
XC™ Series System Administration Guide
(CLE 6.0.UP04) S-2393

Contents
About the XC Series System Administration Guide...9

About the Cray Management System..12

Manage the System...13

Connect the SMW to the Console of a Service Node..13

Configure Remote Access to SMW with VNC...13

About the Integrated Dell Remote Access Controller (iDRAC)..14

Change the Default iDRAC Password...14

Dell R815 SMW: Change the BIOS and iDRAC Settings..14

Dell R630 SMW: Change the BIOS and iDRAC Settings..23

Use the iDRAC..33

Hardware Component Identification..34

Physical ID for Cray XC Series Systems...34

Node ID (NID) on Cray XC Series Systems..37

Extended Node ID (XNID)...38

Topology Class..38

Boot the System..38

Run Tests after Boot is Complete..39

Manually Boot the Boot Node and Service Nodes..40

Manually Boot the Compute Nodes...41

Reboot a Single Compute Node..42

Reboot Login or Network Nodes...42

Reboot Many Nodes..42

Boot the SMW in Rescue Mode..43

Debug Ansible Failures During System Boot..44

Examine System Logs...44

Look Up Configuration Details...45

Examine Ansible Changelogs...46

Debug Ansible Failures in init..48

Examine System Dumps...48

Log on to the Boot Node..49

Display Boot Configuration Information...49

Update the Boot Configuration..50

Display the Format of the SDB attributes Table...50

Update SDB Tables...51

Free Up Disk Space in the btrfs File System After Removing SMW Snapshots...52

Contents

S2393 2

Boot a Node or Set of Nodes Using the xtcli boot Command..52

Increase the Boot Manager Timeout Value...53

Reboot Controllers of a Cabinet or Blade..53

Bounce Blades Repeatedly Until All Blades Succeed...54

Request and Display System Routing...54

Initiate a Network Discovery Process..55

Configure IP Routes..55

Shut Down the System Using the auto.xtshutdown File..56

The xtshutdown Command..56

Shut Down the System or Part of the System Using the xtcli shutdown Command......................................57

Shut Down Service Nodes...57

Stop System Components...58

Restart a Blade or Cabinet..60

System Component States..60

Abort Active Sessions on the HSS Boot Manager...62

Display and Change Software System Status...62

Configure Current System Timezone..62

View and Change the Status of Nodes..65

Perform Parallel Operations on Compute Nodes..66

Perform Parallel Operations on Service Nodes...67

Mark a Compute Node as a Service Node..67

Find Node Information...67

Display and Change Hardware System Status...68

Recreate HSS Database File System After Corruption...69

Dynamic Fan Speed Control...73

Enable Dynamic Fan Speed Control...73

Configure and Validate Dynamic Cooling Control Variables..74

Disable Hardware Components...76

Enable Hardware Components...77

Check Current State of Compute Node SSDs...77

Set Hardware Components to EMPTY...78

Lock Hardware Components...78

Unlock Hardware Components..79

Over-provision an Intel P3608 SSD...79

xtbounce Error Message Indicates Cabinet Controller and Its Blade Controllers Not in Sync......................82

Power-cycle a Component to Handle Bus Errors..82

When a Component Fails..83

Dump and Reboot Nodes Automatically..83

Contents

S2393 3

Collect Debug Information From Hung Nodes Using the xtnmi Command...83

Modify BIOS Parameters...84

Increase File System Size...84

Add New Hardware to a System...86

Add a New Disk to a Volume Group in a Storage Set...89

Reboot Controllers of a Cabinet or Blade..90

Bounce Blades Repeatedly Until All Blades Succeed...91

Shut Down the System Using the auto.xtshutdown File..91

The xtshutdown Command..91

Shut Down Service Nodes..92

Shut Down the System or Part of the System Using the xtcli shutdown Command......................................92

Stop System Components...93

Restart a Blade or Cabinet..95

Abort Active Sessions on the HSS Boot Manager...96

Display and Change Software System Status...96

View and Change the Status of Nodes..96

Mark a Compute Node as a Service Node..97

Find Node Information...98

Display and Change Hardware System Status...99

Generate HSS Physical IDs..99

Disable Hardware Components..99

Enable Hardware Components...100

Set Hardware Components to EMPTY...100

Lock Hardware Components...101

Unlock Hardware Components...101

Set the Turbo Boost Limit..102

Perform Parallel Operations on Service Nodes...103

Perform Parallel Operations on Compute Nodes..103

xtbounce Error Message Indicates Cabinet Controller and Its Blade Controllers Not in Sync....................104

Reduce Impact of Btrfs Periodic Maintenance on SMW Performance ...104

Power-cycle a Component to Handle Bus Errors..105

When a Component Fails..105

Capture and Analyze System-level and Node-level Dumps..105

Configure xtdumpsys for Systems Using passwordless ssh...106

cdump and crash Utilities for Node Memory Dump and Analysis...107

Dump and Reboot Nodes Automatically...107

The /etc/opt/cray-xt-dumpd/dumpd.conf Configuration File..108

The dumpd-dbadmin Tool..109

Contents

S2393 4

The dumpd-request Tool...109

Collect Debug Information From Hung Nodes Using the xtnmi Command...110

Modify BIOS Parameters...110

Set or Change the HSS Data Store (MariaDB) Root Password..111

Recover from a Corrupt or Missing SMW MariaDB Database..112

Restore the HSS MariaDB Database from a Backup..113

Regenerate the HSS MariaDB Database from Scratch..114

Troubleshoot Temperature Warnings Reported in an End Cabinet...115

Recover from SMW R630 Boot Disk Hardware RAIDS Failure...116

Recover from SMW R815 Boot Disk Software RAID1 Failure..117

About X.509 Certificates and How to Redistribute Them..119

Update X.509 Host Certificate After SMW Hostname Change...125

Manage System Access..127

Change Account Passwords on the SMW...127

Change Account Passwords on CLE Nodes...127

Configure the System..129

Cray XC System Configuration..129

About the Configurator..130

Create a Config Set...132

Update a Config Set..136

Validate a Config Set and List Validation Rules...140

Config Set Create/Update Process...142

Tips for Configurator Interactive Sessions...146

cfgset Troubleshooting Tips...151

Remove Shallow Checksum after Pushing a Config Set from One SMW to Another.......................152

Update cray_sysenv Worksheet..153

Prepare and Update the Global Config Set...153

About Simple Sync..161

Configure Files for Cray Simple Sync Service..165

About the Node Image Mapping Service (NIMS)..166

About Node Groups...166

About the Image Management and Provisioning System (IMPS)...169

Where to Place the Root File System—tmpfs versus netroot...172

Install Third-Party Software with a Custom Image Recipe..173

About Config Set Caching...180

Add Kernel Watch Descriptors to Improve Config Set Caching Performance...................................181

Change a File on a Compute Node...181

Use an Ansible Play to Change a File on a Compute Node..183

Contents

S2393 5

Use a Custom Image Recipe to Change a File on a Compute Node..184

About Custom Ansible Plays...188

Control a Service on Specific Nodes at Boot Time..190

Manage Node Configuration, Services, and Settings at Boot Time (boot.last Script).......................191

About Secure Shell Configuration...193

Monitor the System..196

Manage Log Files Using CLE and HSS Commands...196

Check the Status of System Components...197

Check the Status of Compute Processors...198

Monitor the System with the System Environmental Data Collector (SEDC)..199

Monitor the Health of PCIe Channels..199

Examine Activity on the HSS Boot Manager...200

Poll a Response from an HSS Daemon, Manager, or the Event Router...200

Validate the Health of the HSS..200

Monitor Event Router Daemon (erd) Events...201

Monitor Node Console Messages...201

View Component Alert, Warning, and Location History...202

Display Component Information..202

Display Alerts and Warnings..203

Display System Network Congestion Protection Information..204

Clear Component Flags...204

Display Error Codes..205

Cray Lightweight Log Management (LLM) System...205

Debug the CLE System Debugger Using debugraw and debugmax..205

cdump and crash Utilities for Node Memory Dump and Analysis..206

Resource Utilization Reporting..206

Overview of RUR Configuration..207

Enable and Configure RUR...207

Configure the cray_alps Service for Per-application RUR..214

Configure a WLM to Enable Per-job RUR...215

Refresh Nodes with Updated Config Sets...216

Enable/Disable Plugins...217

The dws Data Plugin...219

The dws_job_server Data Plugin..219

The dws_server Data Plugin...222

The energy Data Plugin...225

The gpustat Data Plugin..227

The memory Data Plugin...227

Contents

S2393 6

The nodeuse Data Plugin..229

The taskstats Data Plugin...229

The timestamp Data Plugin...232

The file Output Plugin..232

The llm Output Plugin..232

The user Output Plugin...232

The database Example Output Plugin...233

Create Custom RUR Data Plugins..233

Create Custom RUR Output Plugins...235

Implement a Site-Written RUR Plugin...236

Additional Plugin Examples...238

Application Completion Reporting (ACR) to RUR Migration Tips..241

Application Resource Utilization (ARU) to RUR Migration Tips...243

CSA to RUR Migration Tips...243

Modify an Installed System..246

Configure a Boot Failover Node..246

Disable Boot Node Failover...249

Configure an SDB Failover Node..250

Perform SDB Node Failback...253

Perform Boot Node Failback...254

Configure Realm-Specific IP...254

Use the xtrsipcfg_v2 Script for an Advanced RSIP Configuration..255

Update cray_net Worksheet for an Advanced RSIP Configuration...258

The Node ARP Management Daemon (rca_arpd)..259

Create Logical Machines for Cray XC Series Systems...260

Configure a Logical Machine...260

Boot a Logical Machine...261

Boot the System Using Another Snapshot..261

Configure the NFS client to Mount the Exported Lustre File System..262

Define Bind Mount Points Within a Configuration Set...263

Enable Multipath on an Installed XC System..264

Change Lustre Versions..270

Repurpose Compute Nodes..274

Node Attributes..274

View and Temporarily Set Node Attributes..274

The XTAdmin Database segment Table..275

Apply Rolling Patches to Compute Nodes with cnat..276

Apply Live Updates to Nodes..277

Contents

S2393 7

Reuse One or More Previously-failed HSN Links..278

Add or Remove from Service..279

Remove a Compute Blade from Service While the System is Running..279

Return a Compute Blade into Service...281

State Manager LLM Logging...282

Boot Manager LLM Logging..282

Configure Node Health Checker Tests..283

Guidance for the Accelerator Test...286

Guidance for the Application Exited Check and Apinit Ping Tests ..286

Guidance for the Filesystem Test..287

Guidance for the Hugepages Test...287

Guidance for the NHC Lustre File System Test...288

NHC Control Variables..288

Global Configuration Variables that Affect all NHC Tests..289

Standard Variables that Affect Individual NHC Tests...290

NHC Suspect Mode...292

NHC Messages...293

Recover from a Login Node Crash when a Login Node will not be Rebooted..................................293

Contents

S2393 8

About the XC Series System Administration Guide
The XC™ Series System Administration Guide (S-2393), released June 22, 2017, includes administrative tasks for
Cray XC series systems running SMW 8.0 UP04 and CLE 6.0 UP04. It is intended for use by experienced Cray
system administrators.

New in this release
● Perform Boot Node Failback on page 254 and Perform SDB Node Failback on page 253.

● Use the xtrsipcfg_v2 Script for an Advanced RSIP Configuration on page 255

Updated in this release
● Set the Turbo Boost Limit and Stop System Components on page 58 reflect currently released processors.

● Configure a Boot Failover Node on page 246 and Configure an SDB Failover Node on page 250 have
updates for new SDB and boot node failback functionality and config set settings.

Command Prompt Conventions
Host name
and account in
command
prompts

The host name in a command prompt indicates where the command must be run. The account
that must run the command is also indicated in the prompt.

● The root or super-user account always has the # character at the end of the prompt.

● Any non-root account is indicated with account@hostname>. A user account that is
neither root nor crayadm is referred to as user.

smw# Run the command on the SMW as root.

cmc# Run the command on the CMC as root.

sdb# Run the command on the SDB node as root.

crayadm@boot> Run the command on the boot node as the crayadm user.

user@login> Run the command on any login node as any non-root user.

hostname# Run the command on the specified system as root.

user@hostname> Run the command on the specified system as any non-root user.

About the XC Series System Administration Guide

S2393 9

smw1#
smw2#

For a system configured with the SMW failover feature there are two
SMWs—one in an active role and the other in a passive role. The
SMW that is active at the start of a procedure is smw1. The SMW that
is passive is smw2.

smwactive#
smwpassive#

In some scenarios, the active SMW is smw1 at the start of a
procedure—then the procedure requires a failover to the other SMW.
In this case, the documentation will continue to refer to the formerly
active SMW as smw1, even though smw2 is now the active SMW. If
further clarification is needed in a procedure, the active SMW will be
called smwactive and the passive SMW will be called smwpassive.

Command
prompt inside
chroot

If the chroot command is used, the prompt changes to indicate that it is inside a chroot
environment on the system.

smw# chroot /path/to/chroot
chroot-smw#

Directory path
in command
prompt

Example prompts do not include the directory path, because long paths can reduce the clarity
of examples. Most of the time, the command can be executed from any directory. When it
matters which directory the command is invoked within, the cd command is used to change
into the directory, and the directory is referenced with a period (.) to indicate the current
directory.

For example, here are actual prompts as they appear on the system:

smw:~ # cd /etc
smw:/etc# cd /var/tmp
smw:/var/tmp# ls ./file
smw:/var/tmp# su - crayadm
crayadm@smw:~> cd /usr/bin
crayadm@smw:/usr/bin> ./command
And here are the same prompts as they appear in this publication:

smw# cd /etc
smw# cd /var/tmp
smw# ls ./file
smw# su - crayadm
crayadm@smw> cd /usr/bin
crayadm@smw> ./command

Typographic Conventions
Monospace Indicates program code, reserved words, library functions, command-line prompts,

screen output, file/path names, key strokes (e.g., Enter and Alt-Ctrl-F), and
other software constructs.

Monospaced Bold Indicates commands that must be entered on a command line or in response to an
interactive prompt.

Oblique or Italics Indicates user-supplied values in commands or syntax definitions.

About the XC Series System Administration Guide

S2393 10

Proportional Bold Indicates a graphical user interface window or element.

\ (backslash) At the end of a command line, indicates the Linux® shell line continuation character
(lines joined by a backslash are parsed as a single line). Do not type anything after
the backslash or the continuation feature will not work correctly.

Scope and Audience
This publication covers a wide range of system management topics and is intended for experienced Cray system
administrators.

Trademarks
The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY and
design, SONEXION, URIKA, and YARCDATA. The following are trademarks of Cray Inc.: APPRENTICE2,
CHAPEL, CLUSTER CONNECT, CRAYDOC, CRAYPAT, CRAYPORT, DATAWARP, ECOPHLEX, LIBSCI,
NODEKARE. The following system family marks, and associated model number marks, are trademarks of Cray
Inc.: CS, CX, XC, XE, XK, XMT, and XT. The registered trademark LINUX is used pursuant to a sublicense from
LMI, the exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis. Other trademarks used in
this document are the property of their respective owners.

About the XC Series System Administration Guide

S2393 11

About the Cray Management System
With Cray Linux Environment (CLE) 6.0, Cray introduces a new management system built on these core
principles:

● Separation of configuration data and software content

● Separation of the management infrastructure from the product content

● Modularity

● Prescriptive results

● Scalability

This Cray Management System (CMS) is intended to improve uptime through staging, reduce the risk associated
with updates and changes, and enable users to extend functionality.

The CMS comprises these primary components:

IMPS Image Management and Provisioning System.

IMPS enables sites to manage software content in a prescriptive way. It leverages and extends industry-
standard tools such as zypper and rpm. IMPS is used to create and distribute repository content (RPMs)
and to create and update standard or custom images. Cray provides image recipes for different node
types: service, login, compute, DAL, etc. The image recipes tie together the collections of software
defined in the package collections and the repositories that contain the software. From them, IMPS builds
a list of all the software and repositories referenced, and passes it to zypper or yum, which resolves the
RPM dependencies and installs the software into the specified image root. See the IMPS man page for
more information.

CMF Configuration Management Framework

The CMF is a combination of software and conventions that enable the modular management and
application of configuration. Each application comes with the software needed to configure that
application. All configuration information needed to operate the logical system is stored in a central
repository called a config set. It is made available to every node in the system by means of the IMPS
Distribution System (IDS), a read-only network share. Cray provides a configurator to enable sites to
create, change, or add new configuration information. Configuration for all applications installed in an
image is applied at boot time using cray-ansible, a wrapper that finds all Ansible plays installed on the
system and executes them with Ansible.

NIMS Node Image Mapping Service

NIMS enables site administrators to assign any node or group of nodes any boot image. It also provides a
mechanism for passing additional kernel parameters to the nodes on boot. See the NIMS man page for
more information.

Ansible is installed into each image. During boot, each node runs all Ansible plays, pulling in the configuration
information needed to self-configure ("pull" mode). Ansible is called twice during system boot—once from
initrd /init before Linux has started up (in_init) and once after normal Linux startup with systemd
(multiuser)—to cover both early and run level 3 use cases. Ansible can be run in “push” mode after boot to
support reconfiguration.

About the Cray Management System

S2393 12

Manage the System
Caution is encouraged when executing system management commands and procedures; hasty actions can result
in down time and lost data.

IMPORTANT: Use persistent SCSI device names.

This does not apply to SMW disks: SCSI device names (/dev/sd*) are not guaranteed to be numbered the same
from boot to boot. This inconsistency can cause serious system problems following a reboot. When installing
CLE, the administrator must use persistent device names for file systems on the Cray system.

Cray recommends using the /dev/disk/by-id/ persistent device names. Use /dev/disk/by-id/ for the
root file system in the initramfs image and in the /etc/sysset.conf installation configuration file as well as
for other file systems, including Lustre (as specified in /etc/fstab and /etc/sysset.conf). For more
information, see CLE Installation and Configuration Guide.

Alternatively, the administrator can define persistent names using a site-specific udev rule or cray-scsidev-
emulation. However, only the /dev/disk/by-id method has been verified and tested.

CAUTION: The administrator must use /dev/disk/by-id when specifying the root file system. There is
no support in the initramfs for cray-scsidev-emulation or custom udev rules.

Connect the SMW to the Console of a Service Node
The xtcon command is a console interface for service nodes. When it is executing, the xtcon command
provides a two-way connection to the console of any running node.

With the release CLE 6.x, all service and compute nodes enable the xtcon console by default. If a node fails to
boot, then the init boot sequence halts and drops into a console bash session waiting for the administrator to take
action, such as debug the node. With release CLE 5.x, xtcon and the enablement of console on nodes is
required via the kernel parameters.

See the xtcon(8) man page for additional information.

Configure Remote Access to SMW with VNC
Virtual network computing (VNC) software enables a user to view and interact with the SMW from another
computer.

VNC is optional and enabling VNC is a site choice. With the DRAC on the SMW, many system administrators may
prefer to use DRAC and not configure VNC.

To obtain a VNC client to connect to the server, download a VNC client from a reuptable website such as these:

● RealVNC™: http://www.realvnc.com/

● TightVNC™: http://www.tightvnc.com/

Manage the System

S2393 13

http://www.realvnc.com/
http://www.tightvnc.com/

The VNC software requires a TCP/IP connection between the server and the viewer. Be aware that VNC is
considered to be an insecure protocol, therefore Cray recommends that the VNC client only connect to the VNC
server on the SMW via an SSH tunnel.

About the Integrated Dell Remote Access Controller (iDRAC)
The iDRAC is a systems management hardware and software solution that provides remote management
capabilities, crashed system recovery, and power control functions for the System Management Workstation
(SMW). The iDRAC alerts administrators to server issues, helps them perform remote server management, and
reduces the need for physical access to the server. The iDRAC also facilitates inventory management and
monitoring, deployment and troubleshooting. To help diagnose the probable cause of a system crash, the iDRAC
can log event data and capture an image of the screen when it detects that the system has crashed.

Change the Default iDRAC Password

About this task
This procedure describes how to log in to the iDRAC web interface and change a user password.

