
Steve Deitz, Brad Chamberlain, Sung-Eun Choi,
David Iten, Lee Prokowich

Cray Inc.

 A new parallel programming language
 Under development at Cray Inc.

 Supported through the DARPA HPCS program

 Availability
 Version 1.1 release April 15, 2010

 Open source via BSD license

http://chapel.cray.com/

http://sourceforge.net/projects/chapel/

2CUG '10: Five Powerful Chapel Idioms

http://chapel.cray.com/
http://sourceforge.net/projects/chapel/

 Improve programmability over current languages

 Writing parallel codes

 Reading, changing, porting, tuning, maintaining, ...

 Support performance at least as good as MPI

 Competitive with MPI on generic clusters

 Better than MPI on more capable architectures

 Improve portability over current languages

 As ubiquitous as MPI

 More portable than OpenMP, UPC, CAF, ...

 Improve robustness via improved semantics

 Eliminate common error cases

 Provide better abstractions to help avoid other errors

CUG '10: Five Powerful Chapel Idioms 3

 What is Chapel

 The Five Idioms

 Data distributions

 Data-parallel loops

 [Asynchronous] [remote] tasks

 Nested parallelism

 [Remote] transactions

 Performance Study

4CUG '10: Five Powerful Chapel Idioms

 Syntax

domain-expr dmapped distribution-expr

 Semantics
 Index set of domain-expr is partitioned via distribution-expr

 Partitioned across ‘locales’ of a system

 Locale – abstraction of memory and processing capability

CUG '10: Five Powerful Chapel Idioms 5

const D = [1..n, 1..n]; // domain – index set

var A: [D] real; // array – data values

const DD = D dmapped X(...); // distributed domain

var DA: [DD] real; // distributed array

 Standard Block distribution

CUG '10: Five Powerful Chapel Idioms 6

const D = [1..n, 1..m];

var A: [D] real;

const DD = D dmapped Block(boundingBox=D);

var DA: [DD] real;

D A

Locales

0 1

2 3

DD DA

 Standard Cyclic distribution

CUG '10: Five Powerful Chapel Idioms 7

const D = [1..n, 1..m];

var A: [D] real;

const DD = D dmapped Cyclic(startIdx=D.low);

var DA: [DD] real;

D A

Locales

0 1

2 3

DD DA

 User-defined MyBanded distribution

CUG '10: Five Powerful Chapel Idioms 8

const D = [1..n, 1..m];

var A: [D] real;

const DD = D dmapped MyBanded(startIdx=D.low);

var DA: [DD] real;

D A

Locales

0 1 2 3

DD DA

 Syntax

forall (index-exprs) in (iterable-exprs) do

loop-body-stmts

 Semantics

 Zipped (element-wise) iteration

 Shapes of iterable expressions must match

CUG '10: Five Powerful Chapel Idioms 9

forall (a, b, c) in (A, B, C) do

a = b + alpha * c;

 Example 1: Non-distributed arrays

CUG '10: Five Powerful Chapel Idioms 10

forall (a, b, c) in (A, B, C) do

a = b + alpha * c;

=

+

α •

A

B

C

 Example 2: Block-distributed arrays

CUG '10: Five Powerful Chapel Idioms 11

forall (a, b, c) in (A, B, C) do

a = b + alpha * c;

=

+

α •

A

B

C

Locales 0 1 2 3

 Example 3: Unaligned block-distributed arrays

CUG '10: Five Powerful Chapel Idioms 12

forall (a, b, c) in (A, B, C) do

a = b + alpha * c;

=

+

α •

A

B

C

0 1 2 3Locales

 Example 4: 2D Block-distributed arrays

CUG '10: Five Powerful Chapel Idioms 13

forall (a, b, c) in (A, B, C) do

a = b + alpha * c;

= + α •

A B C

0 1

2 3

Locales

 Other possibilities

 Associative, sparse, and unstructured arrays

 Domains and iterators with no associated data

 A distributed tree or graph that supports iteration

 Preferred way of writing simple computations:

A = B + alpha * C;

