recognized component (E349212) www.cree.com/Xlamp Table of Contents Characteristics........................... 2 Flux Characteristics..................... 3 Relative Spectral Power Distribution............................... 4 Relative Flux vs. Junction Temperature.............................. 4 Electrical Characteristics.............. 5 Relative Flux vs. Current............. 5 Relative Chromaticity vs Current and Temperature........................ 6 Typical Spatial Distribution........... 7 Thermal Design.......................... 7 Reflow Soldering Characteristics... 8 Notes........................................ 9 Mechanical Dimensions..............10 Tape and Reel...........................11 Packaging.................................12 Copyright © 2012-2013 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo and XLamp® are registered trademarks of Cree, Inc. 2 XLamp xp-g2 leds Characteristics Characteristics Unit Minimum Typical Maximum Thermal resistance, junction to solder point °C/W 4 Viewing angle (FWHM) degrees 115 Temperature coefficient of voltage mV/°C -1.8 ESD withstand voltage (HBM per Mil-Std-883D) V 8000 DC forward current mA 1500 Reverse voltage V 5 Forward voltage (@ 350 mA, 85 °C) V 2.8 3.15 Forward voltage (@ 700 mA, 85 °C) V 2.9 Forward voltage (@ 1000 mA, 85 °C) V 3.0 Forward voltage (@ 1500 mA, 85 °C) V 3.1 LED junction temperature °C 150 Copyright © 2012-2013 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo and XLamp® are registered trademarks of Cree, Inc. 3 XLamp xp-g2 leds Flux Characteristics (TJ = 85 °C) The following table provides several base order codes for XLamp XP-G2 LEDs. It is important to note that the base order codes listed here are a subset of the total available order codes for the product family. Color CCT Range Base Order Codes Min. Luminous Flux @ 350 mA Calculated Minimum Luminous Flux (lm)** @ 85 °C Order Code Min. Max. Group Flux (lm) @ 85 °C Flux (lm) @ 25 °C* 700 mA 1.0 A 1.5 A Cool White 5000 K 8300 K R3 122 138 223 297 402 XPGBWT-L1-0000-00F51 R4 130 147 237 316 429 XPGBWT-L1-0000-00G51 R5 139 158 254 338 458 XPGBWT-L1-0000-00H51 Outdoor White 3200 K 5300 K R2 114 129 208 277 376 XPGBWT-01-0000-00EC2 R3 122 138 223 297 402 XPGBWT-01-0000-00FC2 R4 130 147 237 316 429 XPGBWT-01-0000-00GC2 Neutral White 3700 K 5300 K Q5 107 121 195 260 353 XPGBWT-L1-0000-00DE4 R2 114 129 208 277 376 XPGBWT-L1-0000-00EE4 R3 122 138 223 297 402 XPGBWT-L1-0000-00FE4 80-CRI White 2600 K 4300 K Q4 100 113 182 243 330 XPGBWT-H1-0000-00CE7 Q5 107 121 195 260 353 XPGBWT-H1-0000-00DE7 R2 114 129 208 277 376 XPGBWT-H1-0000-00EE7 R3 122 138 223 297 402 XPGBWT-H1-0000-00FE7 Warm White 2600 K 3700 K Q4 100 113 182 243 330 XPGBWT-L1-0000-00CE7 Q5 107 121 195 260 353 XPGBWT-L1-0000-00DE7 R2 114 129 208 277 376 XPGBWT-L1-0000-00EE7 R3 122 138 223 297 402 XPGBWT-L1-0000-00FE7 R4 130 147 237 316 429 XPGBWT-L1-0000-00GE7 85-CRI White 2600 K 3200 K P3 73.9 83.8 135 180 244 XPGBWT-P1-0000-008E7 P4 80.6 91.4 147 196 266 XPGBWT-P1-0000-009E7 Q2 87.4 99.1 160 213 288 XPGBWT-P1-0000-00AE7 Q3 93.9 106 172 228 310 XPGBWT-P1-0000-00BE7 90-CRI White 2600 K 3200 K P3 73.9 83.8 135 180 244 XPGBWT-U1-0000-008E7 P4 80.6 91.4 147 196 266 XPGBWT-U1-0000-009E7 Q2 87.4 99.1 160 213 288 XPGBWT-U1-0000-00AE7 Notes: • Cree maintains a tolerance of ±7% on flux and power measurements, ±0.005 on chromaticity (CCx, CCy) measurements and ±2 on CRI measurements. • Typical CRI for Cool White (5000 K - 8300 K CCT) is 70. • Typical CRI for Neutral White (3700 K - 5300 K CCT) is 75. • Typical CRI for Outdoor White (4000 K - 5300 K CCT) is 70. • Typical CRI for Warm White (2600 K - 3700 K CCT) is 80. • Minimum CRI for 80-CRI White is 80. • Minimum CRI for 85-CRI White is 85. • Minimum CRI for 90-CRI White is 90. • Flux values @ 25 °C are calculated and for reference only. ** Calculated flux values at 700 mA, 1 A and 1.5 A are for reference only. Copyright © 2012-2013 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo and XLamp® are registered trademarks of Cree, Inc. 4 XLamp xp-g2 leds Relative Spectral Power Distribution Relative Flux vs. Junction Temperature (IF = 350 mA) Relative Spectral Power 0% 20% 40% 60% 80% 100% 380 430 480 530 580 630 680 730 780 Relative Radiant Power (%) Wavelength (nm) 5000K - 8300K CCT 3700K - 5000K CCT 2600K - 3700K CCT Relative Flux Output vs. Junction Temperature 0% 20% 40% 60% 80% 100% 120% 25 50 75 100 125 150 Relative Luminous Flux Junction Temperature (ºC) Copyright © 2012-2013 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo and XLamp® are registered trademarks of Cree, Inc. 5 XLamp xp-g2 leds Electrical Characteristics (TJ = 85 °C) Relative Flux vs. Current (TJ = 85 °C) Electrical Characteristics (Tj = 25ºC) 0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 2.50 2.75 3.00 3.25 Forward Current (mA) Forward Voltage (V) Relative Intensity vs. Current (Tj = 25ºC) 0% 50% 100% 150% 200% 250% 300% 350% 0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 Relative Luminous Flux (%) Forward Current (mA) Copyright © 2012-2013 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo and XLamp® are registered trademarks of Cree, Inc. 6 XLamp xp-g2 leds Relative Chromaticity vs Current and Temperature (Warm White*) * Warm White XLamp XP-G2 LEDs have a typical CRI of 80. Delta CCT vs. Current -0.020 -0.015 -0.010 -0.005 0.000 0.005 0.010 0.015 0.020 100 300 500 700 900 1100 1300 1500 Current (mA) ΔCCx ΔCCy Delta CCT vs Temp -0.020 -0.015 -0.010 -0.005 0.000 0.005 0.010 0.015 0.020 25 50 75 100 125 150 Tsp (°C) ΔCCx ΔCCy Copyright © 2012-2013 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo and XLamp® are registered trademarks of Cree, Inc. 7 XLamp xp-g2 leds Typical Spatial Distribution Thermal Design The maximum forward current is determined by the thermal resistance between the LED junction and ambient. It is crucial for the end product to be designed in a manner that minimizes the thermal resistance from the solder point to ambient in order to optimize lamp life and optical characteristics. Typical Spatial Radiation Pattern 0% 20% 40% 60% 80% 100% -100 -80 -60 -40 -20 0 20 40 60 80 100 Relative Luminous Intensity (%) Angle (º) Thermal Design Cool White 0 200 400 600 800 1000 1200 1400 1600 0 20 40 60 80 100 120 140 Maximum Current (mA) Ambient Temperature (ºC) Rj-a = 10°C/W Rj-a = 15°C/W Rj-a = 20°C/W Rj-a = 25°C/W Copyright © 2012-2013 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo and XLamp® are registered trademarks of Cree, Inc. 8 XLamp xp-g2 leds Reflow Soldering Characteristics In testing, Cree has found XLamp XP-G2 LEDs to be compatible with JEDEC J-STD-020C, using the parameters listed below. As a general guideline, Cree recommends that users follow the recommended soldering profile provided by the manufacturer of solder paste used. Note that this general guideline may not apply to all PCB designs and configurations of reflow soldering equipment. Profile Feature Lead-Based Solder Lead-Free Solder Average Ramp-Up Rate (Tsmax to Tp) 3 °C/second max. 3 °C/second max. Preheat: Temperature Min (Tsmin) 100 °C 150 °C Preheat: Temperature Max (Tsmax) 150 °C 200 °C Preheat: Time (tsmin to tsmax) 60-120 seconds 60-180 seconds Time Maintained Above: Temperature (TL) 183 °C 217 °C Time Maintained Above: Time (tL) 60-150 seconds 60-150 seconds Peak/Classification Temperature (Tp) 215 °C 260 °C Time Within 5 °C of Actual Peak Temperature (tp) 10-30 seconds 20-40 seconds Ramp-Down Rate 6 °C/second max. 6 °C/second max. Time 25 °C to Peak Temperature 6 minutes max. 8 minutes max. Note: All temperatures refer to topside of the package, measured on the package body surface. TP TL Temperature Time t 25˚C to Peak Preheat ts tS tP 25 Ramp-down Ramp-up Critical Zone TL to TP Tsmax Tsmin Copyright © 2012-2013 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo and XLamp® are registered trademarks of Cree, Inc. 9 XLamp xp-g2 leds Notes Lumen Maintenance Projections Cree now uses standardized IES LM-80-08 and TM-21-11 methods for collecting long-term data and extrapolating LED lumen maintenance. For information on the specific LM-80 data sets available for this LED, refer to the public LM-80 results document at www.cree.com/xlamp_app_notes/LM80_results. Please read the XLamp Long-Term Lumen Maintenance application note at www.cree.com/xlamp_app_notes/lumen_ maintenance for more details on Cree’s lumen maintenance testing and forecasting. Please read the XLamp Thermal Management application note at www.cree.com/xlamp_app_notes/thermal_management for details on how thermal design, ambient temperature, and drive current affect the LED junction temperature. Moisture Sensitivity In testing, Cree has found XLamp XP-G2 LEDs to have unlimited floor life in conditions ≤ 30 ºC/85% relative humidity (RH). Moisture testing included a 168-hour soak at 85 ºC/85% RH followed by 3 reflow cycles, with visual and electrical inspections at each stage. Cree recommends keeping XLamp LEDs in their sealed moisture-barrier packaging until immediately prior to use. Cree also recommends returning any unused LEDs to the resealable moisture-barrier bag and closing the bag immediately after use. RoHS Compliance The levels of RoHS restricted materials in this product are below the maximum concentration values (also referred to as the threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 2011/65/EC (RoHS2), as implemented January 2, 2013. RoHS Declarations for this product can be obtained from your Cree representative or from the Product Documentation sections of www.cree.com. REAC h Compliance REACh substances of high concern (SVHCs) information is available for this product. Since the European Chemical Agency (ECHA) has published notice of their intent to frequently revise the SVHC listing for the foreseeable future, please contact a Cree representative to insure you get the most up-to-date REACh Declaration. REACh banned substance information (REACh Article 67) is also available upon request. UL Recognized Component Level 4 enclosure consideration. The LED package or a portion thereof has been investigated as a fire and electrical enclosure per ANSI/UL 8750. Vision Advisory Claim WARNING: Do not look at exposed lamp in operation. Eye injury can result. See LED Eye Safety at www.cree.com/ xlamp_app_notes/led_eye_safety. Copyright © 2012-2013 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo and XLamp® are registered trademarks of Cree, Inc. 10 XLamp xp-g2 leds Mechanical Dimensions (TA = 25 °C) All measurements are ±.13 mm unless otherwise indicated. .60 1.65 1.60 .65 3.45 2.00 3.45 .40 .60 3.20 1.20 .40 .40 3.20 (HATCHED AREA IS OPENING) RECOMMENDED STENCIL PATTERN RECOMMENDED PCB SOLDER PAD 3.30 3.30 .50 1.30 .50 .50 .40 2.30 3.30 .50 1.30 .50 .73 2.6 Top View Side View Bottom View All Measurements are .13mm unless otherwise indicated Anode THIRD ANGLE PROJECTION A B C D 6 5 4 3 6 5 4 3 UNAUTHORIZED PERSON WITHOUT THE WRITTEN CONSENT MAY NOT BE COPIED, REPRODUCED OR DISCLOSED TO ANY CONFIDENTIAL INFORMATION OF CREE, INC. THIS PLOT CONTAINED WITHIN ARE THE PROPRIETARY AND CREE CONFIDENTIAL. THIS PLOT AND THE INFORMATION OF CREE INC. NOTICE X° ± .5 .XXX ± .25 .XX ± .75 .X ± 1.5 FOR SHEET METAL PARTS .XX ± .25 .XXX ± .125 X° ± .5 UNLESS OTHERWISE SPECIFIED DIMENSIONS ARE MILLIMETERS AND AFTER TOLERANCE UNLESS SPECIFIED: SURFACE FINISH: 1.6 .50 .50 .40 1.30 3.30 3.30 1.15 .65 1.65 .50 1.20 .60 .60 3.20 1.60 3.20 .40 .40 .40 3.45 3.45 .83 .65 R1.53 3.30 2.30 .50 1.30 2.36 RECOMMENDED PCB SOLDER PAD RECOMMENDED STENCIL PATTERN (HATCHED AREA IS OPENING) SIZE TITLE OF REV. SHEET C DRAWING NO. DATE DATE DATE CHECK FINAL PROTECTIVE FINISH MATERIAL APPROVED DRAWN BY THIRD ANGLE PROJECTION SCALE 3 2 1 A B C Phone (919) 313-5300 Fax (919) 313-5558 4600 Silicon Drive Durham, N.C 27703 X° ± .5 ° .XXX ± .25 .XX ± .75 .X ± 1.5 FOR SHEET METAL PARTS ONLY .XX ± .25 .XXX ± .125 X° ± .5 ° UNLESS OTHERWISE SPECIFIED DIMENSIONS ARE IN MILLIMETERS AND AFTER FINISH. TOLERANCE UNLESS SPECIFIED: SURFACE FINISH: 1.6 1.20 .60 3.20 1.60 3.20 .40 .65 3.30 1.30 22.000 1 /1 2610-00024 A OUTLINE DRAWING XPG G2 D. CRONIN 05/09/12 RECOMMENDED STENCIL PATTERN AREA IS OPENING) SIZE TITLE DATE DATE DATE CHECK FINAL PROTECTIVE FINISH MATERIAL APPROVED DRAWN BY THIRD ANGLE PROJECTION SCALE 6 5 4 3 2 6 5 4 3 2 UNAUTHORIZED PERSON WITHOUT THE WRITTEN CONSENT BE COPIED, REPRODUCED OR DISCLOSED TO ANY CONFIDENTIAL INFORMATION OF CREE, INC. THIS PLOT CONTAINED WITHIN ARE THE PROPRIETARY AND CONFIDENTIAL. THIS PLOT AND THE INFORMATION INC. NOTICE X° ± .5 ° .XXX ± .25 .XX ± .75 .X ± 1.5 FOR SHEET METAL PARTS ONLY .XX ± .25 .XXX ± .125 X° ± .5 ° UNLESS OTHERWISE SPECIFIED DIMENSIONS ARE IN MILLIMETERS AND AFTER FINISH. TOLERANCE UNLESS SPECIFIED: SURFACE FINISH: 1.6 .50 .50 .40 1.30 3.30 3.30 1.15 .65 1.65 .50 1.20 .60 .60 3.20 1.60 3.20 .40 .40 .40 3.45 3.45 .83 .65 R1.53 3.30 3.30 2.30 .50 1.30 2.36 D. CRONIN 05/09/12 REV DESCRIPTION RECOMMENDED PCB SOLDER PAD RECOMMENDED STENCIL PATTERN (HATCHED AREA IS OPENING) SIZE TITLE C DATE DATE DATE CHECK FINAL PROTECTIVE FINISH MATERIAL APPROVED DRAWN BY THIRD ANGLE PROJECTION SCALE 6 5 4 3 2 6 5 4 3 2 PERSON WITHOUT THE WRITTEN CONSENT COPIED, REPRODUCED OR DISCLOSED TO ANY INFORMATION OF CREE, INC. THIS PLOT ARE THE PROPRIETARY AND CONFIDENTIAL. THIS PLOT AND THE INFORMATION NOTICE X° ± .5 ° .XXX ± .25 .XX ± .75 .X ± 1.5 FOR SHEET METAL PARTS ONLY .XX ± .25 .XXX ± .125 X° ± .5 ° UNLESS OTHERWISE SPECIFIED DIMENSIONS ARE IN MILLIMETERS AND AFTER FINISH. TOLERANCE UNLESS SPECIFIED: SURFACE FINISH: 1.6 .50 .50 .40 1.30 3.30 3.30 1.15 .65 1.65 .50 1.20 .60 .60 3.20 1.60 3.20 .40 .40 .40 3.45 3.45 .83 .65 R1.53 3.30 3.30 2.30 .50 1.30 2.36 22.000 OUTLINE D. CRONIN 05/09/12 REVISONS REV DESCRIPTION RECOMMENDED PCB SOLDER PAD RECOMMENDED STENCIL PATTERN (HATCHED AREA IS OPENING) SIZE TITLE C DRAWING NO. DATE DATE DATE CHECK FINAL PROTECTIVE FINISH MATERIAL APPROVED DRAWN BY THIRD ANGLE PROJECTION SCALE 5 4 3 2 5 4 3 2 WITHOUT THE WRITTEN CONSENT REPRODUCED OR DISCLOSED TO ANY CREE, INC. THIS PLOT PROPRIETARY AND AND THE INFORMATION X° ± .5 ° .XXX ± .25 .XX ± .75 .X ± 1.5 FOR SHEET METAL PARTS ONLY .XX ± .25 .XXX ± .125 X° ± .5 ° UNLESS OTHERWISE SPECIFIED DIMENSIONS ARE IN MILLIMETERS AND AFTER FINISH. TOLERANCE UNLESS SPECIFIED: SURFACE FINISH: 1.6 1.30 3.30 3.30 1.15 1.65 1.20 .60 .60 3.20 1.60 3.20 .40 .40 .40 3.45 .83 .65 R1.53 3.30 3.30 2.30 .50 1.30 2.36 22.000 2610-OUTLINE DRAWING D. CRONIN 05/09/12 REVISONS REV DESCRIPTION RECOMMENDED PCB SOLDER PAD RECOMMENDED STENCIL PATTERN (HATCHED AREA IS OPENING) Anode Copyright © 2012-2013 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo and XLamp® are registered trademarks of Cree, Inc. 11 XLamp xp-g2 leds Tape and Reel All Cree carrier tapes conform to EIA-481D, Automated Component Handling Systems Standard. All dimensions in mm. SIZE TITLE OF REV. SHEET C DRAWING NO. DATE DATE DATE CHECK FINAL PROTECTIVE FINISH MATERIAL APPROVED DRAWN BY THIRD ANGLE PROJECTION SCALE A B C D 6 5 4 3 2 1 6 5 4 3 2 1 A B C D Phone (919) 313-5300 Fax (919) 313-5558 4600 Silicon Drive Durham, N.C 27703 UNAUTHORIZED PERSON WITHOUT THE WRITTEN CONSENT MAY NOT BE COPIED, REPRODUCED OR DISCLOSED TO ANY CONFIDENTIAL INFORMATION OF CREE, INC. THIS PLOT CONTAINED WITHIN ARE THE PROPRIETARY AND CREE CONFIDENTIAL. THIS PLOT AND THE INFORMATION OF CREE INC. NOTICE X° ± .5 ° .XXX ± .25 .XX ± .75 .X ± 1.5 FOR SHEET METAL PARTS ONLY .XX ± .25 .XXX ± .125 X° ± .5 ° UNLESS OTHERWISE SPECIFIED DIMENSIONS ARE IN MILLIMETERS AND AFTER FINISH. TOLERANCE UNLESS SPECIFIED: SURFACE FINISH: 1.6 Trailer 160mm (min) of empty pockets sealed with tape (20 pockets min.) Loaded Pockets (1000 Lamps) Leader 400mm (min.) of empty pockets with at least 100mm sealed by tape (50 empty pockets min.) 12.0 +.3 -.0 1.75 ±.10 4±.1 8±.1 2.5±.1 3.000 1 /1 2402-00014 B XP HEW LOADING SPEC -- -- -- -- -- -- D. CRONIN 11/29/10 REVISONS REV DESCRIPTION BY DATE APP'D B ADDED CATHODE AND ANODE NOTE REORIENTED DEVICE DC 2/26/12 END START User Feed Direction CATHODE SIDE ANODE SIDE User Feed Direction 7" 1.5± .1 13mm Pocket Tape Carrier Tape 13 61 12.40 0 +2.00 MEASURED AT HUB 12.40 MEASURED AT INSIDE EDGE 16.40 2400-00005 SIZE TITLE REV. C DRAWING NO. DATE DATE DATE CHECK FINAL PROTECTIVE FINISH MATERIAL APPROVED DRAWN BY THIRD ANGLE PROJECTION .X ± 0.3 .XX ± .10 .X ± .25 FOR SHEET METAL PARTS ONLY .XX ± .13 X° ± 1° UNLESS OTHERWISE SPECIFIED DIMENSIONS ARE IN MILLIMETERS & BEFORE FINISH. TOLERANCE UNLESS SPECIFIED: A B C D 6 5 4 3 2 1 A B C D Phone (919) 361-4770 4600 Silicon Drive Durham, N.C 27703 NOTICE CREE CONFIDENTIAL. THIS PLOT AND THE INFORMATION CONTAINED WITHIN ARE THE PROPRIETARY AND CONFIDENTIAL INFORMATION OF CREE, INC. THIS PLOT MAY NOT BE COPIED, REPRODUCED OR DISCLOSED TO ANY UNAUTHORIZED PERSON WITHOUT THE WRITTEN CONSENT OF CREE, INC. Reel, 7" x 12mm Wide B LIUDEZHI 2012/5/25 +/-0.5 PS 190 ½öÓÃÓÚÆÀ¹À¡£ °æȨËùÓÐ (c) by Foxit Software Company, 2004 ÓÉ Foxit PDF Editor ±à¼- OD 7.5'' 13 61 12.40 0 +2.00 MEASURED AT HUB 12.40 MEASURED AT INSIDE EDGE 16.40 B C D 6 5 4 3 2 1 B C D NOTICE CREE CONFIDENTIAL. THIS PLOT AND THE INFORMATION CONTAINED WITHIN ARE THE PROPRIETARY AND CONFIDENTIAL INFORMATION OF CREE, INC. THIS PLOT MAY NOT BE COPIED, REPRODUCED OR DISCLOSED TO ANY UNAUTHORIZED PERSON WITHOUT THE WRITTEN CONSENT OF CREE, INC. +/-0.5 190 ½öÓÃÓÚÆÀ¹À¡£ °æȨËùÓÐ (c) by Foxit Software Company, 2004 ÓÉ Foxit PDF Editor ±à¼- OD 7.5'' Y X X REF 0.59 F(III) D1 P1 1.5 MIN. Bo Ao R0.2 TYPICAL REF 4.375 Ko (IV) Other material available. (III) (II) (I) hole to centerline of pocket. Measured from centerline of sprocket holes is ± 0.20. Cumulative tolerance of 10 sprocket to centerline of pocket. Measured from centerline of sprocket hole SECTION Y-Y SECTION X-X REF R 2.24 Ko 2.40 +0.0/-0.1 3.70 1 W F P +/- 0.05 +/- 0.1 +0.3/-0.1 5.50 8.00 12.00 Ao 3.70 +/- 0.1 Bo +/- 0.1 Y Y X X REF 0.59 W F(III) D1 P1 1.5 MIN. Bo Ao R0.2 TYPICAL REF 4.375 Ko (IV) Other material available. (III) (II) (I) hole to centerline of pocket. Measured from centerline of sprocket holes is ± 0.20. Cumulative tolerance of 10 sprocket to centerline of pocket. Measured from centerline of sprocket hole SECTION Y-Y SECTION X-X 2.0 ±0.05 (I) P2 1.55 ±0.05 Do 4.0 ±0.1 (II) Po 1.75 ±0.1 E1 T 0.30 ±0.05 REF R 2.24 Ko 2.40 +0.0/-0.1 3.70 1 W F P +/- 0.05 +/- 0.1 +0.3/-0.1 5.50 8.00 12.00 Ao 3.70 +/- 0.1 Bo +/- 0.1 Y D1 1.5 MIN. Bo R0.2 TYPICAL REF 4.375 Ko SECTION Y-Y REF Ko 2.40 +0.0/-0.1 3.70 1 W F P +/- 0.05 +/- 0.1 +0.3/-0.1 5.50 8.00 12.00 Ao 3.70 +/- 0.1 Bo +/- 0.1 CATHODE SIDE ANODE SIDE Copyright © 2012-2013 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo and XLamp® are registered trademarks of Cree, Inc. 12 XLamp xp-g2 leds Packaging Patent Label (on bottom of box) Label with Cree Bin Code, Qty, Reel ID Label with Cree Bin Code, Qty, Reel ID Label with Cree Order Code, Qty, Reel ID, PO # Label with Cree Order Code, Qty, Reel ID, PO # Label with Cree Bin Code, Qty, Reel ID Unpackaged Reel Packaged Reel Boxed Reel CREE Bin Code & Barcode Label Vacuum-Sealed Moisture Barrier Bag Label with Customer P/N, Qty, Lot #, PO # Label with Cree Bin Code, Qty, Lot # Label with Cree Bin Code, Qty, Lot # Vacuum-Sealed Moisture Barrier Bag Patent Label Label with Customer Order Code, Qty, Reel ID, PO # SHARC and the SHARC logo are registered trademarks of Analog Devices, Inc. SHARC Processors ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366 Rev. J Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 U.S.A. Tel: 781.329.4700 ©2013 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com SUMMARY High performance 32-bit/40-bit floating point processor optimized for high performance audio processing Single-instruction, multiple-data (SIMD) computational architecture On-chip memory—3M bits of on-chip SRAM Code compatible with all other members of the SHARC family The ADSP-2136x processors are available with up to 333 MHz core instruction rate with unique audiocentric peripherals such as the digital applications interface, S/PDIF transceiver, DTCP (digital transmission content protection protocol), serial ports, precision clock generators, and more. For complete ordering information, see Ordering Guide on Page 56. DEDICATED AUDIO COMPONENTS S/PDIF-compatible digital audio receiver/transmitter 8 channels of asynchronous sample rate converters (SRC) 16 PWM outputs configured as four groups of four outputs ROM-based security features include: JTAG access to memory permitted with a 64-bit key Protected memory regions that can be assigned to limit access under program control to sensitive code PLL has a wide variety of software and hardware multiplier/ divider ratios Available in 136-ball CSP_BGA and 144-lead LQFP_EP packages Figure 1. Functional Block Diagram Internal Memory I/F Block 0 RAM/ROM B0D 64-BIT Instruction Cache 5 stage Sequencer PEx PEy PMD 64-BIT Core Bus Cross Bar Block 1 RAM/ROM Block 2 RAM Block 3 RAM DAG1/2 Timer IOD BUS MTM/ DTCP PERIPHERAL BUS 32-BIT Internal Memory DMD 64-BIT PERIPHERAL BUS B1D 64-BIT B2D 64-BIT B3D 64-BIT DAI Peripherals Peripherals SIMD Core S Core SPI Flags PWM 3-0 PP PP Pin MUX PDAP/ IDP7-0 ASRC 3-0 TIMER 2-0 CORE FLAGS S/PDIF Tx/Rx PCG A-B SPI B SPORT 5-0 DAI Routing/Pins IOD 32-BIT FLAGx/IRQx/ TMREXP JTAG PMD 64-BIT DMD 64-BIT Rev. J | Page 2 of 60 | July 2013 ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366 TABLE OF CONTENTS Summary ............................................................... 1 Dedicated Audio Components .................................... 1 General Description ................................................. 3 SHARC Family Core Architecture ............................ 4 Family Peripheral Architecture ................................ 6 I/O Processor Features ........................................... 8 System Design ...................................................... 8 Development Tools ............................................... 9 Additional Information ........................................ 10 Related Signal Chains .......................................... 10 Pin Function Descriptions ....................................... 11 Specifications ........................................................ 14 Operating Conditions .......................................... 14 Electrical Characteristics ....................................... 15 Package Information ........................................... 16 ESD Caution ...................................................... 16 Maximum Power Dissipation ................................. 16 Absolute Maximum Ratings ................................... 16 Timing Specifications ........................................... 16 Output Drive Currents ......................................... 46 Test Conditions .................................................. 46 Capacitive Loading .............................................. 46 Thermal Characteristics ........................................ 47 144-Lead LQFP_EP Pin Configurations ....................... 48 136-Ball BGA Pin Configurations ............................... 50 Package Dimensions ............................................... 53 Surface-Mount Design .......................................... 54 Automotive Products .............................................. 55 Ordering Guide ..................................................... 56 REVISION HISTORY 7/13—Revision I to Revision J Updated Development Tools .......................................9 Added Nominal Value column in Operating Conditions .. 14 Changed Max values in Table 30 in Pulse-Width Modulation Generators ............................................................ 35 Updated Ordering Guide .......................................... 56 ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366 Rev. J | Page 3 of 60 | July 2013 GENERAL DESCRIPTION The ADSP-2136x SHARC® processor is a member of the SIMD SHARC family of DSPs that feature Analog Devices, Inc., Super Harvard Architecture. The processor is source code-compatible with the ADSP-2126x and ADSP-2116x DSPs, as well as with first generation ADSP-2106x SHARC processors in SISD (single-instruction, single-data) mode. The ADSP-2136x are 32-/40-bit floating-point processors optimized for high performance automotive audio applications. They contain a large on-chip SRAM and ROM, multiple internal buses to eliminate I/O bottlenecks, and an innovative digital audio interface (DAI). As shown in the functional block diagram on Page 1, the ADSP-2136x uses two computational units to deliver a significant performance increase over the previous SHARC processors on a range of signal processing algorithms. With its SIMD computational hardware, the ADSP-2136x can perform two GFLOPS running at 333 MHz. Table 1 shows performance benchmarks for these devices. Table 2 shows the features of the individual product offerings. The diagram on Page 1 shows the two clock domains that make up the ADSP-2136x processors. The core clock domain contains the following features: • Two processing elements, each of which comprises an ALU, multiplier, shifter, and data register file • Data address generators (DAG1, DAG2) • Program sequencer with instruction cache • PM and DM buses capable of supporting four 32-bit data transfers between memory and the core at every core processor cycle • One periodic interval timer with pinout • On-chip SRAM (3M bit) • On-chip mask-programmable ROM (4M bit) • JTAG test access port for emulation and boundary scan. The JTAG provides software debug through user breakpoints, which allow flexible exception handling. The diagram on Page 1 also shows the following architectural features: • I/O processor that handles 32-bit DMA for the peripherals • Six full duplex serial ports • Two SPI-compatible interface ports—primary on dedicated pins, secondary on DAI pins • 8-bit or 16-bit parallel port that supports interfaces to offchip memory peripherals • Digital audio interface that includes two precision clock generators (PCG), an input data port with eight serial interfaces (IDP), an S/PDIF receiver/transmitter, 8-channel asynchronous sample rate converter (ASRC), DTCP cipher, six serial ports, a 20-bit parallel input data port (PDAP), 10 interrupts, six flag outputs, six flag inputs, three timers, and a flexible signal routing unit (SRU) Table 1. Benchmarks (at 333 MHz) Benchmark Algorithm Speed (at 333 MHz) 1024 Point Complex FFT (Radix 4, with reversal) 27.9 μs FIR Filter (per tap)1 1Assumes two files in multichannel SIMD mode. 1.5 ns IIR Filter (per biquad)1 6.0 ns Matrix Multiply (pipelined) [3×3] × [3×1] [4×4] × [4×1] 13.5 ns 23.9 ns Divide (y/x) 10.5 ns Inverse Square Root 16.3 ns Table 2. ADSP-2136x Family Features Feature ADSP-21362 ADSP-21363 ADSP-21364 ADSP-21365 ADSP-21366 RAM ROM 3M bit 4M bit 3M bit 4M bit 3M bit 4M bit 3M bit 4M bit 3M bit 4M bit Audio Decoders in ROM1 No No No Yes Yes Pulse-Width Modulation Yes Yes Yes Yes Yes S/PDIF Yes No Yes Yes Yes DTCP2 Yes No No Yes No SRC SNR Performance –128 dB No SRC –140 dB –128 dB –128 dB 1 Audio decoding algorithms include PCM, Dolby Digital EX, Dolby Pro Logic IIx, DTS 96/24, Neo:6, DTS ES, MPEG-2 AAC, MP3, and functions like bass management, delay, speaker equalization, graphic equalization, and more. Decoder/post-processor algorithm combination support varies depending upon the chip version and the system configurations. Please visit www.analog.com for complete information. 2The ADSP-21362 and ADSP-21365 processors provide the Digital Transmission Content Protection protocol, a proprietary security protocol. Contact your Analog Devices sales office for more information. Rev. J | Page 4 of 60 | July 2013 ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366 SHARC FAMILY CORE ARCHITECTURE The ADSP-2136x is code-compatible at the assembly level with the ADSP-2126x, ADSP-21160, and ADSP-21161, and with the first generation ADSP-2106x SHARC processors. The ADSP-2136x shares architectural features with the ADSP-2126x and ADSP-2116x SIMD SHARC processors, as shown in Figure 2 and detailed in the following sections. SIMD Computational Engine The processor contains two computational processing elements that operate as a single-instruction, multiple-data (SIMD) engine. The processing elements are referred to as PEX and PEY and each contains an ALU, multiplier, shifter, and register file. PEX is always active, and PEY can be enabled by setting the PEYEN mode bit in the MODE1 register. When this mode is enabled, the same instruction is executed in both processing elements, but each processing element operates on different data. This architecture is efficient at executing math intensive signal processing algorithms. Entering SIMD mode also has an effect on the way data is transferred between memory and the processing elements. When in SIMD mode, twice the data bandwidth is required to sustain computational operation in the processing elements. Because of this requirement, entering SIMD mode also doubles the bandwidth between memory and the processing elements. When using the DAGs to transfer data in SIMD mode, two data values are transferred with each access of memory or the register file. Independent, Parallel Computation Units Within each processing element is a set of computational units. The computational units consist of an arithmetic/logic unit (ALU), multiplier, and shifter. These units perform all operations in a single cycle. The three units within each processing element are arranged in parallel, maximizing computational throughput. Single multifunction instructions execute parallel ALU and multiplier operations. In SIMD mode, the parallel ALU and multiplier operations occur in both processing elements. These computation units support IEEE 32-bit, single-precision floating-point, 40-bit extended-precision floating-point, and 32-bit fixed-point data formats. Figure 2. SHARC Core Block Diagram S SIMD Core INTERRUPT CACHE 5 STAGE PROGRAM SEQUENCER PM ADDRESS 32 DM ADDRESS 32 DM DATA 64 PM DATA 64 DAG1 16x32 MRF 80-BIT MULTIPLIER SHIFTER ALU RF Rx/Fx PEx 16x40-BIT JTAG DMD/PMD 64 PM DATA 48 ASTATx STYKx ASTATy STYKy TIMER RF Sx/SFx PEy 16x40-BIT MRB 80-BIT MSB 80-BIT MSF 80-BIT FLAG SYSTEM I/F USTAT 4x32-BIT PX 64-BIT DAG2 16x32 ALU SHIFTER MULTIPLIER DATA SWAP PM ADDRESS 24 ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366 Rev. J | Page 5 of 60 | July 2013 Data Register File Each processing element contains a general-purpose data register file. The register files transfer data between the computation units and the data buses, and store intermediate results. These 10-port, 32-register (16 primary, 16 secondary) files, combined with the ADSP-2136x enhanced Harvard architecture, allow unconstrained data flow between computation units and internal memory. The registers in PEX are referred to as R0–R15 and in PEY as S0–S15. Context Switch Many of the processor’s registers have secondary registers that can be activated during interrupt servicing for a fast context switch. The data registers in the register file, the DAG registers, and the multiplier result register all have secondary registers. The primary registers are active at reset, while the secondary registers are activated by control bits in a mode control register. Universal Registers The universal registers are general purpose registers. The USTAT (4) registers allow easy bit manipulations (Set, Clear, Toggle, Test, XOR) for all system registers (control/status) of the core. The data bus exchange register (PX) permits data to be passed between the 64-bit PM data bus and the 64-bit DM data bus, or between the 40-bit register file and the PM/DM data bus. These registers contain hardware to handle the data width difference. Timer A core timer that can generate periodic software interrupts. The core timer can be configured to use FLAG3 as a timer expired signal. Single-Cycle Fetch of Instruction and Four Operands The processor features an enhanced Harvard architecture in which the data memory (DM) bus transfers data and the program memory (PM) bus transfers both instructions and data (see Figure 2). With the its separate program and data memory buses and on-chip instruction cache, the processor can simultaneously fetch four operands (two over each data bus) and one instruction (from the cache), all in a single cycle. Instruction Cache The processor includes an on-chip instruction cache that enables three-bus operation for fetching an instruction and four data values. The cache is selective—only the instructions whose fetches conflict with PM bus data accesses are cached. This cache allows full-speed execution of core looped operations such as digital filter multiply-accumulates, and FFT butterfly processing. Data Address Generators with Zero-Overhead Hardware Circular Buffer Support The processor’s two data address generators (DAGs) are used for indirect addressing and implementing circular data buffers in hardware. Circular buffers allow efficient programming of delay lines and other data structures required in digital signal processing, and are commonly used in digital filters and Fourier transforms. The two DAGs contain sufficient registers to allow the creation of up to 32 circular buffers (16 primary register sets, 16 secondary). The DAGs automatically handle address pointer wraparound, reduce overhead, increase performance, and simplify implementation. Circular buffers can start and end at any memory location. Flexible Instruction Set The 48-bit instruction word accommodates a variety of parallel operations for concise programming. For example, the processor can conditionally execute a multiply, an add, and a subtract in both processing elements while branching and fetching up to four 32-bit values from memory—all in a single instruction. On-Chip Memory The processor contains 3M bits of internal SRAM and 4M bits of internal ROM. Each block can be configured for different combinations of code and data storage (see Table 3). Each memory block supports single-cycle, independent accesses by the core processor and I/O processor. The processor’s memory architecture, in combination with its separate on-chip buses, allows two data transfers from the core and one from the I/O processor, in a single cycle. The SRAM can be configured as a maximum of 96K words of 32-bit data, 192K words of 16-bit data, 64K words of 48-bit instructions (or 40-bit data), or combinations of different word sizes up to 3M bits. All of the memory can be accessed as 16-bit, 32-bit, 48-bit, or 64-bit words. A 16-bit floating-point storage format is supported that effectively doubles the amount of data that can be stored on-chip. Conversion between the 32-bit floating-point and 16-bit floating-point formats is performed in a single instruction. While each memory block can store combinations of code and data, accesses are most efficient when one block stores data using the DM bus for transfers, and the other block stores instructions and data using the PM bus for transfers. Using the DM bus and PM buses, with one bus dedicated to each memory block, assures single-cycle execution with two data transfers. In this case, the instruction must be available in the cache. On-Chip Memory Bandwidth The internal memory architecture allows three accesses at the same time to any of the four blocks, assuming no block conflicts. The total bandwidth is gained with DMD and PMD buses (2 × 64-bits, core CLK) and the IOD bus (32-bit, PCLK). ROM-Based Security The processor has a ROM security feature that provides hardware support for securing user software code by preventing unauthorized reading from the internal code. When using this feature, the processor does not boot-load any external code, executing exclusively from internal ROM. Additionally, the processor is not freely accessible via the JTAG port. Instead, a unique 64-bit key, which must be scanned in through the JTAG Rev. J | Page 6 of 60 | July 2013 ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366 or test access port, is assigned to each customer. The device ignores a wrong key. Emulation features and external boot modes are only available after the correct key is scanned. FAMILY PERIPHERAL ARCHITECTURE The ADSP-2136x family contains a rich set of peripherals that support a wide variety of applications, including high quality audio, medical imaging, communications, military, test equipment, 3D graphics, speech recognition, monitor control, imaging, and other applications. Parallel Port The parallel port provides interfaces to SRAM and peripheral devices. The multiplexed address and data pins (AD15–0) can access 8-bit devices with up to 24 bits of address, or 16-bit devices with up to 16 bits of address. In either mode, 8-bit or 16-bit, the maximum data transfer rate is fPCLK/4. DMA transfers are used to move data to and from internal memory. Access to the core is also facilitated through the parallel port register read/write functions. The RD, WR, and ALE (address latch enable) pins are the control pins for the parallel port. Serial Peripheral (Compatible) Interface The processors contain two serial peripheral interface ports (SPIs). The SPI is an industry-standard synchronous serial link, enabling the processor’s SPI-compatible port to communicate with other SPI-compatible devices. The SPI consists of two data pins, one device select pin, and one clock pin. It is a full-duplex synchronous serial interface, supporting both master and slave modes and can operate at a maximum baud rate of fPCLK/4. The SPI port can operate in a multimaster environment by interfacing with up to four other SPI-compatible devices, either acting as a master or slave device. The ADSP-2136x SPIcompatible peripheral implementation also features programmable baud rate, clock phase, and polarities. The SPIcompatible port uses open drain drivers to support a multimaster configuration and to avoid data contention. Pulse-Width Modulation The entire PWM module has four groups of four PWM outputs each. Therefore, this module generates 16 PWM outputs in total. Each PWM group produces two pairs of PWM signals on the four PWM outputs. The PWM module is a flexible, programmable, PWM waveform generator that can be programmed to generate the required switching patterns for various applications related to motor and engine control or audio power control. The PWM generator can Table 3. ADSP-2136x Internal Memory Space IOP Registers 0x0000 0000–0003 FFFF Long Word (64 Bits) Extended Precision Normal or Instruction Word (48 Bits) Normal Word (32 Bits) Short Word (16 Bits) Block 0 ROM 0x0004 0000–0x0004 7FFF Block 0 ROM 0x0008 0000–0x0008 AAA9 Block 0 ROM 0x0008 0000–0x0008 FFFF Block 0 ROM 0x0010 0000–0x0011 FFFF Reserved 0x0004 8000–0x0004 BFFF Reserved 0x0009 0000–0x0009 7FFF Reserved 0x0012 0000–0x0012 FFFF Block 0 SRAM 0x0004 C000–0x0004 FFFF Block 0 SRAM 0x0009 0000–0x0009 5554 Block 0 SRAM 0x0009 8000–0x0009 FFFF Block 0 SRAM 0x0013 0000–0x0013 FFFF Block 1 ROM 0x0005 0000–0x0005 7FFF Block 1 ROM 0x000A 0000–0x000A AAA9 Block 1 ROM 0x000A 0000–0x000A FFFF Block 1 ROM 0x0014 0000–0x0015 FFFF Reserved 0x0005 8000–0x0005 BFFF Reserved 0x000B 0000–0x000B 7FFF Reserved 0x0016 0000–0x0016 FFFF Block 1 SRAM 0x0005 C000–0x0005 FFFF Block 1 SRAM 0x000B 0000–0x000B 5554 Block 1 SRAM 0x000B 8000–0x000B FFFF Block 1 SRAM 0x0017 0000–0x0017 FFFF Block 2 SRAM 0x0006 0000–0x0006 1FFF Block 2 SRAM 0x000C 0000–0x000C 2AA9 Block 2 SRAM 0x000C 0000–0x000C 3FFF Block 2 SRAM 0x0018 0000–0x0018 7FFF Reserved 0x0006 2000–0x0006 FFFF Reserved 0x000C 4000–0x000D FFFF Reserved 0x0018 8000–0x001B FFFF Block 3 SRAM 0x0007 0000–0x0007 1FFF Block 3 SRAM 0x000E 0000–0x000E 2AA9 Block 3 SRAM 0x000E 0000–0x000E 3FFF Block 3 SRAM 0x001C 0000–0x001C 7FFF Reserved 0x0007 2000–0x0007 FFFF Reserved 0x000E 4000–0x000F FFFF Reserved 0x001C 8000–0x001F FFFF Reserved 0x0020 0000–0xFFFF FFFF ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366 Rev. J | Page 7 of 60 | July 2013 generate either center-aligned or edge-aligned PWM waveforms. In addition, it can generate complementary signals on two outputs in paired mode or independent signals in nonpaired mode (applicable to a single group of four PWM waveforms). The PWM generator is capable of operating in two distinct modes while generating center-aligned PWM waveforms: single update mode or double update mode. In single update mode, the duty cycle values are programmable only once per PWM period. This results in PWM patterns that are symmetrical about the midpoint of the PWM period. In double update mode, a second updating of the PWM registers is implemented at the midpoint of the PWM period. In this mode, it is possible to produce asymmetrical PWM patterns that produce lower harmonic distortion in 3-phase PWM inverters. Digital Audio Interface (DAI) The digital audio interface (DAI) provides the ability to connect various peripherals to any of the DSP’s DAI pins (DAI_P20–1). Programs make these connections using the signal routing unit (SRU, shown in Figure 1). The SRU is a matrix routing unit (or group of multiplexers) that enables the peripherals provided by the DAI to be interconnected under software control. This allows easy use of the DAI-associated peripherals for a wider variety of applications by using a larger set of algorithms than is possible with nonconfigurable signal paths. The DAI includes six serial ports, an S/PDIF receiver/transmitter, a DTCP cipher, a precision clock generator (PCG), eight channels of asynchronous sample rate converters, an input data port (IDP), an SPI port, six flag outputs and six flag inputs, and three timers. The IDP provides an additional input path to the ADSP-2136x core, configurable as either eight channels of I2S serial data or as seven channels plus a single 20-bit wide synchronous parallel data acquisition port. Each data channel has its own DMA channel that is independent from the processor’s serial ports. Serial Ports The processor features six synchronous serial ports that provide an inexpensive interface to a wide variety of digital and mixedsignal peripheral devices such as Analog Devices’ AD183x family of audio codecs, ADCs, and DACs. The serial ports are made up of two data lines, a clock, and a frame sync and they can operate at maximum fPCLK/4. The data lines can be programmed to either transmit or receive and each data line has a dedicated DMA channel. Serial ports are enabled via 12 programmable and simultaneous receive or transmit pins that support up to 24 transmit or 24 receive channels of audio data when all six SPORTs are enabled, or six full duplex TDM streams of 128 channels per frame. Serial port data can be automatically transferred to and from on-chip memory via dedicated DMA channels. Each of the serial ports can work in conjunction with another serial port to provide TDM support. One SPORT provides two transmit signals while the other SPORT provides the two receive signals. The frame sync and clock are shared. Serial ports operate in four modes: • Standard DSP serial mode • Multichannel (TDM) mode • I2S mode • Left-justified sample pair mode S/PDIF-Compatible Digital Audio Receiver/Transmitter The S/PDIF transmitter has no separate DMA channels. It receives audio data in serial format and converts it into a biphase encoded signal. The serial data input to the transmitter can be formatted as left-justified, I2S, or right-justified with word widths of 16, 18, 20, or 24 bits. The serial data, clock, and frame sync inputs to the S/PDIF transmitter are routed through the signal routing unit (SRU). They can come from a variety of sources such as the SPORTs, external pins, the precision clock generators (PCGs), or the sample rate converters (SRC) and are controlled by the SRU control registers. Digital Transmission Content Protection (DTCP) The DTCP specification defines a cryptographic protocol for protecting audio entertainment content from illegal copying, intercepting, and tampering as it traverses high performance digital buses, such as the IEEE 1394 standard. Only legitimate entertainment content delivered to a source device via another approved copy protection system (such as the DVD content scrambling system) is protected by this copy protection system. This feature is available on the ADSP-21362 and ADSP-21365 processors only. Licensing through DTLA is required for these products. Visit www.dtcp.com for more information. Memory-to-Memory (MTM) If the DTCP module is not used, the memory-to-memory DMA module allows internal memory copies for a standard DMA. Synchronous/Asynchronous Sample Rate Converter (SRC) The sample rate converter (SRC) contains four SRC blocks and is the same core as that used in the AD1896 192 kHz stereo asynchronous sample rate converter and provides up to 140 dB SNR. The SRC block is used to perform synchronous or asynchronous sample rate conversion across independent stereo channels, without using internal processor resources. The four SRC blocks can also be configured to operate together to convert multichannel audio data without phase mismatches. Finally, the SRC is used to clean up audio data from jittery clock sources such as the S/PDIF receiver. The S/PDIF and SRC are not available on the ADSP-21363 models. Input Data Port (IDP) The IDP provides up to eight serial input channels—each with its own clock, frame sync, and data inputs. The eight channels are automatically multiplexed into a single 32-bit by eight-deep FIFO. Data is always formatted as a 64-bit frame and divided into two 32-bit words. The serial protocol is designed to receive Rev. J | Page 8 of 60 | July 2013 ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366 audio channels in I2S, left-justified sample pair, or right-justified mode. One frame sync cycle indicates one 64-bit left/right pair, but data is sent to the FIFO as 32-bit words (that is, onehalf of a frame at a time). The processor supports 24- and 32-bit I2S, 24- and 32-bit left-justified, and 24-, 20-, 18- and 16-bit right-justified formats. Precision Clock Generator (PCG) The precision clock generators (PCG) consist of two units, each of which generates a pair of signals (clock and frame sync) derived from a clock input signal. The units, A and B, are identical in functionality and operate independently of each other. The two signals generated by each unit are normally used as a serial bit clock/frame sync pair. Peripheral Timers The following three general-purpose timers can generate periodic interrupts and be independently set to operate in one of three modes: • Pulse waveform generation mode • Pulse width count/capture mode • External event watchdog mode Each general-purpose timer has one bidirectional pin and four registers that implement its mode of operation: a 6-bit configuration register, a 32-bit count register, a 32-bit period register, and a 32-bit pulse width register. A single control and status register enables or disables all three general-purpose timers independently. I/O PROCESSOR FEATURES The processor’s I/O provides many channels of DMA and controls the extensive set of peripherals described in the previous sections. DMA Controller The processor’s on-chip DMA controllers allow data transfers without processor intervention. The DMA controller operates independently and invisibly to the processor core, allowing DMA operations to occur while the core is simultaneously executing its program instructions. DMA transfers can occur between the processor’s internal memory and its serial ports, the SPI-compatible (serial peripheral interface) ports, the IDP (input data port), the parallel data acquisition port (PDAP), or the parallel port (PP). See Table 4. SYSTEM DESIGN The following sections provide an introduction to system design options and power supply issues. Program Booting The internal memory of the processor boots at system power-up from an 8-bit EPROM via the parallel port, an SPI master, an SPI slave, or an internal boot. Booting is determined by the boot configuration (BOOT_CFG1–0) pins in Table 5. Selection of the boot source is controlled via the SPI as either a master or slave device, or it can immediately begin executing from ROM. Phase-Locked Loop The processors use an on-chip phase-locked loop (PLL) to generate the internal clock for the core. On power-up, the CLK_CFG1–0 pins are used to select ratios of 32:1, 16:1, and 6:1. After booting, numerous other ratios can be selected via software control. The ratios are made up of software configurable numerator values from 1 to 64 and software configurable divisor values of 1, 2, 4, and 8. Power Supplies The processor has a separate power supply connection for the internal (VDDINT), external (VDDEXT), and analog (AVDD/AVSS) power supplies. The internal and analog supplies must meet the 1.2 V requirement for K, B, and Y grade models, and the 1.0 V requirement for Y models. (For information on the temperature ranges offered for this product, see Operating Conditions on Page 14, Package Information on Page 16, and Ordering Guide on Page 56.) The external supply must meet the 3.3 V requirement. All external supply pins must be connected to the same power supply. Note that the analog supply pin (AVDD) powers the processor’s internal clock generator PLL. To produce a stable clock, it is recommended that PCB designs use an external filter circuit for the AVDD pin. Place the filter components as close as possible to the AVDD/AVSS pins. For an example circuit, see Figure 3. (A recommended ferrite chip is the muRata BLM18AG102SN1D.) To reduce noise coupling, the PCB should use a parallel pair of power and ground planes for VDDINT and GND. Use wide traces to connect the bypass capacitors to the analog power (AVDD) and ground (AVSS) pins. Note that the AVDD and AVSS pins specified in Figure 3 are inputs to the processor and not the analog ground plane on the board—the AVSS pin should connect directly to digital ground (GND) at the chip. Table 4. DMA Channels Peripheral ADSP-2136x SPORTs 12 IDP/PDAP 8 SPI 2 MTM/DTCP 2 Parallel Port 1 Total DMA Channels 25 Table 5. Boot Mode Selection BOOT_CFG1–0 Booting Mode 00 SPI Slave Boot 01 SPI Master Boot 10 Parallel Port Boot via EPROM 11 No booting occurs. Processor executes from internal ROM after reset. ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366 Rev. J | Page 9 of 60 | July 2013 Target Board JTAG Emulator Connector Analog Devices’ DSP Tools product line of JTAG emulators uses the IEEE 1149.1 JTAG test access port of the processor to monitor and control the target board processor during emulation. Analog Devices’ DSP Tools product line of JTAG emulators provides emulation at full processor speed, allowing inspection and modification of memory, registers, and processor stacks. The processor’s JTAG interface ensures that the emulator does not affect target system loading or timing. For complete information on Analog Devices’ SHARC DSP Tools product line of JTAG emulator operation, refer to the appropriate emulator user’s guide. DEVELOPMENT TOOLS Analog Devices supports its processors with a complete line of software and hardware development tools, including integrated development environments (which include CrossCore® Embedded Studio and/or VisualDSP++®), evaluation products, emulators, and a wide variety of software add-ins. Integrated Development Environments (IDEs) For C/C++ software writing and editing, code generation, and debug support, Analog Devices offers two IDEs. The newest IDE, CrossCore Embedded Studio, is based on the EclipseTM framework. Supporting most Analog Devices processor families, it is the IDE of choice for future processors, including multicore devices. CrossCore Embedded Studio seamlessly integrates available software add-ins to support real time operating systems, file systems, TCP/IP stacks, USB stacks, algorithmic software modules, and evaluation hardware board support packages. For more information visit www.analog.com/cces. The other Analog Devices IDE, VisualDSP++, supports processor families introduced prior to the release of CrossCore Embedded Studio. This IDE includes the Analog Devices VDK real time operating system and an open source TCP/IP stack. For more information visit www.analog.com/visualdsp. Note that VisualDSP++ will not support future Analog Devices processors. EZ-KIT Lite Evaluation Board For processor evaluation, Analog Devices provides wide range of EZ-KIT Lite® evaluation boards. Including the processor and key peripherals, the evaluation board also supports on-chip emulation capabilities and other evaluation and development features. Also available are various EZ-Extenders®, which are daughter cards delivering additional specialized functionality, including audio and video processing. For more information visit www.analog.com and search on “ezkit” or “ezextender”. EZ-KIT Lite Evaluation Kits For a cost-effective way to learn more about developing with Analog Devices processors, Analog Devices offer a range of EZKIT Lite evaluation kits. Each evaluation kit includes an EZ-KIT Lite evaluation board, directions for downloading an evaluation version of the available IDE(s), a USB cable, and a power supply. The USB controller on the EZ-KIT Lite board connects to the USB port of the user’s PC, enabling the chosen IDE evaluation suite to emulate the on-board processor in-circuit. This permits the customer to download, execute, and debug programs for the EZ-KIT Lite system. It also supports in-circuit programming of the on-board Flash device to store user-specific boot code, enabling standalone operation. With the full version of Cross- Core Embedded Studio or VisualDSP++ installed (sold separately), engineers can develop software for supported EZKITs or any custom system utilizing supported Analog Devices processors. Software Add-Ins for CrossCore Embedded Studio Analog Devices offers software add-ins which seamlessly integrate with CrossCore Embedded Studio to extend its capabilities and reduce development time. Add-ins include board support packages for evaluation hardware, various middleware packages, and algorithmic modules. Documentation, help, configuration dialogs, and coding examples present in these add-ins are viewable through the CrossCore Embedded Studio IDE once the add-in is installed. Board Support Packages for Evaluation Hardware Software support for the EZ-KIT Lite evaluation boards and EZExtender daughter cards is provided by software add-ins called Board Support Packages (BSPs). The BSPs contain the required drivers, pertinent release notes, and select example code for the given evaluation hardware. A download link for a specific BSP is located on the web page for the associated EZ-KIT or EZExtender product. The link is found in the Product Download area of the product web page. Middleware Packages Analog Devices separately offers middleware add-ins such as real time operating systems, file systems, USB stacks, and TCP/IP stacks. For more information see the following web pages: • www.analog.com/ucos3 • www.analog.com/ucfs • www.analog.com/ucusbd • www.analog.com/lwip Algorithmic Modules To speed development, Analog Devices offers add-ins that perform popular audio and video processing algorithms. These are available for use with both CrossCore Embedded Studio and Figure 3. Analog Power (AVDD) Filter Circuit HIGH-Z FERRITE BEAD CHIP LOCATE ALL COMPONENTS CLOSE TO AVDD AND AVSS PINS AVDD AVSS 100nF 10nF 1nF ADSP-213xx VDDINT Rev. J | Page 10 of 60 | July 2013 ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366 VisualDSP++. For more information visit www.analog.com and search on “Blackfin software modules” or “SHARC software modules”. Designing an Emulator-Compatible DSP Board (Target) For embedded system test and debug, Analog Devices provides a family of emulators. On each JTAG DSP, Analog Devices supplies an IEEE 1149.1 JTAG Test Access Port (TAP). In-circuit emulation is facilitated by use of this JTAG interface. The emulator accesses the processor’s internal features via the processor’s TAP, allowing the developer to load code, set breakpoints, and view variables, memory, and registers. The processor must be halted to send data and commands, but once an operation is completed by the emulator, the DSP system is set to run at full speed with no impact on system timing. The emulators require the target board to include a header that supports connection of the DSP’s JTAG port to the emulator. For details on target board design issues including mechanical layout, single processor connections, signal buffering, signal termination, and emulator pod logic, see the Engineer-to-Engineer Note “Analog Devices JTAG Emulation Technical Reference” (EE-68) on the Analog Devices website (www.analog.com)—use site search on “EE-68.” This document is updated regularly to keep pace with improvements to emulator support. ADDITIONAL INFORMATION This data sheet provides a general overview of the processor’s architecture and functionality. For detailed information on the ADSP-2136x family core architecture and instruction set, refer to the ADSP-2136x SHARC Processor Hardware Reference and the ADSP-2136x SHARC Processor Programming Reference. RELATED SIGNAL CHAINS A signal chain is a series of signal-conditioning electronic components that receive input (data acquired from sampling either real-time phenomena or from stored data) in tandem, with the output of one portion of the chain supplying input to the next. Signal chains are often used in signal processing applications to gather and process data or to apply system controls based on analysis of real-time phenomena. For more information about this term and related topics, see the “signal chain” entry in the Glossary of EE Terms on the Analog Devices website. Analog Devices eases signal processing system development by providing signal processing components that are designed to work together well. A tool for viewing relationships between specific applications and related components is available on the www.analog.com website. The Circuits from the LabTM site (http://www.analog.com/signalchains) provides: • Graphical circuit block diagram presentation of signal chains for a variety of circuit types and applications • Drill down links for components in each chain to selection guides and application information • Reference designs applying best practice design techniques ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366 Rev. J | Page 11 of 60 | July 2013 PIN FUNCTION DESCRIPTIONS The processor’s pin definitions are listed below. Inputs identified as synchronous (S) must meet timing requirements with respect to CLKIN (or with respect to TCK for TMS and TDI). Inputs identified as asynchronous (A) can be asserted asynchronously to CLKIN (or to TCK for TRST). Tie or pull unused inputs to VDDEXT or GND, except for the following: DAI_Px, SPICLK, MISO, MOSI, EMU, TMS, TRST, TDI, and AD15–0. Note: These pins have pull-up resistors. Table 6. Pin Descriptions Pin Type State During and After Reset Function AD15–0 I/O/T (pu) Three-state with pull-up enabled Parallel Port Address/Data. The ADSP-2136x parallel port and its corresponding DMA unit output addresses and data for peripherals on these multiplexed pins. The multiplex state is determined by the ALE pin. The parallel port can operate in either 8-bit or 16-bit mode. Each AD pin has a 22.5 kΩ internal pull-up resistor. For details about the AD pin operation, refer to the ADSP-2136x SHARC Processor Hardware Reference. For 8-bit mode: ALE is automatically asserted whenever a change occurs in the upper 16 external address bits, ADDR23–8; ALE is used in conjunction with an external latch to retain the values of the ADDR23–8. For detailed information on I/O operations and pin multiplexing, refer to the ADSP-2136x SHARC Processor Hardware Reference. RD O (pu) Three-state, driven high1 Parallel Port Read Enable. RD is asserted low whenever the processor reads 8-bit or 16- bit data from an external memory device. When AD15–0 are flags, this pin remains deasserted. RD has a 22.5 kΩ internal pull-up resistor. WR O (pu) Three-state, driven high1 Parallel Port Write Enable. WR is asserted low whenever the processor writes 8-bit or 16-bit data to an external memory device. When AD15–0 are flags, this pin remains deasserted. WR has a 22.5 kΩ internal pull-up resistor. ALE O (pd) Three-state, driven low1 Parallel Port Address Latch Enable. ALE is asserted whenever the processor drives a new address on the parallel port address pins. On reset, ALE is active high. However, it can be reconfigured using software to be active low. When AD15–0 are flags, this pin remains deasserted. ALE has a 20 kΩ internal pull-down resistor. FLAG[0]/IRQ0/SPI FLG[0] I/O FLAG[0] INPUT FLAG0/Interrupt Request0/SPI0 Slave Select. FLAG[1]/IRQ1/SPI FLG[1] I/O FLAG[1] INPUT FLAG1/Interrupt Request1/SPI1 Slave Select. FLAG[2]/IRQ2/SPI FLG[2] I/O FLAG[2] INPUT FLAG2/Interrupt Request 2/SPI2 Slave Select. FLAG[3]/TMREXP/ SPIFLG[3] I/O FLAG[3] INPUT FLAG3/Timer Expired/SPI3 Slave Select. DAI_P20–1 I/O/T (pu) Three-state with programmable pull-up Digital Audio Interface Pins. These pins provide the physical interface to the SRU. The SRU configuration registers define the combination of on-chip peripheral inputs or outputs connected to the pin and to the pin’s output enable. The configuration registers of these peripherals then determine the exact behavior of the pin. Any input or output signal present in the SRU can be routed to any of these pins. The SRU provides the connection from the serial ports, input data port, precision clock generators and timers, sample rate converters and SPI to the DAI_P20–1 pins. These pins have internal 22.5 kΩ pull-up resistors that are enabled on reset. These pull-ups can be disabled using the DAI_PIN_PULLUP register. The following symbols appear in the Type column of Table 6: A = asynchronous, G = ground, I = input, O = output, P = power supply, S = synchronous, (A/D) = active drive, (O/D) = open drain, and T = three-state, (pd) = pull-down resistor, (pu) = pull-up resistor. Rev. J | Page 12 of 60 | July 2013 ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366 SPICLK I/O (pu) Three-state with pull-up enabled, driven high in SPImaster boot mode Serial Peripheral Interface Clock Signal. Driven by the master, this signal controls the rate at which data is transferred. The master can transmit data at a variety of baud rates. SPICLK cycles once for each bit transmitted. SPICLK is a gated clock active during data transfers, only for the length of the transferred word. Slave devices ignore the serial clock if the slave select input is driven inactive (high). SPICLK is used to shift out and shift in the data driven on the MISO and MOSI lines. The data is always shifted out on one clock edge and sampled on the opposite edge of the clock. Clock polarity and clock phase relative to data are programmable into the SPICTL control register and define the transfer format. SPICLK has a 22.5 kΩ internal pull-up resistor. SPIDS I Input only Serial Peripheral Interface Slave Device Select. An active low signal used to select the processor as an SPI slave device. This input signal behaves like a chip select, and is provided by the master device for the slave devices. In multimaster mode the processor’s SPIDS signal can be driven by a slave device to signal to the processor (as SPI master) that an error has occurred, as some other device is also trying to be the master device. If asserted low when the device is in master mode, it is considered a multimaster error. For a single-master, multiple-slave configuration where flag pins are used, this pin must be tied or pulled high to VDDEXT on the master device. For processor to processor SPI interaction, any of the master processor’s flag pins can be used to drive the SPIDS signal on the SPI slave device. MOSI I/O (O/D) (pu) Three-state with pull-up enabled, driven low in SPImaster boot mode SPI Master Out Slave In. If the ADSP-2136x is configured as a master, the MOSI pin becomes a data transmit (output) pin, transmitting output data. If the processor is configured as a slave, the MOSI pin becomes a data receive (input) pin, receiving input data. In an SPI interconnection, the data is shifted out from the MOSI output pin of the master and shifted into the MOSI input(s) of the slave(s). MOSI has a 22.5 kΩ internal pullup resistor. MISO I/O (O/D) (pu) Three-state with pull-up enabled SPI Master In Slave Out. If the ADSP-2136x is configured as a master, the MISO pin becomes a data receive (input) pin, receiving input data. If the processor is configured as a slave, the MISO pin becomes a data transmit (output) pin, transmitting output data. In an SPI interconnection, the data is shifted out from the MISO output pin of the slave and shifted into the MISO input pin of the master. MISO has a 22.5 kΩ internal pull-up resistor. MISO can be configured as O/D by setting the OPD bit in the SPICTL register. Note: Only one slave is allowed to transmit data at any given time. To enable broadcast transmission to multiple SPI slaves, the processor’s MISO pin can be disabled by setting Bit 5 (DMISO) of the SPICTL register equal to 1. CLKIN I Input only Local Clock In. Used in conjunction with XTAL. CLKIN is the ADSP-2136x clock input. It configures the ADSP-2136x to use either its internal clock generator or an external clock source. Connecting the necessary components to CLKIN and XTAL enables the internal clock generator. Connecting the external clock to CLKIN while leaving XTAL unconnected configures the processors to use the external clock source such as an external clock oscillator. The core is clocked either by the PLL output or this clock input depending on the CLK_CFG1–0 pin settings. CLKIN should not be halted, changed, or operated below the specified frequency. XTAL O Output only2 Crystal Oscillator Terminal. Used in conjunction with CLKIN to drive an external crystal. CLK_CFG1–0 I Input only Core to CLKIN Ratio Control. These pins set the start up clock frequency. Note that the operating frequency can be changed by programming the PLL multiplier and divider in the PMCTL register at any time after the core comes out of reset. The allowed values are: 00 = 6:1 01 = 32:1 10 = 16:1 11 = reserved. Table 6. Pin Descriptions (Continued) Pin Type State During and After Reset Function The following symbols appear in the Type column of Table 6: A = asynchronous, G = ground, I = input, O = output, P = power supply, S = synchronous, (A/D) = active drive, (O/D) = open drain, and T = three-state, (pd) = pull-down resistor, (pu) = pull-up resistor. ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366 Rev. J | Page 13 of 60 | July 2013 BOOT_CFG1–0 I Input only Boot Configuration Select. This pin is used to select the boot mode for the processor. The BOOT_CFG pins must be valid before reset is asserted. For a description of the boot mode, refer to Table 5, Boot Mode Selection. RESETOUT O Output only Reset Out. Drives out the core reset signal to an external device. RESET I/A Input only Processor Reset. Resets the ADSP-2136x to a known state. Upon deassertion, there is a 4096 CLKIN cycle latency for the PLL to lock. After this time, the core begins program execution from the hardware reset vector address. The RESET input must be asserted (low) at power-up. TCK I Input only3 Test Clock (JTAG). Provides a clock for JTAG boundary scan. TCK must be asserted (pulsed low) after power-up or held low for proper operation of the processors. TMS I/S (pu) Three-state with pull-up enabled Test Mode Select (JTAG). Used to control the test state machine. TMS has a 22.5 kΩ internal pull-up resistor. TDI I/S (pu) Three-state with pull-up enabled Test Data Input (JTAG). Provides serial data for the boundary scan logic. TDI has a 22.5 kΩ internal pull-up resistor. TDO O Three-state4 Test Data Output (JTAG). Serial scan output of the boundary scan path. TRST I/A (pu) Three-state with pull-up enabled Test Reset (JTAG). Resets the test state machine. TRST must be asserted (pulsed low) after power-up or held low for proper operation of the ADSP-2136x. TRST has a 22.5 kΩ internal pull-up resistor. EMU O (O/D) (pu) Three-state with pull-up enabled Emulation Status. Must be connected to the processor’s JTAG emulators target board connector only. EMU has a 22.5 kΩ internal pull-up resistor. VDDINT P Core Power Supply. Supplies the processor’s core. VDDEXT P I/O Power Supply. AVDD P Analog Power Supply. Supplies the processor’s internal PLL (clock generator). This pin has the same specifications as VDDINT, except that added filtering circuitry is required. For more information, see Power Supplies on Page 8. AVSS G Analog Power Supply Return. GND G Power Supply Return. 1RD, WR, and ALE are three-stated (and not driven) only when RESET is active. 2Output only is a three-state driver with its output path always enabled. 3 Input only is a three-state driver with both output path and pull-up disabled. 4Three-state is a three-state driver with pull-up disabled. Table 6. Pin Descriptions (Continued) Pin Type State During and After Reset Function The following symbols appear in the Type column of Table 6: A = asynchronous, G = ground, I = input, O = output, P = power supply, S = synchronous, (A/D) = active drive, (O/D) = open drain, and T = three-state, (pd) = pull-down resistor, (pu) = pull-up resistor. Rev. J | Page 14 of 60 | July 2013 ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366 SPECIFICATIONS Specifications are subject to change without notice. OPERATING CONDITIONS K Grade B Grade Y Grade Parameter Description Min Nom Max Min Nom Max Min Nom Max Unit VDDINT Internal (Core) Supply Voltage 1.14 1.2 1.26 1.14 1.2 1.26 0.95 1.0 1.05 V AVDD Analog (PLL) Supply Voltage 1.14 1.2 1.26 1.14 1.2 1.26 0.95 1.0 1.05 V VDDEXT External (I/O) Supply Voltage 3.13 3.3 3.47 3.13 3.3 3.47 3.13 3.3 3.47 V VIH 1 1 Applies to input and bidirectional pins: AD15–0, FLAG3–0, DAI_Px, SPICLK, MOSI, MISO, SPIDS, BOOT_CFGx, CLK_CFGx, RESET, TCK, TMS, TDI, and TRST. High Level Input Voltage @ VDDEXT = Max 2.0 VDDEXT + 0.5 2.0 VDDEXT + 0.5 2.0 VDDEXT + 0.5 V VIL 1 Low Level Input Voltage @ VDDEXT = Min –0.5 +0.8 –0.5 +0.8 –0.5 +0.8 V VIH_CLKIN 2 2 Applies to input pin CLKIN. High Level Input Voltage @ VDDEXT = Max 1.74 VDDEXT + 0.5 1.74 VDDEXT + 0.5 1.74 VDDEXT + 0.5 V VIL_CLKIN Low Level Input Voltage @ VDDEXT = Min –0.5 +1.19 –0.5 +1.19 –0.5 +1.19 V TJ 3, 4 3 See Thermal Characteristics on Page 47 for information on thermal specifications. 4 See the Engineer-to-Engineer Note “Estimating Power for the ADSP-21362 SHARC Processors” (EE-277) for further information. Junction Temperature 136-Ball CSP_BGA 0 +110 –40 +125 –40 +125 °C TJ 3, 4 Junction Temperature 144-Lead LQFP_EP 0 +110 –40 +125 –40 +125 °C ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366 Rev. J | Page 15 of 60 | July 2013 ELECTRICAL CHARACTERISTICS Parameter Description Test Conditions Min Max Unit VOH 1 High Level Output Voltage @ VDDEXT = Min, IOH = –1.0 mA2 2.4 V VOL 1 Low Level Output Voltage @ VDDEXT = Min, IOL = 1.0 mA2 0.4 V IIH 3, 4 High Level Input Current @ VDDEXT = Max, VIN = VDDEXT Max 10 μA IIL 3 Low Level Input Current @ VDDEXT = Max, VIN = 0 V 10 μA IILPU 4 Low Level Input Current Pull-Up @ VDDEXT = Max, VIN = 0 V 200 μA IOZH 5, 6 Three-State Leakage Current @ VDDEXT = Max, VIN = VDDEXT Max 10 μA IOZL 5 Three-State Leakage Current @ VDDEXT = Max, VIN = 0 V 10 μA IOZLPU 6 Three-State Leakage Current Pull-Up @ VDDEXT = Max, VIN = 0 V 200 μA IDD-INTYP 7, 8 Supply Current (Internal) tCCLK = Min, VDDINT = Nom 800 mA IAVDD 9 Supply Current (Analog) AVDD = Max 10 mA CIN 10, 11 Input Capacitance fIN = 1 MHz, TCASE = 25°C, VIN = 1.2 V 4.7 pF 1 Applies to output and bidirectional pins: AD15–0, RD, WR, ALE, FLAG3–0, DAI_Px, SPICLK, MOSI, MISO, EMU, TDO, and XTAL. 2 See Output Drive Currents on Page 46 for typical drive current capabilities. 3 Applies to input pins: SPIDS, BOOT_CFGx, CLK_CFGx, TCK, RESET, and CLKIN. 4 Applies to input pins with 22.5 kΩ internal pull-ups: TRST, TMS, TDI. 5 Applies to three-stateable pins: FLAG3–0. 6 Applies to three-stateable pins with 22.5 kΩ pull-ups: AD15–0, DAI_Px, SPICLK, EMU, MISO, and MOSI. 7Typical internal current data reflects nominal operating conditions. 8 See the Engineer-to-Engineer Note “Estimating Power for the ADSP-21362 SHARC Processors” (EE-277) for further information. 9Characterized, but not tested. 10Applies to all signal pins. 11Guaranteed, but not tested. Rev. J | Page 16 of 60 | July 2013 ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366 PACKAGE INFORMATION The information presented in Figure 4 provides details about the package branding for the ADSP-2136x processor. For a complete listing of product availability, see Ordering Guide on Page 56. ESD CAUTION MAXIMUM POWER DISSIPATION See the Engineer-to-Engineer Note “Estimating Power for the ADSP-21362 SHARC Processors” (EE-277) for detailed thermal and power information regarding maximum power dissipation. For information on package thermal specifications, see Thermal Characteristics on Page 47. ABSOLUTE MAXIMUM RATINGS Stresses greater than those listed in Table 8 may cause permanent damage to the device. These are stress ratings only; functional operation of the device at these or any other conditions greater than those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. TIMING SPECIFICATIONS Use the exact timing information given. Do not attempt to derive parameters from the addition or subtraction of others. While addition or subtraction would yield meaningful results for an individual device, the values given in this data sheet reflect statistical variations and worst cases. Consequently, it is not meaningful to add parameters to derive longer times. For voltage reference levels, see Figure 39 on Page 46 under Test Conditions. Switching Characteristics specify how the processor changes its signals. Circuitry external to the processor must be designed for compatibility with these signal characteristics. Switching characteristics describe what the processor will do in a given circumstance. Use switching characteristics to ensure that any timing requirement of a device connected to the processor (such as memory) is satisfied. Timing Requirements apply to signals that are controlled by circuitry external to the processor, such as the data input for a read operation. Timing requirements guarantee that the processor operates correctly with other devices. Core Clock Requirements The processor’s internal clock (a multiple of CLKIN) provides the clock signal for timing internal memory, processor core, and serial ports. During reset, program the ratio between the processor’s internal clock frequency and external (CLKIN) clock frequency with the CLK_CFG1–0 pins. The processor’s internal clock switches at higher frequencies than the system input clock (CLKIN). To generate the internal clock, the processor uses an internal phase-locked loop (PLL, see Figure 5). This PLL-based clocking minimizes the skew between the system clock (CLKIN) signal and the processor’s internal clock. Voltage Controlled Oscillator In application designs, the PLL multiplier value should be selected in such a way that the VCO frequency never exceeds fVCO specified in Table 11. Figure 4. Typical Package Brand Table 7. Package Brand Information Brand Key Field Description t Temperature Range pp Package Type Z RoHS Compliant Designation cc See Ordering Guide vvvvvv.x Assembly Lot Code n.n Silicon Revision # RoHS Compliant Designation yyww Date Code tppZ-cc S ADSP-2136x a #yyww country_of_origin vvvvvv.x n.n ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality. Table 8. Absolute Maximum Ratings Parameter Rating Internal (Core) Supply Voltage (VDDINT) –0.3 V to +1.5 V Analog (PLL) Supply Voltage (AVDD) –0.3 V to +1.5 V External (I/O) Supply Voltage (VDDEXT) –0.3 V to +4.6 V Input Voltage –0.5 V to +3.8 V Output Voltage Swing –0.5 V to VDDEXT + 0.5 V Load Capacitance 200 pF Storage Temperature Range –65°C to +150°C Junction Temperature While Biased 125°C ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366 Rev. J | Page 17 of 60 | July 2013 • The product of CLKIN and PLLM must never exceed 1/2 fVCO (max) in Table 11 if the input divider is not enabled (INDIV = 0). • The product of CLKIN and PLLM must never exceed fVCO (max) in Table 11 if the input divider is enabled (INDIV = 1). The VCO frequency is calculated as follows: fVCO = 2 × PLLM × fINPUT fCCLK = (2 × PLLM × fINPUT) ÷ (2 × PLLN) where: fVCO = VCO output PLLM = Multiplier value programmed in the PMCTL register. During reset, the PLLM value is derived from the ratio selected using the CLK_CFG pins in hardware. PLLN = 1, 2, 4, 8 based on the PLLD value programmed on the PMCTL register. During reset this value is 1. fINPUT = Input frequency to the PLL. fINPUT = CLKIN when the input divider is disabled or fINPUT = CLKIN ÷ 2 when the input divider is enabled Note the definitions of the clock periods that are a function of CLKIN and the appropriate ratio control shown in Table 9. All of the timing specifications for the ADSP-2136x peripherals are defined in relation to tPCLK. Refer to the peripheral specific section for each peripheral’s timing information. Figure 5 shows core to CLKIN relationships with external oscillator or crystal. The shaded divider/multiplier blocks denote where clock ratios can be set through hardware or software using the power management control register (PMCTL). For more information, refer to the ADSP-2136x SHARC Processor Hardware Reference. Table 9. Clock Periods Timing Requirements Description tCK CLKIN Clock Period tCCLK Processor Core Clock Period tPCLK Peripheral Clock Period = 2 × tCCLK Figure 5. Core Clock and System Clock Relationship to CLKIN CLKOUT (TEST ONLY)* LOOP FILTER PLL fVCO ÷ (2 × PLLM) VCO PLL DIVIDER PMCTL (2 × PLLN) fVCO fCCLK CLK_CFGx/ PMCTL (2 × PLLM) CLKIN PCLK XTAL CLKIN DIVIDER RESETOUT DELAY OF 4096 CLKIN CYCLES RESET BUF BUF PMCTL (INDIV) PMCTL (PLLBP) BYPASS MUX PIN MUX DIVIDE BY 2 RESETOUT PMCTL (CLKOUTEN) CCLK CORERST *CLKOUT (TEST ONLY) FREQUENCY IS THE SAME AS fINPUT. THIS SIGNAL IS NOT SPECIFIED OR SUPPORTED FOR ANY DESIGN. fINPUT Rev. J | Page 18 of 60 | July 2013 ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366 Power-Up Sequencing The timing requirements for processor startup are given in Table 10. Note that during power-up, when the VDDINT power supply comes up after VDDEXT, a leakage current of the order of three-state leakage current pull-up, pull-down, may be observed on any pin, even if that is an input only (for example the RESET pin) until the VDDINT rail has powered up. Table 10. Power-Up Sequencing Timing Requirements (Processor Startup) Parameter Min Max Unit Timing Requirements tRSTVDD RESET Low Before VDDINT/VDDEXT On 0 ns tIVDDEVDD VDDINT On Before VDDEXT –50 +200 ms tCLKVDD 1 CLKIN Valid After VDDINT/VDDEXT Valid 0 200 ms tCLKRST CLKIN Valid Before RESET Deasserted 102 μs tPLLRST PLL Control Setup Before RESET Deasserted 20 μs Switching Characteristic tCORERST Core Reset Deasserted After RESET Deasserted 4096tCK + 2 tCCLK 3, 4 1Valid VDDINT/VDDEXT assumes that the supplies are fully ramped to their 1.2 V rails and 3.3 V rails. Voltage ramp rates can vary from microseconds to hundreds of milliseconds, depending on the design of the power supply subsystem. 2Assumes a stable CLKIN signal, after meeting worst-case start-up timing of crystal oscillators. Refer to your crystal oscillator manufacturer’s data sheet for start-up time. Assume a 25 ms maximum oscillator start-up time if using the XTAL pin and internal oscillator circuit in conjunction with an external crystal. 3 Applies after the power-up sequence is complete. Subsequent resets require a minimum of 4 CLKIN cycles for RESET to be held low to properly initialize and propagate default states at all I/O pins. 4The 4096 cycle count depends on tSRST specification in Table 12. If setup time is not met, 1 additional CLKIN cycle can be added to the core reset time, resulting in 4097 cycles maximum. Figure 6. Power-Up Sequencing tRSTVDD tCLKVDD tCLKRST tPLLRST tCORERST VDDEXT VDDINT CLKIN CLK_CFG1–0 RESET RESETOUT tIVDDEVDD ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366 Rev. J | Page 19 of 60 | July 2013 Clock Input Clock Signals The processor can use an external clock or a crystal. Refer to the CLKIN pin description in Table 6 on Page 11. The user application program can configure the processor to use its internal clock generator by connecting the necessary components to the CLKIN and XTAL pins. Figure 8 shows the component connections used for a fundamental frequency crystal operating in parallel mode. Note that the clock rate is achieved using a 16.67 MHz crystal and a PLL multiplier ratio 16:1. (CCLK:CLKIN achieves a clock speed of 266.72 MHz.) To achieve the full core clock rate, programs need to configure the multiplier bits in the PMCTL register. Table 11. Clock Input Parameter 200 MHz1 1 Applies to all 200 MHz models. See Ordering Guide on Page 56. 333 MHz2 2 Applies to all 333 MHz models. See Ordering Guide on Page 56. Min Max Min Max Unit Timing Requirements tCK CLKIN Period 303 3 Applies only for CLK_CFG1–0 = 00 and default values for PLL control bits in the PMCTL register. 100 18 100 ns tCKL CLKIN Width Low 12.5 7.5 ns tCKH CLKIN Width High 12.5 7.5 ns tCKRF CLKIN Rise/Fall (0.4 V to 2.0 V) 3 3 ns tCCLK 4 4 Any changes to PLL control bits in the PMCTL register must meet core clock timing specification tCCLK. CCLK Period 5.0 10 3.0 10 ns tVCO 5 5 See Figure 5 on Page 17 for VCO diagram. VCO Frequency 200 600 200 800 MHz tCKJ 6, 7 6 Actual input jitter should be combined with AC specifications for accurate timing analysis. 7 Jitter specification is maximum peak-to-peak time interval error (TIE) jitter. CLKIN Jitter Tolerance –250 +250 –250 +250 ps Figure 7. Clock Input CLKIN tCK tCKH tCKL tCKJ Figure 8. Recommended Circuit for Fundamental Mode Crystal Operation C1 22pF Y1 R1 1M * CLKIN XTAL C2 22pF 24.576MHz R2 * ADSP-2136x R2 SHOULD BE CHOSEN TO LIMIT CRYSTAL DRIVE POWER. REFER TO CRYSTAL MANUFACTURER’S SPECIFICATIONS. *TYPICAL VALUES 47Ω Ω Rev. J | Page 20 of 60 | July 2013 ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366 Reset Interrupts The following timing specification applies to the FLAG0, FLAG1, and FLAG2 pins when they are configured as IRQ0, IRQ1, and IRQ2 interrupts. Table 12. Reset Parameter Min Unit Timing Requirements tWRST 1 RESET Pulse Width Low 4 × tCK ns tSRST RESET Setup Before CLKIN Low 8 ns 1 Applies after the power-up sequence is complete. At power-up, the processor’s internal phase-locked loop requires no more than 100 μs while RESET is low, assuming stable VDD and CLKIN (not including start-up time of external clock oscillator). Figure 9. Reset CLKIN RESET tWRST tSRST Table 13. Interrupts Parameter Min Unit Timing Requirement tIPW IRQx Pulse Width 2 × tPCLK +2 ns Figure 10. Interrupts INTERRUPT INPUTS tIPW ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366 Rev. J | Page 21 of 60 | July 2013 Core Timer The following timing specification applies to FLAG3 when it is configured as the core timer (TMREXP pin). Timer PWM_OUT Cycle Timing The following timing specification applies to Timer0, Timer1, and Timer2 in PWM_OUT (pulse-width modulation) mode. Timer signals are routed to the DAI_P20–1 pins through the SRU. Therefore, the timing specifications provided below are valid at the DAI_P20–1 pins. Table 14. Core Timer Parameter Min Unit Switching Characteristic tWCTIM TMREXP Pulse Width 2 × tPCLK – 1 ns Figure 11. Core Timer FLAG3 (TMREXP) tWCTIM Table 15. Timer PWM_OUT Timing Parameter Min Max Unit Switching Characteristic tPWMO Timer Pulse Width Output 2 × tPCLK – 1 2 × (231 – 1) × tPCLK ns Figure 12. Timer PWM_OUT Timing PWM OUTPUTS tPWMO Rev. J | Page 22 of 60 | July 2013 ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366 Timer WDTH_CAP Timing The following timing specification applies to Timer0, Timer1, and Timer2 in WDTH_CAP (pulse width count and capture) mode. Timer signals are routed to the DAI_P20–1 pins through the SRU. Therefore, the timing specification provided below are valid at the DAI_P20–1 pins. DAI Pin to Pin Direct Routing For direct pin connections only (for example, DAI_PB01_I to DAI_PB02_O). Table 16. Timer Width Capture Timing Parameter Min Max Unit Timing Requirement tPWI Timer Pulse Width 2 × tPCLK 2 × (231– 1) × tPCLK ns Figure 13. Timer Width Capture Timing TIMER CAPTURE INPUTS tPWI Table 17. DAI Pin to Pin Routing Parameter Min Max Unit Timing Requirement tDPIO Delay DAI Pin Input Valid to DAI Output Valid 1.5 10 ns Figure 14. DAI Pin to Pin Direct Routing DAI_Pn DAI_Pm tDPIO ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366 Rev. J | Page 23 of 60 | July 2013 Precision Clock Generator (Direct Pin Routing) This timing is only valid when the SRU is configured such that the precision clock generator (PCG) takes its inputs directly from the DAI pins (via pin buffers) and sends its outputs directly to the DAI pins. For the other cases, where the PCG’s inputs and outputs are not directly routed to/from DAI pins (via pin buffers) there is no timing data available. All timing parameters and switching characteristics apply to external DAI pins (DAI_P01 through DAI_P20). Table 18. Precision Clock Generator (Direct Pin Routing) K and B Grade Y Grade Parameter Min Max Max Unit Timing Requirements tPCGIP Input Clock Period tPCLK × 4 ns tSTRIG PCG Trigger Setup Before Falling Edge of PCG Input Clock 4.5 ns tHTRIG PCG Trigger Hold After Falling Edge of PCG Input Clock 3 ns Switching Characteristics tDPCGIO PCG Output Clock and Frame Sync Active Edge Delay After PCG Input Clock 2.5 10 10 ns tDTRIGCLK PCG Output Clock Delay After PCG Trigger 2.5 + (2.5 × tPCGIP) 10 + (2.5 × tPCGIP) 12 + (2.5 × tPCGIP) ns tDTRIGFS PCG Frame Sync Delay After PCG Trigger 2.5 + ((2.5 + D – PH) × tPCGIP) 10 + ((2.5 + D – PH) × tPCGIP) 12 + ((2.5 + D – PH) × tPCGIP) ns tPCGOP 1 Output Clock Period 2 × tPCGIP – 1 ns D = FSxDIV, PH = FSxPHASE. For more information, refer to the ADSP-2136x SHARC Processor Hardware Reference, “Precision Clock Generators” chapter. 1 In normal mode, tPCGOP (min) = 2 × tPCGIP. Figure 15. Precision Clock Generator (Direct Pin Routing) DAI_Pn PCG_TRIGx_I DAI_Pm PCG_EXTx_I (CLKIN) DAI_Py PCG_CLKx_O DAI_Pz PCG_FSx_O tDTRIGFS tDTRIGCLK tDPCGIO tSTRIG tHTRIG tDPCGIO tPCGOP tPCGIP Rev. J | Page 24 of 60 | July 2013 ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366 Flags The timing specifications provided below apply to the FLAG3–0 and DAI_P20–1 pins, the parallel port, and the serial peripheral interface (SPI). See Table 6 on Page 11 for more information on flag use. Table 19. Flags Parameter Min Unit Timing Requirement tFIPW FLAG3–0 IN Pulse Width 2 × tPCLK + 3 ns Switching Characteristic tFOPW FLAG3–0 OUT Pulse Width 2 × tPCLK – 1 ns Figure 16. Flags FLAG INPUTS FLAG OUTPUTS tFOPW tFIPW ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366 Rev. J | Page 25 of 60 | July 2013 Memory Read—Parallel Port Use these specifications for asynchronous interfacing to memories (and memory-mapped peripherals) when the processor is accessing external memory space. Table 20. 8-Bit Memory Read Cycle Parameter K and B Grade Y Grade Min Max Min Max Unit Timing Requirements tDRS AD7–0 Data Setup Before RD High 3.3 4.5 ns tDRH AD7–0 Data Hold After RD High 0 0 ns tDAD AD15–8 Address to AD7–0 Data Valid D + tPCLK – 5.0 D + tPCLK – 5.0 ns Switching Characteristics tALEW ALE Pulse Width 2 × tPCLK – 2.0 2 × tPCLK – 2.0 ns tADAS 1 AD15–0 Address Setup Before ALE Deasserted tPCLK – 2.5 tPCLK – 2.5 ns tRRH Delay Between RD Rising Edge to Next Falling Edge H + tPCLK – 1.4 H + tPCLK – 1.4 ns tALERW ALE Deasserted to Read Asserted 2 × tPCLK – 3.8 2 × tPCLK – 3.8 ns tRWALE Read Deasserted to ALE Asserted F + H + 0.5 F + H + 0.5 ns tADAH 1 AD15–0 Address Hold After ALE Deasserted tPCLK – 2.3 tPCLK – 2.3 ns tALEHZ 1 ALE Deasserted to AD7–0 Address in High-Z tPCLK tPCLK + 3.0 tPCLK tPCLK + 3.8 ns tRW RD Pulse Width D – 2.0 D – 2.0 ns tRDDRV AD7–0 ALE Address Drive After Read High F + H + tPCLK – 2.3 F + H + tPCLK – 2.3 ns tADRH AD15–8 Address Hold After RD High H H ns tDAWH AD15–8 Address to RD High D + tPCLK – 4.0 D + tPCLK – 4.0 ns D = (The value set by the PPDUR Bits (5–1) in the PPCTL register) × tPCLK H = tPCLK (if a hold cycle is specified, else H = 0) F = 7 × tPCLK (if FLASH_MODE is set, else F = 0) 1 On reset, ALE is an active high cycle. However, it can be configured by software to be active low. Figure 17. Read Cycle for 8-Bit Memory Timing ALE RD WR AD15–8 AD7–0 tALEW tALERW tRWALE tRW tRRH tRDDRV tDAWH tADAS tADAH VALID ADDRESS VALID ADDRESS VALID ADDRESS VALID ADDRESS VALID ADDRESS VALID ADDRESS VALID DATA VALID DATA tADRH tDAD tDRS tDRH tALEHZ NOTE: MEMORY READS ALWAYS OCCUR IN GROUPS OF FOUR BETWEEN ALE CYCLES. THIS FIGURE SHOWS ONLY TWO MEMORY READS TO PROVIDE THE NECESSARY TIMING INFORMATION. Rev. J | Page 26 of 60 | July 2013 ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366 Table 21. 16-Bit Memory Read Cycle Parameter K and B Grade Y Grade Min Max Min Max Unit Timing Requirements tDRS AD15–0 Data Setup Before RD High 3.3 4.5 ns tDRH AD15–0 Data Hold After RD High 0 0 ns Switching Characteristics tALEW ALE Pulse Width 2 × tPCLK – 2.0 2 × tPCLK – 2.0 ns tADAS 1 AD15–0 Address Setup Before ALE Deasserted tPCLK – 2.5 tPCLK – 2.5 ns tALERW ALE Deasserted to Read Asserted 2 × tPCLK – 3.8 2 × tPCLK – 3.8 ns tRRH 2 Delay Between RD Rising Edge to Next Falling Edge H + tPCLK – 1.4 H + tPCLK – 1.4 ns tRWALE Read Deasserted to ALE Asserted F + H + 0.5 F + H + 0.5 ns tRDDRV ALE Address Drive After Read High F + H + tPCLK – 2.3 F + H + tPCLK – 2.3 ns tADAH 1 AD15–0 Address Hold After ALE Deasserted tPCLK – 2.3 tPCLK – 2.3 ns tALEHZ1 ALE Deasserted to Address/Data15–0 in High-Z tPCLK tPCLK + 3.0 tPCLK tPCLK + 3.8 ns tRW RD Pulse Width D – 2.0 D – 2.0 ns D = (The value set by the PPDUR Bits (5–1) in the PPCTL register) × tPCLK H = tPCLK (if a hold cycle is specified, else H = 0) F = 7 × tPCLK (if FLASH_MODE is set, else F = 0) 1 On reset, ALE is an active high cycle. However, it can be configured by software to be active low. 2This parameter is only available when in EMPP = 0 mode. Figure 18. Read Cycle for 16-Bit Memory Timing tRWALE tRDDRV VALID VALID ADDRESS VALID DATA VALID DATA ADDRESS ALE RD WR AD15–0 tADAS tADAH tALEHZ tDRS tDRH tALEW tALERW tRW tRRH NOTE: FOR 16-BIT MEMORY READS, WHEN EMPP  0, ONLY ONE RD PULSE OCCURS BETWEEN ALE CYCLES. WHEN EMPP = 0, MULTIPLE RD PULSES OCCUR BETWEEN ALE CYCLES. FOR COMPLETE INFORMATION, SEE THE ADSP-2136x SHARC PROCESSOR HARDWARE REFERENCE. ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366 Rev. J | Page 27 of 60 | July 2013 Memory Write—Parallel Port Use these specifications for asynchronous interfacing to memories (and memory-mapped peripherals) when the processor is accessing external memory space. Table 22. 8-Bit Memory Write Cycle Parameter K and B Grade Y Grade Min Min Unit Switching Characteristics tALEW ALE Pulse Width 2 × tPCLK – 2.0 2 × tPCLK – 2.0 ns tADAS 1 AD15–0 Address Setup Before ALE Deasserted tPCLK – 2.8 tPCLK – 2.8 ns tALERW ALE Deasserted to Write Asserted 2 × tPCLK – 3.8 2 × tPCLK – 3.8 ns tRWALE Write Deasserted to ALE Asserted H + 0.5 H + 0.5 ns tWRH Delay Between WR Rising Edge to Next WR Falling Edge F + H + tPCLK – 2.3 F + H + tPCLK – 2.3 ns tADAH 1 AD15–0 Address Hold After ALE Deasserted tPCLK – 0.5 tPCLK – 0.5 ns tWW WR Pulse Width D – F – 2.0 D – F – 2.0 ns tADWL AD15–8 Address to WR Low tPCLK – 2.8 tPCLK – 3.5 ns tADWH AD15–8 Address Hold After WR High H H ns tDWS AD7–0 Data Setup Before WR High D – F + tPCLK – 4.0 D – F + tPCLK – 4.0 ns tDWH AD7–0 Data Hold After WR High H H ns tDAWH AD15–8 Address to WR High D – F + tPCLK – 4.0 D – F + tPCLK – 4.0 ns D = (The value set by the PPDUR Bits (5–1) in the PPCTL register) × tPCLK. H = tPCLK (if a hold cycle is specified, else H = 0) F = 7 × tPCLK (if FLASH_MODE is set, else F = 0). If FLASH_MODE is set, D must be  9 × tPCLK. 1 On reset, ALE is an active high cycle. However, it can be configured by software to be active low. Figure 19. Write Cycle for 8-Bit Memory Timing AD15-8 VALID ADDRESS VALID ADDRESS tADAS AD7-0 ALE RD WR tADAH tADWH tADWL VALID DATA tDAWH tWRH tRWALE VALID ADDRESS VALID DATA tALEW tALERW tWW tDWS tDWH VALID ADDRESS NOTE: MEMORY WRITES ALWAYS OCCUR IN GROUPS OF FOUR BETWEEN ALE CYCLES. THIS FIGURE SHOWS ONLY TWO MEMORY WRITES TO PROVIDE THE NECESSARY TIMING INFORMATION. Rev. J | Page 28 of 60 | July 2013 ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366 Table 23. 16-Bit Memory Write Cycle Parameter K and B Grade Y Grade Min Min Unit Switching Characteristics tALEW ALE Pulse Width 2 × tPCLK – 2.0 2 × tPCLK – 2.0 ns tADAS 1 AD15–0 Address Setup Before ALE Deasserted tPCLK – 2.5 tPCLK – 2.5 ns tALERW ALE Deasserted to Write Asserted 2 × tPCLK – 3.8 2 × tPCLK – 3.8 ns tRWALE Write Deasserted to ALE Asserted H + 0.5 H + 0.5 ns tWRH 2 Delay Between WR Rising Edge to Next WR Falling Edge F + H + tPCLK – 2.3 F + H + tPCLK – 2.3 ns tADAH 1 AD15–0 Address Hold After ALE Deasserted tPCLK – 2.3 tPCLK – 2.3 ns tWW WR Pulse Width D – F – 2.0 D – F – 2.0 ns tDWS AD15–0 Data Setup Before WR High D – F + tPCLK – 4.0 D – F + tPCLK – 4.0 ns tDWH AD15–0 Data Hold After WR High H H ns D = (the value set by the PPDUR Bits (5–1) in the PPCTL register) × tPCLK. H = tPCLK (if a hold cycle is specified, else H = 0) F = 7 × tPCLK (if FLASH_MODE is set, else F = 0). If FLASH_MODE is set, D must be  9 × tPCLK. tPCLK = (peripheral) clock period = 2 × tCCLK 1 On reset, ALE is an active high cycle. However, it can be configured by software to be active low. 2This parameter is only available when in EMPP = 0 mode. Figure 20. Write Cycle for 16-Bit Memory Timing AD15-0 VALID ADDRESS VALID DATA tADAS ALE RD WR tADAH tWRH tRWALE tALEW tALERW tWW tDWS tDWH VALID DATA VALID ADDRESS NOTE: FOR 16-BIT MEMORY WRITES, WHEN EMPP 􀂏 0, ONLY ONE WR PULSE OCCURS BETWEEN ALE CYCLES. WHEN EMPP = 0, MULTIPLE WR PULSES OCCUR BETWEEN ALE CYCLES. FOR COMPLETE INFORMATION, SEE THE ADSP-2136x SHARC PROCESSOR HARDWARE REFERENCE. ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366 Rev. J | Page 29 of 60 | July 2013 Serial Ports To determine whether communication is possible between two devices at clock speed n, the following specifications must be confirmed: 1) frame sync (FS) delay and frame sync setup and hold, 2) data delay and data setup and hold, and 3) serial clock (SCLK) width. Serial port signals are routed to the DAI_P20–1 pins using the SRU. Therefore, the timing specifications provided below are valid at the DAI_P20–1 pins. Table 24. Serial Ports—External Clock K and B Grade Y Grade Parameter Min Max Max Unit Timing Requirements tSFSE 1 Frame Sync Setup Before SCLK (Externally Generated Frame Sync in Either Transmit or Receive Mode) 2.5 ns tHFSE 1 Frame Sync Hold After SCLK (Externally Generated Frame Sync in Either Transmit or Receive Mode) 2.5 ns tSDRE 1 Receive Data Setup Before Receive SCLK 2.5 ns tHDRE 1 Receive Data Hold After SCLK 2.5 ns tSCLKW SCLK Width (tPCLK × 4) ÷ 2 – 2 ns tSCLK SCLK Period tPCLK × 4 ns Switching Characteristics tDFSE 2 Frame Sync Delay After SCLK (Internally Generated Frame Sync in Either Transmit or Receive Mode) 9.5 11 ns tHOFSE 2 Frame Sync Hold After SCLK (Internally Generated Frame Sync in Either Transmit or Receive Mode) 2 ns tDDTE 2 Transmit Data Delay After Transmit SCLK 9.5 11 ns tHDTE 2 Transmit Data Hold After Transmit SCLK 2 ns 1 Referenced to sample edge. 2 Referenced to drive edge. Table 25. Serial Ports—Internal Clock K and B Grade Y Grade Parameter Min Max Max Unit Timing Requirements tSFSI 1 Frame Sync Setup Before SCLK (Externally Generated Frame Sync in Either Transmit or Receive Mode) 7 ns tHFSI 1 Frame Sync Hold After SCLK (Externally Generated Frame Sync in Either Transmit or Receive Mode) 2.5 ns tSDRI 1 Receive Data Setup Before SCLK 7 ns tHDRI 1 Receive Data Hold After SCLK 2.5 ns Switching Characteristics tDFSI 2 Frame Sync Delay After SCLK (Internally Generated Frame Sync in Transmit Mode) 3 3.5 ns tHOFSI 2 Frame Sync Hold After SCLK (Internally Generated Frame Sync in Transmit Mode) –1.0 ns tDFSIR 2 Frame Sync Delay After SCLK (Internally Generated Frame Sync in Receive Mode) 8 9.5 ns tHOFSIR 2 Frame Sync Hold After SCLK (Internally Generated Frame Sync in Receive Mode) –1.0 ns tDDTI 2 Transmit Data Delay After SCLK 3 4.0 ns tHDTI 2 Transmit Data Hold After SCLK –1.0 ns tSCLKIW Transmit or Receive SCLK Width 2 × tPCLK – 2 2 × tPCLK + 2 2 × tPCLK + 2 ns 1 Referenced to the sample edge. 2 Referenced to drive edge. Rev. J | Page 30 of 60 | July 2013 ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366 Figure 21. Serial Ports DRIVE EDGE SAMPLE EDGE DAI_P20–1 (DATA CHANNEL A/B) DAI_P20–1 (FS) DAI_P20–1 (SCLK) tHOFSI tHFSI tHDRI DATA RECEIVE—INTERNAL CLOCK DRIVE EDGE SAMPLE EDGE DAI_P20–1 (DATA CHANNEL A/B) DAI_P20–1 (FS) DAI_P20–1 (SCLK) tHFSI tDDTI DATA TRANSMIT—INTERNAL CLOCK DRIVE EDGE SAMPLE EDGE DAI_P20–1 (DATA CHANNEL A/B) DAI_P20–1 (FS) DAI_P20–1 (SCLK) tHOFSI tHOFSE tHDTI tHFSE tHDTE tDDTE DATA TRANSMIT—EXTERNAL CLOCK DRIVE EDGE SAMPLE EDGE DAI_P20–1 (DATA CHANNEL A/B) DAI_P20–1 (FS) DAI_P20–1 (SCLK) tHOFSE tHFSE tHDRE DATA RECEIVE—EXTERNAL CLOCK tSCLKIW tDFSI tSFSI tSDRI tSCLKW tDFSE tSFSE tSDRE tDFSE tSFSI tSFSE tDFSI tSCLKIW tSCLKW ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366 Rev. J | Page 31 of 60 | July 2013 Table 26. Serial Ports—External Late Frame Sync K and B Grade Y Grade Parameter Min Max Max Unit Switching Characteristics tDDTLFSE 1 Data Delay from Late External Transmit Frame Sync or External Receive FS with MCE = 1, MFD = 0 9 10.5 ns tDDTENFS 1 Data Enable for MCE = 1, MFD = 0 0.5 ns 1The tDDTLFSE and tDDTENFS parameters apply to left-justified sample pair as well as serial mode, and MCE = 1, MFD = 0. Figure 22. External Late Frame Sync DRIVE SAMPLE EXTERNAL RECEIVE FS WITH MCE = 1, MFD = 0 2ND BIT DAI_P20–1 (SCLK) DAI_P20–1 (FS) DAI_P20–1 (DATA CHANNEL A/B) 1ST BIT DRIVE tDDTE/I tHDTE/I tDDTLFSE tDDTENFS tSFSE/I DRIVE SAMPLE LATE EXTERNAL TRANSMIT FS 2ND BIT DAI_P20–1 (SCLK) DAI_P20–1 (FS) DAI_P20–1 (DATA CHANNEL A/B) 1ST BIT DRIVE tDDTE/I tHDTE/I tDDTLFSE tDDTENFS tSFSE/I tHFSE/I tHFSE/I Rev. J | Page 32 of 60 | July 2013 ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366 Table 27. Serial Ports—Enable and Three-State K and B Grade Y Grade Parameter Min Max Max Unit Switching Characteristics tDDTEN 1 Data Enable from External Transmit SCLK 2 ns tDDTTE 1 Data Disable from External Transmit SCLK 7 8.5 ns tDDTIN 1 Data Enable from Internal Transmit SCLK –1 ns 1 Referenced to drive edge. Figure 23. Enable and Three-State DRIVE EDGE DRIVE EDGE DRIVE EDGE tDDTIN tDDTEN tDDTTE DAI_P20–1 (SCLK, INT) DAI_P20–1 (DATA CHANNEL A/B) DAI_P20–1 (SCLK, EXT) DAI_P20–1 (DATA CHANNEL A/B) ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366 Rev. J | Page 33 of 60 | July 2013 Input Data Port (IDP) The timing requirements for the IDP are given in Table 28. IDP signals are routed to the DAI_P20–1 pins using the SRU. Therefore, the timing specifications provided below are valid at the DAI_P20–1 pins. Table 28. IDP Parameter Min Unit Timing Requirements tSISFS 1 Frame Sync Setup Before Clock Rising Edge 3 ns tSIHFS 1 Frame Sync Hold After Clock Rising Edge 3 ns tSISD 1 Data Setup Before Clock Rising Edge 3 ns tSIHD 1 Data Hold After Clock Rising Edge 3 ns tIDPCLKW Clock Width (tPCLK × 4) ÷ 2 – 1 ns tIDPCLK Clock Period tPCLK × 4 ns 1 The data, clock, and frame sync signals can come from any of the DAI pins. Clock and frame sync can also come via the PCGs or SPORTs. The PCG’s input can be either CLKIN or any of the DAI pins. Figure 24. IDP Master Timing DAI_P20–1 (SCLK) SAMPLE EDGE DAI_P20–1 (FS) DAI_P20–1 (SDATA) tIDPCLK tIDPCLKW tSISFS tSIHFS tSIHD tSISD Rev. J | Page 34 of 60 | July 2013 ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366 Parallel Data Acquisition Port (PDAP) The timing requirements for the PDAP are provided in Table 29. PDAP is the parallel mode operation of Channel 0 of the IDP. For details on the operation of the IDP, refer to the ADSP-2136x SHARC Processor Hardware Reference, “Input Data Port” chapter. Note that the most significant 16 bits of external 20-bit PDAP data can be provided through either the parallel port AD15–0 pins or the DAI_P20–5 pins. The remaining 4 bits can only be sourced through DAI_P4–1. The timing below is valid at the DAI_P20–1 pins or at the AD15–0 pins. Table 29. Parallel Data Acquisition Port (PDAP) Parameter Min Unit Timing Requirements tSPCLKEN 1 PDAP_CLKEN Setup Before PDAP_CLK Sample Edge 2.5 ns tHPCLKEN 1 PDAP_CLKEN Hold After PDAP_CLK Sample Edge 2.5 ns tPDSD 1 PDAP_DAT Setup Before SCLK PDAP_CLK Sample Edge 3.0 ns tPDHD 1 PDAP_DAT Hold After SCLK PDAP_CLK Sample Edge 2.5 ns tPDCLKW Clock Width (tPCLK × 4) ÷ 2 – 3 ns tPDCLK Clock Period tPCLK × 4 ns Switching Characteristics tPDHLDD Delay of PDAP Strobe After Last PDAP_CLK Capture Edge for a Word 2 × tPCLK – 1 ns tPDSTRB PDAP Strobe Pulse Width 2 × tPCLK – 1.5 ns 1Data source pins are AD15–0 and DAI_P4–1, or DAI pins. Source pins for serial clock and frame sync are DAI pins. Figure 25. PDAP Timing DAI_P20–1 (PDAP_CLK) SAMPLE EDGE DAI_P20–1 (PDAP_HOLD) DAI_P20–1 (PDAP_STROBE) tPDHLDD tPDSTRB tPDSD tPDHD tSPHOLD tHPHOLD tPDCLK tPDCLKW DAI_P20–1/ ADDR23–4 (PDAP_DATA) ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366 Rev. J | Page 35 of 60 | July 2013 Pulse-Width Modulation Generators Sample Rate Converter—Serial Input Port The SRC input signals are routed from the DAI_P20–1 pins using the SRU. Therefore, the timing specifications provided in Table 31 are valid at the DAI_P20–1 pins. This feature is not available on the ADSP-21363 models. Table 30. PWM Timing1 Parameter Min Max Unit Switching Characteristics tPWMW PWM Output Pulse Width tPCLK – 2 (216 – 2) × tPCLK ns tPWMP PWM Output Period 2 × tPCLK – 1.5 (216 – 1) × tPCLK ns 1Note that the PWM output signals are shared on the parallel port bus (AD15-0 pins). Figure 26. PWM Timing PWM OUTPUTS tPWMW tPWMP Table 31. SRC, Serial Input Port Parameter Min Unit Timing Requirements tSRCSFS 1 Frame Sync Setup Before Serial Clock Rising Edge 3 ns tSRCHFS 1 Frame Sync Hold After Serial Clock Rising Edge 3 ns tSRCSD 1 SDATA Setup Before Serial Clock Rising Edge 3 ns tSRCHD 1 SDATA Hold After Serial Clock Rising Edge 3 ns tSRCCLKW Clock Width 36 ns tSRCCLK Clock Period 80 ns 1 The data, serial clock, and frame sync signals can come from any of the DAI pins. The serial clock and frame sync signals can also come via the PCGs or SPORTs. The PCG’s input can be either CLKIN or any of the DAI pins. Rev. J | Page 36 of 60 | July 2013 ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366 Figure 27. SRC Serial Input Port Timing DAI_P20–1 (SCLK) SAMPLE EDGE DAI_P20–1 (FS) DAI_P20–1 (SDATA) tSRCCLK tSRCCLKW tSRCSFS tSRCHFS tSRCSD tSRCHD ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366 Rev. J | Page 37 of 60 | July 2013 Sample Rate Converter—Serial Output Port For the serial output port, the frame-sync is an input and should meet setup and hold times with regard to the serial clock on the output port. The serial data output has a hold time and delay specification with regard to serial clock. Note that the serial clock rising edge is the sampling edge and the falling edge is the drive edge. Table 32. SRC, Serial Output Port K and B Grade Y Grade Parameter Min Max Max Unit Timing Requirements tSRCSFS 1 Frame Sync Setup Before Serial Clock Rising Edge 3 ns tSRCHFS 1 Frame Sync Hold After Serial Clock Rising Edge 3 ns Switching Characteristics tSRCTDD 1 Transmit Data Delay After Serial Clock Falling Edge 10.5 12.5 ns tSRCTDH 1 Transmit Data Hold After Serial Clock Falling Edge 2 ns 1 The data, serial clock, and frame sync signals can come from any of the DAI pins. The serial clock and frame sync can also come via PCG or SPORTs. PCG’s input can be either CLKIN or any of the DAI pins. Figure 28. SRC Serial Output Port Timing DAI_P20–1 (SCLK) SAMPLE EDGE DAI_P20–1 (FS) DAI_P20–1 (SDATA) tSRCCLK tSRCCLKW tSRCSFS tSRCHFS tSRCTDD tSRCTDH Rev. J | Page 38 of 60 | July 2013 ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366 S/PDIF Transmitter Serial data input to the S/PDIF transmitter can be formatted as left justified, I2S, or right justified with word widths of 16-, 18-, 20-, or 24-bits. The following sections provide timing for the transmitter. S/PDIF Transmitter-Serial Input Waveforms Figure 29 shows the right-justified mode. Frame sync is high for the left channel and low for the right channel. Data is valid on the rising edge of serial clock. The MSB is delayed the minimum in 24-bit output mode or the maximum in 16-bit output mode from a frame sync transition, so that when there are 64 serial clock periods per frame sync period, the LSB of the data is rightjustified to the next frame sync transition. Table 33. S/PDIF Transmitter Right-Justified Mode Parameter Nominal Unit Timing Requirement tRJD FS to MSB Delay in Right-Justified Mode 16-Bit Word Mode 18-Bit Word Mode 20-Bit Word Mode 24-Bit Word Mode 16 14 12 8 SCLK SCLK SCLK SCLK Figure 29. Right-Justified Mode MSB LEFT/RIGHT CHANNEL LSB MSB–1 MSB–2 LSB+2 LSB+1 LSB DAI_P20–1 FS DAI_P20–1 SCLK DAI_P20–1 SDATA tRJD ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366 Rev. J | Page 39 of 60 | July 2013 Figure 30 shows the default I2S-justified mode. The frame sync is low for the left channel and high for the right channel. Data is valid on the rising edge of serial clock. The MSB is left-justified to the frame sync transition but with a delay. Figure 31 shows the left-justified mode. The frame sync is high for the left channel and low for the right channel. Data is valid on the rising edge of serial clock. The MSB is left-justified to the frame sync transition with no delay. Table 34. S/PDIF Transmitter I2S Mode Parameter Nominal Unit Timing Requirement tI2SD FS to MSB Delay in I2S Mode 1 SCLK Figure 30. I2S-Justified Mode MSB LEFT/RIGHT CHANNEL MSB–1 MSB–2 LSB+2 LSB+1 LSB DAI_P20–1 FS DAI_P20–1 SCLK DAI_P20–1 SDATA tI2SD Table 35. S/PDIF Transmitter Left-Justified Mode Parameter Nominal Unit Timing Requirement tLJD FS to MSB Delay in Left-Justified Mode 0 SCLK Figure 31. Left-Justified Mode MSB LEFT/RIGHT CHANNEL MSB–1 MSB–2 LSB+2 LSB+1 LSB DAI_P20–1 FS DAI_P20–1 SCLK DAI_P20–1 SDATA tLJD Rev. J | Page 40 of 60 | July 2013 ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366 S/PDIF Transmitter Input Data Timing The timing requirements for the S/PDIF transmitter are given in Table 36. Input signals are routed to the DAI_P20–1 pins using the SRU. Therefore, the timing specifications provided below are valid at the DAI_P20–1 pins. Oversampling Clock (TxCLK) Switching Characteristics The S/PDIF transmitter requires an oversampling clock input. This high frequency clock (TxCLK) input is divided down to generate the internal biphase clock. Table 36. S/PDIF Transmitter Input Data Timing K Grade Y Grade Parameter Min Max Min Max Unit Timing Requirements tSISFS 1 Frame Sync Setup Before Serial Clock Rising Edge 3 3 ns tSIHFS 1 Frame Sync Hold After Serial Clock Rising Edge 3 3 ns tSISD 1 Data Setup Before Serial Clock Rising Edge 3 3 ns tSIHD 1 Data Hold After Serial Clock Rising Edge 3 3 ns tSITXCLKW Transmit Clock Width 9 9.5 ns tSITXCLK Transmit Clock Period 20 20 ns tSISCLKW Clock Width 36 36 ns tSISCLK Clock Period 80 80 ns 1 The serial clock, data and frame sync signals can come from any of the DAI pins.The serial clock and frame sync signals can also come via PCG or SPORTs. PCG’s input can be either CLKIN or any of the DAI pins. Figure 32. S/PDIF Transmitter Input Timing SAMPLE EDGE DAI_P20–1 (TxCLK) DAI_P20–1 (SCLK) DAI_P20–1 (FS) DAI_P20–1 (SDATA) tSITXCLKW tSITXCLK tSISCLKW tSISCLK tSISFS tSIHFS tSISD tSIHD Table 37. Oversampling Clock (TxCLK) Switching Characteristics Parameter Max Unit Frequency for TxCLK = 384 × Frame Sync Oversampling Ratio × Frame Sync <= 1/tSITXCLK MHz Frequency for TxCLK = 256 × Frame Sync 49.2 MHz Frame Rate (FS) 192.0 kHz ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366 Rev. J | Page 41 of 60 | July 2013 S/PDIF Receiver The following section describes timing as it relates to the S/PDIF receiver. This feature is not available on the ADSP-21363 processors. Internal Digital PLL Mode In the internal digital phase-locked loop mode the internal PLL (digital PLL) generates the 512 × FS clock. Table 38. S/PDIF Receiver Output Timing (Internal Digital PLL Mode) Parameter Min Max Unit Switching Characteristics tDFSI Frame Sync Delay After Serial Clock 5 ns tHOFSI Frame Sync Hold After Serial Clock –2 ns tDDTI Transmit Data Delay After Serial Clock 5 ns tHDTI Transmit Data Hold After Serial Clock –2 ns tSCLKIW 1 Transmit Serial Clock Width 38 ns 1 Serial clock frequency is 64 ×FS where FS = the frequency of frame sync. Figure 33. S/PDIF Receiver Internal Digital PLL Mode Timing DAI_P20–1 (SCLK) SAMPLE EDGE DAI_P20–1 (FS) DAI_P20–1 (DATA CHANNEL A/B) DRIVE EDGE tSCLKIW tDFSI tHOFSI tDDTI tHDTI Rev. J | Page 42 of 60 | July 2013 ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366 SPI Interface—Master The processor contains two SPI ports. The primary has dedicated pins and the secondary is available through the DAI. The timing provided in Table 39 and Table 40 applies to both ports. Table 39. SPI Interface Protocol—Master Switching and Timing Specifications Parameter K and B Grade Y Grade Min Max Min Max Unit Timing Requirements tSSPIDM Data Input Valid to SPICLK Edge (Data Input Setup Time) 5.2 6.2 ns tSSPIDM Data Input Valid to SPICLK Edge (Data Input Setup Time) (SPI2) 8.2 9.5 ns tHSPIDM SPICLK Last Sampling Edge to Data Input Not Valid 2 2 ns Switching Characteristics tSPICLKM Serial Clock Cycle 8 × tPCLK – 2 8 × tPCLK – 2 ns tSPICHM Serial Clock High Period 4 × tPCLK – 2 4 × tPCLK – 2 ns tSPICLM Serial Clock Low Period 4 × tPCLK – 2 4 × tPCLK – 2 ns tDDSPIDM SPICLK Edge to Data Out Valid (Data Out Delay Time) 3.0 3.0 ns tDDSPIDM SPICLK Edge to Data Out Valid (Data Out Delay Time) (SPI2) 8.0 9.5 ns tHDSPIDM SPICLK Edge to Data Out Not Valid (Data Out Hold Time) 4 × tPCLK – 2 4 × tPCLK – 2 ns tSDSCIM FLAG3–0IN (SPI Device Select) Low to First SPICLK Edge 4 × tPCLK – 2.5 4 × tPCLK – 3.0 ns tSDSCIM FLAG3–0IN (SPI Device Select) Low to First SPICLK Edge (SPI2) 4 × tPCLK – 2.5 4 × tPCLK – 3.0 ns tHDSM Last SPICLK Edge to FLAG3–0IN High 4 × tPCLK – 2 4 × tPCLK – 2 ns tSPITDM Sequential Transfer Delay 4 × tPCLK – 1 4 × tPCLK – 1 ns Figure 34. SPI Master Timing tSDSCIM tSPICHM tSPICLM tSPICLKM tHDSM tSPITDM tDDSPIDM tSSPIDM tHSPIDM DPI (OUTPUT) MOSI (OUTPUT) MISO (INPUT) MOSI (OUTPUT) MISO (INPUT) CPHASE = 1 CPHASE = 0 tHDSPIDM tHSPIDM tHSPIDM tSSPIDM tSSPIDM tDDSPIDM tHDSPIDM SPICLK (CP = 0, CP = 1) (OUTPUT) ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366 Rev. J | Page 43 of 60 | July 2013 SPI Interface—Slave Table 40. SPI Interface Protocol—Slave Switching and Timing Specifications K and B Grade Y Grade Parameter Min Max Max Unit Timing Requirements tSPICLKS Serial Clock Cycle 4 × tPCLK – 2 ns tSPICHS Serial Clock High Period 2 × tPCLK – 2 ns tSPICLS Serial Clock Low Period 2 × tPCLK – 2 ns tSDSCO SPIDS Assertion to First SPICLK Edge CPHASE = 0 CPHASE = 1 2 × tPCLK 2 × tPCLK ns ns tHDS Last SPICLK Edge to SPIDS Not Asserted, CPHASE = 0 2 × tPCLK ns tSSPIDS Data Input Valid to SPICLK Edge (Data Input Setup Time) 2 ns tHSPIDS SPICLK Last Sampling Edge to Data Input Not Valid 2 ns tSDPPW SPIDS Deassertion Pulse Width (CPHASE = 0) 2 × tPCLK ns Switching Characteristics tDSOE SPIDS Assertion to Data Out Active 0 5 5 ns tDSOE 1 SPIDS Assertion to Data Out Active (SPI2) 0 8 9 ns tDSDHI SPIDS Deassertion to Data High Impedance 0 5 5.5 ns tDSDHI 1 SPIDS Deassertion to Data High Impedance (SPI2) 0 8.6 10 ns tDDSPIDS SPICLK Edge to Data Out Valid (Data Out Delay Time) 9.5 11.0 ns tHDSPIDS SPICLK Edge to Data Out Not Valid (Data Out Hold Time) 2 × tPCLK ns tDSOV SPIDS Assertion to Data Out Valid (CPHASE = 0) 5 × tPCLK 5 × tPCLK ns 1The timing for these parameters applies when the SPI is routed through the signal routing unit. For more information, refer to the ADSP-2136x SHARC Processor Hardware Reference, “Serial Peripheral Interface Port” chapter. Rev. J | Page 44 of 60 | July 2013 ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366 Figure 35. SPI Slave Timing tSPICHS tSPICLS tSPICLKS tHDS tSDPPW tSDSCO tDSOE tDDSPIDS tDDSPIDS tDSDHI tHDSPIDS tSSPIDS tHSPIDS tDSDHI tDSOV tHSPIDS tHDSPIDS SPIDS (INPUT) MISO (OUTPUT) MOSI (INPUT) MISO (OUTPUT) MOSI (INPUT) CPHASE = 1 CPHASE = 0 SPICLK (CP = 0, CP = 1) (INPUT) tSSPIDS ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366 Rev. J | Page 45 of 60 | July 2013 JTAG Test Access Port and Emulation Table 41. JTAG Test Access Port and Emulation Parameter Min Max Unit Timing Requirements tTCK TCK Period tCK ns tSTAP TDI, TMS Setup Before TCK High 5 ns tHTAP TDI, TMS Hold After TCK High 6 ns tSSYS 1 System Inputs Setup Before TCK High 7 ns tHSYS 1 System Inputs Hold After TCK High 18 ns tTRSTW TRST Pulse Width 4 × tCK ns Switching Characteristics tDTDO TDO Delay from TCK Low 7 ns tDSYS 2 System Outputs Delay After TCK Low tCK ÷ 2 + 7 ns 1 System Inputs = ADDR15–0, SPIDS, CLK_CFG1–0, RESET, BOOT_CFG1–0, MISO, MOSI, SPICLK, DAI_Px, and FLAG3–0. 2 System Outputs = MISO, MOSI, SPICLK, DAI_Px, ADDR15–0, RD, WR, FLAG3–0, EMU, and ALE. Figure 36. IEEE 1149.1 JTAG Test Access Port TCK TMS TDI TDO SYSTEM INPUTS SYSTEM OUTPUTS tTCK tSTAP tHTAP tDTDO tSSYS tHSYS tDSYS Rev. J | Page 46 of 60 | July 2013 ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366 OUTPUT DRIVE CURRENTS Figure 37 shows typical I-V characteristics for the output drivers of the processor. The curves represent the current drive capability of the output drivers as a function of output voltage. TEST CONDITIONS The ac signal specifications (timing parameters) appear in Table 12 on Page 20 through Table 41 on Page 45. These include output disable time, output enable time, and capacitive loading. The timing specifications for the SHARC apply for the voltage reference levels in Figure 38. Timing is measured on signals when they cross the 1.5 V level as described in Figure 39. All delays (in nanoseconds) are measured between the point that the first signal reaches 1.5 V and the point that the second signal reaches 1.5 V. CAPACITIVE LOADING Output delays and holds are based on standard capacitive loads: 30 pF on all pins (see Figure 38). Figure 42 shows graphically how output delays and holds vary with load capacitance. The graphs of Figure 40, Figure 41, and Figure 42 may not be linear outside the ranges shown for Typical Output Delay versus Load Capacitance and Typical Output Rise Time (20% to 80%, V = Min) versus Load Capacitance. Figure 37. ADSP-2136x Typical Drive Figure 38. Equivalent Device Loading for AC Measurements (Includes All Fixtures) Figure 39. Voltage Reference Levels for AC Measurements SWEEP (VDDEXT) VOLTAGE (V) -20 0 0.5 1.5 2.5 3.5 0 -40 -30 20 40 -10 SOURCE (VDDEXT) CURRENT (mA) VOL 3.11V, +125°C 3.3V, +25°C 3.47V, -45°C 30 VOH 10 3.11V, +125°C 3.3V, +25°C 3.47V, -45°C 1.0 2.0 3.0 TO OUTPUT PIN 􀀘􀀓􀈍 VLOAD 30pF INPUT 1.5V OR OUTPUT 1.5V Figure 40. Typical Output Rise/Fall Time (20% to 80%, VDDEXT = Max) Figure 41. Typical Output Rise/Fall Time (20% to 80%, VDDEXT = Min) LOAD CAPACITANCE (pF) 8 0 0 100 250 12 4 2 10 6 RISE AND FALL TIMES (ns) 50 150 200 FALL y = 0.0467x + 1.6323 y = 0.045x + 1.524 RISE LOAD CAPACITANCE (pF) 12 0 50 100 150 200 250 10 8 6 4 RISE AND FALL TIMES (ns) 2 0 RISE y = 0.049x + 1.5105 FALL y = 0.0482x + 1.4604 ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366 Rev. J | Page 47 of 60 | July 2013 THERMAL CHARACTERISTICS The processor is rated for performance over the temperature range specified in Operating Conditions on Page 14. Table 42 through Table 44 airflow measurements comply with JEDEC standards JESD51-2 and JESD51-6 and the junction-toboard measurement complies with JESD51-8. Test board and thermal via design comply with JEDEC standards JESD51-9 (BGA) and JESD51-5 (LQFP_EP). The junction-to-case measurement complies with MIL-STD-883. All measurements use a 2S2P JEDEC test board. Industrial applications using the BGA package require thermal vias, to an embedded ground plane, in the PCB. Refer to JEDEC standard JESD51-9 for printed circuit board thermal ball land and thermal via design information. Industrial applications using the LQFP_EP package require thermal trace squares and thermal vias, to an embedded ground plane, in the PCB. Refer to JEDEC standard JESD51-5 for more information. To determine the junction temperature of the device while on the application PCB, use: where: TJ = junction temperature (°C) TT = case temperature (°C) measured at the top center of the package ΨJT = junction-to-top (of package) characterization parameter is the typical value from Table 42 through Table 44. PD = power dissipation. See the Engineer-to-Engineer Note “Estimating Power for the ADSP-21362 SHARC Processors” (EE-277) for more information. Values of θJA are provided for package comparison and PCB design considerations. Values of θJC are provided for package comparison and PCB design considerations when an exposed pad is required. Note that the thermal characteristics values provided in Table 42 through Table 44 are modeled values. Figure 42. Typical Output Delay or Hold versus Load Capacitance (at Ambient Temperature) LOAD CAPACITANCE (pF) 0 50 100 150 200 10 8 OUTPUT DELAY OR HOLD (ns) 6 0 4 2 -2 y = 0.0488x - 1.5923 -4 TJ TT JT PD = +    Table 42. Thermal Characteristics for BGA (No Thermal vias in PCB) Parameter Condition Typical Unit θJA Airflow = 0 m/s 25.40 °C/W θJMA Airflow = 1 m/s 21.90 °C/W θJMA Airflow = 2 m/s 20.90 °C/W θJC 5.07 °C/W ΨJT Airflow = 0 m/s 0.140 °C/W ΨJMT Airflow = 1 m/s 0.330 °C/W ΨJMT Airflow = 2 m/s 0.410 °C/W Table 43. Thermal Characteristics for BGA (Thermal vias in PCB) Parameter Condition Typical Unit θJA Airflow = 0 m/s 23.40 °C/W θJMA Airflow = 1 m/s 20.00 °C/W θJMA Airflow = 2 m/s 19.20 °C/W θJC 5.00 °C/W ΨJT Airflow = 0 m/s 0.130 °C/W ΨJMT Airflow = 1 m/s 0.300 °C/W ΨJMT Airflow = 2 m/s 0.360 °C/W Table 44. Thermal Characteristics for LQFP_EP (with Exposed Pad Soldered to PCB) Parameter Condition Typical Unit θJA Airflow = 0 m/s 16.80 °C/W θJMA Airflow = 1 m/s 14.20 °C/W θJMA Airflow = 2 m/s 13.50 °C/W θJC 7.25 °C/W ΨJT Airflow = 0 m/s 0.51 °C/W ΨJMT Airflow = 1 m/s 0.72 °C/W ΨJMT Airflow = 2 m/s 0.80 °C/W Rev. J | Page 48 of 60 | July 2013 ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366 144-LEAD LQFP_EP PIN CONFIGURATIONS The following table shows the processor’s pin names and, when applicable, their default function after reset in parentheses. Table 45. LQFP_EP Pin Assignments Pin Name Pin No. Pin Name Pin No. Pin Name Pin No. Pin Name Pin No. VDDINT 1 VDDINT 37 VDDEXT 73 GND 109 CLK_CFG0 2 GND 38 GND 74 VDDINT 110 CLK_CFG1 3 RD 39 VDDINT 75 GND 111 BOOT_CFG0 4 ALE 40 GND 76 VDDINT 112 BOOT_CFG1 5 AD15 41 DAI_P10 (SD2B) 77 GND 113 GND 6 AD14 42 DAI_P11 (SD3A) 78 VDDINT 114 VDDEXT 7 AD13 43 DAI_P12 (SD3B) 79 GND 115 GND 8 GND 44 DAI_P13 (SCLK3) 80 VDDEXT 116 VDDINT 9 VDDEXT 45 DAI_P14 (SFS3) 81 GND 117 GND 10 AD12 46 DAI_P15 (SD4A) 82 VDDINT 118 VDDINT 11 VDDINT 47 VDDINT 83 GND 119 GND 12 GND 48 GND 84 VDDINT 120 VDDINT 13 AD11 49 GND 85 RESET 121 GND 14 AD10 50 DAI_P16 (SD4B) 86 SPIDS 122 FLAG0 15 AD9 51 DAI_P17 (SD5A) 87 GND 123 FLAG1 16 AD8 52 DAI_P18 (SD5B) 88 VDDINT 124 AD7 17 DAI_P1 (SD0A) 53 DAI_P19 (SCLK5) 89 SPICLK 125 GND 18 VDDINT 54 VDDINT 90 MISO 126 VDDINT 19 GND 55 GND 91 MOSI 127 GND 20 DAI_P2 (SD0B) 56 GND 92 GND 128 VDDEXT 21 DAI_P3 (SCLK0) 57 VDDEXT 93 VDDINT 129 GND 22 GND 58 DAI_P20 (SFS5) 94 VDDEXT 130 VDDINT 23 VDDEXT 59 GND 95 Avdd 131 AD6 24 VDDINT 60 VDDINT 96 Avss 132 AD5 25 GND 61 FLAG2 97 GND 133 AD4 26 DAI_P4 (SFS0) 62 FLAG3 98 RESETOUT 134 VDDINT 27 DAI_P5 (SD1A) 63 VDDINT 99 EMU 135 GND 28 DAI_P6 (SD1B) 64 GND 100 TDO 136 AD3 29 DAI_P7 (SCLK1) 65 VDDINT 101 TDI 137 AD2 30 VDDINT 66 GND 102 TRST 138 VDDEXT 31 GND 67 VDDINT 103 TCK 139 GND 32 VDDINT 68 GND 104 TMS 140 AD1 33 GND 69 VDDINT 105 GND 141 AD0 34 DAI_P8 (SFS1) 70 GND 106 CLKIN 142 WR 35 DAI_P9 (SD2A) 71 VDDINT 107 XTAL 143 VDDINT 36 VDDINT 72 VDDINT 108 VDDEXT 144 GND 145* *The ePAD is electrically connected to GND inside the chip (see Figure 43 and Figure 44), therefore connecting the pad to GND is optional. For better thermal performance the ePAD should be soldered to the board and thermally connected to the GND plane with vias. ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366 Rev. J | Page 49 of 60 | July 2013 Figure 43 shows the top view of the 144-lead LQFP_EP pin configuration. Figure 44 shows the bottom view of the 144-lead LQFP_EP lead configuration. Figure 43. 144-Lead LQFP_EP Lead Configuration (Top View) Figure 44. 144-Lead LQFP_EP Lead Configuration (Bottom View) LEAD 1 LEAD 36 LEAD 108 LEAD 73 LEAD 144 LEAD 109 LEAD 37 LEAD 72 LEAD 1 INDICATOR ADSP-2136x 144-LEAD LQFP_EP TOP VIEW LEAD 108 LEAD 73 LEAD 1 LEAD 36 LEAD 109 LEAD 144 LEAD 72 LEAD 37 LEAD 1 INDICATOR GND PAD (LEAD 145) ADSP-2136x 144-LEAD LQFP_EP BOTTOM VIEW Rev. J | Page 50 of 60 | July 2013 ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366 136-BALL BGA PIN CONFIGURATIONS The following table shows the processor’s ball names and, when applicable, their default function after reset in parentheses. Table 46. BGA Pin Assignments Ball Name Ball No. Ball Name Ball No. Ball Name Ball No. Ball Name Ball No. CLK_CFG0 A01 CLK_CFG1 B01 BOOT_CFG1 C01 VDDINT D01 XTAL A02 GND B02 BOOT_CFG0 C02 GND D02 TMS A03 VDDEXT B03 GND C03 GND D04 TCK A04 CLKIN B04 GND C12 GND D05 TDI A05 TRST B05 GND C13 GND D06 RESETOUT A06 AVSS B06 VDDINT C14 GND D09 TDO A07 AVDD B07 GND D10 EMU A08 VDDEXT B08 GND D11 MOSI A09 SPICLK B09 GND D13 MISO A10 RESET B10 VDDINT D14 SPIDS A11 VDDINT B11 VDDINT A12 GND B12 GND A13 GND B13 GND A14 GND B14 VDDINT E01 FLAG1 F01 AD7 G01 AD6 H01 GND E02 FLAG0 F02 VDDINT G02 VDDEXT H02 GND E04 GND F04 VDDEXT G13 DAI_P18 (SD5B) H13 GND E05 GND F05 DAI_P19 (SCLK5) G14 DAI_P17 (SD5A) H14 GND E06 GND F06 GND E09 GND F09 GND E10 GND F10 GND E11 GND F11 GND E13 FLAG2 F13 FLAG3 E14 DAI_P20 (SFS5) F14 ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366 Rev. J | Page 51 of 60 | July 2013 Figure 45 and Figure 46 show BGA pin assignments from the bottom and top, respectively. Note: Use the center block of ground pins to provide thermal pathways to your printed circuit board’s ground plane. AD5 J01 AD3 K01 AD2 L01 AD0 M01 AD4 J02 VDDINT K02 AD1 L02 WR M02 GND J04 GND K04 GND L04 GND M03 GND J05 GND K05 GND L05 GND M12 GND J06 GND K06 GND L06 DAI_P12 (SD3B) M13 GND J09 GND K09 GND L09 DAI_P13 (SCLK3) M14 GND J10 GND K10 GND L10 GND J11 GND K11 GND L11 VDDINT J13 GND K13 GND L13 DAI_P16 (SD4B) J14 DAI_P15 (SD4A) K14 DAI_P14 (SFS3) L14 AD15 N01 AD14 P01 ALE N02 AD13 P02 RD N03 AD12 P03 VDDINT N04 AD11 P04 VDDEXT N05 AD10 P05 AD8 N06 AD9 P06 VDDINT N07 DAI_P1 (SD0A) P07 DAI_P2 (SD0B) N08 DAI_P3 (SCLK0) P08 VDDEXT N09 DAI_P5 (SD1A) P09 DAI_P4 (SFS0) N10 DAI_P6 (SD1B) P10 VDDINT N11 DAI_P7 (SCLK1) P11 VDDINT N12 DAI_P8 (SFS1) P12 GND N13 DAI_P9 (SD2A) P13 DAI_P10 (SD2B) N14 DAI_P11 (SD3A) P14 Table 46. BGA Pin Assignments (Continued) Ball Name Ball No. Ball Name Ball No. Ball Name Ball No. Ball Name Ball No. Rev. J | Page 52 of 60 | July 2013 ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366 Figure 45. BGA Pin Assignments (Bottom View, Summary) AVSS VDDINT VDDEXT I/O SIGNALS GND AVDD KEY 14 13 12 11 10 9 8 7 6 5 4 3 2 1 P N M L K J H G F E D C B A Figure 46. BGA Pin Assignments (Top View, Summary) AVSS VDDINT VDDEXT I/O SIGNALS GND AVDD KEY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 P N M L K J H G F E D C B A ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366 Rev. J | Page 53 of 60 | July 2013 PACKAGE DIMENSIONS The processor is available in 136-ball BGA and 144-lead exposed pad (LQFP_EP) packages. Figure 47. 144-Lead Low Profile Quad Flat Package, Exposed Pad [LQFP_EP1] (SW-144-1) Dimensions shown in millimeters 1For information relating to the exposed pad on the SW-144-1 package, see the table endnote on Page 48. COMPLIANT TO JEDEC STANDARDS MS-026-BFB-HD 0.27 0.22 0.17 0.75 0.60 0.45 0.50 BSC LEAD PITCH 20.20 20.00 SQ 19.80 22.20 22.00 SQ 21.80 EXPOSED* PAD 1 36 1 36 37 73 72 72 37 108 73 108 144 109 109 144 PIN 1 1.60 MAX SEATING PLANE *EXPOSED PAD IS COINCIDENT WITH BOTTOM SURFACE AND DOES NOT PROTRUDE BEYOND IT. EXPOSED PAD IS CENTERED. 8.80 SQ 0.15 0.10 0.05 0.08 COPLANARITY 0.20 0.15 0.09 1.45 1.40 1.35 7° 3.5° 0° VIEW A ROTATED 90° CCW TOP VIEW (PINS DOWN) BOTTOM VIEW (PINS UP) VIEW A Rev. J | Page 54 of 60 | July 2013 ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366 SURFACE-MOUNT DESIGN Table 47 is provided as an aid to PCB design. For industry standard design recommendations, refer to IPC-7351, Generic Requirements for Surface-Mount Design and Land Pattern Standard. Figure 48. 136-Ball Chip Scale Package Ball Grid Array [CSP_BGA] (BC-136-1) Dimensions shown in millimeters 0.25 MIN *0.50 0.45 0.40 1.31 1.21 1.70 MAX 1.10 A B C D EF G J H KL M 14 13 12 11 10 9 8 7 6 5 4 3 2 1 NP 12.10 12.00 SQ 11.90 10.40 BSC SQ *COMPLIANT WITH JEDEC STANDARDS MO-275-GGAA-1 WITH EXCEPTION TO BALL DIAMETER. COPLANARITY 0.12 BALL DIAMETER 0.80 BSC DETAIL A A1 BALL A1 BALL CORNER CORNER DETAIL A TOP VIEW BOTTOM VIEW SEATING PLANE Table 47. BGA Data for Use with Surface-Mount Design Package Package Ball Attach Type Package Solder Mask Opening Package Ball Pad Size 136-Ball CSP_BGA (BC-136-1) Solder Mask Defined 0.40 mm diameter 0.53 mm diameter ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366 Rev. J | Page 55 of 60 | July 2013 AUTOMOTIVE PRODUCTS Some ADSP-2136x models are available for automotive applications with controlled manufacturing. Note that these special models may have specifications that differ from the general release models. The automotive grade products shown in Table 48 are available for use in automotive applications. Contact your local ADI account representative or authorized ADI product distributor for specific product ordering information. Note that all automotive products are RoHS compliant. Table 48. Automotive Products Model Notes Temperature Range1 Instruction Rate On-Chip SRAM ROM Package Description Package Option AD21362WBBCZ1xx 2 –40°C to +85°C 333 MHz 3M Bit 4M Bit 136-Ball CSP_BGA BC-136-1 AD21362WBSWZ1xx 2 –40°C to +85°C 333 MHz 3M Bit 4M Bit 144-Lead LQFP_EP SW-144-1 AD21362WYSWZ2xx 2 –40°C to +105°C 200 MHz 3M Bit 4M Bit 144-Lead LQFP_EP SW-144-1 AD21363WBBCZ1xx –40°C to +85°C 333 MHz 3M Bit 4M Bit 136-Ball CSP_BGA BC-136-1 AD21363WBSWZ1xx –40°C to +85°C 333 MHz 3M Bit 4M Bit 144-Lead LQFP_EP SW-144-1 AD21363WYSWZ2xx –40°C to +105°C 200 MHz 3M Bit 4M Bit 144-Lead LQFP_EP SW-144-1 AD21364WBBCZ1xx –40°C to +85°C 333 MHz 3M Bit 4M Bit 136-Ball CSP_BGA BC-136-1 AD21364WBSWZ1xx –40°C to +85°C 333 MHz 3M Bit 4M Bit 144-Lead LQFP_EP SW-144-1 AD21364WYSWZ2xx –40°C to +105°C 200 MHz 3M Bit 4M Bit 144-Lead LQFP_EP SW-144-1 AD21365WBSWZ1xxA 2, 3, 4 –40°C to +85°C 333 MHz 3M Bit 4M Bit 144-Lead LQFP_EP SW-144-1 AD21365WBSWZ1xxF 2, 3, 4 –40°C to +85°C 333 MHz 3M Bit 4M Bit 144-Lead LQFP_EP SW-144-1 AD21365WYSWZ2xxA 2, 3, 4 –40°C to +105°C 200 MHz 3M Bit 4M Bit 144-Lead LQFP_EP SW-144-1 AD21366WBBCZ1xxA 3, 4 –40°C to +85°C 333 MHz 3M Bit 4M Bit 136-Ball CSP_BGA BC-136-1 AD21366WBSWZ1xxA 3, 4 –40°C to +85°C 333 MHz 3M Bit 4M Bit 144-Lead LQFP_EP SW-144-1 AD21366WYSWZ2xxA 3, 4 –40°C to +105°C 200 MHz 3M Bit 4M Bit 144-Lead LQFP_EP SW-144-1 1 Referenced temperature is ambient temperature. The ambient temperature is not a specification. Please see Operating Conditions on Page 14 for junction temperature (TJ) specification which is the only temperature specification. 2 License from DTLA required for these products. 3Available with a wide variety of audio algorithm combinations sold as part of a chipset and bundled with necessary software. For a complete list, visit our website at www.analog.com/sharc. 4 License from Dolby Laboratories, Inc., and Digital Theater Systems (DTS) required for these products. Rev. J | Page 56 of 60 | July 2013 ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366 ORDERING GUIDE Model1 1 Z = RoHS compliant part. Notes Temperature Range2 2 Referenced temperature is ambient temperature. The ambient temperature is not a specification. Please see Operating Conditions on Page 14 for junction temperature (TJ) specification which is the only temperature specification. Instruction Rate On-Chip SRAM ROM Package Description Package Option ADSP-21363KBC-1AA 0°C to +70°C 333 MHz 3M Bit 4M Bit 136-Ball CSP_BGA BC-136-1 ADSP-21363KBCZ-1AA 0°C to +70°C 333 MHz 3M Bit 4M Bit 136-Ball CSP_BGA BC-136-1 ADSP-21363KSWZ-1AA 0°C to +70°C 333 MHz 3M Bit 4M Bit 144-Lead LQFP_EP SW-144-1 ADSP-21363BBC-1AA –40°C to +85°C 333 MHz 3M Bit 4M Bit 136-Ball CSP_BGA BC-136-1 ADSP-21363BBCZ-1AA –40°C to +85°C 333 MHz 3M Bit 4M Bit 136-Ball CSP_BGA BC-136-1 ADSP-21363BSWZ-1AA –40°C to +85°C 333 MHz 3M Bit 4M Bit 144-Lead LQFP_EP SW-144-1 ADSP-21363YSWZ-2AA 3 3 License from Dolby Laboratories, Inc., and Digital Theater Systems (DTS) required for these products. –40°C to +105°C 200 MHz 3M Bit 4M Bit 144-Lead LQFP_EP SW-144-1 ADSP-21364KBCZ-1AA 0°C to +70°C 333 MHz 3M Bit 4M Bit 136-Ball CSP_BGA BC-136-1 ADSP-21364KSWZ-1AA 0°C to +70°C 333 MHz 3M Bit 4M Bit 144-Lead LQFP_EP SW-144-1 ADSP-21364BBCZ-1AA –40°C to +85°C 333 MHz 3M Bit 4M Bit 136-Ball CSP_BGA BC-136-1 ADSP-21364BSWZ-1AA –40°C to +85°C 333 MHz 3M Bit 4M Bit 144-Lead LQFP_EP SW-144-1 ADSP-21364YSWZ-2AA –40°C to +105°C 200 MHz 3M Bit 4M Bit 144-Lead LQFP_EP SW-144-1 ADSP-21366KBCZ-1AR 3, 4, 5 4Available with a wide variety of audio algorithm combinations sold as part of a chipset and bundled with necessary software. For a complete list, visit our website at www.analog.com/sharc. 5 R = Tape and reel. 0°C to +70°C 333 MHz 3M Bit 4M Bit 136-Ball CSP_BGA BC-136-1 ADSP-21366KBCZ-1AA 3, 4 0°C to +70°C 333 MHz 3M Bit 4M Bit 136-Ball CSP_BGA BC-136-1 ADSP-21366KSWZ-1AA 3, 4 0°C to +70°C 333 MHz 3M Bit 4M Bit 144-Lead LQFP_EP SW-144-1 ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366 Rev. J | Page 57 of 60 | July 2013 Rev. J | Page 58 of 60 | July 2013 ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366 ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366 Rev. J | Page 59 of 60 | July 2013 Rev. J | Page 60 of 60 | July 2013 ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366 ©2013 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D06359-0-7/13(J) Product family data sheet Copyright © 2012-2013 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo and XLamp® are registered trademarks of Cree, Inc. CLD-DS56 Rev 4 Cree® XLamp® XP-E2 LEDs Product Description The XLamp XP-E2 LED builds on the unprecedented performance of the original XP-E by increasing lumen output up to 20% while providing a single die LED point source for precise optical control. The XP‑E2 LED shares the same footprint as the original XP‑E, providing a seamless upgrade path to more lumens and/or greater efficiency while shortening the design cycle for existing XP customers. XLamp XP-E2 LEDs are the ideal choice for lighting applications where high light output and maximum efficacy are required, such as LED retrofit lamps, outdoor, portable, indoor directional, emergency vehicle or architectural. FEATURES • Available in white, outdoor white, 80-CRI, 85-CRI, 90-CRI white, royal blue, blue, green, amber, red-orange & red • ANSI-compatible chromaticity bins • White binned at 85 °C • Maximum drive current: 1 A • Low thermal resistance: as low as 5 °C/W • Wide viewing angle: 110°-135° • Unlimited floor life at ≤ 30 °C/85% RH • Reflow solderable - JEDEC J-STD-020C compatible • Electrically neutral thermal path • UL-recognized component (E349212) www.cree.com/Xlamp Cree, Inc. 4600 Silicon Drive Durham, NC 27703 USA Tel: +1.919.313.5300 Table of Contents Characteristics........................... 2 Flux Characteristics - White......... 3 Flux Characteristics - Color.......... 4 Relative Spectral Power Distribution............................... 6 Relative Flux vs. Junction Temperature.............................. 7 Electrical Characteristics.............. 8 Relative Flux vs. Current............. 