Procedure

1. Log in to the web interface as root.

2. Select iDRAC settings on the left navigation bar.

3. Expand iDRAC settings on the left navigation bar.

4. Select User Authentication.

5. Select the user whose password is changing. To change the root password, select userid 2.

6. Select Next.

7. Select the Change Password box and enter the new password in the boxes below it.

8. Select Apply to complete the password change.

The password change is complete.

Alternative. Another approach to changing the iDRAC root password is to use ipmitool on the SMW command
line interface.

smw# ipmitool -U root -I lanplus -H <drac-ip-addr> -P <old-drac-password> \
user set password 2 <new-drac-password>

Dell R815 SMW: Change the BIOS and iDRAC Settings

Prerequisites
This procedure assumes the following:

● The SMW is disconnected from the boot RAID.

Manage the System

S2393 14

● The SMW is connected to a keyboard, monitor, and mouse (without this direct connection, some procedure
instructions will not work as intended).

About this task
This procedure changes the system setup for a Dell R815 SMW: the network connections, remote power control,
and the remote console. Depending on the server model and version of BIOS configuration utility, there may be
minor differences in the steps to configure the system. For more information, refer to the documentation for the
Dell server used at this site. Because Cray ships systems with most of the installation and configuration
completed, some of these steps may have been done already.

For a Dell R630 SMW, see Dell R630 SMW: Change the BIOS and iDRAC Settings on page 23.

Procedure

1. Remove SMW non-boot internal drives.

Eject all the internal disk drives from the SMW except for the primary boot disk in slot 0 and the secondary
boot disk in slot 1.

2. Power up the SMW. When the BIOS power-on self-test (POST) process begins, quickly press the F2 key
after the following messages appear in the upper-right of the screen.

 F2 = System Setup
 F10 = System Services
 F11 = BIOS Boot Manager
 F12 = PXE Boot
When the F2 keypress is recognized, the F2 = System Setup line changes to Entering System Setup.

After the POST process completes and all disk and network controllers have been initialized, the BIOS
System Setup menu appears.

Manage the System

S2393 15

Figure 1. Dell R815 SMW BIOS System Setup Menu

3. Change system time.

The system time should be in UTC, not in the local timezone.

a. Select System Time in the System Setup menu.

The hours will be highlighted in blue.

b. Set the correct time.

1. Press the space key to change hours.

2. Use the right-arrow key to select minutes, then change minutes with the space key.

3. Use the right-arrow key to select seconds, then change seconds with the space key.

c. Press Esc when the correct time is set.

4. Change boot settings.

a. Select Boot Settings in the System Setup menu, then press Enter.

Manage the System

S2393 16

Figure 2. Dell R815 SMW Boot Settings Menu

A pop-up menu with the following list appears:

Boot Mode .. BIOS
Boot Sequence <ENTER>
USB Flash Drive Emulation Type.................... <ENTER>
Boot Sequence Retry <Disabled>

b. Select Boot Sequence, then press Enter.

Figure 3. Dell R815 SMW Boot Sequence Settings

c. Change the order of items in the Boot Sequence list so that the optical (DVD) drive appears first, then
the hard drive. If Embedded NIC appears in the list, it should end up below the optical drive and hard
drive in the list.

d. Disable embedded NIC.

Manage the System

S2393 17

If Embedded NIC is in the list, select it and press Enter, then use the space key to disable it.

e. Press Esc to exit the Boot Sequence menu.

f. Press Esc again to exit the Boot Settings menu.

5. Change serial communication.

a. Select Serial Communication in the System Setup menu, then press Enter.

b. Confirm these settings in the Serial Communication menu.

● Serial Communication is set to On with Console Redirection via COM2

● Serial Port Address is set to Serial Device1=COM2, Serial Device2=COM1

● External Serial Connector is set to Serial Device2

● Failsafe Baud Rate is set to 115200

c. Press Esc to exit the Serial Communication menu.

6. Select Embedded Server Management in the System Setup menu, then press Enter.

Figure 4. Dell R815 SMW Embedded Server Management Settings

a. Set Front-Panel LCD Options to User-Defined LCD String in the Embedded Server Management
menu. Use the space key to cycle through the choices, then use the down-arrow key.

b. Set User-Defined LCD String to the login hostname (e.g., cray-drac), then press Enter.

c. Press Esc to exit the Embedded Server Management menu.

7. Insert base operating system DVD into SMW.

Insert the base OS DVD labeled into the DVD drive. (The DVD drive on the front of the SMW may be hidden
by a removable decorative bezel.)

8. Save BIOS changes and exit.

a. Press Esc to exit the BIOS System Setup menu.

Manage the System

S2393 18

A menu with a list of exit options appears.

Save changes and exit
Discard changes and exit
Return to Setup

b. Ensure that Save changes and exit is selected, then press Enter.

The SMW resets automatically.

9. Enter BIOS boot manager.

a. When the BIOS POST process begins again, quickly press the F11 key within 5 seconds of when the
following messages appear in the upper-right of the screen.

 F2 = System Setup
 F10 = System Services
 F11 = BIOS Boot Manager
 F12 = PXE Boot
When the F11 keypress is recognized, the F11 = BIOS Boot Manager line changes to Entering BIOS
Boot Manager.

10. Change the integrated Dell Remote Access Controller (iDRAC) settings.

Watch the screen carefully as text scrolls until the iDRAC6 Configuration Utility 1.57 line is visible. When
the line Press <Ctrl-E> for Remote Access Setup within 5 sec... displays, press Ctrl-E within 5 seconds.

0 5 0 ATA WDC WD5000BPVT-0 1A01 465 GB
LSI Corporation MPT2 boot ROM successfully installed!
iDRAC6 Configuration Utility 1.57
Copyright 2010 Dell Inc. All Rights Reserved
iDRAC6 Firmware Revision version: 1.54.15
Primary Backplane Firmware Revision 1.07

IPv6 Settings

IPv6 Stack : Disabled
Address 1 : ::
Default Gateway : ::

IPv4 Settings

IPv4 Stack : Enabled
IP Address : 172. 31. 73.142
Subnet mask : 255.255.255. 0
Default Gateway : 172. 31. 73. 1
Press <Ctrl-E> for Remote Access Setup within 5 sec...
The iDRAC6 Configuration Utility menu appears.

11. Set iDRAC6 LAN to ON.

Manage the System

S2393 19

Figure 5. Dell R815 SMW iDRAC6 Configuration Utility Menu

12. Set IPMI Over LAN to ON.

13. Configure the iDRAC LAN parameters.

Select LAN Parameters, then press Enter.

a. Configure iDRAC6 name.

Use the arrow key to scroll down and select iDRAC6 Name, then press Enter. Enter a value for Current
DNS iDRAC6 Name (e.g., smw-drac), then press Esc.

Trouble? If unable to set the iDRAC6 name, try this:

1. Temporarily set Register iDRAC6 Name to "On."

2. Press Enter to set iDRAC6 Name. Select current or suggested name (edit enabled). When done,
press Esc.

3. Return to Register iDRAC6 Name and set it to "Off."

Manage the System

S2393 20

Figure 6. Dell R815 SMW iDRAC6 LAN Parameters: iDRAC6 Name

b. Configure domain name.

Use the arrow key to scroll down and select Domain Name, then press Enter. Enter a value for Current
Domain Name (e.g., us.cray.com), then press Enter.

c. Configure hostname string.

Use the arrow key to scroll down and select Host Name String, then press Enter. Enter a value for
Current Host Name String (e.g., smw-drac), then press Esc.

d. Configure IPv4 settings.

Use the arrow key to scroll down into the IPv4 Settings group and confirm that the IPv4 Address Source
is set to static. Then enter values for the following:

IPv4 Address (the SMW DRAC IP address)
Subnet Mask (the SMW iDRAC subnet mask)
Default Gateway (the SMW iDRAC default gateway)
DNS Server 1 (the first site DNS server)
DNS Server 2 (the second site DNS server)

Manage the System

S2393 21

Figure 7. Dell R815 SMW DRAC IPv4 Parameter Settings

e. Configure IPv6 settings.

Use the arrow key to scroll down into the IPv6 Settings group and ensure that IPv6 is disabled.

f. Press Esc to exit LAN Parameters and return to the iDRAC6 Configuration Utility menu.

14. Configure iDRAC virtual media.

a. Select Domain Name, then press Enter.

b. Select Virtual Media Configuration, then press Enter.

c. Select the Virtual Media line and press the space key until it indicates Detached.

d. Press Esc to exit the Virtual Media Configuration menu.

15. Set the password for the iDRAC LAN root account.

Using the arrow keys, select LAN User Configuration, then press Enter. The following configuration is for
both SSH and web browser access to the iDRAC.

a. Select Account User Name and enter the account name "root."

b. Select Enter Password and enter the intended password.

c. Select Confirm Password and enter the intended password again.

d. Press Esc to return to the iDRAC6 Configuration Utility menu.

16. Exit the iDRAC configuration utility.

a. Press Esc to exit the iDRAC6 Configuration Utility menu.

b. Select Save Changes and Exit.

The BIOS Boot Manager menu appears.

17. Choose to boot from SATA Optical Drive.

Using the arrow keys, select the SATA Optical Drive entry, then press Enter.

Manage the System

S2393 22

Dell R630 SMW: Change the BIOS and iDRAC Settings

Prerequisites
This procedure assumes the following:

● The Configure the Dell R630 SMW RAID Virtual Disks procedure has been completed.

● The SMW is rebooting. If the SMW is not rebooting, press Ctrl-Alt-Delete to reboot when ready to begin this
procedure.

About this task
This procedure describes how to change the system setup for the SMW: the network connections, remote power
control, and the remote console. This procedure includes detailed steps for the Dell R630 server. Depending on
the server model and version of BIOS configuration utility, there could be minor differences in the steps to
configure the system. For more information, refer to the documentation for the Dell server used at this site.
Because Cray ships systems with most of the installation and configuration completed, some of the steps may
have been done already.

For a Dell R815 server, see Dell R815 SMW: Change the BIOS and iDRAC Settings on page 14.

Procedure

Watch as the system reboots and the BIOS power-on self-test (POST) process begins. Be prepared to
press F2, when prompted, to change the system setup.

1. Press the F2 key immediately after the following messages appear in the upper-left of the screen:

F2 = System Setup
F10 = Lifecycle Controller (Config iDRAC, Update FW, Install OS)
F11 = Boot Manager
F12 = PXE Boot
When the F2 keypress is recognized, the F2 = System Setup line changes color from white-on-black to
white-on-blue.

After the POST process completes and all disk and network controllers have been initialized, the Dell System
Setup screen appears. The following submenus are available on the System Setup Main Menu and will be
used in subsequent steps: System BIOS, iDRAC Settings, and Device Settings.

Manage the System

S2393 23

Figure 8. Dell R630 System Setup Main Menu

TIP: In system setup screens,

● Use the Tab key to move to different areas on the screen.

● Use the up-arrow and down-arrow keys to highlight or select an item in a list, then press the
Enter key to enter or apply the item.

● Press the Esc key to exit a submenu and return to the previous screen.

2. Change the BIOS settings.

a. Select System BIOS on the System Setup Main Menu, then press Enter.

The System BIOS Settings screen appears.

Manage the System

S2393 24

Figure 9. Dell R630 System BIOS Settings Screen

b. Change Boot Settings.

1. Select Boot Settings on the System BIOS Settings screen, then press Enter. The Boot Settings
screen appears.

Figure 10. Dell R630 Boot Settings Screen

2. Ensure that Boot Mode is BIOS and not UEFI.

Manage the System

S2393 25

3. Select BIOS Boot Settings, then press Enter.

4. Select Boot Sequence on the Boot Option Settings screen, then press Enter to view a pop-up
window with the boot sequence.

Figure 11. Dell R630 BIOS Boot Sequence

5. Change the boot order in the pop-up window so that the optical drive appears first, then the hard
drive. If Integrated NIC appears in the list, it should end up below the optical drive and hard drive in
the list.

TIP: Use the up-arrow or down-arrow key to highlight or select an item, then use the + and -
keys to move the item up or down.

6. Select OK, then press Enter to accept the change.

7. Click the box next to Hard drive C: under the Boot Option/Enable/Disable section to enable it. Do
the same for the optical drive, if necessary.

8. Select integrated NIC, then press Enter to disable it.

9. Press Esc to exit Boot Option Settings.

10. Press Esc to exit Boot Settings and return to the System BIOS Settings screen.

c. Change Serial Communication Settings.

Manage the System

S2393 26

Figure 12. Dell R630 System BIOS Settings: Serial Communication

1. Select Serial Communication on the System BIOS Settings screen. The Serial Communication
screen appears.

Figure 13. Dell R630 Serial Communication Screen

2. Select Serial Communication on the Serial Communication screen, then press Enter. A pop-up
window displays the available options.

3. Select On with Console Redirection via COM2 in the pop-up window, then press Enter to accept
the change.

Manage the System

S2393 27

4. Select Serial Port Address, then select Serial Device1=COM1, Serial Device2=COM2, then press
Enter.

5. Select External Serial Connector, then press Enter. A pop-up window displays the available
options.

6. Select Remote Access Device in the pop-up window, then press Enter to return to the previous
screen.

7. Select Failsafe Baud Rate, then press Enter. A pop-up window displays the available options.

8. Select 115200 in the pop-up window, then press Enter to return to the previous screen.

9. Press the Esc key to exit the Serial Communication screen.

10. Press Esc to exit the System BIOS Settings screen. A "Settings have changed" message appears.

11. Select Yes to save changes. A "Settings saved successfully" message appears.

12. Select Ok.

3. Change the iDRAC (Integrated Dell Remote Access Controller) settings.

Select iDRAC Settings on the System Setup Main Menu, then press Enter.

The iDRAC Settings screen appears.

Figure 14. Dell R630 iDRAC Settings Screen

4. Change the iDRAC network.

a. Select Network to display a long list of network settings.

b. Change the DNS DRAC name.

Use the arrow key to scroll down to DNS DRAC Name, then enter an iDRAC hostname that is similar to
the SMW node hostname (e.g., cray-drac).

c. Change the static DNS domain name.

Manage the System

S2393 28

Use the arrow key to scroll down to Static DNS Domain Name, then enter the DNS domain name and
press Enter.

d. Change the IPv4 settings.

Use the arrow key to scroll down to the IPV4 SETTINGS list.

1. Ensure that IPv4 is enabled.

a. If necessary, select Enable IPV4, then press Enter.

b. Select <Enabled> in the pop-up window, then press Enter to return to the previous screen.

2. Ensure that DHCP is disabled.

a. If necessary, select Enable DHCP, then press Enter.

b. Select <Disabled> in the pop-up window, then press Enter to return to the previous screen.

3. Change the IP address.

a. Select Static IP Address.

b. Enter the IP address of the iDRAC interface (ipmi0) for the SMW, then press Enter.

4. Change the gateway.

a. Select Static Gateway.

b. Enter the appropriate value for the gateway of the network to which the iDRAC is connected, then
press Enter.

5. Change the subnet mask.

a. Select Subnet Mask.

b. Enter the subnet mask for the network to which the iDRAC is connected (such as
255.255.255.0), then press Enter.

6. Change the DNS server settings.

a. Select Static Preferred DNS Server, enter the IP address of the primary DNS server, then press
Enter.

b. Select Alternate DNS Server, enter the IP address of the alternate DNS server, then press
Enter.

e. Change the IPMI settings.

Change the IPMI settings to enable the Serial Over LAN (SOL) console.

1. Use the arrow key to scroll down to the IPMI SETTINGS list.

2. Ensure that Enable IPMI over LAN is selected.

TIP: Use the left-arrow or right-arrow to switch between two settings.

3. Ensure that Channel Privilege Level Limit is set to Administrator.

f. Exit Network screen.

Press the Esc key to exit the Network screen and return to the iDRAC Settings screen.

5. Change hostname in iDRAC LCD display.

Change front panel security to show the hostname in LCD display.

a. Use the arrow key to scroll down and highlight Front Panel Security on the iDRAC Settings screen,
then press Enter.

Manage the System

S2393 29

b. Select Set LCD message, then press Enter.

c. Select User-Defined String, then press Enter.

d. Select User-Defined String, then enter the SMW hostname and press Enter.

e. Press the Esc key to exit the Front Panel Security screen.

6. (Optional) Change the iDRAC System Location fields.

Change the System Location configuration on the iDRAC Settings screen to set any of these fields: Data
Center Name, Aisle Name, Rack Name, and Rack Slot.

7. Configure iDRAC virtual media.

a. Select Domain Name, then press Enter.

b. Select Virtual Media Configuration, then press Enter.

c. Select the Virtual Media line and press the space key until it indicates Detached.

d. Press Esc to exit the Virtual Media Configuration menu.

8. Set the password for the iDRAC root account.

a. Use the arrow key to highlight User Configuration on the iDRAC Settings screen, then press Enter.

b. Confirm that User Name is root. Select User Name, then enter the "root" user name.

c. Select Change Password, then enter a new password.

d. Reenter the new password in the next pop-up window to confirm it (the default password is "calvin").

e. Press the Esc key to exit the User Configuration screen.

9. Exit iDRAC settings.

a. Press the Esc key to exit the iDRAC Settings screen.

A "Settings have changed" message appears.

b. Select Yes, then press Enter to save the changes.

A "Success" message appears.

c. Select Ok, then press Enter.

The main screen (System Setup Main Menu) appears.

10. Change device settings.

These steps disable an integrated NIC device by changing the setting for the integrated NIC on a port from
PXE to None.

a. Change Integrated NIC 1 Port 1

1. Select Device Settings on the System Setup Main Menu, then press Enter. The Device Settings
screen appears.

Manage the System

S2393 30

Figure 15. Dell R630 Device Settings Screen

2. Select Integrated NIC 1 Port 1: ... on the Device Settings screen, then press Enter.

3. Select MBA Configuration Menu on the Main Configuration Page screen, then press Enter.

Figure 16. Dell R630 BIOS MBA Configuration Settings

4. Select Legacy Boot Protocol on the MBA Configuration Menu screen, use the right-arrow or left-
arrow key to highlight None, then press Enter.

5. Press the Esc key to exit the MBA Configuration Menu screen.

Manage the System

S2393 31

6. Press Esc to exit the Main Configuration Page screen. A "Warning Saving Changes" message
appears.

7. Select Yes, then press Enter to save the changes. A "Success" message appears.

8. Select OK, then press Enter. The Device Settings screen appears.

9. Press Esc to exit the Device Settings screen. A "Settings have changed" message appears.

10. Select Yes, then press Enter to save the changes. A "Settings saved successfully" message
appears.

11. Select OK, then press Enter. The main screen (System Setup Main Menu) appears.

b. Change Integrated NIC 1 Port 2

1. Select Device Settings on the System Setup Main Menu, then press Enter. The Device Settings
screen appears.

Figure 17. Dell R630 Device Settings Screen

2. Select Integrated NIC 1 Port 2: ... on the Device Settings screen, then press Enter.

3. Select MBA Configuration Menu on the Main Configuration Page screen, then press Enter.

Manage the System

S2393 32

Figure 18. Dell R630 BIOS MBA Configuration Settings

4. Select Legacy Boot Protocol on the MBA Configuration Menu screen, use the right-arrow or left-
arrow key to highlight None, then press Enter.

5. Press the Esc key to exit the MBA Configuration Menu screen.

6. Press Esc to exit the Main Configuration Page screen. A "Warning Saving Changes" message
appears.

7. Select Yes, then press Enter to save the changes. A "Success" message appears.

8. Select OK, then press Enter. The Device Settings screen appears.

9. Press Esc to exit the Device Settings screen. A "Settings have changed" message appears.

10. Select Yes, then press Enter to save the changes. A "Settings saved successfully" message
appears.

11. Select OK, then press Enter. The main screen (System Setup Main Menu) appears.

Use the iDRAC

Prerequisites
This procedure assumes an integrated Dell Remote Access Controller (iDRAC) has been set up for use with the
SMW.

About this task
An iDRAC enables remote management of a Cray System Management Workstation (SMW). This procedure
describes how to access the SMW console through the iDRAC.

Procedure

1. Bring up a web browser.

Manage the System

S2393 33

2. Go to: https://cray-drac, where cray-drac is the name assigned to the iDRAC during setup. The
iDRAC login screen appears.

3. Enter the account user name and password set up in Change the Default iDRAC Password on page 14 or an
iDRAC setup procedure.

The System Summary window appears.

