
28

LAPPS: Locality-Aware Productive Prefetching Support

for PGAS

ENGIN KAYRAKLIOGLU, The George Washington University, USA

MICHAEL P. FERGUSON, Cray Inc., USA

TAREK EL-GHAZAWI, The George Washington University, USA

Prefetching is a well-known technique to mitigate scalability challenges in the Partitioned Global Address

Space (PGAS) model. It has been studied as either an automated compiler optimization or a manual program-

mer optimization. Using the PGAS locality awareness, we define a hybrid tradeoff. Specifically, we introduce

locality-aware productive prefetching support for PGAS. Our novel, user-driven approach strikes a balance

between the ease-of-use of compiler-based automated prefetching and the high performance of the laborious

manual prefetching. Our prototype implementation in Chapel shows that significant scalability and perfor-

mance improvements can be achieved with minimal effort in common applications.

CCS Concepts: • Computing methodologies → Parallel programming languages; Distributed pro-

gramming languages;

Additional Key Words and Phrases: PGAS, Chapel, prefetching, runtime system

ACM Reference format:

Engin Kayraklioglu, Michael P. Ferguson, and Tarek El-Ghazawi. 2018. LAPPS: Locality-Aware Productive

Prefetching Support for PGAS. ACM Trans. Archit. Code Optim. 15, 3, Article 28 (August 2018), 26 pages.

https://doi.org/10.1145/3233299

1 INTRODUCTION

The Partitioned Global Address Space (PGAS) model aims to reduce programming complexity in
distributed memory architectures by providing a global view of the memory system. Unlike the
shared memory and message passing models, the PGAS model carries locality awareness to the
language system, where optimizations can be made without requiring significant programmer
effort. Some examples of programming languages and libraries with a PGAS memory model are
Chapel [12], UPC [20], UPC++ [43], Fortran 2008 [36], and OpenSHMEM [15].

PGAS languages can have performance overheads due to fine-grained communication. For re-
mote accesses, PGAS languages rely on one-sided communication calls (i.e., GET and PUT), which
result in many small messages on the interconnection network, causing significant overhead.
Hence, it can be challenging to achieve scalability without programmer optimizations.

This is a new paper, not an extension of a conference paper.

Authors’ addresses: E. Kayraklioglu, The George Washington University, 800 22nd Street NW, Washington, D.C. 20052;

email: engin@gwu.edu; M. P. Ferguson, Cray Inc., 901 5th Avenue, Seattle, WA 98164; email: mferguson@cray.com; T.

El-Ghazawi, The George Washington University, 800 22nd Street NW, Washington, D.C. 20052; email: tarek@gwu.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 Association for Computing Machinery.

1544-3566/2018/08-ART28 $15.00

https://doi.org/10.1145/3233299

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 3, Article 28. Publication date: August 2018.

https://doi.org/10.1145/3233299
mailto:permissions@acm.org
https://doi.org/10.1145/3233299

28:2 E. Kayraklioglu et al.

Table 1. User Effort in Prefetching Tasks Using Alternative Approaches

Task Manual Automatic LAPPS Task Description

Decide Yes No Yes Determine what to prefetch
Initialize Yes No No Create local arrays; copy remote data
Access Yes No No Access local arrays as appropriate
Maintain Yes No No Propagate updates; reclaim memory

Typically, prefetching is used to reduce overheads associated with fine-grained access to high-
latency memory. For example, some architectures support instructions that prefetch data in main
memory to low-latency hardware caches. Such instructions generally can be exploited by com-
piler pragmas [2] or built-in compiler functions [3]. These constructs hint the compiler to issue
prefetch instructions several iterations ahead, to ensure that data is in the hardware cache before
it is needed. Prefetching is also used for remote databases and web services [35].

In HPC-oriented distributed memory architectures, however, data aggregation plays an impor-
tant role while moving remote data closer to processing elements due to the significantly higher
latency difference between local and remote memory. In PGAS context, for example, applications
are generally optimized to prefetch the remote data in bulk before entering computationally in-
tensive loops. Practically, this entails implementing data movements similar to message passing
applications.

There are four major tasks that require effort while prefetching remote data: Decide: Determine
whether data need to be prefetched depending on the expected/measured performance character-
istic of the application implementation. Initialize: Compute the needed remote indices depending
on factors such as access pattern, data size, data distribution, and number of processing elements
and issuing appropriate communication. Access: Access the prefetched data, likely through tem-
porary local arrays. Maintain: Propagate updates as necessary and/or reclaim the allocated mem-
ory. Although programmer knowledge pertinent to these tasks can make manual prefetching very
effective in terms of performance and scalability, it can get tedious and increase the “time to solu-
tion” significantly, which PGAS promises to decrease. On the other end of the spectrum, automatic
prefetching by static/dynamic analysis relieves programmers of the burden of prefetching. How-
ever, it can be very difficult to devise an analysis that does not incur runtime overheads, which
is able to handle all the tasks of prefetching to achieve performance improvements in wide range
of use cases. In practice, due to limited capabilities of automated approaches, programmers in-
escapably implement prefetching with data aggregation, which makes PGAS programming similar
to message passing. As effective as this approach is, it reduces programmer productivity.

We present locality-aware productive prefetching support (LAPPS) for the PGAS model. LAPPS
is a novel feature for PGAS languages that is a tradeoff between two approaches for remote data
prefetching. With LAPPS, the programmer decides whether prefetch is necessary and uses ap-
propriate functions to inform the language system. Details are handled by various layers of the
locality-aware software stack afforded by the PGAS model. The runtime system manages the mem-
ory allocated for prefetched data and carries the burden of maintaining consistency. Internal lan-
guage libraries handle accessing the prefetched data transparently. This way the programmer still
decides what/when to prefetch, yet data movement, access and maintenance is handled by the
PGAS software stack. We believe that this prefetching approach can fully exploit locality aware-
ness in the language system without significant programmer effort. A summary of the program-
mer’s involvement in different prefetch approaches is given in Table 1.

Listings 1–3 demonstrate the effort of using LAPPS and manual prefetching in matrix transpose.
Listing 1 shows the base implementation inspired by Transpose kernel in the Parallel Research

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 3, Article 28. Publication date: August 2018.

LAPPS: Locality-Aware Productive Prefetching Support for PGAS 28:3

Listing 1. Matrix Transpose Example. Listing 2. Matrix Transpose Example

with LAPPS.

Listing 3. Matrix Tranpose with Manual Optimization. Fig. 1. Speedup with 32 nodes

on infiniband.

Kernels (PRK) [41]. The kernel is run multiple times, and the input is updated between iterations.
With LAPPS (Listing 2), the programmer decides to prefetch data and calls an appropriate method,
which can be thought of as a high-level, blocking communication call that is handled internally
by the software stack. In contrast, Listing 3 shows that the programmer needs to use more effort
to implement a similar optimization. Specifically, lines 2–4 correspond to Initialize, line 6 corre-
sponds to Maintain, and the modification in line 8 corresponds to Access tasks. In addition, this
optimization uses a wider variety of language features, which requires more expertise. Figure 1
shows that in this example, LAPPS outperforms manual optimization and achieves 48× speedup
over the base implementation.

We provide a prototype implementation of LAPPS in the Chapel software stack and analyze its
performance. In more detail, this article contributes the following:

—A design of standard library and runtime system coordination for remote data prefetching
that leverages locality- awareness within the programming paradigm to move data effi-
ciently.

—A prototype implementation built on top of the Chapel runtime system and standard li-
braries.

—A detailed performance and memory footprint analysis using two different interconnection
networks and communication middleware with synthetic benchmarks and well-known ap-
plication benchmarks including the PRK.

—An analysis of the impact of our design on programmer productivity.

This article is organized as follows: Section 2 summarizes some of the related studies in liter-
ature in contrast to our work. Section 3 gives background information on Chapel with emphasis
on relevant features. Section 4 provides an overview of our design. Section 5 describes how our
design fits into the Chapel software stack and discusses a use case of our implementation using
an example. Section 6 presents benchmark results, along with memory footprints and a discussion
on programmer productivity. Section 7 concludes the article.

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 3, Article 28. Publication date: August 2018.

28:4 E. Kayraklioglu et al.

Table 2. Summary of the Most Related Works

Study
Optimization
Techniques

Software
Layer(s)

Usability
Overhead

Performance
Overhead

Application
Specific

Alvanos [4] Agg C, R None Analysis No

Barik [9] StR C None None No

Chandra [14] Loc C Trivial None No

Chen [16] Agg, Ovl, StR C None None No

Choi [17] Agg, Ovl, StR C None None No

El-Ghazawi [19] Agg, Loc, Rep A Full None Yes

Haque [23] Loc, Rep A Full None Yes

Hayashi [24] Agg, Loc C None None No

Iancu [25] Agg, Loc, Ovl C, R None Analysis No

Kayraklioglu [27] Agg, Loc, Rep A Full None Yes

Müller [33] Agg, Ovl C None None No

This study Agg, Loc, Rep R, L, C Trivial None No

Abbreviations used for optimization techniques: Agg: aggregation; Loc: localization; Ovl: overlap; Rep: replication; StR:

strength reduction. Abbreviations used for software layers: C: compiler; R: runtime; L: library; A: application.

2 RELATED WORK

With the PGAS model, it is challenging to achieve scalability without significant optimizations.
Table 2 summarizes some of the most relevant studies in the literature proposing different tech-
niques to improve the PGAS performance and scalability.