9 Relative Chromaticity vs. Current and Temperature.......................10 Typical Spatial Distribution..........11 Thermal Design.........................12 Reflow Soldering Characteristics..13 Notes.......................................14 Mechanical Dimensions..............15 Tape and Reel...........................16 Packaging.................................17 Copyright © 2012-2013 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo and XLamp® are registered trademarks of Cree, Inc. 2 xlamp xp-e2 leds Characteristics Characteristics Unit Minimum Typical Maximum Thermal resistance, junction to solder point - white, royal blue, blue °C/W 9 Thermal resistance, junction to solder point - green °C/W 15 Thermal resistance, junction to solder point - amber °C/W 7 Thermal resistance, junction to solder point - red-orange, red °C/W 5 Viewing angle (FWHM) - white degrees 110 Viewing angle (FWHM) - royal blue, blue, green degrees 135 Viewing angle (FWHM) - amber, red-orange, red degrees 130 Temperature coefficient of voltage - white mV/°C -2.3 Temperature coefficient of voltage - royal blue, blue mV/°C -3.3 Temperature coefficient of voltage - green mV/°C -3.8 Temperature coefficient of voltage - amber, red-orange, red mV/°C -1.8 ESD withstand voltage (HBM per Mil-Std-883D)- white, royal blue, blue, green V 8000 ESD classification (HBM per Mil-Std-883D) - amber, red-orange, red Class 2 DC forward current mA 1000 Reverse voltage V 5 Forward voltage (@ 350 mA, 85 °C) - white V 2.9 3.25 Forward voltage (@ 700 mA, 85 °C) - white 3.05 Forward voltage (@ 1000 mA, 85 °C) - white 3.15 Forward voltage (@ 350 mA, 25 °C) - royal blue, blue V 3.1 3.5 Forward voltage (@ 350 mA, 25 °C) - green V 3.2 3.6 Forward voltage (@ 350 mA, 25 °C) - amber, red-orange, red V 2.2 2.6 Forward voltage (@ 1000 mA, 25 °C) - royal blue, blue V 3.4 Forward voltage (@ 1000 mA, 25 °C) - green V 3.7 Forward voltage (@ 1000 mA, 25 °C) - amber, red-orange, red V 2.65 LED junction temperature °C 150 Copyright © 2012-2013 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo and XLamp® are registered trademarks of Cree, Inc. 3 xlamp xp-e2 leds Flux Characteristics (TJ = 85 °C) - White The following table provides several base order codes for XLamp XP-E2 LEDs. It is important to note that the base order codes listed here are a subset of the total available order codes for the product family. For more order codes, as well as a complete description of the order-code nomenclature, please consult the XLamp XP Family Binning and Labeling document. Color CCT Range Base Order Codes Min. Luminous Flux (lm) @ 350 mA Calculated Minimum Luminous Flux (lm)** @ 85 °C Order Code Min. Max. Group Flux (lm) @ 85 °C Flux (lm) @ 25 °C* 700 mA 1.0 A Cool White 5000 K 10,000 K Q4 100 116 171 218 XPEBWT-L1-0000-00C51 Q5 107 124 183 233 XPEBWT-L1-0000-00D51 R2 114 132 195 249 XPEBWT-L1-0000-00E51 R3 122 142 209 266 XPEBWT-L1-0000-00F51 Outdoor White 4000 K 5300 K Q4 100 116 171 218 XPEBWT-01-0000-00CC2 Q5 107 124 183 233 XPEBWT-01-0000-00DC2 R2 114 132 195 249 XPEBWT-01-0000-00EC2 R3 122 142 209 266 XPEBWT-01-0000-00FC2 Neutral White 3700 K 5300 K Q4 100 116 171 218 XPEBWT-L1-0000-00CE4 Q5 107 124 183 233 XPEBWT-L1-0000-00DE4 R2 114 132 195 249 XPEBWT-L1-0000-00EE4 80-CRI White 2200 K 4300 K Q2 87.4 101 150 191 XPEBWT-H1-0000-00AE7 Q3 93.9 109 161 205 XPEBWT-H1-0000-00BE7 Warm White 2200 K 3700 K Q2 87.4 101 150 191 XPEBWT-L1-0000-00AE7 Q3 93.9 109 161 205 XPEBWT-L1-0000-00BE7 Q4 100 116 171 218 XPEBWT-L1-0000-00CE7 85-CRI White 2600 K 3200 K P2 67.2 78.0 115 147 XPEBWT-P1-0000-007E7 P3 73.9 85.7 127 161 XPEBWT-P1-0000-008E7 P4 80.6 93.5 138 176 XPEBWT-P1-0000-009E7 Q2 87.4 101 150 191 XPEBWT-P1-0000-00AE7 90-CRI White 2600 K 3200 K P2 67.2 78.0 115 147 XPEBWT-U1-0000-007E7 P3 73.9 85.7 127 161 XPEBWT-U1-0000-008E7 P4 80.6 93.5 138 176 XPEBWT-U1-0000-009E7 Notes: • Cree maintains a tolerance of ± 7% on flux and power measurements, ±0.005 on chromaticity (CCx, CCy) measurements and ±2 on CRI measurements. • Typical CRI for Cool White (5000 K – 10,000 K CCT) is 70. • Typical CRI for Neutral White (3700 K – 5300 K CCT) is 75. • Typical CRI for Outdoor White (4000 K - 5300 K CCT) is 70. • Typical CRI for Warm White (2200 K – 3700 K CCT) is 80. • Minimum CRI for 80-CRI White is 80. • Minimum CRI for 85-CRI White is 85. • Minimum CRI for 90-CRI White is 90. * Flux values @ 25 °C are calculated and for reference only. ** Calculated flux values at 700 mA and 1 A are for reference only. Copyright © 2012-2013 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo and XLamp® are registered trademarks of Cree, Inc. 4 xlamp xp-e2 leds Flux Characteristics (TJ = 25 °C) - Color The following table provides several base order codes for XLamp XP-E2 color LEDs. It is important to note that the base order codes listed here are a subset of the total available order codes for the product family. For more order codes, as well as a complete description of the order-code nomenclature, please consult the XLamp XP Family Binning and Labeling document. Color Minimum Radiant Flux @ 350 mA Dominant Wavelength Range Order Codes, Group Flux (mW) Min. Max. Group DWL (nm) Group DWL (nm) Royal Blue 30 450 D3 450 D5 465 XPEBRY-L1-0000-00J01 31 475 D3 450 D5 465 XPEBRY-L1-0000-00K01 32 500 D3 450 D5 465 XPEBRY-L1-0000-00L01 33 525 D3 450 D5 465 XPEBRY-L1-0000-00M01 34 550 D3 450 D5 465 XPEBRY-L1-0000-00N01 35 575 D3 450 D5 465 XPEBRY-L1-0000-00P01 Color Dominant Wavelength Range Base Order Codes Min. Luminous Flux Min. Max. (lm) @ 350 mA Order Code Group DWL (nm) Group DWL (nm) Group Flux (lm) Blue B3 465 B6 485 K2 30.6 XPEBBL-L1-0000-00Y01 K3 35.2 XPEBBL-L1-0000-00Z01 M2 39.8 XPEBBL-L1-0000-00201 M3 45.7 XPEBBL-L1-0000-00301 Color Dominant Wavelength Range Base Order Codes Min. Luminous Flux Min. Max. (lm) @ 350 mA Order Code Group DWL (nm) Group DWL (nm) Group Flux (lm) Green G2 520 G4 535 Q2 87.4 XPEBGR-L1-0000-00A01 Q3 93.9 XPEBGR-L1-0000-00B01 Q4 100 XPEBGR-L1-0000-00C01 Q5 107 XPEBGR-L1-0000-00D01 R2 114 XPEBGR-L1-0000-00E01 R3 122 XPEBGR-L1-0000-00F01 Note: Cree maintains a tolerance of ± 7% on flux and power measurements and ± 1 nm on dominant wavelength measurements. Copyright © 2012-2013 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo and XLamp® are registered trademarks of Cree, Inc. 5 xlamp xp-e2 leds Color Dominant Wavelength Range Base Order Codes Min. Luminous Flux Min. Max. (lm) @ 350 mA Order Code Group DWL (nm) Group DWL (nm) Group Flux (lm) Amber A2 585 A3 595 N4 62.0 XPEBAM-L1-0000-00601 P2 67.2 XPEBAM-L1-0000-00701 P3 73.9 XPEBAM-L1-0000-00801 P4 80.6 XPEBAM-L1-0000-00901 Color Dominant Wavelength Range Base Order Codes Min. Luminous Flux Min. Max. (lm) @ 350 mA Order Code Group DWL (nm) Group DWL (nm) Group Flux (lm) Red- Orange O3 610 O4 620 P2 67.2 XPEBRO-L1-0000-00701 P3 73.9 XPEBRO-L1-0000-00801 P4 80.6 XPEBRO-L1-0000-00901 Q2 87.4 XPEBRO-L1-0000-00A01 Q3 93.9 XPEBRO-L1-0000-00B01 Color Dominant Wavelength Range Base Order Codes Min. Luminous Flux Min. Max. (lm) @ 350 mA Order Code Group DWL (nm) Group DWL (nm) Group Flux (lm) Red R2 620 R3 630 N3 56.8 XPEBRD-L1-0000-00501 N4 62.0 XPEBRD-L1-0000-00601 P2 67.2 XPEBRD-L1-0000-00701 P3 73.9 XPEBRD-L1-0000-00801 Note: Cree maintains a tolerance of ± 7% on flux and power measurements and ± 1 nm on dominant wavelength measurements. Flux Characteristics (TJ = 25 °C) - Color (Continued) Copyright © 2012-2013 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo and XLamp® are registered trademarks of Cree, Inc. 6 xlamp xp-e2 leds Relative Spectral Power Distribution Relative Spectral Power 0 10 20 30 40 50 60 70 80 90 100 380 430 480 530 580 630 680 730 780 Relative Radiant Power (%) Wavelength (nm) Cool White Warm White Relative Spectral Power 0 20 40 60 80 100 380 430 480 530 580 630 680 730 780 Relative Radiant Power (%) Wavelength (nm) Royal Blue Blue Green Amber Red-Orange Red Copyright © 2012-2013 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo and XLamp® are registered trademarks of Cree, Inc. 7 xlamp xp-e2 leds Relative Flux vs. Junction Temperature (IF = 350 mA) Relative Flux Output vs. Junction Temperature 0 20 40 60 80 100 120 25 50 75 100 125 150 Relative Luminous Flux (%) Junction Temperature (ºC) White Relative Flux Output vs. Junction Temperature 0 10 20 30 40 50 60 70 80 90 100 25 50 75 100 125 150 Relative Radiant Flux (%) Junction Temperature (ºC) Royal Blue Relative Flux Output vs. Junction Temperature 0 10 20 30 40 50 60 70 80 90 100 25 50 75 100 125 150 Relative Luminous Flux (%) Junction Temperature (ºC) Blue Green Amber Red-Orange, Red Copyright © 2012-2013 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo and XLamp® are registered trademarks of Cree, Inc. 8 xlamp xp-e2 leds Electrical Characteristics (TJ = 85 °C) Electrical Characteristics (TJ = 25 °C) Electrical Characteristics (Tj = 25ºC) 0 100 200 300 400 500 600 700 800 900 1000 2.7 2.8 2.9 3.0 3.1 3.2 Forward Current (mA) Forward Voltage (V) White Electrical Characteristics (Tj = 85ºC) 0 100 200 300 400 500 600 700 800 900 1000 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00 Forward Current (mA) Forward Voltage (V) Royal Blue, Blue Green Amber, Red-Orange, Red Copyright © 2012-2013 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo and XLamp® are registered trademarks of Cree, Inc. 9 xlamp xp-e2 leds Relative Flux vs. Current (TJ = 85 °C) Relative Flux vs. Current (TJ = 25 °C) Relative Intensity vs. Current (Tj = 85ºC) 0 50 100 150 200 250 0 100 200 300 400 500 600 700 800 900 1000 Relative Luminous Flux (%) Forward Current (mA) White Relative Intensity vs. Current (Tj = 85ºC) 0 50 100 150 200 250 0 100 200 300 400 500 600 700 800 900 1000 Relative Radiant Flux (%) Forward Current (mA) Royal Blue Relative Intensity vs. Current (Tj = 85ºC) 0 50 100 150 200 250 300 0 100 200 300 400 500 600 700 800 900 1000 Relative Luminous Flux (%) Forward Current (mA) Blue Green Amber Red-Orange, Red Copyright © 2012-2013 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo and XLamp® are registered trademarks of Cree, Inc. 10 xlamp xp-e2 leds Relative Chromaticity vs. Current and Temperature - Warm White* * Warm White XLamp XP-E2 LEDs have a typical CRI of 80. Relative Chromaticity Vs. Current, WW -0.020 -0.015 -0.010 -0.005 0.000 0.005 0.010 0.015 0.020 0 100 200 300 400 500 600 700 800 900 1000 Current (mA) ΔCCx ΔCCy T J = 85 °C Relative Chromaticity Vs. Temperature WW -0.020 -0.015 -0.010 -0.005 0.000 0.005 0.010 0.015 0.020 0 20 40 60 80 100 120 140 160 Tsp (°C) ΔCCx ΔCCy I F = 350 mA Copyright © 2012-2013 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo and XLamp® are registered trademarks of Cree, Inc. 11 xlamp xp-e2 leds Typical Spatial Distribution Typical Spatial Radiation Pattern 0 20 40 60 80 100 -90 -70 -50 -30 -10 10 30 50 70 90 Relative Luminous Intensity (%) Angle (°) White Typical Spatial Radiation Pattern 0 20 40 60 80 100 -90 -70 -50 -30 -10 10 30 50 70 90 Relative Luminous Intensity (%) Angle (º) Royal Blue, Blue, Green Amber, Red-Orange, Red Copyright © 2012-2013 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo and XLamp® are registered trademarks of Cree, Inc. 12 xlamp xp-e2 leds Thermal Design The maximum forward current is determined by the thermal resistance between the LED junction and ambient. It is crucial for the end product to be designed in a manner that minimizes the thermal resistance from the solder point to ambient in order to optimize lamp life and optical characteristics. White R oyal Blue, Blue Green A mber, Red-Orange, Red 0 200 400 600 800 1000 1200 0 20 40 60 80 100 120 140 Maximum Current (mA) Ambient Temperature (ºC) Rj-a = 10°C/W Rj-a = 15°C/W Rj-a = 20°C/W Rj-a = 25°C/W Thermal Design - royal blue - same as blue 0 200 400 600 800 1000 1200 0 20 40 60 80 100 120 140 Maximum Current (mA) Ambient Temperature (ºC) Rj-a = 10°C/W Rj-a = 15°C/W Rj-a = 20°C/W Rj-a = 25°C/W Thermal Design - amber, red-orange, red 0 200 400 600 800 1000 1200 0 20 40 60 80 100 120 140 Maximum Current (mA) Ambient Temperature (ºC) Rj-a = 10°C/W Rj-a = 15°C/W Rj-a = 20°C/W Rj-a = 25°C/W Thermal Design - green 0 200 400 600 800 1000 1200 0 20 40 60 80 100 120 140 Maximum Current (mA) Ambient Temperature (ºC) Rj-a = 20°C/W Rj-a = 25°C/W Rj-a = 30°C/W Rj-a = 35°C/W Copyright © 2012-2013 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo and XLamp® are registered trademarks of Cree, Inc. 13 xlamp xp-e2 leds Reflow Soldering Characteristics In testing, Cree has found XLamp XP-E2 LEDs to be compatible with JEDEC J-STD-020C, using the parameters listed below. As a general guideline, Cree recommends that users follow the recommended soldering profile provided by the manufacturer of solder paste used. Note that this general guideline may not apply to all PCB designs and configurations of reflow soldering equipment. Profile Feature Lead-Based Solder Lead-Free Solder Average Ramp-Up Rate (Tsmax to Tp) 3 °C/second max. 3 °C/second max. Preheat: Temperature Min (Tsmin) 100 °C 150 °C Preheat: Temperature Max (Tsmax) 150 °C 200 °C Preheat: Time (tsmin to tsmax) 60-120 seconds 60-180 seconds Time Maintained Above: Temperature (TL) 183 °C 217 °C Time Maintained Above: Time (tL) 60-150 seconds 60-150 seconds Peak/Classification Temperature (Tp) 215 °C 260 °C Time Within 5 °C of Actual Peak Temperature (tp) 10-30 seconds 20-40 seconds Ramp-Down Rate 6 °C/second max. 6 °C/second max. Time 25 °C to Peak Temperature 6 minutes max. 8 minutes max. Note: All temperatures refer to topside of the package, measured on the package body surface. Copyright © 2012-2013 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo and XLamp® are registered trademarks of Cree, Inc. 14 xlamp xp-e2 leds Notes Lumen Maintenance Projections Cree now uses standardized IES LM-80-08 and TM-21-11 methods for collecting long-term data and extrapolating LED lumen maintenance. For information on the specific LM-80 data sets available for this LED, refer to the public LM-80 results document at www.cree.com/xlamp_app_notes/LM80_results. Please read the XLamp Long-Term Lumen Maintenance application note at www.cree.com/xlamp_app_notes/lumen_ maintenance for more details on Cree’s lumen maintenance testing and forecasting. Please read the XLamp Thermal Management application note at www.cree.com/xlamp_app_notes/thermal_management for details on how thermal design, ambient temperature, and drive current affect the LED junction temperature. Moisture Sensitivity In testing, Cree has found XLamp XP-E2 LEDs to have unlimited floor life in conditions ≤ 30 ºC/85% relative humidity (RH). Moisture testing included a 168-hour soak at 85 ºC/85% RH followed by 3 reflow cycles, with visual and electrical inspections at each stage. Cree recommends keeping XLamp LEDs in their sealed moisture-barrier packaging until immediately prior to use. Cree also recommends returning any unused LEDS to the resealable moisture-barrier bag and closing the bag immediately after use. UL Recognized Component Level 4 enclosure consideration. The LED package or a portion thereof has been investigated as a fire and electrical enclosure per ANSI/UL 8750. Vision Advisory Claim WARNING: Do not look at exposed lamp in operation. Eye injury can result. See LED Eye Safety at www.cree.com/ xlamp_app_notes/led_eye_safety. Copyright © 2012-2013 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo and XLamp® are registered trademarks of Cree, Inc. 15 xlamp xp-e2 leds Mechanical Dimensions All measurements are ±.13 mm unless otherwise indicated. Anode Anode THIRD ANGLE PROJECTION A B C D 6 5 4 3 6 5 4 3 UNAUTHORIZED PERSON WITHOUT THE WRITTEN CONSENT MAY NOT BE COPIED, REPRODUCED OR DISCLOSED TO ANY CONFIDENTIAL INFORMATION OF CREE, INC. THIS PLOT CONTAINED WITHIN ARE THE PROPRIETARY AND CREE CONFIDENTIAL. THIS PLOT AND THE INFORMATION OF CREE INC. NOTICE X° ± .5 .XXX ± .25 .XX ± .75 .X ± 1.5 FOR SHEET METAL PARTS .XX ± .25 .XXX ± .125 X° ± .5 UNLESS OTHERWISE SPECIFIED DIMENSIONS ARE IN MILLIMETERS AND AFTER TOLERANCE UNLESS SPECIFIED: SURFACE FINISH: 1.6 .50 .50 .40 1.30 3.30 3.30 1.15 .65 1.65 .50 1.20 .60 .60 3.20 1.60 3.20 .40 .40 .40 3.45 3.45 R1.53 .65 .83 2.36 RECOMMENDED PCB SOLDER PAD RECOMMENDED STENCIL PATTERN (HATCHED AREA IS OPENING) SIZE TITLE C DATE DATE DATE CHECK FINAL PROTECTIVE FINISH MATERIAL APPROVED DRAWN BY THIRD ANGLE PROJECTION 6 5 4 3 2 PERSON WITHOUT THE WRITTEN CONSENT COPIED, REPRODUCED OR DISCLOSED TO ANY INFORMATION OF CREE, INC. THIS PLOT WITHIN ARE THE PROPRIETARY AND CONFIDENTIAL. THIS PLOT AND THE INFORMATION NOTICE X° ± .5 ° .XXX ± .25 .XX ± .75 .X ± 1.5 FOR SHEET METAL PARTS ONLY .XX ± .25 .XXX ± .125 X° ± .5 ° UNLESS OTHERWISE SPECIFIED DIMENSIONS ARE IN MILLIMETERS AND AFTER FINISH. TOLERANCE UNLESS SPECIFIED: .50 .50 .40 1.30 3.30 3.30 1.15 .65 1.65 .50 1.20 .60 .60 3.20 1.60 3.20 .40 .40 .40 3.45 3.45 R1.53 .65 .83 3.30 .50 2.30 3.30 1.30 2.36 OUTLINE D. CRONIN 07/19/12 REVISONS REV DESCRIPTION RECOMMENDED PCB SOLDER PAD RECOMMENDED STENCIL PATTERN (HATCHED AREA IS OPENING) SIZE TITLE C DRAWING DATE DATE DATE CHECK FINAL PROTECTIVE FINISH MATERIAL APPROVED DRAWN BY THIRD ANGLE PROJECTION 6 5 4 3 2 PERSON WITHOUT THE WRITTEN CONSENT REPRODUCED OR DISCLOSED TO ANY INFORMATION OF CREE, INC. THIS PLOT ARE THE PROPRIETARY AND THIS PLOT AND THE INFORMATION NOTICE X° ± .5 ° .XXX ± .25 .XX ± .75 .X ± 1.5 FOR SHEET METAL PARTS ONLY .XX ± .25 .XXX ± .125 X° ± .5 ° UNLESS OTHERWISE SPECIFIED DIMENSIONS ARE IN MILLIMETERS AND AFTER FINISH. TOLERANCE UNLESS SPECIFIED: .50 1.30 3.30 3.30 1.15 .65 1.65 .50 1.20 .60 .60 3.20 1.60 3.20 .40 .40 .40 3.45 3.45 R1.53 .65 .83 3.30 .50 2.30 3.30 1.30 2.36 OUTLINE D. CRONIN 07/19/12 REVISONS REV DESCRIPTION RECOMMENDED PCB SOLDER PAD RECOMMENDED STENCIL PATTERN (HATCHED AREA IS OPENING) SIZE TITLE C DRAWING NO. DATE DATE DATE CHECK FINAL PROTECTIVE FINISH MATERIAL APPROVED DRAWN BY THIRD ANGLE PROJECTION 5 4 3 2 WITHOUT THE WRITTEN CONSENT REPRODUCED OR DISCLOSED TO ANY OF CREE, INC. THIS PLOT PROPRIETARY AND PLOT AND THE INFORMATION X° ± .5 ° .XXX ± .25 .XX ± .75 .X ± 1.5 FOR SHEET METAL PARTS ONLY .XX ± .25 .XXX ± .125 X° ± .5 ° UNLESS OTHERWISE SPECIFIED DIMENSIONS ARE IN MILLIMETERS AND AFTER FINISH. TOLERANCE UNLESS SPECIFIED: .50 1.30 3.30 3.30 1.15 .65 1.65 1.20 .60 .60 3.20 1.60 3.20 .40 .40 .40 3.45 3.45 R1.53 .65 .83 3.30 .50 2.30 3.30 1.30 2.36 2610-OUTLINE DRAWING D. CRONIN 07/19/12 REVISONS REV DESCRIPTION RECOMMENDED PCB SOLDER PAD RECOMMENDED STENCIL PATTERN (HATCHED AREA IS OPENING) SIZE TITLE OF REV. SHEET C DRAWING NO. DATE DATE DATE CHECK FINAL PROTECTIVE FINISH MATERIAL APPROVED DRAWN BY THIRD ANGLE PROJECTION SCALE 3 2 1 A B C Phone (919) 313-5300 Fax (919) 313-5558 4600 Silicon Drive Durham, N.C 27703 X° ± .5 ° .XXX ± .25 .XX ± .75 .X ± 1.5 FOR SHEET METAL PARTS ONLY .XX ± .25 .XXX ± .125 X° ± .5 ° UNLESS OTHERWISE SPECIFIED DIMENSIONS ARE IN MILLIMETERS AND AFTER FINISH. TOLERANCE UNLESS SPECIFIED: SURFACE FINISH: 1.6 1.20 .60 3.20 1.60 3.20 .40 .65 1.30 22.000 1 /1 2610-00029 A OUTLINE DRAWING XPE G2 D. CRONIN 07/19/12 RECOMMENDED STENCIL PATTERN AREA IS OPENING) Top View Side View Bottom View Recommended PCB Solder Pad Recommended Stencil Pattern Hatched Area is Opening Copyright © 2012-2013 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo and XLamp® are registered trademarks of Cree, Inc. 16 xlamp xp-e2 leds Tape and Reel All Cree carrier tapes conform to EIA-481D, Automated Component Handling Systems Standard. All dimensions in mm. Loaded Pockets (1,000 Lamps) Leader 400mm (min) of empty pockets with at least 100mm sealed by tape (50 empty pockets min.) Trailer 160mm (min) of empty pockets sealed with tape (20 pockets min.) END START Cathode Side Anode Side (denoted by + and circle) 2.5±.1 1.5±.1 8.0±.1 4.0±.1 1.75±.10 12.0 .0 +.3 DETAIL B SCALE 2 : 1 13mm 7" Cover Tape Pocket Tape User Feed Direction User Feed Direction 13 61 12.40 0 +2.00 MEASURED AT HUB 12.40 MEASURED AT INSIDE EDGE 16.40 TITLE DATE DATE DATE CHECK MATERIAL APPROVED DRAWN BY THIRD ANGLE PROJECTION .X ± 0.3 .XX ± .13 X° ± 1° UNLESS OTHERWISE SPECIFIED DIMENSIONS ARE IN MILLIMETERS & BEFORE FINISH. TOLERANCE UNLESS SPECIFIED: A B C D 6 5 4 3 2 1 A B C D Phone (919) 361-4770 4600 Silicon Drive Durham, N.C 27703 NOTICE CREE CONFIDENTIAL. THIS PLOT AND THE INFORMATION CONTAINED WITHIN ARE THE PROPRIETARY AND CONFIDENTIAL INFORMATION OF CREE, INC. THIS PLOT MAY NOT BE COPIED, REPRODUCED OR DISCLOSED TO ANY UNAUTHORIZED PERSON WITHOUT THE WRITTEN CONSENT OF CREE, INC. Reel, 7" x 12mm Wide LIUDEZHI 2012/5/25 +/-0.5 190 ½öÓÃÓÚÆÀ¹À¡£ °æȨËùÓÐ (c) by Foxit Software Company, 2004 ÓÉ Foxit PDF Editor ±à¼- OD 7.5'' 13 61 12.40 0 +2.00 MEASURED AT HUB 12.40 16.40 B C D 6 5 4 3 2 1 B C D NOTICE CREE CONFIDENTIAL. THIS PLOT AND THE INFORMATION CONTAINED WITHIN ARE THE PROPRIETARY AND CONFIDENTIAL INFORMATION OF CREE, INC. THIS PLOT MAY NOT BE COPIED, REPRODUCED OR DISCLOSED TO ANY UNAUTHORIZED PERSON WITHOUT THE WRITTEN CONSENT OF CREE, INC. +/-0.5 190 ½öÓÃÓÚÆÀ¹À¡£ °æȨËùÓÐ (c) by Foxit Software Company, 2004 ÓÉ Foxit PDF Editor ±à¼- OD 7.5'' Y Y X X REF 0.59 F(III) D1 P1 1.5 MIN. Bo Ao R0.2 TYPICAL REF 4.375 Ko (IV) Other material available. (III) (II) (I) hole to centerline of pocket. Measured from centerline of sprocket holes is ± 0.20. Cumulative tolerance of 10 sprocket to centerline of pocket. Measured from centerline of sprocket hole SECTION Y-Y SECTION X-X ±0.05 Do 1.75 E1 REF R 2.24 Ko 2.40 +0.0/-0.1 3.70 1 W F P +/- 0.05 +/- 0.1 +0.3/-0.1 5.50 8.00 12.00 Ao 3.70 +/- 0.1 Bo +/- 0.1 Y Y X X REF 0.59 W F(III) D1 P1 1.5 MIN. Bo Ao R0.2 TYPICAL REF 4.375 Ko (IV) Other material available. (III) (II) (I) hole to centerline of pocket. Measured from centerline of sprocket holes is ± 0.20. Cumulative tolerance of 10 sprocket to centerline of pocket. Measured from centerline of sprocket hole SECTION Y-Y SECTION X-X 2.0 ±0.05 (I) P2 1.55 ±0.05 Do 4.0 ±0.1 (II) Po 1.75 ±0.1 E1 T 0.30 ±0.05 REF R 2.24 Ko 2.40 +0.0/-0.1 3.70 1 W F P +/- 0.05 +/- 0.1 +0.3/-0.1 5.50 8.00 12.00 Ao 3.70 +/- 0.1 Bo +/- 0.1 Y Y D1 1.5 MIN. Bo R0.2 TYPICAL REF 4.375 Ko SECTION Y-Y 0.05 REF Ko 2.40 +0.0/-0.1 3.70 1 W F P +/- 0.05 +/- 0.1 +0.3/-0.1 5.50 8.00 12.00 Ao 3.70 +/- 0.1 Bo +/- 0.1 CATHODE SIDE ANODE SIDE Copyright © 2012-2013 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo and XLamp® are registered trademarks of Cree, Inc. 17 xlamp xp-e2 leds Packaging Patent Label (on bottom of box) Label with Cree Bin Code, Qty, Reel ID Label with Cree Bin Code, Qty, Reel ID Label with Cree Order Code, Qty, Reel ID, PO # Label with Cree Order Code, Qty, Reel ID, PO # Label with Cree Bin Code, Qty, Reel ID Unpackaged Reel Packaged Reel Boxed Reel CREE Bin Code & Barcode Label Vacuum-Sealed Moisture Barrier Bag Label with Customer P/N, Qty, Lot #, PO # Label with Cree Bin Code, Qty, Lot # Label with Cree Bin Code, Qty, Lot # Vacuum-Sealed Moisture Barrier Bag Patent Label Label with Customer Order Code, Qty, Reel ID, PO # Ideal for power supply 1a/1c/2a/2c/5A/10A power relays JW RELAYS VDE RoHS compliant FEATURES • Miniature package with universal terminal footprint • High dielectric withstanding for transient protection: 10,000 V surge in μs between coil and contact • Sealed construction • Class B coil insulation types available • TV rated (TV-5) types available (only for 1 Form A type) • VDE, TÜV, SEMKO, SEV, FIMKO, TV-5 also approved • Sockets are available. TYPICAL APPLICATIONS 1. Home appliances TV sets, VCR, Microwave ovens 2. Office machines Photocopiers, Vending machines 3. Industrial equipment NC machines, Robots, Temperature controllers Contact arrangement 1: 1a: 2: 2a: 1 Form C 1 Form A 2 Form C 2 Form A Contact capacity Nil: F: Standard (5 A) High capacity (10 A)* JW N Protective construction S: H: Sealed type Flux-resistant type Coil insulation class Nil: B: Class E insulation Class B insulation Pick-up voltage N: 70% of nominal voltage Nominal coil voltage DC5V, DC6V, DC9V, DC12V, DC24V, DC48V Contact material F: AgSnO2 type (1a) Nil: AgNi type (1c, 2a, 2c) *Only for 1 Form A and 1 Form C type Certified by UL, CSA, VDE, SEMKO, FIMKO and SEV Note: When ordering TV rated (TV-5) types, add suffix-TV (available only for 1 Form A type). Panasonic Corporation Automation Controls Business Unit industrial.panasonic.com/ac/e/ JW ASCTB190E 201210-T TYPES * For sockets, see page 140. RATING 1. Coil data Nominal coil voltage Pick-up voltage (at 20°C 68°F) Drop-out voltage (at 20°C 68°F) Nominal operating current [±10%] (at 20°C 68°F) Coil resistance [±10%] (at 20°C 68°F) Nominal operating power Max. applied voltage (at 20°C 68°F) 5V DC 70%V or less of nominal voltage (Initial) 10%V or more of nominal voltage (Initial) 106mA 47Ω 530mW 130%V of nominal voltage (at 60°C 140°F) 120%V of nominal voltage (at 85°C 185°F)*4 6V DC 88mA 68Ω 9V DC 58mA 155Ω 12V DC 44mA 270Ω 24V DC 22mA 1,100Ω 48V DC 11mA 4,400Ω 1) 1 Form A Standard (5A) type Standard packing: Carton 100 pcs. Case 500 pcs. 2) 1 Form A High capacity (10 A) type Standard packing: Carton 100 pcs. Case 500 pcs. Nominal coil voltage Sealed type Flux-resistant type Part No. Part No. 5V DC JW1aSN-DC5V-F JW1aHN-DC5V-F 6V DC JW1aSN-DC6V-F JW1aHN-DC6V-F 9V DC JW1aSN-DC9V-F JW1aHN-DC9V-F 12V DC JW1aSN-DC12V-F JW1aHN-DC12V-F 24V DC JW1aSN-DC24V-F JW1aHN-DC24V-F 48V DC JW1aSN-DC48V-F JW1aHN-DC48V-F Nominal coil voltage Sealed type Flux-resistant type Part No. Part No. 5V DC JW1aFSN-DC5V-F JW1aFHN-DC5V-F 6V DC JW1aFSN-DC6V-F JW1aFHN-DC6V-F 9V DC JW1aFSN-DC9V-F JW1aFHN-DC9V-F 12V DC JW1aFSN-DC12V-F JW1aFHN-DC12V-F 24V DC JW1aFSN-DC24V-F JW1aFHN-DC24V-F 48V DC JW1aFSN-DC48V-F JW1aFHN-DC48V-F 3) 1 Form C Standard (5A) type Standard packing: Carton 100 pcs. Case 500 pcs. 4) 1 Form C High capacity (10 A) type Standard packing: Carton 100 pcs. Case 500 pcs. Nominal coil voltage Sealed type Flux-resistant type Part No. Part No. 5V DC JW1SN-DC5V JW1HN-DC5V 6V DC JW1SN-DC6V JW1HN-DC6V 9V DC JW1SN-DC9V JW1HN-DC9V 12V DC JW1SN-DC12V JW1HN-DC12V 24V DC JW1SN-DC24V JW1HN-DC24V 48V DC JW1SN-DC48V JW1HN-DC48V Nominal coil voltage Sealed type Flux-resistant type Part No. Part No. 5V DC JW1FSN-DC5V JW1FHN-DC5V 6V DC JW1FSN-DC6V JW1FHN-DC6V 9V DC JW1FSN-DC9V JW1FHN-DC9V 12V DC JW1FSN-DC12V JW1FHN-DC12V 24V DC JW1FSN-DC24V JW1FHN-DC24V 48V DC JW1FSN-DC48V JW1FHN-DC48V 5) 2 Form A Standard (5A) type Standard packing: Carton 100 pcs. Case 500 pcs. 6) 2 Form C Standard (5A) type Standard packing: Carton 100 pcs. Case 500 pcs. Note: Class B coil insulation type is available. Ex) JW1aSN-B-DC12V-F Nominal coil voltage Sealed type Flux-resistant type Part No. Part No. 5V DC JW2aSN-DC5V JW2aHN-DC5V 6V DC JW2aSN-DC6V JW2aHN-DC6V 9V DC JW2aSN-DC9V JW2aHN-DC9V 12V DC JW2aSN-DC12V JW2aHN-DC12V 24V DC JW2aSN-DC24V JW2aHN-DC24V 48V DC JW2aSN-DC48V JW2aHN-DC48V Nominal coil voltage Sealed type Flux-resistant type Part No. Part No. 5V DC JW2SN-DC5V JW2HN-DC5V 6V DC JW2SN-DC6V JW2HN-DC6V 9V DC JW2SN-DC9V JW2HN-DC9V 12V DC JW2SN-DC12V JW2HN-DC12V 24V DC JW2SN-DC24V JW2HN-DC24V 48V DC JW2SN-DC48V JW2HN-DC48V Panasonic Corporation Automation Controls Business Unit industrial.panasonic.com/ac/e/ JW ASCTB190E 201210-T 2. Specifications * Specifications will vary with foreign standards certification ratings. Notes: *1. This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load. *2. Wave is standard shock voltage of ±1.2×50μs according to JEC-212-1981 *3. The upper limit of the ambient temperature is the maximum temperature that can satisfy the coil temperature rise value. Refer to Usage, transport and storage conditions in NOTES. *4. The pick-up and drop out voltages rise approximately 0.4% for every 1°C 33.8°F given a standard ambient temperature of 20°C 68°F. Therefore, when using relays where the ambient temperature is high, please take into consideration the rise in pick-up and drop out voltages and keep the coil applied voltage within the maximum applied voltage. REFERENCE DATA Characteristics Item Specifications Standard type High capacity type Contact Contact material 1 Form A: AgSnO2 type 1 Form C, 2 Form A and 2 Form C: AgNi type Arrangement 1 Form A, 1 Form C, 2 Form A and 2 Form C 1 Form A and 1 Form C Contact resistance (Initial) Max. 100 mΩ (By voltage drop 6 V DC 1A) Rating Nominal switching capacity (resistive load) 5A 250V AC, 5A 30V DC 10A 250V AC, 10A 30V DC Max. switching power (resistive load) 1,250VA, 150W 2,500VA, 300W Max. switching voltage 250V AC, 30V DC Max. switching current 5A 10A Min. switching capacity (reference value)*1 100mA, 5V DC Electrical characteristics Insulation resistance (Initial) Min. 1,000MΩ (at 500V DC) Measurement at same location as “Breakdown voltage” section. Breakdown voltage (Initial) Between open contacts 1,000 Vrms for 1 min. (Detection current: 10 mA) Between contact and coil 5,000 Vrms for 1 min. (Detection current: 10 mA) Between contact sets 3,000 Vrms for 1 min. (2 Form A, 2 Form C) (Detection current: 10 mA) Temperature rise (coil) 1 Form A: Max. 45°C 113°F, 1 Form C, 2 Form A and 2 Form C: Max. 55°C 131°F (resistive method, with nominal coil voltage and at nominal switching capacity, at 20°C 68°F) 1 Form A: Max. 45°C 113°F, 1 Form C: Max. 55°C 131°F (resistive method, with nominal coil voltage and at nominal switching capacity, at 20°C 68°F) Surge breakdown voltage*2 (Between contact and coil) (Initial) 10,000 V Operate time (at nominal voltage) (at 20°C 68°F) Max. 15 ms (excluding contact bounce time.) Release time (at nominal voltage) (at 20°C 68°F) Max. 5 ms (excluding contact bounce time) (Without diode) Mechanical characteristics Shock resistance Functional 98 m/s2 (Half-wave pulse of sine wave: 11 ms; detection time: 10μs.) Destructive 980 m/s2 (Half-wave pulse of sine wave: 6 ms.) Vibration resistance Functional 10 to 55 Hz at double amplitude of 1.6 mm (Detection time: 10μs.) Destructive 10 to 55 Hz at double amplitude of 2.0 mm Expected life Mechanical (at 180 times/min.) Min. 5×106 Electrical (at 6 times/min.) Min. 105 (at resistive load) Conditions Conditions for operation, transport and storage*3 Ambient temperature*4: –40°C to +60°C –40°F to 140°F (Class E), (Class B: –40°C to +85°C –40°F to 185°F) Humidity: 5 to 85% R.H. (Not freezing and condensing at low temperature) Max. operating speed (at nominal switching capacity) Flux-resistant type: 20 times/min., Sealed type: 6 times/min. Unit weight Approx. 13 g .46 oz JW 1 Form A Standard (5A) type 1. Maximum operating power 2. Operate/release time Sample: JW1aSN-DC12V-F, 10 pcs. Ambient temperature: 20°C 68°F 3. Life curve 1 Form A Standard (5 A) type 10 100 10 100 1,000 1 Contact voltage, V AC resistive load DC resistive load Contact current, A 80 90 100 110 120 5 0 10 Min. Max. Min. x - x - Max. Coil applied voltage, %V Operate/release time, ms Operate time Release time 100 10 5 10 15 Contact current, A Life, ×104 250 V AC resistive load 30 V DC resistive load Panasonic Corporation Automation Controls Business Unit industrial.panasonic.com/ac/e/ JW ASCTB190E 201210-T JW 1 Form A High Capacity (10 A) type 1. Maximum operating power 2. Operate/release time Sample: JW1aFSN-DC12V, 10 pcs. Ambient temperature: 20°C 68°F 3. Life curve 10 100 10 100 1,000 1 Contact voltage, V AC resistive load DC resistive load Contact current, A 80 90 100 110 120 5 0 10 Min. Max. Min. x - x - Max. Coil applied voltage, %V Operate/release time, ms Operate time Release time 100 10 1 0 2 4 6 8 10 12 Contact current, A Life, ×104 250 V AC resistive load 30 V DC resistive load 4-(1). Coil temperature rise (Contact carrying current: 5A) Sample JW1aFSN-DC12V-F, 6 pcs. Point measured: Inside the coil 4-(2). Coil temperature rise (Contact carrying current: 10 A) Sample: JW1aFSN-DC12V-F, 6 pcs. Point measured: Inside the coil 100 120 140 160 10 20 30 40 50 60 70 0 Coil applied voltage, %V Temperature rise, °C 85°C 60°C 25°C 100 120 140 160 10 20 30 40 50 60 70 0 Coil applied voltage, %V Temperature rise, °C 85°C 60°C 25°C JW 1 Form C Standard (5 A) type 1-(3). Maximum operating power 2. Operate/release time Sample: JW1SN-DC12V-F, 6 pcs. Ambient temperature: 20°C 68°F JW 1 Form C High Capacity (10 A) type 1. Maximum operating power 10 10 100 1,000 1 0 Contact voltage, V AC resistive load (cosϕ = 1.0) Contact current, A Max. Min. 13 12 11 10 9 6 4 100 8 7 3 2 1 5 80 90 110 120 130 Max. Min. x - x - Coil applied voltage, %V Operate/release time, ms 10 10 100 1,000 1 0 Contact voltage, V AC resistive load (cosϕ = 1.0) Contact current, A JW 2 Form A Standard (5 A) type 1. Maximum operating power 2. Operate/release time Sample: JW2aSN-DC24V-F, 6 pcs. Ambient temperature: 20°C 68°F 10 10 100 1,000 1 0 Contact voltage, V AC resistive load (cosϕ = 1.0) Contact current, A 14 13 12 10 8 6 4 2 80 90 100 110 120 Min. x - x - Coil applied voltage, %V Operate/release time, ms Operate time Release time Max. Max. Min. Panasonic Corporation Automation Controls Business Unit industrial.panasonic.com/ac/e/ JW ASCTB190E 201210-T DIMENSIONS (mm inch) JW 2 Form C Standard (5 A) type 1. Maximum operating power 2. Operate/release time Sample: JW2SN-DC12V-F, 6 pcs. Ambient temperature: 20°C 68°F 10 10 100 1,000 1 0 Contact voltage, V Contact current, A AC resistive load (cosϕ = 1.0) 9 8 7 6 5 4 3 2 1 0 80 90 100 110 120 130 Max. Coil applied voltage, %V Operate/release time, ms Operate time Release time Min. Min. Max. x - x - The CAD data of the products with a CAD Data mark can be downloaded from: http://industrial.panasonic.com/ac/e/ JW 1 Form A External dimensions 0.3 0.3 0.5 0.4 12.8 7.6 1.1 2.4 3.5 0.9 28.6 20 20 3.6 .012 .012 .020 .016 .504 .299 .043 .094 .138 .035 1.126 .787 .787 .142 Wiring diagram (Bottom view) Note: Terminal numbers are not indicated on the relay. PC board pattern (Bottom view) Tolerance: ±0.1 ±.004 COM N.O. Coil 4 6 1 8 Relay outline 12.8 .504 7.6 .299 20.0 .787 2.4 .094 4-1.5 dia. 4-.059 dia. 3.5 .138 CAD Data Dimension: Less than 1mm .039inch: Min. 1mm .039inch less than 3mm .118 inch: Min. 3mm .118 inch: General tolerance ±0.1 ±.004 ±0.2 ±.008 ±0.3 ±.012 JW 1 Form C External dimensions 20 .787 0.4 .016 3.6 .142 0.5 .020 0.3 0.5 .012 .020 0.3 .012 1.1 .043 2.4 .094 3.5 .138 3.5 .138 16.5 .650 28.6 1.128 0.8 .031 7.6 .299 12.8 .504 Wiring diagram (Bottom view) Note: Terminal numbers are not indicated on the relay. PC board pattern (Bottom view) Tolerance: ±0.1 ±.004 COM N.C. N.O. Coil 4 2 6 1 8 Relay outline 5-1.5 dia. 5-.059 dia. 16.5 .650 3.5 .138 3.5 .138 2.4 .094 7.6 .299 CAD Data Dimension: Less than 1mm .039inch: Min. 1mm .039inch less than 3mm .118 inch: Min. 3mm .118 inch: General tolerance ±0.1 ±.004 ±0.2 ±.008 ±0.3 ±.012 Panasonic Corporation Automation Controls Business Unit industrial.panasonic.com/ac/e/ JW ASCTB190E 201210-T SAFETY STANDARDS Item UL/C-UL (Recognized) CSA (Certified) VDE (Certified) TV rating (UL/CSA) TÜV (Certified) SEMKO (Certified) FIMKO SEV File No. Contact rating File No. Contact rating File No. Contact rating File No. Rating File No. Rating File No. Contact rating File No. Contact rating File No. Contact rating Standard type 1 Form A E43028 5A 277V AC 5A 30V DC 1/8HP 125V AC 1/8HP 250V AC LR26550 etc. 5A 277V AC 5A 30V DC 1/8HP 125V AC 1/8HP 250V AC B300 40013854 5A 250V AC (cosφ =1.0) 3A 250V AC (cosφ =0.4) Standard type 5A 30V DC (0ms) UL E43028 CSA LR26550 etc. 1a➝TV-5 B 11 05 13461 305 5A 250V AC (cosφ =1.0) 3A 250V AC (cosφ =0.4) 5A 30V DC (0ms) 817817 5A 250V AC (cosφ =1.0) 5A 30V DC (0ms) 24965 5A 250V AC (cosφ =1.0) 5A 30V DC (0ms) 11. 0262 5A 250V AC (cosφ =1.0) Standard type 1 Form C E43028 5A 277V AC 5A 30V DC 1/8HP 125V AC 1/8HP 250V AC LR26550 etc. 5A 277V AC 5A 30V DC 1/8HP 125V AC 1/8HP 250V AC B300 40013854 5A 250V AC (cosφ =1.0) 3A 250V AC (cosφ =0.4) Standard type 5A 30V DC (0ms) — — B 11 05 13461 305 5A 250V AC (cosφ =1.0) 3A 250V AC (cosφ =0.4) 5A 30V DC (0ms) 817817 5A 250V AC (cosφ =1.0) 5A 30V DC (0ms) 24965 5A 250V AC (cosφ =1.0) 5A 30V DC (0ms) 11. 0262 5A 250V AC (cosφ =1.0) Standard type 2 Form A E43028 5A 277V AC 5A 30V DC 1/8HP 125V AC 1/8HP 250V AC B300 LR26550 etc. 5A 277V AC 5A 30V DC 1/8HP 125V AC 1/8HP 250V AC B300 40013854 5A 250V AC (cosφ =1.0) 3A 250V AC (cosφ =0.4) Standard type 5A 30V DC (0ms) — — B 11 05 13461 305 5A 250V AC (cosφ =1.0) 3A 250V AC (cosφ =0.4) 5A 30V DC (0ms) Tantalum-Polymer Solid Capacitors New Capacitors Panasonic New Product Introduction Stable Capacitance at High Frequency and Temperature, with Low ESR/ESL Panasonic, a worldwide leader in Capacitor Products, introduces POSCAP Tantalum-Polymer Solid Capacitors to their Capacitor product line. The POSCAP product line spans several series of Solid Electrolyte Chip Capacitors which include the TPE, TQC, TPF, TPSF, TPB, TPC, TPG, and TPU Series. These capacitors utilize a sintered tantalum anode and a proprietary high conductivity polymer for a cathode. Panasonic’s innovative construction and processing yields the lowest ESR level in polymer tantalum technology, and exhibits excellent performance in high frequency applications. Offering a high volumetric efficiency for capacitance, POSCAP Capacitors is available in various, compact package sizes for a small PCB footprint. Additionally, POSCAP parts demonstrate a high reliability and high heat resistance, making them the ideal Chip Capacitor for digital, high-frequency devices and more. • Low Profile Package Size: 0.9mm Height (TPU) • Very Low ESR (Down to 5mΩ) • Large Capacitance (Up to 1500μF) • High Temp Reflow Solder Capable (up to 260°C) • RoHS Compliant • High Volumetric Efficiency for Capacitance • Safe Alternative to Generic Tantalum Capacitors • Variety of Low Profile Packages Opens up PCB Space • Wide Application Coverage • Consumer Electronics • Industrial Electronics • Telecommunications • Appliances • PC/Server • Set Top Box • Audio/Video Equipment • FPGA Power Delivery • Router/Switch/Base Station • Test and Measurement Website: www.panasonic.com/industrial industrial@us.panasonic.com 1-800-344-2112 Copyright © 2013 Panasonic Corporation of North America. All Rights Reserved. Specifications are subject to change without notice. POSCAP NPI, FY13-038-XXX Features Benefits Industries Applications Part Number Information Additional Information For detailed specification information on the POSCAP Line of Tantalum Solid Capacitors, visit our website at: www.panasonic.com/industrial/electronic-components/capacitive-products/ RoHS COMPLIANT Series Information TPE, TQC, TPF, TPSF, TPB, TPC, TPG, TPU Series 2 R 5 Rated Voltage Series Rated Capacitance Cap. Tol. T P E 3 3 0 M Special Code A Z B Series Voltage Capacitance ESR TPE 2-10 VDC 47-1500 μF 7-35 mΩ TQC 16-35 VDC 3.9-150 μF 40-400 mΩ TPF 2-10 VDC 150-1000 μF 5-15 mΩ TPSF 2 VDC 270 μF 6-9 mΩ TPB 4-10 VDC 33-470 μF 35-70 mΩ TPC 6.3-12.5 VDC 10-330 μF 40-80 mΩ TPG 2.5-12.5 VDC 33-220 μF 30-70 mΩ TPU 2.5-10 VDC 4.7-150 μF 100-300 mΩ Design and specifi cations are each subject to change without notice. Ask factory for the current technical specifi cations before purchase and/or use. Should a safety concern arise regarding this product, please be sure to contact us immediately. Aluminum Electrolytic Capacitors/ FC – EEE-63 – 0d±0.05 010􀀝 Sleeve L􀀽 14 min. 3 min. (􀀽08􀁌15, 016􀁌15, 018􀁌15 : L±1.5) Pressure relief 06.3􀀝 But exclude 7 mm height 􀀽􀀀L􀀝16 : L±1.0 L􀀟20 : L±2.0 + – 04 to 08 0D±0.5 F±0.5 0D±0.5 ■ Features ● Endurance : 105 °C 1000 h to 5000 h ● Low impedance ● RoHS directive compliant Radial Lead Type Series: FC Type: A ■ Specifi cations Category Temp. Range –55 °C to +105 °C Rated W.V. Range 6.3 V.DC to 100 V.DC Nominal Cap. Range 2.2 μF to 15000 μF Capacitance Tolerance ±20 % (120 Hz/+20 °C) DC Leakage Cur rent I < 0.01 CV or 3 (μA) After 2 minutes (Whichever is greater) tan d W.V. (V) 6.3 10 16 25 35 50 63 100 (120 Hz/+20 °C) tan d 0.22 0.19 0.16 0.14 0.12 0.10 0.08 0.07 For capacitance value > 1000 μF, add 0.02 per every 1000 μF. Endurance After following life test with DC voltage and +105 °C±2 °C ripple current value applied (The sum of DC and ripple peak voltage shall not exceed the rated working voltage) when the capacitors are restored to 20 °C, the capacitors shall meet the limits specifi ed bellow. Duration : 04 to 06.3: 1000 hours, 08: 2000 hours , 010: 3000 hours , 012.5 to 018: 5000 hours Capacitance change ±20 % of initial measured value tan d < 200 % of initial specifi ed value DC leakage current < initial specifi ed value Shelf Life After storage for 1000 hours at +105 °C±2 °C with no voltage applied and then being stabilized at +20 °C, capacitors shall meet the limits specifi ed in Endurance. (With voltage treatment) W.V.(V.DC) Cap (μF) Frequency (Hz) 60 120 1 k 10 k 100 k 6.3 to 100 2.2 to 330 0.55 0.65 0.85 0.90 1.00 390 to 1000 0.70 0.75 0.90 0.95 1.00 1200 to 2200 0.75 0.80 0.90 0.95 1.00 2700 to 15000 0.80 0.85 0.95 1.00 1.00 ■ Frequency correction factor for ripple current L>11 L=7 Body Dia. 0D 4 5 6.3 8 10 12.5 16 18 4 5 6.3 Body Length L 15 to 25 30 to 40 Lead Dia. 0d 0.45 0.5 0.5 0.6 0.6 0.6 0.8 0.8 0.8 0.45 0.45 0.45 Lead space F 1.5 2.0 2.5 3.5 5.0 5.0 5.0 7.5 7.5 1.5 2.0 2.5 ■ Di men sions in mm (not to scale) (Unit : mm) 02 Dec. 2013 Design and specifi cations are each subject to change without notice. Ask factory for the current technical specifi cations before purchase and/or use. Should a safety concern arise regarding this product, please be sure to contact us immediately. Aluminum Electrolytic Capacitors/ FC – EEE-64 – ■ Case size/ Impedance/ Ripple Current W.V(V.DC) 6.3 V to 35 V 50 V 63 V 100 V Case size (0D×L) Imped ance (Ω)/(100 kHz) Ripple Current (mA r.m.s) /(100 kHz) Imped ance (Ω)/(100 kHz) Ripple Current (mA r.m.s) /(100 kHz) Imped ance (Ω)/(100 kHz) Ripple Current (mA r.m.s) /(100 kHz) Imped ance (Ω)/(100 kHz) Ripple Current (mA r.m.s) 20 °C –10 °C 20 °C –10 °C 20 °C –10 °C 20 °C –10 °C /(100 kHz) 4 × 7 2.00 5.00 65 5 × 7 0.950 2.40 120 6.3 × 7 0.450 1.20 200 4 × 11 1.30 2.60 120 2.50 5.00 90 3.50 7.00 80 5 × 11 0.800 1.60 175 ✽ ✽ ✽ 2.00 4.00 145 4.10 8.20 80 5 × 15 0.500 1.00 235 0.900 1.80 215 1.30 2.60 200 2.80 5.60 90 6.3 × 11.2 0.350 0.700 290 0.600 1.20 260 1.00 2.00 240 1.80 3.60 114 6.3 × 15 0.250 0.500 400 0.400 0.800 360 0.700 1.40 330 1.10 2.20 155 8 × 11.5 0.117 0.234 555 0.234 0.468 485 0.342 0.684 405 0.680 1.36 260 8 × 15 0.085 0.170 730 0.155 0.310 635 0.230 0.460 535 0.450 0.900 340 8 × 20 0.065 0.130 995 0.120 0.240 860 0.178 0.356 690 0.330 0.660 455 10 × 12.5 0.090 0.180 755 0.162 0.324 615 0.256 0.512 535 0.530 1.06 306 10 × 16 0.068 0.136 1050 0.119 0.238 850 0.194 0.388 600 0.360 0.720 400 10 × 20 0.052 0.104 1220 0.090 0.180 1030 0.147 0.294 885 0.240 0.480 463 10 × 25 0.045 0.090 1440 0.082 0.164 1200 0.130 0.260 1050 0.210 0.420 599 10 × 30 0.035 0.070 1815 0.060 0.120 1610 0.090 0.180 1300 0.150 0.300 698 12.5 × 15 0.065 0.130 1205 0.110 0.220 1150 0.150 0.300 1020 0.230 0.460 511 12.5 × 20 0.038 0.076 1655 0.063 0.126 1480 0.085 0.170 1285 0.180 0.360 671 12.5 × 25 0.030 0.060 1945 0.050 0.100 1832 0.070 0.140 1720 0.110 0.220 807 12.5 × 30 0.025 0.050 2310 0.040 0.080 2215 0.055 0.110 2090 0.098 0.196 937 12.5 × 35 0.022 0.044 2510 0.034 0.068 2285 0.047 0.094 2265 0.087 0.174 1040 12.5 × 40 0.018 0.036 2655 0.030 0.060 2590 0.042 0.084 2560 0.072 0.144 1130 16 × 15 0.043 0.086 1690 0.080 0.160 1610 0.090 0.180 1410 0.140 0.280 793 16 × 20 0.029 0.058 2205 0.048 0.096 1835 0.059 0.118 1765 0.110 0.220 995 16 × 25 0.022 0.044 2555 0.034 0.068 2235 0.050 0.100 2160 0.089 0.178 1170 16 × 31.5 0.018 0.036 3010 0.028 0.056 2700 0.043 0.086 2670 0.062 0.124 1520 16 × 35.5 0.016 0.032 3150 0.025 0.050 2790 0.036 0.072 2770 0.053 0.106 1730 16 × 40 0.015 0.030 3360 0.023 0.046 2845 0.030 0.060 2825 0.047 0.094 1920 18 × 15 0.038 0.076 2000 0.068 0.136 1900 0.086 0.172 1690 0.120 0.240 917 18 × 20 0.028 0.056 2490 0.042 0.084 2420 0.055 0.110 2290 0.080 0.160 1230 18 × 25 0.020 0.040 2740 0.029 0.058 2610 0.043 0.086 2585 0.070 0.140 1420 18 × 31.5 0.016 0.032 3635 0.025 0.050 3000 0.032 0.064 2950 0.062 0.124 1600 18 × 35.5 0.015 0.030 3680 0.023 0.046 3100 0.030 0.060 3095 0.041 0.082 1770 18 × 40 0.014 0.028 3735 – – – 0.025 0.050 3205 0.036 0.072 2300 ✽ Case size (0D×L) Capacitance (μF) Imped ance (Ω)/(100 kHz) Ripple Current 20 °C –10 °C (mA r.m.s)(100 kHz) 5 × 11 1.0 2.40 4.80 20 2.2 1.80 3.60 45 3.3 1.30 2.60 65 4.7 1.30 2.60 95 10 1.30 2.60 125 12 1.30 2.60 135 15 1.30 2.60 145 18 1.30 2.60 155 22 1.30 2.60 155 01 Oct. 2013 Design and specifi cations are each subject to change without notice. Ask factory for the current technical specifi cations before purchase and/or use. Should a safety concern arise regarding this product, please be sure to contact us immediately. Aluminum Electrolytic Capacitors/ FC – EEE-65 – ■ Standard Prod ucts W.V. Cap. (±20 %) Case size Specifi cation Lead Length Part No. Min. Packaging Q'ty Dia. Length Ripple Current (100 kHz) (+105 °C) Impedance (100 kHz) (+20 °C) Endurance Lead Dia. Lead Space Straight Leads Taping Straight Taping ✽B Taping ✽H (V) (μF) (mm) (mm) (mA r.m.s.) () (hours) (mm) (mm) (mm) (mm) (pcs) (pcs) 6.3 27 4 7 65 2.000 1000 0.45 1.5 5.0 2.5 EEAFC0J270( ) 200 2000 56 5 7 120 0.950 1000 0.45 2.0 5.0 2.5 EEAFC0J560( ) 200 2000 68 4 11 120 1.300 1000 0.45 1.5 5.0 2.5 EEUFC0J680( ) 200 2000 100 5 11 175 0.800 1000 0.50 2.0 5.0 2.5 EEUFC0J101( ) 200 2000 120 6.3 7 200 0.450 1000 0.45 2.5 5.0 2.5 EEAFC0J121( ) 200 2000 150 5 15 235 0.500 1000 0.50 2.0 5.0 2.5 EEUFC0J151( ) 200 2000 220 6.3 11.2 290 0.350 1000 0.50 2.5 5.0 2.5 EEUFC0J221( ) 200 2000 270 6.3 11.2 290 0.350 1000 0.50 2.5 5.0 2.5 EEUFC0J271( ) 200 2000 330 6.3 11.2 290 0.350 1000 0.50 2.5 5.0 2.5 EEUFC0J331S( ) 200 2000 6.3 15 400 0.250 1000 0.50 2.5 5.0 2.5 EEUFC0J331( ) 200 2000 390 8 11.5 555 0.117 2000 0.60 3.5 5.0 EEUFC0J391( ) 200 1000 470 8 11.5 555 0.117 2000 0.60 3.5 5.0 EEUFC0J471( ) 200 1000 560 8 11.5 555 0.117 2000 0.60 3.5 5.0 EEUFC0J561( ) 200 1000 820 8 15 730 0.085 2000 0.60 3.5 5.0 EEUFC0J821L( ) 200 1000 10 12.5 755 0.090 3000 0.60 5.0 5.0 EEUFC0J821( ) 200 500 1000 10 12.5 755 0.090 3000 0.60 5.0 5.0 EEUFC0J102( ) 200 500 1200 8 20 995 0.065 2000 0.60 3.5 5.0 EEUFC0J122L( ) 200 1000 10 16 1050 0.068 3000 0.60 5.0 5.0 EEUFC0J122( ) 200 500 1500 10 20 1220 0.052 3000 0.60 5.0 5.0 EEUFC0J152( ) 200 500 12.5 15 1205 0.065 5000 0.60 5.0 5.0 EEUFC0J152S( ) 200 500 1800 10 25 1440 0.045 3000 0.60 5.0 5.0 EEUFC0J182( ) 200 500 2200 10 25 1440 0.045 3000 0.60 5.0 5.0 EEUFC0J222( ) 200 500 16 15 1690 0.043 5000 0.80 7.5 7.5 EEUFC0J222S( ) 100 250 2700 10 30 1815 0.035 3000 0.60 5.0 EEUFC0J272L 100 12.5 20 1655 0.038 5000 0.60 5.0 5.0 EEUFC0J272( ) 200 500 16 15 1690 0.043 5000 0.80 7.5 7.5 EEUFC0J272S( ) 100 250 3300 12.5 20 1655 0.038 5000 0.60 5.0 5.0 EEUFC0J332( ) 200 500 18 15 2000 0.038 5000 0.80 7.5 7.5 EEUFC0J332S( ) 100 250 3900 12.5 25 1945 0.030 5000 0.60 5.0 5.0 EEUFC0J392( ) 200 500 4700 12.5 30 2310 0.025 5000 0.80 5.0 EEUFC0J472 100 16 20 2205 0.029 5000 0.80 7.5 7.5 EEUFC0J472S( ) 100 250 5600 12.5 35 2510 0.022 5000 0.80 5.0 EEUFC0J562L 100 16 20 2205 0.029 5000 0.80 7.5 7.5 EEUFC0J562( ) 100 250 6800 12.5 40 2655 0.018 5000 0.80 5.0 EEUFC0J682L 100 16 25 2555 0.022 5000 0.80 7.5 7.5 EEUFC0J682( ) 100 250 18 20 2490 0.028 5000 0.80 7.5 7.5 EEUFC0J682S( ) 100 250 8200 16 31.5 3010 0.018 5000 0.80 7.5 EEUFC0J822 100 10000 16 35.5 3150 0.016 5000 0.80 7.5 EEUFC0J103 100 18 25 2740 0.020 5000 0.80 7.5 7.5 EEUFC0J103S( ) 100 250 12000 16 40 3360 0.015 5000 0.80 7.5 EEUFC0J123L 100 18 31.5 3635 0.016 5000 0.80 7.5 EEUFC0J123 50 15000 18 35.5 3680 0.015 5000 0.80 7.5 EEUFC0J153 50 · When requesting taped product, please put the letter "B" or "H" be tween the "( )". Lead wire pitch B=5 mm, 7.5 mm, H=2.5 mm. · Please refer to the page of “Taping Dimensions”. Endurance : 105 °C φ4 to φ6.3=1000 h, φ8=2000 h, φ10=3000 h, φ12.5 to φ18=5000 h 00 Nov. 2012 Design and specifi cations are each subject to change without notice. Ask factory for the current technical specifi cations before purchase and/or use. Should a safety concern arise regarding this product, please be sure to contact us immediately. Aluminum Electrolytic Capacitors/ FC – EEE-66 – ■ Standard Prod ucts W.V. Cap. (±20 %) Case size Specifi cation Lead Length Part No. Min. Packaging Q'ty Dia. Length Ripple Current (100 kHz) (+105 °C) Impedance (100 kHz) (+20 °C) Endurance Lead Dia. Lead Space Straight Leads Taping Straight Taping ✽B Taping ✽H (V) (μF) (mm) (mm) (mA r.m.s.) () (hours) (mm) (mm) (mm) (mm) (pcs) (pcs) 10 22 4 7 65 2.000 1000 0.45 1.5 5.0 2.5 EEAFC1A220( ) 200 2000 39 5 7 120 0.950 1000 0.45 2.0 5.0 2.5 EEAFC1A390( ) 200 2000 47 4 11 120 1.300 1000 0.45 1.5 5.0 2.5 EEUFC1A470( ) 200 2000 82 5 11 175 0.800 1000 0.50 2.0 5.0 2.5 EEUFC1A820( ) 200 2000 6.3 7 200 0.450 1000 0.45 2.5 5.0 2.5 EEAFC1A820( ) 200 2000 100 5 11 175 0.800 1000 0.50 2.0 5.0 2.5 EEUFC1A101S( ) 200 2000 5 15 235 0.500 1000 0.50 2.0 5.0 2.5 EEUFC1A101( ) 200 2000 150 6.3 11.2 290 0.350 1000 0.50 2.5 5.0 2.5 EEUFC1A151( ) 200 2000 180 6.3 11.2 290 0.350 1000 0.50 2.5 5.0 2.5 EEUFC1A181( ) 200 2000 220 6.3 11.2 290 0.350 1000 0.50 2.5 5.0 2.5 EEUFC1A221S( ) 200 2000 6.3 15 400 0.250 1000 0.50 2.5 5.0 2.5 EEUFC1A221( ) 200 2000 330 8 11.5 555 0.117 2000 0.60 3.5 5.0 EEUFC1A331( ) 200 1000 390 8 11.5 555 0.117 2000 0.60 3.5 5.0 EEUFC1A391( ) 200 1000 470 8 11.5 555 0.117 2000 0.60 3.5 5.0 EEUFC1A471( ) 200 1000 560 10 12.5 755 0.090 3000 0.60 5.0 5.0 EEUFC1A561( ) 200 500 680 8 15 730 0.085 2000 0.60 3.5 5.0 EEUFC1A681L( ) 200 1000 10 12.5 755 0.090 3000 0.60 5.0 5.0 EEUFC1A681( ) 200 500 820 10 16 1050 0.068 3000 0.60 5.0 5.0 EEUFC1A821( ) 200 500 1000 8 20 995 0.065 2000 0.60 3.5 5.0 EEUFC1A102L( ) 200 1000 10 16 1050 0.068 3000 0.60 5.0 5.0 EEUFC1A102( ) 200 500 1200 10 20 1220 0.052 3000 0.60 5.0 5.0 EEUFC1A122( ) 200 500 12.5 15 1205 0.065 5000 0.60 5.0 5.0 EEUFC1A122S( ) 200 500 1500 10 25 1440 0.045 3000 0.60 5.0 5.0 EEUFC1A152( ) 200 500 1800 12.5 20 1655 0.038 5000 0.60 5.0 5.0 EEUFC1A182( ) 200 500 16 15 1690 0.043 5000 0.80 7.5 7.5 EEUFC1A182S( ) 100 250 2200 10 30 1815 0.035 3000 0.60 5.0 EEUFC1A222L 100 12.5 20 1655 0.038 5000 0.60 5.0 5.0 EEUFC1A222( ) 200 500 2700 12.5 25 1945 0.030 5000 0.60 5.0 5.0 EEUFC1A272( ) 200 500 18 15 2000 0.038 5000 0.80 7.5 7.5 EEUFC1A272S( ) 100 250 3300 12.5 30 2310 0.025 5000 0.80 5.0 EEUFC1A332 100 16 20 2205 0.029 5000 0.80 7.5 7.5 EEUFC1A332S( ) 100 250 3900 12.5 35 2510 0.022 5000 0.80 5.0 EEUFC1A392L 100 16 20 2205 0.029 5000 0.80 7.5 7.5 EEUFC1A392( ) 100 250 4700 12.5 40 2655 0.018 5000 0.80 5.0 EEUFC1A472L 100 16 25 2555 0.022 5000 0.80 7.5 7.5 EEUFC1A472( ) 100 250 5600 16 25 2555 0.022 5000 0.80 7.5 7.5 EEUFC1A562( ) 100 250 18 20 2490 0.028 5000 0.80 7.5 7.5 EEUFC1A562S( ) 100 250 6800 16 31.5 3010 0.018 5000 0.80 7.5 EEUFC1A682 100 18 25 2740 0.020 5000 0.80 7.5 7.5 EEUFC1A682S( ) 100 250 8200 16 35.5 3150 0.016 5000 0.80 7.5 EEUFC1A822L 100 18 31.5 3635 0.016 5000 0.80 7.5 EEUFC1A822 50 10000 18 35.5 3680 0.015 5000 0.80 7.5 EEUFC1A103 50 12000 18 40 3735 0.014 5000 0.80 7.5 EEUFC1A123 50 · When requesting taped product, please put the letter "B" or "H" be tween the "( )". Lead wire pitch B=5 mm, 7.5 mm, H=2.5 mm. · Please refer to the page of “Taping Dimensions”. Endurance : 105 °C φ4 to φ6.3=1000 h, φ8=2000 h, φ10=3000 h, φ12.5 to φ18=5000 h 00 Nov. 2012 Design and specifi cations are each subject to change without notice. Ask factory for the current technical specifi cations before purchase and/or use. Should a safety concern arise regarding this product, please be sure to contact us immediately. Aluminum Electrolytic Capacitors/ FC – EEE-67 – ■ Standard Prod ucts W.V. Cap. (±20 %) Case size Specifi cation Lead Length Part No. Min. Packaging Q'ty Dia. Length Ripple Current (100 kHz) (+105 °C) Impedance (100 kHz) (+20 °C) Endurance Lead Dia. Lead Space Straight Leads Taping Straight Taping ✽B Taping ✽H (V) (μF) (mm) (mm) (mA r.m.s.) () (hours) (mm) (mm) (mm) (mm) (pcs) (pcs) 16 15 4 7 65 2.000 1000 0.45 1.5 5.0 2.5 EEAFC1C150( ) 200 2000 27 5 7 120 0.950 1000 0.45 2.0 5.0 2.5 EEAFC1C270( ) 200 2000 39 4 11 120 1.30 1000 0.45 1.5 5.0 2.5 EEUFC1C390( ) 200 2000 47 5 11 175 0.800 1000 0.50 2.0 5.0 2.5 EEUFC1C470( ) 200 2000 56 5 11 175 0.800 1000 0.50 2.0 5.0 2.5 EEUFC1C560( ) 200 2000 6.3 7 200 0.450 1000 0.45 2.5 5.0 2.5 EEAFC1C560( ) 200 2000 68 5 11 175 0.800 1000 0.50 2.0 5.0 2.5 EEUFC1C680( ) 200 2000 82 5 15 235 0.500 1000 0.50 2.0 5.0 2.5 EEUFC1C820( ) 200 2000 100 6.3 11.2 290 0.350 1000 0.50 2.5 5.0 2.5 EEUFC1C101( ) 200 2000 120 6.3 11.2 290 0.350 1000 0.50 2.5 5.0 2.5 EEUFC1C121( ) 200 2000 180 6.3 15 400 0.250 1000 0.50 2.5 5.0 2.5 EEUFC1C181( ) 200 2000 220 8 11.5 555 0.117 2000 0.60 3.5 5.0 EEUFC1C221( ) 200 1000 270 8 11.5 555 0.117 2000 0.60 3.5 5.0 EEUFC1C271( ) 200 1000 330 8 11.5 555 0.117 2000 0.60 3.5 5.0 EEUFC1C331( ) 200 1000 390 10 12.5 755 0.090 3000 0.60 5.0 5.0 EEUFC1C391( ) 200 500 470 8 15 730 0.085 2000 0.60 3.5 5.0 EEUFC1C471L( ) 200 1000 10 12.5 755 0.090 3000 0.60 5.0 5.0 EEUFC1C471( ) 200 500 560 10 16 1050 0.068 3000 0.60 5.0 5.0 EEUFC1C561( ) 200 500 680 8 20 995 0.065 2000 0.60 3.5 5.0 EEUFC1C681L( ) 200 1000 10 16 1050 0.068 3000 0.60 5.0 5.0 EEUFC1C681( ) 200 500 820 10 20 1220 0.052 3000 0.60 5.0 5.0 EEUFC1C821( ) 200 500 12.5 15 1205 0.065 5000 0.60 5.0 5.0 EEUFC1C821S( ) 200 500 1000 10 20 1220 0.052 3000 0.60 5.0 5.0 EEUFC1C102S( ) 200 500 10 25 1440 0.045 3000 0.60 5.0 5.0 EEUFC1C102( ) 200 500 1200 10 25 1440 0.045 3000 0.60 5.0 5.0 EEUFC1C122( ) 200 500 16 15 1690 0.043 5000 0.80 7.5 7.5 EEUFC1C122S( ) 100 250 1500 10 30 1815 0.035 3000 0.60 5.0 EEUFC1C152L 100 12.5 20 1655 0.038 5000 0.60 5.0 5.0 EEUFC1C152( ) 200 500 16 15 1690 0.043 5000 0.80 7.5 7.5 EEUFC1C152S( ) 100 250 1800 12.5 25 1945 0.030 5000 0.60 5.0 5.0 EEUFC1C182( ) 200 500 18 15 2000 0.038 5000 0.80 7.5 7.5 EEUFC1C182S( ) 100 250 2200 12.5 25 1945 0.030 5000 0.60 5.0 5.0 EEUFC1C222( ) 200 500 16 20 2205 0.029 5000 0.80 7.5 7.5 EEUFC1C222S( ) 100 250 2700 12.5 30 2310 0.025 5000 0.80 5.0 EEUFC1C272L 100 16 20 2205 0.029 5000 0.80 7.5 7.5 EEUFC1C272( ) 100 250 3300 12.5 35 2510 0.022 5000 0.80 5.0 EEUFC1C332 100 18 20 2490 0.028 5000 0.80 7.5 7.5 EEUFC1C332S( ) 100 250 3900 16 25 2555 0.022 5000 0.80 7.5 7.5 EEUFC1C392( ) 100 250 18 20 2490 0.028 5000 0.80 7.5 7.5 EEUFC1C392S( ) 100 250 4700 16 31.5 3010 0.018 5000 0.80 7.5 EEUFC1C472 100 18 25 2740 0.020 5000 0.80 7.5 7.5 EEUFC1C472S( ) 100 250 5600 16 35.5 3150 0.016 5000 0.80 7.5 EEUFC1C562L 100 18 31.5 3635 0.016 5000 0.80 7.5 EEUFC1C562 50 6800 16 40 3360 0.015 5000 0.80 7.5 EEUFC1C682 100 8200 18 35.5 3680 0.015 5000 0.80 7.5 EEUFC1C822 50 · When requesting taped product, please put the letter "B" or "H" be tween the "( )". Lead wire pitch B=5 mm, 7.5 mm, H=2.5 mm. · Please refer to the page of “Taping Dimensions”. Endurance : 105 °C φ4 to φ6.3=1000 h, φ8=2000 h, φ10=3000 h, φ12.5 to φ18=5000 h 00 Nov. 2012 Design and specifi cations are each subject to change without notice. Ask factory for the current technical specifi cations before purchase and/or use. Should a safety concern arise regarding this product, please be sure to contact us immediately. Aluminum Electrolytic Capacitors/ FC – EEE-68 – ■ Standard Prod ucts W.V. Cap. (±20 %) Case size Specifi cation Lead Length Part No. Min. Packaging Q'ty Dia. Length Ripple Current (100 kHz) (+105 °C) Impedance (100 kHz) (+20 °C) Endurance Lead Dia. Lead Space Straight Leads Taping Straight Taping ✽B Taping ✽H (V) (μF) (mm) (mm) (mA r.m.s.) () (hours) (mm) (mm) (mm) (mm) (pcs) (pcs) 25 10 4 7 65 2.000 1000 0.45 1.5 5.0 2.5 EEAFC1E100( ) 200 2000 22 5 7 120 0.950 1000 0.45 2.0 5.0 2.5 EEAFC1E220( ) 200 2000 27 4 11 120 1.30 1000 0.45 1.5 5.0 2.5 EEUFC1E270( ) 200 2000 39 5 11 175 0.800 1000 0.50 2.0 5.0 2.5 EEUFC1E390( ) 200 2000 6.3 7 200 0.450 1000 0.45 2.5 5.0 2.5 EEAFC1E390( ) 200 2000 47 5 11 175 0.800 1000 0.50 2.0 5.0 2.5 EEUFC1E470( ) 200 2000 56 5 15 235 0.500 1000 0.50 2.0 5.0 2.5 EEUFC1E560( ) 200 2000 82 6.3 11.2 290 0.350 1000 0.50 2.5 5.0 2.5 EEUFC1E820( ) 200 2000 100 6.3 11.2 290 0.350 1000 0.50 2.5 5.0 2.5 EEUFC1E101S( ) 200 2000 120 6.3 15 400 0.250 1000 0.50 2.5 5.0 2.5 EEUFC1E121( ) 200 2000 180 8 11.5 555 0.117 2000 0.60 3.5 5.0 EEUFC1E181( ) 200 1000 220 8 11.5 555 0.117 2000 0.60 3.5 5.0 EEUFC1E221( ) 200 1000 270 10 12.5 755 0.090 3000 0.60 5.0 5.0 EEUFC1E271( ) 200 500 330 8 15 730 0.085 2000 0.60 3.5 5.0 EEUFC1E331L( ) 200 1000 10 12.5 755 0.090 3000 0.60 5.0 5.0 EEUFC1E331( ) 200 500 390 10 16 1050 0.068 3000 0.60 5.0 5.0 EEUFC1E391( ) 200 500 470 8 20 995 0.065 2000 0.60 3.5 5.0 EEUFC1E471L( ) 200 1000 10 16 1050 0.068 3000 0.60 5.0 5.0 EEUFC1E471( ) 200 500 560 10 20 1220 0.052 3000 0.60 5.0 5.0 EEUFC1E561( ) 200 500 12.5 15 1205 0.065 5000 0.60 5.0 5.0 EEUFC1E561S( ) 200 500 680 10 20 1220 0.052 3000 0.60 5.0 5.0 EEUFC1E681( ) 200 500 820 10 25 1440 0.045 3000 0.60 5.0 5.0 EEUFC1E821( ) 200 500 12.5 20 1655 0.038 5000 0.60 5.0 5.0 EEUFC1E821S( ) 200 500 1000 10 30 1815 0.035 3000 0.60 5.0 EEUFC1E102L 100 12.5 20 1655 0.038 5000 0.60 5.0 5.0 EEUFC1E102( ) 200 500 16 15 1690 0.043 5000 0.80 7.5 7.5 EEUFC1E102S( ) 100 250 1200 12.5 25 1945 0.030 5000 0.60 5.0 5.0 EEUFC1E122( ) 200 500 18 15 2000 0.038 5000 0.80 7.5 7.5 EEUFC1E122S( ) 100 250 1500 12.5 25 1945 0.030 5000 0.60 5.0 5.0 EEUFC1E152( ) 200 500 16 20 2205 0.029 5000 0.80 7.5 7.5 EEUFC1E152S( ) 100 250 1800 12.5 30 2310 0.025 5000 0.80 5.0 EEUFC1E182L 100 16 20 2205 0.029 5000 0.80 7.5 7.5 EEUFC1E182( ) 100 250 2200 12.5 35 2510 0.022 5000 0.80 5.0 EEUFC1E222 100 18 20 2490 0.028 5000 0.80 7.5 7.5 EEUFC1E222S( ) 100 250 2700 16 25 2555 0.022 5000 0.80 7.5 7.5 EEUFC1E272( ) 100 250 3300 16 31.5 3010 0.018 5000 0.80 7.5 EEUFC1E332 100 18 25 2740 0.020 5000 0.80 7.5 7.5 EEUFC1E332S( ) 100 250 3900 16 35.5 3150 0.016 5000 0.80 7.5 EEUFC1E392L 100 18 31.5 3635 0.016 5000 0.80 7.5 EEUFC1E392 50 4700 18 35.5 3680 0.015 5000 0.80 7.5 EEUFC1E472 50 5600 18 40 3735 0.014 5000 0.80 7.5 EEUFC1E562 50 · When requesting taped product, please put the letter "B" or "H" be tween the "( )". Lead wire pitch B=5 mm, 7.5 mm, H=2.5 mm. · Please refer to the page of “Taping Dimensions”. Endurance : 105 °C φ4 to φ6.3=1000 h, φ8=2000 h, φ10=3000 h, φ12.5 to φ18=5000 h 00 Nov. 2012 Design and specifi cations are each subject to change without notice. Ask factory for the current technical specifi cations before purchase and/or use. Should a safety concern arise regarding this product, please be sure to contact us immediately. Aluminum Electrolytic Capacitors/ FC – EEE-69 – ■ Standard Prod ucts W.V. Cap. (±20 %) Case size Specifi cation Lead Length Part No. Min. Packaging Q'ty Dia. Length Ripple Current (100 kHz) (+105 °C) Impedance (100 kHz) (+20 °C) Endurance Lead Dia. Lead Space Straight Leads Taping Straight Taping ✽B Taping ✽H (V) (μF) (mm) (mm) (mA r.m.s.) () (hours) (mm) (mm) (mm) (mm) (pcs) (pcs) 35 6.8 4 7 65 2.000 1000 0.45 1.5 5.0 2.5 EEAFC1V6R8( ) 200 2000 12 5 7 120 0.950 1000 0.45 2.0 5.0 2.5 EEAFC1V120( ) 200 2000 18 4 11 120 1.300 1000 0.45 1.5 5.0 2.5 EEUFC1V180( ) 200 2000 22 5 11 175 0.800 1000 0.50 2.0 5.0 2.5 EEUFC1V220( ) 200 2000 27 5 11 175 0.800 1000 0.50 2.0 5.0 2.5 EEUFC1V270( ) 200 2000 6.3 7 200 0.450 1000 0.45 2.5 5.0 2.5 EEAFC1V270( ) 200 2000 33 5 11 175 0.080 1000 0.50 2.0 5.0 2.5 EEUFC1V330( ) 200 2000 39 5 15 235 0.500 1000 0.50 2.0 5.0 2.5 EEUFC1V390( ) 200 2000 47 6.3 11.2 290 0.350 1000 0.50 2.5 5.0 2.5 EEUFC1V470( ) 200 2000 56 6.3 11.2 290 0.350 1000 0.50 2.5 5.0 2.5 EEUFC1V560( ) 200 2000 68 6.3 11.2 290 0.350 1000 0.50 2.5 5.0 2.5 EEUFC1V680( ) 200 2000 82 6.3 15 400 0.250 1000 0.50 2.5 5.0 2.5 EEUFC1V820( ) 200 2000 100 8 11.5 555 0.117 2000 0.60 3.5 5.0 EEUFC1V101( ) 200 1000 120 8 11.5 555 0.117 2000 0.60 3.5 5.0 EEUFC1V121( ) 200 1000 150 8 11.5 555 0.117 2000 0.60 3.5 5.0 EEUFC1V151( ) 200 1000 180 10 12.5 755 0.090 3000 0.60 5.0 5.0 EEUFC1V181( ) 200 500 220 8 15 730 0.085 2000 0.60 3.5 5.0 EEUFC1V221L( ) 200 1000 10 12.5 755 0.090 3000 0.60 5.0 5.0 EEUFC1V221( ) 200 500 270 10 16 1050 0.068 3000 0.60 5.0 5.0 EEUFC1V271( ) 200 500 330 8 20 995 0.065 2000 0.60 3.5 5.0 EEUFC1V331L( ) 200 1000 10 16 1050 0.068 3000 0.60 5.0 5.0 EEUFC1V331( ) 200 500 390 10 20 1220 0.052 3000 0.60 5.0 5.0 EEUFC1V391( ) 200 500 12.5 15 1205 0.065 5000 0.60 5.0 5.0 EEUFC1V391S( ) 200 500 470 10 20 1220 0.052 3000 0.60 5.0 5.0 EEUFC1V471( ) 200 500 560 10 25 1440 0.045 3000 0.60 5.0 5.0 EEUFC1V561( ) 200 500 12.5 20 1655 0.038 5000 0.60 5.0 5.0 EEUFC1V561S( ) 200 500 680 10 30 1815 0.035 3000 0.60 5.0 EEUFC1V681L 100 12.5 20 1655 0.038 5000 0.60 5.0 5.0 EEUFC1V681( ) 200 500 16 15 1690 0.043 5000 0.80 7.5 7.5 EEUFC1V681S( ) 100 250 820 12.5 25 1945 0.030 5000 0.60 5.0 5.0 EEUFC1V821L( ) 200 500 18 15 2000 0.038 5000 0.80 7.5 7.5 EEUFC1V821( ) 100 250 1000 12.5 25 1945 0.030 5000 0.60 5.0 5.0 EEUFC1V102( ) 200 500 16 20 2205 0.029 5000 0.80 7.5 7.5 EEUFC1V102S( ) 100 250 1200 12.5 30 2310 0.025 5000 0.80 5.0 EEUFC1V122L 100 16 20 2205 0.029 5000 0.80 7.5 7.5 EEUFC1V122( ) 100 250 1500 12.5 35 2510 0.022 5000 0.80 5.0 EEUFC1V152L 100 16 25 2555 0.022 5000 0.80 7.5 7.5 EEUFC1V152( ) 100 250 18 20 2490 0.028 5000 0.80 7.5 7.5 EEUFC1V152S( ) 100 250 1800 12.5 40 2655 0.018 5000 0.80 5.0 EEUFC1V182L 100 16 25 2555 0.022 5000 0.80 7.5 7.5 EEUFC1V182( ) 100 250 18 20 2490 0.028 5000 0.80 7.5 7.5 EEUFC1V182S( ) 100 250 2200 16 31.5 3010 0.018 5000 0.80 7.5 EEUFC1V222 100 18 25 2740 0.020 5000 0.80 7.5 7.5 EEUFC1V222S( ) 100 250 2700 16 35.5 3150 0.016 5000 0.80 7.5 EEUFC1V272L 100 18 31.5 3635 0.016 5000 0.80 7.5 EEUFC1V272 50 3300 18 35.5 3680 0.015 5000 0.80 7.5 EEUFC1V332 50 3900 18 40 3735 0.014 5000 0.80 7.5 EEUFC1V392 50 · When requesting taped product, please put the letter "B" or "H" be tween the "( )". Lead wire pitch B=5 mm, 7.5 mm, H=2.5 mm. · Please refer to the page of “Taping Dimensions”. Endurance : 105 °C φ4 to φ6.3=1000 h, φ8=2000 h, φ10=3000 h, φ12.5 to φ18=5000 h 00 Nov. 2012 Design and specifi cations are each subject to change without notice. Ask factory for the current technical specifi cations before purchase and/or use. Should a safety concern arise regarding this product, please be sure to contact us immediately. Aluminum Electrolytic Capacitors/ FC – EEE-70 – ■ Standard Prod ucts W.V. Cap. (±20 %) Case size Specifi cation Lead Length Part No. Min. Packaging Q'ty Dia. Length Ripple Current (100 kHz) (+105 °C) Impedance (100 kHz) (+20 °C) Endurance Lead Dia. Lead Space Straight Leads Taping Straight Taping ✽B Taping ✽H (V) (μF) (mm) (mm) (mA r.m.s.) (Ω) (hours) (mm) (mm) (mm) (mm) (pcs) (pcs) 50 1.0 5 11 20 2.400 1000 0.50 2.0 5.0 2.5 EEUFC1H1R0( )✽✽✽ 200 2000 2.2 5 11 45 1.800 1000 0.50 2.0 5.0 2.5 EEUFC1H2R2( ) 200 2000 3.3 5 11 65 1.300 1000 0.50 2.0 5.0 2.5 EEUFC1H3R3( ) 200 2000 4.7 5 11 95 1.300 1000 0.50 2.0 5.0 2.5 EEUFC1H4R7( ) 200 2000 10 4 11 90 2.500 1000 0.45 1.5 5.0 2.5 EEUFC1H100( ) 200 2000 5 11 125 1.300 1000 0.50 2.0 5.0 2.5 EEUFC1H100L( ) 200 2000 12 5 11 135 1.300 1000 0.50 2.0 5.0 2.5 EEUFC1H120( ) 200 2000 15 5 11 145 1.300 1000 0.50 2.0 5.0 2.5 EEUFC1H150( ) 200 2000 18 5 11 155 1.300 1000 0.50 2.0 5.0 2.5 EEUFC1H180( ) 200 2000 22 5 11 155 1.300 1000 0.50 2.0 5.0 2.5 EEUFC1H220( ) 200 2000 27 5 15 215 0.900 1000 0.50 2.0 5.0 2.5 EEUFC1H270( ) 200 2000 33 6.3 11.2 260 0.600 1000 0.50 2.5 5.0 2.5 EEUFC1H330( ) 200 2000 39 6.3 11.2 260 0.600 1000 0.50 2.5 5.0 2.5 EEUFC1H390( ) 200 2000 47 6.3 11.2 260 0.600 1000 0.50 2.5 5.0 2.5 EEUFC1H470( ) 200 2000 56 6.3 15 360 0.400 1000 0.50 2.5 5.0 2.5 EEUFC1H560( ) 200 2000 68 8 11.5 485 0.234 2000 0.60 3.5 5.0 EEUFC1H680( ) 200 1000 82 8 11.5 485 0.234 2000 0.60 3.5 5.0 EEUFC1H820( ) 200 1000 100 10 12.5 615 0.162 3000 0.60 5.0 5.0 EEUFC1H101( ) 200 500 120 8 15 635 0.155 2000 0.60 3.5 5.0 EEUFC1H121L( ) 200 1000 10 12.5 615 0.162 3000 0.60 5.0 5.0 EEUFC1H121( ) 200 500 150 10 16 850 0.119 3000 0.60 5.0 5.0 EEUFC1H151( ) 200 500 180 8 20 860 0.120 2000 0.60 3.5 5.0 EEUFC1H181L( ) 200 1000 10 16 850 0.119 3000 0.60 5.0 5.0 EEUFC1H181( ) 200 500 220 10 20 1030 0.090 3000 0.60 5.0 5.0 EEUFC1H221( ) 200 500 12.5 15 1150 0.110 5000 0.60 5.0 5.0 EEUFC1H221S( ) 200 500 270 10 25 1200 0.082 3000 0.60 5.0 5.0 EEUFC1H271( ) 200 500 330 10 30 1610 0.060 3000 0.60 5.0 EEUFC1H331L 100 12.5 20 1480 0.063 5000 0.60 5.0 5.0 EEUFC1H331( ) 200 500 390 12.5 20 1480 0.063 5000 0.60 5.0 5.0 EEUFC1H391( ) 200 500 16 15 1610 0.080 5000 0.80 7.5 7.5 EEUFC1H391S( ) 100 250 470 10 30 1610 0.060 3000 0.60 5.0 EEUFC1H471L 100 12.5 25 1832 0.050 5000 0.60 5.0 5.0 EEUFC1H471( ) 200 500 560 12.5 25 1832 0.050 5000 0.60 5.0 5.0 EEUFC1H561( ) 200 500 18 15 1900 0.068 5000 0.80 7.5 7.5 EEUFC1H561S( ) 100 250 680 12.5 30 2215 0.040 5000 0.80 5.0 EEUFC1H681L 100 16 20 1835 0.048 5000 0.80 7.5 7.5 EEUFC1H681( ) 100 250 820 12.5 35 2285 0.034 5000 0.80 5.0 EEUFC1H821L 100 18 20 2420 0.042 5000 0.80 7.5 7.5 EEUFC1H821( ) 100 250 1000 12.5 40 2590 0.030 5000 0.80 5.0 EEUFC1H102L 100 16 25 2235 0.034 5000 0.80 7.5 7.5 EEUFC1H102( ) 100 250 1200 16 31.5 2700 0.028 5000 0.80 7.5 EEUFC1H122 100 18 25 2610 0.029 5000 0.80 7.5 7.5 EEUFC1H122S( ) 100 250 1500 16 35.5 2790 0.025 5000 0.80 7.5 EEUFC1H152L 100 1800 16 40 2845 0.023 5000 0.80 7.5 EEUFC1H182L 100 18 31.5 3000 0.025 5000 0.80 7.5 EEUFC1H182 50 2200 18 35.5 3100 0.023 5000 0.80 7.5 EEUFC1H222 50 · When requesting taped product, please put the letter "B" or "H" be tween the "( )". Lead wire pitch ✽B=5 mm, 7.5 mm, H=2.5 mm. · Please refer to the page of “Taping Dimensions”. ✽✽✽ Please kindly accept last shipment : 31/Mar/2015 Endurance : 105 °C 04 to 06.3=1000 h, 08=2000 h, 010=3000 h, 012.5 to 018=5000 h 01 Oct. 2013 Design and specifi cations are each subject to change without notice. Ask factory for the current technical specifi cations before purchase and/or use. Should a safety concern arise regarding this product, please be sure to contact us immediately. Aluminum Electrolytic Capacitors/ FC – EEE-71 – ■ Standard Prod ucts W.V. Cap. (±20 %) Case size Specifi cation Lead Length Part No. Min. Packaging Q'ty Dia. Length Ripple Current (100 kHz) (+105 °C) Impedance (100 kHz) (+20 °C) Endurance Lead Dia. Lead Space Straight Leads Taping Straight Taping ✽B Taping ✽H (V) (μF) (mm) (mm) (mA r.m.s.) (Ω) (hours) (mm) (mm) (mm) (mm) (pcs) (pcs) 63 6.8 4 11 80 3.500 1000 0.45 1.5 5.0 2.5 EEUFC1J6R8( ) 200 2000 12 5 11 145 2.000 1000 0.50 2.0 5.0 2.5 EEUFC1J120( ) 200 2000 18 5 15 200 1.300 1000 0.50 2.0 5.0 2.5 EEUFC1J180( ) 200 2000 22 6.3 11.2 240 1.000 1000 0.50 2.5 5.0 2.5 EEUFC1J220( ) 200 2000 33 6.3 11.2 240 1.000 1000 0.50 2.5 5.0 2.5 EEUFC1J330( ) 200 2000 39 6.3 15 330 0.700 1000 0.50 2.5 5.0 2.5 EEUFC1J390( ) 200 2000 47 8 11.5 405 0.342 2000 0.60 3.5 5.0 EEUFC1J470( ) 200 1000 56 8 11.5 405 0.342 2000 0.60 3.5 5.0 EEUFC1J560( ) 200 1000 68 8 11.5 405 0.342 2000 0.60 3.5 5.0 EEUFC1J680( ) 200 1000 82 10 12.5 535 0.256 3000 0.60 5.0 5.0 EEUFC1J820( ) 200 500 100 8 15 535 0.230 2000 0.60 3.5 5.0 EEUFC1J101L( ) 200 1000 10 12.5 535 0.256 3000 0.60 5.0 5.0 EEUFC1J101( ) 200 500 120 10 16 600 0.194 3000 0.60 5.0 5.0 EEUFC1J121( ) 200 500 150 8 20 690 0.178 2000 0.60 3.5 5.0 EEUFC1J151( ) 200 1000 180 10 20 885 0.147 3000 0.60 5.0 5.0 EEUFC1J181( ) 200 500 12.5 15 1020 0.150 5000 0.60 5.0 5.0 EEUFC1J181S( ) 200 500 220 10 20 885 0.147 3000 0.60 5.0 5.0 EEUFC1J221X( ) 200 500 10 25 1050 0.130 3000 0.60 5.0 5.0 EEUFC1J221( ) 200 500 12.5 20 1285 0.085 5000 0.60 5.0 5.0 EEUFC1J221S( ) 200 500 270 16 15 1410 0.090 5000 0.80 7.5 7.5 EEUFC1J271( ) 100 250 330 10 30 1300 0.090 3000 0.60 5.0 EEUFC1J331L 100 12.5 20 1285 0.085 5000 0.60 5.0 5.0 EEUFC1J331( ) 200 500 390 12.5 25 1720 0.070 5000 0.60 5.0 5.0 EEUFC1J391( ) 200 500 18 15 1690 0.086 5000 0.80 7.5 7.5 EEUFC1J391S( ) 100 250 470 12.5 30 2090 0.055 5000 0.80 5.0 EEUFC1J471L 100 16 20 1765 0.059 5000 0.80 7.5 7.5 EEUFC1J471( ) 100 250 560 16 25 2160 0.050 5000 0.80 7.5 7.5 EEUFC1J561( ) 100 250 680 12.5 35 2265 0.047 5000 0.80 5.0 EEUFC1J681L 100 16 25 2160 0.050 5000 0.80 7.5 7.5 EEUFC1J681( ) 100 250 18 20 2290 0.055 5000 0.80 7.5 7.5 EEUFC1J681S( ) 100 250 820 12.5 40 2560 0.042 5000 0.80 5.0 EEUFC1J821L 100 16 31.5 2670 0.043 5000 0.80 7.5 EEUFC1J821 100 18 25 2585 0.043 5000 0.80 7.5 7.5 EEUFC1J821S( ) 100 250 1000 16 31.5 2670 0.043 5000 0.80 7.5 EEUFC1J102U 100 16 35.5 2770 0.036 5000 0.80 7.5 EEUFC1J102 100 1200 16 40 2825 0.030 5000 0.80 7.5 EEUFC1J122L 100 18 31.5 2950 0.032 5000 0.80 7.5 EEUFC1J122 50 1500 18 35.5 3095 0.030 5000 0.80 7.5 EEUFC1J152 50 1800 18 40 3205 0.025 5000 0.80 7.5 EEUFC1J182 50 · When requesting taped product, please put the letter "B" or "H" be tween the "( )". Lead wire pitch ✽B=5 mm, 7.5 mm, H=2.5 mm. · Please refer to the page of “Taping Dimensions”. Endurance : 105 °C 04 to 06.3=1000 h, 08=2000 h, 010=3000 h, 012.5 to 018=5000 h 01 Oct. 2013 Design and specifi cations are each subject to change without notice. Ask factory for the current technical specifi cations before purchase and/or use. Should a safety concern arise regarding this product, please be sure to contact us immediately. Aluminum Electrolytic Capacitors/ FC – EEE-72 – ■ Standard Prod ucts W.V. Cap. (±20 %) Case size Specifi cation Lead Length Part No. Min. Packaging Q'ty Dia. Length Ripple Current (100 kHz) (+105 °C) Impedance (100 kHz) (+20 °C) Endurance Lead Dia. Lead Space Straight Leads Taping Straight Taping ✽B Taping ✽H (V) (μF) (mm) (mm) (mA r.m.s.) (Ω) (hours) (mm) (mm) (mm) (mm) (pcs) (pcs) 100 5.6 5 11 80 4.10 1000 0.5 2.0 5.0 2.5 EEUFC2A5R6( ) 200 2000 8.2 5 15 90 2.80 1000 0.5 2.0 5.0 2.5 EEUFC2A8R2( ) 200 2000 12 6.3 11.2 114 1.80 1000 0.5 2.5 5.0 2.5 EEUFC2A120( ) 200 2000 18 6.3 15 155 1.10 1000 0.5 2.5 5.0 2.5 EEUFC2A180( ) 200 2000 22 8 11.5 260 0.680 2000 0.6 3.5 5.0 EEUFC2A220( ) 200 1000 33 8 15 340 0.450 2000 0.6 3.5 5.0 EEUFC2A330L( ) 200 1000 10 12.5 306 0.530 3000 0.6 5.0 5.0 EEUFC2A330( ) 200 500 39 8 20 455 0.330 2000 0.6 5.0 5.0 EEUFC2A390L( ) 200 1000 10 16 400 0.360 3000 0.6 5.0 5.0 EEUFC2A390( ) 200 500 56 10 20 463 0.240 3000 0.6 5.0 5.0 EEUFC2A560( ) 200 500 68 10 25 599 0.210 3000 0.6 5.0 5.0 EEUFC2A680L( ) 200 500 12.5 15 511 0.230 5000 0.6 5.0 5.0 EEUFC2A680( ) 200 500 100 10 30 698 0.150 3000 0.6 5.0 EEUFC2A101L 100 12.5 20 671 0.180 5000 0.6 5.0 5.0 EEUFC2A101( ) 200 500 120 16 15 793 0.140 5000 0.8 7.5 7.5 EEUFC2A121S( ) 100 250 150 12.5 25 807 0.110 5000 0.6 5.0 5.0 EEUFC2A151( ) 200 500 18 15 917 0.120 5000 0.8 7.5 7.5 EEUFC2A151S( ) 100 250 180 12.5 30 937 0.098 5000 0.8 5.0 EEUFC2A181L 100 16 20 995 0.110 5000 0.8 7.5 7.5 EEUFC2A181( ) 100 250 220 12.5 35 1040 0.087 5000 0.8 5.0 EEUFC2A221L 100 16 25 1170 0.089 5000 0.8 7.5 7.5 EEUFC2A221( ) 100 250 270 12.5 40 1130 0.072 5000 0.8 5.0 EEUFC2A271L 100 18 20 1230 0.080 5000 0.8 7.5 7.5 EEUFC2A271S( ) 100 250 330 16 31.5 1520 0.062 5000 0.8 7.5 EEUFC2A331 100 18 25 1420 0.070 5000 0.8 7.5 7.5 EEUFC2A331S( ) 100 250 390 16 35.5 1730 0.053 5000 0.8 7.5 EEUFC2A391L 100 18 31.5 1600 0.062 5000 0.8 7.5 EEUFC2A391 50 470 16 40 1920 0.047 5000 0.8 7.5 EEUFC2A471 100 560 18 35.5 1770 0.041 5000 0.8 7.5 EEUFC2A561 50 680 18 40 2300 0.036 5000 0.8 7.5 EEUFC2A681 50 · When requesting taped product, please put the letter "B" or "H" be tween the "( )". Lead wire pitch ✽B=5 mm, 7.5 mm, H=2.5 mm. · Please refer to the page of “Taping Dimensions”. Endurance : 105 °C 04 to 06.3=1000 h, 08=2000 h, 010=3000 h, 012.5 to 018=5000 h 01 Oct. 2013 Design, Specifications are subject to change without notice. Ask factory for technical specifications before purchase and/or use. Whenever a doubt about safety arises from this product, please inform us immediately for technical consultation without fail. 􀊵 􀀧􀀤􀀘􀀔 􀊵 Plastic Film Capacitors Metallized Polypropylene Film Capacitors Type: EZPE Series ■Features •High safety, Self-healing and Self-protecting function built-in •Long product life, High reliability •Low loss, Low ESR •Flame retardant (Case and sealing resin) •RoHS directive compliant ■Recommended Applications For DC filtering, DC link circuit •Solar inverters •Wind power generation •Industrial power supplies •Inverter circuit in appliances (Air Conditioners etc.) ■Construction •Dielectric : Polypropylene film •Electrodes : Metallized dielectric with segmented pattern •Plastic case : UL94 V-0 •Sealing : UL94 V-0 •Terminals : Tinned wires,2-pin and 4-pin versions ■Explanation of Part Numbers 1 2 3 4 5 6 7 8 9 10 11 12 E Z P E Product code Dielectric & construction Rated voltage Capacitance T Pin type Suffix A Suffix 50 500 VDC 80 800 VDC 1B 1100 VDC 1D 1300 VDC L 2-pin type M 4-pin type ■Specifications Category temperature range (TC) (*1) Rated voltage(VR) (*2) Rated capacitance (CR) Capacitance tolerance Withstanding DC voltage Insulation resistance (CR) –40 °C to +85 °C 500 VDC, 800 VDC, 1100 VDC, 1300 VDC (Derating of rated voltage by more than 70 °C (*3)) 500 VDC 800 VDC 1100 VDC 1300 VDC 10 μF to 110 μF 10 μF to 60 μF 10 μF to 40 μF 10 μF to 25 μF ±10 % Between terminals:Rated voltage. (VDC)✕150 % 10 s Terminal to case:2110 VAC 10 s CR>=10000 Ω · F (20 °C, 500 VDC, 60 s) *1:The temperature of capacitor surface (case) *2:Use for DC voltage only *3:Refer to the page of “ DC voltage derating ” Metallized Film Design, Specifications are subject to change without notice. Ask factory for technical specifications before purchase and/or use. Whenever a doubt about safety arises from this product, please inform us immediately for technical consultation without fail. 􀊵 􀀧􀀤􀀘􀀕 􀊵 Plastic Film Capacitors ■Dimensions in mm (not to scale) 􀀮􀁂􀁓􀁌􀁊􀁏􀁈􀀁 􀀱􀀒􀊶􀀒􀀁 􀀭􀊶􀀑􀀏􀀖􀀁 􀀱􀀓􀊶􀀒􀀁 􀐟􀊶􀀑􀀏􀀓􀀁 􀀕􀀏􀀑􀊶􀀓􀀏􀀑􀀁 􀀸􀊶􀀑􀀏􀀖􀀁 􀀩􀊶􀀑􀀏􀀖􀀁 􀀮􀁂􀁓􀁌􀁊􀁏􀁈􀀁 􀀱􀀒􀊶􀀒􀀁 􀀕􀀏􀀑􀊶􀀓􀀏􀀑􀀁 􀀩􀊶􀀑􀀏􀀖􀀁 􀐟􀊶􀀑􀀏􀀓􀀁 􀀭􀊶􀀑􀀏􀀖􀀁 􀀸􀊶􀀑􀀏􀀖􀀁 􀀥􀀤􀀁 􀀉􀁂􀀊􀀁 􀀷􀀁 􀐖􀀧􀀁 􀀉􀁂􀀊􀉹􀀳􀁂􀁕􀁆􀁅􀀁􀁗􀁐􀁍􀁕􀁂􀁈􀁆 􀀉􀁃􀀊􀉹􀀤􀁂􀁑􀁂􀁄􀁊􀁕􀁂􀁏􀁄􀁆 􀀉􀁄􀀊􀀁 􀀉􀁄􀀊􀉹􀀭􀁐􀁕􀀁􀀯􀁐􀀏􀀁 􀀉􀁃􀀊􀀁 􀀱􀁂􀁏􀁂􀁔􀁐􀁏􀁊􀁄􀀁 􀀮􀁂􀁓􀁌􀁊􀁏􀁈􀀉􀁆􀁙􀀏􀀊􀀁 ■Rating, Dimensions & Quantity / Ammo Box ●Type EZPE Rated voltage : 500 VDC at 70 􀋆 ( 450VDC at 85 􀋆 ) EZPE50106LTA 10 20 42 41.5 37.5 - 1.2 21 210 5.0 22.0 0.28 45 EZPE50156LTA 15 20 42 41.5 37.5 - 1.2 21 315 7.5 14.8 0.28 45 EZPE50206LTA 20 20 42 41.5 37.5 - 1.2 21 420 9.5 11.0 0.28 44 EZPE50256LTA 25 20 42 41.5 37.5 - 1.2 21 525 11.0 8.8 0.28 43 EZPE50306MTA 30 20 42 41.5 37.5 10.2 1.2 21 630 12.5 7.0 0.28 43 EZPE50356MTA 35 30 51 41.5 37.5 10.2 1.2 21 735 13.5 6.2 0.28 83 EZPE50406MTA 40 30 51 41.5 37.5 10.2 1.2 21 840 14.5 5.4 0.28 82 EZPE50456MTA 45 30 51 41.5 37.5 10.2 1.2 21 945 15.2 4.9 0.28 81 EZPE50506MTA 50 30 51 41.5 37.5 20.3 1.2 21 1050 16.0 4.4 0.28 80 EZPE50556MTA 55 30 51 41.5 37.5 20.3 1.2 21 1155 16.3 4.1 0.28 79 EZPE50606MTA 60 30 51 41.5 37.5 20.3 1.2 21 1260 16.5 3.9 0.28 77 EZPE50656MTA 65 30 51 57.5 52.5 10.2 1.2 14 910 15.0 6.8 0.44 111 EZPE50706MTA 70 30 51 57.5 52.5 10.2 1.2 14 980 15.5 6.5 0.44 109 EZPE50756MTA 75 30 51 57.5 52.5 20.3 1.2 14 1050 16.0 6.0 0.44 108 EZPE50806MTA 80 30 51 57.5 52.5 20.3 1.2 14 1120 16.5 5.7 0.44 106 EZPE50856MTA 85 35 56 57.5 52.5 20.3 1.2 14 1190 16.7 5.4 0.44 142 EZPE50906MTA 90 35 56 57.5 52.5 20.3 1.2 14 1260 17.0 5.1 0.44 141 EZPE50956MTA 95 35 56 57.5 52.5 20.3 1.2 14 1330 17.5 4.9 0.44 140 EZPE50107MTA 100 35 56 57.5 52.5 20.3 1.2 14 1400 18.0 4.7 0.44 139 EZPE50117MTA 110 35 56 57.5 52.5 20.3 1.2 14 1540 18.5 4.4 0.44 138 Part No. Dimensions (mm) Permissible current W H L P1 P2 􀐟 600 400 200 ESRtyp [m􀐊] (*3) tan􀐎 [%] (*4) Mass [􀌶] MOQ [pcs] (*5) dv/dt [V/μs] Peak Current [Ao-p] (*1) RMS Current [Arms] (*2) CR. (μF) *1:When rising temperature of capacitor surface by continuous peak current (included pulse current), use within limit specified for temperature of capacitor surface and self heating temperature rise. *2:Maximum RMS current @ 70 􀋆, 10 kHz Use within limit for self heating temperature rise at capacitor surface. *3:Typical values @ 20􀋆, 10 kHz ESR : less than 2.5 􀊷 ESRtyp *4:Maximum dissipation factor @20􀋆, 1 kHz *5:Minimum order quantity consists of 4 packing units. Design, Specifications are subject to change without notice. Ask factory for technical specifications before purchase and/or use. Whenever a doubt about safety arises from this product, please inform us immediately for technical consultation without fail. 􀊵 􀀧􀀤􀀘􀀖 􀊵 Plastic Film Capacitors ■Rating, Dimensions & Quantity / Ammo Box ●Type EZPE Rated voltage : 800 VDC at 70 􀋆 ( 700VDC at 85 􀋆 ) EZPE80106LTA 10 20 42 41.5 37.5 - 1.2 22 220 7.0 15.8 0.22 44 EZPE80156MTA 15 20 42 41.5 37.5 10.2 1.2 22 330 9.0 10.5 0.22 43 EZPE80206MTA 20 30 51 41.5 37.5 10.2 1.2 22 440 11.0 7.7 0.22 82 EZPE80256MTA 25 30 51 41.5 37.5 10.2 1.2 22 550 13.0 6.4 0.22 80 EZPE80306MTA 30 30 51 41.5 37.5 20.3 1.2 22 660 15.0 5.3 0.22 78 EZPE80356MTA 35 30 51 57.5 52.5 10.2 1.2 15 525 12.0 9.7 0.33 110 EZPE80406MTA 40 30 51 57.5 52.5 20.3 1.2 15 600 13.0 8.3 0.33 107 EZPE80456MTA 45 30 51 57.5 52.5 20.3 1.2 15 675 14.0 7.0 0.33 104 EZPE80506MTA 50 35 56 57.5 52.5 20.3 1.2 15 750 15.0 6.3 0.33 140 EZPE80556MTA 55 35 56 57.5 52.5 20.3 1.2 15 825 16.0 5.9 0.33 138 EZPE80606MTA 60 35 56 57.5 52.5 20.3 1.2 15 900 17.0 5.6 0.33 136 Part No. Dimensions (mm) Permissible current W H L P1 P2 􀐟 600 400 200 ESRtyp [m􀐊] (*3) tan􀐎 [%] (*4) Mass [􀌶] MOQ [pcs] (*5) dv/dt [V/μs] Peak Current [Ao-p] (*1) RMS Current [Arms] (*2) CR. (μF) ●Type EZPE Rated voltage : 1100 VDC at 70 􀋆 ( 920VDC at 85 􀋆 ) EZPE1B106MTA 10 20 42 41.5 37.5 10.2 1.2 54 540 7.0 12.3 0.20 43 EZPE1B156MTA 15 30 51 41.5 37.5 10.2 1.2 54 810 8.5 8.2 0.20 80 EZPE1B206MTA 20 30 51 41.5 37.5 20.3 1.2 54 1080 10.0 6.3 0.20 76 EZPE1B256MTA 25 30 51 57.5 52.5 10.2 1.2 35 875 8.0 10.7 0.28 107 EZPE1B306MTA 30 30 51 57.5 52.5 20.3 1.2 35 1050 9.0 8.5 0.28 103 EZPE1B356MTA 35 35 56 57.5 52.5 20.3 1.2 35 1225 10.0 7.2 0.28 137 EZPE1B406MTA 40 35 56 57.5 52.5 20.3 1.2 35 1400 11.0 6.5 0.28 134 Part No. Dimensions (mm) Permissible current W H L P1 P2 􀐟 600 400 200 ESRtyp [m􀐊] (*3) tan􀐎 [%] (*4) Mass [􀌶] MOQ [pcs] (*5) dv/dt [V/μs] Peak Current [Ao-p] (*1) RMS Current [Arms] (*2) CR. (μF) ●Type EZPE Rated voltage : 1300 VDC at 70 􀋆 ( 1100VDC at 85 􀋆 ) EZPE1D106MTA 10 30 51 41.5 37.5 10.2 1.2 73 730 12.0 10.0 0.17 80 EZPE1D156MTA 15 30 51 57.5 52.5 10.2 1.2 50 750 10.0 14.5 0.22 109 EZPE1D206MTA 20 30 51 57.5 52.5 20.3 1.2 50 1000 14.0 11.1 0.22 103 EZPE1D256MTA 25 35 56 57.5 52.5 20.3 1.2 50 1250 17.0 8.5 0.22 136 Part No. Dimensions (mm) Permissible current W H L P1 P2 􀐟 400 200 ESRtyp [m􀐊] (*3) tan􀐎 [%] (*4) Mass [􀌶] MOQ [pcs] (*5) dv/dt [V/μs] Peak Current [Ao-p] (*1) RMS Current [Arms] (*2) CR. (μF) *1:When rising temperature of capacitor surface by continuous peak current (included pulse current), use within limit specified for temperature of capacitor surface and self heating temperature rise. *2:Maximum RMS current @ 70 􀋆, 10 kHz Use within limit for self heating temperature rise at capacitor surface. *3:Typical values @ 20􀋆, 10 kHz ESR : less than 2.5 􀊷 ESRtyp *4:Maximum dissipation factor @20􀋆, 1 kHz *5:Minimum order quantity consists of 4 packing units. Metallized Film Plastic Film Capacitors Design, Specifications are subject to change without notice. Ask factory for technical specifications before purchase and/or use. Whenever a doubt about safety arises from this product, please inform us immediately for technical consultation without fail. ■Permissible Conditions ●Permissible Voltage ・These capacitors are designed only for DC voltage, so should not be used for AC line. ・Use the peak voltage (Vo-p) within the rated voltage. ・Use the peak to peak voltage (Vp-p) within 0.2 x VR . ●DC Voltage, Peak current and RMS current derating Derating of voltage (Vo-p), RMS current (Arms), and peak current (Ao-p) according to the following diagram when the temperature of the capacitor surface exceeds 70 ℃. ●Permissible self heating temperature rise ●Total cycles applied peak current 60 65 70 75 80 85 90 95 100 Voltage ① Voltage ② Permissible voltage (Vo-p) Temperature of capacitor surface TC (℃) DC Voltage derating Percentage to the permissible current (%) Current derating Temperature of capacitor surface TC (℃) Total cycles applied peak current (Ao-p) (including pulse current) are within following diagram. Permissible self heating temperature rise is within following diagram when the temperature of the capacitor surface exceeds 70 ℃. Please consult Panasonic if your condition exceeds the above spec. Vp-p = 0.2 × VR VR ≧ Vo-p Vo 0% 20% 40% 60% 80% 100% 120% 60 65 70 75 80 85 90 95 100 Part Number Voltage ① Voltage ② EZPE50 □□□□ TA DC500V DC450V EZPE80 □□□□ TA DC800V DC700V EZPE1B □□□□ TA DC1100V DC920V EZPE1D □□□□ TA DC1300V DC1100V Total cycles Percentage to the permissible peak current (%) Permissible self temp. rise(℃) Temperature of capacitor surface TC (℃) 0% 20% 40% 60% 80% 100% 120% 60 65 70 75 80 85 90 95 100 0% 20% 40% 60% 80% 100% 10 100 1000 10000 100000 Part Number 100% at70℃ 36% at85℃ EZPE50 □□□□ TA 12 ℃ 4.3 ℃ EZPE80 □□□□ TA 10 ℃ 3.6 ℃ EZPE1B □□□□ TA 5 ℃ 1.8 ℃ EZPE1D □□□□ TA 9 ℃ 3.2 ℃ Plastic Film Capacitors Design, Specifications are subject to change without notice. Ask factory for technical specifications before purchase and/or use. Whenever a doubt about safety arises from this product, please inform us immediately for technical consultation without fail. ■Characteristics <Reference> ●Type EZPE Rated voltage : 500 VDC at 70 ℃ ( 450VDC at 85 ℃ ) ●Temperature Characteristics ●Frequency Characteristics ●Lifetime expectancy -10 -5 0 5 10 -60 -40 -20 0 20 40 60 80 100 120 ⊿C/C (%) Temperature (℃) Capacitance (typical curve) at 1kHz 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 -60 -40 -20 0 20 40 60 80 100 120 60uF 20uF 110uF 100uF Dissipation factor (typical curve) tanδ (%) Temperature (℃) at 1kHz 1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 -60 -40 -20 0 20 40 60 80 100 120 C・R (Ω・F) Temperature (℃) at 500VDC Insulation resistance (typical curve) Impedance vs. Frequency (typical curve) Impedance (Ω) Frequency (kHz) Permissible voltage (Vo-p) Lifetime expectancy (h) Lifetime expectancy (Reference) * Life time : Reach ⊿C/C = - 10 % , Judgement of Panasonic * 105℃ : Not guarantee voltage 0.001 0.01 0.1 1 10 100 1 10 100 1000 10000 20uF 60uF 110uF 200 250 300 350 400 450 500 550 1000 10000 100000 1000000 Tc=85℃ Tc=105℃ (I=0Arms) Tc=70℃ Unpredictable life time area Plastic Film Capacitors Design, Specifications are subject to change without notice. Ask factory for technical specifications before purchase and/or use. Whenever a doubt about safety arises from this product, please inform us immediately for technical consultation without fail. ■Characteristics <Reference> ●Type EZPE Rated voltage : 800 VDC at 70 ℃ ( 700VDC at 85 ℃ ) ●Temperature Characteristics ●Frequency Characteristics ●Lifetime expectancy -10 -5 0 5 10 -60 -40 -20 0 20 40 60 80 100 120 ⊿C/C (%) Temperature (℃) Capacitance (typical curve) at 1kHz 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 -60 -40 -20 0 20 40 60 80 100 120 30uF 10uF 60uF 45uF Dissipation factor (typical curve) tanδ (%) Temperature (℃) at 1kHz 1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 -60 -40 -20 0 20 40 60 80 100 120 C・R (Ω・F) Temperature (℃) at 500VDC Insulation resistance (typical curve) 0.001 0.01 0.1 1 10 100 1 10 100 1000 10000 30uF 10uF 45uF 60uF Impedance vs. Frequency (typical curve) Impedance (Ω) Frequency (kHz) 300 400 500 600 700 800 900 1000 10000 100000 1000000 Tc=85℃ Tc=105℃ (I=0Arms) Tc=70℃ Unpredictable life time area Permissible voltage (Vo-p) Lifetime expectancy (h) Lifetime expectancy (Reference) * Life time : Reach ⊿C/C = - 10 % , Judgement of Panasonic * 105℃ : Not guarantee voltage Plastic Film Capacitors Design, Specifications are subject to change without notice. Ask factory for technical specifications before purchase and/or use. Whenever a doubt about safety arises from this product, please inform us immediately for technical consultation without fail. ■Characteristics <Reference> ●Type EZPE Rated voltage : 1100 VDC at 70 ℃ ( 920VDC at 85 ℃ ) ●Temperature Characteristics ●Frequency Characteristics ●Lifetime expectancy at 1kHz 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 -60 -40 -20 0 20 40 60 80 100 120 20uF 10uF 40uF Dissipation factor (typical curve) tanδ (%) Temperature (℃) -10 -5 0 5 10 -60 -40 -20 0 20 40 60 80 100 120 ⊿C/C (%) Temperature (℃) Capacitance (typical curve) at 1kHz 1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 -60 -40 -20 0 20 40 60 80 100 120 C・R (Ω・F) Temperature (℃) at 500VDC Insulation resistance (typical curve) 0.001 0.01 0.1 1 10 100 1 10 100 1000 10000 20uF 10uF 40uF Impedance vs. Frequency (typical curve) Impedance (Ω) Frequency (kHz) 400 500 600 700 800 900 1000 1100 1200 1000 10000 100000 1000000 Unpredictable life time area Tc=85℃ Tc=105℃ ( I = 0Arms) Tc=70℃ Permissible voltage (Vo-p) Lifetime expectancy (h) Lifetime expectancy (Reference) * Life time : Reach ⊿C/C = - 10 % , Judgement of Panasonic * 105℃ : Not guarantee voltage Plastic Film Capacitors Design, Specifications are subject to change without notice. Ask factory for technical specifications before purchase and/or use. Whenever a doubt about safety arises from this product, please inform us immediately for technical consultation without fail. ■Characteristics <Reference> ●Type EZPE Rated voltage : 1300 VDC at 70 ℃ ( 1100VDC at 85 ℃ ) ●Temperature Characteristics ●Frequency Characteristics ●Lifetime expectancy -10 -5 0 5 10 -60 -40 -20 0 20 40 60 80 100 120 ⊿C/C (%) Temperature (℃) Capacitance (typical curve) at 1kHz Dissipation factor (typical curve) tanδ (%) Temperature (℃) at 1kHz 1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 -60 -40 -20 0 20 40 60 80 100 120 C・R (Ω・F) Temperature (℃) at 500VDC Insulation resistance (typical curve) Impedance vs. Frequency (typical curve) Impedance (Ω) Frequency (kHz) Permissible voltage (Vo-p) Lifetime expectancy (h) 500 600 700 800 900 1000 1100 1200 1300 1400 1000 10000 100000 1000000 Unpredictable life time area Tc=85℃ Tc=105℃ (I=0Arms) Tc=70℃ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 -60 -40 -20 0 20 40 60 80 100 120 25uF 15uF 10uF 0.001 0.01 0.1 1 10 100 1 10 100 1000 10000 10uF 15uF 25uF Lifetime expectancy (Reference) * Life time : Reach ⊿C/C = - 10 % , Judgement of Panasonic * 105℃ : Not guarantee voltage Panasonic Corporation Automation Controls Business Division industrial.panasonic.com/ac/e/ AYF33 ACCTB47E 201303-T ORDERING INFORMATION For FPC Y3B/Y3BW Series FPC connectors (0.3mm pitch) Back lock Y3BW is added. FEATURES 1. Slim and low profile design (Pitch: 0.3 mm) Back lock type and the slim body with a 3.15 mm depth (with the lever). 2. Mechanical design freedom is achieved with double top and bottom contacts Top and bottom double contacts eliminate the need of using different connectors (with either top or bottom contacts) depending on the FPC wiring conditions. 3. Easy-to-handle back lock structure 4. Man-hours of assembly time can be reduced by delivering the connectors with their levers opened. 5. Wiring patterns can be placed underneath the connector. 6. Ni barrier with high resistance to solder creepage 7. Y3BW features advanced functionality, including a structure to temporarily hold the FPC and a higher holding force. The FPC holding contacts located on both ends of the connector facilitate positioning of FPC and further enhance the FPC holding force. (1) The inserted FPC can be temporarily held until the lever is closed. (2) When the lever is closed, the holding contacts lock the FPC by its notches, enhancing the FPC holding force. APPLICATIONS Mobile devices, such as cellular phones, smartphones, digital still cameras and digital video cameras. Y3B Y3BW RoHS compliant Unit: mm 0.9 3.15 Structure to lock notches on both ends of the FPC with holding contacts Applicable FPC shapes New 33: FPC Connector 0.3 mm pitch (Back lock) AYF 3 3 5 Number of pins (2 digits) Contact direction 3: Top and bottom double contacts (Y3B) 6: Top and bottom double contacts, lock holding type (Y3BW) Surface treatment (Contact portion / Terminal portion) 5: Au plating/Au plating (Ni barrier) Panasonic Corporation Automation Controls Business Unit industrial.panasonic.com/ac/e/ GN (AGN) ASCTB13E 201209-T ORDERING INFORMATION High Sensitivity, with 100mW nominal operating power, in a compact and space saving case GN RELAYS (AGN) RoHS compliant FEATURES 1. Compact slim body saves space Thanks to the small surface area of 5.7 mm × 10.6 mm .224 inch × .417 inch and low height of 9.0 mm .354 inch, the packaging density can be increased to allow for much smaller designs. 2. High sensitivity single side stable type (Nominal operating power: 100mW) is available 3. Outstanding surge resistance. Surge breakdown voltage between contacts and coil: 2,500 V 2×10 μs (Telcordia) Surge breakdown voltage between open contacts: 1,500 V 10×160 μs (FCC part 68) 4. The use of twin crossbar contacts ensures high contact reliability. AgPd contact is used because of its good sulfide resistance. Adopting lowgas molding material. Coil assembly molding technology which avoids generating volatile gas from coil. 5. Increased packaging density Due to highly efficient magnetic circuit design, leakage flux is reduced and changes in electrical characteristics from components being mounted close-together are minimized. This all means a packaging density higher than ever before. 6. Nominal operating power: 140 mW 7. Outstanding vibration and shock resistance. Functional shock resistance: 750 m/s2 Destructive shock resistance: 1,000 m/s2 Functional vibration resistance: 10 to 55 Hz (at double amplitude of 3.3 mm .130 inch) Destructive vibration resistance: 10 to 55 Hz (at double amplitude of 5 mm .197 inch) 8. Sealed construction allows automatic washing. TYPICAL APPLICATIONS 1. Telephonic equipment 2. Telecommunications equipment 3. Security equipment 4. Test and Measurement equipment 5. Electronic Consumer and Audio Visual equipment Nominal coil voltage (DC) 1H: 1.5V 03: 3V 4H: 4.5V 06: 6V 09: 9V 12: 12V 24: 24V Contact arrangement 2: 2 Form C Type of operation 0: Standard type (B.B.M.) AGN 2 0 Operating function 0: Single side stable 1: 1 coil latching 6: High sensitivity single side stable type Terminal shape Nil: A: S: Standard PC board terminal Surface-mount terminal A type Surface-mount terminal S type Packing style Nil: X: Z: Tube packing Tape and reel packing (picked from 1/2/3/4 pin side) Tape and reel packing (picked from 5/6/7/8 pin side) Design and specifi cations are each subject to change without notice. Ask factory for the current technical specifi cations before purchase and/or use. Should a safety concern arise regarding this product, please be sure to contact us immediately. Aluminum Electrolytic Capacitors/ NHG – EEE-99 – 05 to 08 0D±0.5 0d±0.05 F±0.5 Sleeve L􀀽 14 min. 3 min. 􀀽􀀀L􀀝16 : L±1.0 L􀀟20 : L±2.0 Pressure relief 06.3􀀝 + – 010􀀝 0D±0.5 ■ Features ● Endurance : 105 °C 1000 h to 2000 h ● RoHS directive compliant Radial Lead Type Series: NHG Type: A ■ Specifi cations Category Temp. Range –55 °C to +105 °C –25 °C to +105 °C Rated W.V. Range 6.3 V.DC to 100 V.DC 160 V.DC to 450 V.DC Nominal Cap. Range 2.2 μF to 22000 μF 1 μF to 330 μF Capacitance Tolerance ±20 % (120 Hz/+20 °C) DC Leakage Cur rent I < 0.01 CV or 3 (μA) After 2 minutes (Which is greater) I < 0.06 CV +10 (μA) After 2 minutes tan d Please see the attached standard products list Endurance After following life test with DC voltage and +105 °C±2 °C ripple current value applied (The sum of DC and ripple peak voltage shall not exceed the rated working voltage), When the capacitors are restored to 20 °C, the capacitors shall meet the limits specifi ed below. Duration : 6.3 V.DC to 100 V.DC : (05 to 08)=1000 hours, (010 to 018)=2000 hours 160 V.DC to 450 V.DC : 2000 hours Capacitance change ±20 % of initial measured value tan d < 200 % of initial specifi ed value DC leakage current < initial specifi ed value Shelf Life After storage for 1000 hours at +105 °C±2 °C with no voltage applied and then being stabilized at +20 °C, capacitors shall meet the limits specifi ed in Endurance. (With voltage treatment) ■ Di men sions in mm (not to scale) W.V.(V.DC) Cap. (μF) Frequency (Hz) 60 120 1 k 10 k 100 k 6.3 to 100 2.2 to 33 0.75 1.00 1.55 1.80 2.00 47 to 470 0.80 1.00 1.35 1.50 1.50 1000 to 22000 0.85 1.00 1.10 1.15 1.15 160 to 450 1 to 330 0.80 1.00 1.35 1.50 1.50 ■ Frequency correction factor for ripple current Body Dia. 0D 5 6.3 8 10 12.5 16 18 Lead Dia. 0d 0.5 0.5 0.6 0.6 0.6 0.8 0.8 Lead space F 2.0 2.5 3.5 5.0 5.0 7.5 7.5 (Unit : mm) 01 Oct. 2013 Design and specifi cations are each subject to change without notice. Ask factory for the current technical specifi cations before purchase and/or use. Should a safety concern arise regarding this product, please be sure to contact us immediately. Aluminum Electrolytic Capacitors/ NHG – EEE-100 – ■ Standard Prod ucts W.V. Cap. (±20 %) Case size Specifi cation Lead Length Part No. Min. Packaging Q'ty Dia. Length Ripple Current (120 Hz) (+105 °C) tan d (120 Hz) (+20 °C) Endurance Lead Dia. Lead Space Straight Leads Taping Straight Taping ✽B Taping ✽i (V) (μF) (mm) (mm) (mA r.m.s.) (hours) (mm) (mm) (mm) (mm) (pcs) (pcs) 6.3 220 5 11 140 0.28 1000 0.5 2.0 5.0 2.5 ECA0JHG221( ) 200 2000 470 6.3 11.2 230 0.28 1000 0.5 2.5 5.0 2.5 ECA0JHG471( ) 200 2000 1000 8 11.5 380 0.28 1000 0.6 3.5 5.0 ECA0JHG102( ) 200 1000 2200 10 16 710 0.30 2000 0.6 5.0 5.0 ECA0JHG222( ) 200 500 3300 10 20 840 0.32 2000 0.6 5.0 5.0 ECA0JHG332( ) 200 500 4700 12.5 20 1090 0.34 2000 0.6 5.0 5.0 ECA0JHG472( ) 200 500 6800 12.5 25 1350 0.38 2000 0.6 5.0 5.0 ECA0JHG682( ) 200 500 10000 16 25 1650 0.46 2000 0.8 7.5 7.5 ECA0JHG103( ) 100 250 15000 16 31.5 2010 0.56 2000 0.8 7.5 ECA0JHG153 100 22000 18 35.5 2350 0.70 2000 0.8 7.5 ECA0JHG223 50 10 330 6.3 11.2 200 0.24 1000 0.5 2.5 5.0 2.5 ECA1AHG331( ) 200 2000 470 8 11.5 250 0.24 1000 0.6 3.5 5.0 ECA1AHG471( ) 200 1000 1000 10 12.5 460 0.24 2000 0.6 5.0 5.0 ECA1AHG102( ) 200 500 2200 10 20 760 0.26 2000 0.6 5.0 5.0 ECA1AHG222( ) 200 500 3300 12.5 20 1000 0.28 2000 0.6 5.0 5.0 ECA1AHG332( ) 200 500 4700 12.5 25 1260 0.30 2000 0.6 5.0 5.0 ECA1AHG472( ) 200 500 6800 16 25 1570 0.34 2000 0.8 7.5 7.5 ECA1AHG682( ) 100 250 10000 16 31.5 1890 0.42 2000 0.8 7.5 ECA1AHG103 100 15000 18 35.5 2180 0.52 2000 0.8 7.5 ECA1AHG153 50 16 100 5 11 110 0.20 1000 0.5 2.0 5.0 2.5 ECA1CHG101( ) 200 2000 220 6.3 11.2 180 0.20 1000 0.5 2.5 5.0 2.5 ECA1CHG221( ) 200 2000 330 8 11.5 260 0.20 1000 0.6 3.5 5.0 ECA1CHG331( ) 200 1000 470 8 11.5 310 0.20 1000 0.6 3.5 5.0 ECA1CHG471( ) 200 1000 1000 10 16 560 0.20 2000 0.6 5.0 5.0 ECA1CHG102( ) 200 500 2200 12.5 20 920 0.22 2000 0.6 5.0 5.0 ECA1CHG222( ) 200 500 3300 12.5 25 1170 0.24 2000 0.6 5.0 5.0 ECA1CHG332( ) 200 500 4700 16 25 1480 0.26 2000 0.8 7.5 7.5 ECA1CHG472( ) 100 250 6800 16 31.5 1780 0.30 2000 0.8 7.5 ECA1CHG682 100 10000 18 35.5 2060 0.38 2000 0.8 7.5 ECA1CHG103 50 25 47 5 11 91 0.16 1000 0.5 2.0 5.0 2.5 ECA1EHG470( ) 200 2000 100 6.3 11.2 130 0.16 1000 0.5 2.5 5.0 2.5 ECA1EHG101( ) 200 2000 220 8 11.5 230 0.16 1000 0.6 3.5 5.0 ECA1EHG221( ) 200 1000 330 8 11.5 310 0.16 1000 0.6 3.5 5.0 ECA1EHG331( ) 200 1000 470 10 12.5 380 0.16 2000 0.6 5.0 5.0 ECA1EHG471( ) 200 500 1000 10 20 680 0.16 2000 0.6 5.0 5.0 ECA1EHG102( ) 200 500 2200 12.5 25 1090 0.18 2000 0.6 5.0 5.0 ECA1EHG222( ) 200 500 3300 16 25 1400 0.20 2000 0.8 7.5 7.5 ECA1EHG332( ) 100 250 4700 16 31.5 1750 0.22 2000 0.8 7.5 ECA1EHG472 100 6800 18 35.5 2040 0.26 2000 0.8 7.5 ECA1EHG682 50 35 47 5 11 90 0.14 1000 0.5 2.0 5.0 2.5 ECA1VHG470( ) 200 2000 100 6.3 11.2 150 0.14 1000 0.5 2.5 5.0 2.5 ECA1VHG101( ) 200 2000 220 8 11.5 270 0.14 1000 0.6 3.5 5.0 ECA1VHG221( ) 200 1000 330 10 12.5 350 0.14 2000 0.6 5.0 5.0 ECA1VHG331( ) 200 500 470 10 16 460 0.14 2000 0.6 5.0 5.0 ECA1VHG471( ) 200 500 1000 12.5 20 810 0.14 2000 0.6 5.0 5.0 ECA1VHG102( ) 200 500 2200 16 25 1260 0.16 2000 0.8 7.5 7.5 ECA1VHG222( ) 100 250 3300 16 31.5 1610 0.18 2000 0.8 7.5 ECA1VHG332 100 4700 18 35.5 1910 0.20 2000 0.8 7.5 ECA1VHG472 50 · When requesting taped product, please put the letter "B" or "i" between the "( )". Lead wire pitch ✽B=5 mm, 7.5 mm, i=2.5 mm. · Please refer to the page of “Taping Dimensions”. 01 Oct. 2013 Design and specifi cations are each subject to change without notice. Ask factory for the current technical specifi cations before purchase and/or use. Should a safety concern arise regarding this product, please be sure to contact us immediately. Aluminum Electrolytic Capacitors/ NHG – EEE-101 – ■ Standard Prod ucts W.V. Cap. (±20 %) Case size Specifi cation Lead Length Part No. Min. Packaging Q'ty Dia. Length Ripple Current (120 Hz) (+105 °C) tan d (120 Hz) (+20 °C) Endurance Lead Dia. Lead Space Straight Leads Taping Straight Taping ✽B Taping ✽i (V) (μF) (mm) (mm) (mA r.m.s.) (hours) (mm) (mm) (mm) (mm) (pcs) (pcs) 50 0.1 5 11 1.1 0.12 1000 0.5 2.0 5.0 2.5 ECA1HHG0R1( )✽✽✽ 200 2000 0.22 5 11 2.3 0.12 1000 0.5 2.0 5.0 2.5 ECA1HHGR22( )✽✽✽ 200 2000 0.33 5 11 3.5 0.12 1000 0.5 2.0 5.0 2.5 ECA1HHGR33( )✽✽✽ 200 2000 0.47 5 11 5 0.12 1000 0.5 2.0 5.0 2.5 ECA1HHGR47( )✽✽✽ 200 2000 1 5 11 10 0.12 1000 0.5 2.0 5.0 2.5 ECA1HHG010( )✽✽✽ 200 2000 2.2 5 11 18 0.12 1000 0.5 2.0 5.0 2.5 ECA1HHG2R2( ) 200 2000 3.3 5 11 22 0.12 1000 0.5 2.0 5.0 2.5 ECA1HHG3R3( ) 200 2000 4.7 5 11 26 0.12 1000 0.5 2.0 5.0 2.5 ECA1HHG4R7( ) 200 2000 10 5 11 39 0.12 1000 0.5 2.0 5.0 2.5 ECA1HHG100( ) 200 2000 22 5 11 65 0.12 1000 0.5 2.0 5.0 2.5 ECA1HHG220( ) 200 2000 33 5 11 90 0.12 1000 0.5 2.0 5.0 2.5 ECA1HHG330( ) 200 2000 47 6.3 11.2 110 0.12 1000 0.5 2.5 5.0 2.5 ECA1HHG470( ) 200 2000 100 8 11.5 180 0.12 1000 0.6 3.5 5.0 ECA1HHG101( ) 200 1000 220 10 12.5 300 0.12 2000 0.6 5.0 5.0 ECA1HHG221( ) 200 500 330 10 16 410 0.12 2000 0.6 5.0 5.0 ECA1HHG331( ) 200 500 470 10 20 530 0.12 2000 0.6 5.0 5.0 ECA1HHG471( ) 200 500 1000 12.5 25 950 0.12 2000 0.6 5.0 5.0 ECA1HHG102( ) 200 500 2200 16 31.5 1470 0.14 2000 0.8 7.5 ECA1HHG222 100 3300 18 35.5 1770 0.16 2000 0.8 7.5 ECA1HHG332 50 63 10 5 11 46 0.10 1000 0.5 2.0 5.0 2.5 ECA1JHG100( ) 200 2000 22 5 11 71 0.10 1000 0.5 2.0 5.0 2.5 ECA1JHG220( ) 200 2000 33 6.3 11.2 100 0.10 1000 0.5 2.5 5.0 2.5 ECA1JHG330( ) 200 2000 47 6.3 11.2 120 0.10 1000 0.5 2.5 5.0 2.5 ECA1JHG470( ) 200 2000 100 10 12.5 215 0.10 2000 0.6 5.0 5.0 ECA1JHG101( ) 200 500 220 10 16 335 0.10 2000 0.6 5.0 5.0 ECA1JHG221( ) 200 500 330 10 20 510 0.10 2000 0.6 5.0 5.0 ECA1JHG331( ) 200 500 470 12.5 20 640 0.10 2000 0.6 5.0 5.0 ECA1JHG471( ) 200 500 1000 16 25 930 0.10 2000 0.8 7.5 7.5 ECA1JHG102( ) 100 250 2200 18 35.5 1610 0.12 2000 0.8 7.5 ECA1JHG222 50 100 0.47 5 11 9 0.08 1000 0.5 2.0 5.0 2.5 ECA2AHGR47( )✽✽✽ 200 2000 1 5 11 14 0.08 1000 0.5 2.0 5.0 2.5 ECA2AHG010( )✽✽✽ 200 2000 2.2 5 11 21 0.08 1000 0.5 2.0 5.0 2.5 ECA2AHG2R2( ) 200 2000 3.3 5 11 31 0.08 1000 0.5 2.0 5.0 2.5 ECA2AHG3R3( ) 200 2000 4.7 5 11 38 0.08 1000 0.5 2.0 5.0 2.5 ECA2AHG4R7( ) 200 2000 10 6.3 11.2 54 0.08 1000 0.5 2.5 5.0 2.5 ECA2AHG100( ) 200 2000 22 6.3 11.2 93 0.08 1000 0.5 2.5 5.0 2.5 ECA2AHG220( ) 200 2000 · When requesting taped product, please put the letter "B" or "i" between the "( )". Lead wire pitch ✽B=5 mm, 7.5 mm, i=2.5 mm. · Please refer to the page of “Taping Dimensions”. ✽✽✽ Please kindly accept last shipment : 31/Mar/2015 01 Oct. 2013 Design and specifi cations are each subject to change without notice. Ask factory for the current technical specifi cations before purchase and/or use. Should a safety concern arise regarding this product, please be sure to contact us immediately. Aluminum Electrolytic Capacitors/ NHG – EEE-102 – ■ Standard Prod ucts W.V. Cap. (±20 %) Case size Specifi cation Lead Length Part No. Min. Packaging Q'ty Dia. Length Ripple Current (120 Hz) (+105 °C) tan d (120 Hz) (+20 °C) Endurance Lead Dia. Lead Space Straight Leads Taping Straight Taping ✽B Taping ✽i (V) (μF) (mm) (mm) (mA r.m.s.) (hours) (mm) (mm) (mm) (mm) (pcs) (pcs) 100 33 8 11.5 130 0.08 1000 0.6 3.5 5.0 ECA2AHG330( ) 200 1000 47 10 12.5 165 0.08 2000 0.6 5.0 5.0 ECA2AHG470( ) 200 500 100 10 20 265 0.08 2000 0.6 5.0 5.0 ECA2AHG101( ) 200 500 220 12.5 25 440 0.08 2000 0.6 5.0 5.0 ECA2AHG221( ) 200 500 330 16 25 540 0.08 2000 0.8 7.5 7.5 ECA2AHG331( ) 100 250 470 16 25 715 0.08 2000 0.8 7.5 7.5 ECA2AHG471( ) 100 250 1000 18 35.5 985 0.08 2000 0.8 7.5 ECA2AHG102 50 160 1 6.3 11.2 17 0.15 2000 0.5 2.5 5.0 2.5 ECA2CHG010( ) 200 2000 2.2 6.3 11.2 25 0.15 2000 0.5 2.5 5.0 2.5 ECA2CHG2R2( ) 200 2000 3.3 6.3 11.2 36 0.15 2000 0.5 2.5 5.0 2.5 ECA2CHG3R3( ) 200 2000 4.7 6.3 11.2 43 0.15 2000 0.5 2.5 5.0 2.5 ECA2CHG4R7( ) 200 2000 10 10 12.5 70 0.15 2000 0.6 5.0 5.0 ECA2CHG100( ) 200 500 22 10 20 130 0.15 2000 0.6 5.0 5.0 ECA2CHG220( ) 200 500 33 10 20 180 0.15 2000 0.6 5.0 5.0 ECA2CHG330( ) 200 500 47 12.5 20 220 0.15 2000 0.6 5.0 5.0 ECA2CHG470( ) 200 500 100 16 25 335 0.15 2000 0.8 7.5 7.5 ECA2CHG101( ) 100 250 220 16 31.5 540 0.15 2000 0.8 7.5 ECA2CHG221 100 330 18 31.5 705 0.15 2000 0.8 7.5 ECA2CHG331 50 200 1 6.3 11.2 17 0.15 2000 0.5 2.5 5.0 2.5 ECA2DHG010( ) 200 2000 2.2 6.3 11.2 25 0.15 2000 0.5 2.5 5.0 2.5 ECA2DHG2R2( ) 200 2000 3.3 6.3 11.2 36 0.15 2000 0.5 2.5 5.0 2.5 ECA2DHG3R3( ) 200 2000 4.7 8 11.5 50 0.15 2000 0.6 3.5 5.0 ECA2DHG4R7( ) 200 1000 10 10 16 80 0.15 2000 0.6 5.0 5.0 ECA2DHG100( ) 200 500 22 10 20 140 0.15 2000 0.6 5.0 5.0 ECA2DHG220( ) 200 500 33 12.5 20 190 0.15 2000 0.6 5.0 5.0 ECA2DHG330( ) 200 500 47 12.5 20 220 0.15 2000 0.6 5.0 5.0 ECA2DHG470( ) 200 500 100 16 25 335 0.15 2000 0.8 7.5 7.5 2.5 ECA2DHG101( ) 100 250 220 18 31.5 575 0.15 2000 0.8 7.5 ECA2DHG221 50 250 1 6.3 11.2 17 0.15 2000 0.5 2.5 5.0 2.5 ECA2EHG010( ) 200 2000 2.2 6.3 11.2 29 0.15 2000 0.5 2.5 5.0 2.5 ECA2EHG2R2( ) 200 2000 3.3 8 11.5 42 0.15 2000 0.6 3.5 5.0 ECA2EHG3R3 200 1000 4.7 8 11.5 50 0.15 2000 0.6 3.5 5.0 ECA2EHG4R7( ) 200 1000 10 10 16 88 0.15 2000 0.6 5.0 5.0 ECA2EHG100( ) 200 500 22 12.5 20 155 0.15 2000 0.6 5.0 5.0 ECA2EHG220( ) 200 500 33 12.5 20 190 0.15 2000 0.6 5.0 5.0 ECA2EHG330( ) 200 500 47 12.5 25 230 0.15 2000 0.6 5.0 5.0 ECA2EHG470( ) 200 500 100 16 31.5 365 0.15 2000 0.8 7.5 ECA2EHG101 100 350 1 6.3 11.2 18 0.20 2000 0.5 2.5 5.0 2.5 ECA2VHG010( ) 200 2000 2.2 8 11.5 31 0.20 2000 0.6 3.5 5.0 ECA2VHG2R2( ) 200 1000 3.3 10 12.5 38 0.20 2000 0.6 5.0 5.0 ECA2VHG3R3( ) 200 500 4.7 10 16 50 0.20 2000 0.6 5.0 5.0 ECA2VHG4R7( ) 200 500 10 10 20 82 0.20 2000 0.6 5.0 5.0 ECA2VHG100( ) 200 500 22 12.5 20 130 0.20 2000 0.6 5.0 5.0 ECA2VHG220( ) 200 500 33 16 25 195 0.20 2000 0.8 7.5 7.5 ECA2VHG330( ) 100 250 47 16 25 230 0.20 2000 0.8 7.5 7.5 ECA2VHG470( ) 100 250 100 18 31.5 375 0.20 2000 0.8 7.5 ECA2VHG101 50 · When requesting taped product, please put the letter "B" or "i" between the "( )". Lead wire pitch ✽B=5 mm, 7.5 mm, i=2.5 mm. · Please refer to the page of “Taping Dimensions”. 01 Oct. 2013 Design and specifi cations are each subject to change without notice. Ask factory for the current technical specifi cations before purchase and/or use. Should a safety concern arise regarding this product, please be sure to contact us immediately. Aluminum Electrolytic Capacitors/ NHG – EEE-103 – ■ Standard Prod ucts W.V. Cap. (±20 %) Case size Specifi cation Lead Length Part No. Min. Packaging Q'ty Dia. Length Ripple Current (120 Hz) (+105 °C) tan d (120 Hz) (+20 °C) Endurance Lead Dia. Lead Space Straight Leads Taping Straight Taping ✽B Taping ✽i (V) (μF) (mm) (mm) (mA r.m.s.) (hours) (mm) (mm) (mm) (mm) (pcs) (pcs) 400 1 6.3 11.2 18 0.24 2000 0.5 2.5 5.0 2.5 ECA2GHG010( ) 200 2000 2.2 8 11.5 30 0.24 2000 0.6 3.5 5.0 ECA2GHG2R2( ) 200 1000 3.3 10 12.5 40 0.24 2000 0.6 5.0 5.0 ECA2GHG3R3( ) 200 500 4.7 10 16 50 0.24 2000 0.6 5.0 5.0 ECA2GHG4R7( ) 200 500 10 10 20 80 0.24 2000 0.6 5.0 5.0 ECA2GHG100( ) 200 500 22 12.5 25 145 0.24 2000 0.6 5.0 5.0 ECA2GHG220( ) 200 500 33 16 25 195 0.24 2000 0.8 7.5 7.5 ECA2GHG330( ) 100 250 47 16 31.5 250 0.24 2000 0.8 7.5 ECA2GHG470 100 450 1 8 11.5 18 0.24 2000 0.6 3.5 5.0 ECA2WHG010( ) 200 1000 2.2 10 12.5 29 0.24 2000 0.6 5.0 5.0 ECA2WHG2R2( ) 200 500 3.3 10 16 41 0.24 2000 0.6 5.0 5.0 ECA2WHG3R3( ) 200 500 4.7 10 20 49 0.24 2000 0.6 5.0 5.0 ECA2WHG4R7( ) 200 500 10 12.5 20 75 0.24 2000 0.6 5.0 5.0 ECA2WHG100( ) 200 500 22 16 25 115 0.24 2000 0.8 7.5 7.5 ECA2WHG220( ) 100 250 33 16 31.5 155 0.24 2000 0.8 7.5 ECA2WHG330 100 · When requesting taped product, please put the letter "B" or "i" between the "( )". Lead wire pitch ✽B=5 mm, 7.5 mm, i=2.5 mm. · Please refer to the page of “Taping Dimensions”. 01 Oct. 2013  Highest ripple current capability for demanding inverter applications  2 and 3 pin versions available  3000 hour life at 105ºC Part Number System Voltage Capacitance Code Code 2 3 4.0mm 4.0mm H P J Q K R L S TS-ED Standard Ratings (part numbers shown with 6.3mm length terminal and top vinyl plate) Cap. Panasonic Cap. Panasonic (μF) 120Hz 10kHz~ 120Hz 20kHz Part Number (μF) 120Hz 10kHz~ 120Hz 20kHz Part Number 270 22 x 25 1.42 2.03 0.553 0.249 EETED2D271BA 390 22 x 40 1.72 2.45 0.383 0.172 EETED2E391BA 330 22 x 30 1.56 2.23 0.452 0.203 EETED2D331BA 25 x 30 1.71 2.44 0.383 0.172 EETED2E391CA 390 22 x 30 1.71 2.44 0.383 0.172 EETED2D391BA 30 x 25 1.71 2.44 0.383 0.172 EETED2E391DA 25 x 25 1.71 2.44 0.383 0.172 EETED2D391CA 470 22 x 45 1.85 2.64 0.317 0.143 EETED2E471BA 470 22 x 35 1.85 2.64 0.317 0.143 EETED2D471BA 25 x 35 1.85 2.64 0.317 0.143 EETED2E471CA 25 x 30 1.85 2.64 0.317 0.143 EETED2D471CA 30 x 30 1.85 2.64 0.317 0.143 EETED2E471DA 560 22 x 40 2.14 3.05 0.266 0.120 EETED2D561BA 560 25 x 40 2.14 3.05 0.266 0.120 EETED2E561CA 25 x 30 2.14 3.05 0.266 0.120 EETED2D561CA 30 x 30 2.14 3.05 0.266 0.120 EETED2E561DA 30 x 25 2.14 3.05 0.266 0.120 EETED2D561DA 35 x 25 2.14 3.05 0.266 0.133 EETED2E561EA 680 22 x 45 2.42 3.45 0.219 0.099 EETED2D681BA 680 25 x 45 2.42 3.45 0.219 0.099 EETED2E681CA 25 x 35 2.42 3.45 0.219 0.099 EETED2D681CA 30 x 35 2.42 3.45 0.219 0.099 EETED2E681DA 30 x 30 2.42 3.45 0.219 0.099 EETED2D681DA 35 x 30 2.42 3.45 0.219 0.110 EETED2E681EA 820 22 x 50 2.63 3.76 0.182 0.082 EETED2D821BA 820 30 x 40 2.63 3.76 0.182 0.082 EETED2E821DA 25 x 40 2.63 3.76 0.182 0.082 EETED2D821CA 35 x 35 2.63 3.76 0.182 0.091 EETED2E821EA 30 x 30 2.63 3.76 0.182 0.082 EETED2D821DA 1000 30 x 50 2.84 4.06 0.149 0.067 EETED2E102DA 35 x 25 2.63 3.76 0.182 0.091 EETED2D821EA 35 x 40 2.84 4.06 0.149 0.067 EETED2E102EA 1000 25 x 45 2.84 4.06 0.149 0.067 EETED2D102CA 1200 35 x 45 3.13 4.47 0.124 0.062 EETED2E122EA 30 x 35 2.84 4.06 0.149 0.067 EETED2D102DA 1500 35 x 50 3.56 5.08 0.099 0.050 EETED2E152EA 35 x 30 2.84 4.06 0.149 0.067 EETED2D102EA 1200 30 x 40 3.13 4.47 0.124 0.062 EETED2D122DA 82 22 x 25 0.80 1.14 1.617 0.728 EETED2G820BA 35 x 35 3.13 4.47 0.124 0.062 EETED2D122EA 100 22 x 30 0.91 1.30 1.326 0.597 EETED2G101BA 1500 30 x 50 3.56 5.08 0.099 0.050 EETED2D152DA 25 x 25 0.91 1.30 1.326 0.597 EETED2G101CA 35 x 40 3.56 5.08 0.099 0.050 EETED2D152EA 120 22 x 35 1.02 1.46 1.105 0.497 EETED2G121BA 1800 35 x 45 3.84 5.48 0.083 0.041 EETED2D182EA 25 x 30 1.02 1.46 1.105 0.497 EETED2G121CA 2200 35 x 50 4.12 5.89 0.068 0.033 EETED2D222EA 150 22 x 40 1.07 1.53 0.884 0.398 EETED2G151BA 25 x 30 1.07 1.53 0.884 0.398 EETED2G151CA 220 22 x 30 1.28 1.83 0.678 0.305 EETED2E221BA 30 x 25 1.07 1.53 0.884 0.398 EETED2G151DA 270 22 x 30 1.42 2.03 0.553 0.249 EETED2E271BA 180 22 x 45 1.12 1.60 0.737 0.332 EETED2G181BA 25 x 25 1.42 2.03 0.553 0.249 EETED2E271CA 25 x 35 1.12 1.60 0.737 0.332 EETED2G181CA 330 22 x 35 1.64 2.34 0.452 0.203 EETED2E331BA 30 x 30 1.12 1.60 0.737 0.332 EETED2G181DA 25 x 30 1.56 2.23 0.452 0.203 EETED2E331CA 220 22 x 50 1.42 2.03 0.603 0.271 EETED2G221BA 56 ~ 560μF Common Code Endurance: 3000 hours at +105°C with maximum specified ripple current (see page 6) Capacitance Tolerance: Dissipation Factor (120Hz, 20°C): 15% maximum (120Hz, +20°C) 220~2200 μF *Use of temperature ripple current multipliers may limit life to the hours specified for the maximum operating temperature. Rated Working Voltage: Leakage Current: Ripple Current Multipliers: 2 3√CV (μA) max. after 5 minutes; C = Capacitance in μF, V = WV PVC without top plate Operating Temperature: -40 ~ +105°C -25 ~ +105°C Max 105°C R.C. (Arms) 20°C ESR (Ω, max.) D x L Max 105°C R.C. (Arms) 20°C ESR (Ω, max.) Size (mm) 250 VDC Working, 300 VDC Surge (continued) (no suffix) 250 VDC Working, 300 VDC Surge D E B 400 VDC Working, 450 VDC Surge D x L (Please see page 10 for details) Diameter J PET sleeve without plate Size (mm) TS-ED Series 105°C, 3000 hours 200 VDC Working, 250 VDC Surge Nominal Capacitance: Series Insulation Options 6.3mm 200 ~ 250 VDC 400 ~ 450 VDC Code ± 20% 35mm 30mm 25mm 22mm C Diameter / Terminal Code A PVC with top plate # of pins: pin length: E E T E D Ripple Current Frequency Factors Frequency(Hz): Multiplier: 50 0.71 60 0.78 100~120 1.0 1.2 1k 1.25 10k~ 1.4 Ripple Current Ambient Temperature Factors* ≤45°C 2.35 Ambient Temperature: 85°C 70°C 60°C Multiplier: 1.0 2.0 2.2 500 105°C 1.7 Design and specifi cations are subject to change without notice. Ask factory for technical specifi cations before purchase and/or use. Whenever a doubt about safety arises from this product, please contact us immediately for technical consultation. Large Can Aluminum Electrolytic Capacitors TS-ED Standard Ratings (continued) Cap. Panasonic (μF) 120Hz 10kHz~ 120Hz 20kHz Part Number 220 25 x 40 1.42 2.03 0.603 0.271 EETED2G221CA 30 x 30 1.42 2.03 0.603 0.271 EETED2G221DA 35 x 25 1.42 2.03 0.603 0.271 EETED2G221EA 270 25 x 45 1.56 2.23 0.491 0.221 EETED2G271CA 30 x 35 1.56 2.23 0.491 0.221 EETED2G271DA 35 x 30 1.56 2.23 0.491 0.221 EETED2G271EA 330 30 x 40 1.71 2.44 0.402 0.181 EETED2G331DA 35 x 30 1.71 2.44 0.402 0.181 EETED2G331EA 390 30 x 45 1.85 2.64 0.340 0.153 EETED2G391DA 35 x 35 1.85 2.64 0.340 0.153 EETED2G391EA 470 35 x 40 2.01 2.87 0.282 0.127 EETED2G471EA 560 35 x 45 2.35 3.36 0.237 0.107 EETED2G561EA 68 22 x 25 1.08 0.95 1.950 0.878 EETED2S680BA 82 22 x 30 1.14 1.08 1.617 0.728 EETED2S820BA 25 x 25 1.14 1.08 1.617 0.728 EETED2S820CA 100 22 x 30 1.30 1.14 1.326 0.597 EETED2S101BA 25 x 25 1.30 1.14 1.326 0.597 EETED2S101CA 120 22 x 35 1.46 1.30 1.105 0.497 EETED2S121BA 25 x 30 1.46 1.30 1.105 0.497 EETED2S121CA 150 22 x 40 1.53 1.46 0.884 0.398 EETED2S151BA 25 x 35 1.53 1.46 0.884 0.398 EETED2S151CA 30 x 25 1.53 1.46 0.884 0.398 EETED2S151DA 180 22 x 45 1.60 1.53 0.737 0.332 EETED2S181BA 25 x 40 1.60 1.53 0.737 0.332 EETED2S181CA 30 x 30 1.60 1.53 0.737 0.332 EETED2S181DA 35 x 25 1.60 1.53 0.737 0.332 EETED2S181EA 220 25 x 45 2.03 1.60 0.603 0.271 EETED2S221CA 30 x 35 2.03 1.60 0.603 0.271 EETED2S221DA 35 x 30 2.03 1.60 0.603 0.271 EETED2S221EA 270 25 x 50 2.40 2.03 0.491 0.221 EETED2S271CA 30 x 40 2.40 2.03 0.491 0.221 EETED2S271DA 35 x 30 2.40 2.03 0.491 0.221 EETED2S271EA 330 30 x 45 2.54 2.45 0.402 0.181 EETED2S331DA 35 x 35 2.54 2.45 0.402 0.181 EETED2S331EA 390 30 x 50 2.73 2.64 0.340 0.153 EETED2S391DA 35 x 40 2.73 2.64 0.340 0.153 EETED2S391EA 470 35 x 45 3.18 2.82 0.282 0.127 EETED2S471EA 56 22 x 25 0.67 0.95 2.368 1.066 EETED2W560BA 68 22 x 30 0.76 1.08 1.950 0.878 EETED2W680BA 25 x 25 0.76 1.08 1.950 0.878 EETED2W680CA 82 22 x 30 0.80 1.14 1.617 0.728 EETED2W820BA 25 x 25 0.80 1.14 1.617 0.728 EETED2W820CA 100 22 x 35 0.91 1.30 1.326 0.597 EETED2W101BA 25 x 30 0.91 1.30 1.326 0.597 EETED2W101CA 120 22 x 40 1.02 1.46 1.105 0.497 EETED2W121BA 25 x 35 1.02 1.46 1.105 0.497 EETED2W121CA 30 x 25 1.02 1.46 1.105 0.497 EETED2W121DA 150 22 x 45 1.07 1.53 0.884 0.398 EETED2W151BA 25 x 40 1.07 1.53 0.884 0.398 EETED2W151CA 30 x 30 1.07 1.53 0.884 0.398 EETED2W151DA 35 x 25 1.07 1.53 0.884 0.398 EETED2W151EA 180 22 x 50 1.12 1.60 0.737 0.332 EETED2W181BA 25 x 40 1.12 1.60 0.737 0.332 EETED2W181CA 30 x 30 1.12 1.60 0.737 0.332 EETED2W181DA 35 x 25 1.12 1.60 0.737 0.332 EETED2W181EA 220 25 x 45 1.42 2.03 0.603 0.271 EETED2W221CA 30 x 35 1.42 2.03 0.603 0.271 EETED2W221DA 35 x 30 1.42 2.03 0.603 0.271 EETED2W221EA 270 30 x 40 1.72 2.45 0.491 0.221 EETED2W271DA 35 x 35 1.72 2.45 0.491 0.221 EETED2W271EA 330 30 x 50 1.85 2.64 0.402 0.181 EETED2W331DA 35 x 40 1.85 2.64 0.402 0.181 EETED2W331EA 390 35 x 40 1.97 2.82 0.340 0.153 EETED2W391EA 470 35 x 50 2.47 3.53 0.282 0.127 EETED2W471EA D x L Size (mm) Max 105°C R.C. (Arms) 20°C ESR (Ω, max.) 400 VDC Working, 450 VDC Surge (continued) 420 VDC Working, 470 VDC Surge 450 VDC Working, 500 VDC Surge Design and specifi cations are subject to change without notice. Ask factory for technical specifi cations before purchase and/or use. Whenever a doubt about safety arises from this product, please contact us immediately for technical consultation. Large Can Aluminum Electrolytic Capacitors 1. Product profile 1.1 General description PNP Resistor-Equipped Transistor (RET) family in Surface-Mounted Device (SMD) plastic packages. 1.2 Features and benefits 1.3 Applications 1.4 Quick reference data PDTA143X series PNP resistor-equipped transistors; R1 = 4.7 k, R2 = 10 k Rev. 5 — 9 December 2011 Product data sheet Table 1. Product overview Type number Package NPN complement Package NXP JEITA JEDEC configuration PDTA143XE SOT416 SC-75 - PDTC143XE ultra small PDTA143XM SOT883 SC-101 - PDTC143XM leadless ultra small PDTA143XT SOT23 - TO-236AB PDTC143XT small PDTA143XU SOT323 SC-70 - PDTC143XU very small  100 mA output current capability  Reduces component count  Built-in bias resistors  Reduces pick and place costs  Simplifies circuit design  AEC-Q101 qualified  Digital applications in automotive and industrial segments  Cost-saving alternative for BC847/857 series in digital applications  Control of IC inputs  Switching loads Table 2. Quick reference data Symbol Parameter Conditions Min Typ Max Unit VCEO collector-emitter voltage open base - - 50 V IO output current - - 100 mA R1 bias resistor 1 (input) 3.3 4.7 6.1 k R2/R1 bias resistor ratio 1.7 2.1 2.6 PDTA143X_SER All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved. Product data sheet Rev. 5 — 9 December 2011 2 of 17 NXP Semiconductors PDTA143X series PNP resistor-equipped transistors; R1 = 4.7 k, R2 = 10 k 2. Pinning information 3. Ordering information 4. Marking [1] * = placeholder for manufacturing site code Table 3. Pinning Pin Description Simplified outline Graphic symbol SOT23; SOT323; SOT416 1 input (base) 2 GND (emitter) 3 output (collector) SOT883 1 input (base) 2 GND (emitter) 3 output (collector) 006aaa144 1 2 3 sym003 3 2 1 R1 R2 3 1 2 Transparent top view sym003 3 2 1 R1 R2 Table 4. Ordering information Type number Package Name Description Version PDTA143XE SC-75 plastic surface-mounted package; 3 leads SOT416 PDTA143XM SC-101 leadless ultra small plastic package; 3 solder lands; body 1.0  0.6  0.5 mm SOT883 PDTA143XT - plastic surface-mounted package; 3 leads SOT23 PDTA143XU SC-70 plastic surface-mounted package; 3 leads SOT323 Table 5. Marking codes Type number Marking code[1] PDTA143XE 35 PDTA143XM DN PDTA143XT *31 PDTA143XU *46 PDTA143X_SER All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved. Product data sheet Rev. 5 — 9 December 2011 3 of 17 NXP Semiconductors PDTA143X series PNP resistor-equipped transistors; R1 = 4.7 k, R2 = 10 k 5. Limiting values [1] Device mounted on an FR4 Printed-Circuit Board (PCB), single-sided copper, tin-plated and standard footprint. [2] Reflow soldering is the only recommended soldering method. [3] Device mounted on an FR4 PCB with 70 m copper strip line, standard footprint. Table 6. Limiting values In accordance with the Absolute Maximum Rating System (IEC 60134). Symbol Parameter Conditions Min Max Unit VCBO collector-base voltage open emitter - 50 V VCEO collector-emitter voltage open base - 50 V VEBO emitter-base voltage open collector - 7 V VI input voltage positive - +7 V negative - 20 V IO output current - 100 mA ICM peak collector current single pulse; tp  1 ms - 100 mA Ptot total power dissipation Tamb  25 C PDTA143XE (SOT416) [1][2]- 150 mW PDTA143XM (SOT883) [2][3]- 250 mW PDTA143XT (SOT23) [1]- 250 mW PDTA143XU (SOT323) [1]- 200 mW Tj junction temperature - 150 C Tamb ambient temperature 65 +150 C Tstg storage temperature 65 +150 C PDTA143X_SER All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved. Product data sheet Rev. 5 — 9 December 2011 4 of 17 NXP Semiconductors PDTA143X series PNP resistor-equipped transistors; R1 = 4.7 k, R2 = 10 k 6. Thermal characteristics [1] Device mounted on an FR4 PCB, single-sided copper, tin-plated and standard footprint. [2] Reflow soldering is the only recommended soldering method. [3] Device mounted on an FR4 PCB with 70 m copper strip line, standard footprint. (1) SOT23; FR4 PCB, standard footprint SOT883; FR4 PCB with 70 m copper strip line, standard footprint (2) SOT323; FR4 PCB, standard footprint (3) SOT416; FR4 PCB, standard footprint Fig 1. Power derating curves Tamb (°C) -75 -25 25 75 125 175 006aac778 100 200 300 Ptot (mW) 0 (1) (2) (3) Table 7. Thermal characteristics Symbol Parameter Conditions Min Typ Max Unit Rth(j-a) thermal resistance from junction to ambient in free air PDTA143XE (SOT416) [1][2]- - 830 K/W PDTA143XM (SOT883) [2][3]- - 500 K/W PDTA143XT (SOT23) [1]- - 500 K/W PDTA143XU (SOT323) [1]- - 625 K/W PDTA143X_SER All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved. Product data sheet Rev. 5 — 9 December 2011 5 of 17 NXP Semiconductors PDTA143X series PNP resistor-equipped transistors; R1 = 4.7 k, R2 = 10 k FR4 PCB, standard footprint Fig 2. Transient thermal impedance from junction to ambient as a function of pulse duration for PDTA143XE (SOT416); typical values FR4 PCB, 70 m copper strip line Fig 3. Transient thermal impedance from junction to ambient as a function of pulse duration for PDTA143XM (SOT883); typical values 006aac781 10-5 10-4 10-2 10-1 10 102 tp (s) 10-3 1 103 102 10 103 Zth(j-a) (K/W) 1 duty cycle = 1 0.75 0.5 0.33 0.2 0.1 0.05 0.02 0.01 0 006aac782 10-5 10-4 10-2 10-1 10 102 tp (s) 10-3 1 103 102 10 103 Zth(j-a) (K/W) 1 duty cycle = 1 0.75 0.5 0.33 0.2 0.1 0.05 0.02 0.01 0 PDTA143X_SER All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved. Product data sheet Rev. 5 — 9 December 2011 6 of 17 NXP Semiconductors PDTA143X series PNP resistor-equipped transistors; R1 = 4.7 k, R2 = 10 k FR4 PCB, standard footprint Fig 4. Transient thermal impedance from junction to ambient as a function of pulse duration for PDTA143XT (SOT23); typical values FR4 PCB, standard footprint Fig 5. Transient thermal impedance from junction to ambient as a function of pulse duration for PDTA143XU (SOT323); typical values 006aac779 10-5 10-4 10-2 10-1 10 102 tp (s) 10-3 1 103 102 10 103 Zth(j-a) (K/W) 1 duty cycle = 1 0.75 0.5 0.33 0.2 0.1 0.05 0.02 0.01 0 006aac780 10-5 10-4 10-2 10-1 10 102 tp (s) 10-3 1 103 102 10 103 Zth(j-a) (K/W) 1 duty cycle = 1 0.75 0.5 0.33 0.2 0.1 0.05 0.02 0.01 0 PDTA143X_SER All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved. Product data sheet Rev. 5 — 9 December 2011 7 of 17 NXP Semiconductors PDTA143X series PNP resistor-equipped transistors; R1 = 4.7 k, R2 = 10 k 7. Characteristics [1] Characteristics of built-in transistor Table 8. Characteristics Tamb = 25 C unless otherwise specified. Symbol Parameter Conditions Min Typ Max Unit ICBO collector-base cut-off current VCB = 50 V; IE = 0 A - - 100 nA ICEO collector-emitter cut-off current VCE = 30 V; IB = 0 A - - 1 A VCE = 30 V; IB = 0 A; Tj = 150 C - - 5 A IEBO emitter-base cut-off current VEB = 5 V; IC = 0 A - - 600 A hFE DC current gain VCE = 5 V; IC = 10 mA 50 - - VCEsat collector-emitter saturation voltage IC = 10 mA; IB = 0.5 mA - - 100 mV VI(off) off-state input voltage VCE = 5 V; IC = 100 A - 0.9 0.3 V VI(on) on-state input voltage VCE = 0.3 V; IC = 20 mA 2.5 1.5 - V R1 bias resistor 1 (input) 3.3 4.7 6.1 k R2/R1 bias resistor ratio 1.7 2.1 2.6 Cc collector capacitance VCB = 10 V; IE = ie = 0 A; f = 1 MHz - - 3 pF fT transition frequency VCE = 5 V; IC = 10 mA; f = 100 MHz [1]- 180 - MHz PDTA143X_SER All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved. Product data sheet Rev. 5 — 9 December 2011 8 of 17 NXP Semiconductors PDTA143X series PNP resistor-equipped transistors; R1 = 4.7 k, R2 = 10 k VCE = 5 V (1) Tamb = 100 C (2) Tamb = 25 C (3) Tamb = 40 C IC/IB = 20 (1) Tamb = 100 C (2) Tamb = 25 C (3) Tamb = 40 C Fig 6. DC current gain as a function of collector current; typical values Fig 7. Collector-emitter saturation voltage as a function of collector current; typical values VCE = 0.3 V (1) Tamb = 40 C (2) Tamb = 25 C (3) Tamb = 100 C VCE = 5 V (1) Tamb = 40 C (2) Tamb = 25 C (3) Tamb = 100 C Fig 8. On-state input voltage as a function of collector current; typical values Fig 9. Off-state input voltage as a function of collector current; typical values IC (mA) -10-1 -1 -10 -102 006aac846 102 10 103 hFE 1 (1) (2) (3) IC (mA) -1 -10 -102 006aac847 -10-1 -1 VCEsat (V) -10-2 (1) (2) (3) 006aac848 IC (mA) -10-1 -1 -10 -102 -1 -10 VI(on) (V) -10-1 (1) (2) (3) IC (mA) -10-1 -1 -10 006aac849 -1 -10 VI(off) (V) -10-1 (1) (2) (3) PDTA143X_SER All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved. Product data sheet Rev. 5 — 9 December 2011 9 of 17 NXP Semiconductors PDTA143X series PNP resistor-equipped transistors; R1 = 4.7 k, R2 = 10 k 8. Test information 8.1 Quality information This product has been qualified in accordance with the Automotive Electronics Council (AEC) standard Q101 - Stress test qualification for discrete semiconductors, and is suitable for use in automotive applications. f = 1 MHz; Tamb = 25 C VCE = 5 V; Tamb = 25 C Fig 10. Collector capacitance as a function of collector-base voltage; typical values Fig 11. Transition frequency as a function of collector current; typical values of built-in transistor VCB (V) 0 -10 -20 -30 -40 -50 006aac850 4 2 6 8 Cc (pF) 0 006aac763 IC (mA) -10-1 -1 -10 -102 102 103 fT (MHz) 10 PDTA143X_SER All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved. Product data sheet Rev. 5 — 9 December 2011 10 of 17 NXP Semiconductors PDTA143X series PNP resistor-equipped transistors; R1 = 4.7 k, R2 = 10 k 9. Package outline 10. Packing information [1] For further information and the availability of packing methods, see Section 14. Fig 12. Package outline PDTA143XE (SOT416/SC-75) Fig 13. Package outline PDTA143XM (SOT883/SC-101) Fig 14. Package outline PDTA143XT (SOT23) Fig 15. Package outline PDTA143XU (SOT323/SC-70) Dimensions in mm 04-11-04 0.95 0.60 1.8 1.4 1.75 1.45 0.9 0.7 0.25 0.10 1 0.30 0.15 1 2 3 0.45 0.15 Dimensions in mm 03-04-03 0.62 0.55 0.55 0.47 0.50 0.46 0.65 0.20 0.12 3 2 1 0.30 0.22 0.30 0.22 1.02 0.95 0.35 Dimensions in mm 04-11-04 0.45 0.15 1.9 1.1 0.9 3.0 2.8 2.5 2.1 1.4 1.2 0.48 0.38 0.15 0.09 1 2 3 Dimensions in mm 04-11-04 0.45 0.15 1.1 0.8 2.2 1.8 2.2 2.0 1.35 1.15 1.3 0.4 0.3 0.25 0.10 1 2 3 Table 9. Packing methods The indicated -xxx are the last three digits of the 12NC ordering code.[1] Type number Package Description Packing quantity 3000 5000 10000 PDTA143XE SOT416 4 mm pitch, 8 mm tape and reel -115 - -135 PDTA143XM SOT883 2 mm pitch, 8 mm tape and reel - - -315 PDTA143XT SOT23 4 mm pitch, 8 mm tape and reel -215 - -235 PDTA143XU SOT323 4 mm pitch, 8 mm tape and reel -115 - -135 PDTA143X_SER All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved. Product data sheet Rev. 5 — 9 December 2011 11 of 17 NXP Semiconductors PDTA143X series PNP resistor-equipped transistors; R1 = 4.7 k, R2 = 10 k 11. Soldering Reflow soldering is the only recommended soldering method. Fig 16. Reflow soldering footprint PDTA143XE (SOT416/SC-75) Reflow soldering is the only recommended soldering method. Fig 17. Reflow soldering footprint PDTA143XM (SOT883/SC-101) solder lands solder resist occupied area solder paste sot416_fr 0.85 1.7 2.2 2 0.5 (3×) 0.6 (3×) 1 1.3 Dimensions in mm solder lands solder resist occupied area solder paste sot883_fr 1.3 0.3 0.6 0.7 0.4 0.9 0.3 (2×) 0.4 (2×) 0.25 (2×) 0.7 R0.05 (12×) Dimensions in mm PDTA143X_SER All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved. Product data sheet Rev. 5 — 9 December 2011 12 of 17 NXP Semiconductors PDTA143X series PNP resistor-equipped transistors; R1 = 4.7 k, R2 = 10 k Fig 18. Reflow soldering footprint PDTA143XT (SOT23) Fig 19. Wave soldering footprint PDTA143XT (SOT23) solder lands solder resist occupied area solder paste sot023_fr 0.5 (3×) 0.6 (3×) 0.6 (3×) 0.7 (3×) 3 1 3.3 2.9 1.7 1.9 2 Dimensions in mm solder lands solder resist occupied area preferred transport direction during soldering sot023_fw 2.8 4.5 1.4 4.6 1.4 (2×) 1.2 (2×) 2.2 2.6 Dimensions in mm PDTA143X_SER All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved. Product data sheet Rev. 5 — 9 December 2011 13 of 17 NXP Semiconductors PDTA143X series PNP resistor-equipped transistors; R1 = 4.7 k, R2 = 10 k Fig 20. Reflow soldering footprint PDTA143XU (SOT323/SC-70) Fig 21. Wave soldering footprint PDTA143XU (SOT323/SC-70) solder lands solder resist occupied area solder paste sot323_fr 2.65 2.35 0.6 (3×) 0.5 (3×) 0.55 (3×) 1.325 1.85 1.3 3 2 1 Dimensions in mm sot323_fw 3.65 2.1 1.425 (3×) 4.6 09 (2×) 2.575 1.8 solder lands solder resist occupied area preferred transport direction during soldering Dimensions in mm PDTA143X_SER All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved. Product data sheet Rev. 5 — 9 December 2011 14 of 17 NXP Semiconductors PDTA143X series PNP resistor-equipped transistors; R1 = 4.7 k, R2 = 10 k 12. Revision history Table 10. Revision history Document ID Release date Data sheet status Change notice Supersedes PDTA143X_SER v.5 20111209 Product data sheet - PDTA143X_SERIES v.4 Modifications: • Type numbers PDTA143XK and PDTA143XS removed. • Section 1 “Product profile”: updated • Section 4 “Marking”: updated • Figure 1 to 5, 10 and 11: added • Section 6 “Thermal characteristics”: updated • Figure 6 to 9: updated • Table 8 “Characteristics”: ICEO updated, fT added • Section 8 “Test information”: added • Section 11 “Soldering”: added • Section 13 “Legal information”: updated PDTA143X_SERIES v.4 20070416 Product data sheet - PDTA143X_SERIES v.3 PDTA143X_SERIES v.3 20040804 Product specification - PDTA143X_SERIES v.2 PDTA143X_SERIES v.2 20030410 Product specification - - PDTA143X_SER All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved. Product data sheet Rev. 5 — 9 December 2011 15 of 17 NXP Semiconductors PDTA143X series PNP resistor-equipped transistors; R1 = 4.7 k, R2 = 10 k 13. Legal information 13.1 Data sheet status [1] Please consult the most recently issued document before initiating or completing a design. [2] The term ‘short data sheet’ is explained in section “Definitions”. [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com. 13.2 Definitions Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information. Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail. Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet. 13.3 Disclaimers Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors. In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors. Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer’s own risk. Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer’s sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer’s applications and products planned, as well as for the planned application and use of customer’s third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products. NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer’s applications or products, or the application or use by customer’s third party customer(s). Customer is responsible for doing all necessary testing for the customer’s applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer’s third party customer(s). NXP does not accept any liability in this respect. Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device. Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer’s general terms and conditions with regard to the purchase of NXP Semiconductors products by customer. No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights. Document status[1][2] Product status[3] Definition Objective [short] data sheet Development This document contains data from the objective specification for product development. Preliminary [short] data sheet Qualification This document contains data from the preliminary specification. Product [short] data sheet Production This document contains the product specification. PDTA143X_SER All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved. Product data sheet Rev. 5 — 9 December 2011 16 of 17 NXP Semiconductors PDTA143X series PNP resistor-equipped transistors; R1 = 4.7 k, R2 = 10 k Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities. Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding. 13.4 Trademarks Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners. 14. Contact information For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com NXP Semiconductors PDTA143X series PNP resistor-equipped transistors; R1 = 4.7 k, R2 = 10 k © NXP B.V. 2011. All rights reserved. For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com Date of release: 9 December 2011 Document identifier: PDTA143X_SER Please be aware that important notices concerning this document and the product(s) described herein, have been included in section ‘Legal information’. 15. Contents 1 Product profile . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 General description . . . . . . . . . . . . . . . . . . . . . 1 1.2 Features and benefits. . . . . . . . . . . . . . . . . . . . 1 1.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.4 Quick reference data . . . . . . . . . . . . . . . . . . . . 1 2 Pinning information. . . . . . . . . . . . . . . . . . . . . . 2 3 Ordering information. . . . . . . . . . . . . . . . . . . . . 2 4 Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 5 Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . . 3 6 Thermal characteristics . . . . . . . . . . . . . . . . . . 4 7 Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 7 8 Test information. . . . . . . . . . . . . . . . . . . . . . . . . 9 8.1 Quality information . . . . . . . . . . . . . . . . . . . . . . 9 9 Package outline . . . . . . . . . . . . . . . . . . . . . . . . 10 10 Packing information . . . . . . . . . . . . . . . . . . . . 10 11 Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 12 Revision history. . . . . . . . . . . . . . . . . . . . . . . . 14 13 Legal information. . . . . . . . . . . . . . . . . . . . . . . 15 13.1 Data sheet status . . . . . . . . . . . . . . . . . . . . . . 15 13.2 Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 13.3 Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 13.4 Trademarks. . . . . . . . . . . . . . . . . . . . . . . . . . . 16 14 Contact information. . . . . . . . . . . . . . . . . . . . . 16 15 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Circuit Imprimé Français - Tools ECO Series TECHNO LABORATORY DRILLS TECHNO 003 MR TECHNO 003 R Model TECHNO 003 MR TECHNO 003 R TECHNO 003 MRE Adjustable rotation speed 11000 à 37000 rpm 11000 à 37000 rpm 11000 à 37000 rpm Capacity Ø 0.2 à 3.2 mm Ø 0.2 à 3.2 mm 0,2 à 3,2 mm Swan neck 120 mm 170 mm 120 mm Work table 250 x 150 mm 380 x 295 mm 250 x 150 mm Spindle travel 6 mm 6 mm 6 mm Low voltage lighting Yes Yes No Dust removal connection Yes Yes No External dimensions 250 x 150 x 260 mm 380 x 295 x 260 mm 250 x 150 x 260 mm Weight 4 kg 5 kg 3,8 kg Spindle output 115 W 115 W 115 W Electrical connection 220 /240 V - 50/60 Hz 220/240 - 50/60 Hz 220/240 V - 50/60 Hz Code DP 593 EP 503 DP 595 TECHNO 001 TECHNO 002 http://www.cif.fr/uk/ukp40.shtml (1 of 2) [04/08/03 11:08:09] Circuit Imprimé Français - Tools Model TECHNO 001 TECHNO 002 Adjustable rotation speed 8000 à 20000 rpm 20000 rpm Capacity Ø 0.2 à 3.2 mm Ø 0.2 à 3.2 mm Swan neck 175 mm 150 mm Work table 285 x 245 mm 300 x 245 mm Spindle travel 25 mm 15 mm Automatic clamping chuck Ø 0.2 à 3.2 mm Ø 0.2 à 3.2 mm Low voltage lighting Yes Yes Dust removal connection Yes Yes External dimensions 395 x 245 x 230 mm 395 x 245 x 250 mm Weight 8,5 kg 5 kg Spindle output 130 W 24 V/30 W Electrical connection 220/240 V - 50/60 Hz 220/240 V - 50/60 Hz Code EP 501 EP 502 © Circuit Imprimé Français - Technical conception : France Cybermedia - http://www.cif.fr/uk/ukp40.shtml (2 of 2) [04/08/03 11:08:09] DEUTSCH – ENGLISH - FRANCAIS D Bedienungsanleitung ANSMANN Starlight-Serie Starlight 200 (UK) und Starlight 400 (UK) (Starlight 300 – nicht mehr lieferbar) Seite 1 HINWEIS Dieses Gerät muss vor dem Erstgebrauch unbedingt 24 Stunden geladen werden. Der Akku- Handscheinwerfer ist für Dauerladung ausgelegt, d.h. der Steckertrafo verbleibt in der Steckdose und der Arbeitsscheinwerfer im Wandhalter (9). BEFESTIGIGUNG DER WANDHALTERUNG (9) Bohren Sie 2 Löcher im waagrechten Abstand von 87 mm in die Wand. Achten Sie darauf, dass die Wandhalterung in der Nähe einer Steckdose montiert wird, wobei das Netzversorgungskabel in der Mauer nicht beschädigt werden darf. Fixieren Sie die Wandhalterung nun mittels zweier Schrauben in der Wand. AUFLADUNG DES AKKU-ARBEITSSCHEINWERFERS Laden Sie den Akku-Arbeitscheinwerfer vor dem ersten Gebrauch mindestens 24 Stunden auf. Die Aufladung erfolgt in der Wandhalterung (9). Das Ladenetzteil kann dauernd in der Steckdose verbleiben. Der Arbeitsscheinwerfer wird also, sofern Sie Ihn nicht benutzen, in der Wandhalterung dauernd aufgeladen (Dauerladung). Die Aufladung wird durch das Leuchten der Ladekontroll-Leuchte (7) angezeigt. LEUCHTDAUER Die Leuchtdauer des Arbeitsscheinwerfers entnehmen Sie bitte der Tabelle (H – Seite 3). ANWENDUNG Bei Bedarf nehmen Sie bitte den Arbeitsscheinwerfer aus der Wandhalterung (9). Der Handgriff ist um 180 Grad schwenkbar und kann in vier Raststufen hochgeklappt werden. Während des Hoch- oder Zurückklappens muss der Klappmechanismus durch Drücken der Entriegelungstaste entriegelt werden. Mit dem Schiebeschalter (1) schalten Sie den Scheinwerfer ein. Starlight 300 und 400 haben zwei Schaltstufen. 1. Stufe Krypton-Lampe; 2. Stufe Halogen-Lampe. D Bedienungsanleitung ANSMANN Starlight-Serie Starlight 200 (UK) und Starlight 400 (UK) (Starlight 300 – nicht mehr lieferbar) Seite 2 FOKUSSIERUNG Den Brennpunkt des Lichtstrahls können Sie durch Drehen der Fokussierung (4) einstellen. Durch Drehen bis zum rechten Anschlag wird bei Starlight 400 die Blinkelektronik eingeschaltet. Es blinkt die Glühlampe, welche mit dem Schiebeschalter (1) geschaltet ist. AUSWECHSELN DER GLÜHBIRNE Drücken Sie den Gummiring des Reflektors an den beiden Druckpunkten (10) zusammen. Der Reflektor lässt sich nun aus dem Scheinwerfergehäuse herausnehmen und die Glühlampen können gewechselt werden. ZUBEHÖR Starlight 300 und Starlight 400 sind mit Trageriemen (T) ausgestattet. Dieser wird an den beiden Ösen seitlich am Gehäuse befestigt. Starlight 400 ist mit 2 Filterscheiben (F) (rot u. grün) ausgestattet (im Gehäuse des Akkupacks ist Platz für zwei Filterscheiben vorgesehen). NETZAUSFALL-ELEKTRONIK Starlight 400 ist mit einer Netzausfall-Elektronik (N) ausgestattet. Der Handscheinwerfer wird im eingeschalteten Zustand in die Ladestation eingesteckt. Bei Stromausfall schaltet sich der Handscheinwerfer automatisch ein und dient somit als Notbeleuchtung. Nach Ende der Netzunterbrechung schaltet sich der Scheinwerfer wieder automatisch aus und der Akkupack wird wieder geladen. AUSWECHSELN DES AKKUS Nach gleichzeitigem Drücken der beiden Entriegelungspunkte (6) lässt sich der Akkupack herausziehen. D Bedienungsanleitung ANSMANN Starlight-Serie Starlight 200 (UK) und Starlight 400 (UK) (Starlight 300 – nicht mehr lieferbar) Seite 3 UMWELTHINWEIS Akkus gehören nicht in den Hausmüll. Geben Sie verbrauchte Akkus bei Ihrem Händler bzw. der Batteriesammelstelle ab. HINWEIS Das Gerät bitte nicht Nässe und extremen Temperaturen aussetzen. Wartungs- und Reinigungsarbeiten nur bei gezogenem Netzteil durchführen. Den Handscheinwerfer nur mit einem feuchten Tuch reinigen. TABELLE H Technische Daten Typ Nummer Leuchtmittel* Zubehör** Akkupack Leuchtweite Leuchtdauer Starlight 200 UK 5502046 4 W H 4,8V 800m 120 min Starlight 400 UK 5502056 10W H/4W KR T/N/F/B 6V 1200m 60(200)min Starlight 200 5102062 4 W H 4,8V 800m 120 min Starlight 400 5102082 10W H/4W KR T/N/F/B 6V 1200m 60(200)min Zubehör Leuchtmittel ** T = Tragegurt * H = Halogen ** N = Netzausfall-Elektronik * KR = Krypton ** F = Filterscheibe rot und grün ** B = Blink-Elektronik Weitere aktuelle Informationen ANSMANN ENERGY GMBH Industriestraße 10, 97959 Assamstadt Tel.: 06294-4204-0 Fax: 06294-4204-43 info@ansmann.de www.ansmann.de GB Operating Instructions ANSMANN Starlight Series Starlight 200 (UK) and Starlight 400 (UK) (Starlight 300 – no longer available) Page 1 CAUTION ! This appliance has to be charged for 24 hours before using it for the first time. The lamp can be charged continuously, i.e. the charging adaptor can remain permanently in the mains socket and the appliance in the wall bracket (9). MOUNTING OF THE WALL BRACKET (9) Drill two holes 110 mm apart vertically where you wish to fix the wall holder. We recommend that you fit the wall holder to the wall near a mains socket checking that the holes to be drilled are well away from the mains supply cable to the electrical socket. Fit the wall plugs into the holes, position the wall holder against the wall, insert screws and screw up tightly. CHARGING THE LAMP Before using the appliance for the first time charge it for at least 24 hours in the wall bracket (9). The charging unit can remain in the mains socket. This means that the lamp is constantly charged in the wall bracket. The LED (7) indicates that the appliance is being charged. When fully charged the lamp provide its full power. OPERATING TIME For appropriate operating time of your STARLIGHT model please refer to the table H (page 3). USING THE LAMP Before using the lamp take it out of the wall bracket (9). All Starlight lamps have a handle that can be moved by 180 degrees and be folded back in four different positions. The angle can be adjusted by moving the handle forward or backwards whilst pressing the release key (5). With the slide switch (1) you can switch on the lamp. The Starlight 300 and 400 have two switch positions. First step: Krypton; second step: Halogen GB Operating Instructions ANSMANN Starlight Series Starlight 200 (UK) and Starlight 400 (UK) (Starlight 300 – no longer available) Page 2 FOCUS You can adjust the focus by turning the zoom grip (4). Turning the zoom grip fully clockwise will cause the bulb selected by (1) to flash on and off. REPLACING THE BULB Press the rubber ring of the reflector at the two tabs (10). The reflector/lens can now be taken out of the lamp case and the bulbs can be replaced. ACCESSORIES Starlight 300 and 400 are supplied with a shoulder strap. It can be fastened to the two fixings on the upper sides of the case. Starlight 400 is supplied with two coloured filter slides (red and green). The power pack case provides storage for the two slides. MAINS-FAILURE DETECTION Starlight 400 has a mains-failure detection option. This means that the lamp will automatically switch on if it detects that there is a mains failure, to provide a safety light. When the lamp is placed into the wall bracket for charging with the light on, the bulb extinguishes. If it detects a mains failure, the bulb will light until the mains power is restored and the power pack is being charged again. REMOVAL OF THE RECHARGEABLE BATTERY PACK (8) Depress the two release positions (6) at the same time to remove the power pack. Operating Instructions ANSMANN Starlight Series Starlight 200 (UK) and Starlight 400 (UK) (Starlight 300 – no longer available) Page 3 ENVIRONMENTAL REFERENCE Rechargeable batteries must not be disposed of in domestic waste. Return used batteries to your dealer or to an authorised battery collecting point. TIP Keep the appliance in a dry place. Do not carry out any cleaning or maintenance work if the charger is plugged in. Only use a moist cloth to clean the lamp or the wall bracket. TABLE H Technical Data Type Number Bulb* Accessories**Battery Pack Beam Operating Time Starlight 200 UK 5502046 4 W H 4.8V 800m 120 min Starlight 400 UK 5502056 10W H/4W KR T/N/F/B 6V 1200m 60(200)min Starlight 200 5102062 4 W H 4.8V 800m 120 min Starlight 400 5102082 10W H/4W KR T/N/F/B 6V 1200m 60(200)min Accessories BULB ** T= Belt * H= Halogen ** N= Mains-failure electronics *KR= Krypton ** F= Colour-filter red and green ** B= Electronic Indicator For further information please contact ANSMANN ENERGY GMBH Industriestraße 10; D-97959 Assamstadt Fon.: +49 (0) 6294-4204-0 Fax: +49 (0) 6294- 4204-43 info@ansmann.de www.ansmann.de Instructions d’utilisation ANSMANN de la série Starlight F Starlight 200 et Starlight 400 (Starlight 300 – plus disponible) Page 1 REMARQUE Le projecteur doit absolument être chargé 24 heures avant la première utilisation. Le projecteur manuel à accu est conçu pour une charge longue, c’est à dire que la fiche du transformateur reste dans la prise de courant, et le projecteur dans le support mural (9). FIXATION DU SUPPORT MURAL Percer 2 trous écartés de 87 mm à l’horizontale. Vérifier que le support soit à côté d’une prise de courant, en faisant attention à ne pas endommager le câble d’alimentation électrique dans le mur. Fixer le support mural à l’aide de deux vis. CHARGE DU PROJECTEUR Charger le projecteur au moins 24 heures avant la première utilisation. La charge s’effectue dans le support mural (9). Le chargeur peut rester branché longtemps. Le projecteur peut également rester sur son support s’il n’est pas utilisé. La période de charge est signalée par LED (7) DURÉE D’ÉCLAIRAGE Pour la durée d’éclairage, voir le tableau (H – page 3). Instructions d’utilisation ANSMANN de la série Starlight F Starlight 200 et Starlight 400 (Starlight 300 – plus disponible) Page 2 UTILISATION Prendre le projecteur sur le support mural (9). La poignée peut pivoter de 180° et peut être repliée avec 4 crans intermédiaires. Pour abaisser ou remonter la poignée, appuyer sur le bouton de déverrouillage (5). Allumer le projecteur avec l’interrupteur (1). Les projecteurs Starlight 300 & 400 ont deux positions : 1. Position: lampe Krypton ; 2. Position: lampe Halogène. FOCUS Modifier l’intensité du rayon lumineux en tournant le focus (4). En tournant à fond vers la droite pour le Starlight 400, l’ampoule sélectionnée clignote (1). REMPLACEMENT DE L’AMPOULE Appuyer sur le joint caoutchouc du réflecteur aux deux points de serrage (10). Le réflecteur se détache du projecteur et l’ampoule peut être remplacée. ACCESSOIRES Les Starlight 300 & Starlight 400 sont livrés avec une bandoulière (T) fixée de chaque côté de la lampe. Le Starlight 400 est livré avec 2 filtres (F) (rouge & vert). Un espace est prévu pour les deux filtres dans le boîtier de l’accu. COUPURE DU RÉSEAU Le Starlight 400 gère les coupures d’électricité du réseau (N). Lorsque le projecteur est remis sur son support en position allumé, il s’allume s’il y a une coupure de courant, et sert ainsi d’éclairage de sécurité. Le projecteur s’éteint automatiquement au retour du courant et l’accu se recharge. Instructions d’utilisation ANSMANN de la série Starlight F Starlight 200 et Starlight 400 (Starlight 300 – plus disponible) Page 3 REMPLACEMENT DE L’ACCU Appuyer sur les deux points de déverrouillage en même temps (6) pour que l’accu se détache. PROTECTION DE L’ENVIRONNEMENT Les accus ne doivent pas être jetés dans les poubelles domestiques. Renvoyer les au distributeur ou à un centre de collecte autorisé. PRÉCAUTIONS Ne pas laisser le projecteur à l’humidité et ne pas exposer à des températures extrèmes. Les travaux de nettoyage et de maintenance doivent être effectués uniquement par les distributeurs autorisés. Le projecteur doit être nettoyé uniquement avec un chiffon humide. TABLEAU H Données Techniques Type L'article Ampoule * Accessoires** Battery Pack Largeur d'éclat Durée d'éclat Starlight 200 UK*** 5502046 4 W H 4,8V 800m 120 min Starlight 400 UK*** 5502056 10W H/4W KR T/N/F/B 6V 1200m 60(200)min Starlight 200 5102062 4 W H 4,8V 800m 120 min Starlight 400 5102082 10W H/4W KR T/N/F/B 6V 1200m 60(200)min *** Série pour GB Accessories** Ampoule* ** T = Courroie de civière * H = Halogène ** N = Panne de courant électronique * KR = Krypton ** F = Glace de filtre rouge et vert ** B = Se enflammer électronique Pour de plus amples renseignements, contactez ANSMANN ENERGY GMBH Industriestrasse 10, D-97959 Assamstadt Tél.: +49 (0) 6294-4204-0 Fax: +49 (0) 6294-4204-43 info@ansmann.de www.ansmann.de OSCILLOSCOPES USB HAUTE précisio n www.picotech.com Série PicoScope® 4000 Fourni avec un kit de développement logiciel (SDK) complet, y compris des exemples de programmes • Logiciel compatible avec Windows XP, Windows Vista et Windows 7• Assistance technique gratuite Mémoire tampon 32 MS Résolution 12 bits Taux d'échantillonnage 80-250 MS/s Bande passante 20-100 MHz Jusqu'à 4 voies Mode 2 voies IEPE Alimentation USB YE AR Vitesse, précision et capture détaillée IEPE 32 MS TAMPON 12-bit MODÈLE PicoScope 4424 PicoScope 4224 PicoScope 4224 IEPE Entrées Mode sonde passive Mode d'interface IEPE Nombre de voies 4 entrées BNC 2 entrées BNC 2 entrées BNC 2 entrées BNC Bande passante analogique 20 MHz (10 MHz sur une plage de ± 50 mV) CC à 20 MHz 1,6 Hz à 20 MHz (10 MHz sur une plage de ± 50 mV) Plages de tensions De ± 50 mV à ± 100 V De ± 50 mV à ± 20 V Sensibilité 10 mV/div à 20 V/div 10 mV/div à 4 V/div Résolution verticale 12 bits (jusqu’à 16 bits avec l’amélioration de la résolution) 12 bits (jusqu’à 16 bits avec l’amélioration de la résolution) Couplage d'entrée CA ou CC, sous contrôle logiciel CA ou CC, sous contrôle logiciel Impédance d'entrée 1 MΩ || 22 pF 1 MΩ || 22 pF 1 MΩ || 1 nF Protection contre les surtensions ± 200 V ± 100 V Échan till onna ge Bases de temps 100 ns/div à 200 s/div 100 ns/div à 200 s/div Taux d'échantillonnage maximum (temps réel) 1/2 voies : 80 MS/s 3/4 voies : 20 MS/s 80 MS/s 80 MS/s Taille de la mémoire tampon 32 M échantillons partagés entre les voies actives 32 M échantillons partagés entre les voies actives Décl enc hement Sources Toute voie d'entrée Type de déclencheurs voie A, voie B Front avec hystérésis, largeur d'impulsion, impulsion transitoire, perte de niveau, fenêtre Types de déclencheurs EXT Front montant, front descendant Performanc e Précision de la base de temps 50 ppm Précision CC 1 % de déviation maximale Résolution de déclenchement 1 LSB (voie A, voie B) Temps de réarmement du déclenchement 2,5 μs (base de temps la plus rapide) Env ironn ement Plage de températures Fonctionnement : 0 °C à 45 °C Pour la précision mentionnée : 20 °C à 30 °C Entreposage : –20 °C à 60 °C Plage d'humidité Fonctionnement : HR de 5 à 80 %, sans condensation Entreposage : HR de 5 à 95 %, sans condensation Connexion PC USB 2.0. Compatible avec USB 1.1 Système d'exploitation du PC Windows XP, Windows Vista ou Windows 7 Alimentation 5 V à 500 mA max. provenant du port USB Dimensions 200 mm x 140 mm x 38 mm (connecteurs inclus) Poids < 500 g Conformité Normes européennes CEM et LVD RoHS et DEEE , règles FCC Partie 15 Classe A MODÈLE PicoScope 4226 PicoScope 4227 Entrées Nombre de voies 2 entrées BNC Bande passante analogique 50 MHz 100 MHz Plages de tensions De ± 50 mV à ± 20 V Sensibilité 10 mV/div à 4 V/div Résolution verticale 12 bits Couplage d'entrée CA ou CC, sélection logicielle Impédance d'entrée 1 MΩ || 16 pF Protection contre les surtensions ± 100 V Échan till onna ge Bases de temps 100 ns/div à 200 s/div 50 ns/div à 200 s/div Taux d'échantillonnage maximum (temps réel) 1 voie en cours d'utilisation 125 MS/s 1 voie en cours d'utilisation 250 MS/s 2 voies en cours d'utilisation 125 MS/s 2 voies en cours d'utilisation 125 MS/s Fréquence d'échantillonnage maximale (ET S) 10 G S/s Taille de la mémoire tampon 32 MS partagées entre les voies actives Décl enc hement Sources Voie A, voie B, Ext Type de déclencheurs voie A, voie B Front, fenêtre, impulsion, intervalle, perte, transitoire, retardé Types de déclencheurs EXT Front montant/descendant En trée de décl enc hement EXT Connecteur BNC Bande passante 100 MHz Impédance 1 MΩ || 20 pF Plage de tension ± 20 V Plage de seuil De ± 150 mV à ± 20 V Couplage CC Protection contre les surtensions ± 100 V Géné rateur de fonc tions /géné rateur de formes d'ond es arbitraires Connecteur BNC Plage de fréquences du générateur de fonction CC à 100 kHz Formes d'onde du générateur de fonctions Sinusoïdale, carrée, triangulaire, rampante, (sin x)/x gaussienne, demi-sinusoïdale, bruit blanc, niveau CC Taille de la mémoire tampon 8 192 échantillons Fréquence de mise à jour DAC 20 MS/s Résolution du convertisseur numérique-analogique 12 bits Bande passante 100 kHz Précision CC 1 % Plage de sortie De ± 250 mV à ± 2 V Plage de décalage de sortie ± 1 V Max. sortie combinée ± 2.5 V Résistance de sortie 600 Ω Protection contre les surtensions ± 10 V Performanc e Précision de la base de temps 50 ppm Précision CC 1 % de déviation maximale Résolution de déclenchement 1 LSB (voie A, voie B) Temps de réarmement du déclenchement 1 μs (base de temps la plus rapide, déclenchement rapide) Env ironn ement Plage de températures Fonctionnement : 0 °C à 45 °C Pour la précision mentionnée : 20 °C à 30 °C Entreposage : –20 °C à 60 °C Plage d'humidité Fonctionnement : HR de 5 à 80 %, sans condensation Entreposage : HR de 5 à 95 %, sans condensation Connexion PC USB 2.0. Compatible avec USB 1.1 Système d'exploitation du PC Windows XP, Windows Vista ou Windows 7 Alimentation 5 V à 500 mA max. provenant du port USB Dimensions 200 mm x 140 mm x 38 mm (connecteurs inclus) Poids < 500 g Conformité Normes européennes CEM et LVD RoHS et DEEE , règles FCC Partie 15 Classe A Caractéristiques supplémentaires • Tests de limite de masque avec alarmes • Décodage de données série (CAN, I2C etc....) • Filtre passe-bas pour chaque voie • Voies mathématiques • Formes d'ondes de référence • Tampon de formes d'ondes avec 10 000 segments max. et navigateur visuel • Modes de persistance Couleur numérique et Intensité analogique • Mode XY Entrée déclenchement Entrée B Entrée A Générateur de fonctions et de formes d'ondes arbitraires Pico Technology, James House, Colmworth Business Park, St. Neots, Cambridgeshire, PE19 8YP, Royaume-Uni T : +44 (0) 1480 396 395 F : +44 (0) 1480 396 296 E : sales@picotech.com *Prix en vigueur au moment de la publication. Avant de passer commande, veuillez contacter Pico Technology pour connaître les tout derniers tarifs. Sauf erreur ou omission. Copyright © 2011 Pico Technology Ltd. Tous droits réservés. MM002.fr-5 CODE DE COMMANDE DESCRIPTION DE L'ARTICLE Livre sterling USD* EUR* PP493 PicoScope 4424 799 1319 967 PP492 PicoScope 4224 499 824 604 PP695 PicoScope 4224 IEPE 599 989 725 PP671 Kit PicoScope 4226 699 1154 846 PP672 Kit PicoScope 4227 899 1484 1088 Informations concernant la commande www.picotech.com Instruments tout-en-un Les oscilloscopes PC PicoScope série 4000 sont extrêmement polyvalents, et chaque modèle est équipé d'un oscilloscope et d'un analyseur de spectre. PicoScope 4224 IEPE La version IE PE à 2 voies est compatible avec les accéléromètres et microphones IE PE standard, ce qui la rend idéale pour tout type d'applications de mesure, y compris l'analyse du bruit et des vibrations. Confort et rapidité Les oscilloscopes PicoScope série 4000 sont alimentés par l'interface USB 2.0 ; nul besoin de source d'alimentation externe. Le port USB offre également un transfert de données haute vitesse vers votre PC, permettant d'obtenir un affichage haute résolution et réactif. Grâce à des plages d'échantillonnage allant de 80 à 250 MS/s, les oscilloscopes de la série 4000 sont les plus rapides de leur catégorie (avec alimentation par USB et résolution 12 bits). Grande mémoire La mémoire tampon de 32 Méchantillons est "toujours active". Comme le PicoScope série 4000 optimise simultanément la taille de la mémoire tampon et la fréquence de mise à jour de la forme d'onde, il n'y a pas de compromis à faire. Il est désormais possible de capturer chaque forme d'onde en détail sans avoir à s'en soucier. Logiciel avancé Les oscilloscopes sont fournis avec la dernière version de PicoScope pour Windows. PicoScope est simple d'utilisation et permet d'exporter des données sous divers formats graphiques, texte et binaires. Sont également inclus les pilotes Windows et des programmes d'exemple. Générateur de formes d'ondes arbitraires Les PicoScope 4226 et 4227 sont fournis avec un générateur de fonctions/formes d'ondes arbitraires. Grâce à une plage de fréquences de 100 kHz, une résolution de 12 bits et un tampon de 8 192 échantillons, ces deux oscilloscopes complètent notre gamme de la série 4000. Oscilloscope Analyseur de spectre Zoom sur la vue d'oscilloscope Générateur de formes d'ondes arbitraires Datasheets en Français FARNELL Ed.081002 DATASHEETS EN FRANCAIS BB2PROD Kit produits pour machine à graver modèle, GRAV’CI2 • 1 perchlorure de fer pour machine à mousse, jerrycan 5 litres • 1 kit de neutralisation perchlorure de fer • 1 détachant perchlorure de fer, pot 100 g • 2 cuvettes en plastique, 220 x 330 x 50 mm • 1 pince plastique pour films et circuits imprimés • 1 sachet de 100 gants jetables en polyéthylène • 1 stylo CIF pour gravure directe, noir BB4PROD Kit produits pour machine à graver modèles BB48 • 1 perchlorure de fer surractivé, jerrycan 5 litres • 1 kit de neutralisation perchlorure de fer • 1 détachant perchlorure de fer, pot de 100 g • 2 cuvettes en plastique, 220 x 330 x 50 mm • 1 pince plastique pour films et circuits imprimés • 1 sachet de 100 gants jetables en polyéthylène • 1 CIF pen for direct etching, black • 1 stylo CIF pour gravure directe, noir U800005 Kit produits pour châssis d’insolation CIP1840 & MI 10-16 • 10 films auto-positifs Posireflex 210 x 297 mm • 1 révélateur-fixateur, dose pour 1 litre • 20 epoxy présensibilisé positif 16/10e, 35 μ, 1F, 200 x 300 mm • révélateur pour plaque, dose pour 1 litre • 2 cuvettes en plastique 230 x 330 x 50 mm • 1 stylo CIF pour gravure directe, noir U800006 Kit produits pour châssis d’insolation modèles DFE 2340 & DFT 3040 • 10 films auto-positifs Posireflex 210 x 297 mm • 1 révélateur-fixateur, dose pour 1 litre • 20 epoxy présensibilisé positif 16/10e, 35 μ, 2F, 200 x 300 mm • 1 stylo CIF pour gravure directe, noir • révélateur pour plaque, dose pour 1 litre • 2 cuvettes en plastique 230 x 330 x 50 mm • 1 cutter avec 1 lame Datasheets en Français FARNELL Ed.081002 V700043 / CIF852 Température air chaud : 100 to 480°C Capteur de température : automatique Elément chauffant : oui Affichage digital de la température : oui Affichage du débit d’air : oui Masse nette du fer : 0.12 kg Débit pompe : 1 à 23 L/mn Puissance totale : 500 W Dimensions (L x l x H) : 188 x 244 x 127 mm Raccordement électrique: 230 V – 50/60Hz EP116 Contre-plaque de perçage Configuration basique Process Référence Qty Contre-plaque de perçage, par 10 perçage EP116 1 © 2007 Microchip Technology Inc. DS41211D PIC12F683 Data Sheet 8-Pin Flash-Based, 8-Bit CMOS Microcontrollers with nanoWatt Technology DS41211D-page ii © 2007 Microchip Technology Inc. Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights. Trademarks The Microchip name and logo, the Microchip logo, Accuron, dsPIC, KEELOQ, KEELOQ logo, microID, MPLAB, PIC, PICmicro, PICSTART, PRO MATE, PowerSmart, rfPIC, and SmartShunt are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. AmpLab, FilterLab, Linear Active Thermistor, Migratable Memory, MXDEV, MXLAB, PS logo, SEEVAL, SmartSensor and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, PICkit, PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal, PowerInfo, PowerMate, PowerTool, REAL ICE, rfLAB, rfPICDEM, Select Mode, Smart Serial, SmartTel, Total Endurance, UNI/O, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. SQTP is a service mark of Microchip Technology Incorporated in the U.S.A. All other trademarks mentioned herein are property of their respective companies. © 2007, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved. Printed on recycled paper. Note the following details of the code protection feature on Microchip devices: • Microchip products meet the specification contained in their particular Microchip Data Sheet. • Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions. • There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property. • Microchip is willing to work with the customer who is concerned about the integrity of their code. • Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.” Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act. Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona, Gresham, Oregon and Mountain View, California. The Company’s quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001:2000 certified. © 2007 Microchip Technology Inc. DS41211D-page 1 PIC12F683 8-Pin Flash-Based, 8-Bit CMOS Microcontrollers with nanoWatt Technology High-Performance RISC CPU: • Only 35 instructions to learn: - All single-cycle instructions except branches • Operating speed: - DC – 20 MHz oscillator/clock input - DC – 200 ns instruction cycle • Interrupt capability • 8-level deep hardware stack • Direct, Indirect and Relative Addressing modes Special Microcontroller Features: • Precision Internal Oscillator: - Factory calibrated to ±1%, typical - Software selectable frequency range of 8 MHz to 125 kHz - Software tunable - Two-Speed Start-up mode - Crystal fail detect for critical applications - Clock mode switching during operation for power savings • Power-Saving Sleep mode • Wide operating voltage range (2.0V-5.5V) • Industrial and Extended temperature range • Power-on Reset (POR) • Power-up Timer (PWRT) and Oscillator Start-up Timer (OST) • Brown-out Reset (BOR) with software control option • Enhanced Low-Current Watchdog Timer (WDT) with on-chip oscillator (software selectable nominal 268 seconds with full prescaler) with software enable • Multiplexed Master Clear with pull-up/input pin • Programmable code protection • High Endurance Flash/EEPROM cell: - 100,000 write Flash endurance - 1,000,000 write EEPROM endurance - Flash/Data EEPROM Retention: > 40 years Low-Power Features: • Standby Current: - 50 nA @ 2.0V, typical • Operating Current: - 11μA @ 32 kHz, 2.0V, typical - 220μA @ 4 MHz, 2.0V, typical • Watchdog Timer Current: - 1μA @ 2.0V, typical Peripheral Features: • 6 I/O pins with individual direction control: - High current source/sink for direct LED drive - Interrupt-on-pin change - Individually programmable weak pull-ups - Ultra Low-Power Wake-up on GP0 • Analog Comparator module with: - One analog comparator - Programmable on-chip voltage reference (CVREF) module (% of VDD) - Comparator inputs and output externally accessible • A/D Converter: - 10-bit resolution and 4 channels • Timer0: 8-bit timer/counter with 8-bit programmable prescaler • Enhanced Timer1: - 16-bit timer/counter with prescaler - External Timer1 Gate (count enable) - Option to use OSC1 and OSC2 in LP mode as Timer1 oscillator if INTOSC mode selected • Timer2: 8-bit timer/counter with 8-bit period register, prescaler and postscaler • Capture, Compare, PWM module: - 16-bit Capture, max resolution 12.5 ns - Compare, max resolution 200 ns - 10-bit PWM, max frequency 20 kHz • In-Circuit Serial Programming™ (ICSP™) via two pins Device Program Memory Data Memory I/O 10-bit A/D (ch) Comparators Timers Flash (words) SRAM (bytes) EEPROM (bytes) 8/16-bit PIC12F683 2048 128 256 6 4 1 2/1 PIC12F683 DS41211D-page 2 © 2007 Microchip Technology Inc. 8-Pin Diagram (PDIP, SOIC) 8-Pin Diagram (DFN) 8-Pin Diagram (DFN-S) TABLE 1: 8-PIN SUMMARY I/O Pin Analog Comparators Timer CCP Interrupts Pull-ups Basic GP0 7 AN0 CIN+ — — IOC Y ICSPDAT/ULPWU GP1 6 AN1/VREF CIN- — — IOC Y ICSPCLK GP2 5 AN2 COUT T0CKI CCP1 INT/IOC Y — GP3(1) 4 — — — — IOC Y(2) MCLR/VPP GP4 3 AN3 — T1G — IOC Y OSC2/CLKOUT GP5 2 — — T1CKI — IOC Y OSC1/CLKIN — 1 — — — — — — VDD — 8 — — — — — — VSS Note 1: Input only. 2: Only when pin is configured for external MCLR. VDD GP5/T1CKI/OSC1/CLKIN GP4/AN3/T1G/OSC2/CLKOUT GP3/MCLR/VPP VSS GP0/AN0/CIN+/ICSPDAT/ULPWU GP1/AN1/CIN-/VREF/ICSPCLK GP2/AN2/T0CKI/INT/COUT/CCP1 PIC12F683 1 2 3 4 8 7 6 5 1 2 3 4 5 6 7 8 PIC12F683 VSS GP0/AN0/CIN+/ICSPDAT/ULPWU GP1/AN1/CIN-/VREF/ICSPCLK GP2/AN2/T0CKI/INT/COUT/CCP1 VDD GP5/TICKI/OSC1/CLKIN GP4/AN3/TIG/OSC2/CLKOUT GP3/MCLR/VPP 1 2 3 4 5 6 7 8 PIC12F683 VSS GP0/AN0/CIN+/ICSPDAT/ULPWU GP1/AN1/CIN-/VREF/ICSPCLK GP2/AN2/T0CKI/INT/COUT/CCP1 VDD GP5/TICKI/OSC1/CLKIN GP4/AN3/TIG/OSC2/CLKOUT GP3/MCLR/VPP © 2007 Microchip Technology Inc. DS41211D-page 3 PIC12F683 Table of Contents 1.0 Device Overview .......................................................................................................................................................................... 5 2.0 Memory Organization................................................................................................................................................................... 7 3.0 Oscillator Module (With Fail-Safe Clock Monitor)....................................................................................................................... 19 4.0 GPIO Port................................................................................................................................................................................... 31 5.0 Timer0 Module ........................................................................................................................................................................... 41 6.0 Timer1 Module with Gate Control............................................................................................................................................... 44 7.0 Timer2 Module ........................................................................................................................................................................... 49 8.0 Comparator Module.................................................................................................................................................................... 51 9.0 Analog-to-Digital Converter (ADC) Module ................................................................................................................................ 61 10.0 Data EEPROM Memory ............................................................................................................................................................. 71 11.0 Capture/Compare/PWM (CCP) Module ..................................................................................................................................... 