4. Select Submit.

5. To access the SMW console, select the Console Media tab.

The Virtual Console and Virtual Media window appears.

6. Select Launch Virtual Console.

TIP: By default, the console window has two cursors: one for the console and one for the
administrator's window environment. To switch to single-cursor mode, select Tools, then Single
Cursor. This single cursor will not move outside the console window. To exit single-cursor mode,
press the F9 key.

TIP: To log out of the virtual console, kill the window or select File, then Exit. The web browser is still
logged into the iDRAC.

For detailed information, see the iDRAC documentation at: http://www.dell.com/support.

Hardware Component Identification
System components (nodes, blades, chassis, cabinets, etc.) are named and located by node ID (NID), IP
address, or physical ID. Physical IDs are often referred to as cnames.

Physical ID for Cray XC Series Systems
The physical ID identifies the cabinet's location on the floor and the component's location in the cabinet as seen
by the HSS. Descriptions within the table below assume the reader is facing the front of the system cabinets.

Table 1. Physical ID Naming Conventions

Component Format Description

SMW s0, all All components attached to the SMW.

xtcli power up s0 powers up all
components attached to the SMW.

cabinet cX-Y Compute/service cabinet, cabinet
controller hostname. Not used for
blower cabinets.

For example: c12-3 is cabinet 12 in
row 3.

compute/service cabinet controller
HSS microcontroller

cX-YmM Compute/Service cabinet controller
HSS microcontroller; M is 0.

power rectifier module within a
cabinet

cX-YrR Power rectifier module within a
cabinet; R is 0 to 63.

Manage the System

S2393 34

http://www.dell.com/support

Component Format Description

cabinet controller (CC) FPGA cX-YfF Cabinet controller (CC) FPGA; F is 0.

blower cabinet bX-Y Blower cabinet, cabinet controller
hostname (if applicable). X is 0 to 63;
Y is 0 to 15.

For example: b12-3 is blower cabinet
12 in row 3.

blower cabinet controller bX-YmM Blower cabinet, cabinet controller; M is
0.

blower within a blower cabinet bX-YbB Blower within a blower cabinet; B is
0-5.

chassis cX-YcC Physical unit within cabinet: cX-Y; cC
is the chassis number and C is 0-2.
Chassis are numbered bottom to top.

For example: c0-0c2 is chassis 2 of
cabinet c0-0.

chassis host controller cX-YcCmM Chassis host controller; M is 0.

optical connectors cX-YcCjJ Optical connectors per chassis; there
are 40 optical connectors per chassis.
J is 0-63.

chassis host FPGA cX-YcCfF Chassis host FPGA; F is 0.

blade or slot cX-YcCsS Physical unit within a slot of a chassis
cX-YcC; sS is the slot number of the
blade and S is 0-15.

For example: c0-0c2s4 is slot 4 of
chassis 2 of cabinet c0-0.

For example: c0-0c2s* is all slots
(0...15) of chassis 2 of cabinet c0-0.

optical controller groups cX-YcCoO Optical controller groups -- controller
groups are associated with slots by
multiplying controller number by 2
(and optionally adding 1); O is 0-7.

individual optical controller cX-YcCoOxX Individual optical controller within an
optical controller group; X is 0-4.

L0D FPGA within a base blade cX-YcCsSfF L0D FPGA within a base blade; F is 0.

Aries™ ASIC cX-YcCsSaA Aries ASIC within a base blade. There
is only one Aries ASIC per blade, and
all nodes on the blade connect to it.
aA is the location of the ASIC within
the blade and A is 0.

For example: c0-1c2s3a0.

Manage the System

S2393 35

Component Format Description

Aries NIC cX-YcCsSaAnNIC NIC (Network Interface Controller)
within an Aries ASIC; NIC is 0-3.

For example: c0-1c2s3a0n1

LCB tile row/column cX-YcCsSaAlRCol LCB tile row/column. Row 5 is all
processor tiles; all other rows contain
only HSN tiles. Note the octal
numbering. R is 0-5 and Col is 0-7.

SerDes macro associated with an
LCB

cX-YcCsSaAmRCol SerDes macro associated with an
LCB. Note the octal numbering. R is
0-5 and Col is 0-7.

SerDes macro network processor
associated with an LCB

cX-YcCsSaApRCol SerDes macro network processor
associated with an LCB. Note the
octal numbering. R is 0-5 and Col is
0-7.

Aries ASIC VRM cX-YcCsSaAvV Aries ASIC VRM; V is 0.

Processor Daughter Card (PDC)
within a base blade

cX-YcCsSpP Processor Daughter Card within a
base blade; P is 0-3.

quad Processor Daughter Card
(QPDC) within a base blade

cX-YcCsSqQ Quad Processor Daughter Card within
a base blade; Q is 0-1.

general-purpose-accelerator
Processor Daughter Card (GPDC)
within a base blade

cX-YcCsSkK General-purpose-accelerator
Processor Daughter Card (GPDC)
within a base blade; K is 0-1.

L0C FPGA within a PDC cX-YcCsSpPfF L0C FPGA within a PDC; F is 0.

L0C FPGA within a QPDC cX-YcCsSqQfF L0C FPGA within a Quad PDC; F is 0.

L0C FPGA within a GPDC cX-YcCsSkKfF L0C FPGA within a GPDC; F is 0.

VRM within a PDC associated with a
processor socket

cX-YcCsSpPvV VRM within a PDC associated with a
processor socket; V is 0-1.

SouthBridge chip within a PDC cX-YcCsSpPsSouthBridge SouthBridge chip within a PDC;
SouthBridge is 0.

SouthBridge chip within a QPDC cX-YcCsSqQsSouthBridge SouthBridge chip within a Quad PDC;
SouthBridge is 0-1.

SouthBridge chip within a GPDC cX-YcCsSkKsSouthBridge SouthBridge chip within a GPDC;
SouthBridge is 0-1.

blade controller HSS microcontroller
within a base blade

cX-YcCsSmM Blade controller HSS microcontroller
within a base blade (not the blade
controller CPU); M is 0.

node cX-YcCsSnN Physical node on a base blade; nN is
the location of the node and N is 0-3.

For example: c0-0c2s4n0 is node 0
on blade 4 of chassis 2 in cabinet
c0-0.

Manage the System

S2393 36

Component Format Description

For example: c0-0c2s4n* is all
nodes on blade 4 of chassis 2 of
cabinet c0-0.

accelerator cX-YcCsSnNaA Accelerator associated with a node;
may be any type of supported
accelerator. A is 0-7.

processor socket associated with a
physical node

cX-YcCsSnNsSocket Processor socket associated with a
physical node; Socket is 0-1.

DIMM associated with a processor
socket

cX-YcCsSnNsSocketmM DIMM associated with a processor
socket; M is 0-7.

VDD VRM associated with processor
socket

cX-YcCsSnNsSocketvV VDD VRM associated with processor
socket; V is 0.

VDR VRM associated with processor
socket

cX-YcCsSnNsSocketrR VDR VRM associated with processor
socket; R is 0.

die within a processor socket cX-YcCsSnNsSocketdD Die within a processor socket; D is
0-3.

core within a die cX-YcCsSnNsSocketdDcCore Core within a die; Core is 0-63.

memory controller within a die cX-YcCsSnNsSocketdDmM Memory controller within a die; M is
0-3.

logical machine (partition) p# A partition is a group of components
that make up a logical machine.
Logical systems are numbered from 0
to the maximum number of logical
systems minus one. Because p0 is
reserved to refer to the entire machine
as a partition a configuration with 31
logical machines would be numbered
p1 through p31 and p0 would need to
be deactivated or removed as it would
no longer be valid.

Node ID (NID) on Cray XC Series Systems
The node ID (NID) is a decimal numbering of all CLE nodes. NIDs are sequential numberings of the nodes
starting in cabinet c0-0. Each additional cabinet continues from the highest value of the previous cabinet;
therefore, cabinet 0 has NIDs 0-191, and cabinet 1 has NIDs 192 - 383, and so on.

With the exception of Cray XC-AC (air-cooled) systems, all Cray XC Series cabinets contain three chassis;
chassis 0 is the lower chassis in the cabinet. Each chassis contains sixteen blades and each blade contains four
nodes. The lowest numbered NID in the cabinet is in chassis 0 slot 0 (lower left corner); slots are numbered from
0 (bottom) to 7 (top) on the left side and 8 (bottom) to 15 (top) on the right side (when facing the front of the
cabinet). NID numbering begins in cabinet 0, slot 0 with NIDs 0, 1, 2, and 3; NIDs 4, 5, 6, 7 are in slot 1; this
numbering scheme continues to slot 15 and then moves up to chassis 1 and so on.

Manage the System

S2393 37

Cray XC-AC systems only have one chassis, which is rotated 90 degrees counter-clockwise. Therefore, slot 0 is
on the bottom right and slot 7 is on the bottom left; slot 8 (right) through 15 (left) are in the top row of the chassis
(when facing the front of the cabinet).

Use the xtnid2str command to convert a NID to a physical ID. For information about using the xtnid2str
command, see the xtnid2str(8) man page. To convert a physical ID to a NID number, use the rtr --
system-map command and filter the output. For example:

crayadm@smw:~> rtr --system-map | grep c1-0c0s14n3 | awk '{ print $1 }'
251

Use the nid2nic command to print the nid-to-nic_address mappings, nic_address-to-nid mappings, and
a specific physical_location-to-nic_address and nid mappings. For information about using the nid2nic
command, see the xtnid2str(8) man page.

Extended Node ID (XNID)
An extended node ID (XNID) provides a means of addressing host nodes and their coprocessors independently
even though a host and coprocessor share the same network interface. An XNID provides a handle for common
communication interfaces within the system, such as PMI, LNET, TCP/IP, and DVS, to access coprocessors. This
direct access permits direct (autonomous) execution of coprocessor-targeted executables.

During the installation of a system with coprocessors, the CLE installer prompts for a base extended node
identifier offset value for the system. For example, assume that base is set to 50000. That number is added to the
host NID for a node containing a coprocessor. If the host node is nid00032, then the coprocessor is nid50032.

Topology Class
Each Cray system is given a topology class based on the number of cabinets and their cabling. Some commands,
such as xtbounce, enable the administrator to specify topology class as an option.

The follow commands display the topology class of a system in their output:

● xtcli status
● rca-helper -o
● xtclass (executed on the SMW)

For example:

smw:~> xtclass
1

Boot the System
The xtbootsys command is used to manually boot the boot node, service nodes, and CNL compute nodes. An
administrator can also boot the system using both user-defined and built-in procedures in automation files
(e.g., /opt/cray/hss/default/etc/auto.generic).

crayadm@smw> xtbootsys -a auto.myautobootfile

Before modifying the auto.generic file, Cray recommends making a copy because it will be replaced by an
SMW software upgrade. Avoid strict boot ordering of service nodes in an automated boot file. For related
procedures, see .

Manage the System

S2393 38

The xtbootsys command prevents unintentional booting of currently booted partitions. If a boot automation file
is being used, xtbootsys checks that file to determine if the string shutdown exists within any actions defined
in the file. If it does, xtbootsys assumes that a shutdown is being done, and no further verification of operating
on a booted partition occurs. If the partition is not being shut down and the boot node is in the ready state,
xtbootsys announces this fact and queries for confirmation to proceed. By default, confirmation is enabled. To
disable or enable confirmation when booting booted partitions, use the xtbootsys
config,confirm_booting_booted and the config,confirm_booting_booted_last_session global
TCL variables, the --config name=value on the xtbootsys command line, or the
XTBOOTSYS_CONFIRM_BOOTING_BOOTED and XTBOOTSYS_CONFIRM_BOOTING_BOOTED_LAST_SESSION
environment variables.

Run Tests after Boot is Complete

Prerequisites
This procedure assumes the following:

● The system has completed booting.

● The compute nodes are “interactive," not under workload manager (WLM) control.

● ALPS is available.

If ALPS is not available and Slurm is used as the WLM, then the compute nodes can be either "interactive" or
"batch," and srun (the equivalent Slurm command) should be used instead of the aprun commands in the steps
that follow.

About this task
Log in to the login node as crayadm. This can be done from the SMW to the boot node to the login node or
directly from another computer to the login node without passing through the SMW and boot node. Then perform
these rudimentary functionality checks.

Procedure

1. Run apstat to get the number of nodes to use for the following commands.

crayadm@login> NUMNODES=$(($(apstat -v | grep XT | awk "{print \$3}")))
crayadm@login> echo NUMNODES is $NUMNODES

2. Verify that all nodes run (from /tmp).

crayadm@login> cd /tmp
crayadm@login> aprun -b -n $NUMNODES -N 1 /bin/cat /proc/sys/kernel/hostname

3. Verify that the home directory is working by running a job.

crayadm@login> cd ~
crayadm@login> aprun -b -n $NUMNODES -N 1 /bin/cat /proc/sys/kernel/hostname

4. Verify that the Lustre directory is working by running a job.

Manage the System

S2393 39

crayadm@login> cd /lustre_file_system
crayadm@login> aprun -b -n $NUMNODES -N 1 /bin/cat /proc/sys/kernel/hostname

Manually Boot the Boot Node and Service Nodes

Prerequisites
The Lustre file system should start up before the compute nodes, and compute node Lustre clients should be
unmounted before shutting down the Lustre file system.

About this task
If more than one boot image is set up to run, the administrator can check which image is set up to boot with the
xtcli boot_cfg show or xtcli part_cfg show pN commands. To change which image is booting, see
Update the Boot Configuration on page 50

Procedure

1. Log on to the SMW as crayadm.

2. Invoke the xtbootsys command to boot the boot node. If the system is partitioned, invoke xtbootsys with
the --partition pN option.

crayadm@smw:~> xtbootsys
The xtbootsys command prompts with a series of questions. Cray recommends answering yes by typing Y
to each question.

Enter your boot choice:
 0) boot bootnode ...
 1) boot sdb ...
 2) boot compute ...
 3) boot service ...
 4) boot all (not supported) ...
 5) boot all_comp ...
 10) boot bootnode and wait ...
 11) boot sdb and wait ...
 12) boot compute and wait ...
 13) boot service and wait ...
 14) boot all and wait (not supported) ...
 15) boot all_comp and wait ...
 17) boot using a loadfile ...
 18) turn console flood control off ...
 19) turn console flood control on ...
 20) spawn off the network link recovery daemon (xtnlrd)...
 q) quit.

3. Select option 10 (boot bootnode and wait).

A prompt to confirm the selection is displayed. Press the Enter key or type Y to each question to confirm.

Do you want to boot the boot node ? [Yn] Y
Do you want to send the ec_boot event ('no' means to only load memory) ? [Yn] Y
After the boot node is booted, the process returns to the boot choice menu.

Manage the System

S2393 40

4. Select option 11 (boot sdb and wait).

A prompt to confirm the selection is displayed. Press the Enter key or type Y to each question to confirm.

Do you want to boot the sdb node ? [Yn] Y
Do you want to send the ec_boot event ('no' means to only load memory) ? [Yn] Y

5. Select option 13 (boot service and wait).

A prompt to enter a list of service nodes to be booted is displayed.

6. Type p0 to boot the remaining service nodes in the entire system or pN (where N is the partition number) to
boot a partition.

Do you want to boot service p0 ? [Yn] Y
Do you want to send the ec_boot event ('no' means to only load memory) ? [Yn] Y
To confirm the selection, press the Enter key or type Y to each question.

7. Log on to any service nodes for which there are local configuration or startup scripts (such as starting Lustre)
and run the scripts.

Manually Boot the Compute Nodes

Prerequisites
All service and login nodes are booted and Lustre, if configured at this time, has started.

Procedure

1. Invoke the xtbootsys command if it is not running.

crayadm@smw:~> xtbootsys

Enter your boot choice:
 0) boot bootnode ...
 1) boot sdb ...
 2) boot compute ...
 3) boot service ...
 4) boot all (not supported) ...
 5) boot all_comp ...
 10) boot bootnode and wait ...
 11) boot sdb and wait ...
 12) boot compute and wait ...
 13) boot service and wait ...
 14) boot all and wait (not supported) ...
 15) boot all_comp and wait ...
 17) boot using a loadfile ...
 18) turn console flood control off ...
 19) turn console flood control on ...
 20) spawn off the network link recovery daemon (xtnlrd)...
 q) quit.

2. Select option 17 (boot using a loadfile). A series of prompts are displayed. Type the responses indicated in
the following example. For the component list prompt, type p0 to boot the entire system, or pN (where N
is the partition number) to boot a partition. At the final three prompts, press the Enter key.

Manage the System

S2393 41

Enter your boot choice: 17
Enter a boot type string (or nothing to do nothing): CNL0
Enter a boot type option (or nothing to do nothing): compute
Enter a component list (or nothing to do nothing): p0
Enter 'any' to wait for any console output,
 or 'linux' to wait for a linux style boot,
 or anything else (or nothing) to not wait at all: Enter
Enter an alternative CPIO archive name (or nothing): Enter
Do you want to send the ec_boot event ('no' means to only load memory) ? [Yn]
Enter

3. Return to the xtbootsys menu after all compute nodes are booted. Type q to exit the xtbootsys program.

4. Remove the /etc/nologin file from all service nodes to permit a non-root account to log on.

smw:~# ssh root@boot
boot:~# xtunspec -r /rr/current -d /etc/nologin

Reboot a Single Compute Node
A system administrator can initiate a warm boot with the xtbootsys command's --reboot option. This
operation performs minimal initialization followed by a boot of only the selected compute nodes. Unlike the
sequence that is used by the xtbounce command, there is no power cycling of the Cray ASICs or of the node
itself; therefore, the high-speed network (HSN) routing information is preserved. Do not specify a session identifier
(-s or --session option) because --reboot continues the last session and adds the selected components to
it.

Reboot a single comput node

For this example, reboot node c1-0c2s1n2:

crayadm@smw:~> xtbootsys --reboot c1-0c2s1n2

Reboot Login or Network Nodes
Login or network nodes cannot be rebooted through a shutdown or reboot command issued on the node; they
must be restarted through the HSS system using the xtbootsys --reboot idlist SMW command. The HSS
must be used so that the proper kernel is pushed to the node.

IMPORTANT: Do not attempt to warm boot nodes running other services in this manner.

For additional information, see the xtbootsys(8) man page.

Reboot login or network nodes

crayadm@smw:~> xtbootsys --reboot idlist

Reboot Many Nodes
When rebooting many CLE nodes, the default is to reboot nodes in chunks up to 96 at a time. To change this
chunk size to a different value, the reboot_maxids variable in xtbootsys can be adjusted on the command
line for the warm boot command. This example changes reboot_maxids from 96 to 512.

Manage the System

S2393 42

Reboot many nodes

crayadm@smw:~> xtbootsys --reboot -c reboot_maxids=512

Boot the SMW in Rescue Mode

Prerequisites
● Download the image to use for booting the SMW to the system that is running the browser accessing the

iDRAC web interface.

● If the system running the web browser used for accessing iDRAC is not a Windows machine, determine how
to type the equivalent of F11 key. For example, on a MacBook, the keystroke is fn-F11.

● Ensure that no physical media is loaded in the drive.

● Start the Dell iDRAC for the SMW.

About this task
If unable to boot the SMW through normal means, such as when file system corruption occurs, use the Dell
iDRAC web interface to start the system in rescue mode.

Procedure

1. Launch the virtual console by selecting Overview → Server → Properties. The System Summary page
displays. Under Virtual Console Preview section, click Launch. The Virtual Console Viewer launches.

2. From the Virtual Console Viewer, launch virtual media by selecting Virtual Media → Launch Virtual Media.
The Client View window displays.

3. Select Add Image and select the SMW image to launch. The name of this image is (or is similar to)
SLE-12-SP2-Server-DVD-x85_64-RC3-DVD1.iso. Click Open.

4. Select the Mapped check box, which is next the selected SMW image. Leave the Client View window open.

5. Reinitialize BIOS and boot the system by powering on the system or, if the system was not previously
shutdown, resetting the system. From the Virtual Console Viewer, select Power → Power On System or
Power → Reset System.

As the BIOS hardware initialization proceeds, watch the Virtual Console Viewer for instructions to press F11
for the BIOS Boot Manager and press that key or its equivalent. If the opportunity is missed, reset the system
and try again.

