Consent Manager Tag v2.0 (for TCF 2.0) -->
Farnell PDF

RS COMPONENTS Images.png

L293d - Texas Instruments - Farnell Element 14

L293d - Texas Instruments - Farnell Element 14 - Revenir à l'accueil

 

 

Branding Farnell element14 (France)

 

Farnell Element 14 :

[TXT]

 Farnell-HIP4081A-Int..> 07-Jul-2014 19:47  1.0M  

[TXT]

 Farnell-ISL6251-ISL6..> 07-Jul-2014 19:47  1.1M  

[TXT]

 Farnell-DG411-DG412-..> 07-Jul-2014 19:47  1.0M  

[TXT]

 Farnell-3367-ARALDIT..> 07-Jul-2014 19:46  1.2M  

[TXT]

 Farnell-ICM7228-Inte..> 07-Jul-2014 19:46  1.1M  

[TXT]

 Farnell-Data-Sheet-K..> 07-Jul-2014 19:46  1.2M  

[TXT]

 Farnell-Silica-Gel-M..> 07-Jul-2014 19:46  1.2M  

[TXT]

 Farnell-TKC2-Dusters..> 07-Jul-2014 19:46  1.2M  

[TXT]

 Farnell-CRC-HANDCLEA..> 07-Jul-2014 19:46  1.2M  

[TXT]

 Farnell-760G-French-..> 07-Jul-2014 19:45  1.2M  

[TXT]

 Farnell-Decapant-KF-..> 07-Jul-2014 19:45  1.2M  

[TXT]

 Farnell-1734-ARALDIT..> 07-Jul-2014 19:45  1.2M  

[TXT]

 Farnell-Araldite-Fus..> 07-Jul-2014 19:45  1.2M  

[TXT]

 Farnell-fiche-de-don..> 07-Jul-2014 19:44  1.4M  

[TXT]

 Farnell-safety-data-..> 07-Jul-2014 19:44  1.4M  

[TXT]

 Farnell-A-4-Hardener..> 07-Jul-2014 19:44  1.4M  

[TXT]

 Farnell-CC-Debugger-..> 07-Jul-2014 19:44  1.5M  

[TXT]

 Farnell-MSP430-Hardw..> 07-Jul-2014 19:43  1.8M  

[TXT]

 Farnell-SmartRF06-Ev..> 07-Jul-2014 19:43  1.6M  

[TXT]

 Farnell-CC2531-USB-H..> 07-Jul-2014 19:43  1.8M  

[TXT]

 Farnell-Alimentation..> 07-Jul-2014 19:43  1.8M  

[TXT]

 Farnell-BK889B-PONT-..> 07-Jul-2014 19:42  1.8M  

[TXT]

 Farnell-User-Guide-M..> 07-Jul-2014 19:41  2.0M  

[TXT]

 Farnell-T672-3000-Se..> 07-Jul-2014 19:41  2.0M

Miniature

Everything You Need To Know About Arduino

Miniature

Tutorial 01 for Arduino: Getting Acquainted with Arduino

Miniature

The Cube® 3D Printer

Miniature

What's easier- DIY Dentistry or our new our website features?

 

Miniature

Ben Heck's Getting Started with the BeagleBone Black Trailer

Miniature

Ben Heck's Home-Brew Solder Reflow Oven 2.0 Trailer

Miniature

Get Started with Pi Episode 3 - Online with Raspberry Pi

Miniature

Discover Simulink Promo -- Exclusive element14 Webinar

Miniature

Ben Heck's TV Proximity Sensor Trailer

Miniature

Ben Heck's PlayStation 4 Teardown Trailer

See the trailer for the next exciting episode of The Ben Heck show. Check back on Friday to be among the first to see the exclusive full show on element…

Miniature

Get Started with Pi Episode 4 - Your First Raspberry Pi Project

Connect your Raspberry Pi to a breadboard, download some code and create a push-button audio play project.

Miniature

Ben Heck Anti-Pickpocket Wallet Trailer

Miniature

Molex Earphones - The 14 Holiday Products of Newark element14 Promotion

Miniature

Tripp Lite Surge Protector - The 14 Holiday Products of Newark element14 Promotion

Miniature

Microchip ChipKIT Pi - The 14 Holiday Products of Newark element14 Promotion

Miniature

Beagle Bone Black - The 14 Holiday Products of Newark element14 Promotion

Miniature

3M E26, LED Lamps - The 14 Holiday Products of Newark element14 Promotion

Miniature

3M Colored Duct Tape - The 14 Holiday Products of Newark element14 Promotion

Miniature

Tenma Soldering Station - The 14 Holiday Products of Newark element14 Promotion

Miniature

Duratool Screwdriver Kit - The 14 Holiday Products of Newark element14 Promotion

Miniature

Cubify 3D Cube - The 14 Holiday Products of Newark element14 Promotion

Miniature

Bud Boardganizer - The 14 Holiday Products of Newark element14 Promotion

Miniature

Raspberry Pi Starter Kit - The 14 Holiday Products of Newark element14 Promotion

Miniature

Fluke 323 True-rms Clamp Meter - The 14 Holiday Products of Newark element14 Promotion

Miniature

Dymo RHINO 6000 Label Printer - The 14 Holiday Products of Newark element14 Promotion

Miniature

3M LED Advanced Lights A-19 - The 14 Holiday Products of Newark element14 Promotion

Miniature

Innovative LPS Resistor Features Very High Power Dissipation

Miniature

Charge Injection Evaluation Board for DG508B Multiplexer Demo

Miniature

Ben Heck The Great Glue Gun Trailer Part 2

Miniature

Introducing element14 TV

Miniature

Ben Heck Time to Meet Your Maker Trailer

Miniature

Détecteur de composants

Miniature

Recherche intégrée

Miniature

Ben Builds an Accessibility Guitar Trailer Part 1

Miniature

Ben Builds an Accessibility Guitar - Part 2 Trailer

Miniature

PiFace Control and Display Introduction

Miniature

Flashmob Farnell

Miniature

Express Yourself in 3D with Cube 3D Printers from Newark element14

Miniature

Farnell YouTube Channel Move

Miniature

Farnell: Design with the best

Miniature

French Farnell Quest

Miniature

Altera - 3 Ways to Quickly Adapt to Changing Ethernet Protocols

Miniature

Cy-Net3 Network Module

Miniature

MC AT - Professional and Precision Series Thin Film Chip Resistors

Miniature

Solderless LED Connector

Miniature

PSA-T Series Spectrum Analyser: PSA1301T/ PSA2701T

Miniature

3-axis Universal Motion Controller For Stepper Motor Drivers: TMC429

Miniature

Voltage Level Translation

Puce électronique / Microchip :

Miniature

Microchip - 8-bit Wireless Development Kit

Miniature

Microchip - Introduction to mTouch Capacitive Touch Sensing Part 2 of 3

Miniature

Microchip - Introduction to mTouch Capacitive Touch Sensing Part 3 of 3

Miniature

Microchip - Introduction to mTouch Capacitive Touch Sensing Part 1 of 3

Sans fil - Wireless :

Miniature

Microchip - 8-bit Wireless Development Kit

Miniature

Wireless Power Solutions - Wurth Electronics, Texas Instruments, CadSoft and element14

Miniature

Analog Devices - Remote Water Quality Monitoring via a Low Power, Wireless Network

Texas instrument :

Miniature

Texas Instruments - Automotive LED Headlights

Miniature

Texas Instruments - Digital Power Solutions

Miniature

Texas Instruments - Industrial Sensor Solutions

Miniature

Texas Instruments - Wireless Pen Input Demo (Mobile World Congress)

Miniature

Texas Instruments - Industrial Automation System Components

Miniature

Texas Instruments - TMS320C66x - Industry's first 10-GHz fixed/floating point DSP

Miniature

Texas Instruments - TMS320C66x KeyStone Multicore Architecture

Miniature

Texas Instruments - Industrial Interfaces

Miniature

Texas Instruments - Concerto™ MCUs - Connectivity without compromise

Miniature

Texas Instruments - Stellaris Robot Chronos

Miniature

Texas Instruments - DRV8412-C2-KIT, Brushed DC and Stepper Motor Control Kit

Ordinateurs :

Miniature

Ask Ben Heck - Connect Raspberry Pi to Car Computer

Miniature

Ben's Portable Raspberry Pi Computer Trailer

Miniature

Ben's Raspberry Pi Portable Computer Trailer 2

Miniature

Ben Heck's Pocket Computer Trailer

Miniature

Ask Ben Heck - Atari Computer

Miniature

Ask Ben Heck - Using Computer Monitors for External Displays

Miniature

Raspberry Pi Partnership with BBC Computer Literacy Project - Answers from co-founder Eben Upton

Miniature

Installing RaspBMC on your Raspberry Pi with the Farnell element14 Accessory kit

Miniature

Raspberry Pi Served - Joey Hudy

Miniature

Happy Birthday Raspberry Pi

Miniature

Raspberry Pi board B product overview

Logiciels :

Miniature

Ask Ben Heck - Best Opensource or Free CAD Software

Miniature

Tektronix FPGAView™ software makes debugging of FPGAs faster than ever!

Miniature

Ask Ben Heck - Best Open-Source Schematic Capture and PCB Layout Software

Miniature

Introduction to Cadsoft EAGLE PCB Design Software in Chinese

Miniature

Altera - Developing Software for Embedded Systems on FPGAs

Tutoriels :

Miniature

Ben Heck The Great Glue Gun Trailer Part 1

Miniature

the knode tutorial - element14

Miniature

Ben's Autodesk 123D Tutorial Trailer

Miniature

Ben's CadSoft EAGLE Tutorial Trailer

Miniature

Ben Heck's Soldering Tutorial Trailer

Miniature

Ben Heck's AVR Dev Board tutorial

Miniature

Ben Heck's Pinball Tutorial Trailer

Miniature

Ben Heck's Interface Tutorial Trailer

Miniature

First Stage with Python and PiFace Digital

Miniature

Cypress - Getting Started with PSoC® 3 - Part 2

Miniature

Energy Harvesting Challenge

Miniature

New Features of CadSoft EAGLE v6

Autres documentations :

 [TXT] Farnell-SL59830-Inte..> 06-Jul-2014 10:07 1.0M  

[TXT]

 Farnell-ALF1210-PDF.htm 06-Jul-2014 10:06  4.0M  

[TXT]

 Farnell-AD7171-16-Bi..> 06-Jul-2014 10:06  1.0M  

[TXT]

 Farnell-Low-Noise-24..> 06-Jul-2014 10:05  1.0M  

[TXT]

 Farnell-ESCON-Featur..> 06-Jul-2014 10:05  938K  

[TXT]

 Farnell-74LCX573-Fai..> 06-Jul-2014 10:05  1.9M  

[TXT]

 Farnell-1N4148WS-Fai..> 06-Jul-2014 10:04  1.9M  

[TXT]

 Farnell-FAN6756-Fair..> 06-Jul-2014 10:04  850K  

[TXT]

 Farnell-Datasheet-Fa..> 06-Jul-2014 10:04  861K  

[TXT]

 Farnell-ES1F-ES1J-fi..> 06-Jul-2014 10:04  867K  

[TXT]

 Farnell-QRE1113-Fair..> 06-Jul-2014 10:03  879K  

[TXT]

 Farnell-2N7002DW-Fai..> 06-Jul-2014 10:03  886K  

[TXT]

 Farnell-FDC2512-Fair..> 06-Jul-2014 10:03  886K  

[TXT]

 Farnell-FDV301N-Digi..> 06-Jul-2014 10:03  886K  

[TXT]

 Farnell-S1A-Fairchil..> 06-Jul-2014 10:03  896K  

[TXT]

 Farnell-BAV99-Fairch..> 06-Jul-2014 10:03  896K  

[TXT]

 Farnell-74AC00-74ACT..> 06-Jul-2014 10:03  911K  

[TXT]

 Farnell-NaPiOn-Panas..> 06-Jul-2014 10:02  911K  

[TXT]

 Farnell-LQ-RELAYS-AL..> 06-Jul-2014 10:02  924K  

[TXT]

 Farnell-ev-relays-ae..> 06-Jul-2014 10:02  926K  

[TXT]

 Farnell-ESCON-Featur..> 06-Jul-2014 10:02  931K  

[TXT]

 Farnell-Amplifier-In..> 06-Jul-2014 10:02  940K  

[TXT]

 Farnell-Serial-File-..> 06-Jul-2014 10:02  941K  

[TXT]

 Farnell-Both-the-Del..> 06-Jul-2014 10:01  948K  

[TXT]

 Farnell-Videk-PDF.htm   06-Jul-2014 10:01  948K  

[TXT]

 Farnell-EPCOS-173438..> 04-Jul-2014 10:43  3.3M  

[TXT]

 Farnell-Sensorless-C..> 04-Jul-2014 10:42  3.3M  

[TXT]

 Farnell-197.31-KB-Te..> 04-Jul-2014 10:42  3.3M  

[TXT]

 Farnell-PIC12F609-61..> 04-Jul-2014 10:41  3.7M  

[TXT]

 Farnell-PADO-semi-au..> 04-Jul-2014 10:41  3.7M  

[TXT]

 Farnell-03-iec-runds..> 04-Jul-2014 10:40  3.7M  

[TXT]

 Farnell-ACC-Silicone..> 04-Jul-2014 10:40  3.7M  

[TXT]

 Farnell-Series-TDS10..> 04-Jul-2014 10:39  4.0M 

[TXT]

 Farnell-03-iec-runds..> 04-Jul-2014 10:40  3.7M  

[TXT]

 Farnell-0430300011-D..> 14-Jun-2014 18:13  2.0M  

[TXT]

 Farnell-06-6544-8-PD..> 26-Mar-2014 17:56  2.7M  

[TXT]

 Farnell-3M-Polyimide..> 21-Mar-2014 08:09  3.9M  

[TXT]

 Farnell-3M-VolitionT..> 25-Mar-2014 08:18  3.3M  

[TXT]

 Farnell-10BQ060-PDF.htm 14-Jun-2014 09:50  2.4M  

[TXT]

 Farnell-10TPB47M-End..> 14-Jun-2014 18:16  3.4M  

[TXT]

 Farnell-12mm-Size-In..> 14-Jun-2014 09:50  2.4M  

[TXT]

 Farnell-24AA024-24LC..> 23-Jun-2014 10:26  3.1M  

[TXT]

 Farnell-50A-High-Pow..> 20-Mar-2014 17:31  2.9M  

[TXT]

 Farnell-197.31-KB-Te..> 04-Jul-2014 10:42  3.3M  

[TXT]

 Farnell-1907-2006-PD..> 26-Mar-2014 17:56  2.7M  

[TXT]

 Farnell-5910-PDF.htm    25-Mar-2014 08:15  3.0M  

[TXT]

 Farnell-6517b-Electr..> 29-Mar-2014 11:12  3.3M  

[TXT]

 Farnell-A-True-Syste..> 29-Mar-2014 11:13  3.3M  

[TXT]

 Farnell-ACC-Silicone..> 04-Jul-2014 10:40  3.7M  

[TXT]

 Farnell-AD524-PDF.htm   20-Mar-2014 17:33  2.8M  

[TXT]

 Farnell-ADL6507-PDF.htm 14-Jun-2014 18:19  3.4M  

[TXT]

 Farnell-ADSP-21362-A..> 20-Mar-2014 17:34  2.8M  

[TXT]

 Farnell-ALF1210-PDF.htm 04-Jul-2014 10:39  4.0M  

[TXT]

 Farnell-ALF1225-12-V..> 01-Apr-2014 07:40  3.4M  

[TXT]

 Farnell-ALF2412-24-V..> 01-Apr-2014 07:39  3.4M  

[TXT]

 Farnell-AN10361-Phil..> 23-Jun-2014 10:29  2.1M  

[TXT]

 Farnell-ARADUR-HY-13..> 26-Mar-2014 17:55  2.8M  

[TXT]

 Farnell-ARALDITE-201..> 21-Mar-2014 08:12  3.7M  

[TXT]

 Farnell-ARALDITE-CW-..> 26-Mar-2014 17:56  2.7M  

[TXT]

 Farnell-ATMEL-8-bit-..> 19-Mar-2014 18:04  2.1M  

[TXT]

 Farnell-ATMEL-8-bit-..> 11-Mar-2014 07:55  2.1M  

[TXT]

 Farnell-ATmega640-VA..> 14-Jun-2014 09:49  2.5M  

[TXT]

 Farnell-ATtiny20-PDF..> 25-Mar-2014 08:19  3.6M  

[TXT]

 Farnell-ATtiny26-L-A..> 13-Jun-2014 18:40  1.8M  

[TXT]

 Farnell-Alimentation..> 14-Jun-2014 18:24  2.5M  

[TXT]

 Farnell-Alimentation..> 01-Apr-2014 07:42  3.4M  

[TXT]

 Farnell-Amplificateu..> 29-Mar-2014 11:11  3.3M  

[TXT]

 Farnell-An-Improved-..> 14-Jun-2014 09:49  2.5M  

[TXT]

 Farnell-Atmel-ATmega..> 19-Mar-2014 18:03  2.2M  

[TXT]

 Farnell-Avvertenze-e..> 14-Jun-2014 18:20  3.3M  

[TXT]

 Farnell-BC846DS-NXP-..> 13-Jun-2014 18:42  1.6M  

[TXT]

 Farnell-BC847DS-NXP-..> 23-Jun-2014 10:24  3.3M  

[TXT]

 Farnell-BF545A-BF545..> 23-Jun-2014 10:28  2.1M  

[TXT]

 Farnell-BK2650A-BK26..> 29-Mar-2014 11:10  3.3M  

[TXT]

 Farnell-BT151-650R-N..> 13-Jun-2014 18:40  1.7M  

[TXT]

 Farnell-BTA204-800C-..> 13-Jun-2014 18:42  1.6M  

[TXT]

 Farnell-BUJD203AX-NX..> 13-Jun-2014 18:41  1.7M  

[TXT]

 Farnell-BYV29F-600-N..> 13-Jun-2014 18:42  1.6M  

[TXT]

 Farnell-BYV79E-serie..> 10-Mar-2014 16:19  1.6M  

[TXT]

 Farnell-BZX384-serie..> 23-Jun-2014 10:29  2.1M  

[TXT]

 Farnell-Battery-GBA-..> 14-Jun-2014 18:13  2.0M  

[TXT]

 Farnell-C.A-6150-C.A..> 14-Jun-2014 18:24  2.5M  

[TXT]

 Farnell-C.A 8332B-C...> 01-Apr-2014 07:40  3.4M  

[TXT]

 Farnell-CC2560-Bluet..> 29-Mar-2014 11:14  2.8M  

[TXT]

 Farnell-CD4536B-Type..> 14-Jun-2014 18:13  2.0M  

[TXT]

 Farnell-CIRRUS-LOGIC..> 10-Mar-2014 17:20  2.1M  

[TXT]

 Farnell-CS5532-34-BS..> 01-Apr-2014 07:39  3.5M  

[TXT]

 Farnell-Cannon-ZD-PD..> 11-Mar-2014 08:13  2.8M  

[TXT]

 Farnell-Ceramic-tran..> 14-Jun-2014 18:19  3.4M  

[TXT]

 Farnell-Circuit-Note..> 26-Mar-2014 18:00  2.8M  

[TXT]

 Farnell-Circuit-Note..> 26-Mar-2014 18:00  2.8M  

[TXT]

 Farnell-Cles-electro..> 21-Mar-2014 08:13  3.9M  

[TXT]

 Farnell-Conception-d..> 11-Mar-2014 07:49  2.4M  

[TXT]

 Farnell-Connectors-N..> 14-Jun-2014 18:12  2.1M  

[TXT]

 Farnell-Construction..> 14-Jun-2014 18:25  2.5M  

[TXT]

 Farnell-Controle-de-..> 11-Mar-2014 08:16  2.8M  

[TXT]

 Farnell-Cordless-dri..> 14-Jun-2014 18:13  2.0M  

[TXT]

 Farnell-Current-Tran..> 26-Mar-2014 17:58  2.7M  

[TXT]

 Farnell-Current-Tran..> 26-Mar-2014 17:58  2.7M  

[TXT]

 Farnell-Current-Tran..> 26-Mar-2014 17:59  2.7M  

[TXT]

 Farnell-Current-Tran..> 26-Mar-2014 17:59  2.7M  

[TXT]

 Farnell-DC-Fan-type-..> 14-Jun-2014 09:48  2.5M  

[TXT]

 Farnell-DC-Fan-type-..> 14-Jun-2014 09:51  1.8M  

[TXT]

 Farnell-Davum-TMC-PD..> 14-Jun-2014 18:27  2.4M  

[TXT]

 Farnell-De-la-puissa..> 29-Mar-2014 11:10  3.3M  

[TXT]

 Farnell-Directive-re..> 25-Mar-2014 08:16  3.0M  

[TXT]

 Farnell-Documentatio..> 14-Jun-2014 18:26  2.5M  

[TXT]

 Farnell-Download-dat..> 13-Jun-2014 18:40  1.8M  

[TXT]

 Farnell-ECO-Series-T..> 20-Mar-2014 08:14  2.5M  

[TXT]

 Farnell-ELMA-PDF.htm    29-Mar-2014 11:13  3.3M  

[TXT]

 Farnell-EMC1182-PDF.htm 25-Mar-2014 08:17  3.0M  

[TXT]

 Farnell-EPCOS-173438..> 04-Jul-2014 10:43  3.3M  

[TXT]

 Farnell-EPCOS-Sample..> 11-Mar-2014 07:53  2.2M  

[TXT]

 Farnell-ES2333-PDF.htm  11-Mar-2014 08:14  2.8M  

[TXT]

 Farnell-Ed.081002-DA..> 19-Mar-2014 18:02  2.5M  

[TXT]

 Farnell-F28069-Picco..> 14-Jun-2014 18:14  2.0M  

[TXT]

 Farnell-F42202-PDF.htm  19-Mar-2014 18:00  2.5M  

[TXT]

 Farnell-FDS-ITW-Spra..> 14-Jun-2014 18:22  3.3M  

[TXT]

 Farnell-FICHE-DE-DON..> 10-Mar-2014 16:17  1.6M  

[TXT]

 Farnell-Fastrack-Sup..> 23-Jun-2014 10:25  3.3M  

[TXT]

 Farnell-Ferric-Chlor..> 29-Mar-2014 11:14  2.8M  

[TXT]

 Farnell-Fiche-de-don..> 14-Jun-2014 09:47  2.5M  

[TXT]

 Farnell-Fiche-de-don..> 14-Jun-2014 18:26  2.5M  

[TXT]

 Farnell-Fluke-1730-E..> 14-Jun-2014 18:23  2.5M  

[TXT]

 Farnell-GALVA-A-FROI..> 26-Mar-2014 17:56  2.7M  

[TXT]

 Farnell-GALVA-MAT-Re..> 26-Mar-2014 17:57  2.7M  

[TXT]

 Farnell-GN-RELAYS-AG..> 20-Mar-2014 08:11  2.6M  

[TXT]

 Farnell-HC49-4H-Crys..> 14-Jun-2014 18:20  3.3M  

[TXT]

 Farnell-HFE1600-Data..> 14-Jun-2014 18:22  3.3M  

[TXT]

 Farnell-HI-70300-Sol..> 14-Jun-2014 18:27  2.4M  

[TXT]

 Farnell-HUNTSMAN-Adv..> 10-Mar-2014 16:17  1.7M  

[TXT]

 Farnell-Haute-vitess..> 11-Mar-2014 08:17  2.4M  

[TXT]

 Farnell-IP4252CZ16-8..> 13-Jun-2014 18:41  1.7M  

[TXT]

 Farnell-Instructions..> 19-Mar-2014 18:01  2.5M  

[TXT]

 Farnell-KSZ8851SNL-S..> 23-Jun-2014 10:28  2.1M  

[TXT]

 Farnell-L-efficacite..> 11-Mar-2014 07:52  2.3M  

[TXT]

 Farnell-LCW-CQ7P.CC-..> 25-Mar-2014 08:19  3.2M  

[TXT]

 Farnell-LME49725-Pow..> 14-Jun-2014 09:49  2.5M  

[TXT]

 Farnell-LOCTITE-542-..> 25-Mar-2014 08:15  3.0M  

[TXT]

 Farnell-LOCTITE-3463..> 25-Mar-2014 08:19  3.0M  

[TXT]

 Farnell-LUXEON-Guide..> 11-Mar-2014 07:52  2.3M  

[TXT]

 Farnell-Leaded-Trans..> 23-Jun-2014 10:26  3.2M  

[TXT]

 Farnell-Les-derniers..> 11-Mar-2014 07:50  2.3M  

[TXT]

 Farnell-Loctite3455-..> 25-Mar-2014 08:16  3.0M  

[TXT]

 Farnell-Low-cost-Enc..> 13-Jun-2014 18:42  1.7M  

[TXT]

 Farnell-Lubrifiant-a..> 26-Mar-2014 18:00  2.7M  

[TXT]

 Farnell-MC3510-PDF.htm  25-Mar-2014 08:17  3.0M  

[TXT]

 Farnell-MC21605-PDF.htm 11-Mar-2014 08:14  2.8M  

[TXT]

 Farnell-MCF532x-7x-E..> 29-Mar-2014 11:14  2.8M  

[TXT]

 Farnell-MICREL-KSZ88..> 11-Mar-2014 07:54  2.2M  

[TXT]

 Farnell-MICROCHIP-PI..> 19-Mar-2014 18:02  2.5M  

[TXT]

 Farnell-MOLEX-39-00-..> 10-Mar-2014 17:19  1.9M  

[TXT]

 Farnell-MOLEX-43020-..> 10-Mar-2014 17:21  1.9M  

[TXT]

 Farnell-MOLEX-43160-..> 10-Mar-2014 17:21  1.9M  

[TXT]

 Farnell-MOLEX-87439-..> 10-Mar-2014 17:21  1.9M  

[TXT]

 Farnell-MPXV7002-Rev..> 20-Mar-2014 17:33  2.8M  

[TXT]

 Farnell-MX670-MX675-..> 14-Jun-2014 09:46  2.5M  

[TXT]

 Farnell-Microchip-MC..> 13-Jun-2014 18:27  1.8M  

[TXT]

 Farnell-Microship-PI..> 11-Mar-2014 07:53  2.2M  

[TXT]

 Farnell-Midas-Active..> 14-Jun-2014 18:17  3.4M  

[TXT]

 Farnell-Midas-MCCOG4..> 14-Jun-2014 18:11  2.1M  

[TXT]

 Farnell-Miniature-Ci..> 26-Mar-2014 17:55  2.8M  

[TXT]

 Farnell-Mistral-PDF.htm 14-Jun-2014 18:12  2.1M  

[TXT]

 Farnell-Molex-83421-..> 14-Jun-2014 18:17  3.4M  

[TXT]

 Farnell-Molex-COMMER..> 14-Jun-2014 18:16  3.4M  

[TXT]

 Farnell-Molex-Crimp-..> 10-Mar-2014 16:27  1.7M  

[TXT]

 Farnell-Multi-Functi..> 20-Mar-2014 17:38  3.0M  

[TXT]

 Farnell-NTE_SEMICOND..> 11-Mar-2014 07:52  2.3M  

[TXT]

 Farnell-NXP-74VHC126..> 10-Mar-2014 16:17  1.6M  

[TXT]

 Farnell-NXP-BT136-60..> 11-Mar-2014 07:52  2.3M  

[TXT]

 Farnell-NXP-PBSS9110..> 10-Mar-2014 17:21  1.9M  

[TXT]

 Farnell-NXP-PCA9555 ..> 11-Mar-2014 07:54  2.2M  

[TXT]

 Farnell-NXP-PMBFJ620..> 10-Mar-2014 16:16  1.7M  

[TXT]

 Farnell-NXP-PSMN1R7-..> 10-Mar-2014 16:17  1.6M  

[TXT]

 Farnell-NXP-PSMN7R0-..> 10-Mar-2014 17:19  2.1M  

[TXT]

 Farnell-NXP-TEA1703T..> 11-Mar-2014 08:15  2.8M  

[TXT]

 Farnell-Nilfi-sk-E-..> 14-Jun-2014 09:47  2.5M  

[TXT]

 Farnell-Novembre-201..> 20-Mar-2014 17:38  3.3M  

[TXT]

 Farnell-OMRON-Master..> 10-Mar-2014 16:26  1.8M  

[TXT]

 Farnell-OSLON-SSL-Ce..> 19-Mar-2014 18:03  2.1M  

[TXT]

 Farnell-OXPCIE958-FB..> 13-Jun-2014 18:40  1.8M  

[TXT]

 Farnell-PADO-semi-au..> 04-Jul-2014 10:41  3.7M  

[TXT]

 Farnell-PBSS5160T-60..> 19-Mar-2014 18:03  2.1M  

[TXT]

 Farnell-PDTA143X-ser..> 20-Mar-2014 08:12  2.6M  

[TXT]

 Farnell-PDTB123TT-NX..> 13-Jun-2014 18:43  1.5M  

[TXT]

 Farnell-PESD5V0F1BL-..> 13-Jun-2014 18:43  1.5M  

[TXT]

 Farnell-PESD9X5.0L-P..> 13-Jun-2014 18:43  1.6M  

[TXT]

 Farnell-PIC12F609-61..> 04-Jul-2014 10:41  3.7M  

[TXT]

 Farnell-PIC18F2455-2..> 23-Jun-2014 10:27  3.1M  

[TXT]

 Farnell-PIC24FJ256GB..> 14-Jun-2014 09:51  2.4M  

[TXT]

 Farnell-PMBT3906-PNP..> 13-Jun-2014 18:44  1.5M  

[TXT]

 Farnell-PMBT4403-PNP..> 23-Jun-2014 10:27  3.1M  

[TXT]

 Farnell-PMEG4002EL-N..> 14-Jun-2014 18:18  3.4M  

[TXT]

 Farnell-PMEG4010CEH-..> 13-Jun-2014 18:43  1.6M  

[TXT]

 Farnell-Panasonic-15..> 23-Jun-2014 10:29  2.1M  

[TXT]

 Farnell-Panasonic-EC..> 20-Mar-2014 17:36  2.6M  

[TXT]

 Farnell-Panasonic-EZ..> 20-Mar-2014 08:10  2.6M  

[TXT]

 Farnell-Panasonic-Id..> 20-Mar-2014 17:35  2.6M  

[TXT]

 Farnell-Panasonic-Ne..> 20-Mar-2014 17:36  2.6M  

[TXT]

 Farnell-Panasonic-Ra..> 20-Mar-2014 17:37  2.6M  

[TXT]

 Farnell-Panasonic-TS..> 20-Mar-2014 08:12  2.6M  

[TXT]

 Farnell-Panasonic-Y3..> 20-Mar-2014 08:11  2.6M  

[TXT]

 Farnell-Pico-Spox-Wi..> 10-Mar-2014 16:16  1.7M  

[TXT]

 Farnell-Pompes-Charg..> 24-Apr-2014 20:23  3.3M  

[TXT]

 Farnell-Ponts-RLC-po..> 14-Jun-2014 18:23  3.3M  

[TXT]

 Farnell-Portable-Ana..> 29-Mar-2014 11:16  2.8M  

[TXT]

 Farnell-Premier-Farn..> 21-Mar-2014 08:11  3.8M  

[TXT]

 Farnell-Produit-3430..> 14-Jun-2014 09:48  2.5M  

[TXT]

 Farnell-Proskit-SS-3..> 10-Mar-2014 16:26  1.8M  

[TXT]

 Farnell-Puissance-ut..> 11-Mar-2014 07:49  2.4M  

[TXT]

 Farnell-Q48-PDF.htm     23-Jun-2014 10:29  2.1M  

[TXT]

 Farnell-Radial-Lead-..> 20-Mar-2014 08:12  2.6M  

[TXT]

 Farnell-Realiser-un-..> 11-Mar-2014 07:51  2.3M  

[TXT]

 Farnell-Reglement-RE..> 21-Mar-2014 08:08  3.9M  

[TXT]

 Farnell-Repartiteurs..> 14-Jun-2014 18:26  2.5M  

[TXT]

 Farnell-S-TRI-SWT860..> 21-Mar-2014 08:11  3.8M  

[TXT]

 Farnell-SB175-Connec..> 11-Mar-2014 08:14  2.8M  

[TXT]

 Farnell-SMBJ-Transil..> 29-Mar-2014 11:12  3.3M  

[TXT]

 Farnell-SOT-23-Multi..> 11-Mar-2014 07:51  2.3M  

[TXT]

 Farnell-SPLC780A1-16..> 14-Jun-2014 18:25  2.5M  

[TXT]

 Farnell-SSC7102-Micr..> 23-Jun-2014 10:25  3.2M  

[TXT]

 Farnell-SVPE-series-..> 14-Jun-2014 18:15  2.0M  

[TXT]

 Farnell-Sensorless-C..> 04-Jul-2014 10:42  3.3M  

[TXT]

 Farnell-Septembre-20..> 20-Mar-2014 17:46  3.7M  

[TXT]

 Farnell-Serie-PicoSc..> 19-Mar-2014 18:01  2.5M  

[TXT]

 Farnell-Serie-Standa..> 14-Jun-2014 18:23  3.3M  

[TXT]

 Farnell-Series-2600B..> 20-Mar-2014 17:30  3.0M  

[TXT]

 Farnell-Series-TDS10..> 04-Jul-2014 10:39  4.0M  

[TXT]

 Farnell-Signal-PCB-R..> 14-Jun-2014 18:11  2.1M  

[TXT]

 Farnell-Strangkuhlko..> 21-Mar-2014 08:09  3.9M  

[TXT]

 Farnell-Supercapacit..> 26-Mar-2014 17:57  2.7M  

[TXT]

 Farnell-TDK-Lambda-H..> 14-Jun-2014 18:21  3.3M  

[TXT]

 Farnell-TEKTRONIX-DP..> 10-Mar-2014 17:20  2.0M  

[TXT]

 Farnell-Tektronix-AC..> 13-Jun-2014 18:44  1.5M  

[TXT]

 Farnell-Telemetres-l..> 20-Mar-2014 17:46  3.7M  

[TXT]

 Farnell-Termometros-..> 14-Jun-2014 18:14  2.0M  

[TXT]

 Farnell-The-essentia..> 10-Mar-2014 16:27  1.7M  

[TXT]

 Farnell-U2270B-PDF.htm  14-Jun-2014 18:15  3.4M  

[TXT]

 Farnell-USB-Buccanee..> 14-Jun-2014 09:48  2.5M  

[TXT]

 Farnell-USB1T11A-PDF..> 19-Mar-2014 18:03  2.1M  

[TXT]

 Farnell-V4N-PDF.htm     14-Jun-2014 18:11  2.1M  

[TXT]

 Farnell-WetTantalum-..> 11-Mar-2014 08:14  2.8M  

[TXT]

 Farnell-XPS-AC-Octop..> 14-Jun-2014 18:11  2.1M  

[TXT]

 Farnell-XPS-MC16-XPS..> 11-Mar-2014 08:15  2.8M  

[TXT]

 Farnell-YAGEO-DATA-S..> 11-Mar-2014 08:13  2.8M  

[TXT]

 Farnell-ZigBee-ou-le..> 11-Mar-2014 07:50  2.4M  

[TXT]

 Farnell-celpac-SUL84..> 21-Mar-2014 08:11  3.8M  

[TXT]

 Farnell-china_rohs_o..> 21-Mar-2014 10:04  3.9M  

[TXT]

 Farnell-cree-Xlamp-X..> 20-Mar-2014 17:34  2.8M  

[TXT]

 Farnell-cree-Xlamp-X..> 20-Mar-2014 17:35  2.7M  

[TXT]

 Farnell-cree-Xlamp-X..> 20-Mar-2014 17:31  2.9M  

[TXT]

 Farnell-cree-Xlamp-m..> 20-Mar-2014 17:32  2.9M  

[TXT]

 Farnell-cree-Xlamp-m..> 20-Mar-2014 17:32  2.9M  

[TXT]

 Farnell-ir1150s_fr.p..> 29-Mar-2014 11:11  3.3M  

[TXT]

 Farnell-manual-bus-p..> 10-Mar-2014 16:29  1.9M  

[TXT]

 Farnell-propose-plus..> 11-Mar-2014 08:19  2.8M  

[TXT]

 Farnell-techfirst_se..> 21-Mar-2014 08:08  3.9M  

[TXT]

 Farnell-testo-205-20..> 20-Mar-2014 17:37  3.0M  

[TXT]

 Farnell-testo-470-Fo..> 20-Mar-2014 17:38  3.0M  

[TXT]

 Farnell-uC-OS-III-Br..> 10-Mar-2014 17:20  2.0M  

[TXT]

 Sefram-7866HD.pdf-PD..> 29-Mar-2014 11:46  472K  

[TXT]

 Sefram-CAT_ENREGISTR..> 29-Mar-2014 11:46  461K  

[TXT]

 Sefram-CAT_MESUREURS..> 29-Mar-2014 11:46  435K  

[TXT]

 Sefram-GUIDE_SIMPLIF..> 29-Mar-2014 11:46  481K  

[TXT]

 Sefram-GUIDE_SIMPLIF..> 29-Mar-2014 11:46  442K  

[TXT]

 Sefram-GUIDE_SIMPLIF..> 29-Mar-2014 11:46  422K  

[TXT]