Static compiler optimizations have been studied widely as a way to mitigate scalability limita-
tions. The most important benefit of relying on the compiler is to optimize performance with no
overhead or programmer intervention. Barik et al. [9] studied array-of-structs to struct-of-arrays
transformations and scalar replacement techniques in the X10 compiler. These techniques allowed
the authors to reduce the message size entering asynchronous blocks. Chandra et al. [14] added
local types to the X10 type system to allow declaring some variables as local. This approach is
similar to our design as it relies on the programmer’s a priori knowledge about the locality. Chen
et al. [16] studied several compiler optimizations in UPC, including aggregation, overlapping and
eliminating redundant communication through AST (abstract syntax tree) analysis. Hayashi et al.
[24] used LLVM [29] to aggregate messages lexically close in the LLVM-IR. Although these papers
report speedups without any user intervention, they do not leverage the locality awareness in the
language system. In all of them, techniques are based on the analysis of individual GET and PUT
calls. In contrast, our technique is based on the access pattern to individual distributed arrays.

KarHPFn, an HPF [28] compiler was used to implement a prefetching strategy using hardware
capabilities [32, 33]. Authors implemented a compilation technique where parallel loops are trans-
formed into a mix of prefetcher and accessor loops. This approach effectively hides access latency
by overlapping communication and computation. They also demonstrate a vectorization technique
that aggregates communication. First, however, their work is implemented for and tested only on
Cray T3E, yet optimal prefetch distance is a function of architecture. Thus, how performance porta-
bility can be achieved with more modern architectures is unclear. Second, the approach is focused
on the parallel forall construct in HPF, a rather synchronous language, where static analysis
is arguably easier than those with asynchronous tasks (such as Chapel). Such highly automated
techniques have not been adopted in mature PGAS languages conceivably due to these practi-
cal difficulties. In contrast, LAPPS purposefully leaves the decision-making to the programmer to

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 3, Article 28. Publication date: August 2018.

LAPPS: Locality-Aware Productive Prefetching Support for PGAS 28:5

circumvent these difficulties, while handling the onerous tasks associated with data movement in
an architecture-oblivious manner.

ZPL [11] has been used to demonstrate several compiler techniques where the language seman-
tics can hint the compiler in terms of figuring out optimal data movements statically. The ZPL
grammar and compiler was designed specifically for global array operations. Choi showed that
techniques such as aggregation and overlapping can be implemented based on the high-level ar-
ray operations specified by the programmer [17]. There are similar ideas to LAPPS as they show
that if there are language constructs that allow more descriptive operations on arrays, communi-
cation optimizations can be handled by the language software stack to achieve scalability.

There are other studies where the compiler injects calls that helps the runtime system opti-
mize [5, 25] the communication. Similarly, these studies do not leverage the access pattern and
locality awareness. Furthermore, there is identifiable cost of on-the-fly analysis.

Similar techniques can also be applied as hand optimizations by the end programmer [19, 21, 27].
Coarfa et al. propose several optimizations for Co-array Fortran (CAF) [34] and UPC [18]. They
show that both models can be very competitive with bulk communication optimization. However,
for both languages it needed to be implemented by the programmer. The authors observe that
this becomes tedious especially with strided access. In another example, Haque et al. show that
manually creating local copies of the remote data can deliver orders of magnitude performance
improvement in the Chapel implementation of CoMD [23]. Hand optimizations can deliver signif-
icant performance improvements as they rely on the programmers’ awareness of data distribution
and access patterns. However, they decrease the programmer productivity greatly. LAPPS is also
based on programmer awareness; but aims to achieve similar or better performance with much
less effort.

Improving locality by mapping tasks that communicate closer [7, 8], and caching remote data
for potential reuse [22] are other directions which were studied for improving the performance of
the PGAS memory model.

3 CHAPEL BACKGROUND

Chapel [12] is a parallel programming language built to support the PGAS memory model. In this
section, we discuss locality management and distributed arrays in Chapel, which are some of the
language features that are relevant to our work.

3.1 Distributed Arrays

Chapel supports distributed arrays through domain maps. Domain maps are library-level objects
written in Chapel that describe the distribution of an array and provide the means to access and
manipulate it [13]. Domain map classes must implement the Domain Map Standard Interface (DSI).
Methods and fields required by the DSI are used by the compiler and the runtime system to im-
plement Chapel’s distributed array functions (e.g., access, slice, copy). A domain map consists of
global and local descriptor objects. Distribution descriptors define how the unbounded index space
is distributed across locales. Domain descriptors define which section of the index space belongs
to which locale. Array descriptors define the actual data on the domain. Each global descriptor has
an array of local descriptors allocated on distinct locales.

3.2 Locality Management

In Chapel, the processing unit that establishes data locality is called locale. For the context of
this article, a locale is identical to a compute node. Chapel implements its PGAS memory view
through wide references. A wide reference bundles locale ID with memory address. In contrast, a
narrow reference is simply a memory address. The Chapel compiler generates wide references in

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 3, Article 28. Publication date: August 2018.

28:6 E. Kayraklioglu et al.

Table 3. Software Layers in Chapel and Their Roles Relevant to LAPPS

Layer Role

Application Application logic
Distribution libraries (domain maps) Mapping distributed arrays to locales

Internal libraries Base functionality, calls to runtime
Compiler Creating wide references and communication calls

Runtime system Tasking, communication, synchronization

cases where it cannot statically determine whether a variable is stored locally. Accesses to wide
references are handled via runtime procedures, which access the data locally or remotely. The
programmer can use the local statement to prevent the compiler from creating wide references
conservatively. Another locality management concept is the on statement. This statement can be
used to move the execution of a task from one locale to another. Chapel programmers can use on
statements to bring tasks closer to the data they use.

3.3 Memory Consistency Model and Remote Data Cache

Chapel’s memory consistency model is described in the language specifications [1]. Here, we sum-
marize the guarantees the language system gives in terms of memory ordering and how the soft-
ware cache [22] supports them. The specifications define unordered memory operations, an abstract
relaxation that allows access reordering and data caching. Although these memory operations do
not follow the program order strictly, reordering is limited by memory fences.

Ferguson and Buettner [22] design and implement a software cache in the Chapel runtime.
When the cache is enabled, all memory operations are unordered. To establish correctness with
the discussed memory consistency model, the authors rely on acquire and release fences, which can
be considered as sequentially consistent atomic operations in the memory space as a whole. These
fences have the following semantics. An acquire fence implies that any reads issued after the fence
cannot be started before the fence. A release fence implies that any writes issued before the fence
cannot be finished after the fence. Note that, by definition, these rules apply to unordered mem-
ory operations, as well. To enforce the memory consistency, the Chapel compiler injects acquire
and release fences appropriately at the beginning and the end of parallel tasks. This guarantees
adherence to the memory consistency model even with the software cache.

4 LAPPS: CONCEPTUAL OVERVIEW

To support productive and efficient user-driven prefetching, we design a per-node, write-through,
dynamic prefetch buffer. We follow Chapel’s multi-layer design (Table 3) for extensibility, and
object orientation for usability. This section gives an overview of the important concepts in LAPPS.

System Architecture: LAPPS has multiple layers (Figure 2). The topmost layer extends the dis-
tributed array implementations. The most important entities in this layer are the prefetch patterns,
which represent distinct access patterns and are used by the programmer to request prefetch. Also,
at this layer, array accessors are modified to interact with the prefetch subsystem. As existing array
accessors are modified to interact with the prefetch subsystem, the Access task is not the respon-
sibility of the programmer. This allows efficient utilization of the global memory view. Finally,
this layer also implements utility functions which are used by the lower levels of the prefetch
subsystem to interact with the distributed array objects during prefetch initialization and update.

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 3, Article 28. Publication date: August 2018.

LAPPS: Locality-Aware Productive Prefetching Support for PGAS 28:7

Fig. 2. System overview.

Listing 4. Simple heat diffusion implementation along with different uses of LAPPS.

At the lower layer, internal language libraries implement prefetch hooks. Array objects creates
one hook per locale which is used for interaction between the object and the runtime system
components.

Finally, the runtime system is extended to support prefetch operations and manage the
prefetched data. At this level, data is stored in a per-locale linked list of prefetch entries. An entry
is added for every chunk of data brought in as a result of prefetch pattern executions. Therefore,
every entry represents data coming from a single locale. Also note, this data structure is per-locale
and not per-array, thus, it may store different arrays’ prefetch data. Prefetch entries store book-
keeping information such as owner locale ID, consistency information, and locks that pertain to
managing the data associated with it. Entries also store addresses of the local hook object that
initiated the prefetch and vice versa. These links are used for interaction between the distributed
array objects and the runtime system while updating the prefetch data.

Programming Interfaces: There are two programming interfaces: (1) a high-level interface im-
plemented by the domain maps to be used at the application level; and (2) a low-level interface
provided by the runtime system and the standard libraries that is intended to be used by the do-
main maps.

Important parts of the high-level interface are shown in Listing 4. It works between domain
maps and the user application providing ways to request remote data prefetching (lines 1 and
2), as well as to update (line 5) and evict (lines 9 and 10) existing prefetch entries. The low-level

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 3, Article 28. Publication date: August 2018.

28:8 E. Kayraklioglu et al.

Fig. 3. Different prefetch patterns for a square array block-distributed across 32 Locales. Local and prefetched

data are shown for one node.

interface is used by domain maps and discussed in detail in Section 5.2. It provides prefetch func-
tions for domain maps such as request, access, update, and evict. These functions are provided by
the prefetch hook objects. See Appendix A for full API reference.