6. In the BIOS Boot Manager, select Virtual CD.

7. On the SUSE boot window, select the More... option. Then select Rescue System. A prompt is displayed for
access to rescue system tools.

Manage the System

S2393 43

Debug Ansible Failures During System Boot
Ansible runs in init and Ansible runs a second time after systemd completes the boot process. Ansible failures
in init cause the affected node to drop into a debug shell for node access via xtcon for troubleshooting. When
the debug shell is exited, Ansible is re-executed in init. A node's boot does not proceed until the first run of
cray-ansible in init is successful.

The Ansible callback plugin captures any file changes made by Ansible file modules and stores a record of these
changes in log files located at /var/opt/cray/log/ansible/changelog. The plugin provides detailed
failure information, including the path to the task file being executed and any config set variable references in the
task file.

Ansible logs under /var/opt/cray/log/ansible are collected via cdump and xtdumpsys. In addition,
xtdumpsys collects the files from running nodes, changed by Ansible according to the changelog callback plugin.
When possible, Ansible Cray-provided plays create a backup of files modify by a play to let the administrator to
perform a diff of these files to see the changes made by Ansible. Administrators can use the
ansible_cfg_search command to examine an image and a config set. This command outputs a list of
variables and the Ansible files that accessed each variable.

Examine System Logs
Various logs receive entries during the boot process that can indicate boot problems.

systemd Journal
The systemd init system takes over the boot process after initrd. Use the journalctl -a to display all
kernel messages and other information in the systemd journal. Using journalctl -f displays the most recent
journal entries and continuously prints new entries. systemd stores messages in a custom database, the
systemd journal. The information available in the journal includes:

● syslogd messages

● Kernel log messages

● initrd messages

● Messages written to stdout/stderr for all services

HSS Daemon Logs
The HSS daemons and the rsyslogd daemon running on the SMW logs to files in the /var/opt/cray/log
directory. These daemons include nimsd, xtpmd, xtremoted, xtpowerd, xtsnmpd, xtdiagd, erfsd,
state_manager, bootmanager, sedc_manager, nid_mgr, erdh, and erd.

SMW Command Log
The /var/opt/cray/log/commands log lists the commands issued from the SMW console.

CLE Boot Logs
The output from booting CLE is in the /var/opt/cray/log/p0-current log. For more detailed information,
go to the p0-current directory and examine these log files:

● bootinfo.timestamp

Manage the System

S2393 44

Contains output from the xtbootsys command. Timing information for how long sections of the boot process
take is listed at the bottom of this file.

● console-YYYYMMDD
Contains the combined console output from every node. To find Ansible failures for a node during init,
search for cray-ansible: /etc/ansible/site.yaml completed in init - FAILED.

Look Up Configuration Details
The ansible_cfg_search command line tool lets an administrator on the SMW specify a config set, an IMPS
image root, and optionally, an Ansible play to query for config set lookups and template locations. The intent is to
provide a general understanding of which configuration files are used at specific points in the boot process. The
command uses the playbook structure to inspect the plays, roles, templates, and task files for patterns that
appear to be config set variable lookups. For each lookup found in the Ansible content, the command lists a path
to the configuration template that holds the variable.

Before using ansible_cfg_search, load the system-config module.

ansible_cfg_search [-h] [-p PLAYBOOK] [-s CONFIG_SETTING] [-e LOOKUP_EXPRESSION]
 [-q] config_set image

Required arguments:

config_set The config set to search for config variables.

image The IMPS image root containing ansible content to search. If necessary, use the image list
command to find the IMPS image root.

Optional arguments:

-h, --help Display help information.

-p PLAYBOOK, --playbook PLAYBOOK The Ansible playbook file contained in the IMPS image to
search for configuration lookups.

-s CONFIG_SETTING, --config-setting
CONFIG_SETTING

List the configuration templates and Ansible files that contain
the specified setting.

Example
Examine a config set to determine the settings that the baseopts.yaml play is looking up:

smw: # module load system-config
smw: # ansible_cfg_search p0 \
service_cle_6.0.UP03-build6.0.3074_sles_12-created20170120 \
--play baseopts.yaml

Output:

/var/opt/cray/imps/image_roots/service_cle_6.0.UP03-build6.0.3074_sles_12-created20170120/
etc/ansible/baseopts.yaml:

 - /var/opt/cray/imps/image_roots/service_cle_6.0.UP03-build6.0.3074_sles_12-
created20170120/etc/ansible/roles/baseopts/tasks/smw.yaml:
 - /var/opt/cray/imps/config/sets/p0/config/cray_user_settings_config.yaml:
 - cray_user_settings.settings.default_modules.data.smw

 - /var/opt/cray/imps/image_roots/service_cle_6.0.UP03-build6.0.3074_sles_12-

Manage the System

S2393 45

created20170120/etc/ansible/roles/baseopts/tasks/main.yaml:
 - /var/opt/cray/imps/config/sets/p0/config/cray_login_config.yaml:
 - cray_login.settings.login_nodes.data.members
 - /var/opt/cray/imps/config/sets/p0/config/cray_user_settings_config.yaml:
 - cray_user_settings.settings.default_modules.data.login
 - cray_user_settings.settings.default_modules.data.service
 - cray_user_settings.settings.default_modules.data.smw

 - /var/opt/cray/imps/image_roots/service_cle_6.0.UP03-build6.0.3074_sles_12-
created20170120/etc/ansible/roles/baseopts/tasks/login.yaml:
 - /var/opt/cray/imps/config/sets/p0/config/cray_user_settings_config.yaml:
 - cray_user_settings.settings.default_modules.data.login

 - /var/opt/cray/imps/image_roots/service_cle_6.0.UP03-build6.0.3074_sles_12-
created20170120/etc/ansible/roles/baseopts/tasks/service.yaml:
 - /var/opt/cray/imps/config/sets/p0/config/cray_user_settings_config.yaml:
 - cray_user_settings.default_modules
 - cray_user_settings.default_modules.login
 - cray_user_settings.default_modules.service
 - cray_user_settings.default_modules.smw
 - cray_user_settings.settings.default_modules.data.service

Examine Ansible Changelogs
The Ansible changelog provides information about files created, modified, and deleted by Ansible. Changelogs
are created for cray-ansible when it first runs during the init phase and again when cray-ansible runs
for the second time, during the booted phase. These logs are on the SMW in /var/opt/cray/log/ansible.

Logs created in the first phase (init):

sitelog-init Contains Ansible play output from each task in executed plays.

file-changelog-init Human-readable listing of each file changed by an Ansible play.

file-changelog-init.yaml Machine-readable listing of each file changed by an Ansible play.

Logs created in the second phase (booted):

sitelog-booted Contains Ansible play output from each task in executed plays.

file-changelog-booted Human-readable listing of each file changed by an Ansible play.

file-changelog-booted.yaml Machine-readable listing of each file changed by an Ansible play.

This sitelog entry shows that a task updated the message of the day (motd) file.

2016-01-17 12:15:27,671 TASK: [cle_motd | task motd, release]

2016-01-17 12:15:27,671 changed: [localhost] => {"changed": true,
"cmd": "grep RELEASE /etc/opt/cray/release/cle-release | awk -F\\='{print $2}'",
"delta": "0:00:00.002536", "end": "2016-01-17 12:15:27.471384", "rc": 0,
"start": "2016-01-17 12:15:27.468848", "stderr": "", "stdout": "6.0.UP01",
"warnings": []}

The location of failing task can be found in plays:

boot# grep -Rn "task motd, release" /etc/ansible \
/etc/opt/cray/config/current/ansible
/etc/ansible/roles/cle_motd/tasks/motd.yaml:15:- name: task motd, release

Manage the System

S2393 46

The file-changelog files show the Ansible phase, each changed file, and the play that changed the file. This
an entry from a file-changelog-init changelog:

Apr 05 2016 21:07:47 (init) template: file '/etc/nologin' changed by Ansible
task file '/etc/ansible/roles/early/tasks/nologin.yaml' with owner=root,
group=root, mode=0775

This an entry from a file-changelog-booted changelog:

May 16 2016 22:26:39 (booted) lineinfile: file '/etc/hosts' changed by Ansible
task file '/etc/ansible/roles/hosts/tasks/main.yaml' with owner=None,
group=None, mode=None

The same entry for the /etc/hosts edit in the file-changelog-booted.yaml changelog:

- backup_file_path: ''
 file_path: /etc/hosts
 group: null
 mode: null
 module: lineinfile
 owner: null
 phase: booted
 play: populate local hostfile
 state: null
 task_file: /etc/ansible/roles/hosts/tasks/main.yaml
 task_name: Add additional hosts to master file
 time: May 16 2016 22:26:39

The changelog entry fields are:

Field Name Description

backup_file_path Location of backup copy of file modified or deleted, if available.

file_path Full path to the file which was modified.

group Group given to the file if created or modified, or null if not specified.

mode Permissions changed on the file if created or modified, or null if permissions were
not changed.

module Ansible module executed.

owner Owner given to the file if created or modified, or null if not specified.

phase Values are "booted" or "init".

play Name of play making change.

state Whether a line should be "present" or "absent".

task_file Name of the task file which made the change.

task_name Name of the task which made this change.

time Format is "Month Day Year HH:mm:ss".

Manage the System

S2393 47

Debug Ansible Failures in init

About this task
Check the console log on the SMW to find out which nodes failed. Ansible failures in init drop a node into
debug shell. The boot process is not allowed to continue until cray-ansible during init is successful on a
node.

Procedure

1. Look for cray-ansible failures in the SMW console log.

crayadm@smw~> /var/opt/cray/log/p0-current> cat console-20160523 | grep
'completed in init - FAILED'

<158>1 2016-05-23T12:01:22.576591-05:00 c0-0c0s0n1 xtconsole 31798
p0-20160523t115109 [console@34] cray-ansible: /etc/ansible/site.yaml completed
in init - FAILED.
<158>1 2016-05-23T12:01:22.576634-05:00 c0-0c0s0n1 xtconsole 31798
p0-20160523t115109 [console@34] cray-ansible: /etc/ansible/site.yaml completed
in init - FAILED.
<158>1 2016-05-23T12:01:34.411653-05:00 c0-0c0s1n2 xtconsole 31798
p0-20160523t115109 [console@34] cray-ansible: /etc/ansible/site.yaml completed
in init - FAILED.
<158>1 2016-05-23T12:01:34.411699-05:00 c1-0c2s1n2 xtconsole 31798
p0-20160523t115109 [console@34] cray-ansible: /etc/ansible/site.yaml completed
in init - FAILED.

2. Access the debug shell with xtcon from the SMW.

smw# xtcon c1-0c2s1n2

nid00035#

3. Inspect Ansible logs on the node in /var/opt/cray/log/ansible, make a configuration change in the
config set, or do some other corrective action. Exiting from the debug shell causes cray-ansible to run
again in init.

Examine System Dumps
The xtdumpsys command collects and analyzes information from a Cray XC system that is failing or has failed,
has crashed, or is hung. The dump file includes:

● Event log data, active heartbeat probing, voltages, temperatures, health faults, in-memory console buffers,
and high-speed interconnection network errors.

● Config sets from the SMW.

● Ansible logs from nodes.

● Ansible changed files log from nodes can be collected.

● NIMS logs from SMW can be collected.

Manage the System

S2393 48

Include the files that Ansible changed by using the ansible_changed_files xtdumpsys plugin.

xtdumpsys --plugins-include=ansible_changed_files --reason="add changed files" -
add c0-0c0s3n2

Include the NIMS logs from the SMW by using the nims_logs xtdumpsys plugin. The NIMS logs are written to
the nims directory in the dump.

xtdumpsys --plugins-include=nims_logs --reason="include NIMS logs"

Log on to the Boot Node

About this task
The standard Cray configuration has a gigabit Ethernet connection between the SMW and boot node. All other
nodes on the Cray system are accessible from the boot node.

Procedure

1. Log on to the SMW as crayadm.

2. There are two methods to log on to the boot node: ssh to the boot node.

● Use ssh:

crayadm@smw:~> ssh boot
crayadm@boot:~>

● Open an administrator window on the SMW:

crayadm@smw:~> xterm -ls -vb -sb -sl 2049 6&
After the window opens, use it to ssh to the boot node.

Display Boot Configuration Information
Use the xtcli command to display the configuration information for the primary and backup boot nodes, the
primary and backup SDB nodes, and the cpio path.

Display boot configuration information for the entire system

crayadm@smw:~> xtcli boot_cfg show
Network topology: class 2
=== xtcli_boot_cfg ===
[boot]: c0-0c0s0n1:ready,c0-0c0s0n1:ready
[sdb]: c1-0c0s1n1:ready
[cpio_path]: /tmp/boot/kernel.cpio_5.2.14-wGPFS

Display boot configuration information for one partition in a system

crayadm@smw:~> xtcli part_cfg show pN

Manage the System

S2393 49

Where pN is the partition number. p0 is always the whole system.

Update the Boot Configuration
The HSS xtcli boot_cfg command allows the administrator to specify the primary and backup boot nodes
and the primary and backup SDB nodes for s0 or p0 (the entire system).

For a partitioned system, use xtcli part_cfg to manage boot configurations for partitions.

For more information, see the xtcli_boot(8) and xtcli_part(8) man pages.

For this example, update the boot configuration using the boot image /bootimagedir/
bootimage, primary boot node (for example, c0-0c0s0n1), backup boot node, primary SDB
node, and the backup SDB node:

crayadm@smw:~> xtcli boot_cfg update -b primaryboot_id,backupboot_id \
-d primarySDB_id,backupSDB_id -i /bootimagedir/bootimage

Display the Format of the SDB attributes Table
When the SDB boots, it reads the /etc/opt/cray/sdb/attributes file and loads it into the SDB
attributes table.

To display the format of the attributes SDB table, use the mysql command:

crayadm@login:~> mysql -e "desc attributes;" -h sdb XTAdmin
+----------+------------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+----------+------------------+------+-----+---------+-------+
nodeid	int(32) unsigned	NO	PRI	0	
archtype	int(4) unsigned	NO		2	
osclass	int(4) unsigned	NO		2	
coremask	int(4) unsigned	NO		1	
availmem	int(32) unsigned	NO		0	
pageszl2	int(32) unsigned	NO		12	
clockmhz	int(32) unsigned	YES		NULL	
label0	varchar(32)	YES		NULL	
label1	varchar(32)	YES		NULL	
label2	varchar(32)	YES		NULL	
label3	varchar(32)	YES		NULL	
numcores	int(4) unsigned	NO		1	
sockets	int(4) unsigned	NO		1	
dies	int(4) unsigned	NO		1	
+----------+------------------+------+-----+---------+-------+
The service database command pair xtdb2attr and xtattr2db enables the system administrator to update
the attributes table in the SDB. For additional information about updating SDB tables using command pairs,
see Update SDB Tables on page 51.

Manage the System

S2393 50

Update SDB Tables
The CLE command pairs shown enable the system administrator to update tables in the SDB. One command
converts the data into an ASCII text file to edit; the other writes the data back into the database file.

Table 2. Service Database Update Commands

Get Command Put Command Table Accessed Reason to Use Default File

xtdb2proc xtproc2db processor Updates the
database when a
node is taken out of
service

./processor

xtdb2attr xtattr2db attributes Updates the
database when
node attributes
change

./attribute

xtdb2segment xtsegment2db segment For nodes with
multiple NUMA
nodes, updates the
database when
attribute information
about node changes

./segment

xtdb2servcmd xtservcmd2db service_cmd Updates the
database when
characteristics of a
service change

./serv_cmd

xtdb2servconfig xtservconfig2db service_config Updates the
database when
services change

./serv_config

xtdb2etchosts none processor Manages IP
mapping for service
nodes

none

xtdb2lustrefailove
r

xtlustrefailover
2db

lustre_failove
r

Updates the
database when a
node's Lustre
failover state
changes

./
lustre_failove
r

xtdb2lustreserv xtlustreserv2db lustre_service Updates the
database when a
file system's failover
process is changed

./lustre_serv

xtdb2filesys xtfilesys2db filesystem Updates the
database when a
file system's status
changes

./filesys

xtdb2gpus xtgpus2db gpus Updates the
database when

./gpus

Manage the System

S2393 51

Get Command Put Command Table Accessed Reason to Use Default File

attributes about the
accelerators change

xtprocadmin none processor Displays or sets the
current value of
processor flags and
node attributes in
the service
database (SDB).
The batch scheduler
and ALPS are
impacted by
changes to these
flags and attributes.

none

xtservconfig none service_config Adds, removes, or
modifies service
configuration in the
SDB
service_config
table

none

Free Up Disk Space in the btrfs File System After Removing SMW
Snapshots
The btrfs file system requires some maintenance, particularly to free up disk space consumed by unneeded
snapshots. When administrators encounter a No space left on device message, snapshots could be
causing the problem. For information about this issue, see the troubleshooting file systems section of the SUSE
Storage Administration Guide (https://www.suse.com/documentation/sles-12/stor_admin/data/stor_admin.html).
Also refer to the snapshot management section of the SUSE Administration Guide (https://www.suse.com/
documentation/sles-12/book_sle_admin/data/book_sle_admin.html).

Boot a Node or Set of Nodes Using the xtcli boot Command
To boot a specific image or load file on a given node or set of nodes, execute the HSS xtcli boot boot_type
command, as shown in the following examples. When using a file for the boot image, the same file must be on
both the SMW and the bootroot at the same path.

WARNING: Each system boot must be started with an xtbootsys session to establish a sessionid.
Perform direct boot commands using the xtcli boot command only after a session has been
established through xtbootsys.

Boot all service nodes with a specific image

For this example, the specific image is located at /raw0:

Manage the System

S2393 52

https://www.suse.com/documentation/sles-12/stor_admin/data/stor_admin.html
https://www.suse.com/documentation/sles-12/book_sle_admin/data/book_sle_admin.html
https://www.suse.com/documentation/sles-12/book_sle_admin/data/book_sle_admin.html

crayadm@smw:~> xtcli boot all_serv_img -i /raw0

Boot all compute nodes with a specific image

For this example, the specific image is located at /bootimagedir/bootimage:

crayadm@smw:~> xtcli boot all_comp_img -i /bootimagedir/bootimage

Boot compute nodes using a load file

The following example boots all compute nodes in the system with using a load file name CNL0:

crayadm@smw:~> xtcli boot CNL0 -o compute s0

Increase the Boot Manager Timeout Value
On systems of 4,000 nodes or larger, the time that elapses until the boot manager receives all responses to the
boot requests can be greater than the default 60-second time-out value. This is due, in large part, to the amount
of other event traffic that occurs as each compute node generates its console output.

To avoid this problem, change the boot_timeout value in the /opt/cray/hss/default/etc/bm.ini file on
the SMW to increase the default 60-second time-out value by 60 seconds for every 5,000 nodes; for example:

Increase the boot_timeout value

For systems of 5,000 to 10,000 nodes, change the boot_timeout line to:

boot_timeout 120
For systems of 10,000 to 15,000 nodes, change the boot_timeout line to:

boot_timeout 180

Reboot Controllers of a Cabinet or Blade
The xtccreboot command provides a means to reboot controllers. Options allow for rebooting all controllers of
a specified type (cabinet or blade) or providing a list of controllers of a specified type to be rebooted.

For additional information, see the xtccreboot(8) man page.

Reboot cabinet controller c0-0, with verbose output

smw:~> xtccreboot -v -c c0-0
xtccreboot: /opt/cray-xt-pdsh/default/bin/pdsh -w "c0-0" /sbin/reboot
xtccreboot: reboot sent to specified CCs

Manage the System

S2393 53

Bounce Blades Repeatedly Until All Blades Succeed

About this task
IMPORTANT: This iterative xtbounce should typically be done in concert with an xtbootsys
automation file where bounce and routing are turned off.

Procedure

1. Bounce the system.

smw:~> xtbounce s0

2. Bounce any blades that failed the first bounce. Repeat as necessary.

3. Execute the following command, which copies route configuration files, based on the idlist (such as s0), to
the blade controllers. This avoids having old, partial route configuration files left on the blades that were
bounced earlier and ensures that the links are initialized correctly.

smw:~> xtbounce --linkinit s0

4. Route and boot the system without executing xtbounce again. If using a xtbootsys automation file, specify
set data(config,xtbounce) 0, or use the xtbootsys --config xtbounce=0 command.