75 12.0 Special Features of the CPU...................................................................................................................................................... 83 13.0 Instruction Set Summary .......................................................................................................................................................... 101 14.0 Development Support............................................................................................................................................................... 111 15.0 Electrical Specifications............................................................................................................................................................ 115 16.0 DC and AC Characteristics Graphs and Tables....................................................................................................................... 137 17.0 Packaging Information.............................................................................................................................................................. 159 Appendix A: Data Sheet Revision History.......................................................................................................................................... 165 Appendix B: Migrating From Other PIC® Devices ............................................................................................................................. 165 The Microchip Web Site ..................................................................................................................................................................... 171 Customer Change Notification Service .............................................................................................................................................. 171 Customer Support.............................................................................................................................................................................. 171 Reader Response .............................................................................................................................................................................. 172 Product Identification System ............................................................................................................................................................ 173 TO OUR VALUED CUSTOMERS It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced. If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at docerrors@microchip.com or fax the Reader Response Form in the back of this data sheet to (480) 792-4150. We welcome your feedback. Most Current Data Sheet To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at: http://www.microchip.com You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000). Errata An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies. To determine if an errata sheet exists for a particular device, please check with one of the following: • Microchip’s Worldwide Web site; http://www.microchip.com • Your local Microchip sales office (see last page) When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using. Customer Notification System Register on our web site at www.microchip.com to receive the most current information on all of our products. PIC12F683 DS41211D-page 4 © 2007 Microchip Technology Inc. NOTES: © 2007 Microchip Technology Inc. DS41211D-page 5 PIC12F683 1.0 DEVICE OVERVIEW The PIC12F683 is covered by this data sheet. It is available in 8-pin PDIP, SOIC and DFN-S packages. Figure 1-1 shows a block diagram of the PIC12F683 device. Table 1-1 shows the pinout description. FIGURE 1-1: PIC12F683 BLOCK DIAGRAM Flash Program Memory 13 Data Bus 8 Program 14 Bus Instruction Reg Program Counter RAM File Registers Direct Addr 7 RAM Addr 9 Addr MUX Indirect Addr FSR Reg STATUS Reg MUX ALU W Reg Instruction Decode & Control Timing OSC1/CLKIN Generation OSC2/CLKOUT 8 8 8 3 8-Level Stack 128 bytes 2k x 14 (13-bit) Power-up Timer Oscillator Start-up Timer Power-on Reset Watchdog Timer MCLR VSS Brown-out Reset 1 Analog Comparator Timer0 Timer1 Data EEPROM 256 bytes EEDATA EEADDR GP0 GP1 GP2 GP3 GP4 GP5 AN0 AN1 AN2 AN3 CIN- CIN+ COUT T0CKI INT T1CKI Configuration Internal Oscillator VREF T1G VDD 8 Timer2 CCP Block CCP1 CVREF Analog-to-Digital Converter PIC12F683 DS41211D-page 6 © 2007 Microchip Technology Inc. TABLE 1-1: PIC12F683 PINOUT DESCRIPTION Name Function Input Type Output Type Description VDD VDD Power — Positive supply GP5/T1CKI/OSC1/CLKIN GP5 TTL CMOS GPIO I/O with prog. pull-up and interrupt-on-change T1CKI ST — Timer1 clock OSC1 XTAL — Crystal/Resonator CLKIN ST — External clock input/RC oscillator connection GP4/AN3/T1G/OSC2/CLKOUT GP4 TTL CMOS GPIO I/O with prog. pull-up and interrupt-on-change AN3 AN — A/D Channel 3 input T1G ST — Timer1 gate OSC2 — XTAL Crystal/Resonator CLKOUT — CMOS FOSC/4 output GP3/MCLR/VPP GP3 TTL — GPIO input with interrupt-on-change MCLR ST — Master Clear with internal pull-up VPP HV — Programming voltage GP2/AN2/T0CKI/INT/COUT/CCP1 GP2 ST CMOS GPIO I/O with prog. pull-up and interrupt-on-change AN2 AN — A/D Channel 2 input T0CKI ST — Timer0 clock input INT ST — External Interrupt COUT — CMOS Comparator 1 output CCP1 ST CMOS Capture input/Compare output/PWM output GP1/AN1/CIN-/VREF/ICSPCLK GP1 TTL CMOS GPIO I/O with prog. pull-up and interrupt-on-change AN1 AN — A/D Channel 1 input CIN- AN — Comparator 1 input VREF AN — External Voltage Reference for A/D ICSPCLK ST — Serial Programming Clock GP0/AN0/CIN+/ICSPDAT/ULPWU GP0 TTL CMOS GPIO I/O with prog. pull-up and interrupt-on-change AN0 AN — A/D Channel 0 input CIN+ AN — Comparator 1 input ICSPDAT ST CMOS Serial Programming Data I/O ULPWU AN — Ultra Low-Power Wake-up input VSS VSS Power — Ground reference Legend: AN = Analog input or output CMOS = CMOS compatible input or output TTL = TTL compatible input ST = Schmitt Trigger input with CMOS levels HV = High Voltage XTAL = Crystal © 2007 Microchip Technology Inc. DS41211D-page 7 PIC12F683 2.0 MEMORY ORGANIZATION 2.1 Program Memory Organization The PIC12F683 has a 13-bit program counter capable of addressing an 8k x 14 program memory space. Only the first 2k x 14 (0000h-07FFh) for the PIC12F683 is physically implemented. Accessing a location above these boundaries will cause a wraparound within the first 2K x 14 space. The Reset vector is at 0000h and the interrupt vector is at 0004h (see Figure 2-1). FIGURE 2-1: PROGRAM MEMORY MAP AND STACK FOR THE PIC12F683 2.2 Data Memory Organization The data memory (see Figure 2-2) is partitioned into two banks, which contain the General Purpose Registers (GPR) and the Special Function Registers (SFR). The Special Function Registers are located in the first 32 locations of each bank. Register locations 20h-7Fh in Bank 0 and A0h-BFh in Bank 1 are General Purpose Registers, implemented as static RAM. Register locations F0h-FFh in Bank 1 point to addresses 70h-7Fh in Bank 0. All other RAM is unimplemented and returns ‘0’ when read. RP0 of the STATUS register is the bank select bit. RP0 0 → Bank 0 is selected PC<12:0> 1 → Bank 1 is selected 13 0000h 0004h 0005h 07FFh 0800h 1FFFh Stack Level 1 Stack Level 8 Reset Vector Interrupt Vector On-chip Program Memory CALL, RETURN RETFIE, RETLW Stack Level 2 Wraps to 0000h-07FFh Note: The IRP and RP1 bits of the STATUS register are reserved and should always be maintained as ‘0’s. PIC12F683 DS41211D-page 8 © 2007 Microchip Technology Inc. 2.2.1 GENERAL PURPOSE REGISTER FILE The register file is organized as 128 x 8 in the PIC12F683. Each register is accessed, either directly or indirectly, through the File Select Register FSR (see Section 2.4 “Indirect Addressing, INDF and FSR Registers”). 2.2.2 SPECIAL FUNCTION REGISTERS The Special Function Registers are registers used by the CPU and peripheral functions for controlling the desired operation of the device (see Table 2-1). These registers are static RAM. The special registers can be classified into two sets: core and peripheral. The Special Function Registers associated with the “core” are described in this section. Those related to the operation of the peripheral features are described in the section of that peripheral feature. FIGURE 2-2: DATA MEMORY MAP OF THE PIC12F683 Indirect addr.(1) TMR0 PCL STATUS FSR GPIO PCLATH INTCON PIR1 TMR1L TMR1H T1CON 00h 01h 02h 03h 04h 05h 06h 07h 08h 09h 0Ah 0Bh 0Ch 0Dh 0Eh 0Fh 10h 11h 12h 13h 14h 15h 16h 17h 18h 19h 1Ah 1Bh 1Ch 1Dh 1Eh 1Fh 20h 7Fh BANK 0 Unimplemented data memory locations, read as ‘0’. Note 1: Not a physical register. CMCON0 VRCON General Purpose Registers 96 Bytes EEDAT EEADR EECON2(1) File Address File Address WPU IOC Indirect addr.(1) OPTION_REG PCL STATUS FSR TRISIO PCLATH INTCON PIE1 PCON 80h 81h 82h 83h 84h 85h 86h 87h 88h 89h 8Ah 8Bh 8Ch 8Dh 8Eh 8Fh 90h 91h 92h 93h 94h 95h 96h 97h 98h 99h 9Ah 9Bh 9Ch 9Dh 9Eh 9Fh A0h FFh BANK 1 ADRESH ADCON0 EECON1 ADRESL ANSEL BFh General Purpose Registers 32 Bytes Accesses 70h-7Fh F0h TMR2 T2CON CCPR1L CCPR1H CCP1CON WDTCON CMCON1 OSCCON OSCTUNE PR2 C0h EFh © 2007 Microchip Technology Inc. DS41211D-page 9 PIC12F683 TABLE 2-1: PIC12F683 SPECIAL REGISTERS SUMMARY BANK 0 Addr Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Value on POR, BOR Page Bank 0 00h INDF Addressing this location uses contents of FSR to address data memory (not a physical register) xxxx xxxx 17, 90 01h TMR0 Timer0 Module Register xxxx xxxx 41, 90 02h PCL Program Counter’s (PC) Least Significant Byte 0000 0000 17, 90 03h STATUS IRP(1) RP1(1) RP0 TO PD Z DC C 0001 1xxx 11, 90 04h FSR Indirect Data Memory Address Pointer xxxx xxxx 17, 90 05h GPIO — — GP5 GP4 GP3 GP2 GP1 GP0 --xx xxxx 31, 90 06h — Unimplemented — — 07h — Unimplemented — — 08h — Unimplemented — — 09h — Unimplemented — — 0Ah PCLATH — — — Write Buffer for upper 5 bits of Program Counter ---0 0000 17, 90 0Bh INTCON GIE PEIE T0IE INTE GPIE T0IF INTF GPIF 0000 0000 13, 90 0Ch PIR1 EEIF ADIF CCP1IF — CMIF OSFIF TMR2IF TMR1IF 000- 0000 15, 90 0Dh — Unimplemented — — 0Eh TMR1L Holding Register for the Least Significant Byte of the 16-bit TMR1 xxxx xxxx 44, 90 0Fh TMR1H Holding Register for the Most Significant Byte of the 16-bit TMR1 xxxx xxxx 44, 90 10h T1CON T1GINV TMR1GE T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON 0000 0000 47, 90 11h TMR2 Timer2 Module Register 0000 0000 49, 90 12h T2CON — TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0 -000 0000 50, 90 13h CCPR1L Capture/Compare/PWM Register 1 Low Byte xxxx xxxx 76, 90 14h CCPR1H Capture/Compare/PWM Register 1 High Byte xxxx xxxx 76, 90 15h CCP1CON — — DC1B1 DC1B0 CCP1M3 CCP1M2 CCP1M1 CCP1M0 --00 0000 75, 90 16h — Unimplemented — — 17h — Unimplemented — — 18h WDTCON — — — WDTPS3 WDTPS2 WDTPS1 WDTPS0 SWDTEN ---0 1000 97, 90 19h CMCON0 — COUT — CINV CIS CM2 CM1 CM0 -0-0 0000 56, 90 1Ah CMCON1 — — — — — — T1GSS CMSYNC ---- --10 57, 90 1Bh — Unimplemented — — 1Ch — Unimplemented — — 1Dh — Unimplemented — — 1Eh ADRESH Most Significant 8 bits of the left shifted A/D result or 2 bits of right shifted result xxxx xxxx 61,90 1Fh ADCON0 ADFM VCFG — — CHS1 CHS0 GO/DONE ADON 00-- 0000 65,90 Legend: – = unimplemented locations read as ‘0’, u = unchanged, x = unknown, q = value depends on condition, shaded = unimplemented Note 1: IRP and RP1 bits are reserved, always maintain these bits clear. PIC12F683 DS41211D-page 10 © 2007 Microchip Technology Inc. TABLE 2-2: PIC12F683 SPECIAL FUNCTION REGISTERS SUMMARY BANK 1 Addr Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Value on POR, BOR Page Bank 1 80h INDF Addressing this location uses contents of FSR to address data memory (not a physical register) xxxx xxxx 17, 90 81h OPTION_REG GPPU INTEDG T0CS T0SE PSA PS2 PS1 PS0 1111 1111 12, 90 82h PCL Program Counter’s (PC) Least Significant Byte 0000 0000 17, 90 83h STATUS IRP(1) RP1(1) RP0 TO PD Z DC C 0001 1xxx 11, 90 84h FSR Indirect Data Memory Address Pointer xxxx xxxx 17, 90 85h TRISIO — — TRISIO5 TRISIO4 TRISIO3 TRISIO2 TRISIO1 TRISIO0 --11 1111 32, 90 86h — Unimplemented — — 87h — Unimplemented — — 88h — Unimplemented — — 89h — Unimplemented — — 8Ah PCLATH — — — Write Buffer for upper 5 bits of Program Counter ---0 0000 17, 90 8Bh INTCON GIE PEIE T0IE INTE GPIE T0IF INTF GPIF 0000 0000 13, 90 8Ch PIE1 EEIE ADIE CCP1IE — CMIE OSFIE TMR2IE TMR1IE 000- 0000 14, 90 8Dh — Unimplemented — — 8Eh PCON — — ULPWUE SBOREN — — POR BOR --01 --qq 16, 90 8Fh OSCCON — IRCF2 IRCF1 IRCF0 OSTS(2) HTS LTS SCS -110 x000 20, 90 90h OSCTUNE — — — TUN4 TUN3 TUN2 TUN1 TUN0 ---0 0000 24, 90 91h — Unimplemented — — 92h PR2 Timer2 Module Period Register 1111 1111 49, 90 93h — Unimplemented — — 94h — Unimplemented — — 95h WPU(3) — — WPU5 WPU4 — WPU2 WPU1 WPU0 --11 -111 34, 90 96h IOC — — IOC5 IOC4 IOC3 IOC2 IOC1 IOC0 --00 0000 34, 90 97h — Unimplemented — — 98h — Unimplemented — — 99h VRCON VREN — VRR — VR3 VR2 VR1 VR0 0-0- 0000 58, 90 9Ah EEDAT EEDAT7 EEDAT6 EEDAT5 EEDAT4 EEDAT3 EEDAT2 EEDAT1 EEDAT0 0000 0000 71, 90 9Bh EEADR EEADR7 EEADR6 EEADR5 EEADR4 EEADR3 EEADR2 EEADR1 EEADR0 0000 0000 71, 90 9Ch EECON1 — — — — WRERR WREN WR RD ---- x000 72, 91 9Dh EECON2 EEPROM Control Register 2 (not a physical register) ---- ---- 72, 91 9Eh ADRESL Least Significant 2 bits of the left shifted result or 8 bits of the right shifted result xxxx xxxx 66, 91 9Fh ANSEL — ADCS2 ADCS1 ADCS0 ANS3 ANS2 ANS1 ANS0 -000 1111 33, 91 Legend: – = unimplemented locations read as ‘0’, u = unchanged, x = unknown, q = value depends on condition, shaded = unimplemented Note 1: IRP and RP1 bits are reserved, always maintain these bits clear. 2: OSTS bit of the OSCCON register reset to ‘0’ with Dual Speed Start-up and LP, HS or XT selected as the oscillator. 3: GP3 pull-up is enabled when MCLRE is ‘1’ in the Configuration Word register. © 2007 Microchip Technology Inc. DS41211D-page 11 PIC12F683 2.2.2.1 STATUS Register The STATUS register, shown in Register 2-1, contains: • Arithmetic status of the ALU • Reset status • Bank select bits for data memory (SRAM) The STATUS register can be the destination for any instruction, like any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended. For example, CLRF STATUS, will clear the upper three bits and set the Z bit. This leaves the STATUS register as 000u u1uu (where u = unchanged). It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the STATUS register, because these instructions do not affect any Status bits. For other instructions not affecting any Status bits, see the “Instruction Set Summary”. Note 1: Bits IRP and RP1 of the STATUS register are not used by the PIC12F683 and should be maintained as clear. Use of these bits is not recommended, since this may affect upward compatibility with future products. 2: The C and DC bits operate as a Borrow and Digit Borrow out bit, respectively, in subtraction. REGISTER 2-1: STATUS: STATUS REGISTER Reserved Reserved R/W-0 R-1 R-1 R/W-x R/W-x R/W-x IRP RP1 RP0 TO PD Z DC C bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 7 IRP: This bit is reserved and should be maintained as ‘0’ bit 6 RP1: This bit is reserved and should be maintained as ‘0’ bit 5 RP0: Register Bank Select bit (used for direct addressing) 1 = Bank 1 (80h – FFh) 0 = Bank 0 (00h – 7Fh) bit 4 TO: Time-out bit 1 = After power-up, CLRWDT instruction or SLEEP instruction 0 = A WDT time-out occurred bit 3 PD: Power-down bit 1 = After power-up or by the CLRWDT instruction 0 = By execution of the SLEEP instruction bit 2 Z: Zero bit 1 = The result of an arithmetic or logic operation is zero 0 = The result of an arithmetic or logic operation is not zero bit 1 DC: Digit Carry/Borrow bit (ADDWF, ADDLW,SUBLW,SUBWF instructions), For Borrow, the polarity is reversed. 1 = A carry-out from the 4th low-order bit of the result occurred 0 = No carry-out from the 4th low-order bit of the result bit 0 C: Carry/Borrow bit(1) (ADDWF, ADDLW, SUBLW, SUBWF instructions) 1 = A carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred Note 1: For Borrow, the polarity is reversed. A subtraction is executed by adding the two’s complement of the second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high-order or low-order bit of the source register. PIC12F683 DS41211D-page 12 © 2007 Microchip Technology Inc. 2.2.2.2 OPTION Register The OPTION register is a readable and writable register, which contains various control bits to configure: • TMR0/WDT prescaler • External GP2/INT interrupt • TMR0 • Weak pull-ups on GPIO Note: To achieve a 1:1 prescaler assignment for Timer0, assign the prescaler to the WDT by setting PSA bit of the OPTION register to ‘1’ See Section 5.1.3 “Software Programmable Prescaler”. REGISTER 2-2: OPTION_REG: OPTION REGISTER R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 GPPU INTEDG T0CS T0SE PSA PS2 PS1 PS0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 7 GPPU: GPIO Pull-up Enable bit 1 = GPIO pull-ups are disabled 0 = GPIO pull-ups are enabled by individual PORT latch values in WPU register bit 6 INTEDG: Interrupt Edge Select bit 1 = Interrupt on rising edge of INT pin 0 = Interrupt on falling edge of INT pin bit 5 T0CS: Timer0 Clock Source Select bit 1 = Transition on T0CKI pin 0 = Internal instruction cycle clock (FOSC/4) bit 4 T0SE: Timer0 Source Edge Select bit 1 = Increment on high-to-low transition on T0CKI pin 0 = Increment on low-to-high transition on T0CKI pin bit 3 PSA: Prescaler Assignment bit 1 = Prescaler is assigned to the WDT 0 = Prescaler is assigned to the Timer0 module bit 2-0 PS<2:0>: Prescaler Rate Select bits Note 1: A dedicated 16-bit WDT postscaler is available. See Section 12.6 “Watchdog Timer (WDT)” for more information. 000 001 010 011 100 101 110 111 1 : 2 1 : 4 1 : 8 1 : 16 1 : 32 1 : 64 1 : 128 1 : 256 1 : 1 1 : 2 1 : 4 1 : 8 1 : 16 1 : 32 1 : 64 1 : 128 BIT VALUE TIMER0 RATE WDT RATE © 2007 Microchip Technology Inc. DS41211D-page 13 PIC12F683 2.2.2.3 INTCON Register The INTCON register is a readable and writable register, which contains the various enable and flag bits for TMR0 register overflow, GPIO change and external GP2/INT pin interrupts. Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit, GIE of the INTCON register. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt. REGISTER 2-3: INTCON: INTERRUPT CONTROL REGISTER R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 GIE PEIE T0IE INTE GPIE T0IF INTF GPIF bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 7 GIE: Global Interrupt Enable bit 1 = Enables all unmasked interrupts 0 = Disables all interrupts bit 6 PEIE: Peripheral Interrupt Enable bit 1 = Enables all unmasked peripheral interrupts 0 = Disables all peripheral interrupts bit 5 T0IE: Timer0 Overflow Interrupt Enable bit 1 = Enables the Timer0 interrupt 0 = Disables the Timer0 interrupt bit 4 INTE: GP2/INT External Interrupt Enable bit 1 = Enables the GP2/INT external interrupt 0 = Disables the GP2/INT external interrupt bit 3 GPIE: GPIO Change Interrupt Enable bit(1) 1 = Enables the GPIO change interrupt 0 = Disables the GPIO change interrupt bit 2 T0IF: Timer0 Overflow Interrupt Flag bit(2) 1 = Timer0 register has overflowed (must be cleared in software) 0 = Timer0 register did not overflow bit 1 INTF: GP2/INT External Interrupt Flag bit 1 = The GP2/INT external interrupt occurred (must be cleared in software) 0 = The GP2/INT external interrupt did not occur bit 0 GPIF: GPIO Change Interrupt Flag bit 1 = When at least one of the GPIO <5:0> pins changed state (must be cleared in software) 0 = None of the GPIO <5:0> pins have changed state Note 1: IOC register must also be enabled. 2: T0IF bit is set when TMR0 rolls over. TMR0 is unchanged on Reset and should be initialized before clearing T0IF bit. PIC12F683 DS41211D-page 14 © 2007 Microchip Technology Inc. 2.2.2.4 PIE1 Register The PIE1 register contains the interrupt enable bits, as shown in Register 2-4. Note: Bit PEIE of the INTCON register must be set to enable any peripheral interrupt. REGISTER 2-4: PIE1: PERIPHERAL INTERRUPT ENABLE REGISTER 1 R/W-0 R/W-0 R/W-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 EEIE ADIE CCP1IE — CMIE OSFIE TMR2IE TMR1IE bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 7 EEIE: EE Write Complete Interrupt Enable bit 1 = Enables the EE write complete interrupt 0 = Disables the EE write complete interrupt bit 6 ADIE: A/D Converter (ADC) Interrupt Enable bit 1 = Enables the ADC interrupt 0 = Disables the ADC interrupt bit 5 CCP1IE: CCP1 Interrupt Enable bit 1 = Enables the CCP1 interrupt 0 = Disables the CCP1 interrupt bit 4 Unimplemented: Read as ‘0’ bit 3 CMIE: Comparator Interrupt Enable bit 1 = Enables the Comparator 1 interrupt 0 = Disables the Comparator 1 interrupt bit 2 OSFIE: Oscillator Fail Interrupt Enable bit 1 = Enables the oscillator fail interrupt 0 = Disables the oscillator fail interrupt bit 1 TMR2IE: Timer2 to PR2 Match Interrupt Enable bit 1 = Enables the Timer2 to PR2 match interrupt 0 = Disables the Timer2 to PR2 match interrupt bit 0 TMR1IE: Timer1 Overflow Interrupt Enable bit 1 = Enables the Timer1 overflow interrupt 0 = Disables the Timer1 overflow interrupt © 2007 Microchip Technology Inc. DS41211D-page 15 PIC12F683 2.2.2.5 PIR1 Register The PIR1 register contains the interrupt flag bits, as shown in Register 2-5. Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit, GIE of the INTCON register. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt. REGISTER 2-5: PIR1: PERIPHERAL INTERRUPT REQUEST REGISTER 1 R/W-0 R/W-0 R/W-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 EEIF ADIF CCP1IF — CMIF OSFIF TMR2IF TMR1IF bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 7 EEIF: EEPROM Write Operation Interrupt Flag bit 1 = The write operation completed (must be cleared in software) 0 = The write operation has not completed or has not been started bit 6 ADIF: A/D Interrupt Flag bit 1 = A/D conversion complete 0 = A/D conversion has not completed or has not been started bit 5 CCP1IF: CCP1 Interrupt Flag bit Capture mode: 1 = A TMR1 register capture occurred (must be cleared in software) 0 = No TMR1 register capture occurred Compare mode: 1 = A TMR1 register compare match occurred (must be cleared in software) 0 = No TMR1 register compare match occurred PWM mode: Unused in this mode bit 4 Unimplemented: Read as ‘0’ bit 3 CMIF: Comparator Interrupt Flag bit 1 = Comparator 1 output has changed (must be cleared in software) 0 = Comparator 1 output has not changed bit 2 OSFIF: Oscillator Fail Interrupt Flag bit 1 = System oscillator failed, clock input has changed to INTOSC (must be cleared in software) 0 = System clock operating bit 1 TMR2IF: Timer2 to PR2 Match Interrupt Flag bit 1 = Timer2 to PR2 match occurred (must be cleared in software) 0 = Timer2 to PR2 match has not occurred bit 0 TMR1IF: Timer1 Overflow Interrupt Flag bit 1 = Timer1 register overflowed (must be cleared in software) 0 = Timer1 has not overflowed PIC12F683 DS41211D-page 16 © 2007 Microchip Technology Inc. 2.2.2.6 PCON Register The Power Control (PCON) register contains flag bits (see Table 12-2) to differentiate between a: • Power-on Reset (POR) • Brown-out Reset (BOR) • Watchdog Timer Reset (WDT) • External MCLR Reset The PCON register also controls the Ultra Low-Power Wake-up and software enable of the BOR. The PCON register bits are shown in Register 2-6. REGISTER 2-6: PCON: POWER CONTROL REGISTER U-0 U-0 R/W-0 R/W-1 U-0 U-0 R/W-0 R/W-x — — ULPWUE SBOREN — — POR BOR bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 7-6 Unimplemented: Read as ‘0’ bit 5 ULPWUE: Ultra Low-Power Wake-Up Enable bit 1 = Ultra Low-Power Wake-up enabled 0 = Ultra Low-Power Wake-up disabled bit 4 SBOREN: Software BOR Enable bit(1) 1 = BOR enabled 0 = BOR disabled bit 3-2 Unimplemented: Read as ‘0’ bit 1 POR: Power-on Reset Status bit 1 = No Power-on Reset occurred 0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs) bit 0 BOR: Brown-out Reset Status bit 1 = No Brown-out Reset occurred 0 = A Brown-out Reset occurred (must be set in software after a Power-on Reset or Brown-out Reset occurs) Note 1: Set BOREN<1:0> = 01 in the Configuration Word register for this bit to control the BOR. © 2007 Microchip Technology Inc. DS41211D-page 17 PIC12F683 2.3 PCL and PCLATH The Program Counter (PC) is 13 bits wide. The low byte comes from the PCL register, which is a readable and writable register. The high byte (PC<12:8>) is not directly readable or writable and comes from PCLATH. On any Reset, the PC is cleared. Figure 2-3 shows the two situations for the loading of the PC. The upper example in Figure 2-3 shows how the PC is loaded on a write to PCL (PCLATH<4:0> → PCH). The lower example in Figure 2-3 shows how the PC is loaded during a CALL or GOTO instruction (PCLATH<4:3> → PCH). FIGURE 2-3: LOADING OF PC IN DIFFERENT SITUATIONS 2.3.1 COMPUTED GOTO A computed GOTO is accomplished by adding an offset to the program counter (ADDWF PCL). When performing a table read using a computed GOTO method, care should be exercised if the table location crosses a PCL memory boundary (each 256-byte block). Refer to the Application Note AN556, “Implementing a Table Read” (DS00556). 2.3.2 STACK The PIC12F683 family has an 8-level x 13-bit wide hardware stack (see Figure 2-1). The stack space is not part of either program or data space and the Stack Pointer is not readable or writable. The PC is PUSHed onto the stack when a CALL instruction is executed or an interrupt causes a branch. The stack is POPed in the event of a RETURN, RETLW or a RETFIE instruction execution. PCLATH is not affected by a PUSH or POP operation. The stack operates as a circular buffer. This means that after the stack has been PUSHed eight times, the ninth push overwrites the value that was stored from the first push. The tenth push overwrites the second push (and so on). 2.4 Indirect Addressing, INDF and FSR Registers The INDF register is not a physical register. Addressing the INDF register will cause indirect addressing. Indirect addressing is possible by using the INDF register. Any instruction using the INDF register actually accesses data pointed to by the File Select Register (FSR). Reading INDF itself indirectly will produce 00h. Writing to the INDF register indirectly results in a no operation (although Status bits may be affected). An effective 9-bit address is obtained by concatenating the 8-bit FSR register and the IRP bit of the STATUS register, as shown in Figure 2-4. A simple program to clear RAM location 20h-2Fh using indirect addressing is shown in Example 2-1. EXAMPLE 2-1: INDIRECT ADDRESSING PC 12 8 7 0 5 PCLATH<4:0> PCLATH Instruction with ALU Result GOTO, CALL OPCODE<10:0> 8 PC 12 11 10 0 PCLATH<4:3> 11 PCH PCL 8 7 2 PCLATH PCH PCL PCL as Destination Note 1: There are no Status bits to indicate stack overflow or stack underflow conditions. 2: There are no instructions/mnemonics called PUSH or POP. These are actions that occur from the execution of the CALL, RETURN, RETLW and RETFIE instructions or the vectoring to an interrupt address. MOVLW 0x20 ;initialize pointer MOVWF FSR ;to RAM NEXT CLRF INDF ;clear INDF register INCF FSR ;inc pointer BTFSS FSR,4 ;all done? GOTO NEXT ;no clear next CONTINUE ;yes continue PIC12F683 DS41211D-page 18 © 2007 Microchip Technology Inc. FIGURE 2-4: DIRECT/INDIRECT ADDRESSING PIC12F683 For memory map detail, see Figure 2-2. Note 1: The RP1 and IRP bits are reserved; always maintain these bits clear. Data Memory Direct Addressing Indirect Addressing Bank Select Location Select RP1(1) RP0 6 From Opcode 0 IRP(1) 7 File Select Register 0 Bank Select Location Select 00 01 10 11 180h 1FFh 00h 7Fh Bank 0 Bank 1 Bank 2 Bank 3 Not Used © 2007 Microchip Technology Inc. DS41211D-page 19 PIC12F683 3.0 OSCILLATOR MODULE (WITH FAIL-SAFE CLOCK MONITOR) 3.1 Overview The Oscillator module has a wide variety of clock sources and selection features that allow it to be used in a wide range of applications while maximizing performance and minimizing power consumption. Figure 3-1 illustrates a block diagram of the Oscillator module. Clock sources can be configured from external oscillators, quartz crystal resonators, ceramic resonators and Resistor-Capacitor (RC) circuits. In addition, the system clock source can be configured from one of two internal oscillators, with a choice of speeds selectable via software. Additional clock features include: • Selectable system clock source between external or internal via software. • Two-Speed Start-up mode, which minimizes latency between external oscillator start-up and code execution. • Fail-Safe Clock Monitor (FSCM) designed to detect a failure of the external clock source (LP, XT, HS, EC or RC modes) and switch automatically to the internal oscillator. The Oscillator module can be configured in one of eight clock modes. 1. EC – External clock with I/O on OSC2/CLKOUT. 2. LP – 32 kHz Low-Power Crystal mode. 3. XT – Medium Gain Crystal or Ceramic Resonator Oscillator mode. 4. HS – High Gain Crystal or Ceramic Resonator mode. 5. RC – External Resistor-Capacitor (RC) with FOSC/4 output on OSC2/CLKOUT. 6. RCIO – External Resistor-Capacitor (RC) with I/O on OSC2/CLKOUT. 7. INTOSC – Internal oscillator with FOSC/4 output on OSC2 and I/O on OSC1/CLKIN. 8. INTOSCIO – Internal oscillator with I/O on OSC1/CLKIN and OSC2/CLKOUT. Clock Source modes are configured by the FOSC<2:0> bits in the Configuration Word register (CONFIG). The internal clock can be generated from two internal oscillators. The HFINTOSC is a calibrated high-frequency oscillator. The LFINTOSC is an uncalibrated low-frequency oscillator. FIGURE 3-1: PIC® MCU CLOCK SOURCE BLOCK DIAGRAM (CPU and Peripherals) OSC1 OSC2 Sleep External Oscillator LP, XT, HS, RC, RCIO, EC System Clock Postscaler MUX MUX 8 MHz 4 MHz 2 MHz 1 MHz 500 kHz 125 kHz 250 kHz IRCF<2:0> 111 110 101 100 011 010 001 000 31 kHz Power-up Timer (PWRT) FOSC<2:0> (Configuration Word Register) SCS<0> (OSCCON Register) Internal Oscillator (OSCCON Register) Watchdog Timer (WDT) Fail-Safe Clock Monitor (FSCM) HFINTOSC 8 MHz LFINTOSC 31 kHz INTOSC PIC12F683 DS41211D-page 20 © 2007 Microchip Technology Inc. 3.2 Oscillator Control The Oscillator Control (OSCCON) register (Figure 3-1) controls the system clock and frequency selection options. The OSCCON register contains the following bits: • Frequency selection bits (IRCF) • Frequency Status bits (HTS, LTS) • System clock control bits (OSTS, SCS) REGISTER 3-1: OSCCON: OSCILLATOR CONTROL REGISTER U-0 R/W-1 R/W-1 R/W-0 R-1 R-0 R-0 R/W-0 — IRCF2 IRCF1 IRCF0 OSTS(1) HTS LTS SCS bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 7 Unimplemented: Read as ‘0’ bit 6-4 IRCF<2:0>: Internal Oscillator Frequency Select bits 111 = 8MHz 110 = 4 MHz (default) 101 = 2MHz 100 = 1MHz 011 = 500kHz 010 = 250kHz 001 = 125kHz 000 = 31 kHz (LFINTOSC) bit 3 OSTS: Oscillator Start-up Time-out Status bit(1) 1 = Device is running from the external clock defined by FOSC<2:0> of the Configuration Word register 0 = Device is running from the internal oscillator (HFINTOSC or LFINTOSC) bit 2 HTS: HFINTOSC Status bit (High Frequency – 8 MHz to 125 kHz) 1 = HFINTOSC is stable 0 = HFINTOSC is not stable bit 1 LTS: LFINTOSC Stable bit (Low Frequency – 31 kHz) 1 = LFINTOSC is stable 0 = LFINTOSC is not stable bit 0 SCS: System Clock Select bit 1 = Internal oscillator is used for system clock 0 = Clock source defined by FOSC<2:0> of the Configuration Word register Note 1: Bit resets to ‘0’ with Two-Speed Start-up and LP, XT or HS selected as the Oscillator mode or Fail-Safe mode is enabled. © 2007 Microchip Technology Inc. DS41211D-page 21 PIC12F683 3.3 Clock Source Modes Clock Source modes can be classified as external or internal. • External Clock modes rely on external circuitry for the clock source. Examples are: Oscillator modules (EC mode), quartz crystal resonators or ceramic resonators (LP, XT and HS modes) and Resistor-Capacitor (RC) mode circuits. • Internal clock sources are contained internally within the Oscillator module. The Oscillator module has two internal oscillators: the 8 MHz High-Frequency Internal Oscillator (HFINTOSC) and the 31 kHz Low-Frequency Internal Oscillator (LFINTOSC). The system clock can be selected between external or internal clock sources via the System Clock Select (SCS) bit of the OSCCON register. See Section 3.6 “Clock Switching” for additional information. 3.4 External Clock Modes 3.4.1 OSCILLATOR START-UP TIMER (OST) If the Oscillator module is configured for LP, XT or HS modes, the Oscillator Start-up Timer (OST) counts 1024 oscillations from OSC1. This occurs following a Power-on Reset (POR) and when the Power-up Timer (PWRT) has expired (if configured), or a wake-up from Sleep. During this time, the program counter does not increment and program execution is suspended. The OST ensures that the oscillator circuit, using a quartz crystal resonator or ceramic resonator, has started and is providing a stable system clock to the Oscillator module. When switching between clock sources, a delay is required to allow the new clock to stabilize. These oscillator delays are shown in Table 3-1. In order to minimize latency between external oscillator start-up and code execution, the Two-Speed Clock Start-up mode can be selected (see Section 3.7 “Two-Speed Clock Start-up Mode”). TABLE 3-1: OSCILLATOR DELAY EXAMPLES 3.4.2 EC MODE The External Clock (EC) mode allows an externally generated logic level as the system clock source. When operating in this mode, an external clock source is connected to the OSC1 input and the OSC2 is available for general purpose I/O. Figure 3-2 shows the pin connections for EC mode. The Oscillator Start-up Timer (OST) is disabled when EC mode is selected. Therefore, there is no delay in operation after a Power-on Reset (POR) or wake-up from Sleep. Because the PIC® MCU design is fully static, stopping the external clock input will have the effect of halting the device while leaving all data intact. Upon restarting the external clock, the device will resume operation as if no time had elapsed. FIGURE 3-2: EXTERNAL CLOCK (EC) MODE OPERATION Switch From Switch To Frequency Oscillator Delay Sleep/POR LFINTOSC HFINTOSC 31 kHz 125 kHz to 8 MHz Oscillator Warm-Up Delay (TWARM) Sleep/POR EC, RC DC – 20 MHz 2 instruction cycles LFINTOSC (31 kHz) EC, RC DC – 20 MHz 1 cycle of each Sleep/POR LP, XT, HS 32 kHz to 20 MHz 1024 Clock Cycles (OST) LFINTOSC (31 kHz) HFINTOSC 125 kHz to 8 MHz 1 μs (approx.) OSC1/CLKIN I/O OSC2/CLKOUT(1) Clock from Ext. System PIC® MCU Note 1: Alternate pin functions are listed in the Device Overview. PIC12F683 DS41211D-page 22 © 2007 Microchip Technology Inc. 3.4.3 LP, XT, HS MODES The LP, XT and HS modes support the use of quartz crystal resonators or ceramic resonators connected to OSC1 and OSC2 (Figure 3-3). The mode selects a low, medium or high gain setting of the internal inverter-amplifier to support various resonator types and speed. LP Oscillator mode selects the lowest gain setting of the internal inverter-amplifier. LP mode current consumption is the least of the three modes. This mode is designed to drive only 32.768 kHz tuning-fork type crystals (watch crystals). XT Oscillator mode selects the intermediate gain setting of the internal inverter-amplifier. XT mode current consumption is the medium of the three modes. This mode is best suited to drive resonators with a medium drive level specification. HS Oscillator mode selects the highest gain setting of the internal inverter-amplifier. HS mode current consumption is the highest of the three modes. This mode is best suited for resonators that require a high drive setting. Figure 3-3 and Figure 3-4 show typical circuits for quartz crystal and ceramic resonators, respectively. FIGURE 3-3: QUARTZ CRYSTAL OPERATION (LP, XT OR HS MODE) FIGURE 3-4: CERAMIC RESONATOR OPERATION (XT OR HS MODE) Note 1: A series resistor (RS) may be required for quartz crystals with low drive level. 2: The value of RF varies with the Oscillator mode selected (typically between 2 MΩ to 10 MΩ). C1 C2 Quartz RS(1) OSC1/CLKIN RF(2) Sleep To Internal Logic PIC® MCU Crystal OSC2/CLKOUT Note 1: Quartz crystal characteristics vary according to type, package and manufacturer. The user should consult the manufacturer data sheets for specifications and recommended application. 2: Always verify oscillator performance over the VDD and temperature range that is expected for the application. 3: For oscillator design assistance, reference the following Microchip Applications Notes: • AN826, “Crystal Oscillator Basics and Crystal Selection for rfPIC® and PIC® Devices” (DS00826) • AN849, “Basic PIC® Oscillator Design” (DS00849) • AN943, “Practical PIC® Oscillator Analysis and Design” (DS00943) • AN949, “Making Your Oscillator Work” (DS00949) Note 1: A series resistor (RS) may be required for ceramic resonators with low drive level. 2: The value of RF varies with the Oscillator mode selected (typically between 2 MΩ to 10 MΩ). 3: An additional parallel feedback resistor (RP) may be required for proper ceramic resonator operation. C1 C2 Ceramic RS(1) OSC1/CLKIN RF(2) Sleep To Internal Logic PIC® MCU RP(3) Resonator OSC2/CLKOUT © 2007 Microchip Technology Inc. DS41211D-page 23 PIC12F683 3.4.4 EXTERNAL RC MODES The external Resistor-Capacitor (RC) modes support the use of an external RC circuit. This allows the designer maximum flexibility in frequency choice while keeping costs to a minimum when clock accuracy is not required. There are two modes: RC and RCIO. In RC mode, the RC circuit connects to OSC1. OSC2/CLKOUT outputs the RC oscillator frequency divided by 4. This signal may be used to provide a clock for external circuitry, synchronization, calibration, test or other application requirements. Figure 3-5 shows the external RC mode connections. FIGURE 3-5: EXTERNAL RC MODES In RCIO mode, the RC circuit is connected to OSC1. OSC2 becomes an additional general purpose I/O pin. The RC oscillator frequency is a function of the supply voltage, the resistor (REXT) and capacitor (CEXT) values and the operating temperature. Other factors affecting the oscillator frequency are: • threshold voltage variation • component tolerances • packaging variations in capacitance The user also needs to take into account variation due to tolerance of external RC components used. 3.5 Internal Clock Modes The Oscillator module has two independent, internal oscillators that can be configured or selected as the system clock source. 1. The HFINTOSC (High-Frequency Internal Oscillator) is factory calibrated and operates at 8 MHz. The frequency of the HFINTOSC can be user-adjusted via software using the OSCTUNE register (Register 3-2). 2. The LFINTOSC (Low-Frequency Internal Oscillator) is uncalibrated and operates at 31 kHz. The system clock speed can be selected via software using the Internal Oscillator Frequency Select bits IRCF<2:0> of the OSCCON register. The system clock can be selected between external or internal clock sources via the System Clock Selection (SCS) bit of the OSCCON register. See Section 3.6 “Clock Switching” for more information. 3.5.1 INTOSC AND INTOSCIO MODES The INTOSC and INTOSCIO modes configure the internal oscillators as the system clock source when the device is programmed using the oscillator selection or the FOSC<2:0> bits in the Configuration Word register (CONFIG). See Section 12.0 “Special Features of the CPU” for more information. In INTOSC mode, OSC1/CLKIN is available for general purpose I/O. OSC2/CLKOUT outputs the selected internal oscillator frequency divided by 4. The CLKOUT signal may be used to provide a clock for external circuitry, synchronization, calibration, test or other application requirements. In INTOSCIO mode, OSC1/CLKIN and OSC2/CLKOUT are available for general purpose I/O. 3.5.2 HFINTOSC The High-Frequency Internal Oscillator (HFINTOSC) is a factory calibrated 8 MHz internal clock source. The frequency of the HFINTOSC can be altered via software using the OSCTUNE register (Register 3-2). The output of the HFINTOSC connects to a postscaler and multiplexer (see Figure 3-1). One of seven frequencies can be selected via software using the IRCF<2:0> bits of the OSCCON register. See Section 3.5.4 “Frequency Select Bits (IRCF)” for more information. The HFINTOSC is enabled by selecting any frequency between 8 MHz and 125 kHz by setting the IRCF<2:0> bits of the OSCCON register ≠ 000. Then, set the System Clock Source (SCS) bit of the OSCCON register to ‘1’ or enable Two-Speed Start-up by setting the IESO bit in the Configuration Word register (CONFIG) to ‘1’. The HF Internal Oscillator (HTS) bit of the OSCCON register indicates whether the HFINTOSC is stable or not. OSC2/CLKOUT(1) CEXT REXT PIC® MCU OSC1/CLKIN FOSC/4 or Internal Clock VDD VSS Recommended values: 10 kΩ ≤ REXT ≤ 100 kΩ, <3V 3 kΩ ≤ REXT ≤ 100 kΩ, 3-5V CEXT > 20 pF, 2-5V Note 1: Alternate pin functions are listed in the Device Overview. 2: Output depends upon RC or RCIO clock mode. I/O(2) PIC12F683 DS41211D-page 24 © 2007 Microchip Technology Inc. 3.5.2.1 OSCTUNE Register The HFINTOSC is factory calibrated but can be adjusted in software by writing to the OSCTUNE register (Register 3-2). The default value of the OSCTUNE register is ‘0’. The value is a 5-bit two’s complement number. When the OSCTUNE register is modified, the HFINTOSC frequency will begin shifting to the new frequency. Code execution continues during this shift. There is no indication that the shift has occurred. OSCTUNE does not affect the LFINTOSC frequency. Operation of features that depend on the LFINTOSC clock source frequency, such as the Power-up Timer (PWRT), Watchdog Timer (WDT), Fail-Safe Clock Monitor (FSCM) and peripherals, are not affected by the change in frequency. REGISTER 3-2: OSCTUNE: OSCILLATOR TUNING REGISTER U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 — — — TUN4 TUN3 TUN2 TUN1 TUN0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 7-5 Unimplemented: Read as ‘0’ bit 4-0 TUN<4:0>: Frequency Tuning bits 01111 = Maximum frequency 01110 = • • • 00001 = 00000 = Oscillator module is running at the calibrated frequency. 11111 = • • • 10000 = Minimum frequency © 2007 Microchip Technology Inc. DS41211D-page 25 PIC12F683 3.5.3 LFINTOSC The Low-Frequency Internal Oscillator (LFINTOSC) is an uncalibrated 31 kHz internal clock source. The output of the LFINTOSC connects to a postscaler and multiplexer (see Figure 3-1). Select 31 kHz, via software, using the IRCF<2:0> bits of the OSCCON register. See Section 3.5.4 “Frequency Select Bits (IRCF)” for more information. The LFINTOSC is also the frequency for the Power-up Timer (PWRT), Watchdog Timer (WDT) and Fail-Safe Clock Monitor (FSCM). The LFINTOSC is enabled by selecting 31 kHz (IRCF<2:0> bits of the OSCCON register = 000) as the system clock source (SCS bit of the OSCCON register = 1), or when any of the following are enabled: • Two-Speed Start-up IESO bit of the Configuration Word register = 1 and IRCF<2:0> bits of the OSCCON register = 000 • Power-up Timer (PWRT) • Watchdog Timer (WDT) • Fail-Safe Clock Monitor (FSCM) The LF Internal Oscillator (LTS) bit of the OSCCON register indicates whether the LFINTOSC is stable or not. 3.5.4 FREQUENCY SELECT BITS (IRCF) The output of the 8 MHz HFINTOSC and 31 kHz LFINTOSC connects to a postscaler and multiplexer (see Figure 3-1). The Internal Oscillator Frequency Select bits IRCF<2:0> of the OSCCON register select the frequency output of the internal oscillators. One of eight frequencies can be selected via software: • 8 MHz • 4 MHz (Default after Reset) • 2 MHz • 1 MHz • 500 kHz • 250 kHz • 125 kHz • 31 kHz (LFINTOSC) 3.5.5 HF AND LF INTOSC CLOCK SWITCH TIMING When switching between the LFINTOSC and the HFINTOSC, the new oscillator may already be shut down to save power (see Figure 3-6). If this is the case, there is a delay after the IRCF<2:0> bits of the OSCCON register are modified before the frequency selection takes place. The LTS and HTS bits of the OSCCON register will reflect the current active status of the LFINTOSC and HFINTOSC oscillators. The timing of a frequency selection is as follows: 1. IRCF<2:0> bits of the OSCCON register are modified. 2. If the new clock is shut down, a clock start-up delay is started. 3. Clock switch circuitry waits for a falling edge of the current clock. 4. CLKOUT is held low and the clock switch circuitry waits for a rising edge in the new clock. 5. CLKOUT is now connected with the new clock. LTS and HTS bits of the OSCCON register are updated as required. 6. Clock switch is complete. See Figure 3-1 for more details. If the internal oscillator speed selected is between 8 MHz and 125 kHz, there is no start-up delay before the new frequency is selected. This is because the old and new frequencies are derived from the HFINTOSC via the postscaler and multiplexer. Start-up delay specifications are located in the Electrical Specifications Chapter of this data sheet, under AC Specifications (Oscillator Module). Note: Following any Reset, the IRCF<2:0> bits of the OSCCON register are set to ‘110’ and the frequency selection is set to 4 MHz. The user can modify the IRCF bits to select a different frequency. PIC12F683 DS41211D-page 26 © 2007 Microchip Technology Inc. FIGURE 3-6: INTERNAL OSCILLATOR SWITCH TIMING HFINTOSC LFINTOSC IRCF <2:0> System Clock HFINTOSC LFINTOSC IRCF <2:0> System Clock HF LF(1) ≠ 0 = 0 ≠ 0 = 0 Start-up Time 2-cycle Sync Running 2-cycle Sync Running HFINTOSC LFINTOSC (FSCM and WDT disabled) Note 1: When going from LF to HF. HFINTOSC LFINTOSC (Either FSCM or WDT enabled) LFINTOSC HFINTOSC IRCF <2:0> System Clock = 0 ≠ 0 Start-up Time 2-cycle Sync Running LFINTOSC HFINTOSC LFINTOSC turns off unless WDT or FSCM is enabled © 2007 Microchip Technology Inc. DS41211D-page 27 PIC12F683 3.6 Clock Switching The system clock source can be switched between external and internal clock sources via software using the System Clock Select (SCS) bit of the OSCCON register. 3.6.1 SYSTEM CLOCK SELECT (SCS) BIT The System Clock Select (SCS) bit of the OSCCON register selects the system clock source that is used for the CPU and peripherals. • When the SCS bit of the OSCCON register = 0, the system clock source is determined by configuration of the FOSC<2:0> bits in the Configuration Word register (CONFIG). • When the SCS bit of the OSCCON register = 1, the system clock source is chosen by the internal oscillator frequency selected by the IRCF<2:0> bits of the OSCCON register. After a Reset, the SCS bit of the OSCCON register is always cleared. 3.6.2 OSCILLATOR START-UP TIME-OUT STATUS (OSTS) BIT The Oscillator Start-up Time-out Status (OSTS) bit of the OSCCON register indicates whether the system clock is running from the external clock source, as defined by the FOSC<2:0> bits in the Configuration Word register (CONFIG), or from the internal clock source. In particular, OSTS indicates that the Oscillator Start-up Timer (OST) has timed out for LP, XT or HS modes. 3.7 Two-Speed Clock Start-up Mode Two-Speed Start-up mode provides additional power savings by minimizing the latency between external oscillator start-up and code execution. In applications that make heavy use of the Sleep mode, Two-Speed Start-up will remove the external oscillator start-up time from the time spent awake and can reduce the overall power consumption of the device. This mode allows the application to wake-up from Sleep, perform a few instructions using the INTOSC as the clock source and go back to Sleep without waiting for the primary oscillator to become stable. When the Oscillator module is configured for LP, XT or HS modes, the Oscillator Start-up Timer (OST) is enabled (see Section 3.4.1 “Oscillator Start-up Timer (OST)”). The OST will suspend program execution until 1024 oscillations are counted. Two-Speed Start-up mode minimizes the delay in code execution by operating from the internal oscillator as the OST is counting. When the OST count reaches 1024 and the OSTS bit of the OSCCON register is set, program execution switches to the external oscillator. 3.7.1 TWO-SPEED START-UP MODE CONFIGURATION Two-Speed Start-up mode is configured by the following settings: • IESO (of the Configuration Word register) = 1; Internal/External Switchover bit (Two-Speed Start-up mode enabled). • SCS (of the OSCCON register) = 0. • FOSC<2:0> bits in the Configuration Word register (CONFIG) configured for LP, XT or HS mode. Two-Speed Start-up mode is entered after: • Power-on Reset (POR) and, if enabled, after Power-up Timer (PWRT) has expired, or • Wake-up from Sleep. If the external clock oscillator is configured to be anything other than LP, XT or HS mode, then Two-Speed Start-up is disabled. This is because the external clock oscillator does not require any stabilization time after POR or an exit from Sleep. 3.7.2 TWO-SPEED START-UP SEQUENCE 1. Wake-up from Power-on Reset or Sleep. 2. Instructions begin execution by the internal oscillator at the frequency set in the IRCF<2:0> bits of the OSCCON register. 3. OST enabled to count 1024 clock cycles. 4. OST timed out, wait for falling edge of the internal oscillator. 5. OSTS is set. 6. System clock held low until the next falling edge of new clock (LP, XT or HS mode). 7. System clock is switched to external clock source. Note: Any automatic clock switch, which may occur from Two-Speed Start-up or Fail-Safe Clock Monitor, does not update the SCS bit of the OSCCON register. The user can monitor the OSTS bit of the OSCCON register to determine the current system clock source. Note: Executing a SLEEP instruction will abort the oscillator start-up time and will cause the OSTS bit of the OSCCON register to remain clear. PIC12F683 DS41211D-page 28 © 2007 Microchip Technology Inc. 3.7.3 CHECKING TWO-SPEED CLOCK STATUS Checking the state of the OSTS bit of the OSCCON register will confirm if the microcontroller is running from the external clock source, as defined by the FOSC<2:0> bits in the Configuration Word register (CONFIG), or the internal oscillator. FIGURE 3-7: TWO-SPEED START-UP 0 1 1022 1023 PC + 1 TOST HFINTOSC OSC1 OSC2 Program Counter System Clock PC - N PC © 2007 Microchip Technology Inc. DS41211D-page 29 PIC12F683 3.8 Fail-Safe Clock Monitor The Fail-Safe Clock Monitor (FSCM) allows the device to continue operating should the external oscillator fail. The FSCM can detect oscillator failure any time after the Oscillator Start-up Timer (OST) has expired. The FSCM is enabled by setting the FCMEN bit in the Configuration Word register (CONFIG). The FSCM is applicable to all external oscillator modes (LP, XT, HS, EC, RC and RCIO). FIGURE 3-8: FSCM BLOCK DIAGRAM 3.8.1 FAIL-SAFE DETECTION The FSCM module detects a failed oscillator by comparing the external oscillator to the FSCM sample clock. The sample clock is generated by dividing the LFINTOSC by 64. See Figure 3-8. Inside the fail detector block is a latch. The external clock sets the latch on each falling edge of the external clock. The sample clock clears the latch on each rising edge of the sample clock. A failure is detected when an entire half-cycle of the sample clock elapses before the primary clock goes low. 3.8.2 FAIL-SAFE OPERATION When the external clock fails, the FSCM switches the device clock to an internal clock source and sets the bit flag OSFIF of the PIR1 register. Setting this flag will generate an interrupt if the OSFIE bit of the PIE1 register is also set. The device firmware can then take steps to mitigate the problems that may arise from a failed clock. The system clock will continue to be sourced from the internal clock source until the device firmware successfully restarts the external oscillator and switches back to external operation. The internal clock source chosen by the FSCM is determined by the IRCF<2:0> bits of the OSCCON register. This allows the internal oscillator to be configured before a failure occurs. 3.8.3 FAIL-SAFE CONDITION CLEARING The Fail-Safe condition is cleared after a Reset, executing a SLEEP instruction or toggling the SCS bit of the OSCCON register. When the SCS bit is toggled, the OST is restarted. While the OST is running, the device continues to operate from the INTOSC selected in OSCCON. When the OST times out, the Fail-Safe condition is cleared and the device will be operating from the external clock source. The Fail-Safe condition must be cleared before the OSFIF flag can be cleared. 3.8.4 RESET OR WAKE-UP FROM SLEEP The FSCM is designed to detect an oscillator failure after the Oscillator Start-up Timer (OST) has expired. The OST is used after waking up from Sleep and after any type of Reset. The OST is not used with the EC or RC Clock modes so that the FSCM will be active as soon as the Reset or wake-up has completed. When the FSCM is enabled, the Two-Speed Start-up is also enabled. Therefore, the device will always be executing code while the OST is operating. External LFINTOSC ÷ 64 S R Q 31 kHz (~32 μs) 488 Hz (~2 ms) Clock Monitor Latch Clock Failure Detected Oscillator Clock Q Sample Clock Note: Due to the wide range of oscillator start-up times, the Fail-Safe circuit is not active during oscillator start-up (i.e., after exiting Reset or Sleep). After an appropriate amount of time, the user should check the OSTS bit of the OSCCON register to verify the oscillator start-up and that the system clock switchover has successfully completed. PIC12F683 DS41211D-page 30 © 2007 Microchip Technology Inc. FIGURE 3-9: FSCM TIMING DIAGRAM TABLE 3-2: SUMMARY OF REGISTERS ASSOCIATED WITH CLOCK SOURCES Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Value on POR, BOR Value on all other Resets(1) CONFIG(2) CPD CP MCLRE PWRTE WDTE FOSC2 FOSC1 FOSC0 — — INTCON GIE PEIE T0IE INTE GPIE T0IF INTF GPIF 0000 0000 0000 000x OSCCON — IRCF2 IRCF1 IRCF0 OSTS HTS LTS SCS -110 x000 -110 x000 OSCTUNE — — — TUN4 TUN3 TUN2 TUN1 TUN0 ---0 0000 ---u uuuu PIE1 EEIE ADIE CCP1IE — CMIE OSFIE TMR2IE TMR1IE 000- 0000 000- 0000 PIR1 EEIF ADIF CCP1IF — CMIF OSFIF TMR2IF TMR1IF 000- 0000 000- 0000 Legend: x = unknown, u = unchanged, – = unimplemented locations read as ‘0’. Shaded cells are not used by oscillators. Note 1: Other (non Power-up) Resets include MCLR Reset and Watchdog Timer Reset during normal operation. 2: See Configuration Word register (Register 12-1) for operation of all register bits. OSCFIF System Clock Output Sample Clock Failure Detected Oscillator Failure Note: The system clock is normally at a much higher frequency than the sample clock. The relative frequencies in this example have been chosen for clarity. (Q) Test Test Test Clock Monitor Output © 2007 Microchip Technology Inc. DS41211D-page 31 PIC12F683 4.0 GPIO PORT There are as many as six general purpose I/O pins available. Depending on which peripherals are enabled, some or all of the pins may not be available as general purpose I/O. In general, when a peripheral is enabled, the associated pin may not be used as a general purpose I/O pin. 4.1 GPIO and the TRISIO Registers GPIO is a 6-bit wide, bidirectional port. The corresponding data direction register is TRISIO. Setting a TRISIO bit (= 1) will make the corresponding GPIO pin an input (i.e., put the corresponding output driver in a High-Impedance mode). Clearing a TRISIO bit (= 0) will make the corresponding GPIO pin an output (i.e., put the contents of the output latch on the selected pin). An exception is GP3, which is input only and its TRISIO bit will always read as ‘1’. Example 4-1 shows how to initialize GPIO. Reading the GPIO register reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch. GP3 reads ‘0’ when MCLRE = 1. The TRISIO register controls the direction of the GPIO pins, even when they are being used as analog inputs. The user must ensure the bits in the TRISIO register are maintained set when using them as analog inputs. I/O pins configured as analog input always read ‘0’. EXAMPLE 4-1: INITIALIZING GPIO Note: The ANSEL and CMCON0 registers must be initialized to configure an analog channel as a digital input. Pins configured as analog inputs will read ‘0’. BANKSEL GPIO ; CLRF GPIO ;Init GPIO MOVLW 07h ;Set GP<2:0> to MOVWF CMCON0 ;digital I/O BANKSEL ANSEL ; CLRF ANSEL ;digital I/O MOVLW 0Ch ;Set GP<3:2> as inputs MOVWF TRISIO ;and set GP<5:4,1:0> ;as outputs REGISTER 4-1: GPIO: GENERAL PURPOSE I/O REGISTER U-0 U-0 R/W-x R/W-0 R-x R/W-0 R/W-0 R/W-0 — — GP5 GP4 GP3 GP2 GP1 GP0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 7-6 Unimplemented: Read as ‘0’ bit 5-0 GP<5:0>: GPIO I/O Pin bit 1 = Port pin is > VIH 0 = Port pin is < VIL PIC12F683 DS41211D-page 32 © 2007 Microchip Technology Inc. 4.2 Additional Pin Functions Every GPIO pin on the PIC12F683 has an interrupt-on-change option and a weak pull-up option. GP0 has an Ultra Low-Power Wake-up option. The next three sections describe these functions. 4.2.1 ANSEL REGISTER The ANSEL register is used to configure the Input mode of an I/O pin to analog. Setting the appropriate ANSEL bit high will cause all digital reads on the pin to be read as ‘0’ and allow analog functions on the pin to operate correctly. The state of the ANSEL bits has no affect on digital output functions. A pin with TRIS clear and ANSEL set will still operate as a digital output, but the Input mode will be analog. This can cause unexpected behavior when executing read-modify-write instructions on the affected port. 4.2.2 WEAK PULL-UPS Each of the GPIO pins, except GP3, has an individually configurable internal weak pull-up. Control bits WPUx enable or disable each pull-up. Refer to Register 4-4. Each weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on a Power-on Reset by the GPPU bit of the OPTION register). A weak pull-up is automatically enabled for GP3 when configured as MCLR and disabled when GP3 is an I/O. There is no software control of the MCLR pull-up. 4.2.3 INTERRUPT-ON-CHANGE Each of the GPIO pins is individually configurable as an interrupt-on-change pin. Control bits IOCx enable or disable the interrupt function for each pin. Refer to Register 4-5. The interrupt-on-change is disabled on a Power-on Reset. For enabled interrupt-on-change pins, the values are compared with the old value latched on the last read of GPIO. The ‘mismatch’ outputs of the last read are OR’d together to set the GPIO Change Interrupt Flag bit (GPIF) in the INTCON register (Register 2-3). This interrupt can wake the device from Sleep. The user, in the Interrupt Service Routine, clears the interrupt by: a) Any read or write of GPIO. This will end the mismatch condition, then, b) Clear the flag bit GPIF. A mismatch condition will continue to set flag bit GPIF. Reading GPIO will end the mismatch condition and allow flag bit GPIF to be cleared. The latch holding the last read value is not affected by a MCLR nor Brown-out Reset. After these resets, the GPIF flag will continue to be set if a mismatch is present. REGISTER 4-2: TRISIO GPIO TRI-STATE REGISTER U-0 U-0 R/W-1 R/W-1 R-1 R/W-1 R/W-1 R/W-1 — — TRISIO5(2,3) TRISIO4(2) TRISIO3(1) TRISIO2 TRISIO1 TRISIO0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 7-6 Unimplemented: Read as ‘0’ bit 5:4 TRISIO<5:4>: GPIO Tri-State Control bit 1 = GPIO pin configured as an input (tri-stated) 0 = GPIO pin configured as an output bit 3 TRISIO<3>: GPIO Tri-State Control bit Input only bit 2:0 TRISIO<2:0>: GPIO Tri-State Control bit 1 = GPIO pin configured as an input (tri-stated) 0 = GPIO pin configured as an output Note 1: TRISIO<3> always reads ‘1’. 2: TRISIO<5:4> always reads ‘1’ in XT, HS and LP OSC modes. 3: TRISIO<5> always reads ‘1’ in RC and RCIO and EC modes. Note: If a change on the I/O pin should occur when any GPIO operation is being executed, then the GPIF interrupt flag may not get set. © 2007 Microchip Technology Inc. DS41211D-page 33 PIC12F683 REGISTER 4-3: ANSEL: ANALOG SELECT REGISTER U-0 R/W-0 R/W-0 R/W-0 R/W-1 R/W-1 R/W-1 R/W-1 — ADCS2 ADCS1 ADCS0 ANS3 ANS2 ANS1 ANS0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 7 Unimplemented: Read as ‘0’ bit 6-4 ADCS<2:0>: A/D Conversion Clock Select bits 000 = FOSC/2 001 = FOSC/8 010 = FOSC/32 x11 = FRC (clock derived from a dedicated internal oscillator = 500 kHz max) 100 = FOSC/4 101 = FOSC/16 110 = FOSC/64 bit 3-0 ANS<3:0>: Analog Select bits Analog select between analog or digital function on pins AN<3:0>, respectively. 1 = Analog input. Pin is assigned as analog input(1). 0 = Digital I/O. Pin is assigned to port or special function. Note 1: Setting a pin to an analog input automatically disables the digital input circuitry, weak pull-ups and interrupt-on-change, if available. The corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin. PIC12F683 DS41211D-page 34 © 2007 Microchip Technology Inc. REGISTER 4-4: WPU: WEAK PULL-UP REGISTER U-0 U-0 R/W-1 R/W-1 U-0 R/W-1 R/W-1 R/W-1 — — WPU5 WPU4 — WPU2 WPU1 WPU0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 7-6 Unimplemented: Read as ‘0’ bit 5-4 WPU<5:4>: Weak Pull-up Control bits 1 = Pull-up enabled 0 = Pull-up disabled bit 3 Unimplemented: Read as ‘0’ bit 2-0 WPU<2:0>: Weak Pull-up Control bits 1 = Pull-up enabled 0 = Pull-up disabled Note 1: Global GPPU must be enabled for individual pull-ups to be enabled. 2: The weak pull-up device is automatically disabled if the pin is in Output mode (TRISIO = 0). 3: The GP3 pull-up is enabled when configured as MCLR and disabled as an I/O in the Configuration Word. 4: WPU<5:4> always reads ‘1’ in XT, HS and LP OSC modes. REGISTER 4-5: IOC: INTERRUPT-ON-CHANGE GPIO REGISTER U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 — — IOC5 IOC4 IOC3 IOC2 IOC1 IOC0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 7-6 Unimplemented: Read as ‘0’ bit 5-0 IOC<5:0>: Interrupt-on-change GPIO Control bits 1 = Interrupt-on-change enabled 0 = Interrupt-on-change disabled Note 1: Global Interrupt Enable (GIE) must be enabled for individual interrupts to be recognized. 2: IOC<5:4> always reads ‘0’ in XT, HS and LP OSC modes. © 2007 Microchip Technology Inc. DS41211D-page 35 PIC12F683 4.2.4 ULTRA LOW-POWER WAKE-UP The Ultra Low-Power Wake-up (ULPWU) on GP0 allows a slow falling voltage to generate an interrupt- on-change on GP0 without excess current consumption. The mode is selected by setting the ULPWUE bit of the PCON register. This enables a small current sink which can be used to discharge a capacitor on GP0. To use this feature, the GP0 pin is configured to output ‘1’ to charge the capacitor, interrupt-on-change for GP0 is enabled and GP0 is configured as an input. The ULPWUE bit is set to begin the discharge and a SLEEP instruction is performed. When the voltage on GP0 drops below VIL, an interrupt will be generated which will cause the device to wake-up. Depending on the state of the GIE bit of the INTCON register, the device will either jump to the interrupt vector (0004h) or execute the next instruction when the interrupt event occurs. See Section 4.2.3 “Interrupt-on-Change” and Section 12.4.3 “GPIO Interrupt” for more information. This feature provides a low-power technique for periodically waking up the device from Sleep. The time-out is dependent on the discharge time of the RC circuit on GP0. See Example 4-2 for initializing the Ultra Low-Power Wake-up module. The series resistor provides overcurrent protection for the GP0 pin and can allow for software calibration of the time-out (see Figure 4-1). A timer can be used to measure the charge time and discharge time of the capacitor. The charge time can then be adjusted to provide the desired interrupt delay. This technique will compensate for the affects of temperature, voltage and component accuracy. The Ultra Low-Power Wake-up peripheral can also be configured as a simple Programmable Low-Voltage Detect or temperature sensor. EXAMPLE 4-2: ULTRA LOW-POWER WAKE-UP INITIALIZATION Note: For more information, refer to the Application Note AN879, “Using the Microchip Ultra Low-Power Wake-up Module” (DS00879). BANKSEL CMCON0 ; MOVLW H’7’ ;Turn off MOVWF CMCON0 ;comparators BANKSEL ANSEL ; BCF ANSEL,0 ;RA0 to digital I/O BCF TRISA,0 ;Output high to BANKSEL PORTA ; BSF PORTA,0 ;charge capacitor CALL CapDelay ; BANKSEL PCON ; BSF PCON,ULPWUE ;Enable ULP Wake-up BSF IOCA,0 ;Select RA0 IOC BSF TRISA,0 ;RA0 to input MOVLW B’10001000’ ;Enable interrupt MOVWF INTCON ; and clear flag SLEEP ;Wait for IOC NOP ; PIC12F683 DS41211D-page 36 © 2007 Microchip Technology Inc. 4.2.5 PIN DESCRIPTIONS AND DIAGRAMS Each GPIO pin is multiplexed with other functions. The pins and their combined functions are briefly described here. For specific information about individual functions such as the comparator or the ADC, refer to the appropriate section in this data sheet. 4.2.5.1 GP0/AN0/CIN+/ICSPDAT/ULPWU Figure 4-1 shows the diagram for this pin. The GP0 pin is configurable to function as one of the following: • a general purpose I/O • an analog input for the ADC • an analog input to the comparator • In-Circuit Serial Programming™ data • an analog input to the Ultra Low-Power Wake-up FIGURE 4-1: BLOCK DIAGRAM OF GP0 I/O pin VDD VSS D CK Q Q D CK Q Q D CK Q Q D CK Q Q VDD D EN Q D EN Q Weak RD GPIO RD WR WR RD WR IOC RD IOC Interrupt-on- To Comparator Analog Input Mode(1) GPPU Analog Input Mode(1) Change Q3 WR RD 0 1 IULP WPU Data Bus WPU GPIO TRISIO TRISIO GPIO Note 1: Comparator mode and ANSEL determines Analog Input mode. VT ULPWUE -+ VSS To A/D Converter © 2007 Microchip Technology Inc. DS41211D-page 37 PIC12F683 4.2.5.2 GP1/AN1/CIN-/VREF/ICSPCLK Figure 4-2 shows the diagram for this pin. The GP1 pin is configurable to function as one of the following: • a general purpose I/O • an analog input for the ADC • a analog input to the comparator • a voltage reference input for the ADC • In-Circuit Serial Programming clock FIGURE 4-2: BLOCK DIAGRAM OF GP1 4.2.5.3 GP2/AN2/T0CKI/INT/COUT/CCP1 Figure 4-3 shows the diagram for this pin. The GP2 pin is configurable to function as one of the following: • a general purpose I/O • an analog input for the ADC • the clock input for Timer0 • an external edge triggered interrupt • a digital output from the Comparator • a digital input/output for the CCP (refer to Section 11.0 “Capture/Compare/PWM (CCP) Module”). FIGURE 4-3: BLOCK DIAGRAM OF GP2 I/O pin VDD VSS D CK Q Q D CK Q Q D CK Q Q D CK Q Q VDD D EN Q D EN Q Weak Data WR WPU RD WPU RD GPIO RD GPIO WR GPIO WR TRISIO RD TRISIO WR IOC RD IOC Interrupt-on- To Comparator Analog Input Mode(1) GPPU Analog Input Mode(1) change Bus Note 1: Comparator mode and ANSEL determines Analog Input mode. Q3 To A/D Converter I/O pin VDD VSS D CK Q Q D CK Q Q D CK Q Q D CK Q Q VDD D EN Q D EN Q Weak Analog Input Mode Data WR WPU RD WPU RD GPIO WR GPIO WR TRISIO RD TRISIO WR IOC RD IOC To A/D Converter 0 COUT 1 COUT Enable To INT To Timer0 Analog Input Mode GPPU RD GPIO Analog Input Mode Interrupt-onchange Bus Q3 Note 1: Comparator mode and ANSEL determines Analog Input mode. PIC12F683 DS41211D-page 38 © 2007 Microchip Technology Inc. 4.2.5.4 GP3/MCLR/VPP Figure 4-4 shows the diagram for this pin. The GP3 pin is configurable to function as one of the following: • a general purpose input • as Master Clear Reset with weak pull-up FIGURE 4-4: BLOCK DIAGRAM OF GP3 4.2.5.5 GP4/AN3/T1G/OSC2/CLKOUT Figure 4-5 shows the diagram for this pin. The GP4 pin is configurable to function as one of the following: • a general purpose I/O • an analog input for the ADC • a Timer1 gate input • a crystal/resonator connection • a clock output FIGURE 4-5: BLOCK DIAGRAM OF GP4 Input VSS D CK Q Q D EN Q Data RD GPIO RD WR IOC RD Reset MCLRE RD VSS D EN Q MCLRE VDD MCLRE Weak Interrupt-onchange pin GPIO IOC Bus TRISIO Q3 I/O pin VDD VSS D CK Q Q D CK Q Q D CK Q Q D CK Q Q VDD D EN Q D EN Q Weak Analog Input Mode Data WR WPU RD WPU RD GPIO WR GPIO WR TRISIO RD TRISIO WR IOC RD IOC FOSC/4 To A/D Converter Oscillator Circuit OSC1 CLKOUT 0 1 CLKOUT Enable Enable Analog Input Mode GPPU RD GPIO To T1G INTOSC/ RC/EC(2) CLK(1) Modes CLKOUT Enable Note 1: CLK modes are XT, HS, LP, optional LP oscillator and CLKOUT Enable. 2: With CLKOUT option. Interrupt-onchange Bus Q3 © 2007 Microchip Technology Inc. DS41211D-page 39 PIC12F683 4.2.5.6 GP5/T1CKI/OSC1/CLKIN Figure 4-6 shows the diagram for this pin. The GP5 pin is configurable to function as one of the following: • a general purpose I/O • a Timer1 clock input • a crystal/resonator connection • a clock input FIGURE 4-6: BLOCK DIAGRAM OF GP5 TABLE 4-1: SUMMARY OF REGISTERS ASSOCIATED WITH GPIO I/O pin VDD VSS D CK Q Q D CK Q Q D CK Q Q D CK Q Q VDD D EN Q D EN Q Weak Data WR WPU RD WPU RD GPIO WR GPIO WR TRISIO RD TRISIO WR IOC RD IOC To Timer1 or CLKGEN INTOSC Mode RD GPIO INTOSC Mode GPPU OSC2 (1) Note 1: Timer1 LP oscillator enabled. 2: When using Timer1 with LP oscillator, the Schmitt Trigger is bypassed. TMR1LPEN(1) Interrupt-onchange Oscillator Circuit Bus Q3 Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Value on POR, BOR Value on all other Resets ANSEL — ADCS2 ADCS1 ADCS0 ANS3 ANS2 ANS1 ANS0 -000 1111 -000 1111 CCP1CON — — DC1B1 DC1B0 CCP1M3 CCP1M2 CCP1M1 CCP1M0 --00 0000 --00 0000 CMCON0 — COUT — CINV CIS CM2 CM1 CM0 -0-0 0000 -0-0 0000 PCON — — ULPWUE SBOREN — — POR BOR --01 --qq --0u --uu INTCON GIE PEIE T0IE INTE GPIE T0IF INTF GPIF 0000 0000 0000 000x IOC — — IOC5 IOC4 IOC3 IOC2 IOC1 IOC0 --00 0000 --00 0000 OPTION_REG GPPU INTEDG T0CS T0SE PSA PS2 PS1 PS0 1111 1111 1111 1111 GPIO — — GP5 GP4 GP3 GP2 GP1 GP0 --xx xxxx --x0 x000 T1CON T1GINV TMR1GE T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON 0000 0000 0000 0000 TRISIO — — TRISIO5 TRISIO4 TRISIO3 TRISIO2 TRISIO1 TRISIO0 --11 1111 --11 1111 WPU — — WPU5 WPU4 — WPU2 WPU1 WPU0 --11 -111 --11 -111 Legend: x = unknown, u = unchanged, – = unimplemented locations read as ‘0’. Shaded cells are not used by GPIO. PIC12F683 DS41211D-page 40 © 2007 Microchip Technology Inc. NOTES: © 2007 Microchip Technology Inc. DS41211D-page 41 PIC12F683 5.0 TIMER0 MODULE The Timer0 module is an 8-bit timer/counter with the following features: • 8-bit timer/counter register (TMR0) • 8-bit prescaler (shared with Watchdog Timer) • Programmable internal or external clock source • Programmable external clock edge selection • Interrupt on overflow Figure 5-1 is a block diagram of the Timer0 module. 5.1 Timer0 Operation When used as a timer, the Timer0 module can be used as either an 8-bit timer or an 8-bit counter. 5.1.1 8-BIT TIMER MODE When used as a timer, the Timer0 module will increment every instruction cycle (without prescaler). Timer mode is selected by clearing the T0CS bit of the OPTION register to ‘0’. When TMR0 is written, the increment is inhibited for two instruction cycles immediately following the write. 5.1.2 8-BIT COUNTER MODE When used as a counter, the Timer0 module will increment on every rising or falling edge of the T0CKI pin. The incrementing edge is determined by the T0SE bit of the OPTION register. Counter mode is selected by setting the T0CS bit of the OPTION register to ‘1’. FIGURE 5-1: BLOCK DIAGRAM OF THE TIMER0/WDT PRESCALER Note: The value written to the TMR0 register can be adjusted, in order to account for the two instruction cycle delay when TMR0 is written. T0CKI T0SE pin TMR0 Watchdog Timer WDT Time-out PS<2:0> WDTE Data Bus Set Flag bit T0IF on Overflow T0CS Note 1: T0SE, T0CS, PSA, PS<2:0> are bits in the OPTION register. 2: SWDTEN and WDTPS<3:0> are bits in the WDTCON register. 3: WDTE bit is in the Configuration Word register. 0 1 0 1 0 1 8 8 8-bit Prescaler 0 1 FOSC/4 PSA PSA PSA 16-bit Prescaler 16 WDTPS<3:0> 31 kHz INTOSC SWDTEN Sync 2 Tcy PIC12F683 DS41211D-page 42 © 2007 Microchip Technology Inc. 5.1.3 SOFTWARE PROGRAMMABLE PRESCALER A single software programmable prescaler is available for use with either Timer0 or the Watchdog Timer (WDT), but not both simultaneously. The prescaler assignment is controlled by the PSA bit of the OPTION register. To assign the prescaler to Timer0, the PSA bit must be cleared to a ‘0’. There are 8 prescaler options for the Timer0 module ranging from 1:2 to 1:256. The prescale values are selectable via the PS<2:0> bits of the OPTION register. In order to have a 1:1 prescaler value for the Timer0 module, the prescaler must be assigned to the WDT module. The prescaler is not readable or writable. When assigned to the Timer0 module, all instructions writing to the TMR0 register will clear the prescaler. When the prescaler is assigned to WDT, a CLRWDT instruction will clear the prescaler along with the WDT. 5.1.3.1 Switching Prescaler Between Timer0 and WDT Modules As a result of having the prescaler assigned to either Timer0 or the WDT, it is possible to generate an unintended device Reset when switching prescaler values. When changing the prescaler assignment from Timer0 to the WDT module, the instruction sequence shown in Example 5-1, must be executed. EXAMPLE 5-1: CHANGING PRESCALER (TIMER0 → WDT) When changing the prescaler assignment from the WDT to the Timer0 module, the following instruction sequence must be executed (see Example 5-2). EXAMPLE 5-2: CHANGING PRESCALER (WDT → TIMER0) 5.1.4 TIMER0 INTERRUPT Timer0 will generate an interrupt when the TMR0 register overflows from FFh to 00h. The T0IF interrupt flag bit of the INTCON register is set every time the TMR0 register overflows, regardless of whether or not the Timer0 interrupt is enabled. The T0IF bit must be cleared in software. The Timer0 interrupt enable is the T0IE bit of the INTCON register. 5.1.5 USING TIMER0 WITH AN EXTERNAL CLOCK When Timer0 is in Counter mode, the synchronization of the T0CKI input and the Timer0 register is accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the internal phase clocks. Therefore, the high and low periods of the external clock source must meet the timing requirements as shown in the Section 15.0 “Electrical Specifications”. BANKSEL TMR0 ; CLRWDT ;Clear WDT CLRF TMR0 ;Clear TMR0 and ;prescaler BANKSEL OPTION_REG ; BSF OPTION_REG,PSA ;Select WDT CLRWDT ; ; MOVLW b’11111000’ ;Mask prescaler ANDWF OPTION_REG,W ;bits IORLW b’00000101’ ;Set WDT prescaler MOVWF OPTION_REG ;to 1:32 Note: The Timer0 interrupt cannot wake the processor from Sleep since the timer is frozen during Sleep. CLRWDT ;Clear WDT and ;prescaler BANKSEL OPTION_REG ; MOVLW b’11110000’ ;Mask TMR0 select and ANDWF OPTION_REG,W ;prescaler bits IORLW b’00000011’ ;Set prescale to 1:16 MOVWF OPTION_REG ; © 2007 Microchip Technology Inc. DS41211D-page 43 PIC12F683 TABLE 5-1: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER0 REGISTER 5-1: OPTION_REG: OPTION REGISTER R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 GPPU INTEDG T0CS T0SE PSA PS2 PS1 PS0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 7 GPPU: GPIO Pull-up Enable bit 1 = GPIO pull-ups are disabled 0 = GPIO pull-ups are enabled by individual PORT latch values in WPU register bit 6 INTEDG: Interrupt Edge Select bit 1 = Interrupt on rising edge of INT pin 0 = Interrupt on falling edge of INT pin bit 5 T0CS: Timer0 Clock Source Select bit 1 = Transition on T0CKI pin 0 = Internal instruction cycle clock (FOSC/4) bit 4 T0SE: Timer0 Source Edge Select bit 1 = Increment on high-to-low transition on T0CKI pin 0 = Increment on low-to-high transition on T0CKI pin bit 3 PSA: Prescaler Assignment bit 1 = Prescaler is assigned to the WDT 0 = Prescaler is assigned to the Timer0 module bit 2-0 PS<2:0>: Prescaler Rate Select bits Note 1: A dedicated 16-bit WDT postscaler is available. See Section 12.6 “Watchdog Timer (WDT)” for more information. Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Value on POR, BOR Value on all other Resets TMR0 Timer0 Module Register xxxx xxxx uuuu uuuu INTCON GIE PEIE T0IE INTE GPIE T0IF INTF GPIF 0000 0000 0000 000x OPTION_REG GPPU INTEDG T0CS T0SE PSA PS2 PS1 PS0 1111 1111 1111 1111 TRISIO — — TRISIO5 TRISIO4 TRISIO3 TRISIO2 TRISIO1 TRISIO0 --11 1111 --11 1111 Legend: – = Unimplemented locations, read as ‘0’, u = unchanged, x = unknown. Shaded cells are not used by the Timer0 module. 000 001 010 011 100 101 110 111 1 : 2 1 : 4 1 : 8 1 : 16 1 : 32 1 : 64 1 : 128 1 : 256 1 : 1 1 : 2 1 : 4 1 : 8 1 : 16 1 : 32 1 : 64 1 : 128 BIT VALUE TIMER0 RATE WDT RATE PIC12F683 DS41211D-page 44 © 2007 Microchip Technology Inc. 6.0 TIMER1 MODULE WITH GATE CONTROL The Timer1 module is a 16-bit timer/counter with the following features: • 16-bit timer/counter register pair (TMR1H:TMR1L) • Programmable internal or external clock source • 3-bit prescaler • Optional LP oscillator • Synchronous or asynchronous operation • Timer1 gate (count enable) via comparator or T1G pin • Interrupt on overflow • Wake-up on overflow (external clock, Asynchronous mode only) • Special Event Trigger (with CCP) • Comparator output synchronization to Timer1 clock Figure 6-1 is a block diagram of the Timer1 module. 6.1 Timer1 Operation The Timer1 module is a 16-bit incrementing counter which is accessed through the TMR1H:TMR1L register pair. Writes to TMR1H or TMR1L directly update the counter. When used with an internal clock source, the module is a timer. When used with an external clock source, the module can be used as either a timer or counter. 6.2 Clock Source Selection The TMR1CS bit of the T1CON register is used to select the clock source. When TMR1CS = 0, the clock source is FOSC/4. When TMR1CS = 1, the clock source is supplied externally. FIGURE 6-1: TIMER1 BLOCK DIAGRAM Clock Source TMR1CS FOSC/4 0 T1CKI pin 1 TMR1H TMR1L Oscillator T1SYNC T1CKPS<1:0> Prescaler 1, 2, 4, 8 Synchronize(3) det 1 0 0 1 Synchronized clock input 2 Set flag bit TMR1IF on Overflow TMR1(2) TMR1GE TMR1ON T1OSCEN 1 COUT 0 T1GSS T1GINV To Comparator Module Timer1 Clock TMR1CS OSC2/T1G OSC1/T1CKI Note 1: ST Buffer is low power type when using LP oscillator, or high speed type when using T1CKI. 2: Timer1 register increments on rising edge. 3: Synchronize does not operate while in Sleep. (1) EN INTOSC Without CLKOUT FOSC/4 Internal Clock © 2007 Microchip Technology Inc. DS41211D-page 45 PIC12F683 6.2.1 INTERNAL CLOCK SOURCE When the internal clock source is selected the TMR1H:TMR1L register pair will increment on multiples of TCY as determined by the Timer1 prescaler. 6.2.2 EXTERNAL CLOCK SOURCE When the external clock source is selected, the Timer1 module may work as a timer or a counter. When counting, Timer1 is incremented on the rising edge of the external clock input T1CKI. In addition, the Counter mode clock can be synchronized to the microcontroller system clock or run asynchronously. If an external clock oscillator is needed (and the microcontroller is using the INTOSC without CLKOUT), Timer1 can use the LP oscillator as a clock source. 6.3 Timer1 Prescaler Timer1 has four prescaler options allowing 1, 2, 4 or 8 divisions of the clock input. The T1CKPS bits of the T1CON register control the prescale counter. The prescale counter is not directly readable or writable; however, the prescaler counter is cleared upon a write to TMR1H or TMR1L. 6.4 Timer1 Oscillator A low-power 32.768 kHz crystal oscillator is built-in between pins OSC1 (input) and OSC2 (amplifier output). The oscillator is enabled by setting the T1OSCEN control bit of the T1CON register. The oscillator will continue to run during Sleep. The Timer1 oscillator is shared with the system LP oscillator. Thus, Timer1 can use this mode only when the primary system clock is derived from the internal oscillator or when in LP oscillator mode. The user must provide a software time delay to ensure proper oscillator start-up. TRISIO<5:4> bits are set when the Timer1 oscillator is enabled. GP5 and GP4 bits read as ‘0’ and TRISIO5 and TRISIO4 bits read as ‘1’. 6.5 Timer1 Operation in Asynchronous Counter Mode If control bit T1SYNC of the T1CON register is set, the external clock input is not synchronized. The timer continues to increment asynchronous to the internal phase clocks. The timer will continue to run during Sleep and can generate an interrupt on overflow, which will wake-up the processor. However, special precautions in software are needed to read/write the timer (see Section 6.5.1 “Reading and Writing Timer1 in Asynchronous Counter Mode”). 6.5.1 READING AND WRITING TIMER1 IN ASYNCHRONOUS COUNTER MODE Reading TMR1H or TMR1L while the timer is running from an external asynchronous clock will ensure a valid read (taken care of in hardware). However, the user should keep in mind that reading the 16-bit timer in two 8-bit values itself, poses certain problems, since the timer may overflow between the reads. For writes, it is recommended that the user simply stop the timer and write the desired values. A write contention may occur by writing to the timer registers, while the register is incrementing. This may produce an unpredictable value in the TMR1H:TTMR1L register pair. 6.6 Timer1 Gate Timer1 gate source is software configurable to be the T1G pin or the output of the Comparator. This allows the device to directly time external events using T1G or analog events using Comparator 2. See the CMCON1 register (Register 8-2) for selecting the Timer1 gate source. This feature can simplify the software for a Delta-Sigma A/D converter and many other applications. For more information on Delta-Sigma A/D converters, see the Microchip web site (www.microchip.com). Timer1 gate can be inverted using the T1GINV bit of the T1CON register, whether it originates from the T1G pin or Comparator 2 output. This configures Timer1 to measure either the active-high or active-low time between events. Note: In Counter mode, a falling edge must be registered by the counter prior to the first incrementing rising edge. Note: The oscillator requires a start-up and stabilization time before use. Thus, T1OSCEN should be set and a suitable delay observed prior to enabling Timer1. Note: When switching from synchronous to asynchronous operation, it is possible to skip an increment. When switching from asynchronous to synchronous operation, it is possible to produce a single spurious increment. Note: TMR1GE bit of the T1CON register must be set to use either T1G or COUT as the Timer1 gate source. See Register 8-2 for more information on selecting the Timer1 gate source. PIC12F683 DS41211D-page 46 © 2007 Microchip Technology Inc. 6.7 Timer1 Interrupt The Timer1 register pair (TMR1H:TMR1L) increments to FFFFh and rolls over to 0000h. When Timer1 rolls over, the Timer1 interrupt flag bit of the PIR1 register is set. To enable the interrupt on rollover, you must set these bits: • Timer1 interrupt enable bit of the PIE1 register • PEIE bit of the INTCON register • GIE bit of the INTCON register The interrupt is cleared by clearing the TMR1IF bit in the Interrupt Service Routine. 6.8 Timer1 Operation During Sleep Timer1 can only operate during Sleep when setup in Asynchronous Counter mode. In this mode, an external crystal or clock source can be used to increment the counter. To set up the timer to wake the device: • TMR1ON bit of the T1CON register must be set • TMR1IE bit of the PIE1 register must be set • PEIE bit of the INTCON register must be set The device will wake-up on an overflow and execute the next instruction. If the GIE bit of the INTCON register is set, the device will call the Interrupt Service Routine (0004h). 6.9 CCP Special Event Trigger If a CCP is configured to trigger a special event, the trigger will clear the TMR1H:TMR1L register pair. This special event does not cause a Timer1 interrupt. The CCP module may still be configured to generate a CCP interrupt. In this mode of operation, the CCPR1H:CCPR1L register pair effectively becomes the period register for Timer1. Timer1 should be synchronized to the FOSC to utilize the Special Event Trigger. Asynchronous operation of Timer1 can cause a Special Event Trigger to be missed. In the event that a write to TMR1H or TMR1L coincides with a Special Event Trigger from the CCP, the write will take precedence. For more information, see Section on CCP. 6.10 Comparator Synchronization The same clock used to increment Timer1 can also be used to synchronize the comparator output. This feature is enabled in the Comparator module. When using the comparator for Timer1 gate, the comparator output should be synchronized to Timer1. This ensures Timer1 does not miss an increment if the comparator changes. For more information, see Section 8.0 “Comparator Module”. FIGURE 6-2: TIMER1 INCREMENTING EDGE Note: The TMR1H:TTMR1L register pair and the TMR1IF bit should be cleared before enabling interrupts. T1CKI = 1 when TMR1 Enabled T1CKI = 0 when TMR1 Enabled Note 1: Arrows indicate counter increments. 2: In Counter mode, a falling edge must be registered by the counter prior to the first incrementing rising edge of the clock. © 2007 Microchip Technology Inc. DS41211D-page 47 PIC12F683 6.11 Timer1 Control Register The Timer1 Control register (T1CON), shown in Register 6-1, is used to control Timer1 and select the various features of the Timer1 module. REGISTER 6-1: T1CON: TIMER1 CONTROL REGISTER R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 T1GINV(1) TMR1GE(2) T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 7 T1GINV: Timer1 Gate Invert bit(1) 1 = Timer1 gate is active-high (Timer1 counts when gate is high) 0 = Timer1 gate is active-low (Timer1 counts when gate is low) bit 6 TMR1GE: Timer1 Gate Enable bit(2) If TMR1ON = 0: This bit is ignored If TMR1ON = 1: 1 = Timer1 is on if Timer1 gate is not active 0 = Timer1 is on bit 5-4 T1CKPS<1:0>: Timer1 Input Clock Prescale Select bits 11 = 1:8 Prescale Value 10 = 1:4 Prescale Value 01 = 1:2 Prescale Value 00 = 1:1 Prescale Value bit 3 T1OSCEN: LP Oscillator Enable Control bit If INTOSC without CLKOUT oscillator is active: 1 = LP oscillator is enabled for Timer1 clock 0 = LP oscillator is off Else: This bit is ignored. LP oscillator is disabled. bit 2 T1SYNC: Timer1 External Clock Input Synchronization Control bit TMR1CS = 1: 1 = Do not synchronize external clock input 0 = Synchronize external clock input TMR1CS = 0: This bit is ignored. Timer1 uses the internal clock bit 1 TMR1CS: Timer1 Clock Source Select bit 1 = External clock from T1CKI pin (on the rising edge) 0 = Internal clock (FOSC/4) bit 0 TMR1ON: Timer1 On bit 1 = Enables Timer1 0 = Stops Timer1 Note 1: T1GINV bit inverts the Timer1 gate logic, regardless of source. 2: TMR1GE bit must be set to use either T1G pin or COUT, as selected by the T1GSS bit of the CMCON1 register, as a Timer1 gate source. PIC12F683 DS41211D-page 48 © 2007 Microchip Technology Inc. TABLE 6-1: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER1 Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Value on POR, BOR Value on all other Resets CONFIG(1) CPD CP MCLRE PWRTE WDTE FOSC2 FOSC1 FOSC0 — — CMCON1 — — — — — — T1GSS CMSYNC ---- --10 ---- --10 INTCON GIE PEIE T0IE INTE GPIE T0IF INTF GPIF 0000 0000 0000 000x PIE1 EEIE ADIE CCP1IE — CMIE OSFIE TMR2IE TMR1IE 000- 0000 000- 0000 PIR1 EEIF ADIF CCP1IF — CMIF OSFIF TMR2IF TMR1IF 000- 0000 000- 0000 TMR1H Holding Register for the Most Significant Byte of the 16-bit TMR1 Register xxxx xxxx uuuu uuuu TMR1L Holding Register for the Least Significant Byte of the 16-bit TMR1 Register xxxx xxxx uuuu uuuu T1CON T1GINV TMR1GE T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON 0000 0000 uuuu uuuu Legend: x = unknown, u = unchanged, – = unimplemented, read as ‘0’. Shaded cells are not used by the Timer1 module. Note 1: See Configuration Word register (Register 12-1) for operation of all register bits. © 2007 Microchip Technology Inc. DS41211D-page 49 PIC12F683 7.0 TIMER2 MODULE The Timer2 module is an 8-bit timer with the following features: • 8-bit timer register (TMR2) • 8-bit period register (PR2) • Interrupt on TMR2 match with PR2 • Software programmable prescaler (1:1, 1:4, 1:16) • Software programmable postscaler (1:1 to 1:16) See Figure 7-1 for a block diagram of Timer2. 7.1 Timer2 Operation The clock input to the Timer2 module is the system instruction clock (FOSC/4). The clock is fed into the Timer2 prescaler, which has prescale options of 1:1, 1:4 or 1:16. The output of the prescaler is then used to increment the TMR2 register. The values of TMR2 and PR2 are constantly compared to determine when they match. TMR2 will increment from 00h until it matches the value in PR2. When a match occurs, two things happen: • TMR2 is reset to 00h on the next increment cycle. • The Timer2 postscaler is incremented The match output of the Timer2/PR2 comparator is then fed into the Timer2 postscaler. The postscaler has postscale options of 1:1 to 1:16 inclusive. The output of the Timer2 postscaler is used to set the TMR2IF interrupt flag bit in the PIR1 register. The TMR2 and PR2 registers are both fully readable and writable. On any Reset, the TMR2 register is set to 00h and the PR2 register is set to FFh. Timer2 is turned on by setting the TMR2ON bit in the T2CON register to a ‘1’. Timer2 is turned off by clearing the TMR2ON bit to a ‘0’. The Timer2 prescaler is controlled by the T2CKPS bits in the T2CON register. The Timer2 postscaler is controlled by the TOUTPS bits in the T2CON register. The prescaler and postscaler counters are cleared when: • A write to TMR2 occurs. • A write to T2CON occurs. • Any device Reset occurs (Power-on Reset, MCLR Reset, Watchdog Timer Reset, or Brown-out Reset). FIGURE 7-1: TIMER2 BLOCK DIAGRAM Note: TMR2 is not cleared when T2CON is written. Comparator TMR2 Sets Flag TMR2 Output Reset Postscaler Prescaler PR2 2 FOSC/4 1:1 to 1:16 1:1, 1:4, 1:16 EQ 4 bit TMR2IF TOUTPS<3:0> T2CKPS<1:0> PIC12F683 DS41211D-page 50 © 2007 Microchip Technology Inc. TABLE 7-1: SUMMARY OF ASSOCIATED TIMER2 REGISTERS REGISTER 7-1: T2CON: TIMER 2 CONTROL REGISTER U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 — TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 7 Unimplemented: Read as ‘0’ bit 6-3 TOUTPS<3:0>: Timer2 Output Postscaler Select bits 0000 = 1:1 Postscaler 0001 = 1:2 Postscaler 0010 = 1:3 Postscaler 0011 = 1:4 Postscaler 0100 = 1:5 Postscaler 0101 = 1:6 Postscaler 0110 = 1:7 Postscaler 0111 = 1:8 Postscaler 1000 = 1:9 Postscaler 1001 = 1:10 Postscaler 1010 = 1:11 Postscaler 1011 = 1:12 Postscaler 1100 = 1:13 Postscaler 1101 = 1:14 Postscaler 1110 = 1:15 Postscaler 1111 = 1:16 Postscaler bit 2 TMR2ON: Timer2 On bit 1 = Timer2 is on 0 = Timer2 is off bit 1-0 T2CKPS<1:0>: Timer2 Clock Prescale Select bits 00 = Prescaler is 1 01 = Prescaler is 4 1x = Prescaler is 16 Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Value on POR, BOR Value on all other Resets INTCON GIE PEIE T0IE INTE GPIE T0IF INTF GPIF 0000 0000 0000 000x PIE1 EEIE ADIE CCP1IE — CMIE OSFIE TMR2IE TMR1IE 000- 0000 000- 0000 PIR1 EEIF ADIF CCP1IF — CMIF OSFIF TMR2IF TMR1IF 000- 0000 000- 0000 PR2 Timer2 Module Period Register 1111 1111 1111 1111 TMR2 Holding Register for the 8-bit TMR2 Register 0000 0000 0000 0000 T2CON — TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0 -000 0000 -000 0000 Legend: x = unknown, u = unchanged, - = unimplemented read as ‘0’. Shaded cells are not used for Timer2 module. © 2007 Microchip Technology Inc. DS41211D-page 51 PIC12F683 8.0 COMPARATOR MODULE Comparators are used to interface analog circuits to a digital circuit by comparing two analog voltages and providing a digital indication of their relative magnitudes. The comparators are very useful mixed signal building blocks because they provide analog functionality independent of the program execution. The analog comparator module includes the following features: • Multiple comparator configurations • Comparator output is available internally/externally • Programmable output polarity • Interrupt-on-change • Wake-up from Sleep • Timer1 gate (count enable) • Output synchronization to Timer1 clock input • Programmable voltage reference 8.1 Comparator Overview The comparator is shown in Figure 8-1 along with the relationship between the analog input levels and the digital output. When the analog voltage at VIN+ is less than the analog voltage at VIN-, the output of the comparator is a digital low level. When the analog voltage at VIN+ is greater than the analog voltage at VIN-, the output of the comparator is a digital high level. FIGURE 8-1: SINGLE COMPARATOR FIGURE 8-2: COMPARATOR OUTPUT BLOCK DIAGRAM – VIN+ + VINOutput Output VIN+ VINNote: The black areas of the output of the comparator represents the uncertainty due to input offsets and response time. CMSYNC D Q EN To COUT pin RD CMCON0 Set CMIF bit MULTIPLEX Port Pins Q3*RD CMCON0 Reset To Data Bus CINV Timer1 clock source(1) 0 1 To Timer1 Gate Note 1: Comparator output is latched on falling edge of Timer1 clock source. 2: Q1 and Q3 are phases of the four-phase system clock (FOSC). 3: Q1 is held high during Sleep mode. D Q D Q EN CL Q1 PIC12F683 DS41211D-page 52 © 2007 Microchip Technology Inc. 8.2 Analog Input Connection Considerations A simplified circuit for an analog input is shown in Figure 8-3. Since the analog input pins share their connection with a digital input, they have reverse biased ESD protection diodes to VDD and VSS. The analog input, therefore, must be between VSS and VDD. If the input voltage deviates from this range by more than 0.6V in either direction, one of the diodes is forward biased and a latch-up may occur. A maximum source impedance of 10 kΩ is recommended for the analog sources. Also, any external component connected to an analog input pin, such as a capacitor or a Zener diode, should have very little leakage current to minimize inaccuracies introduced. FIGURE 8-3: ANALOG INPUT MODEL Note 1: When reading a PORT register, all pins configured as analog inputs will read as a ‘0’. Pins configured as digital inputs will convert as an analog input, according to the input specification. 2: Analog levels on any pin defined as a digital input, may cause the input buffer to consume more current than is specified. VA Rs < 10K CPIN 5 pF VDD VT ≈ 0.6V VT ≈ 0.6V RIC ILEAKAGE ±500 nA Vss AIN Legend: CPIN = Input Capacitance ILEAKAGE = Leakage Current at the pin due to various junctions RIC = Interconnect Resistance RS = Source Impedance VA = Analog Voltage VT = Threshold Voltage To ADC Input © 2007 Microchip Technology Inc. DS41211D-page 53 PIC12F683 8.3 Comparator Configuration There are eight modes of operation for the comparator. The CM<2:0> bits of the CMCON0 register are used to select these modes as shown in Figure 8-4. • Analog function (A): digital input buffer is disabled • Digital function (D): comparator digital output, overrides port function • Normal port function (I/O): independent of comparator The port pins denoted as “A” will read as a ‘0’ regardless of the state of the I/O pin or the I/O control TRIS bit. Pins used as analog inputs should also have the corresponding TRIS bit set to ‘1’ to disable the digital output driver. Pins denoted as “D” should have the corresponding TRIS bit set to ‘0’ to enable the digital output driver. FIGURE 8-4: COMPARATOR I/O OPERATING MODES Note: Comparator interrupts should be disabled during a Comparator mode change to prevent unintended interrupts. Comparator Reset (POR Default Value – low power) Comparator w/o Output and with Internal Reference CM<2:0> = 000 CM<2:0> = 100 Comparator with Output Multiplexed Input with Internal Reference and Output CM<2:0> = 001 CM<2:0> = 101 Comparator without Output Multiplexed Input with Internal Reference CM<2:0> = 010 CM<2:0> = 110 Comparator with Output and Internal Reference Comparator Off (Lowest power) CM<2:0> = 011 CM<2:0> = 111 Legend: A = Analog Input, ports always reads ‘0’ CIS = Comparator Input Switch (CMCON0<3>) I/O = Normal port I/O D = Comparator Digital Output Note 1: Reads as ‘0’, unless CINV = 1. CINCIN+ Off(1) A A COUT (pin) I/O CINCIN+ COUT A I/O COUT (pin) I/O From CVREF Module CINCIN+ COUT A A COUT (pin) D CINCIN+ COUT A A COUT (pin) D From CVREF Module CIS = 0 CIS = 1 CINCIN+ COUT A A COUT (pin) I/O CINCIN+ COUT A A COUT (pin) I/O From CVREF Module CIS = 0 CIS = 1 CINCIN+ COUT A I/O COUT (pin) D From CVREF Module CINCIN+ Off(1) I/O I/O COUT (pin) I/O PIC12F683 DS41211D-page 54 © 2007 Microchip Technology Inc. 8.4 Comparator Control The CMCON0 register (Register 8-1) provides access to the following comparator features: • Mode selection • Output state • Output polarity • Input switch 8.4.1 COMPARATOR OUTPUT STATE The Comparator state can always be read internally via the COUT bit of the CMCON0 register. The comparator state may also be directed to the COUT pin in the following modes: • CM<2:0> = 001 • CM<2:0> = 011 • CM<2:0> = 101 When one of the above modes is selected, the associated TRIS bit of the COUT pin must be cleared. 8.4.2 COMPARATOR OUTPUT POLARITY Inverting the output of the comparator is functionally equivalent to swapping the comparator inputs. The polarity of the comparator output can be inverted by setting the CINV bit of the CMCON0 register. Clearing CINV results in a non-inverted output. A complete table showing the output state versus input conditions and the polarity bit is shown in Table 8-1. TABLE 8-1: OUTPUT STATE VS. INPUT CONDITIONS 8.4.3 COMPARATOR INPUT SWITCH The inverting input of the comparator may be switched between two analog pins in the following modes: • CM<2:0> = 101 • CM<2:0> = 110 In the above modes, both pins remain in analog mode regardless of which pin is selected as the input. The CIS bit of the CMCON0 register controls the comparator input switch. 8.5 Comparator Response Time The comparator output is indeterminate for a period of time after the change of an input source or the selection of a new reference voltage. This period is referred to as the response time. The response time of the comparator differs from the settling time of the voltage reference. Therefore, both of these times must be considered when determining the total response time to a comparator input change. See the Comparator and Voltage Reference Specifications in Section 15.0 “Electrical Specifications” for more details. Input Conditions CINV COUT VIN- > VIN+ 0 0 VIN- < VIN+ 0 1 VIN- > VIN+ 1 1 VIN- < VIN+ 1 0 Note: COUT refers to both the register bit and output pin. © 2007 Microchip Technology Inc. DS41211D-page 55 PIC12F683 8.6 Comparator Interrupt Operation The comparator interrupt flag is set whenever there is a change in the output value of the comparator. Changes are recognized by means of a mismatch circuit which consists of two latches and an exclusive-or gate (see Figure 8.2). One latch is updated with the comparator output level when the CMCON0 register is read. This latch retains the value until the next read of the CMCON0 register or the occurrence of a Reset. The other latch of the mismatch circuit is updated on every Q1 system clock. A mismatch condition will occur when a comparator output change is clocked through the second latch on the Q1 clock cycle. The mismatch condition will persist, holding the CMIF bit of the PIR1 register true, until either the CMCON0 register is read or the comparator output returns to the previous state. Software will need to maintain information about the status of the comparator output to determine the actual change that has occurred. The CMIF bit of the PIR1 register, is the comparator interrupt flag. This bit must be reset in software by clearing it to ‘0’. Since it is also possible to write a ‘1’ to this register, a simulated interrupt may be initiated. The CMIE bit of the PIE1 register and the PEIE and GIE bits of the INTCON register must all be set to enable comparator interrupts. If any of these bits are cleared, the interrupt is not enabled, although the CMIF bit of the PIR1 register will still be set if an interrupt condition occurs. The user, in the Interrupt Service Routine, can clear the interrupt in the following manner: a) Any read or write of CMCON0. This will end the mismatch condition. b) Clear the CMIF interrupt flag. A persistent mismatch condition will preclude clearing the CMIF interrupt flag. Reading CMCON0 will end the mismatch condition and allow the CMIF bit to be cleared. FIGURE 8-5: COMPARATOR INTERRUPT TIMING W/O CMCON0 READ FIGURE 8-6: COMPARATOR INTERRUPT TIMING WITH CMCON0 READ Note: A write operation to the CMCON0 register will also clear the mismatch condition because all writes include a read operation at the beginning of the write cycle. Note: If a change in the CMCON0 register (COUT) should occur when a read operation is being executed (start of the Q2 cycle), then the CMIF interrupt flag may not get set. Note 1: If a change in the CMCON0 register (COUT) should occur when a read operation is being executed (start of the Q2 cycle), then the CMIF of the PIR1 register interrupt flag may not get set. 2: When either comparator is first enabled, bias circuitry in the Comparator module may cause an invalid output from the comparator until the bias circuitry is stable. Allow about 1 μs for bias settling then clear the mismatch condition and interrupt flags before enabling comparator interrupts. Q1 Q3 CIN+ COUT Set CMIF (level) CMIF TRT reset by software Q1 Q3 CIN+ COUT Set CMIF (level) CMIF TRT cleared by CMCON0 read reset by software PIC12F683 DS41211D-page 56 © 2007 Microchip Technology Inc. 8.7 Operation During Sleep The comparator, if enabled before entering Sleep mode, remains active during Sleep. The additional current consumed by the comparator is shown separately in Section 15.0 “Electrical Specifications”. If the comparator is not used to wake the device, power consumption can be minimized while in Sleep mode by turning off the comparator. The comparator is turned off by selecting mode CM<2:0> = 000 or CM<2:0> = 111 of the CMCON0 register. A change to the comparator output can wake-up the device from Sleep. To enable the comparator to wake the device from Sleep, the CMIE bit of the PIE1 register and the PEIE bit of the INTCON register must be set. The instruction following the Sleep instruction always executes following a wake from Sleep. If the GIE bit of the INTCON register is also set, the device will then execute the Interrupt Service Routine. 8.8 Effects of a Reset A device Reset forces the CMCON0 and CMCON1 registers to their Reset states. This forces the Comparator module to be in the Comparator Reset mode (CM<2:0> = 000). Thus, all comparator inputs are analog inputs with the comparator disabled to consume the smallest current possible. REGISTER 8-1: CMCON0: COMPARATOR CONFIGURATION REGISTER U-0 R-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 — COUT — CINV CIS CM2 CM1 CM0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 7 Unimplemented: Read as ‘0’ bit 6 COUT: Comparator Output bit When CINV = 0: 1 = VIN+ > VIN- 0 = VIN+ < VINWhen CINV = 1: 1 = VIN+ < VIN- 0 = VIN+ > VINbit 5 Unimplemented: Read as ‘0’ bit 4 CINV: Comparator Output Inversion bit 1 = Output inverted 0 = Output not inverted bit 3 CIS: Comparator Input Switch bit When CM<2:0> = 110 or 101: 1 = CIN+ connects to VIN- 0 = CIN- connects to VINWhen CM<2:0> = 0xx or 100 or 111: CIS has no effect. bit 2-0 CM<2:0>: Comparator Mode bits (See Figure 8-5) 000 = CIN pins are configured as analog, COUT pin configured as I/O, Comparator output turned off 001 = CIN pins are configured as analog, COUT pin configured as Comparator output 010 = CIN pins are configured as analog, COUT pin configured as I/O, Comparator output available internally 011 = CIN- pin is configured as analog, CIN+ pin is configured as I/O, COUT pin configured as Comparator output, CVREF is non-inverting input 100 = CIN- pin is configured as analog, CIN+ pin is configured as I/O, COUT pin is configured as I/O, Comparator output available internally, CVREF is non-inverting input 101 = CIN pins are configured as analog and multiplexed, COUT pin is configured as Comparator output, CVREF is non-inverting input 110 = CIN pins are configured as analog and multiplexed, COUT pin is configured as I/O, Comparator output available internally, CVREF is non-inverting input 111 = CIN pins are configured as I/O, COUT pin is configured as I/O, Comparator output disabled, Comparator off. © 2007 Microchip Technology Inc. DS41211D-page 57 PIC12F683 8.9 Comparator Gating Timer1 This feature can be used to time the duration or interval of analog events. Clearing the T1GSS bit of the CMCON1 register will enable Timer1 to increment based on the output of the comparator. This requires that Timer1 is on and gating is enabled. See Section 6.0 “Timer1 Module with Gate Control” for details. It is recommended to synchronize the comparator with Timer1 by setting the CMSYNC bit when the comparator is used as the Timer1 gate source. This ensures Timer1 does not miss an increment if the comparator changes during an increment. 8.10 Synchronizing Comparator Output to Timer1 The comparator output can be synchronized with Timer1 by setting the CMSYNC bit of the CMCON1 register. When enabled, the comparator output is latched on the falling edge of the Timer1 clock source. If a prescaler is used with Timer1, the comparator output is latched after the prescaling function. To prevent a race condition, the comparator output is latched on the falling edge of the Timer1 clock source and Timer1 increments on the rising edge of its clock source. See the Comparator Block Diagram (Figure 8- 2) and the Timer1 Block Diagram (Figure 6-1) for more information. REGISTER 8-2: CMCON1: COMPARATOR CONFIGURATION REGISTER U-0 U-0 U-0 U-0 U-0 U-0 R/W-1 R/W-0 — — — — — — T1GSS CMSYNC bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 7-2 Unimplemented: Read as ‘0’ bit 1 T1GSS: Timer1 Gate Source Select bit(1) 1 = Timer 1 Gate Source is T1G pin (pin should be configured as digital input) 0 = Timer 1 Gate Source is comparator output bit 0 CMSYNC: Comparator Output Synchronization bit(2) 1 = Output is synchronized with falling edge of Timer1 clock 0 = Output is asynchronous Note 1: Refer to Section 6.6 “Timer1 Gate”. 2: Refer to Figure 8-2. PIC12F683 DS41211D-page 58 © 2007 Microchip Technology Inc. 8.11 Comparator Voltage Reference The Comparator Voltage Reference module provides an internally generated voltage reference for the comparators. The following features are available: • Independent from Comparator operation • Two 16-level voltage ranges • Output clamped to VSS • Ratiometric with VDD The VRCON register (Register 8-3) controls the Voltage Reference module shown in Figure 8-7. 8.11.1 INDEPENDENT OPERATION The comparator voltage reference is independent of the comparator configuration. Setting the VREN bit of the VRCON register will enable the voltage reference. 8.11.2 OUTPUT VOLTAGE SELECTION The CVREF voltage reference has 2 ranges with 16 voltage levels in each range. Range selection is controlled by the VRR bit of the VRCON register. The 16 levels are set with the VR<3:0> bits of the VRCON register. The CVREF output voltage is determined by the following equations: EQUATION 8-1: CVREF OUTPUT VOLTAGE The full range of VSS to VDD cannot be realized due to the construction of the module. See Figure 8-1. 8.11.3 OUTPUT CLAMPED TO VSS The CVREF output voltage can be set to Vss with no power consumption by configuring VRCON as follows: • VREN=0 • VRR=1 • VR<3:0>=0000 This allows the comparator to detect a zero-crossing while not consuming additional CVREF module current. 8.11.4 OUTPUT RATIOMETRIC TO VDD The comparator voltage reference is VDD derived and therefore, the CVREF output changes with fluctuations in VDD. The tested absolute accuracy of the Comparator Voltage Reference can be found in Section 15.0 “Electrical Specifications”. VRR = 1 (low range): VRR = 0 (high range): CVREF = (VDD/4) + CVREF = (VR<3:0>/24) × VDD (VR<3:0> × VDD/32) REGISTER 8-3: VRCON: VOLTAGE REFERENCE CONTROL REGISTER R/W-0 U-0 R/W-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 VREN — VRR — VR3 VR2 VR1 VR0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 7 VREN: CVREF Enable bit 1 = CVREF circuit powered on 0 = CVREF circuit powered down, no IDD drain and CVREF = VSS. bit 6 Unimplemented: Read as ‘0’ bit 5 VRR: CVREF Range Selection bit 1 = Low range 0 = High range bit 4 Unimplemented: Read as ‘0’ bit 3-0 VR<3:0>: CVREF Value Selection 0 ≤ VR<3:0> ≤ 15 When VRR = 1: CVREF = (VR<3:0>/24) * VDD When VRR = 0: CVREF = VDD/4 + (VR<3:0>/32) * VDD © 2007 Microchip Technology Inc. DS41211D-page 59 PIC12F683 FIGURE 8-7: COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM TABLE 8-2: SUMMARY OF REGISTERS ASSOCIATED WITH THE COMPARATOR AND VOLTAGE REFERENCE MODULES Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Value on POR, BOR Value on all other Resets ANSEL — ADCS2 ADCS1 ADCS0 ANS3 ANS2 ANS1 ANS0 -000 1111 -000 1111 CMCON0 — COUT — CINV CIS CM2 CM1 CM0 -0-0 0000 -0-0 0000 CMCON1 — — — — — — T1GSS CMSYNC ---- --10 ---- --10 INTCON GIE PEIE T0IE INTE GPIE T0IF INTF GPIF 0000 0000 0000 000x PIE1 EEIE ADIE CCP1IE — CMIE OSFIE TMR2IE TMR1IE 000- 0000 0000 0000 PIR1 EEIF ADIF CCP1IF — CMIF OSFIF TMR2IF TMR1IF 000- 0000 000- 0000 GPIO — — GP5 GP4 GP3 GP2 GP1 GP0 --xx xxxx --uu uuuu TRISIO — — TRISIO5 TRISIO4 TRISIO3 TRISIO2 TRISIO1 TRISIO0 --11 1111 --11 1111 VRCON VREN — VRR — VR3 VR2 VR1 VR0 0-0- 0000 -0-0 0000 Legend: x = unknown, u = unchanged, - = unimplemented, read as ‘0’. Shaded cells are not used for comparator. 8R VRR VR<3:0>(1) 16-1 Analog 8R R R R R CVREF to 16 Stages Comparator Input VREN VDD MUX VR<3:0> = 0000 VREN VRR 0 1 2 14 15 Note 1: Care should be taken to ensure VREF remains within the comparator Common mode input range. See Section 15.0 “Electrical Specifications” for more detail. PIC12F683 DS41211D-page 60 © 2007 Microchip Technology Inc. NOTES: © 2007 Microchip Technology Inc. DS41211D-page 61 PIC12F683 9.0 ANALOG-TO-DIGITAL CONVERTER (ADC) MODULE The Analog-to-Digital Converter (ADC) allows conversion of an analog input signal to a 10-bit binary representation of that signal. This device uses analog inputs, which are multiplexed into a single sample and hold circuit. The output of the sample and hold is connected to the input of the converter. The converter generates a 10-bit binary result via successive approximation and stores the conversion result into the ADC result registers (ADRESL and ADRESH). The ADC voltage reference is software selectable to either VDD or a voltage applied to the external reference pins. The ADC can generate an interrupt upon completion of a conversion. This interrupt can be used to wake-up the device from Sleep. Figure 9-1 shows the block diagram of the ADC. FIGURE 9-1: ADC BLOCK DIAGRAM 9.1 ADC Configuration When configuring and using the ADC the following functions must be considered: • GPIO configuration • Channel selection • ADC voltage reference selection • ADC conversion clock source • Interrupt control • Results formatting 9.1.1 GPIO CONFIGURATION The ADC can be used to convert both analog and digital signals. When converting analog signals, the I/O pin should be configured for analog by setting the associated TRIS and ANSEL bits. See the corresponding GPIO section for more information. 9.1.2 CHANNEL SELECTION The CHS bits of the ADCON0 register determine which channel is connected to the sample and hold circuit. When changing channels, a delay is required before starting the next conversion. Refer to Section 9.2 “ADC Operation” for more information. GP0/AN0 A/D GP1/AN1/VREF GP2/AN2 VDD VREF ADON GO/DONE VCFG = 1 VCFG = 0 CHS ADRESH ADRESL 10 10 ADFM GP4/AN3 0 = Left Justify 1 = Right Justify Note: Analog voltages on any pin that is defined as a digital input may cause the input buffer to conduct excess current. PIC12F683 DS41211D-page 62 © 2007 Microchip Technology Inc. 9.1.3 ADC VOLTAGE REFERENCE The VCFG bit of the ADCON0 register provides control of the positive voltage reference. The positive voltage reference can be either VDD or an external voltage source. The negative voltage reference is always connected to the ground reference. 9.1.4 CONVERSION CLOCK The source of the conversion clock is software selectable via the ADCS bits of the ANSEL register. There are seven possible clock options: • FOSC/2 • FOSC/4 • FOSC/8 • FOSC/16 • FOSC/32 • FOSC/64 • FRC (dedicated internal oscillator) The time to complete one bit conversion is defined as TAD. One full 10-bit conversion requires 11 TAD periods as shown in Figure 9-2. For correct conversion, the appropriate TAD specification must be met. See A/D conversion requirements in Section 15.0 “Electrical Specifications” for more information. Table 9-1 gives examples of appropriate ADC clock selections. TABLE 9-1: ADC CLOCK PERIOD (TAD) VS. DEVICE OPERATING FREQUENCIES (VDD > 3.0V) FIGURE 9-2: ANALOG-TO-DIGITAL CONVERSION TAD CYCLES Note: Unless using the FRC, any changes in the system clock frequency will change the ADC clock frequency, which may adversely affect the ADC result. ADC Clock Period (TAD) Device Frequency (FOSC) ADC Clock Source ADCS<2:0> 20 MHz 8 MHz 4 MHz 1 MHz FOSC/2 000 100 ns(2) 250 ns(2) 500 ns(2) 2.0 μs FOSC/4 100 200 ns(2) 500 ns(2) 1.0 μs(2) 4.0 μs FOSC/8 001 400 ns(2) 1.0 μs(2) 2.0 μs 8.0 μs(3) FOSC/16 101 800 ns(2) 2.0 μs 4.0 μs 16.0 μs(3) FOSC/32 010 1.6 μs 4.0 μs 8.0 μs(3) 32.0 μs(3) FOSC/64 110 3.2 μs 8.0 μs(3) 16.0 μs(3) 64.0 μs(3) FRC x11 2-6 μs(1,4) 2-6 μs(1,4) 2-6 μs(1,4) 2-6 μs(1,4) Legend: Shaded cells are outside of recommended range. Note 1: The FRC source has a typical TAD time of 4 μs for VDD > 3.0V. 2: These values violate the minimum required TAD time. 3: For faster conversion times, the selection of another clock source is recommended. 4: When the device frequency is greater than 1 MHz, the FRC clock source is only recommended if the conversion will be performed during Sleep. TAD1 TAD2 TAD3 TAD4 TAD5 TAD6 TAD7 TAD8 TAD9 Set GO/DONE bit Holding Capacitor is Disconnected from Analog Input (typically 100 ns) b9 b8 b7 b6 b5 b4 b3 b2 TAD10 TAD11 b1 b0 TCY to TAD Conversion Starts ADRESH and ADRESL registers are loaded, GO bit is cleared, ADIF bit is set, Holding capacitor is connected to analog input © 2007 Microchip Technology Inc. DS41211D-page 63 PIC12F683 9.1.5 INTERRUPTS The ADC module allows for the ability to generate an interrupt upon completion of an Analog-to-Digital conversion. The ADC interrupt flag is the ADIF bit in the PIR1 register. The ADC interrupt enable is the ADIE bit in the PIE1 register. The ADIF bit must be cleared in software. This interrupt can be generated while the device is operating or while in Sleep. If the device is in Sleep, the interrupt will wake-up the device. Upon waking from Sleep, the next instruction following the SLEEP instruction is always executed. If the user is attempting to wake-up from Sleep and resume in-line code execution, the global interrupt must be disabled. If the global interrupt is enabled, execution will switch to the interrupt service routine. Please see Section 12.4 “Interrupts” for more information. 9.1.6 RESULT FORMATTING The 10-bit A/D conversion result can be supplied in two formats, left justified or right justified. The ADFM bit of the ADCON0 register controls the output format. Figure 9-3 shows the two output formats. FIGURE 9-3: 10-BIT A/D CONVERSION RESULT FORMAT 9.2 ADC Operation 9.2.1 STARTING A CONVERSION To enable the ADC module, the ADON bit of the ADCON0 register must be set to a ‘1’. Setting the GO/DONE bit of the ADCON0 register to a ‘1’ will start the Analog-to-Digital conversion. 9.2.2 COMPLETION OF A CONVERSION When the conversion is complete, the ADC module will: • Clear the GO/DONE bit • Set the ADIF flag bit • Update the ADRESH:ADRESL registers with new conversion result 9.2.3 TERMINATING A CONVERSION If a conversion must be terminated before completion, the GO/DONE bit can be cleared in software. The ADRESH:ADRESL registers will not be updated with the partially complete Analog-to-Digital conversion sample. Instead, the ADRESH:ADRESL register pair will retain the value of the previous conversion. Additionally, a 2 TAD delay is required before another acquisition can be initiated. Following this delay, an input acquisition is automatically started on the selected channel. Note: The ADIF bit is set at the completion of every conversion, regardless of whether or not the ADC interrupt is enabled. ADRESH ADRESL (ADFM = 0) MSB LSB bit 7 bit 0 bit 7 bit 0 10-bit A/D Result Unimplemented: Read as ‘0’ (ADFM = 1) MSB LSB bit 7 bit 0 bit 7 bit 0 Unimplemented: Read as ‘0’ 10-bit A/D Result Note: The GO/DONE bit should not be set in the same instruction that turns on the ADC. Refer to Section 9.2.6 “A/D Conversion Procedure”. Note: A device Reset forces all registers to their Reset state. Thus, the ADC module is turned off and any pending conversion is terminated. PIC12F683 DS41211D-page 64 © 2007 Microchip Technology Inc. 9.2.4 ADC OPERATION DURING SLEEP The ADC module can operate during Sleep. This requires the ADC clock source to be set to the FRC option. When the FRC clock source is selected, the ADC waits one additional instruction before starting the conversion. This allows the SLEEP instruction to be executed, which can reduce system noise during the conversion. If the ADC interrupt is enabled, the device will wake-up from Sleep when the conversion completes. If the ADC interrupt is disabled, the ADC module is turned off after the conversion completes, although the ADON bit remains set. When the ADC clock source is something other than FRC, a SLEEP instruction causes the present conversion to be aborted and the ADC module is turned off, although the ADON bit remains set. 9.2.5 SPECIAL EVENT TRIGGER The CCP Special Event Trigger allows periodic ADC measurements without software intervention. When this trigger occurs, the GO/DONE bit is set by hardware and the Timer1 counter resets to zero. Using the Special Event Trigger does not assure proper ADC timing. It is the user’s responsibility to ensure that the ADC timing requirements are met. See Section 11.0 “Capture/Compare/PWM (CCP) Module” for more information. 9.2.6 A/D CONVERSION PROCEDURE This is an example procedure for using the ADC to perform an Analog-to-Digital conversion: 1. Configure GPIO Port: • Disable pin output driver (See TRIS register) • Configure pin as analog 2. Configure the ADC module: • Select ADC conversion clock • Configure voltage reference • Select ADC input channel • Select result format • Turn on ADC module 3. Configure ADC interrupt (optional): • Clear ADC interrupt flag • Enable ADC interrupt • Enable peripheral interrupt • Enable global interrupt(1) 4. Wait the required acquisition time(2). 5. Start conversion by setting the GO/DONE bit. 6. Wait for ADC conversion to complete by one of the following: • Polling the GO/DONE bit • Waiting for the ADC interrupt (interrupts enabled) 7. Read ADC Result 8. Clear the ADC interrupt flag (required if interrupt is enabled). EXAMPLE 9-1: A/D CONVERSION 9.2.7 ADC REGISTER DEFINITIONS The following registers are used to control the operation of the ADC. Note 1: The global interrupt can be disabled if the user is attempting to wake-up from Sleep and resume in-line code execution. 2: See Section 9.3 “A/D Acquisition Requirements”. ;This code block configures the ADC ;for polling, Vdd reference, Frc clock ;and GP0 input. ; ;Conversion start & polling for completion ; are included. ; BANKSEL TRISIO ; BSF TRISIO,0 ;Set GP0 to input BANKSEL ANSEL ; MOVLW B’01110001’ ;ADC Frc clock, IORWF ANSEL ; and GP0 as analog BANKSEL ADCON0 ; MOVLW B’10000001’ ;Right justify, MOVWF ADCON0 ;Vdd Vref, AN0, On CALL SampleTime ;Acquisiton delay BSF ADCON0,GO ;Start conversion BTFSC ADCON0,GO ;Is conversion done? GOTO $-1 ;No, test again BANKSEL ADRESH ; MOVF ADRESH,W ;Read upper 2 bits MOVWF RESULTHI ;Store in GPR space BANKSEL ADRESL ; MOVF ADRESL,W ;Read lower 8 bits MOVWF RESULTLO ;Store in GPR space © 2007 Microchip Technology Inc. DS41211D-page 65 PIC12F683 REGISTER 9-1: ADCON0: A/D CONTROL REGISTER 0 R/W-0 R/W-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 ADFM VCFG — — CHS1 CHS0 GO/DONE ADON bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 7 ADFM: A/D Conversion Result Format Select bit 1 = Right justified 0 = Left justified bit 6 VCFG: Voltage Reference bit 1 = VREF pin 0 = VDD bit 5-4 Unimplemented: Read as ‘0’ bit 3-2 CHS<1:0>: Analog Channel Select bits 00 = AN0 01 = AN1 10 = AN2 11 = AN3 bit 1 GO/DONE: A/D Conversion Status bit 1 = A/D conversion cycle in progress. Setting this bit starts an A/D conversion cycle. This bit is automatically cleared by hardware when the A/D conversion has completed. 0 = A/D conversion completed/not in progress bit 0 ADON: ADC Enable bit 1 = ADC is enabled 0 = ADC is disabled and consumes no operating current PIC12F683 DS41211D-page 66 © 2007 Microchip Technology Inc. REGISTER 9-2: ADRESH: ADC RESULT REGISTER HIGH (ADRESH) ADFM = 0 R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x ADRES9 ADRES8 ADRES7 ADRES6 ADRES5 ADRES4 ADRES3 ADRES2 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 7-0 ADRES<9:2>: ADC Result Register bits Upper 8 bits of 10-bit conversion result REGISTER 9-3: ADRESL: ADC RESULT REGISTER LOW (ADRESL) ADFM = 0 R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x ADRES1 ADRES0 — — — — — — bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 7-6 ADRES<1:0>: ADC Result Register bits Lower 2 bits of 10-bit conversion result bit 5-0 Reserved: Do not use. REGISTER 9-4: ADRESH: ADC RESULT REGISTER HIGH (ADRESH) ADFM = 1 R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x — — — — — — ADRES9 ADRES8 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 7-2 Reserved: Do not use. bit 1-0 ADRES<9:8>: ADC Result Register bits Upper 2 bits of 10-bit conversion result REGISTER 9-5: ADRESL: ADC RESULT REGISTER LOW (ADRESL) ADFM = 1 R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x ADRES7 ADRES6 ADRES5 ADRES4 ADRES3 ADRES2 ADRES1 ADRES0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 7-0 ADRES<7:0>: ADC Result Register bits Lower 8 bits of 10-bit conversion result © 2007 Microchip Technology Inc. DS41211D-page 67 PIC12F683 9.3 A/D Acquisition Requirements For the ADC to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The Analog Input model is shown in Figure 9-4. The source impedance (RS) and the internal sampling switch (RSS) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (RSS) impedance varies over the device voltage (VDD), see Figure 9-4. The maximum recommended impedance for analog sources is 10 kΩ. As the source impedance is decreased, the acquisition time may be decreased. After the analog input channel is selected (or changed), an A/D acquisition must be done before the conversion can be started. To calculate the minimum acquisition time, Equation 9-1 may be used. This equation assumes that 1/2 LSb error is used (1024 steps for the ADC). The 1/2 LSb error is the maximum error allowed for the ADC to meet its specified resolution. EQUATION 9-1: ACQUISITION TIME EXAMPLE TACQ Amplifier Settling Time Hold Capacitor Charging = + Time + Temperature Coefficient = TAMP + TC + TCOFF = 2μs + TC + [(Temperature - 25°C)(0.05μs/°C)] TC = –CHOLD(RIC + RSS + RS) ln(1/2047) = –10pF(1kΩ + 7kΩ + 10kΩ) ln(0.0004885) = 1.37μs TACQ = 2μS + 1.37μS + [(50°C- 25°C)(0.05μS/°C)] = 4.67μS VAPPLIED 1 e –Tc RC --------- – ⎝ ⎠ ⎜ ⎟ ⎛ ⎞ VAPPLIED 1 1 2047 ⎝ – -----------⎠ = ⎛ ⎞ VAPPLIED 1 1 2047 ⎝ – -----------⎠ ⎛ ⎞ = VCHOLD VAPPLIED 1 e –TC RC --------- – ⎝ ⎠ ⎜ ⎟ ⎛ ⎞ = VCHOLD ;[1] VCHOLD charged to within 1/2 lsb ;[2] VCHOLD charge response to VAPPLIED ;combining [1] and [2] The value for TC can be approximated with the following equations: Solving for TC: Therefore: Assumptions: Temperature = 50°C and external impedance of 10kΩ 5.0V VDD Note 1: The reference voltage (VREF) has no effect on the equation, since it cancels itself out. 2: The charge holding capacitor (CHOLD) is not discharged after each conversion. 3: The maximum recommended impedance for analog sources is 10 kΩ. This is required to meet the pin leakage specification. PIC12F683 DS41211D-page 68 © 2007 Microchip Technology Inc. FIGURE 9-4: ANALOG INPUT MODEL FIGURE 9-5: ADC TRANSFER FUNCTION VA CPIN Rs ANx 5 pF VDD VT = 0.6V VT = 0.6V I LEAKAGE RIC ≤ 1k Sampling Switch SS Rss CHOLD = 10 pF VSS/VREF- 6V Sampling Switch 5V 4V 3V 2V 5 6 7 8 91011 (kΩ) VDD ± 500 nA Legend: CPIN VT I LEAKAGE RIC SS CHOLD = Input Capacitance = Threshold Voltage = Leakage current at the pin due to = Interconnect Resistance = Sampling Switch = Sample/Hold Capacitance various junctions RSS 3FFh 3FEh ADC Output Code 3FDh 3FCh 004h 003h 002h 001h 000h Full-Scale 3FBh 1 LSB ideal VSS/VREF- Zero-Scale Transition VDD/VREF+ Transition 1 LSB ideal Full-Scale Range Analog Input Voltage © 2007 Microchip Technology Inc. DS41211D-page 69 PIC12F683 TABLE 9-2: SUMMARY OF ASSOCIATED ADC REGISTERS Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Value on POR, BOR Value on all other Resets ADCON0 ADFM VCFG — — CHS1 CHS0 GO/DONE ADON 00-- 0000 0000 0000 ANSEL — ADCS2 ADCS1 ADCS0 ANS3 ANS2 ANS1 ANS0 -000 1111 -000 1111 ADRESH A/D Result Register High Byte xxxx xxxx uuuu uuuu ADRESL A/D Result Register Low Byte xxxx xxxx uuuu uuuu INTCON GIE PEIE T0IE INTE GPIE T0IF INTF GPIF 0000 0000 0000 000x PIE1 EEIE ADIE CCP1IE — CMIE OSFIE TMR2IE TMR1IE 000- 0000 0000 0000 PIR1 EEIF ADIF CCP1IF — CMIF OSFIF TMR2IF TMR1IF 000- 0000 000- 0000 GPIO — — GP5 GP4 GP3 GP2 GP1 GP0 --xx xxxx --uu uuuu TRISIO — — TRISIO5 TRISIO4 TRISIO3 TRISIO2 TRISIO1 TRISIO0 --11 1111 --11 1111 Legend: x = unknown, u = unchanged, — = unimplemented read as ‘0’. Shaded cells are not used for ADC module. PIC12F683 DS41211D-page 70 © 2007 Microchip Technology Inc. NOTES: © 2007 Microchip Technology Inc. DS41211D-page 71 PIC12F683 10.0 DATA EEPROM MEMORY The EEPROM data memory is readable and writable during normal operation (full VDD range). This memory is not directly mapped in the register file space. Instead, it is indirectly addressed through the Special Function Registers. There are four SFRs used to read and write this memory: • EECON1 • EECON2 (not a physically implemented register) • EEDAT • EEADR EEDAT holds the 8-bit data for read/write, and EEADR holds the address of the EEPROM location being accessed. PIC12F683 has 256 bytes of data EEPROM with an address range from 0h to FFh. The EEPROM data memory allows byte read and write. A byte write automatically erases the location and writes the new data (erase before write). The EEPROM data memory is rated for high erase/write cycles. The write time is controlled by an on-chip timer. The write time will vary with voltage and temperature as well as from chip-to-chip. Please refer to AC Specifications in Section 15.0 “Electrical Specifications” for exact limits. When the data memory is code-protected, the CPU may continue to read and write the data EEPROM memory. The device programmer can no longer access the data EEPROM data and will read zeroes. REGISTER 10-1: EEDAT: EEPROM DATA REGISTER R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 EEDAT7 EEDAT6 EEDAT5 EEDAT4 EEDAT3 EEDAT2 EEDAT1 EEDAT0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 7-0 EEDATn: Byte Value to Write To or Read From Data EEPROM bits REGISTER 10-2: EEADR: EEPROM ADDRESS REGISTER R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 EEADR7 EEADR6 EEADR5 EEADR4 EEADR3 EEADR2 EEADR1 EEADR0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 7-0 EEADR: Specifies One of 256 Locations for EEPROM Read/Write Operation bits PIC12F683 DS41211D-page 72 © 2007 Microchip Technology Inc. 10.1 EECON1 and EECON2 Registers EECON1 is the control register with four low-order bits physically implemented. The upper four bits are nonimplemented and read as ‘0’s. Control bits RD and WR initiate read and write, respectively. These bits cannot be cleared, only set in software. They are cleared in hardware at completion of the read or write operation. The inability to clear the WR bit in software prevents the accidental, premature termination of a write operation. The WREN bit, when set, will allow a write operation. On power-up, the WREN bit is clear. The WRERR bit is set when a write operation is interrupted by a MCLR Reset, or a WDT Time-out Reset during normal operation. In these situations, following Reset, the user can check the WRERR bit, clear it and rewrite the location. The data and address will be cleared. Therefore, the EEDAT and EEADR registers will need to be re-initialized. Interrupt flag, EEIF bit of the PIR1 register, is set when write is complete. This bit must be cleared in software. EECON2 is not a physical register. Reading EECON2 will read all ‘0’s. The EECON2 register is used exclusively in the data EEPROM write sequence. Note: The EECON1, EEDAT and EEADR registers should not be modified during a data EEPROM write (WR bit = 1). REGISTER 10-3: EECON1: EEPROM CONTROL REGISTER U-0 U-0 U-0 U-0 R/W-x R/W-0 R/S-0 R/S-0 — — — — WRERR WREN WR RD bit 7 bit 0 Legend: S = Bit can only be set R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 7-4 Unimplemented: Read as ‘0’ bit 3 WRERR: EEPROM Error Flag bit 1 = A write operation is prematurely terminated (any MCLR Reset, any WDT Reset during normal operation or BOR Reset) 0 = The write operation completed bit 2 WREN: EEPROM Write Enable bit 1 = Allows write cycles 0 = Inhibits write to the data EEPROM bit 1 WR: Write Control bit 1 = Initiates a write cycle (The bit is cleared by hardware once write is complete. The WR bit can only be set, not cleared, in software.) 0 = Write cycle to the data EEPROM is complete bit 0 RD: Read Control bit 1 = Initiates an EEPROM read (Read takes one cycle. RD is cleared in hardware. The RD bit can only be set, not cleared, in software.) 0 = Does not initiate an EEPROM read © 2007 Microchip Technology Inc. DS41211D-page 73 PIC12F683 10.2 Reading the EEPROM Data Memory To read a data memory location, the user must write the address to the EEADR register and then set control bit RD of the EECON1 register, as shown in Example 10-1. The data is available, at the very next cycle, in the EEDAT register. Therefore, it can be read in the next instruction. EEDAT holds this value until another read, or until it is written to by the user (during a write operation). EXAMPLE 10-1: DATA EEPROM READ 10.3 Writing to the EEPROM Data Memory To write an EEPROM data location, the user must first write the address to the EEADR register and the data to the EEDAT register. Then the user must follow a specific sequence to initiate the write for each byte, as shown in Example 10-2. EXAMPLE 10-2: DATA EEPROM WRITE The write will not initiate if the above sequence is not exactly followed (write 55h to EECON2, write AAh to EECON2, then set WR bit) for each byte. We strongly recommend that interrupts be disabled during this code segment. A cycle count is executed during the required sequence. Any number that is not equal to the required cycles to execute the required sequence will prevent the data from being written into the EEPROM. Additionally, the WREN bit in EECON1 must be set to enable write. This mechanism prevents accidental writes to data EEPROM due to errant (unexpected) code execution (i.e., lost programs). The user should keep the WREN bit clear at all times, except when updating EEPROM. The WREN bit is not cleared by hardware. After a write sequence has been initiated, clearing the WREN bit will not affect this write cycle. The WR bit will be inhibited from being set unless the WREN bit is set. At the completion of the write cycle, the WR bit is cleared in hardware and the EE Write Complete Interrupt Flag bit (EEIF) is set. The user can either enable this interrupt or poll this bit. The EEIF bit of the PIR1 register must be cleared by software. 10.4 Write Verify Depending on the application, good programming practice may dictate that the value written to the data EEPROM should be verified (see Example 10-3) to the desired value to be written. EXAMPLE 10-3: WRITE VERIFY 10.4.1 USING THE DATA EEPROM The data EEPROM is a high-endurance, byte addressable array that has been optimized for the storage of frequently changing information (e.g., program variables or other data that are updated often). When variables in one section change frequently, while variables in another section do not change, it is possible to exceed the total number of write cycles to the EEPROM (specification D124) without exceeding the total number of write cycles to a single byte (specifications D120 and D120A). If this is the case, then a refresh of the array must be performed. For this reason, variables that change infrequently (such as constants, IDs, calibration, etc.) should be stored in Flash program memory. BANKSEL EEADR ; MOVLW CONFIG_ADDR ; MOVWF EEADR ;Address to read BSF EECON1,RD ;EE Read MOVF EEDAT,W ;Move data to W BANKSEL EECON1 ; BSF EECON1,WREN ;Enable write BCF INTCON,GIE ;Disable INTs BTFSC INTCON,GIE ;See AN576 GOTO $-2 ; MOVLW 55h ;Unlock write MOVWF EECON2 ; MOVLW AAh ; MOVWF EECON2 ; BSF EECON1,WR ;Start the write BSF INTCON,GIE ;Enable INTS Required Sequence BANKSELEEDAT ; MOVF EEDAT,W ;EEDAT not changed ;from previous write BSF EECON1,RD ;YES, Read the ;value written XORWF EEDAT,W BTFSS STATUS,Z ;Is data the same GOTO WRITE_ERR ;No, handle error : ;Yes, continue PIC12F683 DS41211D-page 74 © 2007 Microchip Technology Inc. 10.5 Protection Against Spurious Write There are conditions when the user may not want to write to the data EEPROM memory. To protect against spurious EEPROM writes, various mechanisms have been built in. On power-up, WREN is cleared. Also, the Power-up Timer (64 ms duration) prevents EEPROM write. The write initiate sequence and the WREN bit together help prevent an accidental write during: • Brown-out • Power Glitch • Software Malfunction 10.6 Data EEPROM Operation During Code-Protect Data memory can be code-protected by programming the CPD bit in the Configuration Word register (Register 12-1) to ‘0’. When the data memory is code-protected, the CPU is able to read and write data to the data EEPROM. It is recommended to code-protect the program memory when code-protecting data memory. This prevents anyone from programming zeroes over the existing code (which will execute as NOPs) to reach an added routine, programmed in unused program memory, which outputs the contents of data memory. Programming unused locations in program memory to ‘0’ will also help prevent data memory code protection from becoming breached. TABLE 10-1: SUMMARY OF ASSOCIATED DATA EEPROM REGISTERS Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Value on POR, BOR Value on all other Resets INTCON GIE PEIE T0IE INTE GPIE T0IF INTF GPIF 0000 0000 0000 0000 PIR1 EEIF ADIF CCP1IF — CMIF OSFIF TMR2IF TMR1IF 000- 0000 000- 0000 PIE1 EEIE ADIE CCP1IE — CMIE OSFIE TMR2IE TMR1IE 000- 0000 000- 0000 EEDAT EEDAT7 EEDAT6 EEDAT5 EEDAT4 EEDAT3 EEDAT2 EEDAT1 EEDAT0 0000 0000 0000 0000 EEADR EEADR7 EEADR6 EEADR5 EEADR4 EEADR3 EEADR2 EEADR1 EEADR0 0000 0000 0000 0000 EECON1 — — — — WRERR WREN WR RD ---- x000 ---- q000 EECON2(1) EEPROM Control Register 2 ---- ---- ---- ---- Legend: x = unknown, u = unchanged, – = unimplemented read as ‘0’, q = value depends upon condition. Shaded cells are not used by the Data EEPROM module. Note 1: EECON2 is not a physical register. © 2007 Microchip Technology Inc. DS41211D-page 75 PIC12F683 11.0 CAPTURE/COMPARE/PWM (CCP) MODULE The Capture/Compare/PWM module is a peripheral which allows the user to time and control different events. In Capture mode, the peripheral allows the timing of the duration of an event.The Compare mode allows the user to trigger an external event when a predetermined amount of time has expired. The PWM mode can generate a Pulse-Width Modulated signal of varying frequency and duty cycle. The timer resources used by the module are shown in Table 11-1 Additional information on CCP modules is available in the Application Note AN594, “Using the CCP Modules” (DS00594). TABLE 11-1: CCP MODE – TIMER RESOURCES REQUIRED CCP Mode Timer Resource Capture Timer1 Compare Timer1 PWM Timer2 REGISTER 11-1: CCP1CON: CCP1 CONTROL REGISTER U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 — — DC1B1 DC1B0 CCP1M3 CCP1M2 CCP1M1 CCP1M0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 7-6 Unimplemented: Read as ‘0’ bit 5-4 DC1B<1:0>: PWM Duty Cycle Least Significant bits Capture mode: Unused. Compare mode: Unused. PWM mode: These bits are the two LSbs of the PWM duty cycle. The eight MSbs are found in CCPR1L. bit 3-0 CCP1M<3:0>: CCP Mode Select bits 0000 = Capture/Compare/PWM off (resets CCP module) 0001 = Unused (reserved) 0010 = Unused (reserved) 0011 = Unused (reserved) 0100 = Capture mode, every falling edge 0101 = Capture mode, every rising edge 0110 = Capture mode, every 4th rising edge 0111 = Capture mode, every 16th rising edge 1000 = Compare mode, set output on match (CCP1IF bit is set) 1001 = Compare mode, clear output on match (CCP1IF bit is set) 1010 = Compare mode, generate software interrupt on match (CCP1IF bit is set, CCP1 pin is unaffected) 1011 = Compare mode, trigger special event (CCP1IF bit is set, TMR1 is reset and A/D conversion is started if the ADC module is enabled. CCP1 pin is unaffected.) 110x = PWM mode active-high 111x = PWM mode active-low PIC12F683 DS41211D-page 76 © 2007 Microchip Technology Inc. 11.1 Capture Mode In Capture mode, CCPR1H:CCPR1L captures the 16-bit value of the TMR1 register when an event occurs on pin CCP1. An event is defined as one of the following and is configured by the CCP1M<3:0> bits of the CCP1CON register: • Every falling edge • Every rising edge • Every 4th rising edge • Every 16th rising edge When a capture is made, the Interrupt Request Flag bit CCP1IF of the PIR1 register is set. The interrupt flag must be cleared in software. If another capture occurs before the value in the CCPR1H, CCPR1L register pair is read, the old captured value is overwritten by the new captured value (see Figure 11-1). 11.1.1 CCP1 PIN CONFIGURATION In Capture mode, the CCP1 pin should be configured as an input by setting the associated TRIS control bit. FIGURE 11-1: CAPTURE MODE OPERATION BLOCK DIAGRAM 11.1.2 TIMER1 MODE SELECTION Timer1 must be running in Timer mode or Synchronized Counter mode for the CCP module to use the capture feature. In Asynchronous Counter mode, the capture operation may not work. 11.1.3 SOFTWARE INTERRUPT When the Capture mode is changed, a false capture interrupt may be generated. The user should keep the CCP1IE interrupt enable bit of the PIE1 register clear to avoid false interrupts. Additionally, the user should clear the CCP1IF interrupt flag bit of the PIR1 register following any change in operating mode. 11.1.4 CCP PRESCALER There are four prescaler settings specified by the CCP1M<3:0> bits of the CCP1CON register. Whenever the CCP module is turned off, or the CCP module is not in Capture mode, the prescaler counter is cleared. Any Reset will clear the prescaler counter. Switching from one capture prescaler to another does not clear the prescaler and may generate a false interrupt. To avoid this unexpected operation, turn the module off by clearing the CCP1CON register before changing the prescaler (see Example 11-1). EXAMPLE 11-1: CHANGING BETWEEN CAPTURE PRESCALERS Note: If the CCP1 pin is configured as an output, a write to the GPIO port can cause a capture condition. CCPR1H CCPR1L TMR1H TMR1L Set Flag bit CCP1IF (PIR1 register) Capture Enable CCP1CON<3:0> Prescaler ÷ 1, 4, 16 and Edge Detect pin CCP1 System Clock (FOSC) BANKSEL CCP1CON ;Set Bank bits to point ;to CCP1CON CLRF CCP1CON ;Turn CCP module off MOVLW NEW_CAPT_PS ;Load the W reg with ; the new prescaler ; move value and CCP ON MOVWF CCP1CON ;Load CCP1CON with this ; value © 2007 Microchip Technology Inc. DS41211D-page 77 PIC12F683 11.2 Compare Mode In Compare mode, the 16-bit CCPR1 register value is constantly compared against the TMR1 register pair value. When a match occurs, the CCP1 module may: • Toggle the CCP1 output. • Set the CCP1 output. • Clear the CCP1 output. • Generate a Special Event Trigger. • Generate a Software Interrupt. The action on the pin is based on the value of the CCP1M<3:0> control bits of the CCP1CON register. All Compare modes can generate an interrupt. FIGURE 11-2: COMPARE MODE OPERATION BLOCK DIAGRAM 11.2.1 CCP1 PIN CONFIGURATION The user must configure the CCP1 pin as an output by clearing the associated TRIS bit. 11.2.2 TIMER1 MODE SELECTION In Compare mode, Timer1 must be running in either Timer mode or Synchronized Counter mode. The compare operation may not work in Asynchronous Counter mode. 11.2.3 SOFTWARE INTERRUPT MODE When Generate Software Interrupt mode is chosen (CCP1M<3:0> = 1010), the CCP1 module does not assert control of the CCP1 pin (see the CCP1CON register). 11.2.4 SPECIAL EVENT TRIGGER When Special Event Trigger mode is chosen (CCP1M<3:0> = 1011), the CCP1 module does the following: • Resets Timer1 • Starts an ADC conversion if ADC is enabled The CCP1 module does not assert control of the CCP1 pin in this mode (see the CCP1CON register). The Special Event Trigger output of the CCP occurs immediately upon a match between the TMR1H, TMR1L register pair and the CCPR1H, CCPR1L register pair. The TMR1H, TMR1L register pair is not reset until the next rising edge of the Timer1 clock. This allows the CCPR1H, CCPR1L register pair to effectively provide a 16-bit programmable period register for Timer1. Note: Clearing the CCP1CON register will force the CCP1 compare output latch to the default low level. This is not the GPIO I/O data latch. CCPR1H CCPR1L TMR1H TMR1L Comparator Q S R Output Logic Special Event Trigger Set CCP1IF Interrupt Flag (PIR1) Match TRIS CCP1CON<3:0> Mode Select Output Enable Pin Special Event Trigger will: • Clear TMR1H and TMR1L registers. • NOT set interrupt flag bit TMR1IF of the PIR1 register. • Set the GO/DONE bit to start the ADC conversion. CCP1 4 Note 1: The Special Event Trigger from the CCP module does not set interrupt flag bit TMRxIF of the PIR1 register. 2: Removing the match condition by changing the contents of the CCPR1H and CCPR1L register pair, between the clock edge that generates the Special Event Trigger and the clock edge that generates the Timer1 Reset, will preclude the Reset from occurring. PIC12F683 DS41211D-page 78 © 2007 Microchip Technology Inc. 11.3 PWM Mode The PWM mode generates a Pulse-Width Modulated signal on the CCP1 pin. The duty cycle, period and resolution are determined by the following registers: • PR2 • T2CON • CCPR1L • CCP1CON In Pulse-Width Modulation (PWM) mode, the CCP module produces up to a 10-bit resolution PWM output on the CCP1 pin. Since the CCP1 pin is multiplexed with the PORT data latch, the TRIS for that pin must be cleared to enable the CCP1 pin output driver. Figure 11-1 shows a simplified block diagram of PWM operation. Figure 11-4 shows a typical waveform of the PWM signal. For a step-by-step procedure on how to set up the CCP module for PWM operation, see Section 11.3.7 “Setup for PWM Operation”. FIGURE 11-3: SIMPLIFIED PWM BLOCK DIAGRAM The PWM output (Figure 11-4) has a time base (period) and a time that the output stays high (duty cycle). FIGURE 11-4: CCP PWM OUTPUT Note: Clearing the CCP1CON register will relinquish CCP1 control of the CCP1 pin. CCPR1L CCPR1H(2) (Slave) Comparator TMR2 PR2 (1) R Q S Duty Cycle Registers CCP1CON<5:4> Clear Timer2, toggle CCP1 pin and latch duty cycle Note 1: The 8-bit timer TMR2 register is concatenated with the 2-bit internal system clock (FOSC), or 2 bits of the prescaler, to create the 10-bit time base. 2: In PWM mode, CCPR1H is a read-only register. TRIS CCP1 Pin Comparator Period Pulse Width TMR2 = 0 TMR2 = CCPR1L:CCP1CON<5:4> TMR2 = PR2 © 2007 Microchip Technology Inc. DS41211D-page 79 PIC12F683 11.3.1 PWM PERIOD The PWM period is specified by the PR2 register of Timer2. The PWM period can be calculated using the formula of Equation 11-1. EQUATION 11-1: PWM PERIOD When TMR2 is equal to PR2, the following three events occur on the next increment cycle: • TMR2 is cleared • The CCP1 pin is set. (Exception: If the PWM duty cycle = 0%, the pin will not be set.) • The PWM duty cycle is latched from CCPR1L into CCPR1H. 11.3.2 PWM DUTY CYCLE The PWM duty cycle is specified by writing a 10-bit value to multiple registers: CCPR1L register and DC1B<1:0> bits of the CCP1CON register. The CCPR1L contains the eight MSbs and the CCP1<1:0> bits of the CCP1CON register contain the two LSbs. CCPR1L and DC1B<1:0> bits of the CCP1CON register can be written to at any time. The duty cycle value is not latched into CCPR1H until after the period completes (i.e., a match between PR2 and TMR2 registers occurs). While using the PWM, the CCPR1H register is read-only. Equation 11-2 is used to calculate the PWM pulse width. Equation 11-3 is used to calculate the PWM duty cycle ratio. EQUATION 11-2: PULSE WIDTH EQUATION 11-3: DUTY CYCLE RATIO The CCPR1H register and a 2-bit internal latch are used to double buffer the PWM duty cycle. This double buffering is essential for glitchless PWM operation. The 8-bit timer TMR2 register is concatenated with either the 2-bit internal system clock (FOSC), or 2 bits of the prescaler, to create the 10-bit time base. The system clock is used if the Timer2 prescaler is set to 1:1. When the 10-bit time base matches the CCPR1H and 2- bit latch, then the CCP1 pin is cleared (see Figure 11-1). 11.3.3 PWM RESOLUTION The resolution determines the number of available duty cycles for a given period. For example, a 10-bit resolution will result in 1024 discrete duty cycles, whereas an 8-bit resolution will result in 256 discrete duty cycles. The maximum PWM resolution is 10 bits when PR2 is 255. The resolution is a function of the PR2 register value as shown by Equation 11-4. EQUATION 11-4: PWM RESOLUTION TABLE 11-2: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (FOSC = 20 MHz) TABLE 11-3: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (FOSC = 8 MHz) Note: The Timer2 postscaler (see Section 7.0 “Timer2 Module”) is not used in the determination of the PWM frequency. PWM Period = [(PR2) + 1] • 4 • TOSC • (TMR2 Prescale Value) Note: If the pulse width value is greater than the period the assigned PWM pin(s) will remain unchanged. Pulse Width = (CCPR1L:CCP1CON<5:4>) • TOSC • (TMR2 Prescale Value) Duty Cycle Ratio (CCPR1L:CCP1CON<5:4>) 4(PR2 + 1) = ----------------------------------------------------------------------- Resolution log[4(PR2 + 1)] log(2) = ------------------------------------------ bits PWM Frequency 1.22 kHz 4.88 kHz 19.53 kHz 78.12 kHz 156.3 kHz 208.3 kHz Timer Prescale (1, 4, 16) 16 4 1 1 1 1 PR2 Value 0xFF 0xFF 0xFF 0x3F 0x1F 0x17 Maximum Resolution (bits) 10 10 10 8 7 6.6 PWM Frequency 1.22 kHz 4.90 kHz 19.61 kHz 76.92 kHz 153.85 kHz 200.0 kHz Timer Prescale (1, 4, 16) 16 4 1 1 1 1 PR2 Value 0x65 0x65 0x65 0x19 0x0C 0x09 Maximum Resolution (bits) 8 8 8 6 5 5 PIC12F683 DS41211D-page 80 © 2007 Microchip Technology Inc. 11.3.4 OPERATION IN SLEEP MODE In Sleep mode, the TMR2 register will not increment and the state of the module will not change. If the CCP1 pin is driving a value, it will continue to drive that value. When the device wakes up, TMR2 will continue from its previous state. 11.3.5 CHANGES IN SYSTEM CLOCK FREQUENCY The PWM frequency is derived from the system clock frequency. Any changes in the system clock frequency will result in changes to the PWM frequency. See Section 3.0 “Oscillator Module (With Fail-Safe Clock Monitor)” for additional details. 