Prefetch Patterns: Different applications have different prefetch requirements. Prefetch patterns
represent different access patterns (Figure 3) and are implemented as methods of distributed array
classes. As the array objects are locality aware, computing the parts of the index space that need
to be prefetched from each locale is handled at the domain map level. As discussed before, domain
maps use prefetch hooks in the low-level interface to interact with the runtime system and initiate
a prefetch. The low-level prefetch request method in the prefetch hook allows the prefetching of
data owned by another locale as a whole or a slice.

Data Movement Protocol: All communication induced by LAPPS is blocking and one-sided. The
prefetch data is moved as a chunk in a single message. However, overall data movement is not
completely monolithic and involves coordination across nodes. To initialize prefetch entries for
arbitrary prefetch patterns, prefetcher nodes execute one or more on statements on the owner
nodes. These on statements can cause the owner node to create a serial buffer to be able to move
the data in a single message. Note, however, a node generally acts as both owner and prefetcher
for a prefetch pattern. Therefore, even though a single thread may be blocked due to an incoming
prefetch data, other threads within the node can act as an owner and handle outgoing prefetches.
LAPPS does not provide any mechanism for managing outgoing prefetch request and relies on
the runtime system and communication middleware capabilities to manage on statements. This
communication protocol is exemplified in Section 5.2.

Memory Consistency: When multiple copies of the same data exist, they must be kept consis-
tent. PGAS languages generally adopt relaxed memory consistency models with explicit/implicit
synchronization points, which runtime systems leverage to maintain consistency [20, 22].

In order to support consistency, the runtime system must be recording synchronization events
such as fences. The prefetch subsystem needs to use these event records to mark the creation of
a prefetch entry and use this information for every access to determine if the data is still fresh
or needs to be updated. This implies that not only creating prefetch entries, but also accessing
them must involve runtime system calls. Note that prefetch entries are shared among intra-node
threads which means that multiple threads in the same locale may be trying to access/update
prefetch entries. Therefore, the runtime system also needs to protect the prefetch entries from
data races.

Our design also allows manually consistent prefetching to avoid unnecessary synchronization
if the programmer knows that prefetched data does not change in the owner node, or wants to

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 3, Article 28. Publication date: August 2018.

LAPPS: Locality-Aware Productive Prefetching Support for PGAS 28:9

Fig. 4. State transition diagram for a prefetch entry.

control updates manually. Line 5 in Listing 4(c) shows an example of using manual consistency.
The programmer uses the pattern-oblivious updatePrefetch method in the high-level interface (a
method of distributed arrays) to update the data from the origin node. We believe manual consis-
tency can be useful for applications which have too much synchronization that is irrelevant with
respect to the changes to the prefetched data. Another benefit of manually consistent prefetching
is that accesses to prefetched data can be satisfied without calls to runtime system.

Concurrency: Unlike access to prefetched data, local prefetch buffers are not thread-safe to re-
duce synchronization. Therefore, users cannot call prefetch patterns in parallel. For Chapel, in
particular, this does not impact programmability as the execution is sequential outside explicitly
parallel regions. Furthermore, prefetch patterns and low-level prefetch calls are blocking. After
they return it is safe to call other prefetch patterns on other objects or use the data brought in
by the pattern. On the other hand, prefetch patterns can create inter- and intra-node parallelism
internally where nodes can request prefetch and serve requests by other nodes concurrently.

Once prefetch pattern returns, local threads can access (read/write) the local data in the prefetch
buffer without explicit synchronization. However, the data needs to be protected against potential
data races where a thread is updating the entry while others are accessing it. To do that, prefetch
entries are protected with multiple accessors/single updater synchronization semantics. Figure 4
depicts the state transition of a prefetch entry. Note that this synchronization is only necessary if
the user requests automatically consistent prefetching.

Memory Management: The data is stored and managed by the runtime system in a per-locale
prefetch buffer. This buffer stores prefetch entries in a doubly linked list. A prefetch entry stores
bookkeeping information for the chunks of data brought in from another locale along with the
data itself. This bookkeeping information includes but is not limited to data size, synchronization
constructs, and memory consistency records. Neither the buffer, nor the individual entries are of
bounded size. Moreover, LAPPS does not maintain an internal memory pool for memory allocation
and reclamation. We have considered limiting the memory used by the prefetch buffer. However,
we chose not to for the following reasons. (1) Memory space requirement would depend on remote
memory access patterns of specific applications, limiting the possible performance improvements
due to management overhead. (2) In a typical optimized PGAS application where programmers
implement bulk data movement, they are responsible for adhering to memory limitations. Based
on these observations, LAPPS does not impose memory limitations, or incur overheads that would
be caused by decision-making implied by such limitations. This also implies that the eviction pol-
icy in LAPPS is driven by the user. This functionality is provided by a simple pattern-oblivious
evictPrefetch method in the high-level interface. We believe this design choice also improves
performance predictability.

5 LAPPS: CHAPEL PROTOTYPE

Although LAPPS can be implemented in different programming paradigms that support the PGAS
model, some Chapel features augment the applicability and efficiency. First, user-defined arrays

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 3, Article 28. Publication date: August 2018.

28:10 E. Kayraklioglu et al.

Listing 5. Matrix Transposition with Custom Prefetch Pattern.

and multi-layered design minimized the effort of implementing LAPPS, as a significant part of the
logic is implemented in the internal libraries rather than the runtime system. Second, multi-layer
design allows future distributions added to the libraries or custom user-defined distributions [13]
to benefit from LAPPS without modifications to internal libraries or the runtime system.

5.1 Software Stack Adaptations

Domain Maps: First, we added several prefetch patterns in Chapel’s Block Distribution (Figure 3).
We also implemented a custom pattern. Custom prefetch pattern can be used for more unique
application needs and one example is shown in Listing 5 for matrix transposition. Custom prefetch
pattern takes as an argument a 1D array of domains, where the ith index stores the indices required
by the ith node (this is represented by Chapel domains, which we call slice descriptors in this
context). Lines 1–5 in the listing create and populate such an array, where the prefetch pattern is
called in line 6. In more complicated cases, lines 3 and 4 need to be adjusted for specific application
needs.

Second, we implemented data serialization functionality using iterators. The data yielded by the
iterators are used by the internal modules to create the serial buffers. Lastly, we added methods to
domain maps that create deserialization containers and/or provide a means to access the serialized
data. Deserialization containers for block distributed arrays are rectangular arrays, and serialized
data access helpers are used to calculate the byte offset in the prefetch buffer of a given index.
Both serialization and deserializaiton functionality are parts of utility functions that need to be
implemented by the domain map implementer.

Standard Libraries: We added a module to the Chapel internal libraries that implements the
PrefetchHook class, which provides an interface between domain maps and the runtime system.
Domain maps request, update, evict, or access prefetch data using these hooks.

Runtime System: The runtime system provides the backbone for the prefetch mechanism. It
creates prefetch entries and stores them in a doubly linked list. Along with the data and its size, a
prefetch entry stores a wide reference to original data, consistency information (explained in more
detail in Section 4), and, if applicable, a slice descriptor (set of indices required).

Supporting the memory consistency model is one of the important tasks of the runtime system.
Recall from Section 3.3 that Chapel’s relaxed memory consistency model [22] uses acquire and
release memory fences as synchronization points. To support the consistency model, the runtime
system perpetually counts acquired fences encountered. This counter is used by the prefetch buffer
as a sequence number for the prefetch entries. When a new prefetch entry is created with auto-
consistency, the current counter value is recorded as its sequence number. The sequence number is
compared to the acquire counter to determine if the data is stale before each access. Acquire coun-
ters are thread-private. This implies that data might be stale for some threads and fresh for others.
To protect the data against races, we use PThreads’ reader-writer locks [31]. Reader-writer locks
allow multiple readers to obtain a lock, but they only allow a single writer. Arguably, a lock-free

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 3, Article 28. Publication date: August 2018.

LAPPS: Locality-Aware Productive Prefetching Support for PGAS 28:11

Fig. 5. Prefetch timeline for rowWisePrefetch as shown in Listing 6(b). Enumerated steps correspond to

descriptions listed in Section 5.2.

Listing 6. Simple matrix multiplication implementation along with different uses of LAPPS.

approach or read-copy-update (RCU) [30] can help mitigate synchronization costs. Section 6.2.1
discusses the overhead of synchronization in detail.

In order to support consistency, accesses to prefetch references are satisfied through runtime
system calls. Prefetch references created by the prefetch accessor bundle the address of the local
copy of the data along with the entry that stores the data. This allows the runtime system to access
necessary information about the prefetched data to provide consistency as explained above.

Compiler: We added a compiler primitive to generate prefetch references by bundling necessary
information together. This primitive is used by the prefetch accessor to create a prefetch refer-
ence. During the code generation pass of the Chapel compiler, access to prefetch references are
translated into GETs/PUTs similar to regular wide references.

5.2 An Example: Matrix Multiplication

In this section, we demonstrate how communication is handled in LAPPS. We use basic ma-
trix multiplication as in Listing 6 for simplicity. A, B, and C are block-distributed arrays. The
forall loop creates parallelism based on C’s distribution, therefore, all accesses to C are local.
Listings 6(b) and 6(c) show how our design can be used to prefetch remote data with auto- and
manual consistency. Figure 5 demonstrates the timeline of events starting from the invocation of
A.rowWisePrefetch():

(a) The application calls rowWisePrefetch(), which is a prefetch pattern (high-level inter-
face).