Request and Display System Routing
Use the HSS rtr command to request routing for the HSN, to verify current route configuration, or to display
route information between nodes. Upon startup, rtr determines whether it is making a routing request or an
information request.

For more information, see the rtr(8) man page.

Display routing information

The --system-map option to rtr writes the current routing information to stdout or to a
specified file. This command can also be helpful for translating node IDs (NIDs) to physical ID
names.

crayadm@smw:~> rtr --system-map

Route the entire system

The rtr -R | --route-system command sends a request to perform system routing. If no
components are specified, the entire configuration is routed as a single routing domain based on
the configuration information provided by the state manager. If a component list (idlist) is
provided, routing is limited to the listed components. The state manager configuration further
limits the routing domain to omit disabled blades, nodes, and links and empty blade slots.

Manage the System

S2393 54

crayadm@smw:~> rtr --route-system

Initiate a Network Discovery Process
Use the HSS rtr --discover command to initiate a network discovery process.

crayadm@smw:~> rtr --discover
The discovery process must be done on the system as a whole—it cannot be applied to individual partitions.
Therefore, discovery will immediately fail if the system does not have partition p0 enabled.

The rtr --discover process should be used under the following circumstances:

● During an initial install, after successful execution of xtdiscover
● During the installation of additional cabinets in an existing installation, after the successful execution of

xtdiscover
● During an upgrade of optical cabling in a system, after all recabling is complete

The rtr --discover process is NOT required under the following circumstances:

● On any single group system at any time, even those listed above

● During a warmswap operation

See the rtr(8) man page for additional information.

Configure IP Routes

Prerequisites
Configuring IP routes for compute nodes is not required on a CLE system.

About this task
An /etc/routes file can provide route entries for compute nodes. This provides a mechanism for administrators
to configure routing access from compute nodes to login and network nodes, using external IP destinations
without having to traverse RSIP tunnels. Careful consideration should be given before using this capability for
general purpose routing.

The /etc/routes file will provide a route from the compute nodes to a gateway node (login or network).
However, that gateway node must provide a connection to the network of interest (via IP forwarding, NAT, or
something else). These instructions do not cover providing that connection.

Use the simple_sync functionality to make the /etc/routes file available on the compute nodes.

Procedure

Configure IP routes via simple_sync.

The new /etc/routes file is examined during startup. Non-comment, non-blank lines are passed to the
route add command. The empty file contains comments describing the syntax.

Manage the System

S2393 55

To make the routes file available to the compute nodes, do the following on the SMW.

a. Edit a routes file with the desired compute node routes in a local directory.

smw# vi routes
b. Create the directory etc in the desired config set

directory,
/var/opt/cray/imps/config/sets/<config set>/files/roles/simple_sync/classes/compute
. This will create an /etc directory on the compute nodes.

smw# mkdir -p /var/opt/cray/imps/config/sets/p0/files/roles/simple_sync/
classes/compute/etc

c. Copy the routes files from the local directory into the newly created etc directory. Then, this file will be
available on all of the compute nodes when they boot.

smw# cp -p routes /var/opt/cray/imps/config/sets/p0/files/roles/simple_sync/
classes/compute/etc

Shut Down the System Using the auto.xtshutdown File
The preferred method to shut down the system is to use the xtbootsys command with the auto shutdown file as
follows:

crayadm@smw:~> xtbootsys -s last -a auto.xtshutdown
Or, for a partitioned system with partition pN:

smw:~# xtbootsys --partition pN -s last -a auto.xtshutdown
This method shuts down the compute nodes (which are commonly also Lustre clients), then executes
xtshutdown on service nodes, halting the nodes and then stopping processes on the SMW. A system
administrator can shut down the system using both user-defined and built-in procedures in the
auto.xtshutdown file, which is located on the SMW in the /opt/cray/hss/default/etc directory.

For related procedures, see CLE Installation and Configuration Guide. For more information about using
automation files, see the xtbootsys(8) man page.

The xtshutdown Command
The xtshutdown command executes a series of commands locally on the boot node and service nodes to shut
down the system in an orderly fashion. The sequence of shutdown steps and the nodes on which to execute them
are defined by the system administrator in the /etc/opt/cray/init-service/xtshutdown.conf file or in
the file specified by the environment variable XTSHUTDOWN_CONF.

Root user privileges are required to run xtshutdown. Passwordless ssh must be enabled for the root user from
the boot node to all service nodes.

The xtshutdown command uses pdsh to invoke commands on the selected service nodes (i.e., boot node, SDB
node, a class of nodes, or a single host). A system administrator can define functions to execute when the system
is shut down. Place these functions in the /etc/opt/cray/init-service/xt_shutdown_local file or the
file defined by the XTSHUTDOWN_LOCAL environment variable.

Manage the System

S2393 56

Shut Down the System or Part of the System Using the xtcli shutdown
Command
The HSS xtcli shutdown command shuts down the system or a part of the system. To shut down compute
nodes, execute the xtcli shutdown command. Under normal circumstances, for example to successfully
disconnect from Lustre, invoking the xtcli shutdown command attempts to gracefully shut down the specified
nodes.

For information, see the xtcli(8) man page.

Shut down all compute nodes

crayadm@smw:~> xtcli shutdown compute

Shut down specified compute nodes

For this example, shut down only compute nodes in cabinet c13-2:

crayadm@smw:~> xtcli shutdown c13-2

Shut down all nodes of a system

crayadm@smw:~> xtcli shutdown s0

Shut down a partition pN of a system

crayadm@smw:~> xtcli shutdown pN

Force nodes to shut down (immediate halt)

When all nodes of a system must be halted immediately, use the -f argument; nodes will not go
through their normal shutdown process. Forced shutdown occurs even if the nodes have an alert
status present.

crayadm@smw:~> xtcli shutdown -f s0
After the software on the nodes is shutdown, the system administrator can halt the hardware,
reboot, or power down.

Shut Down Service Nodes

Prerequisites
Root user privileges are required to run xtshutdown. Passwordless ssh must be enabled for the root user
from the boot node to all service nodes.

Manage the System

S2393 57

CAUTION: The xtshutdown command does not shut down compute nodes. To shut down the compute
and service nodes, see Shut Down the System or Part of the System Using the xtcli shutdown Command.

About this task
For information about shutting down service nodes, see the xtshutdown(8) man page.

Procedure

1. Modify the /etc/opt/cray/init-service/xtshutdown.conf file or the file specified by the
XTSHUTDOWN_CONF environment variable to define the sequence of shutdown steps and the nodes on which
to execute them. The /etc/opt/cray/init-service/xtshutdown.conf file resides on the boot node.

2. If desired, define functions to execute when the system is shut down. Place these functions in
the /etc/opt/cray/init-service/xt_shutdown_local file or the file defined by the
XTSHUTDOWN_LOCAL environment variable.

3. Execute xtshutdown.

boot:~ # xtshutdown
After the software on the nodes is shutdown, the administrator can halt the hardware, reboot, or power down.

Stop System Components
When a system administrator removes, stops, or powers down components, any applications and compute
processes that are running on those components are lost.

Reserve a Component
To allow applications and compute processes to complete before stopping components, use the HSS xtcli
set_reserve idlist command to prevent the selected nodes from accepting new jobs.

A node running CNL and using ALPS is considered to be down by ALPS after it is reserved using the xtcli
set_reserve command. The output from apstat will show the node as down (DN), even though there may be
an application running on that node. This DN designation indicates that no other work will be placed on the node
after the currently running application has terminated.

For more information, see the xtcli_set(8) man page.

Reserve a component

crayadm@smw:~> xtcli set_reserve idlist

Power Down Blades or Cabinets
WARNING: Power down the cabinets with software commands. Tripping the circuit breakers may result in
damage to system components.

Manage the System

S2393 58

WARNING: Before powering down a blade or a cabinet, ensure the operating system is not running.

The xtcli power down command powers down the specified cabinet and/or blades within the specified
partition, chassis or list of blades. Cabinets must be in the READY state to receive power commands.

When a request is made to power down a blade consisting of Intel® Xeon® processor Scalable Family nodes or a
Cabinet containing processor blades of this type, the nodes are powered off into the G3 state (full power off) prior
to the Cabinet controller removing power from the blade. See System Component States on page 60.

The xtcli power down command has the following form, where physIDlist is a comma-separated list of
cabinets, blades, or nodes present on the system.

xtcli power down physIDlist
The xtcli power force_down and xtcli power down_slot commands are aliases for the xtcli power
down command. For information about disabling and enabling components, see Disable Hardware Components,
and Enable Hardware Components, respectively.

WARNING: Although a blade is powered off, the HSS in the cabinet is live and has power.

For information about powering down a component, see the xtcli_power(8) man page.

Power down a specified blade

For this example, power down a blade with the ID c0-0c0s7:

crayadm@smw:~> xtcli power down c0-0c0s7

Power Down a Specific Node
The xtcli power down_node command powers down the specified node and/or nodes within a specified
partition, chassis, list of blades, or list of nodes. When specifying a specific node or list of nodes, all node types
are powered down to the G3 state except for Intel® Xeon® processor Scalable Family nodes, which are powered
down to the S5 state (soft off). These nodes can be powered down to the G3 state using one of the following
methods:

● Issue the xtcli power down_node command with the --with-si flag.

● Power down the blade that the Intel® Xeon® processor Scalable Family nodes reside on. Blades must be in
the READY state to receive power commands. See System Component States on page 60.

The xtcli power down_node command has the following form, where physIDlist is a comma-separated
list of cabinets, blades, or nodes present on the system.

xtcli power down_node physIDlist

Power down specified nodes

In these example commands, c0-0c0s7n0 is a Haswell node and c0-1c1s8n2 is a Intel®
Xeon® processor Scalable Family node. The following down_node power command does not
include the --with-si flag.

Manage the System

S2393 59

crayadm@smw:~> xtcli power down_node c0-0c0s7n0,c0-1c1s8n2
HSS reports both nodes as being in the off state. The state of c0-0c0s7n0 is G3, and the state
of c0-1c1s8n2 is S5.

The next example uses the --with-si flag to power down the same two nodes.

crayadm@smw:~> xtcli power down_node --with-si c0-0c0s7n0,c0-1c1s8n2
HSS reports both nodes as being in the off state. Both nodes are in the G3 state. See the
xtcli_power(8) man page for more information.

Halt Selected Nodes
Use the HSS xtcli halt command to halt selected nodes. For more information, see the xtcli(8) man
page.

Halt a node

For this example, halt node 157:

crayadm@smw:~> xtcli halt 157

Restart a Blade or Cabinet
IMPORTANT: Change the state of the hardware only when the operating system is not running or is shut
down.

The xtcli power up command powers up the specified cabinet and/or blades within the specified partition,
chassis or list of blades. Cabinets must be in the READY state (see System Component States on page 60) to
receive power commands. The xtcli power up command does not attempt to power up network mezzanine
cards or nodes that are handled by the xtbounce command during system boot.

The xtcli power up_slot command is an alias for the xtcli power up command.

The xtcli power up command has the following form, where physIDlist is a comma-separated list of
cabinets or blades present on the system.

xtcli power up physIDlist
For more information, see the xtcli_power(8) man page.

Power up blades in c0-0c0s7

crayadm@smw:~> xtcli power up c0-0c0s7

System Component States
Component state definitions are designated by uppercase letters. The state of OFF means that a component is
present on the system. If the component is a blade controller, node, or ASIC, then this will also mean that the

Manage the System

S2393 60

component is powered off. If the administrator disables a component, the state shown becomes disabled.
When the xtcli enable command is used to enable that component for use once again, its state switches from
disabled to off. In the same manner, enabling an empty component means that its state switches from empty
to off.

The state of EMPTY components does not change when using the xtcli enable or the xtcli disable
command, unless the force option (-f) is used.

Disabling of a cabinet, chassis, or blade will fail if any nodes under the component are in the ready state, unless
the force option (-f) is used. An error message will indicate the reason for the failure.

Table 3. State Definitions

State Cabinet
Controller

Blade Controller Cray ASIC CPU Link

OFF Powered off Powered off Powered off Powered off Link is down

ON Powered on Powered on Powered on and
operational

Powered on Link is up

HALT -- -- -- CPU halted --

STANDBY -- -- -- Booting was
initiated

--

READY Operational Operational Operational Booted Operational

Table 4. Additional State Definitions (Common to all components)

State Description

DISABLED Operator disabled this component.

EMPTY Component does not exist.

N/A Component cannot be accessed by the system.

RESVD Reserved; new jobs are not allocated to this component.

There are two notification flags, which can occur with any state.

WARNING A condition of the component was detected that is outside the normal operating range but is not yet
dangerous.

ALERT A dangerous condition or fatal error has been detected for the component.

Administrative states are hierarchal, so disabling or enabling a component has a cascading effect on that
component's children. A component may not be enabled if its parent component is disabled, but a subcomponent
may be disabled without affecting its parents.

Table 5. xtcli Commands and Valid States

xtcli Command Subcommand Cabinet Controller Blade Controller Node

power up ON OFF OFF
 down READY ON ON, HALT, DIAG

Manage the System

S2393 61

xtcli Command Subcommand Cabinet Controller Blade Controller Node

 up_slot (an alias
for up)

 down_slot (an alias
for down)

 force_down (an
alias for down)

halt N/A N/A STANDBY, READY
boot N/A N/A ON, HALT

Abort Active Sessions on the HSS Boot Manager

About this task
Use the HSS xtcli session abort command to abort sessions in the boot manager. A session corresponds
to executing a specific command such as xtcli power up or xtcli boot.

For more information about manager sessions, see the xtcli(8) man page.

Procedure

1. Display all running sessions in the boot manager. Only the boot manager supports multiple simultaneous
sessions.

crayadm@smw:~> session show BM all

2. Abort the selected session, session_id.

crayadm@smw:~> xtcli session abort BM session_id

Display and Change Software System Status
The user command xtnodestat provides a display of the status of nodes: how they are allocated and to what
jobs. The xtnodestat command provides current job and node status summary information, and it provides an
interface to ALPS and jobs running on CNL compute nodes. ALPS must be running in order for xtnodestat to
report job information.

For more information, see the xtnodestat(1) man page.

Configure Current System Timezone

Prerequisites
Start with the XC system booted.

Manage the System

S2393 62

About this task
Changing the timezone of a system can be done with a few configuration changes and then rebooting
components.

Procedure

Check current timezone

1. Check timezone on SMW.

smw# date

2. Check timezone on cabinet and blade controllers.

smw# xtrsh -l root -s date

3. Check timezone on boot node.

smw# ssh boot date

4. Check timezone on SDB node. This command works from the SMW if the SDB node is a tier1 node with an
Ethernet connection to the SMW.

smw# ssh sdb date

5. Check timezone on all service nodes.

smw# ssh sdb pcmd -r -n ALL_SERVICE_NOT_ME "date"

6. Check timezone on all compute nodes.

smw# ssh sdb pcmd -r -n ALL_COMPUTE "date"

Change SMW local timezone

7. Execute this command to change the default timezone. The default timezone on the SMW is "America/
Chicago".

smw# yast2 timezone
The change on the SMW will be immediate, but users will need to logout and then login again to get the new
environment.

This does not change the timezone for the CLE nodes or the cabinet and blade controllers. See below to
make those changes.

Change timezone in global config set

8. Set cray_time.settings.service.data.timezone to be the desired timezone. A list of possible
timezones is available on the SMW in /usr/share/zoneinfo/zone1970.tab.

smw# cfgset update -s cray_time -m interactive global

9. Validate the config set.

Manage the System

S2393 63

smw# cfgset validate global

Change timezone in CLE config set

If the CLE config set has cray_time.inherit set to true, then the timezone and other time settings from
the global config set will be inherited by the CLE config set.

If the CLE config set has cray_time.inherit set to false, then use the following command to change the
setting.

10. Set cray_time.settings.service.data.timezone to be the desired timezone. A list of possible
timezones is available on the SMW in /usr/share/zoneinfo/zone1970.tab.

smw# cfgset update -s cray_time -m interactive p0

11. Validate the config set.

smw# cfgset validate p0

Reboot for new timezone

Follow these steps to set a new timezone for all components in the SMW and CLE system after the global
and CLE config sets and SMW yast2 have been updated with the new setting.

12. Reboot SMW.

a. Shutdown CLE and reboot the SMW.

crayadm@smw> xtbootsys -s last -a auto.xtshutdown
crayadm@adm> su - root
smw# reboot

b. Check that the SMW has the desired timezone setting once the SMW reboots.

smw# date

13. Power down the system.

smw# xtcli power down s0

14. Reboot the cabinet controllers

smw# xtccreboot -c all
xtccreboot: reboot sent to specified CCs
smw# sleep 120
smw# xtalive -l cc

15. Power up the system.

smw# xtcli power up s0

16. Boot CLE nodes for new timezone.

crayadm@smw> xtbootsys -a auto.rhine

17. Check current timezone.

Manage the System

S2393 64

a. Check timezone on SMW.

smw# date
b. Check timezone on cabinet and blade controllers.

smw# xtrsh -l root -s date
c. Check timezone on boot node.

smw# ssh boot date
d. Check timezone on SDB node. This command works from the SMW if the SDB node is a tier1 node with

an Ethernet connection to the SMW.

smw# ssh sdb date
e. Check timezone on all service nodes.

smw# ssh sdb pcmd -r -n ALL_SERVICE_NOT_ME "date"
f. Check timezone on all compute nodes.

smw# ssh sdb pcmd -r -n ALL_COMPUTE "date"

View and Change the Status of Nodes
Use the xtprocadmin command on a service node to view the status of components of a booted system in the
processor table of the SDB. The command enables the system administrator to retrieve or set the processing
mode (interactive or batch) of specified nodes. The administrator can display the state (up, down,
admindown, route, or unavailable) of the selected components, if needed. The administrator can also
allocate processor slots or set nodes to become unavailable at a particular time. The node is scheduled only if the
status is up.

When the xtprocadmin -ks option is used, then the option can either a normal argument (up, down, etc.), or it
can have a colon in it to represent a conditional option; for example, the option of the form up:down means "if
state was up, mark down".

For more information, see the xtprocadmin(8) man page.

View node characteristics

login:~> xtprocadmin
 NID (HEX) NODENAME TYPE STATUS MODE
 1 0x1 c0-0c0s0n1 service up batch
 2 0x2 c0-0c0s0n2 service up batch
 5 0x5 c0-0c0s1n1 service up batch
 6 0x6 c0-0c0s1n2 service up batch
 8 0x8 c0-0c0s2n0 compute up batch
 9 0x9 c0-0c0s2n1 compute up batch
 10 0xa c0-0c0s2n2 compute up batch
 11 0xb c0-0c0s2n3 compute up batch

Manage the System

S2393 65

View all node attributes
login:~> xtprocadmin -A
 NID (HEX) NODENAME TYPE ARCH OS CPUS CU AVAILMEM PAGESZ CLOCKMHZ GPU SOCKETS DIES C/
CU LABEL0 LABEL1
LABEL2 LABEL3
 1 0x1 c0-0c0s0n1 service xt (service) 16 8 32768 4096 2600 0 1 1
2
 2 0x2 c0-0c0s0n2 service xt (service) 16 8 32768 4096 2600 0 1 1
2
 5 0x5 c0-0c0s1n1 service xt (service) 16 8 32768 4096 2600 0 1 1
2
 6 0x6 c0-0c0s1n2 service xt (service) 16 8 32768 4096 2600 0 1 1
2
 8 0x8 c0-0c0s2n0 compute xt CNL 32 16 65536 4096 2600 0 2 2
2
 9 0x9 c0-0c0s2n1 compute xt CNL 32 16 65536 4096 2600 0 2 2
2
 10 0xa c0-0c0s2n2 compute xt CNL 32 16 65536 4096 2600 0 2 2
2

View selected attributes of selected nodes

For this example, the -a option lists the selected attributes to display:

login:~> xtprocadmin -n 8 -a arch,clockmhz,os,cores
 NID (HEX) NODENAME TYPE ARCH CLOCKMHZ OS CPUS
 8 0x8 c0-0c0s2n0 compute xt 2600 CNL 32

Disable a node

For this example, the admindown option disables node c0-0c0s3n1 such that it cannot be
allocated:

crayadm@nid00004:~> xtprocadmin -n c0-0c0s3n1 -k s admindown

Disable all processors

crayadm@nid00004:~> xtprocadmin -k s admindown

Perform Parallel Operations on Compute Nodes
The parallel command tool (pcmd) facilitates execution of the same commands on groups of compute nodes in
parallel, similar to pdsh. Although pcmd is launched from a service node, it acts on compute nodes. It allows
administrators and/or, if the site deems it feasible, other users to securely execute programs in parallel on
compute nodes. The user can specify on which nodes to execute the command. Alternatively, the user can
specify an application ID (apid) to execute the command on all the nodes available under that apid.