11.3.6 EFFECTS OF RESET Any Reset will force all ports to Input mode and the CCP registers to their Reset states. 11.3.7 SETUP FOR PWM OPERATION The following steps should be taken when configuring the CCP module for PWM operation: 1. Disable the PWM pin (CCP1) output drivers by setting the associated TRIS bit. 2. Set the PWM period by loading the PR2 register. 3. Configure the CCP module for the PWM mode by loading the CCP1CON register with the appropriate values. 4. Set the PWM duty cycle by loading the CCPR1L register and DC1B bits of the CCP1CON register. 5. Configure and start Timer2: • Clear the TMR2IF interrupt flag bit of the PIR1 register. • Set the Timer2 prescale value by loading the T2CKPS bits of the T2CON register. • Enable Timer2 by setting the TMR2ON bit of the T2CON register. 6. Enable PWM output after a new PWM cycle has started: • Wait until Timer2 overflows (TMR2IF bit of the PIR1 register is set). • Enable the CCP1 pin output driver by clearing the associated TRIS bit. © 2007 Microchip Technology Inc. DS41211D-page 81 PIC12F683 TABLE 11-4: REGISTERS ASSOCIATED WITH CAPTURE, COMPARE AND TIMER1 TABLE 11-5: REGISTERS ASSOCIATED WITH PWM AND TIMER2 Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Value on POR, BOR Value on all other Resets CCP1CON — — DC1B1 DC1B0 CCP1M3 CCP1M2 CCP1M1 CCP1M0 --00 0000 --00 0000 CCPR1L Capture/Compare/PWM Register 1 Low Byte (LSB) xxxx xxxx xxxx xxxx CCPR1H Capture/Compare/PWM Register 1 High Byte (MSB) xxxx xxxx xxxx xxxx CMCON1 — — — — — — T1GSS CMSYNC ---- --10 ---- --10 INTCON GIE PEIE T0IE INTE GPIE T0IF INTF GPIF 0000 0000 0000 000x PIE1 EEIE ADIE CCP1IE — CMIE OSFIE TMR2IE TMR1IE 000- 0000 000- 0000 PIR1 EEIF ADIF CCP1IF — CMIF OSFIF TMR2IF TMR1IF 000- 0000 000- 0000 T1CON T1GINV TMR1GE T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON 0000 0000 0000 0000 TMR1L Holding Register for the Least Significant Byte of the 16-bit TMR1 Register xxxx xxxx xxxx xxxx TMR1H Holding Register for the Most Significant Byte of the 16-bit TMR1 Register xxxx xxxx xxxx xxxx TRISIO — — TRISIO5 TRISIO4 TRISIO3 TRISIO2 TRISIO1 TRISIO0 --11 1111 --11 1111 Legend: – = Unimplemented locations, read as ‘0’, u = unchanged, x = unknown. Shaded cells are not used by the Capture and Compare. Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Value on POR, BOR Value on all other Resets CCP1CON — — DC1B1 DC1B0 CCP1M3 CCP1M2 CCP1M1 CCP1M0 --00 0000 --00 0000 CCPR1L Capture/Compare/PWM Register 1 Low Byte (LSB) xxxx xxxx xxxx xxxx CCPR1H Capture/Compare/PWM Register 1 High Byte (MSB) xxxx xxxx xxxx xxxx INTCON GIE PEIE T0IE INTE GPIE T0IF INTF GPIF 0000 0000 0000 000x PIE1 EEIE ADIE CCP1IE — CMIE OSFIE TMR2IE TMR1IE 000- 0000 -000 0000 PIR1 EEIF ADIF CCP1IF — CMIF OSFIF TMR2IF TMR1IF 000- 0000 -000 0000 PR2 Timer2 Period Register 1111 1111 1111 1111 T2CON — TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0 -000 0000 -000 0000 TMR2 Timer2 Module Register 0000 0000 0000 0000 TRISIO — — TRISIO5 TRISIO4 TRISIO3 TRISIO2 TRISIO1 TRISIO0 --11 1111 --11 1111 Legend: – = Unimplemented locations, read as ‘0’, u = unchanged, x = unknown. Shaded cells are not used by the PWM. PIC12F683 DS41211D-page 82 © 2007 Microchip Technology Inc. NOTES: © 2007 Microchip Technology Inc. DS41211D-page 83 PIC12F683 12.0 SPECIAL FEATURES OF THE CPU The PIC12F683 has a host of features intended to maximize system reliability, minimize cost through elimination of external components, provide power saving features and offer code protection. These features are: • Reset - Power-on Reset (POR) - Power-up Timer (PWRT) - Oscillator Start-up Timer (OST) - Brown-out Reset (BOR) • Interrupts • Watchdog Timer (WDT) • Oscillator Selection • Sleep • Code Protection • ID Locations • In-Circuit Serial Programming™ The PIC12F683 has two timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), intended to keep the chip in Reset until the crystal oscillator is stable. The other is the Power-up Timer (PWRT), which provides a fixed delay of 64 ms (nominal) on power-up only, designed to keep the part in Reset while the power supply stabilizes. There is also circuitry to reset the device if a brown-out occurs, which can use the Power-up Timer to provide at least a 64 ms Reset. With these three functions on-chip, most applications need no external Reset circuitry. The Sleep mode is designed to offer a very low-current Power-down mode. The user can wake-up from Sleep through: • External Reset • Watchdog Timer Wake-up • An interrupt Several oscillator options are also made available to allow the part to fit the application. The INTOSC option saves system cost while the LP crystal option saves power. A set of Configuration bits are used to select various options (see Register 12-1). 12.1 Configuration Bits The Configuration bits can be programmed (read as ‘0’), or left unprogrammed (read as ‘1’) to select various device configurations as shown in Register 12-1. These bits are mapped in program memory location 2007h. Note: Address 2007h is beyond the user program memory space. It belongs to the special configuration memory space (2000h-3FFFh), which can be accessed only during programming. See “PIC12F6XX/16F6XX Memory Programming Specification” (DS41204) for more information. PIC12F683 DS41211D-page 84 © 2007 Microchip Technology Inc. REGISTER 12-1: CONFIG: CONFIGURATION WORD REGISTER — — — — FCMEN IESO BOREN1 BOREN0 bit 15 bit 8 CPD CP MCLRE PWRTE WDTE FOSC2 FOSC1 FOSC0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit P = Programmable’ U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15-12 Unimplemented: Read as ‘1’ bit 11 FCMEN: Fail-Safe Clock Monitor Enabled bit 1 = Fail-Safe Clock Monitor is enabled 0 = Fail-Safe Clock Monitor is disabled bit 10 IESO: Internal External Switchover bit 1 = Internal External Switchover mode is enabled 0 = Internal External Switchover mode is disabled bit 9-8 BOREN<1:0>: Brown-out Reset Selection bits(1) 11 = BOR enabled 10 = BOR enabled during operation and disabled in Sleep 01 = BOR controlled by SBOREN bit of the PCON register 00 = BOR disabled bit 7 CPD: Data Code Protection bit(2) 1 = Data memory code protection is disabled 0 = Data memory code protection is enabled bit 6 CP: Code Protection bit(3) 1 = Program memory code protection is disabled 0 = Program memory code protection is enabled bit 5 MCLRE: GP3/MCLR pin function select bit(4) 1 = GP3/MCLR pin function is MCLR 0 = GP3/MCLR pin function is digital input, MCLR internally tied to VDD bit 4 PWRTE: Power-up Timer Enable bit 1 = PWRT disabled 0 = PWRT enabled bit 3 WDTE: Watchdog Timer Enable bit 1 = WDT enabled 0 = WDT disabled and can be enabled by SWDTEN bit of the WDTCON register bit 2-0 FOSC<2:0>: Oscillator Selection bits 111 = RC oscillator: CLKOUT function on GP4/OSC2/CLKOUT pin, RC on GP5/OSC1/CLKIN 110 = RCIO oscillator: I/O function on GP4/OSC2/CLKOUT pin, RC on GP5/OSC1/CLKIN 101 = INTOSC oscillator: CLKOUT function on GP4/OSC2/CLKOUT pin, I/O function on GP5/OSC1/CLKIN 100 = INTOSCIO oscillator: I/O function on GP4/OSC2/CLKOUT pin, I/O function on GP5/OSC1/CLKIN 011 = EC: I/O function on GP4/OSC2/CLKOUT pin, CLKIN on GP5/OSC1/CLKIN 010 = HS oscillator: High-speed crystal/resonator on GP4/OSC2/CLKOUT and GP5/OSC1/CLKIN 001 = XT oscillator: Crystal/resonator on GP4/OSC2/CLKOUT and GP5/OSC1/CLKIN 000 = LP oscillator: Low-power crystal on GP4/OSC2/CLKOUT and GP5/OSC1/CLKIN Note 1: Enabling Brown-out Reset does not automatically enable Power-up Timer. 2: The entire data EEPROM will be erased when the code protection is turned off. 3: The entire program memory will be erased when the code protection is turned off. 4: When MCLR is asserted in INTOSC or RC mode, the internal clock oscillator is disabled. © 2007 Microchip Technology Inc. DS41211D-page 85 PIC12F683 12.2 Calibration Bits Brown-out Reset (BOR), Power-on Reset (POR) and 8 MHz internal oscillator (HFINTOSC) are factory calibrated. These calibration values are stored in fuses located in the Calibration Word (2009h). The Calibration Word is not erased when using the specified bulk erase sequence in the “PIC12F6XX/16F6XX Memory Programming Specification” (DS41244) and thus, does not require reprogramming. 12.3 Reset The PIC12F683 differentiates between various kinds of Reset: a) Power-on Reset (POR) b) WDT Reset during normal operation c) WDT Reset during Sleep d) MCLR Reset during normal operation e) MCLR Reset during Sleep f) Brown-out Reset (BOR) Some registers are not affected in any Reset condition; their status is unknown on POR and unchanged in any other Reset. Most other registers are reset to a “Reset state” on: • Power-on Reset • MCLR Reset • MCLR Reset during Sleep • WDT Reset • Brown-out Reset (BOR) WDT wake-up does not cause register resets in the same manner as a WDT Reset since wake-up is viewed as the resumption of normal operation. TO and PD bits are set or cleared differently in different Reset situations, as indicated in Table 12-2. Software can use these bits to determine the nature of the Reset. See Table 12-4 for a full description of Reset states of all registers. A simplified block diagram of the On-Chip Reset Circuit is shown in Figure 12-1. The MCLR Reset path has a noise filter to detect and ignore small pulses. See Section 15.0 “Electrical Specifications” for pulse-width specifications. FIGURE 12-1: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT Note 1: Refer to the Configuration Word register (Register 12-1). S R Q External Reset MCLR/VPP pin VDD OSC1/ WDT Module VDD Rise Detect OST/PWRT LFINTOSC WDT Time-out Power-on Reset OST 10-bit Ripple Counter PWRT Chip_Reset 11-bit Ripple Counter Reset Enable OST Enable PWRT SLEEP Brown-out(1) Reset SBOREN BOREN CLKI pin PIC12F683 DS41211D-page 86 © 2007 Microchip Technology Inc. 12.3.1 POWER-ON RESET The on-chip POR circuit holds the chip in Reset until VDD has reached a high enough level for proper operation. To take advantage of the POR, simply connect the MCLR pin through a resistor to VDD. This will eliminate external RC components usually needed to create Power-on Reset. A maximum rise time for VDD is required. See Section 15.0 “Electrical Specifications” for details. If the BOR is enabled, the maximum rise time specification does not apply. The BOR circuitry will keep the device in Reset until VDD reaches VBOD (see Section 12.3.4 “Brown-Out Reset (BOR)”). When the device starts normal operation (exits the Reset condition), device operating parameters (i.e., voltage, frequency, temperature, etc.) must be met to ensure operation. If these conditions are not met, the device must be held in Reset until the operating conditions are met. For additional information, refer to the Application Note AN607, “Power-up Trouble Shooting” (DS00607). 12.3.2 MCLR PIC12F683 has a noise filter in the MCLR Reset path. The filter will detect and ignore small pulses. It should be noted that a WDT Reset does not drive MCLR pin low. Voltages applied to the MCLR pin that exceed its specification can result in both MCLR Resets and excessive current beyond the device specification during the ESD event. For this reason, Microchip recommends that the MCLR pin no longer be tied directly to VDD. The use of an RC network, as shown in Figure 12-2, is suggested. An internal MCLR option is enabled by clearing the MCLRE bit in the Configuration Word register. When MCLRE = 0, the Reset signal to the chip is generated internally. When the MCLRE = 1, the GP3/MCLR pin becomes an external Reset input. In this mode, the GP3/MCLR pin has a weak pull-up to VDD. FIGURE 12-2: RECOMMENDED MCLR CIRCUIT 12.3.3 POWER-UP TIMER (PWRT) The Power-up Timer provides a fixed 64 ms (nominal) time-out on power-up only, from POR or Brown-out Reset. The Power-up Timer operates from the 31 kHz LFINTOSC oscillator. For more information, see Section 3.5 “Internal Clock Modes”. The chip is kept in Reset as long as PWRT is active. The PWRT delay allows the VDD to rise to an acceptable level. A Configuration bit, PWRTE, can disable (if set) or enable (if cleared or programmed) the Power-up Timer. The Power-up Timer should be enabled when Brown-out Reset is enabled, although it is not required. The Power-up Timer delay will vary from chip-to-chip due to: • VDD variation • Temperature variation • Process variation See DC parameters for details (Section 15.0 “Electrical Specifications”). Note: The POR circuit does not produce an internal Reset when VDD declines. To re-enable the POR, VDD must reach Vss for a minimum of 100 μs. Note: Voltage spikes below VSS at the MCLR pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100 Ω should be used when applying a “low” level to the MCLR pin, rather than pulling this pin directly to VSS. VDD PIC® MCLR R1 1 kΩ (or greater) C1 0.1 μF (optional, not critical) R2 100 Ω SW1 (needed with capacitor) (optional) MCU © 2007 Microchip Technology Inc. DS41211D-page 87 PIC12F683 12.3.4 BROWN-OUT RESET (BOR) The BOREN0 and BOREN1 bits in the Configuration Word register select one of four BOR modes. Two modes have been added to allow software or hardware control of the BOR enable. When BOREN<1:0> = 01, the SBOREN bit of the PCON register enables/disables the BOR, allowing it to be controlled in software. By selecting BOREN<1:0> = 10, the BOR is automatically disabled in Sleep to conserve power and enabled on wake-up. In this mode, the SBOREN bit is disabled. See Register 12-1 for the Configuration Word definition. A brown-out occurs when VDD falls below VBOR for greater than parameter TBOR (see Section 15.0 “Electrical Specifications”). The brown-out condition will reset the device. This will occur regardless of VDD slew rate. A Brown-out Reset may not occur if VDD falls below VBOR for less than parameter TBOR. On any Reset (Power-on, Brown-out Reset, Watchdog Timer, etc.), the chip will remain in Reset until VDD rises above VBOR (see Figure 12-3). If enabled, the Power-up Timer will be invoked by the Reset and keep the chip in Reset an additional 64 ms. If VDD drops below VBOR while the Power-up Timer is running, the chip will go back into a Brown-out Reset and the Power-up Timer will be re-initialized. Once VDD rises above VBOR, the Power-up Timer will execute a 64 ms Reset. 12.3.5 BOR CALIBRATION The PIC12F683 stores the BOR calibration values in fuses located in the Calibration Word register (2008h). The Calibration Word register is not erased when using the specified bulk erase sequence in the “PIC12F6XX/16F6XX Memory Programming Specification” (DS41204) and thus, does not require reprogramming. FIGURE 12-3: BROWN-OUT SITUATIONS Note: The Power-up Timer is enabled by the PWRTE bit in the Configuration Word register. Note: Address 2008h is beyond the user program memory space. It belongs to the special configuration memory space (2000h-3FFFh), which can be accessed only during programming. See “PIC12F6XX/16F6XX Memory Programming Specification” (DS41204) for more information. 64 ms(1) VBOR VDD Internal Reset VBOR VDD Internal Reset 64 ms(1) < 64 ms 64 ms(1) VBOR VDD Internal Reset Note 1: 64 ms delay only if PWRTE bit is programmed to ‘0’. PIC12F683 DS41211D-page 88 © 2007 Microchip Technology Inc. 12.3.6 TIME-OUT SEQUENCE On power-up, the time-out sequence is as follows: • PWRT time-out is invoked after POR has expired. • OST is activated after the PWRT time-out has expired. The total time-out will vary based on oscillator configuration and PWRTE bit status. For example, in EC mode with PWRTE bit erased (PWRT disabled), there will be no time-out at all. Figure 12-4, Figure 12-5 and Figure 12-6 depict time-out sequences. The device can execute code from the INTOSC while OST is active by enabling Two-Speed Start-up or Fail-Safe Monitor (see Section 3.7.2 “Two-Speed Start-up Sequence” and Section 3.8 “Fail-Safe Clock Monitor”). Since the time-outs occur from the POR pulse, if MCLR is kept low long enough, the time-outs will expire. Then, bringing MCLR high will begin execution immediately (see Figure 12-5). This is useful for testing purposes or to synchronize more than one PIC12F683 device operating in parallel. Table 12-5 shows the Reset conditions for some special registers, while Table 12-4 shows the Reset conditions for all the registers. 12.3.7 POWER CONTROL (PCON) REGISTER The Power Control register PCON (address 8Eh) has two Status bits to indicate what type of Reset occurred last. Bit 0 is BOR (Brown-out). BOR is unknown on Power-on Reset. It must then be set by the user and checked on subsequent Resets to see if BOR = 0, indicating that a Brown-out has occurred. The BOR Status bit is a “don’t care” and is not necessarily predictable if the brown-out circuit is disabled (BOREN<1:0> = 00 in the Configuration Word register). Bit 1 is POR (Power-on Reset). It is a ‘0’ on Power-on Reset and unaffected otherwise. The user must write a ‘1’ to this bit following a Power-on Reset. On a subsequent Reset, if POR is ‘0’, it will indicate that a Power-on Reset has occurred (i.e., VDD may have gone too low). For more information, see Section 4.2.4 “Ultra Low-Power Wake-up” and Section 12.3.4 “Brown-Out Reset (BOR)”. TABLE 12-1: TIME-OUT IN VARIOUS SITUATIONS TABLE 12-2: STATUS/PCON BITS AND THEIR SIGNIFICANCE TABLE 12-3: SUMMARY OF REGISTERS ASSOCIATED WITH BROWN-OUT RESET Oscillator Configuration Power-up Brown-out Reset Wake-up from PWRTE = 0 PWRTE = 1 PWRTE = 0 PWRTE = 1 Sleep XT, HS, LP TPWRT + 1024 • TOSC 1024 • TOSC TPWRT + 1024 • TOSC 1024 • TOSC 1024 • TOSC RC, EC, INTOSC TPWRT — TPWRT — — POR BOR TO PD Condition 0 x 1 1 Power-on Reset u 0 1 1 Brown-out Reset u u 0 u WDT Reset u u 0 0 WDT Wake-up u u u u MCLR Reset during normal operation u u 1 0 MCLR Reset during Sleep Legend: u = unchanged, x = unknown Name Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Value on POR, BOR Value on all other Resets(1) CONFIG(2) BOREN1 BOREN0 CPD CP MCLRE PWRTE WDTE FOSC2 FOSC1 FOSC0 — — PCON — — ULPWUE SBOREN — — POR BOR --01 --qq --0u --uu STATUS IRP RP1 RP0 TO PD Z DC C 0001 1xxx 000q quuu Legend: u = unchanged, x = unknown, – = unimplemented bit, reads as ‘0’, q = value depends on condition. Shaded cells are not used by BOR. Note 1: Other (non Power-up) Resets include MCLR Reset and Watchdog Timer Reset during normal operation. 2: See Configuration Word register (Register 12-1) for operation of all register bits. © 2007 Microchip Technology Inc. DS41211D-page 89 PIC12F683 FIGURE 12-4: TIME-OUT SEQUENCE ON POWER-UP (DELAYED MCLR) FIGURE 12-5: TIME-OUT SEQUENCE ON POWER-UP (DELAYED MCLR) FIGURE 12-6: TIME-OUT SEQUENCE ON POWER-UP (MCLR WITH VDD) TPWRT TOST VDD MCLR Internal POR PWRT Time-out OST Time-out Internal Reset VDD MCLR Internal POR PWRT Time-out OST Time-out Internal Reset TPWRT TOST TPWRT TOST VDD MCLR Internal POR PWRT Time-out OST Time-out Internal Reset PIC12F683 DS41211D-page 90 © 2007 Microchip Technology Inc. TABLE 12-4: INITIALIZATION CONDITION FOR REGISTERS Register Address Power-on Reset MCLR Reset WDT Reset Brown-out Reset(1) Wake-up from Sleep through Interrupt Wake-up from Sleep through WDT Time-out W — xxxx xxxx uuuu uuuu uuuu uuuu INDF 00h/80h xxxx xxxx xxxx xxxx uuuu uuuu TMR0 01h xxxx xxxx uuuu uuuu uuuu uuuu PCL 02h/82h 0000 0000 0000 0000 PC + 1(3) STATUS 03h/83h 0001 1xxx 000q quuu(4) uuuq quuu(4) FSR 04h/84h xxxx xxxx uuuu uuuu uuuu uuuu GPIO 05h --x0 x000 --x0 x000 --uu uuuu PCLATH 0Ah/8Ah ---0 0000 ---0 0000 ---u uuuu INTCON 0Bh/8Bh 0000 0000 0000 0000 uuuu uuuu(2) PIR1 0Ch 0000 0000 0000 0000 uuuu uuuu(2) TMR1L 0Eh xxxx xxxx uuuu uuuu uuuu uuuu TMR1H 0Fh xxxx xxxx uuuu uuuu uuuu uuuu T1CON 10h 0000 0000 uuuu uuuu -uuu uuuu TMR2 11h 0000 0000 0000 0000 uuuu uuuu T2CON 12h -000 0000 -000 0000 -uuu uuuu CCPR1L 13h xxxx xxxx uuuu uuuu uuuu uuuu CCPR1H 14h xxxx xxxx uuuu uuuu uuuu uuuu CCP1CON 15h --00 0000 --00 0000 --uu uuuu WDTCON 18h ---0 1000 ---0 1000 ---u uuuu CMCON0 19h 0000 0000 0000 0000 uuuu uuuu CMCON1 20h ---- --10 ---- --10 ---- --uu ADRESH 1Eh xxxx xxxx uuuu uuuu uuuu uuuu ADCON0 1Fh 00-- 0000 00-- 0000 uu-- uuuu OPTION_REG 81h 1111 1111 1111 1111 uuuu uuuu TRISIO 85h --11 1111 --11 1111 --uu uuuu PIE1 8Ch 0000 0000 0000 0000 uuuu uuuu PCON 8Eh --01 --0x --0u --uu(1,5) --uu --uu OSCCON 8Fh -110 q000 -110 q000 -uuu uuuu OSCTUNE 90h ---0 0000 ---u uuuu ---u uuuu PR2 92h 1111 1111 1111 1111 1111 1111 WPU 95h --11 -111 --11 -111 uuuu uuuu IOC 96h --00 0000 --00 0000 --uu uuuu VRCON 99h 0-0- 0000 0-0- 0000 u-u- uuuu EEDAT 9Ah 0000 0000 0000 0000 uuuu uuuu EEADR 9Bh 0000 0000 0000 0000 uuuu uuuu Legend: u = unchanged, x = unknown, – = unimplemented bit, reads as ‘0’, q = value depends on condition. Note 1: If VDD goes too low, Power-on Reset will be activated and registers will be affected differently. 2: One or more bits in INTCON and/or PIR1 will be affected (to cause wake-up). 3: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h). 4: See Table 12-5 for Reset value for specific condition. 5: If Reset was due to brown-out, then bit 0 = 0. All other Resets will cause bit 0 = u. © 2007 Microchip Technology Inc. DS41211D-page 91 PIC12F683 TABLE 12-5: INITIALIZATION CONDITION FOR SPECIAL REGISTERS EECON1 9Ch ---- x000 ---- q000 ---- uuuu EECON2 9Dh ---- ---- ---- ---- ---- ---- ADRESL 9Eh xxxx xxxx uuuu uuuu uuuu uuuu ANSEL 9Fh -000 1111 -000 1111 -uuu uuuu TABLE 12-4: INITIALIZATION CONDITION FOR REGISTERS (CONTINUED) Register Address Power-on Reset MCLR Reset WDT Reset Brown-out Reset(1) Wake-up from Sleep through Interrupt Wake-up from Sleep through WDT Time-out Legend: u = unchanged, x = unknown, – = unimplemented bit, reads as ‘0’, q = value depends on condition. Note 1: If VDD goes too low, Power-on Reset will be activated and registers will be affected differently. 2: One or more bits in INTCON and/or PIR1 will be affected (to cause wake-up). 3: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h). 4: See Table 12-5 for Reset value for specific condition. 5: If Reset was due to brown-out, then bit 0 = 0. All other Resets will cause bit 0 = u. Condition Program Counter Status Register PCON Register Power-on Reset 000h 0001 1xxx --01 --0x MCLR Reset during Normal Operation 000h 000u uuuu --0u --uu MCLR Reset during Sleep 000h 0001 0uuu --0u --uu WDT Reset 000h 0000 uuuu --0u --uu WDT Wake-up PC + 1 uuu0 0uuu --uu --uu Brown-out Reset 000h 0001 1uuu --01 --10 Interrupt Wake-up from Sleep PC + 1(1) uuu1 0uuu --uu --uu Legend: u = unchanged, x = unknown, – = unimplemented bit, reads as ‘0’. Note 1: When the wake-up is due to an interrupt and Global Interrupt Enable bit, GIE, is set, the PC is loaded with the interrupt vector (0004h) after execution of PC + 1. PIC12F683 DS41211D-page 92 © 2007 Microchip Technology Inc. 12.4 Interrupts The PIC12F683 has multiple interrupt sources: • External Interrupt GP2/INT • Timer0 Overflow Interrupt • GPIO Change Interrupts • Comparator Interrupt • A/D Interrupt • Timer1 Overflow Interrupt • Timer2 Match Interrupt • EEPROM Data Write Interrupt • Fail-Safe Clock Monitor Interrupt • CCP Interrupt The Interrupt Control register (INTCON) and Peripheral Interrupt Request Register 1 (PIR1) record individual interrupt requests in flag bits. The INTCON register also has individual and global interrupt enable bits. The Global Interrupt Enable bit, GIE of the INTCON register, enables (if set) all unmasked interrupts, or disables (if cleared) all interrupts. Individual interrupts can be disabled through their corresponding enable bits in the INTCON register and PIE1 register. GIE is cleared on Reset. When an interrupt is serviced, the following actions occur automatically: • The GIE is cleared to disable any further interrupt. • The return address is pushed onto the stack. • The PC is loaded with 0004h. The Return from Interrupt instruction, RETFIE, exits the interrupt routine, as well as sets the GIE bit, which re-enables unmasked interrupts. The following interrupt flags are contained in the INTCON register: • INT Pin Interrupt • GPIO Change Interrupt • Timer0 Overflow Interrupt The peripheral interrupt flags are contained in the PIR1 register. The corresponding interrupt enable bit is contained in the PIE1 register. The following interrupt flags are contained in the PIR1 register: • EEPROM Data Write Interrupt • A/D Interrupt • Comparator Interrupt • Timer1 Overflow Interrupt • Timer2 Match Interrupt • Fail-Safe Clock Monitor Interrupt • CCP Interrupt For external interrupt events, such as the INT pin or GPIO change interrupt, the interrupt latency will be three or four instruction cycles. The exact latency depends upon when the interrupt event occurs (see Figure 12-8). The latency is the same for one or two-cycle instructions. Once in the Interrupt Service Routine, the source(s) of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bit(s) must be cleared in software before re-enabling interrupts to avoid multiple interrupt requests. For additional information on Timer1, Timer2, comparators, ADC, data EEPROM or Enhanced CCP modules, refer to the respective peripheral section. 12.4.1 GP2/INT INTERRUPT The external interrupt on the GP2/INT pin is edge-triggered; either on the rising edge if the INTEDG bit of the OPTION register is set, or the falling edge, if the INTEDG bit is clear. When a valid edge appears on the GP2/INT pin, the INTF bit of the INTCON register is set. This interrupt can be disabled by clearing the INTE control bit of the INTCON register. The INTF bit must be cleared by software in the Interrupt Service Routine before re-enabling this interrupt. The GP2/INT interrupt can wake-up the processor from Sleep, if the INTE bit was set prior to going into Sleep. See Section 12.7 “Power-Down Mode (Sleep)” for details on Sleep and Figure 12-10 for timing of wake-up from Sleep through GP2/INT interrupt. Note 1: Individual interrupt flag bits are set, regardless of the status of their corresponding mask bit or the GIE bit. 2: When an instruction that clears the GIE bit is executed, any interrupts that were pending for execution in the next cycle are ignored. The interrupts, which were ignored, are still pending to be serviced when the GIE bit is set again. Note: The ANSEL and CMCON0 registers must be initialized to configure an analog channel as a digital input. Pins configured as analog inputs will read ‘0’ and cannot generate an interrupt. © 2007 Microchip Technology Inc. DS41211D-page 93 PIC12F683 12.4.2 TIMER0 INTERRUPT An overflow (FFh → 00h) in the TMR0 register will set the T0IF (INTCON<2>) bit. The interrupt can be enabled/disabled by setting/clearing the T0IE bit of the INTCON register. See Section 5.0 “Timer0 Module” for operation of the Timer0 module. 12.4.3 GPIO INTERRUPT An input change on GPIO change sets the GPIF bit of the INTCON register. The interrupt can be enabled/disabled by setting/clearing the GPIE bit of the INTCON register. Plus, individual pins can be configured through the IOC register. FIGURE 12-7: INTERRUPT LOGIC Note: If a change on the I/O pin should occur when any GPIO operation is being executed, then the GPIF interrupt flag may not get set. TMR1IF TMR1IE CMIF CMIE T0IF T0IE INTF INTE GPIF GPIE GIE PEIE Wake-up (If in Sleep mode) Interrupt to CPU EEIE EEIF ADIF ADIE IOC-GP0 IOC0 IOC-GP1 IOC1 IOC-GP2 IOC2 IOC-GP3 IOC3 IOC-GP4 IOC4 IOC-GP5 IOC5 TMR2IF TMR2IE CCP1IF CCP1IE OSFIF OSFIE PIC12F683 DS41211D-page 94 © 2007 Microchip Technology Inc. FIGURE 12-8: INT PIN INTERRUPT TIMING TABLE 12-6: SUMMARY OF REGISTERS ASSOCIATED WITH INTERRUPTS Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Value on POR, BOR Value on all other Resets INTCON GIE PEIE T0IE INTE GPIE T0IF INTF GPIF 0000 0000 0000 0000 IOC — — IOC5 IOC4 IOC3 IOC2 IOC1 IOC0 --00 0000 --00 0000 PIR1 EEIF ADIF CCP1IF — CMIF OSFIF TMR2IF TMR1IF 000- 0000 000- 0000 PIE1 EEIE ADIE CCP1IE — CMIE OSFIE TMR2IE TMR1IE 000- 0000 000- 0000 Legend: x = unknown, u = unchanged, – = unimplemented read as ‘0’, q = value depends upon condition. Shaded cells are not used by the interrupt module. Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 OSC1 CLKOUT INT pin INTF flag (INTCON reg.) GIE bit (INTCON reg.) INSTRUCTION FLOW PC Instruction Fetched Instruction Executed Interrupt Latency PC PC + 1 PC + 1 0004h 0005h Inst (0004h) Inst (0005h) Dummy Cycle Inst (PC) Inst (PC + 1) Inst (PC – 1) Inst (PC) Dummy Cycle Inst (0004h) — Note 1: INTF flag is sampled here (every Q1). 2: Asynchronous interrupt latency = 3-4 TCY. Synchronous latency = 3 TCY, where TCY = instruction cycle time. Latency is the same whether Inst (PC) is a single cycle or a 2-cycle instruction. 3: CLKOUT is available only in INTOSC and RC Oscillator modes. 4: For minimum width of INT pulse, refer to AC specifications in Section 15.0 “Electrical Specifications”. 5: INTF is enabled to be set any time during the Q4-Q1 cycles. (1) (2) (3) (4) (5) (1) © 2007 Microchip Technology Inc. DS41211D-page 95 PIC12F683 12.5 Context Saving During Interrupts During an interrupt, only the return PC value is saved on the stack. Typically, users may wish to save key registers during an interrupt (e.g., W and STATUS registers). This must be implemented in software. Since the lower 16 bytes of all banks are common in the PIC12F683 (see Figure 2-2), temporary holding registers, W_TEMP and STATUS_TEMP, should be placed in here. These 16 locations do not require banking and therefore, makes it easier to context save and restore. The same code shown in Example 12-1 can be used to: • Store the W register. • Store the STATUS register. • Execute the ISR code. • Restore the Status (and Bank Select Bit register). • Restore the W register. EXAMPLE 12-1: SAVING STATUS AND W REGISTERS IN RAM Note: The PIC12F683 normally does not require saving the PCLATH. However, if computed GOTO’s are used in the ISR and the main code, the PCLATH must be saved and restored in the ISR. MOVWF W_TEMP ;Copy W to TEMP register SWAPF STATUS,W ;Swap status to be saved into W ;Swaps are used because they do not affect the status bits MOVWF STATUS_TEMP ;Save status to bank zero STATUS_TEMP register : :(ISR) ;Insert user code here : SWAPF STATUS_TEMP,W ;Swap STATUS_TEMP register into W ;(sets bank to original state) MOVWF STATUS ;Move W into STATUS register SWAPF W_TEMP,F ;Swap W_TEMP SWAPF W_TEMP,W ;Swap W_TEMP into W PIC12F683 DS41211D-page 96 © 2007 Microchip Technology Inc. 12.6 Watchdog Timer (WDT) The WDT has the following features: • Operates from the LFINTOSC (31 kHz) • Contains a 16-bit prescaler • Shares an 8-bit prescaler with Timer0 • Time-out period is from 1 ms to 268 seconds • Configuration bit and software controlled WDT is cleared under certain conditions described in Table 12-7. 12.6.1 WDT OSCILLATOR The WDT derives its time base from the 31 kHz LFINTOSC. The LTS bit of the OSCCON register does not reflect that the LFINTOSC is enabled. The value of WDTCON is ‘---0 1000’ on all Resets. This gives a nominal time base of 17 ms. 12.6.2 WDT CONTROL The WDTE bit is located in the Configuration Word register. When set, the WDT runs continuously. When the WDTE bit in the Configuration Word register is set, the SWDTEN bit of the WDTCON register has no effect. If WDTE is clear, then the SWDTEN bit can be used to enable and disable the WDT. Setting the bit will enable it and clearing the bit will disable it. The PSA and PS<2:0> bits of the OPTION register have the same function as in previous versions of the PIC12F683 Family of microcontrollers. See Section 5.0 “Timer0 Module” for more information. FIGURE 12-9: WATCHDOG TIMER BLOCK DIAGRAM TABLE 12-7: WDT STATUS Note: When the Oscillator Start-up Timer (OST) is invoked, the WDT is held in Reset, because the WDT Ripple Counter is used by the OST to perform the oscillator delay count. When the OST count has expired, the WDT will begin counting (if enabled). Conditions WDT WDTE = 0 Cleared CLRWDT Command Oscillator Fail Detected Exit Sleep + System Clock = T1OSC, EXTRC, INTRC, EXTCLK Exit Sleep + System Clock = XT, HS, LP Cleared until the end of OST 31 kHz PSA 16-bit WDT Prescaler From Timer0 Clock Source Prescaler(1) 8 PS<2:0> PSA WDT Time-out WDTPS<3:0> To Timer0 WDTE from Configuration Word register 1 0 1 0 SWDTEN from WDTCON LFINTOSC Clock Note 1: This is the shared Timer0/WDT prescaler. See Section 5.0 “Timer0 Module” for more information. © 2007 Microchip Technology Inc. DS41211D-page 97 PIC12F683 TABLE 12-8: SUMMARY OF REGISTERS ASSOCIATED WITH WATCHDOG TIMER REGISTER 12-2: WDTCON: WATCHDOG TIMER CONTROL REGISTER U-0 U-0 U-0 R/W-0 R/W-1 R/W-0 R/W-0 R/W-0 — — — WDTPS3 WDTPS2 WDTPS1 WDTPS0 SWDTEN bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 7-5 Unimplemented: Read as ‘0’ bit 4-1 WDTPS<3:0>: Watchdog Timer Period Select bits Bit Value = Prescale Rate 0000 = 1:32 0001 = 1:64 0010 = 1:128 0011 = 1:256 0100 = 1:512 (Reset value) 0101 = 1:1024 0110 = 1:2048 0111 = 1:4096 1000 = 1:8192 1001 = 1:16384 1010 = 1:32768 1011 = 1:65536 1100 = Reserved 1101 = Reserved 1110 = Reserved 1111 = Reserved bit 0 SWDTEN: Software Enable or Disable the Watchdog Timer(1) 1 = WDT is turned on 0 = WDT is turned off (Reset value) Note 1: If WDTE Configuration bit = 1, then WDT is always enabled, irrespective of this control bit. If WDTE Configuration bit = 0, then it is possible to turn WDT on/off with this control bit. Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Value on POR, BOR Value on all other Resets WDTCON — — — WDTPS3 WDTPS2 WSTPS1 WDTPS0 SWDTEN ---0 1000 ---0 1000 OPTION_REG GPPU INTEDG T0CS T0SE PSA PS2 PS1 PS0 1111 1111 1111 1111 CONFIG CPD CP MCLRE PWRTE WDTE FOSC2 FOSC1 FOSC0 — — Legend: Shaded cells are not used by the Watchdog Timer. Note 1: See Register 12-1 for operation of all Configuration Word register bits. PIC12F683 DS41211D-page 98 © 2007 Microchip Technology Inc. 12.7 Power-Down Mode (Sleep) The Power-down mode is entered by executing a SLEEP instruction. If the Watchdog Timer is enabled: • WDT will be cleared but keeps running. • PD bit in the STATUS register is cleared. • TO bit is set. • Oscillator driver is turned off. • I/O ports maintain the status they had before SLEEP was executed (driving high, low or high-impedance). For lowest current consumption in this mode, all I/O pins should be either at VDD or VSS, with no external circuitry drawing current from the I/O pin and the comparators and CVREF should be disabled. I/O pins that are high-impedance inputs should be pulled high or low externally to avoid switching currents caused by floating inputs. The T0CKI input should also be at VDD or VSS for lowest current consumption. The contribution from on-chip pull-ups on GPIO should be considered. The MCLR pin must be at a logic high level. 12.7.1 WAKE-UP FROM SLEEP The device can wake-up from Sleep through one of the following events: 1. External Reset input on MCLR pin. 2. Watchdog Timer wake-up (if WDT was enabled). 3. Interrupt from GP2/INT pin, GPIO change or a peripheral interrupt. The first event will cause a device Reset. The two latter events are considered a continuation of program execution. The TO and PD bits in the STATUS register can be used to determine the cause of a device Reset. The PD bit, which is set on power-up, is cleared when Sleep is invoked. TO bit is cleared if WDT wake-up occurred. The following peripheral interrupts can wake the device from Sleep: 1. Timer1 interrupt. Timer1 must be operating as an asynchronous counter. 2. ECCP Capture mode interrupt. 3. A/D conversion (when A/D clock source is FRC). 4. EEPROM write operation completion. 5. Comparator output changes state. 6. Interrupt-on-change. 7. External Interrupt from INT pin. Other peripherals cannot generate interrupts since during Sleep, no on-chip clocks are present. When the SLEEP instruction is being executed, the next instruction (PC + 1) is prefetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be set (enabled). Wake-up occurs regardless of the state of the GIE bit. If the GIE bit is clear (disabled), the device continues execution at the instruction after the SLEEP instruction. If the GIE bit is set (enabled), the device executes the instruction after the SLEEP instruction, then branches to the interrupt address (0004h). In cases where the execution of the instruction following SLEEP is not desirable, the user should have a NOP after the SLEEP instruction. The WDT is cleared when the device wakes up from Sleep, regardless of the source of wake-up. 12.7.2 WAKE-UP USING INTERRUPTS When global interrupts are disabled (GIE cleared) and any interrupt source has both its interrupt enable bit and interrupt flag bit set, one of the following will occur: • If the interrupt occurs before the execution of a SLEEP instruction, the SLEEP instruction will complete as a NOP. Therefore, the WDT and WDT prescaler and postscaler (if enabled) will not be cleared, the TO bit will not be set and the PD bit will not be cleared. • If the interrupt occurs during or after the execution of a SLEEP instruction, the device will Immediately wake-up from Sleep. The SLEEP instruction is executed. Therefore, the WDT and WDT prescaler and postscaler (if enabled) will be cleared, the TO bit will be set and the PD bit will be cleared. Even if the flag bits were checked before executing a SLEEP instruction, it may be possible for flag bits to become set before the SLEEP instruction completes. To determine whether a SLEEP instruction executed, test the PD bit. If the PD bit is set, the SLEEP instruction was executed as a NOP. To ensure that the WDT is cleared, a CLRWDT instruction should be executed before a SLEEP instruction. See Figure 12-10 for more details. Note: It should be noted that a Reset generated by a WDT time-out does not drive MCLR pin low. Note: If the global interrupts are disabled (GIE is cleared) and any interrupt source has both its interrupt enable bit and the corresponding interrupt flag bits set, the device will immediately wake-up from Sleep. © 2007 Microchip Technology Inc. DS41211D-page 99 PIC12F683 FIGURE 12-10: WAKE-UP FROM SLEEP THROUGH INTERRUPT 12.8 Code Protection If the code protection bit(s) have not been programmed, the on-chip program memory can be read out using ICSP™ for verification purposes. 12.9 ID Locations Four memory locations (2000h-2003h) are designated as ID locations where the user can store checksum or other code identification numbers. These locations are not accessible during normal execution, but are readable and writable during Program/Verify mode. Only the Least Significant 7 bits of the ID locations are used. Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 OSC1 CLKOUT(4) INT pin INTF flag (INTCON<1>) GIE bit (INTCON<7>) Instruction Flow PC Instruction Fetched Instruction Executed PC PC + 1 PC + 2 Inst(PC) = Sleep Inst(PC – 1) Inst(PC + 1) Sleep Processor in Sleep Interrupt Latency(3) Inst(PC + 2) Inst(PC + 1) Inst(0004h) Inst(0005h) Dummy Cycle Inst(0004h) PC + 2 0004h 0005h Dummy Cycle TOST(2) PC + 2 Note 1: XT, HS or LP Oscillator mode assumed. 2: TOST = 1024 TOSC (drawing not to scale). This delay does not apply to EC and RCIO Oscillator modes. 3: GIE = 1 assumed. In this case after wake-up, the processor jumps to 0004h. If GIE = 0, execution will continue in-line. 4: CLKOUT is not available in XT, HS, LP or EC Oscillator modes, but shown here for timing reference. Note: The entire data EEPROM and Flash program memory will be erased when the code protection is turned off. See the “PIC12F6XX/16F6XX Memory Programming Specification” (DS41204) for more information. PIC12F683 DS41211D-page 100 © 2007 Microchip Technology Inc. 12.10 In-Circuit Serial Programming™ The PIC12F683 microcontrollers can be serially programmed while in the end application circuit. This is simply done with five connections for: • clock • data • power • ground • programming voltage This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed. The device is placed into a Program/Verify mode by holding the GP0 and GP1 pins low, while raising the MCLR (VPP) pin from VIL to VIHH. See the “PIC12F6XX/16F6XX Memory Programming Specification” (DS41204) for more information. GP0 becomes the programming data and GP1 becomes the programming clock. Both GP0 and GP1 are Schmitt Trigger inputs in Program/Verify mode. A typical In-Circuit Serial Programming connection is shown in Figure 12-11. FIGURE 12-11: TYPICAL IN-CIRCUIT SERIAL PROGRAMMING CONNECTION 12.11 In-Circuit Debugger Since in-circuit debugging requires access to three pins, MPLAB® ICD 2 development with a 14-pin device is not practical. A special 14-pin PIC12F683 ICD device is used with MPLAB ICD 2 to provide separate clock, data and MCLR pins and frees all normally available pins to the user. A special debugging adapter allows the ICD device to be used in place of a PIC12F683 device. The debugging adapter is the only source of the ICD device. When the ICD pin on the PIC12F683 ICD device is held low, the In-Circuit Debugger functionality is enabled. This function allows simple debugging functions when used with MPLAB ICD 2. When the microcontroller has this feature enabled, some of the resources are not available for general use. Table 12-9 shows which features are consumed by the background debugger. TABLE 12-9: DEBUGGER RESOURCES For more information, see “MPLAB® ICD 2 In-Circuit Debugger User’s Guide” (DS51331), available on Microchip’s web site (www.microchip.com). FIGURE 12-12: 14-PIN ICD PINOUT External Connector Signals To Normal Connections To Normal Connections PIC12F683 VDD VSS MCLR/VPP/GP3 GP1 GP0 +5V 0V VPP CLK Data I/O * * * * * Isolation devices (as required) Resource Description Stack 1 level Program Memory Address 0h must be NOP 700h-7FFh 14-Pin PDIP PIC12F683-ICD In-Circuit Debug Device NC ICDMCLR VDD GP5 GP4 GP3 ICD ICDCLK ICDDATA GND GP0 GP1 GP2 NC 1 2 3 4 5 6 7 14 13 12 9 11 10 8 © 2007 Microchip Technology Inc. DS41211D-page 101 PIC12F683 13.0 INSTRUCTION SET SUMMARY The PIC12F683 instruction set is highly orthogonal and is comprised of three basic categories: • Byte-oriented operations • Bit-oriented operations • Literal and control operations Each PIC16 instruction is a 14-bit word divided into an opcode, which specifies the instruction type and one or more operands, which further specify the operation of the instruction. The formats for each of the categories is presented in Figure 13-1, while the various opcode fields are summarized in Table 13-1. Table 13-2 lists the instructions recognized by the MPASMTM assembler. For byte-oriented instructions, ‘f’ represents a file register designator and ‘d’ represents a destination designator. The file register designator specifies which file register is to be used by the instruction. The destination designator specifies where the result of the operation is to be placed. If ‘d’ is zero, the result is placed in the W register. If ‘d’ is one, the result is placed in the file register specified in the instruction. For bit-oriented instructions, ‘b’ represents a bit field designator, which selects the bit affected by the operation, while ‘f’ represents the address of the file in which the bit is located. For literal and control operations, ‘k’ represents an 8-bit or 11-bit constant, or literal value. One instruction cycle consists of four oscillator periods; for an oscillator frequency of 4 MHz, this gives a nominal instruction execution time of 1 μs. All instructions are executed within a single instruction cycle, unless a conditional test is true, or the program counter is changed as a result of an instruction. When this occurs, the execution takes two instruction cycles, with the second cycle executed as a NOP. All instruction examples use the format ‘0xhh’ to represent a hexadecimal number, where ‘h’ signifies a hexadecimal digit. 13.1 Read-Modify-Write Operations Any instruction that specifies a file register as part of the instruction performs a Read-Modify-Write (R-M-W) operation. The register is read, the data is modified, and the result is stored according to either the instruction, or the destination designator ‘d’. A read operation is performed on a register even if the instruction writes to that register. For example, a CLRF PORTA instruction will read PORTA, clear all the data bits, then write the result back to PORTA. This example would have the unintended consequence of clearing the condition that set the RAIF flag. TABLE 13-1: OPCODE FIELD DESCRIPTIONS FIGURE 13-1: GENERAL FORMAT FOR INSTRUCTIONS Field Description f Register file address (0x00 to 0x7F) W Working register (accumulator) b Bit address within an 8-bit file register k Literal field, constant data or label x Don’t care location (= 0 or 1). The assembler will generate code with x = 0. It is the recommended form of use for compatibility with all Microchip software tools. d Destination select; d = 0: store result in W, d = 1: store result in file register f. Default is d = 1. PC Program Counter TO Time-out bit C Carry bit DC Digit carry bit Z Zero bit PD Power-down bit Byte-oriented file register operations 13 8 7 6 0 d = 0 for destination W OPCODE d f (FILE #) d = 1 for destination f f = 7-bit file register address Bit-oriented file register operations 13 10 9 7 6 0 OPCODE b (BIT #) f (FILE #) b = 3-bit bit address f = 7-bit file register address Literal and control operations 13 8 7 0 OPCODE k (literal) k = 8-bit immediate value 13 11 10 0 OPCODE k (literal) k = 11-bit immediate value General CALL and GOTO instructions only PIC12F683 DS41211D-page 102 © 2007 Microchip Technology Inc. TABLE 13-2: PIC12F683 INSTRUCTION SET Mnemonic, Operands Description Cycles 14-Bit Opcode Status Affected Notes MSb LSb BYTE-ORIENTED FILE REGISTER OPERATIONS ADDWF ANDWF CLRF CLRW COMF DECF DECFSZ INCF INCFSZ IORWF MOVF MOVWF NOP RLF RRF SUBWF SWAPF XORWF f, d f, d f – f, d f, d f, d f, d f, d f, d f, d f – f, d f, d f, d f, d f, d Add W and f AND W with f Clear f Clear W Complement f Decrement f Decrement f, Skip if 0 Increment f Increment f, Skip if 0 Inclusive OR W with f Move f Move W to f No Operation Rotate Left f through Carry Rotate Right f through Carry Subtract W from f Swap nibbles in f Exclusive OR W with f 1 1 1 1 1 1 1(2) 1 1(2) 1 1 1 1 1 1 1 1 1 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0111 0101 0001 0001 1001 0011 1011 1010 1111 0100 1000 0000 0000 1101 1100 0010 1110 0110 dfff dfff lfff 0xxx dfff dfff dfff dfff dfff dfff dfff lfff 0xx0 dfff dfff dfff dfff dfff ffff ffff ffff xxxx ffff ffff ffff ffff ffff ffff ffff ffff 0000 ffff ffff ffff ffff ffff C, DC, Z Z Z Z Z Z Z Z Z C C C, DC, Z Z 1, 2 1, 2 2 1, 2 1, 2 1, 2, 3 1, 2 1, 2, 3 1, 2 1, 2 1, 2 1, 2 1, 2 1, 2 1, 2 BIT-ORIENTED FILE REGISTER OPERATIONS BCF BSF BTFSC BTFSS f, b f, b f, b f, b Bit Clear f Bit Set f Bit Test f, Skip if Clear Bit Test f, Skip if Set 1 1 1 (2) 1 (2) 01 01 01 01 00bb 01bb 10bb 11bb bfff bfff bfff bfff ffff ffff ffff ffff 1, 2 1, 2 3 3 LITERAL AND CONTROL OPERATIONS ADDLW ANDLW CALL CLRWDT GOTO IORLW MOVLW RETFIE RETLW RETURN SLEEP SUBLW XORLW k k k – k k k – k – – k k Add literal and W AND literal with W Call Subroutine Clear Watchdog Timer Go to address Inclusive OR literal with W Move literal to W Return from interrupt Return with literal in W Return from Subroutine Go into Standby mode Subtract W from literal Exclusive OR literal with W 1 1 2 1 2 1 1 2 2 2 1 1 1 11 11 10 00 10 11 11 00 11 00 00 11 11 111x 1001 0kkk 0000 1kkk 1000 00xx 0000 01xx 0000 0000 110x 1010 kkkk kkkk kkkk 0110 kkkk kkkk kkkk 0000 kkkk 0000 0110 kkkk kkkk kkkk kkkk kkkk 0100 kkkk kkkk kkkk 1001 kkkk 1000 0011 kkkk kkkk C, DC, Z Z TO, PD Z TO, PD C, DC, Z Z Note 1: When an I/O register is modified as a function of itself (e.g., MOVF GPIO, 1), the value used will be that value present on the pins themselves. For example, if the data latch is ‘1’ for a pin configured as input and is driven low by an external device, the data will be written back with a ‘0’. 2: If this instruction is executed on the TMR0 register (and where applicable, d = 1), the prescaler will be cleared if assigned to the Timer0 module. 3: If the Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP. © 2007 Microchip Technology Inc. DS41211D-page 103 PIC12F683 13.2 Instruction Descriptions ADDLW Add literal and W Syntax: [ label ] ADDLW k Operands: 0 ≤ k ≤ 255 Operation: (W) + k → (W) Status Affected: C, DC, Z Description: The contents of the W register are added to the eight-bit literal ‘k’ and the result is placed in the W register. ADDWF Add W and f Syntax: [ label ] ADDWF f,d Operands: 0 ≤ f ≤ 127 d ∈ [0,1] Operation: (W) + (f) → (destination) Status Affected: C, DC, Z Description: Add the contents of the W register with register ‘f’. If ‘d’ is ‘0’, the result is stored in the W register. If ‘d’ is ‘1’, the result is stored back in register ‘f’. ANDLW AND literal with W Syntax: [ label ] ANDLW k Operands: 0 ≤ k ≤ 255 Operation: (W) .AND. (k) → (W) Status Affected: Z Description: The contents of W register are AND’ed with the eight-bit literal ‘k’. The result is placed in the W register. ANDWF AND W with f Syntax: [ label ] ANDWF f,d Operands: 0 ≤ f ≤ 127 d ∈ [0,1] Operation: (W) .AND. (f) → (destination) Status Affected: Z Description: AND the W register with register ‘f’. If ‘d’ is ‘0’, the result is stored in the W register. If ‘d’ is ‘1’, the result is stored back in register ‘f’. BCF Bit Clear f Syntax: [ label ] BCF f,b Operands: 0 ≤ f ≤ 127 0 ≤ b ≤ 7 Operation: 0 → (f) Status Affected: None Description: Bit ‘b’ in register ‘f’ is cleared. BSF Bit Set f Syntax: [ label ] BSF f,b Operands: 0 ≤ f ≤ 127 0 ≤ b ≤ 7 Operation: 1 → (f) Status Affected: None Description: Bit ‘b’ in register ‘f’ is set. BTFSC Bit Test f, Skip if Clear Syntax: [ label ] BTFSC f,b Operands: 0 ≤ f ≤ 127 0 ≤ b ≤ 7 Operation: skip if (f) = 0 Status Affected: None Description: If bit ‘b’ in register ‘f’ is ‘1’, the next instruction is executed. If bit ‘b’, in register ‘f’, is ‘0’, the next instruction is discarded, and a NOP is executed instead, making this a 2-cycle instruction. PIC12F683 DS41211D-page 104 © 2007 Microchip Technology Inc. BTFSS Bit Test f, Skip if Set Syntax: [ label ] BTFSS f,b Operands: 0 ≤ f ≤ 127 0 ≤ b < 7 Operation: skip if (f) = 1 Status Affected: None Description: If bit ‘b’ in register ‘f’ is ‘0’, the next instruction is executed. If bit ‘b’ is ‘1’, then the next instruction is discarded and a NOP is executed instead, making this a 2-cycle instruction. CALL Call Subroutine Syntax: [ label ] CALL k Operands: 0 ≤ k ≤ 2047 Operation: (PC)+ 1→ TOS, k → PC<10:0>, (PCLATH<4:3>) → PC<12:11> Status Affected: None Description: Call Subroutine. First, return address (PC + 1) is pushed onto the stack. The eleven-bit immediate address is loaded into PC bits <10:0>. The upper bits of the PC are loaded from PCLATH. CALL is a two-cycle instruction. CLRF Clear f Syntax: [ label ] CLRF f Operands: 0 ≤ f ≤ 127 Operation: 00h → (f) 1 → Z Status Affected: Z Description: The contents of register ‘f’ are cleared and the Z bit is set. CLRW Clear W Syntax: [ label ] CLRW Operands: None Operation: 00h → (W) 1 → Z Status Affected: Z Description: W register is cleared. Zero bit (Z) is set. CLRWDT Clear Watchdog Timer Syntax: [ label ] CLRWDT Operands: None Operation: 00h → WDT 0 → WDT prescaler, 1 → TO 1 → PD Status Affected: TO, PD Description: CLRWDT instruction resets the Watchdog Timer. It also resets the prescaler of the WDT. Status bits TO and PD are set. COMF Complement f Syntax: [ label ] COMF f,d Operands: 0 ≤ f ≤ 127 d ∈ [0,1] Operation: (f) → (destination) Status Affected: Z Description: The contents of register ‘f’ are complemented. If ‘d’ is ‘0’, the result is stored in W. If ‘d’ is ‘1’, the result is stored back in register ‘f’. DECF Decrement f Syntax: [ label ] DECF f,d Operands: 0 ≤ f ≤ 127 d ∈ [0,1] Operation: (f) - 1 → (destination) Status Affected: Z Description: Decrement register ‘f’. If ‘d’ is ‘0’, the result is stored in the W register. If ‘d’ is ‘1’, the result is stored back in register ‘f’. © 2007 Microchip Technology Inc. DS41211D-page 105 PIC12F683 DECFSZ Decrement f, Skip if 0 Syntax: [ label ] DECFSZ f,d Operands: 0 ≤ f ≤ 127 d ∈ [0,1] Operation: (f) - 1 → (destination); skip if result = 0 Status Affected: None Description: The contents of register ‘f’ are decremented. If ‘d’ is ‘0’, the result is placed in the W register. If ‘d’ is ‘1’, the result is placed back in register ‘f’. If the result is ‘1’, the next instruction is executed. If the result is ‘0’, then a NOP is executed instead, making it a 2-cycle instruction. GOTO Unconditional Branch Syntax: [ label ] GOTO k Operands: 0 ≤ k ≤ 2047 Operation: k → PC<10:0> PCLATH<4:3> → PC<12:11> Status Affected: None Description: GOTO is an unconditional branch. The eleven-bit immediate value is loaded into PC bits <10:0>. The upper bits of PC are loaded from PCLATH<4:3>. GOTO is a two-cycle instruction. INCF Increment f Syntax: [ label ] INCF f,d Operands: 0 ≤ f ≤ 127 d ∈ [0,1] Operation: (f) + 1 → (destination) Status Affected: Z Description: The contents of register ‘f’ are incremented. If ‘d’ is ‘0’, the result is placed in the W register. If ‘d’ is ‘1’, the result is placed back in register ‘f’. INCFSZ Increment f, Skip if 0 Syntax: [ label ] INCFSZ f,d Operands: 0 ≤ f ≤ 127 d ∈ [0,1] Operation: (f) + 1 → (destination), skip if result = 0 Status Affected: None Description: The contents of register ‘f’ are incremented. If ‘d’ is ‘0’, the result is placed in the W register. If ‘d’ is ‘1’, the result is placed back in register ‘f’. If the result is ‘1’, the next instruction is executed. If the result is ‘0’, a NOP is executed instead, making it a 2-cycle instruction. IORLW Inclusive OR literal with W Syntax: [ label ] IORLW k Operands: 0 ≤ k ≤ 255 Operation: (W) .OR. k → (W) Status Affected: Z Description: The contents of the W register are OR’ed with the eight-bit literal ‘k’. The result is placed in the W register. IORWF Inclusive OR W with f Syntax: [ label ] IORWF f,d Operands: 0 ≤ f ≤ 127 d ∈ [0,1] Operation: (W) .OR. (f) → (destination) Status Affected: Z Description: Inclusive OR the W register with register ‘f’. If ‘d’ is ‘0’, the result is placed in the W register. If ‘d’ is ‘1’, the result is placed back in register ‘f’. PIC12F683 DS41211D-page 106 © 2007 Microchip Technology Inc. MOVF Move f Syntax: [ label ] MOVF f,d Operands: 0 ≤ f ≤ 127 d ∈ [0,1] Operation: (f) → (dest) Status Affected: Z Description: The contents of register f is moved to a destination dependent upon the status of d. If d = 0, destination is W register. If d = 1, the destination is file register f itself. d = 1 is useful to test a file register since status flag Z is affected. Words: 1 Cycles: 1 Example: MOVF FSR, 0 After Instruction W = value in FSR register Z = 1 MOVLW Move literal to W Syntax: [ label ] MOVLW k Operands: 0 ≤ k ≤ 255 Operation: k → (W) Status Affected: None Description: The eight-bit literal ‘k’ is loaded into W register. The “don’t cares” will assemble as ‘0’s. Words: 1 Cycles: 1 Example: MOVLW 0x5A After Instruction W = 0x5A MOVWF Move W to f Syntax: [ label ] MOVWF f Operands: 0 ≤ f ≤ 127 Operation: (W) → (f) Status Affected: None Description: Move data from W register to register ‘f’. Words: 1 Cycles: 1 Example: MOVW F OPTION Before Instruction OPTION = 0xFF W = 0x4F After Instruction OPTION = 0x4F W = 0x4F NOP No Operation Syntax: [ label ] NOP Operands: None Operation: No operation Status Affected: None Description: No operation. Words: 1 Cycles: 1 Example: NOP © 2007 Microchip Technology Inc. DS41211D-page 107 PIC12F683 RETFIE Return from Interrupt Syntax: [ label ] RETFIE Operands: None Operation: TOS → PC, 1 → GIE Status Affected: None Description: Return from Interrupt. Stack is POPed and Top-of-Stack (TOS) is loaded in the PC. Interrupts are enabled by setting Global Interrupt Enable bit, GIE (INTCON<7>). This is a two-cycle instruction. Words: 1 Cycles: 2 Example: RETFIE After Interrupt PC = TOS GIE = 1 RETLW Return with literal in W Syntax: [ label ] RETLW k Operands: 0 ≤ k ≤ 255 Operation: k → (W); TOS → PC Status Affected: None Description: The W register is loaded with the eight bit literal ‘k’. The program counter is loaded from the top of the stack (the return address). This is a two-cycle instruction. Words: 1 Cycles: 2 Example: TABLE CALL TABLE;W contains table ;offset value • ;W now has table value • • ADDWF PC ;W = offset RETLW k1 ;Begin table RETLW k2 ; • • • RETLW kn ; End of table Before Instruction W = 0x07 After Instruction W = value of k8 RETURN Return from Subroutine Syntax: [ label ] RETURN Operands: None Operation: TOS → PC Status Affected: None Description: Return from subroutine. The stack is POPed and the top of the stack (TOS) is loaded into the program counter. This is a two-cycle instruction. PIC12F683 DS41211D-page 108 © 2007 Microchip Technology Inc. RLF Rotate Left f through Carry Syntax: [ label ] RLF f,d Operands: 0 ≤ f ≤ 127 d ∈ [0,1] Operation: See description below Status Affected: C Description: The contents of register ‘f’ are rotated one bit to the left through the Carry flag. If ‘d’ is ‘0’, the result is placed in the W register. If ‘d’ is ‘1’, the result is stored back in register ‘f’. Words: 1 Cycles: 1 Example: RLF REG1,0 Before Instruction REG1 = 1110 0110 C = 0 After Instruction REG1 = 1110 0110 W = 1100 1100 C = 1 RRF Rotate Right f through Carry Syntax: [ label ] RRF f,d Operands: 0 ≤ f ≤ 127 d ∈ [0,1] Operation: See description below Status Affected: C Description: The contents of register ‘f’ are rotated one bit to the right through the Carry flag. If ‘d’ is ‘0’, the result is placed in the W register. If ‘d’ is ‘1’, the result is placed back in register ‘f’. C Register f C Register f SLEEP Enter Sleep mode Syntax: [ label ] SLEEP Operands: None Operation: 00h → WDT, 0 → WDT prescaler, 1 → TO, 0 → PD Status Affected: TO, PD Description: The power-down Status bit, PD is cleared. Time-out Status bit, TO is set. Watchdog Timer and its prescaler are cleared. The processor is put into Sleep mode with the oscillator stopped. SUBLW Subtract W from literal Syntax: [ label ] SUBLW k Operands: 0 ≤ k ≤ 255 Operation: k - (W) → (W) Status Affected: C, DC, Z Description: The W register is subtracted (2’s complement method) from the eight-bit literal ‘k’. The result is placed in the W register. C = 0 W > k C = 1 W ≤ k DC = 0 W<3:0> > k<3:0> DC = 1 W<3:0> ≤ k<3:0> © 2007 Microchip Technology Inc. DS41211D-page 109 PIC12F683 SUBWF Subtract W from f Syntax: [ label ] SUBWF f,d Operands: 0 ≤ f ≤ 127 d ∈ [0,1] Operation: (f) - (W) → (destination) Status Affected: C, DC, Z Description: Subtract (2’s complement method) W register from register ‘f’. If ‘d’ is ‘0’, the result is stored in the W register. If ‘d’ is ‘1’, the result is stored back in register ‘f. SWAPF Swap Nibbles in f Syntax: [ label ] SWAPF f,d Operands: 0 ≤ f ≤ 127 d ∈ [0,1] Operation: (f<3:0>) → (destination<7:4>), (f<7:4>) → (destination<3:0>) Status Affected: None Description: The upper and lower nibbles of register ‘f’ are exchanged. If ‘d’ is ‘0’, the result is placed in the W register. If ‘d’ is ‘1’, the result is placed in register ‘f’. C = 0 W > f C = 1 W ≤ f DC = 0 W<3:0> > f<3:0> DC = 1 W<3:0> ≤ f<3:0> XORLW Exclusive OR literal with W Syntax: [ label ] XORLW k Operands: 0 ≤ k ≤ 255 Operation: (W) .XOR. k → (W) Status Affected: Z Description: The contents of the W register are XOR’ed with the eight-bit literal ‘k’. The result is placed in the W register. XORWF Exclusive OR W with f Syntax: [ label ] XORWF f,d Operands: 0 ≤ f ≤ 127 d ∈ [0,1] Operation: (W) .XOR. (f) → (destination) Status Affected: Z Description: Exclusive OR the contents of the W register with register ‘f’. If ‘d’ is ‘0’, the result is stored in the W register. If ‘d’ is ‘1’, the result is stored back in register ‘f’. PIC12F683 DS41211D-page 110 © 2007 Microchip Technology Inc. NOTES: © 2007 Microchip Technology Inc. DS41211D-page 111 PIC12F683 14.0 DEVELOPMENT SUPPORT The PIC® microcontrollers are supported with a full range of hardware and software development tools: • Integrated Development Environment - MPLAB® IDE Software • Assemblers/Compilers/Linkers - MPASMTM Assembler - MPLAB C18 and MPLAB C30 C Compilers - MPLINKTM Object Linker/ MPLIBTM Object Librarian - MPLAB ASM30 Assembler/Linker/Library • Simulators - MPLAB SIM Software Simulator • Emulators - MPLAB ICE 2000 In-Circuit Emulator - MPLAB REAL ICE™ In-Circuit Emulator • In-Circuit Debugger - MPLAB ICD 2 • Device Programmers - PICSTART® Plus Development Programmer - MPLAB PM3 Device Programmer - PICkit™ 2 Development Programmer • Low-Cost Demonstration and Development Boards and Evaluation Kits 14.1 MPLAB Integrated Development Environment Software The MPLAB IDE software brings an ease of software development previously unseen in the 8/16-bit microcontroller market. The MPLAB IDE is a Windows® operating system-based application that contains: • A single graphical interface to all debugging tools - Simulator - Programmer (sold separately) - Emulator (sold separately) - In-Circuit Debugger (sold separately) • A full-featured editor with color-coded context • A multiple project manager • Customizable data windows with direct edit of contents • High-level source code debugging • Visual device initializer for easy register initialization • Mouse over variable inspection • Drag and drop variables from source to watch windows • Extensive on-line help • Integration of select third party tools, such as HI-TECH Software C Compilers and IAR C Compilers The MPLAB IDE allows you to: • Edit your source files (either assembly or C) • One touch assemble (or compile) and download to PIC MCU emulator and simulator tools (automatically updates all project information) • Debug using: - Source files (assembly or C) - Mixed assembly and C - Machine code MPLAB IDE supports multiple debugging tools in a single development paradigm, from the cost-effective simulators, through low-cost in-circuit debuggers, to full-featured emulators. This eliminates the learning curve when upgrading to tools with increased flexibility and power. PIC12F683 DS41211D-page 112 © 2007 Microchip Technology Inc. 14.2 MPASM Assembler The MPASM Assembler is a full-featured, universal macro assembler for all PIC MCUs. The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel® standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code and COFF files for debugging. The MPASM Assembler features include: • Integration into MPLAB IDE projects • User-defined macros to streamline assembly code • Conditional assembly for multi-purpose source files • Directives that allow complete control over the assembly process 14.3 MPLAB C18 and MPLAB C30 C Compilers The MPLAB C18 and MPLAB C30 Code Development Systems are complete ANSI C compilers for Microchip’s PIC18 and PIC24 families of microcontrollers and the dsPIC30 and dsPIC33 family of digital signal controllers. These compilers provide powerful integration capabilities, superior code optimization and ease of use not found with other compilers. For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger. 14.4 MPLINK Object Linker/ MPLIB Object Librarian The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler and the MPLAB C18 C Compiler. It can link relocatable objects from precompiled libraries, using directives from a linker script. The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications. The object linker/library features include: • Efficient linking of single libraries instead of many smaller files • Enhanced code maintainability by grouping related modules together • Flexible creation of libraries with easy module listing, replacement, deletion and extraction 14.5 MPLAB ASM30 Assembler, Linker and Librarian MPLAB ASM30 Assembler produces relocatable machine code from symbolic assembly language for dsPIC30F devices. MPLAB C30 C Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include: • Support for the entire dsPIC30F instruction set • Support for fixed-point and floating-point data • Command line interface • Rich directive set • Flexible macro language • MPLAB IDE compatibility 14.6 MPLAB SIM Software Simulator The MPLAB SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC® DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers. The MPLAB SIM Software Simulator fully supports symbolic debugging using the MPLAB C18 and MPLAB C30 C Compilers, and the MPASM and MPLAB ASM30 Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool. © 2007 Microchip Technology Inc. DS41211D-page 113 PIC12F683 14.7 MPLAB ICE 2000 High-Performance In-Circuit Emulator The MPLAB ICE 2000 In-Circuit Emulator is intended to provide the product development engineer with a complete microcontroller design tool set for PIC microcontrollers. Software control of the MPLAB ICE 2000 In-Circuit Emulator is advanced by the MPLAB Integrated Development Environment, which allows editing, building, downloading and source debugging from a single environment. The MPLAB ICE 2000 is a full-featured emulator system with enhanced trace, trigger and data monitoring features. Interchangeable processor modules allow the system to be easily reconfigured for emulation of different processors. The architecture of the MPLAB ICE 2000 In-Circuit Emulator allows expansion to support new PIC microcontrollers. The MPLAB ICE 2000 In-Circuit Emulator system has been designed as a real-time emulation system with advanced features that are typically found on more expensive development tools. The PC platform and Microsoft® Windows® 32-bit operating system were chosen to best make these features available in a simple, unified application. 14.8 MPLAB REAL ICE In-Circuit Emulator System MPLAB REAL ICE In-Circuit Emulator System is Microchip’s next generation high-speed emulator for Microchip Flash DSC® and MCU devices. It debugs and programs PIC® and dsPIC® Flash microcontrollers with the easy-to-use, powerful graphical user interface of the MPLAB Integrated Development Environment (IDE), included with each kit. The MPLAB REAL ICE probe is connected to the design engineer’s PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with the popular MPLAB ICD 2 system (RJ11) or with the new high speed, noise tolerant, lowvoltage differential signal (LVDS) interconnection (CAT5). MPLAB REAL ICE is field upgradeable through future firmware downloads in MPLAB IDE. In upcoming releases of MPLAB IDE, new devices will be supported, and new features will be added, such as software breakpoints and assembly code trace. MPLAB REAL ICE offers significant advantages over competitive emulators including low-cost, full-speed emulation, real-time variable watches, trace analysis, complex breakpoints, a ruggedized probe interface and long (up to three meters) interconnection cables. 14.9 MPLAB ICD 2 In-Circuit Debugger Microchip’s In-Circuit Debugger, MPLAB ICD 2, is a powerful, low-cost, run-time development tool, connecting to the host PC via an RS-232 or high-speed USB interface. This tool is based on the Flash PIC MCUs and can be used to develop for these and other PIC MCUs and dsPIC DSCs. The MPLAB ICD 2 utilizes the in-circuit debugging capability built into the Flash devices. This feature, along with Microchip’s In-Circuit Serial ProgrammingTM (ICSPTM) protocol, offers costeffective, in-circuit Flash debugging from the graphical user interface of the MPLAB Integrated Development Environment. This enables a designer to develop and debug source code by setting breakpoints, single stepping and watching variables, and CPU status and peripheral registers. Running at full speed enables testing hardware and applications in real time. MPLAB ICD 2 also serves as a development programmer for selected PIC devices. 14.10 MPLAB PM3 Device Programmer The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages and a modular, detachable socket assembly to support various package types. The ICSP™ cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices and incorporates an SD/MMC card for file storage and secure data applications. PIC12F683 DS41211D-page 114 © 2007 Microchip Technology Inc. 14.11 PICSTART Plus Development Programmer The PICSTART Plus Development Programmer is an easy-to-use, low-cost, prototype programmer. It connects to the PC via a COM (RS-232) port. MPLAB Integrated Development Environment software makes using the programmer simple and efficient. The PICSTART Plus Development Programmer supports most PIC devices in DIP packages up to 40 pins. Larger pin count devices, such as the PIC16C92X and PIC17C76X, may be supported with an adapter socket. The PICSTART Plus Development Programmer is CE compliant. 14.12 PICkit 2 Development Programmer The PICkit™ 2 Development Programmer is a low-cost programmer and selected Flash device debugger with an easy-to-use interface for programming many of Microchip’s baseline, mid-range and PIC18F families of Flash memory microcontrollers. The PICkit 2 Starter Kit includes a prototyping development board, twelve sequential lessons, software and HI-TECH’s PICC™ Lite C compiler, and is designed to help get up to speed quickly using PIC® microcontrollers. The kit provides everything needed to program, evaluate and develop applications using Microchip’s powerful, mid-range Flash memory family of microcontrollers. 14.13 Demonstration, Development and Evaluation Boards A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification. The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory. The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications. In addition to the PICDEM™ and dsPICDEM™ demonstration/ development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ® security ICs, CAN, IrDA®, PowerSmart® battery management, SEEVAL® evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more. Check the Microchip web page (www.microchip.com) and the latest “Product Selector Guide” (DS00148) for the complete list of demonstration, development and evaluation kits. © 2007 Microchip Technology Inc. DS41211D-page 115 PIC12F683 15.0 ELECTRICAL SPECIFICATIONS Absolute Maximum Ratings(†) Ambient temperature under bias..........................................................................................................-40° to +125°C Storage temperature ........................................................................................................................ -65°C to +150°C Voltage on VDD with respect to VSS ................................................................................................... -0.3V to +6.5V Voltage on MCLR with respect to Vss ............................................................................................... -0.3V to +13.5V Voltage on all other pins with respect to VSS ........................................................................... -0.3V to (VDD + 0.3V) Total power dissipation(1) ............................................................................................................................... 800 mW Maximum current out of VSS pin ...................................................................................................................... 95 mA Maximum current into VDD pin ......................................................................................................................... 95 mA Input clamp current, IIK (VI < 0 or VI > VDD)...............................................................................................................± 20 mA Output clamp current, IOK (Vo < 0 or Vo >VDD).........................................................................................................± 20 mA Maximum output current sunk by any I/O pin.................................................................................................... 25 mA Maximum output current sourced by any I/O pin .............................................................................................. 25 mA Maximum current sunk by GPIO...................................................................................................................... 90 mA Maximum current sourced GPIO...................................................................................................................... 90 mA Note 1: Power dissipation is calculated as follows: PDIS = VDD x {IDD – Σ IOH} + Σ {(VDD – VOH) x IOH} + Σ(VOl x IOL). † NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure above maximum rating conditions for extended periods may affect device reliability. PIC12F683 DS41211D-page 116 © 2007 Microchip Technology Inc. FIGURE 15-1: PIC12F683 VOLTAGE-FREQUENCY GRAPH, -40°C ≤ TA ≤ +125°C FIGURE 15-2: HFINTOSC FREQUENCY ACCURACY OVER DEVICE VDD AND TEMPERATURE 5.5 2.0 3.5 2.5 0 3.0 4.0 4.5 5.0 Frequency (MHz) VDD (V) Note 1: The shaded region indicates the permissible combinations of voltage and frequency. 8 10 20 125 25 2.0 0 60 85 VDD (V) 4.0 4.5 5.0 Temperature (°C) 2.5 3.0 3.5 5.5 ± 1% ± 2% ± 5% © 2007 Microchip Technology Inc. DS41211D-page 117 PIC12F683 15.1 DC Characteristics: PIC12F683-I (Industrial) PIC12F683-E (Extended) DC CHARACTERISTICS Standard Operating Conditions (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +85°C for industrial -40°C ≤ TA ≤ +125°C for extended Param No. Sym Characteristic Min Typ† Max Units Conditions D001 D001C D001D VDD Supply Voltage 2.0 2.0 3.0 4.5 — — — — 5.5 5.5 5.5 5.5 V V V V FOSC < = 8 MHz: HFINTOSC, EC FOSC < = 4 MHz FOSC < = 10 MHz FOSC < = 20 MHz D002* VDR RAM Data Retention Voltage(1) 1.5 — — V Device in Sleep mode D003 VPOR VDD Start Voltage to ensure internal Power-on Reset signal — VSS — V See Section 12.3.1 “Power-on Reset” for details. D004* SVDD VDD Rise Rate to ensure internal Power-on Reset signal 0.05 — — V/ms See Section 12.3.1 “Power-on Reset” for details. * These parameters are characterized but not tested. † Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. Note 1: This is the limit to which VDD can be lowered in Sleep mode without losing RAM data. PIC12F683 DS41211D-page 118 © 2007 Microchip Technology Inc. 15.2 DC Characteristics: PIC12F683-I (Industrial) PIC12F683-E (Extended) DC CHARACTERISTICS Standard Operating Conditions (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +85°C for industrial -40°C ≤ TA ≤ +125°C for extended Param No. Device Characteristics Min Typ† Max Units Conditions VDD Note D010 Supply Current (IDD)(1, 2) — 11 16 μA 2.0 FOSC = 32 kHz — 18 28 μA 3.0 LP Oscillator mode — 35 54 μA 5.0 D011* — 140 240 μA 2.0 FOSC = 1 MHz — 220 380 μA 3.0 XT Oscillator mode — 380 550 μA 5.0 D012 — 260 360 μA 2.0 FOSC = 4 MHz — 420 650 μA 3.0 XT Oscillator mode — 0.8 1.1 mA 5.0 D013* — 130 220 μA 2.0 FOSC = 1 MHz — 215 360 μA 3.0 EC Oscillator mode — 360 520 μA 5.0 D014 — 220 340 μA 2.0 FOSC = 4 MHz — 375 550 μA 3.0 EC Oscillator mode — 0.65 1.0 mA 5.0 D015 — 8 20 μA 2.0 FOSC = 31 kHz — 16 40 μA 3.0 LFINTOSC mode — 31 65 μA 5.0 D016* — 340 450 μA 2.0 FOSC = 4 MHz — 500 700 μA 3.0 HFINTOSC mode — 0.8 1.2 mA 5.0 D017 — 410 650 μA 2.0 FOSC = 8 MHz — 700 950 μA 3.0 HFINTOSC mode — 1.30 1.65 mA 5.0 D018 — 230 400 μA 2.0 FOSC = 4 MHz EXTRC mode(3) — 400 680 μA 3.0 — 0.63 1.1 mA 5.0 D019 — 2.6 3.25 mA 4.5 FOSC = 20 MHz — 2.8 3.35 mA 5.0 HS Oscillator mode * These parameters are characterized but not tested. † Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled. 2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. 3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be extended by the formula IR = VDD/2REXT (mA) with REXT in kΩ. © 2007 Microchip Technology Inc. DS41211D-page 119 PIC12F683 15.3 DC Characteristics: PIC12F683-I (Industrial) DC CHARACTERISTICS Standard Operating Conditions (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +85°C for industrial Param No. Device Characteristics Min Typ† Max Units Conditions VDD Note D020 Power-down Base Current(IPD)(2) — 0.05 1.2 μA 2.0 WDT, BOR, Comparators, VREF and — 0.15 1.5 μA 3.0 T1OSC disabled — 0.35 1.8 μA 5.0 — 150 500 nA 3.0 -40°C ≤ TA ≤ +25°C D021 — 1.0 2.2 μA 2.0 WDT Current(1) — 2.0 4.0 μA 3.0 — 3.0 7.0 μA 5.0 D022 — 42 60 μA 3.0 BOR Current(1) — 85 122 μA 5.0 D023 — 32 45 μA 2.0 Comparator Current(1), both — 60 78 μA 3.0 comparators enabled — 120 160 μA 5.0 D024 — 30 36 μA 2.0 CVREF Current(1) (high range) — 45 55 μA 3.0 — 75 95 μA 5.0 D025* — 39 47 μA 2.0 CVREF Current(1) (low range) — 59 72 μA 3.0 — 98 124 μA 5.0 D026 — 4.5 7.0 μA 2.0 T1OSC Current(1), 32.768 kHz — 5.0 8.0 μA 3.0 — 6.0 12 μA 5.0 D027 — 0.30 1.6 μA 3.0 A/D Current(1), no conversion in — 0.36 1.9 μA 5.0 progress * These parameters are characterized but not tested. † Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. Note 1: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this peripheral is enabled. The peripheral Δ current can be determined by subtracting the base IDD or IPD current from this limit. Max values should be used when calculating total current consumption. 2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD. PIC12F683 DS41211D-page 120 © 2007 Microchip Technology Inc. 15.4 DC Characteristics: PIC12F683-E (Extended) DC CHARACTERISTICS Standard Operating Conditions (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +125°C for extended Param No. Device Characteristics Min Typ† Max Units Conditions VDD Note D020E Power-down Base Current (IPD)(2) — 0.05 9 μA 2.0 WDT, BOR, Comparators, VREF and — 0.15 11 μA 3.0 T1OSC disabled — 0.35 15 μA 5.0 D021E — 1 17.5 μA 2.0 WDT Current(1) — 2 19 μA 3.0 — 3 22 μA 5.0 D022E — 42 65 μA 3.0 BOR Current(1) — 85 127 μA 5.0 D023E — 32 45 μA 2.0 Comparator Current(1), both — 60 78 μA 3.0 comparators enabled — 120 160 μA 5.0 D024E — 30 70 μA 2.0 CVREF Current(1) (high range) — 45 90 μA 3.0 — 75 120 μA 5.0 D025E* — 39 91 μA 2.0 CVREF Current(1) (low range) — 59 117 μA 3.0 — 98 156 μA 5.0 D026E — 4.5 25 μA 2.0 T1OSC Current(1), 32.768 kHz — 5 30 μA 3.0 — 6 40 μA 5.0 D027E — 0.30 12 μA 3.0 A/D Current(1), no conversion in — 0.36 16 μA 5.0 progress * These parameters are characterized but not tested. † Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. Note 1: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this peripheral is enabled. The peripheral Δ current can be determined by subtracting the base IDD or IPD current from this limit. Max values should be used when calculating total current consumption. 2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD. © 2007 Microchip Technology Inc. DS41211D-page 121 PIC12F683 15.5 DC Characteristics: PIC12F683-I (Industrial) PIC12F683-E (Extended) DC CHARACTERISTICS Standard Operating Conditions (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +85°C for industrial -40°C ≤ TA ≤ +125°C for extended Param No. Sym Characteristic Min Typ† Max Units Conditions VIL Input Low Voltage I/O Port: D030 with TTL buffer Vss — 0.8 V 4.5V ≤ VDD ≤ 5.5V D030A Vss — 0.15 VDD V 2.0V ≤ VDD ≤ 4.5V D031 with Schmitt Trigger buffer Vss — 0.2 VDD V 2.0V ≤ VDD ≤ 5.5V D032 MCLR, OSC1 (RC mode)(1) VSS — 0.2 VDD V D033 OSC1 (XT and LP modes) VSS — 0.3 V D033A OSC1 (HS mode) VSS — 0.3 VDD V VIH Input High Voltage I/O ports: — D040 with TTL buffer 2.0 — VDD V 4.5V ≤ VDD ≤ 5.5V D040A 0.25 VDD + 0.8 — VDD V 2.0V ≤ VDD ≤ 4.5V D041 with Schmitt Trigger buffer 0.8 VDD — VDD V 2.0V ≤ VDD ≤ 5.5V D042 MCLR 0.8 VDD — VDD V D043 OSC1 (XT and LP modes) 1.6 — VDD V D043A OSC1 (HS mode) 0.7 VDD — VDD V D043B OSC1 (RC mode) 0.9 VDD — VDD V (Note 1) IIL Input Leakage Current(2) D060 I/O ports — ± 0.1 ± 1 μA VSS ≤ VPIN ≤ VDD, Pin at high-impedance D061 MCLR(3) — ± 0.1 ± 5 μA VSS ≤ VPIN ≤ VDD D063 OSC1 — ± 0.1 ± 5 μA VSS ≤ VPIN ≤ VDD, XT, HS and LP oscillator configuration D070* IPUR GPIO Weak Pull-up Current 50 250 400 μA VDD = 5.0V, VPIN = VSS VOL Output Low Voltage(5) D080 I/O ports — — 0.6 V IOL = 8.5 mA, VDD = 4.5V (Ind.) VOH Output High Voltage(5) D090 I/O ports VDD – 0.7 — — V IOH = -3.0 mA, VDD = 4.5V (Ind.) * These parameters are characterized but not tested. † Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use an external clock in RC mode. 2: Negative current is defined as current sourced by the pin. 3: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages. 4: See Section 10.4.1 “Using the Data EEPROM” for additional information. 5: Including OSC2 in CLKOUT mode. PIC12F683 DS41211D-page 122 © 2007 Microchip Technology Inc. D100 IULP Ultra Low-Power Wake-Up Current — 200 — nA See Application Note AN879, “Using the Microchip Ultra Low-Power Wake-up Module” (DS00879) Capacitive Loading Specs on Output Pins D101* COSC2 OSC2 pin — — 15 pF In XT, HS and LP modes when external clock is used to drive OSC1 D101A* CIO All I/O pins — — 50 pF Data EEPROM Memory D120 ED Byte Endurance 100K 1M — E/W -40°C ≤ TA ≤ +85°C D120A ED Byte Endurance 10K 100K — E/W +85°C ≤ TA ≤ +125°C D121 VDRW VDD for Read/Write VMIN — 5.5 V Using EECON1 to read/write VMIN = Minimum operating voltage D122 TDEW Erase/Write Cycle Time — 5 6 ms D123 TRETD Characteristic Retention 40 — — Year Provided no other specifications are violated D124 TREF Number of Total Erase/Write Cycles before Refresh(4) 1M 10M — E/W -40°C ≤ TA ≤ +85°C Program Flash Memory D130 EP Cell Endurance 10K 100K — E/W -40°C ≤ TA ≤ +85°C D130A ED Cell Endurance 1K 10K — E/W +85°C ≤ TA ≤ +125°C D131 VPR VDD for Read VMIN — 5.5 V VMIN = Minimum operating voltage D132 VPEW VDD for Erase/Write 4.5 — 5.5 V D133 TPEW Erase/Write cycle time — 2 2.5 ms D134 TRETD Characteristic Retention 40 — — Year Provided no other specifications are violated 15.5 DC Characteristics: PIC12F683-I (Industrial) PIC12F683-E (Extended) (Continued) DC CHARACTERISTICS Standard Operating Conditions (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +85°C for industrial -40°C ≤ TA ≤ +125°C for extended Param No. Sym Characteristic Min Typ† Max Units Conditions * These parameters are characterized but not tested. † Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use an external clock in RC mode. 2: Negative current is defined as current sourced by the pin. 3: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages. 4: See Section 10.4.1 “Using the Data EEPROM” for additional information. 5: Including OSC2 in CLKOUT mode. © 2007 Microchip Technology Inc. DS41211D-page 123 PIC12F683 15.6 Thermal Considerations Standard Operating Conditions (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +125°C Param No. Sym Characteristic Typ Units Conditions TH01 θJA Thermal Resistance Junction to Ambient 84.6 °C/W 8-pin PDIP package 163.0 °C/W 8-pin SOIC package 52.4 °C/W 8-pin DFN-S 4x4x0.9 mm package 46.3 °C/W 8-pin DFN-S 6x5 mm package TH02 θJC Thermal Resistance Junction to Case 41.2 °C/W 8-pin PDIP package 38.8 °C/W 8-pin SOIC package 3.0 °C/W 8-pin DFN-S 4x4x0.9 mm package 2.6 °C/W 8-pin DFN-S 6x5 mm package TH03 TJ Junction Temperature 150 °C For derated power calculations TH04 PD Power Dissipation — W PD = PINTERNAL + PI/O TH05 PINTERNAL Internal Power Dissipation — W PINTERNAL = IDD x VDD (NOTE 1) TH06 PI/O I/O Power Dissipation — W PI/O = Σ (IOL * VOL) + Σ (IOH * (VDD - VOH)) TH07 PDER Derated Power — W PDER = (TJ - TA)/θJA (NOTE 2, 3) Note 1: IDD is current to run the chip alone without driving any load on the output pins. 2: TA = Ambient Temperature. 3: Maximum allowable power dissipation is the lower value of either the absolute maximum total power dissipation or derated power (PDER). PIC12F683 DS41211D-page 124 © 2007 Microchip Technology Inc. 15.7 Timing Parameter Symbology The timing parameter symbols have been created with one of the following formats: FIGURE 15-3: LOAD CONDITIONS 1. TppS2ppS 2. TppS T F Frequency T Time Lowercase letters (pp) and their meanings: pp cc CCP1 osc OSC1 ck CLKOUT rd RD cs CS rw RD or WR di SDI sc SCK do SDO ss SS dt Data in t0 T0CKI io I/O PORT t1 T1CKI mc MCLR wr WR Uppercase letters and their meanings: S F Fall P Period H High R Rise I Invalid (High-impedance) V Valid L Low Z High-impedance VSS CL Legend: CL = 50 pF for all pins 15 pF for OSC2 output Load Condition Pin © 2007 Microchip Technology Inc. DS41211D-page 125 PIC12F683 15.8 AC Characteristics: PIC12F683 (Industrial, Extended) FIGURE 15-4: CLOCK TIMING TABLE 15-1: CLOCK OSCILLATOR TIMING REQUIREMENTS Standard Operating Conditions (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +125°C Param No. Sym Characteristic Min Typ† Max Units Conditions OS01 FOSC External CLKIN Frequency(1) DC — 37 kHz LP Oscillator mode DC — 4 MHz XT Oscillator mode DC — 20 MHz HS Oscillator mode DC — 20 MHz EC Oscillator mode Oscillator Frequency(1) — 32.768 — kHz LP Oscillator mode 0.1 — 4 MHz XT Oscillator mode 1 — 20 MHz HS Oscillator mode DC — 4 MHz RC Oscillator mode OS02 TOSC External CLKIN Period(1) 27 — • μs LP Oscillator mode 250 — • ns XT Oscillator mode 50 — • ns HS Oscillator mode 50 — • ns EC Oscillator mode Oscillator Period(1) — 30.5 — μs LP Oscillator mode 250 — 10,000 ns XT Oscillator mode 50 — 1,000 ns HS Oscillator mode 250 — — ns RC Oscillator mode OS03 TCY Instruction Cycle Time(1) 200 TCY DC ns TCY = 4/FOSC OS04* TosH, TosL External CLKIN High, External CLKIN Low 2 — — μs LP oscillator 100 — — ns XT oscillator 20 — — ns HS oscillator OS05* TosR, TosF External CLKIN Rise, External CLKIN Fall 0 — • ns LP oscillator 0 — • ns XT oscillator 0 — • ns HS oscillator * These parameters are characterized but not tested. † Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at “min” values with an external clock applied to OSC1 pin. When an external clock input is used, the “max” cycle time limit is “DC” (no clock) for all devices. OSC1/CLKIN OSC2/CLKOUT Q4 Q1 Q2 Q3 Q4 Q1 OS02 OS03 OS04 OS04 OSC2/CLKOUT (LP,XT,HS Modes) (CLKOUT Mode) PIC12F683 DS41211D-page 126 © 2007 Microchip Technology Inc. TABLE 15-2: OSCILLATOR PARAMETERS Standard Operating Conditions (unless otherwise stated) Operating Temperature -40°C ≤ TA ≤ +125°C Param No. Sym Characteristic Freq. Tolerance Min Typ† Max Units Conditions OS06 TWARM Internal Oscillator Switch when running(3) — — — 2 TOSC Slowest clock OS07 TSC Fail-Safe Sample Clock Period(1) — — 21 — ms LFINTOSC/64 OS08 HFOSC Internal Calibrated HFINTOSC Frequency(2) ±1% 7.92 8.0 8.08 MHz VDD = 3.5V, 25°C ±2% 7.84 8.0 8.16 MHz 2.5V ≤ VDD ≤ 5.5V, 0°C ≤ TA ≤ +85°C ±5% 7.60 8.0 8.40 MHz 2.0V ≤ VDD ≤ 5.5V, -40°C ≤ TA ≤ +85°C (Ind.), -40°C ≤ TA ≤ +125°C (Ext.) OS09* LFOSC Internal Uncalibrated LFINTOSC Frequency — 15 31 45 kHz OS10* TIOSC ST HFINTOSC Oscillator Wake-up from Sleep Start-up Time — 5.5 12 24 μs VDD = 2.0V, -40°C to +85°C — 3.5 7 14 μs VDD = 3.0V, -40°C to +85°C — 3 6 11 μs VDD = 5.0V, -40°C to +85°C * These parameters are characterized but not tested. † Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at “min” values with an external clock applied to the OSC1 pin. When an external clock input is used, the “max” cycle time limit is “DC” (no clock) for all devices. 2: To ensure these oscillator frequency tolerances, VDD and VSS must be capacitively decoupled as close to the device as possible. 0.1 μF and 0.01 μF values in parallel are recommended. 3: By design. © 2007 Microchip Technology Inc. DS41211D-page 127 PIC12F683 FIGURE 15-5: CLKOUT AND I/O TIMING Fosc CLKOUT I/O pin (Input) I/O pin (Output) Q4 Q1 Q2 Q3 OS11 OS19 OS13 OS15 OS18, OS19 OS20 OS21 OS17 OS16 OS14 OS12 OS18 Old Value New Value Cycle Write Fetch Read Execute TABLE 15-3: CLKOUT AND I/O TIMING PARAMETERS Standard Operating Conditions (unless otherwise stated) Operating Temperature -40°C ≤ TA ≤ +125°C Param No. Sym Characteristic Min Typ† Max Units Conditions OS11 TOSH2CKL FOSC↑ to CLKOUT↓ (1) — — 70 ns VDD = 5.0V OS12 TOSH2CKH FOSC↑ to CLKOUT↑ (1) — — 72 ns VDD = 5.0V OS13 TCKL2IOV CLKOUT↓ to Port out valid(1) — — 20 ns OS14 TIOV2CKH Port input valid before CLKOUT↑(1) TOSC + 200 ns — — ns OS15* TOSH2IOV FOSC↑ (Q1 cycle) to Port out valid — 50 70 ns VDD = 5.0V OS16 TOSH2IOI FOSC↑ (Q2 cycle) to Port input invalid (I/O in hold time) 50 — — ns VDD = 5.0V OS17 TIOV2OSH Port input valid to FOSC↑ (Q2 cycle) (I/O in setup time) 20 — — ns OS18 TIOR Port output rise time(2) — — 15 40 72 32 ns VDD = 2.0V VDD = 5.0V OS19 TIOF Port output fall time(2) — — 28 15 55 30 ns VDD = 2.0V VDD = 5.0V OS20* TINP INT pin input high or low time 25 — — ns OS21* TGPP GPIO interrupt-on-change new input level time TCY — — ns * These parameters are characterized but not tested. † Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. Note 1: Measurements are taken in RC mode where CLKOUT output is 4 x TOSC. 2: Includes OSC2 in CLKOUT mode. PIC12F683 DS41211D-page 128 © 2007 Microchip Technology Inc. FIGURE 15-6: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING FIGURE 15-7: BROWN-OUT RESET TIMING AND CHARACTERISTICS VDD MCLR Internal POR PWRT Time-out OSC Start-Up Time Internal Reset(1) Watchdog Timer 33 32 30 31 34 I/O pins 34 Note 1: Asserted low. Reset(1) VBOR VDD (Device in Brown-out Reset) (Device not in Brown-out Reset) 33* 37 * 64 ms delay only if PWRTE bit in the Configuration Word register is programmed to ‘0’. Reset (due to BOR) VBOR + VHYST © 2007 Microchip Technology Inc. DS41211D-page 129 PIC12F683 TABLE 15-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER AND BROWN-OUT RESET PARAMETERS Standard Operating Conditions (unless otherwise stated) Operating Temperature -40°C ≤ TA ≤ +125°C Param No. Sym Characteristic Min Typ† Max Units Conditions 30 TMCL MCLR Pulse Width (low) 2 5 — — — — μs μs VDD = 5V, -40°C to +85°C VDD = 5V 31 TWDT Watchdog Timer Time-out Period (No Prescaler) 10 10 16 16 29 31 ms ms VDD = 5V, -40°C to +85°C VDD = 5V 32 TOST Oscillation Start-up Timer Period(1, 2) — 1024 — TOSC (NOTE 3) 33* TPWRT Power-up Timer Period 40 65 140 ms 34* TIOZ I/O High-impedance from MCLR Low or Watchdog Timer Reset — — 2.0 μs 35 VBOR Brown-out Reset Voltage 2.0 — 2.2 V (NOTE 4) 36* VHYST Brown-out Reset Hysteresis — 50 — mV 37* TBOR Brown-out Reset Minimum Detection Period 100 — — μs VDD ≤ VBOR * These parameters are characterized but not tested. † Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at “min” values with an external clock applied to the OSC1 pin. When an external clock input is used, the “max” cycle time limit is “DC” (no clock) for all devices. 2: By design. 3: Period of the slower clock. 4: To ensure these voltage tolerances, VDD and VSS must be capacitively decoupled as close to the device as possible. 0.1 μF and 0.01 μF values in parallel are recommended. PIC12F683 DS41211D-page 130 © 2007 Microchip Technology Inc. FIGURE 15-8: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS TABLE 15-5: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS Standard Operating Conditions (unless otherwise stated) Operating Temperature -40°C ≤ TA ≤ +125°C Param No. Sym Characteristic Min Typ† Max Units Conditions 40* TT0H T0CKI High Pulse Width No Prescaler 0.5 TCY + 20 — — ns With Prescaler 10 — — ns 41* TT0L T0CKI Low Pulse Width No Prescaler 0.5 TCY + 20 — — ns With Prescaler 10 — — ns 42* TT0P T0CKI Period Greater of: 20 or TCY + 40 N — — ns N = prescale value (2, 4, ..., 256) 45* TT1H T1CKI High Time Synchronous, No Prescaler 0.5 TCY + 20 — — ns Synchronous, with Prescaler 15 — — ns Asynchronous 30 — — ns 46* TT1L T1CKI Low Time Synchronous, No Prescaler 0.5 TCY + 20 — — ns Synchronous, with Prescaler 15 — — ns Asynchronous 30 — — ns 47* TT1P T1CKI Input Period Synchronous Greater of: 30 or TCY + 40 N — — ns N = prescale value (1, 2, 4, 8) Asynchronous 60 — — ns 48 FT1 Timer1 Oscillator Input Frequency Range (oscillator enabled by setting bit T1OSCEN) — 32.768 — kHz 49* TCKEZTMR1 Delay from External Clock Edge to Timer Increment 2 TOSC — 7 TOSC — Timers in Sync mode * These parameters are characterized but not tested. † Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. T0CKI T1CKI 40 41 42 45 46 47 49 TMR0 or TMR1 © 2007 Microchip Technology Inc. DS41211D-page 131 PIC12F683 FIGURE 15-9: CAPTURE/COMPARE/PWM TIMINGS (ECCP) TABLE 15-6: CAPTURE/COMPARE/PWM REQUIREMENTS (ECCP) Standard Operating Conditions (unless otherwise stated) Operating Temperature -40°C ≤ TA ≤ +125°C Param No. Sym Characteristic Min Typ† Max Units Conditions CC01* TccL CCP1 Input Low Time No Prescaler 0.5TCY + 20 — — ns With Prescaler 20 — — ns CC02* TccH CCP1 Input High Time No Prescaler 0.5TCY + 20 — — ns With Prescaler 20 — — ns CC03* TccP CCP1 Input Period 3TCY + 40 N — — ns N = prescale value (1, 4 or 16) * These parameters are characterized but not tested. † Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. Note: Refer to Figure 15-3 for load conditions. (Capture mode) CC01 CC02 CC03 CCP1 PIC12F683 DS41211D-page 132 © 2007 Microchip Technology Inc. TABLE 15-7: COMPARATOR SPECIFICATIONS TABLE 15-8: COMPARATOR VOLTAGE REFERENCE (CVREF) SPECIFICATIONS Standard Operating Conditions (unless otherwise stated) Operating Temperature -40°C ≤ TA ≤ +125°C Param No. Sym Characteristics Min Typ† Max Units Comments CM01 VOS Input Offset Voltage — ± 5.0 ± 10 mV (VDD - 1.5)/2 CM02 VCM Input Common Mode Voltage 0 — VDD – 1.5 V CM03* CMRR Common Mode Rejection Ratio +55 — — dB CM04* TRT Response Time Falling — 150 600 ns (NOTE 1) Rising — 200 1000 ns CM05* TMC2COV Comparator Mode Change to Output Valid — — 10 μs * These parameters are characterized but not tested. † Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. Note 1: Response time is measured with one comparator input at (VDD - 1.5)/2 - 100 mV to (VDD - 1.5)/2 + 20 mV. Standard Operating Conditions (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +125°C Param No. Sym Characteristics Min Typ† Max Units Comments CV01* CLSB Step Size(2) — — VDD/24 VDD/32 — — V V Low Range (VRR = 1) High Range (VRR = 0) CV02* CACC Absolute Accuracy — — — — ± 1/2 ± 1/2 LSb LSb Low Range (VRR = 1) High Range (VRR = 0) CV03* CR Unit Resistor Value (R) — 2k — Ω CV04* CST Settling Time(1) — — 10 μs * These parameters are characterized but not tested. † Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. Note 1: Settling time measured while VRR = 1 and VR<3:0> transitions from ‘0000’ to ‘1111’. 2: See Section 8.11 “Comparator Voltage Reference” for more information. © 2007 Microchip Technology Inc. DS41211D-page 133 PIC12F683 TABLE 15-9: PIC12F683 A/D CONVERTER (ADC) CHARACTERISTICS Standard Operating Conditions (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +125°C Param No. Sym Characteristic Min Typ† Max Units Conditions AD01 NR Resolution — — 10 bits bit AD02 EIL Integral Error — — ±1 LSb VREF = 5.12V AD03 EDL Differential Error — — ±1 LSb No missing codes to 10 bits VREF = 5.12V AD04 EOFF Offset Error — — ±1 LSb VREF = 5.12V AD07 EGN Gain Error — — ±1 LSb VREF = 5.12V AD06 AD06A VREF Reference Voltage(3) 2.2 2.7 — — VDD V Absolute minimum to ensure 1 LSb accuracy AD07 VAIN Full-Scale Range VSS — VREF V AD08 ZAIN Recommended Impedance of Analog Voltage Source — — 10 kΩ AD09* IREF VREF Input Current(3) 10 — 1000 μA During VAIN acquisition. Based on differential of VHOLD to VAIN. — — 50 μA During A/D conversion cycle. * These parameters are characterized but not tested. † Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. Note 1: Total Absolute Error includes integral, differential, offset and gain errors. 2: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes. 3: ADC VREF is from external VREF or VDD pin, whichever is selected as reference input. 4: When ADC is off, it will not consume any current other than leakage current. The power-down current specification includes any such leakage from the ADC module. PIC12F683 DS41211D-page 134 © 2007 Microchip Technology Inc. TABLE 15-10: PIC12F683 A/D CONVERSION REQUIREMENTS Standard Operating Conditions (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +125°C Param No. Sym Characteristic Min Typ† Max Units Conditions AD130* TAD A/D Clock Period 1.6 — 9.0 μs TOSC-based, VREF ≥ 3.0V 3.0 — 9.0 μs TOSC-based, VREF full range A/D Internal RC Oscillator Period 3.0 6.0 9.0 μs ADCS<1:0> = 11 (ADRC mode) At VDD = 2.5V 1.6 4.0 6.0 μs At VDD = 5.0V AD131 TCNV Conversion Time (not including Acquisition Time)(1) — 11 — TAD Set GO/DONE bit to new data in A/D Result register. AD132* TACQ Acquisition Time 11.5 — μs AD133* TAMP Amplifier Settling Time — — 5 μs AD134 TGO Q4 to A/D Clock Start — — TOSC/2 TOSC/2 + TCY — — — — If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the SLEEP instruction to be executed. * These parameters are characterized but not tested. † Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. Note 1: ADRESH and ADRESL registers may be read on the following TCY cycle. 2: See Section 9.3 “A/D Acquisition Requirements” for minimum conditions. © 2007 Microchip Technology Inc. DS41211D-page 135 PIC12F683 FIGURE 15-10: PIC12F683 A/D CONVERSION TIMING (NORMAL MODE) FIGURE 15-11: PIC12F683 A/D CONVERSION TIMING (SLEEP MODE) AD131 AD130 BSF ADCON0, GO Q4 A/D CLK A/D Data ADRES ADIF GO Sample OLD_DATA Sampling Stopped DONE NEW_DATA 9 8 7 3 2 1 0 Note 1: If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the SLEEP instruction to be executed. 1 TCY 6 AD134 (TOSC/2(1)) 1 TCY AD132 AD132 AD131 AD130 BSF ADCON0, GO Q4 A/D CLK A/D Data ADRES ADIF GO Sample OLD_DATA Sampling Stopped DONE NEW_DATA 9 7 3 2 1 0 Note 1: If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the SLEEP instruction to be executed. AD134 8 6 (TOSC/2 + TCY(1)) 1 TCY 1 TCY PIC12F683 DS41211D-page 136 © 2007 Microchip Technology Inc. NOTES: © 2007 Microchip Technology Inc. DS41211D-page 137 PIC12F683 16.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES The graphs and tables provided in this section are for design guidance and are not tested. In some graphs or tables, the data presented are outside specified operating range (i.e., outside specified VDD range). This is for information only and devices are ensured to operate properly only within the specified range. “Typical” represents the mean of the distribution at 25°C. “Maximum” or “minimum” represents (mean + 3σ) or (mean - 3σ) respectively, where σ is a standard deviation, over each temperature range. FIGURE 16-1: TYPICAL IDD vs. FOSC OVER VDD (EC MODE) Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore, outside the warranted range. 3.0V 4.0V 5.0V 5.5V 2.0V 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 1 MHz 2 MHz 4 MHz 6 MHz 8 MHz 10 MHz 12 MHz 14 MHz 16 MHz 18 MHz 20 MHz FOSC IDD (mA) Typical: Statistical Mean @25°C Maximum: Mean (Worst-case Temp) + 3σ (-40°C to 125°C) PIC12F683 DS41211D-page 138 © 2007 Microchip Technology Inc. FIGURE 16-2: MAXIMUM IDD vs. FOSC OVER VDD (EC MODE) FIGURE 16-3: TYPICAL IDD vs. FOSC OVER VDD (HS MODE) EC Mode 3.0V 4.0V 5.0V 2.0V 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 1 MHz 2 MHz 4 MHz 6 MHz 8 MHz 10 MHz 12 MHz 14 MHz 16 MHz 18 MHz 20 MHz FOSC IDD (mA) 5.5V Typical: Statistical Mean @25°C Maximum: Mean (Worst-case Temp) + 3σ (-40°C to 125°C) Typical IDD vs. FOSC Over Vdd HS Mode 3.0V 3.5V 4.0V 4.5V 5.0V 5.5V 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4 MHz 10 MHz 16 MHz 20 MHz FOSC IDD (mA) Typical: Statistical Mean @25°C Maximum: Mean (Worst-case Temp) + 3σ (-40°C to 125°C) © 2007 Microchip Technology Inc. DS41211D-page 139 PIC12F683 FIGURE 16-4: MAXIMUM IDD vs. FOSC OVER VDD (HS MODE) FIGURE 16-5: TYPICAL IDD vs. VDD OVER FOSC (XT MODE) Maximum IDD vs. FOSC Over Vdd HS Mode 3.5V 4.0V 4.5V 5.0V 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 4 MHz 10 MHz 16 MHz 20 MHz FOSC IDD (mA) Typical: Statistical Mean @25°C Maximum: Mean (Worst-case Temp) + 3σ (-40°C to 125°C) 3.0V 5.5V XT Mode 0 100 200 300 400 500 600 700 800 900 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 VDD (V) IDD (μA) Typical: Statistical Mean @25°C Maximum: Mean (Worst-case Temp) + 3σ (-40°C to 125°C) 4 MHz 1 MHz PIC12F683 DS41211D-page 140 © 2007 Microchip Technology Inc. FIGURE 16-6: MAXIMUM IDD vs. VDD OVER FOSC (XT MODE) FIGURE 16-7: TYPICAL IDD vs. VDD OVER FOSC (EXTRC MODE) XT Mode 0 200 400 600 800 1,000 1,200 1,400 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 VDD (V) IDD (μA) Typical: Statistical Mean @25°C Maximum: Mean (Worst-case Temp) + 3σ (-40°C to 125°C) 4 MHz 1 MHz EXTRC Mode 0 100 200 300 400 500 600 700 800 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 VDD (V) IDD (μA) 1 MHz Typical: Statistical Mean @25°C Maximum: Mean (Worst-case Temp) + 3σ (-40°C to 125°C) 4 MHz © 2007 Microchip Technology Inc. DS41211D-page 141 PIC12F683 FIGURE 16-8: MAXIMUM IDD vs. VDD (EXTRC MODE) FIGURE 16-9: IDD vs. VDD OVER FOSC (LFINTOSC MODE, 31 kHz) EXTRC Mode 0 200 400 600 800 1,000 1,200 1,400 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 VDD (V) IDD (μA) Typical: Statistical Mean @25°C Maximum: Mean (Worst-case Temp) + 3σ (-40°C to 125°C) 4 MHz 1 MHz LFINTOSC Mode, 31KHZ Typical Maximum 0 10 20 30 40 50 60 70 80 VDD (V) IDD (μA) Typical: Statistical Mean @25°C Maximum: Mean (Worst-case Temp) + 3σ (-40°C to 125°C) 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 PIC12F683 DS41211D-page 142 © 2007 Microchip Technology Inc. FIGURE 16-10: IDD vs. VDD (LP MODE) FIGURE 16-11: TYPICAL IDD vs. FOSC OVER VDD (HFINTOSC MODE) LP Mode 0 10 20 30 40 50 60 70 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 VDD (V) IDD (μA) Typical: Statistical Mean @25°C Maximum: Mean (Worst-case Temp) + 3σ (-40°C to 125°C) 32 kHz Maximum 32 kHz Typical HFINTOSC 2.0V 3.0V 4.0V 5.0V 5.5V 0 200 400 600 800 1,000 1,200 1,400 1,600 125 kHz 250 kHz 500 kHz 1 MHz 2 MHz 4 MHz 8 MHz FOSC IDD (μA) Typical: Statistical Mean @25°C Maximum: Mean (Worst-case Temp) + 3σ (-40°C to 125°C) © 2007 Microchip Technology Inc. DS41211D-page 143 PIC12F683 FIGURE 16-12: MAXIMUM IDD vs. FOSC OVER VDD (HFINTOSC MODE) FIGURE 16-13: TYPICAL IPD vs. VDD (SLEEP MODE, ALL PERIPHERALS DISABLED) HFINTOSC 2.0V 3.0V 4.0V 5.0V 5.5V 0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000 125 kHz 250 kHz 500 kHz 1 MHz 2 MHz 4 MHz 8 MHz FOSC IDD (μA) Typical: Statistical Mean @25°C Maximum: Mean (Worst-case Temp) + 3σ (-40°C to 125°C) Typical (Sleep Mode all Peripherals Disabled) 0.0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 VDD (V) IPD (μA) Typical: Statistical Mean @25°C Maximum: Mean (Worst-case Temp) + 3σ (-40°C to 125°C) PIC12F683 DS41211D-page 144 © 2007 Microchip Technology Inc. FIGURE 16-14: MAXIMUM IPD vs. VDD (SLEEP MODE, ALL PERIPHERALS DISABLED) FIGURE 16-15: COMPARATOR IPD vs. VDD (BOTH COMPARATORS ENABLED) Maximum (Sleep Mode all Peripherals Disabled) Max. 125°C Max. 85°C 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 VDD (V) IPD (μA) Maximum: Mean + 3σ Typical: Statistical Mean @25°C Maximum: Mean (Worst-case Temp) + 3σ (-40°C to 125°C) 0 20 40 60 80 100 120 140 160 180 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 VDD (V) IPD (μA) Maximum Typical Typical: Statistical Mean @25°C Maximum: Mean (Worst-case Temp) + 3σ (-40°C to 125°C) © 2007 Microchip Technology Inc. DS41211D-page 145 PIC12F683 FIGURE 16-16: BOR IPD vs. VDD OVER TEMPERATURE FIGURE 16-17: TYPICAL WDT IPD vs. VDD OVER TEMPERATURE 0 20 40 60 80 100 120 140 160 2.5 3.0 3.5 4.0 4.5 5.0 5.5 VDD (V) IPD (μA) Typical: Statistical Mean @25°C Maximum: Mean (Worst-case Temp) + 3σ (-40°C to 125°C) Maximum Typical Typical 0.0 0.5 1.0 1.5 2.0 2.5 3.0 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 VDD (V) IPD (μA) TTyyppicicaal:l: SSttaattisistticicaal l MMeeaann @@2255°°CC Maximum: Mean (Worst-case Temp) + 3σ (-40°C to 125°C) PIC12F683 DS41211D-page 146 © 2007 Microchip Technology Inc. FIGURE 16-18: MAXIMUM WDT IPD vs. VDD OVER TEMPERATURE FIGURE 16-19: WDT PERIOD vs. VDD OVER TEMPERATURE Maximum Max. 125°C Max. 85°C 0.0 5.0 10.0 15.0 20.0 25.0 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 VDD (V) IPD (μA) Maximum: Mean (Worst-case Temp) + 3σ (-40°C to 125°C) Minimum Typical 10 12 14 16 18 20 22 24 26 28 30 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 VDD (V) Time (ms) Typical: Statistical Mean @25°C Maximum: Mean (Worst-case Temp) + 3σ (-40°C to 125°C) Max. (125°C) Max. (85°C) © 2007 Microchip Technology Inc. DS41211D-page 147 PIC12F683 FIGURE 16-20: WDT PERIOD vs. TEMPERATURE OVER VDD (5.0V) FIGURE 16-21: CVREF IPD vs. VDD OVER TEMPERATURE (HIGH RANGE) Vdd = 5V 10 12 14 16 18 20 22 24 26 28 30 -40°C 25°C 85°C 125°C Temperature (°C) Time (ms) Typical: Statistical Mean @25°C Maximum: Mean (Worst-case Temp) + 3σ (-40°C to 125°C) Maximum Typical Minimum High Range Typical Max. 85°C 0 20 40 60 80 100 120 140 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 VDD (V) IPD (μA) Max. 125°C Typical: Statistical Mean @25°C Maximum: Mean (Worst-case Temp) + 3σ (-40°C to 125°C) PIC12F683 DS41211D-page 148 © 2007 Microchip Technology Inc. FIGURE 16-22: CVREF IPD vs. VDD OVER TEMPERATURE (LOW RANGE) FIGURE 16-23: VOL vs. IOL OVER TEMPERATURE (VDD = 3.0V) Typical Max. 85°C 0 20 40 60 80 100 120 140 160 180 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 VDD (V) IPD (μA) Max. 125°C Typical: Statistical Mean @25°C Maximum: Mean (Worst-case Temp) + 3σ (-40°C to 125°C) (VDD = 3V, -40×C TO 125×C) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 IOL (mA) VOL (V) Max. 85°C Max. 125°C Typical 25°C Min. -40°C Typical: Statistical Mean @25°C Maximum: Mean (Worst-case Temp) + 3σ (-40°C to 125°C) © 2007 Microchip Technology Inc. DS41211D-page 149 PIC12F683 FIGURE 16-24: VOL vs. IOL OVER TEMPERATURE (VDD = 5.0V) FIGURE 16-25: VOH vs. IOH OVER TEMPERATURE (VDD = 3.0V) 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 IOL (mA) VOL (V) Typical: Statistical Mean @25×C Maximum: Mea n(s-4 +0 ×3C to 125×C) Typical: Statistical Mean @25°C Maximum: Mean (Worst-case Temp) + 3σ (-40°C to 125°C) Max. 85°C Typ. 25°C Min. -40°C Max. 125°C 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 0.0 -0.5 -1.0 -1.5 -2.0 -2.5 -3.0 -3.5 -4.0 IOH (mA) VOH (V) Typ. 25°C Max. -40°C Min. 125°C Typical: Statistical Mean @25°C Maximum: Mean (Worst-case Temp) + 3σ (-40°C to 125°C) PIC12F683 DS41211D-page 150 © 2007 Microchip Technology Inc. FIGURE 16-26: VOH vs. IOH OVER TEMPERATURE (VDD = 5.0V) FIGURE 16-27: TTL INPUT THRESHOLD VIN vs. VDD OVER TEMPERATURE (VDD = 5V, -40×C TO 125×C) 3.0 3.5 4.0 4.5 5.0 5.5 0.0 -0.5 -1.0 -1.5 -2.0 -2.5 -3.0 -3.5 -4.0 -4.5 -5.0 IOH (mA) VOH (V) Max. -40°C Typ. 25°C Min. 125°C Typical: Statistical Mean @25°C Maximum: Mean (Worst-case Temp) + 3σ (-40°C to 125°C) (TTL Input, -40×C TO 125×C) 0.5 0.7 0.9 1.1 1.3 1.5 1.7 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 VDD (V) VIN (V) Typ. 25°C Max. -40°C Min. 125°C Typical: Statistical Mean @25°C Maximum: Mean (Worst-case Temp) + 3σ (-40°C to 125°C) © 2007 Microchip Technology Inc. DS41211D-page 151 PIC12F683 FIGURE 16-28: SCHMITT TRIGGER INPUT THRESHOLD VIN vs. VDD OVER TEMPERATURE FIGURE 16-29: T1OSC IPD vs. VDD OVER TEMPERATURE (32 kHz) (ST Input, -40×C TO 125×C) 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 VDD (V) VIN (V) VIH Max. 125°C VIH Min. -40°C VIL Min. 125°C VIL Max. -40°C Typical: Statistical Mean @25°C Maximum: Mean (Worst-case Temp) + 3σ (-40°C to 125°C) Typ. 25°C Max. 85°C Max. 125°C 0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 VDD (V) IPD (mA) Maximum: Mea n(- 4+0 3×C to 125×C) Typical: Statistical Mean @25°C Maximum: Mean (Worst-case Temp) + 3σ (-40°C to 125°C) PIC12F683 DS41211D-page 152 © 2007 Microchip Technology Inc. FIGURE 16-30: COMPARATOR RESPONSE TIME (RISING EDGE) FIGURE 16-31: COMPARATOR RESPONSE TIME (FALLING EDGE) 531 806 0 100 200 300 400 500 600 700 800 900 1000 2.0 2.5 4.0 5.5 VDD (V) Response Time (nS) Max. 85°C Typ. 25°C Min. -40°C Max. 125°C Note: V- input = Transition from VCM + 100MV to VCM - 20MV V+ input = VCM VCM = VDD - 1.5V)/2 0 100 200 300 400 500 600 700 800 900 1000 2.0 2.5 4.0 5.5 VDD (V) Response Time (nS) Max. 85°C Typ. 25°C Min. -40°C Max. 125°C Note: V- input = Transition from VCM - 100MV to VCM + 20MV V+ input = VCM VCM = VDD - 1.5V)/2 © 2007 Microchip Technology Inc. DS41211D-page 153 PIC12F683 FIGURE 16-32: LFINTOSC FREQUENCY vs. VDD OVER TEMPERATURE (31 kHz) FIGURE 16-33: ADC CLOCK PERIOD vs. VDD OVER TEMPERATURE LFINTOSC 31Khz 0 5,000 10,000 15,000 20,000 25,000 30,000 35,000 40,000 45,000 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 VDD (V) Frequency (Hz) Max. -40°C Typ. 25°C Min. 85°C Min. 125°C Typical: Statistical Mean @25°C Maximum: Mean (Worst-case Temp) + 3σ (-40°C to 125°C) 0 2 4 6 8 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 VDD (V) Time (μs) 25°C 85°C 125°C -40°C Typical: Statistical Mean @25°C Maximum: Mean (Worst-case Temp) + 3σ (-40°C to 125°C) PIC12F683 DS41211D-page 154 © 2007 Microchip Technology Inc. FIGURE 16-34: TYPICAL HFINTOSC START-UP TIMES vs. VDD OVER TEMPERATURE FIGURE 16-35: MAXIMUM HFINTOSC START-UP TIMES vs. VDD OVER TEMPERATURE 0 2 4 6 8 10 12 14 16 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 VDD (V) Time (μs) 85°C 25°C -40°C Typical: Statistical Mean @25°C Maximum: Mean (Worst-case Temp) + 3σ (-40°C to 125°C) -40C to +85C 0 5 10 15 20 25 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 VDD (V) Time (μs) -40°C 85°C 25°C Typical: Statistical Mean @25°C Maximum: Mean (Worst-case Temp) + 3σ (-40°C to 125°C) © 2007 Microchip Technology Inc. DS41211D-page 155 PIC12F683 FIGURE 16-36: MINIMUM HFINTOSC START-UP TIMES vs. VDD OVER TEMPERATURE FIGURE 16-37: TYPICAL HFINTOSC FREQUENCY CHANGE vs. VDD (25°C) -40C to +85C 0 1 2 3 4 5 6 7 8 9 10 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 VDD (V) Time (μs) -40°C 25°C 85°C Typical: Statistical Mean @25°C Maximum: Mean (Worst-case Temp) + 3σ (-40°C to 125°C) -5 -4 -3 -2 -1 0 1 2 3 4 5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 VDD (V) Change from Calibration (%) PIC12F683 DS41211D-page 156 © 2007 Microchip Technology Inc. FIGURE 16-38: TYPICAL HFINTOSC FREQUENCY CHANGE OVER DEVICE VDD (85°C) FIGURE 16-39: TYPICAL HFINTOSC FREQUENCY CHANGE vs. VDD (125°C) -5 -4 -3 -2 -1 0 1 2 3 4 5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 VDD (V) Change from Calibration (%) -5 -4 -3 -2 -1 0 1 2 3 4 5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 VDD (V) Change from Calibration (%) © 2007 Microchip Technology Inc. DS41211D-page 157 PIC12F683 FIGURE 16-40: TYPICAL HFINTOSC FREQUENCY CHANGE vs. VDD (-40°C) -5 -4 -3 -2 -1 0 1 2 3 4 5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 VDD (V) Change from Calibration (%) PIC12F683 DS41211D-page 158 © 2007 Microchip Technology Inc. NOTES: © 2007 Microchip Technology Inc. DS41211D-page 159 PIC12F683 17.0 PACKAGING INFORMATION 17.1 Package Marking Information * Standard PIC® device marking consists of Microchip part number, year code, week code and traceability code. For PIC device marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price. XXXXXNNN 8-Lead PDIP XXXXXXXX YYWW I/P 017 Example 12F683 0415 8-Lead SOIC (3.90 mm) XXXXXXXX XXXXYYWW NNN Example 12F683 I/SN0415 017 Legend: XX...X Customer-specific information Y Year code (last digit of calendar year) YY Year code (last 2 digits of calendar year) WW Week code (week of January 1 is week ‘01’) NNN Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) * This package is Pb-free. The Pb-free JEDEC designator ( ) can be found on the outer packaging for this package. Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information. e3 e3 XXXXXX 8-Lead DFN (4x4x0.9 mm) XXXXXX YYWW NNN 12F683 Example I/MD 0415 017 XXXXXXX 8-Lead DFN-S (6x5 mm) XXXXXXX XXYYWW NNN 12F683 Example I/MF 0415 017 e3 e3 e3 e3 PIC12F683 DS41211D-page 160 © 2007 Microchip Technology Inc. 17.2 Package Details The following sections give the technical details of the packages. 8-Lead Plastic Dual In-Line (P or PA) – 300 mil Body [PDIP] Notes: 1. Pin 1 visual index feature may vary, but must be located with the hatched area. 2. § Significant Characteristic. 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side. 4. Dimensioning and tolerancing per ASME Y14.5M. BSC: Basic Dimension. Theoretically exact value shown without tolerances. Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging Units INCHES Dimension Limits MIN NOM MAX Number of Pins N 8 Pitch e .100 BSC Top to Seating Plane A – – .210 Molded Package Thickness A2 .115 .130 .195 Base to Seating Plane A1 .015 – – Shoulder to Shoulder Width E .290 .310 .325 Molded Package Width E1 .240 .250 .280 Overall Length D .348 .365 .400 Tip to Seating Plane L .115 .130 .150 Lead Thickness c .008 .010 .015 Upper Lead Width b1 .040 .060 .070 Lower Lead Width b .014 .018 .022 Overall Row Spacing § eB – – .430 N E1 NOTE 1 D 1 2 3 A A1 A2 L b1 b e E eB c Microchip Technology Drawing C04-018B © 2007 Microchip Technology Inc. DS41211D-page 161 PIC12F683 8-Lead Plastic Small Outline (SN or OA) – Narrow, 3.90 mm Body [SOIC] Notes: 1. Pin 1 visual index feature may vary, but must be located within the hatched area. 2. § Significant Characteristic. 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side. 4. Dimensioning and tolerancing per ASME Y14.5M. BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only. Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging Units MILLIMETERS Dimension Limits MIN NOM MAX Number of Pins N 8 Pitch e 1.27 BSC Overall Height A – – 1.75 Molded Package Thickness A2 1.25 – – Standoff § A1 0.10 – 0.25 Overall Width E 6.00 BSC Molded Package Width E1 3.90 BSC Overall Length D 4.90 BSC Chamfer (optional) h 0.25 – 0.50 Foot Length L 0.40 – 1.27 Footprint L1 1.04 REF Foot Angle φ 0° – 8° Lead Thickness c 0.17 – 0.25 Lead Width b 0.31 – 0.51 Mold Draft Angle Top α 5° – 15° Mold Draft Angle Bottom β 5° – 15° D N e E E1 NOTE 1 1 2 3 b A A1 A2 L L1 c h h φ β α Microchip Technology Drawing C04-057B PIC12F683 DS41211D-page 162 © 2007 Microchip Technology Inc. 8-Lead Plastic Dual Flat, No Lead Package (MD) – 4x4x0.9 mm Body [DFN] Notes: 1. Pin 1 visual index feature may vary, but must be located within the hatched area. 2. Package may have one or more exposed tie bars at ends. 3. Package is saw singulated. 4. Dimensioning and tolerancing per ASME Y14.5M. BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only. Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging Units MILLIMETERS Dimension Limits MIN NOM MAX Number of Pins N 8 Pitch e 0.80 BSC Overall Height A 0.80 0.90 1.00 Standoff A1 0.00 0.02 0.05 Contact Thickness A3 0.20 REF Overall Length D 4.00 BSC Exposed Pad Width E2 0.00 2.20 2.80 Overall Width E 4.00 BSC Exposed Pad Length D2 0.00 3.00 3.60 Contact Width b 0.25 0.30 0.35 Contact Length L 0.30 0.55 0.65 Contact-to-Exposed Pad K 0.20 – – D N E NOTE 1 1 2 A3 A A1 NOTE 2 NOTE 1 D2 2 1 E2 L N e b K EXPOSED PAD TOP VIEW BOTTOM VIEW Microchip Technology Drawing C04-131C © 2007 Microchip Technology Inc. DS41211D-page 163 PIC12F683 8-Lead Plastic Dual Flat, No Lead Package (MF) – 6x5 mm Body [DFN-S] PUNCH SINGULATED Notes: 1. Pin 1 visual index feature may vary, but must be located within the hatched area. 2. Package may have one or more exposed tie bars at ends. 3. Dimensioning and tolerancing per ASME Y14.5M. BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only. Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging Units MILLIMETERS Dimension Limits MIN NOM MAX Number of Pins N 8 Pitch e 1.27 BSC Overall Height A – 0.85 1.00 Molded Package Thickness A2 – 0.65 0.80 Standoff A1 0.00 0.01 0.05 Base Thickness A3 0.20 REF Overall Length D 4.92 BSC Molded Package Length D1 4.67 BSC Exposed Pad Length D2 3.85 4.00 4.15 Overall Width E 5.99 BSC Molded Package Width E1 5.74 BSC Exposed Pad Width E2 2.16 2.31 2.46 Contact Width b 0.35 0.40 0.47 Contact Length L 0.50 0.60 0.75 Contact-to-Exposed Pad K 0.20 – – Model Draft Angle Top φ – – 12° φ NOTE 2 A3 A2 A1 A NOTE 1 NOTE 1 EXPOSED PAD BOTTOM VIEW 1 2 D2 2 1 E2 K L N e b E E1 D D1 N TOP VIEW Microchip Technology Drawing C04-113B PIC12F683 DS41211D-page 164 © 2007 Microchip Technology Inc. NOTES: © 2007 Microchip Technology Inc. DS41211D-page 165 PIC12F683 APPENDIX A: DATA SHEET REVISION HISTORY Revision A This is a new data sheet. Revision B Rewrites of the Oscillator and Special Features of the CPU sections. General corrections to Figures and formatting. Revision C Revisions throughout document. Incorporated Golden Chapters. Revision D Replaced Package Drawings; Revised Product ID Section (SN package to 3.90 mm); Replaced PICmicro with PIC; Replaced Dev Tool Section. APPENDIX B: MIGRATING FROM OTHER PIC® DEVICES This discusses some of the issues in migrating from other PIC devices to the PIC12F683 device. B.1 PIC16F676 to PIC12F683 TABLE B-1: FEATURE COMPARISON Feature PIC16F676 PIC12F683 Max Operating Speed 20 MHz 20 MHz Max Program Memory (Words) 1024 2048 SRAM (bytes) 64 128 A/D Resolution 10-bit 10-bit Data EEPROM (Bytes) 128 256 Timers (8/16-bit) 1/1 2/1 Oscillator Modes 8 8 Brown-out Reset Y Y Internal Pull-ups RA0/1/2/4/5 GP0/1/2/4/5, MCLR Interrupt-on-change RA0/1/2/3/4/5 GP0/1/2/3/4/5 Comparator 1 1 ECCP N N Ultra Low-Power Wake-Up N Y Extended WDT N Y Software Control Option of WDT/BOR N Y INTOSC Frequencies 4 MHz 32 kHz- 8 MHz Clock Switching N Y Note: This device has been designed to perform to the parameters of its data sheet. It has been tested to an electrical specification designed to determine its conformance with these parameters. Due to process differences in the manufacture of this device, this device may have different performance characteristics than its earlier version. These differences may cause this device to perform differently in your application than the earlier version of this device. PIC12F683 DS41211D-page 166 © 2007 Microchip Technology Inc. NOTES: © 2007 Microchip Technology Inc. DS41211D-page 167 PIC12F683 INDEX A A/D Specifications.................................................... 133, 134 Absolute Maximum Ratings .............................................. 115 AC Characteristics Industrial and Extended ............................................ 125 Load Conditions ........................................................ 124 ADC .................................................................................... 61 Acquisition Requirements ........................................... 67 Associated registers.................................................... 69 Block Diagram............................................................. 61 Calculating Acquisition Time....................................... 67 Channel Selection....................................................... 61 Configuration............................................................... 61 Configuring Interrupt ................................................... 64 Conversion Clock........................................................ 62 Conversion Procedure ................................................ 64 GPIO Configuration..................................................... 61 Internal Sampling Switch (RSS) IMPEDANCE ................ 67 Interrupts..................................................................... 63 Operation .................................................................... 63 Operation During Sleep .............................................. 64 Reference Voltage (VREF)........................................... 62 Result Formatting........................................................ 63 Source Impedance...................................................... 67 Special Event Trigger.................................................. 64 Starting an A/D Conversion ........................................ 63 ADCON0 Register............................................................... 65 ADRESH Register (ADFM = 0) ........................................... 66 ADRESH Register (ADFM = 1) ........................................... 66 ADRESL Register (ADFM = 0)............................................ 66 ADRESL Register (ADFM = 1)............................................ 66 Analog Input Connection Considerations............................ 52 Analog-to-Digital Converter. See ADC ANSEL Register .................................................................. 33 Assembler MPASM Assembler................................................... 112 B Block Diagrams (CCP) Capture Mode Operation ................................. 76 ADC ............................................................................ 61 ADC Transfer Function ............................................... 68 Analog Input Model ............................................... 52, 68 CCP PWM................................................................... 78 Clock Source............................................................... 19 Comparator ................................................................. 51 Compare ..................................................................... 77 Crystal Operation........................................................ 22 External RC Mode....................................................... 23 Fail-Safe Clock Monitor (FSCM) ................................. 29 GP1 Pin....................................................................... 37 GP2 Pin....................................................................... 37 GP3 Pin....................................................................... 38 GP4 Pin....................................................................... 38 GP5 Pin....................................................................... 39 In-Circuit Serial Programming Connections.............. 100 Interrupt Logic ............................................................. 93 MCLR Circuit............................................................... 86 On-Chip Reset Circuit ................................................. 85 PIC12F683.................................................................... 5 Resonator Operation................................................... 22 Timer1......................................................................... 44 Timer2 ........................................................................ 49 TMR0/WDT Prescaler ................................................ 41 Watchdog Timer (WDT).............................................. 96 Brown-out Reset (BOR)...................................................... 87 Associated.................................................................. 88 Calibration .................................................................. 87 Specifications ........................................................... 129 Timing and Characteristics ....................................... 128 C C Compilers MPLAB C18.............................................................. 112 MPLAB C30.............................................................. 112 Calibration Bits.................................................................... 85 Capture Module. See Capture/Compare/PWM (CCP) Capture/Compare/PWM (CCP) .......................................... 75 Associated registers w/ Capture, Compare and Timer1 ......................................................... 81 Associated registers w/ PWM and Timer2.................. 81 Capture Mode............................................................. 76 CCPx Pin Configuration.............................................. 76 Compare Mode........................................................... 77 CCPx Pin Configuration...................................... 77 Software Interrupt Mode............................... 76, 77 Special Event Trigger ......................................... 77 Timer1 Mode Selection................................. 76, 77 Prescaler .................................................................... 76 PWM Mode................................................................. 78 Duty Cycle .......................................................... 79 Effects of Reset .................................................. 80 Example PWM Frequencies and Resolutions, 20 MHZ.................................. 79 Example PWM Frequencies and Resolutions, 8 MHz .................................... 79 Operation in Sleep Mode.................................... 80 Setup for Operation ............................................ 80 System Clock Frequency Changes .................... 80 PWM Period ............................................................... 79 Setup for PWM Operation .......................................... 80 Timer Resources ........................................................ 75 CCP. See Capture/Compare/PWM (CCP) CCP1CON Register............................................................ 75 Clock Sources External Modes........................................................... 21 EC ...................................................................... 21 HS ...................................................................... 22 LP....................................................................... 22 OST .................................................................... 21 RC ...................................................................... 23 XT....................................................................... 22 Internal Modes............................................................ 23 Frequency Selection........................................... 25 HFINTOSC ......................................................... 23 INTOSC.............................................................. 23 INTOSCIO.......................................................... 23 LFINTOSC.......................................................... 25 Clock Switching .................................................................. 27 Code Examples A/D Conversion .......................................................... 64 Assigning Prescaler to Timer0.................................... 42 Assigning Prescaler to WDT....................................... 42 Changing Between Capture Prescalers ..................... 76 Data EEPROM Read.................................................. 73 Data EEPROM Write.................................................. 73 PIC12F683 DS41211D-page 168 © 2007 Microchip Technology Inc. Indirect Addressing .....................................................18 Initializing GPIO .......................................................... 31 Saving STATUS and W Registers in RAM ................. 95 Ultra Low-Power Wake-up Initialization ...................... 35 Write Verify ................................................................. 73 Code Protection .................................................................. 99 Comparator ......................................................................... 51 C2OUT as T1 Gate .....................................................57 Configurations............................................................. 53 I/O Operating Modes...................................................53 Interrupts..................................................................... 55 Operation .............................................................. 51, 54 Operation During Sleep .............................................. 56 Response Time........................................................... 54 Synchronizing COUT w/Timer1 .................................. 57 Comparator Module Associated registers.................................................... 59 Comparator Voltage Reference (CVREF) Response Time........................................................... 54 Comparator Voltage Reference (CVREF) ............................58 Effects of a Reset........................................................ 56 Specifications............................................................ 132 Comparators C2OUT as T1 Gate .....................................................45 Effects of a Reset........................................................ 56 Specifications............................................................ 132 Compare Module. See Capture/Compare/PWM (CCP) CONFIG Register................................................................ 84 Configuration Bits................................................................ 83 CPU Features ..................................................................... 83 Customer Change Notification Service ............................. 171 Customer Notification Service........................................... 171 Customer Support ............................................................. 171 D Data EEPROM Memory Associated Registers .................................................. 74 Code Protection .................................................... 71, 74 Data Memory Organization ...................................................7 Map of the PIC12F683.................................................. 8 DC and AC Characteristics Graphs and Tables ...................................................137 DC Characteristics Extended and Industrial ............................................ 121 Industrial and Extended ............................................ 117 Development Support ....................................................... 111 Device Overview ................................................................... 5 E EEADR Register ................................................................. 71 EECON1 Register ............................................................... 72 EECON2 Register ............................................................... 72 EEDAT Register.................................................................. 71 EEPROM Data Memory Avoiding Spurious Write.............................................. 74 Reading....................................................................... 73 Write Verify ................................................................. 73 Writing......................................................................... 73 Effects of Reset PWM mode ................................................................. 80 Electrical Specifications .................................................... 115 Enhanced Capture/Compare/PWM (ECCP) Specifications............................................................ 131 Errata .................................................................................... 3 F Fail-Safe Clock Monitor ...................................................... 29 Fail-Safe Condition Clearing....................................... 29 Fail-Safe Detection ..................................................... 29 Fail-Safe Operation..................................................... 29 Reset or Wake-up from Sleep .................................... 29 Firmware Instructions ....................................................... 101 Fuses. See Configuration Bits G General Purpose Register File ............................................. 8 GPIO................................................................................... 31 Additional Pin Functions ............................................. 32 ANSEL Register ................................................. 32 Interrupt-on-Change ........................................... 32 Ultra Low-Power Wake-up............................ 32, 35 Weak Pull-up ...................................................... 32 Associated Registers.................................................. 39 GP0 ............................................................................ 36 GP1 ............................................................................ 37 GP2 ............................................................................ 37 GP3 ............................................................................ 38 GP4 ............................................................................ 38 GP5 ............................................................................ 39 Pin Descriptions and Diagrams .................................. 36 Specifications ........................................................... 127 GPIO Register .................................................................... 31 I ID Locations........................................................................ 99 In-Circuit Debugger........................................................... 100 In-Circuit Serial Programming (ICSP)............................... 100 Indirect Addressing, INDF and FSR Registers ................... 18 Instruction Format............................................................. 101 Instruction Set................................................................... 101 ADDLW..................................................................... 103 ADDWF..................................................................... 103 ANDLW..................................................................... 103 ANDWF..................................................................... 103 BCF .......................................................................... 103 BSF........................................................................... 103 BTFSC...................................................................... 103 BTFSS ...................................................................... 104 CALL......................................................................... 104 CLRF ........................................................................ 104 CLRW....................................................................... 104 CLRWDT .................................................................. 104 COMF ....................................................................... 104 DECF........................................................................ 104 DECFSZ ................................................................... 105 GOTO....................................................................... 105 INCF ......................................................................... 105 INCFSZ..................................................................... 105 IORLW...................................................................... 105 IORWF...................................................................... 105 MOVF ....................................................................... 106 MOVLW.................................................................... 106 MOVWF.................................................................... 106 NOP.......................................................................... 106 RETFIE..................................................................... 107 RETLW..................................................................... 107 RETURN................................................................... 107 RLF........................................................................... 108 RRF .......................................................................... 108 SLEEP ...................................................................... 108 © 2007 Microchip Technology Inc. DS41211D-page 169 PIC12F683 SUBLW..................................................................... 108 SUBWF..................................................................... 109 SWAPF ..................................................................... 109 XORLW..................................................................... 109 XORWF..................................................................... 109 INTCON Register ................................................................ 14 Internal Oscillator Block INTOSC Specifications............................................ 126, 127 Internal Sampling Switch (RSS) IMPEDANCE ........................ 67 Internet Address................................................................ 171 Interrupts............................................................................. 92 ADC ............................................................................ 64 Associated Registers .................................................. 94 Comparator ................................................................. 55 Context Saving............................................................ 95 Data EEPROM Memory Write .................................... 72 GP2/INT...................................................................... 92 GPIO Interrupt-on-change .......................................... 93 Interrupt-on-Change.................................................... 32 Timer0......................................................................... 93 TMR1 .......................................................................... 46 INTOSC Specifications ............................................. 126, 127 IOC Register ....................................................................... 34 L Load Conditions ................................................................ 124 M MCLR.................................................................................. 86 Internal ........................................................................ 86 Memory Organization Data EEPROM Memory.............................................. 71 Microchip Internet Web Site.............................................. 171 Migrating from other PIC Devices ..................................... 165 MPLAB ASM30 Assembler, Linker, Librarian ................... 112 MPLAB ICD 2 In-Circuit Debugger ................................... 113 MPLAB ICE 2000 High-Performance Universal In-Circuit Emulator .................................................... 113 MPLAB ICE 4000 High-Performance Universal In-Circuit Emulator .................................................... 113 MPLAB Integrated Development Environment Software .. 111 MPLAB PM3 Device Programmer .................................... 113 MPLINK Object Linker/MPLIB Object Librarian ................ 112 O OPCODE Field Descriptions............................................. 101 OPTION Register .......................................................... 13, 43 OSCCON Register .............................................................. 20 Oscillator Associated registers.............................................. 30, 48 Oscillator Module ................................................................ 19 EC............................................................................... 19 HFINTOSC.................................................................. 19 HS............................................................................... 19 INTOSC ...................................................................... 19 INTOSCIO................................................................... 19 LFINTOSC .................................................................. 19 LP................................................................................ 19 RC............................................................................... 19 RCIO........................................................................... 19 XT ............................................................................... 19 Oscillator Parameters ....................................................... 126 Oscillator Specifications.................................................... 125 Oscillator Start-up Timer (OST) Specifications............................................................ 129 Oscillator Switching Fail-Safe Clock Monitor .............................................. 29 Two-Speed Clock Start-up ......................................... 27 OSCTUNE Register............................................................ 24 P Packaging......................................................................... 159 Details....................................................................... 160 Marking..................................................................... 159 PCL and PCLATH............................................................... 18 Computed GOTO ....................................................... 18 Stack........................................................................... 18 PCON Register ............................................................. 17, 88 PICSTART Plus Development Programmer..................... 114 PIE1 Register ..................................................................... 15 Pin Diagram.......................................................................... 2 Pinout Descriptions PIC12F683 ................................................................... 6 PIR1 Register ..................................................................... 16 Power-Down Mode (Sleep)................................................. 98 Power-On Reset (POR) ...................................................... 86 Power-up Timer (PWRT) .................................................... 86 Specifications ........................................................... 129 Precision Internal Oscillator Parameters .......................... 127 Prescaler Shared WDT/Timer0................................................... 42 Switching Prescaler Assignment ................................ 42 Program Memory Organization............................................. 7 Map and Stack for the PIC12F683 ............................... 7 Programming, Device Instructions.................................... 101 R Reader Response............................................................. 172 Read-Modify-Write Operations ......................................... 101 Registers ADCON0 (ADC Control 0) .......................................... 65 ADRESH (ADC Result High) with ADFM = 0) ............ 66 ADRESH (ADC Result High) with ADFM = 1) ............ 66 ADRESL (ADC Result Low) with ADFM = 0).............. 66 ADRESL (ADC Result Low) with ADFM = 1).............. 66 ANSEL (Analog Select) .............................................. 33 CCP1CON (CCP1 Control) ........................................ 75 CMCON0 (Comparator Control) Register................... 56 CMCON1 (Comparator Control) Register................... 57 CONFIG (Configuration Word) ................................... 84 EEADR (EEPROM Address) ...................................... 71 EECON1 (EEPROM Control 1) .................................. 72 EECON2 (EEPROM Control 2) .................................. 72 EEDAT (EEPROM Data) ............................................ 71 GPIO........................................................................... 31 INTCON (Interrupt Control) ........................................ 14 IOC (Interrupt-on-Change GPIO) ............................... 34 OPTION_REG (OPTION)..................................... 13, 43 OSCCON (Oscillator Control)..................................... 20 OSCTUNE (Oscillator Tuning).................................... 24 PCON (Power Control Register)................................. 17 PCON (Power Control) ............................................... 88 PIE1 (Peripheral Interrupt Enable 1) .......................... 15 PIR1 (Peripheral Interrupt Register 1) ........................ 16 Reset Values .............................................................. 90 Reset Values (Special Registers)............................... 91 STATUS ..................................................................... 12 T1CON ....................................................................... 47 T2CON ....................................................................... 50 TRISIO (Tri-State GPIO) ............................................ 32 VRCON (Voltage Reference Control) ......................... 58 PIC12F683 DS41211D-page 170 © 2007 Microchip Technology Inc. WDTCON (Watchdog Timer Control).......................... 97 WPU (Weak Pull-Up GPIO) ........................................ 34 Resets ................................................................................. 85 Brown-out Reset (BOR) .............................................. 85 MCLR Reset, Normal Operation ................................. 85 MCLR Reset, Sleep .................................................... 85 Power-on Reset (POR) ............................................... 85 WDT Reset, Normal Operation ................................... 85 WDT Reset, Sleep ...................................................... 85 Revision History ................................................................ 165 S Sleep Power-Down Mode .....................................................98 Wake-up......................................................................98 Wake-up Using Interrupts ........................................... 98 Software Simulator (MPLAB SIM)..................................... 112 Special Event Trigger.......................................................... 64 Special Function Registers ...................................................8 STATUS Register................................................................ 12 T T1CON Register.................................................................. 47 T2CON Register.................................................................. 50 Thermal Considerations .................................................... 123 Time-out Sequence............................................................. 88 Timer0................................................................................. 41 Associated Registers .................................................. 43 External Clock............................................................. 42 Interrupt................................................................. 13, 43 Operation .............................................................. 41, 44 Specifications............................................................ 130 T0CKI ..........................................................................42 Timer1................................................................................. 44 Associated registers.................................................... 48 Asynchronous Counter Mode ..................................... 45 Reading and Writing ........................................... 45 Interrupt....................................................................... 46 Modes of Operation .................................................... 44 Operation During Sleep .............................................. 46 Oscillator ..................................................................... 45 Prescaler ..................................................................... 45 Specifications............................................................ 130 Timer1 Gate Inverting Gate .....................................................45 Selecting Source........................................... 45, 57 Synchronizing COUT w/Timer1 .......................... 57 TMR1H Register ......................................................... 44 TMR1L Register .......................................................... 44 Timer2 Associated registers.................................................... 50 Timers Timer1 T1CON................................................................ 47 Timer2 T2CON................................................................ 50 Timing Diagrams A/D Conversion......................................................... 135 A/D Conversion (Sleep Mode) .................................. 135 Brown-out Reset (BOR) ............................................ 128 Brown-out Reset Situations ........................................ 87 CLKOUT and I/O....................................................... 127 Clock Timing ............................................................. 125 Comparator Output .....................................................51 Enhanced Capture/Compare/PWM (ECCP) ............. 131 Fail-Safe Clock Monitor (FSCM) ................................. 30 INT Pin Interrupt ......................................................... 