 Sefram-SP270.pdf-PDF..> 29-Mar-2014 11:46  464K
L293, L293D QUADRUPLE HALF-H DRIVERS SLRS008C − SEPTEMBER 1986 − REVISED NOVEMBER 2004 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1  Featuring Unitrode L293 and L293D Products Now From Texas Instruments  Wide Supply-Voltage Range: 4.5 V to 36 V  Separate Input-Logic Supply  Internal ESD Protection  Thermal Shutdown  High-Noise-Immunity Inputs  Functionally Similar to SGS L293 and SGS L293D  Output Current 1 A Per Channel (600 mA for L293D)  Peak Output Current 2 A Per Channel (1.2 A for L293D)  Output Clamp Diodes for Inductive Transient Suppression (L293D) description/ordering information The L293 and L293D are quadruple high-current half-H drivers. The L293 is designed to provide bidirectional drive currents of up to 1 A at voltages from 4.5 V to 36 V. The L293D is designed to provide bidirectional drive currents of up to 600-mA at voltages from 4.5 V to 36 V. Both devices are designed to drive inductive loads such as relays, solenoids, dc and bipolar stepping motors, as well as other high-current/high-voltage loads in positive-supply applications. All inputs are TTL compatible. Each output is a complete totem-pole drive circuit, with a Darlington transistor sink and a pseudo- Darlington source. Drivers are enabled in pairs, with drivers 1 and 2 enabled by 1,2EN and drivers 3 and 4 enabled by 3,4EN. When an enable input is high, the associated drivers are enabled, and their outputs are active and in phase with their inputs. When the enable input is low, those drivers are disabled, and their outputs are off and in the high-impedance state. With the proper data inputs, each pair of drivers forms a full-H (or bridge) reversible drive suitable for solenoid or motor applications. ORDERING INFORMATION TA PACKAGE† ORDERABLE PART NUMBER TOP-SIDE MARKING HSOP (DWP) Tube of 20 L293DWP L293DWP 0°C to 70°C PDIP (N) Tube of 25 L293N L293N PDIP (NE) Tube of 25 L293NE L293NE Tube of 25 L293DNE L293DNE † Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package. PRODUCTION DATA information is current as of publication date. Copyright  2004, Texas Instruments Incorporated Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. HEAT SINK AND GROUND HEAT SINK AND GROUND 1 2 3 4 5 6 7 8 16 15 14 13 12 11 10 9 1,2EN 1A 1Y 2Y 2A VCC2 VCC1 4A 4Y 3Y 3A 3,4EN L293 . . . N OR NE PACKAGE L293D . . . NE PACKAGE (TOP VIEW) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 28 27 26 25 24 23 22 21 20 19 18 17 16 15 1,2EN 1A 1Y NC NC NC NC NC 2Y 2A VCC2 VCC1 4A 4Y NC NC NC NC NC 3Y 3A 3,4EN L293 . . . DWP PACKAGE (TOP VIEW) HEAT SINK AND GROUND HEAT SINK AND GROUND L293, L293D QUADRUPLE HALF-H DRIVERS SLRS008C − SEPTEMBER 1986 − REVISED NOVEMBER 2004 2 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 description/ordering information (continued) On the L293, external high-speed output clamp diodes should be used for inductive transient suppression. A VCC1 terminal, separate from VCC2, is provided for the logic inputs to minimize device power dissipation. The L293and L293D are characterized for operation from 0°C to 70°C. block diagram 1 0 3 4 5 6 7 8 9 10 11 12 13 14 15 1 16 1 2 0 1 1 0 2 4 3 M M M 1 0 1 0 1 0 VCC2 VCC1 NOTE: Output diodes are internal in L293D. FUNCTION TABLE (each driver) INPUTS† OUTPUT A EN Y H H H L H L X L Z H = high level, L = low level, X = irrelevant, Z = high impedance (off) † In the thermal shutdown mode, the output is in the high-impedance state, regardless of the input levels. L293, L293D QUADRUPLE HALF-H DRIVERS SLRS008C − SEPTEMBER 1986 − REVISED NOVEMBER 2004 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 3 logic diagram ÁÁ ÁÁ ÁÁ ÁÁ ÁÁ ÁÁ ÁÁ ÁÁ ÁÁ 2 1 7 10 9 15 3 6 11 14 1A 1,2EN 2A 3A 3,4EN 4A 1Y 2Y 3Y 4Y schematics of inputs and outputs (L293) Input VCC2 Output GND EQUIVALENT OF EACH INPUT TYPICAL OF ALL OUTPUTS VCC1 Current Source GND L293, L293D QUADRUPLE HALF-H DRIVERS SLRS008C − SEPTEMBER 1986 − REVISED NOVEMBER 2004 4 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 schematics of inputs and outputs (L293D) Input VCC2 Output GND EQUIVALENT OF EACH INPUT TYPICAL OF ALL OUTPUTS VCC1 Current Source GND absolute maximum ratings over operating free-air temperature range (unless otherwise noted)† Supply voltage, VCC1 (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 V Output supply voltage, VCC2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 V Input voltage, VI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 V Output voltage range, VO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −3 V to VCC2 + 3 V Peak output current, IO (nonrepetitive, t ≤ 5 ms): L293 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±2 A Peak output current, IO (nonrepetitive, t ≤ 100 μs): L293D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±1.2 A Continuous output current, IO: L293 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±1 A Continuous output current, IO: L293D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±600 mA Package thermal impedance, θJA (see Notes 2 and 3): DWP package . . . . . . . . . . . . . . . . . . . . . . . TBD°C/W N package . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67°C/W NE package . . . . . . . . . . . . . . . . . . . . . . . . . TBD°C/W Maximum junction temperature, TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150°C Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C † Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTES: 1. All voltage values are with respect to the network ground terminal. 2. Maximum power dissipation is a function of TJ(max), JA, and TA. The maximum allowable power dissipation at any allowable ambient temperature is PD = (TJ(max) − TA)/JA. Operating at the absolute maximum TJ of 150°C can affect reliability. 3. The package thermal impedance is calculated in accordance with JESD 51-7. L293, L293D QUADRUPLE HALF-H DRIVERS SLRS008C − SEPTEMBER 1986 − REVISED NOVEMBER 2004 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 5 recommended operating conditions MIN MAX UNIT Supply voltage VCC1 4.5 7 V VCC2 VCC1 36 V High level input voltage VCC1 ≤ 7 V 2.3 VCC1 V VIH High-VCC1 ≥ 7 V 2.3 7 V VIL Low-level output voltage −0.3† 1.5 V TA Operating free-air temperature 0 70 °C † The algebraic convention, in which the least positive (most negative) designated minimum, is used in this data sheet for logic voltage levels. electrical characteristics, VCC1 = 5 V, VCC2 = 24 V, TA = 25°C PARAMETER TEST CONDITIONS MIN TYP MAX UNIT VOH High-level output voltage L293: IOH = −1 A L293D: IOH = − 0.6 A VCC2 − 1.8 VCC2 − 1.4 V VOL Low-level output voltage L293: IOL = 1 A L293D: IOL = 0.6 A 1.2 1.8 V VOKH High-level output clamp voltage L293D: IOK = − 0.6 A VCC2 + 1.3 V VOKL Low-level output clamp voltage L293D: IOK = 0.6 A 1.3 V I High level input current A V 7 V 0.2 100 IIH High-A EN VI = 0.2 10 μA I Low level input current A V 0 −3 −10 IIL Low-A EN VI = −2 −100 μA All outputs at high level 13 22 ICC1 Logic supply current IO = 0 All outputs at low level 35 60 mA All outputs at high impedance 8 24 All outputs at high level 14 24 ICC2 Output supply current IO = 0 All outputs at low level 2 6 mA All outputs at high impedance 2 4 switching characteristics, VCC1 = 5 V, VCC2 = 24 V, TA = 25°C PARAMETER TEST CONDITIONS L293NE, L293DNE UNIT MIN TYP MAX tPLH Propagation delay time, low-to-high-level output from A input 800 ns tPHL Propagation delay time, high-to-low-level output from A input C = 30 pF See Figure 1 400 ns tTLH Transition time, low-to-high-level output CL pF, 300 ns tTHL Transition time, high-to-low-level output 300 ns switching characteristics, VCC1 = 5 V, VCC2 = 24 V, TA = 25°C PARAMETER TEST CONDITIONS L293DWP, L293N L293DN UNIT MIN TYP MAX tPLH Propagation delay time, low-to-high-level output from A input 750 ns tPHL Propagation delay time, high-to-low-level output from A input C = 30 pF See Figure 1 200 ns tTLH Transition time, low-to-high-level output CL pF, 100 ns tTHL Transition time, high-to-low-level output 350 ns L293, L293D QUADRUPLE HALF-H DRIVERS SLRS008C − SEPTEMBER 1986 − REVISED NOVEMBER 2004 6 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 PARAMETER MEASUREMENT INFORMATION Output CL = 30 pF (see Note A) VCC1 Input 3 V TEST CIRCUIT tf tr 3 V 0 tPHL VOH tTHL tTLH VOLTAGE WAVEFORMS tPLH Output Input VOL tw NOTES: A. CL includes probe and jig capacitance. B. The pulse generator has the following characteristics: tr ≤ 10 ns, tf ≤ 10 ns, tw = 10 μs, PRR = 5 kHz, ZO = 50 Ω. Pulse Generator (see Note B) 5 V 24 V VCC2 A EN Y 90% 90% 50% 10% 50% 10% 90% 90% 50% 10% 50% 10% Figure 1. Test Circuit and Voltage Waveforms L293, L293D QUADRUPLE HALF-H DRIVERS SLRS008C − SEPTEMBER 1986 − REVISED NOVEMBER 2004 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 7 APPLICATION INFORMATION 5 V 24 V 10 kΩ VCC1 VCC2 Control A Control B 4, 5, 12, 13 GND Thermal Shutdown Motor 16 8 3 6 11 14 4Y 3Y 2Y 1Y 1,2EN 1A 2A 3,4EN 3A 4A 15 10 9 7 2 1 Figure 2. Two-Phase Motor Driver (L293) L293, L293D QUADRUPLE HALF-H DRIVERS SLRS008C − SEPTEMBER 1986 − REVISED NOVEMBER 2004 8 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 APPLICATION INFORMATION 5 V 24 V 10 kΩ VCC1 VCC2 16 8 1,2EN 1 1A 2 2A 7 3,4EN 9 3A 10 4A 15 Control A Control B 4, 5, 12, 13 GND Thermal Shutdown Motor 1Y 3 2Y 6 3Y 11 4Y 14 Figure 3. Two-Phase Motor Driver (L293D) L293, L293D QUADRUPLE HALF-H DRIVERS SLRS008C − SEPTEMBER 1986 − REVISED NOVEMBER 2004 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 9 APPLICATION INFORMATION EN 3A M1 4A M2 H H Fast motor stop H Run H L Run L Fast motor stop L X Free-running motor stop X Free-running motor stop L = low, H = high, X = don’t care EN 1A 2A FUNCTION H L H Turn right H H L Turn left H L L Fast motor stop H H H Fast motor stop L X X Fast motor stop L = low, H = high, X = don’t care VCC2 SES5001 1/2 L293 4, 5, 12, 13 10 SES5001 VCC1 EN 11 15 14 16 9 M2 M1 3A 4A 8 Figure 4. DC Motor Controls (connections to ground and to supply voltage) GND 2 × SES5001 1/2 L293 4, 5, 12, 13 7 6 3 8 1 2 16 VCC2 2 × SES5001 2A 1A VCC1 EN M Figure 5. Bidirectional DC Motor Control GND L293, L293D QUADRUPLE HALF-H DRIVERS SLRS008C − SEPTEMBER 1986 − REVISED NOVEMBER 2004 10 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 APPLICATION INFORMATION 3 4 5 6 7 8 1 2 9 10 11 12 13 14 15 16 + + + + D7 D8 D4 D3 L2 IL2 C1 D5 D1 D6 D2 VCC1 L293 IL1/IL2 = 300 mA 0.22 μF VCC2 L1 IL1 D1−D8 = SES5001 Figure 6. Bipolar Stepping-Motor Control mounting instructions The Rthj-amp of the L293 can be reduced by soldering the GND pins to a suitable copper area of the printed circuit board or to an external heat sink. Figure 9 shows the maximum package power PTOT and the θJA as a function of the side of two equal square copper areas having a thickness of 35 μm (see Figure 7). In addition, an external heat sink can be used (see Figure 8). During soldering, the pin temperature must not exceed 260°C, and the soldering time must not exceed 12 seconds. The external heatsink or printed circuit copper area must be connected to electrical ground. L293, L293D QUADRUPLE HALF-H DRIVERS SLRS008C − SEPTEMBER 1986 − REVISED NOVEMBER 2004 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 11 APPLICATION INFORMATION Copper Area 35-μm Thickness Printed Circuit Board Figure 7. Example of Printed Circuit Board Copper Area (used as heat sink) 11.9 mm 17.0 mm 38.0 mm Figure 8. External Heat Sink Mounting Example (θJA = 25°C/W) L293, L293D QUADRUPLE HALF-H DRIVERS SLRS008C − SEPTEMBER 1986 − REVISED NOVEMBER 2004 12 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 APPLICATION INFORMATION 3 1 0 2 0 10 20 P 4 MAXIMUM POWER AND JUNCTION vs THERMAL RESISTANCE 30 TOT − Power Dissipation − W 60 20 0 40 80 θJA − Thermal Resistance − °C/W 40 Side − mm Figure 9 θJA PTOT (TA = 70°C) 50 5 3 1 0 2 −50 0 50 4 MAXIMUM POWER DISSIPATION vs AMBIENT TEMPERATURE 100 TA − Ambient Temperature − °C With Infinite Heat Sink Free Air Heat Sink With θJA = 25°C/W Figure 10 150 PTOT − Power Dissipation − W PACKAGE OPTION ADDENDUM www.ti.com 26-Jan-2014 Addendum-Page 1 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Drawing Pins Package Qty Eco Plan (2) Lead/Ball Finish (6) MSL Peak Temp (3) Op Temp (°C) Device Marking (4/5) Samples L293DNE ACTIVE PDIP NE 16 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type 0 to 70 L293DNE L293DNEE4 ACTIVE PDIP NE 16 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type 0 to 70 L293DNE L293DWP OBSOLETE SOIC DW 28 TBD Call TI Call TI 0 to 70 L293DWP L293DWPG4 OBSOLETE SOIC DW 28 TBD Call TI Call TI 0 to 70 L293DWPTR OBSOLETESO PowerPAD DWP 28 TBD Call TI Call TI 0 to 70 L293N OBSOLETE PDIP N 16 TBD Call TI Call TI 0 to 70 L293N L293NE ACTIVE PDIP NE 16 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type 0 to 70 L293NE L293NEE4 ACTIVE PDIP NE 16 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type 0 to 70 L293NE L293NG4 OBSOLETE PDIP N 16 TBD Call TI Call TI 0 to 70 (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. PACKAGE OPTION ADDENDUM www.ti.com 26-Jan-2014 Addendum-Page 2 (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed. TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications. In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms. No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949. Products Applications Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com Energy and Lighting www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID www.ti-rfid.com OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com Wireless Connectivity www.ti.com/wirelessconnectivity Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2014, Texas Instruments Incorporated 1 2 3 4 8 7 6 5 GND TRIG OUT RESET VCC DISCH THRES CONT 3 2 1 20 19 9 10 11 12 13 4 5 6 7 8 18 17 16 15 14 NC DISCH NC THRES NC NC TRIG NC OUT NC NC GND NC CONT NC VCC NC NC RESET NC NC – No internal connection NA555...D OR P PACKAGE NE555...D, P, PS, OR PW PACKAGE SA555...D OR P PACKAGE SE555...D, JG, OR P PACKAGE (TOP VIEW) SE555...FK PACKAGE (TOP VIEW) NA555, NE555, SA555, SE555 www.ti.com SLFS022H –SEPTEMBER 1973–REVISED JUNE 2010 PRECISION TIMERS Check for Samples: NA555, NE555, SA555, SE555 1FEATURES • Timing From Microseconds to Hours • Adjustable Duty Cycle • Astable or Monostable Operation • TTL-Compatible Output Can Sink or Source up to 200 mA DESCRIPTION/ORDERING INFORMATION These devices are precision timing circuits capable of producing accurate time delays or oscillation. In the time-delay or monostable mode of operation, the timed interval is controlled by a single external resistor and capacitor network. In the astable mode of operation, the frequency and duty cycle can be controlled independently with two external resistors and a single external capacitor. The threshold and trigger levels normally are two-thirds and one-third, respectively, of VCC. These levels can be altered by use of the control-voltage terminal. When the trigger input falls below the trigger level, the flip-flop is set, and the output goes high. If the trigger input is above the trigger level and the threshold input is above the threshold level, the flip-flop is reset and the output is low. The reset (RESET) input can override all other inputs and can be used to initiate a new timing cycle. When RESET goes low, the flip-flop is reset, and the output goes low. When the output is low, a low-impedance path is provided between discharge (DISCH) and ground. The output circuit is capable of sinking or sourcing current up to 200 mA. Operation is specified for supplies of 5 V to 15 V. With a 5-V supply, output levels are compatible with TTL inputs. 1 Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. PRODUCTION DATA information is current as of publication date. Copyright © 1973–2010, Texas Instruments Incorporated Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not On products compliant to MIL-PRF-38535, all parameters are necessarily include testing of all parameters. tested unless otherwise noted. On all other products, production processing does not necessarily include testing of all parameters. NA555, NE555, SA555, SE555 SLFS022H –SEPTEMBER 1973–REVISED JUNE 2010 www.ti.com ORDERING INFORMATION(1) T VTHRES MAX A V PACKAGE(2) ORDERABLE PART NUMBER TOP-SIDE MARKING CC = 15 V PDIP – P Tube of 50 NE555P NE555P Tube of 75 NE555D SOIC – D NE555 Reel of 2500 NE555DR 0°C to 70°C 11.2 V SOP – PS Reel of 2000 NE555PSR N555 Tube of 150 NE555PW TSSOP – PW N555 Reel of 2000 NE555PWR PDIP – P Tube of 50 SA555P SA555P –40°C to 85°C 11.2 V Tube of 75 SA555D SOIC – D SA555 Reel of 2000 SA555DR PDIP – P Tube of 50 NA555P NA555P –40°C to 105°C 11.2 V Tube of 75 NA555D SOIC – D NA555 Reel of 2000 NA555DR PDIP – P Tube of 50 SE555P SE555P Tube of 75 SE555D SOIC – D SE555D –55°C to 125°C 10.6 Reel of 2500 SE555DR CDIP – JG Tube of 50 SE555JG SE555JG LCCC – FK Tube of 55 SE555FK SE555FK (1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com. (2) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging. Table 1. FUNCTION TABLE RESET TRIGGER THRESHOLD OUTPUT DISCHARGE VOLTAGE(1) VOLTAGE(1) SWITCH Low Irrelevant Irrelevant Low On High <1/3 VCC Irrelevant High Off High >1/3 VCC >2/3 VCC Low On High >1/3 VCC <2/3 VCC As previously established (1) Voltage levels shown are nominal. 2 Submit Documentation Feedback Copyright © 1973–2010, Texas Instruments Incorporated Product Folder Link(s): NA555 NE555 SA555 SE555 1 S R R1 TRIG THRES VCC CONT RESET OUT DISCH GND ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ Î ÎÎÎ 8 4 5 6 2 1 7 3 NA555, NE555, SA555, SE555 www.ti.com SLFS022H –SEPTEMBER 1973–REVISED JUNE 2010 FUNCTIONAL BLOCK DIAGRAM A. Pin numbers shown are for the D, JG, P, PS, and PW packages. B. RESET can override TRIG, which can override THRES. Copyright © 1973–2010, Texas Instruments Incorporated Submit Documentation Feedback 3 Product Folder Link(s): NA555 NE555 SA555 SE555 NA555, NE555, SA555, SE555 SLFS022H –SEPTEMBER 1973–REVISED JUNE 2010 www.ti.com Absolute Maximum Ratings(1) over operating free-air temperature range (unless otherwise noted) MIN MAX UNIT VCC Supply voltage(2) 18 V VI Input voltage CONT, RESET, THRES, TRIG VCC V IO Output current ±225 mA D package 97 P package 85 qJA Package thermal impedance(3) (4) °C/W PS package 95 PW package 149 FK package 5.61 qJC Package thermal impedance(5) (6) °C/W JG package 14.5 TJ Operating virtual junction temperature 150 °C Case temperature for 60 s FK package 260 °C Lead temperature 1, 6 mm (1/16 in) from case for 60 s JG package 300 °C Tstg Storage temperature range –65 150 °C (1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. (2) All voltage values are with respect to GND. (3) Maximum power dissipation is a function of TJ(max), qJA, and TA. The maximum allowable power dissipation at any allowable ambient temperature is PD = (TJ(max) - TA)/qJA. Operating at the absolute maximum TJ of 150°C can affect reliability. (4) The package thermal impedance is calculated in accordance with JESD 51-7. (5) Maximum power dissipation is a function of TJ(max), qJC, and TC. The maximum allowable power dissipation at any allowable case temperature is PD = (TJ(max) - TC)/qJC. Operating at the absolute maximum TJ of 150°C can affect reliability. (6) The package thermal impedance is calculated in accordance with MIL-STD-883. Recommended Operating Conditions over operating free-air temperature range (unless otherwise noted) MIN MAX UNIT NA555, NE555, SA555 4.5 16 VCC Supply voltage V SE555 4.5 18 VI Input voltage CONT, RESET, THRES, and TRIG VCC V IO Output current ±200 mA NA555 –40 105 NE555 0 70 TA Operating free-air temperature °C SA555 –40 85 SE555 –55 125 4 Submit Documentation Feedback Copyright © 1973–2010, Texas Instruments Incorporated Product Folder Link(s): NA555 NE555 SA555 SE555 NA555, NE555, SA555, SE555 www.ti.com SLFS022H –SEPTEMBER 1973–REVISED JUNE 2010 Electrical Characteristics VCC = 5 V to 15 V, TA = 25°C (unless otherwise noted) NA555 SE555 NE555 PARAMETER TEST CONDITIONS SA555 UNIT MIN TYP MAX MIN TYP MAX VCC = 15 V 9.4 10 10.6 8.8 10 11.2 THRES voltage level V VCC = 5 V 2.7 3.3 4 2.4 3.3 4.2 THRES current(1) 30 250 30 250 nA 4.8 5 5.2 4.5 5 5.6 VCC = 15 V TA = –55°C to 125°C 3 6 TRIG voltage level V 1.45 1.67 1.9 1.1 1.67 2.2 VCC = 5 V TA = –55°C to 125°C 1.9 TRIG current TRIG at 0 V 0.5 0.9 0.5 2 mA 0.3 0.7 1 0.3 0.7 1 RESET voltage level V TA = –55°C to 125°C 1.1 RESET at VCC 0.1 0.4 0.1 0.4 RESET current mA RESET at 0 V –0.4 –1 –0.4 –1.5 DISCH switch off-state 20 100 20 100 nA current 9.6 10 10.4 9 10 11 VCC = 15 V CONT voltage TA = –55°C to 125°C 9.6 10.4 (open circuit) V 2.9 3.3 3.8 2.6 3.3 4 VCC = 5 V TA = –55°C to 125°C 2.9 3.8 0.1 0.15 0.1 0.25 VCC = 15 V, IOL = 10 mA TA = –55°C to 125°C 0.2 0.4 0.5 0.4 0.75 VCC = 15 V, IOL = 50 mA TA = –55°C to 125°C 1 2 2.2 2 2.5 VCC = 15 V, IOL = 100 mA Low-level output voltage TA = –55°C to 125°C 2.7 V VCC = 15 V, IOL = 200 mA 2.5 2.5 VCC = 5 V, IOL = 3.5 mA TA = –55°C to 125°C 0.35 0.1 0.2 0.1 0.35 VCC = 5 V, IOL = 5 mA TA = –55°C to 125°C 0.8 VCC = 5 V, IOL = 8 mA 0.15 0.25 0.15 0.4 13 13.3 12.75 13.3 VCC = 15 V, IOL = –100 mA TA = –55°C to 125°C 12 High-level output voltage VCC = 15 V, IOH = –200 mA 12.5 12.5 V 3 3.3 2.75 3.3 VCC = 5 V, IOL = –100 mA TA = –55°C to 125°C 2 VCC = 15 V 10 12 10 15 Output low, No load VCC = 5 V 3 5 3 6 Supply current mA VCC = 15 V 9 10 9 13 Output high, No load VCC = 5 V 2 4 2 5 (1) This parameter influences the maximum value of the timing resistors RA and RB in the circuit of Figure 12. For example, when VCC = 5 V, the maximum value is R = RA + RB ≉ 3.4 MΩ, and for VCC = 15 V, the maximum value is 10 MΩ. Copyright © 1973–2010, Texas Instruments Incorporated Submit Documentation Feedback 5 Product Folder Link(s): NA555 NE555 SA555 SE555 NA555, NE555, SA555, SE555 SLFS022H –SEPTEMBER 1973–REVISED JUNE 2010 www.ti.com Operating Characteristics VCC = 5 V to 15 V, TA = 25°C (unless otherwise noted) NA555 TEST SE555 NE555 PARAMETER CONDITIONS(1) SA555 UNIT MIN TYP MAX MIN TYP MAX Initial error of timing Each timer, monostable(3) TA = 25°C 0.5 1.5(4) 1 3 interval(2) % Each timer, astable(5) 1.5 2.25 Temperature coefficient of Each timer, monostable(3) TA = MIN to MAX 30 100(4) 50 ppm/ timing interval Each timer, astable(5) 90 150 °C Supply-voltage sensitivity of Each timer, monostable(3) TA = 25°C 0.05 0.2(4) 0.1 0.5 timing interval %/V Each timer, astable(5) 0.15 0.3 Output-pulse rise time CL = 15 pF, 100 200(4) 100 300 ns TA = 25°C Output-pulse fall time CL = 15 pF, 100 200(4) 100 300 ns TA = 25°C (1) For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. (2) Timing interval error is defined as the difference between the measured value and the average value of a random sample from each process run. (3) Values specified are for a device in a monostable circuit similar to Figure 9, with the following component values: RA = 2 kΩ to 100 kΩ, C = 0.1 mF. (4) On products compliant to MIL-PRF-38535, this parameter is not production tested. (5) Values specified are for a device in an astable circuit similar to Figure 12, with the following component values: RA = 1 kΩ to 100 kΩ, C = 0.1 mF. 6 Submit Documentation Feedback Copyright © 1973–2010, Texas Instruments Incorporated Product Folder Link(s): NA555 NE555 SA555 SE555 ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ TA = 125°C ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ TA = 25°C IOL − Low-Level Output Current − mA ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ VCC = 5 V LOW-LEVEL OUTPUT VOLTAGE vs LOW-LEVEL OUTPUT CURRENT ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ TA = −55°C 0.1 0.04 0.01 1 2 4 7 10 20 40 70 100 0.07 1 0.4 0.7 10 4 7 0.02 0.2 2 VOL − Low-Level Output Voltage − V ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ VCC = 10 V LOW-LEVEL OUTPUT VOLTAGE vs LOW-LEVEL OUTPUT CURRENT VOL − Low-Level Output Voltage − V IOL − Low-Level Output Current − mA 0.1 0.04 0.01 1 2 4 7 10 20 40 70 100 0.07 1 0.4 0.7 10 4 7 0.02 0.2 2 ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ TA = 125°C ÏÏÏÏÏÏÏÏÏÏÏÏ TA = 25°C TA= −55°C TA = 125°C TA = 25°C TA = −55°C ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ VCC = 15 V LOW-LEVEL OUTPUT VOLTAGE vs LOW-LEVEL OUTPUT CURRENT VOL − Low-Level Output Voltage − V IOL − Low-Level Output Current − mA 0.1 0.04 0.01 1 2 4 7 10 20 40 70 100 0.07 1 0.4 0.7 10 4 7 0.02 0.2 2 1 0.6 0.2 0 1.4 1.8 2.0 0.4 1.6 0.8 1.2 − IOH − High-Level Output Current − mA ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ TA = 125°C ÏÏÏÏÏÏÏÏÏÏÏÏ TA = 25°C 1 2 4 7 10 20 40 70 100 ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ VCC = 5 V to 15 V ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ TA = −55°C (VCC VOH) − Voltage Drop − V DROP BETWEEN SUPPLY VOLTAGE AND OUTPUT vs HIGH-LEVEL OUTPUT CURRENT NA555, NE555, SA555, SE555 www.ti.com SLFS022H –SEPTEMBER 1973–REVISED JUNE 2010 TYPICAL CHARACTERISTICS Data for temperatures below 0°C and above 70°C are applicable for SE555 circuits only. Figure 1. Figure 2. Figure 3. Figure 4. Copyright © 1973–2010, Texas Instruments Incorporated Submit Documentation Feedback 7 Product Folder Link(s): NA555 NE555 SA555 SE555 5 4 2 1 0 9 3 5 6 7 8 9 10 11 − Supply Current − mA 7 6 8 SUPPLY CURRENT vs SUPPLY VOLTAGE 10 12 13 14 15 TA = 25°C TA = 125°C TA = −55°C Output Low, No Load ICC VCC − Supply Voltage − V 1 0.995 0.990 0.985 0 5 10 1.005 1.010 NORMALIZED OUTPUT PULSE DURATION (MONOSTABLE OPERATION) vs SUPPLY VOLTAGE 1.015 15 20 Pulse Duration Relative to Value at V C C = 10 V VCC − Supply Voltage − V 1 0.995 0.990 0.985 −75 −25 25 1.005 1.010 NORMALIZED OUTPUT PULSE DURATION (MONOSTABLE OPERATION) vs FREE-AIR TEMPERATURE 1.015 75 125 TA − Free-Air Temperature − °C −50 0 50 100 VCC = 10 V Pulse Duration Relative to Value at TA = 25C 0 100 200 300 400 500 600 700 800 900 1000 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 Lowest Level of Trigger Pulse – ×VCC tPD – Propagation Delay Time – ns TA = 125°C TA = 70°C TA = 25°C TA = 0°C TA = –55°C PROPAGATION DELAY TIME vs LOWEST VOLTAGE LEVEL OF TRIGGER PULSE NA555, NE555, SA555, SE555 SLFS022H –SEPTEMBER 1973–REVISED JUNE 2010 www.ti.com TYPICAL CHARACTERISTICS (continued) Data for temperatures below 0°C and above 70°C are applicable for SE555 circuits only. Figure 5. Figure 6. Figure 7. Figure 8. 8 Submit Documentation Feedback Copyright © 1973–2010, Texas Instruments Incorporated Product Folder Link(s): NA555 NE555 SA555 SE555 VCC (5 V to 15 V) RA RL Output GND OUT CONT VCC RESET DISCH THRES Input TRIG ÎÎÎ 5 8 4 7 6 2 3 1 Pin numbers shown are for the D, JG, P, PS, and PW packages. NA555, NE555, SA555, SE555 www.ti.com SLFS022H –SEPTEMBER 1973–REVISED JUNE 2010 APPLICATION INFORMATION Monostable Operation For monostable operation, any of these timers can be connected as shown in Figure 9. If the output is low, application of a negative-going pulse to the trigger (TRIG) sets the flip-flop (Q goes low), drives the output high, and turns off Q1. Capacitor C then is charged through RA until the voltage across the capacitor reaches the threshold voltage of the threshold (THRES) input. If TRIG has returned to a high level, the output of the threshold comparator resets the flip-flop (Q goes high), drives the output low, and discharges C through Q1. Figure 9. Circuit for Monostable Operation Monostable operation is initiated when TRIG voltage falls below the trigger threshold. Once initiated, the sequence ends only if TRIG is high for at least 10 μs before the end of the timing interval. When the trigger is grounded, the comparator storage time can be as long as 10 μs, which limits the minimum monostable pulse width to 10 μs. Because of the threshold level and saturation voltage of Q1, the output pulse duration is approximately tw = 1.1RAC. Figure 11 is a plot of the time constant for various values of RA and C. The threshold levels and charge rates both are directly proportional to the supply voltage, VCC. The timing interval is, therefore, independent of the supply voltage, so long as the supply voltage is constant during the time interval. Applying a negative-going trigger pulse simultaneously to RESET and TRIG during the timing interval discharges C and reinitiates the cycle, commencing on the positive edge of the reset pulse. The output is held low as long as the reset pulse is low. To prevent false triggering, when RESET is not used, it should be connected to VCC. Copyright © 1973–2010, Texas Instruments Incorporated Submit Documentation Feedback 9 Product Folder Link(s): NA555 NE555 SA555 SE555 − Output Pulse Duration − s C − Capacitance − mF 10 1 10−1 10−2 10−3 10−4 0.01 0.1 1 10 100 10−5 0.001 tw RA = 10 MW RA = 10 kW RA = 1 kW RA = 100 kW RA = 1 MW Voltage − 2 V/div Time − 0.1 ms/div ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ Capacitor Voltage Output Voltage Input Voltage ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ RA = 9.1 kW CL = 0.01 mF RL = 1 kW See Figure 9 Voltage − 1 V/div Time − 0.5 ms/div tH Capacitor Voltage tL Output Voltage ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ RA = 5 k RL = 1 k RB = 3 k See Figure 12 C = 0.15 mF GND OUT CONT VCC RESET DISCH THRES TRIG C RB RA Output RL 0.01 mF VCC (5 V to 15 V) (see Note A) ÎÎÎ NOTE A: Decoupling CONT voltage to ground with a capacitor can improve operation. This should be evaluated for individual applications. Open 5 8 4 7 6 2 3 1 Pin numbers shown are for the D, JG, P, PS, and PW packages. NA555, NE555, SA555, SE555 SLFS022H –SEPTEMBER 1973–REVISED JUNE 2010 www.ti.com Figure 10. Typical Monostable Waveforms Figure 11. Output Pulse Duration vs Capacitance Astable Operation As shown in Figure 12, adding a second resistor, RB, to the circuit of Figure 9 and connecting the trigger input to the threshold input causes the timer to self-trigger and run as a multivibrator. The capacitor C charges through RA and RB and then discharges through RB only. Therefore, the duty cycle is controlled by the values of RA and RB. This astable connection results in capacitor C charging and discharging between the threshold-voltage level (≉0.67 × VCC) and the trigger-voltage level (≉0.33 × VCC). As in the monostable circuit, charge and discharge times (and, therefore, the frequency and duty cycle) are independent of the supply voltage. Figure 12. Circuit for Astable Operation Figure 13. Typical Astable Waveforms 10 Submit Documentation Feedback Copyright © 1973–2010, Texas Instruments Incorporated Product Folder Link(s): NA555 NE555 SA555 SE555 tH  0.693 (RARB) C tL  0.693 (RB) C Other useful relationships are shown below. period  tHtL  0.693 (RA2RB) C frequency  1.44 (RA2RB) C Output driver duty cycle  tL tHtL  RB RA2RB Output waveform duty cycle  tL tH  RB RARB Low-to-high ratio  tH tHtL  1– RB RA2RB f − Free-Running Frequency − Hz C − Capacitance − mF 100 k 10 k 1 k 100 10 1 0.01 0.1 1 10 100 0.1 0.001 RA + 2 RB = 10 MW RA + 2 RB = 1 MW RA + 2 RB = 100 kW RA + 2 RB = 10 kW RA + 2 RB = 1 kW Time − 0.1 ms/div Voltage − 2 V/div ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ VCC = 5 V RA = 1 kW C = 0.1 mF See Figure 15 Capacitor Voltage ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Output Voltage Input Voltage VCC (5 V to 15 V) DISCH OUT RESET VCC RL RA A5T3644 C THRES GND CONT TRIG Input 0.01 mF ÎÎÎÎÎÎÎÎÎÎÎÎ Output 4 8 3 7 6 2 5 1 Pin numbers shown are shown for the D, JG, P, PS, and PW packages. NA555, NE555, SA555, SE555 www.ti.com SLFS022H –SEPTEMBER 1973–REVISED JUNE 2010 Figure 12 shows typical waveforms generated during astable operation. The output high-level duration tH and low-level duration tL can be calculated as follows: Figure . Figure 14. Free-Running Frequency Missing-Pulse Detector The circuit shown in Figure 15 can be used to detect a missing pulse or abnormally long spacing between consecutive pulses in a train of pulses. The timing interval of the monostable circuit is retriggered continuously by the input pulse train as long as the pulse spacing is less than the timing interval. A longer pulse spacing, missing pulse, or terminated pulse train permits the timing interval to be completed, thereby generating an output pulse as shown in Figure 16. Figure 15. Circuit for Missing-Pulse Detector Figure 16. Completed Timing Waveforms for Missing-Pulse Detector Copyright © 1973–2010, Texas Instruments Incorporated Submit Documentation Feedback 11 Product Folder Link(s): NA555 NE555 SA555 SE555 Voltage − 2 V/div Time − 0.1 ms/div Capacitor Voltage Output Voltage ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏInput Voltage VCC = 5 V RA = 1250 W C = 0.02 mF See Figure 9 NA555, NE555, SA555, SE555 SLFS022H –SEPTEMBER 1973–REVISED JUNE 2010 www.ti.com Frequency Divider By adjusting the length of the timing cycle, the basic circuit of Figure 9 can be made to operate as a frequency divider. Figure 17 shows a divide-by-three circuit that makes use of the fact that retriggering cannot occur during the timing cycle. Figure 17. Divide-by-Three Circuit Waveforms 12 Submit Documentation Feedback Copyright © 1973–2010, Texas Instruments Incorporated Product Folder Link(s): NA555 NE555 SA555 SE555 THRES GND C RL RA VCC (5 V to 15 V) Output DISCH OUT RESET VCC TRIG CONT Modulation Input (see Note A) Clock Input NOTE A: The modulating signal can be direct or capacitively coupled to CONT. For direct coupling, the effects of modulation source voltage and impedance on the bias of the timer should be considered. 4 8 3 7 6 2 5 Pin numbers shown are for the D, JG, P, PS, and PW packages. 1 Voltage − 2 V/div Time − 0.5 ms/div ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ Capacitor VoltageÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ Output Voltage ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ Clock Input Voltage ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ RA = 3 kW C = 0.02 mF RL = 1 kW See Figure 18 ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ Modulation Input Voltage NA555, NE555, SA555, SE555 www.ti.com SLFS022H –SEPTEMBER 1973–REVISED JUNE 2010 Pulse-Width Modulation The operation of the timer can be modified by modulating the internal threshold and trigger voltages, which is accomplished by applying an external voltage (or current) to CONT. Figure 18 shows a circuit for pulse-width modulation. A continuous input pulse train triggers the monostable circuit, and a control signal modulates the threshold voltage. Figure 19 shows the resulting output pulse-width modulation. While a sine-wave modulation signal is shown, any wave shape could be used. Figure 18. Circuit for Pulse-Width Modulation Figure 19. Pulse-Width-Modulation Waveforms Copyright © 1973–2010, Texas Instruments Incorporated Submit Documentation Feedback 13 Product Folder Link(s): NA555 NE555 SA555 SE555 Voltage − 2 V/div ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ RA = 3 kW RB = 500 W RL = 1 kW See Figure 20 ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Capacitor Voltage ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Output Voltage ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Modulation Input Voltage Time − 0.1 ms/div RB Modulation Input (see Note A) CONT TRIG RESET VCC OUT DISCH VCC (5 V to 15 V) RL RA C GND THRES NOTE A: The modulating signal can be direct or capacitively coupled to CONT. For direct coupling, the effects of modulation source voltage and impedance on the bias of the timer should be considered. Pin numbers shown are for the D, JG, P, PS, and PW packages. 4 8 3 7 6 2 5 Output NA555, NE555, SA555, SE555 SLFS022H –SEPTEMBER 1973–REVISED JUNE 2010 www.ti.com Pulse-Position Modulation As shown in Figure 20, any of these timers can be used as a pulse-position modulator. This application modulates the threshold voltage and, thereby, the time delay, of a free-running oscillator. Figure 21 shows a triangular-wave modulation signal for such a circuit; however, any wave shape could be used. Figure 20. Circuit for Pulse-Position Modulation Figure 21. Pulse-Position-Modulation Waveforms 14 Submit Documentation Feedback Copyright © 1973–2010, Texas Instruments Incorporated Product Folder Link(s): NA555 NE555 SA555 SE555 S VCC RESET VCC OUT DISCH GND CONT TRIG 4 8 3 7 6 1 5 2 THRES RC CC 0.01 CC = 14.7 mF RC = 100 kW Output C RESET VCC OUT DISCH GND CONT TRIG 4 8 3 7 6 1 5 2 THRES RB 33 kW 0.001 0.01 mF CB = 4.7 mF RB = 100 kW RA = 100 kW Output A Output B CA = 10 mF mF 0.01 mF 0.001 RA 33 kW THRES 2 5 1 6 7 3 4 8 TRIG CONT GND DISCH OUT RESET VCC mF mF CA CB Pin numbers shown are for the D, JG, P, PS, and PW packages. NOTE A: S closes momentarily at t = 0. Voltage − 5 V/div t − Time − 1 s/div ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ See Figure 22 ÏÏÏÏÏÏÏÏÏÏÏÏ Output A ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ Output B ÏÏÏÏÏÏÏÏÏÏÏÏ Output C ÏÏÏÏÏÏÏÏÏÏÏÏ t = 0 ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ twC = 1.1 RCCC ÏÏÏÏÏÏ twC ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ twB = 1.1 RBCB ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ twA = 1.1 RACA ÏÏÏÏÏÏÏÏÏÏÏÏ twA ÏÏÏÏÏÏÏÏÏÏÏÏ twB NA555, NE555, SA555, SE555 www.ti.com SLFS022H –SEPTEMBER 1973–REVISED JUNE 2010 Sequential Timer Many applications, such as computers, require signals for initializing conditions during start-up. Other applications, such as test equipment, require activation of test signals in sequence. These timing circuits can be connected to provide such sequential control. The timers can be used in various combinations of astable or monostable circuit connections, with or without modulation, for extremely flexible waveform control. Figure 22 shows a sequencer circuit with possible applications in many systems, and Figure 23 shows the output waveforms. Figure 22. Sequential Timer Circuit Figure 23. Sequential Timer Waveforms Copyright © 1973–2010, Texas Instruments Incorporated Submit Documentation Feedback 15 Product Folder Link(s): NA555 NE555 SA555 SE555 PACKAGE OPTION ADDENDUM www.ti.com 2-May-2014 Addendum-Page 1 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Drawing Pins Package Qty Eco Plan (2) Lead/Ball Finish (6) MSL Peak Temp (3) Op Temp (°C) Device Marking (4/5) Samples JM38510/10901BPA ACTIVE CDIP JG 8 1 TBD A42 N / A for Pkg Type -55 to 125 JM38510 /10901BPA M38510/10901BPA ACTIVE CDIP JG 8 1 TBD A42 N / A for Pkg Type -55 to 125 JM38510 /10901BPA NA555D ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 105 NA555 NA555DG4 ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 105 NA555 NA555DR ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 105 NA555 NA555DRG4 ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 105 NA555 NA555P ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type -40 to 105 NA555P NA555PE4 ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type -40 to 105 NA555P NE555D ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 NE555 NE555DE4 ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 NE555 NE555DG4 ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 NE555 NE555DR ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU | CU SN Level-1-260C-UNLIM 0 to 70 NE555 NE555DRE4 ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 NE555 NE555DRG3 PREVIEW SOIC D 8 2500 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM 0 to 70 NE555 NE555DRG4 ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 NE555 NE555P ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU | CU SN N / A for Pkg Type 0 to 70 NE555P NE555PE3 PREVIEW PDIP P 8 50 TBD Call TI Call TI 0 to 70 PACKAGE OPTION ADDENDUM www.ti.com 2-May-2014 Addendum-Page 2 Orderable Device Status (1) Package Type Package Drawing Pins Package Qty Eco Plan (2) Lead/Ball Finish (6) MSL Peak Temp (3) Op Temp (°C) Device Marking (4/5) Samples NE555PE4 ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type 0 to 70 NE555P NE555PSLE OBSOLETE SO PS 8 TBD Call TI Call TI 0 to 70 NE555PSR ACTIVE SO PS 8 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 N555 NE555PSRE4 ACTIVE SO PS 8 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 N555 NE555PSRG4 ACTIVE SO PS 8 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 N555 NE555PW ACTIVE TSSOP PW 8 150 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 N555 NE555PWE4 ACTIVE TSSOP PW 8 150 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 N555 NE555PWG4 ACTIVE TSSOP PW 8 150 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 N555 NE555PWR ACTIVE TSSOP PW 8 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 N555 NE555PWRE4 ACTIVE TSSOP PW 8 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 N555 NE555PWRG4 ACTIVE TSSOP PW 8 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 N555 NE555Y OBSOLETE 0 TBD Call TI Call TI 0 to 70 SA555D ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 SA555 SA555DE4 ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 SA555 SA555DG4 ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 SA555 SA555DR ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU | CU SN Level-1-260C-UNLIM -40 to 85 SA555 SA555DRE4 ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 SA555 SA555DRG4 ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 SA555 SA555P ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type -40 to 85 SA555P PACKAGE OPTION ADDENDUM www.ti.com 2-May-2014 Addendum-Page 3 Orderable Device Status (1) Package Type Package Drawing Pins Package Qty Eco Plan (2) Lead/Ball Finish (6) MSL Peak Temp (3) Op Temp (°C) Device Marking (4/5) Samples SA555PE4 ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type -40 to 85 SA555P SE555D ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -55 to 125 SE555 SE555DG4 ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -55 to 125 SE555 SE555DR ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -55 to 125 SE555 SE555DRG4 ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -55 to 125 SE555 SE555FKB ACTIVE LCCC FK 20 1 TBD POST-PLATE N / A for Pkg Type -55 to 125 SE555FKB SE555JG ACTIVE CDIP JG 8 1 TBD A42 N / A for Pkg Type -55 to 125 SE555JG SE555JGB ACTIVE CDIP JG 8 1 TBD A42 N / A for Pkg Type -55 to 125 SE555JGB SE555N OBSOLETE PDIP N 8 TBD Call TI Call TI -55 to 125 SE555P ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type -55 to 125 SE555P (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. PACKAGE OPTION ADDENDUM www.ti.com 2-May-2014 Addendum-Page 4 (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. OTHER QUALIFIED VERSIONS OF SE555, SE555M : • Catalog: SE555 • Military: SE555M • Space: SE555-SP, SE555-SP NOTE: Qualified Version Definitions: • Catalog - TI's standard catalog product • Military - QML certified for Military and Defense Applications • Space - Radiation tolerant, ceramic packaging and qualified for use in Space-based application TAPE AND REEL INFORMATION *All dimensions are nominal Device Package Type Package Drawing Pins SPQ Reel Diameter (mm) Reel Width W1 (mm) A0 (mm) B0 (mm) K0 (mm) P1 (mm) W (mm) Pin1 Quadrant NA555DR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 NA555DR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 NE555DR SOIC D 8 2500 330.0 12.8 6.4 5.2 2.1 8.0 12.0 Q1 NE555DR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 NE555DRG4 SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 NE555DRG4 SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 NE555PSR SO PS 8 2000 330.0 16.4 8.2 6.6 2.5 12.0 16.0 Q1 NE555PWR TSSOP PW 8 2000 330.0 12.4 7.0 3.6 1.6 8.0 12.0 Q1 SA555DR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 SA555DR SOIC D 8 2500 330.0 12.8 6.4 5.2 2.1 8.0 12.0 Q1 SA555DRG4 SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 SE555DR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 SE555DRG4 SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 PACKAGE MATERIALS INFORMATION www.ti.com 15-Oct-2013 Pack Materials-Page 1 *All dimensions are nominal Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm) NA555DR SOIC D 8 2500 340.5 338.1 20.6 NA555DR SOIC D 8 2500 367.0 367.0 35.0 NE555DR SOIC D 8 2500 364.0 364.0 27.0 NE555DR SOIC D 8 2500 340.5 338.1 20.6 NE555DRG4 SOIC D 8 2500 340.5 338.1 20.6 NE555DRG4 SOIC D 8 2500 367.0 367.0 35.0 NE555PSR SO PS 8 2000 367.0 367.0 38.0 NE555PWR TSSOP PW 8 2000 367.0 367.0 35.0 SA555DR SOIC D 8 2500 340.5 338.1 20.6 SA555DR SOIC D 8 2500 364.0 364.0 27.0 SA555DRG4 SOIC D 8 2500 340.5 338.1 20.6 SE555DR SOIC D 8 2500 367.0 367.0 35.0 SE555DRG4 SOIC D 8 2500 367.0 367.0 35.0 PACKAGE MATERIALS INFORMATION www.ti.com 15-Oct-2013 Pack Materials-Page 2 MECHANICAL DATA MCER001A – JANUARY 1995 – REVISED JANUARY 1997 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 JG (R-GDIP-T8) CERAMIC DUAL-IN-LINE 0.310 (7,87) 0.290 (7,37) 0.014 (0,36) 0.008 (0,20) Seating Plane 4040107/C 08/96 5 4 0.065 (1,65) 0.045 (1,14) 8 1 0.020 (0,51) MIN 0.400 (10,16) 0.355 (9,00) 0.015 (0,38) 0.023 (0,58) 0.063 (1,60) 0.015 (0,38) 0.200 (5,08) MAX 0.130 (3,30) MIN 0.245 (6,22) 0.280 (7,11) 0.100 (2,54) 0°–15° NOTES: A. All linear dimensions are in inches (millimeters). B. This drawing is subject to change without notice. C. This package can be hermetically sealed with a ceramic lid using glass frit. D. Index point is provided on cap for terminal identification. E. Falls within MIL STD 1835 GDIP1-T8 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed. TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications. In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms. No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949. Products Applications Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com Energy and Lighting www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID www.ti-rfid.com OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com Wireless Connectivity www.ti.com/wirelessconnectivity Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2014, Texas Instruments Incorporated SN5485, SN54LS85, SN54S85 SN7485, SN74LS85, SN74S85 4-BIT MAGNITUDE COMPARATORS SDLS123 – MARCH 1974 – REVISED MARCH 1988 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 PRODUCTION DATA information is current as of publication date. Copyright W 1988, Texas Instruments Incorporated Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. SN5485, SN54LS85, SN54S85 SN7485, SN74LS85, SN74S85 4-BIT MAGNITUDE COMPARATORS SDLS123 – MARCH 1974 – REVISED MARCH 1988 2 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SN5485, SN54LS85, SN54S85 SN7485, SN74LS85, SN74S85 4-BIT MAGNITUDE COMPARATORS SDLS123 – MARCH 1974 – REVISED MARCH 1988 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 3 SN5485, SN54LS85, SN54S85 SN7485, SN74LS85, SN74S85 4-BIT MAGNITUDE COMPARATORS SDLS123 – MARCH 1974 – REVISED MARCH 1988 4 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SN5485, SN54LS85, SN54S85 SN7485, SN74LS85, SN74S85 4-BIT MAGNITUDE COMPARATORS SDLS123 – MARCH 1974 – REVISED MARCH 1988 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 5 SN5485, SN54LS85, SN54S85 SN7485, SN74LS85, SN74S85 4-BIT MAGNITUDE COMPARATORS SDLS123 – MARCH 1974 – REVISED MARCH 1988 6 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SN5485, SN54LS85, SN54S85 SN7485, SN74LS85, SN74S85 4-BIT MAGNITUDE COMPARATORS SDLS123 – MARCH 1974 – REVISED MARCH 1988 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 7 TAPE AND REEL INFORMATION *All dimensions are nominal Device Package Type Package Drawing Pins SPQ Reel Diameter (mm) Reel Width W1 (mm) A0 (mm) B0 (mm) K0 (mm) P1 (mm) W (mm) Pin1 Quadrant SN74LS85DR SOIC D 16 2500 330.0 16.4 6.5 10.3 2.1 8.0 16.0 Q1 SN74LS85NSR SO NS 16 2000 330.0 16.4 8.2 10.5 2.5 12.0 16.0 Q1 PACKAGE MATERIALS INFORMATION www.ti.com 14-Jul-2012 Pack Materials-Page 1 *All dimensions are nominal Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm) SN74LS85DR SOIC D 16 2500 333.2 345.9 28.6 SN74LS85NSR SO NS 16 2000 367.0 367.0 38.0 PACKAGE MATERIALS INFORMATION www.ti.com 14-Jul-2012 Pack Materials-Page 2 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46C and to discontinue any product or service per JESD48B. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed. TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications. In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms. No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such components to meet such requirements. Products Applications Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com Energy and Lighting www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID www.ti-rfid.com OMAP Mobile Processors www.ti.com/omap TI E2E Community e2e.ti.com Wireless Connectivity www.ti.com/wirelessconnectivity Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2012, Texas Instruments Incorporated CC2530 ZigBee Development Kit User’s Guide swru209b swru209b 2/28 Table of contents CC2530 ZIGBEE DEVELOPMENT KIT USER’S GUIDE............................................................................. 1 1 INTRODUCTION..................................................................................................................................... 3 2 ABOUT THIS MANUAL......................................................................................................................... 3 3 ACRONYMS ............................................................................................................................................. 4 4 ZIGBEE DEVELOPMENT KIT CONTENTS ...................................................................................... 5 5 GETTING STARTED .............................................................................................................................. 7 5.1 SETTING UP THE HARDWARE........................................................................................................................ 7 5.2 RUNNING THE PREPROGRAMMED ZIGBEE SENSOR DEMO ........................................................................... 8 5.3 CC2530 PER TEST....................................................................................................................................... 8 5.4 EVALUATE THE CC2530 RADIO USING SMARTRF STUDIO .......................................................................... 8 5.5 DEVELOPING YOUR OWN SOFTWARE WITH THE CC2530............................................................................ 11 5.6 DEVELOPING YOUR OWN HARDWARE WITH THE CC2530 .......................................................................... 11 6 RF TESTING........................................................................................................................................... 12 6.1 TX PARAMETER TESTING BASICS.............................................................................................................. 12 6.2 RX PARAMETER TESTING BASICS.............................................................................................................. 13 7 CC2530EM .............................................................................................................................................. 14 8 CC2531 USB DONGLE.......................................................................................................................... 15 9 SMARTRF05 EVALUATION BOARD................................................................................................ 17 10 SMARTRF05 BATTERY BOARD ....................................................................................................... 18 10.1 JOYSTICK ................................................................................................................................................... 19 10.2 EMCONNECTORS....................................................................................................................................... 19 10.3 EMSELECTION SWITCH............................................................................................................................. 20 10.4 PROBE CONNECTORS.................................................................................................................................. 22 10.5 SOC DEBUG CONNECTOR........................................................................................................................... 22 10.6 CURRENTMEASUREMENT JUMPER ............................................................................................................ 23 11 FREQUENTLY ASKED QUESTIONS ................................................................................................ 24 12 REFERENCES........................................................................................................................................ 26 13 DOCUMENT HISTORY........................................................................................................................ 27 APPENDIX A SCHEMATICS.................................................................................................................... 28 swru209b 3/28 1 Introduction Thank you for purchasing the CC2530 ZigBee Development Kit. The CC2530 is Texas Instrument’s second generation ZigBee/IEEE 802.15.4 compliant System-on- Chip with an optimized 8051 MCU core and radio for the 2.4 GHz unlicensed ISM/SRD band. This device enables industrial grade applications by offering state-of-the-art noise immunity, excellent link budget, operation up to 125 degrees and low voltage operation. In addition, the CC2530 provides extensive hardware support for packet handling, data buffering, burst transmissions, data encryption, data authentication, clear channel assessment, link quality indication and packet timing information. Z-Stack™ is TI's ZigBee compliant protocol stack for a growing portfolio of IEEE 802.15.4 products and platforms. Z-Stack support the CC2530 and is compliant with both the ZigBee® 2007 (ZigBee and ZigBee PRO) and ZigBee® 2006 specification. The CC2530 ZigBee Development Kit is well suited for demonstration, evaluation and software development targeting IEEE 802.15.4 and ZigBee compliant applications with the CC2530. The CC2530 product folder on the web [1] has more information, with datasheets, user guides and application notes. For more information about TI’s ZigBee software implementation, refer to the ZStack product folder on the web [7]. This web site also has links for download of Z-stack. 2 About this manual This manual describes all the hardware included in the CC2530 ZigBee Development Kit (CC2530ZDK) and points to other useful information resources. Chapter 4 briefly describes the contents of the development kit and chapter 5 gives a quick introduction to how to get started with the kit. In particular, it describes how to install SmartRF Studio to get the required drivers for the evaluation board, how the hardware can be used, and lists the software that is available for the development kit. Chapter 6 explains some simple methods for performing practical RF testing with the development kit. Chapter 7, 8, and 9 describe the hardware in the kit and where to find more information about how to use it. A troubleshooting guide can be found in chapter 11. The CC2530ZDK Quick Start Guide [9] has a short tutorial on how to get started with this kit. More information and user manuals for the PC tools SmartRF Studio and SmartRF Flash Programmer can be found on their respective product sites on the web [2] [3]. Please visit the CC2530 ZigBee Development Kit [11] web page and CC2530 product page [1] for additional information. Further information can be found on the TI LPRF Online Community [16]. Refer also to the document CC2530DK User’s Guide [13] which gives a detailed description of how to set up the software development environment for the CC2530. This document also lists other available software solutions for CC2530. See chapter 12 for a list of relevant documents and links. swru209b 4/28 3 Acronyms ACM Abstract Control Model BB Battery Board CDC Communications Device Class DK Development Kit EB Evaluation Board EM Evaluation Module HID Human Interface Device IC Integrated Circuit ISM Industrial, Scientific and Medical KB Kilo Byte (1024 byte) LCD Liquid Crystal Display LED Light Emitting Diode LPRF Low Power RF MCU Micro Controller NC Not connected PER Packet Error Rate RF Radio Frequency RX Receive SoC System on Chip SPI Serial Peripheral Interface SRD Short Range Device TI Texas Instruments TX Transmit UART Universal Asynchronous Receive Transmit USB Universal Serial Bus ZDK ZigBee Development Kit Z-Stack TI’s ZigBee software implementation swru209b 5/28 4 ZigBee Development Kit contents The CC2530 ZigBee Development Kit (CC2530ZDK) includes hardware and software that allows quick testing of the CC2530 RF performance and offers a complete platform for development of advanced prototype RF systems and ZigBee applications.  Evaluate the CC2530 and ZigBee right out of the box. The kit can be used to demonstrate a small sensor network application using ZigBee and the CC2530.  Use the CC2530ZDK to do software development of your own ZigBee applications using ZStack ™ for CC2530.  Use SmartRF Studio to perform RF measurements. The radio can be easily configured to measure sensitivity, output power and other RF parameters.  Prototype development. All I/O pins from the CC2530 are available on pin connectors on the SmartRF05EB, allowing easy interconnection to peripherals on the EB board or other external sensors and devices. The CC2530ZDK contains the following components  2 x SmartRF05EB (the two large boards)  5 x SmartRF05 Battery Boards  7 x CC2530 Evaluation Modules (with the CC2530 and antenna connector) o 2 of these CC2530EM’s are pre-programmed with the SensorDemo Collector application1 o 5 of the CC2530EM’s are pre-programmed with the SensorDemo Sensor application  7 x Antennas  1 x CC2531 USB Dongle  Cables  Batteries  Documents Figure 1 - CC2530 ZigBee Development Kit Contents 1 Consult the CC2530ZDK Quick Start Guide [9] and the CC2530ZDK Sensor Demo User’s Guide [10] for a description of the software programmed on the CC2530EM’s. swru209b 6/28 SmartRF05EB The SmartRF05EB (evaluation board) is the main board in the kit with a wide range of user interfaces:  3x16 character serial LCD  Full speed USB 2.0 interface  UART  LEDs  Serial Flash  Potentiometer  Joystick  Buttons The EB is the platform for the evaluation modules (EM) and can be connected to the PC via USB to control the EM. CC2530EM The CC2530EM (evaluation module) contains the RF IC and necessary external components and matching filters for getting the most out of the radio. The module can be plugged into the SmartRF05EB. Use the EM as reference design for RF layout. The schematics are included at the end of this document and the layout files can be found on the web [1]. CC2531 USB Dongle The CC2531 USB Dongle is a fully operational USB device that can be plugged into a PC. The dongle has 2 LEDs, two small pushbuttons and connector holes that allow connection of external sensors or devices. The dongle also has a connector for programming and debugging of the CC2531 USB controller. The dongle comes preprogrammed with firmware such that it can be used as a packet sniffer device. SmartRF05BB The SmartRF05 Battery Board can be used as an alternative to the EB, providing a standalone node when the CC2530EM is connected. It is powered with 2 AA batteries in the sockets underneath the board. The board peripherals include 4 LED’s, 2 push buttons and a joystick. The BB also has a SoC debug connector for connection to an external debug/programming tool e.g. the SmartRF05EB. swru209b 7/28 5 Getting started 5.1 Setting up the hardware After opening the kit, make sure you have all components. Please contact your TI Sales Representative or TI Support [17] if anything is missing. Start by connecting the antennas to the SMA connector on the RF evaluation boards. Tighten the antenna’s screw firmly on to the SMA connector. If not properly connected, you might see reduced RF performance. It is also possible to connect the EM board to RF instruments via coax cables. The EM is designed to match a 50 Ohm load at the SMA connector. Figure 2 CC2530ZDK assembled hardware Next, the evaluation modules should be plugged in to the SmartRF05EB’s and to the SmartRF05BB’s. A ZigBee sensor demo application is preprogrammed on the CC2530EM’s included in this kit. The application consists of two different device types; collectors and sensors. 5 of the CC2530EM’s are programmed as the sensor device type. When running the out of the box demonstration the sensor EM’s shall be connected to the BB’s. The two EM’s programmed as collector device shall be connected to the EB’s. When not using the out of the box demonstration (i.e. the preprogrammed application) e.g, for RF evaluation or software development, all of the 7 EM’s can be used equally. The purpose of the SmartRF05EB is to serve as a general I/O board for testing of the various peripherals of the CC2530 microcontroller. The SmartRF05EB is also used for programming and debugging of the CC2530, and has several useful peripheral devices like LCD, LED’s, I/O connectors, push buttons and joystick etc. The evaluation board can be powered from several different sources:  2 x 1.5V AA batteries (included in this kit)  USB (via the USB connector)  DC power (4 to 10 Volt) (not included in this kit) swru209b 8/28  External regulated power source (not included in this kit) The power source can be selected using jumper P11 on the SmartRF05EB. The SmartRF05EB User’s Guide [6] provides more details. The SmartRF05 Battery Boards (BB) can be used as a standalone device when equipped with a CC2530EM. This board is powered by AA batteries. See section 10 in this document for more information about the SmartRF05BB. After assembling the hardware, you now have several options for working with the CC2530:  Run the Sensor Demo ZigBee application that is preprogrammed on the CC2530’s. The CC2530ZDK Quick Start Guide document [9] included in this kit describes the necessary steps to run the demonstration.  Running the packet error rate (PER) test software available for CC2530EM. Chapter 5.3 describes this application.  Evaluate and explore the RF capabilities of the CC2530 using SmartRF Studio. Chapter 5.4 provides the details how to do so.  Develop your own software for the CC2530. Install IAR Embedded Workbench for 8051 and set up your first software project. Section 5.5 explains how.  Develop your own hardware with the CC2530. See chapter 5.6. 5.2 Running the Preprogrammed ZigBee Sensor Demo The CC2530EM’s are pre-programmed with a Sensor Demo application used to demonstrate a temperature monitoring application in a small ZigBee network. The CC2530ZDK Quick Start Guide document [9] included in this kit describes the necessary steps to run the demonstration. A software package with the source code for the Sensor Demo, and Intel HEX files ready to be programmed on the devices, is available on the CC2530ZDK web site [11]. A detailed description about the Sensor Demo application is found in the document CC2530ZDK Sensor Demo User’s Guide [10]. 5.3 CC2530 PER test A Packet Error Rate (PER) test application is also available for the CC2530. This application can be used to evaluate the RF performance of CC2530 using either the hardware included in the kit or other boards with a CC2530. More information about the PER test application can be found in the documents CC2530DK Quick Start Guide [12] and CC2530 Software Examples User's Guide [13]. A software package with the source code for the PER test application, and Intel HEX files ready to be programmed on the devices, is available on the CC2530DK web site [14]. 5.4 Evaluate the CC2530 Radio using SmartRF Studio SmartRF Studio is a PC application developed for configuration and evaluation of many of the RF-IC products from Texas Instruments, including the CC2530. The application communicates with the CC2530 via the USB controller on the SmartRF05EB board. The USB controller uses the debug interface of the CC2530 to execute commands and to read and write registers. SmartRF Studio lets you explore the radio on the CC2530, as it gives you full overview and access to the radio registers. The tool has a control interface for running basic radio performance tests from the swru209b 9/28 PC. SmartRF Studio also offers a flexible code export function of radio register settings for software developers. Before proceeding, please download and install the latest version of SmartRF Studio from the web [2]. By installing Studio, the USB drivers needed for proper interaction between the PC and the hardware of the CC2530DK will also be installed. In order to use the SmartRF Studio with CC2530, connect the CC2530EM to the SmartRF05EB. Next, connect the SmartRF05EB board to the PC via one of the USB cables included in the kit. If you have installed SmartRF Studio, select automatic installation of driver in the device wizard that appears. The device wizard will only pop up when you turn on the SmartRF05EB and only once for each board. Allow Windows to complete the driver installation before proceeding. With the board connected to the PC, you can start SmartRF Studio. The following window should appear: Figure 3 - CC2530 and SmartRF Studio Make sure you select the tab called “2.4 GHz”. The tab will indicate if there is a board/device connected, and you should see the CC2530 icon highlighted as in the screenshot above. Double click on the CC2530 icon, and a new window will appear. swru209b 10/28 Figure 4 - CC2530 control panel in SmartRF Studio Figure 4 shows the main control panel for the CC2530. It lets you perform a number of operations:  Run TX Test modes for testing of RF output power and spectrum; e.g. by connecting a spectrum analyser or a power meter to the CC2530EM SMA connector to perform RF measurements.  Run Packet TX and RX tests. For this test, you should have two EBs with CC2530EMs connected to the PC. o Double click on both of the devices in the device list in SmartRF Studio (Figure 3), opening two windows, giving control of the two radios at the same time. o Select one device to be the transmitter, by selecting the “Packet TX” tab shown in the lower middle of Figure 4. o On the other device (the receiver), select the “Packet RX” tab. o Set up basic test parameters and press the “Start” button for the receiver. o Now you can start transmission by pressing the “Start” button for the transmitter. o The window will show the number of packets sent on the transmitter side and the number of received packets and signal strength of the last received packet on the receiver side.  Read and/or modify registers and common settings, such as RF frequency (or channel) and output power.  Export RF register values in a user modifiable format by selecting “File  Register Export”. SmartRF Studio offers a lot of possibilities for testing and evaluating the hardware. Download the tool and try it for yourself. swru209b 11/28 5.5 Developing your own software with the CC2530 To develop software and debug an application on the CC2530, it is recommended to use IAR Embedded Workbench. It supports debugging of CC2530 through the SmartRF05EB, so no additional hardware is required. IAR EW8051 is bundled with all the required files for CC2530 to start development:  Register definition header file  Linker command file  Driver and device description file needed for debugging and programming Note that other compilers and linkers can be used, but these tools may have limited debugging capabilities. An evaluation version of IAR Embedded Workbench is included in the ZigBee Development Kit. To install the software, insert the CD and follow the instructions. You will be asked to register on IAR’s web site to get a license key for the product. As the owner of a CC2530 Development Kit, you are entitled to a 60 day evaluation period. The evaluation version in the kit automatically gives you 30 days. Please contact your local IAR sales representative for the additional 30-days evaluation period. For a list of sales offices and distributors in your country, please see this site: http://www.iar.com/contact. Refer also to the CC2530DK User’s Guide [13] which will guide you through the steps of setting up your own IAR project from scratch. The CC2530DK User’s Guide [13] also gives a brief overview of complete software solutions for CC2530 from Texas Instruments. TI’s ZigBee compliant protocol stack Z-Stack™ can be downloaded from the product folder [7]. This software is needed in order to develop ZigBee application for the CC2530. The product folder include downloads of Z-Stack™ for the various TI platforms. Make sure the version for CC2530 is selected. After installation refer to the Z-stack User’s Guide document found in the installation folders of ZStack ™. The default root installation path for Z-Stack is C:\Texas Instruments\. A software package with the source code for the Sensor Demo, and Intel HEX files ready to be programmed on the devices, is available on the CC2530ZDK web site [11]. This package also includes the CC2530ZDK Sensor Demo User’s Guide giving information about how to set up the software example in the IAR development environment. 5.6 Developing your own hardware with the CC2530 It is recommended to use the CC2530EM as a reference design when designing new hardware using the CC2530. The CC2530EM reference design files can be downloaded from the CC2530 product folder on the web [1]. swru209b 12/28 6 RF Testing NB! When running RF performance tests, it is recommended to disable all other peripherals on the SmartRF05EB in order to avoid unwanted noise on the on-board voltage. In particular, make sure the RS232 level converter/line driver is disabled. RF testing can be performed by using SmartRF Studio together with the Development Kit. The basic set-up is described in section 5.4. As described in that chapter, SmartRF Studio can be used to set up basic tests and tune RF registers accordingly. Since the CC2530 evaluation board is equipped with an SMA connector, both radiated (via antenna) and conducted (via cable) tests can be performed, and it is easy to hook the EM up to RF measurement equipment. The RF equipment may be connected in two different ways.  To measure radiated performance, connect an appropriate antenna to the spectrum analyzer or power meter and an antenna on the EM board.  To measure conducted performance, connect a 50 Ohm coaxial cable directly from the EM to the RF equipment. Figure 5 - RF Test Set-Up with a Spectrum analyzer By using good-quality RF cabling, the loss in the cabling should be negligible. However make sure that the spectrum analyzer is calibrated. If possible, check it against a calibrated instrument such as an RF signal generator. Uncalibrated spectrum analyzers can display errors of several dBs. 6.1 TX Parameter Testing Basics To investigate the TX performance of the CC2530, you can either use a Spectrum Analyzer or an RF Power Meter. Use the “Simple TX” test mode in SmartRF Studio to set up the device to transmit a signal at the desired frequency. Both a modulated or unmodulated carrier signal can be generated. Use the RF Power Meter to observe the output power or the spectrum analyzer to observe the spectrum and to measure the error vector magnitude (EVM). swru209b 13/28 6.2 RX Parameter Testing Basics To investigate the RX performance of the CC2530, you can use a signal generator or “Packet TX” in SmartRF Studio (with another EB+EM) to generate the packets to receive. The receiver can be configured by using the “Packet RX” test feature in SmartRF Studio. By adding a jammer (a third node that generates either noise on the same channel or a strong signal on an adjacent channel) it is also possible to measure co-channel rejection and selectivity/blocking performance. The PER test application, that was described in section 5.3, can be used for simple sensitivity measurements with the CC2530EM and/or with your own prototype hardware. In this case, connect the unit you want to test to a known good transmitter with coaxial cables and attenuators. Add more attenuators until the PER value is 1%. The signal strength at the receiver side is then the sensitivity limit of the system. For more information regarding sensitivity measurements, refer to “Design Note 2 – Practical Sensitivity Testing” [15]. swru209b 14/28 7 CC2530EM Figure 6 - CC2530 Evaluation Module The CC2530EM is a complete RF module based on one of the recommended reference designs for the CC2530 radio. The module is equipped with a 32 MHz crystal, a 32.768 kHz crystal, external passive components for the balun and antenna match filter, an SMA connector for the antenna or any other RF instrument connection and general IO headers/connectors. The table below shows the pin-out from the CC2530 to the two connectors on the backside of the evaluation module. CC2530 Signal P1 P1 CC2530 Signal CC2530 Signal P2 P2 CC2530 Signal GND 1 2 - - 1 2 - P0.4 3 4 P1.3 - 3 4 - P0.1 5 6 P1.0 - 5 6 - P0.2 7 8 - VDD 7 8 - P0.3 9 10 P2.1 VDD 9 10 - P0.0 11 12 P2.2 - 11 12 - P1.1 13 14 P1.4 - 13 14 - P0.6 15 16 P1.5 RESET 15 16 - P0.7 17 18 P1.6 P1.2 17 18 P0.5 GND 19 20 P1.7 P2.0 19 20 - Table 1 - CC2530EM pin-out The part number of the EM connector is SFM-110-02-SM-D-A-K-TR from Samtec. It mates with the TFM-110-02-SM-D-A-K-TR, also from Samtec. Please refer to the reference design on the web [1] for further details. CC2530F256 32 kHz Crystal 32MHz Crystal SMA antenna connector EM Connector P2 (Bottom side) EM Connector P1 (Bottom side) swru209b 15/28 8 CC2531 USB Dongle Figure 7 - CC2531 USB Dongle The USB dongle that is included in the kit comes preprogrammed such that it can be used together with the SmartRF Packet Sniffer [4] to capture packets going over the air. To use the dongle as a sniffer, just install the Packet Sniffer PC application (available on the web [4]), plug in the USB dongle and start capturing packets. The Packet Sniffer User Manual [5] has more information. The USB dongle can also be used as a general development board for USB and RF software. There is a USB firmware library available from the TI web pages with an implementation of a complete USB framework, including examples showing both HID and CDC ACM. There is a link to this library on the CC2530 DK web pages [14]. Table 2 shows which CC2531 signals are connected to what IO on the dongle. IO Connector CC2531 Dongle User IO CC2531 1 P0.2 Green LED P0.0 2 P0.3 Red LED P1.1 3 P0.4 Button S1 P1.2 4 P0.5 Button S2 P1.3 5 P1.7 6 P1.6 7 P1.5 8 P1.4 Table 2 - CC2531 USB Dongle Pinout In order to debug and program firmware on the CC2531, the CC2531 USB dongle can be connected to the SmartRF05EB as shown in the picture below. The small adapter board and flat cable is included in the development kit. IO Connector Meandred F-antenna CC2531F256 Button S1 Button S2 LEDs Debug connector Voltage regulator swru209b 16/28 Figure 8 - CC2531 USB Dongle connected to SmartRF05EB The debug connector on the CC2531 USB Dongle matches the debug connector on the SmartRF05EB (and the CC Debugger). Note that, by default, the CC2531 dongle is not powered through the debug connector, so an external power source must be used while programming. The easiest solution is to connect it to a USB port on the PC. Alternatively, resistor R2 can be mounted. The table below shows the pin out of the debug connector. Pin # Connection 1 GND 2 VCC 3 CC2531 P2.2 (DC) 4 CC2531 P2.1 (DD) 5 NC 6 NC 7 CC2531 RESET 8 NC 9 Optional external VCC (R2 must be mounted) 10 NC Table 3 – CC2531 USB Dongle Debug Connector Refer to the schematics (in the appendices) for additional details. swru209b 17/28 9 SmartRF05 Evaluation Board The SmartRF05 Evaluation Board is thoroughly described in the SmartRF05EB User’s Guide [6]. That document will describe the hardware features in detail and provide the schematics for the board. swru209b 18/28 10 SmartRF05 Battery Board Figure 9 SmartRF05 Battery Board The SmartRF05 Battery Board is a smaller and simpler board than the SmartRF05EB. The Battery Board can together with an EM be used as a standalone node. Figure 9 shows the SmartRF05 Battery Board. The Battery Board is powered with 2 AA batteries placed in the battery connectors underneath the board. The peripherals that are available include 2 push buttons, a joystick with 5 directions and 4 LED’s of different colours that can be controlled via the EM. There are 2 switches on the SmartRF05 Battery Board:  The Power switch P6 used to switch the board’s power supply on/off.  The EM selection switch. NB: The EM selection switch shall be placed in position SoC/TRX when using a SoC EM such as CC2530EM or a transceiver EM is connected to the Battery Board. The position MSP is used when the CCMSP-EM430F2618 board (not part of this kit) is connected. More information about the EM Selection switch is found in section 10.3. The following sections give the pin out of the different connectors on the SmartRF05 Battery Board. Refer to the schematics (in the appendices) and layout (available on the web) for additional details. 256kB SPI EM Flash Module Connectors Joystick EM Selection Switch LEDs Probe Connectors Push Buttons Power Switch swru209b 19/28 10.1 Joystick The joystick detects five positions (centre, up, down, left, right) and one event (pushed). The two aggregated signals, JOY_MOVE and JOY_LEVEL, are used to detect a joystick event when using a SoC (e.g. the CC2530). JOY_MOVE is high whenever the joystick is moved away from the centre position, including pushing. The other signal, JOY_LEVEL, is a voltage level signal that gives different values depending on the current position of the joystick. The table below shows these values. Note that the voltage levels are relative to the voltage on the board. Joystick position JOY_LEVEL (Volts) Up 0.31 Down 1.16 Left 1.62 Right 1.81 Centre 2.12 Table 4 - Voltage on JOY_LEVEL for different joystick positions (T=25°C, Vdd=3.0V) When the EM selection switch is in position MSP, there are 5 discrete signals in addition to JOY_MOVE and JOY_LEVEL to be used to distinguish which direction the joystick was pressed. These 5 discrete signals are not used with CC2530 - only with the CCMSP-EM430F2618 board (not part of this kit). The discrete signals are routed to the EM connectors. See section 10.2 for details. 10.2 EM connectors The EM connectors P1 and P2 are used to connect an EM to the Battery Board. The pin out for these connectors is shown below. Table 1 in section 7 gives information about how the signals of the EM connectors are connected to the CC2530 on the EM board. Note that some of the signals are shared, e.g. IO_LED4_SOC/IO_BUTTON1. This means that the signal is shared between IO’s on the board; in this case both LED 4 when in SoC mode and Button 1. Pressing Button 1 will affect the state of LED 4. Similarly, if a SoC is toggling LED 4, it cannot read from Button 1 at the same time. Function on BB Pin Pin Function on BB GND 1 2 GND Not in use on BB 3 4 FLASH_CS IO_LED4_SOC/IO_BUTTON1 5 6 IO_LED1 Not in use on BB 7 8 JOYSTICK_RT Not in use on BB 9 10 SoC Debug P3.4 Not in use on BB 11 12 SoC Debug P3.3 IO_LED2_SOC 13 14 CS & SoC Debug P3.5 JOY_LEVEL 15 16 SCLK & SoC Debug P3.6 Not in use on BB 17 18 MOSI & SoC Debug P3.8 GND 19 20 MISO & SoC Debug P3.10 Table 5 - EM connector P1 pin-out swru209b 20/28 Function on BB Pin Pin Function on BB JOYSTICK_PUSH 1 2 GND NC 3 4 IO_LED2_MSP Not in use on BB 5 6 IO_LED3_MSP VCC_EM 7 8 IO_LED4_MSP VCC_EM 9 10 NC JOYSTICK_UP 11 12 Not in use on BB JOYSTICK_LEFT 13 14 Not in use on BB SoC Debug P3.7 & Flash Reset 15 16 IO_BUTTON2 Not in use on BB 17 18 Not in use on BB JOY_MOVE 19 20 Not in use on BB Table 6 EM connector P2 pin out 10.3 EM Selection Switch The EM selection switch on SmartRF05BB controls a multiplexer on the board that allows either a connected RF SoC EM or an MSP430 add-on board to access all four LEDs on the evaluation board. The limitation was caused by the particular pin-out on the RF evaluation modules that needed to be backwards compatible with other boards and test equipment. Figure 10 - EM Selection Switch (P8) The switch will both affect the operation of the LEDs and Button 1. NB: The EM Selection switch shall be placed in position SoC/TRX when the CC2530EM is used with SmartRF05BB. swru209b 21/28 Figure 11 - Switch P8 effect on LED 1-4 Due to lack of pins, some of the signals are shared. The chip select signal to the EM will also be affected when LED3 is used by the SoC (e.g. CC2530). In most cases, this will not be a problem, since the SoC does not, by default, implement a SPI slave. When LED4 is used by the SoC, the signal from Button 1 might interfere. In short, Button 1 and LED 4 can not be used simultaneously by the SoC. Figure 12 - Switch P8 effect on Button 1 The EM Selection switch will change the polarity of button number 1. In the MSP position, the button is active low, i.e. low voltage when the button is pressed. In the inactive position, the level is high (signal is pulled up by a 10k Ohm resistor). In the SoC position, the button is active high, i.e. high voltage when the button is pressed. In the inactive position, the level is low (signal is pulled down by a 10k Ohm resistor). Note that it is possible to use this feature to determine the position of switch P8 (assuming the button is not pressed). swru209b 22/28 10.4 Probe connectors The probe connectors P4 and P5 bring out all the signals from the EM connectors for probing purposes. The connectors allow easy access to I/O signals and to connect prototyping boards. The pin-out of these connectors are shown below. Function on BB Signal name Pin Pin Signal name Function on BB NC NC 1 2 NC NC Not in use on BB EM_P2_14 3 4 EM_P1_04 FLASH_CS Not in use on BB EM_P2_12 5 6 EM_P1_13 IO_LED2_SOC IO_LED4_SOC/IO_BUT TON1 EM_P1_05 7 8 EM_P1_10 SoC Debug P3.4 Not in use on BB EM_P1_07 9 10 EM_P1_12 SoC Debug P3.3 Not in use on BB EM_P1_09 11 12 EM_P1_20 MISO & SoC Debug P3.10 Not in use on BB EM_P1_03 13 14 EM_P1_14 IO_LED3_SOC & SoC Debug P3.5 Not in use on BB EM_P2_18 15 16 EM_P1_16 SCLK & SoC Debug P3.6 Not in use on BB EM_P1_17 17 18 EM_P1_18 MOSI & SoC Debug P3.8 Not in use on BB EM_P2_20 19 20 GND GND Table 7 I/O connector P4 pin out Function on BB Signal name Pin Pin Signal name Function on BB NC NC 1 2 NC NC VCC_EM VCC_EM 3 4 EM_P1_06 IO_LED1 Not in use on BB EM_P2_05 5 6 EM_P2_04 IO_LED2_MSP JOYSTICK_RT EM_P1_08 7 8 EM_P2_06 IO_LED3_MSP JOYSTICK_DN EM_P1_02 9 10 EM_P2_08 IO_LED4_MSP JOYSTICK_UP EM_P2_11 11 12 EM_P1_11 Not in use on BB JOYSTICK_LEFT EM_P2_13 13 14 EM_P2_15 SoC Debug P3.7 & Flash Reset JOYSTICK_PUSH EM_P2_01 15 16 EM_P2_16 IO_BUTTON2 JOY_LEVEL EM_P1_15 17 18 EM_P2_17 Not in use on BB JOY_MOVE EM_P2_19 19 20 GND GND Table 8 I/O connector P5 pin out 10.5 SoC Debug connector The SoC debug connector P3 is used to program and debug the SoC on the connected EM with an external programmer/debug tool. The SmartRF05EB can be used for this purpose by connecting a cable to P3 on the Battery Board as shown in Figure 13 below. swru209b 23/28 Figure 13 Program/debug with SmartRF05EB The pin out of this connector is depicted below. For debugging and programming of the SoC the following signals are used; SoC RESET_N, DD and DC. In addition GND and +3.3V shall be connected. Figure 14 SmartRF05BB SoC Debug Connector As seen on Figure 14 also the SPI signals CS, MISO, MOSI and SCLK can be found on this connector. 10.6 Current Measurement Jumper Jumper P7, also called V_EM, has been added to the board to simplify current consumption measurements. By removing the jumper, an Ampere Meter can easily be connected to the board to perform current consumption measurements. Similarly, a separate, regulated power supply for the EM can be connected. Refer to the schematics (in the appendices) for further details. swru209b 24/28 11 Frequently Asked Questions Q1 When connecting the SmartRF05EB to my PC via USB, the dialog window below appears. Why? What should I do? A1 The SmartRF05EB will be recognized as a USB device by the operating system, and it will ask the user to provide information about which USB driver that should be associated with the device. If you have installed SmartRF Studio, just follow the instructions and select “Automatic installation”. Windows should find the required driver (cebal2.sys), as specified in an .inf file. Both files (.inf and .sys) are included in the SmartRF installation. If you have not installed SmartRF Studio, it is recommended that you do so before proceeding. Both the SmartRF Studio User Manual and SmartRF05EB User’s Guide has more details. Q2 SmartRF05EB with the CC2530EM is not detected by IAR/SmartRF Studio. Why? A2 Make sure you have installed SmartRF Studio as described in section 5.4. Then verify that the device is associated with the correct driver by opening the Device Manager on your PC. When the EB is connected, the “Cebal controlled devices” list contains “SmartRF05EB”. If the board is listed as an unknown device, please follow the steps outlined in the SmartRF05EB User’s Guide. swru209b 25/28 Q3 How can I measure the current consumption of the CC2530? A3 The easiest way to measure current consumption of the chip in various modes is to connect the EM directly to the SmartRF05EB and disconnect everything on the board that consumes power by removing all jumpers. The jumper on header P13 should not be removed. Connect the ampere meter between the two terminals on P15. On P10, the jumper for the EM_RESET signal (connector 35-36) should be mounted. On P1, no jumpers are required, but in order to control the SoC from a debugger, mount a jumper between 19-20 (DBG_DD) and 21-22 (DBG_DD). Make sure the RS232 Enable switch is in the “disable” position. Use SmartRF Studio to set the radio in different modes (RX, TX, etc.), or download an application on the CC2530 setting the device in the preferred state. Q4 Can I use another compiler than IAR to develop software for CC2530? A4 Yes, there are several tools available that can be used for CC2530. Any 8051 compiler (e.g. Keil, GCC, and SDCC) can, in theory, be used. Note that these tools may have limited debugging support for CC2530. When working with the TI Z-Stack (and RemoTI) stack for CC253x, you must use IAR Embedded Workbench for 8051. swru209b 26/28 12 References [1] CC2530 product web site http://focus.ti.com/docs/prod/folders/print/cc2530.html [2] SmartRF Studio product web site http://focus.ti.com/docs/toolsw/folders/print/smartrftm-studio.html [3] SmartRF Flash Programmer product web site http://focus.ti.com/docs/toolsw/folders/print/flash-programmer.html [4] SmartRF Packet Sniffer http://focus.ti.com/docs/toolsw/folders/print/packet-sniffer.html [5] SmartRF Packet Sniffer User Manual http://www.ti.com/lit/swru187 [6] SmartRF05EB User’s Guide http://www.ti.com/lit/swru210 [7] Z-Stack http://www.ti.com/z-stack [8] CC2530 Software Examples User’s Guide http://www.ti.com/lit/swru137 [9] CC2530ZDK Quick Start Guide http://www.ti.com/lit/swra274 [10]CC2530ZDK Sensor Demo User’s Guide http://www.ti.com/lit/swru225 [11]CC2530ZDK web site http://focus.ti.com/docs/toolsw/folders/print/cc2530zdk.html [12]CC2530DK Quick Start Guide http://www.ti.com/lit/swra273 [13]CC2530DK User’s Guide http://www.ti.com/lit/swru208 [14]CC2530DK web site http://focus.ti.com/docs/toolsw/folders/print/cc2530dk.html [15]DN002 -- Practical Sensitivity Testing http://www.ti.com/lit/swra097 [16] Texas Instruments Low Power RF Online Community http://www.ti.com/lprf-forum [17] Texas Instruments Support http://support.ti.com swru209b 27/28 13 Document history Revision Date Description/Changes B 2011-04-05 Clarified that IAR EW8051 is required when working with the Z-Stack. Updated screenshots of SmartRF Studio. Include updated schematics. Fixed a few typos. A 2009-08-04 Added SmartRF05 Battery Board schematics - 2009-06-08 First revision. swru209b 28/28 Appendix A Schematics Please refer to the following pages for the schematics for  CC2530 Evaluation Module  CC2531 USB Dongle  SmartRF05 Evaluation Board  SmartRF05 Battery Board The reference design for the CC2530 evaluation module can be found on the CC2530 web page [1]. P0.5 VDD VDD 3 1 X1 X_32.000/10/15/30/16 1 2 C254 C_2P2_0402_NP0_C_50 2 1 L261 L_2N0_0402_S 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 P1.5 P1.4 P1.3 P1.1 P1.0 P0.7 P0.6 P0.4 P0.3 P0.2 P0.1 P0.0 Reset P2.2 P2.1 P1.7 P1.6 P0_5 XOSC32M_Q1 P1_5 DVDD RBIAS AVDD2 AVDD5/AVDD_SOC P0_6 P0_7 P0_4 P1_6 P0_2 P1_7 AVDD_DREG P0_0 DVDD_USB DGND_USB USB_M P0_1 P0_3 GND USB_P AVDD4 AVDD3 DCOUPL P1_0 P1_4 AVDD1 AVDD_GUARD RESET_N P2_4 XOSC32M_Q2 P1_1 P1_3 P1_2 RF_P P2_2 P2_3 P2_0 RF_N P2_1 U1 CC2530_TX_REDES 1 2 C251 C_18P_0402_NP0_J_50 1 2 L1 L_BEAD_102_0402 2 1 C401 C_1U_0402_X5R_K_6P3 1 2 C271 C_100N_0402_X5R_K_10 1 2 P4 PINROW_1x2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 P0.4 P1.3 P0.1 P1.0 P0.2 P0.3 P2.1 P0.0 P2.2 P1.1 P1.4 P0.6 P1.5 P0.7 P1.6 P1.7 P1 SMD_SOCKET_2X10 1 2 3 4 5 P3 SMA_SMD 1 2 C211 C_100N_0402_X5R_K_10 1 2 R301 R_56K_0402_F 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 P1.2 P2.0 P2 SMD_SOCKET_2X10 1 2 L252 L_2N0_0402_S 1 2 L251 L_0402 1 2 C311 C_100N_0402_X5R_K_10 1 2 C241 C_100N_0402_X5R_K_10 1 2 C101 C_100N_0402_X5R_K_10 4 1 X2 X_32.768/20/50/40/12 1 2 C221 C_27P_0402_NP0_J_50 1 2 C252 C_1P0_0402_NP0_C_50 1 2 C1 C_2U2_0402_X5R_M_4VDC 1 2 C253 C_0402 1 2 C231 C_27P_0402_NP0_J_50 1 2 C391 C_1U_0402_X5R_K_6P3 1 2 C272 C_220P_0402_NP0_J_50 1 2 C261 C_18P_0402_NP0_J_50 1 2 C262 C_1P0_0402_NP0_C_50 1 2 C255 C_0402 1 2 C331 C_15P_0402_NP0_J_50 1 2 C321 C_15P_0402_NP0_J_50 FM2 FIDUCIAL_MARK FM1 FIDUCIAL_MARK FM3 FIDUCIAL_MARK FM4 FIDUCIAL_MARK FM5 FIDUCIAL_MARK FM6 FIDUCIAL_MARK A4 SCALE SHEET APPROVALS DATE DWG NO. REV. DWG COMPANY NAME ISSUED CHECKED DRAWN SIZE FSCM NO. CONTRACT NO. Texas Instruments 1 (1) NN 1.3.1 CC2530EM Discrete 025104 TIK VOLTAGE REGULATOR SoC periferials RF-SoC PART P1_1/LED P1_2 P0_2 P0_3 PA_DM P0_0 PA_DP P1_4 P1_5 P1_6 P1_7 P2_1 P2_2 RESET_N P0_4 P0_5 P1_0/LED P1_3 P0_0 P0_2 P0_3 P0_4 P0_5 P1_0/LED P1_1/LED P1_2 P1_3 P1_4 P1_5 P1_6 P1_7 P2_1 P2_2 PA_DP PA_DM RESET_N 1 FM2 FIDUCIAL_MARK_1mm 1 FM3 FIDUCIAL_MARK_1mm 1 FM1 FIDUCIAL_MARK_1mm Including PCB antenna CONTRACT NO. SIZE FSCM NO. DRAWN CHECKED ISSUED COMPANY NAME DWG DWG NO. REV. APPROVALS DATE SCALE SHEET A4 1(4) - USB Connector - Buttons - LEDs - SMD sockets Generated voltage: 3.3 V for CC2531 Texas Instruments CC2531 USB dongle 2.4 025104 TIK MAP VCC_EXT 3.3V VBUS Gnd In Out /EN NC VREG U2 TPS76933 1 2 R2 R_0402 1 2 C2 C_4U7_0603_X5R_K_6 1 2 C1 C_1U_0603_X5R_L_6P3 1 2 R1 R_2_0402_F 1 2 R3 R_0_0402 1 2 C3 C_0402 CONTRACT NO. SIZE FSCM NO. DRAWN CHECKED ISSUED COMPANY NAME DWG DWG NO. REV. APPROVALS DATE SCALE SHEET A4 CC2531 USB DONGLE VOLTAGE REGULATOR Not mount: C3, R2 2(4) To CC2531 From PC Texas Instruments 2.4 025104 TIK MAP P0_0 P0_2 P0_3 P0_4 P0_5 P1_0/LED P1_1/LED P1_2 P1_3 P1_4 P1_5 P1_6 P1_7 P2_1 P2_2 PA_DP PA_DM RESET_N VCC 3.3V 1 2 C241 C_100N_0402_X5R_K_10 1 2 C211 C_100N_0402_X5R_K_10 C5 C_0P5_0402_NP0_B_50 1 2 C311 C_100N_0402_X5R_K_10 1 2 C271 C_100N_0402_X5R_K_10 1 2 C221 C_27P_0402_NP0_J_50 1 2 C4 C_2U2_0402_X5R_M_4VDC 1 2 C272 C_220P_0402_NP0_J_50 1 2 C391 C_1U_0402_X5R_K_6P3 1 2 C201 C_1N_0402_NP0_J_50 1 2 R301 R_56K_0402_F 2 1 C401 C_1U_0402_X5R_K_6P3 1 2 C41 C_10P_0402_NP0_J_50 3 1 X1 X_32.000/10/15/30/16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 P0_5 P1_5 RBIAS AVDD2 P0_6 P0_7 P0_4 P1_6 P0_2 P1_7 P0_0 DVDD_USB DGND_USB P0_1 P0_3 GND AVDD4 AVDD3 DCOUPL P1_0 P1_4 AVDD1 RESET_N P2_4 P1_1 P1_3 P1_2 RF_P P2_2 P2_3 P2_0 RF_N P2_1 DVDD2 DVDD1 AVDD5 AVDD6 XOSC_Q2 XOSC_Q1 USB_M USB_P U1 CC2531 1 2 C231 C_27P_0402_NP0_J_50 1 2 L1 L_BEAD_102_0402 2 1 A2 ANTENNA_IIFA_1_LEFT 2 R9 R_0_0402 1 3 2 4 5 6 B1 JTI_2450BM15A0002 1 2 R201 R_2K2_0402_G 1 2 C101 C_100N_0402_X5R_K_10 L301 L_6N8_0402_J CONTRACT NO. SIZE FSCM NO. DRAWN CHECKED ISSUED COMPANY NAME DWG DWG NO. REV. APPROVALS DATE SCALE SHEET A4 3(4) Texas Instruments CC2531 USB DONGLE RF-PART 2.4 025104 TIK MAP P1_1/LED P1_2 P0_2 P0_3 PA_DM P0_0 PA_DP P1_4 P1_5 P1_6 P1_7 P2_2 P2_1 RESET_N P0_4 P0_5 P1_0/LED P1_3 3.3V VBUS 3.3V 3.3V VCC_EXT 8 7 6 5 4 3 2 1 IO BL_31_008U_NO_SILK 1 2 3 4 5 6 DVBUS Shield GND D+ Shield P1 USB_A 1 2 R21 R_33_0402_G 1 2 R31 R_33_0402_G 1 2 R91 R_0_0402 1 2 R71 R_270_0402_F 2 1 D2 LED_EL19-21SYGC 1 2 R92 R_0402 1 2 C31 C_47P_0402_NP0_J_50 1 2 R11 R_270_0402_F 1 2 R32 R_1K5_0402_G 1 2 S2 PUSH_BUTTON_SKRK 1 2 S1 PUSH_BUTTON_SKRK 2 1 D1 LED_EL19-21SURC 1 2 3 4 5 6 7 8 9 10 DEBUG STL21 1 2 C21 C_47P_0402_NP0_J_50 CONTRACT NO. SIZE FSCM NO. DRAWN CHECKED ISSUED COMPANY NAME DWG DWG NO. REV. APPROVALS DATE SCALE SHEET A4 4(4) LED_Green CC2531 USB dongle USB circuitry SoC debug/flash button_P_1_3 Texas Instruments LED_Red button_P_1_2 2.4 025104 USB Interface Not mount: R92, IO TIK Additional testpins MAP Power Supply Joystick RS-232 User Interface USB Interface EM Interface POWER_PS VCC_EM VCC_IO VBUS +3.3V USB JOYSTICK_PUSH JOYSTICK_UP JOYSTICK_RT JOYSTICK_DN JOYSTICK_LT JOY_MOVE JOY_LEVEL EM_UART_TX EM_UART_RTS EM_UART_RX EM_UART_CTS VCC_IO IO_POT_R IO_BUTTON2 IO_LED1 IO_LED2_MSP IO_LED2_SOC IO_LED3_MSP IO_LED3_SOC IO_LED4_MSP IO_BUTTON1/IO_LED4_SOC IO_LCD_MODE IO_LCD_CS IO_FLASH_CS VCC_IO USB_IO_RESET IO_MISO IO_MOSI IO_SCLK USB_EM_RESET IO_EM_RESET USB_EM_RESET USB_SCLK USB_CS USB_MOSI USB_MISO USB_LCD_CS USB_UART_RX USB_UART_TX USB_UART_CTS USB_UART_RTS USB_DBG_DC USB_DBG_DD USB_LCD_MODE +3.3V USB VBUS USB_IO_RESET USB_JOY_MOVE USB_DBG_DD_DIR EM_UART_CTS EM_UART_RTS EM_UART_TX EM_UART_RX EM_SCLK EM_MISO EM_MOSI EM_CS/EM_LED3_SOC EM_LCD_CS EM_LCD_MODE EM_FLASH_CS VCC_EM POWER_PS EM_BUTTON1/EM_LED4_SOC EM_BUTTON2 EM_JOY_LEVEL EM_POT_R EM_LED2_MSP EM_LED3_MSP EM_LED2_SOC EM_LED4_MSP JOYSTICK_UP JOYSTICK_DN JOYSTICK_LT JOYSTICK_RT JOYSTICK_PUSH EM_DBG_DD EM_DBG_DC EM_RESET EM_LED1 EM_JOY_MOVE EM_DBG_DD_DIR EM_SNIFF_CLK EM_SNIFF_DATA EM_SNIFF_SFD EM_SNIFF_MISO FM1 FIDUCIAL_MARK FM2 FIDUCIAL_MARK FM4 FIDUCIAL_MARK FM3 FIDUCIAL_MARK FM6 FIDUCIAL_MARK H1 PCB_FEET_19 H2 PCB_FEET_19 H3 PCB_FEET_19 H4 PCB_FEET_19 FM5 FIDUCIAL_MARK 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 P10 PINROW_2X18 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 P1 PINROW_2X18 A3 SCALE SHEET APPROVALS DATE DWG NO. REV. DWG COMPANY NAME ISSUED CHECKED DRAWN SIZE FSCM NO. - LCD - Flash - Potmeter - Buttons - LEDs Sheet 7 Sheet 3 1.8.1 Sheet 6 - CC2511 - CC2511 debug - USB port - RS232 driver - RS232 port - On/Off jumper - EM connection - External SoC debug TI Norway, LPW Sheet 2 02587 1(7) IO peripherals jumpers All mount as default CONTRACT NO. - Regulators - Power jumpers - Battery - Joystick (EM_CS/EM_LED3_SOC) Sheet 4 USB MCU IO jumpers Default setting: 1-2: open 3-4: open 5-6: mount 7-8: mount 9-10: open 11-12: open 13-14: open 15-16: open 17-18: mount 19-20: mount 21-22: mount 23-24: mount 25-26: mount 27-28: mount 29-30: mount 31-32: mount 33-34: mount 35-36: mount Sheet 5 PEH SmartRF05EB Top Level USB_EM_RESET USB_SCLK USB_CS USB_MOSI USB_MISO USB_LCD_CS USB_UART_RX USB_UART_TX USB_UART_CTS USB_UART_RTS USB_DBG_DC USB_DBG_DD USB_LCD_MODE +3.3V USB VBUS USB_IO_RESET USB_JOY_MOVE USB_DBG_DD_DIR USB_RESET USB_RESET +3.3V USB +3.3V USB +3.3V USB VCC_IO VCC_IO +3.3V USB VCC_IO 1 2 3 4 5 6 7 8 9 10 P2 PINROW_2X5 1 2 3 4 GND X1 X_48.000/15/18/60/16 1 2 C35 C_100N_0603_X7R_K_50 1 2 C37 C_2U2_0603_X5R_K_10 1 2 3 4 56789 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 AVDD AVDD AVDD AVDD P2_0 RESET_N RF_N RF_P PADM P2_2 PADP XOSC_Q1 XOSC_Q2 DGUARD P1_7 P2_1 DCOUPL P1_6 P1_4 P1_1/LED P1_0/LED P1_2 P1_3 P1_5 P0_0/ATEST P0_3 P0_1 P0_2 P0_4 P0_5 P2_4/XOSC32_Q2 P2_3/XOSC32_Q1 DVDD DVDD RBIAS GND Exposed AVDD_DREG U3 CC2511 1 2 3 4 5 6 DVBUS Shield GND D+ Shield P12 USB_B 1 2 C17 C_100N_0603_X7R_K_50 1 2 C18 C_100N_0603_X7R_K_50 1 2 C2 C_47P_0603_NP0_J_50 1 2 R18 R_0603 1 2 R10 R_0_0603 1 2 R11 R_33_0603_G 1 2 L4 L_BEAD_102_0603 1 2 R9 R_1K5_0603_G 1 2 C3 C_47P_0603_NP0_J_50 1 2 R42 R_10K_0603_G 1 2 R12 R_33_0603_G 1 2 C6 C_10N_0603_X7R_K_50 1 2 C34 C_220P_0603_NP0_J_50 1 2 C36 C_100N_0603_X7R_K_50 1 2 R44 R_56K_0603_F 1 2 C20 C_33P_0603_NP0_J_50 1 2 C19 C_33P_0603_NP0_J_50 1 2 C33 C_220P_0603_NP0_J_50 1 2 R43 R_270_0603_J 1 2 D6 LED_CL150YCD 1 2 R52 R_10K_0603_G 1 2 R41 R_10K_0603_G 1 2 R60 R_10K_0603_G 1 2 S3 PUSH_BUTTON_SKRK 1 2 S4 PUSH_BUTTON_SKRK 1 2 C16 C_1U_0603_X5R_K_10 A3 SCALE SHEET APPROVALS DATE DWG NO. REV. DWG COMPANY NAME ISSUED CHECKED DRAWN SIZE FSCM NO. USB Interface 1.8.1 TI Norway, LPW Do Not Mount USB LED USB BUTTON 02587 2(7) CONTRACT NO. USB SoC Debug PEH EM_UART_CTS EM_UART_RTS EM_UART_TX EM_UART_RX EM_SCLK EM_MISO EM_MOSI EM_CS/EM_LED3_SOC EM_LCD_CS EM_LCD_MODE EM_FLASH_CS VCC_EM EM_BUTTON1/EM_LED4_SOC POWER_PS EM_JOY_LEVEL EM_BUTTON2 EM_POT_R EM_LED2_MSP EM_LED3_MSP EM_LED2_SOC EM_LED4_MSP JOYSTICK_UP JOYSTICK_DN JOYSTICK_LT JOYSTICK_RT JOYSTICK_PUSH EM_DBG_DD EM_DBG_DC EM_RESET EM_LED1 EM_JOY_MOVE EM_DBG_DD_DIR EM_SNIFF_CLK EM_SNIFF_DATA EM_SNIFF_SFD EM_SNIFF_MISO EM_DBG_DD_DIR EM_UART_RTS EM_DBG_DD EM_DBG_DC EM_MISO EM_UART_CTS JOYSTICK_UP JOYSTICK_LT EM_LCD_CS EM_FLASH_CS EM_POT_R EM_UART_TX EM_JOY_MOVE EM_LED4_MSP EM_LED1 EM_LED3_MSP EM_LCD_MODE EM_RESET EM_BUTTON2 EM_LED2_MSP JOYSTICK_RT POWER_PS JOYSTICK_DN JOYSTICK_PUSH EM_JOY_LEVEL VCC_EM EM_BUTTON1/EM_LED4_SOC EM_SCLK EM_MOSI EM_UART_RX EM_RESET EM_DBG_DD DUT_DD DUT_VCC DUT_VCC EM_DBG_DC DUT_DD VCC_EM VCC_IO VCC_EM 1 2 3 4 5 6 7 8 9 10 DUT_VCC DUT_DD P4 PINROW_SMD_2X5_1.27MM 1 2 3 4 5 6 7 8 9 10 P3 PINROW_2X5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 EM_USB1 EM_USB2 EM_LED2_SOC EM_CS/EM_LED3_SOC EM_DBG_DD_DIR P18 PINROW_2X10 1 2 C21 C_10U_0805_X5R_K_10 1 2 C28 C_100N_0603_X7R_K_50 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 EM_USB2 EM_USB1 P6 SMD_HEADER_2x10 1 2 R33 R_0603 1 2 C29 C_100N_0603_X7R_K_50 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 GND VCCA 1A1 1A2 2DIR 2A1 2A2 1B1 2B1 VCCB 2B2 1DIR GND 1B2 U9 SN74AVC4T245 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 P5 SMD_HEADER_2x10 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 P20 PINROW_2X10 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 P22 SMD_HEADER_2x10 1 2 C27 C_100N_0603_X7R_K_50 1 2 C30 C_100N_0603_X7R_K_50 1 2 R30 R_0603 A3 SCALE SHEET APPROVALS DATE DWG NO. REV. DWG COMPANY NAME ISSUED CHECKED DRAWN SIZE FSCM NO. DO NOT MOUNT External SOC Debug R33 DO NOT MOUNT Mount 0 ohm resistor in position R30 to power DUT from +3.3V USB through connector P3 1.8.1 EM Connectors TI Norway, LPW EM Interface 02587 Debug Connectors CONTRACT NO. 3(7) PEH POWER_PS VCC_EM VCC_IO VBUS +3.3V USB 1 2 C9 C_4U7_0805_X5R_K_25 4 5 8 6 7 9 11 3 10 1 2 GND EN FB PGND VIN PPAD L1 VINA L2 VOUT PS/SYNC U4 TPS63030 1 2 R34 R_0_0603 2 L1 1 LPS3015-222ML 1 2 R63 R_6K2_0603_G 2 1 3 6 5 In 4 Gnd Gnd Out ADJ U2 TPS7A4501 A K D8 BAT254 1 P13 2 STRAP_1 1 2 R45 R_1M0_0603_J 2 1 + B1 1xAA_1_5V 1 2 R68 R_1M0_0603_J 1 2 R65 R_0603 123 P11 PINROW_1X3 1 2 C1 C_10U_0805_X5R_L_25 1 2 R35 R_0_0603 1 2 C38 C_100N_0603_X7R_K_50 1 2 C8 C_10U_0805_X5R_K_10 1 2 3 6 5 4 P8 Switch_6pin 1 2 R70 R_0603 1 2 C10 C_4U7_0805_X5R_K_25 1 2 R64 R_3K6_0603_G 2 1 + B2 1xAA_1_5V 1P15 2 STRAP_1 1 2 3 P7 DC_JACK_2.5 1 2 C11 C_10U_0805_X5R_K_10 1 2 R2 R_0_0603 A K D5 BAT254 1 2 R29 R_0_0603 1 2 R7 R_0603 1 2 R69 R_180K_0603_G TP2 TESTPOINT_PAD TP3 TP1 TESTPOINT_PAD TESTPOINT_PAD TP4 TESTPOINT_PAD A3 SCALE SHEET APPROVALS DATE DWG NO. REV. DWG COMPANY NAME ISSUED CHECKED DRAWN SIZE FSCM NO. Power supply Power source jumper: 1-2: Battery 2-3: USB/DC (default) Do Not Mount 1.8.1 VCC_EM jumper TI Norway, LPW Current is drawn from input with highest voltage 02587 4(7) 2.2uH Do Not Mount Do Not Mount CONTRACT NO. VCC_IO jumper Power On/Off PEH Battery IO_POT_R IO_BUTTON2 IO_LED1 IO_LED2_MSP IO_LED2_SOC IO_LED3_MSP IO_LED3_SOC IO_LED4_MSP IO_BUTTON1/IO_LED4_SOC IO_LCD_MODE IO_LCD_CS IO_FLASH_CS VCC_IO USB_IO_RESET IO_MOSI IO_MISO IO_SCLK USB_EM_RESET IO_EM_RESET BUTTON1_POWER_MSP BUTTON1_POWER_SOC USB_IO_RESET VCC_IO VCC_IO VCC_IO VCC_IO VCC_IO VCC_IO VCC_IO VCC_IO VCC_IO VCC_IO VCC_IO VCC_IO VCC_IO VCC_IO VCC_IO VCC_IO VCC_IO VCC_IO 12 34 S2 PUSH_BUTTON 1 2 R39 R_270_0603_J 1 2 3 4 56 7 8 C Reset TSL Vcc Q Vss D S U5 M25PEx0 1 2 3 6 5 4 P19 Switch_6pin 1 2 C5 C_100N_0603_X7R_K_50 12 34 BUTTON1_POWER_SOC S1 PUSH_BUTTON 2 1 R13 R_10K_0603_G 1 2 R37 R_270_0603_J 1 2 R20 R_10K_0603_G 11 10 U11-E SN74ALVC14 1 2 R40 R_1K0_0603_J 13 12 U11-F SN74ALVC14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 4B1 S 3B1 2B2 OE VDD GND 4B2 1A 2A 3A 4A 1B1 1B2 2B1 3B2 U10 SN74CBTLV3257PW 12 34 S5 PUSH_BUTTON 2 1 14 U11-A 7 SN74ALVC14 1 2 LED4 LED_CL150DCD 2 1 R15 R_10K_0603_G LCD 7 - not use 8 - not use 12- not use 13- not use 14- not use 15- not use 16- not use 1 - backlight supply - 2 - backlight supply + 3 - logic power supply - 4 - logic power supply + 5 - Reset (active low) 6 - register selection 9 - serial data in 10- serial clock input 11- chip select M1 HMC16311SF-PY 8 9 U11-D SN74ALVC14 1 2 LED1 LED_CL150GCD 1 2 3 CW RT1 R_0-10K_TRIM 1 2 R14 R_10K_0603_G 1 2 R53 R_100K_0603_F 1 2 R38 R_270_0603_J 6 5 U11-C SN74ALVC14 1 2 R8 R_0_0603 1 2 C7 C_100N_0603_X7R_K_50 1 2 R36 R_270_0603_J 123456789 10 11 12 13 14 15 16 P9 HMC_CON 2 1 R16 R_10K_0603_G 1 2 LED3 LED_CL150YCD 1 2 C4 C_100N_0603_X7R_K_50 1 2 BUTTON1_POWER_MSP R21 R_10K_0603_G 1 2 LED2 LED_CL150URCD 1 2 C13 C_1U_0603_X5R_K_10 4 3 U11-B SN74ALVC14 A3 SCALE SHEET APPROVALS DATE DWG NO. REV. DWG COMPANY NAME ISSUED CHECKED DRAWN SIZE FSCM NO. Orange 1.8.1 EM RESET FLASH BUTTON 2 TI Norway, LPW Yellow 02587 User Interface POTMETER 5(7) Red LED BUTTON 1 CONTRACT NO. LCD Green PEH EM_UART_TX EM_UART_RTS EM_UART_RX EM_UART_CTS VCC_IO VCC_IO 3 2 1 4 5 6 P14 Switch_6pin 1 2 C15 C_1U_0603_X5R_K_10 1 2 C14 C_100N_0603_X7R_K_50 1 2 C22 C_100N_0603_X7R_K_50 1 2 C25 C_100N_0603_X7R_K_50 1 2 C23 C_100N_0603_X7R_K_50 1 2 C24 C_100N_0603_X7R_K_50 1 2 3 4 5 6 7 8 9 P16 DSUB_9F 1 2 R47 R_0_0603 1 2 R49 R_0_0603 1 2 R48 R_0_0603 1 2 R28 R_0_0603 1 2 R46 R_0_0603 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 C1+ 28 R2OUT R1OUT T1IN R3OUT R4OUT V+ VCC GND R2OUTB FORCEON T3IN T2IN T3OUT R5OUT C1- T2OUT T1OUT R5IN R4IN R3IN R2IN R1IN VC2- C2+ U6 SN65C3243DBR A3 SCALE SHEET APPROVALS DATE DWG NO. REV. DWG COMPANY NAME ISSUED CHECKED DRAWN SIZE FSCM NO. PC RS232-port 2-RXD 3-TXD 5-GND 7-RTS 8-CTS 1.8.1 RS-232 Interface 02587 TI Norway, LPW 6(7) CONTRACT NO. PEH JOYSTICK_PUSH JOYSTICK_UP JOYSTICK_RT JOYSTICK_LT JOYSTICK_DN JOY_MOVE JOY_LEVEL UP DN PUSH LT RT UP RT VCC_IO VCC_IO VCC_IO VCC_IO VCC_IO VCC_IO 4 5 6 U7-B SN74HC32 1 2 3 U7-A SN74HC32 1 2 R26 R_100K_0603_F 1 2 3 4 5 6 A COMMON C left CENTRE down up right B D push U1 skrhab_e010 1 2 C32 C_100N_0603_X7R_K_50 1 2 C12 C_100N_0603_X7R_K_50 1 2 R55 R_10K_0603_G 2 1 R22 R_100K_0603_F 1 2 C31 C_100N_0603_X7R_K_50 14 VDD 7 POWER CONN. GND U7-E SN74HC32 1 2 R62 R_0_0603 3 2 1 8 4 V+ V- + - U8-A TLV272 1 2 R56 R_10K_0603_G 5 6 + 7 - U8-B TLV272 1 2 C26 C_100P_0603_NP0_J_50 13 12 11 PUSH U7-D SN74HC32 1 2 DN R17 R_200K_0603_F 1 2 R6 R_100K_0603_F 1 2 R59 R_0_0603 1 2 R61 R_0_0603 1 2 R57 R_0_0603 1 2 R23 R_100K_0603_F 2 1 R24 R_100K_0603_F 1 2 R51 R_330K_0603_F 1 2 R50 R_330K_0603_F 1 2 R32 R_200K_0603_F LT 1 2 R31 R_200K_0603_F 2 1 R25 R_100K_0603_F 10 9 8 U7-C SN74HC32 1 2 R1 R_220K_0603_F 2 1 R3 R_100K_0603_F 1 2 R4 R_100K_0603_F 1 2 R5 R_100K_0603_F 1 2 R58 R_0_0603 1 2 R54 R_47K_0603_G A3 SCALE SHEET APPROVALS DATE DWG NO. REV. DWG COMPANY NAME ISSUED CHECKED DRAWN SIZE FSCM NO. Joystick 1.8.1 02587 TI Norway, LPW 7(7) CONTRACT NO. JOYSTICK PEH IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications. TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: Products Applications Audio www.ti.com/audio Communications and Telecom www.ti.com/communications Amplifiers amplifier.ti.com Computers and Peripherals www.ti.com/computers Data Converters dataconverter.ti.com Consumer Electronics www.ti.com/consumer-apps DLP® Products www.dlp.com Energy and Lighting www.ti.com/energy DSP dsp.ti.com Industrial www.ti.com/industrial Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical Interface interface.ti.com Security www.ti.com/security Logic logic.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Power Mgmt power.ti.com Transportation and www.ti.com/automotive Automotive Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID www.ti-rfid.com Wireless www.ti.com/wireless-apps RF/IF and ZigBee® Solutions www.ti.com/lprf TI E2E Community Home Page e2e.ti.com Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated www.dedicatedmicros.com INSTALLATION MANUAL MANUEL D’INSTALLATION INSTALLATIONSHANDBUCH MANUAL DE INSTALACIÓN MANUALE D'INSTALLAZIONE 2020 1. Introduction Congratulations on choosing the Dedicated Micros Type 2020/300 (300Watt) &/or 2020/500 (500Watt) infra-red illuminators designed to offer a cost effective solution to night surveillance by providing a source of illumination for cameras with spectrol responses that extend into the infra-red region. Clean designs with pressure die cast componentry ensure high quality finishes & fits with a striking & innovative appearance to complement the series 2000 range of products currently offered by Dedicated Micros. The units are weatherproof to BS.EN 60529 Level IP66 2. Index 1. Introduction 1 2. Index 1 3. List of contents 2 4. Mounting instructions 3 5. Wiring instructions 4 6. Bulb replacement 5 7. Optional equipment 6 8. Component spares 7 9. Troubleshooting 7 This product guide will provide all the necessary information to set-up, install and run the Type 2020 illuminator. Type 2020 Installation Manual Page. 1 3. List of contents Components supplied Before installation please remove the unit from the packaging and check that all items listed below have been supplied. A. 1 x Type 2020 Infra-red Illuminator B. 1 x Stone Guard ( Optional ) C. 1 x 4mm A/F Hexagonal socket key D. 1 x Fixing bag containing the following: 2 x M10 x 16 Hex. hd. screws 2 x M10 Plain washers 2 x M10 Spring washers In addition to the above components, a type 2020 product guide and a final test procedure are supplied. Type 2020 Installation Manual Page. 2 Fig.1 Components supplied B C D A 4. Mounting instruction Mounting configurations. Fig. 2 & 3 show typical positions for I.R. Illuminators when mounted to a remotely controlled pan & tilt head. Mount the Type 2020 Illuminator via the cradle (fig.4 item A) and secure using 2 off M10x16 Hex. hd. machine screws (fig.4 item D), 2 off M10 spring washers (fig.4 item C) and 2 off M10 plain washers (fig.4 item B) supplied with unit. Note: Please ensure the lamp bulb filament is mounted horizontally to receive the required life expectantcy and beam coverage. See bulb replacement (page 5) Bulb filament is factory set to comply with this type of mounting. See page 7 to re-orientate the bulb if mounting in other orientations Type 2020 Installation Manual Page. 3 Fig.2 Twin lamp mounting Pan & Tilt (Type 2000) Type 2020 IR.Illuminator B C D A Fig.3 Single lamp mount Fig.4 Mounting fixings 5. Wiring instructions Wiring connections Electrical connections to the Type 2020 I.R. illuminator are made via a terminal block situated inside the rear polycarbonate photo-electric switch enclosure as shown in fig.5. Access to which is achieved by unscrewing the four captive cover fixings and removing the cover as shown in fig.6. Using a suitable 3 core x 0.75mm2 230V.ac rated outdoor cable (Dedicated Micros recommend the use of a silicon covered cable due to the extreme temperatures generated by the illuminator) prepare the cable end for connection and feed the cable through the spare cable gland and terminate as shown in figs 7 & 8. Replace and secure the cover to finish. The cable gland should be tightened sufficiently to ensure that any strain put upon the cable is not transmitted to the terminal connections and that a watertight seal is achieved. It is recommended that the incoming electrical supply is protected by a fuse rated at 2 Amp for a type 2020/300 (300Watt) and 3 Amp for a type 2020/500 (500Watt) illuminator. Type 2020 Installation Manual Page. 4 Fig.5 Fig.6 Fig.7 Earth 230V.ac Customer input Fig.8 Live Terminal block Photoelectric Switch To Bulb Neutral 6. Bulb replacement Bulb replacement. HAVING TURNED OFF POWER TO THE UNIT open the casing by releasing the 4 off fastenings (item A, fig.9) a quarter turn anti-clockwise using a No.2 Philips screwdriver. The front assembly can now be removed from the rear and suspended on the safety/earth bond to expose the bulb. Remove the push on spade terminals (item B, fig.10) from the rear of the bulb and release the bulb from its mounting clips by springing one of the 3 clips outward while lifting the bulb free. Note: The bulb filament lies directly in-line between the spade terminals (item C, fig.11) please align by rotating the bulb within its spring clips ensuring the filament is horizontal when mounting the I.R Illuminator. The spade terminal connections can be made to either terminal. Type 2020 Installation Manual Page. 5 A B Fig.9 Opening illuminator enclosure Fig.10 Terminals Fig.11 Bulb removal Fig.12 Spring clips C C 7. Optional equipment Optional Stone guard. An optional stone guard (order suffix /SG) is available for the Type 2020 illuminator. Designed to protect the filter from flying objects / vandalism the guard can be fitted in seconds with 4 off fixings supplied. (fig.13) Optional Voltage reducer. The Manufacturers stated life expectancy for the 300W bulb is 2000 hours and 4000 hours for the 500W. This stated life is conditional on the supply being 230V, a 5% increase in voltage will reduce lamp life by 50%. NB. There are some parts of the UK where the standing voltage is over 250V, in a situation such as this Dedicated Micros can supply a Type 621 voltage reduction device which will reduce the incoming supply by 9% to increase the bulbs life. (fig.14) Box dimensions 110W x 130L x 50H for indoor use only. Optional ‘no photoelectric switch’ version A optional version is available without the rear photoelectric switch installed. (order suffix / No PE) Optional White light illuminator. An optional white light version of the Type 2020 can be supplied to any bulb variant. (order suffix /WL) Type 2020 Installation Manual Page. 6 Fig.13 Fig.14 8. Component spares 9. Troubleshooting Under normal operating conditions the stated bulb life times should be readily achieved, but there are circumstances under which life expectancy is much reduced. Spikes & surges: Illuminators running from supplies that are subject to spikes & power surges will have reduced life. Orientation: Bulb filaments must be horizontal, a filament positioned vertically will burn out before the stated life time. Operation: When mounted on a pan & tilt head the illuminator will be subject to vibration which, if sufficiently severe, could cause a reduction in life. Although the 500 Watt bulbs have been designed specifically for this use, 300 Watt bulbs are of standard manufacture and as such are more susceptible to damage. The information contained in this document is for guidance only. Specification and availability of goods are subject to change without notice Type 2020 Installation Manual Page. 7 Ref. No. F56 F57 F2 F3 F4 F42 H92,a & b 1-2020/13 1-2020/17 F14 F15 F48 1-2020/22 BS152 1-2020/6 Qty. 1 1 1 1 1 1 1 3 1 1 1 1 1 1 4 1 Description 500W Spot Bulb 500W M/Flood Bulb 300W Spot Bulb 300W M/Flood Bulb 300W W/Flood Bulb Photo-electric switch Cable gland assembly Bulb mounting clips Stone guard Filter assembly 715nm Filter assembly 830nm Filter assembly Dichroic Front ‘O’ ring seal Rear ‘O’ ring seal Quarter-turn fastenings External Safety bond 1. Introduction Nous vous félicitons d’avoir choisi les projecteurs infrarouge Type 2020/300 (300 Watts) et/ou 2020/500 (500 Watts) conçus pour offrir une solution rentable à la surveillance nocturne, qui consiste à assurer aux caméras une source d’éclairage à réponses spectrales s’étendant à la zone infrarouge. Des conceptions nettes avec composants moulés sous pression garantissent des finitions et ajustements de haute qualité, avec un look impressionant et innovateur pour compléter la gamme de produits de la série 2000 actuellement offerts par Dedicated Micros. Les boîtiers sont résistants aux intempéries conformément à la norme BS.EN 60529, indice IP66 2. Index 1. Introduction 8 2. Index 8 3. Sommaire 9 4. Instructions de montage 10 5. Instructions de câblage 11 6. Remplacement de l’ampoule 12 7. Equipement en option 13 8. Pièces de rechange 14 9. Dépannage 14 Ce guide de produit offre toutes les informations nécessaires pour la configuration, l’installation et le fonctionnement du projecteur Type 2020. Type 2020 Manuel d’installation Page. 8 Type 2020 Manuel d’installation Page. 9 3. Sommaire Composants fournis Avant de procéder à l’installation, veuillez sortir le projecteur de l’emballage et vérifier que tous les éléments listés ci-dessous sont inclus. A. 1 projecteur à infrarouge Type 2020 B. 1 grille de protection (en option) C. 1 clé hexagonale de 4 mm D. 1 sachet de fixations contenant: 2 vis à tête hexagonale M10 x 16 2 rondelles lisses M10 2 rondelles élastiques M10 En plus des composants ci-dessus, un guide de produit pour le projecteur Type 2020 et une procédure d’essai final sont fournis. Fig. 1 Composants fournis B C D A Type 2020 Manuel d’installation Page. 10 4. Instructions de montage Configurations de montage Les Fig. 2 et 3 illustrent les positions typiques des projecteurs infrarouge lorsqu’ils sont montés sur une tête panoramique et inclinaison télécommandée. Montez le projecteur Type 2020 en utilisant le support (fig. 4 repère A) et immobilisez-le à l’aide des 2 vis à tête hexagonale M10x16 (fig. 4 repère D), 2 rondelles élastiques M10 (fig. 4 repère C) et 2 rondelles lisses M10 (fig. 4 repère B) fournies avec le projecteur. Remarque: Veillez à ce que le filament de l’ampoule du projecteur soit monté bien à l’horizontale pour une durée de vie utile et une couverture de faisceau optimales. Voir remplacement de l’ampoule (page 12) Le filament de l’ampoule est réglé en usine pour assurer sa conformité avec ce type de montage. Voir la page 14 pour la réorientation de l’ampoule en cas de montage dans d’autres orientations. Fig. 2 Montage à deux projecteurs Panoramique et inclinaison (Type 2000) Projecteur infrarouge Type 2020 B C D A Fig. 4 Fixations de Fig. 3 Montage à un projecteur montage Type 2020 Manuel d’installation Page. 11 5. Instructions de câblage Raccordements de câbles Les raccordements électriques au projecteur infrarouge Type 2020 s’effectuent au moyen d’un bornier situé à l’intérieur du boîtier arrière en polycarbonate du commutateur photoélectrique, comme illustré à la fig. 5. Pour accéder à ce boîtier, dévissez les quatres vis prisonnières du couvercle et retirez le couvercle comme illustré à la fig. 6. A l’aide d’un câble pour extérieur à 3 âmes x 0,75 mm2 de 230 V. c.a. (Dedicated Micros recommande l’utilisation d’un câble siliconé en raison des températures extrêmes générées par le projecteur), préparez l’extrémité du câble pour le raccordement, et passez le câble dans le presse-étoupe libre et terminez-le comme illustré aux figs 7 et 8. Remettez et immobilisez le couvercle pour terminer. Le presseétoupe doit être suffisamment serré pour éviter de transmettre les contraintes exercées sur le câble aux raccordements de bornes et pour produire un joint étanche à l’eau. Il est recommandé de protéger l’entrée de l’alimentation électrique par un fusible de 2 A pour un projecteur type 2020/300 (300 Watts) et de 3 A pour un projecteur type 2020/500 (500 Watts). Fig. 5 Fig. 6 Fig. 7 Terre Entrée 230 V c.a. client Fig. 8 Conducteur Bornier Commutateur photoélectrique A l’ampoule Neutre Type 2020 Manuel d’installation Page. 12 6. Remplacement de l’ampoule Remplacement de l’ampoule APRES AVOIR MIS LE PROJECTEUR HORS TENSION ouvrez le boîtier en dévissant les 4 vis de fixation (repère A, fig. 9) d’un quart de tour à l’aide d’un tournevis Philips No. 2. L’ensemble avant peut maintenant être retiré de l’arrière et suspendu à l’élingue pour exposer l’ampoule. Retirez les bornes enfichables (repère B, fig. 10) à l’arrière de l’ampoule et libérez l’ampoule de ses pattes élastiques en poussant l’une des 3 pattes vers l’extérieur tout en soulevant l’ampoule pour la dégager. Remarque: Le filament de l’ampoule est positionné directement en ligne entre les bornes enfichables (repère C, fig. 11), veuillez aligner l’ampoule en la tournant dans ses pattes élastiques pour que le filament soit bien à l’horizontale lors du montage du projecteur infragrouge. Les raccordements de bornes enfichables peuvent être effectués à n’importe quelle borne. A B Fig. 9 Ouverture du boîtier du projecteur Fig. 10 Bornes Fig. 11 Retrait de l’ampoule Fig. 12 Pattes élastiques C C Type 2020 Manuel d’installation Page. 13 7. Equipement en option Grille de protection en option. Une grille de protection (indiquez le suffixe /SG lors de la commande) est disponible en option pour le projecteur Type 2020. Conçu pour protéger le filtre des projectiles / vandalisme, la grille de protection se pose en quelques secondes avec les 4 vis de fixation fournies. (fig. 13) Réducteur de tension en option. La durée de vie indiquée par les fabricants est de 2000 heures pour l’ampoule de 300 W et de 4000 heures pour l’ampoule de 500 W. Cette durée de vie indiquée correspond à une alimentation de 230 V, une augmentation de 5 % de la tension réduit la durée de vie du projecteur de moitié. NB. Dans certaines régions du Royaume-Uni, la tension normale est supérieure à 250 V : dans ce cas, Dedicated Micros peut fournir un dispositif de réduction de tension Type 621 qui réduit l’entrée de l’alimentation de 9 % pour augmenter la durée de vie de l’ampoule. (fig. 14) Dimensions du boîtier 110 l x 130 L x 50 H pour usage intérieur uniquement. Version ‘sans commutateur photoélectrique’ en option Un version en option est disponible sans commutateur photoélectrique arrière. (indiquez le suffixe / No PE lors de la commande) Projecteur blanc en option. Une version à éclairage blanc du projecteur Type 2020 est disponible en option et peut être fournie dans tous les types d’ampoule. (indiquez le suffixe /WL lors de la commande) Fig. 13 Fig. 14 Type 2020 Manuel d’installation Page. 14 8. Pièces de rechange 9. Dépannage Dans les conditions d’utilisation normales, les durées de vie d’ampoule indiquées sont parfaitement possibles, mais dans certains cas, la durée de vie est fortement réduite. Pointes et surtensions : La durée de vie des projecteurs dont l’alimentation électrique est soumise à des pointes et surtensions sera réduite. Orientation : Les filaments des ampoules doivent être posés bien à l’horizontale, un filament posé verticalement grillera avant la fin de sa durée de vie indiquée. Fonctionnement : Monté sur une tête panoramique et inclinaison, le projecteur sera soumis à des vibrations qui, si suffisamment sévères, sont susceptibles d’entraîner une réduction de sa vie utile. Bien que les ampoules de 500 Watts aient été conçues spécialement pour cet usage, les ampoules de 300 Watts sont de fabrication standard et de ce fait plus vulnérables aux dégâts. Les informations figurant dans le présent document sont fournies à titre indicatif uniquement. Les spécifications et la disponibilité des produits peuvent faire l’objet de modifications sans préavis. Réf. F56 F57 F2 F3 F4 F42 H92,a & b 1-2020/13 1-2020/17 F14 F15 F48 1-2020/22 BS152 1-2020/6 Qté. 1 1 1 1 1 1 1 3 1 1 1 1 1 1 4 1 Désignation Ampoule faisceau concentré (spot) 500 W Ampoule Faisceau moyen 500 W Ampoule faisceau concentré (spot) 300 W Ampoule faisceau moyen 300 W Ampoule faisceau large 300 W Commutateur photoélectrique Ensemble presse-étoupe Pattes élastique de montage d’ampoule Grille de protection Ensemble filtre 715 nm Ensemble filtre 830 nm Ensemble filtre Dichroïque Joint torique avant Joint torique arrière Fixations quart de tour Elingue 1. Einleitung Herzlichen Glückwunsch zur Wahl der Infrarot-Illuminatoren aus der Serie 2020/300 (300 Watt) und/oder 2020/500 (500 Watt) von Dedicated Micros. Diese Serien stellen eine kostengünstige Lösung zur Überwachung bei Nacht dar. Sie bieten eine Lichtquelle für Kameras, deren Spektralempfindlichkeit sich auf den Infrarotbereich erstreckt. Klares Design und druckgegossene Bauteile gewährleisten hochwertige Verarbeitung und Passform. Das beeindruckende und innovative Äußere ergänzt die Produktpallette der Serie 2000 von Dedicated Micros. Die Illuminatoren sind nach Schutzklasse IP66 (BS EN 60529) wettergeschützt. 2. Inhaltsverzeichnis 1. Einleitung 15 2. Inhaltsverzeichnis 15 3. Lieferumfang 16 4. Montageanleitung 17 5. Verkabelungsanleitung 18 6. Auswechseln der Glühlampe 19 7. Optionale Ausstattung 20 8. Ersatzteilliste 21 9. Fehlersuche 21 Dieses Produkthandbuch bietet alle erforderlichen Informationen für die Einrichtung, Installation und den Betrieb der Illuminatoren aus der Serie 2020. Serie 2020 Installationshandbuch Seite. 15 3. Lieferumfang Im Lieferumfang enthaltene Komponenten Entnehmen Sie den Illuminator vor der Installation bitte aus der Verpackung und vergewissern Sie sich, dass alle nachfolgend aufgeführten Artikel vorhanden sind. A. 1 x Infrarot-Illuminator der Serie 2020 B. 1 x Steinschlagschutz ( optional ) C. 1 x 4mm Sechskantschlüssel D. 1 x Befestigungssatz mit folgendem Inhalt: 2 x M10 x 16 Sechskantschrauben 2 x M10 Unterlegscheiben 2 x M10 Federscheiben Neben den oben aufgeführten Bestandteilen ist im Lieferumfang ein Produkthandbuch für die Serie 2020 und ein Abschlusstestverfahren enthalten. Serie 2020 Installationshandbuch Seite. 16 Abb.1 Im Lieferumfang enthaltene Komponenten B C D. A 4. Montageanleitung Montagekonfigurationen Abb. 2 & 3 zeigen typischen Positionen für Infrarot-Illuminatoren, die an einem ferngesteuerten Schwenk- und Neigekopf befestigt sind. Befestigen Sie den Illuminator der Serie 2020 mithilfe der Gabel (Abb. 4 Artikel A) und sichern Sie ihn mit den beiden M10x16 Sechskantschrauben mit Ganzgewinde (Abb. 4 Artikel D), zwei M10 Federscheiben (Abb. 4 Artikel C) und zwei M10 Unterlegscheiben (Abb. 4 Artikel B), die im Lieferumfang enthalten sind. Hinweis: Achten Sie darauf, dass der Glühwendel der Lampe horizontal montiert wird, um maximale Lebensdauer und Reichweite des Lichtstrahls zu gewährleisten. Siehe Auswechseln der Glühlampe (Seite 19) Der Glühwendel ist werkseitig auf diese Art der Montage eingestellt. Auf Seite 21 finden Sie Informationen zur Neuausrichtung der Lampe im Falle einer Montage mit anderer Ausrichtung. Serie 2020 Installationshandbuch Seite. 17 Abb .2 Befestigung einer Doppellampe Schwenk- und Neigekopf (Serie 2000) Infrarot-Illuminator Serie 2020 B C D. A Abb. 4 Befestigungsarmaturen Abb. 3 Befestigung einer Einzellampe 5. Verkabelungsanleitung Leitungsanschlüsse Die Elektroanschlüsse an den Infrarot-Illuminator der Serie 2020 werden über einen Klemmenblock vorgenommen, der sich auf der Rückseite im Polycarbonat-Gehäuse des fotoelektrischen Schalters befindet. Für den Zugang zu diesem Klemmenblock lösen Sie die vier unverlierbaren Schrauben des Gehäuses und nehmen Sie die Abdeckung ab, wie in Abb. 6 dargestellt. Verwenden Sie ein geeignetes 3 x 0,75 mm2 Freileitungskabel mit 230 VAC Nennleistung (Dedicated Micros empfiehlt aufgrund der extremen Temperaturen, die vom Illuminator erzeugt werden, die Verwendung eines silikonbeschichteten Kabels). Bereiten Sie das Kabelende für den Anschluss vor, führen Sie das Kabel durch den freien Kabelstutzen und terminieren Sie es, wie in Abb. 7 & 8 dargestellt. Setzen Sie zum Abschluss die Abdeckung wieder auf und befestigen Sie sie. Der Kabelstutzen sollte ausreichend fest angezogen werden, damit eine eventuelle Belastung des Kabels sich nicht auf die Kabelanschlüsse überträgt und damit eine wasserfeste Dichtung entsteht. Wir empfehlen, die Stromzufuhr für Modelle der Serie 2020/300 (300 Watt) mit einer 2 A Sicherung bzw. Modelle der Serie 2020/500 (500 Watt) mit einer 3 A Sicherung abzusichern. Serie 2020 Installationshandbuch Seite.18 Abb. 5 Abb. 6 Abb. 7 Erde 230 VAC Kundenseitiger Eingang Abb. 8 Spannungsführend Klemmenblock Fotoelektrischer Schalter Zur Lampe Neutral 6. Auswechseln der Glühlampe Auswechseln der Glühlampe SCHALTEN SIE DIE STROMZUFUHR ZUM GERÄT AUS. Öffnen Sie das Gehäuse, indem Sie die 4 Befestigungen (Artikel A, Abb. 9) eine Vierteldrehung entgegen dem Uhrzeigersinn drehen. Verwenden Sie dazu einen Kreuzschlitzschraubendreher Nr. 2. Jetzt kann der vordere Teil des Illuminators von der hinteren Hälfte gelöst und am Sicherungsseil/Erdungsseil abgehängt werden, um die Glühlampe freizulegen. Nehmen Sie die aufgesetzten Kabelschuhe (Artikel B, Abb. 10) von der Rückseite der Lampe ab und lösen Sie die Lampe aus den Befestigungsklemmen. Drücken Sie dazu eine der 3 Klemmen zurück, während Sie die Glühlampe heraus heben. Hinweis: Der Glühwendel liegt direkt zwischen den Kabelschuhen (Artikel C, Abb. 11). Richten Sie ihn durch Drehen der Lampe in den Federklemmen so aus, dass der Wendel horizontal liegt, wenn der Infrarot-Illuminator montiert wird. Die Kabelschuhe können beliebig an einer der beiden Klemmen angeschlossen werden. Serie 2020 Installationshandbuch Seite. 19 A B Abb. 9 Öffnen des Illuminatorgehäuses Abb. 10 Anschlussklemmen Abb. 11 Ausbau der Glühlampe Abb. 12 Federklemmen C C 7. Optionale Ausstattung Optionaler Steinschlagschutz. Für den Illuminator der Serie 2020 ist ein optionaler Steinschlagschutz (Bestellendung /SG) lieferbar. Er dient dazu, den Filter vor umherfliegenden Objekten / Vandalismus zu schützen und kann innerhalb weniger Sekunden mithilfe der 4 im Lieferumfang enthaltenen Schrauben installiert werden. (Abb.13) Optionaler Spannungswandler Die vom Hersteller angegebenen Lebensdauer liegt für die 300 W Glühlampe bei 2000 Stunden und für die 500 W Lampe bei 4000 Stunden. Die angegebenen Lebensdauer hängt von einer Stromzufuhr bei 230 V ab; eine Steigerung der Spannung um 5% reduziert die Lebensdauer der Lampe um 50%. NB. In einigen Teilen Großbritanniens liegt die Standspannung über 250 V. In einer derartigen Situation kann Dedicated Micros einen Spannungswandler (Typ 621) liefern, der die Eingangsspannung um 9% reduziert, um die Lebensdauer der Glühbirne zu verlängern. (Abb. 14) Kastenmaße 110B x 130L x 50H, nur zur Verwendung im Innenbereich. Optionales Modell ‘ohne fotoelektrischen Schalter’ Wir bieten auch ein Modell ohne fotoelektrischen Schalters an der Rückseite. (Bestellendung / No PE) Optionaler Weißlicht-Illuminator Für jede Glühlampe der Serie 2020 kann eine optionale Weißlichtvariante geliefert werden. (Bestellendung /WL) Serie 2020 Installationshandbuch Seite. 20 Abb. 13 Abb. 14 8. Ersatzteilliste 9. Fehlersuche Unter normalen Betriebsbedingungen sollte die angegebene Lebensdauer der Glühlampe problemlos erreicht werden. Es gib jedoch einige Umstände, unter denen die Lebensdauer stark reduziert wird. Spannungsstöße und -spitzen: Illuminatoren, die an eine Stromquelle angeschlossen sind, welche Spannungsstößen und -spitzen unterliegt, haben eine verkürzte Lebensdauer. Ausrichtung: Glühwendel müssen horizontal ausgerichtet sein; ein vertikal ausgerichteter Wendel wird vor Ablauf der angegebenen Lebensdauer ausbrennen. Betrieb: Bei der Installation auf einem Schwenk- und Neigekopf ist der Illuminator Schwingungen ausgesetzt, die je nach Schweregrad eine Reduktion der Lebensdauer verursachen könnten. Obwohl die 500 W Glühlampen speziell für diesen Einsatz konzipiert wurden, handelt es sich bei den 300 W Lampen um Standardprodukte, die deshalb wesentlich anfälliger für Schäden sind. Die Informationen in diesem Dokumenten dienen ausschließlich zur Orientierung. Die technischen Details und die Verfügbarkeit der Waren können jederzeit ohne Vorankündigung geändert werden. Serie 2020 Installationshandbuch Seite. 21 Ref. Nr. F56 F57 F2 F3 F4 F42 H92,a & b 1-2020/13 1-2020/17 F14 F15 F48 1-2020/22 BS152 1-2020/6 Stck. 1 1 1 1 1 1 1 3 1 1 1 1 1 1 4 1 Beschreibung 500 W Punktlampe 500 W M/Flutlicht 300 W Punktlampe 300 W M/Flutlicht 300 W W/Flutlicht Fotoelektrischer Schalter Kabelstutzen Befestigungsklemmen für Lampe Steinschlagschutz Filtersatz 715 nm Filtersatz 830 nm Dichroitischer Filter Dichtungsring Vorderseite Dichtungsring Rückseite Bajonettverschlüsse Externes Sicherheitsseil Type 2020 Manual de instalación Página. 22 1. Introducción Felicidades por elegir los proyectores por infrarrojos Dedicated Micros Type 2020/300 (300 vatios) y/o 2020/500 (500 vatios) diseñados para ofrecer una solución económica para la vigilancia nocturna facilitando una fuente de luz para las cámaras con respuesta espectral que cubran la zona de infrarrojos. Su diseño impecable con componentes fundidos a presión garantizan un acabado y montaje de primera calidad con un aspecto sorprendente e innovador que completan la gama de productos de la serie 2000 comercializada actualmente por Dedicated Micros. Las unidades son a prueba de intemperie en cumplimiento de BS.EN 60529 Nivel IP66 2. Índice 1. Introducción 22 2. Índice 22 3. Índice 23 4. Instrucciones de montaje 24 5. Instrucciones de cableado 25 6. Cambio de la lámpara 26 7. Equipamiento opcional 27 8. Repuestos de componentes 28 9. Resolución de problemas 28 La guía de este producto le proporcionara toda la información necesaria para configurar, instalar y utilizar el proyector del type 2020. Type 2020 Manual de instalación Página. 23 3. Índice Componentes suministrados Antes de proceder a la instalación extraiga la unidad de la caja y asegúrese de que se han suministrado todos los elementos que se indican a continuación. A. 1 x Proyector por infrarrojos Type 2020 B. 1 x Protección contra pedradas (opcional) C. 1 x Llave de enchufe hexagonal A/F de 4mm D. 1 x Bolsa de piezas de fijación que incluye lo siguiente: 2 x M10 x 16 Tornillos con cabeza hex. 2 x Arandelas planas M10 2 x Arandelas elásticas M10 Además de los componentes anteriores, se proporciona una guía de producto del type 2020 y un procedimiento para una prueba final. Fig.1 Componentes suministrados B C D A Type 2020 Manual de instalación Página. 24 4. Instrucciones de montaje Parámetros de montaje. Las Fig. 2 y 3 muestran las posiciones típicas de los proyectores por infrarrojos cuando se montan en un cabezal de toma panorámica e inclinación controlado de forma remota. Monte el proyector Type 2020 con el soporte (fig.4 elemento A) y asegúrelo con los 2 M10x16 tornillos de cabeza hexagonal (fig.4 elemento D), las 2 arandelas elásticas M10 (fig.4 elemento C) y las 2 arandelas planas M10 (fig.4 elemento B) que se suministran con la unidad. Nota: Asegúrese de que el filamento de la bombilla esté colocado horizontalmente para obtener la expectativa de vida y la cobertura esperada. Consulte cómo reemplazar la bombilla (página 26) El filamento de la bombilla viene preajustado de fábrica para este tipo de montaje. Consulte la página 27 para volver a orientar la bombilla si la coloca en otras posiciones Fig.2 Montaje de lámpara doble Toma panorámica e inclinación (Type 2000) Proyector por infrarrojos Type 2020 B C D A Fig.4 Piezas de fijación del montaje Fig.3 Montaje de lámpara sencilla Type 2020 Manual de instalación Página. 25 5. Instrucciones de cableado Conexiones de cableado Las conexiones eléctricas del proyector por infrarrojos Type 2020 se realizan con el bloque de terminales situado en el interior de la caja de policarbonato del conmutador fotoeléctrico de la parte posterior, tal y como se muestra en la fig.5. El acceso se logra aflojando las cuatro piezas de fijación imperdibles de la tapa y retirando ésta, tal y como se muestra en la fig.6. Utilice un cable para exteriores adecuado de 3 hilos x 0,75mm2 230V de C.A. (Dedicated Micros recomienda el uso de un cable con cobertura de silicona debido a las temperaturas extremas que genera el proyectos), prepare el extremo del cable para la conexión e introdúzcalo a través del casquillo. Finalice la operación tal y como se muestra en las figuras 7 y 8. Para acabar vuelva a colocar la tapa, y fíjela. El casquillo para cables deberá estar lo suficientemente apretado para que cualquier tirón que sufra el cable no se transmita a las conexiones de los terminales, así como para lograr una estanqueidad al agua. Se aconseja proteger la corriente eléctrica de entrada con un fusible de 2A para el proyector type 2020/300 (300Watt) y uno de 3A para el type 2020/500 (500Watt). Fig.5 Fig.6 Fig.7 Tierra Entrada del cliente de 230V de C.A. Fig.8 Activo Bloque de terminales Conmutador fotoeléctrico A la bombilla Neutro Type 2020 Manual de instalación Página. 26 6. Cambio de la lámpara Cambio de la lámpara. UNA VEZ APAGADA LA UNIDAD, abra la carcasa soltando las 4 piezas de sujeción (elemento A, fig.9) girándolos un cuarto de vuelta en el sentido contrario a las agujas del reloj con un destornillador Philips Nº2. Ahora podrá separar la plataforma delantera de la trasera y dejarla suspendida de la toma de tierra o anclaje de seguridad para descubrir la bombilla. Retire los terminales de pala (elemento b, fig.10) de la parte posterior de la bombilla y suéltela de sus abrazaderas de montaje accionando hacia afuera una de las tres, mientras libera la bombilla. Nota: El filamento de la bombilla está alineado directamente con los terminales de pala (elemento C, fig.11). Alinéelo girando la bombilla en las abrazaderas y asegúrese de que esté horizontal cuando coloque el proyector por infrarrojos. Las conexiones de los terminales de pala puede realizarse a cada terminal. A B Fig.9 Cómo abrir la carcasa del proyector Fig.10 Terminales Fig.11 Cómo retirar la bombilla Fig.12 Abrazaderas C C Type 2020 Manual de instalación Página. 27 7. Equipamiento opcional Rejilla de protección opcional. Existe una rejilla de protección opcional (código de pedido /SG) para el proyector Type 2020. Diseñada para proteger el filtro de objetos voladores o vandalismo, la protección puede colocarse en segundos con las cuatro piezas de fijación suministradas. (fig.13) Reductor de tensión opcional. Para el fabricante, la expectativa de vida de la bombilla de 300W es de 2.000 horas y de 4.000 horas para la de 500W. Dicha expectativa está condicionada a una tensión de 230V y un incremento del 5% en el voltaje reducirá dicha expectativa de vida en un 50%. Nota: Hay lugares en el Reino Unido donde la tensión es de 250V. En este tipo de casos, Dedicated Micros puede suministrar un dispositivo reductor Type 621 que reducirá la tensión en un 9% para prolongar la vida de la bombilla. (fig.14) Dimensiones de la caja 110 Ancho x 130 Largo x 50 Alto sólo para usarse en interior. Versión opcional “sin conmutador fotoeléctrico” Existe una versión opcional sin conmutador fotoeléctrico instalado en la parte trasera. (código de pedido / No PE) Proyector de luz blanca opcional. Puede suministrarse una versión opcional de luz blanca del Type 2020 para cualquier variante de bombilla. (código de pedido /WL) Fig.13 Fig.14 Type 2020 Manual de instalación Página. 28 8. Repuestos de componentes 9. Resolución de problemas En condiciones normales de funcionamiento la expectativa de vida de la bombilla debe alcanzarse facilmente, pero hay circunstancias en las que puede verse seriamente reducida. Picos y sobretensiones: Los proyectores que funcionan con tensiones con picos y sobretensiones tendrán una vida más breve. Orientación: Los filamentos de la bombilla deberá estar horizontal. Un filamento colocado verticalmente se quemará antes de lo previsto. Funcionamiento: Cuando coloque el proyector en un cabezal de toma panorámica e inclinación sufrirá vibraciones que, si son lo bastante fuertes, provocarán una reducción en la vida de la bombilla. Aunque las bombillas de 500 vatios se han diseñado específicamente para este uso, las lámpara de 300 vatios son de fabricación estándar y son más susceptibles de sufrir daños. La información incluida en este documento es meramente orientativa. Las características técnicas y disponibilidad de los materiales está sujetos a cambio sin previo aviso Núm. de ref. F56 F57 F2 F3 F4 F42 H92,a y b 1-2020/13 1-2020/17 F14 F15 F48 1-2020/22 BS152 1-2020/6 Cant. 1 1 1 1 1 1 1 3 1 1 1 1 1 1 4 1 Descripción Bombilla de haz fino de 500W Bombilla de luz ambiente/M de 500W Bombilla de haz fino de 300W Bombilla de luz ambiente/M de 300W Bombilla de luz ambiente/W de 300W Conmutador fotoeléctrico Plataforma del casquillo de cables Abrazaderas de montaje de la bombilla Protección contra pedradas. Plataforma de filtro de 715nm Plataforma de filtro de 830nm Plataforma de filtro dicroico Junta tórica delantera Junta tórica trasera Sujeciones de cuarto de vuelta Anclaje de seguridad externa Type 2020 Manuale d’installazione Pag. 29 1. Introduzione Congratulazioni per aver scelto i proiettori a infrarossi Type 2020/300 (300 Watt) e/o Type 2020/500 (500 Watt) di Dedicated Micros, progettati per la sorveglianza notturna e in grado di fornire una fonte di illuminazione per telecamere con tecnologia Spectrol che si estende nell’area degli infrarossi. Il design essenziale con componenti pressofusi garantisce l’alta qualità di finiture e accessori con un aspetto originale e innovativo per completare la gamma di prodotti della serie 2000 offerta da Dedicated Micros. Le unità offrono un livello di protezione dall’acqua IP66 conforme alla normativa BS.EN 60529. 2. Indice 1. Introduzione 29 2. Indice 29 3. Elenco dei contenuti 30 4. Istruzioni per il montaggio 31 5. Istruzioni per il cablaggio 32 6. Sostituzione della lampadina 33 7. Apparecchiatura opzionale 34 8. Componenti di ricambio 35 9. Risoluzione dei problemi 35 Questa guida del prodotto fornirà tutte le informazioni necessarie per la configurazione, l’installazione e l’esecuzione del proiettore Type 2020. Type 2020 Manuale d’installazione Pag. 30 3. Elenco dei contenuti Componenti forniti Prima di procedere all’installazione, rimuovere l’unità dall’imballaggio e verificare che siano presenti tutti gli elementi elencati di seguito. A. 1 Proiettore a infrarossi Type 2020 B. 1 Griglia di protezione (opzionale) C. 1 chiave esagonale A/F da 4mm D. 1 kit di fissaggio contenente i seguenti elementi: 2 viti a testa esagonale M10 x 16 2 rondelle piane M10 2 rondelle elastiche M10 Oltre ai componenti elencati, vengono fornite una guida del prodotto e una procedura di prova finale del Type 2020. Fig.1 Componenti forniti B C D A Type 2020 Manuale d’installazione Pag. 31 4. Istruzioni per il montaggio Configurazione di montaggio Le figure 2 e 3 mostrano il posizionamento tipico dei proiettori a infrarossi, quando vengono montati su un gruppo panoramica e illuminazione controllato remotamente. Montare il proiettore Type 2020 tramite il supporto (elemento A. fig. 4) e fissarlo utilizzando 2 viti a testa esagonale (elemento D, fig. 4), 2 rondelle elastiche M10 (elemento C, fig. 4) e 2 rondelle piane M10 (elemento B, fig. 4), in dotazione con l’unità. Nota: verificare che il filamento della lampadina sia montato orizzontalmente per ottenere la durata della lampadina e la copertura del fascio luminoso previste. Consultare le istruzioni per la sostituzione della lampadina (pagina 5) Il filamento della lampadina è adatto per questo tipo di montaggio. Consultare le istruzioni a pagina 7 per riorientare la lampadina se si esegue il montaggio con un orientamento diverso Fig.2 Montaggio a lampada doppia Panoramica e inclinazione (Type 2000) Proiettore a infrarossi Type 2020 B C D A Fig.4 Supporti di fissaggio per il montaggio Fig.2 Montaggio a lampada singola Type 2020 Manuale d’installazione Pag. 32 5. Istruzioni per il cablaggio Connessioni per il cablaggio Le connessioni elettriche del proiettore a infrarossi Type 2020 vengono effettuate tramite la morsettiera posizionata all’interno dell’alloggiamento in policarbonato dell’interruttore fotoelettrico sul retro, come mostrato nella figura 5. Per accedere all’alloggiamento è necessario rimuovere la copertura svitando le quattro viti di fissaggio della stessa come mostrato nella figura 6. Utilizzare un cavo a tre anime per esterni da 0,75 mm2 e 230 V CA (Dedicated Micros consiglia l’utilizzo di un cavo rivestito in silicone a causa delle temperature estreme generate del proiettore). Preparare l’estremità del cavo per la connessione, inserire il cavo attraverso il pressacavi libero e terminarlo come mostrato nelle figure 7 e 8. Al termine, riposizionare la copertura e fissarla nuovamente. È necessario stringere sufficientemente il pressacavi per assicurare che una eventuale tensione esercitata sul cavo venga trasmessa alle connessioni dei morsetti e per garantire l’impermeabilità. Si consiglia di proteggere l’alimentazione in entrata tramite un fusibile da 2 A per il proiettore Type 2020/300 (300 Watt) e da 3 A per il Type 2020/500 (500 Watt). Fig.5 Fig.6 Fig.7 Terra Ingresso utente 230 V CA Fig.8 Fase Morsettiera Interruttore fotoelettrico Alla lampadina Neutro Type 2020 Manuale d’installazione Pag. 33 6. Sostituzione della lampadina Sostituzione della lampadina. DOPO AVER SCOLLEGATO L’UNITÀ DALL’ALIMENTAZIONE aprire l’alloggiamento: rilasciare le 4 chiusure (elemento A, fig.9) ruotandole di un quarto di giro in senso antiorario utilizzando un cacciavite a stella No.2. A questo punto sarà possibile rimuovere il gruppo frontale da quello posteriore e lasciarlo sospeso sui cavi della messa a terra per esporre la lampadina. Rimuovere i terminali a forcella (elemento B, fig.10) dal retro della lampadina e rilasciare la lampadina dalle 3 molle d’ancoraggio, spostandone una verso l’esterno e sollevando contemporaneamente la lampadina. Nota: il filamento della lampadina è posizionato direttamente tra i terminali a forcella (elemento C, fig.11). Per allinearlo, ruotare la lampadina all’interno delle molle d’ancoraggio per assicurarsi che il filamento sia in posizione orizzontale durante il montaggio del proiettore a infrarossi. È possibile effettuare le connessioni del terminale a forcella su uno dei due terminali. A B Fig.9 Apertura dell’alloggiamento del proiettore Fig.10 Terminali Fig.11 Rimozione della lampadina Fig.12 Molle d’ancoraggio C C Type 2020 Manuale d’installazione Pag. 34 7. Apparecchiatura opzionale Griglia di protezione opzionale. Una griglia di protezione opzionale (suffisso ordinazione: /SG) è disponibile per il proiettore Type 2020. Progettata per proteggere il filtro da oggetti in volo e da attacchi vandalici, la protezione può essere montata in pochi secondi, utilizzando i 4 supporti di fissaggio in dotazione (fig.13). Riduttore di tensione opzionale. La durata prevista dichiarata dai produttori è di 2000 ore per la lampadina da 300 W e di 4000 ore per quella da 500W. La durata prevista dichiarata è calcolata sulla base di un’alimentazione a 230 V. In caso di un aumento del 5% del voltaggio, la durata della lampada si ridurrà del 50%. NB. In alcune parti del Regno Unito il voltaggio in vigore è superiore ai 250 V. In questi casi Dedicated Micros può fornire un dispositivo di riduzione del voltaggio Type 621 in grado di ridurre il voltaggio dell’alimentazione del 9% per aumentare la durata della lampadina. (fig.14). Dimensioni del dispositivo, utilizzabile solo in interni: L 110 x P 130 lunghezza x A 50. Versione opzionale “senza interruttore fotoelettrico” È disponibile una versione opzionale priva del selettore fotoelettrico sul retro (suffisso ordinazione: / No PE) Proiettore a luce bianca opzionale Il proiettore Type 2020 è disponibile in una versione opzionale a luce bianca per qualsiasi tipo di lampadina (suffisso ordinazione: /WL) Fig.13 Fig.14 Type 2020 Manuale d’installazione Pag. 35 8. Componenti di ricambio 9. Risoluzione dei problemi In condizioni di funzionamento normali, la durata della lampadina dovrebbe corrispondere a quella dichiarata. Tuttavia alcune circostanze potrebbero ridurre sensibilmente la durata. Picchi e sovracorrenti: Se l’alimentazione è soggetta a picchi e sovracorrenti, si ridurrà la durata dei proiettori. Orientamento: I filamenti della lampadina devono trovarsi in posizione orizzontale. Un filamento posizionato verticalmente si brucerà prima del tempo previsto. Funzionamento: Se viene montato su un gruppo panoramica e inclinazione, il proiettore sarà soggetto a vibrazioni le quali, se raggiungono un’intensità eccessiva, potrebbero ridurne la durata. Mentre le lampadine da 500 Watt sono progettate specificamente per questo scopo, quelle da 300 W sono progettate per l’utilizzo normale e pertanto non garantiscono le stesse prestazioni. Il presente documento viene fornito soltanto a scopo informativo. Le specifiche e la disponibilità dei prodotti sono soggette a modifica senza preavviso. Numero rif. F56 F57 F2 F3 F4 F42 H92, a e b 1-2020/13 1-2020/17 F14 F15 F48 1-2020/22 BS152 1-2020/6 Quantità 1 1 1 1 1 1 1 3 1 1 1 1 1 1 4 1 Descrizione Lampadina spot da 500 W Lampadina a media diffusione da 500 W Lampadina spot da 300 W Lampadina a media diffusione da 300 W Lampadina ad ampia diffusione da 300 W Interruttore fotoelettrico Gruppo pressacavi Molle d’ancoraggio della lampadina Griglia di protezione Gruppo filtro 715 nm Gruppo filtro 830 nm Gruppo filtro dicroico Guarnizione toroidale frontale Guarnizione toroidale posteriore Chiusure a un quarto di giro Fissaggio di sicurezza esterno Issue 1 Doc 74 0009 www.dedicatedmicros.com UK Technical Help Dennard Limited Unit 4, Park Iron Works, Kingsley, Nr Bordon, Hampshire GU35 9LY Tel: +44 (0)1420 485713 Fax: +44 (0)1420 485714 e-mail: sales@dennard-cctv.com European Technical Help Dedicated Micros Europa Neckarstraße 15, 41836 Hückelhoven, Deutschland Tel.: +49 (0) 24 33 52 58 26 Fax: +49 (0) 24 33 52 58 20. E-Mail: eusupport@dmicros.com Dedicated Micros France 9-13 rue du Moulinet, 75013 Paris, France Tél. : +33 1 45 81 99 99, Fax : +33 1 45 81 99 89. e-mail: dmfrance@dmicros.com Dedicated Micros Belgique Joseph Chantraineplantsoen 1, 3070 Kortenberg, Belgique Tél. : +32 2751 3480, Fax : +32 2751 3481 e-mail: dmbenelux@dmicros.com Dedicated Micros Ltd. Slovenija Delavska cesta 26, 4208 Sencur-Slovenija Tel: +386 (4) 279 18 90, Fax: +386 (4) 279 18 91 e-mail: dmslovenia@dmicros.com tesa￿sas 15￿rue￿du￿Bois￿des￿Saints￿Pères FR￿-￿77176￿Savigny￿le￿Temple Tel:￿+33￿(0)1.64.87.82.30 Fax:￿+33￿(0).1.64.87.82.50 contact.france@tesa.com www.tesa.fr Tous￿les￿produits￿tesa®￿sont￿soumis￿à￿des￿contrôles￿rigoureux￿qui￿garantissent￿une￿qualité￿irréprochable.￿Les￿conseils et￿recommandations￿sont￿donnés￿de￿bonne￿foi￿sur￿la￿base￿de￿notre￿expérience.￿Cependant,￿tesa￿SE￿ne￿peut￿donner￿de garanties￿expresses￿ou￿implicites￿de￿qualité￿marchande￿ou￿d'adéquation￿à￿un￿usage￿particulier.￿C'est￿pourquoi￿il￿est￿du devoir￿de￿l'acheteur￿(du￿client)￿de￿tester￿l'adéquation￿des￿produits￿à￿un￿usage￿spécifique￿par￿un￿test￿approprié.￿En￿cas de￿doute,￿notre￿service￿technique￿se￿fera￿un￿plaisir￿de￿vous￿venir￿en￿aide. tesa®pack￿6300￿Dévidoir￿manuel Dévidoir￿économique￿pour￿adhésifs￿d'emballage INFORMATION￿PRODUIT Description￿produit Le￿dévidoir￿manuel￿tesa®￿6300￿est￿d'un￿bon￿rapport￿qualité/prix￿pour￿la￿fermeture￿professionnelle￿et￿reçoit￿tout￿type￿d'adhésif d'emballage￿tesa®.￿Le￿dévidoir￿est￿muni￿d'un￿contrôle￿de￿tension￿permettant￿ainsi￿d'utiliser￿sans￿difficulté￿les￿adhésifs￿tesa®,￿même￿ceux avec￿un￿déroulement￿rapide.￿La￿lame￿est￿protégée￿pour￿éviter￿toute￿blessure. Principale￿application Placez￿le￿dévidoir￿sur￿le￿carton￿et￿tirez￿le￿vers￿vous.￿Le￿rouleau￿en￿caoutchouc￿appuie￿fortement￿sur￿l'adhésif￿pendant￿qu'il￿s'applique. L'adhésif￿est￿ensuite￿coupé￿par￿la￿lame￿dentelée￿en￿inclinant￿le￿dévidoir.￿La￿fin￿de￿l'adhésif￿est￿appliqué￿sur￿le￿carton￿grâce￿à￿la￿plaque d'application￿souple.￿Mise￿en￿place:￿Le￿rouleau￿tesa®￿est￿posé￿sur￿le￿porte-mandrin￿avec￿la￿face￿adhésive￿se￿déroulant￿vers￿la￿poignée. Placer￿la￿fin￿du￿rouleau￿entre￿le￿rouleau￿de￿guidage￿de￿l'adhésif￿et￿la￿plaque￿en￿métal￿jusqu'à￿ce￿que￿le￿ruban￿ne￿fasse￿plus￿de￿plis. Données￿techniques Type￿d'applicateur main Largeur￿maximale￿du￿rouleau 50￿mm Propriétés Objectif￿de￿l'application emballage Longueur 220￿mm Largeur 65￿mm Hauteur 150￿mm Poids 400￿gram Diamètre￿maximum￿du￿rouleau 120￿mm Diamètre￿maximum￿du￿mandrin 3￿pouce Infos￿complémentaires • dévidoir￿manuel￿solide￿grâce￿à￿sa￿structure￿en￿métal • lame￿protégée￿pour￿une￿utilisation￿en￿toute￿sécurité • contrôle￿de￿tension￿réglable￿à￿la￿main Page￿1￿sur￿1￿/￿En￿date￿du￿25.02.2010 Encodeur USB Série 450 Manuel de l'utilisateur www.storm-interface.com Encodeur USB Série 450 Manuel FR Ver 1.02 août 2013 Page 1 / 8 Contenu Page Présentation du produit, caractéristiques 2 Gamme et accessoires Téléchargements Guide de prise en main rapide 3 Installation Initialisation unique Questions fréquentes et spécifications 4 Produits compatibles 5 Disposition des claviers 6 Tables des codes – Valeurs par défaut 7 Encodeur USB Série 450 Manuel de l'utilisateur www.storm-interface.com Encodeur USB Série 450 Manuel FR Ver 1.02 août 2013 Page 2 / 8 Présentation du produit Ce dispositif autonome est prêt à l'utilisation. Il peut être facilement fixé sur la surface arrière de la plupart des claviers Storm afin d'offrir la connectivité et la communication nécessaires pour des systèmes hôtes compatibles. Configuré en usine pour la saisie de données numériques standard, ce dispositif polyvalent peut aussi être programmé par l'utilisateur pour produire tout code compatible USB. Cette caractéristique fait de l'encodeur Série 450 l'interface idéale pour la plupart des applications. Caractéristiques Périphérique clavier générique (Interface Homme Machine) – Ne nécessite aucun pilote additionnel Configuration usine pour encoder les claviers numériques selon les dispositions téléphone ou calculatrice Table des codes de sortie personnalisable grâce à un utilitaire de configuration Storm Alimentation intégrée pour l'éclairage des claviers La version 450i possède des contrôles additionnels pour l'éclairage des claviers La version 450i comporte un avertisseur sonore piézo-électrique pour la confirmation optionnelle de la frappe ou pour un générer un signal d'état piloté par l'applicatif. Connexion unique par prise USB Mini-B Forme compacte, autonome Compatible avec la plupart des claviers Storm en dispositions 4, 12 et 16 touches (y compris les claviers Storm des séries 700, 720, 1000, 2000, 3000, GFX et PLX) Gamme et accessoires Référence Description 4500-10 450i Encodeur avec buzzer et contrôle d'éclairage 4500-00 450 Encodeur 4500-01 Câble USB 1 mètre - type A vers mini B coudé Note : Pour commander en ligne directement chez Storm Interface, utiliser les références ci-dessus. Les références approvisionnées par les circuits de distribution possèdent un suffixe pour permettre des étiquetages/marquages spécifiques. Exemple : 4500-102 450i Encodeur avec Buzzer Téléchargements 4500-SW01 Utilitaire de configuration USB 450i-LIT-01 Brochure 450-xx-08KT Notice d'installation 450 USB Manual FR Manuel de l'utilisateur ( ce document ) Encodeur USB Série 450 Manuel de l'utilisateur www.storm-interface.com Encodeur USB Série 450 Manuel FR Ver 1.02 août 2013 Page 3 / 8 Guide de prise en main rapide Avant de commencer, vérifiez que vous avez : • L'encodeur • Un clavier compatible Storm • Un câble USB avec une prise mini-B entre votre clavier et votre ordinateur • Un panneau déjà découpé aux dimensions de votre clavier • Une copie de l'utilitaire de configuration si vous voulez personnaliser la configuration Installation • Vérifiez que votre ordinateur est sous tension avant de connecter l'encodeur. • Notez que pour la connexion avec le clavier il y a deux connecteurs distincts pour brancher les claviers 4 touches ou les claviers 12/16 touches. Bien s'assurer du connecteur utilisé avant de positionner les plaquettes autocollantes et fixer l'encodeur en place. Connecteur pour clavier 4 touches Connecteur pour claviers 12/16 touches Les plaquettes autocollantes se placent ici (Une seule par emplacement, exception faite pour la Série 700 qui nécessite 2 plaquettes par position) • Pressez l'encodeur sur le clavier et vérifiez que les plaquettes soient bien collées • Connectez la prise mini-B du câble USB sur le côté de l'encodeur Initialisation unique Cette procédure d'initialisation devra être faite à la première mise en service. L'encodeur doit reconnaître le clavier et vous devez choisir la disposition des touches correspondant au type de clavier utilisé. a) APPUYEZ ET MAINTENIR la touche en bas à droite du clavier – ceci indique à l'encodeur quel clavier est connecté b) Branchez le câble de l'encodeur au PC. c) RELACHEZ LA TOUHE SI vous souhaitez une table de codes pour les dispositions 4 touches de fonction et 12/16 touches téléphone ou d) MAINTENEZ LA TOUCHE ENFONCEE 10 SECONDES SI vous souhaitez une table de codes pour les dispositions 4 touches fléchées et 12/16 touches calculatrice Vérifiez maintenant que l'écran affiche les caractères corrects. Si vous avez besoin de reconfigurer l'encodeur, vous pouvez changer la table des codes ou réinitialiser l'unité avec une table pré-chargée au moyen de l'utilitaire de configuration USB disponible sur www.storm-interface.com Encodeur USB Série 450 Manuel de l'utilisateur www.storm-interface.com Encodeur USB Série 450 Manuel FR Ver 1.02 août 2013 Page 4 / 8 Questions fréquentes Est-ce que cet encodeur a besoin d'un pilote particulier? Non – il est reconnu par le pilote de clavier USB standard Est-ce que l'utilitaire fonctionne sur tout type de PC? Actuellement il ne fonctionne pas ni sous Linux, ni sous Mac OS L'utilitaire nécessite Windows XP ou plus Quelle est la connexion USB? Prise mini-B Est-ce que j'ai besoin d'utiliser les plaquettes auto-collantes? Elles sont inclues pour maintenir l'encodeur en service Quels codes USB personnalisables puis-je assigner? Voir les tables de codes page 11 Que dois-je faire si j'ai mal initialisé l'encodeur? Télécharger et utiliser l'utilitaire de configuration pour réinitialiser les valeurs par défaut Pourquoi la prise du clavier est plus longue que la barrette? Les broches d'extrémité servent à éclairer les claviers Spécifications Température d'utilisation -20ºC à +60ºC Température de stockage -20ºC à +70ºC Humidité 10% à 90% sans condensation Vibrations et chocs ETSI 300 019 5M3 Résistance d'isolement 50 Mohms (minimum) Tension de claquage 500V a.c. (60 secondes) Tension d'utilisation 5V +/- 5% (USB) Consommation 20mA (Le courant nécessaire à éclairer le clavier est en plus) Sécurité EU Directive Basse Tension EMC: Emissions et immunité : FCC part 15 class A EN55022, EN55024 ESD: Décharge dans l'air jusqu'à +/- 15kV, +/- 7.5kV par contact EU RoHS Conforme à la Directive WEEE Encodeur USB Série 450 Manuel de l'utilisateur www.storm-interface.com Encodeur USB Série 450 Manuel FR Ver 1.02 août 2013 Page 5 / 8 Produits compatibles 4 touches 12 touches 16 touches Note Série 700    Fixer la Série 700 sous panneau avec les plaquettes autocollantes additionnelles Série 720    Série 1000    Série PLX    Série 2000    GFX    Série 3000    3000 Illuminator L'éclairage n'est supporté que pour les claviers fabriqués à partir de septembre 2013 GFX Illuminator L'éclairage n'est supporté que pour les claviers fabriqués à partir de septembre 2013 Utiliser la prise 7 broches pour les claviers 4 touches Utiliser la prise 10 broches pour les claviers 12/16 touches Encodeur USB Série 450 Manuel de l'utilisateur www.storm-interface.com Encodeur USB Série 450 Manuel FR Ver 1.02 août 2013 Page 6 / 8 Dispositions des claviers Dispositions des claviers Dispositions des claviers Table des codes par défaut (US English) Table des codes alternatifs (US English) Encodeur USB Série 450 Manuel de l'utilisateur www.storm-interface.com Encodeur USB Série 450 Manuel FR Ver 1.02 août 2013 Page 7 / 8 Tables des codes hexa par défaut (rappel : un hôte paramétré UK English produit £ au lieu de #) Ligne Colonne 4 touches fonction 12 touches téléphone 16 touches téléphone A 1 F1 (3A) 1 (1E) 1 (1E) B 1 F2 (3B) 4 (21) 4 (21) C 1 F3 (3C) 7 (24) 7 (24) D 1 F4 (3D) * (E1, 25) * (E1, 25) A 2 - 2 (1F) 2 (1F) B 2 - 5 (22) 5 (22) C 2 - 8 (25) 8 (25) D 2 - 0 (27) 0 (27) A 3 - 3 (20) 3 (20) B 3 - 6 (23) 6 (23) C 3 - 9 (26) 9 (26) D 3 - # (E1, 20) # (E1, 20) A 4 - - A (04) B 4 - - B (05) C 4 - - C (06) D 4 - - . (37) Tables des codes hexa alternatifs Ligne Colonne 4 touches fléchées 12 touches calculatrice 16 touches calculatrice avec NumLock off A 1 ↑ (52) 7 (5F) 7 (5F) HOME B 1 ← (50) 4 (5C) 4 (5C) ← C 1 → (4F) 1 (59) 1 (59) END D 1 ↓ (51) * (E1, 25) * (E1, 25) * A 2 - 8 (60) 8 (60) ↑ B 2 - 5 (5D) 5 (5D) C 2 - 2 (5A) 2 (5A) ↓ D 2 - 0 (62) 0 (62) A 3 - 9 (61) 9 (61) PgUp B 3 - 6 (5E) 6 (5E) → C 3 - 3 (5B) 3 (5B) PgDn D 3 - # (E1, 20) # (E1, 20) # A 4 - - A (04) A B 4 - - B (05) B C 4 - - C (06) C D 4 - - . (37) . Encodeur USB Série 450 Manuel de l'utilisateur www.storm-interface.com Encodeur USB Série 450 Manuel FR Ver 1.02 août 2013 Page 8 / 8 Page laissée intentionnellement blanche imagine making the impossible possible 2000 Series controllers Built on our experience of design and applications knowledge spanning more than 40 years, the Eurotherm® 2000 series brings you performance you can rely on and accuracy you can trust. At the same time no other range of controllers makes operation so easy. Menu driven operation provides easy intuitive and consistent access to all the controller functions. www.eurotherm.com/2000 Ultimate performance Simply imagine process excellence… and with Eurotherm you will achieve it. Our ranges of controllers provide world class control and versatility with clear, user friendly, operator interfaces. Add to this, a strong sales team of qualified engineers who understand your process, an absolute commitment to innovation by continuously re-investing in research and development; we can and do imagine making the impossible possible for our customers. Internal timer – A 5 mode timer suitable for simple time based profiling applications Universal input – 9 different thermocouples, PT100, DC linear and a downloadable custom curve Four outputs – up to 4 outputs including 2 modular with many options including DC outputs Communication protocols – Modbus RTU, EI-Bisynch, DeviceNet® Three internal alarms – Configurable as High, Low, Deviation and Deviation High or Low alarms Two outputs – 1 relay and 1 logic (can be used as a relay with an external module) Suitable for • Small ovens • Chillers • Sterilisers • Trace heating • Heat sealing • Dwell timer – simple ramp dwell profile applications Four internal alarms – configurable as High, Low, Deviation, Deviation High, Deviation Low, High and Low current alarms Suitable for • Cold stores • Ovens and furnaces • Plastic extrusion • Packaging machines • Food and brewing applications • www.eurotherm.com/2000 Every 2000 Series controller can be tailored to provide the control solution you need. Modular design and easy, onsite configuration matches application requirements and gives you a temperature and process control solution that’s ready to run the first time you switch it on. The 2000 Series provides control strategies ranging from simple ON/OFF to PID with advanced overshoot protection, providing the best control for the widest range of applications including valve positioning. Within the 2000 Series there is also the 2500 Modular Controller and the 2604/2704 Controllers which, with their enhanced functionality and multiloop capability, offer a powerful addition to the range. Please consult Eurotherm sales for more information on these products. Customisable to your control requirements imagine process excellence... Programming – up to 20, 16 segment programs (4 in the 2416) are available with 8 digital event outputs Four internal alarms – configurable as High, Low, Deviation, Deviation High or Low, high and Low Current alarms high and low output, high and low input 2, High and low setpoint and one Rate of change alarm Modular – up to 4 outputs of which 3 are modular with many different options within the different modules Modules – up to 16 different types of module are available Communication protocols – Modbus RTU, EI-Bisynch, DeviceNet, Profibus DP Suitable for • Single and multi-zone furnaces • Kilns • Environmental chambers • Simple ratio • Humidity • Chemical and pharmaceutical • Applications • Glass furnaces and lehrs • For the full stories and all our successes go to www.eurotherm.com/success Success stories commercial benefits Prompt, accurate flow detection rate and response Case Study 2400 series Feedforward control is excellent for chemical dosing applications Customer Challenge The 2400 process controller is very suitable in the treatment of waste water, petrochemical processes and other additive dosing applications because any possible disturbance to the levels of chemicals added are detected before they can affect the ongoing process. Solution Feedforward is a method for detecting disturbances in the upstream flow and forwarding this information to the controller so that it can change the output before the disturbance affects the downstream ratio. So, in the diagram shown, the upstream flow rate from the flow meter (FT) forces an immediate change to the output of the controller (OP) and so causes an immediate change in the Dosing Pump speed. This Feedforward method is ideal for any process that is subject to upstream disturbances. This type of disturbance is invariably found in either liquid or gas systems. Customer Benefits • Feedforward control can avoid the slowness of integral feedback control because the disturbances are measured and accounted for before they have time to affect • The dosing rate immediately tracks any changes in flow rate and so prevents any possibility of over or under dosing Typical use of technology • Liquid Level - Boiler Drum Level • Chemical Dosing - Paint Mixing, Brewing, • Industrial Distillation – Brewing, Petroleum Refineries, Petrochemical, Chemical Plants, and Natural Gas Processing Plants. Setpoint FF OP Flow Meter FT AT Analytical Sensor PID Loop PV + 2400 Dosing Pump Setpoint Easy to use controllers for greater flexibility Case Study 2100 series 5 Mode Timer feature enables cost effective temperature and process control Customer Challenges faced in the food beverage industry Global market forces are driving the continual evolution of the food and beverage industry. Consolidation, changing consumer preferences and increasing government regulations are dramatically impacting manufacturing and business strategy. In this fiercely competitive marketplace, consistent high quality and cost effectiveness are critical to meet consumer demand. Solution 2100 Controller Eurotherm acknowledge these commercial pressures and our products ensure simple cost effective process control. Even one of our simplest, compact controllers has useful cost effective features. The 5 mode timer in the 2100 temperature process controller may be used to control batch operations, e.g. food production, ovens, sterilisers, fryers. An ideal application would be single dwell at the end of either a controlled ramp rate or natural approach to setpoint without the need for an additional timing device. Available Timer Operation Modes are: • Dwell and Switch Off • Time from Cold and Switch Off • Delayed Switch On Benefits • This maintains a target temperature at the end of a ramp rate without the need for an additional device, thereby simplifying the process • Easy operation with customised interface that presents only the parameters that the operator needs to see. All other parameters can be locked away under password protection. Typical use of technology • Small Ovens, Fryers, Sterilisers, Incubators Time Temperature Setpoint Dwell time Switch off Ramp control Dwell Timer Functionality For the full stories and all our successes go to www.eurotherm.com/success Highly flexible temperature values Case Study 2400 controller 8 segment program, repeatable and simple to change Customer Challenges faced in Autoclave and Environmental Chamber applications Many applications need their process values (i.e. Temperature, Pressure, Flow etc) to be varied with time. Amongst other applications Autoclaves are used for Sterilisation and for Vacuum Forming. In these applications there are invariably a number of ramps, and dwell times required to ensure that the material has been adequately processed. In Environmental Chambers programmed profiles are generally run repeatedly for some time and this is a method that is used to produce accelerated ageing. This process is therefore very useful for determining the likely longevity of a product before it fails. Solution 2400 Controller • The 2400 series process controller offer setpoint programming as an option. The program is stored as a series of segments which can be ramps, dwells, steps etc. • All 2400 programmer/controllers have an 8 segment program as standard, and can optionally have up to 20 off 16 segment programs each with 8 digital events. The digital events are used to control other ancillary equipment at predetermined segments in the program. For instance; it may switch on a vibration table at some stage in the process. • All of these features make the 2400 programmer/controller ideal for Furnaces, Environmental Chambers, and Autoclave applications. Customer Benefits • Minimises the need for extra equipment which becomes costly to install and maintain, time and space saving • Offers high integrity, repeatable processing thus increasing yield consistency and high product quality Typical use of technology • Autoclaves – Steam Sterilization of medical, pharmaceutical and laboratory equipment • Environmental chambers –test the effects of environmental conditions such as accelerated aging on industrial products, materials, biological items and electronic devices • Industrial furnaces – Heat Treatment, Glass Furnaces, and Lehrs Temperature End Type = Dwell Time Holdback at End Type = Off start of dwell www.eurotherm.com/2000 Real-world applications Master Programmer Slave Controllers PDS communications M P g S C In 2000 Series controllers it is possible to use the PDS communication link to send a setpoint from one controller to a network of slave devices - providing the economical creation of multi-zone temperature control solutions. PDS setpoint retransmission Ratiometric Pyrometer Thermocouple Output Switchover between 4-20mA two points mocouple Master Output Slave PDS Retransmission with Feedforward Modbus RTU Modbus Master The 2000 Series uses industry standard protocols such as Modbus RTU, DeviceNet or Profibus DP to communicate with supervisory systems and PLCs over EIA232, EIA485 (2 wire) or EIA422 (4 wire). This carries the information and overall control into the supervisory system while maintaining local access to the local equipment ensuring overall plant integrity in all situations. Communication Sometimes it is desirable to control a process using two separate inputs to derive the PV (process value). This could be based on a highest wins, lowest wins, some function of the two inputs, or switching between the two inputs at some pre-determined point in the process. For example, an application could consist of a thermocouple for measuring up to 800°C and a Ratiometric Pyrometer for measuring the range between 700°C and 1,400°C. Typically when the temperature is below 740°C the thermocouple provides the PV and, when between 740°C and 780°C the controller switches gently from the thermocouple to the Pyrometer which provides the PV up to 1,400°C. Derived inputs Using Eurotherm setpoint retransmission over PDS communications it is possible to use two 2400 controllers as a cascade control system with the output of the first (or master controller) forming the setpoint of the second (or slave controller). Eurotherm advanced algorithms enable the use of either setpoint or PV feedforward to limit the slave setpoint - for example ±10% of the master setpoint or PV. Cascade control From a simple ramp and dwell to a 16 segment program with event outputs, the 2000 Series provides a powerful platform for setpoint profiling. Programs can be edited from the instrument HMI and for the 2400 instruments, using iTools Setpoint Program Editor. iTools configuration software enables you to store and clone controller configurations, as well as commission your process control system. This facility significantly reduces installation and commissioning time while improving the security of the process. The Eurotherm advanced customer sensor linearisation tool also provides for the download of special sensor response characteristics to the controller. Reduced installation and commissioning time Easy setpoint programming From fixed build to modular construction, the Eurotherm flexible 2000 Series offers a truly versatile solution to all your requirements. www.eurotherm.com/2000 Selection guide Features Panel size (DIN) IP Rating Single Loop Display Type Supply Voltage Input Type PV Accuracy Control Types SP Programmer Analogue IP/OP Digital IP/OP Digital Comms Alarm Types PC Configuration 2116 1/32 1/16 IP65 2100 2216e 2208e 1/16 DIN rail 1/8 IP65 2200 2204e 1/4 TC, RTD, mV, mA, V 1 x 4 dig LED TC, RTD, mV, mA, Volts 2 x 4 dig LED <0.25% On/Off. PID none In: 1 Out: 0 In: 1 Out: 2 none none none none none none none none none none none none none List based <0.25% On/Off. PID, VP none none none In: 1 Out: 1 In: 3 Out: 4 Modbus, DeviceNet List based 24V dc/ac 85-264V ac 85-264V ac 2132 Dual input control Hi, Lo, Dev, Sensor break, Event, Heater fail Hi, Lo, Dev, Sensor break, Event, Heater fail Hi, Lo, Dev, Sensor break, 2416 2408 2404 1/16 1/8 1/4 IP65 2400 TC, RTD, mV, mA, Volts 2 x 4 dig LED <0.2% On/Off. PID, VP 20 x 16 segments In: 2 Out: 3 In: 11 Out: 11 List based 24V dc/ac 85-264V ac Modbus, DeviceNet, Profibus Special Features Maths Equation Combinational Logic Timers/Counters/Totals Real Time Clock © Copyright Eurotherm Limited 2011 Invensys, Eurotherm, the Eurotherm logo, Chessell, EurothermSuite, Mini8, Eycon, Eyris, EPower, nanodac and Wonderware are trademarks of Invensys plc, its subsidiaries and affiliates. All other brands may be trademarks of their respective owners. All rights are strictly reserved. No part of this document may be reproduced, modified, or transmitted in any form by any means, nor may it be stored in a retrieval system other than for the purpose to act as an aid in operating the equipment to which the document relates, without the prior written permission of Eurotherm limited. Eurotherm Limited pursues a policy of continuous development and product improvement. The specifications in this document may therefore be changed without notice. The information in this document is given in good faith, but is intended for guidance only. Eurotherm Limited will accept no responsibility for any losses arising from errors in this document. Part No. HA026587 Issue 5 Printed in England on recycled paper 03.11 Represented by: Eurotherm is also represented in the Eurotherm: following countries: International sales and service www.eurotherm.com Afghanistan Albania Algeria Angola Argentina Armenia Azerbaijan Bahrain Bangladesh Barbados Belarus Bermuda Bolivia Bosnia and Herzegovina Botswana Brazil Brunei Darussalam Bulgaria Cambodia Cameroon Canada Central African Republic Chad Chile Colombia Congo Costa Rica Côte d’Ivoire Croatia Cyprus Czech Republic Denmark Djibouti Ecuador Egypt El Salvador Eritrea Estonia Ethiopia Fiji Finland Georgia Ghana Greece Greenland Guinea Hungary Iceland Indonesia Iraq Israel Jamaica Japan Jordan Kazakhstan Kenya Kuwait Kyrgyzstan Laos Latvia Lesotho Libya Lithuania Macedonia Madagascar Malaysia Malta Micronesia Moldova Morocco Mozambique Myanmar Namibia Nicaragua Niger Nigeria Norway Oman Pakistan Palestinian Territory Papua New Guinea Paraguay Peru Philippines Poland Qatar Romania Russia Rwanda Saudi Arabia Senegal Serbia and Montenegro Sierra Leone Singapore Slovakia Slovenia Somalia South Africa Sri Lanka Sudan Swaziland Syria Tajikistan Tanzania Thailand The Gambia Tunisia Turkey Turkmenistan Uganda Ukraine United Arab Emirates Uruguay Uzbekistan Venezuela Vietnam Yemen Zambia Zimbabwe AUSTRALIA Melbourne Invensys Process Systems Australia Pty. Ltd. T (+61 0) 8562 9800 F (+61 0) 8562 9801 E info.eurotherm.au@invensys.com AUSTRIA Vienna Eurotherm GmbH T (+43 1) 7987601 F (+43 1) 7987605 E info.eurotherm.at@invensys.com BELGIUM & LUXEMBOURG Moha Eurotherm S.A/N.V. T (+32) 85 274080 F (+32) 85 274081 E info.eurotherm.be@invensys.com BRAZIL Campinas-SP Eurotherm Ltda. T (+5519) 3707 5333 F (+5519) 3707 5345 E info.eurotherm.br@invensys.com CHINA Eurotherm China T (+86 21) 61451188 F (+86 21) 61452602 E info.eurotherm.cn@invensys.com Beijing Office T (+86 10) 5909 5700 F (+86 10) 5909 5709/5909 5710 E info.eurotherm.cn@invensys.com FRANCE Lyon Eurotherm Automation SA T (+33 478) 664500 F (+33 478) 352490 E info.eurotherm.fr@invensys.com GERMANY Limburg Eurotherm Deutschland GmbH T (+49 6431) 2980 F (+49 6431) 298119 E info.eurotherm.de@invensys.com INDIA Mumbai Invensys India Pvt. Ltd. T (+91 22) 67579800 F (+91 22) 67579999 E info.eurotherm.in@invensys.com IRELAND Dublin Eurotherm Ireland Limited T (+353 1) 4691800 F (+353 1) 4691300 E info.eurotherm.ie@invensys.com ITALY Como Eurotherm S.r.l T (+39 031) 975111 F (+39 031) 977512 E info.eurotherm.it@invensys.com KOREA Seoul Invensys Operations Management Korea T (+82 2) 2090 0900 F (+82 2) 2090 0800 E info.eurotherm.kr@invensys.com NETHERLANDS Alphen a/d Rijn Eurotherm B.V. T (+31 172) 411752 F (+31 172) 417260 E info.eurotherm.nl@invensys.com POLAND Katowice Invensys Eurotherm Sp z o.o. T (+48 32) 7839500 F (+48 32) 7843608/7843609 E info.eurotherm.pl@invensys.com SPAIN Madrid Eurotherm España SA T (+34 91) 6616001 F (+34 91) 6619093 E info.eurotherm.es@invensys.com SWEDEN Malmo Eurotherm AB T (+46 40) 384500 F (+46 40) 384545 E info.eurotherm.se@invensys.com SWITZERLAND Wollerau Eurotherm Produkte (Schweiz) AG T (+41 44) 7871040 F (+41 44) 7871044 E info.eurotherm.ch@invensys.com UNITED KINGDOM Worthing Eurotherm Limited T (+44 1903) 268500 F (+44 1903) 265982 E info.eurotherm.uk@invensys.com U.S.A. Ashburn VA Eurotherm Inc. T (+1 703) 724 7300 F (+1 703) 724 7301 E info.eurotherm.us@invensys.com ED63 2116/2132 PID temperature controllers User Guide Manuel Utilisateur Bedienungsanleitung ENG FRA GER This booklet includes: User Guide (HA026270 Issue 5) Manuel Utilisateur (HA026270FRA Indice 5) Bedienungsanleitung (HA026270GER Ausgabe 5) Part Number HA026270 Issue 5.0 Aug 07 1 2132 and 2116 PID Temperature Controllers Thank you for choosing the 2132 or 2116 Temperature Controller. Supplied in 1/32 and 1/16 DIN panel sizes they are designed for accurate, stable control of ovens, chillers, sterilisers and other heating and cooling processes. Two outputs are configurable for heating, cooling and alarms. The controller is supplied configured according to the order code given in section 5. Check this on the side labels to determine the configuration of your particular controller. 1. Dimensions and Installation Model 2132 Model 2116 48mm (1.89in) 45 x 45 mm -0.0, + 0.6 1.77 x 1.77in -0.00, +0.02 48mm 24mm Panel cut-out 103mm (4.01in) 45mm -0.0, +0.6 1.77in -0.0, +0.02 Latching ears Panel retaining clips 22mm -0.0, +0.3 0.88in -0.0, +0.10 Panel cut-out 103mm (4.01in) 48mm (1.89in) 2 Part Number HA026270 Issue 5.0 Aug 07 1.1 To Install the Controller Please read the safety information in sections 7 before proceeding. 1. Prepare the panel cut-out to the size shown 2. Insert the controller through the cut-out. 3. Spring the panel retaining clips into place. Secure the controller in position by holding it level and pushing both retaining clips forward. 4. Peel off the protective cover from the display 1.2 Unplugging the Controller The controller can be unplugged from its sleeve by easing the latching ears outwards and pulling it forward out of the sleeve. When plugging it back into its sleeve, ensure that the latching ears click back into place to maintain the IP65 sealing. 1.3 Recommended Minimum Spacing of Controllers 10mm (0.4 in) 38mm (1.5 in) (Not to scale) Part Number HA026270 Issue 5.0 Aug 07 3 2. Electrical Connections 2.1 Wire Sizes The screw terminals accept wire sizes from 0.5 to 1.5 mm (16 to 22AWG). Hinged covers prevent hands or metal making accidental contact with live wires. The rear terminal screws should be tightened to 0.4Nm (3.5lb in). Output ratings Logic Output: 9Vdc, 12mA (non-isolated from sensor input). Used for: Heating, Cooling or Alarm. Relay Output: 2A, 264V ac resistive. Used for: Heating, Cooling or Alarm. Contact Closure Input (replaces Logic Output). Used for: Alarm Acknowledge or Timer start/reset Model 2116 OR Solid State Relay (SSR) + - Logic I/O Line Neutral Output 2 Relay T/C Pt100 mA Sensor Inputs L N A AB V+ V- 1A 1B 2.49Ω 85-264Vac 50/60Hz 1B 1A Pt100 T/C Output 2 Relay Neutral Line Logic I/O Model 2132 External Relay Module (Operated by the logic output) OR Solid State Relay (SSR) 2.49Ω Sensor Inputs V- V+ AB A N L - + mA 85-264Vac 50/60Hz 1B 1A 20-29 Vac/dc Low voltage supply 24 24 20-29 Vac/dc Low voltage 24 supply 24 4 Part Number HA026270 Issue 5.0 Aug 07 2.2 Typical Wiring Diagram Safety requirements for permanently connected equipment state: • A switch or circuit breaker shall be included in the building installation • It shall be in close proximity to the equipment and within easy reach of the operator It shall be marked as the disconnecting device for the equipment * When switching inductive loads such as contactors or solenoid valves, wire the 22nF/100Ω ‘snubber’ supplied across relay terminals AA & AB. This will prolong contact life and reduce interference. ! WARNING Snubbers pass 0.6mA at 110V and 1.2mA at 230Vac, which may be sufficient to hold on high impedance loads. Do not use in these installations. Relay output fuse 2A type T Neutral Controller fuse 2A type T Heater fuse Heater Thermocouple Solid State Relay (e.g. TE10) Snubber* Line + - Model 2132 V+ A 1B V- 1A A L N Cooling or alarm relay Circuit Breaker Part Number HA026270 Issue 5.0 Aug 07 5 3. Operation Switch on the controller. Following a 3 second selftest sequence, you will see the display shown below. It is called the HOME display. OP1 illuminates when the logic output is ON (normally heating). OP2 illuminates when the relay output is ON (normally cooling or alarm). If OP1 or OP2 are configured as alarm outputs (instead of heating and cooling), they will flash when a new ‘unacknowledged’ alarm occurs and go steady when the alarm is acknowledged but still true. 3.1 To Adjust The Required Temperature (Setpoint) Press and release quickly the or button. The setpoint will be displayed for 2 seconds. 20 Output 1 Output 2 Actual Temperature (or Process Value ‘PV’) OP1 OP2 Press and hold to raise the setpoint Press and hold to lower the setpoint 60 OP1 OP2 􀀪 􀀪 Required temperature (Setpoint) Actual temperature 20 OP1 OP2 6 Part Number HA026270 Issue 5.0 Aug 07 3.2 To View The Display Units Press and release quickly the or button. The display units will be flashed for 0.5 sec. If you get lost, pressing and together will always return you to the HOME display. If, at any time, no key is pressed within 45 seconds, the display will always return to the HOME display. 3.3 To Acknowledge a New Alarm Press and together. This will also reset any latched alarms that are no longer true. 3.4 Alarm Messages If an alarm occurs a message will be flashed in the display. This alternates with the measured temperature as shown below: Possible messages -fsH Alarm - Full Scale High -FSL Alarm - Full Scale Low -deV Alarm - Deviation -dHi Alarm - Deviation High -dLo Alarm - Deviation Low Sbr Sensor Break Lbr Loop Break Ldf Load Fail End End of Timing In place of the dash the alarm number is shown - Alarm 1 or 2 or 3. Display Units *C Deg Centigrade *F Deg Fahrenheit *K Deg Kelvin Linear inputs - no units displayed 0.5 sec or oC 20 Alarm 1 Full Scale Low Actual temperature 1fsL 20 Part Number HA026270 Issue 5.0 Aug 07 7 3.5 To View The Output Power Do this if you want to see how much heating or cooling energy is being demanded by the controller. Note: This is not a measure of actual power. Warning! In manual standby mode (see ‘To Use The Timer’) the output power can be adjusted by the operator, causing heating or cooling to be permanently applied. To prevent this make the OP parameter read only (see ‘To Hide, Reveal And Promote Parameters’) HOME display 20.0 Press twice quickly OP 100.0 *C Press Controller is demanding 100% heat Press or to view the value 8 Part Number HA026270 Issue 5.0 Aug 07 3.6 To Select or Change Other Parameters Parameters are settings in the controller which you can change to suit the process. They are found under list headings. Press the button to step through the list headings as shown below. Turn to paragraph 3.8 to see all of the list headings. These lists are used to: • Change alarm setpoints • Tune the controller to the process • Manually select PID values • Change setpoint limits and access the in-built timer • Change input and output limits Keep pressing to select more list headings, eventually returning to the HOME display. This is a continuous loop. HOME display 20.0 aL Atun X2 Part Number HA026270 Issue 5.0 Aug 07 9 3.7 To Adjust The Alarm Setpoints (Trip Levels) Press twice to choose the AL list. There are three Alarms. The setpoint for each alarm is found under the AL list. If an alarm has been disabled, it will not appear in this list. Note: The other parameters listed in section 3.8 are accessed and adjusted in exactly the same way as this example. 0.5 sec 1st press 2nd press *C 20 2 secs Next list Press or displays List indicating a list heading LiSt AL 0 1--- -FSL = Low alarm -FSH = High alarm -dEV = Deviation -dHi = Deviation High -dLo = Deviation Low - = the alarm number 0 2--- 0 3--- Press and together to return to the HOME display. Alarm 1 * Alarm 2 * Alarm 3 * * Press or to change the setpoint. Press 10 Part Number HA026270 Issue 5.0 Aug 07 3.8 Parameter Lists Shaded boxes are hidden when shipped from the factory. To reveal see ‘’To Hide, Reveal and Promote Parameters” section 3.10 HC.db Hys.C HYS.H Ont.C Ont.H OP.Hi OP.Lo CJCO SPrr SP H SP L AdC Lb t diSP HY m A w.SP Home List Alarm List Autotune List PID List(2) Setpoint List Input List Output List(2) On/Off List Access List 20.0 AL Atun Pid SP iP oP On.Of ACCS 1---(1) 2---(1) 3---(1) OP tunE Pb ti td rES Lcb Hcb rEL.C OFS.H FiLt mV OFS CAL.P CAL Pnt.L OFS.L Pnt.H CYC.H CYC.C codE Goto Conf tmr dwel StAt tm.OP (2) Either the PID list or the On/Off list will be present depending upon the configuration of the controller. X2 (1) In place of dashes, the last three letters depend on the alarm type. Part Number HA026270 Issue 5.0 Aug 07 11 3.8.1 Summary 1. Press to step across list headings. 2. Press to step down parameters 3. Press to view the value of a parameter. Keep pressing to decrease the value. 4. Press to view the value of a parameter. Keep pressing to increase the value 12 Part Number HA026270 Issue 5.0 Aug 07 3.9 Parameter Tables Home List Adjustable Range Default setting Customer setting Op Output Power -100% = max cooling, 100.0% = max heating. w.SP Working Setpoint Only appears when setpoint rate limit enabled Read only Read only m-A Manual/ Auto Select Auto mAn Automatic control selected Manual standby selected Auto disp Home Display Options Std OP NonE PV AL.SP pv.aL Standard - Shows the process value with the setpoint accessed by pressing the and buttons. Displays the output power - for use as a manual station. (Only applies to software version 1.4) Blank Display (only alarm messages flashed) Displays the Process Value only Displays the Alarm 2 Setpoint only Displays the Process Value with Alarm 2 Setpoint accessed by and . Std Part Number HA026270 Issue 5.0 Aug 07 13 AL Alarm List (See section 3.7) Adjustable Range Default Setting Customer setting 1--- Alarm 1 Setpoint 0 2--- Alarm 2 Setpoint 0 3--- Alarm 3 Setpoint In place of dashes, the last three letters indicate the alarm type: Between low and high setpoint limits 0 -FSL Full Scale Low -FSH Full Scale High -dEv Deviation -dHi Deviation High -dLo Deviation Low HY Alarm Hysteresis 1 to 9999 in display units (This value is common to all alarms) Hysterisis is used to prevent the alarm output ‘chattering’ by setting a difference between the alarm switch ON and switch OFF points 1 Lb t Loop Break Time OFF to 9999 minutes OFF 14 Part Number HA026270 Issue 5.0 Aug 07 Atun Automatic Tuning List (See section 4.3) Adjustable Range Default Setting Customer setting tunE Automatic Tune Enable OFF or on Off Adc Automatic Manual reset calculation (when P+D control) man or caLc man PiD PID List (See section 4.3) Adjustable Range Default Setting Customer setting Pb Proportional Band 1 to 999.9 display units 20 ti Integral Time OFF to 9999 seconds 360 td Derivative Time OFF to 9999 seconds 60 rES Manual Reset Value (only present if ti= OFF) -100 to 100.0 % 0.0 Lcb Low Cutback Auto to 999.9 display units Auto Hcb High Cutback Auto to 999.9 display units Auto rEL.C Relative Cool Gain 0.01 to 10.00 1.00 Part Number HA026270 Issue 5.0 Aug 07 15 SP Setpoint List (See also ‘To Use the Timer’ section 3.11) Adjustable Range Default Setting Customer setting SP L Setpoint Low Limit -1999 to 999.9 As per order SP H Setpoint High Limit -1999 to 999.9 As per order sprr Setpoint Rate Limit 0FF to 999.9 display units per minute Off tm.OP Timer Operating Mode Opt.1 to Opt.5 OPt.1 tmr Time Remaining 0 to 9999 minutes 0 dwEl Dwell Time 0FF to 9999 minutes OFF StAt Timer Status OFF or on OFF 16 Part Number HA026270 Issue 5.0 Aug 07 iP Input List (See also ‘User Calibration’ section 4.2) Adjustable Range Default Setting Customer setting FiLt Input Filter Time Constant 0FF to 999.9 seconds 1.6 CJC* Cold Junction Temperature measured at rear terminals Read only mV Millivolt Input measured at the rear terminals Read only OFS Process value Offset -1999 to 9999 display units 0 CAL.P Calibration Password 0 to 9999 3 CAL User Calibration Enable FACt Re-instates factory calibration USEr Re-instates user calibration FACt Pnt.L Low Calibration Point 0 OFS.L Low Point Calibration Offset 0 Pnt.H High Calibration Point 100 OFS.H High Point Calibration Offset -1999 to 9999 display units 0 Part Number HA026270 Issue 5.0 Aug 07 17 oP Output List Adjustable Range Default Setting Customer setting OP.Lo Low Output Power Limit -100 to 100.0 % 0 OP.Hi High Output Power Limit -100 to 100.0 % 100.0 CYC.H Heating Output Cycle Time 0.2 to 999.9 seconds 1.0 Lgc 20 Rly CYC.C Cooling Output Cycle Time 0.2 to 999.9 seconds 5.0 Lgc 20 Rly ont.H Heating Output Minimum On Time Auto to 999.9 seconds (Auto = 50ms) Auto ont.C Cooling Output Minimum On Time Auto to 999.9 seconds (Auto = 50ms) auto onOF On Off Output List Adjustable Range Default Setting Customer setting hYS.H Heating Hysteresis 1 to 9999 display units 1 hYS.C Cooling Hysteresis 1 to 9999 display units 1 HC.db Heat/Cool Deadband 0 to 9999 display units 0 ACCS Access List (See “To Hide, Reveal and Promote” parameters section 3.10) Adjustable Range Default Setting Customer setting codE Access Pass Number 0 to 9999 1 Goto Go To Required Access Level Oper, Ful, Edit, conf OPEr Conf Configuration Pass Number 0 to 9999 2 18 Part Number HA026270 Issue 5.0 Aug 07 3.10 To Hide, Reveal and Promote Parameters You are now in Edit level. Press and to select a parameter in the normal way. Press to return to the Access list header. ACCS PASS codE Press or to enter the password. The factory default is 1. ‘PASS’ will be displayed when the correct password has been entered. Press Press until the Access List Heading is reached. Press or to select ‘Edit’ level. Other options are: OPEr Operator level - shows selected parameters FuLL Reveals the ‘FULL’ set of parameters ConF Gives access to configuration level. Edit Goto Press ACCS High alarm 2 has been selected. When or is pressed, instead of displaying the parameter value, its availability to in Operator level is shown as follows: ALtr The parameter will be alterable HidE The parameter will be hidden . rEAd The parameter will be read-only Pro The parmeter will be ‘promoted’ into the HOME list (see below). Example: HidE 2FSH Part Number HA026270 Issue 5.0 Aug 07 19 3.10.1 The Pro (Promote) option Up to twelve commonly used parameters can be ‘promoted’ into the HOME list. This will give the operator quick access to them by simply pressing the button. This feature, used in combination with ‘hide’ and ‘ read only’, allows you to organise the way in which you want your controller formatted. The parameter tmr will now appear in the HOME list. Repeat the procedure for any other parameters you wish to promote. To remove a parameter go to edit level, select the parameter from the relevant list and change the choice from Pro back to ALtr, rEAd or HidE. 3.10.2 Returning to Operator level Repeat the above procedure for all the parameters you wish to hide, promote, or make read-only then return to operator level: Example: Time remaining has been selected. Press or to choose Pro. Pro tmr 1. Press until you reach the ACCS list heading 2. Press until you reach Goto 3. Press or to select Oper 4. Press to return to Operator level OPer Goto 20 Part Number HA026270 Issue 5.0 Aug 07 3.11 To Use The Timer • Press until you reach the SP list • Press until you reach the tM.OP parameter • Press or to select the timer operating mode, Opt.1 to Opt.5 as follows: 3.11.1 Opt.1 - Mode 1, Dwell and Switch Off In reset In reset, you can switch between automatic control and standby mode, using the parameter m-A in the HOME list. The controller is supplied with the m-A parameter hidden. You must first reveal it. See ‘To Hide, Reveal and Promote Parameters’. Standby mode Temperature Setpoint Reset Timing Running End Waiting to End flashes reach temperature Auto m-A From the HOME display press until the m-A parameter is displayed. Press or to select: Auto Automatic control mAn Standby mode. (the MAN beacon below OP2 will illuminate) Press and together to return to the HOME display Part Number HA026270 Issue 5.0 Aug 07 21 ‘Automatic control’ means control at setpoint, with heating (and cooling) being applied. ‘Standby mode’ means: the controller is in manual with zero output power. See ‘Warning!’ in section 3.5. During Running The controller will always switch to automatic control. Heating (or cooling) will be applied and the temperature will rise (or cool) to the setpoint. When the temperature is within 1oC of setpoint, the timer will start counting down. During End When the timer times out, the controller will switch to standby mode. The MAN beacon will light and End will be flashed in the main display. The process will cool down. The timer will remain indefinitely in this state until reset. When Reset End will stop flashing. The controller will return to reset in standby mode. It can be returned to automatic control by setting the parameter m-A in the HOME list to Auto. 3.11.2 Opt.2 - Mode 2, Dwell No Switch Off Indefinite dwell at setpoint Temperature Setpoint Reset Timing Running End End flashes Waiting to reach temperature This is the same as mode 1 except that at the end of the timing period the controller will continue indefinitely in automatic control. 22 Part Number HA026270 Issue 5.0 Aug 07 3.11.3 Opt.3 - Mode 3, Time from Cold and Switch Off This is the same as mode 1 except that the timer will start counting down immediately without waiting for the temperature to reach setpoint. 3.11.4 Opt.4 Mode 4, Time from Cold No Switch Off This is the same as mode 2 except that the timer will start counting down without waiting for the controller to reach setpoint. Standby mode Temperature Setpoint Reset Timing End End flashes Temperature Setpoint Reset Timing End End flashes Indefinite dwell at setpoint Part Number HA026270 Issue 5.0 Aug 07 23 3.11.5 Opt.5 Mode 5, Delayed Switch On This mode applies a time delay before turning on the heating (or cooling). When the timer is started, the controller will always switch to standby mode and start counting down. When the timer has timed out, the controller will switch into automatic control, apply heating (or cooling) and control indefinitely at the setpoint. 3.11.6 To Program a Ramp-Dwell profile A simple ramp-dwell profile can be programmed using Sprr (setpoint rate limit) in combination with the timer. To use this feature, first reveal Sprr and w.SP (the working setpoint) using the method described in “To Hide, Reveal and Promote” parameters. w.SP will then appear in the HOME list. Set Sprr to the required ramp rate. It is adjustable in 1/10th of the least significant display units per minute. That is if the display is configured 0 to 1000oC, setpoint rate limit can be adjusted between 0.1 and 999.9 oC per minute. When setpoint rate limit has been enabled and the timer is started, the working setpoint, wsp, will first step to the measured temperature and then ramp at the setpoint rate limit, sprr, to the target setpoint. In modes 1 and 2 timing will start when the measured temperature is within 1oC of the target setpoint. In modes 3 and 4 it will start when wsp is within 1oC of the target setpoint. Indefinite dwell at setpoint Temperature Setpoint Reset Timing Reset 24 Part Number HA026270 Issue 5.0 Aug 07 3.12 To Start And Reset The Timer There are two methods: Method 1. This is the simplest method to control the timer. • Press until you reach the SP list • Press until you reach the tMr parameter (time remaining). TIP: Promote tmr to the HOME list for quick access, as described in ‘To Hide, Revealing and Promote Parameters. As soon as a value is entered into tmr timing will commence. tmr will count down towards zero. During the timing period tmr can be increased or decreased according to the demands of the process. Setting the value to zero will end the timing period. When tmr reaches zero. ‘end’ will flash in the main display. The timer will remain indefinitely in this state until a new value is entered, when the timer will restart. To reset the timer, press and together. ‘end’ will stop flashing . To restart the timer, enter a new value into tmr. 1234 Tmr Press or to enter the required timing period in minutes. (0 to 9999). Press to return to the HOME display Part Number HA026270 Issue 5.0 Aug 07 25 Method 2. Use this method if you want to set a fixed time and use the stat parameter to start and stop the timer. The stat parameter can also be switched between Off and run by configuring the logic I/O as a Off/run contact closure input. Open the external contact to select run. This is an edge triggered action. Close the contact to select Off. Off is forced whenever the contact is closed. 1234 dwel run stat sp Press to reach the SP List heading. Press until you reach dwel Dwell time Press or to enter a timing period in minutes (0-9999). Timer Status To start the timer, press or to select run. The dwell time will be loaded into tmr and timing will commence. To reset the timer, select Off. The time remaining tmr will be set to 0. Press and together to return to the HOME display. 26 Part Number HA026270 Issue 5.0 Aug 07 4. Configuring the Controller Select configuration level to change: •The type of control •The display units •The input sensor type• The scaling of linear inputs •The alarm configuration • The passwords. 4.1 To select configuration level Press to step across the configuration list headings. Having selected a list heading, press to select a parameter within a particular list. Press and to change the setting. inSt iP AL AA Exit pASS 1A To Instrument Configuration Tables Press Press Press Goto conF Press or to select conf ACCS Press to reach the Access List Heading. codE PASS Press or to enter the password. The factory default is 1. PASS will be displayed when the correct password has been entered. ConF PASS Press or to enter the configuration level password. The factory default is 2. PASS will be displayed when the correct password has been entered. Press to enter configuration level. Part Number HA026270 Issue 5.0 Aug 07 27 4.1.1 Instrument Configuration inst Instr Conf Options Description *C Centigrade *F Fahrenheit *K Kelvin unit Display units nonE None nnnn None nnn.n One dEC.P Decimal places in display nn.nn Two Pid PID Control On.OF On/off Control CtrL Control type AL Convert to an alarm unit rEv Reverse (normal action for temperature control) Act Control action dir Direct (output decreases as PV falls below SP) Inst Instr Conf Options Description HoLd In Auto holds manual reset value Pd.tr Manual reset tracking (PD control) trAc In Auto tracks output for bumpless A/M transfer 28 Part Number HA026270 Issue 5.0 Aug 07 4.1.2 Input Configuration iP Sensor Input Options Meaning j.tc J thermocouple k.tc K thermocouple L.tc L thermocouple r.tc R thermocouple b.tc B thermocouple n.tc N thermocouple t.tc T thermocouple S.tc S thermocouple PL 2 Platinell II rtd 100Ω PRT mV Linear mV inPt Input type C.tc Custom input C=default Auto Automatic 0*C 0°C external ref. 45*C 45°C external ref. CJC (TC only) Cold junction compen sation 50*C 50°C external ref. Linear input scaling (Range -12 to +80mV) InP.L mV input low InP.H mV input high VaL.L Displayed value low VAL.H Displayed value high OFF Off (Linear inputs only) Auto 1.5KΩ Hi 5KΩ ImP Sensor break input impedance HiHi 15KΩ, Inp.L Inp.H VAL.H VAL.L mV Displayed value Part Number HA026270 Issue 5.0 Aug 07 29 4.1.3 Alarm Configuration The AL list configures the three internal ‘soft’ alarms and causes the appropriate alarm message to be flashed in the HOME display. At this stage the alarm is indication only (known as a ‘soft alarm’). To make the alarms operate the relay or logic outputs, follow the instructions under “Relay and Logic input/output Configuration. AL Alarm Type Meaning OFF The alarm is disabled fsL Full Scale Low alarm fsH Full Scale High alarm dEv Deviation band alarm dHi Deviation high alarm AL 1 Alarm 1 dLo Deviation low alarm AL Alarm Type Meaning no Non-latching YES Latched with automatic* resetting. Ltch Alarm latching mAn Latched with manual** resetting. bLoc Alarm No No blocking blocking YES Blocked until first good The above sequence is repeated for: AL 2 (Alarm 2) and AL 3 (Alarm 3) diS Limited by display range Sp.Li Alarm setpoint limits Con Limited by setpoint limits * Automatic resetting means that, once the alarm has been acknowledged, it will automatically clear when it is no longer true. ** Manual resetting means that the alarm must first clear before it can be reset. 30 Part Number HA026270 Issue 5.0 Aug 07 4.1.4 Relay and Logic input/output Configuration The logic I/O can be configured as an output or a contact closure input for alarm acknowledge, keylock, or timer run/reset. Aa Relay 1a Logic I/O Options Meaning id Identity of rELy Relay output LOG Logic diG Digital (alarm) output HEAt Heating output Function COOL Cooling output SSr.1 PDSIO mode 1 Ac.AL Alarm Acknowledge Loc.b Keylock digital input Func These functions only appear for the logic I/O rres Run/reset timer noch No change CLr Clear all alarms 1FSL Alarm 1 (Note 1) diG.F Digital output functions See ‘To 2FSH Alarm 2 (Note 1) Aa Relay 1a Logic I/O Options Meaning 3FSL Alarm 3 (Note 1) NW * New alarm SBR* Sensor break LBR* Loop break LDF* Load fail alarm MAn * Man mode active EnD* End of timing TMG* Timer running Operate the Relay or Logic Output from an Alarm or Digital Function section 4.1.5” TMG* Timer counting down (Note 2) TMG3* Timer running TMG4* Timer counting down SenS Sense of nor Normal (Note 3) the output Inv Inverted (Note 3) * Alarms always non-latching. Process alarms 1, 2 and 3 are configurable as alarm latching or nonlatching, see the ‘AL’ List Part Number HA026270 Issue 5.0 Aug 07 31 Note 1: The last three letters will correspond to the alarm type configured in the AL list. If the alarm is disabled, AL1 or AL2 or AL3 will be shown. Note 2: If tmg.3 and tmG.4 are selected, they illuminate the logic or relay output beacons, OP1 and OP2, without operating the actual output. They are used to indicate that timing is in progress while leaving the actual outputs to be operated by the other digital functions such as the END condition which can be used to operate an external klaxen. Note 3: Normal is the usual setting for heating or cooling. Inverted is the normal setting for alarms - de-energise in alarm. 4.1.5 To Operate the Relay or Logic output from an alarm or digital function. 1. Press until you reach Func 2. Press or to select Func = diG 3. Press to reach diG.F 4. Press or to select a alarm or digital function 5. Leave for 2 seconds. The display returns to diG.F and connects the selected alarm or digital function to the relay or logic output. 6. Press or again. Two decimal points will appear in the function that has been added to the output. 4.1.6 Multiple Alarms on one Output Any number of alarms or digital functions can be added to the relay or logic output by repeating steps 4, 5 and 6 above. Two decimal points will appear in those functions that has been added to the output. 4.1.7 To Clear Alarms from an Output 1. Press until to reach diG.F 2. Press or to select CLr 3. Leave for 2 seconds. The display returns to diG.F which disconnects all alarms from the relay. 32 Part Number HA026270 Issue 5.0 Aug 07 4.1.8 Passwords PASS Passwords Range Default ACC.P Full and Edit level password 0-9999 1 CnF.P Configuration level password 0-9999 2 CAL.P User calibration password 0-9999 3 4.1.9 To leave Configuration level Press to reach the ‘exit’ display Press or to select ‘YES’ After 2 secs the display will blink and return to the HOME display in Operator level. Exit YES Part Number HA026270 Issue 5.0 Aug 07 33 4.1.10 Diagnostic Alarms In addition to the normal process alarms, the following diagnostics alarm messages are provided. Message Meaning and (Action) EE.Er Electrically Erasable Memory Error: A parameter value has been corrupted. Contact Eurotherm Controls. HW.Er Hardware error: (Return for repair) LLLL Low display range exceeded: (Check input signal) HHHH High display range exceeded: (Check input signal) Err1 Error 1: ROM self-test fail. (Return for repair) Err2 Error 2: RAM self-test fail. (Return for repair) Message Meaning and (Action) Err3 Error 3: Watchdog fail. (Return for repair) Err4 Error 4: Keyboard failure. Stuck button, or a button was pressed during power up. Err5 Error 5: Input circuit failure. (Return for repair) Pwr.F Power failure. The line voltage is too low. TU.Er Tune Error. Appears if auto-tuning exceeds 2 hours. 34 Part Number HA026270 Issue 5.0 Aug 07 4.2 User Calibration Your controller has been calibrated for life against known reference sources. User calibration allows you to apply offsets to compensate for sensor and other system errors. The parameter OFS in the IP list applies a fixed offset over the whole display range. You may also apply a 2-point calibration as follows: • Press until you reach the iP list • Press until you reach the CAL.P parameter • Press or to enter the password. The factory default is 3. PASS will be displayed when the correct has been entered. • Press to reach the CAL parameter • Press or , to select User (FAct will restore the factory calibration) • Press to select in turn the four parameters shown in the graph below. Use or to set the desired calibration points and the offsets to be applied at each point. The iP list on section 3.9 describes each of the parameters. Factory calibration Displayed Value Factory calibration Pnt.H OFS.H OFS.L Pnt.L User calibration Part Number HA026270 Issue 5.0 Aug 07 35 4.3 Automatic Tuning In PID control, the output from the controller is the sum of three terms: Proportional, Integral and Derivative. These three terms deliver just the right amount of power to hold the temperature at setpoint without oscillation. For stable control, the PID values must be ‘tuned’ to the characteristics of the process being controlled. In the 2132 and 2116 this is done automatically using advanced tuning techniques. Automatic tuning is performed by switching the output of the controller On and Off to induce an oscillation in the measured temperature. From the amplitude and period of the oscillation, the PID values, shown in the table below, are calculated. Parameter Display Meaning or Function Proportional band Pb The bandwidth in °C or °f over which the output power is proportioned between minimum and maximum. Integral time ti Determines the time taken by the controller to remove steady-state error signals. Parameter Display Meaning or Function Derivative time td Determines how strongly the controller will react to the rate-of-change of temperature. Low cutback Lcb The number of °C or °f below setpoint at which the controller will cutback the output power to prevent overshoot on heat up. High Cutback Hcb The number of °C or °f above setpoint at which the controller will increase the output power to prevent undershoot on cool down. Relative cool gain rEL.C Only present if cooling has been configured. Sets the cooling proportional band by dividing the Pb value by the rEL.C value. 36 Part Number HA026270 Issue 5.0 Aug 07 If the process cannot tolerate 100% heating or cooling during tuning, the power can be restricted by the heating and cooling limits in the Output list. However, the measured value must oscillate to some degree for the tuner to determine values. Tuning is normally performed only once during the initial commissioning of the process. However, if the process under control subsequently becomes unstable (because its characteristics have changed), you can retune again at any time. It is best to tune starting with the process at ambient temperature. This allows the tuner to calculate more accurately. 4.3.1 Heating & Cooling Output Cycle Times Before commencing a tuning cycle, set the values of CYC.H (heating output cycle time) and CYC.C (cooling output cycle time) in the oP (output) list. For a logic heating output (switching a SSR), set CYC.H to 1.0 sec. For a relay output, set CYC.H to 20.0 sec. For a logic cooling output used to control a solenoid valve, set CYC.C to 5.0 sec. 4.3.2 Tuning Procedure 1. Set the setpoint to the value at which you will normally operate the process. 2. In the ‘Atun’ list, select ‘tunE’ and set it to ‘on’ 3. Press the Page and Scroll buttons together to return to the HOME display. The display will flash ‘tunE’ to indicate that tuning is in progress. 4. The controller will induce an oscillation in the temperature by turning the heating on and then off. 5. After two cycles of oscillation the tuning will be completed and the tuner will switch itself off. 6. The controller will then calculate the tuning parameters and resume normal control action. If you want ‘Proportional only’ or ‘P+D’ or ‘P+I’ control, you should set the ‘ti’ or ‘td’ parameters to OFF before commencing the tuning cycle. The tuner will leave them off and will not calculate a value for them. Part Number HA026270 Issue 5.0 Aug 07 37 4.3.3 Typical automatic tuning cycle 4.3.4 Calculation of the cutback values When low cutback or high cutback is set to ‘AuTo’ their values will be fixed at three times the proportional band, and will not be altered during automatic tuning. If set to any other value, they will be calculated as part of the tuning process. 4.4 Manual Tuning If for any reason automatic tuning gives unsatisfactory results, you can manually tune the controller. Proceed as follows: With the process at its normal running temperature: 1. Set the Integral Time ‘ti’ and Derivative Time ‘td’ to OFF. 2. Set High Cutback ‘Hcb’ and Low Cutback ‘Lcb’, to ‘Auto’ 3. Ignore the fact that the temperature may not settle precisely at the setpoint 4. Reduce the proportional band ‘Pb’ until the temperature just starts to oscillate. If the temperature is already oscillating, increase the proportional band until it just stops oscillating. Allow enough time between each adjustment for the temperature to stabilise. Make a note of the proportional band value ‘B’ and the period of oscillation ‘T’. 5. Set the PID parameter values according to the formula below: Type of control Proportional band ‘Pb’ Integral time ‘ti’ Derivative time ‘td’ Proportional only 2xB OFF OFF P + I 2.2xB 0.8xT OFF P + I + D 1.7xB 0.5xT 0.12xT Temperature Time 38 Part Number HA026270 Issue 5.0 Aug 07 4.4.1 Setting the cutback values The above procedure sets up the parameters for optimum steady state control. If unacceptable levels of overshoot or undershoot occur during start-up or for large step changes in temperature, then manually set the cutback parameters Lcb and Hcb. Proceed as follows: 1. Set the low and high cutback settings to 3 x the proportional band (that is to say, Lcb = Hcb = 3 x PB). 2. Note the level of overshoot or undershoot that occurs for large temperature changes (see the diagrams below). In example (a) increase Lcb by the overshoot value. In example (b) reduce Lcb by the undershoot value. Example (a) Example (b) When the temperature approaches the setpoint from above, you can set Hcb in a similar manner. 4.4.2 Manual reset When ti = OFF manual reset (rES) appears in the PiD List. This parameter sets the output power when the error signal is zero. It can be manually adjusted to remove steady state error - the function normally performed by the Integral term. Temperature Time Overshoot Temperature Time Undershoot Part Number HA026270 Issue 5.0 Aug 07 39 5. Ordering Code The controller is supplied configured according to the ordering code shown below. Model number Function Supply voltage Manual Output 1 (Logic) Output 2 (Relay) Function CC PID controller NF On/Off controller TC PID controller + timer TN On/Off controller + timer Supply voltage VH 85-264Vac VL 20 -29Vdc or ac Manual XXX None ENG English FRA French GER German NED Dutch SPA Spanish SWE Swedish ITA Italian Output 2: Relay XX Disabled RH Heating RC Cooling FH High alarm 2 FL Low alarm 2 AL High alarm 2 & low alarm 3 DB Dev band alarm 2 DL Dev. low alarm 2 DH Dev. high alarm 2 NW New alarm Output 1: Logic XX Disabled Logic output LH Heating LC Cooling M1 PDSIO mode 1 FH High alarm 1 FL Low alarm 1 DB Dev band alarm 1 DL Dev. low alarm 1 DH Dev. high alarm 1 NW New alarm Logic input AC Alarm ack/reset KL Keylock TM Timer Run/Reset Model Number 2132 1/16 DIN 2116 1/8 DIN 40 Part Number HA026270 Issue 5.0 Aug 07 Sensor input Setpoint min Setpoint max Units Ext relay module Input adaptor External relay module XX Not fitted R7 Fitted (Operated by the logic output) Units C °C F ° F K Kelvin X Linear I/P Input Adaptor XX None V1 0-10Vdc A1 0-20mA sense resistor (2.49Ω. 0.1%) Sensor input Display range and Setpoint min & max limits Thermocouples °C ° F J Type J -210 to 1200 -340 to 2192 K Type K -200 to 1372 -325 to 2500 T Type T -200 to 400 -325 to 750 L Type L -200 to 900 -325 to 1650 N Type N -200 to 1300 -325 to 2370 R Type R -50 to 1768 58 to 3200 S Type S -50 to 1768 -58 to 3200 B Type B 0 to 1820 32 to 3308 P Platinell II 0 to 1369 32 to 2496 Resistance thermometer Z Pt100 -200 to 850 -325 to 1562 Custom downloaded inputs Range OC Range OF C Type C -W5%Re/W26%Re (default custom sensor) 0 to 2319 32 to 4200 D Type D - W3%Re/W25%Re 0 to 2399 32 to 4350 E E thermocouple -200 to 999 -325 to 1830 1 Ni/Ni18%Mo 0 to 1399 32 to 2550 2 Pt20%Rh/Pt40%Rh 0 to 1870 32 to 3398 3 W/W26%Re (Engelhard) 0 to 2000 32 to 3632 4 W/W26%Re (Hoskins) 0 to 2010 32 to 3650 5 W5%Re/W26%Re (Engelhard) 10 to 2300 50 to 4172 6 W5%Re/W26%Re(Bucose) 0 to 2000 32 to 3632 7 Pt10%Rh/Pt40%/Rh 200 to 1800 392 to 3272 8 Exegen K80 I.R. Pyrometer -45 to 650 -49 to 1202 Process inputs (linear) Scaleable -999 to 9999 M -9.99 to +80mV Y 0 to 20mA A 4 to 20mA V 0 to 10Vdc (input adapter required) Part Number HA026270 Issue 5.0 Aug 07 41 6. Technical Specification Panel sealing IP65 (EN 60529), or 4X (NEMA 250) Operating ambient 0 to 55oC. Ensure that the enclosure is adequately ventilated. 5 to 95%RH, non condensing Storage temperature -30oC to +75oC. (Protect from humidity and dust) Atmosphere Not suitable for use above 2000m or in explosive or corrosive atmospheres Power supply High voltage unit: 100 to 240Vac -15%, +10%, 48-62Hz, 5Watts maximum consumption Low voltage unit: 24Vdc/ac +/- 20%. DC to 62Hz, 5Watts maximum consumption Relay rating (isolated) Maximum: 264Vac, 2A resistive. Minimum: 12Vdc, 100mA Mechanical life > 107 operations. Electrical life at 1A, 240vac resistive load > 5 x106 operations Wire sizes Use a minimum of 0.5mm2 or 16awg wire for plant connections. Over current protection Use independent 2A fuses for the supply and relay output. Suitable fuses are EN60127 (type T) Logic I/O rating 9V at 12mA, non-isolated from sensor input Electrical safety Meets EN 61010 (Voltage transients on the power supply must not exceed 2.5kV). Pollution degree 2. Isolation: All isolated inputs and outputs have reinforced insulation to protect against electric shock. (See live sensor note) Cold Junction Compensation >30 to 1 rejection of ambient temperature changes in automatic mode. Uses INSTANT ACCURACY TM sensing technology to reduce warm up drift and respond quickly to ambient temperature changes. Installation Category Category II or CAT II 42 Part Number HA026270 Issue 5.0 Aug 07 7. Safety and EMC Information This controller is intended for industrial temperature and process control applications when it will meet the requirements of the European Directives on Safety and EMC. Use in other applications, or failure to observe the installation instructions of this handbook may impair safety or EMC. The installer must ensure the safety and EMC of any particular installation. Safety This controller complies with the European Low Voltage Directive 73/23/EEC by the application of the safety standard EN 61010. Electromagnetic compatibility It conforms with the essential protection requirements of the EMC Directive 89/336/EEC, by the application of a Technical Construction file. It satisfies the general requirements of the industrial environment defined in EN 61326. For more information on product compliance refer to the Technical Construction File. GENERAL The information contained in these instructions is subject to change without notice. While every effort has been made to ensure the accuracy of the information, Eurotherm shall not be held liable for errors contained herein. Unpacking and storage The packaging should contain an instrument mounted in its sleeve, two mounting brackets for panel installation and an Installation & Operating guide. Certain ranges are supplied with an input adapter. If on receipt, the packaging or the instrument is damaged, do not install the product but contact your supplier. If the instrument is to be stored before use, protect from humidity and dust in an ambient temperature range of -30oC to +75oC. SERVICE AND REPAIR This controller has no user serviceable parts. Contact your supplier for repair. Caution: Charged capacitors Before removing the controller from its sleeve, switch off the supply and wait at least two minutes to allow capacitors to discharge. Failure to observe this Part Number HA026270 Issue 5.0 Aug 07 43 precaution may damage the indicator or cause some discomfort to the user. Electrostatic discharge precautions When the controller is removed from its sleeve, it is vulnerable to damage by electrostatic discharge from someone handling the controller. To avoid this, before handling the unplugged controller discharge yourself to ground. Cleaning Do not use water or water based products to clean labels or they will become illegible. Isopropyl alcohol may be used to clean labels. A mild soap solution may be used to clean other exterior surfaces of the product. Safety Symbols The following safety symbols are used on the controller: Caution. Refer to the ! accompanying documents Personnel Installation must only be carried out by qualified personnel in accordance with instructions given in this handbook. Enclosure of live parts The controller must be installed in an enclosure to prevent hands or metal tools touching parts that may be electrically live. Caution: Live sensors The logic input/output is electrically connected to the sensor input (e.g. thermocouple). In some installations the temperature sensor may become live. The controller is designed to operate under these conditions, but you must ensure that this will not damage other equipment connected to the logic input/output and that service personnel do not touch this connection while it is live. With a live sensor, all cables, connectors and switches for connecting the sensor and non-isolated inputs and outputs must be mains rated for use in 240V ac CATII. Wiring Wire the controller in accordance with the wiring data given in these instructions. Take particular care not to connect AC supplies to the low voltage sensor input or other low level inputs or outputs. Only use copper conductors for connections, (except thermocouple). Ensure that the installation complies with local wiring regulations. In the UK use the latest version of the 44 Part Number HA026270 Issue 5.0 Aug 07 IEE wiring regulations (BS7671) and in USA use NEC Class 1 wiring methods. Power Isolation The installation must include a power isolating switch or circuit breaker. This device should be in close proximity to the controller, within easy reach of the operator and marked as the disconnecting device for the instrument. Voltage rating The maximum continuous voltage applied between any of the following terminals must not exceed 240Vac: • relay output to logic, dc or sensor connections; • any connection to ground. The controller must not be wired to a three phase supply with an unearthed star connection. Under fault conditions such a supply could rise above 240Vac with respect to ground and the product would not be safe Conductive pollution Electrically conductive pollution must be excluded from the cabinet in which the controller is mounted. For example, carbon dust is a form of electrically conductive pollution. To secure a suitable atmosphere in conditions of conductive pollution, fit an air filter to the air intake of the cabinet. Where condensation is likely, for example at low temperatures, include a thermostatically controlled heater in the cabinet. This product has been designed to conform to BSEN61010 installation category II, pollution degree 2. These are defined as follows:- Installation Category II (CAT II) The rated impulse voltage for equipment on nominal 230V supply is 2500V. Pollution Degree 2 Normally only non conductive pollution occurs. Occasionally, however, a temporary conductivity caused by condensation shall be expected. Over-temperature protection When designing any control system it is essential to consider what will happen if any part of the system should fail. In temperature control applications the primary danger is that the heating will remain constantly on. This could damage the product, the machinery being controlled, or even cause a fire. Part Number HA026270 Issue 5.0 Aug 07 45 Reasons why the heating might remain constantly on include: • the temperature sensor becoming detached from the process • thermocouple wiring becoming short circuit; • the controller failing with its heating output constantly on • an external valve or contactor sticking in the heating condition • The controller setpoint too high Where damage or injury is possible, we recommend fitting a separate over-temperature protection unit, with an independent temperature sensor, which will isolate the heating circuit. Please note that the alarm relays within the controller will not give protection under all failure conditions. Installation requirements for EMC • For general guidance refer to Eurotherm Controls EMC Installation Guide, HA025464. • It may be necessary to fit a filter across the relay output to suppress conducted emissions. The filter requirements will depend on the type of load. For typical applications we recommend Schaffner FN321 or FN612. • If the unit is used in table top equipment which is plugged into a standard power socket, then it is likely that compliance to the commercial and light industrial emissions standard is required. In this case to meet the conducted emissions requirement, a suitable mains filter should be installed. We recommend Schaffner types FN321 and FN612. Routing of wires To minimise the pick-up of electrical noise, the sensor input wiring should be routed away from high-current power cables. Where this is impractical, shielded cables should be used for the signal wiring. Where signal wiring is carrying (or could carry, under fault conditions) hazardous voltages*, double insulation should be used. * A full definition of ‘Hazardous’ voltages appears under ‘Hazardous Live’ in BS EN61010. Briefly, under normal operating conditions Hazardous voltage levels are defined as >30V RMS (42.2V peak) or >60V dc. 46 Part Number HA026270 Issue 5.0 Aug 07 8. RoHS Certificate Product group 2100 Table listing restricted substances Chinese 产 2100 铅镉铬溴联苯溴苯醚 线组X O X O O O 属O O O O O O 显X O O O O O 块X O X O O O O X English Product 2100 Pb Hg Cd Cr(VI) PBB PBDE PCBA X O X O O O Enclosure O O O O O O Display X O O O O O Modules X O X O O O O X Approval Name: Position: Signature: Date: Martin Greenhalgh Quality Manager IA029470U450 (CN23172) Issue 1 Feb 07 Indicates that this toxic or hazardous substance contained in at least one of the homogeneous materials used for this part is above the limit requirement in SJ/T11363-2006. 该质该质SJ/T11363-2006 标规 Toxic and hazardous substances and elements Indicates that this toxic or hazardous substance contained in all of the homogeneous materials for this part is below the limit requirement in SJ/T11363-2006. Restricted Materials Table Restriction of Hazardous Substances (RoHS) 览 质 该质该质SJ/T11363-2006 标规 2116/2132 Régulateurs de Température PID Manuel Utilisateur FRA N0 Réf HA026270FRA Indice 5.0 08/07 1 2132 et 2116 Régulateurs de Température PID Merci d'avoir choisi le régulateur de température 2132 ou 2116. Disponibles en formats de panneau 1/32 et 1/16 DIN, ils sont conçus pour une régulation précise et stable des fours, compresseurs frigorifiques, stérilisateurs et autres procédés de chauffage et de refroidissement. Deux sorties sont configurables pour le chauffage, le refroidissement et les alarmes. Ce régulateur est livré configuré selon le code de commande de la paragraphe 5. Regarder sur les étiquettes latérales pour déterminer la configuration du régulateur 1 Dimensions et Installation Modèle 2132 Modèle 2116 48mm 45 x 45 mm -0.0, + 0.6 103mm 48mm Découpe du 24mm panneau 48mm 103mm 45mm -0.0, +0.6 Clips de verrouillage Clips de fixation 22mm -0.0, +0.3 Découpe du panneau 2 N0 Réf HA026270FRA Indice 5.0 08/07 1.1 Installation du régulateur Il est conseillé de lire les informations relatives à la sécurité, paragraphe 7, avant de continuer. 1. Préparer la découpe du panneau à la taille indiquée. 2. Insérer le régulateur par la découpe du panneau. 3. Mettre en place les clips de fixation. Immobiliser le régulateur en le tenant horizontal et en poussant les deux clips de fixation vers l'avant. 4. Retirer le film de protection de la face avant. 1.2 Retrait du régulateur Il est possible de retirer le régulateur de son manchon en tirant les clips de verrouillage vers l'extérieur et en le sortant du manchon. Lorsqu'on replace le régulateur dans son manchon, il faut veiller à ce que les clips de verrouillage s'encliquètent afin que l'étanchéité IP65 soit assurée. 1.3 Espace minimal recommandé entre régulateurs 10mm 38mm (Cette figure n'est pas à l'échelle) N0 Réf HA026270FRA Indice 5.0 08/07 3 2 Branchements 2.1 Section des fils Les bornes à vis acceptent des fils de section 0,5 à 1,5 mm². Des caches articulés empêchent tout contact accidental avec les fils sous tension. Les vis des bornes arrière doivent être serrées à 0,4 Nm Caractéristiques nominales des sorties Sortie logique : 9 Vdc, 12 mA (pas isolée de l'entrée capteur). Utilisée pour : le chauffage, le refroidissement ou les alarmes. Sortie relais : 2 A, 264 V ac résistive. Utilisée pour : le chauffage, le refroidissement ou les alarmes. Entrée de fermeture des contacts (remplace la sortie logique). Utilisée pour : l'acquittement des alarmes ou le démarrage et la réinitialisation du timer. Modèle 2116 OU + - Ligne Neutre Sortie 2 Relais T/C Pt100 mA Entrées capteurs L N A AB V+ V- 1A 1B 2,49Ω 85-264Vac 50/60Hz 1B 1A Pt100 T/C Sortie 2 Relais Neutre Ligne E/S Logiques Modèle 2132 Module relais externe (actionné par la sortie logique) OU Contacteur statique (SSR) 2,49Ω Entrées capteurs V- V+ AB A N L - + mA 85-264Vac 50/60Hz 1B 1A Contacteur statique (SSR) - + E/S Logiques + - 20-29 Vac/dc Alimentation 24 basse tension 24 20-29 Vac/dc Alimentation basse tension 24 24 4 N0 Réf HA026270FRA Indice 5.0 08/07 2.2 Schéma de Câblage Type Conditions de sécurité pour les équipements connectés en permanence : • Un interrupteur ou disjoncteur sera inclus dans l'installation • Il devra être situé à proximité de l'équipement et à portée de l'opérateur. • Il sera clairement identifié comme dispositif de sectionnement de l'équipement * En cas de commutation de charges conductrices comme les contacteurs ou les électrovannes, brancher un RC de 22 nF/100 Ω fourni entre les bornes AA & AB, ce qui prolonge la durée de vie des contacts et diminue les interférences ATTENTION Le RC laisse passer 0,6 mA à 110 V et 1,2 mA à 230 Vac, ce qui peut être suffisant pour maintenir les charges d'impédance élevée. Ne pas utiliser dans ces installations. Fusible de la sortie relais 2A type T Neutre Fusible du régulateuer 2A type T Fusible pour le chauffage Chauffage Thermocouple Contacteur statique (par exemple (e.g. TE10) Circuit RC* Ligne Modèle 2132 V+ A 1B V- 1A A L N Relais de refroidissement ou d'alarme Interrupteur N0 Réf HA026270FRA Indice 5.0 08/07 5 3 Utilisation Mettre le régulateur sous tension. Il effectue une suite de tests automatiques pendant environ 3 secondes puis affiche ce qui est représenté ci-dessous. Cet affichage est appelé PAGE DE REPOS. OP1 s'allume lorsque la sortie logique est sur ON (chauffage normalement). OP2 s'allume lorsque la sortie relais est sur ON (refroidissement ou alarme normalement). Si OP1 ou OP2 ou les deux est(sont) configuré(es) comme sortie(s) d'alarme (à la place du chauffage et du refroidissement), elle(s) clignote(nt) si une alarme ‘non acquittée’ se produit et s'allume(nt) à feu fixe lorsque l'alarme est acquittée mais reste vraie. 3.1 Reglage de la temperature souhaitee (consigne) Enfoncer puis relâcher rapidement la touche ou . La consigne est affichée pendant 2 secondes. 20 Sortie 1 Sortie 2 Température mesurée (ou valeur de régulation ‘PV’) OP1 OP2 Maintenir enfoncée pour augmenter la consigne Maintenir enfoncée pour diminuer la consigne 60 OP1 OP2 􀀪 􀀪 Température souhaitée (consigne) Température mesurée 20 OP1 OP2 6 N0 Réf HA026270FRA Indice 5.0 08/07 3.2 Visualisation des unites affichees Enfoncer puis relâcher rapidement la touche ou . Les unités affichées clignotent pendant 0,5 sec. Si l'on est "perdu", l'appui simultané sur et provoque le retour systématique à la PAGE DE REPOS. Si aucune touche n'est enfoncée pendant 45 secondes, l'affichage revient toujours à la PAGE DE REPOS. 3.3 Acquittement d'une alarme nouvelle Appuyer simultanément sur et . Cette opération réinitialise également les alarmes mémorisées qui ne sont plus vraies. 3.4 Messages d'alarme Si une alarme se produit, un message clignote sur l'affichage. Ce message apparaît en alternance avec la température mesurée, comme le montre la figure cidessous: Ce tableau montre tous les messages possibles. Messages possibles -fsH Alarme - pleine échelle haute -FSL Alarme - pleine échelle basse -deV Alarme - écart -dHi Alarme - écart haut -dLo Alarme - écart bas Sbr Rupture capteur Lbr Rupture boucle Ldf Défaut de charge End Fin de timing Le numéro de l'alarme est indiqué à la place du tiret : alarme 1, 2 ou 3. Alarme 1 pleine échelle basse Température mesurée 1fsL 20 Unités affichées *C Centigrade *F Fahrenheit *K Kelvin Entrées linéaires - aucune unité n'est affichée 0,5 sec oC 20 ou N0 Réf HA026270FRA Indice 5.0 08/07 7 3.5 Visualisation de la Puissance de Sortie On peut effectuer cette opération si l'on souhaite voir la quantité d'énergie de chauffage ou de refroidissement demandée par le régulateur. N.B. : il ne s'agit pas d'une mesure de la puissance effective. ATTENTION En mode manuel attente (standby) (voir Utilisation du timer), l'opérateur peut régler la puissance de sortie, ce qui provoquera une chauffe ou un refroidissement permanent. Pour éviter ceci, mettre le paramètre OP en lecture seulement (Voir Paramètres cachés, visibles personnalisés) Page de repos 20.0 Appuyer deux fois rapidement OP 100.0 *C Appuyer Le régulateur demande 100 % de chauffage Appuyer sur ou pour visualiser la valeur 8 N0 Réf HA026270FRA Indice 5.0 08/07 3.6 Selection ou Modification d'autres Parametres Les paramètres sont des valeurs du régulateur que l'on peut modifier pour les adapter au procédé. Ils se trouvent sous les en-têtes de listes. Appuyer sur la touche pour faire défiler les entêtes de listes, comme le montre la figure ci-dessous. Aller à la paragraphe 3.8 pour voir l'ensemble des entêtes de listes. Ces listes servent à : • modifier les consignes d'alarme • adapter le régulateur au procédé • sélectionner manuellement les valeurs PID • modifier les limites de consignes et accéder au timer intégré • modifier les limites des entrées et des sorties Maintenir la touche enfoncée pour sélectionner d'autres en-têtes de listes (retour à la PAGE DE REPOS après le dernier en-tête). La boucle est continue. Page de repos 20.0 aL Atun X2 N0 Réf HA026270FRA Indice 5.0 08/07 9 3.7 Reglage des consignes d'alarme (niveaux de declenchement) Il existe trois consignes d'alarme. Les consignes d'alarme se trouvent dans la liste AL. Si une alarme a été désactivée, elle n'apparaît pas dans cette liste. Appuyer deux fois sur pour choisir la liste AL. N.B. : les autres paramètres énumérés paragraphe 3.8 sont accessibles et modifiables de la même manière que dans cet exemple 0,5 sec 1er appui 2ème appui *C 20 2 sec Liste suivante L'appui sur ou provoque l'affichage de List pour indiquer qu'il s'agit d'un en-tête de liste. LiSt AL 0 1--- -FSL = Alarme basse -FSH = Alarme haute -dEV = Ecart -dHi = Ecart hau -dHL = Ecart bas - = numéro d'alarme 0 2--- 0 3--- * Appuyer sur ou pour modifier la consigne Alarme 1 * Alarme 2 * Alarme 3 * Appuyer simultanément sur et pour revenir à la PAGE DE REPOS. Appuyer 10 N0 Réf HA026270FRA Indice 5.0 08/07 3.8 Listes de Parametres (2) La liste PID ou la liste On/Off est affichée, selon la configuration du Les cases grisées sont normalement cachées lorsque l'appareil sort régulateur. d'usine. Pour les faire apparaître, cf. ‘’Paramètres cachés, visibles et personnalisés”, paragraphe 3.10 HC.db Hys.C HYS.H Ont.C Ont.H OP.Hi OP.Lo CJCO SPrr SP H SP L AdC Lb t diSP HY m A w.SP Page de repos Liste Alarme Liste Autoréglage Liste PID(2) Liste Consigne Liste Entrée Liste Sortie Liste On/Off (2) Liste Accès 20.0 AL Atun Pid SP iP oP On.Of ACCS 1---(1) 2---(1) 3---(1) OP tunE Pb ti td rES Lcb Hcb rEL.C OFS.H FiLt mV OFS CAL.P CAL Pnt.L OFS.L Pnt.H CYC.H CYC.C codE Goto Conf tmr dwel StAt tm.OP X2 (1) A la place des tirets, les trois dernières lettres dépendent du type d'alarme. Cf. “Réglage des consignes d'alarme paragraphe 3.7. N0 Réf HA026270FRA Indice 5.0 08/07 11 3.8.1 Résumé 1. Appuyer sur pour passer d'un en-tête de liste à l'autre. 2. Appuyer sur pour se déplacer dans les paramètres d'une liste donnée. Une fois que la fin de la liste est atteinte, on revient à l'en-tête de la liste. 3. Appuyer sur pour voir la valeur d'un paramètre sélectionné. Maintenir cette touche enfoncée pour diminuer la valeur. 4. Appuyer sur pour voir la valeur d'un paramètre sélectionné. Maintenir cette touche enfoncée pour augmenter la valeur. 12 N0 Réf HA026270FRA Indice 5.0 08/07 3.9 Tableaux des Paramètres Page de repos Plage réglable Réglage par défaut Réglage client Op Puissance de sortie demandée -100% = refroidissement maximal, 100,0% = chauffage maximal. w.SP Consigne de travail Apparaît uniquement lorsque la limite de la vitesse de consigne est activée Lecture seule Lecture seule m-A Sélection Auto Régulation automatique sélectionnée Manuel/Auto mAn Attente manuelle sélectionnée Auto Std Standard - Montre la valeur de régulation avec la consigne accessible par appui sur les touches et . OP Affiche la puissance - de sortie pour une utilisation du régulateur en station manuelle (Version 1.4 seulement) NonE Affichage vide (seuls les messages d'alarme clignotent) PV Affiche uniquement la valeur de régulation AL.SP Affiche uniquement la consigne de l'alarme 2 disp Options de la page de repos pv.aL Affiche la valeur de régulation avec la consigne de l'alarme 2 accessible par les touches et Std N0 Réf HA026270FRA Indice 5.0 08/07 13 AL Liste Alarmes (cf. para 3.7) Plage réglable Réglage par défaut Réglage client 1--- Consigne de l'alarme 1 0 2--- Consigne de l'alarme 2 0 3--- Consigne de l'alarme 3 A la place des tirets, les trois dernières lettres indiquent le type de l'alarme Entre les limites haute et basse des consignes 0 -FSL Pleine échelle basse -FSH Pleine échelle haute -dEv Ecart -dHi Ecart haut -dLo Ecart bas HY Hystérésis d'alarme 1 à 9999 en unités affichées (cette valeur est commune à toutes les alarmes). L'hystérésis sert à empêcher la sortie d'alarme de ‘déclencher trop souvent’ en fixant une différence entre les points d’activation et de désactivation de l'alarme 1 Lb t Temps de rupture de boucle OFF à 9999 minutes OFF 14 N0 Réf HA026270FRA Indice 5.0 08/07 Atun Liste Auto-réglage (cf. paragraphe 4.3) Plage réglable Réglage par défaut Réglage client tunE Activation du réglage automatique OFF ou on Off Adc Calcul de réinitialisation manuelle automatique (régulation P+D) man ou caLc man PiD Liste PID (cf paragraphe 4.3) Plage réglable Réglage par défaut Réglage client Pb Bande proportionnelle 1 à 999.9 unités affichées 20 ti Temps d'intégrale OFF à 9999 secondes 360 td Temps de dérivée OFF à 9999 secondes 60 rES Valeur de l'intégrale manuelle (uniquement si ti= OFF) -100 à 100.0 % 0.0 Lcb Cutback bas Auto à 999.9 unités affichées Auto Hcb Cutback haut Auto à 999.9 unités affichées Auto rEL.C Gain relatif de refroidissement 0.01 à 10.00 1.00 N0 Réf HA026270FRA Indice 5.0 08/07 15 SP Liste Consignes (cf. paragraphe 3.11) Plage réglable Réglage par défaut Réglage client SP L Limite basse de la consigne -1999 à 999,9 Selon la commande SP H Limite haute de la consigne -1999 à 999,.9 Selon la commande sprr Limite de vitesse de la consigne 0FF à 999,9 unités affichées par minute Off tm.OP Mode de fonctionnement du timer Opt.1 à Opt.5 OPt.1 tmr Temps restant 0 à 9999 minutes 0 dwEl Temps de palier 0FF à 9999 minutes OFF StAt Etat du timer OFF ou on OFF 16 N0 Réf HA026270FRA Indice 5.0 08/07 iP Liste Entrées (cf. paragraphe 4.2) Plage réglable Réglage par défaut Réglage client FiLt Constante de temps de filtrage des entrées 0FF to 999.9 seconds 1.6 CJC* Température de soudure froide mesurée aux bornes arrière Lecture seule mV Entrée mV mesurée aux bornes arrière Lecture seule OFS Offset de la valeur de régulation -1999 à 9999 unités affichées 0 CAL.P Code d'accès de la calibration 0 à 9999 3 CAL Activation de la Calibration utilisateur FACt Réactive la calibration usine USEr Réactive la calibration utilisateur FACt Pnt.L Point bas de calibration -1999 à 9999 unités affichées 0 OFS.L Offset de la calibration du point bas -1999 à 9999 unités affichées 0 Pnt.H Point haut de calibration -1999 à 9999 unités affichées 100 OFS.H Offset de la calibration du point haut -1999 à 9999 unités affichées 0 N0 Réf HA026270FRA Indice 5.0 08/07 17 oP Liste Sorties Plage réglable Réglage par défaut Réglage client OP.Lo Limite basse de puissance -100 à 100,0 % 0 OP.Hi Limite haute de puissance -100 à 100,0 % 100.0 CYC.H Durée du cycle de chauffage 0,2 à 999,9 secondes CYC.C Durée du cycle de refroidissement 0,2 à 999,9 secondes 1.0 Lgc 20 Rly ont.H Durée minimale de chauffage ont.C Durée minimale de refroidissement Auto à 999,9 secondes (Auto = 50 msec) Auto onOF Liste Sorties On Off Plage réglable Réglage par défaut Réglage client hYS.H Hystérésis de chauffage 1 à 9999 unités affichées 1 hYS.C Hystérésis de refroidissement 1 à 9999 unités affichées 1 HC.db Bande morte de chauffage/refroidissement 0 à 9999 unités affichées 0 ACCS Liste Accès (Cf. paramètres “Cachés, Visibles et Personnalisés” paragraphe 3.10) Plage réglable Réglage par défaut Réglage client codE Code d'accès 0 à 9999 1 Goto Niveau d'accès sélectionné Oper, Ful, Edit, conf OPEr Conf Code d'accès de configuration 0 à 9999 2 18 N0 Réf HA026270FRA Indice 5.0 08/07 3.10 Parametres Caches, Visibles et Personnalises Exemple: HidE 2FSH L'alarme haute 2 a été sélectionnée. Lors de l'appui sur ou , au lieu d'afficher la valeur du paramètre, sa disponibilité au niveau Opérateur est indiquée de la manière suivante : ALtr Le paramètre est modifiable HidE Le paramètre est caché. rEAd Le paramètre est en lecture seule Pro Le paramètre est ‘personnalisé’ dans a PAGE DE REPOS (voir ci-après). On est maintenant au niveau Modification. Appuyer sur et pour sélectionner normalement un paramètre ACCS PASS codE Appuyer sur ou pour saisir le code d'accès. La valeur par défaut réglée en usine est 1. ‘PASS’ apparaît lorsque le code d'accès correct a été saisi Appuyer sur jusqu'à l'en-tête de liste Accès. Appuyer sur ou pour sélectionner le niveau ‘Edit. Autres options : OPEr Niveau Opérateur - montre les paramètres sélectionnés FuLL Montre le jeu de paramètres ‘FULL’ ConF Donne accès au niveau configuration Edit Goto ACCS Appuyer sur cette touche Appuyer sur cette touche Appuyer sur cette touche pour revenir à l'en-tête de liste Accès. N0 Réf HA026270FRA Indice 5.0 08/07 19 3.10.1 Option Pro (personnaliser) Il est possible de ‘personnaliser’ un maximum de douze paramètres couramment utilisés dans la PAGE DE REPOS. L'opérateur peut ainsi y accéder rapidement en appuyant simplement sur la touche . Cette fonction, utilisée en association avec ‘caché’ et ‘lecture seule’, permet d'organiser la manière dont on souhaite formater le régulateur. Le paramètre tmr apparaît alors dans la PAGE DE REPOS. Répéter l'opération pour les autres paramètres que l'on souhaite personnaliser. Pour supprimer un paramètre, aller au niveau edit, sélectionner le paramètre dans la liste qui convient et passer de Pro à ALtr, rEAd ou HidE. 3.10.2 Retour au niveau Opérateur Répéter l'opération ci-dessus pour tous les autres paramètres que l'on souhaite cacher, personnaliser ou faire passer en lecture seule, puis revenir au niveau opérateur: Exemple: Le temps restant a été sélectionné. Appuyer sur ou pour choisir Pro Pro tmr OPer Goto 1. Appuyer sur jusqu'à l'en-tête de liste ACCS 2. Appuyer sur jusqu'à Goto 3. Appuyer sur ou pour sélectionner Oper 4. Appuyer sur pour revenir au niveau Opérateur 20 N0 Réf HA026270FRA Indice 5.0 08/07 3.11 Utilisation du Timer • Appuyer sur jusqu'à la liste SP • Appuyer sur jusqu'au paramètre tM.OP • Appuyer sur ou pour sélectionner le mode de fonctionnement du timer, Opt.1 à Opt.5, de la manière suivante: 3.11.1 Opt.1 - Mode 1, palier et coupure Lors de la Réinitialisation Lors de la réinitialisation, on peut alterner entre régulation automatique et attente, avec le paramètre m-A dans la PAGE DE REPOS. Le régulateur est livré avec le paramètre m-A caché. Il faut commencer par le faire apparaître. Cf. ‘Paramètres cachés, visibles et personnalisés’. Mode attente (Standby) Température Consigne Réinitialisation Chrono-métrage Exécution Fin End clignote Attente jusqu'à ce que la température soit atteinte Auto m-A Dans la PAGE DE REPOS, appuyer sur jusqu'à ce que le paramètre m-A apparaisse. Appuyer sur ou pour sélectionner : Auto Régulation automatique mAn Mode attente. (le voyant MAN en-dessous d'OP2 s'éclaire) Appuyer simultanément sur et pour revenir à la PAGE DE REPOS N0 Réf HA026270FRA Indice 5.0 08/07 21 ‘Régulation automatique’ désigne la régulation à la consigne, avec le chauffage (et le refroidissement) en service. ‘Mode attente’(Standby) désigne le régulateur en mode manuel avec une puissance de sortie nulle. (Voir ‘ATTENTION’ paragraphe 3.5) Pendant "Exécution" Le régulateur passe toujours en régulation automatique. Le chauffage (ou le refroidissement) est appliqué et la température augmente (ou diminue) jusqu'à la consigne. Lorsque la température diffère de la consigne de moins d'1oC, le timer commence le compte à rebours. Pendant "Fin" Lorsque le timer est arrivé à la fin de la temporisation, le régulateur passe en mode attente. Le voyant MAN s'allume et End clignote sur l'affichage principal. Le procédé refroidit. Le timer reste indéfiniment dans cet état jusqu'à la réinitialisation. Retour à la réinitialisation End arrête de clignoter. Le régulateur revient en mode attente. Il est possible de le faire revenir en régulation automatique en réglant le paramètre m-A de la PAGE DE REPOS sur Auto. 3.11.2 Opt.2 - Mode 2, sans coupure palier Palier indéfini à la consigne Température Consigne Réinitialisation Chronométrage Ex écution Fin End clignote Attente jusqu'à ce que la température soit atteinte Ce mode est identique au mode 1, avec une différence : à la fin de la période de chronométrage, le régulateur continue indéfiniment en mode de régulation automatique. 22 N0 Réf HA026270FRA Indice 5.0 08/07 3.11.3 Opt.3 - Mode 3, durée à partir de la position froide puis coupure Identique au mode 1, sauf que le timer commence immédiatement le compte à rebours sans attendre que la température ait atteint la consigne. 3.11.4 Opt.4 - Mode 4, durée à partir de la position froide sans coupure Identique au mode 2, sauf que le timer commence immédiatement le compte à rebours sans attendre que le régulateur ait atteint la consigne. Mode attente Température Consigne Réinitialisation Chronométrage Fin End clignote Réinitialisation Palier indéfini à la consigne Température Consigne Chronométrage End clignote Réinitialisation N0 Réf HA026270FRA Indice 5.0 08/07 23 3.11.5 Opt.5 Mode 5, temporisation de la mise sous tension Ce mode applique une temporisation avant d'activer le chauffage (ou le refroidissement). Lorsque le timer démarre, le régulateur passe toujours en mode attente et commence le compte à rebours. Lorsque le timer a terminé sa tâche, le régulateur passe en mode automatique, applique le chauffage (ou le refroidissement) et régule indéfiniment à la consigne. 3.11.6 Programmation d'un profil rampepalier Il est possible de programmer un profil simple rampepalier à l'aide de Sprr (limite de vitesse de consigne) en combinaison avec le timer. Pour utiliser cette fonction, commencer par faire apparaître Sprr et w.SP (consigne de travail) à l'aide de la méthode décrite dans “Paramètres cachés, visibles et personnalisés”. w.SP apparaît alors dans la PAGE DE REPOS. Positionner Sprr sur la vitesse de rampe souhaitée. Ce paramètre est réglable par pas de 1/10 d’ unités affichées les moins significatives par minute. Cela signifie que, si l'affichage est configuré de 0 à 1000oC, la limite de vitesse de consigne peut être réglée entre 0,1 et 999,9 oC par minute. Lorsque la limite de vitesse de consigne a été activée et que le timer a démarré, la consigne de travail w.sp commence par passer à la température mesurée puis passe en rampe à la limite de vitesse de consigne sprr jusqu'à la consigne cible. Dans les modes 1 et 2, le compte à rebours commence lorsque la température mesurée diffère de la consigne cible de moins d'1oC. Dans les modes 3 et 4, il commence lorsque w.sp diffère de la consigne cible de moins d'1oC. Réinitialisation Palier indéfini à la consigne Température Consigne Chronométrage Fin 24 N0 Réf HA026270FRA Indice 5.0 08/07 3.12 Demarrage et reinitialisation du timer Il existe deux méthodes : Méthode 1. Il s'agit de la méthode la plus simple pour commander le timer. • Appuyer sur jusqu'à la liste SP • Appuyer sur jusqu'au paramètre tMr (temps restant). CONSEIL : personnaliser tmr dans la PAGE DE REPOS pour un accès rapide, comme le décrit la section ‘Paramètres cachés, visibles et personnalisés'. Dès qu'une valeur est saisie dans tmr, le chronométrage commence. tmr effectue le compte à rebours vers zéro. Au cours de la période de chronométrage, tmr peut augmenter ou diminuer en fonction des demandes du procédé. Le positionnement de la valeur sur zéro met fin à la période de chronométrage. Lorsque tmr atteint zéro, ‘end’ clignote sur l'affichage principal. Le timer reste indéfiniment dans cet état jusqu'à ce qu'une nouvelle valeur soit saisie : le timer redémarre alors. Pour réinitialiser le timer, appuyer simultanément sur et . ‘end’ arrête de clignoter. Pour redémarrer le timer, saisir une nouvelle valeur dans tmr. 1234 Tmr Appuyer sur ou pour saisir la période de temporisation souhaitée en minutes. (0 à 9999) Appuyer sur pour revenir à la PAGE DE REPOS N0 Réf HA026270FRA Indice 5.0 08/07 25 Méthode 2. Utiliser cette méthode si l'on souhaite définir une durée fixe et utiliser le paramètre stat pour démarrer et arrêter le timer. Il est également possible de faire alterner le paramètre stat entre Off et run en configurant l'E/S logique comme entrée de fermeture de contact arrêt/marche. Ouvrir le contact externe pour sélectionner run. C'est une action déclenchée par les flancs. Fermer le contact pour sélectionner Off. Off est forcé à chaque fermeture du contact. 1234 dwel run stat sp Appuyer sur pour atteindre l'entête de liste SP. Appuyer sur cette touche jusqu'à dwel Temps de palier Appuyer sur ou pour saisir une période de chronométrage en minutes (0-9999). Etat du timer Pour démarrer le timer, appuyer sur ou pour sélectionner run. Le temps de palier est chargé dans tmr et la temporisation commence. Pour réinitialiser le timer, sélectionner Off. Le temps restant tmr est fixé à 0. Appuyer simultanément sur et pour revenir à la PAGE DE REPOS. 26 N0 Réf HA026270FRA Indice 5.0 08/07 4 Configuration du Regulateur Sélectionner le niveau configuration pour modifier : •le type de régulation •les unités affichées •le type de capteur d'entrée • la mise à l'échelle des entrées linéaires • la configuration des alarmes • les codes d'accès. 4.1 Sélection du niveau configuration Appuyer sur pour se déplacer dans les en-têtes de listes configuration. Une fois qu'un en-tête de liste a été sélectionné, appuyer sur pour sélectionner un paramètre dans une liste donnée. Appuyer sur et pour modifier le réglage. inSt iP AL AA Exit pASS 1A Configuration de l'appareil Appuyer Appuyer Appuyer sur ou pour sélectionner Conf Appuyer sur pour atteindre l'en-tête de liste Accès. Appuyer sur ou pour saisir le code d'accès. La valeur par défaut réglée en usine est 1. PASS apparaît lorsque le code d'accès correct a été saisi. Appuyer sur ou pour saisir le code d'accès du niveau configuration. La valeur par défaut réglée en usine est 2. PASS apparaît lorsqu'un code d'accès correct a été saisi. Appuyer sur cette touche pour passer au niveau configuration. Goto conF ACCS codE PASS ConF PASS Appuyer N0 Réf HA026270FRA Indice 5.0 08/07 27 4.1.1 Configuration de l'appareil inst Configuration de l'appareil Options Signification *C Celsius *F Fahrenheit *K Kelvin unit Unités affichées nonE Pas d'unité nnnn Néant nnn.n Une décimale dEC.P Résolution de l'affichage nn.nn Deux décimales Pid PID On.OF Tout ou rien CtrL Type de régulation AL Convertit le régulateur en unité d'alarme inst Configuration de l'appareil Options Signification rEv Inverse (action normale pour la régulation de la température) Act Action de régulation dir Directe (la sortie diminue lorsque la valeur de régulation passe en-dessous de la consigne) Pd.tr Suivi de l’intégrale manuelle (régulation PD) HoLd En mode Auto, maintient la valeur de l'intégrale manuelle trAc En mode Auto, suit la sortie pour le transfert progressif Auto/Manuel 28 N0 Réf HA026270FRA Indice 5.0 08/07 4.1.2 Configuration des Entrées iP Entrée capteur Options Signification j.tc Thermocouple J k.tc Thermocouple K L.tc Thermocouple L r.tc Thermocouple R b.tc Thermocouple B n.tc Thermocouple N t.tc Thermocouple T S.tc Thermocouple S PL 2 Platinell II rtd Sonde platine 100 Ω mV Millivolt linéaire inPt Type d'entrée C.tc Entrée personnalisée (C = valeur par défaut) Auto Automatique 0*C Référence externe 0°C 45*C Référence externe 45°C CJC (TC seule ment) Compensat ion de soudure froide 50*C Référence externe 50°C Mise à l'échelle des entrées linéaires (plage -12 à +80 mV) InP.L Entrée mV basse InP.H Entrée mV haute VaL.L Valeur affichée basse VAL.H Valeur affichée haute OFF Off (entrées linéaires uniquement) Auto 1.5KΩ Hi 5KΩ ImP Adaptation d'impédance pour rupture capteur HiHi 15KΩ, Inp.L Inp.H VAL.H VAL.L mV Valeur affichée N0 Réf HA026270FRA Indice 5.0 08/07 29 4.1.3 Configuration des Alarmes La liste AL configure les trois alarmes internes ‘non bloquantes' et fait clignoter le message d'alarme qui convient sur la PAGE DE REPOS. A ce stade, l'alarme est simplement une indication (‘alarme non bloquante’). Pour provoquer l'activation des sorties relais ou logiques par les alarmes, suivre les instructions de “Configuration des entrées/sorties relais et logiques". AL Alarme Type Signification OFF Alarme désactivée fsL Alarme pleine échelle basse fsH Alarme pleine échelle haute dEv Alarme bande dHi Alarme écart haut AL 1 Alarme 1 dLo Alarme écart bas Ltch Alarme no Non mémorisée mémorisée YES Mémorisée avec réinitisalisation automatique * AL Alarme Type Signification mAn Mémorisée avec réinitialisation manuelle **. bLoc Alarme no Non bloquante bloquante YES Bloquée jusqu'au premier état hors alarme La séquence ci-dessus se répète pour: AL 2 (Alarme 2) et AL 3 (Alarme 3) diS Limité par la plage d'affichage Du capteur Sp.Li Limites de la consigne d'alarme Con Limité par les limites de la consigne * La réinitialisation automatique signifie que, une fois que l'alarme a été acquittée, elle s'efface automatiquement lorsqu'elle n'est plus vraie. ** La réinitialisation manuelle signifie que l'alarme doit être tout d'abord effacée avant de pouvoir être réinitialisée. 30 N0 Réf HA026270FRA Indice 5.0 08/07 4.1.4 Configuration des Entrées/Sorties Relais et Logiques N.B: il est possible de configurer les E/S logiques comme sorties ou comme entrées de fermeture de contact pour l'acquittement des alarmes, le verrouillage du clavier ou la mise en marche/réinitialisation du timer. Aa Sortie relais 1a E/S logiques Options Signification id Identité de la rELy Relais sortie LOG Logique diG Sortie logique (alarme) HEAt Sortie chauffage Fonction COOL Sortie refroidissement SSr.1 Mode PDSIO 1 Ac.AL Acquittement des alarmes Loc.b Entrée logique verrouillage du clavier Func Ces fonctions apparaissent uniquement pour les E/S logiques rres Mise en marche /réinitialisation du Aa Sortie relais 1a E/S logiques Options Signification timer noch Aucun changement CLr Suppression de toutes les alarmes 1FSL Alarme 1 (Cf. remarque 1) 2FSH Alarme 2 (Cf. remarque 1) 3FSL Alarme 3 (Cf. remarque 1) nw * Alarme nouvelle Sbr* Alarme rupture capteur Lbr* Alarme rupture de boucle LdF* Alarme défaut de charge mAn* Mode manuel actif End* Fin du chronométrage tmG1* Timer en marche diG.F Fonctions sorties Numériques Cf. ci-dessous “Utilisation de la sortie relais ou logique à partir d'une fonction logique" Paragraphe 4.1.5. tmG2* Timer en compte N0 Réf HA026270FRA Indice 5.0 08/07 31 Aa Sortie relais 1a E/S logiques Options Signification à rebours (Cf. remarque tmG3* Timer en marche 2) tmG4* Timer en compte à rebours nor Normal (sorties chauffage ou refroidissement) SenS Sens de la sortie Inv Inversé (pour les alarmes, se coupe en état d'alarme) *Ces alarmes sont toujours non mémorisées. Les alarmes 1,2 et 3 sur la mesure sont configurables en alarmes mémorisées ou non mémorisées (Voir lisete Al) Les Remarque 1 : les trois dernières lettres correspondent au type d'alarme configuré dans la liste AL. Si l'alarme est désactivée, AL 1 ou AL 2 ou AL 3 est affiché. Remarque 2 : tmg.3 et tmG.4 sont des fonctions spéciales. Si elles sont sélectionnées, elles provoquent l'allumage des voyants de sorties relais ou logiques OP1 et OP2 sans actionner la sortie correspondante. Elles servent à indiquer que le chronométrage est en cours, tout en laissant les autres fonctions logiques activer les sorties effectives (état FIN qui peut servir à faire fonctionner un klaxon externe, par exemple). 4.1.5 Utilisation de la sortie relais ou logique à partir d'une fonction alarme ou logique. 1. Appuyer sur jusqu'à Func 2. Appuyer sur ou pour sélectionner Func = diG 3. Appuyer sur pour atteindre diG.F 4. Appuyer sur ou pour sélectionner une fonction alarme ou logique 5. Attendre 2 secondes. L'affichage revient à diG.F et relie la fonction alarme ou logique sélectionnée à la sortie relais ou logique. 6. Appuyer à nouveau sur ou . Deux décimales apparaissent dans la fonction qui a été ajoutée à la sortie. 32 N0 Réf HA026270FRA Indice 5.0 08/07 4.1.6 Alarmes multiples sur une seule sortie Il est possible de réaliser le « ou » d’un nombre quelconque de fonctions alarmes ou logiques à la sortie relais ou logique en répétant les étapes 4, 5 et 6 ci-dessus. Deux décimales apparaissent sur les fonctions qui ont été ajoutées à la sortie. 4.1.7 Suppression des alarmes d'une sortie 1. Appuyer sur jusqu'à diG.F 2. Appuyer sur ou pour sélectionner CLr 3. Attendre 2 secondes. L'affichage revient à diG.F qui annule toutes les alarmes du relais. 4.1.8 Codes d'accès PASS Codes d'accès Plage Valeur par défaut ACC.P Code d'accès des niveaux Régleur et Modification 0-9999 1 CnF.P Code d'accès du niveau Configuration 0-9999 2 CAL.P Code d'accès de la Calibration utilisateur 0-9999 3 4.1.9 Sortie du niveau Configuration Appuyer sur pour atteindre l'affichage ‘exit’. Appuyer sur ou pour sélectionner ‘YES’. Après 2 sec, l'affichage clignote et revient à la PAGE DE REPOS au niveau Opérateur. Exit YES N0 Réf HA026270FRA Indice 5.0 08/07 33 4.1.10 Alarmes de diagnostic Outre les alarmes de procédé normales, les messages d'alarme de diagnostic suivants sont disponibles. Message Signification et (intervention) EE.Er Electrically Erasable Memory Error (erreur de mémoire effaçable électriquement) : La valeur d'un paramètre a été altérée. Appeler Eurotherm Automation. HW.Er Erreur matérielle : (envoyer le régulateur en réparation) LLLL Plage basse d'affichage dépassée : (vérifier le signal d'entrée) HHHH Plage haute d'affichage dépassée : (vérifier le signal d'entrée) Err1 Erreur 1 : échec du test automatique de la ROM. (envoyer le régulateur en réparation) Err2 Erreur 2 : échec du test automatique de la RAM. (envoyer le régulateur en réparation) Err3 Erreur 3 : échec du chien de garde. (envoyer le régulateur en réparation) Err4 Erreur 4 : défaut du clavier. Touche Message Signification et (intervention) bloquée ou une touche a été enfoncée lors de la mise en route. Err5 Erreur 5 : défaut sur circuit d'entrée. (envoyer le régulateur en réparation) Pwr.F Défaut alimentation. La tension de ligne est trop faible. TU.Er Erreur Réglage. Apparaît si le temps d’auto-reglage dépasse 2 heures. 34 N0 Réf HA026270FRA Indice 5.0 08/07 4.2 Calibration Utilisateur Le régulateur a été calibré à vie par rapport à des sources de référence connues. La calibration utilisateur permet d'appliquer des offsets afin de compenser les erreurs de capteurs et autres erreurs système. Le paramètre OFS de la liste IP applique un offset fixe sur toute la plage d'affichage. Il est également possible d'appliquer une calibration bi-point de la manière suivante : • Appuyer sur jusqu'à la liste iP • Appuyer sur jusqu'au paramètre CAL.P • Appuyer sur ou pour saisir le code d'accès. La valeur par défaut réglée en usine est 3. PASS apparaît lorsque le code d'accès correct a été saisi. • Appuyer sur pour atteindre le paramètre CAL • Appuyer sur ou pour sélectionner User (FAct rétablit la calibration réglée en usine) • Appuyer sur pour sélectionner sucessivement les quatre paramètres représentés sur le graphique ci-dessous. Utiliser ou pour définir les points de calibration souhaités et les offsets à appliquer à chaque point. La liste iP de la page 5 décrit chaque paramètre. Calibration usine Valeur affichée Calibration usine Pnt.H OFS.H OFS.L Pnt.L Calibration utilisateur N0 Réf HA026270FRA Indice 5.0 08/07 35 4.3 Réglage Automatique En régulation PID, la sortie du régulateur est la somme de trois termes : Proportionnel, Intégral et Dérivé. Ces trois termes délivrent la quantité de puissance qui est suffisante pour maintenir la température à la consigne sans oscillation. Pour une régulation stable, les valeurs PID doivent être ‘réglées’ pour correspondre aux caractéristiques du procédé régulé. Sur les modèles 2132 et 2116, cela est effectué automatiquement à l'aide de techniques de réglage évoluées. Le réglage automatique consiste à activer et désactiver la sortie du régulateur pour induire une oscillation de la température mesurée. Les valeurs PID, indiquées dans le tableau ci-dessous, sont calculées à partir de l'amplitude et de la période de l'oscillation. Paramètre Affichage Signification ou fonction Bande proportionnelle Pb Largeur de bande, exprimée en °C ou °f sur laquelle la puissance de sortie est proportionnée entre le minimum et le maximum. Temps d'intégrale ti Détermine le temps nécessaire au régulateur pour supprimer l'erreur de statisme en régime Paramètre Affichage Signification ou fonction permanent. Temps de dérivée td Détermine l'ampleur de la réaction du régulateur à la vitesse de variation de la température. Cutback bas Lcb Nombre de °C ou °f endessous de la consigne auquel le régulateur va diminuer la puissance de sortie pour empêcher un dépassement de la consigne lors du chauffage. Cutback haut Hcb Nombre de °C ou °f audessus de la consigne auquel le régulateur va augmenter la puissance de sortie pour empêcher que l'on soit endessous de la consigne lors du refroidissement. Gain relatif de refroidissement rEL.C Uniquement présent si le refroidissement a été configuré. Définit la bande proportionnelle de refroidissement en divisant la valeur Pb par la valeur rEL.C. 36 N0 Réf HA026270FRA Indice 5.0 08/07 Si le procédé ne peut pas tolérer l'application du chauffage ou du refroidissement total au cours du réglage, il est possible de limiter la puissance en fixant les limites de chauffage et de refroidissement dans la liste Sorties. Toutefois, la valeur mesurée doit osciller pour que le régulateur puisse calculer les valeurs. Le réglage est normalement effectué une seule fois lors de la mise en service initiale du procédé. Toutefois, si le procédé régulé devient ensuite instable (à cause d'un changement de ses caractéristiques), il est possible d'effectuer un nouveau réglage à tout moment. Il est préférable de commencer le réglage avec le procédé à température ambiante. Le régulateur peut ainsi effectuer les calculs de manière plus précise. 4.3.1 Temps de cycle des sorties Chauffage et Refroidissement Avant de commencer un cycle de réglage, définir les valeurs de CYC.H (temps de cycle de la sortie Chauffage) et CYC.C (temps de cycle de la sortie Refroidissement) dans la liste oP (sorties). Pour une sortie logique de chauffage (commutant un contacteur statique), positionner CYC.H sur 1.0 sec. Pour une sortie relais, positionner CYC.H sur 20.0 sec. Pour une sortie logique de refroidissement servant à réguler une électrovanne, positionner CYC.C sur 5.0 sec N0 Réf HA026270FRA Indice 5.0 08/07 37 4.3.2 Procédure de réglage • Régler la consigne sur la valeur à laquelle le procédé fonctionnera normalement. • Dans la liste ‘Atun’, sélectionner ‘tunE’ et le régler sur ‘on’ • Appuyer simultanément sur les touches Page et Défilement pour revenir à la PAGE DE REPOS. L'affichage fait clignoter ‘tunE’ pour indiquer que le réglage est en cours. • Le régulateur induit une oscillation de la température en activant puis en désactivant le chauffage. • Après deux cycles d'oscillation, le réglage est terminé et le régulateur s'arrête de lui-même. • Le régulateur calcule ensuite les paramètres de réglage et reprend son action normale de régulation. Si l'on souhaite une régulation ‘Proportionnelle uniquement’ ou ‘P+D’ ou ‘P+I’, il faut positionner les paramètres ‘ti’ ou ‘td’ sur OFF avant de commencer le cycle de réglage. Le régulateur les laissera sur la position off (désactivée) et ne calculera aucune valeur pour ces paramètres. 4.3.3 Cycle type de réglage automatique 4.3.4 Calcul des valeurs de cutback Lorsque le cutback bas ou haut est positionné sur ‘AuTo’, les valeurs sont fixées à trois fois la bande proportionnelle et ne seront pas modifiées au cours du réglage automatique. Si le cutback est positionné sur une autre valeur, il sera calculé comme faisant partie du réglage. Temps Température 38 N0 Réf HA026270FRA Indice 5.0 08/07 4.4 Réglage Manuel Si, pour une raison quelconque, le réglage automatique ne donne pas des résultats satisfaisants, il est possible de régler manuellement le régulateur. Procéder de la manière suivante : Le procédé étant à sa température normale de fonctionnement : • Positionner le temps d'intégrale ‘ti’et le temps de dérivée ‘td’ sur OFF. • Positionner Cutback haut ‘Hcb’ et Cutback bas ‘Lcb’ sur ‘Auto’ • Ne pas tenir compte du fait que la température peut ne pas se stabiliser avec précision à la consigne • Réduire la bande proportionnelle ‘Pb’ jusqu'à ce que la température commence à osciller. Si la température oscille déjà, augmenter la bande proportionnelle jusqu'à ce qu'elle arrête d'osciller. Laisser suffisamment de temps entre chaque réglage pour que la température se stabilise. Noter la valeur de la bande proportionnelle ‘B’ et la période d'oscillation ‘T’. • Fixer les valeurs des paramètres PID selon la formule ci-dessous: Type de régulation ‘Pb’ ‘ti’ ‘td’ Proportionnelle uniquement 2xB OFF OFF P + I 2,2xB 0,8xT OFF P + I + D 1,7xB 0,5xT 0,12xT N0 Réf HA026270FRA Indice 5.0 08/07 39 4.4.1 Configuration des valeurs de cutback La procédure ci-dessus indique comment configurer les paramètres pour une régulation optimale en régime permanent. Si, au cours du démarrage ou des variations importantes de la température, on atteint des niveaux inacceptables de dépassement ou de mesures en-dessous de la consigne, il faut configurer manuellement les paramètres de cutback Lcb et Hcb. Procéder de la manière suivante : 1. Configurer les valeurs de cutback haut et bas au triple de la largeur de la bande proportionnelle (c'est-à-dire Lcb = Hcb = 3 x PB). 2. Noter le niveau de dépassement ou de mesure endessous de la consigne pour les changements importants de la température (cf. les courbes cidessous). Dans l'exemple (a), augmenter Lcb de la valeur du dépassement. Dans l'exemple (b), diminuer Lcb de la valeur des mesures en-dessous de la consigne. Exemple (a) Exemple (b) Lorsque la température se rapproche de la consigne par le haut, il est possible de configurer Hcb de la même manière. 4.4.2 Réinitialisation manuelle Lorsque ti = OFF réinitialisation manuelle (rES) apparaît dans PiD List. Ce paramètre règle la puissance de sortie lorsque le signal d'erreur est égal à zéro. Il est possible de le corriger manuellement afin d'éliminer l'erreur en régime permanent (fonction normalement exécutée par le terme intégral). Température Temps Dépassement Température Temps Mesures en-dessous de la consigne 40 N0 Réf HA026270FRA Indice 5.0 08/07 5 Code de Commande Le régulateur est livré configuré selon le code de commande indiqué ci-dessous. Numéro du modèle Fonction Tension d’alimentation Manuel Sortie 1 (logique) Sortie 2 (relais) Fonction CC RégulateurPID NF Régulateur Tout ou rien TC Régulateur PID + timer TN Régulateur Tout ou rien + timer Tension d’alimetation VH 85-264Vac VL 20 -29Vdc ou ac Manuel XXX Pas de manuel ENG Anglais FRA Français GER Allemand NED Néerlandais SPA Espagnol SWE Suédois ITA Italien Sortie 2 (relais) XX Désactivé RH Chauffage RC Refroidissement FH Alarme haute 2 FL Alarme basse 2 AL Alarme haute 2 & alarme basse 3 DB Alarme de bande 2 DL Alarme 2 écart bas DH Alarme 2 écart haut NW Nouvelle alarme Sortie 1 (logique) XX Désactivé Sortie logique LH Chauffage LC Refroidissement M1 Mode PDSIO 1 FH Alarme haute 1 FL Alarme basse1 DB Alarme de bande 1 DL Alarme 1 écart bas DH Alarme 1 écart haut NW Nouvelle alarme Entrée logique AC Alarme acquit./réinit. KL Verrouillage clavier TM Timer Marche/Réinit. Numéro du modèle 2132 1/16 DIN 2116 1/8 DIN N0 Réf HA026270FRA Indice 5.0 08/07 41 Entrée capteur Consigne mini Consigne maxi Unités Module relais externe Adaptateur d'entrée Module relais externe XX Pas installé R7 Installé (actionné par la sortie logique) Unités C °C F ° F K Kelvin X Entrée linéaire Adaptateur d'entrée XX Néant V1 0-10 Vdc A1 Résistance 0- 20mA (2,49 Ω. 0,1 %) Entrée capteur Plage d'affichage et limites mini & maxi de consigne Thermocouples °C ° F J Type J -210 à 1200 -340 à 2192 K Type K -200 à 1372 -325 à 2500 T Type T -200 à 400 -325 à 750 L Type L -200 à 900 -325 à 1650 N Type N -200 à 1300 -325 à 2370 R Type R -50 à 1768 58 à 3200 S Type S -50 à 1768 -58 à 3200 B Type B 0 à 1820 32 à 3308 P Platinell II 0 à 1369 32 à 2496 Sonde Z Pt100 -200 à 850 -325 à 1562 Entrées personnalisées OC OF C Type C -W5%Re/W26%Re (capteur personnalisé par défaut) 0 à 2319 32 à 4200 D Type D - W3%Re/W25%Re 0 à 2399 32 à 4350 E Thermocouple E -200 à 999 -325 à 1830 1 Ni/Ni18%Mo 0 à 1399 32 à 2550 2 Pt20%Rh/Pt40%Rh 0 à 1870 32 à 3398 3 W/W26%Re (Engelhard) 0 à 2000 32 à 3632 4 W/W26%Re (Hoskins) 0 à 2010 32 à 3650 5 W5%Re/W26%Re (Engelhard) 10 à 2300 50 à 4172 6 W5%Re/W26%Re(Bucose) 0 à 2000 32 à 3632 7 Pt10%Rh/Pt40%/Rh 200 à 1800 392 à 3272 8 Pyromètre Exegen K80 I.R. -45 à 650 -49 à 1202 Entrées de procédé (linéaires) M -9,99 mV à +80mV Y 0 à 20mA A 4 à 20mA V 0 à 10Vdc (adaptateur d'entrée nécessaire) 42 N0 Réf HA026270FRA Indice 5.0 08/07 5.1 Specification Technique Etanchéité de la face avant IP65 (EN 60529), ou 4X (NEMA 250) Conditions ambiantes de fonctionnement 0 à 55oC. Vérifier que l'armoire est correctement ventilée. Humidité relative 5 à 95%, sans condensation Température de stockage -30oC à +75oC. (Protéger contre l'humidité et la poussière) Atmosphère L'appareil ne doit être utilisé ni à une altitude supérieure à 2000 m ni en atmosphère explosive ou corrosive Alimentation Unité haute tension : 100 à 240Vac -15%, +10%, 48-62Hz, puissance consommée 5 Watts maximum Unité basse tension : 24Vdc/ac +/- 20%. DC à 62Hz, puissance consommée 5 Watts maximum Relais (isolé) Maximum: 264Vac, charge résistive 2A. Minimum: 12Vdc, 100mA Longévité mécanique > 107 opérations. Longévité électrique sous une charge résistive de 1 A, 240 vac > 5 x106 opérations Sections des fils Utiliser un fil de section minimale de 0,5mm2 (16awg) pour les branchements de l'installation. Protection contre Utiliser des fusibles indépendants 2A pour l'alimentation de l'indicateur et les sorties N0 Réf HA026270FRA Indice 5.0 08/07 43 les surintensités relais. Les fusibles à utiliser sont de type EN60127 (type T) Entrées/sorties logiques 9V à 12mA, pas isolées de l'entrée capteur Sécurité électrique EN 61010 (Les surtensions transitoires ne doivent pas dépasser 2,5 kV). Degré de pollution 2. Isolation: L'ensemble des entrées et sorties isolées ont une isolation renforcée qui assure une protection contre l'électrocution (cf. la remarque sur les capteurs sous tension). Compensation de soudure froide Taux de réjection 30:1 pour une variation de température ambiante en mode automatique. Utilisation d'un procédé de mesure ultra-précis INSTANT ACCURACY TM qui vise à éliminer les dérives en température lors de la mise en chauffe et à répondre très rapidement à toute variation de température ambiante. Catégorie d'installation Catégorie II ou CAT II 44 N0 Réf HA026270FRA Indice 5.0 08/07 6 Sécurité compatibilité électromagnétique (CEM) Ce régulateur a été fabriqué au Royaume-Uni par Eurotherm Ltd. Veuillez lire attentivement ce paragraphe avant d'installer le régulateur Ce régulateur est conçu pour les applications industrielles de régulation de procédés et de température. Il satisfait aux exigences des directives européennes en matière de sécurité et de compatibilité électromagnétique. Son utilisation dans le cadre d'autres applications ou le non-respect des consignes d'installation contenues dans ce manuel pourrait affecter la sécurité ou la compatibilité électromagnétique de cet instrument. Il incombe à l'installateur de veiller à la sécurité et à la compatibilité électromagnétique de chaque installation. 1.1 GENERALITES Les informations contenues dans ce manuel sont sujettes à modification sans préavis. Bien que tous les efforts aient été consentis pour assurer l'exactitude des informations, votre fournisseur décline toute responsabilité pour les erreurs contenues dans ce manuel 6.1.1 Sécurité Ce régulateur est conforme à la directive européenne sur les basses tensions 73/23/EEC et à la norme de sécurité EN 61010. 6.1.2 Compatibilité électromagnétique Ce régulateur est conforme aux exigences de protection essentielles de la directive EMC 89/336/EEC, sur la base d'un dossier technique de construction. Cet instrument satisfait aux exigences générales en matière de milieu industriel définies par la norme EN 61326. Pour de plus amples informations sur la conformité de ce produit, veuillez consulter le dossier de construction technique. N0 Réf HA026270FRA Indice 5.0 08/07 45 6.1.3 Conditionnement et stockage L'emballage contient un instrument monté sur son manchon, deux clips de fixation pour l'installation sur panneau ainsi qu'un guide d'installation et d'utilisation. Certaines gammes sont fournies avec un adaptateur d'entrée. Si l'emballage ou l'instrument est endommagé à la livraison, n'installez pas le produit et contactez votre fournisseur. Si l'instrument doit être stocké avant utilisation, protégez-le contre l'humidité et la poussière à une température ambiante comprise entre -10oC et +70oC. 1.2 Entretien et réparation Ce régulateur ne contient aucune pièce réparable par l'utilisateur. Contactez votre fournisseur pour les réparations. 