An unprivileged user must execute the command targeting nodes where the user is currently running an aprun. A
root user is allowed to target any compute node, regardless of whether there are jobs running there or not. In
either case, if the aprun exits and the associated applications are killed, any commands launched by pcmd will
also exit.

By default, pcmd is installed as a root-only tool. It must be installed as setuid root in order for unprivileged
users to use it.

The pcmd command is located in the nodehealth module. If the nodehealth module is not part of the default
profile, load it by specifying:

Manage the System

S2393 66

module load nodehealth
For additional information, see the pcmd(1) man page.

Perform Parallel Operations on Service Nodes
Use pdsh, the CLE parallel remote shell utility for service nodes, to issue commands to groups of nodes in
parallel. The system administrator can select the nodes on which to use the command, exclude nodes from the
command, and limit the time the command is allowed to execute. Only user root can execute the pdsh
command. The command has the following form:

pdsh [options] command
For more information, see the pdsh(1) man page.

Restart the NTP service

boot:~ # pdsh -w 'login[1-9]' /etc/init.d/ntp restart

Mark a Compute Node as a Service Node
Use the xtcli mark_node command to mark a node in a compute blade to have a role of service or
compute; compute is the default. It is not permitted to change the role of a node on a service blade, which
always has the service role.

Marking a node on a compute blade as service or compute allows the administrator to load the desired boot
image at boot time. Compute nodes marked as service can run software-based services. A request to change
the role of a running node (that is, the node is in the ready state and the operating system is running) will be
denied.

For more information, see the xtcli(8) man page and Check the Status of System Components on page 197.

Find Node Information

Translate Between Physical ID Names and Integer NIDs
To translate between physical ID names (cnames) and integer NIDs, generate a system map on the System
Management Workstation (SMW) and filter the output, enter the following command:

crayadm@smw:~> rtr --system-map | grep cname | awk '{ print $1 }'
For more information, see the rtr(8) man page.

Find Node Information Using the xtnid2str Command
The xtnid2str command converts numeric node identification values to their physical names (cnames). This
allows conversion of Node ID values, ASIC NIC address values, or ASIC ID values.

For additional information, see the xtnid2str(8) man page.

Manage the System

S2393 67

Find the physical ID for node 38

smw:~> xtnid2str 28
node id 0x26 = 'c0-0c0s1n2'

Find the physical ID for nodes 0, 1, 2, and 3

smw:~> xtnid2str 0 1 2 3
node id 0x0 = 'c0-0c0s0n0'
node id 0x1 = 'c0-0c0s0n1'
node id 0x2 = 'c0-0c0s1n0'
node id 0x3 = 'c0-0c0s1n1'

Find the physical IDs for Aries IDs 0-7

smw:~> xtnid2str -a 0-7
aries id 0x0 = 'c0-0c0s0a0'
aries id 0x1 = 'c0-0c0s1a0'
aries id 0x2 = 'c0-0c0s2a0'
aries id 0x3 = 'c0-0c0s3a0'
aries id 0x4 = 'c0-0c0s4a0'
aries id 0x5 = 'c0-0c0s5a0'
aries id 0x6 = 'c0-0c0s6a0'
aries id 0x7 = 'c0-0c0s7a0'

Find Node Information Using the nid2nic Command
The nid2nic command prints the nid-to-nic address mappings, nic-to-nid address mappings, and a specific
physical_location-to-nic address and nid mappings.

For information about using the nid2nic command, see the nid2nic(8) man page.

Print the nid-to-nic address mappings for the node with NID 31

smw:~> nid2nic 31
NID:0x1f NIC:0x21 c0-0c0s7n3

Print the nid-to-nic address mappings for the node with NID 31, but specify the NIC value in the command
line

smw:~> nid2nic -n 0x21
NIC:0x21 NID:0x1f c0-0c0s7n3

Display and Change Hardware System Status
A system administrator can execute commands that look at and change the status of the hardware.

Manage the System

S2393 68

CAUTION: Execute commands that change the status of hardware only when the operating system is
shut down.

Recreate HSS Database File System After Corruption

About this task
Recreating the HSS database includes:

● Creating a new btrfs filesystem with a subvolume which matches the currently booted snapshot

● Updating /etc/fstab
● Mounting the new btrfs snapshot

● Starting the MySQL database

● Initializing the data in the HSS database

● Preparing snapshots of the /var/lib/mysql filesystem with similar names to other snapshots which the
SMW might be switched to as part of reversion from a staged upgrade

Procedure

1. Stop mysql service.

smw# /etc/init.d/mysql stop
redirecting to systemctl stop mysql.service

2. Make a new btrfs filesystem on /deva/mapper/smw_node_vg-db.

3. Show btrfs filesystem on database volume.

smw# btrfs filesystem show /dev/mapper/smw_node_vg-db

4. Mount database filesystem.

smw# mount /dev/mapper/smw_node_vg-db /mnt

5. Verify the btrfs filesystem is mounted.

smw# mount | grep mnt
/dev/mapper/smw_node_vg-db on /mnt type btrfs
(rw,relatime,space_cache,subvolid=5,subvol=/)

6. List btrfs subvolume.

smw# btrfs subvolume list /mnt

7. Show btrfs subvolume.

smw# btrfs subvolume show /mnt
/mnt is btrfs root

Manage the System

S2393 69

8. Confirm mysql entry in /etc/fstab file.

smw# cat /etc/fstab | grep msyql
/dev/mapper/smw_node_vg-db /var/lib/mysql btrfs x-cray.managed,noauto,x-
cray.snapshot,subvol=snapshots/SMW-8.0UP02_CLE-6.0UP02.20160317c,nofail 0 0

9. Confirm same device is mounted on /mnt as was in /etc/fstab file.

smw# mount | grep mnt
/dev/mapper/smw_node_vg-db on /mnt type btrfs
(rw,relatime,space_cache,subvolid=5,subvol=/)

10. Create subvolume.

smw# btrfs sub create /mnt/snapshots
Create subvolume '/mnt/snapshots'

11. Create snapshot.

smw# btrfs sub snap /mnt /mnt/snapshots/SMW-8.0UP02_CLE-6.0UP02.20160317c
Create a snapshot of '/mnt' in '/mnt/snapshots/
SMW-8.0UP02_CLE-6.0UP02.20160317c'

12. Unmount temporary mount point of /mnt.

smw# umount /mnt

13. Mount path from /etc/fstab.

smw# mount /var/lib/mysql

14. Confirm that the new database filesystem was mounted.

smw# df | grep mysql
/dev/mapper/smw_node_vg-db 10485760 16960 8359680 1% /var/lib/mysql

15. Start mysql service.

smw# /etc/init.d/mysql start
redirecting to systemctl start mysql.service

16. Create new password.

smw# mysqladmin -uroot password -p
a. Enter password.

Enter password: oldpassword
b. Enter new password.

New password: newpassword
c. Confirm new password.

Confirm new password: newpassword

Manage the System

S2393 70

17. Initialize the HSS datastore.

smw# hssds_init
*********** hssds_init started ***********Command line: hssds_init

Cray HSS Datastore Setup Application [1.0]

Please enter your MySQL root password: newpassword
hssds_init: SUCCESSFULLY initialized HSS Data Store.
hssds_init: Restarting HSS Daemons...
hssds_init: Restarting service: rsms
hssds_init: Restart successful.
*********** hssds_init finished ***********

18. List directory contents to confirm data in mysql directory.

mars1-smw# ls /var/lib/mysql
aria_log.00000001 hssds ib_logfile1 mars1-smw.err
mysql performance_schema test
aria_log_control ib_logfile0 ibdata1 multi-master.info
mysql_upgrade_info snapshots

19. Show btrfs subvolume.

mars1-smw# btrfs sub show /var/lib/mysql
/var/lib/mysql
 Name: SMW-8.0UP02_CLE-6.0UP02.20160317c
 uuid: de9c765c-f212-5e4b-82ba-346305ee274d
 Parent uuid: -
 Creation time: 2016-03-24 10:25:03
 Object ID: 258
 Generation (Gen): 16
 Gen at creation: 11
 Parent: 257
 Top Level: 257
 Flags: -
 Snapshot(s):

The above steps only make one snapshot. If snaputil is used to switch to other snapshots, there will be a
failure at that point. To address this—once the filesytem has been recreated with valid contents for the
currently booted snapshot—the following commands should be created to make snapshots of this state with
names matching the other snapshots which might be booted.

20. List snapshots.

mars1-smw# snaputil list
Status Name Size (MB
unshared) Created
-------- --
-------------------- -------------------
 @
14213.1 2015-12-04 10:31:24
 SLES12
92.25 2015-12-07 08:19:56
 SLES12_pristine
92.25 2015-12-07 08:20:11
 SMW-8.0UP02_CLE-6.0UP02.20160302
6.28 2016-03-02 06:36:19

Manage the System

S2393 71

 SMW-8.0UP02_CLE-6.0UP02.20160302.save1.postinstall
48.09 2016-03-02 08:22:56
 SMW-8.0UP02_CLE-6.0UP02.20160303
789.27 2016-03-03 06:36:31
 SMW-8.0UP02_CLE-6.0UP02.20160316
2744.32 2016-03-16 06:22:56
 SMW-8.0UP02_CLE-6.0UP02.20160316.save1.postinstall
49.54 2016-03-16 07:16:11
 SMW-8.0UP02_CLE-6.0UP02.20160317b
37.4 2016-03-17 08:58:14
cur,def SMW-8.0UP02_CLE-6.0UP02.20160317c
559.79 2016-03-17 10:58:50

21. Prepare OLDSNAPSHOT variable for use in later commands.

smw# export OLDSNAPSHOT=SMW-8.0UP02_CLE-6.0UP02.20160302

22. Prepare SNAPSHOT variable for use in later commands.

smw# export SNAPSHOT=SMW-8.0UP02_CLE-6.0UP02.20160317c

23. Make temporary mount points.

smw# mkdir /tmp/tmp1.$SNAPSHOT /tmp/tmp2.$SNAPSHOT

24. Mount the root subvolume for the /var/lib/mysql filesystem.

smw# mount -o subvolid=0 /dev/mapper/smw_node_vg-db /tmp/tmp1.$SNAPSHOT

25. Show current btrfs subvolumes.

smw# btrfs subvolume show /tmp/tmp1.$SNAPSHOT

26. Mount subvolume so snapshot can be made.

smw# mount -o subvol=snapshots/$SNAPSHOT /dev/mapper/smw_node_vg-db /tmp/
tmp2.$SNAPSHOT

27. Create a snapshot of the subvolume.

smw# btrfs subvolume snapshot /tmp/tmp2.$SNAPSHOT /tmp/tmp1.$SNAPSHOT/snapshots/
$OLDSNAPSHOT
Create a snapshot of '/tmp/tmp2.SMW-8.0UP02_CLE-6.0UP02.20160317c' in '/tmp/
tmp1.SMW-8.0UP02_CLE-6.0UP02.20160317c/snapshots/
SMW-8.0UP02_CLE-6.0UP02.20160316.save2.devint

28. Show subvolume.

smw# btrfs subvolume show /tmp/tmp1.$SNAPSHOT/snapshots/$SNAPSHOT
/tmp/tmp1.SMW-8.0UP02_CLE-6.0UP02.20160317c/snapshots/
SMW-8.0UP02_CLE-6.0UP02.20160317c
 Name: SMW-8.0UP02_CLE-6.0UP02.20160317c
 uuid: de9c765c-f212-5e4b-82ba-346305ee274d
 Parent uuid: -
 Creation time: 2016-03-24 10:25:03
 Object ID: 258
 Generation (Gen): 45

Manage the System

S2393 72

 Gen at creation: 11
 Parent: 257
 Top Level: 257
 Flags: -
 Snapshot(s):
 SMW-8.0UP02_CLE-6.0UP02.20160302

29. Unmount temporary mounts.

smw# umount /tmp/tmp1.$SNAPSHOT /tmp/tmp2.$SNAPSHOT

Dynamic Fan Speed Control
Effective with SMW version 8.0.UP04, the HSS cooling system for liquid-cooled XC and XC+ cabinets supports
dynamic fan speed control by row or for the entire system.

When dynamic fan speed control is not enabled the HSS cooling software operates the cabinet fans at one of 3
fan speeds, defined as fan_speed_idle when the blades in the cabinet are not powered on, fan_speed_high
when a CPU or GPU is within 8 degrees of the highest temperature that it can operate at without being throttled
(TJMAX), and fan_speed_normal at all other times.

The speed setting of fan_speed_normal ensures that, under normal operation, the temperature of the CPU/
GPU dies are maintained below the hot spot detection threshold. If the cooling water is at the required
temperature and the temperature setpoint is set appropriately, no hot spot should be detected, as this setting is
expected to cover the worst case. Typically, die temperatures on a production system fluctuate but are below the
throttle threshold most of the time. Setting fan speed to a constant fan_speed_normal is unnecessary and can
consume more energy than is needed to properly cool the system.

When the dynamic fan speed feature is enabled, the cabinets self-regulate their fan speed based upon observed
CPU and/or GPU temperatures. Each cabinet in a row runs its fans at the same speed, based on the highest CPU
or GPU temperature sensor reading from all of the blades in all cabinets within the row. The frequency with which
fan speeds change in response to temperature sensor readings varies depending on the type of jobs running on
the system, and is bounded by two pre-existing ini file variables:

● fan_speed_step_up_delay This variable controls how fast the system will switch to a higher speed in a
fan speed table if die temperatures are increasing. The default is 20 seconds.

● fan_speed_step_down_delay This variable controls how fast the system will switch to a lower fan speed
if die temperatures are decreasing.The default is 300 seconds.

IMPORTANT: Cray recommends that these and other cooling variables related to dynamic fan speeds in
the initialization files be kept at their default values. The exception is fan_auto_speed_enable, which
enables dynamic fan speed control.

Enabling dynamic fan speed control does not supercede CPU hot spot detection and control. When a hot spot is
detected, the cabinet fans in a row will still switch to the fan_speed_high setting and remain at that setting until
the hot spot is cleared. Similarly, if the blades are powered down, the fans will run at the fan_speed_idle
setting.

Enable Dynamic Fan Speed Control

Prerequisites
Dynamic fan speed has not enabled at the system level or on a specified row within the system.

Manage the System

S2393 73

Procedure

1. Edit the system-level (hss.ini) file or a row-level (hss_rN.ini) file in the /opt/tftpboot/ccrd
directory to set the fan_auto_speed_enable variable to 1.

Setting fan speeds dynamically on systems with mixed blower types within the same row is not supported. On
systems with both STD and HP blowers in separate rows, fan speed settings must be done via row-specific
ini files.

fan_auto_speed_enable=1

2. If the system is running, reload the ini file or files.

crayadm@smw>xtccr load_ini

3. The cooling software on each blade will automatically generate fan speed tables based on the CPUs and/or
GPUs that are on the blade. To view the current fan speed table run the following command on the SMW:

crayadm@smw>xtdaemonconfig --daemon ccrd|grep _table
c0-0c0s7: fan_auto_speed_table_cpu=-:92:2750|91:87:2600|86:82:2450|81:77:2300
|76:72:2150|71:-:*2000
c0-0c0s7: fan_auto_speed_table_gpu=-:80:2750|79:75:2600|74:70:2450|69:65:2300
|64:60:2150|59:-:*2000
The above fan speed tables were generated for both the CPUs and the GPUs on blade c0-0c0s7. Each set
of values between the | symbol gives the temperature range in degrees C and the corresponding fan speed in
RPMs. For example, On the CPUs, a fan speed of 2750 RPMs is specified for component temperatures of 92
C and above, and a fan speed of 2600 RPMs is specified for component temperatures between 91 C and 87
C.

Configure and Validate Dynamic Cooling Control Variables
Under normal circumstances, administrators need only set the fan_auto_speed_enable to 1 to enable
dynamic fan speed control. All other dynamic fan speed related variables should be left at their default settings.

In particular, adjusting the fan_auto_speeds variable is not recommended as the automatically generated fan
speed tables will always be correct for the type of hardware on each blade.

The following settings are described here for use in special situations where the default values are not adequate.

CAUTION: It is recommended that these settings (other than fan_auto_speed_enable) be changed
only in consultation with Cray service personnel.

fan_auto_speed_enable
Enables or disables dynamic fan speed control.

fan_auto_speed_enable=0 # disable
fan_auto_speed_enable=1 # enable

fan_auto_speed_temp_step

Specifies the change in temperature (in C) that would be required for the fan speed to
change. The default value for fan_auto_speed_temp_step is 5C. The allowed range is
5-12C. This variable applies to both specified and auto-generated fan speed tables.

Manage the System

S2393 74

Example:

fan_auto_speed_temp_step=5

fan_auto_speed_rpm_step

Specifies the RPM step between fan speeds for auto-generated fan speeds. It is also used
to compute the value of the highest allowed RPM in a auto-generated fan speed table
(fan_auto_speed_high - fan_auto_speed_rpm_step). The default value for
fan_auto_speed_rpm_step is 150. The allowed range is 150-300. The value of
fan_auto_speed_rpm_step does not limit user-specified fan speeds.

Example:

fan_auto_speed_rpm_step=150

fan_auto_speed_high

Specifies the highest fan speed that can be used within a fan speed table, whether the table
is user-specified or auto-generated. The default value of fan_auto_speed_high in auto-
generated fan speed tables is the value of fan_speed_normal. The potential range of
values for this variable are >= fan_speed_normal and <= fan_speed_high.

Example:

fan_auto_speed_high=3100

fan_auto_high_temp_offset

Specifies the offset from the highest temperature that a CPU or GPU can operate at without
being throttled (TJMAX), that corresponds to the highest fan speed in a fan speed table.
The default value of fan_auto_high_temp_offset is 10. The potential range of values
for this variable are >= 0 and <= 20. For example, if fan_auto_speed_high is not set
and fan_auto_high_temp_offset is set if a component has a TJMAX of 100, then the
highest fan speed in the fan speed table will be equal to fan_speed_normal, and the
corresponding temperature for that fan speed will be at >= 90. Example:

fan_auto_high_temp_offset=10

fan_auto_speeds

Specifies a fan speed table choice. A minimum of 3 and a maximum of 15 fan speeds can
be specified. If duplicate values are specified, or any specified fan speeds fail validation
checks, then all specified fan speeds are ignored.

The minimum fan speed value is fan_auto_speed_min and the maximum value is
fan_auto_speed_high. Each fan speed is separated by a vertical bar (|). Example:

fan_auto_speeds=3100|2800|2500|2200

In this case, if the default values for fan_auto_temp_step and
fan_auto_high_temp_offset are used and TJMAX for a component were to be 100C,
then the fan speed table lools like:

-:90:3100|89:85:2800|84:80:2500|79:-:2200

fan_speed_step_up_delay

Manage the System

S2393 75

Specifies the amount of time before the system switches to a higher speed in a fan speed
table when die temperatures are increasing. The default is 20 seconds.

fan_speed_step_down_delay
Specifies the amount of time before the system switches to a lower fan speed when die
temperatures are decreasing.The default is 300 seconds.

INI File Validation
If the dynamic fan speed variables have been changed from their default values, it's important to validate
the .ini files, prior to loading them onto the controllers. Use the xtccr --validate command to do this.

crayadm@smw> xtccr --validate=filename
Some of the variables defined in the cooling .ini files may be fully validated in this fashion, whereas other
variables may only be provisionally validated, as information specific to each cabinet is required to fully validate
the value of a variable.

Setting fan speeds dynamically via xtccr on systems with mixed blower types within the same row is not
supported. On systems with both STD and HP blowers in separate rows, fan speed settings must be done by
means of row-specific .ini files.

For example, the value of fan_speed_high can only be validated provisionally because knowledge of the type
of fans installed within a cabinet (STD or HP) is required to fully validate the value.