(b) rowWisePrefetch uses the hook (low-level interface) to initialize prefetch. Its simplified
implementation is given in Listing 7. targetLocales is a 2D array of locales that stores

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 3, Article 28. Publication date: August 2018.

28:12 E. Kayraklioglu et al.

Listing 7. Simplified rowWisePrefetch. hook is a part of low-level interface.

the locales across which the array is distributed. Lines 1 and 2 start tasks on each of
these locales. prefetcherIdx is a tuple that denotes the location of each prefetcher in
targetLocales. Line 3 iterates over the columns of the targetLocales and in line 4 the
index variable of this loop is used to construct another tuple that is the source locale index.
Finally, line 5 calls the prefetch method of the hook.

(c) Within the prefetch method, the hook issues on statements on the owners to get meta-
data. At a minimum, the metadata include the size of the data to be prefetched.

(d) The owner locale uses utility functions to determine the size of the serial buffer.
(e) The prefetcher locale receives the necessary metadata to initialize a prefetch entry.
(f) The prefetcher calls a runtime system function to initialize a prefetch entry.
(g) Upon initializing the prefetch entry and allocating space to store the data, the prefetcher

node issues the second on statement that will transmit the actual data.
(h) The owner locale uses utility functions to create a serial buffer.
(i) Buffer is transferred to owner locale via a PUT call.

The utility functions are trivial and not shown to save space. In the above scenario, the prefetch
pattern and the utility functions must be implemented by the domain map implementers. The rest
of the implementation is oblivious to the data distribution and the access pattern.

5.3 Optimizations

We designed the prefetch support to be flexible and work with any data type and use case. However,
there are common use cases which allow leveraging some optimizations in the Chapel implemen-
tation. In this section, we describe two such optimization opportunities, as follows.

5.3.1 Deferred Prefetching with Auto-Consistency. In the most common use cases for LAPPS, the
pattern is called before entering a distributed loop, which implies an acquire fence [22]. This fence
causes one redundant update on the prefetched data: Data is brought to the prefetcher node by
the prefetch pattern method, then upon entering the loop it is invalidated by the acquire fence (see
“Memory Consistency” in Section 4), and in the first access it is updated. To prevent this redun-
dancy in auto-consistent prefetching, we do not copy remote data while initializing a prefetch
entry, and only allocate space for it and make sure that it is stale the first time it is read. This opti-
mization defers steps (g)–(i) in Section 5.2 if the data is prefetched with auto-consistency support.

5.3.2 Passive Owner If Domain Is Static. In LAPPS, updating a prefetch entry requires running
two on statements (similar to (c) and (g) in Section 5.2). This allows consistency even in cases
where an array is reallocated (e.g., grown or shrunken in dense case, or indices added in sparse
case). However, such cases are not very common. Moreover, issuing on statements invokes han-
dlers on the owner node causing significant disruptions in load balancing. To avoid this, we added
support to keep the owner passive while a prefetcher is updating an entry. In order to enable this
optimization, the programmer needs to guarantee that the domain of the array does not change.
This optimization can be enabled by an optional flag in prefetch patterns. If this flag is set, the

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 3, Article 28. Publication date: August 2018.

LAPPS: Locality-Aware Productive Prefetching Support for PGAS 28:13

Fig. 6. Flow of Events During Regular and Special GETs With Co-existing Software Cache (on the left in

each figure) and Prefetch Buffer (on the right in each figure).

prefetcher node only queries the size and the starting address of the remote data during initializa-
tion that causes an on statement. Bringing the actual remote data during initialization and update
is done via GETs from the prefetcher node (possibly a strided GET [37], if a slice of data prefetched).
This update exchanges steps (g)–(i) in Section 5.2 with a GET from the prefetcher node. However,
it requires that owner node also sends the address of the beginning of the requested data in step (e).

5.4 Prefetch Buffer and Software Cache

The Chapel runtime system has a per-core, software-managed, write-back remote data cache,
which supports lookahead prefetching if it can detect a sequential access pattern.

Although remote data caching and user-driven prefetching are intertwined concepts, there is
a key difference that affected our design choices. If the prefetch is user-driven, data needs to be
locally persistent until the user instructs otherwise in order to mimic the behavior of manually
creating local copies of the data at the application level. In contrast, the runtime system caches and
evicts data without any input from the user. Thus, we implemented LAPPS as a separate system.

Following from our observation, we designed the prefetch buffers to be dynamically allocated,
whereas the software cache is fixed size and allocated during runtime system startup. To increase
the efficiency of the co-existing software cache and prefetch buffer, we added special GET and PUT
functions in the runtime system that avoid the software cache. These functions are called by the
prefetch hooks and are satisfied via communication without involving the cache. Data movement
of a regular GET and the special GET we introduced are sketched in Figure 6. The impact of the
special GET is twofold: (1) During initialization, there is no check to see if the data is cached. In
common implementation idioms, it is unlikely that the data that is requested by the user is cached.
Therefore, this check is redundant. (2) The data is not stored redundantly in the cache upon arrival.
This avoids polluting the software cache that can store useful non-prefetched remote data.

6 EXPERIMENTAL ANALYSIS AND DISCUSSION

6.1 Testbed and Environment

In our analysis we used two different architectures: (1) an Infiniband QDR cluster equipped with
dual-socket quad-core AMD Opterons clocked at 2.2GHz with 2MB last level cache (LLC) and (2)
a Cray XE6 with Gemini interconnect. Compute nodes have dual AMD Magny Cours processors
with 6MB LLC. Chapel locales are mapped to compute nodes and all tests use a thread per core.

We use Chapel pre-release version 1.16.0 with commit SHA c87e36c. We used QThreads [38]
as the tasking layer. Infiniband tests are run with GASNet [10] with ibv conduit as the

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 3, Article 28. Publication date: August 2018.

28:14 E. Kayraklioglu et al.

Table 4. Prefetched Data Access Types

Auto Consistent Manually Consistent Manually Consistent Within local

Serialized 5 6 7

Deserialized 8 9 10

communication layer. Gemini tests are run with Chapel’s uGNI layer. These are the default set-
tings for the architectures. Benchmarks are compiled with the --fast and --cache-remote flags.1

Namely, compiler optimizations and the software cache are enabled in all tests.

6.2 Synthetic Benchmarks

We implemented the following synthetic benchmarks to measure specific overheads in our design.

6.2.1 Access. It is essential to quantify the access overhead to understand the performance
of LAPPS. We compared access latency to prefetched data against four existing access types in
Chapel: access to (1) a local non-distributed array, the local part of a distributed array from in-
side local block, (3) the local part of a distributed array, and (4) the remote part of a distributed
array. Type 1 is different than the others as it is satisfied through Chapel’s non-distributed ar-
rays, whereas the others are accesses to block-distributed arrays, which include additional locality
checks. Type 2 is different than type 3, as it is an access to a narrow pointer, that is done via deref-
erencing (Section 3.2). In contrast, type 3 requires a GET as it is an access to a wide pointer, even
though it is a local access. Similarly, there are six different access types to prefetched data that are
enumerated in Table 4.

We manually instrumented the C code generated by the Chapel compiler to take two measure-
ments per access type: (1) address computation: time it takes to generate a narrow or wide pointer
and (2) access: accessing the pointer via dereferencing or a GET. For each access type, we measured
the per-access latency with varying strides between accesses.

The results of this benchmark are shown in Figure 7. As expected, remote access is slower than
the others and the gap widens as stride gets larger. We attribute this to higher miss rates in the
remote data cache. Among local accesses, types 3 and 2 are slower than type 1 by 25% and 15%, re-
spectively. However, the difference is not as significant with longer strides. We believe this is due to
the increased hardware cache miss rate starting to impact type 1 as stride increases, whereas oth-
ers suffer from cache misses even with smaller strides due to access through the block-distributed
array.

We observe that among prefetched data accesses, accesses to auto-consistent data (5 and 8)
are 30–50% slower than manually consistent ones (6 and 9). This difference is due to checks for
staleness and intra-node synchronization. We also note that accessing manually consistent data
within a local block is up to 15% faster, due to avoiding the creation of wide pointers and GETs.
We did not observe any significant difference between access to serialized (5–7) and deserialized
data (8–10).

1In our discussions with the Chapel team, we were notified of the experimental -suseBulkTransferDist flag, which is

intended to improve the performance of manually copying remote data. We used this flag in tests but noticed that only

PRK-Transpose (Section 6.3) showed benefit, whereas in other tests the flag did not show any effect. Moreover, in some

tests we observed that this flag caused occasional freezes. Nevertheless, we report PRK-Transpose results with this flag

enabled as it significantly improved the performance of hand optimization. We believe this flag demonstrates the potential

of hand optimization and should be used once it is more robust.

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 3, Article 28. Publication date: August 2018.

LAPPS: Locality-Aware Productive Prefetching Support for PGAS 28:15

Fig. 7. Access performance synthetic benchmark results.

As expected, we see that accesses to prefetched data are significantly faster than accessing re-
mote data. Moreover, access to prefetched data with lower spatial locality does not affect its per-
formance as significantly as it does remote accesses. On the other hand, access to prefetched data
is considerably slower than accessing local data. This is because of the way the block-distributed
array accessor is implemented. This accessor checks if the data is local, and does local access if it
is. Then, it checks if it is prefetched and does prefetch access if it is. Otherwise, it does a non-local
access.