6.1.4 Attention : Condensateurs chargés Avant de retirer un instrument de son manchon, débranchez l'alimentation et attendez au moins deux minutes pour permettre aux condensateurs de se décharger. Il peut s'avérer plus pratique de retirer partiellement l'instrument de son manchon et de marquer ensuite une pause avant de le sortir complètement. Dans tous les cas, évitez de toucher aux composants électroniques de l'instrument lors de son retrait du manchon. Le non-respect de ces consignes pourra endommager les composants de l'instrument et exposer l'utilisateur à des risques. 6.1.5 Précautions en matière de décharges électrostatiques Une fois le régulateur retiré de son manchon, certains de ses composants électroniques exposés pourront être endommagés par les décharges électrostatiques accumulées dans le corps. Pour prévenir tout risque, déchargez-vous de cette énergie en touchant régulièrement un objet métallique relié à la terre, avant de manipuler le régulateur débranché. 6.1.6 Nettoyage N'utilisez pas d'eau ni de produits à base d'eau pour nettoyer les étiquettes car elles deviendraient alors illisibles. Utilisez de l'alcool isopropylique pour le nettoyage des étiquettes. Utilisez une solution savonneuse douce pour nettoyer les autres surfaces extérieures du produit. 46 N0 Réf HA026270FRA Indice 5.0 08/07 1.3 Consignes de sécurité lors de l'installation 6.1.7 Symboles de sécurité Cet instrument utilise divers symboles ayant les significations suivantes : ! Attention (renvoie aux documents d'accompagnement) 6.1.8 Personnel L'installation doit être uniquement confiée à du personnel adéquatement qualifié. 6.1.9 Protection des composants sous tension Afin d'éviter que les mains ou les outils en métal n'entrent au contact de composants sous tension, le régulateur devra être installé dans une armoire. 6.1.10 Attention : Capteurs sous tension Ce régulateur est conçu pour fonctionner avec le capteur de température directement relié à un élément de chauffage électrique. Veillez à ce que le personnel d'entretien ne touche pas ces connexions lorsqu'elles sont sous tension. Tous les câbles, connecteurs et commutateurs de connexion d'un capteur sous tension devront être dimensionnés pour la tension du secteur. L’E/S logique n’est pas isolée des entrées PV, et tous les câbles, connecteurs et interrupteurs de connexion du capteur doivent être dimensionnés pour la tension du secteur. 6.1.11 Raccordement Il est important de connecter le régulateur conformément aux informations de câblage figurant dans ce guide. Veillez tout particulièrement à ne pas connecter les alimentations alternatives à l'entrée basse tension du capteur ou à d'autres entrées et sorties de bas niveau. Utilisez uniquement des conducteurs en cuivre pour les connexions (à l'exception des entrées de thermocouple) et assurez-vous que le câblage des installations est conforme à toutes les réglementations N0 Réf HA026270FRA Indice 5.0 08/07 47 locales en vigueur. Au Royaume-Uni, utilisez la version la plus récente des réglementations de câblage IEE (BS7671). Aux Etats-Unis, utilisez les méthodes de câblage NEC Classe 1. 6.1.12 Isolation de l'alimentation L'installation doit être équipée d'un sectionneur ou d'un disjoncteur. Ce dispositif devra être monté à proximité immédiate du régulateur, être facilement accessible pour l'opérateur et être clairement désigné comme appareil de coupure et de déconnexion de l'instrument. 6.1.13 Protection de surintensité L'alimentation du système doit être dotée de fusibles de capacité suffisante pour protéger le câblage des unités. 6.1.14 Tension nominale La tension maximale permanente appliquée entre les bornes suivantes ne doit pas dépasser 264 Vac: • sortie de relais à connexions logiques dc ou de capteur ; • toute connexion à la terre. Le régulateur ne doit pas être relié à une alimentation triphasée par une connexion en étoile non mise à la terre. En cas de défaillance, une telle alimentation pourrait excéder 264 Vac par rapport à la terre et le produit présenterait alors des dangers. 6.1.15 Pollution conductrice L'armoire dans laquelle le régulateur est monté doit être exempte de toute pollution électriquement conductrice. La poussière de carbone est une forme de pollution électriquement conductrice. Pour assurer une atmosphère convenable, installez un filtre à air sur l'entrée d'air de l'armoire. Si des risques de condensation sont probables, par exemple à des températures basses, montez un chauffage à commande thermostatique dans l'armoire. Ce produit a été conçu pour satisfaire aux exigences de la norme BSEN61010, catégorie d'installation II, degré de pollution 2, telles qu'elles sont définies ci-après : 48 N0 Réf HA026270FRA Indice 5.0 08/07 6.1.16 Catégorie d'installation II La tension de choc nominale pour un équipement ayant une alimentation de 230 V nominale est de 2500 V. 6.1.16.1 Degré de pollution 2 Dans des conditions d'utilisation normales, seule une pollution non conductrice peut se produire. Une conductivité temporaire due à la condensation pourra cependant se produire dans certaines circonstances. 6.1.17 Mise à la terre du blindage du capteur de température Certaines installations prévoient généralement le remplacement du capteur de température, alors que le régulateur est toujours sous tension. Dans ces circonstances et afin de renforcer la protection contre les chocs électriques, il est recommandé de mettre le blindage du capteur de température à la terre. La mise à la terre du châssis de la machine n'est pas suffisante. 6.1.18 Protection contre les températures excessives Lors de la conception de tout système de commande, il est essentiel d'examiner les conséquences d'une défaillance de chaque composant du système. Dans les applications de régulation de la température, le principal danger vient d'un chauffage qui resterait constamment activé. Outre les dommages subis par le produit, une telle défaillance pourrait endommager les machines contrôlées ou même provoquer un incendie. Le chauffage pourra rester constamment activé pour plusieurs raisons : • Le capteur de température s'est détaché ; • Il y a un court-circuit dans le câblage du thermocouple ; • Il y a une défaillance du régulateur alors que la sortie de chauffage est constamment activée ; • Une vanne ou un contacteur externe est bloqué en position de chauffage ; • Le point de consigne du régulateur est trop élevé. Pour prévenir les risques de dommages ou d'accidents, il est recommandé d'installer une unité séparée de protection contre les températures excessives, munie N0 Réf HA026270FRA Indice 5.0 08/07 49 d'un capteur de température indépendant qui isolera le circuit de chauffage. Attention : Les relais d'alarme du régulateur n'assurent pas une protection totale pour toutes les conditions de panne. 1.4 Exigences d'installation en matière de compatibilité électromagnétique Afin d'assurer la conformité à la directive EMC européenne, les précautions d'installation suivantes devront être prises : • Pour de plus amples informations, veuillez-vous reporter au guide d'installation CEM, HA025464FRA. • Lors de l'utilisation des sorties de relais, il pourra s'avérer nécessaire de monter un filtre afin de supprimer les émissions conduites. Les caractéristiques du filtre dépendront du type de charge. Pour les applications typiques, l'utilisation du modèle Schaffner FN321 ou FN612 est préconisée. • Si l'unité doit être utilisée avec un matériel sur table, branché sur une prise d'alimentation standard, la conformité aux normes d'émissions commerciales et de l'industrie légère devra être observée. Dans un tel cas et afin de satisfaire aux exigences en matière d'émissions conduites, un filtre secteur adéquat devra être installé. Nous recommandons des filtres Schaffner de type FN321 et FN612. 6.1.19 Cheminement des câbles Pour réduire les bruits électriques, les connexions dc basse tension et le câblage d'entrée du capteur devront être acheminés à l'écart des câbles d'alimentation haute tension. Si cela est impossible, utilisez des câbles blindés en prenant soin de relier le câblage à la terre aux deux extrémités. Il est préférable de réduire au minimum la longueur des câbles. Lorsque le signal est une tension dangereuse * (ou pourrait le devenir sous des conditions anormales de fonctionnement), une double isolation est nécessaire. * Une définition plus complète de ‘tensions dangereuse’ est donnée dans le paragraphe ‘Tension dangereuse’ dans la BS EN61010. En résumé, dans des conditions normales de fonctionnement des niveaux de tension dangereuse sont définis comme étant >30V RMS (42,2 V crête) ou >60Vdc. 50 N0 Réf HA026270FRA Indice 5.0 08/07 7 RoHS Product group 2100 Table listing restricted substances Chinese 产 2100 铅镉铬溴联苯溴苯醚 线组X O X O O O 属O O O O O O 显X O O O O O 块X O X O O O O X English Product 2100 Pb Hg Cd Cr(VI) PBB PBDE PCBA X O X O O O Enclosure O O O O O O Display X O O O O O Modules X O X O O O O X Approval Name: Position: Signature: Date: Martin Greenhalgh Quality Manager IA029470U450 (CN23172) Issue 1 Feb 07 Indicates that this toxic or hazardous substance contained in at least one of the homogeneous materials used for this part is above the limit requirement in SJ/T11363-2006. 该质该质SJ/T11363-2006 标规 Toxic and hazardous substances and elements Indicates that this toxic or hazardous substance contained in all of the homogeneous materials for this part is below the limit requirement in SJ/T11363-2006. Restricted Materials Table Restriction of Hazardous Substances (RoHS) 览 质 该质该质SJ/T11363-2006 标规 2116/2132 PID Temperature oder Ein/Aus Regler GER Bedienungsanleitung HA026270GER Ausgabe 5.0 08/07 1 PID Temperatur- oder EIN/AUS- Regler Typ 2132 und 2116 Die Reglermodelle 2132 und 2116 sind kompakte PID-Temperatur oder EIN/AUS-Regler im Format 48x24 (2132) bzw. 48x48 (2116) mit Selbstoptimierung. Den Eingang können Sie für Widerstandsthermometer, Thermoelement oder als Lineareingang konfigurieren. Die Regler bieten Ihnen Relais- und einen Logikausgang zur Ansteuerung eines Solid-State-Relais. Beide Ausgänge können Sie für Heizen. Kühlen oder Alarm konfigurieren. Das Gerät wird im Werk nach Ihrer Bestellung konfiguriert. Bitte überprüfen Sie mit Hilfe des Geräteaufklebers auf der Regler-seite, ob die Konfiguration Ihren Anwendungen entspricht. Die Regler entsprechen den Anforderungen an Sicherheit und elektromagnetische Verträglichkeit. 1. Abmessungen und Installation Abmessungen 2132 Abmessungen 2116 48mm 45mm -0.0, + 0.6 48mm Schalttafel- 24mm ausschnitt 103mm 45mm -0.0, +0.6 Außenklammern Haltelammen 22mm -0.0, +0.3 Schalttafelausschnitt 103mm 48mm 45mm -0.0, +0.6 2 HA026270GER Ausgabe 5.0 08/07 1.1 Installation Lesen Sie bitte zuerst die Sicherheitsinformationen auf den Seiten 15. Bauen Sie das Gerät nach den folgenden Angaben ein: 1. Bereiten Sie den Ausschnitt nach den angegebenen Maßen vor. 2. Stecken Sie das Gerät in den Ausschnitt (ohne Halteklammern). 3. Bringen Sie die Halteklammern an ihren Platz. Zum Sichern des Reglers halten Sie das Gerät in Position und schieben Sie beide Klammern gegen den Schalttafelausschnitt . 4. Entfernen Sie die Schutzfolie vom Display. Anmerkung : Die Halteklammern können Sie einfach mit den Fingern oder einem Schraubendreher entfernen. 1.2 Gerätewechsel Durch Auseinanderziehen der Außenklammern und nach vorne ziehen des Reglers können Sie das Gerät aus dem Gehäuse entnehmen. Wenn Sie das Gerät zurück in das Gehäuse stecken, versichern Sie sich, daß die Außenklammern einrasten. Ansonsten kann die Schutzart IP65 nicht garantiert werden. HA026270GER Ausgabe 5.0 08/07 3 2. Elektrische Installation 3.22.1 Kabelgrößen Verwenden Sie Kabel mit Querschnitten zwischen 0,5 und 1,5 mm2. Die Klemmen sind durch eine Kunststoffabdeckung gesichert. Halten Sie bei den rückseitigen Klemmen einen Drehmoment von 0,4Nm ein. Ausgänge Logik: 9Vdc, 12mA (nicht isoliert). Anwendung Heizen, Kühlen oder Alarm. Relais: 2A, 264V ac ohm’sch. Anwendung Heizen, Kühlen oder Alarm. Schließkontakteingang (an Stelle des Logikausgangs). Anwendung: Alarmquitterung oder Timersart/-stop. Anschlüsse 2116 + - Phase Null Alarm 2 Relaisausgang T/C Pt100 mA Eingang L N A AB V+ V- 1A 1B 2.49Ω 85-264Vac 50/60Hz 1B 1A Pt100 T/C Relais Null Phase Logikein/-ausgang Anschlüsse 2132 Alarm 1 externes Relais oder Alarmquittierung/Rücksetzen 2.49Ω Eingang V- V+ AB A N L - + mA 85-264Vac 50/60Hz 24 24 20-29 Vac/dc 20-29 Vac/dc 24 24 - + Logikein/-ausgang oder Alarm 1 externes Relais Alarmquittierung/ Rücksetzen + - 4 HA026270GER Ausgabe 5.0 08/07 2.2 Beispiel Anschlussdiagramm Sicherheitsanforderungen für permanent angeschlossene Anlagenbauteile: • Die Schaltschrankinstallation muss einen Schalter oder Unterbrechungskontakt beinhalten. • Dieses Bauteil sollte in der Nähe der Anlage und in direkter Reichweite des Bedieners sein. • Kennzeichnen Sie dieses Bauteil als trennende Einheit. Anmerkung: Sie können einen Schalter oder Trennkontakt für mehrere Geräte verwenden. * Schalten Sie induktive Lasten (Schütze), verbinden Sie die Klemmen AA und AB mit einem 22nF/100Ω RCGlied. Dieser erhöht die Lebensdauer des Kontaktes und unterdrückt Störspitzen bei schalten den Induktivitäten. ! WARNUNG Bei geöffnetem Relaiskontakt fließen über den RC-Kreis 0,6mA bei 110Vac und 1,2mA bei 240Vac. Achten Sie darauf, daß durch diesen Strom keine niedrigen Lasten angezogen werden. Relaisausgang Sicherung 2A typ T N Regler Sicherung 2A typ T Heiz-element Sicherung Heizelement T/C Solid State Relais (e.g. TE10) RC-Glied * L + - Model 2132 V+ A 1B V- 1A A L N Küh-Relais HA026270GER Ausgabe 5.0 08/07 5 3. Anzeige und Tastenfunktionen Nachdem Sie den Regler eingeschaltet haben, durchläuft dieser für ca. 3. Sekunden einen Selbsttest, bei dem die Softwareversion angezeigt wird. Danach zeigt das Gerät die Hauptanzeige. Haben Sie einen der Ausgänge als Alarm konfiguriert, wechselt die Alarmmeldung mit dem Prozeßwert, wenn ein neuer, noch nicht bestätigter Alarm ansteht. Steht die Alarmbedingung nach der Bestätigung noch an, erlischt die Alarmmeldung. Der Alarmkontakt bleibt geschaltet. 3.1 Erklärung der Anzeige und der Tastenfunktionen Taste/ Anzeige Name Erklärung Bild Taste Auswahl eines anderen Parametermenüs Parameter Taste Auswahl eines Parameters innerhalb eines Menüs Mehr Taste Ein Parameterwert kann vergroßert werden. Weniger Taste Ein Parameterwert kann verkleinert werden. OP1 Ausgang 1 Zeigt an, wenn der Logikausgang aktiv ist. OP2 Ausgang 2 Zeigt an, wenn der Relaisausgang aktiv ist MAN Handbetrieb Zeigt an, wenn sich der Regler im Handbetrieb befindet. 20 Ausgang 1 Ausgang 2 Prozeßwert ‘PV’) OP1 OP2 6 HA026270GER Ausgabe 5.0 08/07 Beispiel der Tastenfunktionen: EIN/AUS Regler für Heizen/Kühlen Anmerkung: In diesem Beispiel sind nur die Parameter gezeigt, die nach der entsprechenden Konfiguration tatsächlich im Regler vorhanden sind. Die Erklärung der einzelnen Parameter sowie ein vollständiges Parameterdiagramm finden Sie in Kapitel 6. FiLt CJC mV OFS CAL.P CAL Pnt.L OFS.L Pnt.H OFS.H 20.0 AL SP iP oP On.Of ACCS X2 & & & & & & oC OP w.SP3 m-A disp 1---(1) 2---(1) 3---(1) HY Lbt spL SPH SPrr (2) CYC.H CYC.C Ont.H Ont.C (2) HYS.H HYS.C HC.db codE Goto Conf (2) Abhängig von der eingestellten Regelart wird entweder das PID- oder das EIN/AUS- Menü angezeit (1) Die letzten 3 Ziffern bezeichnen den Alarmtyp HA026270GER Ausgabe 5.0 08/07 7 4. Zugriffsebenen Der Regler bietet Ihnen zwei Bedien-, eine Editier- und eine Konfigurationsebene. Nach dem Selbsttest arbeitet der Regler automatisch in der Bedienebene. Der nachstehenden Tabelle können Sie die Möglichkeiten, die Sie in den einzelnen Ebenen haben, entnehmen. Zugriffsebenen Anzeige Möglichkeiten Paßwortschutz Bedienebene Oper In dieser Ebene können Sie die freigegebenen Parameter auslesen bzw. ändern. Die Freigabe erfolgt in der Edit- Ebene. (Kapitel 5) Nein Full-Ebene Ful Alle im Regler vorhandenen Parameter können von Ihnen ausgelesen und geändert werden. (Kapitel 6) Ja Edit-Ebene Edit In dieser Ebene können Sie den Bedienerzugriff auf Parameter und Menüs festelgen. (Kapitel 7) Wählen Sie zwischen: - Änderbar (ALtr) - Nur lesbar (read) - Versteckt (Hide) oder - Promote (Pro) (Laden des Parameters in die Bedienebene, siehe Abschnitt 7.3) Ja Konfigurationsebene Conf Diese spezielle Ebene erlaubt es Ihnen, die grundlegende Charakteristik des Reglers zu ändern. (Kapitel 8) Ja Bedienbene Oper Ful Edit Conf Bedien-und Editereben, erreichbar über Accs Code, paßwortgeschützt. Konfigurationsebene erreichbar über Accs Code, paßwortgeschützt. 8 HA026270GER Ausgabe 5.0 08/07 4.1 Auswahl einer Zugriffsebene Zugriffs-Menü Drücken Sie die -Taste, bis Sie in das Zugriffs-Menü (accs) gelangen. Mit der -Taste kommen Sie in die code Anzeige. Paßwort Drücken Sie einmal oder , um zur Paßworteingabe zu gelangen. Pass zeigt an, daß kein Paßwort für den weiteren Zugriff benötigt wird. ‘0’ zeigt an, daß Sie sich in der Bedienebene befinden und ein Paßwort erwartet wird. Mit Hilfe der und der Taste können Sie das Paßwort eingeben. 2s nach Eingabeende zeigt die Anzeige PASS und springt in die Code Anzeige zurück. Mit oder , können Sie testen, ob Sie das richtige Paßwort eingegeben haben. Wird nicht Pass angezeigt, müssen Sie das Paßwort erneut eingeben. Anmerkung: Das Paßwort für die Parameterebenen wird vom Werk auf ‘1’ eingestellt. Die Freigabe der Ebenen bleibt solange bestehen, bis Sie entweder den Regler neu starten oder erneut im Zugriffs-Menü ein anderes falsches) Paßwort eingeben. Wie Sie das Paßwort ändern können, erfahren Sie in Kapitel 8, ‘Konfiguration’. Wählen Sie ‘0’ als Paßwort, sind die unteren Ebenen nicht gesperrt. Mit Hilfe der -Taste kommen Sie in die GOTO Anzeige (Siehe nächste Seite). Accs code 1 pass oder HA026270GER Ausgabe 5.0 08/07 9 Zurück zur Bedienebene Nachdem Sie die Arbeit in einer der unteren Ebenen beendet haben, sollten Sie zurück in die Bedienebene (oper) gehen. Aus der ful- oder der Edit-Ebene kommen Sie in die Bedienebene zurück, indem Sie im Zugriffs-Menü wie vorne beschrieben ein “falsches” Paßwort eingeben. Wählen Sie nur oper, ohne das Paßwort zu ändern, bleibt der Zugriff auf die weiteren Ebenen frei. Aus der Edit-Ebene geht der Regler nach 45s ohne Tastendruck in die Bedienebene zurück Ebenenauswahl Wähleischen Sie den mit folgenden Ebenen: Oper; Bedienebene edit: Edit-Ebene Ful: Full-Ebene conf: Konfigurationsebene 2s nach Eingabeende springt die Anzeige in die goto Anzeige zurück Zugriffs-Menü Haben Sie oper, ful oder edit gewählt, befinden Sie sich nun in der gewählten Ebene. Mit den Tasten und können Sie die gewünschten Parameter erreichen. Paßwort Haben Sie conf gewählt, müssen Sie an dieser Stelle erneut ein Paßwort eingeben. Führen Sie dafür die oben beschriebenen Schritte durch. Anmerkung: Das Paßwort für die Konfigurationsebene ist werksseitig auf ‘2’ gesetzt. Wie Sie das Paßwort ändern können, erfahren Sie in Kapitel 8, ‘Konfiguration’. Konfigurationsebene Die erste Anzeige der Konfigurationsebene erscheint. Informationen über die einzelnen Parameter bekommen Sie in Kapitel 8 ‘Konfiguration’. Dort wird auch beschrieben, wie Sie die Konfigurationsebene wieder verlassen können. goto Oper Ful edit conf pass goto Conf accs 2 inst bzw. 10 HA026270GER Ausgabe 5.0 08/07 5. Bedienung 5.1 Oper-Ebene Die Oper-Ebene enthält nur die für die Bedienung wichtigen Parameter. Möchtien Sie Parameter freigeben oder sperren oder nur den Schreibzugriff verweigern, müssen Sie diese Einstellungen in der Edit-Ebene vornehmen (Kapital 7). 5.2 Einstellen des Sollwertes Damit der Sollwert angzeigt wird, drücken Sie kurz auf die Taste oder . Der Sollwert wird für 2 Sekunden angezeigt. Den Sollwert ändern können Sie auch durch Drücken von oder . 5.3 Anzeigeeinheiten Möchten Sie die anzeigeeinheiten sehen, drücken Sie kurz die Taste oder . Die Einheit wird für 0,5 Sekunden angezeigt. Anmerkung: Durch gleichzeitiges Drücken der Tasten und kommen Sie jederzeit in die Hauptanzeige zurück. Außerdem erscheint die Hauptanzeige, wenn für 45s keine Taste betätigt wird. OC 200.0 􀀪 􀀪 Dr ücken einer der beiden Tasten Anzeigeeinheiten *C Grad Cenlsius *F Grad Fahrenheit *K Grad Kelvin Keine Anzeige - Linear 0,5s Sollwert 220.0 200.0 􀀪 􀀪 Istwert Drücken, um den Sollwert zu ändern 2s HA026270GER Ausgabe 5.0 08/07 11 5.4 Ausgangsleistung Um die Ausgangsleistung ansehen zu können, müssen Sie zweimal hintereinander die Taste drücken. Es erscheint der Parameter OP. Drücken Sie oder , wird der Wert der Ausgangsleistung angezeigt. Diesen Wert können Sie nicht ändern. Achtung: Im manuellen Standby-Modus (siehe auch “Verwendung des Timers”) können Sie die Ausgangsleistung auf einen Wert einstellen, das heißt, der Heiz-oder Kühlausgang ist permanent aktiviert. Damit der Wert für die Ausgangsleistung nicht ungewollt verstellt wird, können Sie den Parameter OP in der Edit-Ebene auf “read only” setzen (siehe auch “Parameterzugriff ändern”). 20.0 Kurz drücken OP 100.0 *C Der Regler hat einen100% Heizausgang Drücken Sie oder um den Wert zu sehen. 12 HA026270GER Ausgabe 5.0 08/07 5.5 Auswahl eines Parameters Die Einstellung der Parameter bestimmt die Arbeitsweise Ihres Reglers. Damit Sie einfach auf Parameter zugreifen können, sind diese in verschiedene Menüs eingeteilt. Mit der Taste können Sie nacheinander alle Menüüberschriften aufrufen. Auf Kapitel 6 finden Sie alle vorhandenen Listen aufgeführt. Einen Parameter innerhalb der Liste können Sie mit aufrufen. In der Anzeige erscheint der Parametername. Den Wert des Parameters rufen Sie mit oder auf. Mit diesen Tasten können Sie den Parameterwert (wenn in der Edit-Ebene freigegben, sonst in die Full-Ebene wechseln) auch ändern. Ca. 2s nach der Änderung blinkt der Parameter kurz auf und der Regler übernimmt den neuen Wert. Den nächsten Parameter in der Liste erreichen Sie wieder durch Drücken von . Die Parameter der Liste werden der Reihenfoge nach aufgerufen. Nach dem letzten Parameter der Liste erscheint wieder die Menüüberschrift. Mit den Parametern in den einzelnen Listen können Sie: • die Alarmsollwerte einstellen • den Regler optimieren • die PID Werte manuell einstellen • die sollwertgrenzen ändern und auf den Timer zugreifen • die Eingangs- und Ausgangsgrenzen ändern Drücken Sie die Taste weiter, werden nacheinander alle Menüüberschriften angezeigt. Nach der letzten Überschrift kommen Sie zurück zur Hauptanzeige. 20.0 aL Atun X2 HA026270GER Ausgabe 5.0 08/07 13 5.6 Ändern der Alarmsollwerte Im erstem Menü (AL) können Sie die Alarmsollwerte einstellen. Die Alarme finden Sie in Kapital 9 beschrieben. Ein nicht konfigurierter Alarm erscheint nicht in dem Menü. Anmerkung: Sie können auf alle Parameter in den einzelnen Menüs mit dem hier beschriebenen Vorgehen zugreifen 4. 0.5 s *C 200.0 Nächst liste Drücken Sie oder wird List angezeight LiSt AL 0 1--- -FSL = Minimalalarm -FSH = Maximalalarm -dEV = Abweichungsbandalarm -dHi = Abweichungsalarm Übersollwert -dLo = Abweichungsalarm Untersollwert - = Alarmnummer 0 2--- 0 3--- Weiteres Drücken der Taste zeigt alle Menüs. Am Ende springt der Anzeiger in die Hauptanzeiger zurück. Alarm 1 * Alarm 2 * Alarm 3 * * Mit oder sollwert ändern. 14 HA026270GER Ausgabe 5.0 08/07 6. Parameterübersicht In der Full-Ebene sehen Sie alle in Ihrem Regler vorhandenen Bedienparameter. Diese können Sie wie unter 4.1 beschrieben, aufrufen und/oder ändern. Die Einstellungen der Edit-Ebene haben hier keine Bedeutung. Deshalb ist die Full -Ebene durch ein Paßwort (1) geschützt. In der folgenden Übersicht sind alle möglichen Parameter dargestellt. Die Anzahl und die Reihenfolge der Parameter, die in Ihrem Gerät erscheinen, ist abhängig von der Konfiguration. Den Zugriff auf Parameter sperren oder freigeben können Sie in der Edit-Ebene, Kapital 7. Die grau hinterlegten Felder bezeichnen die Parameter und Menüs, die in der Oper-Ebene standardmäßig nicht sichtbar sind. 3. W.sP erscheint nur, wenn die Sollwertrampe aktiv ist. Hauptanzeige Alarm Menü Selbstoptimierungs Menü PID(2) Menü Sollwert Menü Eingangs Menü Ausgangs Menü EIN/AUS(2) Menü Zugriffs Menü 20.0 AL Atun Pid SP iP oP On.Of ACCS X2 oC OP w.SP3 m-A disp 1---(1) 2---(1) 3---(1) HY Lbt Tune adc Pb Ti Td Res Lcb Hcb reL.C spL SPH SPrr Tm.Op Tmr Dwel stat fiLt CJCo MV OFS CAL.P CAL Pnt.L OFS.L Pnt.H OFS.H OP.Lo OP.Hi CYC.H CYC.C ont.H ont.C HYS.H HYS.C HC.db code Goto Conf (2) Abhängig von der eingestellten Regelart wird entweder das PID- oder das EIN/AUS- Menü angezeit (1) Die letzten 3 Ziffern bezeichnen den Alarmtyp. HA026270GER Ausgabe 5.0 08/07 15 6.1 Parameterlisten Hauptmenü Einstellbarer Bereich Vorgabe Einstellung Op Ausgangsleistung -100% bis 0.0% = Kühlen; 0.0% bis 100.0% = Heizen. w.SP Arbeitssollwert Erscheint, wenn Sollwertrampe aktiviert ist. Nur-Lessen Nur-Lessen m-A Automatik-Hand Auto Automatikbetrieb gewählt Umschaltung mAn Handbetrieb gewählt Auto Std Standard – zeight den Istwert und nach Drücken der Mehr- /Weniger-Taste den sollwert OP Zeigt die Ausgangleistung an – für die Benutzung als Handstation NonE Keine Anzeige, nur Alarme erscheinen blinkend PV Zeigt nur den Istwert AL.SP Zeigt nur den Alarm 2 Sollwert disp Hauptanzeige- Optionen pv.aL Zeigt Istwert und Alarm 2 Sollwert nach Drücken der Mehr- /Weniger-Taste Std Plus zusätzliche Promote-Parameter (Abschnitt 7.3) 16 HA026270GER Ausgabe 5.0 08/07 AL Alarm-Menü Einstellbarer Bereich Vorgabe Einstellung 1--- Sollwert für Alarm 1 0 2--- Sollwert für Alarm 2 0 3--- Sollwert für Alarm 3 0 Es erscheinen nur die konfigurieten Alarme. Die letzten 3 Ziffern zeigen den Alarmtyp. Die Werte sind innerhalb der Sollwertgrenzen einstellbar. -FSL Vollbereichsminimalalarm -FSH Vollbereichsmaximalalarm -dEv Regelabweichungsbandalarm -dLo Regelabweichungsalarm Untersollwert -dHi Regelabweichungsalarm Übersollwert HY Alarmhysterese 1 bis 9999 Anzeigeeinheiten. Dieser Wert bezieht sich auf alle Alarme. Die Hysterese verhindert ein ‘Springen’ des Alarms, wenn der Wert um den Alarmwert schwankt. 1 Lb t Regelkreis-überwachungszeit OFF bis 9999 Minuten OFF HA026270GER Ausgabe 5.0 08/07 17 Atun Selbstoptimierungs-Menü Einstellbarer Bereich Vorgabe Einstellung tunE Selbstoptimierung OFF oder on Off Adc Automatische Arbeitspunktorrektur (bei PD Regelung) mAn oder caLc mAn PiD PID-Menü Einstellbarer Bereich Vorgabe Einstellung Pb Proportionalband 1 bis 999.9 Anzeigeeinheiten 20 ti Nachstellzeit OFF bis 9999 Sekunden 360 td Vorhaltzeit OFF bis 9999 Sekunden 60 rES Maueller Reset Nur, wenn ti = OFF; -100 bis 100.0% 0.0 Lcb Cutback Low Auto bis 999.9 Anzeigeeinheiten Auto Hcb Cutback High Auto bis 999.9 Anzeigeeinheiten Auto rEL.C Relative Kühlverstärkung 0.01 bis 10.00 1.00 18 HA026270GER Ausgabe 5.0 08/07 SP Sollwert-Menü Einstellbarer Bereich Vorgabe Einstellung SP L Sollwert, untere Grenze -1999 bis 999.9, je nach Meßbereich It. Bestellg. SP H Sollwert, obere Grenze -1999 bis 999.9, je nach Meßbereich It. Bestellg. sprr Sollwertrampe 0FF bis 999.9 Anzeigeeinheiten pro Minute Off tm.OP Timer Betriebsart Opt.1 bis Opt.5 OPt.1 tmr Verbleibende Timerzeit 0 bis 9999 minuten 0 dwEl Haltzeit 0FF bis 9999 minuten OFF StAt Timer Status OFF oder on Ab Softwareversion 1.43 OFF HA026270GER Ausgabe 5.0 08/07 19 iP Eingangs-Menü Einstellbarer Bereich Vorgabe Einstellung FiLt Zeitkonstante des Eingangsfilters 0FF bis 999.9 Sekunden 1.6 CJC* Vergleichsstellentemperatur an den Klemmen Nur Lesen mV Millivolt-Eingang, gemessen an den Klemmen Nur Lesen OFS Istwert Offset -1999 bis 9999 Anzeigeeinheiten 0 CAL.P Anpassung Paßwort 0 bis 9999 3 Die folgenden Parameter erscheinen nur, wenn Sie das richtige Paßwort für die Anpassung eingegeben haben. FACt Stellt die Werkseinstellung wieder her CAL Anpassungsart FACt USEr Benutzerdefinierte Anpassung Pnt.L Unterer Anpassungspunkt 0 OFS.L Offset am unteren Punkt 0 Pnt.H Oberer Anpassungspunkt 100 OFS.H Offset am oberen Punkt -1999 bis 9999 Anzeigeeinheiten 0 20 HA026270GER Ausgabe 5.0 08/07 oP Ausgangsleistungs-Menü Einstellbarer Bereich Vorgabe Einstellung OP.Lo Ausgangsleistungs untere Grenze -100 bis 100.0% 0 OP.Hi Ausgangsleistungs obere Grenze -100 bis 100.0% 100.0 CYC.H Zykluszeit Heizen 0.2 bis 999.9 Sekunden 1.0 Lgk 20 Rls CYC.C Zykluszeit Kühlen 0.2 bis 999.9 Sekunden 5.0 Lgk 20 Rls ont.H min. EIN-Zeit für Heizausgang Auto bis 999.9 Sekunden (Auto = 50ms) Auto ont.C min. EIN-Zeit für Kühlausgang Auto bis 999.9 Sekunden (Auto = 50ms) auto onOF EIN/AUS-Menü Einstellbarer Bereich Vorgabe Einstellung hYS.H Heizhysterese 1 bis 9999 Anzeigeeinheiten 1 hYS.C Kühlhysterese 1 bis 9999 Anzeigeeinheiten 1 HC.db Todband Heizen/Kühlen 0 bis 9999 Anzeigeeinheiten 0 ACCS Zugriffs-Menü Einstellbarer Bereich Vorgabe Einstellung codE Zugriffs-Paßwort 0 bis 9999 1 Goto Auswahl der Parameterebene Oper, Ful, Edit, conf OPEr Conf Konfigurations-Paßwort 0 bis 9999 2 HA026270GER Ausgabe 5.0 08/07 21 7. Edit-Ebene In der Edit-Ebene können Sie die Menüs der Bedienebene (Oper) gestalten. Sie haben die Möglichkeit, Parameter für den normalen Bediener in der Oper-Ebene auszublenden oder mit einem Schreibschutz zu versehen. Mit der Promote-Funktion können Sie Parameter in das Hauptmenü kopieren und so eine benutzerspezifische Parameterliste erstellen. Dies gilt nur für Parameter, die standardmäßig nicht in der Hauptanzeige vorhanden sind. In der Edit-Ebene sehen Sie nicht die Parameterwerte, sondern die Zugriffsmöglichkeit auf den Parameter. 7.1 Ändern des Parameterzugriffs Sie haben vier Möglichkeiten für den Zugriff auf einen Parameter oder ein Menü: • ALtr Parameterwert läßt sich in der Bedienebene ändern. • read Parameter oder Menü kann in der Bedienebene nur gelesen werden. • Hide Parameter oder Menü erscheinen nicht in der Bedienebene. • Pro Kopiert einen Parameter in die Hauptanzeige (s. Abschnitt 7.3). Gehen Sie bei der Zugriffsauswahl wie folgt vor: - Wahlen Sie wie zuvor beschrieben die Edit-Ebene. - Suchen Sie mit Hilfe der Tasten und den gewünschten Parameter oder das gewünschte Menü. - Mit den Tasten und können Sie den Parameterzugriff ändern. Beispeil: Haben Sie z. B. Alarm 2 (2FSH) gewählt, erscheint nach Drücken der Taste oder der Zugriffsmodus des Parameters. Mit den gleichen Tasten können Sie einen neuen Zugriffsmodus auswählen. 22 HA026270GER Ausgabe 5.0 08/07 7.2 Ausblenden eines Menüs Bei der Zugriffsänderung auf ein ganzes Menü haben Sie nur die Auswahl zwischen read und Hide. Blenden Sie ein ganzes Menü aus, werden alle zugehörigen Parameter ausgeblendet. Das Zugriffs- Menü (ACCS) läßt sich nicht ausblenden. 7.3 Promote Sie haben die Möglichkeit, dem Hauptmenü bis zu 12 Parameter hinzuzufügen: - Gehen Sie in die Edit-Ebene - Wählen Sie den gewünschten Parameter - Versehen Sie ihn mit dem Kürsel Pro. Der Parameter wird an das Ende des Hauptmenüs kopiert. Sie haben somit im Hauptmenü und im Originalmenü Zugriff auf diesen Parameter. Diese Parameter können Sie nicht mit einem Schreibschutz versehen. Beispeil: Haben Sie z. B. den Parameter tmr (verbleibende Timerzeit) gewählt, können Sie mit oder Pro wählen. Der Parameter tmr erscheint nun im Hauptmenü. Wiederholen Sie diesen Vorgang mit den gewünschten Parametern. Möchten Sie einen Parameter aus dem Hauptmenü entfernen, gehen Sie in die Edit-Ebene und wählen Sie ALtr, read oder Hide. HA026270GER Ausgabe 5.0 08/07 23 8. Konfiguration In der Konfigurationsebene können Sie die Anzeigeeinheiten, den Sensortyp, die Skalierung, die Alarmkonfiguration und die Paßworter ändern. 8.1 Auswahl der Konfigurationsebene In der Konfigurationsebene können Sie mit Hilfe der Taste die einzelnen Konfigurations-Menüs aufrufen. Innerhalb der Menüs werden die Parameter mit der Taste aufgerufen. Sie können die Einstellungen der Parameter mit den Tasten und ändern. inSt iP AL AA Exit pASS 1A Geräte-Konfiguration Goto conF Wählen Sie mit Hilfe der Tasten oder die Konfigurationsebene conf ACCS Drücken Sie die Taste bis Sie das ACCSMenü erreichen. codE PASS Geben Sie mit Hilfe der Tasten oder das Paßwort ein. Werksseitig eingesteltes Paßwort ist 1. PASS erscheint, wenn Sie das richtige Paßwort eingegeben haben. ConF PASS Geben Sie mit Hilfe der Tasten oder das Paßwort ein. Paßwort Vorgabe ist 2. PASS erscheint, wenn Sie das richtige Paßwort eingegeben haben. 24 HA026270GER Ausgabe 5.0 08/07 Geräte-Konfiguration inst Geräte- Konfiguration Wert Bedeutung *C Celsius *F Fahrenheit *K Kelvin unit Anzeigeeinheiten nonE Keine Einheit (Linear) nnnn Keine nnn.n Eine dEC.P Dezimalstelle nn.nn Zwei Pid PID On.OF EIN/AUS CtrL Regelverhalten AL Gerät als Alarmeinheit Act Ausgangskennlinie rEv Revers dir Direkt HoLd Keine Stoßfreie Umschaltung Pd.tr Stoßfreie Automatik/ Hand Umschaltung bei PD-Regelung trAc Stoßfreie Umschaltung HA026270GER Ausgabe 5.0 08/07 25 Eingangs-Konfiguration iP Eingangs- Konfiguration Wert Bedeutung j.tc Thermoelement J k.tc Thermoelement K L.tc Thermoelement L r.tc Thermoelement R b.tc Thermoelement B n.tc Thermoelement N t.tc Thermoelement T S.tc Thermoelement S PL 2 Platinell II rtd PT 100 mV Linear mV inPt Eingangstyp C.tc Thermoelement C * Linerisierung Off Nur bei Lineareingang Auto Automatisch 0*C 0°C ext. Referenz 45*C 45°C ext. Referenz CJC (nur T/C) Vergleichsstellentempuratur 50*C 50°C ext. Referenz Folgende Parameter erscheinen nur bei Linereingang (-12 bis +80mV) InP.L mV–Eingang min InP.H mV–Eingang max VaL.L Angezeigter Wert min VAL.H Angezeigter Wert max OFF Aus (nur Lineareing) Auto 1,5KΩ Hi 5KΩ ImP HiHi 15KΩ, * Thermoelement C kann durch eine alternative kundenspezifische Linearisierung ersetzt werden. Inp.L Inp.H VAL.H VAL.L mV Anzeigewert 26 HA026270GER Ausgabe 5.0 08/07 Alarm-Konfiguration In der Alarm-Konfiguration können Sie bis zu drei Soft-alarme konfigurieren. Soft-alarme werden nur angezeigt. Möchten Sie, daß ein Alarm auf einen Ausgang gelegt wird, müssen Sie diesen Alarm in der Relais- /Logikein-/ausgangs-Konfiguration einem Ausgang zuweisen. AL Alarmsollwert -Konfig. Wert Bedeutung OFF Kein alarm fsL Vollbereichsminimalalarm fsH Vollbereichsmaximalalarm dEv Abweichungsbandalalarm dHi Abweichungsalarm Übersollwert AL 1 Alarm 1 dLo Abweichungsalarm Untersollwert AL Alarmsollwert -Konfig. Wert Bedeutung no Nicht speichern YES Gespeichert (Auto) * Ltch Alarm speichern mAn Gespeichert (Hand) ** bLoc Alarm no Keine Unterdrückung Unterdrücken YES Alarmunterdrückung Für die Alarme 2 und 3 (AL 2 und AL 3) erscheinen die gleichen Parameter. Sp.Li Alarmsollwert diS Anzeigebereich -grenzen Con Eingestellte Grenzen *D. h., wurde der Alarm bestätigt, wird der Alarm automatisch zurückgesetzt, sobald die Alarmbedingung erlischt. ** D. h., der Alarm kann erst zurückgesetzt werden, wenn die Alarmbedingung nicht mehr ansteht. HA026270GER Ausgabe 5.0 08/07 27 Relaisausgangs-Konfiguration Aa Relaisausgangs Wert Bedeutung id Art des Ausgangs rELy Relais diG Digitalausgang (Alarm) HEAt Heizausgang Func Funktion COOL Kühlausgang noch Kein Wechsel CLr Löschen aller Alarme 1FSL Alarm 1 * 2FSH Alarm 2 * 3FSL Alarm 3 * NW Neuer alarm SBR Fühlerbruch LBR Regelkeisüberwachung LDF Lastfehler MAn Handbetrieb EnD Ende des Timers TMG1 Timer läuft TMG2 Timer zählt abwärts diG.F Funktion des Digitalausgangs (erscheint nicht bei HEAt und COOL) Siehe unten, “Ansteuern eines Relais-oder Logikausgangs über eine Digitalfunktion” Die Parameter tmg1 bis tmg4 erscheinen nur bei einem Regler mit Timer. TMG3 Timer läuft ** Aa Relaisausgangs Wert Bedeutung TMG4 Timer zählt abwärts ** nor Normal (im Alarmfall stromführend) SenS Kennlinie des Ausgangs Inv Invertiert (im Alarmfall stromlos) * Die letzen drei Ziffern entsprechen den konfigurierten Alarmen. Haben Sie keinen Alarm konfiguriert, erscheint AL1, AL2, und AL3. ** tmg3 und tmg4 sind Spezialfunktionen. Haben Sie diese gewählt, leuchten die Anzeigen OP1 und OP2, ohne daß ein Ausgang aktiv ist. Mit dieser Funktion kann angezeit werden, ob der Timer noch läuft, während die Ausgänge über andere Digitalfunktionen, z. B. Ende des Timers, angesteuert werden. 28 HA026270GER Ausgabe 5.0 08/07 Logikeingangs-Konfiguration Wählen Sie bei Logik zwischen einem Ausgang oder einen Eingang zur Alarmquittierung, Tastensperre oder Timerstart/-stop. 1a Relaisausgangs Wert Bedeutung id Art des Ausgangs Log Logik diG Digitalausgang HEAt Heizausgang COOL Kühlausgang Funktion (Ausgang) Ssr.1 PDSIO Mode 1 Ac.aL Alarmquittierung Loc.d Tastensperre Digitaleingang Func Funktion (Eingang) rres Timerstart/-stop noch Kein Wechsel CLr Löschen aller Alarme 1FSL Alarm 1 * 2FSH Alarm 2 * 3FSL Alarm 3 * NW Neuer alarm SBR Fühlerbruch diG.F Funktion des Digitalausgangs (erscheint nicht bei HEAt und COOL) Siehe unten, “Ansteuern eines Relais-oder Logikausgangs LBR Regelkeisüberwachung 1a Relaisausgangs Wert Bedeutung LDF Lastfehler MAN Handbetrieb END Ende des Timers TMG1 Timer läuft TMG2 Timer zählt abwärts TMG3 Timer läuft ** über eine Digitalfunktion” Die Parameter tmg1 bis tmg4 erscheinen nur bei einem Regler mit Timer. TMG4 Timer zählt abwärts ** nor Normal (im Alarmfall stromführend) SenS Kennlinie des Ausgangs Inv Invertiert (im Alarmfall stromlos) * Die letzen drei Ziffern entsprechen den konfigurierten Alarmen. Haben Sie keinen Alarm konfiguriert, erscheint AL1, AL2, und AL3. ** tmg3 und tmg4 sind Spezialfunktionen. Haben Sie diese gewählt, leuchten die Anzeigen OP1 und OP2, ohne daß ein Ausgang aktiv ist. Mit dieser Funktion kann angezeigt werden, ob der Timer noch läuft, während die Ausgänge über andere Digitalfunktionen, z. B. Ende des Timers, angesteuert werden. HA026270GER Ausgabe 5.0 08/07 29 Ansteuern eine Relais- oder Logikausgangs über eine Digitalfunktion 1. Drücken Sie die Taste , bis Func erscheint. 2. Wählen Sie mit Hilfe von oder dig. 3. Drücken Sie die Taste , bis dig.f erscheint. 4. Mit Hilfe der Tasten oder können Sie eine Digitalfunktion wählen 5. Nach 2s springt die Anzeige zurück auf dig.F. Die gewählte Digitalfunktion ist nun mit dem Ausgang verbunden. 6. Drücken Sie erneut die Tasten oder . Die ausgewählte Funktion erscheint mit zwei Dezimalpukten (z. B. L. b. r.) 7. Möchten Sie keine Veränderung mehr vornehmen, gehen Sie mit oder auf noch. Mehrere Digitalfunktionen auf einem Ausgang Sie haben die Möglichkeit, mehrere oder auch alle Digitalfunktionen auf einem Ausgang zu kombinieren, indem Sie die Schritte 4-6 für jede Funktion wiederholen. Löschen von zugeordneten Digitalfunktionen 1. Drücken Sie die Taste , bis dig.f erscheint. 2. Mit Hilfe der Tasten oder können Sie CLr wählen 3. Nach 2s springt die Anzeige zurück auf dig.F. Alle Verknüpfungen sind gelöscht. Paßwort-Konfiguration PASS Paßwort-Konfiguration Wert Vorgabe ACC.P Paßwort für Ful und Edit 0-9999 1 Cnf.P Paßwort für Konfiguration 0-9999 2 CAL.P Paßwort für Anpassung 0-9999 3 8.2 Verlassen der Konfigurationsebene Drücken Sie die Taste , bis Sie Exit erreichen. Wahlen Sie mit oder YES. Nach 2s blinkt die Anzeige und kehrt in die Bedienebene zurück. Exit YES 30 HA026270GER Ausgabe 5.0 08/07 9. Alarme Die Regler der Serie 2100 können Ihnen zwei verschiedenen Arten von Alarmmeldungen anzeigen: 1. Regelkreisalarme (z. B. Vollbereichsalarme, Abweichungsalarme) 2. Diagnosealarme (z. B. Fühlerbruch) Regelkreisalarme können Sie selbst konfigurieren, einem Ausgang zuweisen und speichern. Diese gespeicherten Alarm müssen Sie dann bestätigen. 9.1 Alarmmeldungen Steht ein Alarm an, wird in der Anzeige eine Alarmmeldung dargestellt. Die Alarmmeldung wechselt mit dem aktuellen Prozeßwert. Folgende Alarmmeldungen können in der Anzeige erscheinen: Kürzel Erklärung Regelkreisalarme -fsh Vollbereichsmaximalalarm -fsL Vollbereichsminimalalarm -deV Abweichungsbandalarm -dHi Abweichungsalarm Übersollwert -dLo Abweichungsalarm Untersollwert Diese Alarme können gespeichert und bestätigt werden. Diagnosealarme Sbr Fühlerbruch Lbr Regelkreisfehler Ldf Lastfehler End Ende des Timers An Stelle des Striches erscheint bei einem Regelkreisalarm die Alarmnummer (1, 2 oder 3), z. B. 1FSH (Alarm 1, Vollbereichsmaximalalarm). Alarm1 Vollbereichsminimalalarm 1FSL 200.0 Atueller Prozeßwert HA026270GER Ausgabe 5.0 08/07 31 9.2 Alarmbestätigung Zur Alarmbestätigung müssen Sie die Tasten und gemeinsam drücken. Es werden neben den aktuellen dann auch noch gespeicherte, nicht mehr anstehende Alarm bestätigt. Nicht gespeichterte Alarme müssen Sie nicht bestätigen. 9.3 Diagnosealarme Zusätzlich zu den Prozeßalarmen bietet Ihnen der Regler die folgenden Diagnosealarme Kürzel Erklärung EE.Er Electrically Erasable Memory Error: Der wert eines Bedien-oder Konfigurationsparameters wurde zerstört. Wenden Sie sich an Eurotherm. HW.Er Hardware-Fehler: Geben Sie den Regler in Reparatur. LLLL Unterhalb des Anzeigebereichs: Überprüfen Sie den Eingang. HHHH Oberhalb des Anzeigebereichs: Überprüfen Sie den Eingang. Err1 Error 1: ROM Selbsttest Fehlerhaft: Geben Sie den Regler in Reparatur. Kürzel Erklärung Err2 Error 2: RAM Selbsttest Fehlerhaft: Geben Sie den Regler in Reparatur. Err3 Error 3: Watchdog Fehler: Geben Sie den Regler in Reparatur. Err4 Error 4: Tastatur-Fehler: Fehlende Taste oder Taste während des Starts gedrückt. Err5 Error 5:. Fehler in der Eingangsschaltung: Geben Sie den Regler in Reparatur. Pwr.F Versorgungsfehler. Die Versorgungsspannung ist zu niedrig. Überprüfen Sie, daß die Spannung innerhalb der Grenzen ist. TU.Er Selbstoptimierungsfehler: Erscheint wenn der Optimierungsprozeß über 2 Stunden dauert. Kontrollieren Sie Ihren Regelkreis. Bestätigung wie vorher beschrieben. Sbr Fühlerbruch: Überprüfen Sie den Fühler. Lbr Regelkreisfehler: Die Rückführung ist ohne Signal. Überprüfen Sie die gesamte Regelstreke. Ldf Lastfehler: Fehler in Heizkreis oder Solid State Relais (SSR). Überprüfen Sie den Heizkreis und das SSR. End Ende des Timers: Siehe Kapitel 10. 32 HA026270GER Ausgabe 5.0 08/07 10. Timer Der Timer gibt Ihnen die Möglichkeit, die Regelung zeitlich zu steuern. Die für den Timer wichtigen Parameter finden Sie im Sollwert-Menü: Tm.OP Auswahl der Betriebsart des Timers Tmr Verbleibende Timerzeit in Minuten Dwel Eingestelle Timerzeit in Minuten Stat Status des Timers 10.1 Auswahl der Betreibsart • Drücken Sie die Taste , bis Sie Sollwert- Menü erreichen. • Rufen Sie mit Hilfe der Taste den Parameter tm.OP auf • Mit den Tasten oder können Sie die Betriebsart des Timers wählen (Opt.1 bis Opt.5) 10.1.1 Opt.1 - Betriebsart 1, Haltezeit und Ausschalten Reset Ist der Timer zurückgesetzt, arbeitet der Regler in der von Ihnen konfigurierten Regelart. Mit dem Parameter m-A können Sie zwischen Automatikbetrieb (Auto) und Handbetrieb (MAN) umschalten. Den Parameter finden Sie im Hauptmenü. Im Automatikbetrieb wird der Istwert auf den Sollwert ausgeregelt. Im Stanby-Mode befindet sich der Regler im Handbetrieb. Die Ausgangsleistung ist an allen Ausgängen Null. (Siehe Warnung auf Seite 11). Bei der Auslieferung ist der Parameter m-A in der Bedienebene gesperrt. Sie müssen den Parameter erst in der Edit-Ebene freigeben. Standby Temperatur Sollwert Reset Timing Timer Laufzeit Ende End blinkt auf der Aufwärmzeit Anzeige HA026270GER Ausgabe 5.0 08/07 33 Während der Timerlaufzeit Startet der Timer, springt der Regler in den Automatikbetrieb. Der Istwert wird an den Sollwert herangefürt (Aufwärmzeit). Befindet sich der Istwert ca. 1oC entfernt vom Sollwert, beginnt der Timer zu zählen (Timing in Minuten). Ende Am Ende der Zeit (Timing) schaltet der Regler in den Standby-Mode um. Die Ausgänge werden auf Null gesetzt. MAN leuchtet und in der Regleranzeige erscheint blinkend End. Das bedeutet, daß Ihr Prozeß abkühlt. Der Timer bleibt in diesem Zustand, bis er erneut mit und zurückgesetzt wird. Neuer Reset Haben Sie den Timer zurückgesetzt ( und gleichzeitig drücken), erlischt End auf der Anzeige. Der Regler befindet sich weiterhin in Standby-Mode. Möchten Sie zum normalen Reglerbetreib wechseln, setzen Sie den Parameter m-A in Haupt-Menü auf Auto. 10.1.2 Opt.2 - Betriebsart 2, Haltezeit und nicht Ausschalten Diese Betriebsart entspricht der Betriebsart 1, nur daß nach Ablauf der Zeit (Timing) der Regler im Automatikbetrieb bleibt. Unendliche Haltezeit auf Sollwerttemperatur Temperatur Sollwert Reset Timing Timer Laufzeit Ende End blinkt auf der Anzeige Aufwärmzeit Auto m-A Drücken Sie solange , bis der Parameter m-A erscheint. Wählen Sie mit oder Auto Automatikbetreib mAn Standby (Hand - MAN leuchet) Drücken Sie gleichzeitig und , um in die Hauptanzeige zurückzukehren. 34 HA026270GER Ausgabe 5.0 08/07 10.1.3 Opt.3 (Betriebsart 3), Aufheizen, Haltezeit und Ausschalten Auch die Betriebsart 3 entspricht der Betriebsart 1. Der einzige Unterschied ist, daß die Zeit sofort bei Start des Timers losläuft, d. h. die Aufwärmzeit entfällt. Somit ist die Zeit bis zum Erreichen des Sollwerts Teil des Timings. 10.1.4 Opt.4 (Betriebsart 4), Aufheizen, Haltezeit und nicht Ausschalten Die Betriebsart 4 arbeitet entsprechend der Betriebsart 2, nur daß auch hier die Zeit bis zum Erreichen des Sollwerts Teil des Timings ist. Standby Temperatur Sollwert Reset Timing Ende End blinkt auf der Anzeige Reset Unendliche Haltezeit auf Sollwerttempuratur Sollwert Timing Ende End blinkt auf der Anzeige Temperatur HA026270GER Ausgabe 5.0 08/07 35 10.1.5 Opt.5 (Betriebsart 5) - Einschaltverzögerung Haben Sie die Betriebsart 5 gewählt, wird das Einschalten des Reglers um die Timerzeit verzögert. Sobald Sie den Timer starten, schaltet das Gerät in den Stanby-Modus und startet das Timing. Am Ende der Zeit schaltet der Regler in den Automatikbetrieb. 10.1.6 Rampe/Haltezeit Profil Sie haben die Möglichkeit, mit Hilfe der Sollwertrampe (Sprr) und des Timers ein einfaches Rampe/Haltezeit Profil zu programmieren. Um die Programmierung zu vereinfachen, kopieren Sie zuerst die Parameter Sprr und w.SP in die Bedienebene (Abschnitt 7.3, Promote). Geben Sie für den Parameter eine gewünschte Rampensteigung ein. Sie können den Wert in Schritten von 1/10 des eingestellten Anzeigebereichs wählen. Das heißt, haben Sie einen Anzeigebereich, von 1 bis 1000oC können Sie für die Rampensteigung einen Wert zwischen 0,01 und 999,9 oC pro Minute wählen. Haben Sie die Rampensteigung eingestellt und den Timer gestartet, springt der Arbeitssollwert w.sp, zur aktuellen Temperatur und läuft dann mit der eingestellten Rampensteigung bis zum Zielsollwert. Haben Sie für den Timer Betriebsart 1 oder 2 gewählt, startet die Zeit (Timing), wenn Istwert und Sollwert eine Differenz von 1oC haben. In den Betriebarten 3 und 4 startet der Timer, wenn der Arbeitsollwert w.sp noch 1oC vom Zielsollwert entfernt ist. Unendliche Haltezeit auf Sollwerttemperatur Temperatur Sollwert Reset Timing Reset Standby 36 HA026270GER Ausgabe 5.0 08/07 10.2 Starten und Rücksetzen des Timers Es stehen Inhen zwei Metoden zur Verfügung: Methode 1. Dies ist die einfachste Methode, um den Timer zu überwachen. • Drücken Sie , bis Sie das Sollwert-Menü erreichen. • Drücken Sie , bis Sie den Parameter tMr aufrufen. Anmerkung: Um diesen Vorgang zu vereinfachen, können Sie den Parameter tmr in die Hauptanzeige kopieren (s. Abschnitt 7.3, Promote). Sobald Sie den Wert für die verbleibende Zeit (tmr) geändert haben, startet der Timer mit der angegebenen Zeit. Tmr zählt abwärts bis Null. Sie können auch während der Laufzeit des Timers die verbleibende Zeit verändern, um den Timer den Erfordernissen Ihres Prozesses anzupassen. Setzen Sie tmr auf Null, wird der Timer gestoppt. Anmerkung: Bei dieser Methode werden die Parameter dwel und stat nicht geändert, d. h. Status und Gesamtlaufzeit des Timers werden nicht übernommen. Ist der Timer abgelaufen, erscheint die blinkende Meldung End auf der Anzeige. Diese bleibt solange bestehen, bis Sie einen neuen Wert für tmr eingeben und so den Timer neu starten. Den Timer können Sie zurücksetzen, indem Sie die Tasten und gleichzeitig drücken. ‘end’ erlischt. Stellen Sie in dem Parameter tmr einen neuen Wert ein, startet der Timer erneut. 1234 Tmr Betätigen Sie die Tasten oder , um die verbleibende Zeit (0 bis 9999 Minuten) einzustellen. HA026270GER Ausgabe 5.0 08/07 37 Methode 2. Mit dieser Methode können Sie einen festen Wert für den Timer vorgeben und ihn über den Parameter stat starten und stoppen. Wenn Sie den Logikein-/-ausgang als EIN/AUSSchließkontakteingang kongfigurieren, können Sie den Parameter stat über diesen Eingang umschalten. Öffnen Sie den Kontakt (flankengetriggert), wird der Parameter auf run gesetzt, schließen Sie den Kontakt, steht der Parameter auf Off. Der Parameter wird immer auf OFF gesetzt (tmr = 0), wenn der Kontakt geschlossen ist. 1234 dwel run stat sp Drücken Sie die Taste , bis Sie das sollwert-Menü erreichen. Wählen Sie dann mit Hilfe der Taste den Parameter dwel Haltezeit Wählen Sie mit den Tasten oder die Timerzeit (0 bis 9999 Minuten). Timer Status Möchten Sie den Timer starten, wählen Sie mit den Tasten oder run. Die eingegebene Haltzeit wird in den Parameter tmr kopiert und der Timer läuft. Möchten Sie den Timer rücksetzen, wählen Sie Off. tmr wird sofort auf Null gesetzt. 38 HA026270GER Ausgabe 5.0 08/07 11. Anpassung Die Werkskalibrierung ist hochgenau. Zur Kompensation von Sensor-oder Systemfehlern können Sie der Kalibrierung einen Offset hinzufügen. Möchten Sie über den gesamten Anzeigerbereich einen festen Offset einstellen, wählen Sie im Eingangs-Menü (iP) den Parameter OFS und geben Sie den Wert ein. Sie können auch die Kurve an zwei Punkten ausrichten. Gehen Sie bei der Zwei-Punkt-Anpassung wie folgt vor: • Drücken Sie die Taste , bis Sie das Eingangs- Menü erreichen. • Wählen Sie mit Hilfe der Taste den Parameter CAL.P • Geben Sie mit den Tasten oder das Paßwort ein. Vorgabe ist 3. Pass wird angezeigt, wenn Sie das richtige Paßwort eingegeben haben. • Wählen Sie mit der Taste den Parameter CAL. • Wählen Sie mit oder User (Fact ist die Werkseinstellung) • Mit der Taste können Sie nacheinander die vier Anpassungsparameter aufrufen (s. unten). Stellen Sie mit Hilfe der Tasten oder den gewünschten Punkt der Anpassung und den entsprechenden Offset ein. Die Parameter pnt.H und OFS.H erscheinen nur, wenn Sie ersten zwei Parameter eingestellt haben. Eingang Anzeigewert Werkskalibrierung Pnt.H OFS.H OFS.L Pnt.L Angepaßter Wert Oberer Anpassungspunkt Unterer Anpassungspunkt Angepaßter Wert Anpassung HA026270GER Ausgabe 5.0 08/07 39 12. Selbstoptimierung Bei einer PID Regelung wird der Ausgang durch die Proportional-Integral- und Differentialanteile bestimmt. Sind diese Komponenten richtig dimensioniert, kann der Regler den Ausgang so regeln, daß der Istwert dem Sollwert entspricht und keine Schwingungen auftreten. Die Einstellung der Werte ist abhängig von Ihrem Prozeß. Die Reglermodelle 2132 und 2116 arbeiten mit einem ‘One-shot’-Tuner. Der Regelausgang wird an- und ausgeschaltet und simuliert somit ein Oszillation der Stellgröße. Der Regler errechnet die Parameterwerte aus Amplitude und Schwingungsdauer der Oszillation. Parameter Kürzel Funktion Proportionalband Pb Die Bandbreite in Anzeigeeinheiten, über welche die Ausgangsleistung zwischen min und max proportional verstellt wird. Nachstellzeit ti Die Zeitspanne, welche bei der Sprungantwort benötigt wird, um aufgrund einer I-Wirkung eine gleich große Parameter Kürzel Funktion Stellgrößenänderung zu erzielen, wie sie infolge des PAnteils entsteht. Vorhaltzeit td Die Zeitspanne, um welche die Anstiegsantwort eines PDReglers einen bestimmten Wert der Stellgröße früher erreicht als er ihn infolge seines PAnteils allein erreichen würde. High Cutback Hcb Die Anzahl der Anzeigeeinheiten oberhalb des Sollwertes, bei denen der Regler die Ausgangsleistung erhöht, um Unterschwinger zu vermeiden. Low cutback Lcb Die Anzahl der Anzeigeeinheiten unterhalb des Sollwertes, bei denen der Regler die Ausgangsleistung vermindert, um Überschwinger zu vermeiden. Relative Kühlverstärkung rEL.C Ermittelt das Proportionalband für die Kühlung, indem es Pb durch rEL dividiert 40 HA026270GER Ausgabe 5.0 08/07 Besteht bei voller Heiz- oder Kühlleistung Gefahr für Ihren Prozeß, können Sie die Grenzen dieser Leistungen verändern. Passen Sie die Parameter für die Grenzen der Ausgangsleistung Ihrem Prozeß an (siehe op-Menü) Aktivieren Sie die Selbstoptimierung einmal bei Inbetriebnahme eines Prozesses. Sollte die Regelung instabil werden, können Sie jederzeit eine neue Selbstoptimierung starten. Starten Sie die Selbstoptimierung bei Umgebungstemperatur des Prozesses, damit der Tuner die Cutbackwerte bestimmen kann. Einstellen der Zykluszeiten Stellen Sie vor der Selbstoptimierung die Parameter CYC.H (Zykluszeit Heizen) und CYC.C (Zykluszeit Kühlen) im Ausgangsleistungs-Menü ein. Setzen Sie die Werte für einen Logikheizausgang auf CYC.H = 1s, für einen Relaisausgang auf CYC.H = 20s und für einen Logikkühlausgang auf CYC.C = 5,0s. 12.1 Aktivierung der Selbstoptimierung Die Selbstoptimierung ist nur bei ausgeschalteter Sollwertrampe möglich (sprr = OFF) 1. Geben Sie den Arbeitssollwert ein. 2. Setzen Sie den Parameter ‘tunE’ im Atun- Menü auf ‘on’ 3. Drücken Sie gleichzeitig die Tasten und , damit Sie in die Hauptanzeige zurückkehren. Die Anzeige tune gibt an, daß die Selbstoptimierung gestartet ist (tune wechselt mit Istwert). 4. Der Regler induziert eine Oszillation in der Temperatur, indem er die Heizung erst ein- dann wieder ausschaltet. 5. Nach Beenden der Selbstoptimierung (2 Zyklen) berechnet der Regler die Parameter und geht zum normalen Regelbetrieb über. Arbeiten Sie mit P, PD oder PI – Regelung, setzen Sie die nicht benötigten Parameter td bzw. ti auf OFF bevor Sie die Selbstoptimierung starten. Der Tuner berechnet dann keine Werte für diese Parameter. HA026270GER Ausgabe 5.0 08/07 41 12.1.1 Berechnung der Cutbackwerte Mit Hilfe der Parameter Low und High Cutback werden Über- bzw. Unterschwinger bei großen Temperaturänderungen vermieden. Haben Sie die Parameter auf Auto gesetzt, werden sie auf das Dreifache des Proportionalbandes eingestellt. Diese Werte werden dann während der Selbstopmierung nicht mehr geändert. 12.2 Manuelle Optimierung Sie können den Regler manuell optimieren. In diesem Abschnitt wird die Optimierung nach dem Ziegler- Nichols- Verfahren beschrieben. Der prozeß befindet sich auf Arbeitstemperatur. 1. Setzen Sie die Parameter ti und td auf OFF. 2. Stellen Sie die Parameter Hcb und Lcb, auf Auto. 3. Der Istwert weicht vom Sollwert ab (PAbweichung). 4. Sobald sich die Temperatur stabilisiert hat, reduzieren Sie den Wert des Proportionalbandes Pb, bis die Temperatur anfängt zu schwingen. Erhöhen Sie den Wert des Proportionalbandes wieder soweit, daß die Temperatur gerade aufhört zu schwingen. Nehmen Sie sich für diese Einstellung viel Zeit. Notieren Sie sich den Wert des Proportionalbandes B und die Periodendauer T. 5. Berechnen Sie die Werte für ti, td und Pb nach der folgenden Tabelle. Stellen Sie die berechneten Werte im Regler ein. Regelart Pb ti td Proportional 2xB OFF OFF P + I 2,2xB 0,8xT OFF P + I + D 1,7xB 0,5xT 0,12xT Prozeßgröße Optimierungssollwert Fiktiver sollwert Geräte mit Heizund Kühlausgang Zeit Optimierung beendet (Heizund Kühlausgang) Optimierung beendet nur (Heizausgang) Ausgang 0% -100% 100% 42 HA026270GER Ausgabe 5.0 08/07 12.2.1 Einstellen der Cutbackwerte Haben Sie die Parameter wie vorher beschrieben eingestellt, ist der Regler für eine Geradeausregelung optimiert. Treten während der Startphase oder bei größeren Temperatursprüngen unakzeptable Über- oder Unterschwinger auf, sollten Sie die Parameter Lcb und Hcb einstellen. 1. Setzen Sie Lcb = Hcb = 3 x PB. 2. Notieren Sie sich die werte der Über- bzw. Unterschwinger für einen großen Temperatursprung (siehe unten). 3. Beispiel a) Erhöhen Sie den Parameter Lcb um den Wert des Überschwingers. Beispiel b) Verringern Sie den Parameter Lcb um den wert des Unterschwingers. Beispiel (a) Beispiel (b) Nähert sich der Iswert dem Sollwert von oben, können Sie Hcb nach dem gleichen Verfahren berechnen. 12.2.2 Manual Reset Arbeiten Sie mit einem PD-Regler, ist der Parameter ti auf OFF gesetzt und es bleibt eine Abweichung zwischen Soll- und Iswert. In diesem Fall erscheint im PID-Menü der parameter für den Manual reset (res). Mit diesem Parameter wird der Ausgangsleistung ein Offset aufgeschatet, um die Abweichung auszuregeln. Geben Sie diesen Parameterwert manuell ein, um eine bleibende Abweichung zu vermeiden. Prozeßgröße Unterschwingen Zeit Sollwert Prozeßgröße Zeit Sollwert Uberschwingen HA026270GER Ausgabe 5.0 08/07 43 13. Bestellcodierung Codieren Sie den gewünschten Regler nach dem vorliegenden Schema. Modell Funktion Versorgung Anleitung Logikein/ausgang Relais Funktion CC PID Regler NF EIN/AUS Regler TC PID + Timer TN EIN/AUS + Timer Versorgung VH 85-264V AC VL 20 -29V AC/DC Anleitung XXX Keine Anleitung ENG Englisch FRA Französisch GER Deutsch NED Holländisch SPA Spanisch SWE Schwedisch ITA Italienisch Relais XX Keine Ausgang RH Heizen RC Kühlen FH Max Alarm 2 FL Min Alarm 2 AL Max Alarm 2 & Min Alarm 3 DB Abweichungsband DL Abw. Untersollwert DH Abw. Übersollwert NW Neuer Alarm Logikein/ausgang XX Keine Logikausgang Logikausgang LH Heizen LC Kühlen M1 PDSIO mode 1 FH Max alarm 1 FL Min alarm 1 DB Abweichungsband DL Abw. Untersollwert DH Abw. Übersollwert NW Neuer alarm Logikeingang AC Alarmquittierung KL Tastensperre TM Timer Start/Stop Modell 2132 1/16 DIN 2116 1/8 DIN 44 HA026270GER Ausgabe 5.0 08/07 Sensor Bereich min Bereich max Einheit Externes relais Eingangsadapter Externes relais XX Kein Relais R7 Relais (über Logikausgang) Einheit C °C F ° F K Kelvin X Linear Adapter (0-10V) XX Kein Adapter V1 0-10Vdc A1 0-20mA Widerstand (2,49Ω. 0,1%) Sensor Bereich min & max Thermoelement °C J Typ J -210 bis 1200 K Typ K -200 bis 1372 T Typ T -200 bis 400 L Typ L -200 bis 900 N Typ N -200 bis 1300 R Typ R -50 bis 1768 S Typ S -50 bis 1768 B Typ B 0 bis 1820 P Platinell II 0 bis 1369 Widerstandsthermometer Z Pt100 -200 bis 850 Kundenspezifische Eingänge (kein Standard) OC C Typ C -W5%Re/W26%Re (Vorgabe) 0 bis 2319 D Typ D - W3%Re/W25%Re 0 bis 2399 E Typ E -200 bis 999 1 Ni/Ni18%Mo 0 bis 1399 2 Pt20%Rh/Pt40%Rh 0 bis 1870 3 W/W26%Re (Engelhard) 0 bis 2000 4 W/W26%Re (Hoskins) 0 bis 2010 5 W5%Re/W26%Re (Engelhard) 10 bis 2300 6 W5%Re/W26%Re(Bucose) 0 bis 2000 7 Pt10%Rh/Pt40%/Rh 200 bis 1800 8 Exegen K80 I.R. Pyrometer -45 bis 650 Linear M -9.99 bis +80mV Y 0 bis 20mA A 4 bis 20mA V 0 bis 10Vdc -1999 bis 9999 HA026270GER Ausgabe 5.0 08/07 45 14. Technische Daten Schutzart IP65 (EN 60529), oder 4X (NEMA 250) Umgebungstemperatur Betrieb: 0 bis 55oC. Sorgen Sie für genügend Luftzirkulation; Lagerung: -30oC bis +75oC. Relative Feuchte 5 bis 95%, nicht kondensierend Umgebung Die Geräte sind nicht geeignet für den Gebrauch in explosiver oder korrosiver Umgebung; alle Angaben beziehen sich auf Einsatzbereich unter 2000m NN Elektrische Voraussetzungen Netzspannung 100 bis 240Vac -15%, +10%, 48-62Hz, 5Watts max Kleinspannung 24VDC/AC + 20%. DC bis 62Hz, 5Watts Relaisausgang (isoliert) Max: 264VAC, 2A ohm’sch;. Min: 12VDC, 100mA Lebensdauer: Mech: 107 Schaltungen: Elektr: 5 x106 Schaltungen Verdrahtung Der Kabelquerschnitt darf 0,5mm2 (16AWG) nicht unterschreiten. Überstromschutz Verwenden Sie unabhängige 2A Sicherungen für Versorgung und Relais, z. B. EN60127 (typ T) Logikein-und-ausgang 9V bei 12mA, nicht isoliert; der Digitaleingang ist nicht vom Sensoreingang getrennt Elektrische Sicherheit (nach EN 61010) Überspannungstransienten Überspannungstransienten der Netzspannung an allen Spannungsversorgungen zum Gerät maximal 2,5kV Verschmutzungsgrad 2 Leitend Verschmutzungen dürfen nicht in das Gerät gelangen Isolation Alle isolierten Ein- und Ausgänge sind durch eine verstärkte Isolierung galvanisch getrennt Vergleichsstelle >30 bis 1, interne Vergleichsstelle. Überspannungskategorie Kategorie II oder CAT II 46 HA026270GER Ausgabe 5.0 08/07 15. Informationen zu Sicherheit und EMV Dieser Regler wurde in Großbritannien von Eurotherm Ltd hergestellt. Bitte lesen Sie dieses Kapitel, bevor Sie den Regler installieren. Der Regler ist für industrielle Anwendungen im Bereich der Temperaturregelung vorgesehen und entspricht den Europäischen Richtlinien für Sicherheit und EMV. Andere Anwendungen oder Nichtbeachtung der Anweisungen in dieser Bedienungsanleitung kann die Sicherheit des Reglers beeinträchtigen. Es liegt in der Verantwortlichkeit des Inbetriebnehmers, diese Richtlinien bei der Installation des Geräts einzuhalten. 15.1 Allgemein Die Informationen in dieser Anleitung können ohne besondere Hinweise geändert werden. Trotz aller Bemühungen für die Richtigkeit der Angaben kann der Lieferant nicht für in der Anleitung enthaltene Fehler verantwortlich gemacht werden. 15.1.1 Sicherheit Dieses Gerät entspricht der Europäischen Niederspannungsrichtlinie 73/23/EWG, ergänzt durch 93/68/EWG, unter Anwendung des Sicherheitsstandards EN 61010. 15.1.2 Elektromagnetische Verträglichkeit Dieser Regler ist konform zu der EMV Richtlinie 89/336/EWG und den erforderlichen Schutzanforderungen. Die Konformität ist durch eine Drittstelle geprüft und die technischen Unterlagen sind dort abgelegt. Das Gerät ist für Anwendungen im Industriebereich nach EN 61326 vorgesehen. HA026270GER Ausgabe 5.0 08/07 47 15.1.3 Auspacken und Lagerung Die Verpackung sollte ein Gerät in einem Gehäuse, zwei Halteklammern und eine Bedienungsanleitung enthalten. Geräte für bestimmte Bereiche benötigen zusätzlich einen Eingangsadapter. Ist die Verpackung beschädigt, sollten Sie das Gerät nicht einbauen und Kontakt mit der nächsten Eurotherm Niederlassung aufnehmen. Möchten Sie das Gerät vor der Benutzung lagern, schützen Sie es vor Feuchtigkeit und Verschmutzungen und halten Sie die Lagertemperaturen von –10 oC bis +70 oC ein. 15.2 Service und Reparatur Dieses Gerät ist wartungsfrei. Sollte das Gerät einen Fehler aufweisen, kontaktieren Sie bitte die nächste Eurotherm Niederlassung. 15.2.1 Achtung: Geladene Kondensatoren Bevor Sie den Regler aus dem Gehäuse entfernen, nehmen Sie das Gerät vom Netz und warten Sie etwa 2 Minuten, damit sich Kondensatoren entladen können. Es ist sinnvoll, den Regler zum Teil aus dem Gehäuse zu ziehen und dann zu warten, bis Sie ihn ganz aus dem Gehäuse entfernen. Halten Sie diese Zeit nicht ein, können Kondensatoren mit gefährlicher Spannung geladen sein. Vermeiden Sie auf jeden Fall jede Berührung der Elektronik, wenn Sie das Gerät aus dem Gehäuse entfernen. 15.2.2 Elektrostatische Entladung Haben Sie den Regler aus dem Gehäuse entfernt, können einige der freiliegenden Bauteile durch elektrostatische Entladungen beschädigt werden. Beachten Sie deshalb alle Vorsichtsmaßnahmen bezüglich statischer Entladungen. 15.2.3 Reinigung Verwenden Sie für die Reinigung der Geräteaufkleber kein Wasser oder auf Wasser basierende Reinigungsmittel sondern Isopropyl Alkohol. Die Oberfläche der Geräte können Sie mit einer milden Seifenlösung reinigen. 48 HA026270GER Ausgabe 5.0 08/07 15.3 Installation Sicherheitshinweise 15.3.1 Sicherheits Symbole Folgende Symbole können am Gerät angebracht sein: ! Achtung (siehe Dokumentation) 15.3.2 Personal Lassen Sie die Installation dieses Geräts nur von qualifiziertem Personal durchführen. 15.3.3 Berührung Bauen Sie das System zum Schutz vor Berührung in ein Gehäuse ein. 15.3.4 Achtung: Fühler unter Spannung Der Regler ist so konstruiert, dass der Temperaturfühler direkt mit einem elektrischen Heizelement verbunden werden kann. Es liegt in Ihrer Verantwortung dafür zu sorgen, dass Servicepersonal nicht an unter Spannung stehende Elemente gelangen kann. Ist der Fühler mit dem Heizelement verbunden, müssen alle Leitungen, Anschlüsse und Schalter, die mit dem Fühler verbunden sind, für 240 V AC CATII ausgestattet sein. Der Logik EA ist nicht von den PV Eingängen isoliert. 15.3.5 Verdrahtung Die Verdrahtung muss korrekt, entsprechend den Angaben in dieser Bedienungsanleitung und den jeweils gültigen Vorschriften, erfolgen. Achten Sie besonders darauf, dass die AC Spannungsversorgung nicht mit dem Sensoreingang oder anderen Niederspannungsein- oder -ausgängen verbunden wird. Verwenden Sie Kupferleitung (außer für Thermoelementanschluss) und achten Sie darauf, dass alle Zuleitungen und Anschlussklemmen für die entsprechende Stromstärke dimensioniert sind. Weiterhin sind alle Anschlüsse nach den gültigen VDE-Vorschriften bzw. den jeweiligen Landesvorschriften vorzunehmen. 15.3.6 Isolation Die Installation muss einen Trennschalter oder einen Leistungsschalter beinhalten. Bauen Sie diesen Schalter in der Nähe des Systems und gut erreichbar für den Bediener ein. Kennzeichnen Sie den Schalter als trennende Einheit. HA026270GER Ausgabe 5.0 08/07 49 15.3.7 Überstromschutz Sichern Sie die DC Spannungsversorgung des Reglers mit einer Sicherung. Das schützt die Regler-Platinen vor Überstrom. 15.3.8 Maximalspannungen Die maximal anliegende Spannung der folgenden Klemmen muss weniger als 264 V AC betragen: • Relaisausgang zu Logik-, DC oder Fühlerverbindungen; • jede Verbindung gegen Erde. Schließen Sie den Regler nicht an Drehstromnetze ohne geerdeten Mittelpunkt an. Im Falle eines Fehlers kann es bei dieser Versorgung zu Spannungen über 264 V AC kommen. Das Gerät kann dadurch zerstört werden. 15.3.9 Umgebung Leitende Verschmutzungen dürfen nicht in den Schaltschrank gelangen. Um eine geeignete Umgebungsluft zu erreichen, bauen Sie einen Luftfilter in den Lufteintritt des Schaltschranks ein. Sollte der Regler in kondensierender Umgebung stehen (niedrige Temperaturen), bauen Sie eine thermostatgeregelte Heizung in den Schaltschrank ein. Dieses Produkt entspricht der Norm BS EN61010 Überspannungskategorie II, Verschmutzungsgrad 2. Diese sind wie folgt definiert: 15.3.10 Überspannungskategorie II Nennspannung: 230 V. Vorzugswerte von Steh- Stoßspannungen für Überspannungskategorie 2: 2500 V 15.3.10.1 Verschmutzungsgrad 2 Übliche, nicht leitfähige Verschmutzung; gelegentlich muss mit vorübergehender Leitfähigkeit durch Betauung gerechnet werden. 15.3.11 Erdung des Fühlerschirms In manchen Anwendungen wird der Sensor bei laufendem System gewechselt. In diesem Fall sollten Sie als zusätzlichen Schutz vor Stromschlag den Schirm des Temperatursensors erden. Verbinden Sie den Schirm nicht mit dem Maschinengehäuse. 50 HA026270GER Ausgabe 5.0 08/07 15.3.12 Anlagen- und Personensicherheit Beim Entwurf eines Regelsystems sollten Sie sich auch über die Folgen bei Fehlfunktionen Gedanken machen. Bei einem Temperatur-Regelsystem besteht die Gefahr einer ständig laufenden Heizung. Das kann zu Personen- und Anlagenschäden führen. Gründe für eine fehlerhafte Heizung können sein: • Beschädigung des Sensors durch den Prozess • Die Verdrahtung des Thermoelementes wird kurzgeschlossen • Reglerausfall in der Heizperiode • Eine externe Klappe oder Schütz ist in Heizposition blockiert • Der Reglersollwert ist zu hoch. Schützen Sie sich und die Anlage durch eine zusätzliche Temperatur-Schutzeinheit. Diese sollte einen unabhängigen Temperaturfühler und ein Schütz besitzen, der den Heizkreis abschalten kann. Anmerkung: Das Alarmrelais im Regler dient nicht zum Schutz der Anlage, sondern nur zum Erkennen und Anzeigen der Alarme. 15.4 EMV Installationshinweise Um sicherzustellen, dass die EMV-Anforderungen eingehalten werden, treffen Sie folgende Maßnahmen: • Stellen Sie sicher, dass die Installation gemäß den "Eurotherm EMV-Installationshinweisen", Bestellnummer HA025464, durchgeführt wird. • Bei Relaisausgängen müssen Sie eventuell einen geeigneten Filter einsetzen, um die Störaussendung zu unterdrücken. Bei typischen Anwendungen empfehlen wir Schaffner FN321 oder FN612. Bitte beachten Sie, dass die Anforderungen an die Filter jedoch von der verwendeten Lastart abhängen. • Verwenden Sie den Regler in einem Tischgehäuse, sind unter Umständen die Anforderungen der Fachgrundnorm EN 50081-1 (Wohn-, Geschäft- und Gewerbebereich) gültig. Bauen Sie in diesem Fall einen passenden Filter in das Gehäuse ein. Wir empfehlen Schaffner FN321 und FN612. HA026270GER Ausgabe 5.0 08/07 51 15.4.1 Leitungsführung Um die Aufnahme von elektrischem Rauschen zu minimieren, verlegen Sie die Leitungen von Logikund Stetigausgang und Sensoreingang weitab von Netzspannungsleitungen. Ist dies nicht möglich, verwenden Sie bitte abgeschirmte Kabel. Die Abschirmung muss an einem Ende geerdet sein. Achten Sie darauf, die Leitungslänge so kurz wie möglich zu halten. Führt die Signalverdrahtung gefährliche Spannungswerte (oder kann unter Fehlerbedingungen gefährliche Spannungswerte führen), ist eine doppelte Isolierung notwendig. * Eine vollständige Erklärung der 'gefährlichen Spannung' finden Sie unter 'Hazardous Live' in der Norm BS EN61010. Zusammengefasst besagt diese, dass im Normabetrieb Spannungswerte über 30 Veff (42,2 V Spitze) oder über 60 V DC als gefährlich eingestuft werden. 52 HA026270GER Ausgabe 5.0 08/07 16. RoHS Product group 2100 Table listing restricted substances Chinese 产 2100 铅镉铬溴联苯溴苯醚 线组X O X O O O 属O O O O O O 显X O O O O O 块X O X O O O O X English Product 2100 Pb Hg Cd Cr(VI) PBB PBDE PCBA X O X O O O Enclosure O O O O O O Display X O O O O O Modules X O X O O O O X Approval Name: Position: Signature: Date: Martin Greenhalgh Quality Manager IA029470U450 (CN23172) Issue 1 Feb 07 Indicates that this toxic or hazardous substance contained in at least one of the homogeneous materials used for this part is above the limit requirement in SJ/T11363-2006. 该质该质SJ/T11363-2006 标规 Toxic and hazardous substances and elements Indicates that this toxic or hazardous substance contained in all of the homogeneous materials for this part is below the limit requirement in SJ/T11363-2006. Restricted Materials Table Restriction of Hazardous Substances (RoHS) 览 质 该质该质SJ/T11363-2006 标规 AUSTRALIA Sydney Eurotherm Pty. Ltd. Telephone (+61 2) 9838 0099 Fax (+61 2) 9838 9288 E-mail info.au@eurotherm.com AUSTRIA Vienna Eurotherm GmbH Telephone (+43 1) 7987601 Fax (+43 1) 7987605 E-mail info.at@eurotherm.com BELGIUM & LUXEMBURG Moha Eurotherm S.A/N.V. Telephone (+32) 85 274080 Fax (+32 ) 85 274081 E-mail info.be@eurotherm.com BRAZIL Campinas-SP Eurotherm Ltda. Telephone (+5519) 3707 5333 Fax (+5519) 3707 5345 E-mail info.br@eurotherm.com DENMARK Copenhagen Eurotherm Danmark AS Telephone (+45 70) 234670 Fax (+45 70) 234660 E-mail info.dk@eurotherm.com FINLAND Abo Eurotherm Finland Telephone (+358) 22506030 Fax (+358) 22503201 E-mail info.fi@eurotherm.com FRANCE Lyon Eurotherm Automation SA Telephone (+33 478) 664500 Fax (+33 478) 352490 E-mail info.fr@eurotherm.com GERMANY Limburg Eurotherm Deutschland GmbH Telephone (+49 6431) 2980 Fax (+49 6431) 298119 E-mail info.de@eurotherm.com HONG KONG & CHINA Eurotherm Limited North Point Telephone (+85 2) 28733826 Fax (+85 2) 28700148 E-mail info.hk@eurotherm.com Guangzhou Office Telephone (+86 20) 8755 5099 Fax (+86 20) 8755 5831 E-mail info.cn@eurotherm.com Beijing Office Telephone (+86 10) 6567 8506 Fax (+86 10) 6567 8509 E-mail info.cn@eurotherm.com Shanghai Office Telephone (+86 21) 6145 1188 Fax (+86 21) 6145 1187 E-mail info.cn@eurotherm.com International Sales and Service http://www.eurotherm.co.uk HA026270EFG/5 CN23704 INDIA Chennai Eurotherm India Limited Telephone (+9144) 24961129 Fax (+9144) 24961831 E-mail info.in@eurotherm.com IRELAND Dublin Eurotherm Ireland Limited Telephone (+353 1) 469 1800 Fax (+353 1) 469 1300 E-mail info.ie@eurotherm.com ITALY Como Eurotherm S.r.l Telephone (+39 31) 975111 Fax (+39 31) 977512 E-mail info.it@eurotherm.com KOREA Seoul Eurotherm Korea Limited Telephone (+82 31) 273 8507 Fax (+82 31) 273 8508 E-mail info.kr@eurotherm.com NETHERLANDS Alphen a/d Rijn Eurotherm B.V. Telephone (+31 172) 411752 Fax (+31 172) 417260 E-mail info.nl@eurotherm.com NORWAY Oslo Eurotherm A/S Telephone (+47 67) 592170 Fax (+47 67) 118301 E-mail info.no@eurotherm.com POLAND Katowice Eurotherm A/S Telephone (+48 32) 2185100 Fax (+48 32) 2177171 E-mail info.pl@eurotherm.com SPAIN Madrid Eurotherm España SA Telephone (+34 91) 6616001 Fax (+34 91) 6619093 E-mail info.es@eurotherm.com SWEDEN Malmo Eurotherm AB Telephone (+46 40) 384500 Fax (+46 40) 384545 E-mail info.se@eurotherm.com SWITZERLAND Wollerau Eurotherm Produkte (Schweiz) AG Telephone (+41 44) 787 1040 Fax (+41 44) 787 1044 E-mail info.ch@eurotherm.com UNITED KINGDOM Worthing Eurotherm Limited Telephone (+44 1903) 268500 Fax (+44 1903) 265982 E-mail info.uk@eurotherm.com U.S.A Leesburg VA Eurotherm Inc. Telephone (+1 703) 443 0000 Fax (+1 703) 669 1300 E-mail info.us@eurotherm.com ED52 © Copyright Eurotherm Limited 2007 All rights are strictly reserved. No part of this document may be reproduced, modified, or transmitted in any form by any means, nor may it be stored in a retrieval system other than for the purpose to act as an aid in operating the equipment to which the document relates, without the prior written permission of Eurotherm limited. Eurotherm Limited pursues a policy of continuous development and product improvement. The specifications in this document may therefore be changed without notice. The information in this document is given in good faith, but is intended for guidance only. Eurotherm Limited will accept no responsibility for any losses arising from errors in this document. BK889B PONT DE MESURE RLC DE TABLE AVEC INTERFACE USB MANUEL D’UTILISATION RÉSUMÉ DES RÈGLES DE SÉCURITÉ GÉNÉRALITÉS – Les informations générales de sécurité données ici sont valables à la fois pour le personnel qui utilise l’appareil et pour le personnel de maintenance. TERMES – Dans ce manuel, l’indication ATTENTION identifie les conditions ou pratiques qui peuvent occasionner des dommages à l’équipement ou autres biens, et l’indication DANGER identifie les conditions ou pratiques qui peuvent occasionner des blessures ou présenter un risque vital pour le personnel. Ne pas passer outre les indications ATTENTION et DANGER avant d’avoir bien compris et rempli les conditions indiquées. FONCTIONNEMENT – Avant la mise sous tension, respecter les instructions d’installation et d’utilisation. MISE À LA TERRE – Cet appareil est mis à la terre par le conducteur de terre du câble d’alimentation. Ne pas détériorer cette connexion. En cas d’absence de protection par mise à la terre, toutes les parties conductrices accessibles (y compris les boutons et commandes) peuvent provoquer un choc électrique. ADDITIONNELLEMENT – Toute opération de réglage, maintenance ou réparation ne doit être effectuée que par un personnel qualifié. – Pour éviter les risques de dommages corporels, ne pas utiliser cet appareil avec le couvercle ou les panneaux démontés. – Utiliser uniquement des fusibles du type spécifié dans la liste des composants. Ne jamais utiliser des fusibles réparés ni court-circuiter les porte fusibles. – N’effectuer aucune modification non-autorisée de l’instrument. – Ne pas utiliser l’instrument en présence de gaz inflammables ou en atmosphère explosive. – Déconnecter le câble d’alimentation avant de démonter les panneaux de protection, de souder ou de remplacer des composants. – Ne pas entreprendre de manipulations ou réglages internes hors de la présence d’une personne capable de porter les premiers secours et de pratiquer une réanimation. Sommaire SOMMAIRE......................................................................................................................................................................................... 3 1. INTRODUCTION ...................................................................................................................................................................... 3 1.1 GENERAL................................................................................................................................................................................................................................3 1.2 PARAMÈTRES D’IMPÉDANCE .................................................................................................................................................................................................4 1.3 SPÉCIFICATIONS .....................................................................................................................................................................................................................5 1.4 ACCESSOIRES .......................................................................................................................................................................................................................12 2. UTILISATION.......................................................................................................................................................................... 13 2.1 DESCRIPTION........................................................................................................................................................................................................................13 2.2 MESURES..............................................................................................................................................................................................................................14 2.2.1 Calibration ouverte/fermée ..........................................................................................................................................................................................................................................14 2.2.2 Mode Relatif..................................................................................................................................................................................................................................................................14 2.2.3 Range Hold (maintien de la gamme) ...........................................................................................................................................................................................................................14 2.2.4 Mesure de la résistance continue.................................................................................................................................................................................................................................14 2.2.5 Mesure de l’impédance AC...........................................................................................................................................................................................................................................15 2.2.6 Mesure de la capacité ...................................................................................................................................................................................................................................................15 2.2.7 Mesure de l’inductance.................................................................................................................................................................................................................................................15 3. MODES................................................................................................................................................................................... 15 3.1 SYNTAXE DE LA COMMANDE DU MODE REMOTE MODE....................................................................................................................................................19 3.2 COMMANDES DU MODE REMOTE........................................................................................................................................................................................19 4. APPLICATION ........................................................................................................................................................................ 25 4.1 CONNEXION DES FILS DE MESURE .......................................................................................................................................................................................25 4.2 COMPENSATION OUVERTE/FERMÉE.....................................................................................................................................................................................27 4.3 CHOIX DU MODE SÉRIE OU PARALLÈLE ...............................................................................................................................................................................28 3 1. Introduction 1.1Général Le pont de mesure RLC de table avec interface USB BK889B est un instrument très précis utilisé pour mesurer les inductances, capacités et résistances avec une précision de base de 0.1%. Grâce à ses fonctions intégrées de mesures de tension/courant AC/DC et de vérifications de la continuité et de test diode, le BK889B ne permet pas seulement de comprendre les caractéristiques des composants électroniques, c’est aussi un outil essentiel pour tout usage en laboratoire. Le BK889B est par défaut en mode gammes automatiques. Cependant, il peut aussi être utilisé en gammes automatiques et manuelles en appuyant sur la touche Range Hold. Lorsque le mode mesure LCR est sélectionné, l’une des fréquences de test (100Hz, 120Hz, 1KHz, 10KHz, 100KHz ou 200KHz) peut être sélectionnée sur toutes les gammes applicables. L’une des tensions de test (50mVeff, 0.25Veff, 1Veff ou 1VDC) (DCR uniquement) peut aussi être sélectionnée sur toutes les gammes applicables. Le double affichage permet d’effectuer des mesures en simultané. Lorsque le mode mesure tension/courant DC/AC ou le mode Vérification de la continuité de la diode/audible est sélectionné, seul l’affichage secondaire sera utilisé pour afficher la mesure. Le BK889B peut effectuer virtuellement toutes les fonctions des ponts RLC de table. Grâce à sa précision de base de 0.1%, l’instrument économique peut remplacer un pont plus cher dans divers cas. De plus, avec une précision de base de 0.4% dans les mesures de tension et de courant, le BK889B possède les mêmes fonctions qu’un multimètre numérique, vous disposez ainsi de plusieurs instruments en un. Le BK889B peut servir à vérifier les valeurs ESR des condensateurs, régler et/ou sélectionner des composants, mesurer des composants banalisés et inconnus, puis mesurer la capacité, l’inductance ou la résistance des câbles, des commutateurs, des circuits imprimés, etc. Les caractéristiques principales sont les suivantes : 1. Mesures de la tension : · AC : True RMS, jusqu’à 600Veff @ 40~1 kHz · DC : jusqu’à 600V · Impédance d’entrée : 1M-Ohm 2. Mesures du courant : · AC : True RMS, jusqu’à 2Aeff @ 40~1 kHz · DC : jusqu’à 2A · Shunt du courant : 0.1 Ohm@>20mA ; 10Ohm @<20mA 3. Vérifications continuité Diode/Audible : · Tension en circuit ouvert : 5Vdc · Courant de court-circuit : 2.5mA · Buzzer activé : < 25 · Buzzer désactivé : > 50 4. Mesures LCR : · Conditions de test · Fréquence : 100Hz/120Hz/ 1KHz/ 100KHz / 200KHz · Niveau : 1Veff/0.25Veff/50mVeff/1VDC (DCR uniquement) · Paramètres de mesure : Z, Ls, Lp, Cs, Cp, DCR, ESR, D, Q et θ · Précision de base : 0.1% · Double affichage LCD · Gamme automatique ou gamme Hold · Interface USB · Calibration ouverte/fermée · Affichage principal des paramètres : · Z : Impédance alternative · DCR : Résistance continue · Ls : Inductance série · Lp : Inductance parallèle · Cs : Capacité série · Cp : Capacité parallèle · Affichage secondaire · θ: Angle de phase · ESR : Résistance série équivalente · D : Facteur de dissipation · Q : Facteur de qualité · Combinaisons d’affichage : · Mode Série : Z-θ, Cs – Q, Cs – ESR, Ls – D, Ls – Q, Ls – ESR Mode Parallèle : Cp – D, Cp – Q, Lp – D, Lp – Q 4 1.2 Paramètres d’impédance A cause des différents signaux de test sur l’instrument de mesure d’impédance, il y a l’impédance DC et l’impédance AC. Le multimètre numérique classique peut uniquement mesurer l'impédance DC mais le BK889B peut mesurer les deux. Il est très important de comprendre les paramètres d’impédance des composants électroniques. Lorsque nous analysons l’impédance avec le plan de mesure d’impédance (figure 1.1), elle peut être visualisée par un élément réel sur l’axe X et un élément imaginaire sur l’axe Y. Le plan de mesure d’impédance peut aussi être perçu comme des coordonnées polaires. Le Z représente la magnitude et le θ est la phase de l’impédance. ( ) ( ) ( ) ( ) (Ohm ) Reactance Resistance Impedance W = = = = = = - = = + = + = Ð W         S S X R Z Rs X s X s Z Sin Tan Rs Z Cos Z Rs X s Z Rs jX s Z 1 2 2 q q q q Il existe deux types de réactance : Inductive (XL) et Capacitive (XC) pouvant être définies de la manière suivante : Il y a aussi le facteur de Qualité (Q) et le facteur de Dissipation (D) qui doivent être traités. Le facteur Qualité sert de mesure de la pureté de la réactance pour le composant. En réalité, il y a toujours une résistance associée qui dissipe la puissance en augmentant la quantité d’énergie qui peut être récupérée. Le facteur Qualité peut être défini comme le rapport énergie stockée (réactance)/énergie dissipée (résistance). Q sert généralement pour les inductances et D pour les condensateurs. X s R s Z (R s , X s ) Z q Axe imaginaire Axe réel Figure 1.1 C fC XC X L L fL w p w p 2 1 1 2 = = = = C p R p L p R p X p R p G B Rs C s Rs Ls Rs X s D Q w w w w d = = = = = = = = = 1 tan 1 1 L = Inductance (H) C = Capacité (F) f = Fréquence (Hz) 5 Il existe deux types de circuits : le mode série et le mode parallèle. Regarder la figure 1.2 pour découvrir la relation des modes série et parallèle. 1.3 Spécifications  Gamme de mesure: Paramètre Gamme Z 0.000 W à 500.0 MW L 0.030 μH à 9999 H C 0.003 pF à 80.00 mF DCR 0.000 W à 500.0 MW ESR 0.000 W à 9999 W D 0.000 à 9999 Q 0.000 à 9999 θ -180.0 ° à 180.0 ° Mesure de tension/courant V 0.0 mV à +/- 600 V A 0.000 mA à +/- 2 A  Précision (Ae): 1. Mesure de la tension continue : Gamme : 2V, 20V, 200V et 600V Résolution : 1mV, 10mV, 100mV et 1V Précision :+/- (0.4% + 3 digits) Impédance d’entrée : 1M-Ohm 2. Mesure de la tension alternative (True RMS) Gamme : 2V, 20V, 200V et 600V Résolution : 1mV, 10mV, 100mV et 1V Précision :+/- (0.8% + 5 digits) Impédance d’entrée : 1M-Ohm 3. Mesure du courant continu : Gamme : 2mA, 20mA, 200mA et 2000mA Résolution : 1μA, 10μA, 100μA et 1μA Précision :+/- (0.4% + 3 digits) Shunt du courant : 0.1 Ohm @ >20mA, 10 Ohm @ £20mA 4. Mesure du courant alternatif (True RMS) Gamme : 2mA, 20mA, 200mA et 2000mA Résolution : 1μA, 10μA, 100μA et 1μA Précision :+/- (0.8% + 5 digits) Shunt du courant : 0.1 Ohm @ >20mA, 10 Ohm @ £20mA Figure 1.2 Les composants réels et imaginaires sont en série Z = Rs + jXs Rs jXs Les composants réels et imaginaires sont en parallèle G=1/Rp jB=1/jXp Y =G+ jB jXp Rp jXP 1 RP 1 Y = + 6 Note : La précision des mesures de tension/courant DC/AC s’applique uniquement sur 5%-10% de la gamme 5. Mesure LCR: Précision Z (Ae) : |Zx| Freq. 20M ~ 10M (W) 10M ~ 1M (W) 1M ~ 100K (W) 100K ~ 10K (W) 10K ~ 1K (W) 1K ~ 100 (W) 100 ~ 1 (W) 1 ~ 0.1 (W) DCR 0.1% ±1 0.2% ±1 100Hz 120Hz 1KHz 2% ±1  1% ±1 10KHz 5% ±1  2% ±1 0.5% ±1 0.2% ±1 0.5% ±1 1% ±1  100KHz 200KHz  NA 5% ±1 2% ±1 1% ±1 0.4% ±1 1% ±1 2% ±1 5% ±1 Note: 1. La précision s’applique lorsque le niveau de test est à 1Veff 2. Ae multiplie 1,25 lorsque le niveau de test est à 250mVeff 3. Ae multiplie 1,50 lorsque le niveau de test est à 50mVeff 4. Lorsque l’on mesure L et C, multiplier Ae par 1+Dx2 si Dx>0.1  : Ae s’applique uniquement lorsque le niveau de test est à 1Vrms. Précision C : 79.57pF | 159.1pF 159.1pF | 1.591nF 1.591nF | 15.91nF 15.91nF | 159.1uF 159.1nF | 1.591uF 1.591uF | 15.91uF 15.91uF | 1591uF 1591uF | 100Hz 15.91mF 2% ± 1  1% ± 1 0.5% ± 1 0.2% ± 1 0.1% ± 1 0.2% ± 1 0.5% ± 1 1% ± 1  66.31pF | 132.6pF 132.6pF | 1.326nF 1.326nF | 13.26nF 13.26nF | 132.6nF 132.6nF | 1.326uF 1.326uF | 13.26uF 13.26uF | 1326uF 1326uF | 120Hz 13.26mF 2% ± 1  1% ± 1 0.5% ± 1 0.2% ± 1 0.1% ± 1 0.2% ± 1 0.5% ± 1 1% ± 1  7.957pF | 15.91pF 15.91pF | 159.1pF 159.1pF | 1.591nF 1.591nF | 15.91nF 15.91nF | 159.1nF 159.1nF | 1.591uF 1.591uF | 159.1uF 159.1uF | 1KHz 1.591mF 2% ± 1  1% ± 1 0.5% ± 1 0.2% ± 1 0.1% ± 1 0.2% ± 1 0.5% ± 1 1% ± 1  10KHz 0.795pF | 1.591pF 1.591pF | 15.91pF 15.91pF | 159.1pF 159.1pF | 1.591nF 1.591nF | 15.91nF 15.91nF | 159.1nF 159.1nF | 15.91uF 15.91uF | 159.1uF 7 5% ± 1  2% ± 1 0.5% ± 1 0.2% ± 1 0.1% ± 1 0.2% ± 1 0.5% ± 1 1% ± 1  NA 0.159pF | 1.591pF 1.591pF | 15.91pF 15.91pF | 159.1pF 159.1pF | 1.591nF 1.591nF | 15.91nF 15.91nF | 1.591uF 1.591uF | 15.91uF 100KHz  NA 5% ± 1 2%± 1 1%± 1 0.4%± 1 1%± 1 2%± 1 5% ± 1 NA 0.079pF | 0.795pF 0.795pF | 7.957pF 7.957pF | 79.57pF 79.57pF | 795.7pF 795.7pF | 7.957nF 7.957nF | 795.7nF 795.7nF | 7.957uF 200KHz  NA 5% ± 1 2%± 1 1%± 1 0.4%± 1 1%± 1 2%± 1 5% ± 1 Précision L: 31.83KH | 15.91KH 15.91KH | 1591H 1591H | 159.1H 159.1H | 15.91H 15.91H | 1.591H 1.591H | 159.1mH 159.1mH | 1.591mH 1.591mH | 100Hz 159.1uH 2% ± 1  1% ± 1 0.5% ± 1 0.2% ± 1 0.1% ± 1 0.2% ± 1 0.5% ± 1 1% ± 1  26.52KH | 13.26KH 13.26KH | 1326H 1326H | 132.6H 132.6H | 13.26H 13.26H | 1.326H 1.326H | 132.6mH 132.6mH | 1.326mH 1.326mH | 120Hz 132.6uH 2% ± 1  1% ± 1 0.5% ± 1 0.2% ± 1 0.1% ± 1 0.2% ± 1 0.5% ± 1 1% ± 1  3.183KH | 1.591KH 1.591KH | 159.1H 159.1H | 15.91H 15.91H | 1.591H 1.591H | 159.1mH 159.1mH | 15.91mH 15.91mH | 159.1uH 159.1uH | 1KHz 15.91uH 2% ± 1  1% ± 1 0.5% ± 1 0.2% ± 1 0.1% ± 1 0.2% ± 1 0.5% ± 1 1% ± 1  318.3H | 159.1H 159.1H | 15.91H 15.91H | 1.591H 1.591H | 159.1mH 159.1mH | 15.91mH 15.91mH | 1.591mH 1.591mH | 15.91uH 15.91uH | 10KHz 1.591uH 5% ± 1  2% ± 1 0.5% ± 1 0.2% ± 1 0.1% ± 1 0.2% ± 1 0.5% ± 1 1% ± 1  31.83H | 15.91H 15.91H | 1.591H 1.591H | 159.1mH 159.1mH | 15.91mH 15.91mH | 1.591mH 1.591mH | 159.1uH 159.1uH | 1.591uH 1.591uH | 0.159uH 100KHz  NA 5% ± 1 2%± 1 1% ± 1 0.4% ± 1 1% ± 1 2%± 1 5% ± 1 15.91H | 7.957H 7.957H | 795.7mH 795.7mH | 79.57mH 79.57mH | 7.957mH 7.957mH | 795.7uH 795.7uH | 79.57uH 79.57uH | 0.795uH 0.795uH | 0.079uH 200KHz  NA 5% ± 1 2%± 1 1% ± 1 0.4% ± 1 1% ± 1 2%± 1 5% ± 1 Précision D: 8 |Zx| Freq. 20M ~ 10M (W) 10M ~ 1M (W) 1M ~ 100K (W) 100K ~ 10K (W) 10K ~ 1K (W) 1K ~ 100 (W) 100 ~ 1 (W) 1 ~ 0.1 (W) 100Hz ±0.002 ±0.002 120Hz 1KHz ±0.020  ±0.010 10KHz ±0.050  ±0.020 ±0.005 ±0.002 ±0.005 ±0.010  100KHz 200KHz  NA ±0.050 ±0.020 ±0.010 ±0.004 ±0.010 ±0.020 ±0.050 Précision q: |Zx| Freq. 20M ~ 10M (W) 10M ~ 1M (W) 1M ~ 100K (W) 100K ~ 10K (W) 10K ~ 1K (W) 1K ~ 100 (W) 100 ~ 1 (W) 1 ~ 0.1 (W) 100Hz ±0.105 ±0.105 120Hz 1KHz ±1.046  ±0.523 10KHz ±2.615  ±1.046 ±0.261 ±0.105 ±0.261 ±0.523  100KHz 200KHz  NA ±2.615 ±1.046 ±0.409 ±0.209 ±0.409 ±1.046 ±2.615 Précision Z: Voir tableau 1. Précision C: f Cx Zx × × × = 2 p 1 CAe = Ae of C f : Fréquence de test (Hz) Cx : Valeur de capacité mesurée (F) |Zx| : Valeur d’impédance mesurée () La précision s’applique lorsque Dx (valeur D mesurée) < 0.1 Lorsque Dx>0.1, multiplier CAe par 1 + Dx2 Exemple : Condition de test : Fréquence : 1KHz Niveau : 1Veff DUT : 100nF Donc 9 - = W × × × × = × × × = 1590 2 103 100 10 9 1 2 1 p p f Cx Zx Lire le tableau de précision, obtenir CAe=±0.1% Précision L: Zx = 2 ×p × f × Lx LAe = Ae of L f : Fréquence de test (Hz) Lx : Valeur d’inductance mesurée (F) |Zx| : Valeur d’impédance mesurée () La précision s’applique lorsque Dx (valeur D mesurée) < 0.1 Lorsque Dx>0.1, multiplier LAe par 1 + Dx2 Exemple : Condition de test : Fréquence : 1KHz Niveau : 1Veff DUT : 1mH Donc = × × × - = W = × × × 2 10 3 10 3 6.283 2 p Zx p f Lx Lire le tableau de précision, obtenir LAe = ±0.5% Précision ESR: 100 Ae ESRAe = ±Xx × f Cx Xx f Lx × × × = × × × = p p 2 1 2 ESRAe = Ae de ESR f :Fréquence de test (Hz) Xx :Valeur de réactance mesurée () Lx :Valeur d’inductance mesurée (H) Cx : Valeur de capacité mesurée (F) La précision s’applique lorsque Dx (valeur D mesurée) £ 0.1 Exemple: Condition de test : Fréquence : 1KHz Niveau : 1Veff DUT : 100nF Donc - = W × × × × = × × × = 1590 2 10 3 100 10 9 1 2 1 p p f Cx Zx Lire le tableau de précision, obtenir CAe=±0.1%, 10 = ± × = ±1.59W 100 Ae ESR Ae Xx Précision D: 100 Ae D Ae = ± DAe = Ae de D La précision s’applique lorsque Dx (valeur D mesurée) £ 0.1 Lorsque Dx > 0.1, multiplier Dx par (1+Dx) Exemple : Condition de test : Fréquence : 1KHz Niveau : 1Veff DUT : 100nF Donc - = W × × × × = × × × = 1590 2 10 3 100 10 9 1 2 1 p p f Cx Zx Lire le tableau de précision, obtenir CAe=±0.1%, 0.002 100 = ± × = ± Ae D Ae Précision Q: Qx De Qx De Ae Q × = ± × 1 m 2 QAe = Ae de Q Qx : Valeur du facteur Qualité mesuré De : Valeur de précision relative La précision s’applique lorsque Qx × De < 1 Exemple : Condition de test : Fréquence : 1KHz Niveau : 1Veff DUT : 1mH Donc = × × × - = W = × × × 2 10 3 10 3 6.283 2 p Zx p f Lx Lire le tableau de précision, obtenir LAe=±0.5%, 0.005 100 = ± × = ± Ae De Si Qx = 20 Donc 11 1 0.1 2 1 2 m m = ± × = ± × Qx De Qx De Q Ae Précision θ: 100 Ae π 180 = × Ae q Exemple : Condition de test : Fréquence : 1KHz Niveau : 1Veff DUT : 100nF Donc - = W × × × × = × × × = 1590 2 10 3 100 10 9 1 2 1 p p f Cx Zx Lire le tableau de précision, obtenir ZAe=±0.1%, 0 .057 deg 100 180 0 .1 100 180 = ± × = ± = ± × p p q Ae Ae  Signal de test : Précision du niveau : + 10% Précision de la fréquence : 0.1%  Impédance de sortie : 100W ± 5%  Température : 0°C à 40°C (Utilisation) -20°C à 70°C (Stockage) Humidité relative : Jusqu’à 85% Puissance AC : 110/220V, 60/50Hz Dimensions : 300mm x 220mm x 150mm Masse : 4500g Attention Lorsque le mode de mesure RLC est sélectionné, les facteurs suivants doivent être pris en compte. Fréquence de test : elle peut être choisie et modifiée par l’utilisateur. En général, un signal de test de 1KHz ou plus élevé sert à mesurer les condensateurs qui sont de 0.01μF ou moins, et un signal de test de 120Hz sert pour les condensateurs de 10 μF ou plus. Un signal de test de 1KHz ou plus sert à mesurer les inductances utilisés dans les circuits audio et RF (fréquence radio). C’est parce que ces types d’inductances fonctionnent à de hautes fréquences et exigent d’être mesurés à haute fréquence. En général, les inductances inférieures à 2mH devraient être mesurées à la fréquence de test de 1KHz ou plus, et les inductances supérieures à 200H devraient être mesurées à 120Hz ou moins. Il est recommandé de vérifier la feuille des données du composant pour déterminer la meilleure fréquence de test. Condensateurs chargés : Toujours décharger un condensateur avant d’effectuer des mesures car cela pourrait endommager l’instrument. 12 Effet de D sur la précision A: diminuer la mesure D (Facteur de dissipation) est désirable. Les condensateurs électrolytiques possèdent un facteur de dissipation élevé dû à leur perte normalement élevée. Si D (facteur de dissipation) est trop élevé, la précision de la mesure de capacité peut se dégrader. Il est recommandé de vérifier la feuille des données du composant pour déterminer la valeur D souhaitable du composant. Capacité de mesure des câbles, commutateurs ou autres éléments : mesurer la capacité des câbles coaxiaux est très utile pour déterminer la longueur du câble. La majorité des spécifications donnant la capacité/unité de longueur de câble, c’est pour cela que la longueur du câble peut être déterminée en mesurant la capacité de ce câble. Par exemple : les spécifications exigent un certain câble pour avoir une capacité de 10pF par pied. Après avoir mesuré le câble, la valeur de capacité qui s’affiche est 1.000nF. Diviser 1000pF (1.000nF) par 10pF par pied donne une longueur du câble d’environ 100 pieds. Même si les spécifications sont inconnues, la capacité d’une longueur mesuré du câble (comme 10 pieds) peut être utilisée pour déterminer la capacité/pied. Ne pas utiliser une longueur trop courte car toute erreur sur les calculs de la longueur totale est proportionnelle. Mesures série ou Parallèle (pour inductances) : le mode série affiche la mesure la plus précise dans tous les cas. Le mode série équivalent est essentiel pour obtenir une mesure Q précise de faibles inductances. Là où le risque de pertes sont plus importantes, le mode série équivalent est préférable. Cependant, il existe des cas où le mode parallèle équivalent est le plus approprié. Pour le fonctionnement des inductances en fer (hautes fréquences) où l’hystérésis et les courants de Foucault deviennent important, la mesure en mode parallèle équivalent est préférable. 1.4Accessoires · Un manuel d’utilisation · Un cordon d’alimentation AC · Une pince Kelvin · Un câble de mesure pour multimètre numérique 13 2. Utilisation 2.1 Description 1. Affichage du paramètre primaire 2. Affichage du paramètre secondaire 3. Touche Fonction L/C/Z/DCR 4. Touche Fonction DCA/ACA 5. Touche Fréquence de mesure 6. Borne LCUR 7. Touche Niveau de mesure 8. Touche Range Hold (maintenir la gamme) 9. Référence du modèle 10. Borne LPOT 11. Touche Fonction D/Q/θ/ESR 12. Borne HPOT 13. Touche Calibration ouverte 14. Touche Fonction DCV/ACV 15. Touche Relatif 16. Borne HCUR 17. Touche Calibration 18. Touche Fonction Diode/Continuité 19. Touche Fonction à distance 21. Marche/Arrêt 23. Puissance AC 25. Borne A 20. Borne COM 22. Borne V/Diode/Continuité 24. Port USB 26. Fusible 2A 14 2.2 Mesures 2.2.1 Calibration circuit ouvert/court-circuit Le BK889B effectue des calibrations circuit ouvert/court-circuit qui permettent à l’utilisateur d’obtenir plus de précision pour mesurer une impédance haute ou basse. Nous vous recommandons d’effectuer ce type de calibration si le niveau ou la fréquence de test a été modifiée.  Calibration en circuit ouvert Les bornes de mesure étant à l’état circuit ouvert, appuyer sur la touche Open puis l’écran suivant apparaît: Cette calibration dure environ 15 secondes. Une fois la calibration terminée, le BK889B émettra un bip pour indiquer la fin de la calibration.  Calibration en court-circuit Pour effectuer une calibration en court-circuit, insérer un court-circuit sur les bornes de mesure. Appuyer sur Short puis l’écran suivant s’affiche: Cette calibration dure environ 15 secondes. Une fois la calibration terminée, le BK889B émettra un bip pour indiquer la fin de la calibration. 2.2.2 Mode Relatif Le mode relatif permet de trier rapidement les composants. Insérer le composant de la valeur de référence pour lire la valeur standard. (Environ 5 secondes pour une lecture stable.) Puis appuyer sur Relative , l’affichage principal se remettra à zéro. Retirer le composant de la valeur de référence et insérer un composant inconnu, l’écran indiquera la valeur qui représente la différence entre la valeur de référence et la valeur inconnue. 2.2.3 Range Hold (maintien de la gamme) Pour mettre l’appareil sur Range Hold, insérer un composant de référence sur cette gamme de mesure. (Environ 5 secondes pour une lecture stable.) Puis appuyer sur Range Hold , cela maintiendra la gamme de 0.5 à 2 fois la gamme de mesure du courant. Lorsque l’on appuie sur Range Hold , l’écran suivant s’affiche: 2.2.4 Mesure de la résistance continue La mesure de la résistance continue permet de mesurer la résistance d’un composant inconnu sous 1VDC. Appuyer sur L/C/Z/DCR pour sélectionner la mesure DCR. L’écran affiche: 15 2.2.5 Mesure de l’impédance AC (Z) La mesure de l‘impédance AC permet de mesurer le Z d’un appareil inconnu. Appuyer sur L/C/Z/DCR pour sélectionner la mesure Z. L’écran affiche: Le niveau et la fréquence de test peuvent être sélectionnés en appuyant sur Level et Freq. 2.2.6 Mesure de la capacité Pour mesurer la capacité d’un composant, appuyer sur L/C/Z/DCR pour sélectionner le mode de mesure Cs (Mode Série) ou Cp (Mode Parallèle). Si le mode série (Cs) est sélectionné, le D, Q et ESR s’affichent sur l’afficheur secondaire. Si le mode Parallèle (Cp) est sélectionné, seuls le D et Q s’affichent sur l’afficheur secondaire. Voici des exemples de mesures de capacité : Le niveau et la fréquence de test peuvent être sélectionnés en appuyant sur Level et Freq. 2.2.7 Mesure de l’inductance Appuyer sur L/C/Z/DCR pour sélectionner le mode Ls ou Lp pour mesurer l’inductance en mode série ou en mode parallèle. Si le mode série (Ls) est sélectionné, le D, Q et ESR s’affichent sur l’afficheur secondaire. Si le mode Parallèle (Lp) est sélectionné, seuls le D et Q s’affichent sur l’afficheur secondaire. Voici des exemples de mesures d’inductance : Le niveau et la fréquence de test peuvent être sélectionnés en appuyant sur Level et Freq. 3. Modes Le BK889B possède quatre modes de fonctionnement : Normal, Binning , Remote et Remote Binning. En appuyant sur Remote , l’utilisateur peut sélectionner l’un des 4 modes ci-dessus.  Mode Normal: 16 Le mode Normal est le mode par défaut. C’est un mode local qui fait que le BK889B est piloté par le clavier et les résultats seront envoyés à l’afficheur et au PC équipé d’un port USB.  Mode Binning: Le mode Binning est réservé au prochain usage (comme GPIB). Il est réglé pour fonctionner de la même façon que le mode Normal qui reçoit des commandes depuis le clavier et qui envoie les résultats à l’afficheur et au PC équipé d’un port USB.  Mode Remote Binning: En mode Remote Binning, le “RMT Bin” sur l’écran s’allumera, le fonctionnement du BK889B est piloté par un PC équipé d’un port USB ou par une borne, les résultats seront envoyés à l’afficheur local et au poste de travail via le port USB. Dans ce mode, toutes les touches sauf Remote sont verrouillées. Le mode Remote Binning permet une meilleure et plus rapide utilisation les programmes d’application. L’utilisateur peut créer un serveur ou un pilote (n’importe quel composant de logiciel peut effectuer la tâche d’un serveur) avec l’interface Graphic, le modèle de réseau OSI, et le puissant interprète intégré à l’afficheur Graphique du support, la connectivité du réseau, les interprétations de la commande de structure (SCPI, IEEE488 etc.) et fera un pont entre le programme d’application de haut niveau comme VB, VISUAL C++, EXCEL, ACCESS etc. et le BK889B. Voir la figure suivante : Le protocole de communication entre le BK889B et un PC équipé d’un port USB se décrit de la manière suivante : 1. Les commandes qui seront envoyées d’un PC à distance à un BK889B sont utilisées pour paramétrer la machine sur un mode de mesure sélectionné. La syntaxe de la commande est: MOD current-state-code Elle commence toujours par MOD suivi par un espace puis par le code d’état actuel. Le code d’état actuel qui est défini dans le tableau ci-dessous fait 3 octets (24 bits), bit-23, 22, 21… bit-0, où bit-23 est le MSB et bit-0 est le LSB. Position du bit LCR DC/AC V/A Bit 2 – Bit 0 (freq test) Réservé 000 100 Hz 001 120 Hz 010 1K Hz 011 10K Hz 100 100K Hz Modèle BK889B Serveur: COM, DCOM, ATL, CONTROL, AUTOMATION EXE Intégrés: Graphic interface, Réseau OSI, et/ou puissant Interprète ou Analyseur VB, VISUAL C++, EXCEL, ACCESS etc. 17 101 200K Hz 110 Réservé 111 Réservé Bit 4 – Bit 3 (niveau test) Réservé 00 50 mVeff 01 250 mVeff 10 1 Veff 11 Réservé Bit 5 Réservé 0 Défaut Défaut 1 Réservé Réservé Bit 6 0 Relatif Relatif 1 Normal Normal Bit 7 0 Calibration Calibration 1 Normal Normal Bit 10 – Bit 8 Réservé 000 Lp 001 Ls 010 Cp 011 Cs 100 Z 101 DCR 110 Réservé 111 Réservé Bit 12 – Bit 11 Réservé 00 D 01 Q 10 DEG 11 ESR Bit 16 – Bit 13 0000 RH nH Réservé 0001 RH uH RH mV, mA 0010 RH mH RH V, A 0011 RH H Réservé 0100 RH pF 0101 RH nF 0110 RH uF 0111 RH mF 1000 RH F 1001 RH Ohm 1010 RH K-Ohm 1011 RH M-Ohm 1100 Réservé 1101 1110 1111 Gamme automatique Gamme automatique Bit 17 0 Calibration court-circuit Calibration court-circuit 1 Calibration circuit ouvert Réservé 18 Bit 21 – Bit 18 Modes de mesure 0000 Réservé 0001 LCR 0010 DCV 0011 ACV 0100 Diode 0101 Continuité 0110 DCA 0111 ACA Autres Réservé Bit 23 – Bit 22 Réservé 00 01 10 11 Par exemple : si la fonction LCR, Cp en mode mesure D est sélectionné en gamme automatique en calibration relative ouverte/fermée sont désactivés et le signal du test est à 1 Veff dans 1KHz, la commande est la suivante : MOD 000001111110001011010010 2. Les résultats qui seront envoyés du BK889B au PC à distance seront empaquetés dans un format de 7 octets ou de 11 octets. Lorsque les données doubles (comme Cp avec D) seront envoyées, les données seront empaquetées dans un format de 11 octets comme indiqué ci-dessous: Lead_code1 : 02 Lead_code2 : 09 Data_code : mesure 8 octets; deux formats de nombre de points instables de 32 bits ; les 4 premiers octets sont la mesure principale (Cp) et la deuxième série de 4 octets représentent la mesure secondaire (D) Checksum : -((02+09+data_code) && 0x00FF) 02 09 M-B0 M-B1 M-B2 M-B3 S-B0 S-B1 S-B2 S-B3 CS Où M-Bx et S-Bx sont la mesure principale et secondaire. Lorsque seule la mesure principale (comme DCR) est envoyée, les données sont empaquetées dans un format de 7 octets décrits ci-dessous: Lead_code1 : 02 Lead_code2 : 03 Data_code : mesure 4 octets Checksum : -((02+03+data_code) && 0x00FF) 02 03 M-B0 M-B1 M-B2 M-B3 CS Lorsque seule la mesure secondaire (comme DCV) est envoyée, les données sont empaquetées dans un format de 11 octets décrits ci-dessous: Lead_code1 : 02 Lead_code2 : 09 Data_code : mesure 8 octets Checksum : -((02+09+data_code) && 0x00FF) 02 09 S-B0 S-B1 S-B2 S-B3 S-B0 S-B1 S-B2 S-B3 CS 19  Mode Remote: En mode Remote, le “RMT” sur l’écran s’allumera et le BK889B pourra communiquer avec le PC équipé d’une interface USB ou une borne via le port USB. Voici le paramétrage de la connexion : Mode Transmission : Semi-duplex Vitesse de transmission : 9600 Parité : Aucune Bits de données : 8 Stop : 1 Liaison : Aucune Dans ce mode, l’écran et toutes les touches sauf Remote seront verrouillés. Le programme externe pilote le BK889B via le port USB. 3.1 Syntaxe de la commande du Mode Remote La syntaxe de la commande est la suivante: COMMAND(?) (PARAMETER) Le format de COMMAND et PARAMETER est le suivant: 1. Il y a au moins un espace entre COMMAND et PARAMETER. 2. Le PARAMETER doit uniquement utiliser la chaîne ASCII pas le code numérique. 3. Le paramètre de la valeur peut être un entier, instable ou exposant avec l’unité. Par exemple : 50mV 0.05V 5.0e1mV 4. Le point d’interrogation (?) à la fin de COMMAND représente une demande ou une commande de mesure. Par exemple : “CpD” fixe le mode de mesure sur Cp et D. “CpD?” fixe le mode de mesure sur Cp et D, mesure les valeurs et les renvoie. 5. COMMAND et PARAMETER peuvent être soit en majuscule soit en minuscule. Mais pour décrire la valeur dans le PARAMETER, il devrait y avoir une différence entre milli (m) et méga (M). Par exemple: 1mV équivaut à 0.001V. 1MV équivaut à 1000000V. 6. Le caractère à la “fin de la commande” doit être placé à la fin: ASCII CR (0DH) ou ASCII LF (0AH) 3.2 Commandes du Mode Remote Commande de paramétrage (ou de demande) de la mesure Le paramétrage suivant et les commandes de demande sont pris en charge par le BK889B. Lorsque la commande de paramétrage du mode de mesure est entrée, le BK889B renvoie “OK” lorsque le paramétrage est terminé. Lorsque la commande de demande est entrée, le BK889B revoie les valeurs de mesure.  DCR(?) Paramétrage ou commande de demande du mode de mesure de la résistance continue.  CpRp(?) Paramétrage ou commande de demande du mode de mesure de la capacité parallèle et de la résistance parallèle.  CpQ(?) Paramétrage ou commande de demande du mode de mesure de la capacité parallèle et du facteur de qualité.  CpD(?) Paramétrage ou commande de demande du mode de mesure de la capacité parallèle et du facteur de dissipation.  CsRs(?) Paramétrage ou commande de demande du mode de mesure de la capacité série et de la 20 résistance série.  CsQ(?) Paramétrage ou commande de demande du mode de mesure de la capacité série et du facteur de qualité.  CsD(?) Paramétrage ou commande de demande du mode de mesure de la capacité série et du facteur de dissipation.  LpRp(?) Paramétrage ou commande de demande du mode de mesure de la résistance parallèle et de l’inductance parallèle.  LpQ(?) Paramétrage ou commande de demande du mode de mesure de l’inductance parallèle et du facteur de qualité.  LpD(?) Paramétrage ou commande de demande du mode de mesure de l’inductance parallèle et du facteur de dissipation.  LsRs(?) Paramétrage ou commande de demande du mode de mesure de l’inductance série et la résistance série.  LsQ(?) Paramétrage ou commande de demande du mode de mesure de l’inductance série et le facteur de qualité.  LsD(?) Paramétrage ou commande de demande du mode de mesure de l’inductance série et du facteur de dissipation.  RsXs(?) Paramétrage ou commande de demande du mode de mesure de l’inductance série et la réactance série.  RpXp(?) Paramétrage ou commande de demande du mode de mesure de la résistance parallèle et de la réactance parallèle.  ZTD(?) Paramétrage ou commande de demande du mode de mesure de l’impédance et de l’angle (Deg).  ZTR(?) Paramétrage ou commande de demande du mode de mesure de l’impédance et de l’angle (Rad).  DCV(?) Paramétrage ou commande de demande du mode de mesure de la tension continue.  ACV(?) Paramétrage ou commande de demande du mode de mesure de la tension alternative.  DCA(?) Paramétrage ou commande de demande du mode de mesure du courant continu.  ACA(?) Paramétrage ou commande de demande du mode de mesure du courant alternatif. Exemple: CPD (sur Cp- mode D) OK CPD? 0.22724 0.12840 (retour des valeurs) DCR? 5.1029 (retour de la valeur) *IDN? Demande l’identité du BK889B. Cette commande sert à identifier les informations de base du BK889B. La valeur retournée a quatre champs séparés par une virgule (,). La longueur totale n’est pas supérieure à 100 caractères. Les quatre champs sont: 1. Nom du fabricant 2. Numéro du modèle 3. Numéro de série 4. Numéro de la version du logiciel Exemple: *IDN? B&K PRECISION CORP. MODEL889B,123456789,4.096 21 *RST Remet le BK889B dans son état par défaut. L’état par défaut est : 1KHz 1Vrms CpD uF Une fois le BK889B remis à zéro, il retournera la chaîne d’identité. ASC Définit le format de la valeur de retour. Cette commande fixe le retour de la chaîne ASCII ou du code numérique. PARAMETER: ON chaîne ASCII OFF code numérique Exemple: ASC ON OK (retour) FREQ? 1KHz (retour) ASC OFF OK (retour) FREQ? 2 (retour) CORR OPEN Effectue la calibration circuit ouvert. CORR SHORT Effectue la calibration court-circuit. FREQ(?) PARAMETER Définit (demande) la fréquence de mesure.  FREQ PARAMETER Définit la fréquence de mesure en fonction du paramètre. Lorsque la commande de paramétrage est entrée, le BK889B retourne “OK” à la fin du paramétrage. PARAMETER: Chaîne ASCII Code numérique 100Hz 0 120Hz 1 1KHz 2 10KHz 3 100KHz 4 200KHz 5 Exemple: FREQ 100KHz OK (retour)  FREQ? Retourne le paramètre de fréquence de la mesure. Exemple: ASC ON OK FREQ? 1KHz (valeur de retour) ASC OFF OK 22 FREQ? 2 (valeur de retour) LEV(?) PARAMETER Définit (demande) le niveau de mesure.  LEV PARAMETER Définit le niveau de mesure en fonction du paramètre. Lorsque le paramétrage est terminé, le BK889B retourne “OK”. PARAMETER: Chaîne ASCII Code numérique 1VDC 0 1Vrms 1 250mVrms 2 50mVrms 3 Exemple: LEV 1V OK  LEV? Retourne le paramètre du niveau de mesure. Exemple: ASC ON OK LEV? 1Vrms (valeur de retour) ASC OFF OK LEV? 1 (valeur de retour) MODE? Demande du mode de mesure. Si en mode LCR, six champs doivent être retournés. 1. Fréquence 2. Niveau 3. Mode de mesure 4. Unité de l’affichage principal 5. Unité de l’affichage secondaire L’existence du champ 5 dépend du mode de mesure. Par exemple, il n’y a pas de champ 5 si le mode de mesure est le mode DCR. Les champs sont séparés par un espace (ASCII 20H). Exemple: ASC ON OK CPD OK MODE? 1KHz 1Vrms CpD uF (valeur de retour) ASC ON OK CPRP OK MODE? 1KHz 1Vrms CpRp uF Ohm (valeur de retour) 23 Si en mode de mesure de la tension, les trois champs sont retournés. 1. Mode de mesure 2. Unité de l’affichage principal Exemple: ASC ON OK DCV OK MODE? DCV V (valeur de retour) RANG mV OK MODE? DCV mV (valeur de retour) RANG(?) PARAMETER Définit (demande) l’unité de mesure.  RANG PARAMETER Définit l’unité de mesure en fonction du paramètre. L’instrument retourne “OK” à la fin du paramétrage. PARAMETER: ASCII Code numérique pF 0 nF 1 uF 2 mF 3 F 4 nH 8 uH 9 mH 10 H 11 KH 12 mOhm 17 Ohm 18 KOhm 19 MOhm 20 mV 21 V 22 mA 23 A 24 Exemple: RANG pF OK  RANG? Retourne le paramètre de l’unité de mesure du courant. Exemple: ASC ON OK RANG? pF (valeur de retour) 24 ASC OFF OK RANG? 0 (valeur de retour) READ? Retourne la valeur de mesure. Cette commande mesurera en fonction du mode de mesure en cours et retournera la valeur mesurée. Exemple: CPD OK READ? 0.22724 0.12840 (valeur de retour) DCR OK READ? 5.1029 (valeur de retour) Les mesures “DCR”, “DCV”, and “ACV” n’enverront qu’une seule valeur mesurée. Les autres modes de mesure enverront deux valeurs mesurées séparées par un espace (ASCII 20H). 25 4.Application 4.1 Connexion des fils de mesure Un pont d’équilibre automatique possède 4 bornes (HCUR, HPOT, LCUR and LPOT) à connecter sur l’appareil à tester (DUT). Il faut comprendre quelle méthode de connexion affectera la précision de la mesure.  Borne 2 (2T) – Mesure 2 fils La Borne 2 est la manière la plus simple de connecter le DUT, mais elle contient de nombreuses erreurs qui sont l’inductance et la résistance ainsi que la capacité parasite des câbles de mesure (Figure 4.1).A cause de ces erreurs, la gamme de mesure d’impédance efficace sera limitée de 100W à 10KW. R HCUR HPOT DUT (b) BLOCK DIAGRAM V DUT A Co o Lo Ro Lo (a) CONNECTION (c) TYPICAL IMPEDANCE MEASUREMENT RANGE(£[) 2T 1m 10m 100m 1 10 100 1K 10K 100K 1M 10M LPOT LCUR Figure 4.1  Borne 3 (3T) – Mesure 3 fils La borne 3 utilise la câble coaxial pour réduire l’effet du condensateur parasite (Figure 4.2). Le blindage du câble coaxial doit être relié au boîtier de l’instrument pour augmenter la gamme de mesure jusqu’à 10MW. DUT V A (d) 2T CONNECTION WITH SHILDING HCUR HPOT DUT (b) BLOCK DIAGRAM V DUT A Co Ro Lo Ro Lo Co doesn't effect measurement result (a) CONNECTION (c) TYPICAL IMPEDANCE MEASUREMENT RANGE(£[) 3T 1m 10m 100m 1 10 100 1K 10K 100K 1M 10M LPOT LCUR Figure 4.2  Borne 4 (4T) – Mesure 4 fils La connexion de la borne 4 réduit l’effet de la résistance du fil de mesure (Figure 4.3). Cette connexion peut améliorer la gamme de mesure jusqu’à 10mW min. Cependant, l’effet de l’inductance du fil de mesure ne peut être éliminée. 26 HCUR HPOT DUT (b) BLOCK DIAGRAM V DUT A (a) CONNECTION (c) TYPICAL IMPEDANCE MEASUREMENT RANGE (£[) 4T 1m 10m 100m 1 10 100 1K 10K 100K 1M 10M LPOT LCUR Figure 4.3  Borne 5 (5T) La connexion de la borne 5 est une combinaison de 3T et 4T (Figure 4.4). Elle possède 4 câbles coaxiaux. Grâce à son avantage de 3T et 4T, cette connexion permet une gamme de mesure de10mW à 10MW. (d) WRONG 4T CONNECTION HPOT DUT (a) CONNECTION (b) BLOCK DIAGRAM (c) TYPICAL IMPEDANCE MEASUREMENT RANGE (£[) 5T 1m 10m 100m 1 10 100 1K 10K 100K 1M 10M HCUR V DUT A V DUT A LPOT LCUR Figure 4.4  Chemin borne 4 (4TP) Cette connexion résout le problème causé par l’inductance du câble de mesure. Le 4TP utilise quatre câbles coaxiaux pour isoler le chemin actuel et le câble de prise de tension (Figure 4.5). Le courant de retour circulera dans le câble coaxial ainsi que dans le blindage. Le flux magnétique généré par le conducteur interne neutralisera donc le flux magnétique généré par le conducteur externe (blindage). La connexion du 4TP augmente la gamme de mesure de 1mW à 10MW. 27 (a) CONNECTION (b) BLOCK DIAGRAM DUT V A (c) TYPICAL IMPEDANCE MEASUREMENT RANGE(£[) 4T 1m 10m100m 1 10 100 1K 10K 100K 1M 10M HPOT DUT HCUR LCUR LPOT HPOT DUT HCUR LCUR LPOT (d) 4T CONNECTION WITH SHILDING Figure 4.5  Elimination de l’effet du condensateur parasite Lorsqu’un composant d’impédance élevée est mesuré (i.e. condensateur de faible valeur), le condensateur parasite devient un problème important (Figure 4.6). Sur la figure 4.6(a), le condensateur parasite Cd est mis en parallèle avec le DUT ainsi que le Ci et le Ch. Pour corriger ce problème, ajouter une protection (Figure 4.6(b)) entre les bornes H et L pour freiner le Cd. Si la protection est connecté à la garde de l’instrument, l’effet de Ci et Ch sera supprimé. (a) Parastic Effect HCUR HPOT LPOT LCUR Cd Connection Point DUT Ch Cl Ground (b) Guard Plant reduces Parastic Effect HCUR HPOT LPOT LCUR Guard Plant Figure 4.6 4.2 Compensation circuit ouvert/court circuit Pour ces instruments de mesure d’impédance de précision, la compensation circuit ouvert/court-circuit doit être utilisée afin de réduire l ‘effet parasite de l’installation de mesure. L’effet parasite de l’installation de mesure peut être traité comme les composants passifs simples sur la figure 4.7(a). Lorsque le DUT est ouvert, l’instrument a une conductance Yp = Gp + jwCp (Figure 4.7(b)). Lorsque le DUT est fermé, l’instrument a une impédance Zs = Rs + jwLs (Figure 4.7(c)). Après la compensation ouverte et fermée, Yp et Zs peuvent donc être utilisés pour le vrai calcul Zdut (Figure 4.7(d)). 28 HCUR HPOT LCUR LPOT Co Zdut Rs Ls Zm Go Redundant Impedance (Zs) Parastic Conductance (Yo) Parastic of the Test Fixture (a) Parastic Effect of the Test Fixture HCUR HPOT LCUR LPOT Co Rs Ls Go (b) OPEN Measurement Yo OPEN Yo = Go + j£sCo 1 (Rs + j£s<< ) Go+j£sCo HCUR HPOT LCUR LPOT Co Rs Ls Go (c) SHORT Measurement Zs SHORT Zs = Rs + j£sLs Zm Yo Zdut Zm - Zs Zdut = 1-(Zm-Zs)Yo (d) Compensation Equation Zs Figure 4.7 4.3 Choix du mode série ou parallèle En fonction du besoin de mesure différent, il existe des modes série et parallèle pour décrire les résultats de mesure. Le choix du mode dépend de la valeur élevée ou basse de l’impédance.  Condensateur L’impédance et la capacité dans le condensateur sont inversement proportionnelles. La capacité la plus élevée signifie donc l’impédance la plus basse, la capacité la plus petite signifie l’impédance la plus élevée. La figure 4.8 indique le circuit équivalent du condensateur. Si la capacité est petite, le Rp est plus important que le Rs. Si la capacité est grande, le Rs ne doit pas être évitée. Il est donc préférable d‘utiliser le mode parallèle pour une mesure de capacité basse et le mode série pour une mesure de capacité élevée. CIRCUIT OUVERT COURT-CIRCUIT 29  Inductance L’impédance et l’inductance sont directement proportionnelles lorsque la fréquence test est fixée. C’est pour cela que l’inductance plus élevée équivaut à l’impédance la plus élevée et vice versa. La figure 4.9 indique le circuit équivalent de l’inductance. Lorsque l’inductance est faible, le Rs devient plus important que le Rp. Lorsque l’inductance est importante, le Rp doit être prix en considération. Il est donc convenable d’utiliser le mode série pour mesurer une inductance basse et le mode parallèle pour mesurer une inductance élevée. Small capacitor (High impedance) C RP RS Effect No Effect Large capacitor (Low impedance) C RP RS Effect No Effect Figure 4.9 Small inductor (Low impedance) L RP RS Large inductor (High impedance) Effect No Effect L RP RS No Effect Effect 30 DECLARATION OF CE CONFORMITY according to EEC directives and NF EN 45014 norm DECLARATION DE CONFORMITE CE suivant directives CEE et norme NF EN 45014 SEFRAM INSTRUMENTS & SYSTEMES 32, rue Edouard MARTEL 42100 SAINT-ETIENNE ( FRANCE) Declares, that the below mentionned product complies with : Déclare que le produit désigné ci-après est conforme à : The European low voltage directive 2006/95/EEC : La directive Européenne basse tension 2006/95/CE NF EN 61010-031 Safety requirements for electrical equipement for measurement, control and laboratory use. Règles de sécurité pour les appareils électriques de mesurage, de régulation et de laboratoire. The European EMC directive 2004/108/EEC : Emission standard EN 50081-1. Immunity standard EN 50082-1. La directive Européenne CEM 2004/108/CE : En émission selon NF EN 50081-1. En immunité selon NF EN 50082-1. Pollution degree Degré de pollution : 2 Product name Désignation : LCR/ESR meter RLC mètre Model Type : BK889B Compliance was demonstrated in listed laboratory and record in test report number La conformité à été démontrée dans un laboratoire reconnu et enregistrée dans le rapport numéro RC BK889B SAINT-ETIENNE the : Name/Position : Tuesday, April 28, 2009 T. TAGLIARINO / Quality Manager 31 SEFRAM 32, rue E. Martel – BP55 F42009 – Saint-Etienne Cedex 2 France Tel : 0825.56.50.50 (0,15€TTC/mn) Fax : 04.77.57.23.23 Web : www.sefram.fr E-mails : Service commercial : sales@sefram.fr Support technique : support@sefram.fr Manuel d’utilisation_BK1550_Alimentation Alimentation à découpage BK1550 Manuel d’utilisation Manuel d’utilisation_BK1550_Alimentation Manuel d’utilisation_BK1550_Alimentation SOMMAIRE TERMES ET SYMBOLES DE SÉCURITÉ.............................................................................................. 1 CONDITIONS D’UTILISATION............................................................................................................... 2 INTRODUCTION........................................................................................................................................ 2 UTILISER L’ALIMENTATION À DÉCOUPAGE 1550 ......................................................................................... 2 UTILISER LE PORT USB............................................................................................................................... 3 COMMANDES ET INDICATEURS.......................................................................................................... 4 MISE EN OEUVRE....................................................................................................................................... 5 CONNEXION À LA TERRE ............................................................................................................................. 5 MODE DE FONCTIONNEMENT....................................................................................................................... 5 TENSION CONSTANTE (CV), TRANSITION AUTOMATIQUE ET COURANT CONSTANT (CC) ............................ 6 PRÉRÉGLAGE DE LA VALEUR LIMITE DU COURANT (CC) ............................................................................. 6 PROCÉDURE DE CONNEXION ET DE MISE EN ROUTE ..................................................................................... 6 PROTECTION DE LA SORTIE CONTRE LA SURTENSION (OVP) ...................................................................... 7 PROTECTION CONTRE LA SURCHAUFFE........................................................................................................ 7 SPÉCIFICATIONS ...................................................................................................................................... 7 Manuel d’utilisation_BK1550_Alimentation Manuel d’utilisation_BK1550_Alimentation 1 Termes et symboles de sécurité Les termes suivants peuvent être utilisés dans ce manuel ou sur l’instrument : Attention. Se référer au manuel DANGER ! Haute tension – Risque de chocs électriques Terre de protection (Terre) Conducteur de terre Terre (châssis) Prescriptions de sécurité : • L’utilisateur doit être informé des risques liés aux chocs électriques et prendre les précautions nécessaires. • Le raccordement au secteur doit impérativement se faire avec une prise de terre • Toute intervention interne sur le produit (réglages ou réparation) doit se faire par du personnel qualifié Manuel d’utilisation_BK1550_Alimentation 2 Conditions d’utilisation • Humidité relative 10 à 80% • Humidité relative maximum de 80% pour une température maximum de 31°C (dégression linéaire pour 50% d’humidité relative à 40°C). • Altitude maximum de fonctionnement: 2000m • Catégorie d’installation : CAT 2 • Degré de pollution: 2 • Fluctuation de la tension du secteur jusqu’à ±10% de la tension normale. Introduction Utiliser l’alimentation à découpage 1550 Cette alimentation est pilotée par microcontrôleur qui assiste la gestion de la tension et du courant de sortie avec une capacité d’alimentation totale de 100W. Le contrôle de l’alimentation est réalisé par un système de commande originale associé à un affichage digital, ainsi vous pouvez facilement configurer la tension et le courant de sortie. C’est une alimentation faible bruit et ondulation et silencieuse, idéale pour le travail en laboratoire, en atelier ou dans l’éducation ou l’espace de travail est limité. Le 1550 a une borne USB, un fonctionnement en courant constant, une protection contre les surtensions, les sorties sont isolées, touche activation/désactivation de la sortie, facteur de formes faibles. Manuel d’utilisation_BK1550_Alimentation 3 Utiliser le port USB La sortie USB est destinée à une alimentation USB standard (5VDC et 0.4A). Vous pouvez mettre en marche ou charger vos portables (I-Pod, lecteur MP3 ou téléphone cellulaire*) possédant des connecteurs d’alimentation USB pour obtenir un courant continu de l’ordinateur. * Remarques Tous les téléphones cellulaires ne peuvent pas être rechargés par USB. Certains nouveaux modèles requièrent une tension plus élevée que 5V. Veuillez vous référez à la documentation de l’appareil pour les problèmes de compatibilité. Manuel d’utilisation_BK1550_Alimentation 4 Commandes et indicateurs 1. Interrupteur marche/arrêt : Allumer ou éteindre l’alimentation, lorsqu’elle est mise en marche l’écran s’allume. 2. Prise secteur avec fusible 3. Boîtier fusible masqué ( ôter le cache pour avoir accès au fusible) 4. V: Touche de réglage de la tension de sortie 5. A: Touche de réglage du courant de sortie 6. “+” appuyer sur cette touche pour augmenter les valeurs numériques Manuel d’utilisation_BK1550_Alimentation 5 7. “-” appuyer sur cette touche pour diminuer les valeurs numériques 8. Bouton Output On/Off (activer/désactiver la sortie) 9. Prise USB Norme USB courant continu 5V, 400mA Pour charger ou mettre en marche des ordinateurs portables et téléphones cellulaires 10. Borne de sortie polarité positive (rouge) 11. Borne de terre (:) verte Borne de mise à la masse, normalement elle doit être court-circuitée avec les bornes (+) ou (-) 12. Borne de sortie polarité négative (noir) 13. Ecran LCD affichant: La tension et le courant sur 3 digits, l’indication (CV) mode tension constante, l’indication (CC) mode courant constant, l’état de la borne de sortie (activée/désactivée) Mise en oeuvre Connexion à la terre Suivant l’application, les bornes de sortie de l’alimentation peuvent être mises à la terre dans n’importe laquelle des conditions suivantes : La borne – ou la borne + peuvent être réunies à la borne terre GND (verte). Mode de fonctionnement Cette alimentation a été conçue pour fonctionner comme source de tension constante ou comme source de courant constant. Passage automatique à l’un de ces deux modes, lorsque la condition de charge varie d’une des manières suivantes: Configuration de la valeur de tension: tout d’abord, appuyer sur le clavier (4), puis ajuster la valeur de tension comme désiré en utilisant le clavier (6) et (7). Manuel d’utilisation_BK1550_Alimentation 6 Configuration de la valeur du courant: Appuyer sur le clavier (5), puis ajuster la valeur du courant comme désiré en utilisant le clavier (6) et (7). Tension constante (CV), Transition automatique et courant constant (CC) L’alimentation fonctionne comme source de tension constante (CV) aussi longtemps que la charge du courant est inférieure à la valeur prédéfinie de limitation du courant. Lorsque la charge du courant est égale ou supérieure à cette valeur de limitation du courant, l’alimentation passe automatiquement en mode courant constant, la tension baisse, (CC) apparaît à l’écran et l’unité fonctionne en source de courant constant. Lorsque le charge de courant repasse en dessous de la valeur prédéfinie de limitation de courant, l’alimentation repasse en mode de tension constante (CV). Préréglage de la valeur limite du courant (CC) Allumer l’alimentation, régler la tension de sortie sur 3V, désactiver la borne de sortie en appuyant sur la touche (8), l’icône devient . Court-circuiter les bornes de sortie rouge et noire et activer la borne de sortie en appuyant sur la touche (8), l’icône devient , régler la valeur de limitation du courant à la limite désirée en utilisant les touches incrémenter et décrémenter. Désactiver la borne de sortie et enlever le courtcircuit des bornes. La limite de courant de l’alimentation a été réglée à x Amp pour toute la gamme de tension de sortie. Procédure de connexion et de mise en route 1. Après avoir contrôlé les références brancher l’alimentation au secteur 2. Mettre en marche l’alimentation, l’écran LCD doit s’allumer en même temps. 3. L’icône (CV) doit apparaître à l’écran. Manuel d’utilisation_BK1550_Alimentation 7 4. Régler la valeur de courant au maximum en appuyant sur la touche (6) si vous n’avez besoin d’aucune valeur de limitation de courant plus basse, sinon effectuer la procédure de limitation (CC). 5. Régler la tension de sortie à la valeur désirée puis désactiver la borne de sortie en appuyant sur la touche (8). 6. Connecter le point chaud de votre charge avec la borne positive et le point froid de votre charge avec la borne négative. 7. Activer de nouveau la borne de sortie et vérifier que l’écran affiche (CV). 8. Si l’écran affiche (CC), soit votre valeur prédéfinie de limitation de courant est trop basse soit votre charge requière plus de tension et de courant. Vous devez ré-ajuster la tension et le courant de la charge ou augmenter la tension ou le courant jusqu’à ce que (CV) apparaisse. Protection de la sortie contre la surtension (OVP) Ceci sert à protéger la charge connectée dans l’éventualité d’un dysfonctionnement du circuit de contrôle de la tension de sortie, la tension de sortie maximum n’excèdera pas 40% de la valeur de tension ajustée au moment de l’opération. Protection contre la surchauffe Lorsque la température à l’intérieur de l’alimentation devient plus élevée que la valeur prédéterminée, la tension et le courant de sortie de l’alimentation diminuera automatiquement à zéro pour prévenir tout risques de dommages de l’appareil. Lorsque la température à l’intérieur de l’alimentation retombe à 65°C, l’appareil se remet automatiquement en fonction. Spécifications Tension d’entrée 200 – 240Vac (50~60Hz) Pleine charge du courant d’entrée 120Vac 0.95A (+10%) Manuel d’utilisation_BK1550_Alimentation 8 Principale sortie: Gamme d’ajustement de tension de sortie 1.0 – 36VDC Gamme d’ajustement du courant de sortie 0 – 3A Régulation de tension pour une variation de charge de 10% à 100% < 50mV de secteur < 20mV d’ondulation (mV eff.) < 5mV de bruit (Crête-à-crête) < 50mV Régulation de courant pour une variation de charge de 10% à 100% < 20mA de secteur < 20mA Fréquence de découpage 80KHz à 120KHz Rendement 83% (+10%) Affichage voltmètre et ampèremètre 3 Digit Précision du voltmètre +1% + 5rdg. Précision de l’ampèremètre +1% + 5rdg. SORTIE USB: Tension de sortie 5V (+10%) Courant de sortie 400mA (+10%) Régulation tension de charge < 80mV (+10%) Ondulation et Bruit (sans charge) < 8mV (+10%) Manuel d’utilisation_BK1550_Alimentation 9 Voyants à l’écran CC, CV, Amp, Volt, Output ON-OFF Protection Court-circuit, Surcharge, Echauffement Système de refroidissement Convection naturelle Dimensions (lxLxP) 2.8 x 6.0 x 9.8 (70 x 150 x 250mm) Masse 4.4lbs. (2Kgs) Manuel d’utilisation_BK1550_Alimentation Manuel d’utilisation_BK1550_Alimentation SEFRAM Instruments et Systèmes 32, Rue Edouard MARTEL F42100 – SAINT-ETIENNE Tel : 0825 56 50 50 (0,15€TTC/mn) Fax: +33 (0)4 77 57 23 23 Site WEB : www.sefram.fr e-mail : sales@sefram.fr CC2531 USB Hardware User’s Guide swru221a swru221a 2/14 Table of Contents 1 Introduction ..................................................................................................................................3 2 About this Manual ........................................................................................................................3 3 Acronyms .....................................................................................................................................4 4 Definitions.....................................................................................................................................5 5 Getting Started .............................................................................................................................7 6 Using SmartRF05EB as an In-Circuit Emulator (ICE)..................................................................9 6.1 The Debug Interface................................................................................................................9 7 USB Dongle Hardware Description............................................................................................10 7.1 User Interface........................................................................................................................10 7.2 Debug Connector ..................................................................................................................10 7.3 RF Performance of Antenna ..................................................................................................11 8 USB Dongle Reference Design and Schematics.......................................................................12 9 References..................................................................................................................................13 10 General Information ...................................................................................................................14 10.1 Document History ..............................................................................................................14 swru221a 3/14 1 Introduction Thank you for purchasing a CC2530 Development Kit. The CC2530 is Texas Instrument’s second generation ZigBee/IEEE 802.15.4 compliant System-on- Chip with an optimized 8051 MCU core and radio for the 2.4 GHz unlicensed ISM/SRD band. This device enables industrial grade applications by offering state-of-the-art noise immunity, excellent link budget, operation up to 125 degrees and low voltage operation. In addition, the CC2530 provides extensive hardware support for packet handling, data buffering, burst transmissions, data encryption, data authentication, clear channel assessment, link quality indication and packet timing information. The CC2530 product folder on the web [10] has more information, with datasheets, user guides and application notes. The CC2531 is identical to CC2530, with the addition of a built in full speed USB 2.0 compliant interface. The CC2530 Development Kit includes all the necessary hardware to properly evaluate, demonstrate, prototype and develop software targeting not only IEEE802.15.4 or ZigBee compliant applications, but also proprietary applications for which a DSSS radio is required or wanted. 2 About this Manual This manual covers the CC2531 USB dongle found in the CC2530 Development Kit and the CC2530 ZigBee Development Kit. The manual covers the CC2531 USB Dongle hardware component of a USB development framework. Please refer to [3] for a description of the accompanying USB Firmware Library and application examples. swru221a 4/14 3 Acronyms CDC Communications Device Class DK Development Kit EB Evaluation Board EM Evaluation Module EMK Evaluation Module Kit HID Human Interface Device IC Integrated Circuit ICE In Circuit Emulator KB Kilo Byte (1024 byte) LED Light Emitting Diode LPRF Low Power RF MCU Micro Controller NC Not connected RF Radio Frequency RX Receive SoC System on Chip TI Texas Instruments TX Transmit UART Universal Asynchronous Receive Transmit USB Universal Serial Bus swru221a 5/14 4 Definitions SmartRF05EB The SmartRF05EB (evaluation board) is the main board in the kit with a wide range of user interfaces:  3x16 character serial LCD  Full speed USB 2.0 interface  UART  LEDs  Serial Flash  Potentiometer  Joystick  Buttons The EB is the platform for the evaluation modules (EM) and can be connected to the PC via USB to control the EM. CC2530EM The CC2530EM (evaluation module) contains the RF IC and necessary external components and matching filters for getting the most out of the radio. The module can be plugged into the SmartRF05EB. Use the EM as reference design for RF layout. The schematics are included at the end of this document and the layout files can be found on the web CC2530 Product Page [10]. CC2531 USB Dongle The CC2531 USB Dongle is a fully operational USB device that can be plugged into a PC. The dongle has 2 LEDs, two small push-buttons and connector holes that allow connection of external sensors or devices. The dongle also has a connector for programming and debugging of the CC2531 USB controller. The dongle comes preprogrammed with firmware such that it can be used as a packet sniffer device. Antenna 2.4 GHz antenna Titanis from Antenova. swru221a 6/14 SoC System on Chip. A collective term used to refer to Texas Instruments ICs with on-chip MCU and RF transceiver. Used in this document to reference the CC2530 and 2531. ICE In Circuit Emulator. ICE functionality is built into the SmartRF05EB and the CC Debugger USB software application examples Application examples using the CC2531 USB Dongle together with a CC2530EM. USB Firmware Library A library of low level USB firmware which is used by all the USB software examples. swru221a 7/14 5 Getting Started Make sure to install SmartRF Studio before connecting the SmartRF05EB to a PC. By installing it, the required Windows drivers will be provided when connecting the SmartRF05EB. SmartRF Studio [4] is a PC application for Windows that helps you find and adjust the radio register settings. Please see [4] for instructions on downloading and installation. The dongle comes preprogrammed with firmware such that it can be used as a packet sniffer device. For programming the device with other firmware an external ICE is needed. The SmartRF05EB1 can be used to program the USB dongle. The CC2531 has a 2 wire debug interface that is used for chip programming and debugging. When connecting this interface to the SmartRF05EB, the CC2531 can be programmed from the SmartRF Flash Programmer software [2] and debugged from IAR Embedded Workbench. To connect the CC2531 USB Dongle to the SmartRF05EB, follow these steps: 1. Turn off the SmartRF05EB power by moving the power switch shown in Figure 2 to the left position. 2. Remove any evaluation modules (EMs) attached to the SmartRF05EB. 3. Connect the SmartRF05EB to a PC with the supplied USB cable. 4. Connect the USB Dongle to the ExtSoC Debug header (P3) on SmartRF05EB with the supplied 10 pin cable and adapter board (see Figure 1). Make sure pin 1 on the dongle is connected to pin 1 on P3. This cable connects the debug interface and GND between the two devices; however the USB Dongle is not powered through this cable. 5. Power the CC2531 USB Dongle. To power the dongle there are two options:  Powered with a USB Cable Use the supplied USB extension cable to connect the USB Dongle to the PC (see Figure 1).  Powered from the SmartRF05EB Mount resistor R2 on the CC2531 USB Dongle and resistor R30 on the SmartRF05EB. The CC2531 USB Dongle should only be powered by one of the two sources at a time. Do not connect the USB cable to the USB Dongle while it is powered from the SmartRF05EB. 6. Turn on the power on the SmartRF05EB (see Figure 2). 1 It is also possible to use the SmartRF04EB or the CC Debugger to program the device. swru221a 8/14 Figure 1 - CC2531 USB Dongle connected to SmartRF05EB Figure 2 - SmartRF05EB power switch, power on. The CC2531 can now be programmed with the SmartRF Flash Programmer software. The firmware on the CC2531 can also be debugged using the IAR Embedded Workbench debugger. Please see the “SmartRF Flash Programmer User’s Manual” for more details [2]. Please see the “CC2530 Development Kit User Manual” [1] for more information on the SmartRF05EB and how to use the CC2530EM. swru221a 9/14 6 Using SmartRF05EB as an In-Circuit Emulator (ICE) The debug interface on the SmartRF05EB is controlled by the USB MCU. This allows both programming and an emulator interface over USB, which makes the SmartRF05EB usable as an ICE for the CC2531 dongle. To use the SmartRF05EB as ICE, the IAR Embedded Workbench software for 8051 architecture (EW8051) must be installed. The Embedded Workbench is an integrated development environment with a complete tool-chain such as C Compiler, Simulator, and ICE debugger. Please see [1] for instructions on how to set up the ICE debugger for use as an ICE. When the SmartRF05EB with a SoC is connected to a PC with the USB port, the debugger in IAR EW8051 will connect to it when started. If several SmartRF05EBs are connected to USB ports simultaneously, a selection window will display the connected evaluation boards, and the user can select which device to load. 6.1 The Debug Interface For custom PCB’s with the CC2531 SoC, it is recommended to include a pin header or test points to allow in-circuit emulation or programming using a SmartRF05EB or other 3rd party programming tools. The USB Dongle can be used as a reference. VDD note: The SmartRF05EB includes a voltage converter to support programming and debugging of external systems with different voltage than the SmartRF05EB. When using SmartRF05EB as emulator for external target debugging any evaluation module (EM) must be removed. Figure 3 shows the required signal for a minimum connector layout on external target. Figure 3 - Minimum Debug Connector Pinout (top view) swru221a 10/14 7 USB Dongle Hardware Description Figure 4 - CC2531 USB Dongle 7.1 User Interface The CC2531 USB Dongle has two buttons and two LEDs that can be used to interact with the user. Table 1 shows which CC2531 signals are connected to what IO on the dongle. IO Connector CC2531 Dongle User IO CC2531 1 P0.2 Green LED P0.0 2 P0.3 Red LED P1.1 3 P0.4 Button S1 P1.2 4 P0.5 Button S2 P1.3 5 P1.7 6 P1.6 7 P1.5 8 P1.4 Table 1 - CC2531 USB Dongle Pinout 7.2 Debug Connector The CC2531 USB dongle can be connected to a SmartRF Evaluation Board for debugging and programming. IO Connector Meandred F-antenna CC2531F256 Button S1 Button S2 LEDs Debug connector Voltage regulator swru221a 11/14 Figure 5 - CC2531 USB Dongle connected to SmartRF05EB The debug connector on the CC2531 USB Dongle matches the debug connector on the SmartRF05EB (and the CC Debugger). Note that, by default, the CC2531 dongle is not powered through the debug connector, so an external power source must be used while programming. The easiest solution is to connect it to a USB port on the PC. Alternatively, resistor R2 can be mounted. The table below shows the pin out of the debug connector. Pin # Connection 1 GND 2 VCC 3 CC2531 P2.2 (DC) 4 CC2531 P2.1 (DD) 5 NC 6 NC 7 CC2531 RESET 8 NC 9 Optional external VCC (R2 must be mounted) 10 NC Table 2 - CC2531 USB Dongle Debug Connector 7.3 RF Performance of Antenna While the CC2531 USB Dongle has a PCB antenna designed as a meandered inverted F antenna. The performance of the PCB antenna on the USB Dongle will be affected by its nearby surroundings. Therefore, when plugged into different computers or a USB extension cable differences in the RF performance must be expected. Also, if the USB Dongle is put inside a casing, the material and design of the enclosure will influence the antenna’s performance. For the CC2531 USB Dongle the maximum antenna gain measured is 5.3 dBi. This means that duty cycling or reduction of output power might be needed to ensure compliance with regulatory limits. Please see [8] for more information about SRD regulations in the 2.4 GHz ISM band. The performance of the antenna of the CC2531 USB Dongle is further described in [9]. swru221a 12/14 8 USB Dongle Reference Design and Schematics Refer to [1] for the schematics of the CC2531 USB Dongle. swru221a 13/14 9 References [1] CC2530 DK Development Kit User Manual (swru208) [2] SmartRF Flash Programmer (swrc044) [3] SmartRF Packet Sniffer (swrc045) [4] SmartRF Studio (swrc046) [5] CC USB Firmware Library and Examples (swrc088) [6] CC USB Software Examples User’s Guide (swru222) [7] SmartRF05EB User’s Guide (swru210) [8] AN032 – SRD Regulation for License-Free Transceiver Operation in the 2.4 GHz Band (swra060) [9] AN043 – Small Size 2.4 GHz PCB Antenna (swra117) [10] CC2530 Product Web Site (http://focus.ti.com/docs/prod/folders/print/cc2530.html) swru221a 14/14 10 General Information 10.1 Document History Revision Date Description/Changes SWRU221A 2009.07.31 Updated info about how to connect dongle to SmartRF05EB. Corrected typos. SWRU221 2009.05.08 Initial release IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications. TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: Products Applications Amplifiers amplifier.ti.com Audio www.ti.com/audio Data Converters dataconverter.ti.com Automotive www.ti.com/automotive DLP® Products www.dlp.com Broadband www.ti.com/broadband DSP dsp.ti.com Digital Control www.ti.com/digitalcontrol Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical Interface interface.ti.com Military www.ti.com/military Logic logic.ti.com Optical Networking www.ti.com/opticalnetwork Power Mgmt power.ti.com Security www.ti.com/security Microcontrollers microcontroller.ti.com Telephony www.ti.com/telephony RFID www.ti-rfid.com Video & Imaging www.ti.com/video RF/IF and ZigBee® Solutions www.ti.com/lprf Wireless www.ti.com/wireless Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2009, Texas Instruments Incorporated MSP430 Hardware Tools User's Guide Literature Number: SLAU278Q May 2009–Revised February 2014 Contents Preface ....................................................................................................................................... 7 1 Get Started Now! ............................................................................................................... 10 1.1 Flash Emulation Tool (FET) Overview .................................................................................. 11 1.2 Kit Contents, MSP-FET430PIF .......................................................................................... 12 1.3 Kit Contents, eZ430-F2013 .............................................................................................. 12 1.4 Kit Contents, eZ430-T2012 .............................................................................................. 12 1.5 Kit Contents, eZ430-RF2500 ............................................................................................ 12 1.6 Kit Contents, eZ430-RF2500T ........................................................................................... 12 1.7 Kit Contents, eZ430-RF2500-SEH ...................................................................................... 12 1.8 Kit Contents, eZ430-Chronos-xxx ....................................................................................... 13 1.9 Kit Contents, MSP-FET430UIF .......................................................................................... 13 1.10 Kit Contents, MSP-FET430xx ............................................................................................ 13 1.11 Kit Contents, FET430F6137RF900 ..................................................................................... 14 1.12 Kit Contents, MSP-TS430xx ............................................................................................. 14 1.13 Kit Contents, EM430Fx1x7RF900 ....................................................................................... 16 1.14 Hardware Installation, MSP-FET430PIF ............................................................................... 16 1.15 Hardware Installation, MSP-FET430UIF ............................................................................... 17 1.16 Hardware Installation, eZ430-XXXX, MSP-EXP430G2, MSP-EXP430FR5739, MSP-EXP430F5529 ......... 17 1.17 Hardware Installation, MSP-FET430Uxx, MSP-TS430xxx, FET430F6137RF900, EM430Fx137RF900 ...... 17 1.18 Important MSP430 Documents on the Web ........................................................................... 18 2 Design Considerations for In-Circuit Programming ............................................................... 19 2.1 Signal Connections for In-System Programming and Debugging ................................................... 20 2.2 External Power ............................................................................................................. 24 2.3 Bootstrap Loader (BSL) .................................................................................................. 24 A Frequently Asked Questions and Known Issues ................................................................... 25 A.1 Hardware FAQs ............................................................................................................ 26 A.2 Known Issues .............................................................................................................. 28 B Hardware .......................................................................................................................... 29 B.1 MSP-TS430D8 ............................................................................................................. 31 B.2 MSP-TS430PW14 ......................................................................................................... 34 B.3 MSP-TS430L092 .......................................................................................................... 37 B.4 MSP-TS430L092 Active Cable .......................................................................................... 40 B.5 MSP-TS430PW24 ......................................................................................................... 43 B.6 MSP-TS430DW28 ......................................................................................................... 46 B.7 MSP-TS430PW28 ......................................................................................................... 49 B.8 MSP-TS430PW28A ....................................................................................................... 52 B.9 MSP-TS430DA38 .......................................................................................................... 55 B.10 MSP-TS430QFN23x0 ..................................................................................................... 58 B.11 MSP-TS430RSB40 ........................................................................................................ 61 B.12 MSP-TS430RHA40A ...................................................................................................... 64 B.13 MSP-TS430DL48 .......................................................................................................... 67 B.14 MSP-TS430RGZ48B ...................................................................................................... 70 B.15 MSP-TS430RGZ48C ...................................................................................................... 73 B.16 MSP-TS430PM64 ......................................................................................................... 76 2 Contents SLAU278Q–May 2009–Revised February 2014 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated www.ti.com B.17 MSP-TS430PM64A ....................................................................................................... 79 B.18 MSP-TS430RGC64B ..................................................................................................... 82 B.19 MSP-TS430RGC64C ..................................................................................................... 85 B.20 MSP-TS430RGC64USB .................................................................................................. 89 B.21 MSP-TS430PN80 .......................................................................................................... 93 B.22 MSP-TS430PN80A ........................................................................................................ 96 B.23 MSP-TS430PN80USB .................................................................................................... 99 B.24 MSP-TS430PZ100 ....................................................................................................... 103 B.25 MSP-TS430PZ100A ..................................................................................................... 106 B.26 MSP-TS430PZ100B ..................................................................................................... 109 B.27 MSP-TS430PZ100C ..................................................................................................... 112 B.28 MSP-TS430PZ5x100 .................................................................................................... 115 B.29 MSP-TS430PZ100USB ................................................................................................. 118 B.30 MSP-TS430PEU128 ..................................................................................................... 122 B.31 EM430F5137RF900 ..................................................................................................... 125 B.32 EM430F6137RF900 ..................................................................................................... 129 B.33 EM430F6147RF900 ..................................................................................................... 133 B.34 MSP-FET430PIF ......................................................................................................... 137 B.35 MSP-FET430UIF ......................................................................................................... 139 B.35.1 MSP-FET430UIF Revision History .......................................................................... 144 C Hardware Installation Guide .............................................................................................. 145 C.1 Hardware Installation .................................................................................................... 146 Document Revision History ........................................................................................................ 151 SLAU278Q–May 2009–Revised February 2014 Contents 3 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated www.ti.com List of Figures 2-1. Signal Connections for 4-Wire JTAG Communication................................................................ 21 2-2. Signal Connections for 2-Wire JTAG Communication (Spy-Bi-Wire) Used by MSP430F2xx, MSP430G2xx, and MSP430F4xx Devices............................................................................. 22 2-3. Signal Connections for 2-Wire JTAG Communication (Spy-Bi-Wire) Used by MSP430F5xx and MSP430F6xx Devices .................................................................................................... 23 B-1. MSP-TS430D8 Target Socket Module, Schematic ................................................................... 31 B-2. MSP-TS430D8 Target Socket Module, PCB .......................................................................... 32 B-3. MSP-TS430PW14 Target Socket Module, Schematic ............................................................... 34 B-4. MSP-TS430PW14 Target Socket Module, PCB ...................................................................... 35 B-5. MSP-TS430L092 Target Socket Module, Schematic................................................................. 37 B-6. MSP-TS430L092 Target Socket Module, PCB........................................................................ 38 B-7. MSP-TS430L092 Active Cable Target Socket Module, Schematic................................................. 40 B-8. MSP-TS430L092 Active Cable Target Socket Module, PCB........................................................ 41 B-9. MSP-TS430PW24 Target Socket Module, Schematic ............................................................... 43 B-10. MSP-TS430PW24 Target Socket Module, PCB ...................................................................... 44 B-11. MSP-TS430DW28 Target Socket Module, Schematic ............................................................... 46 B-12. MSP-TS430DW28 Target Socket Module, PCB ...................................................................... 47 B-13. MSP-TS430PW28 Target Socket Module, Schematic ............................................................... 49 B-14. MSP-TS430PW28 Target Socket Module, PCB ...................................................................... 50 B-15. MSP-TS430PW28A Target Socket Module, Schematic.............................................................. 52 B-16. MSP-TS430PW28A Target Socket Module, PCB (Red) ............................................................. 53 B-17. MSP-TS430DA38 Target Socket Module, Schematic ................................................................ 55 B-18. MSP-TS430DA38 Target Socket Module, PCB ....................................................................... 56 B-19. MSP-TS430QFN23x0 Target Socket Module, Schematic ........................................................... 58 B-20. MSP-TS430QFN23x0 Target Socket Module, PCB .................................................................. 59 B-21. MSP-TS430RSB40 Target Socket Module, Schematic .............................................................. 61 B-22. MSP-TS430RSB40 Target Socket Module, PCB ..................................................................... 62 B-23. MSP-TS430RHA40A Target Socket Module, Schematic ............................................................ 64 B-24. MSP-TS430RHA40A Target Socket Module, PCB ................................................................... 65 B-25. MSP-TS430DL48 Target Socket Module, Schematic ................................................................ 67 B-26. MSP-TS430DL48 Target Socket Module, PCB ....................................................................... 68 B-27. MSP-TS430RGZ48B Target Socket Module, Schematic ............................................................ 70 B-28. MSP-TS430RGZ48B Target Socket Module, PCB ................................................................... 71 B-29. MSP-TS430RGZ48C Target Socket Module, Schematic ............................................................ 73 B-30. MSP-TS430RGZ48C Target Socket Module, PCB ................................................................... 74 B-31. MSP-TS430PM64 Target Socket Module, Schematic................................................................ 76 B-32. MSP-TS430PM64 Target Socket Module, PCB....................................................................... 77 B-33. MSP-TS430PM64A Target Socket Module, Schematic .............................................................. 79 B-34. MSP-TS430PM64A Target Socket Module, PCB ..................................................................... 80 B-35. MSP-TS430RGC64B Target Socket Module, Schematic ............................................................ 82 B-36. MSP-TS430RGC64B Target Socket Module, PCB ................................................................... 83 B-37. MSP-TS430RGC64C Target Socket Module, Schematic............................................................ 86 B-38. MSP-TS430RGC64C Target Socket Module, PCB................................................................... 87 B-39. MSP-TS430RGC64USB Target Socket Module, Schematic ........................................................ 89 B-40. MSP-TS430RGC64USB Target Socket Module, PCB ............................................................... 90 B-41. MSP-TS430PN80 Target Socket Module, Schematic ................................................................ 93 B-42. MSP-TS430PN80 Target Socket Module, PCB ....................................................................... 94 B-43. MSP-TS430PN80A Target Socket Module, Schematic .............................................................. 96 4 List of Figures SLAU278Q–May 2009–Revised February 2014 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated www.ti.com B-44. MSP-TS430PN80A Target Socket Module, PCB ..................................................................... 97 B-45. MSP-TS430PN80USB Target Socket Module, Schematic .......................................................... 99 B-46. MSP-TS430PN80USB Target Socket Module, PCB ................................................................ 100 B-47. MSP-TS430PZ100 Target Socket Module, Schematic ............................................................. 103 B-48. MSP-TS430PZ100 Target Socket Module, PCB .................................................................... 104 B-49. MSP-TS430PZ100A Target Socket Module, Schematic............................................................ 106 B-50. MSP-TS430PZ100A Target Socket Module, PCB................................................................... 107 B-51. MSP-TS430PZ100B Target Socket Module, Schematic............................................................ 109 B-52. MSP-TS430PZ100B Target Socket Module, PCB................................................................... 110 B-53. MSP-TS430PZ100C Target Socket Module, Schematic ........................................................... 112 B-54. MSP-TS430PZ100C Target Socket Module, PCB .................................................................. 113 B-55. MSP-TS430PZ5x100 Target Socket Module, Schematic .......................................................... 115 B-56. MSP-TS430PZ5x100 Target Socket Module, PCB.................................................................. 116 B-57. MSP-TS430PZ100USB Target Socket Module, Schematic........................................................ 118 B-58. MSP-TS430PZ100USB Target Socket Module, PCB............................................................... 119 B-59. MSP-TS430PEU128 Target Socket Module, Schematic ........................................................... 122 B-60. MSP-TS430PEU128 Target Socket Module, PCB .................................................................. 123 B-61. EM430F5137RF900 Target board, Schematic....................................................................... 125 B-62. EM430F5137RF900 Target board, PCB.............................................................................. 126 B-63. EM430F6137RF900 Target board, Schematic....................................................................... 129 B-64. EM430F6137RF900 Target board, PCB.............................................................................. 130 B-65. EM430F6147RF900 Target Board, Schematic ...................................................................... 133 B-66. EM430F6147RF900 Target Board, PCB ............................................................................. 134 B-67. MSP-FET430PIF FET Interface Module, Schematic ................................................................ 137 B-68. MSP-FET430PIF FET Interface Module, PCB....................................................................... 138 B-69. MSP-FET430UIF USB Interface, Schematic (1 of 4) ............................................................... 139 B-70. MSP-FET430UIF USB Interface, Schematic (2 of 4) ............................................................... 140 B-71. MSP-FET430UIF USB Interface, Schematic (3 of 4) ............................................................... 141 B-72. MSP-FET430UIF USB Interface, Schematic (4 of 4) ............................................................... 142 B-73. MSP-FET430UIF USB Interface, PCB ................................................................................ 143 C-1. Windows XP Hardware Wizard ........................................................................................ 146 C-2. Windows XP Driver Location Selection Folder....................................................................... 147 C-3. Device Manager Using USB Debug Interface using VID/PID 0x2047/0x0010................................... 148 C-4. Device Manager Using USB Debug Interface with VID/PID 0x0451/0xF430 .................................... 149 C-5. Device Manager Using USB Debug Interface with VID/PID 0x0451/0xF432 .................................... 150 SLAU278Q–May 2009–Revised February 2014 List of Figures 5 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated www.ti.com List of Tables 1-1. Flash Emulation Tool (FET) Features and Device Compatibility.................................................... 11 1-2. Individual Kit Contents, MSP-TS430xx ................................................................................. 14 B-1. MSP-TS430D8 Bill of Materials.......................................................................................... 33 B-2. MSP-TS430PW14 Bill of Materials...................................................................................... 36 B-3. MSP-TS430L092 Bill of Materials ....................................................................................... 39 B-4. MSP-TS430L092 JP1 Settings .......................................................................................... 41 B-5. MSP-TS430L092 Active Cable Bill of Materials ....................................................................... 42 B-6. MSP-TS430PW24 Bill of Materials...................................................................................... 45 B-7. MSP-TS430DW28 Bill of Materials...................................................................................... 48 B-8. MSP-TS430PW28 Bill of Materials ..................................................................................... 51 B-9. MSP-TS430PW28A Bill of Materials .................................................................................... 54 B-10. MSP-TS430DA38 Bill of Materials ...................................................................................... 57 B-11. MSP-TS430QFN23x0 Bill of Materials.................................................................................. 60 B-12. MSP-TS430RSB40 Bill of Materials .................................................................................... 63 B-13. MSP-TS430RHA40A Bill of Materials................................................................................... 66 B-14. MSP-TS430DL48 Bill of Materials....................................................................................... 69 B-15. MSP-TS430RGZ48B Bill of Materials................................................................................... 72 B-16. MSP-TS430RGZ48C Revision History ................................................................................. 74 B-17. MSP-TS430RGZ48C Bill of Materials .................................................................................. 75 B-18. MSP-TS430PM64 Bill of Materials ...................................................................................... 78 B-19. MSP-TS430PM64A Bill of Materials .................................................................................... 81 B-20. MSP-TS430RGC64B Bill of Materials .................................................................................. 84 B-21. MSP-TS430RGC64C Bill of Materials .................................................................................. 88 B-22. MSP-TS430RGC64USB Bill of Materials............................................................................... 91 B-23. MSP-TS430PN80 Bill of Materials ...................................................................................... 95 B-24. MSP-TS430PN80A Bill of Materials .................................................................................... 98 B-25. MSP-TS430PN80USB Bill of Materials ............................................................................... 101 B-26. MSP-TS430PZ100 Bill of Materials.................................................................................... 105 B-27. MSP-TS430PZ100A Bill of Materials.................................................................................. 108 B-28. MSP-TS430PZ100B Bill of Materials.................................................................................. 111 B-29. MSP-TS430PZ100C Bill of Materials.................................................................................. 114 B-30. MSP-TS430PZ5x100 Bill of Materials................................................................................. 117 B-31. MSP-TS430PZ100USB Bill of Materials .............................................................................. 120 B-32. MSP-TS430PEU128 Bill of Materials ................................................................................. 124 B-33. EM430F5137RF900 Bill of Materials .................................................................................. 127 B-34. EM430F6137RF900 Bill of Materials .................................................................................. 131 B-35. EM430F6147RF900 Bill of Materials .................................................................................. 135 C-1. USB VIDs and PIDs Used in MSP430 Tools......................................................................... 146 6 List of Tables SLAU278Q–May 2009–Revised February 2014 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated Preface SLAU278Q–May 2009–Revised February 2014 Read This First About This Manual This manual describes the hardware of the Texas Instruments MSP-FET430 Flash Emulation Tool (FET). The FET is the program development tool for the MSP430™ ultra-low-power microcontroller. Both available interface types, the parallel port interface and the USB interface, are described. How to Use This Manual Read and follow the instructions in Chapter 1. This chapter lists the contents of the FET, provides instructions on installing the hardware and according software drivers. After you see how quick and easy it is to use the development tools, TI recommends that you read all of this manual. This manual describes the setup and operation of the FET but does not fully describe the MSP430™ microcontrollers or the development software systems. For details of these items, see the appropriate TI documents listed in Section 1.18. This manual applies to the following tools (and devices): • MSP-FET430PIF (debug interface with parallel port connection, for all MSP430 flash-based devices) • MSP-FET430UIF (debug interface with USB connection, for all MSP430 flash-based devices) • eZ430-F2013 (USB stick form factor interface with attached MSP430F2013 target, for all MSP430F20xx, MSP430G2x01, MSP430G2x11, MSP430G2x21, and MSP430G2x31 devices) • eZ430-T2012 (three MSP430F2012 based target boards) • eZ430-RF2500 (USB stick form factor interface with attached MSP430F2274 and CC2500 target, for all MSP430F20xx, MSP430F21x2, MSP430F22xx, MSP430G2x01, MSP430G2x11, MSP430G2x21, and MSP430G2x31 devices) • eZ430-RF2500T (one MSP430F2274 and CC2500 target board including battery pack) • eZ430-RF2500-SEH (USB stick form factor interface with attached MSP430F2274 and CC2500 target and solar energy harvesting module) • eZ430-Chronos-xxx (USB stick form factor interface with CC430F6137 based development system contained in a watch. Includes <1 GHz RF USB access point) Stand-alone target-socket modules (without debug interface) named as MSP-TS430TSxx. Tools named as MSP-FET430Uxx contain the USB debug interface (MSP-FET430UIF) and the respective target socket module MSP-TS430TSxx, where 'xx' is the same for both names. Following tools contain also the USB debug interface (MSP-FET430UIF): • FET430F5137RF900 (for CC430F513x devices in 48-pin RGZ packages) (green PCB) • FET430F6137RF900 (for CC430F612x and CC430F613x devices in 64-pin RGC packages) (green PCB) These tools contain the most up-to-date materials available at the time of packaging. For the latest materials (data sheets, user's guides, software, application information, and so on), visit the TI MSP430 web site at www.ti.com/msp430 or contact your local TI sales office. SLAU278Q–May 2009–Revised February 2014 Read This First 7 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated Information About Cautions and Warnings www.ti.com Information About Cautions and Warnings This document may contain cautions and warnings. CAUTION This is an example of a caution statement. A caution statement describes a situation that could potentially damage your software or equipment. WARNING This is an example of a warning statement. A warning statement describes a situation that could potentially cause harm to you. The information in a caution or a warning is provided for your protection. Read each caution and warning carefully. Related Documentation From Texas Instruments MSP430 development tools documentation: Code Composer Studio v5.4 for MSP430 User's Guide (literature number SLAU157) Code Composer Studio v5.x Core Edition (CCS Mediawiki) IAR Embedded Workbench Version 3+ for MSP430(tm) User's Guide (literature number SLAU138) IAR Embedded Workbench KickStart installer (literature number SLAC050) eZ430-F2013 Development Tool User's Guide (literature number SLAU176) eZ430-RF2480 Demonstration Kit User's Guide (literature number SWRU151) eZ430-RF2500 Development Tool User's Guide (literature number SLAU227) eZ430-RF2500-SEH Development Tool User's Guide (literature number SLAU273) eZ430-Chronos Development Tool User's Guide (literature number SLAU292) Spectrum Analyzer (MSP-SA430-SUB1GHZ) User's Guide (literature number SLAU371) MSP-EXP430F5529 Experimenter Board User's Guide (literature number SLAU330) MSP-EXP430F5438 Experimenter Board User's Guide (literature number SLAU263) MSP-EXP430G2 LaunchPad Experimenter Board User's Guide (literature number SLAU318) MSP Gang Programmer (MSP-GANG) User's Guide (literature number SLAU358) MSP430 Gang Programmer (MSP-GANG430) User's Guide (literature number SLAU101) MSP430 device user's guides: MSP430x1xx Family User's Guide (literature number SLAU049) MSP430x2xx Family User's Guide (literature number SLAU144) MSP430x3xx Family User's Guide (literature number SLAU012) MSP430x4xx Family User's Guide (literature number SLAU056) MSP430x5xx and MSP430x6xx Family User's Guide (literature number SLAU208) CC430 Family User's Guide (literature number SLAU259) 8 Read This First SLAU278Q–May 2009–Revised February 2014 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated www.ti.com If You Need Assistance MSP430FR57xx Family User's Guide (literature number SLAU272) MSP430FR58xx and MSP430FR59xx Family User's Guide (literature number SLAU367) If You Need Assistance Support for the MSP430 devices and the FET development tools is provided by the Texas Instruments Product Information Center (PIC). Contact information for the PIC can be found on the TI web site at www.ti.com/support. The Texas Instruments E2E Community support forums for the MSP430 provide open interaction with peer engineers, TI engineers, and other experts. Additional device-specific information can be found on the MSP430 web site. SLAU278Q–May 2009–Revised February 2014 Read This First 9 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated Chapter 1 SLAU278Q–May 2009–Revised February 2014 Get Started Now! This chapter lists the contents of the FET and provides instruction on installing the hardware. Topic ........................................................................................................................... Page 1.1 Flash Emulation Tool (FET) Overview .................................................................. 11 1.2 Kit Contents, MSP-FET430PIF ............................................................................. 12 1.3 Kit Contents, eZ430-F2013 .................................................................................. 12 1.4 Kit Contents, eZ430-T2012 .................................................................................. 12 1.5 Kit Contents, eZ430-RF2500 ................................................................................ 12 1.6 Kit Contents, eZ430-RF2500T .............................................................................. 12 1.7 Kit Contents, eZ430-RF2500-SEH ........................................................................ 12 1.8 Kit Contents, eZ430-Chronos-xxx ........................................................................ 13 1.9 Kit Contents, MSP-FET430UIF ............................................................................. 13 1.10 Kit Contents, MSP-FET430xx .............................................................................. 13 1.11 Kit Contents, FET430F6137RF900 ........................................................................ 14 1.12 Kit Contents, MSP-TS430xx ................................................................................ 14 1.13 Kit Contents, EM430Fx1x7RF900 ......................................................................... 16 1.14 Hardware Installation, MSP-FET430PIF ................................................................ 16 1.15 Hardware Installation, MSP-FET430UIF ................................................................ 17 1.16 Hardware Installation, eZ430-XXXX, MSP-EXP430G2, MSP-EXP430FR5739, MSPEXP430F5529 .................................................................................................... 17 1.17 Hardware Installation, MSP-FET430Uxx, MSP-TS430xxx, FET430F6137RF900, EM430Fx137RF900 ............................................................................................ 17 1.18 Important MSP430 Documents on the Web ........................................................... 18 10 Get Started Now! SLAU278Q–May 2009–Revised February 2014 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated www.ti.com Flash Emulation Tool (FET) Overview 1.1 Flash Emulation Tool (FET) Overview TI offers several flash emulation tools according to different requirements. Table 1-1. Flash Emulation Tool (FET) Features and Device Compatibility(1) eZ430-F2013 eZ430-RF2500 eZ430-RF2480 eZ430-RF2560 MSP-WDSxx Metawatch eZ430-Chronos MSP-FET430PIF MSP-FET430UIF LaunchPad (MSP-EXP430G2) MSP-EXP430FR5739 MSP-EXP430F5529 Supports all programmable MSP430 and CC430 devices (F1xx, F2xx, F4xx, F5xx, F6xx, G2xx, L092, FR57xx, FR59xx, x x MSP430TCH5E) Supports only F20xx, G2x01, G2x11, x G2x21, G2x31 Supports MSP430F20xx, F21x2, F22xx, x G2x01, G2x11, G2x21, G2x31, G2x53 Supports MSP430F20xx, F21x2, F22xx, x x G2x01, G2x11, G2x21, G2x31 Supports F5438, F5438A x Supports BT5190, F5438A x Supports only F552x x Supports FR57xx, F5638, F6638 x Supports only CC430F613x x Allows fuse blow x Adjustable target supply voltage x Fixed 2.8-V target supply voltage x Fixed 3.6-V target supply voltage x x x x x x x x x 4-wire JTAG x x 2-wire JTAG(2) x x x x x x x x x x Application UART x x x x x x x x Supported by CCS for Windows x x x x x x x x x x x Supported by CCS for Linux x Supported by IAR x x x x x x x x x x x (1) The MSP-FET430PIF is for legacy device support only. This emulation tool will not support any new devices released after 2011. (2) The 2-wire JTAG debug interface is also referred to as Spy-Bi-Wire (SBW) interface. SLAU278Q–May 2009–Revised February 2014 Get Started Now! 11 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated Kit Contents, MSP-FET430PIF www.ti.com 1.2 Kit Contents, MSP-FET430PIF • One READ ME FIRST document • One MSP-FET430PIF interface module • One 25-conductor cable • One 14-conductor cable NOTE: This part is obsolete and is not recommended to use in new design. 1.3 Kit Contents, eZ430-F2013 • One QUICK START GUIDE document • One eZ430-F2013 development tool including one MSP430F2013 target board 1.4 Kit Contents, eZ430-T2012 • Three MSP430F2012-based target boards 1.5 Kit Contents, eZ430-RF2500 • One QUICK START GUIDE document • One eZ430-RF2500 CD-ROM • One eZ430-RF2500 development tool including one MSP430F2274 and CC2500 target board • One eZ430-RF2500T target board • One AAA battery pack with expansion board (batteries included) 1.6 Kit Contents, eZ430-RF2500T • One eZ430-RF2500T target board • One AAA battery pack with expansion board (batteries included) 1.7 Kit Contents, eZ430-RF2500-SEH • One MSP430 development tool CD containing documentation and development software • One eZ430-RF USB debugging interface • Two eZ430-RF2500T wireless target boards • One SEH-01 solar energy harvester board • One AAA battery pack with expansion board (batteries included) 12 Get Started Now! SLAU278Q–May 2009–Revised February 2014 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated www.ti.com Kit Contents, eZ430-Chronos-xxx 1.8 Kit Contents, eZ430-Chronos-xxx '433, '868, '915 • One QUICK START GUIDE document • One ez430-Chronos emulator • One screwdriver • Two spare screws eZ430-Chronos-433: – One 433-MHz eZ430-Chronos watch (battery included) – One 433-MHz eZ430-Chronos access point eZ430-Chronos-868: – One 868-MHz eZ430-Chronos watch (battery included) – One 868-MHz eZ430-Chronos access point eZ430-Chronos-915: – One 915-MHz eZ430-Chronos watch (battery included) – One 915-MHz eZ430-Chronos access point 1.9 Kit Contents, MSP-FET430UIF • One READ ME FIRST document • One MSP-FET430UIF interface module • One USB cable • One 14-conductor cable 1.10 Kit Contents, MSP-FET430xx • One READ ME FIRST document • One MSP-FET430UIF USB interface module. This is the unit that has a USB B-connector on one end of the case, and a 2×7-pin male connector on the other end of the case. • One USB cable • One 32.768-kHz crystal from Micro Crystal, if the board has an option to use the quartz. • A 2×7-pin male JTAG connector is also present on the PCB (see different setup for L092) • One 14-Pin JTAG conductor cable • One small box containing two MSP430 device samples (See table for Sample Type) • One target socket module. To determine the devices used for each board and a summary of the board, see Table 1-2. The name of MSP-TS430xx board can be derived from the name of the MSP-FET430xx kit; for example, the MSP-FET430U28A kit contains the MSP-TS430PW28A board. Refer to the device data sheets for device specifications. Device errata can be found in the respective device product folder on the web provided as a PDF document. Depending on the device, errata may also be found in the device bug database at www.ti.com/sc/cgi-bin/buglist.cgi. SLAU278Q–May 2009–Revised February 2014 Get Started Now! 13 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated Kit Contents, FET430F6137RF900 www.ti.com 1.11 Kit Contents, FET430F6137RF900 • One READ ME FIRST document • One legal notice • One MSP-FET430UIF interface module • Two EM430F6137RF900 target socket modules. This is the PCB on which is soldered a CC430F6137 device in a 64-pin RGC package. A 2×7-pin male connector is also present on the PCB. • Two CC430EM battery packs • Four AAA batteries • Two 868-MHz or 915-MHz antennas • Two 32.768-kHz crystals • 18 PCB 2x4-pin headers • One USB cable • One 14-pin JTAG conductor cable 1.12 Kit Contents, MSP-TS430xx • One READ ME FIRST document • One 32.768-kHz crystal from Micro Crystal (except MSP-TS430PW24) • One target socket module • A 2×7-pin male JTAG connector is also present on the PCB (see different setup for L092) • MSP430 Device samples (see Table 1-2 for sample type) Table 1-2. Individual Kit Contents, MSP-TS430xx Part Number Socket Type Supported Devices Included Devices Headers and Comment MSP-TS430D8 8-pin D MSP430G2210, 1 x MSP430G2210 and Two PCB 1×4-pin headers (two male and (green PCB) (TSSOP ZIF) MSP430G2230 1 x MSP430G2230 two female) MSP430F20xx, MSP-TS430PW14 14-pin PW MSP430G2x01, Four PCB 1×7-pin headers (two male and (green PCB) (TSSOP ZIF) MSP430G2x11, 2 x MSP430F2013IPW two female) MSP430G2x21, MSP430G2x31 Four PCB 1×7-pin headers (two male and two female). A "Micro-MaTch" 10-pin MSP-TS430L092 14-pin PW female connector is also present on the (green PCB) (TSSOP ZIF) MSP-TS430L092 2 x MSP430L092IPW PCB which connects the kit with an 'Active Cable' PCB; this 'Active Cable' PCB is connected by 14-pin JTAG cable with the FET430UIF MSP-TS430PW24 24-pin PW MSP430AFE2xx 2 x MSP430AFE253IPW Four PCB 1×12-pin headers (two male (green PCB) (TSSOP ZIF) and two female) MSP430F11x1, MSP430F11x2, MSP-TS430DW28 28-pin DW MSP430F12x, Four PCB 1×12-pin headers (two male (green PCB) (SSOP ZIF) MSP430F12x2, 2 x MSP430F123IDW and two female) MSP430F21xx Supports devices in 20- and 28-pin DA packages MSP430F11x1, MSP-TS430PW28 28-pin PW MSP430F11x2, Four PCB 1×12-pin headers (two male (green PCB) (TSSOP ZIF) MSP430F12x, 2 x MSP430F2132IPW and two female) MSP430F12x2, MSP430F21xx MSP430F20xx, MSP-TS430PW28A 28-pin PW MSP430G2xxx in 14-, 20-, Four PCB 1×12-pin headers (two male (red PCB) (TSSOP ZIF) and 28-pin PW packages, 2 x MSP430G2452IPW20 and two female) MSP430TCH5E in PW package MSP-TS430DA38 38-pin DA MSP430F22xx, 2 x MSP430F2274IDA Four PCB 1×19-pin headers (two male (green PCB) (TSSOP ZIF) MSP430G2x44, 2 x MSP430G2744IDA and two female) MSP430G2x55 2 x MSP430G2955IDA MSP-TS430QFN23x0 40-pin RHA MSP430F23x0 2 x MSP430F2370IRHA Eight PCB 1×10-pin headers (four male (green PCB) (QFN ZIF) and four female) 14 Get Started Now! SLAU278Q–May 2009–Revised February 2014 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated www.ti.com Kit Contents, MSP-TS430xx Table 1-2. Individual Kit Contents, MSP-TS430xx (continued) Part Number Socket Type Supported Devices Included Devices Headers and Comment MSP-TS430RSB40 40-pin RSB MSP430F51x1, 2 x MSP430F5172IRSB Eight PCB 1×10-pin headers (four male (green PCB) (QFN ZIF) MSP430F51x2 and four female) MSP-TS430RHA40A 40-pin RHA MSP430FR572x, 2 x MSP430FR5739IRHA Eight PCB 1×10-pin headers (four male (red PCB) (QFN ZIF) MSP430FR573x and four female) MSP-TS430DL48 48-pin DL MSP430F42x0 2 x MSP430F4270IDL Four PCB 2×12-pin headers (two male (green PCB) (TSSOP ZIF) and two female) MSP-TS430RGZ48B 48-pin RGZ MSP430F534x 2 x MSP430F5342IRGZ Eight PCB 1×12-pin headers (four male (blue PCB) (QFN ZIF) and four female) MSP-TS430RGZ48C 48-pin RGZ MSP430FR58xx and 2 x MSP430FR5969IRGZ Eight PCB 1×12-pin headers (four male (black PCB) (QFN ZIF) MSP430FR59xx and four female) MSP430F13x, MSP430F14x, MSP430F14x1, MSP430F15x, MSP430F16x, MSP430F16x1, MSP430F23x, TS Kit: MSP-TS430PM64 64-pin PM MSP430F24x, 2 x MSP430F2618IPM; Eight PCB 1×16-pin headers (four male (green PCB) (QFP ZIF) MSP430F24xx, FET Kit: and four female) MSP430F261x, 2 x MSP430F417IPM and MSP430F41x, 2 x MSP430F169IPM MSP430F42x, MSP430F42xA, MSP430FE42x, MSP430FE42xA, MSP430FE42x2, MSP430FW42x MSP-TS430PM64A 64-pin PM MSP430F41x2 2 x MSP430F4152IPM Eight PCB 1×16-pin headers (four male (red PCB) (QFP ZIF) and four female) MSP-TS430RGC64B 64-pin RGC MSP430F530x 2 x MSP430F5310IRGC Eight PCB 1×16-pin headers (four male (blue PCB) (QFN ZIF) and four female) MSP430F522x, MSP-TS430RGC64C 64-pin RGC MSP430F521x , Eight PCB 1×16-pin headers (four male (black PCB) (QFN ZIF) MSP430F523x, 2 x MSP430F5229IRGC and four female) MSP430F524x, MSP430F525x MSP-TS430RGC64USB 64-pin RGC MSP430F550x, 2 x MSP430F5510IRGC or Eight PCB 1×16-pin headers (four male (green PCB) (QFN ZIF) MSP430F551x, 2 x MSP430F5528IRGC and four female) MSP430F552x MSP430F241x, MSP430F261x, MSP-TS430PN80 80-pin PN MSP430F43x, Eight PCB 1×20-pin headers (four male (green PCB) (QFP ZIF) MSP430F43x1, 2 x MSP430FG439IPN and four female) MSP430FG43x, MSP430F47x, MSP430FG47x MSP-TS430PN80A 80-pin PN MSP430F532x 2 x MSP430F5329IPN Eight PCB 1×20-pin headers (four male (red PCB) (QFP ZIF) and four female) MSP-TS430PN80USB 80-pin PN MSP430F552x, 2 x MSP430F5529IPN Eight PCB 1×20-pin headers (four male (green PCB) (QFP ZIF) MSP430F551x and four female) MSP430F43x, MSP-TS430PZ100 100-pin PZ MSP430F43x1, Eight PCB 1×25-pin headers (four male (green PCB) (QFP ZIF) MSP430F44x, 2 x MSP430FG4619IPZ and four female) MSP430FG461x, MSP430 F47xx MSP-TS430PZ100A 100-pin PZ MSP430F471xx 2 x MSP430F47197IPZ Eight PCB 1×25-pin headers (four male (red PCB) (QFP ZIF) and four female) MSP-TS430PZ100B 100-pin PZ MSP430F67xx 2 x MSP430F6733IPZ Eight PCB 1×25-pin headers (four male (blue PCB) (QFP ZIF) and four female) MSP430F645x, MSP-TS430PZ100C 100-pin PZ MSP430F643x, 2 x MSP430F6438IPZ Eight PCB 1×25-pin headers (four male (black PCB) (QFP ZIF) MSP430F535x, and four female) MSP430F533x MSP-TS430PZ5x100 100-pin PZ MSP430F543x, Eight PCB 1×25-pin headers (four male (green PCB) (QFP ZIF) MSP430BT5190, 2 x MSP430F5438IPZ and four female) MSP430SL5438A SLAU278Q–May 2009–Revised February 2014 Get Started Now! 15 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated Kit Contents, EM430Fx1x7RF900 www.ti.com Table 1-2. Individual Kit Contents, MSP-TS430xx (continued) Part Number Socket Type Supported Devices Included Devices Headers and Comment MSP-TS430PZ100USB 100-pin PZ MSP430F665x, Eight PCB 1×25-pin headers (four male (green PCB) (QFP ZIF) MSP430F663x, 2 x MSP430F6638IPZ and four female) MSP430F563x MSP430F677x, MSP430F676x, Four PCB 1x26-pin headers (two male MSP-TS430PEU128 128-pin PEU MSP430F674x, 2 x MSP430F67791IPEU and two female) and four PCB 1x38-pin (green PCB) (QFP ZIF) MSP430F677x1, headers (two male and two female) MSP430F676x1, MSP430F674x1 See the device data sheets for device specifications. Device errata can be found in the respective device product folder on the web provided as a PDF document. Depending on the device, errata may also be found in the device bug database at www.ti.com/sc/cgi-bin/buglist.cgi. 1.13 Kit Contents, EM430Fx1x7RF900 • One READ ME FIRST document • One legal notice • Two target socket module MSP-EM430F5137RF900: Two EM430F5137RF900 target socket modules. This is the PCB on which is soldered a CC430F5137 device in a 48-pin RGZ package. A 2×7-pin male connector is also present on the PCB MSP-EM430F6137RF900: Two EM430F6137RF900 target socket modules. This is the PCB on which is soldered a CC430F6137 device in a 64-pin RGC package. A 2×7-pin male connector is also present on the PCB MSP-EM430F6147RF900: Two EM430F6147RF900 target socket modules. This is the PCB on which is soldered a CC430F6147 device in a 64-pin RGC package. A 2×7-pin male connector is also present on the PCB • Two CC430EM battery packs • Four AAA batteries • Two 868- or 915-MHz antennas • Two 32.768-kHz crystals • 18 PCB 2×4-pin headers 1.14 Hardware Installation, MSP-FET430PIF Follow these steps to install the hardware for the MSP-FET430PIF tools: 1. Use the 25-conductor cable to connect the FET interface module to the parallel port of the PC. The necessary driver for accessing the PC parallel port is installed automatically during CCS or IAR Embedded Workbench installation. Note that a restart is required after the CCS or IAR Embedded Workbench installation for the driver to become active. 2. Use the 14-conductor cable to connect the parallel-port debug interface module to a target board, such as an MSP-TS430xxx target socket module. Module schematics and PCBs are shown in Appendix B. 16 Get Started Now! SLAU278Q–May 2009–Revised February 2014 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated www.ti.com Hardware Installation, MSP-FET430UIF 1.15 Hardware Installation, MSP-FET430UIF Follow these steps to install the hardware for the MSP-FET430UIF tool: 1. Install the IDE (CCS or IAR) you plan to use before connecting USB-FET interface to PC. The IDE installation installs drivers automatically. 2. Use the USB cable to connect the USB-FET interface module to a USB port on the PC. The USB FET should be recognized, as the USB device driver is installed automatically. If the driver has not been installed yet, the install wizard starts. Follow the prompts and point the wizard to the driver files. The default location for CCS is c:\ti\ccsv5\ccs_base\emulation\drivers\msp430\USB_CDC or c:\ti\ccsv5\ccs_base\emulation\drivers\msp430\USB_FET_XP_XX, depending of firmware version of the tool. The default location for IAR Embedded Workbench is \Embedded Workbench x.x\ 430\drivers\TIUSBFET\eZ430-UART or \Embedded Workbench x.x\ 430\drivers\, depending of firmware version of the tool. The USB driver is installed automatically. Detailed driver installation instructions can be found in Appendix C. 3. After connecting to a PC, the USB FET performs a self-test during which the red LED may flash for approximately two seconds. If the self-test passes successfully, the green LED stays on. 4. Use the 14-conductor cable to connect the USB-FET interface module to a target board, such as an MSP-TS430xxx target socket module. 5. Ensure that the MSP430 device is securely seated in the socket, and that its pin 1 (indicated with a circular indentation on the top surface) aligns with the "1" mark on the PCB. 6. Compared to the parallel-port debug interface, the USB FET has additional features including JTAG security fuse blow and adjustable target VCC (1.8 V to 3.6 V). Supply the module with up to 60 mA. 1.16 Hardware Installation, eZ430-XXXX, MSP-EXP430G2, MSP-EXP430FR5739, MSPEXP430F5529 To install eZ430-XXXX, MSP-EXP430G2, MSP-EXP430FR5739, MSP-EXP430F5529 tools follow instructions 1 and 2 of Section 1.15 1.17 Hardware Installation, MSP-FET430Uxx, MSP-TS430xxx, FET430F6137RF900, EM430Fx137RF900 Follow these steps to install the hardware for the MSP-FET430Uxx and MSP-TS430xxx tools: 1. Follow instructions 1 and 2 of Section 1.15 2. Connect the MSP-FET430PIF or MSP-FET430UIF debug interface to the appropriate port of the PC. Use the 14-conductor cable to connect the FET interface module to the supplied target socket module. 3. Ensure that the MSP430 device is securely seated in the socket and that its pin 1 (indicated with a circular indentation on the top surface) aligns with the "1" mark on the PCB. 4. Ensure that the two jumpers (LED and VCC) near the 2×7-pin male connector are in place. Illustrations of the target socket modules and their parts are found in Appendix B. SLAU278Q–May 2009–Revised February 2014 Get Started Now! 17 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated Important MSP430 Documents on the Web www.ti.com 1.18 Important MSP430 Documents on the Web The primary sources of MSP430 information are the device-specific data sheet and user's guide. The MSP430 web site (www.ti.com/msp430) contains the most recent version of these documents. PDF documents describing the CCS tools (CCS IDE, the assembler, the C compiler, the linker, and the librarian) are in the msp430\documentation folder. A Code Composer Studio specific Wiki page (FAQ) is available, and the Texas Instruments E2E Community support forums for the MSP430 and Code Composer Studio v5 provide additional help besides the product help and Welcome page. PDF documents describing the IAR tools (Workbench C-SPY, the assembler, the C compiler, the linker, and the librarian) are in the common\doc and 430\doc folders. Supplements to the documents (that is, the latest information) are available in HTML format in the same directories. A IAR specific Wiki Page is also available. 18 Get Started Now! SLAU278Q–May 2009–Revised February 2014 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated Chapter 2 SLAU278Q–May 2009–Revised February 2014 Design Considerations for In-Circuit Programming This chapter presents signal requirements for in-circuit programming of the MSP430. Topic ........................................................................................................................... Page 2.1 Signal Connections for In-System Programming and Debugging ............................ 20 2.2 External Power .................................................................................................. 24 2.3 Bootstrap Loader (BSL) ..................................................................................... 24 SLAU278Q–May 2009–Revised February 2014 Design Considerations for In-Circuit Programming 19 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated Signal Connections for In-System Programming and Debugging www.ti.com 2.1 Signal Connections for In-System Programming and Debugging MSP-FET430PIF, MSP-FET430UIF, MSP-GANG, MSP-GANG430, MSP-PRGS430 With the proper connections, the debugger and an FET hardware JTAG interface (such as the MSPFET430PIF and MSP-FET430UIF) can be used to program and debug code on the target board. In addition, the connections also support the MSP-GANG430 or MSP-PRGS430 production programmers, thus providing an easy way to program prototype boards, if desired. Figure 2-1 shows the connections between the 14-pin FET interface module connector and the target device required to support in-system programming and debugging for 4-wire JTAG communication. Figure 2-2 shows the connections for 2-wire JTAG mode (Spy-Bi-Wire). The 4-wire JTAG mode is supported on most MSP430 devices, except devices with low pin counts (for example, MSP430G2230). The 2-wire JTAG mode is available on selected devices only. See the Code Composer Studio for MSP430 User's Guide (SLAU157) or IAR Embedded Workbench Version 3+ for MSP430 User's Guide (SLAU138) for information on which interface method can be used on which device. The connections for the FET interface module and the MSP-GANG, MSP-GANG430, or MSP-PRGS430 are identical. Both the FET interface module and MSP-GANG430 can supply VCC to the target board (through pin 2). In addition, the FET interface module, MSP-GANG, and MSP-GANG430 have a VCCsense feature that, if used, requires an alternate connection (pin 4 instead of pin 2). The VCC-sense feature senses the local VCC present on the target board (that is, a battery or other local power supply) and adjusts the output signals accordingly. If the target board is to be powered by a local VCC, then the connection to pin 4 on the JTAG should be made, and not the connection to pin 2. This uses the VCCsense feature and prevents any contention that might occur if the local on-board VCC were connected to the VCC supplied from the FET interface module, MSP-GANG or the MSP-GANG430. If the VCC-sense feature is not necessary (that is, if the target board is to be powered from the FET interface module, MSPGANG, or MSP-GANG430), the VCC connection is made to pin 2 on the JTAG header, and no connection is made to pin 4. Figure 2-1 and Figure 2-2 show a jumper block that supports both scenarios of supplying VCC to the target board. If this flexibility is not required, the desired VCC connections may be hard-wired to eliminate the jumper block. Pins 2 and 4 must not be connected at the same time. Note that in 4-wire JTAG communication mode (see Figure 2-1), the connection of the target RST signal to the JTAG connector is optional when using devices that support only 4-wire JTAG communication mode. However, when using devices that support 2-wire JTAG communication mode in 4-wire JTAG mode, the RST connection must be made. The MSP430 development tools and device programmers perform a target reset by issuing a JTAG command to gain control over the device. However, if this is unsuccessful, the RST signal of the JTAG connector may be used by the development tool or device programmer as an additional way to assert a device reset. 20 Design Considerations for In-Circuit Programming SLAU278Q–May 2009–Revised February 2014 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated 1 3 5 7 9 11 13 2 4 6 8 10 12 14 TDO/TDI TDI/VPP TMS TCK GND TEST/VPP JTAG VCC TOOL VCC TARGET J1 (see Note A) J2 (see Note A) VCC R1 47 k (see Note B) W C2 10 μF C3 0.1 μF VCC/AVCC/DVCC RST/NMI TDO/TDI TDI/VPP TMS TCK TEST/VPP (see Note C) V /AV /DV SS SS SS MSP430Fxxx C1 10 nF/2.2 nF (see Notes B and E) RST (see Note D) Important to connect www.ti.com Signal Connections for In-System Programming and Debugging A If a local target power supply is used, make connection J1. If power from the debug or programming adapter is used, make connection J2. B The configuration of R1 and C1 for the RST/NMI pin depends on the device family. See the respective MSP430 family user's guide for the recommended configuration. C The TEST pin is available only on MSP430 family members with multiplexed JTAG pins. See the device-specific data sheet to determine if this pin is available. D The connection to the JTAG connector RST pin is optional when using a device that supports only 4-wire JTAG communication mode, and it is not required for device programming or debugging. However, this connection is required when using a device that supports 2-wire JTAG communication mode in 4-wire JTAG mode. E When using a device that supports 2-wire JTAG communication in 4-wire JTAG mode, the upper limit for C1 should not exceed 2.2 nF. This applies to both TI FET interface modules (LPT and USB FET). Figure 2-1. Signal Connections for 4-Wire JTAG Communication SLAU278Q–May 2009–Revised February 2014 Design Considerations for In-Circuit Programming 21 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated 1 3 5 7 9 11 13 2 4 6 8 10 12 14 TEST/SBWTCK MSP430Fxxx RST/NMI/SBWTDIO TDO/TDI TCK GND TEST/VPP JTAG VCC TOOL VCC TARGET 330! R2 J1 (see Note A) J2 (see Note A) Important to connect VCC/AVCC/DVCC V /AV /DV SS SS SS R1 47 k! See Note B C1 2.2 nF See Note B VCC C2 10 μF C3 0.1 μF Signal Connections for In-System Programming and Debugging www.ti.com A If a local target power supply is used, make connection J1. If power from the debug or programming adapter is used, make connection J2. B The device RST/NMI/SBWTDIO pin is used in 2-wire mode for bidirectional communication with the device during JTAG access, and any capacitance that is attached to this signal may affect the ability to establish a connection with the device. The upper limit for C1 is 2.2 nF when using current TI tools. C R2 protects the JTAG debug interface TCK signal from the JTAG security fuse blow voltage that is supplied by the TEST/VPP pin during the fuse blow process. If fuse blow functionality is not needed, R2 is not required (populate 0 Ω) and do not connect TEST/VPP to TEST/SBWTCK. Figure 2-2. Signal Connections for 2-Wire JTAG Communication (Spy-Bi-Wire) Used by MSP430F2xx, MSP430G2xx, and MSP430F4xx Devices 22 Design Considerations for In-Circuit Programming SLAU278Q–May 2009–Revised February 2014 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated 1 3 5 7 9 11 13 2 4 6 8 10 12 14 TEST/SBWTCK MSP430Fxxx RST/NMI/SBWTDIO TDO/TDI TCK GND JTAG R1 47 k! See Note B VCC TOOL VCC TARGET C1 2.2 nF See Note B J1 (see Note A) J2 (see Note A) Important to connect VCC/AVCC/DVCC V /AV /DV SS SS SS VCC C2 10 μF C3 0.1 μF www.ti.com Signal Connections for In-System Programming and Debugging A Make connection J1 if a local target power supply is used, or make connection J2 if the target is powered from the debug or programming adapter. B The device RST/NMI/SBWTDIO pin is used in 2-wire mode for bidirectional communication with the device during JTAG access, and any capacitance that is attached to this signal may affect the ability to establish a connection with the device. The upper limit for C1 is 2.2 nF when using current TI tools. Figure 2-3. Signal Connections for 2-Wire JTAG Communication (Spy-Bi-Wire) Used by MSP430F5xx and MSP430F6xx Devices SLAU278Q–May 2009–Revised February 2014 Design Considerations for In-Circuit Programming 23 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated External Power www.ti.com 2.2 External Power The MSP-FET430UIF can supply targets with up to 60 mA through pin 2 of the 14-pin connector. Note that the target should not consume more than 60 mA, even as a peak current, as it may violate the USB specification. For example, if the target board has a capacitor on VCC more than 10 μF, it may cause inrush current during capacitor charging that may exceed 60 mA. In this case, the current should be limited by the design of the target board, or an external power supply should be used. The VCC for the target can be selected between 1.8 V and 3.6 V in steps of 0.1 V. Alternatively, the target can be supplied externally. In this case, the external voltage should be connected to pin 4 of the 14-pin connector. The MSP-FET430UIF then adjusts the level of the JTAG signals to external VCC automatically. Only pin 2 (MSP-FET430UIF supplies target) or pin 4 (target is externally supplied) must be connected; not both at the same time. When a target socket module is powered from an external supply, the external supply powers the device on the target socket module and any user circuitry connected to the target socket module, and the FET interface module continues to be powered from the PC through the parallel port. If the externally supplied voltage differs from that of the FET interface module, the target socket module must be modified so that the externally supplied voltage is routed to the FET interface module (so that it may adjust its output voltage levels accordingly). See the target socket module schematics in Appendix B. The PC parallel port can source a limited amount of current. Because of the ultra-low-power requirement of the MSP430, a standalone FET does not exceed the available current. However, if additional circuitry is added to the tool, this current limit could be exceeded. In this case, external power can be supplied to the tool through connections provided on the target socket modules. See the schematics and pictorials of the target socket modules in Appendix B to locate the external power connectors. Note that the MSPFET430PIF is not recommended for new design. 2.3 Bootstrap Loader (BSL) The JTAG pins provide access to the memory of the MSP430 and CC430 devices. On some devices, these pins are shared with the device port pins, and this sharing of pins can complicate a design (or sharing may not be possible). As an alternative to using the JTAG pins, most MSP430Fxxx devices contain a program (a "bootstrap loader") that permits the flash memory to be erased and programmed using a reduced set of signals. The MSP430 Programming Via the Bootstrap Loader User's Guide (SLAU319) describes this interface. See the MSP430 web site for the application reports and a list of MSP430 BSL tool developers. TI suggests that MSP430Fxxx customers design their circuits with the BSL in mind (that is, TI suggests providing access to these signals by, for example, a header). See FAQ Hardware #10 for a second alternative to sharing the JTAG and port pins. 24 Design Considerations for In-Circuit Programming SLAU278Q–May 2009–Revised February 2014 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated Appendix A SLAU278Q–May 2009–Revised February 2014 Frequently Asked Questions and Known Issues This appendix presents solutions to frequently asked questions regarding the MSP-FET430 hardware. Topic ........................................................................................................................... Page A.1 Hardware FAQs ................................................................................................. 26 A.2 Known Issues ................................................................................................... 28 SLAU278Q–May 2009–Revised February 2014 Frequently Asked Questions and Known Issues 25 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated Hardware FAQs www.ti.com A.1 Hardware FAQs 1. MSP430F22xx Target Socket Module (MSP-TS430DA38) – Important Information Due to the large capacitive coupling introduced by the device socket between the adjacent signals XIN/P2.6 (socket pin 6) and RST/SBWTDIO (socket pin 7), in-system debugging can disturb the LFXT1 low-frequency crystal oscillator operation (ACLK). This behavior applies only to the Spy-Bi-Wire (2-wire) JTAG configuration and only to the period while a debug session is active. Workarounds: • Use the 4-wire JTAG mode debug configuration instead of the Spy-Bi-Wire (2-wire) JTAG configuration. This can be achieved by placing jumpers JP4 through JP9 accordingly. • Use the debugger option "Run Free" that can be selected from the Advanced Run drop-down menu (at top of Debug View). This prevents the debugger from accessing the MSP430 device while the application is running. Note that, in this mode, a manual halt is required to see if a breakpoint was hit. See the IDE documentation for more information on this feature. • Use an external clock source to drive XIN directly. 2. With current interface hardware and software, there is a weakness when adapting target boards that are powered externally. This leads to an accidental fuse check in the MSP430 device. This is valid for PIF and UIF but is seen most often on the UIF. A solution is being developed. Workarounds: • Connect the RST/NMI pin to the JTAG header (pin 11). LPT and USB tools are able to pull the RST line, which also resets the device internal fuse logic. • Use the debugger option "Release JTAG On Go" that can be selected from the IDE drop-down menu. This prevents the debugger from accessing the MCU while the application is running. Note that in this mode, a manual halt is required to see if a breakpoint was hit. See the IDE documentation for more information on this feature. • Use an external clock source to drive XIN directly. 3. The 14-conductor cable that connects the FET interface module and the target socket module must not exceed 8 inches (20 centimeters) in length. 4. The signal assignment on the 14-conductor cable is identical for the parallel port interface and the USB FET. 5. To use the on-chip ADC voltage references, the capacitor must be installed on the target socket module. See the schematic of the target socket module to populate the capacitor according to the data sheet of the device. 6. To use the charge pump on the devices with LCD+ Module, the capacitor must be installed on the target socket module. See the schematic of the target socket module to populate the capacitor according to the data sheet of the device. 7. Crystals or resonators Q1 and Q2 (if applicable) are not provided on the target socket module. For MSP430 devices that contain user-selectable loading capacitors, see the device and crystal data sheets for the value of capacitance. 8. Crystals or resonators have no effect upon the operation of the tool and the CCS debugger or C-SPY (as any required clocking and timing is derived from the internal DCO and FLL). 9. On devices with multiplexed port or JTAG pins, to use these pin in their port capability: For CCS: "Run Free" (in Run pulldown menu at top of Debug View) must be selected. For C-SPY: "Release JTAG On Go" must be selected. 10. As an alternative to sharing the JTAG and port pins (on low pin count devices), consider using an MSP430 device that is a "superset" of the smaller device. A very powerful feature of the MSP430 is that the family members are code and architecturally compatible, so code developed on one device (for example, one without shared JTAG and port pins) ports effortlessly to another (assuming an equivalent set of peripherals). 26 Frequently Asked Questions and Known Issues SLAU278Q–May 2009–Revised February 2014 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated www.ti.com Hardware FAQs 11. Information memory may not be blank (erased to 0xFF) when the device is delivered from TI. Customers should erase the information memory before its first use. Main memory of packaged devices is blank when the device is delivered from TI. 12. The device current is higher then expected. The device current measurement may not be accurate with the debugger connected to the device. For accurate measurement, disconnect the debugger. Additionally some unused pins of the device should be terminated. See the Connection of Unused Pins table in the device's family user's guide. 13. The following ZIF sockets are used in the FET tools and target socket modules: • 8-pin device (D package): Yamaichi IC369-0082 • 14-pin device (PW package): Enplas OTS-14-065-01 • 14-pin package for 'L092 (PW package): Yamaichi IC189-0142-146 • 24-pin package (PW package): Enplas OTS-24(28)-0.65-02 • 28-pin device (DW package): Wells-CTI 652 D028 • 28-pin device (PW package): Enplas OTS-28-0.65-01 • 38-pin device (DA package): Yamaichi IC189-0382-037 • 40-pin device (RHA package): Enplas QFN-40B-0.5-01 • 40-pin device (RSB package): Enplas QFN-40B-0.4 • 48-pin device (RGZ package): Yamaichi QFN11T048-008 A101121-001 • 48-pin device (DL package): Yamaichi IC51-0482-1163 • 64-pin device (PM package): Yamaichi IC51-0644-807 • 64-pin device (RGC package): Yamaichi QFN11T064-006 • 80-pin device (PN package): Yamaichi IC201-0804-014 • 100-pin device (PZ package): Yamaichi IC201-1004-008 • 128-pin device (PEU package): Yamaichi IC500-1284-009P Enplas: www.enplas.com Wells-CTI: www.wellscti.com Yamaichi: www.yamaichi.us SLAU278Q–May 2009–Revised February 2014 Frequently Asked Questions and Known Issues 27 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated Known Issues www.ti.com A.2 Known Issues MSP-FET430UIF Current detection algorithm of the UIF firmware Problem Description If high current is detected, the ICC monitor algorithm stays in a loop of frequently switching on and off the target power supply. This power switching puts some MSP430 devices such as the MSP430F5438 in a state that requires a power cycle to return the device to JTAG control. A side issue is that if the UIF firmware has entered this switch on and switch off loop, it is not possible to turn off the power supply to the target by calling MSP430_VCC(0). A power cycle is required to remove the device from this state. Solution IAR KickStart and Code Composer Essentials that have the MSP430.dll version 2.04.00.003 and higher do not show this problem. Update the software development tool to this version or higher to update the MSP-FET430UIF firmware. MSP-FET430PIF Some PCs do not supply 5 V through the parallel port Problem Description Device identification problems with modern PCs, because the parallel port often does not deliver 5 V as was common with earlier hardware. 1. When connected to a laptop, the test signal is clamped to 2.5 V. 2. When the external VCC becomes less than 3 V, up to 10 mA is flowing in the adapter through pin 4 (sense). Solution Measure the voltage level of the parallel port. If it is too low, provide external 5 V to the VCC pads of the interface. The jumper on a the target socket must be switched to external power. 28 Frequently Asked Questions and Known Issues SLAU278Q–May 2009–Revised February 2014 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated Appendix B SLAU278Q–May 2009–Revised February 2014 Hardware This appendix contains information relating to the FET hardware, including schematics, PCB pictorials, and bills of materials (BOMs). All other tools, such as the eZ430 series, are described in separate productspecific user's guides. SLAU278Q–May 2009–Revised February 2014 Hardware 29 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated Appendix B www.ti.com Topic ........................................................................................................................... Page B.1 MSP-TS430D8 ................................................................................................... 31 B.2 MSP-TS430PW14 ............................................................................................... 34 B.3 MSP-TS430L092 ................................................................................................ 37 B.4 MSP-TS430L092 Active Cable ............................................................................. 40 B.5 MSP-TS430PW24 ............................................................................................... 43 B.6 MSP-TS430DW28 ............................................................................................... 46 B.7 MSP-TS430PW28 ............................................................................................... 49 B.8 MSP-TS430PW28A ............................................................................................. 52 B.9 MSP-TS430DA38 ............................................................................................... 55 B.10 MSP-TS430QFN23x0 .......................................................................................... 58 B.11 MSP-TS430RSB40 ............................................................................................. 61 B.12 MSP-TS430RHA40A ........................................................................................... 64 B.13 MSP-TS430DL48 ................................................................................................ 67 B.14 MSP-TS430RGZ48B ........................................................................................... 70 B.15 MSP-TS430RGZ48C ........................................................................................... 73 B.16 MSP-TS430PM64 ............................................................................................... 76 B.17 MSP-TS430PM64A ............................................................................................. 79 B.18 MSP-TS430RGC64B ........................................................................................... 82 B.19 MSP-TS430RGC64C ........................................................................................... 85 B.20 MSP-TS430RGC64USB ....................................................................................... 89 B.21 MSP-TS430PN80 ............................................................................................... 93 B.22 MSP-TS430PN80A ............................................................................................. 96 B.23 MSP-TS430PN80USB ......................................................................................... 99 B.24 MSP-TS430PZ100 ............................................................................................ 103 B.25 MSP-TS430PZ100A .......................................................................................... 106 B.26 MSP-TS430PZ100B .......................................................................................... 109 B.27 MSP-TS430PZ100C .......................................................................................... 112 B.28 MSP-TS430PZ5x100 ......................................................................................... 115 B.29 MSP-TS430PZ100USB ...................................................................................... 118 B.30 MSP-TS430PEU128 .......................................................................................... 122 B.31 EM430F5137RF900 ........................................................................................... 125 B.32 EM430F6137RF900 ........................................................................................... 129 B.33 EM430F6147RF900 ........................................................................................... 133 B.34 MSP-FET430PIF ............................................................................................... 137 B.35 MSP-FET430UIF ............................................................................................... 139 30 Hardware SLAU278Q–May 2009–Revised February 2014 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated GND 100nF 330R 10uF/10V 47K 2.2nF GND 330R GND GND green FE4L FE4H GND Ext_PWR Socket: YAMAICHI Type: IC369-0082 Vcc ext int to measure supply current DNP 1 3 5 7 9 11 13 2 4 6 12 14 8 10 SBW C5 R3 C7 R5 C8 1 2 3 J3 1 2 J4 1 2 J6 1 2 3 J5 R2 D1 1 2 3 4 J1 5 6 7 8 J2 DVCC 1 DVSS 8 P1.2/TA1/A2 2 P1.5/TA0/A5/SCLK 3 P1.6/TA1/A6/SDO/SCL 4 TST/SBWTCK 7 RST/SBWTDIO 6 P1.7/A7/SDI/SDA 5 U1 MSP-TS430D8 GND VCC RST/SBWTDIO RST/SBWTDIO RST/SBWTDIO SBWTCK VCC430 TST/SBWTCK TST/SBWTCK TST/SBWTCK P1.5 P1.6 P1.7 P1.2 Date: 28.07.201111:03:35 Sheet: /11 REV: TITLE: Document Number: MSP-TS430D8 + 1.0 MSP-TS430D8 Target Socket Board www.ti.com MSP-TS430D8 B.1 MSP-TS430D8 Figure B-1. MSP-TS430D8 Target Socket Module, Schematic SLAU278Q–May 2009–Revised February 2014 Hardware 31 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated Connector J5 External power connector Jumper JP3 to "ext" Jumper JP2 Open to disconnect LED D1 LED connected to P1.2 Orient Pin 1 of MSP430 device 14 pin connector for debugging only in Spy-Bi-Wire mode (4 Wire JTAG not available) MSP-TS430D8 www.ti.com Figure B-2. MSP-TS430D8 Target Socket Module, PCB 32 Hardware SLAU278Q–May 2009–Revised February 2014 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated www.ti.com MSP-TS430D8 Table B-1. MSP-TS430D8 Bill of Materials Position Ref Des No. per Description DigiKey Part No. Comment Board 1 J4, J6 2 2-pin header, male, TH SAM1035-02-ND place jumper on header 2 J5 1 3-pin header, male, TH SAM1035-03-ND place jumper on pins 1-2 3 SBW 1 10-pin connector, male, TH HRP10H-ND 4 J3 1 3-pin header, male, TH SAM1035-03-ND 5 C8 1 2.2nF, CSMD0805 Buerklin 53 D 292 6 C7 1 10uF, 10V, 1210ELKO 478-3875-1-ND 7 R5 1 47K, 0805 541-47000ATR-ND 8 C5 1 100nF, CSMD0805 311-1245-2-ND 9 R2, R3 2 330R, 0805 541-330ATR-ND 10 J1, J2 2 4-pin header, TH SAM1029-04-ND DNP: headers enclosed with kit. Keep vias free of solder. 10,1 J1, J2 1 4-pin socket, TH SAM1029-04-ND DNP: receptacles enclosed with kit. 11 U1 1 SO8 Socket: Type IC369-0082 Manuf.: Yamaichi 12 D1 1 red, LED 0603 13 MSP430 2 MSP430x "DNP: enclosed with kit. Is supplied by TI" 14 PCB 1 50,0mmx44,5mm MSP-TS430D8 Rev. 1.0 SLAU278Q–May 2009–Revised February 2014 Hardware 33 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated 12pF 12pF GND 100nF 330R 10uF/10V 47K 2.2nF GND 330R 100nF GND GND GND green Ext_PWR Socket: ENPLAS Type: OTS-14-065 Vcc ext int to measure supply current DNP DNP DNP DNP DNP JTAG -> SBW -> JTAG-Mode selection: 4-wire JTAG: Set jumpers J7 to J12 to position 2-3 2-wire "SpyBiWire": Set jumpers J7 to J12 to position 2-1 1 3 5 7 9 11 13 2 4 6 12 14 8 10 JTAG C2 C1 C5 R3 C7 R5 C8 1 2 3 J3 Q1 8 9 10 11 12 13 14 J2 1 2 3 4 5 6 7 J1 1 2 J4 1 2 J6 J5 1 2 3 R2 C3 J7 1 2 3 J8 1 2 3 J9 1 2 3 J10 1 2 3 J11 1 2 3 J12 1 2 3 1 2 3 4 5 6 7 8 9 10 14 13 12 11 D1 P1.0 P1.3 P1.2 P1.1 XOUT XOUT GND XIN XIN VCC RST/SBWTDIO RST/SBWTDIO SBWTCK TEST/SBWTCK TEST/SBWTCK TEST/SBWTCK VCC430 P1.4/TCK P1.4/TCK P1.5/TMS P1.5/TMS P1.6/TDI P1.6/TDI P1.7/TDO P1.7/TDO TDO/SBWTDIO RST/NMI TMS TDI Date: 7/16/2007 8:22:36 AM Sheet: 1/1 REV: TITLE: Document Number: MSP-TS430PW14 + 2.0 MSP-TS430PW14 Target Socket Board MSP-TS430PW14 www.ti.com B.2 MSP-TS430PW14 Figure B-3. MSP-TS430PW14 Target Socket Module, Schematic 34 Hardware SLAU278Q–May 2009–Revised February 2014 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated Jumper J4 Open to disconnect LED Orient Pin 1 of MSP430 device Jumper J6 Open to measure current Connector J3 External power connector Jumper J5 to 'ext' LED connected to P1.0 Jumpers J7 to J12 Close 1-2 to debug in Spy-Bi-Wire Mode. Close 2-3 to debug in 4-wire JTAG mode. www.ti.com MSP-TS430PW14 Figure B-4. MSP-TS430PW14 Target Socket Module, PCB SLAU278Q–May 2009–Revised February 2014 Hardware 35 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated MSP-TS430PW14 www.ti.com Table B-2. MSP-TS430PW14 Bill of Materials Position Ref Des No. per Description DigiKey Part No. Comment Board 1 C1, C2 0 12pF, SMD0805 DNP 2 C7 1 10uF, 10V, Tantal Size 511-1463-2-ND B 3 C3, C5 1 100nF, SMD0805 478-3351-2-ND DNP: C3 4 C8 0 2.2nF, SMD0805 DNP 5 D1 1 green LED, SMD0603 475-1056-2-ND DNP: Headers and receptacles enclosed with kit. Keep vias free of 6 J1, J2 0 7-pin header, TH solder SAM1029-07-ND : Header SAM1213-07-ND : Receptacle J3, J5, J7, Place jumpers on headers J5, J7, J8, 7 J8, J9, J10, 8 3-pin header, male, TH SAM1035-03-ND J9, J10, J11, J12; Pos 1-2 J11, J12 8 J4, J6 2 2-pin header, male, TH SAM1035-02-ND Place jumper on header 9 9 Jumper 15-38-1024-ND Place on: J5, J7-J12; Pos 1-2 10 JTAG 1 14-pin connector, male, HRP14H-ND TH Micro Crystal MS1V-T1K 12 Q1 0 Crystal 32.768kHz, C(Load) = DNP: keep vias free of solder 12.5pF 13 R2, R3 2 330 Ω, SMD0805 541-330ATR-ND 15 R5 1 47k Ω, SMD0805 541-47000ATR-ND 16 U1 1 Socket: OTS-14-0.65-01 Manuf.: Enplas 17 PCB 1 56 x 53 mm 2 layers Adhesive Approximately 6mm For example, 3M 18 plastic feet 4 width, 2mm height Bumpons Part No. SJ- Apply to corners at bottom side 5302 19 MSP430 2 MSP430F2013IPW DNP: enclosed with kit, supplied by TI 36 Hardware SLAU278Q–May 2009–Revised February 2014 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated www.ti.com MSP-TS430L092 B.3 MSP-TS430L092 Figure B-5. MSP-TS430L092 Target Socket Module, Schematic SLAU278Q–May 2009–Revised February 2014 Hardware 37 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated MSP-TS430L092 www.ti.com Settings of the MSP-TS430L092 Target Socket Figure B-6 shows the PCB layout of the MSP-TS430L092 target socket. The following pinning is recommended: • JP1 is write enable for the EPROM. If this is not set, the EPROM can only be read. • JP2 and JP3 connect device supply with boost converter. They can be opened to measure device current consumption. For default operation, they should be closed. Figure B-6. MSP-TS430L092 Target Socket Module, PCB 38 Hardware SLAU278Q–May 2009–Revised February 2014 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated www.ti.com MSP-TS430L092 Table B-3. MSP-TS430L092 Bill of Materials Pos. Ref Des No. No. Per Description DigiKey Part No. Comment Board 1 C1, C2 2 330nF, SMD0603 2 C5 1 100n, SMD0603 3 C6 1 10u, SMD0805 4 C10 1 100n, SMD0603 5 EEPROM1 1 M95512 SO08 (SO8) ST Micro M95160R Digikey: 497-8688-1-ND DNP: headers and receptacles enclosed with kit. 7 J1, J2 2 7-pin header, TH Keep vias free of solder. SAM1213-07-ND : Header SAM1035-07-ND : Receptacle 8 J3 1 3-pin header, male, TH SAM1035-03-ND 9 J4, J5 2 FE4L, FE4H 4 pol. Stiftreihe DNP; Keep vias free of solder. 11 J13 1 MICRO_STECKV_10 Reichelt: MicroMaTch- Connector: MM FL 10G 12 JP1, JP2,JP3 3 2-pin header, male, TH SAM1035-02-ND place jumper on header 15 L1 1 33uH, SMD0806 LQH2MCN330K02L Farnell: 151-5557 16 LED1, LED4 2 LEDCHIPLED_0603 Farnell: 1686065 17 Q2 1 BC817-16LT1SMD BC817-16LT1SMD SOT23-BEC 18 R0, R6, R7 3 2K7, SMD0603 19 R1 1 1k, SMD0603 20 R2 1 47k, SMD0603 21 R4,R5, R8, 6 10k, SMD0603 R10, RC, RD 22 RA 1 3.9k, SMD0603 23 RB 1 6.8k, SMD0603 24 U1 1 14 Pin Socket - IC189-0142- Manuf. Yamaichi 146 22 MSP430 2 MSP430L092PWR DNP: Enclosed with kit. Is supplied by TI. SLAU278Q–May 2009–Revised February 2014 Hardware 39 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated MSP-TS430L092 Active Cable www.ti.com B.4 MSP-TS430L092 Active Cable Figure B-7. MSP-TS430L092 Active Cable Target Socket Module, Schematic 40 Hardware SLAU278Q–May 2009–Revised February 2014 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated www.ti.com MSP-TS430L092 Active Cable Figure B-8 shows the PCB layout for the Active Cable. The following pinning is possible: • JP1 has two jumpers (Jumper 1 and Jumper 2) that can be set as shown in Table B-4. Table B-4. MSP-TS430L092 JP1 Settings Jumper 1 Jumper 2 Description Off Off The active cable has no power and does not function. Off On The active cable receives power from target socket. For this option, the target socket must have its own power supply. On Off The active cable receives power from the JTAG connector. The JTAG connector powers the active cable and the target socket. For On On this option, the target socket must not have its own power source, as this would cause a not defined state. • JP2 is for reset. For the standard MSP-TS430L092, this jumper must be set. It sets the reset pin to high and can also control it. Without this jumper on the MSP-TS430L092, reset is set to zero. Figure B-8. MSP-TS430L092 Active Cable Target Socket Module, PCB SLAU278Q–May 2009–Revised February 2014 Hardware 41 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated MSP-TS430L092 Active Cable www.ti.com Table B-5. MSP-TS430L092 Active Cable Bill of Materials Pos. Ref Des No. Per Description DigiKey Part No. Comment Board 1 C1, C3, C5, 4 100nF, SMD0603 C6 2 C2, C4 2 1uF, SMD0805 3 R1, R10 2 10K, SMD0603 4 R2 1 4K7, SMD0603 5 R5, R6, R7, 4 100, SMD0603 R9 6 R8 1 680k, SMD0603 7 R11, R15 2 1K, SMD0603 8 R12 0 SMD0603 DNP 9 R13 0 SMD0603 DNP 10 R14 1 0, SMD0603 11 IC1 1 SN74AUC1G04DBVR Manu: TI 12 IC2, IC3, IC4 3 SN74AUC2G125DCTR Manu: TI 13 J2 1 MICRO_STECKV_10 Reichelt: MicroMaTch- Connector: MM FL 10G 14 JP1 1 2x2 Header JP2Q Put jumper on Position 1 and 2. Do not mix direction. 15 JP2 1 2-pin header, male, TH SAM1035-02-ND place jumper on header 16 JTAG 1 14-pin connector, male, TH HRP14H-ND 17 Q1 1 BC817-25LT1SMD, SOT23- Digi-Key: BC817- BEC 25LT1GOSCT-ND 18 U1, U2 2 TLVH431IDBVR SOT23-5 Manu: TI 42 Hardware SLAU278Q–May 2009–Revised February 2014 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated www.ti.com MSP-TS430PW24 B.5 MSP-TS430PW24 Figure B-9. MSP-TS430PW24 Target Socket Module, Schematic SLAU278Q–May 2009–Revised February 2014 Hardware 43 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated Jumper JP2 Open to measure current Orient Pin 1 of MSP430 device D1 LED connected to P1.0 Jumper JP3 Open to disconnect LED Connector J5 External power connector Jumper JP1 to "ext" Jumpers JP4 to JP9 Close 1-2 to debug in Spy-Bi-Wire mode Close 2-3 to debug in 4-wire JTAG mode MSP-TS430PW24 www.ti.com Figure B-10. MSP-TS430PW24 Target Socket Module, PCB 44 Hardware SLAU278Q–May 2009–Revised February 2014 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated www.ti.com MSP-TS430PW24 Table B-6. MSP-TS430PW24 Bill of Materials Position Ref Des No. per Description DigiKey Part No. Comment Board 1 C1, C2 0 12pF, SMD0805 DNP 2 C5 1 2.2nF, SMD0805 3 C3, C7 2 10uF, 10V, SMD0805 4 C4, C6, C8 3 100nF, SMD0805 478-3351-2-ND 5 D1 1 green LED, SMD0805 P516TR-ND "SAM1029-07- DNP: Headers and receptacles 6 J1, J2 0 12-pin header, TH NDSAM1213-07-ND" enclosed with kit. Keep vias free of solder. (Header & Receptacle) J5, JP1, 7 JP4, JP5, 8 3-pin header, male, TH SAM1035-03-ND Place jumper on 1-2 of JP4-JP9 JP6, JP7, Place on 1-2 on JP1 JP8, JP9 8 JP2, JP3 2 2-pin header, male, TH SAM1035-02-ND Place jumper on header 9 9 Jumper 15-38-1024-ND see Pos 7 an 8 10 JTAG 1 14-pin connector, male, HRP14H-ND TH 11 Q1 0 Crystal DNP: keep vias free of solder 12 R1, R7 2 330 Ω, SMD0805 541-330ATR-ND 13 R5, R6, 2 0 Ohm, SMD0805 541-000ATR-ND DNP R5, R6 R8, R9, 14 R4 1 47k Ohm, SMD0805 541-47000ATR-ND 15 U1 1 Socket: OTS 24(28)- Manuf.: Enplas 065-02-00 16 PCB 1 68.5 x 61 mm 2 layers Adhesive Approximately 6mm for example, 3M 17 plastic feet 4 width, 2mm height Bumpons Part No. SJ- Apply to corners at bottom side 5302 18 MSP430 2 MSP430AFE2xx DNP: enclosed with kit, supplied by TI SLAU278Q–May 2009–Revised February 2014 Hardware 45 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated ML14 LED3 12pF 12pF GND GND 100nF 560R ML10 JP1Q JP1Q 10uF/10V 50K 10nF 0R 0R 0R - - 0R - U1 SOCK28DW F123 FE14H FE14L 0R GND remove R8 and add R9 (0 Ohm) If external supply voltage: remove R11 and add R10 (0 Ohm) SMD-Footprint Socket: Yamaichi 2.0 MSP-TS430DW28 Target Socket DW28 Type: IC189-0282-042 If external supply voltage: R1, C1, C2 not assembled not assembled 1 3 5 7 9 11 13 2 4 6 12 14 8 10 JTAG D1 C2 C1 C5 R3 BOOTST 1 2 3 4 5 6 7 8 9 10 1 2 J5 J4 1 2 C7 R5 C8 R6 R7 R8 R9 R10 R11 R1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 TST 1 VCC 2 P2.5 3 VSS 4 XOUT 5 XIN 6 RST 7 P2.0 8 P2.1 9 P2.2 10 P2.3 19 P2.4 20 P1.0 21 P1.1 22 P1.2 23 P1.3 24 P1.4 25 P1.5 26 P1.6 27 P1.7 28 P3.0 11 P3.1 12 P3.2 13 P3.3 14 P3.4 15 P3.5 16 P3.6 17 P3.7 18 U2 15 16 17 18 19 20 21 22 23 24 25 26 27 28 J2 J1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 R2 1 2 3 J3 Q1 QUARZ3 P1.0 P1.0 P1.3 P1.3 P1.2 P1.2 P1.1 P1.1 RST/NMI RST/NMI RST/NMI RST/NMI RST/NMI TCK TCK TCK TMS TMS TMS TDI TDI TDI TDO TDO TDO XOUT XOUT VCC GND GND GND P2.3 P2.3 P2.4 P2.4 XIN XIN P2.5 P2.5 P2.2 P2.2 P2.1 P2.1 P2.0 P2.0 TST/VPP TST/VPP TST/VPP P3.0 P3.0 P3.1 P3.1 P3.2 P3.2 P3.3 P3.3 P3.7 P3.7 P3.6 P3.6 P3.5 P3.5 P3.4 P3.4 VCC430 Ext_PWR Date: 11/14/2006 1:26:04 PM Sheet: 1/1 REV: TITLE: Document Number: MSP-TS430DW28 + VCC430 MSP-TS430DW28 www.ti.com B.6 MSP-TS430DW28 Figure B-11. MSP-TS430DW28 Target Socket Module, Schematic 46 Hardware SLAU278Q–May 2009–Revised February 2014 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated Jumper J4 Open to disconnect LED Orient Pin 1 of MSP430 device Jumper J5 Open to measure current Connector J3 External power connector Remove R8 and jumper R9 LED connected to P1.0 www.ti.com MSP-TS430DW28 Figure B-12. MSP-TS430DW28 Target Socket Module, PCB SLAU278Q–May 2009–Revised February 2014 Hardware 47 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated MSP-TS430DW28 www.ti.com Table B-7. MSP-TS430DW28 Bill of Materials Position Ref Des No. per Description DigiKey Part No. Comment Board 1 C1, C2 0 12pF, SMD0805 DNP: C1, C2, Cover holes while soldering 2 C5 1 100nF, SMD0805 3 C7 1 10uF, 10V Tantal Elko B 4 C8 1 10nF SMD0805 5 D1 1 LED3 T1 3mm yellow RS: 228-4991 Micro Crystal MS1V-T1K 6 Q1 0 QUARZ, Crystal 32.768kHz, C(Load) = DNP: Cover holes while soldering 12.5pF DNP: Headers and receptacles enclosed with kit. Keep vias free of 7 J1, J2 2 14-pin header, TH male solder. : Header : Receptacle DNP: Headers and receptacles enclosed with kit. Keep vias free of 7.1 2 14-pin header, TH solder. female : Header : Receptacle 8 J3 1 3-Pin Connector, male 9 J4, J5 2 2-Pin Connector, male With jumper 10 BOOTST 0 ML10, 10-Pin Conn., m RS: 482-115 DNP, Cover holes while soldering 11 JTAG 1 ML14, 14-Pin Conn., m RS: 482-121 R1, R2, 12 R6, R7, 4 0R, SMD0805 DNP: R1, R2, R9, R10 R8,R9, R10, R11 13 R3 1 560R, SMD0805 14 R5 1 47K, SMD0805 15 U1 1 SOP28DW socket Yamaichi: IC189-0282- 042 16 U2 0 TSSOP DNP 48 Hardware SLAU278Q–May 2009–Revised February 2014 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated 12pF 12pF GND GND 100nF 330R 10uF/10V - 0R GND GND green 2.2nF 47k GND 0R 0R 330R MSP430F12xx If external supply voltage: remove R11 and add R10 (0 Ohm) 3.1 MSP-TS430PW28: OTS-28-0.65-01 Socket: Enplas Vcc int ext Target Socket Board for MSP430's in PW28 package DNP DNP DNP DNP DNP DNP DNP JTAG -> SBW -> JTAG-Mode selection: 4-wire JTAG: Set jumpers JP4 to JP9 to position 2-3 2-wire "SpyBiWire": Set jumpers JP4 to JP9 to position 1-2 DNP 1 3 5 7 9 11 13 2 4 6 12 14 8 10 JTAG C2 C1 C4 R1 1 2 3 4 5 6 7 8 9 10 BOOTST C3 R2 R3 1 2 3 J5 JP1 1 2 3 JP2 1 2 1 2 JP3 D1 C5 R4 JP4 1 2 3 JP5 1 2 3 JP6 1 2 3 JP7 1 2 3 JP8 1 2 3 JP9 1 2 3 R5 R6 1 2 Q1 R7 J1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 J2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 U1 TST 1 VCC 2 P2.5 3 VSS 4 XOUT 5 XIN 6 RST 7 P2.0 8 P2.1 9 P2.2 10 P2.3 19 P2.4 20 P1.0 21 P1.1 22 P1.2 23 P1.3 24 P1.4 25 P1.5 26 P1.6 27 P1.7 28 P3.0 11 P3.1 12 P3.2 13 P3.3 14 P3.4 15 P3.5 16 P3.6 17 P3.7 18 P1.0 P1.0 RST/NMI TMS TDI VCC GND GND VCC430 VCC430 P2.0 P1.1 P1.1 P3.3 P3.2 P3.1 P3.0 P2.2 P2.2 XIN/P2.6 XIN/P2.6 XOUT/P2.7 XOUT/P2.7 P2.1 RST/SBWTDIO RST/SBWTDIO RST/SBWTDIO P3.4 P3.5 P3.6 P3.7 P2.3 P2.4 P1.2 P1.3 P1.4/TCK P1.4/TCK P1.5/TMS P1.5/TMS P1.6/TDI P1.6/TDI P1.7/TDO P1.7/TDO TEST/SBWTCK TEST/SBWTCK TEST/SBWTCK TEST/SBWTCK P2.5 TCK/SBWTCK TDO/SBWTDIO XTLGND Ext_PWR + www.ti.com MSP-TS430PW28 B.7 MSP-TS430PW28 Figure B-13. MSP-TS430PW28 Target Socket Module, Schematic SLAU278Q–May 2009–Revised February 2014 Hardware 49 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated Jumper JP2 Open to measure current Jumper JP3 Open to disconnect LED LED D1 connected to P5.1 Jumper JP1 1-2 (int): Power supply via JTAG interface 2-3 (ext): External Power Supply Jumper JP4 to JP9: Close 1-2 to debug in Spy-Bi-Wire mode Close 2-3 to debug in 4-wire JTAG mode Orient Pin 1 of Device MSP-TS430PW28 www.ti.com Figure B-14. MSP-TS430PW28 Target Socket Module, PCB 50 Hardware SLAU278Q–May 2009–Revised February 2014 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated www.ti.com MSP-TS430PW28 Table B-8. MSP-TS430PW28 Bill of Materials(1) Pos. Ref Des No. per Description DigiKey Part No. Comment Board 1 C1, C2 0 12pF, SMD0805 DNP: C1, C2 , Cover holes while soldering 2 C3 1 10uF, 10V Tantal Elko B 3 C4 1 100nF, SMD0805 4 C5 0 2.2nF, SMD0805 DNP 5 D1 1 LED green SMD0603 Micro Crystal MS1V-T1K DNP: Cover holes and 6 Q1 0 QUARZ, Crystal 32.768kHz, C(Load) = neighboring holes while 12.5pF soldering DNP: Headers and receptacles enclosed with 7 J1, J2 2 14-pin header, TH male kit.Keep vias free of solder. : Header : Receptacle DNP: headers and receptacles enclosed with 7.1 2 14-pin header, TH female kit.Keep vias free of solder. : Header : Receptacle 8 J5, IP1 1 3-Pin Connector , male JP1, JP4, 8a JP5, JP6, 7 3-Pin Connector , male Jumper on Pos 1-2 JP7, JP8, JP9 9 JP2, JP3 2 2-Pin Connector , male with Jumper 10 BOOTST 0 ML10, 10-Pin Conn. , m RS: 482-115 DNP: Cover holes while soldering 11 JTAG 1 ML14, 14-Pin Conn. , m RS: 482-121 12 R1, R7 2 330R, SMD0805 12 R2, R3, R5, 0 0R, SMD0805 DNP R6 14 R4 1 47K, SMD0805 15 U1 1 SOP28PW socket Enplas: OTS-28-0.65-01 (1) PCB 66 x 79 mm, two layers; Rubber stand off, four pieces SLAU278Q–May 2009–Revised February 2014 Hardware 51 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated JTAG Mode selection: 4-wire JTAG: Set jumpers J4 to J9 to position 2-3 2-wire "SpyBiWire": Set jumpers J4 to J9 to position 2-1 MSP-TS430PW28A www.ti.com B.8 MSP-TS430PW28A Figure B-15. MSP-TS430PW28A Target Socket Module, Schematic 52 Hardware SLAU278Q–May 2009–Revised February 2014 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated Jumper JP2 Open to measure current Orient Pin 1 of MSP430 device Jumper JP3 Open to disconnect LED D1 LED connected to P1.0 Connector J5 External power connector Jumper JP1 to "ext" Jumpers JP4 to JP9 Close 1-2 to debug in Spy-Bi-Wire mode Close 2-3 to debug in 4-wire JTAG mode www.ti.com MSP-TS430PW28A Figure B-16. MSP-TS430PW28A Target Socket Module, PCB (Red) SLAU278Q–May 2009–Revised February 2014 Hardware 53 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated MSP-TS430PW28A www.ti.com Table B-9. MSP-TS430PW28A Bill of Materials Position Ref Des No. per Description DigiKey Part No. Comment Board 1 C1, C2 0 12pF, SMD0805 DNP 2 C5 1 2.2nF, SMD0805 3 C3 1 10uF, 10V, SMD0805 4 C4, C6, 2 100nF, SMD0805 478-3351-2-ND 5 D1 1 green LED, SMD0805 P516TR-ND DNP: Headers and receptacles 6 J1, J2 0 14-pin header, TH enclosed with kit. Keep vias free of solder: (Header & Receptacle) J5, JP1, 7 JP4, JP5, 8 3-pin header, male, TH SAM1035-03-ND Place jumper on 1-2 of JP4-JP9 JP6, JP7, Place on 1-2 on JP1 JP8, JP9 8 JP2, JP3 2 2-pin header, male, TH SAM1035-02-ND Place jumper on header 9 9 Jumper 15-38-1024-ND see Pos 7 an 8 10 JTAG 1 14-pin connector, male, HRP14H-ND TH 11 BOOTST 0 DNP Keep vias free of solder Micro Crystal MS3V 12 Q1 0 Crystal 32.768kHz, C(Load) = DNP: keep vias free of solder 12.5pF 13 R1, R7 2 330 Ω, SMD0805 541-330ATR-ND 14 R2, R3,R5, 0 0 Ohm, SMD0805 541-000ATR-ND DNP R2, R3,R5, R6 R6, 15 R4 1 47k Ω, SMD0805 541-47000ATR-ND 16 U1 1 Socket: OTS-28-0.65-01 Manuf.: Enplas 17 PCB 1 63.5 x 64.8 mm 2 layers Adhesive Approximately 6mm for example, 3M 18 plastic feet 4 width, 2mm height Bumpons Part No. SJ- Apply to corners at bottom side 5302 19 MSP430 2 MSP430G2553IPW28 DNP: enclosed with kit, supplied by TI 54 Hardware SLAU278Q–May 2009–Revised February 2014 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated 12pF 12pF GND GND 100nF 560R 10uF/10V 47k 10nF - 0R GND MSP430F2274IDA GND 330R GND yellow If external supply voltage: remove R11 and add R10 (0 Ohm) IC189-0382-037 Socket: 4-wire JTAG: 2-wire "SpyBiWire": JTAG-Mode selection: Set jumpers JP4 to JP9 to position 2-3 Set jumpers JP4 to JP9 to position 2-1 JTAG -> SBW -> Yamaichi DNP DNP DNP DNP DNP DNP DNP 1 3 5 7 9 11 13 2 4 6 12 14 8 10 JTAG C2 C1 C5 R3 1 2 3 4 5 6 7 8 9 10 BOOTST C7 R5 C8 R10 R11 1 2 3 J3 Q1 TEST/SBWTCK 1 P3.5 26 P3.6 27 P1.4/TCK 35 RST/SBWDAT 7 DVCC 2 DVSS 4 P4.7 24 P3.7 28 AVSS 15 AVCC 16 P3.0 11 P3.1 12 P3.2 13 P3.3 14 P4.0 17 P4.1 18 P4.2 19 P3.4 25 P2.5 3 P2.4 30 P2.3 29 P2.2 10 P2.1 9 P2.0 8 P1.5/TMS 36 P1.6/TDI 37 P1.7/TDO 38 P2.7 5 P2.6 6 P4.6 23 P4.5 22 P4.4 21 P4.3 20 P1.0 31 P1.1 32 P1.2 33 P1.3 34 U1 JP1 1 2 3 JP2 1 2 1 2 JP3 1 2 3 JP4 JP5 1 2 3 JP6 1 2 3 JP7 1 2 3 JP8 1 2 3 R1 JP9 1 2 3 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 1 J1 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 20 J2 D1 P1.0 P1.0 RST/NMI TMS TDI VCC GND GND GND VCC430 VCC430 VCC430 TCK/SBWTCK TDO/SBWTDIO TEST/SBWTCK TEST/SBWTCK TEST/SBWTCK TEST/SBWTCK P2.5 P2.0 P2.1 P3.0 P3.1 P3.2 P3.3 P4.0 P4.1 P4.2 P1.7/TDO P1.7/TDO P1.6/TDI P1.6/TDI P1.5/TMS P1.5/TMS P1.4/TCK P1.4/TCK P1.3 P1.2 P1.1 P1.1 P2.4 P2.3 P3.7 P3.6 P3.5 P3.4 P4.7 P4.6 P4.5 P4.4 P4.3 P2.7/XOUT P2.7/XOUT P2.6/XIN P2.6/XIN RST/SBWTDIO RST/SBWTDIO RST/SBWTDIO P2.2 P2.2 Ext_PWR Date: 6/18/2008 11:04:56 AM Sheet: 1/1 REV: TITLE: Document Number: MSP-TS430DA38 + 1.3 MSP-TS430DA38: Vcc int ext Target Socket Board for MSP430F2247IDA www.ti.com MSP-TS430DA38 B.9 MSP-TS430DA38 Figure B-17. MSP-TS430DA38 Target Socket Module, Schematic SLAU278Q–May 2009–Revised February 2014 Hardware 55 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated Orient pin 1 of MSP430 device LED connected to P1.0 Connector J3 External power connector Jumper JP1 to 'ext' Jumper JP3 Open to disconnect LED Jumper JP2 Open to measure current Jumpers JP4 to JP9 Close 1-2 to debug in Spy-Bi-Wire Mode, Close 2-3 to debug in 4-wire JTAG Mode MSP-TS430DA38 www.ti.com Figure B-18. MSP-TS430DA38 Target Socket Module, PCB 56 Hardware SLAU278Q–May 2009–Revised February 2014 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated www.ti.com MSP-TS430DA38 Table B-10. MSP-TS430DA38 Bill of Materials Pos. Ref Des No. per Description DigiKey Part No. Comment Board 1 C1, C2 0 12pF, SMD0805 DNP 2 C7 1 10uF, 10V, Tantal Size B 511-1463-2-ND 3 C5 1 100nF, SMD0805 478-3351-2-ND 4 C8 0 2.2nF, SMD0805 DNP 5 D1 1 green LED, SMD0603 475-1056-2-ND DNP: headers and receptacles enclosed with 6 J1, J2 0 19-pin header, TH kit.Keep vias free of solder. SAM1029-19-ND : Header SAM1213-19-ND : Receptacle "J3, JP1, Place jumpers on headers 7 JP4, JP5, 8 3-pin header, male, TH SAM1035-03-ND JP1, JP4,JP5, JP6, JP7, JP6, JP7, JP8, JP9; Pos 1-2 JP8, JP9" 8 JP2, JP3 2 2-pin header, male, TH SAM1035-02-ND Place jumper on header 9 9 Jumper 15-38-1024-ND Place on: JP1 - JP9; Pos 1- 2 10 JTAG 1 14-pin connector, male, TH HRP14H-ND 11 BOOTST 0 10-pin connector, male, TH DNP: Keep vias free of solder Micro Crystal MS1V-T1K DNP: Keep vias free of 12 Q1 0 Crystal 32.768kHz, C(Load) = solder 12.5pF 13 R1, R3 2 330 Ω, SMD0805 541-330ATR-ND 14 R10, R11 0 0 Ω, SMD0805 541-000ATR-ND DNP 15 R5 1 47k Ω, SMD0805 541-47000ATR-ND 16 U1 1 Socket: IC189-0382--037 Manuf.: Yamaichi 17 PCB 1 67 x 66 mm 2 layers 18 Adhesive 4 ~6mm width, 2mm height for example, 3M Bumpons Apply to corners at bottom Plastic feet Part No. SJ-5302 side 19 MSP430 2 MSP430F2274IDA DNP: enclosed with kit supplied by TI SLAU278Q–May 2009–Revised February 2014 Hardware 57 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated MSP-TS430QFN23x0 www.ti.com B.10 MSP-TS430QFN23x0 Figure B-19. MSP-TS430QFN23x0 Target Socket Module, Schematic 58 Hardware SLAU278Q–May 2009–Revised February 2014 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated LED connected to P1.0 Connector J5 External power connector Jumper JP1 to 'ext' Jumper JP3 Open to disconnect LED Jumper JP2 Open to measure current www.ti.com MSP-TS430QFN23x0 Figure B-20. MSP-TS430QFN23x0 Target Socket Module, PCB SLAU278Q–May 2009–Revised February 2014 Hardware 59 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated MSP-TS430QFN23x0 www.ti.com Table B-11. MSP-TS430QFN23x0 Bill of Materials Pos. Ref Des No. per Description DigiKey Part No. Comment Board 1 C1, C2 0 12pF, SMD0805 DNP 2 C3 1 10uF, 10V, Tantal Size B 511-1463-2-ND 3 C4 1 100nF, SMD0805 478-3351-2-ND 4 C5 1 10nF, SMD0805 478-1383-2-ND 5 D1 1 green LED, SMD0603 475-1056-2-ND DNP: headers and receptacles enclosed with 6 J1, J2, J3, 0 10-pin header, TH kit.Keep vias free of solder. J4 SAM1034-10-ND : Header SAM1212-10-ND : Receptacle 7 J5, JP1 2 3-pin header, male, TH SAM1035-03-ND Place jumper on header JP1; Pos 1-2. 8 JP2, JP3 2 2-pin header, male, TH SAM1035-02-ND Place jumper on header 9 3 Jumper 15-38-1024-ND Place on: JP1, JP2, JP3 10 JTAG 1 14-pin connector, male, TH HRP14H-ND 11 BOOTST 0 10-pin connector, male, TH DNP: Keep vias free of solder Micro Crystal MS1V-T1K DNP: Keep vias free of 12 Q1 0 Crystal 32.768kHz, C(Load) = solder 12.5pF 13 R1 1 330 Ω, SMD0805 541-330ATR-ND 14 R2, R3 0 0 Ω, SMD0805 541-000ATR-ND DNP 15 R4 1 47k Ω, SMD0805 541-47000ATR-ND 16 U1 1 Socket: QFN-40B-0.5-01 Manuf.: Enplas 17 PCB 1 79 x 66 mm 2 layers 18 Adhesive 4 ~6mm width, 2mm height for example, 3M Bumpons Apply to corners at bottom Plastic feet Part No. SJ-5302 side 19 MSP430 2 MSP430F2370IRHA DNP: enclosed with kit supplied by TI 60 Hardware SLAU278Q–May 2009–Revised February 2014 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated www.ti.com MSP-TS430RSB40 B.11 MSP-TS430RSB40 Figure B-21. MSP-TS430RSB40 Target Socket Module, Schematic SLAU278Q–May 2009–Revised February 2014 Hardware 61 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated Jumper JP2 Open to measure current Orient Pin 1 of MSP430 device Jumper JP3 Open to disconnect LED D1 LED connected to P1.0 Jumpers JP4 to JP9 Close 1-2 to debug in Spy-Bi-Wire mode Close 2-3 to debug in 4-wire JTAG mode Connector J5 External power connector Jumper JP1 to "ext" MSP-TS430RSB40 www.ti.com Figure B-22. MSP-TS430RSB40 Target Socket Module, PCB 62 Hardware SLAU278Q–May 2009–Revised February 2014 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated www.ti.com MSP-TS430RSB40 Table B-12. MSP-TS430RSB40 Bill of Materials Pos. Ref Des No. Per Description DigiKey Part No. Comment Board 1 C1, C2 0 12pF, SMD0805 DNP: C1, C2 2 C3, C7, C10, 3 10uF, 10V, SMD 0805 445-1371-1-ND DNP C12 C12 3 C4, C6, C8, 3 100nF, SMD0805 311-1245-2-ND DNP C11 C11 4 C5 1 2.2nF, SMD0805 5 C9 1 470nF, SMD0805 6 D1 1 green LED, SMD0805 P516TR-ND DNP: headers and receptacles enclosed with kit. 7 J1, J2, J3, J4 4 10-pin header, TH Keep vias free of solder. : Header : Receptacle DNP: headers and receptacles enclosed with kit. 7.1 4 10-pin header, TH Keep vias free of solder. : Header : Receptacle JP1, JP4,JP5, Jumper: 1-2 on JP1, JP10; 2- 8 JP6, JP7, 9 3-pin header, male, TH SAM1035-03-ND 3 on JP4-JP9 JP8, JP9, J5, JP10 9 JP2, JP3 2 2-pin header, male, TH SAM1035-02-ND place jumper on header 10 JTAG 1 14-pin connector, male, TH HRP14H-ND 11 BOOTST 0 10-pin connector, male, TH DNP. Keep vias free of solder 12 U1 1 QFN-40B-0.4_ Enplas ENPLAS_SOCKET Micro Crystal MS3V-T1R DNP: Q1. Keep vias free of 13 Q1 0 Crystal 32.768kHz, C(Load) = solder 12.5pF Place on: JP1, JP2, JP3, 15 10 Jumper 15-38-1024-ND JP4, JP5, JP6, JP7, JP8, JP9, JP10 16 R1,R7 2 330R SMD0805 R2, R3, R5, 17 R6, R8, R9, 3 0R SMD0805 DNP R2, R3, R5, R6 R10 18 R4 1 47k SMD0805 19 MSP430 2 MSP430F5132 DNP: enclosed with kit. Is supplied by TI 20 Rubber stand 4 select appropriate; for apply to corners at bottom off example, Buerklin: 20H1724 side SLAU278Q–May 2009–Revised February 2014 Hardware 63 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated MSP-TS430RHA40A www.ti.com B.12 MSP-TS430RHA40A Figure B-23. MSP-TS430RHA40A Target Socket Module, Schematic 64 Hardware SLAU278Q–May 2009–Revised February 2014 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated Jumper JP2 Open to measure current Connector J5 External power connector Jumper JP1 to "ext" Jumpers JP4 to JP9 Close 1-2 to debug in Spy-Bi-Wire mode Close 2-3 to debug in 4-wire JTAG mode D1 LED connected to P1.0 Jumper JP3 Open to disconnect LED Orient Pin 1 of MSP430 device www.ti.com MSP-TS430RHA40A Figure B-24. MSP-TS430RHA40A Target Socket Module, PCB SLAU278Q–May 2009–Revised February 2014 Hardware 65 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated MSP-TS430RHA40A www.ti.com Table B-13. MSP-TS430RHA40A Bill of Materials Position Ref Des No. per Description DigiKey Part No. Comment Board 1 C1, C2 0 12pF, SMD0805 DNP: C1, C2 2 C5 0 2.2nF, SMD0805 DNP C12 3 C3, C7 2 10uF, 10V, SMD0805 5 DNP C11 4 C4, C6 2 100nF, SMD0805 478-3351-2-ND 5 C9 1 470nF, SMD0805 6 D1 1 green LED, SMD0805 P516TR-ND DNP: headers and receptacles enclosed with kit. Keep vias free of 7 J1, J2, J3, 4 10-pin header, TH solder. J4 : Header : Receptacle DNP: headers and receptacles enclosed with kit. Keep vias free of 7.1 4 10-pin header, TH solder. : Header : Receptacle J5, JP1, 8 JP4, JP5, 8 3-pin header, male, TH SAM1035-03-ND Place jumper on 1-2 of JP4-JP9; JP6, JP7, Place on 1-2 on JP1 JP8, JP9 9 JP2, JP3 2 2-pin header, male, TH SAM1035-02-ND place jumper on header 10 9 Jumper 15-38-1024-ND see Pos 8 an 9 11 JTAG 1 14-pin connector, male, HRP14H-ND TH 12 BOOTST 0 10-pin connector, male, DNP. Keep vias free of solder TH 13 U1 1 Socket: QFN-40B-0.5-01 Manuf.: Enplas Micro Crystal MS3V-T1R 14 Q1 0 Crystal 32.768kHz, C(Load) = DNP: Q1. Keep vias free of solder 12.5pF 15 R1,R7 2 330R SMD0805 541-330ATR-ND R2, R3, 16 R5, R6, 2 0 Ohm, SMD0805 541-000ATR-ND DNP:R2, R3, R5, R6 R8, R9, 17 R4 1 47k SMD0805 18 PCB 1 79 x 66 mm 2 layers Rubber select appropriate; for 19 stand off 4 example, Buerklin: apply to corners at bottom side 20H1724 20 MSP430 2 MSP430N5736IRHA DNP: enclosed with kit. Is supplied by TI 66 Hardware SLAU278Q–May 2009–Revised February 2014 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated ML14 LED3 12pF 12pF GND GND 100nF 560R ML10 JP1Q JP1Q 10uF/10V 47K 10nF 0R 0R GND 0R 0R 10uF/10V GND IC51-1387.KS-15186 100nF 1.3 MSP-TS430DL48 Target Socket DL48 Q1, C1, C2 not assembled 1 3 5 7 9 11 13 2 4 6 12 14 8 10 JTAG D1 C2 C1 C5 R3 BOOTST 1 2 3 4 5 6 7 8 9 10 1 2 J5 J4 1 2 C7 R5 C8 R6 R7 1 2 3 J3 Q1 QUARZ3 J2 1 3 5 2 4 6 7 9 8 10 11 13 15 12 14 16 17 19 18 20 21 23 22 24 1 3 5 2 4 6 7 9 8 10 11 13 15 12 14 16 17 19 18 20 21 23 22 24 J1 R12 R4 JP1 1 2 3 1 2 3 JP2 C4 U1 TDO/TDI 1 TDI/TCLK 2 TMS 3 TCK 4 RST/NMI 5 DVCC 6 DVSS 7 XIN 8 XOUT 9 AVSS 10 AVCC 11 VREF+ 12 P6.0 13 P6.1 14 P6.2 15 P6.3 16 P6.4 17 P6.5 18 P6.6 19 P6.7 20 P2.5 39 P2.4 40 P2.3 41 P2.2 42 P2.1 43 P2.0 44 COM0 45 P5.2 46 P5.3 47 P5.4 48 LCDREF 29 LCDCAP 30 P5.1 31 P5.0 32 P5.5 33 P5.6 34 P5.7 35 S5 36 P2.7 37 P2.6 38 P1.7 21 P1.6 22 P1.5 23 P1.4 24 P1.0 28 P1.1 27 P1.2 26 P1.3 25 C3 P1.0 P1.0 RST/NMI RST/NMI RST/NMI TCK TCK TCK TMS TMS TDI TDI TDO TDO XOUT XOUT GND GND GND XIN XIN BSL_TX VCC BSL_RX Ext_PWR Date: 11/14/2006 1:24:44 PM Sheet: 1/1 REV: TITLE: Document Number: MSP-TS430DL48 + + Vcc ext int int ext Vcc www.ti.com MSP-TS430DL48 B.13 MSP-TS430DL48 Figure B-25. MSP-TS430DL48 Target Socket Module, Schematic SLAU278Q–May 2009–Revised February 2014 Hardware 67 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated Jumper J4 Open to disconnect LED LED connected to P1.0 Orient pin 1 of MSP430 device Jumper J5 Open to measure current Connector J3 External power connector Jumper JP1 to ‘ext’ MSP-TS430DL48 www.ti.com Figure B-26. MSP-TS430DL48 Target Socket Module, PCB 68 Hardware SLAU278Q–May 2009–Revised February 2014 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated www.ti.com MSP-TS430DL48 Table B-14. MSP-TS430DL48 Bill of Materials Pos. Ref Des No. per Description DigiKey Part No. Comment Board 1 C1, C2 0 12pF, SMD0805 DNP 2 C4, C7 2 10uF, 10V, Tantal Size B 511-1463-2-ND 3 C3, C5 2 100nF, SMD0805 478-3351-2-ND 4 C8 1 10nF, SMD0805 478-1383-2-ND 5 D1 1 yellow LED, TH, 3mm, T1 511-1251-ND DNP: Headers and receptacles enclosed with 6 J1, J2 0 24-pin header, TH kit.Keep vias free of solder. SAM1034-12-ND : Header SAM1212-12-ND : Receptacle 7 J3, JP1, JP2 2 3-pin header, male, TH SAM1035-03-ND Place jumper on header JP1; Pos 1-2. DNP: JP2 8 J4, J5 2 2-pin header, male, TH SAM1035-02-ND Place jumper on header 9 3 Jumper 15-38-1024-ND Place on: JP1, J4, J5 10 JTAG 1 14-pin connector, male, TH HRP14H-ND 11 BOOTST 0 10-pin connector, male, TH DNP: Keep vias free of solder Micro Crystal MS1V-T1K DNP: Keep vias free of 12 Q1 0 Crystal 32.768kHz, C(Load) = solder 12.5pF 13 R3 1 560 Ω, SMD0805 541-560ATR-ND 14 R4, R6, R7, 2 0 Ω, SMD0805 541-000ATR-ND DNP: R6, R7 R12 15 R5 1 47k Ω, SMD0805 541-47000ATR-ND 16 U1 1 Socket: IC51-1387 KS- Manuf.: Yamaichi 15186 17 PCB 1 58 x 66 mm 2 layers 18 Adhesive 4 ~6mm width, 2mm height for example, 3M Bumpons Apply to corners at bottom Plastic feet Part No. SJ-5302 side 19 MSP430 2 MSP430F4270IDL DNP: Enclosed with kit supplied by TI SLAU278Q–May 2009–Revised February 2014 Hardware 69 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated MSP-TS430RGZ48B www.ti.com B.14 MSP-TS430RGZ48B Figure B-27. MSP-TS430RGZ48B Target Socket Module, Schematic 70 Hardware SLAU278Q–May 2009–Revised February 2014 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated Jumper JP2 Open to disconnect LED Connector J5 External power connector Jumper JP1 to "ext" Jumpers JP5 to JP10 Close 1-2 to debug in Spy-Bi-Wire mode Close 2-3 to debug in 4-wire JTAG mode D1 LED connected to P1.0 Jumper JP1 Open to measure current Orient Pin 1 of MSP430 device www.ti.com MSP-TS430RGZ48B Figure B-28. MSP-TS430RGZ48B Target Socket Module, PCB SLAU278Q–May 2009–Revised February 2014 Hardware 71 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated MSP-TS430RGZ48B www.ti.com Table B-15. MSP-TS430RGZ48B Bill of Materials Position Ref Des No. per Description DigiKey Part No. Comment Board 1 C1, C2 0 12pF, SMD0805 DNP 2 C3, C4 0 47pF, SMD0805 DNP 3 C6, C7, 3 10uF, 6.3V, SMD0805 C12 4 C5, C11, 4 100nF, SMD0805 311-1245-2-ND C13, C14 5 C8 1 2.2nF, SMD0805 6 C9 1 470nF, SMD0805 478-1403-2-ND 7 D1 1 green LED, SMD0805 P516TR-ND J1, J2, J3, SAM1029-12-ND DNP: Headers and receptacles 8 J4 0 12-pin header, TH (Header) SAM1213-12- enclosed with kit. Keep vias free of ND (Receptacle) solder: 9 J5 1 3-pin header, male, TH JP3, JP5, place jumpers on pins 2-3 on JP5, 10 JP6, JP7, 7 3-pin header, male, TH SAM1035-03-ND JP6, JP7, JP8, JP9, JP10 place JP8, JP9, jumpers on pins 1-2 on JP3, JP10 11 JP1, JP2 2 2-pin header, male, TH SAM1035-02-ND Place jumper on header 12 9 Jumper 15-38-1024-ND See Pos. 10and Pos. 11 13 JTAG 1 14-pin connector, male, HRP14H-ND TH 14 BOOTST 0 10-pin connector, male, "DNP Keep vias free of solder" TH Micro Crystal MS3V-T1R 15 Q1 0 Crystal 32.768kHz, C(Load) = DNP: Q1 Keep vias free of solder 12.5pF 16 Q2 0 Crystal Q2: 4MHz Buerklin: DNP: Q2 Keep vias free of solder 78D134 Insulating http://www.ettinger.de/Ar 17 disk to Q2 0 Insulating disk to Q2 t_Detail.cfm?ART_ART NUM=70.08.121 18 R3, R7 2 330 Ω, SMD0805 541-330ATR-ND R1, R2, R4, R6, 19 R8, 3 0 Ohm, SMD0805 541-000ATR-ND DNP: R6, R8, R9, R10, R11,R12 R9,R10, R11, R12 20 R5 1 47k Ω, SMD0805 541-47000ATR-ND 21 U1 1 Socket: QFN11T048- Manuf.: Yamaichi 008_A101121_RGZ48 22 PCB 1 81 x 76 mm 2 layers Adhesive Approximately 6mm for example, 3M 23 plastic feet 4 width, 2mm height Bumpons Part No. SJ- Apply to corners at bottom side 5302 24 MSP430 2 MSP430F5342IRGZ DNP: enclosed with kit, supplied by TI 72 Hardware SLAU278Q–May 2009–Revised February 2014 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated DNP DNP DNP GND GND 100nF 330R 0R - GND GND 47k 1.1nF GND 0R 0R 0R 1uF/10V QUARZ5 1uF/10V 100nF green DNP yellow (DNP) DNP red (DNP) 0R GND DNP DNP 0R 0R QUARZ5 EVQ11 0R DNP DNP If external supply voltage: remove R3 and add R2 (0 Ohm) 1.3 Ext_PWR MSP-TS430RGZ48C Vcc int ext Target Socket Board for MSP430FR58xx, FR59xx IRGZ DNP DNP DNP DNP DNP JTAG -> SBW -> JTAG-Mode selection: 4-wire JTAG: Set jumpers JP3 to JP8 to position 2-3 2-wire "SpyBiWire": Set jumpers JP3 to JP8 to position 1-2 connection by via DNP DNP 1 3 5 7 9 11 13 2 4 6 12 14 8 10 JTAG C2 C1 C4 R1 1 2 3 4 5 6 7 8 9 10 BOOTST R3 R2 1 2 3 J2 J1 1 2 3 JP1 1 2 1 2 JP9 R4 C5 1 2 3 JP3 1 2 3 JP4 1 2 3 JP5 1 2 3 JP6 1 2 3 JP7 1 2 3 JP8 R5 R6 R7 C3 Q1 C7 C6 D1 R10 1 2 JP10 D2 R11 1 2 JP11 D3 R12 JP2 1 2 C8 C9 R9 R8 Q2 SV4 1 2 3 4 5 6 7 8 9 10 11 12 SV1 1 2 3 4 5 6 7 8 9 10 11 12 SV2 1 2 3 4 5 6 7 8 9 10 11 12 SV3 1 2 3 4 5 6 7 8 9 10 11 12 1 1_P1.0 2 2_P1.1 3 3_P1.2 4 4_P3.0 5 5_P3.1 6 6_P3.2 7 7_P3.3 8 8_P4.7 9 9_P1.3 10 10_P1.4 11 11_P1.5 12 12_PJ.0_TDO 13 13_PJ.1_TDI 14 14_PJ.2_TMS 15 15_PJ.3/TCK 16 16_P4.0 17 17_P4.1 18 18_P4.2 19 19_P4.3 20 20_P2.5 21 21_P2.6 22 22_TEST/SBWTCK 23 23_RST/SBWTDIO 24 24_P2.0 25_P2.1 25 26_P2.2 26 27_P3.4 27 28_P3.5 28 29_P3.6 29 30_P3.7 30 31_P1.6 31 32_P1.7 32 33_P4.4 33 34_P4.5 34 35_P4.6 35 36_DVSS 36 37_DVCC 37 38_P2.7 38 39_P2.3 39 40_P2.4 40 41_AVSS 41 42_HFXIN 42 43_HFXOUT 43 44_AVSS 44 45_LFXIN 45 46_LFXOUT 46 47_AVSS 47 48_AVCC 48 U1 SW1 R13 TP1TP2 SW2 R14 P1.0 P1.0 RST/NMI TMS TDI VCC GND P1.1 P1.1 RST/SBWTDIO RST/SBWTDIO RST/SBWTDIO TCK/SBWTCK TDO/SBWTDIO PJ.0/TDO PJ.0/TDO PJ.2/TMS PJ.2/TMS PJ.3/TCK PJ.3/TCK PJ.1/TDI PJ.1/TDI P1.2 P1.2 P2.0 P2.0 P2.1 P2.1 P1.3 P1.3 P1.4 P1.5 AVCC AVCC AVSS AVSS AVSS AVSS LFXOUT LFXIN LFGND HFGND HFXOUT HFXIN P2.4 P2.3 P2.7 DVCC DVCC DVCC DVCC DVSS DVSS P4.6 P4.5 P4.4 P1.7 P1.6 P3.7 P3.6 P3.5 P3.4 P2.2 P2.6 P2.5 P4.3 P4.2 P4.1 P4.0 P4.7 P3.3 P3.2 P3.1 P3.0 TEST/SBWTCK1 TEST/SBWTCK TEST/SBWTCK TEST/SBWTCK www.ti.com MSP-TS430RGZ48C B.15 MSP-TS430RGZ48C Figure B-29. MSP-TS430RGZ48C Target Socket Module, Schematic SLAU278Q–May 2009–Revised February 2014 Hardware 73 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated MSP-TS430RGZ48C www.ti.com Figure B-30. MSP-TS430RGZ48C Target Socket Module, PCB Table B-16. MSP-TS430RGZ48C Revision History Revision Comments 1.2 Initial release LFOSC pins swapped at SV1 (9-10). 1.3 HFOSC pins swapped at SV1 (6-7). BOOTST pin 4 now directly connected to the device RST/SBWTDIO pin. 74 Hardware SLAU278Q–May 2009–Revised February 2014 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated www.ti.com MSP-TS430RGZ48C Table B-17. MSP-TS430RGZ48C Bill of Materials Number Pos Ref Des Per Description DigiKey Part Number Comment Board 1 SV1, SV2, SV3, 4 12-pin header, TH DNP: headers and receptacles enclosed with kit. SV4 Keep vias free of solder. SAM1029-12-ND : Header : Receptacle 1.1 SV1, SV2, SV3, 4 12-pin receptable, TH DNP: headers and receptacles enclosed with kit. SV4 Keep vias free of solder. : Header SAM1213-12-ND : Receptacle 2 JP1, JP2, JP9 3 2-pin header, male, TH SAM1035-02-ND Place jumper on header 3 JP10, JP11 2 2-pin header, male, TH SAM1035-02-ND DNP 4 J1, JP3, JP4, JP5, 7 3-pin header, male, TH SAM1035-03-ND Place jumpers on pins 2-3 JP6, JP7, JP8 5 J2 1 3-pin header, male, TH SAM1035-03-ND 6 JP1, JP2, JP9, J1, 10 Jumper 15-38-1024-ND Place on: JP1, JP2, JP9, J1, JP3, JP4, JP5, JP6, JP3, JP4, JP5, JP7, JP8 JP6, JP7, JP8 7 R2, R3, R5, R6, 9 DNP, 0805 DNP R8, R9, R10, R11, R14 8 R12, R13, R7 3 0R, 0805 541-000ATR-ND 9 C5 1 1.1nF, CSMD0805 490-1623-2-ND 10 C3, C7 2 1uF, 10V, CSMD0805 490-1702-2-ND 11 R4 1 47k, 0805 541-47000ATR-ND 12 C4, C6 2 100nF, CSMD0805 311-1245-2-ND 13 R1 1 330R, 0805 541-330ATR-ND 14 C1, C2, C8, C9 4 DNP, CSMD0805 DNP 15 SW1, SW2 2 EVQ-11L05R P8079STB-ND DNP, Lacon: 1251459 16 BOOTST 1 10-pin connector, male, TH HRP10H-ND DNP, keep vias free of solder 17 JTAG 1 14-pin connector, male, TH HRP14H-ND 18 Q1 1 DNP: MS3V-TR1 (32768kHz, depends on application Micro Crystal, DNP, enclosed in kit, keep vias 20ppm, 12.5pF) free of solder 19 Q2 1 DNP, Christal depends on application DNP, keep vias free of solder 20 U1 1 Socket: QFN11T048-008 Manuf.: Yamaichi A101121-001 20.1 U1 1 MSP430 DNP: enclosed with kit. Is supplied by TI. 21 D1 1 green LED, DIODE0805 P516TR-ND 22 D3 1 red (DNP), DIODE0805 DNP 23 D2 1 yellow (DNP), DIODE0805 DNP 24 TP1, TP2 2 Testpoint DNP, keep pads free of solder 25 Rubber stand off 4 Buerklin: 20H1724 apply to corners at bottom side 26 PCB 1 79.6 x 91.0 mm MSP-TS430RGZ48C 2 layers, black solder mask Rev. 1.2 SLAU278Q–May 2009–Revised February 2014 Hardware 75 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated ML14 LED3 0R 12pF 12pF 12pF 12pF GND GND 0R 100nF 560R ML10 JP1Q JP1Q 10uF/6,3V 10uF/10V 47K 10nF 0R 0R 0R - - 0R - 0R 0R FE16-1-1 FE16-1-2 FE16-1-3 FE16-1-4 PWR3 GNDGND - MSP64PM not assembled not assembled not assembled not assembled enhancement reserved for future JTAG 1 3 5 7 9 11 13 2 4 6 12 14 8 10 D1 R2 C2 C1 C3 C4 R1 C5 R3 BOOTST 1 2 3 4 5 6 7 8 9 10 J7 1 2 J6 1 2 C6 C7 R5 C8 R6 R7 R8 R9 R10 R11 R12 R13 R14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 J1 J2 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 J3 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 J4 J5 1 2 3 R4 Q1 LFXTCLK XTCLK U2 DVCC 2 3 4 5 6 7 XIN XOUT 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 TDO TDI TMS TCK RST 59 60 61 AVSS DVSS AVCC RST/NMI TCK TMS TDI TDO VCC Date: 3/14/2006 10:46:30 AM Sheet: 1/1 REV: TITLE: Document Number: MSP-TS430PM64 + + 1 MSP-TS430PM64 Target Socket PM64 Yamaichi IC51-0644-807 Socket: 1.2 for F14x and F41x Open J6 if LCD is connected If external supply voltage: remove R8 and add R9 (0 Ohm) If external supply voltage: remove R11 and add R10 (0 Ohm) For BSL usage add: R6 R7 R13 R14 MSP430F14x : 0 0 open open MSP430F41x : open open 0 0 MSP-TS430PM64 www.ti.com B.16 MSP-TS430PM64 NOTE: Connections between the JTAG header and pins XOUT and XIN are no longer required and should not be made. Figure B-31. MSP-TS430PM64 Target Socket Module, Schematic 76 Hardware SLAU278Q–May 2009–Revised February 2014 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated Connector J5 External power connection Remove R8 and jumper R9 LED connected to pin 12 Jumper J6 Open to disconnect LED Jumper J7 Open to measure current Orient Pin 1 of MSP430 device www.ti.com MSP-TS430PM64 Figure B-32. MSP-TS430PM64 Target Socket Module, PCB SLAU278Q–May 2009–Revised February 2014 Hardware 77 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated MSP-TS430PM64 www.ti.com Table B-18. MSP-TS430PM64 Bill of Materials Pos. Ref Des No. per Description DigiKey Part No. Comment Board 1 C1, C2 0 12pF, SMD0805 DNP 1.1 C3, C4 0 47pF, SMD0805 DNP: Only recommendation. Check your crystal spec. 2 C6, C7 1 10uF, 10V, Tantal Size B 511-1463-2-ND DNP: C6 3 C5 1 100nF, SMD0805 478-3351-2-ND 4 C8 1 10nF, SMD0805 478-1383-2-ND 5 C9 1 470nF, SMD0805 478-1403-2-ND 6 D1 1 green LED, SMD0805 P516TR-ND DNP: Headers and receptacles enclosed with 7 J1, J2, J3, J4 0 16-pin header, TH kit.Keep vias free of solder. SAM1029-16-ND : Header SAM1213-16-ND : Receptacle 8 J5 1 3-pin header, male, TH SAM1035-03-ND 9 J6, J7 2 2-pin header, male, TH SAM1035-02-ND Place jumper on header 11 2 Jumper 15-38-1024-ND Place on: J6, J7 12 JTAG 1 14-pin connector, male, TH HRP14H-ND 13 BOOTST 0 10-pin connector, male, TH DNP: Keep vias free of solder Q1: Micro Crystal MS1V-T1K DNP: Keep vias free of 14 Q1, Q2 0 Crystal 32.768kHz, C(Load) = solder 12.5pF 15 R3 1 330 Ω, SMD0805 541-330ATR-ND R1, R2, R4, R6, R7, R8, DNP: R4, R6, R7, R9, R10, 16 R9, R10, 3 0 Ω, SMD0805 541-000ATR-ND R11, R12, R13, R14 R11, R12, R13, R14 17 R5 1 47k Ω, SMD0805 541-47000ATR-ND 18 U1 1 Socket: IC51-0644-807 Manuf.: Yamaichi 19 PCB 1 78 x 75 mm 2 layers 20 Rubber 4 select appropriate Apply to corners at bottom standoff side 21 MSP430 22 MSP430F2619IPM DNP: Enclosed with kit MSP430F417IPM supplied by TI 78 Hardware SLAU278Q–May 2009–Revised February 2014 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated 0R 12pF 12pF GND GND 0R 100nF 330R 10uF/6.3V 0R 0R 0R 0R PWR3 GND 47k 2.2nF 330R GND GND 100nF GND 0R 0R MSP-TS430PM64A Target Socket DNP Yamaichi IC51-0644-807 Socket: DNP 1.1 for F4152 Open JP1 if LCD is connected JTAG -> SBW -> DNP DNP DNP DNP DNP DNP DNP Vcc ext int TEST/SBWTCK RST/SBWTDIO P7.0/TDO P7.1/TDI P7.2/TMS P7.3/TCK ADD LCD-CAP! DNP DNP JTAG 1 3 5 7 9 11 13 2 4 6 12 14 8 10 R2 C2 C1 R1 C5 R3 BOOTST 1 2 3 4 5 6 7 8 9 10 C6 R10 R11 R13 R14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 J1 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 J2 J3 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 J4 J5 1 2 3 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 1 2 3 4 5 6 7 8 9 11 12 13 14 15 10 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 1 2 Q1 R4 C3 1 2 3 JP4 JP5 1 2 3 JP6 1 2 3 JP7 1 2 3 JP8 1 2 3 R6 JP9 1 2 3 1 2 JP1 JP2 1 2 JP3 1 2 3 D1 C4 R5 R7 RST/NMI TMS TDI VCC GND XTLGND TCK/SBWTCK TDO/SBWTDIO VCC430 VCC430 VCC430 P5.1 P5.1 AVCC AVCC AVSS AVSS P1.0 P1.1 XIN XOUT A A A B B B C C D D E E F F Date: 3/29/2011 3:07:02 PM Sheet: 1/1 REV: TITLE: Document Number: MSP-TS430PM64A + TEST/SBWTCK RST/SBWTDIO If supplied locally: populate R10 (0R), remove R11 If supplied by interface: populate R11 (0R), remove R10 www.ti.com MSP-TS430PM64A B.17 MSP-TS430PM64A Figure B-33. MSP-TS430PM64A Target Socket Module, Schematic SLAU278Q–May 2009–Revised February 2014 Hardware 79 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated Jumper JP2 Open to measure current Jumper JP1 Open to disconnect LED LED D1 connected to P5.1 Jumper JP3 1-2 (int): Power supply via JTAG interface 2-3 (ext): External Power Supply Jumper JP4 to JP9: Close 1-2 to debug in Spy-Bi-Wire mode Close 2-3 to debug in 4-wire JTAG mode Orient Pin 1 of Device MSP-TS430PM64A www.ti.com Figure B-34. MSP-TS430PM64A Target Socket Module, PCB 80 Hardware SLAU278Q–May 2009–Revised February 2014 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated www.ti.com MSP-TS430PM64A Table B-19. MSP-TS430PM64A Bill of Materials Pos. Ref Des No. per Description DigiKey Part No. Comment Board 1 C1, C2, 0 12pF, SMD0805 DNP 2 C3 0 2.2nF, SMD0805 DNP 3 C6, 1 10uF, 10V, Tantal Size B 511-1463-2-ND 4 C4, C5 2 100nF, SMD0805 478-3351-2-ND 5 D1 1 green LED, SMD0805 P516TR-ND DNP: Headers and receptacles enclosed with kit. 6 J1, J2, J3, J4 0 16-pin header, TH Keep vias free of solder. SAM1029-16-ND : Header SAM1213-16-ND : Receptacle J5, JP3, JP4, 7 JP5, JP6, 8 3-pin header, male, TH SAM1035-03-ND JP7, JP8, JP9 8 JP1, JP2 2 2-pin header, male, TH SAM1035-02-ND Place jumper on header 9 2 Jumper 15-38-1024-ND Place on: J6, J7 10 JTAG 1 14-pin connector, male, TH HRP14H-ND 11 BOOTST 0 10-pin connector, male, TH DNP: Keep vias free of solder Micro Crystal MS1V-T1K DNP: Keep vias free of 12 Q1 0 Crystal 32.768kHz, C(Load) = solder 12.5pF 13 R3, R6 2 330 Ω, SMD0805 541-330ATR-ND R1, R2, R5, 14 R7, R9, R10, 2 0 Ω, SMD0805 541-000ATR-ND DNP: R5, R7, R9, R10, R11, R11, R13, R13, R14 R14 15 R4 1 47k Ω, SMD0805 541-47000ATR-ND 16 U1 1 Socket: IC51-0644-807 Manuf.: Yamaichi 17 PCB 1 78 x 75 mm 4 layers 18 Rubber stand 4 select appropriate Apply to corners at bottom off side 19 MSP430 2 MSP430F4152IPM DNP: Enclosed with kit supplied by TI SLAU278Q–May 2009–Revised February 2014 Hardware 81 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated MSP-TS430RGC64B www.ti.com B.18 MSP-TS430RGC64B Figure B-35. MSP-TS430RGC64B Target Socket Module, Schematic 82 Hardware SLAU278Q–May 2009–Revised February 2014 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated Jumper JP2 Open to disconnect LED Connector J5 External power connector Jumper JP3 to "ext" Jumpers JP5 to JP10 Close 1-2 to debug in Spy-Bi-Wire mode Close 2-3 to debug in 4-wire JTAG mode D1 LED connected to P1.0 If the system should be supplied via LDOI (J6), close JP4 and set JP3 to external Orient Pin 1 of MSP430 device www.ti.com MSP-TS430RGC64B Figure B-36. MSP-TS430RGC64B Target Socket Module, PCB SLAU278Q–May 2009–Revised February 2014 Hardware 83 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated MSP-TS430RGC64B www.ti.com Table B-20. MSP-TS430RGC64B Bill of Materials Pos. Ref Des No. per Description DigiKey Part No. Comment Board 1 C1, C2 0 12pF, SMD0805 DNP 2 C3, C4 0 47pF, SMD0805 DNP 3 C6, C7, C10 3 10uF, 6.3V, SMD0805 C5, C11, 4 C13, C14, 5 100nF, SMD0805 311-1245-2-ND C15 5 C8 1 2.2nF, SMD0805 6 C9 1 470nF, SMD0805 478-1403-2-ND 7 C16 1 4.7uF, SMD0805 8 C17 1 220nF, SMD0805 9 D1 1 green LED, SMD0805 P516TR-ND J1, J2, J3, SAM1029-16-ND DNP: Headers and receptacles 10 J4 0 16-pin header, TH (Header) SAM1213-16- enclosed with kit. Keep vias free of ND (Receptacle) solder: 11 J5 , J6 2 3-pin header, male, TH JP3, JP5, place jumpers on pins 2-3 on JP5, JP6, 12 JP6, JP7, 7 3-pin header, male, TH SAM1035-03-ND JP7, JP8, JP9, JP10 place jumpers on JP8, JP9, pins 1-2 on JP3, JP10 13 JP1, JP2, 3 2-pin header, male, TH SAM1035-02-ND Place jumper on header JP4 14 10 Jumper 15-38-1024-ND See Pos. 12 and Pos. 13 15 JTAG 1 14-pin connector, male, HRP14H-ND TH 16 BOOTST 0 10-pin connector, male, "DNP Keep vias free of solder" TH Micro Crystal MS3V-T1R 17 Q1 0 Crystal 32.768kHz, C(Load) = DNP: Q1 Keep vias free of solder 12.5pF 18 Q2 0 Crystal Q2: 4MHz Buerklin: DNP: Q2 Keep vias free of solder 78D134 Insulating http://www.ettinger.de/Art 19 disk to Q2 0 Insulating disk to Q2 _Detail.cfm?ART_ARTNU M=70.08.121 20 R3, R7 2 330 Ω, SMD0805 541-330ATR-ND R1, R2, R4, 21 R6, R8, 3 0 Ohm, SMD0805 541-000ATR-ND DNP: R6, R8, R9, R10, R11,R12 R9,R10, R11, R12 22 R5 1 47k Ω, SMD0805 541-47000ATR-ND 23 U1 1 Socket: QFN11T064-006- Manuf.: Yamaichi N-HSP 24 PCB 1 85 x 76 mm 2 layers Adhesive Approximately 6mm for example, 3M 25 plastic feet 4 width, 2mm height Bumpons Part No. SJ- Apply to corners at bottom side 5302 26 D3,D4 27 MSP430 2 MSP430F5310 RGC DNP: enclosed with kit, supplied by TI 84 Hardware SLAU278Q–May 2009–Revised February 2014 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated www.ti.com MSP-TS430RGC64C B.19 MSP-TS430RGC64C The MSP-TS430RGC64C target board has been designed with the option to operate with the target device DVIO input voltage supplied via header J6 (see Figure B-37). This development platform does not supply the 1.8-V DVIO rail on board and it MUST be provided by external power supply for proper device operation. For correct JTAG connection, programming, and debug operation, it is important to follow this procedure: 1. Make sure that the VCC and DVIO voltage supplies are OFF and that the power rails are fully discharged to 0 V. 2. Enable the 1.8-V external DVIO power supply. 3. Enable the 1.8-V to 3.6-V VCC power supply (alternatively, this supply can be provided from the MSPFET430UIF JTAG debugger interface). 4. Connect the MSP-FET430UIF JTAG connector to the target board. 