94 Internal Oscillator Switch Timing ................................ 26 Reset, WDT, OST and Power-up Timer ................... 128 Time-out Sequence on Power-up (Delayed MCLR) ... 89 Time-out Sequence on Power-up (MCLR with VDD) .. 89 Timer0 and Timer1 External Clock ........................... 130 Timer1 Incrementing Edge ......................................... 46 Two Speed Start-up.................................................... 28 Wake-up from Sleep Through Interrupt ...................... 99 Timing Parameter Symbology .......................................... 124 TRISIO Register ................................................................. 32 Two-Speed Clock Start-up Mode........................................ 27 U Ultra Low-Power Wake-up............................................ 32, 35 V Voltage Reference. See Comparator Voltage Reference (CVREF) Voltage References Associated registers ................................................... 59 VREF. SEE ADC Reference Voltage W Wake-up Using Interrupts ................................................... 98 Watchdog Timer (WDT)...................................................... 96 Associated Registers.................................................. 97 Clock Source .............................................................. 96 Modes......................................................................... 96 Period ......................................................................... 96 Specifications ........................................................... 129 WDTCON Register ............................................................. 97 WPU Register ..................................................................... 34 WWW Address ................................................................. 171 WWW, On-Line Support ....................................................... 3 © 2007 Microchip Technology Inc. DS41211D-page 171 PIC12F683 THE MICROCHIP WEB SITE Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information: • Product Support – Data sheets and errata, application notes and sample programs, design resources, user’s guides and hardware support documents, latest software releases and archived software • General Technical Support – Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing • Business of Microchip – Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives CUSTOMER CHANGE NOTIFICATION SERVICE Microchip’s customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest. To register, access the Microchip web site at www.microchip.com, click on Customer Change Notification and follow the registration instructions. CUSTOMER SUPPORT Users of Microchip products can receive assistance through several channels: • Distributor or Representative • Local Sales Office • Field Application Engineer (FAE) • Technical Support • Development Systems Information Line Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document. Technical support is available through the web site at: http://support.microchip.com PIC12F683 DS41211D-page 172 © 2007 Microchip Technology Inc. READER RESPONSE It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150. Please list the following information, and use this outline to provide us with your comments about this document. To: Technical Publications Manager RE: Reader Response Total Pages Sent ________ From: Name Company Address City / State / ZIP / Country Telephone: (_______) _________ - _________ Application (optional): Would you like a reply? Y N Device: Literature Number: Questions: FAX: (______) _________ - _________ PIC12F683 DS41211D 1. What are the best features of this document? 2. How does this document meet your hardware and software development needs? 3. Do you find the organization of this document easy to follow? If not, why? 4. What additions to the document do you think would enhance the structure and subject? 5. What deletions from the document could be made without affecting the overall usefulness? 6. Is there any incorrect or misleading information (what and where)? 7. How would you improve this document? © 2007 Microchip Technology Inc. DS41211D-page 173 PIC12F683 PRODUCT IDENTIFICATION SYSTEM To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office. PART NO. X /XX XXX Temperature Package Pattern Range Device Device: PIC12F683(1), PIC12F683T(2) VDD range 2.0V to 5.5V Temperature Range: I = -40°C to +85°C(Industrial) E = -40°C to +125°C (Extended) Package: P = Plastic DIP MD = Dual-Flat, No Leads (DFN-S, 4x4x0.9 mm) MF = Dual-Flat, No Leads (DFN-S, 6x5 mm) SN = 8-lead Small Outline (3.90 mm) Pattern: 3-digit Pattern Code for QTP (blank otherwise) Examples: a) PIC12F683-E/P 301 = Extended Temp., PDIP package, 20 MHz, QTP pattern #301 b) PIC12F683-I/SN = Industrial Temp., SOIC package, 20 MHz Note 1: F = Standard Voltage Range LF = Wide Voltage Range 2: T = in tape and reel PLCC, and TQFP packages only. DS41211D-page 174 © 2007 Microchip Technology Inc. AMERICAS Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://support.microchip.com Web Address: www.microchip.com Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455 Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088 Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075 Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924 Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260 Kokomo Kokomo, IN Tel: 765-864-8360 Fax: 765-864-8387 Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445 Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509 ASIA/PACIFIC Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Habour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755 China - Beijing Tel: 86-10-8528-2100 Fax: 86-10-8528-2104 China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889 China - Fuzhou Tel: 86-591-8750-3506 Fax: 86-591-8750-3521 China - Hong Kong SAR Tel: 852-2401-1200 Fax: 852-2401-3431 China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205 China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066 China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393 China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760 China - Shunde Tel: 86-757-2839-5507 Fax: 86-757-2839-5571 China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118 China - Xian Tel: 86-29-8833-7250 Fax: 86-29-8833-7256 ASIA/PACIFIC India - Bangalore Tel: 91-80-4182-8400 Fax: 91-80-4182-8422 India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632 India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513 Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122 Korea - Gumi Tel: 82-54-473-4301 Fax: 82-54-473-4302 Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934 Malaysia - Penang Tel: 60-4-646-8870 Fax: 60-4-646-5086 Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069 Singapore Tel: 65-6334-8870 Fax: 65-6334-8850 Taiwan - Hsin Chu Tel: 886-3-572-9526 Fax: 886-3-572-6459 Taiwan - Kaohsiung Tel: 886-7-536-4818 Fax: 886-7-536-4803 Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102 Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350 EUROPE Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829 France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79 Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44 Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781 Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340 Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91 UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820 WORLDWIDE SALES AND SERVICE 12/08/06 8285ES–AVR–02/2013 Features • High performance, low power Atmel® AVR® 8-Bit Microcontroller • Advanced RISC architecture – 130 powerful instructions – most single clock cycle execution – 32 × 8 general purpose working registers – Fully static operation – Up to 16MIPS throughput at 16MHz (Atmel ATmega165PA/645P) – Up to 20MIPS throughput at 20MHz (Atmel ATmega165A/325A/325PA/645A/3250A/3250PA/6450A/6450P) – On-chip 2-cycle multiplier • High endurance non-volatile memory segments – In-system self-programmable flash program memory • 16KBytes (ATmega165A/ATmega165PA) • 32KBytes (ATmega325A/ATmega325PA/ATmega3250A/ATmega3250PA) • 64KBytes (ATmega645A/ATmega645P/ATmega6450A/ATmega6450P) – EEPROM • 512Bytes (ATmega165A/ATmega165PA) • 1Kbytes (ATmega325A/ATmega325PA/ATmega3250A/ATmega3250PA) • 2Kbytes (ATmega645A/ATmega645P/ATmega6450A/ATmega6450P) – Internal SRAM • 1KBytes (ATmega165A/ATmega165PA) • 2KBytes (ATmega325A/ATmega325PA/ATmega3250A/ATmega3250PA) • 4KBytes (ATmega645A/ATmega645P/ATmega6450A/ATmega6450P) – Write/erase cycles: 10,000 flash/100,000 EEPROM – Data retention: 20 years at 85°C/100 years at 25C (1) – Optional Boot Code Section with Independent Lock Bits • In-System Programming by On-chip Boot Program • True read-while-write operation – Programming lock for software security • Atmel QTouch® library support – Capacitive touch buttons, sliders and wheels – Atmel QTouch and QMatrix acquisition – Up to 64 sense channels • JTAG (IEEE std. 1149.1 compliant) interface – Boundary-scan capabilities according to the JTAG standard – Extensive on-chip debug support – Programming of Flash, EEPROM, Fuses, and Lock Bits through the JTAG Interface • Peripheral Features – Two 8-bit Timer/Counters with Separate Prescaler and Compare Mode – One 16-bit Timer/Counter with Separate Prescaler, Compare Mode, and Capture Mode – Real time counter with separate oscillator – Four PWM channels – 8-channel, 10-bit ADC – Programmable serial USART – Master/Slave SPI Serial Interface – Universal Serial Interface with Start Condition detector – Programmable Watchdog Timer with separate on-chip oscillator – On-chip Analog Comparator – Interrupt and Wake-up on pin change • Special microcontroller features – Power-on reset and programmable Brown-out detection – Internal calibrated oscillator – External and internal interrupt sources – Five sleep modes: Idle, ADC Noise Reduction, Power-save, Power-down and Standby • I/O and packages – 54/69 programmable I/O lines – 64/100-lead TQFP, 64-pad QFN/MLF and 64-pad DRQFN • Speed grade: – ATmega 165A/165PA/645A/645P: 0 - 16MHz @ 1.8 - 5.5V – ATmega325A/325PA/3250A/3250PA/6450A/6450P: 0 - 20MHz @ 1.8 - 5.5V • Temperature range: – -40°C to 85C industrial • Ultra-low power consumption (picoPower® devices) – Active mode: • 1MHz, 1.8V: 215μA • 32kHz, 1.8V: 8μA (including oscillator) – Power-down mode: 0.1μA at 1.8V – Power-save mode: 0.6μA at 1.8V (Including 32kHz RTC) Note: 1. Reliability Qualification results show that the projected data retention failure rate is much less than 1 PPM over 20 years at 85°C or 100 years at 25°C. Atmel ATmega165A/PA/325A/PA/3250A/PA/645A/P/6450A/P 8-bit Atmel Microcontroller with 16/32/64KB In-System Programmable Flash SUMMARY ATmega165A/PA/325A/PA/3250A/PA/645A/P/6450A/P [SUMMARY] 2 8285ES–AVR–02/2013 1. Pin configurations 1.1 Pinout - TQFP and QFN/MLF Figure 1-1. 64A (TQFP)and 64M1 (QFN/MLF) pinout Atmel ATmega165A/ATmega165PA/ATmega325A/ATmega325PA/ATmega645A/ATmega645P. Note: The large center pad underneath the QFN/MLF packages is made of metal and internally connected to GND. It should be soldered or glued to the board to ensure good mechanical stability. If the center pad is left unconnected, the package might loosen from the board. 64 63 62 47 46 48 45 44 43 42 41 40 39 38 37 36 35 33 34 2 3 1 4 5 6 7 8 9 10 11 12 13 14 16 15 17 61 60 18 59 20 58 19 21 57 22 56 23 55 24 54 25 53 26 52 27 51 29 28 50 32 49 31 30 PC0 VCC GND PF0 (ADC0) PF7 (ADC7/TDI) PF1 (ADC1) PF2 (ADC2) PF3 (ADC3) PF4 (ADC4/TCK) PF5 (ADC5/TMS) PF6 (ADC6/TDO) AREF GND AVCC (RXD/PCINT0) PE0 (TXD/PCINT1) PE1 DNC (XCK/AIN0/PCINT2) PE2 (AIN1/PCINT3) PE3 (USCK/SCL/PCINT4) PE4 (DI/SDA/PCINT5) PE5 (DO/PCINT6) PE6 (CLKO/PCINT7) PE7 (SS/PCINT8) PB0 (SCK/PCINT9) PB1 (MOSI/PCINT10) PB2 (MISO/PCINT11) PB3 (OC0A/PCINT12) PB4 (OC2A/PCINT15) PB7 (T1) PG3 (OC1B/PCINT14) PB6 (T0) PG4 (OC1A/PCINT13) PB5 PC1 PG0 PD7 PC2 PC3 PC4 PC5 PC6 PC7 PA7 PG2 PA6 PA5 PA4 PA3 PA0 PA1 PA2 PG1 PD6 PD5 PD4 PD3 PD2 (INT0) PD1 (ICP1) PD0 (TOSC1) XTAL1 (TOSC2) XTAL2 RESET/PG5 GND VCC INDEX CORNER ATmega165A/PA/325A/PA/3250A/PA/645A/P/6450A/P [SUMMARY] 3 8285ES–AVR–02/2013 1.2 Pinout - 100A (TQFP) Figure 1-2. Pinout Atmel ATmega3250A/ATmega3250PA/ATmega6450A/ATmega6450P. (OC2A/PCINT15) PB7 DNC (T1) PG3 (T0) PG4 RESET/PG5 VCC GND (TOSC2) XTAL2 (TOSC1) XTAL1 DNC DNC (PCINT26) PJ2 (PCINT27) PJ3 (PCINT28) PJ4 (PCINT29) PJ5 (PCINT30) PJ6 DNC (ICP1) PD0 (INT0) PD1 PD2 PD3 PD4 PD5 PD6 PD7 AVCC AGND AREF PF0 (ADC0) PF1 (ADC1) PF2 (ADC2) PF3 (ADC3) PF4 (ADC4/TCK) PF5 (ADC5/TMS) PF6 (ADC6/TDO) PF7 (ADC7/TDI) DNC DNC PH7 (PCINT23) PH6 (PCINT22) PH5 (PCINT21) PH4 (PCINT20) DNC DNC GND VCC DNC PA0 PA1 PA2 PA3 PA4 PA5 PA6 PA7 PG2 PC7 PC6 DNC PH3 (PCINT19) PH2 (PCINT18) PH1 (PCINT17) PH0 (PCINT16) DNC DNC DNC DNC PC5 PC4 PC3 PC2 PC1 PC0 PG1 PG0 INDEX CORNER 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 DNC (RXD/PCINT0) PE0 (TXD/PCINT1) PE1 (XCK/AIN0/PCINT2) PE2 (AIN1/PCINT3) PE3 (USCK/SCL/PCINT4) PE4 (DI/SDA/PCINT5) PE5 (DO/PCINT6) PE6 (CLKO/PCINT7) PE7 VCC GND DNC (PCINT24) PJ0 (PCINT25) PJ1 DNC DNC DNC DNC (SS/PCINT8) PB0 (SCK/PCINT9) PB1 (MOSI/PCINT10) PB2 (MISO/PCINT11) PB3 (OC0A/PCINT12) PB4 (OC1A/PCINT13) PB5 (OC1B/PCINT14) PB6 TQFP ATmega165A/PA/325A/PA/3250A/PA/645A/P/6450A/P [SUMMARY] 4 8285ES–AVR–02/2013 2. Overview The Atmel ATmega165A/165PA/325A/325PA/3250A/3250PA/645A/645P/6450A/6450P is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC architecture. By executing powerful instructions in a single clock cycle, this microcontroller achieves throughputs approaching 1 MIPS per MHz allowing the system designer to optimize power consumption versus processing speed. 2.1 Block diagram Figure 2-1. Block diagram. The AVR core combines a rich instruction set with 32 general purpose working registers. All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one single instruction executed in one clock cycle. The resulting architecture is more code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers. PROGRAM COUNTER INTERNAL OSCILLATOR WATCHDOG TIMER STACK POINTER PROGRAM FLASH MCU CONTROL REGISTER SRAM GENERAL PURPOSE REGISTERS INSTRUCTION REGISTER TIMER/ COUNTERS INSTRUCTION DECODER DATA DIR. REG. PORTB DATA DIR. REG. PORTE DATA DIR. REG. PORTA DATA DIR. REG. PORTD DATA REGISTER PORTB DATA REGISTER PORTE DATA REGISTER PORTA DATA REGISTER PORTD TIMING AND CONTROL OSCILLATOR INTERRUPT UNIT EEPROM USART SPI STATUS REGISTER Z Y X ALU PORTE DRIVERS PORTB DRIVERS PORTF DRIVERS PORTA DRIVERS PORTD DRIVERS PORTC DRIVERS PE0 - PE7 PB0 - PB7 PF0 - PF7 PA0 - PA7 GND VCC XTAL1 XTAL2 CONTROL LINES + - ANALOG COMPARATOR PC0 - PC7 8-BIT DATA BUS RESET CALIB. OSC DATA DIR. REG. PORTC DATA REGISTER PORTC ON-CHIP DEBUG JTAG TAP PROGRAMMING LOGIC BOUNDARYSCAN DATA DIR. REG. PORTF DATA REGISTER PORTF ADC PD0 - PD7 DATA DIR. REG. PORTG DATA REG. PORTG PORTG DRIVERS PG0 - PG4 AGND AREF AVCC UNIVERSAL SERIAL INTERFACE AVR CPU PORTH DRIVERS PH0 - PH7 DATA DIR. REG. PORTH DATA REGISTER PORTH PORTJ DRIVERS PJ0 - PJ6 DATA DIR. REG. PORTJ DATA REGISTER PORTJ ATmega165A/PA/325A/PA/3250A/PA/645A/P/6450A/P [SUMMARY] 5 8285ES–AVR–02/2013 The Atmel ATmega165A/165PA/325A/325PA/3250A/3250PA/645A/645P/6450A/6450P provides the following features: 16K/32K/64K bytes of In-System Programmable Flash with Read-While-Write capabilities, 512/1K/2K bytes EEPROM, 1K/2K/4K byte SRAM, 54/69 general purpose I/O lines, 32 general purpose working registers, a JTAG interface for Boundary-scan, On-chip Debugging support and programming, three flexible Timer/Counters with compare modes, internal and external interrupts, a serial programmable USART, Universal Serial Interface with Start Condition Detector, an 8-channel, 10-bit ADC, a programmable Watchdog Timer with internal Oscillator, an SPI serial port, and five software selectable power saving modes. The Idle mode stops the CPU while allowing the SRAM, Timer/Counters, SPI port, and interrupt system to continue functioning. The Power-down mode saves the register contents but freezes the Oscillator, disabling all other chip functions until the next interrupt or hardware reset. In Power-save mode, the asynchronous timer continues to run, allowing the user to maintain a timer base while the rest of the device is sleeping. The ADC Noise Reduction mode stops the CPU and all I/O modules except asynchronous timer and ADC, to minimize switching noise during ADC conversions. In Standby mode, the XTAL/resonator Oscillator is running while the rest of the device is sleeping. This allows very fast start-up combined with low-power consumption. Atmel offers the QTouch® library for embedding capacitive touch buttons, sliders and wheels functionality into AVR microcontrollers. The patented charge-transfer signal acquisition offers robust sensing and includes fully debounced reporting of touch keys and includes Adjacent Key Suppression® (AKS®) technology for unambiguous detection of key events. The easy-to-use QTouch Suite toolchain allows you to explore, develop and debug your own touch applications. The device is manufactured using Atmel’s high density non-volatile memory technology. The On-chip ISP Flash allows the program memory to be reprogrammed In-System through an SPI serial interface, by a conventional nonvolatile memory programmer, or by an On-chip Boot program running on the AVR core. The Boot program can use any interface to download the application program in the Application Flash memory. Software in the Boot Flash section will continue to run while the Application Flash section is updated, providing true Read-While-Write operation. By combining an 8-bit RISC CPU with In-System Self-Programmable Flash on a monolithic chip, the Atmel devise is a powerful microcontroller that provides a highly flexible and cost effective solution to many embedded control applications. The ATmega165A/165PA/325A/325PA/3250A/3250PA/645A/645P/6450A/6450P AVR is supported with a full suite of program and system development tools including: C Compilers, Macro Assemblers, Program Debugger/ Simulators, In-Circuit Emulators, and Evaluation kits. ATmega165A/PA/325A/PA/3250A/PA/645A/P/6450A/P [SUMMARY] 6 8285ES–AVR–02/2013 2.2 Comparison between Atmel ATmega165A/165PA/325A/325PA/3250A/3250PA/645A/645P/6450A/6450P 2.3 Pin descriptions 2.3.1 VCC Digital supply voltage. 2.3.2 GND Ground. 2.3.3 Port A (PA7:PA0) Port A is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port A output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port A pins that are externally pulled low will source current if the pull-up resistors are activated. The Port A pins are tri-stated when a reset condition becomes active, even if the clock is not running. Port A also serves the functions of various special features of the ATmega165A/165PA/325A/325PA/3250A/3250PA/645A/645P/6450A/6450P as listed on ”Alternate functions of Port B” on page 68. 2.3.4 Port B (PB7:PB0) Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port B output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up resistors are activated. The Port B pins are tri-stated when a reset condition becomes active, even if the clock is not running. Port B has better driving capabilities than the other ports. Port B also serves the functions of various special features of the ATmega165A/165PA/325A/325PA/3250A/3250PA/645A/645P/6450A/6450P as listed on ”Alternate functions of Port B” on page 68. 2.3.5 Port C (PC7:PC0) Port C is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port C output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port C pins that are Table 2-1. Differences between: ATmega165A/165PA/325A/325PA/3250A/3250PA/645A/645P/6450A/6450P. Device Flash EEPROM RAM MHz ATmega165A 16Kbyte 512Bytes 1Kbyte 16 ATmega165PA 16Kbyte 512Bytes 1Kbyte 16 ATmega325A 32Kbyte 1Kbyte 2Kbyte 20 ATmega325PA 32Kbyte 1Kbyte 2Kbyte 20 ATmega3250A 32Kbytes 1Kbyte 2Kbyte 20 ATmega3250PA 32Kbyte 1Kbyte 2Kbyte 20 ATmega645A 64Kbyte 2Kbyte 4Kbyte 16 ATmega645P 64Kbyte 2Kbyte 4Kbyte 16 ATmega6450A 64Kbyte 2Kbyte 4Kbyte 20 ATmega6450P 64Kbyte 2Kbyte 4Kbyte 20 ATmega165A/PA/325A/PA/3250A/PA/645A/P/6450A/P [SUMMARY] 7 8285ES–AVR–02/2013 externally pulled low will source current if the pull-up resistors are activated. The Port C pins are tri-stated when a reset condition becomes active, even if the clock is not running. Port C also serves the functions of special features of the Atmel ATmega165A/165PA/325A/325PA/3250A/3250PA/645A/645P/6450A/6450P as listed on ”Alternate functions of Port D” on page 70. 2.3.6 Port D (PD7:PD0) Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port D output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port D pins that are externally pulled low will source current if the pull-up resistors are activated. The Port D pins are tri-stated when a reset condition becomes active, even if the clock is not running. Port D also serves the functions of various special features of the ATmega165A/165PA/325A/325PA/3250A/3250PA/645A/645P/6450A/6450P as listed on ”Alternate functions of Port D” on page 70. 2.3.7 Port E (PE7:PE0) Port E is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port E output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port E pins that are externally pulled low will source current if the pull-up resistors are activated. The Port E pins are tri-stated when a reset condition becomes active, even if the clock is not running. Port E also serves the functions of various special features of the ATmega165A/165PA/325A/325PA/3250A/3250PA/645A/645P/6450A/6450P as listed on ”Alternate functions of Port E” on page 71. 2.3.8 Port F (PF7:PF0) Port F serves as the analog inputs to the A/D Converter. Port F also serves as an 8-bit bi-directional I/O port, if the A/D Converter is not used. Port pins can provide internal pull-up resistors (selected for each bit). The Port F output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port F pins that are externally pulled low will source current if the pull-up resistors are activated. The Port F pins are tri-stated when a reset condition becomes active, even if the clock is not running. If the JTAG interface is enabled, the pull-up resistors on pins PF7(TDI), PF5(TMS), and PF4(TCK) will be activated even if a reset occurs. Port F also serves the functions of the JTAG interface, see ”Alternate functions of Port F” on page 73. 2.3.9 Port G (PG5:PG0) Port G is a 6-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port G output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port G pins that are externally pulled low will source current if the pull-up resistors are activated. The Port G pins are tri-stated when a reset condition becomes active, even if the clock is not running. Port G also serves the functions of various special features of the ATmega165A/165PA/325A/325PA/3250A/3250PA/645A/645P/6450A/6450P as listed on page 75. 2.3.10 Port H (PH7:PH0) Port H is a 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port H output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port H pins that are externally pulled low will source current if the pull-up resistors are activated. The Port H pins are tri-stated when a reset condition becomes active, even if the clock is not running. Port H also serves the functions of various special features of the ATmega3250A/3250PA/6450A/6450P as listed on page 76. ATmega165A/PA/325A/PA/3250A/PA/645A/P/6450A/P [SUMMARY] 8 8285ES–AVR–02/2013 2.3.11 Port J (PJ6:PJ0) Port J is a 7-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port J output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port J pins that are externally pulled low will source current if the pull-up resistors are activated. The Port J pins are tri-stated when a reset condition becomes active, even if the clock is not running. Port J also serves the functions of various special features of the Atmel ATmega3250A/3250PA/6450A/6450P as listed on page 78. 2.3.12 RESET Reset input. A low level on this pin for longer than the minimum pulse length will generate a reset, even if the clock is not running. The minimum pulse length is given in Table 28-13 on page 297. Shorter pulses are not guaranteed to generate a reset. 2.3.13 XTAL1 Input to the inverting Oscillator amplifier and input to the internal clock operating circuit. 2.3.14 XTAL2 Output from the inverting Oscillator amplifier. 2.3.15 AVCC AVCC is the supply voltage pin for Port F and the A/D Converter. It should be externally connected to VCC, even if the ADC is not used. If the ADC is used, it should be connected to VCC through a low-pass filter. 2.3.16 AREF This is the analog reference pin for the A/D Converter. ATmega165A/PA/325A/PA/3250A/PA/645A/P/6450A/P [SUMMARY] 9 8285ES–AVR–02/2013 3. Ordering Information 3.1 ATmega165A Notes: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities. 2. Pb-free packaging, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green. 3. For Speed vs. VCC, see Figure 28-1 on page 295. 4. Tape & Reel 5. See characterization specifications at 105°C. Speed (MHz)(3) Power Supply Ordering Code(2) Package(1) Operation Range 16 1.8 - 5.5V ATmega165A-AU ATmega165A-AUR(4) ATmega165A-MU ATmega165A-MUR(4) ATmega165A-MCH ATmega165A-MCHR(4) 64A 64A 64M1 64M1 64MC 64MC Industrial (-40C to 85C) ATmega165A-AN ATmega165A-ANR(4) ATmega165A-MN ATmega165A-MNR(4) 64A 64A 64M1 64M1 Extended (-40C to 105C)(5) Package Type 64A 64-Lead, Thin (1.0mm) Plastic Gull Wing Quad Flat Package (TQFP) 64M1 64-pad, 9 x 9 x 1.0mm body, lead pitch 0.50mm, Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF) 64MC 64-lead (2-row Staggered), 7 x 7 x 1.0 mm body, 4.0 x 4.0mm Exposed Pad, Quad Flat No-Lead Package (QFN) ATmega165A/PA/325A/PA/3250A/PA/645A/P/6450A/P [SUMMARY] 10 8285ES–AVR–02/2013 3.2 ATmega165PA Notes: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities. 2. Pb-free packaging, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green. 3. For Speed vs. VCC, see Figure 28-1 on page 295. 4. Tape & Reel. 5. See characterization specifications at 105°C. Speed (MHz)(3) Power Supply Ordering Code(2) Package(1) Operation Range 16 1.8 - 5.5V ATmega165PA-AU ATmega165PA-AUR(4) ATmega165PA-MU ATmega165PA-MUR(4) ATmega165PA-MCH ATmega165PA-MCHR(4) 64A 64A 64M1 64M1 64MC 64MC Industrial (-40C to 85C) ATmega165PA-AN ATmega165PA-ANR(4) ATmega165PA-MN ATmega165PA-MNR(4) 64A 64A 64M1 64M1 Extended (-40C to 105C)(5) Package Type 64A 64-Lead, Thin (1.0mm) Plastic Gull Wing Quad Flat Package (TQFP) 64M1 64-pad, 9 x 9 x 1.0mm body, lead pitch 0.50mm, Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF) 64MC 64-lead (2-row Staggered), 7 x 7 x 1.0mm body, 4.0 x 4.0 mm Exposed Pad, Quad Flat No-Lead Package (QFN) ATmega165A/PA/325A/PA/3250A/PA/645A/P/6450A/P [SUMMARY] 11 8285ES–AVR–02/2013 3.3 ATmega325A Notes: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities. 2. Pb-free packaging, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green. 3. For Speed vs. VCC, see Figure 28-1 on page 295. 4. Tape & Reel 5. See characterizations specifications at 105°C. Speed (MHz)(3) Power Supply Ordering Code(2) Package(1) Operation Range 20 1.8 - 5.5V ATmega325A-AU ATmega325A-AUR(4) ATmega325A-MU ATmega325A-MUR(4) 64A 64A 64M1 64M1 Industrial (-40C to 85C) ATmega325A-AN ATmega325A-ANR(4) ATmega325A-MN ATmega325A-MNR(4) 64A 64A 64M1 64M1 Extended (-40C to 105C)(5) Package Type 64A 64-Lead, Thin (1.0mm) Plastic Gull Wing Quad Flat Package (TQFP) 64M1 64-pad, 9 x 9 x 1.0mm body, lead pitch 0.50mm, Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF) ATmega165A/PA/325A/PA/3250A/PA/645A/P/6450A/P [SUMMARY] 12 8285ES–AVR–02/2013 3.4 ATmega325PA Notes: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities. 2. Pb-free packaging, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green. 3. For Speed vs. VCC, see Figure 28-1 on page 295. 4. Tape & Reel 5. See characterization specifications at 105°C. Speed (MHz)(3) Power Supply Ordering Code(2) Package(1) Operation Range 20 1.8 - 5.5V ATmega325PA-AU ATmega325PA-AUR(4) ATmega325PA-MU ATmega325PA-MUR(4) 64A 64A 64M1 64M1 Industrial (-40C to 85C) ATmega325PA-AN ATmega325PA-ANR(4) ATmega325PA-MN ATmega325PA-MNR(4) 64A 64A 64M1 64M1 Extended (-40C to 105C)(5) Package Type 64A 64-Lead, Thin (1.0mm) Plastic Gull Wing Quad Flat Package (TQFP) 64M1 64-pad, 9 x 9 x 1.0mm body, lead pitch 0.50mm, Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF) ATmega165A/PA/325A/PA/3250A/PA/645A/P/6450A/P [SUMMARY] 13 8285ES–AVR–02/2013 3.5 ATmega3250A Notes: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities. 2. Pb-free packaging, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green. 3. For Speed vs. VCC, see Figure 28-1 on page 295. 4. Tape & Reel 5. See characterization specifications at 105°C. Speed (MHz)(3) Power Supply Ordering Code(2) Package(1) Operation Range 20 1.8 - 5.5V ATmega3250A-AU ATmega3250A-AUR(4) 100A 100A Industrial (-40C to 85C) ATmega3250A-AN ATmega3250A-ANR(4) 100A 100A Extended (-40C to 105C)(5) Package Type 100A 100-lead, 14 x 14 x 1.0mm, 0.5mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFP) ATmega165A/PA/325A/PA/3250A/PA/645A/P/6450A/P [SUMMARY] 14 8285ES–AVR–02/2013 3.6 ATmega3250PA Notes: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities. 2. Pb-free packaging, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green. 3. For Speed vs. VCC, see Figure 28-1 on page 295. 4. Tape & Reel 5. See characterization specifications at 105°C. Speed (MHz)(3) Power Supply Ordering Code(2) Package(1) Operation Range 20 1.8 - 5.5V ATmega3250PA-AU ATmega3250PA-AUR(4) 100A 100A Industrial (-40C to 85C) ATmega3250PA-AN ATmega3250PA-ANR(4) 100A 100A Extended (-40C to 105C)(5) Package Type 100A 100-lead, 14 x 14 x 1.0mm, 0.5mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFP) ATmega165A/PA/325A/PA/3250A/PA/645A/P/6450A/P [SUMMARY] 15 8285ES–AVR–02/2013 3.7 ATmega645A Notes: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities. 2. Pb-free packaging, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green. 3. For Speed vs. VCC, see Figure 28-1 on page 295. 4. Tape & Reel Speed (MHz)(3) Power Supply Ordering Code(2) Package(1) Operation Range 20 1.8 - 5.5V ATmega645A-AU ATmega645A-AUR(4) ATmega645A-MU ATmega645A-MUR(4) 64A 64A 64M1 64M1 Industrial (-40C to 85C) Package Type 64A 64-Lead, Thin (1.0mm) Plastic Gull Wing Quad Flat Package (TQFP) 64M1 64-pad, 9 x 9 x 1.0mm body, lead pitch 0.50mm, Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF) ATmega165A/PA/325A/PA/3250A/PA/645A/P/6450A/P [SUMMARY] 16 8285ES–AVR–02/2013 3.8 ATmega645P Notes: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities. 2. Pb-free packaging, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green. 3. For Speed vs. VCC, see Figure 28-1 on page 295. 4. Tape & Reel Speed (MHz)(3) Power Supply Ordering Code(2) Package(1) Operation Range 20 1.8 - 5.5V ATmega645P-AU ATmega645P-AUR(4) ATmega645P-MU ATmega645P-MUR(4) 64A 64A 64M1 64M1 Industrial (-40C to 85C) Package Type 64A 64-Lead, Thin (1.0mm) Plastic Gull Wing Quad Flat Package (TQFP) 64M1 64-pad, 9 x 9 x 1.0mm body, lead pitch 0.50mm, Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF) ATmega165A/PA/325A/PA/3250A/PA/645A/P/6450A/P [SUMMARY] 17 8285ES–AVR–02/2013 3.9 ATmega6450A Notes: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities. 2. Pb-free packaging, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green. 3. For Speed vs. VCC, see Figure 28-1 on page 295. 4. Tape & Reel Speed (MHz)(3) Power Supply Ordering Code(2) Package(1) Operation Range 20 1.8 - 5.5V ATmega6450A-AU ATmega6450A-AUR(4) 100A 100A Industrial (-40C to 85C) Package Type 100A 100-lead, 14 x 14 x 1.0mm, 0.5mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFP) ATmega165A/PA/325A/PA/3250A/PA/645A/P/6450A/P [SUMMARY] 18 8285ES–AVR–02/2013 3.10 ATmega6450P Notes: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities. 2. Pb-free packaging, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green. 3. For Speed vs. VCC, see Figure 28-1 on page 295. 4. Tape & Reel Speed (MHz)(3) Power Supply Ordering Code(2) Package(1) Operation Range 20 1.8 - 5.5V ATmega6450P-AU ATmega6450P-AUR(4) 100A 100A Industrial (-40C to 85C) Package Type 100A 100-lead, 14 x 14 x 1.0mm, 0.5mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFP) ATmega165A/PA/325A/PA/3250A/PA/645A/P/6450A/P [SUMMARY] 19 8285ES–AVR–02/2013 4. Packaging Information 4.1 64A 2325 Orchard Parkway San Jose, CA 95131 TITLE DRAWING NO. REV. 64A, 64-lead, 14 x 14mm Body Size, 1.0mm Body Thickness, 0.8mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFP) 64A C 2010-10-20 PIN 1 IDENTIFIER 0°~7° PIN 1 L C A1 A2 A D1 D e E1 E B COMMON DIMENSIONS (Unit of measure = mm) SYMBOL MIN NOM MAX NOTE Notes: 1.This package conforms to JEDEC reference MS-026, Variation AEB. 2. Dimensions D1 and E1 do not include mold protrusion. Allowable protrusion is 0.25mm per side. Dimensions D1 and E1 are maximum plastic body size dimensions including mold mismatch. 3. Lead coplanarity is 0.10mm maximum. A – – 1.20 A1 0.05 – 0.15 A2 0.95 1.00 1.05 D 15.75 16.00 16.25 D1 13.90 14.00 14.10 Note 2 E 15.75 16.00 16.25 E1 13.90 14.00 14.10 Note 2 B 0.30 – 0.45 C 0.09 – 0.20 L 0.45 – 0.75 e 0.80 TYP 2325 Orchard Parkway San Jose, CA 95131 TITLE DRAWING NO. REV. 64A, 64-lead, 14 x 14mm Body Size, 1.0mm Body Thickness, 0.8mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFP) 64A C 2010-10-20 PIN 1 IDENTIFIER 0°~7° PIN 1 L C A2 A D1 D e E1 E B COMMON DIMENSIONS (Unit of measure = mm) SYMBOL MIN NOM MAX NOTE Notes: 1.This package conforms to JEDEC reference MS-026, Variation AEB. 2. Dimensions D1 and E1 do not include mold protrusion. Allowable protrusion is 0.25mm per side. Dimensions D1 and E1 are maximum plastic body size dimensions including mold mismatch. 3. Lead coplanarity is 0.10mm maximum. A – – 1.20 A1 0.05 – 0.15 A2 0.95 1.00 1.05 D 15.75 16.00 16.25 D1 13.90 14.00 14.10 Note 2 E 15.75 16.00 16.25 E1 13.90 14.00 14.10 Note 2 B 0.30 – 0.45 C 0.09 – 0.20 L 0.45 – 0.75 e 0.80 TYP ATmega165A/PA/325A/PA/3250A/PA/645A/P/6450A/P [SUMMARY] 20 8285ES–AVR–02/2013 4.2 64M1 2325 Orchard Parkway San Jose, CA 95131 TITLE DRAWING NO. R REV. 64M1, 64-pad, 9 x 9 x 1.0 mm Body, Lead Pitch 0.50 mm, H 64M1 2010-10-19 COMMON DIMENSIONS (Unit of Measure = mm) SYMBOL MIN NOM MAX NOTE A 0.80 0.90 1.00 A1 – 0.02 0.05 b 0.18 0.25 0.30 D D2 5.20 5.40 5.60 8.90 9.00 9.10 E 8.9 0 9.00 9.10 E2 5.20 5.40 5.60 e 0.50 BSC L 0.35 0.40 0.45 Notes: 1. JEDEC Standard MO-220, (SAW Singulation) Fig. 1, VMMD. 2. Dimension and tolerance conform to ASMEY14.5M-1994. TOP VIEW SIDE VIEW BOTTOM VIEW D E Marked Pin# 1 ID SEATING PLANE A1 C A 0.08 C 1 2 3 K 1.25 1.40 1.55 E2 D2 b e Pin #1 Corner L Pin #1 Triangle Pin #1 Chamfer (C 0.30) Option A Option B Pin #1 Notch (0.20 R) Option C K K 2325 Orchard Parkway 5.40 mm Exposed Pad, Micro Lead Frame Package (MLF) San Jose, CA 95131 TITLE DRAWING NO. R REV. 64M1, 64-pad, 9 x 9 x 1.0 mm Body, Lead Pitch 0.50 mm, H 64M1 2010-10-19 COMMON DIMENSIONS (Unit of Measure = mm) SYMBOL MIN NOM MAX NOTE A 0.80 0.90 1.00 A1 – 0.02 0.05 b 0.18 0.25 0.30 D D2 5.20 5.40 5.60 8.90 9.00 9.10 E 8.9 0 9.00 9.10 E2 5.20 5.40 5.60 e 0.50 BSC L 0.35 0.40 0.45 Notes: 1. JEDEC Standard MO-220, (SAW Singulation) Fig. 1, VMMD. 2. Dimension and tolerance conform to ASMEY14.5M-1994. TOP VIEW SIDE VIEW BOTTOM VIEW D E Marked Pin# 1 ID SEATING PLANE A1 C A 0.08 C 1 2 3 K 1.25 1.40 1.55 E2 D2 b e Pin #1 Corner L Pin #1 Triangle Pin #1 Chamfer (C 0.30) Option B Pin #1 Notch (0.20 R) Option C K K 5.40 mm Exposed Pad, Micro Lead Frame Package (MLF) ATmega165A/PA/325A/PA/3250A/PA/645A/P/6450A/P [SUMMARY] 21 8285ES–AVR–02/2013 4.3 64MC TITLE GPC DRAWING NO. REV. Package Drawing Contact: packagedrawings@atmel.com ZXC 64MC A 64MC, 64QFN (2-Row Staggered), 7 x 7 x 1.00 mm Body, 4.0 x 4.0 mm Exposed Pad, Quad Flat No Lead Package 10/3/07 COMMON DIMENSIONS (Unit of Measure = mm) SYMBOL MIN NOM MAX NOTE A 0.80 0.90 1.00 A1 0.00 0.02 0.05 b 0.18 0.23 0.28 C 0.20 REF D 6.90 7.00 7.10 D2 3.95 4.00 4.05 E 6.90 7.00 7.10 E2 3.95 4.00 4.05 eT – 0.65 – eR – 0.65 – K 0.20 – – (REF) L 0.35 0.40 0.45 y 0.00 – 0.075 SIDE VIEW TOP VIEW BOTTOM VIEW Note: 1. The terminal #1 ID is a Laser-marked Feature. Pin 1 ID D E A1 A y C eT/2 R0.20 0.40 B1 A1 B30 A34 b A8 B7 eT D2 B16 A18 B22 A25 E2 K (0.1) REF B8 A9 (0.18) REF L B15 A17 L eR A26 B23 eT ATmega165A/PA/325A/PA/3250A/PA/645A/P/6450A/P [SUMMARY] 22 8285ES–AVR–02/2013 4.4 100A 2325 Orchard Parkway San Jose, CA 95131 TITLE DRAWING NO. R REV. 100A, 100-lead, 14 x 14mm Body Size, 1.0mm Body Thickness, 0.5mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFP) 100A D 2010-10-20 PIN 1 IDENTIFIER 0°~7° PIN 1 L C A1 A2 A D1 D e E1 E B A – – 1.20 A1 0.05 – 0.15 A2 0.95 1.00 1.05 D 15.75 16.00 16.25 D1 13.90 14.00 14.10 Note 2 E 15.75 16.00 16.25 E1 13.90 14.00 14.10 Note 2 B 0.17 – 0.27 C 0.09 – 0.20 L 0.45 – 0.75 e 0.50 TYP Notes: 1. This package conforms to JEDEC reference MS-026, Variation AED. 2. Dimensions D1 and E1 do not include mold protrusion. Allowable protrusion is 0.25mm per side. Dimensions D1 and E1 are maximum plastic body size dimensions including mold mismatch. 3. Lead coplanarity is 0.08mm maximum. COMMON DIMENSIONS (Unit of Measure = mm) SYMBOL MIN NOM MAX NOTE ATmega165A/PA/325A/PA/3250A/PA/645A/P/6450A/P [SUMMARY] 23 8285ES–AVR–02/2013 5. Errata 5.1 ATmega165A/165PA/325A/325PA/3250A/3250PA/645A/645P/6450A/6450P Rev. G No known errata. 5.2 ATmega165A/165PA/325A/325PA/3250A/3250PA/645A/645P/6450A/6450P Rev. A to F Not sampled. Atmel Corporation 1600 Technology Drive San Jose, CA 95110 USA Tel: (+1) (408) 441-0311 Fax: (+1) (408) 487-2600 www.atmel.com Atmel Asia Limited Unit 01-5 & 16, 19F BEA Tower, Millennium City 5 418 Kwun Tong Roa Kwun Tong, Kowloon HONG KONG Tel: (+852) 2245-6100 Fax: (+852) 2722-1369 Atmel Munich GmbH Business Campus Parkring 4 D-85748 Garching b. Munich GERMANY Tel: (+49) 89-31970-0 Fax: (+49) 89-3194621 Atmel Japan G.K. 16F Shin-Osaki Kangyo Bldg 1-6-4 Osaki, Shinagawa-ku Tokyo 141-0032 JAPAN Tel: (+81) (3) 6417-0300 Fax: (+81) (3) 6417-0370 © 2013 Atmel Corporation. All rights reserved. / Rev.: 8285ES–AVR–02/2013 Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life. Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others. 1. Product profile 1.1 General description PNP low VCEsat Breakthrough In Small Signal (BISS) transistor in a small SOT23 (TO-236AB) Surface-Mounted Device (SMD) plastic package. NPN complement: PBSS4160T. 1.2 Features 􀂄 Low collector-emitter saturation voltage VCEsat 􀂄 High collector current capability IC and ICM 􀂄 High efficiency due to less heat generation 􀂄 Reduces Printed-Circuit Board (PCB) area required 􀂄 Cost-effective replacement for medium power transistors BCP52 and BCX52 1.3 Applications 􀂄 Major application segments: 􀂋 Automotive 􀂋 Telecom infrastructure 􀂋 Industrial 􀂄 Power management: 􀂋 DC-to-DC conversion 􀂋 Supply line switching 􀂄 Peripheral driver: 􀂋 Driver in low supply voltage applications (e.g. lamps and LEDs) 􀂋 Inductive load drivers (e.g. relays, buzzers and motors) 1.4 Quick reference data [1] Pulse test: tp ≤ 300 μs; δ ≤ 0.02. PBSS5160T 60 V, 1 A PNP low VCEsat (BISS) transistor Rev. 04 — 15 January 2010 Product data sheet Table 1. Quick reference data Symbol Parameter Conditions Min Typ Max Unit VCEO collector-emitter voltage open base - - −60 V IC collector current - - −1 A ICM peak collector current t = 1 ms or limited by Tj(max) - - −2 A RCEsat collector-emitter saturation resistance IC = −1 A; IB = −100 mA [1] - 220 330 mΩ PBSS5160T_4 © NXP B.V. 2010. All rights reserved. Product data sheet Rev. 04 — 15 January 2010 2 of 11 NXP Semiconductors PBSS5160T 60 V, 1 A PNP low VCEsat (BISS) transistor 2. Pinning information 3. Ordering information 4. Marking [1] * = -: made in Hong Kong * = p: made in Hong Kong * = t: made in Malaysia * = W: made in China 5. Limiting values Table 2. Pinning Pin Description Simplified outline Graphic symbol 1 base 2 emitter 3 collector 1 2 3 006aab259 2 1 3 Table 3. Ordering information Type number Package Name Description Version PBSS5160T - plastic surface-mounted package; 3 leads SOT23 Table 4. Marking codes Type number Marking code[1] PBSS5160T *U6 Table 5. Limiting values In accordance with the Absolute Maximum Rating System (IEC 60134). Symbol Parameter Conditions Min Max Unit VCBO collector-base voltage open emitter - −80 V VCEO collector-emitter voltage open base - −60 V VEBO emitter-base voltage open collector - −5 V IC collector current [1] - −0.9 A [2] - −1 A ICM peak collector current t = 1 ms or limited by Tj(max) - −2 A IB base current - −300 mA IBM peak base current tp ≤ 300 μs; δ ≤ 0.02 - −1 A PBSS5160T_4 © NXP B.V. 2010. All rights reserved. Product data sheet Rev. 04 — 15 January 2010 3 of 11 NXP Semiconductors PBSS5160T 60 V, 1 A PNP low VCEsat (BISS) transistor [1] Device mounted on an FR4 PCB, single-sided copper, tin-plated and standard footprint. [2] Device mounted on an FR4 PCB, single-sided copper, tin-plated, mounting pad for collector 1 cm2. [3] Operated under pulse conditions: duty cycle δ ≤ 20 %, pulse width tp ≤ 10 ms. Ptot total power dissipation Tamb ≤ 25 °C [1] - 270 mW [2] - 400 mW [1][3] - 1.25 W Tj junction temperature - 150 °C Tamb ambient temperature −65 +150 °C Tstg storage temperature −65 +150 °C (1) FR4 PCB, mounting pad for collector 1 cm2 (2) FR4 PCB, standard footprint Fig 1. Power derating curves Table 5. Limiting values …continued In accordance with the Absolute Maximum Rating System (IEC 60134). Symbol Parameter Conditions Min Max Unit 0 40 80 160 Ptot (mW) (1) (2) 500 0 400 120 300 200 100 mle128 Tamb (°C) PBSS5160T_4 © NXP B.V. 2010. All rights reserved. Product data sheet Rev. 04 — 15 January 2010 4 of 11 NXP Semiconductors PBSS5160T 60 V, 1 A PNP low VCEsat (BISS) transistor 6. Thermal characteristics [1] Device mounted on an FR4 PCB, single-sided copper, tin-plated and standard footprint. [2] Device mounted on an FR4 PCB, single-sided copper, tin-plated, mounting pad for collector 1 cm2. [3] Operated under pulse conditions: duty cycle δ ≤ 20 %, pulse width tp ≤ 10 ms. Table 6. Thermal characteristics Symbol Parameter Conditions Min Typ Max Unit Rth(j-a) thermal resistance from junction to ambient in free air [1]- - 465 K/W [2]- - 312 K/W [1][3]- - 100 K/W FR4 PCB, standard footprint Fig 2. Transient thermal impedance as a function of pulse duration; typical values mle127 103 102 10 1 10−5 10−4 10−3 10−2 10−1 1 Zth (K/W) tp 10 10 (s) 2 103 δ = 1 0.75 0.33 0.05 0.02 0.01 0 0.5 0.2 0.1 PBSS5160T_4 © NXP B.V. 2010. All rights reserved. Product data sheet Rev. 04 — 15 January 2010 5 of 11 NXP Semiconductors PBSS5160T 60 V, 1 A PNP low VCEsat (BISS) transistor 7. Characteristics [1] Pulse test: tp ≤ 300 μs; δ ≤ 0.02. Table 7. Characteristics Tamb = 25°C unless otherwise specified. Symbol Parameter Conditions Min Typ Max Unit ICBO collector-base cut-off current VCB = −60 V; IE = 0 A - - −100 nA VCB = −60 V; IE = 0 A; Tj = 150 °C - - −50 μA ICES collector-emitter cut-off current VCE = −60 V; VBE = 0 V - - −100 nA IEBO emitter-base cut-off current VEB = −5 V; IC = 0 A - - −100 nA hFE DC current gain VCE = −5 V IC = −1 mA 200 350 - IC = −500 mA [1] 150 250 - IC = −1 A [1] 100 160 - VCEsat collector-emitter saturation voltage IC = −100 mA; IB = −1 mA - −110 −160 mV IC = −500 mA; IB = −50 mA - −120 −175 mV IC = −1 A; IB = −100 mA [1] - −220 −330 mV RCEsat collector-emitter saturation resistance IC = −1 A; IB = −100 mA [1] - 220 330 mΩ VBEsat base-emitter saturation voltage IC = −1 A; IB = −50 mA - −0.95 −1.1 V VBEon base-emitter turn-on voltage VCE = −5 V; IC = −1 A - −0.82 −0.9 V fT transition frequency VCE = −10 V; IC = −50 mA; f = 100 MHz 150 220 - MHz Cc collector capacitance VCB = −10 V; IE = ie = 0 A; f = 1 MHz - 9 15 pF PBSS5160T_4 © NXP B.V. 2010. All rights reserved. Product data sheet Rev. 04 — 15 January 2010 6 of 11 NXP Semiconductors PBSS5160T 60 V, 1 A PNP low VCEsat (BISS) transistor VCE = −5 V (1) Tamb = 100 °C (2) Tamb = 25 °C (3) Tamb = −55 °C Tamb = 25 °C Fig 3. DC current gain as a function of collector current; typical values Fig 4. Collector current as a function of collector-emitter voltage; typical values VCE = −5 V (1) Tamb = −55 °C (2) Tamb = 25 °C (3) Tamb = 100 °C IC/IB = 20 (1) Tamb = −55 °C (2) Tamb = 25 °C (3) Tamb = 100 °C Fig 5. Base-emitter voltage as a function of collector current; typical values Fig 6. Base-emitter saturation voltage as a function of collector current; typical values mle124 0 600 200 400 −10−1 −1 −10 IC (mA) hFE −102 −103 −104 (1) (2) (3) mle125 0 −5 −2 0 −0.4 −0.8 −1.2 −1.6 −1 VCE (V) IC (A) −2 −3 −4 −24 −28 −32 −36 −40 −12 −8 −16 −4 IB (mA) = − 20 mle122 0 −1.2 −0.4 −0.8 −10−1 −1 −10 IC (mA) VBE (V) −102 −103 −104 (1) (3) (2) −0.2 −1.2 −0.4 −0.6 −0.8 −1 mle123 −10−1 −1 (1) −10 IC (mA) VBEsat (V) −102 −103 −104 (3) (2) PBSS5160T_4 © NXP B.V. 2010. All rights reserved. Product data sheet Rev. 04 — 15 January 2010 7 of 11 NXP Semiconductors PBSS5160T 60 V, 1 A PNP low VCEsat (BISS) transistor IC/IB = 20 (1) Tamb = 100 °C (2) Tamb = 25 °C (3) Tamb = −55 °C IC/IB = 10 (1) Tamb = 100 °C (2) Tamb = 25 °C (3) Tamb = −55 °C Fig 7. Collector-emitter saturation voltage as a function of collector current; typical values Fig 8. Collector-emitter saturation voltage as a function of collector current; typical values Tamb = 25 °C (1) IC/IB = 100 (2) IC/IB = 50 IC/IB = 20 (1) Tamb = 100 °C (2) Tamb = 25 °C (3) Tamb = −55 °C Fig 9. Collector-emitter saturation voltage as a function of collector current; typical values Fig 10. Collector-emitter saturation resistance as a function of collector current; typical values mle126 −10 −1 −10−1 −10−2 −10−1 −1 −10 IC (mA) VCEsat (V) −102 −103 −104 (3) (2) (1) mle119 −1 −10−1 −10−2 −10−3 −10−1 −1 −10 IC (mA) VCEsat (V) −102 −103 −104 (3) (2) (1) mle120 −10 −1 −10−1 −10−2 −10−1 −1 −10 IC (mA) VCEsat (V) −102 −103 −104 (1) (2) mle121 103 102 1 10−1 10 −10−1 −1 RCEsat (Ω) IC (mA) −10 −102 −103 −104 (3) (1) (2) PBSS5160T_4 © NXP B.V. 2010. All rights reserved. Product data sheet Rev. 04 — 15 January 2010 8 of 11 NXP Semiconductors PBSS5160T 60 V, 1 A PNP low VCEsat (BISS) transistor 8. Package outline 9. Packing information [1] For further information and the availability of packing methods, see Section 12. Fig 11. Package outline SOT23 (TO-236AB) Dimensions in mm 04-11-04 0.45 0.15 1.9 1.1 0.9 3.0 2.8 2.5 2.1 1.4 1.2 0.48 0.38 0.15 0.09 1 2 3 Table 8. Packing methods The indicated -xxx are the last three digits of the 12NC ordering code.[1] Type number Package Description Packing quantity 3000 10000 PBSS5160T SOT23 4 mm pitch, 8 mm tape and reel -215 -235 PBSS5160T_4 © NXP B.V. 2010. All rights reserved. Product data sheet Rev. 04 — 15 January 2010 9 of 11 NXP Semiconductors PBSS5160T 60 V, 1 A PNP low VCEsat (BISS) transistor 10. Revision history Table 9. Revision history Document ID Release date Data sheet status Change notice Supersedes PBSS5160T_4 20100115 Product data sheet - PBSS5160T_N_3 Modifications: • The format of this data sheet has been redesigned to comply with the new identity guidelines of NXP Semiconductors. • Legal texts have been adapted to the new company name where appropriate. • Table 1 “Quick reference data”: amended • Section 4 “Marking”: amended • Figure 4: updated • Figure 11: superseded by minimized package outline drawing • Section 9 “Packing information”: added • Section 11 “Legal information”: updated PBSS5160T_N_3 20080718 Product data sheet - PBSS5160T_2 PBSS5160T_2 20040527 Product specification - PBSS5160T_1 PBSS5160T_1 20030623 Product specification - - PBSS5160T_4 © NXP B.V. 2010. All rights reserved. Product data sheet Rev. 04 — 15 January 2010 10 of 11 NXP Semiconductors PBSS5160T 60 V, 1 A PNP low VCEsat (BISS) transistor 11. Legal information 11.1 Data sheet status [1] Please consult the most recently issued document before initiating or completing a design. [2] The term ‘short data sheet’ is explained in section “Definitions”. [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com. 11.2 Definitions Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information. Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail. 11.3 Disclaimers General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer’s own risk. Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability. Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail. No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights. Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities. Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding. 11.4 Trademarks Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners. 12. Contact information For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com Document status[1][2] Product status[3] Definition Objective [short] data sheet Development This document contains data from the objective specification for product development. Preliminary [short] data sheet Qualification This document contains data from the preliminary specification. Product [short] data sheet Production This document contains the product specification. NXP Semiconductors PBSS5160T 60 V, 1 A PNP low VCEsat (BISS) transistor © NXP B.V. 2010. All rights reserved. For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com Date of release: 15 January 2010 Document identifier: PBSS5160T_4 Please be aware that important notices concerning this document and the product(s) described herein, have been included in section ‘Legal information’. 13. Contents 1 Product profile . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 General description . . . . . . . . . . . . . . . . . . . . . 1 1.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.4 Quick reference data . . . . . . . . . . . . . . . . . . . . 1 2 Pinning information. . . . . . . . . . . . . . . . . . . . . . 2 3 Ordering information. . . . . . . . . . . . . . . . . . . . . 2 4 Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 5 Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . . 2 6 Thermal characteristics . . . . . . . . . . . . . . . . . . 4 7 Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 5 8 Package outline . . . . . . . . . . . . . . . . . . . . . . . . . 8 9 Packing information . . . . . . . . . . . . . . . . . . . . . 8 10 Revision history. . . . . . . . . . . . . . . . . . . . . . . . . 9 11 Legal information. . . . . . . . . . . . . . . . . . . . . . . 10 11.1 Data sheet status . . . . . . . . . . . . . . . . . . . . . . 10 11.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 11.3 Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 11.4 Trademarks. . . . . . . . . . . . . . . . . . . . . . . . . . . 10 12 Contact information. . . . . . . . . . . . . . . . . . . . . 10 13 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 OSLON SSL Ceramic package - 80° radiation pattern Lead (Pb) Free Product - RoHS Compliant Released 2011-12-23 1 Besondere Merkmale •Gehäusetyp: SMT-Keramikgehäuse mit Silikonverguss und Linse •Typischer Lichtstrom: 108 lm bei 350 mA und bis zu 185 lm bei 700 mA (4500 K) •Besonderheit des Bauteils: Kompakte Lichtquelle für platzsparende Designs •Farbtemperatur: 4000 K bis 5000 K •Farbwiedergabeindex: 70 (typ.) •Abstrahlwinkel: 80° •Typischer optischer Wirkungsgrad: 96 lm/W bei 350 mA (4500 K) •Gruppierungsparameter: Lichtstrom, Farbort, Durchlassspannung •Lötmethode: Reflow-Löten •Vorbehandlung: nach JEDEC Level 2 •Gurtung: 12-mm Gurt mit 600/Rolle, ø180 mm •ESD-Festigkeit: ESD-sicher bis 8 kV nach JESD22-A114-D •Erweiterte Korrosionsfestigkeit: Details siehe Seite 14 •Testergebnis zur Lichtstromerhaltung nach IESNA-LM-80 verfügbar Anwendungen •Industriebeleuchtung •Lampen- und Leuchten-Retrofits •Akzentbeleuchtung Features •package: SMT ceramic package with silicon resin with lens •typical Luminous Flux: 108 lm at 350 mA and up to 185 lm at 700 mA (4500 K) •feature of the device: small size high-flux LED for slim designs •typ. color temperature: 4000 K to 5000 K •color reproduction index: 70 (typ.) •viewing angle: 80° •typical optical efficiency: 96 lm/W at 350 mA (4500 K) •grouping parameter: luminous flux, color coordinates, forward voltage •soldering methods: reflow soldering •preconditioning: acc. to JEDEC Level 2 •taping: 12-mm tape with 600/reel, ø180 mm •ESD-withstand voltage: up to 8 kV acc. to JESD22-A114-D •Superior Corrosion Robustness: details see page 14 •Lumen maintanance test report according to IESNA LM-80 available • Applications •Industrial Lighting •LED retrofits & fixtures •Accent lights 2011-12-23 2 Released LCW CQ7P.PC Bestellinformation Ordering Information Typ Type Farb- temperatur color temperature Lichtstrom 1) Seite 21 Luminous Flux1) page 21 IF = 350 mA ΦV(lm) Lichtstärke 2) Seite 21 Luminous Intensity2) page 21 IF = 350 mA IV (cd) Bestellnummer Ordering Code LCW CQ7P.PC-KTLP-5L7N-1 LCW CQ7P.PC-KULQ-5L7N-1 4000 K )97.0... 121.0 104.2... 130.0 61.0 (typ.) 66.0 (typ.)) Q65111A1483 Q65111A1484 LCW CQ7P.PC-KTLP-5J7K-1 LCW CQ7P.PC-KULQ-5J7K-1 4500 K 97.0... 121.0 104.2... 130.0 61.0 (typ.) 66.0 (typ.) Q65111A1482 Q65111A1462 LCW CQ7P.PC-KTLP-5H7I-1 LCW CQ7P.PC-KULQ-5H7I-1 5000 K 97.0... 121.0 104.2... 130.0 61.0 (typ.) 66.0 (typ.) Q65111A1481 Q65111A1484 Released LCW CQ7P.PC 2011-12-23 3 Anm.:Die oben genannten Typbezeichnungen umfassen die bestellbaren Selektionen. Diese bestehen aus wenigen Helligkeitsgruppen (siehe Seite 9 für nähere Informationen). Es wird nur eine einzige Helligkeitsgruppe pro Gurt geliefert. Z.B.: LCW CQ7P.PC-KTLP-5L7N-1 bedeutet, dass auf dem Gurt nur eine der Helligkeitsgruppen KT, KU oder LP enthalten ist. Um die Liefersicherheit zu gewährleisten, können einzelne Helligkeitsgruppen nicht bestellt werden. Gleiches gilt für die Farben, bei denen Farbortgruppen gemessen und gruppiert werden. Pro Gurt wird nur eine Farbortgruppe geliefert. Z.B.: LCW CQ7P.PC-KTLP-5L7N-1 bedeutet, dass auf dem Gurt nur eine der Farbortgruppen -5L bis -7N enthalten ist (siehe Seite 6 für nähere Information). Um die Liefersicherheit zu gewährleisten, können einzelne Farbortgruppen nicht bestellt werden. Gleiches gilt für die LEDs, bei denen die Durchlassspannungsgruppen gemessen und gruppiert werden. Pro Gurt wird nur eine Durchlassspannungsgruppe geliefert. Z.B.: LCW CQ7P.PC-KTLP-5L7N-1 bedeutet, dass nach Durchlassspannung gruppiert wird. Auf einem Gurt ist nur eine der Durchlasspannungsgruppen -3, -4 oder -5 enthalten (siehe Seite 9 für nähere Information). Um die Liefersicherheit zu gewährleisten, können einzelne Durchlassspannungsgruppen nicht direkt bestellt werden. Note:The above Type Numbers represent the order groups which include only a few brightness groups (see page 9for explanation). Only one group will be shipped on each reel (there will be no mixing of two groups on each reel). E.g.LCW CQ7P.PC-KTLP-5L7N-1 means that only one group KT, KU or LP will be shippable for any one reel. In order to ensure availability, single brightness groups will not be orderable. In a similar manner for colors where chromaticity coordinate groups are measured and binned, single chromaticity coordinate groups will be shipped on any one reel. E.g. LCW CQ7P.PC-KTLP-5L7N-1 means that only 1 chromaticity coordinate group -5L to -7N will be shippable (see page 6 for explanation). In order to ensure availability, single chromaticity coordinate groups will not be orderable. In a similar manner for LED, where forward voltage groups are measured and binned, single forward voltage groups will be shipped on any one reel. E.g. LCW CQ7P.PC-KTLP-5L7N-1 means that only 1 forward voltage group -3, -4 or -5 will be shippable. In order to ensure availability, single forward voltage groups will not be orderable(see page 9 for explanation). 2011-12-23 4 Released LCW CQ7P.PC Grenzwerte Maximum Ratings Bezeichnung Parameter Symbol Symbol Wert Value Einheit Unit Betriebstemperatur Operating temperature range Top – 40 … + 120 °C Lagertemperatur Storage temperature range Tstg – 40 … + 120 °C Sperrschichttemperatur Junction temperature Tj 135 °C Durchlassstrom(min.) Forward current(max.) (TS=25°C) IF IF 100800 mA mA Stoßstrom Surge current t ≤ 50 ms, D = 0.016, TS=25°C IFM 2000 mA Reverse Current* Sperrstrom*(max.) IR 200 mA * A minimum of 10 h of reverse operation is permissable in total. Eine Gesamtbetriebszeit von wenigstens 10 h in Sperrrichtung ist gewährleistet. Released LCW CQ7P.PC 2011-12-23 5 Kennwerte Characteristics (TS = 25 °C) Bezeichnung Parameter Symbol Symbol WertValue Einheit Unit Farbtemperatur 2) Seite 21)(min.) Color temperature 2) page 21 IF = 350mA (max.) T T 40005000 K K Abstrahlwinkel bei 50 % ΙV (Vollwinkel)(typ.) Viewing angle at 50 % ΙV 2ϕ 80 Grad deg. Durchlassspannung 4) Seite 21)(min.) Forward voltage4) page 21(typ.) IF = 350mA (max.) VF VF VF 2.753.23.5 V V V Reverse Voltage3) page 21) Sperrspannung 3) Seite 23 IR = 20 mA(max.) VR 1.2 V Wärmewiderstand Thermal resistance Sperrschicht/Lötpad(typ.) Junction/solder point(max.) Rth el JS Rth el JS 79.4* K/W K/W *Rth(max) basiert auf statistischen Werten Rth(max) is based on statistic values 2011-12-23 6 Released LCW CQ7P.PC Farbortgruppen3) Seite 21 Chromaticity Coordinate Groups3) page 21 OHA04564520530540550560570580590600610620630000.10.20.30.40.50.60.70.80.90.10.20.30.40.50.60.70.80.9510500490450CxCyCxE4804604700.330.340.350.360.370.380.390.400.410.290.300.310.320.330.340.350.360.370.380.390.400.410.420.430.444H5678IJKLMN456785000 K4500 K4000 KCy Released LCW CQ7P.PC 2011-12-23 7 Color temperature 4000 K Farbtemperatur 4000 K Gruppe Group Cx Cy Gruppe Group Cx Cy Gruppe Group Cx Cy 4L 0.365 0.348 4M 0.372 0.352 4N 0.379 0.356 0.367 0.358 0.375 0.362 0.382 0.367 0.375 0.362 0.382 0.367 0.390 0.372 0.372 0.352 0.379 0.356 0.386 0.361 5L 0.367 0.358 5M 0.375 0.362 5N 0.382 0.367 0.369 0.368 0.377 0.373 0.385 0.376 0.377 0.373 0.385 0.378 0.393 0.383 0.375 0.362 0.382 0.367 0.390 0.372 6L 0.369 0.368 6M 0.377 0.373 6N 0.385 0.378 0.371 0.378 0.380 0.383 0.388 0.388 0.380 0.383 0.388 0.388 0.397 0.393 0.377 0.373 0.385 0.376 0.393 0.383 7L 0.371 0.378 7M 0.380 0.383 7N 0.388 0.388 0.374 0.387 0.383 0.393 0.392 0.399 0.383 0.393 0.392 0.399 0.401 0.404 0.380 0.383 0.388 0.388 0.397 0.393 8L 0.374 0.387 8M 0.383 0.393 8N 0.392 0.399 0.376 0.397 0.385 0.403 0.395 0.409 0.385 0.403 0.395 0.409 0.404 0.415 0.383 0.393 0.392 0.399 0.401 0.404 Color temperature 4500 K Farbtemperatur 4500 K Gruppe Group Cx Cy Gruppe Group Cx Cy Gruppe Group Cx Cy 4J 0.350 0.337 8J 0.355 0.374 7K 0.363 0.371 0.351 0.347 0.356 0.383 0.364 0.381 0.359 0.352 0.366 0.390 0.374 0.387 0.357 0.343 0.364 0.381 0.371 0.378 5J 0.351 0.347 4K 0.357 0.343 8K 0.364 0.381 0.352 0.356 0.359 0.352 0.366 0.390 0.361 0.362 0.367 0.358 0.376 0.397 0.359 0.352 0.365 0.348 0.374 0.387 6J 0.352 0.356 5K 0.359 0.352 0.354 0.365 0.361 0.362 0.363 0.371 0.369 0.368 0.361 0.362 0.367 0.358 7J 0.354 0.365 6K 0.361 0.362 0.355 0.374 0.363 0.371 0.364 0.381 0.371 0.378 0.363 0.371 0.369 0.368 2011-12-23 8 Released LCW CQ7P.PC Color temperature 5000 K Farbtemperatur 5000 K Gruppe Group Cx Cy Gruppe Group Cx Cy Gruppe Group Cx Cy 4H 0.336 0.329 8H 0.338 0.362 7I 0.346 0.360 0.337 0.337 0.338 0.370 0.346 0.369 0.344 0.343 0.347 0.378 0.355 0.376 0.343 0.334 0.346 0.369 0.354 0.367 5H 0.337 0.337 4I 0.343 0.334 8I 0.346 0.369 0.337 0.345 0.344 0.343 0.347 0.378 0.345 0.352 0.352 0.349 0.356 0.385 0.344 0.343 0.350 0.340 0.355 0.376 6H 0.337 0.345 5I 0.344 0.343 0.337 0.353 0.345 0.352 0.346 0.360 0.353 0.358 0.345 0.352 0.352 0.349 7H 0.337 0.353 6I 0.345 0.352 0.338 0.362 0.346 0.360 0.346 0.369 0.354 0.367 0.346 0.360 0.353 0.358 Released LCW CQ7P.PC 2011-12-23 9 Durchlaßspannungsgruppen6) Seite 21 Forward Voltage Groups6) page 21 Gruppe Group DurchlaßspannungForward voltage Einheit Unit min. max. 3 2.75 3.0 V 4 3.0 3.25 V 5 3.25 3.5 V Helligkeits-Gruppierungsschema Brightness Groups Helligkeitsgruppe Brightness Group Lichtstrom1) Seite 21 Luminous Flux1) page 21 ΦV (lm) Lichtstärke2) Seite 21 Luminous Intensity2) page 21 IV (cd) KS KT KU LP LQ 89.2 ...97.0 97.0 ...104.2 104.2 ...112.0 112.0 ...121.0 121.0 ...130.0 52.0 (typ.) 56.0 (typ.) 61.0 (typ.) 66.0 (typ.) 70.0 (typ.) Anm.:Die Standardlieferform von Serientypen beinhaltet eine Familiengruppe. Diese besteht aus nur wenigen Helligkeitsgruppen. Einzelne Helligkeitsgruppen sind nicht bestellbar. Note:The standard shipping format for serial types includes a family group of only a few individual brightness groups. Individual brightness groups cannot be ordered. Gruppenbezeichnung auf Etikett Group Name on Label Beispiel: KT-5L-3 Example: KT-5L-3 Helligkeitsgruppe Brightness Group Farbortgruppe Chromaticity Coordinate Group Durchlassspannung Forward Voltage KT 5L 3 Anm.:In einer Verpackungseinheit / Gurt ist immer nur eine Helligkeitsgruppe enthalten. Note:No packing unit / tape ever contains more than one brightness group. 2011-12-23 10 Released LCW CQ7P.PC Relative spektrale Emission2) Seite 21 Relative Spectral Emission2) page 21 V(λ) = spektrale Augenempfindlichkeit / Standard eye response curve Φrel = f (λ); TS = 25 °C; IF = 350 mA Abstrahlcharakteristik2) Seite 21 Radiation Characteristic2) page 21 Ιrel = f (ϕ); TS = 25 °C 04004020500600%8060relΦ100700nmλ800OHL04583λV OHL043250°20°40°60°80°100°120°0.40.60.81.0100°90°80°70°60°50°0°10°20°30°40°00.20.40.60.81.0ϕ Released LCW CQ7P.PC 2011-12-23 11 Durchlassstrom2) Seite 21 Forward Current2) page 21 IF = f (VF); TS = 25 °C Farbortverschiebung2) Seite 21 Chromaticity Coordinate Shift2) page 21 x, y = f (IF); TS = 25 °C Relative Lichtstrom2) Seite 21 Relative Luminous Flux2) page 21 ΦV/ΦV(350 mA) = f (IF); TS = 25 °C OHL04578FIVmA2.8FV3.03.23.43.63.8200400600800 -0.008OHL04579Cx, CyFICxCymA200400600800-0.006-0.004-0.00200.0020.006 OHL04581IFΦ(350 mA)VVΦ0mA2004006008000.51.01.52.0 Released LCW CQ7P.PC 2011-12-23 12 Relative Vorwärtsspannung2) Seite 21 Relative Forward Voltage2) page 21 ΔVF = VF - VF(25 °C) = f (Tj); IF = 350 mA Farbortverschiebung2) Seite 21 Chromaticity Coordinate Shift2) page 21 x, y = f (Tj); IF = 350 mA Relative Lichtstrom2) Seite 21 Relative Luminous Flux2) page 21 ΦV/ΦV(25 °C) = f (Tj); IF = 350 mA -40-0.3°CTjOHL04428VFVΔ-20020406080120-0.2-0.100.10.20.3 OHL04580Cx, Cy-40°CjT-200204060801200.30CyCx0.320.340.360.380.40 OHL04582-40°CjT-200204060801200VV(25 °C)ΦΦ0.20.40.60.81.2 Released LCW CQ7P.PC 2011-12-23 13 Maximal zulässiger Durchlassstrom Max. Permissible Forward Current IF = f (TS) Zulässige Impulsbelastbarkeit IF = f (tp) Permissible Pulse Handling Capability Duty cycle D = parameter, TS = 25 °C Zulässige Impulsbelastbarkeit IF = f (tp) Permissible Pulse Handling Capability Duty cycle D = parameter, TS = 85 °C 020406080100120140TS [°C]0100200300400500600700800ΙF [mA]Do not use current below 100 mA 10100-2-3-4-5101010FIAPt=DT210-110tp10s10OHL04611TtPIF0.050.20.10.510.020.01D0.20.40.60.81.01.21.41.61.82.20.005= 10100-2-3-4-5101010FIAPt=DT210-110tp10s10OHL04611TtPIF0.050.20.10.510.020.01D0.20.40.60.81.01.21.41.61.82.20.005= 2011-12-23 14 Released LCW CQ7P.PC Maßzeichnung5) Seite 21 Package Outlines5) page 21 Anm.:Die LED enthält ein ESD-Bauteil, das parallel zum Chip geschalten ist. Note:LED is protected by ESD device which is connected in parallel to LED-Chip. Anm.:Das Gehäuse ist für Ultraschallreinigung nicht geeignet Note:Package not suitable for ultra sonic cleaning Kathodenkennung:Markierung Cathode mark:mark Gewicht / Approx. weight:2.5 mg Korrosionsfestigkeit besser als EN 60068-2-60 (method 4): mit erweitertem Korrosionstest: 40°C / 90%rh / 15ppm H2S / 336h Corrosion robustness better than EN 60068-2-60 (method 4): with enhanced corrosion test: 40°C / 90%rh / 15ppm H2S / 336h Released LCW CQ7P.PC 2011-12-23 15 Gurtung / Polarität und Lage5) Seite 21Verpackungseinheit 600/Rolle, ø180 mm Method of Taping / Polarity and Orientation5) page 21Packing unit 600/reel, ø180 mm 2011-12-23 16 Released LCW CQ7P.PC Empfohlenes Lötpaddesign5) Seite 21 Reflow Löten Recommended Solder Pad5) page 21 Reflow Soldering Anm.:Um eine verbesserte Lötstellenkontaktierung zu erreichen, empfehlen wir, unter Standard- stickstoffatmosphäre zu löten. Weitere Informationen finden Sie in der Applikationsschrift „Handling and Processing Details for Ceramic LEDs“ Note:For superior solder joint connectivity results we recommend soldering under standard nitrogen atmosphere. For further information please refer to our Application Note „Handling and Processing Details for Ceramic LEDs“ Released LCW CQ7P.PC 2011-12-23 17 LötbedingungenVorbehandlung nach JEDEC Level 2 Soldering ConditionsPreconditioning acc. to JEDEC Level 2 Reflow Lötprofil für bleifreies Löten(nach J-STD-020D.01) Reflow Soldering Profile for lead free soldering(acc. to J-STD-020D.01) Profile Feature Pb-Free (SnAgCu) Assembly Recommendation Max. Ratings Ramp-up Rate to Preheat*) 25°C to 150°C 2 K / s 3 K/ s Time ts from TSmin to TSmax (150°C to 200°C 100 s min. 60 s max. 120 s Ramp-up Rate to Peak*) 180°C to TP 2 K / s 3 K / s Liquidus Temperature TL 217°C Time tL above TL 80 s max. 100 s Peak Temperature TP 245 °C max. 260 °C Time tP within 5°C of the specified peak temperature TP - 5K 20 s min. 10 s max. 30 s Ramp-down Rate* TP to 100°C 3 K / s 6 K / s maximum Time 25°C to Peak temperature max. 8 min. All temperatures refer to the center of the package, measured on the top of the component * slope calculation ΔT/Δt: Δt max. 5 sec; fulfillment for the whole T-range 00sOHA045255010015020025030050100150200250300tT°CSttPtTp240 °C217 °C245 °C25 °CL 2011-12-23 18 Released LCW CQ7P.PC Barcode-Produkt-Etikett (BPL) Barcode-Product-Label (BPL) Gurtverpackung Tape and Reel Tape dimensions in mm (inch) W P0 P1 P2 D0 E F 4 ± 0.1 (0.157 ± 0.004) 8 ± 0.1 (0.315 ± 0.004) 2 ± 0.05 (0.079 ± 0.002) 1.5 + 0.1 (0.059 + 0.004) 1.75 ± 0.1 (0.069 ± 0.004) 5.5 ± 0.05 (0.217 ± 0.002) Reel dimensions in mm (inch) A W Nmin W1 W2 max 180 (7) 12 (0.472) 60 (2.362) 12.4 + 2 (0.488 + 0.079) 18.4 (0.724) OHA04563(G) GROUP:1234567890(1T) LOT NO:(9D) D/C:1234(X) PROD NO:123456789(6P) BATCH NO:1234567890LX XXXXRoHS CompliantBIN1: XX-XX-X-XXX-XML2Temp ST260 °C RPack: R18DEMY 022B_R999_1880.1642 R9999(Q)QTY:SemiconductorsOSRAM OptoXX-XX-X-X D02PP01PWFEDirection of unreelingNW12WAOHAY0324LabelGurtvorlauf:Leader:Trailer:Gurtende:13.0Direction of unreeling±0.25160 mm160 mm400 mm400 mm 12+ 0.3– 0.1 Released LCW CQ7P.PC 2011-12-23 19 Trockenverpackung und Materialien Dry Packing Process and Materials Anm.:Feuchteempfindliche Produkte sind verpackt in einem Trockenbeutel zusammen mit einem Trockenmittel und einer Feuchteindikatorkarte Bezüglich Trockenverpackung finden Sie weitere Hinweise im Internet und in unserem Short Form Catalog im Kapitel “Gurtung und Verpackung” unter dem Punkt “Trockenverpackung”. Hier sind Normenbezüge, unter anderem ein Auszug der JEDEC-Norm, enthalten. Note:Moisture-sensitve product is packed in a dry bag containing desiccant and a humidity card. Regarding dry pack you will find further information in the internet and in the Short Form Catalog in chapter “Tape and Reel” under the topic “Dry Pack”. Here you will also find the normative references like JEDEC. Kartonverpackung und Materialien Transportation Packing and Materials Dimensions of transportation box in mm (inch) Breite / Width Länge / length Höhe / height 200 ±5 (7,874 ±0,1968) 200 ±5 (7,874 ±0,1968) 30 ±5 (1,1811 ±0,1968) OHA00539OSRAMMoisture-sensitive label or printBarcode labelDesiccantHumidity indicatorBarcode labelOSRAMPlease check the HIC immidiately afterbag opening.Discard if circles overrun.Avoid metal contact.WETDo not eat.Comparatorcheck dotparts still adequately dry.examine units, if necessaryexamine units, if necessary5%15%10%bake unitsbake unitsIf wet,change desiccantIf wet,Humidity IndicatorMIL-I-8835If wet,Moisture Level 3Floor time 168 HoursMoisture Level6Floor time 6 Hoursa) Humidity Indicator Card is > 10% when read at 23 °C ± 5 °C,orreflow, vapor-phasereflow, or equivalent processing (peak package2. After this bag is opened,devicesthat will be subjected to infrared1. Shelflife in sealed bag: 24 months at < 40 °C and < 90% relative humidity (RH).Moisture Level 5aat factory conditions of(if blank, sealdate isidentical with date code).a)Mounted withinb) Stored atbody temp.3.Devicesrequire baking, before mounting, if:BagsealdateMoisture Level1MoistureLevel2Moisture Level 2a4. If bakingis required, b) 2aor2b isnot met.Date and time opened:reference IPC/JEDEC J-STD-033 for bake procedure.Floortime see belowIfblank, see bar code labelFloor time > 1 YearFloor time 1 YearFloortime 4 Weeks10% RH._ 10% when read at 23 °C ± 5 °C, orreflow, vapor-phase reflow, or equivalent processing (peak package2. After this bag is opened, devices that will be subjected to infrared1. Shelf life in sealed bag: 24 months at < 40 °C and < 90% relative humidity (RH).Moisture Level 5aat factory conditions of(if blank, seal date is identical with date code).a) Mounted withinb) Stored atbody temp.3. Devices require baking, before mounting, if:Bag seal dateMoisture Level 1Moisture Level 2Moisture Level 2a4. If baking is required, b) 2a or 2b is not met.Date and time opened:reference IPC/JEDEC J-STD-033 for bake procedure.Floor time see belowIf blank, see bar code labelFloor time > 1 YearFloor time 1 YearFloor time 4 Weeks10% RH._ 470 nF) must be connected to the LCDCAP pin as shown in Figure 23-2 on page 236. This capacitor acts as a reservoir for LCD power (VLCD). A large capacitance reduces ripple on VLCD but increases the time until VLCD reaches its target value. 9 8018PS–AVR–08/10 ATmega169P 3. Resources A comprehensive set of development tools, application notes and datasheets are available for download on http://www.atmel.com/avr. Note: 1. 4. Data Retention Reliability Qualification results show that the projected data retention failure rate is much less than 1 PPM over 20 years at 85°C or 100 years at 25°C. 10 8018PS–AVR–08/10 ATmega169P 5. Register Summary Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page (0xFF) Reserved – – – – – – – – (0xFE) LCDDR18 – – – – – – – SEG324 250 (0xFD) LCDDR17 SEG323 SEG322 SEG321 SEG320 SEG319 SEG318 SEG317 SEG316 250 (0xFC) LCDDR16 SEG315 SEG314 SEG313 SEG312 SEG311 SEG310 SEG309 SEG308 250 (0xFB) LCDDR15 SEG307 SEG306 SEG305 SEG304 SEG303 SEG302 SEG301 SEG300 250 (0xFA) Reserved – – – – – – – – (0xF9) LCDDR13 – – – – – – – SEG224 250 (0xF8) LCDDR12 SEG223 SEG222 SEG221 SEG220 SEG219 SEG218 SEG217 SEG216 250 (0xF7) LCDDR11 SEG215 SEG214 SEG213 SEG212 SEG211 SEG210 SEG209 SEG208 250 (0xF6) LCDDR10 SEG207 SEG206 SEG205 SEG204 SEG203 SEG202 SEG201 SEG200 250 (0xF5) Reserved – – – – – – – – (0xF4) LCDDR8 – – – – – – – SEG124 250 (0xF3) LCDDR7 SEG123 SEG122 SEG121 SEG120 SEG119 SEG118 SEG117 SEG116 250 (0xF2) LCDDR6 SEG115 SEG114 SEG113 SEG112 SEG111 SEG110 SEG109 SEG108 250 (0xF1) LCDDR5 SEG107 SEG106 SEG105 SEG104 SEG103 SEG102 SEG101 SEG100 250 (0xF0) Reserved – – – – – – – – (0xEF) LCDDR3 – – – – – – – SEG024 250 (0xEE) LCDDR2 SEG023 SEG022 SEG021 SEG020 SEG019 SEG018 SEG017 SEG016 250 (0xED) LCDDR1 SEG015 SEG014 SEG013 SEG012 SEG011 SEG010 SEG09 SEG008 250 (0xEC) LCDDR0 SEG007 SEG006 SEG005 SEG004 SEG003 SEG002 SEG001 SEG000 250 (0xEB) Reserved – – – – – – – – (0xEA) Reserved – – – – – – – – (0xE9) Reserved – – – – – – – – (0xE8) Reserved – – – – – – – – (0xE7) LCDCCR LCDDC2 LCDDC1 LCDDC0 LCDMDT LCDCC3 LCDCC2 LCDCC1 LCDCC0 249 (0xE6) LCDFRR – LCDPS2 LCDPS1 LCDPS0 – LCDCD2 LCDCD1 LCDCD0 247 (0xE5) LCDCRB LCDCS LCD2B LCDMUX1 LCDMUX0 – LCDPM2 LCDPM1 LCDPM0 246 (0xE4) LCDCRA LCDEN LCDAB – LCDIF LCDIE LCDBD LCDCCD LCDBL 245 (0xE3) Reserved – – – – – – – – (0xE2) Reserved – – – – – – – – (0xE1) Reserved – – – – – – – – (0xE0) Reserved – – – – – – – – (0xDF) Reserved – – – – – – – – (0xDE) Reserved – – – – – – – – (0xDD) Reserved – – – – – – – – (0xDC) Reserved – – – – – – – – (0xDB) Reserved – – – – – – – – (0xDA) Reserved – – – – – – – – (0xD9) Reserved – – – – – – – – (0xD8) Reserved – – – – – – – – (0xD7) Reserved – – – – – – – – (0xD6) Reserved – – – – – – – – (0xD5) Reserved – – – – – – – – (0xD4) Reserved – – – – – – – – (0xD3) Reserved – – – – – – – – (0xD2) Reserved – – – – – – – – (0xD1) Reserved – – – – – – – – (0xD0) Reserved – – – – – – – – (0xCF) Reserved – – – – – – – – (0xCE) Reserved – – – – – – – – (0xCD) Reserved – – – – – – – – (0xCC) Reserved – – – – – – – – (0xCB) Reserved – – – – – – – – (0xCA) Reserved – – – – – – – – (0xC9) Reserved – – – – – – – – (0xC8) Reserved – – – – – – – – (0xC7) Reserved – – – – – – – – (0xC6) UDR0 USART0 I/O Data Register 190 (0xC5) UBRRH0 USART0 Baud Rate Register High 194 (0xC4) UBRRL0 USART0 Baud Rate Register Low 194 (0xC3) Reserved – – – – – – – – (0xC2) UCSR0C – UMSEL0 UPM01 UPM00 USBS0 UCSZ01 UCSZ00 UCPOL0 190 (0xC1) UCSR0B RXCIE0 TXCIE0 UDRIE0 RXEN0 TXEN0 UCSZ02 RXB80 TXB80 190 (0xC0) UCSR0A RXC0 TXC0 UDRE0 FE0 DOR0 UPE0 U2X0 MPCM0 190 11 8018PS–AVR–08/10 ATmega169P (0xBF) Reserved – – – – – – – – (0xBE) Reserved – – – – – – – – (0xBD) Reserved – – – – – – – – (0xBC) Reserved – – – – – – – – (0xBB) Reserved – – – – – – – – (0xBA) USIDR USI Data Register 207 (0xB9) USISR USISIF USIOIF USIPF USIDC USICNT3 USICNT2 USICNT1 USICNT0 207 (0xB8) USICR USISIE USIOIE USIWM1 USIWM0 USICS1 USICS0 USICLK USITC 208 (0xB7) Reserved – – – – – – – (0xB6) ASSR – – – EXCLK AS2 TCN2UB OCR2UB TCR2UB 156 (0xB5) Reserved – – – – – – – – (0xB4) Reserved – – – – – – – – (0xB3) OCR2A Timer/Counter2 Output Compare Register A 155 (0xB2) TCNT2 Timer/Counter2 (8-bit) 155 (0xB1) Reserved – – – – – – – – (0xB0) TCCR2A FOC2A WGM20 COM2A1 COM2A0 WGM21 CS22 CS21 CS20 153 (0xAF) Reserved – – – – – – – – (0xAE) Reserved – – – – – – – – (0xAD) Reserved – – – – – – – – (0xAC) Reserved – – – – – – – – (0xAB) Reserved – – – – – – – – (0xAA) Reserved – – – – – – – – (0xA9) Reserved – – – – – – – – (0xA8) Reserved – – – – – – – – (0xA7) Reserved – – – – – – – – (0xA6) Reserved – – – – – – – – (0xA5) Reserved – – – – – – – – (0xA4) Reserved – – – – – – – – (0xA3) Reserved – – – – – – – – (0xA2) Reserved – – – – – – – – (0xA1) Reserved – – – – – – – – (0xA0) Reserved – – – – – – – – (0x9F) Reserved – – – – – – – – (0x9E) Reserved – – – – – – – – (0x9D) Reserved – – – – – – – – (0x9C) Reserved – – – – – – – – (0x9B) Reserved – – – – – – – – (0x9A) Reserved – – – – – – – – (0x99) Reserved – – – – – – – – (0x98) Reserved – – – – – – – – (0x97) Reserved – – – – – – – – (0x96) Reserved – – – – – – – – (0x95) Reserved – – – – – – – – (0x94) Reserved – – – – – – – – (0x93) Reserved – – – – – – – – (0x92) Reserved – – – – – – – – (0x91) Reserved – – – – – – – – (0x90) Reserved – – – – – – – – (0x8F) Reserved – – – – – – – – (0x8E) Reserved – – – – – – – – (0x8D) Reserved – – – – – – – – (0x8C) Reserved – – – – – – – – (0x8B) OCR1BH Timer/Counter1 - Output Compare Register B High Byte 132 (0x8A) OCR1BL Timer/Counter1 - Output Compare Register B Low Byte 132 (0x89) OCR1AH Timer/Counter1 - Output Compare Register A High Byte 132 (0x88) OCR1AL Timer/Counter1 - Output Compare Register A Low Byte 132 (0x87) ICR1H Timer/Counter1 - Input Capture Register High Byte 133 (0x86) ICR1L Timer/Counter1 - Input Capture Register Low Byte 133 (0x85) TCNT1H Timer/Counter1 - Counter Register High Byte 132 (0x84) TCNT1L Timer/Counter1 - Counter Register Low Byte 132 (0x83) Reserved – – – – – – – – (0x82) TCCR1C FOC1A FOC1B – – – – – – 131 (0x81) TCCR1B ICNC1 ICES1 – WGM13 WGM12 CS12 CS11 CS10 130 (0x80) TCCR1A COM1A1 COM1A0 COM1B1 COM1B0 – – WGM11 WGM10 128 (0x7F) DIDR1 – – – – – – AIN1D AIN0D 214 (0x7E) DIDR0 ADC7D ADC6D ADC5D ADC4D ADC3D ADC2D ADC1D ADC0D 232 Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page 12 8018PS–AVR–08/10 ATmega169P (0x7D) Reserved – – – – – – – – (0x7C) ADMUX REFS1 REFS0 ADLAR MUX4 MUX3 MUX2 MUX1 MUX0 228 (0x7B) ADCSRB – ACME – – – ADTS2 ADTS1 ADTS0 213, 232 (0x7A) ADCSRA ADEN ADSC ADATE ADIF ADIE ADPS2 ADPS1 ADPS0 230 (0x79) ADCH ADC Data Register High byte 231 (0x78) ADCL ADC Data Register Low byte 231 (0x77) Reserved – – – – – – – – (0x76) Reserved – – – – – – – – (0x75) Reserved – – – – – – – – (0x74) Reserved – – – – – – – – (0x73) Reserved – – – – – – – – (0x72) Reserved – – – – – – – – (0x71) Reserved – – – – – – – – (0x70) TIMSK2 – – – – – – OCIE2A TOIE2 156 (0x6F) TIMSK1 – – ICIE1 – – OCIE1B OCIE1A TOIE1 133 (0x6E) TIMSK0 – – – – – – OCIE0A TOIE0 104 (0x6D) Reserved – – – – – – – – (0x6C) PCMSK1 PCINT15 PCINT14 PCINT13 PCINT12 PCINT11 PCINT10 PCINT9 PCINT8 63 (0x6B) PCMSK0 PCINT7 PCINT6 PCINT5 PCINT4 PCINT3 PCINT2 PCINT1 PCINT0 64 (0x6A) Reserved – – – – – – – – (0x69) EICRA – – – – – – ISC01 ISC00 62 (0x68) Reserved – – – – – – – – (0x67) Reserved – – – – – – – – (0x66) OSCCAL Oscillator Calibration Register 38 (0x65) Reserved – – – – – – – – (0x64) PRR – – – PRLCD PRTIM1 PRSPI PRUSART0 PRADC 45 (0x63) Reserved – – – – – – – – (0x62) Reserved – – – – – – – – (0x61) CLKPR CLKPCE – – – CLKPS3 CLKPS2 CLKPS1 CLKPS0 38 (0x60) WDTCR – – – WDCE WDE WDP2 WDP1 WDP0 54 0x3F (0x5F) SREG I T H S V N Z C 13 0x3E (0x5E) SPH – – – – – SP10 SP9 SP8 15 0x3D (0x5D) SPL SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0 15 0x3C (0x5C) Reserved 0x3B (0x5B) Reserved 0x3A (0x5A) Reserved 0x39 (0x59) Reserved 0x38 (0x58) Reserved 0x37 (0x57) SPMCSR SPMIE RWWSB – RWWSRE BLBSET PGWRT PGERS SPMEN 293 0x36 (0x56) Reserved – – – – – – – – 0x35 (0x55) MCUCR JTD – – PUD – – IVSEL IVCE 60, 88, 278 0x34 (0x54) MCUSR – – – JTRF WDRF BORF EXTRF PORF 278 0x33 (0x53) SMCR – – – – SM2 SM1 SM0 SE 45 0x32 (0x52) Reserved – – – – – – – – 0x31 (0x51) OCDR IDRD/OCDR7 OCDR6 OCDR5 OCDR4 OCDR3 OCDR2 OCDR1 OCDR0 257 0x30 (0x50) ACSR ACD ACBG ACO ACI ACIE ACIC ACIS1 ACIS0 213 0x2F (0x4F) Reserved – – – – – – – – 0x2E (0x4E) SPDR SPI Data Register 167 0x2D (0x4D) SPSR SPIF WCOL – – – – – SPI2X 166 0x2C (0x4C) SPCR SPIE SPE DORD MSTR CPOL CPHA SPR1 SPR0 165 0x2B (0x4B) GPIOR2 General Purpose I/O Register 2 29 0x2A (0x4A) GPIOR1 General Purpose I/O Register 1 29 0x29 (0x49) Reserved – – – – – – – – 0x28 (0x48) Reserved – – – – – – – – 0x27 (0x47) OCR0A Timer/Counter0 Output Compare Register A 104 0x26 (0x46) TCNT0 Timer/Counter0 (8 Bit) 104 0x25 (0x45) Reserved – – – – – – – – 0x24 (0x44) TCCR0A FOC0A WGM00 COM0A1 COM0A0 WGM01 CS02 CS01 CS00 102 0x23 (0x43) GTCCR TSM – – – – – PSR2 PSR10 137, 157 0x22 (0x42) EEARH – – – – – – – EEAR8 27 0x21 (0x41) EEARL EEPROM Address Register Low Byte 27 0x20 (0x40) EEDR EEPROM Data Register 27 0x1F (0x3F) EECR – – – – EERIE EEMWE EEWE EERE 27 0x1E (0x3E) GPIOR0 General Purpose I/O Register 0 29 0x1D (0x3D) EIMSK PCIE1 PCIE0 – – – – – INT0 62 0x1C (0x3C) EIFR PCIF1 PCIF0 – – – – – INTF0 63 Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page 13 8018PS–AVR–08/10 ATmega169P Note: 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses should never be written. 2. I/O Registers within the address range 0x00 - 0x1F are directly bit-accessible using the SBI and CBI instructions. In these registers, the value of single bits can be checked by using the SBIS and SBIC instructions. 3. Some of the Status Flags are cleared by writing a logical one to them. Note that, unlike most other AVRs, the CBI and SBI instructions will only operate on the specified bit, and can therefore be used on registers containing such Status Flags. The CBI and SBI instructions work with registers 0x00 to 0x1F only. 4. When using the I/O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When addressing I/O Registers as data space using LD and ST instructions, 0x20 must be added to these addresses. The ATmega169P is a complex microcontroller with more peripheral units than can be supported within the 64 location reserved in Opcode for the IN and OUT instructions. For the Extended I/O space from 0x60 - 0xFF in SRAM, only the ST/STS/STD and LD/LDS/LDD instructions can be used. 0x1B (0x3B) Reserved – – – – – – – – 0x1A (0x3A) Reserved – – – – – – – – 0x19 (0x39) Reserved – – – – – – – – 0x18 (0x38) Reserved – – – – – – – – 0x17 (0x37) TIFR2 – – – – – – OCF2A TOV2 156 0x16 (0x36) TIFR1 – – ICF1 – – OCF1B OCF1A TOV1 134 0x15 (0x35) TIFR0 – – – – – – OCF0A TOV0 105 0x14 (0x34) PORTG – – PORTG5 PORTG4 PORTG3 PORTG2 PORTG1 PORTG0 90 0x13 (0x33) DDRG – – DDG5 DDG4 DDG3 DDG2 DDG1 DDG0 90 0x12 (0x32) PING – – PING5 PING4 PING3 PING2 PING1 PING0 90 0x11 (0x31) PORTF PORTF7 PORTF6 PORTF5 PORTF4 PORTF3 PORTF2 PORTF1 PORTF0 90 0x10 (0x30) DDRF DDF7 DDF6 DDF5 DDF4 DDF3 DDF2 DDF1 DDF0 90 0x0F (0x2F) PINF PINF7 PINF6 PINF5 PINF4 PINF3 PINF2 PINF1 PINF0 90 0x0E (0x2E) PORTE PORTE7 PORTE6 PORTE5 PORTE4 PORTE3 PORTE2 PORTE1 PORTE0 89 0x0D (0x2D) DDRE DDE7 DDE6 DDE5 DDE4 DDE3 DDE2 DDE1 DDE0 89 0x0C (0x2C) PINE PINE7 PINE6 PINE5 PINE4 PINE3 PINE2 PINE1 PINE0 90 0x0B (0x2B) PORTD PORTD7 PORTD6 PORTD5 PORTD4 PORTD3 PORTD2 PORTD1 PORTD0 89 0x0A (0x2A) DDRD DDD7 DDD6 DDD5 DDD4 DDD3 DDD2 DDD1 DDD0 89 0x09 (0x29) PIND PIND7 PIND6 PIND5 PIND4 PIND3 PIND2 PIND1 PIND0 89 0x08 (0x28) PORTC PORTC7 PORTC6 PORTC5 PORTC4 PORTC3 PORTC2 PORTC1 PORTC0 89 0x07 (0x27) DDRC DDC7 DDC6 DDC5 DDC4 DDC3 DDC2 DDC1 DDC0 89 0x06 (0x26) PINC PINC7 PINC6 PINC5 PINC4 PINC3 PINC2 PINC1 PINC0 89 0x05 (0x25) PORTB PORTB7 PORTB6 PORTB5 PORTB4 PORTB3 PORTB2 PORTB1 PORTB0 88 0x04 (0x24) DDRB DDB7 DDB6 DDB5 DDB4 DDB3 DDB2 DDB1 DDB0 88 0x03 (0x23) PINB PINB7 PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINB0 88 0x02 (0x22) PORTA PORTA7 PORTA6 PORTA5 PORTA4 PORTA3 PORTA2 PORTA1 PORTA0 88 0x01 (0x21) DDRA DDA7 DDA6 DDA5 DDA4 DDA3 DDA2 DDA1 DDA0 88 0x00 (0x20) PINA PINA7 PINA6 PINA5 PINA4 PINA3 PINA2 PINA1 PINA0 88 Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page 14 8018PS–AVR–08/10 ATmega169P 6. Instruction Set Summary Mnemonics Operands Description Operation Flags #Clocks ARITHMETIC AND LOGIC INSTRUCTIONS ADD Rd, Rr Add two Registers Rd ← Rd + Rr Z,C,N,V,H 1 ADC Rd, Rr Add with Carry two Registers Rd ← Rd + Rr + C Z,C,N,V,H 1 ADIW Rdl,K Add Immediate to Word Rdh:Rdl ← Rdh:Rdl + K Z,C,N,V,S 2 SUB Rd, Rr Subtract two Registers Rd ← Rd - Rr Z,C,N,V,H 1 SUBI Rd, K Subtract Constant from Register Rd ← Rd - K Z,C,N,V,H 1 SBC Rd, Rr Subtract with Carry two Registers Rd ← Rd - Rr - C Z,C,N,V,H 1 SBCI Rd, K Subtract with Carry Constant from Reg. Rd ← Rd - K - C Z,C,N,V,H 1 SBIW Rdl,K Subtract Immediate from Word Rdh:Rdl ← Rdh:Rdl - K Z,C,N,V,S 2 AND Rd, Rr Logical AND Registers Rd ← Rd • Rr Z,N,V 1 ANDI Rd, K Logical AND Register and Constant Rd ← Rd • K Z,N,V 1 OR Rd, Rr Logical OR Registers Rd ← Rd v Rr Z,N,V 1 ORI Rd, K Logical OR Register and Constant Rd ← Rd v K Z,N,V 1 EOR Rd, Rr Exclusive OR Registers Rd ← Rd ⊕ Rr Z,N,V 1 COM Rd One’s Complement Rd ← 0xFF − Rd Z,C,N,V 1 NEG Rd Two’s Complement Rd ← 0x00 − Rd Z,C,N,V,H 1 SBR Rd,K Set Bit(s) in Register Rd ← Rd v K Z,N,V 1 CBR Rd,K Clear Bit(s) in Register Rd ← Rd • (0xFF - K) Z,N,V 1 INC Rd Increment Rd ← Rd + 1 Z,N,V 1 DEC Rd Decrement Rd ← Rd − 1 Z,N,V 1 TST Rd Test for Zero or Minus Rd ← Rd • Rd Z,N,V 1 CLR Rd Clear Register Rd ← Rd ⊕ Rd Z,N,V 1 SER Rd Set Register Rd ← 0xFF None 1 MUL Rd, Rr Multiply Unsigned R1:R0 ← Rd x Rr Z,C 2 MULS Rd, Rr Multiply Signed R1:R0 ← Rd x Rr Z,C 2 MULSU Rd, Rr Multiply Signed with Unsigned R1:R0 ← Rd x Rr Z,C 2 FMUL Rd, Rr Fractional Multiply Unsigned R1:R0 ← (Rd x Rr) << 1 Z,C 2 FMULS Rd, Rr Fractional Multiply Signed R1:R0 ← (Rd x Rr) << 1 Z,C 2 FMULSU Rd, Rr Fractional Multiply Signed with Unsigned R1:R0 ← (Rd x Rr) << 1 Z,C 2 BRANCH INSTRUCTIONS RJMP k Relative Jump PC ← PC + k + 1 None 2 IJMP Indirect Jump to (Z) PC ← Z None 2 JMP k Direct Jump PC ← k None 3 RCALL k Relative Subroutine Call PC ← PC + k + 1 None 3 ICALL Indirect Call to (Z) PC ← Z None 3 CALL k Direct Subroutine Call PC ← k None 4 RET Subroutine Return PC ← STACK None 4 RETI Interrupt Return PC ← STACK I 4 CPSE Rd,Rr Compare, Skip if Equal if (Rd = Rr) PC ← PC + 2 or 3 None 1/2/3 CP Rd,Rr Compare Rd − Rr Z, N,V,C,H 1 CPC Rd,Rr Compare with Carry Rd − Rr − C Z, N,V,C,H 1 CPI Rd,K Compare Register with Immediate Rd − K Z, N,V,C,H 1 SBRC Rr, b Skip if Bit in Register Cleared if (Rr(b)=0) PC ← PC + 2 or 3 None 1/2/3 SBRS Rr, b Skip if Bit in Register is Set if (Rr(b)=1) PC ← PC + 2 or 3 None 1/2/3 SBIC P, b Skip if Bit in I/O Register Cleared if (P(b)=0) PC ← PC + 2 or 3 None 1/2/3 SBIS P, b Skip if Bit in I/O Register is Set if (P(b)=1) PC ← PC + 2 or 3 None 1/2/3 BRBS s, k Branch if Status Flag Set if (SREG(s) = 1) then PC←PC+k + 1 None 1/2 BRBC s, k Branch if Status Flag Cleared if (SREG(s) = 0) then PC←PC+k + 1 None 1/2 BREQ k Branch if Equal if (Z = 1) then PC ← PC + k + 1 None 1/2 BRNE k Branch if Not Equal if (Z = 0) then PC ← PC + k + 1 None 1/2 BRCS k Branch if Carry Set if (C = 1) then PC ← PC + k + 1 None 1/2 BRCC k Branch if Carry Cleared if (C = 0) then PC ← PC + k + 1 None 1/2 BRSH k Branch if Same or Higher if (C = 0) then PC ← PC + k + 1 None 1/2 BRLO k Branch if Lower if (C = 1) then PC ← PC + k + 1 None 1/2 BRMI k Branch if Minus if (N = 1) then PC ← PC + k + 1 None 1/2 BRPL k Branch if Plus if (N = 0) then PC ← PC + k + 1 None 1/2 BRGE k Branch if Greater or Equal, Signed if (N ⊕ V= 0) then PC ← PC + k + 1 None 1/2 BRLT k Branch if Less Than Zero, Signed if (N ⊕ V= 1) then PC ← PC + k + 1 None 1/2 BRHS k Branch if Half Carry Flag Set if (H = 1) then PC ← PC + k + 1 None 1/2 BRHC k Branch if Half Carry Flag Cleared if (H = 0) then PC ← PC + k + 1 None 1/2 BRTS k Branch if T Flag Set if (T = 1) then PC ← PC + k + 1 None 1/2 BRTC k Branch if T Flag Cleared if (T = 0) then PC ← PC + k + 1 None 1/2 BRVS k Branch if Overflow Flag is Set if (V = 1) then PC ← PC + k + 1 None 1/2 15 8018PS–AVR–08/10 ATmega169P BRVC k Branch if Overflow Flag is Cleared if (V = 0) then PC ← PC + k + 1 None 1/2 BRIE k Branch if Interrupt Enabled if ( I = 1) then PC ← PC + k + 1 None 1/2 BRID k Branch if Interrupt Disabled if ( I = 0) then PC ← PC + k + 1 None 1/2 BIT AND BIT-TEST INSTRUCTIONS SBI P,b Set Bit in I/O Register I/O(P,b) ← 1 None 2 CBI P,b Clear Bit in I/O Register I/O(P,b) ← 0 None 2 LSL Rd Logical Shift Left Rd(n+1) ← Rd(n), Rd(0) ← 0 Z,C,N,V 1 LSR Rd Logical Shift Right Rd(n) ← Rd(n+1), Rd(7) ← 0 Z,C,N,V 1 ROL Rd Rotate Left Through Carry Rd(0)←C,Rd(n+1)← Rd(n),C←Rd(7) Z,C,N,V 1 ROR Rd Rotate Right Through Carry Rd(7)←C,Rd(n)← Rd(n+1),C←Rd(0) Z,C,N,V 1 ASR Rd Arithmetic Shift Right Rd(n) ← Rd(n+1), n=0..6 Z,C,N,V 1 SWAP Rd Swap Nibbles Rd(3..0)←Rd(7..4),Rd(7..4)←Rd(3..0) None 1 BSET s Flag Set SREG(s) ← 1 SREG(s) 1 BCLR s Flag Clear SREG(s) ← 0 SREG(s) 1 BST Rr, b Bit Store from Register to T T ← Rr(b) T 1 BLD Rd, b Bit load from T to Register Rd(b) ← T None 1 SEC Set Carry C ← 1 C 1 CLC Clear Carry C ← 0 C 1 SEN Set Negative Flag N ← 1 N 1 CLN Clear Negative Flag N ← 0 N 1 SEZ Set Zero Flag Z ← 1 Z 1 CLZ Clear Zero Flag Z ← 0 Z 1 SEI Global Interrupt Enable I ← 1 I 1 CLI Global Interrupt Disable I ← 0 I 1 SES Set Signed Test Flag S ← 1 S 1 CLS Clear Signed Test Flag S ← 0 S 1 SEV Set Twos Complement Overflow. V ← 1 V 1 CLV Clear Twos Complement Overflow V ← 0 V 1 SET Set T in SREG T ← 1 T 1 CLT Clear T in SREG T ← 0 T 1 SEH Set Half Carry Flag in SREG H ← 1 H 1 CLH Clear Half Carry Flag in SREG H ← 0 H 1 DATA TRANSFER INSTRUCTIONS MOV Rd, Rr Move Between Registers Rd ← Rr None 1 MOVW Rd, Rr Copy Register Word Rd+1:Rd ← Rr+1:Rr None 1 LDI Rd, K Load Immediate Rd ← K None 1 LD Rd, X Load Indirect Rd ← (X) None 2 LD Rd, X+ Load Indirect and Post-Inc. Rd ← (X), X ← X + 1 None 2 LD Rd, - X Load Indirect and Pre-Dec. X ← X - 1, Rd ← (X) None 2 LD Rd, Y Load Indirect Rd ← (Y) None 2 LD Rd, Y+ Load Indirect and Post-Inc. Rd ← (Y), Y ← Y + 1 None 2 LD Rd, - Y Load Indirect and Pre-Dec. Y ← Y - 1, Rd ← (Y) None 2 LDD Rd,Y+q Load Indirect with Displacement Rd ← (Y + q) None 2 LD Rd, Z Load Indirect Rd ← (Z) None 2 LD Rd, Z+ Load Indirect and Post-Inc. Rd ← (Z), Z ← Z+1 None 2 LD Rd, -Z Load Indirect and Pre-Dec. Z ← Z - 1, Rd ← (Z) None 2 LDD Rd, Z+q Load Indirect with Displacement Rd ← (Z + q) None 2 LDS Rd, k Load Direct from SRAM Rd ← (k) None 2 ST X, Rr Store Indirect (X) ← Rr None 2 ST X+, Rr Store Indirect and Post-Inc. (X) ← Rr, X ← X + 1 None 2 ST - X, Rr Store Indirect and Pre-Dec. X ← X - 1, (X) ← Rr None 2 ST Y, Rr Store Indirect (Y) ← Rr None 2 ST Y+, Rr Store Indirect and Post-Inc. (Y) ← Rr, Y ← Y + 1 None 2 ST - Y, Rr Store Indirect and Pre-Dec. Y ← Y - 1, (Y) ← Rr None 2 STD Y+q,Rr Store Indirect with Displacement (Y + q) ← Rr None 2 ST Z, Rr Store Indirect (Z) ← Rr None 2 ST Z+, Rr Store Indirect and Post-Inc. (Z) ← Rr, Z ← Z + 1 None 2 ST -Z, Rr Store Indirect and Pre-Dec. Z ← Z - 1, (Z) ← Rr None 2 STD Z+q,Rr Store Indirect with Displacement (Z + q) ← Rr None 2 STS k, Rr Store Direct to SRAM (k) ← Rr None 2 LPM Load Program Memory R0 ← (Z) None 3 LPM Rd, Z Load Program Memory Rd ← (Z) None 3 LPM Rd, Z+ Load Program Memory and Post-Inc Rd ← (Z), Z ← Z+1 None 3 SPM Store Program Memory (Z) ← R1:R0 None - IN Rd, P In Port Rd ← P None 1 OUT P, Rr Out Port P ← Rr None 1 Mnemonics Operands Description Operation Flags #Clocks 16 8018PS–AVR–08/10 ATmega169P PUSH Rr Push Register on Stack STACK ← Rr None 2 POP Rd Pop Register from Stack Rd ← STACK None 2 MCU CONTROL INSTRUCTIONS NOP No Operation None 1 SLEEP Sleep (see specific descr. for Sleep function) None 1 WDR Watchdog Reset (see specific descr. for WDR/timer) None 1 BREAK Break For On-chip Debug Only None N/A Mnemonics Operands Description Operation Flags #Clocks 17 8018PS–AVR–08/10 ATmega169P 7. Ordering Information Notes: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities. 2. Pb-free packaging, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green. 3. For Speed vs. VCC, see Figure 28-1 on page 331 and Figure 28-2 on page 332. Speed (MHz)(3) Power Supply Ordering Code Package(1)(2) Operation Range 8 1.8V - 5.5V ATmega169PV-8AU ATmega169PV-8MU ATmega169PV-8MCH 64A 64M1 64MC Industrial (-40°C to 85°C) 16 2.7V - 5.5V ATmega169P-16AU ATmega169P-16MU ATmega169P-16MCH 64A 64M1 64MC Industrial (-40°C to 85°C) Package Type 64A 64-Lead, Thin (1.0 mm) Plastic Gull Wing Quad Flat Package (TQFP) 64M1 64-pad, 9 × 9 × 1.0 mm body, lead pitch 0.50 mm, Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF) 64MC 64-lead (2-row Staggered), 7 × 7 × 1.0 mm body, 4.0 × 4.0 mm Exposed Pad, Quad Flat No-Lead Package (QFN) 18 8018PS–AVR–08/10 ATmega169P 8. Packaging Information 8.1 64A 2325 Orchard Parkway San Jose, CA 95131 TITLE DRAWING NO. R REV. 64A, 64-lead, 14 x 14 mm Body Size, 1.0 mm Body Thickness, 0.8 mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFP) 64A B 10/5/2001 PIN 1 IDENTIFIER 0°~7° PIN 1 L C A1 A2 A D1 D e E1 E B COMMON DIMENSIONS (Unit of Measure = mm) SYMBOL MIN NOM MAX NOTE Notes: 1.This package conforms to JEDEC reference MS-026, Variation AEB. 2. Dimensions D1 and E1 do not include mold protrusion. Allowable protrusion is 0.25 mm per side. Dimensions D1 and E1 are maximum plastic body size dimensions including mold mismatch. 3. Lead coplanarity is 0.10 mm maximum. A – – 1.20 A1 0.05 – 0.15 A2 0.95 1.00 1.05 D 15.75 16.00 16.25 D1 13.90 14.00 14.10 Note 2 E 15.75 16.00 16.25 E1 13.90 14.00 14.10 Note 2 B 0.30 – 0.45 C 0.09 – 0.20 L 0.45 – 0.75 e 0.80 TYP 19 8018PS–AVR–08/10 ATmega169P 8.2 64M1 2325 Orchard Parkway San Jose, CA 95131 TITLE DRAWING NO. R REV. 64M1, 64-pad, 9 x 9 x 1.0 mm Body, Lead Pitch 0.50 mm, 64M1 G 5/25/06 COMMON DIMENSIONS (Unit of Measure = mm) SYMBOL MIN NOM MAX NOTE A 0.80 0.90 1.00 A1 – 0.02 0.05 b 0.18 0.25 0.30 D D2 5.20 5.40 5.60 8.90 9.00 9.10 E 8.9 0 9.00 9.10 E2 5.20 5.40 5.60 e 0.50 BSC L 0.35 0.40 0.45 Note: 1. JEDEC Standard MO-220, (SAW Singulation) Fig. 1, VMMD. 2. Dimension and tolerance conform to ASMEY14.5M-1994. TOP VIEW SIDE VIEW BOTTOM VIEW D E Marked Pin# 1 ID SEATING PLANE A1 C A 0.08 C 1 2 3 K 1.25 1.40 1.55 E2 D2 b e Pin #1 Corner L Pin #1 Triangle Pin #1 Chamfer (C 0.30) Option A Option B Pin #1 Notch (0.20 R) Option C K K 5.40 mm Exposed Pad, Micro Lead Frame Package (MLF) 20 8018PS–AVR–08/10 ATmega169P 8.3 64MC TITLE GPC DRAWING NO. REV. Package Drawing Contact: packagedrawings@atmel.com ZXC 64MC A 64MC, 64QFN (2-Row Staggered), 7 x 7 x 1.00 mm Body, 4.0 x 4.0 mm Exposed Pad, Quad Flat No Lead Package 10/3/07 COMMON DIMENSIONS (Unit of Measure = mm) SYMBOL MIN NOM MAX NOTE A 0.80 0.90 1.00 A1 0.00 0.02 0.05 b 0.18 0.23 0.28 C 0.20 REF D 6.90 7.00 7.10 D2 3.95 4.00 4.05 E 6.90 7.00 7.10 E2 3.95 4.00 4.05 eT – 0.65 – eR – 0.65 – K 0.20 – – (REF) L 0.35 0.40 0.45 y 0.00 – 0.075 SIDE VIEW TOP VIEW BOTTOM VIEW Note: 1. The terminal #1 ID is a Laser-marked Feature. Pin 1 ID D E A1 A y C eT/2 R0.20 0.40 B1 A1 B30 A34 b A8 B7 eT D2 B16 A18 B22 A25 E2 K (0.1) REF B8 A9 (0.18) REF L B15 A17 L eR A26 B23 eT 21 8018PS–AVR–08/10 ATmega169P 9. Errata 9.1 ATmega169P Rev. G No known errata. 9.2 ATmega169P Rev. A to F Not sampled. 22 8018PS–AVR–08/10 ATmega169P 10. Datasheet Revision History Please note that the referring page numbers in this section are referring to this document. The referring revision in this section are referring to the document revision. 10.1 Rev. 8018P 08/10 10.2 Rev. 8018O 10/09 10.3 Rev. 8018N 08/09 10.4 Rev. 8018M 07/09 10.5 Rev. L 08/08 10.6 Rev. K 06/08 1. Status changed to active 2. EEPROM minimum wait delay, Table 27-15 on page 312, has been changed from 9.0 ms to 3.6 ms 3. Datasheet layout and technical terminology updated 1. Changed datasheet status to “Mature” 2. Added Capacitance for Low-frequency Crystal Oscillator, Table 8-5 on page 33. 1. Updated ”Ordering Information” on page 17, MCU replaced by MCH. 1. Updated the last page with new Atmel’s addresses. 1. Updated package information in ”Features” on page 1. 2. Added ”Pinout - DRQFN” on page 3: • The Staggered QFN is named Dual Row QFN (DRQFN). 1. Updated package information in ”Features” on page 1. 2. Removed “Disclaimer” from section ”Pin Configurations” on page 2 3. Added ”64MC (DRQFN) Pinout ATmega169P” on page 3 4. Added ”Data Retention” on page 9. 5. Updated ”Stack Pointer” on page 13. 6. Updated ”Low-frequency Crystal Oscillator” on page 34. 7. Updated ”USART Register Description” on page 194, register descriptions and tables. 8. Updated ”UCSRnB – USART Control and Status Register n B” on page 195. 9. Updated VIL2 in ”DC Characteristics” on page 329, by removing 0.2VCC from the table. 23 8018PS–AVR–08/10 ATmega169P 10.7 Rev. J 08/07 10.8 Rev. I 11/06 10.9 Rev. H 09/06 10.10 Rev. G 08/06 10.11 Rev. F 08/06 10.12 Rev. E 08/06 10. Replaced Figure 29-36 on page 357 by a correct one. 11. Updated ”Ordering Information” on page 17. 12. Added ”64MC” on page 20 package to ”Packaging Information” on page 18. 1. Updated ”Features” on page 1. 2. Added ”Minimizing Power Consumption” on page 237 in the LCD section. 3. Updated ”System and Reset Characteristics” on page 333. 1. Updated ”Low-frequency Crystal Oscillator” on page 34. 2. Updated Table 8-8 on page 35, Table 8-9 on page 35, Table 8-10 on page 35, Table 28-7 on page 336. 3. Updated note in Table 28-7 on page 336. 1. All characterization data moved to ”Electrical Characteristics” on page 329. 2. Updated ”Calibrated Internal RC Oscillator” on page 32. 3. Updated ”System Control and Reset” on page 47. 4. Added note to Table 27-16 on page 314. 5. Updated ”LCD Controller Characteristics” on page 337. 1. Updated ”LCD Controller Characteristics” on page 337. 1. Updated ”DC Characteristics” on page 329. 2. Updated Table 13-19 on page 84. 1. Updated ”Low-frequency Crystal Oscillator” on page 34. 2. Updated ”Device Identification Register” on page 260. 3. Updated ”Signature Bytes” on page 299. 4. Added Table 27-6 on page 299. 24 8018PS–AVR–08/10 ATmega169P 10.13 Rev. D 07/06 10.14 Rev. C 06/06 10.15 Rev. B 04/06 10.16 Rev. A 03/06 1. Updated ”Register Description for I/O-Ports” on page 88. 2. Updated ”Fast PWM Mode” on page 97. 3. Updated ”Fast PWM Mode” on page 120. 4. Updated Table 14-2 on page 102, Table 14-4 on page 103, Table 15-3 on page 129, Table 15-4 on page 130, Table 17-2 on page 153 and Table 17-4 on page 154. 5 Updated ”UCSRnC – USART Control and Status Register n C” on page 196. 6. Updated Features in ”USI – Universal Serial Interface” on page 199. 7. Added ”Clock speed considerations.” on page 206. 8. Updated Features in ”LCD Controller” on page 234. 9. Updated ”Register Summary” on page 10. 1. Updated typos. 2. Updated ”Calibrated Internal RC Oscillator” on page 32. 3. Updated ”OSCCAL – Oscillator Calibration Register” on page 38. 4. Added Table 28-2 on page 332. 1. Updated ”Calibrated Internal RC Oscillator” on page 32. 1. Initial revision. 8018PS–AVR–08/10 Headquarters International Atmel Corporation 2325 Orchard Parkway San Jose, CA 95131 USA Tel: 1(408) 441-0311 Fax: 1(408) 487-2600 Atmel Asia Unit 1-5 & 16, 19/F BEA Tower, Millennium City 5 418 Kwun Tong Road Kwun Tong, Kowloon Hong Kong Tel: (852) 2245-6100 Fax: (852) 2722-1369 Atmel Europe Le Krebs 8, Rue Jean-Pierre Timbaud BP 309 78054 Saint-Quentin-en- Yvelines Cedex France Tel: (33) 1-30-60-70-00 Fax: (33) 1-30-60-71-11 Atmel Japan 9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581 Product Contact Web Site www.atmel.com Technical Support avr@atmel.com Sales Contact www.atmel.com/contacts Literature Requests www.atmel.com/literature Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life. © 2010 Atmel Corporation. All rights reserved. Atmel®, Atmel logo and combinations thereof, AVR®, AVR® logo, and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Windows® and others are registered trademarks or trademarks of Microsoft® Corporation in the US and/or other countries. Other terms and product names may be trademarks of others. PSMN7R0-30YL N-channel 30 V 7 mΩ logic level MOSFET in LFPAK Rev. 04 — 9 March 2011 Product data sheet LFPAK Table 1. Quick reference data Symbol Parameter Conditions Min Typ Max Unit VDS drain-source voltage Tj ≥ 25 °C; Tj ≤175°C - - 30 V ID drain current Tmb = 25 °C; VGS = 10 V; see Figure 1 - - 76 A Ptot total power dissipation Tmb = 25 °C; see Figure 2 - - 51 W Tj junction temperature -55 - 175 °C Static characteristics RDSon drain-source on-state resistance VGS = 10 V; ID = 15 A; Tj = 25 °C - 4.92 7 mΩ Dynamic characteristics QGD gate-drain charge VGS = 4.5 V; ID = 10 A; VDS = 12 V; see Figure 14; see Figure 15 - 2.9 - nC QG(tot) total gate charge - 10 - nC Avalanche ruggedness EDS(AL)S non-repetitive drain-source avalanche energy VGS = 10 V; Tj(init) = 25 °C; ID = 65 A; Vsup ≤ 30 V; RGS = 50 Ω; unclamped - - 21 mJ PSMN7R0-30YL All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved. Product data sheet Rev. 04 — 9 March 2011 2 of 14 NXP Semiconductors PSMN7R0-30YL N-channel 30 V 7 mΩ logic level MOSFET in LFPAK 2. Pinning information 3. Ordering information 4. Limiting values Table 2. Pinning information Pin Symbol Description Simplified outline Graphic symbol 1 S source SOT669 (LFPAK) 2 S source 3 S source 4 G gate mb D mounting base; connected to drain mb 1 2 3 4 S D G mbb076 Table 3. Ordering information Type number Package Name Description Version PSMN7R0-30YL LFPAK plastic single-ended surface-mounted package (LFPAK); 4 leads SOT669 Table 4. Limiting values In accordance with the Absolute Maximum Rating System (IEC 60134). Symbol Parameter Conditions Min Max Unit VDS drain-source voltage Tj ≥ 25 °C; Tj ≤ 175 °C - 30 V VDSM peak drain-source voltage tp ≤ 25 ns; f ≤ 500 kHz; EDS(AL) ≤ 90 nJ; pulsed - 35 V VDGR drain-gate voltage Tj ≥ 25 °C; Tj ≤ 175 °C; RGS = 20 kΩ - 30 V VGS gate-source voltage -20 20 V ID drain current VGS = 10 V; Tmb = 100 °C; see Figure 1 - 53 A VGS = 10 V; Tmb = 25 °C; see Figure 1 - 76 A IDM peak drain current pulsed; tp ≤ 10 μs; Tmb = 25 °C; see Figure 3 - 260 A Ptot total power dissipation Tmb = 25 °C; see Figure 2 - 51 W Tstg storage temperature -55 175 °C Tj junction temperature -55 175 °C Source-drain diode IS source current Tmb = 25 °C - 65 A ISM peak source current pulsed; tp ≤ 10 μs; Tmb = 25 °C - 260 A Avalanche ruggedness EDS(AL)S non-repetitive drain-source avalanche energy VGS = 10 V; Tj(init) = 25 °C; ID = 65 A; Vsup ≤ 30 V; RGS = 50 Ω; unclamped - 21 mJ PSMN7R0-30YL All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved. Product data sheet Rev. 04 — 9 March 2011 3 of 14 NXP Semiconductors PSMN7R0-30YL N-channel 30 V 7 mΩ logic level MOSFET in LFPAK Fig 1. Continuous drain current as a function of mounting base temperature Fig 2. Normalized total power dissipation as a function of mounting base temperature Fig 3. Safe operating area; continuous and peak drain currents as a function of drain-source voltage 003aac720 0 20 40 60 80 100 0 50 100 150 200 Tmb (°C) ID (A) Tmb (°C) 0 50 100 150 200 03aa16 40 80 120 Pder (%) 0 003aac732 10-1 1 10 102 103 10-1 1 10 102 VDS (V) ID (A) DC Limit RDSon = VDS / ID 100 ms 10 ms 1 ms 100 μs 10 μs PSMN7R0-30YL All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved. Product data sheet Rev. 04 — 9 March 2011 4 of 14 NXP Semiconductors PSMN7R0-30YL N-channel 30 V 7 mΩ logic level MOSFET in LFPAK 5. Thermal characteristics Table 5. Thermal characteristics Symbol Parameter Conditions Min Typ Max Unit Rth(j-mb) thermal resistance from junction to mounting base see Figure 4 - 1.4 2.45 K/W Fig 4. Transient thermal impedance from junction to mounting base as a function of pulse duration 003aac721 single shot 0.2 0.1 0.05 0.02 10-2 10-1 1 10 10-6 10-5 10-4 10-3 10-2 10-1 tp (s) 1 Zth(j-mb) (K/W) δ = 0.5 tp T P t tp T δ = PSMN7R0-30YL All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved. Product data sheet Rev. 04 — 9 March 2011 5 of 14 NXP Semiconductors PSMN7R0-30YL N-channel 30 V 7 mΩ logic level MOSFET in LFPAK 6. Characteristics Table 6. Characteristics Tested to JEDEC standards where applicable. Symbol Parameter Conditions Min Typ Max Unit Static characteristics V(BR)DSS drain-source breakdown voltage ID = 250 μA; VGS = 0 V; Tj=25°C 30 - - V ID = 250 μA; VGS = 0 V; Tj = -55 °C 27 - - V VGS(th) gate-source threshold voltage ID = 1 mA; VDS = VGS; Tj = 25 °C; see Figure 11; see Figure 12 1.3 1.7 2.15 V ID = 1 mA; VDS = VGS; Tj = 150 °C; see Figure 12 0.65 - - V ID = 1 mA; VDS = VGS; Tj = -55 °C; see Figure 12 - - 2.45 V IDSS drain leakage current VDS = 30 V; VGS = 0 V; Tj=25°C - - 1 μA VDS = 30 V; VGS = 0 V; Tj = 150 °C - - 100 μA IGSS gate leakage current VGS = 16 V; VDS = 0 V; Tj = 25 °C - - 100 nA VGS = -16 V; VDS = 0 V; Tj = 25 °C - - 100 nA RDSon drain-source on-state resistance VGS = 4.5 V; ID = 15 A; Tj = 25 °C - 6.97 9.1 mΩ VGS = 10 V; ID = 15 A; Tj = 150 °C; see Figure 13 - - 12.2 mΩ VGS = 10 V; ID = 15 A; Tj = 25 °C - 4.92 7 mΩ RG gate resistance f = 1 MHz - 0.6 1.5 Ω Dynamic characteristics QG(tot) total gate charge ID = 10 A; VDS = 12 V; VGS = 4.5 V; see Figure 14; see Figure 15 - 10 - nC ID = 0 A; VDS = 0 V; VGS = 10 V - 20 - nC ID = 10 A; VDS = 12 V; VGS = 10 V; see Figure 14; see Figure 15 - 22 - nC QGS gate-source charge ID = 10 A; VDS = 12 V; VGS = 4.5 V; see Figure 14; see Figure 15 - 3.7 - nC QGS(th) pre-threshold gate-source charge - 2.1 - nC QGS(th-pl) post-threshold gate-source charge - 1.6 - nC QGD gate-drain charge - 2.9 - nC VGS(pl) gate-source plateau voltage VDS = 12 V; see Figure 14; see Figure 15 - 2.6 - V Ciss input capacitance VDS = 12 V; VGS = 0 V; f = 1 MHz; Tj = 25 °C; see Figure 16 - 1270 - pF Coss output capacitance - 255 - pF Crss reverse transfer capacitance - 145 - pF td(on) turn-on delay time VDS = 12 V; RL = 0.5 Ω; VGS = 4.5 V; RG(ext) = 4.7 Ω - 24 - ns tr rise time - 39 - ns td(off) turn-off delay time - 30 - ns tf fall time - 11 - ns PSMN7R0-30YL All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved. Product data sheet Rev. 04 — 9 March 2011 6 of 14 NXP Semiconductors PSMN7R0-30YL N-channel 30 V 7 mΩ logic level MOSFET in LFPAK Source-drain diode VSD source-drain voltage IS = 25 A; VGS = 0 V; Tj = 25 °C; see Figure 17 - 0.88 1.2 V trr reverse recovery time IS = 20 A; dIS/dt = -100 A/μs; VGS = 0 V; VDS = 20 V - 30 - ns Qr recovered charge - 22 - nC Table 6. Characteristics …continued Tested to JEDEC standards where applicable. Symbol Parameter Conditions Min Typ Max Unit Fig 5. Transfer characteristics: drain current as a function of gate-source voltage; typical values Fig 6. Forward transconductance as a function of drain current; typical values Fig 7. Drain-source on-state resistance as a function of gate-source voltage; typical values Fig 8. Output characteristics: drain current as a function of drain-source voltage; typical values 003aac729 0 20 40 60 80 0 1 2 3 VGS (V) 4 ID (A) Tj = 150 °C 25 °C 003aac728 30 40 50 60 0 10 20 30 I 40 D (A) gfs (S) 003aac727 4 6 8 10 12 14 2 4 6 8 V 10 GS (V) RDSon (mΩ) 003aac726 0 20 40 60 80 100 0 2 4 6 8 10 VDS (V) ID (A) VGS (V) = 4.5 10 3.2 3 2.8 2.6 2.4 2.2 PSMN7R0-30YL All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved. Product data sheet Rev. 04 — 9 March 2011 7 of 14 NXP Semiconductors PSMN7R0-30YL N-channel 30 V 7 mΩ logic level MOSFET in LFPAK Fig 9. Input and reverse transfer capacitances as a function of gate-source voltage; typical values Fig 10. Drain-source on-state resistance as a function of drain current; typical values Fig 11. Sub-threshold drain current as a function of gate-source voltage Fig 12. Gate-source threshold voltage as a function of junction temperature 003aac724 0 500 1000 1500 2000 2500 0 2 4 6 8 10 VGS (V) C (pF) Ciss Crss 003aac722 4 6 8 10 12 14 16 0 20 40 60 80 100 ID (A) RDSon (mΩ) VGS (V) = 4.5 10 3.2 003aab271 10-6 10-5 10-4 10-3 10-2 10-1 0 1 2 VGS (V) 3 ID (A) min typ max 003aac337 0 1 2 3 -60 0 60 120 180 Tj (°C) VGS(th) (V) max typ min PSMN7R0-30YL All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved. Product data sheet Rev. 04 — 9 March 2011 8 of 14 NXP Semiconductors PSMN7R0-30YL N-channel 30 V 7 mΩ logic level MOSFET in LFPAK Fig 13. Normalized drain-source on-state resistance factor as a function of junction temperature Fig 14. Gate charge waveform definitions Fig 15. Gate-source voltage as a function of gate charge; typical values Fig 16. Input, output and reverse transfer capacitances as a function of drain-source voltage; typical values 03aa27 0 0.5 1 1.5 2 −60 0 60 120 180 Tj (°C) a 003aaa508 VGS VGS(th) QGS1 QGS2 QGD VDS QG(tot) ID QGS VGS(pl) 003aac725 0 2 4 6 8 10 0 5 10 15 20 25 QG (nC) VGS (V) VDS = 19 (V) VDS = 12 (V) 003aac723 0 400 800 1200 1600 10-1 1 10 102 VDS (V) C (pF) Ciss Coss Crss PSMN7R0-30YL All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved. Product data sheet Rev. 04 — 9 March 2011 9 of 14 NXP Semiconductors PSMN7R0-30YL N-channel 30 V 7 mΩ logic level MOSFET in LFPAK Fig 17. Source (diode forward) current as a function of source-drain (diode forward) voltage; typical values 003aac730 0 20 40 60 80 0.0 0.2 0.4 0.6 0.8 1.0 VSD (V) IS (A) Tj = 150 °C 25 °C PSMN7R0-30YL All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved. Product data sheet Rev. 04 — 9 March 2011 10 of 14 NXP Semiconductors PSMN7R0-30YL N-channel 30 V 7 mΩ logic level MOSFET in LFPAK 7. Package outline Fig 18. Package outline SOT669 (LFPAK) OUTLINE REFERENCES VERSION EUROPEAN PROJECTION ISSUE DATE IEC JEDEC JEITA SOT669 MO-235 04-10-13 06-03-16 0 2.5 5 mm scale e E1 b c2 A2 UNIT A A2 b c e DIMENSIONS (mm are the original dimensions) mm 1.10 0.95 A1 A3 0.15 0.00 1.20 1.01 0.50 0.35 b2 4.41 3.62 b3 2.2 2.0 b4 0.9 0.7 0.25 0.19 c2 0.30 0.24 4.10 3.80 6.2 5.8 H 1.3 0.8 L2 0.85 0.40 L 1.3 0.8 L1 8° 0° D(1) w y 5.0 4.8 E(1) 3.3 3.1 E1 D1 (1) (1) max 0.25 4.20 1.27 0.25 0.1 1 2 3 4 mounting base D1 c Plastic single-ended surface-mounted package (LFPAK); 4 leads SOT669 E b2 b3 b4 H D L2 L1 A w M A C C X 1/2 e y C θ θ (A 3 ) L A A1 detail X Note 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included. PSMN7R0-30YL All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved. Product data sheet Rev. 04 — 9 March 2011 11 of 14 NXP Semiconductors PSMN7R0-30YL N-channel 30 V 7 mΩ logic level MOSFET in LFPAK 8. Revision history Table 7. Revision history Document ID Release date Data sheet status Change notice Supersedes PSMN7R0-30YL v.4 20110309 Product data sheet - PSMN7R0-30YL v.3 Modifications: • Various changes to content. PSMN7R0-30YL v.3 20100104 Product data sheet - PSMN7R0-30YL v.2 PSMN7R0-30YL v.2 20090105 Product data sheet - PSMN7R0-30YL v.1 PSMN7R0-30YL v.1 20081015 Preliminary data sheet - - PSMN7R0-30YL All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved. Product data sheet Rev. 04 — 9 March 2011 12 of 14 NXP Semiconductors PSMN7R0-30YL N-channel 30 V 7 mΩ logic level MOSFET in LFPAK 9. Legal information 9.1 Data sheet status [1] Please consult the most recently issued document before initiating or completing a design. [2] The term 'short data sheet' is explained in section "Definitions". [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com. 9.2 Definitions Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information. Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail. Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet. 9.3 Disclaimers Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors. Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer’s own risk. Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding. Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer’s sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer’s applications and products planned, as well as for the planned application and use of customer’s third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products. NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer’s applications or products, or the application or use by customer’s third party customer(s). Customer is responsible for doing all necessary testing for the customer’s applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer’s third party customer(s). NXP does not accept any liability in this respect. Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device. Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective Document status [1] [2] Product status [3] Definition Objective [short] data sheet Development This document contains data from the objective specification for product development. Preliminary [short] data sheet Qualification This document contains data from the preliminary specification. Product [short] data sheet Production This document contains the product specification. PSMN7R0-30YL All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved. Product data sheet Rev. 04 — 9 March 2011 13 of 14 NXP Semiconductors PSMN7R0-30YL N-channel 30 V 7 mΩ logic level MOSFET in LFPAK agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer’s general terms and conditions with regard to the purchase of NXP Semiconductors products by customer. No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights. Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities. Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications. In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors’ warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors’ specifications such use shall be solely at customer’s own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors’ standard warranty and NXP Semiconductors’ product specifications. 9.4 Trademarks Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners. Adelante, Bitport, Bitsound, CoolFlux, CoReUse, DESFire, EZ-HV, FabKey, GreenChip, HiPerSmart, HITAG, I²C-bus logo, ICODE, I-CODE, ITEC, Labelution, MIFARE, MIFARE Plus, MIFARE Ultralight, MoReUse, QLPAK, Silicon Tuner, SiliconMAX, SmartXA, STARplug, TOPFET, TrenchMOS, TriMedia and UCODE — are trademarks of NXP B.V. HD Radio and HD Radio logo — are trademarks of iBiquity Digital Corporation. 10. Contact information For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com NXP Semiconductors PSMN7R0-30YL N-channel 30 V 7 mΩ logic level MOSFET in LFPAK © NXP B.V. 2011. All rights reserved. For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com Date of release: 9 March 2011 Document identifier: PSMN7R0-30YL Please be aware that important notices concerning this document and the product(s) described herein, have been included in section ‘Legal information’. DPO4000 Series Digital Phosphor Oscilloscopes User Manual www.tektronix.com 071-1785-00 Copyright © Tektronix. All rights reserved. Licensed software products are owned by Tektronix or its subsidiaries or suppliers, and are protected by national copyright laws and international treaty provisions. Tektronix products are covered by U.S. and foreign patents, issued and pending. Information in this publication supersedes that in all previously published material. Specifications and price change privileges reserved. TEKTRONIX and TEK are registered trademarks of Tektronix, Inc. e*Scope, iView, OpenChoice, TekSecure, and TekVPI are registered trademarks of Tektronix, Inc. Wave Inspector is a trademark of Tektronix, Inc. Contacting Tektronix Tektronix, Inc. 14200 SW Karl Braun Drive P.O. Box 500 Beaverton, OR 97077 USA For product information, sales, service, and technical support: In North America, call 1-800-833-9200. Worldwide, visit www.tektronix.com to find contacts in your area. Warranty 4 Tektronix warrants that this product will be free from defects in materials and workmanship for a period of three (3) years from the date of shipment. If any such product proves defective during this warranty period, Tektronix, at its option, either will repair the defective product without charge for parts and labor, or will provide a replacement in exchange for the defective product. Parts, modules and replacement products used by Tektronix for warranty work may be new or reconditioned to like new performance. All replaced parts, modules and products become the property of Tektronix. In order to obtain service under this warranty, Customer must notify Tektronix of the defect before the expiration of the warranty period and make suitable arrangements for the performance of service. Customer shall be responsible for packaging and shipping the defective product to the service center designated by Tektronix, with shipping charges prepaid. Tektronix shall pay for the return of the product to Customer if the shipment is to a location within the country in which the Tektronix service center is located. Customer shall be responsible for paying all shipping charges, duties, taxes, and any other charges for products returned to any other locations. This warranty shall not apply to any defect, failure or damage caused by improper use or improper or inadequate maintenance and care. Tektronix shall not be obligated to furnish service under this warranty a) to repair damage resulting from attempts by personnel other than Tektronix representatives to install, repair or service the product; b) to repair damage resulting from improper use or connection to incompatible equipment; c) to repair any damage or malfunction caused by the use of non-Tektronix supplies; or d) to service a product that has been modified or integrated with other products when the effect of such modification or integration increases the time or difficulty of servicing the product. THIS WARRANTY IS GIVEN BY TEKTRONIX WITH RESPECT TO THE PRODUCT IN LIEU OF ANY OTHER WARRANTIES, EXPRESS OR IMPLIED. TEKTRONIX AND ITS VENDORS DISCLAIM ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. TEKTRONIX’ RESPONSIBILITY TO REPAIR OR REPLACE DEFECTIVE PRODUCTS IS THE SOLE AND EXCLUSIVE REMEDY PROVIDED TO THE CUSTOMER FOR BREACH OF THIS WARRANTY. TEKTRONIX AND ITS VENDORS WILL NOT BE LIABLE FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES IRRESPECTIVE OF WHETHER TEKTRONIX OR THE VENDOR HAS ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES. Table of Contents Table of Contents General Safety Summary ................................................................................................................... v Environmental Considerations ............................................................................................................ viii Preface....................................................................................................................................... x Key Features........................................................................................................................... x Where to Find More Information..................................................................................................... xii Conventions Used in This Manual................................................................................................... xiii Installation .................................................................................................................................. 1 Before Installation..................................................................................................................... 1 Operating Considerations ............................................................................................................ 6 Connecting Probes .................................................................................................................. 10 Powering On the Oscilloscope ...................................................................................................... 11 Powering Off the Oscilloscope ...................................................................................................... 14 Functional Check .................................................................................................................... 15 Compensating the Probe ............................................................................................................ 17 Installing an Application Module..................................................................................................... 19 Changing the User Interface Language ............................................................................................. 20 Changing the Date and Time ........................................................................................................ 23 Signal Path Compensation .......................................................................................................... 25 Upgrading Firmware ................................................................................................................. 28 Connecting Your Oscilloscope to a Computer ...................................................................................... 34 DPO4000 Series User Manual i Table of Contents Get Acquainted with the Instrument....................................................................................................... 45 Front-Panel Menus and Controls.................................................................................................... 45 Front-Panel Connectors ............................................................................................................. 66 Side-Panel Connector ............................................................................................................... 67 Rear-Panel Connectors.............................................................................................................. 68 Acquire the Signal ......................................................................................................................... 70 Setting Up Signal Input .............................................................................................................. 70 Using the Default Setup ............................................................................................................. 73 Using Autoset ........................................................................................................................ 74 Acquisition Concepts ................................................................................................................ 75 How the Acquisition Modes Work ................................................................................................... 78 Changing the Acquisition Mode and Record Length................................................................................ 80 Using Roll Mode ..................................................................................................................... 83 Defining a Serial Bus ................................................................................................................ 84 Trigger Setup and Run .................................................................................................................... 91 Triggering Concepts ................................................................................................................. 91 Choosing a Trigger................................................................................................................... 98 Selecting Triggers.................................................................................................................... 99 Triggering on Buses ................................................................................................................ 102 Checking Trigger Status ............................................................................................................ 107 Using A (Main) and B (Delayed) Triggers .......................................................................................... 107 Starting and Stopping an Acquisition............................................................................................... 111 ii DPO4000 Series User Manual Table of Contents Display Waveform Data .................................................................................................................. 112 Adding and Removing a Waveform ................................................................................................ 112 Setting the Display Style and Persistence ......................................................................................... 112 Setting Waveform and Graticule Intensity.......................................................................................... 115 Setting the Graticule Style .......................................................................................................... 117 Setting the LCD Backlight .......................................................................................................... 118 Scaling and Positioning a Waveform............................................................................................... 120 Setting Input Parameters ........................................................................................................... 122 Analyze Waveform Data.................................................................................................................. 129 Taking Automatic Measurements................................................................................................... 129 Selecting Automatic Measurements................................................................................................ 131 Customizing an Automatic Measurement .......................................................................................... 137 Taking Manual Measurements with Cursors ....................................................................................... 144 Using Math Waveforms ............................................................................................................. 150 Using FFT........................................................................................................................... 153 Using Advanced Math .............................................................................................................. 157 Using Reference Waveforms ....................................................................................................... 160 Managing Long Record Length Waveforms........................................................................................ 163 Save and Recall Information ............................................................................................................. 174 Saving a Screen Image............................................................................................................. 174 Saving and Recalling Waveform Data.............................................................................................. 176 Saving and Recalling Setups ....................................................................................................... 184 DPO4000 Series User Manual iii Table of Contents Saving with One Button Push ...................................................................................................... 187 Printing a Hard Copy................................................................................................................ 189 Erasing DPO4000 Memory ......................................................................................................... 196 Use Application Modules ................................................................................................................. 200 Application Examples..................................................................................................................... 201 Taking Simple Measurements ...................................................................................................... 201 Analyzing Signal Detail ............................................................................................................. 217 Triggering on a Video Signal ....................................................................................................... 226 Capturing a Single-Shot Signal..................................................................................................... 230 Correlating Data With a TLA5000 Logic Analyzer ................................................................................. 235 Tracking Down Bus Anomalies ..................................................................................................... 238 Index iv DPO4000 Series User Manual General Safety Summary General Safety Summary Review the following safety precautions to avoid injury and prevent damage to this product or any products connected to it. To avoid potential hazards, use this product only as specified. Only qualified personnel should perform service procedures. To Avoid Fire or Personal Injury Use Proper Power Cord. Use only the power cord specified for this product and certified for the country of use. Connect and Disconnect Properly. Do not connect or disconnect probes or test leads while they are connected to a voltage source. Connect and Disconnect Properly. De-energize the circuit under test before connecting or disconnecting the current probe. Ground the Product. This product is grounded through the grounding conductor of the power cord. To avoid electric shock, the grounding conductor must be connected to earth ground. Before making connections to the input or output terminals of the product, ensure that the product is properly grounded. Observe All Terminal Ratings. To avoid fire or shock hazard, observe all ratings and markings on the product. Consult the product manual for further ratings information before making connections to the product. The inputs are not rated for connection to mains or Category II, III, or IV circuits. Connect the probe reference lead to earth ground only. Do not apply a potential to any terminal, including the common terminal, that exceeds the maximum rating of that terminal. DPO4000 Series User Manual v General Safety Summary Power Disconnect. The power switch disconnects the product from the power source. See instructions for the location. Do not block the power switch; it must remain accessible to the user at all times. Do Not Operate Without Covers. Do not operate this product with covers or panels removed. Do Not Operate With Suspected Failures. If you suspect that there is damage to this product, have it inspected by qualified service personnel. Avoid Exposed Circuitry. Do not touch exposed connections and components when power is present. Do Not Operate in Wet/Damp Conditions. Do Not Operate in an Explosive Atmosphere. Keep Product Surfaces Clean and Dry. Provide Proper Ventilation. Refer to the manual’s installation instructions for details on installing the product so it has proper ventilation. Terms in this Manual These terms may appear in this manual: WARNING. Warning statements identify conditions or practices that could result in injury or loss of life. CAUTION. Caution statements identify conditions or practices that could result in damage to this product or other property. vi DPO4000 Series User Manual General Safety Summary Symbols and Terms on the Product These terms may appear on the product: DANGER indicates an injury hazard immediately accessible as you read the marking. WARNING indicates an injury hazard not immediately accessible as you read the marking. CAUTION indicates a hazard to property including the product. The following symbols may appear on the product: DPO4000 Series User Manual vii Environmental Considerations Environmental Considerations This section provides information about the environmental impact of the product. Product End-of-Life Handling Observe the following guidelines when recycling an instrument or component: Equipment Recycling. Production of this equipment required the extraction and use of natural resources. The equipment may contain substances that could be harmful to the environment or human health if improperly handled at the product’s end of life. In order to avoid release of such substances into the environment and to reduce the use of natural resources, we encourage you to recycle this product in an appropriate system that will ensure that most of the materials are reused or recycled appropriately. The symbol shown below indicates that this product complies with the European Union’s requirements according to Directive 2002/96/EC on waste electrical and electronic equipment (WEEE). For information about recycling options, check the Support/Service section of the Tektronix Web site (www.tektronix.com). Mercury Notification. This product uses an LCD backlight lamp that contains mercury. Disposal may be regulated due to environmental considerations. Please contact your local authorities or, within the United States, the Electronics Industries Alliance (www.eiae.org) for disposal or recycling information. viii DPO4000 Series User Manual Environmental Considerations Restriction of Hazardous Substances This product has been classified as Monitoring and Control equipment, and is outside the scope of the 2002/95/EC RoHS Directive. This product is known to contain lead, cadmium, mercury, and hexavalent chromium. DPO4000 Series User Manual ix Preface Preface This manual describes the installation and operation of the following DPO4000 Series Instruments: DPO4104 DPO4054 DPO4034 DPO4032 Key Features DPO4000 Series instruments can help you verify, debug, and characterize electronic designs. Key features include: 1 GHz, 500 MHz, and 350 MHz bandwidths 2 and 4 channel models Sample rates up to 5 GS/s on all channels 10 Megapoint record length on all channels I2C, SPI, and CAN serial triggering and analysis (Requires use of the DPO4EMBD (for I2C and SPI) or DPO4AUTO (for CAN) application modules) Wave Inspector controls for managing long record lengths, with zoom and pan, play and pause, search and mark 10.4 inch (264 mm) XGA color display Small footprint and lightweight, at 140 mm (5.5 inches) deep and 5 kg (11 pounds) USB and CompactFlash available for quick and easy storage Built-in Ethernet port USB 2.0 device port for direct PC control of the oscilloscope using USBTMC protocol x DPO4000 Series User Manual Preface OpenChoice documentation and analysis software Remote viewing with control (e*Scope and OpenChoice connectivity) TekVPI Versatile Probe Interface supports active, differential, and current probes for automatic scaling and units DPO4000 Series User Manual xi Preface Where to Find More Information The following information is available for your oscilloscope: To read about Use these documents Installation and Operation This DPO4000 User Manual English: 071-1785-XX French: 071-1799-XX Italian: 071-1800-XX German: 071-1801-XX Spanish: 071-1802-XX Japanese: 071-1803-XX Portuguese: 071-1804-XX Simplified Chinese: 071-1805-XX Traditional Chinese: 071-1806-XX Korean: 071-1807-XX Russian: 071-1808-XX Specifications and Performance Verification The DPO4000 Technical Reference (071-1843-XX) (PDF only) Programmer Commands The DPO4000 Programmer Manual (071-1845-XX) (PDF only) Analysis and Connectivity Tools The optional Getting Started with OpenChoice Solutions Manual (020-2514-XX) (includes a CD) xii DPO4000 Series User Manual Preface To read about Use these documents Servicing and calibration The optional DPO4000 Service Manual (071-1844-XX) Installing and testing application modules The DPO4000 Series Application Module Installation Instructions manual (071-1833-XX) (11 languages) Conventions Used in This Manual The following icons are used throughout this manual. Sequence Step Front panel power Connect power Network USB DPO4000 Series User Manual xiii Preface xiv DPO4000 Series User Manual Installation Installation Before Installation Unpack the oscilloscope and check that you received all items listed as standard accessories. The following pages list recommended accessories and probes, instrument options, and upgrades. Check the Tektronix Web site (www.tektronix.com) for the most current information. Standard Accessories Accessory Tektronix part number English (Option L0) 071-1785-XX French (Option L1) 071-1799-XX Italian (Option L2) 071-1800-XX German (Option L3) 071-1801-XX Spanish (Option L4) 071-1802-XX Japanese (Option L5) 071-1803-XX Portuguese (Option L6) 071-1804-XX Simple Chinese (Option L7) 071-1805-XX Traditional Chinese (Option L8) 071-1806-XX Korean (Option L9) 071-1807-XX DPO4000 User Manual Russian (Option L10) 071-1808-XX DPO4000 Series User Manual 1 Installation Standard Accessories (cont.) Accessory Tektronix part number DPO4000 Documentation Browser CD Electronic versions of DPO4000 documents, including the Programmer Manual and the Technical Reference. 063-1810-XX OpenChoice Desktop CD Applications that let you capture and transfer data from your oscilloscope to an external PC. Use the standalone OpenChoice Desktop, MS Word, or MS Excel Toolbars. 020-2514-XX Calibration certificate documenting traceability to national metrology institute(s), and ISO9001 quality system registration. —— One 500 MHz, 10x passive probe per channel P6139A Front Cover Hard plastic cover to help protect the instrument 200-4908-00 CompactFlash memory card Extra storage 156-9413-00 2 DPO4000 Series User Manual Installation Standard Accessories (cont.) Accessory Tektronix part number North America (Option A0) 161-0104-00 Universal Euro (Option A1) 161-0104-06 United Kingdom (Option A2) 161-0104-07 Australia (Option A3) 161-0104-05 Switzerland (Option A5) 161-0167-00 Japan (Option A6) 161-A005-00 China (Option A10) 161-0306-00 India (Option A11) 161-0400-00 Power Cord No power cord or AC adapter (Option A99) —— DPO4000 Series User Manual 3 Installation Optional Accessories Accessory Tektronix Part Number DPO4EMBD The embedded serial triggering and analysis module enables triggering on packet level information on I2C and SPI serial buses, as well as digital views of the signal, bus views, bus decoding, search tools, and packet decode tables with timestamp information DPO4EMBD DPO4AUTO The embedding automotive serial triggering and analysis module enables triggering on packet level information on CAN serial buses, as well as digital views of the signal, bus views, bus decoding, search tools, and packet decode tables with timestamp information DPO4AUTO TPA-BNC TekVPI to TekProbe 2 BNC Adapter TPA-BNC TEK-USB-488 Adapter GPIB to USB Adapter TEK-USB-488 Getting Started with OpenChoice Solutions Manual with CD Describes ways to develop host-computer software applications that work with your oscilloscope 020-2513-XX Rackmount kit Adds rackmount brackets RM4000 Soft transit case Case for carrying instrument AC4000 Hard transit case Traveling case, which requires use of the soft transit case (AC4000) HCTEK4321 4 DPO4000 Series User Manual Installation Optional Accessories (cont.) Accessory Tektronix Part Number CompactFlash memory card Extra storage 156-9413-00 CompactFlash to USB memory card reader Card reader 119-6827-00 DPO4000 Programmer Manual Describes commands for remote control of the DPO4000 oscilloscope. Available electronically on the Documentation Browser CD or for download from www.tektronix.com. 071-1845-XX DPO4000 Technical Reference Manual Describes the DPO4000 oscilloscope specifications and performance verification procedure. Available electronically on the Documentation Browser CD or for download from www.tektronix.com. 071-1809-XX DPO4000 Service manual Service information 071-1844-XX DPO4000 Module Installation Instructions Manual 071-1833-XX The DPO4000 oscilloscope works with multiple optional probes. (See page 10, Connecting Probes.) Check the Tektronix Web site (www.tektronix.com) for the most current information. DPO4000 Series User Manual 5 Installation Operating Considerations DPO4000 Series Oscilloscope Input Voltage: 100 V to 240 V ±10% Input Power Frequency: 47 Hz to 66 Hz (100 V to 240 V) 400 Hz (100 V to 132 V) Power Consumption: 250 W maximum Weight: 5 kg (11 lbs), stand-alone instrument Height, including feet but not handle: 229 mm (9.0 in) Width, from handle hub to handle hub: 439 mm (17.3 in) Depth, from feet to front of knobs: 137 mm (5.4 in) Depth, from feet to front of front cover: 145 mm (5.7 in) Clearance: 51 mm (2 in) Temperature: Operating: +0 °C to +50 °C Nonoperating: -20 °C to +60 °C 6 DPO4000 Series User Manual Installation Humidity: Operating: High: 40 °C to 50 °C, 10% to 60% RH Operating: Low: 0 °C to 40 °C, 10 to 90% RH Non-operating: High: 40 °C to 60 °C, 5 to 60% RH Non-operating: Low: 0 °C to 40 °C, 5 to 90% RH Altitude: Operating: 3,000 m (about 10,000 ft) Nonoperating Altitude: 12,192 m (40,000 ft) Random Vibration: Operating: 0.31 GRMS, 5 – 500 Hz, 10 minutes per axis, 3 axes (30 minutes total) Non-operating: 2.46 GRMS, 5 – 500 Hz, 10 minutes per axis, 3 axes (30 minutes total) Pollution Degree: 2, Indoor use only Acquisition System: 1 MΩ The maximum input voltage at the BNC, between center conductor and shield is 400 Vpeak (DF ≤ 39.2%), 250 VRMS to 130 kHz derated to 2.6 V RMS at 500 MHz. The maximum transient withstand voltage is ± 800 Vpeak. For steady-state sinusoidal waveforms, derate at 20 dB/decade above 200 kHz to 13 Vpk at 3 MHz and above. Acquisition System: 50Ω The maximum input voltage at the BNC, between center conductor and shield is 5 VRMS, with peaks ≤ ±20 V (DF ≤ 6.25%) DPO4000 Series User Manual 7 Installation External Trigger: 1 MΩ The maximum input voltage at the BNC, between center conductor and shield is 400 Vpeak (DF ≤ 39.2%), 250 VRMS to 2 MHz derated to 5 VRMS at 500 MHz. The maximum transient withstand voltage is ±800 Vpeak. For steady-state sinosoidal waveforms, derate at 20 dB/decade above 200 kHz to 13 Vpeak at 3 MHz and above. P6139A Passive Probe Input Voltage: 400 VRMS or 400 V DC; CAT I (2,500 Vpeak transient) 300 VRMS or 300 V DC; CAT II (2,500 Vpeak transient 150 VRMS or 150 V DC; CAT III (2,500 Vpeak transient) For steady-state, sinusoidal waveforms, derate at 20 dB/decade above 2.5 MHz to 50 VRMS at 20 MHz and above. Output Voltage (terminated into 1 MΩ): 40 VRMS or 40 V DC; CAT I (2,500 Vpeak impulse) 30 VRMS or 30 V DC; CAT I (250 Vpeak impulse) 15 VRMS or 15 V DC; CAT I (250 Vpeak impulse) Temperature: Operating: -15 °C to +65 °C ( +5 °F to +149 °F) Nonoperating: -62 °C to +85 °C ( -80 °F to +185 °F) Altitude: ≤ 2,000 meters 8 DPO4000 Series User Manual Installation Pollution Degree: 2, Indoor use only Humidity: Operating: High: 40 °C to 50 °C, 10% to 60% RH Operating: Low: 0 °C to 40 °C, 10 to 90% RH CAUTION. To ensure proper cooling, keep the sides and rear of the instrument clear of obstructions. Cleaning Inspect the oscilloscope and probes as often as operating conditions require. To clean the exterior surface, perform the following steps: 1. Remove loose dust on the outside of the oscilloscope and probes with a lint-free cloth. Use care to avoid scratching the clear glass display filter. 2. Use a soft cloth dampened with water to clean the oscilloscope. Use an aqueous solution of 75% isopropyl alcohol for more efficient cleaning. CAUTION. To avoid damage to the surface of the oscilloscope or probes, do not use any abrasive or chemical cleaning agents. DPO4000 Series User Manual 9 Installation Connecting Probes The DPO4000 oscilloscope supports probes with the following: 1. Tektronix Versatile Probe Interface (TekVPI) These probes support two-way communication with the oscilloscope through on-screen menus and remotely through programmable support. The remote control is useful in applications like ATE where you want the system to preset probe parameters. 2. TPA-BNC Adapter The TPA-BNC Adapter allows you to use TekProbe Level II probe capabilities, such as providing probe power and passing information to the oscilloscope on scaling and whether the units are volts or amperes. 3. Plain BNC interfaces These probes only pass the waveform signal to the oscilloscope. There is no other communication. 10 DPO4000 Series User Manual Installation For more information on the many probes available for use with DPO4000 oscilloscopes, refer to www.tektronix.com. Powering On the Oscilloscope Ground the Oscilloscope and Yourself Before pushing the power switch, connect the oscilloscope to an electrically neutral reference point, such as earth ground. Do this by plugging the three-pronged power cord into an outlet grounded to earth ground. Grounding the oscilloscope is necessary for safety and to take accurate measurements. The oscilloscope needs to share the same ground as any circuits that you are testing. DPO4000 Series User Manual 11 Installation If you are working with static sensitive components, ground yourself. Static electricity that builds up on your body can damage static-sensitive components. Wearing a grounding strap safely sends static charges on your body to earth ground. 12 DPO4000 Series User Manual Installation To connect the power cord and power on the oscilloscope: DPO4000 Series User Manual 13 Installation Powering Off the Oscilloscope To power off the oscilloscope and remove the power cord: 14 DPO4000 Series User Manual Installation Functional Check Perform this quick functional check to verify that your oscilloscope is operating correctly. 1. Connect the oscilloscope power cable as described above. 2. Power on the oscilloscope. DPO4000 Series User Manual 15 Installation 3. Connect the oscilloscope P6139A probe tip and reference lead to the PROBE COMP connectors. 4. Press Default Setup. 16 DPO4000 Series User Manual Installation 5. Push the Autoset button. The screen should now display a square wave, approximately 2.5 V at 1 kHz. If the signal appears but is misshapen, perform the procedures for compensating the probe. (See page 17, Compensating the Probe.) If no signal appears, rerun the procedure. If it no signal still appears, have the instrument serviced by qualified service personnel. Compensating the Probe Whenever you attach a passive voltage probe for the first time to any input channel, compensate the probe to match it to the corresponding oscilloscope input channel. To properly compensate your passive probe: 1. Follow the steps for the functional check. (See page 15, Functional Check.) DPO4000 Series User Manual 17 Installation 2. Check the shape of the displayed waveform to determine if your probe is properly compensated. Properly compensated Under compensated Over compensated 3. If necessary, adjust your probe. Repeat as needed. 18 DPO4000 Series User Manual Installation Quick Tips Use the shortest possible ground lead and signal path to minimize probe-induced ringing and distortion on the measured signal. Short ground lead Long ground lead Installing an Application Module CAUTION. To avoid damage to the oscilloscope or application module, observe ESD precautions. (See page 11, Powering On the Oscilloscope.) Turn off the oscilloscope power while removing or adding an application module. (See page 14, Powering Off the Oscilloscope.) DPO4000 Series User Manual 19 Installation Optional application module packages extend the capability of your oscilloscope. Install up to four application modules at one time into the two slots with windows in the upper right corner of the front panel and the two additional slots hidden behind the two you can see. Refer to the DPO4000 Series Application Module Installation Instructions that came with your application module for instructions on installing and testing an application module. NOTE. If you remove an application module, the features provided by the application module become unavailable. To restore the features, turn off the oscilloscope power, reinstall the module and turn on the oscilloscope power. Changing the User Interface Language To change the language of the oscilloscope user interface and the front-panel button labels: 1. Push Utility. 2. Push System repeatedly until you select Config from the pop-up menu. Config 20 DPO4000 Series User Manual Installation 3. Push Language from the resulting lower-bezel menu. System Config Language English Set Date & Time TekSecure Erase Memory Version v1.00 4. Push the side-bezel button corresponding to the desired language. Choose among: English, French, Italian, German, Spanish, Japanese, Brazilian Portuguese, Simplified Chinese, Traditional Chinese, Korean, and Russian. Language English Francais Deutsch Italiano -more- 1 of 3 DPO4000 Series User Manual 21 Installation 5. If you choose to use English, be sure that the plastic front-panel overlay is removed. If you choose a language other than English, place the plastic overlay for the language that you desire over the front panel to display labels in that language. 22 DPO4000 Series User Manual Installation Changing the Date and Time To set the internal clock with the current date and time: 1. Push Utility. 2. Push System repeatedly until you select Config from the pop-up menu. Config 3. Push Set Date & Time. System Config Language English Set Date & Time TekSecure Erase Memory Version DPO4000 Series User Manual 23 Installation Date Time Set Display Date/Time ON OFF 4. Push the side-panel buttons and rotate both multipurpose knobs (a and b) to set the time and date values. Hour: 4 Min: 1 Month: July Day: 19 Year: 2005 OK Enter Date & Time 5. Push OK Enter Date & Time. OK Enter Date & Time 24 DPO4000 Series User Manual Installation Signal Path Compensation Signal Path Compensation (SPC) corrects for DC inaccuracies caused by temperature variations and/or long-term drift. Run the compensation whenever the ambient temperature has changed by more than 10 °C or once a week if you use vertical settings of 5 mV/division or less. Failure to do so may result in the instrument not meeting warranted performance levels at those volts/div settings. To compensate the signal path: 1. Warm up the oscilloscope for at least 20 minutes. Remove all input signals (probes and cables) from channel inputs. Input signals with AC components adversely affect SPC. DPO4000 Series User Manual 25 Installation 2. Push Utility. 