Between the two systems, (1) remote access is faster on Gemini. Access latency is 1.5× lower
on Gemini with consecutive access. The difference exceeds 2× with strides of length 64. (2) There
is no significant difference between prefetched data access latencies. (3) Local accesses are also
faster on Gemini. This difference is not as pronounced as remote access and ranges between 10%
and 15%.

6.2.2 Initialization. Another overhead associated with prefetch is the initialization of the
prefetch entry and initial copy of the data. To assess this overhead in comparison to hand op-
timization, we implemented a synthetic benchmark where a 2,048×2,048 block-distributed array
is replicated on all locales using an all-to-all prefetch pattern, and an application level approach
using whole array assignment. We compare the performance of the two with a varying number of
locales.

The architectures we tested showed drastically different behaviors as shown in Figure 8. On
Infiniband, prefetching is 6–10× faster than manually copying the data, whereas on Gemini the
difference is not as significant. Furthermore, static domain optimization does not scale on Gemini
as it does on Infiniband (see Section 6.2.3 for a discussion on the differences of two machines).

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 3, Article 28. Publication date: August 2018.

28:16 E. Kayraklioglu et al.

Fig. 8. Initialization performance. Fig. 9. Update performance.

In further tests (not shown), we observed that distributed array copying in hand optimization
has fundamental limitations and implementation deficiencies causing more GET calls than LAPPS.

6.2.3 Update. Updating a prefetch entry can be costly. To quantify this cost, we implemented a
synthetic benchmark where prefetched data is accessed repeatedly by multiple locales. After every
access, a barrier causes prefetched data to go stale. Hence, in every iteration data is updated. We
used an all-to-all prefetch pattern on a block-distributed array of double precision floating point
numbers. The array is 2,048×2,048 and 100 predetermined random remote indices are accessed
by each locale. The results are shown in Figure 9. Similar to the initialization benchmark, the be-
havior is different on the two machines. Updating prefetch entries with static domains performs
significantly better on Infiniband than it does on Gemini. We note that in terms of network com-
munication the difference between dynamic and static domain prefetching amounts to executing
a blocking on statement followed by a PUT and doing a GET. Also, recall that we use a GASNet
communication layer on Infiniband, and uGNI on Gemini, which is a likely cause of this difference.

6.2.4 Performance Degradation. We identified two cases where our implementation can cause
performance degradation. First, our implementation adds a check to the critical path of remote ac-
cess in distributed arrays. This check can increase remote access latency for non-prefetched data.
To assess the extent of this degradation, we used the benchmark in Section 6.2.1 to compare type
4 (remote) access latency with and without additional prefetch checks. We observed that with the
checks, the change in latency ranges between +0.06% and +2.53% of the base where the mean is
+1.20%. Second, our write-through design implies that every PUT to prefetched data results in an
additional local write to the prefetch buffers, possibly incurring overhead. We used a benchmark
similar to the one in Section 6.2.1 to quantify this overhead. We observed that the change in nor-
malized PUT latency fluctuates between −2.27% and +9.41%, where the mean change is +1.17%.
Neither test showed differences with different architectures or types of prefetch. Therefore, full
results are not shown.

6.2.5 Effectiveness Analysis. Due to the overheads of prefetching itself, its effectiveness depends
on the number of remote accesses. To quantify this behavior, we used PRK-Stencil in a synthetic
manner. We used a star stencil pattern (data is read from the neighbors to the East, North, West,
and South), a 4,096×4,096 block-distributed array on two locales, and ran the experiment with
increasing operator sizes. This parameter sweep results in an increase in remote access ratio in a
well-defined manner. In this setup, remote access ratio becomes a function of the operator size.
Derivation of this function is straightforward and omitted. We run this experiment with auto- and
manual consistency and report speedup over the non-optimized version as a function of remote
access ratio.

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 3, Article 28. Publication date: August 2018.

LAPPS: Locality-Aware Productive Prefetching Support for PGAS 28:17

Fig. 10. Effect of remote access ratio on prefetch effectiveness.

The speedup as a function of remote access ratio is shown in Figure 10. Both networks show
meager performance improvement with a very low amount of remote accesses. We observed that
the break-even remote access ratio for gaining considerable speedup is between 5% and 10%. Espe-
cially between 10% and 20% speedup increases rapidly. At 25%, it reaches 100×–160× for manually
consistent and 60×–80× for auto-consistent prefetching on Infiniband and Gemini, respectively.

This experiment shows the change in the effectiveness of prefetching as an application is made
more communication-heavy. Another important parameter that can impact the effectiveness is
the amount of computational load. However, when keeping the amount of communication and
the number of processing elements constant, increasing the amount of computation arguably has
a predictable effect according to Amdahl’s law [6]. Therefore, we did not conduct such study.

6.3 Application Performance

To assess application performance, we used (1) some applications from those we had developed
to analyze hand optimization opportunities [27] and (2) a subset of the PRK. The PRK are small
application kernels that cover many common communication, computation, and synchronization
patterns in HPC applications [41]. They also have been used for performance evaluation of PGAS
languages [39, 42], including Chapel [26]. The kernels that we use represent common communi-
cation patterns. More details about the benchmarks are below.

Sobel Edge Detection: Two-dimensional, nine-point stencil operation for edge detection in an
image. We use a square input image of size 20,000.

Heat Diffusion: Three-dimensional, six-point iterative stencil operation that simulates heat dif-
fusion in a grid. We use a 3D square grid of size 400.

PRK-DGEMM: Blocked matrix multiply. Elements are double precision floating point numbers.
Matrix size is 4,096×4,096. Block size is 32 elements.

PRK-Transpose: Blocked matrix transpose. Elements are double precision floating point num-
bers. Matrix size is 8,192×8,192. Block size is 8. The matrix is row-wise distributed.2

PRK-Sparse: Double precision sparse matrix-dense vector multiplication. Sparse matrix is
square, of size 220 with 25 non-zeros per row and row-wise distributed.

All applications distribute data using the default Block distribution in Chapel (with additions for
prefetch support). Data sizes are selected to comply with the divisibility rules of the benchmarks,
to obtain reasonable execution times, and to exceed the size of LLC. We have also conducted some
studies with increasing data sizes but did not observe any noteworthy difference. We report results

2This diverges from the PRK specification [40], which suggests column-major arrays and column-wise decomposition.

However, there is no support for column-major arrays in Chapel as of today.

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 3, Article 28. Publication date: August 2018.

28:18 E. Kayraklioglu et al.

Fig. 11. Sobel edge detection performance results (AC: automatic consistency; MC: manual consistency; SD:

static domain optimization).

of both strong and weak scaling in all benchmarks, except PRK-Sparse. The way in which the PRK-
Sparse benchmark creates the sparse matrix prohibits precise control over the data size.

We experimented with both serialized and deserialized data. However, we did not observe any
significant difference between the two, in alignment with our observation in Section 6.2.1. There-
fore, we omitted the performance curves of using deserialized data from the plots. We use the fol-
lowing abbreviations/terms: Base: unoptimized version; HandOpt: hand-optimized version where
data movements identical to LAPPS are implemented by the programmer; AC: auto-consistent
LAPPS; MC: manually consistent LAPPS; SD: static domain optimization (Section 5.3.2).

Figure 11 shows the results of the Sobel benchmark. We observed that MC prefetching improved
performance up to 2×, whereas AC prefetching showed some degradation. We believe that this be-
havior is due to synchronization and the low remote access ratio in the benchmark. In Section 6.2.5,
we have shown that prefetching improves performance significantly if the remote access ratio is
more than 5%. In Sobel, this ratio is below 0.05%. We also see that Handopt outperformed prefetch-
ing. Recall that access to the local copy created in the application space is type 1 access, which
can be two times faster than access to prefetched data (Section 6.2.1). Also observe that the perfor-
mances of Base, MC, and HandOpt are significantly different even with a single locale, emphasizing
the effect of performance differences of access types. Even though we observed speedups by a fac-
tor of 2 on Infiniband, the benefit from prefetching is less on Gemini, due to better remote access
performance of Gemini/uGNI. In the weak scaling tests, we see some performance degradation
with increased number of locales. We attribute this to the locales that have a central chunk of
the image and therefore need to communicate with eight different locales. Moreover, prefetching
from corner neighbors involves a single pixel (1 byte) of the image that is not reused. Arguably,
prefetching such small amount of data with no reuse has more overhead than issuing a GET.

Figure 12 shows the performance of the heat diffusion. Interpreting the results is difficult as
we observed a performance degradation going from four to eight locales. This difference is more
pronounced in Infiniband and it affects Base and HandOpt as well as SD versions. LAPPS ver-
sions without SD remained unaffected by the degradation and scaled well. It should be noted that
this behavior has previously been observed [27]. However, in an attempt to understand the is-
sue better, we implemented a synthetic benchmark (results not shown). We run 1D/two-point,

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 3, Article 28. Publication date: August 2018.

LAPPS: Locality-Aware Productive Prefetching Support for PGAS 28:19

Fig. 12. Heat diffusion performance results (AC: automatic consistency; MC: manual consistency; SD: static

domain optimization).