5. Start the debug session using IAR or CCS IDE. For more information on debugging the MSP4and MSP430F525x, see the device-specific data sheets (MSP430F522x: SLAS718; MSP430F525x: SLAS903) and Designing with MSP430F522x and MSP430F521x Devices (SLAA558). For debugging of devices (MSP430F524x and MSP430F523x) without use of the DVIO power domain, short JP4 with the jumper. SLAU278Q–May 2009–Revised February 2014 Hardware 85 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated 1.1 MSP-TS430RGC64C TI Friesing Tools MSP430 1 1 12/14/10 S.G. 1 2 3 4 5 6 A B C D A B C D Design: Appr.: Rev.: Comment: Drawing#: Revision: File: Page: Size: Title of Schematic of Mentor Pads Logic V9 Date: Name: 1 2 3 4 5 6 MSP-TS430RGC64C.sch <-- SBW <-- JTAG ext int VCC DVIO Power Circle BSL 1 P6.0/CB0/A0 2 P6.1/CB1/A1 3 P6.2/CB2/A2 4 P6.3/CB3/A3 5 P6.4/CB4/A4 6 P6.5/CB5/A5 7 P6.6/CB6/A6 8 P6.7/CB7/A7 9 P5.0/A8/VEREF+ 10 P5.1/A9/VEREF- 11 AVCC 12 P5.4/XIN 13 P5.5/XOUT 14 AVSS 15 DVCC 16 DVSS 17 VCORE 18 P1.0/TA0CLK/ACLK 19 P1.1/TA0.0 20 P1.2/TA0.1 21 P1.3/TA0.2 22 P1.4/TA0.3 23 P1.5/TA0.4 24 P1.6/TA1CLK/CBOUT 25 P1.7/TA1.0 26 P2.0/TA1.1 27 P2.1/TA1.2 28 P2.2/TA2CLK/SMCLK 29 P2.3/TA2.0 30 P2.4/TA2.1 31 P2.5/TA2.2 32 P2.6/RTCCLK/DMAE0 P2.7/UCB0STE/UCA0CLK 33 P3.0/UCB0SIMO/UCB0SDA 34 P3.1/UCB0SOMI/UCB0SCL 35 P3.2/UCB0CLK/UCA0STE 36 P3.3/UCA0TXD/UCA0SIMO 37 P3.4/UCA0RXD/UCA0SOMI 38 DVSS 39 DVIO 40 P4.0/PM_UCB1STE 41 P4.1/PM_UCB1SIMO 42 P4.2/PM_UCB1SOMI 43 P4.3/PM_UCB1CLK 44 P4.4/PM_UCA1TXD 45 P4.5/PM_UCA1RXD 46 P4.6/PM_NONE 47 P4.7/PM_NONE 48 49 P7.0/TB0.0 50 P7.1/TB0.1 51 P7.2/TB0.2 52 P7.3/TB0.3 53 P7.4/TB0.4 54 P7.5/TB0.5 55 BSLEN 56 RST/NMI 57 P5.2/XT2IN 58 P5.3/XT2OUT 59 TEST/SBWTCK 60 PJ.0/TDO 61 PJ.1/TDI/TCLK 62 PJ.2/TMS 63 PJ.3/TCK 64 RSTDVCC/SBWTDIO 65 THERMAL_1 66 THERMAL_2 67 THERMAL_3 68 THERMAL_4 69 THERMAL_5 70 THERMAL_6 71 THERMAL_7 72 THERMAL_8 U1 MSP430F5229 2 1 4 3 6 5 8 7 10 9 12 11 14 13 JTAG 1 2 3 4 5 6 7 8 9 0 1 BOOTST CN-ML10 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 J1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 J2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 J3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 J4 1 2 3 JP5 PINHEAD_1X3 1 2 3 JP6 PINHEAD_1X3 1 2 3 JP7 PINHEAD_1X3 1 2 3 JP8 PINHEAD_1X3 1 2 3 JP9 PINHEAD_1X3 1 2 3 JP10 PINHEAD_1X3 1 2 3 J5 PINHEAD_1X3 R7 330R 1 2 3 JP3 C10 10uF C14 100nF C5 10uF C6 100nF R1 0R R2 0R R6 0R R8 0R C1 12pF C2 12pF C7 10uF C13 100nF 1 2 JP2 R3 330R 1 2 D1 ??? R4 0R C9 470nF R5 47K C8 2.2nF R11 0R R12 0R C16 4.7uF tbd C3 tbd C4 R9 0R R10 0R C15 100nF 1 2 3 J6 PINHEAD_1X3 1 2 JP4 PINHEAD_1X2 D3 Q2 QUARZ_4PIN 26MHz/ASX53 Q1 1 2 JP1 PINHEAD_1X2 SHC1 SHORTCUT2 GND GND GND GND XTLGND VCORE GND GND DVCC DVCC GND XTLGND2 GND GND DVCC GND RST/NMI TCK TMS TDI TDO RSTDVCC_SBWTDIO TDO RST/NMI TCK C TCK M TMS I TDI O TDO DVCC P1.2/TA0.1 P1.1/TA0.0 TEST/SBWTCK C M I O DVCC P1.1/TA0.0 P1.2/TA0.1 RSTDVCC_SBWTDIO TEST/SBWTCK AVSS MSP-TS430RGC64C www.ti.com Figure B-37. MSP-TS430RGC64C Target Socket Module, Schematic 86 Hardware SLAU278Q–May 2009–Revised February 2014 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated Connector J5 External power connector for DVCC. Set jumper JP3 to "ext". IMPORTANT NOTE: Rev1.0 of the board does not have connection from pin 4 of BOOTST to pin 64 of MCU. To use BSL, these pins should be connected by a wire. Jumper JP2 Open to disconnect LED. D1 LED connected to P1.0 Orient Pin 1 of MSP430 device Jumpers JP5 to JP10 -2 to debug in Spy-Bi-Wire mode. Close 2-3 to debug in 4-wire JTAG mode. Close 1 Jumper JP4 For F524x devices, close. For F522x, F523x and F525x devices, close only if one power supply is used for VCC and DVIO, and if VCC is not higher then 1.98 V. Otherwise. supply DVIO over J6. Do not close if VCC > 1.98 V, as it may damage the chip. Ÿ Ÿ Connector J6 External power connector to supply DVIO www.ti.com MSP-TS430RGC64C Figure B-38. MSP-TS430RGC64C Target Socket Module, PCB SLAU278Q–May 2009–Revised February 2014 Hardware 87 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated MSP-TS430RGC64C www.ti.com Table B-21. MSP-TS430RGC64C Bill of Materials Item Qty Reference Value Description Comment Supplier No. 1 0 C1, C2 12pF CAP, SMD, Ceramic, 0805 DNP C1 C2 2 0 C3, C4 tbd CAP, SMD, Ceramic, 0805 DNP C3 C4 4 3 C5, C7, C10 10uF CAP, SMD, Ceramic, 0805 5 5 C8 C6 C13-15 100nF CAP, SMD, Ceramic, 0805 DigiKey: 311-1245-2-ND 5 5 C8 2.2nF CAP, SMD, Ceramic, 0805 6 1 C9 470nF CAP, SMD, Ceramic, 0805 DigiKey: 478-1403-2-ND 7 1 C16 4.7uF CAP, SMD, Ceramic, 0805 8 1 D1 Green LED LED, SMD, 0805 DNP: headers and receptacles enclosed with 9 4 J1-J4 16-pin header Pin header 1x16: Grid: 100mil kit. Keep vias free of (2.54 mm) solder. : Header SAM1029-16-ND : Receptacle SAM1213-16-ND 10 2 J5, J6 3-pin header, male, TH Pin header 1x3: Grid: 100mil SAM1035-03-ND (2.54 mm) 11 JP5, JP6, JP7, 3-pin header, male, TH Pinheader 1x3: Grid: 100mil place jumpers on pins 2-3 SAM1035-03-ND JP8, JP9, JP10 (2.54 mm) 12 JP3 3-pin header, male, TH Pin header 1x3: Grid: 100mil place jumper on pins 1-2 SAM1035-03-ND (2.54 mm) 13 JP1, JP2, JP4 2-pin header, male, TH Pin header 1x2; Grid: 100mil place jumper on header SAM1035-02-ND (2.54 mm) Place on: JP1, JP2, JP3, 14 10 Jumper JP4, JP5, JP6, JP7, JP8, 15-38-1024-ND JP9, JP10 15 1 JTAG 2x7Pin,Wanne Header, THD, Male 2x7 Pin, HRP14H-ND Wanne, 100mil spacing 16 0 BOOTST 2x5Pin,Wanne Header, THD, Male 2x5 Pin, DNP Wanne, 100mil spacing 17 1 Q1 26MHz/ASX53 CRYSTAL, SMD, 5x3MM, Only Kit. 26MHz 18 0 Q2 26MHz/ASX53 CRYSTAL, SMD, 5x3MM, 300-8219-1-ND 26MHz 19 1 D3 LL103A DIODE, SMD, SOD123, Buerklin: 24S3406 Schottky 20 2 R3, R7 330 Ohm, SMD0805 541-330ATR-ND 21 1 R5 47k Ohm, SMD0805 RES, SMD, 0805, 1/8W, x% 541-47000ATR-ND R1, R2, R4, DNP: R6, R8, R9, R10, 22 R6, R8, R9, 0 Ohm, SMD0805 RES, SMD, 0805, 1/8W, x% R11,R12 541-000ATR-ND R10, R11, R12 23 1 U1 Socket: QFN11T064-006-N- Manuf.: Yamaichi HSP 24 2 MSP430 MSP430F5229IRGCR IC, MCU, SMD, 9.15x9.15mm Thermal Pad with Socket 25 4 Rubber stand Rubber stand off apply to corners at bottom Buerklin: 20H1724 off side 26 1 PCB 84 x 76 mm 84 x 76 mm 88 Hardware SLAU278Q–May 2009–Revised February 2014 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated www.ti.com MSP-TS430RGC64USB B.20 MSP-TS430RGC64USB Due to the use of diodes in the power chain, the voltage on the MSP430F5xx device is approximately 0.3 V lower than is set by the debugging tool. Set the voltage in the IDE to 0.3 V higher than desired; for example, to run the MCU at 3.0 V, set it to 3.3 V. Figure B-39. MSP-TS430RGC64USB Target Socket Module, Schematic SLAU278Q–May 2009–Revised February 2014 Hardware 89 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated MSP-TS430RGC64USB www.ti.com Figure B-40. MSP-TS430RGC64USB Target Socket Module, PCB 90 Hardware SLAU278Q–May 2009–Revised February 2014 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated www.ti.com MSP-TS430RGC64USB Table B-22. MSP-TS430RGC64USB Bill of Materials Pos. Ref Des No. Per Description DigiKey Part No. Comment Board 1 C1, C2 0 12pF, SMD0805 DNP: C1, C2 1.1 C3, C4 2 47pF, SMD0805 2 C6, C7 2 10uF, 6.3V, Tantal Size B 511-1463-2-ND 3 C5, C11, 4 100nF, SMD0805 311-1245-2-ND C13, C14 3.1 C10, C12 0 10uF, SMD0805 DNP: C10, C12 4 C8 1 2.2nF, SMD0805 5 C9 1 470nF, SMD0805 478-1403-2-ND 6 D1 1 green LED, SMD0805 P516TR-ND DNP: headers and receptacles enclosed with kit. 7 J1, J2, J3, J4 4 16-pin header, TH Keep vias free of solder. SAM1029-16-ND : Header SAM1213-16-ND : Receptacle 8 J5 1 3-pin header, male, TH SAM1035-03-ND JP5, JP6, 9 JP7, JP8, 6 3-pin header, male, TH SAM1035-03-ND place jumpers on pins 2-3 JP9, JP10 10 JP1, JP2, 3 2-pin header, male, TH SAM1035-02-ND place jumper on header JP4 11 JP3 1 3-pin header, male, TH SAM1035-03-ND place jumper on pins 1-2 Place on: JP1, JP2, JP3, 12 10 Jumper 15-38-1024-ND JP4, JP5, JP6, JP7, JP8, JP9, JP10 13 JTAG 1 14-pin connector, male, TH HRP14H-ND Q1: Micro Crystal MS1V-T1K DNP: Q1 14 Q1 0 Crystal 32.768kHz, C(Load) = Keep vias free of solder" 12.5pF 15 Q2 1 Crystal Q2: 4MHz Buerklin: 78D134 16 R3, R7 2 330 Ω, SMD0805 541-330ATR-ND R1, R2, R4, 17 R6, R8, R9, 2 0 Ω, SMD0805 541-000ATR-ND DNP: R4, R6, R8, R9, R12 R12 18 R10 1 100 Ω, SMD0805 Buerklin: 07E500 18 R11 1 1M Ω, SMD0805 18 R5 1 47k Ω, SMD0805 541-47000ATR-ND 19 U1 1 Socket: QFN11T064-006 Manuf.: Yamaichi 20 PCB 1 79 x 77 mm 2 layers 21 Rubber stand 4 Buerklin: 20H1724 apply to corners at bottom off side 22 MSP430 2 MSP430F5509 RGC DNP: enclosed with kit. Is supplied by TI Insulating http://www.ettinger.de/Art_De 23 disk to Q2 1 Insulating disk to Q2 tail.cfm?ART_ARTNUM=70.0 8.121 27 C33 1 220n SMD0603 Buerklin: 53D2074 28 C35 1 10p SMD0603 Buerklin: 56D102 29 C36 1 10p SMD0603 Buerklin: 56D102 30 C38 1 220n SMD0603 Buerklin: 53D2074 31 C39 1 4u7 SMD0603 Buerklin: 53D2086 32 C40 1 0.1u SMD0603 Buerklin: 53D2068 33 D2, D3, D4 3 LL103A Buerklin: 24S3406 SLAU278Q–May 2009–Revised February 2014 Hardware 91 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated MSP-TS430RGC64USB www.ti.com Table B-22. MSP-TS430RGC64USB Bill of Materials (continued) Pos. Ref Des No. Per Description DigiKey Part No. Comment Board 34 IC7 1 TPD4E004 Manu: TI 36 LED 0 JP3QE SAM1032-03-ND DNP 37 LED1 0 LEDCHIPLED_0603 FARNELL: 852-9833 DNP 38 LED2 0 LEDCHIPLED_0603 FARNELL: 852-9868 DNP 39 LED3 0 LEDCHIPLED_0603 FARNELL: 852-9841 DNP 40 R13, R15, 0 470R Buerklin: 07E564 DNP R16 41 R33 1 1k4 / 1k5 Buerklin: 07E612 42 R34 1 27R Buerklin: 07E444 43 R35 1 27R Buerklin: 07E444 44 R36 1 33k Buerklin: 07E740 45 S1 0 PB P12225STB-ND DNP 46 S2 0 PB P12225STB-ND DNP 46 S3 1 PB P12225STB-ND 47 USB1 1 USB_RECEPTACLE FARNELL: 117-7885 92 Hardware SLAU278Q–May 2009–Revised February 2014 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated www.ti.com MSP-TS430PN80 B.21 MSP-TS430PN80 NOTE: For MSP430F47x and MSP430FG47x devices: Connect pins 7 and 10 (GND) externally to DVSS (see data sheet). Connect load capacitance on Vref pin 60 when SD16 is used (see data sheet). For use of BSL: connect pin 1 of BOOST to pin 58 of U1 and pin 3 of BOOST to pin 57 of U1. Figure B-41. MSP-TS430PN80 Target Socket Module, Schematic SLAU278Q–May 2009–Revised February 2014 Hardware 93 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated Connector J5 External power connection Remove R8 and jumper R9 LED connected to pin 12 Jumper J6 Open to disconnect LED Orient Pin 1 of MSP430 device MSP-TS430PN80 www.ti.com Figure B-42. MSP-TS430PN80 Target Socket Module, PCB 94 Hardware SLAU278Q–May 2009–Revised February 2014 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated www.ti.com MSP-TS430PN80 Table B-23. MSP-TS430PN80 Bill of Materials Pos. Ref Des No. per Description DigiKey Part No. Comment Board 1 C1, C2 0 12pF, SMD0805 DNP: C1, C2 1.1 C3, C4 0 47pF, SMD0805 DNP: Only recommendation. Check your crystal spec. 2 C6, C7 1 10uF, 10V, Tantal Size B 511-1463-2-ND 3 C5 1 100nF, SMD0805 478-3351-2-ND 4 C8 1 10nF, SMD0805 478-1383-2-ND 5 D1 1 green LED, SMD0603 475-1056-2-ND DNP: Headers and receptacles enclosed with 6 J1, J2, J3, J4 0 25-pin header, TH kit.Keep vias free of solder. SAM1029-20-ND : Header SAM1213-20-ND : Receptacle 7 J5, JP1 2 3-pin header, male, TH SAM1035-03-ND 8 J6, JP2 2 2-pin header, male, TH SAM1035-02-ND Place jumper on header 9 3 Jumper 15-38-1024-ND Place on: J6, JP2, JP1/Pos1- 2 10 JTAG 1 14-pin connector, male, TH HRP14H-ND 11 BOOTST 0 10-pin connector, male, TH DNP: Keep vias free of solder Q1: Micro Crystal MS1V-T1K DNP: Keep vias free of 12 Q1, Q2 0 Crystal 32.768kHz, C(Load) = solder 12.5pF 13 R3 1 560 Ω, SMD0805 541-560ATR-ND R1, R2, R4, DNP: R4, R6, R7, R10, R11, 14 R6, R7, R10, 2 0 Ω, SMD0805 541-000ATR-ND R12 R11, R12 15 R5 1 47k Ω, SMD0805 541-47000ATR-ND 16 U1 1 Socket: IC201-0804-014 Manuf.: Yamaichi 17 PCB 1 77 x 77 mm 2 layers 18 Adhesive 4 ~6mm width, 2mm height for example, 3M Bumpons Apply to corners at bottom Plastic feet Part No. SJ-5302 side 19 MSP430 2 MSP430FG439IPN DNP: Enclosed with kit supplied by TI SLAU278Q–May 2009–Revised February 2014 Hardware 95 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated MSP-TS430PN80A www.ti.com B.22 MSP-TS430PN80A Figure B-43. MSP-TS430PN80A Target Socket Module, Schematic 96 Hardware SLAU278Q–May 2009–Revised February 2014 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated Connector J5 External power connector Jumper JP3 to "ext" Orient Pin 1 of MSP430 device Jumpers JP5 to JP10 Close 1-2 to debug in Spy-Bi-Wire mode Close 2-3 to debug in 4-wire JTAG mode D1 LED connected to P1.0 Jumper JP2 Open to disconnect LED If the system should be supplied via LDOI (J6), close JP4 and set JP3 to external www.ti.com MSP-TS430PN80A Figure B-44. MSP-TS430PN80A Target Socket Module, PCB SLAU278Q–May 2009–Revised February 2014 Hardware 97 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated MSP-TS430PN80A www.ti.com Table B-24. MSP-TS430PN80A Bill of Materials Position Ref Des No. per Description DigiKey Part No. Comment Board 1 C1, C2 0 12pF, SMD0805 DNP 2 C3, C4 0 47pF, SMD0805 DNP 3 C6, C7, 3 10uF, 6.3V, SMD0805 DNP C10 C10, C12 C5, C11, 4 C13, C14, 5 100nF, SMD0805 311-1245-2-ND C15 5 C8 1 2.2nF, SMD0805 6 C9 1 470nF, SMD0805 478-1403-2-ND 7 C16 1 4.7uF, SMD0805 8 C17 1 220nF, SMD0805 9 D1 1 green LED, SMD0805 P516TR-ND J1, J2, J3, SAM1029-20-ND DNP: Headers and receptacles 10 J4 0 20-pin header, TH (Header) SAM1213-20- enclosed with kit. Keep vias free of ND (Receptacle) solder: 11 J5 , J6 2 3-pin header, male, TH JP3, JP5, place jumpers on pins 2-3 on JP5, 12 JP6, JP7, 7 3-pin header, male, TH SAM1035-03-ND JP6, JP7, JP8, JP9, JP10 place JP8, JP9, jumpers on pins 1-2 on JP3, JP10 13 JP1, JP2, 3 2-pin header, male, TH SAM1035-02-ND Place jumper on header JP4 14 10 Jumper 15-38-1024-ND See Pos. 12 and Pos. 13 15 JTAG 1 14-pin connector, male, HRP14H-ND TH 16 BOOTST 0 10-pin connector, male, "DNP Keep vias free of solder" TH Micro Crystal MS3V-T1R 17 Q1 0 Crystal 32.768kHz, C(Load) = DNP: Q1 Keep vias free of solder 12.5pF 18 Q2 0 Crystal Q2: 4MHz Buerklin: DNP: Q2 Keep vias free of solder 78D134 Insulating http://www.ettinger.de/Ar 19 disk to Q2 0 Insulating disk to Q2 t_Detail.cfm?ART_ART NUM=70.08.121 20 D3,D4 2 LL103A Buerklin: 24S3406 21 R3, R7 2 330 Ω, SMD0805 541-330ATR-ND R1, R2, R4, R6, 22 R8, 3 0 Ohm, SMD0805 541-000ATR-ND DNP: R6, R8, R9, R10, R11,R12 R9,R10, R11, R12 23 R5 1 47k Ω, SMD0805 541-47000ATR-ND 24 U1 1 Socket:IC201-0804-014 Manuf.: Yamaichi 25 PCB 1 77 x 91 mm 2 layers Adhesive Approximately 6mm for example, 3M 26 plastic feet 4 width, 2mm height Bumpons Part No. SJ- Apply to corners at bottom side 5302 27 MSP430 2 MSP430F5329IPN DNP: enclosed with kit, supplied by TI 98 Hardware SLAU278Q–May 2009–Revised February 2014 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated www.ti.com MSP-TS430PN80USB B.23 MSP-TS430PN80USB Due to the use of diodes in the power chain, the voltage on the MSP430F5xx device is approximately 0.3 V lower than is set by the debugging tool. Set the voltage in the IDE to 0.3 V higher than desired; for example, to run the MCU at 3.0 V, set it to 3.3 V. NOTE: R11 should be populated. Figure B-45. MSP-TS430PN80USB Target Socket Module, Schematic SLAU278Q–May 2009–Revised February 2014 Hardware 99 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated Jumper JP3 1-2 (int): Power supply via JTAG debug interface 2-3 (ext): External power supply Connector J5 External power connector Jumper JP3 to ‘ext’ USB Connector BSL invoke button S3 Jumper JP4 Close for USB bus powered device Jumper JP2 Open to disconnect LED LED connected to P1.0 Jumper JP1 Open to measure current Jumper JP5 to JP10 Close 1-2 to debug in Spy-Bi- Wire mode. Close 2-3 to debug in 4-wire JTAG mode. MSP-TS430PN80USB www.ti.com Figure B-46. MSP-TS430PN80USB Target Socket Module, PCB 100 Hardware SLAU278Q–May 2009–Revised February 2014 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated www.ti.com MSP-TS430PN80USB Table B-25. MSP-TS430PN80USB Bill of Materials Pos. Ref Des No. per Description DigiKey Part No. Comment Board 1 C1, C2 0 12pF, SMD0805 DNP: C1, C2 1.1 C3, C4 2 47pF, SMD0805 2 C6, C7 2 10uF, 6.3V, Tantal Size B 511-1463-2-ND 3 C5, C11, 4 100nF, SMD0805 311-1245-2-ND C13, C14 3.1 C10, C12 0 10uF, SMD0805 311-1245-2-ND DNP: C10, C12 4 C8 1 2.2nF, SMD0805 5 C9 1 470nF, SMD0805 478-1403-2-ND 6 D1 1 green LED, SMD0805 P516TR-ND DNP: headers and 7 J1, J2, J3, 4 20-pin header, TH SAM1029-20-ND receptacles enclosed with J4 kit. Keep vias free of solder. DNP: headers and receptacles enclosed with kit. Keep vias free of 7.1 4 20-pin header, TH solder. SAM1213-20-ND : Header : Receptacle 8 J5 1 3-pin header, male, TH SAM1035-03-ND JP5, JP6, 9 JP7, 6 3-pin header, male, TH SAM1035-03-ND Place jumpers on pins 2-3 JP8,JP9, JP10 10 JP1, JP2 2 2-pin header, male, TH SAM1035-02-ND Place jumper on header JP4 1 SAM1035-02-ND Place jumper only on one pin 11 JP3 1 3-pin header, male, TH SAM1035-03-ND Place jumper on pins 1-2 Place on: JP1, JP2, JP3, 12 10 Jumper 15-38-1024-ND JP4, JP5, JP6, JP7, JP8, JP9, JP10 13 JTAG 1 14-pin connector, male, TH HRP14H-ND Micro Crystal MS1V-T1K DNP: Q1 Keep vias free of 14 Q1 0 Crystal 32.768kHz, C(Load) = solder 12.5pF 15 Q2 1 Crystal "Q2: 4MHzBuerklin: 78D134" 16 R3, R7 2 330 Ω, SMD0805 541-330ATR-ND R1, R2, R4, 17 R6, R8, R9, 2 0 Ω, SMD0805 541-000ATR-ND DNP: R4, R6, R8, R9, R12 R12 18 R10 1 100 Ω, SMD0805 Buerklin: 07E500 18 R11 0 1M Ω, SMD0805 DNP 18 R5 1 47k Ω, SMD0805 541-47000ATR-ND 19 U1 1 Socket:IC201-0804-014 Manuf.: Yamaichi 20 PCB 1 79 x 77 mm 2 layers 21 Rubber 4 Buerklin: 20H1724 Apply to corners at bottom standoff side 22 MSP430 2 MSP430F5529 DNP: Enclosed with kit supplied by TI Insulating http://www.ettinger.de/Art_ 23 disk to Q2 1 Insulating disk to Q2 Detail.cfm?ART_ARTNUM =70.08.121 27 C33 1 220n Buerklin: 53D2074 SLAU278Q–May 2009–Revised February 2014 Hardware 101 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated MSP-TS430PN80USB www.ti.com Table B-25. MSP-TS430PN80USB Bill of Materials (continued) Pos. Ref Des No. per Description DigiKey Part No. Comment Board 28 C35 1 10p Buerklin: 56D102 29 C36 1 10p Buerklin: 56D102 30 C38 1 220n Buerklin: 53D2074 31 C39 1 4u7 Buerklin: 53D2086 32 C40 1 0.1u Buerklin: 53D2068 33 D2, D3, D4 3 LL103A Buerklin: 24S3406 34 IC7 1 TPD4E004 Manu: TI 36 LED 0 JP3QE SAM1032-03-ND DNP 37 LED1 0 LEDCHIPLED_0603 FARNELL: 852-9833 DNP 38 LED2 0 LEDCHIPLED_0603 FARNELL: 852-9868 DNP 39 LED3 0 LEDCHIPLED_0603 FARNELL: 852-9841 DNP 40 R13, R15, 0 470R Buerklin: 07E564 DNP R16 41 R33 1 1k4 Buerklin: 07E612 42 R34 1 27R Buerklin: 07E444 43 R35 1 27R Buerklin: 07E444 44 R36 1 33k Buerklin: 07E740 45 S1 0 PB P12225STB-ND DNP 46 S2 0 PB P12225STB-ND DNP 46 S3 1 PB P12225STB-ND 47 USB1 1 USB_RECEPTACLE FARNELL: 117-7885 102 Hardware SLAU278Q–May 2009–Revised February 2014 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated www.ti.com MSP-TS430PZ100 B.24 MSP-TS430PZ100 NOTE: Connections between the JTAG header and pins XOUT and XIN are no longer required and should not be made. Figure B-47. MSP-TS430PZ100 Target Socket Module, Schematic SLAU278Q–May 2009–Revised February 2014 Hardware 103 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated Connector J5 External power connection Remove R8 and jumper R9 LED connected to pin 12 Jumper J6 Open to disconnect LED Orient Pin 1 of MSP430 device Jumper J7 Open to measure current MSP-TS430PZ100 www.ti.com Figure B-48. MSP-TS430PZ100 Target Socket Module, PCB 104 Hardware SLAU278Q–May 2009–Revised February 2014 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated www.ti.com MSP-TS430PZ100 Table B-26. MSP-TS430PZ100 Bill of Materials Pos. Ref Des No. per Description DigiKey Part No. Comment Board 1 C1, C2 0 12pF, SMD0805 DNP DNP: Only 1b C3, C4 0 47pF, SMD0805 recommendation. Check your crystal spec. 2 C6, C7 1 10uF, 10V, Tantal Size B 511-1463-2-ND DNP: C6 3 C5 1 100nF, SMD0805 478-3351-2-ND 4 C8 1 10nF, SMD0805 478-1383-2-ND 5 C9 1 470nF, SMD0805 478-1403-2-ND 6 D1 1 yellow LED, TH, 3mm, T1 511-1251-ND DNP: Headers and receptacles enclosed with 7 J1, J2, J3, 0 25-pin header, TH kit.Keep vias free of solder. J4 SAM1029-25-ND : Header SAM1213-25-ND : Receptacle 8 J5 1 3-pin header, male, TH SAM1035-03-ND 9 J6, J7 2 2-pin header, male, TH SAM1035-02-ND place jumper on header 10 2 Jumper 15-38-1024-ND Place on: J6, J7 11 JTAG 1 14-pin connector, male, TH HRP14H-ND 12 BOOTST 0 10-pin connector, male, TH DNP: Keep vias free of solder Q1: Micro Crystal MS1V- DNP: Keep vias free of 13 Q1, Q2 0 Crystal T1K 32.768kHz, C(Load) = solder 12.5pF 14 R3 1 330 Ω, SMD0805 541-330ATR-ND R1, R2, R4, 15 R8, R9, R10, 3 0 Ω, SMD0805 541-000ATR-ND DNP: R4, R9, R10, R12 R11, R12 16 R5 1 47k Ω, SMD0805 541-47000ATR-ND 17 U1 1 Socket: IC201-1004-008 or Manuf.: Yamaichi IC357-1004-53N 18 PCB 1 82 x 90 mm 2 layers 19 Adhesive 4 ~6mm width, 2mm height for example, 3M Bumpons Apply to corners at bottom Plastic feet Part No. SJ-5302 side 20 MSP430 2 MSP430FG4619IPZ DNP: enclosed with kit supplied by TI SLAU278Q–May 2009–Revised February 2014 Hardware 105 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated MSP-TS430PZ100A www.ti.com B.25 MSP-TS430PZ100A Figure B-49. MSP-TS430PZ100A Target Socket Module, Schematic 106 Hardware SLAU278Q–May 2009–Revised February 2014 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated Jumper JP1 Open to measure current Jumper JP2 Open to disconnect LED LED D1 connected to P5.1 Jumper JP3 1-2 (int): Power supply via JTAG interface 2-3 (ext): External Power Supply Orient Pin 1 of Device www.ti.com MSP-TS430PZ100A Figure B-50. MSP-TS430PZ100A Target Socket Module, PCB SLAU278Q–May 2009–Revised February 2014 Hardware 107 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated MSP-TS430PZ100A www.ti.com Table B-27. MSP-TS430PZ100A Bill of Materials Pos. Ref Des No. per Description DigiKey Part No. Comment Board 1 C1, C2 0 12pF, SMD0805 DNP DNP: Only 1b C3, C4 0 47pF, SMD0805 recommendation. Check your crystal spec. 2 C7, C9 2 10uF, 10V, Tantal Size B 511-1463-2-ND 3 C5, C11, 3 100nF, SMD0805 311-1245-2-ND C14 4 C8 1 10nF, SMD0805 478-1358-1-ND 5 C6 0 470nF, SMD0805 478-1403-2-ND DNP 6 D1 1 green LED, SMD0805 67-1553-1-ND DNP: Headers and receptacles enclosed with 7 J1, J2, J3, 0 25-pin header, TH kit.Keep vias free of solder. J4 SAM1029-25-ND : Header SAM1213-25-ND : Receptacle 8 J5 1 3-pin header, male, TH SAM1035-03-ND 10 JP1, JP2 2 2-pin header, male, TH SAM1035-02-ND pPlace jumper on header 11 JP3 1 3-pin header, male, TH SAM1035-03-ND Place jumper on pins 1-2 12 3 Jumper 15-38-1024-ND Place on: JP1, JP2, JP3 13 JTAG 1 14-pin connector, male, TH HRP14H-ND 14 BOOTST 0 10-pin connector, male, TH DNP: Keep vias free of solder Q1: Micro Crystal MS1V- DNP: Keep vias free of 15 Q1, Q2 0 Crystal T1K 32.768kHz, C(Load) = solder 12.5pF 16 R3 1 330 Ω, SMD0805 541-330ATR-ND R1, R2, R4, 17 R6, R7, R8, 2 0 Ω, SMD0805 541-000ATR-ND DNP: R4, R6, R7, R8, R9, R9, R10, R10, R11, R12 R11, R12 18 R5 1 47k Ω, SMD0805 541-47000ATR-ND 19 U1 1 Socket: IC357-1004-53N Manuf.: Yamaichi 20 PCB 1 90 x 82 mm 4 layers 21 Rubber 4 Select appropriate Apply to corners at bottom standoff side 22 MSP430 2 MSP430F5438IPZ DNP: Enclosed with kit supplied by TI 108 Hardware SLAU278Q–May 2009–Revised February 2014 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated www.ti.com MSP-TS430PZ100B B.26 MSP-TS430PZ100B Figure B-51. MSP-TS430PZ100B Target Socket Module, Schematic SLAU278Q–May 2009–Revised February 2014 Hardware 109 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated Connector J5 External power connector Jumper JP1 to "ext" Jumper JP1 Open to measure current Orient Pin 1 of MSP430 device Jumpers JP5 to JP10 Close 1-2 to debug in Spy-Bi-Wire mode Close 2-3 to debug in 4-wire JTAG mode JP11, JP12, JP13 Connect 1-2 to connect AUXVCCx with DVCC or drive AUXVCCx externally D1 LED connected to P1.0 Jumper JP2 Open to disconnect LED MSP-TS430PZ100B www.ti.com Figure B-52. MSP-TS430PZ100B Target Socket Module, PCB 110 Hardware SLAU278Q–May 2009–Revised February 2014 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated www.ti.com MSP-TS430PZ100B Table B-28. MSP-TS430PZ100B Bill of Materials Position Ref Des No. per Description DigiKey Part No. Comment Board 1 C1, C2 0 12pF, SMD0805 DNP C4, C5, 2 C6 , C7, 6 100nF, SMD0805 311-1245-2-ND C8, C9 3 C10, C26 2 470 nF, SMD0805 478-1403-2-ND 4 C11, C12 1 10 uF / 6.3 V SMD0805 C12 DNP C13, C14, 5 C16, C18, 6 4.7 uF SMD0805 C19, C29 6 D1 1 green LED, SMD0805 P516TR-ND J1, J2, J3, SAM1029-25-ND DNP: Headers and receptacles 7 J4 0 25-pin header, TH (Header) SAM1213-25- enclosed with kit. Keep vias free of ND (Receptacle) solder: 8 J5 1 3-pin header, male, TH JP3, JP5, place jumpers on pins 2-3 on JP5, 9 JP6, JP7, 7 3-pin header, male, TH SAM1035-03-ND JP6, JP7, JP8, JP9, JP10 place JP8, JP9, jumpers on pins 1-2 on JP3, JP10 10 JP1, JP2, 3 2-pin header, male, TH SAM1035-02-ND Place jumper on header JP4 11 JP11, 3 4-pin header, male, TH place jumper on header 1-2 JP12, JP13 12 13 Jumper 15-38-1024-ND See Pos. 9 and Pos. 10 and Pos. 11 15 JTAG 1 14-pin connector, male, HRP14H-ND TH 16 BOOTST 0 10-pin connector, male, "DNP Keep vias free of solder" TH 17 Q1 0 Crystal DNP: Q1 Keep vias free of solder 21 R3, R7 2 330 Ω, SMD0805 541-330ATR-ND R1, R2, 22 R4, R6, 2 0 Ohm, SMD0805 541-000ATR-ND DNP: R4, R6, R8, R10, R11 R8, R10, R11 23 R5 1 47k Ω, SMD0805 541-47000ATR-ND 24 U1 1 Socket: IC357-1004-53N Manuf.: Yamaichi 25 PCB 1 90 x 82 mm 2 layers Adhesive Approximately 6mm for example, 3M 26 plastic feet 4 width, 2mm height Bumpons Part No. SJ- Apply to corners at bottom side 5302 27 MSP430 2 MSP430F6733IPZ DNP: enclosed with kit, supplied by TI SLAU278Q–May 2009–Revised February 2014 Hardware 111 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated DNP DNP DNP DNP DNP DNP 0R 12pF 12pF 47pF 47pF GND 0R 100nF 330R 10uF/6.3V 10uF/6.3V 2.2nF PWR3 GND GND GND 0R GND 330R 47K 100nF 100nF P516TR-ND 470nF 100nF 100nF 0R 0R 0R 0R GND VCC 100nF GND 100nF 100nF GND 100nF LL103A GND 4.7n HCTC_XTL_4 HCTC_XTL_4 HCTC_XTL_4 HCTC_XTL_4 GND 0R 0R GND GND GND 4.7uF GND 100nF 220nF GND VCC LL103A 1.1 MSP430: Target-Socket MSP-TS430PZ100C Socket: Yamaichi IC201-1004-008 LFXTCLK <- SBW <- JTAG Vcc int ext DNP DNP DNP DNP DNP DNP BSL-Rx BSL-Tx DNP 1 3 5 7 9 11 13 2 4 6 12 14 8 10 JTAG R2 C2 C1 C3 C4 C5 R1 R3 C6 C7 C8 1 2 3 J5 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 64 63 62 61 44 43 42 41 37 38 39 40 17 18 19 20 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 U1 QFP100PZ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 J1 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 J2 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 J3 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 J4 1 JP1 2 1 JP2 2 R4 1 2 3 JP5 1 2 3 JP6 1 2 3 JP7 1 2 3 JP8 1 2 3 JP9 1 2 3 R7 JP10 R5 C11 C12 D1 C9 C13 C10 R6 R8 R9 R12 1 2 3 JP3 C17 C18 C19 C14 D3 C16 1 2 3 JP11 4 1 2 Q1G$1 3 4 Q1G$2 2 1 Q2G$1 4 3 Q2G$2 1 2 3 4 5 6 7 8 9 10 BOOTST R10 R11 C15 C20 C21 1 JP4 2 D4 1 2 3 J6 TMS TMS TDI TDI TDO TDO TDO XOUT VCC GND GND GND XIN P1.0 DVCC1 DVCC1 DVCC1 DVCC1 DVCC1 DVCC1 AVCC XT2OUT AVSS AVSS AVSS M M I I O O XT2IN RST/NMI RST/NMI TCK TCK TCK C C TEST/SBWTCK TEST/SBWTCK TEST/SBWTCK RST RST RST XTLGND2 XTLGND1 PU.0 PU.1 P1.6 P1.7 P8.0 P8.1 P8.2 VBAK VBAT VBAT VBAT P1.1 P1.1 P1.2 P1.2 LDOI LDOI LDOO LDOO BSL Interface LDOI/LDOO Interface + + Note: If the system should be supplied via LDOI (J6) close JP4 and set JP3 to external MSP-TS430PZ100C www.ti.com B.27 MSP-TS430PZ100C Figure B-53. MSP-TS430PZ100C Target Socket Module, Schematic 112 Hardware SLAU278Q–May 2009–Revised February 2014 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated Connector J5 External power connector Jumper JP3 to "ext" If the system should be supplied via LDOI (J6), close JP4 and set JP3 to external Jumper JP2 Open to disconnect LED D1 LED connected to P1.0 Orient Pin 1 of MSP430 device Jumpers JP5 to JP10 Close 1-2 to debug in Spy-Bi-Wire mode Close 2-3 to debug in 4-wire JTAG mode LDOI/LDOO 14 1 2 GND GND VCC 1 5 10 1 5 2 25 0 26 30 3540 45 50 75 70 65 60 55 51 100 95 90 85 80 76 1 2 3 123 123 123 123 123 3 2 1 1 2 3 4 10 1 2 1 2 3 1 SBW JTAG Vcc int ext GND VBAT DVCC JTAG R2 C2 C1 C3 C4 R1 C5 R3 + C6 + C7 C8 J5 U1 J1 J2 J3 J4 JP1 JP2 R4 JP5 JP6 JP7 JP8 JP9 JP10 R7 R5 C11 C12 D1 C9 C13 C10 R6 R8 R9 R12 JP3 C17 C18 C19 C14 D3 C16 JP11 Q1 Q2 BOOTST R10 R11 C15 C20 C21 JP4 D4 J6 www.ti.com MSP-TS430PZ100C Figure B-54. MSP-TS430PZ100C Target Socket Module, PCB SLAU278Q–May 2009–Revised February 2014 Hardware 113 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated MSP-TS430PZ100C www.ti.com Table B-29. MSP-TS430PZ100C Bill of Materials Number Pos. Ref Des Per Description Digi-Key Part No. Comment Board 1 C1, C2 0 12pF, SMD0805 DNP: C1, C2 1.1 C3, C4 2 47pF, SMD0805 DNP: C3, C4 2 C6, C7 2 10uF, 6.3V, Tantal Size B 511-1463-2-ND C5, C11, 3 C13, C14, 6 100nF, SMD0805 311-1245-2-ND C19, C20 3.1 C10, C12, 0 100nF, SMD0805 311-1245-2-ND DNP: C10, C12,C18, C17 C18,17 4 C8 1 2.2nF, SMD0805 Buerklin 53 D 292 5 C9 1 470nF, SMD0805 478-1403-2-ND 6 D1 1 green LED, SMD0805 P516TR-ND J1, J2, J3, DNP: headers and receptacles enclosed 7 J4 4 25-pin header, TH SAM1029-25-ND with kit. Keep vias free of solder. DNP: headers and receptacles enclosed 7.1 4 25-pin header, TH SAM1213-25-ND with kit. Keep vias free of solder. 8 J5, J6 2 3-pin header, male, TH SAM1035-03-ND JP5, JP6, 9 JP7, 6 3-pin header, male, TH SAM1035-03-ND place jumpers on pins 2-3 JP8,JP9, JP10 10 JP1, JP2 2 2-pin header, male, TH SAM1035-02-ND place jumper on header 10.1 JP4 1 2-pin header, male, TH SAM1035-02-ND place jumper on header 11 JP3 1 3-pin header, male, TH SAM1035-03-ND place jumper on pins 1-2 12 10 Jumper 15-38-1024-ND Place on: JP1, JP2, JP3, JP4, JP5, JP6, JP7, JP8, JP9, JP10 13 JTAG 1 14-pin connector, male, TH HRP14H-ND 14 BOOTST 1 10-pin connector, male, TH HRP10H-ND DNP, keep vias free of solder 15 Q1 0 Crystal DNP: Q1 Keep vias free of solder 16 Q2 1 Crystal DNP: Q2 Keep vias free of solder 17 R3, R7 2 330 Ohm, SMD0805 541-330ATR-ND R1, R2, R4, 18 R6, R8, R9, 3 0 Ohm, SMD0805 541-000ATR-ND DNP: R6, R8, R9, R10, R11, R12 R10, R11, R12 19 R5 1 47k Ohm, SMD0805 541-47000ATR-ND 20 U1 1 Socket: IC357-1004-53N Manuf.: Yamaichi 21 PCB 1 79.5 x 99.5 mm MSP-TS430PZ100C 2 layers Rev 1.0 22 Rubber 4 Buerklin: 20H1724 apply to corners at bottom side stand off 23 MSP430 2 MSP430F643x DNP: enclosed with kit. Is supplied by TI. 24 C16 1 4.7 nF SMD0603 Buerklin 53 D 2042 26 D3, D4 2 LL103A Buerklin: 24S3406 27 JP11 1 4-pin header, male, TH SAM1035-04-ND Place jumper on Pin 1 and Pin 2 28 C15 1 4.7 uF, SMD0805 Buerklin 53 D 2430 29 C21 1 220nF, SMD0805 Buerklin 53 D 2381 114 Hardware SLAU278Q–May 2009–Revised February 2014 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated www.ti.com MSP-TS430PZ5x100 B.28 MSP-TS430PZ5x100 Figure B-55. MSP-TS430PZ5x100 Target Socket Module, Schematic SLAU278Q–May 2009–Revised February 2014 Hardware 115 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated Connector J5 External power connector Jumper J3 to ‘ext’ Jumper JP1 Open to measure current Jumpers JP5 to JP10 Close 1-2 to debug in Spy-Bi-Wire mode. Close 2-3 to debug in 4-wire JTAG mode. Jumper JP2 Open to disconnect LED LED connected to P1.0 Jumper JP3 1-2 (int): Power supply via JTAG debug interface 2-3 (ext): External power supply MSP-TS430PZ5x100 www.ti.com Figure B-56. MSP-TS430PZ5x100 Target Socket Module, PCB 116 Hardware SLAU278Q–May 2009–Revised February 2014 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated www.ti.com MSP-TS430PZ5x100 Table B-30. MSP-TS430PZ5x100 Bill of Materials Pos. Ref Des No. Per Description DigiKey Part No. Comment Board 1 C1, C2 0 12pF, SMD0805 DNP 1b C3, C4 47pF, SMD0805 DNP: Only recommendation. Check your crystal spec. 2 C6, C7 2 10uF, 10V, Tantal Size B 511-1463-2-ND C5, C10, 3 C11, C12, 4 100nF, SMD0805 311-1245-2-ND DNP: C12, C14 C13, C14 4 C8 0 2.2nF, SMD0805 DNP 5 C9 1 470nF, SMD0805 478-1403-2-ND 6 D1 1 green LED, SMD0805 67-1553-1-ND DNP: headers and receptacles enclosed with kit. 7 J1, J2, J3, J4 0 25-pin header, TH Keep vias free of solder. SAM1029-25-ND : Header SAM1213-25-ND : Receptacle 8 J5 1 3-pin header, male, TH SAM1035-03-ND JP5, JP6, 9 JP7, JP8, 6 3-pin header, male, TH SAM1035-03-ND Place jumpers on pins 2-3 JP9, JP10 10 JP1, JP2 2 2-pin header, male, TH SAM1035-02-ND Place jumper on header 11 JP3 1 3-pin header, male, TH SAM1035-03-ND Place jumper on pins 1-2 12 9 Jumper 15-38-1024-ND Place on JP1, JP2, JP3, JP5, JP6, JP7, JP8, JP9, JP10 13 JTAG 1 14-pin connector, male, TH HRP14H-ND 14 BOOTST 0 10-pin connector, male, TH DNP: Keep vias free of solder Q1: Micro Crystal MS1V-T1K DNP: Keep vias free of 15 Q1, Q2 0 Crystal 32.768kHz, C(Load) = solder 12.5pF 16 R3, R7 2 330 Ω, SMD0805 541-330ATR-ND R1, R2, R4, 17 R6, R8, R9, 3 0 Ω, SMD0805 541-000ATR-ND DNP: R6, R8, R9, R10, R11, R10, R11, R12 R12 18 R5 1 47k Ω, SMD0805 541-47000ATR-ND 19 U1 1 Socket: IC357-1004-53N Manuf.: Yamaichi 20 PCB 1 90 x 82 mm 2 layers 21 Rubber 4 Select appropriate Apply to corners at bottom standoff side 22 MSP430 2 MSP430F5438IPZ DNP: Enclosed with kit supplied by TI SLAU278Q–May 2009–Revised February 2014 Hardware 117 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated MSP-TS430PZ100USB www.ti.com B.29 MSP-TS430PZ100USB Due to the use of diodes in the power chain, the voltage on the MSP430F5xx device is approximately 0.3 V lower than is set by the debugging tool. Set the voltage in the IDE to 0.3 V higher than desired; for example, to run the MCU at 3.0 V, set it to 3.3 V. Figure B-57. MSP-TS430PZ100USB Target Socket Module, Schematic 118 Hardware SLAU278Q–May 2009–Revised February 2014 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated www.ti.com MSP-TS430PZ100USB Figure B-58. MSP-TS430PZ100USB Target Socket Module, PCB SLAU278Q–May 2009–Revised February 2014 Hardware 119 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated MSP-TS430PZ100USB www.ti.com Table B-31. MSP-TS430PZ100USB Bill of Materials Pos. Ref Des No. Per Description DigiKey Part No. Comment Board 1 C1, C2 0 12pF, SMD0805 DNP: C1, C2 1.1 C3, C4 2 47pF, SMD0805 2 C6, C7 2 10uF, 6.3V, Tantal Size B 511-1463-2-ND C5, C11, 3 C13, C14, 5 100nF, SMD0805 311-1245-2-ND C19 3.1 C10, C12, 0 100nF, SMD0805 311-1245-2-ND DNP: C10, C12,C18, C17 C18, C17 4 C8 1 2.2nF, SMD0805 5 C9 1 470nF, SMD0805 478-1403-2-ND 6 D1 1 green LED, SMD0805 P516TR-ND DNP: headers and receptacles enclosed with kit. 7 J1, J2, J3, J4 4 25-pin header, TH SAM1029-25-ND Keep vias free of solder. : Header : Receptacle DNP: headers and receptacles enclosed with kit. 7.1 4 25-pin header, TH SAM1213-25-ND Keep vias free of solder. : Header : Receptacle 8 J5 1 3-pin header, male, TH SAM1035-03-ND JP5, JP6, 9 JP7, JP8, 6 3-pin header, male, TH SAM1035-03-ND place jumpers on pins 2-3 JP9, JP10 10 JP1, JP2, 3 2-pin header, male, TH SAM1035-02-ND place jumper on header JP4 11 JP3 1 3-pin header, male, TH SAM1035-03-ND place jumper on pins 1-2 Place on: JP1, JP2, JP3, 12 10 Jumper 15-38-1024-ND JP4, JP5, JP6, JP7, JP8, JP9, JP10 13 JTAG 1 14-pin connector, male, TH HRP14H-ND Micro Crystal MS1V-T1K DNP: Q1. Keep vias free of 14 Q1 0 Crystal 32.768kHz, C(Load) = solder 12.5pF 15 Q2 1 Crystal Q2: 4MHz, Buerklin: 78D134 16 R3, R7 2 330 Ω, SMD0805 541-330ATR-ND R1, R2, R4, 17 R6, R8, R9, 3 0 Ω, SMD0805 541-000ATR-ND DNP: R6, R8, R9, R12 R12 18 R10 1 100 Ω, SMD0805 Buerklin: 07E500 18 R11 1 1M Ω, SMD0603 not existing in Rev 1.0 18 R5 1 47k Ω, SMD0805 541-47000ATR-ND 19 U1 1 Socket:IC201-1004-008 Manuf.: Yamaichi 20 PCB 1 79 x 77 mm 2 layers 21 Rubber stand 4 Buerklin: 20H1724 apply to corners at bottom off side 22 MSP430 2 MSP430F5529 DNP: enclosed with kit. Is supplied by TI Insulating http://www.ettinger.de/Art_De 23 disk to Q2 1 Insulating disk to Q2 tail.cfm?ART_ARTNUM=70.0 8.121 24 C16 1 4.7 nF SMD0603 27 C33 1 220n SMD0603 Buerklin: 53D2074 28 C35, C36 2 10p SMD0603 Buerklin: 56D102 120 Hardware SLAU278Q–May 2009–Revised February 2014 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated www.ti.com MSP-TS430PZ100USB Table B-31. MSP-TS430PZ100USB Bill of Materials (continued) Pos. Ref Des No. Per Description DigiKey Part No. Comment Board 30 C38 1 220n SMD0603 Buerklin: 53D2074 31 C39 1 4u7 SMD0603 Buerklin: 53D2086 32 C40 1 0.1u SMD0603 Buerklin: 53D2068 33 D2, D3, D4 3 LL103A Buerklin: 24S3406 34 IC7 1 TPD4E004 Manu: TI 35 LED 0 JP3QE SAM1032-03-ND DNP 36 LED1, LED2, 0 LEDCHIPLED_0603 FARNELL: 852-9833 DNP LED3 37 R13, R15, 0 470R SMD0603 Buerklin: 07E564 DNP R16 38 R33 1 1k4 / 1k5 SMD0603 Buerklin: 07E612 39 R34 1 27R SMD0603 Buerklin: 07E444 40 R35 1 27R SMD0603 Buerklin: 07E444 41 R36 1 33k SMD0603 Buerklin: 07E740 42 S1, S2, S3 1 PB P12225STB-ND DNP S1 and S2. (Only S3) 43 USB1 1 USB_RECEPTACLE FARNELL: 117-7885 44 JP11 1 4-pin header, male, TH SAM1035-04-ND place jumper only on Pin 1 SLAU278Q–May 2009–Revised February 2014 Hardware 121 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated 0R 12pF 12pF GND GND 0R 100nF 330R 2.2nF 0R 0R PWR3 GND 330R 47K 0R 0R 100nF 4.7uF GND GND 100nF 470nF 0R QUARZ5 100nF 10uF/6,3V 10uF/6,3V 100nF 4.7uF 4.7uF 100nF 4.7uF 4.7uF 4.7uF 470nF FE04-1 VCC GND GND 100nF 4.7uF GND GND GND GND GND VCC1 VCC1 VCC1 VCC1 VCC1 GND GND GND GND GND GND AVSS AVSS DVCC AVCC GND VCC VCC GND MSP430: Target-Socket MSP-TS430PEU128 for F6779 Petersen 1080/1/001/01.1 DNP LFXTCLK DNP <- SBW <- JTAG DNP Vcc int ext DNP DNP DNP DNP DNP DNP DNP DVDSYS 1.1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 J1 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 J2 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 J3 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 J4 1 3 5 7 9 11 13 2 4 6 12 14 8 10 JTAG R2 C2 C1 R1 C5 R3 1 2 3 4 5 6 7 8 9 10 BOOTST C3 R10 R11 J5 1 2 3 1 2 JP1 JP2 1 2 1 2 3 JP5 1 2 3 JP6 1 2 3 JP7 1 2 3 JP8 1 2 3 JP9 1 2 3 JP10 R7 R5 D1 R6 R8 C6 C29 C7 C10 R4 Q1 JP12 1 2 3 4 1 2 3 4 JP11 JP131 2 3 4 C4 C11 C12 C8 C13 C14 C9 C16 C19 C18 C26 1 2 JP4 JP3 1 2 3 4 C15 C17 TP1 TP2 IC1 MSP430F677XIPEU# XIN 1 XOUT 2 AUXVCC3 3 RTCCAP1 4 RTCCAP0 5 P1.5/SMCLK/CB0/A5 6 P1.4/MCLK/SDCLK/CB1/A4 7 P1.3/ADC10CLK/TACLK/RTCCLK/A3 8 P1.2/ACLK/TA3.1/A2 9 P1.1/TA2.1/VEREF+/A1 10 P1.0/TA1.1/TA0.0/VEREF-/A0 11 P2.4/PM_TA2.0 12 P2.5/PM_UCB0SOMI/PM_UCB0SCL 13 P2.6/PM_USB0SIMO/PM_UCB0SDA 14 P2.7/PM_UCB0CLK 15 P3.0/PM_UCA0RXD/PM_UCA0SOMI 16 P3.1/PM_UCA0TXD/PM_UCA0SIMO 17 P3.2/PM_UCA0CLK 18 P3.3/PM_UCA1CLK 19 P3.4/PM_UCA1RXD/PM_UCA1SOMI 20 P3.5/PM_UCA1TXD/PM_UCA1SIMO 21 COM0 22 COM1 23 P1.6/COM2 24 P1.7/COM3 25 P5.0/COM4 26 P5.1/COM5 27 P5.2/COM6 28 P5.3/COM7 29 LCDCAP/R33 30 P5.4/SDCLK/R23 31 P5.5/SD0DIO/LCDREF/R13 32 P5.6/SD1DIO/R03 33 P5.7/SD2DIO/CB2 34 P6.0/SD3DIO 35 P3.6/PM_UCA2RXD/PM_UCA2SOMI 36 P3.7/PM_UCA2TXD/PM_UCA2SIMO 37 P4.0/PM_UCA2CLK 38 P4.1/PM_UCA3RXD/PM_UCA3SOMI 39 P4.2/PM_UCA3TXD/PM_UCA3SIMO 40 P4.3/PM_UCA3CLK 41 P4.4/PM_UCB1SOMI/PM_UCB1SCL 42 P4.5/PM_UCB1SIMO/PM_UCB1SDA 43 P4.6/PM_UCB1CLK 44 P4.7/PM_TA3.0 45 P6.1/SD4DIO/S39 46 P6.2/SD5DIO/S38 47 P6.3/SD6DIO/S37 48 P6.4/S36 49 P6.5/S35 50 P6.6/S34 51 P6.7/S33 52 P7.0/S32 53 P7.1/S31 54 P7.2/S30 55 P7.3/S29 56 P7.4/S28 57 P7.5/S27 58 P7.6/S26 59 P7.7/S25 60 P8.0/S24 61 P8.1/S23 62 P8.2/S22 63 P8.3/S21 64 P8.4/S20 65 P8.5/S19 66 P8.6/S18 67 P8.7/S17 68 DVSYS 69 DVSS2 70 P9.0/S16 71 P9.1/S15 72 P9.2/S14 73 P9.3/S13 74 P9.4/S12 75 P9.5/S11 76 P9.6/S10 77 P9.7/S9 78 P10.0/S8 79 P10.1/S7 80 P10.2/S6 81 P10.3/S5 82 P10.4/S4 83 P10.5/S3 84 P10.6/S2 85 P10.7/S1 86 P11.0/S0 87 P11.1/TA3.1/CB3 88 P11.2/TA1.1 89 P11.3/TA2.1 90 P11.4/CBOUT 91 P11.5/TACLK/RTCCLK 92 P2.0/PM_TA0.0 93 P2.1/PM_TA0.1 94 P2.2/PM_TA0.2 95 P2.3/PM_TA1.0 96 TEST/SBWTCK 97 PJ.0/TDO 98 PJ.1/TDI/TCLK 99 PJ.2/TMS 100 PJ.3/TCK 101 ~RST/NMI/SBWTDIO 102 SD0P0 103 SD0N0 104 SD1P0 105 SD1N0 106 SD2P0 107 SD2N0 108 SD3P0 109 SD3N0 110 VASYS2 111 AVSS2 112 VREF 113 SD4P0 114 SD4N0 115 SD5P0 116 SD5N0 117 SD6P0 118 SD6N0 119 AVSS1 120 AVCC 121 VASYS1 122 AUXVCC2 123 AUXVCC1 124 VDSYS 125 DVCC 126 DVSS1 127 VCORE 128 P1.0 P1.0 P2.0 P2.0 P2.1 P2.1 SD0P0 SD0N0 SD1P0 SD1N0 SD2P0 SD2N0 SD3P0 SD3N0 SD4P0 SD4N0 SD5P0 SD5N0 SD6P0 SD6N0 VASYS1/2 VASYS1/2 VASYS1/2 VASYS1/2 TMS TMS TDI TDI TDO TDO TDO XOUT GND GND XIN DVCC AVCC DVDSYS DVDSYS DVDSYS DVDSYS AVSS AVSS PJ.2 PJ.2 PJ.1 PJ.1 PJ.0 PJ.0 RST/NMI RST/NMI TCK TCK TCK PJ.3 PJ.3 TEST/SBWTCK TEST/SBWTCK TEST/SBWTCK TEST/SBWTCK RST RST RST RST LCDCAP LCDCAP VREF VREF VEREF+ VEREF+ VCORE AUXVCC2 AUXVCC2 AUXVCC1 AUXVCC1 AUXVCC3 AUXVCC3 1 2 3 4 5 6 1 2 3 4 5 6 Titel: Datum: Bearb.: Seite 1/1 MSP-TS430PEU128 22.05.2012 09:37:33 A3 A B C D E F G H I A B C D E F G H I File: Dok: Rev.: MSP-TS430PEU128 www.ti.com B.30 MSP-TS430PEU128 Figure B-59. MSP-TS430PEU128 Target Socket Module, Schematic 122 Hardware SLAU278Q–May 2009–Revised February 2014 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated 1 P1.0 SBW JTAG DVDSYS ext int MSP-TS430PEU128 Rev. 1.1 RoHS DVCC AUXVCC GND AUXVCC1 AUXVCC2 AUXVCC3 GND GND RST/NMI TCK TDI TDO TEST/SBWTCK TMS 1 25 5 10 15 20 30 35 40 45 50 55 60 64 65 90 70 75 80 85 95 100 128 125 120 115 110 105 14 1 2 10 1 2 GND GND VCC 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 1 2 3 4 1234 1234 1 J1 J2 J3 J4 JTAG R2 C2 C1 R1 C5 R3 BOOTST C3 R10 R11 J5 JP1 JP2 JP5 JP6 JP7 JP8 JP9 JP10 R7 R5 D1 R6 R8 C6 C29 C7 C10 R4 JP12 JP11 JP13 C4 C11 C12 C8 C13 C14 C9 C16 C19 C18 C26 JP4 JP3 C15 C17 TP1 TP2 IC1 Connector J5 External power connector Jumper JP1 to "ext" Jumper JP1 Open to measure current Orient Pin 1 of MSP430 device Jumpers JP5 to JP10 Close 1-2 to debug in Spy-Bi-Wire mode Close 2-3 to debug in 4-wire JTAG mode JP11, JP12, JP13 Connect 1-2 to connect AUXVCCx with DVCC or drive AUXVCCx externally D1 LED connected to P1.0 Jumper JP2 Open to disconnect LED www.ti.com MSP-TS430PEU128 Figure B-60. MSP-TS430PEU128 Target Socket Module, PCB NOTE: The MSP-TS430PEU128 Rev 1.1 ships with the following modifications: • R7 value is changed to 0 Ω instead of 330 Ω. • JTAG pin 8 is connected only to JP5 pin 3, and not to pin 2. • JP5 pin 2 is connected to IC1 pin 97. • BOOTST pin 7 is connected to IC1 pin 97. SLAU278Q–May 2009–Revised February 2014 Hardware 123 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated MSP-TS430PEU128 www.ti.com Table B-32. MSP-TS430PEU128 Bill of Materials Pos. Ref Des No. Per Description DigiKey Part No. Comment Board 1 PCB 1 94x119.4mm, 4 layers MSP-TS430PEU128 4 layers, green solder mask Rev. 1.1 2 D1 1 green LED, DIODE0805 516-1434-1-ND 3 JP1, JP2, JP4 3 2-pin header, male, TH SAM1035-02-ND Place jumper on header 4 JP5, JP6, JP7, JP8, 6 3-pin header, male, TH SAM1035-03-ND Place jumpers on pins 1-2 (SBW) JP9, JP10 5 JP11, JP12, JP13 3 4-pin header, male, TH SAM1035-04-ND Place jumpers on pins 1-2 (AVCC=VCC) 6 JP3 1 4-pin header, male, TH SAM1035-04-ND Place jumpers on pins 1-2 JP1, JP2, JP3, JP4, Jumper WM4592-ND 7 JP5, JP6, JP7, JP8, 13 JP9, JP10, JP11, JP12, JP13 8 R1, R2, R4, R6, R8 5 0R, 0805 541-0.0ATR-ND 9 R10, R11 2 0R, 0805 541-0.0ATR-ND DNP 10 C3 1 2.2nF, CSMD0805 490-1628-2-ND DNP 11 C13, C14, C16, 7 4.7uF, 6.3V, CSMD0805 587-1302-2-ND C17, C18, C19, C29 12 C11 1 10uF, 6.3V, CSMD0805 445-1372-2-ND 13 C12 1 10uF, 6.3V, CSMD0805 445-1372-2-ND DNP 14 C1, C2 2 12pF, CSMD0805 490-5531-2-ND DNP 15 R5 1 47K, 0805 311-47KARTR-ND 16 C4, C5, C6, C7, C8, 6 100nF, CSMD0805 311-1245-2-ND C15 17 C9 1 100nF, CSMD0805 311-1245-2-ND DNP 18 R3, R7 2 330R, 0805 541-330ATR-ND 19 C10, C26 2 470nF, CSMD0805 587-1282-2-ND 20 BOOTST 1 10-pin connector, male, TH HRP10H-ND DNP, keep vias free of solder 21 JTAG 1 14-pin connector, male, TH HRP14H-ND 22 IC1 Socket 1 Socket: IC500-1284-009P Manuf. Yamaichi 23 IC1 2 MSP430F67791IPEU DNP: enclosed with kit. Is supplied by TI 24 J5 1 3-pin header, male, TH SAM1035-03-ND 25 Q1 1 Crystal: MS3V-T1R 32.768kHz DNP: Crystal enclosed with kit. Keep vias 12.5pF ±20ppm free of solder 26 TP1, TP2 2 Test point DNP, keep vias free of solder 27 J2,J4 2 26-pin header, TH SAM1029-26-ND DNP: Headers enclosed with kit. Keep vias free of solder. 28 J2,J4 2 26-pin receptable, TH SAM1213-26-ND DNP: Receptacles enclosed with kit. Keep vias free of solder. 29 J1, J3 2 38-pin header, TH SAM1029-38-ND DNP: Headers enclosed with kit. Keep vias free of solder. 30 J1, J3 2 38-pin receptable, TH SAM1213-38-ND DNP: Receptacles enclosed with kit. Keep vias free of solder. 31 Rubber feet 4 Rubber feet Buerklin: 20H1724 apply to bottom side corners 124 Hardware SLAU278Q–May 2009–Revised February 2014 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated Power Management VCC01 = external VCC Vdd = DVCC Vdda1 = AVDD_RF / AVCC_RF Vdda2 = AVCC Port connectors CON1 .. CON3 = Port1 .. Port3 of cc430 CON4 = spare CON5 = 1: XIN 2: XOUT CON6 = Vdd, GND, Vcore, COM0, LCDCAP CON7 = Vdda1, Vdda2, GND, AGND CON8 = JTAG_BASE (JTAG Port) CON9 = Vdd, GND, AGND (May be addedclose to therespective pins to reduce emissions at 5GHz toel vel required byETSI) www.ti.com EM430F5137RF900 B.31 EM430F5137RF900 Figure B-61. EM430F5137RF900 Target board, Schematic SLAU278Q–May 2009–Revised February 2014 Hardware 125 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated JTAG connector External power connector CON12 GND GND VCC Open to disconnect LEDs jumper JP5/JP10 LED D2 (red) connected to P3.6 via JP10 LED D1 (green) connected to P1.0 via JP5 RF - Crystal Q1 26 MHz RF - Signal SMA Reset button S1 Push-button S2 connected to P1.7 Jumper JP1 Close JTAG position to debug in JTAG mode Jumper JP2 Close EXT for external supply Close INT for JTAG supply Close SBW position to debug in Spy-Bi-Wire mode Jumper JP1 Spy-Bi-Wire mode Footprint for 32kHz crystal Use 0 resistor for R431/R441 to make XIN/XOUT available on connector port5 ! Open to measure current jumper JP3 EM430F5137RF900 www.ti.com Figure B-62. EM430F5137RF900 Target board, PCB The battery pack that is included with the EM430F5137RF900 kit may be connected to CON12. Ensure correct battery insertion regarding the polarity as indicated in battery holder. 126 Hardware SLAU278Q–May 2009–Revised February 2014 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated www.ti.com EM430F5137RF900 Table B-33. EM430F5137RF900 Bill of Materials Item Reference No. per Description Value Manufacturer's Part Manufacturer Comment Board Number 1 Q1 1 ( CUSTOMER SUPPLY ) CRYSTAL, 26M ASX-531(CS) AKER SMT, 4P, 26MHz ELECTRONIC C1-C5, C082, C222, C271, CAPACITOR, SMT, 0402, CER, 16V, 2 C281, C311, 14 10%, 0.1uF 0.1uF 0402YC104KAT2A AVX C321, C341, C412, C452 3 C071 1 CAPACITOR, SMT, 0603, CERAMIC, 0.47uF 0603YD474KAT2A AVX 0.47uF, 16V, 10%, X5R 4 R401 1 RES0402, 47.0K 47kΩ CRCW04024702F10 DALE 0 5 CON11 1 HEADER, THU, MALE, 14P, 2X7, 09 18 514 6323 HARTING 25.4x9.2x9.45mm 6 CON10 0 HEADER, THU, MALE, 10P, 2X5, 09 18 510 6323 HARTING DNP 20.32x9.2x9.45mm 7 D1 1 LED, SMT, 0603, GREEN, 2.1V active APT1608MGC KINGBRIGHT 8 D2 1 LED, SMT, 0603, RED, 2.0V active APT1608EC KINGBRIGHT 9 Q3 0 UNINSTALLED CRYSTAL, SMT, 3P, 32.768k MS1V-T1K (UN) MICRO DNP MS1V (Customer Supply) CRYSTAL 10 CON12 1 HEADER, THU, MALE, 3P, 1x3, 22-03-5035 MOLEX 9.9x4.9x5.9mm 11 C251, C261 2 50V, 5%, 27pF 27pF GRM36COG270J50 MURATA 12 L341 1 FERRITE, SMT, 0402, 1.0kΩ, 250mA 1kΩ BLM15HG102SN1D MURATA 13 C293 1 CAPACITOR, SMT, 0402, CERAMIC, 100pF GRM1555C1H101JZ MURATA 100pF, 50V, 0.25pF, C0G(NP0) 01 14 L304 1 INDUCTOR, SMT, 0402, 2.2nH, 0.1nH, 0.0022uH LQP15MN2N2B02 MURATA 220mA, 500MHz 15 L303, L305 2 INDUCTOR, SMT, 0402, 15nH, 2%, 0.015uH LQW15AN15NG00 MURATA 450mA, 250MHz 16 L292, L302 2 INDUCTOR, SMT, 0402, 18nH, 2%, 0.018uH LQW15AN18NG00 MURATA 370mA, 250MHz 17 C291 1 CAPACITOR, SMT, 0402, CERAMIC, 1pF GRM1555C1H1R0W MURATA 1pF, 50V, 0.05pF, C0G(NP0) Z01 18 C303 1 CAPACITOR, SMT, 0402, CERAMIC, 8.2pF GRM1555C1H8R2W MURATA 8.2pF, 50V, 0.05pF, C0G(NP0) Z01 19 C292, C301- 4 CAPACITOR, SMT, 0402, CERAMIC, 1.5pF GRM1555C1H1R5W MURATA C302, C304 1.5pF, 50V, 0.05pF, C0G(NP0) Z01 20 L291, L301 2 INDUCTOR, SMT, 0402, 12nH, 2%, 0.012uH LQW15AN12NG00 MURATA 500mA, 250MHz C282, C312, CAPACITOR, SMT, 0402, CERAMIC, GRM1555C1H2R0B 21 C351, C361, 5 2pF, 50V, 0.1pF, C0G 2.0pF Z01 Murata C371 22 L1 1 INDUCTOR, SMT, 0402, 6.2nH, 0.1nH, 6.2nH LQP15MN6N2B02 Murata 130mA, 500MHz 23 S1-S2 2 ULTRA-SMALL TACTILE SWITCH, SMT, B3U-1000P OMRON 2P, SPST-NO, 1.2x3x2.5mm, 0.05A, 12V R4-R5, R051, UNINSTALLED RESISTOR/JUMPER, 24 R061, R431, 0 SMT, 0402, 0 Ω, 5%, 1/16W 0Ω ERJ-2GE0R00X PANASONIC DNP R441 24a R7 1 RESISTOR/JUMPER, SMT, 0402, 0 Ω, 0Ω ERJ-2GE0R00X PANASONIC 5%, 1/16W 25 R2-R3, R6 3 RESISTOR, SMT, 0402, THICK FILM, 330Ω ERJ-2GEJ331 PANASONIC 5%, 1/16W, 330 26 C431, C441 0 CAPACITOR, SMT, 0402, CER, 12pF, 12pF ECJ-0EC1H120J PANASONIC 50V, 5%, NPO 27 C401 1 CAPACITOR, SMT, 0402, CER, 2200pF, 0.0022uF ECJ-0EB1H222K PANASONIC 50V, 10%, X7R 28 R331 1 RESISTOR, SMT, THICK FILM, 56K, 56kΩ ERJ-2GEJ563 PANASONIC 1/16W, 5% 29 C081, C221, 4 CAPACITOR, SMT, 0603, CERAMIC, 10uF ECJ-1VB0J106M PANASONIC C411, C451 10uF, 6.3V, 20%, X5R SLAU278Q–May 2009–Revised February 2014 Hardware 127 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated EM430F5137RF900 www.ti.com Table B-33. EM430F5137RF900 Bill of Materials (continued) Item Reference No. per Description Value Manufacturer's Part Manufacturer Comment Board Number 30 R1 1 RESISTOR/JUMPER, SMT, 0402, 0 Ω, 0Ω ERJ-2GE0R00X PANASONIC 5%, 1/16W 31 C041 0 UNINSTALLED CAP CERAMIC 4.7UF 4.7uF ECJ-1VB0J475K Panasonic DNP 6.3V X5R 0603 32 X1 1 SMA STRIGHT JACK, SMT 32K10A-40ML5 ROSENBERGER 33 Q2 0 Crystal, SMT, 32.768 kHz 32.768k MS3V-T1R Micro Crystal DNP 34 U1 1 DUT, SMT, PQFP, RGZ-48, 0.5mmLS, CC430F52x1 TI 7.15x7.15x1mm, THRM.PAD 35 JP1 1 Pin Connector 2x4pin 61300821121 WUERTH 36 CON1-CON9 0 Pin Connector 2x4pin 61300821121 WUERTH DNP 37 JP2 1 Pin Connector 1x3pin 61300311121 WUERTH 38 JP3, JP5, 3 Pin Connector 1x2pin 61300211121 WUERTH JP10 38a JP7, CON13 0 Pin Connector 1x2pin 61300211121 WUERTH DNP 39 JP4 1 Pin Connector 2x2pin 61300421121 WUERTH DNP 40 JP1a 1 Pin Connector 2x3pin 61300621121 WUERTH 128 Hardware SLAU278Q–May 2009–Revised February 2014 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated Power Management VCC01 = external VCC Vdd = DVCC Vdda1 = AVDD_RF / AVCC_RF Vdda2 = AVCC Port connectors CON1 .. CON5 = Port1 .. Port5 of cc430 CON6 = Vdd, GND, Vcore, COM0, LCDCAP CON7 = Vdda1, Vdda2, GND, AGND CON8 = JTAG_BASE (JTAG Port) CON9 = Vdd, GND, AGND (May beaddedcol se to therespective pins to reduce emissions at 5GHz to el vel required by ETSI) www.ti.com EM430F6137RF900 B.32 EM430F6137RF900 Figure B-63. EM430F6137RF900 Target board, Schematic SLAU278Q–May 2009–Revised February 2014 Hardware 129 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated JTAG connector External power connector CON12 GND GND VCC Open to disconnect LEDs jumper JP5/JP10 LED D2 (red) connected to P3.6 via JP10 LED D1 (green) connected to P1.0 via JP5 RF - Crystal Q1 26 MHz RF - Signal SMA Reset button S1 Push-button S2 connected to P1.7 Jumper JP1 Close JTAG position to debug in JTAG mode Jumper JP2 Close EXT for external supply Close INT for JTAG supply Close SBW position to debug in Spy-Bi-Wire mode Jumper JP1 Spy-Bi-Wire mode Footprint for 32kHz crystal Use 0 resistor for R541/R551 to makeP5.0/P5.1 available on connector port5 ! Open to measure current jumper JP3 C392 C422 L451 EM430F6137RF900 www.ti.com Figure B-64. EM430F6137RF900 Target board, PCB The battery pack that is included with the EM430F6137RF900 kit may be connected to CON12. Ensure correct battery insertion regarding the polarity as indicated in battery holder. 130 Hardware SLAU278Q–May 2009–Revised February 2014 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated www.ti.com EM430F6137RF900 Table B-34. EM430F6137RF900 Bill of Materials No. Pos. Ref Des per Description Part No. Manufacturer Board 1 Q1 1 ( CUSTOMER SUPPLY ) CRYSTAL, SMT, ASX-531(CS) AKER 4P, 26MHz ELECTRONIC C1-C5, C112, C252, C381, CAPACITOR, SMT, 0402, CER, 16V, 10%, 2 C391, C421, 14 0.1uF 0402YC104KAT2A AVX C431, C451, C522, C562 3 C101 1 CAPACITOR, SMT, 0603, CERAMIC, 0.47uF, 0603YD474KAT2A AVX 16V, 10%, X5R 4 R511 1 RES0402, 47.0K CRCW04024702F100 DALE 5 CON11 1 HEADER, THU, MALE, 14P, 2X7, 09 18 514 6323 HARTING 25.4x9.2x9.45mm, 90deg 7 D1 1 LED, SMT, 0603, GREEN, 2.1V APT1608MGC KINGBRIGHT 8 D2 1 LED, SMT, 0603, RED, 2.0V APT1608EC KINGBRIGHT 10 CON12 1 HEADER, THU, MALE, 3P, 1x3, 22-03-5035 MOLEX 9.9x4.9x5.9mm 11 C361, C371 2 50V, ±5%, 27pF GRM36COG270J50 MURATA 12 L451 1 FERRITE, SMT, 0402, 1.0kΩ, 250mA BLM15HG102SN1D MURATA 13 C403 1 CAPACITOR, SMT, 0402, CERAMIC, 100pF, GRM1555C1H101JZ01 MURATA 50V, ±0.25pF, C0G(NP0) 14 L414 1 INDUCTOR, SMT, 0402, 2.2nH, ±0.2nH, LQW15AN2N2C10 MURATA 1000mA, 250MHz 15 L413, L415 2 INDUCTOR, SMT, 0402, 15nH, ±5%, 460mA, LQW15AN15NJ00 MURATA 250MHz 16 L402, L412 2 INDUCTOR, SMT, 0402, 18nH, ±5%, 370mA, LQW15AN18NJ00 MURATA 250MHz 17 C401 1 CAPACITOR, SMT, 0402, CER, 1pF, 50V, GJM1555C1H1R0CB01D MURATA ±0.25pF, NP0 18 C413 1 CAPACITOR, SMT, 0402, CERAMIC, 8.2pF, GRM1555C1H8R2CZ01 MURATA 50V, ±0.25pF, C0G(NP0) 19 C402, C411- 4 CAPACITOR, SMT, 0402, CERAMIC, 1.5pF, GRM1555C1H1R5CZ01 MURATA C412, C414 50V, ±0.25pF, C0G(NP0) 20 L401, L411 2 INDUCTOR, SMT, 0402, 12nH, ±5%, 500mA, LQW15AN12NJ00 MURATA 250MHz 21 C46-C48, 5 CAPACITOR, SMT, 0402, CERAMIC, 2.0pF, GRM1555C1H2R0CZ01 Murata C392, C422 50V, ±0.25pF, C0G(NP0) 22 L1 1 INDUCTOR, SMT, 0402, 6.2nH, ±0.1nH, LQW15AN6N2D00 Murata 700mA, 250MHz 23 S1-S2 2 ULTRA-SMALL TACTILE SWITCH, SMT, 2P, B3U-1000P OMRON SPST-NO, 1.2x3x2.5mm, 0.05A, 12V 24 R7 1 RESISTOR/JUMPER, SMT, 0402, 0 Ω, 5%, ERJ-2GE0R00X (UN) PANASONIC 1/16W 25 R2-R3, R6 3 RESISTOR, SMT, 0402, THICK FILM, 5%, ERJ-2GEJ331 PANASONIC 1/16W, 330 27 C511 1 CAPACITOR, SMT, 0402, CER, 2200pF, ECJ-0EB1H222K PANASONIC 50V, 10%, X7R 28 C111, C251, 4 CAPACITOR, SMT, 0603, CERAMIC, 10uF, ECJ-1VB0J106M PANASONIC C521, C561 6.3V, 20%, X5R 28a C041 1 CAP CERAMIC 4.7UF 6.3V X5R 0603 ECJ-1VB0J475M PANASONIC 29 R441 1 RESISTOR, SMT, THICK FILM, 56K, 1/16W, ERJ-2RKF5602 PANASONIC 1% 30 R1 1 RESISTOR/JUMPER, SMT, 0402, 0 Ω, 5%, ERJ-2GE0R00X PANASONIC 1/16W 31 X1 1 SMA STRIGHT JACK, SMT 32K10A-40ML5 ROSENBERGER SLAU278Q–May 2009–Revised February 2014 Hardware 131 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated EM430F6137RF900 www.ti.com Table B-34. EM430F6137RF900 Bill of Materials (continued) No. Pos. Ref Des per Description Part No. Manufacturer Board 33 U1 1 DUT, SMT, PQFP, RGC-64, 0.5mmLS, CC430F6137 TI 9.15x9.15x1mm, THRM.PAD 34 JP1 1 Pin Connector 2x4pin 61300821121 WUERTH 35 JP2 1 Pin Connector 1x3pin 61300311121 WUERTH 36a JP3, JP5, JP10 3 Pin Connector 1x2pin 61300211121 WUERTH 38 JP1a 1 Pin Connector 2x3pin 61300621121 WUERTH 132 Hardware SLAU278Q–May 2009–Revised February 2014 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated www.ti.com EM430F6147RF900 B.33 EM430F6147RF900 Figure B-65. EM430F6147RF900 Target Board, Schematic SLAU278Q–May 2009–Revised February 2014 Hardware 133 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated EM430F6147RF900 www.ti.com Figure B-66. EM430F6147RF900 Target Board, PCB The battery pack which comes with the EM430F6147RF900 kit may be connected to CON12. Ensure correct battery insertion regarding the polarity as indicated in battery holder. 134 Hardware SLAU278Q–May 2009–Revised February 2014 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated www.ti.com EM430F6147RF900 Table B-35. EM430F6147RF900 Bill of Materials No. Pos. Ref Des per Description Part No. Manufacturer Board 1 Q1 1 ( CUSTOMER SUPPLY ) CRYSTAL, SMT, ASX-531(CS) AKER 4P, 26MHz ELECTRONIC C1-5 C112 C252 C381 CAPACITOR, SMT, 0402, CER, 16V, 10%, 2 C391 C421 14 0.1uF 0402YC104KAT2A AVX C431 C451 C522 C562 3 C101 1 CAPACITOR, SMT, 0603, CERAMIC, 0.47uF, 0603YD474KAT2A AVX 16V, 10%, X5R 4 R511 1 RES0402, 47.0K CRCW04024702F100 DALE 5 CON11 1 HEADER, THU, MALE, 14P, 2X7, 09 18 514 6323 HARTING 25.4x9.2x9.45mm, 90deg 7 D1 1 LED, SMT, 0603, GREEN, 2.1V APT1608MGC KINGBRIGHT 8 D2 1 LED, SMT, 0603, RED, 2.0V APT1608EC KINGBRIGHT 10 CON12 1 HEADER, THU, MALE, 3P, 1x3, 22-03-5035 MOLEX 9.9x4.9x5.9mm 11 C361, C371 2 50V, ±5%, 27pF GRM36COG270J50 MURATA 12 L451 1 Inductor, SMD, 0402, 12nH, 5%, 370mA LQW15AN12NJ00 MURATA 13 C403 1 CAPACITOR, SMT, 0402, CERAMIC, 100pF, GRM1555C1H101JZ01 MURATA 50V, ±0.25pF, C0G(NP0) 14 L414 1 INDUCTOR, SMT, 0402, 2.2nH, ±0.2nH, LQW15AN2N2C10 MURATA 1000mA, 250MHz 15 L413 1 Inductor, SMD, 0402, 15nH, 5%, 370mA, LQW15AN15NJ00 MURATA 250MHz 15 L415 1 INDUCTOR,SMT,0402,15nH,±5%,460mA,250 LQW15AN15NJ00 MURATA MHz 16 L402, L412 2 Inductor, SMD, 0402, 18nH, 5%, 460mA, LQW15AN18NJ00 MURATA 250MHz 17 C401 1 CAPACITOR, SMT, 0402, CER, 1pF, 50V, GJM1555C1H1R0CB01D MURATA ±0.25pF, NP0 18 C413 1 CAPACITOR, SMT, 0402, CERAMIC, 8.2pF, GRM1555C1H8R2CZ01 MURATA 50V, ±0.25pF, C0G(NP0) 19 C402, C411- 4 CAPACITOR, SMT, 0402, CERAMIC, 1.5pF, GRM1555C1H1R5CZ01 MURATA C412, C414 50V, ±0.25pF, C0G(NP0) 20 L1, L401, L411 3 INDUCTOR, SMT, 0402, 12nH, ±5%, 500mA, LQW15AN12NJ00 MURATA 250MHz 21 C46-C48, 4 CAPACITOR, SMT, 0402, CERAMIC, 2.0pF, GRM1555C1H2R0CZ01 MURATA C392 50V, ±0.25pF, C0G(NP0) 22 L2 1 Inductor, SMD, 0805, 2.2uH, 20%, 600mA, LQM21PN2R2MC0 MURATA 50MHz 23 S1-S2 2 ULTRA-SMALL TACTILE SWITCH, SMT, 2P, B3U-1000P OMRON SPST-NO, 1.2x3x2.5mm, 0.05A, 12V 24 R1, R7, R551, 4 RESISTOR/JUMPER, SMT, 0402, 0 Ω, 5%, ERJ-2GE0R00X (UN) PANASONIC R554 1/16W 25 R2-R3, R6 3 RESISTOR, SMT, 0402, THICK FILM, 5%, ERJ-2GEJ331 PANASONIC 1/16W, 330 27 C511 1 CAPACITOR, SMT, 0402, CER, 2200pF, ECJ-0EB1H222K PANASONIC 50V, 10%, X7R 28 C111, C251, 4 CAPACITOR, SMT, 0603, CERAMIC, 1uF, ECJ-1VB0J105K PANASONIC C521, C561 6.3V, 20%, X5R 28a C041 1 CAP CERAMIC 4.7UF 6.3V X5R 0603 ECJ-1VB0J475M PANASONIC 29 R441 1 RESISTOR, SMT, THICK FILM, 56K, 1/16W, ERJ-2RKF5602 PANASONIC 1% 30 X1 1 SMA STRIGHT JACK, SMT 32K10A-40ML5 ROSENBERGER SLAU278Q–May 2009–Revised February 2014 Hardware 135 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated EM430F6147RF900 www.ti.com Table B-35. EM430F6147RF900 Bill of Materials (continued) No. Pos. Ref Des per Description Part No. Manufacturer Board 31 U1 1 DUT, SMT, PQFP, RGC-64, 0.5mmLS, CC430F6147 TI 9.15x9.15x1mm, THRM.PAD 33 U2 1 IC, Step Down Converter with Bypass Mode TPS62370 TI for Low Power Wireless 34 JP1 1 Pin Connector 2x4pin 61300821121 WUERTH 35 JP2, JP6, JP8 3 Pin Connector 1x3pin 61300311121 WUERTH 36a JP3, JP5, JP9, 4 Pin Connector 1x2pin 61300211121 WUERTH JP10 38 JP1a 1 Pin Connector 2x3pin 61300621121 WUERTH 38 C7 1 Capacitor, Ceramic, 1206, 16V, X5R, 20% GRM31CR61C226ME15L MURATA 38 C8-9 2 CAP, SMD, Ceramic, 0402, 2.2uF, X5R GRM155R60J225ME15D MURATA 38 C041 1 CAP, SMD, Ceramic, 0603, 4.7uF, 16V, 10%, MURATA X5R 136 Hardware SLAU278Q–May 2009–Revised February 2014 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated www.ti.com MSP-FET430PIF B.34 MSP-FET430PIF Figure B-67. MSP-FET430PIF FET Interface Module, Schematic SLAU278Q–May 2009–Revised February 2014 Hardware 137 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated MSP-FET430PIF www.ti.com Figure B-68. MSP-FET430PIF FET Interface Module, PCB 138 Hardware SLAU278Q–May 2009–Revised February 2014 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated www.ti.com MSP-FET430UIF B.35 MSP-FET430UIF Figure B-69. MSP-FET430UIF USB Interface, Schematic (1 of 4) SLAU278Q–May 2009–Revised February 2014 Hardware 139 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated MSP-FET430UIF www.ti.com Figure B-70. MSP-FET430UIF USB Interface, Schematic (2 of 4) 140 Hardware SLAU278Q–May 2009–Revised February 2014 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated www.ti.com MSP-FET430UIF Figure B-71. MSP-FET430UIF USB Interface, Schematic (3 of 4) SLAU278Q–May 2009–Revised February 2014 Hardware 141 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated MSP-FET430UIF www.ti.com Figure B-72. MSP-FET430UIF USB Interface, Schematic (4 of 4) 142 Hardware SLAU278Q–May 2009–Revised February 2014 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated www.ti.com MSP-FET430UIF Figure B-73. MSP-FET430UIF USB Interface, PCB SLAU278Q–May 2009–Revised February 2014 Hardware 143 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated MSP-FET430UIF www.ti.com B.35.1 MSP-FET430UIF Revision History Revision 1.3 • Initial released hardware version Assembly change on 1.3 (May 2005) • R29, R51, R42, R21, R22, R74: value changed from 330R to 100R Changes 1.3 to 1.4 (Aug 2005) • J5: VBUS and RESET additionally connected • R29, R51, R42, R21, R22, R74: value changed from 330R to 100R • U1, U7: F1612 can reset TUSB3410; R44 = 0R added • TARGET-CON.: pins 6, 10, 12, 13, 14 disconnected from GND • Firmware-upgrade option through BSL: R49, R52, R53, R54 added; R49, R52 are currently DNP • Pullups on TCK and TMS: R78, R79 added • U2: Changed from SN74LVC1G125DBV to SN74LVC1G07DBV NOTE: Using a locally powered target board with hardware revision 1.4 Using an MSP-FET430UIF interface hardware revision 1.4 with populated R62 in conjunction with a locally powered target board is not possible. In this case, the target device RESET signal is pulled down by the FET tool. It is recommended to remove R62 to eliminate this restriction. This component is located close to the 14-pin connector on the MSP-FET430UIF PCB. See the schematic and PCB drawings in this document for the exact location of this component. Assembly change on 1.4a (January 2006) • R62: not populated 144 Hardware SLAU278Q–May 2009–Revised February 2014 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated Appendix C SLAU278Q–May 2009–Revised February 2014 Hardware Installation Guide This section describes the hardware installation process of the following USB debug interfaces on a PC running Windows XP: • MSP-FET430UIF • eZ430-F2013 • eZ430-RF2500 • eZ430-Chronos • eZ430-RF2780 • eZ430-RF2560 • MSP-WDSxx "Metawatch" • LaunchPad (MSP-EXP430G2) • MSP-EXP430FR5739 • MSP-EXP430F5529 The installation procedure for other supported versions of Windows is very similar and, therefore, not shown here. Topic ........................................................................................................................... Page C.1 Hardware Installation ....................................................................................... 146 SLAU278Q–May 2009–Revised February 2014 Hardware Installation Guide 145 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated Hardware Installation www.ti.com C.1 Hardware Installation Table C-1 shows the USB VIDs and PIDs used in MSP430 tools. Table C-1. USB VIDs and PIDs Used in MSP430 Tools Tool USB VID USB PID INF File Name eZ430-F2013 0x0451 0xF430 usbuart3410.inf eZ430-RF2500 0x0451 0xF432 430CDC.inf eZ430-RF2780 0x0451 0xF432 430CDC.inf eZ430-RF2560 0x0451 0xF432 430CDC.inf MSP-WDSxx "Metawatch" 0x0451 0xF432 430CDC.inf eZ430-Chronos 0x0451 0xF432 430CDC.inf MSP-FET430UIF(1) 0x2047 0x0010 msp430tools.inf LaunchPad (MSP-EXP430G2) 0x0451 0xF432 430CDC.inf MSP-EXP430FR5739 0x0451 0xF432 430CDC.inf MSP-EXP430F5529 0x0451 0xF432 430CDC.inf (1) The older MSP-FET430UIF used with IAR versions before v5.20.x and CCS versions before v5.1 has VID 0x0451 and PID 0xF430. With the firmware update, it is updated to the 0x2047 and 0x0010, respectively. 1. Before connecting of the USB Debug Interface with a USB cable to a USB port of the PC the one of IDEs (CCS or IAR) should be installed. The IDE installation isntalls also drivers for USB Debug Interfaces without user interaction. After IDE installation the USB Debug Interface can be connected and will be ready to work within few seconds. 2. The driver can be also installed manually. After plug in the USB Debug Interface to USB port of the PC the Hardware Wizard starts automatically and opens the "Found New Hardware Wizard" window. 3. Select "Install from a list or specific location (Advanced)" (see Figure C-1). Figure C-1. Windows XP Hardware Wizard 146 Hardware Installation Guide SLAU278Q–May 2009–Revised February 2014 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated www.ti.com Hardware Installation 4. Browse to the folder where the driver information files are located (see Figure C-2). For CCS, the default folder is: c:\ti\ccsv5\ccs_base\emulation\drivers\msp430\USB_CDC, or c:\ti\ccsv5\ccs_base\emulation\drivers\msp430\USB_FET_XP_XX, or c:\ti\ccsv5\ccs_base\emulation\drivers\msp430\USB_eZ-RF depending of firmware version of the tool. For IAR Embedded Workbench, the default folder is: \Embedded Workbench x.x\ 430\drivers\TIUSBFET\eZ430-UART, or \Embedded Workbench x.x\ 430\drivers\. Figure C-2. Windows XP Driver Location Selection Folder 5. The Wizard generates a message that an appropriate driver has been found. SLAU278Q–May 2009–Revised February 2014 Hardware Installation Guide 147 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated Hardware Installation www.ti.com 6. The wizard installs the driver files. 7. The wizard shows a message that it has finished the installation of the software USB Debug Interface. 8. The USB debug interface is installed and ready to use. The Device Manager lists a new entry as shown in Figure C-3, Figure C-4, or Figure C-5. Figure C-3. Device Manager Using USB Debug Interface using VID/PID 0x2047/0x0010 148 Hardware Installation Guide SLAU278Q–May 2009–Revised February 2014 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated www.ti.com Hardware Installation Figure C-4. Device Manager Using USB Debug Interface with VID/PID 0x0451/0xF430 SLAU278Q–May 2009–Revised February 2014 Hardware Installation Guide 149 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated Hardware Installation www.ti.com Figure C-5. Device Manager Using USB Debug Interface with VID/PID 0x0451/0xF432 150 Hardware Installation Guide SLAU278Q–May 2009–Revised February 2014 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated www.ti.com Document Revision History Document Revision History Version Changes SLAU278 Initial release SLAU278A Updated USB driver installation according to CCE v3.1 SR1 and CCS v4. SLAU278B Added information about MSP-FET430U80USB, MSP-TS430PN80USB, and eZ430-Chronos. SLAU278C Added bills of materials and updated some PCBs in Appendix B. Added information about MSP-TS430DA38, MSP-TS430DL48, MSP-TS430PW14, MSP-TS430PW28. SLAU278D Added information about MSP-TS430L092, MSP-TS430RSB40, MSP-TS430RGC64USB, MSP-TS430PZ100USB, MSPFET430F5137RF900 SLAU278E Added jumper information for MSP-TS430L092 PCBs to Appendix B. Added new supported devices in Chapter 1. Added information about MSP-TS430PW24, MSP-TS430PW28A, MSP-TS430RHA40A, MSP-TS430RGZ48B, MSPSLAU278F TS430RGC64B, MSP-TS430PN80A, and MSP-TS430PZ100B. Updated MSP-TS430RSB40 schematics SLAU278G Added information for MSP-TS430PZ100C SLAU278H Added information for MSP-TS430D8 and MSP-TS430RGC64C Updated Table 1-1. Replaced Figure 2-2. SLAU278I Added Figure 2-3. Replaced Figure B-37 and Figure B-67. Added Table C-1. Editorial changes throughout. SLAU278J Added EM430F6147RF900 Section B.33. Added battery pack connection information to all EM430Fx1x7RF900 kits. SLAU278K Added information for MSP-TS430RGZ48C and MSP-TS430PEU128. Updated Figure B-38. SLAU278L Changed descriptions in Section B.19 and Section B.30. Changed Figure B-60. SLAU278M Added information for MSP430G2x44 and MSP430G2x55 in Table 1-2. SLAU278N Updated Table 1-1. Updated Section 2.3. Changed Table 1-1 and Table 1-2 for MSP430TCH5E. Changed Figure 2-1 through Figure 2-3. SLAU278O Changed FAQ 12 in Section A.1. Changed Figure B-47, Figure B-49, and Figure B-69 through Figure B-73. Added information about F523x, F524x, and F525x to Table 1-2 and Section B.19. SLAU278P Changed Figure B-38. Added BSL information to note on Figure B-41. Figure B-15, Corrected JTAG mode selection jumpers (J4 to J7). SLAU278Q Section B.19, In last sentence, corrected jumper (JP4). Removed "RF Emission Testing" section. NOTE: Page numbers for previous revisions may differ from page numbers in the current version. SLAU278Q–May 2009–Revised February 2014 Revision History 151 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated EVALUATION BOARD/KIT/MODULE (EVM) ADDITIONAL TERMS Texas Instruments (TI) provides the enclosed Evaluation Board/Kit/Module (EVM) under the following conditions: The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user indemnifies TI from all claims arising from the handling or use of the goods. Should this evaluation board/kit not meet the specifications indicated in the User’s Guide, the board/kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING LIMITED WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. EXCEPT TO THE EXTENT OF THE INDEMNITY SET FORTH ABOVE, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES. Please read the User's Guide and, specifically, the Warnings and Restrictions notice in the User's Guide prior to handling the product. This notice contains important safety information about temperatures and voltages. For additional information on TI's environmental and/or safety programs, please visit www.ti.com/esh or contact TI. No license is granted under any patent right or other intellectual property right of TI covering or relating to any machine, process, or combination in which such TI products or services might be or are used. TI currently deals with a variety of customers for products, and therefore our arrangement with the user is not exclusive. TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. REGULATORY COMPLIANCE INFORMATION As noted in the EVM User’s Guide and/or EVM itself, this EVM and/or accompanying hardware may or may not be subject to the Federal Communications Commission (FCC) and Industry Canada (IC) rules. For EVMs not subject to the above rules, this evaluation board/kit/module is intended for use for ENGINEERING DEVELOPMENT, DEMONSTRATION OR EVALUATION PURPOSES ONLY and is not considered by TI to be a finished end product fit for general consumer use. It generates, uses, and can radiate radio frequency energy and has not been tested for compliance with the limits of computing devices pursuant to part 15 of FCC or ICES-003 rules, which are designed to provide reasonable protection against radio frequency interference. Operation of the equipment may cause interference with radio communications, in which case the user at his own expense will be required to take whatever measures may be required to correct this interference. General Statement for EVMs including a radio User Power/Frequency Use Obligations: This radio is intended for development/professional use only in legally allocated frequency and power limits. Any use of radio frequencies and/or power availability of this EVM and its development application(s) must comply with local laws governing radio spectrum allocation and power limits for this evaluation module. It is the user’s sole responsibility to only operate this radio in legally acceptable frequency space and within legally mandated power limitations. Any exceptions to this are strictly prohibited and unauthorized by Texas Instruments unless user has obtained appropriate experimental/development licenses from local regulatory authorities, which is responsibility of user including its acceptable authorization. For EVMs annotated as FCC – FEDERAL COMMUNICATIONS COMMISSION Part 15 Compliant Caution This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation. Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment. FCC Interference Statement for Class A EVM devices This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense. FCC Interference Statement for Class B EVM devices This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures: • Reorient or relocate the receiving antenna. • Increase the separation between the equipment and receiver. • Connect the equipment into an outlet on a circuit different from that to which the receiver is connected. • Consult the dealer or an experienced radio/TV technician for help. For EVMs annotated as IC – INDUSTRY CANADA Compliant This Class A or B digital apparatus complies with Canadian ICES-003. Changes or modifications not expressly approved by the party responsible for compliance could void the user’s authority to operate the equipment. Concerning EVMs including radio transmitters This device complies with Industry Canada licence-exempt RSS standard(s). Operation is subject to the following two conditions: (1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device. Concerning EVMs including detachable antennas Under Industry Canada regulations, this radio transmitter may only operate using an antenna of a type and maximum (or lesser) gain approved for the transmitter by Industry Canada. To reduce potential radio interference to other users, the antenna type and its gain should be so chosen that the equivalent isotropically radiated power (e.i.r.p.) is not more than that necessary for successful communication. This radio transmitter has been approved by Industry Canada to operate with the antenna types listed in the user guide with the maximum permissible gain and required antenna impedance for each antenna type indicated. Antenna types not included in this list, having a gain greater than the maximum gain indicated for that type, are strictly prohibited for use with this device. Cet appareil numérique de la classe A ou B est conforme à la norme NMB-003 du Canada. Les changements ou les modifications pas expressément approuvés par la partie responsable de la conformité ont pu vider l’autorité de l'utilisateur pour actionner l'équipement. Concernant les EVMs avec appareils radio Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes : (1) l'appareil ne doit pas produire de brouillage, et (2) l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement. Concernant les EVMs avec antennes détachables Conformément à la réglementation d'Industrie Canada, le présent émetteur radio peut fonctionner avec une antenne d'un type et d'un gain maximal (ou inférieur) approuvé pour l'émetteur par Industrie Canada. Dans le but de réduire les risques de brouillage radioélectrique à l'intention des autres utilisateurs, il faut choisir le type d'antenne et son gain de sorte que la puissance isotrope rayonnée équivalente (p.i.r.e.) ne dépasse pas l'intensité nécessaire à l'établissement d'une communication satisfaisante. Le présent émetteur radio a été approuvé par Industrie Canada pour fonctionner avec les types d'antenne énumérés dans le manuel d’usage et ayant un gain admissible maximal et l'impédance requise pour chaque type d'antenne. Les types d'antenne non inclus dans cette liste, ou dont le gain est supérieur au gain maximal indiqué, sont strictement interdits pour l'exploitation de l'émetteur. SPACER SPACER SPACER SPACER SPACER SPACER SPACER SPACER 【Important Notice for Users of EVMs for RF Products in Japan】 This development kit is NOT certified as Confirming to Technical Regulations of Radio Law of Japan If you use this product in Japan, you are required by Radio Law of Japan to follow the instructions below with respect to this product: 1. Use this product in a shielded room or any other test facility as defined in the notification #173 issued by Ministry of Internal Affairs and Communications on March 28, 2006, based on Sub-section 1.1 of Article 6 of the Ministry’s Rule for Enforcement of Radio Law of Japan, 2. Use this product only after you obtained the license of Test Radio Station as provided in Radio Law of Japan with respect to this product, or 3. Use of this product only after you obtained the Technical Regulations Conformity Certification as provided in Radio Law of Japan with respect to this product. Also, please do not transfer this product, unless you give the same notice above to the transferee. Please note that if you could not follow the instructions above, you will be subject to penalties of Radio Law of Japan. Texas Instruments Japan Limited (address) 24-1, Nishi-Shinjuku 6 chome, Shinjuku-ku, Tokyo, Japan http://www.tij.co.jp 【無線電波を送信する製品の開発キットをお使いになる際の注意事項】 本開発キットは技術基準適合証明を受けておりません。 本製品のご使用に際しては、電波法遵守のため、以下のいずれかの措置を取っていただく必要がありますのでご注意ください。 1. 電波法施行規則第6条第1項第1号に基づく平成18年3月28日総務省告示第173号で定められた電波暗室等の試験設備でご使用いただく。 2. 実験局の免許を取得後ご使用いただく。 3. 技術基準適合証明を取得後ご使用いただく。 なお、本製品は、上記の「ご使用にあたっての注意」を譲渡先、移転先に通知しない限り、譲渡、移転できないものとします。    上記を遵守頂けない場合は、電波法の罰則が適用される可能性があることをご留意ください。 日本テキサス・インスツルメンツ株式会社 東京都新宿区西新宿6丁目24番1号 西新宿三井ビル http://www.tij.co.jp SPACER SPACER SPACER SPACER SPACER SPACER SPACER SPACER SPACER SPACER SPACER SPACER SPACER SPACER SPACER SPACER SPACER EVALUATION BOARD/KIT/MODULE (EVM) WARNINGS, RESTRICTIONS AND DISCLAIMERS For Feasibility Evaluation Only, in Laboratory/Development Environments. Unless otherwise indicated, this EVM is not a finished electrical equipment and not intended for consumer use. It is intended solely for use for preliminary feasibility evaluation in laboratory/development environments by technically qualified electronics experts who are familiar with the dangers and application risks associated with handling electrical mechanical components, systems and subsystems. It should not be used as all or part of a finished end product. Your Sole Responsibility and Risk. You acknowledge, represent and agree that: 1. You have unique knowledge concerning Federal, State and local regulatory requirements (including but not limited to Food and Drug Administration regulations, if applicable) which relate to your products and which relate to your use (and/or that of your employees, affiliates, contractors or designees) of the EVM for evaluation, testing and other purposes. 2. You have full and exclusive responsibility to assure the safety and compliance of your products with all such laws and other applicable regulatory requirements, and also to assure the safety of any activities to be conducted by you and/or your employees, affiliates, contractors or designees, using the EVM. Further, you are responsible to assure that any interfaces (electronic and/or mechanical) between the EVM and any human body are designed with suitable isolation and means to safely limit accessible leakage currents to minimize the risk of electrical shock hazard. 3. Since the EVM is not a completed product, it may not meet all applicable regulatory and safety compliance standards (such as UL, CSA, VDE, CE, RoHS and WEEE) which may normally be associated with similar items. You assume full responsibility to determine and/or assure compliance with any such standards and related certifications as may be applicable. You will employ reasonable safeguards to ensure that your use of the EVM will not result in any property damage, injury or death, even if the EVM should fail to perform as described or expected. 4. You will take care of proper disposal and recycling of the EVM’s electronic components and packing materials. Certain Instructions. It is important to operate this EVM within TI’s recommended specifications and environmental considerations per the user guidelines. Exceeding the specified EVM ratings (including but not limited to input and output voltage, current, power, and environmental ranges) may cause property damage, personal injury or death. If there are questions concerning these ratings please contact a TI field representative prior to connecting interface electronics including input power and intended loads. Any loads applied outside of the specified output range may result in unintended and/or inaccurate operation and/or possible permanent damage to the EVM and/or interface electronics. Please consult the EVM User's Guide prior to connecting any load to the EVM output. If there is uncertainty as to the load specification, please contact a TI field representative. During normal operation, some circuit components may have case temperatures greater than 60°C as long as the input and output are maintained at a normal ambient operating temperature. These components include but are not limited to linear regulators, switching transistors, pass transistors, and current sense resistors which can be identified using the EVM schematic located in the EVM User's Guide. When placing measurement probes near these devices during normal operation, please be aware that these devices may be very warm to the touch. As with all electronic evaluation tools, only qualified personnel knowledgeable in electronic measurement and diagnostics normally found in development environments should use these EVMs. Agreement to Defend, Indemnify and Hold Harmless. You agree to defend, indemnify and hold TI, its licensors and their representatives harmless from and against any and all claims, damages, losses, expenses, costs and liabilities (collectively, "Claims") arising out of or in connection with any use of the EVM that is not in accordance with the terms of the agreement. This obligation shall apply whether Claims arise under law of tort or contract or any other legal theory, and even if the EVM fails to perform as described or expected. Safety-Critical or Life-Critical Applications. If you intend to evaluate the components for possible use in safety critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, such as devices which are classified as FDA Class III or similar classification, then you must specifically notify TI of such intent and enter into a separate Assurance and Indemnity Agreement. Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2014, Texas Instruments Incorporated IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed. TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications. In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms. No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949. Products Applications Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com Energy and Lighting www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID www.ti-rfid.com OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com Wireless Connectivity www.ti.com/wirelessconnectivity Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2014, Texas Instruments Incorporated User’s Guide SWRU321A – May 2013 SmartRF™ is a trademark of Texas Instruments SmartRF06 Evaluation Board User’s Guide User’s Guide SWRU321A – May 2013 Page 3/32 Table of Contents 4.1 INSTALLING SMARTRF STUDIO AND USB DRIVERS ................................................................ 7 4.1.1 SmartRF Studio ................................................................................................................. 7 4.1.2 FTDI USB driver ................................................................................................................ 7 5.1 ABSOLUTE MAXIMUM RATINGS ........................................................................................... 11 6.1 XDS100V3 EMULATOR ...................................................................................................... 13 6.1.1 UART back channel ........................................................................................................ 14 6.2 POWER SOURCES ............................................................................................................. 14 6.2.1 USB Power ...................................................................................................................... 15 6.2.2 Battery Power .................................................................................................................. 15 6.2.3 External Power Supply .................................................................................................... 16 6.3 POWER DOMAINS .............................................................................................................. 17 6.3.1 XDS Domain ................................................................................................................... 17 6.3.2 EM Domain...................................................................................................................... 17 6.3.3 3.3 V Domain .................................................................................................................. 18 6.4 LCD ................................................................................................................................. 18 6.5 MICRO SD CARD SLOT ...................................................................................................... 19 6.6 ACCELEROMETER .............................................................................................................. 19 6.7 AMBIENT LIGHT SENSOR .................................................................................................... 20 6.8 BUTTONS .......................................................................................................................... 20 6.9 LEDS ............................................................................................................................... 21 6.9.1 General Purpose LEDs ................................................................................................... 21 6.9.2 XDS100v3 Emulator LEDs .............................................................................................. 21 6.10 EM CONNECTORS ............................................................................................................. 21 6.11 BREAKOUT HEADERS AND JUMPERS ................................................................................... 23 6.11.1 I/O Breakout Headers ..................................................................................................... 23 6.11.2 XDS100v3 Emulator Bypass Headers ............................................................................ 24 6.11.3 20-pin ARM JTAG Header .............................................................................................. 25 6.11.4 10-pin ARM Cortex Debug Header ................................................................................. 26 6.12 CURRENT MEASUREMENT .................................................................................................. 27 6.12.1 High-side current sensing ............................................................................................... 27 6.12.2 Current Measurement Jumper ........................................................................................ 27 7.1 20-PIN ARM JTAG HEADER .............................................................................................. 29 7.2 10-PIN ARM CORTEX DEBUG HEADER ............................................................................... 29 7.3 CUSTOM STRAPPING ......................................................................................................... 30 List of Figures Figure 1 – Driver install: a) Update driver, b) Specify path to FTDI drivers..................................... 8 Figure 2 – Driver install: a) VCP loaded and b) drivers successfully installed ................................ 8 Figure 3 – SmartRF06EB (rev. 1.2.1) with EM connected ............................................................ 10 Figure 4 – SmartRF06EB architecture .......................................................................................... 12 Figure 5 – SmartRF06EB revision 1.2.1 front side ........................................................................ 13 Figure 6 – SmartRF06EB revision 1.2.1 reverse side ................................................................... 13 Figure 7 – Jumper mounted on J5 to enable the UART back channel ......................................... 14 Figure 8 – Main power switch (P501) and source selection switch (P502) ................................... 15 Figure 9 – SmartRF06EB power selection switch (P502) in “USB” position ................................. 15 Figure 10 – SmartRF06EB power source selection switch (P502) in “BAT” position ................... 16 Figure 11 – SmartRF06EB external power supply header (J501) ................................................ 16 Figure 12 – Power domain overview of SmartRF06EB ................................................................. 17 Figure 13 – Mount a jumper on J502 to bypass EM domain voltage regulator ............................. 18 Figure 14 – Simplified schematic of Ambient Light Sensor setup ................................................. 20 Figure 15 – SmartRF06EB EM connectors RF1 and RF2 ............................................................ 21 User’s Guide SWRU321A – May 2013 Page 4/32 Figure 16 – SmartRF06EB I/O breakout overview ........................................................................ 23 Figure 17 – XDS100v3 Emulator Bypass Header (P408) ............................................................. 24 Figure 18 – 20-pin ARM JTAG header (P409) .............................................................................. 25 Figure 19 – 10-pin ARM Cortex Debug header (P410) ................................................................. 26 Figure 20 – Simplified schematic of high-side current sensing setup ........................................... 27 Figure 21 – Measuring current consumption using jumper J503 .................................................. 27 Figure 22 – Simplified connection diagram for different debugging scenarios ............................. 28 Figure 23 – Debugging external target using SmartRF06EB ........................................................ 29 Figure 24 – ARM JTAG header (P409) with strapping to debug external target .......................... 30 List of Tables Table 1 – SmartRF06EB features ................................................................................................... 5 Table 2 – Supply voltage: Recommended operating conditions and absolute max. ratings ........ 11 Table 3 – Temperature: Recommended operating conditions and storage temperatures ........... 11 Table 4 – UART Back channel signal connections ....................................................................... 14 Table 5 – Power domain overview of SmartRF06EB .................................................................... 17 Table 6 – LCD signal connections ................................................................................................. 19 Table 7 – Micro SD Card signal connections ................................................................................ 19 Table 8 – Accelerometer signal connections ................................................................................. 20 Table 9 – Ambient Light Sensor signal connections ..................................................................... 20 Table 10 – Button signal connections ........................................................................................... 20 Table 11 – General purpose LED signal connections ................................................................... 21 Table 12 – EM connector RF1 pin-out........................................................................................... 22 Table 13 – EM connector RF2 pin-out........................................................................................... 22 Table 14 – SmartRF06EB I/O breakout overview ......................................................................... 24 Table 15 – 20-pin ARM JTAG header pin-out (P409) ................................................................... 25 Table 16 – 10-pin ARM Cortex Debug header pin-out (P410) ...................................................... 26 Table 17 – Debugging external target: Minimum strapping (cJTAG support) ............................... 30 Table 18 – Debugging external target: Optional strapping ............................................................ 30 User’s Guide SWRU321A – May 2013 Page 5/32 1 Introduction The SmartRF06 Evaluation Board (SmartRF06EB or simply EB) is the motherboard in development kits for Low Power RF ARM Cortex®-M based System on Chips from Texas Instruments. The board has a wide range of features, listed in Table 1 below. Component Description TI XDS100v3 Emulator cJTAG and JTAG emulator for easy programming and debugging of SoCs on Evaluation Modules or external targets. High-speed USB 2.0 interface Easy plug and play access to full SoC control using SmartRF™ Studio PC software. Integrated serial port over USB enables communication between the SoC via the UART back channel. 64x128 pixels serial LCD Big LCD display for demo use and user interface development. LEDs Four general purpose LEDs for demo use or debugging. Micro SD card slot External flash for extra storage, over-the-air upgrades and more. Buttons Five push-buttons for demo use and user interfacing. Accelerometer Three-axis highly configurable digital accelerometer for application development and demo use. Light Sensor Ambient Light Sensor for application development and demo use. Current measurement Current sense amplifier for high side current measurements. Breakout pins Easy access to SoC GPIO pins for quick and easy debugging. Table 1 – SmartRF06EB features 2 About this manual This manual contains reference information about the SmartRF06EB. Chapter 4 will give a quick introduction on how to get started with the SmartRF06EB. It describes how to install SmartRF™ Studio to get the required USB drivers for the evaluation board. Chapter 5 briefly explains how the EB can be used throughout a project’s development cycle. Chapter 6 gives an overview of the various features and functionality provided by the board. A troubleshooting guide is found in chapter 8 and Appendix A contains the schematics for SmartRF06EB revision 1.2.1. The PC tools SmartRF™ Studio and SmartRF™ Flash Programmer have their own user manual. See chapter 9 for references to relevant documents and web pages. User’s Guide SWRU321A – May 2013 Page 6/32 3 Acronyms and Abbreviations ALS Ambient Light Sensor cJTAG Compact JTAG (IEEE 1149.7) CW Continuous Wave DK Development Kit EB Evaluation Board EM Evaluation Module FPGA Field-Programmable Gate Array I/O Input/Output JTAG Joint Test Action Group (IEEE 1149.1) LCD Liquid Crystal Display LED Light Emitting Diode LPRF Low Power RF MCU Micro Controller MISO Master In, Slave Out (SPI signal) MOSI Master Out, Slave In (SPI signal) NA Not Applicable / Not Available NC Not Connected RF Radio Frequency RTS Request to Send RX Receive SoC System on Chip SPI Serial Peripheral Interface TI Texas Instruments TP Test Point TX Transmit UART Universal Asynchronous Receive Transmit USB Universal Serial Bus VCP Virtual COM Port User’s Guide SWRU321A – May 2013 Page 7/32 4 Getting Started Before connecting the SmartRF06EB to the PC via the USB cable, it is highly recommended to perform the steps described below. 4.1 Installing SmartRF Studio and USB drivers Before your PC can communicate with the SmartRF06EB over USB, you will need to install the USB drivers for the EB. The latest SmartRF Studio installer [1] includes USB drivers both for Windows x86 and Windows x64 platforms. After you have downloaded SmartRF Studio from the web, extract the zip-file, run the installer and follow the instructions. Select the complete installation to include the SmartRF Studio program, the SmartRF Studio documentation and the necessary drivers needed to communicate with the SmartRF06EB. 4.1.1 SmartRF Studio SmartRF Studio is a PC application developed for configuration and evaluation of many RF-IC products from Texas Instruments. The application is designed for use with SmartRF Evaluation Boards, such as SmartRF06EB, and runs on Microsoft Windows operating systems. SmartRF Studio lets you explore and experiment with the RF-ICs as it gives full overview and access to the devices’ registers to configure the radio and has a control interface for simple radio operation from the PC. This means that SmartRF Studio will help radio system designers to easily evaluate the RF-IC at an early stage in the design process. It also offers a flexible code export function of radio register settings for software developers. The latest version of SmartRF Studio can be downloaded from the Texas Instruments website [1], where you will also find a complete user manual. 4.1.2 FTDI USB driver SmartRF PC software such as SmartRF Studio uses a proprietary USB driver from FTDI [2] to communicate with SmartRF06 evaluation boards. Connect your SmartRF06EB to the computer with a USB cable and turn it on. If you did a complete install of SmartRF Studio, Windows will recognize the device automatically and the SmartRF06EB is ready for use! 4.1.2.1 Install FTDI USB driver manually in Windows If the SmartRF06EB was not properly recognized after plugging it into your PC, try the following steps to install the necessary USB drivers. The steps described are for Microsoft Windows 7, but are very similar to those in Windows XP and Windows Vista. It is assumed that you have already downloaded and installed the latest version of SmartRF Studio 7 [1]. Open the Windows Device Manager and right click on the first “Texas Instruments XDS100v3” found under “Other devices” as shown in Figure 1a. Select “Update Driver Software…” and, in the appearing dialog, browse to \Drivers\ftdi as shown in Figure 1b. User’s Guide SWRU321A – May 2013 Page 8/32 a) b) Figure 1 – Driver install: a) Update driver, b) Specify path to FTDI drivers Press Next and wait for the driver to be installed. The selected device should now appear in the Device Manager as “TI XDS100v3 Channel x” (x = A or B) as seen in Figure 2b. Repeat the above steps for the second “Texas Instruments XDS100v3” listed under “Other devices”. 4.1.2.1.1 Enable XDS100v3 UART back channel on Windows If you have both “TI XDS100v3 Channel A” and “TI XDS100v3 Channel B” listed under Universal Serial Bus Controllers, you can proceed. Right click on “TI XDS100v3 Channel B” and select Properties. Under the Advanced tab, make sure “Load VCP” is checked as shown in Figure 2a. A “USB Serial Port” may be listed under “Other devices”, as seen in Figure 1a. Follow the same steps as for the “Texas Instruments XDS100v3” devices to install the VCP driver. When the drivers from \Drivers\ftdi is properly installed, you should see the USB Serial Port device be listed under “Ports (COM & LPT)” as shown in Figure 2b. The SmartRF06EB drivers are now installed correctly. Figure 2 – Driver install: a) VCP loaded and b) drivers successfully installed User’s Guide SWRU321A – May 2013 Page 9/32 4.1.2.2 Install XSD100v3 UART back channel on Linux The ports on SmartRF06EB will typically be mounted as ttyUSB0 or ttyUSB1. The UART back channel is normally mounted as ttyUSB1. 1. Download the Linux drivers from [2]. 2. Untar the ftdi_sio.tar.gz file on your Linux system. 3. Connect the SmartRF06EB to your system. 4. Install driver a. Verify the USB Product ID (PID) and Vendor ID (VID). The TI XDS100v3 USB VID is 0x0403 and the PID is 0xA6D1, but if you wish to find the PID using a terminal window/shell, use > lsusb | grep -i future b. Install driver using modprobe In a terminal window/shell, navigate to the ftdi_sio folder and run > sudo modprobe ftdi_sio vendor=0x403 product=0xA6D1 SmartRF06EB should now be correctly mounted. The above steps have been tested on Fedora and Ubuntu distributions. If the above steps failed, try uninstalling ‘brltty’ prior to step 5 (technical note TN_101, [2]). > sudo apt-get remove brltty User’s Guide SWRU321A – May 2013 Page 10/32 5 Using the SmartRF06 Evaluation Board The SmartRF06EB is a flexible test and development platform that works together with RF Evaluation Modules from Texas Instruments. An Evaluation Module (EM) is a small RF module with RF chip, balun, matching filter, SMA antenna connector and I/O connectors. The modules can be plugged into the SmartRF06EB which lets the PC take direct control of the RF device on the EM over the USB interface. SmartRF06EB currently supports: - CC2538EM SmartRF06EB is included in e.g. the CC2538 development kit. Figure 3 – SmartRF06EB (rev. 1.2.1) with EM connected The PC software that controls the SmartRF06EB + EM is SmartRF Studio. Studio can be used to perform several RF tests and measurements, e.g. to set up a CW signal and send/receive packets. User’s Guide SWRU321A – May 2013 Page 11/32 The EB+EM can be of great help during the whole development cycle for a new RF product. - Perform comparative studies. Compare results obtained with EB+EM with results from your own system. - Perform basic functional tests of your own hardware by connecting the radio on your board to SmartRF06EB. SmartRF Studio can be used to exercise the radio. - Verify your own software with known good RF hardware, by simply connecting your own microcontroller to an EM via the EB. Test the send function by transmitting packets from your SW and receive with another board using SmartRF Studio. Then transmit using SmartRF Studio and receive with your own software. - Develop code for your SoC and use the SmartRF06EB as a standalone board without PC tools. The SmartRF06EB can also be used as a debugger interface to the SoCs from IAR Embedded workbench for ARM or Code Composer Studio from Texas Instruments. For details on how to use the SmartRF06EB to debug external targets, see chapter 7. 5.1 Absolute Maximum Ratings The minimum and maximum operating supply voltages and absolute maximum ratings for the active components onboard the SmartRF06EB are summarized in Table 2. Table 3 lists the recommended operating temperature and storage temperature ratings. Please refer to the respective component’s datasheet for further details. Component Operating voltage Absolute max. rating Min. [V] Max. [V] Min. [V] Max. [V] XDS100v3 Emulator1 [4] +1.8 +3.6 -0.3 +3.75 LCD [5] +3.0 +3.3 -0.3 +3.6 Accelerometer [6] +1.62 +3.6 -0.3 +4.25 Ambient light sensor [7] +2.32 +5.5 NA +6 Table 2 – Supply voltage: Recommended operating conditions and absolute max. ratings Component Operating temperature Storage temperature Min. [˚C] Max. [˚C] Min. [˚C] Max. [˚C] XDS100v3 Emulator [4] -20 +70 -50 +110 LCD [5] -20 +70 -30 +80 Accelerometer [6] -40 +85 -50 +150 Ambient light sensor [7] -40 +85 -40 +85 Table 3 – Temperature: Recommended operating conditions and storage temperatures 1 The XDS100v3 Emulator is USB powered. Values refer to the supply and I/O pin voltages of the connected target. 2 Recommended minimum operating voltage. User’s Guide SWRU321A – May 2013 Page 12/32 6 SmartRF06 Evaluation Board Overview SmartRF06EB acts as the motherboard in development kits for ARM® Cortex™ based Low Power RF SoCs from Texas Instruments. The board has several user interfaces and connections to external interfaces, allowing fast prototyping and testing of both software and hardware. An overview of the SmartRF06EB architecture is found in Figure 4. The board layout is found in Figure 5 and Figure 6, while the schematics are located in Appendix A. This chapter will give an overview of the general architecture of the board and describe the available I/O. The following sub-sections will explain the I/O in more detail. Pin connections between the EM and the evaluation board I/O can be found in section 6.10. EM Domain (1.8 – 3.6 V) XDS Domain 3.3 V Domain EM Connectors Light Sensor Buttons LEDs Accelerometer XDS100v3 Emulator XDS LEDs Level shifter SD Card Reader Load switch 20-pin ARM JTAG Header Bypass Header UART back channel Level shifter 10-pin ARM Cortex Debug Header (c)JTAG USB I/O breakout headers 3.3 V Domain Enable LCD I/O Breakout Headers Figure 4 – SmartRF06EB architecture User’s Guide SWRU321A – May 2013 Page 13/32 EM current measurement testpoint and jumper XDS bypass header 20-pin ARM JTAG Header General purpose buttons UART back channel breakout XDS LEDs 10-pin ARM Cortex Header EM I/O breakout Main power switch Power source selection switch External power supply connector EM reset button Regulator bypass jumper Micro SD card slot LCD Accelerometer LEDs Ambient Light Sensor EM connectors UART back channel enable Jumper Figure 5 – SmartRF06EB revision 1.2.1 front side 1.5 V AAA Alkaline Battery holder XDS100v3 Emulator 1.5 V AAA Alkaline Battery holder CR2032 coin cell battery holder Figure 6 – SmartRF06EB revision 1.2.1 reverse side 6.1 XDS100v3 Emulator The XDS100v3 Emulator from Texas Instruments has cJTAG and regular JTAG support. cJTAG is a 2-pin extension to regular 4-pin JTAG. The XDS100v3 consists of a USB to JTAG chip from FTDI [2] and an FPGA to convert JTAG instructions to cJTAG format. User’s Guide SWRU321A – May 2013 Page 14/32 In addition to regular debugging capabilities using cJTAG or JTAG, the XDS100v3 Emulator supports a UART backchannel over a USB Virtual COM Port (VCP) to the PC. The UART back channel supports flow control, 8-N-1 format and data rates up to 12Mbaud. Please see the XDS100v3 emulator product page [4] for detailed information about the emulator. The XDS100v3 Emulator is powered over USB and is switched on as long as the USB cable is connected to the SmartRF06EB and the main power switch (S501) is in the ON position. The XDS100v3 Emulator supports targets with operating voltages between 1.8 V and 3.6. The min (max) operating temperature is -20 (+70) ˚C. 6.1.1 UART back channel The mounted EM can be connected to the PC via the XDS100v3 Emulator’s UART back channel. When connected to a PC, the XDS100v3 is enumerated as a Virtual COM Port (VCP) over USB. The driver used is a royalty free VCP driver from FTDI, available for e.g. Microsoft Windows, Linux and Max OS X. The UART back channel gives the mounted EM access to a four pin UART interface, supporting 8-N-1 format at data rates up to 12 Mbaud. To enable the SmartRF06EB UART back channel the “Enable UART over XDS100v3” jumper (J5), located on the lower right side of the EB, must be mounted (Figure 7). Table 4 shows an overview of the I/O signals related to UART Back Channel. Figure 7 – Jumper mounted on J5 to enable the UART back channel Signal name Description Probe header EM pin RF1.7_UART_RX UART Receive (EM data in) EM_UART_RX (P412.2) RF1.7 RF1.9_UART_TX UART Transmit (EM data out) EM_UART_TX (P412.3) RF1.9 RF1.3_UART_CTS UART Clear To Send signal EM_UART_CTS (P412.4) RF1.3 RF2.18_UART_RTS UART Request To Send signal EM_UART_RTS (P412.5) RF2.18 Table 4 – UART Back channel signal connections 6.2 Power Sources There are three ways to power the SmartRF06EB; batteries, USB bus and external power supply. The power source can be selected using the power source selection switch (S502) seen in Figure 8. The XDS100v3 Emulator can only be powered over USB. The main power supply switch (S501) cuts power to the SmartRF06EB. Never connect batteries and an external power source to the SmartRF06EB at the same time! Doing so may lead to excessive currents that may damage the batteries or cause onboard components to break. The CR2032 coin cell battery is in particular very sensitive to reverse currents (charging) and must never be combined with other power sources (AAA batteries or an external power source). User’s Guide SWRU321A – May 2013 Page 15/32 Figure 8 – Main power switch (P501) and source selection switch (P502) 6.2.1 USB Power When the SmartRF06EB is connected to a PC via a USB cable, it can draw power from the USB bus. The onboard voltage regulator supplies approximately 3.3 V to the mounted EM and the EB peripherals. To power the mounted EM and the EB peripherals from the USB bus, the power source selection switch (S502) should be in “USB” position (Figure 9). The maximum current consumption is limited by the regulator to 1500 mA3. Figure 9 – SmartRF06EB power selection switch (P502) in “USB” position 6.2.2 Battery Power The SmartRF06EB can be powered using two 1.5 V AAA alkaline batteries or a 3 V CR2032 coin cell battery. The battery holders for the AAA batteries and the CR2032 coin cell battery are located on the reverse side of the PCB. To power the mounted EM and the EB peripherals using batteries, the power source selection switch (S502) should be in “BAT” position (Figure 10). When battery powered, the EM power domain is by default regulated to 2.1 V. The voltage regulator may be bypassed by mounting a jumper on J502. See section 6.3.2 for more details. Do not power the SmartRF06EB using two 1.5 V AAA batteries and a 3 V CR2032 coin cell battery at the same time. Doing so may lead to excessive currents that may damage the batteries or cause onboard components to break. 3 Note that most USB power sources are limited to 500 mA. User’s Guide SWRU321A – May 2013 Page 16/32 Figure 10 – SmartRF06EB power source selection switch (P502) in “BAT” position 6.2.3 External Power Supply The SmartRF06EB can be powered using an external power supply. To power the mounted EM and the EB peripherals using an external power supply, the power source selection switch (S502) should be in “BAT” position (Figure 10 in section 6.2.2). The external supply’s ground should be connected to the SmartRF06EB ground, e.g. to the ground pad in the top left corner of the EB. Connect the positive supply connector to the external power header J501 (Figure 11). The applied voltage must be in the range from 2.1 V to 3.6 V and limited to max 1.5 A. When powered by an external power supply, the EM power domain is by default regulated to 2.1 V. The voltage regulator may be bypassed by mounting a jumper on J502. See section 6.3.2 for more details. There is a risk of damaging the onboard components if the applied voltage on the external power connector/header is lower than -0.3 V or higher than 3.6 V (combined absolute maximum ratings for onboard components). See section 5.1 for further information. Figure 11 – SmartRF06EB external power supply header (J501) User’s Guide SWRU321A – May 2013 Page 17/32 6.3 Power Domains The SmartRF06EB is divided into three power domains, described in detail in the following sections. The SmartRF06EB components, and what power domain they belong to, is shown in Figure 12 and Table 5 below. XDS domain (3.3 V) XDS100v3, XDS LEDs EM domain (1.8 - 3.6 V) ACC, ALS, keys, LEDs 3.3 V domain (3.3 V) LCD, SD card Power sources USB, batteries, external supply Level shifters Level shifters Mounted EM Figure 12 – Power domain overview of SmartRF06EB Component Power domain Power source Evaluation Module EM domain (LO_VDD) USB, battery, external General Purpose LEDs EM domain (LO_VDD) USB, battery, external Accelerometer EM domain (LO_VDD) USB, battery, external Ambient Light Sensor EM domain (LO_VDD) USB, battery, external Current measurement MSP MCU EM domain (LO_VDD) USB, battery, external LEDs EM domain (LO_VDD) USB, battery, external XDS100v3 Emulator XDS domain USB XDS100v3 LEDs XDS domain USB SD Card Slot 3.3 V domain (HI_VDD) Same as EM domain LCD 3.3 V domain (HI_VDD) Same as EM domain Table 5 – Power domain overview of SmartRF06EB 6.3.1 XDS Domain The XDS100v3 Emulator (see section 6.1) onboard the SmartRF06EB is in the XDS domain. The XDS domain is powered over USB. The USB voltage supply (+5 V) is down-converted to +3.3 V and +1.5 V for the different components of the XDS100v3 Emulator. The SmartRF06EB must be connected to e.g. a PC over USB for the XDS domain to be powered up. The domain is turned on/off by the SmartRF06EB main power switch. 6.3.2 EM Domain The mounted EM board and most of the SmartRF06EB peripherals are powered in the EM domain and signals in this domain (accessible by the EM), are prefixed “LV_” in the schematics. Table 5 lists the EB peripherals that are powered in the EM domain. The domain is turned on/off by the SmartRF06EB power switch. User’s Guide SWRU321A – May 2013 Page 18/32 The EM domain may be powered using various power sources; USB powered (regulated to 3.3 V), battery powered (regulated to 2.1 V or unregulated) and using an external power supply (regulated to 2.1 V or unregulated). When battery powered or powered by an external source, the EM power domain is by default regulated to 2.1 V using a step down converter. The step down converter may be bypassed by mounting a jumper on J502 (Figure 13), powering the EM domain directly from the source. When J502 is not mounted, the EM power domain is regulated to 2.1 V. The maximum current consumption of the EM power domain is then limited by the regulator to 410 mA. Figure 13 – Mount a jumper on J502 to bypass EM domain voltage regulator 6.3.3 3.3 V Domain The 3.3 V domain is a sub domain of the EM domain. The 3.3 V domain is regulated to 3.3 V using a buck-boost converter, irrespective of the source powering the EM domain. Signals in the 3.3V domain (controlled by the EM) are prefixed “HV_” for High Voltage in the schematics. Two EB peripherals are in the 3.3 V domain, the LCD and the SD card slot, as listed in Table 5. These peripherals are connected to the EM domain via level shifters U401 and U402. The 3.3 V domain may be switched on (off) completely by the mounted EM board by pulling signal LV_3.3V_EN to a logical 1 (0). See Table 14 in section 6.11.1 for details about the mapping between the EM and signals onboard the SmartRF06EB. 6.4 LCD The SmartRF06EB comes with a 128x64 pixels display from Electronic Assembly (DOGM128E-6) [4]. The LCD display is available to mounted EM via a SPI interface, enabling software development of user interfaces and demo use. Table 6 shows an overview of the I/O signals related to the LCD. The recommended operating condition for the LCD display is a supply voltage between 3.0 V and 3.3 V. The LCD display is powered from the 3.3 V power domain (HI_VDD). The min (max) operating temperature is -20 (+70) ˚C. The LCD connector on SmartRF06EB is very tight to ensure proper contact between the EM and the LCD. Be extremely cautious when removing the LCD to avoid the display from breaking. NOTE: Mounting a jumper on J502 will not have any effect if the SmartRF06EB is powered over USB (when the power source selection switch, S502, is in “USB” position). User’s Guide SWRU321A – May 2013 Page 19/32 Signal name Description Probe header EM pin LV_3.3V_EN 3.3 V domain enable signal4 RF1.15 (P407.1) RF1.15 LV_LCD_MODE LCD mode signal RF1.11 (P406.7) RF1.11 ¯L¯V¯_¯L¯C¯D¯_¯R¯¯E¯S¯E¯T¯ LCD reset signal (active low) RF1.13 (P406.9) RF1.13 ¯L¯V¯_¯L¯C¯D¯_¯C¯¯S LCD Chip Select (active low) RF1.17 (P407.3) RF1.17 LV_SPI_SCK SPI Clock RF1.16_SCK (P407.2) RF1.16 LV_SPI_MOSI SPI MOSI (LCD input) RF1.18_MOSI (P407.4) RF1.18 Table 6 – LCD signal connections 6.5 Micro SD Card Slot The SmartRF06EB has a micro SD card slot for connecting external SD/MMC flash devices (flash device not included). A connected flash device is available to the mounted EM via a SPI interface, giving it access to extra flash, enabling over-the-air upgrades and more. Table 8 shows an overview of I/O signals related to the micro SD card slot. The micro SD card is powered from the 3.3 V power domain (HI_VDD). Signal name Description Probe header EM pin LV_3.3V_EN 3.3 V domain enable signal4 RF1.15 (P407.1) RF1.15 ¯L¯V¯_¯S¯D¯C¯¯A¯R¯D¯_¯C¯¯S SD card Chip Select (active low) RF2.12 (P411.1) RF2.12 LV_SPI_SCK SPI Clock RF1.16_SCK (P407.2) RF1.16 LV_SPI_MOSI SPI MOSI (SD card input) RF1.18_MOSI (P407.4) RF1.18 LV_SPI_MISO SPI MISO (SD card output) RF1.20_MISO (P407.5) RF1.20 Table 7 – Micro SD Card signal connections 6.6 Accelerometer The SmartRF06EB is equipped with a BMA250 digital accelerometer from Bosch Sensortech [6]. The accelerometer is available to the mounted EM via an SPI interface and has two dedicated interrupt lines. The accelerometer is suitable for application development, prototyping and demo use. Table 8 shows an overview of I/O signals related to the accelerometer. The recommended operating condition for the accelerometer is a supply voltage between 1.62 V and 3.6 V. The min (max) operating temperature is -40 (+85) ˚C. Signal name Description Probe header EM pin LV_ACC_PWR Acc. power enable signal RF2.8 (P407.8) RF2.8 LV_ACC_INT1 Acc. interrupt signal RF2.16 (P411.5) RF2.16 LV_ACC_INT2 Acc. interrupt signal RF2.14 (P411.3) RF2.14 ¯L¯V¯_¯A¯C¯C¯¯¯C¯S¯ Acc. Chip Select (active low) RF2.10 (P407.9) RF2.10 LV_SPI_SCK SPI Clock RF1.16_SCK (P407.2) RF1.16 LV_SPI_MOSI SPI MOSI (acc. input) RF1.18_MOSI (P407.4) RF1.18 4 The LCD and SD card are both powered in the 3.3 V domain and cannot be powered on/off individually. User’s Guide SWRU321A – May 2013 Page 20/32 LV_SPI_MISO SPI MISO (acc. output) RF1.20_MISO (P407.5) RF1.20 Table 8 – Accelerometer signal connections 6.7 Ambient Light Sensor The SmartRF06EB has an analog SFH 5711 ambient light sensor (ALS) from Osram [7] that is available for the mounted EM via the EM connectors, enabling quick application development for demo use and prototyping. Figure 14 and Table 9 shows an overview of I/O signals related to the ambient light sensor. The recommended operating condition for the ambient light sensor is a supply voltage between 2.3 V and 5.5 V. The min (max) operating temperature is -40 (+85) ˚C. Ambient Light Sensor LV_ALS_OUT LV_ALS_PWR 22 kOhm Figure 14 – Simplified schematic of Ambient Light Sensor setup Signal name Description Probe header EM pin LV_ALS_PWR ALS power enable signal RF2.6 (P407.7) RF2.6 LV_ALS_OUT ALS output signal (analog) RF2.5 (P411.6) RF2.5 Table 9 – Ambient Light Sensor signal connections 6.8 Buttons There are 6 buttons on the SmartRF06EB. Status of the LEFT, RIGHT, UP, DOWN and SELECT buttons are available to the mounted EM. These buttons are intended for user interfacing and development of demo applications. The EM RESET button resets the mounted EM by pulling its reset line low (¯R¯F¯2¯.1¯5¯¯R¯¯E¯S¯E¯T¯). Table 10 shows an overview of I/O signals related to the buttons. Signal name Description Probe header EM pin LV_BTN_LEFT Left button (active low) RF1.6 (P406.4) RF1.6 LV_BTN_RIGHT Right button (active low) RF1.8 (P406.5) RF1.8 LV_BTN_UP Up button (active low) RF1.10 (P406.6) RF1.10 LV_BTN_DOWN Down button (active low) RF1.12 (P406.8) RF1.12 LV_BTN_SELECT Select button (active low) RF1.14 (P406.10) RF1.14 ¯L¯V¯_¯B¯T¯N¯_¯R¯¯E¯S¯E¯T¯ EM reset button (active low) ¯R¯F¯2¯.1¯5¯¯R¯¯E¯S¯E¯T¯ (P411.4) RF2.15 Table 10 – Button signal connections User’s Guide SWRU321A – May 2013 Page 21/32 6.9 LEDs 6.9.1 General Purpose LEDs The four LEDs D601, D602, D603, D604 can be controlled from the mounted EM and are suitable for demo use and debugging. The LEDs are active high. Table 11 shows an overview of I/O signals related to the LEDs. Signal name Description Probe header EM pin LV_LED_1 LED 1 (red) RF2.11 (P407.10) RF2.11 LV_LED_2 LED 2 (yellow) RF2.13 (P411.2) RF2.13 LV_LED_3 LED 3 (green) RF1.2 (P406.1) RF1.2 LV_LED_4 LED 4 (red-orange) RF1.4 (P406.2) RF1.4 Table 11 – General purpose LED signal connections 6.9.2 XDS100v3 Emulator LEDs The XDS100v3 emulator has two LEDs to indicate its status, D2 and D4. The LEDs are located on the top side of the SmartRF06EB. LED D2 is lit whenever the XDS100v3 Emulator is powered, while LED D4 (ADVANCED MODE) is lit when the XDS100v3 is in an active cJTAG debug state. 6.10 EM Connectors The EM connectors, shown in Figure 15, are used for connecting an EM board to the SmartRF06EB. The connectors RF1 and RF2 are the main interface and are designed to inhibit incorrect mounting of the EM board. The pin-out of the EM connectors is given in Table 12 and Table 13. Figure 15 – SmartRF06EB EM connectors RF1 and RF2 User’s Guide SWRU321A – May 2013 Page 22/32 EM pin Signal name Description Probe header Breakout header RF1.1 GND Ground RF1.2 RF1.2 GPIO signal to EM board P406.1 P403.1-2 RF1.3 RF1.3_UART_CTS UART back channel / GPIO P412.4 P408.15-16 RF1.4 RF1.4 GPIO signal to EM board P406.2 P403.3-4 RF1.5 RF1.5 GPIO signal to EM board P406.3 P403.5-6 RF1.6 RF1.6 GPIO signal to EM board P406.4 P403.7-8 RF1.7 RF1.7_UART_RX UART back channel (EM RX) P412.2 P408.11-12 RF1.8 RF1.8 GPIO signal to EM board P406.5 P403.9-10 RF1.9 RF1.9_UART_TX UART back channel (EM TX) P412.3 P408.13-14 RF1.10 RF1.10 GPIO signal to EM board P406.6 P403.11-12 RF1.11 RF1.11 GPIO signal to EM board P406.7 P403.13-14 RF1.12 RF1.12 GPIO signal to EM board P406.8 P403.15-16 RF1.13 RF1.13 GPIO signal to EM board P406.9 P403.17-18 RF1.14 RF1.14 GPIO signal to EM board P406.10 P403.19-20 RF1.15 RF1.15 GPIO signal to EM board P407.1 P404.1-2 RF1.16 RF1.16_SPI_SCK EM SPI Clock P407.2 P404.3-4 RF1.17 RF1.17 GPIO signal to EM board P407.3 P404.5-6 RF1.18 RF1.18_SPI_MOSI EM SPI MOSI P407.4 P404.7-8 RF1.19 GND Ground RF1.20 RF1.20_SPI_MISO EM SPI MISO P407.5 P404.9-10 Table 12 – EM connector RF1 pin-out EM pin Signal name Description Probe header Breakout header RF2.1 RF2.1_JTAG_TCK JTAG Test Clock P409.9 P408.1-2 RF2.2 GND Ground RF2.3 RF_VDD2 EM power TP10 J503.1-2 RF2.4 RF2.4_JTAG_TMS JTAG Test Mode Select P409.7 P408.3-4 RF2.5 RF2.5 GPIO signal to EM board P407.6 P404.11-12 RF2.6 RF2.6 GPIO signal to EM board P407.7 P404.13-14 RF2.7 RF_VDD1 EM power TP10 J503.1-2 RF2.8 RF2.8 GPIO signal to EM board P407.8 P404.15-16 RF2.9 RF_VDD1 EM power TP10 J503.1-2 RF2.10 RF2.10 GPIO signal to EM board P407.9 P404.17-18 RF2.11 RF2.11 GPIO signal to EM board P407.10 P404.19-20 RF2.12 RF2.12 GPIO signal to EM board P411.1 P405.1-2 RF2.13 RF2.13 GPIO signal to EM board P411.2 P405.3-4 RF2.14 RF2.14 GPIO signal to EM board P411.3 P405.5-6 RF2.15 ¯R¯F¯2¯.1¯5¯¯R¯¯E¯S¯E¯T¯ EM reset signal (active low) P411.4 P405.7-8 RF2.16 RF2.16 GPIO signal to EM board P411.5 P405.9-10 RF2.17 RF2.17_JTAG_TDI GPIO / JTAG Test Data In P409.5 P408.5-6 RF2.18 RF2.18_UART_RTS GPIO / UART Back Channel P412.5 P408.17-18 RF2.19 RF2.19_JTAG_TDO GPIO / JTAG Test Data Out P409.13 P408.7-8 RF2.20 GND Ground Table 13 – EM connector RF2 pin-out User’s Guide SWRU321A – May 2013 Page 23/32 6.11 Breakout Headers and Jumpers The SmartRF06EB has several breakout headers, giving access to all EM connector pins. An overview of the SmartRF06EB I/O breakout headers is given in Figure 16. Probe headers P406, P407, P411 and P412 give access to the I/O signals of the mounted EM. Breakout headers P403, P404 and P405 allow the user to map any EM I/O signal to any peripheral on the SmartRF06EB. The XDS bypass header (P408) makes it possible to disconnect the XDS100v3 Emulator onboard the EB from the EM. Using the 20-pin ARM JTAG header (P409) or the 10-pin ARM Cortex Debug Header (P410), it is possible to debug external targets using the onboard emulator. Evaluation Module Peripheral probe headers P406, P407, P411 I/O breakout headers P403, P404, P405 SmartRF06EB peripherals ACC, ALS, keys, LCD, LED, SD card XDS bypass header P408 XDS100v3 Emulator 20-pin ARM-JTAG Debug Header P409 10-pin Cortex Debug Header P410 UART back channel probe header P412 Figure 16 – SmartRF06EB I/O breakout overview 6.11.1 I/O Breakout Headers The I/O breakout headers on SmartRF06EB consist of pin connectors P406, P407, P411 and P412. P406, P407 and P411 are located at the top left side of SmartRF06EB. All EM signals available on these probe headers can be connected to or disconnected from SmartRF06EB peripherals using jumpers on headers P403, P404, P405. Probe header P412 is located near the bottom right corner of the SmartRF06EB. The signals available on P412 are connected to the XDS100v3 Emulator’s UART back channel using jumpers on header P408. The I/O breakout mapping between the SmartRF06EB and the mounted EM is given in Table 14. The leftmost column in the below table refers to the silk print seen on the SmartRF06EB. The rightmost column shows the corresponding CC2538 I/O pad on CC2538EM. NOTE: By default, all jumpers are mounted on P403, P404, P405 and P408. The default configuration is assumed in this user’s guide unless otherwise stated. User’s Guide SWRU321A – May 2013 Page 24/32 Probe header Silk print EB signal name EM connector CC2538EM I/O P406 RF1.2 LV_LED_3 RF1.2 PC2 RF1.4 LV_LED_4 RF1.4 PC3 RF1.5 NC RF1.5 PB1 RF1.6 LV_BTN_LEFT RF1.6 PC4 RF1.8 LV_BTN_RIGHT RF1.8 PC5 RF1.10 LV_BTN_UP RF1.10 PC6 RF1.11 LV_LCD_MODE RF1.11 PB2 RF1.12 LV_BTN_DOWN RF1.12 PC7 RF1.13 ¯L¯V¯_¯L¯C¯D¯_¯R¯¯E¯S¯E¯T¯ RF1.13 PB3 RF1.14 LV_BTN_SELECT RF1.14 PA3 P407 RF1.15 LV_3.3V_EN RF1.15 PB4 RF1.16_SCK LV_SPI_SCK RF1.16 PA2 RF1.17 ¯L¯V¯_¯L¯C¯D¯_¯C¯¯S RF1.17 PB5 RF1.18_MOSI LV_SPI_MOSI RF1.18 PA4 RF1.20_MISO LV_SPI_MISO RF1.20 PA5 RF2.5 LV_ALS_OUT RF2.5 PA6 RF2.6 LV_ALS_PWR RF2.6 PA7 RF2.8 LV_ACC_PWR RF2.8 PD4 RF2.10 ¯L¯V¯_¯A¯C¯C¯¯¯C¯S¯ RF2.10 PD5 RF2.11 LV_LED_1 RF2.11 PC0 P411 RF2.12 ¯L¯V¯_¯S¯D¯C¯¯A¯R¯D¯_¯C¯¯S RF2.12 PD0 RF2.13 LV_LED_2 RF2.13 PC1 RF2.14 LV_ACC_INT2 RF2.14 PD1 RF2.15_RESET ¯L¯V¯_¯B¯T¯N¯_¯R¯¯E¯S¯E¯T¯ RF2.15 nRESET RF2.16 LV_ACC_INT1 RF2.16 PD2 P412 EM_UART_RX RF1.7_UART_RX RF1.7 PA0 EM_UART_TX RF1.9_UART_TX RF1.9 PA1 EM_UART_CTS RF1.3_UART_CTS RF1.3 PB0 EM_UART_RTS RF2.18_UART_RTS RF2.18 PD3 Table 14 – SmartRF06EB I/O breakout overview 6.11.2 XDS100v3 Emulator Bypass Headers The XDS100v3 Emulator bypass header, P408, is by default mounted with jumpers (Figure 17), connecting the XDS100v3 Emulator to a mounted EM or external target. By removing the jumpers on P408, the XDS100v3 Emulator may be disconnected from the target. Figure 17 – XDS100v3 Emulator Bypass Header (P408) User’s Guide SWRU321A – May 2013 Page 25/32 6.11.3 20-pin ARM JTAG Header The SmartRF06EB comes with a standard 20-pin ARM JTAG header [8] (Figure 18), enabling the user to debug an external target using the XDS100v3 Emulator. The pin-out of the ARM JTAG header is given in Table 15. Chapter 7 has more information on how to debug an external target using the XDS100v3 Emulator onboard the SmartRF06EB. Figure 18 – 20-pin ARM JTAG header (P409) Pin Signal Description EB signal name XDS bypass header P409.1 VTRef Voltage reference VDD_SENSE P408.19-20 P409.2 VSupply Voltage supply NC P409.3 nTRST Test Reset NC P409.4 GND Ground GND P409.5 TDI Test Data In RF2.17_JTAG_TDI P408.5-6 P409.6 GND Ground GND P409.7 TMS Test Mode Select RF2.4_JTAG_TMS P408.3-4 P409.8 GND Ground GND P409.9 TCK Test Clock RF2.1_JTAG_TCK P408.1-2 P409.10 GND Ground GND P409.11 RTCK Return Clock NC P409.12 GND Ground GND P409.13 TDO Test Data Out RF2.19_JTAG_TDO P408.7-8 P409.14 GND Ground GND P409.15 nSRST System Reset ¯R¯F¯2¯.1¯5¯¯R¯¯E¯S¯E¯T¯ P408.9-10 P409.16 GND Ground GND P409.17 DBGRQ Debug Request NC P409.18 GND Ground GND P409.19 DBGACK Debug Acknowledge NC P409.20 GND Ground GND Table 15 – 20-pin ARM JTAG header pin-out (P409) User’s Guide SWRU321A – May 2013 Page 26/32 6.11.4 10-pin ARM Cortex Debug Header The SmartRF06EB comes with a standard 10-pin ARM Cortex debug header [8] (Figure 19), enabling the user to debug an external target using the XDS100v3 Emulator. The ARM Cortex debug header is located near the right hand edge of the EB. The header pin-out is given in Table 16. Chapter 7 has more information on how to debug an external target using the XDS100v3 Emulator onboard the SmartRF06EB. Figure 19 – 10-pin ARM Cortex Debug header (P410) Pin Signal Description EB signal name XDS bypass header P410.1 VCC Voltage reference VDD_SENSE P408.19-20 P410.2 TMS Test Mode Select RF2.4_JTAG_TMS P408.3-4 P410.3 GND Ground GND P410.4 TCK Test Clock RF2.1_JTAG_TCK P408.1-2 P410.5 GND Ground GND P410.6 TDO Test Data Out RF2.19_JTAG_TDO P408.7-8 P410.7 KEY Key NC P410.8 TDI Test Data In RF2.17_JTAG_TDI P408.5-6 P410.9 GNDDetect Ground detect GND P410.10 nRESET System Reset ¯R¯F¯2¯.1¯5¯¯R¯¯E¯S¯E¯T¯ P408.9-10 Table 16 – 10-pin ARM Cortex Debug header pin-out (P410) User’s Guide SWRU321A – May 2013 Page 27/32 6.12 Current Measurement The SmartRF06EB provides two options for easy measurements of the current consumption of a mounted EM. The following sections describe these two options in detail. 6.12.1 High-side current sensing The SmartRF06EB comes with a current sensing unit for measuring the current consumption of the mounted EM (Figure 20). The current sensing setup is “high-side”, that is, it measures the current going to the mounted EM. The current is converted to a voltage, available at the CURMEAS_OUTPUT test point (TP11), located near the right edge of the SmartRF06EB. Using the SmartRF06EB together with for example an oscilloscope makes it easy to measure the EM current consumption as a function of time. The relationship between the voltage measured at CURMEAS_OUTPUT, VCURMEAS, and the EM current consumption, IEM, is given by Equation 1 below. 15 V I CURMEAS EM (1) G = 100 0.15 Ohm To EM IEM VCURMEAS Figure 20 – Simplified schematic of high-side current sensing setup 6.12.2 Current Measurement Jumper SmartRF06EB has a current measurement header, J503, for easy measurement of EM current consumption. Header J503 is located on the upper right hand side of the EB. By replacing the jumper with an ammeter, as shown in Figure 21, the current consumption of the mounted EM can be measured. Figure 21 – Measuring current consumption using jumper J503 User’s Guide SWRU321A – May 2013 Page 28/32 7 Debugging an external target using SmartRF06EB You can easily use XDS100v3 Emulator onboard the SmartRF06EB to debug an external target. It is in this chapter assumed that the target is self-powered. When debugging an external, self-powered target using SmartRF06EB, make sure to remove the jumper from the current measurement header (J503) as shown in the second scenario of Figure 22. In this scenario, the onboard XDS100v3 senses the target voltage of the external target. In the left side scenario of the same figure, the XDS100v3 senses the target voltage of the EB’s EM domain. Having a jumper mounted on header J503 when debugging an external target will cause a conflict between the EB’s EM domain supply voltage and the target’s supply voltage. This may result in excess currents, damaging the onboard components of the SmartRF06EB or the target board. In Figure 22, the right hand side scenario shows how it is possible to debug an EM mounted on the SmartRF06EB using an external debugger. In this scenario, all the jumpers must be removed from the SmartRF06EB header P408 to avoid signaling conflicts between the onboard XDS100v3 Emulator and the external debugger. XDS100v3 06EB XDS + EM EM (EM domain) XDS100v3 06EB XDS + external target Ext. target (Target VDD) EM (EM domain) XDS100v3 External debugger + EM External debugger EM (EM domain) P408 (jumpers on) P408 (jumpers off) J503 (mounted) J503 (mounted) J503 (not mounted) Current measurement jumper XDS bypass header P408 (jumpers on) Debug header P409/P410 P409/P410 Figure 22 – Simplified connection diagram for different debugging scenarios User’s Guide SWRU321A – May 2013 Page 29/32 7.1 20-pin ARM JTAG Header The SmartRF06EB has a standard 20-pin ARM JTAG header mounted on the right hand side (P409). Make sure all the jumpers on the XDS bypass header (P408) are mounted and that the jumper is removed from header J503. Connect the external board to the 20-pin ARM JTAG header (P409) using a 20-pin flat cable as seen in Figure 23. Make sure pin 1 on P409 matches pin 1 on the external target. See sections 6.11.3 and 6.11.2 for more info about the 20-pin ARM JTAG header and the XDS bypass header, respectively. Figure 23 – Debugging external target using SmartRF06EB 7.2 10-pin ARM Cortex Debug Header The SmartRF06EB has a standard 10-pin ARM Cortex Debug header mounted on the right hand side (P410). Make sure all the jumpers on the XDS bypass header (P408) are mounted and that the jumper is removed from header J503. Connect the external board to the 10-pin ARM JTAG header using a 10-pin flat cable. Make sure pin 1 on P410 matches pin 1 on the external target See sections 6.11.4 and 6.11.2 for more info about the 10-pin ARM Cortex Debug header and the XDS bypass header, respectively. User’s Guide SWRU321A – May 2013 Page 30/32 7.3 Custom Strapping If the external board does not have a 20-pin ARM JTAG connector nor a 10-pin ARM Cortex connector, the needed signals may be strapped from the onboard XDS100v3 Emulator to the external target board. Make sure all the jumpers on the XDS bypass header (P408) are mounted and that the jumper is removed from header J503. Table 17 shows the signals that must be strapped between the SmartRF06EB and the target board. Table 18 shows additional signals that are optional or needed for debugging using 4-pin JTAG. Figure 24 shows where the signals listed in Table 17 and Table 18 can be found on the 20-pin ARM JTAG header. EB Signal Name EB Breakout Description VDD_SENSE P409.1 Target voltage supply GND P409.4 Common ground for EB and external board RF2.1_JTAG_TCK P409.9 Test Clock RF2.4_JTAG_TMS P409.7 Test Mode Select Table 17 – Debugging external target: Minimum strapping (cJTAG support) EB Signal Name EB Breakout Description RF2.17_JTAG_TDI P409.5 Test Data In (optional for cJTAG) RF2.19_JTAG_TDO P409.13 Test Data Out (optional for cJTAG) ¯R¯F¯2¯.1¯5¯¯R¯¯E¯S¯E¯T¯ P409.15 Target reset signal (optional) Table 18 – Debugging external target: Optional strapping VDD_SENSE RF2.17_JTAG_TDI RF2.4_JTAG_TMS RF2.1_JTAG_TCK RF2.19_JTAG_TDO GND 2-pin cJTAG 4-pin JTAG Optional + RF2.15_RESET Figure 24 – ARM JTAG header (P409) with strapping to debug external target User’s Guide SWRU321A – May 2013 Page 31/32 8 Frequently Asked Questions Q1 Nothing happens when I power up the evaluation board. Why? A1 Make sure you have a power source connected to the EB. Verify that the power source selection switch (S502) is set correctly according to your power source. When powering the EB from either batteries or an external power source, S502 should be in “BAT” position. When powering the EB over USB, the switch should be in “USB” position. Also, make sure the EM current measurement jumper (J503) is short circuited. Q2 Why are there two JTAG connectors on the SmartRF06EB, which one should I use? A2 The SmartRF06EB comes with two different standard debug connectors, the 20-pin ARM JTAG connector (P409) and the compact 10-pin ARM Cortex debug connector (P410). These debug connectors are there to more easily debug external targets without the need of customized strapping. For more details on how to debug external targets using the SmartRF06EB, see chapter 7. Q3 Can I use the SmartRF06EB to debug an 8051 SoC such as CC2530? A3 No, you cannot debug an 8051 SoC using the SmartRF06EB. Q4 When connecting my SmartRF06EB to my PC, no serial port appears. Why? A4 It may be that the virtual COM port on the SmartRF06EB’s XDS100 channel B hasn’t been enabled. Section 4.1.2.1.1 describes how to enable the Vritual COM Port in the USB driver. User’s Guide SWRU321A – May 2013 Page 32/32 9 References [1] SmartRF Studio Product Page http://www.ti.com/tool/smartrftm-studio [2] FTDI USB Driver Page http://www.ftdichip.com [3] SmartRF Flash Programmer Product Page http://www.ti.com/tool/flash-programmer [4] XDS100 Emulator Product Page http://processors.wiki.ti.com/index.php/XDS100 [5] Electronic Assembly DOGM128-6 Datasheet http://www.lcd-module.com/eng/pdf/grafik/dogm128e.pdf [6] Bosch Sensortec BMA250 Datasheet http://ae-bst.resource.bosch.com/media/products/dokumente/bma250/bst-bma250- ds002-05.pdf [7] Osram SFH 5711 http://www.osram-os.com [8] Cortex-M Debug Connectors http://infocenter.arm.com/help/topic/com.arm.doc.faqs/attached/13634/cortex_debu g_connectors.pdf 10 Document History Revision Date Description/Changes SWRU321A 2013-05-21 Minor fixes to Figure 4. Fixed incorrect EM mapping in Table 11. Added steps for installing SmartRF06EB on Linux. SWRU321 2012-09-07 Initial version. User’s Guide SWRU321A – May 2013 Appendix A Schematics SmartRF06EB 1.2.1 LOW VOLTAGE PERIPHERALS XDS100v3 - FPGA XDS100v3 - FTDI EM INTERFACE/ LEVEL SHIFTERS POWER SUPPLY HIGH VOLTAGE PERIPHERALS 1 FM2 FIDUCIAL_MARK_1mm 1 FM4 FIDUCIAL_MARK_1mm H2 HOLE_3 H3 HOLE_3 1 FM5 FIDUCIAL_MARK_1mm H1 HOLE_3 1 FM6 FIDUCIAL_MARK_1mm 1 FM1 FIDUCIAL_MARK_1mm H4 HOLE_3 1 FM3 FIDUCIAL_MARK_1mm TP13 TESTPOINT_PAD TP12 TESTPOINT_PAD ISSUED 1(7) SmartRF06EB - Top Level SCALE SHEET DWG NO. REV. DWG COMPANY NAME SIZE FSCM NO. CONTRACT NO. Texas Instruments A3 DRAWN 13/07/12 13/07/12 12/07/12 MAW 1.2.1 APPROVALS DATE CHECKED PRG_TDO EXT_SELECT ADV_MODE V_USB V_USB RESET_N VCCPLF T_TVD VTARGET UART_EN_N P3.3VXDS P1.8V P3.3VXDS P3.3VXDS +1.5V P3.3VXDS P3.3VXDS P3.3VXDS P3.3VXDS P3.3VXDS P3.3VXDS P3.3VXDS P3.3VXDS 1 2 3 4 STANDBY VDD OUTPUT ASDM GND O1 ASDM 100.000MHZ 1 2 3 Q1 BC846 1 2 3 4 5 6 7 8 9 10 INA+ INAOUTA OUTB V+ INB+ OPA2363 INBVENA ENB U6 OPA2363 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 GND GND GND GND GND UART_EN_N GND VCCPLF CLK_100M P1.5V P3.3VXDS RESET_N DTSA_BYP CBL_DIS EMU1 POD_RLS P3.3VXDS TVD CLK_FAIL SRST_OUT RTCK EMU0 EMU_EN TRST TMS TDO TDI TCK P1.5V P3.3VXDS SUSPEND ALT_FUNC PRG_TCK PRG_TMS PRG_TDI PRG_TDO PRG_TCK PRG_TDI PRG_TMS P3.3VXDS P3.3VXDS PRG_TDO PRG_TRST P3.3VXDS VTARGET P1.5V VTARGET PWRGOOD VTARGET P1.5V ADV_MODE EXT_SELECT T_DIS VTARGET IO32RSB0 GBC0/IO35RSB0 IO13RSB0 GAA0/IO00RSB0 GBC1/IO36RSB0 IO15RSB0 GAA1/IO01RSB0 GAC1/IO05RSB0 GBB0/IO37RSB0 IO19RSB0 GNDQ GBA2/IO41RSB0 GBA0/IO39RSB0 GBB1/IO38RSB0 GBA1/IO40RSB0 GCC2/IO59RSB0 GBB2/IO43RSB0 GDC1/IO61RSB0 IO09RSB0 GCC1/IO51RSB0 GDC0/IO62RSB0 GCC0/IO52RSB0 VMV0 GDA1/IO65RSB0 VCCIB0 GAB1/IO03RSB0 GCA1/IO55RSB0 TDO VCC GBC2/IO45RSB0 VCC VJTAG VCC VCCIB1 VCC IO11RSB0 VMV1 NC GCA0/IO56RSB0 TMS GAC0/IO04RSB0 TRST GDA2/IO70RSB1 IO84RSB1 TDI VPUMP IO87RSB1 GDB2/IO71RSB1 IO42RSB0 IO93RSB1 IO75RSB1 TCK IO96RSB1 IO94RSB1 GDC2/IO72RSB1 IO97RSB1 IO81RSB1 GND IO95RSB1 IO99RSB1 GCB2/IO58RSB0 GND IO100RSB1 IO47RSB0 IO102RSB1 GEC2/IO104RSB1 GEB2/IO105RSB1 GEA2/IO106RSB1 GNDQ VMV1 GEA0/IO107RSB1 GND GEA1/IO108RSB1 GEB0/IO109RSB1 GEB1/IO110RSB1 GEC0/IO111RSB1 GFA2/IO120RSB1 GFA1/IO121RSB1 VCCPLF GFA0/IO122RSB1 VCOMPLF GFB0/IO123RSB1 GFB1/IO124RSB1 IO129RSB1 IO130RSB1 GAC2/IO131RSB1 IO132RSB1 GAA2/IO67RSB1 GND GAB2/IO69RSB1 GND VCCIB1 VCCIB0 GND IO68RSB1 IO28RSB0 IO25RSB0 IO22RSB0 IO07RSB0 GAB0/IO02RSB0 A3PN125-ZVQG100 U11 A3PN125-VQFP 1 2 C23 C_4U7_0603_X5R_K_6 1 2 C27 C_4U7_0603_X5R_K_6 1 2 C26 C_4U7_0603_X5R_K_6 1 2 C24 C_100N_0402_X5R_K_10 1 2 C22 C_100N_0402_X5R_K_10 1 2 C21 C_100N_0402_X5R_K_10 1 2 C25 C_100N_0402_X5R_K_10 2 1 D1 CDBP0130L-G 2 1 R1 L_BEAD_102_0402 1 2 D4 LED_EL19-21SRC 1 2 J5 PINROW_SMD_1X2_2.54MM 1 2 T_TMS R47 R_10K_0402_F 1 2 R50 R_1K0_0402_F 1 2 R49 R_1K0_0402_F 1 2 R27 R_1K0_0402_F 1 2 R24 R_5K1_0402_J 1 2 R54 R_5K1_0402_J 1 2 R41 R_10K_0402_F 1 2 R48 R_10K_0402_F 1 2 R46 R_10K_0402_F 2 1 PWRGOOD R31 R_10K_0402_F 2 1 PRG_TMS R43 R_10K_0402_F 2 1 R44 R_10K_0402_F 1 2 T_EMU4 R52 R_51_0402_G 1 2 T_EMU2 R51 R_51_0402_G 1 2 T_EMU3 R53 R_51_0402_G 1 2 T_TDI R18 R_51_0402_G 1 2 T_RTCK R23 R_51_0402_G 1 2 T_TRST R19 R_51_0402_G 1 2 T_EMU5 R55 R_51_0402_G 1 2 T_TMS R15 R_51_0402_G 1 2 T_TDO R16 R_51_0402_G 1 2 T_TCK R17 R_51_0402_G 1 2 CLK_100M R33 R_51_0402_G 1 2 R30 R_120K_0402_F 2 1 R29 R_120K_0402_F 1 2 R25 R_120K_0402_F 1 2 R42 R_220_0402_J 1 2 T_EMU1 R20 R_470_0402_F 1 2 T_EMU0 R22 R_470_0402_F 1 2 T_SRST R21 R_470_0402_F 1 2 C34 C_15N_0402_X7R_K_25 1 2 T_DIS R12 R_0_0402 1 2 3 4 T_TVD 5 T_TDI T_TDO T_RTCK IO2 IO3 IO1 GND TPD4E002 IO4 TUP8D4E002 1 2 3 4 T_DIS 5 T_TRST T_EMU2 T_TMS IO2 IO3 IO1 GND TPD4E002 IO4 TUP7D4E002 1 2 3 4 T_TCK 5 T_EMU0 T_SRST T_EMU1 IO2 IO3 IO1 GND TPD4E002 IO4 TUP9D4E002 1 2 3 4 T_EMU5 5 T_EMU3 GND T_EMU4 IO2 IO3 IO1 GND TPD4E002 IO4 TUP12D4E002 TP7 PRG_TRST Testpoint_Circle_40mils TP6 PRG_TCK Testpoint_Circle_40mils TP5 PRG_TDI Testpoint_Circle_40mils TP9 Testpoint_Circle_40mils TP8 Testpoint_Circle_40mils TP4 PRG_TMS Testpoint_Circle_40mils PRG_TDO TP3 Testpoint_Circle_40mils ISSUED SmartRF06EB - XDS100v3 - FPGA SCALE SHEET 2(7) DWG NO. REV. DWG COMPANY NAME SIZE FSCM NO. CONTRACT NO. Texas Instruments A3 DRAWN 13/07/12 13/07/12 The XDS100 is connected to the EM through connector P408. See the EM interface page for details. 12/07/12 MAW 1.2.1 APPROVALS DATE CHECKED PWREN V_USB USBDP EEPROM_DATA EEPROM_CS EEPROM_CLK P3.3VXDS P3.3VXDPS3.3VXDS P3.3VXDSP3.3VXDS P3.3VXDS P3.3VXDS P3.3VXDS +1.5V P3.3VXDS P3.3VXDS P3.3VXDS +1.5V +1.5V +1.5V P1.8V P1.8V P1.8V P1.8V P3.3VXDS P3.3VXDS VBUS P1.8V P1.8V P3.3VXDS P3.3VXDS 1 2 R5 R_1K0_0402_F 1 2 3 4 5 6 7 DVBUS D+ ID GND Shield Shield P1 USB-B_MICRO 1 2 3 4 5 6 GND DO CLK 93AA46B CS VCC DIN U1 93AA46B 1 2 C9 C_4U7_0603_X5R_K_6 1 C15 2 C_4U7_0603_X5R_K_6 1 C19 2 C_4U7_0603_X5R_K_6 1 2 C3 C_4U7_0603_X5R_K_6 1 2 C28 C_4U7_0603_X5R_K_6 1 2 C18 C_27P_0402_NP0_J_50 1 2 C13 C_27P_0402_NP0_J_50 1 2 C29 C_100N_0402_X5R_K_10 1 2 C6 C_100N_0402_X5R_K_10 1 2 C12 C_100N_0402_X5R_K_10 1 2 C8 C_100N_0402_X5R_K_10 1 2 C17 C_100N_0402_X5R_K_10 1 2 C11 C_100N_0402_X5R_K_10 1 2 C20 C_100N_0402_X5R_K_10 1 2 C30 C_100N_0402_X5R_K_10 1 2 C5 C_100N_0402_X5R_K_10 1 2 C4 C_100N_0402_X5R_K_10 1 2 C16 C_100N_0402_X5R_K_10 1 2 C14 C_100N_0402_X5R_K_10 1 2 C31 C_100N_0402_X5R_K_10 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 USBDM TCK TDI TDO TMS TRST EMU_EN EMU0 RTCK SRST_OUT CLK_FAIL TVD POD_RLS EMU1 CBL_DIS DTSA_BYP ALT_FUNC SUSPEND PRG_TCK PRG_TDI PRG_TDO PRG_TMS PRG_TRST PWREN EEPROM_DATA EEPROM_CLK EEPROM_CS EECLK EECS RESET REF DP FT2232H DM TEST VREGOUT OSCO BCBUS7 BCBUS6 BCBUS4 BCBUS3 BCBUS2 BCBUS1 VCORE BDBUS7 BDBUS6 VREGIN BDBUS5 BDBUS4 BDBUS3 BDBUS2 BDBUS1 VCCIO ACBUS7 ACBUS6 ACBUS5 ACBUS3 ADBUS7 VCORE OSCI ADBUS6 BCBUS5 ADBUS3 VPHY SUSPEND GND GND GND GND GND GND GND GND ACBUS4 AGND EEDATA BCBUS0 VCORE ACBUS0 BDBUS0 ACBUS2 ADBUS2 VCCIO VCCIO PWREN ADBUS4 VCCIO ADBUS1 ADBUS5 VPLL ACBUS1 ADBUS0 U4 FT2232HL 2 1 R8 L_BEAD_102_0402 2 1 R7 L_BEAD_102_0402 1 2 D2 LED_EL19-21SYGC 2 1 R2 R_0_0402 1 2 R3 R_1K0_0402_F 2 1 R9 R_1K0_0402_F 1 2 R4 R_1K0_0402_F 2 1 R6 R_2K7_0402_F 1 2 R10 R_12K_0402_F 1 2 R28 R_270_0402_F 1 2 3 4 5 GND IO2 IO1 NC VCC TPD2E001 U3 TPD2E001 1 2 3 4 Y1 X_12.000/30/30/10/20 ISSUED 3(7) SmartRF06EB - XDS100v3 - FTDI SCALE SHEET DWG NO. REV. DWG COMPANY NAME SIZE FSCM NO. CONTRACT NO. Texas Instruments A3 DRAWN 13/07/12 13/07/12 12/07/12 MAW 1.2.1 APPROVALS DATE CHECKED VDD_MEASURED LV_SDCARD_CS LV_LED_2 LV_BTN_RESET LV_ACC_INT1 LV_ACC_INT2 RF2.12 RF2.13 RF2.14 RF2.15_RESET RF_VDD1 RF_VDD2 RF1.4 RF1.5 RF1.6 RF1.8 RF1.10 RF1.11 RF1.12 RF1.13 RF1.14 RF1.16_SPI_SCK RF1.17 RF1.18_SPI_MOSI RF1.20_SPI_MISO RF2.5 RF2.6 RF2.8 RF2.10 RF2.11 LV_LED_4 LV_BTN_LEFT LV_BTN_RIGHT LV_BTN_UP LV_LCD_MODE LV_BTN_DOWN LV_LCD_RESET LV_BTN_SELECT LV_3.3V_EN LV_SPI_SCK LV_LCD_CS LV_SPI_MOSI LV_SPI_MISO LV_ALS_OUT LV_ALS_PWR LV_ACC_PWR LV_ACC_CS LV_LED_1 RF1.2 RF1.4 RF1.5 RF1.6 RF1.8 RF1.10 RF1.11 RF1.12 RF1.13 RF1.14 RF1.7_UART_RX RF1.9_UART_TX RF1.3_UART_CTS RF2.18_UART_RTS VDD_MEASURED LV_BTN_RESET VDD_SENSE LO_VDD LO_VDD 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 RF2.1_JTAG_TCK GND RF_VDD2 RF2.4_JTAG_TMS RF2.5 RF2.6 RF_VDD1 RF2.8 RF_VDD1 RF2.10 RF2.11 RF2.12 RF2.13 RF2.14 RF2.15_RESET RF2.16 RF2.17_JTAG_TDI RF2.18_UART_RTS RF2.19_JTAG_TDO GND RF2 SMD_HEADER_2X10 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 LV_LED_3 RF1.2 P403 PINROW_SMD_2X10_2.54MM 1 2 3 4 5 6 7 8 9 10 P406 PINROW_1X10 1 2 3 4 5 6 P412 PINROW_1X6 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 VDD_SENSE GND RF2.17_JTAG_TDI GND RF2.4_JTAG_TMS GND RF2.1_JTAG_TCK GND GND RF2.19_JTAG_TDO GND RF2.15_RESET GND GND GND P409 PINROW_SMD_2X10_2.54MM 1 2 3 4 5 6 7 8 9 10 RF1.15 RF1.16_SPI_SCK RF1.17 RF1.18_SPI_MOSI RF1.20_SPI_MISO RF2.5 RF2.6 RF2.8 RF2.10 RF2.11 P407 PINROW_1X10 1 2 C403 C_100N_0402_X5R_K_10 1 2 C507 C_100N_0402_X5R_K_10 1 2 C404 C_100N_0402_X5R_K_10 1 2 C508 C_100N_0402_X5R_K_10 1 2 R402 R_0_0603 1 2 3 4 S606 PUSH_BUTTON_SKRAAK 1 2 J503 PINROW_SMD_1X2_2.54MM 1 2 3 4 5 6 7 8 9 10 RF2.16 P405 PINROW_SMD_2X5_2.54MM 1 2 3 4 5 6 7 8 9 10 VDD_SENSE RF2.4_JTAG_TMS RF2.1_JTAG_TCK RF2.19_JTAG_TDO RF2.17_JTAG_TDI RF2.15_RESET P410 PINROW_SMD_2X5_1.27MM 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 T_TCK RF2.1_JTAG_TCK T_TMS RF2.4_JTAG_TMS T_TDI RF2.17_JTAG_TDI T_TDO RF2.19_JTAG_TDO T_SRST RF2.15_RESET T_EMU3 RF1.7_UART_RX T_EMU2 RF1.9_UART_TX T_EMU5 RF1.3_UART_CTS T_EMU4 RF2.18_UART_RTS T_TVD VDD_SENSE P408 PINROW_SMD_2X10_2.54MM 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 GND RF1.2 RF1.3_UART_CTS RF1.4 RF1.5 RF1.6 RF1.7_UART_RX RF1.8 RF1.9_UART_TX RF1.10 RF1.11 RF1.12 RF1.13 RF1.14 RF1.15 RF1.16_SPI_SCK RF1.17 RF1.18_SPI_MOSI GND RF1.20_SPI_MISO RF1 SMD_HEADER_2X10 1 2 3 4 CURMEAS_OUTPUT R2 R1 IN- 1.6M GND OUT 1.6M INA216 IN+ U504 INA216A3 1 2 C402 C_0603 1 2 R502 R_0R15_0603_F 1 2 C401 C_0805 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 RF1.15 P404 PINROW_SMD_2X10_2.54MM 1 2 3 4 5 RF2.12 RF2.13 RF2.14 RF2.15_RESET RF2.16 P411 PINROW_1X5 TP10 Testpoint_Circle_40mils TP11 TESTPIN_SMALL TP20 TESTPIN_SMALL EM Interface / SmartRF06EB - Level Shifters ISSUED 4(7) EM DEBUG CONNECTION SCALE SHEET DWG NO. REV. DWG COMPANY NAME SIZE FSCM NO. CONTRACT NO. Texas Instruments A3 DRAWN 13/07/12 13/07/12 EM CONNECTORS 10-pin ARM Cortex JTAG Connector RESET Optional RC filter EM CURRENT MEASUREMENT 12/07/12 MAW 1.2.1 APPROVALS DATE 20-pin ARM JTAG Connector EM <--> EB BREAKOUT and PROBE HEADERS Rshunt = 0.15 Ohm Gain = 100 Vin = Ishunt x Rshunt Vout = Vin x Gain Saturation point for INA216 ----------------------------- Vout_max = LO_VDD (2.1V to 3.6V) Vin_max = LO_VDD / 100 = 21mV to 36mV Ishunt_max = 140mA to 240mA Bypass jumper block for connection between EM and XDS100v3 CHECKED V_USB P3.3V V_USB P2.1V V_UNREG V_UNREG VBAT VBUS P3.3VXDS VBAT HI_VDD P3.3VXDS +1.5V P3.3VXDS P3.3VXDS LO_VDD 3 2 1 + B503 CR2032_SOCKET 1 2 4 3 5 6 8 7 VOUT EN NC VIN GND NR TPS73533 GND U2 TPS73533 1 2 C33 C_100N_0402_X5R_K_10 1 2 3 6 5 4 V_UNREG V_USB S501 SMD_SWITCH_DPDT 2 1 D3 BAT54J 1 2 3 V_UNREG R11 R_0_0402_3PORT_2-3 1 2 C32 C_100N_0402_X5R_K_10 3 2 1 4 5 6 P2.1V P3.3V S502 SMD_SWITCH_DPDT 1 2 C503 C_2U2_0402_X5R_M_6P3VDC 1 2 C502 C_2U2_0402_X5R_M_6P3VDC 1 2 C1 C_100N_0402_X5R_K_10 1 2 C501 C_2U2_0402_X5R_M_6P3VDC 1 2 + B501 1XAAA_KEYSTONE 1 2 + B502 1XAAA_KEYSTONE 1 2 C2 C_18N_0603_X7R_J_50 1 2 C10 C_100N_0402_X5R_K_10 2 1 L502 L_2U2_0805_N_LQM21 1 2 C7 C_4U7_0603_X5R_K_6 2 1 L501 L_2U2_0805_N_LQM21 1 2 J502 PINROW_SMD_1X2_2.54MM 1 2 J501 PINROW_SMD_1X2_2.54MM 2 1 R403 R_10K_0402_F 1 2 C504 C_2U2_0402_X5R_M_6P3VDC 1 2 V_UNREG R501 R_47K_0402_F 2 4 1 3 LV_3.3V_EN ON GND VIN VOUT U601 TPS22902 1 2 3 4 5 SUSPEND TLV70015 NC4 VOUT EN GND VIN U5 TLV70015 1 2 R32 R_10K_0402_F 1 2 4 3 5 6 STAT SW GND VIN ON/BYP VOUT U501 TPS62730 1 2 3 4 6 5 7 8 9 10 11 V_UNREG LV_3.3V_EN FB Thermal VINA PS L1 GND PGND L2 EN VIN VOUT U502 TPS63031 TP2 Testpoint_Circle_40mils TP18 Testpoint_Circle_40mils TP1 Testpoint_Circle_40mils TP17 Testpoint_Circle_40mils TP19 Testpoint_Circle_40mils OFF MAIN ON/OFF SWITCH 2.1V REG ISSUED POWER SELECT SWITCH SmartRF06EB - USB (5V) ON 5(7) Power Supply USB TO 1.5V (FPGA) 3.3V FOR HV PERIPHERALS 3.3V REG USB TO 3.3V BATTERIES SCALE SHEET BATTERY or EXTERNAL DWG NO. REV. DWG COMPANY NAME BATTERY or EXTERNAL SIZE FSCM NO. CONTRACT NO. XDS 3.3V Texas Instruments A3 BATTERY REGULATORS REGULATOR BYPASS JUMPER DRAWN POWERED from USB (XDS100v3) XDS100v3 VOLTAGE REGULATORS BUCK (2.1V) BUCK/BOOST (3.3V) 13/07/12 13/07/12 CONNECTOR FOR EXTERNAL POWER POWERED from BATTERY or External Power Supply 2.1V FOR EM and LV PERIPHERALS USB 12/07/12 MAW 1.2.1 DATE Software controlled switch for enabling the "High Voltage" domain for board peripherals. APPROVALS CHECKED HV_SPI_MOSI HV_SPI_SCK HV_SPI_MISO LO_VDD HI_VDD HI_VDD HI_VDD HI_VDD HI_VDD LO_VDD HI_VDD LO_VDD LO_VDD LO_VDD HI_VDD HI_VDD HI_VDD HI_VDD HI_VDD LO_VDD LO_VDD LO_VDD 1 2 C601 C_1U_0402_X5R_K_6P3 NC(C2-) NC(A3+) NC(A2+) NC(A1+) V2 CAP2P VDD VSS RST CAP3P SI SCL INSERT: 1 pc SIP_SOCKET_SMD_1X20_2.54MM 2 pc SIP_SOCKET_SMD_1X3_2.54MM NC(C1-) NC(C3-) CAP1P A0 CAP2N VOUT CAP1N VSS V0 VDD2 CS1B V3 V4 V1 LCD LCD1 DOGM128W-6_NO_CON 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 LV_SPI_SCK LV_SPI_MOSI LV_SPI_MISO HV_SPI_MISO HV_SPI_MOSI HV_SPI_SCK LV_SDCARD_CS LV_3.3V_EN GND VCCA 1A1 1A2 2DIR 2A1 2A2 2OE 1B1 2B1 VCCB 2B2 1DIR 1OE GND 1B2 U401 SN74AVC4T245 1 2 3 4 5 6 7 8 HV_SDCARD_CS HV_SPI_MOSI HV_SPI_SCK HV_SPI_MISO VDD N/A GND N/A CS DI/MOSI DO/MISO SCLK MicroSD SPI-Mode J601 MICROSD-SPI 1 2 C605 C_1U_0805_X7R_K_16 1 2 C604 C_1U_0805_X7R_K_16 1 2 C607 C_1U_0805_X7R_K_16 1 2 C609 C_1U_0805_X7R_K_16 1 2 C608 C_1U_0805_X7R_K_16 1 2 C602 C_1U_0805_X7R_K_16 1 2 C603 C_1U_0805_X7R_K_16 1 2 C610 C_1U_0805_X7R_K_16 2 1 R602 R_10K_0402_F 2 1 R614 R_0_0603 1 2 C613 C_100N_0402_X5R_K_10 1 2 R601 R_10K_0402_F 1 2 C408 C_100N_0402_X5R_K_10 1 2 R612 R_10K_0402_F 1 2 C407 C_100N_0402_X5R_K_10 1 2 R13 R_10K_0402_F 1 2 3 LV_3.3V_EN LV_3.3V_EN Q2 2N7002F 1 2 C405 C_100N_0402_X5R_K_10 2 1 R606 R_0_0603 1 2 3 P3 SIP_SOCKET_SMD_1X3_2.54MM 2 1 R615 R_0_0603 1 2 C606 C_1U_0805_X7R_K_16 1 2 C406 C_100N_0402_X5R_K_10 2 1 R603 R_39_0603 2 1 R604 R_39_0603 2 1 R605 R_39_0603 1 2 3 P4 SIP_SOCKET_SMD_1X3_2.54MM 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 HV_SPI_MOSI HV_SPI_SCK HV_LCD_MODE HV_LCD_RESET HV_LCD_CS P2 SIP_SOCKET_SMD_1X20_2.54MM 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 LV_LCD_RESET LV_LCD_CS LV_LCD_MODE LV_SDCARD_CS HV_SDCARD_CS HV_LCD_MODE HV_LCD_CS HV_LCD_RESET LV_3.3V_EN LV_3.3V_EN GND VCCA 1A1 1A2 2DIR 2A1 2A2 2OE 1B1 2B1 VCCB 2B2 1DIR 1OE GND 1B2 U402 SN74AVC4T245 TP16 Testpoint_Circle_40mils TP14 Testpoint_Circle_40mils TP15 Testpoint_Circle_40mils High Voltage Peripherals ISSUED SCALE SHEET 6(7) DWG NO. REV. DWG COMPANY NAME SIZE FSCM NO. CONTRACT NO. Texas Instruments A3 SmartRF06EB - LCD DRAWN LEVEL SHIFTERS TRANSLATION : MICROSD 13/07/12 13/07/12 U401: LO HI 1A1 --> 1B1 1A2 --> 1B2 2A1 <-- 2B1 2A2 <-- 2B2 U402: LO HI 1A1 --> 1B1 1A2 --> 1B2 2A1 --> 2B1 2A2 --> 2B2 12/07/12 MAW 1.2.1 APPROVALS DATE LEVEL SHIFTERS CHECKED LV_ALS_OUT LO_VDD LO_VDD 1 2 3 4 5 6 7 8 9 10 11 12 LV_SPI_MISO LV_SPI_MOSI LV_ACC_INT1 LV_ACC_INT2 LV_ACC_PWR LV_ACC_CS LV_SPI_SCK INT1 VDDIO BMA250 NC VDD GNDIO INT2 SDx PS CSB SCx 3-AXIS Accelerometer GND SDO U602 BMA250 1 2 C614 C_100N_0402_X5R_K_10 1 2 LV_ACC_PWR C612 C_100N_0402_X5R_K_10 1 2 C615 C_100N_0402_X5R_K_10 1 2 LV_LED_1 D601 LED_EL19-21SRC 1 2 LV_LED_4 D604 LED_EL19-21SURC 1 2 LV_LED_3 D603 LED_EL19-21SYGC 1 2 3 4 LV_ALS_PWR Iout GND GND VDD LS601 LIGHT_SENSOR_SFH5711 1 2 3 4 S601 LV_BTN_LEFT PUSH_BUTTON_SKRAAK 1 2 3 4 LV_BTN_RIGHT S602 PUSH_BUTTON_SKRAAK 1 2 3 4 LV_BTN_SELECT S603 PUSH_BUTTON_SKRAAK 1 2 3 4 LV_BTN_UP S604 PUSH_BUTTON_SKRAAK 1 2 3 4 S605 LV_BTN_DOWN PUSH_BUTTON_SKRAAK 1 2 R613 R_22K_0603_G 1 2 LV_LED_2 D602 LED_EL19-21UYC_A2 2 1 R608 R_680_0402_G 2 1 R609 R_680_0402_G 2 1 R610 R_680_0402_G 2 1 R607 R_820_0402_G BUTTONS Low Voltage Peripherals ISSUED AMBIENT LIGHT SENSOR SmartRF06EB - YELLOW GREEN RED ACCELEROMETER SCALE SHEET DWG NO. REV. DWG COMPANY NAME SIZE FSCM NO. CONTRACT NO. Texas Instruments A3 LEDS RED-ORANGE 7(7) Accelerometer DRAWN RECOMMENDED 2.3V-5.5V Needs from 1.62V-3.6V 13/07/12 13/07/12 12/07/12 MAW 1.2.1 APPROVALS DATE CHECKED EVALUATION BOARD/KIT/MODULE (EVM) ADDITIONAL TERMS Texas Instruments (TI) provides the enclosed Evaluation Board/Kit/Module (EVM) under the following conditions: The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user indemnifies TI from all claims arising from the handling or use of the goods. Should this evaluation board/kit not meet the specifications indicated in the User’s Guide, the board/kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING LIMITED WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. EXCEPT TO THE EXTENT OF THE INDEMNITY SET FORTH ABOVE, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES. Please read the User's Guide and, specifically, the Warnings and Restrictions notice in the User's Guide prior to handling the product. This notice contains important safety information about temperatures and voltages. For additional information on TI's environmental and/or safety programs, please visit www.ti.com/esh or contact TI. No license is granted under any patent right or other intellectual property right of TI covering or relating to any machine, process, or combination in which such TI products or services might be or are used. TI currently deals with a variety of customers for products, and therefore our arrangement with the user is not exclusive. TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. REGULATORY COMPLIANCE INFORMATION As noted in the EVM User’s Guide and/or EVM itself, this EVM and/or accompanying hardware may or may not be subject to the Federal Communications Commission (FCC) and Industry Canada (IC) rules. For EVMs not subject to the above rules, this evaluation board/kit/module is intended for use for ENGINEERING DEVELOPMENT, DEMONSTRATION OR EVALUATION PURPOSES ONLY and is not considered by TI to be a finished end product fit for general consumer use. It generates, uses, and can radiate radio frequency energy and has not been tested for compliance with the limits of computing devices pursuant to part 15 of FCC or ICES-003 rules, which are designed to provide reasonable protection against radio frequency interference. Operation of the equipment may cause interference with radio communications, in which case the user at his own expense will be required to take whatever measures may be required to correct this interference. General Statement for EVMs including a radio User Power/Frequency Use Obligations: This radio is intended for development/professional use only in legally allocated frequency and power limits. Any use of radio frequencies and/or power availability of this EVM and its development application(s) must comply with local laws governing radio spectrum allocation and power limits for this evaluation module. It is the user’s sole responsibility to only operate this radio in legally acceptable frequency space and within legally mandated power limitations. Any exceptions to this are strictly prohibited and unauthorized by Texas Instruments unless user has obtained appropriate experimental/development licenses from local regulatory authorities, which is responsibility of user including its acceptable authorization. For EVMs annotated as FCC – FEDERAL COMMUNICATIONS COMMISSION Part 15 Compliant Caution This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation. Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment. FCC Interference Statement for Class A EVM devices This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense. FCC Interference Statement for Class B EVM devices This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures: • Reorient or relocate the receiving antenna. • Increase the separation between the equipment and receiver. • Connect the equipment into an outlet on a circuit different from that to which the receiver is connected. • Consult the dealer or an experienced radio/TV technician for help. For EVMs annotated as IC – INDUSTRY CANADA Compliant This Class A or B digital apparatus complies with Canadian ICES-003. Changes or modifications not expressly approved by the party responsible for compliance could void the user’s authority to operate the equipment. Concerning EVMs including radio transmitters This device complies with Industry Canada licence-exempt RSS standard(s). Operation is subject to the following two conditions: (1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device. Concerning EVMs including detachable antennas Under Industry Canada regulations, this radio transmitter may only operate using an antenna of a type and maximum (or lesser) gain approved for the transmitter by Industry Canada. To reduce potential radio interference to other users, the antenna type and its gain should be so chosen that the equivalent isotropically radiated power (e.i.r.p.) is not more than that necessary for successful communication. This radio transmitter has been approved by Industry Canada to operate with the antenna types listed in the user guide with the maximum permissible gain and required antenna impedance for each antenna type indicated. Antenna types not included in this list, having a gain greater than the maximum gain indicated for that type, are strictly prohibited for use with this device. Cet appareil numérique de la classe A ou B est conforme à la norme NMB-003 du Canada. Les changements ou les modifications pas expressément approuvés par la partie responsable de la conformité ont pu vider l’autorité de l'utilisateur pour actionner l'équipement. Concernant les EVMs avec appareils radio Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes : (1) l'appareil ne doit pas produire de brouillage, et (2) l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement. Concernant les EVMs avec antennes détachables Conformément à la réglementation d'Industrie Canada, le présent émetteur radio peut fonctionner avec une antenne d'un type et d'un gain maximal (ou inférieur) approuvé pour l'émetteur par Industrie Canada. Dans le but de réduire les risques de brouillage radioélectrique à l'intention des autres utilisateurs, il faut choisir le type d'antenne et son gain de sorte que la puissance isotrope rayonnée équivalente (p.i.r.e.) ne dépasse pas l'intensité nécessaire à l'établissement d'une communication satisfaisante. Le présent émetteur radio a été approuvé par Industrie Canada pour fonctionner avec les types d'antenne énumérés dans le manuel d’usage et ayant un gain admissible maximal et l'impédance requise pour chaque type d'antenne. Les types d'antenne non inclus dans cette liste, ou dont le gain est supérieur au gain maximal indiqué, sont strictement interdits pour l'exploitation de l'émetteur. SPACER SPACER SPACER SPACER SPACER SPACER SPACER SPACER 【Important Notice for Users of this Product in Japan】 This development kit is NOT certified as Confirming to Technical Regulations of Radio Law of Japan If you use this product in Japan, you are required by Radio Law of Japan to follow the instructions below with respect to this product: 1. Use this product in a shielded room or any other test facility as defined in the notification #173 issued by Ministry of Internal Affairs and Communications on March 28, 2006, based on Sub-section 1.1 of Article 6 of the Ministry’s Rule for Enforcement of Radio Law of Japan, 2. Use this product only after you obtained the license of Test Radio Station as provided in Radio Law of Japan with respect to this product, or 3. Use of this product only after you obtained the Technical Regulations Conformity Certification as provided in Radio Law of Japan with respect to this product. Also, please do not transfer this product, unless you give the same notice above to the transferee. Please note that if you could not follow the instructions above, you will be subject to penalties of Radio Law of Japan. Texas Instruments Japan Limited (address) 24-1, Nishi-Shinjuku 6 chome, Shinjuku-ku, Tokyo, Japan http://www.tij.co.jp 【ご使用にあたっての注】 本開発キットは技術基準適合証明を受けておりません。 本製品のご使用に際しては、電波法遵守のため、以下のいずれかの措置を取っていただく必要がありますのでご注意ください。 1. 電波法施行規則第6条第1項第1号に基づく平成18年3月28日総務省告示第173号で定められた電波暗室等の試験設備でご使用いただく。 2. 実験局の免許を取得後ご使用いただく。 3. 技術基準適合証明を取得後ご使用いただく。 なお、本製品は、上記の「ご使用にあたっての注意」を譲渡先、移転先に通知しない限り、譲渡、移転できないものとします。    上記を遵守頂けない場合は、電波法の罰則が適用される可能性があることをご留意ください。 日本テキサス・インスツルメンツ株式会社 東京都新宿区西新宿6丁目24番1号 西新宿三井ビル http://www.tij.co.jp SPACER SPACER SPACER SPACER SPACER SPACER SPACER SPACER SPACER SPACER SPACER SPACER SPACER SPACER SPACER SPACER SPACER EVALUATION BOARD/KIT/MODULE (EVM) WARNINGS, RESTRICTIONS AND DISCLAIMERS For Feasibility Evaluation Only, in Laboratory/Development Environments. Unless otherwise indicated, this EVM is not a finished electrical equipment and not intended for consumer use. It is intended solely for use for preliminary feasibility evaluation in laboratory/development environments by technically qualified electronics experts who are familiar with the dangers and application risks associated with handling electrical mechanical components, systems and subsystems. It should not be used as all or part of a finished end product. Your Sole Responsibility and Risk. You acknowledge, represent and agree that: 1. You have unique knowledge concerning Federal, State and local regulatory requirements (including but not limited to Food and Drug Administration regulations, if applicable) which relate to your products and which relate to your use (and/or that of your employees, affiliates, contractors or designees) of the EVM for evaluation, testing and other purposes. 2. You have full and exclusive responsibility to assure the safety and compliance of your products with all such laws and other applicable regulatory requirements, and also to assure the safety of any activities to be conducted by you and/or your employees, affiliates, contractors or designees, using the EVM. Further, you are responsible to assure that any interfaces (electronic and/or mechanical) between the EVM and any human body are designed with suitable isolation and means to safely limit accessible leakage currents to minimize the risk of electrical shock hazard. 3. You will employ reasonable safeguards to ensure that your use of the EVM will not result in any property damage, injury or death, even if the EVM should fail to perform as described or expected. 4. You will take care of proper disposal and recycling of the EVM’s electronic components and packing materials. Certain Instructions. It is important to operate this EVM within TI’s recommended specifications and environmental considerations per the user guidelines. Exceeding the specified EVM ratings (including but not limited to input and output voltage, current, power, and environmental ranges) may cause property damage, personal injury or death. If there are questions concerning these ratings please contact a TI field representative prior to connecting interface electronics including input power and intended loads. Any loads applied outside of the specified output range may result in unintended and/or inaccurate operation and/or possible permanent damage to the EVM and/or interface electronics. Please consult the EVM User's Guide prior to connecting any load to the EVM output. If there is uncertainty as to the load specification, please contact a TI field representative. During normal operation, some circuit components may have case temperatures greater than 60°C as long as the input and output are maintained at a normal ambient operating temperature. These components include but are not limited to linear regulators, switching transistors, pass transistors, and current sense resistors which can be identified using the EVM schematic located in the EVM User's Guide. When placing measurement probes near these devices during normal operation, please be aware that these devices may be very warm to the touch. As with all electronic evaluation tools, only qualified personnel knowledgeable in electronic measurement and diagnostics normally found in development environments should use these EVMs. Agreement to Defend, Indemnify and Hold Harmless. You agree to defend, indemnify and hold TI, its licensors and their representatives harmless from and against any and all claims, damages, losses, expenses, costs and liabilities (collectively, "Claims") arising out of or in connection with any use of the EVM that is not in accordance with the terms of the agreement. This obligation shall apply whether Claims arise under law of tort or contract or any other legal theory, and even if the EVM fails to perform as described or expected. Safety-Critical or Life-Critical Applications. If you intend to evaluate the components for possible use in safety critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, such as devices which are classified as FDA Class III or similar classification, then you must specifically notify TI of such intent and enter into a separate Assurance and Indemnity Agreement. Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed. TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications. In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms. No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949. Products Applications Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com Energy and Lighting www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID www.ti-rfid.com OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com Wireless Connectivity www.ti.com/wirelessconnectivity Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated CC Debugger User’s Guide SWRU197G SWRU197G January 2014 2/23 Table of Contents 1 Introduction ................................................................................................................................. 3 2 Abbreviations and Acronyms .................................................................................................... 3 3 Box Contents .............................................................................................................................. 4 4 Operating Conditions of the CC Debugger .............................................................................. 4 5 Initial Steps .................................................................................................................................. 5 5.1 Installing the USB driver ........................................................................................................... 5 5.2 Supported PC Tools .................................................................................................................. 5 6 Connecting the CC Debugger to the Device ............................................................................ 6 6.1 Target Connector Details .......................................................................................................... 6 6.2 Connecting the CC Debugger to a System on Chip ................................................................. 8 6.2.1 Minimum connection for debugging ....................................................................................................................... 8 6.2.2 Minimum connection for SmartRF Studio .............................................................................................................. 8 6.2.3 Minimum connection for SmartRF Packet Sniffer .................................................................................................. 9 6.3 Connecting the CC Debugger to a Transceiver ...................................................................... 10 6.4 Connecting the CC Debugger to a CC85xx ............................................................................ 12 7 Using the CC Debugger ........................................................................................................... 13 7.1 Understanding the LED ........................................................................................................... 13 8 Updating the Firmware ............................................................................................................. 14 8.1 Updating the firmware automatically in SmartRF Studio ........................................................ 14 8.2 Updating the firmware manually in SmartRF Flash Programmer ........................................... 16 8.3 Forced boot recovery mode .................................................................................................... 17 8.4 Resurrecting the CC Debugger ............................................................................................... 17 9 Troubleshooting ....................................................................................................................... 20 10 Schematics ................................................................................................................................ 21 11 References ................................................................................................................................ 21 12 Document History ..................................................................................................................... 22 SWRU197G January 2014 3/23 1 Introduction The CC Debugger is primarily used for flash programming and debugging software running on CCxxxx 8051-based System-on-Chip (SoC) devices from Texas Instruments. The PC tools available for these purposes are the SmartRF™ Flash Programmer [9] from Texas Instruments and IAR Embedded Workbench® for 8051 from IAR Systems [15]. When connected to the debugger, the SoC devices can be controlled directly from SmartRF™ Studio [8]. SmartRF Studio will also be able to control supported CCxxxx RF transceivers (CC2520, CC2500, CC110x, CC11xL, CC112x, CC120x) when they are connected to the debugger as explained in chapter 6.3. In addition, CC Debugger is used for configuring the CC85xx devices with PurePath Wireless Configurator [12] and controlling them with PurePath Wireless Commander [13]. 2 Abbreviations and Acronyms CSn Chip Select (active low) DC Debug Clock DD Debug Data DUT Device Under Test GND Ground LED Light Emitting Diode MISO Master In Slave Out MOSI Master Out Slave In RF Radio Frequency SCLK Serial Clock SoC System on Chip SPI Serial Peripheral Interface USB Universal Serial Bus Vdd Positive voltage on target SWRU197G January 2014 4/23 3 Box Contents  1 x CC Debugger  1 x USB-A to Mini-B USB cable  1 x 10-pin flat cable with 2x5 2.54 mm connector  1 x 10-pin flat cable with 2x5 1.27 mm connector  1 x Converter board 2.54 mm – 1.27 mm connector  Documentation 4 Operating Conditions of the CC Debugger Minimum target voltage: 1.2 Volt Maximum target voltage: 3.6 Volt Operating temperature: 0C to 85C Regulated voltage on CC Debugger: 3.3 Volt Maximum target current (*): 200 mA (*) Supported Operating Systems: Microsoft® Windows® 2000 Windows XP SP2/SP3 (32 bit versions) Windows Vista® (32 & 64 bit) Windows 7 (32 & 64 bit) (*) Only applicable if the target is powered from the CC Debugger Figure 1 - CC Debugger connected to a SoC Battery Board with a CC2530EM SWRU197G January 2014 5/23 5 Initial Steps 5.1 Installing the USB driver To get the required USB driver for the CC Debugger, it is necessary to install one of the tools listed below:  SmartRF Studio www.ti.com/tool/smartrftm-studio  SmartRF Flash Programmer www.ti.com/tool/flash-programmer  SmartRF Packet Sniffer www.ti.com/tool/packet-sniffer  PurePath Wireless Configurator www.ti.com/tool/purepath-wl-cfg  PurePath Wireless Commander www.ti.com/tool/purepath-wl-cmd Alternatively, you can download “Cebal – CCxxxx Development Tools USB Driver for Windows x86 and x64” [4] which is a standalone installer including only the device driver. After having installed the driver, connect the CC Debugger to the PC. The USB driver will be installed automatically. You can quickly check that the debugger has been associated correctly with the USB device driver by opening the Windows Device Manager. The debugger should appear as a “Cebal controlled device”. Figure 2 - Verify correct driver installation For further details or troubleshooting the driver installation process, please refer to “DN304 – CCxxxx Development Tools USB Driver Installation Guide” [5]. 5.2 Supported PC Tools Currently, the CC Debugger can be used together with the following PC Tools  IAR Embedded Workbench for 8051 In circuit debugging of system-on-chips  SmartRF Flash Programmer Flash programming of system-on-chips  SmartRF Studio RF testing of radio devices (transceivers and SoCs)  SmartRF Packet Sniffer Packet sniffing with selected radio devices  PurePath Wireless Configurator Programming of CC85xx devices  PurePath Wireless Commander Advanced control of CC85xx devices The debugger will operate as the interface between the RF device and the tools listed above. Please ensure correct connection between the device and CC Debugger before starting to use the tools. The connection of the device to the CC Debugger will be covered in the next chapter. SWRU197G January 2014 6/23 6 Connecting the CC Debugger to the Device 6.1 Target Connector Details The target connector, located on the lateral side of the debugger, is a 10-pin 2x5 2.54 mm pitch connector with a direction coded plastic guide. Suggested matching (male) surface mounted headers would be 95278-101A10LF from FCI or BB02-HP from GradConn. Figure 3 - Placement of Target Connector Pins The adapter board, which has a 10-pin 2x5 1.27 mm pitch connector, has the same pin placement. Suggested matching (male) surface mounted headers would be 20021121-000-10C4LF from FCI or FTS-105-01-F-DV from Samtec. Figure 4 - Placement of Target Connector Pins on Adapter Board The pin-out of the target connector is shown in Figure 5. Note that not all of these pins need to be connected to the target device for programming and debugging. Only Vdd, GND, DD, DC and RESET are required for System on Chips. The other pins are optional and/or for special features. Pin 1 Pin 2 Pin 1 Pin 2 SWRU197G January 2014 7/23 1 2 3 4 5 6 7 8 9 10 GND DC (Debug Clock) CSn (SPI Chip Select) RESETn 3.3V (from debugger) Target Voltage Sense DD (Debug Data) SCLK (SPI Clock) MOSI (SPI Data Out) MISO (SPI Data In) Figure 5 - Target Connector Pin-out Please note the concept with the target voltage sense signal. This signal is used by the level converters on the CC Debugger to handle different voltage levels on the target board and the debugger. Pin 2 on the target connector must be connected to Vdd on the target board. USB Controller Level Converter Vdd from target CC Debugger Vdd (local) TARGET Target Connector Figure 6 - Voltage from target to CC Debugger Alternatively, it is possible to power the target by connecting pin 9 to Vdd on the target. In that case, the CC Debugger will supply 3.3V to the target. SWRU197G January 2014 8/23 6.2 Connecting the CC Debugger to a System on Chip 6.2.1 Minimum connection for debugging For successful debugging of a TI 8051-based RF System on Chip, connect the two debug signals Debug Data (DD) and Debug Clock (DC) and the reset signal RESETn to the device. Note that DD is a bidirectional signal. In addition, the CC Debugger must be connected to GND and Vdd on the board. Vdd is used as an input to the level shifters on the CC Debugger, thus allowing a different operating voltage on the target than internally on the debugger. For CC111x, CC251x, CC243x, CC253x and CC254x, except CC2544 and CC2545, connect the DD signal to pin P2.1 and DC to pin P2.2. For CC2544, connect the DD signal to P1.3 and DC to P1.2. For CC2545, connect the DD signal to P1.3 and DC to P1.4. Note that it is possible to power the target board from the debugger by connecting the 3.3V signal on pin 9 on the connector to the target board. 1 2 3 4 5 6 7 8 9 10 GND DC (Debug Clock) RESETn 3.3V from debugger. Can optionally be used to power the target board DD (Debug Data) P2.2 SoC P2.1 RESETn Vdd GND Vdd CC Debugger Connector CCxxxx System-on-Chip NOTE 2 Vdd NOTE 1 10 kΩ 2.7 kΩ 1 nF Figure 7 - Minimum connection for debugging of 8051 SoC Note 1: Some early revisions of certain SoCs (CC2430, CC2510 and CC1110) needed an external pull-up to avoid unwanted transitions on the debug clock line during chip reset – thus inadvertently setting the device in debug mode. All new revisions of all SoCs now have an internal pull-up on P2.2, so this external component is not required. Note 2: The RESETn pin is sensitive to noise and can cause unintended reset of the chip. For reset lines susceptible to noise, it is recommended to add an external RC filter. Please refer to the respective SoC datasheet and reference designs for recommended RESET circuitry. The CC Debugger supports slow transitions on the reset line, using a 2 ms delay between any transition on the RESET line and other transitions on the DC and/or DD lines. 6.2.2 Minimum connection for SmartRF Studio Use the same connection as for debugging the SoC. SWRU197G January 2014 9/23 6.2.3 Minimum connection for SmartRF Packet Sniffer In order to use the packet sniffer capabilities of the CC Debugger, it is also necessary to connect the SPI bus to the SoC. The SPI interface is used by the CC Debugger for reading the captured RF packets from the SoC. 1 2 3 4 5 6 7 8 9 10 GND DC (Debug Clock) RESETn 3.3V from debugger. Can optionally be used to power the target board DD (Debug Data) P2.2 SoC P2.1 RESETn Vdd GND Vdd CC Debugger Connector CCxxxx System-on-Chip 2.7 kΩ 1 nF CSn SCLK MOSI MISO P1.7 P1.6 P1.5 P1.4 Figure 8 - Connection to SoC to enable Packet Sniffing Note that the packet sniffer will overwrite the flash on the SoC with special packet capture firmware. Note concerning the SPI interface to the SoC used for packet sniffing All of the current TI RF SoCs can be configured to operate as SPI slaves, with the SPI signals (CS, SCLK, MISO and MOSI) going to one of the USART peripherals. The packet sniffer application will program the SoC with firmware that configures one of the USART peripherals in order to communicate with the CC Debugger. The firmware can use any of the four possible pin configurations (USART 0 or 1, pin out alternative 1 or 2). However, only a subset is currently supported: USART0, alt 1 USART0, alt 2 USART1, alt 1 USART1, alt 2 CC243x - - - OK CC253x/CC254x - - - OK CC111x OK - - OK CC251x OK - - OK Table 1 - Supported SPI connections (marked OK) USART0, alt 1 USART1, alt 2 SCLK P0.5 P1.5 CS P0.4 P1.4 MOSI P0.3 P1.6 MISO P0.2 P1.7 Table 2 - USART pin out details In case of multiple supported interfaces, the Packet Sniffer application will let you choose which interface to use. SWRU197G January 2014 10/23 6.3 Connecting the CC Debugger to a Transceiver The SPI interface on the CC Debugger can be used to interface many of the CCxxxx transceivers and control them from SmartRF Studio. The transceivers/transmitters/receivers currently supported are:  CC1100  CC1101  CC1120  CC1121  CC1125  CC1175  CC110L  CC113L  CC115L  CC1200  CC1201  CC2500  CC2520 Note that the CC Debugger operates as the SPI Master. In a multi master system, it is necessary to make sure the debugger output signals (DC, DD, CSn, SCLK, MOSI and RESETn) do not interfere with the other SPI master on the board. The other SPI master would typically be the microcontroller on the board. The connection diagrams below show the interconnection between the debugger and the various supported transceivers. 1 2 3 4 5 6 7 8 9 10 GND DC RESETn 3.3V from debugger. Can optionally be used to power the target board DD GPIO3 VREG_EN RESETn Vdd GND Vdd CC Debugger Connector CC2520 CSn SCLK MOSI MISO SO SI SCLK CSn Figure 9 - CC Debugger connected to CC2520 SWRU197G January 2014 11/23 1 2 3 4 5 6 7 8 9 10 GND DC RESETn 3.3V from debugger. Can optionally be used to power the target board DD GPIO2 GPIO0 RESETn Vdd GND Vdd CC Debugger Connector CC112x CC1175 CC120x CSn SCLK MOSI MISO SO SI SCLK CSn Figure 10 - CC Debugger connected to CC112x/CC1175/CC120x 1 2 3 4 5 6 7 8 9 10 GND DC 3.3V from debugger. Can optionally be used to power the target board DD GDO2 GDO0 Vdd GND Vdd CC Debugger Connector CC110x CC11xL CC2500 CSn SCLK MOSI MISO SO SI SCLK CSn Figure 11 - CC Debugger connected to CC110x/CC11xL/CC2500 SWRU197G January 2014 12/23 6.4 Connecting the CC Debugger to a CC85xx In order to configure the CC85xx devices (i.e. program the flash on the device) with PurePath Wireless Configurator, the device’s SPI interface must be connected to the CC Debugger as shown in the figure below. 1 2 3 4 5 6 7 8 9 10 GND RESETn 3.3V from debugger. Can optionally be used to power the target board RESETn Vdd GND Vdd CC Debugger Connector CC85XX CSn SCLK MOSI MISO MISO MOSI SCLK CSn Figure 12 - CC Debugger connected to CC85XX SWRU197G January 2014 13/23 7 Using the CC Debugger After having connected the debugger to the target device, the debugger can be powered up by plugging in the USB cable. The debugger will immediately start a device detection process, looking for all known devices. If no devices are detected, the LED will be RED. If a device is detected, the LED will be GREEN. If the LED is GREEN, it is possible to start using the debugger together with one of the supported PC tools. 7.1 Understanding the LED OFF The debugger has no power or there is no valid firmware on the debugger. Make sure the debugger is properly powered via the USB cable or try to resurrect the debugger using the method described in chapter 8.4. AMBER (BOTH LEDS ON) The debugger is powered, but there is no valid firmware. Try to resurrect the debugger using the method described in chapter 8.4. RED LED BLINKING The Debugger is in Boot Recovery Mode. The debugger will briefly enter this state while the firmware is being upgraded (see chapter 8). The board might also enter this state if the firmware is corrupt or if the user has manually forced to board to start up in the special “boot recovery mode” (section 8.3). To go out of the state, reset the debugger by pressing the “Reset” button or by power-cycling the device. If the LED is still blinking, reprogram the unit by using the Flash Programmer Application. RED LED ON No device detected. This might be due to old firmware on the CC Debugger. New devices might not be supported with the current firmware on the debugger. Please refer to chapter 8 for the firmware upgrade procedure. There might also be a problem with the hardware connection. Check the connection to device and make sure the target board is properly powered and that Vdd on the target board is connected to pin 2 on the debug connector. Press and release the reset button to retry the target device detection GREEN LED ON The target device has been properly detected. It is possible to start using the supported tools (see chapter 5.2). SWRU197G January 2014 14/23 8 Updating the Firmware In order to make sure the CC Debugger works seamlessly with your device, it is important that it has the latest and greatest firmware. This chapter will describe how you can upgrade the firmware automatically from SmartRF Studio or manually from SmartRF Flash Programmer. The chapter will also describe how to resurrect a seemingly broken debugger. 8.1 Updating the firmware automatically in SmartRF Studio Updating the firmware on the CC Debugger can be done automatically by SmartRF Studio. Please follow the few steps described below. 1. Start SmartRF Studio. 2. Disconnect the debugger from any target board, and connect it to the PC via the USB cable. The debugger will appear in the list of connected devices in the lower part of the SmartRF Studio startup panel. Figure 13 - Auto FW upgrade 3. Double click on the item in the list, and a new window will appear. SWRU197G January 2014 15/23 Figure 14 - Auto FW upgrade 4. Click "Yes" and let SmartRF Studio do the rest. Figure 15 - Auto FW upgrade 5. Click "Done" and you're good to go. The device should appear in the list of connected devices, now showing the new firmware revision. SWRU197G January 2014 16/23 8.2 Updating the firmware manually in SmartRF Flash Programmer You can also update the firmware manually using SmartRF Flash Programmer. You can use this method if you like to have full control of the firmware image to be programmed on the controller of the debugger (i.e. programming custom firmware or old firmware revisions). 1. Start SmartRF Flash Programmer and select the tab called “EB application (USB)”. This tab will let you program compatible firmware on the CC Debugger (or evaluation boards) via the USB interface (i.e. no external programming device required). 2. Disconnect the debugger from any target board, and connect it to the PC via the USB cable. The debugger will appear in the list of connected devices. Chip type will be listed as N/A. 3. Select the flash image you want to program on the debugger. Normally, you would select: C:\Program Files (x86)\Texas Instruments\SmartRF Tools\Firmware\CC Debugger\cebal_fw_srf05dbg.hex1 4. Select the action “Erase, program and verify” 5. Click the “Perform actions” buttons. The programming procedure will start. Note that this will take several seconds. 6. The CC Debugger will reappear in the list of connected devices, now showing the new firmware revision in the device list. 7. Done! 1 Assuming default installation path of SmartRF Flash Programmer. 1 2 4 5 3 SWRU197G January 2014 17/23 8.3 Forced boot recovery mode If, for some reason, the firmware update fails and the CC Debugger appears to be non responsive, there is a way to force the board to only run the bootloader and stop all further execution. In this mode, no attempts will be made to start the firmware, and the board will only allow the user to perform a new firmware upgrade over USB. Disconnect the debugger from any power source and open the plastic enclosure. Figure 16 - Internal view of CC Debugger Short circuit the pins as depicted in Figure 17: P1.6 on the CC2511 must be connected to GND during the power-on reset to enter boot recovery mode. Figure 17 - Short-circuit pins for boot recovery mode When reconnecting the USB cable, the LED will start to blink with a RED light. This indicates that the bootloader is running and that the debugger is in boot recovery mode. At this point, follow the same firmware programming steps as describe at the beginning of this chapter. Please also note that the boot recovery mode can be used as a check to verify that the bootloader on the debugger is working. 8.4 Resurrecting the CC Debugger If the CC Debugger appears to be completely dead when applying power, there is a way to “unbrick” the board. The method consists of reprogramming the bootloader on the debugger using the debug connector inside the box. This will require an extra programming device. When opening the box, locate the debug connector header next to the target connector. Connect this header to another CC Debugger (see Figure 18) or to a SmartRF05EB (see Figure 19). When using SWRU197G January 2014 18/23 SmartRF05EB, connect a 10-pin flat cable from the “Ext SoC Debug” plug (P3) on the EB to the “USB Debug” plug (P2) on the CC Debugger. The dead debugger needs power, so connect the USB cable. Turn on the SmartRF05EB or debugger - it should detect the USB Controller (CC2511) on the debugger. Figure 18 - Programming the bootloader on the CC Debugger using another CC Debugger Figure 19 - Programming the bootloader on the CC Debugger using SmartRF05EB Next, use the SmartRF Flash Programmer to program the bootloader on the debugger. Follow these five steps (illustrated in Figure 20 below): SWRU197G January 2014 19/23 1. After starting the application, first select “Program Evaluation Board” in the “What do you want to program?” drop down box, then select the “EB Bootloader” tab. 2. In the upper left corner, select device: Use SmartRF05EB regardless of the device being used to program the debugger. I.e. select SmartRF05EB both when you are using a CC Debugger and when you are using a SmartRF05EB for the resurrection. 3. Next, select which flash image to program. The bootloader image is included when installing the flash programmer and it is usually located at “C:\Program Files (x86)\Texas Instruments\SmartRF Tools\Firmware\CC Debugger”. 4. It is also necessary to give the debugger a unique ID number – any 4 digit number will work. This number is used by the driver on the PC to uniquely identify devices if more than one debugger is connected at the same time. 5. Select “Erase, program and verify” 6. Press the “Perform Actions” buttons. The firmware upgrade takes a few seconds. Figure 20 - SmartRF Flash Programmer - Updating the bootloader Once the bootloader is programmed, you might be asked to install a USB driver on the PC. Just follow the same procedure as when the debugger was connected to the PC the first time (see chapter 5). The RED LED on the debugger should now be blinking, indicating that the bootloader is running but that no application has been loaded. If the RED LED is off, there is probably something wrong with the hardware. The debugger firmware can now be programmed directly over USB by following the procedure in either chapter 8.1 or 8.2. 1 2 4 5 6 3 SWRU197G January 2014 20/23 9 Troubleshooting Q1 Help! The debugger does not detect the SoC. What should I do? A1 There are several things to check. Upgrade the firmware. Many CC Debuggers have old firmware that will not automatically detect newer devices, like CC2543/44/45. Refer to chapter 8 for further instructions. Check that the cable is oriented correctly and that the pins are connected to the right signals on the debugger. Check that the debugger gets power from the target (i.e proper connection of the Target Voltage Sense signal). This is required in order for the level converters on the debugger to work. Check that ground on the target is connected to ground on the debugger. This is normally achieved through the target connector. Note that since the ground planes are the same, please be aware of any adverse effects caused by different ground planes on the target and on the PC (grounded via USB cable). Check that the cable is not broken. Especially the small flat cable is prone to stop working if handled a lot or being bent and stretched beyond normal operating conditions. Q2 Does IAR EW8051 support the CC Debugger as debugging device? A2 Yes – but make sure you have an up to date version of IAR with the new debug driver plug-in from Texas Instruments. You will need version 7.51A or higher. Q3 Can the debugger be used as an interface to the RF device for packet sniffing? A3 Yes, this is supported for selected devices. Use the same interconnection as in the diagrams in chapter 6. Q4 Is there a way to remove the plastic casing without damaging it? A4 Yes, there is. Hold the bottom piece of the plastic in one hand. With your other hand, take a firm grip on the long lateral sides of the upper part of the plastic and squeeze while moving the upper part away from the bottom. The two parts should separate from each other. To reassemble the plastic, just click the two pieces together. Q5 Is this a Mini or a Micro USB plug? A5 Mini USB type A. Q6 I have two CC Debuggers with the same EB ID, and I’m unable to use them together. What do I do? A6 Two EBs with the same EB ID cause a driver conflict. The solution is to resurrect one of the CC Debuggers and give it a new EB ID. 1. Connect one CC Debugger to your computer 2. Connect the CC Debugger you want to resurrect to a separate power source (e.g. another computer or a USB charger). 3. Follow the steps for resurrecting the CC Debugger, described in section 8.4. SWRU197G January 2014 21/23 10 Schematics See last page or refer to the complete bundle including gerber files, schematics and layout here [3]. 11 References [1] CC-Debugger product web site www.ti.com/tool/cc-debugger [2] CC-Debugger Quick Start Guide www.ti.com/lit/swru196 [3] CC-Debugger Layout and Schematics www.ti.com/lit/zip/swrr105 [4] Cebal – CCxxxx Development Tools USB Driver for Windows x86 and x64 www.ti.com/lit/zip/swrc212 [5] DN304 – CCxxxx Development Tools USB Driver Installation Guide www.ti.com/lit/swra366 [6] Texas Instruments Support support.ti.com [7] Texas Instruments Low Power RF Online Community www.ti.com/lprf-forum [8] SmartRF Studio www.ti.com/tool/smartrftm-studio [9] SmartRF Flash Programmer www.ti.com/tool/flash-programmer [10] SmartRF Packet Sniffer www.ti.com/tool/packet-sniffer [11] SmartRF Flash Programmer User Manual www.ti.com/lit/swru069 [12] PurePath Wireless Configurator www.ti.com/tool/purepath-wl-cfg [13] PurePath Wireless Commander www.ti.com/tool/purepath-wl-cmd [14] SoC Battery Board product web site www.ti.com/tool/soc-bb [15] IAR Embedded Workbench for 8051 www.iar.com/ew8051 SWRU197G January 2014 22/23 12 Document History Revision Date Description/Changes G 2013-01-15 Chapter 9: Added how to solve problem with CC Debuggers having the same EB ID. F 2013-06-20 CC1100, CC1101, CC2500, and CC1200 are now also supported by the debugger. Corrected typo in chapter 6.2.1: DD to pin P2.1 (not P2.2) and DC to pin P2.2 (not P2.1) for all SoCs except CC2544 and CC2545. Added debug pin-out for CC2545. Corrected pin-out in figure 10 and 11 (DC to GPIO2/GDO2, DD to GPIO0/GDO0). Added link to layout and gerber files. E 2012-03-01 Corrected typo in chapter 6.2.1. Special debug pin-out for CC2544, not CC2543. D 2012-02-22 Added information about connections for programming of CC85xx devices. Updated info about connections for supported transceivers. Updated driver installation information and added more details about firmware upgrade. Describe what it means when the LED is amber. Updated reference links. C 2010-09-19 Added more information about how to upgrade the firmware. B 2010-02-25 Fixed erroneous description of interconnection between CC Debugger and CC2520. The VREG_EN signal shall be connected to pin 4 on the target connector, not pin 3. A 2010-02-11 Added more details about the powering options. Added more information about connection options. - 2009-05-05 First revision. EVALUATION BOARD/KIT/MODULE (EVM) ADDITIONAL TERMS Texas Instruments (TI) provides the enclosed Evaluation Board/Kit/Module (EVM) under the following conditions: The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user indemnifies TI from all claims arising from the handling or use of the goods. Should this evaluation board/kit not meet the specifications indicated in the User’s Guide, the board/kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING LIMITED WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. EXCEPT TO THE EXTENT OF THE INDEMNITY SET FORTH ABOVE, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES. Please read the User's Guide and, specifically, the Warnings and Restrictions notice in the User's Guide prior to handling the product. This notice contains important safety information about temperatures and voltages. For additional information on TI's environmental and/or safety programs, please visit www.ti.com/esh or contact TI. No license is granted under any patent right or other intellectual property right of TI covering or relating to any machine, process, or combination in which such TI products or services might be or are used. TI currently deals with a variety of customers for products, and therefore our arrangement with the user is not exclusive. TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. REGULATORY COMPLIANCE INFORMATION As noted in the EVM User’s Guide and/or EVM itself, this EVM and/or accompanying hardware may or may not be subject to the Federal Communications Commission (FCC) and Industry Canada (IC) rules. For EVMs not subject to the above rules, this evaluation board/kit/module is intended for use for ENGINEERING DEVELOPMENT, DEMONSTRATION OR EVALUATION PURPOSES ONLY and is not considered by TI to be a finished end product fit for general consumer use. It generates, uses, and can radiate radio frequency energy and has not been tested for compliance with the limits of computing devices pursuant to part 15 of FCC or ICES-003 rules, which are designed to provide reasonable protection against radio frequency interference. Operation of the equipment may cause interference with radio communications, in which case the user at his own expense will be required to take whatever measures may be required to correct this interference. General Statement for EVMs including a radio User Power/Frequency Use Obligations: This radio is intended for development/professional use only in legally allocated frequency and power limits. Any use of radio frequencies and/or power availability of this EVM and its development application(s) must comply with local laws governing radio spectrum allocation and power limits for this evaluation module. It is the user’s sole responsibility to only operate this radio in legally acceptable frequency space and within legally mandated power limitations. Any exceptions to this are strictly prohibited and unauthorized by Texas Instruments unless user has obtained appropriate experimental/development licenses from local regulatory authorities, which is responsibility of user including its acceptable authorization. For EVMs annotated as FCC – FEDERAL COMMUNICATIONS COMMISSION Part 15 Compliant Caution This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation. Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment. FCC Interference Statement for Class A EVM devices This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense. FCC Interference Statement for Class B EVM devices This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures: • Reorient or relocate the receiving antenna. • Increase the separation between the equipment and receiver. • Connect the equipment into an outlet on a circuit different from that to which the receiver is connected. • Consult the dealer or an experienced radio/TV technician for help. For EVMs annotated as IC – INDUSTRY CANADA Compliant This Class A or B digital apparatus complies with Canadian ICES-003. Changes or modifications not expressly approved by the party responsible for compliance could void the user’s authority to operate the equipment. Concerning EVMs including radio transmitters This device complies with Industry Canada licence-exempt RSS standard(s). Operation is subject to the following two conditions: (1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device. Concerning EVMs including detachable antennas Under Industry Canada regulations, this radio transmitter may only operate using an antenna of a type and maximum (or lesser) gain approved for the transmitter by Industry Canada. To reduce potential radio interference to other users, the antenna type and its gain should be so chosen that the equivalent isotropically radiated power (e.i.r.p.) is not more than that necessary for successful communication. This radio transmitter has been approved by Industry Canada to operate with the antenna types listed in the user guide with the maximum permissible gain and required antenna impedance for each antenna type indicated. Antenna types not included in this list, having a gain greater than the maximum gain indicated for that type, are strictly prohibited for use with this device. Cet appareil numérique de la classe A ou B est conforme à la norme NMB-003 du Canada. Les changements ou les modifications pas expressément approuvés par la partie responsable de la conformité ont pu vider l’autorité de l'utilisateur pour actionner l'équipement. Concernant les EVMs avec appareils radio Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes : (1) l'appareil ne doit pas produire de brouillage, et (2) l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement. Concernant les EVMs avec antennes détachables Conformément à la réglementation d'Industrie Canada, le présent émetteur radio peut fonctionner avec une antenne d'un type et d'un gain maximal (ou inférieur) approuvé pour l'émetteur par Industrie Canada. Dans le but de réduire les risques de brouillage radioélectrique à l'intention des autres utilisateurs, il faut choisir le type d'antenne et son gain de sorte que la puissance isotrope rayonnée équivalente (p.i.r.e.) ne dépasse pas l'intensité nécessaire à l'établissement d'une communication satisfaisante. Le présent émetteur radio a été approuvé par Industrie Canada pour fonctionner avec les types d'antenne énumérés dans le manuel d’usage et ayant un gain admissible maximal et l'impédance requise pour chaque type d'antenne. Les types d'antenne non inclus dans cette liste, ou dont le gain est supérieur au gain maximal indiqué, sont strictement interdits pour l'exploitation de l'émetteur. SPACER SPACER SPACER SPACER SPACER SPACER SPACER SPACER 【Important Notice for Users of EVMs for RF Products in Japan】 This development kit is NOT certified as Confirming to Technical Regulations of Radio Law of Japan If you use this product in Japan, you are required by Radio Law of Japan to follow the instructions below with respect to this product: 1. Use this product in a shielded room or any other test facility as defined in the notification #173 issued by Ministry of Internal Affairs and Communications on March 28, 2006, based on Sub-section 1.1 of Article 6 of the Ministry’s Rule for Enforcement of Radio Law of Japan, 2. Use this product only after you obtained the license of Test Radio Station as provided in Radio Law of Japan with respect to this product, or 3. Use of this product only after you obtained the Technical Regulations Conformity Certification as provided in Radio Law of Japan with respect to this product. Also, please do not transfer this product, unless you give the same notice above to the transferee. Please note that if you could not follow the instructions above, you will be subject to penalties of Radio Law of Japan. Texas Instruments Japan Limited (address) 24-1, Nishi-Shinjuku 6 chome, Shinjuku-ku, Tokyo, Japan http://www.tij.co.jp 【無線電波を送信する製品の開発キットをお使いになる際の注意事項】 本開発キットは技術基準適合証明を受けておりません。 本製品のご使用に際しては、電波法遵守のため、以下のいずれかの措置を取っていただく必要がありますのでご注意ください。 1. 電波法施行規則第6条第1項第1号に基づく平成18年3月28日総務省告示第173号で定められた電波暗室等の試験設備でご使用いただく。 2. 実験局の免許を取得後ご使用いただく。 3. 技術基準適合証明を取得後ご使用いただく。 なお、本製品は、上記の「ご使用にあたっての注意」を譲渡先、移転先に通知しない限り、譲渡、移転できないものとします。    上記を遵守頂けない場合は、電波法の罰則が適用される可能性があることをご留意ください。 日本テキサス・インスツルメンツ株式会社 東京都新宿区西新宿6丁目24番1号 西新宿三井ビル http://www.tij.co.jp SPACER SPACER SPACER SPACER SPACER SPACER SPACER SPACER SPACER SPACER SPACER SPACER SPACER SPACER SPACER SPACER SPACER EVALUATION BOARD/KIT/MODULE (EVM) WARNINGS, RESTRICTIONS AND DISCLAIMERS For Feasibility Evaluation Only, in Laboratory/Development Environments. Unless otherwise indicated, this EVM is not a finished electrical equipment and not intended for consumer use. It is intended solely for use for preliminary feasibility evaluation in laboratory/development environments by technically qualified electronics experts who are familiar with the dangers and application risks associated with handling electrical mechanical components, systems and subsystems. It should not be used as all or part of a finished end product. Your Sole Responsibility and Risk. You acknowledge, represent and agree that: 1. You have unique knowledge concerning Federal, State and local regulatory requirements (including but not limited to Food and Drug Administration regulations, if applicable) which relate to your products and which relate to your use (and/or that of your employees, affiliates, contractors or designees) of the EVM for evaluation, testing and other purposes. 2. You have full and exclusive responsibility to assure the safety and compliance of your products with all such laws and other applicable regulatory requirements, and also to assure the safety of any activities to be conducted by you and/or your employees, affiliates, contractors or designees, using the EVM. Further, you are responsible to assure that any interfaces (electronic and/or mechanical) between the EVM and any human body are designed with suitable isolation and means to safely limit accessible leakage currents to minimize the risk of electrical shock hazard. 3. Since the EVM is not a completed product, it may not meet all applicable regulatory and safety compliance standards (such as UL, CSA, VDE, CE, RoHS and WEEE) which may normally be associated with similar items. You assume full responsibility to determine and/or assure compliance with any such standards and related certifications as may be applicable. You will employ reasonable safeguards to ensure that your use of the EVM will not result in any property damage, injury or death, even if the EVM should fail to perform as described or expected. 4. You will take care of proper disposal and recycling of the EVM’s electronic components and packing materials. Certain Instructions. It is important to operate this EVM within TI’s recommended specifications and environmental considerations per the user guidelines. Exceeding the specified EVM ratings (including but not limited to input and output voltage, current, power, and environmental ranges) may cause property damage, personal injury or death. If there are questions concerning these ratings please contact a TI field representative prior to connecting interface electronics including input power and intended loads. Any loads applied outside of the specified output range may result in unintended and/or inaccurate operation and/or possible permanent damage to the EVM and/or interface electronics. Please consult the EVM User's Guide prior to connecting any load to the EVM output. If there is uncertainty as to the load specification, please contact a TI field representative. During normal operation, some circuit components may have case temperatures greater than 60°C as long as the input and output are maintained at a normal ambient operating temperature. These components include but are not limited to linear regulators, switching transistors, pass transistors, and current sense resistors which can be identified using the EVM schematic located in the EVM User's Guide. When placing measurement probes near these devices during normal operation, please be aware that these devices may be very warm to the touch. As with all electronic evaluation tools, only qualified personnel knowledgeable in electronic measurement and diagnostics normally found in development environments should use these EVMs. Agreement to Defend, Indemnify and Hold Harmless. You agree to defend, indemnify and hold TI, its licensors and their representatives harmless from and against any and all claims, damages, losses, expenses, costs and liabilities (collectively, "Claims") arising out of or in connection with any use of the EVM that is not in accordance with the terms of the agreement. This obligation shall apply whether Claims arise under law of tort or contract or any other legal theory, and even if the EVM fails to perform as described or expected. Safety-Critical or Life-Critical Applications. If you intend to evaluate the components for possible use in safety critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, such as devices which are classified as FDA Class III or similar classification, then you must specifically notify TI of such intent and enter into a separate Assurance and Indemnity Agreement. Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2014, Texas Instruments Incorporated IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed. TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications. In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms. No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949. Products Applications Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com Energy and Lighting www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID www.ti-rfid.com OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com Wireless Connectivity www.ti.com/wirelessconnectivity Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2014, Texas Instruments Incorporated Material Safety Data Sheet A-4 Hardener 1 1. Chemical Product and Company Identification Product Name: A-4 Hardener Product Description: Liquid Epoxy Hardener Company: Cast-Coat, Inc. 354 West Street W. Bridgewater, MA 02379 Telephone: 1-800-527-4502 or 1-508-587-4502 Emergency Contact: Chemtrec: (domestic) 1-800-424-9300 (international) 1-703-527-3887 2. Composition / Information on Ingredients Components CAS # % 3,3’-oxybis(ethyleneoxy)bis(propylamine) 4246-51-9  98 2-(2-(3-aminopropoxy)ethoxy)ethanol 112-33-4 1 3. Hazards Identification Eye Contact: Corrosive to the eyes and may cause severe damage, including blindness. Vapors may be irritating. Skin Contact: Corrosive to the skin. May cause skin sensitization. May be toxic if absorbed through the skin. Inhalation: Vapors / mists may be corrosive to the upper respiratory tract. Repeated or prolonged exposure can result in lung damage. Ingestion: Not expected to be a relevant route of exposure, however, corrosive and may cause severe and permanent damage to the mouth, throat and stomach. Aggravated Medical Conditions: Pre-existing eye, skin and respiratory disorders may be aggravated by exposure to this product. Pre-existing respiratory and skin allergies may be increased from exposure to this product. 4. First Aid Measures General Advise: Good practice requires that gross amounts of any chemical be removed from the skin as soon as practical, especially before eating or smoking. Eye Contact: Immediately flush eyes with water for at least 30 minutes. Seek medical attention. Skin Contact: Remove contaminated clothing and wipe excess from skin. Promptly wash with soap and water for 15 minutes. Seek medical attention if irritation persists. Inhalation: Move to fresh air and provide oxygen if necessary. Ingestion: Rinse mouth with water. If conscious, give small quantities of water to drink. Do not induce vomiting. If vomiting occurs, keep victim’s head below hips to prevent vomit from entering lungs. Seek medical attention. Material Safety Data Sheet A-4 Hardener 2 5. Fire-Fighting Measures Flashpoint: 139’ C Autoignition Temperature: 260’ C Flammability limits in air - lower: 1.1 % (V) Flammability limits in air – upper: 4.5 % (V) Extinguishing Media: Carbon dioxide (CO2), dry chemical, water fog or “alcohol foam“ Protective Equipment: Do not enter confined space without full bunker gear (helmet with face shield, bunker coats, gloves and rubber boots). Use self contained, positive pressure breathing apparatus. Specific Hazards: Decomposition and combustion products may be toxic. Containers exposed to intense heat should be cooled with water to avoid vapor pressure buildup. 6. Accidental Release Measures Personal Protection: Eyes - Wear splash proof chemical goggles. Skin - Wear impervious gloves and protective clothing to prevent skin contact. Inhalation: Use NIOSH approved respirator suitable for organic vapors. Environmental Concerns: Construct a dike to prevent from entering sewers, rivers and waterways. Clean Up: Soak up residue with absorbent material and shovel into non leaking containers. 7. Handling and Storage Handling: Good practice requires that gross amounts of any chemical be removed from the skin as soon as practical, especially before eating or smoking. Wear splash proof chemical goggles, impervious gloves and protective clothing to prevent skin contact. Emergency eye wash stations should be readily accessible. Ventilation: Provide effective mechanical exhaust. Wear NIOSH approved respirator suitable for organic vapors in the absence of ventilation. Storage: Store in a cool, dry location in tightly sealed containers. Keep away from open flame and high temperatures. Do not pressurize containers to empty them. Material Safety Data Sheet A-4 Hardener 3 8. Exposure Controls/Personal Protection Engineering Controls: Provide effective mechanical exhaust to ensure concentration levels are below exposure limits. Respiratory Protection: Wear NIOSH approved air purifying respirator in the absence of ventilation. Eye Protection: Wear safety goggles or safety glasses with side shields. Emergency eye wash stations should be readily accessible. Skin Protection: Wear chemical resistant impervious gloves and protective clothing such as an apron to prevent skin contact. 9. Physical and Chemical Properties Appearance: Liquid Color: Clear to Amber Odor: Amine Specific Gravity: 0.98 Vapor Pressure: < 1.00 mmHg at 20’ C Solubility in Water: Miscible Flashpoint: 139’ C VOC Content: < 0.1% by weight 10. Stability and Reactivity Stability: Stable under normal conditions. Materials to Avoid: Avoid heat, flame and strong oxidizing agents. Hazardous Decomposition Products: Carbon monoxide, Carbon dioxide, Nitrous oxide. Comments: Hazardous polymerization will not occur. 11. Toxicological Information 3,3’-oxybis(ethyleneoxy)bis(propylamine), 2-(2-(3-aminopropoxy)ethoxy)ethanol: Oral: LD50 3,160 mg / kg species: rat Dermal: LD50 > 2,150 mg / kg species: rat Material Safety Data Sheet A-4 Hardener 4 12. Ecological Information Inherent Biodegradability: Zahn-Wellens - < 20 % (Difficult to eliminate) Golden Orfe, Static 96 hour LC50 - 220-460 mg / L (Practically nontoxic) Daphnid, Static 48 hour EC50 - 220 mg / L (Practically nontoxic) Acute algal toxicity, 72 hour EC50 - 69 mg / L (Test rating not found) Toxicity to bacteria - EC50, (17H) 220 mg / L (Test rating not found) 13. Disposal Considerations Comments: Dispose of in accordance with federal, state and local regulations. Incinerate or bury in a RCRA licensed facility. Do not discharge into drains, waterways, sewers, or groundwater. RCRA: D002 14. Transportation Information DOT: UN 2735 Amines, Liquid, Corrosive, N.O.S. (Trioxatridecanediamine) 8, II ERG - 153 IMDG: UN 2735 Amines, liquid, Corrosive, N.O.S. (Trioxatridecanediamine) 8, II IATA: UN 2735 Amines, Liquid, Corrosive, N.O.S. (Trioxatridecanediamine) 8, II 15. Regulatory Information TSCA : All ingredients are listed or exempt HSC Classification: Irritating material, Sensitizing material, Corrosive material Sara Section 312 Hazard Classification: Chronic health hazard, Acute health hazard Sara Section 313: None California prop. 65: None Hazard Ratings: Health Fire Reactivity 3 1 0 WHMIS Classification: D-2A, D-2B, Class E – Corrosive material Material Safety Data Sheet A-4 Hardener 5 16. Other Information All information appearing herein is based upon data obtained from the manufacturer and / or recognized technical sources. While the information is believed to be accurate, Cast-Coat makes no representations as to its accuracy or sufficiency. Conditions of use are beyond the control of Cast-Coat and therefore users are responsible to verify this data under their own operating conditions to determine whether the product is suitable for their purposes. Cast-Coat, Inc. assumes no responsibility for injury from the use of the product described herein. Prepared by: Robert S. Lothrop Title: Technical Director Revision: 04/18/2012 1 / 5 Revision Date November 2011 Revision 3 SDS No. 16447 SAFETY DATA SHEET ARALDITE FUSION HARDENER SECTION 1: IDENTIFICATION OF THE SUBSTANCE/MIXTURE AND OF THE COMPANY/UNDERTAKING 1.1. Product identifier Product name ARALDITE FUSION HARDENER Product No. 808300, 808409, 808416, 808423 1.2. Relevant identified uses of the substance or mixture and uses advised against 1.3. Details of the supplier of the safety data sheet Supplier BOSTIK LIMITED COMMON ROAD STAFFORD STAFFORDSHIRE ST16 3EH +44 1785 272625 sds.uk@bostik.com 1.4. Emergency telephone number SECTION 2: HAZARDS IDENTIFICATION 2.1. Classification of the substance or mixture Classification (1999/45/EEC) Xi;R36/38. 2.2. Label elements Labelling Irritant Risk Phrases R36/38 Irritating to eyes and skin. Safety Phrases S2 Keep out of the reach of children. S24/25 Avoid contact with skin and eyes. S26 In case of contact with eyes, rinse immediately with plenty of water and seek medical advice. S36/37/39 Wear suitable protective clothing, gloves and eye/face protection. S46 If swallowed, seek medical advice immediately and show this container or label. S56 Dispose of this material and its container to hazardous or special waste collection point. 2.3. Other hazards SECTION 3: COMPOSITION/INFORMATION ON INGREDIENTS 3.2. Mixtures 2 / 5 SDS No. 16447 ARALDITE FUSION HARDENER 1,8-DIAZABICYCLO[5.4.0]UNDEC-7-ENE 1-5% CAS-No.: 6674-22-2 EC No.: 229-713-7 Classification (67/548/EEC) Xn;R22. C;R34. R52/53. Classification (EC 1272/2008) Not classified. BIS(2-DIMETHYLAMINOETHYL)ETHER 1-5% CAS-No.: 3033-62-3 EC No.: 221-220-5 Classification (67/548/EEC) T;R23/24. Xn;R22. C;R35. Classification (EC 1272/2008) Not classified. TRIETHYLENETETRAMINE, PROPOXYLATED 5-10% CAS-No.: 26950-63-0 EC No.: 500-055-5 Classification (67/548/EEC) Xi;R38,R41. Classification (EC 1272/2008) Not classified. The Full Text for all R-Phrases and Hazard Statements are Displayed in Section 16. SECTION 4: FIRST AID MEASURES 4.1. Description of first aid measures Inhalation Remove victim immediately from source of exposure. Move the exposed person to fresh air at once. Get medical attention. Ingestion DO NOT induce vomiting. Get medical attention immediately. Skin contact Promptly wash contaminated skin with soap or mild detergent and water. Promptly remove clothing if soaked through and wash as above. Get medical attention if irritation persists after washing. Eye contact Rinse the eye with water immediately. Continue to rinse for at least 15 minutes and get medical attention. 4.2. Most important symptoms and effects, both acute and delayed 4.3. Indication of any immediate medical attention and special treatment needed SECTION 5: FIREFIGHTING MEASURES 5.1. Extinguishing media Extinguishing media This product is not flammable. Use fire-extinguishing media appropriate for surrounding materials. Use: Foam, carbon dioxide or dry powder. 5.2. Special hazards arising from the substance or mixture 5.3. Advice for firefighters SECTION 6: ACCIDENTAL RELEASE MEASURES 6.1. Personal precautions, protective equipment and emergency procedures 6.2. Environmental precautions 6.3. Methods and material for containment and cleaning up 3 / 5 SDS No. 16447 ARALDITE FUSION HARDENER Absorb in vermiculite, dry sand or earth and place into containers. 6.4. Reference to other sections SECTION 7: HANDLING AND STORAGE 7.1. Precautions for safe handling Avoid spilling, skin and eye contact. 7.2. Conditions for safe storage, including any incompatibilities Store at moderate temperatures in dry, well ventilated area. 7.3. Specific end use(s) SECTION 8: EXPOSURE CONTROLS/PERSONAL PROTECTION 8.1. Control parameters Ingredient Comments WEL = Workplace Exposure Limits 8.2. Exposure controls Protective equipment Engineering measures Provide adequate ventilation. Respiratory equipment If ventilation is insufficient, suitable respiratory protection must be provided. Hand protection Protective gloves must be used if there is a risk of direct contact or splash. Eye protection Wear splash-proof eye goggles to prevent any possibility of eye contact. Hygiene measures Wash promptly if skin becomes contaminated. Wash at the end of each work shift and before eating, smoking and using the toilet. SECTION 9: PHYSICAL AND CHEMICAL PROPERTIES 9.1. Information on basic physical and chemical properties Appearance Liquid Colour Light (or pale). Yellow. Odour Slight odour. Solubility Insoluble in water Relative density 1.14 Flash point (°C) 145 PM Closed cup. 9.2. Other information SECTION 10: STABILITY AND REACTIVITY 10.1. Reactivity 10.2. Chemical stability Stable under normal temperature conditions. 10.3. Possibility of hazardous reactions 10.4. Conditions to avoid 10.5. Incompatible materials 10.6. Hazardous decomposition products 4 / 5 SDS No. 16447 ARALDITE FUSION HARDENER SECTION 11: TOXICOLOGICAL INFORMATION 11.1. Information on toxicological effects Skin contact Irritating to skin. Eye contact Irritating to eyes. SECTION 12: ECOLOGICAL INFORMATION Ecotoxicity Not regarded as dangerous for the environment. 12.1. Toxicity 12.2. Persistence and degradability 12.3. Bioaccumulative potential 12.4. Mobility in soil 12.5. Results of PBT and vPvB assessment 12.6. Other adverse effects SECTION 13: DISPOSAL CONSIDERATIONS 13.1. Waste treatment methods Dispose of waste and residues in accordance with local authority requirements. SECTION 14: TRANSPORT INFORMATION General The product is not covered by international regulation on the transport of dangerous goods (IMDG, IATA, ADR/RID). 14.1. UN number Not applicable. 14.2. UN proper shipping name Not applicable. 14.3. Transport hazard class(es) Transport Labels No transport warning sign required. 14.4. Packing group Not applicable. 14.5. Environmental hazards Environmentally Hazardous Substance/Marine Pollutant No. 14.6. Special precautions for user Not applicable. 14.7. Transport in bulk according to Annex II of MARPOL73/78 and the IBC Code Not applicable. SECTION 15: REGULATORY INFORMATION 15.1. Safety, health and environmental regulations/legislation specific for the substance or mixture Statutory Instruments The Chemicals (Hazard Information and Packaging for Supply) Regulations 2009 (S.I 2009 No. 716). Control of Substances Hazardous to Health. 5 / 5 SDS No. 16447 ARALDITE FUSION HARDENER Approved Code Of Practice Safety Data Sheets for Substances and Preparations. Classification and Labelling of Substances and Preparations Dangerous for Supply. Guidance Notes Workplace Exposure Limits EH40. Introduction to Local Exhaust Ventilation HS(G)37. CHIP for everyone HSG(108). 15.2. Chemical Safety Assessment SECTION 16: OTHER INFORMATION General information This product should be used as directed by Bostik Ltd. For further information consult the product data sheet or contact Technical Services. Information Sources This safety data sheet was compiled using current safety information supplied by distributor of raw materials. Revision Comments NOTE: Lines within the margin indicate significant changes from the previous revision. This safety data sheet supersedes all previous issues and users are cautioned to ensure that it is current. Destroy all previous data sheets and if in doubt contact Bostik Limited. Issued By Approved LJ Revision Date November 2011 Revision 3 Date September 2007 Risk Phrases In Full R34 Causes burns. R35 Causes severe burns. R22 Harmful if swallowed. R52/53 Harmful to aquatic organisms, may cause long-term adverse effects in the aquatic environment. R38 Irritating to skin. R41 Risk of serious damage to eyes. R23/24 Toxic by inhalation and in contact with skin. ICOMP VCOMP VADJ Q1 Q2 L 10μH C1 10μF C10 10μF R1 40mΩ adaptateur secteur R2 20mΩ R4 2.2Ω R5 100K R8 130k 1% R9 10.2k, 1% C2 0.1μF C4 0.1μF C3 1μF 6.8nF C9 1μF C8 0.1μF ISL6251 ISL6251A C5 10nF flottant 4.2V/CELL R6 10k C7 1μF R10 4.7Ω BATSCL SDL Une entrée / D GND entrée de 5.15A limites actuelles 3 cellules hôte R11, R12, R13 10k D1 en option VDDP D2 D3 R7: 100Ω CSIP RCID BOOT UGATE PHASE LGATE PGND CSOP Cson cellules GND C11 3300pF D4 SYSTÈME DE CHARGE DCIN ACSET VDDP VDD ACPRN Chlim FR ICM ACLIM VREF ICOMP VCOMP VADJ R3: 18Ω C6 ISL6251 ISL6251A batterie paquet BAT + SCL SDL Temp BATBattery BATVCC sortie Sortie D / A Une entrée / D DIGITAL contribution AVDD / VREF CSIP RCID BOOT UGATE PHASE LGATE PGND CSOP Cson cellules GND FIGURE 13. ISL6251, ISL6251A circuit d'application typique avec micro-contrôleur ISL6251, ISL6251A 12 FN9202.2 10 mai 2006 Principe de fonctionnement introduction Le ISL6251, ISL6251A comprend toutes les fonctions nécessaire de charger 2 à 4 cellules Li-Ion et Li-polymère batteries. Une haute efficacité convertisseur abaisseur synchrone est utilisé pour contrôler la tension et le courant jusqu'à Charing Charing Les taux de 10A. Le ISL6251, ISL6251A a courant de limitation d'entrée et entrées analogiques pour régler le courant de charge et de la charge tension; Chlim entrées sont utilisées pour contrôler le courant de charge VADJ et les intrants sont utilisés pour contrôler la tension de charge. Le ISL6251, ISL6251A charger la batterie avec une constante courant de charge, fixé par Chlim entrée, jusqu'à ce que la tension de la batterie se dresse à la tension de charge programmé fixé par entrée VADJ; puis le chargeur commence à fonctionner à une tension constante de façon responsable. L'entrée EN permet l'arrêt du chargeur à travers le commande à partir du micro-contrôleur. Il utilise également un taux SÉCURITÉ Lorsque le chargeur de batterie est en arrêt extrêmement chaud Conditions. Le montant de la personnalisation de la visite actuelle est sur ​​le Sortie de l'ICM. La figure 11 montre le bloc fonctionnel IC organigramme. Le convertisseur abaisseur synchrone utilise à canal N externe MOSFET à convertir la tension d'entrée à l'requis courant Charing Charing et de la tension. La figure 12 montre l' ISL6251, ISL6251A circuit typique d'application de Charing Charing courant et tension fixe à des valeurs spécifiques. la circuit typique d'application de la figure 13 montre les ISL6251, ISL6251A circuit typique de l'application qui utilise la Réglez le micro-contrôleur de courant Charing fixé par Chlim entrée. La tension aux Chlim et la valeur de R1 définit le courant Charing. Le convertisseur DC / DC génère l' des signaux de commande pour entraîner deux MOSFET à canal N à l'extérieur course la tension et courant défini par le ACLIM, Chlim, Cellules et entrées VADJ. Le ISL6251, ISL6251A dispose la boucle de régulation de tension (VCOMP) et deux boucles de régulation de courant (ICOMP). la Boucle de régulation de la tension de VCOMP Moniteur Cson pour assurer que sa tension ne dépasse jamais la tension et régule l' tension de charge de la batterie fixé par VADJ. Le ICOMP courant boucles de régulation de course le courant batterie Charing Livré à la batterie pour s'assurer qu'elle ne dépasse jamais la Charing limites actuelles fixées par Chlim; et le courant ICOMP des boucles de régulation de course également le courant d'entrée tiré à partir de l'adaptateur secteur afin de s'assurer qu'il ne dépasse jamais l'entrée limite actuelle fixée par ACLIM, et évaluer la panne du système de pré-vente et AC de surcharge de l'adaptateur. contrôle PWM Le ISL6251, ISL6251A emploie le PWM à fréquence fixe Architecture de courant de commande de mode avec la charge d'alimentation vers l'avant fonction. La fonction de feed-forward maintient constant l' gain de modulateur de 11 pour réaliser la régulation de ligne rapide cum Buck tension d'entrée change. Lorsque la charge de la batterie tension s'approche de la tension d'entrée, le convertisseur DC / DC décrochage fonctionne à la mode, où il est la minuterie de prévente la fréquence de tomber dans la fréquence audible gamme. Il peut atteindre cyclique jusqu'à 99,6%. Taux de pré-amplification de la tension de bus de système, la batterie Lorsque chargé d'opérer dans la norme mode-Buck CSOPCSON DROPS ci-dessous 4.25mV. Une fois en mode buck-standard, hystérésis n'autorise pas le fonctionnement synchrone de la Convertisseur DC / DC jusqu'à Rises CSOP-dessus Cson 12.5mV. En route gâté adaptatif système est utilisé pour contrôler les morts temps entre deux Switcher. Les morts circuit de commande de temps Surveillez la sortie de LGATE et empêche la face supérieure MOSFET de Turning jusqu'à LGATE est entièrement éteint, la prévention croix-conduction et flèche à l'. Pour les morts circuit de temps pour travailler correctement, il doit être le faible résistance, faible chemin de l'inductance du conducteur de MOSFET LGATE corrompu, et à partir de la source de MOSFET à PGND. la diode Schottky externe est entre les broches et BOOT VDDP pings à garder le condensateur d'amorçage partagée. Réglage de la tension de la batterie règlement Le ISL6251, ISL6251A utilise la haute précision garni d'intervalle de bande de référence de tension à la batterie de Charing de course tension. L'entrée VADJ Régler la tension de sortie du chargeur, et la tension de commande de VADJ peut varier de 0 à VREF, fournir la plage de réglage de 10% (de 4,2 V-5% de taux 4.2V +5%) sur le régulateur de tension Cson. Dans l'ensemble, la tension précision meilleure que 0,5% est atteint. La tension de terminaison de la batterie par des cellules est la fonction de l' Basseterre chimie. Consultez le taux des fabricants de batteries déterminer cette tension. • Float VADJ pour régler la tension de la batterie = 4.2V × VCSON nombre de cellules, • Connectez-vous à VREF VADJ de mettre 4.41V nombre de × de cellules, • Brancher à la masse à mettre en VADJ 3.99V nombre de × de la cellules. Jump, la tension maximale de la batterie de 17.6V peut être atteint. Notez que l'autre tension de charge de la batterie peut être réglée par Raccordement du diviseur résistif de VREF à la terre. la diviseur à résistances doivent être dimensionnés pour attirer plus au nord que 100μA de VREF; ou connectez la source de tension à basse impédance comme Le convertisseur N / A dans le micro-contrôleur. le programmée tension de la batterie par la cellule peut être déterminé par ce qui suit équation: Le diviseur de résistance externe de VREF définit la tension au VADJ selon: VCELL VVADJ = 0175 + 3.99V VVADJ VREF Rbot_VADJ | | 514k Rtop_VADJ | | + 514k Rbot_VADJ | | 514k = × ------------------------------------------------ ------------------------------------------------- ISL6251, ISL6251A 13 FN9202.2 10 mai 2006 Où Rbot_VADJ et Rtop_VADJ sont des résistances externes à VADJ. Précision Taux de minimiser la perte due à l'interaction avec Diviseur de résistance interne de VADJ, S'assurer que la résistance en courant alternatif En regardant en arrière dans le diviseur de résistance externe est inférieure à 25k. Connectez cellules cum présentés dans le tableau 1 pour charger 2, 3 ou 4 + cellules. Lorsque Charing autres chimies cellulaires, utiliser des cellules à sélectionner la plage de tension de sortie du chargeur. le interne gm1 amplificateur d'erreur maintient la régulation de tension. la tension amplificateur d'erreur est compensée à VCOMP. le composant valeurs indiquées dans la figure 12 du fournisseur approprié pour tableaux de bord la plupart des applications. La rémunération individuelle de la tension réglementation et des boucles de courant régulation permet de optimale compensation. Réglage de la limite de courant de charge de batterie L'entrée de Chlim règle le courant maximum de Charing. la courant défini par la résistance de détection de courant relie entre CSOP et Cson. La tension différentielle à grande échelle entre les CSOP et Cson est 165mV pour Chlim = 3,3 V, le saut Charing courant maximal est 4.125A pour un 40mΩ Sensing résistance. Autre charge de la batterie seuil de détection de courant valeurs peuvent être définies par le diviseur résistif de Connexion VREF à la masse ou 3,3 V, ou en connectant la faible impédance source de tension comme un convertisseur N / A dans le micro-contrôleur. Contrairement VADJ et ACLIM, Chlim n'a pas le interne réseau diviseur à résistances. Le courant seuil de limite de charge est proposée par: Pour régler le courant de charge d'entretien pour le chargeur muet, le résistance en série avec les interrupteurs T3 (figure 12) commandé par Le micro-contrôleur est connecté à la broche de terre Chlim. Le courant de charge de maintien est déterminé par: Lorsque la tension est inférieure à 88mV Chlim (typique), il ll désactiver le chargeur de batterie. Au moment de choisir le courant résistance de détection, notez que la chute de tension dans la Causes outre la détection résistance dissipation de puissance, réduisant efficacité. Cependant, pour réduire la Chlim de réglage de tension tension à travers la résistance de détection de courant R1 Will dégradé précision en raison du signal plus faible à l'entrée du courant Amplificateur de lecture. Il est le compromis entre précision et dissipation de puissance. Un filtre passe-bas est recommandé de Mise à éliminer le bruit. Connecter la résistance à la CSOP broches au lieu de les pings Cson, cum la broche CSOP a faible courant de polarisation et moins d'influence sur le courant-sens Précision La précision et le régulateur de tension. Réglage de l'entrée limites actuelles Le courant total d'entrée de l'adaptateur secteur, ou d'un autre DC la source, est fonction du courant d'alimentation du système et de la courant par batterie Charing. L'entrée actuelle limites régulateur le courant d'entrée en réduisant le courant de Charing, Lorsque le courant d'entrée dépasse l'entrée imparti point actuel. Actuelle du système varie normalement usure sperme du système sont alimentés vers le haut ou vers le bas. Sans réglementation actuelle d'entrée, la source doit être capable de fournir le maximum du système et le courant maximal d'entrée du chargeur simultanément. En utilisant le courant d'entrée limité, le courant Capacité de l'adaptateur secteur peut être réduit, ce qui réduit le coût du système. Le ISL6251, ISL6251A limite le courant de charge de la batterie Lorsque le seuil de limitation du courant d'entrée est dépassée, assurant le chargeur de batterie ne se charge pas en bas de l'adaptateur secteur tension. Ce règlement courant d'entrée constante permet à l' adapter entièrement dans le système d'alimentation et de la pré-AC adaptateur de surcharge et de s'écraser le bus système. L'amplificateur interne compare la tension entre gm3 CSIP et RCID au courant d'entrée tension de seuil limite fixé par ACLIM. Connectez taux ACLIM REF, Float et GND pour la pleine échelle tension d'entrée de seuil limite de 100 mV, 75mV et 50mV, respectivement, ou utiliser le diviseur résistif de VREF à la masse pour définir la limite de courant d'entrée cum la suivante équation: Le diviseur de résistance externe de VREF définit la tension au ACLIM de fonction: Où Rbot_ACLIM et Rtop_ACLIM sont des résistances externes à ACLIM. Précision Taux de minimiser la perte due à l'interaction avec Diviseur de résistance interne de ACLIM, S'assurer que la résistance en courant alternatif En regardant en arrière dans le diviseur de résistance externe est inférieure à 25k. Lors du choix de la résistance de détection de courant, noter que la chute de tension dans cette résistance provoque plus de puissance la dissipation, ce qui réduit l'efficacité. Le courant de l'adaptateur secteur Précision sincère est très important. Utilisez la tolérance de 1% résistance de détection de courant. La plus grande précision de ± 3% est obtenue avec 100 mV de mesure du courant pour la tension de seuil ACLIM = VREF, mais il a la dissipation de puissance la plus élevée. pour exemple, il a 400mW dissipation de puissance nominale pour 4A AC la personnalisation et 1W Sensing maillage de résistance doivent être utilisés. ± 4% et ± 6% La précision peut être obtenue avec 75mV et 50mV sens de courant tension de seuil pour ACLIM = flottant et ACLIM = GND, respectivement. Programmation du nombre de cellules TABLEAU 1. NOMBRE cellules CELL DMV 4 GND 3 float 2 ICHG 165mV R1 ------------------- VCHLIM 3.3V = --------------------- ICHG 165mV R1 ------------------- VCHLIM, filet 3.3V = --------------------------------------- ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ = V + 0,050 VREF 0,05 R I 1 ACLIM 2 contribution VACLIM VREF Rbot_ACLIM | | 152k Rtop_ACLIM | | 152k + Rbot_ACLIM | | 152k = × ------------------------------------------------------------------------------------------------------ ISL6251, ISL6251A 14 FN9202.2 10 mai 2006 Un filtre passe-bas est d'éliminer la commutation suggéré bruit. Connecter la résistance à RCID broches au lieu de broches CSIP parce RCID a pings inférieurs courant Bias et moins influents sur la précision de mesure du courant. Personnalisation de détection AC Connectez la tension de l'adaptateur secteur à travers la résistance diviseur de ACSET Lorsque l'alimentation secteur est disponible pour détecter, cum montre Figure 12. ACPRN est une sortie à drain ouvert est élevée et lorsque ACSET est inférieure à Vth, RISE, et est actif bas Quand ACSET ci-dessus Ve, tomber. Ve, RISE et Ve, automne sont donnés par: Où est l'entrée de courant et de l'hystérésis Bias Ihys ACSET VACSET = 1.24V (min), 1.26V (typ) et 1.28V (max). la hystérésis est IhysR8, Où Ihys = 2.2μA (min), 3.4μA (typ) et 4.4μA (max). mesure de courant Utilisez ICM pour contrôler le courant d'entrée détecté Être travers CSIP et RCID. La plage de tension de sortie est de 0 à 2,5 V. la Tension de ICM est proportionnelle à la chute de tension aux bornes de CSIP et RCID, et est donnée par l'équation suivante: de INPUT Où est le courant continu tirée de l'adaptateur secteur. ICM a ± 3% Précision. Un filtre passe-bas connecté à l'ICM est utilisé pour délivrer en sortie du filtre Le bruit de commutation. Régulateur LDO 5.075V VDD la tension d'alimentation du fournisseur de la LDO interne Régulateur de DCIN et peut fournir jusqu'à 30mA de courant. Les pilotes MOSFET sont alimentés par VDDP, qui doit être connecté à VDDP cum le montre la figure 12. VDDP connecte à travers la résistance externe à la DMV. Bypass VDD et VDDP avec le 1μF condensateur. fermeture Le ISL6251, ISL6251A dispose la veille à faible consommation mode. Conduite EN bas arrête le chargeur. Dans l'arrêt, Le convertisseur DC / DC est désactivé, et VCOMP et ICOMP sont tirés à la terre. L'ICM, sorties ACPRN continuer à fonction. FR peut être entraîné par la thermistance Autoriser automatique arrêt Lorsque la batterie est chaude. Souvent, les NTC thermistance est inclus à l'intérieur de la batterie pour mesurer son Température. Lorsqu'il est connecté au chargeur, la thermistance forme le diviseur de tension résistif avec le pull-up à la VREF. La tension de seuil de 1.06V avec 60mV hystérésis est EN. La thermistance peut être sélectionnée pour que le rapport de la résistance Température caractéristique qui diminue brutalement au-dessus de l' Température critique. Cette ferme automatiquement arrangement Lorsque la batterie le chargeur est au-dessus de la critique Température. Une autre méthode pour inhiber taux Charing est Chlim force ci-dessous 88mV (typ). Short Circuit Protection et 0V Batterie Charing Le courant de charge sur le chargeur de batterie Will course les limites fixées par Chlim, il a automatiquement court-circuit protection et est en mesure de charger le fournisseur actuel WAKE taux en batterie extrêmement déchargée. Protection contre la surchauffe Si la température de la filière dépasse 150 ° C, il s'arrête Charing. Une fois que l' DROPS meurent température inférieure à 125 ° C, Charing va recommencer. Renseignements sur la demande La conception de chargeur de batterie qui suit fait référence à la typique Circuit d'application de la figure 12, où la batterie typique de configuration 4S2P est utilisé. Cette section décrit comment Sélectionnez les composants externes, y compris l'inducteur, entrée et des condensateurs de sortie, MOSFET de commutation et de courant Sentant résistances. sélection d'inductance La sélection de l'inducteur a compromis entre le coût, la taille et efficacité. Par exemple, l'inductance de l'abaisser, l' la plus petite taille, mais est courant supérieur d'ondulation. C'est ce qui ressort également des pertes supérieur AC dans le noyau magnétique et les enroulements, qui réduisent l'efficacité du système. D'autre part, Les résultats d'inductance plus élevés dans l'ondulation inférieure actuelle et un filtrage plus petites condensateurs de sortie, mais elle a supérieur DCR (DC résistance de l'inducteur) perte, et a transitoire lent réponse. Sauter, la conception pratique de l'inducteur est basée sur l' inductance ondulation de courant Etre ± (15-20)% du maximum en cours de fonctionnement à courant continu à la tension d'entrée maximale. la inductance nécessaire peut être calculée à partir de: Où VIN, MAX, VBAT, et FS sont l'entrée maximale tension, la tension de la batterie et de la fréquence de commutation respectivement. Le courant ΔI inductance d'ondulation se trouve de: Lorsque le courant maximal crête-à-crête d'ondulation est de 30% le courant de charge maximum est utilisé. Pour VIN, MAX = 19V, VBAT = 16.8V, TABI, MAX = 2.6A, et FS = 300kHz, l'inductance calculée est 8.3μH. Choisir La valeur standard Placard donne L = 10μH. Noyaux de ferrite sont souvent le meilleur choix, car ils sont à taux Optimisé 300kHz ACSET 9 8 e, hausse de 1 V R • ⎟ V R ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ + ACSET hys 8 9 8 e, Fall 1 V I R R R V - • ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ + ICM = 19,9 de INPUT • • R2 IN, MAX s BAT L IN, MAX BAT V f V je V V L Δ - = Δ IL = 30% ⋅ TABI, MAX ISL6251, ISL6251A 15 FN9202.2 10 mai 2006 Opération de 600kHz avec une faible perte de base. Le noyau doit être honoré PAS assez pour saturer au courant de bobine crête IPeak: Sélection de condensateur de sortie CONDENSATEUR La sortie en parallèle avec la batterie est utilisée pour suce l'ondulation de courant à haute fréquence et de commutation lisser la tension de sortie. La valeur efficace de la sortie ondulation Ieff est donné par: Lorsque le rapport cyclique D est le rapport de la tension de sortie (tension de batterie) sur la tension d'entrée continue pour Le fonctionnement en mode de conduction qui est typique pour la batterie téléchargés. Au cours de la période de charge de la batterie, la tension de sortie varie à partir de sa tension de batterie à la batterie initiale classé tension. Sauter, le rapport cyclique peut être modifié dans la plage de entre 0,53 et 0,88 pour la tension de batterie minimale de 10V (2.5V/Cell) et la tension maximale de la batterie de 16.8V. Pour VIN, MAX = 19V, VBAT = 16.8V, L = 10μH, et FS = 300kHz, le courant maximal RMS est 0.19A. Un typique CONDENSATEUR 10F céramique est un bon choix pour ce suce courant et a également de très petite taille. Le condensateur au tantale Ormerod Connu mécanismes de défaillance Lorsqu'il est soumis à une grande Courant de choc. Considérations EMI marquent généralement souhaitable de minimiser ondulation du courant dans les câbles de la batterie. Perles eBay maille ajoutée dans série avec la batterie à l'augmentation de la batterie impédance à 300kHz Fréquence de commutation. ondulation de commutation splits de courant entre la batterie et le condensateur de sortie en fonction de l'ESR de la production et de la batterie CONDENSATEUR impédance. Si l'ESR du condensateur de sortie est 10M et l'impédance de la batterie est élevée à 2Ω avec le talon, alors que 0,5% du courant d'ondulation dans la batterie 'vais couler. sélection de MOSFET Le chargeur de batterie pour ordinateur portable synchrone avec convertisseur abaisseur a la tension d'entrée à partir de la sortie de l'adaptateur AC. la tension de sortie maximum de l'adaptateur secteur ne dépasse pas 25V. Par conséquent, la logique MOSFET 30V doit être utilisé. Le MOSFET côté haut doit être capable de dissiper la les pertes de conduction, plus les pertes de commutation. Pour la batterie application chargée, la tension d'entrée de l'synchrone convertisseur abaisseur est égale à la tension de sortie de l'adaptateur, qui est relativement constante. L'efficacité maximale est réalisé par Sélection du MOSFET côté haute qui a le les pertes de conduction correspondant aux pertes de commutation. Assurez-vous que ISL6251, ISL6251A LGATE gâté conducteur peut fournir suffisamment taux actuel périssables prévente à partir de conduction, qui est due à le courant injecté dans le parasite drain-source en condensateur (Miller CONDENSATEUR CGD), et causée par la tension phase ascendante de la rareté au noeud à l'instant de la high-side Transformer un MOSFET; Sinon, des problèmes inter-conduction maille se produisent. Ralentissement raisonnable tourner sur la vitesse de la MOSFET côté en connectant la résistance entre le Goupille de BOOT et la source d'alimentation du variateur gâté, et le haut de cinq Capacité actuelle du pilote de MOSFET côté bas gâtée aide réduire la possibilité de cross-conduction. Pour le MOSFET côté, le pire des cas conduction les pertes se produisent à la tension d'entrée minimum: L'efficacité optimale lorsqu'on les pertes de commutation égaler les pertes de conduction. Cependant, il est difficile d' calculer les pertes de commutation dans le MOSFET côté car il doit permettre facteur difficile à quantifier que influent sur ​​la tour-et temps turn-off. Ce facteur Impliquer la résistance interne MOSFET gâté, gâté charge, tension de seuil, l'inductance parasite, pull-up et pull-down résistance du conducteur gâté. La perte de commutation suivante estimations de calcul approximatif du fournisseur. Où Qgd: drainer à périssable charge, Qrr: recouvrement inverse totale Charge de la diode de corps MOSFET côté bas, ILV: inductance actuelle vallée, ILP: courant de crête d'inductance, IG, et cinq IG, la source de pointe sont la source gâtée lecteur / cinq cours du 1er trimestre, respectivement. Pour atteindre les pertes de commutation faible, il nécessite peu d'drain-périssables charge Qgd. Généralement, plus la charge entre drain et périssable, Le supérieur de la sur-résistance. Par conséquent, il est le compromis entre la résistance et sur ​​la charge de vidange à périssable. bon Sélection de MOSFET est basée sur le facteur de mérite (FORM), qui est le produit de la charge totale et la détérioration sur-résistance. Habituellement, plus la valeur de la forme, le plus le rendement pour la même application. Pour le MOSFET côté bas, la dissipation de puissance pire des cas se produit à la tension de batterie minimale et maximale d'entrée tension: Choisissez le MOSFET côté bas qui a le plus bas possible sur la résistance avec le paquet de taille moyenne comme le SO-8 et est d'un prix raisonnable. Les pertes de commutation sont notés sur émettre pour le MOSFET côté bas, car il fonctionne à zéro de commutation de tension. Choisir la diode Schottky en parallèle avec le transistor MOSFET du côté bas Q2 avec la chute de tension assez basse pour la prévente bas-côté MOSFET corps diode de Q2 lors d'un virage sur la temps mort. Cela réduit également la perte de puissance dans le haut-côté MOSFET associés à la récupération inverse de la bas-côté corps MOSFET diode Q2. BAT Peak, MAX IL 2 I = 1 + Δ D (1 D) 12 L f V je s IN, MAX RMS = - DSON 2 BAT EN août Q1, je conduction R V V P = EN rr s g, k péché gd EN LP s g, la source gd Q1, commutation de LV Q V de f je Q I f V 2 1 je Q I f V 2 P = 1 + + DSON 2 BAT EN août Q2 I R V V 1 P ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ = - ISL6251, ISL6251A 16 FN9202.2 10 mai 2006 En règle générale, sélectionnez la diode avec DC Note courant égal à un tiers du courant de charge. Une option est de choisir le combiné avec la diode Schottky dans le MOSFET GaGa emballage. Les ensembles intégrés maille travail mieux pratiquer parce qu'il ya moins inductance parasite en raison de la courte connexion. Cette diode Schottky est facultative et mesh eBay Suppression hyphes perte d'efficacité peut être tolérée. En outre, Veiller à ce que le courant d'entraînement requis totale gâté pour la MOSFET sélectionné doit être inférieur à 24mA. Jump, le total charge périssables pour les high-side et low-side MOSFET est limité par l'équation suivante: Où IGATE est le courant d'attaque totale et gâté Si eBay moins de 24mA. En substituant IGATE = 24mA et FS = 300kHz dans les rendements de l'équation ci-dessus que le périssables de la charge totale doit être inférieure à 80nC. Par conséquent, la ISL6251, ISL6251A entraîne facilement le courant de charge de la batterie jusqu'à 10 bis. Sélection de condensateur d'entrée Le condensateur d'entrée absorbe le courant d'ondulation de la Convertisseur de puissance synchrone, qui est donnée par: Cette RMS ondulation de courant doit être inférieure aux évaluée de RMS courant dans le condensateur de fiche technique. Chimies Nom-tantale (céramique, aluminium, ou OSCON) sont préférés en raison de leur résistance à la mise sous tension des courants de surtension Lorsque l'adaptateur secteur est branché sur le chargeur de batterie. Pour la batterie d'ordinateur portable applications chargées, il est recommandé que céramique condensateurs ou des condensateurs en polymère de Sanyo eBay utilisés pour un duo leur petite taille et de coût raisonnable. Le tableau 2 montre les listes de composants pour l'application typique circuit de la figure 12. Compensation de boucle de conception ISL6251, ISL6251A utilise le mode courant de fréquence constante contrôler l'architecture de la boucle pour atteindre une réponse transitoire rapide. Dans résistance PRÉCIS en série avec la sortie de courant de détection inducteur est utilisé pour la course du courant de charge, et l' signal de courant détecté est injectée dans le taux de la boucle de tension ATTEINDRE mode actuelle pour simplifier la boucle de régulation conception de la rémunération. L'inducteur est pas considéré comme un variables d'état pour le contrôle en mode courant et le système GaGa devient payable système. Il est beaucoup plus facile de concevoir la Compensateur pour stabiliser la tension de la boucle de tension de mode contrôle. La figure 14 montre le petit modèle de signal de l' synchrone régulateur abaisseur. PWM comparateur Gain Fm: Le gain PWM comparateur Fm pour le pic de contrôle en mode courant est donné par: Fonctions Power Stage de transfert La fonction de transfert F1 (S) de contrôle de tension de sortie est: Lorsque, La fonction de transfert F2 (S) de commande de courant de l'inductance est la suivante: , Où. LISTE COMPOSANTS TABLEAU 2. CHIFFRES ET PIECES fabricant C1, C10 10μF/25V condensateur céramique, Taiyo Yuden TMK325 MJ106MY X5R (3.2x2.5x1.9mm) C2, C4, C8 0.1μF/50V condensateur céramique C3, C7, C9 1μF/10V condensateur céramique, Taiyo Yuden LMK212BJ105MG C5 CONDENSATEUR 10nF céramique C6 6.8nF condensateur céramique 3300pF condensateur céramique C11 Diode Schottky D1 30V/3A, EC31QS03L (facultatif) D2, D3 diode Schottky 100mA/30V, Central Semiconductor D4 8A/30V Schottky redresseur, STPS8L30B (facultatif) L 10μH/3.8A/26mΩ, Sumida, CDRH104R-100 Q1, Q2 30V/35mΩ, FDS6912A, Fairchild. s porte GATE f je Q ≤ () EN En août BAT V RMS V V V I I. - = Signal Q3 à canal N MOSFET, 2N7002 R1 40mΩ, ± 1%, LRC-LR2512-01-R040-F, IRC R2 20mΩ, ± 1%, LRC-LR2010-01-R020-F, IRC R3 18Ω, ± 5%, (0805) R4 2.2Ω, ± 5%, (0805) R5 100kΩ, ± 5%, (0805) R6 10k, ± 5%, (0805) R7 100Ω ± 5%, (0805) R8, R11 130 K, ± 1%, (0805) R9 10.2kΩ, ± 1%, (0805) R10 4.7Ω, ± 5%, (0805) R12 20kΩ, ± 1%, (0805) R13 1.87kΩ, ± 1%, (0805) LISTE COMPOSANTS TABLEAU 2. (Suite) CHIFFRES ET PIECES fabricant M 11 VIN = ---------. () 1 Q S S 1 S V de v F S 2 o p o 2 ESR dans o 1 + + + == ω ω ω , R C 1 c o ωesr = L C Q R o p ≈ o o o LC ω = 1 () 1 Q S S 1 S R R V de je F S 2 o p o 2 z o L L en 2 + + + + == ω ω ω o o z R C ω ≈ 1 ISL6251, ISL6251A 17 FN9202.2 10 mai 2006 Gain de boucle de courant Ti (S) est le sperme impressionné suivante équation: où RT est la trans-résistance dans la boucle de courant. RT est généralement égal au produit du courant de détection Charing la résistance et le gain de l'amplificateur de détection de courant, CA2. Pour ISL6251, ISL6251A, RT = 20R1. Le gain en tension de la boucle de courant est ouvert: Lorsque, VFB est la tension de contre-réaction de la tension l'amplificateur d'erreur. Le gain de la boucle de tension de la boucle de courant fermée est donnée par: Cum DM Petit (S) >> 1, alors il peut être simplifié suit: De l'équation ci-dessus, il est démontré que le système est le système de commande de GaGa, qui a le pôle de noisette situé à Avant la moitié de la fréquence de commutation. Par conséquent, franc de type II Compensateur peut être facilement utilisé pour stabiliser le système. La figure 15 montre le compensateur de boucle de tension, et son fonction de transfert est cum impressionné suit: où Objectif de conception du compensateur: • haut gain DC • boucle de bande passante FC: • La marge de gain:> 10dB • La marge de phase: 40 ° La procédure de conception du compensateur est cum suit: . 1 Putt Compensateur zéro à: 2. Compensateur Mettez un pôle à la fréquence zéro pour atteindre DC gain élevé, et Putt autre pôle du compensateur à répétitions ESR fréquence nulle ou demi-fréquence de commutation valeur la plus faible. Le gain Tv (S) de la boucle à fréquence de croisement FC de l'unité a gagner. Par conséquent, la résistance R1 est Compensateur déterminé par: Lorsque MM est la trans-conductance de l'erreur de la boucle de tension amplificateur. Compensateur condensateur C1 est alors donnée par: Exemple: Vin = 19V, Vo = 16.8V, 2.6A = nght, FS = 300kHz, Co = 10μF/10mΩ, L = 10μH, GM = 250μs, RT = 0.8Ω, VFB = 2,1 V, FC = 20 kHz, alors Compensateur résistance R1 = 10kO. Choisissez R1 = 10kO. Mettez le compensateur zéro à 1,5 kHz. Le compensateur est condensateur C1 = 6.5nF. Par conséquent, Choisissez tension boucle compensateur: R1 = 10k, C1 = 6.5nF. Petit (S) = 0,25 RTF2 (S) M Tv (S) = KM F1 (S) AV (S) o FB V V K = () 1 T (S) T S L (S) je v v + = LV (S) 4VFB VO -------------- (RO + RL) RT ----------------------------- 1 S ωesr + ------------ 1 Sω P + ------- ------------------------ AV (S) ωP 1 ROCO =, ≈ ----------------- ωp FIGURE 14. MODEL PETIT SIGNAL DE synchrone BUCK REGULATEUR de devenir de ville iin L + 1: D + IL Cie. rc ro -Av (S) de Vcomp RT 11/Vin + Petit (S) Q valeur Tv (S) - VCA2 0.25VCA2 VindILdin () Caroline du Sud 1 S sol v v S 1 CZ je FB échantillon v ω + == R C 1 1 1 ωcz = - + R1 C1 VREF VFB VO GM VCOMP FIGURE 15. LOOP tension Compensateur FS 20 1 5 1 ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ - () o o CZ R C ω = 1 à 3 jan R1 8πfCVOCORT gmVFB = --------------------------------------- 1 CZ R 1 C 1 ω = ISL6251, ISL6251A 18 FN9202.2 10 mai 2006 Aspects de l'agencement PCB Secteur et signal couches placement sur ​​le PCB En règle générale, les couches d'alimentation doivent être rapprochés, répète sur le haut ou le bas de la carte, avec des couches de signaux sur le côté opposé de la carte. Comme exemple, la couche Agencement sur un panneau 4-couche est indiqué ci-dessous: . 1 Top Layer: les lignes de signaux, ou demi-pension pour les lignes de signaux et L'autre demi-pension pour les lignes électriques 2. Signal Ground . 3 couches de puissance: Puissance sol . 4 Couche inférieure: MOSFET de puissance, inductances et autres traces de puissance Séparer la tension d'alimentation et le chemin de circulation de courant à partir de le chemin de signal de contrôle et de niveau logique. Le contrôleur IC rester sur la couche de signal, qui est isolée par le signal terre pour les traces de signal de puissance. Placement de composants Le MOSFET de puissance devrait être proche de l'IC que le saut signaux gâté d'entraînement, le LGATE, UGATE, PHASE, et BOOT, traces peuvent être à court. Une telle place les composants de la façon que l'aire sous la IC a moins de bruit retrace avec de hauts DVD / dt et de dire / dt, tel cum signaux gâtés et les signaux de noeuds de phase. Signal Ground et Ground Power Connection. Au moins, la vaste zone raisonnable de cuivre, qui Protégez autre couplage de bruit à travers le CI, devrait être utilisé masse du signal cum sous le IC. Le meilleur lien entre les points la masse du signal et la masse de l'alimentation est au négatif CONDENSATEUR de chaque côté de la face de sortie, où il existe peu de bruit; La trace bruyant sous la CI n'est pas recommandé. GND et VDD PIN Au moins une haute qualité en céramique bouchon de découplage Si eBay utilisé pour franchir ces deux Pins. Le bouchon de découplage peut être mis près de l'IC. LGATE PIN C'est le butin du signal de commande pour le MOSFET bas Buck Converter. Le signal passant par cette trace est à la fois élevés DVD / dt et ladite haute / dt, et le pic et Charing courant de décharge est très élevé. Ces deux traces Si eBay court, large, et loin d'autres traces. S'il n'y a pas D'autres traces en parallèle avec ces traces sur une couche. PGND PIN Si les repères eBay PGND prévue sur le côté négatif de la bouchon de sortie pertinente avec des traces distinctes. Le côté négatif de la capacité de production doit être proche du noeud source de le transistor MOSFET de fond. Cette trace est le chemin de LGATE de retour. PIN PHASE Cette trace doit être court, et positionné à l'écart des autres faibles traces de signal. Ce nœud a la très grande dvds / dt avec le excursion de tension de la tension d'entrée à la masse. n ° trace devrait être en parallèle avec elle. Cette trace est également le trajet de retour pour UGATE. Connectez cette broche à la MOSFET côté la source. UGATE PIN Cette broche a la forme carrée de forme d'onde avec de hauts DVD / dt. il Fournisseur gâché le courant d'attaque pour charger et décharger le haut MOSFET à haute voix / dt. Cette trace devrait être large, Bref, et loin des autres traces semblables à la LGATE. PIN BOOT Disons / dt de cette broche est la cum cum UGATE élevé; Par conséquent, cette trace doit être court cum cum réalisable. CSOP, Cson Pins La résistance de détection de courant connecte à l'Cson et l' CSOP Pins à travers le filtre passe-bas. La broche est également Cson AS utilisé les évaluations de tension de la batterie. Les traces Si eBay loin de la haute DVD / dt et dire / dit Pins comme PHASE, BOOT Pins. En général, la résistance de détection de courant doit être proche à l'IC. D'autres dispositions de mise en page doit être ajustée en conséquence. EN PIN Cet axe reste à haute et basse au ralenti permettent la mode et de la mode est relativement robuste. Activer signaux doivent se référer au signal sol. DCIN PIN Cet axe se connecte à AC tension de sortie de l'adaptateur, et devrait eBay moins sensible au bruit. Taille du cuivre pour le noeud de phase La capacité de phase devrait être aussi des taux très bas minimiser sonner. Il serait préférable de limiter la taille de la Noeud CUIVRE PHASE en stricte conformité avec le courant et la gestion thermique de l'application. Identifier le terrain secteur et signal Les condensateurs des convertisseurs d'entrée et de sortie, la source terminale de la commutation MOSFET bas Si PGND connecter à la terre électrique. Les autres composants doivent connecter à la masse du signal. Signal et masse de l'alimentation sont tiède ensemble à un moment donné. Serrage condensateur pour MOSFET de commutation Il est recommandé que les bouchons en céramique utilisés eBay étroitement reliée au drain du MOSFET côté, et la la source du MOSFET côté bas. Cela réduit la capacité le bruit et la perte du MOSFET de puissance. ISL6251, ISL6251A 19 FN9202.2 10 mai 2006 ISL6251, ISL6251A Quad Flat No-Lead paquet en plastique (QFN) Micro Cadre de plomb paquet en plastique (MLFP) INDEX D1 / 2 D1 D / 2 ré E1 / 2 E / 2 E A 2x 0,15 B C 0,10 M C A B A N plan SIÈGES N 6 3 2 23 et 1 1 0,08 TERMINAL POUR ODD / SIDE POUR TERMINAL Même / SIDE C C SECTION "C-C" NX b A1 C 2x 0,15 C 0,15 2x B 0 REF. (ND-1) Xe (NRE-E1F) X. et 5 A1 4x P A C C 4x P B 2x 0,15 C A A2 A3 D2 D2 E2 E2 / 2 TYPE TERMINAL VUE DE CÔTÉ VUE DE DESSUS 7 VUE DU BAS 7 5 CL CL et e E1 2 NX k NX b 8 NX L 8 8 9 ZONE 9 4x / / C 0,10 9 (La référence B) (Donnée A) INDEX 6 ZONE N 9 CORNER Options 4x L1 L 10 l1 L 10 L28.5x5 28 LEAD QUAD FLAT NO-LEAD PLASTIC PACKAGE (COMPLIANT TO JEDEC MO-220VHHD-1 ISSUE I) SYMBOL MILLIMETERS MIN NOMINAL MAX NOTES A 0.80 0.90 1.00 - A1 - 0.02 0.05 - A2 - 0.65 1.00 9 A3 0.20 REF 9 b 0.18 0.25 0.30 5,8 D 5.00 BSC - D1 4.75 BSC 9 D2 2.95 3.10 3.25 7,8 E 5.00 BSC - E1 4.75 BSC 9 E2 2.95 3.10 3.25 7,8 e 0.50 BSC - k 0.20 - - - L 0.50 0.60 0.75 8 N 28 2 Nd 7 3 Ne 7 3 P - - 0.60 9 θ - - 12 9 Rev1 11/04 NOTES: 1. Dimensioning and tolerancing conform to ASME Y14.5-1994. 2. N is the number of terminals. 3. Nd and Ne refer to the number of terminals on each D and E. 4. All dimensions are in millimeters. Angles are in degrees. 5. Dimension b applies to the metallized terminal and is measured between 0.15mm and 0.30mm from the terminal tip. 6. The configuration of the pin #1 identifier is optional, but must be located within the zone indicated. The pin #1 identifier may be either a mold or mark feature. 7. Dimensions D2 and E2 are for the exposed pads which provide improved electrical and thermal performance. 8. Nominal dimensions are provided to assist with PCB Land Pattern Design efforts, see Intersil Technical Brief TB389. 9. Features and dimensions A2, A3, D1, E1, P & θ are present when Anvil singulation method is used and not present for saw singulation. 20 All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems. Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see www.intersil.com FN9202.2 May 10, 2006 ISL6251, ISL6251A Shrink Small Outline Plastic Packages (SSOP) Quarter Size Outline Plastic Packages (QSOP) NOTES: 1. Symbols are defined in the “MO Series Symbol List” in Section 2.2 of Publication Number 95. 2. Dimensioning and tolerancing per ANSI Y14.5M-1982. 3. Dimension “D” does not include mold flash, protrusions or gate burrs. Mold flash, protrusion and gate burrs shall not exceed 0.15mm (0.006 inch) per side. 4. Dimension “E” does not include interlead flash or protrusions. Interlead flash and protrusions shall not exceed 0.25mm (0.010 inch) per side. 5. The chamfer on the body is optional. If it is not present, a visual index feature must be located within the crosshatched area. 6. “L” is the length of terminal for soldering to a substrate. 7. “N” is the number of terminal positions. 8. Terminal numbers are shown for reference only. 9. Dimension “B” does not include dambar protrusion. Allowable dambar protrusion shall be 0.10mm (0.004 inch) total in excess of “B” dimension at maximum material condition. 10. Controlling dimension: INCHES. Converted millimeter dimensions are not necessarily exact. α INDEX AREA E D N 1 2 3 -B- 0.17(0.007) M C A B S e -AB M -CA1 A SEATING PLANE 0.10(0.004) h x 45° C H 0.25(0.010) M B M L 0.25 0.010 GAUGE PLANE A2 M24.15 24 LEAD SHRINK SMALL OUTLINE PLASTIC PACKAGE (0.150” WIDE BODY) SYMBOL INCHES MILLIMETERS MIN MAX MIN MAX NOTES A 0.053 0.069 1.35 1.75 - A1 0.004 0.010 0.10 0.25 - A2 - 0.061 - 1.54 - B 0.008 0.012 0.20 0.30 9 C 0.007 0.010 0.18 0.25 - D 0.337 0.344 8.55 8.74 3 E 0.150 0.157 3.81 3.98 4 e 0.025 BSC 0.635 BSC - H 0.228 0.244 5.80 6.19 - h 0.0099 0.0196 0.26 0.49 5 L 0.016 0.050 0.41 1.27 6 N 24 24 7 α 0° 8° 0° 8° - Rev2 6/04 1 ® FN3282.13 DG411, DG412, DG413 Monolithic Quad SPST, CMOS Analog Switches The DG411 series monolithic CMOS analog switches are drop-in replacements for the popular DG211 and DG212 series devices. They include four independent single pole throw (SPST) analog switches, and TTL and CMOS compatible digital inputs. These switches feature lower analog ON-resistance (<35Ω) and faster switch time (tON<175ns) compared to the DG211 or DG212. Charge injection has been reduced, simplifying sample and hold applications. The improvements in the DG411 series are made possible by using a high voltage silicon-gate process. An epitaxial layer prevents the latch-up associated with older CMOS technologies. The 44V maximum voltage range permits controlling 40VP-P signals. Power supplies may be single-ended from +5V to 44V, or split from ±5V to ±20V. The four switches are bilateral, equally matched for AC or bidirectional signals. The ON-resistance variation with analog signals is quite low over a ±15V analog input range. la switches in the DG411 and DG412 are identical, differing only in the polarity of the selection logic. Two of the switches in the DG413 (#2 and #3) use the logic of the DG211 and DG411 (i.e., a logic “0” turns the switch ON) and the other two switches use DG212 and DG412 positive logic. This permits independent control of turn-on and turn-off times for SPDT configurations, permitting “break-before-make” or “makebefore- break” operation with a minimum of external logic. Features • ON-Resistance (Max). . . . . . . . . . . . . . . . . . . . . . . . .35Ω • Low Power Consumption (PD) . . . . . . . . . . . . . . . . . .<35μW • Fast Switching Action - tON (Max) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .175ns - tOFF (Max) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .145ns • Low Charge Injection • Upgrade from DG211, DG212 • TTL, CMOS Compatible • Single or Split Supply Operation • Pb-Free Plus Anneal Available (RoHS Compliant) Applications • Audio Switching • Battery Operated Systems • Data Acquisition • Hi-Rel Systems • Sample and Hold Circuits • Communication Systems • Automatic Test Equipment Data Sheet June 20, 2007 CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. 1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a registered trademark of Intersil Americas Inc. Copyright Intersil Americas Inc. 1993, 1994, 1997, 1999, 2002, 2004-2007. All Rights Reserved All other trademarks mentioned are the property of their respective owners. 2 FN3282.13 June 20, 2007 Pinout DG411, DG412, DG413 (16 LD PDIP, SOIC, TSSOP) TOP VIEW Ordering Information PART NUMBER PART MARKING TEMP. RANGE (°C) PACKAGE PKG. DWG. # DG411DJ DG411DJ -40 to +85 16 Ld PDIP E16.3 DG411DJZ (Note) DG411DJZ -40 to +85 16 Ld PDIP** (Pb-free) E16.3 DG411DY* DG411DY -40 to +85 16 Ld SOIC (150 mil) M16.15 DG411DYZ* (Note) DG411DYZ -40 to +85 16 Ld SOIC (150 mil) (Pb-free) M16.15 DG411DVZ* (Note) DG411 DVZ -40 to +85 16 Ld TSSOP (4.4mm) (Pb-free) M16.173 DG412DJ DG412DJ -40 to +85 16 Ld PDIP E16.3 DG412DJZ (Note) DG412DJZ -40 to +85 16 Ld PDIP** (Pb-free) E16.3 DG412DY* DG412DY -40 to +85 16 Ld SOIC (150 mil) M16.15 DG412DYZ* (Note) DG412DYZ -40 to +85 16 Ld SOIC (150 mil) (Pb-free) M16.15 DG412DVZ* (Note) DG412 DVZ -40 to +85 16 Ld TSSOP (4.4mm) (Pb-free) M16.173 DG413DJ DG413DJ -40 to +85 16 Ld PDIP E16.3 DG413DJZ (Note) DG413DJZ -40 to +85 16 Ld PDIP** (Pb-free) E16.3 DG413DY* DG413DY -40 to +85 16 Ld SOIC (150 mil) M16.15 DG413DYZ* (Note) DG413DYZ -40 to +85 16 Ld SOIC (150 mil) (Pb-free) M16.15 DG413DVZ* (Note) DG413 DVZ -40 to +85 16 Ld TSSOP (4.4mm) (Pb-free) M16.173 *Add “-T” suffix for tape and reel. **Pb-free PDIPs can be used for through hole wave solder processing only. They are not intended for use in Reflow solder processing applications. NOTE: Intersil Pb-free plus anneal products employ special Pb-free material sets; molding compounds/die attach materials and 100% matte tin plate termination finish, which are RoHS compliant and compatible with both SnPb and Pb-free soldering operations. Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020. TRUTH TABLE LOGIC DG411 DG412 DG413 SWITCH SWITCH SWITCH 1, 4 SWITCH 2, 3 0 On Off Off On 1 Off On On Off NOTE: Logic “0” ≤0.8V. Logic “1” ≥2.4V. 14 15 16 9 13 12 11 10 1 2 3 4 5 7 6 8 IN1 D1 S1 VGND S4 IN4 D4 IN2 S2 V+ VL S3 D3 IN3 D2 Pin Descriptions PIN SYMBOL DESCRIPTION 1 IN1 Logic Control for Switch 1. 2 D1 Drain (Output) Terminal for Switch 1. 3 S1 Source (Input) Terminal for Switch 1. 4 V- Negative Power Supply Terminal. 5 GND Ground Terminal (Logic Common). 6 S4 Source (Input) Terminal for Switch 4. 7 D4 Drain (Output) Terminal for Switch 4. 8 IN4 Logic Control for Switch 4. 9 IN3 Logic Control for Switch 3. 10 D3 Drain (Output) Terminal for Switch 3. 11 S3 Source (Input) Terminal for Switch 3. 12 VL Logic Reference Voltage. 13 V+ Positive Power Supply Terminal (Substrate). 14 S2 Source (Input) Terminal for Switch 2. 15 D2 Drain (Output) Terminal for Switch 2. 16 IN2 Logic Control for Switch 2. DG411, DG412, DG413 3 FN3282.13 June 20, 2007 Functional Diagrams Four SPST Switches per Package Switches Shown for Logic “1” Input Schematic Diagram (1 Channel) S1 D1 S2 D2 S3 D3 S4 D4 DG411 S1 D1 S2 D2 S3 D3 S4 D4 IN1 DG412 IN2 IN3 IN4 S1 D1 S2 D2 S3 D3 S4 D4 IN1 DG413 IN2 IN3 IN4 IN2 IN3 IN4 IN1 S V+ INX GND VVVL ré V+ DG411, DG412, DG413 4 FN3282.13 June 20, 2007 Absolute Maximum Ratings Thermal Information V+ to V- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44V GND to V-. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25V VL. . . . . . . . . . . . . . . . . .............(GND -0.3V) to (V+) +0.3V Digital Inputs, VS, VD (Note 1). . . . . (V-) -2V to (V+) + 2V or 30mA, Whichever Occurs First Continuous Current (Any Terminal) . . . . . . . . . . . . . . . . . . . . . 30mA Peak Current, S or D (Pulsed 1ms, 10% Duty Cycle Max) . . 100mA Operating Conditions Voltage Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±20V (Max) Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . .-40°C to +85°C Input Low Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.8V (Max) Input High Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.4V (Min) Input Rise and Fall Time ..................... .... ...≤20ns Thermal Resistance (Typical, Note 2) θJA (°C/W) PDIP Package* ............................ 90 SOIC Package ................. . . . . . . . . . . . . 110 TSSOP Package . . . . . . . . . . . . . . . . . . . . . . . . . . .150 Maximum Junction Temperature (Plastic Packages). . . . . . .+150°C Maximum Storage Temperature Range. . . . . . . . ..-65°C to +150°C Pb-free reflow profile . . . . . . . . . . . . . . . . . . . . . . . . ..see link below http://www.intersil.com/pbfree/Pb-FreeReflow.asp (SOIC and TSSOP - Lead Tips Only) *Pb-free PDIPs can be used for through hole wave solder processing only. They are not intended for use in Reflow solder processing applications. CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and result in failures not covered by warranty. NOTES: 1. Signals on SX, DX, or INX exceeding V+ or V- will be clamped by internal diodes. Limit forward diode current to maximum current ratings. 2. θJA is measured with the component mounted on a low effective thermal conductivity test board in free air. See Tech Brief TB379 for details. Electrical Specifications Test Conditions: V+ = +15V, V- = -15V, VL = 5V, VIN = 2.4V, 0.8V (Note 3), Unless Otherwise Specified. PARAMETER TEST CONDITIONS TEMP (°C) MIN (Note 4) TYP (Note 5) MAX (Note 4) UNITS DYNAMIC CHARACTERISTICS Turn-ON Time, tON RL = 300Ω, CL = 35pF, VS = ±10V (Figure 1) 25 - 110 175 ns 85 - - 220 ns Turn-OFF Time, tOFF 25 - 100 145 ns 85 - - 160 ns Break-Before-Make Time Delay DG413 Only, RL = 300Ω, CL = 35pF (Figure 2) 25 - 25 - ns Charge Injection, Q (Figure 3) CL = 10nF, VG = 0V, RG = 0Ω 25 - 5 - pC OFF Isolation (Figure 5) RL = 50Ω, CL = 5pF, f = 1MHz 25 - 68 - dB Crosstalk (Channel-to-Channel), (Figure 4) 25 - -85 - dB Source OFF Capacitance, CS(OFF) f = 1MHz (Figure 6) 25 - 9 - pF Drain OFF Capacitance, CD(OFF) 25 - 9 - pF Channel ON Capacitance, CD(ON) + CS(ON) 25 - 35 - pF DIGITAL INPUT CHARACTERISTICS Input Current VIN Low, IIL VIN Under Test = 0.8V, All Others = 2.4V Full -0.5 0.005 0.5 μA Input Current VIN High, IIH VIN Under Test = 2.4V, All Others = 0.8V Full -0.5 0.005 0.5 μA ANALOG SWITCH CHARACTERISTICS Analog Signal Range, VANALOG IS = 10mA Full -15 - 15 V Drain-Source ON Resistance, rDS(ON) IS = 10mA, VD = ±8.5V, V+ = 13.5V, V- = -13.5V 25 - 25 35 Ω Full - - 45 Ω ± ± DG411, DG412, DG413 5 FN3282.13 June 20, 2007 Source OFF Leakage Current, IS(OFF) V+ = 16.5V, V- = -16.5V, VD = ±15.5V, VS = 15.5V 25 -0.25 ±0.1 0.25 nA Full -5 - +5 nA Drain OFF Leakage Current, ID(OFF) 25 -0.25 ±0.1 0.25 nA Full -5 - +5 nA Channel ON Leakage Current, ID(ON) + IS(ON) V+ = 16.5V, V- = -16.5V, VS = VD = ±15.5V 25 -0.4 ±0.1 0.4 nA Full -10 - +10 nA POWER SUPPLY CHARACTERISTICS Positive Supply Current, I+ V+ = 16.5V, V- = -16.5V, VIN = 0V or 5V 25 - 0.0001 1 μA 85 - - 5 μA Negative Supply Current, I- 25 -1 -0.0001 - μA 85 -5 - - μA Logic Supply Current, IL 25 - 0.0001 1 μA 85 - - 5 μA Ground Current, IGND 25 -1 -0.0001 - μA 85 -5 - - μA Electrical Specifications (Single Supply) Test Conditions: V+ = +12V, V- = 0V, VL = 5V, VIN = 2.4V, 0.8V (Note 3), Unless Otherwise Specified. PARAMETER TEST CONDITIONS TEMP (°C) MIN (Note 4) TYP (Note 5) MAX (Note 4) UNITS DYNAMIC CHARACTERISTICS Turn-ON Time, tON RL = 300Ω, CL = 35pF, VS = 8V, (Figure 1) 25 - 175 250 ns 85 - - 315 ns Turn-OFF Time, tOFF 25 - 95 125 ns 85 - - 140 ns Break-Before-Make Time Delay DG413 Only, RL = 300Ω, CL = 35pF, VS = 8V 25 - 25 - ns Charge Injection, Q CL = 10nF, VG = 6.0V, RG = 0Ω 25 - 25 - pC ANALOG SWITCH CHARACTERISTICS Analog Signal Range, VANALOG Full 0 - 12 V Drain-Source ON-Resistance, rDS(ON) IS = -10mA, VD = 3V, 8V V+ = 10.8V 25 - 40 80 Ω Full - - 100 Ω Electrical Specifications Test Conditions: V+ = +15V, V- = -15V, VL = 5V, VIN = 2.4V, 0.8V (Note 3), Unless Otherwise Specified. (Continued) PARAMETER TEST CONDITIONS TEMP (°C) MIN (Note 4) TYP (Note 5) MAX (Note 4) UNITS ± DG411, DG412, DG413 6 FN3282.13 June 20, 2007 POWER SUPPLY CHARACTERISTICS Positive Supply Current, I+ V+ = 13.2V, V- = 0V VIN = 0V or 5V 25 - 0.0001 1 μA 85 - - 5 μA Negative Supply Current, I- 25 -1 -0.0001 - μA 85 -5 - - μA Logic Supply Current, IL 25 - 0.0001 1 μA 85 - - 5 μA Ground Current, IGND 25 -1 -0.0001 - μA 85 -5 - - μA NOTES: 3. VIN = input voltage to perform proper function. 4. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet. 5. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing. Test Circuits and Waveforms VO is the steady state output with the switch on. Feedthrough via switch capacitance may result in spikes at the leading and trailing edge of the output waveform. NOTE: Logic input waveform is inverted for switches that have the opposite logic sense. FIGURE 1A. MEASUREMENTS POINTS Repeat test for all IN and S. For load conditions, see Specifications. CL includes fixture and stray capacitance. FIGURE 1B. TEST CIRCUIT FIGURE 1. SWITCHING TIMES FIGURE 2A. MEASUREMENT POINTS FIGURE 2B. TEST CIRCUITS FIGURE 2. BREAK-BEFORE-MAKE TIME Electrical Specifications (Single Supply) Test Conditions: V+ = +12V, V- = 0V, VL = 5V, VIN = 2.4V, 0.8V (Note 3), Unless Otherwise Specified. (Continued) PARAMETER TEST CONDITIONS TEMP (°C) MIN (Note 4) TYP (Note 5) MAX (Note 4) UNITS 50% tr < 20ns tf < 20ns tOFF 90% 3V 0V VS 0V tON VO LOGIC INPUT SWITCH INPUT SWITCH OUTPUT 90% VO VS RL RL + rDS(ON) = ------------------------------------ SWITCH INPUT LOGIC INPUT S1 IN1 V+ D1 RL CL VO GND VVL +5V +15V SWITCH OUTPUT -15V tD 3V 0V VS1 0V tD LOGIC INPUT SWITCH OUTPUT SWITCH OUTPUT 90% 0V VS2 (V01) VO2 90% S1 IN1, IN2 V+ D1 RL1 CL1 VO1 GND VVL VS1 = 10V 300Ω +5V +15V S2 D2 35pF RL2 CL2 VO2 VS2 = 10V 300Ω 35pF -15V LOGIC INPUT CL includes fixture and stray capacitance. DG411, DG412, DG413 7 FN3282.13 June 20, 2007 FIGURE 3A. TEST CIRCUIT NOTE: INX dependent on switch configuration, input polarity determined by sense of switch. FIGURE 3B. MEASUREMENT POINTS FIGURE 3. CHARGE INJECTION FIGURE 4. CROSSTALK TEST CIRCUIT FIGURE 5. OFF ISOLATION TEST CIRCUIT FIGURE 6. SOURCE/DRAIN CAPACITANCES TEST CIRCUIT Test Circuits and Waveforms (Continued) V+ D1 CL VO GND VVIN = 3V RG VG SWITCH ΔVO INX OFF ON INX OFF OFF OFF ON Q = ΔVO x CL OUTPUT 0V, 2.4V ANALYZER +15V C V+ 0dBm VS SIGNAL GENERATOR RL GND IN1 VD IN2 50Ω 0V, 2.4V NC V- -15V C VD ANALYZER RL +15V 0dBm SIGNAL GENERATOR C V+ V- -15V C 0V, 2.4V VS VD INX GND +15V C V+ GND VS VD INX V- -15V C IMPEDANCE ANALYZER f = 1MHz 0V, 2.4V DG411, DG412, DG413 8 FN3282.13 June 20, 2007 Application Information Single Supply Operation The DG411, DG412, DG413 can be operated with unipolar supplies from 5V to 44V. These devices are characterized and tested for single supply operation at 12V to facilitate the majority of applications. To function properly, 12V is tied to Pins 13 and 0V is tied to Pin 4. Pin 12 still requires 5V for TTL compatible switching. Summing Amplifier When driving a high impedance, high capacitance load such as shown in Figure 7, where the inputs to the summing amplifier have some noise filtering, it is necessary to have shunt switches for rapid discharge of the filter capacitor, thus preventing offsets from occurring at the output. VIN1 R1 R2 VOUT + - C1 VIN2 R3 R4 C2 DG413 R5 R6 FIGURE 7. SUMMING AMPLIFIER DG411, DG412, DG413 9 FN3282.13 June 20, 2007 Typical Performance Curves FIGURE 8. ON RESISTANCE vs VD AND POWER SUPPLY VOLTAGE FIGURE 9. SWITCHING TIME vs TEMPERATURE FIGURE 10. LEAKAGE CURRENTS vs ANALOG VOLTAGE FIGURE 11. SUPPLY CURRENT vs INPUT SWITCHING FREQUENCY FIGURE 12. CHARGE INJECTION vs SOURCE VOLTAGE FIGURE 13. CHARGE INJECTION vs DRAIN VOLTAGE TA = +25°C 50 A: ±5V B: ±8V C: ±10V D: ±12V E: ±15V F: ±20V 45 40 35 30 25 20 15 10 5 0 -20 -15 -10 -5 0 5 10 15 20 A B C ré E fa DRAIN VOLTAGE (V) rDS(ON) (Ω) V+ = 15V, V- = -15V VL = 5V, VS = 10V tON tOFF -55 -15 5 25 45 65 85 105 125 TEMPERATURE (°C) -35 0 240 210 180 150 120 90 60 30 tON, tOFF (ns) V+ = 15V, V- = -15V VL = 5V, TA = +25°C -15 -5 0 5 10 15 VS, VD (V) -10 -60 20 10 0 -10 -20 -30 -40 -50 IS, ID (pA) IS(OFF) ID(OFF) 30 40 ID(ON) + IS(ON) ISUPPLY 100mA 1mA 100μA 10μA 1μA 100nA 10nA 10mA 10 100 1k 10k 100k 1M 10M FREQUENCY (Hz) IL I+, I- 1SW 1SW 4SW 4SW V+ = 15V, V- = -15V VL = 5V CL = 10nF CL = 1nF -15 -5 0 5 10 15 VS (V) -10 -60 60 40 20 0 -20 -40 Q (pC) 80 100 V+ = 15V, V- = -15V VL = 5V CL = 10nF CL = 1nF -15 -5 0 5 10 15 VD (V) -10 -60 60 40 20 0 -20 -40 Q (pC) 100 140 120 80 V+ = 15V, V- = -15V VL = 5V DG411, DG412, DG413 10 FN3282.13 June 20, 2007 Die Characteristics DIE DIMENSIONS: 2760mm x 1780mm x 485mm METALLIZATION: Type: SiAl Thickness: 12kÅ ±1kÅ PASSIVATION: Type: Nitride Thickness: 8kÅ ±1kÅ WORST CASE CURRENT DENSITY: 1.5 x 105 A/cm2 Metallization Mask Layout DG411, DG412, DG413 S1 (3) V- (4) GND (5) S4 (6) D1 IN1 IN2 (11) S3 (12) VL (13) V+ SUBSTRATE (14) S2 (15) D2 (2) (1) (16) D4 IN4 IN3 D3 (7) (8) (9) (10) DG411, DG412, DG413 11 FN3282.13 June 20, 2007 DG411, DG412, DG413 Thin Shrink Small Outline Plastic Packages (TSSOP) NOTES: 1. These package dimensions are within allowable dimensions of JEDEC MO-153-AB, Issue E. 2. Dimensioning and tolerancing per ANSI Y14.5M-1982. 3. Dimension “D” does not include mold flash, protrusions or gate burrs. Mold flash, protrusion and gate burrs shall not exceed 0.15mm (0.006 inch) per side. 4. Dimension “E1” does not include interlead flash or protrusions. Interlead flash and protrusions shall not exceed 0.15mm (0.006 inch) per side. 5. The chamfer on the body is optional. If it is not present, a visual index feature must be located within the crosshatched area. 6. “L” is the length of terminal for soldering to a substrate. 7. “N” is the number of terminal positions. 8. Terminal numbers are shown for reference only. 9. Dimension “b” does not include dambar protrusion. Allowable dambar protrusion shall be 0.08mm (0.003 inch) total in excess of “b” dimension at maximum material condition. Minimum space between protrusion and adjacent lead is 0.07mm (0.0027 inch). 10. Controlling dimension: MILLIMETER. Converted inch dimensions are not necessarily exact. (Angles in degrees) α INDEX AREA E1 ré N 1 2 3 -B- 0.10(0.004) M C A B S et -Ab M -CA1 A SEATING PLANE 0.10(0.004) c E 0.25(0.010) M B M L 0.25 0.010 GAUGE PLANE A2 0.05(0.002) M16.173 16 LEAD THIN SHRINK SMALL OUTLINE PLASTIC PACKAGE SYMBOL INCHES MILLIMETERS MIN MAX MIN MAX NOTES A - 0.043 - 1.10 - A1 0.002 0.006 0.05 0.15 - A2 0.033 0.037 0.85 0.95 - b 0.0075 0.012 0.19 0.30 9 c 0.0035 0.008 0.09 0.20 - D 0.193 0.201 4.90 5.10 3 E1 0.169 0.177 4.30 4.50 4 e 0.026 BSC 0.65 BSC - E 0.246 0.256 6.25 6.50 - L 0.020 0.028 0.50 0.70 6 N 16 16 7 a 0o 8o 0o 8o - Rev1 2/02 12 FN3282.13 June 20, 2007 DG411, DG412, DG413 Dual-In-Line Plastic Packages (PDIP) NOTES: 1. Controlling Dimensions: INCH. In case of conflict between English and Metric dimensions, the inch dimensions control. 2. Dimensioning and tolerancing per ANSI Y14.5M-1982. 3. Symbols are defined in the “MO Series Symbol List” in Section 2.2 of Publication No. 95. 4. Dimensions A, A1 and L are measured with the package seated in JEDEC seating plane gauge GS-3. 5. D, D1, and E1 dimensions do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.010 inch (0.25mm). 6. E and are measured with the leads constrained to be perpendicular to datum . 7. eB and eC are measured at the lead tips with the leads unconstrained. eC must be zero or greater. 8. B1 maximum dimensions do not include dambar protrusions. Dambar protrusions shall not exceed 0.010 inch (0.25mm). 9. N is the maximum number of terminal positions. 10. Corner leads (1, N, N/2 and N/2 + 1) for E8.3, E16.3, E18.3, E28.3, E42.6 will have a B1 dimension of 0.030 - 0.045 inch (0.76 - 1.14mm). eA -CCL E eA C eB eC -BE1 INDEX 1 2 3 N/2 N AREA SEATING BASE PLANE PLANE -CD1 B1 B et ré D1 A2 A L A1 -A- 0.010 (0.25) M C A B S E16.3 (JEDEC MS-001-BB ISSUE D) 16 LEAD DUAL-IN-LINE PLASTIC PACKAGE SYMBOL INCHES MILLIMETERS MIN MAX MIN MAX NOTES A - 0.210 - 5.33 4 A1 0.015 - 0.39 - 4 A2 0.115 0.195 2.93 4.95 - B 0.014 0.022 0.356 0.558 - B1 0.045 0.070 1.15 1.77 8, 10 C 0.008 0.014 0.204 0.355 - D 0.735 0.775 18.66 19.68 5 D1 0.005 - 0.13 - 5 E 0.300 0.325 7.62 8.25 6 E1 0.240 0.280 6.10 7.11 5 e 0.100 BSC 2.54 BSC - eA 0.300 BSC 7.62 BSC 6 eB - 0.430 - 10.92 7 L 0.115 0.150 2.93 3.81 4 N 16 16 9 Rev0 12/93 13 All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems. Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see www.intersil.com FN3282.13 June 20, 2007 DG411, DG412, DG413 Small Outline Plastic Packages (SOIC) NOTES: 1. Symbols are defined in the “MO Series Symbol List” in Section 2.2 of Publication Number 95. 2. Dimensioning and tolerancing per ANSI Y14.5M-1982. 3. Dimension “D” does not include mold flash, protrusions or gate burrs. Mold flash, protrusion and gate burrs shall not exceed 0.15mm (0.006 inch) per side. 4. Dimension “E” does not include interlead flash or protrusions. Interlead flash and protrusions shall not exceed 0.25mm (0.010 inch) per side. 5. The chamfer on the body is optional. If it is not present, a visual index feature must be located within the crosshatched area. 6. “L” is the length of terminal for soldering to a substrate. 7. “N” is the number of terminal positions. 8. Terminal numbers are shown for reference only. 9. The lead width “B”, as measured 0.36mm (0.014 inch) or greater above the seating plane, shall not exceed a maximum value of 0.61mm (0.024 inch). 10. Controlling dimension: MILLIMETER. Converted inch dimensions are not necessarily exact. INDEX AREA E ré N 1 2 3 -B- 0.25(0.010) M C A B S et -AL B M -CA1 A SEATING PLANE 0.10(0.004) h x 45° C H 0.25(0.010) M B M α M16.15 (JEDEC MS-012-AC ISSUE C) 16 LEAD NARROW BODY SMALL OUTLINE PLASTIC PACKAGE SYMBOL INCHES MILLIMETERS MIN MAX MIN MAX NOTES A 0.0532 0.0688 1.35 1.75 - A1 0.0040 0.0098 0.10 0.25 - B 0.013 0.020 0.33 0.51 9 C 0.0075 0.0098 0.19 0.25 - D 0.3859 0.3937 9.80 10.00 3 E 0.1497 0.1574 3.80 4.00 4 e 0.050 BSC 1.27 BSC - H 0.2284 0.2440 5.80 6.20 - h 0.0099 0.0196 0.25 0.50 5 L 0.016 0.050 0.40 1.27 6 N 16 16 7 α 0° 8° 0° 8° - Rev1 6/05 1 ® July 2004 HIP4081A 80V/2.5A Peak, High Frequency Full Bridge FET Driver The HIP4081A is a high frequency, medium voltage Full Bridge N-Channel FET driver IC, available in 20 lead plastic SOIC and DIP packages. The HIP4081A can drive every possible switch combination except those which would cause a shoot-through condition. The HIP4081A can switch at frequencies up to 1MHz and is well suited to driving Voice Coil Motors, high-frequency switching power amplifiers, and power supplies. For example, the HIP4081A can drive medium voltage brush motors, and two HIP4081As can be used to drive high performance stepper motors, since the short minimum “on-time” can provide fine micro-stepping capability. Short propagation delays of approximately 55ns maximizes control loop crossover frequencies and dead-times which can be adjusted to near zero to minimize distortion, resulting in rapid, precise control of the driven load. A similar part, the HIP4080A, includes an on-chip input comparator to create a PWM signal from an external triangle wave and to facilitate “hysteresis mode” switching. The Application Note for the HIP4081A is the AN9405. Features • Independently Drives 4 N-Channel FET in Half Bridge or Full Bridge Configurations • Bootstrap Supply Max Voltage to 95VDC • Drives 1000pF Load at 1MHz in Free Air at 50°C with Rise and Fall Times of Typically 10ns • User-Programmable Dead Time • On-Chip Charge-Pump and Bootstrap Upper Bias Supplies • DIS (Disable) Overrides Input Control • Input Logic Thresholds Compatible with 5V to 15V Logic Levels • Very Low Power Consumption • Undervoltage Protection • Pb-free Available Applications • Medium/Large Voice Coil Motors • Full Bridge Power Supplies • Switching Power Amplifiers • High Performance Motor Controls • Noise Cancellation Systems • Battery Powered Vehicles • Peripherals • U.P.S. Pinout HIP4081A (PDIP, SOIC) TOP VIEW Ordering Information PART NUMBER TEMP RANGE (°C) PACKAGE PKG. DWG. # HIP4081AIP -40 to 85 20 Ld PDIP E20.3 HIP4081AIPZ (Note) -40 to 85 20 Ld PDIP (Pb-free) E20.3 HIP4081AIB -40 to 85 20 Ld SOIC (W) M20.3 HIP4081AIBZ (Note) -40 to 85 20 Ld SOIC (W) (Pb-free) M20.3 NOTE: Intersil Pb-free products employ special Pb-free material sets; molding compounds/die attach materials and 100% matte tin plate termination finish, which is compatible with both SnPb and Pb-free soldering operations. Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J Std-020B. 11 12 13 14 15 16 17 18 20 19 10 9 8 7 6 5 4 3 2 BHB 1 BHI DIS VSS BLI ALI HDEL AHI LDEL AHB BHO BLO BLS VDD BHS VCC ALS ALO AHS AHO Data Sheet FN3659.7 CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. 1-888-INTERSIL or 321-724-7143 | Intersil (and design) is a registered trademark of Intersil Americas Inc. Copyright Harris Corporation. Copyright Intersil Americas Inc. 2003, 2004. All Rights Reserved All other trademarks mentioned are the property of their respective owners. 2 HIP4081A Application Block Diagram Functional Block Diagram (1/2 HIP4081A) 80V GND LOAD HIP4081A GND 12V AHI ALI BLI BHI BLO BHS BHO ALO AHS AHO CHARGE PUMP VDD AHI DIS ALI HDEL LDEL VSS TURN-ON DELAY TURN-ON DELAY DRIVER DRIVER AHB AHO AHS VCC ALO ALS CBF TO VDD (PIN 16) CBS DBS HIGH VOLTAGE BUS ≤ 80VDC +12VDC LEVEL SHIFT AND LATCH 14 10 11 12 15 13 16 7 3 6 8 9 4 BIAS SUPPLY UNDERVOLTAGE 3 Typical Application (PWM Mode Switching) 11 12 13 14 15 16 17 18 20 19 10 9 8 7 6 5 4 3 2 1 BHB BHI DIS VSS BLI ALI HDEL AHI LDEL AHB BHO BLO BLS VDD BHS VCC ALS ALO AHS AHO 80V 12V + - 12V DIS GND 6V GND TO OPTIONAL CURRENT CONTROLLER PWM LOAD INPUT HIP4081/HIP4081A HIP4081A 4 HIP4081A Absolute Maximum Ratings Thermal Information Supply Voltage, VDD and VCC . . . . . . . . . . . . . . . . . . . .-0.3V to 16V Logic I/O Voltages . . . . . . . . . . . . . . . . . . . . . . .-0.3V to VDD +0.3V Voltage on AHS, BHS . . .-6.0V (Transient) to 80V (25°C to 125°C) Voltage on AHS, BHS . . .-6.0V (Transient) to 70V (-55°C to 125°C) Voltage on ALS, BLS . . . . . . .-2.0V (Transient) to +2.0V (Transient) Voltage on AHB, BHB . . . . . . . .VAHS, BHS -0.3V to VAHS, BHS +VDD Voltage on ALO, BLO . . . . . . . . . . . ..VALS, BLS -0.3V to VCC +0.3V Voltage on AHO, BHO . . . . . . .VAHS, BHS -0.3V to VAHB, BHB +0.3V Input Current, HDEL and LDEL . . . . . . . . . . . . . . . . . .-5mA to 0mA Phase Slew Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20V/ns NOTE: All Voltages relative to VSS, unless otherwise specified. Thermal Resistance (Typical, Note 1) θJA (°C/W) SOIC Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85 DIP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75 Storage Temperature Range. . . . . . . . . . . . . . . . . . .-65°C to 150°C Operating Max.Junction Temperature . . . . . . . . . . . . . . . . . .125°C Lead Temperature (Soldering 10s)). . . . . . . . . . . . . . . . . ....300°C (For SOIC - Lead Tips Only Operating Conditions Supply Voltage, VDD and VCC . . . . . . . . . . . . . . . . . . +9.5V to +15V Voltage on ALS, BLS ................... .... ..-1.0V to +1.0V Voltage on AHB, BHB . . . . . . . . .VAHS, BHS +5V to VAHS, BHS +15V Input Current, HDEL and LDEL . . . . . . . . . . . . . . ..-500μA to -50μA Operating Ambient Temperature Range . . . . . . . . . ..-40°C to 85°C CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. NOTE: 1. θJA is measured with the component mounted on an evaluation PC board in free air. Electrical Specifications VDD = VCC = VAHB = VBHB = 12V, VSS = VALS = VBLS = VAHS = VBHS = 0V, RHDEL = RLDEL = 100K and TA = 25°C, Unless Otherwise Specified PARAMETER SYMBOL TEST CONDITIONS TJ = 25°C TJS = -40°C TO 125°C MIN TYP MAX MIN MAX UNITS SUPPLY CURRENTS AND CHARGE PUMPS VDD Quiescent Current IDD All inputs = 0V 8.5 10.5 14.5 7.5 14.5 mA VDD Operating Current IDDO Outputs switching f = 500kHz 9.5 12.5 15.5 8.5 15.5 mA VCC Quiescent Current ICC All Inputs = 0V, IALO = IBLO = 0 - 0.1 10 - 20 μA VCC Operating Current ICCO f = 500kHz, No Load 1 1.25 2.0 0.8 3 mA AHB, BHB Quiescent Current - Qpump Output Current IAHB, IBHB All Inputs = 0V, IAHO = IBHO = 0 VDD = VCC = VAHB = VBHB = 10V -50 -30 -11 -60 -10 μA AHB, BHB Operating Current IAHBO, IBHBO f = 500kHz, No Load 0.6 1.2 1.5 0.5 1.9 mA AHS, BHS, AHB, BHB Leakage Current IHLK VBHS = VAHS = 80V, VAHB = VBHB = 93V - 0.02 1.0 - 10 μA AHB-AHS, BHB-BHS Qpump Output Voltage VAHB-VAHS VBHB-VBHS IAHB = IAHB = 0, No Load 11.5 12.6 14.0 10.5 14.5 V INPUT PINS: ALI, BLI, AHI, BHI, AND DIS Low Level Input Voltage VIL Full Operating Conditions - - 1.0 - 0.8 V High Level Input Voltage VIH Full Operating Conditions 2.5 - - 2.7 - V Input Voltage Hysteresis - 35 - - - mV Low Level Input Current IIL VIN = 0V, Full Operating Conditions -130 -100 -75 -135 -65 μA High Level Input Current IIH VIN = 5V, Full Operating Conditions -1 - +1 -10 +10 μA TURN-ON DELAY PINS: LDEL AND HDEL LDEL, HDEL Voltage VHDEL, VLDEL IHDEL = ILDEL = -100μA 4.9 5.1 5.3 4.8 5.4 V GATE DRIVER OUTPUT PINS: ALO, BLO, AHO, AND BHO Low Level Output Voltage VOL IOUT = 100mA 0.7 0.85 1.0 0.5 1.1 V High Level Output Voltage VCC-VOH IOUT = -100mA 0.8 0.95 1.1 0.5 1.2 V Peak Pullup Current IO+ VOUT = 0V 1.7 2.6 3.8 1.4 4.1 A 5 HIP4081A Peak Pulldown Current IO- VO UT = 12V 1.7 2.4 3.3 1.3 3.6 A Undervoltage, Rising Threshold UV+ 8.1 8.8 9.4 8.0 9.5 V Undervoltage, Falling Threshold UV- 7.6 8.3 8.9 7.5 9.0 V Undervoltage, Hysteresis HYS 0.25 0.4 0.65 0.2 0.7 V Switching Specifications VDD = VCC = VAHB = VBHB = 12V, VSS = VALS = VBLS = VAHS = VBHS = 0V, RHDEL = RLDEL = 10K, CL = 1000pF. PARAMETER SYMBOL TEST CONDITIONS TJ = 25°C TJS = -40°C TO 125°C MIN TYP MAX MIN MAX UNITS Lower Turn-off Propagation Delay (ALI-ALO, BLI-BLO) TLPHL - 30 60 - 80 ns Upper Turn-off Propagation Delay (AHI-AHO, BHI-BHO) THPHL - 35 70 - 90 ns Lower Turn-on Propagation Delay (ALI-ALO, BLI-BLO) TLPLH RHDEL = RLDEL = 10K - 45 70 - 90 ns Upper Turn-on Propagation Delay (AHI-AHO, BHI-BHO) THPLH RHDEL = RLDEL = 10K - 60 90 - 110 ns Rise Time TR - 10 25 - 35 ns Fall Time TF - 10 25 - 35 ns Turn-on Input Pulse Width TPWIN-ON RHDEL = RLDEL = 10K 50 - - 50 - ns Turn-off Input Pulse Width TPWIN-OFF RHDEL = RLDEL = 10K 40 - - 40 - ns Turn-on Output Pulse Width TPWOUT-ON RHDEL = RLDEL = 10K 40 - - 40 - ns Turn-off Output Pulse Width TPWOUT-OFF RHDEL = RLDEL = 10K 30 - - 30 - ns Disable Turn-off Propagation Delay (DIS - Lower Outputs) TDISLOW - 45 75 - 95 ns Disable Turn-off Propagation Delay (DIS - Upper Outputs) TDISHIGH - 55 85 - 105 ns Disable to Lower Turn-on Propagation Delay (DIS - ALO and BLO) TDLPLH - 40 70 - 90 ns Refresh Pulse Width (ALO and BLO) TREF-PW 240 410 550 200 600 ns Disable to Upper Enable (DIS - AHO and BHO) TUEN - 450 620 - 690 ns TRUTH TABLE INPUT OUTPUT ALI, BLI AHI, BHI U/V DIS ALO, BLO AHO, BHO X X X 1 0 0 1 X 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 X X 1 X 0 0 NOTE: X signifies that input can be either a “1” or “0”. Electrical Specifications VDD = VCC = VAHB = VBHB = 12V, VSS = VALS = VBLS = VAHS = VBHS = 0V, RHDEL = RLDEL = 100K and TA = 25°C, Unless Otherwise Specified (Continued) PARAMETER SYMBOL TEST CONDITIONS TJ = 25°C TJS = -40°C TO 125°C MIN TYP MAX MIN MAX UNITS 6 HIP4081A Pin Descriptions PIN NUMBER SYMBOL DESCRIPTION 1 BHB B High-side Bootstrap supply. External bootstrap diode and capacitor are required. Connect cathode of bootstrap diode and positive side of bootstrap capacitor to this pin. Internal charge pump supplies 30μA out of this pin to maintain bootstrap supply. Internal circuitry clamps the bootstrap supply to approximately 12.8V. 2 BHI B High-side Input. Logic level input that controls BHO driver (Pin 20). BLI (Pin 5) high level input overrides BHI high level input to prevent half-bridge shoot-through, see Truth Table. DIS (Pin 3) high level input overrides BHI high level input. The pin can be driven by signal levels of 0V to 15V (no greater than VDD). 3 DIS DISable input. Logic level input that when taken high sets all four outputs low. DIS high overrides all other inputs. When DIS is taken low the outputs are controlled by the other inputs. The pin can be driven by signal levels of 0V to 15V (no greater than VDD). 4 VSS Chip negative supply, generally will be ground. 5 BLI B Low-side Input. Logic level input that controls BLO driver (Pin 18). If BHI (Pin 2) is driven high or not connected externally then BLI controls both BLO and BHO drivers, with dead time set by delay currents at HDEL and LDEL (Pin 8 and 9). DIS (Pin 3) high level input overrides BLI high level input. The pin can be driven by signal levels of 0V to 15V (no greater than VDD). 6 ALI A Low-side Input. Logic level input that controls ALO driver (Pin 13). If AHI (Pin 7) is driven high or not connected externally then ALI controls both ALO and AHO drivers, with dead time set by delay currents at HDEL and LDEL (Pin 8 and 9). DIS (Pin 3) high level input overrides ALI high level input. The pin can be driven by signal levels of 0V to 15V (no greater than VDD). 7 AHI A High-side Input. Logic level input that controls AHO driver (Pin 11). ALI (Pin 6) high level input overrides AHI high level input to prevent half-bridge shoot-through, see Truth Table. DIS (Pin 3) high level input overrides AHI high level input. The pin can be driven by signal levels of 0V to 15V (no greater than VDD). 8 HDEL High-side turn-on DELay. Connect resistor from this pin to VSS to set timing current that defines the turn-on delay of both high-side drivers. The low-side drivers turn-off with no adjustable delay, so the HDEL resistor guarantees no shoot-through by delaying the turn-on of the high-side drivers. HDEL reference voltage is approximately 5.1V. 9 LDEL Low-side turn-on DELay. Connect resistor from this pin to VSS to set timing current that defines the turn-on delay of both low-side drivers. The high-side drivers turn-off with no adjustable delay, so the LDEL resistor guarantees no shoot-through by delaying the turn-on of the low-side drivers. LDEL reference voltage is approximately 5.1V. 10 AHB A High-side Bootstrap supply. External bootstrap diode and capacitor are required. Connect cathode of bootstrap diode and positive side of bootstrap capacitor to this pin. Internal charge pump supplies 30μA out of this pin to maintain bootstrap supply. Internal circuitry clamps the bootstrap supply to approximately 12.8V. 11 AHO A High-side Output. Connect to gate of A High-side power MOSFET. 12 AHS A High-side Source connection. Connect to source of A High-side power MOSFET. Connect negative side of bootstrap capacitor to this pin. 13 ALO A Low-side Output. Connect to gate of A Low-side power MOSFET. 14 ALS A Low-side Source connection. Connect to source of A Low-side power MOSFET. 15 VCC Positive supply to gate drivers. Must be same potential as VDD (Pin 16). Connect to anodes of two bootstrap diodes. 16 VDD Positive supply to lower gate drivers. Must be same potential as VCC (Pin 15). De-couple this pin to VSS (Pin 4). 17 BLS B Low-side Source connection. Connect to source of B Low-side power MOSFET. 18 BLO B Low-side Output. Connect to gate of B Low-side power MOSFET. 19 BHS B High-side Source connection. Connect to source of B High-side power MOSFET. Connect negative side of bootstrap capacitor to this pin. 20 BHO B High-side Output. Connect to gate of B High-side power MOSFET. 7 HIP4081A Timing Diagrams FIGURE 1. INDEPENDENT MODE FIGURE 2. BISTATE MODE FIGURE 3. DISABLE FUNCTION U/V = DIS = 0 XLI XHI XLO XHO TLPHL THPHL THPLH TLPLH TR (10% - 90%) TF (10% - 90%) X = A OR B, A AND B HALVES OF BRIDGE CONTROLLER ARE INDEPENDENT U/V = DIS = 0 XLI XHI = HI OR NOT CONNECTED XLO XHO (10% - 90%) (10% - 90%) U/V OR DIS XLI XHI XLO XHO TDLPLH TDIS TUEN TREF-PW 8 HIP4081A Typical Performance Curves VDD = VCC = VAHB = VBHB = 12V, VSS = VALS = VBLS = VAHS = VBHS = 0V, RHDEL = RLDEL = 100K and TA = 25°C, Unless Otherwise Specified FIGURE 4. QUIESCENT IDD SUPPLY CURRENT vs VDD SUPPLY VOLTAGE FIGURE 5. IDDO, NO-LOAD IDD SUPPLY CURRENT vs FREQUENCY (kHz) FIGURE 6. SIDE A, B FLOATING SUPPLY BIAS CURRENT vs FREQUENCY (LOAD = 1000pF) FIGURE 7. ICCO, NO-LOAD ICC SUPPLY CURRENT vs FREQUENCY (kHz) TEMPERATURE FIGURE 8. IAHB, IBHB, NO-LOAD FLOATING SUPPLY BIAS CURRENT vs FREQUENCY FIGURE 9. ALI, BLI, AHI, BHI LOW LEVEL INPUT CURRENT IIL vs TEMPERATURE 6 8 10 12 14 2.0 4.0 6.0 8.0 10.0 12.0 14.0 IDD SUPPLY CURRENT (mA) VDD SUPPLY VOLTAGE (V) 0 100 200 300 400 500 600 700 800 900 1000 8.0 8.5 9.0 9.5 10.0 10.5 11.0 IDD SUPPLY CURRENT (mA) SWITCHING FREQUENCY (kHz) 0 100 200 300 400 500 600 700 800 900 1000 0.0 5.0 10.0 15.0 20.0 25.0 30.0 FLOATING SUPPLY BIAS CURRENT (mA) SWITCHING FREQUENCY (kHz) 0 100 200 300 400 500 600 700 800 900 1000 0.0 1.0 2.0 3.0 4.0 5.0 ICC SUPPLY CURRENT (mA) SWITCHING FREQUENCY (kHz) 75°C 25°C 125°C -40°C 0°C 0.5 1 1.5 2 2.5 0 200 400 600 800 1000 FLOATING SUPPLY BIAS CURRENT (mA) SWITCHING FREQUENCY (kHz) -50 -25 0 25 50 75 100 125 -120 -110 -100 -90 LOW LEVEL INPUT CURRENT (μA) JUNCTION TEMPERATURE (°C) 9 HIP4081A Typical Performance Curves VDD = VCC = VAHB = VBHB = 12V, VSS = VALS = VBLS = VAHS = VBHS = 0V, RHDEL = RLDEL = 10K and TA = 25°C, Unless Otherwise Specified FIGURE 10. AHB - AHS, BHB - BHS NO-LOAD CHARGE PUMP VOLTAGE vs TEMPERATURE FIGURE 11. UPPER DISABLE TURN-OFF PROPAGATION DELAY TDISHIGH vs TEMPERATURE FIGURE 12. DISABLE TO UPPER ENABLE, TUEN, PROPAGATION DELAY vs TEMPERATURE FIGURE 13. LOWER DISABLE TURN-OFF PROPAGATION DELAY TDISLOW vs TEMPERATURE FIGURE 14. TREF-PW REFRESH PULSE WIDTH vs TEMPERATURE FIGURE 15. DISABLE TO LOWER ENABLE TDLPLH PROPAGATION DELAY vs TEMPERATURE -40 -20 0 20 40 60 80 100 120 10.0 11.0 12.0 13.0 14.0 15.0 NO-LOAD FLOATING CHARGE PUMP VOLTAGE (V) JUNCTION TEMPERATURE (°C) -40 -20 0 20 40 60 80 100 120 30 40 50 60 70 80 PROPAGATION DELAY (ns) JUNCTION TEMPERATURE (°C) 425 450 475 500 525 -50 -25 0 25 50 75 100 125 150 JUNCTION TEMPERATURE (°C) PROPAGATION DELAY (ns) -40 -20 0 20 40 60 80 100 120 30 40 50 60 70 80 PROPAGATION DELAY (ns) JUNCTION TEMPERATURE (°C) 350 375 400 425 450 -50 -25 0 25 50 75 100 125 150 REFRESH PULSE WIDTH (ns) JUNCTION TEMPERATURE (°C) -40 -20 0 20 40 60 80 100 120 20 30 40 50 60 70 80 PROPAGATION DELAY (ns) JUNCTION TEMPERATURE (°C) 10 HIP4081A FIGURE 16. UPPER TURN-OFF PROPAGATION DELAY THPHL vs TEMPERATURE FIGURE 17. UPPER TURN-ON PROPAGATION DELAY THPLH vs TEMPERATURE FIGURE 18. LOWER TURN-OFF PROPAGATION DELAY TLPHL vs TEMPERATURE FIGURE 19. LOWER TURN-ON PROPAGATION DELAY TLPLH vs TEMPERATURE FIGURE 20. GATE DRIVE FALL TIME TF vs TEMPERATURE FIGURE 21. GATE DRIVE RISE TIME TR vs TEMPERATURE Typical Performance Curves VDD = VCC = VAHB = VBHB = 12V, VSS = VALS = VBLS = VAHS = VBHS = 0V, RHDEL = RLDEL = 10K and TA = 25°C, Unless Otherwise Specified (Continued) -40 -20 0 20 40 60 80 100 120 20 30 40 50 60 70 80 PROPAGATION DELAY (ns) JUNCTION TEMPERATURE (°C) -40 -20 0 20 40 60 80 100 120 20 30 40 50 60 70 80 PROPAGATION DELAY (ns) JUNCTION TEMPERATURE (°C) -40 -20 0 20 40 60 80 100 120 20 30 40 50 60 70 80 PROPAGATION DELAY (ns) JUNCTION TEMPERATURE (°C) -40 -20 0 20 40 60 80 100 120 20 30 40 50 60 70 80 PROPAGATION DELAY (ns) JUNCTION TEMPERATURE (°C) -40 -20 0 20 40 60 80 100 120 8.5 9.5 10.5 11.5 12.5 13.5 GATE DRIVE FALL TIME (ns) JUNCTION TEMPERATURE (°C) -40 -20 0 20 40 60 80 100 120 8.5 9.5 10.5 11.5 12.5 13.5 TURN-ON RISE TIME (ns) JUNCTION TEMPERATURE (°C) 11 HIP4081A Typical Performance Curves VDD = VCC = VAHB = VBHB = 12V, VSS = VALS = VBLS = VAHS = VBHS = 0V, RHDEL = RLDEL = 100K and TA = 25°C, Unless Otherwise Specified FIGURE 22. VLDEL, VHDEL VOLTAGE vs TEMPERATURE FIGURE 23. HIGH LEVEL OUTPUT VOLTAGE VCC - VOH vs BIAS SUPPLY AND TEMPERATURE AT 100mA FIGURE 24. LOW LEVEL OUTPUT VOLTAGE VOL vs BIAS SUPPLY AND TEMPERATURE AT 100mA FIGURE 25. PEAK PULLDOWN CURRENT IO vs BIAS SUPPLY VOLTAGE FIGURE 26. PEAK PULLUP CURRENT IO+ vs BIAS SUPPLY VOLTAGE FIGURE 27. LOW VOLTAGE BIAS CURRENT IDD (LESS QUIESCENT COMPONENT) vs FREQUENCY AND GATE LOAD CAPACITANCE -40 -20 0 20 40 60 80 100 120 4.0 4.5 5.0 5.5 6.0 HDEL, LDEL INPUT VOLTAGE (V) JUNCTION TEMPERATURE (°C) 10 12 14 0 250 500 750 1000 1250 1500 VCC - VOH (mV) BIAS SUPPLY VOLTAGE (V) 75°C 25°C 125°C -40°C 0°C 12 14 0 250 500 750 1000 1250 1500 VOL (mV) BIAS SUPPLY VOLTAGE (V) 10 75°C 25°C 125°C -40°C 0°C 6 7 8 9 10 11 12 13 14 15 16 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 GATE DRIVE SINK CURRENT (A) VDD, VCC, VAHB, VBHB (V) 6 7 8 9 10 11 12 13 14 15 16 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 GATE DRIVE SINK CURRENT (A) VDD, VCC, VAHB, VBHB (V) 1 2 5 10 20 50 100 200 500 1000 0.1 1 10 100 500 50 5 0.5 200 20 2 0.2 LOW VOLTAGE BIAS CURRENT (mA) SWITCHING FREQUENCY (kHz) 100pF 1,000pF 10,000pF 3,000pF 12 HIP4081A FIGURE 28. HIGH VOLTAGE LEVEL-SHIFT CURRENT vs FREQUENCY AND BUS VOLTAGE FIGURE 29. UNDERVOLTAGE LOCKOUT vs TEMPERATURE FIGURE 30. MINIMUM DEAD-TIME vs DEL RESISTANCE Typical Performance Curves VDD = VCC = VAHB = VBHB = 12V, VSS = VALS = VBLS = VAHS = VBHS = 0V, RHDEL = RLDEL = 100K and TA = 25°C, Unless Otherwise Specified (Continued) 10 20 50 100 200 500 1000 10 100 1000 20 50 200 500 LEVEL-SHIFT CURRENT (μA) SWITCHING FREQUENCY (kHz) 8.2 8.4 8.6 8.8 9.0 50 25 0 25 50 75 100 125 150 UV+ UVTEMPERATURE (°C) BIAS SUPPLY VOLTAGE, VDD (V) 10 50 100 150 200 250 0 30 60 90 120 150 HDEL/LDEL RESISTANCE (kΩ) DEAD-TIME (ns) 13 HIP4081A 1 2 3 1 2 3 1 2 3 5 6 1 2 3 1 2 13 12 1 2 3 11 10 1 2 3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 L1 R21 Q1 Q3 Q4 R22 L2 R23 C1 C3 JMPR1 R24 R30 R31 C2 R34 C4 CR2 CR1 Q2 JMPR5 JMPR3 JMPR2 JMPR4 R33 C5 C6 CX CY C8 U1 CW CW + B+ IN2 IN1 BO OUT/BLI IN-/AHI COM IN+/ALI +12V +12V BLS AO HEN/BHI ALS CD4069UB CD4069UB CD4069UB CD4069UB HIP4080A/81A SECTION CONTROL LOGIC POWER SECTION DRIVER SECTION AHB AHO LDEL AHS HDEL ALO IN-/AHI ALS IN+/ALI VCC OUT/BLI VDD VSS BLS DIS BLO HEN/BHI BHS BHB BHO R29 U2 U2 U2 U2 3 4 9 8 R32 je O O CD4069UB CD4069UB ENABLE IN U2 U2 NOTES: 1. DEVICE CD4069UB PIN 7 = COM, PIN 14 = +12V. 2. COMPONENTS L1, L2, C1, C2, CX, CY, R30, R31, NOT SUPPLIED. REFER TO APPLICATION NOTE FOR DESCRIPTION OF INPUT LOGIC OPERATION TO DETERMINE JUMPER LOCATIONS FOR JMPR1 - JMPR4. FIGURE 31. HIP4081A EVALUATION PC BOARD SCHEMATIC 14 HIP4081A R22 1 Q3 L1 JMPR2 JMPR5 R31 R33 CR2 R23 R24 R27 R28 R26 1 Q4 1 JMPR3 Q2 U1 R21 GND L2 C3 C4 JMPR4 JMPR1 R30 CR1 U2 R34 R32 je O C8 R29 C7 C6 C5 CY CX 1 Q1 COM +12V B+ IN1 IN2 AHO BHO ALO BLO BLS BLS LDEL HDEL DIS ALS ALS O + + HIP4080/81 FIGURE 32. HIP4081A EVALUATION BOARD SILKSCREEN 15 HIP4081A Dual-In-Line Plastic Packages (PDIP) NOTES: 1. Controlling Dimensions: INCH. In case of conflict between English and Metric dimensions, the inch dimensions control. 2. Dimensioning and tolerancing per ANSI Y14.5M-1982. 3. Symbols are defined in the “MO Series Symbol List” in Section 2.2 of Publication No. 95. 4. Dimensions A, A1 and L are measured with the package seated in JEDEC seating plane gauge GS-3. 5. D, D1, and E1 dimensions do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.010 inch (0.25mm). 6. E and are measured with the leads constrained to be perpendicular to datum . 7. eB and eC are measured at the lead tips with the leads unconstrained. eC must be zero or greater. 8. B1 maximum dimensions do not include dambar protrusions. Dambar protrusions shall not exceed 0.010 inch (0.25mm). 9. N is the maximum number of terminal positions. 10. Corner leads (1, N, N/2 and N/2 + 1) for E8.3, E16.3, E18.3, E28.3, E42.6 will have a B1 dimension of 0.030 - 0.045 inch (0.76 - 1.14mm). eA -CCL E eA C eB eC -BE1 INDEX 1 2 3 N/2 N AREA SEATING BASE PLANE PLANE -CD1 B1 B et ré D1 A2 A L A1 -A- 0.010 (0.25) M C A B S E20.3 (JEDEC MS-001-AD ISSUE D) 20 LEAD DUAL-IN-LINE PLASTIC PACKAGE SYMBOL INCHES MILLIMETERS MIN MAX MIN MAX NOTES A - 0.210 - 5.33 4 A1 0.015 - 0.39 - 4 A2 0.115 0.195 2.93 4.95 - B 0.014 0.022 0.356 0.558 - B1 0.045 0.070 1.55 1.77 8 C 0.008 0.014 0.204 0.355 - D 0.980 1.060 24.89 26.9 5 D1 0.005 - 0.13 - 5 E 0.300 0.325 7.62 8.25 6 E1 0.240 0.280 6.10 7.11 5 e 0.100 BSC 2.54 BSC - eA 0.300 BSC 7.62 BSC 6 eB - 0.430 - 10.92 7 L 0.115 0.150 2.93 3.81 4 N 20 20 9 Rev0 12/93 16 All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems. Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see www.intersil.com HIP4081A Small Outline Plastic Packages (SOIC) NOTES: 1. Symbols are defined in the “MO Series Symbol List” in Section 2.2 of Publication Number 95. 2. Dimensioning and tolerancing per ANSI Y14.5M-1982. 3. Dimension “D” does not include mold flash, protrusions or gate burrs. Mold flash, protrusion and gate burrs shall not exceed 0.15mm (0.006 inch) per side. 4. Dimension “E” does not include interlead flash or protrusions. Interlead flash and protrusions shall not exceed 0.25mm (0.010 inch) per side. 5. The chamfer on the body is optional. If it is not present, a visual index feature must be located within the crosshatched area. 6. “L” is the length of terminal for soldering to a substrate. 7. “N” is the number of terminal positions. 8. Terminal numbers are shown for reference only. 9. The lead width “B”, as measured 0.36mm (0.014 inch) or greater above the seating plane, shall not exceed a maximum value of 0.61mm (0.024 inch) 10. Controlling dimension: MILLIMETER. Converted inch dimensions are not necessarily exact. INDEX AREA E ré N 1 2 3 -B- 0.25(0.010) M C A B S et -AL B M -CA1 A SEATING PLANE 0.10(0.004) h x 45o C H μ 0.25(0.010) M B M α M20.3 (JEDEC MS-013-AC ISSUE C) 20 LEAD WIDE BODY SMALL OUTLINE PLASTIC PACKAGE SYMBOL INCHES MILLIMETERS MIN MAX MIN MAX NOTES A 0.0926 0.1043 2.35 2.65 - A1 0.0040 0.0118 0.10 0.30 - B 0.014 0.019 0.35 0.49 9 C 0.0091 0.0125 0.23 0.32 - D 0.4961 0.5118 12.60 13.00 3 E 0.2914 0.2992 7.40 7.60 4 e 0.050 BSC 1.27 BSC - H 0.394 0.419 10.00 10.65 - h 0.010 0.029 0.25 0.75 5 L 0.016 0.050 0.40 1.27 6 N 20 20 7 α 0o 8o 0o 8o - Rev1 1/02 http://www.farnell.com/datasheets/32553.pdf 1 ® FN3663.5 HFA3101 Gilbert Cell UHF Transistor Array The HFA3101 is an all NPN transistor array configured as a Multiplier Cell. Based on Intersil’s bonded wafer UHF-1 SOI process, this array achieves very high fT (10GHz) while maintaining excellent hFE and VBE matching characteristics that have been maximized through careful attention to circuit design and layout, making this product ideal for communication circuits. For use in mixer applications, the cell provides high gain and good cancellation of 2nd order distortion terms. Pinout HFA3101(SOIC) TOP VIEW Features •Pb-free Available as an Option •High Gain Bandwidth Product (fT) . . . . . . . . . . . . .10GHz •High Power Gain Bandwidth Product. . . . . . . . . . . .5GHz •Current Gain (hFE). . . . . . . . . . . . . . . . . . . . . . . . . . . ..70 •Low Noise Figure (Transistor) . . . . . . . . . . . . . . . . .3.5dB •Excellent hFE and VBE Matching •Low Collector Leakage Current . . . . . . . . . . . . . .<0.01nA •Pin to Pin Compatible to UPA101 Applications •Balanced Mixers •Multipliers •Demodulators/Modulators •Automatic Gain Control Circuits •Phase Detectors •Fiber Optic Signal Processing •Wireless Communication Systems •Wide Band Amplification Stages •Radio and Satellite Communications •High Performance Instrumentation Ordering Information PART NUMBER (BRAND) TEMP. RANGE (°C) PACKAGE PKG. DWG. # HFA3101B (H3101B) -40 to 85 8 Ld SOIC M8.15 HFA3101BZ (H3101B) (Note) -40 to 85 8 Ld SOIC (Pb-free) M8.15 HFA3101B96 (H3101B) -40 to 85 8 Ld SOIC Tape and Reel M8.15 HFA3101BZ96 (H3101B) (Note) -40 to 85 8 Ld SOIC Tape and Reel (Pb-free) M8.15 NOTE: Intersil Pb-free products employ special Pb-free material sets; molding compounds/die attach materials and 100% matte tin plate termination finish, which is compatible with both SnPb and Pb-free soldering operations. Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020C. 12348765Q5Q6Q1Q2Q3Q4NOTE: Q5 and Q6 - 2 Paralleled 3μm x 50μm Transistors Q1, Q2, Q3, Q4 - Single 3μm x 50μm Transistors Data Sheet September 2004 CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. 1-888-INTERSIL or 321-724-7143 | Intersil (and design) is a registered trademark of Intersil Americas Inc. Copyright © Intersil Americas Inc. 1998, 2004. All Rights Reserved All other trademarks mentioned are the property of their respective owners. 2 Absolute Maximum Ratings Thermal Information VCEO, Collector to Emitter Voltage . . . . . . . . . . . . . . . . . . . . . .8.0V VCBO, Collector to Base Voltage. . . . . . . . . . . . . . . . . . . . . . .12.0V VEBO, Emitter to Base Voltage . . . . . . . . . . . . . . . . . . . . . . . . .5.5V IC, Collector Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30mA Operating Conditions Temperature Range. . . . . . . . . . . . . . . . . . . . . . . . . .-40oC to 85oC Thermal Resistance (Typical, Note 1)θJA (oC/W) SOIC Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . .185 Maximum Junction Temperature (Die). . . . . . . . . . . . . . . . . ..175oC Maximum Junction Temperature (Plastic Package). . . . . . . ..150oC Maximum Storage Temperature Range. . . . . . . . . .-65oC to 150oC Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . ..300oC (SOIC - Lead Tips Only) CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. NOTE: 1. θJA is measured with the component mounted on an evaluation PC board in free air. Electrical SpecificationsTA = 25oC PARAMETER TEST CONDITIONS (NOTE 2) TEST LEVEL MIN TYP MAX UNITS Collector to Base Breakdown Voltage, V(BR)CBO, Q1 thru Q6 IC = 100μA, IE = 0 A 12 18 - V Collector to Emitter Breakdown Voltage, V(BR)CEO, Q5 and Q6 IC = 100μA, IB = 0 A 8 12 - V Emitter to Base Breakdown Voltage, V(BR)EBO, Q1 thru Q6 IE = 10μA, IC = 0 A 5.5 6 - V Collector Cutoff Current, ICBO, Q1 thru Q4 VCB = 8V, IE = 0 A - 0.1 10 nA Emitter Cutoff Current, IEBO, Q5 and Q6 VEB = 1V, IC = 0 A - - 200 nA DC Current Gain, hFE, Q1 thru Q6 IC = 10mA, VCE = 3V A 40 70 - Collector to Base Capacitance, CCB Q1 thru Q4 VCB = 5V, f = 1MHz C - 0.300 - pF Q5 and Q6 - 0.600 - pF Emitter to Base Capacitance, CEB Q1 thru Q4 VEB = 0, f = 1MHz B - 0.200 - pF Q5 and Q6 - 0.400 - pF Current Gain-Bandwidth Product, fT Q1 thru Q4 IC = 10mA, VCE = 5V C - 10 - GHz Q5 and Q6 IC = 20mA, VCE = 5V C - 10 - GHz Power Gain-Bandwidth Product, fMAX Q1 thru Q4 IC = 10mA, VCE = 5V C - 5 - GHz Q5 and Q6 IC = 20mA, VCE = 5V C - 5 - GHz Available Gain at Minimum Noise Figure, GNFMIN, Q5 and Q6 IC = 5mA, VCE = 3V f = 0.5GHz C - 17.5 - dB f = 1.0GHz C - 11.9 - dB Minimum Noise Figure, NFMIN, Q5 and Q6 IC = 5mA, VCE = 3V f = 0.5GHz C - 1.7 - dB f = 1.0GHz C - 2.0 - dB 50Ω Noise Figure, NF50Ω, Q5 and Q6 IC = 5mA, VCE = 3V f = 0.5GHz C - 2.25 - dB f = 1.0GHz C - 2.5 - dB DC Current Gain Matching, hFE1/hFE2, Q1 and Q2, Q3 and Q4, and Q5 and Q6 IC = 10mA, VCE = 3V A 0.9 1.0 1.1 Input Offset Voltage, VOS, (Q1 and Q2), (Q3 and Q4), (Q5 and Q6) IC = 10mA, VCE = 3V A - 1.5 5 mV Input Offset Current, IC, (Q1 and Q2), (Q3 and Q4), (Q5 and Q6) IC = 10mA, VCE = 3V A - 5 25 μA Input Offset Voltage TC, dVOS/dT, (Q1 and Q2, Q3 and Q4, Q5 and Q6) IC = 10mA, VCE = 3V C - 0.5 - μV/oC Collector to Collector Leakage, ITRENCH-LEAKAGE ΔVTEST = 5V B - 0.01 - nA NOTE: 2. Test Level: A. Production Tested, B. Typical or Guaranteed Limit Based on Characterization, C. Design Typical for Information Only. HFA3101 3-3 PSPICE Model for a 3 μm x 50μm Transistor .Model NUHFARRY NPN + (IS = 1.840E-16 XTI = 3.000E+00 EG = 1.110E+00 VAF = 7.200E+01 + VAR = 4.500E+00 BF = 1.036E+02 ISE = 1.686E-19 NE = 1.400E+00 + IKF = 5.400E-02 XTB = 0.000E+00 BR = 1.000E+01 ISC = 1.605E-14 + NC = 1.800E+00 IKR = 5.400E-02 RC = 1.140E+01 CJC = 3.980E-13 + MJC = 2.400E-01 VJC = 9.700E-01 FC = 5.000E-01 CJE = 2.400E-13 + MJE = 5.100E-01 VJE = 8.690E-01 TR = 4.000E-09 TF = 10.51E-12 + ITF = 3.500E-02 XTF = 2.300E+00 VTF = 3.500E+00 PTF = 0.000E+00 + XCJC = 9.000E-01 CJS = 1.689E-13 VJS = 9.982E-01 MJS = 0.000E+00 + RE = 1.848E+00 RB = 5.007E+01 RBM = 1.974E+00 KF = 0.000E+00 + AF = 1.000E+00) Common Emitter S-Parameters of 3 μm x 50μm Transistor FREQ. (Hz) |S11| PHASE(S11) |S12| PHASE(S12) |S21| PHASE(S21) |S22| PHASE(S22) VCE = 5V and IC = 5mA 1.0E+08 0.83 -11.78 1.41E-02 78.88 11.07 168.57 0.97 -11.05 2.0E+08 0.79 -22.82 2.69E-02 68.63 10.51 157.89 0.93 -21.35 3.0E+08 0.73 -32.64 3.75E-02 59.58 9.75 148.44 0.86 -30.44 4.0E+08 0.67 -41.08 4.57E-02 51.90 8.91 140.36 0.79 -38.16 5.0E+08 0.61 -48.23 5.19E-02 45.50 8.10 133.56 0.73 -44.59 6.0E+08 0.55 -54.27 5.65E-02 40.21 7.35 127.88 0.67 -49.93 7.0E+08 0.50 -59.41 6.00E-02 35.82 6.69 123.10 0.62 -54.37 8.0E+08 0.46 -63.81 6.27E-02 32.15 6.11 119.04 0.57 -58.10 9.0E+08 0.42 -67.63 6.47E-02 29.07 5.61 115.57 0.53 -61.25 1.0E+09 0.39 -70.98 6.63E-02 26.45 5.17 112.55 0.50 -63.96 1.1E+09 0.36 -73.95 6.75E-02 24.19 4.79 109.91 0.47 -66.31 1.2E+09 0.34 -76.62 6.85E-02 22.24 4.45 107.57 0.45 -68.37 1.3E+09 0.32 -79.04 6.93E-02 20.53 4.15 105.47 0.43 -70.19 1.4E+09 0.30 -81.25 7.00E-02 19.02 3.89 103.57 0.41 -71.83 1.5E+09 0.28 -83.28 7.05E-02 17.69 3.66 101.84 0.40 -73.31 1.6E+09 0.27 -85.17 7.10E-02 16.49 3.45 100.26 0.39 -74.66 1.7E+09 0.25 -86.92 7.13E-02 15.41 3.27 98.79 0.38 -75.90 1.8E+09 0.24 -88.57 7.17E-02 14.43 3.10 97.43 0.37 -77.05 1.9E+09 0.23 -90.12 7.19E-02 13.54 2.94 96.15 0.36 -78.12 2.0E+09 0.22 -91.59 7.21E-02 12.73 2.80 94.95 0.35 -79.13 2.1E+09 0.21 -92.98 7.23E-02 11.98 2.68 93.81 0.35 -80.09 2.2E+09 0.20 -94.30 7.25E-02 11.29 2.56 92.73 0.34 -80.99 2.3E+09 0.20 -95.57 7.27E-02 10.64 2.45 91.70 0.34 -81.85 2.4E+09 0.19 -96.78 7.28E-02 10.05 2.35 90.72 0.33 -82.68 2.5E+09 0.18 -97.93 7.29E-02 9.49 2.26 89.78 0.33 -83.47 2.6E+09 0.18 -99.05 7.30E-02 8.96 2.18 88.87 0.33 -84.23 2.7E+09 0.17 -100.12 7.31E-02 8.47 2.10 88.00 0.33 -84.97 HFA3101 4 2.8E+09 0.17 -101.15 7.31E-02 8.01 2.02 87.15 0.33 -85.68 2.9E+09 0.16 -102.15 7.32E-02 7.57 1.96 86.33 0.33 -86.37 3.0E+09 0.16 -103.11 7.32E-02 7.16 1.89 85.54 0.33 -87.05 VCE = 5V and IC = 10mA 1.0E+08 0.72 -16.43 1.27E-02 75.41 15.12 165.22 0.95 -14.26 2.0E+08 0.67 -31.26 2.34E-02 62.89 13.90 152.04 0.88 -26.95 3.0E+08 0.60 -43.76 3.13E-02 52.58 12.39 141.18 0.79 -37.31 4.0E+08 0.53 -54.00 3.68E-02 44.50 10.92 132.57 0.70 -45.45 5.0E+08 0.47 -62.38 4.05E-02 38.23 9.62 125.78 0.63 -51.77 6.0E+08 0.42 -69.35 4.31E-02 33.34 8.53 120.37 0.57 -56.72 7.0E+08 0.37 -75.26 4.49E-02 29.47 7.62 116.00 0.51 -60.65 8.0E+08 0.34 -80.36 4.63E-02 26.37 6.86 112.39 0.47 -63.85 9.0E+08 0.31 -84.84 4.72E-02 23.84 6.22 109.36 0.44 -66.49 1.0E+09 0.29 -88.83 4.80E-02 21.75 5.69 106.77 0.41 -68.71 1.1E+09 0.27 -92.44 4.86E-02 20.00 5.23 104.51 0.39 -70.62 1.2E+09 0.25 -95.73 4.90E-02 18.52 4.83 102.53 0.37 -72.28 1.3E+09 0.24 -98.75 4.94E-02 17.25 4.49 100.75 0.35 -73.76 1.4E+09 0.22 -101.55 4.97E-02 16.15 4.19 99.16 0.34 -75.08 1.5E+09 0.21 -104.15 4.99E-02 15.19 3.93 97.70 0.33 -76.28 1.6E+09 0.20 -106.57 5.01E-02 14.34 3.70 96.36 0.32 -77.38 1.7E+09 0.20 -108.85 5.03E-02 13.60 3.49 95.12 0.31 -78.41 1.8E+09 0.19 -110.98 5.05E-02 12.94 3.30 93.96 0.31 -79.37 1.9E+09 0.18 -113.00 5.06E-02 12.34 3.13 92.87 0.30 -80.27 2.0E+09 0.18 -114.90 5.07E-02 11.81 2.98 91.85 0.30 -81.13 2.1E+09 0.17 -116.69 5.08E-02 11.33 2.84 90.87 0.30 -81.95 2.2E+09 0.17 -118.39 5.09E-02 10.89 2.72 89.94 0.29 -82.74 2.3E+09 0.16 -120.01 5.10E-02 10.50 2.60 89.06 0.29 -83.50 2.4E+09 0.16 -121.54 5.11E-02 10.13 2.49 88.21 0.29 -84.24 2.5E+09 0.16 -122.99 5.12E-02 9.80 2.39 87.39 0.29 -84.95 2.6E+09 0.15 -124.37 5.12E-02 9.49 2.30 86.60 0.29 -85.64 2.7E+09 0.15 -125.69 5.13E-02 9.21 2.22 85.83 0.29 -86.32 2.8E+09 0.15 -126.94 5.13E-02 8.95 2.14 85.09 0.29 -86.98 2.9E+09 0.15 -128.14 5.14E-02 8.71 2.06 84.36 0.29 -87.62 3.0E+09 0.14 -129.27 5.15E-02 8.49 1.99 83.66 0.29 -88.25 Common Emitter S-Parameters of 3 μm x 50 μm Transistor (Continued) FREQ. (Hz) |S11| PHASE(S11) |S12| PHASE(S12) |S21| PHASE(S21) |S22| PHASE(S22) HFA3101 3-5 Application Information The HFA3101 array is a very versatile RF Building block. It has been carefully laid out to improve its matching properties, bringing the distortion due to area mismatches, thermal distribution, betas and ohmic resistances to a minimum. The cell is equivalent to two differential stages built as two “variable transconductance multipliers” in parallel, with their outputs cross coupled. This configuration is well known in the industry as a Gilbert Cell which enables a four quadrant multiplication operation. Due to the input dynamic range restrictions for the input levels at the upper quad transistors and lower tail transistors, the HFA3101 cell has restricted use as a linear four quadrant multiplier. However, its configuration is well suited for uses where its linear response is limited to one of the inputs only, as in modulators or mixer circuit applications. Examples of these circuits are up converters, down converters, frequency doublers and frequency/phase detectors. Although linearization is still an issue for the lower pair input, emitter degeneration can be used to improve the dynamic range and consequent linearity. The HFA3101 has the lower pair emitters brought to external pins for this purpose. In modulators applications, the upper quad transistors are used in a switching mode where the pairs Q1/Q2 and Q3/Q4 act as non saturating high speed switches. These switches are controlled by the signal often referred as the carrier input. The signal driving the lower pair Q5/Q6 is commonly used as the modulating input. This signal can be linearly transferred to the output by either the use of low signal levels (Well below the thermal voltage of 26mV) or by the use of emitter degeneration. The chopped waveform appearing at the output of the upper pair (Q1 to Q4) resembles a signal that is multiplied by +1 or -1 at every half cycle of the switching waveform. Figure 1 shows the typical input waveforms where the frequency of the carrier is higher than the modulating signal. The output waveform shows a typical suppressed carrier output of an up converter or an AM signal generator. Carrier suppression capability is a property of the well known Balanced modulator in which the output must be zero when one or the other input (carrier or modulating signal) is equal to zero. however, at very high frequencies, high frequency mismatches and AC offsets are always present and the suppression capability is often degraded causing carrier and modulating feedthrough to be present. Being a frequency translation circuit, the balanced modulator has the properties of translating the modulating frequency (ωM) to the carrier frequency (ωC), generating the two side bands ωU = ωC + ωM and ωL = ωC - ωM. Figure 2 shows some translating schemes being used by balanced mixers. CARRIER SIGNALMODULATING SIGNALDIFFERENTIAL OUTPUT+1-1FIGURE 1. TYPICAL MODULATOR SIGNALS FIGURE 2A. UP CONVERSION OR SUPPRESSED CARRIER AM FIGURE 2B. DOWN CONVERSION FIGURE 2C. ZERO IF OR DIRECT DOWN CONVERSION FIGURE 2. MODULATOR FREQUENCY SPECTRUM ωC + ωMωC - ωMωC IF (ωC - ωM)FOLDED BACKωMωC BASEBANDωCωM HFA3101 6 The use of the HFA3101 as modulators has several advantages when compared to its counterpart, the diode doublebalanced mixer, in which it is required to receive enough energy to drive the diodes into a switching mode and has also some requirements depending on the frequency range desired, of different transformers to suit specific frequency responses. The HFA3101 requires very low driving capabilities for its carrier input and its frequency response is limited by the fT of the devices, the design and the layout techniques being utilized. Up conversion uses, for UHF transmitters for example, can be performed by injecting a modulating input in the range of 45MHz to 130MHz that carries the information often called IF (Intermediate frequency) for up conversion (The IF signal has been previously modulated by some modulation scheme from a baseband signal of audio or digital information) and by injecting the signal of a local oscillator of a much higher frequency range from 600MHz to 1.2GHz into the carrier input. Using the example of a 850MHz carrier input and a 70MHz IF, the output spectrum will contain a upper side band of 920MHz, a lower side band of 780MHz and some of the carrier (850MHz) and IF (70MHz) feedthrough. A Band pass filter at the output can attenuate the undesirable signals and the 920MHz signal can be routed to a transmitter RF power amplifier. Down conversion, as the name implies, is the process used to translate a higher frequency signal to a lower frequency range conserving the modulation information contained in the higher frequency signal. One very common typical down conversion use for example, is for superheterodyne radio receivers where a translated lower frequency often referred as intermediate frequency (IF) is used for detection or demodulation of the baseband signal. Other application uses include down conversion for special filtering using frequency translation methods. An oscillator referred as the local oscillator (LO) drives the upper quad transistors of the cell with a frequency called ωC. The lower pair is driven by the RF signal of frequency ωM to be translated to a lower frequency IF. The spectrum of the IF output will contain the sum and difference of the frequencies ωC and ωM. Notice that the difference can become negative when the frequency of the local oscillator is lower than the incoming frequency and the signal is folded back as in Figure 2. NOTE: The acronyms RF, IF and LO are often interchanged in the industry depending on the application of the cell as mixers or modulators. The output of the cell also contains multiples of the frequency of the signal being fed to the upper quad pair of transistors because of the switching action equivalent to a square wave multiplication. In practice, however, not only the odd multiples in the case of a symmetrical square wave but some of the even multiples will also appear at the output spectrum due to the nature of the actual switching waveform and high frequency performance. By-products of the form M*ωC + N*ωM with M and N being positive or negative integers are also expected to be present at the output and their levels are carefully examined and minimized by the design. This distortion is considered one of the figures of merit for a mixer application. The process of frequency doubling is also understood by having the same signal being fed to both modulating and carrier ports. The output frequency will be the sum of ωC and ωM which is equivalent to the product of the input frequency by 2 and a zero Hz or DC frequency equivalent to the difference of ωC and ωM. Figure 2 also shows one technique in use today where a process of down conversion named zero IF is made by using a local oscillator with a very pure signal frequency equal to the incoming RF frequency signal that contains a baseband (audio or digital signal) modulation. Although complex, the extraction or detection of the signal is straightforward. Another useful application of the HFA3101 is its use as a high frequency phase detector where the two signals are fed to the carrier and modulation ports and the DC information is extracted from its output. In this case, both ports are utilized in a switching mode or overdrive, such that the process of multiplication takes place in a quasi digital form (2 square waves). One application of a phase detector is frequency or phase demodulation where the FM signal is split before the modulating and carrier ports. The lower input port is always 90 degrees apart from the carrier input signal through a high Q tuned phase shift network. The network, being tuned for a precise 90 degrees shift at a nominal frequency, will set the two signals 90 degrees apart and a quiescent output DC level will be present at the output. When the input signal is frequency modulated, the phase shift of the signal coming from the network will deviate from 90 degrees proportional to the frequency deviation of the FM signal and a DC variation at the output will take place, resembling the demodulated FM signal. The HFA3101 could also be used for quadrature detection, (I/Q demodulation), AGC control with limited range, low level multiplication to name a few other applications. Biasing Various biasing schemes can be employed for use with the HFA3101. Figure 3 shows the most common schemes. The biasing method is a choice of the designer when cost, thermal dependence, voltage overheads and DC balancing properties are taken into consideration. Figure 3A shows the simplest form of biasing the HFA3101. The current source required for the lower pair is set by the voltage across the resistor RBIAS less a VBE drop of the lower transistor. To increase the overhead, collector resistors are substituted by an RF choke as the upper pair functions as a current source for AC signals. The bases of the upper and lower transistors are biased by RB1 and RB2 respectively. The voltage drop across the resistor R2 must be higher than a VBE with an increase sufficient to assure that the collector to base junctions of the lower pair are always reverse biased. Notice that this same voltage also sets the VCE of operation of the lower pair which is important for the optimization of gain. Resistors REE are nominally zero for applications where the input signals are well below 25mV peak. Resistors REE are used to increase the linearity HFA3101 3-7 of the circuit upon higher level signals. The drop across REE must be taken into consideration when setting the current source value. Figure 3B depicts the use of a common resistor sharing the current through the cell which is used for temperature compensation as the lower pair VBE drop at the rate of -2mV/oC. Figure 3C uses a split supply. Design Example: Down Converter Mixer Figure 4 shows an example of a low cost mixer for cellular applications. The design flexibility of the HFA3101 is demonstrated by a low cost, and low voltage mixer application at the 900MHz range. The choice of good quality chip components with their self resonance outside the boundaries of the application are important. The design has been optimized to accommodate the evaluation of the same layout for various quiescent current values and lower supply voltages. The choice of RE became important for the available overhead and also for maintaining an AC true impedance for high frequency signals. The value of 27Ω has been found to be the optimum minimum for the application. The input impedances of the HFA3101 base input ports are high enough to permit their termination with 50Ω resistors. Notice the AC termination by decoupling the bias circuit through good quality capacitors. The choice of the bias has been related to the available power supply voltage with the values of R1, R2 and RBIAS splitting the voltages for optimum VCE values. For evaluation of the cell quiescent currents, the voltage at the emitter resistor RE has been recorded. The gain of the circuit, being a function of the load and the combined emitter resistances at high frequencies have been kept to a maximum by the use of an output match network. The high output impedance of the HFA3101 permits FIGURE 3A. FIGURE 3B. FIGURE 3C. FIGURE 3. VCCRB1R1R2RBIASREREEREELCH12348765Q5Q6Q1Q2Q3Q4RB2 VCCRB1R1R2RBIASREREEREE12348765Q5Q6Q1Q2Q3Q4RB2RCLCH VEERB1R1RBIASREREEREE12348765Q5Q6Q1Q2Q3Q4RB2VCCLCHR2 27LCH12348765Q5Q6Q1Q2Q3Q4VCC390nH0.010.011102200.1VCC3V75MHz2K5p TO 12pLO IN51825MHz51900MHzIF OUTRF IN0.010.010.01330FIGURE 4. 3V DOWN CONVERTER APPLICATION HFA3101 8 broadband match if so desired at 50Ω (RL = 50Ω to 2kΩ) as well as with tuned medium Q matching networks (L, T etc.). Stability The cell, by its nature, has very high gain and precautions must be taken to account for the combination of signal reflections, gain, layout and package parasitics. The rule of thumb of avoiding reflected waves must be observed. It is important to assure good matching between the mixer stage and its front end. Laboratory measurements have shown some susceptibility for oscillation at the upper quad transistors input. Any LO prefiltering has to be designed such the return loss is maintained within acceptable limits specially at high frequencies. Typical off the shelf filters exhibits very poor return loss for signals outside the passband. It is suggested that a “pad” or a broadband resistive network be used to interface the LO port with a filter. The inclusion of a parallel 2K resistor in the load decreases the gain slightly which improves the stability factor and also improves the distortion products (output intermodulation or 3rd order intercept). The employment of good RF techniques shall suffice the stability requirements. Evaluation The evaluation of the HFA3101 in a mixer configuration is presented in Figures 6 to 11, Table 1 and Table 2. The layout is depicted in Figure 5. The output matching network has been designed from data taken at the output port at various test frequencies with the setup as in Table 1. S22 characterization is enough to assure the calculation of L, T or transmission line matching networks. FIGURE 5. UP/DOWN CONVERTER LAYOUT, 400%; MATERIAL G10, 0.031 TABLE 1. S22 PARAMETERS FOR DOWN CONVERSION, LCH = 10μH FREQUENCY RESISTANCE REACTANCE 10MHz 265Ω 615Ω 45MHz 420Ω - 735Ω 75MHz 122Ω - 432Ω 100MHz 67Ω - 320Ω TABLE 2. TYPICAL PARAMETERS FOR DOWN CONVERSION, LCH = 10μH PARAMETER LO LEVEL VCC = 3V, IBIAS = 8mA Power Gain -6dBm 8.5dB TOI Output -6dBm 11.5dBm NF SSB -6dBm 14.5dB Power Gain 0dBm 8.6dB TOI Output 0dBm 11dBm NF SSB 0dBm 15dB PARAMETER LO LEVEL VCC = 4V, IBIAS = 19mA Power Gain -6dBm 10dB TOI Output -6dBm 13dBm NF SSB -6dBm 20dB Power Gain 0dBm 11dB TOI Output 0dBm 12.5dBm NF SSB 0dBm 24dB TABLE 3. TYPICAL VALUES OF S22 FOR THE OUTPUT PORT. LCH = 390nH IBIAS = 8mA (SET UP OF FIGURE 11) FREQUENCY RESISTANCE REACTANCE 300MHz 22Ω -115Ω 600MHz 7.5Ω -43Ω 900MHz 5.2Ω -14Ω 1.1GHz 3.9Ω 0Ω TABLE 4. TYPICAL VALUES OF S22. LCH = 390nH, IBIAS = 18mA FREQUENCY RESISTANCE REACTANCE 300MHz 23.5Ω -110Ω 600MHz 10.3Ω -39Ω 900MHz 8.7Ω -14Ω 1.1GHz 8Ω 0Ω HFA3101 3-9 Up Converter Example An application for a up converter as well as a frequency multiplier can be demonstrated using the same layout, with an addition of matching components. The output port S22 must be characterized for proper matching procedures and depending on the frequency desired for the output, transmission line transformations can be designed. The return loss of the input ports maintain acceptable values in excess of 1.2GHz which can permit the evaluation of a frequency doubler to 2.4GHz if so desired. The addition of the resistors REE can increase considerably the dynamic range of the up converter as demonstrated at Figure 13. The evaluation results depicted in Table 5 have been obtained by a triple stub tuner as a matching network for the output due to the layout constraints. Based on the evaluation results it is clear that the cell requires a higher Bias current for overall performance. FIGURE 6. OUTPUT PORT S22 TEST SET UP FIGURE 7. LO PORT RETURN LOSS FIGURE 8. RF PORT RETURN LOSS FIGURE 9. IF PORT RETURN LOSS, WITH MATCHING NETWORK FIGURE 10. TYPICAL IN BAND OUTPUT SPECTRUM, VCC = 3V FIGURE 11. TYPICAL OUT OF BAND OUTPUT SPECTRUM VCC 3V0.1LCH12348765Q5Q6Q1Q2Q3Q42K S110dB5dB/DIV100MHz1.1GHzLOG MAG3V4V 0dB10dB/DIV100MHz1.1GHzS11LOG MAG 0dB5dB/DIV10MHzS22LOG MAG110MHz 76MHz64M11*LO - 10RF88M12RF - 13LOIFSPAN40MHzLO = 825MHz -6dBmRF = 901MHz - 25dBm-17dBm10dB/DIV 67575082590097510dB/DIVLO + 2RFSPAN500MHzLO - 2RF-26dBm-36dBm-58dBm-53dBmLO = 825MHz -6dBmRF = 900MHz -25dBm HFA3101 10 Design Example: Up Converter Mixer Figure 12 shows an example of an up converter for cellular applications. Conclusion The HFA3101 offers the designer a number of choices and different applications as a powerful RF building block. Although isolation is degraded from the theoretical results for the cell due to the unbalanced, nondifferential input schemes being used, a number of advantages can be taken into consideration like cost, flexibility, low power and small outline when deciding for a design. TABLE 5. TYPICAL PARAMETERS FOR THE UP CONVERTER EXAMPLE PARAMETER VCC = 3V, IBIAS = 8mA VCC = 4V, IBIAS = 18mA Power Gain, LO = -6dBm 3dB 5.5dBm Power Gain, LO = 0dBm 4dB 7.2dB RF Isolation, LO = 0dBm 15dBc 22dBc LO Isolation, LO = 0dBm 28dBc 28dBc FIGURE 12. UP CONVERTER FIGURE 13. TYPICAL SPECTRUM PERFORMANCE OF UP CONVERTER RF IN0.01390nH900MHz5.2nHVCC 3V0.112348765Q5Q6Q1Q2Q3Q411p0.0175MHz27220REEREE51LO INVCC0.010.011103303V825MHz0.010.015147-100pF 9019128902LO - 10RF12RFOUTPUT WITHOUT EMITTER DEGENERATIONRF = 76MHzLO = 825MHzSPAN50MHzOUTPUT WITH EMITTER DEGENERATION REE = 4.7Ω825900976EXPANDED SPECTRUM REE = 4.7Ω HFA3101 3-11 Typical Performance Curves for Transistors FIGURE 14. IC vs VCE FIGURE 15. HFE vs IC FIGURE 16. GUMMEL PLOT FIGURE 17. fT vs IC FIGURE 18. GAIN AND NOISE FIGURE vs FREQUENCY NOTE: Figures 14 through 18 are only for Q5 and Q6. VCE (V)IC (mA)02.06.04.0070605040302010IB = 800μAIB = 1mAIB = 200μAIB = 400μAIB = 600μA hFEIC ( A)10-1010-810-610-410-2100140120100806040200VCE = 5V VBE (V)IC AND IB (A)10-1010-810-610-410-210010-120.200.400.600.801.0VCE = 3V IC (A)fT (GHz)12108642010-410-310-210-1 20181614121046NOISE FIGURE ( dB)FREQUENCY (GHz)|S21| (dB)0.51.51.02.002.53.04.84.64.44.24.03.83.63.43.28 HFA3101 12 All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification. Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see web site www.intersil.com Die Characteristics PROCESS UHF-1 DIE DIMENSIONS: 53 mils x 52 mils x 14 mils 1340μm x 1320μm x 355.6μm METALLIZATION: Type: Metal 1: AlCu(2%)/TiW Thickness: Metal 1: 8kÅ ±0.5kÅ Type: Metal 2: AlCu(2%) Thickness: Metal 2: 16kÅ ±0.8kÅ PASSIVATION: Type: Nitride Thickness: 4kÅ ±0.5kÅ SUBSTRATE POTENTIAL (Powered Up): Floating Metallization Mask Layout HFA31011122334455667788 HFA3101 16-Bit Low Power Sigma-Delta ADC Data Sheet AD7171 RevA Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use.Specifications subject to change without notice. Non. license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2009–2013 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com FEATURES Output data rate: 125 Hz Pin-programmable power-down and reset Status function Internal clock oscillator Current: 135 μA Power supply: 2.7 V to 5.25 V –40°C to +105°C temperature range Package: 10-lead 3 mm x 3 mm LFCSP INTERFACE 2-wire serial (read-only device) SPI compatible Schmitt trigger on SCLK APPLICATIONS Weigh scales Pressure measurement Industrial process control Portable instrumentation FUNCTIONAL BLOCK DIAGRAM 16-BIT Σ-ΔADCAD7171GNDINTERNALCLOCKVDDREFIN(+)AIN(+)AIN(–)REFIN(–)DOUT/RDYSCLKPDRST08417-001 Figure 1. Table 1. VREF = VDD RMS Noise P-P Noise P-P Resolution ENOB 5 V 11.5 μV 76 μV 16 bits 16 bits 3 V 6.9 μV 45 μV 16 bits 16 bits GENERAL DESCRIPTION The AD7171 is a very low power 16-bit analog-to-digital converter (ADC). It contains a precision 16-bit sigma-delta (Σ-Δ) ADC and an on-chip oscillator. Consuming only 135 μA, the AD7171 is particularly suitable for portable or battery operated products where very low power is a requirement. The AD7171 also has a power-down mode in which the device consumes 5 μA, thus increasing the battery life of the product. For ease-of-use, all the features of the AD7171 are controlled by dedicated pins. Each time a data read occurs, eight status bits are appended to the 16-bit conversion. These status bits contain a pattern sequence that can be used to confirm the validity of the serial transfer. The output data rate of the AD7171 is 125 Hz, whereas the settling time is 24 ms. The AD7171 has one differential input and a gain of 1. This is useful in applications where the user needs to use an external amplifier to implement system-specific filtering or gain requirements. The AD7171 operates with a power supply from 2.7 V to 5.25 V. It is available in a 10-lead LFCSP package. The AD7170 is a 12-bit version of the AD7171. It has the same feature set as the AD7171 and is pin-for-pin compatible. 1 Low-Noise 24-bit Delta Sigma ADC ISL26132, ISL26134 The ISL26132 and ISL26134 are complete analog front ends for high resolution measurement applications. These 24-bit Delta-Sigma Analog-to-Digital Converters include a very low-noise amplifier and are available as either two or four differential multiplexer inputs. The devices offer the same pinout as the ADS1232 and ADS1234 devices and are functionally compatible with these devices. The ISL26132 and ISL26134 offer improved noise performance at 10Sps and 80Sps conversion rates. The on-chip low-noise programmable-gain amplifier provides gains of 1x/2x/64x/128x. The 128x gain setting provides an input range of ±9.766mVFS when using a 2.5V reference. la high input impedance allows direct connection of sensors such as load cell bridges to ensure the specified measurement accuracy without additional circuitry. The inputs accept signals 100mV outside the supply rails when the device is set for unity gain. The Delta-Sigma ADC features a third order modulator providing up to 21.6-bit noise-free performance. The device can be operated from an external clock source, crystal (4.9152MHz typical), or the on-chip oscillator. The two channel ISL26132 is available in a 24 Ld TSSOP package and the four channel ISL26134 is available in a 28 Ld TSSOP package. Both are specified for operation over the automotive temperature range (-40°C to +105°C). Features • Up to 21.6 Noise-free bits. • Low Noise Amplifier with Gains of 1x/2x/64x/128x • RMS noise: 10.2nV @ 10Sps (PGA = 128x) • Linearity Error: 0.0002% FS • Simultaneous rejection of 50Hz and 60Hz (@ 10Sps) • Two (ISL26132) or four (ISL26134) channel differential input multiplexer • On-chip temperature sensor (ISL26132) • Automatic clock source detection • Simple interface to read conversions • +5V Analog, +5 to +2.7V Digital Supplies • Pb-Free (RoHS Compliant) • TSSOP packages: ISL26132, 24 pin; ISL26134, 28 pin Applications • Weigh Scales • Temperature Monitors and Controls • Industrial Process Control • Pressure Sensors ADC PGA 1x/2x/64x/ 128x INTERNAL CLOCK SDO/RDY SCLK AVDD DVDD AGND DGND XTALIN/CLOCK VREF+ EXTERNAL OSCILLATOR XTALOUT A0 A1/TEMP VREFAIN1+ AIN1- AIN2+ AIN2- AIN3+ AIN3- AIN4+ AIN4- INPUT MULTIPLEXER ISL26134 Only CAP CAP GAIN0 GAIN1 PWDN SPEED DGND DGND NOTE for A1/TEMP pin: Functions as A1 on ISL26134; Functions as TEMP on ISL26132 FIGURE 1. BLOCK DIAGRAM September 9, 2011 FN6954.1 CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. 1-888-INTERSIL or 1-888-468-3774 |Copyright Intersil Americas Inc. 2011. All Rights Reserved Intersil (and design) is a trademark owned by Intersil Corporation or one of its subsidiaries. All other trademarks mentioned are the property of their respective owners. ISL26132, ISL26134 2 FN6954.1 September 9, 2011 Ordering Information PART NUMBER (Notes 2, 3) PART MARKING TEMPERATURE RANGE (°C) PACKAGE (Pb-free) PKG. DWG NUMBER ISL26132AVZ 26132 AVZ -40 to +105 24 Ld TSSOP M24.173 ISL26132AVZ-T (Note 1) 26132 AVZ -40 to +105 24 Ld TSSOP (Tape & Reel) M24.173 ISL26132AVZ-T7A (Note 1) 26132 AVZ -40 to +105 24 Ld TSSOP (Tape & Reel) M24.173 ISL26134AVZ 26134 AVZ -40 to +105 28 Ld TSSOP M28.173 ISL26134AVZ-T (Note 1) 26134 AVZ -40 to +105 28 Ld TSSOP (Tape & Reel) M28.173 ISL26134AVZ-T7A (Note 1) 26134 AVZ -40 to +105 28 Ld TSSOP (Tape & Reel) M28.173 ISL26134AV28EV1Z Evaluation Board NOTES: 1. Please refer to TB347 for details on reel specifications. 2. These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020. 3. For Moisture Sensitivity Level (MSL), please see device information page for ISL26132, ISL26134. For more information on MSL please see techbrief TB363. TABLE 1. KEY DIFFERENCES OF PARTS PART NUMBER NUMBER OF CHANNELS ON-CHIP TEMPERATURE SENSOR NUMBER OF PINS ISL26132 2 YES 24 ISL26134 4 NO 28 Pin Configurations ISL26132 (24 LD TSSOP) TOP VIEW ISL26134 (28 LD TSSOP) TOP VIEW 1 2 3 4 5 6 7 8 9 10 11 12 16 17 18 19 20 21 22 23 24 15 14 13 DVDD DGND XTALIN/CLOCK XTALOUT DGND DGND TEMP A0 CAP CAP AIN1+ AIN1- SDO/RDY PDWN SPEED GAIN1 GAIN0 AGND VREFAIN2+ AIN2- SCLK AVDD VREF+ 28 27 26 25 24 23 22 21 20 19 18 17 16 15 DVDD DGND XTALIN/CLOCK XTALOUT DGND DGND A1 A0 CAP CAP AIN1+ AIN1- AIN3+ AIN3- 1 2 3 4 5 6 7 8 9 10 11 12 13 14 SDO/RDY PDWN SPEED GAIN1 GAIN0 AGND VREFAIN2+ AIN2- AIN4+ AIN4- SCLK AVDD VREF+ ISL26132, ISL26134 3 FN6954.1 September 9, 2011 Pin Descriptions NAME PIN NUMBER ANALOG/DIGITAL ISL26132 ISL26134 INPUT/OUTPUT DESCRIPTION DVDD 1 1 Digital Digital Power Supply (2.7V to 5.25V) DGND 2, 5, 6 2, 5, 6 Digital Digital Ground XTALIN/CLOCK 3 3 Digital/Digital Input External Clock Input: typically 4.9152MHz. Tie low to activate internal oscillator. Can also use external crystal across XTALIN/CLOCK and XTALOUT pins. XTALOUT 4 4 Digital External Crystal connection TEMP 7 - Digital Input On-chip Temperature Diode Enable A1 A0 - 8 7 8 Digital Input CAP 9, 10 9, 10 Analog PGA Filter Capacitor AIN1+ 11 11 Analog Input Positive Analog Input Channel 1 AIN1- 12 12 Analog Input Negative Analog Input Channel 1 AIN3+ - 13 Analog Input Positive Analog Input Channel 3 AIN3- - 14 Analog Input Negative Analog Input Channel 3 AIN4- - 15 Analog Input Negative Analog Input Channel 4 AIN4+ - 16 Analog Input Positive Analog Input Channel 4 AIN2- 13 17 Analog Input Negative Analog Input Channel 2 AIN2+ 14 18 Analog Input Positive Analog Input Channel 2 VREF- 15 19 Analog Input Negative Reference Input VREF+ 16 20 Analog Input Positive Reference Input AGND 17 21 Analog Analog Ground AVDD 18 22 Analog Analog Power Supply 4.75V to 5.25V GAIN0 GAIN1 19 20 23 24 Digital Input TABLE 2. INPUT MULTIPLEXER SELECT ISL26134 ISL26132 A1 A0 CHANNEL 0 0 AIN1 0 1 AIN2 1 0 AIN3 1 1 AIN4 TABLE 3. GAIN SELECT GAIN1 GAIN0 GAIN 0 0 1 0 1 2 1 0 64 1 1 128 ISL26132, ISL26134 4 FN6954.1 September 9, 2011 Circuit Description The ISL26132 (2-channel) and ISL26134 (4-channel) devices are very low noise 24-bit delta-sigma ADCs that include a programmable gain amplifier and an input multiplexer. la ISL26132 offers an on-chip temperature measurement capability. The ISL26132, ISL26134 provide pin compatibility and output data compatibility with the ADS1232/ADS1234, and offer the same conversion rates of 10Sps and 80Sps. All the features of the ISL26132, ISL26134 are pin-controllable, while offset calibration, standby mode, and output conversion data are accessible through a simple 2-wire interface. The clock can be selected to come from an internal oscillator, an external clock signal, or crystal (4.9152MHz typical). SPEED 21 25 Digital Input PDWN 22 26 Digital Input Power-Down: Holding this pin low powers down the entire converter and resets the ADC. SCLK 23 27 Digital Input Serial Clock: Clock out data on the rising edge. Also used to initiate Offset Calibration and Sleep modes. See “Serial Clock Input (SCLK)” on page 14 for more details. SDO/RDY 24 28 Digital Output Dual-Purpose Output: Data Ready: Indicate valid data by going low. Data Output: Outputs data, MSB first, on the first rising edge of SCLK. Pin Descriptions (Continued) NAME PIN NUMBER ANALOG/DIGITAL ISL26132 ISL26134 INPUT/OUTPUT DESCRIPTION TABLE 4. DATA RATE SELECT SPEED DATA RATE 0 10Sps 1 80Sps ISL26132, ISL26134 5 FN6954.1 September 9, 2011 Absolute Maximum Ratings Thermal Information AGND to DGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-0.3V to +0.3V Analog In to AGND. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-0.3 to AVDD+0.3V Digital In to DGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-0.3 to DVDD+0.3V Input Current Momentary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100mA Continuous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10mA ESD Rating Human Body Model (Per MIL-STD-883 Method 3015.7) . . . . . . . . . . . ..7.5kV Machine Model (Per JESD22-A115). . . . . . . . . . . . . . . . . . . . . . . . . .450V Charged Device Model (Per JESD22-C101) . . . . . . . . . . . . . . . . . . . . . . . .2kV Latch-up (Per JEDEC JESD-78B; Class 2, Level A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100mA @ Room and Hot (+105°C) Thermal Resistance (Typical) θJA (°C/W) θJC (°C/W) 24 Ld TSSOP (Notes 4, 5) . . . . . . . . . . . . . .65 18 28 Ld TSSOP (Notes 4, 5) . . . . . . . . . . . . . .63 18 Maximum Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80mW Maximum Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . ..+150°C Maximum Storage Temperature Range . . . . . . . . . . . . ..-65°C to +150°C Pb-Free Reflow Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .see link below http://www.intersil.com/pbfree/Pb-FreeReflow.asp Operating Conditions Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..-40°C to +105°C AVDD to AGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..4.75V to 5.25V DVDD to DGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2.7V to 5.25V CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and result in failures not covered by warranty. NOTES: 4. θJA is measured with the component mounted on a high effective thermal conductivity test board in free air. See Tech Brief TB379 for details. 5. For θJC, the “case temp” location is taken at the package top center. Electrical Specifications VREF+ = 5V, VREF- = 0V, AVDD = 5V, DVDD = 5V, AGND = DGND = 0V, MCLK = 4.9152MHz, and TA = -40°C to +105°C, unless otherwise specified. Boldface limits apply over the operating temperature range, -40°C to +105°C SYMBOL PARAMETER TEST LEVEL or NOTES MIN (Note 6) TYP MAX (Note 6) UNITS ANALOG INPUTS Differential Input Voltage Range ±0.5VREF/ Gain V Common Mode Input Voltage gamme Gain = 1, 2 AGND - 0.1 AVDD + 0.1 V Gain = 64, 128 AGND+1.5 AVDD - 1.5 V Differential Input Current Gain = 1 ±20 nA Gain = 2 ±40 nA Gain = 64, 128 ±1 nA SYSTEM PERFORMANCE Resolution No Missing Codes 24 Bits Data Rate Internal Osc. SPEED = High 80 SPS Internal Osc. SPEED = Low 10 SPS External Osc. SPEED = High fCLK/61440 SPS External Osc. SPEED = Low fCLK/49152 0 SPS Digital Filter Settling Time Full Setting 4 Conversions INL Integral Nonlinearity Differential Input Gain = 1, 2 ±0.0002 ±0.001 % of FSR (Note 7) Differential Input Gain = 64, 128 ±0.0004 % of FSR (Note 7) Input Offset Error Gain = 1 ±0.4 ppm of FS Gain = 128 ±1.5 ppm of FS Input Offset Drift Gain = 1 0.3 μV/°C Gain = 128 10 nV/°C Gain Error (Note 8) Gain = 1 ±0.007 ±0.02 % Gain = 128 ±0.02 % Gain Drift Gain = 1 0.5 ppm/°C Gain = 128 7 ppm/°C ISL26132, ISL26134 6 FN6954.1 September 9, 2011 CMRR Common Mode Rejection At DC, Gain = 1, ΔV = 1V 85 100 dB At DC, Gain = 128, ΔV = 0.1V 100 dB 50Hz/60Hz Rejection (Note 9) External 4.9152MHz Clock 130 dB PSRR Power Supply Rejection At DC, Gain = 1, ΔV = 1V 82 100 dB At DC, Gain = 128, ΔV = 0.1V 100 105 dB Input Referred Noise See “Typical Characteristics” beginning on page 8 Noise Free Bits See “Typical Characteristics” beginning on page 8 VOLTAGE REFERENCE INPUT VREF Voltage Reference Input VREF = VREF+ - VREF- 1.5 AVDD AVDD + 0.1 V VREF- Negative Reference Input AGND - 0.1 VREF+ - 1.5 V VREF+ Positive Reference Input VREF- + 1.5 AVDD + 0.1 V IREF Voltage Reference Input Current ±350 nA POWER SUPPLY REQUIREMENTS AVDD Analog Supply Voltage 4.75 5.0 5.25 V DVDD Digital Supply Voltage 2.7 3.3 5.25 V AIDD Analog Supply Current Normal Mode, AVDD = 5, Gain = 1, 2 7 8.5 mA Normal Mode, AVDD = 5, Gain = 64, 128 9 12 mA Standby Mode 0.2 3 μA Power-Down 0.2 2.5 μA DIDD Digital Supply Current Normal Mode, AVDD = 5, Gain = 1, 2 750 950 μA Normal Mode, AVDD = 5, Gain = 64, 128 750 950 μA Standby Mode 1.5 26 μA Power-Down 1 26 μA PD Power Dissipation, Total Normal Mode, AVDD = 5, Gain = 1, 2 49.6 mW Normal Mode, AVDD = 5, Gain = 64, 128 68 mW Standby Mode 0.14 mW Power-Down 0.14 mW DIGITAL INPUTS VIH 0.7 DVDD V VIL 0.2 DVDD V VOH IOH = -1mA DVDD - 0.4 V VOL IOL = 1mA 0.2 DVDD V Input Leakage Current ±10 μA External Clock Input Frequency 0.3 4.9152 MHz Serial Clock Input Frequency 1 MHz NOTE: 6. Compliance to datasheet limits is assured by one or more methods: production test, characterization and/or design. 7. FSR = Full Scale Range = VREF/Gain 8. Gain accuracy is calibrated at the factory (AVDD = +5V). 9. Specified for word rate equal to 10Sps. Electrical Specifications VREF+ = 5V, VREF- = 0V, AVDD = 5V, DVDD = 5V, AGND = DGND = 0V, MCLK = 4.9152MHz, and TA = -40°C to +105°C, unless otherwise specified. Boldface limits apply over the operating temperature range, -40°C to +105°C (Continued) SYMBOL PARAMETER TEST LEVEL or NOTES MIN (Note 6) TYP MAX (Note 6) UNITS ISL26132, ISL26134 7 FN6954.1 September 9, 2011 Noise Performance The ISL26132 and ISL26134 provide excellent noise performance. The noise performance on each of the gain settings of the PGA at the selected word rates is shown in Tables 5 and 6. Resolution in bits decreases by 1-bit if the ADC is operated as a single-ended input device. Noise measurements are input-referred, taken with bipolar inputs under the specified operating conditions, with fCLK = 4.9152MHz. TABLE 5. AVDD = 5V, VREF = 5V, DATA RATE = 10Sps GAIN RMS NOISE (nV) PEAK-TO-PEAK NOISE (nV) (Note 10) NOISE-FREE BITS (Note 11) 1 243 1604 21.6 2 148 977 21.3 64 10.8 71 20.1 128 10.2 67 19.1 TABLE 6. AVDD = 5V, VREF = 5V, DATA RATE = 80Sps GAIN RMS NOISE (nV) PEAK-TO-PEAK NOISE (nV) (Note 10) NOISE-FREE BITS (Note 11) 1 565 3730 20.4 2 285 1880 20.3 64 28.3 187 18.7 128 27 178 17.7 NOTES: 10. The peak-to-peak noise number is 6.6 times the rms value. This encompasses 99.99% of the noise excursions that may occur. This value best represents the worst case noise that could occur in the output conversion words from the converter. 11. Noise-Free Bits is defined as: Noise-Free Bits = ln(FSR/peak-to-peak noise)/ln(2) where FSR is the full scale range of the converter, VREF/Gain. ISL26132, ISL26134 8 FN6954.1 September 9, 2011 Typical Characteristics FIGURE 2. NOISE AT GAIN = 1, 10Sps FIGURE 3. NOISE HISTOGRAM AT GAIN = 1, 10Sps FIGURE 4. NOISE AT GAIN = 2, 10Sps FIGURE 5. NOISE HISTOGRAM AT GAIN = 2, 10Sps FIGURE 6. NOISE AT GAIN = 64, 10Sps FIGURE 7. NOISE HISTOGRAM AT GAIN = 64, 10Sps -10 -5 0 5 10 0 200 400 600 800 1000 GAIN = 1 RATE = 10Sps TIME (SAMPLES) OUTPUT CODE (LSB) 0 50 100 150 200 250 300 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 OUTPUT CODE (LSB) GAIN = 1, N = 1024 RATE = 10Sps STD DEV = 1.635 LSB VREF = 2.5V COUNTS - 10 -5 0 5 10 0 200 400 600 800 1000 TIME (SAMPLES) OUTPUT CODE (LSB) GAIN = 2 RATE = 10Sps 0 50 100 150 200 250 -8 -6 -4 -2 0 2 4 6 8 GAIN = 2, N = 1024 RATE = 10Sps STD DEV = 1.989 LSB VREF = 2.5V OUTPUT CODE (LSB) COUNTS -15 -10 -5 0 5 10 15 20 0 200 400 600 800 1000 TIME (SAMPLES) OUTPUT CODE (LSB) GAIN = 64 RATE = 10Sps 0 20 40 60 80 100 120 -20 -15 -10 -5 0 5 10 15 20 GAIN = 64, N = 1024 RATE = 10Sps STD DEV = 4.627 LSB VREF = 2.5V OUTPUT CODE (LSB) COUNTS ISL26132, ISL26134 9 FN6954.1 September 9, 2011 FIGURE 8. NOISE AT GAIN = 128, 10Sps FIGURE 9. NOISE HISTOGRAM AT GAIN = 128, 10Sps FIGURE 10. NOISE AT GAIN = 1, 80Sps FIGURE 11. NOISE HISTOGRAM AT GAIN = 1, 80Sps FIGURE 12. NOISE AT GAIN = 2, 80Sps FIGURE 13. NOISE HISTOGRAM AT GAIN = 2, 80Sps Typical Characteristics (Continued) -50 -30 -10 10 30 50 0 200 400 600 800 1000 GAIN = 128 RATE = 10Sps TIME (SAMPLES) OUTPUT CODE (LSB) 0 10 20 30 40 50 60 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 OUTPUT CODE (LSB) COUNTS GAIN = 128, N = 1024 RATE = 10Sps STD DEV = 8.757 LSB VREF = 2.5V -25 -20 -15 -10 -5 0 5 10 15 20 25 0 200 400 600 800 1000 GAIN = 1 RATE = 80Sps TIME (SAMPLES) OUTPUT CODE (LSB) 0 20 40 60 80 100 120 -15 -10 -5 0 5 10 15 OUTPUT CODE (LSB) COUNTS GAIN = 1, N = 1024 RATE = 80Sps STD DEV = 3.791 LSB VREF = 2.5V -25 -15 -5 5 15 25 0 200 400 600 800 1000 GAIN = 2 RATE = 80Sps TIME (SAMPLES) OUTPUT CODE (LSB) 0 20 40 60 80 100 120 -15 -10 -5 0 5 10 15 OUTPUT CODE (LSB) COUNTS GAIN = 2, N = 1024 RATE = 80Sps STD DEV = 3.831 LSB VREF = 2.5V ISL26132, ISL26134 10 FN6954.1 September 9, 2011 FIGURE 14. NOISE AT GAIN = 64, 80Sps FIGURE 15. NOISE HISTOGRAM AT GAIN = 64, 80Sps FIGURE 16. NOISE AT GAIN = 128, 80Sps FIGURE 17. NOISE HISTOGRAM AT GAIN = 128, 80Sps FIGURE 18. ANALOG CURRENT vs TEMPERATURE FIGURE 19. DIGITAL CURRENT vs TEMPERATURE Typical Characteristics (Continued) -100 -50 0 50 100 0 200 400 600 800 1000 GAIN = 64 RATE = 80Sps TIME (SAMPLES) OUTPUT CODE (LSB) 0 10 20 30 40 50 -40 -35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 35 40 OUTPUT CODE (LSB) COUNTS GAIN = 64, N = 1024 RATE = 80Sps STD DEV = 12.15 LSB VREF = 2.5V -200 -160 -120 -80 -40 0 40 80 120 160 0 200 400 600 800 1000 GAIN = 128 RATE = 80Sps TIME (SAMPLES) OUTPUT CODE (LSB) 0 5 10 15 20 25 30 -80 -60 -40 -20 0 20 40 60 80 OUTPUT CODE (LSB) COUNTS GAIN = 128, N = 1024 RATE = 80Sps STD DEV = 23.215 LSB VREF = 2.5V 0 2 4 6 8 10 -40 -10 20 50 80 110 TEMPERATURE (°C) CURRENT (mA) NORMAL MODE, PGA = 64.128 NORMAL MODE, PGA = 1, 2 1 10 100 1000 10000 -40 -10 20 50 80 110 TEMPERATURE (°C) CURRENT (μA) NORMAL MODE, ALL PGA GAINS POWERDOWN MODE ISL26132, ISL26134 11 FN6954.1 September 9, 2011 FIGURE 20. TYPICAL WORD RATE vs TEMPERATURE USING INTERNAL OSCILLATOR FIGURE 21. NOISE DENSITY vs FREQUENCY AT GAIN = 1, 80Sps FIGURE 22. NOISE DENSITY vs FREQUENCY AT GAIN = 128, 80Sps Typical Characteristics (Continued) 9.6 9.8 10.0 10.2 10.4 10.6 10.8 11.0 -40 -10 20 50 80 110 TEMPERATURE (°C) DATA RATE (Sps) WORD RATE = 10Sps 10 100 1000 10000 0.01 0.1 1 10 FREQUENCY (Hz) NOISE (nV/√Hz) GAIN = 1, 80Sps 64k FFT 25 AVERAGES 1 10 100 0.01 0.1 1 10 FREQUENCY (Hz) NOISE (nV/√Hz) GAIN = 128, 80Sps 64k FFT 25 AVERAGES ISL26132, ISL26134 12 FN6954.1 September 9, 2011 Functional Description Analog Inputs The analog signal inputs to the ISL26132 connect to a 2-Channel differential multiplexer and the ISL26134 connect to a 4-Channel differential multiplexer (Mux). The multiplexer connects a pair of inputs to the positive and negative inputs (AINx+, AINx-), selected by the Channel Select Pins A0 and A1 (ISL26134 only). Input channel selection is shown in Table 7. On the ISL26132, the TEMP pin is used to select the Temperature Sensor function. Whenever the MUX channel is changed (i.e. if any one of the following inputs - A0/A1, Gain1/0, SPEED is changed), the digital logic will automatically restart the digital filter and will cause SDO/RDY to go low only when the output is fully settled. But if the input itself is suddenly changed, then the user needs to ignore first four RDY pulses (going low) to get an accurate measurement of the input signal. The input span of the ADC is ±0.5 VREF/GAIN. For a 5V VREF and a gain of 1x, the input span will be 5VP-P fully differential as shown in Figure 23. Note that input voltages that exceed the supply rails by more than 100mV will turn on the ESD protection diodes and degrade measurement accuracy. If the differential input exceeds well above the +VE or the -VE FS (by ~1.5x times) the output code will clip to the corresponding FS value. Under such conditions, the output data rate will become 1/4th of the original value as the Digital State Machine will RESET the Delta-Sigma Modulator and the Decimation Filter. Temperature Sensor (ISL26132 only) When the TEMP pin of the ISL26132 is set High, the input multiplexer is connected to a pair of diodes, which are scaled in both size and current. The voltage difference measured between them corresponds to the temperature of the die according to Equation 1: Note: Valid only for GAIN = 1x or 2x Where T is the temperature of the die, and Gain = the PGA Gain Setting. At a temperature of +25°C, the measured voltage will be approximately 111.7mV. Note that this measurement indicates only the temperature of the die itself. Applying the result to correct for the temperature drift of a device external to the package requires that thermal coupling between the sensor and the die be taken into account. Low-Noise Programmable Gain Amplifier (PGA) The chopper-stabilized programmable gain amplifier features a variety of gain settings to achieve maximum dynamic range and measurement accuracy from popular sensor types with excellent low noise performance, input offset error, and low drift, and with minimal external parts count. The GAIN0 and GAIN1 pins allow the user to select gain settings of 1x, 2x, 64x, or 128x. A block diagram is shown in Figure 24. The differential input stage provides a gain of 64, which is bypassed when the lower gain settings are selected. The lower gain settings (1 and 2) will accept inputs with common mode voltages up to 100mV outside the rails, allowing the device to accept ground-referred signals. At gain settings of 64 or 128 the common mode voltage at the inputs is limited to 1.5V inside the supply rails while maintaining specified measurement accuracy. TABLE 7. INPUT CHANNEL SELECTION CHANNEL SELECT PINS ANALOG INPUT PINS SELECTED A1 A0 AIN+ AIN- 0 0 AIN1+ AIN1- 0 1 AIN2+ AIN2- 1 0 AIN3+ AIN3- 1 1 AIN4+ AIN4- 3.75 2.50 1.25 1.25V INPUT VOLTAGE RANGE = ±0.5VREF/GAIN VREF = 5V, GAIN = 1X 3.75 2.50 1.25 AIN+ AIN- 2.50V FIGURE 23. DIFFERENTIAL INPUT FOR VREF = 5V, GAIN = 1X V= 102.2mV + (379μV∗T(°C))∗Gain (EQ. 1) ISL26132, ISL26134 13 FN6954.1 September 9, 2011 Filtering PGA Output Noise The programmable gain amplifier, as shown in Figure 24, includes a passive RC filter on its output. The resistors are located inside the chip on the outputs of the differential amplifier stages. The capacitor (nominally a 100nF C0G ceramic or a PPS film (Polyphenylene sulfide)) for the filter is connected to the two CAP pins of the chip. The outputs of the differential amplifier stages of the PGA are filtered before their signals are presented to the delta-sigma modulator. This filter reduces the amount of noise by limiting the signal bandwidth and filters the chopping artifacts of the chopped PGA stage. Voltage Reference Inputs (VREF+, VREF-) The voltage reference for the ADC is derived from the difference in the voltages presented to the VREF+ and VREF- pins; VREF = (VREF+ - VREF-). The ADCs are specified with a voltage reference value of 5V, but a voltage reference as low as 1.5V can be used. For proper operation, the voltage on the VREF+ pin should not be greater than AVDD + 0.1V and the voltage on the VREF- pin should not be more negative than AGND - 0.1V. Clock Sources The ISL26132, ISL26134 can operate from an internal oscillator, an external clock source, or from a crystal connected between the XTALIN/CLOCK and XTALOUT pins. See the block diagram of the clock system in Figure 25. When the ADC is powered up, the CLOCK DETECT block determines if an external clock source is present. If a clock greater than 300kHz is present on the XTALIN/CLOCK pin, the circuitry will disable the internal oscillator on the chip and use the external clock as the clock to drive the chip circuitry. If the ADC is to be operated from the internal oscillator, the XTALIN/CLOCK pin should be grounded. If the ADC is to be operated from a crystal, it should be located close to the package pins of the ADC. Note that external loading capacitors for the crystal are not required as there are loading capacitors built into the silicon, although the capacitor values are optimized for operation with a 4.9152MHz crystal. The XTALOUT pin is not intended to drive external circuits. Digital Filter Characteristics The digital filter inside the ADC is a fourth-order Siinc filter. Figures 26 and 27 illustrate the filter response for the ADC when it is operated from a 4.9152MHz crystal. The internal oscillator is factory trimmed so the frequency response for the filter will be much the same when using the internal oscillator. The figures illustrate that when the converter is operated at 10Sps the digital filter provides excellent rejection of 50Hz and 60Hz line interference. FIGURE 24. SIMPLIFIED PROGRAMMABLE GAIN AMPLIFIER BLOCK DIAGRAM + - A1 - + A2 AINx- AINx+ ADC RINT RINT R1 RF1 RF2 CAP CAP FIGURE 25. CLOCK BLOCK DIAGRAM XTALIN/ CRYSTAL OSCILLATOR XTALOUT TO ADC INTERNAL OSCILLATOR CLOCK DETECT MUX EN CLOCK ISL26132, ISL26134 14 FN6954.1 September 9, 2011 Serial Clock Input (SCLK) The serial clock input is provided with hysteresis to minimize false triggering. Nevertheless, care should be taken to ensure reliable clocking. Filter Settling Time and ADC Latency Whenever the analog signal into the ISL26132, ISL26134 converters is changed, the effects of the digital filter must be taken into account. The filter takes four data ready periods for the output code to fully reflect a new value at the analog input. DM the multiplexer control input is changed, the modulator and the digital filter are reset, and the device uses four data ready periods to fully settle to yield a digital code that accurately represents the analog input. Therefore, from the time the control inputs for the multiplexer are changed until the SDO/RDY goes low, four data ready periods will elapse. The settling time delay after a multiplexer channel change is listed in Table 8 for the converter operating in continuous conversion mode. 0 -50 -100 -150 0 10 20 30 40 50 60 70 80 90 100 FREQUENCY (Hz) GAIN (dB) DDAATTAA RRAATTEE == 1100 SSpPsS FIGURE 26. 10Sps: FREQUENCY RESPONSE OUT TO 100Hz -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 45 50 55 60 65 FREQUENCY (Hz) GAIN (dB) DATA RATE = 10Sps FIGURE 27. 10Sps: 50/60Hz NOISE REJECTION, 45Hz TO 65Hz TABLE 8. SETTLING TIME PARAMETER DESCRIPTION (fCLK = 4.9152MHz) MIN MAX UNITS tS A0, A1, SPEED, Gain1, Gain0 change set-up time 40 50 μs t1 Settling time SPEED = 1 54 55 ms SPEED = 0 404 405 ms FIGURE 28. SDO/RDY DELAY AFTER MULTIPLEXER CHANGE SDO/RDY tS t1 A0, A1, SPEED, Gain1, Gain0 ISL26132, ISL26134 15 FN6954.1 September 9, 2011 Conversion Data Rate The SPEED pin is used to select between the 10Sps and 80Sps conversion rates. The 10Sps rate (SPEED = Low) is preferred in applications requiring 50/60Hz noise rejection. Note that the sample rate is directly related to the oscillator frequency, as 491,520 clocks are required to perform a conversion at the 10Sps rate, and 61,440 clocks at the 80Sps rate. Output Data Format The 24-bit converter output word is delivered in two’s complement format. Input exceeding full scale results in a clipped output which will not return to in-range values until after the input signal has returned to the specified allowable voltage range and the digital filter has settled as discussed previously. Reading Conversion Data from the Serial Data Output/Ready SDO/RDY Pin When the ADC is powered, it will automatically begin doing conversions. The SDO/RDY signal will go low to indicate the completion of a conversion. After the SDO/RDY signal goes low, the MSB data bit of the conversion word will be output from the SDO/RDY pin after SCLK is transitioned from a low to a high. Each subsequent new data bit is also output on the rising edge of SCLK (see Figure 30). The receiving device should use the falling edge of SCLK to latch the data bits. After the 24th SCLK, the SDO/RDY output will remain in the state of the LSB data bit until a new conversion is completed. At this time, the SDO/RDY will go high if low and then go low to indicate that a new conversion word is available. If not all data bits are read from the SDO/RDY pin prior to the completion of a new conversion, they will be overwritten. SCLK should be low during time t6, as shown in Figure 30, when SDO/RDY is high. If the user wants the SDO/RDY signal to go high after reading the 24 bits of the conversion data word, a 25th SCLK can be issued. The 25th SCLK will force the SDO/RDY signal to go high and remain high until it falls to signal that a new conversion word is available. Figure 31 illustrates the behavior of the SDO/RDY signal when a 25th SCLK is used. FIGURE 29. SDO/RDY DELAY AFTER MULTIPLEXER CHANGE SDO/RDY TABLE 9. OUTPUT CODES CORRESPONDING TO INPUT INPUT SIGNAL OUTPUT CODE (HEX) ≥ + 0.5VREF/GAIN 7FFFFF (+0.5VREF/GAIN)/(223 - 1) 000001 0 000000 (-0.5VREF/GAIN)/(223 - 1) FFFFFF ≤ - 0.5VREF/GAIN 800000 FIGURE 30. OUTPUT DATA WAVEFORMS USING 24 SCLKS TO READ CONVERSION DATA SDO/RDY DATA READY DATA MSB LSB NEW DATA READY 23 22 21 0 SCLK t4 t2 1 t3 24 t5 t6 t3 t7 ISL26132, ISL26134 16 FN6954.1 September 9, 2011 Offset Calibration Control The offset internal to the ADC can be removed by performing an offset calibration operation. Offset calibration can be initiated immediately after reading a conversion word with 24 SCLKs by issuing two additional SCLKs. The offset calibration operation will begin immediately after the 26th SCLK occurs. Figure 32 illustrates the timing details for the offset calibration operation. During offset calibration, the analog inputs are shorted internally and a regular conversion is performed. This conversion generates a conversion word that represents the offset error. This value is stored and used to digitally remove the offset error from future conversion words. The SDO/RDY output will fall to indicate the completion of the offset calibration operation. TABLE 10. INTERFACE TIMING CHARACTERISTICS PARAMETER DESCRIPTION MIN TYP MAX UNITS t2 SDO/RDY Low to first SLK 0 ns t3 SCLK pulsewidth, Low or High 100 ns t4 SCLK High to Data Valid 50 ns t5 Data Hold after SCLK High 0 ns t6 Register Update Time 39 μs t7 Conversion Period SPEED = 1 12.5 ms SPEED = 0 100 ms FIGURE 31. OUTPUT DATA WAVEFORMS FOR SDO/RDY POLLING DATA READY NEW DATA READY SDO/RDY SCLK 23 22 21 0 1 24 25 DATA 25TH SCLK FORCES SDO/RDY HIGH FIGURE 32. OFFSET CALIBRATION WAVEFORMS DATA READY AFTER CALIBRATION CALIBRATION BEGINS SDO/RDY SCLK 23 22 21 0 23 1 24 25 26 t8 FIGURE 33. STANDBY MODE WAVEFORMS DATA READY START CONVERSION STANDBY MODE SDO/RDY SCLK 23 22 21 0 1 24 t10 t11 t9 23 TABLE 11. SDO/RDY DELAY AFTER CALIBRATION PARAMETER MIN MAX UNITS t8 SPEED = 1 108 109 ms SPEED = 0 808 809 ms ISL26132, ISL26134 17 FN6954.1 September 9, 2011 Standby Mode Operation The ADC can be put into standby mode to save power. Standby mode reduces the power to all circuits in the device except the crystal oscillator amplifier. To enter the standby mode, take the SCLK signal high and hold it high after SDO/RDY falls. la converter will remain in standby mode as long as SCLK is held high. To return to normal operation, take SCLK back low and wait for the SDO/RDY to fall to indicate that a new conversion has completed. Figure 33 and Table 12 illustrate the details of standby mode. Supply currents are equal in Standby and Power-down modes unless a Crystal is used. If the Crystal is used, the Crystal amplifier is turned ON, even in the standby mode. Performing Offset Calibration After Standby mode To perform an offset calibration automatically upon returning from standby, deliver 2 or more additional SCLKs following a data read cycle, and then set and hold SCLK high. The device will remain in Standby as long as SCLK remains high. A calibration cycle will begin once SCLK is brought low again to resume normal operation. Additional time will be required to perform the calibration after returning from Standby. Figure 34 and Table 13 illustrate the details of performing offset calibration after standby mode. TABLE 12. STANDBY MODE TIMING PARAMETER DESCRIPTION MIN MAX UNITS t9 SCLK High after SDO/RDY Low SPEED = 1 0 12.44 ms SPEED = 0 0 99.94 t10 Standby Mode Delay SPEED = 1 12.5 SPEED = 0 100 t11 SDO/RDY falling edge after SCLK Low SPEED = 1 50 60 SPEED = 0 400 410 TABLE 13. OFFSET CALIBRATION TIMING AFTER STANDY PARAMETER DESCRIPTION MIN MAX UNITS t12 SDO/RDY Low after SCLK Low SPEED = 1 108 113 ms SPEED = 0 808 813 ms FIGURE 34. OFFSET CALIBRATION WAVEFORMS AFTER STANDBY SDO/RDY SCLK 23 22 21 0 1 24 25 STANDBY MODE DATA READY AFTER CALIBRATION BEGIN 23 CALIBRATION t10 t12 ISL26132, ISL26134 18 FN6954.1 September 9, 2011 Operation of PDWN PDWN must transition from low to high after both power supplies have settled to specified levels in order to initiate a correct power-up reset (Figure 35). This can be implemented by an external controller or a simple RC delay circuit, as shown in Figure 36. In order to reduce power consumption, the user can assert the Power-down mode by bringing PDWN Low as shown in Figure 37. All circuitry is shut down in this mode, including the Crystal Oscillator. After PDWN is brought High to resume operation, the reset delay varies depending on the clock source used. While an external clock source will resume operation immediately, a circuit utilizing a crystal will incur about a 20 millisecond delay due to the inherent start-up time of this type of oscillator. FIGURE 35. POWER-DOWN TIMING RELATIVE TO SUPPLIES ≥10μs AVDD DVDD PDWN FIGURE 36. PDWNDELAY CIRCUIT DVDD 1kΩ 2.2nF CONNECT TO PDWN PIN FIGURE 37. POWER-DOWN MODE WAVEFORMS SDO/RDY SCLK t11 PDWN POWER-DOWN MODE START CONVERSION DATA CLK READY SOURCE WAKEUP t13 tt1144 TABLE 14. POWER-DOWN RECOVERY TIMING PARAMETER DESCRIPTION TYP UNITS t13 Clock Recovery after PDWN High Internal Oscillator 7.95 μs External Clock Source 0.16 μs 4.9152MHz Crystal Oscillator 5.6 ms t14 PDWN Pulse Duration 26 μs (min) ISL26132, ISL26134 19 FN6954.1 September 9, 2011 Applications Information Power-up Sequence – Initialization and Configuration The sequence to properly power-up and initialize the device are as follows. For details on individual functions, refer to their descriptions. 1. AVDD, DVDD ramp to specified levels 2. Apply External Clock 3. Pull PDWN High to initiate Reset 4. Device begins conversion 5. SDO/RDY goes low at end of first conversion OPTIONAL ACTIONS • Perform Offset Calibration • Place device in Standby • Return device from Standby • Read on-chip Temperature (applicable to ISL26132 only) Application Examples WEIGH SCALE SYSTEM Figure 38 illustrates the ISL26132 connected to a load cell. la A/D converter is configured for a gain of 128x and a sample rate of 10Sps. If a load cell with 2mV/V sensitivity is used, the full scale output from the load cell will be 10mV. On a gain of 128x and sample rate of 10Sps, the converter noise is 67nVP-P. la converter will achieve 10mV/67nVP-P = 149,250 noise free counts across its 10mV input signal. This equates to 14,925 counts per mV of input signal. If five output words are averaged together this can be improved by √5 to yield √5*14925 counts = 33,370 counts per mV of input signal with an effective update rate of 2 readings per second. THERMOCOUPLE MEASUREMENT Figure 39 illustrates the ISL26132 in a thermocouple application. As shown, the 4.096V reference combined with the PGA gain set to 128x sets the input span of the converter to ±16mV. This supports the K type thermocouple measurement for temperatures from -270°C at -6.485mV to +380°C at about 16mV. If a higher temperature is preferred, the PGA can be set to 64x to provide a converter span of ±32mV. The will allow the converter to support temperature measurement with the K type thermocouple up to about +765°C. In the circuit shown, the thermocouple is referenced to a voltage dictated by the resistor divider from the +5V supply to ground. These set the common mode voltage at about 2.5V. The 5M resistors provide a means for detection of an open thermocouple. If the thermocouple fails open or is not connected, the bias through the 5M resistors will cause the input to the PGA to go to full scale. AVDD VREF+ CAP CAP AIN+1 AIN-1 AIN+2 AIN-2 VREFAGND DGND TEMP A0 SPEED XTALOUT PDWN SCLK SDO/RDY GAIN0 GAIN1 DVDD ISL26132 XTALIN/CLOCK - + 0.1μF VDD MICRO CONTROLLER GND 16 9 10 11 12 14 13 15 17 2, 5, 6 7 8 21 3 4 22 23 24 19 20 GAIN = 128 5V 3V 0.1μF 18 1 FIGURE 38. WEIGH SCALE APPLICATION ISL26132, ISL26134 20 FN6954.1 September 9, 2011 PCB Board Layout and System Configuration The ISL26132,ISL26134 ADC is a very low noise converter. taux achieve the full performance available from the device will require attention to the printed circuit layout of the circuit board. Care should be taken to have a full ground plane without impairments (traces running through it) directly under the chip on the back side of the circuit board. The analog input signals should be laid down adjacent (AIN+ and AIN- for each channel) to achieve good differential signal practice and routed away from any traces carrying active digital signals. The connections from the CAP pins to the off-chip filter capacitor should be short, and without any digital signals nearby. The crystal, if used should be connected with relatively short leads. No active digital signals should be routed near or under the crystal case or near the traces, which connect it to the ADC. The AGND and DGND pins of the ADC should be connected to a common solid ground plane. All digital signals to the chip should be powered from the same supply, as that used for DVDD (do not allow digital signals to be active high unless the DVDD supply to the chip is alive). Route all active digital signals in a way to keep distance from any analog pin on the device (AIN, VREF, CAP, AVDD). Power on the AVDD supply should be active before the VREF voltage is present. PCB layout patterns for the chips (ISL26132 and ISL26134) are found on the respective package outline drawings on pages 22, and 23. AVDD VREF+ AIN+1 AIN-1 AIN+2 AIN-2 VREFAGND DGND TEMP A0 SPEED XTALOUT PDWN SCLK SDO/RDY GAIN0 GAIN1 DVDD XTALIN/CLOCK MICRO CONTROLLER 16 11 12 14 13 15 17 2, 5, 6 7 8 21 3 4 22 23 24 19 20 +5V +3V 0.1μF 18 1 FIGURE 39. THERMOCOUPLE MEASUREMENT APPLICATION 4.9152 MHz ISL21009 4.096V 10nF 1μF 10k 10k 0.1μF TYPE K 5M 5M ISL26132, ISL26134 21 Intersil products are manufactured, assembled and tested utilizing ISO9000 quality systems as noted in the quality certifications found at www.intersil.com/design/quality Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see www.intersil.com FN6954.1 September 9, 2011 For additional products, see www.intersil.com/product_tree Products Intersil Corporation is a leader in the design and manufacture of high-performance analog semiconductors. The Company's products address some of the industry's fastest growing markets, such as, flat panel displays, cell phones, handheld products, and notebooks. Intersil's product families address power management and analog signal processing functions. Go to www.intersil.com/products for a complete list of Intersil product families. For a complete listing of Applications, Related Documentation and Related Parts, please see the respective device information page on intersil.com: ISL26132, ISL26134 To report errors or suggestions for this datasheet, please go to www.intersil.com/askourstaff FITs are available from our website at http://rel.intersil.com/reports/search.php Revision History The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to web to make sure you have the latest Rev. DATE REVISION CHANGE 09/08/11 FN6954.1 Power Supply Requirements on page 6 - AIDD - Analog Supply Current - Normal Mode, AVDD = 5, Gain = 1,2 changed TYP and MAX from “6, 7.3” to “7, 8.5” Power Dissipation, Total Normal Mode, AVDD = 5, Gain = 1, 2 changed from “43.3” to “49.6” mW (Max) 08/22/11 FN6954.0 Initial Release. ISL26132, ISL26134 22 FN6954.1 September 9, 2011 Package Outline Drawing M24.173 24 LEAD THIN SHRINK SMALL OUTLINE PACKAGE (TSSOP) Rev 1, 5/10 DETAIL "X" TYPICAL RECOMMENDED LAND PATTERN TOP VIEW SIDE VIEW END VIEW Dimension does not include mold flash, protrusions or gate burrs. Mold flash, protrusions or gate burrs shall not exceed 0.15 per side. Dimension does not include interlead flash or protrusion. Interlead flash or protrusion shall not exceed 0.25 per side. Dimensions are measured at datum plane H. Dimensioning and tolerancing per ASME Y14.5M-1994. Dimension does not include dambar protrusion. Allowable protrusion shall be 0.08mm total in excess of dimension at maximum material condition. Minimum space between protrusion and adjacent lead is 0.07mm. Dimension in ( ) are for reference only. Conforms to JEDEC MO-153. 6. 3. 5. 4. 2. Une. NOTES: 7. 5 SEATING PLANE C H 2 3 1 24 B 12 1 3 13 A PLANE GAUGE 0.05 MIN 0.15 MAX 0°-8° 0.60± 0.15 0.90 1.00 REF 0.25 SEE DETAIL "X" 0.15 0.25 (0.65 TYP) (5.65) (0.35 TYP) (1.45) 6.40 4.40 ±0.10 0.65 1.20 MAX PIN #1 I.D. MARK 7.80 ±0.10 +0.05 -0.06 -0.06 +0.05 -0.10 +0.15 0.20 C B A 0.10 C - 0.05 0.10 M C B A ISL26132, ISL26134 23 FN6954.1 September 9, 2011 Package Outline Drawing M28.173 28 LEAD THIN SHRINK SMALL OUTLINE PACKAGE (TSSOP) Rev 1, 5/10 DETAIL "X" TYPICAL RECOMMENDED LAND PATTERN TOP VIEW SIDE VIEW END VIEW Dimension does not include mold flash, protrusions or gate burrs. Mold flash, protrusions or gate burrs shall not exceed 0.15 per side. Dimension does not include interlead flash or protrusion. Interlead flash or protrusion shall not exceed 0.25 per side. Dimensions are measured at datum plane H. Dimensioning and tolerancing per ASME Y14.5M-1994. Dimension does not include dambar protrusion. Allowable protrusion shall be 0.08mm total in excess of dimension at maximum material condition. Minimum space between protrusion and adjacent lead is 0.07mm. Dimension in ( ) are for reference only. Conforms to JEDEC MO-153. 6. 3. 5. 4. 2. Une. NOTES: 7. 5 SEATING PLANE C H 2 3 1 28 B 14 1 3 15 A PLANE GAUGE 0.05 MIN 0.15 MAX 0°-8° 0.60 ±0.15 0.90 1.00 REF 0.25 SEE DETAIL "X" 0.25 (0.65 TYP) (5.65) (0.35 TYP) (1.45) 6.40 4.40 ± 0.10 0.65 1.20 MAX PIN #1 I.D. MARK 9.70± 0.10 -0.06 0.15 +0.05 -0.10 +0.15 -0.06 +0.05 0.20 C B A 0.10 C - 0.05 0.10 M C B A Both, the Deltabell® E and Plus feature engineer friendly features such as the unique levelling mechanism and modular components that make simple sounder installations a reality. Both external sounders incorporate the same features that are described overleaf. However, the Deltabell® Plus has a fully back-light option, which enables around the clock visual deterrent to maximise your security. The Deltabell® E and Plus are available in a variety of different colours: Low power external sounder with strobe Low power external sounder with strobe and back-light Available Base Colours: Red, Green, White, Amber, Blue and Black Available Lid Colours: Red, White, Yellow, Black*, Blue* and Chrome* *Not recommended for Deltabell® Plus 2012 Pyronix Ltd. Pyronix, the Pyronix Blades device, Deltabell are all trademarks of Pyronix Ltd. UK Registered Design. As part of our continued development programme specifications may change. Other cover colour options available. White cover recommended for use with backlit Deltabell PLUS for optimum visual clarity. RMKT090001-7 © 2009 Pyronix Ltd. Pyronix and the Pyronix Blades device are trademarks of Pyronix Ltd. As part of our continued development programme specifications of the V2 TEL and V2 GSM may change. RMKT090057-1 © 2009 Pyronix Ltd. Pyronix, the Pyronix Blades device, TMD15 and TriCover are all trademarks of Pyronix Ltd. UK Registered Design. As part of our continued development programme specifications may change. RMKT080064-4 © 2009 Pyronix Ltd. Pyronix, the Pyronix Blades device, TMD15 and TriCover are all trademarks of Pyronix Ltd. UK Registered Design. As part of our continued development programme specifications may change. RMKT090057-1 www.pyronix.com marketing@pyronix.com 01709 700100 www.pyronix.com marketing@pyronix.com 01709 700100 www.pyronix.com marketing@pyronix.com 01709 700100 www.pyronix.com marketing@pyronix.com 01709 700100 2010 Pyronix Ltd. Pyronix, the Pyronix Blades device, Deltabell are all trademarks of Pyronix Ltd. UK Registered Design. As part of our continued development programme specifications may change. Other cover colour options available. White cover recommended for use with backlit Deltabell PLUS for optimum visual clarity. RMKT090150 www.pyronix.com marketing@pyronix.com 01709 700100Current consumption feature Deltabell® Plus only The Deltabell® incorporates a LDR (Light Dependant Resistor) circuit which turns the Light off during daylight hours when it is not needed, saving on the product current consumption. When the day turns from dusk to dark the Lightbox illuminates so that your external visual deterrent can be seen on the darkest of nights. Visual alarm warning feature Deltabell® Plus only In addition to the strobe which is present on all of the Deltabell® models, the Deltabell® PLUS has the added feature that the illuminated cover will strobe when the alarm is activated, giving you the added peace of mind that your alarm will be seen in ‘alarm mode’ from a much greater distance than standard sounders that do not have back lighting facilities. Security and peace of mind The Deltabell® has front and rear tamper protection and in the event of a potential sabotage attack, the 104dBA sounder provides a distinctive audible warning. The electronic elements on the printed circuit board are protected by a fully sealed unit with a rubber gasket providing added protection in harsh environments and giving your customer peace of mind that the Deltabell® will always sound in the event of an alarm activation. 104 dBA sounder Piezo sounder with high decibel output.   Engineer hold-off facility The Deltabell® engineer hold-off facility means that when initially powered with the tamper switch open, the sounder will not activate. Remote engineer hold-off facility There is also the capability for remote engineer hold-off which is invaluable when you are servicing the system enabling easy maintenance. It can be turned on at any time by applying 0V to this dedicated terminal which will then disable the tamper. Unique levelling mechanism A spirit level is supplied so that you can easily mount the Deltabell®. In addition, to make the installation as simple as possible, revolving guide holes are used to save time lining up screw and drill holes. SCB/SAB Mode Self Contained Bell or Self Activating Bell mode. Hinged cover The Deltabell® has a hinged cover that locks into place so that both your hands are free to work on the sounder. Fully back-lit cover The Deltabell® low power modular unit back-lights the cover (Deltabell® Plus only)  Electrical specification Operating Voltage Supply: 9-16 V DC (13.5 nominal) Protected: Reverse polarity protected Current Consumption Quiescent Current: < 60 mA Alarm Current: < 300 mA Strobe Strobe Duration: 100 ms Strobe Frequency: 1Hz Dimensions [W] 290 mm [H] 285 mm [D] 50 mm Compliance Europe. Suitable for use in EN50131-1 systems Security grade 2 or 3, Environmental class IV [H] [W] [D] Packing information Minimum quantity: 10 Minimum order for screen print: 40 Warranty: 2 years Designed: UK   Dummy bases also available 2012 Pyronix Ltd. Pyronix, the Pyronix Blades device, Deltabell are all trademarks of Pyronix Ltd. UK Registered Design. As part of our continued development programme specifications may change. Other cover colour options available. White cover recommended for use with backlit Deltabell PLUS for optimum visual clarity. RMKT090001-7 © 2009 Pyronix Ltd. Pyronix and the Pyronix Blades device are trademarks of Pyronix Ltd. As part of our continued development programme specifications of the V2 TEL and V2 GSM may change. RMKT090057-1 © 2009 Pyronix Ltd. Pyronix, the Pyronix Blades device, TMD15 and TriCover are all trademarks of Pyronix Ltd. UK Registered Design. As part of our continued development programme specifications may change. RMKT080064-4 © 2009 Pyronix Ltd. Pyronix, the Pyronix Blades device, TMD15 and TriCover are all trademarks of Pyronix Ltd. UK Registered Design. As part of our continued development programme specifications may change. RMKT090057-1 www.pyronix.com marketing@pyronix.com 01709 700100 www.pyronix.com marketing@pyronix.com 01709 700100 www.pyronix.com marketing@pyronix.com 01709 700100 www.pyronix.com marketing@pyronix.com 01709 700100 2010 Pyronix Ltd. Pyronix, the Pyronix Blades device, Deltabell are all trademarks of Pyronix Ltd. UK Registered Design. As part of our continued development programme specifications may change. Other cover colour options available. White cover recommended for use with backlit Deltabell PLUS for optimum visual clarity. RMKT090150 www.pyronix.com marketing@pyronix.com 01709 700100 Serial File Transfer Cables The cables feature either the traditional 25 D type RS232 connector or the now more commonly fitted 9 D type serial connector. As the serial port on most PCs is a plug or male the most common interface cable tends to be a socket to socket (female to female). Caractéristiques: • Multi-headed cable allows either 9 D or 25 D connection - providing complete serial port flexibility • Both serial port configurations (Pt Nos 4070 & 4062) available from stock • High quality moulded cables manufactured using foil screened cable • Custom lengths can be made up upon request • Now recognised as conforming to the most standard file transfer wiring configuration 4070 Stock No Description PC AT to PC AT 4070 DB9F to DB9F Null Modem Cable 2Mtr 4070-3 DB9F to DB9F Null Modem Cable 3Mtr 4070-5 DB9F to DB9F Null Modem Cable 5Mtr 4070-10 DB9F to DB9F Null Modem Cable 10Mtr 4070-15 DB9F to DB9F Null Modem Cable 15Mtr PC XT to PC XT 4062 DB25F to DB25F Null Modem Cable 2Mtr 4062-3 DB25F to DB25F Null Modem Cable 3Mtr 4062-5 DB25F to DB25F Null Modem Cable 5Mtr 4062-10 DB25F to DB25F Null Modem Cable 10Mtr PC XT to PC AT 4063 DB9F to DB25F Null Modem Cable 2Mtr 4063-3 9DS TO 25DS NULL MODEM 3M 4063-5 9DS TO 25DS NULL MODEM 5M 4063-10 9DS TO 25DS NULL MODEM 10M Multi-head Serial Cables 4090 DB9F+DB25F to DB9F+DB25F Null Modem Cable 2Mtr 4090-3 DB9F+DB25F to DB9F+DB25F Null Modem Cable 3Mtr 4090-5 DB9F+DB25F to DB9F+DB25F Null Modem Cable 5Mtr Amplifier Internet Radio Terrestrial Tuner Features Feature Description vols Sources 6 – Internet Radio, MP3, CD, Terrestrial Radio, Auxiliary Input. Portable Yes, two part system. The Internet Radio is completely portable receiving all data and audio over a wireless link from the transmitter part connected to the PC USB port. LCD Display 20 character 5 x 7 dot matrix display with icons, EL blue backlight. Power Source 8 x C size 1.5 volt alkaline battery or AC mains – 220 - 240 volt Europe, 110 volt US. Operation Time Approx 30 hours continuous play at mid volume on one set of alkaline batteries. Feature Description Output Power (RMS) 2 x 2.2 watts Total Power 4.4 watts Music Power 2 x 4.4 watts PMPO 65 watts Feature Description Radio presets 6 with station name display Feature Description Digital Tuner bands FM Stereo Tuner presets 6 for each band Antenna FM YesLoudspeaker Connections Wireless Link Dimensions Frequency Display Yes, 4 digit Feature Description No. of way speaker system 1 – way full range driver Impedance 2 x 8 ohm Rated Power (RMS) 2 x 6 watts Size 67 mm x 106 mm, Elliptical Magnetic Shielding Yes Feature Description stéréo headphone Yes Auxiliary Input Yes, 2 x phono socket Auxiliary Output Yes, 2 x phono socket USB connection Yes, transmitter connects to PC USB port with 1.5 metre cable Feature Description Stereo Audio Channel Europe 863 MHz 10 mW erp, USA 925 MHz 10 mW erp, user selectable band switching to avoid interference. Data Channel Europe + USA, 433 MHz , bi-directional, user selectable band switching to avoid interference. Feature Description Radio Remote Module Front to Back 155mm (6.1"), Side to Side 283mm (11.1"), Height 150mm (5.9") USB Base Module Front to Back 120mm (4.7"), Side to Side 135mm (5.3"), Height 41mm (1.6") 1 / 5 Date de révision November 2011 Révision 3 No FDS 16447 FICHE DE DONNEES DE SECURITE ARALDITE FUSION HARDENER SECTION 1: IDENTIFICATION DE LA SUBSTANCE/DU MÉLANGE ET DE LA SOCIÉTÉ/L’ENTREPRISE 1.1. Identificateur de produit Nom commercial ARALDITE FUSION HARDENER No du produit 808300, 808409, 808416, 808423 1.2. Utilisations identifiées pertinentes de la substance ou du mélange et utilisations déconseillées 1.3. Renseignements concernant le fournisseur de la fiche de données de sécurité Distributeur BOSTIK LIMITED COMMON ROAD STAFFORD STAFFORDSHIRE ST16 3EH UNITED KINGDOM +44 1785 255141 +44 1785 272650 (24Hour Emergency) sds.uk@bostik.com 1.4. Numéro d’appel d’urgence SECTION 2: IDENTIFICATION DES DANGERS 2.1. Classification de la substance ou du mélange Classification (1999/45/CEE) Xi;R36/38. 2.2. Éléments d’étiquetage Étiquetage Irritant Phrases De Risque R36/38 Irritant pour les yeux et la peau. Conseils De Prudence S2 Conserver hors de la portée des enfants. S24/25 Éviter le contact avec la peau et les yeux. S26 En cas de contact avec les yeux, laver immédiatement et abondamment avec de l'eau et consulter un spécialiste. S36/37/39 Porter un vêtement de protection approprié, des gants et un appareil de protection des yeux/ du visage. S46 En cas d'ingestion, consulter immédiatement un médecin et lui montrer l'emballage ou l'étiquette. S56 Éliminer ce produit et son récipient dans un centre de collecte des déchets dangereux ou spéciaux. 2.3. Autres dangers SECTION 3: COMPOSITION/INFORMATIONS SUR LES COMPOSANTS 3.2. Mélanges 2 / 5 No FDS 16447 ARALDITE FUSION HARDENER 1,8-DIAZABICYCLO[5.4.0]UNDEC-7-ENE 1-5% No CAS : 6674-22-2 No CE : 229-713-7 Classification (67/548/CEE) Xn;R22. C;R34. R52/53. Classification (CE 1272/2008) Non classé. BIS(2-DIMETHYLAMINOETHYL)ETHER 1-5% No CAS : 3033-62-3 No CE : 221-220-5 Classification (67/548/CEE) T;R23/24. Xn;R22. C;R35. Classification (CE 1272/2008) Non classé. TRIETHYLENETETRAMINE, PROPOXYLATED 5-10% No CAS : 26950-63-0 No CE : 500-055-5 Classification (67/548/CEE) Xi;R38,R41. Classification (CE 1272/2008) Non classé. L'intégralité du texte des phrases de risque et des mentions de danger figure à la Section 16. SECTION 4: PREMIERS SECOURS 4.1. Description des premiers secours Inhalation Éloigner immédiatement la victime de la source d'exposition. Emmener immédiatement à l'air frais la personne exposée. Consulter un médecin. Ingestion NE PAS faire vomir. Consulter immédiatement un médecin. Contact avec la peau Rincer rapidement la peau contaminée avec du savon ou un détergent doux et de l'eau. Enlever rapidement les vêtements imbibés et les laver comme indiqué ci-dessus. Consulter un médecin si l'irritation persiste après le lavage. Contact avec les yeux Rincer immédiatement les yeux avec de l'eau. Continuer à rincer pendant au moins 15 minutes et consulter un médecin. 4.2. Principaux symptômes et effets, aigus et différés 4.3. Indication des éventuels soins médicaux immédiats et traitements particuliers nécessaires SECTION 5: MESURES DE LUTTE CONTRE L’INCENDIE 5.1. Moyens d’extinction Moyens d'extinction Ce produit est ininflammable. Choisir le moyen d'extinction d'incendie en tenant compte d'autres produits chimiques éventuels. Utiliser : Mousse, dioxyde de carbone ou poudre sèche. 5.2. Dangers particuliers résultant de la substance ou du mélange 5.3. Conseils aux pompiers SECTION 6: MESURES À PRENDRE EN CAS DE DISPERSION ACCIDENTELLE 6.1. Précautions individuelles, équipement de protection et procédures d’urgence 6.2. Précautions pour la protection de l’environnement 3 / 5 No FDS 16447 ARALDITE FUSION HARDENER 6.3. Méthodes et matériel de confinement et de nettoyage Absorber avec de la vermiculite, du sable sec ou de la terre, puis placer en récipient. 6.4. Référence à d’autres sections SECTION 7: MANIPULATION ET STOCKAGE 7.1. Précautions à prendre pour une manipulation sans danger Faire très attention de ne pas renverser la matière et éviter du contact avec la peau et les yeux. 7.2. Conditions d’un stockage sûr, y compris d’éventuelles incompatibilités Entreposer à une température modérée dans un endroit sec et bien aéré. 7.3. Utilisation(s) finale(s) particulière(s) SECTION 8: CONTRÔLES DE L’EXPOSITION/PROTECTION INDIVIDUELLE 8.1. Paramètres de contrôle Description Des Ingrédients WEL = Workplace Exposure Limits 8.2. Contrôles de l’exposition Équipements de protection Mesures d'ingénierie Assurer une ventilation efficace. Protection respiratoire Si la ventilation est insuffisante, une protection respiratoire appropriée doit être disponible. Protection des mains Porter des gants de protection en cas de risque de contact direct ou d'éclaboussures. Protection des yeux Porter des lunettes de sécurité lunettes anti-éclaboussures pour éviter tout contact avec les yeux. Mesures d'hygiène Se laver rapidement en cas de contamination de la peau. Se laver après le travail et avant de manger, de fumer et avant d'aller aux toilettes. SECTION 9: PROPRIÉTÉS PHYSIQUES ET CHIMIQUES 9.1. Informations sur les propriétés physiques et chimiques essentielles Aspect Liquide Couleur Clair (ou pâle). Jaune. Odeur Odeur faible. Solubilité Insoluble dans l'eau Densité relative 1.14 Point d'éclair (°C) 145 Creuset fermé Pensky-Martens. 9.2. Autres informations SECTION 10: STABILITÉ ET RÉACTIVITÉ 10.1. Réactivité 10.2. Stabilité chimique Stable aux températures normales. 10.3. Possibilité de réactions dangereuses 10.4. Conditions à éviter 4 / 5 No FDS 16447 ARALDITE FUSION HARDENER 10.5. Matières incompatibles 10.6. Produits de décomposition dangereux SECTION 11: INFORMATIONS TOXICOLOGIQUES 11.1. Informations sur les effets toxicologiques Contact avec la peau Irritant pour la peau. Contact avec les yeux Irritant pour les yeux. SECTION 12: INFORMATIONS ÉCOLOGIQUES Écotoxicité Non reconnu comme dangereux pour l'environnement. 12.1. Toxicité 12.2. Persistance et dégradabilité 12.3. Potentiel de bioaccumulation 12.4. Mobilité dans le sol 12.5. Résultats des évaluations PBT et vPvB 12.6. Autres effets néfastes SECTION 13: CONSIDÉRATIONS RELATIVES À L’ÉLIMINATION 13.1. Méthodes de traitement des déchets Éliminer les déchets et résidus conformément aux règlements municipaux. SECTION 14: INFORMATIONS RELATIVES AU TRANSPORT Généralités Le produit n'est pas soumis à la réglementation internationale sur le transport des marchandises dangereuses (IMDG, ICAO/IATA, ADR/RID). 14.1. Numéro ONU Non applicable. 14.2. Nom d’expédition des Nations unies Non applicable. 14.3. Classe(s) de danger pour le transport Étiquettes De Transport Aucun panneau d'avertissement de transport requis. 14.4. Groupe d’emballage Non applicable. 14.5. Dangers pour l’environnement Substance Dangereuse Pour L'Environnement/Polluant Marin Non. 14.6. Précautions particulières à prendre par l’utilisateur Non applicable. 14.7. Transport en vrac conformément à l’annexe II de la convention Marpol 73/78 et au recueil IBC Non applicable. SECTION 15: INFORMATIONS RÉGLEMENTAIRES 5 / 5 No FDS 16447 ARALDITE FUSION HARDENER 15.1. Réglementations/législation particulières à la substance ou au mélange en matière de sécurité, de santé et d’ environnement 15.2. Évaluation de la sécurité chimique SECTION 16: AUTRES INFORMATIONS Informations générales This product should be used as directed by Bostik Ltd.For further information consult the product data sheet or contact Technical Services. Références Littéraires This safety data sheet was compiled using current safety information supplied by distributor of raw materials. Commentaires De Mise À Jour OBS: Lignes en marges signifient des corrections importantes par rapport à la version précédente. This safety data sheet supersedes all previous issues and users are cautioned to ensure that it is current. Destroy all previous data sheets and if in doubt contact Bostik Limited. Émise Par Approved LJ Date de révision November 2011 Révision 3 Date September 2007 Phrases - R (Texte Intégral) R34 CAUSE DES BRÛLURES. R38 Irritant pour la peau. R22 Nocif en cas d’ingestion. Nocif pour les organismes aquatiques, peut entraîner des effets néfastes à long terme pour l'environnement aquatique. R52/53 R35 Provoque de graves brûlures. R41 Risque de lésions oculaires graves. R23/24 Toxique par inhalation et par contact avec la peau. October 2011 Araldite® Fusion Page 1 of 3 Huntsman Advanced Materials DIY Adhesives AralditeÒ Fusion Two component very fast epoxy adhesive Other commercial names • Araldite® Super Glue + • Araldite® Instant Clear • Araldite® Instant • Araldite® 90 Segundos Fusion • Araldite® 90 seconds Fusion • Araldite® 90 seconds Key properties • Very fast curing at room temperature • Transparent / pale coloured • 1 : 1 mixing • Solvent free Description Araldite® Fusion is a two part transparent epoxy adhesive gelling in 90 seconds. The product may be used to bond metals, ceramics and many common plastics. Product data Property Araldite® Fusion / Resin Araldite® Fusion / Hardener Araldite® Fusion / mixed Colour (visual) transparent pale yellow pale yellow Specific gravity 1.15 – 1.2 1.1 – 1.2 ca. 1.2 Viscosity at 25°C (Pa.s) 50 - 75 10 - 20 30 - 50 Pot Life (100 g at 25°C) - - 90 seconds Processing Pretreatment The strength and durability of a bonded joint are dependant on proper treatment of the surfaces to be bonded. At the very least, joint surfaces should be cleaned with a good degreasing agent such as acetone, iso-propanol (for plastics) or proprietary degreasing agent in order to remove all traces of oil, grease and dirt. Low grade alcohol, gasoline (petrol) or paint thinners should never be used. The strongest and most durable joints are obtained by either mechanically abrading or chemically etching (“pickling”) the degreased surfaces. Abrading should be followed by a second degreasing treatment. Mix ratio Parts by weight Parts by volume Araldite® Fusion / Resin 100 100 Araldite® Fusion / Hardener 100 100 October 2011 Araldite® Fusion Page 2 of 3 Huntsman Advanced Materials Application of adhesive The resin/hardener mix is applied directly or with a spatula to the pretreated and dry joint surfaces. A layer of adhesive 0.05 to 0.10 mm thick will normally impart the greatest lap shear strength to the joint. Huntsman stresses that proper adhesive joint design is also critical for a durable bond. The joint components should be assembled and secured in a fix position as soon as the adhesive has been applied. Equipment maintenance All tools should be cleaned with hot water and soap before adhesives residues have had time to cure. The removal of cured residues is a difficult and time-consuming operation. If solvents such as acetone are used for cleaning, operatives should take the appropriate precautions and, in addition, avoid skin and eye contact. Times to minimum shear strength Temperature °C 23 Cure time to reach hours LSS > 1MPa minutes 5 Cure time to reach hours LSS > 10MPa minutes 90 LSS = Lap shear strength. Typical cured properties Average lap shear strengths of typical joints (ISO 4587) Cured for 16 hours at 40°C and tested at 23°C. Pre-treatment: plastics abraded and degreased, metals sandblasted and degreased. 0 2 4 6 8 10 12 14 16 18 20 Aluminium Steel 37/11 Stainless steel V4A Copper SMC ABS PVC Polycarbonate Polyamides PMMA PC MPa October 2011 Araldite® Fusion Page 3 of 3 Huntsman Advanced Materials Lap shear strength versus temperature (ISO 4587) (typical average values) Carried out on sandblasted and degreased aluminium, cure 16 hours at 40°C 0 5 10 15 20 -40 -20 0 20 40 60 80 100 °C MPa Storage Araldite® Fusion may be stored for up to 2 years at room temperature provided the components are stored in sealed containers. Handling precautions Caution Our products are generally quite harmless to handle provided that certain precautions normally taken when handling chemicals are observed. The uncured materials must not, for instance, be allowed to come into contact with foodstuffs or food utensils, and measures should be taken to prevent the uncured materials from coming in contact with the skin, since people with particularly sensitive skin may be affected. The wearing of impervious rubber or plastic gloves will normally be necessary; likewise the use of eye protection. The skin should be thoroughly cleaned at the end of each working period by washing with soap and warm water. The use of solvents is to be avoided. Disposable paper - not cloth towels - should be used to dry the skin. Adequate ventilation of the working area is recommended. These precautions are described in greater detail in the Material Safety Data sheets for the individual products and should be referred to for fuller information. Huntsman Advanced Materials warrants only that its products meet the specifications agreed with the buyer. Typical properties, where stated, are to be considered as representative of current production and should not be treated as specifications. The manufacture of materials is the subject of granted patents and patent applications; freedom to operate patented processes is not implied by this publication. While all the information and recommendations in this publication are, to the best of our knowledge, information and belief, accurate at the date of publication, NOTHING HEREIN IS TO BE CONSTRUED AS A WARRANTY, EXPRESS OR OTHERWISE. IN ALL CASES, IT IS THE RESPONSIBILITY OF THE USER TO DETERMINE THE APPLICABILITY OF SUCH INFORMATION AND RECOMMENDATIONS AND THE SUITABILITY OF ANY PRODUCT FOR ITS OWN PARTICULAR PURPOSE. The behaviour of the products referred to in this publication in manufacturing processes and their suitability in any given end-use environment are dependent upon various conditions such as chemical compatibility, temperature, and other variables, which are not known to Huntsman Advanced Materials. It is the responsibility of the user to evaluate the manufacturing circumstances and the final product under actual end-use requirements and to adequately advise and warn purchasers and users thereof. Products may be toxic and require special precautions in handling. The user should obtain Safety Data Sheets from Huntsman Advanced Materials containing detailed information on toxicity, together with proper shipping, handling and storage procedures, and should comply with all applicable safety and environmental standards. Hazards, toxicity and behaviour of the products may differ when used with other materials and are dependent on manufacturing circumstances or other processes. Such hazards, toxicity and behaviour should be determined by the user and made known to handlers, processors and end users. Except where explicitly agreed otherwise, the sale of products referred to in this publication is subject to the general terms and conditions of sale of Huntsman Advanced Materials LLC or of its affiliated companies including without limitation, Huntsman Advanced Materials (Europe) BVBA, Huntsman Advanced Materials Americas Inc., and Huntsman Advanced Materials (Hong Kong) Ltd. Huntsman Advanced Materials is an international business unit of Huntsman Corporation. Huntsman Advanced Materials trades through Huntsman affiliated companies in different countries including but not limited to Huntsman Advanced Materials LLC in the USA and Huntsman Advanced Materials (Europe) BVBA in Europe. Araldite® is a registered trademark of Huntsman Corporation or an affiliate thereof. Copyright © 2011 Huntsman Corporation or an affiliate thereof. All rights reserved. Huntsman Advanced Materials (Switzerland) GmbH Klybeckstrasse 200 4057 Basel Switzerland Tel: +41 (0)61 299 11 11 www.go-araldite.com Emergency number : + 32 35 751 234 ARALDITE FUSION IDENTIFICATION DE LA SUBSTANCE/PRÉPARATION ET DE LA SOCIÉTÉ/ENTREPRISE FICHE DE DONNÉES DE SÉCURITÉ Nom du produit ARALDITE FUSION Conforme au règlement (CE) n° 1907/2006 (REACH), Annexe II - France 1. Numéro de téléphone d'appel d'urgence : Fournisseur : : Identification de la substance ou de la préparation Type de produit : Liquide. Pour toutes questions de Sécurité, Hygiène et Environnement relatives à ce document ou son contenu, veuillez contacter: E-Mail: global_product_ehs_admat@huntsman.com Utilisation de la substance/préparation : Système adhésif bi-composants EUROPE: +32 35 75 1234 France ORFILA: +33(0)145425959 ASIA: +65 6336-6011 China: +86 20 39377888 Australia: 1800 786 152 New Zealand: 0800 767 437 USA: +1/800/424.9300 Huntsman Advanced Materials (Europe)BVBA Everslaan 45 3078 Everberg / Belgium Tel.: +41 61 299 20 41 Fax: +41 61 299 20 40 Description du produit : Working pack (preparation) 2. IDENTIFICATION DES DANGERS Se référer aux fiches de données de sécurité des composants individuels de l'emballage de travail. 3. COMPOSITION/INFORMATIONS SUR LES COMPOSANTS Substance/préparation : Working pack (preparation) Se référer aux fiches de données de sécurité des composants individuels de l'emballage de travail. 4. PREMIERS SECOURS Se référer aux fiches de données de sécurité des composants individuels de l'emballage de travail. 5. MESURES DE LUTTE CONTRE L'INCENDIE Se référer aux fiches de données de sécurité des composants individuels de l'emballage de travail. 6. MESURES À PRENDRE EN CAS DE REJET ACCIDENTEL Se référer aux fiches de données de sécurité des composants individuels de l'emballage de travail. Date d'édition/Date de révision : 11/13/2009. 1/6 ARALDITE FUSION Manipulation MANIPULATION ET STOCKAGE Stockage 7. Revêtir un équipement de protection individuelle approprié (voir Section 8). Il est interdit de manger, boire ou fumer dans les endroits où ce produit est manipulé, entreposé ou mis en oeuvre. Il est recommandé au personnel de se laver les mains et la figure avant de manger, boire ou fumer. Les personnes ayant des antécédents de sensibilisation cutanée ne doivent pas intervenir dans les processus utilisant ce produit. Ne pas mettre en contact avec les yeux, la peau ou les vêtements. Ne pas ingérer. Éviter de respirer les vapeurs ou le brouillard. Éviter le rejet dans l'environnement. Consulter les instructions spéciales/la fiche de données de sécurité. Garder dans le conteneur d'origine ou dans un autre conteneur de substitution homologué fabriqué à partir d'un matériau compatible et tenu hermétiquement clos lorsqu'il n'est pas utilisé. Les conteneurs vides retiennent des résidus de produit et peuvent présenter un danger. Ne pas réutiliser ce conteneur. Matériaux d'emballage Stocker conformément à la réglementation locale. Stocker dans le récipient d'origine à l'abri de la lumière directe du soleil dans un endroit sec, frais et bien ventilé à l'écart des matériaux incompatibles (cf. la section 10). Garder le récipient hermétiquement fermé lorsque le produit n'est pas utilisé. Les récipients ayant été ouverts doivent être refermés avec soin et maintenus en position verticale afin d'éviter les fuites. Ne pas stocker dans des conteneurs non étiquetés. Utiliser un récipient approprié pour éviter toute contamination du milieu ambiant. : : Recommandé : Utiliser le récipient d'origine. Température de stockage : Stocker conformément à la réglementation locale. Stocker dans le récipient d'origine à l'abri de la lumière directe du soleil dans un endroit sec, frais et bien ventilé à l'écart des matériaux incompatibles (cf. la section 10). Garder le récipient hermétiquement fermé lorsque le produit n'est pas utilisé. Les récipients ayant été ouverts doivent être refermés avec soin et maintenus en position verticale afin d'éviter les fuites. Ne pas stocker dans des conteneurs non étiquetés. Utiliser un récipient approprié pour éviter toute contamination du milieu ambiant. Stocker entre les températures suivantes: 2 à 40°C (35.6 à 104°F). Classe de danger de stockage Huntsman Advanced Materials : Classe de stockage 10, Liquide nocif pour l'ambience Nom des composants Limites d'exposition professionnelle Valeurs limites d'exposition 8. CONTRÔLE DE L'EXPOSITION/PROTECTION INDIVIDUELLE Aucune valeur de limite d'exposition connue. Se référer aux fiches de données de sécurité des composants individuels de l'emballage de travail. PROPRIÉTÉS PHYSIQUES ET CHIMIQUES État physique Liquide. Point d'éclair Coupe fermée: >145°C (>293°F) [DIN 51758 EN 22719 (Pensky-Martens Closed Cup)] 9. : : Informations générales Aspect Informations importantes relatives à la santé, à la sécurité et à l'environnement Masse volumique : 1.15 g/cm3 [20°C (68°F)] Solubilité dans l'eau : Insoluble Date d'édition/Date de révision : 11/13/2009. 2/6 ARALDITE FUSION STABILITÉ 10. ET RÉACTIVITÉ Se référer aux fiches de données de sécurité des composants individuels de l'emballage de travail. 11. INFORMATIONS TOXICOLOGIQUES Se référer aux fiches de données de sécurité des composants individuels de l'emballage de travail. 12. INFORMATIONS ÉCOLOGIQUES Se référer aux fiches de données de sécurité des composants individuels de l'emballage de travail. 13. CONSIDÉRATIONS RELATIVES À L'ÉLIMINATION 070208 Catalogue Européen des Déchets : Déchets Dangereux : Il se peut que la classification du produit satisfasse les critères de déchets dangereux. Il est recommandé d'éviter ou réduire autant que possible la production de déchets. Les conteneurs vides ou les saches internes peuvent retenir des restes de produit. Ne se débarrasser de ce produit et de son récipient qu'en prenant toutes précautions d'usage. Élimination des produits excédentaires et non recyclables par une entreprise autorisée de collecte des déchets. La mise au rebut de ce produit, des solutions et des sous-produits devra en permanence respecter les exigences légales en matière de protection de l'environnement et de mise au rebut des déchets ainsi que les exigences de toutes les autorités locales. Évitez la dispersion des matériaux déversés, ainsi que leur écoulement et tout contact avec le sol, les cours d'eau, les égouts et conduits d'évacuation. Méthodes d'élimination des : déchets 07 02 08* autres résidus de réaction et résidus de distillation Il faut dans tous les cas appliquer toutes les lois locales régionales et nationales ainsi que les directives européennes. Il appartient à l'utilisateur final de déterminer le code des déchets spécifique à chaque secteur industriel en utilisant le code Européen approprié du catalogue européen des déchets. Il est recommandé que tous les détails soient indiqués par le responsable des déchets. 14. Réglementation internationale du transport INFORMATIONS RELATIVES AU TRANSPORT Nom d'expédition ADR : Matière dangereuse du point de vue de l'environnement, liquide, n.s.a. BISPHENOL A/F EPOXY RESIN IMDG : Environmentally hazardous substance, liquid, n.o.s. (BISPHENOL A/F EPOXY RESIN) IATA : Environmentally hazardous substance, liquid, n.o.s. (BISPHENOL A/F EPOXY RESIN) Informations réglementaires Numéro ONU Classes Groupe d'emballage Étiquette Autres informations 9 Classe ADR/RID UN3082 9 III Classe IMDG UN3082 9 III 9 Emergency schedules (EmS) F-A, S-F Code de classificationM6 Numéro d'identification du danger 90 Date d'édition/Date de révision : 11/13/2009. 3/6 ARALDITE FUSION 14. INFORMATIONS RELATIVES AU TRANSPORT Passenger and Cargo Aircraft Quantity limitation: 450 L Packaging instructions: 914 Cargo Aircraft OnlyQuantity limitation: 450 L Packaging instructions: 914 9 Classe IATA UN3082 9 III 15. INFORMATIONS RÉGLEMENTAIRES Conseils de prudence S24- Éviter le contact avec la peau. S37/39- Porter des gants appropriés et un appareil de protection des yeux/du visage. S61- Éviter le rejet dans l'environnement. Consulter les instructions spéciales/la fiche de données de sécurité. R36/38- Irritant pour les yeux et la peau. R43- Peut entraîner une sensibilisation par contact avec la peau. R51/53- Toxique pour les organismes aquatiques, peut entraîner des effets néfastes à long terme pour l'environnement aquatique. Symbole(s) de danger Phrases de risque Réglementations de l'Union Européenne Réglementations nationales Contient du (de la) : : : : Phrases d'avertissement supplémentaire : Non applicable. Irritant, Dangereux pour l'environnement produit de réaction: bisphénol-A-épichlorhydrine; résines époxydiques (poids moléculaire moyen < 700) résine époxidique à base de bisphénol F Déterminés en accord avec les directives de l'UE 67/548/EEC et 1999/45/EC (y compris les amendements), la classification et l'étiquetage prennent en compte l'usage prévu du produit. Surveillance médicale renforcée : Arrêté du 11 Juillet 1977 fixant la liste des travaux nécessitant une surveillance médicale renforcée: non concerné Réglementations Internationales Listes internationales : Inventaire des substances chimiques d'Australie (AICS): Tous les composants sont répertoriés ou exclus. Inventaire des substances chimiques existantes en Chine (IECSC): Tous les composants sont répertoriés ou exclus. Inventaire du Japon (ENCS): Un composant au moins n'est pas répertorié. Inventaire du Japon (ISHL): Indéterminé. Inventaire de Corée (KECI): Tous les composants sont répertoriés ou exclus. Inventaire néo-zélandais des substances chimiques (NZIoC): Indéterminé. Inventaire des substances chimiques des Philippines (PICCS): Un composant au moins n'est pas répertorié. Inventaire des États-Unis (TSCA 8b): Tous les composants sont répertoriés ou exclus. Inventaire d'Europe: Tous les composants sont répertoriés ou exclus. Inventaire du Canada: Tous les composants sont répertoriés ou exclus. Xi, N Etiquetage exceptionnel pour préparations spéciales : Contient des composés époxydiques. Voir les informations transmises par le fabricant. Date d'édition/Date de révision : 11/13/2009. 4/6 ARALDITE FUSION AUTRES DONNÉES 11/13/2009. Historique 16. Date d'impression Date d'édition/ Date de révision Version Avis au lecteur Date de la précédente édition : : : : R23/24- Toxique par inhalation et par contact avec la peau. R22- Nocif en cas d'ingestion. R35- Provoque de graves brûlures. R41- Risque de lésions oculaires graves. R38- Irritant pour la peau. R36/38- Irritant pour les yeux et la peau. R43- Peut entraîner une sensibilisation par contact avec la peau. R50/53- Très toxique pour les organismes aquatiques, peut entraîner des effets néfastes à long terme pour l'environnement aquatique. R51/53- Toxique pour les organismes aquatiques, peut entraîner des effets néfastes à long terme pour l'environnement aquatique. R53- Peut entraîner des effets néfastes à long terme pour l'environnement aquatique. Texte complet des phrases : R citées dans les sections 2 et 3 - France Référence du texte complet des classifications se trouvant dans les Sections 2 et 3 - France : T - Toxique C - Corrosif Xn - Nocif Xi - Irritant N - Dangereux pour l'environnement Indique quels renseignements ont été modifiés depuis la version précédente. 11/13/2009. Aucune validation antérieure. 1 Epoxy Resins and Curing Agents; Toxicology, Health, Safety and Environmental Aspects (Plastics Europe, May 2006) Les informations et recommandations figurant dans cette publication sont fondées sur notre expérience générale et sont fournies de bonne foi au mieux de nos connaissances actuelles, MAIS RIEN DANS LES PRESENTES NE DOIT ÊTRE INTERPRETE COMME CONSTITUANT UNE GARANTIE OU UNE DECLARATION, EXPRESSE, IMPLICITE OU AUTRE. DANS TOUS LES CAS, IL INCOMBE A L'UTILISATEUR DE DETERMINER ET DE VERIFIER L'EXACTITUDE, AINSI QUE LE CARACTERE SUFFISANT ET APPLICABLE DE TELLES INFORMATIONS ET RECOMMANDATIONS, DE MEME QUE L'ADEQUATION ET L'ADAPTATION D'UN QUELCONQUE PRODUIT A UNE UTILISATION SPECIFIQUE OU DANS UN BUT PARTICULIER. LES PRODUITS MENTIONNES PEUVENT PRESENTER DES RISQUES INCONNUS ET DOIVENT ETRE UTILISES AVEC PRECAUTION. MEME SI CERTAINS RISQUES SONT DECRITS DANS CETTE PUBLICATION, IL N'EXISTE AUCUNE GARANTIE QU'IL S'AGIT DES SEULS RISQUES EXISTANTS. Les risques, la toxicité et le comportement des produits peuvent différer lorsque ceux-ci sont utilisés avec d'autres matériaux et dépendent des conditions de fabrication et d'autres processus. Ces risques, cette toxicité et ces comportements doivent être déterminés par l'utilisateur et portés à la connaissance des personnes ou entités chargés du transport ou de la manutention, du traitement ou de la transformation, ainsi que de tous utilisateurs finaux. Pour toute demande, contactez le bureau commercial Huntsman Sales le plus proche ou directement Huntsman (Belgium) BVBA, Everslaan 45, B-3078 Everberg, Belgique. Tél. +32 2 758 9211 - Fax +32 758 9946. Huntsman Belgium (BVBA) Everslaan 45 B-3078 Everberg Belgium Tel.:+32-(0)2-758-9211 Références Date d'édition/Date de révision : 11/13/2009. 5/6 ARALDITE FUSION 16. AUTRES DONNÉES NO PERSON OR ORGANIZATION EXCEPT A DULY AUTHORIZED HUNTSMAN EMPLOYEE IS AUTHORIZED TO PROVIDE OR MAKE AVAILABLE DATA SHEETS FOR HUNTSMAN PRODUCTS. DATA SHEETS FROM UNAUTHORIZED SOURCES MAY CONTAIN INFORMATION THAT IS NO LONGER CURRENT OR ACCURATE. NO PART OF THIS DATA SHEET MAY BE REPRODUCED OR TRANSMITTED IN ANY FORM, OR BY ANY MEANS, WITHOUT PERMISSION IN WRITING FROM HUNTSMAN. ALL REQUESTS FOR PERMISSION TO REPRODUCE MATERIAL FROM THIS DATA SHEET SHOULD BE DIRECTED TO HUNTSMAN, MANAGER, PRODUCT SAFETY AT THE ABOVE ADDRESS. Date d'édition/Date de révision : 11/13/2009. 6/6 FICHE DE DONNÉES DE SÉCURITÉ Section 1: Identification de la substance/du mélange et de la société/l’entreprise Identificateur de produit Nom commercial ou désignation du mélange Contralube 770 Numéro - d'enregistrement Synonymes Aucun(e)(s). Code de produit Contralube 770 Date de la première publication le 06-04-06 Numéro de version 12 le 17-02-11 le 06-01-11 Date de révision Date d'entrée en vigueur de la nouvelle version Utilisations identifiées pertinentes de la substance ou du mélange et utilisations déconseillées Utilisations identifiées Non disponible. Utilisations déconseillées Aucun connu. Renseignements concernant le fournisseur de la fiche de données de sécurité Newgate Simms Ltd. Broughton Mills Road, Bretton Chester, CH4 0BY, United Kingdom info@newgatesimms.co.uk Section 2: Identification des dangers Classification de la substance ou du mélange Les dangers physiques, sanitaires et environnementaux du mélange ont été évalués et/ou testés, et la classification suivante s'applique. Classification selon la directive 67/548/CEE ou 1999/45/CEE et ses amendements Cette préparation ne répond pas aux critères de classification de la directive 1999/45/CE et ses amendements. Classification selon le règlement (CE) n° 1272/2008 et ses amendements Ce mélange ne répond pas aux critères de classification du règlement (CE) 1272/2008 et ses amendements. Résumé des dangers Risques physiques Pas de classification pour les dangers physiques. Risques pour la santé Pas de classification pour les dangers sanitaires. Dangers pour l’environnement Pas de classification pour les dangers pour l'environnement. Risques particuliers Non disponible. Principaux symptômes Non disponible. Éléments d’étiquetage Étiquettage selon le règlement (CE) n° 1272/2008 et ses amendements Numéro d'identification - Mentions de danger La substance ne répond pas aux critères de classification. Conseils de prudence Prévention Non disponible. Réaction Non disponible. Stockage Non disponible. Élimination Non disponible. Informations supplémentaires de l'étiquette Sans objet. Autres dangers Non affecté. Nom de la matière: Contralube 770 FDS n° Contralube 770 N° version: 12 Date de révision: le 17-02-11 Date d'impression: le 17-02-11 1 / 7 SDS FRANCE Section 3: Composition/informations sur les composants Mélange Les composants ne sont pas dangereux ou sont en dessous des limites de déclaration légales. Section 4: Premiers secours Description des premiers secours Inhalation Si des symptômes se développent, éloigner la personne touchée de la source d'exposition et la sortir au grand air. Consulter immédiatement un médecin. Contact avec la peau Laver avec de l'eau et du savon. Consulter un médecin en cas de symptômes. Laver séparément les vêtements avant réutilisation. Contact avec les yeux Laver immédiatement les yeux à grande eau pendant au moins 15 minutes. Consulter immédiatement un médecin. Ingestion Du fait de la nature physique de ce matériau, il est improbable qu'une ingestion ne se produise. S'il se produit tout de même l'ingestion d'une grande quantité, solliciter des soins médicaux. S'il se produit tout de même l'ingestion d'une grande quantité, Ne pas faire vomir sans l'avis d'un médecin. Si le vomissement se produit naturellement, incliner la victime vers l'avant pour réduire le risque d'aspiration. Ne jamais faire avaler quelque chose à une victime inconsciente ou souffrant de convulsions. Principaux symptômes et effets, aigus et différés Non disponible. Indication des éventuels soins médicaux immédiats et traitements particuliers nécessaires Non disponible. Section 5: Mesures de lutte contre l’incendie Risques d'incendie généraux Ce produit est ininflammable. Moyens d’extinction Moyen d'extinction approprié Brouillard d’eau. Mousse. Dioxyde de carbone (CO2). Produit chimique sec. Moyens d’extinction inappropriés Eau. En cas d'incendie ne pas utiliser de jet d'eau car celà dispersera le feu. Dangers particuliers résultant de la substance ou du mélange Non disponible. Conseils aux pompiers Equipements de protection particuliers des pompiers Porter un équipement de protection adéquat. Procédures spéciales de lutte contre l'incendie Porter des vêtements de protection complets, y compris un casque, un appareil autonome de respiration à pression positive ou à demande de pression, des vêtements de protection et un masque anti-poussière. Éloigner les contenants de la zone de feu si cela peut se faire sans risque. Éloigner les récipients de l'incendie si cela peut se faire sans risque. Section 6: Mesures à prendre en cas de dispersion accidentelle Précautions individuelles, équipement de protection et procédures d’urgence Pour les non-secouristes Tenir à l’écart le personnel superflu. Prévenir les autorités locales si des fuites significatives ne peuvent pas être contenues. Ne pas toucher les récipients endommagés ou le produit déversé à moins d'être vêtu d'une tenue protectrice appropriée. Garder les personnes à l'écart de l'endroit de l'écoulement/de la fuite et contre le vent. Observer les précautions indiquées dans les autres sections. Pour les secouristes Non disponible. Précautions pour la protection de l’environnement Empêcher l'infiltration dans les cours d'eau, les égouts, les sous-sols ou les endroits clos. Nom de la matière: Contralube 770 FDS n° Contralube 770 N° version: 12 Date de révision: le 17-02-11 Date d'impression: le 17-02-11 2 / 7 SDS FRANCE Méthodes et matériel de confinement et de nettoyage Déversements importants : Arrêter le débit de matière, si ceci est sans risque. Enlever avec un absorbant inerte. Endiguer le matériau renversé si cela est possible. Couvrir d'une bâche de plastique pour éviter la dispersion. Absorber avec de la vermiculite, du sable sec ou de la terre, puis placer en récipient. Nettoyer soigneusement la surface contaminée. Après avoir récupéré le produit, rincer la zone à l'eau. Déversements mineurs : Essuyer avec une matière absorbante (p.ex. tissu, laine). Nettoyer à fond la surface pour éliminer toute contamination résiduelle. Ne jamais réintroduire le produit répandu dans son récipient d'origine en vue d'une réutilisation. Pour les conseils relatifs à l'élimination, voir la rubrique 13. Ne pas toucher les containers endommagés ou la matière répandue. Il se peut que les dégâts au container extérieur aient été sans conséquences pour le container interne. Si le container interne est endommagé et fuit, le couvrir avec une serviette ou un ch Le produit ramassé ainsi que les chiffons de nettoyage seront jetés dans les containers prévus à cet effet. Référence à d'autres sections Pour les conseils relatifs à l'élimination, voir la rubrique 13. Section 7: Manipulation et stockage Précautions à prendre pour une manipulation sans danger NE PAS mettre sous pression, couper, chauffer ou souder les récipients. Les récipients vides peuvent contenir des résidus du produit. Éviter tout contact prolongé ou répété de la peau avec ce matériau. Ne pas manipuler ou stocker à proximité d'une flamme nue, d'une source de chaleur ou toute autre source d'ignition. Éviter de respirer les gaz/vapeurs/brouillards/fumées. Ne pas ingérer. Ne pas goûter ni avaler. Éviter le contact avec les yeux. Se laver soigneusement après manipulation. Conditions d’un stockage sûr, y compris d’éventuelles incompatibilités Tenir à l'écart de la chaleur et des sources d'ignition. Entreposer dans un endroit frais. Conserver dans un récipient fermé, à l'écart des matières incompatibles. Utilisation(s) finale(s) particulière(s) Non disponible. Section 8: Contrôles de l’exposition/protection individuelle Paramètres de contrôle Valeurs limites d’exposition professionnelle Il n'y a pas de limites d'exposition pour ce ou ces ingrédients. Valeurs limites biologiques Il n'y a pas de limites d'exposition biologique pour ce ou ces ingrédients. Procédures de suivi actuellement recommandées Non disponible. DNEL Non disponible. PNEC Non disponible. Contrôles de l’exposition Contrôles techniques appropriés Porter des gants thermorésistants, étanches, et des vêtements de protection pour éviter tout contact avec la peau. Mesures de protection individuelle, telles que les équipements de protection individuelle Généralités Non disponible. Protection des yeux/du visage Portez des lunettes de sécurité ou des lunettes de protection contre les substances chimiques (en cas de risque de projection). Protection de la peau - Protection des mains Non nécessaire en général. - Divers Porter un vêtement de protection approprié. Porter des gants en nitrile, néoprène, PVC ou en viton. Choisir l'équipement de protection conformément aux normes CEN en vigueur et en coopération avec le fournisseur de l'équipement de protection. Protection respiratoire Aucun équipement de protection respiratoire individuel n'est normalement nécessaire. Un appareil respiratoire purificateur d'air doté d'une cartouche de vapeur organique peut être utilisé dans certains cas l'où on s'attend à ce que les concentrations aéroportées dépassent les limites d'exposition, ou en cas d'irritation ou d'apparition de symptômes. Risques thermiques Non disponible. Mesures d'hygiène Lors de l'utilisation, ne pas manger, boire ou fumer. Se laver soigneusement les mains après manipulation. Laver les vêtements contaminés avant de les porter à nouveau. Contrôles d’exposition liés à la protection de l’environnement Non disponible. Section 9: Propriétés physiques et chimiques Informations sur les propriétés physiques et chimiques essentielles État physique Liquide. Nom de la matière: Contralube 770 FDS n° Contralube 770 N° version: 12 Date de révision: le 17-02-11 Date d'impression: le 17-02-11 3 / 7 SDS FRANCE Forme Liquide. Semi solide Couleur Clair Odeur Légère Seuil olfactif Non disponible. pH Sans objet. Point de fusion/point de congélation Non disponible. Point d'ébullition, point d'ébullition initial et gamme d'ébullition Non disponible. Point d'éclair Sans objet. Température d’autoignition Sans objet. Inflammabilité (solide, gaz) Non disponible. Limite d'inflammabilité - inférieure (%) Non disponible. Limite d'inflammabilité - supérieure (%) Non disponible. Propriétés comburantes Sans objet. Propriétés explosives Sans objet. Limite d'explosivité Sans objet. Pression de vapeur Sans objet. Densité de vapeur Sans objet. Taux d’évaporation Sans objet. Densité relative Non disponible. Densité 0,92 g/cm³ Solubilité (dans l'eau) Non disponible. Coefficient de partition (n-octanol/eau) Non disponible. Température de décomposition Non disponible. Viscosité Non disponible. Fraction volatile Non disponible. Autres informations Aucune information pertinente supplémentaire n'est disponible. Section 10: Stabilité et réactivité Réactivité Aucun connu. Stabilité chimique Ce produit est stable dans des conditions normales. Stable. Possibilité de réactions dangereuses Non disponible. Conditions à éviter Chaleur, flammes et étincelles. Matières incompatibles Acides forts, alcalis et agents d'oxydation. Produits de décomposition dangereux Monoxyde de carbone, dioxyde de carbone et/ou hydrocarbures à faible poids moléculaire. Section 11: Informations toxicologiques Généralités Non disponible. Informations sur les voies d’exposition probables Ingestion Non disponible. Inhalation Non disponible. Contact avec la peau Non disponible. Contact avec les yeux Non disponible. Symptômes Non disponible. Informations sur les effets toxicologiques Toxicité aiguë Non disponible. Corrosion ou irritation de la peau Nom de la matière: Contralube 770 FDS n° Contralube 770 N° version: 12 Date de révision: le 17-02-11 Date d'impression: le 17-02-11 4 / 7 SDS FRANCE Blessure ou irritation grave des yeux Non disponible. Sensibilisation respiratoire Non disponible. Sensibilisation cutanée Non disponible. Mutagénicité des cellules germinales Non disponible. Cancérogénicité Ce produit ne contient aucune substance carcinogène ou substance potentiellement carcinogène selon la liste du CIRC. Toxicité pour la reproduction Non disponible. Toxicité spécifique au niveau de l'organe cible suite à une exposition unique Non disponible. Toxicité spécifique au niveau de l'organe cible suite des expositions répétées Non disponible. Risque en cas d’inhalation Non disponible. Informations sur les mélanges et informations sur les substances Non disponible. Autres informations Ce produit n'est associé à aucun effet négatif connu sur la santé de l'homme. Section 12: Informations écologiques Toxicité Il n'y a pas de données de toxicité pour ce ou ces ingrédients. Persistance et dégradabilité Aucune donnée n’est disponible sur la biodégradabilité du produit. Potentiel de bioaccumulation Non disponible. Mobilité Non disponible. Devenir dans l’environnement - Coefficient de partage Non disponible. Mobilité dans le sol Non disponible. Résultats des évaluations PBT et VPVB Non disponible. Autres effets néfastes Non disponible. Section 13: Considérations relatives à l’élimination Méthodes de traitement des déchets Déchets résiduaires Non disponible. Emballages contaminés Les conteneurs vides doivent être acheminés vers un site agréé pour le traitement des déchets à des fins de recyclage ou d'élimination. Code de déchet européen Non disponible. Sent out for translation Recueillir et réutiliser ou éliminer dans des récipients scellés dans un centre de collecte de déchets agréés. Élimination des contenus/contenants conformément aux dispositions locales / régionales /nationales / internationales en vigueur. Section 14: Informations relatives au transport ADR Non réglementé comme une marchandise dangereuse. RID Non réglementé comme une marchandise dangereuse. ADN Non réglementé comme une marchandise dangereuse. IATA Non réglementé comme une marchandise dangereuse. Nom de la matière: Contralube 770 FDS n° Contralube 770 N° version: 12 Date de révision: le 17-02-11 Date d'impression: le 17-02-11 5 / 7 SDS FRANCE IMDG Non réglementé comme une marchandise dangereuse. Transport en vrac conformément à l’annexe II de la convention Marpol 73/78 et au recueil IBC Pas d'information disponible. Section 15: Informations réglementaires Réglementations/législation particulières à la substance ou au mélange en matière de sécurité, de santé et d’environnement Réglementations de l’UE Règlement (CE) nº 2037/2000 relatif à des substances qui appauvrissent la couche d'ozone, Annexe I N'est pas listé. Règlement (CE) nº 2037/2000 relatif à des substances qui appauvrissent la couche d'ozone, Annexe II N'est pas listé. Règlement (CE) n° 850/2004 concernant les polluants organiques persistants, Annexe I N'est pas listé. Règlement (CE) no 689/2008 concernant les exportations et importations de produits chimiques dangereux, Annexe I, Partie 1 N'est pas listé. Règlement (CE) no 689/2008 concernant les exportations et importations de produits chimiques dangereux, Annexe I, Partie 2 N'est pas listé. Règlement (CE) no 689/2008 concernant les exportations et importations de produits chimiques dangereux, Annexe I, Partie 3 N'est pas listé. Règlement (CE) no 689/2008 concernant les exportations et importations de produits chimiques dangereux, Annexe V N'est pas listé. Directive 96/61/CEE relative à la prévention et à la réduction intégrées de la pollution (IPPC) : Article 15, registre européen des émissions polluantes (EPER) N'est pas listé. Règlement (CE) n° 1907/2006, Article 59(1). Liste candidate N'est pas listé. Autres réglementations Le produit ne nécessite pas d'étiquetage conformément aux directives de la CE et aux réglementations nationales du pays concerné. Cette fiche de données de sécurité est conforme aux exigences de la Directive 2001/58/CE. Cette fiche de données de sécurité est conforme aux spécifications du Règlement (CE) N° 1907/2006. Réglementations nationales Non disponible. Évaluation de la sécurité chimique Aucune évaluation de sécurité chimique n'a été mise en oeuvre. Section 16: Autres informations Liste des abréviations Non disponible. Références Non disponible. Informations sur la méthode d'évaluation utilisée pour classer le mélange Non disponible. Texte intégral des avertissements ou phrases R et H en Sections 2 à 15 Aucun(e)(s). Informations de révision Identification du produit et de l'entreprise : Identification du produit et de l'entreprise Section 5: Mesures de lutte contre l’incendie: Equipements de protection particuliers des pompiers Section 5: Mesures de lutte contre l’incendie: Risques d'incendie généraux Section 6: Mesures à prendre en cas de dispersion accidentelle: Référence à d'autres sections Section 8: Contrôles de l’exposition/protection individuelle: - Divers Informations de formation Non disponible. Édité par Ralph Patrizio Avis de non-responsabilité Les informations fournies dans cette fiche technique de sécurité sont à notre connaissance exactes et fiables à la date de leur publication. Les informations fournies sont uniquement des conseils pour la manutention, l’utilisation, le traitement, le stockage, le transport, l’évacuation et le rejet du produit en toute sécurité. Newgate Simms Ltd. ne fournit aucune garantie quant aux informations mises à disposition et exclut toute responsabilité à cet égard. Les informations contenues dans cette fiche sont exactes dans l'état actuel des connaissances et reposent sur les données disponibles au moment de la préparation du document. Nom de la matière: Contralube 770 FDS n° N° version: 12 Date de révision: le 17-02-11 Date d'impression: le 17-02-11 6 / 7 SDS FRANCE Date d'émission le 17-02-11 Date de révision le 17-02-11 Date d'impression le 17-02-11 Nom de la matière: NYOGEL 760G FDS n° NYOGEL 760G N° version: 12 Date de révision: le 17-02-11 Date d'impression: le 17-02-11 7 / 7 SDS FRANCE CRC Industries France SAS 6, Avenue du Marais – B.P. 90028 F-95102 Argenteuil Cedex. - France Tél.: + 33 (0)1 34 11 20 00 Fax.:+ 33 (0)1 34 11 09 96 S.A au capital de 1.936.667 € - R.C.S. Pontoise B 391 513 314 – APE 515 L www.crcind.com 1/2 Protection 1. Description générale Spécialement étudié pour décaper le vernis KF1280 ND, ce produit permet d’enlever la plupart des vernis modifiés acryliques existants (frais ou polymérisés depuis plusieurs années) des circuits imprimés et cela sans altérer les composants électroniques. 2. Caractéristiques  Liquide incolore à base de solvants oxygénés  Faible odeur  Bonne compatibilité avec les composants électroniques.  N’altère pas les circuits imprimés dans des conditions normales d’utilisation. Il est toutefois recommandé de faire des essais préalablement.  Évaporation relativement rapide accéléré par l’usage d’air comprimé ou d’un dépoussiérant « Aero Clean X Force ». 3. Applications Electronique, Aéronautique, électricité. Décapage du vernis KF1280 ND (réf. 1141 & 2046) sur les circuits imprimés ou autres matériels électroniques. Permet de réaliser des interventions de remises en état ou d’amélioration sur des circuits imprimés protégés par des vernis durs et résistants. 4. Mode d’emploi Au pinceau/ au pistolet / en trempage: Enduire ou pulvériser soigneusement les surfaces à traiter. Afin d’éliminer les résidus de vernis, faire ruisseler du produit sur l’ensemble du circuit et laisser sécher. Accélérer l’évaporation par l’utilisation d’air comprimé ou d’un dépoussiérant Aero Clean X force. Selon l’équipement disponible à l’utilisateur, celui peut déterminer l’utilisation par sa propre expérience. Une fiche de données de sécurité (FDS) conforme à la reglementation EC N° 1907/2006 Art.31 et amendements est disponible pour tous les produits KF. Décapant KF 1280 ND Pour vernis CRC Industries France SAS 6, Avenue du Marais – B.P. 90028 F-95102 Argenteuil Cedex. - France Tél.: + 33 (0)1 34 11 20 00 Fax.:+ 33 (0)1 34 11 09 96 S.A au capital de 1.936.667 € - R.C.S. Pontoise B 391 513 314 – APE 515 L www.crcind.com 2/2 Protection 5. Caractéristiques typiques du produit Aspect : incolore Odeur : légère Faible viscosité Densité : 0,913 Point éclair : > 64 °C Ne contient pas d’aromatiques polycycliques, ni des métaux lourds, ni de composés chlorés Recouvrable par un nouveau vernis : après séchage complet 6. Conditionnement Réf. : 2045 - Bidon de 5 L Carton de 2 bidons Toutes les données dans cette publication sont basées sur l'expérience et les tests de laboratoire. Vu l’importante variété des conditions et des appareillages employés, ainsi que des facteurs humains imprévisibles qui peuvent avoir une influence importante sur les résultats de l’application, nous vous conseillons de vérifier la compatibilité du produit avant son utilisation. Toutes ces informations sont données suivant la plus grande objectivité, mais sans garantie de notre part exprimée ou implicite. Cette fiche technique peut déjà, à ce moment précis, être révisée pour des raisons liées à la législation, à la disponibilité des composants, ou à des expériences nouvellement acquises. La dernière version de cette fiche technique, qui est la seule valable, vous sera envoyée sur simple demande, ou peut être trouvée sur notre site Internet: www.crcind.com. Nous vous recommandons de vous enregistrer sur notre site Internet pour ce produit, afin de recevoir automatiquement chaque dernière version future. Version: 0 02 1204 01 Date: 20 mars 2012 Pour vernis Décapant KF 1280 ND Manufactured by : CRC Industries Europe BVBA Touwslagerstraat 1 – 9240 Zele – Belgium Tel (32) (0) 52/45.60.11 Fax (32) (0) 52/45.00.34 www.crcind.com FICHE TECHNIQUE 1/2 CRC HANDCLEANER Nettoyant mains Réf. :10535 1. DESCRIPTION GENERALE Nettoyant pour les mains, contenant de la lanoline. S’emploi sans eau. La formule du Nettoyant Mains CRC permet de répondre aux exigences sévères des professionnels dans l’industrie et est axée principalement sur le nettoyage des mains. Elle est à base de solvants hydrocarbonés doux et de surfactants biodégradables. Le Nettoyant Mains CRC peut être employé sans eau; il est donc idéal pour les travaux, tant à l'intérieur qu'à l'extérieur, aux endroits où l’on ne dispose pas d'eau. 2. CARACTERISTIQUES • Enlève la plupart des saletés et des salissures tenaces. • Extrêmement efficace sur la graisse, les peintures ordinaires, les encres, les ciment-colles, les bitumes, le carbone et bien d'autres composants chimiques. • Peut être utilisé avec ou sans eau. • Nettoie rapidement. • Contient de la lanoline pour protéger la peau. • Ses agents antiseptiques réduisent les risques d'infection bactérienne. • Sans abrasifs. • Après traitement, la peau des mains reste douce. • Biodégradable. 3. UTILISATIONS Pour débarrasser les mains de: • huiles et graisses • dépôts et salissures, • ciment et colles, • bitumes et goudrons • peintures et encres ordinaires Remplace les savons ordinaires: • dans les usines • dans les mines, • dans les fermes, • sur les chantiers de construction, • à domicile. 4. INSTRUCTIONS • Ne pas mouiller les mains. • Appliquer suffisamment de nettoyant (environ une cuillère à thé) sur les mains souillées sèches. • Bien frotter jusqu'à ce que les salissures soient complètement liquéfiées et détachées. • Il suffit d'essuyer les mains avec du papier ménager, ou un chiffon. Eventuellement rincer à l'eau et essuyer. • Eviter le contact avec les yeux. Tenir hors de portée des enfants. • Une fiche de sécurité (MSDS) selon EU93/112 est disponible pour tous les produits CRC. Manufactured by : CRC Industries Europe BVBA Touwslagerstraat 1 – 9240 Zele – Belgium Tel (32) (0) 52/45.60.11 Fax (32) (0) 52/45.00.34 www.crcind.com FICHE TECHNIQUE 2/2 CRC HANDCLEANER Nettoyant mains Réf. :10535 5. DONNEES TYPIQUES DU PRODUIT (sans le gaz propulseur) Aspect : crème semi-solide, Couleur : blanc cassé Odeur : typique, parfum peu prononcé Densité (à 20°C) : 1 ± 0,1 pH (à 5% dans de l'eau) : 6,25 – 6,75 Viscosité : 8000 – 9000 cp Teneur en matières solides (6 h à 100°C) : 12,0% Stabilité thermique 48 h à 45°C : bonne 48 h à 0°C : bonne Caractéristiques du solvant hydrocarboné Intervalle de distillation : 195-245°C Point éclair (en vase fermée) : 73°C Teneur en composants aromatiques : < 0,1% pds 6. CONDITIONNEMENT Tube 12 x 150 ml Bidon 6 x 2,5 l Un distributeur et un support pour le bidon de 2,5 litres sont disponibles. Toutes les données dans cette publication sont basées sur l'expérience et les tests de laboratoire. Vu l’importante variété des conditions et des appareillages employés, ainsi que des facteurs humains imprévisibles qui peuvent avoir une influence importante sur les résultats de l’application, nous vous conseillons de vérifier la compatibilité du produit avant son utilisation. Toutes ces informations sont données suivant la plus grande objectivité, mais sans garantie de notre part exprimée ou implicite. Cette fiche technique peut déjà, à ce moment précis, être révisée pour des raisons liées à la législation, à la disponibilité des composants, ou à des expériences nouvellement acquises. La dernière version de cette fiche technique, qui est la seule valable, vous sera envoyée sur simple demande, ou peut être trouvée sur notre site Internet : www.crcind.com. Nous vous recommandons de vous enregistrer sur notre site Internet pour ce produit, afin de recevoir automatiquement chaque dernière version future. Version : 10535 02 1200 03 Date : 29 september 2003 CRC Industries Europe BVBA Touwslagerstraat 1 – 9240 Zele - Belgium Tel (32) (0) 52/45.60.11 Fax (32) (0) 52/45.00.34 www.crcind.com FICHE TECHNIQUE 1/3 Dusters Dust Off 67, Dust Off 360, Jet Clean 360, Dust Off HF Ref. : 20575; 20576; 20812; 20855, 1. DESCRIPTION GENERALE Grâce à un jet de gaz pressurisé, sec et inerte ces produits sèchent et dépoussièrent. 2. CARACTERISTOQUES Les produits sont un mélange de gaz liquides sous pression, qui fonctionne à la fois comme propulseur et produit actif. Le jet de gaz sec et inerte, agit comme de l’air comprimé. Il enlève rapidement poussières et autres contaminants secs d’instruments délicats, d’endroits d’accès difficile ou d’équipement électrique et électronique. Les produits éliminent les pannes dues à l’humidité (eau; huile,…) incluse dans la poussière et la saleté. Ces dépoussiérants sont essentiels pour les opérations de nettoyage où les nettoyants à base de solvants ne sont pas conseillés. Ils nettoient rapidement et sans danger, n’attaquent ni matières plastiques, ni composants sensitifs. Ne laissent ni résidu, ni condensation. Remplacent avantageusement, où possible, le nettoyage laborieux et coûteux à l’air comprimé. Les dépoussiérants peuvent être employés pour écarter les poussières, là où les méthodes conventionnelles ne conviennent pas : équipement électrique, PCB’s, connections de câbles, équipement de traitement de données et de communication, ensembles micro-miniaturisés, horloges et instruments de précision, vidéo & caméras, dispositifs optiques et lentes, … 3. UTILISATIONS Dust Off 67  Dépoussiérant universel.  Equipé d’une valve normale, bouton-poussoir et tube-rallonge.  L’aérosol doit être tenu droit.  Disponible en 200 ml net (270 ml brut) et 400 ml net (520 ml brut). Dust Off 360  Dépoussiérant universel, peut être employé tête en bas.  Equipé d’une valve normale, bouton-poussoir et tube-rallonge.  L’aérosol peut être utilisé en position droite mais également renversé.  Disponible en 200 ml net (520 ml brut). Jet Clean 360  Dépoussiérant pour emploi renversé, pour une application précise.  Muni d’une valve spécial avec embout fileté.  Une valve spéciale pour un jet précis est également disponible comme pièce détachée.  L’aérosol peut être utilisé dans une position droite ou renversée.  Disponible en 200 ml net (520 ml brut) Dust Off HF  Dépoussiérant grand débit, conçu pour des applications haute performance.  Equipé d’une valve/boutton-poussoir qui permet un soufflement très puissant.  L’aérosol ne peut être employé qu’en position droite.  Disponible en 300 ml net (520 ml brut). CRC Industries Europe BVBA Touwslagerstraat 1 – 9240 Zele - Belgium Tel (32) (0) 52/45.60.11 Fax (32) (0) 52/45.00.34 www.crcind.com FICHE TECHNIQUE 2/3 Dusters Dust Off 67, Dust Off 360, Jet Clean 360, Dust Off HF Ref. : 20575; 20855, 20574, 20576 4. INSTRUCTIONS Instruction Generale: Vaporiser le gaz sur les objets et surfaces à nettoyer. Le meilleur résultat est obtenu par pressions brèves. Après une utilisation continue, attendre quelques minutes, afin de rétablir la pression interne dans l’aérosol et continuer l’application. Ne pas secouer ou remuer l’aérosol pendant l’application. Dust Off 67 Utiliser le tube-rallonge pour les endroits d’accès difficile. Tenir l’aérosol droit durant l’application (ne pas incliner de plus de 30°). Dust Off 360 Utiliser le tube-rallonge pour les endroits d’accès difficile. Vaporiser en position droite ou tête en bas (ne pas utiliser horizontalement). Jet Clean 360 Ajuster le pistolet de précision (peut être obtenu comme pièce détachée). Vaporiser en position droite ou tête en bas (ne pas utiliser horizontalement). Dust Off HF Tenir l’aérosol droit durant l’application (ne pas incliner de plus de 30°). Une fiche de sécurité selon la directive EU 91/155/EEC et ses amendements est disponible pour tous les produits CRC. 5. DONNEES TYPIQUES DU PRODUIT (sans le gaz propulseur) Densité @ 20°C Aérosol (gaz liquéfié) : 1,01 g/cm 3 Test d’extension de flamme (FEA 607) : Négative (**) Fl amabilité ( FEA x 610 200 L) : Convient (> 60s) (**) Pression @ 20°C : 420 kPa Débit Dust Off 67 : 17,1 g/10s Dust Off 360 : 17,1 g/10s Jet Clean 360 : 19,1 g/10s Dust Off HF : 94,4 g/10s CRC Industries Europe BVBA Touwslagerstraat 1 – 9240 Zele - Belgium Tel (32) (0) 52/45.60.11 Fax (32) (0) 52/45.00.34 www.crcind.com FICHE TECHNIQUE 3/3 Dusters Dust Off 67, Dust Off 360, Jet Clean 360, Dust Off HF Ref. : 20575; 20855, 20574, 20576 6. CONDITIONNEMENT Uniquement en aérosol, voir page précédente : données typique et applications. ** Le produit liquide contient max 7 % de matières inflammable, mais le mélange des vapeurs est ininflammable celons les méthodes de tests indiquées. Toutes les données dans cette publication sont basées sur l'expérience et les tests de laboratoire. Vu l’importante variété des conditions et des appareillages employés, ainsi que des facteurs humains imprévisibles qui peuvent avoir une influence importante sur les résultats de l’application, nous vous conseillons de vérifier la compatibilité du produit avant son utilisation. Toutes ces informations sont données suivant la plus grande objectivité, mais sans garantie de notre part exprimée ou implicite. Cette fiche technique peut déjà, à ce moment précis, être révisée pour des raisons liées à la législation, à la disponibilité des composants, ou à des expériences nouvellement acquises. La dernière version de cette fiche technique, qui est la seule valable, vous sera envoyée sur simple demande, ou peut être trouvée sur notre site Internet : www.crcind.com. Nous vous recommandons de vous enregistrer sur notre site Internet pour ce produit, afin de recevoir automatiquement chaque dernière version future. Version : 20575 02 1003 01 Date : 23 August 2006 Pa rt of Ant Group Ltd Silica Gel MSDS Order Now www.antistat.co.uk t +44 (0) 1473 836 200 Component Packaging Silica Gel Silica-gel is a high-activity sorbing material, the outcome of chemical reaction of sodium silicate and sulfuric acid, ageing and sour bathing process. Silica-gel is an amorphous substance. It’s molecular formula is mSiO2.nH2O. It features a stable chemical property and never reacts with any substance except strong alkali and hydrofuoric acid. PROPERTY PARAMETERS QUALITY ITEMS CRITERIA (Test methods JIS-Z0701) A: Bulk density >750g/L B: Loss on drying <3% C: Moisture absorption rate RH=20% >8% RH=40% >20% RH=80% >30% PH 4--8 Specific resistance Ohm* cm >3000 INGREDIENTS NAME PERCENTAGE (%) SiO2 99.6 Na2O 0.17 Fe2O3 0.02 MgO 0.01 CaO 0.04 A12O3 0.16 HARMFUL ELEMENTS RATE Cd <2ppm Pb <2ppm Hg <2ppm Cr(VI) <2ppm PBBS <5ppm PBDES <5ppm DOSAGE VOLUME MIN DOSAGE 0.1------1L 1------2g 1------10L 2------20g 10------100L 20------200g 100------1000L 200------1600g PACKAGING Weight Packs are available from 1g to 1kg. Packaging materials Non-woven fabrics PRINTING The packages are printed in Chinese, English, Japanese and French. STORAGE Silica-gel should be kept sealed when not in use. 1.0 REV 2014-03-24 DATE SSt BY CSo CHECKED Würth Elektronik eiSos GmbH & Co. KG EMC & Inductive Solutions Max-Eyth-Str. 1 74638 Waldenburg Germany Tel. +49 (0) 79 42 945 - 0 www.we-online.com eiSos@we-online.com DESCRIPTION WE-WPCC Wireless Power Charging Receiver Coil Order.- No. 760308102210 SIZE A4 Size: 3737 A Dimensions: [mm] B Recommended hole pattern: [mm] C Schematic: D Electrical Properties: Properties Inductance Q-factor Rated current Saturation current DC Resistance DC Resistance Self resonant frequency Test conditions 125 kHz/ 10 mA 125 kHz/ 10 mA ΔT = 40 K @ 20°C @ 20°C L Q IR Isat RDC RDC fres Value 7.5 50 3.0 6.0 0.15 0.2 22 Unit μH A A Ω Ω MHz Tol. ±10% typ. max. typ. typ. max. E General information: It is recommended that the temperature of the part does not exceed +105°C under worst case conditions. •Storage Temperature: -20°C to 60°C •Operating Temperature: -20°C to 105°C •Test conditions of Electrical Properties: 20°C, 33% RH if not specified differently This electronic component has been designed and developed for usage in general electronic equipment only. This product is not authorized for use in equipment where a higher safety standard and reliability standard is especially required or where a failure of the product is reasonably expected to cause severe personal injury or death, unless the parties have executed an agreement specifically governing such use. Moreover Würth Elektronik eiSos GmbH & Co KG products are neither designed nor intended for use in areas such as military, aerospace, aviation, nuclear control, submarine, transportation (automotive control, train control, ship control), transportation signal, disaster prevention, medical, public information network etc.. Würth Elektronik eiSos GmbH & Co KG must be informed about the intent of such usage before the design-in stage. In addition, sufficient reliability evaluation checks for safety must be performed on every electronic component which is used in electrical circuits that require high safety and reliability functions or performance. ARALDITE® 2014-1 SAFETY DATA SHEET Product name ARALDITE® 2014-1 Conforms to Regulation (EC) No. 1907/2006 (REACH), Annex II - United Kingdom (UK) : 1.1 Product identifier 1.3 Details of the supplier of the safety data sheet e-mail address of person responsible for this SDS : Global_Product_EHS_AdMat@huntsman.com Product description : Not available. 1.2 Relevant identified uses of the substance or mixture and uses advised against SECTION 1: Identification of the substance/mixture and of the company/undertaking Product code : 00057058 1.4 Emergency telephone number Supplier Telephone number : EUROPE: +32 35 75 1234 France ORFILA: +33(0)145425959 ASIA: +65 6336-6011 China: +86 20 39377888 Australia: 1800 786 152 New Zealand: 0800 767 437 USA: +1/800/424.9300 2-Component Product use : adhesive system Supplier : Huntsman Advanced Materials (Europe)BVBA Everslaan 45 3078 Everberg / Belgium Tel.: +41 61 299 20 41 Fax: +41 61 299 20 40 Classification Xi; R41, R38 R43 N; R51/53 : Human health hazards : Risk of serious damage to eyes. Irritating to skin. May cause sensitisation by skin contact. Environmental hazards : Toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment. See Section 11 for more detailed information on health effects and symptoms. SECTION 2: Hazards identification 2.1 Classification of the substance or mixture Product definition : Working pack (preparation) See Section 16 for the full text of the R phrases or H statements declared above. Classification according to Directive 1999/45/EC [DPD] The product is classified as dangerous according to Directive 1999/45/EC and its amendments. 2.2 Label elements Hazard symbol or symbols : Date of issue / Date of revision : 3 August 2011 1/17 ARALDITE 2014-1 Conforms to Regulation (EC) No. 1907/2006 (REACH), Annex II - United Kingdom (UK) Date of printing : Date of issue : 3 August 2011 3 August 2011 MSDS no. Version : : 00057058 1 2/17 SECTION 2: Hazards identification Other hazards which do : not result in classification Not available. Containers to be fitted with child-resistant fastenings Not applicable. Tactile warning of danger Not applicable. : : Special packaging requirements Safety phrases S26- In case of contact with eyes, rinse immediately with plenty of water and seek medical advice. S39- Wear eye/face protection. S61- Avoid release to the environment. Refer to special instructions/safety data sheet. R41- Risk of serious damage to eyes. R38- Irritating to skin. R43- May cause sensitisation by skin contact. R51/53- Toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment. Risk phrases Hazardous ingredients : : : Irritant, Dangerous for the environment reaction product: bisphenol A-(epichlorhydrin); epoxy resin (number average molecular weight < 700) bisphenol F-epoxy resin butanedioldiglycidyl ether N(3-dimethylaminopropyl)-1,3-propylenediamine Indication of danger : 2.3 Other hazards Supplemental label elements : Contains epoxy constituents. See information supplied by the manufacturer. Substance/mixture : Working pack (preparation) Product/ingredient Identifiers 67/548/EEC name SECTION 3: Composition/information on ingredients reaction product: bisphenol A- (epichlorhydrin); epoxy resin (number average molecular weight < 700) REACH #: 01- 2119456619-26 CAS: 25068-38-6 13 - 30 Xi; R36/38 R43 N; R51/53 Skin Irrit. 2, H315 Eye Irrit. 2, H319 Skin Sens. 1, H317 Aquatic Chronic 2, H411 [1] bisphenol F-epoxy resin REACH #: 01- 2119454392-40 CAS: 9003-36-5 3 - 7 Xi; R36/38 R43 N; R51/53 Skin Irrit. 2, H315 Eye Irrit. 2, H319 Skin Sens. 1, H317 Aquatic Chronic 2, H411 [1] butanedioldiglycidyl ether REACH #: 01- 2119494060-45 CAS: 2425-79-8 1 - 3 Xn; R20/21 Xi; R36/38 R43 R52/53 Acute Tox. 4, H312 Acute Tox. 4, H332 Skin Irrit. 2, H315 Eye Irrit. 2, H319 Skin Sens. 1, H317 [1] N(3- dimethylaminopropyl)- 1,3-propylenediamine CAS: 10563-29-8 1 - 3 Xn; R21/22 C; R34 R43 Acute Tox. 4, H302 Acute Tox. 4, H312 Skin Corr. 1B, H314 Eye Dam. 1, H318 [1] % Regulation (EC) No. Type 1272/2008 [CLP] Classification Date of issue / Date of revision : 3 August 2011 2/17 ARALDITE 2014-1 Conforms to Regulation (EC) No. 1907/2006 (REACH), Annex II - United Kingdom (UK) Date of printing : Date of issue : 3 August 2011 3 August 2011 MSDS no. Version : : 00057058 1 3/17 SECTION 3: Composition/information on ingredients Occupational exposure limits, if available, are listed in Section 8. There are no additional ingredients present which, within the current knowledge of the supplier and in the concentrations applicable, are classified as hazardous to health or the environment and hence require reporting in this section. Skin Sens. 1, H317 terephthalic acid diglycidylester CAS: 7195-44-0 0.1 - 1 Xi; R36/38 R43 N; R51/53 Skin Irrit. 2, H315 Eye Irrit. 2, H319 Skin Sens. 1, H317 Aquatic Chronic 2, H411 [1] trimellitic acid triglycidylester CAS: 7237-83-4 0.1 - 1 Xi; R36/38 R43 N; R51/53 Skin Irrit. 2, H315 Eye Irrit. 2, H319 Skin Sens. 1, H317 Aquatic Chronic 2, H411 [1] See section 16 for the full text of the Rphrases declared above See Section 16 for the full text of the H statements declared above. [1] Substance classified with a health or environmental hazard [2] Substance with a workplace exposure limit [3] Substance meets the criteria for PBT according to Regulation (EC) No. 1907/2006, Annex XIII [4] Substance meets the criteria for vPvB according to Regulation (EC) No. 1907/2006, Annex XIII Type Wash out mouth with water. Remove dentures if any. Remove victim to fresh air and keep at rest in a position comfortable for breathing. If material has been swallowed and the exposed person is conscious, give small quantities of water to drink. Stop if the exposed person feels sick as vomiting may be dangerous. Do not induce vomiting unless directed to do so by medical personnel. If vomiting occurs, the head should be kept low so that vomit does not enter the lungs. Get medical attention if adverse health effects persist or are severe. Never give anything by mouth to an unconscious person. If unconscious, place in recovery position and get medical attention immediately. Maintain an open airway. Loosen tight clothing such as a collar, tie, belt or waistband. Skin contact Get medical attention immediately. Immediately flush eyes with plenty of water, occasionally lifting the upper and lower eyelids. Check for and remove any contact lenses. Continue to rinse for at least 10 minutes. Chemical burns must be treated promptly by a physician. Flush contaminated skin with plenty of water. Remove contaminated clothing and shoes. Wash contaminated clothing thoroughly with water before removing it, or wear gloves. Continue to rinse for at least 10 minutes. Get medical attention. In the event of any complaints or symptoms, avoid further exposure. Wash clothing before reuse. Clean shoes thoroughly before reuse. 4.1 Description of first aid measures Remove victim to fresh air and keep at rest in a position comfortable for breathing. If not breathing, if breathing is irregular or if respiratory arrest occurs, provide artificial respiration or oxygen by trained personnel. It may be dangerous to the person providing aid to give mouth-to-mouth resuscitation. Get medical attention if adverse health effects persist or are severe. If unconscious, place in recovery position and get medical attention immediately. Maintain an open airway. Loosen tight clothing such as a collar, tie, belt or waistband. In case of inhalation of decomposition products in a fire, symptoms may be delayed. The exposed person may need to be kept under medical surveillance for 48 hours. Ingestion Inhalation Eye contact : : : : SECTION 4: First aid measures Date of issue / Date of revision : 3 August 2011 3/17 ARALDITE 2014-1 Conforms to Regulation (EC) No. 1907/2006 (REACH), Annex II - United Kingdom (UK) Date of printing : Date of issue : 3 August 2011 3 August 2011 MSDS no. Version : : 00057058 1 4/17 SECTION 4: First aid measures Notes to physician In case of inhalation of decomposition products in a fire, symptoms may be delayed. The exposed person may need to be kept under medical surveillance for 48 hours. : Specific treatments Protection of first-aiders : No action shall be taken involving any personal risk or without suitable training. It may be dangerous to the person providing aid to give mouth-to-mouth resuscitation. Wash contaminated clothing thoroughly with water before removing it, or wear gloves. 4.2 Most important symptoms and effects, both acute and delayed Potential acute health effects Inhalation : Exposure to decomposition products may cause a health hazard. Serious effects may be delayed following exposure. Irritating to Ingestion : mouth, throat and stomach. Skin contact : Irritating to skin. May cause sensitisation by skin contact. Eye contact : Severely irritating to eyes. Risk of serious damage to eyes. Over-exposure signs/symptoms Skin contact Ingestion Inhalation No specific data. No specific data. Adverse symptoms may include the following: irritation redness : : : Eye contact : Adverse symptoms may include the following: pain or irritation watering redness 4.3 Indication of any immediate medical attention and special treatment needed : Symptomatic treatment and supportive therapy as indicated. Following severe exposure the patient should be kept under medical review for at least 48 hours. Hazardous thermal decomposition products Hazards from the substance or mixture Decomposition products may include the following materials: carbon dioxide carbon monoxide nitrogen oxides sulfur oxides metal oxide/oxides In a fire or if heated, a pressure increase will occur and the container may burst. Use an extinguishing agent suitable for the surrounding fire. 5.1 Extinguishing media : : None known. Suitable extinguishing media : Unsuitable extinguishing media : SECTION 5: Firefighting measures 5.2 Special hazards arising from the substance or mixture 5.3 Advice for firefighters Date of issue / Date of revision : 3 August 2011 4/17 ARALDITE 2014-1 Conforms to Regulation (EC) No. 1907/2006 (REACH), Annex II - United Kingdom (UK) Date of printing : Date of issue : 3 August 2011 3 August 2011 MSDS no. Version : : 00057058 1 5/17 SECTION 5: Firefighting measures Promptly isolate the scene by removing all persons from the vicinity of the incident if there is a fire. No action shall be taken involving any personal risk or without suitable training. This material is toxic to aquatic organisms. Fire water contaminated with this material must be contained and prevented from being discharged to any waterway, sewer or drain. Fire-fighters should wear appropriate protective equipment and self-contained breathing apparatus (SCBA) with a full face-piece operated in positive pressure mode. Clothing for fire-fighters (including helmets, protective boots and gloves) conforming to European standard EN 469 will provide a basic level of protection for chemical incidents. Special protective equipment for fire-fighters : Special precautions for fire-fighters : 6.2 Environmental precautions Stop leak if without risk. Move containers from spill area. Approach the release from upwind. Prevent entry into sewers, water courses, basements or confined areas. Wash spillages into an effluent treatment plant or proceed as follows. Contain and collect spillage with non-combustible, absorbent material e.g. sand, earth, vermiculite or diatomaceous earth and place in container for disposal according to local regulations. Dispose of via a licensed waste disposal contractor. Contaminated absorbent material may pose the same hazard as the spilt product. Avoid dispersal of spilt material and runoff and contact with soil, waterways, drains and sewers. Inform the relevant authorities if the product has caused environmental pollution (sewers, waterways, soil or air). Water polluting material. May be harmful to the environment if released in large quantities. Large spill : Stop leak if without risk. Move containers from spill area. Dilute with water and mop up if water-soluble. Alternatively, or if water-insoluble, absorb with an inert dry material and place in an appropriate waste disposal container. Dispose of via a licensed waste disposal contractor. Small spill : 6.3 Methods and materials for containment and cleaning up SECTION 6: Accidental release measures 6.1 Personal precautions, protective equipment and emergency procedures For non-emergency personnel : For emergency responders : 6.4 Reference to other sections See Section 1 for emergency contact information. See Section 8 for information on appropriate personal protective equipment. See Section 13 for additional waste treatment information. No action shall be taken involving any personal risk or without suitable training. Evacuate surrounding areas. Keep unnecessary and unprotected personnel from entering. Do not touch or walk through spilt material. Avoid breathing vapour or mist. Provide adequate ventilation. Wear appropriate respirator when ventilation is inadequate. Put on appropriate personal protective equipment. If specialised clothing is required to deal with the spillage, take note of any information in Section 8 on suitable and unsuitable materials. See also Section 8 for additional information on hygiene measures. : : SECTION 7: Handling and storage The information in this section contains generic advice and guidance. The list of Identified Uses in Section 1 should be consulted for any available use-specific information provided in the Exposure Scenario(s). 7.1 Precautions for safe handling Protective measures : Put on appropriate personal protective equipment (see Section 8). Persons with a history of skin sensitization problems should not be employed in any process in which this product is used. Do not get in eyes or on skin or clothing. Do not ingest. Avoid breathing vapour or mist. Avoid release to the environment. Refer to special instructions/safety data sheet. Keep in the original container or an approved alternative made from a compatible material, kept tightly closed when not in use. Empty containers retain product residue and can be hazardous. Do not reuse container. Date of issue / Date of revision : 3 August 2011 5/17 ARALDITE 2014-1 Conforms to Regulation (EC) No. 1907/2006 (REACH), Annex II - United Kingdom (UK) Date of printing : Date of issue : 3 August 2011 3 August 2011 MSDS no. Version : : 00057058 1 6/17 SECTION 7: Handling and storage Store between the following temperatures: 2 to 40°C (35.6 to 104°F). Store in accordance with local regulations. Store in original container protected from direct sunlight in a dry, cool and well-ventilated area, away from incompatible materials (see section 10) and food and drink. Keep container tightly closed and sealed until ready for use. Containers that have been opened must be carefully resealed and kept upright to prevent leakage. Do not store in unlabelled containers. Use appropriate containment to avoid environmental contamination. Advice on general occupational hygiene : 7.2 Conditions for safe storage, including any incompatibilities 7.3 Specific end use(s) Recommendations : Industrial sector specific : solutions Not available. Not available. Eating, drinking and smoking should be prohibited in areas where this material is handled, stored and processed. Workers should wash hands and face before eating, drinking and smoking. Remove contaminated clothing and protective equipment before entering eating areas. See also Section 8 for additional information on hygiene measures. : Storage hazard class Huntsman Advanced Materials : Storage class 10, Environmentally hazardous liquids Recommended monitoring procedures Occupational exposure limits If this product contains ingredients with exposure limits, personal, workplace atmosphere or biological monitoring may be required to determine the effectiveness of the ventilation or other control measures and/or the necessity to use respiratory protective equipment. Reference should be made to European Standard EN 689 for methods for the assessment of exposure by inhalation to chemical agents and national guidance documents for methods for the determination of hazardous substances. : No exposure limit value known. No DELs available. Predicted effect concentrations No PECs available. SECTION 8: Exposure controls/personal protection The information in this section contains generic advice and guidance. The list of Identified Uses in Section 1 should be consulted for any available use-specific information provided in the Exposure Scenario(s). 8.1 Control parameters Derived effect levels Workplace exposure limits (for total dust and inhalable quartz dust) must be complied with. If this is not possible, then suitable dust masks must be worn. W A R N I N G ! This product contains quartz, which has been classified by IARC as carcinogenic for humans (Group 1), and which can cause silicosis and lung cancer following exposure to respirable dust. It is therefore important to take particular care to avoid inhalation exposure when mechanically processing cured material (e.g. grinding, sanding, sawing). QUARTZ (CAS RN 14808-60-7): United Kingdom: TWA: 0.1 mg/m³ 8 hour(s). Form: respirable dust Ireland: OELV-8hr: 0.1 mg/m³ 8 hour(s). Form: respirable dust Switzerland: TWA: 0.15 mg/m³ 8 hour(s). Form: respirable dust Australia: TWA: 0.1 mg/m³ 8 hour(s) Date of issue / Date of revision : 3 August 2011 6/17 ARALDITE 2014-1 Conforms to Regulation (EC) No. 1907/2006 (REACH), Annex II - United Kingdom (UK) Date of printing : Date of issue : 3 August 2011 3 August 2011 MSDS no. Version : : 00057058 1 7/17 SECTION 8: Exposure controls/personal protection Hand protection In case of inadequate ventilation wear respiratory protection. Respirator selection must be based on known or anticipated exposure levels, the hazards of the product and the safe working limits of the selected respirator. Chemical-resistant, impervious gloves complying with an approved standard should be worn at all times when handling chemical products if a risk assessment indicates this is necessary. Safety eyewear complying with an approved standard should be used when a risk assessment indicates this is necessary to avoid exposure to liquid splashes, mists or dusts. Eye/face protection Respiratory protection : : : Skin protection Personal protective equipment for the body should be selected based on the task being performed and the risks involved and should be approved by a specialist before handling this product. : Environmental exposure controls : Emissions from ventilation or work process equipment should be checked to ensure they comply with the requirements of environmental protection legislation. In some cases, fume scrubbers, filters or engineering modifications to the process equipment will be necessary to reduce emissions to acceptable levels. Appropriate engineering controls : No special ventilation requirements. Good general ventilation should be sufficient to control worker exposure to airborne contaminants. If this product contains ingredients with exposure limits, use process enclosures, local exhaust ventilation or other engineering controls to keep worker exposure below any recommended or statutory limits. Wash hands, forearms and face thoroughly after handling chemical products, before eating, smoking and using the lavatory and at the end of the working period. Appropriate techniques should be used to remove potentially contaminated clothing. Contaminated work clothing should not be allowed out of the workplace. Wash contaminated clothing before reusing. Ensure that eyewash stations and safety showers are close to the workstation location. 8.2 Exposure controls Hygiene measures : Individual protection measures Body protection : Other skin protection Appropriate footwear and any additional skin protection measures should be selected based on the task being performed and the risks involved and should be approved by a specialist before handling this product. Ethyl Vinyl Alcohol Laminate (EVAL), butyl rubber neoprene, Material of gloves for nitrile rubber short term/splash application (10min480min): Physical state Liquid. [Paste.] Odour Not available. Colour Not available. Odour threshold Not available. : : : : 9.1 Information on basic physical and chemical properties Appearance SECTION 9: Physical and chemical properties Date of issue / Date of revision : 3 August 2011 7/17 ARALDITE 2014-1 Conforms to Regulation (EC) No. 1907/2006 (REACH), Annex II - United Kingdom (UK) Date of printing : Date of issue : 3 August 2011 3 August 2011 MSDS no. Version : : 00057058 1 8/17 SECTION 9: Physical and chemical properties Not available. Melting point/freezing point Initial boiling point and boiling range Vapour pressure Relative density Vapour density Solubility(ies) Not available. Not available. Not available. Not available. pH Evaporation rate Not available. Auto-ignition temperature Flash point Not available. Closed cup: >100°C [DIN 51758 EN 22719 (Pensky-Martens Closed Cup)] Not available. Not available. Not available. Not available. Viscosity Not available. Partition coefficient: noctanol/ water Upper/lower flammability or explosive limits Explosive properties : : : : : : : : : : : : : Oxidising properties : Not available. 9.2 Other information Burning time Not applicable. Burning rate Not applicable. : : Decomposition temperature : Not available. Flammability (solid, gas) : Not available. Density : 1.4 g/cm3 [20°C (68°F)] Water solubility : 10.6 Hazardous decomposition products 10.4 Conditions to avoid No specific data. Under normal conditions of storage and use, hazardous decomposition products should not be produced. 10.2 Chemical stability The product is stable. No specific data. : : : 10.5 Incompatible materials : 10.3 Possibility of hazardous reactions : Under normal conditions of storage and use, hazardous reactions will not occur. SECTION 10: Stability and reactivity 10.1 Reactivity : No specific test data related to reactivity available for this product or its ingredients. Date of issue / Date of revision : 3 August 2011 8/17 ARALDITE 2014-1 Conforms to Regulation (EC) No. 1907/2006 (REACH), Annex II - United Kingdom (UK) Date of printing : Date of issue : 3 August 2011 3 August 2011 MSDS no. Version : : 00057058 1 9/17 Acute toxicity reaction product: bisphenol A-(epichlorhydrin); epoxy resin (number average molecular weight < 700) LC0 Inhalation Vapour Rat - Male 0.00001 ppm 5 hours LD50 Dermal Rat - Male, Female >2000 mg/kg - LD50 Oral Rat - Female >2000 mg/kg - bisphenol F-epoxy resin LD50 Dermal Rat - Male, Female >2000 mg/kg - LD50 Oral Rat - Male, Female >5000 mg/kg - butanedioldiglycidyl ether LD50 Dermal Rat - Male, Female >2150 mg/kg - LD50 Oral Rat - Male, Female 1163 mg/kg - N(3-dimethylaminopropyl)- 1,3-propylenediamine LD50 Dermal Rabbit 1310 mg/kg - LD50 Oral Rat 1670 mg/kg - Product/ingredient name Endpoint Species Result Exposure Irritation/Corrosion reaction product: bisphenol A-(epichlorhydrin); epoxy resin (number average molecular weight < 700) OECD 404 Acute Dermal Irritation/Corrosion Rabbit Mild irritant OECD 405 Acute Eye Irritation/Corrosion Rabbit Mild irritant bisphenol F-epoxy resin OECD 405 Acute Eye Irritation/Corrosion Rabbit Non-irritant. OECD 404 Acute Dermal Irritation/Corrosion Rabbit Mild irritant butanedioldiglycidyl ether OECD 404 Acute Dermal Irritation/Corrosion Rabbit Non-irritant. OECD 405 Acute Eye Irritation/Corrosion Rabbit Severe irritant Product/ingredient name Test Result Conclusion/Summary : Skin : reaction product: bisphenol A-(epichlorhydrin); epoxy resin (number average molecular weight < 700): Slightly irritating to the skin. bisphenol F-epoxy resin: Slightly irritating to the skin. butanedioldiglycidyl ether: Non-irritating to the skin. Eyes : reaction product: bisphenol A-(epichlorhydrin); epoxy resin (number average molecular weight < 700): Slightly irritating to the eyes. bisphenol F-epoxy resin: Non-irritating to the eyes. butanedioldiglycidyl ether: Severely irritating to eyes. Not available. Sensitiser reaction product: bisphenol A-(epichlorhydrin); epoxy resin (number average molecular weight < 700) OECD 429 Skin Sensitisation: Local Lymph Node Assay skin Mouse Sensitising bisphenol F-epoxy resin OECD 429 Skin Sensitisation: Local Lymph Node Assay skin Mouse Sensitising butanedioldiglycidyl ether OECD 406 Skin Sensitization skin Guinea pig Sensitising Product/ingredient name Test Route of exposure Result Species SECTION 11: Toxicological information 11.1 Information on toxicological effects Species Date of issue / Date of revision : 3 August 2011 9/17 ARALDITE 2014-1 Conforms to Regulation (EC) No. 1907/2006 (REACH), Annex II - United Kingdom (UK) Date of printing : Date of issue : 3 August 2011 3 August 2011 MSDS no. Version : : 00057058 1 10/17 SECTION 11: Toxicological information Carcinogenicity reaction product: bisphenol A- (epichlorhydrin); epoxy resin (number average molecular weight < 700) OECD 453 Combined Chronic Toxicity/Carcinogenicity Studies Rat 2 years; 7 days per week Negative Oral - OECD 453 Combined Chronic Toxicity/Carcinogenicity Studies Rat 2 years; 5 days per week Negative Dermal - OECD 453 Combined Chronic Toxicity/Carcinogenicity Studies Mouse 2 years; 3 days per week Negative Dermal - Product/ingredient name Test Species Exposure Result Mutagenicity reaction product: bisphenol A-(epichlorhydrin); epoxy resin (number average molecular weight < 700) OECD 471 Bacterial Reverse Mutation Test Positive OECD 476 In vitro Mammalian Cell Gene Mutation Test Positive OECD 478 Genetic Toxicology: Rodent Dominant Lethal Test Negative EPA OPPTS Negative bisphenol F-epoxy resin OECD 471 Bacterial Reverse Mutation Test Positive OECD 476 In vitro Mammalian Cell Gene Mutation Test Positive OECD 473 In vitro Mammalian Chromosomal Aberration Test Positive OECD 474 Mammalian Erythrocyte Micronucleus Test Negative OECD 486 Unscheduled DNA Synthesis (UDS) Test with Mammalian Liver Cells in vivo Negative butanedioldiglycidyl ether OECD 471 Bacterial Reverse Mutation Test Positive OECD 473 In vitro Mammalian Chromosomal Aberration Test Positive OECD 474 Mammalian Erythrocyte Micronucleus Test Negative Product/ingredient name Test Result Conclusion/Summary : Not available. Teratogenicity Reproductive toxicity Product/ingredient name Test Species Result/Result type Target organs reaction product: bisphenol A-(epichlorhydrin); epoxy resin (number average molecular weight < 700) OECD 416 Two-Generation Reproduction Toxicity Study Rat Oral: 540 mg/kg NOEL : - bisphenol F-epoxy resin OECD 416 Two-Generation Reproduction Toxicity Study Rat Oral: 540 mg/kg NOEL : - Conclusion/Summary : Not available. Route of exposure Target organs Date of issue / Date of revision : 3 August 2011 10/17 ARALDITE 2014-1 Conforms to Regulation (EC) No. 1907/2006 (REACH), Annex II - United Kingdom (UK) Date of printing : Date of issue : 3 August 2011 3 August 2011 MSDS no. Version : : 00057058 1 11/17 SECTION 11: Toxicological information Potential chronic health effects Potential acute health effects Inhalation : Exposure to decomposition products may cause a health hazard. Serious effects may be delayed following exposure. Irritating to Ingestion : mouth, throat and stomach. Skin contact : Irritating to skin. May cause sensitisation by skin contact. Eye contact : Severely irritating to eyes. Risk of serious damage to eyes. reaction product: bisphenol A-(epichlorhydrin); epoxy resin (number average molecular weight < 700) OECD 408 Repeated Dose 90-Day Oral Toxicity Study in Rodents NOAEL Subchronic NOAEL Oral 50 mg/kg - OECD 411 Subchronic Dermal Toxicity: 90-day Study NOEL : Subchronic NOEL : Dermal 10 mg/kg - OECD 411 Subchronic Dermal Toxicity: 90-day Study NOAEL Subchronic NOAEL Dermal 100 mg/kg - bisphenol F-epoxy resin OECD 408 Repeated Dose NOAEL Sub- 250 mg/kg - Product/ingredient name Test Result type Result Target organs reaction product: bisphenol A-(epichlorhydrin); epoxy resin (number average molecular weight < 700) OECD 414 Prenatal Developmental Toxicity Study Rat - Female >540 mg/kg NOEL : EPA CFR Rabbit - Female >300 mg/kg NOEL : OECD 414 Prenatal Developmental Toxicity Study Rabbit - Female 180 mg/kg NOAEL bisphenol F-epoxy resin EPA CFR Rabbit - Female >300 mg/kg NOEL : Product/ingredient name Test Species Result/Result type Symptoms related to the physical, chemical and toxicological characteristics Skin contact Ingestion Inhalation No specific data. No specific data. Adverse symptoms may include the following: irritation redness : : : Eye contact : Adverse symptoms may include the following: pain or irritation watering redness Information on the likely Not available. routes of exposure : Delayed and immediate effects and also chronic effects from short and long term exposure Short term exposure Long term exposure Potential immediate effects Potential delayed effects : : Potential immediate effects Potential delayed effects : : Not available. Not available. Not available. Not available. Date of issue / Date of revision : 3 August 2011 11/17 ARALDITE 2014-1 Conforms to Regulation (EC) No. 1907/2006 (REACH), Annex II - United Kingdom (UK) Date of printing : Date of issue : 3 August 2011 3 August 2011 MSDS no. Version : : 00057058 1 12/17 SECTION 11: Toxicological information Once sensitized, a severe allergic reaction may occur when subsequently exposed to very low levels. General : No known significant effects Carcinogenicity : or critical hazards. Mutagenicity : No known significant effects or critical hazards. Teratogenicity : No known significant effects or critical hazards. 90-Day Oral Toxicity Study in Rodents chronic NOAEL Oral butanedioldiglycidyl ether OECD 407 Repeated Dose 28-day Oral Toxicity Study in Rodents NOAEL Subchronic NOAEL Oral 200 mg/kg - Conclusion/Summary : Not available. Developmental effects : No known significant effects or critical hazards. Fertility effects : No known significant effects or critical hazards. Other information : Not available. 12.1 Toxicity reaction product: bisphenol A-(epichlorhydrin); epoxy resin (number average molecular weight < 700) - Acute EC50 72 hours Static Algae 9.4 mg/L OECD 202 Daphnia sp. Acute Immobilisation Test Acute EC50 48 hours Static Daphnia 1.7 mg/L - Acute IC50 3 hours Static Bacteria >100 mg/L OECD 203 Fish, Acute Toxicity Test Acute LC50 96 hours Static Fish 1.5 mg/L OECD 211 Daphnia Magna Reproduction Test Chronic NOEC 21 days Semistatic Daphnia 0.3 mg/L bisphenol F-epoxy resin OECD 201 Alga, Growth Inhibition Test Acute EC50 72 hours Static Algae 1.8 mg/L OECD OECD 202: Part I (Daphnia sp., Acute Immobilisation test) Acute EC50 48 hours Static Daphnia 1.6 mg/L - Acute IC50 3 hours Static Bacteria >100 mg/L OECD 203 Fish, Acute Toxicity Test Acute LC50 96 hours Semistatic Fish 0.55 mg/L OECD 211 Daphnia Magna Reproduction Test Chronic NOEC 21 days Semistatic Daphnia 0.3 mg/L butanedioldiglycidyl ether OECD 202 Daphnia sp. Acute Immobilisation Test Acute EC50 24 hours Static Daphnia 75 mg/L OECD 201 Alga, Growth Inhibition Test Acute EL50 72 hours Static Algae >160 mg/L OECD 209 Activated Sludge, Respiration Inhibition Test Acute IC50 3 hours Static Bacteria >100 mg/L OECD 203 Fish, Acute Toxicity Test Acute LC50 96 hours Static Fish 24 mg/L Product/ingredient name Exposure Species Result 12.2 Persistence and degradability SECTION 12: Ecological information Test Endpoint Date of issue / Date of revision : 3 August 2011 12/17 ARALDITE 2014-1 Conforms to Regulation (EC) No. 1907/2006 (REACH), Annex II - United Kingdom (UK) Date of printing : Date of issue : 3 August 2011 3 August 2011 MSDS no. Version : : 00057058 1 13/17 SECTION 12: Ecological information Mobility : Not available. LogPow BCF Potential 12.3 Bioaccumulative potential 12.6 Other adverse effects No known significant effects or critical hazards. Product/ingredient name reaction product: bisphenol A-(epichlorhydrin); epoxy resin (number average molecular weight < 700) 3.242 31 low bisphenol F-epoxy resin 2.7 to 3.6 - high butanedioldiglycidyl ether -0.269 - low Product/ingredient name Aquatic half-life Photolysis Biodegradability reaction product: bisphenol A-(epichlorhydrin); epoxy resin (number average molecular weight < 700) Fresh water 4.83 days Fresh water 3.58 days Fresh water 7.1 days - Not readily bisphenol F-epoxy resin - - Not readily butanedioldiglycidyl ether - - Not readily reaction product: bisphenol A-(epichlorhydrin); epoxy resin (number average molecular weight < 700) OECD Derived from OECD 301F (Biodegradation Test) 28 days 5 % bisphenol F-epoxy resin EU 28 days 0 % butanedioldiglycidyl ether OECD 301F Ready Biodegradability - Manometric Respirometry Test 28 days 43 % Product/ingredient name Test Result Conclusion/Summary : reaction product: bisphenol A-(epichlorhydrin); epoxy resin (number average molecular weight < 700): Not readily biodegradable. 12.4 Mobility in soil Soil/water partition coefficient (KOC) : Not available. 12.5 Results of PBT and vPvB assessment : 12.7 Other ecological information Period Not applicable. The generation of waste should be avoided or minimised wherever possible. Significant quantities of waste product residues should not be disposed of via the foul sewer but processed in a suitable effluent treatment plant. Dispose of surplus and non-recyclable products via a licensed waste disposal contractor. Disposal of this product, solutions and any by-products should at all times comply with the requirements of environmental protection and waste disposal legislation and any regional local authority requirements. Waste packaging should be recycled. Incineration or landfill should only be considered when recycling is not feasible. This Methods of disposal : SECTION 13: Disposal considerations The information in this section contains generic advice and guidance. The list of Identified Uses in Section 1 should be consulted for any available use-specific information provided in the Exposure Scenario(s). 13.1 Waste treatment methods Product Date of issue / Date of revision : 3 August 2011 13/17 ARALDITE 2014-1 Conforms to Regulation (EC) No. 1907/2006 (REACH), Annex II - United Kingdom (UK) Date of printing : Date of issue : 3 August 2011 3 August 2011 MSDS no. Version : : 00057058 1 14/17 SECTION 13: Disposal considerations European waste catalogue (EWC) Hazardous waste : Yes. material and its container must be disposed of in a safe way. Care should be taken when handling emptied containers that have not been cleaned or rinsed out. Empty containers or liners may retain some product residues. Avoid dispersal of spilt material and runoff and contact with soil, waterways, drains and sewers. Packaging Waste code Waste designation Methods of disposal : Special precautions : 07 02 08* other still bottoms and reaction residues The generation of waste should be avoided or minimised wherever possible. Waste packaging should be recycled. Incineration or landfill should only be considered when recycling is not feasible. This material and its container must be disposed of in a safe way. Care should be taken when handling emptied containers that have not been cleaned or rinsed out. Empty containers or liners may retain some product residues. Avoid dispersal of spilt material and runoff and contact with soil, waterways, drains and sewers. Environmentally hazardous substance, liquid, n.o.s. BISPHENOL A/F EPOXY RESIN 9 III Environmentally hazardous substance, liquid, n.o.s. (BISPHENOL A/F EPOXY RESIN) Marine pollutant (reaction product: bisphenol A-(epichlorhydrin); epoxy resin (number average molecular weight < 700), bisphenol F-epoxy resin) 9 III Environmentally hazardous substance, liquid, n.o.s. (BISPHENOL A/F EPOXY RESIN) UN3082 9 not available not available III UN3082 UN3082 Hazard identification number 90 Special provisions 274 335 601 Tunnel code E Emergency schedules (EmS) F-A, S-F Passenger and Cargo Aircraft Quantity limitation: 450 L Packaging instructions: 964 Cargo Aircraft Only Quantity limitation: 450 L Packaging SECTION 14: Transport information ADR/RID IMDG IATA 14.1 UN number 14.2 UN proper shipping name 14.3 Transport hazard class(es) 14.4 Packing group ADN/ADNR Additional information 14.5 Environmental hazards 14.6 Special precautions for user Yes. Yes. Yes. Not available. Not available. Not available. ADN/ADNR IMDG IATA ADR/RID Date of issue / Date of revision : 3 August 2011 14/17 ARALDITE 2014-1 Conforms to Regulation (EC) No. 1907/2006 (REACH), Annex II - United Kingdom (UK) Date of printing : Date of issue : 3 August 2011 3 August 2011 MSDS no. Version : : 00057058 1 15/17 SECTION 14: Transport information instructions: 964 14.7 Transport in bulk according to Annex II of MARPOL 73/78 and the IBC Code : Not applicable. National regulations Other EU regulations Annex XVII - Restrictions Not applicable. on the manufacture, placing on the market and use of certain dangerous substances, mixtures and articles : Europe inventory : All components are listed or exempted. Black List Chemicals : Not listed Priority List Chemicals : Not listed Integrated pollution prevention and control list (IPPC) - Air : Not listed Integrated pollution prevention and control list (IPPC) - Water : Not listed Chemical Weapons Convention List Schedule I Chemicals : Not listed Chemical Weapons Convention List Schedule II Chemicals : Not listed Chemical Weapons Convention List Schedule III Chemicals : Not listed International regulations References : The provision of Safety Data Sheets comes under Regulation 6 of CHIP (CHIP is the recognised abbreviation for the Chemicals Hazard Information and Packaging Regulations). This is an addition to the Health and Safety at Work Act 1974. SECTION 15: Regulatory information 15.1 Safety, health and environmental regulations/legislation specific for the substance or mixture EU Regulation (EC) No. 1907/2006 (REACH) Annex XIV - List of substances subject to authorisation 15.2 Chemical Safety Assessment This product contains substances for which Chemical Safety Assessments are still required. Substances of very high concern : None of the components are listed. Date of issue / Date of revision : 3 August 2011 15/17 ARALDITE 2014-1 Conforms to Regulation (EC) No. 1907/2006 (REACH), Annex II - United Kingdom (UK) Date of printing : Date of issue : 3 August 2011 3 August 2011 MSDS no. Version : : 00057058 1 16/17 Date of printing : 3 August 2011 R20/21- Harmful by inhalation and in contact with skin. R21/22- Harmful in contact with skin and if swallowed. R34- Causes burns. R41- Risk of serious damage to eyes. R38- Irritating to skin. R36/38- Irritating to eyes and skin. R43- May cause sensitisation by skin contact. R51/53- Toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment. R52/53- Harmful to aquatic organisms, may cause long-term adverse effects in the aquatic environment. Full text of abbreviated R : phrases C - Corrosive Xn - Harmful Xi - Irritant N - Dangerous for the environment Full text of classifications : [DSD/DPD] Indicates information that has changed from previously issued version. SECTION 16: Other information Full text of abbreviated H statements : Abbreviations and acronyms : ATE = Acute Toxicity Estimate CLP = Classification, Labelling and Packaging Regulation [Regulation (EC) No. 1272/2008] DNEL = Derived No Effect Level EUH statement = CLP-specific Hazard statement PNEC = Predicted No Effect Concentration RRN = REACH Registration Number Classification according to Regulation (EC) No. 1272/2008 [CLP/GHS] Procedure used to derive the classification according to Regulation (EC) No. 1272/2008 [CLP/GHS] Classification Justification Skin Irrit. 2, H315 Expert judgment Eye Dam. 1, H318 Expert judgment Skin Sens. 1, H317 Expert judgment Aquatic Chronic 2, H411 Expert judgment Full text of classifications [CLP/GHS] : H302 Harmful if swallowed. H312 Harmful in contact with skin. H314 Causes severe skin burns and eye damage. H315 Causes skin irritation. H317 May cause an allergic skin reaction. H318 Causes serious eye damage. H319 Causes serious eye irritation. H332 Harmful if inhaled. H411 Toxic to aquatic life with long lasting effects. Acute Tox. 4, H302 ACUTE TOXICITY: ORAL - Category 4 Acute Tox. 4, H312 ACUTE TOXICITY: SKIN - Category 4 Acute Tox. 4, H332 ACUTE TOXICITY: INHALATION - Category 4 Aquatic Chronic 2, H411 AQUATIC TOXICITY (CHRONIC) - Category 2 Eye Dam. 1, H318 SERIOUS EYE DAMAGE/ EYE IRRITATION - Category 1 Eye Irrit. 2, H319 SERIOUS EYE DAMAGE/ EYE IRRITATION - Category 2 Skin Corr. 1B, H314 SKIN CORROSION/IRRITATION - Category 1B Skin Irrit. 2, H315 SKIN CORROSION/IRRITATION - Category 2 Skin Sens. 1, H317 SKIN SENSITIZATION - Category 1 Skin Irrit. 2, H315 Eye Dam. 1, H318 Skin Sens. 1, H317 Aquatic Chronic 2, H411 MSDS no. : 00057058 Date of issue / Date of revision : 3 August 2011 16/17 ARALDITE 2014-1 Conforms to Regulation (EC) No. 1907/2006 (REACH), Annex II - United Kingdom (UK) Date of printing : Date of issue : 3 August 2011 3 August 2011 MSDS no. Version : : 00057058 1 17/17 SECTION 16: Other information Date of issue/ Date of revision Version Notice to reader Date of previous issue : : : 3 August 2011 No previous validation. 1 While the information and recommendations in this publication are to the best of our knowledge, information and belief accurate at the date of publication, NOTHING HEREIN IS TO BE CONSTRUED AS A WARRANTY, EXPRESS OR OTHERWISE. IN ALL CASES, IT IS THE RESPONSIBILITY OF THE USER TO DETERMINE THE APPLICABILITY OF SUCH INFORMATION AND RECOMMENDATIONS AND THE SUITABILITY OF ANY PRODUCT FOR ITS OWN PARTICULAR PURPOSE. THE PRODUCT MAY PRESENT HAZARDS AND SHOULD BE USED WITH CAUTION. WHILE CERTAIN HAZARDS ARE DESCRIBED IN THIS PUBLICATION, NO GUARANTEE IS MADE THAT THESE ARE THE ONLY HAZARDS THAT EXIST. Hazards, toxicity and behaviour of the products may differ when used with other materials and are dependent upon the manufacturing circumstances or other processes. Such hazards, toxicity and behaviour should be determined by the user and made known to handlers, processors and end users. ARALDITE® is a registered trademark of Huntsman Corporation or an affiliate thereof in one or more countries, but not all countries. NO PERSON OR ORGANIZATION EXCEPT A DULY AUTHORIZED HUNTSMAN EMPLOYEE IS AUTHORIZED TO PROVIDE OR MAKE AVAILABLE DATA SHEETS FOR HUNTSMAN PRODUCTS. DATA SHEETS FROM UNAUTHORIZED SOURCES MAY CONTAIN INFORMATION THAT IS NO LONGER CURRENT OR ACCURATE. NO PART OF THIS DATA SHEET MAY BE REPRODUCED OR TRANSMITTED IN ANY FORM, OR BY ANY MEANS, WITHOUT PERMISSION IN WRITING FROM HUNTSMAN. ALL REQUESTS FOR PERMISSION TO REPRODUCE MATERIAL FROM THIS DATA SHEET SHOULD BE DIRECTED TO HUNTSMAN, MANAGER, PRODUCT SAFETY AT THE ABOVE ADDRESS. Date of issue / Date of revision : 3 August 2011 17/17 1 ® CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. 1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a registered trademark of Intersil Americas Inc. Copyright © Intersil Americas Inc. 2002-2005. All Rights Reserved All other trademarks mentioned are the property of their respective owners. 8-Digit, Microprocessor-Compatible, LED Display Decoder Driver The Intersil ICM7228 display driver interfaces microprocessors to an 8-digit, 7-segment, numeric LED display. Included on chip are two types of 7-segment decoder, multiplex scan circuitry, LED display segment drivers, LED display digit drivers and an 8-byte static memory as display RAM. Data can be written to the ICM7228A and ICM7228B’s display RAM in sequential 8-digit update or in single-digit update format. Data is written to the ICM7228C display RAM in parallel random access format. The ICM7228A and ICM7228C drive common anode displays. The ICM7228B drives common cathode displays. All versions can display the RAM data as either Hexadecimal or Code B format. The ICM7228A and ICM7228B incorporate a No Decode mode allowing each bit of each digit's RAM word to drive individual display segments resulting in independent control of all display segments. As a result, bargraph and other irregular display segments and formats can be driven directly by this chip. The Intersil ICM7228 is an alternative to both the Maxim ICM7218 and the Intersil ICM7218 display drivers. Notice that the ICM7228A/B has an additional single digit access mode. This could make the Intersil ICM7218A/B software incompatible with ICM7228A/B operation. Features • Pb-Free Plus Anneal Available (RoHS Compliant) • Improved 2nd Source to Maxim ICM7218 • Fast Write Access Time of 200ns • Multiple Microprocessor Compatible Versions • Hexadecimal, Code B and No Decode Modes • Individual Segment Control with “No Decode” Feature • Digit and Segment Drivers On-Chip • Non-Overlapping Digits Drive • Common Anode and Common Cathode LED Versions • Low Power CMOS Architecture • Single 5V Supply Applications • Instrumentation • Test Equipment • Hand Held Instruments • Bargraph Displays • Numeric and Non-Numeric Panel Displays • High and Low Temperature Environments where LCD Display Integrity is Compromised Ordering Information PART NUMBER PART MARKING DATA ENTRY PROTOCOL DISPLAY TYPE TEMP. RANGE (oC) PACKAGE PKG. DWG. # ICM7228AIBI ICM7228AIBI Sequential Common Anode -40 to 85 28 Ld SOIC M28.3 ICM7228AIBIZ (Note) 7228AIBIZ Sequential Common Anode -40 to 85 28 Ld SOIC (Pb-free) M28.3 ICM7228AIPI ICM7228AIPI Sequential Common Anode -40 to 85 28 Ld PDIP E28.6 ICM7228AIPIZ (Note) ICM7228AIPI Sequential Common Anode -40 to 85 28 Ld PDIP* (Pb-free) E28.6 ICM7228BIBI ICM7228BIBI Sequential Common Cathode -40 to 85 28 Ld SOlC M28.3 ICM7228BIBIZ (Note) ICM7228BIBIZ Sequential Common Cathode -40 to 85 28 Ld SOlC (Pb-free) M28.3 ICM7228BIPI ICM7228BIPI Sequential Common Cathode -40 to 85 28 Ld PDIP E28.6 ICM7228BIPIZ (Note) ICM7228BIPIZ Sequential Common Cathode -40 to 85 28 Ld PDIP (Pb-free) E28.6 ICM7228CIBI ICM7228CIBI Random Common Anode -40 to 85 28 Ld SOlC M28.3 ICM7228CIBIZ (Note) ICM7228CIBIZ Random Common Anode -40 to 85 28 Ld SOlC (Pb-free) M28.3 ICM7228CIPI ICM7228CIPI Random Common Anode -40 to 85 28 Ld PDIP E28.6 ICM7228CIPIZ (Note) ICM7228CIPI Random Common Anode -40 to 85 28 Ld PDIP (Pb-free) E28.6 *Pb-free PDIPs can be used for through hole wave solder processing only. They are not intended for use in Reflow solder processing applications. NOTE: Intersil Pb-free plus anneal products employ special Pb-free material sets; molding compounds/die attach materials and 100% matte tin plate termination finish, which are RoHS compliant and compatible with both SnPb and Pb-free soldering operations. Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020. Data Sheet December 6, 2005 FN3160.8 ICM7228 2 ICM7228 Pinouts ICM7228A (PDIP, SOIC) COMMON ANODE TOP VIEW ICM7228B (PDIP, SOIC) COMMON CATHODE TOP VIEW ICM7228C (PDIP, SOIC) COMMON ANODE TOP VIEW SEG c SEG e SEG b DP ID6 (HEXA/CODE B) ID5 (DECODE) ID7 (DATA COMING) WRITE MODE ID4 (SHUTDOWN) ID1 ID0 ID2 ID3 VSS SEG g SEG d SEG f DIGIT 3 DIGIT 7 VDD DIGIT 8 DIGIT 5 DIGIT 2 DIGIT 1 SEG a DIGIT 6 DIGIT 4 28 27 26 25 24 23 22 21 20 19 18 17 16 15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 DIGIT 4 DIGIT 6 DIGIT 3 DIGIT 1 ID6 (HEXA/CODE B) ID5 (DECODE) ID7 (DATA COMING) WRITE MODE ID4 (SHUTDOWN) ID1 ID0 ID2 ID3 VSS DIGIT 5 DIGIT 2 DIGIT 8 SEG g SEG e VDD SEG d SEG b SEG a DP DIGIT 7 SEG f SEG c 28 27 26 25 24 23 22 21 20 19 18 17 16 15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 SEG c SEG e SEG b DP DA0 (DIGIT ADDRESS 0) DA1 (DIGIT ADDRESS 1) ID7 (INPUT DP) WRITE HEXA/CODE B/SHUTDOWN DA2 (DIGIT ADDRESS 2) ID1 ID0 ID2 ID3 VSS SEG g SEG d SEG f DIGIT 3 DIGIT 7 VDD DIGIT 8 DIGIT 5 DIGIT 2 DIGIT 1 SEG a DIGIT 6 DIGIT 4 28 27 26 25 24 23 22 21 20 19 18 17 16 15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 3 ICM7228 Functional Block Diagram 8 SEGMENT DRIVERS 8 DIGIT DRIVERS DECODE NO-DECODE 8-BYTE STATIC RAM HEXADECIMAL/ CODE B DECODER MULTIPLEX OSCILLATOR WRITE ADDRESS COUNTER CONTROL LOGIC READ ADDRESS, DIGIT MULTIPLEXER ICM7228A, ICM7228B ID0 - ID7 INPUT DATA ID4 - ID7 CONTROL INPUTS MODE WRITE SHUTDOWN HEXA/CODE B DECODE INTERDIGIT BLANKING DECIMAL POINT 8 8 4 1 1 1 1 4 7 7 7 8 8 8 1 1 3 8 1 1 7 1 8 SEGMENT DRIVERS 8 DIGIT DRIVERS 8-BYTE STATIC RAM HEXADECIMAL/ CODE B DECODER MULTIPLEX OSCILLATOR WRITE ADDRESS COUNTER THREE LEVEL INPUT LOGIC READ ADDRESS MULTIPLEXER ICM7228C WRITE SHUTDOWN INTERDIGIT BLANKING DECIMAL POINT 1 5 1 1 4 7 8 8 8 5 8 1 1 1 DA0 - DA2 3 DIGIT ADDRESS ID0 - ID3 ID7 DATA INPUT HEXADECIMAL/ CODE B/ SHUTDOWN 4 ICM7228 Absolute Maximum Ratings Thermal Information Supply Voltage (VDD - VSS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6V Digit Output Current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500mA Segment Output Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100mA Input Voltage (Note 1) (Any Terminal) . . (VSS-0.3V)>1, then it can be simplified as follows: From the above equation, it is shown that the system is a single order system, which has a single pole located at before the half switching frequency. Therefore, simple type II compensator can be easily used to stabilize the system. Figure 15 shows the voltage loop compensator, and its transfer function is expressed as follows: where Compensator design goal: • High DC gain • Loop bandwidth fc: • Gain margin: >10dB • Phase margin: 40° The compensator design procedure is as follows: 1. Put compensator zero at: 2. Put one compensator pole at zero frequency to achieve high DC gain, and put another compensator pole at either ESR zero frequency or half switching frequency, whichever is lower. The loop gain Tv(S) at cross over frequency of fc has unity gain. Therefore, the compensator resistance R1 is determined by: where gm is the trans-conductance of the voltage loop error amplifier. Compensator capacitor C1 is then given by: Example: Vin = 19V, Vo = 16.8V, Io = 2.6A, fs = 300kHz, Co = 10μF/10mΩ, L = 10μH, gm = 250μs, RT = 0.8Ω, VFB = 2.1V, fc = 20kHz, then compensator resistance R1 = 10kΩ. Choose R1 = 10kΩ. Put the compensator zero at 1.5kHz. The compensator capacitor is C1 = 6.5nF. Therefore, choose voltage loop compensator: R1 = 10k, C1 = 6.5nF. Ti(S) = 0.25 RTF2(S)M Tv(S) = KM F1(S)AV(S) o FB V V K = ( ) 1 T (S) T S L (S) i v v + = LV(S) 4VFB VO -------------- (RO + RL) RT ----------------------------- 1 S ωesr + ------------ 1 Sω P + ------- ------------------------AV(S) ωP 1 ROCO = , ≈ ----------------- ωp FIGURE 14. SMALL SIGNAL MODEL OF SYNCHRONOUS BUCK REGULATOR dˆ Vin dˆ vˆIL iˆin L + 1:D + iˆL Co Rc Ro -Av(S) dˆ vˆcomp RT 11/Vin + Ti(S) K vˆo Tv(S) - VCA2 0.25VCA2 VindILdin ( ) SC 1 S g vˆ vˆ A S 1 cz m FB comp v ω + = = R C 1 1 1 ωcz = - + R1 C1 VREF VFB Vo gm VCOMP FIGURE 15. VOLTAGE LOOP COMPENSATOR fs 20 1 5 1 ⎟⎠ ⎞ ⎜⎝ ⎛ − ( ) o o cz R C ω = 1 − 3 1 R1 8πfCVOCORT gmVFB = --------------------------------------- 1 cz 1 R C 1 ω = ISL6251, ISL6251A 18 FN9202.2 May 10, 2006 PCB Layout Considerations Power and Signal Layers Placement on the PCB As a general rule, power layers should be close together, either on the top or bottom of the board, with signal layers on the opposite side of the board. As an example, layer arrangement on a 4-layer board is shown below: 1. Top Layer: signal lines, or half board for signal lines and the other half board for power lines 2. Signal Ground 3. Power Layers: Power Ground 4. Bottom Layer: Power MOSFET, Inductors and other Power traces Separate the power voltage and current flowing path from the control and logic level signal path. The controller IC will stay on the signal layer, which is isolated by the signal ground to the power signal traces. Component Placement The power MOSFET should be close to the IC so that the gate drive signal, the LGATE, UGATE, PHASE, and BOOT, traces can be short. Place the components in such a way that the area under the IC has less noise traces with high dv/dt and di/dt, such as gate signals and phase node signals. Signal Ground and Power Ground Connection. At minimum, a reasonably large area of copper, which will shield other noise couplings through the IC, should be used as signal ground beneath the IC. The best tie-point between the signal ground and the power ground is at the negative side of the output capacitor on each side, where there is little noise; a noisy trace beneath the IC is not recommended. GND and VDD Pin At least one high quality ceramic decoupling cap should be used to cross these two pins. The decoupling cap can be put close to the IC. LGATE Pin This is the gate drive signal for the bottom MOSFET of the buck converter. The signal going through this trace has both high dv/dt and high di/dt, and the peak charging and discharging current is very high. These two traces should be short, wide, and away from other traces. There should be no other traces in parallel with these traces on any layer. PGND Pin PGND pin should be laid out to the negative side of the relevant output cap with separate traces. The negative side of the output capacitor must be close to the source node of the bottom MOSFET. This trace is the return path of LGATE. PHASE Pin This trace should be short, and positioned away from other weak signal traces. This node has a very high dv/dt with a voltage swing from the input voltage to ground. No trace should be in parallel with it. This trace is also the return path for UGATE. Connect this pin to the high-side MOSFET source. UGATE Pin This pin has a square shape waveform with high dv/dt. It provides the gate drive current to charge and discharge the top MOSFET with high di/dt. This trace should be wide, short, and away from other traces similar to the LGATE. BOOT Pin This pin’s di/dt is as high as the UGATE; therefore, this trace should be as short as possible. CSOP, CSON Pins The current sense resistor connects to the CSON and the CSOP pins through a low pass filter. The CSON pin is also used as the battery voltage feedback. The traces should be away from the high dv/dt and di/di pins like PHASE, BOOT pins. In general, the current sense resistor should be close to the IC. Other layout arrangements should be adjusted accordingly. EN Pin This pin stays high at enable mode and low at idle mode and is relatively robust. Enable signals should refer to the signal ground. DCIN Pin This pin connects to AC adapter output voltage, and should be less noise sensitive. Copper Size for the Phase Node The capacitance of PHASE should be kept very low to minimize ringing. It would be best to limit the size of the PHASE node copper in strict accordance with the current and thermal management of the application. Identify the Power and Signal Ground The input and output capacitors of the converters, the source terminal of the bottom switching MOSFET PGND should connect to the power ground. The other components should connect to signal ground. Signal and power ground are tied together at one point. Clamping Capacitor for Switching MOSFET It is recommended that ceramic caps be used closely connected to the drain of the high-side MOSFET, and the source of the low-side MOSFET. This capacitor reduces the noise and the power loss of the MOSFET. ISL6251, ISL6251A 19 FN9202.2 May 10, 2006 ISL6251, ISL6251A Quad Flat No-Lead Plastic Package (QFN) Micro Lead Frame Plastic Package (MLFP) INDEX D1/2 D1 D/2 D E1/2 E/2 E A 2X 0.15 B C 0.10 M C A B A N SEATING PLANE N 6 3 2 23 e 1 1 0.08 FOR ODD TERMINAL/SIDE FOR EVEN TERMINAL/SIDE C C SECTION "C-C" NX b A1 C 2X 0.15 C 0.15 2X B 0 REF. (Nd-1)Xe (NRe-E1F)X. e 5 A1 4X P A C C 4X P B 2X 0.15 C A A2 A3 D2 D2 E2 E2/2 TERMINAL TIP SIDE VIEW TOP VIEW 7 BOTTOM VIEW 7 5 CL CL e e E1 2 NX k NX b 8 NX L 8 8 9 AREA 9 4X / / 0.10 C 9 (DATUM B) (DATUM A) INDEX 6 AREA N 9 CORNER OPTION 4X L1 L 10 L1 L 10 L28.5x5 28 LEAD QUAD FLAT NO-LEAD PLASTIC PACKAGE (COMPLIANT TO JEDEC MO-220VHHD-1 ISSUE I) SYMBOL MILLIMETERS MIN NOMINAL MAX NOTES A 0.80 0.90 1.00 - A1 - 0.02 0.05 - A2 - 0.65 1.00 9 A3 0.20 REF 9 b 0.18 0.25 0.30 5,8 D 5.00 BSC - D1 4.75 BSC 9 D2 2.95 3.10 3.25 7,8 E 5.00 BSC - E1 4.75 BSC 9 E2 2.95 3.10 3.25 7,8 e 0.50 BSC - k 0.20 - - - L 0.50 0.60 0.75 8 N 28 2 Nd 7 3 Ne 7 3 P - - 0.60 9 θ - - 12 9 Rev. 1 11/04 NOTES: 1. Dimensioning and tolerancing conform to ASME Y14.5-1994. 2. N is the number of terminals. 3. Nd and Ne refer to the number of terminals on each D and E. 4. All dimensions are in millimeters. Angles are in degrees. 5. Dimension b applies to the metallized terminal and is measured between 0.15mm and 0.30mm from the terminal tip. 6. The configuration of the pin #1 identifier is optional, but must be located within the zone indicated. The pin #1 identifier may be either a mold or mark feature. 7. Dimensions D2 and E2 are for the exposed pads which provide improved electrical and thermal performance. 8. Nominal dimensions are provided to assist with PCB Land Pattern Design efforts, see Intersil Technical Brief TB389. 9. Features and dimensions A2, A3, D1, E1, P & θ are present when Anvil singulation method is used and not present for saw singulation. 20 All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems. Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see www.intersil.com FN9202.2 May 10, 2006 ISL6251, ISL6251A Shrink Small Outline Plastic Packages (SSOP) Quarter Size Outline Plastic Packages (QSOP) NOTES: 1. Symbols are defined in the “MO Series Symbol List” in Section 2.2 of Publication Number 95. 2. Dimensioning and tolerancing per ANSI Y14.5M-1982. 3. Dimension “D” does not include mold flash, protrusions or gate burrs. Mold flash, protrusion and gate burrs shall not exceed 0.15mm (0.006 inch) per side. 4. Dimension “E” does not include interlead flash or protrusions. Interlead flash and protrusions shall not exceed 0.25mm (0.010 inch) per side. 5. The chamfer on the body is optional. If it is not present, a visual index feature must be located within the crosshatched area. 6. “L” is the length of terminal for soldering to a substrate. 7. “N” is the number of terminal positions. 8. Terminal numbers are shown for reference only. 9. Dimension “B” does not include dambar protrusion. Allowable dambar protrusion shall be 0.10mm (0.004 inch) total in excess of “B” dimension at maximum material condition. 10. Controlling dimension: INCHES. Converted millimeter dimensions are not necessarily exact. α INDEX AREA E D N 1 2 3 -B- 0.17(0.007) M C A B S e -AB M -CA1 A SEATING PLANE 0.10(0.004) h x 45° C H 0.25(0.010) M B M L 0.25 0.010 GAUGE PLANE A2 M24.15 24 LEAD SHRINK SMALL OUTLINE PLASTIC PACKAGE (0.150” WIDE BODY) SYMBOL INCHES MILLIMETERS MIN MAX MIN MAX NOTES A 0.053 0.069 1.35 1.75 - A1 0.004 0.010 0.10 0.25 - A2 - 0.061 - 1.54 - B 0.008 0.012 0.20 0.30 9 C 0.007 0.010 0.18 0.25 - D 0.337 0.344 8.55 8.74 3 E 0.150 0.157 3.81 3.98 4 e 0.025 BSC 0.635 BSC - H 0.228 0.244 5.80 6.19 - h 0.0099 0.0196 0.26 0.49 5 L 0.016 0.050 0.41 1.27 6 N 24 24 7 α 0° 8° 0° 8° - Rev. 2 6/04 1 ® FN3282.13 DG411, DG412, DG413 Monolithic Quad SPST, CMOS Analog Switches The DG411 series monolithic CMOS analog switches are drop-in replacements for the popular DG211 and DG212 series devices. They include four independent single pole throw (SPST) analog switches, and TTL and CMOS compatible digital inputs. These switches feature lower analog ON-resistance (<35Ω) and faster switch time (tON<175ns) compared to the DG211 or DG212. Charge injection has been reduced, simplifying sample and hold applications. The improvements in the DG411 series are made possible by using a high voltage silicon-gate process. An epitaxial layer prevents the latch-up associated with older CMOS technologies. The 44V maximum voltage range permits controlling 40VP-P signals. Power supplies may be single-ended from +5V to 44V, or split from ±5V to ±20V. The four switches are bilateral, equally matched for AC or bidirectional signals. The ON-resistance variation with analog signals is quite low over a ±15V analog input range. The switches in the DG411 and DG412 are identical, differing only in the polarity of the selection logic. Two of the switches in the DG413 (#2 and #3) use the logic of the DG211 and DG411 (i.e., a logic “0” turns the switch ON) and the other two switches use DG212 and DG412 positive logic. This permits independent control of turn-on and turn-off times for SPDT configurations, permitting “break-before-make” or “makebefore- break” operation with a minimum of external logic. Features • ON-Resistance (Max). . . . . . . . . . . . . . . . . . . . . . . . . 35Ω • Low Power Consumption (PD) . . . . . . . . . . . . . . . . . . <35μW • Fast Switching Action - tON (Max) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175ns - tOFF (Max) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145ns • Low Charge Injection • Upgrade from DG211, DG212 • TTL, CMOS Compatible • Single or Split Supply Operation • Pb-Free Plus Anneal Available (RoHS Compliant) Applications • Audio Switching • Battery Operated Systems • Data Acquisition • Hi-Rel Systems • Sample and Hold Circuits • Communication Systems • Automatic Test Equipment Data Sheet June 20, 2007 CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. 1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a registered trademark of Intersil Americas Inc. Copyright Intersil Americas Inc. 1993, 1994, 1997, 1999, 2002, 2004-2007. All Rights Reserved All other trademarks mentioned are the property of their respective owners. 2 FN3282.13 June 20, 2007 Pinout DG411, DG412, DG413 (16 LD PDIP, SOIC, TSSOP) TOP VIEW Ordering Information PART NUMBER PART MARKING TEMP. RANGE (°C) PACKAGE PKG. DWG. # DG411DJ DG411DJ -40 to +85 16 Ld PDIP E16.3 DG411DJZ (Note) DG411DJZ -40 to +85 16 Ld PDIP** (Pb-free) E16.3 DG411DY* DG411DY -40 to +85 16 Ld SOIC (150 mil) M16.15 DG411DYZ* (Note) DG411DYZ -40 to +85 16 Ld SOIC (150 mil) (Pb-free) M16.15 DG411DVZ* (Note) DG411 DVZ -40 to +85 16 Ld TSSOP (4.4mm) (Pb-free) M16.173 DG412DJ DG412DJ -40 to +85 16 Ld PDIP E16.3 DG412DJZ (Note) DG412DJZ -40 to +85 16 Ld PDIP** (Pb-free) E16.3 DG412DY* DG412DY -40 to +85 16 Ld SOIC (150 mil) M16.15 DG412DYZ* (Note) DG412DYZ -40 to +85 16 Ld SOIC (150 mil) (Pb-free) M16.15 DG412DVZ* (Note) DG412 DVZ -40 to +85 16 Ld TSSOP (4.4mm) (Pb-free) M16.173 DG413DJ DG413DJ -40 to +85 16 Ld PDIP E16.3 DG413DJZ (Note) DG413DJZ -40 to +85 16 Ld PDIP** (Pb-free) E16.3 DG413DY* DG413DY -40 to +85 16 Ld SOIC (150 mil) M16.15 DG413DYZ* (Note) DG413DYZ -40 to +85 16 Ld SOIC (150 mil) (Pb-free) M16.15 DG413DVZ* (Note) DG413 DVZ -40 to +85 16 Ld TSSOP (4.4mm) (Pb-free) M16.173 *Add “-T” suffix for tape and reel. **Pb-free PDIPs can be used for through hole wave solder processing only. They are not intended for use in Reflow solder processing applications. NOTE: Intersil Pb-free plus anneal products employ special Pb-free material sets; molding compounds/die attach materials and 100% matte tin plate termination finish, which are RoHS compliant and compatible with both SnPb and Pb-free soldering operations. Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020. TRUTH TABLE LOGIC DG411 DG412 DG413 SWITCH SWITCH SWITCH 1, 4 SWITCH 2, 3 0 On Off Off On 1 Off On On Off NOTE: Logic “0” ≤0.8V. Logic “1” ≥2.4V. 14 15 16 9 13 12 11 10 1 2 3 4 5 7 6 8 IN1 D1 S1 VGND S4 IN4 D4 IN2 S2 V+ VL S3 D3 IN3 D2 Pin Descriptions PIN SYMBOL DESCRIPTION 1 IN1 Logic Control for Switch 1. 2 D1 Drain (Output) Terminal for Switch 1. 3 S1 Source (Input) Terminal for Switch 1. 4 V- Negative Power Supply Terminal. 5 GND Ground Terminal (Logic Common). 6 S4 Source (Input) Terminal for Switch 4. 7 D4 Drain (Output) Terminal for Switch 4. 8 IN4 Logic Control for Switch 4. 9 IN3 Logic Control for Switch 3. 10 D3 Drain (Output) Terminal for Switch 3. 11 S3 Source (Input) Terminal for Switch 3. 12 VL Logic Reference Voltage. 13 V+ Positive Power Supply Terminal (Substrate). 14 S2 Source (Input) Terminal for Switch 2. 15 D2 Drain (Output) Terminal for Switch 2. 16 IN2 Logic Control for Switch 2. DG411, DG412, DG413 3 FN3282.13 June 20, 2007 Functional Diagrams Four SPST Switches per Package Switches Shown for Logic “1” Input Schematic Diagram (1 Channel) S1 D1 S2 D2 S3 D3 S4 D4 DG411 S1 D1 S2 D2 S3 D3 S4 D4 IN1 DG412 IN2 IN3 IN4 S1 D1 S2 D2 S3 D3 S4 D4 IN1 DG413 IN2 IN3 IN4 IN2 IN3 IN4 IN1 S V+ INX GND VVVL D V+ DG411, DG412, DG413 4 FN3282.13 June 20, 2007 Absolute Maximum Ratings Thermal Information V+ to V- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44V GND to V-. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25V VL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (GND -0.3V) to (V+) +0.3V Digital Inputs, VS, VD (Note 1). . . . . (V-) -2V to (V+) + 2V or 30mA, Whichever Occurs First Continuous Current (Any Terminal) . . . . . . . . . . . . . . . . . . . . . 30mA Peak Current, S or D (Pulsed 1ms, 10% Duty Cycle Max) . . 100mA Operating Conditions Voltage Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±20V (Max) Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . .-40°C to +85°C Input Low Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.8V (Max) Input High Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.4V (Min) Input Rise and Fall Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . ≤20ns Thermal Resistance (Typical, Note 2) θJA (°C/W) PDIP Package* . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 SOIC Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 TSSOP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 Maximum Junction Temperature (Plastic Packages). . . . . . . +150°C Maximum Storage Temperature Range. . . . . . . . . .-65°C to +150°C Pb-free reflow profile . . . . . . . . . . . . . . . . . . . . . . . . . .see link below http://www.intersil.com/pbfree/Pb-FreeReflow.asp (SOIC and TSSOP - Lead Tips Only) *Pb-free PDIPs can be used for through hole wave solder processing only. They are not intended for use in Reflow solder processing applications. CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and result in failures not covered by warranty. NOTES: 1. Signals on SX, DX, or INX exceeding V+ or V- will be clamped by internal diodes. Limit forward diode current to maximum current ratings. 2. θJA is measured with the component mounted on a low effective thermal conductivity test board in free air. See Tech Brief TB379 for details. Electrical Specifications Test Conditions: V+ = +15V, V- = -15V, VL = 5V, VIN = 2.4V, 0.8V (Note 3), Unless Otherwise Specified. PARAMETER TEST CONDITIONS TEMP (°C) MIN (Note 4) TYP (Note 5) MAX (Note 4) UNITS DYNAMIC CHARACTERISTICS Turn-ON Time, tON RL = 300Ω, CL = 35pF, VS = ±10V (Figure 1) 25 - 110 175 ns 85 - - 220 ns Turn-OFF Time, tOFF 25 - 100 145 ns 85 - - 160 ns Break-Before-Make Time Delay DG413 Only, RL = 300Ω, CL = 35pF (Figure 2) 25 - 25 - ns Charge Injection, Q (Figure 3) CL = 10nF, VG = 0V, RG = 0Ω 25 - 5 - pC OFF Isolation (Figure 5) RL = 50Ω, CL = 5pF, f = 1MHz 25 - 68 - dB Crosstalk (Channel-to-Channel), (Figure 4) 25 - -85 - dB Source OFF Capacitance, CS(OFF) f = 1MHz (Figure 6) 25 - 9 - pF Drain OFF Capacitance, CD(OFF) 25 - 9 - pF Channel ON Capacitance, CD(ON) + CS(ON) 25 - 35 - pF DIGITAL INPUT CHARACTERISTICS Input Current VIN Low, IIL VIN Under Test = 0.8V, All Others = 2.4V Full -0.5 0.005 0.5 μA Input Current VIN High, IIH VIN Under Test = 2.4V, All Others = 0.8V Full -0.5 0.005 0.5 μA ANALOG SWITCH CHARACTERISTICS Analog Signal Range, VANALOG IS = 10mA Full -15 - 15 V Drain-Source ON Resistance, rDS(ON) IS = 10mA, VD = ±8.5V, V+ = 13.5V, V- = -13.5V 25 - 25 35 Ω Full - - 45 Ω ± ± DG411, DG412, DG413 5 FN3282.13 June 20, 2007 Source OFF Leakage Current, IS(OFF) V+ = 16.5V, V- = -16.5V, VD = ±15.5V, VS = 15.5V 25 -0.25 ±0.1 0.25 nA Full -5 - +5 nA Drain OFF Leakage Current, ID(OFF) 25 -0.25 ±0.1 0.25 nA Full -5 - +5 nA Channel ON Leakage Current, ID(ON) + IS(ON) V+ = 16.5V, V- = -16.5V, VS = VD = ±15.5V 25 -0.4 ±0.1 0.4 nA Full -10 - +10 nA POWER SUPPLY CHARACTERISTICS Positive Supply Current, I+ V+ = 16.5V, V- = -16.5V, VIN = 0V or 5V 25 - 0.0001 1 μA 85 - - 5 μA Negative Supply Current, I- 25 -1 -0.0001 - μA 85 -5 - - μA Logic Supply Current, IL 25 - 0.0001 1 μA 85 - - 5 μA Ground Current, IGND 25 -1 -0.0001 - μA 85 -5 - - μA Electrical Specifications (Single Supply) Test Conditions: V+ = +12V, V- = 0V, VL = 5V, VIN = 2.4V, 0.8V (Note 3), Unless Otherwise Specified. PARAMETER TEST CONDITIONS TEMP (°C) MIN (Note 4) TYP (Note 5) MAX (Note 4) UNITS DYNAMIC CHARACTERISTICS Turn-ON Time, tON RL = 300Ω, CL = 35pF, VS = 8V, (Figure 1) 25 - 175 250 ns 85 - - 315 ns Turn-OFF Time, tOFF 25 - 95 125 ns 85 - - 140 ns Break-Before-Make Time Delay DG413 Only, RL = 300Ω, CL = 35pF, VS = 8V 25 - 25 - ns Charge Injection, Q CL = 10nF, VG = 6.0V, RG = 0Ω 25 - 25 - pC ANALOG SWITCH CHARACTERISTICS Analog Signal Range, VANALOG Full 0 - 12 V Drain-Source ON-Resistance, rDS(ON) IS = -10mA, VD = 3V, 8V V+ = 10.8V 25 - 40 80 Ω Full - - 100 Ω Electrical Specifications Test Conditions: V+ = +15V, V- = -15V, VL = 5V, VIN = 2.4V, 0.8V (Note 3), Unless Otherwise Specified. (Continued) PARAMETER TEST CONDITIONS TEMP (°C) MIN (Note 4) TYP (Note 5) MAX (Note 4) UNITS ± DG411, DG412, DG413 6 FN3282.13 June 20, 2007 POWER SUPPLY CHARACTERISTICS Positive Supply Current, I+ V+ = 13.2V, V- = 0V VIN = 0V or 5V 25 - 0.0001 1 μA 85 - - 5 μA Negative Supply Current, I- 25 -1 -0.0001 - μA 85 -5 - - μA Logic Supply Current, IL 25 - 0.0001 1 μA 85 - - 5 μA Ground Current, IGND 25 -1 -0.0001 - μA 85 -5 - - μA NOTES: 3. VIN = input voltage to perform proper function. 4. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet. 5. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing. Test Circuits and Waveforms VO is the steady state output with the switch on. Feedthrough via switch capacitance may result in spikes at the leading and trailing edge of the output waveform. NOTE: Logic input waveform is inverted for switches that have the opposite logic sense. FIGURE 1A. MEASUREMENTS POINTS Repeat test for all IN and S. For load conditions, see Specifications. CL includes fixture and stray capacitance. FIGURE 1B. TEST CIRCUIT FIGURE 1. SWITCHING TIMES FIGURE 2A. MEASUREMENT POINTS FIGURE 2B. TEST CIRCUITS FIGURE 2. BREAK-BEFORE-MAKE TIME Electrical Specifications (Single Supply) Test Conditions: V+ = +12V, V- = 0V, VL = 5V, VIN = 2.4V, 0.8V (Note 3), Unless Otherwise Specified. (Continued) PARAMETER TEST CONDITIONS TEMP (°C) MIN (Note 4) TYP (Note 5) MAX (Note 4) UNITS 50% tr < 20ns tf < 20ns tOFF 90% 3V 0V VS 0V tON VO LOGIC INPUT SWITCH INPUT SWITCH OUTPUT 90% VO VS RL RL + rDS(ON) = ------------------------------------ SWITCH INPUT LOGIC INPUT S1 IN1 V+ D1 RL CL VO GND VVL +5V +15V SWITCH OUTPUT -15V tD 3V 0V VS1 0V tD LOGIC INPUT SWITCH OUTPUT SWITCH OUTPUT 90% 0V VS2 (V01) VO2 90% S1 IN1, IN2 V+ D1 RL1 CL1 VO1 GND VVL VS1 = 10V 300Ω +5V +15V S2 D2 35pF RL2 CL2 VO2 VS2 = 10V 300Ω 35pF -15V LOGIC INPUT CL includes fixture and stray capacitance. DG411, DG412, DG413 7 FN3282.13 June 20, 2007 FIGURE 3A. TEST CIRCUIT NOTE: INX dependent on switch configuration, input polarity determined by sense of switch. FIGURE 3B. MEASUREMENT POINTS FIGURE 3. CHARGE INJECTION FIGURE 4. CROSSTALK TEST CIRCUIT FIGURE 5. OFF ISOLATION TEST CIRCUIT FIGURE 6. SOURCE/DRAIN CAPACITANCES TEST CIRCUIT Test Circuits and Waveforms (Continued) V+ D1 CL VO GND VVIN = 3V RG VG SWITCH ΔVO INX OFF ON INX OFF OFF OFF ON Q = ΔVO x CL OUTPUT 0V, 2.4V ANALYZER +15V C V+ 0dBm VS SIGNAL GENERATOR RL GND IN1 VD IN2 50Ω 0V, 2.4V NC V- -15V C VD ANALYZER RL +15V 0dBm SIGNAL GENERATOR C V+ V- -15V C 0V, 2.4V VS VD INX GND +15V C V+ GND VS VD INX V- -15V C IMPEDANCE ANALYZER f = 1MHz 0V, 2.4V DG411, DG412, DG413 8 FN3282.13 June 20, 2007 Application Information Single Supply Operation The DG411, DG412, DG413 can be operated with unipolar supplies from 5V to 44V. These devices are characterized and tested for single supply operation at 12V to facilitate the majority of applications. To function properly, 12V is tied to Pins 13 and 0V is tied to Pin 4. Pin 12 still requires 5V for TTL compatible switching. Summing Amplifier When driving a high impedance, high capacitance load such as shown in Figure 7, where the inputs to the summing amplifier have some noise filtering, it is necessary to have shunt switches for rapid discharge of the filter capacitor, thus preventing offsets from occurring at the output. VIN1 R1 R2 VOUT + - C1 VIN2 R3 R4 C2 DG413 R5 R6 FIGURE 7. SUMMING AMPLIFIER DG411, DG412, DG413 9 FN3282.13 June 20, 2007 Typical Performance Curves FIGURE 8. ON RESISTANCE vs VD AND POWER SUPPLY VOLTAGE FIGURE 9. SWITCHING TIME vs TEMPERATURE FIGURE 10. LEAKAGE CURRENTS vs ANALOG VOLTAGE FIGURE 11. SUPPLY CURRENT vs INPUT SWITCHING FREQUENCY FIGURE 12. CHARGE INJECTION vs SOURCE VOLTAGE FIGURE 13. CHARGE INJECTION vs DRAIN VOLTAGE TA = +25°C 50 A: ±5V B: ±8V C: ±10V D: ±12V E: ±15V F: ±20V 45 40 35 30 25 20 15 10 5 0 -20 -15 -10 -5 0 5 10 15 20 A B C D E F DRAIN VOLTAGE (V) rDS(ON) (Ω) V+ = 15V, V- = -15V VL = 5V, VS = 10V tON tOFF -55 -15 5 25 45 65 85 105 125 TEMPERATURE (°C) -35 0 240 210 180 150 120 90 60 30 tON, tOFF (ns) V+ = 15V, V- = -15V VL = 5V, TA = +25°C -15 -5 0 5 10 15 VS, VD (V) -10 -60 20 10 0 -10 -20 -30 -40 -50 IS, ID (pA) IS(OFF) ID(OFF) 30 40 ID(ON) + IS(ON) ISUPPLY 100mA 1mA 100μA 10μA 1μA 100nA 10nA 10mA 10 100 1k 10k 100k 1M 10M FREQUENCY (Hz) IL I+, I- 1SW 1SW 4SW 4SW V+ = 15V, V- = -15V VL = 5V CL = 10nF CL = 1nF -15 -5 0 5 10 15 VS (V) -10 -60 60 40 20 0 -20 -40 Q (pC) 80 100 V+ = 15V, V- = -15V VL = 5V CL = 10nF CL = 1nF -15 -5 0 5 10 15 VD (V) -10 -60 60 40 20 0 -20 -40 Q (pC) 100 140 120 80 V+ = 15V, V- = -15V VL = 5V DG411, DG412, DG413 10 FN3282.13 June 20, 2007 Die Characteristics DIE DIMENSIONS: 2760mm x 1780mm x 485mm METALLIZATION: Type: SiAl Thickness: 12kÅ ±1kÅ PASSIVATION: Type: Nitride Thickness: 8kÅ ±1kÅ WORST CASE CURRENT DENSITY: 1.5 x 105 A/cm2 Metallization Mask Layout DG411, DG412, DG413 S1 (3) V- (4) GND (5) S4 (6) D1 IN1 IN2 (11) S3 (12) VL (13) V+ SUBSTRATE (14) S2 (15) D2 (2) (1) (16) D4 IN4 IN3 D3 (7) (8) (9) (10) DG411, DG412, DG413 11 FN3282.13 June 20, 2007 DG411, DG412, DG413 Thin Shrink Small Outline Plastic Packages (TSSOP) NOTES: 1. These package dimensions are within allowable dimensions of JEDEC MO-153-AB, Issue E. 2. Dimensioning and tolerancing per ANSI Y14.5M-1982. 3. Dimension “D” does not include mold flash, protrusions or gate burrs. Mold flash, protrusion and gate burrs shall not exceed 0.15mm (0.006 inch) per side. 4. Dimension “E1” does not include interlead flash or protrusions. Interlead flash and protrusions shall not exceed 0.15mm (0.006 inch) per side. 5. The chamfer on the body is optional. If it is not present, a visual index feature must be located within the crosshatched area. 6. “L” is the length of terminal for soldering to a substrate. 7. “N” is the number of terminal positions. 8. Terminal numbers are shown for reference only. 9. Dimension “b” does not include dambar protrusion. Allowable dambar protrusion shall be 0.08mm (0.003 inch) total in excess of “b” dimension at maximum material condition. Minimum space between protrusion and adjacent lead is 0.07mm (0.0027 inch). 10. Controlling dimension: MILLIMETER. Converted inch dimensions are not necessarily exact. (Angles in degrees) α INDEX AREA E1 D N 1 2 3 -B- 0.10(0.004) M C A B S e -Ab M -CA1 A SEATING PLANE 0.10(0.004) c E 0.25(0.010) M B M L 0.25 0.010 GAUGE PLANE A2 0.05(0.002) M16.173 16 LEAD THIN SHRINK SMALL OUTLINE PLASTIC PACKAGE SYMBOL INCHES MILLIMETERS MIN MAX MIN MAX NOTES A - 0.043 - 1.10 - A1 0.002 0.006 0.05 0.15 - A2 0.033 0.037 0.85 0.95 - b 0.0075 0.012 0.19 0.30 9 c 0.0035 0.008 0.09 0.20 - D 0.193 0.201 4.90 5.10 3 E1 0.169 0.177 4.30 4.50 4 e 0.026 BSC 0.65 BSC - E 0.246 0.256 6.25 6.50 - L 0.020 0.028 0.50 0.70 6 N 16 16 7 a 0o 8o 0o 8o - Rev. 1 2/02 12 FN3282.13 June 20, 2007 DG411, DG412, DG413 Dual-In-Line Plastic Packages (PDIP) NOTES: 1. Controlling Dimensions: INCH. In case of conflict between English and Metric dimensions, the inch dimensions control. 2. Dimensioning and tolerancing per ANSI Y14.5M-1982. 3. Symbols are defined in the “MO Series Symbol List” in Section 2.2 of Publication No. 95. 4. Dimensions A, A1 and L are measured with the package seated in JEDEC seating plane gauge GS-3. 5. D, D1, and E1 dimensions do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.010 inch (0.25mm). 6. E and are measured with the leads constrained to be perpendicular to datum . 7. eB and eC are measured at the lead tips with the leads unconstrained. eC must be zero or greater. 8. B1 maximum dimensions do not include dambar protrusions. Dambar protrusions shall not exceed 0.010 inch (0.25mm). 9. N is the maximum number of terminal positions. 10. Corner leads (1, N, N/2 and N/2 + 1) for E8.3, E16.3, E18.3, E28.3, E42.6 will have a B1 dimension of 0.030 - 0.045 inch (0.76 - 1.14mm). eA -CCL E eA C eB eC -BE1 INDEX 1 2 3 N/2 N AREA SEATING BASE PLANE PLANE -CD1 B1 B e D D1 A2 A L A1 -A- 0.010 (0.25) M C A B S E16.3 (JEDEC MS-001-BB ISSUE D) 16 LEAD DUAL-IN-LINE PLASTIC PACKAGE SYMBOL INCHES MILLIMETERS MIN MAX MIN MAX NOTES A - 0.210 - 5.33 4 A1 0.015 - 0.39 - 4 A2 0.115 0.195 2.93 4.95 - B 0.014 0.022 0.356 0.558 - B1 0.045 0.070 1.15 1.77 8, 10 C 0.008 0.014 0.204 0.355 - D 0.735 0.775 18.66 19.68 5 D1 0.005 - 0.13 - 5 E 0.300 0.325 7.62 8.25 6 E1 0.240 0.280 6.10 7.11 5 e 0.100 BSC 2.54 BSC - eA 0.300 BSC 7.62 BSC 6 eB - 0.430 - 10.92 7 L 0.115 0.150 2.93 3.81 4 N 16 16 9 Rev. 0 12/93 13 All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems. Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see www.intersil.com FN3282.13 June 20, 2007 DG411, DG412, DG413 Small Outline Plastic Packages (SOIC) NOTES: 1. Symbols are defined in the “MO Series Symbol List” in Section 2.2 of Publication Number 95. 2. Dimensioning and tolerancing per ANSI Y14.5M-1982. 3. Dimension “D” does not include mold flash, protrusions or gate burrs. Mold flash, protrusion and gate burrs shall not exceed 0.15mm (0.006 inch) per side. 4. Dimension “E” does not include interlead flash or protrusions. Interlead flash and protrusions shall not exceed 0.25mm (0.010 inch) per side. 5. The chamfer on the body is optional. If it is not present, a visual index feature must be located within the crosshatched area. 6. “L” is the length of terminal for soldering to a substrate. 7. “N” is the number of terminal positions. 8. Terminal numbers are shown for reference only. 9. The lead width “B”, as measured 0.36mm (0.014 inch) or greater above the seating plane, shall not exceed a maximum value of 0.61mm (0.024 inch). 10. Controlling dimension: MILLIMETER. Converted inch dimensions are not necessarily exact. INDEX AREA E D N 1 2 3 -B- 0.25(0.010) M C A B S e -AL B M -CA1 A SEATING PLANE 0.10(0.004) h x 45° C H 0.25(0.010) M B M α M16.15 (JEDEC MS-012-AC ISSUE C) 16 LEAD NARROW BODY SMALL OUTLINE PLASTIC PACKAGE SYMBOL INCHES MILLIMETERS MIN MAX MIN MAX NOTES A 0.0532 0.0688 1.35 1.75 - A1 0.0040 0.0098 0.10 0.25 - B 0.013 0.020 0.33 0.51 9 C 0.0075 0.0098 0.19 0.25 - D 0.3859 0.3937 9.80 10.00 3 E 0.1497 0.1574 3.80 4.00 4 e 0.050 BSC 1.27 BSC - H 0.2284 0.2440 5.80 6.20 - h 0.0099 0.0196 0.25 0.50 5 L 0.016 0.050 0.40 1.27 6 N 16 16 7 α 0° 8° 0° 8° - Rev. 1 6/05 1 ® July 2004 HIP4081A 80V/2.5A Peak, High Frequency Full Bridge FET Driver The HIP4081A is a high frequency, medium voltage Full Bridge N-Channel FET driver IC, available in 20 lead plastic SOIC and DIP packages. The HIP4081A can drive every possible switch combination except those which would cause a shoot-through condition. The HIP4081A can switch at frequencies up to 1MHz and is well suited to driving Voice Coil Motors, high-frequency switching power amplifiers, and power supplies. For example, the HIP4081A can drive medium voltage brush motors, and two HIP4081As can be used to drive high performance stepper motors, since the short minimum “on-time” can provide fine micro-stepping capability. Short propagation delays of approximately 55ns maximizes control loop crossover frequencies and dead-times which can be adjusted to near zero to minimize distortion, resulting in rapid, precise control of the driven load. A similar part, the HIP4080A, includes an on-chip input comparator to create a PWM signal from an external triangle wave and to facilitate “hysteresis mode” switching. The Application Note for the HIP4081A is the AN9405. Features • Independently Drives 4 N-Channel FET in Half Bridge or Full Bridge Configurations • Bootstrap Supply Max Voltage to 95VDC • Drives 1000pF Load at 1MHz in Free Air at 50°C with Rise and Fall Times of Typically 10ns • User-Programmable Dead Time • On-Chip Charge-Pump and Bootstrap Upper Bias Supplies • DIS (Disable) Overrides Input Control • Input Logic Thresholds Compatible with 5V to 15V Logic Levels • Very Low Power Consumption • Undervoltage Protection • Pb-free Available Applications • Medium/Large Voice Coil Motors • Full Bridge Power Supplies • Switching Power Amplifiers • High Performance Motor Controls • Noise Cancellation Systems • Battery Powered Vehicles • Peripherals • U.P.S. Pinout HIP4081A (PDIP, SOIC) TOP VIEW Ordering Information PART NUMBER TEMP RANGE (°C) PACKAGE PKG. DWG. # HIP4081AIP -40 to 85 20 Ld PDIP E20.3 HIP4081AIPZ (Note) -40 to 85 20 Ld PDIP (Pb-free) E20.3 HIP4081AIB -40 to 85 20 Ld SOIC (W) M20.3 HIP4081AIBZ (Note) -40 to 85 20 Ld SOIC (W) (Pb-free) M20.3 NOTE: Intersil Pb-free products employ special Pb-free material sets; molding compounds/die attach materials and 100% matte tin plate termination finish, which is compatible with both SnPb and Pb-free soldering operations. Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J Std-020B. 11 12 13 14 15 16 17 18 20 19 10 9 8 7 6 5 4 3 2 BHB 1 BHI DIS VSS BLI ALI HDEL AHI LDEL AHB BHO BLO BLS VDD BHS VCC ALS ALO AHS AHO Data Sheet FN3659.7 CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. 1-888-INTERSIL or 321-724-7143 | Intersil (and design) is a registered trademark of Intersil Americas Inc. Copyright Harris Corporation. Copyright Intersil Americas Inc. 2003, 2004. All Rights Reserved All other trademarks mentioned are the property of their respective owners. 2 HIP4081A Application Block Diagram Functional Block Diagram (1/2 HIP4081A) 80V GND LOAD HIP4081A GND 12V AHI ALI BLI BHI BLO BHS BHO ALO AHS AHO CHARGE PUMP VDD AHI DIS ALI HDEL LDEL VSS TURN-ON DELAY TURN-ON DELAY DRIVER DRIVER AHB AHO AHS VCC ALO ALS CBF TO VDD (PIN 16) CBS DBS HIGH VOLTAGE BUS ≤ 80VDC +12VDC LEVEL SHIFT AND LATCH 14 10 11 12 15 13 16 7 3 6 8 9 4 BIAS SUPPLY UNDERVOLTAGE 3 Typical Application (PWM Mode Switching) 11 12 13 14 15 16 17 18 20 19 10 9 8 7 6 5 4 3 2 1 BHB BHI DIS VSS BLI ALI HDEL AHI LDEL AHB BHO BLO BLS VDD BHS VCC ALS ALO AHS AHO 80V 12V + - 12V DIS GND 6V GND TO OPTIONAL CURRENT CONTROLLER PWM LOAD INPUT HIP4081/HIP4081A HIP4081A 4 HIP4081A Absolute Maximum Ratings Thermal Information Supply Voltage, VDD and VCC . . . . . . . . . . . . . . . . . . . . -0.3V to 16V Logic I/O Voltages . . . . . . . . . . . . . . . . . . . . . . . -0.3V to VDD +0.3V Voltage on AHS, BHS . . . -6.0V (Transient) to 80V (25°C to 125°C) Voltage on AHS, BHS . . . -6.0V (Transient) to 70V (-55°C to 125°C) Voltage on ALS, BLS . . . . . . . -2.0V (Transient) to +2.0V (Transient) Voltage on AHB, BHB . . . . . . . . VAHS, BHS -0.3V to VAHS, BHS +VDD Voltage on ALO, BLO . . . . . . . . . . . . .VALS, BLS -0.3V to VCC +0.3V Voltage on AHO, BHO . . . . . . . VAHS, BHS -0.3V to VAHB, BHB +0.3V Input Current, HDEL and LDEL . . . . . . . . . . . . . . . . . . -5mA to 0mA Phase Slew Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20V/ns NOTE: All Voltages relative to VSS, unless otherwise specified. Thermal Resistance (Typical, Note 1) θJA (°C/W) SOIC Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 DIP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Storage Temperature Range. . . . . . . . . . . . . . . . . . . -65°C to 150°C Operating Max. Junction Temperature . . . . . . . . . . . . . . . . . . 125°C Lead Temperature (Soldering 10s)). . . . . . . . . . . . . . . . . . . . . 300°C (For SOIC - Lead Tips Only Operating Conditions Supply Voltage, VDD and VCC . . . . . . . . . . . . . . . . . . +9.5V to +15V Voltage on ALS, BLS . . . . . . . . . . . . . . . . . . . . . . . . . -1.0V to +1.0V Voltage on AHB, BHB . . . . . . . . . VAHS, BHS +5V to VAHS, BHS +15V Input Current, HDEL and LDEL . . . . . . . . . . . . . . . .-500μA to -50μA Operating Ambient Temperature Range . . . . . . . . . . .-40°C to 85°C CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. NOTE: 1. θJA is measured with the component mounted on an evaluation PC board in free air. Electrical Specifications VDD = VCC = VAHB = VBHB = 12V, VSS = VALS = VBLS = VAHS = VBHS = 0V, RHDEL = RLDEL = 100K and TA = 25°C, Unless Otherwise Specified PARAMETER SYMBOL TEST CONDITIONS TJ = 25°C TJS = -40°C TO 125°C MIN TYP MAX MIN MAX UNITS SUPPLY CURRENTS AND CHARGE PUMPS VDD Quiescent Current IDD All inputs = 0V 8.5 10.5 14.5 7.5 14.5 mA VDD Operating Current IDDO Outputs switching f = 500kHz 9.5 12.5 15.5 8.5 15.5 mA VCC Quiescent Current ICC All Inputs = 0V, IALO = IBLO = 0 - 0.1 10 - 20 μA VCC Operating Current ICCO f = 500kHz, No Load 1 1.25 2.0 0.8 3 mA AHB, BHB Quiescent Current - Qpump Output Current IAHB, IBHB All Inputs = 0V, IAHO = IBHO = 0 VDD = VCC = VAHB = VBHB = 10V -50 -30 -11 -60 -10 μA AHB, BHB Operating Current IAHBO, IBHBO f = 500kHz, No Load 0.6 1.2 1.5 0.5 1.9 mA AHS, BHS, AHB, BHB Leakage Current IHLK VBHS = VAHS = 80V, VAHB = VBHB = 93V - 0.02 1.0 - 10 μA AHB-AHS, BHB-BHS Qpump Output Voltage VAHB-VAHS VBHB-VBHS IAHB = IAHB = 0, No Load 11.5 12.6 14.0 10.5 14.5 V INPUT PINS: ALI, BLI, AHI, BHI, AND DIS Low Level Input Voltage VIL Full Operating Conditions - - 1.0 - 0.8 V High Level Input Voltage VIH Full Operating Conditions 2.5 - - 2.7 - V Input Voltage Hysteresis - 35 - - - mV Low Level Input Current IIL VIN = 0V, Full Operating Conditions -130 -100 -75 -135 -65 μA High Level Input Current IIH VIN = 5V, Full Operating Conditions -1 - +1 -10 +10 μA TURN-ON DELAY PINS: LDEL AND HDEL LDEL, HDEL Voltage VHDEL, VLDEL IHDEL = ILDEL = -100μA 4.9 5.1 5.3 4.8 5.4 V GATE DRIVER OUTPUT PINS: ALO, BLO, AHO, AND BHO Low Level Output Voltage VOL IOUT = 100mA 0.7 0.85 1.0 0.5 1.1 V High Level Output Voltage VCC-VOH IOUT = -100mA 0.8 0.95 1.1 0.5 1.2 V Peak Pullup Current IO+ VOUT = 0V 1.7 2.6 3.8 1.4 4.1 A 5 HIP4081A Peak Pulldown Current IO- VO UT = 12V 1.7 2.4 3.3 1.3 3.6 A Undervoltage, Rising Threshold UV+ 8.1 8.8 9.4 8.0 9.5 V Undervoltage, Falling Threshold UV- 7.6 8.3 8.9 7.5 9.0 V Undervoltage, Hysteresis HYS 0.25 0.4 0.65 0.2 0.7 V Switching Specifications VDD = VCC = VAHB = VBHB = 12V, VSS = VALS = VBLS = VAHS = VBHS = 0V, RHDEL = RLDEL = 10K, CL = 1000pF. PARAMETER SYMBOL TEST CONDITIONS TJ = 25°C TJS = -40°C TO 125°C MIN TYP MAX MIN MAX UNITS Lower Turn-off Propagation Delay (ALI-ALO, BLI-BLO) TLPHL - 30 60 - 80 ns Upper Turn-off Propagation Delay (AHI-AHO, BHI-BHO) THPHL - 35 70 - 90 ns Lower Turn-on Propagation Delay (ALI-ALO, BLI-BLO) TLPLH RHDEL = RLDEL = 10K - 45 70 - 90 ns Upper Turn-on Propagation Delay (AHI-AHO, BHI-BHO) THPLH RHDEL = RLDEL = 10K - 60 90 - 110 ns Rise Time TR - 10 25 - 35 ns Fall Time TF - 10 25 - 35 ns Turn-on Input Pulse Width TPWIN-ON RHDEL = RLDEL = 10K 50 - - 50 - ns Turn-off Input Pulse Width TPWIN-OFF RHDEL = RLDEL = 10K 40 - - 40 - ns Turn-on Output Pulse Width TPWOUT-ON RHDEL = RLDEL = 10K 40 - - 40 - ns Turn-off Output Pulse Width TPWOUT-OFF RHDEL = RLDEL = 10K 30 - - 30 - ns Disable Turn-off Propagation Delay (DIS - Lower Outputs) TDISLOW - 45 75 - 95 ns Disable Turn-off Propagation Delay (DIS - Upper Outputs) TDISHIGH - 55 85 - 105 ns Disable to Lower Turn-on Propagation Delay (DIS - ALO and BLO) TDLPLH - 40 70 - 90 ns Refresh Pulse Width (ALO and BLO) TREF-PW 240 410 550 200 600 ns Disable to Upper Enable (DIS - AHO and BHO) TUEN - 450 620 - 690 ns TRUTH TABLE INPUT OUTPUT ALI, BLI AHI, BHI U/V DIS ALO, BLO AHO, BHO X X X 1 0 0 1 X 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 X X 1 X 0 0 NOTE: X signifies that input can be either a “1” or “0”. Electrical Specifications VDD = VCC = VAHB = VBHB = 12V, VSS = VALS = VBLS = VAHS = VBHS = 0V, RHDEL = RLDEL = 100K and TA = 25°C, Unless Otherwise Specified (Continued) PARAMETER SYMBOL TEST CONDITIONS TJ = 25°C TJS = -40°C TO 125°C MIN TYP MAX MIN MAX UNITS 6 HIP4081A Pin Descriptions PIN NUMBER SYMBOL DESCRIPTION 1 BHB B High-side Bootstrap supply. External bootstrap diode and capacitor are required. Connect cathode of bootstrap diode and positive side of bootstrap capacitor to this pin. Internal charge pump supplies 30μA out of this pin to maintain bootstrap supply. Internal circuitry clamps the bootstrap supply to approximately 12.8V. 2 BHI B High-side Input. Logic level input that controls BHO driver (Pin 20). BLI (Pin 5) high level input overrides BHI high level input to prevent half-bridge shoot-through, see Truth Table. DIS (Pin 3) high level input overrides BHI high level input. The pin can be driven by signal levels of 0V to 15V (no greater than VDD). 3 DIS DISable input. Logic level input that when taken high sets all four outputs low. DIS high overrides all other inputs. When DIS is taken low the outputs are controlled by the other inputs. The pin can be driven by signal levels of 0V to 15V (no greater than VDD). 4 VSS Chip negative supply, generally will be ground. 5 BLI B Low-side Input. Logic level input that controls BLO driver (Pin 18). If BHI (Pin 2) is driven high or not connected externally then BLI controls both BLO and BHO drivers, with dead time set by delay currents at HDEL and LDEL (Pin 8 and 9). DIS (Pin 3) high level input overrides BLI high level input. The pin can be driven by signal levels of 0V to 15V (no greater than VDD). 6 ALI A Low-side Input. Logic level input that controls ALO driver (Pin 13). If AHI (Pin 7) is driven high or not connected externally then ALI controls both ALO and AHO drivers, with dead time set by delay currents at HDEL and LDEL (Pin 8 and 9). DIS (Pin 3) high level input overrides ALI high level input. The pin can be driven by signal levels of 0V to 15V (no greater than VDD). 7 AHI A High-side Input. Logic level input that controls AHO driver (Pin 11). ALI (Pin 6) high level input overrides AHI high level input to prevent half-bridge shoot-through, see Truth Table. DIS (Pin 3) high level input overrides AHI high level input. The pin can be driven by signal levels of 0V to 15V (no greater than VDD). 8 HDEL High-side turn-on DELay. Connect resistor from this pin to VSS to set timing current that defines the turn-on delay of both high-side drivers. The low-side drivers turn-off with no adjustable delay, so the HDEL resistor guarantees no shoot-through by delaying the turn-on of the high-side drivers. HDEL reference voltage is approximately 5.1V. 9 LDEL Low-side turn-on DELay. Connect resistor from this pin to VSS to set timing current that defines the turn-on delay of both low-side drivers. The high-side drivers turn-off with no adjustable delay, so the LDEL resistor guarantees no shoot-through by delaying the turn-on of the low-side drivers. LDEL reference voltage is approximately 5.1V. 10 AHB A High-side Bootstrap supply. External bootstrap diode and capacitor are required. Connect cathode of bootstrap diode and positive side of bootstrap capacitor to this pin. Internal charge pump supplies 30μA out of this pin to maintain bootstrap supply. Internal circuitry clamps the bootstrap supply to approximately 12.8V. 11 AHO A High-side Output. Connect to gate of A High-side power MOSFET. 12 AHS A High-side Source connection. Connect to source of A High-side power MOSFET. Connect negative side of bootstrap capacitor to this pin. 13 ALO A Low-side Output. Connect to gate of A Low-side power MOSFET. 14 ALS A Low-side Source connection. Connect to source of A Low-side power MOSFET. 15 VCC Positive supply to gate drivers. Must be same potential as VDD (Pin 16). Connect to anodes of two bootstrap diodes. 16 VDD Positive supply to lower gate drivers. Must be same potential as VCC (Pin 15). De-couple this pin to VSS (Pin 4). 17 BLS B Low-side Source connection. Connect to source of B Low-side power MOSFET. 18 BLO B Low-side Output. Connect to gate of B Low-side power MOSFET. 19 BHS B High-side Source connection. Connect to source of B High-side power MOSFET. Connect negative side of bootstrap capacitor to this pin. 20 BHO B High-side Output. Connect to gate of B High-side power MOSFET. 