3. Push System repeatedly until you select Calibration from the resulting pop-up menu. Calibration 4. Push Signal Path from the lower-bezel menu. System Calibration Signal Path Pass Factory Pass 5. Push OK Compensate Signal path from the resulting side-bezel menu. OK Compensate Signal Path The calibration will take approximately 10 minutes to complete. 26 DPO4000 Series User Manual Installation 6. After calibration, verify that the status indicator on the lower-bezel menu displays Pass. System Calibration Signal Path Pass Factory Pass If it does not, then recalibrate the instrument or have the instrument serviced by qualified service personnel. 7. Service personnel use the factory calibration functions to calibrate the internal voltage references of the oscilloscope using external sources. Refer to your Tektronix field office or representative for assistance with factory calibration. NOTE. Signal Path Compensation does not include calibration to the probe tip. (See page 17, Compensating the Probe.) DPO4000 Series User Manual 27 Installation Upgrading Firmware To upgrade the firmware of the oscilloscope: 1. Open up a Web browser and go to www.tektronix.com. Proceed to the software finder. Download the latest firmware for your DPO4000 series oscilloscope onto a USB storage device. 28 DPO4000 Series User Manual Installation 2. Power off your DPO4000. DPO4000 Series User Manual 29 Installation 3. Insert the USB storage device into the front-panel USB port on your DPO4000. 30 DPO4000 Series User Manual Installation 4. Power on the DPO4000. The instrument automatically recognizes the replacement firmware and installs it. If the instrument does not install the firmware, rerun the procedure. It the problem continues, contact qualified service personnel. CAUTION. Do not power off the oscilloscope or remove the USB storage device until the oscilloscope finishes installing the firmware. DPO4000 Series User Manual 31 Installation 5. Power off the DPO4000 and remove the USB storage device. 32 DPO4000 Series User Manual Installation 6. Power on the DPO4000. 7. Push Utility. DPO4000 Series User Manual 33 Installation 8. Push Version. The oscilloscope displays the firmware version number. System Config Language English Set Date & Time TekSecure Erase Memory Version 9. Confirm that the version number matches that of the new firmware. Connecting Your Oscilloscope to a Computer You may want to document your work for future reference. Instead of saving screen images and waveform data to a CompactFlash or USB storage device, and then generating a report later, you may want to send it directly to a remote PC for analysis. You may also want to control an oscilloscope at a remote location from your computer. Two ways to connect your oscilloscope to a computer are the TekVISA-based OpenChoice and the e*Scope Web-enabled tool. Use OpenChoice to communicate with your oscilloscope from your computer through a software application. Use e*Scope to communicate with your oscilloscope through a Web browser. Using OpenChoice OpenChoice lets you use your MS-Windows computer to acquire data from your oscilloscope for use in an analysis package that runs on your PC, such as Microsoft Excel, National Instruments LabVIEW. or a program of your own creation. You can use a common communications protocol, such as USB, Ethernet, or GPIB to connect the computer to the oscilloscope. 34 DPO4000 Series User Manual Installation To set up OpenChoice communications between your oscilloscope and a computer: 1. Load the TekVISA drivers on your computer. Find these on the OpenChoice Desktop CD or at the Tektronix software finder Web page (www.tektronix.com). When done, the TekVISA icon appears in the Windows System Tray. Typically, this is the bottom right of the Windows desktop on your MS-Windows computer. DPO4000 Series User Manual 35 Installation 2. Connect the DPO4000 to your computer with the appropriate USB or Ethernet cable. To communicate between the DPO4000 and a GPIB system, connect the oscilloscope to the TEK-USB-488 GPIB-to-USB Adapter with a USB cable. Then connect the adapter to your GPIB system with a GPIB cable. 36 DPO4000 Series User Manual Installation 3. Push Utility. 4. Push System repeatedly to select I/O. I/O 5. To use Ethernet, push Ethernet Network Settings. System I/O USB Enabled Ethernet Network Settings GPIB 1 DPO4000 Series User Manual 37 Installation Network Configuration Change Instrument Settings DHCP/ BOOTP On Off On the side-bezel menu, if you are on a DHCP Ethernet network and using a through cable, set DHCP to On. If you are using a cross-over cable, set it to Off and set a hard coded TCPIP address. Test Connection 6. If you are using GPIB, push GPIB. 7. Enter the GPIB address on the side-bezel menu, using multipurpose knob a. Talk/Listen Address a 1 This will set the GPIB address on an attached TEK-USB-488 Adapter. 38 DPO4000 Series User Manual Installation 8. If you are using USB, the system sets itself up automatically for you, if USB is enabled. Check USB on the bottom-bezel menu to be sure that USB is enabled. If it is not enabled, push USB. Then push Enabled on the side-bezel menu. 9. Run your application software on your computer. 10. In case of problems getting oscilloscope-to-PC communications to work, refer to the networking troubleshooter. To bring up the troubleshooter, click the TekVISA icon on the System Tray of your MS-Windows computer. Then go to the online help. Quick Tips The DPO4000 comes with a variety of Windows-based software tools designed to ensure efficient connectivity between your oscilloscope and your computer. There are tool bars that speed connectivity with Microsoft Excel and Word. There is also a standalone acquisition program called the OpenChoice Desktop. The rear-panel USB 2.0 device port is the correct USB port for computer connectivity. Use the rear- and front-panel USB 2.0 host ports to connect your oscilloscope to storage devices and printers. DPO4000 Series User Manual 39 Installation Using e*Scope e*Scope lets you access any Internet-connected DPO4000 Series Oscilloscope from a browser on your workstation, PC, or laptop computer. No matter where you are, your DPO4000 is as close as the nearest browser. To set up e*Scope communications between your oscilloscope and a Web browser running on a remote computer: 1. Connect the DPO4000 to your computer network with the appropriate Ethernet cable. 2. Push Utility. 40 DPO4000 Series User Manual Installation 3. Push System repeatedly to select I/O. I/O 4. Push Ethernet Network Settings. System I/O USB Ethernet Network Settings GPIB DPO4000 Series User Manual 41 Installation Network Configuration 5. Push Change Instrument Settings to determine the Ethernet address and instrument name. On the side-bezel menu, if you are on a DHCP Ethernet network and using dynamic addressing, set DHCP to On. If you are using static addressing, set it to Off. Change Instrument Settings DHCP/ BOOTP On Off Test Connection 6. Start your browser on your remote computer. In the browser address line, enter the IP address or, if DHCP is set to On in the oscilloscope, simply enter the instrument name. 42 DPO4000 Series User Manual Installation 7. You should now see the e*Scope screen, with a copy of the oscilloscope display, on your Web browser. If e*Scope does not work, rerun the procedure. If it still does not work, contact qualified service personnel. DPO4000 Series User Manual 43 Installation 44 DPO4000 Series User Manual Get Acquainted with the Instrument Get Acquainted with the Instrument Front-Panel Menus and Controls The front panel has buttons and controls for the functions that you use most often. Use the menu buttons to access more specialized functions. DPO4000 Series User Manual 45 Get Acquainted with the Instrument Using the Menu System To use the menu system: 1. Push a front-panel menu button to display the menu that you want to use. 46 DPO4000 Series User Manual Get Acquainted with the Instrument 2. Push a lower-bezel button to select a menu item. If a pop-up menu appears, push the lower-bezel button repeatedly to select the desired choice. 3. Push a side-bezel button to choose a side-bezel menu item. If the menu item contains more than one choice, push the side-bezel button repeatedly to cycle through the choices. DPO4000 Series User Manual 47 Get Acquainted with the Instrument 4. To remove a side-bezel menu, push the lower-bezel button again or push Menu Off. 5. Certain menu choices require you to set a numerical value to complete the setup. Use the upper and lower multipurpose knobs a and b to adjust values. 6. Push Fine to turn off or on the ability to make smaller adjustments. 48 DPO4000 Series User Manual Get Acquainted with the Instrument Using the Menu Buttons Use the menu buttons to perform many functions in the oscilloscope. 1. Measure. Push to perform automated measurements on waveforms or to configure cursors. 2. Search. Push to search through an acquisition for user-defined events/criteria. 3. Test. Push to activate advanced or application-specific testing features. 4. Acquire. Push to set the acquisition mode and adjust the record length. 5. Autoset. Push to perform an automatic setup of oscilloscope settings. 6. Trigger Menu. Push to specify trigger settings. DPO4000 Series User Manual 49 Get Acquainted with the Instrument 7. Utility. Push to activate the system utility functions, such as selecting a language or setting the date/time. 8. Default Setup. Push to restore the oscilloscope to the default settings. 9. Save / Recall Menu. Push to save and recall setups, waveforms, and screen images to internal memory, a CompactFlash card, or a USB storage device. 10. Channel 1,2,3, or 4. Push to set vertical parameters for input waveforms and to display or remove the corresponding waveform from the display. 50 DPO4000 Series User Manual Get Acquainted with the Instrument 11. B1 or B2. Push to define and display a bus, if you have the appropriate module application keys. The DPO4AUTO module supports CAN. The DPO4EMBD module supports I2C and SPI. Also, push the B1 or B2 button to display or remove the corresponding bus from the display. 12. R. Push to manage reference waveforms, including the display or removal of each reference waveform from the display. 13. M. Push to manage the math waveform, including the display or removal of the math waveform from the display. DPO4000 Series User Manual 51 Get Acquainted with the Instrument Using Other Controls These buttons and knobs control waveforms, cursors and other data input. 1. Turn the upper multipurpose knob a, when activated, to move a cursor or set a numerical parameter value for a menu item. Push the nearby Fine button to toggle between coarse and fine adjustment. Screen icons tell you when a or b are active. 2. Cursors. Push once to activate the two vertical cursors. Push again to turn on the two vertical and two horizontal cursors. Push again to turn off all cursors. When the cursors are on, you can turn the multipurpose knobs to control their position. 52 DPO4000 Series User Manual Get Acquainted with the Instrument 3. Select. Push to activate special functions. For example, when using the two vertical cursors (and no horizontal ones are visible), you can push this button to link or unlink the cursors. When the two vertical and two horizontal cursors are both visible, you can push this button to make either the vertical cursors or the horizontal ones active. 4. Fine. Push to toggle between making coarse and fine adjustments with the vertical and horizontal position knobs, the trigger level knob, and many operations of multipurpose knobs a and b. 5. Waveform Intensity. Push to enable multipurpose knob a to control waveform display intensity and knob b to control graticule intensity. DPO4000 Series User Manual 53 Get Acquainted with the Instrument 6. Turn the lower multipurpose knob b, when activated, to move a cursor or set a numerical parameter value for a menu item. Push Fine to make adjustments more slowly. 7. Zoom button. Push to activate zoom mode. 8. Pan (outer knob). Turn to scroll the zoom window through the acquired waveform. 9. Zoom (inner knob). Turn to control the zoom factor. Turning it clockwise zooms in further. Turning it counterclockwise zooms out. 10. Play-pause button. Push to start or stop the automatic panning of a waveform. Control the speed and direction with the pan knob. 11. ← Prev. Push to jump to the previous waveform mark. 54 DPO4000 Series User Manual Get Acquainted with the Instrument 12. Set/Clear Mark. Push to establish or delete a waveform mark. 13. → Next. Push to jump to the next waveform mark. 14. Horizontal Position. Turn to adjust the trigger point location relative to the acquired waveforms. Push Fine to make smaller adjustments. 15. Horizontal Scale. Turn to adjust the horizontal scale (time/division). DPO4000 Series User Manual 55 Get Acquainted with the Instrument 16. Run/Stop. Push to start or stop acquisitions. 17. Single. Push to make a single acquisition. 18. Autoset. Push to automatically set the vertical, horizontal, and trigger controls for a usable, stable display. 19. Trigger Level. Turn to adjust the trigger level. 20. Set to 50%. Push to set the trigger level to the midpoint of the waveform. 21. Force Trig. Push to force an immediate trigger event. 56 DPO4000 Series User Manual Get Acquainted with the Instrument 22. Vertical Position. Turn to adjust the vertical position of the corresponding waveform. Push Fine to make smaller adjustments. 23. 1, 2, 3, 4. Push to display or remove the corresponding waveform from the display and access the vertical menu. 24. Vertical Scale. Turn to adjust the vertical scale factor of the corresponding waveform (volts/division). 25. Print. Push to initiate a hard copy using the printer selected in the Utility menu. 26. Power switch. Push to power on or off the instrument. DPO4000 Series User Manual 57 Get Acquainted with the Instrument 27. USB 2.0 host port. Insert a USB cable here to connect peripherals, such as printers and storage devices, to the oscilloscope. There are also two more USB 2.0 host ports on the rear panel. 28. CompactFlash Drive. Insert a CompactFlash card here. 29. CompactFlash Eject. Pops the CompactFlash card out of the CompactFlash drive. 30. Save. Push to perform an immediate save operation. The save operation uses the current save parameters, as defined in the Save / Recall menu. 31. Default Setup. Push to perform an immediate restore of the oscilloscope to the default settings. 32. Menu Off. Push to clear a displayed menu from the screen. 58 DPO4000 Series User Manual Get Acquainted with the Instrument Identifying Items in the Display The items shown to the right may appear in the display. Not all of these items are visible at any given time. Some readouts move outside the graticule area when menus are turned off. DPO4000 Series User Manual 59 Get Acquainted with the Instrument 1. The acquisition readout shows when an acquisition is running, stopped, or when acquisition preview is in effect. Icons are: Run: Acquisitions enabled Stop: Acquisitions not enabled Roll: In roll mode (40 ms/div or slower) PreVu: In this state, the oscilloscope is stopped or between triggers. You can change the horizontal or vertical position or scale to see approximately what the next acquisition will look like. RUN 60 DPO4000 Series User Manual Get Acquainted with the Instrument 2. The trigger position icon shows the trigger position in the acquisition. 3. The expansion point icon (an orange triangle) shows the point that the horizontal scale expands and compresses around. 4. The waveform record view shows the trigger location relative to the waveform record. The line color corresponds to the selected waveform color. DPO4000 Series User Manual 61 Get Acquainted with the Instrument 5. The trigger status readout shows trigger status. Status conditions are: Trig’d: Triggered Auto: Acquiring untriggered signal PrTrig: Acquiring pretrigger data Trig?: Waiting for trigger Trig’d 6. The cursor readout shows time, amplitude, and delta (Δ) values for each cursor. For FFT measurements, it shows frequency and magnitude. 62 DPO4000 Series User Manual Get Acquainted with the Instrument 7. The trigger level icon shows the trigger level on the waveform. The icon color corresponds to the trigger source channel color. 8. The edge trigger readout shows the trigger source, slope, and level. The trigger readouts for other trigger types show other parameters. 9. The top line of the record length/sampling rate readout shows the sampling rate (adjust with the Horizontal Scale knob). The bottom line shows the record length (adjust with the Acquire menu). DPO4000 Series User Manual 63 Get Acquainted with the Instrument 10. The horizontal position/scale readout shows on the top line the horizontal scale (adjust with the Horizontal Scale knob) and on the bottom line the time from the T symbol to the expansion point icon (adjust with the Horizontal Position knob). Use horizontal position to insert added delay between when the trigger occurs and when you actually capture the data. Insert a negative time to capture more pretrigger information. 11. The auxiliary waveform readouts show the vertical and horizontal scale factors of the math or reference waveforms. 12. The channel readout shows the channel scale factor (per division), coupling, and invert status. Adjust with the Vertical Scale knob and the channel 1, 2, 3, or 4 menus. 64 DPO4000 Series User Manual Get Acquainted with the Instrument 13. Measurement readouts show the selected measurements. You can select up to four measurements to display at one time. A symbol appears instead of the expected numerical measurement if a vertical clipping condition exists. Part of the waveform is above or below the display. To obtain a proper numerical measurement, turn the vertical scale and position knobs to make all of the waveform appear in the display. 14. The waveform baseline indicator shows the zero-volt level of a waveform (ignoring the effect of offset). The icon colors correspond to the waveform colors. DPO4000 Series User Manual 65 Get Acquainted with the Instrument Front-Panel Connectors 1. Channel 1, 2, (3, 4). Channel inputs with TekVPI Versatile Probe Interface. 2. Aux In. Trigger level range is adjustable from +8 V to –8 V. The maximum input voltage is 400V peak, 250V RMS. Input resistance is 1 MΩ ± 1% in parallel with 13 pF ±2 pF. 3. PROBE COMP. Square wave signal source to compensate probes. Output voltage: 0 – 2.5V, amplitude ± 1% behind 1k Ω ±2%. Frequency: 1 kHz. 4. Ground. 5. Application Module Slots. 66 DPO4000 Series User Manual Get Acquainted with the Instrument Side-Panel Connector 1. Ground strap connector. This is a receptacle for a grounding strap. DPO4000 Series User Manual 67 Get Acquainted with the Instrument Rear-Panel Connectors 1. Trigger Out. Use the trigger signal output to synchronize other test equipment with your oscilloscope. A LOW to HIGH transition indicates the trigger occurred. The logic level for Vout (HI) is ≥2.5V open circuit; ≥1.0 V into a 50Ω load to ground. The logic level for Vout (LO) is ≤0.7 V into a load of ≤4 mA; ≤0.25 V into a 50Ω load to ground. 2. XGA Out. Use the XGA Video port (DB-15 female connector) to show the oscilloscope display on an external monitor or projector. 3. LAN. Use the LAN (Ethernet) port (RJ-45 connector) to connect the oscilloscope to a 10/100 Base-T local area network. 4. Device. Use the USB 2.0 High speed device port to control the oscilloscope through USBTMC or GPIB with a TEK-USB-488 Adapter. The USBTMC protocol allows USB devices to communicate using IEEE488 style messages. This lets you run your GPIB software applications on USB hardware. 68 DPO4000 Series User Manual Get Acquainted with the Instrument 5. Host. Use the USB 2.0 Full speed host ports (two) to take advantage of USB mass storage devices and printers. 6. Power input. Attach to an AC power line with integral safety ground. (See page 6, Operating Considerations.) DPO4000 Series User Manual 69 Acquire the Signal Acquire the Signal This section describes concepts of and procedures for setting up the oscilloscope to acquire the signal as you want it to. Setting Up Signal Input Use front-panel buttons to set up your instrument to acquire the signal. 1. Connect the P6139A or VPI probe to the input signal source. 70 DPO4000 Series User Manual Acquire the Signal 2. Select the input channel by pushing the front-panel buttons. NOTE. If you are using a probe that does not supply probe encoding (not a P6139A nor a VPI probe), set the attenuation (probe factor) on the oscilloscope side-bezel menu. 3. Push Autoset. DPO4000 Series User Manual 71 Acquire the Signal 4. Push the desired channel button. Then adjust the vertical position and scale. 5. Adjust the horizontal position and scale. The horizontal position determines the number of pretrigger and posttrigger samples. The horizontal scale determines the size of the acquisition window relative to the waveform. You can scale the window to contain a waveform edge, a cycle, several cycles, or thousands of cycles. 72 DPO4000 Series User Manual Acquire the Signal Quick Tip Use the zoom feature to see multiple acquisition cycles in the upper part and a single cycle in the lower part of the display. (See page 163, Managing Long Record Length Waveforms.) Using the Default Setup To return the oscilloscope to its default settings: 1. Push Default Setup. 2. If you change your mind, push Undo Default Setup to undo the last default setup. Undo Default Setup Quick Tip The DPO4000 Technical Reference describes the default setup settings in detail. This manual is available on the accompanying CD or at www.tektronix.com. DPO4000 Series User Manual 73 Acquire the Signal Using Autoset Autoset adjusts the instrument (acquisition, horizontal, trigger, and vertical controls) such that it displays two or three waveform cycles with the trigger near the midlevel. 1. Connect the probe, and then select the input channel. (See page 70, Setting Up Signal Input.) 2. Push Autoset to execute an Autoset. 3. If desired, push Autoset Undo to undo the last Autoset. Undo Autoset 74 DPO4000 Series User Manual Acquire the Signal Quick Tips To position the waveform appropriately, Autoset may change the vertical position. Autoset always sets vertical offset to 0 V. If you use Autoset when no channels are displayed, the instrument turns on channel one (1) and scales it. Acquisition Concepts Before a signal can be displayed, it must pass through the input channel where it is scaled and digitized. Each channel has a dedicated input amplifier and digitizer. Each channel produces a stream of digital data from which the instrument extracts waveform records. Sampling Process Acquisition is the process of sampling an analog signal, converting it into digital data, and assembling it into a waveform record, which is then stored in acquisition memory. Input signal Sampled points Digital values DPO4000 Series User Manual 75 Acquire the Signal Real-time Sampling Record points DPO4000 series oscilloscopes use real-time sampling. In real-time sampling, the instrument digitizes all of the points it acquires using a single trigger event. Sampling rate 76 DPO4000 Series User Manual Acquire the Signal Waveform Record The instrument builds the waveform record through use of the following parameters: Sample interval: The time between recorded sample points. Adjust this by turning the Horizontal Scale knob. Record length: The number of samples required to fill a waveform record. Set this by pushing the Acquire button and using the resulting lower-bezel menu. Trigger point: The zero time reference in a waveform record. It is shown on the screen by an orange T. DPO4000 Series User Manual 77 Acquire the Signal Horizontal position: The time from the trigger point to the expansion point. Adjust this by turning the Horizontal Position knob. Use a positive time to acquire the record after the trigger point. Use a negative time to acquire it before the trigger point. Expansion point: The point that the horizontal scale expands and contracts around. It is shown by an orange triangle. How the Acquisition Modes Work Sample mode retains the first sampled point from each acquisition interval. Sample is the default mode. 78 DPO4000 Series User Manual Acquire the Signal Peak Detect mode uses the highest and lowest of all the samples contained in two consecutive acquisition intervals. This mode only works with real-time, noninterpolated sampling and is useful for catching high frequency glitches. Hi Res mode calculates the average of all the samples for each acquisition interval. This mode also only works with real-time, noninterpolated sampling. Hi-Res provides a higher-resolution, lower-bandwidth waveform. Envelope mode finds the highest and lowest record points over all acquisitions. Envelope uses Peak Detect for each individual acquisition. Average mode calculates the average value for each record point over a user-specified number of acquisitions. Average uses Sample mode for each individual acquisition. Use average mode to reduce random noise. DPO4000 Series User Manual 79 Acquire the Signal Changing the Acquisition Mode and Record Length Use this procedure to change the acquisition mode. 1. Push Acquire. 2. Push Mode. Mode Average Record Length 10k Reset Horizontal Position Waveform Display 80 DPO4000 Series User Manual Acquire the Signal Acquisition Mode Sample Peak Detect Hi Res Envelope 3. Then choose the acquisition mode from the side-bezel menu. You can chose from: Sample, Peak Detect, Hi Res, Envelope, or Average. NOTE. Peak Detect and High Res require more than one sample point per sample interval. If there is only one sample point, these two modes will appear the same as sample mode. Average 16 DPO4000 Series User Manual 81 Acquire the Signal 4. If you chose Average, turn multipurpose knob a to set the number of waveforms to average over. 5. Push Record Length. 6. Push the side-bezel menu, record length button. 1000 points Choose between: 1000, 10 k, 100 k, 1 M, and 10 M points. 82 DPO4000 Series User Manual Acquire the Signal Using Roll Mode Roll mode gives a display similar to a strip chart recorder for low-frequency signals. Roll mode lets you see acquired data points without waiting for the acquisition of a complete waveform record. Roll mode is enabled when the trigger mode is auto and the horizontal scale is set to 40 ms/div or slower. Quick Tips Switching to Envelope or Average acquisition mode, using math waveforms, or switching to normal trigger will disable Roll mode. Roll mode is disabled when you set the horizontal scale to 20 ms per division or faster. Push Run/Stop to halt Roll mode. DPO4000 Series User Manual 83 Acquire the Signal Defining a Serial Bus Your DPO4000 oscilloscope can trigger on I2C and SPI serial buses if the DPO4EMBD application module is installed. It can trigger on CAN serial buses if the DPO4AUTO application module is installed. It can display the physical layer of a bus (as analog waveforms), digital waveforms, and protocol level information (as symbolic waveforms). Plug in the DPO4EMBD application module to use the I2C and SPI features. Plug in the DPO4AUTO application module to use the CAN features. Using buses in two steps To quickly use serial bus triggering: 1. Push B1 or B2 and enter parameters of the bus to trigger on. You can separately use B1 and B2 to view two different buses. 2. Push Trigger Menu and enter trigger parameters. (See page 98, Choosing a Trigger.) You can display bus information without triggering on the bus signal. 84 DPO4000 Series User Manual Acquire the Signal Setting up serial bus parameters To set up bus parameters: 1. Push B1 or B2 to bring up the lower-bezel bus menu. I2C SPI 2. Push Bus as many times as needed to select the desired bus (I2C, SPI, or CAN) from the pop-up menu. CAN DPO4000 Series User Manual 85 Acquire the Signal 3. Push Define Inputs and use the side-bezel buttons to assign oscilloscope channels to the serial bus signal(s). Bus I2C Define Inputs Thresholds Display As Bus Bus Decode Hex For example, with an I2C bus, you might assign channel 1 to supply the SCLK signal and channel 2 to supply the SDA signal. You can assign any channel to a predefined bus signal. For all serial bus sources, use channel 1 to channel 4. Do not use the Aux In input. 4. Push Thresholds. Bus I2C Define Inputs Thresholds Display As Bus Decode 86 DPO4000 Series User Manual Acquire the Signal For each signal that makes up the serial bus, push the appropriate side-bezel menu button. Then turn the appropriate multipurpose knob to define the voltage level above which the oscilloscope treats the signal as high and below which as low. 5. If you selected CAN above, push Bit Rate and the desired side-bezel menu choice. Bus CAN Define Inputs Thresholds Bit Rate 500 Kbps Display As Bus Bus Decode Hex 6. If you selected SPI above, push Polarity and the desired side-bezel menu choice. Bus SPI Define Inputs Thresholds Polarity Display As Bus Bus Decode Hex Active High means when a signal is greater than the threshold value, it is considered a logical 1. Active Low means when the signal is lower than the threshold value, it is considered a logical 1. DPO4000 Series User Manual 87 Acquire the Signal 7. Push Display As and use the side-bezel menu to define how to display the serial bus. Display As Push Bus to display packet level information decoded for easy visual inspection, much like what you would see on a logic analyzer. Bus Push Waveforms to display the digital (high or low) representations of the waveforms. Waveforms Push Bus and Waveforms to display both views of the signal. Bus and Waveforms Push Event Table On to display a list of packets in the bus. Event Table On Off Sample bus information: 88 DPO4000 Series User Manual Acquire the Signal Sample waveforms: Sample event table: 8. Push Bus Decode and the desired side-bezel menu choice to display the bus data in hexadecimal or binary format. 9. Turn multipurpose knob a to move the bus display up or down on the screen. DPO4000 Series User Manual 89 Acquire the Signal You can also trigger on packet level information on your serial bus. (See page 102, Triggering on Buses.) NOTE. To acquire signals from two buses simultaneously, use this procedure once to define the parameters of the B1 bus and again to define the B2 bus. 90 DPO4000 Series User Manual Trigger Setup and Run Trigger Setup and Run This section contains concepts and procedures for setting up the oscilloscope to trigger on your signal. Triggering Concepts Trigger Event The trigger event establishes the time-reference point in the waveform record. All waveform record data is located in time with respect to that point. The instrument continuously acquires and retains enough sample points to fill the pretrigger portion of the waveform record. That is the part of the waveform that is displayed before, or to the left of, the triggering event on screen. When a trigger event occurs, the instrument starts acquiring samples to build the posttrigger portion of the waveform record, that is, the part displayed after or to the right of the trigger event. After a trigger is recognized, the instrument will not accept another trigger until the acquisition is complete and the holdoff time has expired. DPO4000 Series User Manual 91 Trigger Setup and Run Untriggered display Triggered display Trigger Modes The trigger mode determines how the instrument behaves in the absence of a trigger event: Normal trigger mode enables the instrument to acquire a waveform only when it is triggered. If no trigger occurs, the last waveform record acquired remains on the display. If no last waveform exists, no waveform is displayed. Auto trigger mode enables the instrument to acquire a waveform even if a trigger does not occur. Auto mode uses a timer that starts when the acquisition is started, and the pretrigger information is obtained. If a trigger event is not detected before the timer times out, the instrument forces a trigger. The length of time it waits for a trigger event depends on the time base setting. 92 DPO4000 Series User Manual Trigger Setup and Run Auto mode, when forcing triggers in the absence of valid triggering events, does not synchronize the waveform on the display. The waveform will appear to roll across the screen. If valid triggers occur, the display will become stable. You can also force the instrument to trigger by pushing the front-panel Force Trig button. Trigger Holdoff Adjust holdoff to obtain stable triggering when the instrument is triggering on undesired trigger events. Trigger holdoff can help stabilize triggering, since the oscilloscope does not recognize new triggers during the holdoff time. When the instrument recognizes a trigger event, it disables the trigger system until acquisition is complete. In addition, the trigger system remains disabled during the holdoff period that follows each acquisition. Holdoffs DPO4000 Series User Manual 93 Trigger Setup and Run Trigger Coupling Trigger coupling determines what part of the signal is passed to the trigger circuit. Edge triggering can use all available coupling types: DC, Low Frequency Rejection, High Frequency Rejection, and Noise Rejection. All other trigger types use DC coupling only. Horizontal Position Use horizontal position to acquire waveform detail in a region that is separated from the trigger location by a significant interval of time. 94 DPO4000 Series User Manual Trigger Setup and Run 1. Adjust the position (delay) time by rotating the Horizontal Position knob. 2. Turn horizontal SCALE to acquire the detail that you need around the position (delay) expansion point. DPO4000 Series User Manual 95 Trigger Setup and Run The part of the record that occurs before the trigger is the pretrigger portion. The part that occurs after the trigger is the posttrigger portion. Pretrigger data can help you troubleshoot. For example, to find the cause of an unwanted glitch in your test circuit, you can trigger on the glitch and make the pretrigger period large enough to capture data before the glitch. By analyzing what happens before the glitch, you may uncover information that helps you find the source of the glitch. Alternatively, to see what is happening in your system as a result of the trigger event, make the posttrigger period large enough to capture data after the trigger. Slope and Level The slope control determines whether the instrument finds the trigger point on the rising or the falling edge of a signal. The level control determines where on that edge the trigger point occurs. The DPO4000 provides a long horizontal bar or bars across the graticule to temporarily show the trigger level. 96 DPO4000 Series User Manual Trigger Setup and Run 1. Turn the front-panel Trigger Level knob to adjust the trigger level without going to a menu. 2. Push the front-panel Set to 50% button to quickly set the trigger level to the midpoint of the waveform. Delayed Trigger System Trigger with the A (Main) trigger system alone or, if using an edge trigger, combine the A (Main) trigger with the B (Delayed) trigger to trigger on sequential events. When using sequential triggering, the A trigger event arms the trigger system, and the B trigger event triggers the instrument when the B trigger conditions are met. A and B triggers can (and typically do) have separate sources. The B trigger condition can be based on a time delay or a specified number of events. (See page 107, Using A (Main) and B (Delayed) Triggers.) DPO4000 Series User Manual 97 Trigger Setup and Run Choosing a Trigger To select a trigger: 1. Push Trigger Menu. Edge Pulse Width Runt Logic Setup & Hold Rise/Fall Time Video 2. Push Type repeatedly to select the trigger type to use. NOTE. The bus trigger requires use of the DPO4EMBD or the DPO4AUTO application module. Bus 98 DPO4000 Series User Manual Trigger Setup and Run 3. Complete the trigger setup using the lower-bezel menu controls displayed for the trigger type. The controls to set up the trigger vary depending on the trigger type. Type Edge Source 1 Coupling DC Slope Level 100 mV Mode Auto & Holdoff Configure B Trigger Selecting Triggers Trigger Type Trigger Conditions Edge Trigger on a rising or falling edge, as defined by the slope control. Coupling choices are DC, LF Reject, HF Reject, and Noise Reject. Edge triggers are the simplest and most commonly used trigger type, with both analog and digital signals. An edge trigger event occurs when the trigger source passes through a specified voltage level in the specified direction. DPO4000 Series User Manual 99 Trigger Setup and Run Trigger Type Trigger Conditions Pulse/Width Trigger on pulses that are less than, greater than, equal to, or not equal to a specified time. You can trigger on positive or negative pulses. Pulse/width triggers are primarily used on digital signals. Runt Trigger on a pulse amplitude that crosses one threshold but fails to cross a second threshold before recrossing the first. You can detect positive or negative (or either) runts, or only those wider than, less than, greater than, equal to, or not equal to a specified width. Runt triggers are primarily used on digital signals. Logic Logic triggers are primarily used with digital signals. You can set each input to high, low, or don’t care. In addition, you can use one channel as a clock source set to either the rising or falling edge. Trigger when logic inputs cause the selected function to become True or False. You can also specify that the logic conditions be satisfied for a specific amount of time before triggering. 100 DPO4000 Series User Manual Trigger Setup and Run Trigger Type Trigger Conditions Setup and Hold Violation Trigger when a logic data input changes state inside of the setup or hold time relative to a clock edge. Setup is the amount of time that data should be stable and not change before a clock edge occurs. Hold is the time that data should be stable and not change after a clock edge occurs. Rise/Fall Time Trigger on rise and fall times. Trigger on pulse edges that traverse between two thresholds at faster or slower rates than the specified time. Specify pulse edges as positive or negative or either. Video Trigger on specified fields or lines of a composite video signal. Only composite signal formats are supported. Trigger on NTSC, PAL, or SECAM.Works with Macrovision signals. DPO4000 Series User Manual 101 Trigger Setup and Run Trigger Type Trigger Conditions Bus Optional: Trigger on common, serial-bus, packet-level information with the following application modules: DPO4EMBD — I2C and SPI DPO4AUTO — CAN Triggering on Buses You can use your DPO4000 oscilloscope to trigger on CAN, I2C, and SPI buses, if you have the DPO4AUTO or the DPO4EMBD application module installed. The DPO4000 can display both physical layer (as analog waveforms ) and protocol level information (as digital and symbolic waveforms). To set up the bus trigger: 1. If you have not already defined your bus using the front-panel B1 or B2 buttons, do so now. (See page 84, Defining a Serial Bus.) 102 DPO4000 Series User Manual Trigger Setup and Run 2. Push Trigger Menu. Bus 3. Push and keep pushing the Type button of the lower-bezel menu until you select Bus. Type Bus Source Bus B1 (I2C) Trigger On Address Address 07F Direction Write Mode Auto & Holdoff DPO4000 Series User Manual 103 Trigger Setup and Run 4. Push and keep pushing the Source Bus B1 (I2C) button of the lower-bezel menu until you select the bus that you want to trigger on. B2 (I2C) 5. Push and keep pushing the lower-bezel menu Trigger On button until you select the desired trigger on feature. If you are using the I2C bus trigger, you can trigger on Start, Repeated Start, Stop, Missing Ack, Address, Data, or Address/Data. If you are using the SPI bus trigger, you can trigger on SS Active, MOSI, MISO, or MOSI & MISO. If you are using the CAN bus trigger, you can trigger on Start of Frame, Type of Frame, Identifier, Data, Id & Data, End of Frame, and Missing Ack. 104 DPO4000 Series User Manual Trigger Setup and Run 6. If you are setting up an I2C trigger and have selected a Trigger On selection of Address or Address/Data, push the lower-bezel menu Address button to access the Address side-bezel menu. Press the side-bezel menu Address button. Enter the address parameters of interest with multipurpose knobs a and b. Then push the lower-bezel menu Direction button to enter the direction of interest. Choices are: Read, Write, and Read or Write. DPO4000 Series User Manual 105 Trigger Setup and Run Bus Trigger Data Matching Rolling window byte matching for I2C and SPI. You can use a rolling window to trigger on data with SPI and I2C buses. You define the number of bytes to match. Then the oscilloscope uses a rolling window to find any match within a packet, with the window rolling one byte at a time. For example, if the number of bytes is one, the oscilloscope will match the first byte, second byte, third, and so on within the packet. If the number of bytes is two, the oscilloscope will try to match any two consecutive bytes, such as one and two, two and three, three and four, and so on. If the oscilloscope finds a match, it will then trigger. Specific byte matching (non-rolling window matching) for CAN, I2C, and SPI. You can trigger on a specific byte for SPI and I2C in two ways: For I2C and SPI, enter the number of bytes to match the number of bytes in the signal. Then use don’t cares (X) to mask the bytes that you are not interested in. For I2C, push the bottom-bezel Trigger On to trigger on Address/Data. Push Address. On the side-bezel menu, push Address and rotate multipurpose knobs a and b as needed. Set the address to don’t cares (X) if you want to mask the address. The data will be matched starting at the first byte without using a rolling window. For CAN, triggering occurs when the user-selected data input matches the data and qualifier in the signal starting at the first byte. Set the number of bytes to match the number of bytes of interest. Use the data qualifier to perform: =, !=, <, >, >=, and <= operations. Triggering on identifier and data always matches the identifier and data selected by the user, with the data starting at the first byte. No rolling window is used. 106 DPO4000 Series User Manual Trigger Setup and Run Checking Trigger Status To quickly determine the settings of some key trigger parameters, check the Trigger readout at the bottom of the display. The readouts differ for edge and the advanced triggers. 1. Trigger source = channel 1. 2. Trigger slope = rising. 3. Trigger level = 0.00 V. Edge trigger readout Using A (Main) and B (Delayed) Triggers Combine an edge A Event (Main) trigger with the B Event (Delayed) trigger to capture more complex signals. After the A Event occurs, the trigger system looks for the B Event before triggering and displaying the waveform. To use the B trigger: 1. Push Trigger Menu. DPO4000 Series User Manual 107 Trigger Setup and Run 2. Press Type repeatedly to select a trigger type of Edge. 3. Push Configure B Trigger. This brings up the B trigger menu. The B Trigger Setup item only appears if the A trigger is set to edge trigger. Type Edge Source 1 Coupling DC Slope Level 0.00 V Mode Auto & Holdoff Configure B Trigger 4. Set the B trigger parameters as defined in the B trigger lower-bezel and side-bezel menu items. B Trigger On B Trigger After A Time Source 1 Coupling DC Slope Level 0.00V Configure A Trigger 108 DPO4000 Series User Manual Trigger Setup and Run Trigger on B Event The A trigger arms the instrument. Posttrigger acquisition starts on the nth B event. DPO4000 Series User Manual 109 Trigger Setup and Run B Trigger After Delay Time The A trigger arms the instrument. Posttrigger acquisition starts on the first B edge after the trigger delay time. Quick Tips B-trigger delay time and horizontal position are independent functions. When you establish a trigger condition using either the A trigger alone or the A and B triggers together, you can also use horizontal position to delay the acquisition by an additional amount. When using the B trigger, the A and B trigger types can only be Edge. 110 DPO4000 Series User Manual Trigger Setup and Run Starting and Stopping an Acquisition After you have defined the acquisition and trigger parameters, start the acquisition with Run/Stop or Single. Push Run/Stop to start the acquisition. Push it again to stop the acquisition. Push Single to take a single acquisition. Single sets the trigger mode to Normal for the single acquisition. DPO4000 Series User Manual 111 Display Waveform Data Display Waveform Data This section contains concepts and procedures for displaying the acquired waveform. Adding and Removing a Waveform 1. To add or remove an active waveform from the display, push the relevant front-panel channel button. You can use the channel as a trigger source whether or not it is displayed. Setting the Display Style and Persistence 1. To set the display style, push Acquire. 112 DPO4000 Series User Manual Display Waveform Data 2. Push Waveform Display. Mode Sample Record Length 10k Reset Horizontal Position Waveform Display DPO4000 Series User Manual 113 Display Waveform Data 3. Push Dots Only On Off from the side-bezel menu. Dots on will display the waveform record points as dots on the screen. Dots off connects the dots with vectors. Waveform Display Dots Only On Off 4. Push Persist Time, and turn multipurpose knob a to have waveform data remain on screen for a user-specified amount of time. Persist Time a Auto 5. Push Set to Auto to have the oscilloscope automatically determine a persistence time for you. Set to Auto 6. Push Clear Persistence to reset the persistence information. Clear Persistence 114 DPO4000 Series User Manual Display Waveform Data Quick Tips Variable persistence accumulates record points for a specified time interval. Each record point decays independently according to the time interval. Use variable persistence for displaying infrequently appearing signal anomalies, such as glitches. Infinite persistence continuously accumulates record points until you change one of the acquisition display settings. Use infinite persistence for displaying unique signal anomalies, such as glitches. Setting Waveform and Graticule Intensity 1. Push the front-panel Intensity button. This will bring up the intensity readout on the display. DPO4000 Series User Manual 115 Display Waveform Data 2. Rotate multipurpose knob a to select the desired waveform intensity. 3. Rotate multipurpose knob b to select the desired intensity for the graticule and text. 4. Push Intensity again to clear the intensity readout from the display. 116 DPO4000 Series User Manual Display Waveform Data Setting the Graticule Style 1. To set the graticule style, push Utility. 2. Push System repeatedly until you select Display from the pop-up menu. Display 3. Push Graticule from the lower-bezel menu. System Display Backlight Intensity High Graticule Full DPO4000 Series User Manual 117 Display Waveform Data 4. Select the desired style from the resulting side-bezel menu. Use the Full graticule for quick estimates of waveform parameters. Use the Grid graticule for full-screen measurements with cursors and automatic readouts when cross hairs are not needed. Use the Cross Hair graticule for making quick estimates of waveforms while leaving more room for automatic readouts and other data. Use the Frame graticule with automatic readouts and other screen text when display features are not needed. Setting the LCD Backlight 1. Push Utility. 118 DPO4000 Series User Manual Display Waveform Data 2. Push System repeatedly until you select Display. Display 3. Push Backlight Intensity. System Display Backlight Intensity High Graticule Full Backlight Intensity High Medium 4. Select the intensity level from the resulting side-bezel menu. Choices are: High, Medium, and Low. Low DPO4000 Series User Manual 119 Display Waveform Data Scaling and Positioning a Waveform Use the horizontal controls to adjust the time base, adjust the trigger point, and to examine waveform details more closely. Original waveform Scaled horizontally Positioned horizontally 120 DPO4000 Series User Manual Display Waveform Data Use the vertical controls to select waveforms, adjust the waveform vertical position and scale, and set input parameters. Push a channel button (1, 2, 3, or 4), the MATH button, or the REF button or the B1 or B2 button as many times as needed and the associated menu items to select, add, or remove a waveform. Original waveform Scaled vertically Positioned vertically Quick Tips Preview. If you change the Position or Scale controls when the acquisition is stopped or when it is waiting for the next trigger, the oscilloscope rescales and repositions the relevant waveforms in response to the new control settings. It simulates what you will see when you next push the RUN button. The oscilloscope uses the new settings for the next acquisition. You may see a clipped waveform if the original acquisition went off the screen. The math waveform, cursors, and automatic measurements remain active and valid when using preview. DPO4000 Series User Manual 121 Display Waveform Data Setting Input Parameters Use the vertical controls to select waveforms, adjust the waveform vertical position and scale, and set input parameters. 1. Push channel button 1, 2, 3, or 4 to bring up the vertical menu for the designated waveform. The vertical menu only affects the selected waveform. Pushing a channel button will also select or cancel that waveform selection. 2. Push Coupling. Coupling DC Invert Off Bandwidth Full Fine Scale 100mV/div Offset 0.00V Position 0.00 div Probe Setup 1X 122 DPO4000 Series User Manual Display Waveform Data 3. Push DC, AC, or GND (ground). Use DC coupling to pass both AC and DC components. DC Use AC coupling to block the DC component and show only the AC signal. AC Use Ground (GND) to display the reference potential. GND 4. Push Ω. Ω 1M 50 Set the input impedance (termination) to 50 Ω or 1 MΩ if using DC or Gnd coupling. Input impedance is automatically set to 1 MΩ when using AC coupling. For more information on input impedance, see Quick Tips below. DPO4000 Series User Manual 123 Display Waveform Data 5. Push Invert to invert the signal. Coupling DC Invert Off Bandwidth Full Fine Scale 100mV/div Offset 0.00V Position 0.00 div Probe Setup 1X Select Invert Off for normal operation and Invert On to invert the polarity of the signal in the preamplifier. 6. Push Bandwidth, and select the desired bandwidth from the resulting side-bezel menu. Coupling DC Invert Off Bandwidth Full Fine Scale 100mV/div Offset 0.00V Position 0.00 div Probe Setup 1 X The set choices are: Full, 250 MHz, and 20 MHz. Additional choices may appear, depending on the probe that you use. Select Full to set the bandwidth to the full oscilloscope bandwidth. Select 250 MHz to set the bandwidth to 250 MHz. Select 20 MHz to set the bandwidth to 20 MHz. 124 DPO4000 Series User Manual Display Waveform Data 7. Push Fine Scale to enable multipurpose knob a to make fine vertical scale adjustments. Coupling DC Invert Off Bandwidth Full Fine Scale 100mV/div Offset 0.00V Position 0.00 div Probe Setup 1 X 8. Push Offset to enable multipurpose knob a to make vertical offset adjustments. Coupling DC Invert Off Bandwidth Full Fine Scale 100mV/div Offset 0.00V Position 0.00 div Probe Setup 1 X On the side-bezel menu, choose Set to 0 V to set the vertical offset to 0 V. For more information on offset, see the Quick Tips below. DPO4000 Series User Manual 125 Display Waveform Data 9. Push Position to enable multipurpose knob a to make vertical position adjustments. Coupling DC Invert Off Bandwidth Full Fine Scale 100mV/div Offset 0.00V Position 0.00 div Probe Setup 1 X NOTE. You can also use the position knob on the front panel to do this. On the side-bezel menu, choose Set to 0 divs to set the vertical position to the center of the screen. For more information on vertical position, see the Quick Tips below. 126 DPO4000 Series User Manual Display Waveform Data 10. Push Probe Setup to define probe parameters. Coupling DC Invert Off Bandwidth Full Fine Scale 100mV/div Offset 0.00V Position 0.00 div Probe Setup 1 X On the resulting side-bezel menu: Select Voltage Probe or Current Probe to set the probe gain or attenuation for probes that do not have the TekProbe II or TekVPI interface. Push Deskew to set the time skew correction to zero. Turn multipurpose knob a to adjust the time skew (deskew) correction for the probe attached to the selected channel. This shifts acquisition and display of the waveform left or right, relative to the trigger time. Use this to compensate for differences in cable lengths or probe types. Select Attenuation to choose the probe attenuation. DPO4000 Series User Manual 127 Display Waveform Data Quick Tips Using Probes with the TekProbe II and TekVPI Interfaces. When you attach a probe with the TekProbe II or the TekVPI interface, the oscilloscope sets the channel sensitivity, coupling, and termination resistance automatically to match the probe requirements. Tek Probe II probes require use of the TPA-BNC Adapter. The Difference Between Vertical Position and Offset. Vertical position is a display function. Adjust the vertical position to place the waveforms where you want to see them. The waveform baseline locations track adjustments made to their positions. When you adjust vertical offset, you see a similar effect, but it is actually quite different. Vertical offset is applied before the oscilloscope preamplifier and can be used to increase the effective dynamic range of the inputs. For example, you can use vertical offset to look at small variations in a large DC voltage. Set the vertical offset to match the nominal DC voltage and the signal appears in the center of the screen. 50 Ω Protection. If you select 50 Ω termination, the maximum vertical scale factor is limited to 1 V/div. If you apply excessive input voltage, the oscilloscope automatically switches to 1 M Ω termination to protect the internal 50 Ω termination. For more details, refer to the specifications in the DPO4000 Technical Reference. 128 DPO4000 Series User Manual Analyze Waveform Data Analyze Waveform Data After having properly set up the acquisition, triggering, and display of your desired waveform, you can then analyze the results. Select from features such as cursors, automatic measurements, statistics, math, and FFT. Taking Automatic Measurements To take an automatic measurement: 1. Push Measure. 2. Push Select Measurement. Select Measurement Remove Measurement Gating Off Statistics Off Reference Levels Indicators Configure Cursors DPO4000 Series User Manual 129 Analyze Waveform Data 3. Turn multipurpose knob a to select the channel from which you want to measure. This step is only needed if you are acquiring data on more than one channel. 4. Select the specific measurement or measurements from the side-bezel menu. 5. To remove a measurement, push Remove Measurement and the specific measurement from the resulting side-bezel menu. Quick Tips To remove all measurements, select Remove All. A symbol appears instead of the expected numerical measurement if a vertical clipping condition exists. Part of the waveform is above or below the display. To obtain a proper numerical measurement, turn the vertical scale and position knobs to make all of the waveform appear in the display. 130 DPO4000 Series User Manual Analyze Waveform Data Selecting Automatic Measurements The following tables list each automatic measurement by category: amplitude or time. (See page 129, Taking Automatic Measurements.) Time Measurements Measurement Description Period The time required to complete the first cycle in a waveform or gated region. Period is the reciprocal of frequency and is measured in seconds. Frequency The first cycle in a waveform or gated region. Frequency is the reciprocal of the period; it is measured in hertz (Hz) where one Hz is one cycle per second. Delay The time between the mid reference (default 50%) amplitude point of two different waveforms. See also Phase. Rise Time The time required for the leading edge of the first pulse in the waveform or gated region to rise from the low reference value (default = 10%) to the high reference value (default = 90%) of the final value. Fall Time The time required for the falling edge of the first pulse in the waveform or gated region to fall from the high reference value (default = 90%) to the low reference value (default = 10%) of the final value. Positive Duty Cycle The ratio of the positive pulse width to the signal period expressed as a percentage. The duty cycle is measured on the first cycle in the waveform or gated region. DPO4000 Series User Manual 131 Analyze Waveform Data Time Measurements (cont.) Measurement Description Negative Duty Cycle The ratio of the negative pulse width to the signal period expressed as a percentage. The duty cycle is measured on the first cycle in the waveform or gated region. Positive Pulse Width The distance (time) between the mid reference (default 50%) amplitude points of a positive pulse. The measurement is made on the first pulse in the waveform or gated region. Negative Pulse Width The distance (time) between the mid reference (default 50%) amplitude points of a negative pulse. The measurement is made on the first pulse in the waveform or gated region. Burst Width The duration of a burst (a series of transient events) and is measured over the entire waveform or gated region. Phase The amount of time that one waveform leads or lags another waveform, expressed in degrees where 360° comprises one waveform cycle. See also Delay. 132 DPO4000 Series User Manual Analyze Waveform Data Amplitude Measurements Measurement Description Positive Overshoot This is measured over the entire waveform or gated region and is expressed as: Positive Overshoot = (Maximum – High) / Amplitude x 100%. Negative Overshoot This is measured over the entire waveform or gated region and is expressed as: Negative Overshoot = (Low – Minimum) / Amplitude x 100%. DPO4000 Series User Manual 133 Analyze Waveform Data Amplitude Measurements (cont.) Measurement Description Pk-Pk The absolute difference between the maximum and minimum amplitude in the entire waveform or gated region. Amplitude The high value less the low value measured over the entire waveform or gated region. High This value is used as 100% whenever high reference, mid reference, or low reference values are needed, such as in fall time or rise time measurements. Calculate using either the min/max or histogram method. The min/max method uses the maximum value found. The histogram method uses the most common value found above the midpoint. This value is measured over the entire waveform or gated region. Low This value is used as 0% whenever high reference, mid reference, or low reference values are needed, such as in fall time or rise time measurements. Calculate using either the min/max or histogram method. The min/max method uses the minimum value found. The histogram method uses the most common value found below the midpoint. This value is measured over the entire waveform or gated region. Max The most positive peak voltage. Max is measured over the entire waveform or gated region. Min The most negative peak voltage. Min is measured over the entire waveform or gated region. 134 DPO4000 Series User Manual Analyze Waveform Data Amplitude Measurements (cont.) Measurement Description Mean The arithmetic mean over the entire waveform or gated region. Cycle Mean The arithmetic mean over the first cycle in the waveform or the first cycle in the gated region. RMS The true Root Mean Square voltage over the entire waveform or gated region. Cycle RMS The true Root Mean Square voltage over the first cycle in the waveform or the first cycle in the gated region. DPO4000 Series User Manual 135 Analyze Waveform Data Miscellaneous Measurements Measurement Description Area Area measurement is a voltage over time measurement. It returns the area over the entire waveform or gated region in volt-seconds. Area measured above ground is positive; area measured below ground is negative. Cycle Area A voltage over time measurement. The measurement is the area over the first cycle in the waveform or the first cycle in the gated region expressed in volt-seconds. The area above the common reference point is positive while the area below the common reference point is negative. 136 DPO4000 Series User Manual Analyze Waveform Data Customizing an Automatic Measurement You can customize automatic measurements by using gating, modifying measurement statistics, adjusting the measurement reference levels, or taking a snapshot. Gating Gating confines the measurement to a certain portion of a waveform. To use: 1. Push Measure. 2. Push Gating. Select Measurement Remove Measurement Gating Off Statistics Off Reference Levels Indicators Configure Cursors DPO4000 Series User Manual 137 Analyze Waveform Data 3. Position the gates from the side-bezel menu options. Gating Off (Full record) Screen Between cursors Bring cursors on screen 138 DPO4000 Series User Manual Analyze Waveform Data Statistics Statistics characterize the stability of measurements. To adjust statistics: 1. Push Measure. 2. Push Statistics. Select Measurement Remove Measurement Gating Off Statistics Off Reference Levels Indicators Configure Cursors DPO4000 Series User Manual 139 Analyze Waveform Data Measurement Statistics On Off Mean & Std Dev Samples a 32 3. Push the side-bezel menu options. These include whether to turn statistics on or off and how many samples to use for mean and standard deviation calculations. Reset Statistics Snapshot To see all the single-sourced measurements at one moment in time: 1. Push Measure. 140 DPO4000 Series User Manual Analyze Waveform Data 2. Push Select Measurement. Select measurement Remove Measurement Gating Off Statistics Off High-Low Setup Reference Levels Indicators Off 3. Push Snapshot All Measurements. Snapshot All Measurements 4. View results. Snapshot on 1 Period: 588.0 ns Freq: 1.701 MHz +Width: 529.7 ns -Width: 58.33 ns BrstW: 39.91 μs Rise: 2.014 μs Fall: 1.522 μs ... ... ... ... DPO4000 Series User Manual 141 Analyze Waveform Data Reference Levels Reference levels determine how time-related measurements are taken. For example, they are used in calculating rise and fall times. 1. Push Measure. 2. Push Reference Levels. Select Measurement Remove Measurement Gating Off Statistics Off Reference Levels Indicators Configure Cursors 142 DPO4000 Series User Manual Analyze Waveform Data 3. Set the levels from the side-bezel menu. Reference Levels Set Levels in % units Use High and Low reference to calculate rise and fall times. High Ref a 90.0 % Use Mid reference primarily for measurements between edges such as pulse widths. Mid Ref a 50.0 % b 50.0 % Low Ref a 10.0 % - more - 1 of 2 DPO4000 Series User Manual 143 Analyze Waveform Data Taking Manual Measurements with Cursors Cursors are on-screen markers that you position in the waveform display to take manual measurements on acquired data. They appear as horizontal and/or as vertical lines. To use cursors: 1. Push Cursors. This changes the cursor state. The three states are: No cursors appear on the screen, Two vertical waveform cursors appear. They are attached to the selected waveform Four screen cursors appear. Two are vertical and two are horizontal. They are no longer specifically attached to a waveform For example, the first time you push Cursors the state might be off. 144 DPO4000 Series User Manual Analyze Waveform Data 2. Push Cursors again. In the example, two vertical cursors appear on the selected screen waveform. As you turn multipurpose knob a, you move one cursor to the right or left. As you turn knob b, you move the other cursor. If you change the selected waveform by pushing the front-panel 1, 2, 3, 4, M or R button, both cursors jump to the new selected waveform. 3. Push Select. This turns the cursor linking on and off. If linking is on, turning multipurpose knob a moves the two cursors together. Turning multipurpose knob b adjusts the time between the cursors. DPO4000 Series User Manual 145 Analyze Waveform Data 4. Push Fine to toggle between a coarse or a fine adjustment for multipurpose knobs a and b. Pushing Fine also changes the sensitivity of other knobs as well. 5. Push Cursors again. This will put the cursors into screen mode. Two horizontal bars and two vertical bars span the graticule. 6. Turn multipurpose knobs a and b to move the pair of horizontal cursors. 146 DPO4000 Series User Manual Analyze Waveform Data 7. Push Select. This makes the vertical cursors active and the horizontal ones inactive. Now, as you turn the multipurpose knobs, the vertical cursors will move. Push Select again to make the horizontal cursors active again. 8. View the cursor and the cursor readout. DPO4000 Series User Manual 147 Analyze Waveform Data 9. Push Cursors again. This will turn off the cursor mode. The screen will no longer display the cursors and the cursor readout. 148 DPO4000 Series User Manual Analyze Waveform Data Using cursor readouts Cursor readouts supply textual and numeric information relating to the current cursor positions. Readouts appear in the upper right corner of the graticule. If Zoom is on, the readout appears in the upper right corner of the zoom window. The oscilloscope always shows the readouts when the cursors are turned on. When a bus is the currently selected waveform, the readout is the decoded bus data in whatever format you have selected (hexadecimal or binary). Δ Readout: The Δ readouts indicate the difference between the cursor positions. a Readout: Indicates the value is controlled by multipurpose knob a. b Readout: Indicates the value is controlled by multipurpose knob b. The horizontal cursor lines on the display measure the vertical parameters, typically voltage. DPO4000 Series User Manual 149 Analyze Waveform Data The vertical cursor lines on the display measure horizontal parameters, typically time. Using Math Waveforms Create math waveforms to support the analysis of your channel and reference waveforms. By combining and transforming source waveforms and other data into math waveforms, you can derive the data view that your application requires. Use the following procedure for executing simple (+, –, *, ÷) math operations on two waveforms: 1. Push Math. 150 DPO4000 Series User Manual Analyze Waveform Data 2. Push Dual Wfm Math. Dual Wfm Math FFT Advanced Math 3. On the side-bezel menu, set the sources to either channel 1, 2, 3, 4, or reference waveforms R1, 2, 3, or 4. Choose the +, –, x, or ÷ operators. 4. For example, you might calculate power by multiplying a voltage waveform and a current waveform. DPO4000 Series User Manual 151 Analyze Waveform Data Quick Tips Math waveforms can be created from channel or reference waveforms or a combination of them. Measurements can be taken on math waveforms in the same way as on channel waveforms. Math waveforms derive their horizontal scale and position from the sources in their math expressions. Adjusting these controls for the source waveforms also adjusts the math waveform. You can zoom in on math waveforms using the inner knob of the Pan-Zoom control. Use the outer knob for positioning the zoomed area. (See page 163, Managing Long Record Length Waveforms.) 152 DPO4000 Series User Manual Analyze Waveform Data Using FFT An FFT breaks down signals into component frequencies, which the oscilloscope uses to display a graph of the frequency domain of a signal, as opposed to the oscilloscope’s standard time domain graph. You can match these frequencies with known system frequencies, such as system clocks, oscillators, or power supplies. 1. Push Math. 2. Push FFT. Dual Wfm Math FFT Advanced Math DPO4000 Series User Manual 153 Analyze Waveform Data 3. Push the side-bezel menu FFT Source button repeatedly to select the source to use. Choices are: channels 1, 2, 3, 4, reference waveforms 1, 2, 3, and 4. Math Definition FFT Source 1 4. Push the side-bezel Vertical Scale button repeatedly to select either Linear RMS or dBV RMS. Vertical Scale Linear RMS 5. Push the side-bezel Window button repeatedly to select the desired window. Window choices are: Rectangular, Hamming, Hanning, and Blackman-Harris. Window Hanning 6. Push the side-bezel Horizontal button to activate multipurpose knobs a and b to pan and zoom the FFT display. Horizontal 0.00 Hz 40.0 154 DPO4000 Series User Manual Analyze Waveform Data 7. The FFT will appear on the display. Quick Tips Use short record lengths for faster instrument response. Use long record lengths to lower the noise relative to the signal and increase the frequency resolution. DPO4000 Series User Manual 155 Analyze Waveform Data If desired, use the zoom feature along with the horizontal Position and Scale controls to magnify and position the FFT waveform. Use the default dBV RMS scale to see a detailed view of multiple frequencies, even if they have very different amplitudes. Use the linear RMS scale to see an overall view of how all frequencies compare to each other. The FFT feature provides four windows. Each is a trade-off between frequency resolution and magnitude accuracy. What you want to measure and your source signal characteristics help determine which window to use. Use the following guidelines to select the best window. Description Window Rectangular This is the best type of window for resolving frequencies that are very close to the same value but worst for accurately measuring the amplitude of those frequencies. It is the best type for measuring the frequency spectrum of nonrepetitive signals and measuring frequency components near DC. Use Rectangular for measuring transients or bursts where the signal level before and after the event are nearly equal. Also, use this window for equal-amplitude sine waves with frequencies that are very close and for broadband random noise with a relatively slow varying spectrum. Hamming This is a very good window for resolving frequencies that are very close to the same value with somewhat improved amplitude accuracy over the rectangular window. It has a slightly better frequency resolution than the Hanning. Use Hamming for measuring sine, periodic, and narrow band random noise. This window works on transients or bursts where the signal levels before and after the event are significantly different. 156 DPO4000 Series User Manual Analyze Waveform Data Description Window Hanning This is a very good window for measuring amplitude accuracy but less so for resolving frequencies. Use Hanning for measuring sine, periodic, and narrow band random noise. This window works on transients or bursts where the signal levels before and after the event are significantly different. Blackman-Harris: This is the best window for measuring the amplitude of frequencies but worst at resolving frequencies. Use Blackman-Harris for measuring predominantly single frequency waveforms to look for higher order harmonics. Using Advanced Math The advanced math feature lets you create a custom math waveform expression that can incorporate active and reference waveforms, measurements, and/or numeric constants. To use this feature: 1. Push Math. DPO4000 Series User Manual 157 Analyze Waveform Data 2. Push Advanced Math. Dual Wfm Math FFT Advanced Math 3. Use the side-bezel menu buttons to create custom expressions. 4. Push Edit Expression and use the multipurpose knobs and the resulting lower-bezel buttons to create an expression. When done, push the side-bezel menu OK Accept button. 158 DPO4000 Series User Manual Analyze Waveform Data For example, to use Edit Expression to take the integral of a square wave: 1. Push the lower-bezel Clear button 2. Turn multipurpose knob a to select INTG( 3. Push Enter Selection 4. Turn multipurpose knob a to select channel 1 5. Push Enter Selection 6. Turn multipurpose knob a to select ) 7. Push OK Accept. DPO4000 Series User Manual 159 Analyze Waveform Data Using Reference Waveforms Create a reference waveform to store a waveform. For example, you might do this to set up a standard against which to compare other waveforms. To use the reference waveforms: 1. Push Ref R. This brings up the lower-bezel reference menu. 2. Use the resulting lower-bezel menu selections to display or select a reference waveform. R 1 (On) 25–Oct- 2006 R 2 (Off) R 3 (Off) R 4 (Off) 160 DPO4000 Series User Manual Analyze Waveform Data 3. Use the side-bezel menu and the multipurpose knobs to adjust the vertical and horizontal settings of the reference waveform. R1 Vertical a 0.00 div b 100 mV/div Horizontal 0.00 s 4.00 μs/div Quick Tips Selecting and Displaying Reference Waveforms. You can display all the reference waveforms at the same time. Push the appropriate screen button to select a particular reference waveform. The selected waveform appears brighter than other displayed reference waveforms. Removing Reference Waveforms from the Display. To remove a reference waveform from the display, push the front-panel R button to access the lower-bezel menu. Then push the associated button from the lower-bezel menu to turn it off. Scaling and Positioning a Reference Waveform. You can position and scale a reference waveform independently from all other displayed waveforms. Select the reference waveform and then adjust it with a multipurpose knob. You can do this whether acquisition is running or not. DPO4000 Series User Manual 161 Analyze Waveform Data If a reference waveform is selected, scaling and repositioning of the reference waveform operates the same way whether zoom is turned on or off. Saving 10M Reference Waveforms. 10M reference waveforms are volatile and not saved when the oscilloscope power is turned off. To keep these waveforms, save them to external storage. Recalling Reference Waveforms from External Storage. 162 DPO4000 Series User Manual Analyze Waveform Data Managing Long Record Length Waveforms The DPO4000 Series Wave Inspector controls (zoom/pan, play/pause, marks, search) help you to efficiently work with long record length waveforms. To magnify a waveform horizontally, rotate the Zoom knob. To scroll through a zoomed waveform, rotate the Pan knob. The Pan-Zoom Control consists of: 1. An outer pan knob 2. An inner zoom knob DPO4000 Series User Manual 163 Analyze Waveform Data Zooming a Waveform To use zoom: 1. Rotate the inner knob on the Pan-Zoom control clockwise to zoom in on a selected portion of the waveform. Rotate the knob counterclockwise to zoom back out. 2. Alternatively, enable or disable the zoom mode by pushing the zoom button. 164 DPO4000 Series User Manual Analyze Waveform Data 3. Examine the zoomed view of the waveform that appears on the larger, lower portion of the display. The upper portion of the display will show the position and size of the zoomed portion in the waveform, within the context of the overall record. DPO4000 Series User Manual 165 Analyze Waveform Data Panning a Waveform While the zoom feature is on, you can use the pan feature to quickly scroll through the waveform. To use pan: 1. Rotate the pan (outer) knob of the pan-zoom controls to pan the waveform. Turn the knob clockwise to pan forward. Turn it counterclockwise to pan backwards. The further you turn the knob, the faster the zoom window pans. 166 DPO4000 Series User Manual Analyze Waveform Data Playing and Pausing a Waveform Use the play-pause feature to automatically pan through a waveform record. To use it: 1. Enable the play-pause mode by pushing the play-pause button. 2. Adjust the play speed by turning the pan (outer) knob further. The further you turn it, the faster it goes. DPO4000 Series User Manual 167 Analyze Waveform Data 3. Change the play direction by reversing the direction that you are turning the pan knob. 4. During play, up to a point, the more you turn the ring, the faster the waveform accelerates. If you rotate the ring as far as it can go, the play speed does not change, but the zoom box quickly moves in that direction. Use this maximum rotation feature to replay a portion of the waveform that you just saw and want to see again. 5. Pause the play-pause feature by pushing the play-pause button again. 168 DPO4000 Series User Manual Analyze Waveform Data Searching and Marking Waveforms You can mark locations of interest in the acquired waveform. These marks help you limit your analysis to particular regions of the waveform. You can mark areas of the waveform automatically, if they meet some special criteria, or you can manually mark each item of interest. You can use arrow keys to jump from mark to mark (area of interest to area of interest). You can automatically search and mark many of the same parameters that you can trigger on. Search marks provide a way to mark a waveform region for reference. You can set marks automatically with search criteria. You can search for and mark regions with particular edges, pulse widths, runts, logic states, rise/fall times, setup and hold, and bus search types. To manually set and clear (delete) marks: 1. Move (the zoom box) to the area on the waveform where you want to set (or clear) a search mark by turning the pan (outer) knob. Push the next ( →) or previous (←) arrow button to jump to an existing mark. 2. Push Set/Clear. If no search mark is at the screen center, the oscilloscope will add one. DPO4000 Series User Manual 169 Analyze Waveform Data 3. Now investigate your waveform by moving from search mark to search mark. Use the next ( →) or previous (←) arrow button to jump from one marked location to another, without adjusting any other controls. 4. Delete a mark. Push the next ( →) or previous (←) arrow button to jump to the mark you want to clear. To remove the current, center-positioned mark, just push Set/Clear. It works on both manually and automatically created marks. To automatically set and clear (delete) search marks: 1. Push Search. 170 DPO4000 Series User Manual Analyze Waveform Data 2. Select the search type desired from the lower-bezel menu. Search Off Search Type Edge Source 1 Slope Threshold 0.00V The search menu is similar to the trigger menu. 3. From the side-bezel menu, turn on the search. 4. On the screen, hollow triangles show the location of automatic marks and solid triangles show the custom (user-defined) locations. These appear on both normal and zoomed waveform views. DPO4000 Series User Manual 171 Analyze Waveform Data 5. Again, you can quickly investigate your waveform by moving from search mark to search mark with the next ( →) and previous (←) arrow buttons. No other adjustments are needed. Quick Tips. You can copy trigger settings to search for other locations in your acquired waveform that meet the trigger conditions. You can also copy search settings to your trigger. Custom (User) marks are saved with the waveform when the waveform is saved and when the setup is saved. Automatic search marks are not saved with the waveform when the waveform is saved. However, you can easily recapture them by re-using the search function. The search criteria are saved in the saved setup. With the optional DPO4EMBD and DPO4AUTO application modules installed, you can use the front-panel B1 and B2 buttons to define a combination of inputs to be either I2C, SPI, or CAN serial bus. Once set up, you can trigger on user-specified packet level content and have the DPO4000 automatically decode every packet in the acquisition into either binary or hex. The Wave Inspector includes the following search capabilities: Search Description Edge Searches for edges (rising or falling) with a user-specified threshold level. Pulse Width Searches for positive or negative pulse widths that are >, <, =, or ≠ a user specified pulse width. 172 DPO4000 Series User Manual Analyze Waveform Data Search Description Runt Searches for positive or negative pulses that cross one amplitude threshold but fail to cross a second threshold before crossing the first again. Search for all runt pulses or only those with a duration >, <, =, or ≠ a user specified time. Logic Search for a logic pattern (AND, OR, NAND, or NOR) across multiple waveforms with each input set to either High, Low, or Don’t Care. Search for when the event goes true, goes false, or stays valid for >, <, =, or ≠ a user specified time. Additionally, you can define one of the inputs as a clock for synchronous (state) searches. Setup & Hold Search for violations of user specified Setup and Hold times. Rise/Fall Time Search for rising and/or falling edges that are >, <, =, or ≠ a user specified time. Bus I2C: Search for Start, Repeated Start, Stop, Missing Ack, Address, Data, or Address and Data. SPI: Search for SS Active, MOSI, MISO, or MOSI & MISO CAN: Search for Start of Frame, Type of Frame (Data, Remote, Error, Overload), Identifier (standard or extended), Data, Identifier and Data, End of Frame, or Missing Ack. DPO4000 Series User Manual 173 Save and Recall Information Save and Recall Information The DPO4000 Series oscilloscope provides permanent storage for setups, waveforms, and screen images. Use the internal storage of the oscilloscope to save setups and reference waveform data. Use external storage, such as CompactFlash media and USB flash-memory storage devices to save setups, waveforms, and screen images. Use the external storage to carry data to remote computers for further analysis and for archiving. Saving a Screen Image A screen image consists of a graphical image of the oscilloscope screen. This is different from waveform data, which consists of numeric values for each point in the waveform. To save a screen image: 1. Push Save / Recall Menu. Do not yet push the Save button. 2. Push Save Screen Image from the lower-bezel menu. Save Screen Image Save Waveform Save Setup Recall Waveform Recall Setup Assign Save to Setup File Utilities 174 DPO4000 Series User Manual Save and Recall Information Save Screen Image 3. From the side-bezel menu, push File Format repeatedly to select among: .tif, .bmp, and .png formats. File Format .png 4. Push Orientation to select between saving the image in a landscape (horizontal) and a portrait (vertical) orientation. Orientation 5. Push Ink Saver to turn the Ink Saver mode on or off. When on, this mode provides a white background. Ink Saver On Off 6. Push Edit File Name to create a custom name for the screen image file. Skip this step to use a default name. Edit File Name 7. Push OK Save Screen Image to write the image to the selected media. OK Save Screen Image DPO4000 Series User Manual 175 Save and Recall Information For information on printing screen images of waveforms, go to Printing a Hardcopy. (See page 189, Printing a Hard Copy.) Saving and Recalling Waveform Data Waveform data consists of the numeric values for each point in the waveform. It copies the data, as opposed to a graphical image of the screen. To save the current waveform data or to recall previously stored waveform data: 1. Push Save / Recall Menu. 2. Push Save Waveform or Recall Waveform from the lower-bezel menu. Save Screen Image Save Waveform Save Setup Recall Waveform Recall Setup Assign Save to Waveform File Utilities 176 DPO4000 Series User Manual Save and Recall Information 3. From the resulting side-bezel menu, select the location to save the waveform data to or to recall it from. Save the information externally to a file on a CompactFlash card or USB memory stick. Alternatively, save the information internally to one of the four reference memories in the oscilloscope. 4. Push To File to save to a CompactFlash card or USB memory stick. To File This brings up the file manager screen. Use it to define a custom file name. Skip this step to use the default name and location. Editing File, Directory, Reference Waveform, or Instrument Setup Names. Give files descriptive names that you can recognize at a later date. To edit file names, directory names, reference waveform and instrument setup labels: 1. Push Save / Recall Menu. DPO4000 Series User Manual 177 Save and Recall Information 2. Push Save Screen Image, Save Waveform, or Save Setup. Save Screen Image Save Waveform Save Setup Recall Waveform Recall Setup Assign Save to Setup File Utilities 3. Enter the file manager by pushing the side-bezel menu To File item. To File 4. Turn multipurpose knob a to scroll through the file structure. D: is the CompactFlash drive. E: is the USB drive plugged into the USB port on the front of the oscilloscope. F: and G: are the USB drives plugged into the USB host ports on the rear of the oscilloscope. 178 DPO4000 Series User Manual Save and Recall Information 5. Push Select to open or close file folders. 6. Push the Menu Off button to cancel the save operation, or push a side-bezel menu OK Save. item to complete the operation. OK Save DPO4000 Series User Manual 179 Save and Recall Information Naming Your File. The oscilloscope gives all files it creates the default name tekxxxxx where xxxxx is an integer from 00000 to 99999. For example, the first time you save a file, that file is named tek00000. The next file is named tek00001. To define a file name of your own choosing: 1. Push Save / Recall Menu. 2. Push Save Screen Image, Save Waveform, or Save Setup. Save Screen Image Save Waveform Save Setup Recall Waveform Recall Setup Map Save Button File Utilities 3. Enter the file manager by pushing the side-bezel menu To File item. To File 180 DPO4000 Series User Manual Save and Recall Information 4. Push the front-panel Select or the lower-bezel menu Enter Character to select a character. 5. Push the Menu Off button to cancel the file naming operation or push a side-bezel menu Save to Selected File item to complete the operation. Save to Selected File DPO4000 Series User Manual 181 Save and Recall Information Saving a Waveform to File. When you push the To File side-bezel menu button, the oscilloscope changes the side- menu contents. The following table describes these side-bezel menu items for saving data to a mass storage file. Side-bezel menu button Description Internal File Format (.ISF) Sets the oscilloscope to save waveform data in internal waveform save file (.isf) format. This format is the fastest to write and creates the smallest-sized file. Use this format if you intend to recall a waveform to reference memory for viewing or measuring. Spreadsheet File Format (.CSV) Sets the oscilloscope to save waveform data as a comma-separated data file compatible with popular spreadsheet programs. This file cannot be recalled to reference memory. Saving a Waveform to Reference Memory. To save a waveform to nonvolatile memory inside the oscilloscope, first select the waveform that you want to save. Push the Save Waveform screen button. Then select one of the reference waveform locations. Four-channel models have four reference locations. Two-channel models have two reference locations. Saved waveforms contain only the most current acquisition. Gray-scale information, if any, is not saved. Displaying a Reference Waveform. To display a waveform stored in nonvolatile memory: 1. Push Ref R. 182 DPO4000 Series User Manual Save and Recall Information 2. Push R1, R2, R3, or R4. R 1 (On) R 2 (Off) R 3 (Off) R 4 (Off) Removing a Reference Waveform from the Display. To remove a reference waveform from the display: 1. Push Ref R. 2. Push the R1, R2, R3, or R4 screen button to select a reference waveform. R 1 (On) R 2 (Off) R 3 (Off) R 4 (Off) 3. Push the front-panel Ref or the appropriate lower-bezel R button again to remove the reference waveform from the display. The reference waveform is still in nonvolatile memory and can be displayed again. DPO4000 Series User Manual 183 Save and Recall Information Saving and Recalling Setups Setup information includes acquisition information, such as vertical, horizontal, trigger, cursor, and measurement information. It does not include communications information, such as GPIB addresses. To save the setup information: 1. Push Save / Recall Menu. 2. Push Save Setup or Recall Setup from the lower-bezel menu. Save Screen Image Save Waveform Save Setup Recall Waveform Recall Setup Assign Save to Setup File Utilities 184 DPO4000 Series User Manual Save and Recall Information Save Setup To File To Setup 1 3. From the resulting side-bezel menu, select the location to save the setup to or to recall it from. To save setup information to one of the ten internal setup memories in the oscilloscope, push the appropriate side-bezel button. To save setup information to a CompactFlash or USB file, push the To File button. To Setup 2 To Setup 3 – more – DPO4000 Series User Manual 185 Save and Recall Information 4. If you are saving information to a CompactFlash or USB memory device, turn multipurpose knob a to scroll through the file structure. D: is the CompactFlash drive. E: is the USB drive plugged into the USB port on the front of the oscilloscope. F: and G: are the USB drives plugged into the USB ports on the rear of the oscilloscope. Push Select to open or close file folders. Push the Menu Off button to cancel the save operation, or push a side-bezel menu Save to Selected File item to complete the operation. 186 DPO4000 Series User Manual Save and Recall Information Save 1 to Selected File Quick Tips Recalling the Default Setup. Push the front-panel Default Setup button to initialize the oscilloscope to a known setup. (See page 73, Using the Default Setup.) Saving with One Button Push After you have defined the save/recall parameters with the Save/Recall Menu button and menu, you can make saves to files with a single push of the Save button. For example, if you have defined the save operation to save waveform data to a USB drive, then each push of the Save button will save current waveform data to the defined USB drive. 1. To define the Save button behavior, push Save/Recall Menu. DPO4000 Series User Manual 187 Save and Recall Information 2. Push Assign Save button. Save Screen Image Save Waveform Save Setup Recall Waveform Recall Setup Assign Save to Setup File Utilities 3. Push the action to assign to the Save button. Assign Save to Screen Image Waveform Setup 4. From now on, when you push Save the button will perform the action that you just specified rather than having to navigate menus each time. 188 DPO4000 Series User Manual Save and Recall Information Printing a Hard Copy To print an image of what appears on the oscilloscope screen, do the following procedure. Connect a Printer to Your Oscilloscope Connect your printer to a USB port on the rear or front panel of the oscilloscope. Alternatively, you can print to networked printers through the Ethernet port. Set Up Print Parameters To set up the oscilloscope to print hard copies: 1. Push Utility. 2. Push System as many times as needed to select Print Setup from the resulting pop-up menu. Print Setup DPO4000 Series User Manual 189 Save and Recall Information System Print Setup Select Printer N/A Orientation Landscape Ink Saver On 3. Push Select Printer if you are changing the default printer. Turn multipurpose knob a to scroll through the list of available printers. Push Select to choose the desired printer. To add a USB printer to the list, plug the printer into the USB slot. The oscilloscope will automatically recognize it. To add an Ethernet printer to the list, use the instructions in the section titled Printing Over Ethernet. 190 DPO4000 Series User Manual Save and Recall Information 4. Select the image orientation (portrait or landscape). Landscape Portrait 5. Choose Ink Saver On or Off. The On selection will print out a copy with a clear (white) background. Ink Saver on Ink Saver off DPO4000 Series User Manual 191 Save and Recall Information Printing Over Ethernet To set up the oscilloscope to print over Ethernet: 1. Connect an Ethernet cable to the rear-panel Ethernet port. 2. Push Utility. 192 DPO4000 Series User Manual Save and Recall Information 3. Push System repeatedly until you select Print Setup. Print Setup 4. Push Select Printer. System Print Setup Select Printer (N/A) Orientation Landscape Ink Saver Off Select Printer 5. Push Add Network Printer. Add Network Printer Rename Printer DPO4000 Series User Manual 193 Save and Recall Information 6. Turn multipurpose knob a to scroll through the list of letters, numbers, and other characters to find the first character in the printer name that you want to enter. ABCDEFGHIJKLMNOPQRSTUVWXYZ abcdefghijklmnopqrstuvwxyz 0123456789_=+-!@#$%^&*()[]{}<>/~’”\|:,.? 7. Push Select or Enter Character to let the oscilloscope know that you have picked the proper character to use. You can use the lower-bezel buttons to edit the name, as needed. Enter Character Back Space Delete Clear 8. Continue scrolling and pushing Select until you have entered all the desired characters. 194 DPO4000 Series User Manual Save and Recall Information 9. Push the down arrow key to move the character cursor down a row to the Server Name field. 10. Turn multipurpose knob a and push Select or Enter Character as often as needed to enter the name. 11. If desired, push the down arrow key to move the character cursor down a row to the Server IP Address: field. 12. Turn multipurpose knob a and push Select or Enter Character as often as needed to enter the name. Add Printer 13. When done, push OK Accept. OK Accept DPO4000 Series User Manual 195 Save and Recall Information NOTE. If you have multiple printers connected to the oscilloscope at the same time, the oscilloscope will print to the printer listed in the Utility > System > Print Setup > Select Printer menu item. Print to a Printer Once you have connected a printer to your oscilloscope and set up print parameters, you can print current screen images with a single push of a button: 1. Push the printer icon button in the lower left corner of the front panel. Erasing DPO4000 Memory You can erase all setup and waveform information saved in the nonvolatile memory with the TekSecure function. If you have acquired confidential data on your oscilloscope, you may want to execute the TekSecure function before you return the oscilloscope to general use. The TekSecure function: Replaces all waveforms in all reference memories with null values 196 DPO4000 Series User Manual Save and Recall Information Replaces the current front-panel setup and all stored setups with the default setup Displays a confirmation or warning message, depending on whether the verification is successful or unsuccessful To use TekSecure: 1. Push Utility. 2. Push System repeatedly until you select Config. Config 3. Push TekSecure. System Config Language English Set Date & Time TekSecure Erase Memory Version v1.00 DPO4000 Series User Manual 197 Save and Recall Information 4. Push OK Erase Setup and Ref Memory from the side-bezel menu. OK Erase Setup and Ref Memory To abort the procedure, push Menu Off. 198 DPO4000 Series User Manual Save and Recall Information 5. Power off the oscilloscope, and then power it back on to complete the process. DPO4000 Series User Manual 199 Use Application Modules Use Application Modules Optional application module packages extend the capability of your oscilloscope. Install up to four application modules at one time. Application modules go into the two slots with windows in the upper right corner of the front panel. Two additional slots are directly behind the two that you can see. Refer to the DPO4000 Series Application Module Installation Instructions that came with your application module for instructions on installing and testing an application module. Some modules are described below. Additional packages may be available. Contact your Tektronix representative or visit our Web site at www.tektronix.com for more information. Also, refer to Contacting Tektronix at the beginning of the manual. The DPO4EMBD Serial Triggering and Analysis Module adds triggering on packet level information in serial buses used in embedded designs (I2C and SPI), as well as analytical tools to help you efficiently analyze your serial bus. These include digital views of the signal, bus views, packet decoding, search tools, and event tables with timestamp information. The DPO4AUTO Serial Triggering and Analysis Module adds triggering on packet level information in serial buses used in automotive designs (CAN), as well as analytical tools to help you efficiently analyze your serial bus. These include digital views of the signal, bus views, packet decoding, search tools, and event tables with timestamp information. 200 DPO4000 Series User Manual Application Examples Application Examples This section contains ways to use your instrument in both common and advanced troubleshooting tasks. Taking Simple Measurements If you need to see a signal in a circuit, but you do not know the signal amplitude or frequency, connect the probe from channel 1 of the oscilloscope to the signal. Then display the signal and measure its frequency and peak-to-peak amplitude. DPO4000 Series User Manual 201 Application Examples Using Autoset To quickly display a signal: 1. Push Autoset. 202 DPO4000 Series User Manual Application Examples The oscilloscope sets vertical, horizontal, and trigger controls automatically. You can manually adjust any of these controls if you need to optimize the display of the waveform. When you are using more than one channel, the autoset function sets the vertical controls for each channel and uses the lowest-numbered active channel to set the horizontal and trigger controls. Selecting Automatic Measurements The oscilloscope can take automatic measurements of most displayed signals. To measure signal frequency and peak-to-peak amplitude: 1. Push Measure. 2. Push Select Measurement. Select Measurement a 1 Remove Measurement Gating Off Statistics Off Reference Levels Indicators Configure Cursors DPO4000 Series User Manual 203 Application Examples 3. Turn multipurpose knob a to select the channel from which you want to measure. For example, select channel 1. This step is only needed if you are acquiring data on more than one channel. 4. Select the Frequency measurement from the side-bezel menu. Frequency 5. Push -more- until you can select the Pk-Pk measurement. -more- 6. Push Menu Off. 204 DPO4000 Series User Manual Application Examples 7. Observe that the measurements appear on the screen and update as the signal changes. DPO4000 Series User Manual 205 Application Examples Measuring Two Signals In this example, you are testing a piece of equipment and need to measure the gain of its audio amplifier. You have an audio generator that can inject a test signal at the amplifier input. Connect two oscilloscope channels to the amplifier input and output as shown. Measure both signal levels and use these measurements to calculate the gain. 206 DPO4000 Series User Manual Application Examples To display the signals connected to channels 1 and 2: 1. Push channel 1 and channel 2 to activate both channels. 2. Push Autoset. To select measurements for the two channels: 1. Push Measure to see the measurement menu. DPO4000 Series User Manual 207 Application Examples 2. Push Select Measurement. Select Measurement a 1 Remove Measurement Gating Off Statistics Off Reference Levels Indicators Configure Cursors 3. Turn multipurpose knob a to select channel 1. 4. Page through the measurement menus until you find Amplitude. Select Amplitude. Amplitude 208 DPO4000 Series User Manual Application Examples 5. Turn multipurpose knob a to select channel 2. 6. Select Amplitude. Amplitude 7. Calculate the amplifier gain using the following equations: Gain = (output amplitude ÷ input amplitude) = (3.155 V ÷ 130.0 mV) = 24.27 Gain (dB) = 20 x log(24.27) = 27.7 dB DPO4000 Series User Manual 209 Application Examples Customizing Your Measurements In this example, you want to verify that the incoming signal to digital equipment meets its specifications. Specifically, the transition time from a low logic level (0.8 V) to a high logic level (2.0 V) must be 10 ns or less. To select the rise time measurement. 1. Push Measure. 210 DPO4000 Series User Manual Application Examples 2. Push Select Measurement. Select Measurement a 1 Remove Measurement Gating Off Statistics Off Reference Levels Indicators Configure Cursors 3. Turn multipurpose knob a to select channel 1. This step is only needed if you are acquiring data on more channels than just channel 1. 4. Select the Rise Time measurement from the side-bezel menu. Rise Time DPO4000 Series User Manual 211 Application Examples 5. Press Reference Levels. Reference Levels 6. Push Set Levels in to select units. Set Levels in % units 7. Push High Ref and turn multipurpose knob a to enter 2.00 V. If needed, push Fine to change the sensitivity of the multipurpose knob. High Ref a 2.00 V Mid Ref 8. Push Low Ref and turn multipurpose knob a to enter 800 mV. If needed, push Fine to change the sensitivity of the multipurpose knob. Low Ref a 800 mV 212 DPO4000 Series User Manual Application Examples Rise time is typically measured between the 10% and 90% amplitude levels of a signal. These are the default reference levels that the oscilloscope uses for rise time measurements, However, in this example, you need to measure the time that the signal takes to pass between the 0.8 V and 2.0 V levels. You can customize the rise time measurement to measure the signal transition time between any two reference levels. You can set each of these reference levels to a specific percent of the signal amplitude or to a specific level in vertical units (such as volts or amperes). Measuring Specific Events. Next you want to see the pulses in the incoming digital signal, but the pulse widths vary so it is hard to establish a stable trigger. To look at a snapshot of the digital signal, do this step: 1. Push Single to capture a single acquisition. Now you want to measure the width of each displayed pulse. You can use measurement gating to select a specific pulse to measure. To measure the second pulse: 1. Push Measure. DPO4000 Series User Manual 213 Application Examples 2. Push Select Measurement. Select measurement a 1 Remove Measurement Gating Statistics Reference Levels Indicators Configure Cursors 3. Turn multipurpose knob a to select channel 1. 4. Select Positive Pulse Width measurement. Positive Pulse Width 214 DPO4000 Series User Manual Application Examples 5. Push Gating. Select Measurement Remove Measurement Gating Off Statistics Off Reference Levels Indicators Configure Cursors 6. Select Between Cursors from the side-bezel menu to choose measurement gating using cursors. Between Cursors 7. Place one cursor to the left and one cursor to the right of the second pulse. DPO4000 Series User Manual 215 Application Examples 8. View the resulting width measurement (160 ms) for the second pulse. 216 DPO4000 Series User Manual Application Examples Analyzing Signal Detail In this example, you have a noisy signal displayed on the oscilloscope, and you need to know more about it. You suspect that the signal contains much more detail than you can currently see in the display. DPO4000 Series User Manual 217 Application Examples Looking at a Noisy Signal The signal appears noisy. You suspect that noise is causing problems in your circuit. To better analyze the noise: 1. Push Acquire. 2. Push Mode on the lower-bezel menu. Mode Record Length 10k Reset Horizontal Position Waveform Display 218 DPO4000 Series User Manual Application Examples 3. Push Peak Detect on the side-bezel menu. Sample Peak Detect Hi Res Envelope Average 4. Push Intensity and turn multipurpose knob a to see the noise more easily. DPO4000 Series User Manual 219 Application Examples 5. View the results on the display. Peak detect emphasizes noise spikes and glitches in your signal as narrow as 1 ns, even when the time base is set to a slow setting. 220 DPO4000 Series User Manual Application Examples Peak-detect and the other acquisition modes are explained earlier in this manual. (See page 75, Acquisition Concepts.) Separating the Signal from Noise Now you want to analyze the signal shape and ignore the noise. To reduce random noise in the oscilloscope display: 1. Push Acquire. 2. Push Mode. Mode Record Length Reset Horizontal Position Waveform Display 3. Push Average on the side-bezel menu. Average DPO4000 Series User Manual 221 Application Examples Averaging reduces random noise and makes it easier to see detail in a signal. In the example to the right, a ring shows on the rising and falling edges of the signal when the noise is removed. 222 DPO4000 Series User Manual Application Examples Taking Cursor Measurements You can use the cursors to take quick measurements on a waveform. To measure the ring frequency at the rising edge of the signal: 1. Push channel 1 to select the channel 1 signal. 2. Push Measure. 3. Push Configure Cursors. Select Measurement Remove Measurement Gating Statistics Reference Levels Indicators Configure Cursors DPO4000 Series User Manual 223 Application Examples 4. Push Vertical Bar Units repeatedly to select Hz (1/s). Vertical Bar Units Hz (1/s) 5. Push Cursors repeatedly until the two vertical bar cursors appear on the selected waveform. 6. Place one cursor on the first peak of the ring using multipurpose knob a. 7. If the cursor readout says that the cursors are linked, push Select to unlink them. 224 DPO4000 Series User Manual Application Examples 8. Place the other cursor on the next peak of the ring using multipurpose knob b. 9. The cursor Δ readout shows the measured ring frequency is 227 kHz. DPO4000 Series User Manual 225 Application Examples Triggering on a Video Signal The DPO4000 Series of oscilloscopes supports triggering on NTSC, SECAM, and PAL signals. In this example, you are testing the video circuit in a piece of medical equipment and need to display the video output signal. The video output is an NTSC standard signal. Use the video signal to obtain a stable display. To trigger on the video fields: 1. Push Trigger Menu. 226 DPO4000 Series User Manual Application Examples 2. Push Type repeatedly to select Video. Video 3. Push Standard repeatedly to select 525/NTSC. Type Video Standard 525/NTSC Source 1 Trigger on All Lines Mode Auto & Holdoff 4. Push Trigger On. 5. Select Odd Fields. Odd Fields If the signal had been noninterlaced, you could choose to trigger on All Fields. 6. Turn the Horizontal Scale knob to see a complete field across the screen. DPO4000 Series User Manual 227 Application Examples 7. View results. Triggering on Lines Triggering on Lines. To look at the video lines in the field: 1. Push Trigger Menu. 228 DPO4000 Series User Manual Application Examples 2. Push Type repeatedly to select Video. Video Type Video Standard 525/NTSC Source 1 Trigger On All Lines Mode Auto & Holdoff 3. Push Trigger On. 4. Select All Lines. All Lines 5. Adjust Horizontal Scale to see a complete video line across the screen. DPO4000 Series User Manual 229 Application Examples 6. Observe the results. Capturing a Single-Shot Signal In this example, the reliability of a reed relay in a piece of equipment has been poor, and you need to investigate the problem. You suspect that the relay contacts arc when the relay opens. The fastest you can open and close the relay is about once per minute, so you need to capture the voltage across the relay as a single-shot acquisition. To set up for a single-shot acquisition: 1. Adjust the Vertical Scale and Horizontal Scale to appropriate ranges for the signal you expect to see. 230 DPO4000 Series User Manual Application Examples 2. Push Acquire. 3. Push Mode. 4. Select Sample. 5. Push Trigger Menu. 6. Push Slope and . 7. Turn the Trigger Level knob to adjust the trigger level to a voltage midway between the open and closed voltages of the replay. DPO4000 Series User Manual 231 Application Examples 8. Push Single (single sequence). When the relay opens, the oscilloscope triggers and captures the event. The Single sequence button disables auto triggering so that only a valid triggered signal is acquired. 232 DPO4000 Series User Manual Application Examples Optimizing the Acquisition The initial acquisition shows the relay contact beginning to open at the trigger point. This is followed by large spikes that indicate contact bounce and inductance in the circuit. The inductance can cause contact arcing and premature relay failure. Before you take the next acquisition, you can adjust the vertical and horizontal controls to give you a preview of how the next acquisition might appear. As you adjust these controls, the current acquisition is repositioned, expanded, or compressed. This preview is useful to optimize the settings before the next single-shot event is captured. When the next acquisition is captured with the new vertical and horizontal settings, you can see more detail about the relay contact opening. You can now see that the contact bounces several times as it opens. DPO4000 Series User Manual 233 Application Examples Using the Horizontal Zoom Function To take a close look at a particular point on the acquired waveform, use the horizontal zoom function. To look closely at the point where the relay contact first begins to open: 1. Turn the Zoom knob. 2. Turn the Pan knob to place the center of the zoom box close to where the relay contact begins to open. 3. Turn the Zoom knob to magnify the waveform in the zoom window. 234 DPO4000 Series User Manual Application Examples The ragged waveform and the inductive load in the circuit suggest that the relay contact may be arcing as it opens. The zoom function works equally well when the acquisition is running or is stopped. Horizontal position and scale changes affect only the display, not the next acquisition. Correlating Data With a TLA5000 Logic Analyzer To troubleshoot designs with fast clock edges and data rates, it helps to view analog characteristics of digital signals in relation to complex digital events in the circuit. You can do that with iView, which lets you transfer analog waveforms from the oscilloscope to the logic analyzer display. You can then view time-correlated analog and digital signals side-by-side and use this to pinpoint sources of glitches and other problems. DPO4000 Series User Manual 235 Application Examples The iView External Oscilloscope Cable allows you to connect your logic analyzer to a Tektronix oscilloscope. This enables communication between the two instruments. The Add External Oscilloscope wizard, which is available from the TLA application System menu, guides you through the process of connecting the iView cable between your logic analyzer and oscilloscope. The TLA also provides a setup window to assist you in verifying, changing, and testing the oscilloscope settings. Before acquiring and displaying a waveform you must establish a connection between your Tektronix logic analyzer and oscilloscope using the Add External Oscilloscope wizard. To do this: 1. Select Add iView External Oscilloscope ... from the logic analyzer System menu. 236 DPO4000 Series User Manual Application Examples 2. Select your model of oscilloscope. 3. Follow the on-screen instructions, and then click Next. 4. See your Tektronix Logic Analyzer documentation for more information on correlating data between a DPO4000 Series Oscilloscope and a Tektronix Logic Analyzer. DPO4000 Series User Manual 237 Application Examples Tracking Down Bus Anomalies In this example, you are testing your new I2C circuit. Something is not working. You tell the master IC to send a message to the slave IC. Then you expect to receive data back and an LED to light. The light never goes on. Where in the ten or so commands that were sent out did the problem occur? Once you locate the problem location, how do you determine what went wrong? You can use your DPO4000 Series oscilloscope, with its serial triggering and long-record length management features, to track down the problem in both the physical layer and in the protocol layer of the bus. Basic strategy First, you will display and acquire the bus signal by setting up the bus parameters and trigger. Then, you will search through each packet with the search/mark functions. NOTE. Triggering on bus signals requires use of the DPO4EMBD or the DPO4AUTO Serial Triggering and Analysis Module. 238 DPO4000 Series User Manual Application Examples 1. Connect the channel 1 probe to the clock line. 2. Connect the channel 2 probe to the data line. 3. Push Autoset. DPO4000 Series User Manual 239 Application Examples 4. Push the B1 button and enter the parameters of your I2C bus in the resulting screen menus. 5. Push Trigger Menu. 6. Push Type to select Bus. Enter trigger parameters in the resulting screen menus. Type Bus Source Bus B1 (I2C) Trigger On Address Address 07F Direction Read Mode Auto & Holdoff 240 DPO4000 Series User Manual Application Examples 7. Analyze the physical layer. For example, you can use the cursors for manual measurements. (See page 144, Taking Manual Measurements with Cursors.) You can also use the automated measurements. (See page 129, Taking Automatic Measurements.) 8. Push Search. Set Search Marks to On. Enter a search type, source, and other parameters as relevant on the lower-bezel menu and associated side-bezel menus. (See page 163, Managing Long Record Length Waveforms.) 9. Jump ahead to the next search point by pushing the right arrow key. Push it again and again until you see all the events. Jump back with the left arrow key. Do you have all the packets that you expected to have? If not, at least you have narrowed your search down to the last packet sent. DPO4000 Series User Manual 241 Application Examples 10. Analyze the decoded packets in the protocol layer. Did you send the data bytes in the correct order? Did you use the correct address? 242 DPO4000 Series User Manual Index Index Symbols and Numbers 50 Ω protection, 128 A Accessories, 1 Acquire button, 49, 80, 112, 218, 221 Acquisition input channels and digitizers, 75 modes defined, 78 readout, 60 sampling, 75 Adapter TEK-USB-488, 4 TPA-BNC, 4, 10 Adding waveform, 112 Advanced math, 157 Altitude DPO4000, 7 P6139A, 8 Analysis and Connectivity, xii Application module DPO4AUTO, 84 DPO4EMBD, 84 Application Module, xiii, 19 Applications modules, 200 Attenuation, 127 Auto trigger mode, 92 Autoset, 74, 202 Autoset button, 17, 49, 56, 71, 74, 202, 207 Autoset undo, 74 Auxiliary readout, 64 Average acquisition mode, 79 BB Trigger, 109 B1 / B2 button, 51, 84, 85, 102 Backlight intensity, 119 Bandwidth, x Before Installation, 1 Blackman-Harris FFT window, 157 BNC interface, 10 Bus button, 84, 85, 102 menu, 51, 85 Bus trigger, defined, 102 Buses, 84, 102 Button Acquire, 49, 80, 112, 218, 221 Autoset, 17, 49, 56, 71, 74, 202, 207 B1 / B2, 51, 84, 85, 102 bus, 84, 85, 102 Channel, 50 Cursors, 52, 144, 224 Default Setup, 50, 58, 73 Fine, 48, 52, 53, 54, 55, 57 Force Trig, 56, 93 hard copy, 57, 196 Intensity, 115 M, 51, 150, 153 Math, 51, 150, 153 Measure, 49, 129, 139, 140, 203, 207, 210, 213 Menu Off, 58, 204 Next, 55 play-pause, 167 Play-pause, 54 Previous, 54 printer icon, 57, 196 Ref, 51, 160, 182 DPO4000 Series User Manual 243 Index Run/Stop, 56, 83, 111 Save / Recall, 50, 58, 174 Search, 49, 170 Select, 53, 224 Set / Clear Mark, 55, 169 Set to 50%, 56, 97 Single, 56, 111, 213, 232 Test, 49 Trigger, 49 Trigger level, 56 Trigger menu, 226 Trigger Menu, 98 Utility, 20, 23, 26, 50, 117, 118, 189 Vertical, 50 Zoom, 54 C Calibration, 25, 27 Calibration certificate, 2 CAN, 51, 84, 102 Channel button, 50 Channel readout, 64 Clearance, DPO4000, 6 Communications, 35, 40 CompactFlash, x, 2, 5, 50, 58, 174 Compensate probe, 17 Compensate signal path, 25 Confidential data, 196 Connectivity, 2, 35, 40 Connector, side-panel, 67 Connectors front-panel, 66 rear-panel, 68 Controls, 45 Coupling, trigger, 94 Cover, front, 2 Cross Hair graticule style, 118 Cursor readout, 62, 149 Cursor, measurements, 144 Cursors, 144 button, 52, 144, 224 linking, 145 Cursors menu, 144 D Date and time, changing, 23 Default setup, 187 Default Setup, 73 button, 50, 58, 73 menu, 50 Undo, 73 Delayed trigger, 107 Depth, DPO4000, 6 Deskew, 127 Display persistence, 112 style, 112 Displaying, reference waveforms, 182 Documentation, xii DPO4AUTO, 84 DPO4EMBD, 84 Drivers, 35, 39 Dual waveform math, 150 Ee *Scope, 40 Edge trigger, defined, 99 Envelope acquisition mode, 79 Erase setup and ref memory, 196 Ethernet, x, 37, 40, 41 port, 68 printing, 192 Event Table, 88, 89 Excel, 34 Expansion point icon, 61 244 DPO4000 Series User Manual Index FF actory calibration, 27 FFT Blackman-Harris, 157 controls, 153 Hamming, 156 Hanning, 157 Rectangular, 156 File format, 175 Internal File Format (ISF), 182 Spreadsheet file format (.CSV), 182 File system, 174, 177, 180 Fine, 53 Fine button, 48, 52, 54, 55, 57 Firmware upgrade, 28 Force Trig button, 56, 93 Frame graticule style, 118 Frequency, Input power DPO4000, 6 Front cover, 2 Front panel, 45 Front-panel connectors, 66 Front-panel overlay, 22 Full graticule style, 118 Functional check, 15 G Gating, 137 GPIB, 36, 38, 68 GPIB address, 38 Graticule Cross Hair, 118 Frame, 118 Full, 118 Grid, 118 intensity, 115 styles, 117 Grid graticule style, 118 Ground, 11 Ground lead, 19 Ground strap, 67 H Hamming FFT window, 156 Hanning FFT window, 157 Hard copy, 57, 189 Height, DPO4000, 6 Hi Res acquisition mode, 79 Holdoff, trigger, 93 Horizontal delay, 94 Horizontal position, 55, 94, 95, 120, 156, 234, 235 and math waveforms, 152 defined, 72 Horizontal position/scale readout, 64 Horizontal scale, 55, 120, 156, 227, 229, 230, 234 and math waveforms, 152 defined, 72 How to erase memory, 196 print a hard copy, 189 recall setups, 184 recall waveforms, 174 save screen images, 174 save setups, 184 save waveforms, 174 Humidity DPO4000, 7 P6139A, 9 I I2C, 51, 84, 102 DPO4000 Series User Manual 245 Index Icon Expansion point, 61 Trigger level, 63 Trigger position, 61 Image orientation, 175, 191 Impedance, 123 Indicator, waveform baseline, 65 Infinite persistence, 115 Ink Saver, 175, 191 Inner knob, 54, 152 Installing, application modules, xiii Intensity button, 115 Internal File Format, 182 K Knob inner, 54, 152 Multipurpose, 24, 48, 53, 54, 80, 86, 177, 224, 225 outer, 54 pan, 54, 166, 169 Trigger level, 97 Vertical position, 57, 72 Vertical scale, 57, 72 zoom, 54, 152, 164 LL abView, 34 Landscape, 175, 191 Language change, 20 overlay, 22 Level, trigger, 96 Logic trigger, defined, 100 Long record length, 238 Long record length management, 163 MM button, 51, 150, 153 Main trigger, 107 Mark, 169 Math Advanced, 157 button, 51, 150, 153 Dual waveform, 150 FFT, 153 menu, 51 waveforms, 150 Measure button, 49, 129, 139, 140, 203, 207, 210, 213 Measurement menu, 49 Measurements automatic, 129 cursor, 144 defined, 131 reference levels, 142 snapshot, 140 statistics, 139 Memory, erasure of, 196 Menu Bus, 51, 85 Cursors, 144 Default Setup, 50 Math, 51 Measurement, 49 Reference, 51, 160, 161 Save / Recall, 50, 58, 174 Trigger, 49, 98, 108, 226 Utility, 20, 23, 50, 57, 117, 189 Vertical, 50, 122 Menu buttons, 49 Menu Off button, 58, 204 Menus, 45 Mode, roll, 83 Multipurpose knob, 48, 53, 54, 80, 86, 177, 224, 225 246 DPO4000 Series User Manual Index N Network printing, 192 Next button, 55 Normal trigger mode, 92 O Offset and position, 128 OpenChoice, 2, 35 Operating specifications, 6 Orientation of the image, 175, 191 Outer knob, 54 Overlay, 22 P Pan, 164, 166 knob, 54, 166, 169 Pause, 166 Peak detect acquisition mode, 79 Performance verification, xii Persistence display, 112 infinite, 115 variable, 115 Play, 166 Play-pause button, 54, 167 Play-pause mode, 167 Pollution Degree DPO4000, 7 P6139A, 9 Portrait, 175, 191 Position Horizontal, 94, 95, 120, 156, 234, 235 Vertical, 121 Position and offset, 128 Posttrigger, 91, 96 Power cord, 3 input, 69 off, 14 removing, 14 supply, 11 switch, 57 Power consumption, DPO4000, 6 Predefined math expressions, 150 Pretrigger, 91, 96 Previous button, 54 Print, 57, 189 Printing a hard copy, 189 Printing, Ethernet, 192 Probe Comp, 16 Probe compensation, 17 Probes BNC, 10 connecting, 10 ground lead, 19 TEK-USB-488 Adapter, 4 TekVPI, 10 TPA-BNC Adapter, 4, 10 Programmer Commands, xii Pulse/Width trigger, defined, 100 R Rackmount, 4 Readout Acquisition, 60 Auxiliary, 64 Channel, 64 Cursor, 62, 149 Horizontal position/scale, 64 Record length/sampling rate, 63 Trigger, 63, 107 Trigger status, 62 Rear-panel connectors, 68 Recalling setups, 184 waveforms, 174 Record length, x DPO4000 Series User Manual 247 Index Record length/sampling rate readout, 63 Rectangular FFT window, 156 Ref button, 51, 160 Ref R, 182 Reference button, 182 Reference levels, 142 Reference menu, 51, 160, 161 Reference waveforms, 160 displaying, 182 removing, 161, 183 saving, 182 saving 10M waveforms, 162 Related documents, xii Removing reference waveforms, 183 Removing reference waveforms, 161 Removing waveform, 112 Rise/Fall trigger, defined, 101 Roll mode, 83 Run/Stop button, 56, 83, 111 Runt trigger, defined, 100 SS afety Summary, v Sample acquisition mode, 78 Sample rates, x Sampling process, defined, 75 Sampling, real-time, 76 Save / Recall menu, 50, 58, 174 Save / Recall Menu button, 50 Save / Recall Save button, 58, 174 Saving reference waveforms, 182 screen images, 174 waveforms, 174 Saving and recalling Information, 174 Saving setups, 184 Scale Horizontal, 55, 120, 156, 227, 229, 230, 234 Vertical, 121, 230 Search, 169 Search / Mark, 238 Search button, 49, 170 Securing DPO4000 memory, 196 Select button, 53, 224 Sequential triggering, 107 Serial, 84, 102, 238 Service information, xiii Set / Clear Mark button, 55, 169 Set to 50% button, 56, 97 Setup default, 58, 187 Default, 73 Setup and Hold trigger, defined, 101 Side panel connector, 67 Signal path compensation, 25 Single button, 56, 111, 213, 232 Single sequence, 83, 111 Slope, trigger, 96 Snapshot, 140 Software drivers, 35, 39 Software, optional, 200 SPC, 25 Specifications, xii operating, 6 power supply, 11 SPI, 51, 84, 102 Spreadsheet file format (.CSV), 182 Start an acquisition, 111 Statistics, 139 Stop an acquisition, 111 Switch, power, 57 T Table, Event, 88, 89 TDSPCS1, 35 248 DPO4000 Series User Manual Index TEK-USB-488 Adapter, 36, 38, 68 TEK-USB–488 Adapter, 4 TekSecure, 196 TekVPI, 10 Temperature DPO4000, 6 P6139A, 8 Termination, 123 Test button, 49 TPA-BNC Adapter, 4, 10 Transit case, 4 Transition trigger, defined, 101 Trigger concepts, 91 coupling, 94 delayed, 107 event, defined, 91 forcing, 92 holdoff, 93 level, 96 modes, 92, 98 posttrigger, 91, 96 pretrigger, 91, 96 readout, 107 sequential, 107 Serial, 84, 102, 238 slope, 96 Trigger level button, 56 Icon, 63 knob, 97 Trigger menu, 49, 98, 108, 226 Trigger menu button, 226 Trigger Menu button, 98 Trigger modes Auto, 92 Normal, 92 Trigger position icon, 61 Trigger readout, 63 Trigger status readout, 62 Trigger types, defined, 99 U Undo Autoset, 74 Default Setup, 73 Upgrading firmware, 28 USB, x, 5, 36, 39, 50, 58, 69, 174, 189 port, 68 USBTMC, 68 User marks, 169 Utility button, 20, 23, 26, 50, 117, 118, 189 Utility menu, 20, 23, 50, 57, 117 V Variable persistence, 115 Versatile Probe Interface, 10 Vertical button, 50 menu, 50, 122 Position, 121 position and autoset, 75 position and offset, 128 Position knob, 57, 72 Scale, 121, 230 Scale knob, 57, 72 Vibration, DPO4000, 7 Video lines, 228 port, 68 Video trigger, defined, 101 View waveform record, 61 Voltage, Input DPO4000, 6 P6139A, 8 DPO4000 Series User Manual 249 Index Voltage, Output, P6139A, 8 W Waveform adding, 112 display style, 112 intensity, 115 pan, 164, 166 pause, 166 play, 166 play-pause, 167 record defined, 77 removing, 112 search and mark, 169 user marks, 169 zoom, 164 Waveform baseline indicator, 65 Waveform record, 77 Waveform record view, 61 Weight DPO4000, 6 Width DPO4000, 6 ZZ oom, 164 button, 54 graticule size, 166 Horizontal, 234 knob, 54, 164 PBSS9110Z 100 V, 1 A PNP low VCEsat (BISS) transistor Rev. 03 — 11 December 2009 Product data sheet Table 1. Quick reference data Symbol Parameter Conditions Min Typ Max Unit VCEO collector-emitter voltage open base - - −100 V IC collector current - - −1 A ICM peak collector current single pulse; tp ≤ 1 ms - - −3 A RCEsat collector-emitter saturation resistance IC = −1 A; IB = −100 mA [1] - 170 320 mΩ PBSS9110Z_3 © NXP B.V. 2009. All rights reserved. Product data sheet Rev. 03 — 11 December 2009 2 of 14 NXP Semiconductors PBSS9110Z 100 V, 1 A PNP low VCEsat (BISS) transistor 2. Pinning information 3. Ordering information 4. Marking 5. Limiting values Table 2. Pinning Pin Description Simplified outline Symbol 1 base 2 collector 3 emitter 4 collector 1 2 3 4 sym028 2, 4 3 1 Table 3. Ordering information Type number Package Name Description Version PBSS9110Z SC-73 plastic surface-mounted package with increased heat sink; 4 leads SOT223 Table 4. Marking codes Type number Marking code PBSS9110Z PB9110 Table 5. Limiting values In accordance with the Absolute Maximum Rating System (IEC 60134). Symbol Parameter Conditions Min Max Unit VCBO collector-base voltage open emitter - −120 V VCEO collector-emitter voltage open base - −100 V VEBO emitter-base voltage open collector - −5 V IC collector current - −1 A ICM peak collector current single pulse; tp ≤ 1 ms - −3 A IB base current - −0.3 A Ptot total power dissipation Tamb ≤ 25 °C [1] - 0.65 W [2] - 1 W [3] - 1.4 W PBSS9110Z_3 © NXP B.V. 2009. All rights reserved. Product data sheet Rev. 03 — 11 December 2009 3 of 14 NXP Semiconductors PBSS9110Z 100 V, 1 A PNP low VCEsat (BISS) transistor [1] Device mounted on an FR4 PCB, single-sided copper, tin-plated and standard footprint. [2] Device mounted on an FR4 PCB, single-sided copper, tin-plated, mounting pad for collector 1cm2. [3] Device mounted on an FR4 PCB, single-sided copper, tin-plated, mounting pad for collector 6cm2. 6. Thermal characteristics [1] Device mounted on an FR4 PCB, single-sided copper, tin-plated and standard footprint. [2] Device mounted on an FR4 PCB, single-sided copper, tin-plated, mounting pad for collector 1cm2. [3] Device mounted on an FR4 PCB, single-sided copper, tin-plated, mounting pad for collector 6cm2. Tj junction temperature - 150 °C Tamb ambient temperature −65 +150 °C Tstg storage temperature −65 +150 °C (1) FR4 PCB, mounting pad for collector 6cm2 (2) FR4 PCB, mounting pad for collector 1cm2 (3) FR4 PCB, standard footprint Fig 1. Power derating curves Table 5. Limiting values …continued In accordance with the Absolute Maximum Rating System (IEC 60134). Symbol Parameter Conditions Min Max Unit Tamb (°C) 0 40 80 120 160 001aaa508 0.8 0.4 1.2 1.6 Ptot (W) 0 (1) (2) (3) Table 6. Thermal characteristics Symbol Parameter Conditions Min Typ Max Unit Rth(j-a) thermal resistance from junction to ambient in free air [1]- - 192 K/W [2]- - 125 K/W [3]- - 89 K/W Rth(j-sp) thermal resistance from junction to solder point - - 17 K/W PBSS9110Z_3 © NXP B.V. 2009. All rights reserved. Product data sheet Rev. 03 — 11 December 2009 4 of 14 NXP Semiconductors PBSS9110Z 100 V, 1 A PNP low VCEsat (BISS) transistor FR4 PCB, standard footprint Fig 2. Transient thermal impedance from junction to ambient as a function of pulse duration; typical values FR4 PCB, mounting pad for collector 1cm2 Fig 3. Transient thermal impedance from junction to ambient as a function of pulse duration; typical values 006aaa819 10 1 102 103 Zth(j-a) (K/W) 10−1 10−5 10−4 10−2 10−1 10 102 tp (s) 10−3 1 103 duty cycle = 1 0.75 0.5 0.33 0.2 0.1 0.05 0.02 0.01 0 006aaa820 10 1 102 103 Zth(j-a) (K/W) 10−1 10−5 10−4 10−2 10−1 10 102 tp (s) 10−3 1 103 duty cycle = 0.75 0.5 0.33 0.2 0.1 0.05 0.02 0.01 0 1 PBSS9110Z_3 © NXP B.V. 2009. All rights reserved. Product data sheet Rev. 03 — 11 December 2009 5 of 14 NXP Semiconductors PBSS9110Z 100 V, 1 A PNP low VCEsat (BISS) transistor FR4 PCB, mounting pad for collector 6cm2 Fig 4. Transient thermal impedance from junction to ambient as a function of pulse duration; typical values 006aaa821 10 1 102 103 Zth(j-a) (K/W) 10−1 10−5 10−4 10−2 10−1 10 102 tp (s) 10−3 1 103 duty cycle = 1 0.75 0.5 0.33 0.2 0.1 0.05 0.02 0.01 0 PBSS9110Z_3 © NXP B.V. 2009. All rights reserved. Product data sheet Rev. 03 — 11 December 2009 6 of 14 NXP Semiconductors PBSS9110Z 100 V, 1 A PNP low VCEsat (BISS) transistor 7. Characteristics [1] Pulse test: tp ≤ 300 μs; δ ≤ 0.02. Table 7. Characteristics Tamb = 25°C unless otherwise specified. Symbol Parameter Conditions Min Typ Max Unit ICBO collector-base cut-off current VCB = −80 V; IE = 0 A - - −100 nA VCB = −80 V; IE = 0 A; Tj = 150 °C - - −50 μA ICES collector-emitter cut-off current VCE = −80 V; VBE = 0 V - - −100 nA IEBO emitter-base cut-off current VEB = −4 V; IC = 0 A - - −100 nA hFE DC current gain VCE = −5 V; IC = −1 mA 150 - - VCE = −5 V; IC = −250 mA 150 - - VCE = −5 V; IC = −0.5 A [1] 150 - 450 VCE = −5 V; IC = −1 A [1] 125 - - VCEsat collector-emitter saturation voltage IC = −250 mA; IB = −25 mA - - −120 mV IC = −500 mA; IB = −50 mA [1]- - −180 mV IC = −1 A; IB = −100 mA [1]- - −320 mV RCEsat collector-emitter saturation resistance IC = −1 A; IB = −100 mA [1] - 170 320 mΩ VBEsat base-emitter saturation voltage IC = −1 A; IB = −100 mA [1]- - −1.1 V VBEon base-emitter turn-on voltage VCE = −5 V; IC = −1 A [1]- - −1.0 V td delay time VCC = −10 V; IC = −0.5 A; IBon = −0.025 A; IBoff = 0.025 A - 20 - ns tr rise time - 60 - ns ton turn-on time - 80 - ns ts storage time - 290 - ns tf fall time - 120 - ns toff turn-off time - 410 - ns fT transition frequency VCE = −10 V; IC = −50 mA; f = 100 MHz 100 - - MHz Cc collector capacitance VCB = −10 V; IE = ie = 0 A; f = 1 MHz - - 17 pF PBSS9110Z_3 © NXP B.V. 2009. All rights reserved. Product data sheet Rev. 03 — 11 December 2009 7 of 14 NXP Semiconductors PBSS9110Z 100 V, 1 A PNP low VCEsat (BISS) transistor VCE = −10 V (1) Tamb = 100 °C (2) Tamb = 25 °C (3) Tamb = −55 °C Tamb = 25 °C Fig 5. DC current gain as a function of collector current; typical values Fig 6. Collector current as a function of collector-emitter voltage; typical values VCE = −10 V (1) Tamb = −55 °C (2) Tamb = 25 °C (3) Tamb = 100 °C IC/IB = 10 (1) Tamb = −55 °C (2) Tamb = 25 °C (3) Tamb = 100 °C Fig 7. Base-emitter voltage as a function of collector current; typical values Fig 8. Base-emitter saturation voltage as a function of collector current; typical values 001aaa376 200 400 600 hFE 0 IC (mA) −10−1 −1 −10 −102 −103 −104 (1) (2) (3) VCE (V) 0 −1 −2 −3 −4 −5 001aaa384 −0.8 −1.2 −0.4 −1.6 −2 IC (A) 0 IB (mA) = −45 −40.5 −36 −31.5 −27 −22.5 −18 −13.5 −9 −4.5 001aaa377 −0.4 −0.8 −1.2 VBE (V) 0 IC (mA) −10−1 −1 −10 −102 −103 −104 (1) (2) (3) 001aaa381 IC (mA) −10−1 −1 −10 −102 −103 −104 −1 −10 VBEsat (V) −10−1 (1) (2) (3) PBSS9110Z_3 © NXP B.V. 2009. All rights reserved. Product data sheet Rev. 03 — 11 December 2009 8 of 14 NXP Semiconductors PBSS9110Z 100 V, 1 A PNP low VCEsat (BISS) transistor IC/IB = 10 (1) Tamb = 100 °C (2) Tamb = 25 °C (3) Tamb = −55 °C Tamb = 25 °C (1) IC/IB = 50 (2) IC/IB = 20 Fig 9. Collector-emitter saturation voltage as a function of collector current; typical values Fig 10. Collector-emitter saturation voltage as a function of collector current; typical values IC/IB = 10 (1) Tamb = −55 °C (2) Tamb = 25 °C (3) Tamb = 100 °C Tamb = 25 °C (1) IC/IB = 50 (2) IC/IB = 20 Fig 11. Collector-emitter saturation resistance as a function of collector current; typical values Fig 12. Collector-emitter saturation resistance as a function of collector current; typical values 001aaa378 IC (mA) −10−1 −1 −10 −102 −103 −104 −10−1 −1 VCEsat (V) −10−2 (1) (2) (3) 001aaa380 IC (mA) −10−1 −1 −10 −102 −103 −104 −10−1 −1 VCEsat (V) −10−2 (1) (2) 001aaa382 IC (mA) −10−1 −1 −10 −102 −103 −104 1 10 102 103 RCEsat (Ω) 10−1 (1) (2) (3) 001aaa383 IC (mA) −10−1 −1 −10 −102 −103 −104 1 10 102 103 RCEsat (Ω) 10−1 (1) (2) PBSS9110Z_3 © NXP B.V. 2009. All rights reserved. Product data sheet Rev. 03 — 11 December 2009 9 of 14 NXP Semiconductors PBSS9110Z 100 V, 1 A PNP low VCEsat (BISS) transistor 8. Test information Fig 13. BISS transistor switching time definition VCC = −10 V; IC = −0.5 A; IBon = −0.025 A; IBoff = 0.025 A Fig 14. Test circuit for switching times 006aaa266 −IBon (100 %) −IB input pulse (idealized waveform) −IBoff 90 % 10 % −IC (100 %) −IC td ton 90 % 10 % tr output pulse (idealized waveform) tf t ts toff RC R2 R1 DUT mgd624 Vo RB (probe) 450 Ω (probe) 450 Ω oscilloscope oscilloscope VBB VI VCC PBSS9110Z_3 © NXP B.V. 2009. All rights reserved. Product data sheet Rev. 03 — 11 December 2009 10 of 14 NXP Semiconductors PBSS9110Z 100 V, 1 A PNP low VCEsat (BISS) transistor 9. Package outline 10. Packing information [1] For further information and the availability of packing methods, see Section 14. Fig 15. Package outline SOT223 (SC-73) Dimensions in mm 04-11-10 6.7 6.3 3.1 2.9 1.8 1.5 7.3 6.7 3.7 3.3 1.1 0.7 1 2 3 4 4.6 2.3 0.8 0.6 0.32 0.22 Table 8. Packing methods The indicated -xxx are the last three digits of the 12NC ordering code.[1] Type number Package Description Packing quantity 1000 4000 PBSS9110Z SOT223 8 mm pitch, 12 mm tape and reel -115 -135 PBSS9110Z_3 © NXP B.V. 2009. All rights reserved. Product data sheet Rev. 03 — 11 December 2009 11 of 14 NXP Semiconductors PBSS9110Z 100 V, 1 A PNP low VCEsat (BISS) transistor 11. Soldering Fig 16. Reflow soldering footprint SOT223 (SC-73) Fig 17. Wave soldering footprint SOT223 (SC-73) sot223_fr 1.2 (4×) 1.2 (3×) 1.3 (4×) 1.3 (3×) 6.15 7 3.85 3.6 3.5 0.3 3.9 7.65 2.3 2.3 6.1 4 1 2 3 solder lands solder resist occupied area solder paste Dimensions in mm sot223_fw 1.9 6.7 8.9 8.7 1.9 (3×) 1.9 1.1 (2×) 6.2 2.7 2.7 2 4 1 3 solder lands solder resist occupied area preferred transport direction during soldering Dimensions in mm PBSS9110Z_3 © NXP B.V. 2009. All rights reserved. Product data sheet Rev. 03 — 11 December 2009 12 of 14 NXP Semiconductors PBSS9110Z 100 V, 1 A PNP low VCEsat (BISS) transistor 12. Revision history Table 9. Revision history Document ID Release date Data sheet status Change notice Supersedes PBSS9110Z_3 20091211 Product data sheet - PBSS9110Z_2 Modifications: • This data sheet was changed to reflect the new company name NXP Semiconductors, including new legal definitions and disclaimers. No changes were made to the technical content. • Figure 16 “Reflow soldering footprint SOT223 (SC-73)”: updated • Figure 17 “Wave soldering footprint SOT223 (SC-73)”: updated PBSS9110Z_2 20060724 Product data sheet - PBSS9110Z_1 PBSS9110Z_1 20040609 Product data sheet - - PBSS9110Z_3 © NXP B.V. 2009. All rights reserved. Product data sheet Rev. 03 — 11 December 2009 13 of 14 NXP Semiconductors PBSS9110Z 100 V, 1 A PNP low VCEsat (BISS) transistor 13. Legal information 13.1 Data sheet status [1] Please consult the most recently issued document before initiating or completing a design. [2] The term ‘short data sheet’ is explained in section “Definitions”. [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com. 13.2 Definitions Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information. Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail. 13.3 Disclaimers General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer’s own risk. Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability. Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail. No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights. Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities. Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding. 13.4 Trademarks Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners. 14. Contact information For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com Document status[1][2] Product status[3] Definition Objective [short] data sheet Development This document contains data from the objective specification for product development. Preliminary [short] data sheet Qualification This document contains data from the preliminary specification. Product [short] data sheet Production This document contains the product specification. NXP Semiconductors PBSS9110Z 100 V, 1 A PNP low VCEsat (BISS) transistor © NXP B.V. 2009. All rights reserved. For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com Date of release: 11 December 2009 Document identifier: PBSS9110Z_3 Please be aware that important notices concerning this document and the product(s) described herein, have been included in section ‘Legal information’. This document was generated on 01/06/2014 PLEASE CHECK WWW.MOLEX.COM FOR LATEST PART INFORMATION Part Number: 43020-1200 Status: Active Overview: Micro-Fit 3.0™ Connectors Description: Micro-Fit 3.0™ Plug Housing, Dual Row, with Panel Mount Ears, 12 Circuits Documents: 3D Model Test Summary TS-43045-001 (PDF) Drawing (PDF) RoHS Certificate of Compliance (PDF) Product Specification PS-43045 (PDF) Product Literature (PDF) Packaging Specification PK-43020-001 (PDF) Agency Certification CSA LR19980 TUV R72081037 UL E29179 General Product Family Crimp Housings Series 43020 Application Power, Wire-to-Wire Comments Glow Wire Equivalent Part Number 43020-1208 Overview Micro-Fit 3.0™ Connectors Product Literature Order No 987650-5984 Product Name Micro-Fit 3.0™ UPC 800754383530 Physical Circuits (maximum) 12 Circuits Detail 12 Color - Resin Black Flammability 94V-0 Gender Male Glow-Wire Compliant No Lock to Mating Part Yes Material - Resin Polyester Net Weight 1.476/g Number of Rows 2 Packaging Type Bag Panel Mount Yes Pitch - Mating Interface 3.00mm Pitch - Termination Interface 3.00mm Polarized to Mating Part Yes Stackable No Temperature Range - Operating -40°C to +105°C Electrical Current - Maximum per Contact 5A Material Info Reference - Drawing Numbers Packaging Specification PK-43020-001 Product Specification PS-43045, RPS-43045-003, RPS-43045-004 Sales Drawing SDA-43020-**** Test Summary TS-43045-001 Series image - Reference only EU RoHS China RoHS ELV and RoHS Compliant REACH SVHC Contains SVHC: No Low-Halogen Status Low-Halogen Need more information on product environmental compliance? Email productcompliance@molex.com For a multiple part number RoHS Certificate of Compliance, click here Please visit the Contact Us section for any non-product compliance questions. Search Parts in this Series 43020Series Mates With 43025 Micro-Fit 3.0™ Receptacle Housing Use With Micro-Fit 3.0™ Crimp Terminal, MaleThis document was generated on 01/06/2014 PLEASE CHECK WWW.MOLEX.COM FOR LATEST PART INFORMATION This document was generated on 07/03/2013 PLEASE CHECK WWW.MOLEX.COM FOR LATEST PART INFORMATION Part Number: 87439-0800 Status: Active Overview: Pico-Spox™ Description: 1.50mm Pitch Pico-SPOX™ Wire-to-Board Housing, 8 Circuits, Off-White Housing Documents: 3D Model RoHS Certificate of Compliance (PDF) Drawing (PDF) Product Literature (PDF) Product Specification PS-87437 (PDF) Agency Certification CSA LR19980 UL E29179 General Product Family Crimp Housings Series 87439 Application Signal, Wire-to-Board MolexKits Yes Overview Pico-Spox™ Product Literature Order No USA-235 Product Name Pico-SPOX™ UPC 800754313278 Physical Circuits (maximum) 8 Color - Resin Natural Flammability 94V-0 Gender Female Glow-Wire Compliant No Lock to Mating Part Yes Material - Resin Nylon Net Weight 0.120/g Number of Rows 1 Packaging Type Bag Panel Mount No Pitch - Mating Interface 1.50mm Polarized to Mating Part Yes Stackable No Temperature Range - Operating -55°C to +105°C Electrical Current - Maximum per Contact 2.5A Material Info Reference - Drawing Numbers Product Specification PS-87437, RPS-87437, RPS-87437-001, RPS-87437-200 Sales Drawing SD-87439-**00 Series image - Reference only EU RoHS China RoHS ELV and RoHS Compliant REACH SVHC Contains SVHC: No Low-Halogen Status Low-Halogen Need more information on product environmental compliance? Email productcompliance@molex.com For a multiple part number RoHS Certificate of Compliance, click here Please visit the Contact Us section for any non-product compliance questions. Search Parts in this Series 87439Series Mates With Pico-SPOX™ Wire-to-Board Header 87437 , 87438 Use With 87421 Pico-SPOX™ Crimp Terminal This document was generated on 07/03/2013 PLEASE CHECK WWW.MOLEX.COM FOR LATEST PART INFORMATION This document was generated on 01/08/2014 PLEASE CHECK WWW.MOLEX.COM FOR LATEST PART INFORMATION Part Number: 43160-3102 Status: Active Overview: Sabre™ Power Connector Description: 7.50mm Pitch Sabre™ Header, Right Angle, 2 Circuits, Glow Wire Compatible. Recommended PCB Thickness 1.60mm, with Board Lock Documents: 3D Model RoHS Certificate of Compliance (PDF) Drawing (PDF) Product Literature (PDF) Product Specification PSX-44441-9999 (PDF) Agency Certification CSA LR19980 TUV R72130381 UL E29179 General Product Family PCB Headers Series 43160 Application Power, Wire-to-Board Comments "Fully Polarized, high power wire to board and wire to wire connector system This Molex product is manufactured from material that has the following ratings, tested by independent agencies:. a) A Glow Wire Ignition Temperature (GWIT) of at least 775 deg C per IEC 60695-2-13.. b) A Glow Wire Flammability Index (GWFI) above 850 deg C per IEC 60695-2-12.and hence complies with the requirements set out in the International Standard IEC 60335-1 5th edition - household and similar electrical appliances - safety, section 30 Resistance to heat and fire. The customers using this product must determine its suitability for use in their particular application through testing or other acceptable means as described in end-product glow-wire flammability test standard IEC 60695-2-11 and any applicable product end-use standard(s). If it is determined during the customer’s evaluation of suitability, that higher performance is required, please contact Molex for possible product options." Overview Sabre™ Power Connector Product Literature Order No 987650-5662 Product Name Sabre™ UPC 800754378185 Physical Breakaway No Circuits (Loaded) 2 Circuits (maximum) 2 Color - Resin Black Durability (mating cycles max) 25 First Mate / Last Break No Flammability 94V-0 Glow-Wire Compliant Yes Guide to Mating Part No Keying to Mating Part Yes Series image - Reference only EU RoHS China RoHS ELV and RoHS Compliant REACH SVHC Contains SVHC: No Low-Halogen Status Not Low-Halogen Need more information on product environmental compliance? Email productcompliance@molex.com For a multiple part number RoHS Certificate of Compliance, click here Please visit the Contact Us section for any non-product compliance questions. Search Parts in this Series 43160Series Mates With 44441-2002 Sabre™ Receptacle Housing Lock to Mating Part Yes Material - Metal Brass Material - Plating Mating Tin Material - Plating Termination Tin Material - Resin High Temperature Thermoplastic Net Weight 3.331/g Number of Rows 1 Orientation Right Angle PC Tail Length 3.81mm PCB Locator Yes PCB Retention Yes PCB Thickness - Recommended 1.60mm Packaging Type Tray Pitch - Mating Interface 7.50mm Pitch - Termination Interface 7.50mm Plating min - Mating 0.889μm Plating min - Termination 0.889μm Polarized to Mating Part Yes Polarized to PCB Yes Shrouded Fully Stackable No Surface Mount Compatible (SMC) No Temperature Range - Operating -40°C to +75°C Termination Interface: Style Through Hole Electrical Current - Maximum per Contact 18A Voltage - Maximum 600V Solder Process Data Duration at Max. Process Temperature (seconds) 5 Lead-free Process Capability Wave Capable (TH only) Max. Cycles at Max. Process Temperature 1 Process Temperature max. C 235 Material Info Reference - Drawing Numbers Product Specification PSX-44441-9999 Sales Drawing SDA-43160-**** This document was generated on 01/08/2014 PLEASE CHECK WWW.MOLEX.COM FOR LATEST PART INFORMATION This document was generated on 01/06/2014 PLEASE CHECK WWW.MOLEX.COM FOR LATEST PART INFORMATION Part Number: 39-00-0038 Status: Active Overview: Mini-Fit Jr.™ Power Connectors Description: Mini-Fit® Female Crimp Terminal, Tin (Sn) over Copper (Cu) Plated Brass, 18-24 AWG, Reel Documents: Drawing (PDF) Product Specification PS-52034-003 (PDF) Product Specification PS-51010-005 (PDF) Product Specification PS-52034-004 (PDF) Product Specification PS-51010-006 (PDF) Product Specification PS-5556-001 (PDF) Product Specification PS-51045-001 (PDF) Product Specification PS-5556-002 (PDF) Product Specification PS-51045-002 (PDF) Packaging Specification PK-5556-001 (PDF) Product Specification PS-51045-004 (PDF) Test Summary TS-5556-002 (PDF) Product Specification PS-51096-001 (PDF) RoHS Certificate of Compliance (PDF) General Product Family Crimp Terminals Series 5556 Application Power Crimp Quality Equipment Yes Overview Mini-Fit Jr.™ Power Connectors Packaging Alternative 39-00-0039 (Loose) Product Name Mini-Fit® UPC 800753585010 Physical Durability (mating cycles max) 30 Gender Receptacle Material - Metal Brass Material - Plating Mating Tin Material - Plating Termination Tin Net Weight 0.130/g Packaging Type Reel Plating min - Mating 0.889μm Plating min - Termination 0.889μm Termination Interface: Style Crimp or Compression Wire Insulation Diameter 1.30-3.10mm Wire Size AWG 18, 20, 22, 24 Wire Size mm² N/A Electrical Current - Maximum per Contact 9A Voltage - Maximum 600V Material Info Old Part Number 5556T Reference - Drawing Numbers Packaging Specification PK-5556-001 Product Specification PS-51010-005, PS-51010-006, PS-51045-001, PS-51045-002, PS-51045-004, PS-51096-001, PS-52034-003, PS-52034-004, PS-5556-001, PS-5556-002, RPS-30067-001, RPS-30067-002, RPS-42474-001, RPS-51045-001, RPS-5557-008, RPS-5557-024, RPS-5557-031, RPS-5557-036, RPS-5557-037, RPS-5557-045, RPS-5557-046, RPS-5566-002 Series image - Reference only EU RoHS China RoHS ELV and RoHS Compliant REACH SVHC Contains SVHC: No Low-Halogen Status Low-Halogen Need more information on product environmental compliance? Email productcompliance@molex.com For a multiple part number RoHS Certificate of Compliance, click here Please visit the Contact Us section for any non-product compliance questions. Search Parts in this Series 5556Series Mates With 5558 Mini-Fit® Crimp Male Terminals. Mini- Fit Jr.™ Header, Dual Row, 5566 , 5569 Use With 5557 Mini-Fit Jr.™ Receptacle Housing, 30067 Mini-Fit® TPA, 42474 Mini-Fit® BMI Panel Mount, 5559 Mini-Fit Jr.