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 Improve programmability over current languages

 Writing parallel codes

 Reading, changing, porting, tuning, maintaining, ...

 Support performance at least as good as MPI

 Competitive with MPI on generic clusters

 Better than MPI on more capable architectures

 Improve portability over current languages

 As ubiquitous as MPI

 More portable than OpenMP, UPC, CAF, ...

 Improve robustness via improved semantics

 Eliminate common error cases

 Provide better abstractions to help avoid other errors
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 What is Chapel

 The Five Idioms

 Data distributions

 Data-parallel loops

 [Asynchronous] [remote] tasks

 Nested parallelism

 [Remote] transactions

 Performance Study
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 Syntax

domain-expr dmapped distribution-expr

 Semantics
 Index set of domain-expr is partitioned via distribution-expr

 Partitioned across ‘locales’ of a system

 Locale – abstraction of memory and processing capability
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const D = [1..n, 1..n];      // domain – index set

var A: [D] real;             // array – data values

const DD = D dmapped X(...); // distributed domain

var DA: [DD] real;           // distributed array



 Standard Block distribution
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const D = [1..n, 1..m];

var A: [D] real;

const DD = D dmapped Block(boundingBox=D);

var DA: [DD] real;

D A

Locales

0 1

2 3

DD DA



 Standard Cyclic distribution
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const D = [1..n, 1..m];

var A: [D] real;

const DD = D dmapped Cyclic(startIdx=D.low);

var DA: [DD] real;

D A

Locales

0 1

2 3

DD DA



 User-defined MyBanded distribution
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const D = [1..n, 1..m];

var A: [D] real;

const DD = D dmapped MyBanded(startIdx=D.low);

var DA: [DD] real;

D A

Locales

0 1 2 3

DD DA



 Syntax

forall ( index-exprs ) in ( iterable-exprs ) do

loop-body-stmts

 Semantics

 Zipped (element-wise) iteration

 Shapes of iterable expressions must match
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forall (a, b, c) in (A, B, C) do

a = b + alpha * c;



 Example 1:  Non-distributed arrays
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forall (a, b, c) in (A, B, C) do

a = b + alpha * c;

=

+

α •

A

B

C



 Example 2:  Block-distributed arrays
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forall (a, b, c) in (A, B, C) do

a = b + alpha * c;

=

+

α •

A

B

C

Locales 0 1 2 3



 Example 3:  Unaligned block-distributed arrays
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forall (a, b, c) in (A, B, C) do

a = b + alpha * c;

=

+

α •

A

B

C

0 1 2 3Locales



 Example 4:  2D Block-distributed arrays
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forall (a, b, c) in (A, B, C) do

a = b + alpha * c;

= + α •

A B C

0 1

2 3

Locales



 Other possibilities

 Associative, sparse, and unstructured arrays

 Domains and iterators with no associated data

 A distributed tree or graph that supports iteration

 Preferred way of writing simple computations:

A = B + alpha * C;
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forall (a, b, c) in (A, B, C) do

a = b + alpha * c;



Initial Code:

A = B + alpha * C;

1. Promotion of scalar multiplication:

A = B + [c in C] alpha*c;

2. Promotion of scalar addition:

A = [(b,f) in (B,[c in C] alpha*c)] b+f;

3. Collapse of foralls:

A = [(b,c) in (B,C)] b+alpha*c;

4. Expansion of assignment:

forall (a,f) in (A,[(b,c) in (B,C)] b+alpha*c) do

a=f;

5. Collapse of foralls:

forall (a,b,c) in (A,B,C) do

a = b + alpha * c;
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 Syntax

on expr do stmt

begin stmt

 Semantics
 On-statement evaluates locale of expr

Then executes stmt on that locale

 Begin-statement creates a new task to execute stmt

Original task continues with the next statement
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on loc do begin f();



 Picture
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on loc do begin f();

0 1



 Locales
 Abstraction of memory and processing capability

 Architecture-dependent definition optimizes local accesses

 Tasks
 Abstraction of computation or thread

 Execution is on a locale

 Programming model support
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Chapel OpenMP MPI UPC CAF Titanium

Locales Processes Threads Images Demesnes

Tasks Threads



 Task parallelism of data parallelism

 Data parallelism of task parallelism
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begin

forall (a, b, c) in (A, B, C) do

a = b + alpha * c;

forall (d, e, f) in (D, E, F) do

d = e + beta * f;

forall i in D do

if i >= 0 then

A(i) = f(i);

else

on A(i) do begin A(i) = g(i);



 Syntax

atomic stmt

 Semantics

 Executes stmt with transaction semantics so that

stmt appears to take effect atomically

Note: atomic statements are not implemented
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on A(i) do atomic A(i) = A(i) ^ i;



 What is Chapel

 The Five Idioms

 Performance Study

 HPCC Global Stream

 HPCC EP Stream
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const BlockDist = new dmap(new Block([1..m]));

const ProblemSpace: 

domain(1,int(64)) dmapped BlockDist = [1..m];

var A, B, C: [ProblemSpace] real;

forall (a,b,c) in (A,B,C) do

a = b + alpha * c;
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coforall loc in Locales do on loc {

local {

var A, B, C: [1..m] real;

forall (a,b,c) in (A,B,C) do

a = b + alpha * c;

}

}
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Machine Characteristics

Model Cray XT4

Location ORNL

Nodes 7832

Processor 2.1 GHz Quadcore AMD Opteron

Memory 8 GB per node
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Benchmark Parameters

STREAM Triad Memory Least value greater than 25% of memory

Random Access Memory Least power of two greater than 25% of memory

Random Access Updates 2n-10 for memory equal to 2n
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Chapel URL:  http://chapel.cray.com/

Chapel Source:  http://sourceforge.net/projects/chapel

Contact:  chapel_info@cray.com
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