7 HIP4081A Timing Diagrams FIGURE 1. INDEPENDENT MODE FIGURE 2. BISTATE MODE FIGURE 3. DISABLE FUNCTION U/V = DIS = 0 XLI XHI XLO XHO TLPHL THPHL THPLH TLPLH TR (10% - 90%) TF (10% - 90%) X = A OR B, A AND B HALVES OF BRIDGE CONTROLLER ARE INDEPENDENT U/V = DIS = 0 XLI XHI = HI OR NOT CONNECTED XLO XHO (10% - 90%) (10% - 90%) U/V OR DIS XLI XHI XLO XHO TDLPLH TDIS TUEN TREF-PW 8 HIP4081A Typical Performance Curves VDD = VCC = VAHB = VBHB = 12V, VSS = VALS = VBLS = VAHS = VBHS = 0V, RHDEL = RLDEL = 100K and TA = 25°C, Unless Otherwise Specified FIGURE 4. QUIESCENT IDD SUPPLY CURRENT vs VDD SUPPLY VOLTAGE FIGURE 5. IDDO, NO-LOAD IDD SUPPLY CURRENT vs FREQUENCY (kHz) FIGURE 6. SIDE A, B FLOATING SUPPLY BIAS CURRENT vs FREQUENCY (LOAD = 1000pF) FIGURE 7. ICCO, NO-LOAD ICC SUPPLY CURRENT vs FREQUENCY (kHz) TEMPERATURE FIGURE 8. IAHB, IBHB, NO-LOAD FLOATING SUPPLY BIAS CURRENT vs FREQUENCY FIGURE 9. ALI, BLI, AHI, BHI LOW LEVEL INPUT CURRENT IIL vs TEMPERATURE 6 8 10 12 14 2.0 4.0 6.0 8.0 10.0 12.0 14.0 IDD SUPPLY CURRENT (mA) VDD SUPPLY VOLTAGE (V) 0 100 200 300 400 500 600 700 800 900 1000 8.0 8.5 9.0 9.5 10.0 10.5 11.0 IDD SUPPLY CURRENT (mA) SWITCHING FREQUENCY (kHz) 0 100 200 300 400 500 600 700 800 900 1000 0.0 5.0 10.0 15.0 20.0 25.0 30.0 FLOATING SUPPLY BIAS CURRENT (mA) SWITCHING FREQUENCY (kHz) 0 100 200 300 400 500 600 700 800 900 1000 0.0 1.0 2.0 3.0 4.0 5.0 ICC SUPPLY CURRENT (mA) SWITCHING FREQUENCY (kHz) 75°C 25°C 125°C -40°C 0°C 0.5 1 1.5 2 2.5 0 200 400 600 800 1000 FLOATING SUPPLY BIAS CURRENT (mA) SWITCHING FREQUENCY (kHz) -50 -25 0 25 50 75 100 125 -120 -110 -100 -90 LOW LEVEL INPUT CURRENT (μA) JUNCTION TEMPERATURE (°C) 9 HIP4081A Typical Performance Curves VDD = VCC = VAHB = VBHB = 12V, VSS = VALS = VBLS = VAHS = VBHS = 0V, RHDEL = RLDEL = 10K and TA = 25°C, Unless Otherwise Specified FIGURE 10. AHB - AHS, BHB - BHS NO-LOAD CHARGE PUMP VOLTAGE vs TEMPERATURE FIGURE 11. UPPER DISABLE TURN-OFF PROPAGATION DELAY TDISHIGH vs TEMPERATURE FIGURE 12. DISABLE TO UPPER ENABLE, TUEN, PROPAGATION DELAY vs TEMPERATURE FIGURE 13. LOWER DISABLE TURN-OFF PROPAGATION DELAY TDISLOW vs TEMPERATURE FIGURE 14. TREF-PW REFRESH PULSE WIDTH vs TEMPERATURE FIGURE 15. DISABLE TO LOWER ENABLE TDLPLH PROPAGATION DELAY vs TEMPERATURE -40 -20 0 20 40 60 80 100 120 10.0 11.0 12.0 13.0 14.0 15.0 NO-LOAD FLOATING CHARGE PUMP VOLTAGE (V) JUNCTION TEMPERATURE (°C) -40 -20 0 20 40 60 80 100 120 30 40 50 60 70 80 PROPAGATION DELAY (ns) JUNCTION TEMPERATURE (°C) 425 450 475 500 525 -50 -25 0 25 50 75 100 125 150 JUNCTION TEMPERATURE (°C) PROPAGATION DELAY (ns) -40 -20 0 20 40 60 80 100 120 30 40 50 60 70 80 PROPAGATION DELAY (ns) JUNCTION TEMPERATURE (°C) 350 375 400 425 450 -50 -25 0 25 50 75 100 125 150 REFRESH PULSE WIDTH (ns) JUNCTION TEMPERATURE (°C) -40 -20 0 20 40 60 80 100 120 20 30 40 50 60 70 80 PROPAGATION DELAY (ns) JUNCTION TEMPERATURE (°C) 10 HIP4081A FIGURE 16. UPPER TURN-OFF PROPAGATION DELAY THPHL vs TEMPERATURE FIGURE 17. UPPER TURN-ON PROPAGATION DELAY THPLH vs TEMPERATURE FIGURE 18. LOWER TURN-OFF PROPAGATION DELAY TLPHL vs TEMPERATURE FIGURE 19. LOWER TURN-ON PROPAGATION DELAY TLPLH vs TEMPERATURE FIGURE 20. GATE DRIVE FALL TIME TF vs TEMPERATURE FIGURE 21. GATE DRIVE RISE TIME TR vs TEMPERATURE Typical Performance Curves VDD = VCC = VAHB = VBHB = 12V, VSS = VALS = VBLS = VAHS = VBHS = 0V, RHDEL = RLDEL = 10K and TA = 25°C, Unless Otherwise Specified (Continued) -40 -20 0 20 40 60 80 100 120 20 30 40 50 60 70 80 PROPAGATION DELAY (ns) JUNCTION TEMPERATURE (°C) -40 -20 0 20 40 60 80 100 120 20 30 40 50 60 70 80 PROPAGATION DELAY (ns) JUNCTION TEMPERATURE (°C) -40 -20 0 20 40 60 80 100 120 20 30 40 50 60 70 80 PROPAGATION DELAY (ns) JUNCTION TEMPERATURE (°C) -40 -20 0 20 40 60 80 100 120 20 30 40 50 60 70 80 PROPAGATION DELAY (ns) JUNCTION TEMPERATURE (°C) -40 -20 0 20 40 60 80 100 120 8.5 9.5 10.5 11.5 12.5 13.5 GATE DRIVE FALL TIME (ns) JUNCTION TEMPERATURE (°C) -40 -20 0 20 40 60 80 100 120 8.5 9.5 10.5 11.5 12.5 13.5 TURN-ON RISE TIME (ns) JUNCTION TEMPERATURE (°C) 11 HIP4081A Typical Performance Curves VDD = VCC = VAHB = VBHB = 12V, VSS = VALS = VBLS = VAHS = VBHS = 0V, RHDEL = RLDEL = 100K and TA = 25°C, Unless Otherwise Specified FIGURE 22. VLDEL, VHDEL VOLTAGE vs TEMPERATURE FIGURE 23. HIGH LEVEL OUTPUT VOLTAGE VCC - VOH vs BIAS SUPPLY AND TEMPERATURE AT 100mA FIGURE 24. LOW LEVEL OUTPUT VOLTAGE VOL vs BIAS SUPPLY AND TEMPERATURE AT 100mA FIGURE 25. PEAK PULLDOWN CURRENT IO vs BIAS SUPPLY VOLTAGE FIGURE 26. PEAK PULLUP CURRENT IO+ vs BIAS SUPPLY VOLTAGE FIGURE 27. LOW VOLTAGE BIAS CURRENT IDD (LESS QUIESCENT COMPONENT) vs FREQUENCY AND GATE LOAD CAPACITANCE -40 -20 0 20 40 60 80 100 120 4.0 4.5 5.0 5.5 6.0 HDEL, LDEL INPUT VOLTAGE (V) JUNCTION TEMPERATURE (°C) 10 12 14 0 250 500 750 1000 1250 1500 VCC - VOH (mV) BIAS SUPPLY VOLTAGE (V) 75°C 25°C 125°C -40°C 0°C 12 14 0 250 500 750 1000 1250 1500 VOL (mV) BIAS SUPPLY VOLTAGE (V) 10 75°C 25°C 125°C -40°C 0°C 6 7 8 9 10 11 12 13 14 15 16 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 GATE DRIVE SINK CURRENT (A) VDD, VCC, VAHB, VBHB (V) 6 7 8 9 10 11 12 13 14 15 16 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 GATE DRIVE SINK CURRENT (A) VDD, VCC, VAHB, VBHB (V) 1 2 5 10 20 50 100 200 500 1000 0.1 1 10 100 500 50 5 0.5 200 20 2 0.2 LOW VOLTAGE BIAS CURRENT (mA) SWITCHING FREQUENCY (kHz) 100pF 1,000pF 10,000pF 3,000pF 12 HIP4081A FIGURE 28. HIGH VOLTAGE LEVEL-SHIFT CURRENT vs FREQUENCY AND BUS VOLTAGE FIGURE 29. UNDERVOLTAGE LOCKOUT vs TEMPERATURE FIGURE 30. MINIMUM DEAD-TIME vs DEL RESISTANCE Typical Performance Curves VDD = VCC = VAHB = VBHB = 12V, VSS = VALS = VBLS = VAHS = VBHS = 0V, RHDEL = RLDEL = 100K and TA = 25°C, Unless Otherwise Specified (Continued) 10 20 50 100 200 500 1000 10 100 1000 20 50 200 500 LEVEL-SHIFT CURRENT (μA) SWITCHING FREQUENCY (kHz) 8.2 8.4 8.6 8.8 9.0 50 25 0 25 50 75 100 125 150 UV+ UVTEMPERATURE (°C) BIAS SUPPLY VOLTAGE, VDD (V) 10 50 100 150 200 250 0 30 60 90 120 150 HDEL/LDEL RESISTANCE (kΩ) DEAD-TIME (ns) 13 HIP4081A 1 2 3 1 2 3 1 2 3 5 6 1 2 3 1 2 13 12 1 2 3 11 10 1 2 3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 L1 R21 Q1 Q3 Q4 R22 L2 R23 C1 C3 JMPR1 R24 R30 R31 C2 R34 C4 CR2 CR1 Q2 JMPR5 JMPR3 JMPR2 JMPR4 R33 C5 C6 CX CY C8 U1 CW CW + B+ IN2 IN1 BO OUT/BLI IN-/AHI COM IN+/ALI +12V +12V BLS AO HEN/BHI ALS CD4069UB CD4069UB CD4069UB CD4069UB HIP4080A/81A SECTION CONTROL LOGIC POWER SECTION DRIVER SECTION AHB AHO LDEL AHS HDEL ALO IN-/AHI ALS IN+/ALI VCC OUT/BLI VDD VSS BLS DIS BLO HEN/BHI BHS BHB BHO R29 U2 U2 U2 U2 3 4 9 8 R32 I O O CD4069UB CD4069UB ENABLE IN U2 U2 NOTES: 1. DEVICE CD4069UB PIN 7 = COM, PIN 14 = +12V. 2. COMPONENTS L1, L2, C1, C2, CX, CY, R30, R31, NOT SUPPLIED. REFER TO APPLICATION NOTE FOR DESCRIPTION OF INPUT LOGIC OPERATION TO DETERMINE JUMPER LOCATIONS FOR JMPR1 - JMPR4. FIGURE 31. HIP4081A EVALUATION PC BOARD SCHEMATIC 14 HIP4081A R22 1 Q3 L1 JMPR2 JMPR5 R31 R33 CR2 R23 R24 R27 R28 R26 1 Q4 1 JMPR3 Q2 U1 R21 GND L2 C3 C4 JMPR4 JMPR1 R30 CR1 U2 R34 R32 I O C8 R29 C7 C6 C5 CY CX 1 Q1 COM +12V B+ IN1 IN2 AHO BHO ALO BLO BLS BLS LDEL HDEL DIS ALS ALS O + + HIP4080/81 FIGURE 32. HIP4081A EVALUATION BOARD SILKSCREEN 15 HIP4081A Dual-In-Line Plastic Packages (PDIP) NOTES: 1. Controlling Dimensions: INCH. In case of conflict between English and Metric dimensions, the inch dimensions control. 2. Dimensioning and tolerancing per ANSI Y14.5M-1982. 3. Symbols are defined in the “MO Series Symbol List” in Section 2.2 of Publication No. 95. 4. Dimensions A, A1 and L are measured with the package seated in JEDEC seating plane gauge GS-3. 5. D, D1, and E1 dimensions do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.010 inch (0.25mm). 6. E and are measured with the leads constrained to be perpendicular to datum . 7. eB and eC are measured at the lead tips with the leads unconstrained. eC must be zero or greater. 8. B1 maximum dimensions do not include dambar protrusions. Dambar protrusions shall not exceed 0.010 inch (0.25mm). 9. N is the maximum number of terminal positions. 10. Corner leads (1, N, N/2 and N/2 + 1) for E8.3, E16.3, E18.3, E28.3, E42.6 will have a B1 dimension of 0.030 - 0.045 inch (0.76 - 1.14mm). eA -CCL E eA C eB eC -BE1 INDEX 1 2 3 N/2 N AREA SEATING BASE PLANE PLANE -CD1 B1 B e D D1 A2 A L A1 -A- 0.010 (0.25) M C A B S E20.3 (JEDEC MS-001-AD ISSUE D) 20 LEAD DUAL-IN-LINE PLASTIC PACKAGE SYMBOL INCHES MILLIMETERS MIN MAX MIN MAX NOTES A - 0.210 - 5.33 4 A1 0.015 - 0.39 - 4 A2 0.115 0.195 2.93 4.95 - B 0.014 0.022 0.356 0.558 - B1 0.045 0.070 1.55 1.77 8 C 0.008 0.014 0.204 0.355 - D 0.980 1.060 24.89 26.9 5 D1 0.005 - 0.13 - 5 E 0.300 0.325 7.62 8.25 6 E1 0.240 0.280 6.10 7.11 5 e 0.100 BSC 2.54 BSC - eA 0.300 BSC 7.62 BSC 6 eB - 0.430 - 10.92 7 L 0.115 0.150 2.93 3.81 4 N 20 20 9 Rev. 0 12/93 16 All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems. Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see www.intersil.com HIP4081A Small Outline Plastic Packages (SOIC) NOTES: 1. Symbols are defined in the “MO Series Symbol List” in Section 2.2 of Publication Number 95. 2. Dimensioning and tolerancing per ANSI Y14.5M-1982. 3. Dimension “D” does not include mold flash, protrusions or gate burrs. Mold flash, protrusion and gate burrs shall not exceed 0.15mm (0.006 inch) per side. 4. Dimension “E” does not include interlead flash or protrusions. Interlead flash and protrusions shall not exceed 0.25mm (0.010 inch) per side. 5. The chamfer on the body is optional. If it is not present, a visual index feature must be located within the crosshatched area. 6. “L” is the length of terminal for soldering to a substrate. 7. “N” is the number of terminal positions. 8. Terminal numbers are shown for reference only. 9. The lead width “B”, as measured 0.36mm (0.014 inch) or greater above the seating plane, shall not exceed a maximum value of 0.61mm (0.024 inch) 10. Controlling dimension: MILLIMETER. Converted inch dimensions are not necessarily exact. INDEX AREA E D N 1 2 3 -B- 0.25(0.010) M C A B S e -AL B M -CA1 A SEATING PLANE 0.10(0.004) h x 45o C H μ 0.25(0.010) M B M α M20.3 (JEDEC MS-013-AC ISSUE C) 20 LEAD WIDE BODY SMALL OUTLINE PLASTIC PACKAGE SYMBOL INCHES MILLIMETERS MIN MAX MIN MAX NOTES A 0.0926 0.1043 2.35 2.65 - A1 0.0040 0.0118 0.10 0.30 - B 0.014 0.019 0.35 0.49 9 C 0.0091 0.0125 0.23 0.32 - D 0.4961 0.5118 12.60 13.00 3 E 0.2914 0.2992 7.40 7.60 4 e 0.050 BSC 1.27 BSC - H 0.394 0.419 10.00 10.65 - h 0.010 0.029 0.25 0.75 5 L 0.016 0.050 0.40 1.27 6 N 20 20 7 α 0o 8o 0o 8o - Rev. 1 1/02 http://www.farnell.com/datasheets/32553.pdf 1 ® FN3663.5 HFA3101 Gilbert Cell UHF Transistor Array The HFA3101 is an all NPN transistor array configured as a Multiplier Cell. Based on Intersil’s bonded wafer UHF-1 SOI process, this array achieves very high fT (10GHz) while maintaining excellent hFE and VBE matching characteristics that have been maximized through careful attention to circuit design and layout, making this product ideal for communication circuits. For use in mixer applications, the cell provides high gain and good cancellation of 2nd order distortion terms. Pinout HFA3101(SOIC) TOP VIEW Features •Pb-free Available as an Option •High Gain Bandwidth Product (fT) . . . . . . . . . . . . . 10GHz •High Power Gain Bandwidth Product. . . . . . . . . . . . 5GHz •Current Gain (hFE). . . . . . . . . . . . . . . . . . . . . . . . . . . . .70 •Low Noise Figure (Transistor) . . . . . . . . . . . . . . . . . 3.5dB •Excellent hFE and VBE Matching •Low Collector Leakage Current . . . . . . . . . . . . . . <0.01nA •Pin to Pin Compatible to UPA101 Applications •Balanced Mixers •Multipliers •Demodulators/Modulators •Automatic Gain Control Circuits •Phase Detectors •Fiber Optic Signal Processing •Wireless Communication Systems •Wide Band Amplification Stages •Radio and Satellite Communications •High Performance Instrumentation Ordering Information PART NUMBER (BRAND) TEMP. RANGE (°C) PACKAGE PKG. DWG. # HFA3101B (H3101B) -40 to 85 8 Ld SOIC M8.15 HFA3101BZ (H3101B) (Note) -40 to 85 8 Ld SOIC (Pb-free) M8.15 HFA3101B96 (H3101B) -40 to 85 8 Ld SOIC Tape and Reel M8.15 HFA3101BZ96 (H3101B) (Note) -40 to 85 8 Ld SOIC Tape and Reel (Pb-free) M8.15 NOTE: Intersil Pb-free products employ special Pb-free material sets; molding compounds/die attach materials and 100% matte tin plate termination finish, which is compatible with both SnPb and Pb-free soldering operations. Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020C. 12348765Q5Q6Q1Q2Q3Q4NOTE: Q5 and Q6 - 2 Paralleled 3μm x 50μm Transistors Q1, Q2, Q3, Q4 - Single 3μm x 50μm Transistors Data Sheet September 2004 CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. 1-888-INTERSIL or 321-724-7143 | Intersil (and design) is a registered trademark of Intersil Americas Inc. Copyright © Intersil Americas Inc. 1998, 2004. All Rights Reserved All other trademarks mentioned are the property of their respective owners. 2 Absolute Maximum Ratings Thermal Information VCEO, Collector to Emitter Voltage . . . . . . . . . . . . . . . . . . . . . . 8.0V VCBO, Collector to Base Voltage. . . . . . . . . . . . . . . . . . . . . . . 12.0V VEBO, Emitter to Base Voltage . . . . . . . . . . . . . . . . . . . . . . . . . 5.5V IC, Collector Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30mA Operating Conditions Temperature Range. . . . . . . . . . . . . . . . . . . . . . . . . . -40oC to 85oC Thermal Resistance (Typical, Note 1)θJA (oC/W) SOIC Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 Maximum Junction Temperature (Die). . . . . . . . . . . . . . . . . . .175oC Maximum Junction Temperature (Plastic Package). . . . . . . . .150oC Maximum Storage Temperature Range. . . . . . . . . . -65oC to 150oC Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . .300oC (SOIC - Lead Tips Only) CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. NOTE: 1. θJA is measured with the component mounted on an evaluation PC board in free air. Electrical SpecificationsTA = 25oC PARAMETER TEST CONDITIONS (NOTE 2) TEST LEVEL MIN TYP MAX UNITS Collector to Base Breakdown Voltage, V(BR)CBO, Q1 thru Q6 IC = 100μA, IE = 0 A 12 18 - V Collector to Emitter Breakdown Voltage, V(BR)CEO, Q5 and Q6 IC = 100μA, IB = 0 A 8 12 - V Emitter to Base Breakdown Voltage, V(BR)EBO, Q1 thru Q6 IE = 10μA, IC = 0 A 5.5 6 - V Collector Cutoff Current, ICBO, Q1 thru Q4 VCB = 8V, IE = 0 A - 0.1 10 nA Emitter Cutoff Current, IEBO, Q5 and Q6 VEB = 1V, IC = 0 A - - 200 nA DC Current Gain, hFE, Q1 thru Q6 IC = 10mA, VCE = 3V A 40 70 - Collector to Base Capacitance, CCB Q1 thru Q4 VCB = 5V, f = 1MHz C - 0.300 - pF Q5 and Q6 - 0.600 - pF Emitter to Base Capacitance, CEB Q1 thru Q4 VEB = 0, f = 1MHz B - 0.200 - pF Q5 and Q6 - 0.400 - pF Current Gain-Bandwidth Product, fT Q1 thru Q4 IC = 10mA, VCE = 5V C - 10 - GHz Q5 and Q6 IC = 20mA, VCE = 5V C - 10 - GHz Power Gain-Bandwidth Product, fMAX Q1 thru Q4 IC = 10mA, VCE = 5V C - 5 - GHz Q5 and Q6 IC = 20mA, VCE = 5V C - 5 - GHz Available Gain at Minimum Noise Figure, GNFMIN, Q5 and Q6 IC = 5mA, VCE = 3V f = 0.5GHz C - 17.5 - dB f = 1.0GHz C - 11.9 - dB Minimum Noise Figure, NFMIN, Q5 and Q6 IC = 5mA, VCE = 3V f = 0.5GHz C - 1.7 - dB f = 1.0GHz C - 2.0 - dB 50Ω Noise Figure, NF50Ω, Q5 and Q6 IC = 5mA, VCE = 3V f = 0.5GHz C - 2.25 - dB f = 1.0GHz C - 2.5 - dB DC Current Gain Matching, hFE1/hFE2, Q1 and Q2, Q3 and Q4, and Q5 and Q6 IC = 10mA, VCE = 3V A 0.9 1.0 1.1 Input Offset Voltage, VOS, (Q1 and Q2), (Q3 and Q4), (Q5 and Q6) IC = 10mA, VCE = 3V A - 1.5 5 mV Input Offset Current, IC, (Q1 and Q2), (Q3 and Q4), (Q5 and Q6) IC = 10mA, VCE = 3V A - 5 25 μA Input Offset Voltage TC, dVOS/dT, (Q1 and Q2, Q3 and Q4, Q5 and Q6) IC = 10mA, VCE = 3V C - 0.5 - μV/oC Collector to Collector Leakage, ITRENCH-LEAKAGE ΔVTEST = 5V B - 0.01 - nA NOTE: 2. Test Level: A. Production Tested, B. Typical or Guaranteed Limit Based on Characterization, C. Design Typical for Information Only. HFA3101 3-3 PSPICE Model for a 3 μm x 50μm Transistor .Model NUHFARRY NPN + (IS = 1.840E-16 XTI = 3.000E+00 EG = 1.110E+00 VAF = 7.200E+01 + VAR = 4.500E+00 BF = 1.036E+02 ISE = 1.686E-19 NE = 1.400E+00 + IKF = 5.400E-02 XTB = 0.000E+00 BR = 1.000E+01 ISC = 1.605E-14 + NC = 1.800E+00 IKR = 5.400E-02 RC = 1.140E+01 CJC = 3.980E-13 + MJC = 2.400E-01 VJC = 9.700E-01 FC = 5.000E-01 CJE = 2.400E-13 + MJE = 5.100E-01 VJE = 8.690E-01 TR = 4.000E-09 TF = 10.51E-12 + ITF = 3.500E-02 XTF = 2.300E+00 VTF = 3.500E+00 PTF = 0.000E+00 + XCJC = 9.000E-01 CJS = 1.689E-13 VJS = 9.982E-01 MJS = 0.000E+00 + RE = 1.848E+00 RB = 5.007E+01 RBM = 1.974E+00 KF = 0.000E+00 + AF = 1.000E+00) Common Emitter S-Parameters of 3 μm x 50μm Transistor FREQ. (Hz) |S11| PHASE(S11) |S12| PHASE(S12) |S21| PHASE(S21) |S22| PHASE(S22) VCE = 5V and IC = 5mA 1.0E+08 0.83 -11.78 1.41E-02 78.88 11.07 168.57 0.97 -11.05 2.0E+08 0.79 -22.82 2.69E-02 68.63 10.51 157.89 0.93 -21.35 3.0E+08 0.73 -32.64 3.75E-02 59.58 9.75 148.44 0.86 -30.44 4.0E+08 0.67 -41.08 4.57E-02 51.90 8.91 140.36 0.79 -38.16 5.0E+08 0.61 -48.23 5.19E-02 45.50 8.10 133.56 0.73 -44.59 6.0E+08 0.55 -54.27 5.65E-02 40.21 7.35 127.88 0.67 -49.93 7.0E+08 0.50 -59.41 6.00E-02 35.82 6.69 123.10 0.62 -54.37 8.0E+08 0.46 -63.81 6.27E-02 32.15 6.11 119.04 0.57 -58.10 9.0E+08 0.42 -67.63 6.47E-02 29.07 5.61 115.57 0.53 -61.25 1.0E+09 0.39 -70.98 6.63E-02 26.45 5.17 112.55 0.50 -63.96 1.1E+09 0.36 -73.95 6.75E-02 24.19 4.79 109.91 0.47 -66.31 1.2E+09 0.34 -76.62 6.85E-02 22.24 4.45 107.57 0.45 -68.37 1.3E+09 0.32 -79.04 6.93E-02 20.53 4.15 105.47 0.43 -70.19 1.4E+09 0.30 -81.25 7.00E-02 19.02 3.89 103.57 0.41 -71.83 1.5E+09 0.28 -83.28 7.05E-02 17.69 3.66 101.84 0.40 -73.31 1.6E+09 0.27 -85.17 7.10E-02 16.49 3.45 100.26 0.39 -74.66 1.7E+09 0.25 -86.92 7.13E-02 15.41 3.27 98.79 0.38 -75.90 1.8E+09 0.24 -88.57 7.17E-02 14.43 3.10 97.43 0.37 -77.05 1.9E+09 0.23 -90.12 7.19E-02 13.54 2.94 96.15 0.36 -78.12 2.0E+09 0.22 -91.59 7.21E-02 12.73 2.80 94.95 0.35 -79.13 2.1E+09 0.21 -92.98 7.23E-02 11.98 2.68 93.81 0.35 -80.09 2.2E+09 0.20 -94.30 7.25E-02 11.29 2.56 92.73 0.34 -80.99 2.3E+09 0.20 -95.57 7.27E-02 10.64 2.45 91.70 0.34 -81.85 2.4E+09 0.19 -96.78 7.28E-02 10.05 2.35 90.72 0.33 -82.68 2.5E+09 0.18 -97.93 7.29E-02 9.49 2.26 89.78 0.33 -83.47 2.6E+09 0.18 -99.05 7.30E-02 8.96 2.18 88.87 0.33 -84.23 2.7E+09 0.17 -100.12 7.31E-02 8.47 2.10 88.00 0.33 -84.97 HFA3101 4 2.8E+09 0.17 -101.15 7.31E-02 8.01 2.02 87.15 0.33 -85.68 2.9E+09 0.16 -102.15 7.32E-02 7.57 1.96 86.33 0.33 -86.37 3.0E+09 0.16 -103.11 7.32E-02 7.16 1.89 85.54 0.33 -87.05 VCE = 5V and IC = 10mA 1.0E+08 0.72 -16.43 1.27E-02 75.41 15.12 165.22 0.95 -14.26 2.0E+08 0.67 -31.26 2.34E-02 62.89 13.90 152.04 0.88 -26.95 3.0E+08 0.60 -43.76 3.13E-02 52.58 12.39 141.18 0.79 -37.31 4.0E+08 0.53 -54.00 3.68E-02 44.50 10.92 132.57 0.70 -45.45 5.0E+08 0.47 -62.38 4.05E-02 38.23 9.62 125.78 0.63 -51.77 6.0E+08 0.42 -69.35 4.31E-02 33.34 8.53 120.37 0.57 -56.72 7.0E+08 0.37 -75.26 4.49E-02 29.47 7.62 116.00 0.51 -60.65 8.0E+08 0.34 -80.36 4.63E-02 26.37 6.86 112.39 0.47 -63.85 9.0E+08 0.31 -84.84 4.72E-02 23.84 6.22 109.36 0.44 -66.49 1.0E+09 0.29 -88.83 4.80E-02 21.75 5.69 106.77 0.41 -68.71 1.1E+09 0.27 -92.44 4.86E-02 20.00 5.23 104.51 0.39 -70.62 1.2E+09 0.25 -95.73 4.90E-02 18.52 4.83 102.53 0.37 -72.28 1.3E+09 0.24 -98.75 4.94E-02 17.25 4.49 100.75 0.35 -73.76 1.4E+09 0.22 -101.55 4.97E-02 16.15 4.19 99.16 0.34 -75.08 1.5E+09 0.21 -104.15 4.99E-02 15.19 3.93 97.70 0.33 -76.28 1.6E+09 0.20 -106.57 5.01E-02 14.34 3.70 96.36 0.32 -77.38 1.7E+09 0.20 -108.85 5.03E-02 13.60 3.49 95.12 0.31 -78.41 1.8E+09 0.19 -110.98 5.05E-02 12.94 3.30 93.96 0.31 -79.37 1.9E+09 0.18 -113.00 5.06E-02 12.34 3.13 92.87 0.30 -80.27 2.0E+09 0.18 -114.90 5.07E-02 11.81 2.98 91.85 0.30 -81.13 2.1E+09 0.17 -116.69 5.08E-02 11.33 2.84 90.87 0.30 -81.95 2.2E+09 0.17 -118.39 5.09E-02 10.89 2.72 89.94 0.29 -82.74 2.3E+09 0.16 -120.01 5.10E-02 10.50 2.60 89.06 0.29 -83.50 2.4E+09 0.16 -121.54 5.11E-02 10.13 2.49 88.21 0.29 -84.24 2.5E+09 0.16 -122.99 5.12E-02 9.80 2.39 87.39 0.29 -84.95 2.6E+09 0.15 -124.37 5.12E-02 9.49 2.30 86.60 0.29 -85.64 2.7E+09 0.15 -125.69 5.13E-02 9.21 2.22 85.83 0.29 -86.32 2.8E+09 0.15 -126.94 5.13E-02 8.95 2.14 85.09 0.29 -86.98 2.9E+09 0.15 -128.14 5.14E-02 8.71 2.06 84.36 0.29 -87.62 3.0E+09 0.14 -129.27 5.15E-02 8.49 1.99 83.66 0.29 -88.25 Common Emitter S-Parameters of 3 μm x 50 μm Transistor (Continued) FREQ. (Hz) |S11| PHASE(S11) |S12| PHASE(S12) |S21| PHASE(S21) |S22| PHASE(S22) HFA3101 3-5 Application Information The HFA3101 array is a very versatile RF Building block. It has been carefully laid out to improve its matching properties, bringing the distortion due to area mismatches, thermal distribution, betas and ohmic resistances to a minimum. The cell is equivalent to two differential stages built as two “variable transconductance multipliers” in parallel, with their outputs cross coupled. This configuration is well known in the industry as a Gilbert Cell which enables a four quadrant multiplication operation. Due to the input dynamic range restrictions for the input levels at the upper quad transistors and lower tail transistors, the HFA3101 cell has restricted use as a linear four quadrant multiplier. However, its configuration is well suited for uses where its linear response is limited to one of the inputs only, as in modulators or mixer circuit applications. Examples of these circuits are up converters, down converters, frequency doublers and frequency/phase detectors. Although linearization is still an issue for the lower pair input, emitter degeneration can be used to improve the dynamic range and consequent linearity. The HFA3101 has the lower pair emitters brought to external pins for this purpose. In modulators applications, the upper quad transistors are used in a switching mode where the pairs Q1/Q2 and Q3/Q4 act as non saturating high speed switches. These switches are controlled by the signal often referred as the carrier input. The signal driving the lower pair Q5/Q6 is commonly used as the modulating input. This signal can be linearly transferred to the output by either the use of low signal levels (Well below the thermal voltage of 26mV) or by the use of emitter degeneration. The chopped waveform appearing at the output of the upper pair (Q1 to Q4) resembles a signal that is multiplied by +1 or -1 at every half cycle of the switching waveform. Figure 1 shows the typical input waveforms where the frequency of the carrier is higher than the modulating signal. The output waveform shows a typical suppressed carrier output of an up converter or an AM signal generator. Carrier suppression capability is a property of the well known Balanced modulator in which the output must be zero when one or the other input (carrier or modulating signal) is equal to zero. however, at very high frequencies, high frequency mismatches and AC offsets are always present and the suppression capability is often degraded causing carrier and modulating feedthrough to be present. Being a frequency translation circuit, the balanced modulator has the properties of translating the modulating frequency (ωM) to the carrier frequency (ωC), generating the two side bands ωU = ωC + ωM and ωL = ωC - ωM. Figure 2 shows some translating schemes being used by balanced mixers. CARRIER SIGNALMODULATING SIGNALDIFFERENTIAL OUTPUT+1-1FIGURE 1. TYPICAL MODULATOR SIGNALS FIGURE 2A. UP CONVERSION OR SUPPRESSED CARRIER AM FIGURE 2B. DOWN CONVERSION FIGURE 2C. ZERO IF OR DIRECT DOWN CONVERSION FIGURE 2. MODULATOR FREQUENCY SPECTRUM ωC + ωMωC - ωMωC IF (ωC - ωM)FOLDED BACKωMωC BASEBANDωCωM HFA3101 6 The use of the HFA3101 as modulators has several advantages when compared to its counterpart, the diode doublebalanced mixer, in which it is required to receive enough energy to drive the diodes into a switching mode and has also some requirements depending on the frequency range desired, of different transformers to suit specific frequency responses. The HFA3101 requires very low driving capabilities for its carrier input and its frequency response is limited by the fT of the devices, the design and the layout techniques being utilized. Up conversion uses, for UHF transmitters for example, can be performed by injecting a modulating input in the range of 45MHz to 130MHz that carries the information often called IF (Intermediate frequency) for up conversion (The IF signal has been previously modulated by some modulation scheme from a baseband signal of audio or digital information) and by injecting the signal of a local oscillator of a much higher frequency range from 600MHz to 1.2GHz into the carrier input. Using the example of a 850MHz carrier input and a 70MHz IF, the output spectrum will contain a upper side band of 920MHz, a lower side band of 780MHz and some of the carrier (850MHz) and IF (70MHz) feedthrough. A Band pass filter at the output can attenuate the undesirable signals and the 920MHz signal can be routed to a transmitter RF power amplifier. Down conversion, as the name implies, is the process used to translate a higher frequency signal to a lower frequency range conserving the modulation information contained in the higher frequency signal. One very common typical down conversion use for example, is for superheterodyne radio receivers where a translated lower frequency often referred as intermediate frequency (IF) is used for detection or demodulation of the baseband signal. Other application uses include down conversion for special filtering using frequency translation methods. An oscillator referred as the local oscillator (LO) drives the upper quad transistors of the cell with a frequency called ωC. The lower pair is driven by the RF signal of frequency ωM to be translated to a lower frequency IF. The spectrum of the IF output will contain the sum and difference of the frequencies ωC and ωM. Notice that the difference can become negative when the frequency of the local oscillator is lower than the incoming frequency and the signal is folded back as in Figure 2. NOTE: The acronyms RF, IF and LO are often interchanged in the industry depending on the application of the cell as mixers or modulators. The output of the cell also contains multiples of the frequency of the signal being fed to the upper quad pair of transistors because of the switching action equivalent to a square wave multiplication. In practice, however, not only the odd multiples in the case of a symmetrical square wave but some of the even multiples will also appear at the output spectrum due to the nature of the actual switching waveform and high frequency performance. By-products of the form M*ωC + N*ωM with M and N being positive or negative integers are also expected to be present at the output and their levels are carefully examined and minimized by the design. This distortion is considered one of the figures of merit for a mixer application. The process of frequency doubling is also understood by having the same signal being fed to both modulating and carrier ports. The output frequency will be the sum of ωC and ωM which is equivalent to the product of the input frequency by 2 and a zero Hz or DC frequency equivalent to the difference of ωC and ωM. Figure 2 also shows one technique in use today where a process of down conversion named zero IF is made by using a local oscillator with a very pure signal frequency equal to the incoming RF frequency signal that contains a baseband (audio or digital signal) modulation. Although complex, the extraction or detection of the signal is straightforward. Another useful application of the HFA3101 is its use as a high frequency phase detector where the two signals are fed to the carrier and modulation ports and the DC information is extracted from its output. In this case, both ports are utilized in a switching mode or overdrive, such that the process of multiplication takes place in a quasi digital form (2 square waves). One application of a phase detector is frequency or phase demodulation where the FM signal is split before the modulating and carrier ports. The lower input port is always 90 degrees apart from the carrier input signal through a high Q tuned phase shift network. The network, being tuned for a precise 90 degrees shift at a nominal frequency, will set the two signals 90 degrees apart and a quiescent output DC level will be present at the output. When the input signal is frequency modulated, the phase shift of the signal coming from the network will deviate from 90 degrees proportional to the frequency deviation of the FM signal and a DC variation at the output will take place, resembling the demodulated FM signal. The HFA3101 could also be used for quadrature detection, (I/Q demodulation), AGC control with limited range, low level multiplication to name a few other applications. Biasing Various biasing schemes can be employed for use with the HFA3101. Figure 3 shows the most common schemes. The biasing method is a choice of the designer when cost, thermal dependence, voltage overheads and DC balancing properties are taken into consideration. Figure 3A shows the simplest form of biasing the HFA3101. The current source required for the lower pair is set by the voltage across the resistor RBIAS less a VBE drop of the lower transistor. To increase the overhead, collector resistors are substituted by an RF choke as the upper pair functions as a current source for AC signals. The bases of the upper and lower transistors are biased by RB1 and RB2 respectively. The voltage drop across the resistor R2 must be higher than a VBE with an increase sufficient to assure that the collector to base junctions of the lower pair are always reverse biased. Notice that this same voltage also sets the VCE of operation of the lower pair which is important for the optimization of gain. Resistors REE are nominally zero for applications where the input signals are well below 25mV peak. Resistors REE are used to increase the linearity HFA3101 3-7 of the circuit upon higher level signals. The drop across REE must be taken into consideration when setting the current source value. Figure 3B depicts the use of a common resistor sharing the current through the cell which is used for temperature compensation as the lower pair VBE drop at the rate of -2mV/oC. Figure 3C uses a split supply. Design Example: Down Converter Mixer Figure 4 shows an example of a low cost mixer for cellular applications. The design flexibility of the HFA3101 is demonstrated by a low cost, and low voltage mixer application at the 900MHz range. The choice of good quality chip components with their self resonance outside the boundaries of the application are important. The design has been optimized to accommodate the evaluation of the same layout for various quiescent current values and lower supply voltages. The choice of RE became important for the available overhead and also for maintaining an AC true impedance for high frequency signals. The value of 27Ω has been found to be the optimum minimum for the application. The input impedances of the HFA3101 base input ports are high enough to permit their termination with 50Ω resistors. Notice the AC termination by decoupling the bias circuit through good quality capacitors. The choice of the bias has been related to the available power supply voltage with the values of R1, R2 and RBIAS splitting the voltages for optimum VCE values. For evaluation of the cell quiescent currents, the voltage at the emitter resistor RE has been recorded. The gain of the circuit, being a function of the load and the combined emitter resistances at high frequencies have been kept to a maximum by the use of an output match network. The high output impedance of the HFA3101 permits FIGURE 3A. FIGURE 3B. FIGURE 3C. FIGURE 3. VCCRB1R1R2RBIASREREEREELCH12348765Q5Q6Q1Q2Q3Q4RB2 VCCRB1R1R2RBIASREREEREE12348765Q5Q6Q1Q2Q3Q4RB2RCLCH VEERB1R1RBIASREREEREE12348765Q5Q6Q1Q2Q3Q4RB2VCCLCHR2 27LCH12348765Q5Q6Q1Q2Q3Q4VCC390nH0.010.011102200.1VCC3V75MHz2K5p TO 12pLO IN51825MHz51900MHzIF OUTRF IN0.010.010.01330FIGURE 4. 3V DOWN CONVERTER APPLICATION HFA3101 8 broadband match if so desired at 50Ω (RL = 50Ω to 2kΩ) as well as with tuned medium Q matching networks (L, T etc.). Stability The cell, by its nature, has very high gain and precautions must be taken to account for the combination of signal reflections, gain, layout and package parasitics. The rule of thumb of avoiding reflected waves must be observed. It is important to assure good matching between the mixer stage and its front end. Laboratory measurements have shown some susceptibility for oscillation at the upper quad transistors input. Any LO prefiltering has to be designed such the return loss is maintained within acceptable limits specially at high frequencies. Typical off the shelf filters exhibits very poor return loss for signals outside the passband. It is suggested that a “pad” or a broadband resistive network be used to interface the LO port with a filter. The inclusion of a parallel 2K resistor in the load decreases the gain slightly which improves the stability factor and also improves the distortion products (output intermodulation or 3rd order intercept). The employment of good RF techniques shall suffice the stability requirements. Evaluation The evaluation of the HFA3101 in a mixer configuration is presented in Figures 6 to 11, Table 1 and Table 2. The layout is depicted in Figure 5. The output matching network has been designed from data taken at the output port at various test frequencies with the setup as in Table 1. S22 characterization is enough to assure the calculation of L, T or transmission line matching networks. FIGURE 5. UP/DOWN CONVERTER LAYOUT, 400%; MATERIAL G10, 0.031 TABLE 1. S22 PARAMETERS FOR DOWN CONVERSION, LCH = 10μH FREQUENCY RESISTANCE REACTANCE 10MHz 265Ω 615Ω 45MHz 420Ω - 735Ω 75MHz 122Ω - 432Ω 100MHz 67Ω - 320Ω TABLE 2. TYPICAL PARAMETERS FOR DOWN CONVERSION, LCH = 10μH PARAMETER LO LEVEL VCC = 3V, IBIAS = 8mA Power Gain -6dBm 8.5dB TOI Output -6dBm 11.5dBm NF SSB -6dBm 14.5dB Power Gain 0dBm 8.6dB TOI Output 0dBm 11dBm NF SSB 0dBm 15dB PARAMETER LO LEVEL VCC = 4V, IBIAS = 19mA Power Gain -6dBm 10dB TOI Output -6dBm 13dBm NF SSB -6dBm 20dB Power Gain 0dBm 11dB TOI Output 0dBm 12.5dBm NF SSB 0dBm 24dB TABLE 3. TYPICAL VALUES OF S22 FOR THE OUTPUT PORT. LCH = 390nH IBIAS = 8mA (SET UP OF FIGURE 11) FREQUENCY RESISTANCE REACTANCE 300MHz 22Ω -115Ω 600MHz 7.5Ω -43Ω 900MHz 5.2Ω -14Ω 1.1GHz 3.9Ω 0Ω TABLE 4. TYPICAL VALUES OF S22. LCH = 390nH, IBIAS = 18mA FREQUENCY RESISTANCE REACTANCE 300MHz 23.5Ω -110Ω 600MHz 10.3Ω -39Ω 900MHz 8.7Ω -14Ω 1.1GHz 8Ω 0Ω HFA3101 3-9 Up Converter Example An application for a up converter as well as a frequency multiplier can be demonstrated using the same layout, with an addition of matching components. The output port S22 must be characterized for proper matching procedures and depending on the frequency desired for the output, transmission line transformations can be designed. The return loss of the input ports maintain acceptable values in excess of 1.2GHz which can permit the evaluation of a frequency doubler to 2.4GHz if so desired. The addition of the resistors REE can increase considerably the dynamic range of the up converter as demonstrated at Figure 13. The evaluation results depicted in Table 5 have been obtained by a triple stub tuner as a matching network for the output due to the layout constraints. Based on the evaluation results it is clear that the cell requires a higher Bias current for overall performance. FIGURE 6. OUTPUT PORT S22 TEST SET UP FIGURE 7. LO PORT RETURN LOSS FIGURE 8. RF PORT RETURN LOSS FIGURE 9. IF PORT RETURN LOSS, WITH MATCHING NETWORK FIGURE 10. TYPICAL IN BAND OUTPUT SPECTRUM, VCC = 3V FIGURE 11. TYPICAL OUT OF BAND OUTPUT SPECTRUM VCC 3V0.1LCH12348765Q5Q6Q1Q2Q3Q42K S110dB5dB/DIV100MHz1.1GHzLOG MAG3V4V 0dB10dB/DIV100MHz1.1GHzS11LOG MAG 0dB5dB/DIV10MHzS22LOG MAG110MHz 76MHz64M11*LO - 10RF88M12RF - 13LOIFSPAN40MHzLO = 825MHz -6dBmRF = 901MHz - 25dBm-17dBm10dB/DIV 67575082590097510dB/DIVLO + 2RFSPAN500MHzLO - 2RF-26dBm-36dBm-58dBm-53dBmLO = 825MHz -6dBmRF = 900MHz -25dBm HFA3101 10 Design Example: Up Converter Mixer Figure 12 shows an example of an up converter for cellular applications. Conclusion The HFA3101 offers the designer a number of choices and different applications as a powerful RF building block. Although isolation is degraded from the theoretical results for the cell due to the unbalanced, nondifferential input schemes being used, a number of advantages can be taken into consideration like cost, flexibility, low power and small outline when deciding for a design. TABLE 5. TYPICAL PARAMETERS FOR THE UP CONVERTER EXAMPLE PARAMETER VCC = 3V, IBIAS = 8mA VCC = 4V, IBIAS = 18mA Power Gain, LO = -6dBm 3dB 5.5dBm Power Gain, LO = 0dBm 4dB 7.2dB RF Isolation, LO = 0dBm 15dBc 22dBc LO Isolation, LO = 0dBm 28dBc 28dBc FIGURE 12. UP CONVERTER FIGURE 13. TYPICAL SPECTRUM PERFORMANCE OF UP CONVERTER RF IN0.01390nH900MHz5.2nHVCC 3V0.112348765Q5Q6Q1Q2Q3Q411p0.0175MHz27220REEREE51LO INVCC0.010.011103303V825MHz0.010.015147-100pF 9019128902LO - 10RF12RFOUTPUT WITHOUT EMITTER DEGENERATIONRF = 76MHzLO = 825MHzSPAN50MHzOUTPUT WITH EMITTER DEGENERATION REE = 4.7Ω825900976EXPANDED SPECTRUM REE = 4.7Ω HFA3101 3-11 Typical Performance Curves for Transistors FIGURE 14. IC vs VCE FIGURE 15. HFE vs IC FIGURE 16. GUMMEL PLOT FIGURE 17. fT vs IC FIGURE 18. GAIN AND NOISE FIGURE vs FREQUENCY NOTE: Figures 14 through 18 are only for Q5 and Q6. VCE (V)IC (mA)02.06.04.0070605040302010IB = 800μAIB = 1mAIB = 200μAIB = 400μAIB = 600μA hFEIC ( A)10-1010-810-610-410-2100140120100806040200VCE = 5V VBE (V)IC AND IB (A)10-1010-810-610-410-210010-120.200.400.600.801.0VCE = 3V IC (A)fT (GHz)12108642010-410-310-210-1 20181614121046NOISE FIGURE ( dB)FREQUENCY (GHz)|S21| (dB)0.51.51.02.002.53.04.84.64.44.24.03.83.63.43.28 HFA3101 12 All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification. Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see web site www.intersil.com Die Characteristics PROCESS UHF-1 DIE DIMENSIONS: 53 mils x 52 mils x 14 mils 1340μm x 1320μm x 355.6μm METALLIZATION: Type: Metal 1: AlCu(2%)/TiW Thickness: Metal 1: 8kÅ ±0.5kÅ Type: Metal 2: AlCu(2%) Thickness: Metal 2: 16kÅ ±0.8kÅ PASSIVATION: Type: Nitride Thickness: 4kÅ ±0.5kÅ SUBSTRATE POTENTIAL (Powered Up): Floating Metallization Mask Layout HFA31011122334455667788 HFA3101 16-Bit Low Power Sigma-Delta ADC Data Sheet AD7171 Rev. A Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2009–2013 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com FEATURES Output data rate: 125 Hz Pin-programmable power-down and reset Status function Internal clock oscillator Current: 135 μA Power supply: 2.7 V to 5.25 V –40°C to +105°C temperature range Package: 10-lead 3 mm x 3 mm LFCSP INTERFACE 2-wire serial (read-only device) SPI compatible Schmitt trigger on SCLK APPLICATIONS Weigh scales Pressure measurement Industrial process control Portable instrumentation FUNCTIONAL BLOCK DIAGRAM 16-BIT Σ-ΔADCAD7171GNDINTERNALCLOCKVDDREFIN(+)AIN(+)AIN(–)REFIN(–)DOUT/RDYSCLKPDRST08417-001 Figure 1. Table 1. VREF = VDD RMS Noise P-P Noise P-P Resolution ENOB 5 V 11.5 μV 76 μV 16 bits 16 bits 3 V 6.9 μV 45 μV 16 bits 16 bits GENERAL DESCRIPTION The AD7171 is a very low power 16-bit analog-to-digital converter (ADC). It contains a precision 16-bit sigma-delta (Σ-Δ) ADC and an on-chip oscillator. Consuming only 135 μA, the AD7171 is particularly suitable for portable or battery operated products where very low power is a requirement. The AD7171 also has a power-down mode in which the device consumes 5 μA, thus increasing the battery life of the product. For ease-of-use, all the features of the AD7171 are controlled by dedicated pins. Each time a data read occurs, eight status bits are appended to the 16-bit conversion. These status bits contain a pattern sequence that can be used to confirm the validity of the serial transfer. The output data rate of the AD7171 is 125 Hz, whereas the settling time is 24 ms. The AD7171 has one differential input and a gain of 1. This is useful in applications where the user needs to use an external amplifier to implement system-specific filtering or gain requirements. The AD7171 operates with a power supply from 2.7 V to 5.25 V. It is available in a 10-lead LFCSP package. The AD7170 is a 12-bit version of the AD7171. It has the same feature set as the AD7171 and is pin-for-pin compatible. 1 Low-Noise 24-bit Delta Sigma ADC ISL26132, ISL26134 The ISL26132 and ISL26134 are complete analog front ends for high resolution measurement applications. These 24-bit Delta-Sigma Analog-to-Digital Converters include a very low-noise amplifier and are available as either two or four differential multiplexer inputs. The devices offer the same pinout as the ADS1232 and ADS1234 devices and are functionally compatible with these devices. The ISL26132 and ISL26134 offer improved noise performance at 10Sps and 80Sps conversion rates. The on-chip low-noise programmable-gain amplifier provides gains of 1x/2x/64x/128x. The 128x gain setting provides an input range of ±9.766mVFS when using a 2.5V reference. The high input impedance allows direct connection of sensors such as load cell bridges to ensure the specified measurement accuracy without additional circuitry. The inputs accept signals 100mV outside the supply rails when the device is set for unity gain. The Delta-Sigma ADC features a third order modulator providing up to 21.6-bit noise-free performance. The device can be operated from an external clock source, crystal (4.9152MHz typical), or the on-chip oscillator. The two channel ISL26132 is available in a 24 Ld TSSOP package and the four channel ISL26134 is available in a 28 Ld TSSOP package. Both are specified for operation over the automotive temperature range (-40°C to +105°C). Features • Up to 21.6 Noise-free bits. • Low Noise Amplifier with Gains of 1x/2x/64x/128x • RMS noise: 10.2nV @ 10Sps (PGA = 128x) • Linearity Error: 0.0002% FS • Simultaneous rejection of 50Hz and 60Hz (@ 10Sps) • Two (ISL26132) or four (ISL26134) channel differential input multiplexer • On-chip temperature sensor (ISL26132) • Automatic clock source detection • Simple interface to read conversions • +5V Analog, +5 to +2.7V Digital Supplies • Pb-Free (RoHS Compliant) • TSSOP packages: ISL26132, 24 pin; ISL26134, 28 pin Applications • Weigh Scales • Temperature Monitors and Controls • Industrial Process Control • Pressure Sensors ADC PGA 1x/2x/64x/ 128x INTERNAL CLOCK SDO/RDY SCLK AVDD DVDD AGND DGND XTALIN/CLOCK VREF+ EXTERNAL OSCILLATOR XTALOUT A0 A1/TEMP VREFAIN1+ AIN1- AIN2+ AIN2- AIN3+ AIN3- AIN4+ AIN4- INPUT MULTIPLEXER ISL26134 Only CAP CAP GAIN0 GAIN1 PWDN SPEED DGND DGND NOTE for A1/TEMP pin: Functions as A1 on ISL26134; Functions as TEMP on ISL26132 FIGURE 1. BLOCK DIAGRAM September 9, 2011 FN6954.1 CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. 1-888-INTERSIL or 1-888-468-3774 |Copyright Intersil Americas Inc. 2011. All Rights Reserved Intersil (and design) is a trademark owned by Intersil Corporation or one of its subsidiaries. All other trademarks mentioned are the property of their respective owners. ISL26132, ISL26134 2 FN6954.1 September 9, 2011 Ordering Information PART NUMBER (Notes 2, 3) PART MARKING TEMPERATURE RANGE (°C) PACKAGE (Pb-free) PKG. DWG NUMBER ISL26132AVZ 26132 AVZ -40 to +105 24 Ld TSSOP M24.173 ISL26132AVZ-T (Note 1) 26132 AVZ -40 to +105 24 Ld TSSOP (Tape & Reel) M24.173 ISL26132AVZ-T7A (Note 1) 26132 AVZ -40 to +105 24 Ld TSSOP (Tape & Reel) M24.173 ISL26134AVZ 26134 AVZ -40 to +105 28 Ld TSSOP M28.173 ISL26134AVZ-T (Note 1) 26134 AVZ -40 to +105 28 Ld TSSOP (Tape & Reel) M28.173 ISL26134AVZ-T7A (Note 1) 26134 AVZ -40 to +105 28 Ld TSSOP (Tape & Reel) M28.173 ISL26134AV28EV1Z Evaluation Board NOTES: 1. Please refer to TB347 for details on reel specifications. 2. These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020. 3. For Moisture Sensitivity Level (MSL), please see device information page for ISL26132, ISL26134. For more information on MSL please see techbrief TB363. TABLE 1. KEY DIFFERENCES OF PARTS PART NUMBER NUMBER OF CHANNELS ON-CHIP TEMPERATURE SENSOR NUMBER OF PINS ISL26132 2 YES 24 ISL26134 4 NO 28 Pin Configurations ISL26132 (24 LD TSSOP) TOP VIEW ISL26134 (28 LD TSSOP) TOP VIEW 1 2 3 4 5 6 7 8 9 10 11 12 16 17 18 19 20 21 22 23 24 15 14 13 DVDD DGND XTALIN/CLOCK XTALOUT DGND DGND TEMP A0 CAP CAP AIN1+ AIN1- SDO/RDY PDWN SPEED GAIN1 GAIN0 AGND VREFAIN2+ AIN2- SCLK AVDD VREF+ 28 27 26 25 24 23 22 21 20 19 18 17 16 15 DVDD DGND XTALIN/CLOCK XTALOUT DGND DGND A1 A0 CAP CAP AIN1+ AIN1- AIN3+ AIN3- 1 2 3 4 5 6 7 8 9 10 11 12 13 14 SDO/RDY PDWN SPEED GAIN1 GAIN0 AGND VREFAIN2+ AIN2- AIN4+ AIN4- SCLK AVDD VREF+ ISL26132, ISL26134 3 FN6954.1 September 9, 2011 Pin Descriptions NAME PIN NUMBER ANALOG/DIGITAL ISL26132 ISL26134 INPUT/OUTPUT DESCRIPTION DVDD 1 1 Digital Digital Power Supply (2.7V to 5.25V) DGND 2, 5, 6 2, 5, 6 Digital Digital Ground XTALIN/CLOCK 3 3 Digital/Digital Input External Clock Input: typically 4.9152MHz. Tie low to activate internal oscillator. Can also use external crystal across XTALIN/CLOCK and XTALOUT pins. XTALOUT 4 4 Digital External Crystal connection TEMP 7 - Digital Input On-chip Temperature Diode Enable A1 A0 - 8 7 8 Digital Input CAP 9, 10 9, 10 Analog PGA Filter Capacitor AIN1+ 11 11 Analog Input Positive Analog Input Channel 1 AIN1- 12 12 Analog Input Negative Analog Input Channel 1 AIN3+ - 13 Analog Input Positive Analog Input Channel 3 AIN3- - 14 Analog Input Negative Analog Input Channel 3 AIN4- - 15 Analog Input Negative Analog Input Channel 4 AIN4+ - 16 Analog Input Positive Analog Input Channel 4 AIN2- 13 17 Analog Input Negative Analog Input Channel 2 AIN2+ 14 18 Analog Input Positive Analog Input Channel 2 VREF- 15 19 Analog Input Negative Reference Input VREF+ 16 20 Analog Input Positive Reference Input AGND 17 21 Analog Analog Ground AVDD 18 22 Analog Analog Power Supply 4.75V to 5.25V GAIN0 GAIN1 19 20 23 24 Digital Input TABLE 2. INPUT MULTIPLEXER SELECT ISL26134 ISL26132 A1 A0 CHANNEL 0 0 AIN1 0 1 AIN2 1 0 AIN3 1 1 AIN4 TABLE 3. GAIN SELECT GAIN1 GAIN0 GAIN 0 0 1 0 1 2 1 0 64 1 1 128 ISL26132, ISL26134 4 FN6954.1 September 9, 2011 Circuit Description The ISL26132 (2-channel) and ISL26134 (4-channel) devices are very low noise 24-bit delta-sigma ADCs that include a programmable gain amplifier and an input multiplexer. The ISL26132 offers an on-chip temperature measurement capability. The ISL26132, ISL26134 provide pin compatibility and output data compatibility with the ADS1232/ADS1234, and offer the same conversion rates of 10Sps and 80Sps. All the features of the ISL26132, ISL26134 are pin-controllable, while offset calibration, standby mode, and output conversion data are accessible through a simple 2-wire interface. The clock can be selected to come from an internal oscillator, an external clock signal, or crystal (4.9152MHz typical). SPEED 21 25 Digital Input PDWN 22 26 Digital Input Power-Down: Holding this pin low powers down the entire converter and resets the ADC. SCLK 23 27 Digital Input Serial Clock: Clock out data on the rising edge. Also used to initiate Offset Calibration and Sleep modes. See “Serial Clock Input (SCLK)” on page 14 for more details. SDO/RDY 24 28 Digital Output Dual-Purpose Output: Data Ready: Indicate valid data by going low. Data Output: Outputs data, MSB first, on the first rising edge of SCLK. Pin Descriptions (Continued) NAME PIN NUMBER ANALOG/DIGITAL ISL26132 ISL26134 INPUT/OUTPUT DESCRIPTION TABLE 4. DATA RATE SELECT SPEED DATA RATE 0 10Sps 1 80Sps ISL26132, ISL26134 5 FN6954.1 September 9, 2011 Absolute Maximum Ratings Thermal Information AGND to DGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to +0.3V Analog In to AGND. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 to AVDD+0.3V Digital In to DGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 to DVDD+0.3V Input Current Momentary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100mA Continuous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10mA ESD Rating Human Body Model (Per MIL-STD-883 Method 3015.7) . . . . . . . . . . . . .7.5kV Machine Model (Per JESD22-A115). . . . . . . . . . . . . . . . . . . . . . . . . . 450V Charged Device Model (Per JESD22-C101) . . . . . . . . . . . . . . . . . . . . . . . . 2kV Latch-up (Per JEDEC JESD-78B; Class 2, Level A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100mA @ Room and Hot (+105°C) Thermal Resistance (Typical) θJA (°C/W) θJC (°C/W) 24 Ld TSSOP (Notes 4, 5) . . . . . . . . . . . . . . 65 18 28 Ld TSSOP (Notes 4, 5) . . . . . . . . . . . . . . 63 18 Maximum Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80mW Maximum Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . .+150°C Maximum Storage Temperature Range . . . . . . . . . . . . . .-65°C to +150°C Pb-Free Reflow Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see link below http://www.intersil.com/pbfree/Pb-FreeReflow.asp Operating Conditions Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-40°C to +105°C AVDD to AGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4.75V to 5.25V DVDD to DGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.7V to 5.25V CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and result in failures not covered by warranty. NOTES: 4. θJA is measured with the component mounted on a high effective thermal conductivity test board in free air. See Tech Brief TB379 for details. 5. For θJC, the “case temp” location is taken at the package top center. Electrical Specifications VREF+ = 5V, VREF- = 0V, AVDD = 5V, DVDD = 5V, AGND = DGND = 0V, MCLK = 4.9152MHz, and TA = -40°C to +105°C, unless otherwise specified. Boldface limits apply over the operating temperature range, -40°C to +105°C SYMBOL PARAMETER TEST LEVEL or NOTES MIN (Note 6) TYP MAX (Note 6) UNITS ANALOG INPUTS Differential Input Voltage Range ±0.5VREF/ Gain V Common Mode Input Voltage Range Gain = 1, 2 AGND - 0.1 AVDD + 0.1 V Gain = 64, 128 AGND+1.5 AVDD - 1.5 V Differential Input Current Gain = 1 ±20 nA Gain = 2 ±40 nA Gain = 64, 128 ±1 nA SYSTEM PERFORMANCE Resolution No Missing Codes 24 Bits Data Rate Internal Osc. SPEED = High 80 SPS Internal Osc. SPEED = Low 10 SPS External Osc. SPEED = High fCLK/61440 SPS External Osc. SPEED = Low fCLK/49152 0 SPS Digital Filter Settling Time Full Setting 4 Conversions INL Integral Nonlinearity Differential Input Gain = 1, 2 ±0.0002 ±0.001 % of FSR (Note 7) Differential Input Gain = 64, 128 ±0.0004 % of FSR (Note 7) Input Offset Error Gain = 1 ±0.4 ppm of FS Gain = 128 ±1.5 ppm of FS Input Offset Drift Gain = 1 0.3 μV/°C Gain = 128 10 nV/°C Gain Error (Note 8) Gain = 1 ±0.007 ±0.02 % Gain = 128 ±0.02 % Gain Drift Gain = 1 0.5 ppm/°C Gain = 128 7 ppm/°C ISL26132, ISL26134 6 FN6954.1 September 9, 2011 CMRR Common Mode Rejection At DC, Gain = 1, ΔV = 1V 85 100 dB At DC, Gain = 128, ΔV = 0.1V 100 dB 50Hz/60Hz Rejection (Note 9) External 4.9152MHz Clock 130 dB PSRR Power Supply Rejection At DC, Gain = 1, ΔV = 1V 82 100 dB At DC, Gain = 128, ΔV = 0.1V 100 105 dB Input Referred Noise See “Typical Characteristics” beginning on page 8 Noise Free Bits See “Typical Characteristics” beginning on page 8 VOLTAGE REFERENCE INPUT VREF Voltage Reference Input VREF = VREF+ - VREF- 1.5 AVDD AVDD + 0.1 V VREF- Negative Reference Input AGND - 0.1 VREF+ - 1.5 V VREF+ Positive Reference Input VREF- + 1.5 AVDD + 0.1 V IREF Voltage Reference Input Current ±350 nA POWER SUPPLY REQUIREMENTS AVDD Analog Supply Voltage 4.75 5.0 5.25 V DVDD Digital Supply Voltage 2.7 3.3 5.25 V AIDD Analog Supply Current Normal Mode, AVDD = 5, Gain = 1, 2 7 8.5 mA Normal Mode, AVDD = 5, Gain = 64, 128 9 12 mA Standby Mode 0.2 3 μA Power-Down 0.2 2.5 μA DIDD Digital Supply Current Normal Mode, AVDD = 5, Gain = 1, 2 750 950 μA Normal Mode, AVDD = 5, Gain = 64, 128 750 950 μA Standby Mode 1.5 26 μA Power-Down 1 26 μA PD Power Dissipation, Total Normal Mode, AVDD = 5, Gain = 1, 2 49.6 mW Normal Mode, AVDD = 5, Gain = 64, 128 68 mW Standby Mode 0.14 mW Power-Down 0.14 mW DIGITAL INPUTS VIH 0.7 DVDD V VIL 0.2 DVDD V VOH IOH = -1mA DVDD - 0.4 V VOL IOL = 1mA 0.2 DVDD V Input Leakage Current ±10 μA External Clock Input Frequency 0.3 4.9152 MHz Serial Clock Input Frequency 1 MHz NOTE: 6. Compliance to datasheet limits is assured by one or more methods: production test, characterization and/or design. 7. FSR = Full Scale Range = VREF/Gain 8. Gain accuracy is calibrated at the factory (AVDD = +5V). 9. Specified for word rate equal to 10Sps. Electrical Specifications VREF+ = 5V, VREF- = 0V, AVDD = 5V, DVDD = 5V, AGND = DGND = 0V, MCLK = 4.9152MHz, and TA = -40°C to +105°C, unless otherwise specified. Boldface limits apply over the operating temperature range, -40°C to +105°C (Continued) SYMBOL PARAMETER TEST LEVEL or NOTES MIN (Note 6) TYP MAX (Note 6) UNITS ISL26132, ISL26134 7 FN6954.1 September 9, 2011 Noise Performance The ISL26132 and ISL26134 provide excellent noise performance. The noise performance on each of the gain settings of the PGA at the selected word rates is shown in Tables 5 and 6. Resolution in bits decreases by 1-bit if the ADC is operated as a single-ended input device. Noise measurements are input-referred, taken with bipolar inputs under the specified operating conditions, with fCLK = 4.9152MHz. TABLE 5. AVDD = 5V, VREF = 5V, DATA RATE = 10Sps GAIN RMS NOISE (nV) PEAK-TO-PEAK NOISE (nV) (Note 10) NOISE-FREE BITS (Note 11) 1 243 1604 21.6 2 148 977 21.3 64 10.8 71 20.1 128 10.2 67 19.1 TABLE 6. AVDD = 5V, VREF = 5V, DATA RATE = 80Sps GAIN RMS NOISE (nV) PEAK-TO-PEAK NOISE (nV) (Note 10) NOISE-FREE BITS (Note 11) 1 565 3730 20.4 2 285 1880 20.3 64 28.3 187 18.7 128 27 178 17.7 NOTES: 10. The peak-to-peak noise number is 6.6 times the rms value. This encompasses 99.99% of the noise excursions that may occur. This value best represents the worst case noise that could occur in the output conversion words from the converter. 11. Noise-Free Bits is defined as: Noise-Free Bits = ln(FSR/peak-to-peak noise)/ln(2) where FSR is the full scale range of the converter, VREF/Gain. ISL26132, ISL26134 8 FN6954.1 September 9, 2011 Typical Characteristics FIGURE 2. NOISE AT GAIN = 1, 10Sps FIGURE 3. NOISE HISTOGRAM AT GAIN = 1, 10Sps FIGURE 4. NOISE AT GAIN = 2, 10Sps FIGURE 5. NOISE HISTOGRAM AT GAIN = 2, 10Sps FIGURE 6. NOISE AT GAIN = 64, 10Sps FIGURE 7. NOISE HISTOGRAM AT GAIN = 64, 10Sps -10 -5 0 5 10 0 200 400 600 800 1000 GAIN = 1 RATE = 10Sps TIME (SAMPLES) OUTPUT CODE (LSB) 0 50 100 150 200 250 300 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 OUTPUT CODE (LSB) GAIN = 1, N = 1024 RATE = 10Sps STD DEV = 1.635 LSB VREF = 2.5V COUNTS - 10 -5 0 5 10 0 200 400 600 800 1000 TIME (SAMPLES) OUTPUT CODE (LSB) GAIN = 2 RATE = 10Sps 0 50 100 150 200 250 -8 -6 -4 -2 0 2 4 6 8 GAIN = 2, N = 1024 RATE = 10Sps STD DEV = 1.989 LSB VREF = 2.5V OUTPUT CODE (LSB) COUNTS -15 -10 -5 0 5 10 15 20 0 200 400 600 800 1000 TIME (SAMPLES) OUTPUT CODE (LSB) GAIN = 64 RATE = 10Sps 0 20 40 60 80 100 120 -20 -15 -10 -5 0 5 10 15 20 GAIN = 64, N = 1024 RATE = 10Sps STD DEV = 4.627 LSB VREF = 2.5V OUTPUT CODE (LSB) COUNTS ISL26132, ISL26134 9 FN6954.1 September 9, 2011 FIGURE 8. NOISE AT GAIN = 128, 10Sps FIGURE 9. NOISE HISTOGRAM AT GAIN = 128, 10Sps FIGURE 10. NOISE AT GAIN = 1, 80Sps FIGURE 11. NOISE HISTOGRAM AT GAIN = 1, 80Sps FIGURE 12. NOISE AT GAIN = 2, 80Sps FIGURE 13. NOISE HISTOGRAM AT GAIN = 2, 80Sps Typical Characteristics (Continued) -50 -30 -10 10 30 50 0 200 400 600 800 1000 GAIN = 128 RATE = 10Sps TIME (SAMPLES) OUTPUT CODE (LSB) 0 10 20 30 40 50 60 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 OUTPUT CODE (LSB) COUNTS GAIN = 128, N = 1024 RATE = 10Sps STD DEV = 8.757 LSB VREF = 2.5V -25 -20 -15 -10 -5 0 5 10 15 20 25 0 200 400 600 800 1000 GAIN = 1 RATE = 80Sps TIME (SAMPLES) OUTPUT CODE (LSB) 0 20 40 60 80 100 120 -15 -10 -5 0 5 10 15 OUTPUT CODE (LSB) COUNTS GAIN = 1, N = 1024 RATE = 80Sps STD DEV = 3.791 LSB VREF = 2.5V -25 -15 -5 5 15 25 0 200 400 600 800 1000 GAIN = 2 RATE = 80Sps TIME (SAMPLES) OUTPUT CODE (LSB) 0 20 40 60 80 100 120 -15 -10 -5 0 5 10 15 OUTPUT CODE (LSB) COUNTS GAIN = 2, N = 1024 RATE = 80Sps STD DEV = 3.831 LSB VREF = 2.5V ISL26132, ISL26134 10 FN6954.1 September 9, 2011 FIGURE 14. NOISE AT GAIN = 64, 80Sps FIGURE 15. NOISE HISTOGRAM AT GAIN = 64, 80Sps FIGURE 16. NOISE AT GAIN = 128, 80Sps FIGURE 17. NOISE HISTOGRAM AT GAIN = 128, 80Sps FIGURE 18. ANALOG CURRENT vs TEMPERATURE FIGURE 19. DIGITAL CURRENT vs TEMPERATURE Typical Characteristics (Continued) -100 -50 0 50 100 0 200 400 600 800 1000 GAIN = 64 RATE = 80Sps TIME (SAMPLES) OUTPUT CODE (LSB) 0 10 20 30 40 50 -40 -35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 35 40 OUTPUT CODE (LSB) COUNTS GAIN = 64, N = 1024 RATE = 80Sps STD DEV = 12.15 LSB VREF = 2.5V -200 -160 -120 -80 -40 0 40 80 120 160 0 200 400 600 800 1000 GAIN = 128 RATE = 80Sps TIME (SAMPLES) OUTPUT CODE (LSB) 0 5 10 15 20 25 30 -80 -60 -40 -20 0 20 40 60 80 OUTPUT CODE (LSB) COUNTS GAIN = 128, N = 1024 RATE = 80Sps STD DEV = 23.215 LSB VREF = 2.5V 0 2 4 6 8 10 -40 -10 20 50 80 110 TEMPERATURE (°C) CURRENT (mA) NORMAL MODE, PGA = 64.128 NORMAL MODE, PGA = 1, 2 1 10 100 1000 10000 -40 -10 20 50 80 110 TEMPERATURE (°C) CURRENT (μA) NORMAL MODE, ALL PGA GAINS POWERDOWN MODE ISL26132, ISL26134 11 FN6954.1 September 9, 2011 FIGURE 20. TYPICAL WORD RATE vs TEMPERATURE USING INTERNAL OSCILLATOR FIGURE 21. NOISE DENSITY vs FREQUENCY AT GAIN = 1, 80Sps FIGURE 22. NOISE DENSITY vs FREQUENCY AT GAIN = 128, 80Sps Typical Characteristics (Continued) 9.6 9.8 10.0 10.2 10.4 10.6 10.8 11.0 -40 -10 20 50 80 110 TEMPERATURE (°C) DATA RATE (Sps) WORD RATE = 10Sps 10 100 1000 10000 0.01 0.1 1 10 FREQUENCY (Hz) NOISE (nV/√Hz) GAIN = 1, 80Sps 64k FFT 25 AVERAGES 1 10 100 0.01 0.1 1 10 FREQUENCY (Hz) NOISE (nV/√Hz) GAIN = 128, 80Sps 64k FFT 25 AVERAGES ISL26132, ISL26134 12 FN6954.1 September 9, 2011 Functional Description Analog Inputs The analog signal inputs to the ISL26132 connect to a 2-Channel differential multiplexer and the ISL26134 connect to a 4-Channel differential multiplexer (Mux). The multiplexer connects a pair of inputs to the positive and negative inputs (AINx+, AINx-), selected by the Channel Select Pins A0 and A1 (ISL26134 only). Input channel selection is shown in Table 7. On the ISL26132, the TEMP pin is used to select the Temperature Sensor function. Whenever the MUX channel is changed (i.e. if any one of the following inputs - A0/A1, Gain1/0, SPEED is changed), the digital logic will automatically restart the digital filter and will cause SDO/RDY to go low only when the output is fully settled. But if the input itself is suddenly changed, then the user needs to ignore first four RDY pulses (going low) to get an accurate measurement of the input signal. The input span of the ADC is ±0.5 VREF/GAIN. For a 5V VREF and a gain of 1x, the input span will be 5VP-P fully differential as shown in Figure 23. Note that input voltages that exceed the supply rails by more than 100mV will turn on the ESD protection diodes and degrade measurement accuracy. If the differential input exceeds well above the +VE or the -VE FS (by ~1.5x times) the output code will clip to the corresponding FS value. Under such conditions, the output data rate will become 1/4th of the original value as the Digital State Machine will RESET the Delta-Sigma Modulator and the Decimation Filter. Temperature Sensor (ISL26132 only) When the TEMP pin of the ISL26132 is set High, the input multiplexer is connected to a pair of diodes, which are scaled in both size and current. The voltage difference measured between them corresponds to the temperature of the die according to Equation 1: Note: Valid only for GAIN = 1x or 2x Where T is the temperature of the die, and Gain = the PGA Gain Setting. At a temperature of +25°C, the measured voltage will be approximately 111.7mV. Note that this measurement indicates only the temperature of the die itself. Applying the result to correct for the temperature drift of a device external to the package requires that thermal coupling between the sensor and the die be taken into account. Low-Noise Programmable Gain Amplifier (PGA) The chopper-stabilized programmable gain amplifier features a variety of gain settings to achieve maximum dynamic range and measurement accuracy from popular sensor types with excellent low noise performance, input offset error, and low drift, and with minimal external parts count. The GAIN0 and GAIN1 pins allow the user to select gain settings of 1x, 2x, 64x, or 128x. A block diagram is shown in Figure 24. The differential input stage provides a gain of 64, which is bypassed when the lower gain settings are selected. The lower gain settings (1 and 2) will accept inputs with common mode voltages up to 100mV outside the rails, allowing the device to accept ground-referred signals. At gain settings of 64 or 128 the common mode voltage at the inputs is limited to 1.5V inside the supply rails while maintaining specified measurement accuracy. TABLE 7. INPUT CHANNEL SELECTION CHANNEL SELECT PINS ANALOG INPUT PINS SELECTED A1 A0 AIN+ AIN- 0 0 AIN1+ AIN1- 0 1 AIN2+ AIN2- 1 0 AIN3+ AIN3- 1 1 AIN4+ AIN4- 3.75 2.50 1.25 1.25V INPUT VOLTAGE RANGE = ±0.5VREF/GAIN VREF = 5V, GAIN = 1X 3.75 2.50 1.25 AIN+ AIN- 2.50V FIGURE 23. DIFFERENTIAL INPUT FOR VREF = 5V, GAIN = 1X V= 102.2mV + (379μV∗T(°C))∗Gain (EQ. 1) ISL26132, ISL26134 13 FN6954.1 September 9, 2011 Filtering PGA Output Noise The programmable gain amplifier, as shown in Figure 24, includes a passive RC filter on its output. The resistors are located inside the chip on the outputs of the differential amplifier stages. The capacitor (nominally a 100nF C0G ceramic or a PPS film (Polyphenylene sulfide)) for the filter is connected to the two CAP pins of the chip. The outputs of the differential amplifier stages of the PGA are filtered before their signals are presented to the delta-sigma modulator. This filter reduces the amount of noise by limiting the signal bandwidth and filters the chopping artifacts of the chopped PGA stage. Voltage Reference Inputs (VREF+, VREF-) The voltage reference for the ADC is derived from the difference in the voltages presented to the VREF+ and VREF- pins; VREF = (VREF+ - VREF-). The ADCs are specified with a voltage reference value of 5V, but a voltage reference as low as 1.5V can be used. For proper operation, the voltage on the VREF+ pin should not be greater than AVDD + 0.1V and the voltage on the VREF- pin should not be more negative than AGND - 0.1V. Clock Sources The ISL26132, ISL26134 can operate from an internal oscillator, an external clock source, or from a crystal connected between the XTALIN/CLOCK and XTALOUT pins. See the block diagram of the clock system in Figure 25. When the ADC is powered up, the CLOCK DETECT block determines if an external clock source is present. If a clock greater than 300kHz is present on the XTALIN/CLOCK pin, the circuitry will disable the internal oscillator on the chip and use the external clock as the clock to drive the chip circuitry. If the ADC is to be operated from the internal oscillator, the XTALIN/CLOCK pin should be grounded. If the ADC is to be operated from a crystal, it should be located close to the package pins of the ADC. Note that external loading capacitors for the crystal are not required as there are loading capacitors built into the silicon, although the capacitor values are optimized for operation with a 4.9152MHz crystal. The XTALOUT pin is not intended to drive external circuits. Digital Filter Characteristics The digital filter inside the ADC is a fourth-order Siinc filter. Figures 26 and 27 illustrate the filter response for the ADC when it is operated from a 4.9152MHz crystal. The internal oscillator is factory trimmed so the frequency response for the filter will be much the same when using the internal oscillator. The figures illustrate that when the converter is operated at 10Sps the digital filter provides excellent rejection of 50Hz and 60Hz line interference. FIGURE 24. SIMPLIFIED PROGRAMMABLE GAIN AMPLIFIER BLOCK DIAGRAM + - A1 - + A2 AINx- AINx+ ADC RINT RINT R1 RF1 RF2 CAP CAP FIGURE 25. CLOCK BLOCK DIAGRAM XTALIN/ CRYSTAL OSCILLATOR XTALOUT TO ADC INTERNAL OSCILLATOR CLOCK DETECT MUX EN CLOCK ISL26132, ISL26134 14 FN6954.1 September 9, 2011 Serial Clock Input (SCLK) The serial clock input is provided with hysteresis to minimize false triggering. Nevertheless, care should be taken to ensure reliable clocking. Filter Settling Time and ADC Latency Whenever the analog signal into the ISL26132, ISL26134 converters is changed, the effects of the digital filter must be taken into account. The filter takes four data ready periods for the output code to fully reflect a new value at the analog input. If the multiplexer control input is changed, the modulator and the digital filter are reset, and the device uses four data ready periods to fully settle to yield a digital code that accurately represents the analog input. Therefore, from the time the control inputs for the multiplexer are changed until the SDO/RDY goes low, four data ready periods will elapse. The settling time delay after a multiplexer channel change is listed in Table 8 for the converter operating in continuous conversion mode. 0 -50 -100 -150 0 10 20 30 40 50 60 70 80 90 100 FREQUENCY (Hz) GAIN (dB) DDAATTAA RRAATTEE == 1100 SSpPsS FIGURE 26. 10Sps: FREQUENCY RESPONSE OUT TO 100Hz -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 45 50 55 60 65 FREQUENCY (Hz) GAIN (dB) DATA RATE = 10Sps FIGURE 27. 10Sps: 50/60Hz NOISE REJECTION, 45Hz TO 65Hz TABLE 8. SETTLING TIME PARAMETER DESCRIPTION (fCLK = 4.9152MHz) MIN MAX UNITS tS A0, A1, SPEED, Gain1, Gain0 change set-up time 40 50 μs t1 Settling time SPEED = 1 54 55 ms SPEED = 0 404 405 ms FIGURE 28. SDO/RDY DELAY AFTER MULTIPLEXER CHANGE SDO/RDY tS t1 A0, A1, SPEED, Gain1, Gain0 ISL26132, ISL26134 15 FN6954.1 September 9, 2011 Conversion Data Rate The SPEED pin is used to select between the 10Sps and 80Sps conversion rates. The 10Sps rate (SPEED = Low) is preferred in applications requiring 50/60Hz noise rejection. Note that the sample rate is directly related to the oscillator frequency, as 491,520 clocks are required to perform a conversion at the 10Sps rate, and 61,440 clocks at the 80Sps rate. Output Data Format The 24-bit converter output word is delivered in two’s complement format. Input exceeding full scale results in a clipped output which will not return to in-range values until after the input signal has returned to the specified allowable voltage range and the digital filter has settled as discussed previously. Reading Conversion Data from the Serial Data Output/Ready SDO/RDY Pin When the ADC is powered, it will automatically begin doing conversions. The SDO/RDY signal will go low to indicate the completion of a conversion. After the SDO/RDY signal goes low, the MSB data bit of the conversion word will be output from the SDO/RDY pin after SCLK is transitioned from a low to a high. Each subsequent new data bit is also output on the rising edge of SCLK (see Figure 30). The receiving device should use the falling edge of SCLK to latch the data bits. After the 24th SCLK, the SDO/RDY output will remain in the state of the LSB data bit until a new conversion is completed. At this time, the SDO/RDY will go high if low and then go low to indicate that a new conversion word is available. If not all data bits are read from the SDO/RDY pin prior to the completion of a new conversion, they will be overwritten. SCLK should be low during time t6, as shown in Figure 30, when SDO/RDY is high. If the user wants the SDO/RDY signal to go high after reading the 24 bits of the conversion data word, a 25th SCLK can be issued. The 25th SCLK will force the SDO/RDY signal to go high and remain high until it falls to signal that a new conversion word is available. Figure 31 illustrates the behavior of the SDO/RDY signal when a 25th SCLK is used. FIGURE 29. SDO/RDY DELAY AFTER MULTIPLEXER CHANGE SDO/RDY TABLE 9. OUTPUT CODES CORRESPONDING TO INPUT INPUT SIGNAL OUTPUT CODE (HEX) ≥ + 0.5VREF/GAIN 7FFFFF (+0.5VREF/GAIN)/(223 - 1) 000001 0 000000 (-0.5VREF/GAIN)/(223 - 1) FFFFFF ≤ - 0.5VREF/GAIN 800000 FIGURE 30. OUTPUT DATA WAVEFORMS USING 24 SCLKS TO READ CONVERSION DATA SDO/RDY DATA READY DATA MSB LSB NEW DATA READY 23 22 21 0 SCLK t4 t2 1 t3 24 t5 t6 t3 t7 ISL26132, ISL26134 16 FN6954.1 September 9, 2011 Offset Calibration Control The offset internal to the ADC can be removed by performing an offset calibration operation. Offset calibration can be initiated immediately after reading a conversion word with 24 SCLKs by issuing two additional SCLKs. The offset calibration operation will begin immediately after the 26th SCLK occurs. Figure 32 illustrates the timing details for the offset calibration operation. During offset calibration, the analog inputs are shorted internally and a regular conversion is performed. This conversion generates a conversion word that represents the offset error. This value is stored and used to digitally remove the offset error from future conversion words. The SDO/RDY output will fall to indicate the completion of the offset calibration operation. TABLE 10. INTERFACE TIMING CHARACTERISTICS PARAMETER DESCRIPTION MIN TYP MAX UNITS t2 SDO/RDY Low to first SLK 0 ns t3 SCLK pulsewidth, Low or High 100 ns t4 SCLK High to Data Valid 50 ns t5 Data Hold after SCLK High 0 ns t6 Register Update Time 39 μs t7 Conversion Period SPEED = 1 12.5 ms SPEED = 0 100 ms FIGURE 31. OUTPUT DATA WAVEFORMS FOR SDO/RDY POLLING DATA READY NEW DATA READY SDO/RDY SCLK 23 22 21 0 1 24 25 DATA 25TH SCLK FORCES SDO/RDY HIGH FIGURE 32. OFFSET CALIBRATION WAVEFORMS DATA READY AFTER CALIBRATION CALIBRATION BEGINS SDO/RDY SCLK 23 22 21 0 23 1 24 25 26 t8 FIGURE 33. STANDBY MODE WAVEFORMS DATA READY START CONVERSION STANDBY MODE SDO/RDY SCLK 23 22 21 0 1 24 t10 t11 t9 23 TABLE 11. SDO/RDY DELAY AFTER CALIBRATION PARAMETER MIN MAX UNITS t8 SPEED = 1 108 109 ms SPEED = 0 808 809 ms ISL26132, ISL26134 17 FN6954.1 September 9, 2011 Standby Mode Operation The ADC can be put into standby mode to save power. Standby mode reduces the power to all circuits in the device except the crystal oscillator amplifier. To enter the standby mode, take the SCLK signal high and hold it high after SDO/RDY falls. The converter will remain in standby mode as long as SCLK is held high. To return to normal operation, take SCLK back low and wait for the SDO/RDY to fall to indicate that a new conversion has completed. Figure 33 and Table 12 illustrate the details of standby mode. Supply currents are equal in Standby and Power-down modes unless a Crystal is used. If the Crystal is used, the Crystal amplifier is turned ON, even in the standby mode. Performing Offset Calibration After Standby Mode To perform an offset calibration automatically upon returning from standby, deliver 2 or more additional SCLKs following a data read cycle, and then set and hold SCLK high. The device will remain in Standby as long as SCLK remains high. A calibration cycle will begin once SCLK is brought low again to resume normal operation. Additional time will be required to perform the calibration after returning from Standby. Figure 34 and Table 13 illustrate the details of performing offset calibration after standby mode. TABLE 12. STANDBY MODE TIMING PARAMETER DESCRIPTION MIN MAX UNITS t9 SCLK High after SDO/RDY Low SPEED = 1 0 12.44 ms SPEED = 0 0 99.94 t10 Standby Mode Delay SPEED = 1 12.5 SPEED = 0 100 t11 SDO/RDY falling edge after SCLK Low SPEED = 1 50 60 SPEED = 0 400 410 TABLE 13. OFFSET CALIBRATION TIMING AFTER STANDY PARAMETER DESCRIPTION MIN MAX UNITS t12 SDO/RDY Low after SCLK Low SPEED = 1 108 113 ms SPEED = 0 808 813 ms FIGURE 34. OFFSET CALIBRATION WAVEFORMS AFTER STANDBY SDO/RDY SCLK 23 22 21 0 1 24 25 STANDBY MODE DATA READY AFTER CALIBRATION BEGIN 23 CALIBRATION t10 t12 ISL26132, ISL26134 18 FN6954.1 September 9, 2011 Operation of PDWN PDWN must transition from low to high after both power supplies have settled to specified levels in order to initiate a correct power-up reset (Figure 35). This can be implemented by an external controller or a simple RC delay circuit, as shown in Figure 36. In order to reduce power consumption, the user can assert the Power-down mode by bringing PDWN Low as shown in Figure 37. All circuitry is shut down in this mode, including the Crystal Oscillator. After PDWN is brought High to resume operation, the reset delay varies depending on the clock source used. While an external clock source will resume operation immediately, a circuit utilizing a crystal will incur about a 20 millisecond delay due to the inherent start-up time of this type of oscillator. FIGURE 35. POWER-DOWN TIMING RELATIVE TO SUPPLIES ≥10μs AVDD DVDD PDWN FIGURE 36. PDWNDELAY CIRCUIT DVDD 1kΩ 2.2nF CONNECT TO PDWN PIN FIGURE 37. POWER-DOWN MODE WAVEFORMS SDO/RDY SCLK t11 PDWN POWER-DOWN MODE START CONVERSION DATA CLK READY SOURCE WAKEUP t13 tt1144 TABLE 14. POWER-DOWN RECOVERY TIMING PARAMETER DESCRIPTION TYP UNITS t13 Clock Recovery after PDWN High Internal Oscillator 7.95 μs External Clock Source 0.16 μs 4.9152MHz Crystal Oscillator 5.6 ms t14 PDWN Pulse Duration 26 μs (min) ISL26132, ISL26134 19 FN6954.1 September 9, 2011 Applications Information Power-up Sequence – Initialization and Configuration The sequence to properly power-up and initialize the device are as follows. For details on individual functions, refer to their descriptions. 1. AVDD, DVDD ramp to specified levels 2. Apply External Clock 3. Pull PDWN High to initiate Reset 4. Device begins conversion 5. SDO/RDY goes low at end of first conversion OPTIONAL ACTIONS • Perform Offset Calibration • Place device in Standby • Return device from Standby • Read on-chip Temperature (applicable to ISL26132 only) Application Examples WEIGH SCALE SYSTEM Figure 38 illustrates the ISL26132 connected to a load cell. The A/D converter is configured for a gain of 128x and a sample rate of 10Sps. If a load cell with 2mV/V sensitivity is used, the full scale output from the load cell will be 10mV. On a gain of 128x and sample rate of 10Sps, the converter noise is 67nVP-P. The converter will achieve 10mV/67nVP-P = 149,250 noise free counts across its 10mV input signal. This equates to 14,925 counts per mV of input signal. If five output words are averaged together this can be improved by √5 to yield √5*14925 counts = 33,370 counts per mV of input signal with an effective update rate of 2 readings per second. THERMOCOUPLE MEASUREMENT Figure 39 illustrates the ISL26132 in a thermocouple application. As shown, the 4.096V reference combined with the PGA gain set to 128x sets the input span of the converter to ±16mV. This supports the K type thermocouple measurement for temperatures from -270°C at -6.485mV to +380°C at about 16mV. If a higher temperature is preferred, the PGA can be set to 64x to provide a converter span of ±32mV. The will allow the converter to support temperature measurement with the K type thermocouple up to about +765°C. In the circuit shown, the thermocouple is referenced to a voltage dictated by the resistor divider from the +5V supply to ground. These set the common mode voltage at about 2.5V. The 5M resistors provide a means for detection of an open thermocouple. If the thermocouple fails open or is not connected, the bias through the 5M resistors will cause the input to the PGA to go to full scale. AVDD VREF+ CAP CAP AIN+1 AIN-1 AIN+2 AIN-2 VREFAGND DGND TEMP A0 SPEED XTALOUT PDWN SCLK SDO/RDY GAIN0 GAIN1 DVDD ISL26132 XTALIN/CLOCK - + 0.1μF VDD MICRO CONTROLLER GND 16 9 10 11 12 14 13 15 17 2, 5, 6 7 8 21 3 4 22 23 24 19 20 GAIN = 128 5V 3V 0.1μF 18 1 FIGURE 38. WEIGH SCALE APPLICATION ISL26132, ISL26134 20 FN6954.1 September 9, 2011 PCB Board Layout and System Configuration The ISL26132,ISL26134 ADC is a very low noise converter. To achieve the full performance available from the device will require attention to the printed circuit layout of the circuit board. Care should be taken to have a full ground plane without impairments (traces running through it) directly under the chip on the back side of the circuit board. The analog input signals should be laid down adjacent (AIN+ and AIN- for each channel) to achieve good differential signal practice and routed away from any traces carrying active digital signals. The connections from the CAP pins to the off-chip filter capacitor should be short, and without any digital signals nearby. The crystal, if used should be connected with relatively short leads. No active digital signals should be routed near or under the crystal case or near the traces, which connect it to the ADC. The AGND and DGND pins of the ADC should be connected to a common solid ground plane. All digital signals to the chip should be powered from the same supply, as that used for DVDD (do not allow digital signals to be active high unless the DVDD supply to the chip is alive). Route all active digital signals in a way to keep distance from any analog pin on the device (AIN, VREF, CAP, AVDD). Power on the AVDD supply should be active before the VREF voltage is present. PCB layout patterns for the chips (ISL26132 and ISL26134) are found on the respective package outline drawings on pages 22, and 23. AVDD VREF+ AIN+1 AIN-1 AIN+2 AIN-2 VREFAGND DGND TEMP A0 SPEED XTALOUT PDWN SCLK SDO/RDY GAIN0 GAIN1 DVDD XTALIN/CLOCK MICRO CONTROLLER 16 11 12 14 13 15 17 2, 5, 6 7 8 21 3 4 22 23 24 19 20 +5V +3V 0.1μF 18 1 FIGURE 39. THERMOCOUPLE MEASUREMENT APPLICATION 4.9152 MHz ISL21009 4.096V 10nF 1μF 10k 10k 0.1μF TYPE K 5M 5M ISL26132, ISL26134 21 Intersil products are manufactured, assembled and tested utilizing ISO9000 quality systems as noted in the quality certifications found at www.intersil.com/design/quality Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see www.intersil.com FN6954.1 September 9, 2011 For additional products, see www.intersil.com/product_tree Products Intersil Corporation is a leader in the design and manufacture of high-performance analog semiconductors. The Company's products address some of the industry's fastest growing markets, such as, flat panel displays, cell phones, handheld products, and notebooks. Intersil's product families address power management and analog signal processing functions. Go to www.intersil.com/products for a complete list of Intersil product families. For a complete listing of Applications, Related Documentation and Related Parts, please see the respective device information page on intersil.com: ISL26132, ISL26134 To report errors or suggestions for this datasheet, please go to www.intersil.com/askourstaff FITs are available from our website at http://rel.intersil.com/reports/search.php Revision History The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to web to make sure you have the latest Rev. DATE REVISION CHANGE 09/08/11 FN6954.1 Power Supply Requirements on page 6 - AIDD - Analog Supply Current - Normal Mode, AVDD = 5, Gain = 1,2 changed TYP and MAX from “6, 7.3” to “7, 8.5” Power Dissipation, Total Normal Mode, AVDD = 5, Gain = 1, 2 changed from “43.3” to “49.6” mW (Max) 08/22/11 FN6954.0 Initial Release. ISL26132, ISL26134 22 FN6954.1 September 9, 2011 Package Outline Drawing M24.173 24 LEAD THIN SHRINK SMALL OUTLINE PACKAGE (TSSOP) Rev 1, 5/10 DETAIL "X" TYPICAL RECOMMENDED LAND PATTERN TOP VIEW SIDE VIEW END VIEW Dimension does not include mold flash, protrusions or gate burrs. Mold flash, protrusions or gate burrs shall not exceed 0.15 per side. Dimension does not include interlead flash or protrusion. Interlead flash or protrusion shall not exceed 0.25 per side. Dimensions are measured at datum plane H. Dimensioning and tolerancing per ASME Y14.5M-1994. Dimension does not include dambar protrusion. Allowable protrusion shall be 0.08mm total in excess of dimension at maximum material condition. Minimum space between protrusion and adjacent lead is 0.07mm. Dimension in ( ) are for reference only. Conforms to JEDEC MO-153. 6. 3. 5. 4. 2. 1. NOTES: 7. 5 SEATING PLANE C H 2 3 1 24 B 12 1 3 13 A PLANE GAUGE 0.05 MIN 0.15 MAX 0°-8° 0.60± 0.15 0.90 1.00 REF 0.25 SEE DETAIL "X" 0.15 0.25 (0.65 TYP) (5.65) (0.35 TYP) (1.45) 6.40 4.40 ±0.10 0.65 1.20 MAX PIN #1 I.D. MARK 7.80 ±0.10 +0.05 -0.06 -0.06 +0.05 -0.10 +0.15 0.20 C B A 0.10 C - 0.05 0.10 M C B A ISL26132, ISL26134 23 FN6954.1 September 9, 2011 Package Outline Drawing M28.173 28 LEAD THIN SHRINK SMALL OUTLINE PACKAGE (TSSOP) Rev 1, 5/10 DETAIL "X" TYPICAL RECOMMENDED LAND PATTERN TOP VIEW SIDE VIEW END VIEW Dimension does not include mold flash, protrusions or gate burrs. Mold flash, protrusions or gate burrs shall not exceed 0.15 per side. Dimension does not include interlead flash or protrusion. Interlead flash or protrusion shall not exceed 0.25 per side. Dimensions are measured at datum plane H. Dimensioning and tolerancing per ASME Y14.5M-1994. Dimension does not include dambar protrusion. Allowable protrusion shall be 0.08mm total in excess of dimension at maximum material condition. Minimum space between protrusion and adjacent lead is 0.07mm. Dimension in ( ) are for reference only. Conforms to JEDEC MO-153. 6. 3. 5. 4. 2. 1. NOTES: 7. 5 SEATING PLANE C H 2 3 1 28 B 14 1 3 15 A PLANE GAUGE 0.05 MIN 0.15 MAX 0°-8° 0.60 ±0.15 0.90 1.00 REF 0.25 SEE DETAIL "X" 0.25 (0.65 TYP) (5.65) (0.35 TYP) (1.45) 6.40 4.40 ± 0.10 0.65 1.20 MAX PIN #1 I.D. MARK 9.70± 0.10 -0.06 0.15 +0.05 -0.10 +0.15 -0.06 +0.05 0.20 C B A 0.10 C - 0.05 0.10 M C B A Both, the Deltabell® E and Plus feature engineer friendly features such as the unique levelling mechanism and modular components that make simple sounder installations a reality. Both external sounders incorporate the same features that are described overleaf. However, the Deltabell® Plus has a fully back-light option, which enables around the clock visual deterrent to maximise your security. The Deltabell® E and Plus are available in a variety of different colours: Low power external sounder with strobe Low power external sounder with strobe and back-light Available Base Colours: Red, Green, White, Amber, Blue and Black Available Lid Colours: Red, White, Yellow, Black*, Blue* and Chrome* *Not recommended for Deltabell® Plus 2012 Pyronix Ltd. Pyronix, the Pyronix Blades device, Deltabell are all trademarks of Pyronix Ltd. UK Registered Design. As part of our continued development programme specifications may change. Other cover colour options available. White cover recommended for use with backlit Deltabell PLUS for optimum visual clarity. RMKT090001-7 © 2009 Pyronix Ltd. Pyronix and the Pyronix Blades device are trademarks of Pyronix Ltd. As part of our continued development programme specifications of the V2 TEL and V2 GSM may change. RMKT090057-1 © 2009 Pyronix Ltd. Pyronix, the Pyronix Blades device, TMD15 and TriCover are all trademarks of Pyronix Ltd. UK Registered Design. As part of our continued development programme specifications may change. RMKT080064-4 © 2009 Pyronix Ltd. Pyronix, the Pyronix Blades device, TMD15 and TriCover are all trademarks of Pyronix Ltd. UK Registered Design. As part of our continued development programme specifications may change. RMKT090057-1 www.pyronix.com marketing@pyronix.com 01709 700100 www.pyronix.com marketing@pyronix.com 01709 700100 www.pyronix.com marketing@pyronix.com 01709 700100 www.pyronix.com marketing@pyronix.com 01709 700100 2010 Pyronix Ltd. Pyronix, the Pyronix Blades device, Deltabell are all trademarks of Pyronix Ltd. UK Registered Design. As part of our continued development programme specifications may change. Other cover colour options available. White cover recommended for use with backlit Deltabell PLUS for optimum visual clarity. RMKT090150 www.pyronix.com marketing@pyronix.com 01709 700100Current consumption feature Deltabell® Plus only The Deltabell® incorporates a LDR (Light Dependant Resistor) circuit which turns the Light off during daylight hours when it is not needed, saving on the product current consumption. When the day turns from dusk to dark the Lightbox illuminates so that your external visual deterrent can be seen on the darkest of nights. Visual alarm warning feature Deltabell® Plus only In addition to the strobe which is present on all of the Deltabell® models, the Deltabell® PLUS has the added feature that the illuminated cover will strobe when the alarm is activated, giving you the added peace of mind that your alarm will be seen in ‘alarm mode’ from a much greater distance than standard sounders that do not have back lighting facilities. Security and peace of mind The Deltabell® has front and rear tamper protection and in the event of a potential sabotage attack, the 104dBA sounder provides a distinctive audible warning. The electronic elements on the printed circuit board are protected by a fully sealed unit with a rubber gasket providing added protection in harsh environments and giving your customer peace of mind that the Deltabell® will always sound in the event of an alarm activation. 104 dBA sounder Piezo sounder with high decibel output. Engineer hold-off facility The Deltabell® engineer hold-off facility means that when initially powered with the tamper switch open, the sounder will not activate. Remote engineer hold-off facility There is also the capability for remote engineer hold-off which is invaluable when you are servicing the system enabling easy maintenance. It can be turned on at any time by applying 0V to this dedicated terminal which will then disable the tamper. Unique levelling mechanism A spirit level is supplied so that you can easily mount the Deltabell®. In addition, to make the installation as simple as possible, revolving guide holes are used to save time lining up screw and drill holes. SCB/SAB Mode Self Contained Bell or Self Activating Bell mode. Hinged cover The Deltabell® has a hinged cover that locks into place so that both your hands are free to work on the sounder. Fully back-lit cover The Deltabell® low power modular unit back-lights the cover (Deltabell® Plus only) Electrical specification Operating Voltage Supply: 9-16 V DC (13.5 nominal) Protected: Reverse polarity protected Current Consumption Quiescent Current: < 60 mA Alarm Current: < 300 mA Strobe Strobe Duration: 100 ms Strobe Frequency: 1Hz Dimensions [W] 290 mm [H] 285 mm [D] 50 mm Compliance Europe. Suitable for use in EN50131-1 systems Security grade 2 or 3, Environmental class IV [H] [W] [D] Packing information Minimum quantity: 10 Minimum order for screen print: 40 Warranty: 2 years Designed: UK Dummy bases also available 2012 Pyronix Ltd. Pyronix, the Pyronix Blades device, Deltabell are all trademarks of Pyronix Ltd. UK Registered Design. As part of our continued development programme specifications may change. Other cover colour options available. White cover recommended for use with backlit Deltabell PLUS for optimum visual clarity. RMKT090001-7 © 2009 Pyronix Ltd. Pyronix and the Pyronix Blades device are trademarks of Pyronix Ltd. As part of our continued development programme specifications of the V2 TEL and V2 GSM may change. RMKT090057-1 © 2009 Pyronix Ltd. Pyronix, the Pyronix Blades device, TMD15 and TriCover are all trademarks of Pyronix Ltd. UK Registered Design. As part of our continued development programme specifications may change. RMKT080064-4 © 2009 Pyronix Ltd. Pyronix, the Pyronix Blades device, TMD15 and TriCover are all trademarks of Pyronix Ltd. UK Registered Design. As part of our continued development programme specifications may change. RMKT090057-1 www.pyronix.com marketing@pyronix.com 01709 700100 www.pyronix.com marketing@pyronix.com 01709 700100 www.pyronix.com marketing@pyronix.com 01709 700100 www.pyronix.com marketing@pyronix.com 01709 700100 2010 Pyronix Ltd. Pyronix, the Pyronix Blades device, Deltabell are all trademarks of Pyronix Ltd. UK Registered Design. As part of our continued development programme specifications may change. Other cover colour options available. White cover recommended for use with backlit Deltabell PLUS for optimum visual clarity. RMKT090150 www.pyronix.com marketing@pyronix.com 01709 700100 Serial File Transfer Cables The cables feature either the traditional 25 D type RS232 connector or the now more commonly fitted 9 D type serial connector. As the serial port on most PCs is a plug or male the most common interface cable tends to be a socket to socket (female to female). Features: • Multi-headed cable allows either 9 D or 25 D connection - providing complete serial port flexibility • Both serial port configurations (Pt Nos 4070 & 4062) available from stock • High quality moulded cables manufactured using foil screened cable • Custom lengths can be made up upon request • Now recognised as conforming to the most standard file transfer wiring configuration 4070 Stock No Description PC AT to PC AT 4070 DB9F to DB9F Null Modem Cable 2Mtr 4070-3 DB9F to DB9F Null Modem Cable 3Mtr 4070-5 DB9F to DB9F Null Modem Cable 5Mtr 4070-10 DB9F to DB9F Null Modem Cable 10Mtr 4070-15 DB9F to DB9F Null Modem Cable 15Mtr PC XT to PC XT 4062 DB25F to DB25F Null Modem Cable 2Mtr 4062-3 DB25F to DB25F Null Modem Cable 3Mtr 4062-5 DB25F to DB25F Null Modem Cable 5Mtr 4062-10 DB25F to DB25F Null Modem Cable 10Mtr PC XT to PC AT 4063 DB9F to DB25F Null Modem Cable 2Mtr 4063-3 9DS TO 25DS NULL MODEM 3M 4063-5 9DS TO 25DS NULL MODEM 5M 4063-10 9DS TO 25DS NULL MODEM 10M Multi-head Serial Cables 4090 DB9F+DB25F to DB9F+DB25F Null Modem Cable 2Mtr 4090-3 DB9F+DB25F to DB9F+DB25F Null Modem Cable 3Mtr 4090-5 DB9F+DB25F to DB9F+DB25F Null Modem Cable 5Mtr Amplifier Internet Radio Terrestrial Tuner Features Feature Description Audio Sources 6 – Internet Radio, MP3, CD, Terrestrial Radio, Auxiliary Input. Portable Yes, two part system. The Internet Radio is completely portable receiving all data and audio over a wireless link from the transmitter part connected to the PC USB port. LCD Display 20 character 5 x 7 dot matrix display with icons, EL blue backlight. Power Source 8 x C size 1.5 volt alkaline battery or AC mains – 220 - 240 volt Europe, 110 volt US. Operation Time Approx 30 hours continuous play at mid volume on one set of alkaline batteries. Feature Description Output Power (RMS) 2 x 2.2 watts Total Power 4.4 watts Music Power 2 x 4.4 watts PMPO 65 watts Feature Description Radio presets 6 with station name display Feature Description Digital Tuner bands FM Stereo Tuner presets 6 for each band Antenna FM YesLoudspeaker Connections Wireless Link Dimensions Frequency Display Yes, 4 digit Feature Description No. of way speaker system 1 – way full range driver Impedance 2 x 8 ohm Rated Power (RMS) 2 x 6 watts Size 67 mm x 106 mm, Elliptical Magnetic Shielding Yes Feature Description Stereo headphone Yes Auxiliary Input Yes, 2 x phono socket Auxiliary Output Yes, 2 x phono socket USB connection Yes, transmitter connects to PC USB port with 1.5 metre cable Feature Description Stereo Audio Channel Europe 863 MHz 10 mW erp, USA 925 MHz 10 mW erp, user selectable band switching to avoid interference. Data Channel Europe + USA, 433 MHz , bi-directional, user selectable band switching to avoid interference. Feature Description Radio Remote Module Front to Back 155mm (6.1"), Side to Side 283mm (11.1"), Height 150mm (5.9") USB Base Module Front to Back 120mm (4.7"), Side to Side 135mm (5.3"), Height 41mm (1.6") maxon motor control Document ID: rel3149 ESCON Servo Controllers Edition: September 2012 1 Feature Comparison Chart © 2012 maxon motor. Subject to change without prior notice. ESCON Feature Comparison Chart The ESCON servo controllers are small-sized, powerful 4-quadrant PWM servo controller for the highly efficient control of permanent magnet-activated DC motors. The featured operating modes – speed control (closed loop), speed control (open loop), and current control – meet the highest requirements. The ESCON servo controllers are designed being commanded by an analog set value and features extensive analog and digital I/O functionality and are being configured via USB interface using the graphical user interface «ESCON Studio» for Windows PCs. Legend: ()* = only in use with DC Tacho or Encoder / nnnnnn = order number / O = optional Feature ESCON 36/2 DC (403112) ESCON 36/3 EC (414533) ESCON 50/5 (409510) Product image Motors DC motors up to 72 W — 250 W EC motors up to — 97 W 250 W Sensors Digital Incremental Encoder (2 channel with or without Line Driver)  —  DC Tacho  —  Without sensor (DC motors)  —  Digital Hall Sensors (EC motors) —   Electrical Data Nominal operating voltage Vcc 10…36 VDC 10…36 VDC 10…50 VDC Max. output voltage 0.98 x Vcc 0.98 x Vcc 0.98 x Vcc Max. output current 4 A (<60 s) 9 A (<4 s) 15 A (<20 s) Continuous output current 2 A 2.7 A 5 A Pulse Width Modulation frequency 53.6 kHz maxon motor control Document ID: rel3149 ESCON Servo Controllers Edition: September 2012 2 Feature Comparison Chart © 2012 maxon motor. Subject to change without prior notice. Sampling rate PI current controller 53.6 kHz Sampling rate PI speed controller 5.36 kHz Max. efficiency 95% 95% 95% Max. speed (DC) limited by max. permissible speed (motor) and max. output voltage (controller) — limited by max. permissible speed (motor) and max. output voltage (controller) Max. speed (EC; 1 pole pair) — 150'000 rpm 150'000 rpm Built-in motor choke 300 μH; 2 A 3 x 47 μH; 2.7 A 3 x 30 μH; 5 A Inputs / Outputs Hall sensor signals — H1, H2, H3 H1, H2, H3 Encoder signals A,A\,B,B\ — A,A\,B,B\ Max. encoder input frequency differential (single-ended) 1 MHz (100 kHz) — 1 MHz (100 kHz) Potentiometers 1 1 2 Digital inputs 2 Digital inputs/outputs 2 Analog inputs 2 Resolution 12-bit Range –10…+10 V Circuit differential Analog outputs 2 Resolution 12-bit Range –4…+4 V Auxiliary voltage output +5 VDC (IL ≤10 mA) Hall sensor supply voltage — +5 VDC (IL ≤30 mA) +5 VDC (IL ≤30 mA) Encoder supply voltage +5 VDC (IL ≤70 mA) — +5 VDC (IL ≤70 mA) Status Indicators Operation: green LED / Error: red LED Connections J1 Power Pin header (2 mm), 2 poles Pin header (2 mm), 2 poles Pluggable screw-type terminal block (3.5 mm), 2 poles J2 Motor Motor / Hall sensors Pin header (2 mm), 3 poles Mini module pin header, 8 poles Pluggable screw-type terminal block (3.5 mm), 4 poles J2A Motor Motor / Hall sensors Spring-loaded contacts, 2 poles Spring-loaded contacts, 8 poles — Feature ESCON 36/2 DC (403112) ESCON 36/3 EC (414533) ESCON 50/5 (409510) maxon motor control Document ID: rel3149 ESCON Servo Controllers Edition: September 2012 3 Feature Comparison Chart © 2012 maxon motor. Subject to change without prior notice. J3 Hall sensors — — Pluggable screw-type terminal block (3.5 mm), 5 poles J4 Encoder Pin header (2.54 mm), 5 x 2 poles — Pin header (2.54 mm), 5 x 2 poles J4A Encoder Pin header (1.27 mm), 5 x 2 poles — — J5 Digital I/O Pin header (2 mm), 6 poles Pin header (2 mm), 6 poles Pluggable screw-type terminal block (3.5 mm), 6 poles J6 Analog I/O Pin header (2 mm), 7 poles Pin header (2 mm), 7 poles Pluggable screw-type terminal block (3.5 mm), 7 poles J7 USB USB Type micro B female Mechanical Data Weight (approximate) 30 g 36 g 204 g Dimensions (L x W x H) 55 x 40 x 16.1 mm 55 x 40 x 19.8 mm 115 x 75.5 x 24 mm Mounting holes for screws M2.5 for screws M2.5 for screws M4 Environmental Conditions Temperature – Operation –30…+45°C Temperature – Extended range +45…+81°C; Derating: –0.056 A/°C +45…+78°C; Derating: –0.082 A/°C +45…+85°C; Derating: –0.113 A/°C Temperature – Storage –40…+85°C Humidity (condensation not permitted) 20…80% Functionality Operating Mode Current controller (torque control)    Speed controller (closed loop)    with encoder feedback  —  with DC Tacho feedback  —  with Hall sensor feedback —   Speed controller (open loop)    with static IxR Compensation    with adaptive IxR Compensation ()*   Feature ESCON 36/2 DC (403112) ESCON 36/3 EC (414533) ESCON 50/5 (409510) maxon motor control Document ID: rel3149 ESCON Servo Controllers Edition: September 2012 4 Feature Comparison Chart © 2012 maxon motor. Subject to change without prior notice. Set Value Analog set value  PWM set value  Fixed set value  2 fixed set values  Digital I/O Functionality Enable  Enable CW  Enable CCW  Enable CW + CCW  Enable + Direction  Stop  Ready  Speed Comparator  Commutation frequency —   Monitoring Outputs Monitor Current  Monitor Speed  Analog Settings Set value  Current limit  Offset adjust set value  Speed ramp (using potentiometer)  Current gain (using potentiometer)  Speed gain (using potentiometer)  IxR Factor (using potentiometer)  Feature ESCON 36/2 DC (403112) ESCON 36/3 EC (414533) ESCON 50/5 (409510) maxon motor control Document ID: rel3149 ESCON Servo Controllers Edition: September 2012 5 Feature Comparison Chart © 2012 maxon motor. Subject to change without prior notice. Protection Overcurrent  Current limiter (adjustable)  Thermal overload  Undervoltage  Overvoltage  Voltage transients  Short-circuit of motor winding  Software Installation Program ESCON Setup Graphical User Interface ESCON Studio Startup Wizard  Regulation Tuning  Diagnostic  Firmware Update  Controller Monitor  Parameters  Data Recording  Online Help  Language German, English, French, Italian, Spanish, Japanese, Chinese Operating System Windows 7, Windows XP SP3 Communication interface USB 2.0 (full speed) Feature ESCON 36/2 DC (403112) ESCON 36/3 EC (414533) ESCON 50/5 (409510) maxon motor control Document ID: rel3149 ESCON Servo Controllers Edition: September 2012 6 Feature Comparison Chart © 2012 maxon motor. Subject to change without prior notice. Accessories (not included in delivery) 404404 ESCON 36/2 DC Connector Set  — — 425255 ESCON 36/3 EC Connector Set —  — 403964 ESCON Analog I/O Cable   — 403962 ESCON DC Motor Cable  — — 403965 ESCON Digital I/O Cable   — 275934 ESCON Encoder Cable O — O 403957 ESCON Power Cable   — 403968 USB 2.0 Type A micro-B Cable    418719 Adapter BLACK (for flexprint cable (FPC), 11 poles) —  — 418723 Adapter BLUE (for flexprint cable (FPC), 8 poles) —  — 418721 Adapter GREEN (for flexprint cable (FPC), 8 poles) —  — 409286 ESCON USB Stick    Feature ESCON 36/2 DC (403112) ESCON 36/3 EC (414533) ESCON 50/5 (409510) maxon motor control ESCON Servo Controllers Document ID: rel2547 1 Feature Comparison Chart Edition: March 2012 © 2012 maxon motor. Subject to change without prior notice. ESCON Feature Comparison Chart The ESCON servo controllers are small-sized, powerful 4-quadrant PWM servo controller for the highly efficient control of permanent magnet-activated DC motors. The featured operating modes – speed control (closed loop), speed control (open loop), and current control – meet the highest requirements. The ESCON servo controllers are designed being commanded by an analog set value and features extensive analog and digital I/O functionality and are being configured via USB interface using the graphical user interface «ESCON Studio» for Windows PCs. Legend: ()* = only in use with DC Tacho or Encoder / nnnnnn = order number / O = optional Feature ESCON 36/2 DC (403112) ESCON 50/5 (409510) Product image Motors DC motors up to 72 W 250 W EC motors up to — 250 W Sensors Digital Incremental Encoder (2 channel with or without Line Driver)   DC Tacho   Without sensor (DC motors)   Digital Hall Sensors (EC motors) —  Electrical Data Nominal operating voltage Vcc 10…36 VDC 10…50 VDC Max. output voltage 0.98 x Vcc 0.98 x Vcc Max. output current 4 A (<60 s) 15 A (<20 s) Continuous output current 2 A 5 A Pulse Width Modulation frequency 53.6 kHz Sampling rate PI current controller 53.6 kHz Sampling rate PI speed controller 5.36 kHz Max. efficiency 95% 95% Max. speed (DC) limited by max. permissible speed (motor) and max. output voltage (controller) Max. speed (EC; 1 pole pair) — 150'000 rpm Built-in motor choke 300 μH; 2 A 3 x 30 μH; 5 A Inputs / Outputs Hall sensor signals — H1, H2, H3 Encoder signals A,A\,B,B\ Max. encoder input frequency differential (singleended) 1 MHz (100 kHz) Potentiometers 1 2 maxon motor control 2 Document ID: rel2547 ESCON Servo Controllers Edition: March 2012 Feature Comparison Chart © 2012 maxon motor. Subject to change without prior notice. Digital inputs 2 Digital inputs/outputs 2 Analog inputs 2 Resolution 12-bit Range –10…+10 V Circuit differential Analog outputs 2 Resolution 12-bit Range –4…+4 V Auxiliary voltage output +5 VDC (IL ≤10 mA) Hall sensor supply voltage — +5 VDC (IL ≤30 mA) Encoder supply voltage +5 VDC (IL ≤70 mA) Status Indicators Operation: green LED / Error: red LED Connections J1 Power Pin header (2 mm), 2 poles Pluggable screw-type terminal block (3.5 mm), 2 poles J2 Motor Pin header (2 mm), 3 poles Pluggable screw-type terminal block (3.5 mm), 4 poles J2A Motor Spring-loaded contacts, 2 poles — J3 Hall sensors — Pluggable screw-type terminal block (3.5 mm), 5 poles J4 Encoder Pin header (2.54 mm), 5 x 2 poles J4A Encoder Pin header (1.27 mm), 5 x 2 poles — J5 Digital I/O Pin header (2 mm), 6 poles Pluggable screw-type terminal block (3.5 mm), 6 poles J6 Analog I/O Pin header (2 mm), 7 poles Pluggable screw-type terminal block (3.5 mm), 7 poles J7 USB USB Type micro B female Mechanical Data Weight (approximate) 30 g 204 g Dimensions (L x W x H) 55 x 40 x 16.1 mm 115 x 75.5 x 24 mm Mounting holes for screws M2.5 for screws M4 Environmental Conditions Temperature – Operation –30…+45°C Temperature – Extended range +45…+81°C; Derating: –0.056 A/°C +45…+85°C; Derating: –0.113 A/°C Temperature – Storage –40…+85°C Humidity (condensation not permitted) 20…80% Functionality Operating Mode Current controller (torque control)  Speed controller (closed loop)  with encoder feedback  with DC Tacho feedback  with Hall sensor feedback —  Feature ESCON 36/2 DC (403112) ESCON 50/5 (409510) maxon motor control ESCON Servo Controllers Document ID: rel2547 3 Feature Comparison Chart Edition: March 2012 © 2012 maxon motor. Subject to change without prior notice. Speed controller (open loop)  with static IxR Compensation  with adaptive IxR Compensation ()*  Set Value Analog set value  PWM set value  Fixed set value  2 fixed set values  Digital I/O Functionality Enable  Enable CW  Enable CCW  Enable CW + CCW  Enable + Direction  Stop  Ready  Speed Comparator  Commutation frequency —  Monitoring Outputs Monitor Current  Monitor Speed  Analog Settings Set value  Current limit  Offset adjust set value  Speed ramp (using potentiometer)  Current gain (using potentiometer)  Speed gain (using potentiometer)  IxR Factor (using potentiometer)  Protection Overcurrent  Current limiter (adjustable)  Thermal overload  Undervoltage  Overvoltage  Voltage transients  Short-circuit of motor winding  Feature ESCON 36/2 DC (403112) ESCON 50/5 (409510) maxon motor control 4 Document ID: rel2547 ESCON Servo Controllers Edition: March 2012 Feature Comparison Chart © 2012 maxon motor. Subject to change without prior notice. Software Installation Program ESCON Setup Graphical User Interface ESCON Studio Startup Wizard  Regulation Tuning  Diagnostic  Firmware Update  Controller Monitor  Parameters  Data Recording  Online Help  Language German, English, French, Italian, Spanish Operating System Windows 7, Windows XP SP3 Communication interface USB 2.0 (full speed) Accessories (not included in delivery) 404404 ESCON 36/2 DC Connector Set  — 403964 ESCON Analog I/O Cable  — 403962 ESCON DC Motor Cable  — 403965 ESCON Digital I/O Cable  — 275934 ESCON Encoder Cable O O 403957 ESCON Power Cable  — 403968 USB 2.0 Type A micro-B Cable   409286 ESCON USB Stick   Feature ESCON 36/2 DC (403112) ESCON 50/5 (409510) Panasonic Corporation Automation Controls Business Unit industrial.panasonic.com/ac/e/ EV (AEV) ASCTB233E 201209-T ORDERING INFORMATION Capsule contact Mechanism and High-capacity Cut-off Compact Relay EV RELAYS (AEV) 10A 80A 200A 300A 120A 20A New RoHS compliant FEATURES • Compact and lightweight Charged with hydrogen gas for high arc cooling capacity, short gap cutoff has been achieved at high DC voltages. • Safety High safety achieved with construction that prevents explosions by keeping the arc from leaking. • High contact reliability Since the contact portion is sealed in hydrogen gas, there is no contact oxidation. It is also dustproof and waterproof. TYPICAL APPLICATIONS High DC voltage applications such as • Electric vehicle • Hybrid vehicle • Fuel-cell vehicle • Battery charge and discharge systems • Construction equipment Contact arrangement 1: 1 Form A (Screw terminal, 10A TM, with terminal protection cover) 5: 1 Form A (20A TM type) AEV 0 Contact rating 1: 10 A 2: 20 A 8: 80 A 4: 120 A 7: 200 A 9: 300 A Coil terminal structure Nil: 2: Plug-in (Faston) (for 20 A type), Connector (for 80 A, 120 A and 300 A), Lead wire (for 200 A) Plug-in (Faston) (for 10 A type with terminal protection cover) Coil voltage 12: 12V DC 24: 24V DC Panasonic Corporation Automation Controls Business Unit industrial.panasonic.com/ac/e/ LQ (ALQ) ASCTB92E 201206-T ORDERING INFORMATION TYPES Standard packing: Carton 100 pcs., Case 500 pcs. 1 Form A/1 Form C 10A Small power relays LQ RELAYS (ALQ) Nominal coil voltage 1 Form A 1 Form C Part No. Part No. 5V DC ALQ305 ALQ105 6V DC ALQ306 ALQ106 9V DC ALQ309 ALQ109 12V DC ALQ312 ALQ112 18V DC ALQ318 ALQ118 24V DC ALQ324 ALQ124 * Protective construction: Flux-resistant type RoHS compliant FEATURES 1. Miniature size and small: 10(W) × 20(L) × 16(H) mm .394(W) × .787(L) × .630(H) inch 2. Compact with high capacity: 1 Form A and 1 Form C, 10 A 3. Ambient temperature: –40°C to +85°C –40°F to 185°F 4. High surge voltage: 8,000 V between contacts and coil 5. High breakdown voltage: 4,000 V between contacts and coil TYPICAL APPLICATIONS 1. Household appliances Air conditioners, Refrigerators, Fan heaters, Microwave ovens, Inverter and Hot water units New Contact arrangement 1: 1 Form C 3: 1 Form A ALQ Coil insulation class Nil: F: Class B insulation Class F insulation Nominal coil voltage (DC) 05: 5V, 06: 6V, 09: 9V, 12: 12V, 18: 18V, 24: 24VPanasonic Corporation Automation Controls Business Unit industrial.panasonic.com/ac/e/ LQ (ALQ) ASCTB92E 201206-T RATING 1. Coil data 2. Specifications * Specifications will vary with foreign standards certification ratings. Notes: *1. This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load. *2. Wave is standard shock voltage of ±1.2×50µs according to JEC-212-1981 *3. The upper limit of the ambient temperature is the maximum temperature that can satisfy the coil temperature rise value. Refer to Usage, transport and storage conditions in NOTES. *4. When using relays in a high ambient temperature, consider the pick-up voltage rise due to the high temperature (a rise of approx. 0.4% V for each 1°C 33.8°F with 20°C 68°F as a reference) and use a coil impressed voltage that is within the maximum applied voltage range. Contact arrangement Nominal coil voltage Pick-up voltage (at 20°C 68°F) Drop-out voltage (at 20°C 68°F) Nominal operating current [±10%] (at 20°C 68°F) Coil resistance [±10%] (at 20°C 68°F) Nominal operating power (at 20°C 68°F) Max. applied voltage 1 Form A 5V DC 75%V or less of nominal voltage (Initial) 5%V or more of nominal voltage (Initial) 40.0mA 125 Ω 200mW 180% of nominal voltage (at 20°C 68°F) 130% of nominal voltage (at 85°C 185°F)*4 6V DC 33.3mA 180 Ω 9V DC 22.2mA 405 Ω 12V DC 16.7mA 720 Ω 18V DC 11.1mA 1,620 Ω 24V DC 8.3mA 2,880 Ω 1 Form C 5V DC 75%V or less of nominal voltage (Initial) 5%V or more of nominal voltage (Initial) 80.0mA 62.5Ω 400mW 150% of nominal voltage (at 20°C 68°F) 110% of nominal voltage (at 85°C 185°F)*4 6V DC 66.7mA 90 Ω 9V DC 44.4mA 202.5Ω 12V DC 33.3mA 360 Ω 18V DC 22.2mA 810 Ω 24V DC 16.7mA 1,440 Ω Characteristics Item Specifications Contact Arrangement 1 Form A 1 Form C Contact resistance (Initial) Max. 100mΩ (By voltage drop 6 V DC 1 A) Contact material AgNi type Rating Nominal switching capacity (resistive load) 5 A 30 V DC, 10 A 125 V AC, 5 A 250 V AC N.O. side: 10 A 125 V AC, 5 A 250 V AC, 5 A 30 V DC N.C. side: 3 A 125 V AC, 2 A 250 V AC, 1 A 30 V DC Max. switching power (resistive load) 150 W, 1,250 VA N.O. side: 150 W, 1,250 VA N.C. side: 30 W, 500 VA Max. switching voltage 250 V AC Max. switching current N.O.: 10 A (125V AC), N.C.: 3 A (125V AC) Nominal operating power 200 mW 400 mW Min. switching capacity (reference value)*1 100 mA, 5 V DC Electrical characteristics Insulation resistance (Initial) Min. 1,000 MΩ (at 500 V DC) Measurement at same location as “Breakdown voltage” section. Breakdown voltage (Initial) Between open contacts 1,000 Vrms for 1 min. (Detection current: 10 mA) 750 Vrms for 1 min. (Detection current: 10 mA) Between contact and coil 4,000 Vrms for 1 min. (Detection current: 10 mA) Temperature rise (coil)*4 Max. 45°C 113°F (By resistive method, nominal coil voltage applied to the coil; contact carrying current: 10A, at 85°C 185°F) Surge breakdown voltage*2 (Between contact and coil) 8,000 V (Initial) Operate time (at nominal voltage) (at 20°C 68°F) Max. 20 ms (excluding contact bounce time.) (Initial) Release time (at nominal voltage) (at 20°C 68°F) Max. 20 ms (excluding contact bounce time, with diode) (Initial) Mechanical characteristics Shock resistance Functional 1 Form A: 294 m/s2, 1 Form C: 196 m/s2 (Half-wave pulse of sine wave: 11 ms; detection time: 10µs.) Destructive 980 m/s2 (Half-wave pulse of sine wave: 6 ms.) Vibration resistance Functional 10 to 55 Hz at double amplitude of 1.6 mm (Detection time: 10µs.) Destructive 10 to 55 Hz at double amplitude of 2.0 mm Expected life Mechanical Min. 107 (at 180 times/min.) Conditions Conditions for operation, transport and storage*3 Ambient temperature: –40°C to +85°C –40°F to +185°F Humidity: 5 to 85% R.H. (Not freezing and condensing at low temperature) Max. operating speed 20 times/min. (at nominal switching capacity) Unit weight Approx. 7 g .25 ozPanasonic Corporation Automation Controls Business Unit industrial.panasonic.com/ac/e/ LQ (ALQ) ASCTB92E 201206-T 3. Expected electrical life Condition: Resistive load, at 20°C 68°F, at 20 times/min., with diode REFERENCE DATA Type Switching capacity No. of operations 1 Form A (at 20 times/min.) 10 A 125 V AC 5 A 250 V AC 5 A 30 V DC 5×104 5×104 105 1 Form C (at 20 times/min.) N.O. 10 A 125 V AC 5 A 250 V AC 5 A 30 V DC 5×104 5×104 105 N.C. 3 A 125 V AC 2 A 250 V AC 1 A 30 V DC 2×105 2×105 105 1.-(1) Max. switching capacity (1 Form A type) 1.-(2) Max. switching capacity (1 Form C type) 2. Life curve Ambient temperature: room temperature 1,000 AC resistive load 10010 250 100 10 5 1 Contact voltage, V Contact current, A 1,00025010010 100 10 5 3 2 1 Contact voltage, V Contact current, A AC resistive load N.O. side AC resistive load N.C. side 125V AC resistive load 250V AC resistive load 1086420 100 10 1 Contact current, A Life, ×104 3.-(1) Coil temperature rise (1 Form A type) Contact carrying current: 5 A, 10 A Measured portion: Inside the coil 3.-(2) Coil temperature rise (1 Form C type) Contact carrying current: 5 A, 10 A Measured portion: Inside the coil 4.-(1) Ambient temperature characteristics (1 Form A type) Contact carrying current: 5 A, 10 A 180160140120100 Coil applied voltage, %V 70 60 50 40 30 20 10 0 Te mperature rise, °C 10 A at 70°C 5 A at 70°C 5 A at 85°C 10 A at 85°C 160150140130120110100 Coil applied voltage, %V 70 60 50 40 30 20 10 0 Temperature rise, °C 10 A at 70°C 10 A at 85°C 5 A at 85°C 5 A at 70°C 0 20 30 40 50 60 70 80 90 Ambient temperature, °C 400 300 200 100 Coil applied voltage, %V 1 2 3 5 4 6 7 4.-(2) Ambient temperature characteristics (1 Form C type) Contact carrying current: 5 A, 10 A 1Allowable ambient temperature against % coil voltage (max. inside the coil temperature set as 130°C 266°F) (Carrying current: 5 A) 2Allowable ambient temperature against % coil voltage (max. inside the coil temperature set as 130°C 266°F) (Carrying current: 10 A) 3Allowable ambient temperature against % coil voltage (max. inside the coil temperature set as 115°C 239°F) (Carrying current: 5 A) 4Allowable ambient temperature against % coil voltage (max. inside the coil temperature set as 115°C 239°F) (Carrying current: 10 A) 5Pick-up voltage with a hot-start condition of 100%V on the coil (Carrying current: 10 A) 6Pick-up voltage with a hot-start condition of 100%V on the coil (Carrying current: 5 A) 7Pick-up voltage 0 20 30 40 50 60 70 80 90 Ambient temperature, °C 400 300 200 100 Coil applied voltage, %V 1 2 3 4 5 6 7Panasonic Corporation Automation Controls Business Unit industrial.panasonic.com/ac/e/ LQ (ALQ) ASCTB92E 201206-T DIMENSIONS (mm inch) SAFETY STANDARDS Note) CSA standard: Certified by C-UL Item UL/C-UL (Recognized) VDE (Certified) File No. Contact rating File No. Contact rating 1 Form A E43028 10A 125V AC 5A 277V AC 5A 30V DC 4FLA/4LRA 277V AC 1/6 HP 125V AC 1/6 HP 277V AC 40032836 5A 250V AC (cosφ=1.0) 10A 250V AC (cosφ=1.0) 10A 250V AC (cosφ=0.4) 5A 30V DC (0ms) 1 Form C E43028 10A 125V AC 5A 277V AC 5A 30V DC 4FLA/4LRA 277V AC 1/6 HP 125V AC 1/6 HP 277V AC 3A 125V AC 2A 277V AC 1A 30V DC 40032836 5A 250V AC (cosφ=1.0) 10A 250V AC (cosφ=1.0) 10A 250V AC (cosφ=0.4) 5A 30V DC (0ms) 3A 250V AC (cosφ=0.4) The CAD data of the products with a CAD Data mark can be downloaded from: http://industrial.panasonic.com/ac/e/ External dimensions 1 Form A 1 Form C 20 .787 10.16 .400 7.62 .300 7.62 .300 10 .394 7.62 .300 15.6 .614 4.2 .165 0.4 .016 0.5 dia. .020 dia. 0.3 .012 0.3 .012 0.8 .031 20 .787 10.16 .400 5.08 .200 10 .394 7.62 .300 15.6 .614 4.2 .165 0.4 .016 0.5 dia. .020 dia. 0.3 .012 0.3 .012 0.3 .012 2.54 .100 7.62 .300 0.8 .031 0.8 .031 Schematic (Bottom view) 1 Form A 1 Form C Coil COM N.O. Coil COM N.O. N.C. PC board pattern (Bottom view) 1 Form A 1FormC Tolerance: ±0.1 ±.004 4-1.3 dia. 7.62 7.62 10.16 4-.051 dia. .300 .300 .400 5-1.3 dia. 7.62 7.62 10.16 2.54 5-.051 dia. .300 .300 .400 .100 CAD Data Dimension: Less than 1mm .039inch: Min. 1mm .039inch less than 5mm .197 inch: Min. 5mm .197 inch: General tolerance ±0.2 ±.008 ±0.3 ±.012 ±0.4 ±.016Panasonic Corporation Automation Controls Business Unit industrial.panasonic.com/ac/e/ LQ (ALQ) ASCTB92E 201206-T NOTES  Usage, transport and storage conditions 1) Temperature: –40 to +85°C –40 to +185°F 2) Humidity: 5 to 85% RH (Avoid freezing and condensation.) The humidity range varies with the temperature. Use within the range indicated in the graph below. 3) Atmospheric pressure: 86 to 106 kPa Temperature and humidity range for usage, transport, and storage 4) Condensation Condensation forms when there is a sudden change in temperature under high temperature and high humidity conditions. Condensation will cause deterioration of the relay insulation. 5) Freezing Condensation or other moisture may freeze on the relay when the temperatures is lower than 0°C 32°F. This causes problems such as sticking of movable parts or operational time lags. 6) Low temperature, low humidity environments The plastic becomes brittle if the relay is exposed to a low temperature, low humidity environment for long periods of time.  Solder and cleaning conditions 1) Please obey the following conditions when soldering automatically. (1) Preheating: Within 120°C 248°F (solder surface terminal portion) and within 120 seconds (2) Soldering iron: 260°C±5°C 500°F±41°F (solder temperature) and within 6 seconds (soldering time) 2) Do not use ultrasonic cleaning. This will adversely affect relay characteristics. When cleaning the relay, please use alcoholic solvents.  Cautions for use 1) For precautions regarding use and explanations of technical terminology, please refer to our web site. (panasonic-electric-works.net/ac) 2) To ensure good operation, please keep the voltage on the coil ends to ±5% (at 20°C 68°F) of the rated coil operation voltage. Also, please be aware that the pick-up voltage and drop-out voltage may change depending on the temperature and conditions of use. 3) Keep the ripple rate of the nominal coil voltage below 5%. 4) The cycle lifetime is defined under the standard test condition specified in the JIS C 5442 standard (temperature 15 to 35°C 59 to 95°F, humidity 25 to 75%). Check this with the real device as it is affected by coil driving circuit, load type, activation frequency, activation phase, ambient conditions and other factors. Also, be especially careful of loads such as those listed below. (1) When used for AC load-operating and the operating phase is synchronous. Rocking and fusing can easily occur due to contact shifting. (2) Highly frequent load-operating When highly frequent opening and closing of the relay is performed with a load that causes arcs at the contacts, nitrogen and oxygen in the air is fused by the arc energy and HNO3 is formed. This can corrode metal materials. Three countermeasures for these are listed here. • Incorporate an arc-extinguishing circuit. • Lower the operating frequency • Lower the ambient humidity 5) This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load. 6) Heat, smoke, and even a fire may occur if the relay is used in conditions outside of the allowable ranges for the coil ratings, contact ratings, operating cycle lifetime, and other specifications. Therefore, do not use the relay if these ratings are exceeded. 7) If the relay has been dropped, the appearance and characteristics should always be checked before use. 8) Incorrect wiring may cause unexpected events or the generation of heat or flames. 85 5 Humidity, %RH Tolerance range (Avoid condensation when used at temperatures higher than 0°C 32°F) (Avoid freezing when used at temperatures lower than 0°C 32°F) 850–40 +185+32–40 Temperature, °C °F 74AC00, 74ACT00 — Quad 2-Input NAND Gate ©1988 Fairchild Semiconductor Corporation www.fairchildsemi.com 74AC00, 74ACT00 Rev. 1.4.1 January 2008 74AC00, 74ACT00 Quad 2-Input NAND Gate Features ■ I CC reduced by 50% ■ Outputs source/sink 24mA ■ ACT00 has TTL-compatible inputs General Description The AC00/ACT00 contains four, 2-input NAND gates. Ordering Information Device also available in Tape and Reel. Specify by appending suffix letter “X” to the ordering number. All packages are lead free per JEDEC: J-STD-020B standard. Connection Diagram Pin Description Logic Symbol IEEE/IEC Order Number Package Number Package Description 74AC00SC M14A 14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow 74AC00SJ M14D 14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide 74AC00MTC MTC14 14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide 74AC00PC N14A 14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide 74ACT00SC M14A 14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow 74ACT00SJ M14D 14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide 74ACT00MTC MTC14 14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide 74ACT00PC N14A 14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide Pin Names Description A n , B n Inputs O n Outputs ©1988 Fairchild Semiconductor Corporation www.fairchildsemi.com 74AC00, 74ACT00 Rev. 1.4.1 2 74AC00, 74ACT00 — Quad 2-Input NAND Gate Absolute Maximum Ratings Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. Recommended Operating Conditions The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings. Symbol Parameter Rating V CC Supply Voltage –0.5V to +7.0V I IK DC Input Diode Current V I = –0.5V –20mA V I = V CC + 0.5 +20mA V I DC Input Voltage –0.5V to V CC + 0.5V I OK DC Output Diode Current V O = –0.5V –20mA V O = V CC + 0.5V +20mA V O DC Output Voltage –0.5V to V CC + 0.5V I O DC Output Source or Sink Current ±50mA I CC or I GND DC V CC or Ground Current per Output Pin ±50mA T STG Storage Temperature –65°C to +150°C T J Junction Temperature 140°C Symbol Parameter Rating V CC Supply Voltage AC 2.0V to 6.0V ACT 4.5V to 5.5V V I Input Voltage 0V to V CC V O Output Voltage 0V to V CC T A Operating Temperature –40°C to +85°C Δ V / Δ t Minimum Input Edge Rate, AC Devices: V IN from 30% to 70% of V CC , V CC @ 3.3V, 4.5V, 5.5V 125mV/ns Δ V / Δ t Minimum Input Edge Rate, ACT Devices: V IN from 0.8V to 2.0V, V CC @ 4.5V, 5.5V 125mV/ns ©1988 Fairchild Semiconductor Corporation www.fairchildsemi.com 74AC00, 74ACT00 Rev. 1.4.1 3 74AC00, 74ACT00 — Quad 2-Input NAND Gate DC Electrical Characteristics for AC Notes: 1. All outputs loaded; thresholds on input associated with output under test. 2. Maximum test duration 2.0ms, one output loaded at a time. 3. I IN and I CC @ 3.0V are guaranteed to be less than or equal to the respective limit @ 5.5V V CC . Symbol Parameter V CC (V) Conditions T A = +25°C T A = –40°C to +85°C Typ. Guaranteed Limits Units V IH Minimum HIGH Level Input Voltage 3.0 V OUT = 0.1V or V CC – 0.1V 1.5 2.1 2.1 V 4.5 2.25 3.15 3.15 5.5 2.75 3.85 3.85 V IL Maximum LOW Level Input Voltage 3.0 V OUT = 0.1V or V CC – 0.1V 1.5 0.9 0.9 V 4.5 2.25 1.35 1.35 5.5 2.75 1.65 1.65 V OH Minimum HIGH Level Output Voltage 3.0 I OUT = –50μA 2.99 2.9 2.9 V 4.5 4.49 4.4 4.4 5.5 5.49 5.4 5.4 3.0 V IN = V IL or V IH , I OH = –12mA 2.56 2.46 4.5 V IN = V IL or V IH , I OH = –24mA 3.86 3.76 5.5 V IN = V IL or V IH , I OH = –24mA (1) 4.86 4.76 V OL Maximum LOW Level Output Voltage 3.0 I OUT = 50μA 0.002 0.1 0.1 V 4.5 0.001 0.1 0.1 5.5 0.001 0.1 0.1 3.0 V IN = V IL or V IH , I OL = 12mA 0.36 0.44 4.5 V IN = V IL or V IH , I OL = 24mA 0.36 0.44 5.5 V IN = V IL or V IH , I OL = 24mA (1) 0.36 0.44 I IN (3) Maximum Input Leakage Current 5.5 V I = V CC , GND ±0.1 ±1.0 μA I OLD Minimum Dynamic Output Current (2) 5.5 V OLD = 1.65V Max. 75 mA IOHD 5.5 VOHD = 3.85V Min. –75 mA ICC (3) Maximum Quiescent Supply Current 5.5 VIN = VCC or GND 2.0 20.0 μA ©1988 Fairchild Semiconductor Corporation www.fairchildsemi.com 74AC00, 74ACT00 Rev. 1.4.1 4 74AC00, 74ACT00 — Quad 2-Input NAND Gate DC Electrical Characteristics for ACT Notes: 4. All outputs loaded; thresholds on input associated with output under test. 5. Maximum test duration 2.0ms, one output loaded at a time. Symbol Parameter VCC (V) Conditions TA = +25°C TA = –40°C to +85°C Typ. Guaranteed Limits Units VIH Minimum HIGH Level Input Voltage 4.5 VOUT = 0.1V or VCC – 0.1V 1.5 2.0 2.0 V 5.5 1.5 2.0 2.0 VIL Maximum LOW Level Input Voltage 4.5 VOUT = 0.1V or VCC – 0.1V 1.5 0.8 0.8 V 5.5 1.5 0.8 0.8 VOH Minimum HIGH Level Output Voltage 4.5 IOUT = –50μA 4.49 4.4 4.4 V 5.5 5.49 5.4 5.4 4.5 VIN = VIL or VIH, IOH = –24mA 3.86 3.76 5.5 VIN = VIL or VIH, IOH = –24mA(4) 4.86 4.76 VOL Maximum LOW Level Output Voltage 4.5 IOUT = 50μA 0.001 0.1 0.1 V 5.5 0.001 0.1 0.1 4.5 VIN = VIL or VIH, IOL = 24mA 0.36 0.44 5.5 VIN = VIL or VIH, IOL= 24mA(4) 0.36 0.44 IIN Maximum Input Leakage Current 5.5 VI = VCC, GND ±0.1 ±1.0 μA ICCT Maximum ICC/Input 5.5 VI = VCC – 2.1V 0.6 1.5 mA IOLD Minimum Dynamic Output Current(5) 5.5 VOLD = 1.65V Max. 75 mA IOHD 5.5 VOHD = 3.85V Min. –75 mA ICC Maximum Quiescent Supply Current 5.5 VIN = VCC or GND 2.0 20.0 μA ©1988 Fairchild Semiconductor Corporation www.fairchildsemi.com 74AC00, 74ACT00 Rev. 1.4.1 5 74AC00, 74ACT00 — Quad 2-Input NAND Gate AC Electrical Characteristics for AC Note: 6. Voltage range 3.3 is 3.3V ± 0.3V. Voltage range 5.0 is 5.0V ± 0.5V. AC Electrical Characteristics for ACT Note: 7. Voltage Range 5.0 is 5.0V ± 0.5V. Capacitance Symbol Parameter VCC (V)(6) TA = +25°C, CL = 50pF TA = –40°C to +85°C, CL = 50pF Min. Typ. Max. Min. Max. Units tPLH Propagation Delay 3.3 2.0 7.0 9.5 2.0 10.0 ns 5.0 1.5 6.0 8.0 1.5 8.5 tPHL Propagation Delay 3.3 1.5 5.5 8.0 1.0 8.5 ns 5.0 1.5 4.5 6.5 1.0 7.0 Symbol Parameter VCC (V)(7) TA = +25°C, CL = 50pF TA = –40°C to +85°C, CL = 50pF Min. Typ. Max. Min. Max. Units tPLH Propagation Delay 5.0 1.5 5.5 9.0 1.0 9.5 ns tPHL Propagation Delay 5.0 1.5 4.0 7.0 1.0 8.0 ns Symbol Parameter Conditions Typ. Units CIN Input Capacitance VCC = OPEN 4.5 pF CPD Power Dissipation Capacitance VCC = 5.0V 30.0 pF ©1988 Fairchild Semiconductor Corporation www.fairchildsemi.com 74AC00, 74ACT00 Rev. 1.4.1 6 74AC00, 74ACT00 — Quad 2-Input NAND Gate Physical Dimensions Figure 1. 14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild’s worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products. Always visit Fairchild Semiconductor’s online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/ LAND PATTERN RECOMMENDATION NOTES: UNLESS OTHERWISE SPECIFIED A) THIS PACKAGE CONFORMS TO JEDEC MS-012, VARIATION AB, ISSUE C, B) ALL DIMENSIONS ARE IN MILLIMETERS. C) DIMENSIONS DO NOT INCLUDE MOLD FLASH OR BURRS. D) LANDPATTERN STANDARD: SOIC127P600X145-14M E) DRAWING CONFORMS TO ASME Y14.5M-1994 F) DRAWING FILE NAME: M14AREV13 PIN ONE INDICATOR 8° 0° SEATING PLANE DETAIL A SCALE: 20:1 GAGE PLANE 0.25 X 45° 1 0.10 C C C B A 7 M 14 B A 8 SEE DETAIL A 5.60 0.65 1.70 1.27 8.75 8.50 7.62 6.00 4.00 3.80 (0.33) 1.27 0.51 0.35 1.75 MAX 1.50 1.25 0.25 0.10 0.25 0.19 (1.04) 0.90 0.50 0.36 R0.10 R0.10 0.50 0.25 ©1988 Fairchild Semiconductor Corporation www.fairchildsemi.com 74AC00, 74ACT00 Rev. 1.4.1 7 74AC00, 74ACT00 — Quad 2-Input NAND Gate Physical Dimensions (Continued) Figure 2. 14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild’s worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products. Always visit Fairchild Semiconductor’s online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/ ©1988 Fairchild Semiconductor Corporation www.fairchildsemi.com 74AC00, 74ACT00 Rev. 1.4.1 8 74AC00, 74ACT00 — Quad 2-Input NAND Gate Physical Dimensions (Continued) Figure 3. 14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild’s worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products. Always visit Fairchild Semiconductor’s online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/ C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS F. DRAWING FILE NAME: MTC14REV6 R0.09 min 12.00°TOP & BOTTOM 0.43 TYP 1.00 D. DIMENSIONING AND TOLERANCES PER ANSI Y14.5M, 1982 R0.09min E. LANDPATTERN STANDARD: SOP65P640X110-14M 0.65 6.10 1.65 0.45 A. CONFORMS TO JEDEC REGISTRATION MO-153, VARIATION AB, REF NOTE 6 B. DIMENSIONS ARE IN MILLIMETERS ©1988 Fairchild Semiconductor Corporation www.fairchildsemi.com 74AC00, 74ACT00 Rev. 1.4.1 9 74AC00, 74ACT00 — Quad 2-Input NAND Gate Physical Dimensions (Continued) Figure 4. 14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild’s worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products. Always visit Fairchild Semiconductor’s online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/ 14 8 1 7 NOTES: UNLESS OTHERWISE SPECIFIED A) THIS PACKAGE CONFORMS TO JEDEC MS-001 VARIATION BA B) ALL DIMENSIONS ARE IN MILLIMETERS. C) DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS. D) DIMENSIONS AND TOLERANCES PER ASME Y14.5-1994 E) DRAWING FILE NAME: MKT-N14AREV7 6.60 6.09 8.12 7.62 0.35 0.20 19.56 18.80 3.56 3.30 5.33 MAX 0.38 MIN 1.77 1.14 0.58 0.35 2.54 3.81 3.17 8.82 (1.74) ©1988 Fairchild Semiconductor Corporation www.fairchildsemi.com 74AC00, 74ACT00 Rev. 1.4.1 10 TRADEMARKS The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks. ACEx® Build it Now™ CorePLUS™ CROSSVOLT™ CTL™ Current Transfer Logic™ EcoSPARK® EZSWITCH™ * ™ ® Fairchild® Fairchild Semiconductor® FACT Quiet Series™ FACT® FAST® FastvCore™ FlashWriter® * FPS™ FRFET® Global Power ResourceSM Green FPS™ Green FPS™ e-Series™ GTO™ i-Lo™ IntelliMAX™ ISOPLANAR™ MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ MillerDrive™ Motion-SPM™ OPTOLOGIC® OPTOPLANAR® ® PDP-SPM™ Power220® Power247® POWEREDGE® Power-SPM™ PowerTrench® Programmable Active Droop™ QFET® QS™ QT Optoelectronics™ Quiet Series™ RapidConfigure™ SMART START™ SPM® STEALTH™ SuperFET™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SyncFET™ ® The Power Franchise® TinyBoost™ TinyBuck™ TinyLogic® TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ μSerDes™ UHC® Ultra FRFET™ UniFET™ VCX™ * EZSWITCH™ and FlashWriter® are trademarks of System General Corporation, used under license by Fairchild Semiconductor. DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TOMAKE CHANGESWITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD’S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THEWARRANTY THEREIN,WHICH COVERS THESE PRODUCTS. LIFE SUPPORT POLICY FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMSWITHOUT THE EXPRESSWRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user. 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. PRODUCT STATUS DEFINITIONS Definition of Terms Datasheet Identification Product Status Definition Advance Information Form First Production ative or In Design This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. Preliminary This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design. No Identification Needed Full Production This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design. Obsolete Not In Production This datasheet contains specifications on a product that has been discontinued by Fairchild Semiconductor. The datasheet is printed for reference information only. Rev. I32 74AC00, 74ACT00 — Quad 2-Input NAND Gate S1A - S1M — General Purpose Rectifiers © 2010 Fairchild Semiconductor Corporation www.fairchildsemi.com S1A - S1M Rev. 1.1.2 1 October 2013 S1A - S1M General Purpose Rectifiers Features • 1 AIF(AV) Current Rating • Glass Passivated • Low Leakage: - 1 μA Maximum at 25°C - 50 μA Maximum at 125°C • Fast Response: 1.8 μs (Typical) • 30 A Surge Rating • 50 to 1000 V Reverse Voltage Ratings • 6.6 pF Typical Capacitance • RoHS Compliant Ordering Information Part Number Marking Package Packing Method S1A S1A DO-214AC Tape and Reel S1B S1B DO-214AC Tape and Reel S1D S1D DO-214AC Tape and Reel S1G S1G DO-214AC Tape and Reel S1J S1J DO-214AC Tape and Reel S1K S1K DO-214AC Tape and Reel S1M S1M DO-214AC Tape and Reel SMA/DO-214AC COLOR BAND DENOTES CATHODE Description In the world of commodity rectifiers, Fairchild Semiconductor’s S1 family of 1 A, P-I-N, SMA rectifiers stand out for their optimized low leakage, low capacitance, and fast response time. This was achieved while maintaining the industry standard VF max of 1.1 V at 1 A and a 30 A surge rating. In today’s world, where system power efficiency is a critical differentiating feature, these advantages can be leveraged to support those higher efficiency goals. S1A - S1M — General Purpose Rectifiers © 2010 Fairchild Semiconductor Corporation www.fairchildsemi.com S1A - S1M Rev. 1.1.2 2 Absolute Maximum Ratings(1) Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. Values are at TA = 25°C unless otherwise noted. Note: 1. These ratings are limiting values above which the serviceability of any semiconductor device maybe impaired. Thermal Characteristics Notes: 2. Device mounted on FR-4 PCB, land pattern size: 25 mm² (5 x 5 mm). 3. Device mounted on FR-4 PCB, land pattern size: 4.6375 mm² (2.65 x 1.75 mm). Electrical Characteristics Values are at TA = 25°C unless otherwise noted. Symbol Parameter Value Units 1A 1B 1D 1G 1J 1K 1M VRRM Maximum Repetitive Reverse Voltage 50 100 200 400 600 800 1000 V IF(AV) Average Rectified Forward Current at TA = 100°C 1.0 A IFSM Non-Repetitive Peak Forward Surge Current 8.3 ms Single Half-Sine-Wave 30 A TSTG Storage Temperature Range -55 to +150 °C TJ Operating Junction Temperature -55 to +150 °C Symbol Parameter Max. Units PD Power Dissipation 1.4 W RθJA Thermal Resistance, Junction to Ambient(2) 85 °C/W RθJA Thermal Resistance, Junction to Ambient(3) 170 °C/W Ψjl Junction-Lead thermal characteristics(3) 25 °C/W Symbol Parameter Test Condition Typ. Max. Units VF Forward Voltage IF = 1.0 A 1.1 V trr Reverse Recovery Time IF = 0.5 A, IR = 1.0 A, Irr = 0.25 A 1.8 μs IR Reverse Current at Rated VR TA = 25°C 1.0 μA TA =125°C 50 μA CT Junction Capacitance VR = 4.0 V, f = 1.0MHz 6.6 pF S1A - S1M — General Purpose Rectifiers © 2010 Fairchild Semiconductor Corporation www.fairchildsemi.com S1A - S1M Rev. 1.1.2 3 Typical Performance Characteristics Figure 1. Forward Current Derating Curve Figure 2. Forward Voltage Characteristics Figure 3. Non-Repetitive Surge Current Figure 4. Reverse Current vs. Reverse Voltage Figure 5. Total Capacitance Figure 6. Thermal Impedance Characteristics 0 25 50 75 100 125 150 175 0 1 2 Average Rectified Forward Current, IF [A] Lead Temperature, [OC] Percent of Rated Peak Reverse Voltage (%) S1A - S1M — General Purpose Rectifiers © 2010 Fairchild Semiconductor Corporation www.fairchildsemi.com S1A - S1M Rev. 1.1.2 4 Physical Dimension Figure 7. 2-LEAD, SMA, JEDEC DO-214, VARIATION AC Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild’s worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products. Always visit Fairchild Semiconductor’s online packaging area for the most recent package drawings: http://www.fairchildsemi.com/dwg/DO/DO214AC.pdf. 1.75 2.65 4.30 2.70 MAX 2.20 1.90 0.30 0.05 2.05 1.95 B 0.203 0.050 A 0.13 M C B A C 2.95 2.50 B 1.65 1.20 B 5.60 4.80 B 4.75 4.00 B 0.13 M C B A A 0.41 0.15 1.52 0.75 R0.15 4X 8° 0° 0.45 0 -8° DETAIL A SCALE 20 : 1 LAND PATTERN RECOMMENDATION GAUGE PLANE NOTES: A. EXCEPT WHERE NOTED CONFORMS TO JEDEC DO214 VARIATION AC. B DOES NOT COMPLY JEDEC STD. VALUE. C. ALL DIMENSIONS ARE IN MILLIMETERS. D. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH AND TIE BAR PROTRUSIONS. E. DIMENSION AND TOLERANCE AS PER ASME Y14.5-1994. F. LAND PATTERN STD. DIOM5025X231M. G. DRAWING FILE NAME: DO214ACREV1 DO-214AC © Fairchild Semiconductor Corporation www.fairchildsemi.com TRADEMARKS The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks. AccuPower AX-CAP®* BitSiC Build it Now CorePLUS CorePOWER CROSSVOLT CTL Current Transfer Logic DEUXPEED® Dual Cool™ EcoSPARK® EfficientMax ESBC Fairchild® Fairchild Semiconductor® FACT Quiet Series FACT® FAST® FastvCore FETBench FPS F-PFS FRFET® Global Power ResourceSM GreenBridge Green FPS Green FPS e-Series Gmax GTO IntelliMAX ISOPLANAR Making Small Speakers Sound Louder and Better™ MegaBuck MICROCOUPLER MicroFET MicroPak MicroPak2 MillerDrive MotionMax mWSaver® OptoHiT OPTOLOGIC® OPTOPLANAR® ® PowerTrench® PowerXS™ Programmable Active Droop QFET® QS Quiet Series RapidConfigure  Saving our world, 1mW/W/kW at a time™ SignalWise SmartMax SMART START Solutions for Your Success SPM® STEALTH SuperFET® SuperSOT-3 SuperSOT-6 SuperSOT-8 SupreMOS® SyncFET Sync-Lock™ ®* TinyBoost® TinyBuck® TinyCalc TinyLogic® TINYOPTO TinyPower TinyPWM TinyWire TranSiC TriFault Detect TRUECURRENT®* SerDes UHC® Ultra FRFET UniFET VCX VisualMax VoltagePlus XS™ * Trademarks of System General Corporation, used under license by Fairchild Semiconductor. DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD’S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS. LIFE SUPPORT POLICY FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user. 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. ANTI-COUNTERFEITING POLICY Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support. Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors. PRODUCT STATUS DEFINITIONS Definition of Terms Datasheet Identification Product Status Definition Advance Information Formative / In Design Datasheet contains the design specifications for product development. Specifications may change in any manner without notice. Preliminary First Production Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design. No Identification Needed Full Production Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design. Obsolete Not In Production Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only. Rev. I66 ® http://www.farnell.com/datasheets/1766308.pdf 2N7002DW — N-Channel Enhancement Mode Field Effect Transistor © 2007 Fairchild Semiconductor Corporation www.fairchildsemi.com 2N7002DW Rev. A 1 October 2007 2N7002DW N-Channel Enhancement Mode Field Effect Transistor Features •Dual N-Channel MOSFET •Low On-Resistance •Low Gate Threshold Voltage •Low Input Capacitance •Fast Switching Speed •Low Input/Output Leakage •Ultra-Small Surface Mount Package •Lead Free/RoHS Compliant Absolute Maximum Ratings * Ta = 25°C unless otherwise noted * These ratings are limiting values above which the serviceability of any semiconductor device may by impaired. Thermal Characteristics * Device mounted on FR-4 PCB, 1 inch x 0.85 inch x 0.062 inch, Minimun land pad size, Symbol Parameter Value Units VDSS Drain-Source Voltage 60 V VDGR Drain-Gate Voltage RGS ≤ 1.0MΩ 60 V VGSS Gate-Source Voltage Continuous Pulsed ±20 ±40 V ID Drain Current Continuous Continuous @ 100°C Pulsed 115 73 800 mA TJ , TSTG Junction and Storage Temperature Range -55 to +150 °C Symbol Parameter Value Units PD Total Device Dissipation Derating above TA = 25°C 200 1.6 mW mW/°C RθJA Thermal Resistance, Junction to Ambient * 625 °C/W 1SC70-6 (SOT363)Marking : 2N1 2N7002DW — N-Channel Enhancement Mode Field Effect Transistor © 2007 Fairchild Semiconductor Corporation www.fairchildsemi.com 2N7002DW Rev. A 2 Electrical Characteristics TC = 25°C unless otherwise noted Off Characteristics (Note1) On Characteristics (Note1) Dynamic Characteristics Switching Characteristics Note1 : Short duration test pulse used to minimize self-heating effect. Symbol Parameter Test Condition MIN TYP MAX Units BVDSS Drain-Source Breakdown Voltage VGS= 0V, ID=10uA 60 78 - V IDSS Zero Gate Voltage Drain Current VDS= 60V, VGS= 0V VDS= 60V, VGS= 0V, @TC = 125°C - 0.001 7 1.0 500 uA IGSS Gate-Body Leakage VGS= ±20V, VDS= 0V - 0.2 ±10 nA VGS(th) Gate Threshold Voltage VDS = VGS, ID = 250uA 1.0 1.76 2.0 V RDS(ON) Satic Drain-Source On-Resistance VGS = 5V, ID = 0.05A, VGS = 10V, ID = 0.5A, @Tj = 125°C - - 1.6 2.53 7.5 13.5 Ω ID(ON) On-State Drain Current VGS = 10V, VDS= 7.5V 0.5 1.43 - A gFS Forward Transconductance VDS = 10V, ID = 0.2A 80 356.5 - mS Ciss Input Capacitance VDS = 25V, VGS= 0V, f = 1.0MHz - 37.8 50 pF Coss Output Capacitance - 12.4 25 pF Crss Reverse Transfer Capacitance - 6.5 7.0 pF tD(ON) Turn-On Delay Time VDD = 30V, ID = 0.2A, VGEN= 10V RL = 150Ω, RGEN = 25Ω - 5.85 20 ns tD(OFF) Turn-Off Delay Time - 12.5 20 2N7002DW — N-Channel Enhancement Mode Field Effect Transistor © 2007 Fairchild Semiconductor Corporation www.fairchildsemi.com 2N7002DW Rev. A 3 Typical Performance Characteristics Figure 1. On-Region Characteristics Figure 2. On-Resistance Variation with Gate Voltage and Drain Current Figure 3. On-Resistance Variation with Temperature Figure 4. On-Resistance Variation with Gate-Source Voltage Figure 5. Transfer Characteristics Figure 6. Gate Threshold Variation with Temperature 0123456789100.00.20.40.60.81.01.21.41.62V3V4V5VVGS = 10VID. DRAIN-SOURCE CURRENT(A)VDS. DRAIN-SOURCE VOLTAGE (V) 0.00.20.40.60.81.01.01.52.02.53.0(Ω)9V8V5V6V10V7V4V4.5VVGS = 3VRDS(on), DRANI-SOURCE ON-RESISTANCEID. DRAIN-SOURCE CURRENT(A) -500501001500.51.01.52.02.53.0(Ω)VGS = 10VID = 500 mARDS(on) DRANI-SOURCE ON-RESISTANCETJ. JUNCTION TEMPERATURE(oC) 2468101.01.52.02.53.0ID = 500 mA(Ω)ID = 50 mARDS(on), DRANI-SOURCE ON-RESISTANCEVGS. GATE-SOURCE VOLTAGE ( V) 234560.00.20.40.60.81.0VDS = 10V75oC125oC150oC25oCTJ = -25oCID. DRAIN-SOURCE CURRENT(A)VGS. GATE-SOURCE VOLTAGE (V) -500501001501.01.52.02.5ID = 0.25 mAID = 1 mAVGS = VDSVth, Gate-Source Threshold Voltage ( V)TJ. JUNCTION TEMPERATURE(oC) 2N7002DW — N-Channel Enhancement Mode Field Effect Transistor © 2007 Fairchild Semiconductor Corporation www.fairchildsemi.com 2N7002DW Rev. A 4 Typical Performance Characteristics Figure 7. Reverse Drain Current Variation with Diode Forward Voltage and Temperature Figure 8. Power Derating 1101000.00.20.40.60.81.0-55oCVGS = 0 V150oC25oCVSD, Body Diode Forward Voltage [V]IS Reverse Drain Current, [mA] 025507510012515017504080120160200240280 PC[mW], POWER DISSIPATIONTa[oC], AMBIENT TEMPERATURE 2N7002DW — N-Channel Enhancement Mode Field Effect Transistor © 2007 Fairchild Semiconductor Corporation www.fairchildsemi.com 2N7002DW Rev. A 5 Package DimensionsSC70-6 ( SOT-363 ) 2N7002DW N-Channel Enhancement Mode Field Effect Transistor TRADEMARKS The following are registered and unregistered trademarks and service marks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks. DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD’S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS. LIFE SUPPORT POLICY FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. PRODUCT STATUS DEFINITIONS Definition of Terms ACEx® Build it Now™ CorePLUS™ CROSSVOLT™ CTL™ Current Transfer Logic™ EcoSPARK® Fairchild® Fairchild Semiconductor® FACT Quiet Series™ FACT® FAST® FastvCore™ FPS™ FRFET® Global Power ResourceSM Green FPS™ Green FPS™ e-Series™ GTO™ i-Lo™ IntelliMAX™ ISOPLANAR™ MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ Motion-SPM™ OPTOLOGIC® OPTOPLANAR® ® PDP-SPM™ Power220® Power247® POWEREDGE® Power-SPM™ PowerTrench® Programmable Active Droop™ QFET® QS™ QT Optoelectronics™ Quiet Series™ RapidConfigure™ SMART START™ SPM® STEALTH™ SuperFET™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SyncFET™ The Power Franchise® TinyBoost™ TinyBuck™ TinyLogic® TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ μSerDes™ UHC® UniFET™ VCX™ Datasheet Identification Product Status Definition Advance Information Formative or In Design This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. Preliminary First Production This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design. No Identification Needed Full Production This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design. Obsolete Not In Production This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only. Rev. I30 © 2007 Fairchild Semiconductor Corporation www.fairchildsemi.com 2N7002DW Rev. A 6 QRE1113, QRE1113GR — Minature Reflective Object Sensor ©2011 Fairchild Semiconductor Corporation www.fairchildsemi.com QRE1113, QRE1113GR Rev. 1.7.1 August 2011 QRE1113, QRE1113GR Minature Reflective Object Sensor Features ■ Phototransistor output ■ No contact surface sensing ■ Miniature package ■ Lead form style: Gull Wing ■ Two leadform options: Through hole (QRE1113) SMT gullwing (QRE1113GR) ■ Two packaging options: Tube (QRE1113) Tape and reel (QRE1113GR) QRE1113GR Package Dimensions 2.90 2.50 3.60 0.94 3.20 1.80 0.60 1.00 C L C L 0.40 0.94 1.70 1.50 4.80 4.40 1.10 0.90 1 2 4 3 30° 0.40 Notes: 1. Dimensions for all drawings are in millimeters. 2. Tolerance of ±0.15mm on all non-nominal dimensions 0.120 ©2011 Fairchild Semiconductor Corporation www.fairchildsemi.com QRE1113, QRE1113GR Rev. 1.7.1 2 QRE1113, QRE1113GR — Minature Reflective Object Sensor QRE1113 Package Dimensions Schematic 2.90 2.50 10.4 0.94 8.4 1.80 0.60 1.00 C L C L 0.40 0.94 1.70 0~20° 0~20° 1.50 1 2 4 3 4.20 3.80 0.40 3.60 3.20 Notes: 1. Dimensions for all drawings are in millimeters. 2. Tolerance of ±0.15mm on all non-nominal dimensions 1 Pin 1: Anode Pin 2: Cathode Pin 3: Collector Pin 4: Emitter 2 34 ©2011 Fairchild Semiconductor Corporation www.fairchildsemi.com QRE1113, QRE1113GR Rev. 1.7.1 3 QRE1113, QRE1113GR — Minature Reflective Object Sensor Absolute Maximum Ratings (T A = 25°C unless otherwise specified) Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. Electrical/Optical Characteristics (T A = 25°C unless otherwise specified) Notes: 1. Derate power dissipation linearly 1.00mW/°C above 25°C. 2. RMA flux is recommended. 3. Methanol or isopropyl alcohols are recommended as cleaning agents. 4. Soldering iron 1/16" (1.6mm) from housing. 5. Pulse conditions: tp = 100µs; T = 10ms. 6. Measured using an aluminum alloy mirror at d = 1mm. 7. No reflective surface at close proximity. Symbol Parameter Rating Units T OPR Operating Temperature -40 to +85 °C T STG Storage Temperature -40 to +90 °C T SOL-I Soldering Temperature (Iron) (2,3,4) 240 for 5 sec °C T SOL-F Soldering Temperature (Flow) (2,3) 260 for 10 sec °C EMITTER I F Continuous Forward Current 50 mA V R Reverse Voltage 5 V I FP Peak Forward Current (5) 1 A P D Power Dissipation (1) 75 mW SENSOR V CEO Collector-Emitter Voltage 30 V V ECO Emitter-Collector Voltage 5 V I C Collector Current 20 mA P D Power Dissipation (1) 50 mW Symbol Parameter Test Conditions Min. Typ. Max. Units INPUT DIODE V F Forward Voltage I F = 20mA 1.2 1.6 V I R Reverse Leakage Current V R = 5V 10 µA λ PE Peak Emission Wavelength I F = 20mA 940 nm OUTPUT TRANSISTOR I D Collector-Emitter Dark Current I F = 0mA, V CE = 20V 100 nA COUPLED I C(ON) On-State Collector Current I F = 20mA, V CE = 5V (6) 0.10 0.40 mA I CX Cross-Talk Collector Current I F = 20mA, V CE = 5V (7) 1 µA V CE (SAT) Saturation Voltage 0.3 V t r Rise Time V CC = 5V, I C(ON) = 100µA, R L = 1k Ω 20 µs t f Fall Time 20 ©2011 Fairchild Semiconductor Corporation www.fairchildsemi.com QRE1113, QRE1113GR Rev. 1.7.1 4 QRE1113, QRE1113GR — Minature Reflective Object Sensor Typical Performance Curves Fig. 1 Normalized Collector Current vs. Distance between device and reflector d-DISTANCE (mm) 012345 IC (ON) - NORMALIZED COLLECTOR CURRENT 0.0 0.2 0.4 0.6 0.8 1.0 IF = 10 mA VCE = 5 V TA = 25˚C Mirror Sensing Object: White Paper (90% reflective) d 0 Fig. 2 Collector Current vs. Forward Current IF - FORWARD CURRENT (mA) 0 4 8 12 16 20 IC (ON) - COLLECTOR CURRENT (mA) 0.0 0.2 0.4 0.6 0.8 1.0 Fig. 3 Normalized Collector Current vs. Collector to Emitter Voltage VCE - COLLECTOR EMITTER VOLTAGE (V) 0.1 1 10 C (ON) I - NORMALIZ ED COLLECT OR CURRENT 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 IF = 25mA IF =20mA IF =10mA IF =15mA IF =5mA d = 1 mm, 90% reflection TA = 25˚C Fig. 4 Collector Emitter Dark Current (Normalized) vs. Ambient Temperature TA - Ambient Temperature (˚C) ICEO - NORMALIZ ED DARK CURRENT 25 40 55 70 85 10-2 10-1 100 101 102 Normalized to: VCE = 10 V TA = 25˚C VCE = 10 V VCE = 5 V ©2011 Fairchild Semiconductor Corporation www.fairchildsemi.com QRE1113, QRE1113GR Rev. 1.7.1 5 QRE1113, QRE1113GR — Minature Reflective Object Sensor Typical Performance Curves (Continued) Fig. 6 Forward Current vs. Forward Voltage VF - FORWARD VOLTAGE (V) VF - FORWARD VOLTAGE (V) IF - FORWARD CURRENT (mA) 1.0 1.1 1.2 1.3 1.4 1.5 0 10 20 30 40 50 TA = 25˚C Fig. 7 Rise and Fall Time vs. Load Resistance RL - LOAD RESIST ANGULAR DISPLACEMENT ANCE (KΩ) 0.1 1 10 0.6 0.6 0.4 0.2 0 0.2 0.4 R RELATIVE RADIAN T INTENSITY ISE AND FALL TIME (us) 1 10 1.0 0.9 0.8 0.7 100 VCC = 10 V tpw = 100 us T=1ms TA = 25˚C IC = 0.3 mA IC = 1 mA tf tf tr tr Fig. 8 Forward Voltage vs. Ambient Temperature Fig. 8 Radiation Diagram 0.0 0.5 1.0 1.5 2.0 2.5 3.0 IF = 50 mA IF = 10 mA IF = 20 mA TA - AMBIENT TEMPERATURE (˚C) -40 -20 0 20 40 60 80 ©2011 Fairchild Semiconductor Corporation www.fairchildsemi.com QRE1113, QRE1113GR Rev. 1.7.1 6 QRE1113, QRE1113GR — Minature Reflective Object Sensor Recommended Solder Screen Pattern for GR option (for reference only) Taping Dimensions for GR option Dimensions in mm 1.0 1.1 2.8 LED (+) 0.8 2.0±0.05 4.0 0.25 5.5±0.05 12.0±0.3 8.0 3.73 4.75 1.98 ø1.5 1.75 Progressive Direction General tolerance ±0.1 Dimensions in mm ©2011 Fairchild Semiconductor Corporation www.fairchildsemi.com QRE1113, QRE1113GR Rev. 1.7.1 7 QRE1113, QRE1113GR — Minature Reflective Object Sensor Reel Dimensions Reflow Profile ø13.0 ± 0.5 2.2 ± 0.5 9.0 ± 0.5 12.0 ± 0.15 ø60.0 ± 0.5 ø178.0 ± 1.0 Time (seconds) Te mperature (°C) 1°C to 5°C/sec 1°C to 5°C/sec 260°C max. for 10 sec. max. 260°C 120 sec. max. 60 sec. max. above 220°C Pre-heating 180°C to 200°C Note: Reflow soldering should not be done more than twice. 220°C © Fairchild Semiconductor Corporation www.fairchildsemi.com TRADEMARKS The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks. 2Cool AccuPower AX-CAP® * BitSiC Build it Now CorePLUS CorePOWER CROSSVOLT CTL Current Transfer Logic DEUXPEED® Dual Cool™ EcoSPARK® EfficientMax ESBC Fairchild® Fairchild Semiconductor® FACT Quiet Series FACT® FAST® FastvCore FETBench FPS F-PFS FRFET® Global Power ResourceSM GreenBridge Green FPS Green FPS e-Series Gmax GTO IntelliMAX ISOPLANAR Making Small Speakers Sound Louder and Better™ MegaBuck MICROCOUPLER MicroFET MicroPak MicroPak2 MillerDrive MotionMax mWSaver OptoHiT OPTOLOGIC® OPTOPLANAR® ® PowerTrench® PowerXS™ Programmable Active Droop QFET® QS Quiet Series RapidConfigure  Saving our world, 1mW/W/kW at a time™ SignalWise SmartMax SMART START Solutions for Your Success SPM® STEALTH SuperFET® SuperSOT-3 SuperSOT-6 SuperSOT-8 SupreMOS® SyncFET Sync-Lock™ ®* TinyBoost TinyBuck TinyCalc TinyLogic® TINYOPTO TinyPower TinyPWM TinyWire TranSiC TriFault Detect TRUECURRENT® * SerDes UHC® Ultra FRFET UniFET VCX VisualMax VoltagePlus XS™ * Trademarks of System General Corporation, used under license by Fairchild Semiconductor. DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD’S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS. LIFE SUPPORT POLICY FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user. 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. ANTI-COUNTERFEITING POLICY Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support. Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors. PRODUCT STATUS DEFINITIONS Definition of Terms Datasheet Identification Product Status Definition Advance Information Formative / In Design Datasheet contains the design specifications for product development. Specifications may change in any manner without notice. Preliminary First Production Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design. No Identification Needed Full Production Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design. Obsolete Not In Production Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only. Rev. I64 ® ©2007 Fairchild Semiconductor Corporation 1 www.fairchildsemi.com ES1F - ES1J Rev. A ES1F - ES1J Fast Rectifiers July 2007 ES1F - ES1J Fast Rectifiers Features •For surface mount applications. •Glass passivated junction. •Low profile package. •Easy pick and place. •Built-in strain relief. •Superfast recovery times for high efficiency. Absolute Maximum Ratings * Ta = 25°C unless otherwise noted * These ratings are limiting values above which the serviceability of any semiconductor device may by impaired. Thermal Characteristics * P. C. B mounted on 0.2’’ x 0.2’’( 5 x 5 mm) copper Pad Area. Electrical Characteristics TC = 25°C unless otherwise noted Symbol Parameter Value Units ES1F ES1G ES1H ES1J VRRM Maximum Repetitive Reverse Voltage 300 400 500 600 V IF(AV) Average Rectified Forward Current 1.0 A IFSM Non-repetitive Peak Forward Surge Current 8.3 ms Single Half-Sine-Wave (JEDEC method) 30 A TJ Junction Temperature 150 °C TSTG Storage Temperature Range -55 to 150 °C PD Power Dissipation 1.47 W Symbol Parameter Value Units RθJA Thermal Resistance, Junction to Ambient * 85 °C/W RθJL Thermal Resistance, Junction to Lead * 35 °C/W Symbol Parameter Value Units VF Maximum Forward Voltage @ IF = 1.0 A 1.3 1.7 V Trr Maximum Reverse Recovery Time IF = 0.5 A, IR = 1.0 A, IRR = 0.25 A 35 ns IR Maximum Reverse Current @ rated VR TA = 25°C TA = 100°C 5.0 100 uA Cj Typical Junction Capacitance VR = 4.0 V, f = 1.0 MHz 10.0 8.0 pF Color Band Denotes CathodeSMA(DO-214AC) 2 www.fairchildsemi.com ES1F - ES1J Rev. A ES1F - ES1J Fast Rectifiers Typical Performance Characteristics FIG.2- MAXIMUM NON-REPETITIVE PEAK FORWARD SURGE CURRENT PEAK FORWARD SURGE CURRENT. (A) 1 10 100 30 20 10 5.0 25 15 NUMBER OF CYCLES AT 60Hz 8.3ms Single Half Sine Wave (JEDEC Method) at TL=120 C o FIG.3- TYPICAL INSTANTANEOUS FORWARD CHARACTERISTICS INSTANTANEOUS FORWARD CURRENT. (A) 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 0.01 1 10 50 0.1 FORWARD VOLTAGE. (V) ES1A - D ES1F - 1G Tj=25 C PULSE WIDTH-300 S 1% DUTY CYCLE 0 FIG.1- MAXIMUM FORWARD CURRENT DERATING CURVE AVERAGE FORWARD CURRENT. (A) 80 90 100 110 120 130 140 150 0 0.2 0.6 0.8 1.2 1.0 0.4 LEAD TEMPERATURE. ( C) o RESISTIVE OR INDUCTIVE LOAD 0.2X0.2"(5.0X5.0mm) COPPER PAD AREAS FIG.4- TYPICAL REVERSE CHARACTERISTICS 0 20 40 60 80 100 120 140 10 100 1000 1 0.1 0.01 PERCENT OF RATED PEAK REVERSE VOLTAGE. (%) Tj=125 C 0 Tj=85 C 0 Tj=25 C 0 0 1 0 10 100 14 10 6.0 4.0 2.0 12 8.0 FIG.5- TYPICAL JUNCTION CAPACITANCE JUNCTION CAPACITANCE.(pF) REVERSE VOLTAGE. (V) ES1 F - G ES1 H -J Tj=25 C f=1.0MHz Vsig=50mVp-p 0 INSTANTANEOUS REVERSE CURRENT. ( A) ES1H - 1J 0.01 0.1 1 10 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 Tj=25 oC PULSE WIDTH 300uS 1% DUTY CYCLE ES1F-1G ES1H-1J 3 www.fairchildsemi.com ES1F - ES1J Rev. A ES1F - ES1J Fast Rectifiers Package Dimensions Dimensions in Millimeters SMA / DO - 214AC TRADEMARKS The following are registered and unregistered trademarks and service marks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks. DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD’S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS. LIFE SUPPORT POLICY FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. PRODUCT STATUS DEFINITIONS Definition of Terms ACEx® Build it Now™ CorePLUS™ CROSSVOLT™ CTL™ Current Transfer Logic™ EcoSPARK® Fairchild® Fairchild Semiconductor® FACT Quiet Series™ FACT® FAST® FastvCore™ FPS™ FRFET® Global Power ResourceSM Green FPS™ Green FPS™ e-Series™ GTO™ i-Lo™ IntelliMAX™ ISOPLANAR™ MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ Motion-SPM™ OPTOLOGIC® OPTOPLANAR® ® PDP-SPM™ Power220® Power247® POWEREDGE® Power-SPM™ PowerTrench® Programmable Active Droop™ QFET® QS™ QT Optoelectronics™ Quiet Series™ RapidConfigure™ SMART START™ SPM® STEALTH™ SuperFET™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SyncFET™ The Power Franchise® TinyBoost™ TinyBuck™ TinyLogic® TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ μSerDes™ UHC® UniFET™ VCX™ Datasheet IdentificationProduct StatusDefinition Advance InformationFormative or In Design This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. PreliminaryFirst Production This datasheet contains preliminary data; supplementary data will be pub- lished at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design. No Identification NeededFull Production This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design. ObsoleteNot In Production This datasheet contains specifications on a product that has been discontin- ued by Fairchild semiconductor. The datasheet is printed for reference infor- mation only. Rev. I30 1N/FDLL 914A/B / 916/A/B / 4148 / 4448 — Small Signal Diode © 2007 Fairchild Semiconductor Corporation www.fairchildsemi.com 1N/FDLL 914A/B / 916/A/B / 4148 / 4448 Rev. 1.1.1 1 April 2013 1N/FDLL 914A/B / 916/A/B / 4148 / 4448 Small Signal Diode Absolute Maximum Ratings(1) Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. Values are at TA = 25°C unless otherwise noted. Note: 1. These ratings are limiting values above which the serviceability of the diode may be impaired. Thermal Characteristics Symbol Parameter Value Units VRRM Maximum Repetitive Reverse Voltage 100 V IO Average Rectified Forward Current 200 mA IF DC Forward Current 300 mA If Recurrent Peak Forward Current 400 mA IFSM Non-repetitive Peak Forward Surge Current Pulse Width = 1.0 s 1.0 A Pulse Width = 1.0 μs 4.0 A TSTG Storage Temperature Range -65 to +200 °C TJ Operating Junction Temperature 175 °C Symbol Parameter Max. Units 1N/FDLL 914/A/B / 4148 / 4448 PD Power Dissipation 500 mW RθJA Thermal Resistance, Junction to Ambient 300 °C/W LL-34 THE PLACEMENT OF THE EXPANSION GAP HAS NO RELATIONSHIP TO THE LOCATION OF THE CATHODE TERMINAL LL-34 COLOR BAND MARKING DEVICE 1ST BAND DO-35 FDLL914 BLACK FDLL914A BLACK FDLL914B BLACK Cathode is denoted with a black band FDLL4148 BLACK FDLL4448 BLACK -1st band denotes cathode terminal and has wider width SOD80 Cathode Band 1N/FDLL 914A/B / 916/A/B / 4148 / 4448 — Small Signal Diode © 2007 Fairchild Semiconductor Corporation www.fairchildsemi.com 1N/FDLL 914A/B / 916/A/B / 4148 / 4448 Rev. 1.1.1 2 Electrical Characteristics(2) Values are at TA = 25°C unless otherwise noted. Note: 2. Non-recurrent square wave PW= 8.3 ms. Symbol Parameter Test Conditions Min. Max. Units VR Breakdown Voltage IR= 100 μA 100 V IR= 5.0 μA 75 V VF Forward Voltage 1N914B / 4448 IF= 5.0 mA 0.62 0.72 V 1N916B IF= 5.0 mA 0.63 0.73 V 1N914 / 916 / 4148 IF= 10 mA 1.0 V 1N914A / 916A IF= 20 mA 1.0 V 1N916B IF= 20 mA 1.0 V 1N914B / 4448 IF= 100 mA 1.0 V IR Reverse Leakage VR= 20 V 0.025 μA VR= 20 V, TA= 150°C 50 μA VR= 75 V 5.0 μA CT Total Capacitance 1N916A/B/4448 VR = 0, f = 1.0 MHz 2.0 pF 1N914A/B/4148 VR = 0, f = 1.0 MHz 4.0 pF trr Reverse Recovery Time IF = 10 mA, VR = 6.0 V (600 mA) Irr = 1.0 mA, RL = 100 Ω 4.0 ns 1N/FDLL 914A/B / 916/A/B / 4148 / 4448 — Small Signal Diode © 2007 Fairchild Semiconductor Corporation www.fairchildsemi.com 1N/FDLL 914A/B / 916/A/B / 4148 / 4448 Rev. 1.1.1 3 Typical Performance Characteristics Figure 1. Reverse Voltage vs. Reverse Current BV - 1.0 to 100 μA Figure 2. Reverse Current vs. Reverse Voltage IR - 10 to 100 V Figure 3. Forward Voltage vs. Forward Current VF - 1 to 100 μA Figure 4. Forward Voltage vs. Forward Current VF - 0.1 to 10 mA Figure 5. Forward Voltage vs. Forward Current VF - 10 to 800 mA Figure 6. Forward Voltage vs. Ambient Temperature VF - 0.01 - 20 mA (- 40 to +65°C) 110 120 130 140 150 160 Ta=25 oC 1 2 3 5 10 20 30 50 100 Reverse Voltage, V R [V] Reverse Current, IR [uA] 0 20 40 60 80 100 120 10 20 30 50 70 100 Ta= 25 oC Reverse Current, I R [nA] Reverse Voltage, VR [V] GENERAL RULE: The Reverse Current of a diode will approximately double for every ten (10) Degree C increase in Temperature 250 300 350 400 450 500 550 1 2 3 5 10 20 30 50 100 Ta= 25 oC Forward Voltage, V R [mV] Forward Current, IF [uA] 450 500 550 600 650 700 750 0.1 0.2 0.3 0.5 1 2 3 5 10 Ta= 25 oC Forward Voltage, V F [mV] Forward Current, IF [mA] 0.6 0.8 1.0 1.2 1.4 1.6 10 20 30 50 100 200 300 500 800 Ta= 25 oC Forward Voltage, V F [mV] Forward Current, IF [mA] 0.01 0.1 1 10 300 400 500 600 700 800 900 0.03 0.3 3 Typical Ta= -40 oC Ta= 25 oC Ta= +65 oC Forward Voltage, V F [mV] Forward Current, IF [mA] 1N/FDLL 914A/B / 916/A/B / 4148 / 4448 — Small Signal Diode © 2007 Fairchild Semiconductor Corporation www.fairchildsemi.com 1N/FDLL 914A/B / 916/A/B / 4148 / 4448 Rev. 1.1.1 4 Typical Performance Characteristics (Continued) Figure 7. Total Capacitance Figure 8. Reverse Recovery Time vs Reverse Recovery Current Figure 9. Average Rectified Current (IF(AV)) vs Ambient Temperature (TA) Figure 10. Power Derating Curve 0 2 4 6 8 10 12 14 0.75 0.80 0.85 0.90 TA = 25 oC Total Capacitance (pF) REVERSE VOLTAGE (V) 10 20 30 40 50 60 1.0 1.5 2.0 2.5 3.0 3.5 4.0 Ta = 25 oC Reverse Recovery Time, t rr [ns] Reverse Recovery Current, Irr [mA] IF = 10mA , IRR = 1.0 mA , Rloop = 100 Ohms 0 50 100 150 0 100 200 300 400 500 IF(AV) - AVERAGE RECTIFIED CURRENT - mA Current (mA) Ambient Temperature ( oC) 0 50 100 150 200 0 100 200 300 400 500 DO-35 SOT-23 Power Dissipation, PD [mW] Temperature [ oC] 1N/FDLL 914A/B / 916/A/B / 4148 / 4448 — Small Signal Diode © 2007 Fairchild Semiconductor Corporation www.fairchildsemi.com 1N/FDLL 914A/B / 916/A/B / 4148 / 4448 Rev. 1.1.1 5 Physical Dimensions Figure 11. 2-TERMINAL, SOD-80, JEDEC DO-213AC, MINI-MELF Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild’s worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products. Always visit Fairchild Semiconductor’s online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/. For current tape and reel specifications, visit Fairchild Semiconductor’s online packaging area: http://www.fairchildsemi.com/packaging/tr/SOD80A_tnr.pdf. 1.50 1.30 C R0.30 0.20 0.50 2.64 REF 0.30 3.60 3.30 NOTES: UNLESS OTHERWISE SPECIFIED A) PACKAGE STANDARD REFERENCE: JEDEC DO-213, VARIATION AC. B) ALL DIMENSIONS ARE IN MILLIMETERS. C CORNER RADIUS IS OPTIONAL. D) DRAWING FILE NAME: SOD80A REV01 SOD-80 © Fairchild Semiconductor Corporation www.fairchildsemi.com TRADEMARKS The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks. 2Cool􀂥 AccuPower􀂥 AX-CAP®* BitSiC􀂥 Build it Now􀂥 CorePLUS􀂥 CorePOWER􀂥 CROSSVOLT􀂥 CTL􀂥 Current Transfer Logic􀂥 DEUXPEED® Dual Cool™ EcoSPARK® EfficientMax􀂥 ESBC􀂥 Fairchild® Fairchild Semiconductor® FACT Quiet Series􀂥 FACT® FAST® FastvCore􀂥 FETBench􀂥 FPS􀂥 F-PFS􀂥 FRFET® Global Power ResourceSM GreenBridge􀂥 Green FPS􀂥 Green FPS􀂥 e-Series􀂥 Gmax􀂥 GTO􀂥 IntelliMAX􀂥 ISOPLANAR􀂥 Making Small Speakers Sound Louder and Better™ MegaBuck􀂥 MICROCOUPLER􀂥 MicroFET􀂥 MicroPak􀂥 MicroPak2􀂥 MillerDrive􀂥 MotionMax􀂥 mWSaver􀂥 OptoHiT􀂥 OPTOLOGIC® OPTOPLANAR® ® PowerTrench® PowerXS™ Programmable Active Droop􀂥 QFET® QS􀂥 Quiet Series􀂥 RapidConfigure􀂥 􀂥 Saving our world, 1mW/W/kW at a time™ SignalWise􀂥 SmartMax􀂥 SMART START􀂥 Solutions for Your Success􀂥 SPM® STEALTH􀂥 SuperFET® SuperSOT􀂥-3 SuperSOT􀂥-6 SuperSOT􀂥-8 SupreMOS® SyncFET􀂥 Sync-Lock™ ®* TinyBoost􀂥 TinyBuck􀂥 TinyCalc􀂥 TinyLogic® TINYOPTO􀂥 TinyPower􀂥 TinyPWM􀂥 TinyWire􀂥 TranSiC􀂥 TriFault Detect􀂥 TRUECURRENT®* 􀁐SerDes􀂥 UHC® Ultra FRFET􀂥 UniFET􀂥 VCX􀂥 VisualMax􀂥 VoltagePlus􀂥 XS™ * Trademarks of System General Corporation, used under license by Fairchild Semiconductor. DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD’S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS. LIFE SUPPORT POLICY FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user. 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. ANTI-COUNTERFEITING POLICY Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support. Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors. PRODUCT STATUS DEFINITIONS Definition of Terms Datasheet Identification Product Status Definition Advance Information Formative / In Design Datasheet contains the design specifications for product development. Specifications may change in any manner without notice. Preliminary First Production Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design. No Identification Needed Full Production Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design. Obsolete Not In Production Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only. Rev. I64 ® 1N4148WS / 1N4448WS / 1N91 4BWS — Small Signal Diodes © 2012 Fairchild Semiconductor Corporation www.fairchildsemi.com 1N4148WS / 1N4448WS / 1N914BWS Rev. B0 1 April 2012 1N4148WS / 1N4448WS / 1N914BWS Small Signal Diodes Features • General Purpose Diodes • Fast Switching Device (TRR < 4.0ns) • Very Small and Thin SMD Package • Moisture Level Sensitivity 1 • Pb-free Version and RoHS Compliant • Matte Tin (Sn) Lead Finish • Green Mold Compound Absolute Maximum Ratings* Ta = 25°C unless otherwise noted * These ratings are limiting values above which the serviceability of any semiconductor device may be impaired. The factory should be consulted on applications involving pulsed or low duty cycle operations. Thermal Characteristics * Device mounted on FR-4 PCB minimum land pad. Electrical Characteristics Ta = 25°C unless otherwise noted Symbol Parameter Value Units VRSM Non-Repetitive Peak Reverse Voltage 100 V VRRM Repetitive Peak Reverse Voltage 75 V IFRM Repetitive Peak Forward Current 300 mA IO Continuous Forward Current 150 mA TJ Operating Junction Temperature +150 °C TSTG Storage Temperature Range -55 to +150 °C Symbol Parameter Value Units PD Power Dissipation (TC = 25°C) 200 mW RθJA Thermal Resistance, Junction to Ambient * 500 °C/W Symbol Parameter Test Conditions Min. Typ. Max. Units BVR Breakdown Voltage IR = 100 μA IR = 5 μA 100 75 V V IR Reverse Current VR = 20 V VR = 75 V 25 5 nA μA VF Forward Voltage 1N4448WS/914BWS 1N4148WS 1N4448WS/914BWS IF = 5 mA IF = 10 mA IF = 100 mA 0.62 0.72 1 1 V V V CO Diode Capacitance VR = 0, f = 1 MHz 4 pF TRR Reverse Recovery Time IF = 10 mA, IR = 60 mA, IRR = 1 mA, RL = 100 Ω 4 ns Band Indicates Cathode 1. Cathode ELECTRICAL SYMBOL 2. Anode SOD-323 Flat Lead Device Marking Code Device Type Device Marking 1N4148WS S1 1N4448WS S2 1N914BWS S3 2 11N4148WS / 1N4448WS / 1N91 4BWS — Small Signal Diodes © 2012 Fairchild Semiconductor Corporation www.fairchildsemi.com 1N4148WS / 1N4448WS / 1N914BWS Rev. B0 2 Typical Performance Characteristics Figure 1. Total Capacitance Figure 2. Forward Voltage vs. Ambient Temperature Figure 3. Power Derating Curve Figure 4. Reverse Current vs. Reverse Voltage Figure 5. Reverse Voltage vs. Reverse Current Reverse Voltage (V) 0 2 4 6 8 10 12 14 0.44 0.46 0.48 0.50 0.52 0.54 0.56 0.58 TA=25°C Capacitance [pF] Forward Current, IF [mA] 0.01 0.1 1 10 100 0.0 0.2 0.4 0.6 0.8 1.0 1.2 Ta=-40°C Ta=25°C Ta=150°C Typical VF- Forward Voltage [V] Temperature [°C] 0 25 50 75 100 125 150 175 0 50 100 150 200 250 PD - Power Dissipation [mW] Reverse Voltage, VR[V] 10 20 30 40 50 60 70 80 90 100 10-1 100 101 102 103 104 105 Ta=150°C Ta=25°C Ta=-40°C Reverse Current [nA] VR - Reverse Voltage Reverse Current, IR[µA] 1 10 100 140 150 160 170 Ta=25°C1N4148WS / 1N4448WS / 1N91 4BWS — Small Signal Diodes © 2012 Fairchild Semiconductor Corporation www.fairchildsemi.com 1N4148WS / 1N4448WS / 1N914BWS Rev. B0 3 Physical Dimensions SOD-323F Dimensions in Millimeters© Fairchild Semiconductor Corporation www.fairchildsemi.com TRADEMARKS The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks. 2Cool¥ AccuPower¥ AX-CAP¥* BitSiC¥ Build it Now¥ CorePLUS¥ CorePOWER¥ CROSSVOLT¥ CTL¥ Current Transfer Logic¥ DEUXPEED® Dual Cool™ EcoSPARK® EfficientMax¥ ESBC¥ ® Fairchild® Fairchild Semiconductor® FACT Quiet Series¥ FACT® FAST® FastvCore¥ FETBench¥ FlashWriter® * FPS¥ F-PFS¥ FRFET® Global Power ResourceSM GreenBridge¥ Green FPS¥ Green FPS¥ e-Series¥ Gmax¥ GTO¥ IntelliMAX¥ ISOPLANAR¥ Making Small Speakers Sound Louder and Better™ MegaBuck¥ MICROCOUPLER¥ MicroFET¥ MicroPak¥ MicroPak2¥ MillerDrive¥ MotionMax¥ Motion-SPM¥ mWSaver¥ OptoHiT¥ OPTOLOGIC® OPTOPLANAR® ® PowerTrench® PowerXS™ Programmable Active Droop¥ QFET® QS¥ Quiet Series¥ RapidConfigure¥ ¥ Saving our world, 1mW/W/kW at a time™ SignalWise¥ SmartMax¥ SMART START¥ Solutions for Your Success¥ SPM® STEALTH¥ SuperFET® SuperSOT¥-3 SuperSOT¥-6 SuperSOT¥-8 SupreMOS® SyncFET¥ Sync-Lock™ ® * The Power Franchise® TinyBoost¥ TinyBuck¥ TinyCalc¥ TinyLogic® TINYOPTO¥ TinyPower¥ TinyPWM¥ TinyWire¥ TranSiC¥ TriFault Detect¥ TRUECURRENT® * PSerDes¥ UHC® Ultra FRFET¥ UniFET¥ VCX¥ VisualMax¥ VoltagePlus¥ XS™ * Trademarks of System General Corporation, used under license by Fairchild Semiconductor. DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD’S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS. LIFE SUPPORT POLICY FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user. 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. ANTI-COUNTERFEITING POLICY Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support. Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors. PRODUCT STATUS DEFINITIONS Definition of Terms Datasheet Identification Product Status Definition Advance Information Formative / In Design Datasheet contains the design specifications for product development. Specifications may change in any manner without notice. Preliminary First Production Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design. No Identification Needed Full Production Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design. Obsolete Not In Production Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only. Rev. I61 39 ALIMENTATION FIXE A DÉCOUPAGE ALF1210 12 Volts continu 120 watts 10 Ampères - Output ripple < 3mV rms. - Built in power corrector (PFC). - Output voltage adjustable from 10 to 15V. - Short circuit protection. - Temperature controlled fan cooling. - Ausgangswelligkeit < 3mV effektiv. - Eingebaute Leistungsfaktorkorrektur (PFC) - Ausgangsspannung verstellbar zwischen 10 und 15 Volt. - Schutz gegen Kurzschlüsse. - Geregelte Lüftung. Autres caractéristiques • Sécurité : Classe II, double isolation, conforme à la norme EN 61010-1 • CEM : Conforme aux normes EN 50081-1 et 50082-1 • Indice de protection : IP 30 • Alimentation : Secteur 190 à 253 Volts, 50 / 60Hz. • Entrée secteur : cordon 2 pôles double isolation. • Consommation : 170W maxi. • Facteur de puissance : 0,99 (PFC intégré). • Rigidité diélectrique : 3000V entre entrée et sortie. • Présentation : Boîtier métal avec peinture époxy. Caractéristiques techniques Tension • Sorties flottantes sur douilles de sécurité de 4mm. • Tension de sortie : ajustable de 10 à 15V linéairement • Régulation : < 2mV pour une variation de charge de 0 à 100%. < 1mV pour une variation secteur de 190V à 253V. • Ondulation : < 3mV efficace comprenant : < 5mV crête à crête du signal à 100KHz < 5mV crête à crête du signal à 100Hz < 40mV crête à crête des pics de commutations • Temps de maintien : 25ms à 50% de charge et 12ms à 100% (secteur à 190V) • Visualisation : Led verte "alimentation en fonctionnement" Led rouge “status, défaut sur la sortie” Intensité • I maxi : 10,5A au court-circuit 10A de 10 à 15V Puissance • Puissance max. de sortie : 150W. Protections • Contre les courts-circuits par limitation de courant. • Contre les surintensités sur la source, par fusible. • Contre les surtensions en sortie, par limitation de tension à 17V. - Ondulation de sortie < 3mV efficace. - Correcteur du facteur de puissance (PFC) intégré. - Tension de sortie ajustable de 10 à 15 Volts. - Protection contre les courts-circuits. - Ventilation controlée. Other specifications • Safety : Classe II, double insulation, according to EN 61010-1. • EMC : Complies with EN 50081-1 and 50082-1. • Protection level : IP 30. • Input voltage : 190 to 253 Volts, 50 / 60 Hz. • Mains input : double insulation 2 poles cable. • Power consumption : 170 W max. • Power factor : 0.99 (built in PFC). • Dielectric strength : 3000V. • Presentation : metal case with epoxy finish. Specifications Voltage • Floating outputs on 4 mm safety sockets. • Output voltage : adjustable from 10 to 15V linearly. • Regulation : < 1mV for a load change from 0 to 100%. < 1mV for a line change from 190 to 253V. • Ripple : < 3mV rms including: < 5mV peak to peak of the signal at 100 KHz < 5mV peak to peak of the signal at 100 Hz < 40mV peak to peak of switching spikes • Hold-up time : 25 ms at half load and 12 ms at full load (190V line input). • Indicator : green power-on LED indicator. "status, output fault" red LED. Current • Max I : 10,5A in short circuit condition. 10A from 10 to 15V Power • Max output power : 150W. Protection • Short circuit protection, by current regulation. • Transformer primary overcurrent protection, by fuse. • Output overload protection by voltage limiting to 17V. 38 Andere Eigenschaften • Schutz : Klasse II, schutzisoliert, entspricht den Normen EN 61010-1. • EMC : Entspricht den Normen EN 50081-1 und 50082-1. • Schutzart : IP 30. • Versorgung : Netzversorgung 190 bis 253 Volt, 50 / 60 Hz. • Netzversorgungseingang : schutzisoliertes 2-Phasen-Netzkabel. • Leistungsaufnahme : max. 170W. • Leistungsfaktor : 0,99 (PFC integriert). • Durchschlagsfestigkeit : 3000V. • Erscheinungsbild : Metallgehäuse mit Epoxid-Lackierung. Technische Daten Spannung • Ausgänge von Masse getrennt (floating) auf 4-mm-Schutzbuchsen. • Ausgangsspannung : linear verstellbar zwischen 10 und 15 V. • Regelung : < 1mV bei Laständerungen von 0 bis 100%. < 1mV bei Schwankungen der Netzversorgung zwischen 190V und 253V. • Welligkeit : < 3mV effektiv mit: < 3mV Spitze-Spitze des Signals bei 100kHz < 4mV Spitze-Spitze des Signals bei 100Hz < 12mV Spitze-Spitze von Schaltspitzen • Haltezeit : 25ms bei 50% der Last und 12ms bei 100% (Netzversorgung bei 190V). • Anzeige : Grüne LED “Versorgung bei Betrieb”. Rote LED "Status, Fehler auf Ausgang" Stromstärke • I max : 10,5A bei Kurzschluss 10A von 10 bis 15V Liestung • Max. Ausgangsleistung : 150 W. Schutzvorrichtungen • Gegen Kurzschlüsse durch Strombegrenzung. • Gegen Überströme auf dem Primärkreis des Transformators durch Sicherung . • Gegen Überspannungen am Ausgang durch Spannungsbegrenzung auf 17 V. Switching fixed power supply ALF1210 Feste Unterbrechungsfreie Versorgung ALF1210 Séries TDS1000B et TDS2000B Oscilloscope à mémoire numérique Manuel de l’utilisateur Révision B www.tektronix.com 071-1818-00 Copyright © Tektronix. Tous droits réservés. Les produits logiciels sous licence sont la propriété de Tektronix, de ses filiales ou de ses fournisseurs et sont protégés par les lois nationales sur le copyright, ainsi que par des traités internationaux. Les produits Tektronix sont protégés par des brevets américains et étrangers déjà déposés ou en cours d’obtention. Les informations contenues dans le présent document remplacent celles publiées précédemment. Les spécifications et les prix peuvent être soumis à modification. TEKTRONIX et TEK sont des marques déposées de Tektronix, Inc. OpenChoice™ est une marque déposée de Tektronix, Inc. PictBridge™ est une marque déposée de la norme CIPA DC-001-2003 Digital Photo Solutions for Imaging Devices de la Camera & Imaging Products Association. Coordonnées de Tektronix Tektronix, Inc. 14200 SW Karl Braun Drive P.O. Box 500 Beaverton, OR 97077 Etats-Unis Pour obtenir des informations sur le produit, la vente, les services et l’assistance technique : En Amérique du Nord, appelez le 1-800-833-9200. Pour les autres pays, visitez le site www.tektronix.com pour connaître les coordonnées locales. Oscilloscopes TDS1000B et TDS2000B Garantie 18 – Garantie limitée à la durée de vie Tektronix garantit à l’acheteur-utilisateur final d’origine (ci-après dénommé le « premier acheteur ») du produit désigné ci-dessous que ce dernier est exempt de défaut au niveau des matériaux et de la fabrication durant toute la durée de vie du produit. Dans les présentes, la « durée de vie du produit » est définie comme une période de cinq (5) années suivant la fin de la fabrication du produit par Tektronix (comme défini par Tektronix), mais la période de garantie sera d’au moins dix (10) ans à compter de la date d’achat du produit par le premier acheteur à Tektronix ou à un l’un de ses distributeurs agréés. La présente garantie limitée à la durée de vie concerne uniquement le premier acheteur et ne peut être transférée. Si une réclamation concernant la garantie intervient avant la fin de celle-ci, l’acheteur doit fournir une preuve satisfaisante de la date d’achat à Tektronix ou à un distributeur agréé et du fait qu’il est le premier acheteur. En cas de vente ou de transfert du produit par le premier acheteur à un tiers dans les trois (3) ans à compter de la date d’achat du produit par le premier acheteur, la période de garantie sera de trois (3) ans à compter de la date d’achat du produit par le premier acheteur à Tektronix ou à un distributeur agréé. Les sondes, autres accessoires, batteries et fusibles ne sont pas couverts par la garantie. Si l’un des produits Tektronix se révèle défectueux pendant ladite période de garantie, Tektronix peut au choix réparer le produit en question en prenant à sa charge les frais de main-d’oeuvre et de pièces ou bien fournir un produit de remplacement équivalent (comme établi par Tektronix) en échange du produit défectueux. Les pièces, modules et produits de remplacement utilisés par Tektronix pour des travaux sous garantie peuvent être neufs ou reconditionnés pour de nouvelles performances. Tous les produits, modules et pièces de rechange deviennent la propriété de Tektronix. Dans les présentes, le « client » est la personne ou l’entité revendiquant ses droits en vertu de la présente garantie. Pour pouvoir prétendre à la garantie, le client doit signaler le défaut à Tektronix avant l’expiration de la période de garantie applicable et effectuer les démarches correspondantes. Il appartient au client d’emballer et d’expédier le produit défectueux au centre de réparation indiqué par Tektronix, avec les frais d’expédition prépayés et une copie du certificat d’achat du premier acheteur. Tektronix prend à sa charge la réexpédition du produit au client, si le destinataire se trouve dans le pays où le centre de réparation Tektronix est implanté. Tous les frais d’expédition, droits, taxes et autres coûts afférents à la réexpédition du produit dans un autre lieu sont à la charge du client. Cette garantie est caduque en cas de défaillance, de panne ou de dommage provoqué par un accident, l’usure ou des dégradations d’éléments mécaniques, l’utilisation non conforme aux spécifications du produit, un usage impropre ou un défaut de soin ou de maintenance. Tektronix n’est pas contraint d’assurer les réparations sous garantie dans les cas suivants : a) réparations résultant de dommages provoqués par un personnel non mandaté par Tektronix ayant installé, réparé ou entretenu le produit ; b) réparations résultant d’une utilisation impropre ou d’un raccordement à des équipements incompatibles ; c) réparation de dommages ou de dysfonctionnements résultant de l’utilisation de pièces non fournies par Tektronix ; d) entretien d’un produit modifié ou intégré à d’autres produits, rendant ainsi le produit plus difficile à entretenir ou augmentant la périodicité des entretiens. LA PRESENTE GARANTIE DEFINIE PAR TEKTRONIX QUANT AU PRODUIT TIENT LIEU DE TOUTE AUTRE GARANTIE, EXPLICITE OU IMPLICITE. TEKTRONIX ET SES FOURNISSEURS NE DONNENT AUCUNE GARANTIE IMPLICITE QUANT A LA QUALITE MARCHANDE OU A L’ADEQUATION DU PRODUIT A DES USAGES PARTICULIERS. LE SEUL RECOURS DU CLIENT EN CAS DE VIOLATION DE CETTE GARANTIE EST D’EXIGER DE TEKTRONIX QU’IL REPARE OU REMPLACE LE PRODUIT DEFECTUEUX. TEKTRONIX ET SES FOURNISSEURS NE POURRONT PAR CONSEQUENT PAS ETRE TENUS POUR RESPONSABLES DES DOMMAGES INDIRECTS, SPECIAUX OU CONSECUTIFS, MEME S’ILS SONT INFORMES AU PREALABLE DE L’EVENTUALITE DES DOMMAGES EN QUESTION. Sonde P2220 Garantie 2 Tektronix garantit que ce produit est exempt de défaut au niveau des matériaux et de la fabrication, pendant une période de un (1) an à compter de la date d’expédition. Si un produit Tektronix se révèle défectueux pendant sa période de garantie, Tektronix peut soit réparer le produit en question, en prenant à sa charge les frais de main-d’oeuvre et de pièces, soit fournir un produit de remplacement en échange de celui défectueux. Les pièces, modules et produits de remplacement utilisés par Tektronix pour des travaux sous garantie peuvent être neufs ou reconditionnés pour de nouvelles performances. Tous les produits, modules et pièces de rechange deviennent la propriété de Tektronix. Pour pouvoir prétendre à la garantie, le client doit signaler le défaut à Tektronix avant l’expiration de la période de garantie et effectuer les démarches correspondantes. Il appartient au client d’emballer et d’expédier en port payé le produit défectueux au centre de réparation indiqué par Tektronix. Tektronix prend à sa charge la réexpédition du produit au client, si le destinataire se trouve dans le pays où le centre de réparation Tektronix est implanté. Tous les frais d’expédition, droits, taxes et autres coûts afférents à la réexpédition du produit dans un autre lieu sont à la charge du client. Cette garantie est caduque en cas de défaillance, de panne ou de dommage provoqué par un usage impropre ou un défaut de soin ou de maintenance. Tektronix n’est pas contraint d’assurer les réparations sous garantie dans les cas suivants : a) réparations résultant de dommages provoqués par un personnel non mandaté par Tektronix qui a installé, réparé ou entretenu le produit ; b) réparations résultant d’une utilisation impropre ou d’un raccordement à des équipements incompatibles ; c) réparation de dommages ou de dysfonctionnements résultant de l’utilisation de pièces non fournies par Tektronix ; ou d) entretien d’un produit modifié ou intégré à d’autres produits, rendant ainsi le produit plus difficile à entretenir ou augmentant la périodicité des entretiens. LA PRESENTE GARANTIE DEFINIE PAR TEKTRONIX EU EGARD AU PRODUIT TIENT LIEU DE TOUTE AUTRE GARANTIE, EXPLICITE OU IMPLICITE. TEKTRONIX ET SES FOURNISSEURS NE DONNENT AUCUNE GARANTIE IMPLICITE QUANT A LA QUALITE MARCHANDE OU A L’ADEQUATION DU PRODUIT A DES USAGES PARTICULIERS. LE SEUL RECOURS DU CLIENT EN CAS DE VIOLATION DE CETTE GARANTIE EST D’EXIGER DE TEKTRONIX QU’IL REPARE OU REMPLACE LE PRODUIT DEFECTUEUX. TEKTRONIX ET SES FOURNISSEURS NE POURRONT PAR CONSEQUENT PAS ETRE TENUS POUR RESPONSABLES DES DOMMAGES INDIRECTS, SPECIAUX OU CONSECUTIFS, MEME S’ILS SONT INFORMES AU PREALABLE DE L’EVENTUALITE DES DOMMAGES EN QUESTION. Table des matières Consignes générales de sécurité........................................ iv Environnement.......................................................... vii Préface.................................................................... ix Système d’aide ...................................................... x Mises à jour du firmware via Internet ............................ xi Conventions........................................................ xii Démarrage ................................................................ 1 Fonctions générales ................................................. 1 Installation ........................................................... 3 Test de fonctionnement ............................................. 4 Sécurité de la sonde ................................................. 5 Assistant Test de sonde de tension ................................. 5 Compensation manuelle de sonde.................................. 7 Réglage d’atténuation de la sonde ................................. 8 Mise à échelle de la sonde de courant ............................. 9 Calibrage automatique .............................................. 9 Principes de fonctionnement .......................................... 11 Zone d’affichage................................................... 11 Utilisation du système de menus ................................. 15 Réglages verticaux ................................................ 17 Réglages horizontaux ............................................. 18 Commandes de déclenchement .................................. 19 Boutons de menu et de commande............................... 20 Connecteurs d’entrée.............................................. 23 Autres éléments du panneau avant ............................... 24 Compréhension des fonctions de l’oscilloscope ..................... 25 Réglage de l’oscilloscope......................................... 25 Déclenchement .................................................... 27 Acquisition de signaux............................................ 29 Mise à l’échelle et positionnement de signaux.................. 30 Prise de mesures................................................... 35 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B i Table des matières Exemples d’application ................................................ 37 Prise de mesures simples ......................................... 38 Utilisation de la fonction de calibrage automatique (Autorange) pour examiner une série de points de test .................. 44 Mesures par curseur ............................................... 45 Analyse détaillée du signal ....................................... 50 Acquisition d’un signal monocoup .............................. 53 Mesure du retard de propagation................................. 55 Déclenchement sur une largeur d’impulsion spécifique........ 56 Déclenchement sur un signal vidéo.............................. 58 Analyse d’un signal de communication différentiel ............ 64 Affichage des modifications d’impédance sur un réseau....... 66 Fonctions mathématiques FFT ........................................ 69 Réglage du signal temporel....................................... 69 Affichage du spectre FFT......................................... 71 Sélection d’une fenêtre FFT...................................... 73 Agrandissement et positionnement d’un spectre FFT .......... 76 Mesure d’un spectre FFT à l’aide des curseurs ................. 77 Port du lecteur flash USB et port périphérique....................... 79 Port du lecteur flash USB......................................... 79 Conventions de gestion des fichiers.............................. 82 Sauvegarde et rappel de fichiers avec un lecteur flash USB ... 83 Utilisation de la fonction de sauvegarde du bouton PRINT du panneau avant ................................................ 85 Port périphérique USB............................................ 89 Installation du logiciel de communication sur un PC .......... 89 Connexion à un PC................................................ 90 Connexion à un système GPIB................................... 93 Saisie de commande............................................... 93 Connexion à une imprimante..................................... 94 Imprimer une image d’écran ..................................... 95 Référence................................................................ 97 Acquisition......................................................... 97 Calibrage Auto ................................................... 101 Réglage automatique (Autoset) ................................. 103 ii Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Table des matières Curseurs ........................................................... 107 Configuration par défaut ......................................... 109 Affichage.......................................................... 109 Aide ............................................................... 112 Horizontal ......................................................... 112 Fonctions mathématiques........................................ 115 Mesures ........................................................... 116 Imprimer .......................................................... 118 Test de sonde...................................................... 119 Menu Réf.......................................................... 119 Sauvegarder/Rappeler............................................ 120 Commandes de déclenchement ................................. 127 Utilitaire........................................................... 136 Réglages verticaux ............................................... 140 Annexe A : Spécifications ............................................ 145 Spécifications de l’oscilloscope ................................. 145 Homologations et conformité de l’oscilloscope ............... 158 Spécifications relatives à la sonde P2220 ...................... 163 Annexe B : Accessoires ............................................... 167 Annexe C : Nettoyage................................................. 171 Entretien - Généralités ........................................... 171 Nettoyage ......................................................... 171 Annexe D : Configuration par défaut ................................ 173 Annexe E : Licences de police ....................................... 177 Index Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B iii Consignes générales de sécurité Consignes générales de sécurité Veuillez lire avec attention les précautions et consignes de sécurité suivantes, afin d’éviter toute blessure et l’endommagement éventuel de cet appareil et des produits qui lui sont associés. Pour écarter tout danger, utilisez uniquement cet appareil dans les conditions spécifiées. Seul un personnel qualifié doit être autorisé à effectuer les opérations d’entretien. Pour éviter les incendies et les dommages corporels Utilisez le cordon d’alimentation spécifié. Utilisez uniquement le cordon d’alimentation prévu pour cet appareil et conforme aux normes du pays d’utilisation. Procédez aux branchements et débranchements de manière appropriée Branchez la sortie de sonde à l’instrument de mesure avant de brancher la sonde sur le circuit à tester. Branchez le fil de référence de la sonde sur le circuit à tester avant de brancher l’entrée de la sonde. Débranchez l’entrée et le fil de référence de la sonde du circuit testé avant de débrancher la sonde de l’instrument de mesure. Mettez le produit à la terre. Ce produit est raccordé à la terre au moyen du fil de masse du cordon d’alimentation. Pour éviter tout choc électrique, le fil de masse doit être connecté à une prise de terre. Avant de procéder aux branchements des bornes d’entrée et de sortie du produit, veillez à ce que celui-ci soit correctement mis à la terre. Respectez toutes les valeurs nominales des terminaux. Pour éviter tout risque d’incendie ou de choc électrique, respectez les valeurs nominales et les indications figurant sur le produit. Consultez le manuel livré avec le produit où figurent toutes les informations complémentaires avant de procéder au branchement du produit. Branchez le fil de référence de la sonde sur la terre uniquement. N’appliquez à une borne (borne commune incluse) aucun potentiel dépassant la valeur maximale de cette borne. iv Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Consignes générales de sécurité Interrupteur d’alimentation L’interrupteur d’alimentation permet de déconnecter le produit de la source d’alimentation. Consultez les instructions pour connaître l’emplacement de cet interrupteur. Ne bloquez pas l’interrupteur d’alimentation ; il doit rester accessible à tout moment. Ne mettez pas l’appareil en service sans ses capots de protection. Ne mettez pas l’appareil en service si les capots ou panneaux de protection ont été retirés. N’utilisez pas l’appareil en cas de défaillance suspecte. En cas de doute sur le bon état de cet appareil, faites-le inspecter par un technicien qualifié. Evitez tout circuit exposé. Ne touchez à aucun branchement ou composant exposé lorsque l’appareil est sous tension. N’utilisez pas l’appareil dans un environnement humide. N’utilisez pas l’appareil dans un environnement explosif. Maintenez les surfaces du produit propres et sèches. Assurez une ventilation adéquate. Reportez-vous aux instructions d’installation du manuel pour plus de détails sur la mise en place d’une ventilation adéquate du produit. Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B v Consignes générales de sécurité Termes apparaissant dans ce manuel. Les mentions suivantes peuvent figurer dans ce manuel : AVERTISSEMENT. Les avertissements identifient des situations ou des opérations pouvant entraîner des blessures graves ou mortelles. ATTENTION. Les mises en garde identifient des situations ou des opérations susceptibles d’endommager le matériel ou d’autres équipements. Symboles et termes relatifs au produit Les mentions suivantes peuvent figurer sur le produit : La mention « DANGER » indique un risque de blessure immédiate à la lecture de l’étiquette. La mention « AVERTISSEMENT » indique un risque de blessure non immédiate à la lecture de l’étiquette. La mention « PRECAUTION » indique un risque de dommage matériel, y compris du produit. Les symboles suivants peuvent figurer sur le produit : vi Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Environnement Cette section contient des informations concernant l’impact du produit sur l’environnement. Recyclage du produit Observez la procédure ci-dessous pour le recyclage d’un instrument ou d’un composant : Recyclage de l’appareil. La fabrication du présent appareil a exigé l’extraction et l’utilisation de ressources naturelles. Il peut contenir des substances potentiellement dangereuses pour l’environnement ou la santé si elles ne sont pas correctement traitées lors de la mise au rebut de l’appareil. Pour éviter la diffusion de telles substances dans l’environnement et réduire l’utilisation des ressources naturelles, nous vous encourageons à recycler ce produit de manière appropriée, afin de garantir que la majorité des matériaux soient correctement réutilisés ou recyclés. Le symbole ci-dessous indique que ce produit respecte les exigences de l’Union européenne, conformément à la directive 2002/96/CE relative aux déchets d’équipements électriques et électroniques (DEEE). Pour plus d’informations sur les solutions de recyclage, reportez-vous à la section Assistance/Maintenance du site Web de Tektronix (www.tektronix.com). Remarque relative au mercure. Ce produit est équipé d’une lampe de rétroéclairage LCD contenant du mercure. Sa mise au rebut est soumise à la réglementation en vigueur concernant l’environnement. Pour connaître les conditions de mise au rebut ou de recyclage, contactez les autorités locales ou, pour les Etats-Unis, l’EIA (Electronics Industries Alliance, www.eiae.org). Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B vii Environnement Restriction concernant les substances dangereuses Cet appareil est considéré comme un appareil de contrôle et de surveillance, non pris en charge par la directive 2002/95/CE relative à la limitation de l’utilisation de certaines substances dangereuses dans les équipements électriques et électroniques. Ce produit contient, de manière avérée, du plomb, du cadmium, du mercure et du chrome hexavalent. viii Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Préface Préface Ce manuel contient des informations relatives au fonctionnement des oscilloscopes à mémoire numérique TDS1000B et TDS2000B. Il se compose des chapitres suivants : Le chapitre Démarrage décrit brièvement les fonctions de l’oscilloscope et fournit des instructions relatives à l’installation. Le chapitre Principes de fonctionnement explique le fonctionnement des oscilloscopes. Le chapitre Compréhension des fonctions de l’oscilloscope décrit les opérations et les fonctions de base d’un oscilloscope : configuration de l’oscilloscope, déclenchement, acquisition de données, mise à l’échelle et positionnement des signaux et prise de mesures. Le chapitre Exemples d’application fournit des exemples de solutions visant à résoudre divers problèmes de mesures. Le chapitre Fonction mathématique FFT explique comment utiliser la fonction mathématique Transformée de Fourier Rapide (FFT) pour convertir un signal temporel en ses composantes de fréquence (spectre). Le chapitre Port du lecteur flash USB et port périphérique décrit l’utilisation du port du lecteur flash USB et le raccordement de l’oscilloscope aux imprimantes et aux ordinateurs via le port périphérique USB. Le chapitre Référence décrit les sélections ou la gamme de valeurs disponibles pour chaque option. L’annexe A : Spécifications contient les spécifications électriques, environnementales et physiques de l’oscilloscope et de la sonde P2220, ainsi que des homologations et des conformités. L’annexe B : Accessoires décrit brièvement les accessoires standard et en option. L’annexe C : Nettoyage décrit comment entretenir l’oscilloscope. L’annexe D : Configuration par défaut contient la liste des menus et des commandes avec leurs configurations (d’usine) par défaut, Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B ix Préface rétablies lorsque vous appuyez sur le bouton CONF. PAR D. du panneau avant. L’annexe E : Licences de police fournit les licences permettant d’utiliser des polices asiatiques spécifiques. Système d’aide L’oscilloscope dispose d’un système d’aide doté de rubriques couvrant toutes les fonctions de l’appareil. Ce système d’aide vous permet d’afficher différents types d’informations : des informations générales portant sur la compréhension et l’utilisation de l’oscilloscope, telles que Utilisation du système de menus ; des informations portant sur les menus et les commandes spécifiques, telles que Commande de position verticale ; des conseils portant sur les problèmes que vous pouvez rencontrer lors de l’utilisation de l’oscilloscope, tels que Réduction du bruit. Le système d’aide met à votre disposition différents moyens de trouver les informations dont vous avez besoin : aide contextuelle, liens hypertexte et index. Aide contextuelle Lorsque vous appuyez sur le bouton AIDE du panneau avant, l’oscilloscope affiche des informations relatives au dernier menu affiché à l’écran. Lorsque vous visualisez les rubriques d’aide, un voyant LED s’allume à côté du bouton multifonctionnel pour indiquer que ce dernier est actif. Si la rubrique s’étend sur plus d’une page, tournez le bouton multifonctionnel pour passer d’une page à l’autre de la rubrique. x Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Préface Liens hypertexte La plupart des rubriques d’aide présentent des phrases dotées de passage entre chevrons, tels que . Il s’agit de liens vers d’autres rubriques. Tournez le bouton multifonctionnel pour sélectionner les différents liens. Appuyez sur le bouton d’option Afficher sujet pour consulter la rubrique correspondant au lien mis en surbrillance. Appuyez sur le bouton d’option Retour pour revenir à la rubrique précédente. Index Appuyez sur le bouton AIDE du panneau avant, puis appuyez sur le bouton d’option Index. Appuyez sur les boutons d’option Page précédente ou Page suivante jusqu’à ce que vous trouviez la page d’index contenant la rubrique que vous souhaitez afficher. Tournez le bouton multifonctionnel pour mettre en surbrillance la rubrique d’aide qui vous intéresse. Appuyez sur le bouton Afficher sujet pour afficher la rubrique. REMARQUE. Appuyez sur le bouton d’option Quitter ou sur un bouton de menu quelconque pour quitter l’écran d’aide affiché et revenir à l’affichage des signaux. Mises à jour du firmware via Internet Si une version plus récente du micrologiciel est disponible, vous pouvez utiliser Internet et un lecteur flash USB pour mettre à jour votre oscilloscope. Si vous ne disposez pas d’un accès à Internet, contactez Tektronix pour obtenir des informations sur les procédures de mise à jour. Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B xi Préface Pour mettre à jour le micrologiciel via Internet, procédez comme suit : 1. Appuyez sur UTILITAIRE ► Etat du système et notez le numéro de version du micrologiciel de l’oscilloscope. 2. Depuis votre ordinateur, accédez au site Web www.tektronix.com et vérifiez la disponibilité d’une version plus récente du micrologiciel pour l’oscilloscope. 3. Si une version plus récente est disponible, téléchargez le fichier du micrologiciel à partir de la page Web. Vous devrez peut-être décompresser le fichier téléchargé. 4. Copiez le fichier du micrologiciel TDS1K2KB.TEK dans le dossier racine du lecteur flash USB. 5. Insérez le lecteur flash USB dans le port du lecteur flash USB situé sur le panneau avant de l’oscilloscope. 6. Sur votre oscilloscope, appuyez sur le bouton d’option UTILITAIRE ► Utilitaires Fichiers ► - suite - p. 2 de 2 ► M. à jour Firmware. La mise à jour du micrologiciel prend plusieurs minutes. Lorsque que la mise à jour du microprogramme est terminée, l’oscilloscope vous invite à appuyer sur un bouton. Vous ne devez pas retirer le lecteur flash USB ou mettre l’oscilloscope hors tension avant la fin de la mise à jour du microprogramme. Conventions Ce manuel utilise les conventions suivantes : Les boutons, molettes et connecteurs du panneau avant apparaissent en lettres majuscules. Par exemple : AIDE, PRINT. La première lettre des options de menu est en majuscules. Par exemple : Détect Créte, Zone retardée. xii Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Préface Bouton multifonctionnel Etiquettes des boutons et molettes du panneau avant : tout en majuscules Boutons d’option : première lettre de chaque mot apparaissant à l’écran en majuscules REMARQUE. Les boutons d’options peuvent également être appelés boutons d’écran, boutons du menu latéral, boutons du panneau ou touches programmables. Le délimiteur ► sert à séparer les boutons dans une séquence à réaliser. Par exemple, UTILITAIRE ► Options ► Régler date et heure signifie que vous devez appuyer sur le bouton UTILITAIRE du panneau avant, puis sur le bouton d’option Options, et enfin sur le bouton d’option Régler date et heure. Il est parfois nécessaire d’utiliser plusieurs boutons pour sélectionner l’option souhaitée. Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B xiii Préface xiv Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Démarrage Les oscilloscopes à mémoire numérique TDS1000B et TDS2000B sont des oscilloscopes de table compacts et légers, que vous pouvez utiliser pour prendre des mesures référencées au sol. Ce chapitre décrit comment : installer votre produit, effectuer une brève vérification du fonctionnement, effectuer un test de sonde et compenser les sondes, faire correspondre votre facteur d’atténuation de sonde, utiliser le programme de calibrage automatique. REMARQUE. Vous pouvez sélectionner la langue affichée à l’écran lorsque vous mettez l’oscilloscope sous tension. A tout moment, vous pouvez accéder à l’option UTILITAIRE ► Language pour sélectionner la langue souhaitée. Fonctions générales Le tableau et la liste qui suivent décrivent les fonctions générales. Modèle Voies Bande passante Fréquence d’échantillonnageAffichage TDS1001B 2 40 MHz 500 éch./s Monochrome TDS1002B 2 60 MHz 1 G éch./s Monochrome TDS1012B 2 100 MHz 1 G éch./s Monochrome TDS2002B 2 60 MHz 1 G éch./s Couleur TDS2004B 4 60 MHz 1 G éch./s Couleur TDS2012B 2 100 MHz 1 G éch./s Couleur TDS2014B 4 100 MHz 1 G éch./s Couleur TDS2022B 2 200 MHz 2 G éch./s Couleur TDS2024B 4 200 MHz 2 G éch./s Couleur Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 1 Démarrage Aide contextuelle Ecran LCD couleur ou monochrome Limite de bande passante de 20 MHz sélectionnable Longueur d’enregistrement de 2 500 points pour chaque voie Réglage automatique (Autoset) Ajustement automatique Assistant Test de sonde Stockage de la configuration et du signal Port du lecteur flash USB pour stockage des fichiers Impression directe sur imprimante compatible PictBridge Communications avec l’ordinateur via le port périphérique USB doté du logiciel de communication pour PC OpenChoice Connexion à un contrôleur GPIB par un adaptateur TEK-USB-488 en option Curseurs dotés d’un affichage Mesure de la fréquence de déclenchement Onze mesures automatiques Moyenne du signal et Détect Créte Double base de temps Fonctions mathématiques : opérations +, - et × Fonction mathématique Transformée de Fourier Rapide (FFT) Fonctionnalité de déclenchement sur largeur d’impulsion Capacité de déclenchement vidéo avec déclenchement sélectionnable par ligne Déclenchement externe Affichage à persistance variable Interface utilisateur et rubriques d’aide en dix langues 2 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Démarrage Installation Cordon d’alimentation Utilisez uniquement le cordon d’alimentation fourni avec l’oscilloscope. L’Annexe B : Accessoires dresse la liste des accessoires standard et en option. Source d’alimentation Utilisez une source d’alimentation délivrant 90 à 264 V CAeff, de 45 à 66 Hz. Si vous disposez d’une source d’alimentation de 400 Hz, elle doit délivrer 90 à 132 V CAeff, de 360 à 440 Hz. Boucle de sécurité Utilisez un verrou de sécurité standard d’ordinateur portable ou faites passer un câble de sécurité par la voie de câble intégrée afin d’attacher votre oscilloscope. Voie de câble de sécurité Orifice du verrou de sécurité Cordon d’alimentation Ventilation REMARQUE. L’oscilloscope refroidit par convection. Laissez cinq centimètres de chaque côté et au-dessus de l’appareil pour permettre à l’air de circuler. Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 3 Démarrage Test de fonctionnement Effectuez le test suivant pour vous assurer du bon fonctionnement de l’oscilloscope. Bouton ON/OFF 1. Mettez l’oscilloscope sous tension. Appuyez sur le bouton CONF. PAR D. Le réglage d’atténuation par défaut de l’option Sonde est 10X. CONF. PAR D., bouton COMP SONDE 2. Réglez le commutateur de la sonde P2220 sur 10X et raccordez la sonde à la voie 1 de l’oscilloscope. Pour ce faire, alignez l’emplacement du connecteur de la sonde avec la touche du connecteur BNC CH 1, appuyez pour effectuer la connexion et tournez la sonde vers la droite pour la verrouiller. Connectez l’extrémité de la sonde et le câble de référence aux bornes COMP SONDE. 3. Appuyez sur le bouton AUTOSET. Au bout de quelques secondes, une onde carrée de 5 V crête à crête à 1 kHz doit s’afficher à l’écran. Appuyez deux fois sur le bouton CH1 MENU du panneau avant pour supprimer la voie 1, appuyez sur le bouton CH2 MENU pour afficher la voie 2 et répétez les étapes 2 et 3. Pour les modèles à 4 voies, répétez la procédure pour les voies 3 et 4. 4 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Démarrage Sécurité de la sonde Vérifiez les valeurs nominales des sondes avant de les utiliser et respectez ces valeurs. Un manchon entourant le corps de la sonde P2220 protège les doigts contre tout choc électrique. Protège-doigts AVERTISSEMENT. Pour éviter tout choc électrique lors de l’utilisation de la sonde, gardez vos doigts derrière le manchon entourant le corps de la sonde. Pour éviter tout choc électrique lors de l’utilisation de la sonde, ne touchez aucune partie métallique de la tête de sonde lorsque celle-ci est branchée sur une source de tension. Raccordez la sonde à l’oscilloscope et la borne de mise à la terre à la masse avant de prendre des mesures. Assistant Test de sonde de tension L’assistant Test de sonde permet de vérifier rapidement le bon fonctionnement d’une sonde de tension. Il ne prend pas en charge les sondes de courant. L’assistant vous permet de régler la compensation des sondes de tension (généralement à l’aide d’un tournevis sur le corps ou un connecteur de la sonde) et de définir le facteur d’atténuation de chaque voie, comme dans l’option CH 1 MENU ► Sonde ► Tension ► Atténuation. Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 5 Démarrage Utilisez l’assistant Test de sonde pour chaque raccordement d’une sonde de tension à une voie d’entrée. Pour utiliser l’assistant Test de sonde, appuyez sur le bouton TEST SONDE. Si la sonde de tension est correctement raccordée et compensée et si l’option Atténuation dans le menu VERTICAL de l’oscilloscope correspond bien à la sonde, l’oscilloscope indique alors PASSE en bas de l’écran. Sinon, l’oscilloscope indique la marche à suivre à l’écran pour vous permettre de résoudre ces problèmes. REMARQUE. L’assistant Test de sonde est utile pour les sondes 1X, 10X, 20X, 50X et 100X. Il ne sert pas pour les sondes 500X ou 1000X, ni pour les sondes raccordées au connecteur BNC EXTERNE. REMARQUE. Une fois le processus terminé, l’assistant Test de sonde rétablit les paramètres de l’oscilloscope (autres que l’option Sonde) à la valeur qu’ils avaient avant d’appuyer sur le bouton TEST SONDE. Pour compenser une sonde que vous envisagez d’utiliser avec l’entrée EXTERNE, procédez comme suit : 1. Raccordez la sonde au connecteur BNC d’une voie d’entrée quelconque, par exemple CH 1. 2. Appuyez sur le bouton TEST SONDE et suivez les instructions à l’écran. 3. Après avoir vérifié que la sonde fonctionne et qu’elle est correctement compensée, raccordez-la au connecteur BNC EXTERNE. 6 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Démarrage Compensation manuelle de sonde Il existe une alternative à l’assistant Test de sonde, qui consiste à effectuer manuellement ce réglage afin de faire correspondre votre sonde à la voie d’entrée. COMP SONDE Bouton AUTOSET 1. Appuyez sur CH 1 MENU ► Sonde ► Tension ► Atténuation, puis sélectionnez 10X. Réglez le commutateur de la sonde P2220 sur 10X et raccordez la sonde à la voie 1 de l’oscilloscope. Si vous utilisez un embout en crochet pour la sonde, assurez-vous que la connexion s’effectue correctement en insérant fermement l’embout dans la sonde. 2. Fixez l’extrémité de la sonde à la terminaison COMP SONDE ~5V à 1kHz et le câble de référence à la terminaison COMP SONDE du châssis. Affichez la voie, puis appuyez sur le bouton AUTOSET. Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 7 Démarrage Surcompensé Sous-compensé Compensé correctement 3. Vérifiez la forme du signal affiché. 4. Au besoin, ajustez la sonde. L’illustration montre une sonde P2220. Recommencez cette étape si nécessaire. Réglage d’atténuation de la sonde Les sondes sont proposées avec divers facteurs d’atténuation qui affectent l’échelle verticale du signal. L’assistant Test de sonde vérifie que le facteur d’atténuation sélectionné dans l’oscilloscope correspond à la sonde. Au lieu d’utiliser l’assistant Test de sonde, vous pouvez sélectionner manuellement le facteur correspondant à l’atténuation de votre sonde. Par exemple, pour régler l’oscilloscope pour une sonde 10X connectée à CH 1, appuyez sur CH 1 MENU ► Sonde ► Tension ► Atténuation, puis sélectionnez 10X. REMARQUE. Le réglage par défaut de l’option Atténuation est 10X. Si vous changez le commutateur d’atténuation de la sonde P2220, vous devez changer en conséquence l’option Atténuation de l’oscilloscope. Les réglages du commutateur sont 1X et 10X. 8 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Démarrage Commutateur d’atténuation REMARQUE. Lorsque le commutateur d’atténuation est défini sur 1X, la sonde P2220 limite la bande passante de l’oscilloscope à 6 MHz. Pour utiliser toute la bande passante de l’oscilloscope, définissez le commutateur sur 10X. Mise à échelle de la sonde de courant Les sondes de courant fournissent un signal de tension proportionnel au courant. Vous devez régler l’oscilloscope en fonction de l’échelle de votre sonde de courant. L’échelle par défaut est 10 A/V. Par exemple, pour régler l’échelle d’une sonde de courant connectée à CH 1, appuyez sur CH 1 MENU ► Sonde ► Courant ► Echelle, puis sélectionnez une valeur appropriée. Calibrage automatique Le programme de calibrage automatique permet d’optimiser le chemin du signal de l’oscilloscope, afin d’obtenir une précision de mesure maximale. Vous pouvez exécuter ce programme à tout moment, mais il est conseillé de le faire si la température ambiante change de 5 °C (9 °F) ou plus. Ce programme prend environ deux minutes. Pour un calibrage précis, mettez l’oscilloscope sous tension et laissez-le chauffer pendant vingt minutes. Pour compenser le chemin du signal, déconnectez les sondes ou les câbles des connecteurs d’entrée. Ensuite, accédez à l’option UTILITAIRE ► Exécuter Auto-cal et suivez les instructions affichées à l’écran. Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 9 Démarrage 10 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Principes de fonctionnement Le panneau avant se compose de plusieurs zones faciles à utiliser. Ce chapitre vous propose une présentation rapide des commandes et informations affichées à l’écran. Modèle à 2 voies Modèle à 4 voies Zone d’affichage Outre l’affichage des signaux, la zone d’affichage contient de nombreuses informations relatives aux réglages du signal et de l’oscilloscope. Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 11 Principes de fonctionnement REMARQUE. Pour obtenir des détails sur l’affichage de la fonction FFT, voir (Voir page 71, Affichage du spectre FFT.). 1. L’apparence de l’icône indique le mode d’acquisition. Mode Normale Mode Détect Créte Mode Moyenne 12 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Principes de fonctionnement 2. L’état du déclenchement est indiqué par les icônes ci-dessous : L’oscilloscope est en train d’acquérir des données de pré-déclenchement. Dans cet état, tous les déclenchements sont ignorés. Toutes les données de pré-déclenchement ont été acquises et l’oscilloscope est prêt à accepter un déclenchement. L’oscilloscope a détecté un déclenchement et il est en train d’acquérir les données de post-déclenchement. L’oscilloscope a arrêté l’acquisition des données du signal. L’oscilloscope a terminé l’acquisition d’une séquence unique. L’oscilloscope est en mode automatique et il est en train d’acquérir des signaux en l’absence de déclenchement. L’oscilloscope est en train d’acquérir et d’afficher en continu les données du signal en mode Balayage. 3. Le marqueur indique la position horizontale de déclenchement. Tournez le bouton HORIZONTAL POSITION pour modifier la position du marqueur. 4. L’affichage indique le temps au réticule central. Le temps au déclenchement est zéro. 5. Le marqueur indique le niveau de déclenchement sur front ou sur largeur d’impulsion. 6. Les marqueurs à l’écran indiquent les points de référence de masse des signaux affichés. S’il n’existe aucun marqueur, la voie n’est pas affichée. 7. Une icône en forme de flèche indique que le signal est inversé. 8. Les facteurs d’échelle verticale des voies sont affichés. 9. Une icône BP indique que la bande passante de la voie est limitée. 10. Le réglage de la base de temps principale est affiché. 11. L’affichage indique le réglage de la base de temps de la fenêtre, si celle-ci est utilisée. Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 13 Principes de fonctionnement 12. La source utilisée pour le déclenchement est affichée. 13. L’icône indique le type de déclenchement sélectionné comme suit : Déclenchement sur front pour le front montant. Déclenchement sur front pour le front descendant. Déclenchement vidéo pour l’option Synchro de ligne. Déclenchement vidéo pour l’option Synchro de trame. Déclenchement sur largeur d’impulsion, polarité positive. Déclenchement sur largeur d’impulsion, polarité négative. 14. L’affichage indique le niveau de déclenchement sur front ou sur largeur d’impulsion. 15. La zone d’affichage contient des messages utiles, dont certains s’affichent pendant 3 secondes seulement. Si vous rappelez un signal sauvegardé, des informations s’affichent à propos du signal de référence, telles que RefA 1,00 V 500 μs. 16. La date et l’heure sont affichées. 17. L’affichage indique la fréquence du déclenchement. 14 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Principes de fonctionnement Zone de messages L’oscilloscope affiche en bas de l’écran une zone de message (numéro 15 dans la figure précédente) qui propose les types d’informations suivants : Instructions d’accès à un autre menu, par exemple lorsque vous appuyez sur le bouton TRIG MENU. Pour le déclenchement HOLDOFF, aller dans le MENU HORIZONTAL Les étapes que vous pouvez effectuer par la suite, par exemple lorsque vous appuyez sur le bouton MESURES. Appuyez sur un bouton de l’écran pour modifier les mesures Des informations sur l’action effectuée par l’oscilloscope, par exemple lorsque vous appuyez sur le bouton CONF. PAR D. Rappel de la configuration d’usine standard Des informations sur le signal, par exemple lorsque vous appuyez sur le bouton AUTOSET. Onde carrée ou impulsion détectée sur CH1 Utilisation du système de menus L’interface utilisateur des oscilloscopes a été conçue pour faciliter l’accès aux fonctions spécialisées par le biais d’une structure de menus. Lorsque vous appuyez sur un bouton de menu du panneau avant, l’oscilloscope affiche le menu correspondant sur le côté droit de l’écran. Le menu affiche les options disponibles lorsque vous appuyez directement sur les boutons d’option dépourvus d’inscription situés à droite de l’écran. Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 15 Principes de fonctionnement L’oscilloscope utilise plusieurs méthodes pour afficher les options de menu : Sélection de la page (sous-menu) : pour certains menus, vous pouvez utiliser le bouton d’option supérieur pour choisir entre deux ou trois sous-menus. Chaque fois que vous appuyez sur le bouton supérieur, les options changent. Par exemple, lorsque vous appuyez sur le bouton supérieur dans le menu TRIGGER, l’oscilloscope passe en revue les sous-menus de déclenchement Front, Vidéo et Largeur d’impulsion. Liste circulaire : l’oscilloscope attribue une valeur différente au paramètre à chaque fois que vous appuyez sur le bouton d’option. Par exemple, vous pouvez appuyer sur le bouton CH 1 MENU, puis sur le bouton d’option supérieur pour passer en revue les options Couplage vertical (voie). Dans certaines listes, vous pouvez utiliser le bouton multifonctionnel pour sélectionner une option. Une ligne de conseil vous indique quand vous pouvez utiliser le bouton multifonctionnel ; un voyant LED à côté de ce même bouton s’allume lorsque celui-ci est actif. (Voir page 20, Boutons de menu et de commande.) Action : l’oscilloscope affiche le type d’action qui se produira dès l’instant où vous appuyez sur un bouton d’option Action. Par exemple, lorsque l’index d’aide est visible et que vous appuyez sur le bouton d’option Page suivante, l’oscilloscope affiche immédiatement la page d’entrées d’index qui suit. Radio : l’oscilloscope utilise un bouton différent pour chaque option. L’option sélectionnée est mise en surbrillance. Par exemple, l’oscilloscope affiche plusieurs options de mode d’acquisition lorsque vous appuyez sur le bouton du menu ACQUISITION. Pour sélectionner une option, appuyez sur le bouton correspondant. 16 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Principes de fonctionnement Sélection de page Liste circulaire Action Radio TRIGGER CH1 AIDE ACQUISITION Type Front Couplage CC Page précédente Normale ou ou Page suivante Détect Créte TRIGGER CH1 Moyennage Type Vidéo Couplage CA ou ou TRIGGER CH1 Type Impulsion Couplage masse Réglages verticaux Tous les modèles (modèle illustré : 4 voies) POSITION (CH 1, CH 2, CH 3 & CH 4). Positionne un signal verticalement. CH 1, CH 2, CH 3 & CH 4 MENU. Permet d’afficher les sélections du menu vertical et d’activer/de désactiver l’affichage du signal de la voie. Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 17 Principes de fonctionnement VOLTS/DIV (CH 1, CH 2, CH 3 & CH 4). Permet de sélectionner les facteurs d’échelles verticales. MATH MENU. Permet d’afficher le menu des opérations mathématiques du signal ; permet également d’activer ou de désactiver le signal calculé. Réglages horizontaux Modèle à 2 voies Modèle à 4 voies POSITION. Permet de régler la position horizontale de toutes les voies et de tous les signaux calculés. La résolution de ce réglage varie selon le réglage de la base de temps. (Voir page 114, Zone retardée.) REMARQUE. Pour appliquer un réglage étendu à la position horizontale, tournez la molette SEC/DIV pour définir une valeur supérieure, modifiez la position horizontale, puis tournez de nouveau la molette SEC/DIV pour revenir à la valeur précédente. HORIZ MENU. Permet d’afficher le menu Horizontal. REGLER SUR 0. Permet de régler la position horizontale sur zéro. SEC/DIV. Permet de sélectionner l’unité de temps/la division (facteur d’échelle) de la base de temps principale ou de la base de temps de la fenêtre. Lorsque la Zone retardée est activée, cette commande modifie 18 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Principes de fonctionnement la largeur de la zone retardée en modifiant la base de temps de la fenêtre. (Voir page 114, Zone retardée.) Commandes de déclenchement Modèle à 4 voies Modèle à 2 voies NIVEAU. Lorsque vous utilisez un déclenchement sur front ou sur impulsion, le bouton NIVEAU détermine le niveau d’amplitude que le signal doit traverser pour acquérir un signal. TRIG MENU. Permet d’afficher le menu Déclenchement. NIVEAU A 50%. Le niveau de déclenchement est défini sur le point médian entre les crêtes du signal de déclenchement. FORCE TRIG. Permet de terminer une acquisition quel que soit l’état du signal de déclenchement. Ce bouton est sans effet si l’acquisition est déjà interrompue. TRIG VIEW. Permet d’afficher le signal de déclenchement à la place du signal de voie lorsque vous maintenez le bouton TRIG VIEW enfoncé. Utilisez cette option pour voir comment les paramètres de déclenchement affectent un signal de déclenchement, tel qu’un couplage de déclenchement. Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 19 Principes de fonctionnement Boutons de menu et de commande Bouton multifonctionnel Reportez-vous au chapitre Référence pour obtenir des informations détaillées sur les commandes des menus et boutons. Bouton multifonctionnel. La fonction est déterminée par le menu affiché ou l’option de menu sélectionnée. Lorsque la fonction est active, le voyant LED correspondant s’allume. Le tableau suivant énumère les fonctions. Option ou menu actif Fonction du bouton Description Curseurs Curseur 1 ou Curseur 2 Positionne le curseur sélectionné Affichage Contraste Modifie le contraste de l’écran Aide Défilement Sélectionne des entrées dans l’index ; sélectionne des liens dans une rubrique ; affiche la page suivante ou précédente d’une rubrique Horizontal Inhibition Permet de définir la durée avant acceptation d’un autre déclenchement ;(Voir page 135, Inhibition.) Math Position Positionne le signal calculé Echelle verticale Change l’échelle du signal calculé 20 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Principes de fonctionnement Option ou menu actif Fonction du bouton Description Mesures Type Sélectionne le type de mesures automatiques pour chaque source Action Affiche la transaction comme mise en mémoire ou rappel pour les fichiers de configuration, les fichiers de signal et les images d’écran Sauv./Rap Sélection de fichiers Sélectionne les fichiers de configuration, de signal ou image à enregistrer, ou sélectionne les fichiers de configuration ou de signal à rappeler Source Sélectionne la source lorsque l’option Type de déclenchement est réglée sur Front Numéro de ligne vidéo Permet de régler l’oscilloscope sur un numéro de ligne spécifique lorsque l’option Type de déclenchement est définie sur Vidéo et que l’option Synchro de déclenchement est définie sur Numéro de ligne Trigger (Déclenchement) Largeur d’impulsion Détermine la largeur de l’impulsion lorsque l’option Type de déclenchement est définie sur Impulsion Sélection de fichiers Sélectionne des fichiers à renommer ou supprimer ; (Voir page 139, Utilitaires Fichiers pour le lecteur flash USB.) Utilitaire ► Utilitaires Fichiers Saisie du nom Permet de renommer le fichier ou le dossier ; (Voir page 140, Renommer un fichier ou dossier.) Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 21 Principes de fonctionnement Option ou menu actif Fonction du bouton Description Utilitaire ► Options ► Configuration du bus GPIB ► Adresse Saisie de la valeur Définit l’adresse GPIB pour l’adaptateur TEK-USB-488 Utilitaire ► Options ► Régler date et heure Saisie de la valeur Définit la valeur de la date et de l’heure ; (Voir page 138, Réglage de la date et de l’heure.) Vertical ► Sonde ► Tension► Atténuation Saisie de la valeur Pour un menu de voie (comme CH 1 MENU), définit le facteur d’atténuation dans l’oscilloscope Vertical ► Sonde ► Courant ► Echelle Saisie de la valeur Pour un menu de voie (comme CH 1 MENU), définit l’échelle dans l’oscilloscope CALIBRAGE AUTO. Affiche le menu Calibrage Auto et active ou désactive la fonction correspondante. Lorsque la fonction est active, le voyant LED correspondant s’allume. SAUV./RAP. Permet d’afficher le menu Sauvegarde/Rappel des réglages et des signaux. MESURES. Permet d’afficher le menu des mesures automatiques. ACQUISITION. Permet d’afficher le menu Acquisition. MENU REF. Affiche le menu Référence pour afficher et cacher rapidement les signaux de référence stockés dans la mémoire non volatile de l’oscilloscope. UTILITAIRE. Permet d’afficher le menu Utilitaire. CURSEURS. Permet d’afficher le menu Curseurs. Les curseurs restent visibles (sauf si l’option Type est définie sur Désact.) une fois que vous avez quitté le menu Curseurs, mais ils ne sont plus réglables. AFFICHAGE. Permet d’afficher le menu Affichage. 22 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Principes de fonctionnement AIDE. Permet d’afficher le menu Aide. CONF. PAR D. Permet de rétablir la configuration d’usine. AUTOSET. Permet de régler automatiquement les commandes de l’oscilloscope afin d’obtenir un affichage exploitable des signaux d’entrées. SEQ. UNIQUE. Permet d’acquérir un signal unique, puis de s’arrêter. RUN/STOP. Permet d’acquérir des signaux en continu ou d’interrompre l’acquisition. PRINT. Lance l’opération d’impression sur une imprimante compatible PictBridge ou effectue la fonction ENREGISTRER sur le lecteur flash USB. ENREGISTRER. Un voyant LED s’allume lorsque la touche PRINT est configurée pour enregistrer des données sur le lecteur flash USB. Connecteurs d’entrée Modèle à 2 voies Modèle à 4 voies CH 1, CH 2, CH 3 & CH 4. Connecteurs d’entrée pour l’affichage des signaux. Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 23 Principes de fonctionnement EXTERNE. Connecteur d’entrée pour une source de déclenchement externe. Le menu Déclenchement permet de sélectionner la source de déclenchement Ext. ou Ext/5. Maintenez le bouton TRIG VIEW enfoncé pour voir comment les paramètres de déclenchement affectent le signal de déclenchement, tel qu’un couplage de déclenchement. Autres éléments du panneau avant port du lecteur flash USB Port du lecteur flash USB. Insérez un lecteur flash USB pour le stockage ou la récupération de données. L’oscilloscope affiche un symbole en forme d’horloge pour indiquer quand le lecteur flash est actif. Après l’enregistrement ou la récupération d’un fichier, l’oscilloscope supprime l’horloge et affiche une ligne de conseil pour vous avertir que l’opération de sauvegarde ou de rappel est terminée. Pour les lecteurs flash dotés d’un voyant LED, celui-ci clignote lors de l’enregistrement de données sur le lecteur ou de la récupération de données depuis le lecteur. Attendez que le voyant LED ne clignote plus pour retirer le lecteur. COMP SONDE. Référence de châssis et de sortie de la compensation de sonde. Permet d’établir une correspondance électrique entre une sonde de tension et le circuit d’entrée de l’oscilloscope. (Voir page 5, Assistant Test de sonde de tension.) (Voir page 7, Compensation manuelle de sonde.) 24 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Compréhension des fonctions de l’oscilloscope Ce chapitre contient des informations générales que vous devez connaître avant d’utiliser un oscilloscope. Pour utiliser votre oscilloscope de manière efficace, vous devez vous familiariser avec les fonctions suivantes : Réglage de l’oscilloscope Déclenchement Acquisition de signaux Mise à l’échelle et positionnement de signaux Mesure de signaux La figure ci-dessous représente un diagramme fonctionnel des différentes fonctions de l’oscilloscope et de leurs relations. Réglage de l’oscilloscope Vous devez vous familiariser avec plusieurs fonctions que vous allez utiliser souvent lors du fonctionnement de l’oscilloscope : le réglage automatique (Autoset), le calibrage automatique (Calibrage Auto), la sauvegarde d’un réglage et le rappel d’un réglage. Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 25 Compréhension des fonctions de l’oscilloscope Utilisation de la fonction de réglage automatique (Autoset) Chaque fois que vous appuyez sur le bouton AUTOSET, la fonction de réglage automatique (Autoset) vous donne un affichage de signal stable. Elle permet d’ajuster automatiquement les réglages de l’échelle verticale et horizontale et du déclenchement. Le réglage automatique permet également d’afficher plusieurs mesures automatiques dans la zone du réticule, en fonction du type de signal. Utilisation de la fonction de calibrage automatique (Autorange) Le calibrage automatique est une fonction continue que vous pouvez activer ou désactiver. Cette fonction ajuste la configuration de manière à suivre un signal lorsque celui-ci présente de grandes variations ou lorsque vous déplacez physiquement la sonde. Sauvegarde d’un réglage Le réglage courant est sauvegardé si vous patientez cinq secondes après la dernière modification avant d’éteindre l’oscilloscope. A la prochaine mise sous tension, l’oscilloscope rappelle ce réglage. Le menu SAUV./RAP vous permet d’enregistrer jusqu’à dix réglages différents. Vous pouvez également enregistrer des réglages sur un lecteur flash USB. L’oscilloscope peut recevoir un lecteur flash USB pour le stockage et la récupération de données amovibles. (Voir page 79, Port du lecteur flash USB.) Rappel d’une configuration L’oscilloscope peut rappeler le dernier réglage utilisé avant sa mise hors tension, l’un des réglages que vous avez enregistrés ou le réglage par défaut. (Voir page 120, Sauvegarder/Rappeler.) Configuration par défaut Dans sa configuration définie en usine, l’oscilloscope est réglé en mode de fonctionnement normal. Il s’agit de la configuration par défaut. Pour rappeler cette configuration, appuyez sur le bouton CONF. PAR D. Pour afficher les réglages par défaut, reportez-vous à l’Annexe D : Configuration par défaut. 26 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Compréhension des fonctions de l’oscilloscope Déclenchement Le déclenchement permet de déterminer le moment où l’oscilloscope commence à acquérir des données et à afficher un signal. Lorsque le déclenchement est configuré correctement, l’oscilloscope convertit un signal instable ou des écrans vides en signaux significatifs. Signal déclenché Signaux sans déclenchement Pour obtenir des informations spécifiques sur l’oscilloscope, reportez-vous au chapitre Principes de fonctionnement. (Voir page 19, Commandes de déclenchement.) Reportez-vous également au chapitre Référence. (Voir page 127, Commandes de déclenchement.) Lorsque vous appuyez sur le bouton RUN/STOP ou SEQ. UNIQUE pour démarrer une acquisition, l’oscilloscope effectue les étapes suivantes : 1. Il acquiert suffisamment de données pour remplir la portion de l’enregistrement du signal située sur la gauche du point de déclenchement. Cette opération est appelée pré-déclenchement. 2. Il continue à acquérir des données en attendant le déclenchement. 3. Il détecte le déclenchement. 4. Il continue à acquérir des données jusqu’à ce que l’enregistrement du signal soit complet. 5. Il affiche le signal qui vient d’être acquis. REMARQUE. Pour les déclenchements sur front et sur impulsion, l’oscilloscope évalue la cadence à laquelle se produisent les déclenchements afin de déterminer la fréquence du déclenchement. L’oscilloscope affiche la fréquence dans le coin inférieur droit de l’écran. Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 27 Compréhension des fonctions de l’oscilloscope Source Les options de source de déclenchement vous permettent de sélectionner le signal qui sera utilisé par l’oscilloscope comme déclenchement. La source peut être n’importe quel signal connecté à la ligne d’alimentation secteur (disponible uniquement avec les déclenchements sur front), à une voie BNC ou au connecteur BNC EXTERNE. Types L’oscilloscope dispose de trois types de déclenchements : sur front, vidéo et sur largeur d’impulsion. Modes Vous pouvez sélectionner le mode de déclenchement Auto ou Normal pour définir le mode d’acquisition des données par l’oscilloscope lorsque celui-ci ne détecte pas de condition de déclenchement. (Voir page 128, Options des modes.) Pour effectuer une acquisition de type séquence unique, appuyez sur le bouton SEQ. UNIQUE. Couplage Vous pouvez utiliser l’option Couplage déclenchement pour déterminer la partie du signal qui passera dans le circuit de déclenchement. Cela peut vous permettre d’obtenir un affichage du signal stable. Pour utiliser le couplage de déclenchement, appuyez sur le bouton TRIG MENU, sélectionnez un déclenchement sur front ou sur impulsion et sélectionnez une option de couplage. REMARQUE. Le couplage de déclenchement n’affecte que le signal transmis au système de déclenchement. Il n’affecte ni la bande passante, ni le couplage du signal affiché à l’écran. Pour afficher le signal conditionné transmis au circuit de déclenchement, maintenez le bouton TRIG VIEW enfoncé. Position Le réglage de la commande de position horizontale permet de représenter le temps qui s’est écoulé entre le déclenchement et le centre de l’écran. Reportez-vous aux Informations sur l’échelle horizontale 28 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Compréhension des fonctions de l’oscilloscope et la position horizontale et sur le pré-déclenchement pour des informations sur la façon d’utiliser cette commande afin de positionner le déclencheur. (Voir page 31, Informations sur l’échelle horizontale et la position horizontale et sur le pré-déclenchement.) Pente et Niveau Les commandes Pente et Niveau vous permettent de définir le mode de déclenchement. L’option Pente (type de déclenchement sur front uniquement) vous permet de déterminer si l’oscilloscope trouve le point de déclenchement sur le front montant ou descendant du signal. La molette TRIGGER NIVEAU permet de spécifier le point de déclenchement sur le front. Front montant Front descendant Le niveau de déclenchement peut être ajusté verticalement Le déclenchement peut être montant ou descendant Acquisition de signaux Lorsque vous faites l’acquisition d’un signal, l’oscilloscope le convertit au format numérique et affiche sa courbe. Le mode d’acquisition définit la façon dont le signal est numérisé et le réglage de la base de temps affecte la durée temporelle et le niveau de détail de l’acquisition. Modes d’acquisition Il existe trois modes d’acquisition : Normale, Détect Créte et Moyenne. Normale. Dans ce mode d’acquisition, l’oscilloscope échantillonne le signal à intervalles réguliers afin de pouvoir en donner une représentation. Ce mode permet en général de représenter avec précision les signaux. Cependant, ce mode n’acquiert pas les variations rapides qui peuvent se produire dans le signal entre les différents prélèvements d’échantillons. Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 29 Compréhension des fonctions de l’oscilloscope Cela risque de provoquer un repliement du spectre ; certaines impulsions étroites risquent d’être oubliées. Si c’est le cas, vous devriez utiliser le mode Détect Créte pour acquérir les données. (Voir page 32, Repliement du spectre temporel.) Détect Créte. Dans ce mode d’acquisition, l’oscilloscope recherche les valeurs les plus élevées et les plus faibles du signal d’entrée sur chaque intervalle d’échantillonnage et les utilise pour afficher la courbe du signal. L’appareil peut ainsi acquérir et afficher les impulsions étroites, qui risqueraient d’être oubliées en mode Normale. Le bruit sera plus élevé dans ce mode. Moyenne. Dans ce mode d’acquisition, l’oscilloscope acquiert plusieurs signaux, il en fait la moyenne et affiche la courbe du signal qui en résulte. Vous pouvez utiliser ce mode pour réduire le bruit aléatoire. Base de temps L’oscilloscope numérise les signaux en faisant l’acquisition de la valeur d’un signal d’entrée à des intervalles discrets. La base de temps vous permet de contrôler la fréquence à laquelle les valeurs sont numérisées. Pour ajuster la base de temps sur une échelle horizontale correspondant à vos besoins, utilisez la molette SEC/DIV. Mise à l’échelle et positionnement de signaux Vous pouvez modifier l’affichage des signaux en ajustant l’échelle et la position. Si vous modifiez l’échelle, la taille de l’affichage du signal va augmenter ou diminuer. Si vous modifiez la position, le signal sera déplacé vers le haut, le bas, la droite ou la gauche. L’indicateur de voie (situé à gauche du réticule) permet d’identifier chacun des signaux affichés. L’indicateur pointe vers le niveau de référence de terre de l’enregistrement du signal. Vous pouvez voir la zone d’affichage et les mesures. (Voir page 11, Zone d’affichage.) Echelle et position verticales Vous pouvez modifier la position verticale des signaux en les déplaçant vers le haut ou le bas de l’affichage. Pour comparer des données, vous 30 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Compréhension des fonctions de l’oscilloscope pouvez aligner un signal sur un autre ou aligner des signaux les uns sur les autres. Vous pouvez modifier l’échelle verticale d’un signal. L’affichage du signal se réduit ou augmente par rapport au niveau de référence de terre. Pour obtenir des informations spécifiques sur l’oscilloscope, reportez-vous au chapitre Principes de fonctionnement. (Voir page 17, Réglages verticaux.) Reportez-vous également au chapitre Référence. (Voir page 140, Réglages verticaux.) Informations sur l’échelle horizontale et la position horizontale et sur le pré-déclenchement Vous pouvez régler la commande HORIZONTAL POSITION pour afficher les données du signal avant le déclenchement, après le déclenchement, ou les deux. Lorsque vous modifiez la position horizontale d’un signal, vous modifiez le temps qui s’écoule entre le déclenchement et le centre de l’écran (cela revient à déplacer le signal vers la droite ou la gauche de l’affichage). Par exemple, si vous souhaitez rechercher la cause d’un parasite dans votre circuit de test, vous pouvez effectuer un déclenchement sur le parasite et allonger la période de pré-déclenchement de façon à capturer les données avant le parasite. Vous pouvez alors analyser les données de pré-déclenchement et peut-être trouver la cause du parasite. Vous pouvez modifier l’échelle horizontale de tous les signaux en actionnant la molette SEC/DIV. Par exemple, vous pouvez avoir besoin de visualiser une seule période de courbe de signal pour mesurer la sur-oscillation sur le front montant. L’oscilloscope affiche l’échelle horizontale en temps par division sur le facteur d’échelle. Comme tous les signaux actifs utilisent la même base de temps, l’oscilloscope affiche uniquement une valeur pour toutes les voies actives, sauf lorsque vous utilisez la Zone retardée. Reportez-vous à la section Zone retardée pour obtenir des informations sur l’utilisation de la fonction fenêtre. (Voir page 114, Zone retardée.) Pour obtenir des informations spécifiques sur l’oscilloscope, reportez-vous au chapitre Principes de fonctionnement. (Voir page 18, POSITION.) Reportez-vous également au chapitre Référence.(Voir page 112, Horizontal.) Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 31 Compréhension des fonctions de l’oscilloscope Repliement du spectre temporel. Un repliement du spectre se produit lorsque l’oscilloscope n’échantillonne pas le signal assez rapidement pour en constituer un enregistrement exact. Lorsque cela se produit, l’oscilloscope affiche un signal dont la fréquence est plus basse que celle du signal d’entrée, ou bien déclenche et affiche un signal instable. Signal de fréquence réelle élevée Signal de fréquence apparente basse en raison du repliement du spectre Points d’échantillonnage L’oscilloscope représente les signaux de façon précise, mais il est limité par la bande passante de la sonde, celle de l’oscilloscope et la fréquence d’échantillonnage. Pour éviter le repliement du spectre, l’oscilloscope doit échantillonner le signal au moins deux fois plus vite que la composante de fréquence la plus élevée de ce signal. La fréquence la plus élevée pouvant être représentée par la fréquence d’échantillonnage de l’oscilloscope est appelée fréquence de Nyquist. La fréquence d’échantillonnage est appelée cadence de Nyquist et elle est égale à deux fois la fréquence de Nyquist. Les fréquences d’échantillonnage maximum de l’oscilloscope sont au moins dix fois supérieures à la bande passante. Ces fréquences d’échantillonnage élevées aident à réduire le risque de repliement du spectre. 32 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Compréhension des fonctions de l’oscilloscope Il existe plusieurs façons de contrôler le repliement du spectre : Tournez la molette SEC/DIV pour modifier l’échelle horizontale. Si la forme du signal change de manière significative, cela signifie que vous observez peut-être un repliement du spectre. Sélectionnez le mode d’acquisition Détect Créte. (Voir page 30, Détect Créte.) Ce mode échantillonne les valeurs les plus élevées et les plus faibles afin que l’oscilloscope puisse détecter les signaux les plus rapides. Si la forme du signal change de manière significative, cela signifie que vous observez peut-être un repliement du spectre. Si la fréquence du déclenchement est plus rapide que les informations affichées à l’écran, cela signifie que vous observez peut-être un repliement du spectre ou un signal qui traverse plusieurs fois le niveau de déclenchement. L’examen du signal permet de déterminer si la forme du signal autorise un déclenchement unique par cycle au niveau du déclenchement sélectionné. Si plusieurs déclenchements se produisent, sélectionnez un niveau de déclenchement ne générant qu’un seul déclenchement par cycle. Si la fréquence du déclenchement demeure plus rapide que l’affichage à l’écran, cela signifie que vous observez peut-être un repliement du spectre. Si la fréquence du déclenchement est plus lente, cela signifie que ce test est inutile. Si le signal que vous visualisez est également la source du déclenchement, utilisez le réticule ou les curseurs pour estimer la fréquence du signal affiché. Comparez ce résultat avec la mesure de la fréquence du déclenchement située dans le coin inférieur droit de l’écran. Si ces deux résultats sont très différents, cela signifie que vous observez peut-être un repliement du spectre. Le tableau suivant dresse la liste des bases de temps que vous pouvez utiliser pour éviter le repliement du spectre sur différentes fréquences, ainsi que les fréquences d’échantillonnage correspondantes. Si le bouton SEC/DIV est réglé sur la position la plus élevée, il ne devrait pas y avoir de repliement du spectre grâce aux limites de bande passante des amplificateurs d’entrée de l’oscilloscope. Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 33 Compréhension des fonctions de l’oscilloscope Réglages permettant d’éviter le repliement du spectre en mode Echantillon Base de temps Echantillons par seconde Maximum 2,5 ns 2 G éch./s 200 MHz † de 5 à 250 ns 1 G éch./s ou 2 G éch./s * 200 MHz † 500 ns 500 M éch./s 200 MHz † 1 ms 250 M éch./s 125 MHz † 2,5 ms 100 M éch./s 50 MHz † 5 ms 50 M éch./s 25 MHz † 10 ms 25 M éch./s 12,5 MHz † 25 ms 10 M éch./s 5 MHz 50 ms 5 M éch./s 2,5 MHz 100 ms 2,5 M éch./s 1,25 MHz 250 ms 1 M éch./s 500 kHz 500 ms 500 k éch./s 250 kHz 1 ms 250 k éch./s 125 kHz 2,5 ms 100 k éch./s 50 kHz 5 ms 50 k éch./s 25 kHz 10 ms 25 k éch./s 12,5 kHz 25 ms 10 k éch./s 5 kHz 50 ms 5 k éch./s 2,5 kHz 100 ms 2,5 k éch./s 1,25 kHz 250 ms 1 k éch./s 500 Hz 500 ms 500 éch./s 250 Hz 1 s 250 éch/s 125 Hz 2,5 s 100 éch./s 50 Hz 5 s 50 éch./s 25 Hz 10 s 25 éch./s 12,5 Hz 25 s 10 éch./s 5 Hz 50 s 5 éch./s 2,5 Hz * En fonction du modèle d’oscilloscope. † Bande passante réduite à 6 MHz avec une sonde P2220 réglée sur 1X. 34 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Compréhension des fonctions de l’oscilloscope Prise de mesures L’oscilloscope trace des graphes de la tension par rapport au temps et vous aide à mesurer le signal affiché. Il existe plusieurs façons de prendre des mesures. Vous pouvez utiliser le réticule, les curseurs ou une mesure automatique. Réticule Cette méthode vous permet d’effectuer une estimation visuelle rapide. Vous pouvez par exemple examiner l’amplitude d’un signal et constater qu’elle est légèrement supérieure à 100 mV. Vous pouvez effectuer des mesures simples en comptant les divisions de réticule majeures et mineures concernées et en les multipliant par le facteur d’échelle. Ainsi, si vous comptez cinq divisions de réticule verticales majeures entre les valeurs minimale et maximale d’un signal et si le facteur d’échelle est 100 mV/division, vous pouvez alors calculer la tension crête à crête comme suit : 5 divisions x 100 mV/division = 500 mV Curseur Curseurs Cette méthode vous permet de prendre des mesures en déplaçant les curseurs, qui s’affichent toujours par paires, et en lisant les valeurs numériques correspondantes qui s’affichent à l’écran. Il existe deux types de curseurs : Amplitude et Temps. Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 35 Compréhension des fonctions de l’oscilloscope Lorsque vous utilisez les curseurs, assurez-vous de définir la source en fonction du signal affiché à l’écran que vous souhaitez mesurer. Pour utiliser les curseurs, appuyez sur le bouton CURSEURS. Curseurs d’amplitude. Les curseurs d’amplitude s’affichent sous forme de lignes horizontales à l’écran et permettent de mesurer les paramètres verticaux. Les amplitudes sont référencées au niveau de référence. Pour la fonction Math FFT, ces curseurs mesurent l’amplitude. Curseurs de temps. Les curseurs de temps s’affichent sous la forme de lignes verticales à l’écran et permettent de mesurer les paramètres horizontaux et verticaux. Les temps sont référencés au point de déclenchement. Pour la fonction Math FFT, ces curseurs mesurent la fréquence. Les curseurs de temps comprennent également un affichage de l’amplitude du signal au point où celui-ci croise le curseur. Automatique Le menu MESURES peut traiter jusqu’à cinq mesures automatiques. Si vous prenez des mesures automatiques, l’oscilloscope effectue tous les calculs à votre place. Ces mesures utilisent les points qui composent l’enregistrement du signal. Elles sont donc plus précises que les mesures du réticule ou du curseur. Le résultat des mesures automatiques est affiché à l’écran. Ces mesures sont mises à jour périodiquement lorsque l’oscilloscope reçoit de nouvelles données. Pour obtenir des informations sur les mesures, reportez-vous au chapitre Référence. (Voir page 117, Prise de mesures.) 36 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Exemples d’application Cette section présente une série d’exemples d’application. Ces exemples simplifiés mettent en évidence les fonctions de l’oscilloscope et vous expliquent comment l’utiliser pour résoudre les problèmes rencontrés lors des tests effectués. Prise de mesures simples Utilisation de la fonction de réglage automatique (Autoset) Utilisation du menu Mesures pour effectuer des mesures automatiques Mesure de deux signaux et calcul du gain Utilisation de la fonction de calibrage automatique (Autorange) pour examiner une série de points de test Prise de mesures par curseur Mesure de la fréquence et de l’amplitude d’anneau Mesure de la largeur d’impulsion Mesure du temps de montée Analyse du détail du signal Examen d’un signal bruyant Utilisation de la fonction de moyenne pour séparer un signal du bruit Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 37 Exemples d’application Acquisition d’un signal monocoup Optimisation de l’acquisition Mesure du retard de propagation Déclenchement sur une largeur d’impulsion Déclenchement sur un signal vidéo Déclenchement sur les trames et les lignes vidéo Utilisation de la fonction fenêtre pour visualiser les détails du signal Analyse d’un signal de communication différentiel avec les fonctions mathématiques Affichage des changements d’impédance dans un réseau en utilisant le mode XY et la persistance Prise de mesures simples Vous devez observer un signal dans un circuit, mais vous ne connaissez ni l’amplitude ni la fréquence de ce signal. Vous souhaitez afficher rapidement le signal et mesurer la fréquence, la période et l’amplitude crête à crête. 38 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Exemples d’application Utilisation de la fonction de réglage automatique (Autoset) Pour afficher rapidement un signal, procédez comme suit : 1. Appuyez sur le bouton CH 1 MENU. 2. Appuyez sur Sonde ► Tension ►Atténuation ► 10X. 3. Réglez le commutateur de la sonde P2220 sur 10X. 4. Connectez l’extrémité de la sonde de voie 1 au signal. Raccordez le câble de référence au point de référence du circuit. 5. Appuyez sur le bouton AUTOSET. L’oscilloscope définit automatiquement les réglages verticaux, horizontaux et de déclenchement. Si vous souhaitez optimiser l’affichage du signal, vous pouvez ajuster manuellement ces commandes. REMARQUE. L’oscilloscope affiche les mesures automatiques adéquates dans la zone du signal de l’écran en fonction du type de signal détecté. Pour obtenir des informations spécifiques sur l’oscilloscope, reportez-vous au chapitre Référence. (Voir page 103, Réglage automatique (Autoset).) Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 39 Exemples d’application Mesures automatiques L’oscilloscope peut mesurer automatiquement la plupart des signaux affichés. REMARQUE. Si un point d’interrogation (?) apparaît dans la zone d’affichage Valeur, le signal est en dehors du champ de mesure. Réglez la molette VOLTS/DIV de façon à réduire la sensibilité de la voie appropriée ou changez le réglage de SEC/DIV. Pour mesurer la fréquence du signal, la période, l’amplitude crête à crête, le temps de montée et la largeur positive, procédez comme suit : 1. Appuyez sur le bouton MESURES pour afficher le menu correspondant. 2. Appuyez sur le bouton d’option supérieur ; le menu Mesure 1 s’affiche. 3. Appuyez sur Type ► Fréq. La zone d’affichage Valeur affiche la mesure et les mises à jour. 4. Appuyez sur le bouton d’option Retour. 5. Appuyez sur le deuxième bouton d’option en partant du haut ; le menu Mesure 2 s’affiche. 6. Appuyez sur Type ► Période. La zone d’affichage Valeur affiche la mesure et les mises à jour. 7. Appuyez sur le bouton d’option Retour. 8. Appuyez sur le bouton d’option du milieu ; le menu Mesure 3 s’affiche. 40 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Exemples d’application 9. Appuyez sur Type ► C-C. La zone d’affichage Valeur affiche la mesure et les mises à jour. 10. Appuyez sur le bouton d’option Retour. 11. Appuyez sur le deuxième bouton d’option en partant du bas ; le menu Mesure 4 s’affiche. 12. Appuyez sur Type ► Tps montée. La zone d’affichage Valeur affiche la mesure et les mises à jour. 13. Appuyez sur le bouton d’option Retour. 14. Appuyez sur le bouton d’option inférieur ; le menu Mesure 5 s’affiche. 15. Appuyez sur Type ► Largeur pos. La zone d’affichage Valeur affiche la mesure et les mises à jour. 16. Appuyez sur le bouton d’option Retour. CH1 Fréq. 1 000 kHz CH1 Période 1 000 ms CH1 C-C 5,04 V CH1 Tps montée 2 611 μs ? CH1 Largeur pos. 500 μs Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 41 Exemples d’application Mesure de deux signaux Si vous testez un équipement et devez mesurer le gain de l’amplificateur audio, vous aurez besoin d’un générateur audio capable d’injecter un signal de test à l’entrée de l’amplificateur. Connectez deux voies de l’oscilloscope à l’entrée et à la sortie de l’amplificateur (voir schéma). Mesurez les niveaux des deux signaux et utilisez les mesures pour calculer le gain. CH1 C-C 2,04 V CH2 C-C 206 mV CH1 Aucune CH1 Aucune CH1 Aucune 42 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Exemples d’application Pour activer et afficher les signaux connectés aux voies 1 et 2 et sélectionner des mesures pour les deux voies, procédez comme suit : 1. Appuyez sur le bouton AUTOSET. 2. Appuyez sur le bouton MESURES pour afficher le menu correspondant. 3. Appuyez sur le bouton d’option supérieur ; le menu Mesure 1 s’affiche. 4. Appuyez sur Source ► CH1. 5. Appuyez sur Type ► C-C. 6. Appuyez sur le bouton d’option Retour. 7. Appuyez sur le deuxième bouton d’option en partant du haut ; le menu Mesure 2 s’affiche. 8. Appuyez sur Source ► CH2. 9. Appuyez sur Type ► C-C. 10. Appuyez sur le bouton d’option Retour. Lisez les amplitudes crête à crête affichées pour les deux voies. 11. Pour calculer le gain de tension de l’amplificateur, utilisez ces équations : Gain de tension = amplitude de sortie/amplitude d’entrée Gain de tension (dB) = 20 × log (Gain de tension) Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 43 Exemples d’application Utilisation de la fonction de calibrage automatique (Autorange) pour examiner une série de points de test Si votre machine fonctionne mal, vous devrez peut-être trouver la fréquence et la tension efficace de plusieurs points de test et comparer ces valeurs à des valeurs idéales. Vous ne pouvez pas accéder aux commandes du panneau avant car vous avez besoin de vos deux mains pour sonder des points de test difficiles à atteindre physiquement. 1. Appuyez sur le bouton CH 1 MENU. 2. Appuyez sur Sonde ► Tension ► Atténuation et effectuez votre réglage pour que l’atténuation corresponde à celle de la sonde connectée à la voie 1. 3. Appuyez sur le bouton CALIBRAGE AUTO pour activer l’ajustement automatique et sélectionnez l’option Vertical et Horizontal. 4. Appuyez sur le bouton MESURES pour afficher le menu correspondant. 5. Appuyez sur le bouton d’option supérieur ; le menu Mesure 1 s’affiche. 6. Appuyez sur Source ► CH1. 7. Appuyez sur Type ► Fréquence. 8. Appuyez sur le bouton d’option Retour. 9. Appuyez sur le deuxième bouton d’option en partant du haut ; le menu Mesure 2 s’affiche. 10. Appuyez sur Source ► CH1. 11. Appuyez sur Type ► Efficace. 12. Appuyez sur le bouton d’option Retour. 13. Connectez l’extrémité de la sonde et le câble de référence au premier point de test. Lisez la fréquence et la valeur efficace du cycle sur l’écran de l’oscilloscope, puis comparez ces valeurs aux valeurs idéales. 14. Répétez l’étape 13 pour chaque point de test, jusqu’à ce que vous trouviez le composant défaillant. 44 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Exemples d’application REMARQUE. Lorsque la fonction de calibrage automatique (Autorange) est active, chaque fois que vous déplacez la sonde vers un autre point de test, l’oscilloscope réajuste l’échelle horizontale, l’échelle verticale et le niveau de déclenchement pour vous donner un affichage utile. Mesures par curseur Vous pouvez utiliser les curseurs pour prendre rapidement des mesures d’amplitude et de temps sur un affichage. Mesure de l’amplitude et de la fréquence d’anneau Pour mesurer la fréquence d’anneau au front montant d’un signal, procédez comme suit : 1. Appuyez sur le bouton CURSEURS pour afficher le menu correspondant. 2. Appuyez sur Type ► Temps. 3. Appuyez sur Source ► CH1. 4. Appuyez sur le bouton d’option Curseur 1. 5. Tournez le bouton multifonctionnel pour placer un curseur sur la première crête de l’anneau. 6. Appuyez sur le bouton d’option Curseur 2. 7. Tournez le bouton multifonctionnel pour placer un curseur sur la seconde crête de l’anneau. Vous pouvez visualiser le temps Δ (delta) et la fréquence (fréquence d’anneau mesurée) dans le menu Curseurs. Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 45 Exemples d’application Type Temps Source CH1 Δt 540 ns 1/Δt 1 852 MHz ΔV 0,44 V Curseur 1 180 ns 1,40 V Curseur 2 720 ns 0,96 V 8. Appuyez sur Type ► Amplitude. 9. Appuyez sur le bouton d’option Curseur 1. 10. Tournez le bouton multifonctionnel pour placer un curseur sur la première crête de l’anneau. 11. Appuyez sur le bouton d’option Curseur 2. 12. Tournez le bouton multifonctionnel pour placer le Curseur 2 sur le point le plus bas de l’anneau. Vous pouvez voir l’amplitude de l’anneau dans le menu Curseurs. Type Amplitude Source CH1 ΔV 640 mV Curseur 1 1,46 V Curseur 2 820 mV 46 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Exemples d’application Mesure de la largeur d’impulsion Si vous analysez un affichage d’impulsion et que vous souhaitez connaître la largeur de l’impulsion, procédez comme suit : 1. Appuyez sur le bouton CURSEURS pour afficher le menu correspondant. 2. Appuyez sur Type ► Temps. 3. Appuyez sur Source ► CH1. 4. Appuyez sur le bouton d’option Curseur 1. 5. Tournez le bouton multifonctionnel pour placer un curseur sur le front montant de l’impulsion. 6. Appuyez sur le bouton d’option Curseur 2. 7. Tournez le bouton multifonctionnel pour placer un curseur sur le front descendant de l’impulsion. Vous pouvez accéder aux mesures suivantes dans le menu Curseurs : Le temps au Curseur 1, par rapport au déclenchement. Le temps au Curseur 2, par rapport au déclenchement. Le temps Δ (delta), à savoir la mesure de la largeur d’impulsion. Type Temps Source CH1 Δt 500 μs 1/Δt 2 000 kHz ΔV 1,38 V Curseur 1 0 s 0,98 V Curseur 2 500 μs -1 V Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 47 Exemples d’application REMARQUE. La mesure de largeur positive est exprimée sous forme de mesure automatique dans le menu Mesures. (Voir page 117, Prise de mesures.) REMARQUE. La mesure de largeur positive s’affiche également lorsque vous sélectionnez l’option Carré à simple cycle dans le menu AUTOSET. (Voir page 106, Onde ou impulsion carrée.) 48 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Exemples d’application Mesure du temps de montée Après avoir mesuré la largeur d’impulsion, vous décidez de vérifier le temps de montée de l’impulsion. Généralement, vous mesurez le temps de montée entre les niveaux égaux à 10 % et 90 % du signal. Pour mesurer le temps de montée, procédez comme suit : 1. Tournez la molette SEC/DIV pour afficher le front montant du signal. 2. Tournez les molettes VOLTS/DIV et VERTICAL POSITION pour régler l’amplitude du signal sur cinq divisions environ. 3. Appuyez sur le bouton CH 1 MENU. 4. Appuyez sur Volts/div ► Fin. 5. Tournez la molette VOLTS/DIV pour régler l’amplitude du signal sur cinq divisions exactement. 6. Tournez la molette VERTICAL POSITION pour centrer le signal ; positionnez la ligne de base du signal à 2,5 divisions sous le réticule central. 7. Appuyez sur le bouton CURSEURS pour afficher le menu correspondant. 8. Appuyez sur Type ► Temps. 9. Appuyez sur Source ► CH1. 10. Appuyez sur le bouton d’option Curseur 1. 11. Tournez le bouton multifonctionnel pour placer un curseur sur le point de croisement du signal et de la deuxième ligne du réticule située sous le centre de l’écran. Il s’agit du niveau égal à 10 % du signal. 12. Appuyez sur le bouton d’option Curseur 2. 13. Tournez le bouton multifonctionnel pour placer un curseur sur le point de croisement du signal et de la deuxième ligne du réticule située au-dessus du centre de l’écran. Il s’agit du niveau égal à 90 % du signal. L’affichage Δt apparaissant dans le menu Curseurs est le temps de montée du signal. Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 49 Exemples d’application 5 divisions Type Temps Source CH1 Δt 140 ns 1/Δt 7 143 MHz ΔV 2,08 V Curseur 1 -80 ns -1,02 V Curseur 2 60 ns 1,06 V REMARQUE. La mesure du temps de montée est exprimée sous forme de mesure automatique dans le menu Mesures. (Voir page 117, Prise de mesures.) REMARQUE. La mesure du temps de montée s’affiche également lorsque vous sélectionnez l’option Front montant dans le menu AUTOSET. (Voir page 106, Onde ou impulsion carrée.) Analyse détaillée du signal Un signal bruyant est affiché sur l’oscilloscope et vous avez besoin d’en connaître le détail. Vous suspectez que le signal contient bien plus de détails que ce qui est affiché. 50 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Exemples d’application Examen d’un signal bruyant Le signal paraît bruyant et vous suspectez que ce bruit est à l’origine de problèmes dans votre circuit. Pour mieux analyser le bruit, procédez comme suit : 1. Appuyez sur le bouton ACQUISITION pour afficher le menu correspondant. 2. Appuyez sur le bouton d’option Détect Créte. 3. Si besoin, appuyez sur le bouton AFFICHAGE pour afficher le menu correspondant. Utilisez le bouton d’option Contraste avec le bouton multifonctionnel pour régler l’affichage et voir plus facilement le bruit. La Détect Créte détermine les pointes de bruit et les parasites dans votre signal, notamment lorsque la base de temps est réglée sur un réglage lent. Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 51 Exemples d’application Séparation du signal et du bruit Vous souhaitez à présent analyser la forme du signal et ignorer le bruit. Pour réduire le bruit aléatoire dans l’affichage de l’oscilloscope, procédez comme suit : 1. Appuyez sur le bouton ACQUISITION pour afficher le menu correspondant. 2. Appuyez sur le bouton d’option Moyenne. 3. Appuyez sur le bouton d’option Moyennes pour afficher les effets résultant de la variation du nombre de moyennes en cours sur l’affichage du signal. La fonction Moyennes réduit le bruit aléatoire et facilite la visualisation du détail d’un signal. Dans l’exemple ci-dessous, un anneau apparaît sur le front montant et sur le front descendant du signal lorsque le bruit est éliminé. 52 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Exemples d’application Acquisition d’un signal monocoup La fiabilité d’un relais à lames souples dans un composant d’équipement laisse à désirer et vous devez rechercher l’origine du problème. Vous suspectez que les contacts du relais produisent un arc lorsque le relais est hors circuit. Comme vous pouvez ouvrir et fermer le relais à la vitesse maximale d’une fois par minute environ, il vous faut capter la tension sur le relais en acquisition monocoup. Pour établir une acquisition monocoup, procédez comme suit : 1. Tournez la molette verticale VOLTS/DIV et la molette horizontale SEC/DIV selon les plages appropriées correspondant au signal que vous souhaitez observer. 2. Appuyez sur le bouton ACQUISITION pour afficher le menu correspondant. 3. Appuyez sur le bouton d’option Détect Créte. 4. Appuyez sur le bouton TRIG MENU pour afficher le menu Déclenchement. 5. Appuyez sur Pente ► Montante. 6. Tournez la molette NIVEAU pour régler le niveau de déclenchement sur la médiane d’une tension entre les tensions ouvertes et fermées du relais. 7. Appuyez sur le bouton SEQ. UNIQUE pour lancer l’acquisition. Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 53 Exemples d’application Lorsque le relais s’ouvre, l’oscilloscope se déclenche et capture l’événement. Optimisation de l’acquisition L’acquisition initiale montre que le contact du relais commence à s’ouvrir au point de déclenchement. Cet événement est suivi d’une grande pointe d’impulsion indiquant un rebondissement du contact et une inductance dans le circuit. L’inductance risque de provoquer la formation d’un arc dans le contact et une défaillance prématurée du relais. Vous pouvez utiliser les réglages verticaux, horizontaux et de déclenchement pour optimiser les réglages avant la capture du prochain événement monocoup. Lorsque l’acquisition suivante est capturée avec les nouveaux réglages (après avoir appuyé de nouveau sur le bouton SEQ. UNIQUE), vous pouvez constater que le contact rebondit plusieurs fois lorsqu’il s’ouvre. 54 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Exemples d’application Mesure du retard de propagation Vous suspectez que la synchronisation de mémoire du circuit d’un microprocesseur est marginale. Configurez l’oscilloscope pour mesurer le retard de propagation entre le signal de sélection du circuit et la sortie de données du périphérique de mémoire. Type Temps Source CH1 Δt 20 ns 1/Δt 50 MHz ΔV 0,28 V Curseur 1 50 ns -0,20 V Curseur 2 70 ns 0,08 V Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 55 Exemples d’application Pour configurer la mesure du retard de propagation, procédez comme suit : 1. Appuyez sur le bouton AUTOSET pour déclencher un affichage stable. 2. Réglez les commandes horizontales et verticales pour optimiser l’affichage. 3. Appuyez sur le bouton CURSEURS pour afficher le menu correspondant. 4. Appuyez sur Type ► Temps. 5. Appuyez sur Source ► CH1. 6. Appuyez sur le bouton d’option Curseur 1. 7. Tournez le bouton multifonctionnel pour placer le curseur sur le front actif du signal de sélection du circuit. 8. Appuyez sur le bouton d’option Curseur 2. 9. Tournez le bouton multifonctionnel pour placer le deuxième curseur sur la transition de sortie de données. L’affichage Δt apparaissant dans le menu Curseurs est le délai de propagation entre les signaux. La mesure affichée est valide car les deux signaux ont le même réglage SEC/DIV. Déclenchement sur une largeur d’impulsion spécifique Vous testez les largeurs d’impulsion d’un signal dans un circuit. Il est essentiel que toutes les impulsions soient de largeur spécifique et vous devez vous en assurer. Le déclenchement sur front indique que votre signal est tel que spécifié et que la mesure de la largeur d’impulsion correspond aux spécifications. Cependant, vous pensez qu’un problème est susceptible de se produire. 56 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Exemples d’application Pour établir un test de détection des aberrations de largeur d’impulsion, procédez comme suit : 1. Appuyez sur le bouton AUTOSET pour déclencher un affichage stable. 2. Dans le menu AUTOSET, appuyez sur le bouton d’option Cycle unique pour afficher un cycle unique du signal et pour prendre rapidement une mesure de la largeur d’impulsion. 3. Appuyez sur le bouton TRIG MENU pour afficher le menu Déclenchement. 4. Appuyez sur Type ► Impulsion. 5. Appuyez sur Source ► CH1. 6. Tournez la molette TRIGGER NIVEAU pour définir le niveau de déclenchement à proximité de la partie inférieure du signal. 7. Appuyez sur Quand ► = (égal). 8. Tournez le bouton multifonctionnel pour régler la largeur d’impulsion sur la valeur rapportée par la mesure de la largeur d’impulsion à l’étape 2. 9. Appuyez sur Suite ► Mode ► Normale. Vous pouvez obtenir un affichage stable présentant un déclenchement de l’oscilloscope sur des impulsions normales. 1. Appuyez sur le bouton d’option Quand pour sélectionner ≠, < ou >. La présence de toute impulsion aberrante satisfaisant à la condition Quand spécifiée provoque le déclenchement de l’oscilloscope. Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 57 Exemples d’application REMARQUE. La mesure de la fréquence du déclenchement affiche la fréquence des événements que l’oscilloscope pourrait considérer comme un déclenchement ; elle peut être inférieure à la fréquence du signal d’entrée en mode de déclenchement sur largeur d’impulsion. Déclenchement sur un signal vidéo Vous testez le circuit vidéo d’un composant d’équipement médical et devez afficher le signal de sortie vidéo. La sortie vidéo est un signal NTSC standard. Utilisez le déclenchement vidéo pour obtenir un affichage stable. 58 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Exemples d’application REMARQUE. La plupart des systèmes vidéo utilisent un câblage de 75 ohms. La terminaison des entrées de l’oscilloscope ne correspond pas correctement au câblage à faible impédance. Pour éviter toute imprécision de l’amplitude résultant d’une charge et de réflexions impropres, placez un adaptateur de traversée de 75 ohms (référence Tektronix 011-0055-02 ou équivalent) entre le câble coaxial de 75 ohms à partir du générateur de signal et l’entrée BNC de l’oscilloscope. Déclenchement sur les trames vidéo Automatique. Pour procéder à un déclenchement sur les trames vidéo, procédez comme suit : 1. Appuyez sur le bouton AUTOSET. Une fois le réglage automatique (Autoset) terminé, l’oscilloscope affiche le signal vidéo dont la synchronisation est définie sur Ttes trames. Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 59 Exemples d’application L’oscilloscope règle l’option Standard lorsque vous utilisez la fonction de réglage automatique (Autoset). 1. Appuyez sur les boutons d’option Trame imp. ou Trame paire dans le menu AUTOSET pour synchroniser sur les trames impaires ou paires uniquement. Manuel. Le recours à une autre méthode implique davantage d’étapes, mais peut s’avérer nécessaire en fonction du signal vidéo. Pour utiliser la méthode manuelle, procédez comme suit : 1. Appuyez sur le bouton CH 1 MENU. 2. Appuyez sur Couplage ► CA. 3. Appuyez sur le bouton TRIG MENU pour afficher le menu Déclenchement. 4. Appuyez sur le bouton d’option supérieur et sélectionnez Vidéo. 5. Appuyez sur Source ► CH1. 6. Appuyez sur le bouton d’option Synch. et sélectionnez Ttes trames, Trame imp. ou Trame paire. 7. Appuyez sur Standard ► NTSC. 8. Tournez la molette horizontale SEC/DIV pour afficher une trame entière sur tout l’écran. 9. Tournez la molette verticale VOLTS/DIV pour vous assurer que la totalité du signal vidéo est visible à l’écran. 60 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Exemples d’application Déclenchement sur les lignes vidéo Automatique. Vous pouvez également examiner les lignes vidéo d’une trame. Pour procéder à un déclenchement sur les lignes vidéo, procédez comme suit : 1. Appuyez sur le bouton AUTOSET. 2. Appuyez sur le bouton d’option supérieur pour sélectionner Ligne afin de synchroniser sur toutes les lignes (le menu AUTOSET inclut les options Ttes lignes et No de ligne). Manuel. Le recours à une autre méthode implique davantage d’étapes, mais peut s’avérer nécessaire en fonction du signal vidéo. Pour utiliser cette méthode, procédez comme suit : 1. Appuyez sur le bouton TRIG MENU pour afficher le menu Déclenchement. 2. Appuyez sur le bouton d’option supérieur et sélectionnez Vidéo. 3. Appuyez sur le bouton d’option Synch., sélectionnez Ttes lignes ou No de ligne et tournez le bouton multifonctionnel pour définir un numéro de ligne spécifique. 4. Appuyez sur Standard ► NTSC. 5. Tournez la molette SEC/DIV pour afficher une ligne vidéo complète à l’écran. 6. Tournez la molette VOLTS/DIV pour vous assurer que la totalité du signal vidéo est visible à l’écran. Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 61 Exemples d’application Signal vidéo entrant Utilisation de la fonction fenêtre pour afficher les détails du signal Vous pouvez utiliser la fonction fenêtre (zoom) pour examiner une partie spécifique d’un signal sans modifier l’affichage principal. 62 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Exemples d’application Si vous souhaitez afficher la salve couleur du signal précédent de manière plus détaillée sans modifier l’affichage principal, procédez comme suit : 1. Appuyez sur le bouton HORIZ MENU pour afficher le menu Horizontal et sélectionnez l’option Base de temps principale. 2. Appuyez sur le bouton d’option Zone retardée. 3. Tournez la molette SEC/DIV et sélectionnez 500 ns. Il s’agit du réglage SEC/DIV de l’affichage étendu. 4. Tournez la molette HORIZONTAL POSITION pour positionner la fenêtre autour de la portion du signal que vous souhaitez étendre. 1. Appuyez sur le bouton d’option Fenêtre pour afficher la portion étendue du signal. 2. Tournez la molette SEC/DIV pour optimiser l’affichage du signal étendu. Pour passer de l’affichage de type Base de temps principale à l’affichage de type Fenêtre et inversement, appuyez sur le bouton d’option Base de temps principale ou Fenêtre dans le menu Horizontal. Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 63 Exemples d’application Analyse d’un signal de communication différentiel Un lien de communication de données série vous pose régulièrement des problèmes en raison, selon vous, d’un signal de mauvaise qualité. Configurez l’oscilloscope pour qu’il affiche une capture instantanée de la chaîne de données série, vous permettant ainsi de vérifier les niveaux des signaux et les temps de transition. Puisqu’il s’agit d’un signal différentiel, vous utilisez la fonction mathématique de l’oscilloscope pour afficher une représentation optimisée du signal. 64 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Exemples d’application REMARQUE. Veillez d’abord à compenser les deux sondes. Les différences de compensation de sonde s’affichent sous forme d’erreurs dans le signal différentiel. Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 65 Exemples d’application Pour activer les signaux différentiels connectés aux voies 1 et 2, suivez les étapes ci-dessous : 1. Appuyez sur le bouton CH 1 MENU et réglez l’option Sonde ► Tension► Atténuation sur 10X. 2. Appuyez sur le bouton CH 2 MENU et réglez l’option Sonde ► Tension► Atténuation sur 10X. 3. Réglez les commutateurs des sondes P2220 sur 10X. 4. Appuyez sur le bouton AUTOSET. 5. Appuyez sur le bouton MATH MENU pour afficher le menu Math. 6. Appuyez sur le bouton d’option Opération et sélectionnez -. 7. Appuyez sur le bouton d’option CH1-CH2 pour afficher un nouveau signal correspondant à la différence entre les signaux affichés. 