Disable Hardware Components
If links, nodes, or Cray ASICs have hardware problems, the system administrator can direct the system to ignore
the components with the xtcli disable command.

By default, when disabling a component, this command takes into consideration the hierarchy of components,
performs the action upon the identified component(s) and cascades that action to any subcomponent of the
identified component(s), unless the -n option is specified.

The xtcli disable command has the following form, where idlist is a comma-separated list of components
(in cname format) that the system is to ignore. The system disregards these links or nodes.

xtcli disable [{-t type [-a] } | -n] [-f] idlist
IMPORTANT: The -n option with the xtcli disable command must be used carefully because this
may create invalid system state configurations.

Disabling of a cabinet, chassis, or blade will fail if any nodes under the component are in the ready state, unless
the force option (-f) is used. An error message will indicate the reason for the failure.

Disabling of a node in the ready state will fail, unless the force option (-f) is used. An error message will indicate
the reason for the failure.

The state of empty components will not change when using the disable command, unless the force option (-f)
is used.

For detailed information about using the xtcli disable command, see the xtcli(8) man page.

Disable the Aries ASIC c0-0c1s3a0
1. Determine that the ASIC is in the OFF state.

Manage the System

S2393 76

crayadm@smw:~> xtcli status -t aries c0-0c1s3a0
2. If the ASIC is not in the OFF state, power down the blade that contains the ASIC.

crayadm@smw:~> xtcli power down c0-0c1s3
3. Disable the ASIC.

crayadm@smw:~> xtcli disable c0-0c1s3a0
4. Power up the blade that contains the ASIC.

crayadm@smw:~> xtcli power up c0-0c1s3

Enable Hardware Components
If links, nodes, or Cray ASICs that have been disabled are later fixed, the system administrator can add them
back to the system with the xtcli enable command.

The xtcli enable command has the following form, where idlist is a comma-separated list of components
(in cname format) for the system to recognize.

xtcli enable [{-t type [-a] } | -n] [-f] idlist
By default, when disabling a component, this command takes into consideration the hierarchy of components,
performs the action upon the identified component(s) and cascades that action to any subcomponent of the
identified component(s), unless the -n option is specified.

IMPORTANT: The -n option with the xtcli disable command must be used carefully because this
may create invalid system state configurations.

The state of empty components does not change when using the xtcli enable command, unless the force
option (-f) is used.

The state of off means that a component is present on the system. If the component is a blade controller, node,
or ASIC, then this will also mean that the component is powered off. If the administrator disables a component,
the state shown becomes disabled. When the xtcli enable command is used to enable that component for
use once again, its state switches from disabled to off. In the same manner, enabling an empty component
means that its state switches from empty to off.

For more information, see the xtcli(8) man page.

Check Current State of Compute Node SSDs

Prerequisites
This procedure is intended only for XC systems that have compute nodes with SSDs, such as DataWarp SSDs or
Intel® Xeon Phi™ "Knights Landing" processors.

About this task
Use this command after an initial installation, SSD hardware change, or system update. Cray also recommends
running xtcheckssd periodically (daily/weekly).

Manage the System

S2393 77

Procedure

Run xtcheckssd to ensure that SMW databases have the current state of compute node SSDs.

root@login# pcmd -r -n ALL_COMPUTE "/opt/cray/ssd/bin/xtcheckssd"

Set Hardware Components to EMPTY
Use the xtcli set_empty command to set a selected component to the EMPTY state. HSS managers and the
xtcli command ignore empty or disabled components.

Setting a selected component to the EMPTY state is typically done when a component, usually a blade, is
physically removed. By setting it to EMPTY, the system ignores it and routes around it.

By default, when disabling a component, this command takes into consideration the hierarchy of components,
performs the action upon the identified component(s) and cascades that action to any subcomponent of the
identified component(s), unless the -n option is specified.

IMPORTANT: The -n option with the xtcli disable command must be used carefully because this
may create invalid system state configurations.

For more information, see the xtcli(8) man page.

Set a blade to the EMPTY state

crayadm@smw:~> xtcli set_empty -a c0-0c1s7

Lock Hardware Components
Components are automatically locked when a command that can change their state is running. As the command
is started, the state manager locks these components so that nothing else can affect their state while the
command executes. When the manager is finished with the command, it unlocks the components.

Use the HSS xtcli lock command to lock components. Locking a component prints out the state manager
session ID.

For more information, see the xtcli(8) man page.

Lock cabinet c0-0

crayadm@smw:~> xtcli lock -l c0-0

Show all session (lock) data

crayadm@smw:~> xtcli lock show

Manage the System

S2393 78

Unlock Hardware Components
Use the HSS xtcli lock command to unlock components. This command is useful when an HSS manager
fails to unlock some set of components.

The system administrator can manually check for locks with the xtcli lock show command and then unlock
them. Unlocking a component does not print out the state manager session ID. The -u option must be used to
unlock a component as follows:

crayadm@smw:~> xtcli lock -u lock_number
Where lock_number is the value given when initiating the lock; it is also indicated in the xtcli lock show
query. Unlocking does nothing to the state of the component other than to release locks associated with it.

HSS daemons cannot affect components that are locked by a different session.

Over-provision an Intel P3608 SSD

Prerequisites
● A Cray XC series system with one or more Intel P3608 SSD cards installed

● Ability to log in as root

About this task
This procedure is only valid for Intel P3608 SSDs. The examples provided are based on the 4TB drives, but this
procedure also works for the 1.6TB drives.

WARNING: This procedure destroys any existing data on the SSDs.

Over-provisioning determines the size of the device available to the Logical Volume Manager (LVM) commands
and needs to occur prior to executing any LVM commands. Typically, over-provisioning is done when the SSD
cards are first installed.

TIP: Throughout these procedures, units of bytes are described using the binary prefixes defined by the
International Electrotechnical Commission (IEC). For further information, see Prefixes for Binary and
Decimal Multiples.

Procedure

1. Log on to an Intel P3608 SSD-endowed node as root, then determine the SSD model number.

ssd# module load linux-nvme-ctl
ssd# nvme id-ctrl /dev/nvme0 |grep mn
mn : INTEL SSDPECME040T4Y

2. Shut down the DataWarp manager daemon (dwmd).

ssd# systemctl stop dwmd

Manage the System

S2393 79

3. Remove any existing configuration.

TIP: Numerous methods exist for creating configurations on an SSD; these instructions may not
capture all possible cleanup techniques.

a. Unmount file systems (if any).

nid00350# df
boot:/home 20961280 11352064 9609216 55% /home
tmp 61504671488 624927640 57802802440 2% /scratch
nid00350# umount -f /scratch

b. Remove logical volumes (if any).

nid00350# lvdisplay
 --- Logical volume ---
 LV Path /dev/dwcache/s98i94f104o0
 LV Name s98i94f104o0
 VG Name dwcache
 LV UUID 910tio-RJXq-puYV-s3UL-yDM1-RoQl-HugeTM
 LV Write Access read/write
 LV Creation host, time nid00350, 2017-02-22 13:29:11 -0500
 LV Status available
 # open 0
 LV Size 3.64 TiB
 Current LE 953864
 Segments 2
 Allocation inherit
 Read ahead sectors auto
 - currently set to 1024
 Block device 253:0

nid00350# lvremove /dev/dwcache
c. Remove volume groups (if any).

nid00350# vgs
 VG #PV #LV #SN Attr VSize VFree
 dwcache 4 0 0 wz--n- 7.28t 7.28t
nid00350# vgremove dwcache
 Volume group "dwcache" successfully removed

d. Remove physical volumes (if any).

nid00350# pvs
PV VG Fmt Attr PSize PFree
/dev/nvme0n1 lvm2 a-- 1.82t 1.82t
/dev/nvme1n1 lvm2 a-- 1.82t 1.82t
/dev/nvme2n1 lvm2 a-- 1.82t 1.82t
/dev/nvme3n1 lvm2 a-- 1.82t 1.82t

nid00350# pvremove /dev/nvme0n1 /dev/nvme1n1 /dev/nvme2n1 /dev/nvme3n1
 Labels on physical volume "/dev/nvme0n1" successfully wiped
 Labels on physical volume "/dev/nvme1n1" successfully wiped
 Labels on physical volume "/dev/nvme2n1" successfully wiped
 Labels on physical volume "/dev/nvme3n1" successfully wiped

e. Clear partitions for each device removed in the previous step (if any).

WARNING: This operation destroys any existing data on an SSD. Back up any existing data
before proceeding.

Manage the System

S2393 80

nid00350# dd if=/dev/zero of=phys_vol bs=512 count=1

nid00350# dd if=/dev/zero of=/dev/nvme0n1 bs=512 count=1
nid00350# dd if=/dev/zero of=/dev/nvme1n1 bs=512 count=1
nid00350# dd if=/dev/zero of=/dev/nvme2n1 bs=512 count=1
nid00350# dd if=/dev/zero of=/dev/nvme3n1 bs=512 count=1

4. Reconfigure the device based on the model number determined in step 1 on page 79 and the corresponding
over-provision value from the following table.

Table 6. Over-provision values for supported Intel P3608 models

Model Number Size (TB) Over-provision Value
(bytes)

HEX

SSDPECME016T4Y 1.6 1250259487 0x4a85721f

SSDPECME040T4 4.0 3125623327 0xba4d3a1f

SSDPECME040T4Y 4.0 3125623327 0xba4d3a1f

nid00350# nvme set-feature device -n 1 -f 0XC1 -v op_value
set-feature:193(Unknown), value:00000000
For the remainder of this procedure, the examples assume 4TB SSDs; values will be different for 1.6TB
SSDs.

nid00350# nvme set-feature /dev/nvme0 -n 1 -f 0XC1 -v 3125623327
set-feature:193(Unknown), value:00000000
nid00350# nvme set-feature /dev/nvme1 -n 1 -f 0XC1 -v 3125623327
set-feature:193(Unknown), value:00000000
nid00350# nvme set-feature /dev/nvme2 -n 1 -f 0XC1 -v 3125623327
set-feature:193(Unknown), value:00000000
nid00350# nvme set-feature /dev/nvme3 -n 1 -f 0XC1 -v 3125623327
set-feature:193(Unknown), value:00000000

5. Confirm the change based on the SSD model number and values in Over-provision values for supported Intel
P3608 models on page 81. Note that 0xba4d3a1f = 3125623327.

nid00350# nvme get-feature device -n 1 -f 0XC1 --sel=0
get-feature:193(Unknown), value:0xba4d3a1f

nid00350# nvme get-feature /dev/nvme0 -n 1 -f 0XC1 --sel=0
get-feature:193(Unknown), value:0xba4d3a1f
nid00350# nvme get-feature /dev/nvme1 -n 1 -f 0XC1 --sel=0
get-feature:193(Unknown), value:0xba4d3a1f
nid00350# nvme get-feature /dev/nvme2 -n 1 -f 0XC1 --sel=0
get-feature:193(Unknown), value:0xba4d3a1f
nid00350# nvme get-feature /dev/nvme3 -n 1 -f 0XC1 --sel=0
get-feature:193(Unknown), value:0xba4d3a1f

6. Return to the SMW, and warm boot the DataWarp node.

crayadm@smw> xtnmi cname
crayadm@smw> sleep 60
crayadm@smw> xtbootsys --reboot -r "warmboot for Intel SSD node" cname

Manage the System

S2393 81

7. Log in to the Intel P3608 SSD-endowed node as root, and confirm that SIZE = 1600319143936 bytes for
all volumes.

nid00350# lsblk -b
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
loop0 7:0 0 196608 0 loop /var/opt/cray/imps-distribution/squash/
loop1 7:1 0 65536 0 loop /var/opt/cray/imps-distribution/squash/
nvme0n1 259:0 0 1600319143936 0 disk
nvme1n1 259:1 0 1600319143936 0 disk
nvme2n1 259:2 0 1600319143936 0 disk
nvme3n1 259:3 0 1600319143936 0 disk
Contact Cray service personnel if SIZE is incorrect.

xtbounce Error Message Indicates Cabinet Controller and Its Blade
Controllers Not in Sync
During the gather_cab_pwr_states phase of xtbounce, if the HSS software on a cabinet controller and any
of its blade controllers is out of sync, error messages such as the following will be printed during the xtbounce.

***** gather_cab_pwr_states *****
18:28:42 - Beginning to wait for response(s)

ERROR: rs_phys_node2ascii() failed for node struct 0xb7e70150080700f8
ERROR: rs_phys_node2ascii() failed for node struct 0xb7e70150080700f8
ERROR: rs_phys_node2ascii() failed for node struct 0xb7e70150080700f8
ERROR: rs_phys_node2ascii() failed for node struct 0xb7e70150080700f8
If this occurs, it indicates that the blade controller software is at a different revision than the cabinet controller
software. xtbounce will print a list of cabinets for which this error has occurred. The message will be similar to
the following:

ERROR: power state check error on 2 cabinet(s)
WARNING: unable to find c0-0 in err_cablist
WARNING: unable to find c0-2 in err_cablist
This error is an indication that when the HSS software was previously updated, the cabinet controllers and the
blade controllers were not updated to the same version.

To correct this error, cancel out of xtbounce (with Ctrl-C), wait approximately five minutes for the xtbounce
related activities on the blade controllers to finish, then reboot the cabinet controller(s) and their associated blade
controllers to get the HSS software synchronized. Following this, the xtbounce may be executed once again.

Power-cycle a Component to Handle Bus Errors

About this task
Bus errors are caused by machine-check exceptions. If a bus error occurs, try power-cycling the component.

Procedure

1. Power down the components. The physIDlist is a comma-separated list of components present on the
system.

Manage the System

S2393 82

crayadm@smw:~> xtcli power down physIDlist

2. Power up the components.

crayadm@smw:~> xtcli power up physIDlist

When a Component Fails
Components that fail are replaced as field replaceable units (FRUs). FRUs include compute blade components,
service blade components, and power and cooling components.

When a field replaceable unit (FRU) problem arises, contact a Customer Service Representative to schedule a
repair.

Dump and Reboot Nodes Automatically
The SMW daemon dumpd initiates automatic dump and reboot of nodes when requested by the Node Health
Checker (NHC).

CAUTION: The dumpd daemon is invoked automatically by xtbootsys on system (or partition) boot. In
most cases, system administrators do not need to use this daemon directly.

A system administrator can set global variables in the /etc/opt/cray/nodehealth/nodehealth.conf
configuration file to control the interaction of NHC and dumpd. For more information about NHC and the
nodehealth.conf configuration file, see Configure the Node Health Checker (NHC).

Variables can also be set in the /etc/opt/cray-xt-dumpd/dumpd.conf configuration file on the SMW to
control how dumpd behaves on the system.

Each CLE release package also includes an example dumpd configuration
file, /etc/opt/cray-xt-dumpd/dumpd.conf.example. The dumpd.conf.example file is a copy of
the /etc/opt/cray-xt-dumpd/dumpd.conf file provided for an initial installation.

IMPORTANT: The /etc/opt/cray-xt-dumpd/dumpd.conf file is not overwritten during a CLE
upgrade if the file already exists. This preserves the site-specific modifications previously made to the file.
Cray recommends comparing the site's /etc/opt/cray-xt-dumpd/dumpd.conf file content with
the /etc/opt/cray-xt-dumpd/dumpd.conf.example file provided with each release to identify any
changes and then update the site's /etc/opt/cray-xt-dumpd/dumpd.conf file accordingly.

If the /etc/opt/cray-xt-dumpd/dumpd.conf file does not exist, then
the /etc/opt/cray-xt-dumpd/dumpd.conf.example file is copied to
the /etc/opt/cray-xt-dumpd/dumpd.conf file.

The CLE installation and upgrade processes automatically install dumpd software, but it must be explicitly
enabled.

Collect Debug Information From Hung Nodes Using the xtnmi
Command

CAUTION: This is not a harmless tool to use to repeatedly get information from a node at various times;
only use this command when debugging data from nodes that are in trouble is needed. The xtnmi

Manage the System

S2393 83

command output may be used to determine problems such as a core hang. xtnmi will stop a running
node. It is best used when a node is not running correctly and debugging information is needed, or to stop
a node that is running incorrectly.

The sole purpose of the xtnmi command is to collect debug information from unresponsive nodes. As soon as
that debug information is displayed to the console, the node panics.

For additional information, see the xtnmi(8) man page.

Modify BIOS Parameters
There are a few, rare circumstances where it may be necessary to modify BIOS parameters, for example, in order
to troubleshoot a problem, or if there is a need to test a new BIOS version on a small set of nodes before
implementing the change across an entire system.

The xtbiosconf command allows administrators to specify BIOS parameters at the node, blade, chassis, or
cabinet level. BIOS parameters can be associated with a BIOS revision, numeric parameter offset or parameter
name, and target nodes. BIOS revision wildcards are supported. The BIOS parameter data is saved in a database
on the SMW, and made available automatically to blade controllers via the ERFS file system. In most cases a cold
reboot of the affected nodes is needed to apply the new settings.

CAUTION: Do not attempt to use this command except under guidance by Cray support personnel, who
will provide all the steps for shutting down the nodes, changing the settings, and bringing the nodes back
up. Improper use of this command can damage a system.

The following command displays the current BIOS Parameter settings for the entire system:

smw~> xtbiosconf --show s0
==============|======|===================================
 | BIOS | BIOS
Node | REV | Parameter
==============|======|===================================
c0-1c0s0n1 | 4030 | numlock=1
c0-1c0s0n1 | 4030 | acpiauto=0
==============|======|===================================
c0-1c0s0n2 | 4030 | numlock=1
c0-1c0s0n2 | 4030 | acpiauto=0
==============|======|===================================
For more information see the xtbiosconf man page.

Increase File System Size

About this task
When a btrfs or xfs file system on the boot RAID needs to be increased, both the
cray_bootraid_config.yaml file needs to be changed for the new size and the commands to grow the file
system need to be done.

Manage the System

S2393 84

Procedure

1. Edit the cray_bootraid_config.yaml file to increase the size for the filesystem which needs to grow.

smw# vi /var/opt/cray/imps/config/sets/global/config/cray_bootraid_config.yaml
For example, to increase the size of the /var/opt/cray/imps file system on the SMW, locate the
"smwdefault" storage set, the smw_node_vg volume group, and the "home" volume within that storage set.
Change the "fs_size" for imps from 600 to 800.

Increase the size of the /home file system on the SMW, in the "smwdefault" storage set, the
"smw_node_vg" volume group, and the "home" volume within that storage set. Change the "fs_size" for
imps from 50 to 100.

 - key: smwdefault
 volume_groups:
 - key: smw_node_vg
 owner: smw
 devices:
 - /dev/disk/by-id/wwn-0x600a0980006b47b7000000e5561260a7
 volumes:
 - key: home
 description: LVM volume for user home directories on the
SMW.
 type: lvm
 fs_type: xfs
 fs_size: 50
 fs_mount_point: /home
 snapshot: false
 mount_options:
 - key: imps
 description: LVM Volume for storage of IMPS
configuration.
 type: lvm
 fs_type: btrfs
 fs_size: 600
 fs_mount_point: /var/opt/cray/imps
 snapshot: false
 mount_options:

2. Extend an LVM volume.

a. Extend the "home" volume in the "smw_node_vg" LVM volume from the existing size to 100GB.

smw# lvextend -L100G /dev/mapper/smw_node_vg-home
b. Extend the "imps" volume in the "smw_node_vg" LVM volume from the existing size to 800GB.

smw# lvextend -L800G /dev/mapper/smw_node_vg-imps

3. Grow a btrfs file system.

smw# btrfs filesystem resize max /var/opt/crayimps

4. Grow an xfs file system.

smw# xfs_growfs /home

Manage the System

S2393 85

Add New Hardware to a System

About this task
Whether adding a single compute blade or a single service blade or several components in a full cabinet or
several cabinets, the process is similar.

Procedure

1. Add new components to system partition.

a. If the system is partitioned, then add the new components to the specific partition. If the system is not
partitioned, then this step can be skipped.

crayadm@smw> xtcli part_cfg show p2
crayadm@smw> xtcli part_cfg deactivate p2

b. Update the members of the partition with the old components and the new components.

crayadm@smw> xtcli part_cfg update p2 -m
c2-0c0s0,c2-0c0s1,c2-0c0s7,c0-0c0s9,c2-0c0s11,c2-0c0s13,c2-0c0s15,c2-0c0s3
crayadm@smw> xtcli part_cfg activate p2

2. Ensure new components are not disabled and are assigned to the desired partition. If they are disabled, they
will not be discovered. If they are not assigned to a partition, they will not be bounced during the xtdiscover
process, and therefore will not be properly discovered.