CUG '10: Five Powerful Chapel Idioms 14

forall (a, b, c) in (A, B, C) do

a = b + alpha * c;

Initial Code:

A = B + alpha * C;

1. Promotion of scalar multiplication:

A = B + [c in C] alpha*c;

2. Promotion of scalar addition:

A = [(b,f) in (B,[c in C] alpha*c)] b+f;

3. Collapse of foralls:

A = [(b,c) in (B,C)] b+alpha*c;

4. Expansion of assignment:

forall (a,f) in (A,[(b,c) in (B,C)] b+alpha*c) do

a=f;

5. Collapse of foralls:

forall (a,b,c) in (A,B,C) do

a = b + alpha * c;

CUG '10: Five Powerful Chapel Idioms 15

 Syntax

on expr do stmt

begin stmt

 Semantics
 On-statement evaluates locale of expr

Then executes stmt on that locale

 Begin-statement creates a new task to execute stmt

Original task continues with the next statement

CUG '10: Five Powerful Chapel Idioms 16

on loc do begin f();

 Picture

CUG '10: Five Powerful Chapel Idioms 17

on loc do begin f();

0 1

 Locales
 Abstraction of memory and processing capability

 Architecture-dependent definition optimizes local accesses

 Tasks
 Abstraction of computation or thread

 Execution is on a locale

 Programming model support

CUG '10: Five Powerful Chapel Idioms 18

Chapel OpenMP MPI UPC CAF Titanium

Locales Processes Threads Images Demesnes

Tasks Threads

 Task parallelism of data parallelism

 Data parallelism of task parallelism

CUG '10: Five Powerful Chapel Idioms 19

begin

forall (a, b, c) in (A, B, C) do

a = b + alpha * c;

forall (d, e, f) in (D, E, F) do

d = e + beta * f;

forall i in D do

if i >= 0 then

A(i) = f(i);

else

on A(i) do begin A(i) = g(i);

 Syntax

atomic stmt

 Semantics

 Executes stmt with transaction semantics so that

stmt appears to take effect atomically

Note: atomic statements are not implemented

CUG '10: Five Powerful Chapel Idioms 20

on A(i) do atomic A(i) = A(i) ^ i;

 What is Chapel

 The Five Idioms

 Performance Study

 HPCC Global Stream

 HPCC EP Stream

21CUG '10: Five Powerful Chapel Idioms

const BlockDist = new dmap(new Block([1..m]));

const ProblemSpace:

domain(1,int(64)) dmapped BlockDist = [1..m];

var A, B, C: [ProblemSpace] real;

forall (a,b,c) in (A,B,C) do

a = b + alpha * c;

CUG '10: Five Powerful Chapel Idioms 22

coforall loc in Locales do on loc {

local {

var A, B, C: [1..m] real;

forall (a,b,c) in (A,B,C) do

a = b + alpha * c;

}

}

CUG '10: Five Powerful Chapel Idioms 23

Machine Characteristics

Model Cray XT4

Location ORNL

Nodes 7832

Processor 2.1 GHz Quadcore AMD Opteron

Memory 8 GB per node

CUG '10: Five Powerful Chapel Idioms 24

Benchmark Parameters

STREAM Triad Memory Least value greater than 25% of memory

Random Access Memory Least power of two greater than 25% of memory

Random Access Updates 2n-10 for memory equal to 2n

CUG '10: Five Powerful Chapel Idioms 25

0

2000

4000

6000

8000

10000

12000

14000

1 2048

G
B

/s

Number of Locales

Performance of HPCC STREAM Triad (Cray XT4)

MPI EP PPN=1

MPI EP PPN=2

MPI EP PPN=3

MPI EP PPN=4

Chapel Global TPL=1

Chapel Global TPL=2

Chapel Global TPL=3

Chapel Global TPL=4

Chapel EP TPL=4

Chapel URL: http://chapel.cray.com/

Chapel Source: http://sourceforge.net/projects/chapel

Contact: chapel_info@cray.com

CUG '10: Five Powerful Chapel Idioms 26

http://chapel.cray.com/
http://sourceforge.net/projects/chapel
mailto:chapel_info@cray.com