™ Plug Housing, Dual Row Application Tooling | FAQ Tooling specifications and manuals are found by selecting the products below. Crimp Height Specifications are then contained in the Application Tooling Specification document. Global Description Product # FineAdjust™ Applicator for Insulation OD 0639023900 Sales Drawing SD-5556**** Test Summary TS-5556-002 1.40-1.70mm - 18-24 AWG Extraction Tool 0011030044 Hand Crimp Tool for Male and Female Crimp Terminals, 16-24 AWG Wire 0638190900 FineAdjust™ Applicator for Insulation OD 2.50-2.95mm - 18-24 AWG 0639002600 FineAdjust™ Applicator for Insulation OD 1.65-2.05mm - 18-24 AWG 0639002900 FineAdjust™ Applicator for Insulation OD 1.90-2.30mm - 18-24 AWG 0639015600 FineAdjust™ Applicator for Insulation OD 2.50-2.95mm Optimized for 18 AWG Only 0639024800 FineAdjust™ Applicator for Insulation OD 2.30-2.60mm - 18-24 AWG 0639024900 T2 Terminator™ for insulation OD 2.50-2.95mm - 18-24 AWG 0639102600 T2 Terminator™ for insulation OD 1.65 – 2.05mm – 18 – 24 AWG 0639102900 T2 Terminator™ for insulation OD 1.90-2.30mm - 18-24 AWG 0639115600 T2 Terminator™ for insulation OD 1.40-1.70mm - 18-24 AWG 0639123900 T2 Terminator™ for insulation OD 2.50-2.95mm optimized for 18 AWG only 0639124800 T2 Terminator™ for insulation OD 2.30-2.60mm - 18-24 AWG 0639124900 Japan Description Product # Applicator for M211A Bench Press, 18-24 AWG Wire 0570223000 Side-Feed Applicator For Full-Auto Machine 0570223200 Hand Extraction Tool 0570316000 This document was generated on 01/06/2014 PLEASE CHECK WWW.MOLEX.COM FOR LATEST PART INFORMATION For more complete information on any product, please visit our web site: www.aimtti.com Measurably better value manual & bus programmable - Laboratory Power Supplies Mixed-mode Regulation Mixed-mode regulation with linear output stage 4 digit voltage and current meters on each output * Constant voltage or constant current operation Variable auxiliary output (1.5-5V@5A) on triple model Switched remote sensing (not EX355P or EX752M) Silent fan-free cooling ** DC output switches        Compact bench power supplies Single, dual or triple outputs Mixed-mode regulation Power from 175W to 420W Switched remote sense terminals RS-232 interface model available       EX-R series Model Outputs Voltage / Current Power Interfaces EX355R One 0 to 35V / 0 to 5A 175W - EX355P One 0 to 35V / 0 to 5A 175W RS232 EX355P-USB One 0 to 35V / 0 to 5A 175W USB EX1810R One 0 to 18V / 0 to 10A 180W - EX2020R One 0 to 20V / 0 to 20A 400W - EX4210R One 0 to 42V / 0 to 10A 420W - EX354RD Two 2 x (0 to 35V / 0 to 4A) 280W - EX354RT Three 2 x (0 to 35V / 0 to 4A) plus 1.5 to 5.0V @ 5A 305W EX752M Two 2 x (0 to 75V / 0 to 2A) or 0 to 75V / 0 to 4A or 0 to 150V / 0 to 2A 300W Brief specifications for main outputs: Line & load regulation: <0.01%. Output noise: < 2mV rms. Meter accuracies: voltage - 0.3% ± 1digit, current - 0.6% ± 1digit. Sizes: singles - 140 x 160 x 295mm; dual/triple - 260 x 160 x 295mm (WxHxD) The EX752M is a dual output 300 watt PSU with Multi-Mode capability. This enables it to operate as a dual power supply with two independent and isolated outputs, or as a single power supply of double the power.  As a dual, each output provides 0 to 75V at 0 to 2A (mode A). As a single, the output can be selected as either 0 to 75V at 0 to 4A (mode B) or 0 to 150V at 0 to 2A (mode C). In single modes, the unused half of the unit becomes completely inoperative and its displays are blanked. For those requiring a basic bus controllable power supply, versions with an RS-232 interface (EL302P) or a USB interface (EL302P-USB) are available.  The EX series is the value-for-money PSU for users who require higher power levels. Mixed-mode regulation gives excellent performance combined with compact size and low weight. Dual output and triple output models are available in a similar casing style. The EX354RT triple (illustrated) has a variable voltage auxiliary output which can be set using the digital displays.  ** Note that the EX2020R and EX4210R use fan assisted cooling. All-linear regulation becomes impractical at higher power levels, so Aim-TTi have developed a technology that combines HF switch-mode pre-regulation with linear final regulation. This technique combines exceptional efficiency with noise levels that are close to that of pure linears. Mixed-mode regulation is used in the EX-R and TSX series. * Note that 3 digit current meters are used on the EX355P and EX752M and that voltmeter resolution on the EX752M is 0.1V. * Note that a 3 digit current meters is used on the EL302P & EL302P-USB, and that these models do not have remote sense terminals. http://www.farnell.com/datasheets/1796748.pdf SS-331 LCD Desoldering Station User’s Manual 1st Edition, ©2014 Copyright by Prokit’s Industries Co., Ltd. 1 Description SS‐331 designed for lead free desoldering especially. The quick heating and strong power are for convenient and clear soldering / desoldering all types of DIP components. Reasonable structure, single hand operation and strong absorbing power can be easy removal of the residual solder from the one‐sided or two sided of the PCB. This tool is used in the fields of electronic research, teaching and production, especially in the repairing and desoldering on the electronic appliances and communication equipments. 1. Control Unit The desoldering iron gun is controlled automatically by the micro‐processor. The digital control electronics and high‐quality sensor and heat exchange system guarantee precise temperature control at the soldering tip. The highest degree of temperature precision and optimal dynamic thermal behavior under load conditions is obtained by the quick and accurate recording of the measured values in a closed control circuit, and this design is especially for the lead‐free production techniques. 2. Desoldering Iron gun Desoldering iron gun with a power of 60W(Heat up rating 130W)and a wide spectrum of soldering tips can be used anywhere in the electronics field. The high power and gun type design make this iron gun suitable for fine desoldering work. The heating element is made of ceramic and the sensor on the desoldering tip can control the desoldering temperature quickly and accurately. 2 Technical Specification Voltage 220~240V AC Power Consumption 140W Temperature 160°C ~ 480°C Vacuum Pressure 600mm Hg Heating Element Ceramic Heater Accessories Spare tip x 3 ( 0.8(on the gun)1.0/  1.3mm) Cleaning tool x 3 (0.7/0.9/ 1.2mm) Filter sponge x 4 (φ20.8x1 +φ16.8x3) Certificate CE, GS, RoHS Station Size (mm) 225 x 160 x 130 Weight (kgs) 2.5 Operating Instruction Caution:Make sure that the four screws which are used to fasten the Diaphragm pump are removed from the control system before use. Otherwise serious damages may be caused to the user and the system. 1. Place the desoldering iron gun in the holder separately. Then connect the plug to the receptacle on the station and turn clockwise to tighten the plug nut. Check that the power supply is corresponding to the specification on the type plate and the power switch is on the “OFF” position. Connect the control unit to the power supply and switch on the power. Then a self‐test is carried out in which all display elements are switched on briefly. The electronic system then switches on automatically to the set temperature and displays this value. 2. The display and temperature setting ①. Shows the actual temperature of the desoldering tip. ②. Shows the setting temperature: Pressing the “UP” or “DOWN” button can switch the digital display to the set point display. The set‐point can be changed for ±1℃ by tapping the “UP” or “DOWN” button. Pressing the button will change the set‐point quickly. The digital display will return automatically to the actual value and the iron will reach to the setting temperature quickly. ③. ℃/℉ display: Switching the temperature display from ℃ to ℉ by pressing the “℃/℉”button and then the electronic system will display the actual temperature① and setting temperature② in ℉, and vice versa. ④. When the actual temperature on the soldering tip is less than the set‐point, “HEAT ON” will display and make the desoldering tip heating up. ⑤. When the absolute offset is more than ±10℃ between the actual temperature and the set‐point on the soldering tip or the nozzle, “WAIT” will display. It means that the temperature electronic control system is not in the stable situation, we should wait a moment to let the “WAIT” disappear. ⑥. When “ERROR” display, there may be a trouble on the 3 4 Safety Instruction 1. The manufacturer assumes no liability for uses other than those described in the operating instructions or for unauthorized alterations. 2. The operating instructions and cautions should be read carefully and kept in an easily visible location in the vicinity of the control system. Non‐observance of the cautions will result in accidents, injury or risks to health. Caution 1. The power cord only can be inserted in approved power sockets or adapters. 2. High Temperature The temperature of the soldering tip will reach as high as around 400℃(752℉) when the power switch is on. Since mishandling may lead to burns and fire, be sure to comply with the following precautions: ①. Do not touch metallic parts near the soldering tip/ nozzle. ②. Do not use this system near the flammable items. ③. Advise other people in the work area that the unit can reach a very high temperature and should be considered potentially dangerous. ④. Turn off the power switch while taking breaks and when finishing using. ⑤. Before replacing parts or storing the system, turn off the power and let it cool down to the room temperature. ⑥. Warning: this tool must be placed on its stand when not in use. 5 ⑦. A fire may result if the appliance is not used with care, therefore: 1) Be careful when using the appliance in places where there is combustible material. 2) Do not apply to the same place for a long time. 3) Do not use in presence of an explosive atmosphere. 4) Be aware heat may be conducted to combustible materials that out of sight. 5) Place the appliance on its stand after use and allow it to cool down before storage. 6) Do not leave the appliance unattended when it is switched on. 3. Take care of your tools Do not use the tools for any applications other than soldering or desoldering. Do not rap the iron against the work bench or otherwise subject the iron to severe shocks. Do not file the soldering tip to remove the oxide, please wipe the tip on the cleaning sponge. Use only accessories or attachments which are listed in the operation manual. Use of other tools and other accessories can lead to a danger of injury. Please turn off the power before connecting or disconnecting the soldering iron. 4. Maintenance Before further use, safety devices or slightly damaged parts must be carefully checked for error‐free and intended operation. Inspect moving parts for error‐free operation and that they don’t bind, or whether any parts are damaged. Damaged safety devices and parts must be repaired or replaced by a qualified technician, so long as nothing else is indicated in the operation manual. Use only accessories or 6 attachments which are listed in the operation manual. Use of other tools and other accessories can lead to a danger of injury. 5. Keep children at a distance Warning: this appliance is not intended for use by young children and infirm persons unless they have been adequately supervised by a responsible person to ensure that they can use the appliance safely. Warning: Young children should be supervised to ensure that they do not play with the appliance. Unused soldering tools should be stored in a dry location which is out of the reach of children. Switch off all unused soldering tools. 6. Protect yourself against electrical shocks Avoid touching grounded parts with your body, e.g. pipes, heating radiators and so on. The grip of antistatic designed soldering tool is conductive. 7. Work environment Do not use the soldering tool in a moist or wet environment. The soldering iron should be placed on the holder after finished using. 8. Observe the valid safety regulations at your work place. SS-331數顯吸焊台 概述 SS-331 特別為無鉛吸焊而設計。快速升溫和大功率的特點使其可以方便快速的焊接/拆焊所有類型的DIP元器件。 合理的結構,單手操作和強大的吸焊功率能夠輕鬆的從PCB一面或兩面除去殘餘錫渣。 目前已廣泛的應用於電子科研,教學以及生產等單位,特別是家電維修和通訊器材維修人員所不可缺少的首選專用工具。 1. 控制單元 吸焊槍由微處理器自動控制。數位控制裝置和高品質的感測器及加熱交換系統保證對烙鐵頭的溫度進行精確的控制。通過快速準確的記錄閉和控制回路測量可以獲得作高的溫度精度和帶負載狀況下最佳熱量轉遞性能,特別適合用於無鉛制程工藝。 2. 吸焊槍 (5SS-331-DG) 吸焊槍的功率為 60W(額定加熱功率 130W),可以配各種尺寸的烙鐵頭(U系列),廣泛應用於電子領域。 大功率和細長外形設計使這個電烙鐵適合做精密的焊接操作,發熱芯採用陶瓷發熱材料製作,頂端溫度感測器設計其特點在於能夠快速並準確的控制焊接溫度。 7 技術規範. 電壓 220~240V AC 消耗功率 140W 溫度 160°C ~ 480°C 真空吸力 600mm Hg 發熱原件 陶磁發熱芯 配件 吸嘴 x 3(0.8(裝在吸槍上)1.0/  1.3mm) 通針 x 3( 0.7/  0.9/  1.2mm) 過濾棉 x 4 ( 20.8mm x1 +  16.8mm x3) 認證 CE, GS, RoHS 尺寸(mm) 225 x 160 x 130 重量(kgs ) 2.5 操作說明: 1 將吸焊槍放置在支架上。然後將插頭插入插座順時針方向鎖緊螺母。檢查供電電源符合本產品的規格並確認總電源開關處於OFF的位置。接通控制系統的電源並打開電源開關。系統進行自檢,所有的液晶顯示都暫時被點亮。電子系統自動打開並迅速達到設定的溫度值。 2 顯示幕和溫度設置: 數位顯示說明: ① . 顯示吸焊烙鐵頭的實際溫度。 8 9 ② . 顯示的是設定溫度,通過按“UP"或“DOWN"鍵來改變設定值。輕壓單下“UP"或“DOWN"鍵設定值將以±1℃變化,持續按下“UP"或“DOWN"鍵設定值將會快速改變。改變設定值後,電子系統自動工作,顯示溫度會迅速到達設定值。 ③ . ℃或℉溫度,通過按“℃/℉"按鈕切換攝氏或華氏溫度,切換後電子系統會自動顯示的攝氏或華氏實際溫度①和設定溫度②數值。 ④ . 當烙鐵頭實際溫度小於設定溫度時顯示“HEAT ON"表示電子系統對烙鐵正在加熱。 ⑤ . 當烙鐵頭實際溫度與設定溫度的絕對偏差大於±10℃時顯示“WAIT",表示電子控溫系統還沒到達穩定狀態,請稍做等待,待“WAIT"不顯示時即可正常使用了。 ⑥ . 顯示“---"則表示系統有故障,或者是電烙鐵沒有正確連接到控制系統。 3 安全操作說明 3.1 製造商對於超出操作說明中所到的其他使用或未經授權的更改,不負任何責任。 3.2 應仔細閱讀操作說明及警告並將其放置在控制系統附近,如不遵守這些警告,將有可能發生意外事故,人體傷害或健康傷害。 4 警告及注意事項 4.1 電源線只能插入經認證過的電源插座或適配器中。 4.2 小心高溫:在開機狀態下,烙鐵頭或熱風槍焊嘴的溫度可以達到大約400℃(752℉)左右,由於不正確的操作可能會造成燒傷或引起火災,故應確保遵守以下預防措施:  不要讓金屬部件接觸到焊嘴和烙鐵頭;  不要在易燃物品附近使用該系統;  告知工作區域中的其他人員此設備會達到非常高的溫度應注意識別其潛在的危險性;  在休息及使用完後應關閉總電源  在更換零件或儲存前,應關閉總電源並讓其冷卻到 10 室溫  警告:不用時一定要將此工具放置在特定的支架上。  如使用不當可能會引起火災,因此  在有易燃物品的場所使用該設備一定要小心;  不要長時間在同一位置使用該設備;  不要在有爆炸性氣體的場所使用;  要知道熱量有可能會引燃不在視線範圍內的可燃物質;  使用完畢後要將器具放置在特定的支架上,且要在冷卻後方可收藏起來;  離開時必須要關閉電源開關。 4.3 愛護工具  不要將此設備用於焊接或脫焊以外的其他操作。  不要在工作臺上敲打電烙鐵或熱風筒或其他嚴重的撞擊。  不要銼烙鐵頭上的氧化層,請使用浸水的清潔棉擦除氧化層。  確保使用操作說明上列明的附件或配件,使用其他的工具或其他配件使本系統損壞或會有受傷的危險。  在接通或斷開錫槍前應先關閉電源。 4.4 工具保養 在使用前,應仔細檢查安全裝置或有輕微損害的零件無故障及在指定操作狀態。檢查活動的零件無故障操作,並且沒有繞線及零件損壞。已損壞的安全設備及零件都應由有資格的專業人員進行維修或更換。只使用操作說明中列出的配件。如果使用其他工具或配件有可能對操作人員造成傷害。 4.5 放置在兒童接觸不到的地方 警告:老人和兒童必須在監護人在場確保可安全使用的情況下方可使用該設備。警告:應確保兒童在沒有監護的情況下無法接觸到該設 備。 4.6 不用的焊接工具應存放在乾燥的,兒童接觸不到的地方。而且應該關閉所有未在使用狀態下的焊接工具的電源。 4.7 避免遭受電擊 避免用身體接觸接地零件,如:烙鐵管,散熱器等。抗靜電設計的焊接工具的把手是導電的。 4.8 工作環境 不要在潮濕的環境中使用焊接工具。電烙鐵及熱風槍用完後要放回到支架上。 4.9 遵守工作場所中的安全操作規定。 寶工實業股份有限公司 PROKIT’S INDUSTRIES CO., LTD. http://www.prokits.com.tw E-mail:pk@mail.prokits.com.tw ©2014 Prokit’s Industries Co., LTD. All rights reserved 2014001(C) Connections to a Wider Range of Slaves Ensured by Upgraded Models Master Conventional models New models C200HW-SRM21 CQM1-SRM21 SRM1-C01 SRM1-C02 SRM1-C01-V1 SRM1-C02-V1 3G8B3-SRM00 3G8B3-SRM01 C200PC-ISA02-SRM C200PC-ISA12-SRM C200HW-SRM21-V1 CQM1-SRM21-V1 SRM1-C01-V2 SRM1-C02-V2 NKE-made Uniwire C B /SS d Communications mode Slave ade U e CompoBus/S Send Unit SDD-CS1 High-speed communications mode Long-distance communications mode SRT1 Series FND-X􀀀-SRT Yes Yes Yes Yes No No Products from other companies SMC Solenoid valve for SI manifold use VQ Series SX Series SY Series Yes Yes Yes Yes Yes Yes No No No CKD Solenoid valve for saving wiring effort 4TB1 and 4TB2 Series 4TB3 and 4TB4 Series 4G Series MN4SO Series Yes Yes Yes Yes Yes Yes Yes Yes No No No No Koganei Valve for saving wiring effort YS1A1, A2 YS2A1, A2 Yes Yes Yes Yes No No New product SRT2-AD02 SRT2-DA02 No No Yes Yes Yes Yes SRT2-VID08S(-1) SRT2-VOD08S(-1) SRT2-VID16ML(-1) SRT2-VOD16ML(-1) Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes SRT2-ID16(-1) SRT2-OD16(-1) SRT2-ID08(-1) SRT2-OD08(-1) SRT2-ROC16 SRT2-ROF16 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes CPM1A-SRT21 Yes Yes Yes Products to be released soon SRT2-ID04(-1) SRT2-OD04(-1) SRT2-ID16T(-1) SRT2-OD16T(-1) SRT2-MD16T(-1) SRT2-ROC08 SRT2-ROF08 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Note: 1. In high-speed communications mode, the maximum transmission distance is 100 m at a baud rate of 750 kbps. In long-distance communications mode (i.e., a newly available mode), the maximum transmission distance is 500 m at a baud rate of 93.75 kbps. 2. The SRT2-AD04 and SRT2-DA02 are available for 16-bit synchronous communications. 11 Master Control Unit SRM1-C01-V2/C02-V2 Subminiature, Stand-alone Model with CompoBus/S Master and SYSMAC Controller Functions Maximum number of Remote I/O points per Master: 256 Maximum number of Slaves per Master: 32 Communications cycle time: 0.5 ms max. (at baud rate 750 kbps). Communications distance: Extended to 500 m max. (at baud rate 93.75 kbps). Additional instructions (PID, SCL, NEG, ZCP) ensure analog compatibility. RS-232C port incorporated (SRM1-C02-V2). RC Ordering Information Specifications Model Buuilt-in sstaandd-aaloonee ccoontroolleer fuuncctioonss Without RS-232C SRM1-C01-V2 With RS-232C SRM1-C02-V2 Specifications Master Specifications Number of I/O points 256 points (128 inputs/128 outputs) 128 points (64 inputs/64 outputs) Selectable by DM setting. The default setting is 256 points. Max. number of Slaves per Master 256 points: 32 128 points: 16 I/O words Input words: 000 to 007 Output words: 010 to 017 Programming language Ladder diagram Types of instruction 14 basic and 72 special instructions (123 instructions in total) Execution time LD instruction: 0.97 ms MOV instruction: 9.1 ms Program capacity 4,096 words Data memory 2,048 + 512 (read-only) words Timers/Counters 128 timers/counters Work bits 640 bits Memory backup Flash memory (without battery): User programs Super capacitor: Data memory (backed up for 20 days at an ambient temperature of 25°C) Peripheral port 1 point RS-232C port 1 point (SRM1-C02-V1 only) Host Link, NT Link, 1:1 Link, or no protocol Programming tool Programming Consoles: CQM1-PRO01-E, C200H-PRO27-E SYSMAC-CPT: WS01-CPTB1-E (CD-ROM/FD) SYSMAC Support Software (MS-DOS version): C500-ZL3AT1-E Note: PID, SCL, NEG, and ZCP instructions are not supported by the SYSMAC-CPT. SRM1-C01-V2/C02-V2 SRM1-C01-V2/C02-V2 12 Communications Specifications Communications method CompoBus/S protocol Coding method Manchester coding method Connection method Multi-drop method and T-branch method (see note 1) Communications baud rate 750,000 bps/93,750 bps (see note 2) Communications cycle time High-speed comm nications 0.5 ms with 8 Slaves for inputs and 8 Slaves for outputs communications mode 0.8 ms with 16 Slaves for inputs and 16 Slaves for outputs Long-distance comm nications 4.0 ms with 8 Slaves for inputs and 8 Slaves for outputs communications mode 6.0 ms with 16 Slaves for inputs and 16 Slaves for outputs Communications cable 2-conductor VCTF cable (0.75 x 20) Dedicated flat cable Communications distance High-speed communications mode VCTF cable: Main line length: 100 m max. Branch line length: 3 m max. Total branch line length: 50 m max. Flat cable: Main line length: 30 m max. Branch line length: 3 m max. Total branch line length: 30 m max. (When flat cable is used to connect fewer than 16 Slaves, the main line can be up to 100 m long and the total branch line length can be up to 50 m.) Long-distance communications mode VCTF cable: Main line length: 500 m max. Branch line length: 6 m max. Total branch line length: 120 m max. Max. number of connecting nodes 32 Error control checks Manchester code check, frame length check, and parity check Note: 1. A terminator must be connected to the point in the system farthest from the Master. 2. The communications baud rate is switched using DM settings (default setting is 750,000 bps). General Specifications Supply voltage 24 VDC Allowable supply voltage 20.4 to 26.4 VDC Power consumption 3.5 W max. Inrush current 12.0 A max. Noise immunity Conforms to IEC61000-4-4, 2 kV (power lines) Vibration resistance 10 to 57 Hz, 0.075-mm amplitude, 57 to 150 Hz, acceleration: 9.8 m/s2 in X, Y, and Z directions for 80 minutes each (Time coefficient; 8 minutes × coefficient factor 10 = total time 80 minutes) Shock resistance 147 m/s2 three times each in X, Y, and Z directions Ambient temperature Operating: 0°C to 55°C Storage: –20°C to 75°C Humidity 10% to 90% (with no condensation) Atmosphere Must be free from corrosive gas. Terminal screw size M3 Power interrupt time DC type: 2 ms min. Weight 150 g max. SRM1-C01-V2/C02-V2 SRM1-C01-V2/C02-V2 13 Nomenclature SRM1-C01-V2 SRM1-C02-V2 CPU Unit status indicator CompoBus/S communications status indicator Indicates the status of the Compo- Bus/S in operation and in communication with Slaves. Peripheral port communications status indicator Flashes when the peripheral port or RS-232C port is in communication. Connector cover Peripheral port Connect this port to programming tools through dedicated cables. Terminal block Connector cover RS-232C port Connect this port to the RS-232C interfaces of personal computers and Programmable Terminals. Dimensions Note: All units are in millimeters unless otherwise indicated. SRM1-C01/C02-V2 The above dimensions apply to the SRM1-C02-V2. The SRM-C01-V2 has no RS-232C port. 14 Master Unit C200HW-SRM21-V1 Master Unit for CS1, C200HX, C200HG, C200HE, and C200HS A maximum of 256 I/O points available. Connects to a maximum of 32 Slaves. Communications cycle time: 0.5 ms max. (at baud rate 750 kbps). Communications distance: Extended to 500 m max. (at baud rate 93.75 kbps). Connection to Analog Terminals now supported. RC Ordering Information PC Max. number of I/O points Model C200HX (-Z), C200HG (-Z), C200HE (-Z), C200HS, CS1 256 points (128 inputs/128 outputs) C200HW-SRM21-V1 Specifications Communications Specifications Communications method CompoBus/S protocol Coding method Manchester coding method Connection method Multi-drop method and T-branch method (see note 1) Communications baud rate 750,000 bps, 93,750 bps (see note 2) Communications cycle time High-speed comm nications 0.5 ms with 8 Slaves for inputs and 8 Slaves for outputs communications mode 0.8 ms with 16 Slaves for inputs and 16 Slaves for outputs Long-distance comm nications 4.0 ms with 8 Slaves for inputs and 8 Slaves for outputs communications mode 6.0 ms with 16 Slaves for inputs and 16 Slaves for outputs Communications cable 2-conductor VCTF cable (0.75 x 20) Dedicated flat cable Communications distance High-speed communications mode VCTF cable: Main line length: 100 m max. Branch line length: 3 m max. Total branch line length: 50 m max. Flat cable: Main line length: 30 m max. Branch line length: 3 m max. Total branch line length: 30 m max. (When flat cable is used to connect fewer than 16 Slaves, the main line can be up to 100 m long and the total branch line length can be up to 50 m.) Long-distance communications mode VCTF cable: Main line length: 500 m max. Branch line length: 6 m max. Total branch line length: 120 m max. Max. number of connecting nodes 32 Error control checks Manchester code check, frame length check, and parity check Note: 1. A terminator must be connected to the point in the system farthest from the Master. 2. The communications baud rate is switched with the DIP switch. C200HW-SRM21-V1 C200HW-SRM21-V1 15 Unit Specifications Current consumption 150 mA max. at 5 VDC Number of I/O points 256 points (128 inputs/128 outputs), 128 points (64 inputs/64 outputs) (switchable) Number of occupied words 256 points: 20 words (8 input words/8 output words, 4 status data) 128 points: 10 words (4 input words/4 output words, 2 status data) PC CS1, C200HX (-ZE), C200HG (-ZE), C200HE (-ZE), C200HS Number of points per node number 8 points Max. number of Slaves per Master 32 Status data Communications Error Flag and Active Slave Node (see note) Weight 200 g max. Approved standards UL 508 (E95399), CSA C22.2 No. 142 (LR51460) Note: These flags use the AR area. Ratings The ratings of the Unit are the same as those of the CS1, C200HX, C200HG, C200HE, and C200HS. Nomenclature Indicators Indicates the operating status of the Master Unit and the status of communications with the Slaves. Rotary Switch This switch sets the Master’s one-digit hexadecimal unit number. DIP Switch These pins have the following functions: Pin 1: Max. number of Slaves setting Pin 2: Baud rate setting Pins 3 to 4: Reserved (Always OFF.) Communications Terminals Connect the Slaves’ transmission cable to these terminals. C200HW-SRM21-V1 C200HW-SRM21-V1 16 Dimensions Note: All units are in millimeters unless otherwise indicated. C200HW-SRM21-V1 Note: Refer to the C200HX, C200HG, C200HE, C200HS, or CS1 Operation Manual for details on the dimensions when the Master Unit is installed in the PC’s Backplane. Precautions Refer to the CompoBus/S Operation Manual (W266) before using the Unit. 17 Master Unit CQM1-SRM21-V1 Master Unit for CQM1 A maximum of 128 I/O points available (Possible to set 32, 64, or 128 I/O points). Connects to a maximum of 16/32 Slaves. Communications cycle time: 0.5 ms max. (at baud rate 750 kbps). Communications distance: Extended to 500 m max. (at baud rate 93.75 kbps). Connection to Analog Terminals now supported. RC Ordering Information PC Max. number of I/O points Model CQM1-series PC 128 points (64 inputs/64 outputs) CQM1-SRM21-V1 Specifications Communications Specifications Communications method CompoBus/S protocol Coding method Manchester coding method Connection method Multi-drop method and T-branch method (see note 1) Communications baud rate 750,000 bps, 93,750 bps (see note 2) Communications cycle time High-speed comm nications 0.5 ms with 8 Slaves for inputs and 8 Slaves for outputs communications mode 0.8 ms with 16 Slaves for inputs and 16 Slaves for outputs Long-distance comm nications 4.0 ms with 8 Slaves for inputs and 8 Slaves for outputs communications mode 6.0 ms with 16 Slaves for inputs and 16 Slaves for outputs Communications cable 2-conductor VCTF cable (0.75 x 20) Dedicated flat cable Communications distance High-speed communications mode VCTF cable: Main line length: 100 m max. Branch line length: 3 m max. Total branch line length: 50 m max. Flat cable: Main line length: 30 m max. Branch line length: 3 m max. Total branch line length: 30 m max. (When flat cable is used to connect fewer than 16 Slaves, the main line can be up to 100 m long and the total branch line length can be up to 50 m.) Long-distance communications mode VCTF cable:: Main line length: 500 m max. Branch line length: 6 m max. Total branch line length: 120 m max. Max. number of connecting nodes 32 Error control checks Manchester code check, frame length check, and parity check Note: 1. A terminator must be connected to the point in the system farthest from the Master. 2. The communications baud rate is switched with the DIP switch. CQM1-SRM21-V1 CQM1-SRM21-V1 18 Unit Specifications Current consumption 180 mA max. at 5 VDC Number of I/O points 128 points (64 inputs/64 outputs), 64 points (32 inputs/32 outputs), 32 points (16 inputs/16 outputs) (switchable) Number of occupied words 128 points: 4 input words/4 output words 64 points: 2 input words/2 output words 32 points: 1 input word/1 output word PC 128 points: CQM1-CPU41-EV1/CPU42-EV1/CPU43-EV1/CPU44-EV1 64 points: CQM1-CPU11-E/CPU21-E/CPU41-EV1/CPU42-EV1/CPU43-EV1/CPU44-EV1 32 points: CQM1-CPU11-E/CPU21-E/CPU41-EV1/CPU42-EV1/CPU43-EV1/CPU44-EV1 Number of points per node number 4/8 points (switchable) Max. number of Slaves per Master 32 (4 points per node number) Status data Alarm terminal output Weight 200 g max. Approved standards UL 508 (E95399), CSA C22.2 No. 142 (LR51460) Alarm Output Specifications Maximum switching capacity 2 A at 24 VDC Minimum switching capacity 10 mA at 5 VDC Relay G6D-1A Minimum ON time 100 ms Circuit configuration 2 A at 24 VDC max. Internal circuit CQM1-SRM21-V1 Ratings The ratings of the Unit are the same as those for the CQM1. Nomenclature Indicators Indicates the operating status of the Master Unit and the status of communications with the Slaves. DIP Switch These pins have the following functions: Pins 1 and 2: PC word allocation setting Pin 3: Number of points setting Pin 4: Baud rate setting Pins 5 to 6: Reserved (Always OFF.) Alarm Output Terminals These terminals are shorted when an error occurs. Connect to a warning device. Communications Terminals Connect the Slaves’ transmission cable to these terminals. Terminal block screws These screws attach the terminal block. The terminal block can be removed when these screws are loosened. CQM1-SRM21-V1 CQM1-SRM21-V1 19 Dimensions Note: All units are in millimeters unless otherwise indicated. CQM1-SRM21-V1 Note: Refer to the CQM1 Operation Manual for details on the dimensions when the Master Unit is installed in the PC’s Backplane. Precautions Refer to the CompoBus/S Operation Manual (W266) before using the Unit. 20 SYSMAC Board C200PC-ISA􀀀2-SRM SYSMAC C200HX/HG/HE and CompoBus/S Master Functions Integrated into a Single PCB Operates as a Programmable Controller to be built into personal computers. Programming is possible through Programming Devices like the programming on C200HX/HG. An optional Expansion Board is available for serial communications. Dedicated library in C is available for control. Driver for Windows use is available. Connects to a maximum of three Expansion I/O Racks. CompoBus/S Slave data is automatically read. Ordering Information PC Max. number of I/O points Model C200HG-CPU43 256 points ( 128 inputs/128 outputs) C200PC-ISA02-SRM C200HX-CPU64 56 o s 8 u s/ 8 ou u s) C200PC-ISA12-SRM Specifications Communications Specifications Communications method CompoBus/S protocol Coding method Manchester coding method Connection method Multi-drop method and T-branch method (see note) Communications baud rate 750,000 bps Communications cycle time 0.5 ms with 8 Slaves for inputs and 8 Slaves for outputs 0.8 ms with 16 Slaves for inputs and 16 Slaves for outputs Communications cable 2-conductor VCTF cable (0.75 x 20) Dedicated flat cable Communications distance VCTF cable: Main line length: 100 m max. Branch line length: 3 m max. Total branch line length: 50 m max. Flat cable: Main line length: 30 m max. Branch line length: 3 m max. Total branch line length: 30 m max. (When flat cable is used to connect fewer than 16 Slaves, the main line can be up to 100 m long and the total branch line length can be up to 50 m.) Max. number of connecting nodes 32 Error control checks Manchester code check, frame length check, and parity check Note: A terminator must be connected to the point in the system farthest from the Master. C200PC-ISA􀀀2-SRM C200PC-ISA􀀀2-SRM 21 Unit Specifications Power supply voltage 4.875 to 5.25 VDC Current consumption 0.5 A max. (see note 1) Number of I/O points 256 points (128 inputs/128 outputs), 128 points (64 inputs/64 outputs), (switchable) Number of occupied words 256 points: 20 words (8 input words, 8 output words, and 4 status data words) (see note 2) 128 points: 10 words (4 input words, 4 output words, and 2 status data words) Number of points per node number 8 points Max. number of Slaves per Master 32 Status data Communications Error Flag and Active Slave Node (see note 2) Weight 200 g max. Note: 1. The current consumption will be 0.8 A max. if the Programming Console is connected through the optional Expansion Board. 2. The occupied words are in the IR area. 22 I/O Link Unit CPM1A-SRT21 I/O Link Unit for CPM2A/CPM1A Operates as a Slave of the CompoBus/S Master Unit. Exchanges eight inputs and eight outputs with the Master. Approved by UL and CSA standards, and bears the CE marking. RC Ordering Information CPU Units I/O configuration Power supply Output method Input Output Model 30-point I/O model AC Relay 18 12 CPM1A-30CDR-A* DC Relay CPM1A-30CDR-D* Transistor (sink) CPM1A-30CDT-D Transistor (source) CPM1A-30CDT1-D AC Relay CPM2A-30CDR-A DC Relay CPM2A-30CDR-D Transistor (sink) CPM2A-30CDT-D Transistor (source) CPM2A-30CDT1-D 40-point I/O model AC Relay 24 16 CPM1A-40CDR-A* DC Relay CPM1A-40CDR-D* Transistor (sink) CPM1A-40CDT-D Transistor (source) CPM1A-40CDT1-D AC Relay CPM2A-40CDR-A DC Relay CPM2A-40CDR-D Transistor (sink) CPM2A-40CDT-D Transistor (source) CPM2A-40CDT1-D 60-point I/O model AC Relay 36 24 CPM2A-60CDR-A DC Relay CPM2A-60CDR-D Transistor (sink) CPM2A-60CDT-D Transistor (source) CPM2A-60CDT1-D Note: Models marked with asterisks do not bear CE markings. Expansion Units Product Number of connectable Units per CPU Unit Output method Input Output Model Expansion I/O Units 3 max. (see note) Relay 12 8 CPM1A-20EDR1 Transistor (sink) CPM1A-20EDT Transistor (source) CPM1A-20EDT1 --- 8 --- CPM1A-8ED Relay --- 8 CPM1A-8ER Transistor (sink) --- 8 CPM1A-8ET Transistor (source) CPM1A-8ET1 Analog I/O Unit 3 max. (see note) Analog 2 1 CPM1A-MAD01 CompoBus/S I/O Link Unit 3 max. (see note) --- 8 I/O link points 8 I/O link points CPM1A-SRT21 Note: Only a single Unit will be connectable if the NT-AL001 is connected to the RS-232C port. CPM1A-SRT21 CPM1A-SRT21 23 Specifications Slave CompoBus/S Slave Number of I/O points 8 inputs and 8 outputs Number of occupied I/O memory words of CPM2A 1 input word and 1 output word (same as other Expansion Units in allocation) Node address setting DIP switch Dimensions Note: All units are in millimeters unless otherwise indicated. CPM1A-SRT21 Installation Connection Examples CompoBus/S Master Unit or SRM1 CompoBus/S Master Control Unit CPM1A or CPM2A CPU Unit CPM1A-SRT21 CompoBus/S I/O Link Unit CS1􀀀 C200H􀀀 CQM1 SRM1 Dedicated flat cable or VCTF cable Connectable to 16 Units max. (Eight CQM1-SRM21 Units max.) Note: A single CompoBus/S I/O Link Unit together with a maximum of two other Expansion I/O Units can be connected to the CPM1A or CPM2A CPU Unit. 24 Transistor Remote Terminal SRT-ID/OD Long-distance Communications Supported by SRT2 Models (Long-distance/High-speed Communications Selection) SRT1 models support high-speed communications only. SRT2 models support long-distance communications and high-speed communications. Ultra-compact at 80 x 48 x 50 (W x H x D) mm for 4-point and 8-point terminals and 105 x 48 x 50 (W x H x D) mm for 16-point terminals. Two independent power supplies can be used because the I/O terminals are insulated from the internal circuits. DIN track mounting and screw mounting are both supported. RC Ordering Information I/O classification Internal I/O circuit common I/O points Rated voltage I/O rated voltage Model Input NPN (+ common) 4 24 VDC 24 VDC SRT1-ID04 PNP (– common) C C SRT1-ID04-1 Output NPN (– common) SRT1-OD04 PNP (+ common) SRT1-OD04-1 Input NPN (+ common) 8 SRT2-ID08 PNP (– common) SRT2-ID08-1 Output NPN (– common) SRT2-OD08 PNP (+ common) SRT2-OD08-1 Input NPN (+ common) 16 SRT2-ID16 PNP (– common) 6 SRT2-ID16-1 Output NPN (– common) SRT2-OD16 PNP (+ common) SRT2-OD16-1 Note: For more details about connections supported by the Master Unit, refer to page 10. Specifications Ratings Inputs Input current 6 mA max./point ON delay time 1.5 ms max. OFF delay time 1.5 ms max. ON voltage 15 VDC min. between each input terminal and V OFF voltage 5 VDC max. between each input terminal and V OFF current 1 mA max. Insulation method Photocoupler Input indicators LED (yellow) SRT-ID/OD SRT-ID/OD 25 Outputs Rated output current 0.3 A/point Residual voltage 0.6 V max. Leakage current 0.1 mA max. Insulation method Photocoupler Output indicators LED (yellow) Characteristics Communications power supply voltage 14 to 26.4 VDC I/O power supply voltage 24 VDC +10%/–15% I/O power supply current 1 A max. Current consumption (see note) 50 mA max. at 24 VDC Connection method Multi-drop method and T-branch method Secondary branches cannot be connected to T-branch lines. Connecting Units 4-point and 8-point Terminals: 16 Input Terminals and 16 Output Terminals per Master 16-point Terminals: 8 Input Terminals and 8 Output Terminals per Master Dielectric strength 500 VAC for 1 min (1-mA sensing current between insulated circuits) Noise immunity Conforms to IEC61000-4-4, 2 kV (power lines) Vibration resistance 10 to 55 Hz, 1.5-mm double amplitude Shock resistance Malfunction: 200 m/s2 Destruction: 300 m/s2 Mounting strength No damage when 50 N pull load was applied for 10 s in all directions Terminal strength No damage when 50 N pull load was applied for 10 s Screw tightening torque 0.6 to 1.18 N 􀀀 m Ambient temperature Operating: 0°C to 55°C (with no icing or condensation) Storage: –20°C to 65°C (with no icing or condensation) Ambient humidity Operating: 35% to 85% Weight 4-point and 8-point Terminals: 80 g max. 16-point Terminals: 110 g max. Approved standards (4/8 points) UL 508, CSA C22.2 No. 14 Note: The above current consumption is the value with all 4 and 8 and 16 points turned ON excluding the current consumption of the external sensor connected to the input Remote Terminal and the current consumption of the load connected to the output Remote Terminal. SRT-ID/OD SRT-ID/OD 26 Nomenclature I/O Terminals I/O Power Supply Terminals Connect 24-VDC power supply Communications Power Supply Terminals Connect 14- to 26.4-VDC power supply. CompoBus/S Terminal Connect the CompoBus/S DIP Switch communications cable. Used for node number setting and holding or clearing outputs for communications error. Refer to the Compobus/S Operation Manual (W266) for details on DIP switch settings. Baud rate setting 0 to 7 ERR COMM PWR Node Number Settings Output HOLD/CLEAR settings (Output Terminals only) Screw mounting hole Indicators Indicator Display Color Meaning PWR Lit Green The communications power supply is ON. Not lit The communications power supply is OFF. COMM Lit Yellow Normal communications Not lit A communications error has occurred or the Unit is in standby status. ERR Lit Red A communications error has occurred. Not lit Normal communications or the Unit is in standby status. 0 to 7 Lit Yellow The corresponding I/O signal is ON. Not lit The corresponding I/O signal is OFF. Output HOLD/CLEAR Mode Mode Pin 1 Setting HOLD ON Output status is maintained. CLEAR OFF Output status is cleared when a communications error occurs. Note: 1. Pin 1 is factory-set to OFF. 2. This function is available to Output Terminals only. SRT-ID/OD SRT-ID/OD 27 Node Number Settings Node number Pin 3 Pin 4 Pin 5 Pin 6 8 4 2 1 0 OFF OFF OFF OFF 1 OFF OFF OFF ON 2 OFF OFF ON OFF 3 OFF OFF ON ON 4 OFF ON OFF OFF 5 OFF ON OFF ON 6 OFF ON ON OFF 7 OFF ON ON ON 8 ON OFF OFF OFF 9 ON OFF OFF ON 10 ON OFF ON OFF 11 ON OFF ON ON 12 ON ON OFF OFF 13 ON ON OFF ON 14 ON ON ON OFF 15 ON ON ON ON Note: 1. The node number is factory-set to 0. 2. For node number settings, refer to the CompoBus/S Operation Manual (W266). Dimensions Note: All units are in millimeters unless otherwise indicated. SRT1-ID04 (-1) SRT1-OD04 (-1) SRT2-ID08 (-1) SRT2-OD08 (-1) (54) 27 80 48 65 Two, 4.2 dia. or M4 Sixteen, M3 Mounting Holes (20.5) (11) SRT-ID/OD SRT-ID/OD 28 SRT2-ID16 (-1) SRT2-OD16 (-1) 48 Two, 4.2 dia. or M4 (50) (28) Mounting Holes (54) 27 50 (20.5) (11) 105 22–M3 Installation Internal Circuit Configuration SRT1-ID04 SRT1-ID04-1 Photocoupler Photocoupler Internal circuit Internal circuit 24 VDC(+) Photocoupler Photocoupler (–) SRT1-OD04 Internal circuit 24 VDC Photocoupler Photocoupler Voltage stepdown SRT1-OD04-1 Internal circuit Photocoupler Photocoupler 24 VDC (P) (P) 24 VDC (P) (P) Voltage stepdown V V V 1 G 0 2 G G V V V 1 V 0 2 G SRT-ID/OD SRT-ID/OD 29 SRT2-OD08-1 Internal circuit Photocoupler Photocoupler SRT2-ID08 SRT2-ID08-1 Photocoupler Photocoupler Internal circuit 24 VDC(+) Internal circuit Photocoupler Photocoupler (–) SRT2-OD08 Internal circuit 24 VDC Photocoupler Photocoupler Voltage stepdown SRT2-ID16 Photocoupler Internal Photocoupler circuit SRT2-ID16-1 Internal circuit Photocoupler Photocoupler Internal circuit SRT2-OD16 Photocoupler Photocoupler Voltage stepdown SRT2-OD16-1 Internal circuit Photocoupler Photocoupler Voltage stepdown 24 VDC (P) 24 VDC (P) (P) Voltage stepdown (P) 24 VDC (P) (P) 24 VDC (P) (P) V V 1 0 2 G G V V 1 0 2 G V V 1 0 2 G SRT-ID/OD SRT-ID/OD 30 External Connections (NPN Models) Input Sensor 1 Blue Brown Black Sensor 2 Blue Brown Black Sensor 1 Blue Brown Black Sensor 2 Blue Brown Black Three-wired Sensors SRT1-ID04 with NPN Output SRT2-ID08 and SRT2-ID16 with NPN Output Two-wired Sensors SRT1-ID04 SRT2-ID08 and SRT2-ID16 Sensor 1 Blue Brown Sensor 2 Blue Brown Sensor 1 Blue Brown Sensor 2 Blue Brown Output SRT1-OD04 SRT2-OD08 and SRT2-ID16 L 1 L 2 L 1 L 2 Terminal Arrangement and I/O Device Connection Example (PNP Models) Note: The connections examples shown are for PNP models. Input SRT1-ID04 SRT2-ID08 Output SRT1-OD04 SRT2-OD08 Blue Brown Blue Brown Blue Brown Brown Blue Communications path Communications power supply power supply power supply Communications path Communications power supply Communications path Communications power supply power supply Photoelectric sensor or proximity sensor (threewired sensor with a builtin- amplifier) Limit switch (two-wired sensor) Solenoid, valve Solenoid I/O Communications path Communications power supply Photoelectric sensor or proximity sensor (threewired sensor with a builtin- amplifier) Limit switch (two-wired sensor) Black Black SRT2-ID16 SRT2-OD16 Communications path Communications power supply I/O power supply Photoelectric sensor or proximity sensor (threewired sensor with a builtin- amplifier) Limit switch (two-wired sensor) I/O power supply Communications path Communications power supply Solenoid Valve Valve power supply I/O Blue Brown Blue Brown Black I/O I/O SRT-ID/OD SRT-ID/OD 31 External Connections (PNP Models) Input Three-wired Sensors SRT1-ID04-1 with NPN Output SRT2-ID08-1 and SRT2-ID16-1 with NPN Output Two-wired Sensors SRT1-ID04-1 SRT2-ID08-1 and SRT2-ID16-1 Sensor 1 Blue Brown Black Sensor 2 Blue Brown Black Sensor 1 Blue Brown Black Sensor 2 Blue Brown Black Sensor 1 Blue Brown Sensor 2 Blue Brown Sensor 1 Blue Brown Sensor 2 Blue Brown Output SRT1-OD04-1 SRT2-OD08-1 and SRT2-ID16-1 L 1 L 2 L 1 L 2 Terminal Arrangement and I/O Device Connection Example (PNP Models) Note: The connections examples shown are for NPN models. Input SRT1-ID04-1 SRT2-ID08-1 Output SRT1-OD04-1 SRT2-OD08-1 Blue Brown Blue Brown Blue Brown Brown Blue Communications path Communications power supply power supply power supply Communications path Communications power supply Communications path Communications power supply power supply Photoelectric sensor or proximity sensor (three-wired sensor with a built-in-amplifier) Limit switch (two-wired sensor) Solenoid, valve Solenoid I/O Communications path Communications power supply Photoelectric sensor or proximity sensor (three-wired sensor with a built-in-amplifier) Limit switch (two-wired sensor) Black Black SRT2-ID16-1 SRT2-OD16-1 Communications path Communications power supply I/O power supply Photoelectric sensor or proximity sensor (three-wired sensor with a built-in-amplifier) Limit switch (two-wired sensor) I/O power supply Communications path Communications power Valve supply Solenoid Valve power supply I/O Blue Brown Blue Brown Black I/O I/O Precautions Refer to the CompoBus/S Operation Manual (W266) before using the Unit. For general precautions refer to page 80. 32 Remote I/O Terminal SRT1-D16T(-1) Models with 3-tier Terminals (16 Points) are Added to the Remote I/O Terminal Series. Six Models are Available Depending on the NPN or PNP Configuration, Input Points, I/O Points, or Output Points. Incorporates easy-to-wire terminals each connecting to a single wire. Reduces designing and wiring effort. Incorporates a removable circuit block of cassette construction. Ordering Information I/O classification Internal I/O circuit common I/O points I/O connection method Model Digital input NPN (+ common) 16 M3 terminal block SRT1-ID16T PNP (– common) 6 3 e a boc SRT1-ID16T-1 Digital I/O NPN (+ common) SRT1-MD16T PNP (– common) SRT1-MD16T-1 Digital output NPN (– common) SRT1-OD16T PNP (+ common) SRT1-OD16T-1 Specifications Ratings Inputs Input current 6 mA max./point at 24 V and 3 mA min./point at 17 V ON delay time 1.5 ms max. OFF delay time 1.5 ms max. ON voltage NPN: 15 VDC min. between V terminals and each input terminal PNP: 15 VDC min. between G terminals and each input terminal OFF voltage NPN: 5 VDC max. between V terminals and each input terminal PNP: 5 VDC max. between G terminals and each input terminal OFF current 1 mA max. Insulation method Photocoupler Outputs Rated output current 0.5 A max./point Residual voltage 1.2 V max. ON delay time 0.5 ms max. OFF delay time 1.0 ms max. Leakage current 0.1 mA max. Insulation method Photocoupler SRT1-D16T(-1) SRT1-D16T(-1) 33 Characteristics Communications power supply voltage 14 to 26.4 VDC I/O power supply voltage 24 VDC +10%/–15% I/O power supply current 4 A max./common Current consumption (see note) 50 mA max. at 24 VDC Connection method Multi-drop method and T-branch method Secondary branches cannot be connected to T-branch lines. Dielectric strength 500 VAC between insulated circuits Noise immunity Conforms to IEC61000-4-4, 2 kV (power lines) Vibration resistance 10 to 150 Hz, 1.0-mm double amplitude or 70 m/s2 Shock resistance 200 m/s2 Mounting strength No damage with 100 N pull load applied in all directions. Terminal strength No damage with 100 N pull load applied Screw tightening torque 0.3 to 0.5 N 􀀀 m Ambient temperature Operating: –10°C to 55°C Storage: –25°C to 65°C Ambient humidity Operating: 25% to 85% (with no condensation) Weight 300 g max. Note: The above current consumption is the value with all points turned ON excluding the current consumption of the external sensor connected to the input Remote Terminal and the current consumption of the load connected to the output Remote Terminal. Nomenclature ERR Indicator: Indicates communications errors. COMM Indicator: ON while the Unit is in data communication. Power Indicator HOLD/CLR DIP Switch The DIP switch is on the left-hand side under the cover on the upper part of the Remote I/O Terminal. Holding or clearing output when a communications error occurs. Address Setting Switch Set the rotary switch to the node address by referring to the following table. I/O Indicators M4 Mounting Screw Terminal Cover The Unit stops operating with the cover opened. I/O and I/O Device Power Supply Terminals 8 to 15 These terminals will be used as output terminals 0 through 7 if the connected device handles both input and output signals. I/O and I/O Device Power Supply Terminals 0 to 7 These terminals will be used as input terminals if the connected device handles both input and output signals. I/O Power Supply Terminals Connect 24-VDC I/O power supply Fixture Track Used for DIN track mounting. CompoBus/S Internal Power Supply Terminals (BS+ and BS–) CompoBus/S Communications Cable Terminals (BDH and BDL) Address Setting Switch Node address Setting (Hex) 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 Node address Setting (Hex) 8 8 9 9 10 A 11 B 12 C 13 D 14 E 15 F SRT1-D16T(-1) SRT1-D16T(-1) 34 Dimensions Note: All units are in millimeters unless otherwise indicated. SRT1-ID16T (-1) SRT1-MD16T (-1) SRT1-OD16T (-1) Mounting Holes Two, 4.2 dia. or M4 Two, 4.2 dia. or M4 Installation Internal Circuit Configuration SRT1-ID16T SRT1-MD16T SRT1-ID16T-1 SRT1-MD16T-1 SRT1-OD16T SRT1-OD16T-1 DC-DC converter (isolated type) Photocoupler Photocoupler Inputs (0 to 7) Inputs (8 to 15) DC-DC converter (isolated type) Photocoupler Photocoupler Inputs (0 to 7) Inputs (0 to 7) DC-DC converter (isolated type) Photocoupler Photocoupler Inputs (0 to 7) Inputs (8 to 15) DC-DC converter (isolated type) Photocoupler Photocoupler Inputs (0 to 7) Inputs (8 to 15) DC-DC converter (isolated type) Photocoupler Photocoupler Inputs (0 to 7) Outputs (0 to 7) DC-DC converter (isolated type) Photocoupler Photocoupler Outputs (0 to 7) Outputs (8 to 15) I/O power supply I/O power supply I/O power supply Internal circuit Internal circuit Internal circuit Internal circuit Internal circuit Internal circuit Voltage drop Voltage drop Voltage drop Voltage drop Voltage drop Voltage drop SRT1-D16T(-1) SRT1-D16T(-1) 35 External Connections Input (NPN Models) SRT1-ID16T SRT1-MD16T Output (NPN Models) SRT1-OD16T SRT1-MD16T Input (PNP Models) SRT1-ID16T-1 SRT1-MD16T-1 Output (PNP Models) SRT1-OD16T-1 SRT1-MD16T-1 Two-wired sensor Three-wired sensor Three-wired sensor Solenoid, valve, etc. Solenoid, valve, etc. Blue (Black) Brown (White) Blue (Black) Brown (Red) Black (White) Black (Black) Blue (Red) Brown (White) 36 Relay-mounted Remote Terminal SRT-R Ultra-miniature 8-point and 16-point Relay-mounted Terminals Ultra-compact (8-point models: 101 x 51 x 51 mm (W x H x D); 16-point models: 156 x 51 x 51 mm (W x H x D)) Power MOS FET Relay and Relay models. DIN track mounting and screw mounting are available. RC Ordering Information Classification I/O points Rated voltage Relay coil rating Model Applicable relay Relay output 8 points 24 VDC 24 VDC SRT1-ROC08 G6D-1A 16 points SRT2-ROC16 Power MOS FET l t t o e OS 8 points SRT1-ROF08 G3DZ-2R6PL relay output 16 points SRT2-ROF16 Note: For details about connections to the Master Unit, refer to page 10. Specifications Ratings Relay Output Item SRT1-ROC08, SRT2-ROC16 Applicable relay G6D-1A (one for each output point) Rated load 3 A at 250 VAC, 3 A at 30 VDC (resistive load) Rated carry current 3 A (see note 1) Max. contact voltage 250 VAC, 30 VDC Max. contact current 3 A Max. switching capacity 730 VA (AC), 90 W (DC) Min. permissible load (see note 2) 10 mA at 5 VDC Life expectancy Electrical: 100,000 operations min. (rated load, at 1,800 operations/h) Mechanical: 20,000,000 operations min. (at 18,000 operations/h) Note: 1. The maximum permissible current of COM0 to COM7 is 3 A. 2. This value fulfills the P reference value of opening/closing at a rate of 120 times per min (ambient operating environment and determination criteria according to JIS C5442). Power MOS FET Relay Output Item SRT1-ROF08, SRT2-ROF16 Applicable relay G3DZ-2R6PL (one for each output point) Load voltage 3 to 264 VAC, 3 to 125 VDC Load current 100 mA to 0.3 A Inrush current 6 A (10 ms) SRT-R SRT-R 37 Characteristics Power supply voltage 24 VDC +10%/–15% Current consumption (see note) 350 mA max. at 24 VDC Connection method Multi-drop method and T-branch method Secondary branches cannot be connected to T-branch lines. Connecting Units 8-point Units: 16 per Master 16-point Units: 8 per Master Dielectric strength 2,000 VAC for 1 min (1-mA sensing current) between all output terminals and power supply, between communication terminals, and between contacts of different polarities 500 VAC for 1 min (1-mA sensing current) between all output terminals and power supply, between communication terminals, and between all power supply terminals and communications terminals Noise immunity Conforms to IEC61000-4-4, 2 kV (power lines) Vibration resistance 10 to 55 Hz, 0.75-mm double amplitude Shock resistance Malfunction: 100 m/s2 Destruction: 300 m/s2 Mounting strength No damage when 50 N pull load was applied for 10 s in all directions Terminal strength No damage when 50 N pull load was applied for 10 s Screw tightening torque 0.6 to 1.18 N 􀀀 m Ambient temperature Operating: 0°C to 55°C (with no icing or condensation) Storage: –20°C to 65°C (with no icing or condensation) Ambient humidity Operating: 35% to 85% Weight 8-point models: 145 g max., 16-point models: 240 g max. Approved standards UL 508, CSA C22.2 No. 14 Note: The above current consumption is a value with all the points turned ON including the current consumption of the G6D coil for the Remote Output Terminal. SRT-R SRT-R 38 Nomenclature SRT2-ROC16 SRT2-ROF16 SRT1-ROC08 SRT1-ROF08 Mounting Holes Output Terminals I/O Power Supply Terminals Connect 24-VDC power supply Communications Power Supply Terminals Connect 24-VDC power supply. CompoBus/S Terminals Connect the CompoBus/S communications cable. Mounting Holes DIP Switch Used for node number setting and holding or clearing outputs for communications error. Note: Always turn off the Unit before changing DIP switch settings. Mounting Holes Output Terminals I/O Power Supply Terminals Connect 24-VDC power supply Communications Power Supply Terminals Connect 24-VDC power supply. CompoBus/S Terminals Connect the CompoBus/S communications cable. Mounting Holes DIP Switch Used for node number setting and holding or clearing outputs for communications error. 0 to 15 ERR COMM PWR Output HOLD/CLEAR setting (Output model only) Baud rate setting Node address setting Indicators Indicator Display Color Meaning PWR Lit Green The communications power supply is ON. Not lit The communications power supply is OFF. COMM Lit Yellow Normal communications Not lit A communications error has occurred or the Unit is in standby status. ERR Lit Red A communications error has occurred. Not lit Normal communications or the Unit is in standby status. 0 to 15 (see note) Lit Yellow The corresponding I/O signal is ON. Not lit The corresponding I/O signal is OFF. Note: The SRT1-RO08 does not have indicators 8 to 15. SRT-R SRT-R 39 Output HOLD/CLEAR Mode Mode Pin 1 Setting HOLD ON Output status is maintained when a communications error occurs. CLEAR OFF Output status is cleared when a communications error occurs. Note: 1. Pin 1 is factory-set to OFF. 2. This function is available to the Output Terminal only. Node Number Settings Node number Pin 3 Pin 4 Pin 5 Pin 6 8 4 2 1 0 OFF OFF OFF OFF 1 OFF OFF OFF ON 2 OFF OFF ON OFF 3 OFF OFF ON ON 4 OFF ON OFF OFF 5 OFF ON OFF ON 6 OFF ON ON OFF 7 OFF ON ON ON 8 ON OFF OFF OFF 9 ON OFF OFF ON 10 ON OFF ON OFF 11 ON OFF ON ON 12 ON ON OFF OFF 13 ON ON OFF ON 14 ON ON ON OFF 15 ON ON ON ON Note: 1. The node number is factory-set to 0. 2. For node number setting, refer to the CompoBus/S Operation Manual (W266). SRT-R SRT-R 40 Dimensions Note: All units are in millimeters unless otherwise indicated. SRT1-ROC08 SRT1-ROF08 Mounting Holes SRT2-ROC16 SRT2-ROF16 Mounting Holes 100 50 Two, 4.2 dia. or M4 Two, 4.2 dia. or M4 50 50 155 Thirty two, M3 Sixteen, M3 50 50 50 80 40 135 40 SRT-R SRT-R 41 Installation Internal Circuit Configuration SRT1-ROC08 SRT2-ROC16 Note: The G3DZ-2R6PL Power MOS FET Relay is inserted into this portion of the SRT1-ROF08 and SRT2-ROF16. Relay driver circuit Internal circuit Later blocks (See note) * Relay driver circuit Relay driver circuit Relay driver circuit External Connections Lamp Lamp Lamp Lamp Load power supply Terminal Arrangement and I/O Device Connection Example Output SRT2-ROC16 SRT2-ROF16 Note: 1. Dotted lines indicate internal connections. SRT1-ROC08 and SRT1-ROF08 have the 0 to 7 and COM0 to COM3 terminals only. 2. The above is a connection example of the SRT2-ROC16 with G6D Relays mounted. G3DZ Power MOS FET Relays are mounted to the SRT1-ROF08 and SRT2-ROF16. 24-VDC power supply Communications path Load Power supply Load Power supply Load Load Load Power supply Load Power supply Load Load Load Power supply Load Power supply Load Load Load Power supply Load Power supply Load Load *(see note 2) Precautions Refer to the CompoBus/S Operation Manual (W266) before using the Unit. Refer to page 80 for details. 42 Connector Terminal SRT2-VID/VOD Compact Connector Terminals Save Wiring Effort and Enable Long-distance Communications Long-distance or high-speed communications mode is selectable. Incorporates I/O connectors making it possible to minimize the size. I/O connectors save wiring effort. Flexible DIN track mounting is possible through a DIN track attachment. Eight-point sensor connector models and 16-point MIL connector models are the same size. Features Vertical or horizontal DIN track mounting according to the available space is possible. Saves space and easily connects to other devices without wiring effort. Standard mounting (Sensor connector model) Mounting with DIN track attachment Standard mounting (MIL connector model) Communications and power supply connector DIN track G7TC Sensor connector Indicators Setting switch DIN track mounting hook MIL connector Ordering Information I/O classification Internal I/O circuit common I/O points I/O connection method Model Digital input NPN (+ common) 8 Sensor connector SRT2-VID08S PNP (– common) Se so co ec o SRT2-VID08S-1 Digital output NPN (– common) SRT2-VOD08S PNP (+ common) SRT2-VOD08S-1 Digital input NPN (+ common) 16 MIL connector SRT2-VID16ML PNP (– common) 6 co ec o SRT2-VID16ML-1 Digital output NPN (– common) SRT2-VOD16ML PNP (+ common) SRT2-VOD16ML-1 Mounting hook A SRT2-ATT01 Mounting hook B SRT2-ATT02 Note: For details about connecting the SRT2-VID or SRT2-VOD to the Master Unit, refer to page 10. SRT2-VID/VOD SRT2-VID/VOD 43 Specifications Ratings Inputs Item SRT2-VID08S SRT2-VID08S-1 SRT2-VID16ML SRT2-VID16ML-1 Input current 6 mA max./point at 24 V, 3 mA max./point at 17 V ON delay time 1.5 ms max. OFF delay time 1.5 ms max. ON voltage 15 VDC min. (Between each input terminal and V: NPN. Between each input and G: PNP.) OFF voltage 5 VDC max. (Between each input terminal and V: NPN. Between each input and G: PNP.) OFF current 1 mA max. Insulation method Photocoupler Maximum number of inputs 8 12 Number of circuits 8 points/common, 1 circuit 16 points/common, 1 circuit Outputs Item SRT2-VID08S SRT2-VID08S-1 SRT2-VID16ML SRT2-VID16ML-1 Rated output current 0.3 A/point 0.3 A/point (2-A common) (See note.) Residual voltage 1.2 V max. ON delay time 0.5 ms max. OFF delay time 1.5 ms max. Leakage current 0.1 mA max. Insulation method Photocoupler Number of circuits 8 points/common, 1 circuit 16 points/common, 1 circuit Note: When using V/G terminals in an MIL connector, ensure that the current per terminal for the V/G terminals does not exceed 1 A. Characteristics Communications power supply voltage 14 to 26.4 VDC I/O power supply voltage 20.4 to 26.4 VDC (24 VDC +10%/–15%) I/O power supply current Sensor connector: 2.4 A max., MIL connector: 2.0 A max. Current consumption (see note) 50 mA max. at 24 VDC Noise immunity Conforms to IEC61000-4-4, 2 kV (power lines) Vibration resistance 10 to 150 Hz, 1.0-mm double amplitude or 70 m/s2 (50 m/s2 for SRT2-ATT02) Shock resistance 200 m/s2 Dielectric strength 500 VAC (between insulated circuits) Ambient temperature Operating: –10°C to 55°C (with no icing or condensation) Storage: –25°C to 65°C Ambient humidity Operating: 25% to 85% (with no condensation) Storage: 25% to 85% Mounting strength No damage when 100 N pull load was applied in all directions (40 N load for SRT2-ATT02) Terminal strength No damage when the following loads were applied: Communications connector: 100 N Sensor connector: 40 N MIL connector: 100 N Screw tightening torque Communications connector: 0.25 N 􀀀 m Node address setting Settings made at DIP switch (set before supplying power for Slave communications) Weight Approx. 75 g max. Note: The above current consumption is the value with all points turned ON excluding the current consumption of the external sensor connected to the input Remote Terminal and the current consumption of the load connected to the output Remote Terminal. SRT2-VID/VOD SRT2-VID/VOD 44 Nomenclature SRT2-VID08S/SRT2-VID08S-1 SRT2-VOD08S/SRT2-VOD08S-1 (Sensor Connector Models) SRT2-VID16ML/SRT2-VID16ML-1 SRT2-VOD16ML/SRT2-VOD16ML-1 (MIL Connector Models) Communications Connectors I/O Connectors Indicators DIP Switch Communications Connectors I/O Connectors Output HOLD/CLEAR Mode Setting Communications Mode Setting Node Address Setting Reserved for System Use (Always OFF) Indicators Indicator Color Display Meaning PWR Green Lit The communications power supply is ON. Not lit The communications power supply is OFF. COMM Yellow Lit Normal communications Not lit A communications error has occurred or the Unit is in standby status. ERR Red Lit A communications error has occurred. Not lit Normal communications or the Unit is in standby status. 0 to 7 (for 8-point I/O) 0 to 15 (for 16-point I/O) Yellow Lit The corresponding I/O signal is ON. Not lit The corresponding I/O signal is OFF. Name Power Communications Communications error Input (output) Output HOLD/CLEAR Mode SW8 (HOLD) Setting OFF Output status is cleared. ON Output status is maintained. Communications Mode SW7 (HOLD) Setting OFF High-speed communications mode ON Long-distance communications mode Node Number Settings Node number Pin 4 Pin 3 Pin 2 Pin 1 8 4 2 1 0 OFF OFF OFF OFF 1 OFF OFF OFF ON 2 OFF OFF ON OFF 3 OFF OFF ON ON 4 OFF ON OFF OFF 5 OFF ON OFF ON 6 OFF ON ON OFF 7 OFF ON ON ON 8 ON OFF OFF OFF 9 ON OFF OFF ON 10 ON OFF ON OFF 11 ON OFF ON ON 12 ON ON OFF OFF 13 ON ON OFF OFF 14 ON ON ON OFF 15 ON ON ON ON Note: Be sure to perform settings with the Slave power supply OFF. SRT2-VID/VOD SRT2-VID/VOD 45 Dimensions Note: All units are in millimeters unless otherwise indicated. SRT2-VID08S SRT2-VID08S-1 SRT2-VOD08S SRT2-VOD08S-1 SRT2-VID16ML SRT2-VID16ML-1 SRT2-VOD16ML SRT2-VOD16ML-1 SRT2-ATT01 SRT2-ATT02 Dimensions when Unit is mounted. SRT2-VID/VOD SRT2-VID/VOD 46 Installation Internal Circuit Configuration SRT2-VOD08S-1 SRT2-VID08S SRT2-VID08S-1 SRT2-VOD08S SRT2-VID16ML SRT2-VID16ML-1 SRT2-VOD16ML SRT2-VOD16ML-1 Photocoupler Photocoupler Photocoupler Photocoupler Photocoupler Photocoupler Photocoupler Photocoupler Photocoupler Photocoupler Photocoupler Photocoupler Photocoupler Photocoupler Photocoupler Photocoupler Internal circuit Internal circuit Internal circuit Internal circuit Internal circuit Internal circuit Internal circuit Internal circuit Voltage drop Voltage drop Voltage drop Voltage drop SRT2-VID/VOD SRT2-VID/VOD 47 Terminal Arrangement and I/O Device Connection Examples SRT2-VID08S SRT2-VID08S-1 SRT2-VID16ML SRT2-VID16ML-1 SRT2-VOD08S SRT2-VOD16ML SRT2-VOD08S-1 SRT2-VOD16ML-1 CompoBus/S communications CompoBus/S communications power supply I/O power supply Pin numbers CompoBus/S communications CompoBus/S communications power supply I/O power supply Pin numbers CompoBus/S communications CompoBus/S communications power supply I/O power supply Pin numbers CompoBus/S communications CompoBus/S communications power supply I/O power supply Pin numbers CompoBus/S communications CompoBus/S communications power supply I/O power supply Pin numbers CompoBus/S communications CompoBus/S communications power supply I/O power supply Pin numbers CompoBus/S communications CompoBus/S communications power supply I/O power supply Pin numbers CompoBus/S communications CompoBus/S communications power supply I/O power supply Pin numbers Sensor Brown (Red) Black (White) Blue (Black) Three-wired sensor Sensor Brown (White) Blue (Black) Two-wired sensor Sensor Three-wired sensor Sensor Two-wired sensor Sensor Three-wired sensor Sensor Two-wired sensor Sensor Three-wired sensor Sensor Two-wired sensor Output device Solenoid etc. Output device Valve etc. Output device Solenoid etc. Output device Valve etc. Output device Solenoid etc. Output device Valve etc. Output device Solenoid etc. Output device Valve etc. Brown (Red) Black (White) Blue (Black) Brown (White) Blue (Black) Brown (Red) Black (White) Blue (Black) Brown (White) Blue (Black) Brown (Red) Black (White) Blue (Black) Brown (White) Blue (Black) Note: 1. V terminals and G terminals are respectively connected internally. When supplying power for I/O from communications connectors, power can be supplied to the sensor output devices from V and G terminals. 2. When using an inductive load (solenoid, valve etc.), either use one with an internal reverse electromotive force absorption diode or attach a diode externally. SRT2-VID/VOD SRT2-VID/VOD 48 Precautions Refer to the CompoBus/S Operation Manual (W266) before using the Unit. Refer to page 80 for common precautions. Communications Connector Pin Arrangement 24-VDC communications power supply 24-VDC I/O power supply CompoBus/S communications The following solderless terminals are recommended. • Manufacturer: Weidmuller Sleeve (Part No. 046290) Solderless terminal Cable Two-wire insertion (Part No. 901851) Solderless terminal Cable The following product is a dedicated tool. • Manufacturer: Weidmuller PZ1.5 Crimper (Part No. 900599) Sensor Connector Pin Arrangement SRT2-VID08S/VID08S-1 SRT2-VOD08S/VOD08S-1 Model Cable conductor size XS8A-0441 0.3 to 0.5 mm2 XS8A-0442 0.14 to 0.2 mm2 Note: The XS8A-0441 or XS8A-0442 Connector is not provided with the SRT-VID or SRT2-VOD. Place an order for the connector separately. Calculate the cable conductor size as follows. The following information is given on each sensor cable: Cable dia. (Number of conductors/Conductor dia.) Conductor size (mm2) = (Conductor dia./2)2 x p x Number of conductors Example: E3S-A 4 dia. (18/0.12) Conductor size (mm2) = (0.12/2)2 x 3.14 x 18 􀀀 0.20 The conductor size is 0.2 mm2. Therefore, use the XS8A-0442. MIL Connector Pin Arrangement SRT2-VID16ML/VID16ML-1 Function Pin No. Pin No. OUT0 IN0 OUT1 IN1 OUT2 IN2 OUT3 IN3 OUT4 IN4 OUT5 IN5 OUT6 IN6 OUT7 IN7 G G V V 20 20 18 18 16 16 14 14 12 12 10 10 8 8 6 6 4 4 2 2 Function Function Pin No. Pin No. OUT8 IN8 OUT9 IN9 OUT10 IN10 OUT11 IN11 OUT12 IN12 OUT13 IN13 OUT14 IN14 OUT15 IN15 G G V V 19 19 17 17 15 15 13 13 11 11 9 9 7 7 5 5 3 3 1 1 SRT2-VOD16ML/VOD16ML-1 Function Note: 1. No cable connector is provided. Order the connector separately. • Applicable Connector XG4M-2030-T • Applicable Connector Cables G79-O50C G79-O25C G79-I50C G79-I25C 2. Refer to the following table for ordering information on the applicable Cables. SRT2-VID/VOD SRT2-VID/VOD 49 Applicable Cables Connectable product Model Applicable Cable I/O Block G7TC-OC16 G7TC-OC08 G7TC-ID16-5 G7TC-IA16-5 G79-O50C (L = 500 mm) G7TC IA16 G7VC Series G70A Series G70D Series e G79-O25C (L = 250 mm) Connector-Terminal Conversion Unit XW2B Series Digital Display Unit M7F I/O Block G7TC-ID16 G7TC-IA16 e G79-I50C (L = 500 mm) G7TC-OC16-1 G79-I25C (L = 250 mm) 50 Sensor Terminal SRT1-D08S Connector Connection Models that Allows Easy Connection to Sensors and Output Devices Sensors with easy-to-wire connectors are easily attached or detached. Connects to 2-wired sensors. Remote teaching of the Sensor Terminal is possible with the PC by using output signals of the Sensor Terminal. DIN track mounting and screw mounting are available. Ordering Information Classification Internal I/O circuit common I/O points Model For input NPN (– common) 8 input points SRT1-ID08S For I/O NPN (– common) 4 input/4 output points SRT1-ND08S For output NPN (– common) 8 output points SRT1-OD08S Specifications Ratings Input Item SRT1-ID08S/-ND08S Input current 10 mA max./point ON delay time 1 ms max. OFF delay time 1.5 ms max. ON voltage 12 VDC min. between each input terminal and VCC, the external sensor power supply OFF voltage 4 VDC max. between each input terminal and VCC, the external sensor power supply OFF current 1 mA max. Insulation method Photocoupler Input indicator LED (yellow) Output Item SRT1-ND08S SRT1-OD08S Rated output current 20 mA/point 30 mA/point Residual voltage 1 V max. 0.6 V max. ON delay time 1 ms max. --- OFF delay time 1.5 ms max. --- Leakage current 0.1 mA max. Insulation method Photocoupler Output indicator LED (yellow) SRT1-D08S SRT1-D08S 51 Characteristics Communications power supply voltage (see note 1) 14 to 26.4 VDC Current consumption (see note 2) 50 mA max. at 24 VDC Connection method Multi-drop method and T-branch method Secondary branches cannot be connected to T-branch lines. Dielectric strength 500 VAC for 1 min (1-mA sensing current between insulated circuits) Noise immunity Power supply normal: ±600 V for 10 minutes with a pulse width of 100 ns to 1 ms Power supply common: ±1,500 V for 10 minutes with a pulse width of 100 ns to 1 ms Vibration resistance 10 to 55 Hz, 1.5-mm double amplitude Shock resistance Malfunction: 200 m/s2 Destruction: 300 m/s2 Mounting method M4 screw mounting or 35-mm DIN track mounting Mounting strength No damage when 50 N pull load was applied for 10 s in all directions (except the DIN track directions and a pulling force of 10 N Terminal strength No damage when 50 N pull load was applied for 10 s in all directions Tighten each screw to a torque of 0.6 to 1.18 N 􀀀 m Ambient temperature Operating: 0°C to 55°C (with no icing or condensation) Storage: –20°C to 65°C (with no icing or condensation) Ambient humidity Operating: 35% to 85% Weight SRT1-ID08S/OD08S: 100 g max., SRT1-ND08S: 80 g max. Note: 1. The communications power supply voltage must be 20.4 to 26.4 VDC if the Unit is connected to 2-wired proximity sensors. 2. The above current consumption is a value with all the points turned OFF excluding the current consumption of the sensor connected to the Sensor Terminal. External Sensor Power Supply Power supply voltage 13.5 to 26.4 VDC Current consumption 500 mA max. in total Nomenclature SRT1-ID08S SRT1-ND08S CompoBus/S Terminals Connect the CompoBus/S communications cable. Sensor Terminal I/O Connectors Connect the cables from the sensors here. I/O Indicators Indicate the status of each point. (Lit when the input or output is ON.) The SRT1-ID08S has 8 input indicators and the SRT1-ND08S has 4 input indicators and 4 output indicators. DIP Switch The DIP switch’s pins have the following functions: Pins 1 to 4: Node number setting Pin 5: Reserved (Always OFF.) Pin 6: Hold/clear outputs for communications error DIN Track Mounting Hook Used when mounting the Unit to a DIN track. CompoBus/S Indicators Indicate the operating status of the Slave and the status of communications. Mounting Screw Holes Used when screwing the Unit to a control panel. Indicators PWR COMM ERR IN0 to 3 IN0 to 7 OUT0 to 3 Communications Power Supply Terminals Connect the communications power supply. SRT1-D08S SRT1-D08S 52 Indicators Indicator Name Display Color Meaning PWR Power supply Lit Green The communications power supply is ON. Not lit The communications power supply is OFF. COMM Communication Lit Yellow Normal communications Not lit A communications error has occurred or the Unit is in standby status. ERR Communication Lit Red A communications error has occurred. error Not lit Normal communications or the Unit is in standby status. 0 to 3 (4 inputs/outputs) Input Lit Yellow The corresponding input is ON. 0 to 7 (8 inputs) Not lit The corresponding input is OFF or the Unit is in standby status. 0 to 3 (4i t / t t ) o Output Lit Yellow The corresponding output is ON. 4 inputs/outputs) Not lit The corresponding output is OFF or the Unit is in standby status. Switch Setting All pins are factory-set to OFF. Hold/Clear outputs for Node number communications error settings Reserved (OFF) Pin 5 (Reserved) Always set pin 5 to OFF. Output HOLD/CLEAR Mode (SRT-ND16S) HOLD Function OFF Output status is cleared when a communications error occurs. ON Output status is maintained when a communications error occurs. Node Number Settings Node number 1 2 4 8 0 OFF OFF OFF OFF 1 ON OFF OFF OFF 2 OFF ON OFF OFF 3 ON ON OFF OFF 4 OFF OFF ON OFF 5 ON OFF ON OFF 6 OFF ON ON OFF 7 ON ON ON OFF 8 OFF OFF OFF ON 9 ON OFF OFF ON 10 OFF ON OFF ON 11 ON ON OFF ON 12 OFF OFF ON ON 13 ON OFF ON ON 14 OFF ON ON ON 15 ON ON ON ON SRT1-D08S SRT1-D08S 53 SRT1-OD08S DIP Switch Mounting Screw Holes Used when screwing the Unit to a control panel. CompoBus/S Indicators Indicate the operating status of the Slave and the status of communications. Output Indicators Indicate the output status of each channel. Communications Terminals Communications Power Supply Terminals Connect the communications cable. DIN Track Mounting Hook Used when mounting the Unit to a DIN track. Output Connectors Connect the cables from the output device. Switch Setting All pins are factory-set to OFF. Hold/Clear outputs for Node number communications error settings Reserved (OFF) Pin 5 (Reserved) Always set pin 5 to OFF. Output HOLD/CLEAR Mode (SRT-ND16S) HOLD Function OFF Output status is cleared when a communications error occurs. ON Output status is maintained when a communications error occurs. Node Number Settings Node number 4 3 2 1 0 OFF OFF OFF OFF 1 OFF OFF OFF ON 2 OFF OFF ON OFF 3 OFF OFF ON ON 4 OFF ON OFF OFF 5 OFF ON OFF ON 6 OFF ON ON OFF 7 OFF ON ON ON 8 ON OFF OFF OFF 9 ON OFF OFF ON 10 ON OFF ON OFF 11 ON OFF ON ON 12 ON ON OFF OFF 13 ON ON OFF ON 14 ON ON ON OFF 15 ON ON ON ON SRT1-D08S SRT1-D08S 54 Dimensions Note: All units are in millimeters unless otherwise indicated. SRT1-ID08S Mounting Holes SRT1-ND08S Mounting Holes 100 Cover opening and closing directions Two, 4.2 dia or M4 Four, M3 50 50 70 max. Four, M3 Cover opening and closing directions Two, 4.2 dia or M4 (75) (75) SRT1-D08S SRT1-D08S 55 SRT1-OD08S 100 Cover opening and closing directions (75) 2.8 37 Two, 4.2 dia. or M4 7 Four, M3 50 40 92 40±0.2 92±0.2 Mounting Holes 4 6 Cable Connector for SRT1-OD08S Applicable conductor size (mm2) Model 0.3 to 0.5 XS8A-0441 0.14 to 0.2 XS8A-0442 0.3 to 0.5 XS8B-0443 XS8B-0443 (Relay Socket ) XS8A-044 (Cable Connector) Plug connector Cover Model number Pin number Check window Calculate the cable conductor size as explained below. The following information is given on each sensor cable: Cable dia. (Number of conductors/Conductor dia.) Conductor size (mm2) = (Conductor dia./2)2 x p x Number of conductors Example: E3S-A 4 dia. (18/0.12) Conductor size (mm2) = (0.12/2)2 x 3.14 x 18 􀀀 0.20 The conductor size is 0.2 mm2. Therefore, use the XS8A-0442. SRT1-D08S SRT1-D08S 56 Installation Internal Circuit Configuration SRT1-ID08S SRT1-ND08S Internal circuit Photocoupler Internal circuit Photocoupler Photocoupler SRT1-OD08S Internal circuit For one output External Connections SRT1-ID08S SRT1-ND08S Three-wired Sensor Two-wired Sensor Sensor with Teaching Function Sensor with External Diagnostic function Sensor with Bank-switching Function Three-wired Sensor Brown Black Blue Sensor Brown Blue Sensor Brown Black Pink Blue Sensor Brown Black Blue Sensor Two-wired Sensor Brown Blue Sensor SRT1-D08S SRT1-D08S 57 Terminal Arrangement and I/O Device Connection Example Input SRT1-ID08S I/O SRT1-ND08S Photoelectric Sensor Proximity Sensor (Sensor with Teaching Function, Sensor with External Diagnostic function, Sensor with Bank-switching Function) 24 VDC Communications power supply CompoBus/S communications CompoBus/S communications Communications power supply Blue Brown Blue Black Brown Photoelectric Sensor Proximity Sensor (3-wired Sensor) Proximity Sensor (2-wired Sensor) CompoBus/S communications Communications power supply CompoBus/S communications Communications power supply Brown Brown Blue 24 VDC Orange CompoBus/S CompoBus/S Output SRT1-OD08S CompoBus/S SOURCE 24 VDC BDL BDH – + CompoBus/S communications Communications power supply Output connector Pin number Solenoid, etc. Valve, etc. Precautions Refer to the CompoBus/S Operation Manual (W266) before using the Unit. General Safety Precautions Installation Environment Do not install the Unit in the following places. • Places with water, oil, or chemical sprayed on the Unit. • Places with rapid temperature changes. • Places with high humidity resulting in condensation. • Places with intense electric and magnetic fields. • Places with excessive vibration or shock. Wiring To prevent inductive noise, do not wire power lines or high-tension lines along with or near the cables. Make sure that the polarity of each terminal is correct. Make sure that the communications path and power line are connected correctly. Secure the cables properly. Do not pull the cables with strong force, otherwise the cables may be disconnected from the terminals or connectors of the Unit. Do not touch the Unit when the Unit is used in places with high ambient temperatures because the surface temperature of the Unit may be high. Do not use paint thinner to clean the surface of the Unit, otherwise the surface will be damaged or discolored. SRT1-D08S SRT1-D08S 58 Correct Use Use the Unit under its rated conditions. Mount the Unit with M4 screws or to DIN tracks securely. Typical Causes of Communications Errors • The cables are not connected correctly. • The node number setting is incorrect. • The baud rate setting is incorrect. • There is a strong noise source, such as an inverter motor, near the Unit. Install the Unit as far as possible from the noise source or shield the noise source. Others Use OMRON’s XS8A-0441 or XS8A-0442 Connectors with the Unit. Insert each connector into the Unit until the connector snaps in place. Make sure that terminal number 1 of the connector is on the lock lever side when inserting the connector. Refer to the CompoBus/S Operation Manual (W266) for wiring the Unit. 59 Sensor Amplifier Terminal SRT1-D04S Snap On to Connect and Save Wiring Effort The 4-channel fiber photoelectric amplifiers in Terminals with connectors offer a low cost and space savings. The product lineup included Terminal Block Units for easy connection to sensors with amplifiers, limit switches, etc. Connect to up to eight channels of sensors by using Expansion Blocks. Features Low Cost and Space Savings with Four-channel Fiber Connectors Just Snap On to Connect Connector Units Fiber connector (1 channel) Fiber connector (4 channels) Terminal Block Unit Photoelectric sensor Various input units can be connected. Proximity sensor Basic switch and limit switch SRT1-D04S SRT1-D04S 60 Ordering Information CompoBus/S Sensor Amplifier Terminals Classification I/O points Model Communications 4 SRT1-TID04S SRT1-TKD04S Expansion SRT1-XID04S SRT1-XKD04S Connector Units Classification Specifications Model E3X-N Connector Type General-purpose, 1 channel E3X-NT16 Multi-functional, 1 channel E3X-NT26 Long distance, high accuracy, 1 channel E3X-NH16 Multi-functional, 4 channels E3X-NM16 Terminal Block Unit One input point E39-JID01 SRT1-D04S SRT1-D04S 61 Specifications Characteristics CompoBus/S Sensor Amplifier Terminals Item Communication Terminals Expansion Terminals Model SRT1-TID04S SRT1-TKD04S SRT1-XID04S SRT1-XKD04S Communications power supply voltage 14 to 26.4 VDC (See note 1) --- --- I/O points 4 input points Connected sensors Total of four E3X-NT6 or E39-JID01 (See note 2) One E3X-NM16 (See note 2) Total of four E3X-NT6 or E39-JID01 One E3X-NM16 Current consumption 60 mA max. (See note 3) 10 mA max. (See note 3) Dielectric strength 500 VAC for 1 min (1-mA sensing current between insulated circuits) Noise immunity Power supply normal: ±600 V for 10 minutes with a pulse width of 100 ns to 1 ms Power supply common: ±1,500 V for 10 minutes with a pulse width of 100 ns to 1 ms Vibration resistance 10 to 55 Hz, 1.5-mm double amplitude Shock resistance Malfunction: 200 m/s2 Destruction: 300 m/s2 Mounting method M4 screw mounting or 35-mm DIN track mounting Mounting strength No damage when 50 N pull load was applied for 10 s in all directions (except the DIN track directions and a pulling force of 10 N Terminal strength No damage when 49 N pull load was applied for 10 s in all directions. Tighten each screw to a torque of 0.6 to 1.18 N 􀀀 m. Ambient temperature Operating: 0°C to 55°C (with no icing or condensation) Storage: –20°C to 65°C (with no icing or condensation) Ambient humidity Operating: 35% to 85% Weight 70 g max. 65 g max. 45 g max. 35 g max. Note: 1. The communications power supply voltage must be 20.4 to 26.4 VDC if the Terminal is connected to 2-wired proximity sensors. 2. When adding Connector Units, use SRT1-XID04S or SRT1-XKD04S. 3. The value doesn’t include the current consumption of Connector Units. With E3X-N Connectors Model E3X-NH16 E3X-NT16 E3X-NT26 E3X-NM16 Current consumption 75 mA max. 50 mA max. 150 mA Response time 1 ms max. (4.0 ms max. when connected to the SRM1-D04S) 500 mS max. (2.0 ms max. when connected to the SRT1-D04S) Timer function Not available OFF-delay timer (fixed to 40 ms) Remote teaching input Not available Available (Remote teaching disabled) Indicator Orange LED: Lit during output operation Green LED: Lit with stable light reception or no light Teaching confirmation function Indicators (red/green LED) and buzzer Output Light ON and Dark ON switch selectable Ambient illumination Sunlight: 10,000 lux max.; incandescent lamp: 3,000 lux max. Insulation resistance 20 MW max. (at 500 VDC) Dielectric strength 1,000 VAC at 50/60 Hz for 1 min Vibration resistance Destruction:10 to 55 Hz, 1.5-mm double amplitude Shock resistance Destruction:500 m/s2 Mounting method Connector connection to the SRT1-D04S Mounting strength No damage when 49 N pull load was applied for 10 s in all directions Ambient temperature Operating: 0°C to 55°C (with no icing or condensation) Storage: –20°C to 65°C (with no icing or condensation) Ambient humidity Operating: 35% to 85% Weight 30 g max. 30 g max. 30 g max. 60 g max. SRT1-D04S SRT1-D04S 62 Terminal Block Units Model E39-JID01 Input current 10 mA max. ON voltage 12 VDC min. between input terminal and external sensor power supply OFF voltage 4 VDC max. between input terminal and external sensor power supply OFF current 1 mA max. ON delay time 1 ms max. (connected to SRT1-D04S) OFF delay time 1.5 ms max. (connected to SRT1-D04S) Input indicators LED (Orange) External sensor current capacity 50 mA max. Vibration resistance 10 to 55 Hz, 1.5-mm double amplitude Shock resistance Malfunction: 200 m/s2 Destruction: 300 m/s2 Mounting method M4 screws or 35-mm DIN track mounting Mounting strength No damage when 50 N pull load was applied for 10 s in all directions (except the DIN track directions and a pulling force of 10 N Terminal strength No damage when 49 N pull load was applied for 10 s in all directions. Tighten each screw to a torque of 0.6 to 1.18 N 􀀀 m. Ambient temperature Operating: 0°C to 55°C (with no icing or condensation) Storage: –20°C to 65°C (with no icing or condensation) Ambient humidity Operating: 35% to 85% Weight 25 g max. SRT1-D04S SRT1-D04S 63 Nomenclature SRT1-TID04S SRT1-TKD04S Mounting Screw Holes Communications Terminals Communications Power Supply Terminals Contact 0 Contact 1 Contact 2 Contact 3 DIN Track Mounting Hook Node Number Settings Refer to the CompoBus/S Operation Manual (W266) for details on DIP switch settings. Mounting Screw Holes DIN Track Mounting Hook Contacts 0 to 3 Communications Power Supply Terminals Connect a 24-VDC power supply. Communications Terminals Connect a communications cable. DIP Switch Indicators Indicator Name Display Color Meaning PWR Power supply Lit Green The communications power supply is ON. Not lit G ee The communications power supply is OFF. COMM Communications Lit Yellow Normal communications. Not lit e o A communications error has occurred or the Unit is in standby status. ERR Communications Lit Red A communications error has occurred. error Not lit ed Normal communications or the Unit is in standby status. SRT1-D04S SRT1-D04S 64 Dimensions Note: All units are in millimeters unless otherwise indicated. SRT1-TID04 Two, 4.2 dia. or M4 Two, 4.5 dia. Mounting Holes (75) 3.4 Two, 4.2 dia. or M4 Two, 4.5 dia. SRT1-XID04S Mounting Holes (75) 3.4 SRT1-D04S SRT1-D04S 65 SRT1-TKD04S Two, 4.2 dia. or M4 Two, 4.5 dia. Mounting Holes (75) 3.4 SRT1-XKD04S Two, 4.2 dia. or M4 Two, 4.5 dia. Mounting Holes (75) 3.4 SRT1-D04S SRT1-D04S 66 E3X-NM16 Output indicator Stability indicator Eight, 2.4 dia. E3X-NT6 Output indicator Stability indicator Two, 2.4 dia. SRT1-D04S SRT1-D04S 67 E3X-NH16 Light level indicators Threshold indicators Output indicator Two, 2.4 dia. E39-JID01 Output indicator Installation Internal Circuit Configuration E39-JID01 Internal circuit SRT1-D04S SRT1-D04S 68 Precautions Refer to the CompoBus/S Operation Manual (W266) before using the Terminal. Refer to page 80 for precautions common to all SRT1 Terminals. General Safety Precautions Connector Units Use only the Connector Units listed in this data sheet for the Sensor Amplifier Units. E39-JID01 Terminal Block Unit Do not apply any voltage to the Terminal Block Unit. Correct Use Expanding Sensor Amplifier Terminals 1. Remove the cover from the side of the SRT1-TD04S. (See Figure 1.) 2. When the cover is removed, you can see the expansion connector inside. 3. Connect this expansion connector to the connector located on the side of the SRT1-XD04S. (See Figure 2.) Figure 1 Cover Figure 2 Connector Attaching and Removing Connector Units (SRT1-TID04S, SRT1-XID04S, E3X-NT6, E39-JID01) Attaching Connector Units 1. Hook Section A of the Connector Unit onto Section B of the Sensor Amplifier Terminal. 2. Push in the Connector Unit until Section C locks inside Section D of the Sensor Amplifier Terminal. Section C Section D Section A Section B Bottom View Section A Removing Connector Units 1. While pushing Section D, pull the Connector Unit in direction E. 2. When Section D releases from the lock, the Connector Unit can be removed. Push here Section D SRT1-D04S SRT1-D04S 69 Attaching or Removing Connector Unit (SRT1-TKD04S, SRT1-XKD04S, E3X-NM16) Attaching Connector Unit 1. Hook Section A of the Connector Unit onto Section B of the Sensor Amplifier Terminal. 2. Push in the Connector Unit until Section C locks inside Section D of the Sensor Amplifier Terminal. Bottom View Section A Section C Section D Section A Section B Removing Connector Unit 1. While pushing Section D, pull the Connector Unit in direction E. 2. When Section D releases from the lock, the Connector Unit can be removed. Push here Section D Channel Numbers Channel numbers 1 to 4 of the E3X-NM16 correspond to contact numbers 0 to 3 of the SRT1-TKD04S, and to contact numbers 4 to 7 of the SRT1-XKD04S. 70 Analog Input Terminal SRT2-AD04 Compact Analog Input Model is the Same Shape as 16-point Remote I/O Terminals Allows flexible input point settings up to a maximum of four points. Resolution: 1/6,000 Takes only 1 ms to exchange each input point. Wide input ranges available. 105 x 48 x 50 (W x H x D) Ordering Information Classification I/O points Model Analog Input Terminal 1 to 4 (selectable with DIP switch) SRT2-AD04 Note: For details about connecting the SRT2-AD04 to the Master Unit. Refer to page 10. Specifications Ratings Input Item Voltage input Current input Max. signal input ±15 V ±30 mA Input impedance 1 MW max. Approx. 250 W Resolution 1/6,000 (FS) Total 25°C ±0.3% FS ±0.4% FS accuracy –10 to 55°C ±0.6% FS ±0.8% FS Conversion time 4 ms/4 points, 3 ms/3 points, 2 ms/2 points, and 1 ms/1 point Dielectric strength 500 VAC for 1 min between communications power supply, analog input, and communications terminals (see note) Note: There is no insulation between analog inputs. Characteristics Communications power supply voltage 14 to 26.4 VDC (possible to provide through dedicated flat cable) Current consumption 100 mA max. Connection method Multi-drop method and T-branch method Secondary branches cannot be connected to T-branch lines. Dielectric strength 500 VAC (between insulated circuits) Noise immunity Conforms to IEC61000-4-4, 2 kV (power lines) Vibration resistance 10 to 150 Hz, 1.0-mm double amplitude or 70 m/s2 Shock resistance 200 m/s2 Mounting strength No damage with 100 N pull load applied in all directions. Terminal strength No damage with 100 N pull load applied Screw tightening torque 0.3 to 0.5 N 􀀀 m Ambient temperature Operating: –10°C to 55°C Storage: –25°C to 65°C Ambient humidity Operating: 25% to 85% (with no condensation) Weight Approx. 120 g SRT2-AD04 SRT2-AD04 71 Nomenclature SRT2-AD04 Mounting Screw Holes DIN Track Mounting Hook Terminal Block Indicators Indicators Indicator Name Color Display Meaning PWR Power supply Green Lit The communications power supply is ON. Not lit The communications power supply is OFF. COMM Communication Yellow Lit Normal communications Not lit A communications error has occurred or the Unit is in standby status. ERR Communication Red Lit A communications error has occurred. error Not lit Normal communications or the Unit is in standby status. U.ERR Unit error Red Lit An error has occurred in the Unit. Not lit Normal communications or the Unit is in standby status. DIP Switch (SW101) (Open cover to access.) Pin 1 Pin 2 Input points OFF OFF 4 points (default setting) OFF ON 3 points (inputs 0 to 2 enabled) ON OFF 2 points (inputs 0 and 2 enabled) ON ON 1 point (input 0 enabled) Pin 3 Communications mode OFF High-speed communications (default setting) ON Long-distance communications Pin 4 Be sure to turn OFF. Pin No. Node address Pin 5 23 Pin 6 22 Pin 7 21 Pin 8 20 The default setting is for all of these pins to be OFF. DIP Switch (SW102) (Open cover to access.) Pin 1 Pin 2 Pin 3 Range for inputs 0, 1 Pin 4 Pin 5 Pin 6 Range for inputs 2, 3 OFF OFF OFF 0 to 5 (V) (default setting) ON OFF OFF 1 to 5 (V) OFF ON OFF 0 to 10 (V) ON ON OFF –10 to 10 (V) OFF OFF ON 4 to 20 (mA) ON OFF ON 0 to 20 (mA) Do not make any settings other than the ones listed above. Pin 7 Mean value processing OFF Without mean value processing (default setting) ON With mean value processing (mean for 8 operations) Pin 8 Be sure to turn OFF. SRT2-AD04 SRT2-AD04 72 Dimensions Note: All units are in millimeters unless otherwise indicated. SRT2-AD04 Mounting Holes Two, 4.2 dia. or M4 Installation Internal Circuit Configuration SRT2-AD04 Isolation DC-DC static converter Internal circuit Input 0 Input 1 Input 2 Input 3 Analog ground Terminal Arrangement SRT2-AD04 Note: When the input is current input, short-circuit the “V+” terminals and the “I+” terminals. When short-circuiting, use the short-circuiting tool provided as an accessory. Precautions Refer to the CompoBus/S Operation Manual (W266) before using the Unit. For details about general precautions, refer to page 80. Connections to the Master Unit Connections cannot be made to the following Master Units. If the following Master Units are connected, incorrect data may be transferred. C200HW-SRM21 (-V1 and later versions supported) CQM1-SRM21 (-V1 and later versions supported) SRM1-C0, SRM1-C0-V1 (-V2 and later versions supported) C200PC-ISA2-SRM 3G8B3-SRM0 SDD-CS1 (made by NKE Ltd.) 73 Analog Output Terminal SRT2-DA02 Compact Analog Output Model is the Same Shape as 16-point Remote I/O Terminals Two output points or 1 output point is selectable. Resolution: 1/6,000 105 x 48 x 50 (W x H x D) Ordering Information Classification I/O points Model Analog Output Terminal 1 or 2 (selectable with DIP switch) SRT2-DA02 Note: For details about connecting the SRT2-DA02 to the Master Unit, refer to page 10. Specifications Ratings Output Item Voltage output Current output External output permissible load resistance 5 kW min. 600 W max. Output impedance 0.5 W max. --- Resolution 1/6,000 (FS) Total 25°C ±0.4% FS accuracy –10 to 55°C ±0.8% FS Conversion time 2 ms/2 points and 2 ms/1 point Dielectric strength 500 VAC for 1 min between communications power supply, analog output, and communications terminals (see note) Note: There is no insulation between analog outputs. Characteristics Communications power supply voltage 14 to 26.4 VDC (power supply possible from dedicated flat cable) Current consumption (see note) 170 mA max. Connection method Multi-drop method and T-branch method Secondary branches cannot be connected to T-branch lines. Dielectric strength 500 VAC (between insulated circuits) Noise immunity Conforms to IEC61000-4-4, 2 kV (power lines) Vibration resistance 10 to 150 Hz, 1.0-mm double amplitude or 70 m/s2 Shock resistance 200 m/s2 Mounting strength No damage when 100 N pull load was applied in all directions Terminal strength No damage when 100 N pull load was applied Screw tightening torque 0.3 to 0.5 N 􀀀 m Ambient temperature Operating: –10°C to 55°C Storage: –25°C to 65°C Ambient humidity Operating: 25% to 85% (with no condensation) Weight Approx. 100 g Note: The above current consumption is the value with all points turned ON excluding the current consumption of the external load. SRT2-DA02 SRT2-DA02 74 Nomenclature SRT2-DA02 Mounting Screw Holes DIN Track Mounting Hook Terminal Block Indicators Indicators Indicator Name Color Display Meaning PWR Power supply Green Lit The communications power supply is ON. Not lit The communications power supply is OFF. COMM Communication Yellow Lit Normal communications Not lit A communications error has occurred or the Unit is in standby status. ERR Communication Red Lit A communications error has occurred. error Not lit Normal communications or the Unit is in standby status. U.ERR Unit error Red Lit An error has occurred in the Unit. Not lit A communications error has occurred or the Unit is in standby status. DIP Switch (SW101) (Open cover to access.) Pin 1 Be sure to turn OFF. Pin 2 Output points OFF 2 points (default setting) ON 1 point (output 0 enabled) Pin 3 Communications mode OFF High-speed communications (default setting) ON Long-distance communications Pin 4 Be sure to turn OFF. Pin No. Node addresses Pin 5 23 Pin 6 22 Pin 7 21 Pin 8 20 The default setting is for all of these switches to be OFF. DIP Switch (SW102) (Open cover to access.) Pin 1 Pin 2 Pin 3 Range for output 0 Pin 4 Pin 5 Pin 6 Range for output 1 OFF OFF OFF 0 to 5 (V) (default setting) ON OFF OFF 1 to 5 (V) OFF ON OFF 0 to 10 (V) ON ON OFF –10 to 10 (V) OFF OFF ON 4 to 20 (mA) Do not make any settings other than the ones listed above. Pin 7 Pin 8 Output during communications error OFF OFF Clear at the output lower limit when communications error occurs. (default setting) OFF ON Clear at the output upper limit when communications error occurs. ON OFF Clear at the output lower limit when communications error occurs (however, if the range is –10 to 10 V, the output will be 0). ON ON Output held when communications error occurs. SRT2-DA02 SRT2-DA02 75 Dimensions Note: All units are in millimeters unless otherwise indicated. SRT2-DA02 Mounting Holes Two, 4.2 dia. or M4 Installation Internal Circuit Configuration SRT2-DA02 Isolation DC-DC static converter Internal circuit Output 0 Output 1 Analog ground Terminal Arrangement SRT2-DA02 Precautions Refer to the CompoBus/S Operation Manual (W266) before using the Unit. For details about general precautions, refer to page 80. Connections to the Master Unit Connections cannot be made to the following Master Units. If the following Master Units are connected, incorrect data may be transferred. C200HW-SRM21 (-V1 and later versions supported) CQM1-SRM21 (-V1 and later versions supported) SRM1-C0, SRM1-C0-V1 (-V2 and later versions supported) C200PC-ISA2-SRM 3G8B3-SRM0 SDD-CS1 (made by NKE Ltd.) 76 Remote I/O Module SRT1-ID􀀀P/OD􀀀P Module Type that Allows PCB Mounting Compact size at 60 x 16 x 35 (W x H x D) Lineup now includes the 16-point input model and 16-point output model. Ordering Information I/O classification Internal I/O circuit common I/O points Rated voltage I/O rated voltage Model Input NPN (+ common) 16 24 VDC 24 VDC SRT1-ID16P Output NPN (– common) SRT1-OD16P Specifications Ratings Input (SRT1-ID16P) Input current 2 mA max./point ON delay time 1.5 ms max. OFF delay time 1.5 ms max. ON voltage 15 VDC min. between each input terminal and BS+ terminal OFF voltage 5 VDC max. between each input terminal and BS + terminal Output (SRT1-OD16P) Rated output current 0.2 A/point, 0.6 A/common Residual voltage 0.6 V max. between each output terminal and G terminal at 0.2 A Leakage current 0.1 mA max. between each output terminal and G terminal at 24 VDC SRT1-ID􀀀P/OD􀀀P SRT1-ID􀀀P/OD􀀀P 77 Characteristics Communications power supply voltage 20.4 to 26.4 VDC I/O power supply voltage 24 VDC +10%/–15% Current consumption (see note) 60 mA max. Connection method Multi-drop method and T-branch method Secondary branches cannot be connected to T-branch lines. Connecting Units 8 Input Terminals and 8 Output Terminals per Master Dielectric strength 500 VAC for 1 min (1-mA sensing current between insulated circuits) 5-V output current 20 mA max. (5 V 􀀀 0.5 V) LED drive current (COMM, ERR) 10 mA max. (5 VDC) SW carry current (ADR0 to 3, HOLD) 1 mA max. Ambient temperature Operating: 0°C to 55°C (with no icing or condensation) Storage: –20°C to 65°C (with no icing or condensation) Ambient humidity Operating: 35% to 85% Weight 35 g max. Note: The above current consumption is the value with all points turned ON excluding the current consumption of the external sensor connected to the input model and the current consumption of the load connected to the output model. Dimensions Note: All units are in millimeters unless otherwise indicated. SRT1-ID16P SRT1-OD16P Incorrect insertion prevention pin PCB dimensions (top view) No cumulative tolerance allowed 16 2.54x15=38.1 27.94±0.1 2.54±0.1 2.54x15=38.1 8.95±0.1 1.53±0.1 0.63 27.94±0.1 1.6 1.6 dia. 0.63 3.5 2.54 35 60 2.2 dia. +0.1 0 32-0.9 dia. +0.1 0 SRT1-ID􀀀P/OD􀀀P SRT1-ID􀀀P/OD􀀀P 78 Installation Internal Circuit Configuration SRT1-ID16P SRT1-OD16P Internal circuit Internal circuit External Connections Communications Two-wired proximity sensor BS– or G Input Module (SRT1-ID16P) Output Module (SRT1-OD16P) Communications Relay Internal circuit Internal circuit D1: Reverse voltage prevention diode Note: NC in parentheses is for the Input Modules. Node Number Settings and Output HOLD/CLEAR Mode Internal circuit BS– or G Note: Refer to the CompoBus/S Operation Manual (W266) for details on the switch. Indicators R: LED current limiting resistor LED1: LED for COMM LED2: LED for ERR The maximum current for LED1 and 2 is 10 mA. Internal circuit The 5-V Output Terminals have positive power supplies (maximum output current of 20 mA) for the ERR and COMM LEDs. Recommended LED colors are red for ERR and yellow for COMM. SRT1-ID􀀀P/OD􀀀P SRT1-ID􀀀P/OD􀀀P 79 Precautions Refer to the CompoBus/S Operation Manual (W266) before using the Unit. Refer to page 80 for precautions common to all SRT1 Terminals. Correct Use Noise Protection Circuit Add the following protection circuit if noise is generated from the power supply, input section, or output section. Power Supply Noise Protection Circuit L: Coil for the common mode Install the coil near the SRT1. 50 V 100 mF 50 V 0.1 mF BS􀀀 L V BS Input Section Noise Protection Circuit C: 0.1 mF min. R: Resistor for limiting current to PC PC: Photocoupler Input device 0 to 15 V R G PC C Output Section Noise Protection Circuit V1 and V2: Power supply. R: Resistor for limiting current to PC PC: Photocoupler 0 to 15 Load G V2 PC R V1 5-V Output Terminals The 5-V Output Terminals have positive power supplies (maximum output current of 20 mA) for the ERR and COMM LED. Use them as shown below. Recommended LED colors are red for ERR and yellow for COMM. Wiring Method R: LED current limiting resistor LED1: LED for COMM LED2: LED for ERR The maximum current for the LED1 and 2 is 10 mA. LED1 R R 5 VOUT COMM ERR LED2 SRT SRT 80 Precautions Refer to the CompoBus/S Operation Manual (W266) before using the Terminal. The following precautions are the same for all SRT1 Terminals. Refer also to the precautions specified for individual Terminals. General Safety Precautions Wiring Turn OFF the Unit before wiring the Unit and do not remove the terminal block cover or touch the terminal block while the Unit is turned ON, otherwise an electric shock may occur. Do not impose any voltage other than the rated voltage on the input terminal. Doing so may result in damage to the Unit or cause the Unit to malfunction. Relay I/O Type SRT1-ROC08 and SRT2-ROC16 Do not connect the Unit to loads operating at any voltage or consuming a total current exceeding the permissible switching voltage or current of the Unit. Doing so may result in the faulty insulation, contact weld, or faulty contact of the relays, or damage to the relays, or cause the relays to malfunction or burn. The life of a relay varies with the switching condition. Test the relays under the actual operating conditions before using the relays within the permissible switching frequency. The use of deteriorated relays may result in the faulty insulation of the relays or cause the relays to burn. Do not use the Unit in places with inflammable gas. Doing so may result in a fire or explosion due to the heat of the relays or a spark from the relays when they are switched. Transistor, Power MOS FET, and SSR I/O Types SRT1-OD04, SRT2-OD08, SRT2-OD16, SRT1-OD16P, SRT1-ROF08, and SRT2-ROF16 Do not connect the Unit to loads consuming a total current exceeding the rated output current of the Unit. Doing so may damage the output element and a short or open-circuit malfunction may result. If the Unit is connected to a DC inductive load, connect a diode to the Unit to protect the Unit from counter-electromotive voltage, otherwise the counter-electromotive voltage may damage the output element and a short or open-circuit malfunction may result. Correct Use Replacing Relays Use the relay removal tool to the left of the screw terminals to replace relays. Turn OFF the Unit to replace relays, otherwise an electric shock may occur or the Unit may malfunction. Installation Environment Do not install the Unit in the following places. Doing so may result in damage to the Unit or cause the Unit to malfunction. • Places with direct sunlight. • Places with ambient temperature ranges not within 0°C to 55°C. • Places with rapid temperature changes resulting in condensation or relative humidity ranges not within 10% to 90%. • Places with corrosive or inflammable gas. • Places with excessive dust, salinity, or metal powder. • Places with vibration or shock affecting the Unit. • Places with water, oil, or chemical sprayed on the Unit. Screw Tightening Torques Tighten all screws of the Unit properly, otherwise the Unit may malfunction. • Tighten each terminal screw to a torque of 0.6 to 1.18 N 􀀀 m (6.2 to 12.0 kgf 􀀀 cm). • Tighten each mounting screw to a torque of 0.6 to 0.98 N 􀀀 m (6.2 to 10.0 kgf 􀀀 cm). Terminal screws Mounting screws Cleaning Use alcohol or benzine to clean the surface of the Unit. Do not use paint thinner to clean the surface, otherwise the surface will be damaged or discolored. Handling Do not drop the Unit or shock or vibrate the Unit excessively. Doing so may result in damage to the Unit or cause the Unit to malfunction. Disassembling, Repairing, and Modifying Do not disassemble, repair, or modify the Unit, otherwise an electric shock may occur or the Unit may malfunction. 81 Position Driver FND-X􀀀-SRT Advanced Servodrivers with Positioner Functions DIO and CompoBus/S Models are Newly Added Servodriver and positioner are combined into one Unit. Conventional U-series, U-series UE type, H-series, and M-series AC Servomotors can be used. Feeder control/DTP control and single operation/ automatic incremental/continuous operation are available. Easy to set, operate, and adjust. Ordering Information Specifications Model CCoompooBuuss//SS mooddeelss For 200-VAC input 6 A FND-X06H-SRT 12 A FND-X12H-SRT 25 A FND-X25H-SRT 50 A FND-X50H-SRT For 100-VAC input 6 A FND-X06L-SRT 12 A FND-X12L-SRT Note: For details, refer to OMNUC FND-X-series User’s Manual (I524). Specifications General Specifications Ambient temperature Operating: 0°C to 55°C Storage: –10°C to 70°C Ambient humidity Operating: 35% to 90% (with no icing) Storage: 35% to 90% (with no icing) Operating atmosphere No corrosive gases Dielectric strength 1,500 VACRMS for 1 min at 50/60 Hz Insulation resistance 5 MW min. (at 500 VDC) between power input terminals and between the power terminal and the case Vibration resistance 10 to 150 Hz in X, Y, and Z directions with 0.10-mm single amplitude; acceleration: 9.8 m/s2 max.; time coefficient: 8 min; 4 sweeps Shock resistance 98 m/s2 max., three times each in X, Y, and Z directions Degree of protection Built into panel (IP00) FND-X􀀀-SRT FND-X􀀀-SRT 82 Performance Specifications Model (see note 1) Item FND-X06H-SRT FND-X12H-SRT FND-X25H-SRT FND-X06L-SRT FND-X12L-SRT Continuous output current (0-P) 2.0 A 4.8 A 8.0 A 2.0 A 3.0 A Momentary maximum output current (0-P) 6.0 A 12 A 25 A 6.0 A 12 A Input power supply Single-phase 200/240 VAC (170 to 264 V) 50/60 Hz Single-phase 100/115 VAC (85 to 127 V) 50/60 Hz Position/speed f db k os o /U Series (INC) Optical Incremental encoder, 2,048 pulses/revolution feedback U Series (ABS) Optical Absolute encoder, 1,024 pulses/revolution U-UE Series Optical Incremental encoder, 1,024 pulses/revolution H Series Magnetic Incremental encoder, 2,000 pulses/revolution M Series Resolver, absolute accuracy 0.18° max.; ambient temperature 25° Applicable load inertia U Series (INC) Maximum of 30 times motor’s rotor inertia Maximum of 20 times motor’s rotor inertia Maximum of 30 times motor’s rotor inertia U Series (ABS) Maximum of 20 times motor’s rotor inertia Maximum of 18 times motor’s rotor inertia Maximum of 20 times motor’s rotor inertia U-UE Series Maximum of 30 times motor’s rotor inertia Maximum of 20 times motor’s rotor inertia Maximum of 30 times motor’s rotor inertia H Series Maximum of 10 times motor’s rotor inertia M Series Maximum of 10 times motor’s rotor inertia Inverter method PWM method based on IGBT PWM frequency 10 kHz Weight Approx. 1.5 kg Approx. 2.5 kg Approx. 1.5 kg Frequency response (speed control) 100 Hz (at a load inertia equivalent to motor’s rotor inertia) Position loop gain 1 to 200 (rad/s) Feed forward 0% to 200% of speed reference Pulse rate 1/32,767 􀀀 (pulse rate 1 / pulse rate 2) 􀀀 32,767/1 Positioning completion width 1 to 32,767 (pulses) U Series (INC): 8,192 pulses/revolution; U Series (ABS): 4,096 pulses/revolution; M Series 24,000 pulses/revolution Acceleration/Deceleration time 0 to 9,999 (ms); acceleration and deceleration times set separately. Two types can be set for each. S-curve acceleration/deceleration function available (filter time constant: 0.00 to 32.76 s). Sequence input 19 pts. (limit inputs, origin proximity, RUN command, START, alarm reset, origin search, JOG operation, teaching, point selection, position data, deceleration stop) Photocoupler input: 24 VDC, 8 mA External power supply: 24 VDC ±1 V, 150 mA min. Sequence output 15 pts. (brake output, READY, origin search completion, origin, teaching, motor running, positioning completion, alarm, point output, position selection, speed selection) Open collector output: 24 VDC, 40 mA Monitor output (S t 2 ) o o ou pu Speed monitor 3 V/motor’s rated speed (output accuracy: approx. ±10%) See note 2.) Current monitor 3 V/motor’s maximum current (output accuracy: approx. ±10%) Regenerative absorption capacity 13 W + 17 J 24 W + 17 J 37 W + 22 J 13 W + 17 J 17 W + 17 J Protective functions Overcurrent, overvoltage, voltage drop, resolver disconnection, power status error, clock stopped, overcurrent (soft), speed amp saturation, motor overload, temporary overload, resolver error, speed over, error counter over, parameter setting error, software limit over, coordinate counter over, overrun, encoder disconnection, encoder communications error, absolute encoder backup error, absolute encoder checksum error, absolute encoder absolute error, absolute encoder over speed, encoder data not transmitted, BCD data error, present value undetermined, PTP data not set Note: 1. When using the 100-VAC-input Position Drivers in combination with the U-series or U-series UE type models, use 200-VAC Servomotors (-HA, -TA , or -H models). 2. For the monitor output, the monitor items and voltage polarity can be set by parameter UP-25 (monitor output selection). FND-X􀀀-SRT FND-X􀀀-SRT 83 Dimensions Note: All units are in millimeters unless otherwise indicated. 200-VAC FND-X06H-SRT/-X12H-SRT 100-VAC FND-X06L-SRT/-X12L-SRT 200-VAC FND-X25H-SRT 80 68 150 158 170 Three, 6 dia. 158 68 Three, M5 Mounting Holes Mounting Holes 119 150 107 158 170 Three, 6 dia. 158 Three, M5 107 Position Drivers Item Model Continuous output current (0-P) Momentary maximum output current (0-P) Input power supply Inverter method PWM frequency Weight 200-VAC input FND-X06H-SRT 2.0 A 6.0 A Single-phase 200/240 VAC PWM method b d 10 kH Approx. 1 5 k 00 C u FND-X12H-SRT 4.8 A 12 A S g e ase (170 to 264 V) e od based on IGBT 0 kHz o 1.5 kg FND-X25H-SRT 8.0 A 25 A 50/60 Hz Approx. 2.5 kg 100-VAC input FND-X06L-SRT 2.0 A 6.0 A Single-phase 100/115 VAC (85 Approx. 1.5 kg FND-X12L-SRT 3.0 A 12 A to 127 V) 50/60 Hz 84 Peripheral Devices Connectors, Cables, and Terminal-block Terminator Dedicated Flat Cable Allows Communication Path Extension and T-branching with Ease Ordering Information Product Appearance Model Specification Branch Connector SCN1-TH4 --- Extension Connector SCN1-TH4E --- Connector Terminator SCN1-TH4T --- Communications Cable SCA1-4F10 Flat cable, 100 m, 4 conductors (0.75 mm2 each) Terminal-block Terminator SRS1-T --- Note: Branch Connectors and Extension Connectors are sold in blocks of 10 Units. Peripheral Devices Peripheral Devices 85 Specifications Ratings/Characteristics Rated current 4 A Contact resistance 20 mW max. Insulation resistance 1,000 MW min. (at 500 VDC) Withstand voltage 1,000 VAC for 1 min, leakage current: 1 mA max. Cable pulling strength 50 N (5.1 kgf) min. Operating temperature –20°C to 70°C Materials Housing PA66 resin (UL94V-2) Branching and extension: Gray Cover Terminator: Black Contact Phosphor bronze and nickel base, tin plated Dimensions Note: All units are in millimeters unless otherwise indicated. SCN1-TH4 Branch Connector SCN1-TH4E Extension Connector SCN1-TH4T Connector Terminator Peripheral Devices Peripheral Devices 86 SRS1-T Terminal-block Terminator 40 Two, 4.4 dia. 30±0.2 Two, 4.2 dia. or M4 20 20 Mounting Holes Precautions Refer to the CompoBus/S Operation Manual (W266) before using the Unit. Correct Use The SCN1-TH4, SCN1-TH4E, and SCN1-TH4T are dedicated connectors for CompoBus/S. Always use dedicated CompoBus/S cables with these connectors. Do not locate the cables in places where excessive force may be imposed on the connectors of the cables such as an area where cables may entangle feet. These connectors cannot be reused once they have been attached to cables. Use new connectors if they were not attached to cables properly. Refer to the CompoBus/S Operation Manual (W266) to assemble the connectors. CompoBus/S CompoBus/S 87 Ordering Information Note: Abbreviations for standards: U: UL, C: CSA, CE: EC Directive Product Appearance Model Specifications Standards Master Control Units SRM1-C01-V2 Stand-alone model with built-in controller functions (without RS-232C) UL CSA CE (see SRM1-C02-V2 Stand-alone model with built-in controller functions and RS-232C note 2) Master Units C200HW-SRM21-V1 For C200HX (-ZE), C200HG (-ZE), C200HE (-ZE), and C200HS CQM1-SRM21-V1 For CQM1 SYSMAC Boards C200PC-ISA02-SRM C200PC-ISA12-SRM For C200HX/HG/HE --- I/O Link Unit CPM1A-SRT21 8 inputs 8 outputs UL CSA CE (see note 2) Remote Terminals (Transistor Models) SRT1-ID04 SRT1-ID04-1 SRT2-ID08 SRT2-ID08-1 SRT2-ID16 SRT2-ID16-1 SRT1-OD04 SRT1-OD04-1 SRT2-OD08 SRT2-OD08-1 SRT2-OD16 SRT2-OD16-1 4 transistor input (NPN) 4 transistor inputs (PNP) 8 transistor inputs (NPN) 8 transistor inputs (PNP) 16 transistor inputs (NPN) 16 transistor inputs (PNP) 4 transistor outputs (NPN) 4 transistor outputs (PNP) 8 transistor outputs (NPN) 8 transistor outputs (PNP) 16 transistor outputs (NPN) 16 transistor outputs (PNP) Remote Terminals (M3 Terminal Block Models) SRT1-ID16T SRT1-ID16T-1 SRT2-MD16T SRT2-MD16T-1 SRT2-OD16T SRT2-OD16T-1 16 transistor inputs (NPN) 16 transistor inputs (PNP) 16 transistor I/O points (NPN) 16 transistor I/O points (PNP) 16 transistor outputs (NPN) 16 transistor outputs (PNP) CE (see note 2) Remote Terminals (Relay-mounted Models) SRT2-ROC08 SRT2-ROC16 SRT2-ROF08 SRT2-ROF16 8 relay outputs 16 relay outputs 8 power MOS FET relay outputs 16 power MOS FET relay outputs UL CSA CE (see note 2) Connector Terminals SRT2-VID08S SRT2-VID08S-1 SRT2-VOD08S SRT2-VOD08S-1 SRT2-VID16ML SRT2-VID16ML-1 SRT2-VOD16ML SRT2-VOD16ML-1 SRT2-ATT01 SRT2-ATT02 8 transistor input (NPN) 8 transistor inputs (PNP) 8 transistor outputs (NPN) 8 transistor outputs (PNP) 16 transistor inputs (NPN) 16 transistor inputs (PNP) 16 transistor outputs (NPN) 16 transistor outputs (PNP) Mounting hook A Mounting hook B CE (see note 2) Sensor Terminals SRT1-ID08S SRT1-ND08S SRT1-OD08S 8 inputs (NPN) 4 automatic teaching points (NPN) 8 outputs --- CompoBus/S CompoBus/S 88 Product Standards Appearance Model Specifications Sensor Amplifier Terminals for CompoBus/S SRT1-TID04S SRT1-TKD04S SRT1-XID04S SRT1-XKD04S --- --- E3X-N Connector Type E3X-NH16 E3X-NT16 E3X-NT26 Long-distance, high-precision, 1 channel General-purpose, 1 channel Multi-functional, 1 channel E3X-NM16 Multi-functional, 4 channels Terminal Block Unit E39-JID01 One input point Analog Input Terminal SRT2-AD04 1 to 4 inputs (set with DIP switch) CE (see note 2) Analog Output Terminal SRT2-DA02 1 or 2 outputs (set with DIP switch) Remote I/O Modules SRT1-ID16P SRT1-OD16P --- --- Position Drivers FND-X06H-SRT 200-VAC input, momentary maximum output current: 6.0 A FND-X12H-SRT 200-VAC input, momentary maximum output current: 12 A FND-X25H-SRT 200-VAC input, momentary maximum output current: 25 A FND-X06L-SRT 100-VAC input, momentary maximum output current: 6.0 A FND-X12L-SRT 100-VAC input, momentary maximum output current: 12 A Branch Connector Extension Connector Connector Terminator SCN1-TH4 SCN1-TH4E SCN1-TH4T --- Flat Cable SCA1-4F10 100 m Terminal-block Terminator SRS1-T --- Note: 1. Refer to the C200HS Catalog (P32). Refer to the C200HX/C200HG/C200HE (-ZE) Catalog 2. Information on EC Directives Individual OMRON products that comply with EC Directives conform to the common emission standards of EMC Directives. However, the emission characteristics of these products installed on customers’ equipment may vary depending on the configuration, wiring, layout, and other conditions of the control panel used. For this reason, customers are requested to check whether the emission characteristics of the entire machine or equipment comply with the EMC Directives. CompoBus/S CompoBus/S 89 Model Number Legend SRT􀀀-􀀀􀀀􀀀􀀀􀀀 2 3 4 5 6 7 -1 1 1. Communications Mode 1: High-speed communications mode 2: High-speed/Long-distance communications mode 2. I/O Module Replacement None: Impossible R: Possible (Relays and power MOS FET relays) 3. I/O Specifications I: Input O: Output N: Input and output (with remote teaching) AD: Analog input DA: Analog output 4. I/O Voltage Specifications D: DC C: AC/DC (contact type) F: AC/DC (power MOS FET type) 5. I/O Points 04: 4 points 08: 8 points 16: 16 points 6. I/O Connection Method None: Screw terminals S: Connector P: PCB terminals 7. None: NPN -1: PNP CompoBus/S CompoBus/S 90 Notes: Cat. No. Q103-E1-6 Note: Specifications subject to change without notice. Printed in Japan 0200-8C (0796) a Authorized Distributor: OMRON Corporation Systems Components Division 66 Matsumoto Mishima-city, Shizuoka 411-8511 Japan Tel: (81)559-77-9633/Fax: (81)559-77-9097 Regional Headquarters OMRON EUROPE B.V. Wegalaan 67-69, NL-2132 JD Hoofddorp The Netherlands Tel: (31)2356-81-300/Fax: (31)2356-81-388 OMRON ELECTRONICS, INC. 1 East Commerce Drive, Schaumburg, IL 60173 U.S.A. Tel: (1)847-843-7900/Fax: (1)847-843-8568 OMRON ASIA PACIFIC PTE. LTD. 83 Clemenceau Avenue, #11-01, UE Square, Singapore 239920 Tel: (65)835-3011/Fax: (65)835-2711 The essential guide Harmony Control and Signalling units 2013 Control and signalling units Harmony, simple and innovative solutions for your applications World leader in control and signalling components, Schneider Electric continues its policy of innovation within the Harmony ranges in order to perfect the efficiency of your dialogue solutions. Invest with complete peace of mind! The right solution for your application An offer unrivalled in content and complementarity Optimised cost saving solutions due to increased flexibility of the offers, enabling multiple combinations and full compatibility Quality you can rely on Robust products that comply to the highest quality standards Valuable time that you save Simple selection and quick installation for all Harmony components This document is a selection of the top selling products. For more information: http://www.schneider-electric.com Contents Pushbuttons, switches, pilot lights and control stations Ø 16, plastic bezel, Harmony XB6 .......................................................................................... 2 to 4 Ø 8 and 12, pilot lights, Harmony XVL .......................................................................................... 5 Ø 22, metal bezel, Harmony XB4 / Control stations Harmony XAP ...................................... 6 to 9 Ø 22, plastic bezel, Harmony XB5 / Control stations Harmony XAL ................................. 10 to 13 Ø 22, plastic bezel, wireless and batteryless, Harmony XB5R ........................................... 14 to 15 Ø 22, plastic bezel - Monolithic, Harmony XB7 .................................................................. 16 to 17 Ø 30, metal and plastic bezel, Harmony 9001K, 9001SK .................................................. 18 to 20 Cam switches Harmony K series ............................................................................................................... 21 to 22 Signalling solutions Ø 40, 60, 100 mm monolithic tower lights, Harmony XVC ........................................................... 23 Ø 45 mm monolithic beacons and tower lights, accessories, Harmony XVDLS / XVC ............... 24 Ø 70 mm modular tower lights (IP 66), Harmony XVB ................................................................ 25 Ø 70 mm modular tower lights (up to IP 54), Harmony XVE ....................................................... 26 Ø 45, 50 mm modular tower lights (up to IP 54), Harmony XVM / XVP ...................................... 27 Modular tower lights accessories, Harmony XV .......................................................................... 28 Ø 84, 106, 120, 130 mm rotating mirror beacons, Harmony XVR ............................................... 29 Accessories for rotating mirror beacons, Harmony XVR ............................................................. 30 Electronic alarms and multisound sirens, Harmony XVS ............................................................ 30 Components for hoisting applications Pendant control stations, Harmony XAC ............................................................................ 31 to 32 Illuminated pushbuttons Type of head Flush push Shape of head rectangular (2) Degree of protection IP 65 / Nema 4, 4X, 13 / Class II Mounting (mm) panel cut-out Ø 16.2 mounting centres 24 x 18 with rectangular head, 18 x 18 with square or circular head Dimensions (mm) W x H x D (below head) 24 x 18 x 50 with rectangular head, 18 x 18 x 50 with square or circular head Connection (3) Tags for 2.8 x 0.5 Faston connectors or for soldering Type of push Spring return Complete products 12 … 24 V AC/DC Products for user assembly References white NO XB6DW1B1B ZB6Ep1B (1) ZB6Z1B ZB6DW1 NO + NC XB6DW1B5B ZB6Ep1B (1) ZB6Z5B ZB6DW1 green NO XB6DW3B1B ZB6Ep3B (1) ZB6Z1B ZB6DW3 NO + NC XB6DW3B5B ZB6Ep3B (1) ZB6Z5B ZB6DW3 red NC XB6DW4B2B ZB6Ep4B (1) ZB6Z2B ZB6DW4 NO + NC XB6DW4B5B ZB6Ep4B (1) ZB6Z5B ZB6DW4 yellow NO – ZB6Ep5B (1) ZB6Z1B ZB6DW5 NO + NC XB6DW5B5B ZB6Ep5B (1) ZB6Z5B ZB6DW5 Type of push Latching References white NO – ZB6Ep1B (1) ZB6Z1B ZB6DF1 NO + NC XB6DF1B5B ZB6Ep1B (1) ZB6Z5B ZB6DF1 green NO XB6DF3B1B ZB6Ep3B (1) ZB6Z1B ZB6DF3 NO + NC XB6DF3B5B ZB6Ep3B (1) ZB6Z5B ZB6DF3 red NC XB6DF4B2B ZB6Ep4B (1) ZB6Z2B ZB6DF4 NO + NC XB6DF4B5B ZB6Ep4B (1) ZB6Z5B ZB6DF4 yellow NO – ZB6Ep5B (1) ZB6Z1B ZB6DF5 NO + NC – ZB6Ep5B (1) ZB6Z5B ZB6DF5 Pilot lights Type of head Smooth lens cap Shape of head rectangular (2) Complete products Products for user assembly 12 … 24 V AC/DC References white XB6DV1BB ZB6Ep1B (1) ZB6DV1 green XB6DV3BB ZB6Ep3B (1) ZB6DV3 red XB6DV4BB ZB6Ep4B (1) ZB6DV4 yellow XB6DV5BB ZB6Ep5B (1) ZB6DV5 blue – ZB6Ep6B (1) ZB6DV6 (1) Basic reference, to be completed by the letter B, G or M indicating the required voltage. See voltage table above. (2) For products with a square head, replace the letter D in the reference by the letter C (XB6DW1B1B becomes XB6CW1B1B). For products with a circular head, replace the letter D in the reference by the letter A (XB6DW1B1B becomes XB6AW1B1B). (3) Alternative connection: 1 x 0.5 pins for printed circuit boards. Pushbuttons, switches and pilot lights Ø 16 with plastic bezel Contact functions and light functions with integral LED (1): Voltage Letter (p) 12…24 V AC/DC (15 mA) B 48…120 V AC (25 mA) G 230…240 V AC (25 mA) M + 0.2 0 Harmony XB6 = + + = + Pushbuttons Type of head Flush push Shape of head rectangular (1) Degree of protection IP 65 / Nema 4, 4X, 13 / Class II Mounting (mm) panel cut-out Ø 16.2 mounting centres 24 x 18 with rectangular head, 18 x 18 with square or circular head Dimensions (mm) W x H x D (below head) 24 x 18 x 50 with rectangular head, 18 x 18 x 50 with square or circular head Connection (2) Tags for 2.8 x 0.5 Faston connectors or for soldering Type of push Spring return Complete products Products for user assembly References white NO XB6DA11B ZB6Z1B ZB6DA1 NO + NC XB6DA15B ZB6Z5B ZB6DA1 black NO – ZB6Z1B ZB6DA2 NO + NC XB6DA25B ZB6Z5B ZB6DA2 green NO XB6DA31B ZB6Z2B ZB6DA3 NO + NC XB6DA35B ZB6Z5B ZB6DA3 red NO – ZB6Z1B ZB6DA4 NO + NC XB6DA45B ZB6Z5B ZB6DA4 (1) For products with a square head, replace the letter D in the reference by the letter C (XB6DA11B becomes XB6CA11B). For products with a circular head, replace the letter D in the reference by the letter A (XB6DA11B becomes XB6AA11B). (2) Alternative connection: 1 x 0.5 pins for printed circuit boards. Ø 30 mushroom head Emergency stop pushbuttons (3) Type of head Trigger action (EN/ISO 13850) Shape of head cylindrical Type of push Turn to release Complete products Products for user assembly References red 2 NC + 1 NO XB6AS8349B ZB6E2B ZB6Z5B ZB6AS834 Type of push Key release, 200 References red 2 NC + 1 NO XB6AS9349B ZB6E2B ZB6Z5B ZB6AS934 (3) Emergency stop trigger action and mechanical latching pushbuttons conform to standards EN/IEC 60204-1 and EN/ISO 13850, to Machinery Directive 2006/42/EC and to standard EN/IEC 60947-5-5. + 0.2 0 Contact functions = + = + + Selector switches and key switches Type of head Black handle Shape of head rectangular (2) Degree of protection IP 66 / Nema 4, 4X, 13 / Class II Mounting (mm) panel cut-out Ø 16.2 mounting centres 24 x 18 with rectangular head, 18 x 18 with square or circular head Dimensions (mm) W x H x D (below head) 24 x 18 x 50 with rectangular head, 18 x 18 x 50 with square or circular head Connection (3) Tags for 2.8 x 0.5 Faston connectors or for soldering Type of operator Black handle Complete products Products for user assembly Number and type of positions 2 positions 2 positions 2 positions stay put stay put spring return to centre References NO XB6DD221B ZB6Z1B ZB6DD22 ZB6Z1B ZB6DD24 NO + NC XB6DD225B ZB6Z5B ZB6DD22 ZB6Z5B ZB6DD24 Number and type of positions 3 positions 3 positions 3 positions stay put stay put spring return to centre References NO XB6DD235B ZB6Z5B ZB6DD23 ZB6Z5B ZB6DD25 Type of operator Key, n° 200 Complete products Products for user assembly Number and type of positions 2 positions 2 positions 2 positions stay put stay put spring return to centre References NO + NC XB6DGC5B ZB6Z5B ZB6DGC ZB6Z5B ZB6DGB Number and type of positions 3 positions 3 positions 3 positions stay put stay put spring return to centre References NO + NC XB6DGH5B ZB6Z5B ZB6DGH ZB6Z5B ZB6DGS Illuminated selector switches Type of operator Coloured handle Products for user assembly Number and type of positions 2 positions 3 positions stay put stay put References white NO + NC ZB6Ep1B (1) ZB6Z5B ZB6DD02 ZB6DD03 ZB6YK1 green NO + NC ZB6Ep3B (1) ZB6Z5B ZB6DD02 ZB6DD03 ZB6YK3 red NO + NC ZB6Ep4B (1) ZB6Z5B ZB6DD02 ZB6DD03 ZB6YK4 (1) Basic reference, to be completed by the letter B, G or M indicating the required voltage. See voltage table above. (2) For products with a square head, replace the letter D in the reference by the letter C (XB6DD221B becomes XB6CD221B). For products with a circular head, replace the letter D in the reference by the letter A (XB6DD221B becomes XB6AD221B). (3) Alternative connection: 1 x 0.5 pins for printed circuit boards. (1): Voltage Letter (p) 12…24 V AC/DC (15 mA) B 48…120 V AC (25 mA) G 230…240 V AC (25 mA) M + 0.2 0 Harmony XB6 60° 60° 45° 60° 60° 60° 60° 45° 45° 70° 70° 45° 70° 70° 70° 70° 45° 45° 60° 60° 60° Pushbuttons, switches and pilot lights Ø 16 with plastic bezel Contact functions and light functions with integral LED = + = + = + + LED pilot lights With black bezel With integral lens cap Type of head Protruding LED, Ø 8 mm Covered LED, Ø 8 mm Covered LED, Ø 12 mm Degree of protection IP 40, IP 65 with seal (2) Mounting (mm) panel cut-out Ø 8.2 mm Ø 8.2 mm Ø 12.2 mm mounting centres 12.5 x 12.5 mm 10.5 x 10.5 mm 16.5 x 16.5 mm Dimensions (mm) Ø x Depth (below head) Ø 12 x 32 Ø 10 x 34 Ø 16 x 45 Connection Tags (3) Tags (3) Threaded connectors References (1) green XVLA1p3 XVLA2p3 XVLA3p3 red XVLA1p4 XVLA2p4 XVLA3p4 yellow XVLA1p5 XVLA2p5 XVLA3p5 Tightening key For Ø 8 mm pilot lights For Ø 12 mm pilot lights References XVLX08 XVLX12 (1) Basic reference, to be completed by the number 1, 2, 3 or 4 indicating the required voltage. See voltage table above. (2) For an IP 65 degree of protection, include the seals: XVLZ911 for pilot lights XVLA1pp and XVLA2pp; XVLZ912 for pilot lights XVLA3pp. (3) Tags for 2.8 x 0.5 Faston connectors or for soldering. Sub-assemblies & accessories for Ø 16 plastic bezel control and signalling units Sub-assemblies Bodies for pushbuttons and selector switches Bodies for pilot lights Rated operational characteristics, AC-15: Ue = 240 V and Ie = 1.5 A or Ue = 120 V and Ie = 3 A Consumption Positive operation of contacts conforming to IEC/EN 60947-5-1: NC contacts with positive opening operation, 15 mA 12…24 V AC/DC positive opening force 20 N 25 mA 48…120 V AC 25 mA 230…240 V AC Type of Fixing collar Contacts Pilot light 12 … 24 V 48 … 120 V 230 … 240 V contact + contacts bodies References NO ZB6Z1B ZB6E1B White ZB6EB1B ZB6EG1B ZB6EM1B NC ZB6Z2B ZB6E2B Green ZB6EB3B ZB6EG3B ZB6EM3B 2 NO ZB6Z3B – Red ZB6EB4B ZB6EG4B ZB6EM4B 2 NC ZB6Z4B – Yellow ZB6EB5B ZB6EG5B ZB6EM5B NO + NC ZB6Z5B – Blue ZB6EB6B ZB6EG6B ZB6EM6B LED pilot lights Ø 8 and 12 (1): Voltage Number (p) 5 V (25 mA) 1 12 V (18 mA) 2 24 V (18 mA) 3 48 V (10 mA) 4 Accessories Legend holders 24 x 28 mm (8 x 21 mm legend) 24 x 36 mm (16 x 21 mm legend) Blank legend Background colour without legend yellow or white black or red without legend yellow or white black or red References (10)* ZB6YD20 ZB6YD21 ZB6YD22 ZB6YD30 ZB6YD31 ZB6YD32 Blank legends for legend holders 8 x 21 mm (24 x 28 mm legend holder) 16 x 21 mm (24 x 36 mm legend holder) Background colour – yellow or white black or red – yellow or white black or red References (20)* – ZB6Y1001 ZB6Y2001 – ZB6Y4001 ZB6Y3001 Ø 45 mm yellow legend for mushroom head Emergency stop pushbutton Marking Blank, for engraving EMERGENCY STOP ARRET D’URGENCE References ZB6Y7001 ZB6Y7330 ZB6Y7130 Body/fixing collar Plate Tightening tool Dismantling tool anti-rotation and slackening, for fixing nut for removal of contact blocks References ZB6Y009 (10)* ZB6Y003 (10)* ZB6Y905 (2)* ZB6Y018 (5)* Protective shutter for pushbuttons and switches Connector Blanking plug for rectangular heads for circular and square heads Faston, female IP 65 References ZB6YD001 ZB6YA001 ZB6Y004 (100)* ZB6Y005 (10)* * sold in lots of Harmony XVL Pushbuttons, spring return Type of head Chromium plated circular bezel Degree of protection IP 66 / Nema 4X, 13 / Class I Mounting (mm) panel cut-out Ø 22.5 (22.4 recommended) mounting centres 30 (horizontal) x 40 (vertical) Depth (mm) below head 43 Connection (1) Screw clamp terminals Type of push Flush Flush, booted Unmarked Products Complete For user assembly Complete For user assembly References black NO XB4BA21 ZB4BZ101 ZB4BA2 XB4BP21 ZB4BZ101 ZB4BP2 green NO XB4BA31 ZB4BZ101 ZB4BA3 XB4BP31 ZB4BZ101 ZB4BP3 red NC XB4BA42 ZB4BZ102 ZB4BA4 XB4BP42 ZB4BZ102 ZB4BP4 yellow NO XB4BA51 ZB4BZ101 ZB4BA5 XB4BP51 ZB4BZ101 ZB4BP5 blue NO XB4BA61 ZB4BZ101 ZB4BA6 XB4BP61 ZB4BZ101 ZB4BP6 Type of push Flush With international marking Products Complete For user assembly References green NO XB4BA3311 ZB4BZ101 ZB4BA331 – – – red NC XB4BA4322 ZB4BZ102 ZB4BA432 – – – white NO XB4BA3341 ZB4BZ101 ZB4BA334 – – – black NO XB4BA3351 ZB4BZ101 ZB4BA335 _ _ _ Type of push Projecting Mushroom head, Ø 40 mm Unmarked Products Complete For user assembly Complete For user assembly References black NO – – – XB4BC21 ZB4BZ101 ZB4BC2 red NC XB4BL42 ZB4BZ102 ZB4BL4 – – – Type of push Double-headed pushbuttons Triple-headed pushbuttons Degree of protection IP 66 - IP 69K IP 66 - IP 69K With international marking Products Complete For user assembly Complete For user assembly (A) (B) References (A) NO + NC XB4BL73415 ZB4BZ105 ZB4BL7341 – – – (B) NO + NC + NO – – – XB4BA711237 ZB4BZ103 + ZBE102 ZB4BA71123 (1) Alternative connections: plug-in connector, Faston connectors (6.35 and 2 x 2.8). Ø 40 mm mushroom head Emergency stop pushbuttons (2) Trigger action (EN/ISO 13850) Type of push Push-pull NO + NC Unmarked Products Complete For user assembly References red NO + NC XB4BT845 ZB4BZ105 ZB4BT84 Type of push Turn to release NO + NC References red NO + NC XB4BS8445 ZB4BZ105 ZB4BS844 Type of push Key release NO + NC References red NO + NC XB4BS9445 ZB4BZ105 ZB4BS944 (2) Emergency stop trigger action and mechanical latching pushbuttons conform to standards EN/IEC 60204-1 and EN/ISO 13850, to Machinery Directive 2006/42/EC and to standard EN/IEC 60947-5-5. Harmony XB4 + 0.4 0 Pushbuttons, switches and pilot lights Ø 22 with metal bezel Contact functions + = + = + Contact functions Selector switches and key switches Type of head Chromium plated circular bezel Degree of protection IP 66 / Nema 4X, 13 / Class I Mounting (mm) panel cut-out Ø 22.5 (22.4 recommended) mounting centres 30 (horizontal) x 40 (vertical) Depth (mm) below head 43 Connection (1) Screw clamp terminals Type of operator Key, n° 455 Products Complete For user assembly Complete For user assembly Number and type of positions (2) 2 positions 2 positions 2 positions 2 positions stay put stay put stay put stay put References black NO XB4BG21 ZB4BZ101 ZB4BG2 XB4BG41 ZB4BZ101 ZB4BG4 Number and type of positions 2 positions 2 positions 3 positions 3 positions spring return to left spring return to left stay put stay put References black NO XB4BG61 ZB4BZ101 ZB4BG6 – – – black NO + NO – – – XB4BG33 ZB4BZ103 ZB4BG3 + 0.4 0 Type of operator Handle Products Complete For user assembly Complete For user assembly Number and type of positions 2 positions 2 positions 2 positions 2 positions stay put stay put spring return to left spring return to left References black NO XB4BD21 ZB4BZ101 ZB4BD2 XB4BD41 ZB4BZ101 ZB4BD4 Number and type of positions 3 positions 3 positions 3 positions 3 positions stay put stay put spring return to centre spring return to centre References black NO + NO XB4BD33 ZB4BZ103 ZB4BD3 XB4BD53 ZB4BZ103 ZB4BD5 = + = + Type Double-headed pushbuttons with LED pilot light Illuminated selector switches (1 flush green push, 1 projecting red push) (2 position stay put) Degree of protection IP 66 - IP 69K IP 66 Light source Integral LED Integral LED Products Complete Complete Supply voltage 24 V AC/DC 110…120 V AC 230…240 V AC 24 V AC/DC 110…120 V AC 230…240 V AC References green NO + NC – – – XB4BK123B5 XB4BK123G5 XB4BK123M5 red NO + NC – – – XB4BK124B5 XB4BK124G5 XB4BK124M5 orange NO + NC – – – XB4BK125B5 XB4BK125G5 XB4BK125M5 White NO + NC XB4BW73731B5 XB4BW73731G5 XB4BW73731M5 – – – (1) Alternative connections: plug-in connector, Faston connectors (6.35 and 2 x 2.8), spring clamp terminal. Harmony XB4 Pushbuttons, switches and pilot lights Ø 22 with metal bezel Light functions Pilot lights Type of head Circular bezel Smooth lens cap Degree of protection IP 66 / Nema 4X, 13 / Class I Mounting (mm) panel cut-out Ø 22.5 (22.4 recommended) mounting centres 30 (horizontal) x 40 (vertical) Depth below head 43 Connection (1) Screw clamp terminals Light source Integral LED Direct supply for BA 9s bulb (not included) Products Complete Complete For user assembly Supply voltage 24 V AC/DC 110…120 V AC 230…240 V AC 250 V max., 2.4 W max. References white XB4BVB1 XB4BVG1 XB4BVM1 XB4BV61 ZB4BV6 ZB4BV01 green XB4BVB3 XB4BVG3 XB4BVM3 XB4BV63 ZB4BV6 ZB4BV03 red XB4BVB4 XB4BVG4 XB4BVM4 XB4BV64 ZB4BV6 ZB4BV04 yellow XB4BVB5 XB4BVG5 XB4BVM5 XB4BV65 ZB4BV6 ZB4BV05 blue XB4BVB6 XB4BVG6 XB4BVM6 – – – + 0.4 0 Illuminated pushbuttons and selector switches Type Flush push, spring return, illuminated pushbuttons Light source Integral LED Direct supply for BA 9s bulb (not included) Products Complete Complete For user assembly Supply voltage 24 V AC/DC 110…120 V AC 230…240 V AC 250 V max., 2.4 W max. References white NO + NC XB4BW31B5 XB4BW31G5 XB4BW31M5 XB4BW3165 ZB4BW065 ZB4BW31 green NO + NC XB4BW33B5 XB4BW33G5 XB4BW33M5 XB4BW3365 ZB4BW065 ZB4BW33 red NO + NC XB4BW34B5 XB4BW34G5 XB4BW34M5 XB4BW3465 ZB4BW065 ZB4BW34 orange NO + NC XB4BW35B5 XB4BW35G5 XB4BW35M5 XB4BW3565 ZB4BW065 ZB4BW35 blue NO + NC XB4BW36B5 XB4BW36G5 XB4BW36M5 – – – = + = + Separate components and accessories Electrical blocks (1) (2) Single contact blocks Light blocks with integral LED Light block, direct supply Rated operational characteristics AC-15, 240 V - 3 A Consumption 18 mA 24 V AC/DC Positive operation of contacts NC contacts with positive opening operation 14 mA 120 V AC conforming to IEC/EN 60947-5-1 14 mA 240 V AC Screw clamp terminal Spring clamp terminal To combine with heads for integral LED For BA 9s bulb (not included) 24 V AC/DC 110…120 V AC 230…240 V AC 250 V max., 2.4 W max. References (5)* NC ZBE101 ZBE1015 white ZBVB1 ZBVG1 ZBVM1 ZBV6 NO ZBE102 ZBE1025 green ZBVB3 ZBVG3 ZBVM3 Colour provided by lens red ZBVB4 ZBVG4 ZBVM4 orange ZBVB5 ZBVG5 ZBVM5 blue ZBVB6 ZBVG6 ZBVM6 Diecast metal enclosures (Zinc alloy, usable depth 49 mm) 1 vertical row 2 vertical rows Number of cut-outs Front face dimensions 1 2 3 4 2 4 6 References 80 x 80 mm XAPM1201 – – – XAPM1202 – – 80 x 130 mm – XAPM2202 XAPM2203 – – XAPM2204 – 80 x 175 mm – – XAPM3203 XAPM3204 – – XAPM3206 Accessories (2) Legend holders, 30 x 40 mm, for 8 x 27 mm legends Marking Background colour: black or red white or yellow References (10)* Blank ZBY2101 ZBY4101 International 0 (red background) ZBY2931 I ZBY2147 AUTO ZBY2115 STOP ZBY2304 – English OFF ZBY2312 ON ZBY2311 START ZBY2303 – – French ARRET (red b/grnd) ZBY2104 ARRET-MARCHE ZBY2166 MARCHE ZBY2103 – – German AUS ZBY2204 AUS-EIN ZBY2266 EIN ZBY2203 – – Spanish PARADA (red b/grnd) ZBY2404 PARADA-MARCHA ZBY2466 MARCHA ZBY2403 – – Legend holders, 30 x 50 mm, for 18 x 27 mm legends Background colour black or red white or yellow References (10)* Blank ZBY6101 ZBY6102 Ø 60 mm legend for mushroom head Emergency stop pushbutton Background colour yellow Marking Blank EMERGENCY STOP ARRET D’URGENCE NOT HALT PARADA DE EMERGENCIA References ZBY9140 ZBY9330 ZBY9130 ZBY9230 ZBY9430 (1) Alternative connections: plug-in connector, Faston connectors (6.35 and 2 x 2.8), spring clamp terminal. (2) Electrical blocks and accessories also for use with Harmony XB5 plastic range * sold in lots of Type of push Double-headed pushbuttons Triple-headed pushbuttons Degree of protection IP 66 - IP 69K IP 66 - IP 69K With international marking Products Complete (A) For user assembly Complete (B) For user assembly References (A) NO + NC XB5AL73415 ZB5AZ105 ZB5AL7341 – – – (B) NO + NC + NO – – – XB5AA711237 ZB5AZ103 + ZBE102 ZB5AA71123 (1) Alternative connections: plug-in connector, Faston connectors (6.35 and 2 x 2.8). Harmony XB5 Pushbuttons, switches and pilot lights Ø 22 with plastic bezel Contact functions Pushbuttons, spring return Type of head Circular bezel Degree of protection IP 66 / Nema 4X, 13 / Class II Mounting (mm) panel cut-out Ø 22.5 (22.4 recommended) mounting centres 30 (horizontal) x 40 (vertical) Depth (mm) below head 43 Connection (1) Screw clamp terminals + 0.4 0 Type of push Flush Flush, booted Unmarked Products Complete For user assembly Complete For user assembly References black NO XB5AA21 ZB5AZ101 ZB5AA2 XB5AP21 ZB5AZ101 ZB5AP2 green NO XB5AA31 ZB5AZ101 ZB5AA3 XB5AP31 ZB5AZ101 ZB5AP3 red NC XB5AA42 ZB5AZ102 ZB5AA4 XB5AP42 ZB5AZ102 ZB5AP4 yellow NO XB5AA51 ZB5AZ101 ZB5AA5 XB5AP51 ZB5AZ101 ZB5AP5 blue NO XB5AA61 ZB5AZ101 ZB5AA6 XB5AP61 ZB5AZ101 ZB5AP6 Type of push Flush With international marking Products Complete For user assembly Complete For user assembly References green NO XB5AA3311 ZB5AZ101 ZB5AA331 – – – red NC XB5AA4322 ZB5AZ102 ZB5AA432 – – – white NO XB5AA3341 ZB5AZ101 ZB5AA334 – – – black NO XB5AA3351 ZB5AZ101 ZB5AA335 – – – Type of push Projecting Mushroom head, Ø 40 mm Unmarked Products Complete For user assembly Complete For user assembly References black NO – – – XB5AC21 ZB5AZ101 ZB5AC2 red NC XB5AL42 ZB5AZ102 ZB5AL4 – – – Ø 40 mm mushroom head Emergency stop pushbuttons (2) Trigger action (EN/ISO 13850) Type of push Push-pull NO + NC Unmarked Products Complete For user assembly References red NO + NC XB5AT845 ZB5AZ105 ZB5AT84 Type of push Turn to release NO + NC References red NO + NC XB5AS8445 ZB5AZ105 ZB5AS844 Type of push Key release NO + NC References red NO + NC XB5AS9445 ZB5AZ105 ZB5AS944 (2) Emergency stop trigger action and mechanical latching pushbuttons conform to standards EN/IEC 60204-1 and EN/ISO 13850: to Machinery Directive 2006/42/EC and to standard EN/IEC 60947-5-5. + = + = + 10 Contact functions Selector switches and key switches Type of head Circular bezel Degree of protection IP 66 / Nema 4X, 13 / Class II Mounting (mm) panel cut-out Ø 22.5 (22.4 recommended) mounting centres 30 (horizontal) x 40 (vertical) Depth (mm) below head 43 Connection (1) Screw clamp terminals Type of operator Handle Products Complete For user assembly Complete For user assembly Number and type of positions 2 positions 2 positions 2 positions 2 positions stay put stay put spring return to left spring return to left References black NO XB5AD21 ZB5AZ101 ZB5AD2 XB5AD41 ZB5AZ101 ZB5AD4 Number and type of positions 3 positions 3 positions 3 positions 3 positions stay put stay put spring return to centre spring return to centre References black NO + NO XB5AD33 ZB5AZ103 ZB5AD3 XB5AD53 ZB5AZ103 ZB5AD5 Type of operator Key, n° 455 Number and type of positions (2) 2 positions 2 positions 2 positions 2 positions stay put stay put stay put stay put References black NO XB5AG21 ZB5AZ101 ZB5AG2 XB5AG41 ZB5AZ101 ZB5AG4 (2) The symbol indicates key withdrawal position. + 0.4 0 = + 11 Harmony XB5 Pushbuttons, switches and pilot lights Ø 22 with plastic bezel Light functions Pilot lights Type of head Circular bezel Smooth lens cap Degree of protection IP 66 / Nema 4X, 13 / Class II Mounting (mm) panel cut-out Ø 22.5 (22.4 recommended) mounting centres 30 (horizontal) x 40 (vertical) Depth below head 43 Connection (1) Screw clamp terminals Light source Integral LED Direct supply for BA 9s bulb (not included) Products Complete Complete For user assembly Supply voltage 24 V AC/DC 110…120 V AC 230…240 V AC 250 V max., 2.4 W max. References white XB5AVB1 XB5AVG1 XB5AVM1 XB5AV61 ZB5AV6 ZB5AV01 green XB5AVB3 XB5AVG3 XB5AVM3 XB5AV63 ZB5AV6 ZB5AV03 red XB5AVB4 XB5AVG4 XB5AVM4 XB5AV64 ZB5AV6 ZB5AV04 orange XB5AVB5 XB5AVG5 XB5AVM5 XB5AV65 ZB5AV6 ZB5AV05 blue XB5AVB6 XB5AVG6 XB5AVM6 – – – Illuminated pushbuttons and selector switches Type Flush push, spring return, illuminated pushbuttons Light source Integral LED Direct supply for BA 9s bulb (not included) Products Complete Complete For user assembly Supply voltage 24 V AC/DC 110…120 V AC 230…240 V AC 250 V max., 2.4 W max. References white NO + NC XB5AW31B5 XB5AW31G5 XB5AW31M5 XB5AW3165 ZB5AW065 ZB5AW31 green NO + NC XB5AW33B5 XB5AW33G5 XB5AW33M5 XB5AW3365 ZB5AW065 ZB5AW33 red NO + NC XB5AW34B5 XB5AW34G5 XB5AW34M5 XB5AW3465 ZB5AW065 ZB5AW34 orange NO + NC XB5AW35B5 XB5AW35G5 XB5AW35M5 XB5AW3565 ZB5AW065 ZB5AW35 blue NO + NC XB5AW36B5 XB5AW36G5 XB5AW36M5 – – – Type Double-headed pushbuttons with LED pilot light Illuminated selector switches (1 flush green push, 1 projecting red push) (2 position stay put) Degree of protection IP 66 - IP 69K IP 66 Light source Integral LED Integral LED Products Complete Complete Supply voltage 24 V AC/DC 110…120 V AC 230…240 V AC 24 V AC/DC 110…120 V AC 230…240 V AC References green NO + NC – – – XB5AK123B5 XB5AK123G5 XB5AK123M5 red NO + NC – – – XB5AK124B5 XB5AK124G5 XB5AK124M5 orange NO + NC – – – XB5AK125B5 XB5AK125G5 XB5AK125M5 white NO + NC XB5AW73731B5 XB5AW73731G5 XB5AW73731M5 – – – (1) Alternative connections: plug-in connector, Faston connectors (6.35 and 2 x 2.8), spring clamp terminal. + 0.4 0 = + = + 12 Separate components and accessories: see page 9. Control stations For XB5 pushbuttons, switches and pilot lights Ø 22 with plastic bezel Harmony XAL (1) Empty enclosures: Basic reference: XALK0p, replace the p by the number of cut-outs required (see cut-out table above) (1): Number of cut-outs Number (p) 1 1 2 2 3 3 4 4 5 5 Complete stations with 1 pushbutton, selector switch or key switch (light grey RAL 7035 base with dark grey RAL 7016 lid) Degree of protection IP 65 / Nema 4X and 13 / Class II Dimensions (mm) W x H x D 68 x 68 x 113 max. (with key release Ø 40 mushroom head pushbutton) Fixing (mm) 2 x Ø 4.3 on 54 mm centres Function 1 Start or Stop function 1 Start-Stop function Marking On spring return push On legend holder and legend below head Number and type of pushbutton/selector switch/key switch 1 flush green p/b 1 flush red p/b 1 projecting red p/b 1 2 position stay put selector switch or key switch Black handle Key n° 455 (key withdrawal LH pos.) References NO I XALD102 – – – – Start XALD103 – – – – O - I – – – XALD134 XALD144 O – XALD112 XALD115 – – Function Emergency stop (2) (light grey RAL 7035 base with yellow RAL 1012 lid) Number and type of mushroom head pushbutton 1 red Ø 40 head, turn to release 1 red Ø 40 head, key release Latching mechanism Trigger action (EN/ISO 13850) Trigger action (EN/ISO 13850) References NC XALK178 XALK188 NC + NC XALK178F XALK188F NO + NC XALK178E XALK188E NC + NC + NO XALK178G XALK188G (2) Emergency stop trigger action and mechanical latching pushbuttons conform to standards EN/IEC 60204-1 and EN/ISO 13850, to Machinery Directive 2006/42/EC and to standard EN/IEC 60947-5-5. (1) Empty enclosures: Basic reference: XALD0p, replace the p by the number of cut-outs required (see cut-out table above) Complete stations with 2 and 3 pushbuttons or 2 pushbuttons + 1 pilot light (light grey RAL 7035 base with dark grey RAL 7016 lid) Dimensions (mm) W x H x D 2-way control stations: 68 x 106 x 62; 3-way control stations: 68 x 136 x 87 Fixing (mm) 2-way control stations: 2 x Ø 4.3 on 54 x 68 centres; 3-way control stations: 2 x Ø 4.3 on 54 x 98 centres Function Start-Stop functions 2 functions 3 functions Marking On spring return push Number and type of pushbutton/pilot light 1 flush green p/b 1 flush green pushbutton 1 flush white p/b 1 flush white p/b 1 flush white p/b 1 flush red p/b 1 flush red pushbutton 1 flush black p/b 1 flush red p/b 1 Ø 30 red mush- 1 red pilot light with integral LED 1 flush black p/b room head p/b 1 flush black p/b 24 V AC/DC 230 V AC References NO + NC I - O XALD213 XALD363B XALD363M – – – Start - Stop XALD215 – – – – – NO + NO – – – XALD222 – – NO + NC + NO – – – – XALD324 XALD328 Accessories Standard contact blocks Light blocks with integral LED, colour red Description NO contact NC contact 24 V AC/DC 230 V AC References ZENL1111 ZENL1121 ZALVB4 ZALVM4 13 Harmony XB5R Wireless and batteryless pushbuttons Packages and components Ready to use packs Panel mounting Mobile application Wireless and batteryless 22mm pushbutton assembled on fixing collar Plastic head Metal head Plastic head Metal head Plastic head in handy box Caps 1 black cap 1 set of 10 different coloured caps 1 black cap 1 set of 10 different coloured caps Receiver Non configurable Configurable functions: monostable, bistable, stop/start Non configurable Configurable functions: monostable, bistable, stop/start Relay output 1relay output type RT 3A 2 relays output type RT 3A 1relay output type RT 3A 2 relays output type RT 3A Voltage receiver 24 VDC 24….240 AC/DC 24 VDC 24….240 AC/DC References XB5RFB01 XB4RFB01 XB5RFA02 XB4RFA02 XB5RMB03 XB5RMA04 The pushbutton and receiver are factory paired Transmitter components for wireless and batteryless pushbuttons Plastic mushroom head Plastic head Metal head Wireless and batteryless pushbuttons including - a transmitter fitted with fixing collar - a spring return pushbutton head with clipped-in cap Reference Cap colour White – ZB5RTA1 ZB4RTA1 Black – ZB5RTA2 ZB4RTA2 Green – ZB5RTA3 ZB4RTA3 White I on green background – ZB5RTA331 ZB4RTA331 Red – ZB5RTA4 ZB4RTA4 White O on red background – ZB5RTA432 ZB4RTA432 Yellow – ZB5RTA5 ZB4RTA5 Blue – ZB5RTA6 ZB4RTA6 Black ZB5RTC2 – – Transmitter components for wireless and batteryless rope pull switch Rope pull switch with wireless and batteryless transmitter Reference ZBRP1 14 Components and accessories Configurable receivers Description - 2 buttons (learn, parameter setting) - 6 indicating LEDs (power ON, outputs, signal strenght) Output function Monostable Monostable, bistable Monostable, bistable, stop/start Output type 4 PNP outputs 200 mA / 24V 2 relay outputs type RT 3A Receiver voltage 24 VDC 24….240 AC/DC References ZBRRC ZBRRD ZBRRA Configurable access point (1) Description - 7-segment display - jog dial - 8 indicating LEDs (power ON, functions mode, communication status, signal strength) - external antenna connector and protective plug Output function Monostable Output type 2 RS485 for Modbus RS485 serial line 1 slot for communication module ZBRCETH Receiver voltage 24….240 AC/DC References ZBRN2 ZBRN1 (1) Available 1st quarter 2013. Complementary accessories Relay antennas Communication module Plastic empty boxes Description 1 power-ON LED 2 LEDs reception / transmission 1 RF connector Modbus/TCP protocol 2 RJ45 connectors Handy, 1 cut-out 1 cut-out 2 cut-outs Cable lenght 5m 2m Voltage 24….240 AC/DC Reference ZBRA1 ZBRA2 (1) ZBRCETH (1) ZBRM01 XALD01 XALD02 (1) Available 1st quarter 2013. 