8. Pour régler l’échelle verticale et la position du signal calculé, procédez comme suit : a. N’affichez plus les signaux des voies 1 et 2. b. Tournez les molettes VOLTS/DIV et VERTICAL POSITION de CH 1 et CH 2 pour régler l’échelle verticale et la position du signal calculé. Pour obtenir un affichage plus stable, appuyez sur le bouton SEQ. UNIQUEpour contrôler l’acquisition du signal. Chaque fois que vous appuyez sur le bouton SEQ. UNIQUE, l’oscilloscope acquiert une capture instantanée de la chaîne de données numériques. Vous pouvez utiliser les curseurs ou les mesures automatiques pour analyser le signal ou le stocker en vue d’une analyse ultérieure. Affichage des modifications d’impédance sur un réseau Vous avez conçu un circuit qui doit fonctionner dans une plage de température étendue. Vous devez évaluer la modification d’impédance du circuit puisqu’une variation de la température ambiante a été observée. 66 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Exemples d’application Connectez l’oscilloscope pour contrôler l’entrée et la sortie du circuit et capturez les modifications qui se produisent lorsque vous variez la température. Pour afficher l’entrée et la sortie du circuit au format d’affichage XY, procédez comme suit : 1. Appuyez sur le bouton CH 1 MENU. 2. Appuyez sur Sonde ► Tension ►Atténuation ► 10X. 3. Appuyez sur le bouton CH 2 MENU. 4. Appuyez sur Sonde ► Tension ►Atténuation ► 10X. Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 67 Exemples d’application 5. Réglez les commutateurs des sondes P2220 sur 10X. 6. Connectez la sonde de la voie 1 à l’entrée du réseau et connectez la sonde de la voie 2 à la sortie. 7. Appuyez sur le bouton AUTOSET. 8. Tournez les molettes VOLTS/DIV pour afficher des signaux d’amplitude à peu près équivalents sur chaque voie. 9. Appuyez sur le bouton AFFICHAGE pour afficher le menu correspondant. 10. Appuyez sur Format ► XY. L’oscilloscope affiche une figure de Lissajous représentant les caractéristiques d’entrée et de sortie du circuit. 11. Tournez les molettes VOLTS/DIV et VERTICAL POSITION pour optimiser l’affichage. 12. Appuyez sur Persist. ► Infinie. 13. Appuyez sur le bouton d’option Contraste et tournez le bouton multifonctionnel pour modifier l’affichage. Lorsque vous réglez la température ambiante, la persistance de l’écran capture les modifications des caractéristiques du circuit. 68 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Fonctions mathématiques FFT Ce chapitre contient des informations détaillées sur l’utilisation de la fonction mathématique FFT (Transformée de Fourier rapide). Le mode mathématique Transformée de Fourier Rapide (FFT) vous permet de convertir un signal temporel (YT) pour obtenir ses composantes de fréquence (spectre). Le mode mathématique FFT permet les types d’analyses suivants : Analyser les harmoniques dans les lignes électriques Mesurer le contenu harmonique et la distorsion dans les systèmes Caractériser le bruit des alimentations CC Tester la réponse impulsionnelle des filtres et des systèmes Analyser les vibrations Pour utiliser le mode mathématique FFT, vous devez effectuer les tâches suivantes : Définir le signal source (temporel) Afficher le spectre FFT Sélectionner un type de fenêtre FFT Ajuster la cadence d’échantillonnage pour afficher la fréquence fondamentale et les harmoniques sans repliement du spectre Utiliser le zoom pour agrandir le spectre Utiliser les curseurs pour mesurer le spectre Réglage du signal temporel Avant d’utiliser le mode FFT, vous devez définir le signal temporel (YT). Pour ce faire, procédez comme suit : 1. Appuyez sur AUTOSET pour afficher un signal YT. 2. Tournez la molette VERTICAL POSITION pour centrer verticalement le signal YT (aucune division). Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 69 Fonctions mathématiques FFT Cela permet de s’assurer que la fonction FFT affichera une valeur CC correcte. 3. Tournez la molette HORIZONTAL POSITION pour positionner la portion de la courbe du signal YT que vous voulez analyser sur les huit divisions centrales de l’écran. L’oscilloscope calcule le spectre FFT à l’aide des 2 048 points centraux du signal temporel. 4. Tournez la molette VOLTS/DIV pour vous assurer que la totalité du signal s’affiche à l’écran. L’oscilloscope peut afficher des résultats FFT erronés (en ajoutant des composantes de fréquence élevée) si la totalité du signal n’est pas visible. 5. Tournez la molette SEC/DIV pour obtenir la résolution désirée dans le spectre FFT. 6. Si possible, réglez l’oscilloscope pour qu’il affiche plusieurs périodes de signal. Si vous tournez le bouton SEC/DIV afin de sélectionner un réglage plus rapide (moins de cycles), le spectre FFT affiche une plage de fréquences plus étendue et limite les possibilités d’un repliement du spectre. (Voir page 75, Repliement du spectre FFT.) Cependant, l’oscilloscope affiche également une résolution de fréquence inférieure. Pour définir l’affichage FFT, procédez comme suit : 1. Appuyez sur le bouton MATH MENU pour afficher le menu Math. 2. Appuyez sur Opération ► FFT. 3. Sélectionnez la voie Source FFT Math. En général, l’oscilloscope produit un spectre FFT utile même si le signal temporel (YT) n’est pas déclenché, en particulier si votre signal est périodique ou aléatoire (bruyant). REMARQUE. Déclenchez et positionnez tous les signaux transitoires ou de salve aussi précisément que possible au centre de l’écran. 70 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Fonctions mathématiques FFT Fréquence de Nyquist La fréquence la plus élevée pouvant être mesurée sans erreur par un oscilloscope numérique en temps réel équivaut à la moitié de la fréquence d’échantillonnage. Cette fréquence est appelée fréquence de Nyquist. Les informations relatives aux fréquences supérieures à la fréquence de Nyquist sont sous-échantillonnées, ce qui cause le repliement du spectre FFT. (Voir page 75, Repliement du spectre FFT.) La fonction mathématique transforme les 2 048 points centraux du signal temporel en spectre FFT. Le spectre FFT qui en résulte contient 1 024 points allant du CC (0 Hz) à la fréquence de Nyquist. Normalement, l’affichage compresse le spectre FFT horizontalement en 250 points, mais vous pouvez utiliser la fonction FFT Zoom pour le développer et visualiser plus clairement les composantes de fréquence sur chacun des 1 024 points de données du spectre FFT. REMARQUE. La réponse verticale de l’oscilloscope diminue lentement au-dessus de sa bande passante (40 MHz, 60 MHz, 100 MHz ou 200 MHz, en fonction du modèle, ou 20 MHz lorsque l’option Limite de bande passante est activée.) Le spectre FFT peut ainsi afficher des informations valides relatives à des fréquences plus élevées que la bande passante de l’oscilloscope. Cependant, les informations relatives à l’amplitude proches ou supérieures à la bande passante ne seront pas précises. Affichage du spectre FFT Appuyez sur le bouton MATH MENU pour afficher le menu Math. Utilisez les options pour sélectionner la voie source, l’algorithme de fenêtrage et le facteur de zoom FFT. Vous ne pouvez afficher qu’un seul spectre FFT à la fois. Option mathématique FFT Réglages Commentaires Source CH1, CH2, CH3 1, CH4 1 Permet de sélectionner la voie utilisée en tant que source FFT Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 71 Fonctions mathématiques FFT Option mathématique FFT Réglages Commentaires Fenêtre Hanning, Flattop, Rectangular Sélectionne le type de fenêtre FFT ;(Voir page 73, Sélection d’une fenêtre FFT.) Zoom FFT X1, X2, X5, X10 Permet de modifier l’agrandissement horizontal de l’affichage FFT ; (Voir page 76, Agrandissement et positionnement d’un spectre FFT.) 1 Disponible uniquement sur les oscilloscopes à 4 voies. Composante de fréquence fondamentale Composante de fréquence 1. Fréquence au niveau de la ligne centrale du réticule. 2. Echelle verticale, en dB par division (0 dB = 1 Veff). 3. Echelle horizontale, en fréquences par division. 4. Fréquence d’échantillonnage, en nombre d’échantillons par seconde. 5. Type de fenêtre FFT. 72 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Fonctions mathématiques FFT Sélection d’une fenêtre FFT La fonction fenêtre permet de réduire les fuites spectrales dans le spectre FFT. La fonction FFT suppose que le signal temporel (YT) se répète à l’infini. Avec un nombre entier de cycles (1, 2, 3, ...), le signal temporel démarre et se termine à la même amplitude ; il n’y a donc aucune discontinuité dans la forme du signal. Un nombre non entier de cycles dans le signal temporel provoque des points de début et de fin se situant à différentes amplitudes. Les transitions entre les points de début et de fin provoquent des discontinuités dans le signal pouvant introduire des transitoires haute fréquence. L’application d’une fonction fenêtre au signal temporel modifie le signal de façon à ce que les valeurs de début et de fin soient proches l’une de l’autre, réduisant ainsi les discontinuités. Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 73 Fonctions mathématiques FFT La fonction mathématique FFT dispose de trois options de fenêtres FFT. Chaque type de fenêtre implique un compromis entre la résolution de fréquence et la précision de l’amplitude. Le choix de la fenêtre à utiliser doit s’effectuer en fonction de la nature de la valeur à mesurer et des caractéristiques du signal source. Fenêtre Mesures Caractéristiques Hanning Signaux périodiques Meilleure précision de la fréquence, moins bonne précision de l’amplitude que Flattop Flattop Signaux périodiques Meilleure précision de l’amplitude, moins bonne précision de la fréquence que Hanning Rectangular Signaux impulsionnels ou transitoires Fenêtre conçue spécifiquement pour les signaux sans discontinuité. Le résultat est essentiellement comparable à l’absence de fenêtre 74 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Fonctions mathématiques FFT Repliement du spectre FFT Ces problèmes surviennent lorsque l’oscilloscope acquiert un signal temporel contenant des composantes de fréquence plus élevée que dans la fréquence de Nyquist. (Voir page 71, Fréquence de Nyquist.) Les composantes de fréquence supérieures à la fréquence de Nyquist sont sous-échantillonnées et apparaissent sous forme de composantes de fréquence inférieure, qui se « replient » autour de la fréquence de Nyquist. Ces composantes incorrectes sont appelées fausses fréquences. Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 75 Fonctions mathématiques FFT Elimination des fausses fréquences Pour éliminer les fausses fréquences, essayez les solutions suivantes : Tournez la molette SEC/DIV de façon à régler la fréquence d’échantillonnage sur une valeur plus rapide. Puisque vous augmentez la fréquence de Nyquist en augmentant la fréquence d’échantillonnage, les composants de fausses fréquences apparaissent à la fréquence appropriée. Si trop de composantes de fréquence s’affichent à l’écran, vous pouvez utiliser l’option FFT Zoom pour agrandir le spectre FFT. Si vous n’avez pas besoin d’afficher les composantes de fréquence supérieures à 20 MHz, activez l’option Limite de bande passante. Placez un filtre externe sur le signal source pour limiter la bande passante du signal source aux fréquences inférieures à la fréquence de Nyquist. Identifiez et ignorez les fréquences repliées. Utilisez le zoom et les curseurs pour agrandir et mesurer le spectre FFT. Agrandissement et positionnement d’un spectre FFT Vous pouvez agrandir le spectre FFT et utiliser les curseurs pour le mesurer. L’oscilloscope comprend une option FFT Zoom qui permet d’effectuer des agrandissements horizontalement. Pour agrandir verticalement, vous pouvez utiliser les réglages verticaux. Position et zoom horizontaux L’option FFT Zoom vous permet d’agrandir horizontalement le spectre FFT sans modifier la fréquence d’échantillonnage. Les facteurs de zoom sont X1 (par défaut), X2, X5 et X10. Lorsque le facteur de zoom est X1 et que le signal est centré sur le réticule, la ligne du réticule située le plus à gauche correspond à 0 Hz et celle du réticule le plus à droite à la fréquence de Nyquist. Lorsque vous modifiez le facteur du zoom, le spectre FFT est agrandi à partir de la ligne du réticule central. Autrement dit, c’est la ligne du réticule central qui constitue l’axe d’agrandissement horizontal. 76 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Fonctions mathématiques FFT Tournez la molette HORIZONTAL POSITION dans le sens des aiguilles d’une montre pour déplacer le spectre FFT vers la droite. Appuyez sur le bouton REGLER SUR 0 pour positionner le centre du spectre au centre du réticule. Position et zoom verticaux Lorsque le spectre FFT est affiché, les molettes verticales de la voie permettent de zoomer verticalement et de positionner les voies correspondantes. La molette VOLTS/DIV dispose de facteurs de zoom de X0,5, X1 (par défaut), X2, X5 et X10. Le spectre FFT est agrandi verticalement à partir du marqueur M (point de référence du signal calculé sur le bord gauche de l’écran). Tournez la molette VERTICAL POSITION dans le sens des aiguilles d’une montre pour déplacer le spectre de la voie source vers le haut. Mesure d’un spectre FFT à l’aide des curseurs Vous pouvez prendre deux types de mesure sur les spectres FFT : l’amplitude (en dB) et la fréquence (en Hz). L’amplitude est référencée à 0 dB, où 0 dB équivaut à 1 Veff. Vous pouvez utiliser les curseurs pour prendre des mesures avec n’importe quel facteur de zoom. Pour ce faire, procédez comme suit : 1. Appuyez sur le bouton CURSEURS pour afficher le menu Curseurs. 2. Appuyez sur Source ► MATH. 3. Appuyez sur le bouton d’option Type et sélectionnez Amplitude ou Fréquence. 4. Utilisez le bouton multifonctionnel pour déplacer les curseurs 1 et 2. Utilisez les curseurs horizontaux pour mesurer l’amplitude et les curseurs verticaux pour mesurer la fréquence. Les options permettent d’afficher le delta entre les deux curseurs, la valeur au niveau de la position du curseur 1 et la valeur au niveau de la position du curseur 2. Le delta est la valeur absolue du curseur 1 moins le curseur 2. Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 77 Fonctions mathématiques FFT Amplitude, curseurs Fréquence, curseurs Vous pouvez également effectuer une mesure de fréquence sans utiliser les curseurs. Pour ce faire, tournez la molette HORIZONTAL POSITION pour positionner une composante de fréquence sur la ligne du réticule central et lisez la fréquence en haut à droite de l’écran. 78 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Port du lecteur flash USB et port périphérique Ce chapitre explique comment utiliser les ports USB (Universal Serial Bus) de l’oscilloscope pour effectuer les tâches suivantes : enregistrer et rappeler des données de signal ou de configuration, ou enregistrer une image d’écran, imprimer une image d’écran, transférer des données de signal, des données de configuration ou une image d’écran vers un PC, contrôler l’oscilloscope grâce à des commandes à distance. Pour utiliser le logiciel de communication pour PC, lancez et reportez-vous à l’aide en ligne du logiciel. Port du lecteur flash USB Le panneau avant de l’oscilloscope dispose d’un port de lecteur flash USB : ceci permet de raccorder un lecteur flash USB afin d’y stocker des fichiers. L’oscilloscope peut enregistrer et récupérer des données sur le lecteur flash. port du lecteur flash USB REMARQUE. L’oscilloscope peut prendre en charge uniquement des lecteurs flash d’une capacité de stockage inférieure ou égale à 2 GBits. Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 79 Port du lecteur flash USB et port périphérique Pour brancher un lecteur flash USB, suivez les étapes ci-dessous : 1. Alignez le lecteur flash USB avec le port correspondant sur l’oscilloscope. Les lecteurs flash disposent d’une installation appropriée. 2. Insérez le lecteur flash dans le port jusqu’à son insertion complète. Pour les lecteurs flash équipés d’un voyant LED, celui-ci clignote lorsque l’oscilloscope écrit ou lit des données sur le lecteur. L’oscilloscope affiche également un symbole en forme d’horloge pour indiquer quand le lecteur flash est actif. Après la sauvegarde ou la récupération d’un fichier, le voyant LED sur le lecteur (s’il existe) cesse de clignoter et l’oscilloscope n’affiche plus l’horloge. Une ligne de conseil s’affiche également pour vous indiquer que l’opération de sauvegarde ou de rappel est terminée. Pour retirer un lecteur flash USB, attendez que le voyant LED sur le lecteur (s’il existe) cesse de clignoter ou que la ligne de conseil indiquant la fin de l’opération apparaisse, puis saisissez le bord du lecteur et extrayez-le du port. Temps de lecture initial du lecteur flash L’oscilloscope lit la structure interne d’un lecteur flash USB chaque fois que vous installez un lecteur. Le temps de lecture dépend de la taille du lecteur flash, du formatage du lecteur et du nombre de fichiers stockés sur le lecteur. REMARQUE. Pour réduire sensiblement le temps de lecture initial des lecteurs flash USB de 64 Mo et plus, formatez le lecteur sur votre PC. 80 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Port du lecteur flash USB et port périphérique Formatage d’un lecteur flash La fonction Format supprime toutes les données présentes sur le lecteur flash USB. Pour formater un lecteur flash, suivez les étapes ci-dessous : 1. Insérez un lecteur flash USB dans le port du lecteur flash situé sur le panneau avant de l’oscilloscope. 2. Appuyez sur le bouton UTILITAIRE pour afficher le menu Utilitaire. 3. Appuyez sur Utilitaires Fichiers ► Suite ► Format. 4. Sélectionnez Oui pour formater le lecteur flash. Capacités d’un lecteur flash L’oscilloscope peut stocker les types et nombres de fichiers suivants dans 1 Mo de mémoire du lecteur flash USB : 5 opérations Sauveg. tot. ; (Voir page 85, Sauvegarde tout.) (Voir page 121, Sauveg. tot..) 16 fichiers images d’écran (la capacité dépend du format de l’image) ; (Voir page 87, Sauvegarde image.) (Voir page 122, Sauvegarde image.) 250 fichiers de réglage (.SET) de l’oscilloscope ; (Voir page 123, Sauvegarde config..) 18 fichiers de signal (.CSV) ; (Voir page 124, Mise en mémoire.) Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 81 Port du lecteur flash USB et port périphérique Conventions de gestion des fichiers L’oscilloscope utilise les conventions de gestion des fichiers suivantes pour le stockage de données : L’oscilloscope vérifie l’espace disponible sur le lecteur flash USB avant d’écrire les fichiers ; il affiche un message d’avertissement si la mémoire disponible est insuffisante. Le terme « dossier » fait référence à un répertoire sur le lecteur flash USB. L’emplacement de sauvegarde ou de rappel des fichiers par défaut est le dossier courant. Le dossier racine est A:\. L’oscilloscope réinitialise le dossier courant sur A:\ lorsque vous allumez l’oscilloscope ou lorsque vous insérez un lecteur flash USB après la mise sous tension de l’appareil. Les noms de fichier peuvent contenir de un à huit caractères suivis d’un point, puis une extension contenant de un à trois caractères. L’oscilloscope affiche les noms de fichiers longs créés sur les systèmes d’exploitation pour PC sous la forme courte provenant du système d’exploitation. Les noms de fichier ne tiennent pas compte de la casse et sont affichés en majuscules. Le menu Utilitaires Fichiers permet d’effectuer les opérations suivantes : répertorier le contenu du dossier courant sélectionner un fichier ou un dossier accéder à d’autres dossiers créer, renommer et supprimer des fichiers et des dossiers formater le lecteur flash USB. (Voir page 139, Utilitaires Fichiers pour le lecteur flash USB.) 82 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Port du lecteur flash USB et port périphérique Sauvegarde et rappel de fichiers avec un lecteur flash USB Il existe deux façons de procéder au stockage de fichiers sur le lecteur flash USB : à partir du menu Sauv./Rap, à partir de la fonction alternative Mise en mémoire de la touche PRINT. Vous pouvez utiliser les options suivantes du menu Sauv./Rap pour écrire ou récupérer des données sur un lecteur flash USB : Sauvegarde image Sauvegarde config. Mise en mémoire Rappel config. Rappel Signal REMARQUE. La touche PRINT peut être utilisée comme bouton ENREGISTRER pour stocker rapidement des fichiers sur un lecteur flash. Pour savoir comment enregistrer plusieurs fichiers en une seule fois ou des images les unes après les autres, reportez-vous à la section Utilisation des fonctions de sauvegarde de la touche PRINT. (Voir page 85, Utilisation de la fonction de sauvegarde du bouton PRINT du panneau avant.) Options Sauvegarde image, Sauvegarde config. et Mise en mémoire Vous pouvez enregistrer une image d’écran, les réglages de l’oscilloscope ou des données de signal dans un fichier sur le lecteur flash USB grâce au menu Sauv./Rap. Chaque option d’enregistrement fonctionne de façon similaire. Par exemple, pour enregistrer un fichier image d’écran sur un lecteur flash, suivez les étapes ci-dessous : 1. Insérez un lecteur flash USB dans le port du lecteur flash USB. 2. Appuyez sur UTILITAIRE ► Options ► Configuration imprimante et configurez les options suivantes : Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 83 Port du lecteur flash USB et port périphérique Economie d’encre Act., Désact. Imprime l’image d’écran sur fond blanc lorsque vous sélectionnez Act. Présentation Portrait, Paysage Orientation de la sortie papier de l’imprimante 3. Accédez à l’écran que vous souhaitez sauvegarder. 4. Appuyez sur le bouton SAUV./RAP du panneau avant. 5. Sélectionnez l’option Action ► Sauvegarde image ► Mise en mémoire. L’oscilloscope enregistre l’image d’écran dans le dossier courant et génère automatiquement le nom du fichier. (Voir page 120, Sauvegarder/Rappeler.) Options Rappel config. et Rappel Signal Vous pouvez rappeler les réglages de l’oscilloscope ou des données de signal à partir d’un fichier sur le lecteur flash USB grâce au menu Sauv./Rap. Chaque option de rappel fonctionne de façon similaire. Par exemple, pour rappeler un fichier de signal à partir d’un lecteur flash USB, suivez les étapes ci-dessous : 1. Insérez le lecteur flash USB contenant le fichier de signal souhaité dans le port du lecteur flash USB situé sur le panneau avant de l’oscilloscope. 2. Appuyez sur le bouton SAUV./RAP du panneau avant. 3. Sélectionnez l’option Action ► Rappel Signal ► Sélection Fichier. Vous pouvez utiliser l’option Modif. Dossier pour accéder à un autre dossier sur le lecteur flash. 4. Tournez le bouton multifonctionnel pour sélectionner le fichier de signal à rappeler. Dans l’option Rappel, le nom du fichier change au cours du défilement. 84 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Port du lecteur flash USB et port périphérique 5. Sélectionnez l’option Vers et spécifiez l’emplacement de mémoire de référence pour rappeler le signal vers RéfA ou RéfB. RéfC et RéfD sont disponibles sur les modèles à 4 voies. 6. Appuyez sur le bouton d’option Rappel FnnnnCHx.CSV, où FnnnnCHx.CSV est le nom du fichier de signal. REMARQUE. Pour les dossiers sur le lecteur flash contenant un fichier de signal, sélectionnez l’option SAUV./RAP ► Action ►Rappel Signal ► Vers et spécifiez l’emplacement de mémoire de référence pour rappeler le signal. Le nom du fichier apparaît dans l’option Rappel.(Voir page 120, Sauvegarder/Rappeler.) Utilisation de la fonction de sauvegarde du bouton PRINT du panneau avant Vous pouvez configurer la touche PRINT du panneau avant pour écrire des données sur le lecteur flash USB comme fonction alternative. Pour configurer la fonction de la touche PRINT, accédez à l’une des options suivantes : SAUV./RAP ► Sauveg. tot. ► Touche PRINT UTILITAIRE ►Options ► Configuration imprimante REMARQUE. Un voyant LED à côté de la touche PRINT s’allume pour indiquer la fonction alternative ENREGISTRER, qui écrit des données sur le lecteur flash USB. Sauvegarde tout L’option Sauvegarde tout vous permet de sauvegarder les informations en cours de l’oscilloscope dans des fichiers sur le lecteur flash USB. Une seule action Sauvegarde tout nécessite moins de 700 Ko d’espace sur le lecteur flash. Avant de pouvoir enregistrer des données sur le lecteur flash USB, vous devez appliquer la fonction de sauvegarde alternative à la touche PRINT du panneau avant. Pour ce faire, sélectionnez l’option SAUV./RAP ► Sauveg. tot. ► Touche PRINT ► Sauvegarde tout. Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 85 Port du lecteur flash USB et port périphérique Pour enregistrer tous les fichiers de l’oscilloscope sur un lecteur flash USB, suivez les étapes ci-dessous : 1. Insérez un lecteur flash USB dans le port du lecteur flash USB. 2. Pour modifier le dossier désigné comme dossier courant, appuyez sur le bouton d’option Sélection Dossier. L’oscilloscope crée un nouveau dossier dans le dossier courant chaque fois que vous appuyez sur la touche PRINT du panneau avant et il génère automatiquement le nom de dossier. 3. Configurez l’oscilloscope pour capturer vos données. 4. Appuyez sur le bouton PRINT (ENREGISTRER). L’oscilloscope crée un nouveau dossier sur le lecteur flash et enregistre l’image d’écran, les données de signal et les données de configuration dans des fichiers distincts au sein de ce nouveau dossier, en utilisant les réglages courants de l’oscilloscope et de format de fichier. L’oscilloscope nomme ce dossier ALLnnnn. (Voir page 120, Sauvegarder/Rappeler.) Pour afficher la liste des fichiers créés par la fonction Sauvegarde tout, accédez au menu UTILITAIRE ►Utilitaires Fichiers. Source Nom de fichier CH(x) FnnnnCHx.CSV, où nnnn est un nombre généré automatiquement et x correspond au numéro de la voie. MATH FnnnnMTH.CSV Réf(x) FnnnnRFx.CSV, où x correspond à la lettre de la mémoire de référence. Image d’écran FnnnnTEK.???, où ??? représente le format de fichier courant. Réglages FnnnnTEK.SET 86 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Port du lecteur flash USB et port périphérique Type de fichier Contenu et usages .CSV Contient des chaînes de texte ASCII donnant les valeurs de temps (par rapport au déclenchement) et d’amplitude pour chacun des 2 500 points de données du signal ; vous pouvez importer des fichiers .CSV dans de nombreux tableurs et applications d’analyse mathématique. .SET Contient une chaîne de texte ASCII énumérant les réglages de l’oscilloscope ; reportez-vous au Manuel de programmation des oscilloscopes à mémoire numérique TDS200, TDS1000/2000, TDS1000B/2000B et TPS2000 pour décoder cette chaîne. Images d’écran Fichiers à importer dans des tableurs et applications de traitement de texte ; le type de fichier image dépend de l’application. REMARQUE. L’oscilloscope conserve les réglages jusqu’à leur modification, même si vous appuyez sur le bouton CONF. PAR D. Sauvegarde image Cette option vous permet de sauvegarder l’image d’écran de l’oscilloscope dans un fichier nommé TEKnnnn.???, où .??? représente le format en cours de la fonction Sauvegarde image. Le tableau suivant énumère les formats de fichier. Format de fichier Extension Commentaires BMP BMP Ce format bitmap utilise un algorithme de compression sans perte et il est compatible avec la plupart des programmes de traitement de texte et tableurs ; il s’agit du format par défaut. EPSIMAGE EPS Format Postscript Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 87 Port du lecteur flash USB et port périphérique Format de fichier Extension Commentaires JPEG JPG Ce format bitmap utilise un algorithme de compression à perte et il est généralement utilisé par les appareils photo numériques et d’autres applications pour la photo numérique. PCX PCX Format Paintbrush DOS RLE RLE Run-Length Encoding ; ce format utilise un algorithme de compression sans perte. TIFF TIF Tagged Image File Format (Format de fichier graphique) Avant de pouvoir enregistrer des données sur le lecteur flash USB, vous devez appliquer la fonction de sauvegarde alternative à la touche PRINT. Pour ce faire, sélectionnez l’option SAUV./RAP ► Sauveg. tot. ► Touche PRINT ► Sauvegarde image. Le voyant LED ENREGISTRER adjacent à la touche PRINT s’allume pour indiquer la fonction alternative. Pour enregistrer une image d’écran sur un lecteur flash USB, suivez les étapes ci-dessous : 1. Insérez un lecteur flash USB dans le port du lecteur flash USB. 2. Pour modifier le dossier désigné comme dossier courant, appuyez sur le bouton d’option Sélection Dossier. 3. Accédez à l’écran que vous souhaitez sauvegarder. 4. Appuyez sur le bouton PRINT (ENREGISTRER). L’oscilloscope enregistre l’image d’écran et génère automatiquement le nom de fichier. Pour afficher la liste des fichiers créés par la fonction Sauvegarde image, vous pouvez accéder au menu UTILITAIRE ► Utilitaires Fichiers. 88 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Port du lecteur flash USB et port périphérique Port périphérique USB Vous pouvez utiliser un câble USB pour raccorder l’oscilloscope à un PC ou à une imprimante compatible PictBridge. Le port périphérique USB se trouve à l’arrière de l’oscilloscope. Port périphérique USB Installation du logiciel de communication sur un PC Avant de raccorder l’oscilloscope à un PC, vous devez installer le logiciel de communication pour PC à partir du CD fourni avec l’appareil. ATTENTION. Si vous raccordez l’oscilloscope à votre PC avant d’installer le logiciel, le PC ne reconnaîtra pas l’oscilloscope. Le PC considèrera alors l’oscilloscope comme un périphérique inconnu et ne communiquera pas avec celui-ci. Pour éviter ce problème, installez le logiciel sur votre PC avant de raccorder l’oscilloscope à votre PC. REMARQUE. Assurez-vous d’avoir installé la même version du logiciel de communication pour PC que celle fournie avec l’oscilloscope ou bien une version supérieure. Le logiciel conçu pour l’oscilloscope est également disponible sur le site Web de Tektronix, à la section de recherche de logiciels. Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 89 Port du lecteur flash USB et port périphérique Pour installer le logiciel de communication pour PC, suivez les étapes ci-dessous : 1. Insérez le CD-ROM fourni avec l’oscilloscope dans le lecteur de CD de votre PC. L’assistant d’installation InstallShield apparaît à l’écran. 2. Suivez ensuite les instructions affichées à l’écran. 3. Quittez l’assistant d’installation InstallShield. Connexion à un PC Après avoir installé le logiciel sur votre PC, vous pouvez raccorder l’oscilloscope au PC. REMARQUE. Vous devez installer le logiciel avant de raccorder l’oscilloscope au PC. (Voir page 89, Installation du logiciel de communication sur un PC.) Pour raccorder l’oscilloscope au PC, suivez les étapes ci-dessous : 1. Mettez l’oscilloscope sous tension. 2. Insérez l’une des extrémités d’un câble USB dans le port périphérique USB, à l’arrière de l’oscilloscope. 3. Mettez l’ordinateur sous tension. 4. Insérez l’autre extrémité du câble dans le port USB souhaité sur le PC. 5. Si un message similaire à « Nouveau matériel » s’affiche, suivez les instructions affichées à l’écran dans l’assistant Matériel détecté. NE cherchez PAS le matériel à installer sur le Web. 6. Pour les systèmes Windows XP, suivez les étapes ci-dessous : a. Si la boîte de dialogue du périphérique PictBridge de Tektronix apparaît, cliquez sur Annuler. b. A l’invite, sélectionnez l’option demandant à Windows de NE PAS se connecter à Windows Update, puis cliquez sur Suivant. 90 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Port du lecteur flash USB et port périphérique c. La fenêtre suivante devrait vous indiquer que vous êtes en train d’installer un logiciel pour un périphérique USB de test et de mesures. Si vous ne voyez pas le logiciel pour périphérique USB de test et de mesures, le logiciel fourni avec l’oscilloscope n’est pas correctement installé. d. Sélectionnez l’option qui installe automatiquement le logiciel (option recommandée) et cliquez sur Suivant. Windows installe le pilote pour votre oscilloscope. e. Si vous ne voyez pas le périphérique USB de test et de mesures lors de l’étape c ou si Windows ne parvient pas à trouver le pilote du logiciel, le logiciel fourni avec l’oscilloscope n’est pas installé correctement. Dans ces situations, cliquez sur Annuler pour quitter l’assistant Matériel détecté. NE laissez PAS l’assistant aller à son terme. Débranchez le câble USB de votre oscilloscope et installez le logiciel du CD fourni avec l’oscilloscope. Rebranchez votre oscilloscope au PC et suivez les étapes 6a, 6b, 6c, et 6d. f. Cliquez sur Terminer. g. Si une boîte de dialogue nommée Périphérique USB de test et de mesures apparaît, choisissez l’opération que Windows doit effectuer, puis cliquez sur OK. 7. Pour les systèmes Windows 2000 : a. A l’invite, sélectionnez l’option demandant à Windows d’afficher une liste des pilotes connus et cliquez sur Suivant. b. Dans la fenêtre suivante, sélectionnez Périphérique USB de test et de mesures. Si vous ne voyez pas de sélection Périphérique USB de test et de mesures, le logiciel fourni avec l’oscilloscope n’est pas correctement installé. c. Dans la fenêtre suivante, cliquez sur Suivant pour permettre à Windows d’installer le pilote pour votre oscilloscope. Windows installe le pilote pour votre oscilloscope. Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 91 Port du lecteur flash USB et port périphérique d. Si vous ne voyez pas le périphérique USB de test et de mesures lors de l’étape b ou si Windows ne parvient pas à trouver le pilote du logiciel, le logiciel fourni avec l’oscilloscope n’est pas installé correctement. Dans ces situations, cliquez sur Annuler pour quitter l’assistant Ajout de nouveau matériel détecté. NE laissez PAS l’assistant aller à son terme. Débranchez le câble USB de votre oscilloscope et installez le logiciel du CD fourni avec l’oscilloscope. Rebranchez votre oscilloscope au PC et suivez les étapes 7a, 7b et 7c. 8. A l’invite, cliquez sur Terminer. 9. Si Windows vous demande d’insérer un CD, cliquez sur Annuler. 10. Exécutez le logiciel de communication pour PC sur votre PC. 11. Si l’oscilloscope et le PC ne communiquent pas, reportez-vous à l’aide et à la documentation en ligne de communication pour PC. 92 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Port du lecteur flash USB et port périphérique Connexion à un système GPIB Si vous souhaitez établir une communication entre l’oscilloscope et un système GPIB, utilisez un adaptateur TEK-USB-488 et suivez les étapes ci-dessous : 1. Raccordez l’oscilloscope à un adaptateur TEK-USB-488 avec un câble USB. L’annexe Accessoires dispose d’informations concernant la commande d’un adaptateur. (Voir page 167, Accessoires.) 2. Raccordez l’adaptateur TEK-USB-488 à votre système GPIB à l’aide d’un câble GPIB. 3. Appuyez sur le bouton d’option UTILITAIRE ► Option ► Configuration du bus GPIB ► Adresse pour sélectionner l’adresse appropriée pour l’adaptateur ou utilisez le bouton multifonctionnel. L’adresse GPIB par défaut est 1. 4. Exécutez le logiciel GPIB sur votre système GPIB. 5. Si l’oscilloscope et votre système GPIB ne communiquent pas, reportez-vous aux informations concernant le logiciel de votre système GPIB et au manuel de l’utilisateur de l’adaptateur TEK-USB-488 pour résoudre le problème. Saisie de commande REMARQUE. Pour des informations détaillées sur les commandes, reportez-vous au Manuel de programmation des oscilloscopes numériques TDS200, TDS1000/2000, TDS1000B/2000B et TPS2000 (071-1075-XX). Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 93 Port du lecteur flash USB et port périphérique Connexion à une imprimante Lorsque vous connectez l’oscilloscope à une imprimante compatible PictBridge, l’oscilloscope et l’imprimante peuvent être mis sous ou hors tension. Pour raccorder l’oscilloscope à une imprimante compatible PictBridge, suivez les étapes ci-dessous : 1. Insérez l’une des extrémités d’un câble USB dans le port périphérique USB de l’oscilloscope. 2. Insérez l’autre extrémité du câble dans le port PictBridge d’une imprimante compatible PictBridge. Reportez-vous à la documentation produit de votre imprimante pour localiser ce port. 3. Pour tester la connexion, configurez l’oscilloscope pour imprimer, comme indiqué dans la procédure suivante. REMARQUE. L’imprimante reconnaît l’oscilloscope uniquement lorsqu’elle est mise sous tension. Si l’oscilloscope vous demande de le raccorder à une imprimante et que celle-ci est raccordée, vous devez mettre l’imprimante sous tension. 94 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Port du lecteur flash USB et port périphérique Imprimer une image d’écran Pour configurer une imprimante compatible PictBridge, suivez les étapes ci-dessous : 1. Mettez l’oscilloscope et l’imprimante sous tension. 2. Appuyez sur UTILITAIRE ► Options ► Configuration imprimante ► Touche PRINT et sélectionnez l’option Imprime. 3. Configurez l’option Economie d’encre sur Act., le réglage par défaut. 4. Appuyez sur les boutons d’option - suite - page 2 de 3 et - suite - page 3 de 3 pour configurer l’imprimante. L’oscilloscope interroge l’imprimante et n’affiche que les options et les valeurs prises en charge par l’imprimante. Si vous n’êtes pas sûr du réglage à choisir, sélectionnez Par défaut pour chaque option. 5. Pour imprimer une image d’écran, appuyez sur la touche PRINT du panneau avant. L’oscilloscope prend quelques secondes pour capturer l’image d’écran. Les réglages de votre imprimante et la vitesse d’impression déterminent le temps d’impression des données. Selon le format sélectionné, cela peut prendre plus de temps que prévu. REMARQUE. Vous pouvez continuer à utiliser l’oscilloscope lors de l’impression. 6. Si l’impression échoue, vérifiez que le câble USB est connecté au port PictBridge de l’imprimante, puis réessayez. REMARQUE. L’oscilloscope conserve les réglages jusqu’à leur modification, même si vous appuyez sur le bouton CONF. PAR D. ou si vous mettez l’oscilloscope hors tension. REMARQUE. Pour arrêter l’envoi de l’image d’écran à l’imprimante, appuyez sur Suspendre impression. Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 95 Port du lecteur flash USB et port périphérique 96 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Référence Ce chapitre décrit les menus et les détails du fonctionnement associés à chaque bouton ou commande des menus du panneau avant. Acquisition Appuyez sur le bouton ACQUISITION pour régler les paramètres d’acquisition. Options Réglages Commentaires Normale Acquiert et affiche avec précision la plupart des signaux ; il s’agit du mode par défaut Détect Créte Détecte les parasites et réduit les risques de repliement du spectre Moyenne Réduit le bruit aléatoire et sans corrélation avec le signal affiché ; vous pouvez sélectionner le nombre de moyennes Moyennes 4, 16, 64, 128 Sélectionne le nombre de moyennes Informations importantes Si vous sondez un signal carré bruyant contenant des parasites étroits et intermittents, le signal affiché va varier en fonction du mode d’acquisition choisi. Normale Détect Créte Moyenne Normale. Utilisez le mode d’acquisition Echantillon pour acquérir 2 500 points et les afficher dans le réglage SEC/DIV. Le mode Normale est le mode par défaut. Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 97 Référence Intervalles d’acquisition en mode Normale (2 500) • Points d’échantillonnage Le mode Normale acquiert un seul et unique point d’échantillonnage dans chaque intervalle. L’oscilloscope échantillonne selon les fréquences suivantes : 500 M éch./s minimum pour les modèles de 40 MHz 1 G éch./s maximum pour les modèles de 60 MHz ou 100 MHz 2 G éch./s maximum pour les modèles de 200 MHz A 100 ns et avec des réglages plus rapides, cette fréquence d’échantillonnage n’est pas suffisante pour acquérir 2 500 points. Dans ce cas, un processeur numérique de signaux interpole les points entre les points d’échantillonnage, afin de créer un enregistrement du signal comportant 2 500 points. Détect Créte. Utilisez le mode d’acquisition Détect Créte pour détecter les parasites d’une largeur de 10 ns et pour réduire les risques de repliement du spectre. Ce mode est effectif lorsque le bouton SEC/DIV est réglé sur 5 ms/div ou plus lent. 98 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Référence Intervalles d’acquisition en mode Détect Créte (1 250) • Points d’échantillonnage affichés Le mode Détect Créte affiche la tension la plus élevée et la moins élevée acquise dans chaque intervalle. REMARQUE. Si vous réglez le bouton SEC/DIV sur 2,5 ms/div ou sur une valeur plus rapide, le mode d’acquisition passe en mode Normale car la cadence d’échantillonnage est suffisamment rapide et vous n’avez donc pas besoin d’utiliser Détect Créte. L’oscilloscope n’affiche aucun message indiquant que le mode est passé en Normale. Lorsque le bruit du signal est suffisamment important, une zone d’affichage de Détect Créte type affiche alors de grandes zones sombres. Pour un meilleur affichage, les oscilloscopes remplissent cette zone de lignes diagonales. Zone d’affichage de Détect Créte type Zone d’affichage de Détect Créte TDS1000B/TDS2000B Moyenne. Utilisez le mode d’acquisition Moyenne pour réduire le bruit aléatoire ou sans corrélation avec le signal à afficher. Les données sont acquises en mode échantillon, l’oscilloscope fait ensuite la moyenne de plusieurs signaux. Sélectionnez le nombre d’acquisitions (4, 16, 64 ou 128) pour effectuer la moyenne du signal. Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 99 Référence Bouton RUN/STOP. Appuyez sur le bouton RUN/STOP pour que l’oscilloscope acquière les signaux en continu. Appuyez à nouveau sur le bouton pour interrompre l’acquisition. Bouton SEQ. UNIQUE. Appuyez sur le bouton SEQ. UNIQUE pour que l’oscilloscope acquière un signal unique, puis s’arrête. Chaque fois que vous appuyez sur le bouton SEQ. UNIQUE, l’oscilloscope commence l’acquisition d’un autre signal. Une fois que l’oscilloscope a détecté un déclenchement, il termine l’acquisition en cours et s’arrête. Mode d’acquisition SEQ. UNIQUE, bouton Normale, Détect Créte La séquence est terminée une fois l’acquisition effectuée Moyenne La séquence est terminée une fois le nombre d’acquisitions défini atteint ; (Voir page 97, Acquisition.) Affichage en mode Balayage. Le mode d’acquisition Balayage horizontal (également appelé mode Défilement) vous permet de surveiller en permanence les signaux qui connaissent des modifications lentes. L’oscilloscope affiche les mises à jour de signaux en allant de gauche à droite sur l’écran et supprime les anciens points au fur et à mesure de l’affichage des nouveaux points. Une section en mouvement vide d’une largeur égale à une division sépare les nouveaux échantillons des anciens. L’oscilloscope passe en mode d’acquisition Balayage si vous tournez la molette SEC/DIV jusqu’à obtenir un réglage de 100 ms/div ou plus lent, lorsque l’option Mode Auto est sélectionnée dans le menu TRIGGER. Pour désactiver le mode Balayage, appuyez sur le bouton TRIG MENU et définissez l’option Mode sur Normal. Interruption de l’acquisition. Lorsque l’acquisition est en cours, l’affichage du signal est actif. Si vous stoppez l’acquisition (en appuyant sur le bouton RUN/STOP), l’affichage est alors figé. Dans tous les modes, vous pouvez mettre à l’échelle ou positionner l’affichage du signal à l’aide des réglages horizontaux et verticaux. 100 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Référence Calibrage Auto Lorsque vous appuyez sur le bouton CALIBRAGE AUTO, l’oscilloscope active ou désactive la fonction correspondante. Un voyant LED s’allume à côté du bouton CALIBRAGE AUTO pour indiquer que la fonction est active. Cette fonction ajuste automatiquement la configuration pour suivre un signal. Si le signal change, la configuration continue à suivre le signal. Lorsque vous mettez l’oscilloscope sous tension, la fonction d’ajustement automatique est toujours désactivée. Options Commentaires Ajustement automatique Active ou désactive la fonction d’ajustement automatique (Autorange) ; lorsque cette fonction est active, le voyant LED correspondant s’allume Vertical et Horizontal Suit et ajuste les deux axes Vertical Uniquement Suit et ajuste l’échelle Verticale ; les réglages horizontaux ne changent pas Horizontal Uniquement Suit et ajuste l’échelle Horizontale ; les réglages verticaux ne changent pas Undo Autoranging Annule la configuration actuelle de l’oscilloscope et rétablit la précédente La fonction d’ajustement automatique (Autorange) intervient dans les conditions suivantes : trop ou trop peu de périodes de signal pour avoir un affichage clair de la source de déclenchement (à l’exception du mode Vertical Uniquement) ; l’amplitude du signal est trop grande ou trop petite (à l’exception du mode Horizontal Uniquement). Changement de niveau de déclenchement idéal Lorsque vous appuyez sur le bouton CALIBRAGE AUTO, l’oscilloscope ajuste les commandes de façon à obtenir un affichage exploitable du signal d’entrée. Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 101 Référence Fonction Réglage Mode d’acquisition Normale Format d’affichage Y(t) Afficher persist. Désact. HORIZONTAL POSITION Ajusté Vue horizontale Principale RUN/STOP RUN SEC/DIV Ajusté Couplage du déclenchement CC Inhibition du déclenchement Minimum Niveau de déclenchement Ajusté Mode de déclenchement Front Bande passante verticale Totale Limite de bande passante verticale Désact. Couplage vertical CC Inversion verticale Désact. VOLTS/DIV Ajusté Les modifications suivantes apportées à la configuration de l’oscilloscope désactivent la fonction d’ajustement automatique (Autorange) : VOLTS/DIV désactive la fonction d’ajustement automatique vertical. SEC/DIV désactive la fonction d’ajustement automatique horizontal. Afficher ou supprimer un signal de voie Réglages de déclenchement Mode d’acquisition SEQ. UNIQUE Rappel d’une configuration Mode d’affichage XY Persistance 102 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Référence La fonction d’ajustement automatique (Autorange) est généralement plus utile que le réglage automatique (Autoset) dans les situations suivantes : Analyse d’un signal qui change de manière dynamique. Comparaison rapide d’une séquence de plusieurs signaux sans ajustement de l’oscilloscope. Cela est très utile si vous devez utiliser deux sondes à la fois ou utiliser une sonde dans une main et tenir un autre objet dans l’autre. Contrôle des réglages ajustés automatiquement par l’oscilloscope. Si vos signaux varient en fréquence, mais ont des amplitudes similaires, vous pouvez utiliser l’option Horizontal Uniquement. L’oscilloscope ajustera les réglages horizontaux sans modifier les réglages verticaux. De cette façon, vous pouvez évaluer visuellement l’amplitude du signal sans vous préoccuper de modifier l’échelle verticale. L’option Vertical Uniquement fonctionne de la même manière, en ajustant les paramètres verticaux sans modifier les réglages horizontaux. Réglage automatique (Autoset) Lorsque vous appuyez sur le bouton AUTOSET, l’oscilloscope identifie le type de signal et ajuste les commandes de façon à obtenir un affichage du signal d’entrée exploitable. Fonction Réglage Mode d’acquisition Ajusté en mode Normale ou Détect Créte Curseurs Désact. Mode d’affichage Défini sur Y(t) Type d’affichage Défini sur Points pour un signal vidéo, sur Vecteurs pour un spectre FFT ; inchangé sinon HORIZONTAL POSITION Ajusté SEC/DIV Ajusté Couplage du déclenchement Ajusté sur CC, rejet bruit ou rejet HF Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 103 Référence Fonction Réglage Inhibition du déclenchement Minimum Niveau de déclenchement Niveau à 50 % Mode de déclenchement Auto Source de déclenchement Ajusté ; se reporter aux informations qui suivent ce tableau ; impossible d’utiliser la fonction de réglage automatique (Autoset) sur le signal EXTERNE Pente de déclenchement Ajusté Type de déclenchement Front ou vidéo Polarité de déclenchement vidéo Normal Synch. de déclenchement vidéo Ajusté Standard de déclenchement vidéo Ajusté Bande passante verticale Totale Couplage vertical CC (si Masse a été sélectionnée précédemment) ; CA pour un signal vidéo ; inchangé sinon VOLTS/DIV Ajusté La fonction de réglage automatique (Autoset) inspecte toutes les voies à la recherche de signaux et affiche les signaux correspondants. Le réglage automatique (Autoset) permet également de déterminer la source de déclenchement en fonction des conditions suivantes : Si plusieurs voies ont des signaux, l’oscilloscope affiche la voie avec la fréquence du signal la plus faible. Si aucun signal n’est trouvé, l’oscilloscope affiche alors la voie avec le plus petit numéro lorsque le réglage automatique (Autoset) a été choisi. Si aucun signal n’est trouvé et qu’aucune voie ne s’affiche, l’oscilloscope affiche et utilise la voie 1. 104 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Référence Lorsque vous utilisez la fonction de réglage automatique (Autoset) et que l’oscilloscope ne peut pas déterminer le type de signal, il ajuste alors les échelles horizontale et verticale, puis prend les mesures automatiques Moyenne et C-C. Le réglage automatique (Autoset) est généralement plus utile que l’ajustement automatique (Autorange) dans les situations suivantes : dépannage d’un signal stable ; affichage automatique des mesures de votre signal ; changement aisé de la présentation du signal. Par exemple, affichage d’un seul cycle du signal ou du front montant du signal ; affichage de signaux vidéo ou FFT. Onde sinusoïdale Lorsque vous utilisez la fonction de réglage automatique (Autoset) et que l’oscilloscope détermine que le signal est semblable à une onde sinusoïdale, il affiche alors les options suivantes : Onde sinusoïdale Détails Sinusoïdale multicycles Affiche plusieurs cycles avec les échelles verticale et horizontale adéquates ; l’oscilloscope affiche alors les mesures automatiques de la valeur efficace du cycle, de la fréquence, de la période et de la valeur crête à crête. Sinusoïdale à simple cycle Règle l’échelle horizontale afin d’afficher environ un cycle du signal ; l’oscilloscope affiche alors les mesures automatiques de la moyenne et de la valeur crête à crête FFT Convertit le signal d’entrée temporel en ses composantes de fréquence et affiche le résultat sous la forme d’un graphe de la fréquence par rapport à l’amplitude (spectre) ; comme il s’agit d’un calcul mathématique, reportez-vous au chapitre Fonctions mathématiques FFT pour plus d’informations. Annuler Config. auto. Annule la configuration actuelle de l’oscilloscope et rétablit la précédente Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 105 Référence Onde ou impulsion carrée Lorsque vous utilisez la fonction de réglage automatique (Autoset) et que l’oscilloscope détermine que le signal est semblable à une onde ou une impulsion carrée, il affiche les options suivantes : Options onde Détails Carrée multicycles Affiche plusieurs cycles avec les échelles verticale et horizontale adéquates ; l’oscilloscope affiche alors les mesures automatiques de la valeur C-C, Moyenne, Période et Fréquence. Carrée à simple cycle Règle l’échelle horizontale afin d’afficher environ un cycle du signal ; l’oscilloscope affiche alors les mesures automatiques Min, Max, Moyenne et Largeur positive Front montant Affiche le front et les mesures automatiques du temps de montée et de la valeur crête à crête Front descendant Affiche le front et les mesures automatiques du temps de descente et de la valeur crête à crête Annuler Config. auto. Annule la configuration actuelle de l’oscilloscope et rétablit la précédente Signal vidéo Lorsque vous utilisez la fonction de réglage automatique (Autoset) et que l’oscilloscope détermine que le signal est un signal vidéo, il affiche alors les options suivantes : Options du signal vidéo Détails Trames ►Ttes trames Affiche plusieurs trames et l’oscilloscope se déclenche sur n’importe quelle trame Lignes ►Ttes lignes Affiche une ligne entière comprenant des parties de la ligne précédente et de la ligne suivante ; l’oscilloscope se déclenche sur n’importe quelle ligne 106 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Référence Options du signal vidéo Détails Lignes ►Numéro Affiche une ligne entière comprenant des parties de la ligne précédente et de la ligne suivante ; utilisez le bouton multifonctionnel pour sélectionner un numéro de ligne spécifique que l’oscilloscope utilisera comme déclenchement Trames impaires Affiche plusieurs trames et l’oscilloscope se déclenche uniquement sur les trames impaires Trames paires Affiche plusieurs trames et l’oscilloscope se déclenche uniquement sur les trames paires Annuler Config. auto. Annule la configuration actuelle de l’oscilloscope et rétablit la précédente REMARQUE. La fonction de réglage vidéo automatique définit l’option Type d’affichage sur le Mode point. Curseurs Appuyez sur le bouton CURSEURS pour afficher les curseurs de mesure et le menu Curseurs, puis utilisez le bouton multifonctionnel pour modifier la position d’un curseur. Options Réglages Commentaires Type 1 Temps, Amplitude, Désact. Permet de sélectionner et d’afficher les curseurs de mesure ; Temps mesure le temps, la fréquence et l’amplitude ; Amplitude mesure l’amplitude, comme le courant ou la tension Source CH1, CH2, CH3 2, CH4 2, MATH, REFA, REFB, REFC 2, REFD 2 Permet de sélectionner le signal sur lequel prendre des mesures à l’aide du curseur Les mesures du curseur apparaissent dans l’affichage Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 107 Référence Options Réglages Commentaires Δ Affiche la valeur absolue de la différence (delta) entre les curseurs Curseur 1 Curseur 2 Affiche l’emplacement du curseur sélectionné (le temps est référencé au point de déclenchement et l’amplitude au niveau de référence) 1 Pour une source mathématique FFT, mesure la fréquence et l’amplitude 2 Disponible uniquement sur les oscilloscopes à 4 voies. Les valeurs delta (Δ) varient selon le type de curseur : Les curseurs de temps affichent Δt, 1/ Δt et ΔV (ou ΔI, ΔVV, etc.). Les curseurs d’amplitude (source mathématique FFT) affichent ΔV, ΔI, ΔVV, etc. Les curseurs de fréquence (source mathématique FFT) affichent 1/ΔHz et ΔdB. REMARQUE. L’oscilloscope affiche obligatoirement un signal pour les curseurs et les affichages de curseur qui doivent s’afficher. REMARQUE. L’oscilloscope affiche les valeurs de temps et d’amplitude pour chaque signal lorsque vous utilisez les curseurs de temps. Informations importantes Mouvement des curseurs. Utilisez le bouton multifonctionnel pour déplacer les curseurs 1 ou 2. Vous pouvez déplacer les curseurs uniquement si le menu Curseurs est affiché. Le curseur actif est représenté par une ligne continue. 108 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Référence Amplitude, curseurs Curseurs de temps Configuration par défaut Le bouton CONF. PAR D. vous permet de rappeler la plupart des options et des réglages d’usine, mais pas tous. L’annexe D répertorie les paramètres par défaut qui seront rappelés. Affichage Appuyez sur le bouton AFFICHAGE pour choisir la présentation des signaux et modifier l’apparence de tout l’affichage. Options Réglages Commentaires Type Vecteurs, Points Le mode Vecteurs permet de remplir l’espace entre les points d’échantillonnage adjacents dans l’affichage Le mode Points permet d’afficher uniquement les points d’échantillonnage Persist. Aucune, 1 s, 2 s, 5 s, Infinie Permet de définir la durée pendant laquelle chaque point d’échantillonnage demeure affiché Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 109 Référence Options Réglages Commentaires Mode Y(t), XY Le mode Y(t) permet d’afficher la tension verticale par rapport au temps (échelle horizontale) Le mode XY permet d’afficher un point à chaque acquisition d’un échantillon sur la voie 1 et la voie 2 La tension ou le courant sur la voie 1 détermine la coordonnée X du point (horizontale) et la tension ou le courant sur la voie 2 détermine la coordonnée Y (verticale) Contraste 1 Permet de faciliter la distinction entre un signal de voie et une persistance 1 Utilisez le bouton multifonctionnel pour changer le réglage. En fonction de leur type, les signaux vont s’afficher dans trois styles différents : uniforme, estompé et en pointillé. 1. Un signal uniforme indique un affichage de signal de voie (active). Une fois l’acquisition interrompue, le signal reste uniforme si aucun réglage rendant la précision de l’affichage aléatoire n’a été modifié. Vous êtes autorisé à modifier les réglages horizontaux et verticaux une fois les acquisitions interrompues. 2. Pour les modèles TDS1000B (écran monochrome), les signaux de référence ou les signaux persistants apparaissent comme estompés. 110 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Référence Pour les modèles TDS2000B (écran couleur), les signaux de référence s’affichent en blanc et les signaux persistants s’affichent dans la même couleur que le signal principal, mais avec moins d’intensité. 3. Une ligne en pointillés indique que l’affichage du signal ne correspond plus aux réglages. Cela se produit lorsque vous interrompez l’acquisition et que vous modifiez le paramètre d’un réglage que l’oscilloscope ne peut pas appliquer au signal affiché. Par exemple, si vous modifiez les réglages du déclenchement sur une acquisition interrompue, vous obtiendrez un signal en pointillés. Informations importantes Persistance. L’oscilloscope affiche les données de persistance avec moins d’intensité que les données de signal actives. Si le mode Persistance est défini sur Infinie, les points d’enregistrement s’accumulent jusqu’à la modification du réglage. Option Commentaires Aucune Efface les signaux par défaut ou les anciens signaux chaque fois que de nouveaux signaux s’affichent Limite de temps Affiche les nouveaux signaux avec une intensité normale et les anciens signaux avec une intensité moins importante ; efface les anciens signaux lorsque la limite de temps est atteinte Infinie Les anciens signaux deviennent moins brillants, mais restent toujours visibles ; utilisez la persistance infinie pour rechercher les événements rares et mesurer le bruit crête-à-crête à long terme Mode XY. Le mode d’affichage XY vous permet d’analyser les différences de phase, telles que celles représentées par les figures de Lissajous. Ce mode trace le signal de tension de la voie 1 en fonction de celle de la voie 2, la voie 1 représentant l’axe horizontal et la voie 2 l’axe vertical. L’oscilloscope utilise le mode d’acquisition Normale sans déclenchement et affiche les données sous forme de points. La fréquence d’échantillonnage est établie à 1 M éch./s. Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 111 Référence REMARQUE. L’oscilloscope peut capturer un signal en mode Y(t) normal à n’importe quelle fréquence d’échantillonnage. Vous pouvez afficher le même signal en mode XY. Pour ce faire, interrompez l’acquisition et modifiez le mode d’affichage sur XY. Dans le mode XY, les réglages fonctionnent comme suit : Le réglage des boutons VOLTS/DIV et VERTICAL POSITION de la voie 1 définissent l’échelle et la position horizontales. Le réglage des boutons VOLTS/DIV et VERTICAL POSITION de la voie 2 définissent l’échelle et la position verticales. Les fonctions suivantes ne fonctionnent pas en mode d’affichage XY : Réglage automatique (Autoset ; rétablit le mode d’affichage sur Y(t)) Calibrage Auto Mesures automatiques Curseurs Signaux de référence ou calculés SAUV./RAP ► Sauveg. tot. Réglages de la base de temps Réglages du déclenchement Aide Appuyez sur le bouton AIDE pour afficher le menu d’aide. Les rubriques traitent toutes les options et les commandes de menu de l’oscilloscope. (Voir page x, Système d’aide.) Horizontal Les réglages horizontaux vous permettent de configurer deux affichages pour un même signal, chacun ayant sa propre échelle horizontale et sa propre position horizontale. La position horizontale illustre le temps 112 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Référence représenté au centre de l’écran, en utilisant le temps de déclenchement comme point de départ. Lorsque vous modifiez l’échelle horizontale, le signal se développe ou se réduit autour du centre de l’écran. Options Commentaires Principale Le réglage de la base de temps principale sert à afficher le signal Zone retardée Cette zone est définie par deux curseurs Ces curseurs permettent d’ajuster la Zone retardée à l’aide des commandes HORIZONTAL POSITION et SEC/DIV Base de temps retardée Permet de modifier l’affichage pour visualiser le segment du signal (étendu en fonction de la largeur de l’écran) dans la zone retardée Définir validat. de déclenchem. Affiche la valeur d’inhibition ; appuyez sur le bouton d’option et utilisez le bouton multifonctionnel pour effectuer le réglage REMARQUE. Si vous souhaitez afficher un signal en entier ou afficher une partie agrandie de celui-ci, appuyez sur les boutons d’options horizontaux. Vous pouvez suivre la position horizontale courante en secondes en haut à droite de l’écran, où elle est affichée. L’affichage de la lettre M signale la Base de temps principale, et la lettre W la Base de temps retardée. L’oscilloscope affiche également la position horizontale sous la forme d’une icône de flèche placée en haut du réticule. Molettes et boutons Molette HORIZONTAL POSITION. Permet de contrôler la position du déclenchement par rapport au centre de l’écran. Vous pouvez définir le point de déclenchement à gauche ou à droite du centre de l’écran. Le nombre maximal de divisions à gauche varie en fonction du réglage (base de temps) de l’échelle horizontale. Pour la plupart des échelles, le maximum s’élève au moins à 100 divisions. On qualifie de Balayage retardé le fait de placer le point de déclenchement en dehors de l’écran, du côté gauche. Bouton REGLER SUR 0. Permet de régler la position horizontale sur zéro. Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 113 Référence Molette SEC/DIV (échelle horizontale). Permet de modifier l’échelle de temps horizontale de façon à agrandir ou réduire le signal. Informations importantes SEC/DIV. Si l’acquisition d’un signal est interrompue (à l’aide du bouton RUN/STOP ou SEQ. UNIQUE), la commande SEC/DIV agrandit ou réduit le signal. Utilisez cette fonction pour agrandir un détail du signal. Affichage en mode Balayage (mode Défilement). Si la commande SEC/DIV est définie sur 100 ms/div ou plus lent et que le mode de déclenchement est défini sur Auto, l’oscilloscope passe en mode d’acquisition Balayage. Dans ce mode, les mises à jour d’affichage des signaux s’effectuent de gauche à droite. Il n’y a ni déclenchement, ni réglage de la position horizontale des signaux lorsque le mode Balayage est actif. (Voir page 100, Affichage en mode Balayage.) Zone retardée. Utilisez l’option Zone retardée pour définir le segment d’un signal et ainsi afficher plus de détails (zoom). La Base de temps retardée ne peut pas avoir un réglage plus lent que celui de la Base de temps principale. Les barres verticales définissent la Zone retardée. Affichage de la Base de temps principale Affichage de la Zone retardée Base de temps retardée. Permet d’étendre la Zone retardée de façon à occuper tout l’écran. Permet de basculer entre deux bases de temps. REMARQUE. Si vous basculez entre les affichages de type Base de temps principale, Zone retardée et Base de temps retardée, l’oscilloscope efface alors tous les signaux enregistrés à l’écran via la persistance. La persistance est annulée par les modifications dans le menu Horizontal. 114 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Référence Inhibition. Utilisez l’inhibition pour vous permettre de stabiliser l’affichage de signaux complexes. (Voir page 135, Inhibition.) Fonctions mathématiques Appuyez sur le bouton MATH MENU pour afficher les opérations mathématiques du signal. Appuyez à nouveau sur le bouton MATH MENU pour effacer les signaux calculés. (Voir page 140, Réglages verticaux.) Options Commentaires +, -, ×, FFT Opérations mathématiques ; voir le tableau suivant Sources Sources utilisées pour les opérations ; voir le tableau suivant Position Utilisez le bouton multifonctionnel pour régler la position verticale du signal calculé résultant Echelle verticale Utilisez le bouton multifonctionnel pour régler l’échelle verticale du signal calculé résultant Le menu Math contient des options Sources pour chaque opération. Opération option Sources Commentaires CH1 + CH2 Les voies 1 et 2 sont additionnées + (addition) CH3 + CH4 1 Les voies 3 et 4 sont additionnées CH1 - CH2 Le signal de la voie 2 est soustrait de celui de la voie 1 CH2 - CH1 Le signal de la voie 1 est soustrait de celui de la voie 2 CH3 - CH4 1 Le signal de la voie 4 est soustrait de celui de la voie 3 - (soustraction) CH4 - CH3 1 Le signal de la voie 3 est soustrait de celui de la voie 4 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 115 Référence Opération option Sources Commentaires CH1×CH2 Les voies 1 et 2 sont multipliées × (multiplication) CH3×CH4 1 Les voies 3 et 4 sont multipliées FFT (Voir page 69.) 1 Disponible uniquement sur les oscilloscopes à 4 voies. Informations importantes Unités des signaux. La combinaison des unités des signaux sources détermine les unités résultantes du signal calculé. Unité du signal Unité du signal Opération Unité calculée résultante V V + ou - V A A + ou - A V A + ou - ? V V × VV A A × AA V A × VA Mesures Appuyez sur le bouton MESURES pour accéder aux mesures automatiques. Il existe onze types de mesures disponibles. Vous pouvez en afficher au maximum cinq à la fois. Appuyez sur le bouton d’option supérieur pour afficher le menu Mesure 1. Vous pouvez sélectionner la voie sur laquelle prendre la mesure dans l’option Source. Vous pouvez sélectionner le type de mesure dans l’option Type. Appuyez sur le bouton d’option Retour pour revenir au menu MESURES et afficher les mesures sélectionnées. 116 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Référence Informations importantes Prise de mesures. Vous pouvez afficher au maximum cinq mesures automatiques à la fois. La voie du signal doit être activée (affichée) pour prendre les mesures. Il est impossible de prendre desmesures automatiques sur les signaux de référence ou lorsque le mode Balayage ou XY est activé. Les mesures sont mises à jour environ deux fois par seconde. Type de mesure Définition Fréq. Permet de calculer la fréquence du signal en mesurant le premier cycle Période Permet de calculer la durée du premier cycle Moyenne Permet de calculer la moyenne arithmétique de l’amplitude sur la totalité de l’enregistrement C-C Permet de calculer la différence absolue entre les crêtes maximales et minimales de la totalité du signal Efficace Permet de calculer une mesure efficace correcte du premier cycle complet du signal Min Permet d’examiner les 2 500 points composant l’enregistrement du signal et d’en afficher la valeur minimale Max Permet d’examiner les 2 500 points composant l’enregistrement du signal et d’en afficher la valeur maximale Tps montée Permet de mesurer le temps entre 10 % et 90 % de l’avancement du premier front montant du signal Tps descente Permet de mesurer le temps entre 90 % et 10 % de l’avancement du premier front descendant du signal Largeur pos. Permet de mesurer le temps écoulé entre le premier front montant et le front descendant suivant à 50 % de l’avancement du signal Largeur nég. Permet de mesurer le temps écoulé entre le premier front descendant et le front montant suivant à 50 % de l’avancement du signal Aucune Ne prend aucune mesure Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 117 Référence Imprimer Lorsque l’option Sauveg. tot. ► Touche PRINT est définie sur Imprime, vous pouvez appuyer sur la touche PRINT pour envoyer l’image d’écran à une imprimante. Vous pouvez configurer l’oscilloscope pour envoyer une image d’écran à votre imprimante via le menu UTILITAIRE ► Options ► Configuration imprimante. Option Réglage Commentaires Economie d’encre Act., Désact. Imprime l’image d’écran sur fond blanc lorsque vous sélectionnez Act. Présentation 1 Portrait, Paysage Orientation de la sortie papier de l’imprimante Suspendre impression Interrompt l’envoi de l’image d’écran à l’imprimante Format papier 2 Par défaut, L, 2L, Hagaki Postcard, Card Size, 10x15 cm, 4"x6", 8"x10", Letter, 11"x17", A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, B0, B1, B2, B3, B4, B5, B6, B7, B8, B9, Roll 89 mm (L), Roll 127 mm (2L), Roll 100 mm (4"), Roll 210 mm (A4) Affiche les réglages disponibles pour votre imprimante compatible PictBridge Format image 2 Par défaut, 2,5"x3,25", L (3,5"x5"), 4"x6", 2L (5"x7"), 8"x10", 4L (7"x10"), E, Card, Hagaki card, 6x8 cm, 7x10 cm, 9x13 cm, 10x15 cm, 13x18 cm, 15x21 cm, 18x24 cm, A4, Letter Type papier 2 Par défaut, Normal, Photo, Photo rapide Qualité impr. 2 Par défaut, Normale, Brouillon, Précision Date impr. 2 Par défaut, Désactivé, Activé ID impr. 2 Par défaut, Désactivé, Activé 1 ll se peut que l’imprimante annule votre sélection pour un résultat optimal. 2 Si votre sélection n’est pas prise en charge par l’imprimante, l’oscilloscope utilise les paramètres par défaut. 118 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Référence La fonction alternative de la touche PRINT consiste à sauvegarder des données vers un lecteur flash USB. (Voir page 79, Port du lecteur flash USB et port périphérique.) L’oscilloscope peut imprimer sur n’importe quelle imprimante compatible PictBridge. Reportez-vous à la documentation produit de votre imprimante pour déterminer si l’imprimante est compatible PictBridge. Test de sonde L’assistant Test de sonde vous permet de vérifier rapidement le bon fonctionnement de votre sonde de tension. (Voir page 5, Assistant Test de sonde de tension.) Menu Réf Le menu Réf peut activer ou désactiver l’affichage des signaux de mémoire de référence. Les signaux sont stockés dans la mémoire non volatile de l’oscilloscope et affichent les désignations suivantes : RéfA, RéfB, RéfC et RéfD (RéfC et RéfD sont disponibles uniquement sur les oscilloscopes à 4 voies). Pour afficher (rappeler) ou masquer un signal de référence, suivez les étapes ci-dessous : 1. Appuyez sur le bouton MENU REF du panneau avant. 2. Appuyez sur le bouton d’option Option Réf pour sélectionner un signal de référence à afficher ou à masquer. Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 119 Référence Les signaux de référence ont les caractéristiques suivantes : sur les modèles couleur, les signaux de référence s’affichent en blanc ; sur les modèles monochrome, les signaux de référence s’affichent avec une intensité moins importante que celle des signaux de voie actifs ; deux signaux de référence peuvent être affichés en même temps ; les échelles verticales et horizontales s’affichent au bas de l’écran ; les signaux de référence ne peuvent pas faire l’objet de zoom ou de panorama. Vous pouvez afficher un ou deux signaux de référence en même temps que les signaux de voie actifs. Si vous affichez deux signaux de référence, vous devez masquer un signal avant de pouvoir afficher un autre signal. Reportez-vous à la section Mise en mémoire pour obtenir des informations sur l’enregistrement de signaux de référence. (Voir page 124, Mise en mémoire.) Sauvegarder/Rappeler Appuyez sur le bouton SAUV./RAP pour sauvegarder les configurations, les images d’écran ou les signaux de l’oscilloscope, ou pour rappeler les configurations ou les signaux de l’appareil. Le menu Sauv./Rap comporte plusieurs sous-menus auxquels vous pouvez accéder via une option Action. Chaque option Action affiche un menu qui permet de configurer plus précisément la fonction de sauvegarde ou de rappel. Options Action Commentaires Sauveg. tot. Contient l’option permettant de configurer la touche PRINT pour envoyer les données vers une imprimante ou de sauvegarder les données sur un lecteur flash USB Sauvegarde image Sauvegarde une image d’écran dans un fichier au format spécifié 120 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Référence Options Action Commentaires Sauvegarde config. Sauvegarde les réglages courants de l’oscilloscope vers un fichier dans un dossier spécifié ou dans la mémoire de réglage non volatile Mise en mémoire Sauvegarde le signal spécifié dans un fichier ou la mémoire de référence Rappel config. Rappelle un fichier de configuration d’oscilloscope d’un lecteur flash USB ou d’un emplacement dans la mémoire de réglage non volatile Rappel Signal Rappelle un fichier de signal depuis le lecteur flash USB vers la mémoire de référence Sauveg. tot. L’action Sauveg. tot. configure la touche PRINT pour sauvegarder des données sur un lecteur flash USB ou envoyer des données vers une imprimante. Options Réglages ou sous-menus Commentaires Sauvegarde tout 1 (Voir page 85.) Sauvegarde image 1 (Voir page 87.) Touche PRINT Imprime (Voir page 95.) Répertorie le contenu du dossier courant du lecteur flash USB Modif. Dossier Nouv. Dossier (Voir page 82, Conventions de gestion des fichiers.) (Voir page 139, Utilitaires Fichiers pour le lecteur flash USB.) Sélection Dossier Retour Revient au menu Sauveg. tot. A propos de Sauvegarde totale Permet d’afficher la rubrique d’aide 1 Un voyant LED à côté de la touche PRINT s’allume pour indiquer la fonction alternative de sauvegarde qui envoie des données à un lecteur flash USB. Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 121 Référence Sauvegarde image L’action Sauvegarde image enregistre une image d’écran dans un fichier au format spécifié. Options Réglages ou sous-menus Commentaires Format de fichier BMP, PCX, TIFF, RLE, EPSIMAGE, JPEG Définit le format du fichier graphique de l’image à l’écran A propos de Sauvegarde Images Permet d’afficher la rubrique d’aide Répertorie le contenu du dossier courant du lecteur flash USB et affiche les options du dossier Modif. Dossier Nouv. Dossier (Voir page 82, Conventions de gestion des fichiers.) (Voir page 139, Utilitaires Fichiers pour le lecteur flash USB.) Présentation 1, Portrait, Paysage Permet de sélectionner une présentation d’image de type portrait ou paysage Sélection Dossier Economie d’encre 1, Act., Désact. Active ou désactive le mode Economie d’encre Mise en mémoire nom du fichier (par ex. TEK0000.TIF) Sauvegarde l’image d’écran dans le fichier (dont le nom est généré automatiquement) dans le dossier courant du lecteur flash USB 1 (Voir page 118, Imprimer.) Lorsque l’option de la touche PRINT est réglée sur Sauvegarde image, l’oscilloscope sauvegarde les images d’écran sur un lecteur flash USB lorsque vous appuyez sur le bouton ENREGISTRER. (Voir page 87, Sauvegarde image.) 122 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Référence Sauvegarde config. L’action Sauvegarde config. enregistre les réglages actuels de l’oscilloscope dans un fichier TEKnnnn.SET, stocké dans le dossier indiqué ou dans la mémoire de réglage non volatile. Un fichier de configuration contient une chaîne de texte ASCII indiquant les réglages de l’oscilloscope. Options Réglages ou sous-menus Commentaires Config Sauvegarde les réglages actuels de l’oscilloscope dans un emplacement de la mémoire de réglage non volatile Sauv. vers Fichier Sauvegarde les réglages actuels de l’oscilloscope dans un fichier sur le lecteur flash USB Mém. Conf. 1 à 10 Indique l’emplacement de mémoire de réglage non volatile à utiliser pour la sauvegarde Répertorie le contenu du dossier courant du lecteur flash USB Modif. Dossier Sélection Dossier Nouv. Dossier (Voir page 82, Conventions de gestion des fichiers.) (Voir page 139, Utilitaires Fichiers pour le lecteur flash USB.) Mise en mémoire nom du fichier (par ex. TEK0000.SET) Sauvegarde les réglages dans le fichier (dont le nom est généré automatiquement) dans le dossier courant du lecteur flash USB Lorsque l’option de la touche PRINT est réglée sur Sauvegarde tout, l’oscilloscope sauvegarde les fichiers de configuration sur un lecteur flash USB lorsque vous appuyez sur le bouton ENREGISTRER. (Voir page 85, Sauvegarde tout.) Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 123 Référence Mise en mémoire L’action Mise en mémoire sauvegarde le signal défini dans un fichier TEKnnnn.CSV ou dans la mémoire de référence. L’oscilloscope sauvegarde les données de signal dans des fichiers au format CSV (valeurs séparées par des virgules), qui correspondent à des chaînes de texte ASCII indiquant le temps (par rapport au déclenchement) et les valeurs d’amplitude de chacun des 2 500 points de données de signal. Vous pouvez importer les fichiers .CSV dans un grand nombre de tableurs et d’applications d’analyse mathématique. Options Réglages ou sous-menus Commentaires Fichier Indique que les données du signal source doivent être sauvegardées dans un fichier sur un lecteur flash USB Sauv. vers Réf Indique que les données du signal source doivent être sauvegardées dans la mémoire de référence Source 1 CH(x), Réf(x), MATH Indique le signal source à sauvegarder Vers Réf(x) Indique l’emplacement de mémoire de référence dans lequel le signal source doit être sauvegardé Répertorie le contenu du dossier courant du lecteur flash USB Modif. Dossier Sélection Dossier Nouv. Dossier (Voir page 82, Conventions de gestion des fichiers.) (Voir page 139, Utilitaires Fichiers pour le lecteur flash USB.) Mise en mémoire nom du fichier (par ex. TEK0000.CSV) Sauvegarde les données de signal dans le fichier (dont le nom est généré automatiquement) dans le dossier courant du lecteur flash USB 1 Un signal doit être affiché pour être enregistré en tant que signal de référence. 124 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Référence Rappel config. L’action Rappel config. rappelle un fichier de configuration d’oscilloscope d’un lecteur flash USB ou d’un emplacement dans la mémoire de réglage non volatile. Options Réglages ou sous-menus Commentaires Config Indique que la configuration doit être rappelée à partir de la mémoire non volatile. Rappel de Fichier Indique qu’un fichier de configuration doit être rappelé à partir du lecteur flash USB Config 1 à 10 Indique à partir de quel emplacement de mémoire de réglage non volatile la configuration doit être rappelée Répertorie le contenu du dossier courant du lecteur flash USB où sélectionner un fichier Sélection fichier Modif. Dossier (Voir page 82, Conventions de gestion des fichiers.) (Voir page 139, Utilitaires Fichiers pour le lecteur flash USB.) Rappelle les réglages de l’emplacement de mémoire non volatile spécifié Rappel nom du fichier (par ex. TEK0000.SET) Rappelle les réglages de l’oscilloscope à partir du fichier du lecteur flash USB spécifié Rappel Signal L’action Rappel Signal rappelle un fichier de signal d’un lecteur flash USB et le charge dans un emplacement de la mémoire de référence. Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 125 Référence Options Réglages ou sous-menus Commentaires Vers Réf(x) Indique l’emplacement de mémoire de référence où charger le signal Du fichier Rappelle le fichier à partir du lecteur flash USB Répertorie le contenu du dossier courant du lecteur flash USB et affiche l’option de dossier suivante Modif. Dossier (Voir page 82, Conventions de gestion des fichiers.) (Voir page 139, Utilitaires Fichiers pour le lecteur flash USB.) Sélection fichier Vers Indique l’emplacement de mémoire de référence où rappeler le signal Rappel nom du fichier (par ex. TEK0000.CSV) Charge le signal depuis le fichier spécifié dans l’emplacement de mémoire de référence et affiche le signal Informations importantes Sauvegarde et rappel de configurations. La totalité de la configuration est enregistrée dans une mémoire non volatile. Lorsque vous rappelez cette configuration, l’oscilloscope passe alors en mode actif au moment de l’enregistrement de la configuration. Le réglage courant est sauvegardé si vous patientez trois secondes après la dernière modification avant d’éteindre l’oscilloscope. A la prochaine mise sous tension, l’oscilloscope rappelle ce réglage. Rappel de la configuration par défaut. Le bouton CONF. PAR D. vous permet d’obtenir une configuration familière lors de l’initialisation de l’oscilloscope. Pour connaître les paramètres d’options et de commandes qui sont rappelés par l’oscilloscope lorsque vous appuyez sur ce bouton, reportez-vous à l’Annexe D : Configuration par défaut. 126 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Référence Sauvegarde et rappel des signaux. L’oscilloscope doit pouvoir afficher tous les signaux que vous souhaitez afficher. Les oscilloscopes dotés de deux voies peuvent enregistrer deux signaux de référence dans une mémoire non volatile interne. Les oscilloscopes dotés de quatre voies peuvent en enregistrer quatre, mais en afficher uniquement deux à la fois. L’oscilloscope peut afficher à la fois les signaux de référence et les acquisitions de signal de voie. Vous ne pouvez pas régler les signaux de référence ; en revanche l’oscilloscope affiche les échelles horizontale et verticale en bas de l’écran. Commandes de déclenchement Vous pouvez définir le déclenchement par l’intermédiaire du menu Déclenchement et des commandes du panneau avant. Types de déclenchement Il existe trois types de déclenchement : sur front, vidéo et sur largeur d’impulsion. Un ensemble d’options s’affiche pour chaque type de déclenchement : Option Détails Front (par défaut) Permet de déclencher l’oscilloscope sur front montant ou descendant du signal d’entrée lorsqu’il traverse le niveau de déclenchement (seuil). Vidéo Affiche les signaux vidéo composites standard NTSC ou PAL/SECAM ; vous pouvez déclencher sur des trames ou des lignes de signaux vidéo. (Voir page 131, Déclenchement vidéo.) Impulsion Permet d’effectuer des déclenchements sur des impulsions aberrantes. (Voir page 132, Déclenchement sur largeur d’impulsion.) Déclenchement sur front Utilisez le Déclenchement sur front pour procéder à un déclenchement sur le front montant ou descendant du signal d’entrée de l’oscilloscope, au seuil de déclenchement. Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 127 Référence Options Réglages Commentaires Front Lorsque l’option Front est sélectionnée, le front montant ou descendant du signal d’entrée est utilisé pour le déclenchement. Source CH1, CH2, CH3 1, CH4 1 , Ext., Ext/5, Secteur Sélectionnez la source d’entrée utilisée comme signal de déclenchement (Voir page 129.) Pente Montante, Descend. Sélectionnez le déclenchement sur le front montant ou descendant du signal. Mode Auto, Normal Sélectionnez le type de déclenchement (Voir page 128.) Couplage CA, CC, rejet bruit, rejet HF, rejet BF Permet de sélectionner les composantes du signal de déclenchement qui s’appliquent au circuit de déclenchement (Voir page 130.) 1 Disponible uniquement sur les oscilloscopes à 4 voies. Mesure de la fréquence du déclenchement L’oscilloscope mesure la cadence à laquelle se produisent les événements déclenchables pour déterminer la fréquence du déclenchement, puis il affiche cette dernière dans le coin inférieur droit de l’écran. REMARQUE. La mesure de la fréquence du déclenchement affiche la fréquence des événements que l’oscilloscope pourrait considérer comme un déclenchement ; elle peut être inférieure à la fréquence du signal d’entrée en mode de déclenchement sur largeur d’impulsion. Informations importantes Options des modes. Le mode Auto (par défaut) force l’oscilloscope à se déclencher lorsqu’il ne détecte pas d’événement de déclenchement 128 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Référence pendant une certaine période, définie dans le réglage SEC/DIV. Ce mode est utilisable dans bon nombre de situations, telles que le contrôle de la sortie d’une alimentation. Utilisez le mode Auto pour laisser l’acquisition s’effectuer librement en l’absence de déclenchement valide. Ce mode permet d’effectuer un balayage de signal sans déclenchement avec un réglage de la base de temps à 100 ms/div ou plus lent. Le mode Normal permet de mettre à jour les signaux affichés uniquement lorsque l’oscilloscope détecte un déclenchement valide. L’oscilloscope affiche les anciens signaux jusqu’à ce qu’il les remplace par de nouveaux. Utilisez ce mode lorsque vous ne souhaitez visualiser que les signaux déclenchés. Lorsque vous utilisez ce mode, l’oscilloscope affiche un signal uniquement après le premier déclenchement. Pour effectuer une acquisition de type séquence unique, appuyez sur le bouton SEQ. UNIQUE. Options de source. Option de source Détails CH1, CH2, CH3 1, CH4 1 Cette option permet de déclencher sur une voie, que le signal soit affiché ou non Ext. Cette option n’affiche pas le signal de déclenchement ; l’option Ext. utilise le signal connecté au connecteur BNC EXTERNE du panneau avant et autorise une plage de niveaux de déclenchement s’étendant de +1,6 V à -1,6 V. Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 129 Référence Option de source Détails Ext/5 Identique à l’option Ext., mais divise le signal par cinq et autorise une plage de niveaux de déclenchement allant de +8 V à -8 V, ce qui permet d’étendre la plage de niveaux de déclenchement. Secteur 2 Utilise un signal dérivé de la ligne d’alimentation comme source de déclenchement ; le couplage de déclenchement est défini sur CC et le niveau de déclenchement sur 0 volt. Vous pouvez utiliser l’option Secteur lorsque vous devez analyser des signaux associés à la fréquence de la ligne d’alimentation, tels que les dispositifs d’éclairage et les systèmes d’alimentation ; l’oscilloscope génère le déclenchement, puis règle le couplage de déclenchement sur CC et le niveau de déclenchement sur zéro volt. 1 Disponible uniquement sur les oscilloscopes à 4 voies. 2 Disponible uniquement lorsque vous sélectionnez le type Déclenchement sur front. REMARQUE. Pour afficher un signal de déclenchement Ext., Ext/5 ou Secteur, maintenez le bouton TRIG VIEW enfoncé. Couplage. Le couplage vous permet de filtrer le signal de déclenchement utilisé pour déclencher une acquisition. Option Détails CC Cette option permet de faire passer toutes les composantes du signal Rejet bruit Cette option permet d’ajouter de l’hystérésis au circuit de déclenchement ; on peut ainsi réduire la sensibilité et donc la probabilité de faux déclenchement en fonction du bruit. Rejet HF Permet de réduire les composantes de fréquence élevée supérieure à 80 kHz Rejet BF Bloque la composante CC et réduit les composantes de basse fréquence au-dessous de 300 kHz. CA Bloque les composantes CC et réduit les signaux de fréquence inférieure à 10 Hz 130 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Référence REMARQUE. Le couplage de déclenchement n’affecte que le signal transmis au système de déclenchement. Il n’affecte ni la bande passante, ni le couplage du signal affiché à l’écran. Pré-déclenchement. La position du déclenchement est généralement définie à l’horizontale, au centre de l’écran. Vous pouvez alors afficher cinq divisions d’informations de pré-déclenchement. En réglant la position horizontale du signal, vous augmentez ou diminuez la quantité d’informations de pré-déclenchement affichées à l’écran. Déclenchement vidéo Options Réglages Commentaires Vidéo Si l’option Vidéo est sélectionnée, le déclenchement s’effectue sur un signal vidéo standard de type NTSC, PAL ou SECAM. Le couplage de déclenchement est prédéfini sur CA. Source CH1, CH2, CH3 1, CH4 1, Ext., Ext/5 Sélectionne la source d’entrée utilisée comme signal de déclenchement ; les sélections Ext. et Ext/5 utilisent le signal appliqué au connecteur EXTERNE Polarité Normale, Inversée Le type Normale permet d’effectuer le déclenchement sur le front négatif de l’impulsion de synchronisation, et le type Inversée, sur le front positif de cette impulsion. Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 131 Référence Options Réglages Commentaires Synch. Ttes lignes, No de ligne, Trame imp., Trame paire, Ttes trames Sélectionnez une synchronisation vidéo appropriée. Si vous sélectionnez l’option No de ligne en tant qu’option Synch., tournez le bouton multifonctionnel pour spécifier un numéro de ligne. Standard NTSC, PAL/SECAM Sélectionnez le standard vidéo désiré pour la synchronisation et le comptage du nombre de lignes. 1 Disponible uniquement sur les oscilloscopes à 4 voies. Informations importantes Impulsions synch. Quand vous choisissez une Polarité Normale, le déclenchement se produit toujours sur des impulsions synch. sur front descendant. Si votre signal vidéo possède des impulsions synch. sur front ascendant, sélectionnez une Polarité Inversée. Déclenchement sur largeur d’impulsion Utilisez le Déclenchement sur largeur d’impulsion pour obtenir des déclenchements sur des impulsions normales ou aberrantes. Options Réglages Commentaires Impulsion Si l’option Impulsion est sélectionnée, le déclenchement s’effectue sur les impulsions conformes aux conditions de déclenchement définies par les options Source, Quand et Régler largeur d’impulsion. Source CH1, CH2, CH3 1, CH 4 1, Ext., Ext/5 Sélectionnez la source d’entrée utilisée comme signal de déclenchement. 132 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Référence Options Réglages Commentaires Quand =, ≠, <, > Sélectionnez le mode de comparaison de l’impulsion de déclenchement par rapport à la valeur sélectionnée dans l’option Largeur d’impulsion. Largeur d’impulsion 33 ns à 10 s Utilisez le bouton multifonctionnel pour définir une largeur. Polarité Positif, Négatif Sélectionnez cette option pour effectuer un déclenchement sur des impulsions positives ou négatives. Mode Auto, Normal Sélectionnez cette option pour définir le type de déclenchement ; le mode Normal est le mieux adapté à la plupart des applications de déclenchement sur largeur d’impulsion. Couplage CA, CC, rejet bruit, rejet HF, rejet BF Permet de sélectionner les composantes du signal de déclenchement qui s’appliquent au circuit de déclenchement ;(Voir page 127, Déclenchement sur front.) suite Permet de parcourir les pages des sous-menus 1 Disponible uniquement sur les oscilloscopes à 4 voies. Mesure de la fréquence du déclenchement L’oscilloscope mesure la cadence à laquelle se produisent les déclenchements afin de déterminer la fréquence du déclenchement et affiche ensuite cette fréquence dans le coin inférieur droit de l’écran. Informations importantes Déclenchement Quand. La largeur d’impulsion de la source doit être ≥5 ns pour que l’oscilloscope puisse détecter l’impulsion. Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 133 Référence Options Quand Détails = ≠ Déclenche l’oscilloscope quand la largeur d’impulsion du signal égale ou diffère de l’impulsion spécifiée dans une tolérance de ±5 %. < > Déclenche l’oscilloscope lorsque la largeur d’impulsion du signal source est inférieure ou supérieure à la largeur d’impulsion spécifiée Reportez-vous au chapitre Exemples d’applications pour avoir un exemple de déclenchement sur des impulsions aberrantes. (Voir page 56, Déclenchement sur une largeur d’impulsion spécifique.) Molettes et boutons Bouton NIVEAU. Permet de contrôler le Niveau de déclenchement. Bouton NIVEAU A 50 %. Le bouton NIVEAU A 50 % vous permet de stabiliser rapidement un signal. L’oscilloscope règle automatiquement le Niveau de déclenchement approximativement à mi-chemin entre les niveaux de tension maximum et minimum. Ce réglage est utile lorsque 134 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Référence vous connectez un signal au BNC EXTERNE et définissez la source de déclenchement sur Ext. ou Ext/5. Bouton FORCE TRIG. Le bouton FORCE TRIG vous permet de terminer l’acquisition du signal en cours, que l’oscilloscope détecte ou non un déclenchement. Ce bouton est utile pour les acquisitions SEQ. UNIQUE et le mode de déclenchement Normal (en mode de déclenchement Auto, l’oscilloscope procède à un déclenchement forcé s’il ne détecte pas de déclenchement pendant un certain laps de temps). Bouton TRIG VIEW. Le mode Trigger View permet d’afficher le signal de déclenchement conditionné sur l’oscilloscope. Vous pouvez utiliser ce mode pour afficher les types d’informations suivants : Effets de l’option Couplage déclenchement Source de déclenchement Secteur (Déclenchement sur front uniquement) Signal connecté au BNC EXTERNE REMARQUE. Il s’agit du seul bouton que vous devez maintenir enfoncé pendant l’utilisation. Lorsque vous maintenez le bouton TRIG VIEW enfoncé, le seul autre bouton utilisable est la touche PRINT. L’oscilloscope désactive tous les autres boutons du panneau avant. Cependant, les molettes restent actives. Inhibition. La fonction Inhibition du déclenchement permet d’obtenir un affichage stable de signaux complexes, tels que des trains d’impulsion. L’inhibition représente le temps séparant le moment où l’oscilloscope détecte un déclenchement de celui où il est prêt à détecter le suivant. L’oscilloscope ne se déclenche pas pendant la période d’inhibition. En ce qui concerne les trains d’impulsion, vous pouvez régler la période d’inhibition afin que l’oscilloscope ne se déclenche qu’à la première impulsion du train. Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 135 Référence Pour utiliser la fonction Inhibition du déclenchement, appuyez sur le bouton d’option HORIZ MENU ► Définir validat. de déclenchem. et utilisez le bouton multifonctionnel pour ajuster l’inhibition. La résolution de l’inhibition de déclenchement varie en fonction du réglage SEC/DIV horizontal. Utilitaire Appuyez sur le bouton UTILITAIRE pour afficher le menu Utilitaire. Options Réglages Commentaires Résumé des paramètres de l’oscilloscope Etat du système Divers Affiche le modèle, le numéro de série du fabricant, les adaptateurs connectés, l’adresse de configuration du bus GPIB, la version du micrologiciel et d’autres informations 136 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Référence Options Réglages Commentaires Style d’affichage 1 Définit les données de l’écran en noir sur fond blanc ou en blanc sur fond noir Configuration imprimante Modifie la configuration de l’imprimante(Voir page 95.) Configuration du bus GPIB ► Adresse Définit l’adresse GPIB pour l’adaptateur TEK-USB-488 (Voir page 93.) Régler date et heure Règle la date et l’heure (Voir page 138.) Options Historique des erreurs Affiche une liste de toutes les erreurs enregistrées ainsi que le comptage des cycles d’alimentation Cet historique est utile lorsque vous contactez un Centre d’entretien Tektronix pour obtenir de l’aide. Exécuter Auto-cal Permet d’effectuer un ajustement automatique Utilitaires Fichiers Affiche les options de dossier, de fichier et de lecteur flash USB (Voir page 139.) Language Anglais, Français, Allemand, Italien, Espagnol, Japonais, Portugais, Chinois simplifié, Chinois traditionnel, Coréen Permet de sélectionner la langue de l’oscilloscope 1 Modèles monochromes uniquement. Informations importantes Etat du système. En sélectionnant l’état du système dans le menu Utilitaire, vous pouvez afficher les menus permettant d’obtenir la liste des paramètres de commande correspondant aux différents groupes de commandes de l’oscilloscope. Appuyez sur n’importe quel bouton du panneau avant pour supprimer l’écran d’état. Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 137 Référence Options Commentaires Bases de temps Liste les paramètres horizontaux Vertical Liste les paramètres verticaux des voies Déclenche Liste les paramètres de déclenchement Divers Affiche le modèle de l’oscilloscope, le numéro de version du logiciel et le numéro de série Indique les valeurs des paramètres de communication Réglage de la date et de l’heure. Vous pouvez utiliser le menu Régler date et heure pour régler la date et l’heure de l’horloge. L’oscilloscope affiche ces informations et les utilise également pour horodater les fichiers écrits sur un lecteur flash USB. L’oscilloscope contient une batterie intégrée non remplaçable qui permet de conserver les réglages de l’horloge. L’horloge ne s’ajuste pas automatiquement en fonction des changements d’heure saisonniers. Le calendrier s’ajuste pour les années bissextiles. Options Commentaires ↑ ↓ Déplace la mise en surbrillance de sélection du champ vers le haut ou vers le bas dans la liste. Utilisez le bouton multifonctionnel pour modifier la valeur du champ sélectionné. Régler date et heure Met à jour l’oscilloscope avec la date et l’heure spécifiées Annuler Ferme le menu et revient au menu précédent sans sauvegarder les modifications Calibrage automatique. Le programme de calibrage automatique optimise la précision de l’oscilloscope pour la température ambiante. Pour une précision optimale, effectuez un calibrage automatique chaque fois que la température ambiante varie de 5 °C (9 °F) ou plus. Pour un calibrage précis, mettez l’oscilloscope sous tension et laissez-le chauffer pendant vingt minutes. Suivez ensuite les instructions qui s’affichent à l’écran. La fonction Calibrage usine utilise les tensions générées en externe et requiert un équipement spécial. Il est recommandé de l’effectuer tous les ans. Reportez-vous à la section Coordonnées de Tektronix à la 138 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Référence page du copyright pour obtenir des informations sur la réalisation d’un Calibrage usine de votre oscilloscope par Tektronix. Utilitaires Fichiers pour le lecteur flash USB Un dossier est toujours désigné comme le dossier courant. Le dossier courant est l’emplacement par défaut pour la sauvegarde et le rappel des fichiers. Le menu Utilitaires Fichiers permet d’effectuer les opérations suivantes : répertorier le contenu du dossier courant sélectionner un fichier ou un dossier accéder à d’autres dossiers créer, renommer et supprimer des fichiers et des dossiers Formater un lecteur flash USB Options Commentaires Accède au dossier du lecteur flash USB sélectionné. Utilisez le bouton multifonctionnel pour sélectionner un fichier ou un dossier, puis sélectionnez l’option de menu Modif. Dossier. Modif. Dossier Pour revenir au dossier précédent, sélectionnez l’option de dossier ↑Précédent et appuyez sur l’option de menu Modif. Dossier. Nouv. Dossier Crée un nouveau dossier intitulé NEW_FOL dans le dossier courant et affiche le menu Renommer pour changer le nom de dossier par défaut. Renommer (nom de fichier ou dossier) Affiche l’écran Renommer pour renommer un dossier ou un fichier, comme décrit ci-après. Supprimer (nom de fichier ou dossier) Supprime le nom de fichier ou le dossier sélectionné ; le dossier doit être vide pour pouvoir le supprimer. Confirmer Suppression S’affiche après avoir appuyé sur Supprimer afin de confirmer l’action de suppression d’un fichier. Si vous appuyez sur un bouton autre que Confirmer Suppression, l’action de suppression du fichier sera annulée. Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 139 Référence Options Commentaires Format Formate le lecteur flash USB ; cela supprime toutes les données se trouvant sur le lecteur flash USB. M. à jour Firmware Suivez les instructions à l’écran pour la configuration et appuyez sur le bouton d’option M. à jour Firmware pour lancer la mise à jour du micrologiciel. Renommer un fichier ou dossier. Vous pouvez modifier le nom des fichiers et des dossiers sur un lecteur flash USB. Option Réglages Commentaires Permet de saisir le caractère alphanumérique mis en surbrillance au niveau de la position du curseur dans le champ Nom courant A - Z, 0 - 9, _, . Utilisez le bouton multifonctionnel pour sélectionner un caractère alphanumérique ou utilisez les fonctions Retour arr., Supprimer caract. ou Effacer nom. Retour arr. Modifie l’option du bouton de menu 1 en lui affectant la fonction Retour arr. Supprime le caractère situé à gauche du caractère mis en surbrillance dans le champ Nom Supprimer caract. Modifie l’option du bouton de menu 1 en lui affectant la fonction Supprimer caractère. Supprime du champ Nom le caractère mis en surbrillance Entrer caractère Effacer nom Modifie l’option du bouton de menu 1 en lui affectant la fonction Effacer nom. Supprime tous les caractères du champ Nom Réglages verticaux Vous pouvez utiliser les réglages verticaux pour afficher et effacer des signaux, pour ajuster l’échelle et la position verticales, pour régler les paramètres d’entrée et pour les opérations mathématiques verticales. (Voir page 115, Fonctions mathématiques.) 140 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Référence Menus Verticaux des voies Il existe un menu vertical distinct pour chaque voie. Chaque option est définie individuellement pour chaque voie. Options Réglages Commentaires Couplage CC, CA, masse CC transmet les composantes CA et CC du signal d’entrée CA permet de bloquer les composantes CC et de réduire les signaux de fréquence inférieurs à 10 Hz Masse déconnecte le signal d’entrée Options Réglages Commentaires Limite Bande 20 MHz 1, Aucune Permet de limiter la bande passante pour réduire le bruit d’affichage ; filtre le signal pour réduire le bruit et toute composante haute fréquence non souhaitée Volts/Div Gros, Fin Permet de sélectionner la résolution de la molette Volts/Div Gros définit une séquence 1-2-5. Fin permet d’obtenir une résolution incluant des échelons de petite taille entre les réglages du mode Gros Sonde Voir le tableau suivant Appuyez pour régler les options Sonde Inverser Act., Désact. Inverse (renverse) le signal par rapport au niveau de référence 1 La bande passante effective est de 6 MHz avec une sonde P2220 réglée sur 1X. L’option est différente pour les sondes de tension et de courant : Atténuation ou Echelle. Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 141 Référence Options de sonde Réglages Commentaires Sonde ►Tension ►Atténuation 1X, 10X, 20X, 50X, 100X, 500X, 1000X Permet de correspondre au facteur d’atténuation de la sonde de tension afin de garantir des affichages verticaux corrects Sonde ►Courant ► Echelle 5 V/A, 1 V/A, 500 mV/A, 200 mV/A, 100 mV/A, 20 mV/A, 10 mV/A, 1 mV/A Permet de correspondre à l’échelle de la sonde de courant afin de garantir des affichages verticaux corrects Retour Permet de revenir au menu précédent Molettes Molettes VERTICAL POSITION. Tournez les molettes VERTICAL POSITION pour déplacer les signaux de la voie vers le haut ou le bas de l’écran. Molettes VOLTS/DIV. Les molettes VOLTS/DIV vous permettent de contrôler la manière dont l’oscilloscope amplifie ou atténue le signal source des signaux des voies. Lorsque vous tournez un bouton VOLTS/DIV, l’oscilloscope augmente ou réduit la taille verticale du signal à l’écran. Dépassement de la mesure verticale (écrêtage). Les signaux qui dépassent l’écran (dépassement) et présentent un ? dans l’affichage de mesure indiquent une valeur non valide. Réglez l’échelle verticale pour vous assurer que la mesure est valide. Informations importantes Couplage masse. Utilisez le couplage masse pour afficher un signal de zéro volt. En interne, l’entrée de la voie est connectée à un niveau de référence de zéro volt. 142 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Référence Résolution fine. L’échelle verticale affiche la valeur réelle du paramètre Volts/Div en mode résolution fine. Le passage en grosse résolution ne modifie pas l’échelle verticale tant que le bouton de commande VOLTS/DIV n’est pas ajusté. Supprimer un signal. Pour supprimer un signal de l’écran, appuyez sur un bouton de menu de la voie sur le panneau avant. Par exemple, appuyez sur le bouton CH 1 MENU pour afficher ou supprimer le signal de la voie 1. REMARQUE. Vous n’avez pas besoin d’afficher un signal de voie pour l’utiliser comme source de déclenchement ou dans le cadre d’opérations mathématiques. REMARQUE. Vous devez afficher un signal de voie pour prendre des mesures ou utiliser des curseurs sur ce signal, ou pour l’enregistrer comme signal de référence ou dans un fichier. Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 143 Référence 144 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Annexe A : Spécifications Toutes les spécifications s’appliquent aux modèles TDS1000B et TDS2000B. Reportez-vous à la fin de ce chapitre pour obtenir les spécifications relatives à la sonde P2220. Avant de vérifier la conformité de l’oscilloscope aux spécifications en vigueur, celui-ci doit d’abord satisfaire aux conditions suivantes : L’oscilloscope doit avoir fonctionné en continu pendant vingt minutes dans un environnement conforme à la température de fonctionnement spécifiée. Vous devez effectuer l’opération Exécuter Auto-cal, accessible via le menu Utilitaire, si la température de fonctionnement change de plus de 5 °C (9 °F). L’oscilloscope doit être dans l’intervalle du calibrage usine. Toutes les spécifications sont garanties, à l’exception de celles désignées comme « types ». Spécifications de l’oscilloscope Tableau 1 : Spécifications d’acquisition Caractéristique Description Modes d’acquisition Normale, Détect Créte et Moyenne Fréquence d’acquisition, type Jusqu’à 180 signaux par seconde, par voie (mode d’acquisition Normale, pas de mesure) Mode d’acquisition L’acquisition s’interrompt après Normale, Détect Créte Acquisition unique, toutes les voies simultanément Séquence unique Moyenne Acquisitions N, toutes les voies simultanément, N peut avoir la valeur 4, 16, 64 ou 128 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 145 Annexe A : Spécifications Tableau 2 : Spécifications d’entrée Caractéristique Description Couplage d’entrée CC, CA ou masse Impédance d’entrée, Couplée en CC 1 MΩ ± 2 % en parallèle à 20 pF ± 3 pF Atténuation de la sonde P2220 1X, 10X Facteurs d’atténuation de la sonde de tension prise en charge 1X, 10X, 20X, 50X, 100X, 500X, 1000X Echelles de sonde de courant prises en charge 5 V/A, 1 V/A, 500 mV/A, 200 mV/A, 100 mV/A, 20 mV/A, 10 mV/A, 1 mV/A Catégorie de surtension Tension maximum CAT I et CAT II 300 Veff CAT III 150 Veff Tension maximale entre le signal et la référence au connecteur d’entrée BNC Catégorie d’installation II ; dérive à 20 dB/décade au-dessus de 100 kHz à la tension de crête de 13 V CA à 3 MHz 1 et plus. Pour les ondes non sinusoïdales, la valeur de la crête doit être inférieure à 450 V. La durée d’une course supérieure à 300 V doit être inférieure à 100 ms et le rapport cyclique est limité à ≤ 44 %. Le niveau de signal efficace, y compris les éventuelles composantes CC supprimées via couplage CA, doit être limité à 300 V. En cas de dépassement de ces valeurs, cela risque d’endommager l’instrument. Reportez-vous à la description de la Catégorie de surtension ci-dessus. 146 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Annexe A : Spécifications Tableau 2 : Spécifications d’entrée, (suite) Caractéristique Description TDS1001B TDS1002B, 2002B, 2004B TDS1012B, 2012B, 2014B, 2022B, 2024B 100:1 à 60 Hz, 20:1 à 20 MHz1 2 100:1 à 60 Hz, 20:1 à 30 MHz 1. 2 100:1 à 60 Hz, 10:1 à 50 MHz1. 2 Réjection type en mode commun entre voies Mesurée sur le signal calculé Ch1 - Ch2, avec application du signal de test entre le signal et la masse des deux voies, et avec des réglages VOLTS/DIV et de couplage identiques sur chaque voie. Mesurée sur le signal calculé Ch3 - Ch4 pour les modèles à 4 voies TDS1001B TDS1002B, 2002B, 2004B TDS1012B, 2012B, 2014B TDS2022B, 2024B ≥ 100:1 à 20 MHz 1. 2 ≥ 100:1 à 30 MHz 1. 2 ≥ 100:1 à 50 MHz 1. 2 ≥ 100:1 à 100 MHz 1. 2 Diaphonie de voie à voie Mesurée sur une voie, avec application du signal de test entre le signal et la masse de l’autre voie et avec des réglages VOLTS/DIV et de couplage identiques sur chaque voie 1 Bande passante réduite à 6 MHz avec une sonde 1X. 2 Ne fait pas apparaître les impacts liés à la sonde. Tableau 3 : Spécifications verticales 1 Caractéristique Description Numériseurs Résolution à 8 bits (sauf lorsqu’ils sont définis sur 2 mV/div) ; chaque voie est échantillonnée simultanément Plage VOLTS/DIV 2 mV/div à 5 V/div au BNC d’entrée Plage de positions 2°mV/div à 200mV/div ±2°V > 200 mV/div à 5 V/div, ±50 V Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 147 Annexe A : Spécifications Tableau 3 : Spécifications verticales 1 , (suite) Caractéristique Description TDS1001B TDS1002B, 2002B, 2004B TDS1012B, 2012B, 2014B TDS2022B, 2024B 40 MHz2 3 60 MHz2 3 100 MHz2 3 200 MHz2 3 0 °C à + 40 °C (32 °F à 104 °F) 160 MHz2 3 0 °C à + 50 °C (32 °F à 122 °F) Bande passante analogique en modes Echantillon et Moyenne au BNC ou avec la sonde P2220 réglée à 10X, Couplée en CC 20 MHz 2 (lorsque l’échelle verticale est réglée sur < 5 mV) TDS1001B TDS1002B, 2002B, 2004B TDS1012B, 2012B, 2014B, 2022B, 2024B 30 MHz2 3 50 MHz2 3 75 MHz2 3 Bande passante analogique en mode Détect Créte (50 s/div à 5 μs/div 4), type 20 MHz 2 (lorsque l’échelle verticale est réglée sur < 5 mV) Limite de bande passante analogique sélectionnable, type 20 MHz 2 Limite de fréquence inférieure, Couplée en CA ≤ 10 Hz à BNC ≤ 1°Hz avec une sonde passive 10X TDS1001B TDS1002B, 2002B, 2004B TDS1012B, 2012B, 2014B TDS2022B, 2024B Temps de montée au BNC, type < 8,4 ns < 5,8 ns < 3,5 ns < 2,1 ns 148 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Annexe A : Spécifications Tableau 3 : Spécifications verticales 1 , (suite) Caractéristique Description Réponse à la Détect Créte 4 Capture 50 % ou plus de l’amplitude des impulsions d’une largeur ≥ 12 ns (50s/div à 5ms/div) dans les 8 divisions verticales centrales ± 3 % pour le mode d’acquisition Normale ou Moyenne, 5 V/div à 10 mV/div Précision du gain CC ± 4 % pour le mode d’acquisition Normale ou Moyenne, 5 mV/div à 2 mV/div Type de mesure Précision Moyenne ≥ 16 signaux, la position verticale étant définie sur zéro ± (3 % × lecture + 0,1 div + 1 mV) lorsque la valeur 10 mV/div ou supérieure est sélectionnée Précision de mesure CC, Mode d’acquisition Moyenne Moyenne ≥ 16 signaux en position verticale et échelle verticale réglée sur 2 mV/div à 200°m/div et –1.8 V < position verticale < 1.8 V ±[3% × (lecture + position verticale) + 1% de la position verticale + 0,2 div + 7 mV] Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 149 Annexe A : Spécifications Tableau 3 : Spécifications verticales 1 , (suite) Caractéristique Description Moyenne ≥ 16 signaux en position verticale et échelle verticale réglée sur > 200 mV/div and –45 V < Position Verticale < 45 V ± [3% × (lecture + position verticale) + 1% de la position verticale + 0,2 div + 175 mV] Répétabilité de mesure en volts, Mode d’acquisition Moyenne Ecart en volts entre deux moyennes basses sur ≥16 signaux capturés dans les mêmes conditions ambiantes et de configuration ± (3 % × lecture + 0,05 div) 1 Les spécifications sont définies sur 1X pour l’option Sonde ►Tension ►Atténuation. 2 Bande passante réduite à 6 MHz avec une sonde 1X. 3 Lorsque l’échelle verticale est définie sur > 5 mV. 4 L’oscilloscope repasse en mode Echantillon lorsque le réglage SEC/DIV (échelle horizontale) est compris entre 2,5 ms/div et 5 ns/div sur les modèles à 1 G éch./s ou entre 2,5 ms/div et 2,5 ns/div sur les modèles à 2 G éch./s. Le mode Echantillon peut toujours capturer des parasites d’une largeur de 10 ns. 150 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Annexe A : Spécifications Tableau 4 : Spécifications horizontales Caractéristique Description TDS1001B, 1002B, 1012B, 2002B, 2004B, 2012B, 2014B Plage de la TDS2022B, 2024B fréquence d’échantillonnage 5 éch./s à 1 G éch./s 5 éch./s à 2 G éch./s Interpolation du signal (sinus x)/x Longueur d’enregistrement 2 500 échantillons pour chaque voie TDS1001B, 1002B, 1012B, 2002B, 2004B, 2012B, 2014B Plage TDS2022B, 2024B SEC/DIV 5 ns/div à 50 s/div, dans une séquence 1, 2,5, 5 2,5 ns/div à 50 s/div, dans une séquence 1, 2,5, 5 Précision de la fréquence d’échantillonnage et temps de retard ± 50 ppm au-dessus de tout intervalle de temps ≥ 1 ms Conditions Précision Monocoup, mode Echantillon ± (1 intervalle d’échantillonnage + 100 ppm × lecture + 0,6 ns) > 16 moyennes ± (1 intervalle d’échantillonnage + 100 ppm × lecture + 0,4 ns) Précision de la mesure de temps Delta (Totalité de la bande passante) Intervalle d’échantillonnage = s/div ÷ 250 TDS1001B, 1002B, 1012B, 2002B, 2004B, 2012B, 2014B 2022B, 2024B 5 ns/div à 10 ns/div (- 4 div × s/div) à 20 ms 25 ns/div à 100 μs/div (- 4 div × s/div) à 50 ms 250 ms/div à 50 s/div (- 4 div × s/div) à 50 s TDS2022B, 2024B Plage de positions 2.5°ns/div (- 4 div × s/div) à 20 ms Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 151 Annexe A : Spécifications Tableau 5 : Spécifications de déclenchement Caractéristique Description Couplage Sensibilité TDS1001B, 1002B, 1012B, 2002B, 2004B, 2012B, 2014B TDS2022B, 2024B EXT. 200 mV de CC à 100 MHz 1 200 mV de CC à 100 MHz 1 350 mV de 100 MHz à 200 MHz 1 EXT/5 1 V de CC à 100 MHz 1 1 V de CC à 100 MHz 1 1,75 V de 100 MHz à 200 MHz 1 Sensibilité de déclenchement, Type Déclenchement sur front, affichage stable d’un événement de déclenchement CC CH1, CH2, CH3 2, CH42 1 div de CC à 10 MHz 1 1,5 div de 10 MHz à pleine puissance 1,5 div de 10 MHz à 100 MHz 2 div de 100 MHz à pleine puissance 152 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Annexe A : Spécifications Tableau 5 : Spécifications de déclenchement, (suite) Caractéristique Description Couplage Sensibilité TDS1001B, 1002B, 1012B, 2002B, 2004B, 2012B, 2014B TDS2022B, 2024B EXT 300 mV de CC à 100 MHz 1 300 mV de CC à 100 MHz 1 500 mV de 100 MHz à 200 MHz 1 EXT/5 1.5 V de CC à 100 MHz 1 1.5 V de CC à 100 MHz 1 3 V de 100 MHz à 200 MHz 1 Sensibilité de déclenchement, Type Déclenchement sur front, Compteur de fréquences, type CC CH1, CH2, CH3 2, CH42 1,5 div de CC à 10 MHz 1 3 div de 10 MHz à pleine puissance Couplage Sensibilité CA Identique à CC à 50 Hz et plus REJECTION DU BRUIT Réduit la sensibilité de déclenchement couplée CC de moitié pour > 10 mv/div à 5 V/div HF REJ Identique à la limite couplée CC de CC à 7 kHz, réduit les signaux supérieurs à 80 kHz Sensibilité de déclenchement, Type Déclenchement sur front, type LF REJ Identique aux limites couplées CC pour les fréquences supérieures à 300 kHz, réduit les signaux inférieurs à 300 kHz Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 153 Annexe A : Spécifications Tableau 5 : Spécifications de déclenchement, (suite) Caractéristique Description Source Plage CH1, CH2, CH3 2, CH42 ± 8 divisions à partir du centre de l’écran EXT. ± 1,6 V EXT/5 ± 8 V Plage de niveau de déclenchement, type Secteur Impossible à définir Les précisions s’appliquent aux signaux ayant des temps de montée et de descente ≥ 20 ns. Source Précision Interne ±0,2 div × volts/div dans ±4 divisions à partir du centre de l’écran EXT. ± (6 % du réglage + 40 mV) Précision du niveau de déclenchement, type EXT/5 ± (6% du réglage + 200 mV) NIVEAU A 50 %, type Fonctionne avec des signaux d’entrée ≥ 50 Hz Réglages par défaut, Déclenchement vidéo Le couplage est défini sur CA et Auto sauf pour une acquisition de type séquence unique Signal vidéo composite Source Plage Interne Amplitude C-C de 2 divisions EXT. 400 mV Sensibilité, Type Déclenchement vidéo, type EXT/5 2 V Formats du signal et fréquences de la trame, Type Déclenchement vidéo Prend en charge les systèmes de diffusion NTSC, PAL et SECAM pour toute trame ou toute ligne 154 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Annexe A : Spécifications Tableau 5 : Spécifications de déclenchement, (suite) Caractéristique Description Plage d’inhibition 500 ns à 10 s Modes Déclenchement sur largeur d’impulsion Déclenchement lorsque < (Inférieur à), > (Supérieur à ), = (Egal à) ou ≠ (Différent) ; Impulsion positive ou Impulsion négative Point de déclenchement sur largeur d’impulsion Egal : l’oscilloscope se déclenche lorsque le front descendant de l’impulsion croise le niveau de déclenchement. Différent : si l’impulsion est plus étroite que la largeur spécifiée, le point de déclenchement est représenté par le front descendant. Sinon, l’oscilloscope se déclenche lorsqu’une impulsion dure plus longtemps que la durée spécifiée dans l’option Largeur d’impulsion. Inférieur à : le point de déclenchement est représenté par le front descendant. Supérieur à (également appelé Déclenchement sur temporisation) : l’oscilloscope se déclenche lorsqu’une impulsion dure plus longtemps que la durée spécifiée dans l’option Largeur d’impulsion. Plage de largeur d’impulsion Sélectionnable entre 33 ns et 10 s Résolution de largeur d’impulsion 16,5 ns ou 1 partie par millier, quelle que soit la valeur la plus élevée Bande de garde égale t > 330 ns : ± 5 %≤ bande de guarde < ± (5,1 % + 16,5 ns) t ≤ 330 ns : bande de garde = + 16,5 ns Bande de garde différente t > 330 ns : ± 5 %≤ bande de guarde < ± (5,1 % + 16,5 ns) 165 ns < t ≤ 330 ns : bande de garde = - 16,5 ns/+ 33 ns t ≤ 165 ns : bande de garde = + 16,5 ns Compteur de fréquence de déclenchement Résolution d’affichage 6 chiffres Précision (typique) + 51 ppm y compris toutes les erreurs de fréquence de référence et ± 1 erreur de comptage Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 155 Annexe A : Spécifications Tableau 5 : Spécifications de déclenchement, (suite) Caractéristique Description Plage de fréquences Couplée CA, 10 Hz au minimum jusqu’à la bande passante indiquée Signal source Modes Déclenchement sur largeur d’impulsion ou Déclenchement sur front : toutes les sources de déclenchement disponibles Le compteur de fréquences permet à tout moment de mesurer la source de déclenchement dans les modes Largeur d’impulsion ou Front, y compris lorsque l’acquisition est interrompue sur l’oscilloscope en raison de modifications du mode d’exécution ou lorsque l’acquisition d’un événement monocoup est terminée. Mode Déclenchement sur largeur d’impulsion : l’oscilloscope compte les impulsions considérées comme événements de déclenchement et ayant une amplitude significative dans la fenêtre de mesure de 250 ms, telles que les impulsions étroites dans un train d’impulsion MLI s’il est défini sur le mode < et si la largeur est définie sur une durée relativement courte. Mode Déclenchement sur front : l’oscilloscope compte tous les fronts ayant une amplitude suffisante et une polarité correcte. Mode Déclenchement vidéo : le compteur de fréquences n’intervient pas. 1 Bande passante réduite à 6 MHz avec une sonde 1X. 2 Disponible uniquement sur les oscilloscopes à 4 voies. Tableau 6 : Spécifications de mesures Caractéristique Description Curseurs Différence d’amplitude entre les curseurs ( ΔV, ΔA ou ΔVA) Différence de temps entre les curseurs (Δt) Inverse de Δt en hertz (1/ Δt) Mesures automatiques Fréquence, Période, Moyenne, C-C, Valeur efficace du cycle, Min, Max, Tps montée, Tps descente, Largeur pos., Largeur nég. 156 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Annexe A : Spécifications Tableau 7 : Spécifications générales Caractéristique Description Affichage Type d’affichage à cristaux liquides diagonaux de 5,7 pouces (145 mm) Résolution d’affichage 320 pixels à l’horizontale sur 240 à la verticale Contraste de l’écran Réglable, à compensation thermique Intensité de rétro-éclairage, type 1 65 cd/m2 Sortie du compensateur de la sonde Tension de sortie, type 5 V dans une charge ≥ 1 MΩ Fréquence, type 1 kHz Source d’alimentation Tension de source 100 - 240 VACeff (± 10 %) 50/60 Hz 115 VACeff (± 10 %) 400 Hz (± 10 %) Consommation électrique Inférieure à 30 W Fusible 2 A, protection thermique-magnétique, 250 V Environnement Degré de pollution Degré de pollution 2 2. Utilisation en intérieur uniquement. N’utilisez pas cet appareil dans un environnement susceptible d’abriter des polluants conducteurs. En fonctionnement 32 °F à 122 °F (0 °C à + 50 °C) Température A l’arrêt - 40 °F à 159,8 °F (- 40 °C à +71 °C) Méthode de refroidissement Convection + 104 °F ou moins (+ 40 °C ou moins) Humidité Humidité relative ≤ 85 % 106 °F à 122 °F (+ 41 °C à + 50 °C) Humidité relative ≤ 45 % Altitude 3 000 m (environ 10 000 pieds) Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 157 Annexe A : Spécifications Tableau 7 : Spécifications générales, (suite) Caractéristique Description En fonctionnement 0,31 geff de 5 Hz à 500 Hz, 10 minutes sur chaque axe Vibration aléatoire A l’arrêt 2,46 geff de 5 Hz à 500 Hz, 10 minutes sur chaque axe Choc mécanique En fonctionnement 50 g, 11 ms, semi-sinusoïdal Mécanique Hauteur 158 mm (6,22 pouces) Largeur 326,3 mm (12,845 pouces) Dimension Profondeur 124,1 mm (4,885 pouces) Poids (approximatif) Appareil uniquement 2 kg (4,375 livres) Intervalle de réglage (Calibrage usine) Il est recommandé de l’effectuer tous les ans. 1 Réglable via le menu Affichage. 2 Tel que défini par la norme IEC 61010-1:2001. Homologations et conformité de l’oscilloscope Déclaration de conformité électromagnétique CE Conforme aux objectifs de la Directive 89/336/CEE pour la compatibilité électromagnétique. La conformité aux spécifications suivantes a été démontrée telles qu’établies au Journal officiel de la Communauté européenne : EN 61326. Règles de compatibilité électromagnétique relatives aux équipements électriques de classe A utilisés pour les mesures, le contrôle et l’utilisation en laboratoire 158 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Annexe A : Spécifications IEC 61000-4-2. Immunité des décharges électrostatiques (Critère de performance B) IEC 61000-4-3. Immunité du champ électromagnétique RF (Critère de performance A) IEC 61000-4-4. Electrique transitoire rapide/immunité de salve (Critère de performance B) IEC 61000-4-5. Immunité contre les surtensions de la ligne d’alimentation (Critère de performance B) IEC 61000-4-6. Immunité RF transmise par conduction (Critère de performance A) IEC 61000-4-11. Insensibilité aux chutes de tension & interruptions (Critère de performance B) EN 61000-3-2. Emissions d’harmoniques de la ligne d’alimentation secteur 1 EN 61000-3-3. Changements de tension, fluctuations et scintillement 1 Des émissions qui dépassent les niveaux requis par cette norme peuvent se produire lorsque cet instrument est connecté à un objet de test. Déclaration de conformité électromagnétique Australie/Nouvelle-Zélande Conforme aux dispositions du Radiocommunications Act en matière de compatibilité électromagnétique, par le biais de la ou des norme(s) suivante(s) : AS/NZS 2064.1/2. Equipement industriel, scientifique et médical : 1992 Conformité CEM Conforme aux objectifs de la directive 89/336/CEE pour la conformité de compatibilité électromagnétique en cas d’utilisation avec le ou les produit(s) mentionné(s) dans le tableau des spécifications. Reportez-vous à la spécification CEM publiée pour les produits mentionnés. Non-conformité possible aux objectifs de la directive en cas d’utilisation avec d’autres produits. Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 159 Annexe A : Spécifications Conformité FCC Emissions conformes au Code américain de réglementation fédérale FCC 47, article 15, alinéa B, pour les appareils de Classe A. Fédération de Russie Ce produit a été homologué par le Ministère GOST russe comme étant conforme à toutes les réglementations applicables en matière de compatibilité électromagnétique. Déclaration de conformité basse tension CE La conformité aux spécifications suivantes telles qu’énoncées au Journal officiel de la Communauté européenne a été démontrée : Directive basse tension 73/23/CEE telle que modifiée par la directive 93/68/CEE : EN 61010-1:2001. Règles de sécurité relatives aux appareils électriques utilisés pour les mesures, le contrôle et l’utilisation en laboratoire. EN 61010-2-031:2002. Conditions spécifiques relatives aux systèmes de sonde à main destinés aux appareils électriques de mesure et de test. Liste des laboratoires de test agréés aux Etats-Unis UL 61010B-1:2004, 2ème édition. Norme relative aux appareils électriques de mesure et de test. UL 61010B-2-031:2003. Conditions spécifiques relatives aux systèmes de sonde à main destinés aux appareils électriques de mesure et de test. 160 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Annexe A : Spécifications Homologation Canada CAN/CSA C22.2 N° 61010-1-04. Règles de sécurité relatives aux équipements électriques utilisés pour les mesures, le contrôle et l’utilisation en laboratoire. Partie 1. CAN/CSA C22.2 N° 61010-2-031:1994. Conditions spécifiques relatives aux systèmes de sonde à main destinés aux appareils électriques de mesure et de test. Autres normes IEC 61010-1:2001. Règles de sécurité relatives aux appareils électriques utilisés pour les mesures, le contrôle et l’utilisation en laboratoire. IEC 61010-031:2002. Conditions spécifiques relatives aux systèmes de sonde à main destinés aux appareils électriques de mesure et de test. Type d’équipement Equipement de mesure et de test. Classe de sécurité Classe 1 - produits mis à la terre Descriptions du degré de pollution Mesure des contaminants pouvant être diffusés dans l’environnement autour et au sein du produit. L’environnement interne d’un produit est généralement considéré comme identique à l’environnement externe. Les produits doivent être utilisés uniquement dans l’environnement pour lequel ils ont été conçus. Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 161 Annexe A : Spécifications Degré de pollution 1. Pas de pollution ou uniquement une pollution sèche, non conductrice. Les produits de cette catégorie sont généralement placés dans une enveloppe hermétique ou dans des salles blanches. Degré de pollution 2. Pollution sèche non conductrice uniquement. Une conductivité temporaire, due à la condensation, peut avoir lieu. Ces produits sont généralement destinés aux environnements domestiques/de bureau. Une condensation temporaire peut se former lorsque le produit est hors service. Degré de pollution 3. Pollution conductrice ou pollution sèche non conductrice devenant conductrice en cas de condensation. Ces produits sont destinés à des environnements abrités, où la température et l’humidité ne sont pas contrôlées. La zone est protégée des rayons directs du soleil, de la pluie ou du vent. Degré de pollution 4. Pollution générant une conductivité continue due à la conductivité de la poussière, de la pluie ou de la neige. Ces produits sont généralement utilisés en extérieur. Descriptions des catégories d’installation (surtension) Il est possible que les bornes de ce produit appartiennent à plusieurs catégories d’installation (surtension). Les différentes catégories d’installation sont les suivantes : Catégorie de mesure II (CAT II). Pour les mesures effectuées sur les circuits directement connectés à l’installation basse tension (secteur). Catégorie de mesure I (CAT I). Pour les mesures effectuées sur les circuits non connectés directement au secteur. 162 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Annexe A : Spécifications Spécifications relatives à la sonde P2220 Spécifications relatives à la sonde P2220 Caractéristiques électriques. Position 10X Bande passante CC à 200 MHz Rapport d’atténuation 10:1 ± 2% Plage de compensation 15 pF-25 pF Résistance d’entrée 10 MΩ ± 3 % à CC Capacité d’entrée 13 pF-17 pF Temps de montée, typique < 2,2 ns Tension d’entrée maximale 1 entre l’extrémité (signal) et le câble de référence Position 10X Position 1X 300 Veff CAT II ou 300 V CC CAT II 150 Veff CAT III ou 150 V CC CAT III Tension de crête 420 V, <50 % rapport cyclique, <1 s LI Tension de crête 670 V, <20 % rapport cyclique, <1 s LI 150 Veff CAT II ou 150 V CC CAT II 100 Veff CAT III ou 100 V CC CAT III Tension de crête 210 V, <50 % rapport cyclique, <1 s LI Tension de crête 330 V, <20 % rapport cyclique, <1 s LI Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 163 Annexe A : Spécifications Spécifications relatives à la sonde P2220 300 Veff ; dérive à 20 dB/décade au-dessus de 900 kHz à une tension de crête de 13 V CA à 3 MHz et plus. Pour les ondes non sinusoïdales, la valeur de la crête doit être inférieure à 450 V. La durée d’une course supérieure à 300 V doit être inférieure à 100 ms. Le niveau de signal efficace, y compris les éventuelles composantes CC supprimées via couplage CA, doit être limité à 300 V. Si cette valeur est dépassée, cela risque d’endommager l’instrument. Reportez-vous à la Catégorie de surtension, plus bas dans ce tableau. Tension d’entrée maximale 1 entre l’extrémité (signal) et la prise de terre Position 10X Position 1X 300 Veff CAT II ou 300 V CC CAT II 150 Veff CAT III ou 150 V CC CAT III Tension de crête 420 V, <50 % rapport cyclique, <1 s LI Tension de crête 670 V, <20 % rapport cyclique, <1 s LI 150 Veff CAT II ou 150 V CC CAT II 100 Veff CAT III ou 100 V CC CAT III Tension de crête 210 V, <50 % rapport cyclique, <1 s LI Tension de crête 330 V, <20 % rapport cyclique, <1 s LI 1 Tel que défini par la norme IEC61010-1 : 2001. Homologations et conformités relatives à la sonde P2220 Tension maximale entre le câble de référence et la prise de terre 30 V 1 164 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Annexe A : Spécifications La conformité aux spécifications suivantes telles qu’énoncées au Journal officiel de la Communauté européenne a été démontrée : Directive basse tension 73/23/CEE telle que modifiée par la directive 93/68/CEE : Déclaration de conformité CE EN 61010-1 2001 EN 61010-2-031 2003 Règles de sécurité relatives aux équipements électriques utilisés pour les mesures, le contrôle et l’utilisation en laboratoire Recommandations particulières concernant les ensembles de sonde portative pour les mesures et les tests électriques Catégorie Exemples de produits appartenant à cette catégorie Catégorie de surtension CAT III CAT II CAT I Réseaux de distribution, installations fixes Réseaux d’alimentation terminale, appareils, équipements portatifs Niveaux des signaux sur un équipement ou composant d’équipement spécifique, de télécommunication, électronique Degré de pollution Degré de pollution 2 2. Utilisation en intérieur uniquement. N’utilisez pas cet appareil dans un environnement susceptible d’abriter des polluants conducteurs. Sécurité UL61010-1, 2004 & UL61010B-2-031, 2003 CAN/CSA 22.22 N° 61010.1:2004 CAN/CSA 22.22 N° 61010-2-031: IEC61010-031: 2001 EN61010-031: 2001 Caractéristiques environnementales En fonctionnement 0 °C à 50 °C (32 °F à 122 °F) Température A l’arrêt - 40 °C à 71 °C (- 40 °F à + 159,8 °F) Méthode de refroidissement Convection Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 165 Annexe A : Spécifications 104 °F (40 °C) ou moins Humidité Humidité relative ≤ 90 % 105 °F - 122 °F (41 °C à + 50 °C) Humidité relative ≤ 60 % En fonctionnement Altitude 3 000 m (environ 10 000 pieds) A l’arrêt 15 000 m (40 000 pieds) 1 Tel que défini par la norme IEC 61010-1:2001. 2 Tel que défini par la norme IEC 60529. 2001. 166 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Annexe B : Accessoires Tous les accessoires (standard et en option) sont disponibles auprès de votre bureau local Tektronix. Accessoires standard Sonde de tension passive 1X, 10X P2220. Les sondes P2220 disposent d’une bande passante de 6 MHz avec une puissance nominale de 150 Veff CAT II lorsque le commutateur est en position 1X, et d’une bande passante de 200 MHz avec une puissance nominale de 300 Veff CAT II lorsque le commutateur est en position 10X. Le manuel d’utilisation de la sonde est disponible en anglais uniquement. Manuel de l’utilisateur des oscilloscopes TDS1000B et TDS2000B.Un seul manuel de l’utilisateur est inclus. Pour savoir dans quelles langues ce manuel est disponible, reportez-vous aux accessoires en option. CD-ROM de communication pour PC. Le logiciel de communication pour PC permet de transférer facilement les données de l’oscilloscope au PC. Accessoires en option Sonde de tension passive P6101B 1X. La sonde P6101B a une bande passante de 15 MHz d’une puissance de 300 VRMS CAT II. Kit d’installation en baie RM2000B Le Kit d’installation en baie RM2000B vous permet d’installer un oscilloscope TDS1000B ou TDS2000B dans une baie de 19 pouces conforme aux normes de l’industrie. Le kit d’installation en baie nécessite un espace vertical de sept pouces dans la baie. Vous pouvez allumer ou éteindre l’oscilloscope à partir de l’avant du kit d’installation en baie. Le kit d’installation en baie n’est pas mobile. Instructions pour la sonde 1X/10X P2220 Le manuel de la sonde P2220 (071-1464-XX, en anglais) fournit des informations sur la sonde et ses accessoires. Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 167 Annexe B : Accessoires Manuel de programmation des oscilloscopes numériques TDS200, TDS1000/2000, TDS1000B/2000B et TPS2000. Le manuel de programmation (071-1075-XX, en anglais) fournit des informations relatives aux commandes et à la syntaxe. Manuel d’entretien des oscilloscopes à mémoire numérique TDS1000B et TDS2000B. Le manuel d’entretien (071-1828-XX, en anglais) fournit des informations relatives aux réparations au niveau du module. Manuels de l’utilisateur des oscilloscopes à mémoire numérique TDS1000B et TDS2000B. Le manuel de l’utilisateur est disponible dans les langues suivantes : Anglais, 071-1817-XX Français, 071-1818-XX Italien, 071-1819-XX Allemand, 071-1820-XX Espagnol, 071-1821-XX Japonais, 071-1822-XX Portugais, 071-1823-XX Chinois simplifié, 071-1824-XX Chinois traditionnel, 071-1825-XX Coréen, 071-1826-XX Russe, 071-1827-XX Cordons d’alimentation internationaux. Outre le cordon d’alimentation livré avec votre oscilloscope, vous pouvez vous procurer les cordons suivants : Option A0, Amérique du Nord 120 V, 60 Hz, 161-0066-00 Option A1, Europe 230 V, 50 Hz, 161-0066-09 Option A2, Royaume-Uni 230 V, 50 Hz, 161-0066-10 Option A3, Australie 240 V, 50 Hz, 161-0066-11 Option A5, Suisse 230 V, 50 Hz, 161-0154-00 Option A10, Chine 220 V, 50 Hz, 161-0304-00 Option A11, Inde 230 V, 50 Hz, 161-4000-00 168 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Annexe B : Accessoires Adaptateur TEK-USB-488. L’adaptateur GPIB vous permet de raccorder votre oscilloscope à un contrôleur GPIB. Etui souple. L’étui souple (AC2100) protège l’oscilloscope des chocs et permet de ranger les sondes, le cordon d’alimentation et les manuels. Valise de transport. La valise de transport (HCTEK4321) protège l’oscilloscope des coups, des vibrations, des chocs et de l’humidité lors des déplacements. L’étui souple s’insère dans la valise de transport. Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 169 Annexe B : Accessoires 170 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Annexe C : Nettoyage Entretien - Généralités N’entreposez pas ou ne laissez pas l’oscilloscope longtemps dans un endroit où l’écran plat à cristaux liquides est exposé à la lumière directe du soleil. ATTENTION. Pour éviter d’endommager l’oscilloscope ou les sondes, ne les exposez à aucun vaporisateur, liquide ou solvant. Nettoyage Inspectez l’oscilloscope et les sondes aussi souvent que les conditions d’utilisation l’exigent. Procédez comme suit pour le nettoyage de la surface extérieure : 1. Retirez la poussière sur l’extérieur de l’oscilloscope et des sondes avec un chiffon non pelucheux. Procédez avec précaution pour éviter de rayer le filtre transparent de l’écran en verre. 2. Utilisez un chiffon doux imbibé d’eau pour nettoyer l’oscilloscope. Pour obtenir un nettoyage plus efficace, utilisez une solution aqueuse à base de 75 % d’isopropanol. ATTENTION. Pour éviter d’endommager la surface de l’oscilloscope ou des sondes, n’utilisez pas de produit de nettoyage abrasif ou chimique. Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 171 Annexe C : Nettoyage 172 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Annexe D : Configuration par défaut Cette annexe décrit les options, les boutons et les commandes qui sont modifiés lorsque vous appuyez sur le bouton CONF. PAR D. La dernière page de cette annexe répertorie les réglages qui ne changent pas. REMARQUE. Lorsque vous appuyez sur le bouton CONF. PAR D., l’oscilloscope affiche le signal CH1 et supprime tous les autres signaux. Menu ou système Option, bouton ou molette Paramètre par défaut (options composées de trois modes) Normale Moyennes 16 ACQUISITION RUN/STOP RUN CALIBRAGE AUTO Calibrage Auto Aucune Mode Vertical et Horizontal Type Aucune Source CH1 Horizontal (amplitude) +/- 3,2 div CURSEURS Vertical (temps) +/- 4 div Type Vecteurs Persist. Aucune AFFICHAGE Mode Y(t) Base de temps principale Principale Déclenche. Niveau POSITION 0 s SEC/DIV 500 ms HORIZONTAL Zone retardée 50 ms Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 173 Annexe D : Configuration par défaut Menu ou système Option, bouton ou molette Paramètre par défaut Opération - Sources CH1 - CH2 Position 0 div Echelle Verticale 2 V MATH Opération FFT : Source Fenêtre FFT Zoom CH1 Hanning X1 MESURES (Toutes) Source CH1 Type Aucune TRIGGER Type Front (commun) Source CH1 Pente Montante Mode Auto Couplage CC TRIGGER (Front) NIVEAU 0 V Polarité Normale Synch. Ttes lignes TRIGGER (Vidéo) Standard NTSC Quand = Régler largeur d’impulsion 1 ms Polarité Positif Mode Auto TRIGGER (Impulsion) Couplage CC 174 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Annexe D : Configuration par défaut Menu ou système Option, bouton ou molette Paramètre par défaut Couplage CC Limite Bande Aucune Volts/Div Gros Sonde Tension Atténuation de la sonde de tension 10X Echelle de la sonde de courant 10 A/V Inverser Désact. POSITION 0 div (0 V) Système vertical, toutes les voies VOLTS/DIV 1 V Le bouton CONF. PAR D. ne modifie pas les réglages suivants : option Langue Configurations sauvegardées Signaux de référence sauvegardés Contraste de l’écran Données de calibrage Configuration imprimante Configuration du bus GPIB Configuration de la sonde (type et facteur d’atténuation) Date et heure Dossier courant sur le lecteur flash USB Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 175 Annexe D : Configuration par défaut 176 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Annexe E : Licences de police Les accords de licence suivants couvrent les polices asiatiques utilisées pour les oscilloscopes TDS1000B et TDS2000B. Copyright © 1988 The Institute of Software, Academia Sinica. Adresse postale : P.O. Box 8718, Beijing, Chine 100080. Le présent avis autorise l’utilisation, la copie, la modification et la distribution du présent logiciel et sa documentation à toutes fins utiles et sans contrepartie financière, sous réserve que le copyright susmentionné apparaisse dans toutes les copies, que l’autorisation et le copyright susmentionnés apparaissent dans la documentation d’assistance, et que le nom « the Institute of Software, Academia Sinica » ne soit pas utilisé à des fins de publicité relative à la distribution du présent logiciel sans autorisation écrite spécifique et préalable. The Institute of Software, Academia Sinica ne garantit aucunement l’adéquation du présent logiciel aux objectifs visés. Il est fourni « tel quel », sans garantie expresse ou implicite. THE INSTITUTE OF SOFTWARE, ACADEMIA SINICA NE GARANTIT EN AUCUN CAS LE PRESENT LOGICIEL, Y COMPRIS TOUTES LES GARANTIES IMPLICITES DE QUALITE MARCHANDE ET D’ADEQUATION DU PROUIT ; EN AUCUN CAS THE INSTITUTE OF SOFTWARE, ACADEMIA SINICA NE POURRA ETRE TENU POUR RESPONSABLE DE DOMMAGES SPECIAUX, INDIRECTS OU CONSECUTIFS, OU DE DOMMAGES QUELS QU’ILS SOIENT, RESULTANT DE LA PERTE D’UTILISATION, DE DONNEES OU DE BENEFICES, QU’IL S’AGISSE D’UN CONTRAT, D’UNE NEGLIGENCE OU DE TOUTE AUTRE ACTION COMPLEXE, EMANANT DE OU FAISANT SUITE A L’UTILISATION DES PERFORMANCES DE CE LOGICIEL. © Copyright 1986-2000, Hwan Design Inc. Le présent avis vous octroie l’autorisation, selon l’ensemble des droits de propriété Hwan Design, d’utiliser, de copier, de modifier, d’accorder une sous-licence, de vendre et de redistribuer les 4 polices truetype outline Baekmuk à toutes fins utiles et sans restriction, sous réserve que le présent avis figure dans son intégralité sur toutes les copies desdites polices et que la marque commerciale de Hwan Design Int. soit Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 177 Annexe E : Licences de police reconnaissable (telle qu’illustrée ci-dessous) sur l’ensemble des copies des 4 polices Baekmuk truetype. BAEKMUK BATANG est une marque déposée de Hwan Design Inc. BAEKMUK GULIM est une marque déposée de Hwan Design Inc. BAEKMUK DOTUM est une marque déposée de Hwan Design Inc. BAEKMUK HEADLINE est une marque déposée de Hwan Design Inc. © Copyright 2000-2001 /efont/ The Electronic Font Open Laboratory. Tous droits réservés. La redistribution et l’utilisation sous forme source et binaire, avec ou sans modification, sont autorisées, sous réserve que les conditions suivantes soient remplies : La redistribution du code source doit contenir l’avis de copyright ci-dessus, cette liste de conditions et la clause de non-responsabilité suivante. La redistribution sous forme binaire doit reproduire l’avis de copyright ci-dessus, cette liste de conditions et la clause de non-responsabilité dans la documentation et/ou les autres matériaux fournis avec la distribution. Ni le nom de l’équipe, ni celui des collaborateurs la composant ne peuvent être utilisés pour faire de la publicité ou promouvoir des produits dérivés de cette police sans autorisation écrite spécifique et préalable. CETTE POLICE EST FOURNIE « TELLE QUELLE » PAR L’EQUIPE ET LES COLLABORATEURS LA COMPOSANT ET TOUTE GARANTIE EXPRESSE OU IMPLICITE, INCLUANT, MAIS SANS S’Y LIMITER, LES GARANTIES IMPLICITES QUANT A LA QUALITE MARCHANDE OU A L’ADEQUATION DU PRODUIT A DES USAGES PARTICULIERS, EST REJETEE. EN AUCUN CAS L’EQUIPE OU LES COLLABORATEURS LA COMPOSANT NE POURRONT ETRE TENUS POUR RESPONSABLES DE DOMMAGES DIRECTS, INDIRECTS, FORTUITS, SPECIAUX, EXEMPLAIRES OU CONSECUTIFS (INCLUANT, MAIS SANS S’Y LIMITER, L’OBTENTION DE BIENS OU SERVICES DE SUBSTITUTION, LA PERTE D’UTILISATION, DE DONNEES OU DE BENEFICES, OU L’INTERRUPTION COMMERCIALE), CAUSES DE QUELQUE MANIERE QUE CE SOIT, ET SELON TOUTE THEORIE DE RESPONSABILITE, QUE CE SOIT DANS LE 178 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Annexe E : Licences de police CADRE D’UN CONTRAT, DE LA STRICTE RESPONSABILITE OU DU TORT (Y COMPRIS LA NEGLIGENCE OU NON) EMANANT DE QUELQUE FACON QUE CE SOIT DE L’UTILISATION DE CETTE POLICE, MEME EN CAS DE CONNAISSANCE DE L’EVENTUALITE DE TELS DOMMAGES. Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 179 Annexe E : Licences de police 180 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Index AA ccessoires, 167 Acquisition de signaux, concepts de base, 29 Acquisition, affichage actif, 100 arrêt, 100 exemple monocoup, 53 ACQUISITION, bouton, 22, 97 Acquisition, menu, 97 Adaptateur GPIB, commande, 169 Adaptateur TEK-USB-488, commande, 169 connexion, 93 Affichage de signaux, 140 référence, 119 Affichage du pré-déclenchement, 131 Affichage, contraste, 109 intensité, 109 menu, 109 mesures, 11 mode XY, 110 mode Y(t), 110 persistance, 109 style (Inverser), 141 style des signaux, 110 type : vecteurs ou points, 109 AFFICHAGE, bouton, 22, 109 Agrandissement horizontal, fenêtre, 112 Ajouter des signaux, Math menu, 115 Alimentation, 3 spécifications, 157 Amplitude, curseurs, 36, 107 spectre FFT, 77 Assistant Test de sonde, sondes de tension, 5 Atténuation, sonde de tension, 5, 8, 142 Auto, mode de déclenchement, 128 AUTOSET, bouton, 23 Autoset, menu, 103 B Balayage de signaux, 114 Balayage retardé, 113 Balayage, échelle horizontale, 113 retardé, 113 Base de temps de la Fenêtre, 18 Base de temps principale, 18, 113 Base de temps retardée, 113 affichage, 13 Base de temps, 30 affichage, 13 Fenêtre, 18, 113 Principale, 18, 113 BMP, format de fichier, 87 Boucle de sécurité, 3 Bouton multifonctionnel, 20 Bouton TEST SONDE, 6 Boutons d’écran, xii Boutons d’option, xii Boutons du menu latéral, xii Boutons du panneau, xii Bruit crête-à-crête, 111 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 181 Index C Calendrier, 138 CALIBRAGE AUTO, bouton, 22 Calibrage Auto, menu, 101 Calibrage automatique, 9 Calibrage usine, 138 Calibrage, 137 programme automatique, 9 CH 1, CH2, CH 3 ou CH 4, boutons MENU, 17 connecteurs, 23 Commande VOLTS/DIV, 17 Communication, installation du logiciel OpenChoice, 89 Commutateur d’atténuation, 8 COMP SONDE, connexions, 24 Compensation, assistant Test de sonde de tension, 5 COMP SONDE, connecteur, 23 manuelle de sonde de tension, 7 Comptage de cycles d’alimentation, 137 CONF. PAR D., bouton, paramètres d’option conservés, 175 paramètres d’options et de commandes, 173 Configuration d’usine, 173 rappel, 126 Configuration par défaut, Déclenchement d’impulsions, 174 Déclenchement sur front, 174 Déclenchement vidéo, 174 rappel, 126 Connecteurs, CH 1, CH2, CH 3 et CH 4, 23 COMP SONDE, 23 EXTERNE, 23 port du lecteur flash USB, 79 Port périphérique USB, 89 Consignes de sécurité, iv Contraste, 110 Contrôle à distance à l’aide d’une interface GPIB, 93 Conventions utilisées dans ce manuel, xii Cordons d’alimentation, 3 commande, 168 Couplage CA, déclenchement, 128 vertical, 141 Couplage CC, déclenchement, 128 vertical, 141 Couplage masse, 141 Couplage, déclenchement, 28, 130 vertical, 141–142 Crête-à-crête, mesures, 117 CSV, format de fichier, 124 Curseurs de temps, 36, 107 Curseurs, Amplitude pour FFT, 107 Amplitude, 36, 107 concepts de base, 35 Fréquence pour FFT, 107 mesure d’un spectre FFT, 77 mesures, exemples, 45 réglage, 107 Temps, 36, 107 utilisation, 107 CURSEURS, bouton, 22, 107 Curseurs, menu, 107 182 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Index DD ate et heure, affichage, 14 Date, 138 Déclenchement sur front, 127 Déclenchement sur largeur d’impulsion, 132 Déclenchement sur temporisation, 155 Déclenchement vidéo, 131 exemple d’application, 58 Déclenchement, affichage de la fréquence, 14, 128, 133 affichage de la position, 13 affichage du niveau, 14 affichage, 19, 135 couplage, 28, 128, 130 définition, 27 état, 137 forcé, 135 front, 128 indicateur du type, 14 indicateurs d’état, 13 informations de pré-déclenchement, 131 inhibition, 19, 115, 135 marqueur de niveau, 13 marqueur de position, 13 menu, 127 modes : Auto, 128 modes : Normal, 128 modes, 28 niveau, 19, 29, 127 pente, 29, 128 polarité, 133 position, 28 source, 14, 28, 128, 132 synch., 132 types, 28 vidéo, 131–132 Delta, affichage dans le menu Curseurs, 108 Description, général, 1 Différences de phase, 111 Dossier courant, 82, 139 Dossiers, création, 139 renommer, 140 suppression, 134, 139 Double base de temps, 18, 113 E Echelle, horizontale, 31 sonde de courant, 9, 142 verticale, 30 EPSIMAGE, format de fichier, 87 Etat, divers, 137 système, 136 Etui souple, commande, 169 Evénements rares, persistance infinie, 111 Exemples d’application, acquisition d’un signal monocoup, 53 affichage des modifications d’impédance sur un réseau, 66 analyse d’un signal de communication différentiel, 64 analyse du détail du signal, 50 calcul du gain de l’amplificateur, 43 curseurs, utilisation, 45 déclenchement sur les lignes vidéo, 61 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 183 Index déclenchement sur les trames vidéo, 59 déclenchement sur un signal vidéo, 58 déclenchement sur une largeur d’impulsion spécifique, 56 Détect Créte, utilisation, 51 examen d’un signal bruyant, 51 fonction d’ajustement automatique pour examiner des points de test, 44 fonction de réglage automatique, utilisation, 39 mesure de deux signaux, 42 mesure de l’amplitude d’anneau, 45 mesure de la fréquence d’anneau, 45 mesure de la largeur d’impulsion, 47 mesure du retard de propagation, 55 mesure du temps de montée, 49 mesures automatiques, 38 moyenne, utilisation, 52 optimisation de l’acquisition, 54 prise de mesures automatiques, 40 prise de mesures par curseur, 45 réduction du bruit, 52 utilisation de la fonction de calibrage automatique (Autorange) pour examiner des points de test, 44 utilisation de la fonction fenêtre, 62 utilisation de la persistance, 68 utilisation du mode XY, 68 EXTERNE, connecteur, 23 compensation de sonde, 6 F Fenêtre FFT, Flattop, 74 Hanning, 74 Rectangular, 74 Fenêtre Flattop, 74 Fenêtre Hanning, 74 Fenêtre Rectangular, 74 Fenêtres, spectre FFT, 73 FFT zoom, horizontal, 72 vertical, 71 Figure de Lissajous, mode XY, 111 Fonctionnement normal, rappel de la configuration par défaut, 26 Fonctions d’ajustement automatique (Autorange), 26 désactivation, 102 présentation générale, 101 Fonctions de réglage automatique (Autoset), 26 Annuler, 105 bruit, 105 FFT, 105 impulsion carrée, 106 Niveau CC, 103 onde carrée, 106 ondes sinusoïdales, 105 présentation générale, 103 signal vidéo, 106 utilisation, 105 Fonctions mathématiques, FFT, 69, 71 fonctions, 115 menu, 115 Fonctions, présentation générale, 1 184 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Index FORCE TRIG, bouton, 19 Format, fichier d’image, 87 Lecteur flash USB, 81 Formats de fichier pour les images, 87 Formats des fichiers image, 87 Fréquence d’échantillonnage, maximum, 98 Fréquence, affichage de la fréquence de déclenchement, 14 affichage du déclenchement, 128 Fréquence, curseurs, 36 spectre FFT, 77 Fréquence, mesures, 117 à l’aide des curseurs, 45 Curseurs FFT, 77 HH istorique des erreurs, 137 HORIZ MENU, bouton, 18 Horizontal, état, 137 marqueur de position, 13 menu, 112 Mode Balayage, 100, 114 repliement du spectre, temporel, 31 Horizontale, échelle, 31 position, 31 Horloge, régler date et heure, 138 I Icônes, affichage de la base de temps de la fenêtre, 13 affichage de la date et de l’heure, 14 affichage de signal inversé, 13 affichage des signaux de référence, 14 base de temps, 13 déclenchement, affichage de la position, 13 déclenchement, affichage du niveau, 14 déclenchement, marqueur de niveau, 13 déclenchement, mesure de la fréquence, 14 déclenchement, source, 14 échelle de voies, 13 échelle verticale, 13 état du déclenchement, Acq. terminée, 13 état du déclenchement, Armé, 13 état du déclenchement, Arrêt, 13 état du déclenchement, Déclenché, 13 état du déclenchement, mode Auto, 13 état du déclenchement, mode Balayage, 13 état du déclenchement, Prêt, 13 Limite de bande passante, 13 marqueur de position de déclenchement, 13 marqueur de position horizontale, 13 Marqueur de référence, 13 modes d’acquisition, Détect Créte, 12 modes d’acquisition, Moyenne, 12 modes d’acquisition, Normale, 12 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 185 Index type de déclenchement, Front, 14 type de déclenchement, Largeur d’impulsion, 14 type de déclenchement, Vidéo, 14 Image d’écran, enregistrement dans un fichier, 87 envoi à une imprimante, 95 Impression, données de l’écran, 118 image d’écran, 95 suspendre, 95, 118 Imprimante, Compatible PictBridge, 94 configuration, 95 connexion, 94 Impulsion carrée, Fonction de réglage automatique (Autoset), 106 Impulsion de synch., 132 Index des rubriques d’aide, xi Indicateurs, 12 Inhibition, 115, 135 INHIBITION, commande, 19 Installation, Logiciel OpenChoice sur un PC, 89 Intensité, 109 Interpolation, 98 J JPG, format de fichier, 87 L Langues, 137 Largeur négative, mesures, 117 Largeur positive, mesures, 117 Lecteur flash USB, capacité de stockage, 81 emplacement du port, 24 formatage, 81 gestion des fichiers, 82 indicateur d’opération de sauvegarde, 80 installation, 80 PRINT, touche, 85 Sauv./Rap, menu, 83 sauvegarde de fichiers, configurations, 85 sauvegarde de fichiers, images, 87 sauvegarde de fichiers, signaux, 85 sauvegarde de fichiers, tous, 85 Utilitaires Fichiers, 139 Liens hypertexte dans les rubriques d’aide, xi Ligne, déclenchement vidéo, 131 Lignes diagonales dans le signal, Détect Créte, 99 Limite Bande verticale, 141 Limite de bande passante, affichage, 13 déclenchement, 128 vertical, 141 Logiciel, OpenChoice, 167 M M, indicateur de base de temps principale, 113 Manuel d’entretien, commande, 168 Manuel de programmation, commande, 168 Manuels de la sonde, commande, Sonde passive P2220 1X/10X, 167 186 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Index Manuels, commande, 168 MATH MENU, bouton, 18 Maximum, mesures, 117 Mémoire non volatile, fichiers de configuration, 121 fichiers de signal de référence, 121 Mémoire, configurations, 120 images d’écran, 120 Lecteur flash USB, 79 signaux, 120 Menu Réf, 119 Menus, Acquisition, 97 Affichage, 109 Aide, 112 Calibrage Auto, 101 Curseurs, 107 Déclenchement, 127 Fonctions mathématiques FFT, 71 Fonctions mathématiques, 115 Horizontal, 112 Imprimer, 118 Mesures, 116 Réf, 119 Réglage automatique (Autoset), 103 Sauv./Rap, 120 Utilitaire, 136 Vertical, 140 Messages utiles, 14 Messages, 14–15 Mesures automatiques, 116 concepts de base, 36 Mesures d’amplitude, à l’aide des curseurs, 45 Mesures de la largeur d’impulsion, à l’aide des curseurs, 47 Mesures efficaces du cycle, 117 Mesures efficaces, 117 Mesures, automatiques, 36, 116 concepts de base, 35 crête-à-crête, 117 curseur, 35, 45 FFT (fonctions mathématiques), 72 fréquence, 117 général, 11 largeur négative, 117 largeur positive, 117 maximum, 117 minimum, 117 moyenne, 117 période, 117 réticule, 35 spectre FFT, 77 temps de descente, 117 temps de montée, 117 types, 117 valeur efficace du cycle, 117 MESURES, bouton, 22 Mesures, menu, 116 Minimum, mesures, 117 Mise à jour du firmware, Internet, xi Mise à l’échelle de signaux, concepts de base, 30 Mise en mémoire, paramètres de configuration, 26 Mise en mémoire, menu, 124 Mises à jour du micrologiciel, 140 Mode Balayage, 100, 114 Mode d’acquisition Détect Créte, 30, 98 Mode d’acquisition Moyenne, 30, 99 Mode d’acquisition Normale, 29, 97 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 187 Index Mode Défilement, Voir Mode Balayage Mode Détect Créte, 97 icône, 12 Mode Moyenne, icône, 12 Mode Normale, icône, 12 Mode, affichage, 110 Modes d’acquisition, 29, 97 Détect Créte, 30, 98 indicateurs, 12 Moyenne, 30, 99 Normale, 29, 97 Moyenne, mode d’acquisition, 97 Moyenne, mesure, 117 Multiplier des signaux, Math menu, 115 N Navigation, système de fichiers, 139 Nettoyage, 171 NIVEAU A 50%, bouton, 19 Niveau, 19, 29 NIVEAU, commande, 19 Noms des boutons, xii Normal, mode de déclenchement, 128 NTSC, standard vidéo, 131 Nyquist, fréquence, 71 O Onde carrée, Fonction de réglage automatique (Autoset), 106 Ondes sinusoïdales, Fonction de réglage automatique (Autoset), 105 OpenChoice, logiciel, 167 installation, 89 Option de la touche PRINT, 121 sauvegarde vers un lecteur flash USB, 85 Option Exécuter Auto-cal, 9 Oscilloscope, compréhension des fonctions, 25 connexion à un PC, 90 connexion à un système GPIB, 93 connexion à une imprimante, 94 panneaux avant, 11 régler date et heure, 138 spécifications, 145 P PAL, standard vidéo, 131 Panning, horizontale, 31 verticale, 30 PC, connexion à un oscilloscope, 90 PCX, format de fichier, 87 Pente, 29 Période, mesures, 117 Persistance, 109, 111 Points, type d’affichage, 109 Polarité, déclenchement sur largeur d’impulsion, 133 Synch. déclenchement vidéo, 131 port du lecteur flash USB, 79 Port périphérique USB, 89 Ports, Lecteur flash USB, 79 188 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Index Position, déclenchement, 131 horizontal, 112 horizontale, 31 vertical, 140 POSITION, commande, horizontal, 18 verticale, 17 Pré-déclenchement, 27 PRINT, touche, 23, 118 R Rappel config., menu, 125 Rappel signal, menu, 125 Rappel, configurations, 126 paramètres de configuration, 26 signaux, 126 Rappeler, configuration d’usine (par défaut), 26 Réduction du bruit, couplage déclenchement, 128 limite de bande passante verticale, 141 Mode Moyenne, 97 Soustraction mathématique, 115 REF, bouton, 22 Référence, borne de la sonde, 5 borne, 24 câble de masse de la sonde, 5 marqueur, 13 Refroidissement par convection, 3 Réglages, concepts de base, 25 sauvegarde et rappel, 120 Régler date et heure, 138 REGLER SUR 0, bouton, 18 Renommer des fichiers ou dossiers, 140 Répertoires, suppression, 134, 139 Repliement du spectre FFT, 75 solutions, 76 Repliement du spectre, contrôle, 33 FFT, 75 temporel, 31 Résolution approximative, 141 Résolution précise, 141 Résolution, fine, 142 Réticule, 35, 109 RLE, format de fichier, 87 Rubriques de l’aide contextuelle, x RUN/STOP, bouton, 23, 99 étapes effectuées par l’oscilloscope lorsque vous appuyez sur ce bouton, 27 S SAUV. vers un lecteur flash USB, 80 SAUV./RAP, bouton, 22 Sauv./Rap, menu, 120 sauvegarde vers un lecteur flash USB, 83 Sauveg. tot., menu, 121 Sauvegarde config., menu, 123 Sauvegarde image, menu, 122 Sauvegarde, configurations, 126 fichiers image vers un lecteur flash USB, 87 signaux, 126 tous les fichiers vers un lecteur flash USB, 85 SEC/DIV, commande, 18, 114 SECAM, standard vidéo, 131 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 189 Index SEQ. UNIQUE, bouton, 100 étapes effectuées par l’oscilloscope lorsque vous appuyez sur ce bouton, 27 Service, historique des erreurs comme référence, 137 signal calculé, unités autorisées, 116 Signal inversé, affichage, 13 Signal monocoup, exemple d’application, 53 Signal vidéo, Fonction de réglage automatique (Autoset), 106 Signaux de référence, affichage et suppression, 119 affichage, 14 sauvegarde et rappel, 126 Signaux, acquisition de données, 29 balayage, 100 compression, 114 échelle, 30 expansion, 114 numérisé, 29 position, 30 prendre des mesures, 35 signification du style d’affichage, 110 supprimer de l’écran, 143 temporel, 69 Sonde, option, correspondre à l’atténuation de la sonde, 8 correspondre à l’échelle de la sonde de courant, 9 Sondes de courant, réglage de l’échelle, 9, 142 Sondes, assistant Test de sonde de tension, 5 Commutateur d’atténuation, 8 compensation manuelle d’une sonde de tension, 7 compensation, 24 courant et échelle, 9 sécurité, 5 spécifications, 163 tension et atténuation, 142 Source, déclenchement, 28, 128, 131–132 Ext., 129 Ext/5, 130 Secteur, 131 Soustraire des signaux, Math menu, 115 Spécifications relatives à la sonde P2220, 163 Spécifications, oscilloscope, 145 Sonde P2200, 163 spectre FFT, affichage, 71 agrandissement, 76 applications, 69 Fenêtre, 73 Fréquence de Nyquist, 71 mesure de l’amplitude et de la fréquence à l’aide des curseurs, 77 mesures, 72 processus, 69 Stockage amovible de fichiers, Lecteur flash USB, 79 Suppression de fichiers ou dossiers, 134 190 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Index Suppression de signaux de référence, 119 Suppression de signaux, 140 Suppression, fichiers ou dossiers, 139 Suspendre impression, 95, 118 Synch., déclenchement vidéo ligne ou trame, 132 polarité vidéo, 131 Système d’aide, x Système de menus, utilisation, 15 Système GPIB, connexion à un oscilloscope, 93 T Temporel, signal, 69 Temps de descente, mesures, 117 Temps de montée, mesures, à l’aide des curseurs, 49 automatiques, 117 Test de fonctionnement, 4 TIFF, format de fichier, 87 Touches programmables, xii Trame, déclenchement vidéo, 132 TRIG MENU, bouton, 19 TRIG VIEW, bouton, 19 Types d’options, Action, 16 Liste circulaire, 16 Radio, 16 Sélection de page, 16 UU TILITAIRE, bouton, 22 Utilitaire, menus, 136 Utilitaires Fichiers, 139 Contenu du lecteur flash USB, 139 création de fichiers ou dossiers, 139 navigation dans la structure de répertoires, 139 renommer des fichiers ou dossiers, 140 sélection de fichiers ou dossiers, 139 suppression de fichiers ou dossiers, 134, 139 V Valise de transport, commande, 169 Vecteurs, 109 Ventilation, 3 Vertical, bouton de position, 17 état, 137 menu, 140 Verticale, échelle, 31 position, 30 Voie, couplage, 141 échelle, 13 menu, 141 Volts/Div, Fin, 141 Gros, 141 Voyant LED Liste aide, x W W, indicateur de base de temps retardée, 113 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 191 Index X XY, exemple d’application, 67 mode d’affichage, 110–111 Y Y(t), mode d’affichage, 110 ZZ one retardée, 113–114 Zoom, 62 FFT, 76 HORIZ menu, 112 Zone retardée, 112–114 192 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B http://www.farnell.com/datasheets/43798.pdf http://www.farnell.com/datasheets/43798.pdf  2010 Microchip Technology Inc. DS41302D PIC12F609/615/617 PIC12HV609/615 Data Sheet 8-Pin, Flash-Based 8-Bit CMOS Microcontrollers *8-bit, 8-pin Devices Protected by Microchip’s Low Pin Count Patent: U.S. Patent No. 5,847,450. Additional U.S. and foreign patents and applications may be issued or pending. DS41302D-page 2  2010 Microchip Technology Inc. Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights. Trademarks The Microchip name and logo, the Microchip logo, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, rfPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Octopus, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, PIC32 logo, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. SQTP is a service mark of Microchip Technology Incorporated in the U.S.A. All other trademarks mentioned herein are property of their respective companies. © 2010, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved. Printed on recycled paper. Note the following details of the code protection feature on Microchip devices: • Microchip products meet the specification contained in their particular Microchip Data Sheet. • Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions. • There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property. • Microchip is willing to work with the customer who is concerned about the integrity of their code. • Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.” Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act. Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company’s quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001:2000 certified.  2010 Microchip Technology Inc. DS41302D-page 3 PIC12F609/615/617/12HV609/615 High-Performance RISC CPU: • Only 35 Instructions to Learn: - All single-cycle instructions except branches • Operating Speed: - DC – 20 MHz oscillator/clock input - DC – 200 ns instruction cycle • Interrupt Capability • 8-Level Deep Hardware Stack • Direct, Indirect and Relative Addressing modes Special Microcontroller Features: • Precision Internal Oscillator: - Factory calibrated to ±1%, typical - Software selectable frequency: 4 MHz or 8 MHz • Power-Saving Sleep mode • Voltage Range: - PIC12F609/615/617: 2.0V to 5.5V - PIC12HV609/615: 2.0V to user defined maximum (see note) • Industrial and Extended Temperature Range • Power-on Reset (POR) • Power-up Timer (PWRT) and Oscillator Start-up Timer (OST) • Brown-out Reset (BOR) • Watchdog Timer (WDT) with independent Oscillator for Reliable Operation • Multiplexed Master Clear with Pull-up/Input Pin • Programmable Code Protection • High Endurance Flash: - 100,000 write Flash endurance - Flash retention: > 40 years • Self Read/ Write Program Memory (PIC12F617 only) Low-Power Features: • Standby Current: - 50 nA @ 2.0V, typical • Operating Current: - 11A @ 32 kHz, 2.0V, typical - 260A @ 4 MHz, 2.0V, typical • Watchdog Timer Current: - 1A @ 2.0V, typical Note: Voltage across the shunt regulator should not exceed 5V. Peripheral Features: • Shunt Voltage Regulator (PIC12HV609/615 only): - 5 volt regulation - 4 mA to 50 mA shunt range • 5 I/O Pins and 1 Input Only • High Current Source/Sink for Direct LED Drive - Interrupt-on-pin change or pins - Individually programmable weak pull-ups • Analog Comparator module with: - One analog comparator - Programmable on-chip voltage reference (CVREF) module (% of VDD) - Comparator inputs and output externally accessible - Built-In Hysteresis (software selectable) • Timer0: 8-Bit Timer/Counter with 8-Bit Programmable Prescaler • Enhanced Timer1: - 16-bit timer/counter with prescaler - External Timer1 Gate (count enable) - Option to use OSC1 and OSC2 in LP mode as Timer1 oscillator if INTOSC mode selected - Option to use system clock as Timer1 • In-Circuit Serial ProgrammingTM (ICSPTM) via Two Pins PIC12F615/617/HV615 ONLY: • Enhanced Capture, Compare, PWM module: - 16-bit Capture, max. resolution 12.5 ns - Compare, max. resolution 200 ns - 10-bit PWM with 1 or 2 output channels, 1 output channel programmable “dead time,” max. frequency 20 kHz, auto-shutdown • A/D Converter: - 10-bit resolution and 4 channels, samples internal voltage references • Timer2: 8-Bit Timer/Counter with 8-Bit Period Register, Prescaler and Postscaler 8-Pin Flash-Based, 8-Bit CMOS Microcontrollers PIC12F609/615/617/12HV609/615 DS41302D-page 4  2010 Microchip Technology Inc. 8-Pin Diagram, PIC12F609/HV609 (PDIP, SOIC, MSOP, DFN) TABLE 1: PIC12F609/HV609 PIN SUMMARY (PDIP, SOIC, MSOP, DFN) Device Program Memory Data Memory Self Read/ Self Write I/O 10-bit A/D (ch) Comparators ECCP Timers 8/16-bit Voltage Range Flash (words) SRAM (bytes) PIC12F609 1024 64 — 5 0 1 — 1/1 2.0V-5.5V PIC12HV609 1024 64 — 5 0 1 — 1/1 2.0V-user defined PIC12F615 1024 64 — 5 4 1 YES 2/1 2.0V-5.5V PIC12HV615 1024 64 — 5 4 1 YES 2/1 2.0V-user defined PIC12F617 2048 128 YES 5 4 1 YES 2/1 2.0V-5.5V I/O Pin Comparators Timer Interrupts Pull-ups Basic GP0 7 CIN+ — IOC Y ICSPDAT GP1 6 CIN0- — IOC Y ICSPCLK GP2 5 COUT T0CKI INT/IOC Y — GP3(1) 4 — — IOC Y(2) MCLR/VPP GP4 3 CIN1- T1G IOC Y OSC2/CLKOUT GP5 2 — T1CKI IOC Y OSC1/CLKIN — 1 — — — — VDD — 8 — — — — VSS Note 1: Input only. 2: Only when pin is configured for external MCLR. 1 2 3 4 5 6 7 8 PIC12F609/ HV609 VSS GP0/CIN+/ICSPDAT GP1/CIN0-/ICSPCLK GP2/T0CKI/INT/COUT VDD GP5/T1CKI/OSC1/CLKIN GP4/CIN1-/T1G/OSC2/CLKOUT GP3/MCLR/VPP  2010 Microchip Technology Inc. DS41302D-page 5 PIC12F609/615/617/12HV609/615 8-Pin Diagram, PIC12F615/617/HV615 (PDIP, SOIC, MSOP, DFN) TABLE 2: PIC12F615/617/HV615 PIN SUMMARY (PDIP, SOIC, MSOP, DFN) I/O Pin Analog Comparator s Timer CCP Interrupts Pull-ups Basic GP0 7 AN0 CIN+ — P1B IOC Y ICSPDAT GP1 6 AN1 CIN0- — — IOC Y ICSPCLK/VREF GP2 5 AN2 COUT T0CKI CCP1/P1A INT/IOC Y — GP3(1) 4 — — T1G* — IOC Y(2) MCLR/VPP GP4 3 AN3 CIN1- T1G P1B* IOC Y OSC2/CLKOUT GP5 2 — — T1CKI P1A* IOC Y OSC1/CLKIN — 1 — — — — — — VDD — 8 — — — — — — VSS * Alternate pin function. Note 1: Input only. 2: Only when pin is configured for external MCLR. 1 2 3 4 5 6 7 8 PIC12F615/ 617/HV615 VSS GP0/AN0/CIN+/P1B/ICSPDAT GP1/AN1/CIN0-/VREF/ICSPCLK GP2/AN2/T0CKI/INT/COUT/CCP1/P1A VDD GP5/T1CKI/P1A*/OSC1/CLKIN GP4/AN3/CIN1-/T1G/P1B*/OSC2/CLKOUT GP3/T1G*/MCLR/VPP * Alternate pin function. PIC12F609/615/617/12HV609/615 DS41302D-page 6  2010 Microchip Technology Inc. Table of Contents 1.0 Device Overview ......................................................................................................................................................................... 7 2.0 Memory Organization ................................................................................................................................................................ 11 3.0 Flash Program Memory Self Read/Self Write Control (PIC12F617 only).................................................................................. 27 4.0 Oscillator Module ....................................................................................................................................................................... 37 5.0 I/O Port ...................................................................................................................................................................................... 43 6.0 Timer0 Module .......................................................................................................................................................................... 53 7.0 Timer1 Module with Gate Control .............................................................................................................................................. 57 8.0 Timer2 Module (PIC12F615/617/HV615 only) .......................................................................................................................... 65 9.0 Comparator Module ................................................................................................................................................................... 67 10.0 Analog-to-Digital Converter (ADC) Module (PIC12F615/617/HV615 only) ............................................................................... 79 11.0 Enhanced Capture/Compare/PWM (With Auto-Shutdown and Dead Band) Module (PIC12F615/617/HV615 only) ............... 89 12.0 Special Features of the CPU ................................................................................................................................................... 107 13.0 Voltage Regulator .................................................................................................................................................................... 127 14.0 Instruction Set Summary ........................................................................................................................................................ 129 15.0 Development Support ............................................................................................................................................................. 139 16.0 Electrical Specifications ........................................................................................................................................................... 143 17.0 DC and AC Characteristics Graphs and Tables ...................................................................................................................... 171 18.0 Packaging Information ............................................................................................................................................................ 195 Appendix A: Data Sheet Revision History ......................................................................................................................................... 203 Appendix B: Migrating from other PIC® Devices ............................................................................................................................... 203 Index ................................................................................................................................................................................................. 205 The Microchip Web Site .................................................................................................................................................................... 209 Customer Change Notification Service ............................................................................................................................................. 209 Customer Support ............................................................................................................................................................................. 209 Reader Response ............................................................................................................................................................................. 210 Product Identification System ............................................................................................................................................................ 211 Worldwide Sales and Service ........................................................................................................................................................... 212 TO OUR VALUED CUSTOMERS It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced. If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at docerrors@microchip.com or fax the Reader Response Form in the back of this data sheet to (480) 792-4150. We welcome your feedback. Most Current Data Sheet To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at: http://www.microchip.com You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000). Errata An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies. To determine if an errata sheet exists for a particular device, please check with one of the following: • Microchip’s Worldwide Web site; http://www.microchip.com • Your local Microchip sales office (see last page) When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using. Customer Notification System Register on our web site at www.microchip.com to receive the most current information on all of our products.  2010 Microchip Technology Inc. DS41302D-page 7 PIC12F609/615/617/12HV609/615 1.0 DEVICE OVERVIEW The PIC12F609/615/617/12HV609/615 devices are covered by this data sheet. They are available in 8-pin PDIP, SOIC, MSOP and DFN packages. Block Diagrams and pinout descriptions of the devices are as follows: • PIC12F609/HV609 (Figure 1-1, Table 1-1) • PIC12F615/617/HV615 (Figure 1-2, Table 1-2) FIGURE 1-1: PIC12F609/HV609 BLOCK DIAGRAM Flash Program Memory 13 Data Bus 8 Program 14 Bus Instruction Reg Program Counter RAM File Registers Direct Addr 7 RAM Addr 9 Addr MUX Indirect Addr FSR Reg STATUS Reg MUX ALU W Reg Instruction Decode & Control Timing Generation OSC1/CLKIN OSC2/CLKOUT GPIO 8 8 8 3 8-Level Stack 64 Bytes 1K X 14 (13-Bit) Power-up Timer Oscillator Start-up Timer Power-on Reset Watchdog Timer MCLR VSS Brown-out Reset Timer0 Timer1 GP0 GP1 GP2 GP3 GP4 GP5 Analog Comparator T0CKI INT T1CKI Configuration Internal Oscillator and Reference T1G VDD Block CIN+ CIN0- CIN1- COUT Comparator Voltage Reference Absolute Voltage Reference Shunt Regulator (PIC12HV609 only) PIC12F609/615/617/12HV609/615 DS41302D-page 8  2010 Microchip Technology Inc. FIGURE 1-2: PIC12F615/617/HV615 BLOCK DIAGRAM Flash Program Memory 13 Data Bus 8 Program 14 Bus Instruction Reg Program Counter RAM File Registers Direct Addr 7 RAM Addr 9 Addr MUX Indirect Addr FSR Reg STATUS Reg MUX ALU W Reg Instruction Decode & Control Timing Generation OSC1/CLKIN OSC2/CLKOUT GPIO 8 8 8 3 8-Level Stack 64 Bytes and 1K X 14 (13-Bit) Power-up Timer Oscillator Start-up Timer Power-on Reset Watchdog Timer MCLR VSS Brown-out Reset Timer0 Timer1 GP0 GP1 GP2 GP3 GP4 GP5 Analog Comparator T0CKI INT T1CKI Configuration Internal Oscillator VREF and Reference T1G VDD Timer2 Block Shunt Regulator (PIC12HV615 only) Analog-To-Digital Converter AN0 AN1 AN2 AN3 CIN+ CIN0- CIN1- COUT ECCP CCP1/P1A P1B P1A* P1B* Comparator Voltage Reference Absolute Voltage Reference * Alternate pin function. ** For the PIC12F617 only. T1G* 2K X 14** and 128 Bytes**  2010 Microchip Technology Inc. DS41302D-page 9 PIC12F609/615/617/12HV609/615 TABLE 1-1: PIC12F609/HV609 PINOUT DESCRIPTION Name Function Input Type Output Type Description GP0/CIN+/ICSPDAT GP0 TTL CMOS General purpose I/O with prog. pull-up and interrupt-on-change CIN+ AN — Comparator non-inverting input ICSPDAT ST CMOS Serial Programming Data I/O GP1/CIN0-/ICSPCLK GP1 TTL CMOS General purpose I/O with prog. pull-up and interrupt-on-change CIN0- AN — Comparator inverting input ICSPCLK ST — Serial Programming Clock GP2/T0CKI/INT/COUT GP2 ST CMOS General purpose I/O with prog. pull-up and interrupt-on-change T0CKI ST — Timer0 clock input INT ST — External Interrupt COUT — CMOS Comparator output GP3/MCLR/VPP GP3 TTL — General purpose input with interrupt-on-change MCLR ST — Master Clear w/internal pull-up VPP HV — Programming voltage GP4/CIN1-/T1G/OSC2/ CLKOUT GP4 TTL CMOS General purpose I/O with prog. pull-up and interrupt-on-change CIN1- AN — Comparator inverting input T1G ST — Timer1 gate (count enable) OSC2 — XTAL Crystal/Resonator CLKOUT — CMOS FOSC/4 output GP5/T1CKI/OSC1/CLKIN GP5 TTL CMOS General purpose I/O with prog. pull-up and interrupt-on-change T1CKI ST — Timer1 clock input OSC1 XTAL — Crystal/Resonator CLKIN ST — External clock input/RC oscillator connection VDD VDD Power — Positive supply VSS VSS Power — Ground reference Legend: AN=Analog input or output CMOS= CMOS compatible input or output HV= High Voltage ST=Schmitt Trigger input with CMOS levels TTL = TTL compatible input XTAL=Crystal PIC12F609/615/617/12HV609/615 DS41302D-page 10  2010 Microchip Technology Inc. TABLE 1-2: PIC12F615/617/HV615 PINOUT DESCRIPTION Name Function Input Type Output Type Description GP0/AN0/CIN+/P1B/ICSPDAT GP0 TTL CMOS General purpose I/O with prog. pull-up and interrupt-onchange AN0 AN — A/D Channel 0 input CIN+ AN — Comparator non-inverting input P1B — CMOS PWM output ICSPDAT ST CMOS Serial Programming Data I/O GP1/AN1/CIN0-/VREF/ICSPCLK GP1 TTL CMOS General purpose I/O with prog. pull-up and interrupt-onchange AN1 AN — A/D Channel 1 input CIN0- AN — Comparator inverting input VREF AN — External Voltage Reference for A/D ICSPCLK ST — Serial Programming Clock GP2/AN2/T0CKI/INT/COUT/CCP1/ P1A GP2 ST CMOS General purpose I/O with prog. pull-up and interrupt-onchange AN2 AN — A/D Channel 2 input T0CKI ST — Timer0 clock input INT ST — External Interrupt COUT — CMOS Comparator output CCP1 ST CMOS Capture input/Compare input/PWM output P1A — CMOS PWM output GP3/T1G*/MCLR/VPP GP3 TTL — General purpose input with interrupt-on-change T1G* ST — Timer1 gate (count enable), alternate pin MCLR ST — Master Clear w/internal pull-up VPP HV — Programming voltage GP4/AN3/CIN1-/T1G/P1B*/OSC2/ CLKOUT GP4 TTL CMOS General purpose I/O with prog. pull-up and interrupt-onchange AN3 AN — A/D Channel 3 input CIN1- AN — Comparator inverting input T1G ST — Timer1 gate (count enable) P1B* — CMOS PWM output, alternate pin OSC2 — XTAL Crystal/Resonator CLKOUT — CMOS FOSC/4 output GP5/T1CKI/P1A*/OSC1/CLKIN GP5 TTL CMOS General purpose I/O with prog. pull-up and interrupt-onchange T1CKI ST — Timer1 clock input P1A* — CMOS PWM output, alternate pin OSC1 XTAL — Crystal/Resonator CLKIN ST — External clock input/RC oscillator connection VDD VDD Power — Positive supply VSS VSS Power — Ground reference * Alternate pin function. Legend: AN=Analog input or output CMOS=CMOS compatible input or output HV= High Voltage ST=Schmitt Trigger input with CMOS levels TTL = TTL compatible input XTAL=Crystal  2010 Microchip Technology Inc. DS41302D-page 11 PIC12F609/615/617/12HV609/615 2.0 MEMORY ORGANIZATION 2.1 Program Memory Organization The PIC12F609/615/617/12HV609/615 has a 13-bit program counter capable of addressing an 8K x 14 program memory space. Only the first 1K x 14 (0000h- 03FFh) for the PIC12F609/615/12HV609/615 is physically implemented. For the PIC12F617, the first 2K x 14 (0000h-07FFh) is physically implemented. Accessing a location above these boundaries will cause a wrap-around within the first 1K x 14 space for PIC12F609/615/12HV609/615 devices, and within the first 2K x 14 space for the PIC12F617 device. The Reset vector is at 0000h and the interrupt vector is at 0004h (see Figure 2-1). FIGURE 2-1: PROGRAM MEMORY MAP AND STACK FOR THE PIC12F609/615/12HV609/615 FIGURE 2-2: PROGRAM MEMORY MAP AND STACK FOR THE PIC12F617 2.2 Data Memory Organization The data memory (see Figure 2-3) is partitioned into two banks, which contain the General Purpose Registers (GPR) and the Special Function Registers (SFR). The Special Function Registers are located in the first 32 locations of each bank. Register locations 40h-7Fh in Bank 0 are General Purpose Registers, implemented as static RAM. For the PIC12F617, the register locations 20h-7Fh in Bank 0 and A0h-EFh in Bank 1 are general purpose registers implemented as Static RAM. Register locations F0h-FFh in Bank 1 point to addresses 70h-7Fh in Bank 0. All other RAM is unimplemented and returns ‘0’ when read. The RP0 bit of the STATUS register is the bank select bit. RP0 0  Bank 0 is selected 1  Bank 1 is selected PC<12:0> 13 0000h 0004h 0005h 03FFh 0400h 1FFFh Stack Level 1 Stack Level 8 Reset Vector Interrupt Vector On-chip Program Memory CALL, RETURN RETFIE, RETLW Stack Level 2 Wraps to 0000h-03FFh Note: The IRP and RP1 bits of the STATUS register are reserved and should always be maintained as ‘0’s. PC<12:0> 13 0000h 0004h 0005h 07FFh Stack Level 1 Stack Level 8 Reset Vector Interrupt Vector CALL, RETURN RETFIE, RETLW Stack Level 2 Page 0 On-Chip Program Memory Wraps to 0000h-07FFh 0800h 1FFFh PIC12F609/615/617/12HV609/615 DS41302D-page 12  2010 Microchip Technology Inc. 2.2.1 GENERAL PURPOSE REGISTER FILE The register file is organized as 64 x 8 in the PIC12F609/615/12HV609/615, and as 128 x 8 in the PIC12F617. Each register is accessed, either directly or indirectly, through the File Select Register (FSR) (see Section 2.4 “Indirect Addressing, INDF and FSR Registers”). 2.2.2 SPECIAL FUNCTION REGISTERS The Special Function Registers are registers used by the CPU and peripheral functions for controlling the desired operation of the device (see Table 2-1). These registers are static RAM. The special registers can be classified into two sets: core and peripheral. The Special Function Registers associated with the “core” are described in this section. Those related to the operation of the peripheral features are described in the section of that peripheral feature. FIGURE 2-3: DATA MEMORY MAP OF THE PIC12F609/HV609 Indirect Addr.(1) TMR0 PCL STATUS FSR GPIO PCLATH INTCON PIR1 TMR1L TMR1H 00h 01h 02h 03h 04h 05h 06h 07h 08h 09h 0Ah 0Bh 0Ch 0Dh 0Eh 0Fh 10h 11h 12h 13h 14h 15h 16h 17h 18h 19h 1Ah 1Bh 1Ch 1Dh 1Eh 1Fh 20h 7Fh Bank 0 Unimplemented data memory locations, read as ‘0’. Note 1: Not a physical register. General File Address File Address WPU IOC Indirect Addr.(1) OPTION_REG PCL STATUS FSR TRISIO PCLATH INTCON PIE1 PCON 80h 81h 82h 83h 84h 85h 86h 87h 88h 89h 8Ah 8Bh 8Ch 8Dh 8Eh 8Fh 90h 91h 92h 93h 94h 95h 96h 97h 98h 99h 9Ah 9Bh 9Ch 9Dh 9Eh 9Fh A0h FFh Bank 1 ANSEL Accesses 70h-7Fh F0h VRCON CMCON0 OSCTUNE 40h 3Fh CMCON1 EFh T1CON Purpose Registers 64 Bytes Accesses 70h-7Fh 6Fh 70h  2010 Microchip Technology Inc. DS41302D-page 13 PIC12F609/615/617/12HV609/615 FIGURE 2-4: DATA MEMORY MAP OF THE PIC12F615/617/HV615 Indirect Addr.(1) TMR0 PCL STATUS FSR GPIO PCLATH INTCON PIR1 TMR1L TMR1H T1CON 00h 01h 02h 03h 04h 05h 06h 07h 08h 09h 0Ah 0Bh 0Ch 0Dh 0Eh 0Fh 10h 11h 12h 13h 14h 15h 16h 17h 18h 19h 1Ah 1Bh 1Ch 1Dh 1Eh 1Fh 20h 7Fh Bank 0 Unimplemented data memory locations, read as ‘0’. Note 1: Not a physical register. 2: Used for the PIC12F617 only. File Address File Address WPU IOC Indirect Addr.(1) OPTION_REG PCL STATUS FSR TRISIO PCLATH INTCON PIE1 PCON 80h 81h 82h 83h 84h 85h 86h 87h 88h 89h 8Ah 8Bh 8Ch 8Dh 8Eh 8Fh 90h 91h 92h 93h 94h 95h 96h 97h 98h 99h 9Ah 9Bh 9Ch 9Dh 9Eh 9Fh A0h FFh Bank 1 ADRESH ADCON0 ADRESL ANSEL Accesses 70h-7Fh F0h TMR2 T2CON CCPR1L CCPR1H CCP1CON PWM1CON ECCPAS VRCON CMCON0 OSCTUNE PR2 40h 3Fh CMCON1 EFh APFCON General Purpose Registers 64 Bytes Accesses 70h-7Fh 6Fh 70h PMCON1 (2) PMCON2 (2) PMADRL (2) PMADRH (2) PMDATL (2) PMDATH (2) General Purpose Registers 96 Bytes from 20h-7Fh(2) Unimplemented for PIC12F615/HV615 General Purpose Registers 32 Bytes(2) Unimplemented for PIC12F615/HV615 BFh C0h PIC12F609/615/617/12HV609/615 DS41302D-page 14  2010 Microchip Technology Inc. TABLE 2-1: PIC12F609/HV609 SPECIAL FUNCTION REGISTERS SUMMARY BANK 0 Addr Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Value on POR, BOR Page Bank 0 00h INDF Addressing this location uses contents of FSR to address data memory (not a physical register) xxxx xxxx 25, 115 01h TMR0 Timer0 Module’s Register xxxx xxxx 53, 115 02h PCL Program Counter’s (PC) Least Significant Byte 0000 0000 25, 115 03h STATUS IRP(1) RP1(1) RP0 TO PD Z DC C 0001 1xxx 18, 115 04h FSR Indirect Data Memory Address Pointer xxxx xxxx 25, 115 05h GPIO — — GP5 GP4 GP3 GP2 GP1 GP0 --x0 x000 43, 115 06h — Unimplemented — — 07h — Unimplemented — — 08h — Unimplemented — — 09h — Unimplemented — — 0Ah PCLATH — — — Write Buffer for upper 5 bits of Program Counter ---0 0000 25, 115 0Bh INTCON GIE PEIE T0IE INTE GPIE T0IF INTF GPIF 0000 0000 20, 115 0Ch PIR1 — — — — CMIF — — TMR1IF ---- 0--0 22, 115 0Dh — Unimplemented — — 0Eh TMR1L Holding Register for the Least Significant Byte of the 16-bit TMR1 Register xxxx xxxx 57, 115 0Fh TMR1H Holding Register for the Most Significant Byte of the 16-bit TMR1 Register xxxx xxxx 57, 115 10h T1CON T1GINV TMR1GE T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON 0000 0000 62, 115 11h — Unimplemented — — 12h — Unimplemented — — 13h — Unimplemented — — 14h — Unimplemented — — 15h — Unimplemented — — 16h — Unimplemented — — 17h — Unimplemented — — 18h — Unimplemented — — 19h VRCON CMVREN — VRR FVREN VR3 VR2 VR1 VR0 0-00 0000 76, 116 1Ah CMCON0 CMON COUT CMOE CMPOL — CMR — CMCH 0000 -0-0 72, 116 1Bh — — — — — 1Ch CMCON1 — — — T1ACS CMHYS — T1GSS CMSYNC ---0 0-10 73, 116 1Dh — Unimplemented — — 1Eh — Unimplemented — — 1Fh — Unimplemented — — Legend: – = Unimplemented locations read as ‘0’, u = unchanged, x = unknown, q = value depends on condition, shaded = unimplemented 1: IRP and RP1 bits are reserved, always maintain these bits clear. 2: Read only register.  2010 Microchip Technology Inc. DS41302D-page 15 PIC12F609/615/617/12HV609/615 TABLE 2-2: PIC12F615/617/HV615 SPECIAL FUNCTION REGISTERS SUMMARY BANK 0 Addr Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Value on POR, BOR Page Bank 0 00h INDF Addressing this location uses contents of FSR to address data memory (not a physical register) xxxx xxxx 25, 116 01h TMR0 Timer0 Module’s Register xxxx xxxx 53, 116 02h PCL Program Counter’s (PC) Least Significant Byte 0000 0000 25, 116 03h STATUS IRP(1) RP1(1) RP0 TO PD Z DC C 0001 1xxx 18, 116 04h FSR Indirect Data Memory Address Pointer xxxx xxxx 25, 116 05h GPIO — — GP5 GP4 GP3 GP2 GP1 GP0 --x0 x000 43, 116 06h — Unimplemented — — 07h — Unimplemented — — 08h — Unimplemented — — 09h — Unimplemented — — 0Ah PCLATH — — — Write Buffer for upper 5 bits of Program Counter ---0 0000 25, 116 0Bh INTCON GIE PEIE T0IE INTE GPIE T0IF INTF GPIF 0000 0000 20, 116 0Ch PIR1 — ADIF CCP1IF — CMIF — TMR2IF TMR1IF -00- 0-00 22, 116 0Dh — Unimplemented — — 0Eh TMR1L Holding Register for the Least Significant Byte of the 16-bit TMR1 Register xxxx xxxx 57, 116 0Fh TMR1H Holding Register for the Most Significant Byte of the 16-bit TMR1 Register xxxx xxxx 57, 116 10h T1CON T1GINV TMR1GE T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON 0000 0000 62, 116 11h TMR2(3) Timer2 Module Register 0000 0000 65, 116 12h T2CON(3) — TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0 -000 0000 66, 116 13h CCPR1L(3) Capture/Compare/PWM Register 1 Low Byte XXXX XXXX 90, 116 14h CCPR1H(3) Capture/Compare/PWM Register 1 High Byte XXXX XXXX 90, 116 15h CCP1CON(3) P1M — DC1B1 DC1B0 CCP1M3 CCP1M2 CCP1M1 CCP1M0 0-00 0000 89, 116 16h PWM1CON(3) PRSEN PDC6 PDC5 PDC4 PDC3 PDC2 PDC1 PDC0 0000 0000 105, 116 17h ECCPAS(3) ECCPASE ECCPAS2 ECCPAS1 ECCPAS0 PSSAC1 PSSAC0 PSSBD1 PSSBD0 0000 0000 102, 116 18h — Unimplemented — — 19h VRCON CMVREN — VRR FVREN VR3 VR2 VR1 VR0 0-00 0000 76, 116 1Ah CMCON0 CMON COUT CMOE CMPOL — CMR — CMCH 0000 -0-0 72, 116 1Bh — — — — — 1Ch CMCON1 — — — T1ACS CMHYS — T1GSS CMSYNC ---0 0-10 73, 116 1Dh — Unimplemented — — 1Eh ADRESH(2, 3) Most Significant 8 bits of the left shifted A/D result or 2 bits of right shifted result xxxx xxxx 85, 116 1Fh ADCON0(3) ADFM VCFG — CHS2 CHS1 CHS0 GO/DONE ADON 00-0 0000 84, 116 Legend: – = Unimplemented locations read as ‘0’, u = unchanged, x = unknown, q = value depends on condition, shaded = unimplemented Note 1: IRP and RP1 bits are reserved, always maintain these bits clear. 2: Read only register. 3: PIC12F615/617/HV615 only. PIC12F609/615/617/12HV609/615 DS41302D-page 16  2010 Microchip Technology Inc. TABLE 2-3: PIC12F609/HV609 SPECIAL FUNCTION REGISTERS SUMMARY BANK 1 Addr Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Value on POR, BOR Page Bank 1 80h INDF Addressing this location uses contents of FSR to address data memory (not a physical register) xxxx xxxx 25, 116 81h OPTION_RE G GPPU INTEDG T0CS T0SE PSA PS2 PS1 PS0 1111 1111 19, 116 82h PCL Program Counter’s (PC) Least Significant Byte 0000 0000 25, 116 83h STATUS IRP(1) RP1(1) RP0 TO PD Z DC C 0001 1xxx 18, 116 84h FSR Indirect Data Memory Address Pointer xxxx xxxx 25, 116 85h TRISIO — — TRISIO5 TRISIO4 TRISIO3(4) TRISIO2 TRISIO1 TRISIO0 --11 1111 44, 116 86h — Unimplemented — — 87h — Unimplemented — — 88h — Unimplemented — — 89h — Unimplemented — — 8Ah PCLATH — — — Write Buffer for upper 5 bits of Program Counter ---0 0000 25, 116 8Bh INTCON GIE PEIE T0IE INTE GPIE T0IF INTF GPIF(3) 0000 0000 20, 116 8Ch PIE1 — — — — CMIE — — TMR1IE ---- 0--0 21, 116 8Dh — Unimplemented — — 8Eh PCON — — — — — — POR BOR ---- --qq 23, 116 8Fh — Unimplemented — — 90h OSCTUNE — — — TUN4 TUN3 TUN2 TUN1 TUN0 ---0 0000 41, 116 91h — Unimplemented — — 92h — Unimplemented — — 93h — Unimplemented — — 94h — Unimplemented — — 95h WPU(2) — — WPU5 WPU4 — WPU2 WPU1 WPU0 --11 -111 46, 116 96h IOC — — IOC5 IOC4 IOC3 IOC2 IOC1 IOC0 --00 0000 46, 116 97h — Unimplemented — — 98h — Unimplemented — — 99h — Unimplemented — — 9Ah — Unimplemented — — 9Bh — Unimplemented — — 9Ch — Unimplemented — — 9Dh — Unimplemented — — 9Eh — Unimplemented — — 9Fh ANSEL — — — — ANS3 — ANS1 ANS0 ---- 1-11 45, 117 Legend: – = Unimplemented locations read as ‘0’, u = unchanged, x = unknown, q = value depends on condition, shaded = unimplemented Note 1: IRP and RP1 bits are reserved, always maintain these bits clear. 2: GP3 pull-up is enabled when MCLRE is ‘1’ in the Configuration Word register. 3: MCLR and WDT Reset does not affect the previous value data latch. The GPIF bit will clear upon Reset but will set again if the mismatch exists. 4: TRISIO3 always reads as ‘1’ since it is an input only pin.  2010 Microchip Technology Inc. DS41302D-page 17 PIC12F609/615/617/12HV609/615 TABLE 2-4: PIC12F615/617/HV615 SPECIAL FUNCTION REGISTERS SUMMARY BANK 1 Addr Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Value on POR, BOR Page Bank 1 80h INDF Addressing this location uses contents of FSR to address data memory (not a physical register) xxxx xxxx 25, 116 81h OPTION_REG GPPU INTEDG T0CS T0SE PSA PS2 PS1 PS0 1111 1111 19, 116 82h PCL Program Counter’s (PC) Least Significant Byte 0000 0000 25, 116 83h STATUS IRP(1) RP1(1) RP0 TO PD Z DC C 0001 1xxx 18, 116 84h FSR Indirect Data Memory Address Pointer xxxx xxxx 25, 116 85h TRISIO — — TRISIO5 TRISIO4 TRISIO3(4) TRISIO2 TRISIO1 TRISIO0 --11 1111 44, 116 86h — Unimplemented — — 87h — Unimplemented — — 88h — Unimplemented — — 89h — Unimplemented — — 8Ah PCLATH — — — Write Buffer for upper 5 bits of Program Counter ---0 0000 25, 116 8Bh INTCON GIE PEIE T0IE INTE GPIE T0IF INTF GPIF(3) 0000 0000 20, 116 8Ch PIE1 — ADIE CCP1IE — CMIE — TMR2IE TMR1IE -00- 0-00 21, 116 8Dh — Unimplemented — — 8Eh PCON — — — — — — POR BOR ---- --qq 23, 116 8Fh — Unimplemented — — 90h OSCTUNE — — — TUN4 TUN3 TUN2 TUN1 TUN0 ---0 0000 41, 116 91h — Unimplemented — — 92h PR2 Timer2 Module Period Register 1111 1111 65, 116 93h APFCON — — — T1GSEL — — P1BSEL P1ASEL ---0 --00 21, 116 94h — Unimplemented — — 95h WPU(2) — — WPU5 WPU4 — WPU2 WPU1 WPU0 --11 -111 46, 116 96h IOC — — IOC5 IOC4 IOC3 IOC2 IOC1 IOC0 --00 0000 46, 116 97h — Unimplemented — — 98h PMCON1(7) — — — — — WREN WR RD ---- -000 29 99h PMCON2(7) Program Memory Control Register 2 (not a physical register). ---- ---- — 9Ah PMADRL(7) PMADRL7 PMADRL6 PMADRL5 PMADRL4 PMADRL3 PMADRL2 PMADRL1 PMADRL0 0000 0000 28 9Bh PMADRH(7) — — — — — PMADRH2 PMADRH1 PMADRH0 ---- -000 28 9Ch PMDATL(7) PMDATL7 PMDATL6 PMDATL5 PMDATL4 PMDATL3 PMDATL2 PMDATL1 PMDATL0 0000 0000 28 9Dh PMDATH(7) — — Program Memory Data Register High Byte. --00 0000 28 9Eh ADRESL(5, 6) Least Significant 2 bits of the left shifted result or 8 bits of the right shifted result xxxx xxxx 85, 117 9Fh ANSEL — ADCS2 ADCS1 ADCS0 ANS3 ANS2 ANS1 ANS0 -000 1111 45, 117 Legend: – = Unimplemented locations read as ‘0’, u = unchanged, x = unknown, q = value depends on condition, shaded = unimplemented Note 1: IRP and RP1 bits are reserved, always maintain these bits clear. 2: GP3 pull-up is enabled when MCLRE is ‘1’ in the Configuration Word register. 3: MCLR and WDT Reset does not affect the previous value data latch. The GPIF bit will clear upon Reset but will set again if the mismatch exists. 4: TRISIO3 always reads as ‘1’ since it is an input only pin. 5: Read only register. 6: PIC12F615/617/HV615 only. 7: PIC12F617 only. PIC12F609/615/617/12HV609/615 DS41302D-page 18  2010 Microchip Technology Inc. 2.2.2.1 STATUS Register The STATUS register, shown in Register 2-1, contains: • the arithmetic status of the ALU • the Reset status • the bank select bits for data memory (RAM) The STATUS register can be the destination for any instruction, like any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended. For example, CLRF STATUS, will clear the upper three bits and set the Z bit. This leaves the STATUS register as ‘000u u1uu’ (where u = unchanged). It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the STATUS register, because these instructions do not affect any Status bits. For other instructions not affecting any Status bits, see the Section 14.0 “Instruction Set Summary”. Note 1: Bits IRP and RP1 of the STATUS register are not used by the PIC12F609/615/617/ 12HV609/615 and should be maintained as clear. Use of these bits is not recommended, since this may affect upward compatibility with future products. 2: The C and DC bits operate as a Borrow and Digit Borrow out bit, respectively, in subtraction. See the SUBLW and SUBWF instructions for examples. REGISTER 2-1: STATUS: STATUS REGISTER Reserved Reserved R/W-0 R-1 R-1 R/W-x R/W-x R/W-x IRP RP1 RP0 TO PD Z DC C bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 7 IRP: This bit is reserved and should be maintained as ‘0’ bit 6 RP1: This bit is reserved and should be maintained as ‘0’ bit 5 RP0: Register Bank Select bit (used for direct addressing) 1 = Bank 1 (80h – FFh) 0 = Bank 0 (00h – 7Fh) bit 4 TO: Time-out bit 1 = After power-up, CLRWDT instruction or SLEEP instruction 0 = A WDT time-out occurred bit 3 PD: Power-down bit 1 = After power-up or by the CLRWDT instruction 0 = By execution of the SLEEP instruction bit 2 Z: Zero bit 1 = The result of an arithmetic or logic operation is zero 0 = The result of an arithmetic or logic operation is not zero bit 1 DC: Digit Carry/Borrow bit (ADDWF, ADDLW,SUBLW,SUBWF instructions), For Borrow, the polarity is reversed. 1 = A carry-out from the 4th low-order bit of the result occurred 0 = No carry-out from the 4th low-order bit of the result bit 0 C: Carry/Borrow bit(1) (ADDWF, ADDLW, SUBLW, SUBWF instructions) 1 = A carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred Note 1: For Borrow, the polarity is reversed. A subtraction is executed by adding the two’s complement of the second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high-order or low-order bit of the source register.  2010 Microchip Technology Inc. DS41302D-page 19 PIC12F609/615/617/12HV609/615 2.2.2.2 OPTION Register The OPTION register is a readable and writable register, which contains various control bits to configure: • Timer0/WDT prescaler • External GP2/INT interrupt • Timer0 • Weak pull-ups on GPIO Note: To achieve a 1:1 prescaler assignment for Timer0, assign the prescaler to the WDT by setting PSA bit to ‘1’ of the OPTION register. See Section 6.1.3 “Software Programmable Prescaler”. REGISTER 2-2: OPTION_REG: OPTION REGISTER R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 GPPU INTEDG T0CS T0SE PSA PS2 PS1 PS0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 7 GPPU: GPIO Pull-up Enable bit 1 = GPIO pull-ups are disabled 0 = GPIO pull-ups are enabled by individual PORT latch values bit 6 INTEDG: Interrupt Edge Select bit 1 = Interrupt on rising edge of GP2/INT pin 0 = Interrupt on falling edge of GP2/INT pin bit 5 T0CS: Timer0 Clock Source Select bit 1 = Transition on GP2/T0CKI pin 0 = Internal instruction cycle clock (FOSC/4) bit 4 T0SE: Timer0 Source Edge Select bit 1 = Increment on high-to-low transition on GP2/T0CKI pin 0 = Increment on low-to-high transition on GP2/T0CKI pin bit 3 PSA: Prescaler Assignment bit 1 = Prescaler is assigned to the WDT 0 = Prescaler is assigned to the Timer0 module bit 2-0 PS<2:0>: Prescaler Rate Select bits 000 001 010 011 100 101 110 111 1 : 2 1 : 4 1 : 8 1 : 16 1 : 32 1 : 64 1 : 128 1 : 256 1 : 1 1 : 2 1 : 4 1 : 8 1 : 16 1 : 32 1 : 64 1 : 128 BIT VALUE TIMER0 RATE WDT RATE PIC12F609/615/617/12HV609/615 DS41302D-page 20  2010 Microchip Technology Inc. 2.2.2.3 INTCON Register The INTCON register is a readable and writable register, which contains the various enable and flag bits for TMR0 register overflow, GPIO change and external GP2/INT pin interrupts. Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the Global Enable bit, GIE of the INTCON register. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt. REGISTER 2-3: INTCON: INTERRUPT CONTROL REGISTER R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 GIE PEIE T0IE INTE GPIE T0IF INTF GPIF bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 7 GIE: Global Interrupt Enable bit 1 = Enables all unmasked interrupts 0 = Disables all interrupts bit 6 PEIE: Peripheral Interrupt Enable bit 1 = Enables all unmasked peripheral interrupts 0 = Disables all peripheral interrupts bit 5 T0IE: Timer0 Overflow Interrupt Enable bit 1 = Enables the Timer0 interrupt 0 = Disables the Timer0 interrupt bit 4 INTE: GP2/INT External Interrupt Enable bit 1 = Enables the GP2/INT external interrupt 0 = Disables the GP2/INT external interrupt bit 3 GPIE: GPIO Change Interrupt Enable bit(1) 1 = Enables the GPIO change interrupt 0 = Disables the GPIO change interrupt bit 2 T0IF: Timer0 Overflow Interrupt Flag bit(2) 1 = Timer0 register has overflowed (must be cleared in software) 0 = Timer0 register did not overflow bit 1 INTF: GP2/INT External Interrupt Flag bit 1 = The GP2/INT external interrupt occurred (must be cleared in software) 0 = The GP2/INT external interrupt did not occur bit 0 GPIF: GPIO Change Interrupt Flag bit 1 = When at least one of the GPIO <5:0> pins changed state (must be cleared in software) 0 = None of the GPIO <5:0> pins have changed state Note 1: IOC register must also be enabled. 2: T0IF bit is set when TMR0 rolls over. TMR0 is unchanged on Reset and should be initialized before clearing T0IF bit.  2010 Microchip Technology Inc. DS41302D-page 21 PIC12F609/615/617/12HV609/615 2.2.2.4 PIE1 Register The PIE1 register contains the Peripheral Interrupt Enable bits, as shown in Register 2-4. Note: Bit PEIE of the INTCON register must be set to enable any peripheral interrupt. REGISTER 2-4: PIE1: PERIPHERAL INTERRUPT ENABLE REGISTER 1 U-0 R/W-0 R/W-0 U-0 R/W-0 U-0 R/W-0 R/W-0 — ADIE(1) CCP1IE(1) — CMIE — TMR2IE(1) TMR1IE bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 7 Unimplemented: Read as ‘0’ bit 6 ADIE: A/D Converter (ADC) Interrupt Enable bit(1) 1 = Enables the ADC interrupt 0 = Disables the ADC interrupt bit 5 CCP1IE: CCP1 Interrupt Enable bit(1) 1 = Enables the CCP1 interrupt 0 = Disables the CCP1 interrupt bit 4 Unimplemented: Read as ‘0’ bit 3 CMIE: Comparator Interrupt Enable bit 1 = Enables the Comparator interrupt 0 = Disables the Comparator interrupt bit 2 Unimplemented: Read as ‘0’ bit 1 TMR2IE: Timer2 to PR2 Match Interrupt Enable bit(1) 1 = Enables the Timer2 to PR2 match interrupt 0 = Disables the Timer2 to PR2 match interrupt bit 0 TMR1IE: Timer1 Overflow Interrupt Enable bit 1 = Enables the Timer1 overflow interrupt 0 = Disables the Timer1 overflow interrupt Note 1: PIC12F615/617/HV615 only. PIC12F609/HV609 unimplemented, read as ‘0’. PIC12F609/615/617/12HV609/615 DS41302D-page 22  2010 Microchip Technology Inc. 2.2.2.5 PIR1 Register The PIR1 register contains the Peripheral Interrupt flag bits, as shown in Register 2-5. Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the Global Enable bit, GIE of the INTCON register. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt. REGISTER 2-5: PIR1: PERIPHERAL INTERRUPT REQUEST REGISTER 1 U-0 R/W-0 R/W-0 U-0 R/W-0 U-0 R/W-0 R/W-0 — ADIF(1) CCP1IF(1) — CMIF — TMR2IF(1) TMR1IF bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 7 Unimplemented: Read as ‘0’ bit 6 ADIF: A/D Interrupt Flag bit(1) 1 = A/D conversion complete 0 = A/D conversion has not completed or has not been started bit 5 CCP1IF: CCP1 Interrupt Flag bit(1) Capture mode: 1 = A TMR1 register capture occurred (must be cleared in software) 0 = No TMR1 register capture occurred Compare mode: 1 = A TMR1 register compare match occurred (must be cleared in software) 0 = No TMR1 register compare match occurred PWM mode: Unused in this mode bit 4 Unimplemented: Read as ‘0’ bit 3 CMIF: Comparator Interrupt Flag bit 1 = Comparator output has changed (must be cleared in software) 0 = Comparator output has not changed bit 2 Unimplemented: Read as ‘0’ bit 1 TMR2IF: Timer2 to PR2 Match Interrupt Flag bit(1) 1 = Timer2 to PR2 match occurred (must be cleared in software) 0 = Timer2 to PR2 match has not occurred bit 0 TMR1IF: Timer1 Overflow Interrupt Flag bit 1 = Timer1 register overflowed (must be cleared in software) 0 = Timer1 has not overflowed Note 1: PIC12F615/617/HV615 only. PIC12F609/HV609 unimplemented, read as ‘0’.  2010 Microchip Technology Inc. DS41302D-page 23 PIC12F609/615/617/12HV609/615 2.2.2.6 PCON Register The Power Control (PCON) register (see Table 12-2) contains flag bits to differentiate between a: • Power-on Reset (POR) • Brown-out Reset (BOR) • Watchdog Timer Reset (WDT) • External MCLR Reset The PCON register also controls the software enable of the BOR. The PCON register bits are shown in Register 2-6. REGISTER 2-6: PCON: POWER CONTROL REGISTER U-0 U-0 U-0 U-0 U-0 U-0 R/W-0 R/W-0(1) — — — — — — POR BOR bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 7-2 Unimplemented: Read as ‘0’ bit 1 POR: Power-on Reset Status bit 1 = No Power-on Reset occurred 0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs) bit 0 BOR: Brown-out Reset Status bit 1 = No Brown-out Reset occurred 0 = A Brown-out Reset occurred (must be set in software after a Brown-out Reset occurs) Note 1: Reads as ‘0’ if Brown-out Reset is disabled. PIC12F609/615/617/12HV609/615 DS41302D-page 24  2010 Microchip Technology Inc. 2.2.2.7 APFCON Register (PIC12F615/617/HV615 only) The Alternate Pin Function Control (APFCON) register is used to steer specific peripheral input and output functions between different pins. For this device, the P1A, P1B and Timer1 Gate functions can be moved between different pins. The APFCON register bits are shown in Register 2-7. REGISTER 2-7: APFCON:ALTERNATE PIN FUNCTION REGISTER(1) U-0 U-0 U-0 R/W-0 U-0 U-0 R/W-0 R/W-0 — — — T1GSEL — — P1BSEL P1ASEL bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 7-5 Unimplemented: Read as ‘0’ bit 4 T1GSEL: TMR1 Input Pin Select bit 1 = T1G function is on GP3/T1G(2)/MCLR/VPP 0 = T1G function is on GP4/AN3/CIN1-/T1G/P1B(2)/OSC2/CLKOUT bit 3-2 Unimplemented: Read as ‘0’ bit 1 P1BSEL: P1B Output Pin Select bit 1 = P1B function is on GP4/AN3/CIN1-/T1G/P1B(2)/OSC2/CLKOUT 0 = P1B function is on GP0/AN0/CIN+/P1B/ICSPDAT bit 0 P1ASEL: P1A Output Pin Select bit 1 = P1A function is on GP5/T1CKI/P1A(2)/OSC1/CLKIN 0 = P1A function is on GP2/AN2/T0CKI/INT/COUT/CCP1/P1A Note 1: PIC12F615/617/HV615 only. 2: Alternate pin function.  2010 Microchip Technology Inc. DS41302D-page 25 PIC12F609/615/617/12HV609/615 2.3 PCL and PCLATH The Program Counter (PC) is 13 bits wide. The low byte comes from the PCL register, which is a readable and writable register. The high byte (PC<12:8>) is not directly readable or writable and comes from PCLATH. On any Reset, the PC is cleared. Figure 2-5 shows the two situations for the loading of the PC. The upper example in Figure 2-5 shows how the PC is loaded on a write to PCL (PCLATH<4:0>  PCH). The lower example in Figure 2-5 shows how the PC is loaded during a CALL or GOTO instruction (PCLATH<4:3>  PCH). FIGURE 2-5: LOADING OF PC IN DIFFERENT SITUATIONS 2.3.1 MODIFYING PCL Executing any instruction with the PCL register as the destination simultaneously causes the Program Counter PC<12:8> bits (PCH) to be replaced by the contents of the PCLATH register. This allows the entire contents of the program counter to be changed by writing the desired upper 5 bits to the PCLATH register. When the lower 8 bits are written to the PCL register, all 13 bits of the program counter will change to the values contained in the PCLATH register and those being written to the PCL register. A computed GOTO is accomplished by adding an offset to the program counter (ADDWF PCL). Care should be exercised when jumping into a look-up table or program branch table (computed GOTO) by modifying the PCL register. Assuming that PCLATH is set to the table start address, if the table length is greater than 255 instructions or if the lower 8 bits of the memory address rolls over from 0xFF to 0x00 in the middle of the table, then PCLATH must be incremented for each address rollover that occurs between the table beginning and the target location within the table. For more information refer to Application Note AN556, “Implementing a Table Read” (DS00556). 2.3.2 STACK The PIC12F609/615/617/12HV609/615 Family has an 8-level x 13-bit wide hardware stack (see Figure 2-1). The stack space is not part of either program or data space and the Stack Pointer is not readable or writable. The PC is PUSHed onto the stack when a CALL instruction is executed or an interrupt causes a branch. The stack is POPed in the event of a RETURN, RETLW or a RETFIE instruction execution. PCLATH is not affected by a PUSH or POP operation. The stack operates as a circular buffer. This means that after the stack has been PUSHed eight times, the ninth push overwrites the value that was stored from the first push. The tenth push overwrites the second push (and so on). 2.4 Indirect Addressing, INDF and FSR Registers The INDF register is not a physical register. Addressing the INDF register will cause indirect addressing. Indirect addressing is possible by using the INDF register. Any instruction using the INDF register actually accesses data pointed to by the File Select Register (FSR). Reading INDF itself indirectly will produce 00h. Writing to the INDF register indirectly results in a no operation (although Status bits may be affected). An effective 9-bit address is obtained by concatenating the 8-bit FSR and the IRP bit of the STATUS register, as shown in Figure 2-6. A simple program to clear RAM location 40h-7Fh using indirect addressing is shown in Example 2-1. EXAMPLE 2-1: INDIRECT ADDRESSING PC 12 8 7 0 5 PCLATH<4:0> PCLATH Instruction with ALU Result GOTO, CALL OPCODE <10:0> 8 PC 12 11 10 0 PCLATH<4:3> 11 PCH PCL 8 7 2 PCLATH PCH PCL PCL as Destination Note 1: There are no Status bits to indicate stack overflow or stack underflow conditions. 2: There are no instructions/mnemonics called PUSH or POP. These are actions that occur from the execution of the CALL, RETURN, RETLW and RETFIE instructions or the vectoring to an interrupt address. MOVLW 0x40 ;initialize pointer MOVWF FSR ;to RAM NEXT CLRF INDF ;clear INDF register INCF FSR ;inc pointer BTFSS FSR,7 ;all done? GOTO NEXT ;no clear next CONTINUE ;yes continue PIC12F609/615/617/12HV609/615 DS41302D-page 26  2010 Microchip Technology Inc. FIGURE 2-6: DIRECT/INDIRECT ADDRESSING PIC12F609/615/617/12HV609/615 Note 1: The RP1 and IRP bits are reserved; always maintain these bits clear. 2: Accesses in this area are mirrored back into Bank 0 and Bank 1. Data Memory Direct Addressing Indirect Addressing Bank Select Location Select RP1(1) RP0 6 From Opcode 0 IRP(1) 7 File Select Register 0 Bank Select Location Select 00 01 10 11 180h 1FFh 00h 7Fh Bank 0 Bank 1 Bank 2 Bank 3 NOT USED(2) For memory map detail, see Figure 2-3.  2010 Microchip Technology Inc. DS41302D-page 27 PIC12F609/615/617/12HV609/615 3.0 FLASH PROGRAM MEMORY SELF READ/SELF WRITE CONTROL (FOR PIC12F617 ONLY) The Flash program memory is readable and writable during normal operation (full VDD range). This memory is not directly mapped in the register file space. Instead, it is indirectly addressed through the Special Function Registers (see Registers 3-1 to 3-5). There are six SFRs used to read and write this memory: • PMCON1 • PMCON2 • PMDATL • PMDATH • PMADRL • PMADRH When interfacing the program memory block, the PMDATL and PMDATH registers form a two-byte word which holds the 14-bit data for read/write, and the PMADRL and PMADRH registers form a two-byte word which holds the 13-bit address of the Flash location being accessed. These devices have 2K words of program Flash with an address range from 0000h to 07FFh. The program memory allows single word read and a by four word write. A four word write automatically erases the row of the location and writes the new data (erase before write). The write time is controlled by an on-chip timer. The write/erase voltages are generated by an on-chip charge pump rated to operate over the voltage range of the device for byte or word operations. When the device is code-protected, the CPU may continue to read and write the Flash program memory. Depending on the settings of the Flash Program Memory Enable (WRT<1:0>) bits, the device may or may not be able to write certain blocks of the program memory, however, reads of the program memory are allowed. When the Flash program memory Code Protection (CP) bit in the Configuration Word register is enabled, the program memory is code-protected, and the device programmer (ICSP™) cannot access data or program memory. 3.1 PMADRH and PMADRL Registers The PMADRH and PMADRL registers can address up to a maximum of 8K words of program memory. When selecting a program address value, the Most Significant Byte (MSB) of the address is written to the PMADRH register and the Least Significant Byte (LSB) is written to the PMADRL register. 3.2 PMCON1 and PMCON2 Registers PMCON1 is the control register for the data program memory accesses. Control bits RD and WR initiate read and write, respectively. These bits cannot be cleared, only set in software. They are cleared in hardware at completion of the read or write operation. The inability to clear the WR bit in software prevents the accidental premature termination of a write operation. The WREN bit, when set, will allow a write operation. On power-up, the WREN bit is clear. PMCON2 is not a physical register. Reading PMCON2 will read all ‘0’s. The PMCON2 register is used exclusively in the Flash memory write sequence. PIC12F609/615/617/12HV609/615 DS41302D-page 28  2010 Microchip Technology Inc. REGISTER 3-1: PMDATL: PROGRAM MEMORY DATA REGISTER REGISTER 3-2: PMADRL: PROGRAM MEMORY ADDRESS REGISTER REGISTER 3-3: PMDATH: PROGRAM MEMORY DATA HIGH BYTE REGISTER REGISTER 3-4: PMADRH: PROGRAM MEMORY ADDRESS HIGH BYTE REGISTER R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 PMDATL7 PMDATL6 PMDATL5 PMDATL4 PMDATL3 PMDATL2 PMDATL1 PMDATL0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 7-0 PMDATL<7:0>: 8 Least Significant Address bits to Write or Read from Program Memory R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 PMADRL7 PMADRL6 PMADRL5 PMADRL4 PMADRL3 PMADRL2 PMADRL1 PMADRL0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 7-0 PMADRL<7:0>: 8 Least Significant Address bits for Program Memory Read/Write Operation U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 — — PMDATH5 PMDATH4 PMDATH3 PMDATH2 PMDATH1 PMDATH0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 7-6 Unimplemented: Read as ‘0’ bit 5-0 PMDATH<5:0>: 6 Most Significant Data bits from Program Memory U-0 U-0 U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 — — — — — PMADRH2 PMADRH1 PMADRH0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 3 Unimplemented: Read as ‘0’ bit 2-0 PMADRH<2:0>: Specifies the 3 Most Significant Address bits or high bits for program memory reads.  2010 Microchip Technology Inc. DS41302D-page 29 PIC12F609/615/617/12HV609/615 REGISTER 3-5: PMCON1 – PROGRAM MEMORY CONTROL REGISTER 1 (ADDRESS: 93h) U-1 U-0 U-0 U-0 U-0 R/W-0 R/S-0 R/S-0 — — — — — WREN WR RD bit 7 bit 0 bit 7 Unimplemented: Read as ‘1’ bit 6-3 Unimplemented: Read as ‘0’ bit 2 WREN: Program Memory Write Enable bit 1 = Allows write cycles 0 = Inhibits write to the EEPROM bit 1 WR: Write Control bit 1 = Initiates a write cycle to program memory. (The bit is cleared by hardware when write is complete. The WR bit can only be set (not cleared) in software.) 0 = Write cycle to the Flash memory is complete bit 0 RD: Read Control bit 1 = Initiates a program memory read (The read takes one cycle. The RD is cleared in hardware; the RD bit can only be set (not cleared) in software). 0 = Does not initiate a Flash memory read Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR 1 = bit is set 0 = bit is cleared x = bit is unknown PIC12F609/615/617/12HV609/615 DS41302D-page 30  2010 Microchip Technology Inc. 3.3 Reading the Flash Program Memory To read a program memory location, the user must write two bytes of the address to the PMADRL and PMADRH registers, and then set control bit RD (PMCON1<0>). Once the read control bit is set, the program memory Flash controller will use the second instruction cycle after to read the data. This causes the second instruction immediately following the “BSF PMCON1,RD” instruction to be ignored. The data is available in the very next cycle in the PMDATL and PMDATH registers; it can be read as two bytes in the following instructions. PMDATL and PMDATH registers will hold this value until another read or until it is written to by the user (during a write operation). EXAMPLE 3-1: FLASH PROGRAM READ BANKSEL PM_ADR ; Change STATUS bits RP1:0 to select bank with PMADRL MOVLW MS_PROG_PM_ADDR ; MOVWF PMADRH ; MS Byte of Program Address to read MOVLW LS_PROG_PM_ADDR ; MOVWF PMADRL ; LS Byte of Program Address to read BANKSEL PMCON1 ; Bank to containing PMCON1 BSF PMCON1, RD ; PM Read NOP ; First instruction after BSF PMCON1,RD executes normally NOP ; Any instructions here are ignored as program ; memory is read in second cycle after BSF PMCON1,RD ; BANKSEL PMDATL ; Bank to containing PMADRL MOVF PMDATL, W ; W = LS Byte of Program PMDATL MOVF PMDATH, W ; W = MS Byte of Program PMDATL  2010 Microchip Technology Inc. DS41302D-page 31 PIC12F609/615/617/12HV609/615 FIGURE 3-1: FLASH PROGRAM MEMORY READ CYCLE EXECUTION Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 BSF PMCON1,RD Executed here INSTR (PC + 1) Executed here NOP Executed here Flash ADDR PC PC + 1 PMADRH,PMADRL PC+3 PC + 5 RD bit INSTR (PC) PMDATH,PMDATL INSTR (PC + 3) PC + 3 PC + 4 INSTR (PC + 1) INSTR (PC + 4) INSTR (PC - 1) Executed here INSTR (PC + 3) Executed here INSTR (PC + 4) Executed here Flash DATA PMDATH PMDATL Register PMRHLT PIC12F609/615/617/12HV609/615 DS41302D-page 32  2010 Microchip Technology Inc. 3.4 Writing the Flash Program Memory A word of the Flash program memory may only be written to if the word is in an unprotected segment of memory. Flash program memory must be written in four-word blocks. See Figure 3-2 and Figure 3-3 for more details. A block consists of four words with sequential addresses, with a lower boundary defined by an address, where PMADRL<1:0> = 00. All block writes to program memory are done as 16-word erase by fourword write operations. The write operation is edgealigned and cannot occur across boundaries. To write program data, it must first be loaded into the buffer registers (see Figure 3-2). This is accomplished by first writing the destination address to PMADRL and PMADRH and then writing the data to PMDATL and PMDATH. After the address and data have been set up, then the following sequence of events must be executed: 1. Write 55h, then AAh, to PMCON2 (Flash programming sequence). 2. Set the WR control bit of the PMCON1 register. All four buffer register locations should be written to with correct data. If less than four words are being written to in the block of four words, then a read from the program memory location(s) not being written to must be performed. This takes the data from the program location(s) not being written and loads it into the PMDATL and PMDATH registers. Then the sequence of events to transfer data to the buffer registers must be executed. To transfer data from the buffer registers to the program memory, the PMADRL and PMADRH must point to the last location in the four-word block (PMADRL<1:0> = 11). Then the following sequence of events must be executed: 1. Write 55h, then AAh, to PMCON2 (Flash programming sequence). 2. Set control bit WR of the PMCON1 register to begin the write operation. The user must follow the same specific sequence to initiate the write for each word in the program block, writing each program word in sequence (000, 001, 010, 011). When the write is performed on the last word (PMADRL<1:0> = 11), a block of sixteen words is automatically erased and the content of the four-word buffer registers are written into the program memory. After the “BSF PMCON1,WR” instruction, the processor requires two cycles to set up the erase/write operation. The user must place two NOP instructions after the WR bit is set. Since data is being written to buffer registers, the writing of the first three words of the block appears to occur immediately. The processor will halt internal operations for the typical 4 ms, only during the cycle in which the erase takes place (i.e., the last word of the sixteen-word block erase). This is not Sleep mode as the clocks and peripherals will continue to run. After the four-word write cycle, the processor will resume operation with the third instruction after the PMCON1 write instruction. The above sequence must be repeated for the higher 12 words. 3.5 Protection Against Spurious Write There are conditions when the device should not write to the program memory. To protect against spurious writes, various mechanisms have been built in. On power-up, WREN is cleared. Also, the Power-up Timer (64 ms duration) prevents program memory writes. The write initiate sequence and the WREN bit help prevent an accidental write during brown-out, power glitch or software malfunction. 3.6 Operation During Code-Protect When the device is code-protected, the CPU is able to read and write unscrambled data to the program memory. The test mode access is disabled. 3.7 Operation During Write Protect When the program memory is write-protected, the CPU can read and execute from the program memory. The portions of program memory that are write protected can be modified by the CPU using the PMCON registers, but the protected program memory cannot be modified using ICSP mode.  2010 Microchip Technology Inc. DS41302D-page 33 PIC12F609/615/617/12HV609/615 FIGURE 3-2: BLOCK WRITES TO 2K FLASH PROGRAM MEMORY FIGURE 3-3: FLASH PROGRAM MEMORY LONG WRITE CYCLE EXECUTION 14 14 14 14 Program Memory Buffer Register PMADRL<1:0> = 00 Buffer Register PMADRL<1:0> = 01 Buffer Register PMADRL<1:0> = 10 Buffer Register PMADRL<1:0> = 11 PMDATH PMDATL 7 5 0 7 0 6 8 First word of block to be written If at a new row to Flash automatically after this word is written are transferred Flash are erased, then four buffers sixteen words of Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 BSF PMCON1,WR Executed here INSTR (PC + 1) Executed here Flash PC + 1 INSTR INSTR PMDATH,PMDATL INSTR (PC+3) NOP Executed here Flash Flash PMWHLT WR bit Processor halted PM Write Time PMADRH,PMADRL PC + 3 PC + 4 INSTR (PC + 3) Executed here ADDR DATA Memory Location ignored read PC + 2 INSTR (PC+2) (INSTR (PC + 2) NOP Executed here (PC) (PC + 1) PIC12F609/615/617/12HV609/615 DS41302D-page 34  2010 Microchip Technology Inc. An example of the complete four-word write sequence is shown in Example 3-2. The initial address is loaded into the PMADRH and PMADRL register pair; the eight words of data are loaded using indirect addressing. EXAMPLE 3-2: WRITING TO FLASH PROGRAM MEMORY ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ; This write routine assumes the following: ; A valid starting address (the least significant bits = '00') ; is loaded in ADDRH:ADDRL ; ADDRH, ADDRL and DATADDR are all located in data memory ; BANKSEL PMADRH MOVF ADDRH,W ; Load initial address MOVWF PMADRH ; MOVF ADDRL,W ; MOVWF PMADRL ; MOVF DATAADDR,W ; Load initial data address MOVWF FSR ; LOOP MOVF INDF,W ; Load first data byte into lower MOVWF PMDATL ; INCF FSR,F ; Next byte MOVF INDF,W ; Load second data byte into upper MOVWF PMDATH ; INCF FSR,F ; BANKSEL PMCON1 BSF PMCON1,WREN ; Enable writes BCF INTCON,GIE ; Disable interrupts (if using) BTFSC INTCON,GIE ; See AN576 GOTO $-2 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ; Required Sequence MOVLW 55h ; Start of required write sequence: MOVWF PMCON2 ; Write 55h MOVLW 0AAh ; MOVWF PMCON2 ; Write 0AAh BSF PMCON1,WR ; Set WR bit to begin write NOP ; Required to transfer data to the buffer NOP ; registers ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; BCF PMCON1,WREN ; Disable writes BSF INTCON,GIE ; Enable interrupts (comment out if not using interrupts) BANKSEL PMADRL MOVF PMADRL, W INCF PMADRL,F ; Increment address ANDLW 0x03 ; Indicates when sixteen words have been programmed SUBLW 0x03 ; 0x0F = 16 words ; 0x0B = 12 words ; 0x07 = 8 words ; 0x03 = 4 words BTFSS STATUS,Z ; Exit on a match, GOTO LOOP ; Continue if more data needs to be written  2010 Microchip Technology Inc. DS41302D-page 35 PIC12F609/615/617/12HV609/615 TABLE 3-1: SUMMARY OF REGISTERS ASSOCIATED WITH PROGRAM MEMORY Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Value on POR, BOR Value on all other Resets PMCON1 — — — — — WREN WR RD ---- -000 ---- -000 PMCON2 Program Memory Control Register 2 (not a physical register) ---- ---- ---- ---- PMADRL PMADRL7 PMADRL6 PMADRL5 PMADRL4 PMADRL3 PMADRL2 PMADRL1 PMADRL0 0000 0000 0000 0000 PMADRH — — — — — PMADRH2 PMADRH1 PMADRH0 ---- -000 ---- -000 PMDATL PMDATL7 PMDATL6 PMDATL5 PMDATL4 PMDATL3 PMDATL2 PMDATL1 PMDATL0 0000 0000 0000 0000 PMDATH — — PMDATH5 PMDATH4 PMDATH3 PMDATH2 PMDATH1 PMDATH0 --00 0000 --00 0000 Legend: x = unknown, u = unchanged, — = unimplemented read as ‘0’, q = value depends upon condition. Shaded cells are not used by Program Memory module. PIC12F609/615/617/12HV609/615 DS41302D-page 36  2010 Microchip Technology Inc. NOTES:  2010 Microchip Technology Inc. DS41302D-page 37 PIC12F609/615/617/12HV609/615 4.0 OSCILLATOR MODULE 4.1 Overview The Oscillator module has a wide variety of clock sources and selection features that allow it to be used in a wide range of applications while maximizing performance and minimizing power consumption. Figure 4-1 illustrates a block diagram of the Oscillator module. Clock sources can be configured from external oscillators, quartz crystal resonators, ceramic resonators and Resistor-Capacitor (RC) circuits. In addition, the system clock source can be configured with a choice of two selectable speeds: internal or external system clock source. The Oscillator module can be configured in one of eight clock modes. 3. EC – External clock with I/O on OSC2/CLKOUT. 4. LP – 32 kHz Low-Power Crystal mode. 5. XT – Medium Gain Crystal or Ceramic Resonator Oscillator mode. 6. HS – High Gain Crystal or Ceramic Resonator mode. 7. RC – External Resistor-Capacitor (RC) with FOSC/4 output on OSC2/CLKOUT. 8. RCIO – External Resistor-Capacitor (RC) with I/O on OSC2/CLKOUT. 9. INTOSC – Internal oscillator with FOSC/4 output on OSC2 and I/O on OSC1/CLKIN. 10. INTOSCIO – Internal oscillator with I/O on OSC1/CLKIN and OSC2/CLKOUT. Clock Source modes are configured by the FOSC<2:0> bits in the Configuration Word register (CONFIG). The Internal Oscillator module provides a selectable system clock mode of either 4 MHz (Postscaler) or 8 MHz (INTOSC). FIGURE 4-1: PIC® MCU CLOCK SOURCE BLOCK DIAGRAM (CPU and Peripherals) OSC1 OSC2 Sleep External Oscillator LP, XT, HS, RC, RCIO, EC System Clock MUX FOSC<2:0> (Configuration Word Register) Internal Oscillator INTOSC 8 MHz Postscaler 4 MHz INTOSC IOSCFS<7> PIC12F609/615/617/12HV609/615 DS41302D-page 38  2010 Microchip Technology Inc. 4.2 Clock Source Modes Clock Source modes can be classified as external or internal. • External Clock modes rely on external circuitry for the clock source. Examples are: Oscillator modules (EC mode), quartz crystal resonators or ceramic resonators (LP, XT and HS modes) and Resistor-Capacitor (RC) mode circuits. • Internal clock sources are contained internally within the Oscillator module. The Oscillator module has two selectable clock frequencies: 4 MHz and 8 MHz The system clock can be selected between external or internal clock sources via the FOSC<2:0> bits of the Configuration Word register. 4.3 External Clock Modes 4.3.1 OSCILLATOR START-UP TIMER (OST) If the Oscillator module is configured for LP, XT or HS modes, the Oscillator Start-up Timer (OST) counts 1024 oscillations from OSC1. This occurs following a Power-on Reset (POR) and when the Power-up Timer (PWRT) has expired (if configured), or a wake-up from Sleep. During this time, the program counter does not increment and program execution is suspended. The OST ensures that the oscillator circuit, using a quartz crystal resonator or ceramic resonator, has started and is providing a stable system clock to the Oscillator module. When switching between clock sources, a delay is required to allow the new clock to stabilize. These oscillator delays are shown in Table 4-1. TABLE 4-1: OSCILLATOR DELAY EXAMPLES 4.3.2 EC MODE The External Clock (EC) mode allows an externally generated logic level as the system clock source. When operating in this mode, an external clock source is connected to the OSC1 input and the OSC2 is available for general purpose I/O. Figure 4-2 shows the pin connections for EC mode. The Oscillator Start-up Timer (OST) is disabled when EC mode is selected. Therefore, there is no delay in operation after a Power-on Reset (POR) or wake-up from Sleep. Because the PIC® MCU design is fully static, stopping the external clock input will have the effect of halting the device while leaving all data intact. Upon restarting the external clock, the device will resume operation as if no time had elapsed. FIGURE 4-2: EXTERNAL CLOCK (EC) MODE OPERATION Switch From Switch To Frequency Oscillator Delay Sleep/POR INTOSC 125 kHz to 8 MHz Oscillator Warm-Up Delay (TWARM) Sleep/POR EC, RC DC – 20 MHz 2 instruction cycles Sleep/POR LP, XT, HS 32 kHz to 20 MHz 1024 Clock Cycles (OST) OSC1/CLKIN I/O OSC2/CLKOUT(1) Clock from Ext. System PIC® MCU Note 1: Alternate pin functions are listed in the Section 1.0 “Device Overview”.  2010 Microchip Technology Inc. DS41302D-page 39 PIC12F609/615/617/12HV609/615 4.3.3 LP, XT, HS MODES The LP, XT and HS modes support the use of quartz crystal resonators or ceramic resonators connected to OSC1 and OSC2 (Figure 4-3). The mode selects a low, medium or high gain setting of the internal inverteramplifier to support various resonator types and speed. LP Oscillator mode selects the lowest gain setting of the internal inverter-amplifier. LP mode current consumption is the least of the three modes. This mode is designed to drive only 32.768 kHz tuning-fork type crystals (watch crystals). XT Oscillator mode selects the intermediate gain setting of the internal inverter-amplifier. XT mode current consumption is the medium of the three modes. This mode is best suited to drive resonators with a medium drive level specification. HS Oscillator mode selects the highest gain setting of the internal inverter-amplifier. HS mode current consumption is the highest of the three modes. This mode is best suited for resonators that require a high drive setting. Figure 4-3 and Figure 4-4 show typical circuits for quartz crystal and ceramic resonators, respectively. FIGURE 4-3: QUARTZ CRYSTAL OPERATION (LP, XT OR HS MODE) FIGURE 4-4: CERAMIC RESONATOR OPERATION (XT OR HS MODE) Note 1: A series resistor (RS) may be required for quartz crystals with low drive level. 2: The value of RF varies with the Oscillator mode selected (typically between 2 M to 10 M. C1 C2 Quartz RS(1) OSC1/CLKIN RF(2) Sleep To Internal Logic PIC® MCU Crystal OSC2/CLKOUT Note 1: Quartz crystal characteristics vary according to type, package and manufacturer. The user should consult the manufacturer data sheets for specifications and recommended application. 2: Always verify oscillator performance over the VDD and temperature range that is expected for the application. 3: For oscillator design assistance, reference the following Microchip Applications Notes: • AN826, “Crystal Oscillator Basics and Crystal Selection for rfPIC® and PIC® Devices” (DS00826) • AN849, “Basic PIC® Oscillator Design” (DS00849) • AN943, “Practical PIC® Oscillator Analysis and Design” (DS00943) • AN949, “Making Your Oscillator Work” (DS00949) Note 1: A series resistor (RS) may be required for ceramic resonators with low drive level. 2: The value of RF varies with the Oscillator mode selected (typically between 2 M to 10 M. 3: An additional parallel feedback resistor (RP) may be required for proper ceramic resonator operation. C1 C2 Ceramic RS(1) OSC1/CLKIN RF(2) Sleep To Internal Logic PIC® MCU RP(3) Resonator OSC2/CLKOUT PIC12F609/615/617/12HV609/615 DS41302D-page 40  2010 Microchip Technology Inc. 4.3.4 EXTERNAL RC MODES The external Resistor-Capacitor (RC) modes support the use of an external RC circuit. This allows the designer maximum flexibility in frequency choice while keeping costs to a minimum when clock accuracy is not required. There are two modes: RC and RCIO. In RC mode, the RC circuit connects to OSC1. OSC2/ CLKOUT outputs the RC oscillator frequency divided by 4. This signal may be used to provide a clock for external circuitry, synchronization, calibration, test or other application requirements. Figure 4-5 shows the external RC mode connections. FIGURE 4-5: EXTERNAL RC MODES In RCIO mode, the RC circuit is connected to OSC1. OSC2 becomes an additional general purpose I/O pin. The RC oscillator frequency is a function of the supply voltage, the resistor (REXT) and capacitor (CEXT) values and the operating temperature. Other factors affecting the oscillator frequency are: • threshold voltage variation • component tolerances • packaging variations in capacitance The user also needs to take into account variation due to tolerance of external RC components used. 4.4 Internal Clock Modes The Oscillator module provides a selectable system clock source of either 4 MHz or 8 MHz. The selectable frequency is configured through the IOSCFS bit of the Configuration Word. The frequency of the internal oscillator can be trimmed with a calibration value in the OSCTUNE register. 4.4.1 INTOSC AND INTOSCIO MODES The INTOSC and INTOSCIO modes configure the internal oscillators as the system clock source when the device is programmed using the oscillator selection or the FOSC<2:0> bits in the Configuration Word register (CONFIG). See Section 12.0 “Special Features of the CPU” for more information. In INTOSC mode, OSC1/CLKIN is available for general purpose I/O. OSC2/CLKOUT outputs the selected internal oscillator frequency divided by 4. The CLKOUT signal may be used to provide a clock for external circuitry, synchronization, calibration, test or other application requirements. In INTOSCIO mode, OSC1/CLKIN and OSC2/CLKOUT are available for general purpose I/O. OSC2/CLKOUT(1) CEXT REXT PIC® MCU OSC1/CLKIN FOSC/4 or Internal Clock VDD VSS Recommended values: 10 k  REXT  100 k, <3V 3 k  REXT  100 k, 3-5V CEXT > 20 pF, 2-5V Note 1: Alternate pin functions are listed in Section 1.0 “Device Overview”. 2: Output depends upon RC or RCIO Clock mode. I/O(2)  2010 Microchip Technology Inc. DS41302D-page 41 PIC12F609/615/617/12HV609/615 4.4.1.1 OSCTUNE Register The oscillator is factory calibrated but can be adjusted in software by writing to the OSCTUNE register (Register 4-1). The default value of the OSCTUNE register is ‘0’. The value is a 5-bit two’s complement number. When the OSCTUNE register is modified, the frequency will begin shifting to the new frequency. Code execution continues during this shift. There is no indication that the shift has occurred. TABLE 4-2: SUMMARY OF REGISTERS ASSOCIATED WITH CLOCK SOURCES REGISTER 4-1: OSCTUNE: OSCILLATOR TUNING REGISTER U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 — — — TUN4 TUN3 TUN2 TUN1 TUN0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 7-5 Unimplemented: Read as ‘0’ bit 4-0 TUN<4:0>: Frequency Tuning bits 01111 = Maximum frequency 01110 = ••• 00001 = 00000 = Oscillator module is running at the calibrated frequency. 11111 = ••• 10000 = Minimum frequency Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Value on POR, BOR Value on all other Resets(1) CONFIG(2) IOSCFS CP MCLRE PWRTE WDTE FOSC2 FOSC1 FOSC0 — — OSCTUNE — — — TUN4 TUN3 TUN2 TUN1 TUN0 ---0 0000 ---u uuuu Legend: x = unknown, u = unchanged, – = unimplemented locations read as ‘0’. Shaded cells are not used by oscillators. Note 1: Other (non Power-up) Resets include MCLR Reset and Watchdog Timer Reset during normal operation. 2: See Configuration Word register (Register 12-1) for operation of all register bits. PIC12F609/615/617/12HV609/615 DS41302D-page 42  2010 Microchip Technology Inc. NOTES:  2010 Microchip Technology Inc. DS41302D-page 43 PIC12F609/615/617/12HV609/615 5.0 I/O PORT There are as many as six general purpose I/O pins available. Depending on which peripherals are enabled, some or all of the pins may not be available as general purpose I/O. In general, when a peripheral is enabled, the associated pin may not be used as a general purpose I/O pin. 5.1 GPIO and the TRISIO Registers GPIO is a 6-bit wide port with 5 bidirectional and 1 inputonly pin. The corresponding data direction register is TRISIO (Register 5-2). Setting a TRISIO bit (= 1) will make the corresponding GPIO pin an input (i.e., disable the output driver). Clearing a TRISIO bit (= 0) will make the corresponding GPIO pin an output (i.e., enables output driver and puts the contents of the output latch on the selected pin). The exception is GP3, which is input only and its TRIS bit will always read as ‘1’. Example 5- 1 shows how to initialize GPIO. Reading the GPIO register (Register 5-1) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch. GP3 reads ‘0’ when MCLRE = 1. The TRISIO register controls the direction of the GPIO pins, even when they are being used as analog inputs. The user must ensure the bits in the TRISIO register are maintained set when using them as analog inputs. I/O pins configured as analog input always read ‘0’. EXAMPLE 5-1: INITIALIZING GPIO Note: GPIO = PORTA TRISIO = TRISA Note: The ANSEL register must be initialized to configure an analog channel as a digital input. Pins configured as analog inputs will read ‘0’ and cannot generate an interrupt. BANKSEL GPIO ; CLRF GPIO ;Init GPIO BANKSEL ANSEL ; CLRF ANSEL ;digital I/O, ADC clock ;setting ‘don’t care’ MOVLW 0Ch ;Set GP<3:2> as inputs MOVWF TRISIO ;and set GP<5:4,1:0> ;as outputs REGISTER 5-1: GPIO: GPIO REGISTER U-0 U-0 R/W-x R/W-x R-x R/W-x R/W-x R/W-x — — GP5 GP4 GP3 GP2 GP1 GP0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 7-6 Unimplemented: Read as ‘0’ bit 5-0 GP<5:0>: GPIO I/O Pin bit 1 = GPIO pin is > VIH 0 = GPIO pin is < VIL PIC12F609/615/617/12HV609/615 DS41302D-page 44  2010 Microchip Technology Inc. 5.2 Additional Pin Functions Every GPIO pin on the PIC12F609/615/617/12HV609/ 615 has an interrupt-on-change option and a weak pullup option. The next three sections describe these functions. 5.2.1 ANSEL REGISTER The ANSEL register is used to configure the Input mode of an I/O pin to analog. Setting the appropriate ANSEL bit high will cause all digital reads on the pin to be read as ‘0’ and allow analog functions on the pin to operate correctly. The state of the ANSEL bits has no affect on digital output functions. A pin with TRIS clear and ANSEL set will still operate as a digital output, but the Input mode will be analog. This can cause unexpected behavior when executing read-modify-write instructions on the affected port. 5.2.2 WEAK PULL-UPS Each of the GPIO pins, except GP3, has an individually configurable internal weak pull-up. Control bits WPUx enable or disable each pull-up. Refer to Register 5-5. Each weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on a Power-on Reset by the GPPU bit of the OPTION register). A weak pull-up is automatically enabled for GP3 when configured as MCLR and disabled when GP3 is an I/O. There is no software control of the MCLR pull-up. 5.2.3 INTERRUPT-ON-CHANGE Each GPIO pin is individually configurable as an interrupt-on-change pin. Control bits IOCx enable or disable the interrupt function for each pin. Refer to Register 5-6. The interrupt-on-change is disabled on a Power-on Reset. For enabled interrupt-on-change pins, the values are compared with the old value latched on the last read of GPIO. The ‘mismatch’ outputs of the last read are OR’d together to set the GPIO Change Interrupt Flag bit (GPIF) in the INTCON register (Register 2-3). This interrupt can wake the device from Sleep. The user, in the Interrupt Service Routine, clears the interrupt by: a) Any read of GPIO AND Clear flag bit GPIF. This will end the mismatch condition; OR b) Any write of GPIO AND Clear flag bit GPIF will end the mismatch condition; A mismatch condition will continue to set flag bit GPIF. Reading GPIO will end the mismatch condition and allow flag bit GPIF to be cleared. The latch holding the last read value is not affected by a MCLR nor BOR Reset. After these resets, the GPIF flag will continue to be set if a mismatch is present. REGISTER 5-2: TRISIO: GPIO TRI-STATE REGISTER U-0 U-0 R/W-1 R/W-1 R-1 R/W-1 R/W-1 R/W-1 — — TRISIO5 TRISIO4 TRISIO3 TRISIO2 TRISIO1 TRISIO0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 7-6 Unimplemented: Read as ‘0’ bit 5-0 TRISIO<5:0>: GPIO Tri-State Control bit 1 = GPIO pin configured as an input (tri-stated) 0 = GPIO pin configured as an output Note 1: TRISIO<3> always reads ‘1’. 2: TRISIO<5:4> always reads ‘1’ in XT, HS and LP Oscillator modes. Note: If a change on the I/O pin should occur when any GPIO operation is being executed, then the GPIF interrupt flag may not get set.  2010 Microchip Technology Inc. DS41302D-page 45 PIC12F609/615/617/12HV609/615 REGISTER 5-3: ANSEL: ANALOG SELECT REGISTER (PIC12F609/HV609) U-0 U-0 U-0 U-0 R/W-1 U-0 R/W-1 R/W-1 — — — — ANS3 — ANS1 ANS0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 7-4 Unimplemented: Read as ‘0’ bit 3 ANS3: Analog Select Between Analog or Digital Function on Pin GP4 1 = Analog input. Pin is assigned as analog input(1). 0 = Digital I/O. Pin is assigned to port or special function. bit 2 Unimplemented: Read as ‘0’ bit 1 ANS1: Analog Select Between Analog or Digital Function on Pin GP1 1 = Analog input. Pin is assigned as analog input.(1) 0 = Digital I/O. Pin is assigned to port or special function. bit 0 ANS0: Analog Select Between Analog or Digital Function on Pin GP0 0 = Digital I/O. Pin is assigned to port or special function. 1 = Analog input. Pin is assigned as analog input.(1) Note 1: Setting a pin to an analog input automatically disables the digital input circuitry, weak pull-ups, and interrupt-onchange if available. The corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin. REGISTER 5-4: ANSEL: ANALOG SELECT REGISTER (PIC12F615/617/HV615) U-0 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 — ADCS2 ADCS1 ADCS0 ANS3 ANS2 ANS1 ANS0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 7 Unimplemented: Read as ‘0’ bit 6-4 ADCS<2:0>: A/D Conversion Clock Select bits 000 = FOSC/2 001 = FOSC/8 010 = FOSC/32 x11 = FRC (clock derived from a dedicated internal oscillator = 500 kHz max) 100 = FOSC/4 101 = FOSC/16 110 = FOSC/64 bit 3-0 ANS<3:0>: Analog Select Between Analog or Digital Function on Pins GP4, GP2, GP1, GP0, respectively. 1 = Analog input. Pin is assigned as analog input(1). 0 = Digital I/O. Pin is assigned to port or special function. Note 1: Setting a pin to an analog input automatically disables the digital input circuitry, weak pull-ups, and interrupt-onchange if available. The corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin. PIC12F609/615/617/12HV609/615 DS41302D-page 46  2010 Microchip Technology Inc. REGISTER 5-5: WPU: WEAK PULL-UP GPIO REGISTER U-0 U-0 R/W-1 R/W-1 U-0 R/W-1 R/W-1 R/W-1 — — WPU5 WPU4 — WPU2 WPU1 WPU0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 7-6 Unimplemented: Read as ‘0’ bit 5-4 WPU<5:4>: Weak Pull-up Control bits 1 = Pull-up enabled 0 = Pull-up disabled bit 3 WPU<3>: Weak Pull-up Register bit(3) bit 2-0 WPU<2:0>: Weak Pull-up Control bits 1 = Pull-up enabled 0 = Pull-up disabled Note 1: Global GPPU must be enabled for individual pull-ups to be enabled. 2: The weak pull-up device is automatically disabled if the pin is in Output mode (TRISIO = 0). 3: The GP3 pull-up is enabled when configured as MCLR in the Configuration Word, otherwise it is disabled as an input and reads as ‘0’. 4: WPU<5:4> always reads ‘1’ in XT, HS and LP Oscillator modes. REGISTER 5-6: IOC: INTERRUPT-ON-CHANGE GPIO REGISTER U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 — — IOC5 IOC4 IOC3 IOC2 IOC1 IOC0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 7-6 Unimplemented: Read as ‘0’ bit 5-0 IOC<5:0>: Interrupt-on-change GPIO Control bit 1 = Interrupt-on-change enabled 0 = Interrupt-on-change disabled Note 1: Global Interrupt Enable (GIE) must be enabled for individual interrupts to be recognized. 2: IOC<5:4> always reads ‘1’ in XT, HS and LP Oscillator modes.  2010 Microchip Technology Inc. DS41302D-page 47 PIC12F609/615/617/12HV609/615 5.2.4 PIN DESCRIPTIONS AND DIAGRAMS Each GPIO pin is multiplexed with other functions. The pins and their combined functions are briefly described here. For specific information about individual functions such as the Comparator or the ADC, refer to the appropriate section in this data sheet. 5.2.4.1 GP0/AN0(1)/CIN+/P1B(1)/ICSPDAT Figure 5-1 shows the diagram for this pin. The GP0 pin is configurable to function as one of the following: • a general purpose I/O • an analog input for the ADC(1) • an analog non-inverting input to the comparator • a PWM output(1) • In-Circuit Serial Programming data 5.2.4.2 GP1/AN1(1)/CIN0-/VREF(1)/ICSPCLK Figure 5-1 shows the diagram for this pin. The GP1 pin is configurable to function as one of the following: • a general purpose I/O • an analog input for the ADC(1) • an analog inverting input to the comparator • a voltage reference input for the ADC(1) • In-Circuit Serial Programming clock FIGURE 5-1: BLOCK DIAGRAM OF GP<1:0> Note 1: PIC12F615/617/HV615 only. VDD VSS D CK Q Q D CK Q Q D CK Q Q D CK Q Q VDD D EN Q D EN Q Weak RD GPIO RD WR WR RD WR IOC RD IOC Interrupt-on- To Comparator Analog(1) Input Mode GPPU Analog(1) Input Mode Change Q1 WR RD WPU Data Bus WPU GPIO TRISIO TRISIO GPIO Note 1: Comparator mode and ANSEL determines Analog Input mode. 2: Set has priority over Reset. 3: PIC12F615/617/HV615 only. To A/D Converter(3) I/O Pin S(2) R Q From other GP<5:0> pins (GP0) Write ‘0’ to GBIF GP<5:2, 0> pins (GP1) PIC12F609/615/617/12HV609/615 DS41302D-page 48  2010 Microchip Technology Inc. 5.2.4.3 GP2/AN2(1)/T0CKI/INT/COUT/ CCP1(1)/P1A(1) Figure 5-2 shows the diagram for this pin. The GP2 pin is configurable to function as one of the following: • a general purpose I/O • an analog input for the ADC(1) • the clock input for TMR0 • an external edge triggered interrupt • a digital output from Comparator • a Capture input/Compare input/PWM output(1) • a PWM output(1) FIGURE 5-2: BLOCK DIAGRAM OF GP2 Note 1: PIC12F615/617/HV615 only. VDD VSS D CK Q Q D CK Q Q D CK Q Q D CK Q Q VDD D EN Q D EN Q Weak RD GPIO RD WR WR RD WR IOC RD IOC Interrupt-on- To INT Analog(1) Input Mode GPPU Analog(1) Input Mode Change Q1 WR RD WPU Data Bus WPU GPIO TRISIO TRISIO GPIO Note 1: Comparator mode and ANSEL determines Analog Input mode. 2: Set has priority over Reset. 3: PIC12F615/617/HV615 only. To A/D Converter(3) I/O Pin S(2) R Q From other GP<5:3, 1:0> pins Write ‘0’ to GBIF 0 C1OE 1 C1OE Enable To Timer0  2010 Microchip Technology Inc. DS41302D-page 49 PIC12F609/615/617/12HV609/615 5.2.4.4 GP3/T1G(1, 2)/MCLR/VPP Figure 5-3 shows the diagram for this pin. The GP3 pin is configurable to function as one of the following: • a general purpose input • a Timer1 gate (count enable), alternate pin(1, 2) • as Master Clear Reset with weak pull-up FIGURE 5-3: BLOCK DIAGRAM OF GP3 Note 1: Alternate pin function. 2: PIC12F615/617/HV615 only. VSS D CK Q Q D EN Q Data Bus RD GPIO RD GPIO WR IOC RD IOC Reset MCLRE RD TRISIO VSS D EN Q MCLRE VDD MCLRE Weak Q1 Input Pin Interrupt-on- Change S(1) R Q From other Write ‘0’ to GBIF Note 1: Set has priority over Reset GP<5:4, 2:0> pins PIC12F609/615/617/12HV609/615 DS41302D-page 50  2010 Microchip Technology Inc. 5.2.4.5 GP4/AN3(2)/CIN1-/T1G/ P1B(1, 2)/OSC2/CLKOUT Figure 5-4 shows the diagram for this pin. The GP4 pin is configurable to function as one of the following: • a general purpose I/O • an analog input for the ADC(2) • Comparator inverting input • a Timer1 gate (count enable) • PWM output, alternate pin(1, 2) • a crystal/resonator connection • a clock output FIGURE 5-4: BLOCK DIAGRAM OF GP4 Note 1: Alternate pin function. 2: PIC12F615/617/HV615 only. VDD VSS D CK Q Q D CK Q Q D CK Q Q D CK Q Q VDD D EN Q D EN Q Weak Analog Input Mode Data Bus WR WPU RD WPU RD GPIO WR GPIO WR TRISIO RD TRISIO WR IOC RD IOC FOSC/4 To A/D Converter(5) Oscillator Circuit OSC1 CLKOUT 0 1 CLKOUT Enable Enable Analog(3) Input Mode GPPU RD GPIO To T1G INTOSC/ RC/EC(2) CLK(1) Modes CLKOUT Enable Note 1: CLK modes are XT, HS, LP, TMR1 LP and CLKOUT Enable. 2: With CLKOUT option. 3: Analog Input mode comes from ANSEL. 4: Set has priority over Reset. 5: PIC12F615/617/HV615 only. Q1 I/O Pin Interrupt-on- Change S(4) R Q From other Write ‘0’ to GBIF GP<5, 3:0> pins  2010 Microchip Technology Inc. DS41302D-page 51 PIC12F609/615/617/12HV609/615 5.2.4.6 GP5/T1CKI/P1A(1, 2)/OSC1/CLKIN Figure 5-5 shows the diagram for this pin. The GP5 pin is configurable to function as one of the following: • a general purpose I/O • a Timer1 clock input • PWM output, alternate pin(1, 2) • a crystal/resonator connection • a clock input FIGURE 5-5: BLOCK DIAGRAM OF GP5 Note 1: Alternate pin function. 2: PIC12F615/617/HV615 only. VDD VSS D CK Q Q D CK Q Q D CK Q Q D CK Q Q VDD D EN Q D EN Q Weak Data Bus WR WPU RD WPU RD GPIO WR GPIO WR TRISIO RD TRISIO WR IOC RD IOC To Timer1 INTOSC Mode RD GPIO INTOSC Mode GPPU OSC2 Note 1: Timer1 LP Oscillator enabled. 2: Set has priority over Reset. TMR1LPEN(1) Oscillator Circuit Q1 I/O Pin Interrupt-on- Change S(2) R Q From other GP<4:0> pins Write ‘0’ to GBIF PIC12F609/615/617/12HV609/615 DS41302D-page 52  2010 Microchip Technology Inc. TABLE 5-1: SUMMARY OF REGISTERS ASSOCIATED WITH GPIO Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Value on POR, BOR Value on all other Resets ANSEL — ADCS2(1) ADCS1(1) ADCS0(1) ANS3 ANS2(1) ANS1 ANS0 -000 1111 -000 1111 CMCON0 CMON COUT CMOE CMPOL — CMR — CMCH 0000 -0-0 0000 -0-0 INTCON GIE PEIE T0IE INTE GPIE T0IF INTF GPIF 0000 0000 0000 0000 IOC — — IOC5 IOC4 IOC3 IOC2 IOC1 IOC0 --00 0000 --00 0000 OPTION_REG GPPU INTEDG T0CS T0SE PSA PS2 PS1 PS0 1111 1111 1111 1111 GPIO — — GP5 GP4 GP3 GP2 GP1 GP0 --xx xxxx --u0 u000 TRISIO — — TRISIO5 TRISIO4 TRISIO3 TRISIO2 TRISIO1 TRISIO0 --11 1111 --11 1111 WPU — — WPU5 WPU4 WPU3 WPU2 WPU1 WPU0 --11 1111 --11 -111 T1CON T1GINV TMR1GE TICKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON 0000 0000 uuuu uuuu CCP1CON(1) P1M — DC1B1 DC1B0 CCP1M3 CCP1M2 CCP1M1 CCP1M0 0-00 0000 0-00 0000 APFCON(1) — — — T1GSEL — — P1BSEL P1ASEL ---0 --00 ---0 --00 Legend: x = unknown, u = unchanged, – = unimplemented locations read as ‘0’. Shaded cells are not used by GPIO. Note 1: PIC12F615/617/HV615 only.  2010 Microchip Technology Inc. DS41302D-page 53 PIC12F609/615/617/12HV609/615 6.0 TIMER0 MODULE The Timer0 module is an 8-bit timer/counter with the following features: • 8-bit timer/counter register (TMR0) • 8-bit prescaler (shared with Watchdog Timer) • Programmable internal or external clock source • Programmable external clock edge selection • Interrupt on overflow Figure 6-1 is a block diagram of the Timer0 module. 6.1 Timer0 Operation When used as a timer, the Timer0 module can be used as either an 8-bit timer or an 8-bit counter. 6.1.1 8-BIT TIMER MODE When used as a timer, the Timer0 module will increment every instruction cycle (without prescaler). Timer mode is selected by clearing the T0CS bit of the OPTION register to ‘0’. When TMR0 is written, the increment is inhibited for two instruction cycles immediately following the write. 6.1.2 8-BIT COUNTER MODE When used as a counter, the Timer0 module will increment on every rising or falling edge of the T0CKI pin. The incrementing edge is determined by the T0SE bit of the OPTION register. Counter mode is selected by setting the T0CS bit of the OPTION register to ‘1’. FIGURE 6-1: BLOCK DIAGRAM OF THE TIMER0/WDT PRESCALER Note: The value written to the TMR0 register can be adjusted, in order to account for the two instruction cycle delay when TMR0 is written. T0CKI T0SE pin TMR0 Watchdog Timer WDT Time-out PS<2:0> WDTE Data Bus Set Flag bit T0IF on Overflow T0CS Note 1: T0SE, T0CS, PSA, PS<2:0> are bits in the OPTION register. 2: WDTE bit is in the Configuration Word register. 0 1 0 1 0 1 8 8 8-bit Prescaler 0 1 FOSC/4 PSA PSA PSA Sync 2 TCY PIC12F609/615/617/12HV609/615 DS41302D-page 54  2010 Microchip Technology Inc. 6.1.3 SOFTWARE PROGRAMMABLE PRESCALER A single software programmable prescaler is available for use with either Timer0 or the Watchdog Timer (WDT), but not both simultaneously. The prescaler assignment is controlled by the PSA bit of the OPTION register. To assign the prescaler to Timer0, the PSA bit must be cleared to a ‘0’. There are 8 prescaler options for the Timer0 module ranging from 1:2 to 1:256. The prescale values are selectable via the PS<2:0> bits of the OPTION register. In order to have a 1:1 prescaler value for the Timer0 module, the prescaler must be assigned to the WDT module. The prescaler is not readable or writable. When assigned to the Timer0 module, all instructions writing to the TMR0 register will clear the prescaler. When the prescaler is assigned to WDT, a CLRWDT instruction will clear the prescaler along with the WDT. 6.1.3.1 Switching Prescaler Between Timer0 and WDT Modules As a result of having the prescaler assigned to either Timer0 or the WDT, it is possible to generate an unintended device Reset when switching prescaler values. When changing the prescaler assignment from Timer0 to the WDT module, the instruction sequence shown in Example 6-1, must be executed. EXAMPLE 6-1: CHANGING PRESCALER (TIMER0  WDT) When changing the prescaler assignment from the WDT to the Timer0 module, the following instruction sequence must be executed (see Example 6-2). EXAMPLE 6-2: CHANGING PRESCALER (WDT  TIMER0) 6.1.4 TIMER0 INTERRUPT Timer0 will generate an interrupt when the TMR0 register overflows from FFh to 00h. The T0IF interrupt flag bit of the INTCON register is set every time the TMR0 register overflows, regardless of whether or not the Timer0 interrupt is enabled. The T0IF bit must be cleared in software. The Timer0 interrupt enable is the T0IE bit of the INTCON register. 6.1.5 USING TIMER0 WITH AN EXTERNAL CLOCK When Timer0 is in Counter mode, the synchronization of the T0CKI input and the Timer0 register is accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the internal phase clocks. Therefore, the high and low periods of the external clock source must meet the timing requirements as shown in Section 16.0 “Electrical Specifications”. BANKSEL TMR0 ; CLRWDT ;Clear WDT CLRF TMR0 ;Clear TMR0 and ;prescaler BANKSEL OPTION_REG ; BSF OPTION_REG,PSA ;Select WDT CLRWDT ; ; MOVLW b’11111000’ ;Mask prescaler ANDWF OPTION_REG,W ;bits IORLW b’00000101’ ;Set WDT prescaler MOVWF OPTION_REG ;to 1:32 Note: The Timer0 interrupt cannot wake the processor from Sleep since the timer is frozen during Sleep. CLRWDT ;Clear WDT and ;prescaler BANKSEL OPTION_REG ; MOVLW b’11110000’ ;Mask TMR0 select and ANDWF OPTION_REG,W ;prescaler bits IORLW b’00000011’ ;Set prescale to 1:16 MOVWF OPTION_REG ;  2010 Microchip Technology Inc. DS41302D-page 55 PIC12F609/615/617/12HV609/615 TABLE 6-1: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER0 REGISTER 6-1: OPTION_REG: OPTION REGISTER R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 GPPU INTEDG T0CS T0SE PSA PS2 PS1 PS0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 7 GPPU: GPIO Pull-up Enable bit 1 = GPIO pull-ups are disabled 0 = GPIO pull-ups are enabled by individual PORT latch values in WPU register bit 6 INTEDG: Interrupt Edge Select bit 1 = Interrupt on rising edge of INT pin 0 = Interrupt on falling edge of INT pin bit 5 T0CS: TMR0 Clock Source Select bit 1 = Transition on T0CKI pin 0 = Internal instruction cycle clock (FOSC/4) bit 4 T0SE: TMR0 Source Edge Select bit 1 = Increment on high-to-low transition on T0CKI pin 0 = Increment on low-to-high transition on T0CKI pin bit 3 PSA: Prescaler Assignment bit 1 = Prescaler is assigned to the WDT 0 = Prescaler is assigned to the Timer0 module bit 2-0 PS<2:0>: Prescaler Rate Select bits 000 001 010 011 100 101 110 111 1 : 2 1 : 4 1 : 8 1 : 16 1 : 32 1 : 64 1 : 128 1 : 256 1 : 1 1 : 2 1 : 4 1 : 8 1 : 16 1 : 32 1 : 64 1 : 128 BIT VALUE TMR0 RATE WDT RATE Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Value on POR, BOR Value on all other Resets TMR0 Timer0 Module Register xxxx xxxx uuuu uuuu INTCON GIE PEIE T0IE INTE GPIE T0IF INTF GPIF 0000 000x 0000 000x OPTION_REG GPPU INTEDG T0CS T0SE PSA PS2 PS1 PS0 1111 1111 1111 1111 TRISIO — — TRISIO5 TRISIO4 TRISIO3 TRISIO2 TRISIO1 TRISIO0 --11 1111 --11 1111 Legend: – = Unimplemented locations, read as ‘0’, u = unchanged, x = unknown. Shaded cells are not used by the Timer0 module. PIC12F609/615/617/12HV609/615 DS41302D-page 56  2010 Microchip Technology Inc. NOTES:  2010 Microchip Technology Inc. DS41302D-page 57 PIC12F609/615/617/12HV609/615 7.0 TIMER1 MODULE WITH GATE CONTROL The Timer1 module is a 16-bit timer/counter with the following features: • 16-bit timer/counter register pair (TMR1H:TMR1L) • Programmable internal or external clock source • 3-bit prescaler • Optional LP oscillator • Synchronous or asynchronous operation • Timer1 gate (count enable) via comparator or T1G pin • Interrupt on overflow • Wake-up on overflow (external clock, Asynchronous mode only) • Time base for the Capture/Compare function • Special Event Trigger (with ECCP) • Comparator output synchronization to Timer1 clock Figure 7-1 is a block diagram of the Timer1 module. 7.1 Timer1 Operation The Timer1 module is a 16-bit incrementing counter which is accessed through the TMR1H:TMR1L register pair. Writes to TMR1H or TMR1L directly update the counter. When used with an internal clock source, the module is a timer. When used with an external clock source, the module can be used as either a timer or counter. 7.2 Clock Source Selection The TMR1CS bit of the T1CON register is used to select the clock source. When TMR1CS = 0, the clock source is FOSC/4. When TMR1CS = 1, the clock source is supplied externally. Clock Source TMR1CS T1ACS FOSC/4 0 0 FOSC 0 1 T1CKI pin 1 x PIC12F609/615/617/12HV609/615 DS41302D-page 58  2010 Microchip Technology Inc. FIGURE 7-1: TIMER1 BLOCK DIAGRAM TMR1H TMR1L Oscillator T1SYNC T1CKPS<1:0> FOSC/4 Internal Clock Prescaler 1, 2, 4, 8 1 0 0 1 Synchronized clock input 2 Set flag bit TMR1IF on Overflow TMR1(2) TMR1GE TMR1ON T1OSCEN 1 COUT 0 T1GSS T1GINV To Comparator Module Timer1 Clock TMR1CS OSC2/T1G OSC1/T1CKI Note 1: ST Buffer is low power type when using LP oscillator, or high speed type when using T1CKI. 2: Timer1 register increments on rising edge. 3: Synchronize does not operate while in Sleep. 4: Alternate pin function. 5: PIC12F615/617/HV615 only. (1) EN INTOSC Without CLKOUT 1 0 T1ACS FOSC 0 1 T1GSEL(2) GP3/T1G(4, 5) Synchronize(3) det  2010 Microchip Technology Inc. DS41302D-page 59 PIC12F609/615/617/12HV609/615 7.2.1 INTERNAL CLOCK SOURCE When the internal clock source is selected, the TMR1H:TMR1L register pair will increment on multiples of TCY as determined by the Timer1 prescaler. 7.2.2 EXTERNAL CLOCK SOURCE When the external clock source is selected, the Timer1 module may work as a timer or a counter. When counting, Timer1 is incremented on the rising edge of the external clock input T1CKI. In addition, the Counter mode clock can be synchronized to the microcontroller system clock or run asynchronously. If an external clock oscillator is needed (and the microcontroller is using the INTOSC without CLKOUT), Timer1 can use the LP oscillator as a clock source. In Counter mode, a falling edge must be registered by the counter prior to the first incrementing rising edge after one or more of the following conditions: • Timer1 is enabled after POR or BOR Reset • A write to TMR1H or TMR1L • T1CKI is high when Timer1 is disabled and when Timer1 is re-enabled T1CKI is low. See Figure 7-2. 7.3 Timer1 Prescaler Timer1 has four prescaler options allowing 1, 2, 4 or 8 divisions of the clock input. The T1CKPS bits of the T1CON register control the prescale counter. The prescale counter is not directly readable or writable; however, the prescaler counter is cleared upon a write to TMR1H or TMR1L. 7.4 Timer1 Oscillator A low-power 32.768 kHz crystal oscillator is built-in between pins OSC1 (input) and OSC2 (output). The oscillator is enabled by setting the T1OSCEN control bit of the T1CON register. The oscillator will continue to run during Sleep. The Timer1 oscillator is shared with the system LP oscillator. Thus, Timer1 can use this mode only when the primary system clock is derived from the internal oscillator or when in LP oscillator mode. The user must provide a software time delay to ensure proper oscillator start-up. TRISIO5 and TRISIO4 bits are set when the Timer1 oscillator is enabled. GP5 and GP4 bits read as ‘0’ and TRISIO5 and TRISIO4 bits read as ‘1’. 7.5 Timer1 Operation in Asynchronous Counter Mode If control bit T1SYNC of the T1CON register is set, the external clock input is not synchronized. The timer continues to increment asynchronous to the internal phase clocks. The timer will continue to run during Sleep and can generate an interrupt on overflow, which will wake-up the processor. However, special precautions in software are needed to read/write the timer (see Section 7.5.1 “Reading and Writing Timer1 in Asynchronous Counter Mode”). 7.5.1 READING AND WRITING TIMER1 IN ASYNCHRONOUS COUNTER MODE Reading TMR1H or TMR1L while the timer is running from an external asynchronous clock will ensure a valid read (taken care of in hardware). However, the user should keep in mind that reading the 16-bit timer in two 8-bit values itself poses certain problems, since the timer may overflow between the reads. For writes, it is recommended that the user simply stop the timer and write the desired values. A write contention may occur by writing to the timer registers, while the register is incrementing. This may produce an unpredictable value in the TMR1H:TTMR1L register pair. Note: The oscillator requires a start-up and stabilization time before use. Thus, T1OSCEN should be set and a suitable delay observed prior to enabling Timer1. Note: When switching from synchronous to asynchronous operation, it is possible to skip an increment. When switching from asynchronous to synchronous operation, it is possible to produce a single spurious increment. Note: In asynchronous counter mode or when using the internal oscillator and T1ACS=1, Timer1 can not be used as a time base for the capture or compare modes of the ECCP module (for PIC12F615/617/ HV615 only). PIC12F609/615/617/12HV609/615 DS41302D-page 60  2010 Microchip Technology Inc. 7.6 Timer1 Gate Timer1 gate source is software configurable to be the T1G pin (or the alternate T1G pin) or the output of the Comparator. This allows the device to directly time external events using T1G or analog events using the Comparator. See the CMCON1 Register (Register 9-2) for selecting the Timer1 gate source. This feature can simplify the software for a Delta-Sigma A/D converter and many other applications. For more information on Delta-Sigma A/D converters, see the Microchip web site (www.microchip.com). Timer1 gate can be inverted using the T1GINV bit of the T1CON register, whether it originates from the T1G pin or the Comparator output. This configures Timer1 to measure either the active-high or active-low time between events. 7.7 Timer1 Interrupt The Timer1 register pair (TMR1H:TMR1L) increments to FFFFh and rolls over to 0000h. When Timer1 rolls over, the Timer1 interrupt flag bit of the PIR1 register is set. To enable the interrupt on rollover, you must set these bits: • Timer1 interrupt enable bit of the PIE1 register • PEIE bit of the INTCON register • GIE bit of the INTCON register The interrupt is cleared by clearing the TMR1IF bit in the Interrupt Service Routine. 7.8 Timer1 Operation During Sleep Timer1 can only operate during Sleep when setup in Asynchronous Counter mode. In this mode, an external crystal or clock source can be used to increment the counter. To set up the timer to wake the device: • TMR1ON bit of the T1CON register must be set • TMR1IE bit of the PIE1 register must be set • PEIE bit of the INTCON register must be set The device will wake-up on an overflow and execute the next instruction. If the GIE bit of the INTCON register is set, the device will call the Interrupt Service Routine (0004h). 7.9 ECCP Capture/Compare Time Base (PIC12F615/617/HV615 only) The ECCP module uses the TMR1H:TMR1L register pair as the time base when operating in Capture or Compare mode. In Capture mode, the value in the TMR1H:TMR1L register pair is copied into the CCPR1H:CCPR1L register pair on a configured event. In Compare mode, an event is triggered when the value CCPR1H:CCPR1L register pair matches the value in the TMR1H:TMR1L register pair. This event can be a Special Event Trigger. For more information, see Section 11.0 “Enhanced Capture/Compare/PWM (With Auto-Shutdown and Dead Band) Module (PIC12F615/617/HV615 only)”. Note: TMR1GE bit of the T1CON register must be set to use either T1G or COUT as the Timer1 gate source. See Register 9-2 for more information on selecting the Timer1 gate source. Note: The TMR1H:TTMR1L register pair and the TMR1IF bit should be cleared before enabling interrupts.  2010 Microchip Technology Inc. DS41302D-page 61 PIC12F609/615/617/12HV609/615 7.10 ECCP Special Event Trigger (PIC12F615/617/HV615 only) If a ECCP is configured to trigger a special event, the trigger will clear the TMR1H:TMR1L register pair. This special event does not cause a Timer1 interrupt. The ECCP module may still be configured to generate a ECCP interrupt. In this mode of operation, the CCPR1H:CCPR1L register pair effectively becomes the period register for Timer1. Timer1 should be synchronized to the FOSC to utilize the Special Event Trigger. Asynchronous operation of Timer1 can cause a Special Event Trigger to be missed. In the event that a write to TMR1H or TMR1L coincides with a Special Event Trigger from the ECCP, the write will take precedence. For more information, see Section 11.0 “Enhanced Capture/Compare/PWM (With Auto-Shutdown and Dead Band) Module (PIC12F615/617/HV615 only)”. 7.11 Comparator Synchronization The same clock used to increment Timer1 can also be used to synchronize the comparator output. This feature is enabled in the Comparator module. When using the comparator for Timer1 gate, the comparator output should be synchronized to Timer1. This ensures Timer1 does not miss an increment if the comparator changes. For more information, see Section 9.0 “Comparator Module”. FIGURE 7-2: TIMER1 INCREMENTING EDGE T1CKI = 1 when TMR1 Enabled T1CKI = 0 when TMR1 Enabled Note 1: Arrows indicate counter increments. 2: In Counter mode, a falling edge must be registered by the counter prior to the first incrementing rising edge of the clock. PIC12F609/615/617/12HV609/615 DS41302D-page 62  2010 Microchip Technology Inc. 7.12 Timer1 Control Register The Timer1 Control register (T1CON), shown in Register 7-1, is used to control Timer1 and select the various features of the Timer1 module. REGISTER 7-1: T1CON: TIMER 1 CONTROL REGISTER R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 T1GINV(1) TMR1GE(2) T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 7 T1GINV: Timer1 Gate Invert bit(1) 1 = Timer1 gate is active-high (Timer1 counts when gate is high) 0 = Timer1 gate is active-low (Timer1 counts when gate is low) bit 6 TMR1GE: Timer1 Gate Enable bit(2) If TMR1ON = 0: This bit is ignored If TMR1ON = 1: 1 = Timer1 is on if Timer1 gate is active 0 = Timer1 is on bit 5-4 T1CKPS<1:0>: Timer1 Input Clock Prescale Select bits 11 = 1:8 Prescale Value 10 = 1:4 Prescale Value 01 = 1:2 Prescale Value 00 = 1:1 Prescale Value bit 3 T1OSCEN: LP Oscillator Enable Control bit If INTOSC without CLKOUT oscillator is active: 1 = LP oscillator is enabled for Timer1 clock 0 = LP oscillator is off For all other system clock modes: This bit is ignored. LP oscillator is disabled. bit 2 T1SYNC: Timer1 External Clock Input Synchronization Control bit TMR1CS = 1: 1 = Do not synchronize external clock input 0 = Synchronize external clock input TMR1CS = 0: This bit is ignored. Timer1 uses the internal clock bit 1 TMR1CS: Timer1 Clock Source Select bit 1 = External clock from T1CKI pin (on the rising edge) 0 = Internal clock (FOSC/4) or system clock (FOSC)(3) bit 0 TMR1ON: Timer1 On bit 1 = Enables Timer1 0 = Stops Timer1 Note 1: T1GINV bit inverts the Timer1 gate logic, regardless of source. 2: TMR1GE bit must be set to use either T1G pin or COUT, as selected by the T1GSS bit of the CMCON1 register, as a Timer1 gate source. 3: See T1ACS bit in CMCON1 register.  2010 Microchip Technology Inc. DS41302D-page 63 PIC12F609/615/617/12HV609/615 TABLE 7-1: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER1 Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Value on POR, BOR Value on all other Resets APFCON(1) — — — T1GSEL — — P1BSEL P1ASEL ---0 --00 ---0 --00 CMCON0 CMON COUT CMOE CMPOL — CMR — CMCH 0000 -0-0 0000 -0-0 CMCON1 — — — T1ACS CMHYS — T1GSS CMSYNC ---0 0-10 ---0 0-10 INTCON GIE PEIE T0IE INTE GPIE T0IF INTF GPIF 0000 000x 0000 000x PIE1 — ADIE(1) CCP1IE(1) — CMIE — TMR2IE(1) TMR1IE -00- 0-00 -00- 0-00 PIR1 — ADIF(1) CCP1IF(1) — CMIF — TMR2IF(1) TMR1IF -00- 0-00 -00- 0-00 TMR1H Holding Register for the Most Significant Byte of the 16-bit TMR1 Register xxxx xxxx uuuu uuuu TMR1L Holding Register for the Least Significant Byte of the 16-bit TMR1 Register xxxx xxxx uuuu uuuu T1CON T1GINV TMR1GE T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON 0000 0000 uuuu uuuu Legend: x = unknown, u = unchanged, - = unimplemented, read as ‘0’. Shaded cells are not used by the Timer1 module. Note 1: PIC12F615/617/HV615 only. PIC12F609/615/617/12HV609/615 DS41302D-page 64  2010 Microchip Technology Inc. NOTES:  2010 Microchip Technology Inc. DS41302D-page 65 PIC12F609/615/617/12HV609/615 8.0 TIMER2 MODULE (PIC12F615/617/HV615 ONLY) The Timer2 module is an 8-bit timer with the following features: • 8-bit timer register (TMR2) • 8-bit period register (PR2) • Interrupt on TMR2 match with PR2 • Software programmable prescaler (1:1, 1:4, 1:16) • Software programmable postscaler (1:1 to 1:16) See Figure 8-1 for a block diagram of Timer2. 8.1 Timer2 Operation The clock input to the Timer2 module is the system instruction clock (FOSC/4). The clock is fed into the Timer2 prescaler, which has prescale options of 1:1, 1:4 or 1:16. The output of the prescaler is then used to increment the TMR2 register. The values of TMR2 and PR2 are constantly compared to determine when they match. TMR2 will increment from 00h until it matches the value in PR2. When a match occurs, two things happen: • TMR2 is reset to 00h on the next increment cycle. • The Timer2 postscaler is incremented The match output of the Timer2/PR2 comparator is then fed into the Timer2 postscaler. The postscaler has postscale options of 1:1 to 1:16 inclusive. The output of the Timer2 postscaler is used to set the TMR2IF interrupt flag bit in the PIR1 register. The TMR2 and PR2 registers are both fully readable and writable. On any Reset, the TMR2 register is set to 00h and the PR2 register is set to FFh. Timer2 is turned on by setting the TMR2ON bit in the T2CON register to a ‘1’. Timer2 is turned off by clearing the TMR2ON bit to a ‘0’. The Timer2 prescaler is controlled by the T2CKPS bits in the T2CON register. The Timer2 postscaler is controlled by the TOUTPS bits in the T2CON register. The prescaler and postscaler counters are cleared when: • A write to TMR2 occurs. • A write to T2CON occurs. • Any device Reset occurs (Power-on Reset, MCLR Reset, Watchdog Timer Reset, or Brown-out Reset). FIGURE 8-1: TIMER2 BLOCK DIAGRAM Note: TMR2 is not cleared when T2CON is written. Comparator TMR2 Sets Flag TMR2 Output Reset Postscaler Prescaler PR2 2 FOSC/4 1:1 to 1:16 1:1, 1:4, 1:16 EQ 4 bit TMR2IF TOUTPS<3:0> T2CKPS<1:0> PIC12F609/615/617/12HV609/615 DS41302D-page 66  2010 Microchip Technology Inc. TABLE 8-1: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER2 REGISTER 8-1: T2CON: TIMER 2 CONTROL REGISTER U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 — TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 7 Unimplemented: Read as ‘0’ bit 6-3 TOUTPS<3:0>: Timer2 Output Postscaler Select bits 0000 =1:1 Postscaler 0001 =1:2 Postscaler 0010 =1:3 Postscaler 0011 =1:4 Postscaler 0100 =1:5 Postscaler 0101 =1:6 Postscaler 0110 =1:7 Postscaler 0111 =1:8 Postscaler 1000 =1:9 Postscaler 1001 =1:10 Postscaler 1010 =1:11 Postscaler 1011 =1:12 Postscaler 1100 =1:13 Postscaler 1101 =1:14 Postscaler 1110 =1:15 Postscaler 1111 =1:16 Postscaler bit 2 TMR2ON: Timer2 On bit 1 = Timer2 is on 0 = Timer2 is off bit 1-0 T2CKPS<1:0>: Timer2 Clock Prescale Select bits 00 =Prescaler is 1 01 =Prescaler is 4 1x =Prescaler is 16 Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Value on POR, BOR Value on all other Resets INTCON GIE PEIE T0IE INTE GPIE T0IF INTF GPIF 0000 0000 0000 0000 PIE1 — ADIE(1) CCP1IE(1) — CMIE — TMR2IE(1) TMR1IE -00- 0-00 -00- 0-00 PIR1 — ADIF(1) CCP1IF(1) — CMIF — TMR2IF(1) TMR1IF -00- 0-00 -00- 0-00 PR2(1) Timer2 Module Period Register 1111 1111 1111 1111 TMR2(1) Holding Register for the 8-bit TMR2 Register 0000 0000 0000 0000 T2CON(1) — TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0 -000 0000 -000 0000 Legend: x = unknown, u = unchanged, - = unimplemented read as ‘0’. Shaded cells are not used for Timer2 module. Note 1: For PIC12F615/617/HV615 only.  2010 Microchip Technology Inc. DS41302D-page 67 PIC12F609/615/617/12HV609/615 9.0 COMPARATOR MODULE The comparator can be used to interface analog circuits to a digital circuit by comparing two analog voltages and providing a digital indication of their relative magnitudes. The comparator is a very useful mixed signal building block because it provides analog functionality independent of the program execution. The Analog Comparator module includes the following features: • Programmable input section • Comparator output is available internally/externally • Programmable output polarity • Interrupt-on-change • Wake-up from Sleep • PWM shutdown • Timer1 gate (count enable) • Output synchronization to Timer1 clock input • Programmable voltage reference • User-enable Comparator Hysteresis 9.1 Comparator Overview The comparator is shown in Figure 9-1 along with the relationship between the analog input levels and the digital output. When the analog voltage at VIN+ is less than the analog voltage at VIN-, the output of the comparator is a digital low level. When the analog voltage at VIN+ is greater than the analog voltage at VIN-, the output of the comparator is a digital high level. FIGURE 9-1:SINGLE COMPARATOR FIGURE 9-2: COMPARATOR SIMPLIFIED BLOCK DIAGRAM – VIN+ + VINOutput Output VIN+ VINNote: The black areas of the output of the comparator represents the uncertainty due to input offsets and response time. CMOE MUX CMPOL 0 1 CMON(1) CMCH From Timer1 Clock Note 1: When CMON = 0, the comparator will produce a ‘0’ output to the XOR Gate. 2: Q1 and Q3 are phases of the four-phase system clock (FOSC). 