2D/four-point, and 3D/six-point stencils with one iteration and no synchronization (heat diffu-
sion benchmark runs in synchronized iterations until convergence) in a 3D grid. For 1D and 2D
stencils, we alternated the dimension of the operator. Results showed that the degradation hap-
pens in the 3D stencil only. We observed the degradation with single thread per locale, as well.
This eliminates the possibility of network contention in central locales which communicate with
different neighbors in parallel. Moreover, as discussed above, Sobel requires locales to communi-
cate with eight neighbors and does not show similar performance degradation. Interestingly, we
did not observe the degradation with runs that does not use SD optimization. Recall that without
this optimization, owner locales create serial buffers and transfer the data to the prefetchers us-
ing PUTs. This changes the schedule of events that may be causing the performance degradation.
Another possible reason for the performance issue is a design and/or implementation problem in
multidimensional distributed arrays. With a small number of locales, we see that MC prefetching
performs similarly to HandOpt, whereas AC+SD prefetching performs slightly worse yet delivers
around 1.5× speedup. Note that, in this benchmark, maximum remote access ratio is 4%.

PRK-DGEMM results are shown in Figure 13. First, on both systems LAPPS outperformed Base

by around two orders of magnitude. Moreover, almost all LAPPS versions outperformed HandOpt,
especially with higher numbers of locales. We attribute this to the difference in initialization and
update costs. We see that the MC version performed relatively poorly on Gemini compared to
other LAPPS versions. We believe that this is due to additional synchronization required by the
low-level implementation of PRK-DGEMM [26]. coforall-based implementation to support the
blocking logic requires special update methods. This synchronization on top of the on statement-
based protocol required by the lack of SD caused noticeable idling of processors. Moreover, PRK-
DGEMM prefetches both input arrays, increasing the amount of synchronization further. Second,
in strong scaling tests we observed that MC+SD scaled well, gaining more than 20× performance
with 32 locales. In weak scaling tests, this version showed only very little degradation with four
locales because of the change in communication patterns due to distribution of the matrices.

PRK-Transpose results are depicted in Figure 14. First, we observe up to 20× and 50× speedups
on Infiniband and Gemini. The difference is mainly due to the worse Base performance with high
number of locales on Gemini. In separate tests (results not shown), we observed that Gemini

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 3, Article 28. Publication date: August 2018.

28:20 E. Kayraklioglu et al.

Fig. 13. PRK-DGEMM performance results. Missing data due to timed out jobs. (AC: automatic consistency;

MC: manual consistency; SD: static domain optimization).

Fig. 14. PRK-transpose performance results (AC: automatic consistency; MC: manual consistency; SD: static

domain optimization).

performs better with less number of threads per locale. We attribute this behavior to possible
network contention on each locale due to simultaneous all-to-all communication with 16 threads.
This is also in alignment with what we observe in weak scaling tests. On Gemini, weak scaling
performance degraded as a greater number of locales were used, although the amount of total
communication per locale is fixed. In contrast, Infiniband performance stabilized after some point.
Second, we see that SD versions do not scale well on Gemini. This is due to the lower performance
of SD for initialization and update (Sections 6.2.2 and 6.2.3). Finally, HandOpt outperformed LAPPS
on Gemini, whereas on Infiniband, most LAPPS versions performed competitively to HandOpt. We
believe the reason is twofold: (1) access type 1 is faster on Gemini than it is on Infiniband, whereas
prefetch access types (5–10) have similar latencies (Section 6.2.1). Since HandOpt creates a local

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 3, Article 28. Publication date: August 2018.

LAPPS: Locality-Aware Productive Prefetching Support for PGAS 28:21

Fig. 15. PRK-sparse performance results (AC: automatic consistency; MC: manual consistency; SD: static

domain optimization).

Fig. 16. Normalized memory footprint of application benchmarks (AC: automatic consistency; MC: manual

consistency; SD: static domain optimization).

array to store the remote data, it does type 1 access. (2) Initialization cost of hand copying data on
Gemini is not as bad as it is on Infiniband (Section 6.2.2).

PRK-Sparse results are shown in Figure 15. PRK-Sparse is different than other benchmarks as it
does random remote accesses, and the remote data to be prefetched is more straightforward (input
vector as a whole). We observed a significant difference in behavior of AC compared to other
prefetch versions. Albeit it outperforms Base version by 1.5× and 4× on Infiniband and Gemini,
for other versions these speedups are 3.5× and 9×. This is expected because the AC version is the
least optimized prefetch version as it does synchronization per access and lacks SD optimization.
However, other versions performed very similarly to HandOpt on both architectures.

6.4 Memory Footprint

As prefetching creates local replicas of remote data, it increases the memory usage. However, it is
important to keep the memory cost of prefetching as low as possible in order to be able to use it on
systems with limited memory or applications with large data. Figure 16 depicts the average per-
locale memory footprint of different prefetch techniques. In this context, we use the term “memory
footprint” to denote the largest amount of memory allocated at any given point during program
execution (i.e., high-water mark). We normalized memory footprint to the Base. All results are
obtained with 32 locales. Locale 0 is excluded as it allocates more data.

First, we observed that without SD, LAPPS has at most 4% memory overhead over the HandOpt.
Moreover, in stencil operations like Sobel and Heat Diffusion, our design has less overhead, because
HandOpt replicates the local and remote data to create a local array that stores all the data accessed
by the locale. Arguably, a hand optimization can copy the data in a more precise fashion to reduce
the footprint. However, this involves managing many different arrays to store the data replicated
from different neighbors. Implementing such optimization is very arduous, especially with high-
order stencil operations. In contrast, LAPPS allocates and manages space for remote data internally,
without any programmer effort. Second, SD has a positive effect on the footprint. This is due to

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 3, Article 28. Publication date: August 2018.

28:22 E. Kayraklioglu et al.

additional space allocated on the owner node to create serialized buffers, when SD is not used.
As discussed in Section 5.3.2, SD optimization avoids that step. Thirdly, we observed that MC

can have a bigger footprint than AC. We believe this is due to the different timings of updates.
In MC, all locales issue updates at the same time; whereas, in AC updates are issued as needed.
Therefore, in the latter updates are staggered, reducing the likelihood of using more memory due
to simultaneous data serialization on the owner locales. Note that there is no such difference in
SD versions where the owner is passive. Finally, we see the footprint change similarly between
different versions in all benchmarks. However, the amplitude of change depends on the remote
access characteristic of the benchmark. For example, where PRK-DGEMM versions have about
five times bigger memory footprint, SD versions do not even increase the memory footprint in
PRK-Sparse. This is due to the initialization costs of sparse array initialization costs exceeding the
memory cost of LAPPS.

6.5 Impact on Programmer Productivity

Programmer productivity is not easily quantifiable. In this section, we qualitatively discuss the
matter in light of our experiences. First, the most important benefit of our design is to achieve
complete separation of application logic and performance concerns. As discussed in Section 1, with
hand optimization, the end programmer has to manage copies of remote data in separate arrays.
This approach has a twofold impact on programmer productivity: (1) the programmer needs to
use different variables for prefetched data. This gets complicated as data from different locales are
prefetched. (2) The need for storing per-locale data enforces using coforalls instead of forall
loops. coforall loops create a task per iteration and thus can be used to create SPMD regions.
Whereas, forall loops create parallelism in a data-driven fashion. Therefore, using coforalls
requires a lower-level approach in distributing the work across locales adding more burden to
the programmer [26]. This implies that hand optimizations have indirect costs on programmer
productivity that are side effects of the prefetch logic. In contrast, with our design neither of the
above is a problem. Programmers can implement their application logic without communication
optimization concerns, and then add necessary prefetch calls with no change to the application
logic. This also implies that prefetching strategies can be swapped easily without modification
to the application code. Without LAPPS, such changes would be tedious as they would require
significant implementation changes.

Secondly, the interface for the end-programmer is object-oriented and simple. Three methods
need to be used at most: a prefetch method (i.e., prefetch pattern), an update method that is used
with MC only, and an evict method that is optionally used to reclaim memory. With the help of
the small interface, the amount of additions to the application code is also minimal. For instance,
Listing 4(c) shows all three methods in use in heat diffusion benchmark. As another example, in
PRK-DGEMM, up to 40× speedup was obtained with AC compared to Base. This took adding two
method calls (one per input matrix). Moreover, MC can be used with one additional method (up-
date) call per matrix to achieve 70× speedup over Base.

7 CONCLUSION

The PGAS model provides a productive mechanism to program parallel architectures by creating
a shared memory view, while supporting data locality awareness to be leveraged by programmers.
Some overhead, however, is still generated due to fine-grained communication associated with re-
mote data accesses. These overheads can be greatly eliminated by efficient remote data prefetch-
ing. However, implementing automatic/compiler-based techniques that can uncover access pat-
terns in applications is very challenging as static code analysis and transformation opportunities
can be limited due to conservatism in the compiler. On the other hand, relying on hard-coded

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 3, Article 28. Publication date: August 2018.

LAPPS: Locality-Aware Productive Prefetching Support for PGAS 28:23

optimizations by the programmer greatly reduces the productivity, which is inconsistent with the
premise of the PGAS model.

We argue that the PGAS model presents opportunities for more productive and efficient opti-
mizations. These can be achieved via a semi-automatic technique that is user-directed but lever-
ages locality awareness coupled with language libraries and the runtime system, thereby striking a
balance between the two extremes: compiler-based automatic and user hard-coded optimizations.
Thus, we propose the design and implementation of LAPPS for PGAS languages.