15 Pushbuttons Type of head Flush or projecting push circular Degree of protection IP 65, class II, NEMA type 3 and 12 Mounting (mm) panel cut-out Ø 22.4 (0 +0.1) mounting centres 30 (horizontal) x 40 (vertical) Dimensions (mm) Ø x Depth (below head) Ø 29 x 41.5 (Ø 40 x 41.5 for Emergency stop) Connection Screw clamp terminals, 1 x 0.34 mm2 to 1 x 1.5 mm2 Type of push Flush, spring return Flush, push and latching References (10)* white NO XB7NA11 – NO + NC XB7NA15 – black NO XB7NA21 XB7NH21 NO + NC XB7NA25 XB7NH25 green NO XB7NA31 XB7NH31 NO + NC XB7NA35 XB7NH35 red NC XB7NA42 – NO + NC XB7NA45 – yellow NO XB7NA81 – Type of push Flush, spring return Projecting, spring return References green NO XB7NA3131 – red NC – XB7NL4232 white NO XB7NA11341 – black NO XB7NA21341 – NO + NC XB7NA25341 – Selector switches and key switches Type of operator Black handle Key, n° 455 Number and type of positions 2 positions 3 positions 2 positions 3 positions stay put stay put stay put stay put References (10*) NO XB7ND21 – XB7NG21 – NO + NC XB7ND25 – – – 2 NO – XB7ND33 – XB7NG33 Ø 40mm Emmergency Stop trigger action and mechanical latching pushbuttons (EN/ISO 13850, UL) (1) Type of push Turn to release Push, Pull Key release (n° 455) References* red NC XB7 NS8442 XB7 NT842 - red NO + NC XB7 NS8445 XB7 NT845 XB7 NS9445 red 2NC XB7 NS8444 XB7 NT844 XB7 NS9444 (1) Emergency stop trigger action and mechanical latching pushbuttons conform to standards EN/IEC 60204-1 and EN/ISO 13850, to Machinery Directive 2006/42/EC and to standard EN/IEC 60947-5-5. Please consult your Customer Care Centre for a full explanation of these standards and directives. * Sold in lots of 10. Harmony XB7 Pushbuttons, switches and pilot lights Ø 22 with plastic bezel - Monolithic Contact functions 16 Illuminated pushbuttons Type of head Projecting push circular Degree of protection IP 65, class II, NEMA type 12 Mounting (mm) panel cut-out Ø 22.4 (0 +0.1) mounting centres 30 (horizontal) x 40 (vertical) Dimensions (mm) Ø x Depth (below head) Ø 29 x 41.5, (Ø 40 x 41.5 for Emergency stop) Connection Screw clamp terminals, 1 x 0.34 mm2 to 1 x 1.5 mm2 Light source Integral LED BA 9s base fitting Incandescent bulb direct supply (bulb not included) Type of push Spring return References (10)* green NO XB7NW33p1 (1) XB7NW3361 red NO XB7NW34p1 (1) XB7NW3461 NC XB7NW34p2 (1) _ orange NO XB7NW35p1 (1) – blue NO XB7NW36p1 (1) – clear NO XB7NW37p1 (1) – yellow NO XB7NW38p1 (1) XB7NW3561 Type of push Push and latching References (10)* green NO XB7NH03p1 (1) XB7NH0361 red NO XB7NH04p1 (1) XB7NH0461 NC XB7NH04p2 (1) – yellow NO XB7NH08p1 (1) XB7NH0861 Pilot lights (2) Light source Integral LED Ba 9s base fitting incandescent bulb Incandescent bulb direct supply direct through resistor (bulb not included) (bulb included) Supply voltage 24VAC/DC or 120VAC or 230…240VAC 6 or 24 V DC, or 130 V AC 230 V AC References (10)* clear XB7EV07pP (1) XB7EV67P XB7EV77P green XB7EV03pP (1) XB7EV63P XB7EV73P red XB7EV04pP (1) XB7EV64P XB7EV74P yellow XB7EV05pP (1) XB7EV65P XB7EV75P blue XB7EV06pP (1) XB7EV66P XB7EV76P orange XB7EV08pP (1) XB7EV68P XB7EV78P Incandescent bulbs, long life BA 9s base fitting, Ø 11 mm max., length 28 mm max. 6 V (1.2 W) 24 V (2 W) 130 V (2.4 W) References DL1CB006 DL1CE024 DL1CE130 (1) Basic reference, to be completed by the letter B, G or M indicating the required voltage. See voltage table above. (2) Alternative connection: 1 x 6.35 and 2 x 2.8 mm Faston connectors. * sold in lots of 10 Contact functions and light functions (1): Supply voltage for integral LED light source only Letter (p) 24 V AC/DC B 120 V AC G 230 V AC M 17 Pushbuttons, spring return Type of push Flush Projecting Projecting (high guard) Colour of push Multi-colour (set of 7 clip-in coloured caps) Degree of protection IP 66 / Nema 1, 2, 3, 3R, 4, 6, 12 and 13 / Class II Mounting (mm) panel cut-out Ø 31 mounting centres 57.2 x 44.5 (with legend 9001KN2pp), 57.2 x 50.8 (with legend 9001KN3pp) Depth below head (mm) 42 Connection Screw clamp terminals References CO 9001KR1UH13 9001KR3UH13 9001KR2UH13 NO 9001KR1UH5 9001KR3UH5 9001KR2UH5 Mushroom head pushbuttons, latching (1) Emergency switching off Emergency stop Type of push Push-pull Turn-to-Release, trigger action Ø 41 mushroom head Ø 35 mushroom head Ø 40 red mushroom head Degree of protection IP 66 / Nema 1, 2, 3, 3R, 4, 6, 12 and 13 / Class II IP 66 / Nema 1, 2, 3, 3R, 4, 6, 12 and 13 / Class III Mounting (mm) panel cut-out Ø 31 mounting centres 57.2 x 44.5 (with legend 9001KN2pp), 57.2 x 50.8 (with legend 9001KN3pp) 57,2 x 44,5 (without legend plate), 100 x 100 ((with legend plate 9001KN8330) (2) Depth below head (mm) 42 60 Connection Screw clamp terminals References – – – 9001KR16 CO 9001KR9R94H13 9001KR9R20H13 – NC 9001KR9RH6 9001KR9R20H6 – 2NO + 2NC – – 9001KR16H2 NO – – 9001KR16H13 (1) Mushroom head switching off mechanical latching pushbuttons conform to standard IEC 60364-5-53 and EN/IEC 60947-5-5. Mushroom head Emergency stop trigger action and mechanical latching pushbuttons conforming to standard EN/IEC 60204‑1 and EN/ISO 13850, to Machinery directive 2006/42/EC and standard EN/IEC 60947-5-5. Selector switches and key switches Type of operator Long black handle Key, n° 455 positions (2) 3 - spring return 2 - stay put 2 - spring return 3 - stay put 2 - stay put Number and type of positions Degree of protection IP 66 / Nema 1, 2, 3, 3R, 4, 6, 12 and 13 / Class II Mounting (mm) panel cut-out Ø 31 mounting centres 57.2 x 44.5 (with legend 9001KN2pp), 57.2 x 50.8 (with legend 9001KN3pp) Depth below head (mm) 42 Connection Screw clamp terminals References NO – 9001KS11FBH5 9001KS34FBH5 – – CO 9001KS53FBH1 – – 9001KS43FBH1 9001KS11K1RH1 (2) The symbol indicates key withdrawal position. Harmony 9001K/SK Pushbuttons, switches and pilot lights Ø 30 with metal bezel Contact functions 18 (2) For yellow circular Emergency Stop legend plates: see page 9 Pilot lights Type of head Smooth lens cap Degree of protection IP 66 / Nema 1, 2, 3, 3R, 4, 6, 12 and 13 / Class II Mounting (mm) panel cut-out Ø 31 mounting centres 57.2 x 44.5 (with legend 9001KN2pp), 57.2 x 50.8 (with legend 9001KN3pp) Depth below head (mm) 42 Connection Screw clamp terminals Type of light block With high luminosity LED (included) Incandescent BA 9s bulb (included) 24 V AC/DC 48 V AC/DC 120 V AC/DC 230 V AC References green 9001KP35LGG9 9001KP36LGG9 9001KP38LGG9 9001KP7G9 red 9001KP35LRR9 9001KP36LRR9 9001KP38LRR9 9001KP7R9 yellow 9001KP35LYA9 9001KP36LYA9 9001KP38LYA9 9001KP7A9 Illuminated pushbuttons, spring return Type of head Spring return flush push Degree of protection IP 66 / Nema 1, 2, 3, 3R, 4, 6, 12 and 13 / Class II Mounting (mm) panel cut-out Ø 31 mounting centres 57.2 x 44.5 (with legend 9001KN2pp), 57.2 x 50.8 (with legend 9001KN3pp) Depth below head (mm) 42 Connection Screw clamp terminals Type of light block With high luminosity LED (included) Incandescent BA 9s bulb (included) 24 V AC/DC 48 V AC/DC 120 V AC/DC 230 V AC References green CO 9001K3L35LGGH13 9001K3L36LGGH13 9001K3L38LGGH13 9001K2L7RH13 red CO 9001K3L35LRRH13 9001K3L36LRRH13 9001K3L38LRRH13 9001K2L7GH13 yellow CO 9001K3L35LYAH13 9001K3L36LYAH13 9001K3L38LYAH13 9001K2L7AH13 Illuminated Ø 41 mushroom head pushbuttons, latching, high luminosity LED Degree of protection IP 66 / Nema 1, 2, 3, 3R, 4, 6, 12 and 13 / Class II Mounting (mm) panel cut-out Ø 31 mounting centres 57.2 x 44.5 (with legend 9001KN2pp), 57.2 x 50.8 (with legend 9001KN3pp) Depth below head (mm) 42 Connection Screw clamp terminals Type of light block With high luminosity LED (included) Incandescent BA 9s bulb (included) 24 V AC/DC 48 V AC/DC 120 V AC/DC 230 V AC/DC Type of head 2 position, push-pull References red CO 9001KR9P35RH13 9001KR9P36RH13 9001KR9P38RH13 9001KR9P7RH13 Type of head 3 position, push-pull (pull: spring return, centre: stay put, push: spring return) References red NC + NC late break 9001KR8P35RH25 9001KR8P36RH25 9001KR8P38RH25 9001KR8P7RH25 Light functions 19 Contact blocks with protected terminals Type of contact Single contact blocks Connection Screw clamp terminals References CO 9001KA1 NO 9001KA2 NC 9001KA3 CO, late break 9001KA4 NC, late break 9001KA5 NO, early make 9001KA6 Enclosures Type Number of Ø 30 mm cut-outs NEMA ratings Reference Aluminium 1 1, 3, 4, 6, 12, 13 9001KY1 2 1, 3, 4, 6, 12, 13 9001KY2 3 1, 3, 4, 6, 12, 13 9001KY3 4 1, 3, 4, 6, 12, 13 9001KY4 Stainless steel 1 1, 3, 4, 4X, 13 9001KYSS1 2 1, 3, 4, 4X, 13 9001KYSS2 3 1, 3, 4, 4X, 13 9001KYSS3 Legends 44 x 43 mm 57 x 57 mm Ø 60 Ø 90 Type Aluminium Plastic Plastic Colour of legend black background white background Yellow background Marking Blank 9001KN200 9001KN100WP 9001KN9100 9001KN8100 START 9001KN201 9001KN101WP – – STOP (red background) 9001KN202 9001KN102RP – – FORWARD 9001KN206 9001KN106WP – – REVERSE 9001KN207 9001KN107WP – – RESET 9001KN223 9001KN123WP – PULL TO START/ 9001KN379 9001KN179WP – – PUSH TO STOP EMERGENCY STOP – – 9001KN9330 9001KN8330 ARRET D’URGENCE – – 9001KN9330F 9001KN8330F PARADA DE EMERGENCIA – – 9001KN9330S 9001KN8330S Harmony 9001K/SK Pushbuttons, switches and pilot lights Ø 30 with metal bezel Accessories 20 Cam switches 12 and 20 A ratings Harmony K series positions (°) Cam switches, K1 / K2 series Function Switches ON-OFF switches Stepping switches 45° switching angle 90° switching angle with “0” position Degree of protection front face IP 65 (1) IP 65 (1) IP 65 (1) Conventional thermal current (Ith) 12 A 20 A 12 A 20 A 12 A 20 A Rated insulation voltage (Ui) conforming to IEC60947-1 690 V 690 V 690 V Number of positions 2 2 2 + “0” position Number of poles 2 2 2 Dimensions of front plate (mm) 45 x 45 45 x 45 45 x 45 Front mounting method Multifixing plate, 45 x 45 mm K1B002ALH K2B 002ALH K1B1002HLH K2B 1002HLH K1D012QLH K2D012QLH Plastic mounting plate for Ø 22 mm hole K1B002ACH K2B 002ACH K1B1002HCH K2B 1002HCH K1D012QCH K2D012QCH positions (°) Cam switches, K1 / K2 series Function Changeover switches Ammeter switches Voltmeter switches Degree of protection front face IP 65 (1) IP 65 (1) IP 65 (1) Conventional thermal current (Ith) 12 A 20 A 12 A 20 A 12 A 20 A Rated insulation voltage (Ui) conforming to IEC60947-1 690 V 690 V 690 V Number of positions 2 + “0” position 3 + “0” position 6 + “0” position (measurements (3 circuits + “0” position) between 3 phases & N + “0” pos.) Number of poles 2 4 7 Dimensions of front plate (mm) 45 x 45 45 x 45 45 x 45 Front mounting method Multifixing plate, 45 x 45 mm K1D002ULH K2D002ULH K1F003MLH to be compiled * K1F027MLH to be compiled * Plastic mounting plate for Ø 22 mm hole K1D002UCH K2D002UCH K1F003MCH to be compiled * K1F027MCH to be compiled * (1) With seal KZ73 for switch with Multifixing plate, with seal KZ65 for Ø 22 mm hole mounting switches. Seal to be ordered separately. (*) Please consult your Schneider Electric agency. positions (°) Cam switches with key operated lock, K1 series Function Stepping switches Run switches Changeover switches + “0” pos. Degree of protection front face IP 65 IP 65 IP 65 Conventional thermal current (Ith) 12 A 12 A 12 A Rated insulation voltage (Ui) conforming to IEC60947-1 690 V 690 V 690 V Number of positions 2 + “0” position 3 + “0” position 2 + “0” position Number of poles 3 2 2 Dimensions of front plate (mm) 55 x 100 55 x 100 55 x 100 Colour of handle red black red black red black Front mounting method Ø 22 mm hole + Ø 43.5 mm hole K1F022QZ2 K1F022QZ4 K1G043RZ2 K1G043RZ4 K1D002UZ2 K1D002UZ4 12 0 45 34 1-pole 2-pole 12 0 90 34 2-pole 90 1 0 45 2345678 135 180 225 2-pole 45 1 315 0 2345678 1-pole 2-pole 180 1 234 0 90 270 56789 10 11 12 0 1 234 270 315 5678 225 9 10 45 90 11 12 135 0 1 23456789 10 11 12 60 120 123456789 10 11 12 13 14 0 60 120 180 300 1 2345678 0 60 21 positions (°) Cam switches, K10 series Function Switches Changeover switches Ammeter Voltmeter 60° switching angle with “0” position switches switches Degree of protection front face IP 65 IP 65 IP 65 IP 65 Conventional thermal current (Ith) 10 A 10 A 10 A 10 A Rated insulation voltage (Ui) conforming to IEC60947-1 440 V 440 V 440 V 440 V Number of positions 2 2 + “0” position 3 + “0” pos. (1) 6 + “0” pos. (2) Number of poles 1 2 3 2 3 3 3 Dimensions of front plate (mm) 30 x 30 30 x 30 30 x 30 30 x 30 Front mounting method By Ø 16 mm or 22 mm hole K10A001ACH K10B002ACH K10C003ACH K10D002UCH K10F003UCH K10F003MCH K10F027MCH (1) (3 circuits + “0” position). (2) (Measurements between 3 phases and N + “0” position). positions (°) Cam switches, K30 series Function Switches Switches Changeover Starting Starting Reversing ON-OFF with “0” position star-delta 2-speed Degree of protection front face IP 40 IP 40 IP 40 IP 40 IP 40 IP 40 Conventional thermal current (Ith) 32 A 32 A 32 A 32 A 32 A 32 A Rated insulation voltage (Ui) conforming to IEC60947-1 690 V 690 V 690 V 690 V 690 V 690 V Number of positions 2 2 3 3 3 3 Number of poles 3 3 4 4 3 3 3 Dimensions of front plate (mm) 64 x 64 64 x 64 64 x 64 64 x 64 64 x 64 64 x 64 Front mounting method Multifixing K30C003AP(3) K30C003HP(3) K30D004HP(3) K30H004UP(3) K30H001YP(3) K30H004PP(3) K30E003WP(3) (3) To order switches with other thermal current ratings (50, 63, 115, 150 A): replace the number 30 in the reference by 50, 63, 115 or 150 respectively. Example: a switch with a 32 A current rating, for example K30C003AP, becomes K50 C003AP for a current rating of 50 A. Accessories for cam switches K1/K2 Rubber seals for IP 65 degree of protection For use with heads with 45 x 45 mm front plate with 60 x 60 mm front plate with 45 x 45 mm front plate Ø 22 mm hole or 4 hole front mtg. Ø 22 mm hole or 4 hole front mtg. multifixing References* KZ65 KZ66 KZ73 * Sold in lots of 5. Cam switches 10 to 150 A ratings Harmony K series 0 1 23456 60 1-pole 2-pole 3-pole 0 1 2 60 34 300 56789 10 11 12 1-pole 2-pole 3-pole 90 1 2 180 34 0 270 56789 10 11 12 300 1 2 330 34 270 0 30 60 90 56789 10 11 12 0 1 23456 60 1-pole 2-pole 3-pole 0 1 2345678 90 1-pole 2-pole 0 12 60 34 1234 300 56789 10 11 12 13 14 15 16 1-pole 2-pole 3-pole 4-pole 0 12 60 34 1234 300 56789 10 11 12 13 14 15 16 0 1260 34 1234 300 56789 10 11 12 13 14 15 16 0 12 60 34 1234 300 56789 10 11 12 22 Monolithic tower lights Ø 40, Ø 60, Ø 100 mm, complete, pre-wired tower lights Harmony XVC Ø 40 mm / Up to IP54 Complete, pre-wired tower lights Steady light Steady / Flashing light (1) Light source (included) LEDs LEDs Base mount Base mounting Support tube mounting, 17 mm Support tube mounting, 17 mm Buzzer Without buzzer With buzzer + flashing light Degree of protection up to IP54 up to IP54 Voltage 24V AC/DC 24V AC/DC 100-240V AC 24V AC/DC 100 - 240V AC References (2) Red XVC4B1K XVC4B1 XVC4M1 (4) XVC4B15S XVC4M15S (4) Red / orange XVC4B2K XVC4B2 XVC4M2 XVC4B25S XVC4M25S Red / Orange / green XVC4B3K XVC4B3 XVC4M3 XVC4B35S XVC4M35S red / orange / green / blue XVC4B4K XVC4B4 XVC4M4 XVC4B45S XVC4M45S red / orange / green / blue / Clear XVC4B5K XVC4B5 XVC4M5 XVC4B55S XVC4M55S Ø 60 mm / Up to IP54 Complete, pre-wired tower lights Steady light Steady / Flashing light (1) Light source (included) LEDs LEDs Base mount Base mounting Support tube mounting, 22 mm Support tube mounting, 22 mm Base mounting Buzzer Without buzzer With buzzer + flashing light Degree of protection up to IP54 up to IP54 Voltage 24V AC/DC 24V AC/DC 100-240 V AC (4) 24V AC/DC 100-240 V AC (4) References (2) Red XVC6B1K XVC6B1 XVC6M1 (3) XVC6B15S (3) XVC6M15S XVC6M15SK Red / orange XVC6B2K XVC6B2 XVC6M2 (3) XVC6B25S (3) XVC6M25S XVC6M25SK Red / Orange / green XVC6B3K XVC6B3 XVC6M3 (3) XVC6B35S (3) XVC6M35S XVC6M35SK red / orange / green / blue XVC6B4K XVC6B4 XVC6M4 (3) XVC6B45S (3) XVC6M45S XVC6M45SK red / orange / green / blue / Clear XVC6B5K XVC6B5 XVC6M5 (3) XVC6B55S (3) XVC6M55S XVC6M55SK Ø 100 mm / Up to IP54 Complete, pre-wired tower lights Steady / Flashing light (1) Light source (included) LEDs Base mount Base mounting Buzzer Without buzzer With buzzer + flashing light Degree of protection up to IP54 up to IP54 Voltage 24V DC (4) 100-240V AC (4) 24VDC (4) 100-240V AC (4) 24VDC (4) 100-240V AC (4) References (2) Red XVC1B1K XVC1M1K XVC1B1SK XVC1M1SK XVC1B1HK XVC1M1HK Red / orange XVC1B2K XVC1M2K XVC1B2SK XVC1M2SK XVC1B2HK XVC1M2HK Red / Orange / green XVC1B3K XVC1M3K XVC1B3SK XVC1M3SK XVC1B3HK XVC1M3HK red / orange / green / blue XVC1B4K XVC1M4K XVC1B4SK XVC1M4SK - - red / orange / green / blue / Clear XVC1B5K XVC1M5K XVC1B5SK XVC1M5SK - - (1) Flashing function can be simply selected/programmed by wiring (2) The colours are listed in the same order as the mounting order of the illuminated units (from top to bottom) (3) To order products for base mounting, add the letter K to the end of the reference (ex. XVC6M1K) (4) NPN only 23 Monolithic tower lights and accessories Ø 45 mm, complete illuminated beacons Harmony XVDLS / XVC Ø 45 mm / IP40 Illuminated beacons XVDLS Steady light Flashing light Light source Incandescent BA 15d bulb, 5 W max. (not included) “Flash” discharge tube, 0.5 J Degree of protection IP 40 References (1) 24…230 V AC/DC XVDLS3p – 24 V AC/DC – XVDLS6Bp 120 V AC – XVDLS6Gp 230 V AC – XVDLS6Mp (1) To obtain the complete reference, replace the p by the number designating the colour as follow: 3 = green , 4 = red , 5 = orange, 6 = blue, 7 = clear, 8 = yellow. Accessories XVDLS Incandescent bulbs, with BA 15d base Beacons XVDLS Description 24 V, 4 W 120 V, 5 W 230 V, 5 W References DL1BEBS DL1BEGS DL1BEMS XVC4 / XVC6 Mounting accessories Tower lights Ø 40 mm, XVC4 Tower lights Ø 60 mm, XVC6 Description Support tube mounting Support tube mounting Base mounting Support tube mounting Diameter (mm) Ø 90 Ø 84 – Ø 100 Ø 84 – For use with – – – XVC6ppand XVC6pp5S XVC6ppK and XVC6pp5SK XVC6Bpand XVC6Bpp5S, XVC6Mpand XVC6Mp5S Height to be added (mm) 32 24,5 82 30 21,6 82 References Metal fixing plate XVCZ11 – – XVCZ02 XVCZ12 – Plastic fixing plate – XVCZ01 – – – – Wall mounting bracket – – XVCZ31 – – XVCZ32 XVC1 Mounting accessories Tower lights Ø 100 mm, XVC1 Description Vertical support Diameter (mm) Ø 140 Ø 140 – – For use with XVC1ppK and XVC1ppSK XVC1ppHK (with siren) XVC1ppK and XVC1ppSK XVC1ppHK (with siren) Height to be added (mm) 300 306 – – References Metal fixing plate (2) XVCZ13 XVCZ14 – – Metal fixing bracket – – XVCZ23 XVCZ24 (2) Chromium plated-steel extension tube 24 Modular tower lights Ø 70 mm, for customer assembly Harmony XVB Ø 70 mm / Up to IP66 Illuminated beacons XVBL Steady light Flashing light Light source Incandescent BA 15d bulb, Protected BA 15d LED Protected BA 15d LED “Flash” discharge tube 10 W max. (not included) (included) (included) 5 J (2) Degree of protection IP 66 References (1) 12…250 V AC/DC XVBL3p – – – 24 V AC/DC – XVBL0Bp XVBL1Bp XVBL6Bp 120 V AC – XVBL0Gp XVBL1Gp XVBL6Gp 230 V AC – XVBL0Mp XVBL1Mp XVBL6Mp Ø 70 mm / Up to IP66 Tower lights XVBC comprising 2 to 5 signalling units (3) Base units Steady light Flashing light “Flash” light Audible units (90 db at 1 m) Light source – Incandescent Integral Integral “Flash” – BA 15d bulb, 10 W protected LED protected LED discharge tube max. (not included) 5 J (2) Degree of protection IP 66 Base unit references with cover XVBC21 (4) – – – – – without cover XVBC07 (5) – – – – – References (2) 12… 230 V AC/DC – XVBC3p – – – – 24 V AC/DC – – XVBC2Bp XVBC5Bp XVBC6Bp – 120 V AC – – XVBC2Gp XVBC5Gp XVBC6Gp – 230 V AC – – XVBC2Mp XVBC5Mp XVBC6Mp – Audible unit references 12…48 V AC/DC – – – – – XVBC9B unidirectional 120…230 V AC – – – – – XVBC9M (1) To obtain the complete reference, replace thep by the number designating the colour as follow: 3 = green , 4 = red , 5 = orange, 6 = blue, 7 = clear, 8 = yellow. (2) To order a lens unit with a 10 J discharge tube, replace the number 6 by 8 in the reference (example: XVBL6Bp becomes XVBL8Bp). (3) A tower light comprises: 1 base unit + 1 to 5 signalling units maximum. (4) For connection on AS-Interface, order base unit XVBC21A (side cable entry) or XVBC21B (bottom cable entry with M12 connector on flying lead). (5) For indicator banks with “flash” discharge tube unit. 25 Modular tower lights Ø 70 mm, for customer assembly Harmony XVE Ø 70 mm / Up to IP54 Illuminated beacons XVEL Steady light Flashing light Light source Incandescent Integral “Flash” discharge tube, 1 J BA 15d bulb, 5 W max. LED (not included) Degree of protection IP 42/IP 54 (with sealing kit) References (1) 24… 240 V AC/DC XVEL3p – 24 V AC/DC – XVEL2Bp XVEL6Bp 120 V AC – XVEL2Gp XVEL6Gp 230 V AC – XVEL2Mp XVEL6Mp Ø 70 mm / Up to IP54 Indicator banks XVEC comprising 2 to 5 signalling units (2) Base units Steady light Flashing light “Flash” light Audible units (85 db at 1 m) Light source – Incandescent Integral Integral “Flash” – BA 15d bulb, 5 W LED LED discharge tube max. (not included) 1 J Degree of protection IP 42/IP 54 (with sealing kit) Base unit references IP 42 XVEC21 – – – – – IP 54 XVEC21P – – – – – Lens unit references (1) 24…230 V AC/DC – XVEC3p – 24 V AC/DC – – XVEC2Bp XVEC5Bp XVEC6Bp XVEC9B 120 V AC – – XVEC2Gp XVEC5Gp XVEC6Gp XVEC9G 230 V AC – – XVEC2Mp XVEC5Mp XVEC6Mp XVEC9M (1) To obtain the complete reference, replace thep by the number designating the colour as follow: 3 = green , 4 = red , 5 = orange, 6 = blue, 7 = clear, 8 = yellow. (2) A tower light comprises: 1 base unit + 1 to 5 signalling units maximum. 26 Modular tower lights Ø 45, Ø 50 mm, complete or for customer assembly Harmony XVM / XVP Ø 45 mm / IP42 Complete, pre-wired tower light XVM (1) 2 sig. units + integral buzzer (2) Steady light 3 signalling units + integral buzzer (2) Steady light Steady light + “flash” (3) Light source (included) Incandescent BA 15d Incandescent BA 15d Incandescent BA 15d BA 15d bulb, 5 W “Super bright” LED BA 15d bulb, 5 W “Super bright” LED BA 15d bulb, 5 W “Super bright” max. max. max. LED Degree of protection IP 54 Signalling colours Red - Green Red - Orange - Green References 24 V AC/DC XVMB1RGS XVMB2RGSSB XVMB1RAGS XVMB2RAGSSB XVMB1R6AGS XVMB2R6AGSSB 120 V AC/DC (bulb) - 120 V AC (LED) XVMG1RGS XVMG2RGSSB XVMG1RAGS XVMG2RAGSSB XVMG1R6AGS XVMG2R6AGSSB 230 V AC/DC (bulb) - 230 V AC (LED) XVMM1RGS XVMM2RGSSB XVMM1RAGS XVMM2RAGSSB XVMM1RA6GS XVMM2R6AGSSB (1) Tower lights XVM are also available as separate components for customised assembly by the user: please refer to www.schneider-electric.com. (2) To order products without an integral buzzer, delete the letter S at the end of the reference (example: XVMB2RGS becomes XVMB2RG, XVMB2RGSSB becomes XVMB2RGSB). (3) Flash signalling colour: red - 0.8 J. Ø 50 mm / IP65 Tower lights XVP comprising 2 to 5 signalling units (4), black clamping ring (5) Base unit Steady or flashing light signalling “Flash” light signalling Audible units (55…85 dB at 1 m) Light source – Incandescent “Flash” “Flash” – BA 15d bulb, 7 W discharge tube discharge tube max. (not included) 0.3 J 0.6 J Degree of protection IP 65 Base unit with cover XVPC21 – – – – References (6) 250 V max. – XVPC3p – – – 24 V AC/DC (flash) - 24 V DC (buzzer) – – XVPC6Bp – XVPC09B 120 V AC – – – XVPC6Gp XVPC09G 230 V AC – – – XVPC6Mp XVPC09M (4) A tower light comprises: 1 base unit + 1 to 5 signalling units maximum. (5) To order products with a cream clamping ring, add the letter W to the end of the reference (example: base unit + green lens unit: XVPC21W + XVPC33W etc.). (6) To obtain the complete reference, replace thep by the number designating the colour as follow: 3 = green , 4 = red , 5 = orange, 6 = blue, 7 = clear, 8 = yellow. 27 Bulbs Beacons and tower lights XVB / XVP (1) Type of light source Incandescent Incandescent LED (2) Flashing BA 15d base BA 15d base BA 15d base LED (2) 7 W 10 W (not XVP) BA 15d base References 12 V DL1BEJ DL1BLJ – – 24 V DL1BEB DL1BLB DL1BDBp DL1BKBp 48 V DL1BEE DL1BLE – – 120 V DL1BEG DL1BLG DL1BDGp DL1BKGp 230 V DL1BEM DL1BLM DL1BDMp DL1BKMp (1) Tower lights XVP can be fitted with 5 W incandescent bulbs: see beacons XVDLS / XVE. (2) To obtain the complete reference, replace the p by the number designating the colour as follow: 1 = white, 3 = green , 4 = red , 5 = orange, 6 = blue, 8 = yellow. Bulbs Tower lights XVM Type of light source Incandescent LED (3) Flashing “Flash” discharge BA 15d base BA 15d base LED (3) tube, 0.8 Joule 5 W BA 15d base BA 15d base References 24 V DL1EDBS DL2EDBpSB DL1EKBpSB DL6BB 120 V DL1EDGS DL2EDGpSB DL1EKGpSB DL6BG 230 V DL1EDMS DL2EDMpSB DL1EKMpSB DL6BM (3) To obtain the complete reference, replace the p by the number designating the colour as follows: 1 = white, 3 = green , 4 = red , 6 = blue, 8 = orange. Mounting accessories Beacons and tower lights XVB / XVE Tower lights Tower lights XVP XVM Description Aluminium tube Plastic tube Aluminium tube Aluminium tube Aluminium tube Aluminium tube with integral black with integral black with integral black with steel fixing with integral cream with steel fixing plastic fixing base plastic fixing base plastic fixing base bracket plastic fixing base bracket Diameter (mm) Ø 25 Ø 25 Ø 20 Ø 20 Ø 20 Ø 20 Support tubes 60 mm XVEZ13 – – – – – 100 mm – – – XVPC02T XVMZ02 XVMZ02T 112 mm – – XVPC02 (4) – – – 120 mm XVBZ02 – – – – – 140 mm – XVDC02 – – – – 250 mm – – – XVPC03T XVMZ03 XVMZ03T 260 mm – – XVPC03 (4) – – – 400 mm – – – XVPC04T XVMZ04 XVMZ04T 410 mm – – XVPC04 (4) – – – 420 mm XVBZ03 – – – – – 820 mm XVBZ04 – – – – – Fixing plates, for vertical support XVBC12 XVPC12 (4) – for horizontal support XVBZ01 – XVMZ06 (4) To order an aluminium support tube with integral cream fixing base, add the letter W to the end of the reference (example: XVPC02W). Modular tower lights accessories For XVB, XVP, XVE, XVM Harmony XV 28 Rotating beacons Ø 84, 106, 120, 130 mm rotating beacons Harmony XVR Ø 84 / 106 mm Complete, pre-wired rotating beacons Ø 84 mm Ø 106 mm Light source (included) “ Super bright “ LEDs Base mount 3 x Ø 05 Buzzer Without buzzer Degree of protection IP23 (IP 65 with accessories) IP23 (IP 55 with accessories) Voltage 12V AC/DC 24V AC/DC 12V AC/DC 24V AC/DC References Red XVR08J04 XVR08B04 XVR10J04 XVR10B04 Orange XVR08J05 XVR08B05 XVR10J05 XVR10B05 Green XVR08J03 XVR08B03 XVR10J03 XVR10B03 Blue XVR08J06 XVR08B06 XVR10J06 XVR10B06 Ø 120 mm Complete, pre-wired rotating beacons Ø 120 mm Light source (included) “ Super bright “ LEDs Base mount 3 x M5 Buzzer Without buzzer With buzzer Degree of protection IP23 Voltage 12V AC/DC 24V AC/DC 12V AC/DC 24V AC/DC References Red XVR12J04 XVR12B04 XVR12J04S XVR12B04S Orange XVR12J05 XVR12B05 XVR12J05S XVR12B05S Green XVR12J03 XVR12B03 XVR12J03S XVR12B03S Blue XVR12J06 XVR12B06 XVR12J06S XVR12B06S Ø 130 mm Complete, pre-wired rotating beacons Ø 130 mm Light source (included) “ Super bright “ LEDs Base mount 3 x Ø 09 Buzzer Without buzzer Degree of protection IP66 - Resistant to vibration IP66 and IP67 Voltage 12V DC 24V DC 24V AC/DC 120V AC 230V AC References Red XVR13J04 XVR13B04 XVR13B04L XVR13G04L XVR13M04L Orange XVR13J05 XVR13B05 XVR13B05L XVR13G05L XVR13M05L 29 Accesories for rotating mirrors Reflecting prism Rubber base Metal angle bracket Metal fixing plate To be used for/with – Increasing the IP degree Horizontal support Horizontal support Height (mm) – – – 300 References Ø 84 mm XVRZR1 XVRZ081 XVCZ23 – Ø 106 mm XVRZR2 XVRZ082 XVCZ23 XVCZ13 Ø 120 mm XVRZR3 – XVCZ23 XVCZ13 Ø 130 mm XVRZR3 – XVR012L – Electronic alarms and multisound sirens Sirens and electronic alarms Sirens Multisound sirens pre-wired Electronic alarms Panel Mount DIN72 Electronic alarms Panel Mount DIN96 Sound level 106 dB 105 dB 90 dB 96 dB Tones 2 43 16 16 Channels – 8 4 4 Degree of protection IP 53 IP53 IP 54 IP 54 Colors White White Black White Black White References 12/24V AC/DC XVS10BMW – XVS72BMBp (1) XVS72BMWp (1) XVS96BMBp (1) XVS96BMWp (1) 12/24V DC – XVS14BMW – – – – 120V AC XVS10GMW XVS14GMW – – – – 230V AC XVS10MMW XVS14MMW – – – – (1) To obtain a complete reference, replace the p by the letter as follow: P = PNP, N = NPN (ex. XVS72BMBP) Rotating beacons accessories and sound solutions Accessories for rotating beacons Harmony XVR / XVS 30 Type XACA “Pistol grip” Degree of protection IP 65 / Nema 4, 4X / Class II Rated operational characteristics AC 15 (240 V 3 A), DC 13 Conventional thermal current Ithe 10 A Connection Screw clamp terminals, 1 x 2.5 mm2 or 2 x 1.5 mm2 For control of single-speed motors 2-speed motors Dimensions (mm) W x H x D 52 x 295 x 71 (x 85 with ZA2BS834) 52 x 295 x 71 (x 85 with ZA2BS834) Number of operators mechanically interlocked 2 2 Emergency stop without ZA2BS834 without ZA2BS834 References XACA201 XACA2014 XACA207 XACA2074 Type XACA For control of single-speed motors Dimensions (mm) W x H x D 80 x 314 x 70 (x 90 with ZA2BS834) 80 x 440 x 70 (x 90 with ZA2BS844) Number of operators mechanically interlocked between pairs 2 4 Emergency stop without ZA2BS834 without ZA2BS844 References XACA271 XACA2714 XACA471 XACA4714 For control of single-speed motors + I / O Dimensions (mm) W x H x D 80 x 500 x 70 (x 90 with ZA2BS844) 80 x 560 x 70 Number of operators mechanically interlocked between pairs 6 8 Emergency stop without ZA2BS844 without References XACA671 XACA6714 XACA871 Empty enclosures type XACA Number of ways 2 3 4 5 6 8 12 References XACA02 XACA03 XACA04 XACA05 XACA06 XACA08 XACA12 Pendant control stations for control circuits Ready to use Harmony XAC 31 (1) Trigger action mechanically latching Emergency stop pushbuttons conform to standards EN/IEC 60204-32, EN/ISO 13850, Machinery directive 2006/42/EC and standard EN/IEC 60947-5-5. Legends, 30 x 40 mm With symbols conforming to NF E 52-124 With text References ZB2BY4901 ZB2BY4903 ZB2BY4907 ZB2BY4909 ZB2BY4913 ZB2BY4915 ZB2BY4930 ZB2BY2303 ZB2BY2304 References ZB2BY2904 ZB2BY2906 ZB2BY2910 ZB2BY2912 ZB2BY2916 ZB2BY2918 ZB2BY2931 ZB2BY1W140 blank white or yellow background Separate components (for mounting in enclosures XACA) Booted operators white XACA9411 black XACA9412 Mushroom head, latching, trigger action (1) turn to release Ø 40 ZA2BS844 Ø 30 ZA2BS834 Mushroom head, latching, trigger action (1) key release Ø 40 ZA2BS944 Ø 30 ZA2BS934 Selector switch 2 pos. stay put ZA2BD2 3 pos. stay put ZA2BD3 Key switch key n° 455 2 pos. stay put ZA2BG4 3 pos. stay put ZA2BG5 Blanking plug with seal and ZB2SZ3 fixing nut Pilot light heads white ZA2BV01 green ZA2BV03 red ZA2BV04 yellow ZA2BV05 Pilot light bodies direct supply ZB2BV006 direct supply, through resistor ZB2BV007 Protective guard (for base mounted units) For selector switch XACA982/983 For emergency stop pushbutton XACA984 Contact blocks Single-speed NO ZB2BE101 Single-speed NC ZB2BE102 Contacts blocks for XACA941p Single-speed NC+NO XENG1491 2-speed NC+NO+NO XENG1191 Contact blocks (for mounting in enclosure base) NO XACS101 NC+NO XACS105 Isolating switch, slow break, for front mounting Emergency stop NC+NC+NC with positive opening operation XENT1192 Double blocks latching, slow break Single-speed NO+NO XENG3781 Single-speed NO+NC XENG3791 32 Notes 33 ART. 097419 01/2013 - V10.0 DIA4ED2040408EN Head Office 35, rue Joseph Monier - CS 30323 F92500 Rueil-Malmaison Cedex France www.schneider-electric.com The information provided in this documentation contains general descriptions and/or technical characteristics of the performance of the products contained herein. This documentation is not intended as a substitute for and is not to be used for determining suitability or reliability of these products for specific user applications. It is the duty of any such user or integrator to perform the appropriate and complete risk analysis, evaluation and testing of the products with respect to the relevant specific application or use thereof. Neither Schneider Electric nor any of its affiliates or subsidiaries shall be responsible or liable for misuse of the information contained herein. Design : IGS-CP Photos : Schneider Electric Print : http://www.farnell.com/datasheets/1761538.pdf This document was generated on 01/06/2014 PLEASE CHECK WWW.MOLEX.COM FOR LATEST PART INFORMATION Part Number: 39-01-2020 Status: Active Overview: Mini-Fit Jr.™ Power Connectors Description: Mini-Fit Jr.™ Receptacle Housing, Dual Row, UL 94V-2, 2 Circuits Documents: 3D Model Product Specification PS-5556-001 (PDF) Drawing (PDF) Test Summary TS-5556-002 (PDF) Product Specification PS-45750-001 (PDF) RoHS Certificate of Compliance (PDF) Agency Certification CSA LR19980 UL E29179 General Product Family Crimp Housings Series 5557 Application Power, Wire-to-Wire Comments Current = 13A max. per circuit when header is mated to a receptacle loaded with 45750 series terminals crimped to 16 AWG wire. . See Molex product specification PS-45750-001 for additional current derating information.. Glow Wire Equivalent Part. MolexKits Yes Overview Mini-Fit Jr.™ Power Connectors Product Name Mini-Fit Jr.™ UPC 800753584259 Physical Breakaway No Circuits (maximum) 2 Color - Resin Natural Flammability 94V-2 Gender Female Glow-Wire Compliant No Material - Resin Nylon Net Weight 0.657/g Number of Rows 2 Packaging Type Bag Panel Mount No Pitch - Mating Interface 4.20mm Pitch - Termination Interface 4.20mm Polarized to Mating Part Yes Stackable No Temperature Range - Operating -40°C to +105°C Electrical Current - Maximum per Contact 13A Material Info Old Part Number 5557-02R Reference - Drawing Numbers Product Specification PS-45750-001, PS-5556-001, RPS-5557-046 Sales Drawing SD-5557-003 Test Summary TS-5556-002 Series image - Reference only EU RoHS China RoHS ELV and RoHS Compliant REACH SVHC Contains SVHC: No Low-Halogen Status Low-Halogen Need more information on product environmental compliance? Email productcompliance@molex.com For a multiple part number RoHS Certificate of Compliance, click here Please visit the Contact Us section for any non-product compliance questions. Search Parts in this Series 5557Series Mates With 5559 Dual Row, 5566 Vertical with Pegs, 5566 Vertical without Pegs, 5569 Right Angle Dual Row with Flanges, 5569 Right Angle Dual Row with Pegs, 43810 , 44068 , 44281 , 87427 , 42404 , 42440 Use With 5556 Mini-Fit® Female Crimp Terminals, 45750 Mini-Fit® Plus HCS Crimp TerminalThis document was generated on 01/06/2014 PLEASE CHECK WWW.MOLEX.COM FOR LATEST PART INFORMATION This document was generated on 10/10/2013 PLEASE CHECK WWW.MOLEX.COM FOR LATEST PART INFORMATION Part Number: 87439-0400 Status: Active Overview: Pico-Spox™ Wire-to-Board Connector System Description: 1.50mm Pitch Pico-SPOX™ Wire-to-Board Housing, 4 Circuits, Off-White Housing Documents: 3D Model RoHS Certificate of Compliance (PDF) Drawing (PDF) Product Literature (PDF) Product Specification PS-87437 (PDF) Agency Certification CSA LR19980 UL E29179 General Product Family Crimp Housings Series 87439 Application Signal, Wire-to-Board MolexKits Yes Overview Pico-Spox™ Wire-to-Board Connector System Product Literature Order No USA-235 Product Name Pico-SPOX™ UPC 800753537224 Physical Circuits (maximum) 4 Color - Resin Natural Flammability 94V-0 Gender Female Glow-Wire Compliant No Lock to Mating Part Yes Material - Resin Nylon Net Weight 55.000/mg Number of Rows 1 Packaging Type Bag Panel Mount No Pitch - Mating Interface 1.50mm Polarized to Mating Part Yes Stackable No Temperature Range - Operating -55°C to +105°C Electrical Current - Maximum per Contact 2.5A Material Info Reference - Drawing Numbers Product Specification PS-87437, RPS-87437, RPS-87437-001, RPS-87437-200, RPS-87438-002 Sales Drawing SD-87439-**00 Series image - Reference only EU RoHS China RoHS ELV and RoHS Compliant REACH SVHC Contains SVHC: No Low-Halogen Status Low-Halogen Need more information on product environmental compliance? Email productcompliance@molex.com For a multiple part number RoHS Certificate of Compliance, click here Please visit the Contact Us section for any non-product compliance questions. Search Parts in this Series 87439Series Mates With Pico-SPOX™ Wire-to-Board Header 87437 , 87438 Use With 87421 Pico-SPOX™ Crimp Terminal This document was generated on 10/10/2013 PLEASE CHECK WWW.MOLEX.COM FOR LATEST PART INFORMATION PMBFJ620 Dual N-channel field-effect transistor Rev. 2 — 15 September 2011 Product data sheet CAUTION This device is sensitive to ElectroStatic Discharge (ESD). Therefore care should be taken during transport and handling. Table 1. Quick reference data Symbol Parameter Conditions Min Typ Max Unit Per FET VDS drain-source voltage - - 25 V VGSoff gate-source cut-off voltage VDS = 10 V; ID = 1 A 2 - 6.5 V IDSS drain current VGS = 0 V; VDS = 10 V 24 - 60 mA Ptot total power dissipation Ts  90 C - - 190 mW yfs forward transfer admittance VDS = 10 V; ID = 10mA 10 - - mS PMBFJ620 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved. Product data sheet Rev. 2 — 15 September 2011 2 of 14 NXP Semiconductors PMBFJ620 Dual N-channel field-effect transistor 2. Pinning information 3. Ordering information 4. Marking [1] * = p: made in Hong Kong. * = t: made in Malaysia. * = W: made in China. Table 2. Discrete pinning information Pin Description Simplified outline Symbol 1 source (1) 2 source (2) 3 gate (2) 4 drain (2) 5 drain (1) 6 gate (1) 1 2 3 6 5 4 sym034 6 3 2 4 1 5 Table 3. Ordering information Type number Package Name Description Version PMBFJ620 - plastic surface mounted package; 6 leads SOT363 Table 4. Marking Type number Marking code[1] PMBFJ620 A8* PMBFJ620 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved. Product data sheet Rev. 2 — 15 September 2011 3 of 14 NXP Semiconductors PMBFJ620 Dual N-channel field-effect transistor 5. Limiting values 6. Thermal characteristics [1] Ts is the temperature at the soldering point of the gate pins, see Figure 1. Table 5. Limiting values In accordance with the Absolute Maximum Rating System (IEC 60134). Symbol Parameter Conditions Min Max Unit Per FET VDS drain-source voltage - 25 V VGSO gate-source voltage open drain - 25 V VGDO drain-gate voltage open source - 25 V IG forward gate current (DC) - 50 mA Ptot total power dissipation Ts  90 C - 190 mW Tstg storage temperature 65 +150 C Tj junction temperature - 150 C Table 6. Thermal characteristics Symbol Parameter Conditions Typ Unit Rth(j-s) thermal resistance from junction to soldering points single loaded [1] 315 K/W double loaded [1] 160 K/W (1) Double loaded. (2) Single loaded. Fig 1. Power derating curve. Ts (°C) 0 50 100 150 200 001aaa742 200 100 300 400 Ptot (mW) 0 (1) (2) PMBFJ620 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved. Product data sheet Rev. 2 — 15 September 2011 4 of 14 NXP Semiconductors PMBFJ620 Dual N-channel field-effect transistor 7. Static characteristics 8. Dynamic characteristics Table 7. Characteristics Tj = 25 C unless otherwise specified. Symbol Parameter Conditions Min Typ Max Unit Per FET V(BR)GSS gate-source breakdown voltage IG = 1 A; VDS = 0 V 25 - - V VGSoff gate-source cut-off voltage ID = 1 A; VDS = 10 V 2 - 6.5 V VGSS gate-source forward voltage IG = 1 mA; VDS = 0 V - - 1 V IDSS drain-source leakage current VDS = 10 V; VGS = 0 V 24 - 60 mA IGSS gate-source leakage current VGS = 15 V; VDS = 0 V - - 1 nA RDSon drain-source on-state resistance VGS = 0 V; VDS = 100mV - 50 -  yfs common source forward transfer admittance ID = 10 mA; VDS = 10 V 10 - - mS yos common source output admittance ID = 10 mA; VDS = 10 V - - 250 S Table 8. Characteristics Tj = 25 C unless otherwise specified. Symbol Parameter Conditions Min Typ Max Unit Per FET Ciss input capacitance VDS = 10 V; VGS = 10 V; f =1 MHz - 3 5 pF VDS = 10 V; VGS = 0 V; Tamb = 25 C - 6 - pF Crss reverse transfer capacitance VDS = 0 V; VGS = 10 V; f = 1 MHz - 1.3 2.5 pF gis common source input conductance VDS = 10 V; ID = 10 mA; f = 100 MHz - 200 - S VDS = 10 V; ID = 10 mA; f = 450 MHz - 3 - mS gfs common source transfer conductance VDS = 10 V; ID = 10 mA; f = 100 MHz - 13 - mS VDS = 10 V; ID = 10 mA; f = 450 MHz - 12 - mS grs common source reverse conductance VDS = 10 V; ID = 10 mA; f = 100 MHz - 30 - S VDS = 10 V; ID = 10 mA; f = 450 MHz - 450 - S gos common source output conductance VDS = 10 V; ID = 10 mA; f = 100 MHz - 150 - S VDS = 10 V; ID = 10 mA; f = 450 MHz - 400 - S Vn equivalent input noise voltage VDS = 10 V; ID = 10 mA; f = 100 Hz - 6 - nV/Hz PMBFJ620 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved. Product data sheet Rev. 2 — 15 September 2011 5 of 14 NXP Semiconductors PMBFJ620 Dual N-channel field-effect transistor VDS = 10 V; Tj = 25 C. VDS = 10 V; ID = 10 mA; Tj = 25 C. Fig 2. Drain current as a function of gate-source cut-off voltage; typical values. Fig 3. Common source forward transfer admittance as a function of gate-source cut-off voltage; typical values. VDS = 10 V; ID = 10 mA; Tj = 25 C. VDS = 100 mV; VGS = 0 V; Tj = 25 C. Fig 4. Common-source output conductance as a function of gate-source cut-off voltage; typical values. Fig 5. Drain-source on-state resistance as a function of gate-source cut-off voltage; typical values. VGSoff (V) 0 −1 −2 −3 −4 mcd220 20 30 10 40 50 IDSS (mA) 0 0 −2 −4 −8 mcd219 −6 20 0 16 12 8 yfs (mS) 4 VGSoff (V) 0 150 100 50 0 −1 −2 −4 mcd221 −3 gos (μS) VGSoff (V) 0 −1 −2 −4 80 60 20 0 40 mcd222 −3 RDSon (Ω) VGSoff (V) PMBFJ620 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved. Product data sheet Rev. 2 — 15 September 2011 6 of 14 NXP Semiconductors PMBFJ620 Dual N-channel field-effect transistor Tj = 25 C. VDS = 10 V; Tj = 25 C. Fig 6. Typical output characteristics. Fig 7. Typical transfer characteristics. VDS = 10 V; Tj = 25 C. VDS = 10 V; Tj = 25 C. Fig 8. Reverse transfer capacitance as a function of gate-source voltage; typical values. Fig 9. Input capacitance as a function of gate-source voltage; typical values. VDS (V) 0 4 8 12 16 mcd217 20 10 30 40 ID (mA) 0 (2) (4) (1) (5) (6) (3) −4 −3 −2 0 40 30 10 0 20 mcd214 −1 ID (mA) VGS (V) −10 −4 0 4 3 1 0 2 mcd224 −8 −6 −2 Crs (pF) VGS (V) −10 0 10 0 mcd223 −8 −6 −4 −2 8 6 4 2 Cis (pF) VGS (V) PMBFJ620 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved. Product data sheet Rev. 2 — 15 September 2011 7 of 14 NXP Semiconductors PMBFJ620 Dual N-channel field-effect transistor VDS = 10 V; Tj = 25 C. Fig 10. Drain current as a function of gate-source voltage; typical values. Tj = 25 C. Fig 11. Gate current as a function of drain-gate voltage; typical values. mcd229 1 10−2 10−1 102 10 103 ID (μA) 10−3 VGS (V) −2.5 −2.0 −1.5 −1.0 −0.5 0 mcd230 −10 −1 −103 −102 −104 IGSS (pA) −10−1 VDG (V) 0 4 8 12 16 (1) (2) (3) (4) PMBFJ620 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved. Product data sheet Rev. 2 — 15 September 2011 8 of 14 NXP Semiconductors PMBFJ620 Dual N-channel field-effect transistor Fig 12. Gate current as a function of junction temperature; typical values. mcd231 10 1 103 102 104 IGSS (pA) 10−1 Tj (°C) −25 25 75 125 175 PMBFJ620 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved. Product data sheet Rev. 2 — 15 September 2011 9 of 14 NXP Semiconductors PMBFJ620 Dual N-channel field-effect transistor VDS = 10 V; ID = 10 mA; Tamb = 25 C. VDS = 10 V; ID = 10 mA; Tamb = 25 C. Fig 13. Input admittance as a function of frequency; typical values. Fig 14. Forward transfer admittance as a function of frequency; typical values. VDS = 10 V; ID = 10 mA; Tamb = 25 C. VDS = 10 V; ID = 10 mA; Tamb = 25 C. Fig 15. Reverse transfer admittance as a function of frequency; typical values. Fig 16. Output admittance as a function of frequency; typical values. mcd228 10 1 gis, bis (mS) 10−1 102 f (MHz) 10 102 103 bis gis f (MHz) 10 102 103 mcd227 10 102 gfs,−bfs (mS) 1 gfs −bfs mcd226 f (MHz) 10 102 103 −10−1 −1 −10 −102 brs, grs (mS) −10−2 brs grs mcd225 10 1 bos, gos (mS) 10−1 102 f (MHz) 10 102 103 bos gos PMBFJ620 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved. Product data sheet Rev. 2 — 15 September 2011 10 of 14 NXP Semiconductors PMBFJ620 Dual N-channel field-effect transistor 9. Package outline Fig 17. Package outline. OUTLINE REFERENCES VERSION EUROPEAN PROJECTION ISSUE DATE IEC JEDEC JEITA SOT363 SC-88 bp w M B D e1 e pin 1 index A A1 Lp Q detail X HE E v M A B A y 0 1 2 mm scale c X 1 2 3 6 5 4 Plastic surface-mounted package; 6 leads SOT363 UNIT A1 max bp c D E e1 HE Lp Q v w y mm 0.1 0.30 0.20 2.2 1.8 0.25 0.10 1.35 1.15 0.65 e 1.3 2.2 2.0 0.2 0.2 0.1 DIMENSIONS (mm are the original dimensions) 0.45 0.15 0.25 0.15 A 1.1 0.8 04-11-08 06-03-16 PMBFJ620 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved. Product data sheet Rev. 2 — 15 September 2011 11 of 14 NXP Semiconductors PMBFJ620 Dual N-channel field-effect transistor 10. Revision history Table 9. Revision history Document ID Release date Data sheet status Change notice Supersedes PMBFJ620 v.2 20110915 Product data sheet - PMBFJ620 v.1 Modifications: • The format of this data sheet has been redesigned to comply with the new identity guidelines of NXP Semiconductors. • Legal texts have been adapted to the new company name where appropriate. • Package outline drawings have been updated to the latest version. PMBFJ620 v.1 (9397 750 13006) 20040511 Product data sheet - - PMBFJ620 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved. Product data sheet Rev. 2 — 15 September 2011 12 of 14 NXP Semiconductors PMBFJ620 Dual N-channel field-effect transistor 11. Legal information 11.1 Data sheet status [1] Please consult the most recently issued document before initiating or completing a design. [2] The term ‘short data sheet’ is explained in section “Definitions”. [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com. 11.2 Definitions Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information. Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail. Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet. 11.3 Disclaimers Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors. Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer’s own risk. Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer’s sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer’s applications and products planned, as well as for the planned application and use of customer’s third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products. NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer’s applications or products, or the application or use by customer’s third party customer(s). Customer is responsible for doing all necessary testing for the customer’s applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer’s third party customer(s). NXP does not accept any liability in this respect. Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device. Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer’s general terms and conditions with regard to the purchase of NXP Semiconductors products by customer. No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights. Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities. Document status[1][2] Product status[3] Definition Objective [short] data sheet Development This document contains data from the objective specification for product development. Preliminary [short] data sheet Qualification This document contains data from the preliminary specification. Product [short] data sheet Production This document contains the product specification. PMBFJ620 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved. Product data sheet Rev. 2 — 15 September 2011 13 of 14 NXP Semiconductors PMBFJ620 Dual N-channel field-effect transistor Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding. Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications. In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors’ warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors’ specifications such use shall be solely at customer’s own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors’ standard warranty and NXP Semiconductors’ product specifications. 11.4 Trademarks Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners. 12. Contact information For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com NXP Semiconductors PMBFJ620 Dual N-channel field-effect transistor © NXP B.V. 2011. All rights reserved. For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com Date of release: 15 September 2011 Document identifier: PMBFJ620 Advanced Materials Araldite® 2014-1 Structural Adhesives TECHNICAL DATA SHEET Araldite® 2014-1 Two component epoxy paste adhesive Key properties Grey paste High temperature and chemical resistance Low shrinkage Very resistant to water and a variety of chemicals Gap filling, non sagging up to 5mm thickness Description Araldite 2014-1 is a two component, room temperature curing, thixotropic paste adhesive of high strength with good environmental and excellent chemical resistance. Used for bonding of metals, electronic components, GRP structures and many other items where a higher than normal temperature or more aggressive environment is to be encountered in service. The low out gassing makes this product suitable for specialist electronic telecommunication and aerospace applications. Product data Property 2014-1/A 2014-1/B 2014-1 (mixed) Colour (visual) beige paste grey paste grey paste Specific gravity ca. 1.6 ca. 1.6 ca. 1.6 Viscosity at 25°C (Pas) ca. 100 thixotropic thixotropic Pot Life (100 gm at 25 C) - - 60 minutes Shelf life (2-40 C) 3 years 3 years - Processing Pretreatment The strength and durability of a bonded joint are dependant on proper treatment of the surfaces to be bonded. At the very least, joint surfaces should be cleaned with a good degreasing agent such as acetone or other proprietary degreasing agents in order to remove all traces of oil, grease and dirt. Low grade alcohol, gasoline (petrol) or paint thinners should never be used. The strongest and most durable joints are obtained by either mechanically abrading or chemically etching ( pickling ) the degreased surfaces. Abrading should be followed by a second degreasing treatment. Mix ratio Parts by weight Parts by volume Araldite 2014-1/A 100 100 Araldite 2014-1/B 50 50 Araldite 2014-1 is available in cartridges incorporating mixers and can be applied as ready to use adhesive with the aid of the tool recommended by Huntsman Advanced Materials. April 2007 Araldite® 2014-1 2/6 Application of adhesive The resin/hardener mix may be applied manually or robotically to the pretreated and dry joint surfaces. Huntsman's technical support group can assist the user in the selection of an suitable application method as well as suggest a variety of reputable companies that manufacture and service adhesive dispensing equipment. A layer of adhesive 0.05 to 0.10 mm thick will normally impart the greatest lap shear strength to the joint. Huntsman stresses that proper adhesive joint design is also critical for a durable bond. The joint components should be assembled and secured in a fixed position as soon as the adhesive has been applied. For more detailed explanations regarding surface preparation and pretreatment, adhesive joint design, and the dual syringe dispensing system, visit www.araldite2000plus.com. Equipment maintenance All tools should be cleaned with hot water and soap before adhesives residues have had time to cure. The removal of cured residues is a difficult and time-consuming operation. If solvents such as acetone are used for cleaning, operatives should take the appropriate precautions and, in addition, avoid skin and eye contact. Times to minimum shear strength Temperature C 10 15 23 40 60 100 Cure time to reach hours 14 8 3 - - - LSS > 1MPa minutes - - - 60 15 3 Cure time to reach hours 20 11 5 - - - LSS > 10MPa minutes - - - 80 20 4 LSS = Lap shear strength. Typical cured properties Unless otherwise stated, the figures given below were all determined by testing standard specimens made by lapjointing 114 x 25 x 1.6 mm strips of aluminium alloy. The joint area was 12.5 x 25 mm in each case. The figures were determined with typical production batches using standard testing methods. They are provided solely as technical information and do not constitute a product specification. Average lap shear strengths of typical metal-to-metal joints (ISO 4587) Cured for 16 hours at 40°C and tested at 23 C Pretreatment - Sand blasting 0 5 10 15 20 25 Aluminium Steel 37/11 Stainless steel V4A Galvanised steel Copper Brass MPa April 2007 Araldite® 2014-1 3/6 Average lap shear strengths of typical plastic-to-plastic joints (ISO 4587) Cured for 16 hours at 40 C and tested at 23 C. Pretreatment - Lightly abrade and alcohol degrease. 0 2 4 6 8 10 12 14 GRP CFRP SMC ABS PVC PMMA Polycarbonate Polyamides MPa Lap shear strength versus temperature (ISO 4587) (typical average values) Cure: (a) = 7 days /23 C; (b) = 24 hours/23 C + 30 minutes/80 C 0 5 10 15 20 25 30 °C -40 -20 0 20 40 60 80 100 120 140 MPa a b Roller peel test (ISO 4578) Cured: 16 hours/40 C 3.0 N/mm Glass transition temperature (DSC) Cure: 24 hours at 23 C plus 1 hour at 80 C: ca. 85 C Shear modulus (DIN 53445) Cure: 16 hours/40 C 50 C - 1.2 GPa 75 C - 400 MPa 100 C - 180 Mpa 125 C - 20 Mpa E - modulus (ISO R527) at 23 C 4 GPa April 2007 Araldite® 2014-1 4/6 Flexural Properties (ISO 178) Cure 16 hours/ 40ºC Cure 1 day/ 23°C +30mins/ 80°C tested at 23°C Flexural Strength 61 MPa Flexural Modulus 4355 MPa Tensile strength (ISO R527) at 23 C 26 MPa Elongation at break 0,7% Lap shear strength versus immersion in various media (typical average values) Unless otherwise stated, L.S.S. was determined after immersion for 90 days at 23 C 0 5 10 15 20 25 30 As-made value IMS Gasoline (petrol) Ethyl acetate Acetic acid, 10% Xylene Lubricating oil Paraffin Water at 23°C Water at 60°C Water at 90°C 30 days 60 days 90 days MPa Cure: 16 hour/40°C Lap shear strength versus tropical weathering (40/92, DIN 50015; typical average values) Cure: 16 hours/40C Test: at 23 C 0 5 10 15 20 25 As made value After 30 days After 60 days After 90 days MPa April 2007 Araldite® 2014-1 5/6 Lap shear strength versus heat ageing Cure: 16 hours/40 C 0 5 10 15 20 25 As-made value 30 days/ 70°C 60 days/ 70°C 90 days/ 70°C MPa April 2007 Araldite® 2014-1 6/6 Huntsman Advanced Materials All recommendations for the use of our products, whether given by us in writing, verbally, or to be implied from the results of tests carried out by us, are based on the current state of our knowledge. Notwithstanding any such recommendations the Buyer shall remain responsible for satisfying himself that the products as supplied by us are suitable for his intended process or purpose. Since we cannot control the application, use or processing of the products, we cannot accept responsibility therefor. The Buyer shall ensure that the intended use of the products will not infringe any third party s intellectual property rights. We warrant that our products are free from defects in accordance with and subject to our general conditions of supply. Storage Araldite 2014-1A and Araldite 2014-1/B may be stored for up to 3 years at room temperature provided the components are stored in sealed containers. The expiry date is indicated on the label. Handling precautions Caution Our products are generally quite harmless to handle provided that certain precautions normally taken when handling chemicals are observed. The uncured materials must not, for instance, be allowed to come into contact with foodstuffs or food utensils, and measures should be taken to prevent the uncured materials from coming in contact with the skin, since people with particularly sensitive skin may be affected. The wearing of impervious rubber or plastic gloves will normally be necessary; likewise the use of eye protection. The skin should be thoroughly cleansed at the end of each working period by washing with soap and warm water. The use of solvents is to be avoided. Disposable paper - not cloth towels - should be used to dry the skin. Adequate ventilation of the working area is recommended. These precautions are described in greater detail in the Material Safety Data sheets for the individual products and should be referred to for fuller information. Huntsman Advanced Materials (Switzerland) GmbH Klybeckstrasse 200 4057 Basel Switzerland Tel: +41 (0)61 966 33 33 Fax: +41 (0)61 966 35 19 www.huntsman.com/advanced_materials Huntsman Advanced Materials warrants only that its products meet the specifications agreed with the buyer. Typical properties, where stated, are to be considered as representative of current production and should not be treated as specifications. The manufacture of materials is the subject of granted patents and patent applications; freedom to operate patented processes is not implied by this publication. While all the information and recommendations in this publication are, to the best of our knowledge, information and belief, accurate at the date of publication, NOTHING HEREIN IS TO BE CONSTRUED AS A WARRANTY, EXPRESS OR OTHERWISE. IN ALL CASES, IT IS THE RESPONSIBILITY OF THE USER TO DETERMINE THE APPLICABILITY OF SUCH INFORMATION AND RECOMMENDATIONS AND THE SUITABILITY OF ANY PRODUCT FOR ITS OWN PARTICULAR PURPOSE. The behaviour of the products referred to in this publication in manufacturing processes and their suitability in any given end-use environment are dependent upon various conditions such as chemical compatibility, temperature, and other variables, which are not known to Huntsman Advanced Materials. It is the responsibility of the user to evaluate the manufacturing circumstances and the final product under actual end-use requirements and to adequately advise and warn purchasers and users thereof. Products may be toxic and require special precautions in handling. The user should obtain Safety Data Sheets from Huntsman Advanced Materials containing detailed information on toxicity, together with proper shipping, handling and storage procedures, and should comply with all applicable safety and environmental standards. Hazards, toxicity and behaviour of the products may differ when used with other materials and are dependent on manufacturing circumstances or other processes. Such hazards, toxicity and behaviour should be determined by the user and made known to handlers, processors and end users. Except where explicitly agreed otherwise, the sale of products referred to in this publication is subject to the general terms and conditions of sale of Huntsman Advanced Materials LLC or of its affiliated companies including without limitation, Huntsman Advanced Materials (Europe) BVBA, Huntsman Advanced Materials Americas Inc., and Huntsman Advanced Materials (Hong Kong) Ltd. Huntsman Advanced Materials is an international business unit of Huntsman Corporation. Huntsman Advanced Materials trades through Huntsman affiliated companies in different countries including but not limited to Huntsman Advanced Materials LLC in the USA and Huntsman Advanced Materials (Europe) BVBA in Europe. [Araldite® 2014-1] is a registered trademark of Huntsman Corporation or an affiliate thereof. Copyright © 2007 Huntsman Corporation or an affiliate thereof. All rights reserved. Conforme au règlement (CE) n° 1907/2006 (REACH), Annexe II - France : 1.1 Identifiant du produit 1.3 Renseignements concernant le fournisseur de la fiche de données de sécurité Adresse email de la personne responsable pour cette FDS : Global_Product_EHS_AdMat@huntsman.com Description du produit : Non disponible. 1.2 Utilisations identifiées pertinentes de la substance ou du mélange et utilisations déconseillées SECTION 1: Identification de la substance/du mélange et de la société/l’entreprise Code du produit : 00057058 1.4 Numéro d’appel d’urgence Organisme de conseil/centre antipoison national Fournisseur Numéro de téléphone : EUROPE: +32 35 75 1234 France ORFILA: +33(0)145425959 ASIA: +65 6336-6011 China: +86 20 39377888 Australia: 1800 786 152 New Zealand: 0800 767 437 USA: +1/800/424.9300 Système Utilisation du produit : adhésif bi-composants Fournisseur : Huntsman Advanced Materials (Europe)BVBA Everslaan 45 3078 Everberg / Belgium Tel.: +41 61 299 20 41 Fax: +41 61 299 20 40 France : ORFILA 01.45.42.59.59 - Hors de France : +33.(0)1.45.42.59.59 Classification Xi; R41, R38 R43 N; R51/53 : Dangers pour la santé : humaine Risque de lésions oculaires graves. Irritant pour la peau. Peut entraîner une sensibilisation par contact avec la peau. Dangers pour : l’environnement Toxique pour les organismes aquatiques, peut entraîner des effets néfastes à long terme pour l'environnement aquatique. Pour plus de détails sur les conséquences en termes de santé et les symptômes, reportez-vous à la section 11. SECTION 2: Identification des dangers 2.1 Classification de la substance ou du mélange Définition du produit : Working pack (preparation) Voir section 16 pour le texte intégral des phrases R et mentions H déclarées ci-dessus. Classification selon la directive 1999/45/CE [DPD] Le produit est classé dangereux selon la directive 1999/45/CE et ses amendements. 2.2 Éléments d’étiquetage Date d'édition / Date de révision : 3 Août 2011 1/19 ARALDITE 2014-1 Conforme au règlement (CE) n° 1907/2006 (REACH), Annexe II - France Date d'impression : Date d'édition : 3 Août 2011 3 Août 2011 N° de FDS. Version : : 00057058 1 2/19 SECTION 2: Identification des dangers Autres dangers qui ne : donnent pas lieu à une classification Non disponible. Récipients devant être pourvus d'une fermeture de sécurité pour les enfants Non applicable. Avertissement tactile de danger Non applicable. : : Exigences d‘emballages spéciaux Symbole(s) de danger Conseils de prudence S26- En cas de contact avec les yeux, laver immédiatement et abondamment avec de l'eau et consulter un spécialiste. S39- Porter un appareil de protection des yeux/du visage. S61- Éviter le rejet dans l'environnement. Consulter les instructions spéciales/la fiche de données de sécurité. R41- Risque de lésions oculaires graves. R38- Irritant pour la peau. R43- Peut entraîner une sensibilisation par contact avec la peau. R51/53- Toxique pour les organismes aquatiques, peut entraîner des effets néfastes à long terme pour l'environnement aquatique. Phrases de risque Ingrédients dangereux : : : : Irritant, Dangereux pour l'environnement produit de réaction: bisphénol-A-épichlorhydrine; résines époxydiques (poids moléculaire moyen < 700) résine époxidique à base de bisphénol F éther diglycidique du 1,4-butanediol N(3-diméthylaminopropyl)-1,3-propylènediamine Indication de danger : 2.3 Autres dangers Éléments d’étiquetage supplémentaires : Contient des composés époxydiques. Voir les informations transmises par le fabricant. Substance/préparation : Working pack (preparation) Nom du Identifiants 67/548/CEE produit/composant SECTION 3: Composition/informations sur les composants % Règlement (CE) Type n° 1272/2008 [CLP] Classification produit de réaction: bisphénol-Aépichlorhydrine; résines époxydiques (poids moléculaire moyen < 700) REACH #: 01- 2119456619-26 CAS: 25068-38-6 13 - 30 Xi; R36/38 R43 N; R51/53 Skin Irrit. 2, H315 Eye Irrit. 2, H319 Skin Sens. 1, H317 Aquatic Chronic 2, H411 [1] résine époxidique à base de bisphénol F REACH #: 01- 2119454392-40 CAS: 9003-36-5 3 - 7 Xi; R36/38 R43 N; R51/53 Skin Irrit. 2, H315 Eye Irrit. 2, H319 Skin Sens. 1, H317 Aquatic Chronic 2, H411 [1] éther diglycidique du 1,4-butanediol REACH #: 01- 2119494060-45 CAS: 2425-79-8 1 - 3 Xn; R20/21 Xi; R36/38 Acute Tox. 4, H312 Acute Tox. 4, H332 [1] Date d'édition / Date de révision : 3 Août 2011 2/19 ARALDITE 2014-1 Conforme au règlement (CE) n° 1907/2006 (REACH), Annexe II - France Date d'impression : Date d'édition : 3 Août 2011 3 Août 2011 N° de FDS. Version : : 00057058 1 3/19 SECTION 3: Composition/informations sur les composants Les limites d'exposition professionnelle, quand elles sont disponibles, sont énumérées à la section 8. Dans l'état actuel des connaissances du fournisseur et dans les concentrations d'application, aucun autre ingrédient présent n'est classé comme dangereux pour la santé ou l'environnement, et donc nécessiterait de figurer dans cette section. Voir section 16 pour le texte intégral des phrases R mentionnées cidessus Voir section 16 pour le texte intégral des mentions H déclarées ci-dessus. R43 R52/53 Skin Irrit. 2, H315 Eye Irrit. 2, H319 Skin Sens. 1, H317 N(3- diméthylaminopropyl)- 1,3-propylènediamine CAS: 10563-29-8 1 - 3 Xn; R21/22 C; R34 R43 Acute Tox. 4, H302 Acute Tox. 4, H312 Skin Corr. 1B, H314 Eye Dam. 1, H318 Skin Sens. 1, H317 [1] diglycidylester de l'acide téréphthalique CAS: 7195-44-0 0.1 - 1 Xi; R36/38 R43 N; R51/53 Skin Irrit. 2, H315 Eye Irrit. 2, H319 Skin Sens. 1, H317 Aquatic Chronic 2, H411 [1] triglycidylester de l'acide trimellitique CAS: 7237-83-4 0.1 - 1 Xi; R36/38 R43 N; R51/53 Skin Irrit. 2, H315 Eye Irrit. 2, H319 Skin Sens. 1, H317 Aquatic Chronic 2, H411 [1] [1] Substance classée avec un danger pour la santé ou l'environnement [2] Substance avec une limite d'exposition au poste de travail [3] La substance remplit les critères des PTB selon le Règlement (CE) n° 1907/2006, Annexe XIII [4] La substance remplit les critères des tPtB selon le Règlement (CE) n° 1907/2006, Annexe XIII Type Contact avec la peau Consulter un médecin immédiatement. Rincer immédiatement les yeux à grande eau, en soulevant de temps en temps les paupières supérieures et inférieures. Vérifier si la victime porte des verres de contact et dans ce cas, les lui enlever. Continuez de rincer pendant 10 minutes au moins. Les brûlures chimiques doivent être traitées sans tarder par un médecin. Rincer la peau contaminée à grande eau. Retirer les vêtements et les chaussures contaminés. Laver abondamment à l'eau les vêtements contaminés avant de les retirer, ou porter des gants. Continuez de rincer pendant 10 minutes au moins. Consulter un médecin. En cas d'affections ou de symptômes, évitez d'exposer plus longuement. Laver les vêtements avant de les réutiliser. Laver les chaussures à fond avant de les remettre. 4.1 Description des premiers secours Transporter la victime à l'extérieur et la maintenir au repos dans une position où elle peut confortablement respirer. S'il ne respire pas, en cas de respiration irrégulière ou d'arrêt respiratoire, que le personnel qualifié pratique la respiration artificielle ou administre de l'oxygène. Il peut être dangereux pour la personne assistant une victime de pratiquer le bouche à bouche. Appelez un médecin en cas de persistance ou d'aggravation des effets néfastes sur la santé. En cas d'évanouissement, placez la personne en position latérale de sécurité et appelez un médecin immédiatement. Assurez-vous d'une bonne circulation d'air. Détacher tout ce qui pourrait être serré, comme un col, une cravate, une ceinture ou un ceinturon. En cas d’inhalation de produits de décomposition lors d’un incendie, les symptômes peuvent être différés. La personne exposée peut avoir besoin de rester sous surveillance médicale pendant 48 heures. Inhalation Contact avec les yeux : : : SECTION 4: Premiers secours Date d'édition / Date de révision : 3 Août 2011 3/19 ARALDITE 2014-1 Conforme au règlement (CE) n° 1907/2006 (REACH), Annexe II - France Date d'impression : Date d'édition : 3 Août 2011 3 Août 2011 N° de FDS. Version : : 00057058 1 4/19 SECTION 4: Premiers secours Rincez la bouche avec de l'eau. Enlever les prothèses dentaires s'il y a lieu. Transporter la victime à l'extérieur et la maintenir au repos dans une position où elle peut confortablement respirer. Si une personne a avalé de ce produit et est consciente, lui faire boire de petites quantités d’eau. Si la personne est indisposée, cesser de la faire boire car des vomissements pourraient entraîner un risque supplémentaire. Ne pas faire vomir sauf indication contraire émanant du personnel médical. En cas de vomissement, maintenez la tête vers le bas pour empêcher le passage des vomissures dans les poumons. Appelez un médecin en cas de persistance ou d'aggravation des effets néfastes sur la santé. Ne rien faire ingérer à une personne inconsciente. En cas d'évanouissement, placez la personne en position latérale de sécurité et appelez un médecin immédiatement. Assurez-vous d'une bonne circulation d'air. Détacher tout ce qui pourrait être serré, comme un col, une cravate, une ceinture ou un ceinturon. Note au médecin traitant En cas d’inhalation de produits de décomposition lors d’un incendie, les symptômes peuvent être différés. La personne exposée peut avoir besoin de rester sous surveillance médicale pendant 48 heures. Ingestion : : Traitements spécifiques Protection des sauveteurs : Aucune initiative ne doit être prise qui implique un risque individuel ou en l’absence de formation appropriée. Il peut être dangereux pour la personne assistant une victime de pratiquer le bouche à bouche. Laver abondamment à l'eau les vêtements contaminés avant de les retirer, ou porter des gants. 4.2 Effets et symptômes les plus importants, aigus ou différés Effets aigus potentiels sur la santé Inhalation : L'exposition aux produits de décomposition peut présenter des risques pour la santé. Les effets graves d’une exposition peuvent être différés. Irritant pour la bouche, Ingestion : la gorge et l'estomac. Contact avec la peau : Irritant pour la peau. Peut entraîner une sensibilisation par contact avec la peau. Contact avec les yeux : Gravement irritant pour les yeux. Risque de lésions oculaires graves. Signes/symptômes de surexposition Contact avec la peau Ingestion Inhalation Aucune donnée spécifique. Aucune donnée spécifique. Les symptômes néfastes peuvent éventuellement comprendre ce qui suit: irritation rougeur : : : Contact avec les yeux : Les symptômes néfastes peuvent éventuellement comprendre ce qui suit: douleur ou irritation larmoiement rougeur 4.3 Indication quant à la nécessité d’une prise en charge médicale immédiate ou d’un traitement spécial : Traitement symptomatique et thérapie de soutien comme indiqué. Après une exposition sévère le patient doit être gardé sous contrôle médical pendant au moins 48 heures. Utiliser un agent extincteur approprié pour étouffer l'incendie avoisinant. 5.1 Moyens d’extinction Aucun connu. Moyens d’extinction appropriés : Moyens d’extinction inappropriés : SECTION 5: Mesures de lutte contre l’incendie 5.2 Dangers particuliers résultant de la substance ou du mélange Date d'édition / Date de révision : 3 Août 2011 4/19 ARALDITE 2014-1 Conforme au règlement (CE) n° 1907/2006 (REACH), Annexe II - France Date d'impression : Date d'édition : 3 Août 2011 3 Août 2011 N° de FDS. Version : : 00057058 1 5/19 SECTION 5: Mesures de lutte contre l’incendie En présence d'incendie, circonscrire rapidement le site en évacuant toute personne se trouvant près des lieux de l'accident. Aucune initiative ne doit être prise qui implique un risque individuel ou en l’absence de formation appropriée. Ce produit est toxique pour les organismes aquatiques. L'eau du réseau d'extinction d'incendie qui a été contaminée par ce produit doit être conservée en milieu fermé et ne doit être déversée ni dans le milieu aquatique, ni aucun égout ou conduit d'évacuation. Risque lié aux produits de décomposition thermique Dangers dus à la substance ou au mélange Les produits de décomposition peuvent éventuellement comprendre les substances suivantes: dioxyde de carbone monoxyde de carbone oxydes d'azote oxydes de soufre oxyde/oxydes de métal L’augmentation de pression résultant d’un incendie ou d’une exposition à des températures élevées peut provoquer l’explosion du conteneur. Les pompiers devront porter un équipement de protection approprié ainsi qu'un appareil de protection respiratoire autonome avec masque intégral fonctionnant en mode pression positive. Les vêtements pour sapeurs-pompiers (y compris casques, bottes de protection et gants) conformes à la Norme européenne EN 469 procurent un niveau de protection de base contre les accidents chimiques. Équipement de protection spécial pour le personnel préposé à la lutte contre l'incendie : : : 5.3 Conseils aux pompiers Précautions spéciales pour les pompiers : 6.2 Précautions pour la protection de l’environnement Arrêter la fuite si cela ne présente aucun risque. Écarter les conteneurs de la zone de déversement accidentel. S'approcher des émanations dans la même direction que le vent. Bloquer toute pénétration possible dans les égouts, les cours d’eau, les caves ou les zones confinées. Laver le produit répandu dans une installation de traitement des effluents ou procéder comme suit. Contenir les fuites et les ramasser à l'aide de matières absorbantes non combustibles telles que le sable, la terre, la vermiculite, la terre à diatomées. Les placer ensuite dans un récipient pour élimination conformément à la réglementation locale. Élimination par une entreprise Évitez la dispersion des matériaux déversés, ainsi que leur écoulement et tout contact avec le sol, les cours d'eau, les égouts et conduits d'évacuation. Informez les autorités compétentes en cas de pollution de l'environnement (égouts, voies d'eau, sol et air) par le produit. Matière propre à polluer l’eau. Peut-être nocif pour l'environnement en cas de déversement de grandes quantités. Grand déversement accidentel : Arrêter la fuite si cela ne présente aucun risque. Écarter les conteneurs de la zone de déversement accidentel. Diluer avec de l'eau et éponger si la matière est soluble dans l'eau. Sinon, ou si la matière est insoluble dans l'eau, absorber avec un matériau sec inerte et placer dans un conteneur à déchets approprié. Élimination par une entreprise autorisée de collecte des déchets. Petit déversement accidentel : 6.3 Méthodes et matériel de confinement et de nettoyage SECTION 6: Mesures à prendre en cas de dispersion accidentelle 6.1 Précautions individuelles, équipement de protection et procédures d’urgence Pour le personnel autre que le personnel d’intervention : Pour les agents d'intervention : Aucune initiative ne doit être prise qui implique un risque individuel ou en l’absence de formation appropriée. Évacuer les environs. Empêcher l'accès aux personnes non requises et ne portant pas de vêtements de protection. NE PAS TOUCHER ni marcher dans le produit répandu. Éviter de respirer les vapeurs ou le brouillard. Assurer une ventilation adéquate. Porter un appareil de protection respiratoire approprié lorsque le système de ventilation est inadéquat. Porter un équipement de protection individuelle adapté. Si des vêtements spécifiques sont nécessaires pour traiter le déversement, consulter la section 8 pour les matériaux appropriés et inappropriés. Voir également la section 8 pour plus d'informations sur les mesures d'hygiène. : Date d'édition / Date de révision : 3 Août 2011 5/19 ARALDITE 2014-1 Conforme au règlement (CE) n° 1907/2006 (REACH), Annexe II - France Date d'impression : Date d'édition : 3 Août 2011 3 Août 2011 N° de FDS. Version : : 00057058 1 6/19 SECTION 6: Mesures à prendre en cas de dispersion accidentelle autorisée de collecte des déchets. Les matériaux absorbants contaminés peuvent présenter les mêmes risques que le produit répandu. 6.4 Référence à d’autres sections Voir section 1 pour les coordonnées d'urgence. Voir la section 8 pour toute information sur les équipements de protection individuelle adaptés. Voir la section 13 pour toute information supplémentaire sur le traitement des déchets. : Stocker entre les températures suivantes: 2 à 40°C (35.6 à 104°F). Stocker conformément à la réglementation locale. Stocker dans le récipient d'origine à l'abri de la lumière directe du soleil dans un endroit sec, frais et bien ventilé à l'écart des matériaux incompatibles (cf. la section 10). Garder le récipient hermétiquement fermé lorsque le produit n'est pas utilisé. Les récipients ayant été ouverts doivent être refermés avec soin et maintenus en position verticale afin d'éviter les fuites. Ne pas stocker dans des conteneurs non étiquetés. Utiliser un récipient approprié pour éviter toute contamination du milieu ambiant. SECTION 7: Manipulation et stockage Les informations de cette section contiennent des directives et des conseils généraux. Consulter la liste des Utilisations Identifiées de la section 1 pour toute information spécifique aux usages disponible dans le(s) scénario(s) d'exposition. 7.1 Précautions à prendre pour une manipulation sans danger Mesures de protection : Conseils sur l'hygiène professionnelle en général : 7.2 Conditions d’un stockage sûr, y compris d’éventuelles incompatibilités 7.3 Utilisations finales spécifiques Recommandations : Solutions spécifiques au : secteur industriel Non disponible. Non disponible. Revêtir un équipement de protection individuelle approprié (voir Section 8). Les personnes ayant des antécédents de sensibilisation cutanée ne doivent pas intervenir dans les processus utilisant ce produit. Ne pas mettre en contact avec les yeux, la peau ou les vêtements. Ne pas ingérer. Éviter de respirer les vapeurs ou le brouillard. Éviter le rejet dans l'environnement. Consulter les instructions spéciales/la fiche de données de sécurité. Garder dans le conteneur d'origine ou dans un autre conteneur de substitution homologué fabriqué à partir d'un matériau compatible et tenu hermétiquement clos lorsqu'il n'est pas utilisé. Les conteneurs vides retiennent des résidus de produit et peuvent présenter un danger. Ne pas réutiliser ce conteneur. Il est interdit de manger, boire ou fumer dans les endroits où ce produit est manipulé, entreposé ou mis en oeuvre. Il est recommandé au personnel de se laver les mains et la figure avant de manger, boire ou fumer. Retirer les vêtements contaminés et les équipements de protection avant d'entrer dans un lieu de restauration. Voir également la section 8 pour plus d'informations sur les mesures d'hygiène. : Classe de danger de stockage Huntsman Advanced Materials : Classe de stockage 10, Liquide nocif pour l'ambience Date d'édition / Date de révision : 3 Août 2011 6/19 ARALDITE 2014-1 Conforme au règlement (CE) n° 1907/2006 (REACH), Annexe II - France Date d'impression : Date d'édition : 3 Août 2011 3 Août 2011 N° de FDS. Version : : 00057058 1 7/19 Procédures de surveillance recommandées Limites d'exposition professionnelle Si ce produit contient des ingrédients présentant des limites d'exposition, il peut s'avérer nécessaire d'effectuer un examen suivi des personnes, de l'atmosphère sur le lieu de travail ou des organismes vivants pour déterminer l'efficacité de la ventilation ou d'autres mesures de contrôle ou évaluer le besoin d'utiliser du matériel de protection des voies respiratoires. Il importe de vous reporter à la norme européenne EN 689 concernant les méthodes pour évaluer l'exposition par inhalation aux agents chimiques et aux documents de politique générale nationaux relatifs aux méthodes pour déterminer les substances dangereuses. Protection des mains Le port de gants imperméables et résistants aux produits chimiques conformes à une norme approuvée, est obligatoire en tout temps lors de la manutention de produits chimiques si une évaluation des risques le préconise. Utiliser une protection oculaire conforme à une norme approuvée dès lors qu'une évaluation du risque indique qu'il est nécessaire d'éviter l'exposition aux projections de liquides, aux fines particules pulvérisées ou aux poussières. Protection oculaire/faciale Aucune valeur de limite d'exposition connue. : : : Protection de la peau Contrôles d’ingénierie appropriés : Aucune ventilation particulière requise. Une bonne ventilation générale devrait être suffisante pour contrôler l'exposition du technicien aux contaminants en suspension dans l'air. Si ce produit contient des composants pour lesquels des contraintes liées à l'exposition existent, utiliser des enceintes de protection, une ventilation locale par aspiration, ou d'autres moyens de contrôle automatiques intégrés afin de maintenir le seuil d'exposition du technicien inférieur aux limites recommandées ou légales. Se laver abondamment les mains, les avant-bras et le visage après avoir manipulé des produits chimiques, avant de manger, de fumer et d'aller aux toilettes ainsi qu'à la fin de la journée de travail. Il est recommandé d'utiliser les techniques appropriées pour retirer les vêtements potentiellement contaminés. Les vêtements de travail contaminés ne devraient pas sortir du lieu de travail. Laver les vêtements contaminés avant de les réutiliser. S'assurer que les dispositifs rince-oeil automatiques et les douches de sécurité se trouvent à proximité de l'emplacement des postes de travail. 8.2 Contrôles de l’exposition Mesures d'hygiène : Aucune DEL disponible. Concentrations prédites avec effet Aucune PEC disponible. SECTION 8: Contrôles de l’exposition/protection individuelle Les informations de cette section contiennent des directives et des conseils généraux. Consulter la liste des Utilisations Identifiées de la section 1 pour toute information spécifique aux usages disponible dans le(s) scénario(s) d'exposition. 8.1 Paramètres de contrôle Doses dérivées avec effet Mesures de protection individuelles Les limites d'exposition sur la place de travail doivent être dans les normes (poussière totale, poussière de quartz potentiellement inhalable). Si les limites sont dépassées, portez un masque à poussière approprié. A T T E N T I O N ! Ce produit contient du quartz, classé par l'IARC parmi les substances carcinogènes pour l'homme (Groupe 1), pouvant causer une silicose ou un cancer des poumons par inhalation des poussières. Il est donc important d'éviter de s'exposer à toute inhalation lors des opérations mécaniques effectuées avec le produit fini (mouture, décapage, coupe...). QUARTZ (CAS RN 14808-60-7): France: TWA: 0.1 mg/m³ 8 hour(s). Form: respirable aerosol Suisse: TWA: 0.15 mg/m³ 8 hour(s). Form: respirable dust Belgique: TWA: 0.1 mg/m³ 8 hour(s). Form: respirable dust Date d'édition / Date de révision : 3 Août 2011 7/19 ARALDITE 2014-1 Conforme au règlement (CE) n° 1907/2006 (REACH), Annexe II - France Date d'impression : Date d'édition : 3 Août 2011 3 Août 2011 N° de FDS. Version : : 00057058 1 8/19 SECTION 8: Contrôles de l’exposition/protection individuelle Lorsque la ventilation du local est insuffisante, porter un équipement de protection respiratoire. Le choix de l'appareil de protection respiratoire doit être fondé sur les niveaux d'expositions prévus ou connus, les dangers du produit et les limites d'utilisation sans danger de l'appareil de protection respiratoire retenu. Protection respiratoire : L'équipement de protection personnel pour le corps devra être choisi en fonction de la tâche à réaliser ainsi que des risques encourus, et il est recommandé de le faire valider par un spécialiste avant de procéder à la manipulation du produit. : Contrôle de l'exposition de l'environnement : Il importe de tester les émissions provenant des systèmes de ventilation ou du matériel de fabrication pour vous assurer qu'elles sont conformes aux exigences de la législation sur la protection de l'environnement. Dans certains cas, il sera nécessaire d'équiper le matériel de fabrication d'un épurateur de gaz ou d'un filtre ou de le modifier techniquement afin de réduire les émissions à des niveaux acceptables. Protection corporelle : Autre protection cutanée Des chaussures adéquates et toutes mesures de protection corporelle devraient être déterminées en fonction de l'opération effectuée et des risques impliqués, et devraient être approuvées par un spécialiste avant toute manipulation de ce produit. Alcool éthylvinylique laminé (EVAL), caoutchouc butyle néoprène, Matériaux pour gants caoutchouc nitrile pour utilisation à court terme/projection (10 min480 min): Non disponible. État physique Point de fusion/point de congélation Point d'ébullition initial et intervalle d'ébullition Liquide. [Pâte.] Non disponible. Odeur Non disponible. pH Couleur Non disponible. Vitesse d'évaporation Non disponible. Point d'éclair Vase clos: >100°C [DIN 51758 EN 22719 (Pensky-Martens Closed Cup)] Non disponible. Non disponible. Seuil d'odeur Non disponible. Limites supérieures/inférieures d'inflammabilité ou d'explosion : : : : : : : : : : 9.1 Informations sur les propriétés physiques et chimiques essentielles Aspect Durée de combustion Non applicable. Vitesse de combustion Non applicable. : : SECTION 9: Propriétés physiques et chimiques Inflammabilité (solide, gaz) : Non disponible. Date d'édition / Date de révision : 3 Août 2011 8/19 ARALDITE 2014-1 Conforme au règlement (CE) n° 1907/2006 (REACH), Annexe II - France Date d'impression : Date d'édition : 3 Août 2011 3 Août 2011 N° de FDS. Version : : 00057058 1 9/19 SECTION 9: Propriétés physiques et chimiques Pression de vapeur Densité relative Densité de vapeur Solubilité(s) Non disponible. Non disponible. Non disponible. Température d'autoinflammation Non disponible. Non disponible. Non disponible. Viscosité Non disponible. Coefficient de partage noctanol/ eau Propriétés d'explosivité : : : : : : : Propriétés comburantes : Non disponible. 9.2 Autres informations Température de décomposition : Non disponible. Masse volumique : 1.4 g/cm3 [20°C (68°F)] Solubilité dans l'eau : 10.6 Produits de décomposition dangereux 10.4 Conditions à éviter Aucune donnée spécifique. Dans des conditions normales de stockage et d'utilisation, aucun produit de décomposition dangereux ne devrait apparaître. 10.2 Stabilité chimique Le produit est stable. Aucune donnée spécifique. : : : 10.5 Matières incompatibles : 10.3 Possibilité de réactions dangereuses : Dans des conditions normales de stockage et d'utilisation, aucune réaction dangereuse ne se produit. SECTION 10: Stabilité et réactivité 10.1 Réactivité : Aucune donnée d'essai spécifique relative à la réactivité n'est disponible pour ce produit ou ses composants. Toxicité aiguë produit de réaction: bisphénol-A-épichlorhydrine; résines époxydiques (poids moléculaire moyen < 700) CL0 Inhalation Vapeurs Rat - Mâle 0.00001 ppm 5 heures DL50 Cutané Rat - Mâle, Femelle >2000 mg/kg - DL50 Orale Rat - Femelle >2000 mg/kg - résine époxidique à base de bisphénol F DL50 Cutané Rat - Mâle, Femelle >2000 mg/kg - DL50 Orale Rat - Mâle, >5000 mg/kg - Nom du produit/composant Endpoint Espèces Résultat Exposition SECTION 11: Informations toxicologiques 11.1 Informations sur les effets toxicologiques Date d'édition / Date de révision : 3 Août 2011 9/19 ARALDITE 2014-1 Conforme au règlement (CE) n° 1907/2006 (REACH), Annexe II - France Date d'impression : Date d'édition : 3 Août 2011 3 Août 2011 N° de FDS. Version : : 00057058 1 10/19 SECTION 11: Informations toxicologiques Femelle éther diglycidique du 1,4- butanediol DL50 Cutané Rat - Mâle, Femelle >2150 mg/kg - DL50 Orale Rat - Mâle, Femelle 1163 mg/kg - N(3-diméthylaminopropyl)- 1,3-propylènediamine DL50 Cutané Lapin 1310 mg/kg - DL50 Orale Rat 1670 mg/kg - Mutagénicité Irritation/Corrosion produit de réaction: bisphénol-A-épichlorhydrine; résines époxydiques (poids moléculaire moyen < 700) OECD 404 Effet irritant/corrosif aigu sur la peau Lapin Faiblement irritant OECD 405 Effet irritant/corrosif aigu sur les yeux Lapin Faiblement irritant résine époxidique à base de bisphénol F OECD 405 Effet irritant/corrosif aigu sur les yeux Lapin Non irritant. OECD 404 Effet irritant/corrosif aigu sur la peau Lapin Faiblement irritant éther diglycidique du 1,4- butanediol OECD 404 Effet irritant/corrosif aigu sur la peau Lapin Non irritant. OECD 405 Effet irritant/corrosif aigu sur les yeux Lapin Irritant puissant Nom du produit/composant Test Résultat Conclusion/Résumé : Peau : produit de réaction: bisphénol-A-épichlorhydrine; résines époxydiques (poids moléculaire moyen < 700): Légèrement irritant pour la peau. résine époxidique à base de bisphénol F: Légèrement irritant pour la peau. éther diglycidique du 1,4-butanediol: Non irritant pour la peau. Yeux : produit de réaction: bisphénol-A-épichlorhydrine; résines époxydiques (poids moléculaire moyen < 700): Légèrement irritant pour les yeux. résine époxidique à base de bisphénol F: Non irritant pour les yeux. éther diglycidique du 1,4-butanediol: Gravement irritant pour les yeux. Non disponible. Sensibilisant produit de réaction: bisphénol-A-épichlorhydrine; résines époxydiques (poids moléculaire moyen < 700) OECD 429 Sensibilisation cutanée : essai des ganglions lymphatiques locaux peau Souris Sensibilisant résine époxidique à base de bisphénol F OECD 429 Sensibilisation cutanée : essai des ganglions lymphatiques locaux peau Souris Sensibilisant éther diglycidique du 1,4- butanediol OECD 406 Sensibilisation de la peau peau cobaye Sensibilisant Nom du produit/composant Test Voie d'exposition Résultat Conclusion/Résumé : Non disponible. Espèces Espèces Date d'édition / Date de révision : 3 Août 2011 10/19 ARALDITE 2014-1 Conforme au règlement (CE) n° 1907/2006 (REACH), Annexe II - France Date d'impression : Date d'édition : 3 Août 2011 3 Août 2011 N° de FDS. Version : : 00057058 1 11/19 SECTION 11: Informations toxicologiques Cancérogénicité produit de réaction: bisphénol-Aépichlorhydrine; résines époxydiques (poids moléculaire moyen < 700) OECD 453 Etudes combinées de toxicité chronique et de cancérogénèse Rat 2 années; 7 jours par semaine Négatif Orale - OECD 453 Etudes combinées de toxicité chronique et de cancérogénèse Rat 2 années; 5 jours par semaine Négatif Cutané - OECD 453 Etudes combinées de toxicité chronique et de cancérogénèse Souris 2 années; 3 jours par semaine Négatif Cutané - Nom du produit/composant Test Espèces Exposition Résultat produit de réaction: bisphénol-A-épichlorhydrine; résines époxydiques (poids moléculaire moyen < 700) OECD 471 Essai de mutation réverse sur des bactéries Positif OECD 476 Essai in vitro de mutation génique sur des cellules de mammifères Positif OECD 478 Toxicologie génétique : Essai de mutation létale dominante chez le rongeur Négatif EPA OPPTS Négatif résine époxidique à base de bisphénol F OECD 471 Essai de mutation réverse sur des bactéries Positif OECD 476 Essai in vitro de mutation génique sur des cellules de mammifères Positif OECD 473 Essai d'aberration chromosomique in vitro chez les mammifères Positif OECD 474 Le test de micronoyaux sur les érythrocytes de mammifère Négatif OECD 486 Essai de synthèse non programmée de l’ADN (UDS) sur des hépatocytes de mammifères in vivo Négatif éther diglycidique du 1,4- butanediol OECD 471 Essai de mutation réverse sur des bactéries Positif OECD 473 Essai d'aberration chromosomique in vitro chez les mammifères Positif OECD 474 Le test de micronoyaux sur les érythrocytes de mammifère Négatif Nom du produit/composant Test Résultat Conclusion/Résumé : Non disponible. Toxicité pour la reproduction Nom du produit/composant Test Espèces Résultat/Type de résultat Organes cibles Voie d'exposition Organes cibles Date d'édition / Date de révision : 3 Août 2011 11/19 ARALDITE 2014-1 Conforme au règlement (CE) n° 1907/2006 (REACH), Annexe II - France Date d'impression : Date d'édition : 3 Août 2011 3 Août 2011 N° de FDS. Version : : 00057058 1 12/19 SECTION 11: Informations toxicologiques Effets chroniques potentiels pour la santé Effets aigus potentiels sur la santé Inhalation : L'exposition aux produits de décomposition peut présenter des risques pour la santé. Les effets graves d’une exposition peuvent être différés. Irritant pour la bouche, Ingestion : la gorge et l'estomac. Contact avec la peau : Irritant pour la peau. Peut entraîner une sensibilisation par contact avec la peau. Contact avec les yeux : Gravement irritant pour les yeux. Risque de lésions oculaires graves. Nom du produit/composant Test Type de résultat Résultat Organes cibles Tératogénicité produit de réaction: bisphénol-A-épichlorhydrine; résines époxydiques (poids moléculaire moyen < 700) OECD 414 Etude de la toxicité pour le développement prénatal Rat - Femelle >540 mg/kg Pas d'effets observés à : EPA CFR Lapin - Femelle >300 mg/kg Pas d'effets observés à : OECD 414 Etude de la toxicité pour le développement prénatal Lapin - Femelle 180 mg/kg NOAEL résine époxidique à base de bisphénol F EPA CFR Lapin - Femelle >300 mg/kg Pas d'effets observés à : Nom du produit/composant Test Espèces Résultat/Type de résultat produit de réaction: bisphénol-A-épichlorhydrine; résines époxydiques (poids moléculaire moyen < 700) OECD 416 Étude de toxicité pour la reproduction sur deux générations Rat Orale: 540 mg/kg Pas d'effets observés à : - résine époxidique à base de bisphénol F OECD 416 Étude de toxicité pour la reproduction sur deux générations Rat Orale: 540 mg/kg Pas d'effets observés à : - Symptômes correspondant aux caractéristiques physiques, chimiques et toxicologiques Contact avec la peau Ingestion Inhalation Aucune donnée spécifique. Aucune donnée spécifique. Les symptômes néfastes peuvent éventuellement comprendre ce qui suit: irritation rougeur : : : Contact avec les yeux : Les symptômes néfastes peuvent éventuellement comprendre ce qui suit: douleur ou irritation larmoiement rougeur Informations sur les voies Non disponible. d’exposition probables : Effets retardés, effets immédiats et effets chroniques d’une exposition à court ou long terme Exposition de courte durée Exposition prolongée Effets potentiels immédiats Effets potentiels différés : : Effets potentiels immédiats Effets potentiels différés : : Non disponible. Non disponible. Non disponible. Non disponible. Date d'édition / Date de révision : 3 Août 2011 12/19 ARALDITE 2014-1 Conforme au règlement (CE) n° 1907/2006 (REACH), Annexe II - France Date d'impression : Date d'édition : 3 Août 2011 3 Août 2011 N° de FDS. Version : : 00057058 1 13/19 SECTION 11: Informations toxicologiques Une fois sensibilisé, une vive réaction allergique peut éventuellement se déclencher lors d'une exposition ultérieure à de très faibles niveaux. Généralités : Aucun effet important ou Cancérogénicité : danger critique connu. Mutagénicité : Aucun effet important ou danger critique connu. Tératogénicité : Aucun effet important ou danger critique connu. produit de réaction: bisphénol-A-épichlorhydrine; résines époxydiques (poids moléculaire moyen < 700) OECD 408 Toxicité orale à doses répétées –rongeurs : 90 jours NOAEL Subchronique NOAEL Oral 50 mg/kg - OECD 411 Toxicité cutanée subchronique : 90 jours Pas d'effets observés à : Subchronique Pas d'effets observés à : Dermal 10 mg/kg - OECD 411 Toxicité cutanée subchronique : 90 jours NOAEL Subchronique NOAEL Dermal 100 mg/kg - résine époxidique à base de bisphénol F OECD 408 Toxicité orale à doses répétées –rongeurs : 90 jours NOAEL Subchronique NOAEL Oral 250 mg/kg - éther diglycidique du 1,4- butanediol OECD 407 Toxicité orale à dose répétée - pendant 28 jours sur les rongeurs NOAEL Subchronique NOAEL Oral 200 mg/kg - Conclusion/Résumé : Non disponible. Effets sur le développement : Aucun effet important ou danger critique connu. Effets sur la fertilité : Aucun effet important ou danger critique connu. Autres informations : Non disponible. 12.1 Toxicité produit de réaction: bisphénol-A-épichlorhydrine; résines époxydiques (poids moléculaire moyen < 700) - Aiguë CE50 72 heures Static Algues 9.4 mg/L OECD 202 Daphnia sp. Essai d'immobilisation immédiate Aiguë CE50 48 heures Static Daphnie 1.7 mg/L - Aiguë CI50 3 heures Static Bactéries >100 mg/L OECD 203 Poisson, essai de toxicité aiguë Aiguë CL50 96 heures Static Poisson 1.5 mg/L OECD 211 Daphnia magna, essai de reproduction Chronique NOEC 21 jours Semistatic Daphnie 0.3 mg/L résine époxidique à base de bisphénol F OECD 201 Algues, essai d'inhibition de la croissance Aiguë CE50 72 heures Static Algues 1.8 mg/L OECD OECD 202: Part I (Daphnia sp., Acute Immobilisation test) Aiguë CE50 48 heures Static Daphnie 1.6 mg/L - Aiguë CI50 3 heures Static Bactéries >100 mg/L OECD 203 Poisson, essai de Aiguë CL50 96 Poisson 0.55 mg/L Nom du produit/composant Exposition Espèces Résultat SECTION 12: Informations écologiques Test Endpoint Date d'édition / Date de révision : 3 Août 2011 13/19 ARALDITE 2014-1 Conforme au règlement (CE) n° 1907/2006 (REACH), Annexe II - France Date d'impression : Date d'édition : 3 Août 2011 3 Août 2011 N° de FDS. Version : : 00057058 1 14/19 SECTION 12: Informations écologiques LogPow FBC Potentiel 12.3 Potentiel de bioaccumulation Nom du produit/composant produit de réaction: bisphénol-A-épichlorhydrine; résines époxydiques (poids moléculaire moyen < 700) 3.242 31 faible résine époxidique à base de bisphénol F 2.7 à 3.6 - élevée éther diglycidique du 1,4- butanediol -0.269 - faible Nom du produit/composant Demi-vie aquatique Photolyse Biodégradabilité produit de réaction: bisphénol-A-épichlorhydrine; résines époxydiques (poids moléculaire moyen < 700) Eau douce 4.83 jours Eau douce 3.58 jours Eau douce 7.1 jours - Non facilement résine époxidique à base de bisphénol F - - Non facilement éther diglycidique du 1,4- butanediol - - Non facilement toxicité aiguë heures Semistatic OECD 211 Daphnia magna, essai de reproduction Chronique NOEC 21 jours Semistatic Daphnie 0.3 mg/L éther diglycidique du 1,4- butanediol OECD 202 Daphnia sp. Essai d'immobilisation immédiate Aiguë CE50 24 heures Static Daphnie 75 mg/L OECD 201 Algues, essai d'inhibition de la croissance Aiguë EL50 72 heures Static Algues >160 mg/L OECD 209 Boue activée, essai d'inhibition de la respiration Aiguë CI50 3 heures Static Bactéries >100 mg/L OECD 203 Poisson, essai de toxicité aiguë Aiguë CL50 96 heures Static Poisson 24 mg/L 12.2 Persistance et dégradabilité produit de réaction: bisphénol-A-épichlorhydrine; résines époxydiques (poids moléculaire moyen < 700) OECD Derived from OECD 301F (Biodegradation Test) 28 jours 5 % résine époxidique à base de bisphénol F EU 28 jours 0 % éther diglycidique du 1,4- butanediol OECD 301F Biodégradabilité facile - Essai de respirometrie manométrique 28 jours 43 % Nom du produit/composant Test Résultat Conclusion/Résumé : produit de réaction: bisphénol-A-épichlorhydrine; résines époxydiques (poids moléculaire moyen < 700): Non facilement biodégradable. Période Date d'édition / Date de révision : 3 Août 2011 14/19 ARALDITE 2014-1 Conforme au règlement (CE) n° 1907/2006 (REACH), Annexe II - France Date d'impression : Date d'édition : 3 Août 2011 3 Août 2011 N° de FDS. Version : : 00057058 1 15/19 SECTION 12: Informations écologiques Mobilité : Non disponible. 12.6 Autres effets néfastes Aucun effet important ou danger critique connu. 12.4 Mobilité dans le sol Coefficient de répartition sol/eau (KOC) : Non disponible. 12.5 Résultats de l'évaluation PTB et tPtB : 12.7 Autres renseignements écologiques Non applicable. Catalogue Européen des Déchets Déchets Dangereux : Oui. Il est recommandé d'éviter ou réduire autant que possible la production de déchets. Ne pas éliminer de quantités significatives de déchets résiduels du produit par les égouts. Les traiter dans une usine de traitement des eaux usées appropriée. Élimination des produits excédentaires et non recyclables par une entreprise autorisée de collecte des déchets. La mise au rebut de ce produit, des solutions et des sous-produits devra en permanence respecter les exigences légales en matière de protection de l'environnement et de mise au rebut des déchets ainsi que les exigences de toutes les autorités locales. Recycler les déchets d'emballage. Envisager l'incinération ou la mise en décharge uniquement si le recyclage est impossible. Ne se débarrasser de ce produit et de son récipient qu'en prenant toutes précautions d'usage. Manipuler avec prudence les récipients vides non nettoyés ni rincés. Les conteneurs vides ou les sachets internes peuvent retenir des restes de produit. Évitez la dispersion des matériaux déversés, ainsi que leur écoulement et tout contact avec le sol, les cours d'eau, les égouts et conduits d'évacuation. Méthodes d'élimination : des déchets SECTION 13: Considérations relatives à l’élimination Les informations de cette section contiennent des directives et des conseils généraux. Consulter la liste des Utilisations Identifiées de la section 1 pour toute information spécifique aux usages disponible dans le(s) scénario(s) d'exposition. 13.1 Méthodes de traitement des déchets Produit Emballage Code de déchets Désignation du déchet Méthodes d'élimination des déchets : Précautions particulières : 07 02 08* autres résidus de réaction et résidus de distillation Il est recommandé d'éviter ou réduire autant que possible la production de déchets. Recycler les déchets d'emballage. Envisager l'incinération ou la mise en décharge uniquement si le recyclage est impossible. Ne se débarrasser de ce produit et de son récipient qu'en prenant toutes précautions d'usage. Manipuler avec prudence les récipients vides non nettoyés ni rincés. Les conteneurs vides ou les sachets internes peuvent retenir des restes de produit. Évitez la dispersion des matériaux déversés, ainsi que leur écoulement et tout contact avec le sol, les cours d'eau, les égouts et conduits d'évacuation. Date d'édition / Date de révision : 3 Août 2011 15/19 ARALDITE 2014-1 Conforme au règlement (CE) n° 1907/2006 (REACH), Annexe II - France Date d'impression : Date d'édition : 3 Août 2011 3 Août 2011 N° de FDS. Version : : 00057058 1 16/19 Matière dangereuse du point de vue de l'environnement, liquide, n.s.a. BISPHENOL A/F EPOXY RESIN 9 III Matière dangereuse du point de vue de l'environnement, liquide, n.s.a. (BISPHENOL A/F EPOXY RESIN) Polluant marin (produit de réaction: bisphénol-A-épichlorhydrine; résines époxydiques (poids moléculaire moyen < 700), résine époxidique à base de bisphénol F) 9 III Matière dangereuse du point de vue de l'environnement, liquide, n.s.a. (BISPHENOL A/F EPOXY RESIN) UN3082 9 non disponible non disponible III UN3082 UN3082 Numéro d'identification du danger 90 Dispositions particulières 274 335 601 Code tunnel E Emergency schedules (EmS) F-A, S-F Avion passager et avion cargoLimitation de quantité: 450 L Instructions d'emballage 964 Avion cargo uniquementLimitation de quantité: 450 L Instructions d'emballage 964 SECTION 14: Informations relatives au transport ADR/RID IMDG IATA 14.1 Numéro ONU 14.2 Désignation officielle de transport ONU 14.3 Classe(s) de danger pour le transport 14.4 Groupe d’emballage ADN/ADNR Autres informations 14.5 Dangers pour l’environnement 14.6 Précautions particulières à prendre par l’utilisateur 14.7 Transport en vrac conformément à l’annexe II de la convention Marpol 73/78 et au recueil IBC Oui. Oui. Yes. Non disponible. Non disponible. Non disponible. : Non applicable. ADN/ADNR IMDG IATA ADR/RID SECTION 15: Informations réglementaires 15.1 Réglementations/législation d'hygiène, sécurité et environnement spécifique à la substance ou au mélange Règlement UE (CE) n° 1907/2006 (REACH) Annexe XIV - Liste des substances soumises à autorisation Substances extrêmement préoccupantes Aucun des composants n'est répertorié. Date d'édition / Date de révision : 3 Août 2011 16/19 ARALDITE 2014-1 Conforme au règlement (CE) n° 1907/2006 (REACH), Annexe II - France Date d'impression : Date d'édition : 3 Août 2011 3 Août 2011 N° de FDS. Version : : 00057058 1 17/19 SECTION 15: Informations réglementaires Réglementations nationales Autres Réglementations UE Annexe XVII - Restrictions Non applicable. applicables à la fabrication, à la mise sur le marché et à l'utilisation de certaines substances et préparations dangereuses et de certains articles dangereux : Inventaire d'Europe : Tous les composants sont répertoriés ou exclus. Surveillance médicale renforcée : Arrêté du 11 Juillet 1977 fixant la liste des travaux nécessitant une surveillance médicale renforcée: non concerné Substances chimiques sur liste noire : Non inscrit Substances chimiques sur liste prioritaire : Non inscrit Liste de la Directive IPPC (Prévention et Réduction Intégrées de la Pollution) - Air : Non inscrit Liste de la Directive IPPC (Prévention et Réduction Intégrées de la Pollution) - Eau : Non inscrit Liste des substances chimiques du tableau I de la Convention sur les armes chimiques : Non inscrit Liste des substances chimiques du tableau II de la Convention sur les armes chimiques : Non inscrit Liste des substances chimiques du tableau III de la Convention sur les armes chimiques : Non inscrit Réglementations Internationales 15.2 Évaluation de la sécurité chimique Ce produit contient des substances nécessitant encore une évaluation du risque chimique : Indique quels renseignements ont été modifiés depuis la version précédente. SECTION 16: Autres informations Abréviations et acronymes : ETA = Estimation de la Toxicité Aiguë CLP = Règlement 1272/2008/CE relatif à la classification, à l'étiquetage et à l'emballage des substances et des mélanges DNEL = Dose dérivée sans effet mention EUH = mention de danger spécifique CLP CPSE = concentration prédite sans effet RRN = Numéro d'enregistrement REACH Classification selon le Règlement (CE) n° 1272/2008 [CLP/SGH] Date d'édition / Date de révision : 3 Août 2011 17/19 ARALDITE 2014-1 Conforme au règlement (CE) n° 1907/2006 (REACH), Annexe II - France Date d'impression : Date d'édition : 3 Août 2011 3 Août 2011 N° de FDS. Version : : 00057058 1 18/19 SECTION 16: Autres informations Date d'impression 3 Août 2011 Date d'édition/ Date de révision Date de la précédente édition : : : R20/21- Nocif par inhalation et par contact avec la peau. R21/22- Nocif par contact avec la peau et par ingestion. R34- Provoque des brûlures. R41- Risque de lésions oculaires graves. R38- Irritant pour la peau. R36/38- Irritant pour les yeux et la peau. R43- Peut entraîner une sensibilisation par contact avec la peau. R51/53- Toxique pour les organismes aquatiques, peut entraîner des effets néfastes à long terme pour l'environnement aquatique. R52/53- Nocif pour les organismes aquatiques, peut entraîner des effets néfastes à long terme pour l'environnement aquatique. Texte intégral des phrases R : abrégées Texte intégral des classifications [DSD/DPD] : C - Corrosif Xn - Nocif Xi - Irritant N - Dangereux pour l'environnement 3 Août 2011 Aucune validation antérieure. Texte intégral des mentions : H abrégées Procédure employée pour déterminer la classification selon le Règlement (CE) n° 1272/2008 [CLP/SGH] Classification Justification Skin Irrit. 2, H315 Jugement expert Eye Dam. 1, H318 Jugement expert Skin Sens. 1, H317 Jugement expert Aquatic Chronic 2, H411 Jugement expert Texte intégral des classifications [CLP/SGH] : H302 Nocif en cas d'ingestion. H312 Nocif par contact cutané. H314 Provoque des brûlures de la peau et des lésions oculaires graves. H315 Provoque une irritation cutanée. H317 Peut provoquer une allergie cutanée. H318 Provoque des lésions oculaires graves. H319 Provoque une sévère irritation des yeux. H332 Nocif par inhalation. H411 Toxique pour les organismes aquatiques, entraîne des effets néfastes à long terme. Acute Tox. 4, H302 TOXICITÉ AIGUË: ORALE - Catégorie 4 Acute Tox. 4, H312 TOXICITÉ AIGUË: PEAU - Catégorie 4 Acute Tox. 4, H332 TOXICITÉ AIGUË: INHALATION - Catégorie 4 Aquatic Chronic 2, H411 DANGER CHRONIQUE POUR LE MILIEU AQUATIQUE - Catégorie 2 Eye Dam. 1, H318 LÉSIONS OCULAIRES GRAVES/IRRITATION OCULAIRE - Catégorie 1 Eye Irrit. 2, H319 LÉSIONS OCULAIRES GRAVES/IRRITATION OCULAIRE - Catégorie 2 Skin Corr. 1B, H314 CORROSION CUTANÉE/IRRITATION CUTANÉE - Catégorie 1B Skin Irrit. 2, H315 CORROSION CUTANÉE/IRRITATION CUTANÉE - Catégorie 2 Skin Sens. 1, H317 SENSIBILISATION CUTANÉE - Catégorie 1 Skin Irrit. 2, H315 Eye Dam. 1, H318 Skin Sens. 1, H317 Aquatic Chronic 2, H411 N° de FDS. : 00057058 Date d'édition / Date de révision : 3 Août 2011 18/19 ARALDITE 2014-1 Conforme au règlement (CE) n° 1907/2006 (REACH), Annexe II - France Date d'impression : Date d'édition : 3 Août 2011 3 Août 2011 N° de FDS. Version : : 00057058 1 19/19 SECTION 16: Autres informations Version Avis au lecteur : 1 Les informations et recommandations figurant dans cette publication sont fondées sur notre expérience générale et sont fournies de bonne foi au mieux de nos connaissances actuelles, MAIS RIEN DANS LES PRESENTES NE DOIT ÊTRE INTERPRETE COMME CONSTITUANT UNE GARANTIE OU UNE DECLARATION, EXPRESSE, IMPLICITE OU AUTRE. DANS TOUS LES CAS, IL INCOMBE A L'UTILISATEUR DE DETERMINER ET DE VERIFIER L'EXACTITUDE, AINSI QUE LE CARACTERE SUFFISANT ET APPLICABLE DE TELLES INFORMATIONS ET RECOMMANDATIONS, DE MEME QUE L'ADEQUATION ET L'ADAPTATION D'UN QUELCONQUE PRODUIT A UNE UTILISATION SPECIFIQUE OU DANS UN BUT PARTICULIER. LES PRODUITS MENTIONNES PEUVENT PRESENTER DES RISQUES INCONNUS ET DOIVENT ETRE UTILISES AVEC PRECAUTION. MEME SI CERTAINS RISQUES SONT DECRITS DANS CETTE PUBLICATION, IL N'EXISTE AUCUNE GARANTIE QU'IL S'AGIT DES SEULS RISQUES EXISTANTS. Les risques, la toxicité et le comportement des produits peuvent différer lorsque ceux-ci sont utilisés avec d'autres matériaux et dépendent des conditions de fabrication et d'autres processus. Ces risques, cette toxicité et ces comportements doivent être déterminés par l'utilisateur et portés à la connaissance des personnes ou entités chargés du transport ou de la manutention, du traitement ou de la transformation, ainsi que de tous utilisateurs finaux. ARALDITE® est une marque déposée de Huntsman Corporation ou une filiale dans un ou plusieurs pays, mais pas dans tous les pays. AUCUNE PERSONNE OU ORGANISATION A L’EXCEPTION D'UN EMPLOYE HUNTSMAN DUMENT QUALIFIE EST AUTORISE A FOURNIR OU METTRE A DISPOSITION DES FICHES DE DONNEES DE SECURITE POUR LES PRODUITS HUNTSMAN. LES FICHES DE DONNEES DE SECURITE DE SOURCES NON AUTORISEE PEUVENT CONTENIR DES INFORMATIONS QUI NE SONT PLUS A JOUR OU INEXACTES. AUCUNE PARTIE DE CETTE FICHE NE PEUT ETRE REPRODUITE OU DIFFUSEE SOUS QUELQUE FORME QUE CE SOIT, OU PAR TOUT MOYEN, SANS L'ACCORD ECRIT DE HUNTSMAN. TOUTES LES DEMANDES D'AUTORISATION DE REPRODUCTION DES DONNEES DE CE FEUILLET DOIVENT ETRE ADRESSEES A HUNTSMAN, AU RESPONSABLE DE LA SECURITE DU PRODUIT A L’ADRESSE CI-DESSUS. Date d'édition / Date de révision : 3 Août 2011 19/19 http://www.farnell.com/datasheets/1442064.pdf 1. Product profile 1.1 General description Logic level N-channel MOSFET in LFPAK package qualified to 175 °C. This product is designed and qualified for use in a wide range of industrial, communications and domestic equipment. 1.2 Features and benefits  Advanced TrenchMOS provides low RDSon and low gate charge  High efficiency gains in switching power convertors  Improved mechanical and thermal characteristics  LFPAK provides maximum power density in a Power SO8 package 1.3 Applications  DC-to-DC converters  Lithium-ion battery protection  Load switching  Motor control  Server power supplies 1.4 Quick reference data PSMN1R7-30YL N-channel 30 V 1.7 mΩ logic level MOSFET in LFPAK Rev. 1 — 30 May 2011 Product data sheet LFPAK Table 1. Quick reference data Symbol Parameter Conditions Min Typ Max Unit VDS drain-source voltage Tj ≥ 25 °C; Tj ≤ 175 °C - - 30 V ID drain current Tmb = 25 °C; VGS = 10 V; see Figure 1 [1] - - 100 A Ptot total power dissipation Tmb = 25 °C; see Figure 2 - - 109 W Tj junction temperature -55 - 175 °C Static characteristics RDSon drain-source on-state resistance VGS = 10 V; ID = 15 A; Tj = 100 °C; see Figure 13 - - 2.4 mΩ VGS = 10 V; ID = 15 A; Tj = 25 °C - 1.3 1.7 mΩ Dynamic characteristics QGD gate-drain charge VGS = 4.5 V; ID = 10 A; VDS = 12 V; see Figure 14; see Figure 15 - 8.7 - nCPSMN1R7-30YL All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved. Product data sheet Rev. 1 — 30 May 2011 2 of 15 NXP Semiconductors PSMN1R7-30YL N-channel 30 V 1.7 mΩ logic level MOSFET in LFPAK [1] Continuous current is limited by package. 2. Pinning information 3. Ordering information QG(tot) total gate charge VGS = 4.5 V; ID = 10 A; VDS = 12 V; see Figure 14 - 36.2 - nC Avalanche ruggedness EDS(AL)S non-repetitive drain-source avalanche energy VGS = 10 V; Tj(init) = 25 °C; ID = 100 A; Vsup ≤ 30 V; RGS = 50 Ω; unclamped - - 241 mJ Table 1. Quick reference data …continued Symbol Parameter Conditions Min Typ Max Unit Table 2. Pinning information Pin Symbol Description Simplified outline Graphic symbol 1 S source SOT669 (LFPAK; Power-SO8) 2 S source 3 S source 4 G gate mb D mounting base; connected to drain mb 1234 S D G mbb076 Table 3. Ordering information Type number Package Name Description Version PSMN1R7-30YL LFPAK; Power-SO8 plastic single-ended surface-mounted package; 4 leads SOT669PSMN1R7-30YL All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved. Product data sheet Rev. 1 — 30 May 2011 3 of 15 NXP Semiconductors PSMN1R7-30YL N-channel 30 V 1.7 mΩ logic level MOSFET in LFPAK 4. Limiting values [1] Continuous current is limited by package. Table 4. Limiting values In accordance with the Absolute Maximum Rating System (IEC 60134). Symbol Parameter Conditions Min Max Unit VDS drain-source voltage Tj ≥ 25 °C; Tj ≤ 175 °C - 30 V VDSM peak drain-source voltage tp ≤ 25 ns; f ≤ 500 kHz; EDS(AL) ≤ 360 nJ; pulsed - 35 V VDGR drain-gate voltage Tj ≥ 25 °C; Tj ≤ 175 °C; RGS = 20 kΩ - 30 V VGS gate-source voltage -20 20 V ID drain current VGS = 10 V; Tmb = 100 °C; see Figure 1 [1] - 100 A VGS = 10 V; Tmb = 25 °C; see Figure 1 [1] - 100 A IDM peak drain current pulsed; tp ≤ 10 µs; Tmb = 25 °C; see Figure 3 - 790 A Ptot total power dissipation Tmb = 25 °C; see Figure 2 - 109 W Tstg storage temperature -55 175 °C Tj junction temperature -55 175 °C Source-drain diode IS source current Tmb = 25 °C [1] - 100 A ISM peak source current pulsed; tp ≤ 10 µs; Tmb = 25 °C - 790 A Avalanche ruggedness EDS(AL)S non-repetitive drain-source avalanche energy VGS = 10 V; Tj(init) = 25 °C; ID = 100 A; Vsup ≤ 30 V; RGS = 50 Ω; unclamped - 241 mJ Fig 1. Continuous drain current as a function of mounting base temperature Fig 2. Normalized total power dissipation as a function of mounting base temperature 003aac446 0 20 40 60 80 100 120 0 50 100 150 200 Tmb (°C) ID (A) (1) Tmb (°C) 0 200 50 100 150 03aa16 40 80 120 Pder (%) 0PSMN1R7-30YL All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved. Product data sheet Rev. 1 — 30 May 2011 4 of 15 NXP Semiconductors PSMN1R7-30YL N-channel 30 V 1.7 mΩ logic level MOSFET in LFPAK Fig 3. Safe operating area; continuous and peak drain currents as a function of drain-source voltage 003aad111 1 10 102 103 104 10-1 1 10 102 VDS (V) ID (A) Limit RDSon = VDS / ID (1) DC 100 ms 10 ms 1 ms 100 μs 10 μsPSMN1R7-30YL All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved. Product data sheet Rev. 1 — 30 May 2011 5 of 15 NXP Semiconductors PSMN1R7-30YL N-channel 30 V 1.7 mΩ logic level MOSFET in LFPAK 5. Thermal characteristics Table 5. Thermal characteristics Symbol Parameter Conditions Min Typ Max Unit Rth(j-mb) thermal resistance from junction to mounting base see Figure 4 - 0.5 1.1 K/W Fig 4. Transient thermal impedance from junction to mounting base as a function of pulse duration 003aac456 single shot 0.2 0.1 0.05 0.02 10-3 10-2 10-1 1 10 10-6 10-5 10-4 10-3 10-2 10-1 1 tp (s) Zth(j-mb) (K/W) δ = 0.5 tp T P t tp T δ =PSMN1R7-30YL All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved. Product data sheet Rev. 1 — 30 May 2011 6 of 15 NXP Semiconductors PSMN1R7-30YL N-channel 30 V 1.7 mΩ logic level MOSFET in LFPAK 6. Characteristics Table 6. Characteristics Tested to JEDEC standards where applicable. Symbol Parameter Conditions Min Typ Max Unit Static characteristics V(BR)DSS drain-source breakdown voltage ID = 250 µA; VGS = 0 V; Tj = 25 °C 30 - - V ID = 250 µA; VGS = 0 V; Tj = -55 °C 27 - - V VGS(th) gate-source threshold voltage ID = 1 mA; VDS = VGS; Tj = 25 °C; see Figure 11; see Figure 12 1.3 1.7 2.15 V ID = 1 mA; VDS = VGS; Tj = 150 °C; see Figure 12 0.65 - - V ID = 1 mA; VDS = VGS; Tj = -55 °C; see Figure 12 - - 2.45 V IDSS drain leakage current VDS = 30 V; VGS = 0 V; Tj = 25 °C - - 1 µA VDS = 30 V; VGS = 0 V; Tj = 150 °C - - 100 µA IGSS gate leakage current VGS = 16 V; VDS = 0 V; Tj = 25 °C - - 100 nA VGS = -16 V; VDS = 0 V; Tj = 25 °C - - 100 nA RDSon drain-source on-state resistance VGS = 4.5 V; ID = 15 A; Tj = 25 °C - 1.8 2.1 mΩ VGS = 10 V; ID = 15 A; Tj = 150 °C; see Figure 13 - - 2.8 mΩ VGS = 10 V; ID = 15 A; Tj = 100 °C; see Figure 13 - - 2.4 mΩ VGS = 10 V; ID = 15 A; Tj = 25 °C - 1.3 1.7 mΩ RG gate resistance f = 1 MHz - 0.77 1.5 Ω Dynamic characteristics QG(tot) total gate charge ID = 10 A; VDS = 12 V; VGS = 10 V; see Figure 14; see Figure 15 - 77.9 - nC ID = 0 A; VDS = 0 V; VGS = 10 V - 70 - nC ID = 10 A; VDS = 12 V; VGS = 4.5 V; see Figure 14 - 36.2 - nC QGS gate-source charge ID = 10 A; VDS = 12 V; VGS = 4.5 V; see Figure 14; see Figure 15 - 11.6 - nC QGS(th) pre-threshold gate-source charge - 8 - nC QGS(th-pl) post-threshold gate-source charge - 3.6 - nC QGD gate-drain charge - 8.7 - nC VGS(pl) gate-source plateau voltage VDS = 12 V; see Figure 14; see Figure 15 - 2.34 - V Ciss input capacitance VDS = 12 V; VGS = 0 V; f = 1 MHz; Tj = 25 °C; see Figure 16 - 5057 - pF Coss output capacitance - 1082 - pF Crss reverse transfer capacitance - 398 - pF td(on) turn-on delay time VDS = 12 V; RL = 0.5 Ω; VGS = 4.5 V; RG(ext) = 4.7 Ω - 46 - ns tr rise time - 72 - ns td(off) turn-off delay time - 76 - ns tf fall time - 34 - nsPSMN1R7-30YL All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved. Product data sheet Rev. 1 — 30 May 2011 7 of 15 NXP Semiconductors PSMN1R7-30YL N-channel 30 V 1.7 mΩ logic level MOSFET in LFPAK Source-drain diode VSD source-drain voltage IS = 25 A; VGS = 0 V; Tj = 25 °C; see Figure 17 - 0.78 1.2 V trr reverse recovery time IS = 20 A; dIS/dt = -100 A/µs; VGS = 0 V; VDS = 20 V - 45 - ns Qr recovered charge - 56 - nC Table 6. Characteristics …continued Tested to JEDEC standards where applicable. Symbol Parameter Conditions Min Typ Max Unit Fig 5. Output characteristics: drain current as a function of drain-source voltage; typical values Fig 6. Drain-source on-state resistance as a function of drain current; typical values Fig 7. Forward transconductance as a function of drain current; typical values Fig 8. Input and reverse transfer capacitances as a function of gate-source voltage; typical values 003aac449 0 50 100 150 200 250 300 0 2 4 6 8 10 VDS (V) ID (A) 2.2 2.4 2.6 2.8 3 VGS (V) = 3.2 3.4 3.6 4 10 003aac450 1 2 3 4 5 0 50 100 150 200 250 ID (A) RDSon (mΩ) 7 10 4 3.6 VGS (V) = 3.4 003aac452 0 50 100 150 200 0 20 40 60 80 ID (A) gfs (S) 003aac455 0 2000 4000 6000 8000 2 4 6 810 VGS (V) C (pF) Ciss CrssPSMN1R7-30YL All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved. Product data sheet Rev. 1 — 30 May 2011 8 of 15 NXP Semiconductors PSMN1R7-30YL N-channel 30 V 1.7 mΩ logic level MOSFET in LFPAK Fig 9. Drain-source on-state resistance as a function of gate-source voltage; typical values Fig 10. Transfer characteristics: drain current as a function of gate-source voltage; typical values Fig 11. Sub-threshold drain current as a function of gate-source voltage Fig 12. Gate-source threshold voltage as a function of junction temperature 003aac451 1.0 1.5 2.0 2.5 3.0 2 4 6 8 10 VGS (V) RDSon (mΩ) 003aac453 0 20 40 60 80 01234 VGS (V) ID (A) Tj = 150 °C 25 °C 003aab271 10-6 10-5 10-4 10-3 10-2 10-1 0123 VGS (V) ID (A) min typ max 003aac982 0 1 2 3 -60 0 60 120 180 Tj (°C) VGS(th) (V) max typ minPSMN1R7-30YL All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved. Product data sheet Rev. 1 — 30 May 2011 9 of 15 NXP Semiconductors PSMN1R7-30YL N-channel 30 V 1.7 mΩ logic level MOSFET in LFPAK Fig 13. Normalized drain-source on-state resistance factor as a function of junction temperature Fig 14. Gate charge waveform definitions Fig 15. Gate-source voltage as a function of gate charge; typical values Fig 16. Input, output and reverse transfer capacitances as a function of drain-source voltage; typical values 03aa27 0 0.5 1 1.5 2 −60 0 60 120 180 Tj (°C) a 003aaa508 VGS VGS(th) QGS1 QGS2 QGD VDS QG(tot) ID QGS VGS(pl) 003aac448 0 2 4 6 8 10 0 20 40 60 80 QG (nC) VGS (V) VDS = 19 (V) VDS = 12 (V) 003aac454 0 2000 4000 6000 10-1 1 10 102 VDS (V) C (pF) Ciss Coss CrssPSMN1R7-30YL All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved. Product data sheet Rev. 1 — 30 May 2011 10 of 15 NXP Semiconductors PSMN1R7-30YL N-channel 30 V 1.7 mΩ logic level MOSFET in LFPAK Fig 17. Source (diode forward) current as a function of source-drain (diode forward) voltage; typical values 003aac447 0 20 40 60 80 100 0.0 0.2 0.4 0.6 0.8 1.0 VSD (V) IS (A) Tj = 150 °C 25 °CPSMN1R7-30YL All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved. Product data sheet Rev. 1 — 30 May 2011 11 of 15 NXP Semiconductors PSMN1R7-30YL N-channel 30 V 1.7 mΩ logic level MOSFET in LFPAK 7. Package outline Fig 18. Package outline SOT669 (LFPAK; Power-SO8) REFERENCES OUTLINE VERSION EUROPEAN PROJECTION ISSUE DATE IEC JEDEC JEITA SOT669 MO-235 06-03-16 11-03-25 0 2.5 5 mm scale e E1 b c2 A2 UNIT A A2 b c e DIMENSIONS (mm are the original dimensions) mm 1.10 0.95 A1 A3 0.15 0.00 1.20 1.01 0.50 0.35 b2 4.41 3.62 b3 2.2 2.0 b4 0.9 0.7 0.25 0.19 c2 0.30 0.24 4.10 3.80 6.2 5.8 H 1.3 0.8 L2 0.85 0.40 L 1.3 0.8 L1 8° 0° D w y (1) 5.0 4.8 E(1) 3.3 3.1 E1 D1 (1) (1) max 0.25 4.20 1.27 0.25 0.1 1 2 34 mounting base D1 c Plastic single-ended surface-mounted package (LFPAK; Power-SO8); 4 leads SOT669 E b2 b3 b4 H D L2 L1 A w M A C C X 1/2 e y C θ θ (A )3 L A A1 detail X Note 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included. PSMN1R7-30YL All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved. Product data sheet Rev. 1 — 30 May 2011 12 of 15 NXP Semiconductors PSMN1R7-30YL N-channel 30 V 1.7 mΩ logic level MOSFET in LFPAK 8. Revision history Table 7. Revision history Document ID Release date Data sheet status Change notice Supersedes PSMN1R7-30YL v.5 20110530 Product data sheet - PSMN1R7-30YL v.4 Modifications: • Various changes to content. PSMN1R7-30YL v.4 20100420 Product data sheet - PSMN1R7-30YL v.3PSMN1R7-30YL All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved. Product data sheet Rev. 1 — 30 May 2011 13 of 15 NXP Semiconductors PSMN1R7-30YL N-channel 30 V 1.7 mΩ logic level MOSFET in LFPAK 9. Legal information 9.1 Data sheet status [1] Please consult the most recently issued document before initiating or completing a design. [2] The term 'short data sheet' is explained in section "Definitions". [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com. 9.2 Definitions Preview — The document is a preview version only. The document is still subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information. Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information. Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail. Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet. 9.3 Disclaimers Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors. Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer’s own risk. Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding. Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer’s sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer’s applications and products planned, as well as for the planned application and use of customer’s third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products. NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer’s applications or products, or the application or use by customer’s third party customer(s). Customer is responsible for doing all necessary testing for the customer’s applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer’s third party customer(s). NXP does not accept any liability in this respect. Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device. Document status [1] [2] Product status [3] Definition Objective [short] data sheet Development This document contains data from the objective specification for product development. Preliminary [short] data sheet Qualification This document contains data from the preliminary specification. Product [short] data sheet Production This document contains the product specification. PSMN1R7-30YL All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved. Product data sheet Rev. 1 — 30 May 2011 14 of 15 NXP Semiconductors PSMN1R7-30YL N-channel 30 V 1.7 mΩ logic level MOSFET in LFPAK Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer’s general terms and conditions with regard to the purchase of NXP Semiconductors products by customer. No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights. Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities. Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications. In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors’ warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors’ specifications such use shall be solely at customer’s own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors’ standard warranty and NXP Semiconductors’ product specifications. 9.4 Trademarks Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners. Adelante, Bitport, Bitsound, CoolFlux, CoReUse, DESFire, EZ-HV, FabKey, GreenChip, HiPerSmart, HITAG, I²C-bus logo, ICODE, I-CODE, ITEC, Labelution, MIFARE, MIFARE Plus, MIFARE Ultralight, MoReUse, QLPAK, Silicon Tuner, SiliconMAX, SmartXA, STARplug, TOPFET, TrenchMOS, TriMedia and UCODE — are trademarks of NXP B.V. HD Radio and HD Radio logo — are trademarks of iBiquity Digital Corporation. 10. Contact information For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.comNXP Semiconductors PSMN1R7-30YL N-channel 30 V 1.7 mΩ logic level MOSFET in LFPAK © NXP B.V. 2011. All rights reserved. For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com Date of release: 30 May 2011 Document identifier: PSMN1R7-30YL Please be aware that important notices concerning this document and the product(s) described herein, have been included in section ‘Legal information’. 11. Contents 1 Product profile . . . . . . . . . . . . . . . . . . . . . . . . . . .1 1.1 General description . . . . . . . . . . . . . . . . . . . . . .1 1.2 Features and benefits. . . . . . . . . . . . . . . . . . . . .1 1.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 1.4 Quick reference data . . . . . . . . . . . . . . . . . . . . .1 2 Pinning information. . . . . . . . . . . . . . . . . . . . . . .2 3 Ordering information. . . . . . . . . . . . . . . . . . . . . .2 4 Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . . .3 5 Thermal characteristics . . . . . . . . . . . . . . . . . . .5 6 Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . .6 7 Package outline . . . . . . . . . . . . . . . . . . . . . . . . .11 8 Revision history. . . . . . . . . . . . . . . . . . . . . . . . .12 9 Legal information. . . . . . . . . . . . . . . . . . . . . . . .13 9.1 Data sheet status . . . . . . . . . . . . . . . . . . . . . . .13 9.2 Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . .13 9.3 Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . . .13 9.4 Trademarks. . . . . . . . . . . . . . . . . . . . . . . . . . . .14 10 Contact information. . . . . . . . . . . . . . . . . . . . . .14 74VHC126; 74VHCT126 Quad buffer/line driver; 3-state Rev. 01 — 13 August 2009 Product data sheet 74VHC_VHCT126_1 © NXP B.V. 2009. All rights reserved. Product data sheet Rev. 01 — 13 August 2009 2 of 15 NXP Semiconductors 74VHC126; 74VHCT126 Quad buffer/line driver; 3-state 3. Ordering information 4. Functional diagram Table 1. Ordering information Type number Package Temperature range Name Description Version 74VHC126D -40 °C to +125 °C SO14 plastic small outline package; 14 leads; body width 3.9 mm SOT108-1 74VHCT126D 74VHC126PW -40 °C to +125 °C TSSOP14 plastic thin shrink small outline package; 14 leads; body width 4.4 mm SOT402-1 74VHCT126PW 74VHC126BQ -40 °C to +125 °C DHVQFN14 plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 14 terminals; body 2.5 ´ 3 ´ 0.85 mm SOT762-1 74VHCT126BQ Fig 1. Functional diagram mna235 2 1A 1Y 1 3 1OE 5 2A 2Y 4 6 2OE 9 3A 3Y 10 8 3OE 12 4A 4Y 13 11 4OE Fig 2. Logic symbol Fig 3. IEC logic symbol mna234 nOE nA nY mna236 1 EN1 1 3 2 4 6 5 10 8 9 13 11 12 74VHC_VHCT126_1 © NXP B.V. 2009. All rights reserved. Product data sheet Rev. 01 — 13 August 2009 3 of 15 NXP Semiconductors 74VHC126; 74VHCT126 Quad buffer/line driver; 3-state 5. Pinning information 5.1 Pinning 5.2 Pin description (1) The die substrate is attached to this pad using conductive die attach material. It can not be used as a supply pin or input. Fig 4. Pin configuration SO14 and TSSOP14 Fig 5. Pin configuration DHVQFN14 74VHC126 74VHCT126 1OE VCC 1A 4OE 1Y 4A 2OE 4Y 2A 3OE 2Y 3A GND 3Y 001aak056 1 2 3 4 5 6 7 8 10 9 12 11 14 13 001aak076 74VHC126 74VHCT126 Transparent top view 2Y 3A 2A 3OE 2OE 4Y 1Y 4A 1A 4OE GND 3Y 1OE VCC 6 9 5 10 4 11 3 12 2 13 7 8 1 14 terminal 1 index area GND(1) Table 2. Pin description Symbol Pin Description 1OE 1 output enable input 1 (active HIGH) 1A 2 data input 1 1Y 3 data output 1 2OE 4 output enable input 2 (active HIGH) 2A 5 data input 2 2Y 6 data output 2 GND 7 ground (0 V) 3Y 8 data output 3 3A 9 data input 3 3OE 10 output enable input 3 (active HIGH) 4Y 11 data output 4 4A 12 data input 4 4OE 13 output enable input 4 (active HIGH) VCC 14 supply voltage 74VHC_VHCT126_1 © NXP B.V. 2009. All rights reserved. Product data sheet Rev. 01 — 13 August 2009 4 of 15 NXP Semiconductors 74VHC126; 74VHCT126 Quad buffer/line driver; 3-state 6. Functional description [1] H = HIGH voltage state; L = LOW voltage state; X = don’t care; Z = high-impedance OFF-state. 7. Limiting values [1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed. [2] For SO14 packages: above 70 °C the value of Ptot derates linearly at 8 mW/K. For TSSOP14 packages: above 60 °C the value of Ptot derates linearly at 5.5 mW/K. For DHVQFN14 packages: above 60 °C the value of Ptot derates linearly at 4.5 mW/K. Table 3. Function table[1] Control Input Output nOE nA nY H L L H H H L X Z Table 4. Limiting values In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V). Symbol Parameter Conditions Min Max Unit VCC supply voltage -0.5 +7.0 V VI input voltage -0.5 +7.0 V IIK input clamping current VI < -0.5 V [1] -20 - mA IOK output clamping current VO < -0.5 V or VO > VCC + 0.5 V [1] -20 +20 mA IO output current VO = -0.5 V to (VCC + 0.5 V) -25 +25 mA ICC supply current - +75 mA IGND ground current -75 - mA Tstg storage temperature -65 +150 °C Ptot total power dissipation Tamb = -40 °C to +125 °C [2] - 500 mW 74VHC_VHCT126_1 © NXP B.V. 2009. All rights reserved. Product data sheet Rev. 01 — 13 August 2009 5 of 15 NXP Semiconductors 74VHC126; 74VHCT126 Quad buffer/line driver; 3-state 8. Recommended operating conditions 9. Static characteristics Table 5. Operating conditions Symbol Parameter Conditions Min Typ Max Unit 74VHC126 VCC supply voltage 2.0 5.0 5.5 V VI input voltage 0 - 5.5 V VO output voltage 0 - VCC V Tamb ambient temperature -40 +25 +125 °C Dt/DV input transition rise and fall rate VCC = 3.0 V to 3.6 V - - 100 ns/V VCC = 4.5 V to 5.5 V - - 20 ns/V 74VHCT126 VCC supply voltage 4.5 5.0 5.5 V VI input voltage 0 - 5.5 V VO output voltage 0 - VCC V Tamb ambient temperature -40 +25 +125 °C Dt/DV input transition rise and fall rate VCC = 4.5 V to 5.5 V - - 20 ns/V Table 6. Static characteristics At recommended operating conditions; voltages are referenced to GND (ground = 0 V). Symbol Parameter Conditions 25 °C -40 °C to +85 °C -40 °C to +125 °C Unit Min Typ Max Min Max Min Max 74VHC126 VIH HIGH-level input voltage VCC = 2.0 V 1.5 - - 1.5 - 1.5 - V VCC = 3.0 V 2.1 - - 2.1 - 2.1 - V VCC = 5.5 V 3.85 - - 3.85 - 3.85 - V VIL LOW-level input voltage VCC = 2.0 V - - 0.5 - 0.5 - 0.5 V VCC = 3.0 V - - 0.9 - 0.9 - 0.9 V VCC = 5.5 V - - 1.65 - 1.65 - 1.65 V VOH HIGH-level output voltage VI = VIH or VIL IO = -50 mA; VCC = 2.0 V 1.9 2.0 - 1.9 - 1.9 - V IO = -50 mA; VCC = 3.0 V 2.9 3.0 - 2.9 - 2.9 - V IO = -50 mA; VCC = 4.5 V 4.4 4.5 - 4.4 - 4.4 - V IO = -4.0 mA; VCC = 3.0 V 2.58 - - 2.48 - 2.40 - V IO = -8.0 mA; VCC = 4.5 V 3.94 - - 3.80 - 3.70 - V VOL LOW-level output voltage VI = VIH or VIL IO = 50 mA; VCC = 2.0 V - 0 0.1 - 0.1 - 0.1 V IO = 50 mA; VCC = 3.0 V - 0 0.1 - 0.1 - 0.1 V IO = 50 mA; VCC = 4.5 V - 0 0.1 - 0.1 - 0.1 V IO = 4.0 mA; VCC = 3.0 V - - 0.36 - 0.44 - 0.55 V IO = 8.0 mA; VCC = 4.5 V - - 0.36 - 0.44 - 0.55 V 74VHC_VHCT126_1 © NXP B.V. 2009. All rights reserved. Product data sheet Rev. 01 — 13 August 2009 6 of 15 NXP Semiconductors 74VHC126; 74VHCT126 Quad buffer/line driver; 3-state II input leakage current VI = 5.5 V or GND; VCC = 0 V to 5.5 V - - 0.1 - 1.0 - 2.0 mA IOZ OFF-state output current VI = VIH or VIL; VO = VCC or GND; VCC = 5.5 V - - ±0.25 - ±2.5 - ±10.0 mA ICC supply current VI = VCC or GND; IO = 0 A; VCC = 5.5 V - - 2.0 - 20 - 40 mA CI input capacitance VI = VCC or GND - 3 10 - 10 - 10 pF CO output capacitance - 4 - - - - - pF 74VHCT126 VIH HIGH-level input voltage VCC = 4.5 V to 5.5 V 2.0 - - 2.0 - 2.0 - V VIL LOW-level input voltage VCC = 4.5 V to 5.5 V - - 0.8 - 0.8 - 0.8 V VOH HIGH-level output voltage VI = VIH or VIL; VCC = 4.5 V IO = -50 mA 4.4 4.5 - 4.4 - 4.4 - V IO = -8.0 mA 3.94 - - 3.80 - 3.70 - V VOL LOW-level output voltage VI = VIH or VIL; VCC = 4.5 V IO = 50 mA - 0 0.1 - 0.1 - 0.1 V IO = 8.0 mA - - 0.36 - 0.44 - 0.55 V II input leakage current VI = 5.5 V or GND; VCC = 0 V to 5.5 V - - 0.1 - 1.0 - 2.0 mA IOZ OFF-state output current VI = VIH or VIL; VO = VCC or GND per input pin; other inputs at VCC or GND; IO = 0 A; VCC = 5.5 V - - ±0.25 - ±2.5 - ±10.0 mA ICC supply current VI = VCC or GND; IO = 0 A; VCC = 5.5 V - - 2.0 - 20 - 40 mA DICC additional supply current per input pin; VI = VCC - 2.1 V; other pins at VCC or GND; IO = 0 A; VCC = 4.5 V to 5.5 V - - 1.35 - 1.5 - 1.5 mA CI input capacitance VI = VCC or GND - 3 10 - 10 - 10 pF CO output capacitance - 4 - - - - - pF Table 6. Static characteristics …continued At recommended operating conditions; voltages are referenced to GND (ground = 0 V). Symbol Parameter Conditions 25 °C -40 °C to +85 °C -40 °C to +125 °C Unit Min Typ Max Min Max Min Max 74VHC_VHCT126_1 © NXP B.V. 2009. All rights reserved. Product data sheet Rev. 01 — 13 August 2009 7 of 15 NXP Semiconductors 74VHC126; 74VHCT126 Quad buffer/line driver; 3-state 10. Dynamic characteristics Table 7. Dynamic characteristics Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 8. Symbol Parameter Conditions 25 °C -40 °C to +85 °C -40 °C to +125 °C Unit Min Typ[1] Max Min Max Min Max 74VHC126 tpd propagation delay nA to nY; see Figure 6 [2] VCC = 3.0 V to 3.6 V CL = 15 pF - 4.7 8.0 1.0 9.5 1.0 10.0 ns CL = 50 pF - 6.7 11.5 1.0 13.0 1.0 14.5 ns VCC = 4.5 V to 5.5 V CL = 15 pF - 3.3 5.5 1.0 6.5 1.0 7.0 ns CL = 50 pF - 4.7 7.5 1.0 8.5 1.0 9.5 ns ten enable time nOE to nY; see Figure 7 [3] VCC = 3.0 V to 3.6 V CL = 15 pF - 5.3 8.0 1.0 9.5 1.0 10.0 ns CL = 50 pF - 7.6 11.5 1.0 13.0 1.0 14.5 ns VCC = 4.5 V to 5.5 V CL = 15 pF - 3.6 5.3 1.0 6.1 1.0 7.0 ns CL = 50 pF - 5.1 7.6 1.0 8.7 1.0 9.5 ns tdis disable time nOE to nY; see Figure 7 [4] VCC = 3.0 V to 3.6 V CL = 15 pF - 6.6 9.7 1.0 11.5 1.0 12.5 ns CL = 50 pF - 9.4 13.2 1.0 15.0 1.0 16.5 ns VCC = 4.5 V to 5.5 V CL = 15 pF - 4.7 6.8 1.0 8.0 1.0 8.5 ns CL = 50 pF - 6.7 8.8 1.0 10.0 1.0 11.0 ns CPD power dissipation capacitance fi = 1 MHz; VI = GND to VCC [5] - 10 - - - - - pF 74VHCT126; VCC = 4.5 V to 5.5 V tpd propagation delay nA to nY; see Figure 6 [2] CL = 15 pF - 3.0 5.5 1.0 6.5 1.0 7.0 ns CL = 50 pF - 4.3 7.5 1.0 8.5 1.0 9.5 ns ten enable time nOE to nY; see Figure 7 [3] CL = 15 pF - 3.3 5.1 1.0 6.0 1.0 6.5 ns CL = 50 pF - 4.7 7.1 1.0 8.0 1.0 9.0 ns tdis disable time nOE to nY; see Figure 7 [4] CL = 15 pF - 4.8 6.8 1.0 8.0 1.0 8.5 ns CL = 50 pF - 6.9 8.9 1.0 10.0 1.0 11.5 ns CPD power dissipation capacitance fi = 1 MHz; VI = GND to VCC [5] - 12 - - - - - pF 74VHC_VHCT126_1 © NXP B.V. 2009. All rights reserved. Product data sheet Rev. 01 — 13 August 2009 8 of 15 NXP Semiconductors 74VHC126; 74VHCT126 Quad buffer/line driver; 3-state [1] Typical values are measured at nominal supply voltage (VCC = 3.3 V and VCC = 5.0 V). [2] tpd is the same as tPLH and tPHL. [3] ten is the same as tPZL and tPZH. [4] tdis is the same as tPLZ and tPHZ. [5] CPD is used to determine the dynamic power dissipation (PD in mW). PD = CPD ´ VCC 2 ´ fi ´ N + S(CL ´ VCC 2 ´ fo) where: fi = input frequency in MHz; fo = output frequency in MHz; CL = output load capacitance in pF; VCC = supply voltage in V; N = number of inputs switching; S(CL ´ VCC 2 ´ fo) = sum of the outputs. 11. Waveforms Measurement points are given in Table 8. VOL and VOH are typical voltage output levels that occur with the output load. Fig 6. Input to output propagation delays mna237 tPHL tPLH VM nA input VM nY output GND VI VOH VOL Measurement points are given in Table 8. VOL and VOH are typical voltage output levels that occur with the output load. Fig 7. Enable and disable times mna949 tPLZ tPHZ outputs disabled outputs enabled VY VX outputs enabled output LOW-to-OFF OFF-to-LOW output HIGH-to-OFF OFF-to-HIGH nOE input VOL VOH VCC VI VM GND GND tPZL tPZH VM VM 74VHC_VHCT126_1 © NXP B.V. 2009. All rights reserved. Product data sheet Rev. 01 — 13 August 2009 9 of 15 NXP Semiconductors 74VHC126; 74VHCT126 Quad buffer/line driver; 3-state Table 8. Measurement points Type Input Output VM VM VX VY 74VHC126 0.5VCC 0.5VCC VOL + 0.3 V VOH - 0.3 V 74VHCT126 1.5 V 0.5VCC VOL + 0.3 V VOH - 0.3 V Test data is given in Table 9. Definitions test circuit: RT = termination resistance should be equal to output impedance Zo of the pulse generator. CL = load capacitance including jig and probe capacitance. RL = load resistance. S1 = test selection switch. Fig 8. Test circuitry for measuring switching times VM VM tW tW 10 % 90 % 0 V VI VI negative pulse positive pulse 0 V VM VM 90 % 10 % tf tr tr tf 001aad983 DUT VCC VCC VI VO RT RL S1 CL G open Table 9. Test data Type Input Load S1 position VI tr, tf CL RL tPHL, tPLH tPZH, tPHZ tPZL, tPLZ 74VHC126 VCC £ 3.0 ns 15 pF, 50 pF 1 kW open GND VCC 74VHCT126 3.0 V £ 3.0 ns 15 pF, 50 pF 1 kW open GND VCC 74VHC_VHCT126_1 © NXP B.V. 2009. All rights reserved. Product data sheet Rev. 01 — 13 August 2009 10 of 15 NXP Semiconductors 74VHC126; 74VHCT126 Quad buffer/line driver; 3-state 12. Package outline Fig 9. Package outline SOT108-1 (SO14) UNIT A max. A1 A2 A3 bp c D(1) E(1) e HE L Lp Q v w y Z (1) q OUTLINE REFERENCES VERSION EUROPEAN PROJECTION ISSUE DATE IEC JEDEC JEITA mm inches 1.75 0.25 0.10 1.45 1.25 0.25 0.49 0.36 0.25 0.19 8.75 8.55 4.0 3.8 1.27 6.2 5.8 0.7 0.6 0.7 0.3 8 0 o o 0.25 0.1 DIMENSIONS (inch dimensions are derived from the original mm dimensions) Note 1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included. 1.0 0.4 SOT108-1 X w M q A A 1 A2 bp D HE Lp Q detail X E Z e c L v M A (A 3 ) A 7 8 1 14 y 076E06 MS-012 pin 1 index 0.069 0.010 0.004 0.057 0.049 0.01 0.019 0.014 0.0100 0.0075 0.35 0.34 0.16 0.15 0.05 1.05 0.041 0.244 0.228 0.028 0.024 0.028 0.012 0.01 0.25 0.01 0.004 0.039 0.016 99-12-27 03-02-19 0 2.5 5 mm scale SO14: plastic small outline package; 14 leads; body width 3.9 mm SOT108-1 74VHC_VHCT126_1 © NXP B.V. 2009. All rights reserved. Product data sheet Rev. 01 — 13 August 2009 11 of 15 NXP Semiconductors 74VHC126; 74VHCT126 Quad buffer/line driver; 3-state Fig 10. Package outline SOT402-1 (TSSOP14) UNIT A1 A2 A3 bp c D(1) E (2) e HE L Lp Q v w y Z (1) q OUTLINE REFERENCES VERSION EUROPEAN PROJECTION ISSUE DATE IEC JEDEC JEITA mm 0.15 0.05 0.95 0.80 0.30 0.19 0.2 0.1 5.1 4.9 4.5 4.3 0.65 6.6 6.2 0.4 0.3 0.72 0.38 8 0 o 1 0.2 0.13 0.1 o DIMENSIONS (mm are the original dimensions) Notes 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included. 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included. 0.75 0.50 SOT402-1 MO-153 99-12-27 03-02-18 w M bp D Z e 0.25 1 7 14 8 q A A1 A2 Lp Q detail X L (A 3 ) HE E c v M A X A y 0 2.5 5 mm scale TSSOP14: plastic thin shrink small outline package; 14 leads; body width 4.4 mm SOT402-1 A max. 1.1 pin 1 index 74VHC_VHCT126_1 © NXP B.V. 2009. All rights reserved. Product data sheet Rev. 01 — 13 August 2009 12 of 15 NXP Semiconductors 74VHC126; 74VHCT126 Quad buffer/line driver; 3-state Fig 11. Package outline SOT762-1 (DHVQFN14) terminal 1 index area 1 0.5 UNIT A1 b Eh e y 0.2 c OUTLINE REFERENCES VERSION EUROPEAN PROJECTION ISSUE DATE IEC JEDEC JEITA mm 3.1 2.9 Dh 1.65 1.35 y1 2.6 2.4 1.15 0.85 e1 2 0.30 0.18 0.05 0.00 0.05 0.1 DIMENSIONS (mm are the original dimensions) SOT762-1 - - - MO-241 - - - 0.5 0.3 L 0.1 v 0.05 w 0 2.5 5 mm scale SOT762-1 DHVQFN14: plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 14 terminals; body 2.5 x 3 x 0.85 mm A(1) max. A A1 c detail X e y1 C y L Eh Dh e e1 b 2 6 13 9 8 1 7 14 X D E C B A 02-10-17 03-01-27 terminal 1 index area C A C v M B w M E(1) Note 1. Plastic or metal protrusions of 0.075 mm maximum per side are not included. D(1) 74VHC_VHCT126_1 © NXP B.V. 2009. All rights reserved. Product data sheet Rev. 01 — 13 August 2009 13 of 15 NXP Semiconductors 74VHC126; 74VHCT126 Quad buffer/line driver; 3-state 13. Abbreviations 14. Revision history Table 10. Abbreviations Acronym Description CDM Charged Device Model CMOS Complementary Metal-Oxide Semiconductor DUT Device Under Test ESD ElectroStatic Discharge HBM Human Body Model LSTTL Low-power Schottky Transistor-Transistor Logic MM Machine Model Table 11. Revision history Document ID Release date Data sheet status Change notice Supersedes 74VHC_VHCT126_1 20090813 Product data sheet - - 74VHC_VHCT126_1 © NXP B.V. 2009. All rights reserved. Product data sheet Rev. 01 — 13 August 2009 14 of 15 NXP Semiconductors 74VHC126; 74VHCT126 Quad buffer/line driver; 3-state 15. Legal information 15.1 Data sheet status [1] Please consult the most recently issued document before initiating or completing a design. [2] The term ‘short data sheet’ is explained in section “Definitions”. [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com. 15.2 Definitions Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information. Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail. 15.3 Disclaimers General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer’s own risk. Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability. Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail. No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights. Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities. 15.4 Trademarks Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners. 16. Contact information For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com Document status[1][2] Product status[3] Definition Objective [short] data sheet Development This document contains data from the objective specification for product development. Preliminary [short] data sheet Qualification This document contains data from the preliminary specification. Product [short] data sheet Production This document contains the product specification. NXP Semiconductors 74VHC126; 74VHCT126 Quad buffer/line driver; 3-state © NXP B.V. 2009. All rights reserved. For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com Date of release: 13 August 2009 Document identifier: 74VHC_VHCT126_1 Please be aware that important notices concerning this document and the product(s) described herein, have been included in section ‘Legal information’. Product specification July 1998 DISCRETE SEMICONDUCTORS BYV79E series Rectifier diodes ultrafast, rugged Semiconductors Product specification Rectifier diodes BYV79E series ultrafast, rugged FEATURES SYMBOL QUICK REFERENCE DATA • Low forward volt drop VR = 150 V/ 200 V • Fast switching • Soft recovery characteristic VF ≤ 0.9 V • Reverse surge capability • High thermal cycling performance IF(AV) = 14 A • Low thermal resistance IRRM ≤ 0.2 A trr ≤ 30 ns GENERAL DESCRIPTION PINNING SOD59 (TO220AC) Ultra-fast, epitaxial rectifier diodes PIN DESCRIPTION intended for use as output rectifiers in high frequency switched mode 1 cathode power supplies. 2 anode The BYV79E series is supplied in the conventional leaded SOD59 tab cathode (TO220AC) package. LIMITING VALUES Limiting values in accordance with the Absolute Maximum System (IEC 134). SYMBOL PARAMETER CONDITIONS MIN. MAX. UNIT BYV79E -150 -200 VRRM Peak repetitive reverse voltage - 150 200 V VRWM Crest working reverse voltage - 150 200 V VR Continuous reverse voltage Tmb ≤ 145˚C - 150 200 V IF(AV) Average forward current1 square wave - 14 A δ = 0.5; Tmb ≤ 120 ˚C IFRM Repetitive peak forward current t = 25 μs; δ = 0.5; - 28 A Tmb ≤ 120 ˚C IFSM Non-repetitive peak forward t = 10 ms - 150 A current t = 8.3 ms - 160 A sinusoidal; with reapplied VRWM(max) IRRM Repetitive peak reverse current tp = 2 μs; δ = 0.001 - 0.2 A IRSM Non-repetitive peak reverse tp = 100 μs - 0.2 A current Tstg Storage temperature -40 150 ˚C Tj Operating junction temperature - 150 ˚C 1. Neglecting switching and reverse current losses. ESD LIMITING VALUE SYMBOL PARAMETER CONDITIONS MIN. MAX. UNIT VC Electrostatic discharge Human body model; - 8 kV capacitor voltage C = 250 pF; R = 1.5 kΩ k a 1 2 1 tab 2 July 1998 1 Rev 1.200  Semiconductors Product specification Rectifier diodes BYV79E series ultrafast, rugged THERMAL RESISTANCES SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT Rth j-mb Thermal resistance junction to - - 2 K/W mounting base Rth j-a Thermal resistance junction to in free air - 60 - K/W ambient STATIC CHARACTERISTICS Tj = 25 ˚C unless otherwise stated SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT VF Forward voltage IF = 14 A; Tj = 150˚C - 0.83 0.90 V IF = 14 A - 0.95 1.05 V IF = 50 A - 1.2 1.4 V IR Reverse current VR = VRWM; Tj = 100 ˚C - 0.5 1.3 mA VR = VRWM - 5 50 μA Qs Reverse recovery charge IF = 2 A; VR ≥ 30 V; -dIF/dt = 20 A/μs - 6 15 nC trr1 Reverse recovery time IF = 1 A; VR ≥ 30 V; - 20 30 ns -dIF/dt = 100 A/μs trr2 Reverse recovery time IF = 0.5 A to IR = 1 A; Irec = 0.25 A - 13 22 ns Vfr Forward recovery voltage IF = 1 A; dIF/dt = 10 A/μs - 1 - V July 1998 2 Rev 1.200  Semiconductors Product specification Rectifier diodes BYV79E series ultrafast, rugged Fig.1. Definition of trr1, Qs and Irrm Fig.2. Definition of Vfr Fig.3. Circuit schematic for trr2 Fig.4. Definition of trr2 Fig.5. Maximum forward dissipation PF = f(IF(AV)); square current waveform where IF(AV) =IF(RMS) x √D. Fig.6. Maximum forward dissipation PF = f(IF(AV)); sinusoidal current waveform where a = form factor = IF(RMS) / IF(AV). Q s 10% 100% time dI dt F I R I F I rrm t rr I = 1A R I rec = 0.25A 0A trr2 0.5A IF IR time time V F V fr V F I F 0 5 10 15 20 25 0 5 10 15 20 0.5 0.2 0.1 BYV79 IF(AV) / A PF / W D = 1.0 Tmb(max) / C 150 140 130 120 110 Vo = 0.744 V Rs = 0.0112 Ohms tp D = tp T T t I shunt Current to ’scope D.U.T. Voltage Pulse Source R 0 5 10 15 0 5 10 15 1.9 2.2 2.8 4 BYV79 IF(AV) / A PF / W Tmb(max) / C 150 140 130 a = 1.57 120 Vo = 0.744 V Rs = 0.0112 Ohms July 1998 3 Rev 1.200  Semiconductors Product specification Rectifier diodes BYV79E series ultrafast, rugged Fig.7. Maximum trr at Tj = 25 ˚C. Fig.8. Maximum Irrm at Tj = 25 ˚C. Fig.9. Typical and maximum forward characteristic IF = f(VF); parameter Tj Fig.10. Maximum Qs at Tj = 25 ˚C. Fig.11. Transient thermal impedance; Zth j-mb = f(tp). 1 10 trr / ns 1 10 100 1000 dIF/dt (A/us) IF=1A IF=10A 100 1.0 10 100 Qs / nC 1.0 10 100 -dIF/dt (A/us) 1000 IF=10A 5A 2A 10 1 0.1 0.01 Irrm / A 1 10 100 -dIF/dt (A/us) IF=10A IF=2A 1us 10us 100us 1ms 10ms 100ms 1s 10s 0.001 0.01 0.1 1 10 pulse width, tp (s) BYV79E Transient thermal impedance, Zth j-mb (K/W) tp D = tp T T P t D 0 2 60 50 40 30 20 10 0 max typ Tj = 150 C Tj = 25 C 0.5 1.0 IF / A VF / V 1.5 July 1998 4 Rev 1.200  Semiconductors Product specification Rectifier diodes BYV79E series ultrafast, rugged MECHANICAL DATA Dimensions in mm Net Mass: 2 g Fig.12. SOD59 (TO220AC). pin 1 connected to mounting base. Notes 1. Refer to mounting instructions for TO220 envelopes. 2. Epoxy meets UL94 V0 at 1/8". 10,3 max 3,7 2,8 3,0 3,0 max not tinned 1,3 max (2x) 2,4 0,6 4,5 max 5,9 min 15,8 max 1,3 0,9 max (2x) 13,5 min 5,08 1 2 July 1998 5 Rev 1.200 NXP Semiconductors Legal information DATA SHEET STATUS Notes 1. Please consult the most recently issued document before initiating or completing a design. 2. The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com. DOCUMENT STATUS(1) PRODUCT STATUS(2) DEFINITION Objective data sheet Development This document contains data from the objective specification for product development. Preliminary data sheet Qualification This document contains data from the preliminary specification. Product data sheet Production This document contains the product specification. DEFINITIONS Product specification ⎯ The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet. DISCLAIMERS Limited warranty and liability ⎯ Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors. Right to make changes ⎯ NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. Suitability for use ⎯ NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer’s own risk. Applications⎯ Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer’s sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer’s applications and products planned, as well as for the planned application and use of customer’s third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products. NXP Semiconductors Legal information NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer’s applications or products, or the application or use by customer’s third party customer(s). Customer is responsible for doing all necessary testing for the customer’s applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer’s third party customer(s). NXP does not accept any liability in this respect. Limiting values ⎯ Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device. Terms and conditions of commercial sale ⎯ NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer’s general terms and conditions with regard to the purchase of NXP Semiconductors products by customer. No offer to sell or license ⎯ Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights. Export control ⎯ This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities. Quick reference data ⎯ The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding. Non-automotive qualified products ⎯ Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications. In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors’ warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors’ specifications such use shall be solely at customer’s own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP

Farnell PDF