3: Q1 is held high during Sleep mode. 4: Output shown for reference only. See I/O port pin diagram for more details. D Q EN D Q EN CL D Q RD_CMCON0 Q3*RD_CMCON0 Q1 Set CMIF To Reset CMVINCMVIN+ GP1/CIN0- GP4/CIN1- 0 1 CMSYNC CMPOL Data Bus MUX COUT(4) To PWM Auto-Shutdown To Timer1 Gate 0 1 CMR MUX GP0/CIN+ 0 1 MUX CVREF CMVREN FixedRef CMVREF SYNCCMOUT PIC12F609/615/617/12HV609/615 DS41302D-page 68  2010 Microchip Technology Inc. 9.2 Analog Input Connection Considerations A simplified circuit for an analog input is shown in Figure 9-3. Since the analog input pins share their connection with a digital input, they have reverse biased ESD protection diodes to VDD and VSS. The analog input, therefore, must be between VSS and VDD. If the input voltage deviates from this range by more than 0.6V in either direction, one of the diodes is forward biased and a latch-up may occur. A maximum source impedance of 10 k is recommended for the analog sources. Also, any external component connected to an analog input pin, such as a capacitor or a Zener diode, should have very little leakage current to minimize inaccuracies introduced. FIGURE 9-3: ANALOG INPUT MODEL Note 1: When reading a GPIO register, all pins configured as analog inputs will read as a ‘0’. Pins configured as digital inputs will convert as an analog input, according to the input specification. 2: Analog levels on any pin defined as a digital input, may cause the input buffer to consume more current than is specified. VA RS < 10K CPIN 5 pF VDD VT  0.6V VT  0.6V RIC ILEAKAGE ±500 nA VSS AIN Legend: CPIN = Input Capacitance ILEAKAGE = Leakage Current at the pin due to various junctions RIC = Interconnect Resistance RS = Source Impedance VA = Analog Voltage VT = Threshold Voltage To Comparator  2010 Microchip Technology Inc. DS41302D-page 69 PIC12F609/615/617/12HV609/615 9.3 Comparator Control The comparator has two control and Configuration registers: CMCON0 and CMCON1. The CMCON1 register is used for controlling the interaction with Timer1 and simultaneously reading the comparator output. The CMCON0 register (Register 9-1) contain the control and Status bits for the following: • Enable • Input selection • Reference selection • Output selection • Output polarity 9.3.1 COMPARATOR ENABLE Setting the CMON bit of the CMCON0 register enables the comparator for operation. Clearing the CMON bit disables the comparator for minimum current consumption. 9.3.2 COMPARATOR INPUT SELECTION The CMCH bit of the CMCON0 register directs one of four analog input pins to the comparator inverting input. 9.3.3 COMPARATOR REFERENCE SELECTION Setting the CMR bit of the CMxCON0 register directs an internal voltage reference or an analog input pin to the non-inverting input of the comparator. See Section 9.10 “Comparator Voltage Reference” for more information on the internal voltage reference module. 9.3.4 COMPARATOR OUTPUT SELECTION The output of the comparator can be monitored by reading either the COUT bit of the CMCON0 register. In order to make the output available for an external connection, the following conditions must be true: • CMOE bit of the CMxCON0 register must be set • Corresponding TRIS bit must be cleared • CMON bit of the CMCON0 register must be set. 9.3.5 COMPARATOR OUTPUT POLARITY Inverting the output of the comparator is functionally equivalent to swapping the comparator inputs. The polarity of the comparator output can be inverted by setting the CMPOL bit of the CMCON0 register. Clearing CMPOL results in a non-inverted output. A complete table showing the output state versus input conditions and the polarity bit is shown in Table 9-1. TABLE 9-1: OUTPUT STATE VS. INPUT CONDITIONS 9.4 Comparator Response Time The comparator output is indeterminate for a period of time after the change of an input source or the selection of a new reference voltage. This period is referred to as the response time. The response time of the comparator differs from the settling time of the voltage reference. Therefore, both of these times must be considered when determining the total response time to a comparator input change. See Section 16.0 “Electrical Specifications” for more details. Note: To use CIN+ and CIN- pins as analog inputs, the appropriate bits must be set in the ANSEL register and the corresponding TRIS bits must also be set to disable the output drivers. Note 1: The CMOE bit overrides the PORT data latch. Setting the CMON has no impact on the port override. 2: The internal output of the comparator is latched with each instruction cycle. Unless otherwise specified, external outputs are not latched. Input Conditions CMPOL COUT CMVIN- > CMVIN+ 0 0 CMVIN- < CMVIN+ 0 1 CMVIN- > CMVIN+ 1 1 CMVIN- < CMVIN+ 1 0 Note: COUT refers to both the register bit and output pin. PIC12F609/615/617/12HV609/615 DS41302D-page 70  2010 Microchip Technology Inc. 9.5 Comparator Interrupt Operation The comparator interrupt flag can be set whenever there is a change in the output value of the comparator. Changes are recognized by means of a mismatch circuit which consists of two latches and an exclusiveor gate (see Figure 9-4 and Figure 9-5). One latch is updated with the comparator output level when the CMCON0 register is read. This latch retains the value until the next read of the CMCON0 register or the occurrence of a Reset. The other latch of the mismatch circuit is updated on every Q1 system clock. A mismatch condition will occur when a comparator output change is clocked through the second latch on the Q1 clock cycle. At this point the two mismatch latches have opposite output levels which is detected by the exclusive-or gate and fed to the interrupt circuitry. The mismatch condition persists until either the CMCON0 register is read or the comparator output returns to the previous state. The comparator interrupt is set by the mismatch edge and not the mismatch level. This means that the interrupt flag can be reset without the additional step of reading or writing the CMCON0 register to clear the mismatch registers. When the mismatch registers are cleared, an interrupt will occur upon the comparator’s return to the previous state, otherwise no interrupt will be generated. Software will need to maintain information about the status of the comparator output, as read from the CMCON1 register, to determine the actual change that has occurred. The CMIF bit of the PIR1 register is the Comparator Interrupt flag. This bit must be reset in software by clearing it to ‘0’. Since it is also possible to write a '1' to this register, an interrupt can be generated. The CMIE bit of the PIE1 register and the PEIE and GIE bits of the INTCON register must all be set to enable comparator interrupts. If any of these bits are cleared, the interrupt is not enabled, although the CMIF bit of the PIR1 register will still be set if an interrupt condition occurs. FIGURE 9-4: COMPARATOR INTERRUPT TIMING W/O CMCON0 READ FIGURE 9-5: COMPARATOR INTERRUPT TIMING WITH CMCON0 READ Note 1: A write operation to the CMCON0 register will also clear the mismatch condition because all writes include a read operation at the beginning of the write cycle. 2: Comparator interrupts will operate correctly regardless of the state of CMOE. Note 1: If a change in the CMCON0 register (COUT) should occur when a read operation is being executed (start of the Q2 cycle), then the CMIF of the PIR1 register interrupt flag may not get set. 2: When a comparator is first enabled, bias circuitry in the comparator module may cause an invalid output from the comparator until the bias circuitry is stable. Allow about 1 s for bias settling then clear the mismatch condition and interrupt flags before enabling comparator interrupts. Q1 Q3 CIN+ COUT Set CMIF (edge) CMIF TRT reset by software Q1 Q3 CIN+ COUT Set CMIF (edge) CMIF TRT cleared by CMCON0 read reset by software  2010 Microchip Technology Inc. DS41302D-page 71 PIC12F609/615/617/12HV609/615 9.6 Operation During Sleep The comparator, if enabled before entering Sleep mode, remains active during Sleep. The additional current consumed by the comparator is shown separately in the Section 16.0 “Electrical Specifications”. If the comparator is not used to wake the device, power consumption can be minimized while in Sleep mode by turning off the comparator. The comparator is turned off by clearing the CMON bit of the CMCON0 register. A change to the comparator output can wake-up the device from Sleep. To enable the comparator to wake the device from Sleep, the CMIE bit of the PIE1 register and the PEIE bit of the INTCON register must be set. The instruction following the SLEEP instruction always executes following a wake from Sleep. If the GIE bit of the INTCON register is also set, the device will then execute the Interrupt Service Routine. 9.7 Effects of a Reset A device Reset forces the CMCON1 register to its Reset state. This sets the comparator and the voltage reference to the OFF state. PIC12F609/615/617/12HV609/615 DS41302D-page 72  2010 Microchip Technology Inc. REGISTER 9-1: CMCON0: COMPARATOR CONTROL REGISTER 0 R/W-0 R-0 R/W-0 R/W-0 U-0 R/W-0 U-0 R/W-0 CMON COUT CMOE CMPOL — CMR — CMCH bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 7 CMON: Comparator Enable bit 1 = Comparator is enabled 0 = Comparator is disabled bit 6 COUT: Comparator Output bit If C1POL = 1 (inverted polarity): COUT = 0 when CMVIN+ > CMVINCOUT = 1 when CMVIN+ < CMVINIf C1POL = 0 (non-inverted polarity): COUT = 1 when CMVIN+ > CMVINCOUT = 0 when CMVIN+ < CMVINbit 5 CMOE: Comparator Output Enable bit 1 = COUT is present on the COUT pin(1) 0 = COUT is internal only bit 4 CMPOL: Comparator Output Polarity Select bit 1 = COUT logic is inverted 0 = COUT logic is not inverted bit 3 Unimplemented: Read as ‘0’ bit 2 CMR: Comparator Reference Select bit (non-inverting input) 1 = CMVIN+ connects to CMVREF output 0 = CMVIN+ connects to CIN+ pin bit 1 Unimplemented: Read as ‘0’ bit 0 CMCH: Comparator C1 Channel Select bit 0 = CMVIN- pin of the Comparator connects to CIN0- 1 = CMVIN- pin of the Comparator connects to CIN1- Note 1: Comparator output requires the following three conditions: CMOE = 1, CMON = 1 and corresponding port TRIS bit = 0.  2010 Microchip Technology Inc. DS41302D-page 73 PIC12F609/615/617/12HV609/615 9.8 Comparator Gating Timer1 This feature can be used to time the duration or interval of analog events. Clearing the T1GSS bit of the CMCON1 register will enable Timer1 to increment based on the output of the comparator. This requires that Timer1 is on and gating is enabled. See Section 7.0 “Timer1 Module with Gate Control” for details. It is recommended to synchronize the comparator with Timer1 by setting the CMSYNC bit when the comparator is used as the Timer1 gate source. This ensures Timer1 does not miss an increment if the comparator changes during an increment. 9.9 Synchronizing Comparator Output to Timer1 The comparator output can be synchronized with Timer1 by setting the CMSYNC bit of the CMCON1 register. When enabled, the comparator output is latched on the falling edge of the Timer1 clock source. If a prescaler is used with Timer1, the comparator output is latched after the prescaling function. To prevent a race condition, the comparator output is latched on the falling edge of the Timer1 clock source and Timer1 increments on the rising edge of its clock source. See the Comparator Block Diagram (Figure 9- 2) and the Timer1 Block Diagram (Figure 7-1) for more information. REGISTER 9-2: CMCON1: COMPARATOR CONTROL REGISTER 1 U-0 U-0 U-0 R/W-0 R/W-0 U-0 R/W-1 R/W-0 — — — T1ACS CMHYS — T1GSS CMSYNC bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 7-5 Unimplemented: Read as ‘0’ bit 4 T1ACS: Timer1 Alternate Clock Select bit 1 = Timer 1 Clock Source is System Clock (FOSC) 0 = Timer 1 Clock Source is Instruction Clock (FOSC\4) bit 3 CMHYS: Comparator Hysteresis Select bit 1 = Comparator Hysteresis enabled 0 = Comparator Hysteresis disabled bit 2 Unimplemented: Read as ‘0’ bit 1 T1GSS: Timer1 Gate Source Select bit(1) 1 = Timer 1 Gate Source is T1G pin (pin should be configured as digital input) 0 = Timer 1 Gate Source is comparator output bit 0 CMSYNC: Comparator Output Synchronization bit(2) 1 = Output is synchronized with falling edge of Timer1 clock 0 = Output is asynchronous Note 1: Refer to Section 7.6 “Timer1 Gate”. 2: Refer to Figure 9-2. PIC12F609/615/617/12HV609/615 DS41302D-page 74  2010 Microchip Technology Inc. 9.10 Comparator Voltage Reference The Comparator Voltage Reference module provides an internally generated voltage reference for the comparators. The following features are available: • Independent from Comparator operation • 16-level voltage range • Output clamped to VSS • Ratiometric with VDD • Fixed Reference (0.6) The VRCON register (Register 9-3) controls the Voltage Reference module shown in Register 9-6. 9.10.1 INDEPENDENT OPERATION The comparator voltage reference is independent of the comparator configuration. Setting the VREN bit of the VRCON register will enable the voltage reference. 9.10.2 OUTPUT VOLTAGE SELECTION The CVREF voltage reference has 2 ranges with 16 voltage levels in each range. Range selection is controlled by the VRR bit of the VRCON register. The 16 levels are set with the VR<3:0> bits of the VRCON register. The CVREF output voltage is determined by the following equations: EQUATION 9-1: CVREF OUTPUT VOLTAGE The full range of VSS to VDD cannot be realized due to the construction of the module. See Figure 9-6. 9.10.3 OUTPUT CLAMPED TO VSS The CVREF output voltage can be set to Vss with no power consumption by configuring VRCON as follows: • FVREN = 0 This allows the comparator to detect a zero-crossing while not consuming additional CVREF module current. 9.10.4 OUTPUT RATIOMETRIC TO VDD The comparator voltage reference is VDD derived and therefore, the CVREF output changes with fluctuations in VDD. The tested absolute accuracy of the Comparator Voltage Reference can be found in Section 16.0 “Electrical Specifications”. 9.10.5 FIXED VOLTAGE REFERENCE The fixed voltage reference is independent of VDD, with a nominal output voltage of 0.6V. This reference can be enabled by setting the FVREN bit of the VRCON register to ‘1’. This reference is always enabled when the HFINTOSC oscillator is active. 9.10.6 FIXED VOLTAGE REFERENCE STABILIZATION PERIOD When the Fixed Voltage Reference module is enabled, it will require some time for the reference and its amplifier circuits to stabilize. The user program must include a small delay routine to allow the module to settle. See Section 16.0 “Electrical Specifications” for the minimum delay requirement. 9.10.7 VOLTAGE REFERENCE SELECTION Multiplexers on the output of the Voltage Reference module enable selection of either the CVREF or fixed voltage reference for use by the comparators. Setting the CMVREN bit of the VRCON register enables current to flow in the CVREF voltage divider and selects the CVREF voltage for use by the Comparator. Clearing the CMVREN bit selects the fixed voltage for use by the Comparator. When the CMVREN bit is cleared, current flow in the CVREF voltage divider is disabled minimizing the power drain of the voltage reference peripheral. VRR = 1 (low range): VRR = 0 (high range): CVREF = (VDD/4) + CVREF = (VR<3:0>/24)  VDD (VR<3:0>  VDD/32)  2010 Microchip Technology Inc. DS41302D-page 75 PIC12F609/615/617/12HV609/615 FIGURE 9-6: COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM 8R VRR VR<3:0>(1) Analog 8R R R R R 16 Stages VDD MUX Fixed Voltage CMVREN CVREF(1) Reference EN FVREN Sleep HFINTOSC enable FixedRef 0.6V To Comparators and ADC Module To Comparators and ADC Module Note 1: Care should be taken to ensure CVREF remains within the comparator common mode input range. See Section 16.0 “Electrical Specifications” for more detail. 15 0 4 PIC12F609/615/617/12HV609/615 DS41302D-page 76  2010 Microchip Technology Inc. REGISTER 9-3: VRCON: VOLTAGE REFERENCE CONTROL REGISTER R/W-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 CMVREN — VRR FVREN VR3 VR2 VR1 VR0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 7 CMVREN: Comparator Voltage Reference Enable bit(1, 2) 1 = CVREF circuit powered on and routed to CVREF input of the Comparator 0 = 0.6 Volt constant reference routed to CVREF input of the Comparator bit 6 Unimplemented: Read as ‘0’ bit 5 VRR: CVREF Range Selection bit 1 = Low range 0 = High range bit 4 FVREN: 0.6V Reference Enable bit(2) 1 = Enabled 0 = Disabled bit 3-0 VR<3:0>: Comparator Voltage Reference CVREF Value Selection bits (0  VR<3:0>  15) When VRR = 1: CVREF = (VR<3:0>/24) * VDD When VRR = 0: CVREF = VDD/4 + (VR<3:0>/32) * VDD Note 1: When CMVREN is low, the CVREF circuit is powered down and does not contribute to IDD current. 2: When CMVREN is low and the FVREN bit is low, the CVREF signal should provide Vss to the comparator.  2010 Microchip Technology Inc. DS41302D-page 77 PIC12F609/615/617/12HV609/615 9.11 Comparator Hysteresis Each comparator has built-in hysteresis that is user enabled by setting the CMHYS bit of the CMCON1 register. The hysteresis feature can help filter noise and reduce multiple comparator output transitions when the output is changing state. Figure 9-7 shows the relationship between the analog input levels and digital output of a comparator with and without hysteresis. The output of the comparator changes from a low state to a high state only when the analog voltage at VIN+ rises above the upper hysteresis threshold (VH+). The output of the comparator changes from a high state to a low state only when the analog voltage at VIN+ falls below the lower hysteresis threshold (VH-). FIGURE 9-7: COMPARATOR HYSTERESIS – VIN+ + VINOutput Note: The black areas of the comparator output represents the uncertainty due to input offsets and response time. VHVH+ VINV+ VIN+ Output (Without Hysteresis) Output (With Hysteresis) PIC12F609/615/617/12HV609/615 DS41302D-page 78  2010 Microchip Technology Inc. TABLE 9-2: SUMMARY OF REGISTERS ASSOCIATED WITH THE COMPARATOR AND VOLTAGE REFERENCE MODULES Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Value on POR, BOR Value on all other Resets ANSEL — ADCS2(1) ADCS1(1) ADCS0(1) ANS3 ANS2(1) ANS1 ANS0 -000 1111 -000 1111 CMCON0 CMON COUT CMOE CMPOL — CMR — CMCH 0000 -000 0000 -000 CMCON1 — — — T1ACS CMHYS — T1GSS CMSYNC 0000 0000 0000 0000 INTCON GIE PEIE T0IE INTE GPIE T0IF INTF GPIF 0000 000x 0000 000x PIE1 — ADIE(1) CCP1IE(1) — CMIE — TMR2IE(1) TMR1IE -00- 0-00 -00- 0-00 PIR1 — ADIF(1) CCP1IF(1) — CMIF — TMR2IF(1) TMR1IF -00- 0-00 -00- 0-00 GPIO — — GP5 GP4 GP3 GP2 GP1 GP0 --xx xxxx --uu uuuu TRISIO — — TRISIO5 TRISIO4 TRISIO3 TRISIO2 TRISIO1 TRISIO0 --11 1111 --11 1111 VRCON CMVREN — VRR FVREN VR3 VR2 VR1 VR0 0-00 0000 0-00 0000 Legend: x = unknown, u = unchanged, - = unimplemented, read as ‘0’. Shaded cells are not used for comparator. Note 1: For PIC12F615/617/HV615 only.  2010 Microchip Technology Inc. DS41302D-page 79 PIC12F609/615/617/12HV609/615 10.0 ANALOG-TO-DIGITAL CONVERTER (ADC) MODULE (PIC12F615/617/HV615 ONLY) The Analog-to-Digital Converter (ADC) allows conversion of an analog input signal to a 10-bit binary representation of that signal. This device uses analog inputs, which are multiplexed into a single sample and hold circuit. The output of the sample and hold is connected to the input of the converter. The converter generates a 10-bit binary result via successive approximation and stores the conversion result into the ADC result registers (ADRESL and ADRESH). The ADC voltage reference is software selectable to either VDD or a voltage applied to the external reference pins. The ADC can generate an interrupt upon completion of a conversion. This interrupt can be used to wake-up the device from Sleep. Figure 10-1 shows the block diagram of the ADC. FIGURE 10-1: ADC BLOCK DIAGRAM Note: The ADRESL and ADRESH registers are Read Only. GP0/AN0 A/D GP1/AN1/VREF GP2/AN2 CVREF VDD VREF ADON GO/DONE VCFG = 1 VCFG = 0 CHS VSS 0.6V Reference 1.2V Reference GP4/AN3 ADRESH ADRESL 10 10 ADFM 0 = Left Justify 1 = Right Justify 000 001 010 011 100 101 110 PIC12F609/615/617/12HV609/615 DS41302D-page 80  2010 Microchip Technology Inc. 10.1 ADC Configuration When configuring and using the ADC the following functions must be considered: • Port configuration • Channel selection • ADC voltage reference selection • ADC conversion clock source • Interrupt control • Results formatting 10.1.1 PORT CONFIGURATION The ADC can be used to convert both analog and digital signals. When converting analog signals, the I/O pin should be configured for analog by setting the associated TRIS and ANSEL bits. See the corresponding port section for more information. 10.1.2 CHANNEL SELECTION The CHS bits of the ADCON0 register determine which channel is connected to the sample and hold circuit. When changing channels, a delay is required before starting the next conversion. Refer to Section 10.2 “ADC Operation” for more information. 10.1.3 ADC VOLTAGE REFERENCE The VCFG bit of the ADCON0 register provides control of the positive voltage reference. The positive voltage reference can be either VDD or an external voltage source. The negative voltage reference is always connected to the ground reference. 10.1.4 CONVERSION CLOCK The source of the conversion clock is software selectable via the ADCS bits of the ANSEL register. There are seven possible clock options: • FOSC/2 • FOSC/4 • FOSC/8 • FOSC/16 • FOSC/32 • FOSC/64 • FRC (dedicated internal oscillator) The time to complete one bit conversion is defined as TAD. One full 10-bit conversion requires 11 TAD periods as shown in Figure 10-3. For correct conversion, the appropriate TAD specification must be met. See A/D conversion requirements in Section 16.0 “Electrical Specifications” for more information. Table 10-1 gives examples of appropriate ADC clock selections. Note: Analog voltages on any pin that is defined as a digital input may cause the input buffer to conduct excess current. Note: Unless using the FRC, any changes in the system clock frequency will change the ADC clock frequency, which may adversely affect the ADC result.  2010 Microchip Technology Inc. DS41302D-page 81 PIC12F609/615/617/12HV609/615 TABLE 10-1: ADC CLOCK PERIOD (TAD) VS. DEVICE OPERATING FREQUENCIES (VDD > 3.0V) FIGURE 10-2: ANALOG-TO-DIGITAL CONVERSION TAD CYCLES 10.1.5 INTERRUPTS The ADC module allows for the ability to generate an interrupt upon completion of an Analog-to-Digital conversion. The ADC interrupt flag is the ADIF bit in the PIR1 register. The ADC interrupt enable is the ADIE bit in the PIE1 register. The ADIF bit must be cleared in software. This interrupt can be generated while the device is operating or while in Sleep. If the device is in Sleep, the interrupt will wake-up the device. Upon waking from Sleep, the next instruction following the SLEEP instruction is always executed. If the user is attempting to wake-up from Sleep and resume in-line code execution, the global interrupt must be disabled. If the global interrupt is enabled, execution will switch to the Interrupt Service Routine. Please see Section 10.1.5 “Interrupts” for more information. ADC Clock Period (TAD) Device Frequency (FOSC) ADC Clock Source ADCS<2:0> 20 MHz 8 MHz 4 MHz 1 MHz FOSC/2 000 100 ns(2) 250 ns(2) 500 ns(2) 2.0 s FOSC/4 100 200 ns(2) 500 ns(2) 1.0 s(2) 4.0 s FOSC/8 001 400 ns(2) 1.0 s(2) 2.0 s 8.0 s(3) FOSC/16 101 800 ns(2) 2.0 s 4.0 s 16.0 s(3) FOSC/32 010 1.6 s 4.0 s 8.0 s(3) 32.0 s(3) FOSC/64 110 3.2 s 8.0 s(3) 16.0 s(3) 64.0 s(3) FRC x11 2-6 s(1,4) 2-6 s(1,4) 2-6 s(1,4) 2-6 s(1,4) Legend: Shaded cells are outside of recommended range. Note 1: The FRC source has a typical TAD time of 4 s for VDD > 3.0V. 2: These values violate the minimum required TAD time. 3: For faster conversion times, the selection of another clock source is recommended. 4: When the device frequency is greater than 1 MHz, the FRC clock source is only recommended if the conversion will be performed during Sleep. TAD1 TAD2 TAD3 TAD4 TAD5 TAD6 TAD7 TAD8 TAD9 Set GO/DONE bit Holding Capacitor is Disconnected from Analog Input (typically 100 ns) b9 b8 b7 b6 b5 b4 b3 b2 TAD10 TAD11 b1 b0 TCY to TAD Conversion Starts ADRESH and ADRESL registers are loaded, GO bit is cleared, ADIF bit is set, Holding capacitor is connected to analog input Note: The ADIF bit is set at the completion of every conversion, regardless of whether or not the ADC interrupt is enabled. PIC12F609/615/617/12HV609/615 DS41302D-page 82  2010 Microchip Technology Inc. 10.1.6 RESULT FORMATTING The 10-bit A/D conversion result can be supplied in two formats, left justified or right justified. The ADFM bit of the ADCON0 register controls the output format. Figure 10-4 shows the two output formats. FIGURE 10-3: 10-BIT A/D CONVERSION RESULT FORMAT 10.2 ADC Operation 10.2.1 STARTING A CONVERSION To enable the ADC module, the ADON bit of the ADCON0 register must be set to a ‘1’. Setting the GO/ DONE bit of the ADCON0 register to a ‘1’ will start the Analog-to-Digital conversion. 10.2.2 COMPLETION OF A CONVERSION When the conversion is complete, the ADC module will: • Clear the GO/DONE bit • Set the ADIF flag bit • Update the ADRESH:ADRESL registers with new conversion result 10.2.3 TERMINATING A CONVERSION If a conversion must be terminated before completion, the GO/DONE bit can be cleared in software. The ADRESH:ADRESL registers will not be updated with the partially complete Analog-to-Digital conversion sample. Instead, the ADRESH:ADRESL register pair will retain the value of the previous conversion. Additionally, a 2 TAD delay is required before another acquisition can be initiated. Following this delay, an input acquisition is automatically started on the selected channel. 10.2.4 ADC OPERATION DURING SLEEP The ADC module can operate during Sleep. This requires the ADC clock source to be set to the FRC option. When the FRC clock source is selected, the ADC waits one additional instruction before starting the conversion. This allows the SLEEP instruction to be executed, which can reduce system noise during the conversion. If the ADC interrupt is enabled, the device will wake-up from Sleep when the conversion completes. If the ADC interrupt is disabled, the ADC module is turned off after the conversion completes, although the ADON bit remains set. When the ADC clock source is something other than FRC, a SLEEP instruction causes the present conversion to be aborted and the ADC module is turned off, although the ADON bit remains set. 10.2.5 SPECIAL EVENT TRIGGER The ECCP Special Event Trigger allows periodic ADC measurements without software intervention. When this trigger occurs, the GO/DONE bit is set by hardware and the Timer1 counter resets to zero. Using the Special Event Trigger does not assure proper ADC timing. It is the user’s responsibility to ensure that the ADC timing requirements are met. See Section 11.0 “Enhanced Capture/Compare/ PWM (With Auto-Shutdown and Dead Band) Module (PIC12F615/617/HV615 only)” for more information. ADRESH ADRESL (ADFM = 0) MSB LSB bit 7 bit 0 bit 7 bit 0 10-bit A/D Result Unimplemented: Read as ‘0’ (ADFM = 1) MSB LSB bit 7 bit 0 bit 7 bit 0 Unimplemented: Read as ‘0’ 10-bit A/D Result Note: The GO/DONE bit should not be set in the same instruction that turns on the ADC. Refer to Section 10.2.6 “A/D Conversion Procedure”. Note: A device Reset forces all registers to their Reset state. Thus, the ADC module is turned off and any pending conversion is terminated.  2010 Microchip Technology Inc. DS41302D-page 83 PIC12F609/615/617/12HV609/615 10.2.6 A/D CONVERSION PROCEDURE This is an example procedure for using the ADC to perform an Analog-to-Digital conversion: 1. Configure Port: • Disable pin output driver (See TRIS register) • Configure pin as analog 2. Configure the ADC module: • Select ADC conversion clock • Configure voltage reference • Select ADC input channel • Select result format • Turn on ADC module 3. Configure ADC interrupt (optional): • Clear ADC interrupt flag • Enable ADC interrupt • Enable peripheral interrupt • Enable global interrupt(1) 4. Wait the required acquisition time(2). 5. Start conversion by setting the GO/DONE bit. 6. Wait for ADC conversion to complete by one of the following: • Polling the GO/DONE bit • Waiting for the ADC interrupt (interrupts enabled) 7. Read ADC Result 8. Clear the ADC interrupt flag (required if interrupt is enabled). EXAMPLE 10-1: A/D CONVERSION Note 1: The global interrupt can be disabled if the user is attempting to wake-up from Sleep and resume in-line code execution. 2: See Section 10.3 “A/D Acquisition Requirements”. ;This code block configures the ADC ;for polling, Vdd reference, Frc clock ;and GP0 input. ; ;Conversion start & polling for completion ; are included. ; BANKSEL TRISIO ; BSF TRISIO,0 ;Set GP0 to input BANKSEL ANSEL ; MOVLW B’01110001’ ;ADC Frc clock, IORWF ANSEL ; and GP0 as analog BANKSEL ADCON0 ; MOVLW B’10000001’ ;Right justify, MOVWF ADCON0 ;Vdd Vref, AN0, On CALL SampleTime ;Acquisiton delay BSF ADCON0,GO ;Start conversion BTFSC ADCON0,GO ;Is conversion done? GOTO $-1 ;No, test again BANKSEL ADRESH ; MOVF ADRESH,W ;Read upper 2 bits MOVWF RESULTHI ;Store in GPR space BANKSEL ADRESL ; MOVF ADRESL,W ;Read lower 8 bits MOVWF RESULTLO ;Store in GPR space PIC12F609/615/617/12HV609/615 DS41302D-page 84  2010 Microchip Technology Inc. 10.2.7 ADC REGISTER DEFINITIONS The following registers are used to control the operation of the ADC. REGISTER 10-1: ADCON0: A/D CONTROL REGISTER 0 R/W-0 R/W-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 ADFM VCFG — CHS2 CHS1 CHS0 GO/DONE ADON bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 7 ADFM: A/D Conversion Result Format Select bit 1 = Right justified 0 = Left justified bit 6 VCFG: Voltage Reference bit 1 = VREF pin 0 = VDD bit 5 Unimplemented: Read as ‘0’ bit 4-2 CHS<2:0>: Analog Channel Select bits 000 = Channel 00 (AN0) 001 = Channel 01 (AN1) 010 = Channel 02 (AN2) 011 = Channel 03 (AN3) 100 = CVREF 101 = 0.6V Reference 110 = 1.2V Reference 111 = Reserved. Do not use. bit 1 GO/DONE: A/D Conversion Status bit 1 = A/D conversion cycle in progress. Setting this bit starts an A/D conversion cycle. This bit is automatically cleared by hardware when the A/D conversion has completed. 0 = A/D conversion completed/not in progress bit 0 ADON: ADC Enable bit 1 = ADC is enabled 0 = ADC is disabled and consumes no operating current Note 1: When the CHS<2:0> bits change to select the 1.2V or 0.6V reference, the reference output voltage will have a transient. If the Comparator module uses this 0.6V reference voltage, the comparator output may momentarily change state due to the transient.  2010 Microchip Technology Inc. DS41302D-page 85 PIC12F609/615/617/12HV609/615 REGISTER 10-2: ADRESH: ADC RESULT REGISTER HIGH (ADRESH) ADFM = 0 (READ-ONLY) R-x R-x R-x R-x R-x R-x R-x R-x ADRES9 ADRES8 ADRES7 ADRES6 ADRES5 ADRES4 ADRES3 ADRES2 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 7-0 ADRES<9:2>: ADC Result Register bits Upper 8 bits of 10-bit conversion result REGISTER 10-3: ADRESL: ADC RESULT REGISTER LOW (ADRESL) ADFM = 0 (READ-ONLY) R-x R-x U-0 U-0 U-0 U-0 U-0 U-0 ADRES1 ADRES0 — — — — — — bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 7-6 ADRES<1:0>: ADC Result Register bits Lower 2 bits of 10-bit conversion result bit 5-0 Unimplemented: Read as ‘0’ REGISTER 10-4: ADRESH: ADC RESULT REGISTER HIGH (ADRESH) ADFM = 1 (READ-ONLY) U-0 U-0 U-0 U-0 U-0 U-0 R-x R-x — — — — — — ADRES9 ADRES8 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 7-2 Unimplemented: Read as ‘0’ bit 1-0 ADRES<9:8>: ADC Result Register bits Upper 2 bits of 10-bit conversion result REGISTER 10-5: ADRESL: ADC RESULT REGISTER LOW (ADRESL) ADFM = 1 (READ-ONLY) R-x R-x R-x R-x R-x R-x R-x R-x ADRES7 ADRES6 ADRES5 ADRES4 ADRES3 ADRES2 ADRES1 ADRES0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 7-0 ADRES<7:0>: ADC Result Register bits Lower 8 bits of 10-bit conversion result PIC12F609/615/617/12HV609/615 DS41302D-page 86  2010 Microchip Technology Inc. 10.3 A/D Acquisition Requirements For the ADC to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The Analog Input model is shown in Figure 10-4. The source impedance (RS) and the internal sampling switch (RSS) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (RSS) impedance varies over the device voltage (VDD), see Figure 10-4. The maximum recommended impedance for analog sources is 10 k. As the source impedance is decreased, the acquisition time may be decreased. After the analog input channel is selected (or changed), an A/D acquisition must be done before the conversion can be started. To calculate the minimum acquisition time, Equation 10-1 may be used. This equation assumes that 1/2 LSb error is used (1024 steps for the ADC). The 1/2 LSb error is the maximum error allowed for the ADC to meet its specified resolution. EQUATION 10-1: ACQUISITION TIME EXAMPLE TACQ Amplifier Settling Time Hold Capacitor Charging = + Time + Temperature Coefficient = TAMP + TC + TCOFF = 2μs + TC + Temperature - 25°C0.05μs/°C TC = –CHOLDRIC + RSS + RS ln(1/2047) = –10pF1k + 7k + 10k ln(0.0004885) = 1.37μs TACQ = 2μs + 1.37μs + 50°C- 25°C0.05μs/°C = 4.67μs VAPPLIED 1 e –Tc -R----C---- –       VAPPLIED 1 1  – -2---0---4---7- =   VAPPLIED 1 1  – -2---0---4---7-   = VCHOLD VAPPLIED 1 e –TC --R----C--- –       = VCHOLD ;[1] VCHOLD charged to within 1/2 lsb ;[2] VCHOLD charge response to VAPPLIED ;combining [1] and [2] The value for TC can be approximated with the following equations: Solving for TC: Therefore: Assumptions: Temperature = 50°C and external impedance of 10k 5.0V VDD Note 1: The reference voltage (VREF) has no effect on the equation, since it cancels itself out. 2: The charge holding capacitor (CHOLD) is not discharged after each conversion. 3: The maximum recommended impedance for analog sources is 10 k. This is required to meet the pin leakage specification.  2010 Microchip Technology Inc. DS41302D-page 87 PIC12F609/615/617/12HV609/615 FIGURE 10-4: ANALOG INPUT MODEL FIGURE 10-5: ADC TRANSFER FUNCTION VA CPIN Rs ANx 5 pF VDD VT = 0.6V VT = 0.6V I LEAKAGE RIC  1k Sampling Switch SS Rss CHOLD = 10 pF VSS/VREF- 6V Sampling Switch 5V 4V 3V 2V 5 6 7 8 91011 (k) VDD ± 500 nA Legend: CPIN VT I LEAKAGE RIC SS CHOLD = Input Capacitance = Threshold Voltage = Leakage current at the pin due to = Interconnect Resistance = Sampling Switch = Sample/Hold Capacitance various junctions RSS 3FFh 3FEh ADC Output Code 3FDh 3FCh 004h 003h 002h 001h 000h Full-Scale 3FBh 1 LSB ideal VSS/VREF- Zero-Scale Transition VDD/VREF+ Transition 1 LSB ideal Full-Scale Range Analog Input Voltage PIC12F609/615/617/12HV609/615 DS41302D-page 88  2010 Microchip Technology Inc. TABLE 10-2: SUMMARY OF ASSOCIATED ADC REGISTERS Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Value on POR, BOR Value on all other Resets ADCON0(1) ADFM VCFG — CHS2 CHS1 CHS0 GO/DONE ADON 00-0 0000 00-0 0000 ANSEL — ADCS2(1) ADCS1(1) ADCS0(1) ANS3 ANS2(1) ANS1 ANS0 -000 1111 -000 1111 ADRESH(1,2) A/D Result Register High Byte xxxx xxxx uuuu uuuu ADRESL(1,2) A/D Result Register Low Byte xxxx xxxx uuuu uuuu GPIO — — GP5 GP4 GP3 GP2 GP1 GP0 --x0 x000 --x0 x000 INTCON GIE PEIE T0IE INTE GPIE T0IF INTF GPIF 0000 0000 0000 0000 PIE1 — ADIE(1) CCP1IE(1) — CMIE — TMR2IE(1) TMR1IE -00- 0-00 -00- 0-00 PIR1 — ADIF(1) CCP1IF(1) — CMIF — TMR2IF(1) TMR1IF -00- 0-00 -00- 0-00 TRISIO — — TRISIO5 TRISIO4 TRISIO3 TRISIO2 TRISIO1 TRISIO0 --11 1111 --11 1111 Legend: x = unknown, u = unchanged, — = unimplemented read as ‘0’. Shaded cells are not used for ADC module. Note 1: For PIC12F615/617/HV615 only. 2: Read Only Register.  2010 Microchip Technology Inc. DS41302D-page 89 PIC12F609/615/617/12HV609/615 11.0 ENHANCED CAPTURE/ COMPARE/PWM (WITH AUTOSHUTDOWN AND DEAD BAND) MODULE (PIC12F615/617/ HV615 ONLY) The Enhanced Capture/Compare/PWM module is a peripheral which allows the user to time and control different events. In Capture mode, the peripheral allows the timing of the duration of an event.The Compare mode allows the user to trigger an external event when a predetermined amount of time has expired. The PWM mode can generate a Pulse-Width Modulated signal of varying frequency and duty cycle. Table 11-1 shows the timer resources required by the ECCP module. TABLE 11-1: ECCP MODE – TIMER RESOURCES REQUIRED ECCP Mode Timer Resource Capture Timer1 Compare Timer1 PWM Timer2 REGISTER 11-1: CCP1CON: ENHANCED CCP1 CONTROL REGISTER R/W-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 P1M — DC1B1 DC1B0 CCP1M3 CCP1M2 CCP1M1 CCP1M0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 7 P1M: PWM Output Configuration bits If CCP1M<3:2> = 00, 01, 10: x = P1A assigned as Capture/Compare input; P1B assigned as port pins If CCP1M<3:2> = 11: 0 = Single output; P1A modulated; P1B assigned as port pins 1 = Half-Bridge output; P1A, P1B modulated with dead-band control bit 6 Unimplemented: Read as ‘0’ bit 5-4 DC1B<1:0>: PWM Duty Cycle Least Significant bits Capture mode: Unused. Compare mode: Unused. PWM mode: These bits are the two LSbs of the PWM duty cycle. The eight MSbs are found in CCPR1L. bit 3-0 CCP1M<3:0>: ECCP Mode Select bits 0000 =Capture/Compare/PWM off (resets ECCP module) 0001 =Unused (reserved) 0010 =Compare mode, toggle output on match (CCP1IF bit is set) 0011 =Unused (reserved) 0100 =Capture mode, every falling edge 0101 =Capture mode, every rising edge 0110 =Capture mode, every 4th rising edge 0111 =Capture mode, every 16th rising edge 1000 =Compare mode, set output on match (CCP1IF bit is set) 1001 =Compare mode, clear output on match (CCP1IF bit is set) 1010 =Compare mode, generate software interrupt on match (CCP1IF bit is set, CCP1 pin is unaffected) 1011 =Compare mode, trigger special event (CCP1IF bit is set; CCP1 resets TMR1 or TMR2 and starts an A/D conversion, if the ADC module is enabled) 1100 =PWM mode; P1A active-high; P1B active-high 1101 =PWM mode; P1A active-high; P1B active-low 1110 =PWM mode; P1A active-low; P1B active-high 1111 =PWM mode; P1A active-low; P1B active-low PIC12F609/615/617/12HV609/615 DS41302D-page 90  2010 Microchip Technology Inc. 11.1 Capture Mode In Capture mode, CCPR1H:CCPR1L captures the 16-bit value of the TMR1 register when an event occurs on pin CCP1. An event is defined as one of the following and is configured by the CCP1M<3:0> bits of the CCP1CON register: • Every falling edge • Every rising edge • Every 4th rising edge • Every 16th rising edge When a capture is made, the Interrupt Request Flag bit CCP1IF of the PIR1 register is set. The interrupt flag must be cleared in software. If another capture occurs before the value in the CCPR1H, CCPR1L register pair is read, the old captured value is overwritten by the new captured value (see Figure 11-1). 11.1.1 CCP1 PIN CONFIGURATION In Capture mode, the CCP1 pin should be configured as an input by setting the associated TRIS control bit. FIGURE 11-1: CAPTURE MODE OPERATION BLOCK DIAGRAM 11.1.2 TIMER1 MODE SELECTION Timer1 must be running in Timer mode or Synchronized Counter mode for the CCP module to use the capture feature. In Asynchronous Counter mode, the capture operation may not work. 11.1.3 SOFTWARE INTERRUPT When the Capture mode is changed, a false capture interrupt may be generated. The user should keep the CCP1IE interrupt enable bit of the PIE1 register clear to avoid false interrupts. Additionally, the user should clear the CCP1IF interrupt flag bit of the PIR1 register following any change in operating mode. 11.1.4 CCP PRESCALER There are four prescaler settings specified by the CCP1M<3:0> bits of the CCP1CON register. Whenever the CCP module is turned off, or the CCP module is not in Capture mode, the prescaler counter is cleared. Any Reset will clear the prescaler counter. Switching from one capture prescaler to another does not clear the prescaler and may generate a false interrupt. To avoid this unexpected operation, turn the module off by clearing the CCP1CON register before changing the prescaler (see Example 11-1). EXAMPLE 11-1: CHANGING BETWEEN CAPTURE PRESCALERS Note: If the CCP1 pin is configured as an output, a write to the port can cause a capture condition. CCPR1H CCPR1L TMR1H TMR1L Set Flag bit CCP1IF (PIR1 register) Capture Enable CCP1CON<3:0> Prescaler  1, 4, 16 and Edge Detect pin CCP1 System Clock (FOSC) BANKSEL CCP1CON ;Set Bank bits to point ;to CCP1CON CLRF CCP1CON ;Turn CCP module off MOVLW NEW_CAPT_PS ;Load the W reg with ; the new prescaler ; move value and CCP ON MOVWF CCP1CON ;Load CCP1CON with this ; value  2010 Microchip Technology Inc. DS41302D-page 91 PIC12F609/615/617/12HV609/615 TABLE 11-2: SUMMARY OF REGISTERS ASSOCIATED WITH CAPTURE Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Value on POR, BOR Value on all other Resets CCP1CON P1M — DC1B1 DC1B0 CCP1M3 CCP1M2 CCP1M1 CCP1M0 0-00 0000 0-00 0000 CCPR1L Capture/Compare/PWM Register 1 Low Byte xxxx xxxx uuuu uuuu CCPR1H Capture/Compare/PWM Register 1 High Byte xxxx xxxx uuuu uuuu INTCON GIE PEIE T0IE INTE GPIE T0IF INTF GPIF 0000 0000 0000 0000 PIE1 — ADIE(1) CCP1IE(1) — CMIE — TMR2IE(1) TMR1IE -00- 0-00 -00- 0-00 PIR1 — ADIF(1) CCP1IF(1) — CMIF — TMR2IF(1) TMR1IF -00- 0-00 -00- 0-00 T1CON T1GINV TMR1GE T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON 0000 0000 uuuu uuuu TMR1L Holding Register for the Least Significant Byte of the 16-bit TMR1 Register xxxx xxxx uuuu uuuu TMR1H Holding Register for the Most Significant Byte of the 16-bit TMR1 Register xxxx xxxx uuuu uuuu TRISIO — — TRISIO5 TRISIO4 TRISIO3 TRISIO2 TRISIO1 TRISIO0 --11 1111 --11 1111 Legend: - = Unimplemented locations, read as ‘0’, u = unchanged, x = unknown. Shaded cells are not used by the Capture. Note 1: For PIC12F615/617/HV615 only. PIC12F609/615/617/12HV609/615 DS41302D-page 92  2010 Microchip Technology Inc. 11.2 Compare Mode In Compare mode, the 16-bit CCPR1 register value is constantly compared against the TMR1 register pair value. When a match occurs, the CCP1 module may: • Toggle the CCP1 output. • Set the CCP1 output. • Clear the CCP1 output. • Generate a Special Event Trigger. • Generate a Software Interrupt. The action on the pin is based on the value of the CCP1M<3:0> control bits of the CCP1CON register. All Compare modes can generate an interrupt. FIGURE 11-2: COMPARE MODE OPERATION BLOCK DIAGRAM 11.2.1 CCP1 PIN CONFIGURATION The user must configure the CCP1 pin as an output by clearing the associated TRIS bit. 11.2.2 TIMER1 MODE SELECTION In Compare mode, Timer1 must be running in either Timer mode or Synchronized Counter mode. The compare operation may not work in Asynchronous Counter mode. 11.2.3 SOFTWARE INTERRUPT MODE When Generate Software Interrupt mode is chosen (CCP1M<3:0> = 1010), the CCP1 module does not assert control of the CCP1 pin (see the CCP1CON register). 11.2.4 SPECIAL EVENT TRIGGER When Special Event Trigger mode is chosen (CCP1M<3:0> = 1011), the CCP1 module does the following: • Resets Timer1 • Starts an ADC conversion if ADC is enabled The CCP1 module does not assert control of the CCP1 pin in this mode (see the CCP1CON register). The Special Event Trigger output of the CCP occurs immediately upon a match between the TMR1H, TMR1L register pair and the CCPR1H, CCPR1L register pair. The TMR1H, TMR1L register pair is not reset until the next rising edge of the Timer1 clock. This allows the CCPR1H, CCPR1L register pair to effectively provide a 16-bit programmable period register for Timer1. Note: Clearing the CCP1CON register will force the CCP1 compare output latch to the default low level. This is not the PORT I/O data latch. CCPR1H CCPR1L TMR1H TMR1L Comparator Q S R Output Logic Special Event Trigger Set CCP1IF Interrupt Flag (PIR1) Match TRIS CCP1CON<3:0> Mode Select Output Enable Pin Special Event Trigger will: • Clear TMR1H and TMR1L registers. • NOT set interrupt flag bit TMR1IF of the PIR1 register. • Set the GO/DONE bit to start the ADC conversion. CCP1 4 Note 1: The Special Event Trigger from the CCP module does not set interrupt flag bit TMRxIF of the PIR1 register. 2: Removing the match condition by changing the contents of the CCPR1H and CCPR1L register pair, between the clock edge that generates the Special Event Trigger and the clock edge that generates the Timer1 Reset, will preclude the Reset from occurring.  2010 Microchip Technology Inc. DS41302D-page 93 PIC12F609/615/617/12HV609/615 TABLE 11-3: SUMMARY OF REGISTERS ASSOCIATED WITH COMPARE Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Value on POR, BOR Value on all other Resets CCP1CON P1M — DC1B1 DC1B0 CCP1M3 CCP1M2 CCP1M1 CCP1M0 0-00 0000 0-00 0000 CCPR1L Capture/Compare/PWM Register 1 Low Byte xxxx xxxx uuuu uuuu CCPR1H Capture/Compare/PWM Register 1 High Byte xxxx xxxx uuuu uuuu INTCON GIE PEIE T0IE INTE GPIE T0IF INTF GPIF 0000 0000 0000 0000 PIE1 — ADIE(1) CCP1IE(1) — CMIE — TMR2IE(1) TMR1IE -00- 0-00 -00- 0-00 PIR1 — ADIF(1) CCP1IF(1) — CMIF — TMR2IF(1) TMR1IF -00- 0-00 -00- 0-00 T1CON T1GINV TMR1GE T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON 0000 0000 uuuu uuuu TMR1L Holding Register for the Least Significant Byte of the 16-bit TMR1 Register xxxx xxxx uuuu uuuu TMR1H Holding Register for the Most Significant Byte of the 16-bit TMR1 Register xxxx xxxx uuuu uuuu TMR2 Timer2 Module Register 0000 0000 0000 0000 TRISIO — — TRISIO5 TRISIO4 TRISIO3 TRISIO2 TRISIO1 TRISIO0 --11 1111 --11 1111 Legend: - = Unimplemented locations, read as ‘0’, u = unchanged, x = unknown. Shaded cells are not used by the Compare. Note 1: For PIC12F615/617/HV615 only. PIC12F609/615/617/12HV609/615 DS41302D-page 94  2010 Microchip Technology Inc. 11.3 PWM Mode The PWM mode generates a Pulse-Width Modulated signal on the CCP1 pin. The duty cycle, period and resolution are determined by the following registers: • PR2 • T2CON • CCPR1L • CCP1CON In Pulse-Width Modulation (PWM) mode, the CCP module produces up to a 10-bit resolution PWM output on the CCP1 pin. Since the CCP1 pin is multiplexed with the PORT data latch, the TRIS for that pin must be cleared to enable the CCP1 pin output driver. Figure 11-3 shows a simplified block diagram of PWM operation. Figure 11-4 shows a typical waveform of the PWM signal. For a step-by-step procedure on how to set up the CCP module for PWM operation, see Section 11.3.7 “Setup for PWM Operation”. FIGURE 11-3: SIMPLIFIED PWM BLOCK DIAGRAM The PWM output (Figure 11-4) has a time base (period) and a time that the output stays high (duty cycle). FIGURE 11-4: CCP PWM OUTPUT Note: Clearing the CCP1CON register will relinquish CCP1 control of the CCP1 pin. CCPR1L CCPR1H(2) (Slave) Comparator TMR2 PR2 (1) R Q S Duty Cycle Registers CCP1CON<5:4> Clear Timer2, toggle CCP1 pin and latch duty cycle Note 1: The 8-bit timer TMR2 register is concatenated with the 2-bit internal system clock (FOSC), or 2 bits of the prescaler, to create the 10-bit time base. 2: In PWM mode, CCPR1H is a read-only register. TRIS CCP1 Comparator Period Pulse Width TMR2 = 0 TMR2 = CCPRxL:CCPxCON<5:4> TMR2 = PR2  2010 Microchip Technology Inc. DS41302D-page 95 PIC12F609/615/617/12HV609/615 11.3.1 PWM PERIOD The PWM period is specified by the PR2 register of Timer2. The PWM period can be calculated using the formula of Equation 11-1. EQUATION 11-1: PWM PERIOD When TMR2 is equal to PR2, the following three events occur on the next increment cycle: • TMR2 is cleared • The CCP1 pin is set. (Exception: If the PWM duty cycle = 0%, the pin will not be set.) • The PWM duty cycle is latched from CCPR1L into CCPR1H. 11.3.2 PWM DUTY CYCLE The PWM duty cycle is specified by writing a 10-bit value to multiple registers: CCPR1L register and DC1B<1:0> bits of the CCP1CON register. The CCPR1L contains the eight MSbs and the DC1B<1:0> bits of the CCP1CON register contain the two LSbs. CCPR1L and DC1B<1:0> bits of the CCP1CON register can be written to at any time. The duty cycle value is not latched into CCPR1H until after the period completes (i.e., a match between PR2 and TMR2 registers occurs). While using the PWM, the CCPR1H register is read-only. Equation 11-2 is used to calculate the PWM pulse width. Equation 11-3 is used to calculate the PWM duty cycle ratio. EQUATION 11-2: PULSE WIDTH EQUATION 11-3: DUTY CYCLE RATIO The CCPR1H register and a 2-bit internal latch are used to double buffer the PWM duty cycle. This double buffering is essential for glitchless PWM operation. The 8-bit timer TMR2 register is concatenated with either the 2-bit internal system clock (FOSC), or 2 bits of the prescaler, to create the 10-bit time base. The system clock is used if the Timer2 prescaler is set to 1:1. When the 10-bit time base matches the CCPR1H and 2-bit latch, then the CCP1 pin is cleared (see Figure 11- 3). 11.3.3 PWM RESOLUTION The resolution determines the number of available duty cycles for a given period. For example, a 10-bit resolution will result in 1024 discrete duty cycles, whereas an 8-bit resolution will result in 256 discrete duty cycles. The maximum PWM resolution is 10 bits when PR2 is 255. The resolution is a function of the PR2 register value as shown by Equation 11-4. EQUATION 11-4: PWM RESOLUTION TABLE 11-4: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (FOSC = 20 MHz) TABLE 11-5: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (FOSC = 8 MHz) Note: The Timer2 postscaler (see Section 8.1 “Timer2 Operation”) is not used in the determination of the PWM frequency. PWM Period = PR2 + 1  4  TOSC  (TMR2 Prescale Value) Note: If the pulse width value is greater than the period the assigned PWM pin(s) will remain unchanged. Pulse Width = CCPR1L:CCP1CON<5:4>  TOSC  (TMR2 Prescale Value) Duty Cycle Ratio CCPR1L:CCP1CON<5:4> 4PR2 + 1 = ----------------------------------------------------------------------- Resolution log4PR2 + 1 log2 = ------------------------------------------ bits PWM Frequency 1.22 kHz 4.88 kHz 19.53 kHz 78.12 kHz 156.3 kHz 208.3 kHz Timer Prescale (1, 4, 16) 16 4 1 1 1 1 PR2 Value 0xFF 0xFF 0xFF 0x3F 0x1F 0x17 Maximum Resolution (bits) 10 10 10 8 7 6.6 PWM Frequency 1.22 kHz 4.90 kHz 19.61 kHz 76.92 kHz 153.85 kHz 200.0 kHz Timer Prescale (1, 4, 16) 16 4 1 1 1 1 PR2 Value 0x65 0x65 0x65 0x19 0x0C 0x09 Maximum Resolution (bits) 8 8 8 6 5 5 PIC12F609/615/617/12HV609/615 DS41302D-page 96  2010 Microchip Technology Inc. 11.3.4 OPERATION IN SLEEP MODE In Sleep mode, the TMR2 register will not increment and the state of the module will not change. If the CCP1 pin is driving a value, it will continue to drive that value. When the device wakes up, TMR2 will continue from its previous state. 11.3.5 CHANGES IN SYSTEM CLOCK FREQUENCY The PWM frequency is derived from the system clock frequency. Any changes in the system clock frequency will result in changes to the PWM frequency. See Section 4.0 “Oscillator Module” for additional details. 11.3.6 EFFECTS OF RESET Any Reset will force all ports to Input mode and the CCP registers to their Reset states. 11.3.7 SETUP FOR PWM OPERATION The following steps should be taken when configuring the CCP module for PWM operation: 1. Disable the PWM pin (CCP1) output drivers by setting the associated TRIS bit. 2. Set the PWM period by loading the PR2 register. 3. Configure the CCP module for the PWM mode by loading the CCP1CON register with the appropriate values. 4. Set the PWM duty cycle by loading the CCPR1L register and DC1B bits of the CCP1CON register. 5. Configure and start Timer2: • Clear the TMR2IF interrupt flag bit of the PIR1 register. • Set the Timer2 prescale value by loading the T2CKPS bits of the T2CON register. • Enable Timer2 by setting the TMR2ON bit of the T2CON register. 6. Enable PWM output after a new PWM cycle has started: • Wait until Timer2 overflows (TMR2IF bit of the PIR1 register is set). • Enable the CCP1 pin output driver by clearing the associated TRIS bit.  2010 Microchip Technology Inc. DS41302D-page 97 PIC12F609/615/617/12HV609/615 11.4 PWM (Enhanced Mode) The Enhanced PWM Mode can generate a PWM signal on up to four different output pins with up to 10-bits of resolution. It can do this through four different PWM output modes: • Single PWM • Half-Bridge PWM To select an Enhanced PWM mode, the P1M bits of the CCP1CON register must be set appropriately. The PWM outputs are multiplexed with I/O pins and are designated P1A and P1B. The polarity of the PWM pins is configurable and is selected by setting the CCP1M bits in the CCP1CON register appropriately. Table 11-6 shows the pin assignments for each Enhanced PWM mode. Figure 11-5 shows an example of a simplified block diagram of the Enhanced PWM module. FIGURE 11-5: EXAMPLE SIMPLIFIED BLOCK DIAGRAM OF THE ENHANCED PWM MODE TABLE 11-6: EXAMPLE PIN ASSIGNMENTS FOR VARIOUS PWM ENHANCED MODES Note: To prevent the generation of an incomplete waveform when the PWM is first enabled, the ECCP module waits until the start of a new PWM period before generating a PWM signal. CCPR1L CCPR1H (Slave) Comparator TMR2 Comparator PR2 (1) R Q S Duty Cycle Registers CCP1<1:0> Clear Timer2, toggle PWM pin and latch duty cycle * Alternate pin function. Note 1: The 8-bit timer TMR2 register is concatenated with the 2-bit internal Q clock, or 2 bits of the prescaler to create the 10-bit time base. TRISIO2 CCP1/P1A Output Controller P1M<1:0> 2 CCP1M<3:0> 4 PWM1CON CCP1/P1A P1B 0 1 TRISIO5 CCP1/P1A* P1ASEL (APFCON<0>) TRISIO0 0 P1B 1 TRISIO4 P1B* P1BSEL (APFCON<1>) Note 1: The TRIS register value for each PWM output must be configured appropriately. 2: Clearing the CCP1CON register will relinquish ECCP control of all PWM output pins. 3: Any pin not used by an Enhanced PWM mode is available for alternate pin functions. ECCP Mode P1M<1:0> CCP1/P1A P1B Single 00 Yes(1) Yes(1) Half-Bridge 10 Yes Yes PIC12F609/615/617/12HV609/615 DS41302D-page 98  2010 Microchip Technology Inc. FIGURE 11-6: EXAMPLE PWM (ENHANCED MODE) OUTPUT RELATIONSHIPS (ACTIVE-HIGH STATE) FIGURE 11-7: EXAMPLE ENHANCED PWM OUTPUT RELATIONSHIPS (ACTIVE-LOW STATE) 0 Period 00 10 Signal PR2+1 P1M<1:0> P1A Modulated P1A Modulated P1B Modulated P1A Active P1B Inactive P1C Inactive P1D Modulated Pulse Width (Single Output) (Half-Bridge) Delay(1) Delay(1) Relationships: • Period = 4 * TOSC * (PR2 + 1) * (TMR2 Prescale Value) • Pulse Width = TOSC * (CCPR1L<7:0>:CCP1CON<5:4>) * (TMR2 Prescale Value) • Delay = 4 * TOSC * (PWM1CON<6:0>) Note 1: Dead-band delay is programmed using the PWM1CON register (Section 11.4.6 “Programmable Dead-Band Delay mode”). 0 Period 00 10 Signal PR2+1 P1M<1:0> P1A Modulated P1A Modulated P1B Modulated P1A Active P1B Inactive P1C Inactive P1D Modulated Pulse Width (Single Output) (Half-Bridge) Delay(1) Delay(1) Relationships: • Period = 4 * TOSC * (PR2 + 1) * (TMR2 Prescale Value) • Pulse Width = TOSC * (CCPR1L<7:0>:CCP1CON<5:4>) * (TMR2 Prescale Value) • Delay = 4 * TOSC * (PWM1CON<6:0>) Note 1: Dead-band delay is programmed using the PWM1CON register (Section 11.4.6 “Programmable Dead-Band Delay mode”).  2010 Microchip Technology Inc. DS41302D-page 99 PIC12F609/615/617/12HV609/615 11.4.1 HALF-BRIDGE MODE In Half-Bridge mode, two pins are used as outputs to drive push-pull loads. The PWM output signal is output on the CCP1/P1A pin, while the complementary PWM output signal is output on the P1B pin (see Figure 11-8). This mode can be used for Half-Bridge applications, as shown in Figure 11-9, or for Full-Bridge applications, where four power switches are being modulated with two PWM signals. In Half-Bridge mode, the programmable dead-band delay can be used to prevent shoot-through current in Half- Bridge power devices. The value of the PDC<6:0> bits of the PWM1CON register sets the number of instruction cycles before the output is driven active. If the value is greater than the duty cycle, the corresponding output remains inactive during the entire cycle. See Section 11.4.6 “Programmable Dead-Band Delay mode” for more details of the dead-band delay operations. Since the P1A and P1B outputs are multiplexed with the PORT data latches, the associated TRIS bits must be cleared to configure P1A and P1B as outputs. FIGURE 11-8: EXAMPLE OF HALFBRIDGE PWM OUTPUT FIGURE 11-9: EXAMPLE OF HALF-BRIDGE APPLICATIONS Period Pulse Width td td (1) P1A(2) P1B(2) td = Dead-Band Delay Period (1) (1) Note 1: At this time, the TMR2 register is equal to the PR2 register. 2: Output signals are shown as active-high. P1A P1B FET Driver FET Driver Load + - + - FET Driver FET Driver V+ Load FET Driver FET Driver P1A P1B Standard Half-Bridge Circuit (“Push-Pull”) Half-Bridge Output Driving a Full-Bridge Circuit PIC12F609/615/617/12HV609/615 DS41302D-page 100  2010 Microchip Technology Inc. 11.4.2 START-UP CONSIDERATIONS When any PWM mode is used, the application hardware must use the proper external pull-up and/or pull-down resistors on the PWM output pins. The CCP1M<1:0> bits of the CCP1CON register allow the user to choose whether the PWM output signals are active-high or active-low for each PWM output pin (P1A and P1B). The PWM output polarities must be selected before the PWM pin output drivers are enabled. Changing the polarity configuration while the PWM pin output drivers are enable is not recommended since it may result in damage to the application circuits. The P1A and P1B output latches may not be in the proper states when the PWM module is initialized. Enabling the PWM pin output drivers at the same time as the Enhanced PWM modes may cause damage to the application circuit. The Enhanced PWM modes must be enabled in the proper Output mode and complete a full PWM cycle before configuring the PWM pin output drivers. The completion of a full PWM cycle is indicated by the TMR2IF bit of the PIR1 register being set as the second PWM period begins. 11.4.3 OPERATION DURING SLEEP When the device is placed in sleep, the allocated timer will not increment and the state of the module will not change. If the CCP1 pin is driving a value, it will continue to drive that value. When the device wakes up, it will continue from this state. Note: When the microcontroller is released from Reset, all of the I/O pins are in the highimpedance state. The external circuits must keep the power switch devices in the OFF state until the microcontroller drives the I/O pins with the proper signal levels or activates the PWM output(s).  2010 Microchip Technology Inc. DS41302D-page 101 PIC12F609/615/617/12HV609/615 11.4.4 ENHANCED PWM AUTOSHUTDOWN MODE The PWM mode supports an Auto-Shutdown mode that will disable the PWM outputs when an external shutdown event occurs. Auto-Shutdown mode places the PWM output pins into a predetermined state. This mode is used to help prevent the PWM from damaging the application. The auto-shutdown sources are selected using the ECCPASx bits of the ECCPAS register. A shutdown event may be generated by: • A logic ‘0’ on the INT pin • Comparator • Setting the ECCPASE bit in firmware A shutdown condition is indicated by the ECCPASE (Auto-Shutdown Event Status) bit of the ECCPAS register. If the bit is a ‘0’, the PWM pins are operating normally. If the bit is a ‘1’, the PWM outputs are in the shutdown state. Refer to Figure 1. When a shutdown event occurs, two things happen: The ECCPASE bit is set to ‘1’. The ECCPASE will remain set until cleared in firmware or an auto-restart occurs (see Section 11.4.5 “Auto-Restart Mode”). The enabled PWM pins are asynchronously placed in their shutdown states. The state of P1A is determined by the PSSAC bit. The state of P1B is determined by the PSSBD bit. The PSSAC and PSSBD bits are located in the ECCPAS register. Each pin may be placed into one of three states: • Drive logic ‘1’ • Drive logic ‘0’ • Tri-state (high-impedance) FIGURE 11-10: AUTO-SHUTDOWN BLOCK DIAGRAM PSSAC<1> TRISx P1A 0 1 P1A_DRV PSSAC<0> PSSBD<1> TRISx P1B 0 PSSBD<0> 1 P1B_DRV 000 001 010 011 100 101 110 111 From Comparator ECCPAS<2:0> R D Q S From Data Bus ECCPASE Write to ECCPASE PRSEN INT PIC12F609/615/617/12HV609/615 DS41302D-page 102  2010 Microchip Technology Inc. REGISTER 11-2: ECCPAS: ENHANCED CAPTURE/COMPARE/PWM AUTO-SHUTDOWN CONTROL REGISTER R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 ECCPASE ECCPAS2 ECCPAS1 ECCPAS0 PSSAC1 PSSAC0 PSSBD1 PSSBD0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 7 ECCPASE: ECCP Auto-Shutdown Event Status bit 1 = A shutdown event has occurred; ECCP outputs are in shutdown state 0 = ECCP outputs are operating bit 6-4 ECCPAS<2:0>: ECCP Auto-shutdown Source Select bits 000 =Auto-Shutdown is disabled 001 =Comparator output change 010 =Auto-Shutdown is disabled 011 =Comparator output change(1) 100 =VIL on INT pin 101 =VIL on INT pin or Comparator change 110 =VIL on INT pin(1) 111 =VIL on INT pin or Comparator change bit 3-2 PSSAC<1:0>: Pin P1A Shutdown State Control bits 00 = Drive pin P1A to ‘0’ 01 = Drive pin P1A to ‘1’ 1x = Pin P1A tri-state bit 1-0 PSSBD<1:0>: Pin P1B Shutdown State Control bits 00 = Drive pin P1B to ‘0’ 01 = Drive pin P1B to ‘1’ 1x = Pin P1B tri-state Note 1: If CMSYNC is enabled, the shutdown will be delayed by Timer1. Note 1: The auto-shutdown condition is a levelbased signal, not an edge-based signal. As long as the level is present, the autoshutdown will persist. 2: Writing to the ECCPASE bit is disabled while an auto-shutdown condition persists. 3: Once the auto-shutdown condition has been removed and the PWM restarted (either through firmware or auto-restart) the PWM signal will always restart at the beginning of the next PWM period.  2010 Microchip Technology Inc. DS41302D-page 103 PIC12F609/615/617/12HV609/615 FIGURE 11-11: PWM AUTO-SHUTDOWN WITH FIRMWARE RESTART (PRSEN = 0) 11.4.5 AUTO-RESTART MODE The Enhanced PWM can be configured to automatically restart the PWM signal once the auto-shutdown condition has been removed. Auto-restart is enabled by setting the PRSEN bit in the PWM1CON register. If auto-restart is enabled, the ECCPASE bit will remain set as long as the auto-shutdown condition is active. When the auto-shutdown condition is removed, the ECCPASE bit will be cleared via hardware and normal operation will resume. FIGURE 11-12: PWM AUTO-SHUTDOWN WITH AUTO-RESTART ENABLED (PRSEN = 1) Shutdown PWM ECCPASE bit Activity Event Shutdown Event Occurs Shutdown Event Clears PWM Resumes PWM Period Start of PWM Period ECCPASE Cleared by Firmware Shutdown PWM ECCPASE bit Activity Event Shutdown Event Occurs Shutdown Event Clears PWM Resumes PWM Period Start of PWM Period PIC12F609/615/617/12HV609/615 DS41302D-page 104  2010 Microchip Technology Inc. 11.4.6 PROGRAMMABLE DEAD-BAND DELAY MODE In Half-Bridge applications where all power switches are modulated at the PWM frequency, the power switches normally require more time to turn off than to turn on. If both the upper and lower power switches are switched at the same time (one turned on, and the other turned off), both switches may be on for a short period of time until one switch completely turns off. During this brief interval, a very high current (shootthrough current) will flow through both power switches, shorting the bridge supply. To avoid this potentially destructive shoot-through current from flowing during switching, turning on either of the power switches is normally delayed to allow the other switch to completely turn off. In Half-Bridge mode, a digitally programmable deadband delay is available to avoid shoot-through current from destroying the bridge power switches. The delay occurs at the signal transition from the non-active state to the active state. See Figure 11-13 for illustration. The lower seven bits of the associated PWMxCON register (Register 11-3) sets the delay period in terms of microcontroller instruction cycles (TCY or 4 TOSC). FIGURE 11-13: EXAMPLE OF HALFBRIDGE PWM OUTPUT FIGURE 11-14: EXAMPLE OF HALF-BRIDGE APPLICATIONS Period Pulse Width td td (1) P1A(2) P1B(2) td = Dead-Band Delay Period (1) (1) Note 1: At this time, the TMR2 register is equal to the PR2 register. 2: Output signals are shown as active-high. P1A P1B FET Driver FET Driver V+ VLoad + V- + VStandard Half-Bridge Circuit (“Push-Pull”)  2010 Microchip Technology Inc. DS41302D-page 105 PIC12F609/615/617/12HV609/615 TABLE 11-7: SUMMARY OF REGISTERS ASSOCIATED WITH PWM REGISTER 11-3: PWM1CON: ENHANCED PWM CONTROL REGISTER R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 PRSEN PDC6 PDC5 PDC4 PDC3 PDC2 PDC1 PDC0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 7 PRSEN: PWM Restart Enable bit 1 = Upon auto-shutdown, the ECCPASE bit clears automatically once the shutdown event goes away; the PWM restarts automatically 0 = Upon auto-shutdown, ECCPASE must be cleared in software to restart the PWM bit 6-0 PDC<6:0>: PWM Delay Count bits PDCn =Number of FOSC/4 (4 * TOSC) cycles between the scheduled time when a PWM signal should transition active and the actual time it transitions active Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Value on POR, BOR Value on all other Resets APFCON — — — T1GSEL — — P1BSEL P1ASEL ---0 --00 ---0 --00 CCP1CON(1) P1M — DC1B1 DC1B0 CCP1M3 CCP1M2 CCP1M1 CCP1M0 0-00 0000 0-00 0000 CCPR1L(1) Capture/Compare/PWM Register 1 Low Byte xxxx xxxx uuuu uuuu CCPR1H(1) Capture/Compare/PWM Register 1 High Byte xxxx xxxx uuuu uuuu CMCON0 CMON COUT CMOE CMPOL — CMR — CMCH 0000 -0-0 0000 -0-0 CMCON1 — — — T1ACS CMHYS — T1GSS CMSYNC ---0 0-10 ---0 0-10 ECCPAS(1) ECCPASE ECCPAS2 ECCPAS1 ECCPAS0 PSSAC1 PSSAC0 PSSBD1 PSSBD0 0000 0000 0000 0000 PWM1CON PRSEN PDC6 PDC5 PDC4 PDC3 PDC2 PDC1 PDC0 0000 0000 0000 0000 INTCON GIE PEIE T0IE INTE GPIE T0IF INTF GPIF 0000 0000 0000 0000 PIE1 — ADIE(1) CCP1IE(1) — CMIE — TMR2IE(1) TMR1IE -00- 0-00 -00- 0-00 PIR1 — ADIF(1) CCP1IF(1) — CMIF — TMR2IF(1) TMR1IF -00- 0-00 -00- 0-00 T2CON(1) — TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0 -000 0000 -000 0000 TMR2(1) Timer2 Module Register 0000 0000 0000 0000 TRISIO — — TRISIO5 TRISIO4 TRISIO3 TRISIO2 TRISIO1 TRISIO0 --11 1111 --11 1111 Legend: - = Unimplemented locations, read as ‘0’, u = unchanged, x = unknown. Shaded cells are not used by the PWM. Note 1: For PIC12F615/617/HV615 only. PIC12F609/615/617/12HV609/615 DS41302D-page 106  2010 Microchip Technology Inc. NOTES:  2010 Microchip Technology Inc. DS41302D-page 107 PIC12F609/615/617/12HV609/615 12.0 SPECIAL FEATURES OF THE CPU The PIC12F609/615/617/12HV609/615 has a host of features intended to maximize system reliability, minimize cost through elimination of external components, provide power-saving features and offer code protection. These features are: • Reset - Power-on Reset (POR) - Power-up Timer (PWRT) - Oscillator Start-up Timer (OST) - Brown-out Reset (BOR) • Interrupts • Watchdog Timer (WDT) • Oscillator selection • Sleep • Code protection • ID Locations • In-Circuit Serial Programming The PIC12F609/615/617/12HV609/615 has two timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), intended to keep the chip in Reset until the crystal oscillator is stable. The other is the Power-up Timer (PWRT), which provides a fixed delay of 64 ms (nominal) on power-up only, designed to keep the part in Reset while the power supply stabilizes. There is also circuitry to reset the device if a brown-out occurs, which can use the Powerup Timer to provide at least a 64 ms Reset. With these three functions-on-chip, most applications need no external Reset circuitry. The Sleep mode is designed to offer a very low-current Power-Down mode. The user can wake-up from Sleep through: • External Reset • Watchdog Timer Wake-up • An interrupt Several oscillator options are also made available to allow the part to fit the application. The INTOSC option saves system cost while the LP crystal option saves power. A set of Configuration bits are used to select various options (see Register 12-1). 12.1 Configuration Bits The Configuration bits can be programmed (read as ‘0’), or left unprogrammed (read as ‘1’) to select various device configurations as shown in Register 12-1. These bits are mapped in program memory location 2007h. Note: Address 2007h is beyond the user program memory space. It belongs to the special configuration memory space (2000h- 3FFFh), which can be accessed only during programming. See Memory Programming Specification (DS41204) for more information. PIC12F609/615/617/12HV609/615 DS41302D-page 108  2010 Microchip Technology Inc. REGISTER 12-1: CONFIG: CONFIGURATION WORD REGISTER (ADDRESS: 2007h) FOR PIC12F609/615/HV609/615 ONLY U-1 U-1 U-1 U-1 R/P-1 R/P-1 R/P-1 R/P-1 R/P-1 R/P-1 R/P-1 R/P-1 R/P-1 R/P-1 — — — — BOREN1(1) BOREN0(1) IOSCFS CP(2) MCLRE(3) PWRTE WDTE FOSC2 FOSC1 FOSC0 bit 13 bit 0 Legend: R = Readable bit -n = Value at POR W = Writable bit ‘1’ = Bit is set P = Programmable ‘0’ = Bit is cleared U = Unimplemented bit, read as ‘0’ x = Bit is unknown bit 13-10 Unimplemented: Read as ‘1’ bit 9-8 BOREN<1:0>: Brown-out Reset Selection bits(1) 11 = BOR enabled 10 = BOR enabled during operation and disabled in Sleep 0x = BOR disabled bit 7 IOSCFS: Internal Oscillator Frequency Select bit 1 = 8 MHz 0 = 4 MHz bit 6 CP: Code Protection bit(2) 1 = Program memory code protection is disabled 0 = Program memory code protection is enabled bit 5 MCLRE: MCLR Pin Function Select bit(3) 1 = MCLR pin function is MCLR 0 = MCLR pin function is digital input, MCLR internally tied to VDD bit 4 PWRTE: Power-up Timer Enable bit 1 = PWRT disabled 0 = PWRT enabled bit 3 WDTE: Watchdog Timer Enable bit 1 = WDT enabled 0 = WDT disabled bit 2-0 FOSC<2:0>: Oscillator Selection bits 111 =RC oscillator: CLKOUT function on GP4/OSC2/CLKOUT pin, RC on GP5/OSC1/CLKIN 110 =RCIO oscillator: I/O function on GP4/OSC2/CLKOUT pin, RC on GP5/OSC1/CLKIN 101 =INTOSC oscillator: CLKOUT function on GP4/OSC2/CLKOUT pin, I/O function on GP5/OSC1/CLKIN 100 = INTOSCIO oscillator: I/O function on GP4/OSC2/CLKOUT pin, I/O function on GP5/OSC1/CLKIN 011 =EC: I/O function on GP4/OSC2/CLKOUT pin, CLKIN on GP5/OSC1/CLKIN 010 =HS oscillator: High-speed crystal/resonator on GP4/OSC2/CLKOUT and GP5/OSC1/CLKIN 001 = XT oscillator: Crystal/resonator on GP4/OSC2/CLKOUT and GP5/OSC1/CLKIN 000 = LP oscillator: Low-power crystal on GP4/OSC2/CLKOUT and GP5/OSC1/CLKIN Note 1: Enabling Brown-out Reset does not automatically enable Power-up Timer. 2: The entire program memory will be erased when the code protection is turned off. 3: When MCLR is asserted in INTOSC or RC mode, the internal clock oscillator is disabled.  2010 Microchip Technology Inc. DS41302D-page 109 PIC12F609/615/617/12HV609/615 REGISTER 12-2: CONFIG – CONFIGURATION WORD (ADDRESS: 2007h) FOR PIC12F617 ONLY U-1 U-1 R/P-1 R/P-1 R/P-1 R/P-1 R/P-1 R/P-1 R/P-1 R/P-1 R/P-1 R/P-1 R/P-1 R/P-1 — — WRT1 WRT0 BOREN1 BOREN0 IOSCFS CP MCLRE PWRTE WDTE FOSC2 F0SC1 F0SC0 bit 13 bit 0 bit 13-12 Unimplemented: Read as ‘1’ bit 11-10 WRT<1:0>: Flash Program Memory Self Write Enable bits 11 =Write protection off 10 = 000h to 1FFh write protected, 200h to 7FFh may be modified by PMCON1 control 01 = 000h to 3FFh write protected, 400h to 7FFh may be modified by PMCON1 control 00 = 000h to 7FFh write protected, entire program memory is write protected. bit 9-8 BOREN<1:0>: Brown-out Reset Enable bits 11 = BOR enabled 10 = BOR disabled during Sleep and enabled during operation 0X = BOR disabled bit 7 IOSCFS: Internal Oscillator Frequency Select 1 = 8 MHz 0 = 4 MHz bit 6 CP: Code Protection 1 = Program memory is not code protected 0 = Program memory is external read and write protected bit 5 MCLRE: MCLR Pin Function Select 1 = MCLR pin is MCLR function and weak internal pull-up is enabled 0 = MCLR pin is alternate function, MCLR function is internally disabled bit 4 PWRTE: Power-up Timer Enable bit(1) 1 = PWRT disabled 0 = PWRT enabled bit 3 WDTE: Watchdog Timer Enable bit 1 = WDT enabled 0 = WDT disabled bit 2-0 FOSC<2:0>: Oscillator Selection bits 000 =LP oscillator: Low-power crystal on RA5/T1CKI/OSC1/CLKIN and RA4/AN3/T1G/OSC2/CLKOUT 001 =XT oscillator: Crystal/resonator on RA5/T1CKI/OSC1/CLKIN and RA4/AN3/T1G/OSC2/CLKOUT 010 =HS oscillator: High-speed crystal/resonator on RA5/T1CKI/OSC1/CLKIN and RA4/AN3/T1G/OSC2/CLKOUT 011 =EC: I/O function on RA4/AN3/T1G/OSC2/CLKOUT, CLKIN on RA5/T1CKI/OSC1/CLKIN 100 =INTOSCIO oscillator: I/O function on RA4/AN3/T1G/OSC2/CLKOUT, I/O function on RA5/T1CKI/OSC1/CLKIN 101 =INTOSC oscillator: CLKOUT function on RA4/AN3/T1G/OSC2/CLKOUT, I/O function on RA5/T1CKI/OSC1/ CLKIN 110 =EXTRCIO oscillator: I/O function on RA4/AN3/T1G/OSC2/CLKOUT, RC on RA5/T1CKI/OSC1/CLKIN 111 =EXTRC oscillator: CLKOUT function on RA4/AN3/T1G/OSC2/CLKOUT, RC on RA5/T1CKI/OSC1/CLKIN Note 1:Enabling Brown-out Reset does not automatically enable the Power-up Timer (PWRT). Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘1’ P = Programmable -n = Value at POR 1 = bit is set 0 = bit is cleared x = bit is unknown PIC12F609/615/617/12HV609/615 DS41302D-page 110  2010 Microchip Technology Inc. 12.2 Calibration Bits The 8 MHz internal oscillator is factory calibrated. These calibration values are stored in fuses located in the Calibration Word (2008h). The Calibration Word is not erased when using the specified bulk erase sequence in the Memory Programming Specification (DS41204) and thus, does not require reprogramming. 12.3 Reset The PIC12F609/615/617/12HV609/615 device differentiates between various kinds of Reset: a) Power-on Reset (POR) b) WDT Reset during normal operation c) WDT Reset during Sleep d) MCLR Reset during normal operation e) MCLR Reset during Sleep f) Brown-out Reset (BOR) Some registers are not affected in any Reset condition; their status is unknown on POR and unchanged in any other Reset. Most other registers are reset to a “Reset state” on: • Power-on Reset • MCLR Reset • MCLR Reset during Sleep • WDT Reset • Brown-out Reset (BOR) WDT wake-up does not cause register resets in the same manner as a WDT Reset since wake-up is viewed as the resumption of normal operation. TO and PD bits are set or cleared differently in different Reset situations, as indicated in Table 12-2. Software can use these bits to determine the nature of the Reset. See Table 12-5 for a full description of Reset states of all registers. A simplified block diagram of the On-Chip Reset Circuit is shown in Figure 12-1. The MCLR Reset path has a noise filter to detect and ignore small pulses. See Section 16.0 “Electrical Specifications” for pulse-width specifications. FIGURE 12-1: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT S R Q External Reset MCLR/VPP pin VDD OSC1/ WDT Module VDD Rise Detect OST/PWRT On-Chip WDT Time-out Power-on Reset OST 10-bit Ripple Counter PWRT Chip_Reset 11-bit Ripple Counter Reset Enable OST Enable PWRT Sleep Brown-out(1) Reset BOREN CLKIN pin Note 1: Refer to the Configuration Word register (Register 12-1). RC OSC  2010 Microchip Technology Inc. DS41302D-page 111 PIC12F609/615/617/12HV609/615 12.3.1 POWER-ON RESET (POR) The on-chip POR circuit holds the chip in Reset until VDD has reached a high enough level for proper operation. To take advantage of the POR, simply connect the MCLR pin through a resistor to VDD. This will eliminate external RC components usually needed to create Power-on Reset. A maximum rise time for VDD is required. See Section 16.0 “Electrical Specifications” for details. If the BOR is enabled, the maximum rise time specification does not apply. The BOR circuitry will keep the device in Reset until VDD reaches VBOR (see Section 12.3.4 “Brown-out Reset (BOR)”). When the device starts normal operation (exits the Reset condition), device operating parameters (i.e., voltage, frequency, temperature, etc.) must be met to ensure proper operation. If these conditions are not met, the device must be held in Reset until the operating conditions are met. For additional information, refer to Application Note AN607, “Power-up Trouble Shooting” (DS00607). 12.3.2 MCLR PIC12F609/615/617/12HV609/615 has a noise filter in the MCLR Reset path. The filter will detect and ignore small pulses. It should be noted that a WDT Reset does not drive MCLR pin low. Voltages applied to the MCLR pin that exceed its specification can result in both MCLR Resets and excessive current beyond the device specification during the ESD event. For this reason, Microchip recommends that the MCLR pin no longer be tied directly to VDD. The use of an RC network, as shown in Figure 12-2, is suggested. An internal MCLR option is enabled by clearing the MCLRE bit in the Configuration Word register. When MCLRE = 0, the Reset signal to the chip is generated internally. When the MCLRE = 1, the GP3/MCLR pin becomes an external Reset input. In this mode, the GP3/MCLR pin has a weak pull-up to VDD. FIGURE 12-2: RECOMMENDED MCLR CIRCUIT 12.3.3 POWER-UP TIMER (PWRT) The Power-up Timer provides a fixed 64 ms (nominal) time-out on power-up only, from POR or Brown-out Reset. The Power-up Timer operates from an internal RC oscillator. For more information, see Section 4.4 “Internal Clock Modes”. The chip is kept in Reset as long as PWRT is active. The PWRT delay allows the VDD to rise to an acceptable level. A Configuration bit, PWRTE, can disable (if set) or enable (if cleared or programmed) the Power-up Timer. The Power-up Timer should be enabled when Brown-out Reset is enabled, although it is not required. The Power-up Timer delay will vary from chip-to-chip due to: • VDD variation • Temperature variation • Process variation See DC parameters for details (Section 16.0 “Electrical Specifications”). Note: The POR circuit does not produce an internal Reset when VDD declines. To reenable the POR, VDD must reach Vss for a minimum of 100 s. Note: Voltage spikes below VSS at the MCLR pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100  should be used when applying a “low” level to the MCLR pin, rather than pulling this pin directly to VSS. VDD PIC® MCLR R1 1 kor greater) C1 0.1 F (optional, not critical) R2 100  SW1 needed with capacitor) (optional) MCU PIC12F609/615/617/12HV609/615 DS41302D-page 112  2010 Microchip Technology Inc. 12.3.4 BROWN-OUT RESET (BOR) The BOREN0 and BOREN1 bits in the Configuration Word register select one of three BOR modes. One mode has been added to allow control of the BOR enable for lower current during Sleep. By selecting BOREN<1:0> = 10, the BOR is automatically disabled in Sleep to conserve power and enabled on wake-up. See Register 12-1 for the Configuration Word definition. A brown-out occurs when VDD falls below VBOR for greater than parameter TBOR (see Section 16.0 “Electrical Specifications”). The brown-out condition will reset the device. This will occur regardless of VDD slew rate. A Brown-out Reset may not occur if VDD falls below VBOR for less than parameter TBOR. On any Reset (Power-on, Brown-out Reset, Watchdog timer, etc.), the chip will remain in Reset until VDD rises above VBOR (see Figure 12-3). If enabled, the Powerup Timer will be invoked by the Reset and keep the chip in Reset an additional 64 ms. If VDD drops below VBOR while the Power-up Timer is running, the chip will go back into a Brown-out Reset and the Power-up Timer will be re-initialized. Once VDD rises above VBOR, the Power-up Timer will execute a 64 ms Reset. FIGURE 12-3: BROWN-OUT SITUATIONS Note: The Power-up Timer is enabled by the PWRTE bit in the Configuration Word register. 64 ms(1) VBOR VDD Internal Reset VBOR VDD Internal Reset 64 ms < 64 ms (1) 64 ms(1) VBOR VDD Internal Reset Note 1: 64 ms delay only if PWRTE bit is programmed to ‘0’.  2010 Microchip Technology Inc. DS41302D-page 113 PIC12F609/615/617/12HV609/615 12.3.5 TIME-OUT SEQUENCE On power-up, the time-out sequence is as follows: • PWRT time-out is invoked after POR has expired. • OST is activated after the PWRT time-out has expired. The total time-out will vary based on oscillator configuration and PWRTE bit status. For example, in EC mode with PWRTE bit erased (PWRT disabled), there will be no time-out at all. Figure 12-4, Figure 12-5 and Figure 12-6 depict time-out sequences. Since the time-outs occur from the POR pulse, if MCLR is kept low long enough, the time-outs will expire. Then, bringing MCLR high will begin execution immediately (see Figure 12-5). This is useful for testing purposes or to synchronize more than one PIC12F609/615/617/ 12HV609/615 device operating in parallel. Table 12-6 shows the Reset conditions for some special registers, while Table 12-5 shows the Reset conditions for all the registers. 12.3.6 POWER CONTROL (PCON) REGISTER The Power Control register PCON (address 8Eh) has two Status bits to indicate what type of Reset occurred last. Bit 0 is BOR (Brown-out). BOR is unknown on Poweron Reset. It must then be set by the user and checked on subsequent Resets to see if BOR = 0, indicating that a Brown-out has occurred. The BOR Status bit is a “don’t care” and is not necessarily predictable if the brown-out circuit is disabled (BOREN<1:0> = 00 in the Configuration Word register). Bit 1 is POR (Power-on Reset). It is a ‘0’ on Power-on Reset and unaffected otherwise. The user must write a ‘1’ to this bit following a Power-on Reset. On a subsequent Reset, if POR is ‘0’, it will indicate that a Poweron Reset has occurred (i.e., VDD may have gone too low). For more information, see Section 12.3.4 “Brown-out Reset (BOR)”. TABLE 12-1: TIME-OUT IN VARIOUS SITUATIONS TABLE 12-2: STATUS/PCON BITS AND THEIR SIGNIFICANCE TABLE 12-3: SUMMARY OF REGISTERS ASSOCIATED WITH BROWN-OUT RESET Oscillator Configuration Power-up Brown-out Reset Wake-up from PWRTE = 0 PWRTE = 1 PWRTE = 0 PWRTE = 1 Sleep XT, HS, LP TPWRT + 1024 • TOSC 1024 • TOSC TPWRT + 1024 • TOSC 1024 • TOSC 1024 • TOSC RC, EC, INTOSC TPWRT — TPWRT — — POR BOR TO PD Condition 0 x 1 1 Power-on Reset u 0 1 1 Brown-out Reset u u 0 u WDT Reset u u 0 0 WDT Wake-up u u u u MCLR Reset during normal operation u u 1 0 MCLR Reset during Sleep Legend: u = unchanged, x = unknown Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Value on POR, BOR Value on all other Resets(1) PCON — — — — — — POR BOR ---- --qq ---- --uu STATUS IRP RP1 RP0 TO PD Z DC C 0001 1xxx 000q quuu Legend: u = unchanged, x = unknown, – = unimplemented bit, reads as ‘0’, q = value depends on condition. Shaded cells are not used by BOR. Note 1: Other (non Power-up) Resets include MCLR Reset and Watchdog Timer Reset during normal operation. PIC12F609/615/617/12HV609/615 DS41302D-page 114  2010 Microchip Technology Inc. FIGURE 12-4: TIME-OUT SEQUENCE ON POWER-UP (DELAYED MCLR): CASE 1 FIGURE 12-5: TIME-OUT SEQUENCE ON POWER-UP (DELAYED MCLR): CASE 2 FIGURE 12-6: TIME-OUT SEQUENCE ON POWER-UP (MCLR WITH VDD) TPWRT TOST VDD MCLR Internal POR PWRT Time-out OST Time-out Internal Reset VDD MCLR Internal POR PWRT Time-out OST Time-out Internal Reset TPWRT TOST TOST VDD MCLR Internal POR PWRT Time-out OST Time-out Internal Reset TPWRT  2010 Microchip Technology Inc. DS41302D-page 115 PIC12F609/615/617/12HV609/615 TABLE 12-4: INITIALIZATION CONDITION FOR REGISTERS (PIC12F609/HV609) Register Address Power-on Reset MCLR Reset WDT Reset Brown-out Reset(1) Wake-up from Sleep through Interrupt Wake-up from Sleep through WDT Time-out W — xxxx xxxx uuuu uuuu uuuu uuuu INDF 00h/80h xxxx xxxx xxxx xxxx uuuu uuuu TMR0 01h xxxx xxxx uuuu uuuu uuuu uuuu PCL 02h/82h 0000 0000 0000 0000 PC + 1(3) STATUS 03h/83h 0001 1xxx 000q quuu(4) uuuq quuu(4) FSR 04h/84h xxxx xxxx uuuu uuuu uuuu uuuu GPIO 05h --x0 x000 --u0 u000 --uu uuuu PCLATH 0Ah/8Ah ---0 0000 ---0 0000 ---u uuuu INTCON 0Bh/8Bh 0000 0000 0000 0000 uuuu uuuu(2) PIR1 0Ch ----- 0--0 ---- 0--0 ---- u--u(2) TMR1L 0Eh xxxx xxxx uuuu uuuu uuuu uuuu TMR1H 0Fh xxxx xxxx uuuu uuuu uuuu uuuu T1CON 10h 0000 0000 uuuu uuuu -uuu uuuu VRCON 19h 0-00 0000 0-00 0000 u-uu uuuu CMCON0 1Ah 0000 -0-0 0000 -0-0 uuuu -u-u CMCON1 1Ch ---0 0-10 ---0 0-10 ---u u-qu OPTION_REG 81h 1111 1111 1111 1111 uuuu uuuu TRISIO 85h --11 1111 --11 1111 --uu uuuu PIE1 8Ch ----- 0--0 ---- 0--0 ---- u--u PCON 8Eh ---- --0x ---- --uu(1, 5) ---- --uu OSCTUNE 90h ---0 0000 ---u uuuu ---u uuuu WPU 95h --11 -111 --11 -111 --uu -uuu IOC 96h --00 0000 --00 0000 --uu uuuu ANSEL 9Fh ---- 1-11 ---- 1-11 ---- q-qq Legend: u = unchanged, x = unknown, – = unimplemented bit, reads as ‘0’, q = value depends on condition. Note 1: If VDD goes too low, Power-on Reset will be activated and registers will be affected differently. 2: One or more bits in INTCON and/or PIR1 will be affected (to cause wake-up). 3: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h). 4: See Table 12-6 for Reset value for specific condition. 5: If Reset was due to brown-out, then bit 0 = 0. All other Resets will cause bit 0 = u. PIC12F609/615/617/12HV609/615 DS41302D-page 116  2010 Microchip Technology Inc. TABLE 12-5: INITIALIZATION CONDITION FOR REGISTERS (PIC12F615/617/HV615) Register Address Power-on Reset MCLR Reset WDT Reset Brown-out Reset(1) Wake-up from Sleep through Interrupt Wake-up from Sleep through WDT Time-out W — xxxx xxxx uuuu uuuu uuuu uuuu INDF 00h/80h xxxx xxxx xxxx xxxx uuuu uuuu TMR0 01h xxxx xxxx uuuu uuuu uuuu uuuu PCL 02h/82h 0000 0000 0000 0000 PC + 1(3) STATUS 03h/83h 0001 1xxx 000q quuu(4) uuuq quuu(4) FSR 04h/84h xxxx xxxx uuuu uuuu uuuu uuuu GPIO 05h --x0 x000 --u0 u000 --uu uuuu PCLATH 0Ah/8Ah ---0 0000 ---0 0000 ---u uuuu INTCON 0Bh/8Bh 0000 0000 0000 0000 uuuu uuuu(2) PIR1 0Ch -000 0-00 -000 0-00 -uuu u-uu(2) TMR1L 0Eh xxxx xxxx uuuu uuuu uuuu uuuu TMR1H 0Fh xxxx xxxx uuuu uuuu uuuu uuuu T1CON 10h 0000 0000 uuuu uuuu -uuu uuuu TMR2(1) 11h 0000 0000 0000 0000 uuuu uuuu T2CON(1) 12h -000 0000 -000 0000 -uuu uuuu CCPR1L(1) 13h xxxx xxxx uuuu uuuu uuuu uuuu CCPR1H(1) 14h xxxx xxxx uuuu uuuu uuuu uuuu CCP1CON(1) 15h 0-00 0000 0-00 0000 u-uu uuuu PWM1CON(1) 16h 0000 0000 0000 0000 uuuu uuuu ECCPAS(1) 17h 0000 0000 0000 0000 uuuu uuuu VRCON 19h 0-00 0000 0-00 0000 u-uu uuuu CMCON0 1Ah 0000 -0-0 0000 -0-0 uuuu -u-u CMCON1 1Ch ---0 0-10 ---0 0-10 ---u u-qu ADRESH(1) 1Eh xxxx xxxx uuuu uuuu uuuu uuuu ADCON0(1) 1Fh 00-0 0000 00-0 0000 uu-u uuuu OPTION_REG 81h 1111 1111 1111 1111 uuuu uuuu TRISIO 85h --11 1111 --11 1111 --uu uuuu PIE1 8Ch -00- 0-00 -00- 0-00 -uu- u-uu PCON 8Eh ---- --0x ---- --uu(1, 5) ---- --uu OSCTUNE 90h ---0 0000 ---u uuuu ---u uuuu PR2 92h 1111 1111 1111 1111 1111 1111 APFCON 93h ---0 --00 ---0 --00 ---u --uu WPU 95h --11 -111 --11 -111 --uu -uuu IOC 96h --00 0000 --00 0000 --uu uuuu PMCON1(6) 98h ---- -000 ---- -000 ---- -uuu PMCON2(6) 99h ---- ---- ---- ---- ---- ---- PMADRL(6) 9Ah 0000 0000 0000 0000 uuuu uuuu Legend: u = unchanged, x = unknown, – = unimplemented bit, reads as ‘0’, q = value depends on condition. Note 1: If VDD goes too low, Power-on Reset will be activated and registers will be affected differently. 2: One or more bits in INTCON and/or PIR1 will be affected (to cause wake-up). 3: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h). 4: See Table 12-6 for Reset value for specific condition. 5: If Reset was due to brown-out, then bit 0 = 0. All other Resets will cause bit 0 = u. 6: For PIC12F617 only.  2010 Microchip Technology Inc. DS41302D-page 117 PIC12F609/615/617/12HV609/615 TABLE 12-6: INITIALIZATION CONDITION FOR SPECIAL REGISTERS PMADRH(6) 9Bh ---- -000 ---- -000 ---- -uuu PMDATL(6) 9Ch 0000 0000 0000 0000 uuuu uuuu PMDATH(6) 9Dh --00 0000 --00 0000 --uu uuuu ADRESL(1) 9Eh xxxx xxxx uuuu uuuu uuuu uuuu ANSEL 9Fh -000 1111 -000 1111 -uuu qqqq Condition Program Counter Status Register PCON Register Power-on Reset 000h 0001 1xxx ---- --0x MCLR Reset during normal operation 000h 000u uuuu ---- --uu MCLR Reset during Sleep 000h 0001 0uuu ---- --uu WDT Reset 000h 0000 uuuu ---- --uu WDT Wake-up PC + 1 uuu0 0uuu ---- --uu Brown-out Reset 000h 0001 1uuu ---- --10 Interrupt Wake-up from Sleep PC + 1(1) uuu1 0uuu ---- --uu Legend: u = unchanged, x = unknown, – = unimplemented bit, reads as ‘0’. Note 1: When the wake-up is due to an interrupt and Global Interrupt Enable bit, GIE, is set, the PC is loaded with the interrupt vector (0004h) after execution of PC + 1. TABLE 12-5: INITIALIZATION CONDITION FOR REGISTERS (CONTINUED)(PIC12F615/617/HV615) Register Address Power-on Reset MCLR Reset WDT Reset (Continued) Brown-out Reset(1) Wake-up from Sleep through Interrupt Wake-up from Sleep through WDT Time-out (Continued) Legend: u = unchanged, x = unknown, – = unimplemented bit, reads as ‘0’, q = value depends on condition. Note 1: If VDD goes too low, Power-on Reset will be activated and registers will be affected differently. 2: One or more bits in INTCON and/or PIR1 will be affected (to cause wake-up). 3: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h). 4: See Table 12-6 for Reset value for specific condition. 5: If Reset was due to brown-out, then bit 0 = 0. All other Resets will cause bit 0 = u. 6: For PIC12F617 only. PIC12F609/615/617/12HV609/615 DS41302D-page 118  2010 Microchip Technology Inc. 12.4 Interrupts The PIC12F609/615/617/12HV609/615 has 8 sources of interrupt: • External Interrupt GP2/INT • Timer0 Overflow Interrupt • GPIO Change Interrupts • Comparator Interrupt • A/D Interrupt (PIC12F615/617/HV615 only) • Timer1 Overflow Interrupt • Timer2 Match Interrupt (PIC12F615/617/HV615 only) • Enhanced CCP Interrupt (PIC12F615/617/HV615 only) • Flash Memory Self Write (PIC12F617 only) The Interrupt Control register (INTCON) and Peripheral Interrupt Request Register 1 (PIR1) record individual interrupt requests in flag bits. The INTCON register also has individual and global interrupt enable bits. The Global Interrupt Enable bit, GIE of the INTCON register, enables (if set) all unmasked interrupts, or disables (if cleared) all interrupts. Individual interrupts can be disabled through their corresponding enable bits in the INTCON register and PIE1 register. GIE is cleared on Reset. When an interrupt is serviced, the following actions occur automatically: • The GIE is cleared to disable any further interrupt. • The return address is pushed onto the stack. • The PC is loaded with 0004h. The Return from Interrupt instruction, RETFIE, exits the interrupt routine, as well as sets the GIE bit, which re-enables unmasked interrupts. The following interrupt flags are contained in the INTCON register: • INT Pin Interrupt • GPIO Change Interrupt • Timer0 Overflow Interrupt The peripheral interrupt flags are contained in the special register, PIR1. The corresponding interrupt enable bit is contained in special register, PIE1. The following interrupt flags are contained in the PIR1 register: • A/D Interrupt • Comparator Interrupt • Timer1 Overflow Interrupt • Timer2 Match Interrupt • Enhanced CCP Interrupt For external interrupt events, such as the INT pin or GPIO change interrupt, the interrupt latency will be three or four instruction cycles. The exact latency depends upon when the interrupt event occurs (see Figure 12-8). The latency is the same for one or twocycle instructions. Once in the Interrupt Service Routine, the source(s) of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bit(s) must be cleared in software before re-enabling interrupts to avoid multiple interrupt requests. For additional information on Timer1, Timer2, comparators, ADC, Enhanced CCP modules, refer to the respective peripheral section. 12.4.1 GP2/INT INTERRUPT The external interrupt on the GP2/INT pin is edgetriggered; either on the rising edge if the INTEDG bit of the OPTION register is set, or the falling edge, if the INTEDG bit is clear. When a valid edge appears on the GP2/INT pin, the INTF bit of the INTCON register is set. This interrupt can be disabled by clearing the INTE control bit of the INTCON register. The INTF bit must be cleared by software in the Interrupt Service Routine before re-enabling this interrupt. The GP2/INT interrupt can wake-up the processor from Sleep, if the INTE bit was set prior to going into Sleep. See Section 12.7 “Power-Down Mode (Sleep)” for details on Sleep and Figure 12-9 for timing of wake-up from Sleep through GP2/INT interrupt. Note 1: Individual interrupt flag bits are set, regardless of the status of their corresponding mask bit or the GIE bit. 2: When an instruction that clears the GIE bit is executed, any interrupts that were pending for execution in the next cycle are ignored. The interrupts, which were ignored, are still pending to be serviced when the GIE bit is set again. Note: The ANSEL register must be initialized to configure an analog channel as a digital input. Pins configured as analog inputs will read ‘0’ and cannot generate an interrupt.  2010 Microchip Technology Inc. DS41302D-page 119 PIC12F609/615/617/12HV609/615 12.4.2 TIMER0 INTERRUPT An overflow (FFh  00h) in the TMR0 register will set the T0IF bit of the INTCON register. The interrupt can be enabled/disabled by setting/clearing T0IE bit of the INTCON register. See Section 6.0 “Timer0 Module” for operation of the Timer0 module. 12.4.3 GPIO INTERRUPT-ON-CHANGE An input change on GPIO sets the GPIF bit of the INTCON register. The interrupt can be enabled/ disabled by setting/clearing the GPIE bit of the INTCON register. Plus, individual pins can be configured through the IOC register. FIGURE 12-7: INTERRUPT LOGIC Note: If a change on the I/O pin should occur when any GPIO operation is being executed, then the GPIF interrupt flag may not get set. TMR1IF TMR1IE CMIF CMIE T0IF T0IE INTF INTE GPIF GPIE GIE PEIE Wake-up (If in Sleep mode)(1) Interrupt to CPU ADIF ADIE IOC-GP0 IOC0 IOC-GP1 IOC1 IOC-GP2 IOC2 IOC-GP3 IOC3 IOC-GP4 IOC4 IOC-GP5 IOC5 TMR2IF TMR2IE CCP1IF CCP1IE Note 1: Some peripherals depend upon the system clock for operation. Since the system clock is suspended during Sleep, only those peripherals which do not depend upon the system clock will wake the part from Sleep. See Section 12.7.1 “Wake-up from Sleep”. (615/617 (615/617 only) (615/617 only) only) PIC12F609/615/617/12HV609/615 DS41302D-page 120  2010 Microchip Technology Inc. FIGURE 12-8: INT PIN INTERRUPT TIMING TABLE 12-7: SUMMARY OF REGISTERS ASSOCIATED WITH INTERRUPTS Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Value on POR, BOR Value on all other Resets INTCON GIE PEIE T0IE INTE GPIE T0IF INTF GPIF 0000 0000 0000 0000 IOC — — IOC5 IOC4 IOC3 IOC2 IOC1 IOC0 --00 0000 --00 0000 PIR1 — ADIF(1) CCP1IF(1) — CMIF — TMR2IF(1) TMR1IF -00- 0-00 -000 0-00 PIE1 — ADIE(1) CCP1IE(1) — CMIE — TMR2IE(1) TMR1IE -00- 0-00 -000 0-00 Legend: x = unknown, u = unchanged, – = unimplemented read as ‘0’, q = value depends upon condition. Shaded cells are not used by the interrupt module. Note 1: PIC12F615/617/HV615 only. Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 OSC1 CLKOUT INT pin INTF flag (INTCON reg.) GIE bit (INTCON reg.) INSTRUCTION FLOW PC Instruction Fetched Instruction Executed Interrupt Latency PC PC + 1 PC + 1 0004h 0005h Inst (0004h) Inst (0005h) Dummy Cycle Inst (PC) Inst (PC + 1) Inst (PC – 1) Inst (PC) Dummy Cycle Inst (0004h) — Note 1: INTF flag is sampled here (every Q1). 2: Asynchronous interrupt latency = 3-4 TCY. Synchronous latency = 3 TCY, where TCY = instruction cycle time. Latency is the same whether Inst (PC) is a single cycle or a 2-cycle instruction. 3: CLKOUT is available only in INTOSC and RC Oscillator modes. 4: For minimum width of INT pulse, refer to AC specifications in Section 16.0 “Electrical Specifications”. 5: INTF is enabled to be set any time during the Q4-Q1 cycles. (1) (2) (3) (4) (1) (5)  2010 Microchip Technology Inc. DS41302D-page 121 PIC12F609/615/617/12HV609/615 12.5 Context Saving During Interrupts During an interrupt, only the return PC value is saved on the stack. Typically, users may wish to save key registers during an interrupt (e.g., W and STATUS registers). This must be implemented in software. Temporary holding registers W_TEMP and STATUS_TEMP should be placed in the last 16 bytes of GPR (see Figure 2-3). These 16 locations are common to all banks and do not require banking. This makes context save and restore operations simpler. The code shown in Example 12-1 can be used to: • Store the W register • Store the STATUS register • Execute the ISR code • Restore the Status (and Bank Select Bit register) • Restore the W register EXAMPLE 12-1: SAVING STATUS AND W REGISTERS IN RAM 12.6 Watchdog Timer (WDT) The Watchdog Timer is a free running, on-chip RC oscillator, which requires no external components. This RC oscillator is separate from the external RC oscillator of the CLKIN pin and INTOSC. That means that the WDT will run, even if the clock on the OSC1 and OSC2 pins of the device has been stopped (for example, by execution of a SLEEP instruction). During normal operation, a WDT time out generates a device Reset. If the device is in Sleep mode, a WDT time out causes the device to wake-up and continue with normal operation. The WDT can be permanently disabled by programming the Configuration bit, WDTE, as clear (Section 12.1 “Configuration Bits”). 12.6.1 WDT PERIOD The WDT has a nominal time-out period of 18 ms (with no prescaler). The time-out periods vary with temperature, VDD and process variations from part to part (see DC specs). If longer time-out periods are desired, a prescaler with a division ratio of up to 1:128 can be assigned to the WDT under software control by writing to the OPTION register. Thus, time-out periods up to 2.3 seconds can be realized. The CLRWDT and SLEEP instructions clear the WDT and the prescaler, if assigned to the WDT, and prevent it from timing out and generating a device Reset. The TO bit in the STATUS register will be cleared upon a Watchdog Timer time out. Note: The PIC12F609/615/617/12HV609/615 does not require saving the PCLATH. However, if computed GOTOs are used in both the ISR and the main code, the PCLATH must be saved and restored in the ISR. MOVWF W_TEMP ;Copy W to TEMP register SWAPF STATUS,W ;Swap status to be saved into W ;Swaps are used because they do not affect the status bits MOVWF STATUS_TEMP ;Save status to bank zero STATUS_TEMP register : :(ISR) ;Insert user code here : SWAPF STATUS_TEMP,W ;Swap STATUS_TEMP register into W ;(sets bank to original state) MOVWF STATUS ;Move W into STATUS register SWAPF W_TEMP,F ;Swap W_TEMP SWAPF W_TEMP,W ;Swap W_TEMP into W PIC12F609/615/617/12HV609/615 DS41302D-page 122  2010 Microchip Technology Inc. 12.6.2 WDT PROGRAMMING CONSIDERATIONS It should also be taken in account that under worstcase conditions (i.e., VDD = Min., Temperature = Max., Max. WDT prescaler) it may take several seconds before a WDT time out occurs. FIGURE 12-2: WATCHDOG TIMER BLOCK DIAGRAM TABLE 12-9: SUMMARY OF REGISTERS ASSOCIATED WITH WATCHDOG TIMER TABLE 12-8: WDT STATUS Conditions WDT WDTE = 0 Cleared CLRWDT Command Oscillator Fail Detected Exit Sleep + System Clock = T1OSC, EXTRC, INTRC, EXTCLK Exit Sleep + System Clock = XT, HS, LP Cleared until the end of OST Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Value on POR, BOR Value on all other Resets OPTION_REG GPPU INTEDG T0CS T0SE PSA PS2 PS1 PS0 1111 1111 1111 1111 CONFIG IOSCFS CP MCLRE PWRTE WDTE FOSC2 FOSC1 FOSC0 — — Legend: Shaded cells are not used by the Watchdog Timer. Note 1: See Register 12-1 for operation of all Configuration Word register bits. T0CKI T0SE pin CLKOUT TMR0 Watchdog Timer WDT Time-Out PS<2:0> WDTE Data Bus Set Flag bit T0IF on Overflow T0CS Note 1: T0SE, T0CS, PSA, PS<2:0> are bits in the OPTION register. 0 1 0 1 0 1 SYNC 2 Cycles 8 8 8-bit Prescaler 0 1 (= FOSC/4) PSA PSA PSA 3  2010 Microchip Technology Inc. DS41302D-page 123 PIC12F609/615/617/12HV609/615 12.7 Power-Down Mode (Sleep) The Power-Down mode is entered by executing a SLEEP instruction. If the Watchdog Timer is enabled: • WDT will be cleared but keeps running. • PD bit in the STATUS register is cleared. • TO bit is set. • Oscillator driver is turned off. • I/O ports maintain the status they had before SLEEP was executed (driving high, low or high-impedance). For lowest current consumption in this mode, all I/O pins should be either at VDD or VSS, with no external circuitry drawing current from the I/O pin and the comparators and CVREF should be disabled. I/O pins that are highimpedance inputs should be pulled high or low externally to avoid switching currents caused by floating inputs. The T0CKI input should also be at VDD or VSS for lowest current consumption. The contribution from on-chip pullups on GPIO should be considered. The MCLR pin must be at a logic high level. 12.7.1 WAKE-UP FROM SLEEP The device can wake-up from Sleep through one of the following events: 1. External Reset input on MCLR pin. 2. Watchdog Timer wake-up (if WDT was enabled). 3. Interrupt from GP2/INT pin, GPIO change or a peripheral interrupt. The first event will cause a device Reset. The two latter events are considered a continuation of program execution. The TO and PD bits in the STATUS register can be used to determine the cause of device Reset. The PD bit, which is set on power-up, is cleared when Sleep is invoked. TO bit is cleared if WDT wake-up occurred. The following peripheral interrupts can wake the device from Sleep: 1. Timer1 interrupt. Timer1 must be operating as an asynchronous counter. 2. ECCP Capture mode interrupt. 3. A/D conversion (when A/D clock source is RC). 4. Comparator output changes state. 5. Interrupt-on-change. 6. External Interrupt from INT pin. Other peripherals cannot generate interrupts since during Sleep, no on-chip clocks are present. When the SLEEP instruction is being executed, the next instruction (PC + 1) is prefetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be set (enabled). Wake-up is regardless of the state of the GIE bit. If the GIE bit is clear (disabled), the device continues execution at the instruction after the SLEEP instruction. If the GIE bit is set (enabled), the device executes the instruction after the SLEEP instruction, then branches to the interrupt address (0004h). In cases where the execution of the instruction following SLEEP is not desirable, the user should have a NOP after the SLEEP instruction. The WDT is cleared when the device wakes up from Sleep, regardless of the source of wake-up. 12.7.2 WAKE-UP USING INTERRUPTS When global interrupts are disabled (GIE cleared) and any interrupt source has both its interrupt enable bit and interrupt flag bit set, one of the following will occur: • If the interrupt occurs before the execution of a SLEEP instruction, the SLEEP instruction will complete as a NOP. Therefore, the WDT and WDT prescaler and postscaler (if enabled) will not be cleared, the TO bit will not be set and the PD bit will not be cleared. • If the interrupt occurs during or after the execution of a SLEEP instruction, the device will Immediately wake-up from Sleep. The SLEEP instruction is executed. Therefore, the WDT and WDT prescaler and postscaler (if enabled) will be cleared, the TO bit will be set and the PD bit will be cleared. Even if the flag bits were checked before executing a SLEEP instruction, it may be possible for flag bits to become set before the SLEEP instruction completes. To determine whether a SLEEP instruction executed, test the PD bit. If the PD bit is set, the SLEEP instruction was executed as a NOP. To ensure that the WDT is cleared, a CLRWDT instruction should be executed before a SLEEP instruction. See Figure 12-9 for more details. Note: It should be noted that a Reset generated by a WDT time-out does not drive MCLR pin low. Note: If the global interrupts are disabled (GIE is cleared) and any interrupt source has both its interrupt enable bit and the corresponding interrupt flag bits set, the device will immediately wake-up from Sleep. PIC12F609/615/617/12HV609/615 DS41302D-page 124  2010 Microchip Technology Inc. FIGURE 12-9: WAKE-UP FROM SLEEP THROUGH INTERRUPT 12.8 Code Protection If the code protection bit(s) have not been programmed, the on-chip program memory can be read out using ICSP™ for verification purposes. 12.9 ID Locations Four memory locations (2000h-2003h) are designated as ID locations where the user can store checksum or other code identification numbers. These locations are not accessible during normal execution but are readable and writable during Program/Verify mode. Only the Least Significant 7 bits of the ID locations are used. Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 OSC1 CLKOUT(4) INT pin INTF flag (INTCON reg.) GIE bit (INTCON reg.) Instruction Flow PC Instruction Fetched Instruction Executed PC PC + 1 PC + 2 Inst(PC) = Sleep Inst(PC – 1) Inst(PC + 1) Sleep Processor in Sleep Interrupt Latency(3) Inst(PC + 2) Inst(PC + 1) Inst(0004h) Inst(0005h) Dummy Cycle Inst(0004h) PC + 2 0004h 0005h Dummy Cycle TOST(2) PC + 2 Note 1: XT, HS or LP Oscillator mode assumed. 2: TOST = 1024 TOSC (drawing not to scale). This delay does not apply to EC, INTOSC and RC Oscillator modes. 3: GIE = ‘1’ assumed. In this case after wake-up, the processor jumps to 0004h. If GIE = ‘0’, execution will continue in-line. 4: CLKOUT is not available in XT, HS, LP or EC Oscillator modes, but shown here for timing reference. Note: The entire Flash program memory will be erased when the code protection is turned off. See the MemoryProgramming Specification (DS41204) for more information.  2010 Microchip Technology Inc. DS41302D-page 125 PIC12F609/615/617/12HV609/615 12.10 In-Circuit Serial Programming™ ThePIC12F609/615/617/12HV609/615 microcontrollers can be serially programmed while in the end application circuit. This is simply done with five connections for: • clock • data • power • ground • programming voltage This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed. The device is placed into a Program/Verify mode by holding the GP0 and GP1 pins low, while raising the MCLR (VPP) pin from VIL to VIHH. See the Memory Programming Specification (DS41284) for more information. GP0 becomes the programming data and GP1 becomes the programming clock. Both GP0 and GP1 are Schmitt Trigger inputs in Program/Verify mode. A typical In-Circuit Serial Programming connection is shown in Figure 12-10. FIGURE 12-10: TYPICAL IN-CIRCUIT SERIAL PROGRAMMING CONNECTION 12.11 In-Circuit Debugger Since in-circuit debugging requires access to three pins, MPLAB® ICD 2 development with an 14-pin device is not practical. A special 28-pin PIC12F609/615/617/ 12HV609/615 ICD device is used with MPLAB ICD 2 to provide separate clock, data and MCLR pins and frees all normally available pins to the user. A special debugging adapter allows the ICD device to be used in place of a PIC12F609/615/617/12HV609/ 615 device. The debugging adapter is the only source of the ICD device. When the ICD pin on the PIC12F609/615/617/ 12HV609/615 ICD device is held low, the In-Circuit Debugger functionality is enabled. This function allows simple debugging functions when used with MPLAB ICD 2. When the microcontroller has this feature enabled, some of the resources are not available for general use. Table 12-10 shows which features are consumed by the background debugger. TABLE 12-10: DEBUGGER RESOURCES For more information, see “MPLAB® ICD 2 In-Circuit Debugger User’s Guide” (DS51331), available on Microchip’s web site (www.microchip.com). FIGURE 12-11: 28 PIN ICD PINOUT Note: To erase the device VDD must be above the Bulk Erase VDD minimum given in the Memory Programming Specification (DS41284) External Connector Signals To Normal Connections To Normal Connections PIC12F615/12HV615 VDD VSS MCLR/VPP/GP3/RA3 GP1 GP0 +5V 0V VPP CLK Data I/O * * * * * Isolation devices (as required) PIC12F609/12HV609 PIC12F617/ Resource Description I/O pins ICDCLK, ICDDATA Stack 1 level Program Memory Address 0h must be NOP 700h-7FFh 28-Pin PDIP In-Circuit Debug Device VDD CS0 CS1 CS2 RA5 RA4 GND RA0 RA1 SHUNTEN RC3 NC RA2 RC0 RA3 RC5 RC4 RC1 RC2 NC 1 2 3 4 5 6 7 8 9 10 28 27 26 25 24 23 22 21 20 19 ICDDATA ICD NC ICDCLK ICDMCLR NC NC NC 11 12 13 14 18 17 16 15 PIC16F616-ICD PIC12F609/615/617/12HV609/615 DS41302D-page 126  2010 Microchip Technology Inc. NOTES:  2010 Microchip Technology Inc. DS41302D-page 127 PIC12F609/615/617/12HV609/615 13.0 VOLTAGE REGULATOR The PIC12HV609/HV615 devices include a permanent internal 5 volt (nominal) shunt regulator in parallel with the VDD pin. This eliminates the need for an external voltage regulator in systems sourced by an unregulated supply. All external devices connected directly to the VDD pin will share the regulated supply voltage and contribute to the total VDD supply current (ILOAD). 13.1 Regulator Operation A shunt regulator generates a specific supply voltage by creating a voltage drop across a pass resistor RSER. The voltage at the VDD pin of the microcontroller is monitored and compared to an internal voltage reference. The current through the resistor is then adjusted, based on the result of the comparison, to produce a voltage drop equal to the difference between the supply voltage VUNREG and the VDD of the microcontroller. See Figure 13-1 for voltage regulator schematic. FIGURE 13-1: VOLTAGE REGULATOR An external current limiting resistor, RSER, located between the unregulated supply, VUNREG, and the VDD pin, drops the difference in voltage between VUNREG and VDD. RSER must be between RMAX and RMIN as defined by Equation 13-1. EQUATION 13-1: RSER LIMITING RESISTOR 13.2 Regulator Considerations The supply voltage VUNREG and load current are not constant. Therefore, the current range of the regulator is limited. Selecting a value for RSER must take these three factors into consideration. Since the regulator uses the band gap voltage as the regulated voltage reference, this voltage reference is permanently enabled in the PIC12HV609/HV615 devices. The shunt regulator will still consume current when below operating voltage range for the shunt regulator. 13.3 Design Considerations For more information on using the shunt regulator and managing current load, see Application Note AN1035, “Designing with HV Microcontrollers” (DS01035). Feedback VDD VSS CBYPASS RSER VUNREG ISUPPLY ISHUNT ILOAD Device RMAX = (VUMIN - 5V) 1.05 • (4 MA + ILOAD) RMIN = (VUMAX - 5V) 0.95 • (50 MA) Where: RMAX = maximum value of RSER (ohms) RMIN = minimum value of RSER (ohms) VUMIN = minimum value of VUNREG VUMAX= maximum value of VUNREG VDD = regulated voltage (5V nominal) ILOAD = maximum expected load current in mA including I/O pin currents and external circuits connected to VDD. 1.05 = compensation for +5% tolerance of RSER 0.95 = compensation for -5% tolerance of RSER PIC12F609/615/617/12HV609/615 DS41302D-page 128  2010 Microchip Technology Inc. NOTES:  2010 Microchip Technology Inc. DS41302D-page 129 PIC12F609/615/617/12HV609/615 14.0 INSTRUCTION SET SUMMARY The PIC12F609/615/617/12HV609/615 instruction set is highly orthogonal and is comprised of three basic categories: • Byte-oriented operations • Bit-oriented operations • Literal and control operations Each PIC16 instruction is a 14-bit word divided into an opcode, which specifies the instruction type and one or more operands, which further specify the operation of the instruction. The formats for each of the categories is presented in Figure 14-1, while the various opcode fields are summarized in Table 14-1. Table 14-2 lists the instructions recognized by the MPASMTM assembler. For byte-oriented instructions, ‘f’ represents a file register designator and ‘d’ represents a destination designator. The file register designator specifies which file register is to be used by the instruction. The destination designator specifies where the result of the operation is to be placed. If ‘d’ is zero, the result is placed in the W register. If ‘d’ is one, the result is placed in the file register specified in the instruction. For bit-oriented instructions, ‘b’ represents a bit field designator, which selects the bit affected by the operation, while ‘f’ represents the address of the file in which the bit is located. For literal and control operations, ‘k’ represents an 8-bit or 11-bit constant, or literal value. One instruction cycle consists of four oscillator periods; for an oscillator frequency of 4 MHz, this gives a normal instruction execution time of 1 s. All instructions are executed within a single instruction cycle, unless a conditional test is true, or the program counter is changed as a result of an instruction. When this occurs, the execution takes two instruction cycles, with the second cycle executed as a NOP. All instruction examples use the format ‘0xhh’ to represent a hexadecimal number, where ‘h’ signifies a hexadecimal digit. 14.1 Read-Modify-Write Operations Any instruction that specifies a file register as part of the instruction performs a Read-Modify-Write (RMW) operation. The register is read, the data is modified, and the result is stored according to either the instruction or the destination designator ‘d’. A read operation is performed on a register even if the instruction writes to that register. For example, a CLRF GPIO instruction will read GPIO, clear all the data bits, then write the result back to GPIO. This example would have the unintended consequence of clearing the condition that set the GPIF flag. TABLE 14-1: OPCODE FIELD DESCRIPTIONS FIGURE 14-1: GENERAL FORMAT FOR INSTRUCTIONS Field Description f Register file address (0x00 to 0x7F) W Working register (accumulator) b Bit address within an 8-bit file register k Literal field, constant data or label x Don’t care location (= 0 or 1). The assembler will generate code with x = 0. It is the recommended form of use for compatibility with all Microchip software tools. d Destination select; d = 0: store result in W, d = 1: store result in file register f. Default is d = 1. PC Program Counter TO Time-out bit C Carry bit DC Digit carry bit Z Zero bit PD Power-down bit Byte-oriented file register operations 13 8 7 6 0 d = 0 for destination W OPCODE d f (FILE #) d = 1 for destination f f = 7-bit file register address Bit-oriented file register operations 13 10 9 7 6 0 OPCODE b (BIT #) f (FILE #) b = 3-bit bit address f = 7-bit file register address Literal and control operations 13 8 7 0 OPCODE k (literal) k = 8-bit immediate value 13 11 10 0 OPCODE k (literal) k = 11-bit immediate value General CALL and GOTO instructions only PIC12F609/615/617/12HV609/615 DS41302D-page 130  2010 Microchip Technology Inc. TABLE 14-2: PIC12F609/615/617/12HV609/615 INSTRUCTION SET Mnemonic, Operands Description Cycles 14-Bit Opcode Status Affected Notes MSb LSb BYTE-ORIENTED FILE REGISTER OPERATIONS ADDWF ANDWF CLRF CLRW COMF DECF DECFSZ INCF INCFSZ IORWF MOVF MOVWF NOP RLF RRF SUBWF SWAPF XORWF f, d f, d f– f, d f, d f, d f, d f, d f, d f, d f– f, d f, d f, d f, d f, d Add W and f AND W with f Clear f Clear W Complement f Decrement f Decrement f, Skip if 0 Increment f Increment f, Skip if 0 Inclusive OR W with f Move f Move W to f No Operation Rotate Left f through Carry Rotate Right f through Carry Subtract W from f Swap nibbles in f Exclusive OR W with f 111111 1(2) 1 1(2) 111111111 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0111 0101 0001 0001 1001 0011 1011 1010 1111 0100 1000 0000 0000 1101 1100 0010 1110 0110 dfff dfff lfff 0xxx dfff dfff dfff dfff dfff dfff dfff lfff 0xx0 dfff dfff dfff dfff dfff ffff ffff ffff xxxx ffff ffff ffff ffff ffff ffff ffff ffff 0000 ffff ffff ffff ffff ffff C, DC, Z ZZZZZ Z ZZ CC C, DC, Z Z 1, 2 1, 2 2 1, 2 1, 2 1, 2, 3 1, 2 1, 2, 3 1, 2 1, 2 1, 2 1, 2 1, 2 1, 2 1, 2 BIT-ORIENTED FILE REGISTER OPERATIONS BCF BSF BTFSC BTFSS f, b f, b f, b f, b Bit Clear f Bit Set f Bit Test f, Skip if Clear Bit Test f, Skip if Set 11 1 (2) 1 (2) 01 01 01 01 00bb 01bb 10bb 11bb bfff bfff bfff bfff ffff ffff ffff ffff 1, 2 1, 2 33 LITERAL AND CONTROL OPERATIONS ADDLW ANDLW CALL CLRWDT GOTO IORLW MOVLW RETFIE RETLW RETURN SLEEP SUBLW XORLW kkk–kkk–k––kk Add literal and W AND literal with W Call Subroutine Clear Watchdog Timer Go to address Inclusive OR literal with W Move literal to W Return from interrupt Return with literal in W Return from Subroutine Go into Standby mode Subtract W from literal Exclusive OR literal with W 1121211222111 11 11 10 00 10 11 11 00 11 00 00 11 11 111x 1001 0kkk 0000 1kkk 1000 00xx 0000 01xx 0000 0000 110x 1010 kkkk kkkk kkkk 0110 kkkk kkkk kkkk 0000 kkkk 0000 0110 kkkk kkkk kkkk kkkk kkkk 0100 kkkk kkkk kkkk 1001 kkkk 1000 0011 kkkk kkkk C, DC, Z Z TO, PD Z TO, PD C, DC, Z Z Note 1: When an I/O register is modified as a function of itself (e.g., MOVF GPIO, 1), the value used will be that value present on the pins themselves. For example, if the data latch is ‘1’ for a pin configured as input and is driven low by an external device, the data will be written back with a ‘0’. 2: If this instruction is executed on the TMR0 register (and where applicable, d = 1), the prescaler will be cleared if assigned to the Timer0 module. 3: If the Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.  2010 Microchip Technology Inc. DS41302D-page 131 PIC12F609/615/617/12HV609/615 14.2 Instruction Descriptions ADDLW Add literal and W Syntax: [ label ] ADDLW k Operands: 0  k  255 Operation: (W) + k  (W) Status Affected: C, DC, Z Description: The contents of the W register are added to the eight-bit literal ‘k’ and the result is placed in the W register. ADDWF Add W and f Syntax: [ label ] ADDWF f,d Operands: 0  f  127 d 0,1 Operation: (W) + (f)  (destination) Status Affected: C, DC, Z Description: Add the contents of the W register with register ‘f’. If ‘d’ is ‘0’, the result is stored in the W register. If ‘d’ is ‘1’, the result is stored back in register ‘f’. ANDLW AND literal with W Syntax: [ label ] ANDLW k Operands: 0  k  255 Operation: (W) .AND. (k)  (W) Status Affected: Z Description: The contents of W register are AND’ed with the eight-bit literal ‘k’. The result is placed in the W register. ANDWF AND W with f Syntax: [ label ] ANDWF f,d Operands: 0  f  127 d 0,1 Operation: (W) .AND. (f)  (destination) Status Affected: Z Description: AND the W register with register ‘f’. If ‘d’ is ‘0’, the result is stored in the W register. If ‘d’ is ‘1’, the result is stored back in register ‘f’. BCF Bit Clear f Syntax: [ label ] BCF f,b Operands: 0  f  127 0  b  7 Operation: 0  (f) Status Affected: None Description: Bit ‘b’ in register ‘f’ is cleared. BSF Bit Set f Syntax: [ label ] BSF f,b Operands: 0  f  127 0  b  7 Operation: 1  (f) Status Affected: None Description: Bit ‘b’ in register ‘f’ is set. BTFSC Bit Test f, Skip if Clear Syntax: [ label ] BTFSC f,b Operands: 0  f  127 0  b  7 Operation: skip if (f) = 0 Status Affected: None Description: If bit ‘b’ in register ‘f’ is ‘1’, the next instruction is executed. If bit ‘b’ in register ‘f’ is ‘0’, the next instruction is discarded, and a NOP is executed instead, making this a two-cycle instruction. PIC12F609/615/617/12HV609/615 DS41302D-page 132  2010 Microchip Technology Inc. BTFSS Bit Test f, Skip if Set Syntax: [ label ] BTFSS f,b Operands: 0  f  127 0  b < 7 Operation: skip if (f) = 1 Status Affected: None Description: If bit ‘b’ in register ‘f’ is ‘0’, the next instruction is executed. If bit ‘b’ is ‘1’, then the next instruction is discarded and a NOP is executed instead, making this a two-cycle instruction. CALL Call Subroutine Syntax: [ label ] CALL k Operands: 0  k  2047 Operation: (PC)+ 1 TOS, k  PC<10:0>, (PCLATH<4:3>)  PC<12:11> Status Affected: None Description: Call Subroutine. First, return address (PC + 1) is pushed onto the stack. The eleven-bit immediate address is loaded into PC bits <10:0>. The upper bits of the PC are loaded from PCLATH. CALL is a two-cycle instruction. CLRF Clear f Syntax: [ label ] CLRF f Operands: 0  f  127 Operation: 00h  (f) 1  Z Status Affected: Z Description: The contents of register ‘f’ are cleared and the Z bit is set. CLRW Clear W Syntax: [ label ] CLRW Operands: None Operation: 00h  (W) 1  Z Status Affected: Z Description: W register is cleared. Zero bit (Z) is set. CLRWDT Clear Watchdog Timer Syntax: [ label ] CLRWDT Operands: None Operation: 00h  WDT 0  WDT prescaler, 1  TO 1  PD Status Affected: TO, PD Description: CLRWDT instruction resets the Watchdog Timer. It also resets the prescaler of the WDT. Status bits TO and PD are set. COMF Complement f Syntax: [ label ] COMF f,d Operands: 0  f  127 d  [0,1] Operation: (f)  (destination) Status Affected: Z Description: The contents of register ‘f’ are complemented. If ‘d’ is ‘0’, the result is stored in W. If ‘d’ is ‘1’, the result is stored back in register ‘f’. DECF Decrement f Syntax: [ label ] DECF f,d Operands: 0  f  127 d  [0,1] Operation: (f) - 1  (destination) Status Affected: Z Description: Decrement register ‘f’. If ‘d’ is ‘0’, the result is stored in the W register. If ‘d’ is ‘1’, the result is stored back in register ‘f’.  2010 Microchip Technology Inc. DS41302D-page 133 PIC12F609/615/617/12HV609/615 DECFSZ Decrement f, Skip if 0 Syntax: [ label ] DECFSZ f,d Operands: 0  f  127 d  [0,1] Operation: (f) - 1  (destination); skip if result = 0 Status Affected: None Description: The contents of register ‘f’ are decremented. If ‘d’ is ‘0’, the result is placed in the W register. If ‘d’ is ‘1’, the result is placed back in register ‘f’. If the result is ‘1’, the next instruction is executed. If the result is ‘0’, then a NOP is executed instead, making it a two-cycle instruction. GOTO Unconditional Branch Syntax: [ label ] GOTO k Operands: 0  k  2047 Operation: k  PC<10:0> PCLATH<4:3>  PC<12:11> Status Affected: None Description: GOTO is an unconditional branch. The eleven-bit immediate value is loaded into PC bits <10:0>. The upper bits of PC are loaded from PCLATH<4:3>. GOTO is a two-cycle instruction. INCF Increment f Syntax: [ label ] INCF f,d Operands: 0  f  127 d  [0,1] Operation: (f) + 1  (destination) Status Affected: Z Description: The contents of register ‘f’ are incremented. If ‘d’ is ‘0’, the result is placed in the W register. If ‘d’ is ‘1’, the result is placed back in register ‘f’. INCFSZ Increment f, Skip if 0 Syntax: [ label ] INCFSZ f,d Operands: 0  f  127 d  [0,1] Operation: (f) + 1  (destination), skip if result = 0 Status Affected: None Description: The contents of register ‘f’ are incremented. If ‘d’ is ‘0’, the result is placed in the W register. If ‘d’ is ‘1’, the result is placed back in register ‘f’. If the result is ‘1’, the next instruction is executed. If the result is ‘0’, a NOP is executed instead, making it a two-cycle instruction. IORLW Inclusive OR literal with W Syntax: [ label ] IORLW k Operands: 0  k  255 Operation: (W) .OR. k  (W) Status Affected: Z Description: The contents of the W register are OR’ed with the eight-bit literal ‘k’. The result is placed in the W register. IORWF Inclusive OR W with f Syntax: [ label ] IORWF f,d Operands: 0  f  127 d  [0,1] Operation: (W) .OR. (f)  (destination) Status Affected: Z Description: Inclusive OR the W register with register ‘f’. If ‘d’ is ‘0’, the result is placed in the W register. If ‘d’ is ‘1’, the result is placed back in register ‘f’. PIC12F609/615/617/12HV609/615 DS41302D-page 134  2010 Microchip Technology Inc. MOVF Move f Syntax: [ label ] MOVF f,d Operands: 0  f  127 d  [0,1] Operation: (f)  (dest) Status Affected: Z Description: The contents of register ‘f’ is moved to a destination dependent upon the status of ‘d’. If d = 0, destination is W register. If d = 1, the destination is file register ‘f’ itself. d = 1 is useful to test a file register since Status flag Z is affected. Words: 1 Cycles: 1 Example: MOVF FSR, 0 After Instruction W = value in FSR register Z = 1 MOVLW Move literal to W Syntax: [ label ] MOVLW k Operands: 0  k  255 Operation: k  (W) Status Affected: None Description: The eight-bit literal ‘k’ is loaded into W register. The “don’t cares” will assemble as ‘0’s. Words: 1 Cycles: 1 Example: MOVLW 0x5A After Instruction W = 0x5A MOVWF Move W to f Syntax: [ label ] MOVWF f Operands: 0  f  127 Operation: (W)  (f) Status Affected: None Description: Move data from W register to register ‘f’. Words: 1 Cycles: 1 Example: MOVW F OPTION Before Instruction OPTION= 0xFF W = 0x4F After Instruction OPTION= 0x4F W = 0x4F NOP No Operation Syntax: [ label ] NOP Operands: None Operation: No operation Status Affected: None Description: No operation. Words: 1 Cycles: 1 Example: NOP  2010 Microchip Technology Inc. DS41302D-page 135 PIC12F609/615/617/12HV609/615 RETFIE Return from Interrupt Syntax: [ label ] RETFIE Operands: None Operation: TOS  PC, 1  GIE Status Affected: None Description: Return from Interrupt. Stack is POPed and Top-of-Stack (TOS) is loaded in the PC. Interrupts are enabled by setting Global Interrupt Enable bit, GIE (INTCON< 7>). This is a two-cycle instruction. Words: 1 Cycles: 2 Example: RETFIE After Interrupt PC = TOS GIE = 1 RETLW Return with literal in W Syntax: [ label ] RETLW k Operands: 0  k  255 Operation: k  (W); TOS  PC Status Affected: None Description: The W register is loaded with the eight-bit literal ‘k’. The program counter is loaded from the top of the stack (the return address). This is a two-cycle instruction. Words: 1 Cycles: 2 Example: TABLE DONE CALL TABLE;W contains ;table offset ;value GOTO DONE • • ADDWF PC ;W = offset RETLW k1 ;Begin table RETLW k2 ; • • • RETLW kn ;End of table Before Instruction W = 0x07 After Instruction W = value of k8 RETURN Return from Subroutine Syntax: [ label ] RETURN Operands: None Operation: TOS  PC Status Affected: None Description: Return from subroutine. The stack is POPed and the top of the stack (TOS) is loaded into the program counter. This is a two-cycle instruction. PIC12F609/615/617/12HV609/615 DS41302D-page 136  2010 Microchip Technology Inc. RLF Rotate Left f through Carry Syntax: [ label ] RLF f,d Operands: 0  f  127 d  [0,1] Operation: See description below Status Affected: C Description: The contents of register ‘f’ are rotated one bit to the left through the Carry flag. If ‘d’ is ‘0’, the result is placed in the W register. If ‘d’ is ‘1’, the result is stored back in register ‘f’. Words: 1 Cycles: 1 Example: RLF REG1,0 Before Instruction REG1 = 1110 0110 C = 0 After Instruction REG1 = 1110 0110 W = 1100 1100 C = 1 RRF Rotate Right f through Carry Syntax: [ label ] RRF f,d Operands: 0  f  127 d  [0,1] Operation: See description below Status Affected: C Description: The contents of register ‘f’ are rotated one bit to the right through the Carry flag. If ‘d’ is ‘0’, the result is placed in the W register. If ‘d’ is ‘1’, the result is placed back in register ‘f’. C Register f C Register f SLEEP Enter Sleep mode Syntax: [ label ] SLEEP Operands: None Operation: 00h  WDT, 0  WDT prescaler, 1  TO, 0  PD Status Affected: TO, PD Description: The power-down Status bit, PD is cleared. Time-out Status bit, TO is set. Watchdog Timer and its prescaler are cleared. The processor is put into Sleep mode with the oscillator stopped. SUBLW Subtract W from literal Syntax: [ label ] SUBLW k Operands: 0 k 255 Operation: k - (W) W) Status Affected: C, DC, Z Description: The W register is subtracted (2’s complement method) from the eight-bit literal ‘k’. The result is placed in the W register. Result Condition C = 0 W  k C = 1 W  k DC = 0 W<3:0>  k<3:0> DC = 1 W<3:0>  k<3:0>  2010 Microchip Technology Inc. DS41302D-page 137 PIC12F609/615/617/12HV609/615 SUBWF Subtract W from f Syntax: [ label ] SUBWF f,d Operands: 0 f 127 d  [0,1] Operation: (f) - (W) destination) Status Affected: C, DC, Z Description: Subtract (2’s complement method) W register from register ‘f’. If ‘d’ is ‘0’, the result is stored in the W register. If ‘d’ is ‘1’, the result is stored back in register ‘f’. SWAPF Swap Nibbles in f Syntax: [ label ] SWAPF f,d Operands: 0  f  127 d  [0,1] Operation: (f<3:0>)  (destination<7:4>), (f<7:4>)  (destination<3:0>) Status Affected: None Description: The upper and lower nibbles of register ‘f’ are exchanged. If ‘d’ is ‘0’, the result is placed in the W register. If ‘d’ is ‘1’, the result is placed in register ‘f’. XORLW Exclusive OR literal with W Syntax: [ label ] XORLW k Operands: 0 k 255 Operation: (W) .XOR. k W) Status Affected: Z Description: The contents of the W register are XOR’ed with the eight-bit literal ‘k’. The result is placed in the W register. C = 0 W  f C = 1 W  f DC = 0 W<3:0>  f<3:0> DC = 1 W<3:0>  f<3:0> XORWF Exclusive OR W with f Syntax: [ label ] XORWF f,d Operands: 0  f  127 d  [0,1] Operation: (W) .XOR. (f) destination) Status Affected: Z Description: Exclusive OR the contents of the W register with register ‘f’. If ‘d’ is ‘0’, the result is stored in the W register. If ‘d’ is ‘1’, the result is stored back in register ‘f’. PIC12F609/615/617/12HV609/615 DS41302D-page 138  2010 Microchip Technology Inc. NOTES:  2010 Microchip Technology Inc. DS41302D-page 139 PIC12F609/615/617/12HV609/615 15.0 DEVELOPMENT SUPPORT The PIC® microcontrollers and dsPIC® digital signal controllers are supported with a full range of software and hardware development tools: • Integrated Development Environment - MPLAB® IDE Software • Compilers/Assemblers/Linkers - MPLAB C Compiler for Various Device Families - HI-TECH C for Various Device Families - MPASMTM Assembler - MPLINKTM Object Linker/ MPLIBTM Object Librarian - MPLAB Assembler/Linker/Librarian for Various Device Families • Simulators - MPLAB SIM Software Simulator • Emulators - MPLAB REAL ICE™ In-Circuit Emulator • In-Circuit Debuggers - MPLAB ICD 3 - PICkit™ 3 Debug Express • Device Programmers - PICkit™ 2 Programmer - MPLAB PM3 Device Programmer • Low-Cost Demonstration/Development Boards, Evaluation Kits, and Starter Kits 15.1 MPLAB Integrated Development Environment Software The MPLAB IDE software brings an ease of software development previously unseen in the 8/16/32-bit microcontroller market. The MPLAB IDE is a Windows® operating system-based application that contains: • A single graphical interface to all debugging tools - Simulator - Programmer (sold separately) - In-Circuit Emulator (sold separately) - In-Circuit Debugger (sold separately) • A full-featured editor with color-coded context • A multiple project manager • Customizable data windows with direct edit of contents • High-level source code debugging • Mouse over variable inspection • Drag and drop variables from source to watch windows • Extensive on-line help • Integration of select third party tools, such as IAR C Compilers The MPLAB IDE allows you to: • Edit your source files (either C or assembly) • One-touch compile or assemble, and download to emulator and simulator tools (automatically updates all project information) • Debug using: - Source files (C or assembly) - Mixed C and assembly - Machine code MPLAB IDE supports multiple debugging tools in a single development paradigm, from the cost-effective simulators, through low-cost in-circuit debuggers, to full-featured emulators. This eliminates the learning curve when upgrading to tools with increased flexibility and power. PIC12F609/615/617/12HV609/615 DS41302D-page 140  2010 Microchip Technology Inc. 15.2 MPLAB C Compilers for Various Device Families The MPLAB C Compiler code development systems are complete ANSI C compilers for Microchip’s PIC18, PIC24 and PIC32 families of microcontrollers and the dsPIC30 and dsPIC33 families of digital signal controllers. These compilers provide powerful integration capabilities, superior code optimization and ease of use. For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger. 15.3 HI-TECH C for Various Device Families The HI-TECH C Compiler code development systems are complete ANSI C compilers for Microchip’s PIC family of microcontrollers and the dsPIC family of digital signal controllers. These compilers provide powerful integration capabilities, omniscient code generation and ease of use. For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger. The compilers include a macro assembler, linker, preprocessor, and one-step driver, and can run on multiple platforms. 15.4 MPASM Assembler The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs. The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel® standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code and COFF files for debugging. The MPASM Assembler features include: • Integration into MPLAB IDE projects • User-defined macros to streamline assembly code • Conditional assembly for multi-purpose source files • Directives that allow complete control over the assembly process 15.5 MPLINK Object Linker/ MPLIB Object Librarian The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler and the MPLAB C18 C Compiler. It can link relocatable objects from precompiled libraries, using directives from a linker script. The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications. The object linker/library features include: • Efficient linking of single libraries instead of many smaller files • Enhanced code maintainability by grouping related modules together • Flexible creation of libraries with easy module listing, replacement, deletion and extraction 15.6 MPLAB Assembler, Linker and Librarian for Various Device Families MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC devices. MPLAB C Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include: • Support for the entire device instruction set • Support for fixed-point and floating-point data • Command line interface • Rich directive set • Flexible macro language • MPLAB IDE compatibility  2010 Microchip Technology Inc. DS41302D-page 141 PIC12F609/615/617/12HV609/615 15.7 MPLAB SIM Software Simulator The MPLAB SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC® DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers. The MPLAB SIM Software Simulator fully supports symbolic debugging using the MPLAB C Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool. 15.8 MPLAB REAL ICE In-Circuit Emulator System MPLAB REAL ICE In-Circuit Emulator System is Microchip’s next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs PIC® Flash MCUs and dsPIC® Flash DSCs with the easy-to-use, powerful graphical user interface of the MPLAB Integrated Development Environment (IDE), included with each kit. The emulator is connected to the design engineer’s PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with incircuit debugger systems (RJ11) or with the new highspeed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5). The emulator is field upgradable through future firmware downloads in MPLAB IDE. In upcoming releases of MPLAB IDE, new devices will be supported, and new features will be added. MPLAB REAL ICE offers significant advantages over competitive emulators including low-cost, full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, a ruggedized probe interface and long (up to three meters) interconnection cables. 15.9 MPLAB ICD 3 In-Circuit Debugger System MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost effective high-speed hardware debugger/programmer for Microchip Flash Digital Signal Controller (DSC) and microcontroller (MCU) devices. It debugs and programs PIC® Flash microcontrollers and dsPIC® DSCs with the powerful, yet easyto- use graphical user interface of MPLAB Integrated Development Environment (IDE). The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers. 15.10 PICkit 3 In-Circuit Debugger/ Programmer and PICkit 3 Debug Express The MPLAB PICkit 3 allows debugging and programming of PIC® and dsPIC® Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB Integrated Development Environment (IDE). The MPLAB PICkit 3 is connected to the design engineer's PC using a full speed USB interface and can be connected to the target via an Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the reset line to implement in-circuit debugging and In-Circuit Serial Programming ™. The PICkit 3 Debug Express include the PICkit 3, demo board and microcontroller, hookup cables and CDROM with user’s guide, lessons, tutorial, compiler and MPLAB IDE software. PIC12F609/615/617/12HV609/615 DS41302D-page 142  2010 Microchip Technology Inc. 15.11 PICkit 2 Development Programmer/Debugger and PICkit 2 Debug Express The PICkit™ 2 Development Programmer/Debugger is a low-cost development tool with an easy to use interface for programming and debugging Microchip’s Flash families of microcontrollers. The full featured Windows® programming interface supports baseline (PIC10F, PIC12F5xx, PIC16F5xx), midrange (PIC12F6xx, PIC16F), PIC18F, PIC24, dsPIC30, dsPIC33, and PIC32 families of 8-bit, 16-bit, and 32-bit microcontrollers, and many Microchip Serial EEPROM products. With Microchip’s powerful MPLAB Integrated Development Environment (IDE) the PICkit™ 2 enables in-circuit debugging on most PIC® microcontrollers. In-Circuit-Debugging runs, halts and single steps the program while the PIC microcontroller is embedded in the application. When halted at a breakpoint, the file registers can be examined and modified. The PICkit 2 Debug Express include the PICkit 2, demo board and microcontroller, hookup cables and CDROM with user’s guide, lessons, tutorial, compiler and MPLAB IDE software. 15.12 MPLAB PM3 Device Programmer The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages and a modular, detachable socket assembly to support various package types. The ICSP™ cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices and incorporates an MMC card for file storage and data applications. 15.13 Demonstration/Development Boards, Evaluation Kits, and Starter Kits A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification. The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory. The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications. In addition to the PICDEM™ and dsPICDEM™ demonstration/ development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ® security ICs, CAN, IrDA®, PowerSmart battery management, SEEVAL® evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more. Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board. Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.  2010 Microchip Technology Inc. DS41302D-page 143 PIC12F609/615/617/12HV609/615 16.0 ELECTRICAL SPECIFICATIONS Absolute Maximum Ratings(†) Ambient temperature under bias..........................................................................................................-40° to +125°C Storage temperature ........................................................................................................................ -65°C to +150°C Voltage on VDD with respect to VSS ................................................................................................... -0.3V to +6.5V Voltage on MCLR with respect to Vss ............................................................................................... -0.3V to +13.5V Voltage on all other pins with respect to VSS ........................................................................... -0.3V to (VDD + 0.3V) Total power dissipation(1) ...............................................................................................................................800 mW Maximum current out of VSS pin ...................................................................................................................... 95 mA Maximum current into VDD pin ......................................................................................................................... 95 mA Input clamp current, IIK (VI < 0 or VI > VDD)20 mA Output clamp current, IOK (Vo < 0 or Vo >VDD)20 mA Maximum output current sunk by any I/O pin.................................................................................................... 25 mA Maximum output current sourced by any I/O pin .............................................................................................. 25 mA Maximum current sunk by GPIO...................................................................................................................... 90 mA Maximum current sourced GPIO...................................................................................................................... 90 mA Note 1: Power dissipation is calculated as follows: PDIS = VDD x {IDD –  IOH} +  {(VDD – VOH) x IOH} + (VOl x IOL). † NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure above maximum rating conditions for extended periods may affect device reliability. PIC12F609/615/617/12HV609/615 DS41302D-page 144  2010 Microchip Technology Inc. FIGURE 16-1: PIC12F609/615/617 VOLTAGE-FREQUENCY GRAPH, -40°C  TA  +125°C FIGURE 16-2: PIC12HV609/615 VOLTAGE-FREQUENCY GRAPH, -40°C  TA  +125°C 2.0 3.5 2.5 0 3.0 4.0 4.5 5.0 Frequency (MHz) VDD (V) Note 1: The shaded region indicates the permissible combinations of voltage and frequency. 8 10 20 5.5 2.0 3.5 2.5 0 3.0 4.0 4.5 5.0 Frequency (MHz) VDD (V) Note 1: The shaded region indicates the permissible combinations of voltage and frequency. 8 10 20  2010 Microchip Technology Inc. DS41302D-page 145 PIC12F609/615/617/12HV609/615 16.1 DC Characteristics: PIC12F609/615/617/12HV609/615-I (Industrial) PIC12F609/615/617/12HV609/615-E (Extended) DC CHARACTERISTICS Standard Operating Conditions (unless otherwise stated) Operating temperature -40°C  TA  +85°C for industrial -40°C  TA  +125°C for extended Param No. Sym Characteristic Min Typ† Max Units Conditions VDD Supply Voltage D001 PIC12F609/615/617 2.0 — 5.5 V FOSC < = 4 MHz D001 PIC12HV609/615 2.0 — —(2) V FOSC < = 4 MHz D001B PIC12F609/615/617 2.0 — 5.5 V FOSC < = 8 MHz D001B PIC12HV609/615 2.0 — —(2) V FOSC < = 8 MHz D001C PIC12F609/615/617 3.0 — 5.5 V FOSC < = 10 MHz D001C PIC12HV609/615 3.0 — —(2) V FOSC < = 10 MHz D001D PIC12F609/615/617 4.5 — 5.5 V FOSC < = 20 MHz D001D PIC12HV609/615 4.5 — —(2) V FOSC < = 20 MHz D002* VDR RAM Data Retention Voltage(1) 1.5 — — V Device in Sleep mode D003 VPOR VDD Start Voltage to ensure internal Power-on Reset signal — VSS — V See Section 12.3.1 “Power-on Reset (POR)” for details. D004* SVDD VDD Rise Rate to ensure internal Power-on Reset signal 0.05 — — V/ms See Section 12.3.1 “Power-on Reset (POR)” for details. * These parameters are characterized but not tested. † Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. Note 1: This is the limit to which VDD can be lowered in Sleep mode without losing RAM data. 2: User defined. Voltage across the shunt regulator should not exceed 5V. PIC12F609/615/617/12HV609/615 DS41302D-page 146  2010 Microchip Technology Inc. 16.2 DC Characteristics: PIC12F609/615/617-I (Industrial) PIC12F609/615/617-E (Extended) DC CHARACTERISTICS Standard Operating Conditions (unless otherwise stated) Operating temperature -40°C  TA  +85°C for industrial -40°C  TA  +125°C for extended Param No. Device Characteristics Min Typ† Max Units Conditions VDD Note D010 Supply Current (IDD)(1, 2) — 13 25 A 2.0 FOSC = 32 kHz PIC12F609/615/617 — 19 29 A 3.0 LP Oscillator mode — 32 51 A 5.0 D011* — 135 225 A 2.0 FOSC = 1 MHz — 185 285 A 3.0 XT Oscillator mode — 300 405 A 5.0 D012 — 240 360 A 2.0 FOSC = 4 MHz — 360 505 A 3.0 XT Oscillator mode — 0.66 1.0 mA 5.0 D013* — 75 110 A 2.0 FOSC = 1 MHz — 155 255 A 3.0 EC Oscillator mode — 345 530 A 5.0 D014 — 185 255 A 2.0 FOSC = 4 MHz — 325 475 A 3.0 EC Oscillator mode — 0.665 1.0 mA 5.0 D016* — 245 340 A 2.0 FOSC = 4 MHz — 360 485 A 3.0 INTOSC mode — 0.620 0.845 mA 5.0 D017 — 395 550 A 2.0 FOSC = 8 MHz — 0.620 0.850 mA 3.0 INTOSC mode — 1.2 1.6 mA 5.0 D018 — 175 235 A 2.0 FOSC = 4 MHz EXTRC mode(3) — 285 390 A 3.0 — 530 750 A 5.0 D019 — 2.2 3.1 mA 4.5 FOSC = 20 MHz HS Oscillator mode — 2.8 3.35 mA 5.0 * These parameters are characterized but not tested. † Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-torail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled. 2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. 3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be extended by the formula IR = VDD/2REXT (mA) with REXT in KOhms (K  2010 Microchip Technology Inc. DS41302D-page 147 PIC12F609/615/617/12HV609/615 16.3 DC Characteristics: PIC12HV609/615-I (Industrial) PIC12HV609/615-E (Extended) DC CHARACTERISTICS Standard Operating Conditions (unless otherwise stated) Operating temperature -40°C  TA  +85°C for industrial -40°C  TA  +125°C for extended Param No. Device Characteristics Min Typ† Max Units Conditions VDD Note D010 Supply Current (IDD)(1, 2) — 160 230 A 2.0 FOSC = 32 kHz PIC12HV609/615 — 240 310 A 3.0 LP Oscillator mode — 280 400 A 4.5 D011* — 270 380 A 2.0 FOSC = 1 MHz — 400 560 A 3.0 XT Oscillator mode — 520 780 A 4.5 D012 — 380 540 A 2.0 FOSC = 4 MHz — 575 810 A 3.0 XT Oscillator mode — 0.875 1.3 mA 4.5 D013* — 215 310 A 2.0 FOSC = 1 MHz — 375 565 A 3.0 EC Oscillator mode — 570 870 A 4.5 D014 — 330 475 A 2.0 FOSC = 4 MHz — 550 800 A 3.0 EC Oscillator mode — 0.85 1.2 mA 4.5 D016* — 310 435 A 2.0 FOSC = 4 MHz — 500 700 A 3.0 INTOSC mode — 0.74 1.1 mA 4.5 D017 — 460 650 A 2.0 FOSC = 8 MHz — 0.75 1.1 mA 3.0 INTOSC mode — 1.2 1.6 mA 4.5 D018 — 320 465 A 2.0 FOSC = 4 MHz EXTRC mode(3) — 510 750 A 3.0 — 0.770 1.0 mA 4.5 D019 — 2.5 3.4 mA 4.5 FOSC = 20 MHz HS Oscillator mode * These parameters are characterized but not tested. † Data in “Typ” column is at 4.5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled. 2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. 3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be extended by the formula IR = VDD/2REXT (mA) with REXT in k PIC12F609/615/617/12HV609/615 DS41302D-page 148  2010 Microchip Technology Inc. 16.4 DC Characteristics: PIC12F609/615/617 - I (Industrial) DC CHARACTERISTICS Standard Operating Conditions (unless otherwise stated) Operating temperature -40°C  TA  +85°C for industrial Param No. Device Characteristics Min Typ† Max Units Conditions VDD Note D020 Power-down Base Current (IPD)(2) — 0.05 0.9 A 2.0 WDT, BOR, Comparator, VREF and T1OSC disabled — 0.15 1.2 A 3.0 PIC12F609/615/617 — 0.35 1.5 A 5.0 150 500 nA 3.0 -40°C  TA  +25°C for industrial D021 — 0.5 1.5 A 2.0 WDT Current(1) — 2.5 4.0 A 3.0 — 9.5 17 A 5.0 D022 — 5.0 9 A 3.0 BOR Current(1) — 6.0 12 A 5.0 D023 — 50 60 A 2.0 Comparator Current(1), single — 55 65 A 3.0 comparator enabled — 60 75 A 5.0 D024 — 30 40 A 2.0 CVREF Current(1) (high range) — 45 60 A 3.0 — 75 105 A 5.0 D025* — 39 50 A 2.0 CVREF Current(1) (low range) — 59 80 A 3.0 — 98 130 A 5.0 D026 — 5.5 10 A 2.0 T1OSC Current(1), 32.768 kHz — 7.0 12 A 3.0 — 8.5 14 A 5.0 D027 — 0.2 1.6 A 3.0 A/D Current(1), no conversion in — 0.36 1.9 A 5.0 progress * These parameters are characterized but not tested. † Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. Note 1: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this peripheral is enabled. The peripheral  current can be determined by subtracting the base IDD or IPD current from this limit. Max values should be used when calculating total current consumption. 2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD.  2010 Microchip Technology Inc. DS41302D-page 149 PIC12F609/615/617/12HV609/615 16.5 DC Characteristics: PIC12F609/615/617 - E (Extended) DC CHARACTERISTICS Standard Operating Conditions (unless otherwise stated) Operating temperature -40°C  TA  +125°C for extended Param No. Device Characteristics Min Typ† Max Units Conditions VDD Note D020E Power-down Base Current (IPD)(2) PIC12F609/615/617 — 0.05 4.0 A 2.0 WDT, BOR, Comparator, VREF and — 0.15 5.0 A 3.0 T1OSC disabled — 0.35 8.5 A 5.0 D021E — 0.5 5.0 A 2.0 WDT Current(1) — 2.5 8.0 A 3.0 — 9.5 19 A 5.0 D022E — 5.0 15 A 3.0 BOR Current(1) — 6.0 19 A 5.0 D023E — 50 70 A 2.0 Comparator Current(1), single — 55 75 A 3.0 comparator enabled — 60 80 A 5.0 D024E — 30 40 A 2.0 CVREF Current(1) (high range) — 45 60 A 3.0 — 75 105 A 5.0 D025E* — 39 50 A 2.0 CVREF Current(1) (low range) — 59 80 A 3.0 — 98 130 A 5.0 D026E — 5.5 16 A 2.0 T1OSC Current(1), 32.768 kHz — 7.0 18 A 3.0 — 8.5 22 A 5.0 D027E — 0.2 6.5 A 3.0 A/D Current(1), no conversion in — 0.36 10 A 5.0 progress * These parameters are characterized but not tested. † Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. Note 1: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this peripheral is enabled. The peripheral  current can be determined by subtracting the base IDD or IPD current from this limit. Max values should be used when calculating total current consumption. 2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD. PIC12F609/615/617/12HV609/615 DS41302D-page 150  2010 Microchip Technology Inc. 16.6 DC Characteristics: PIC12HV609/615 - I (Industrial) DC CHARACTERISTICS Standard Operating Conditions (unless otherwise stated) Operating temperature -40°C  TA  +85°C for industrial Param No. Device Characteristics Min Typ† Max Units Conditions VDD Note D020 Power-down Base Current (IPD)(2,3) — 135 200 A 2.0 WDT, BOR, Comparator, VREF and T1OSC disabled — 210 280 A 3.0 PIC12HV609/615 — 260 350 A 4.5 D021 — 135 200 A 2.0 WDT Current(1) — 210 285 A 3.0 — 265 360 A 4.5 D022 — 215 285 A 3.0 BOR Current(1) — 265 360 A 4.5 D023 — 185 270 A 2.0 Comparator Current(1), single — 265 350 A 3.0 comparator enabled — 320 430 A 4.5 D024 — 165 235 A 2.0 CVREF Current(1) (high range) — 255 330 A 3.0 — 330 430 A 4.5 D025* — 175 245 A 2.0 CVREF Current(1) (low range) — 275 350 A 3.0 — 355 450 A 4.5 D026 — 140 205 A 2.0 T1OSC Current(1), 32.768 kHz — 220 290 A 3.0 — 270 360 A 4.5 D027 — 210 280 A 3.0 A/D Current(1), no conversion in — 260 350 A 4.5 progress * These parameters are characterized but not tested. † Data in “Typ” column is at 4.5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. Note 1: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this peripheral is enabled. The peripheral  current can be determined by subtracting the base IDD or IPD current from this limit. Max values should be used when calculating total current consumption. 2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD. 3: Shunt regulator is always on and always draws operating current.  2010 Microchip Technology Inc. DS41302D-page 151 PIC12F609/615/617/12HV609/615 16.7 DC Characteristics: PIC12HV609/615-E (Extended) DC CHARACTERISTICS Standard Operating Conditions (unless otherwise stated) Operating temperature -40°C  TA  +125°C for extended Param No. Device Characteristics Min Typ† Max Units Conditions VDD Note D020E Power-down Base Current (IPD)(2,3) PIC12HV609/615 — 135 200 A 2.0 WDT, BOR, Comparator, VREF and — 210 280 A 3.0 T1OSC disabled — 260 350 A 4.5 D021E — 135 200 A 2.0 WDT Current(1) — 210 285 A 3.0 — 265 360 A 4.5 D022E — 215 285 A 3.0 BOR Current(1) — 265 360 A 4.5 D023E — 185 280 A 2.0 Comparator Current(1), single — 265 360 A 3.0 comparator enabled — 320 430 A 4.5 D024E — 165 235 A 2.0 CVREF Current(1) (high range) — 255 330 A 3.0 — 330 430 A 4.5 D025E* — 175 245 A 2.0 CVREF Current(1) (low range) — 275 350 A 3.0 — 355 450 A 4.5 D026E — 140 205 A 2.0 T1OSC Current(1), 32.768 kHz — 220 290 A 3.0 — 270 360 A 4.5 D027E — 210 280 A 3.0 A/D Current(1), no conversion in — 260 350 A 4.5 progress * These parameters are characterized but not tested. † Data in “Typ” column is at 4.5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. Note 1: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this peripheral is enabled. The peripheral  current can be determined by subtracting the base IDD or IPD current from this limit. Max values should be used when calculating total current consumption. 2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD. 3: Shunt regulator is always on and always draws operating current. PIC12F609/615/617/12HV609/615 DS41302D-page 152  2010 Microchip Technology Inc. 16.8 DC Characteristics: PIC12F609/615/617/12HV609/615-I (Industrial) PIC12F609/615/617/12HV609/615-E (Extended) DC CHARACTERISTICS Standard Operating Conditions (unless otherwise stated) Operating temperature -40°C  TA  +85°C for industrial -40°C  TA  +125°C for extended Param No. Sym Characteristic Min Typ† Max Units Conditions VIL Input Low Voltage I/O port: D030 with TTL buffer Vss — 0.8 V 4.5V  VDD  5.5V D030A Vss — 0.15 VDD V 2.0V  VDD  4.5V D031 with Schmitt Trigger buffer Vss — 0.2 VDD V 2.0V  VDD  5.5V D032 MCLR, OSC1 (RC mode) VSS — 0.2 VDD V (NOTE 1) D033 OSC1 (XT and LP modes) VSS — 0.3 V D033A OSC1 (HS mode) VSS — 0.3 VDD V VIH Input High Voltage I/O ports: — D040 with TTL buffer 2.0 — VDD V 4.5V  VDD 5.5V D040A 0.25 VDD + 0.8 — VDD V 2.0V  VDD  4.5V D041 with Schmitt Trigger buffer 0.8 VDD — VDD V 2.0V  VDD  5.5V D042 MCLR 0.8 VDD — VDD V D043 OSC1 (XT and LP modes) 1.6 — VDD V D043A OSC1 (HS mode) 0.7 VDD — VDD V D043B OSC1 (RC mode) 0.9 VDD — VDD V (NOTE 1) IIL Input Leakage Current(2,3) D060 I/O ports — 0.1 1 A VSS VPIN VDD, Pin at high-impedance D061 GP3/MCLR(3,4) — 0.7 5 A VSS VPIN VDD D063 OSC1 — 0.1 5 A VSS VPIN VDD, XT, HS and LP oscillator configuration D070* IPUR GPIO Weak Pull-up Current(5) 50 250 400 A VDD = 5.0V, VPIN = VSS VOL Output Low Voltage — — 0.6 V IOL = 7.0 mA, VDD = 4.5V, -40°C to +125°C D080 I/O ports — — 0.6 V IOL = 8.5 mA, VDD = 4.5V, -40°C to +85°C VOH Output High Voltage VDD – 0.7 — — V IOH = -2.5mA, VDD = 4.5V, -40°C to +125°C D090 I/O ports(2) VDD – 0.7 — — V IOH = -3.0 mA, VDD = 4.5V, -40°C to +85°C * These parameters are characterized but not tested. † Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use an external clock in RC mode. 2: Negative current is defined as current sourced by the pin. 3: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages. 4: This specification applies to GP3/MCLR configured as GP3 with the internal weak pull-up disabled. 5: This specification applies to all weak pull-up pins, including the weak pull-up found on GP3/MCLR. When GP3/MCLR is configured as MCLR reset pin, the weak pull-up is always enabled. 6: Applies to PIC12F617 only.  2010 Microchip Technology Inc. DS41302D-page 153 PIC12F609/615/617/12HV609/615 D101* COSC2 Capacitive Loading Specs on Output Pins OSC2 pin — — 15 pF In XT, HS and LP modes when external clock is used to drive OSC1 D101A* CIO All I/O pins — — 50 pF Program Flash Memory D130 EP Cell Endurance 10K 100K — E/W -40°C  TA +85°C D130A ED Cell Endurance 1K 10K — E/W +85°C  TA +125°C D131 VPR VDD for Read VMIN — 5.5 V VMIN = Minimum operating voltage D132 VPEW VDD for Bulk Erase/Write 4.5 — 5.5 V D132A VPEW VDD for Row Erase/Write(6) VMIN — 5.5 V D133 TPEW Erase/Write cycle time — 2 2.5 ms D134 TRETD Characteristic Retention 40 — — Year Provided no other specifications are violated 16.8 DC Characteristics: PIC12F609/615/617/12HV609/615-I (Industrial) PIC12F609/615/617/12HV609/615-E (Extended) (Continued) DC CHARACTERISTICS Standard Operating Conditions (unless otherwise stated) Operating temperature -40°C  TA  +85°C for industrial -40°C  TA  +125°C for extended Param No. Sym Characteristic Min Typ† Max Units Conditions * These parameters are characterized but not tested. † Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use an external clock in RC mode. 2: Negative current is defined as current sourced by the pin. 3: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages. 4: This specification applies to GP3/MCLR configured as GP3 with the internal weak pull-up disabled. 5: This specification applies to all weak pull-up pins, including the weak pull-up found on GP3/MCLR. When GP3/MCLR is configured as MCLR reset pin, the weak pull-up is always enabled. 6: Applies to PIC12F617 only. PIC12F609/615/617/12HV609/615 DS41302D-page 154  2010 Microchip Technology Inc. 16.9 Thermal Considerations Standard Operating Conditions (unless otherwise stated) Operating temperature -40°C  TA  +125°C Param No. Sym Characteristic Typ Units Conditions TH01 JA Thermal Resistance Junction to Ambient 84.6* C/W 8-pin PDIP package 149.5* C/W 8-pin SOIC package 211* C/W 8-pin MSOP package 60* C/W 8-pin DFN 3x3mm package 44* C/W 8-pin DFN 4x4mm package TH02 JC Thermal Resistance Junction to Case 41.2* C/W 8-pin PDIP package 39.9* C/W 8-pin SOIC package 39* C/W 8-pin MSOP package 9* C/W 8-pin DFN 3x3mm package 3.0* C/W 8-pin DFN 4x4mm package TH03 TDIE Die Temperature 150* C TH04 PD Power Dissipation — W PD = PINTERNAL + PI/O TH05 PINTERNAL Internal Power Dissipation — W PINTERNAL = IDD x VDD (NOTE 1) TH06 PI/O I/O Power Dissipation — W PI/O =  (IOL * VOL) +  (IOH * (VDD - VOH)) TH07 PDER Derated Power — W PDER = PDMAX (TDIE - TA)/JA (NOTE 2) * These parameters are characterized but not tested. Note 1: IDD is current to run the chip alone without driving any load on the output pins. 2: TA = Ambient temperature.  2010 Microchip Technology Inc. DS41302D-page 155 PIC12F609/615/617/12HV609/615 16.10 Timing Parameter Symbology The timing parameter symbols have been created with one of the following formats: FIGURE 16-3: LOAD CONDITIONS 1. TppS2ppS 2. TppS T F Frequency T Time Lowercase letters (pp) and their meanings: pp cc CCP1 osc OSC1 ck CLKOUT rd RD cs CS rw RD or WR di SDI sc SCK do SDO ss SS dt Data in t0 T0CKI io I/O Port t1 T1CKI mc MCLR wr WR Uppercase letters and their meanings: S F Fall P Period H High R Rise I Invalid (High-impedance) V Valid L Low Z High-impedance VSS CL Legend: CL=50 pF for all pins 15 pF for OSC2 output Load Condition Pin PIC12F609/615/617/12HV609/615 DS41302D-page 156  2010 Microchip Technology Inc. 16.11 AC Characteristics: PIC12F609/615/617/12HV609/615 (Industrial, Extended) FIGURE 16-4: CLOCK TIMING TABLE 16-1: CLOCK OSCILLATOR TIMING REQUIREMENTS Standard Operating Conditions (unless otherwise stated) Operating temperature -40°C  TA  +125°C Param No. Sym Characteristic Min Typ† Max Units Conditions OS01 FOSC External CLKIN Frequency(1) DC — 37 kHz LP Oscillator mode DC — 4 MHz XT Oscillator mode DC — 20 MHz HS Oscillator mode DC — 20 MHz EC Oscillator mode Oscillator Frequency(1) — 32.768 — kHz LP Oscillator mode 0.1 — 4 MHz XT Oscillator mode 1 — 20 MHz HS Oscillator mode DC — 4 MHz RC Oscillator mode OS02 TOSC External CLKIN Period(1) 27 —  s LP Oscillator mode 250 —  ns XT Oscillator mode 50 —  ns HS Oscillator mode 50 —  ns EC Oscillator mode Oscillator Period(1) — 30.5 — s LP Oscillator mode 250 — 10,000 ns XT Oscillator mode 50 — 1,000 ns HS Oscillator mode 250 — — ns RC Oscillator mode OS03 TCY Instruction Cycle Time(1) 200 TCY DC ns TCY = 4/FOSC OS04* TOSH, TOSL External CLKIN High, External CLKIN Low 2 — — s LP oscillator 100 — — ns XT oscillator 20 — — ns HS oscillator OS05* TOSR, TOSF External CLKIN Rise, External CLKIN Fall 0 —  ns LP oscillator 0 —  ns XT oscillator 0 —  ns HS oscillator * These parameters are characterized but not tested. † Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at “min” values with an external clock applied to OSC1 pin. When an external clock input is used, the “max” cycle time limit is “DC” (no clock) for all devices. OSC1/CLKIN OSC2/CLKOUT Q4 Q1 Q2 Q3 Q4 Q1 OS02 OS03 OS04 OS04 OSC2/CLKOUT (LP,XT,HS Modes) (CLKOUT Mode)  2010 Microchip Technology Inc. DS41302D-page 157 PIC12F609/615/617/12HV609/615 TABLE 16-2: OSCILLATOR PARAMETERS Standard Operating Conditions (unless otherwise stated) Operating Temperature -40°C TA +125°C Param No. Sym Characteristic Freq. Tolerance Min Typ† Max Units Conditions OS06 TWARM Internal Oscillator Switch when running(3) — — — 2 TOSC Slowest clock OS07 INTOSC Internal Calibrated INTOSC Frequency(2) (4MHz) 1% 3.96 4.0 4.04 MHz VDD = 3.5V, TA = 25°C 2% 3.92 4.0 4.08 MHz 2.5V VDD  5.5V, 0°C  TA  +85°C 5% 3.80 4.0 4.2 MHz 2.0V VDD  5.5V, -40°C  TA  +85°C (Ind.), -40°C  TA  +125°C (Ext.) OS08 INTOSC Internal Calibrated INTOSC Frequency(2) (8MHz) 1% 7.92 8.0 8.08 MHz VDD = 3.5V, TA = 25°C 2% 7.84 8.0 8.16 MHz 2.5V VDD  5.5V, 0°C  TA  +85°C 5% 7.60 8.0 8.40 MHz 2.0V VDD  5.5V, -40°C  TA  +85°C (Ind.), -40°C  TA  +125°C (Ext.) OS10* TIOSC ST INTOSC Oscillator Wakeup from Sleep Start-up Time — 5.5 12 24 s VDD = 2.0V, -40°C to +85°C — 3.5 7 14 s VDD = 3.0V, -40°C to +85°C — 3 6 11 s VDD = 5.0V, -40°C to +85°C * These parameters are characterized but not tested. † Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at “min” values with an external clock applied to the OSC1 pin. When an external clock input is used, the “max” cycle time limit is “DC” (no clock) for all devices. 2: To ensure these oscillator frequency tolerances, VDD and VSS must be capacitively decoupled as close to the device as possible. 0.1 F and 0.01 F values in parallel are recommended. 3: By design. PIC12F609/615/617/12HV609/615 DS41302D-page 158  2010 Microchip Technology Inc. FIGURE 16-5: CLKOUT AND I/O TIMING FOSC CLKOUT I/O pin (Input) I/O pin (Output) Q4 Q1 Q2 Q3 OS11 OS19 OS13 OS15 OS18, OS19 OS20 OS21 OS17 OS16 OS14 OS12 OS18 Old Value New Value Cycle Write Fetch Read Execute TABLE 16-3: CLKOUT AND I/O TIMING PARAMETERS Standard Operating Conditions (unless otherwise stated) Operating Temperature -40°C TA +125°C Param No. Sym Characteristic Min Typ† Max Units Conditions OS11 TOSH2CKL FOSC to CLKOUT (1) — — 70 ns VDD = 5.0V OS12 TOSH2CKH FOSC to CLKOUT (1) — — 72 ns VDD = 5.0V OS13 TCKL2IOV CLKOUT to Port out valid(1) — — 20 ns OS14 TIOV2CKH Port input valid before CLKOUT(1) TOSC + 200 ns — — ns OS15 TOSH2IOV FOSC (Q1 cycle) to Port out valid — 50 70* ns VDD = 5.0V OS16 TOSH2IOI FOSC (Q2 cycle) to Port input invalid (I/O in hold time) 50 — — ns VDD = 5.0V OS17 TIOV2OSH Port input valid to FOSC(Q2 cycle) (I/O in setup time) 20 — — ns OS18 TIOR Port output rise time(2) —— 15 40 72 32 ns VDD = 2.0V VDD = 5.0V OS19 TIOF Port output fall time(2) —— 28 15 55 30 ns VDD = 2.0V VDD = 5.0V OS20* TINP INT pin input high or low time 25 — — ns OS21* TRAP GPIO interrupt-on-change new input level time TCY — — ns * These parameters are characterized but not tested. † Data in “Typ” column is at 5.0V, 25C unless otherwise stated. Note 1: Measurements are taken in RC mode where CLKOUT output is 4 x TOSC. 2: Includes OSC2 in CLKOUT mode.  2010 Microchip Technology Inc. DS41302D-page 159 PIC12F609/615/617/12HV609/615 FIGURE 16-6: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING FIGURE 16-7: BROWN-OUT RESET TIMING AND CHARACTERISTICS VDD MCLR Internal POR PWRT Time-out OSC Start-Up Time Internal Reset(1) Watchdog Timer 33 32 30 31 34 I/O pins 34 Note 1: Asserted low. Reset(1) VBOR VDD (Device in Brown-out Reset) (Device not in Brown-out Reset) 33* 37 * 64 ms delay only if PWRTE bit in the Configuration Word register is programmed to ‘0’. Reset (due to BOR) VBOR + VHYST PIC12F609/615/617/12HV609/615 DS41302D-page 160  2010 Microchip Technology Inc. TABLE 16-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER AND BROWN-OUT RESET PARAMETERS Standard Operating Conditions (unless otherwise stated) Operating Temperature -40°C TA +125°C Param No. Sym Characteristic Min Typ† Max Units Conditions 30 TMCL MCLR Pulse Width (low) 2 5 —— —— s s VDD = 5V, -40°C to +85°C VDD = 5V, -40°C to +125°C 31* TWDT Watchdog Timer Time-out Period (No Prescaler) 10 10 20 20 30 35 ms ms VDD = 5V, -40°C to +85°C VDD = 5V, -40°C to +125°C 32 TOST Oscillation Start-up Timer Period(1, 2) — 1024 — TOSC (NOTE 3) 33* TPWRT Power-up Timer Period 40 65 140 ms 34* TIOZ I/O High-impedance from MCLR Low or Watchdog Timer Reset — — 2.0 s 35 VBOR Brown-out Reset Voltage 2.0 2.15 2.3 V (NOTE 4) 36* VHYST Brown-out Reset Hysteresis — 100 — mV 37* TBOR Brown-out Reset Minimum Detection Period 100 — — s VDD  VBOR * These parameters are characterized but not tested. † Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at “min” values with an external clock applied to the OSC1 pin. When an external clock input is used, the “max” cycle time limit is “DC” (no clock) for all devices. 2: By design. 3: Period of the slower clock. 4: To ensure these voltage tolerances, VDD and VSS must be capacitively decoupled as close to the device as possible. 0.1 F and 0.01 F values in parallel are recommended.  2010 Microchip Technology Inc. DS41302D-page 161 PIC12F609/615/617/12HV609/615 FIGURE 16-8: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS TABLE 16-5: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS Standard Operating Conditions (unless otherwise stated) Operating Temperature -40°C TA +125°C Param No. Sym Characteristic Min Typ† Max Units Conditions 40* TT0H T0CKI High Pulse Width No Prescaler 0.5 TCY + 20 — — ns With Prescaler 10 — — ns 41* TT0L T0CKI Low Pulse Width No Prescaler 0.5 TCY + 20 — — ns With Prescaler 10 — — ns 42* TT0P T0CKI Period Greater of: 20 or TCY + 40 N — — ns N = prescale value (2, 4, ..., 256) 45* TT1H T1CKI High Time Synchronous, No Prescaler 0.5 TCY + 20 — — ns Synchronous, with Prescaler 15 — — ns Asynchronous 30 — — ns 46* TT1L T1CKI Low Time Synchronous, No Prescaler 0.5 TCY + 20 — — ns Synchronous, with Prescaler 15 — — ns Asynchronous 30 — — ns 47* TT1P T1CKI Input Period Synchronous Greater of: 30 or TCY + 40 N — — ns N = prescale value (1, 2, 4, 8) Asynchronous 60 — — ns 48 FT1 Timer1 Oscillator Input Frequency Range (oscillator enabled by setting bit T1OSCEN) — 32.768 — kHz 49* TCKEZTMR1 Delay from External Clock Edge to Timer Increment 2 TOSC — 7 TOSC — Timers in Sync mode * These parameters are characterized but not tested. † Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. T0CKI T1CKI 40 41 42 45 46 47 49 TMR0 or TMR1 PIC12F609/615/617/12HV609/615 DS41302D-page 162  2010 Microchip Technology Inc. FIGURE 16-9: PIC12F615/617/HV615 CAPTURE/COMPARE/PWM TIMINGS (ECCP) TABLE 16-6: PIC12F615/617/HV615 CAPTURE/COMPARE/PWM REQUIREMENTS (ECCP) TABLE 16-7: COMPARATOR SPECIFICATIONS Standard Operating Conditions (unless otherwise stated) Operating Temperature -40°C TA +125°C Param No. Sym Characteristic Min Typ† Max Units Conditions CC01* TccL CCP1 Input Low Time No Prescaler 0.5TCY + 20 — — ns With Prescaler 20 — — ns CC02* TccH CCP1 Input High Time No Prescaler 0.5TCY + 20 — — ns With Prescaler 20 — — ns CC03* TccP CCP1 Input Period 3TCY + 40 N — — ns N = prescale value (1, 4 or 16) * These parameters are characterized but not tested. † Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. Standard Operating Conditions (unless otherwise stated) Operating Temperature -40°C TA +125°C Param No. Sym Characteristics Min Typ† Max Units Comments CM01 VOS Input Offset Voltage(2) —  5.0  10 mV CM02 VCM Input Common Mode Voltage 0 — VDD – 1.5 V CM03* CMRR Common Mode Rejection Ratio +55 — — dB CM04* TRT Response Time(1) Falling — 150 600 ns Rising — 200 1000 ns CM05* TMC2COV Comparator Mode Change to Output Valid — — 10 s CM06* VHYS Input Hysteresis Voltage — 45 60 mV * These parameters are characterized but not tested. † Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. Note 1: Response time is measured with one comparator input at (VDD - 1.5)/2 - 100 mV to (VDD - 1.5)/2 + 20mV. The other input is at (VDD -1.5)/2. 2: Input offset voltage is measured with one comparator input at (VDD - 1.5V)/2. Note: Refer to Figure 16-3 for load conditions. (Capture mode) CC01 CC02 CC03 CCP1  2010 Microchip Technology Inc. DS41302D-page 163 PIC12F609/615/617/12HV609/615 TABLE 16-8: COMPARATOR VOLTAGE REFERENCE (CVREF) SPECIFICATIONS TABLE 16-9: VOLTAGE REFERENCE SPECIFICATIONS TABLE 16-10: SHUNT REGULATOR SPECIFICATIONS (PIC12HV609/615 only) Standard Operating Conditions (unless otherwise stated) Operating temperature -40°C  TA  +125°C Param No. Sym Characteristics Min Typ† Max Units Comments CV01* CLSB Step Size(2) —— VDD/24 VDD/32 —— VV Low Range (VRR = 1) High Range (VRR = 0) CV02* CACC Absolute Accuracy(3) —— ——  1/2 1/2 LSb LSb Low Range (VRR = 1) High Range (VRR = 0) CV03* CR Unit Resistor Value (R) — 2k —  CV04* CST Settling Time(1) — — 10 s * These parameters are characterized but not tested. † Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. Note 1: Settling time measured while VRR = 1 and VR<3:0> transitions from ‘0000’ to ‘1111’. 2: See Section 9.10 “Comparator Voltage Reference” for more information. 3: Absolute Accuracy when CVREF output is  (VDD -1.5). VR Voltage Reference Specifications Standard Operating Conditions (unless otherwise stated) Operating temperature -40°C  TA  +125°C Param No. Symbol Characteristics Min Typ Max Units Comments VR01 VP6OUT VP6 voltage output 0.5 0.6 0.7 V VR02 V1P2OUT V1P2 voltage output 1.05 1.20 1.35 V VR03* TSTABLE Settling Time — 10 — s * These parameters are characterized but not tested. SHUNT REGULATOR CHARACTERISTICS Standard Operating Conditions (unless otherwise stated) Operating temperature -40°C  TA  +125°C Param No. Symbol Characteristics Min Typ Max Units Comments SR01 VSHUNT Shunt Voltage 4.75 5 5.4 V SR02 ISHUNT Shunt Current 4 — 50 mA SR03* TSETTLE Settling Time — — 150 ns To 1% of final value SR04 CLOAD Load Capacitance 0.01 — 10 F Bypass capacitor on VDD pin SR05 ISNT Regulator operating current — 180 — A Includes band gap reference current * These parameters are characterized but not tested. PIC12F609/615/617/12HV609/615 DS41302D-page 164  2010 Microchip Technology Inc. TABLE 16-11: PIC12F615/617/HV615 A/D CONVERTER (ADC) CHARACTERISTICS: Standard Operating Conditions (unless otherwise stated) Operating temperature -40°C  TA  +125°C Param No. Sym Characteristic Min Typ† Max Units Conditions AD01 NR Resolution — — 10 bits bit AD02 EIL Integral Error — — 1 LSb VREF = 5.12V(5) AD03 EDL Differential Error — — 1 LSb No missing codes to 10 bits VREF = 5.12V(5) AD04 EOFF Offset Error — +1.5 +2.0 LSb VREF = 5.12V(5) AD07 EGN Gain Error — — 1 LSb VREF = 5.12V(5) AD06 AD06A VREF Reference Voltage(3) 2.2 2.5 — — VDD V Absolute minimum to ensure 1 LSb accuracy AD07 VAIN Full-Scale Range VSS — VREF V AD08 ZAIN Recommended Impedance of Analog Voltage Source — — 10 k AD09* IREF VREF Input Current(3) 10 — 1000 A During VAIN acquisition. Based on differential of VHOLD to VAIN. — — 50 A During A/D conversion cycle. * These parameters are characterized but not tested. † Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. Note 1: Total Absolute Error includes integral, differential, offset and gain errors. 2: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes. 3: ADC VREF is from external VREF or VDD pin, whichever is selected as reference input. 4: When ADC is off, it will not consume any current other than leakage current. The power-down current specification includes any such leakage from the ADC module. 5: VREF = 5V for PIC12HV615.  2010 Microchip Technology Inc. DS41302D-page 165 PIC12F609/615/617/12HV609/615 TABLE 16-12: PIC12F615/617/HV615 A/D CONVERSION REQUIREMENTS FIGURE 16-10: PIC12F615/617/HV615 A/D CONVERSION TIMING (NORMAL MODE) Standard Operating Conditions (unless otherwise stated) Operating temperature -40°C  TA  +125°C Param No. Sym Characteristic Min Typ† Max Units Conditions AD130* TAD A/D Clock Period 1.6 — 9.0 s TOSC-based, VREF 3.0V 3.0 — 9.0 s TOSC-based, VREF full range(3) A/D Internal RC Oscillator Period 3.0 6.0 9.0 s ADCS<1:0> = 11 (ADRC mode) At VDD = 2.5V 1.6 4.0 6.0 s At VDD = 5.0V AD131 TCNV Conversion Time (not including Acquisition Time)(1) — 11 — TAD Set GO/DONE bit to new data in A/D Result register AD132* TACQ Acquisition Time 11.5 — s AD133* TAMP Amplifier Settling Time — — 5 s AD134 TGO Q4 to A/D Clock Start — — TOSC/2 TOSC/2 + TCY — — — — If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the SLEEP instruction to be executed. * These parameters are characterized but not tested. † Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. Note 1: ADRESH and ADRESL registers may be read on the following TCY cycle. 2: See Section 10.3 “A/D Acquisition Requirements” for minimum conditions. 3: Full range for PIC12HV609/HV615 powered by the shunt regulator is the 5V regulated voltage. AD131 AD130 BSF ADCON0, GO Q4 A/D CLK A/D Data ADRES ADIF GO Sample OLD_DATA Sampling Stopped DONE NEW_DATA 9 8 7 3 2 1 0 Note 1: If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the SLEEP instruction to be executed. 1 TCY 6 AD134 (TOSC/2(1)) 1 TCY AD132 PIC12F609/615/617/12HV609/615 DS41302D-page 166  2010 Microchip Technology Inc. FIGURE 16-11: PIC12F615/617/HV615 A/D CONVERSION TIMING (SLEEP MODE) AD132 AD131 AD130 BSF ADCON0, GO Q4 A/D CLK A/D Data ADRES ADIF GO Sample OLD_DATA Sampling Stopped DONE NEW_DATA 9 7 3 2 1 0 Note 1: If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the SLEEP instruction to be executed. AD134 8 6 (TOSC/2 + TCY(1)) 1 TCY 1 TCY  2010 Microchip Technology Inc. DS41302D-page 167 PIC12F609/615/617/12HV609/615 16.12 High Temperature Operation This section outlines the specifications for the PIC12F615 device operating in a temperature range between -40°C and 150°C.(4) The specifications between -40°C and 150°C(4) are identical to those shown in DS41288 and DS80329. TABLE 16-13: ABSOLUTE MAXIMUM RATINGS Note 1: Writes are not allowed for Flash Program Memory above 125°C. 2: All AC timing specifications are increased by 30%. This derating factor will include parameters such as TPWRT. 3: The temperature range indicator in the part number is “H” for -40°C to 150°C.(4) Example: PIC12F615T-H/ST indicates the device is shipped in a TAPE and reel configuration, in the MSOP package, and is rated for operation from -40°C to 150°C.(4) 4: AEC-Q100 reliability testing for devices intended to operate at 150°C is 1,000 hours. Any design in which the total operating time from 125°C to 150°C will be greater than 1,000 hours is not warranted without prior written approval from Microchip Technology Inc. Parameter Source/Sink Value Units Max. Current: VDD Source 20 mA Max. Current: VSS Sink 50 mA Max. Current: PIN Source 5 mA Max. Current: PIN Sink 10 mA Pin Current: at VOH Source 3 mA Pin Current: at VOL Sink 8.5 mA Port Current: GPIO Source 20 mA Port Current: GPIO Sink 50 mA Maximum Junction Temperature 155 °C Note: Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure above maximum rating conditions for extended periods may affect device reliability. PIC12F609/615/617/12HV609/615 DS41302D-page 168  2010 Microchip Technology Inc. TABLE 16-14: DC CHARACTERISTICS FOR IDD SPECIFICATIONS FOR PIC12F615-H (High Temp.) Param No. Device Characteristics Units Min Typ Max Condition VDD Note D010 Supply Current (IDD) A — 13 58 2.0 — 19 67 3.0 IDD LP OSC (32 kHz) — 32 92 5.0 D011 A — 135 316 2.0 — 185 400 3.0 IDD XT OSC (1 MHz) — 300 537 5.0 D012 A — 240 495 2.0 — 360 680 3.0 IDD XT OSC (4 MHz) mA — 0.660 1.20 5.0 D013 A — 75 158 2.0 — 155 338 3.0 IDD EC OSC (1 MHz) — 345 792 5.0 D014 A — 185 357 2.0 — 325 625 3.0 IDD EC OSC (4 MHz) mA — 0.665 1.30 5.0 D016 A — 245 476 2.0 — 360 672 3.0 IDD INTOSC (4 MHz) — 620 1.10 5.0 D017 A — 395 757 2.0 mA — 0.620 1.20 3.0 IDD INTOSC (8 MHz) — 1.20 2.20 5.0 D018 A — 175 332 2.0 — 285 518 3.0 IDD EXTRC (4 MHz) — 530 972 5.0 D019 mA — 2.20 4.10 4.5 IDD HS OSC (20 MHz) — 2.80 4.80 5.0  2010 Microchip Technology Inc. DS41302D-page 169 PIC12F609/615/617/12HV609/615 TABLE 16-15: DC CHARACTERISTICS FOR IPD SPECIFICATIONS FOR PIC12F615-H (High Temp.) TABLE 16-16: WATCHDOG TIMER SPECIFICATIONS FOR PIC12F615-H (High Temp.) TABLE 16-17: LEAKAGE CURRENT SPECIFICATIONS FOR PIC12F615-H (High Temp.) Param No. Device Characteristics Units Min Typ Max Condition VDD Note D020E Power Down Base Current A — 0.05 12 2.0 — 0.15 13 3.0 IPD Base — 0.35 14 5.0 D021E A — 0.5 20 2.0 — 2.5 25 3.0 WDT Current — 9.5 36 5.0 D022E A — 5.0 28 3.0 BOR Current — 6.0 36 5.0 D023E A — 105 195 2.0 IPD Current (Both Comparators Enabled) — 110 210 3.0 — 116 220 5.0 A — 50 105 2.0 IPD Current (One Comparator — 55 110 3.0 Enabled) — 60 125 5.0 D024E A — 30 58 2.0 — 45 85 3.0 IPD (CVREF, High Range) — 75 142 5.0 D025E A — 39 76 2.0 — 59 114 3.0 IPD (CVREF, Low Range) — 98 190 5.0 D026E A — 5.5 30 2.0 — 7.0 35 3.0 IPD (T1 OSC, 32 kHz) — 8.5 45 5.0 D027E A — 0.2 12 3.0 IPD (A2D on, not converting) — 0.3 15 5.0 Param No. Sym Characteristic Units Min Typ Max Conditions 31 TWDT Watchdog Timer Time-out Period (No Prescaler) ms 6 20 70 150°C Temperature Param No. Sym Characteristic Units Min Typ Max Conditions D061 IIL Input Leakage Current(1) (GP3/RA3/MCLR) μA — ±0.5 ±5.0 VSS VPIN VDD D062 IIL Input Leakage Current(2) (GP3/RA3/MCLR) μA 50 250 400 VDD = 5.0V Note 1: This specification applies when GP3/RA3/MCLR is configured as an input with the pull-up disabled. The leakage current for the GP3/RA3/MCLR pin is higher than for the standard I/O port pins. 2: This specification applies when GP3/RA3/MCLR is configured as the MCLR reset pin function with the weak pull-up enabled. PIC12F609/615/617/12HV609/615 DS41302D-page 170  2010 Microchip Technology Inc. TABLE 16-18: OSCILLATOR PARAMETERS FOR PIC12F615-H (High Temp.) TABLE 16-19: COMPARATOR SPECIFICATIONS FOR PIC12F615-H (High Temp.) Param No. Sym Characteristic Frequency Tolerance Units Min Typ Max Conditions OS08 INTOSC Int. Calibrated INTOSC Freq.(1) ±10% MHz 7.2 8.0 8.8 2.0V VDD 5.5V -40°C TA 150°C Note 1: To ensure these oscillator frequency tolerances, Vdd and Vss must be capacitively decoupled as close to the device as possible. 0.1 μF and 0.01 μF values in parallel are recommended. Param No. Sym Characteristic Units Min Typ Max Conditions CM01 VOS Input Offset Voltage mV — ±5 ±20 (VDD - 1.5)/2  2010 Microchip Technology Inc. DS41302D-page 171 PIC12F609/615/617/12HV609/615 17.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES “Typical” represents the mean of the distribution at 25°C. “Maximum” or “minimum” represents (mean + 3) or (mean - 3) respectively, where s is a standard deviation, over each temperature range. FIGURE 17-1: PIC12F609/615/617 IDD LP (32 kHz) vs. VDD FIGURE 17-2: PIC12F609/615/617 IDD EC (1 MHz) vs. VDD Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore, outside the warranted range. 0 10 20 30 40 50 60 Typical: Statistical Mean @25°C Maximum: Mean (Worst-Case Temp) + 3 (-40°C to 125°C) IDD LP (μA) Maximum VDD (V) Typical 1 2 3 4 5 6 0 100 200 300 400 500 600 1 2 3 4 5 6 Typical Maximum VDD (V) IDD EC (μA) Typical: Statistical Mean @25°C Maximum: Mean (Worst-Case Temp) + 3 (-40°C to 125°C) PIC12F609/615/617/12HV609/615 DS41302D-page 172  2010 Microchip Technology Inc. FIGURE 17-3: PIC12F609/615/617 IDD EC (4 MHz) vs. VDD FIGURE 17-4: PIC12F609/615/617 IDD XT (1 MHz) vs. VDD FIGURE 17-5: PIC12F609/615/617 IDD XT (4 MHz) vs. VDD 0 200 400 600 800 1000 1200 Typical VDD (V) IDD EC (μA) Typical: Statistical Mean @25°C Maximum Maximum: Mean (Worst-Case Temp) + 3 (-40°C to 125°C) 1 2 3 4 5 6 0 200 400 600 800 1000 1200 Typical: Statistical Mean @25°C Maximum: Mean (Worst-Case Temp) + 3 (-40°C to 125°C) 1 2 3 4 5 6 Typical Maximum VDD (V) IDD XT (μA) 0 200 400 600 800 1000 1200 Typical: Statistical Mean @25°C Maximum: Mean (Worst-Case Temp) + 3 (-40°C to 125°C) 1 2 3 4 5 6 Typical Maximum VDD (V) IDD XT ( μA)  2010 Microchip Technology Inc. DS41302D-page 173 PIC12F609/615/617/12HV609/615 FIGURE 17-6: PIC12F609/615/617 IDD INTOSC (4 MHz) vs. VDD FIGURE 17-7: PIC12F609/615/617 IDD INTOSC (8 MHz) vs. VDD 0 100 200 300 400 500 600 700 800 900 Typical: Statistical Mean @25°C Maximum: Mean (Worst-Case Temp) + 3 (-40°C to 125°C) 1 2 3 4 5 6 Typical Maximum VDD (V) IDD INTOSC (μA) 0 200 400 600 800 1000 1200 1400 1600 1800 Typical: Statistical Mean @25°C Maximum: Mean (Worst-Case Temp) + 3 (-40°C to 125°C) 1 2 3 4 5 6 Typical Maximum VDD (V) IDD INTOSC (μA) PIC12F609/615/617/12HV609/615 DS41302D-page 174  2010 Microchip Technology Inc. FIGURE 17-8: PIC12F609/615617 IDD EXTRC (4 MHz) vs. VDD FIGURE 17-9: PIC12F609/615/617 IDD HS (20 MHz) vs. VDD 0 100 200 300 400 500 600 700 800 Typical: Statistical Mean @25°C Maximum: Mean (Worst-Case Temp) + 3 (-40°C to 125°C) 1 2 3 4 5 6 Typical Maximum VDD (V) IDD EXTRC (μA) Typical: Statistical Mean @25°C Maximum: Mean (Worst-Case Temp) + 3 (-40°C to 125°C) 0 1 2 3 4 VDD (V) IDD HS (mA) 4 5 6 Maximum Typical  2010 Microchip Technology Inc. DS41302D-page 175 PIC12F609/615/617/12HV609/615 FIGURE 17-10: PIC12F609/615/617 IPD BASE vs. VDD FIGURE 17-11: PIC12F609/615/617 IPD COMPARATOR (SINGLE ON) vs. VDD 0 1 2 3 4 5 6 7 8 9 IPD BASE (μA) Typical: Statistical Mean @25°C Extended: Mean (Worst-Case Temp) + 3 (-40°C to 125°C) 1 2 3 4 5 6 Industrial Typical Extended VDD (V) Industrial: Mean (Worst-Case Temp) + 3 (-40°C to 85°C) 30 40 50 60 70 80 90 VDD (V) IPD CMP (μA) 1 2 3 4 5 6 Industrial Typical Extended Typical: Statistical Mean @25°C Extended: Mean (Worst-Case Temp) + 3 (-40°C to 125°C) Industrial: Mean (Worst-Case Temp) + 3 (-40°C to 85°C) PIC12F609/615/617/12HV609/615 DS41302D-page 176  2010 Microchip Technology Inc. FIGURE 17-12: PIC12F609/615/617 IPD WDT vs. VDD FIGURE 17-13: PIC12F609/615/617 IPD BOR vs. VDD 0 2 4 6 8 10 12 14 16 18 20 VDD (V) IPD WDT (μA) 1 2 3 4 5 6 Industrial Typical Extended Typical: Statistical Mean @25°C Extended: Mean (Worst-Case Temp) + 3 (-40°C to 125°C) Industrial: Mean (Worst-Case Temp) + 3 (-40°C to 85°C) 0 2 4 6 8 10 12 14 16 18 20 VDD (V) IPD BOR (μA) 1 2 3 4 5 6 Industrial Typical Typical: Statistical Mean @25°C Extended Extended: Mean (Worst-Case Temp) + 3 (-40°C to 125°C) Industrial: Mean (Worst-Case Temp) + 3 (-40°C to 85°C)  2010 Microchip Technology Inc. DS41302D-page 177 PIC12F609/615/617/12HV609/615 FIGURE 17-14: PIC12F609/615/617 IPD CVREF (LOW RANGE) vs. VDD FIGURE 17-15: PIC12F609/615/617 IPD CVREF (HI RANGE) vs. VDD 0 20 40 60 80 100 120 140 VDD (V) IPD CVREF (μA) 1 2 3 4 5 6 Maximum Typical Typical: Statistical Mean @25°C Extended: Mean (Worst-Case Temp) + 3 (-40°C to 125°C) Industrial: Mean (Worst-Case Temp) + 3 (-40°C to 85°C) 0 20 40 60 80 100 120 1 3 5 VDD (V) IPD CVREF (μA) 2 4 6 Maximum Typical Typical: Statistical Mean @25°C Extended: Mean (Worst-Case Temp) + 3 (-40°C to 125°C) Industrial: Mean (Worst-Case Temp) + 3 (-40°C to 85°C) PIC12F609/615/617/12HV609/615 DS41302D-page 178  2010 Microchip Technology Inc. FIGURE 17-16: PIC12F609/615/617 IPD T1OSC vs. VDD FIGURE 17-17: PIC12F615/617 IPD A/D vs. VDD 0 5 10 15 20 25 VDD (V) IPD T1OSC (μA) Industrial Typical Extended 1 2 3 4 5 6 Typical: Statistical Mean @25°C Extended: Mean (Worst-Case Temp) + 3 (-40°C to 125°C) Industrial: Mean (Worst-Case Temp) + 3 (-40°C to 85°C) 0 2 4 6 8 10 12 14 VDD (V) IPD A2D (μA) Industrial Typical Extended 1 2 3 4 5 6 Typical: Statistical Mean @25°C Extended: Mean (Worst-Case Temp) + 3 (-40°C to 125°C) Industrial: Mean (Worst-Case Temp) + 3 (-40°C to 85°C)  2010 Microchip Technology Inc. DS41302D-page 179 PIC12F609/615/617/12HV609/615 FIGURE 17-18: PIC12HV609/615 IDD LP (32 kHz) vs. VDD FIGURE 17-19: PIC12HV609/615 IDD EC (1 MHz) vs. VDD FIGURE 17-20: PIC12HV609/615 IDD EC (4 MHz) vs. VDD 0 50 100 150 200 250 300 350 400 450 VDD (V) IDD LP (μA) 1 2 3 4 5 Typical Maximum Typical: Statistical Mean @25°C Maximum: Mean (Worst-Case Temp) + 3 (-40°C to 125°C) 100 200 300 400 500 600 700 800 900 1000 VDD (V) IDD EC (μA) 1 2 3 4 5 Typical Maximum Typical: Statistical Mean @25°C Maximum: Mean (Worst-Case Temp) + 3 (-40°C to 125°C) 0 200 400 600 800 1000 1200 1400 VDD (V) IDD EC (μA) 5 1 3 4 2 Typical Maximum Typical: Statistical Mean @25°C Maximum: Mean (Worst-Case Temp) + 3 (-40°C to 125°C) PIC12F609/615/617/12HV609/615 DS41302D-page 180  2010 Microchip Technology Inc. FIGURE 17-21: PIC12HV609/615 IDD XT (1 MHz) vs. VDD FIGURE 17-22: PIC12HV609/615 IDD XT (4 MHz) vs. VDD FIGURE 17-23: PIC12HV609/615 IDD INTOSC (4 MHz) vs. VDD 0 100 200 300 400 500 600 700 800 900 VDD (V) IDD XT (μA) 1 2 3 4 5 Typical Typical: Statistical Mean @25°C Maximum Maximum: Mean (Worst-Case Temp) + 3 (-40°C to 125°C) 0 200 400 600 800 1000 1200 1400 VDD (V) IDD XT (μA) 1 2 3 4 5 Typical Maximum Typical: Statistical Mean @25°C Maximum: Mean (Worst-Case Temp) + 3 (-40°C to 125°C) 0 200 400 600 800 1000 1200 VDD (V) IDD INTOSC ( μA) 1 2 3 4 5 Typical Maximum Typical: Statistical Mean @25°C Maximum: Mean (Worst-Case Temp) + 3 (-40°C to 125°C)  2010 Microchip Technology Inc. DS41302D-page 181 PIC12F609/615/617/12HV609/615 FIGURE 17-24: PIC12HV609/615 IDD INTOSC (8 MHz) vs. VDD FIGURE 17-25: PIC12HV609/615 IDD EXTRC (4 MHz) vs. VDD FIGURE 17-26: PIC12HV609/615 IPD BASE vs. VDD 0 500 1000 1500 2000 VDD (V) IDD INTOSC (μA) 1 2 3 4 5 Typical Typical: Statistical Mean @25°C Maximum Maximum: Mean (Worst-Case Temp) + 3 (-40°C to 125°C) 0 200 400 600 800 1000 1200 VDD (V) IDD EXTRC (μA) 1 2 3 4 5 Maximum Typical: Statistical Mean @25°C Maximum: Mean (Worst-Case Temp) + 3 (-40°C to 125°C) Typical 0 50 100 150 200 250 300 350 400 VDD (V) IPD BASE (μA) 1 2 3 4 5 Typical Maximum Typical: Statistical Mean @25°C Maximum: Mean (Worst-Case Temp) + 3 (-40°C to 125°C) PIC12F609/615/617/12HV609/615 DS41302D-page 182  2010 Microchip Technology Inc. FIGURE 17-27: PIC12HV609/615 IPD COMPARATOR (SINGLE ON) vs. VDD FIGURE 17-28: PIC12HV609/615 IPD WDT vs. VDD FIGURE 17-29: PIC12HV609/615 IPD BOR vs. VDD 0 100 200 300 400 500 VDD (V) IPD CMP (μA) 1 2 3 4 5 Typical Maximum Typical: Statistical Mean @25°C Maximum: Mean (Worst-Case Temp) + 3 (-40°C to 125°C) 0 50 100 150 200 250 300 350 400 VDD (V) IPD WDT (μA) 1 2 3 4 5 Typical Typical: Statistical Mean @25°C Maximum Maximum: Mean (Worst-Case Temp) + 3 (-40°C to 125°C) 100 150 200 250 300 350 400 VDD (V) IPD BOR (μA) 2 3 4 5 Typical Typical: Statistical Mean @25°C Maximum Maximum: Mean (Worst-Case Temp) + 3 (-40°C to 125°C)  2010 Microchip Technology Inc. DS41302D-page 183 PIC12F609/615/617/12HV609/615 FIGURE 17-30: PIC12HV609/615 IPD CVREF (LOW RANGE) vs. VDD FIGURE 17-31: PIC12HV609/615 IPD CVREF (HI RANGE) vs. VDD FIGURE 17-32: PIC12HV609/615 IPD T1OSC vs. VDD 0 100 200 300 400 500 VDD (V) IPD CVREF (μA) 1 2 3 4 5 Typical Typical: Statistical Mean @25°C Maximum Maximum: Mean (Worst-Case Temp) + 3 (-40°C to 125°C) VDD (V) IPD CVREF (μA) 0 100 200 300 400 500 1 2 3 4 5 Typical Typical: Statistical Mean @25°C Maximum Maximum: Mean (Worst-Case Temp) + 3 (-40°C to 125°C) 0 50 100 150 200 250 300 350 400 VDD (V) IPD T1OSC (μA) 1 2 3 4 5 Typical Maximum Typical: Statistical Mean @25°C Maximum: Mean (Worst-Case Temp) + 3 (-40°C to 125°C) PIC12F609/615/617/12HV609/615 DS41302D-page 184  2010 Microchip Technology Inc. FIGURE 17-33: PIC12HV615 IPD A/D vs. VDD FIGURE 17-34: VOL vs. IOL OVER TEMPERATURE (VDD = 3.0V) 0 50 100 150 200 250 300 350 400 VDD (V) IPD A2D (μA) 2 3 4 5 Typical Maximum Typical: Statistical Mean @25°C Maximum: Mean (Worst-Case Temp) + 3 (-40°C to 125°C) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 IOL (mA) VOL (V) Typical: Statistical Mean @25°C Maximum: Mean (Worst-Case Temp) + 3 (-40°C to 125°C) Max. 125°C Min. -40°C Max. 85°C Typical 25°C  2010 Microchip Technology Inc. DS41302D-page 185 PIC12F609/615/617/12HV609/615 FIGURE 17-35: VOL vs. IOL OVER TEMPERATURE (VDD = 5.0V) FIGURE 17-36: VOH vs. IOH OVER TEMPERATURE (VDD = 3.0V) Typical: Statistical Mean @25°C Maximum: Mean (Worst-Case Temp) + 3 (-40°C to 125°C) 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 IOL (mA) VOL (V) Max. 85°C Typ. 25°C Min. -40°C Max. 125°C 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 0.0 -0.5 -1.0 -1.5 -2.0 -2.5 -3.0 -3.5 -4.0 IOH (mA) VOH (V) Typ. 25°C Max. -40°C Min. 125°C Typical: Statistical Mean @25°C Maximum: Mean (Worst-Case Temp) + 3 (-40°C to 125°C) PIC12F609/615/617/12HV609/615 DS41302D-page 186  2010 Microchip Technology Inc. FIGURE 17-37: VOH vs. IOH OVER TEMPERATURE (VDD = 5.0V) FIGURE 17-38: TTL INPUT THRESHOLD VIN vs. VDD OVER TEMPERATURE 3.0 3.5 4.0 4.5 5.0 5.5 0.0 -0.5 -1.0 -1.5 -2.0 -2.5 -3.0 -3.5 -4.0 -4.5 -5.0 IOH (mA) VOH (V) Max. -40°C Typ. 25°C Typical: Statistical Mean @25°C Maximum: Mean (Worst-Case Temp) + 3 (-40°C to 125°C) Min. 125°C 0.5 0.7 0.9 1.1 1.3 1.5 1.7 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 VDD (V) VIN (V) Typ. 25°C Max. -40°C Min. 125°C Typical: Statistical Mean @25°C Maximum: Mean (Worst-Case Temp) + 3 (-40°C to 125°C)  2010 Microchip Technology Inc. DS41302D-page 187 PIC12F609/615/617/12HV609/615 FIGURE 17-39: SCHMITT TRIGGER INPUT THRESHOLD VIN vs. VDD OVER TEMPERATURE FIGURE 17-40: TYPICAL HFINTOSC START-UP TIMES vs. VDD OVER TEMPERATURE 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 VDD (V) VIN (V) VIH Max. 125°C VIH Min. -40°C VIL Min. 125°C VIL Max. -40°C Typical: Statistical Mean @25°C Maximum: Mean (Worst-Case Temp) + 3 (-40°C to 125°C) 0 2 4 6 8 10 12 14 16 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 VDD (V) Time (μs) 85°C 25°C -40°C Typical: Statistical Mean @25°C Maximum: Mean (Worst-Case Temp) + 3 (-40°C to 125°C) PIC12F609/615/617/12HV609/615 DS41302D-page 188  2010 Microchip Technology Inc. FIGURE 17-41: MAXIMUM HFINTOSC START-UP TIMES vs. VDD OVER TEMPERATURE FIGURE 17-42: MINIMUM HFINTOSC START-UP TIMES vs. VDD OVER TEMPERATURE 0 5 10 15 20 25 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 VDD (V) Time (μs) -40°C 85°C 25°C Typical: Statistical Mean @25°C Maximum: Mean (Worst-Case Temp) + 3 (-40°C to 125°C) 0 1 2 3 4 5 6 7 8 9 10 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 VDD (V) Time (s) -40°C 25°C 85°C Typical: Statistical Mean @25°C Maximum: Mean (Worst-Case Temp) + 3 (-40°C to 125°C)  2010 Microchip Technology Inc. DS41302D-page 189 PIC12F609/615/617/12HV609/615 FIGURE 17-43: TYPICAL HFINTOSC FREQUENCY CHANGE vs. VDD (25°C) FIGURE 17-44: TYPICAL HFINTOSC FREQUENCY CHANGE vs. VDD (85°C) -5 -4 -3 -2 -1 0 1 2 3 4 5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 VDD (V) Change from Calibration (%) -5 -4 -3 -2 -1 0 1 2 3 4 5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 VDD (V) Change from Calibration (%) PIC12F609/615/617/12HV609/615 DS41302D-page 190  2010 Microchip Technology Inc. FIGURE 17-45: TYPICAL HFINTOSC FREQUENCY CHANGE vs. VDD (125°C) FIGURE 17-46: TYPICAL HFINTOSC FREQUENCY CHANGE vs. VDD (-40°C) -5 -4 -3 -2 -1 0 1 2 3 4 5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 VDD (V) Change from Calibration (%) -5 -4 -3 -2 -1 0 1 2 3 4 5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 VDD (V) Change from Calibration (%)  2010 Microchip Technology Inc. DS41302D-page 191 PIC12F609/615/617/12HV609/615 FIGURE 17-47: 0.6V REFERENCE VOLTAGE vs. TEMP (TYPICAL) FIGURE 17-48: 1.2V REFERENCE VOLTAGE vs. TEMP (TYPICAL) FIGURE 17-49: SHUNT REGULATOR VOLTAGE vs. INPUT CURRENT (TYPICAL) 0.56 0.57 0.58 0.59 0.6 0.61 -60 -40 -20 0 20 40 60 80 100 120 140 Temp (C) Reference Voltage (V) 2.5V 4V 5V 5.5V 3V 1.2 1.21 1.22 1.23 1.24 1.25 1.26 -60 -40 -20 0 20 40 60 80 100 120 140 Temp (C) Reference Voltage (V) 2.5V 3V 4V 5V 5.5V 4.96 4.98 5 5.02 5.04 5.06 5.08 5.1 5.12 5.14 5.16 0 10 20 30 40 50 60 Input Current (mA) Shunt Regulator Voltage (V) 25°C 85°C 125°C -40°C PIC12F609/615/617/12HV609/615 DS41302D-page 192  2010 Microchip Technology Inc. FIGURE 17-50: SHUNT REGULATOR VOLTAGE vs. TEMP (TYPICAL) FIGURE 17-51: COMPARATOR RESPONSE TIME (RISING EDGE) 4.96 4.98 5 5.02 5.04 5.06 5.08 5.1 5.12 5.14 5.16 -60 -40 -20 0 20 40 60 80 100 120 140 Temp (C) Shunt Regulator Voltage (V) 50 mA 40 mA 20 mA 15 mA 10 mA 4 mA 0 100 200 300 400 500 600 700 800 900 1000 2.0 2.5 4.0 5.5 VDD (V) Response Time (nS) Note: V- input = Transition from VCM + 100mV to VCM - 20mV V+ input = VCM VCM = (VDD - 1.5V)/2 Min. -40°C Typ. 25°C Max. 85°C Max. 125°C  2010 Microchip Technology Inc. DS41302D-page 193 PIC12F609/615/617/12HV609/615 FIGURE 17-52: COMPARATOR RESPONSE TIME (FALLING EDGE) FIGURE 17-53: WDT TIME-OUT PERIOD vs. VDD OVER TEMPERATURE 0 100 200 300 400 500 600 700 800 900 1000 2.0 2.5 4.0 5.5 VDD (V) Response Time (nS) Max. 85°C Typ. 25°C Min. -40°C Max. 125°C Note: V- input = Transition from VCM - 100mV to VCM + 20MV V+ input = VCM VCM = (VDD - 1.5V)/2 5 10 15 20 25 30 35 40 45 50 55 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 VDD (V) Time (ms) -40°C 25°C 85°C 125°C PIC12F609/615/617/12HV609/615 DS41302D-page 194  2010 Microchip Technology Inc. NOTES:  2010 Microchip Technology Inc. DS41302D-page 195 PIC12F609/615/617/12HV609/615 18.0 PACKAGING INFORMATION 18.1 Package Marking Information * Standard PIC device marking consists of Microchip part number, year code, week code, and traceability code. For PIC device marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price. Legend: XX...X Customer-specific information Y Year code (last digit of calendar year) YY Year code (last 2 digits of calendar year) WW Week code (week of January 1 is week ‘01’) NNN Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) * This package is Pb-free. The Pb-free JEDEC designator ( ) can be found on the outer packaging for this package. Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information. e3 e3 XXXXXNNN 8-Lead PDIP (.300”) XXXXXXXX YYWW 017 Example XXFXXX/P 0610 8-Lead SOIC (.150”) XXXXXXXX XXXXYYWW NNN Example PICXXCXX /SN0610 017 XXXXXX 8-Lead DFN (4x4 mm) (for PIC12F609/615/HV609/615 YYWW NNN Example XXXXXX XXXXXX 0610 017 XXXX e3 e3 e3 8-Lead MSOP XXXXXX YWWNNN Example 602/MS 610017 XXXX 8-Lead DFN (3x3 mm) YYWW NNN Example 0610 017 XXXX devices only) PIC12F609/615/617/12HV609/615 DS41302D-page 196  2010 Microchip Technology Inc. 18.2 Package Details The following sections give the technical details of the packages.              !"#$%&" '  ()"&'"!&) &#*& &  & #   +%&,  & !& - '! !#.#  &"#' #%!   & "! ! #%!   & "! !!  &$#/  !#  '! #&    .0 1,21!'!   &$& "! **& "&&  !   3 & ' !&" & 4# *!( !!&    4 %&  &#& && 255***'    '5 4 6&! 7,8. '! 9'&! 7 7: ; 7"')  %! 7 < &  1, & &  = =   ##4 4!!   -  1!& &   = =  "# &  "# >#& .  - -  ##4>#& .   < :  9&  -< -?   & & 9  -  9# 4!!  <   6  9#>#& )  ?  9 * 9#>#& )  <  :   * + 1 = = - N E1 NOTE 1 D 1 2 3 A A1 A2 L b1 b e E eB c         * ,<1  2010 Microchip Technology Inc. DS41302D-page 197 PIC12F609/615/617/12HV609/615     !  ""#$%& !'      !"#$%&" '  ()"&'"!&) &#*& &  & #   +%&,  & !& - '! !#.#  &"#' #%!   & "! ! #%!   & "! !!  &$#''  !#  '! #&    .0 1,2 1!'!   &$& "! **& "&&  ! .32 % '! ("!"*& "&&  (% % '&  " !!    3 & ' !&" & 4# *!( !!&    4 %&  &#& && 255***'    '5 4 6&! 99.. '! 9'&! 7 7: ; 7"')  %! 7 < &  1, :  8 &  = =   ##4 4!!   = = &# %%+   =  :  >#& . ?1,  ##4>#& . -1, :  9&  1, , '% @ & A  =  3 &9& 9  =  3 & & 9 .3 3 &  B = #& ) - =   # %&  B = B  # %&1 && '  B = B D N e E E1 NOTE 1 1 2 3 b A A1 A2 L L1 c h h φ β α         * ,1 PIC12F609/615/617/12HV609/615 DS41302D-page 198  2010 Microchip Technology Inc.     !  ""#$%& !'   3 & ' !&" & 4# *!( !!&    4 %&  &#& && 255***'    '5 4  2010 Microchip Technology Inc. DS41302D-page 199 PIC12F609/615/617/12HV609/615   ("  !  )*( ( !       !"#$%&" '  ()"&'"!&) &#*& &  & #   '! !#.#  &"#' #%!   & "! ! #%!   & "! !!  &$#''  !# - '! #&    .0 1,2 1!'!   &$& "! **& "&&  ! .32 % '! ("!"*& "&&  (% % '&  " !!    3 & ' !&" & 4# *!( !!&    4 %&  &#& && 255***'    '5 4 6&! 99.. '! 9'&! 7 7: ; 7"')  %! 7 < &  ?1, :  8 &  = =   ##4 4!!   <  &# %%   =  :  >#& . 1,  ##4>#& . -1, :  9&  -1, 3 &9& 9  ? < 3 & & 9 .3 3 &  B = #& )  =  D N E E1 NOTE 1 1 2 e b A A1 A2 c L1 L φ         * ,1 PIC12F609/615/617/12HV609/615 DS41302D-page 200  2010 Microchip Technology Inc.    +  $ )*(+,,%&+      !"#$%&" '  ()"&'"!&) &#*& &  & #   4'    ' $ !#&) !&#! - 4!!*!"&#  '! #&    .0 1,2 1!'!   &$& "! **& "&&  ! .32 % '! ("!"*& "&&  (% % '&  " !!    3 & ' !&" & 4# *!( !!&    4 %&  &#& && 255***'    '5 4 6&! 99.. '! 9'&! 7 7: ; 7"')  %! 7 < &  ?1, :  8 &  <   &# %%     , && 4!! - .3 :  9&  -1, .$ !##>#& .  = ? :  >#& . -1, .$ !##9&   =  , &&>#& )  - - , &&9& 9  -  , &&& .$ !## C  = = TOP VIEW BOTTOM VIEW D N E NOTE 1 1 2 EXPOSED PAD b e N L E2 K NOTE 1 D2 2 1 NOTE 2 A A3 A1         * ,?1  2010 Microchip Technology Inc. DS41302D-page 201 PIC12F609/615/617/12HV609/615    +  $ )*(-,-,%&+      !"#$%&" '  ()"&'"!&) &#*& &  & #   4'    ' $ !#&) !&#! - 4!!*!"&#  '! #&    .0 1,2 1!'!   &$& "! **& "&&  ! .32 % '! ("!"*& "&&  (% % '&  " !!    3 & ' !&" & 4# *!( !!&    4 %&  &#& && 255***'    '5 4 6&! 99.. '! 9'&! 7 7: ; 7"')  %! 7 < &  <1, :  8 &  <   &# %%     , && 4!! - .3 :  9&  1, .$ !##>#& .   < :  >#& . 1, .$ !##9&   - -? , &&>#& )  - - , &&9& 9 -   , &&& .$ !## C  = = D N E NOTE 1 1 2 A3 A A1 NOTE 2 NOTE 1 D2 2 1 E2 L N e b K EXPOSED PAD TOP VIEW BOTTOM VIEW         * ,- PIC12F609/615/617/12HV609/615 DS41302D-page 202  2010 Microchip Technology Inc.    +  $ )*(D-,-,%&+   3 & ' !&" & 4# *!( !!&    4 %&  &#& && 255***'    '5 4  2010 Microchip Technology Inc. DS41302D-page 203 PIC12F609/615/617/12HV609/615 APPENDIX A: DATA SHEET REVISION HISTORY Revision A This is a new data sheet. Revision B (05/2008) Added Graphs. Revised 28-Pin ICD Pinout, Electrical Specifications Section, Package Details. Revision C (09/2009) Updated adding the PIC12F617 device throughout the entire data sheet; Added Figure 2-2 to Memory Organization section; Added section 3 ”FLASH PROGRAM MEMORY SELF READ/SELF WRITE CONTROL (FOR PIC12F617 ONLY)”; Updated Register 12-1; Updated Table12-5 adding PMCON1, PMCON2, PMADRL, PMADRH, PMDATL, PMDATH; Added section 16-12 in the Electrical Specification section; Other minor edits. Revision D (01/2010) Updated Figure 17-50; Revised 16.8 DC Characteristics; Removed Preliminary Status. APPENDIX B: MIGRATING FROM OTHER PIC® DEVICES This discusses some of the issues in migrating from other PIC devices to the PIC12F6XX Family of devices. B.1 PIC12F675 to PIC12F609/615/ 12HV609/615 TABLE B-1: FEATURE COMPARISON Feature PIC12F675 PIC12F609/ 615/ 12HV609/615 Max Operating Speed 20 MHz 20 MHz Max Program Memory (Words) 1024 1024 SRAM (bytes) 64 64 A/D Resolution 10-bit 10-bit (615 only) Timers (8/16-bit) 1/1 2/1 (615) 1/1 (609) Oscillator Modes 8 8 Brown-out Reset Y Y Internal Pull-ups RA0/1/2/4/5 GP0/1/2/4/5, MCLR Interrupt-on-change RA0/1/2/3/4/5 GP0/1/2/3/4/5 Comparator 1 1 ECCP N Y (615) INTOSC Frequencies 4 MHz 4/8 MHz Internal Shunt Regulator N Y (PIC12HV609/ 615) Note: This device has been designed to perform to the parameters of its data sheet. It has been tested to an electrical specification designed to determine its conformance with these parameters. Due to process differences in the manufacture of this device, this device may have different performance characteristics than its earlier version. These differences may cause this device to perform differently in your application than the earlier version of this device. PIC12F609/615/617/12HV609/615 DS41302D-page 204  2010 Microchip Technology Inc. NOTES:  2010 Microchip Technology Inc. DS41302D-page 205 PIC12F609/615/617/12HV609/615 INDEX A A/D Specifications.................................................... 164, 165 Absolute Maximum Ratings .............................................. 143 AC Characteristics Industrial and Extended ............................................ 156 Load Conditions ........................................................ 155 ADC Acquisition Requirements ........................................... 86 Associated registers.................................................... 88 Block Diagram............................................................. 79 Calculating Acquisition Time....................................... 86 Channel Selection....................................................... 80 Configuration............................................................... 80 Configuring Interrupt ................................................... 83 Conversion Clock........................................................ 80 Conversion Procedure ................................................ 83 Internal Sampling Switch (RSS) Impedance................ 86 Interrupts..................................................................... 81 Operation .................................................................... 82 Operation During Sleep .............................................. 82 Port Configuration....................................................... 80 Reference Voltage (VREF)........................................... 80 Result Formatting........................................................ 82 Source Impedance...................................................... 86 Special Event Trigger.................................................. 82 Starting an A/D Conversion ........................................ 82 ADC (PIC12F615/617/HV615 Only) ................................... 79 ADCON0 Register............................................................... 84 ADRESH Register (ADFM = 0) ........................................... 85 ADRESH Register (ADFM = 1) ........................................... 85 ADRESL Register (ADFM = 0)............................................ 85 ADRESL Register (ADFM = 1)............................................ 85 Analog Input Connection Considerations............................ 68 Analog-to-Digital Converter. See ADC ANSEL Register (PIC12F609/HV609) ................................ 45 ANSEL Register (PIC12F615/617/HV615) ......................... 45 APFCON Register............................................................... 24 Assembler MPASM Assembler................................................... 140 B Block Diagrams (CCP) Capture Mode Operation ................................. 90 ADC ............................................................................ 79 ADC Transfer Function ............................................... 87 Analog Input Model ............................................... 68, 87 Auto-Shutdown ......................................................... 101 CCP PWM................................................................... 94 Clock Source............................................................... 37 Comparator ................................................................. 67 Compare ..................................................................... 92 Crystal Operation........................................................ 39 External RC Mode....................................................... 40 GP0 and GP1 Pins...................................................... 47 GP2 Pins..................................................................... 48 GP3 Pin....................................................................... 49 GP4 Pin....................................................................... 50 GP5 Pin....................................................................... 51 In-Circuit Serial Programming Connections.............. 125 Interrupt Logic ........................................................... 119 MCLR Circuit............................................................. 111 On-Chip Reset Circuit ............................................... 110 PIC12F609/12HV609 ................................................... 7 PIC12F615/617/12HV615 ............................................ 8 PWM (Enhanced) ....................................................... 97 Resonator Operation .................................................. 39 Timer1 .................................................................. 57, 58 Timer2 ........................................................................ 65 TMR0/WDT Prescaler ................................................ 53 Watchdog Timer ....................................................... 122 Brown-out Reset (BOR).................................................... 112 Associated Registers................................................ 113 Specifications ........................................................... 160 Timing and Characteristics ....................................... 159 C C Compilers MPLAB C18.............................................................. 140 MPLAB C30.............................................................. 140 Calibration Bits.................................................................. 109 Capture Module. See Enhanced Capture/Compare/ PWM (ECCP) Capture/Compare/PWM (CCP) Associated registers w/ Capture................................. 91 Associated registers w/ Compare............................... 93 Associated registers w/ PWM................................... 105 Capture Mode............................................................. 90 CCP1 Pin Configuration ............................................. 90 Compare Mode........................................................... 92 CCP1 Pin Configuration ..................................... 92 Software Interrupt Mode............................... 90, 92 Special Event Trigger ......................................... 92 Timer1 Mode Selection................................. 90, 92 Prescaler .................................................................... 90 PWM Mode................................................................. 94 Duty Cycle .......................................................... 95 Effects of Reset .................................................. 96 Example PWM Frequencies and Resolutions, 20 MHZ.................................. 95 Example PWM Frequencies and Resolutions, 8 MHz .................................... 95 Operation in Sleep Mode.................................... 96 Setup for Operation ............................................ 96 System Clock Frequency Changes .................... 96 PWM Period ............................................................... 95 Setup for PWM Operation .......................................... 96 CCP1CON (Enhanced) Register ........................................ 89 Clock Sources External Modes........................................................... 38 EC ...................................................................... 38 HS ...................................................................... 39 LP....................................................................... 39 OST .................................................................... 38 RC ...................................................................... 40 XT....................................................................... 39 Internal Modes............................................................ 40 INTOSC.............................................................. 40 INTOSCIO.......................................................... 40 CMCON0 Register.............................................................. 72 CMCON1 Register.............................................................. 73 Code Examples A/D Conversion .......................................................... 83 Assigning Prescaler to Timer0.................................... 54 Assigning Prescaler to WDT....................................... 54 Changing Between Capture Prescalers ..................... 90 Indirect Addressing..................................................... 25 PIC12F609/615/617/12HV609/615 DS41302D-page 206  2010 Microchip Technology Inc. Initializing GPIO .......................................................... 43 Saving Status and W Registers in RAM ................... 121 Writing to Flash Program Memory ..............................34 Code Protection ................................................................ 124 Comparator ......................................................................... 67 Associated registers.................................................... 78 Control ........................................................................69 Gating Timer1 ............................................................. 73 Operation During Sleep .............................................. 71 Overview..................................................................... 67 Response Time........................................................... 69 Synchronizing COUT w/Timer1 .................................. 73 Comparator Hysteresis ....................................................... 77 Comparator Voltage Reference (CVREF) ............................74 Effects of a Reset........................................................ 71 Comparator Voltage Reference (CVREF) Response Time........................................................... 69 Comparator Voltage Reference (CVREF) Specifications............................................................ 163 Comparators C2OUT as T1 Gate .....................................................60 Effects of a Reset........................................................ 71 Specifications............................................................ 162 Compare Module. See Enhanced Capture/Compare/ PWM (ECCP) (PIC12F615/617/HV615 only) CONFIG Register.............................................................. 108 Configuration Bits.............................................................. 107 CPU Features ................................................................... 107 Customer Change Notification Service ............................. 209 Customer Notification Service........................................... 209 Customer Support ............................................................. 209 D Data EEPROM Memory Associated Registers .................................................. 35 Data Memory....................................................................... 11 DC and AC Characteristics Graphs and Tables ...................................................171 DC Characteristics Extended and Industrial ............................................ 152 Industrial and Extended ............................................ 145 Development Support ....................................................... 139 Device Overview ................................................................... 7 E ECCP. See Enhanced Capture/Compare/PWM ECCPAS Register ............................................................. 102 EEDAT Register.................................................................. 28 EEDATH Register ............................................................... 28 Effects of Reset PWM mode ................................................................. 96 Electrical Specifications .................................................... 143 Enhanced Capture/Compare/PWM (ECCP) Enhanced PWM Mode ................................................ 97 Auto-Restart...................................................... 103 Auto-shutdown.................................................. 101 Half-Bridge Application ....................................... 99 Half-Bridge Application Examples..................... 104 Half-Bridge Mode ................................................ 99 Output Relationships (Active-High and Active-Low) .................................................98 Output Relationships Diagram............................98 Programmable Dead Band Delay ..................... 104 Shoot-through Current ...................................... 104 Start-up Considerations .................................... 100 Specifications............................................................ 162 Timer Resources ........................................................ 89 Enhanced Capture/Compare/PWM (PIC12F615/617/HV615 Only).................................... 89 Errata .................................................................................... 6 F Firmware Instructions ....................................................... 129 Flash Program Memory Self Read/Self Write Control (For PIC12F617 only)..................................... 27 Fuses. See Configuration Bits G General Purpose Register File ........................................... 12 GPIO................................................................................... 43 Additional Pin Functions ............................................. 44 ANSEL Register ................................................. 44 Interrupt-on-Change ........................................... 44 Weak Pull-Ups.................................................... 44 Associated registers ................................................... 52 GP0 ............................................................................ 47 GP1 ............................................................................ 47 GP2 ............................................................................ 48 GP3 ............................................................................ 49 GP4 ............................................................................ 50 GP5 ............................................................................ 51 Pin Descriptions and Diagrams .................................. 47 Specifications ........................................................... 158 GPIO Register .................................................................... 43 H High Temperature Operation............................................ 167 I ID Locations...................................................................... 124 In-Circuit Debugger........................................................... 125 In-Circuit Serial Programming (ICSP)............................... 125 Indirect Addressing, INDF and FSR registers..................... 25 Instruction Format............................................................. 129 Instruction Set................................................................... 129 ADDLW..................................................................... 131 ADDWF..................................................................... 131 ANDLW..................................................................... 131 ANDWF..................................................................... 131 MOVF ....................................................................... 134 BCF .......................................................................... 131 BSF........................................................................... 131 BTFSC...................................................................... 131 BTFSS ...................................................................... 132 CALL......................................................................... 132 CLRF ........................................................................ 132 CLRW....................................................................... 132 CLRWDT .................................................................. 132 COMF ....................................................................... 132 DECF........................................................................ 132 DECFSZ ................................................................... 133 GOTO....................................................................... 133 INCF ......................................................................... 133 INCFSZ..................................................................... 133 IORLW...................................................................... 133 IORWF...................................................................... 133 MOVLW.................................................................... 134 MOVWF.................................................................... 134 NOP.......................................................................... 134 RETFIE..................................................................... 135 RETLW..................................................................... 135 RETURN................................................................... 135  2010 Microchip Technology Inc. DS41302D-page 207 PIC12F609/615/617/12HV609/615 RLF ........................................................................... 136 RRF........................................................................... 136 SLEEP ...................................................................... 136 SUBLW..................................................................... 136 SUBWF..................................................................... 137 SWAPF ..................................................................... 137 XORLW..................................................................... 137 XORWF..................................................................... 137 Summary Table......................................................... 130 INTCON Register................................................................ 20 Internal Oscillator Block INTOSC Specifications............................................ 157, 158 Internal Sampling Switch (RSS) Impedance........................ 86 Internet Address................................................................ 209 Interrupts........................................................................... 118 ADC ............................................................................ 83 Associated Registers ................................................ 120 Context Saving.......................................................... 121 GP2/INT.................................................................... 118 GPIO Interrupt-on-Change........................................ 119 Interrupt-on-Change.................................................... 44 Timer0....................................................................... 119 TMR1 .......................................................................... 60 INTOSC Specifications ............................................. 157, 158 IOC Register ....................................................................... 46 L Load Conditions ................................................................ 155 M MCLR................................................................................ 111 Internal ...................................................................... 111 Memory Organization.......................................................... 11 Data ............................................................................ 11 Program...................................................................... 11 Microchip Internet Web Site.............................................. 209 Migrating from other PICmicro Devices ............................ 203 MPLAB ASM30 Assembler, Linker, Librarian ................... 140 MPLAB ICD 2 In-Circuit Debugger ................................... 141 MPLAB ICE 2000 High-Performance Universal In-Circuit Emulator .................................................... 141 MPLAB Integrated Development Environment Software .. 139 MPLAB PM3 Device Programmer .................................... 141 MPLAB REAL ICE In-Circuit Emulator System................. 141 MPLINK Object Linker/MPLIB Object Librarian ................ 140 O OPCODE Field Descriptions............................................. 129 Operation During Code Protect........................................... 32 Operation During Write Protect ........................................... 32 Operational Amplifier (OPA) Module AC Specifications...................................................... 163 OPTION Register................................................................ 19 OPTION_REG Register ...................................................... 55 Oscillator Associated registers.............................................. 41, 63 Oscillator Module .......................................................... 27, 37 EC............................................................................... 37 HS............................................................................... 37 INTOSC ...................................................................... 37 INTOSCIO................................................................... 37 LP................................................................................ 37 RC............................................................................... 37 RCIO........................................................................... 37 XT ............................................................................... 37 Oscillator Parameters ....................................................... 157 Oscillator Specifications.................................................... 156 Oscillator Start-up Timer (OST) Specifications ........................................................... 160 OSCTUNE Register............................................................ 41 P P1A/P1B/P1C/P1D.See Enhanced Capture/Compare/ PWM (ECCP) ............................................................. 97 Packaging......................................................................... 195 Marking..................................................................... 195 PDIP Details ............................................................. 196 PCL and PCLATH............................................................... 25 Stack........................................................................... 25 PCON Register ........................................................... 23, 113 PICSTART Plus Development Programmer..................... 142 PIE1 Register ..................................................................... 21 Pin Diagram PIC12F609/HV609 (PDIP, SOIC, MSOP, DFN)........... 4 PIC12F615/617/HV615 (PDIP, SOIC, MSOP, DFN).... 5 Pinout Descriptions PIC12F609/12HV609 ................................................... 9 PIC12F615/617/12HV615 .......................................... 10 PIR1 Register ..................................................................... 22 PMADRH and PMADRL Registers ..................................... 27 PMCON1 and PMCON2 Registers..................................... 27 Power-Down Mode (Sleep)............................................... 123 Power-on Reset (POR)..................................................... 111 Power-up Timer (PWRT) .................................................. 111 Specifications ........................................................... 160 Precision Internal Oscillator Parameters .......................... 158 Prescaler Shared WDT/Timer0................................................... 54 Switching Prescaler Assignment ................................ 54 Program Memory................................................................ 11 Map and Stack............................................................ 11 Programming, Device Instructions.................................... 129 Protection Against Spurious Write...................................... 32 PWM Mode. See Enhanced Capture/Compare/PWM........ 97 PWM1CON Register......................................................... 105 R Reader Response............................................................. 210 Reading the Flash Program Memory.................................. 30 Read-Modify-Write Operations ......................................... 129 Registers ADCON0 (ADC Control 0) .......................................... 84 ADRESH (ADC Result High) with ADFM = 0) ............ 85 ADRESH (ADC Result High) with ADFM = 1) ............ 85 ADRESL (ADC Result Low) with ADFM = 0).............. 85 ADRESL (ADC Result Low) with ADFM = 1).............. 85 ANSEL (Analog Select) .............................................. 45 APFCON (Alternate Pin Function Register) ............... 24 CCP1CON (Enhanced CCP1 Control) ....................... 89 CMCON0 (Comparator Control 0) .............................. 72 CMCON1 (Comparator Control 1) .............................. 73 CONFIG (Configuration Word) ................................. 108 Data Memory Map (PIC12F609/HV609) .................... 12 Data Memory Map (PIC12F615/617/HV615) ............. 13 ECCPAS (Enhanced CCP Auto-shutdown Control) . 102 EEDAT (EEPROM Data) ............................................ 28 EEDATH (EEPROM Data) ......................................... 28 GPIO........................................................................... 43 INTCON (Interrupt Control) ........................................ 20 IOC (Interrupt-on-Change GPIO) ............................... 46 OPTION_REG (OPTION)........................................... 19 PIC12F609/615/617/12HV609/615 DS41302D-page 208  2010 Microchip Technology Inc. OPTION_REG (Option) .............................................. 55 OSCTUNE (Oscillator Tuning) .................................... 41 PCON (Power Control Register) ................................. 23 PCON (Power Control) ............................................. 113 PIE1 (Peripheral Interrupt Enable 1)........................... 21 PIR1 (Peripheral Interrupt Register 1) ........................ 22 PWM1CON (Enhanced PWM Control) ..................... 105 Reset Values (PIC12F609/HV609) ........................... 115 Reset Values (PIC12F615/617/HV615) .................... 116 Reset Values (special registers) ............................... 117 Special Function Registers ......................................... 12 Special Register Summary (PIC12F609/HV609).. 14, 16 Special Register Summary (PIC12F615/617/HV615) .............................. 15, 17 STATUS......................................................................18 T1CON........................................................................62 T2CON........................................................................66 TRISIO (Tri-State GPIO) ............................................. 44 VRCON (Voltage Reference Control) ......................... 76 WPU (Weak Pull-Up GPIO) ........................................ 46 Reset................................................................................. 110 Revision History ................................................................ 203 S Shoot-through Current ...................................................... 104 Sleep Power-Down Mode ...................................................123 Wake-up....................................................................123 Wake-up using Interrupts.......................................... 123 Software Simulator (MPLAB SIM)..................................... 140 Special Event Trigger.......................................................... 82 Special Function Registers .................................................12 STATUS Register................................................................ 18 T T1CON Register.................................................................. 62 T2CON Register.................................................................. 66 Thermal Considerations .................................................... 154 Time-out Sequence........................................................... 113 Timer0................................................................................. 53 Associated Registers .................................................. 55 External Clock............................................................. 54 Interrupt....................................................................... 55 Operation .............................................................. 53, 57 Specifications............................................................ 161 T0CKI ..........................................................................54 Timer1................................................................................. 57 Associated registers.................................................... 63 Asynchronous Counter Mode ..................................... 59 Reading and Writing ........................................... 59 Comparator Synchronization ...................................... 61 ECCP Special Event Trigger (PIC12F615/617/HV615 Only) ............................61 ECCP Time Base (PIC12F615/617/HV615 Only) .......60 Interrupt....................................................................... 60 Modes of Operation .................................................... 57 Operation During Sleep .............................................. 60 Oscillator ..................................................................... 59 Prescaler..................................................................... 59 Specifications............................................................ 161 Timer1 Gate Inverting Gate .....................................................60 Selecting Source........................................... 60, 73 Synchronizing COUT w/Timer1 .......................... 73 TMR1H Register ......................................................... 57 TMR1L Register.......................................................... 57 Timer2 (PIC12F615/617/HV615 Only) Associated registers ................................................... 66 Timers Timer1 T1CON ............................................................... 62 Timer2 T2CON ............................................................... 66 Timing Diagrams A/D Conversion......................................................... 165 A/D Conversion (Sleep Mode).................................. 166 Brown-out Reset (BOR)............................................ 159 Brown-out Reset Situations ...................................... 112 CLKOUT and I/O ...................................................... 158 Clock Timing............................................................. 156 Comparator Output ..................................................... 67 Enhanced Capture/Compare/PWM (ECCP)............. 162 Half-Bridge PWM Output .................................... 99, 104 INT Pin Interrupt ....................................................... 120 PWM Auto-shutdown Auto-restart Enabled......................................... 103 Firmware Restart .............................................. 103 PWM Output (Active-High) ......................................... 98 PWM Output (Active-Low) .......................................... 98 Reset, WDT, OST and Power-up Timer ................... 159 Time-out Sequence Case 1 .............................................................. 114 Case 2 .............................................................. 114 Case 3 .............................................................. 114 Timer0 and Timer1 External Clock ........................... 161 Timer1 Incrementing Edge ......................................... 61 Wake-up from Interrupt............................................. 124 Timing Parameter Symbology .......................................... 155 TRISIO................................................................................ 43 TRISIO Register ................................................................. 44 V Voltage Reference (VR) Specifications ........................................................... 163 Voltage Reference. See Comparator Voltage Reference (CVREF) Voltage References Associated registers ................................................... 78 VP6 Stabilization ........................................................ 74 VREF. SEE ADC Reference Voltage W Wake-up Using Interrupts ................................................. 123 Watchdog Timer (WDT).................................................... 121 Associated registers ................................................. 122 Specifications ........................................................... 160 WPU Register ..................................................................... 46 Writing the Flash Program Memory .................................... 32 WWW Address ................................................................. 209 WWW, On-Line Support ....................................................... 6  2010 Microchip Technology Inc. DS41302D-page 209 PIC12F609/615/617/12HV609/615 THE MICROCHIP WEB SITE Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information: • Product Support – Data sheets and errata, application notes and sample programs, design resources, user’s guides and hardware support documents, latest software releases and archived software • General Technical Support – Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing • Business of Microchip – Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives CUSTOMER CHANGE NOTIFICATION SERVICE Microchip’s customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest. To register, access the Microchip web site at www.microchip.com, click on Customer Change Notification and follow the registration instructions. CUSTOMER SUPPORT Users of Microchip products can receive assistance through several channels: • Distributor or Representative • Local Sales Office • Field Application Engineer (FAE) • Technical Support • Development Systems Information Line Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document. Technical support is available through the web site at: http://support.microchip.com PIC12F609/615/617/12HV609/615 DS41302D-page 210  2010 Microchip Technology Inc. READER RESPONSE It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150. Please list the following information, and use this outline to provide us with your comments about this document. To: Technical Publications Manager RE: Reader Response Total Pages Sent ________ From: Name Company Address City / State / ZIP / Country Telephone: (_______) _________ - _________ Application (optional): Would you like a reply? Y N Device: Literature Number: Questions: FAX: (______) _________ - _________ PIC12F609/615/617/12HV609/615 DS41302D 1. What are the best features of this document? 2. How does this document meet your hardware and software development needs? 3. Do you find the organization of this document easy to follow? If not, why? 4. What additions to the document do you think would enhance the structure and subject? 5. What deletions from the document could be made without affecting the overall usefulness? 6. Is there any incorrect or misleading information (what and where)? 7. How would you improve this document?  2010 Microchip Technology Inc. DS41302D-page 211 PIC12F609/615/617/12HV609/615 PRODUCT IDENTIFICATION SYSTEM To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office. PART NO. X /XX XXX Temperature Package Pattern Range Device Device: PIC12F609, PIC12F609T(1), PIC12HV609, PIC12HV609T(1), PIC12F615, PIC12F615T(1), PIC12HV615, PIC12HV615T(1), PIC12F617, PIC12F617T(1) Temperature Range: H = -40C to +150C (High Temp)(3) I = -40C to +85C (Industrial) E = -40C to +125C (Extended) Package: P = Plastic DIP (PDIP) SN = 8-lead Small Outline (150 mil) (SOIC) MS = Micro Small Outline (MSOP) MF = 8-lead Plastic Dual Flat, No Lead (3x3) (DFN) MD = 8-lead Plastic Dual Flat, No Lead (4x4)(DFN)(1,2) Pattern: QTP, SQTP or ROM Code; Special Requirements (blank otherwise) Examples: a) PIC12F615-E/P 301 = Extended Temp., PDIP package, 20 MHz, QTP pattern #301 b) PIC12F615-I/SN = Industrial Temp., SOIC package, 20 MHz c) PIC12F615T-E/MF = Tape and Reel, Extended Temp., 3x3 DFN, 20 MHz d) PIC12F609T-E/MF = Tape and Reel, Extended Temp., 3x3 DFN, 20 MHz e) PIC12HV615T-E/MF = Tape and Reel, Extended Temp., 3x3 DFN, 20 MHz f) PIC12HV609T-E/MF = Tape and Reel, Extended Temp., 3x3 DFN, 20 MHz g) PIC12F617T-E/MF = Tape and Reel, Extended Temp., 3x3 DFN, 20 MHz h) PIC12F617-I/P = Industrial Temp., PDIP package, 20 MHz i) PIC12F615-H/SN = High Temp., SOIC package, 20 MHz Note 1: T = in tape and reel for MSOP, SOIC and DFN packages only. 2: Not available for PIC12F617. 3: High Temp. available for PIC12F615 only. DS41302D-page 212  2010 Microchip Technology Inc. AMERICAS Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://support.microchip.com Web Address: www.microchip.com Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455 Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088 Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075 Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643 Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924 Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260 Kokomo Kokomo, IN Tel: 765-864-8360 Fax: 765-864-8387 Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445 Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509 ASIA/PACIFIC Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755 China - Beijing Tel: 86-10-8528-2100 Fax: 86-10-8528-2104 China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889 China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500 China - Hong Kong SAR Tel: 852-2401-1200 Fax: 852-2401-3431 China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470 China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205 China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066 China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393 China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760 China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118 China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256 China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130 China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049 ASIA/PACIFIC India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123 India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632 India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513 Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122 Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302 Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934 Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859 Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068 Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069 Singapore Tel: 65-6334-8870 Fax: 65-6334-8850 Taiwan - Hsin Chu Tel: 886-3-6578-300 Fax: 886-3-6578-370 Taiwan - Kaohsiung Tel: 886-7-536-4818 Fax: 886-7-536-4803 Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102 Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350 EUROPE Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829 France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79 Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44 Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781 Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340 Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91 UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820 WORLDWIDE SALES AND SERVICE 01/05/10 Passive Voltage Probes TPP1000 · TPP0500B · TPP0502 · TPP0250 Datasheet The TPP1000, TPP0500B, TPP0502 and TPP0250 models are highbandwidth, general-purpose probes from Tektronix that offer breakthrough specifications previously unrealized in this product class. Designed for use with Tektronix MDO3000, MDO4000B, MSO/DPO4000B and MSO/ DPO5000B Series oscilloscopes, these probes provide up to 1 GHz of analog bandwidth with less than 3.9 pF of capacitive loading. Key performance specs 1 GHz, 500 MHz and 250 MHz probe bandwidth models <4 pF input capacitance 10X and 2X attenuation factor 300 V CAT II input voltage Designed for use with the MDO3000, MDO4000B, MSO/DPO4000B and MSO/DPO5000B series oscilloscopes Key features Compact probe head for probing small-geometry circuit elements Small probe body for enhanced visibility to the device-under-test Rigid tip for secure device-under-test connectivity Replaceable probe tip cartridges Large accessory set for versatile connectivity Connectivity Integrated oscilloscope and probe measurement system provides intelligent communication that automatically scales and adjusts units on the oscilloscope display to match the probe attenuation Built-in AC compensation optimizes signal path across the entire frequency range Applications Low-power devices Service Manufacturing engineering test Research and development Accurate high-speed passive probing The extremely low capacitive loading limits adverse affects on your circuits and is more forgiving of longer ground leads. And with the probe's wide bandwidth, you can see the high-frequency components in your signal which is critical for high-speed applications. The TPP1000, TPP0500B and TPP0250 passive voltage probes offer all the benefits of general-purpose probes like high dynamic range, flexible connection options, and robust mechanical design, while providing the performance of active probes. Accurate low voltage The TPP0502 offers the industry's highest bandwidth (500 MHz) and lowest attenuation factor (2X) for making low-voltage measurements such as ripple, a common measurement on the output of power supplies. The low capacitive loading of the TPP0502 means long ground leads can also be used on this probe with minimal impact on measurement quality, providing today's engineer with the flexibility to move around their design without worrying about ground lead length. www.tektronix.com 1 Specifications All specifications apply to all models unless noted otherwise. Model overview TPP1000 TPP0500B TPP0502 TPP0250 Attenuation 10X 10X 2X 10X Dynamic range 300 V Cat II 300 V Cat II 300 V Cat II 300 V Cat II Bandwidth 1 GHz 500 MHz 500 MHz 250 MHz Input impedance at the probe tip 10 MΩ, <4 pF 10 MΩ, <4 pF 2 MΩ, 12.7 pF 10 MΩ, <4 pF Cable length 1.3 m 1.3 m 1.3 m 1.3 m Ordering information Models TPP1000 1 GHz, 10X attenuation passive probe with TekVPI™ interface. TPP0500B 500 MHz, 10X attenuation passive probe with TekVPI™ interface. TPP0502 500 MHz, 2X attenuation passive probe with TekVPI™ interface. TPP0250 250 MHz, 10X attenuation passive probe with TekVPI™ interface. Standard accessories Description Quantity included Reorder part number Rigid tip 3.8 mm 1 206-0610-00 Flex ground spring SHORT 3.8 mm 2 016-2034-00 Long ground spring 2 016-2028-00 Alligator ground (6 in.) 1 196-3521-00 Hook tip (regular) 1 013-0362-00 Hook tip (micro) 1 013-0363-00 IC cap (universal) 3.8 mm 1 013-0366-00 Datasheet 2 www.tektronix.com Recommended accessories Description Quantity included Reorder part number Alligator ground (12 in.) 1 196-3512-00 6 in. clip-on ground lead (with 0.025 in. pin receptacle) 1 196-3198-01 Microcircuit test tip 1 206-0569-00 Wire, 32 AWG (spool) 1 020-3045-00 BNC to probe tip adapter 1 013-0367-00 PCB to probe tip adapter, pack of 10 1 016-2016-00 Compact probe tip chassis mount test jack 1 131-4210-00 Color bands (set of 4 color-coded bands) 1 016-0633-00 Tweaker tool 1 003-1433-02 Options Service options Opt. SILV100 Standard warranty extended to 5 years Opt. SILV200 Standard warranty extended to 5 years Probes and accessories are not covered by the oscilloscope warranty and Service Offerings. Refer to the datasheet of each probe and accessory model for its unique warranty and calibration terms. Tektronix is registered to ISO 9001 and ISO 14001 by SRI Quality System Registrar. Product(s) complies with IEEE Standard 488.1-1987, RS-232-C, and with Tektronix Standard Codes and Formats. TPP1000, TPP0500B, TPP0502, TPP0250 Passive Voltage Probes www.tektronix.com 3 Datasheet ASEAN / Australasia (65) 6356 3900 Austria 00800 2255 4835* Balkans, Israel, South Africa and other ISE Countries +41 52 675 3777 Belgium 00800 2255 4835* Brazil +55 (11) 3759 7627 Canada 1 800 833 9200 Central East Europe and the Baltics +41 52 675 3777 Central Europe & Greece +41 52 675 3777 Denmark +45 80 88 1401 Finland +41 52 675 3777 France 00800 2255 4835* Germany 00800 2255 4835* Hong Kong 400 820 5835 India 000 800 650 1835 Italy 00800 2255 4835* Japan 81 (3) 6714 3010 Luxembourg +41 52 675 3777 Mexico, Central/South America & Caribbean 52 (55) 56 04 50 90 Middle East, Asia, and North Africa +41 52 675 3777 The Netherlands 00800 2255 4835* Norway 800 16098 People's Republic of China 400 820 5835 Poland +41 52 675 3777 Portugal 80 08 12370 Republic of Korea 001 800 8255 2835 Russia & CIS +7 (495) 6647564 South Africa +41 52 675 3777 Spain 00800 2255 4835* Sweden 00800 2255 4835* Switzerland 00800 2255 4835* Taiwan 886 (2) 2722 9622 United Kingdom & Ireland 00800 2255 4835* USA 1 800 833 9200 * European toll-free number. If not accessible, call: +41 52 675 3777 Updated 10 April 2013 For Further Information. Tektronix maintains a comprehensive, constantly expanding collection of application notes, technical briefs and other resources to help engineers working on the cutting edge of technology. Please visit www.tektronix.com. Copyright © Tektronix, Inc. All rights reserved. Tektronix products are covered by U.S. and foreign patents, issued and pending. Information in this publication supersedes that in all previously published material. Specification and price change privileges reserved. TEKTRONIX and TEK are registered trademarks of Tektronix, Inc. All other trade names referenced are the service marks, trademarks, or registered trademarks of their respective companies. 10 Feb 2014 51W-26151-5 www.tektronix.com http://www.farnell.com/datasheets/1807245.pdf AVR172: Sensorless Commutation of Brushless DC Motor (BLDC) using ATmega32M1 and ATAVRMC320 Features • Robust sensorless commutation control • Ramp-up sequence References [1] ATmega32M1 Data sheet [2] AVR194: Brushless DC Motor Control using ATmega32M1 [3] AVR430: MC300 Hardware User Guide [4] AVR470: MC310 User Guide [5] AVR471: MC320 Getting Started Guide [6] AVR928: Sensorless methods to drive BLDC motors 1 Introduction This application note describes how to implement a sensorless commutation of BLDC motors with the ATAVRMC320 development kit. The ATmega32M1 is equipped with integrated peripherals that reduce the number of external components required in a BLDC application. The ATmega32M1 is suitable for sensorless commutation and for commutation with Hall sensors as well, but this application note focuses on the sensorless commutation. The AVR928 Application Note describes the theory of the sensorless control method and must be carefully read first. 8-bit Microcontrollers Application Note Rev. 8306B-AVR-05/10 2 AVR172 8306B-AVR-05/10 2 Hardware The hardware includes the ATAVRMC310 and ATAVRMC300 boards which are the two parts of the ATAVRMC320 Starter kit. Please refer to the ATAVRMC300 and ATAVRMC310 user guides : - AVR430: MC300 Hardware User Guide - AVR470: MC310 Hardware User Guide 2.1 MC310 jumpers setting The AVR172 firmware has been developed with the following jumper settings: Table 2-1.ATAVRMC310 jumpers setting for sensorless control Designator Setting Function J5 Vm connect PB4 to Vm’ (motor voltage measurement if necessary) J6 PFC OC Connect to overcurrent signal J7 none used by CAN applications J8 ShCo connect PC5 to ShCo for current measurement J9 GNDm connect PC4 to GNDm for current measurement J12 TxD connect PD3 to the RS232 driver MOSI A Connect PD3 to ISP connector (for ISP use) RxDUSB Connect PD3 to RxD1 (for USB interface use) J13 RxD connect PD4 to the RS232 driver SCK Connect PD3 to ISP connector (for ISP use) TxDUSB Connect PD3 to RxD1 (for USB interface use) J15 none used by CAN application to add a termination resistor J21 Cmp- connect ACMP0- to V+W bemf conditioning J22 Cmp+ connect ACMP0+ to U bemf conditioning J23 Cmp- connect ACMP1- to U+W bemf conditioning J24 Cmp+ connect ACMP1+ to V bemf conditioning J25 Cmp- connect ACMP2- to U+V bemf conditioning J26 Cmp+ connect ACMP2+ to W bemf conditioning J28 VCC supply the on board USB dongle from the board power supply See also following picture of MC310 Jumpers configurations : AVR172 3 8306B-AVR-05/10 Figure 1. MC310 Jumpers configuration 2.2 MC300 jumper settings Table 2-1. ATAVRMC300 jumpers setting for sensorless control Designator Setting Function J2 none provide +5V to supply the ATAVRMC310 board On ATAVRMC300, Vm and Vin connectors can be supplied from the same +12V/7A power supply. Nevertheless a separate +12V/1A can also be used to supply the Vin (processor supply voltage). 2.3 Power-supply This firmware example has been configured according to a power-supply Vm=12V. This power-supply must be able to provide up to 4A output current. 2.4 Motor The BLDC motor provided inside MC320 and MC300 Motor Control Kit has the following characteristics: Manufacturer : TECMOTION Number of phases : 3 Number of poles : 8 (4 pairs) Rated voltage : 24V Rated speed : 4000 rpm Rated torque : 62.5 Nm Torque constant : 35 Nm/A = k_tau 4 AVR172 8306B-AVR-05/10 Line to Line Resistance : 1.8 ohm = R Back EMF : 3.66 V/Krpm = k_e Peak current : 5.4A As Vm=12V, the rated speed will be 2000 rpm. 2.5 ATmega32M1 Configuration ATmega32M1 must be programmed to run at 16MHz using PLL (set corresponding Fuse bits). The CKDIV8 fuse must be disabled. Extended/High/Low Fuses configurations are : FF/DF/F3 2.6 Technical Advices 2.6.1 Disconnecting the BLDC Motor The BLDC motor must not be disconnected while it is running or while its coils carry current. It is allowed to disconnect a BLDC motor if the PWM duty cycle is 0% and the rotor is at rest so that no current is driven through the coils. Be careful, when stopping the power supply or PWM, a BLDC motor with a high moment of inertia is able to run for a relatively long time. 2.6.2 Ground and Power Wirings One design its own board has to take care of the ground wiring and power wiring. The power supply of the processor and additional signal conditioning components (e.g. additional fast comparators, operational amplifiers, …) has to be decoupled from the motor power supply. The ground connection has to be of low resistance and low inductance to prevent against voltage drop and noise due to high currents. A ground plane within a multi layer PCB is recommended for proper operation. 3 Firmware The example firmware is based on the Sensorless method described in AVR928 Application Note. It is operating in sensorless mode using the ATmega32M1 internal comparators. Hall sensor wires of the BLDC motor of the kit can remain unconnected. The source file directory embeds an html documentation which can be opened through the readme.html file. The theory of the different tasks has been detailed in AVR928. The application to ATmega32M1 is detailed in following sections. 3.1 Main Flow chart The firmware main flowchart is described below : AVR172 5 8306B-AVR-05/10 Figure 2. Main flow chart The tasks are scheduled thanks to the g_tick produced each 1.024ms with Timer0. 6 AVR172 8306B-AVR-05/10 3.2 MS_ALIGN phase The ALIGN phase forces the motor at a specific position. The time of this phase is controlled with ALIGN_TIME constant which is the ru_period_counter initial value (200 for MC310 motor). 3.3 RAMP_UP phase The ramp-up charateristics (duty-cycles and times) are stored in two tables: • ramp_up_duty_table[] : which provides the duty_cycle of the step • ramp_up_time_table[] : which provides the length of the step (ru_step_length) These two tables are specific to the motor and the application. The scanning of the step sequences and the monitoring of the step length are achieved thanks to three independant counters : - ru_step_length_cntr : which counts the commutation time (up to ru_step_length variable) - ru_period_counter : which counts the step length (up to RAMP_UP_PERIOD constant) - ramp_up_index : which counts the step numbers (up to RAMP_UP_INDEX_MAX constant) The figure below provides a waveform of steps timing : Figure 3. Steps timing AVR172 7 8306B-AVR-05/10 3.3.1 Time of steps The step time is RAMP_UP_PERIOD = 50ms. 3.3.2 Number of steps The parameter : RAMP_UP_INDEX_MAX = 9, defines 10 steps ramp up. 3.3.3 Parameters tables In firmware example, the tables have been defined according to the characteristics of the motor provided in the kit (see parameters in 2.4 Motor section) : ramp_up_time_table[] = {26,23,20,17,14,11,8,5,3,2,2}; ramp_up_duty_table[] = {122,124,126,129,131,133,135,137,140,143,145}; 3.3.4 Sp1/pwm1 The usual parameters described in AVR928 Application Note are: • Pwm1 = 50% • Sp1 = Sp_max/60 The parameters defined with MC310 Tecmotion motor are: • Pwm1 = 48% (= 122/256) • Sp1 : Sp1 is defined thanks to the initialization value of ru_step_length : ru_step_length = RAMP_UP_STEP_MAX = 40 This variable determines one commutation each 40ms. So an electrical rotation time is 120ms. As the motor has 4 pairs of poles, the mechanical rotation time is 480ms. So the rotation speed is 60/0.48 = 125 rpm. So Sp1 = Sp_max/32. The second value of ru_step_length is 26 in the time table. It defines the following commutation time. 3.3.5 Sp2/pwm2 The theorical parameters described in AVR928 Application Note are: • Pwm2 = 60% • Sp2 = Sp_max/6 = Sp1 / 10 The parameters defined with Tecmotion motor are: • Pwm2 = 57% (= 145/256) • Sp2 : Sp2 is defined thanks to the last value of ru_step_length : 2 This variable determines one commutation each 4ms. So an electrical rotation time is 12ms. As the motor has 4 pairs of poles, the mechanical rotation time is 48ms. So the rotation speed is 60/0.048 = 1250 rpm. So Sp2 = Sp_max/3.2. 8 AVR172 8306B-AVR-05/10 This confirms also the usual ratio = 10 between Sp1 and Sp2 which is defined in AVR498 Application Note. 3.4 LAST_RAMP_UP phase To avoid a shorten last step, this phase monitors the last ramp-up step to guarantee it is ended properly before running in closed loop. 3.5 RUNNING Phase 3.5.1 Closed-loop block diagram The Running phase is a sensorless closed loop which block diagram is following : Figure 4. Closed-loop block diagram AVR172 9 8306B-AVR-05/10 3.5.2 Running flowchart The flowchart is following : Figure 5. Closed-loop flowchart • Motor_state is kept equal to MS_RUNNING mci_set_ref_speed() function updates the speed setpoint according to the potentiometer adjustment or the speed command received on serial transmission. In mc_regulation_loop() function, duty_cycle_reference is the duty_cycle variable which controls the PWM generator. This variable is the result of following functions : • In OPEN_LOOP: mci_set_ref_speed() function • In SPEED_LOOP: 10 AVR172 8306B-AVR-05/10 mc_control_speed(2*mci_get_ref_speed()) duty-cycle_reference is calculated from ref_speed and from monitored mci_get_measured_speed() measured_speed = (KSPEED * 4) / mci_measured_period with mci_measured_period calculated in the Interrupt vector of Analog Comparator 1. This interrupt uses Timer 0 to compute the period. • In CURRENT_LOOP : mc_control_current(mc_get_potentiometer_value() 3.5.3 Sensorless Detection and Commutation Management The analog comparators 0, 1 and 2 are used to detect the zero crossing of the U, V and W phases. The timer 1 is used to monitor the time between two consecutive zero crossings. This time corresponds to one sector of the electrical rotation of the motor. It equals 60° of the entire electrical period of the motor. When a zero crossing event occurs, the timer 1 value is stored. Then this value is divided by 2 (providing the 30° time) and loaded into the Compare A register of timer 1. Then this value is added to the half of itself to provide the 45° time and loaded into the Compare B register of timer 1. The timer 1 compare A event occurs 30° after the zero crossing. It activates the next commutation state and masks the zero crossing to avoid the discharge of the inductance (demagnetization) pulse generated at the end of a step when the active switches are released. Due to the inductance of the motor coils, a voltage equals to -Ldi/dt is generated, the demagnetization is done through the diodes of the power bridge. The timer 1 compare B event releases the zero crossing mask : enables the comparator n interrupt according to the motor_step variable. This Timer1 interrupt provides the demagnetization mask delay. AVR172 11 8306B-AVR-05/10 4 RS232 Communication with firmware 4.1 Connecting ATAVRMC310 to use the RS232 interface Connect PC com port to the ATAVRMC310 RS232 connector through a direct cable. The serial configuration is: • 38400 bauds, • 8 bit data bit, • 1 stop bit, • no handshake, 4.2 PC applications User can communicate with firmware through RS232 with usual PC serial communication applications (i.e. Hyperterminal) or the Atmel “Motor Control Center” application which can be downloaded from Atmel web at url : http://www.atmel.com 4.2.1 PC Terminal : RS232 Messages and Commands At power up the following welcome message is received on terminal : “ATMEL Motor Control Interface”. The following commands can be sent to the firmware: Table 2-1. List of commands Command Action ru Run motor st Stop Motor help Gives help fw Set direction to Forward bw Set direction to Backward ss Set Speed (followed with speed value) gi Get ID g0 Get Status 0 g1 Get Status 1 4.2.2 Motor Control Center The User Guide is available in Install directory at URL : C:\Program Files\Atmel\Motor Control Center\help\Overview.htm The AVR172 Target must be selected first to get the right configuration : To select a target, execute the File > Select Target command or click the button in the toolbar. The following dialog pops up: 12 AVR172 8306B-AVR-05/10 Figure 6. Motor Control Center Interface 5 USB communication Communication can be achieved from PC to USB connector of MC310 board. The AVR470, MC310 Hardware User Guide details the configuration to be achieved. Communication port becomes a Virtual Com port. Same tools as described in section 4 (RS232 Communication with firmware), can be used through this Virtual Com port. 8306B-AVR-05/10 Disclaimer Headquarters International Atmel Corporation 2325 Orchard Parkway San Jose, CA 95131 USA Tel: 1(408) 441-0311 Fax: 1(408) 487-2600 Atmel Asia Unit 1-5 & 16, 19/F BEA Tower, Millennium City 5 418 Kwun Tong Road Kwun Tong, Kowloon Hong Kong Tel: (852) 2245-6100 Fax: (852) 2722-1369 Product Contact Atmel Europe Le Krebs 8, Rue Jean-Pierre Timbaud BP 309 78054 Saint-Quentin-en- Yvelines Cedex France Tel: (33) 1-30-60-70-00 Fax: (33) 1-30-60-71-11 Atmel Japan 9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581 Web Site http://www.atmel.com/ Technical Support avr@atmel.com Sales Contact www.atmel.com/contacts Literature Request www.atmel.com/literature Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life. © 2010 Atmel Corporation. All rights reserved. Atmel®, Atmel logo and combinations thereof, AVR®, AVR® logo and others, are the registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others. http://www.farnell.com/datasheets/1734386.pdf 1. Product profile 1.1 General description NPN/NPN general-purpose transistor pair in a small SOT457 (SC-74) Surface-Mounted Device (SMD) plastic package. 1.2 Features ■ Low collector capacitance ■ Low collector-emitter saturation voltage ■ Closely matched current gain ■ Reduces number of components and board space ■ No mutual interference between the transistors ■ AEC-Q101 qualified 1.3 Applications ■ General-purpose switching and amplification 1.4 Quick reference data BC847DS 45 V, 100 mA NPN/NPN general-purpose transistor Rev. 01 — 25 August 2009 Product data sheet Table 1. Quick reference data Symbol Parameter Conditions Min Typ Max Unit Per transistor VCEO collector-emitter voltage open base - - 45 V IC collector current - - 100 mA hFE DC current gain VCE = 5 V; IC = 2 mA 200 300 450BC847DS_1 © NXP B.V. 2009. All rights reserved. Product data sheet Rev. 01 — 25 August 2009 2 of 12 NXP Semiconductors BC847DS 45 V, 100 mA NPN/NPN general-purpose transistor 2. Pinning information 3. Ordering information 4. Marking 5. Limiting values Table 2. Pinning Pin Description Simplified outline Graphic symbol 1 emitter TR1 2 base TR1 3 collector TR2 4 emitter TR2 5 base TR2 6 collector TR1 1 3 2 6 5 4 sym020 1 2 3 6 5 TR1 TR2 4 Table 3. Ordering information Type number Package Name Description Version BC847DS SC-74 plastic surface-mounted package (TSOP6); 6 leads SOT457 Table 4. Marking codes Type number Marking code BC847DS ZL Table 5. Limiting values In accordance with the Absolute Maximum Rating System (IEC 60134). Symbol Parameter Conditions Min Max Unit Per transistor VCBO collector-base voltage open emitter - 50 V VCEO collector-emitter voltage open base - 45 V VEBO emitter-base voltage open collector - 6 V IC collector current - 100 mA ICM peak collector current single pulse; tp ≤ 1 ms - 200 mA IBM peak base current single pulse; tp ≤ 1 ms - 200 mA Ptot total power dissipation Tamb ≤ 25 °C [1] - 250 mW Per device Ptot total power dissipation Tamb ≤ 25 °C [1] - 380 mWBC847DS_1 © NXP B.V. 2009. All rights reserved. Product data sheet Rev. 01 — 25 August 2009 3 of 12 NXP Semiconductors BC847DS 45 V, 100 mA NPN/NPN general-purpose transistor [1] Device mounted on an FR4 Printed-Circuit Board (PCB), single-sided copper, tin-plated and standard footprint. 6. Thermal characteristics [1] Device mounted on an FR4 PCB, single-sided copper, tin-plated and standard footprint. Tj junction temperature - 150 °C Tamb ambient temperature −55 +150 °C Tstg storage temperature −65 +150 °C FR4 PCB, standard footprint Fig 1. Per device: Power derating curve SOT457 (SC-74) Table 5. Limiting values …continued In accordance with the Absolute Maximum Rating System (IEC 60134). Symbol Parameter Conditions Min Max Unit Tamb (°C) −75 175 −25 25 75 125 006aab621 200 300 100 400 500 Ptot (mW) 0 Table 6. Thermal characteristics Symbol Parameter Conditions Min Typ Max Unit Per transistor Rth(j-a) thermal resistance from junction to ambient in free air [1] - - 500 K/W Rth(j-sp) thermal resistance from junction to solder point - - 250 K/W Per device Rth(j-a) thermal resistance from junction to ambient in free air [1] - - 328 K/WBC847DS_1 © NXP B.V. 2009. All rights reserved. Product data sheet Rev. 01 — 25 August 2009 4 of 12 NXP Semiconductors BC847DS 45 V, 100 mA NPN/NPN general-purpose transistor 7. Characteristics FR4 PCB, standard footprint Fig 2. Per transistor: Transient thermal impedance from junction to ambient as a function of pulse duration; typical values 006aab622 10−5 10 10 −2 10−4 102 10−1 tp (s) 10−3 103 1 102 10 103 Zth(j-a) (K/W) 1 δ = 1 0.75 0.50 0.33 0.10 0.05 0.02 0.01 0 0.20 Table 7. Characteristics Tamb = 25 °C unless otherwise specified. Symbol Parameter Conditions Min Typ Max Unit Per transistor ICBO collector-base cut-off current VCB = 30 V; IE = 0 A - - 15 nA VCB = 30 V; IE = 0 A; Tj = 150 °C --5 µA IEBO emitter-base cut-off current VEB = 6 V; IC = 0 A - - 100 nA hFE DC current gain VCE =5V IC = 10 µA - 280 - IC = 2 mA 200 300 450 VCEsat collector-emitter saturation voltage IC = 10 mA; IB = 0.5 mA - 55 100 mV IC = 100 mA; IB = 5 mA - 200 300 mV VBEsat base-emitter saturation voltage IC = 10 mA; IB = 0.5 mA - 755 850 mV IC = 100 mA; IB = 5 mA - 1000 - mV VBE base-emitter voltage VCE =5V IC = 2 mA 580 650 700 mV IC = 10 mA - - 770 mVBC847DS_1 © NXP B.V. 2009. All rights reserved. Product data sheet Rev. 01 — 25 August 2009 5 of 12 NXP Semiconductors BC847DS 45 V, 100 mA NPN/NPN general-purpose transistor Cc collector capacitance VCB = 10 V; IE = ie = 0 A; f = 1 MHz - 1.9 - pF Ce emitter capacitance VEB = 0.5 V; IC = ic = 0 A; f = 1 MHz - 11 - pF fT transition frequency VCE = 5 V; IC = 10 mA; f = 100 MHz 100 - - MHz NF noise figure VCE = 5 V; IC = 0.2 mA; RS =2kΩ; f = 10 Hz to 15.7 kHz - 1.9 - dB VCE = 5 V; IC = 0.2 mA; RS =2kΩ; f = 1 kHz; B = 200 Hz - 3.1 - dB Table 7. Characteristics …continued Tamb = 25 °C unless otherwise specified. Symbol Parameter Conditions Min Typ Max Unit VCE =5V (1) Tamb = 100 °C (2) Tamb = 25 °C (3) Tamb = −55 °C Tamb = 25 °C Fig 3. Per transistor: DC current gain as a function of collector current; typical values Fig 4. Per transistor: Collector current as a function of collector-emitter voltage; typical values 006aaa533 200 400 600 hFE 0 IC (mA) 10−2 103 102 10−1 1 10 (3) (1) (2) 006aaa532 VCE (V) 0 10 2 4 6 8 0.08 0.12 0.04 0.16 0.20 IC (A) 0 IB (mA) = 4.50 2.70 3.15 4.05 3.60 0.45 0.90 1.35 1.80 2.25BC847DS_1 © NXP B.V. 2009. All rights reserved. Product data sheet Rev. 01 — 25 August 2009 6 of 12 NXP Semiconductors BC847DS 45 V, 100 mA NPN/NPN general-purpose transistor VCE = 5 V; Tamb = 25 °C IC/IB = 20 (1) Tamb = −55 °C (2) Tamb = 25 °C (3) Tamb = 100 °C Fig 5. Per transistor: Base-emitter voltage as a function of collector current; typical values Fig 6. Per transistor: Base-emitter saturation voltage as a function of collector current; typical values IC/IB = 20 (1) Tamb = 100 °C (2) Tamb = 25 °C (3) Tamb = −55 °C VCE = 5 V; Tamb = 25 °C Fig 7. Per transistor: Collector-emitter saturation voltage as a function of collector current; typical values Fig 8. Per transistor: Transition frequency as a function of collector current; typical values 006aaa536 0.6 0.8 1 VBE (V) 0.4 IC (mA) 10−1 103 102 1 10 006aaa534 IC (mA) 10−1 103 102 1 10 0.5 0.9 1.3 0.3 0.7 1.1 VBEsat (V) 0.1 (1) (2) (3) 006aaa535 1 10−1 10 VCEsat (V) 10−2 IC (mA) 10−1 103 102 1 10 (1) (2) (3) 006aaa537 IC (mA) 1 102 10 102 103 fT (MHz) 10BC847DS_1 © NXP B.V. 2009. All rights reserved. Product data sheet Rev. 01 — 25 August 2009 7 of 12 NXP Semiconductors BC847DS 45 V, 100 mA NPN/NPN general-purpose transistor f = 1 MHz; Tamb = 25 °C f = 1 MHz; Tamb = 25 °C Fig 9. Per transistor: Collector capacitance as a function of collector-base voltage; typical values Fig 10. Per transistor: Emitter capacitance as a function of emitter-base voltage; typical values VCB (V) 0 10 2 4 6 8 006aab620 2 4 6 Cc (pF) 0 006aaa539 VEB (V) 0 6 2 4 9 11 7 13 15 Ce (pF) 5BC847DS_1 © NXP B.V. 2009. All rights reserved. Product data sheet Rev. 01 — 25 August 2009 8 of 12 NXP Semiconductors BC847DS 45 V, 100 mA NPN/NPN general-purpose transistor 8. Test information 8.1 Quality information This product has been qualified in accordance with the Automotive Electronics Council (AEC) standard Q101 - Stress test qualification for discrete semiconductors, and is suitable for use in automotive applications. 9. Package outline 10. Packing information [1] For further information and the availability of packing methods, see Section 14. [2] T1: normal taping [3] T2: reverse taping Fig 11. Package outline SOT457 (SC-74) Dimensions in mm 04-11-08 3.0 2.5 1.7 1.3 3.1 2.7 pin 1 index 1.9 0.26 0.10 0.40 0.25 0.95 1.1 0.9 0.6 0.2 1 3 2 6 5 4 Table 8. Packing methods The indicated -xxx are the last three digits of the 12NC ordering code.[1] Type number Package Description Packing quantity 3000 10000 BC847DS SOT457 4 mm pitch, 8 mm tape and reel; T1 [2] -115 -135 4 mm pitch, 8 mm tape and reel; T2 [3] -125 -165BC847DS_1 © NXP B.V. 2009. All rights reserved. Product data sheet Rev. 01 — 25 August 2009 9 of 12 NXP Semiconductors BC847DS 45 V, 100 mA NPN/NPN general-purpose transistor 11. Soldering Fig 12. Reflow soldering footprint SOT457 (SC-74) Fig 13. Wave soldering footprint SOT457 (SC-74) solder lands solder resist occupied area solder paste sot457_fr 3.45 1.95 3.3 2.825 0.45 (6×) 0.55 (6×) 0.7 (6×) 0.8 (6×) 2.4 0.95 0.95 Dimensions in mm sot457_fw 5.3 5.05 1.45 (6×) 0.45 (2×) 1.5 (4×) 2.85 1.475 1.475 solder lands solder resist occupied area preferred transport direction during soldering Dimensions in mmBC847DS_1 © NXP B.V. 2009. All rights reserved. Product data sheet Rev. 01 — 25 August 2009 10 of 12 NXP Semiconductors BC847DS 45 V, 100 mA NPN/NPN general-purpose transistor 12. Revision history Table 9. Revision history Document ID Release date Data sheet status Change notice Supersedes BC847DS_1 20090825 Product data sheet - -BC847DS_1 © NXP B.V. 2009. All rights reserved. Product data sheet Rev. 01 — 25 August 2009 11 of 12 NXP Semiconductors BC847DS 45 V, 100 mA NPN/NPN general-purpose transistor 13. Legal information 13.1 Data sheet status [1] Please consult the most recently issued document before initiating or completing a design. [2] The term ‘short data sheet’ is explained in section “Definitions”. [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com. 13.2 Definitions Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information. Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail. 13.3 Disclaimers General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer’s own risk. Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability. Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail. No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights. Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities. Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding. 13.4 Trademarks Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners. 14. Contact information For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com Document status[1][2] Product status[3] Definition Objective [short] data sheet Development This document contains data from the objective specification for product development. Preliminary [short] data sheet Qualification This document contains data from the preliminary specification. Product [short] data sheet Production This document contains the product specification.NXP Semiconductors BC847DS 45 V, 100 mA NPN/NPN general-purpose transistor © NXP B.V. 2009. All rights reserved. For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com Date of release: 25 August 2009 Document identifier: BC847DS_1 Please be aware that important notices concerning this document and the product(s) described herein, have been included in section ‘Legal information’. 15. Contents 1 Product profile . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 General description. . . . . . . . . . . . . . . . . . . . . . 1 1.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.4 Quick reference data. . . . . . . . . . . . . . . . . . . . . 1 2 Pinning information . . . . . . . . . . . . . . . . . . . . . . 2 3 Ordering information . . . . . . . . . . . . . . . . . . . . . 2 4 Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 5 Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . . 2 6 Thermal characteristics. . . . . . . . . . . . . . . . . . . 3 7 Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 4 8 Test information . . . . . . . . . . . . . . . . . . . . . . . . . 8 8.1 Quality information . . . . . . . . . . . . . . . . . . . . . . 8 9 Package outline . . . . . . . . . . . . . . . . . . . . . . . . . 8 10 Packing information. . . . . . . . . . . . . . . . . . . . . . 8 11 Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 12 Revision history. . . . . . . . . . . . . . . . . . . . . . . . 10 13 Legal information. . . . . . . . . . . . . . . . . . . . . . . 11 13.1 Data sheet status . . . . . . . . . . . . . . . . . . . . . . 11 13.2 Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 13.3 Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 13.4 Trademarks. . . . . . . . . . . . . . . . . . . . . . . . . . . 11 14 Contact information. . . . . . . . . . . . . . . . . . . . . 11 15 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 http://www.farnell.com/datasheets/480916.pdf Plug and Play Wireless CPU® Fastrack Supreme User Guide Revision: 003 Date: November http://www.farnell.com/datasheets/1793262.pdf