Our approach is to implement remote data prefetching as a language feature that inherently
uses the full software stack of the language, thereby reducing the user effort while maintaining
efficiency. Based on the runtime system, LAPPS augments the standard language libraries, and
extends the compiler with the capability to generate appropriate data types that interact with
the prefetch subsystem. This enables the full exploitation of locality awareness for the sake of
productivity.

We prototyped LAPPS in the Chapel software stack to demonstrate its efficacy. Tests on two
common interconnection networks and communication middleware showed that LAPPS can
achieve up to orders of magnitude speedup over non-optimized counterparts and perform compet-
itively to similar hard-coded optimizations. More importantly, such improvements can be achieved
by adding a few method calls in the application, without disrupting the programmer experience.

To conclude, our work explores possibilities of achieving scalable performance in PGAS lan-
guages with minimal programmer effort. We believe that our findings can help understand the
power of locality awareness in programming systems.

APPENDIX

A LAPPS API REFERENCE

The high-level interface is implemented by the domain maps and used by the programmer.

—stencilPrefetch(depth=1, corners=true, consistent=true, staticDomain=
false): See Figure 2(a) . depth argument sets the stencil depth; corners flag determines
whether the Jacobi operator is plus- or square-shaped. Arguments with default values can
be omitted.

—rowWisePrefetch(consistent=true, staticDomain=false): See Figure 2(b). col-
WisePrefetch, transposePrefetch and allToAllPrefetch have identical arguments.

—customPrefetch(descTable, consistent=true, staticDomain=false) descTable is
a list of domains that represent the set of indices that needs to be prefetched. It may contain
local indices or non-existing indices in the array as they are filtered out internally.

—updatePrefetch(): Update prefetch entry and data.
—evictPrefetch(): Evict prefetch entry and data.

The low-level interface is implemented by the internal libraries and used by the domain maps.

—requestPrefetch(sourceIdx, sourceHook, sliceDesc, wholeDesc, consistent=
true, staticDomain=false): sourceIdx and sourceHook denote the source node ID
and the corresponding hook, respectively. sliceDesc is optional and used to prefetch only
a slice of data. If omitted, source’s data is prefetched as a whole. wholeDesc is the local
domain of the array on the source. It is used to determine if a slice of data is suitable for
static domain optimization. This argument is mandatory only if sliceDesc is passed and
staticDomain is true.

—accessPrefetch(localeIdx, index, out prefetched): Return a prefetch reference to
data with index originated from localeIdx. prefetched is a Boolean and set to true if

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 3, Article 28. Publication date: August 2018.

28:24 E. Kayraklioglu et al.

the data is prefetched, false otherwise. Return value is undefined if prefetched is set to
false.

—updatePrefetch(): Update the prefetched data associated with this prefetch hook.
—evictPrefetch(): Evict the prefetched data associated with this prefetch hook.

Utility functions must be implemented by the domain maps and are used by the backend.

—serializeData(): Yield serial chunk(s) of data.
—serializeMetadata(): Yield serial chunk(s) of metadata.
—getMetadataSize(): Return the size of metadata created for serial buffer in bytes.
—getSerializedSize(): Return the size of data created for serial buffer in bytes.
—getIdxFromByteOffset(data, offset): Given a byte offset, compute the potentially

multi-dimensional index of the element stored in data+offset.
—getByteOffsetFromIdx(data, idx): Given a potentially multi-dimensional index, com-

pute the byte offset, whose index resides in the serial buffer data. data passed to these two
methods is the data that is yielded by serializeMetadata and serializeData.

—getDeserializationContainer(data): Return the deserialization container for storing
data.

—getDataStartAccess(idx): Return a C pointer to the element in position idx.

ACKNOWLEDGMENTS

We would like to thank Bradford L. Chamberlain, Vikram Narayana, Abdullah Kayi, Olivier Serres
and Ahmad Anbar for many useful insights that contributed to the quality of this article.

REFERENCES

[1] 2017. Chapel Language Spefications - Version 0.984. Retrieved February 02, 2018 from https://chapel-lang.org/spec/

spec-0.98.pdf.

[2] 2018. prefetch/noprefetch | Intel Software. Retrieved February 20, 2018 from https://software.intel.com/en-us/node/

524554.

[3] 2018. Using the GNU Compiler Collection (GCC): Other Builtins. Retrieved February 20, 2018 from https://gcc.gnu.

org/onlinedocs/gcc/Other-Builtins.html.

[4] Michail Alvanos, Montse Farreras, Ettore Tiotto, José Nelson Amaral, and Xavier Martorell. 2013. Improving commu-

nication in PGAS environments: Static and dynamic coalescing in UPC. In Proceedings of the 27th International ACM

International Conference on Supercomputing. ACM, 129–138.

[5] Michail Alvanos, Gabriel Tanase, Montse Farreras, Ettore Tiotto, Josè Nelson Amaral, and Xavier Martorell. 2013.

Improving performance of all-to-all communication through loop scheduling in pgas environments. In Proceedings

of the 27th International ACM International Conference on Supercomputing. ACM, 457–458.

[6] Gene M. Amdahl. 1967. Validity of the single processor approach to achieving large scale computing capabilities. In

Proceedings of the Spring Joint Computer Conference (AFIPS’67 (Spring)). ACM, New York, 483–485. DOI:http://dx.doi.

org/10.1145/1465482.1465560

[7] Ahmad Anbar, Olivier Serres, Engin Kayraklioglu, Abdel-Hameed A. Badawy, and Tarek El-Ghazawi. 2015. PHLAME:

Hierarchical locality exploitation using the PGAS model. In Proceedings of the 2015 9th International Conference on

Partitioned Global Address Space Programming Models (PGAS’15). 82–89. DOI:http://dx.doi.org/10.1109/PGAS.2015.16

[8] Ahmad Anbar, Olivier Serres, Engin Kayraklioglu, Abdel-Hameed A. Badawy, and Tarek El-Ghazawi. 2016. Exploiting

hierarchical locality in deep parallel architectures. ACM Transactions on Architecture and Code Optimization (TACO)

13, 2 (2016), 16.

[9] Rajkishore Barik, Jisheng Zhao, David Grove, Igor Peshansky, Zoran Budimlic, and Vivek Sarkar. 2011. Communi-

cation optimizations for distributed-memory X10 programs. In Proceedings of the 2011 IEEE International Parallel &

Distributed Processing Symposium (IPDPS’11). 1101–1113. DOI:http://dx.doi.org/10.1109/IPDPS.2011.105

[10] Dan Bonachea. 2002. GASNet Specification, v1.1. Technical Report UCB/CSD-02-1207. EECS Department, University

of California, Berkeley.

[11] Bradford L. Chamberlain. 2001. The Design and Implementation of a Region-Based Parallel Programming Language.

University of Washington.

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 3, Article 28. Publication date: August 2018.

https://chapel-lang.org/spec/spec-0.98.pdf
https://chapel-lang.org/spec/spec-0.98.pdf
https://software.intel.com/en-us/node/524554
https://software.intel.com/en-us/node/524554
https://gcc.gnu.org/onlinedocs/gcc/Other-Builtins.html
https://gcc.gnu.org/onlinedocs/gcc/Other-Builtins.html
http://dx.doi.org/10.1145/1465482.1465560
http://dx.doi.org/10.1145/1465482.1465560
http://dx.doi.org/10.1109/PGAS.2015.16
http://dx.doi.org/10.1109/IPDPS.2011.105

LAPPS: Locality-Aware Productive Prefetching Support for PGAS 28:25

[12] Bradford L. Chamberlain, David Callahan, and Hans P. Zima. 2007. Parallel programmability and the Chapel language.

International Journal of High Performance Computing Applications 21, 3 (Aug. 2007), 291–312. DOI:http://dx.doi.org/

10.1177/1094342007078442

[13] Bradford L. Chamberlain, Sung-eun Choi, Steven J. Deitz, David Iten, and Vassily Litvinov. 2011. Authoring user-

defined domain maps in chapel. In Proceedings of Cray Users Group.

[14] Satish Chandra, Vijay Saraswat, Vivek Sarkar, and Rastislav Bodik. 2008. Type inference for locality analysis of dis-

tributed data structures. In Proceedings of the 13th ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming (PPoPP’08). ACM, New York, 11–22. DOI:http://dx.doi.org/10.1145/1345206.1345211

[15] Barbara Chapman, Tony Curtis, Swaroop Pophale, Stephen Poole, Jeff Kuehn, Chuck Koelbel, and Lauren Smith.

2010. Introducing OpenSHMEM: SHMEM for the PGAS community. In Proceedings of the 4th Conference on Partitioned

Global Address Space Programming Model (PGAS’10). ACM, New York, 2:1–2:3. DOI:http://dx.doi.org/10.1145/2020373.

2020375

[16] Wei-Yu Chen, Costin Iancu, and Katherine Yelick. 2005. Communication optimizations for fine-grained UPC ap-

plications. In Proceedings of the 14th International Conference on Parallel Architectures and Compilation Techniques

(PACT’05). IEEE, 267–278.

[17] Sung-Eun Choi and L. Snyder. 1997. Quantifying the effects of communication optimizations. In Proceedings of the

1997 International Conference on Parallel Processing (Cat. No.97TB100162). 218–222. DOI:http://dx.doi.org/10.1109/

ICPP.1997.622647

[18] Cristian Coarfa, Yuri Dotsenko, John Mellor-Crummey, François Cantonnet, Tarek El-Ghazawi, Ashrujit Mohanti,

Yiyi Yao, and Daniel Chavarría-Miranda. 2005. An evaluation of global address space languages: Co-array Fortran

and unified parallel C. In Proceedings of the 10th ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming (PPoPP’05). ACM, New York, 36–47. DOI:http://dx.doi.org/10.1145/1065944.1065950

[19] Tarek El-Ghazawi and François Cantonnet. 2002. UPC performance and potential: A NPB experimental study. In

Proceedings of the ACM/IEEE 2002 Conference on Supercomputing. IEEE, 1–26.

[20] Tarek El-Ghazawi, William Carlson, Thomas Sterling, and Katherine Yelick. 2003. UPC: Distributed Shared-Memory

Programming. Wiley-Interscience.

[21] Tarek El-Ghazawi and Sébastien Chauvin. 2001. UPC benchmarking issues. In Proceedings of the International Con-

ference on Parallel Processing, 2001. IEEE, 365–372.

[22] Michael P. Ferguson and Daniel Buettner. 2015. Caching puts and gets in a PGAS language runtime. IEEE, 13–24.

DOI:http://dx.doi.org/10.1109/PGAS.2015.10

[23] Riyaz Haque and David Richards. 2016. Optimizing PGAS overhead in a multi-locale chapel implementation of CoMD.

In Proceedings of the F1st Workshop on PGAS Applications. IEEE, 25–32. https://e-reports-ext.llnl.gov/pdf/838618.pdf.

[24] Akihiro Hayashi, Jisheng Zhao, Michael Ferguson, and Vivek Sarkar. 2015. LLVM-based communication optimiza-

tions for PGAS programs. ACM, 1–11. DOI:http://dx.doi.org/10.1145/2833157.2833164

[25] Costin Iancu, Wei Chen, and Katherine Yelick. 2008. Performance portable optimizations for loops containing com-

munication operations. In Proceedings of the 22nd Annual International Conference on Supercomputing. ACM, 266–276.

[26] Engin Kayraklioglu, Wo Chang, and Tarek El-Ghazawi. 2017. Comparative performance and optimization of Chapel

in modern manycore architectures. In Proceedings of the 2017 IEEE International Parallel and Distributed Processing

Symposium Workshops (IPDPSW’17). 1105–1114. DOI:http://dx.doi.org/10.1109/IPDPSW.2017.126

[27] Engin Kayraklioglu, Olivier Serres, Ahmad Anbar, Hashem Elezabi, and Tarek El-Ghazawi. 2016. PGAS access over-

head characterization in Chapel. In Proceedings of the 2016 IEEE International Parallel and Distributed Processing Sym-

posium Workshops (IPDPSW’16). IEEE, 1568–1577.

[28] Charles H. Koelbel and Mary E. Zosel. 1993. The High Performance FORTRAN Handbook. MIT Press, Cambridge, MA.

[29] Chris Lattner and Vikram Adve. 2004. LLVM: A compilation framework for lifelong program analysis & transforma-

tion. In Proceedings of the 2004 International Symposium on Code Generation and Optimization (CGO’04).

[30] Paul E. McKenney and John D. Slingwine. 1998. Read-copy update: Using execution history to solve concurrency

problems. In Parallel and Distributed Computing and Systems. 509–518.

[31] John M. Mellor-Crummey and Michael L. Scott. 1991. Scalable reader-writer synchronization for shared-memory

multiprocessors. In Proceedings of the 3rd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming

(PPOPP’91). ACM, New York, 106–113. DOI:http://dx.doi.org/10.1145/109625.109637

[32] Matthias M. Müller. 1999. KaHPF: Compiler generated data prefetching for HPF. In High Performance Computing in

Science and Engineering 99. Springer, Berlin, 474–482. DOI:10.1007/978-3-642-59686-5_46.

[33] Matthias M. Müller, Thomas M. Warschko, and Walter F. Tichy. 1998. Prefetching on the cray-T3E. In Proceedings

of the 12th International Conference on Supercomputing (ICS’98). ACM, New York, 361–368. DOI:http://dx.doi.org/10.

1145/277830.277919

[34] Robert W. Numrich and John Reid. 1998. Co-array Fortran for parallel programming. SIGPLAN Fortran Forum 17, 2

(Aug. 1998), 1–31. DOI:http://dx.doi.org/10.1145/289918.289920

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 3, Article 28. Publication date: August 2018.

http://dx.doi.org/10.1177/1094342007078442
http://dx.doi.org/10.1177/1094342007078442
http://dx.doi.org/10.1145/1345206.1345211
http://dx.doi.org/10.1145/2020373.2020375
http://dx.doi.org/10.1145/2020373.2020375
http://dx.doi.org/10.1109/ICPP.1997.622647
http://dx.doi.org/10.1109/ICPP.1997.622647
http://dx.doi.org/10.1145/1065944.1065950
http://dx.doi.org/10.1109/PGAS.2015.10
https://e-reports-ext.llnl.gov/pdf/838618.pdf.
http://dx.doi.org/10.1145/2833157.2833164
http://dx.doi.org/10.1109/IPDPSW.2017.126
http://dx.doi.org/10.1145/109625.109637
10.1007/978-3-642-59686-5_46
http://dx.doi.org/10.1145/277830.277919
http://dx.doi.org/10.1145/277830.277919
http://dx.doi.org/10.1145/289918.289920

28:26 E. Kayraklioglu et al.

[35] Arun Raman, Greta Yorsh, Martin Vechev, and Eran Yahav. 2011. Sprint: Speculative prefetching of remote data. In

ACM SIGPLAN Notices 46, 10 (2011), 259–274.

[36] John Reid. 2008. The new features of Fortran 2008. SIGPLAN Fortran Forum 27, 2 (Aug. 2008), 8–21. DOI:http://dx.doi.

org/10.1145/1408643.1408645

[37] Alberto Sanz, Rafael Asenjo, Juan López, Rafael Larrosa, Angeles Navarro, Vassily Litvinov, Sung-Eun Choi, and

Bradford L. Chamberlain. 2012. Global data re-allocation via communication aggregation in Chapel. In Proceedings

of the 2012 IEEE 24th International Symposium on Computer Architecture and High Performance Computing (SBAC-

PAD’12). 235–242. DOI:http://dx.doi.org/10.1109/SBAC-PAD.2012.18

[38] Kyle B. Wheeler, Richard C. Murphy, and Douglas Thain. 2008. Qthreads: An API for programming with millions

of lightweight threads. In Proceedings of the IEEE International Symposium on Parallel and Distributed Processing

(IPDPS’08). 1–8. DOI:http://dx.doi.org/10.1109/IPDPS.2008.4536359

[39] Rob F. Van der Wijngaart, Abdullah Kayi, Jeff R. Hammond, Gabriele Jost, Tom St John, Srinivas Sridharan, Timothy

G. Mattson, John Abercrombie, and Jacob Nelson. 2016. Comparing runtime systems with exascale ambitions using

the parallel research kernels. In High Performance Computing. Springer, Cham, 321–339. http://link.springer.com/

chapter/10.1007/978-3-319-41321-1_17 DOI:10.1007/978-3-319-41321-1_17.

[40] Rob F. Van der Wijngaart, Tim Mattson, Jeff Hammond, Srinivas Sridharan, and Evangelos Georganas. 2017.

Parallel Research Kernels. Retrieved September 11, 2017 from https://github.com/ParRes/Kernels/blob/master/doc/

par-res-kern-report-v1.3.pdf.

[41] Rob F. Van der Wijngaart and Tim G. Mattson. 2014. The parallel research kernels. In Proceedings of the 2014 IEEE

High Performance Extreme Computing Conference (HPEC’14). 1–6. DOI:http://dx.doi.org/10.1109/HPEC.2014.7040972

[42] Rob F. Van der Wijngaart, Srinivas Sridharan, Abdullah Kayi, Gabriele Jost, Jeff Hammond, Tim G. Mattson, and

Jacob E. Nelson. 2015. Using the parallel research kernels to study PGAS models. In Proceedings of the 2015 9th Inter-

national Conference on Partitioned Global Address Space Programming Models. 76–81. DOI:http://dx.doi.org/10.1109/

PGAS.2015.24

[43] Yili Zheng, Amir Kamil, Michael B. Driscoll, Hongzhang Shan, and Katherine Yelick. 2014. UPC++: A PGAS extension

for C++. In Proceedings of the 2014 IEEE 28th International Parallel and Distributed Processing Symposium. 1105–1114.

DOI:http://dx.doi.org/10.1109/IPDPS.2014.115

Received November 2017; revised March 2018; accepted June 2018

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 3, Article 28. Publication date: August 2018.

http://dx.doi.org/10.1145/1408643.1408645
http://dx.doi.org/10.1145/1408643.1408645
http://dx.doi.org/10.1109/SBAC-PAD.2012.18
http://dx.doi.org/10.1109/IPDPS.2008.4536359
http://link.springer.com/chapter/10.1007/978-3-319-41321-1_17
http://link.springer.com/chapter/10.1007/978-3-319-41321-1_17
10.1007/978-3-319-41321-1_17
https://github.com/ParRes/Kernels/blob/master/doc/par-res-kern-report-v1.3.pdf
https://github.com/ParRes/Kernels/blob/master/doc/par-res-kern-report-v1.3.pdf
http://dx.doi.org/10.1109/HPEC.2014.7040972
http://dx.doi.org/10.1109/PGAS.2015.24
http://dx.doi.org/10.1109/PGAS.2015.24
http://dx.doi.org/10.1109/IPDPS.2014.115