Full system:

crayadm@smw> xtcli status s0
Partitioned system:

crayadm@smw> xtcli status p1
crayadm@smw> xtcli status p2

3. Discover the new hardware.

 crayadm@smw> su -
 smw# xtdiscover
 smw# exit
a. Run rtr --discover if there is a significant change modifying the routing configuration.

Full system:

crayadm@smw> rtr --discover
Partitioned system:

crayadm@smw> xtcli part_cfg deactivate p1
crayadm@smw> xtcli part_cfg deactivate p2
crayadm@smw> xtcli part_cfg activate p0
crayadm@smw> rtr --discover
crayadm@smw> xtcli part_cfg deactivate p0

Manage the System

S2393 86

crayadm@smw> xtcli part_cfg activate p1
crayadm@smw> xtcli part_cfg activate p2

b. Confirm the new components are now seen.

crayadm@smw> xtcli status s0
If the new components do not show up properly in the status output, do not continue. Power cycle the
whole system, try the xtdiscover again. If they still are not showing, there may be a problem with the
new hardware components.

4. Update firmware on new components. Check whether any firmware needs to be updated on the various
controllers.

crayadm@smw> xtzap -r -v s0
If any are out of date, output like the following from the xtzap command will be seen and the firmware needs
to be updated.

Individual Revision Mismatches:

Type ID Expected Installed
---------- ----------------- ---------- --
cc_bios c0-0 0013 0012
bc_bios c0-0c0s0 0013 0012
bc_bios c0-0c0s1 0013 0012
bc_bios c0-0c0s2 0013 0012
bc_bios c0-0c0s3 0013 0012
a. Update firmware, if not all current.

CAUTION: The xtzap command is normally intended for use by Cray Service personnel only. Improper
use of this restricted command can cause serious damage to the computer system.

If the output of xtzap includes a "Revision Mismatches" section, then some firmware is out of date and
needs to be reflashed. To update, run xtzap with one or more of the options described in the next
paragraph.

While the xtzap -a command can be used to update all components with a single command, it may be
faster to use the xtzap -blade command when only blade types need to be updated, or the xtzap -t
command when only a single type needs to be updated. On larger systems, this can save significant time.

This is the list of all cabinet level components:

cc_mc (CC Microcontroller)
cc_bios (CC Tolapai BIOS)
cc_fpga (CC FPGA)
chia_fpga (CHIA FPGA)
This is a list of all blade level components:

cbb_mc (CBB BC Microcontroller)
ibb_mc (IBB BC Microcontroller)
anc_mc (ANC BC Microcontroller)
bc_bios (BC Tolapai BIOS)
lod_fpga (LOD FPGA)
node_bios (Node BIOS)
loc_fpga (LOC FPGA)
qloc_fpga (QLOC FPGA)

Manage the System

S2393 87

If the output of the xtzap command shows that only a specific type needs to be updated, then use the -t
option with that type (this example uses the node_bios type).

crayadm@smw:~> xtzap -t node_bios s0
If the output of the xtzap command shows that only blade component types need to be updated, then
use the -b option:

crayadm@smw:~> xtzap -b s0
If the output of the xtzap command shows that only cabinet component types need to be updated, then
use the -c option:

crayadm@smw:~> xtzap -c s0
If the output of the xtzap command shows that both blade- and cabinet-level component types need to
be updated, or if unsure of what needs to be updated, then use the -a option:

crayadm@smw:~> xtzap -a s0
b. Perform xtbounce --linktune, if not all current. Force xtbounce to do a linktune on the full system

before checking firmware again.

crayadm@smw> xtbounce --linktune=all s0
c. Check firmware, after update and linktune. After updating them, confirm that they were all updated.

crayadm@smw> xtzap -r -v s0

5. Check routing configuration of the system.

The rtr -R command produces no output unless there is a routing problem.

Full system:

crayadm@smw> rtr -R s0
Partitioned system:

crayadm@smw> rtr -R p1
crayadm@smw> rtr -R p2

6. Update NIMS for new components. Now that the new components have been added, and the firmware is up
to date, several NIMS commands are needed.

a. See what settings are for already existing similar nodes.

crayadm@smw> cnode list -p p0
b. If this blade was swapped out and replaced with a different type (that is, was compute, swapped for

service), remove it from the old group.

crayadm@smw> cnode update --partition p1 -c p1 -G netroot_compute
c0-0c0s1n0 c0-0c0s1n1 c0-0c0s1n2 c0-0c0s1n3

c. Assign the nodes to the correct config set, group (compute, netroot_compute, service, login, dal,
etc.) and image.

Manage the System

S2393 88

crayadm@smw> cnode update --partition p1 -c p1 -g service -i /var/opt/cray/
imps/boot_images/service_XXX.cpio c0-0c0s1n0 c0-0c0s1n1 c0-0c0s1n2 c0-0c0s1n3

d. If this is a netroot_compute node, assign the key for netroot (can be combined with the config set,
group and image assignment in above command).

crayadm@smw> cnode update --partition p1 -s netroot=compute-large_cle_XXX
c0-0c0s1n0 c0-0c0s1n1 c0-0c0s1n2 c0-0c0s1n3

e. If this was a netroot_compute and is not anymore, remove the key.

crayadm@smw> cnode update --partition p1 -K netroot
c0-0c0s1n0 c0-0c0s1n1 c0-0c0s1n2 c0-0c0s1n3

f. If this was a compute node, and is now a service, remove the rest of the extraneous keys.

crayadm@smw> cnode update --partition p1 -c p1 -K hsn_ipv4_mask
c0-0c0s1n0 c0-0c0s1n1 c0-0c0s1n2 c0-0c0s1n3'
crayadm@smw> cnode update --partition p1 -c p1 -K hsn_ipv4_net
c0-0c0s1n0 c0-0c0s1n1 c0-0c0s1n2 c0-0c0s1n3'
crayadm@smw> cnode update --partition p1 -c p1 -K sdbnodeip
c0-0c0s1n0 c0-0c0s1n1 c0-0c0s1n2 c0-0c0s1n3'
crayadm@smw> cnode update --partition p1 -c p1 -K bootnodeip
c0-0c0s1n0 c0-0c0s1n1 c0-0c0s1n2 c0-0c0s1n3'

7. Update config sets with the new components. This will generate a new /etc/hosts file for the CLE nodes.

Full system:

crayadm@smw> su -
smw# cfgset update p0
smw# exit
Partitioned system:

crayadm@smw> su -
smw# cfgset update p1
smw# cfgset update p2
smw# exit

8. Update any workload manager configuration as specified in their documentation. For internal systems running
native slurm, see http://oskernel/wiki/Workload_Managers_Rhine_Redwood#Slurm.

9. Boot the system using the standard boot procedure.

Add a New Disk to a Volume Group in a Storage Set

About this task
When more disk space is needed in an LVM volume group, add another physical volume to the
cray_bootraid_config.yaml file and rerun cray-ansible for the node which owns the storage.

Procedure

1. Edit the cray_bootraid_config.yaml file to add another physical device to the list of devices in the
volume group.

Manage the System

S2393 89

http://oskernel/wiki/Workload_Managers_Rhine_Redwood#Slurm

smw# vi /var/opt/cray/imps/config/sets/global/config/cray_bootraid_config.yaml
For example, to add a new disk device called
"/dev/disk/by-id/wwn-0x600a0980006b47b7000000e756127f9d" to the "smw_node_vg" volume
group, add the new disk device. Change this entry:

 - key: smwdefault
 volume_groups:
 - key: smw_node_vg
 owner: smw
 devices:
 - /dev/disk/by-id/wwn-0x600a0980006b47b7000000e5561260a7
To be this:

 - key: smwdefault
 volume_groups:
 - key: smw_node_vg
 owner: smw
 devices:
 - /dev/disk/by-id/wwn-0x600a0980006b47b7000000e5561260a7
 - /dev/disk/by-id/wwn-0x600a0980006b47b7000000e756127f9d

2. Run cray-ansible on the node.

If the storage was added to the SMW volume group.

smw# /media/SMW/SMWinstall --mode=provision-storage
If the storage was added to the boot node volume group.

boot# /etc/init.d/cray-ansible start
If the storage was added to the SDB node volume group.

sdb# /etc/init.d/cray-ansible start

Reboot Controllers of a Cabinet or Blade
The xtccreboot command provides a means to reboot controllers. Options allow for rebooting all controllers of
a specified type (cabinet or blade) or providing a list of controllers of a specified type to be rebooted.

For additional information, see the xtccreboot(8) man page.

Reboot cabinet controller c0-0, with verbose output

smw:~> xtccreboot -v -c c0-0
xtccreboot: /opt/cray-xt-pdsh/default/bin/pdsh -w "c0-0" /sbin/reboot
xtccreboot: reboot sent to specified CCs

Manage the System

S2393 90

Bounce Blades Repeatedly Until All Blades Succeed

About this task
IMPORTANT: This iterative xtbounce should typically be done in concert with an xtbootsys
automation file where bounce and routing are turned off.

Procedure

1. Bounce the system.

smw:~> xtbounce s0

2. Bounce any blades that failed the first bounce. Repeat as necessary.

3. Execute the following command, which copies route configuration files, based on the idlist (such as s0), to
the blade controllers. This avoids having old, partial route configuration files left on the blades that were
bounced earlier and ensures that the links are initialized correctly.

smw:~> xtbounce --linkinit s0

4. Route and boot the system without executing xtbounce again. If using a xtbootsys automation file, specify
set data(config,xtbounce) 0, or use the xtbootsys --config xtbounce=0 command.

Shut Down the System Using the auto.xtshutdown File
The preferred method to shut down the system is to use the xtbootsys command with the auto shutdown file as
follows:

crayadm@smw:~> xtbootsys -s last -a auto.xtshutdown
Or, for a partitioned system with partition pN:

smw:~# xtbootsys --partition pN -s last -a auto.xtshutdown
This method shuts down the compute nodes (which are commonly also Lustre clients), then executes
xtshutdown on service nodes, halting the nodes and then stopping processes on the SMW. A system
administrator can shut down the system using both user-defined and built-in procedures in the
auto.xtshutdown file, which is located on the SMW in the /opt/cray/hss/default/etc directory.

For related procedures, see CLE Installation and Configuration Guide. For more information about using
automation files, see the xtbootsys(8) man page.

The xtshutdown Command
The xtshutdown command executes a series of commands locally on the boot node and service nodes to shut
down the system in an orderly fashion. The sequence of shutdown steps and the nodes on which to execute them
are defined by the system administrator in the /etc/opt/cray/init-service/xtshutdown.conf file or in
the file specified by the environment variable XTSHUTDOWN_CONF.

Manage the System

S2393 91

Root user privileges are required to run xtshutdown. Passwordless ssh must be enabled for the root user from
the boot node to all service nodes.

The xtshutdown command uses pdsh to invoke commands on the selected service nodes (i.e., boot node, SDB
node, a class of nodes, or a single host). A system administrator can define functions to execute when the system
is shut down. Place these functions in the /etc/opt/cray/init-service/xt_shutdown_local file or the
file defined by the XTSHUTDOWN_LOCAL environment variable.

Shut Down Service Nodes

Prerequisites
Root user privileges are required to run xtshutdown. Passwordless ssh must be enabled for the root user
from the boot node to all service nodes.

CAUTION: The xtshutdown command does not shut down compute nodes. To shut down the compute
and service nodes, see Shut Down the System or Part of the System Using the xtcli shutdown Command.

About this task
For information about shutting down service nodes, see the xtshutdown(8) man page.

Procedure

1. Modify the /etc/opt/cray/init-service/xtshutdown.conf file or the file specified by the
XTSHUTDOWN_CONF environment variable to define the sequence of shutdown steps and the nodes on which
to execute them. The /etc/opt/cray/init-service/xtshutdown.conf file resides on the boot node.

2. If desired, define functions to execute when the system is shut down. Place these functions in
the /etc/opt/cray/init-service/xt_shutdown_local file or the file defined by the
XTSHUTDOWN_LOCAL environment variable.

3. Execute xtshutdown.

boot:~ # xtshutdown
After the software on the nodes is shutdown, the administrator can halt the hardware, reboot, or power down.

Shut Down the System or Part of the System Using the xtcli shutdown
Command
The HSS xtcli shutdown command shuts down the system or a part of the system. To shut down compute
nodes, execute the xtcli shutdown command. Under normal circumstances, for example to successfully
disconnect from Lustre, invoking the xtcli shutdown command attempts to gracefully shut down the specified
nodes.

For information, see the xtcli(8) man page.

Shut down all compute nodes

crayadm@smw:~> xtcli shutdown compute

Manage the System

S2393 92

Shut down specified compute nodes

For this example, shut down only compute nodes in cabinet c13-2:

crayadm@smw:~> xtcli shutdown c13-2

Shut down all nodes of a system

crayadm@smw:~> xtcli shutdown s0

Shut down a partition pN of a system

crayadm@smw:~> xtcli shutdown pN

Force nodes to shut down (immediate halt)

When all nodes of a system must be halted immediately, use the -f argument; nodes will not go
through their normal shutdown process. Forced shutdown occurs even if the nodes have an alert
status present.

crayadm@smw:~> xtcli shutdown -f s0
After the software on the nodes is shutdown, the system administrator can halt the hardware,
reboot, or power down.

Stop System Components
When a system administrator removes, stops, or powers down components, any applications and compute
processes that are running on those components are lost.

Reserve a Component
To allow applications and compute processes to complete before stopping components, use the HSS xtcli
set_reserve idlist command to prevent the selected nodes from accepting new jobs.

A node running CNL and using ALPS is considered to be down by ALPS after it is reserved using the xtcli
set_reserve command. The output from apstat will show the node as down (DN), even though there may be
an application running on that node. This DN designation indicates that no other work will be placed on the node
after the currently running application has terminated.

For more information, see the xtcli_set(8) man page.

Reserve a component

crayadm@smw:~> xtcli set_reserve idlist

Manage the System

S2393 93

Power Down Blades or Cabinets
WARNING: Power down the cabinets with software commands. Tripping the circuit breakers may result in
damage to system components.

WARNING: Before powering down a blade or a cabinet, ensure the operating system is not running.

The xtcli power down command powers down the specified cabinet and/or blades within the specified
partition, chassis or list of blades. Cabinets must be in the READY state to receive power commands.

When a request is made to power down a blade consisting of Intel® Xeon® processor Scalable Family nodes or a
Cabinet containing processor blades of this type, the nodes are powered off into the G3 state (full power off) prior
to the Cabinet controller removing power from the blade. See System Component States on page 60.

The xtcli power down command has the following form, where physIDlist is a comma-separated list of
cabinets, blades, or nodes present on the system.

xtcli power down physIDlist
The xtcli power force_down and xtcli power down_slot commands are aliases for the xtcli power
down command. For information about disabling and enabling components, see Disable Hardware Components,
and Enable Hardware Components, respectively.

WARNING: Although a blade is powered off, the HSS in the cabinet is live and has power.

For information about powering down a component, see the xtcli_power(8) man page.

Power down a specified blade

For this example, power down a blade with the ID c0-0c0s7:

crayadm@smw:~> xtcli power down c0-0c0s7

Power Down a Specific Node
The xtcli power down_node command powers down the specified node and/or nodes within a specified
partition, chassis, list of blades, or list of nodes. When specifying a specific node or list of nodes, all node types
are powered down to the G3 state except for Intel® Xeon® processor Scalable Family nodes, which are powered
down to the S5 state (soft off). These nodes can be powered down to the G3 state using one of the following
methods:

● Issue the xtcli power down_node command with the --with-si flag.

● Power down the blade that the Intel® Xeon® processor Scalable Family nodes reside on. Blades must be in
the READY state to receive power commands. See System Component States on page 60.

The xtcli power down_node command has the following form, where physIDlist is a comma-separated
list of cabinets, blades, or nodes present on the system.

xtcli power down_node physIDlist

Manage the System

S2393 94

Power down specified nodes

In these example commands, c0-0c0s7n0 is a Haswell node and c0-1c1s8n2 is a Intel®
Xeon® processor Scalable Family node. The following down_node power command does not
include the --with-si flag.

crayadm@smw:~> xtcli power down_node c0-0c0s7n0,c0-1c1s8n2
HSS reports both nodes as being in the off state. The state of c0-0c0s7n0 is G3, and the state
of c0-1c1s8n2 is S5.

The next example uses the --with-si flag to power down the same two nodes.

crayadm@smw:~> xtcli power down_node --with-si c0-0c0s7n0,c0-1c1s8n2
HSS reports both nodes as being in the off state. Both nodes are in the G3 state. See the
xtcli_power(8) man page for more information.

Halt Selected Nodes
Use the HSS xtcli halt command to halt selected nodes. For more information, see the xtcli(8) man
page.

Halt a node

For this example, halt node 157:

crayadm@smw:~> xtcli halt 157

Restart a Blade or Cabinet
IMPORTANT: Change the state of the hardware only when the operating system is not running or is shut
down.

The xtcli power up command powers up the specified cabinet and/or blades within the specified partition,
chassis or list of blades. Cabinets must be in the READY state (see System Component States on page 60) to
receive power commands. The xtcli power up command does not attempt to power up network mezzanine
cards or nodes that are handled by the xtbounce command during system boot.

The xtcli power up_slot command is an alias for the xtcli power up command.

The xtcli power up command has the following form, where physIDlist is a comma-separated list of
cabinets or blades present on the system.

xtcli power up physIDlist
For more information, see the xtcli_power(8) man page.

Power up blades in c0-0c0s7

crayadm@smw:~> xtcli power up c0-0c0s7

Manage the System

S2393 95

Abort Active Sessions on the HSS Boot Manager

About this task
Use the HSS xtcli session abort command to abort sessions in the boot manager. A session corresponds
to executing a specific command such as xtcli power up or xtcli boot.

For more information about manager sessions, see the xtcli(8) man page.

Procedure

1. Display all running sessions in the boot manager. Only the boot manager supports multiple simultaneous
sessions.

crayadm@smw:~> session show BM all

2. Abort the selected session, session_id.

crayadm@smw:~> xtcli session abort BM session_id

Display and Change Software System Status
The user command xtnodestat provides a display of the status of nodes: how they are allocated and to what
jobs. The xtnodestat command provides current job and node status summary information, and it provides an
interface to ALPS and jobs running on CNL compute nodes. ALPS must be running in order for xtnodestat to
report job information.

For more information, see the xtnodestat(1) man page.

View and Change the Status of Nodes
Use the xtprocadmin command on a service node to view the status of components of a booted system in the
processor table of the SDB. The command enables the system administrator to retrieve or set the processing
mode (interactive or batch) of specified nodes. The administrator can display the state (up, down,
admindown, route, or unavailable) of the selected components, if needed. The administrator can also
allocate processor slots or set nodes to become unavailable at a particular time. The node is scheduled only if the
status is up.

When the xtprocadmin -ks option is used, then the option can either a normal argument (up, down, etc.), or it
can have a colon in it to represent a conditional option; for example, the option of the form up:down means "if
state was up, mark down".

For more information, see the xtprocadmin(8) man page.

View node characteristics

login:~> xtprocadmin
 NID (HEX) NODENAME TYPE STATUS MODE
 1 0x1 c0-0c0s0n1 service up batch
 2 0x2 c0-0c0s0n2 service up batch
 5 0x5 c0-0c0s1n1 service up batch
 6 0x6 c0-0c0s1n2 service up batch

Manage the System

S2393 96

 8 0x8 c0-0c0s2n0 compute up batch
 9 0x9 c0-0c0s2n1 compute up batch
 10 0xa c0-0c0s2n2 compute up batch
 11 0xb c0-0c0s2n3 compute up batch

View all node attributes
login:~> xtprocadmin -A
 NID (HEX) NODENAME TYPE ARCH OS CPUS CU AVAILMEM PAGESZ CLOCKMHZ GPU SOCKETS DIES C/
CU LABEL0 LABEL1
LABEL2 LABEL3
 1 0x1 c0-0c0s0n1 service xt (service) 16 8 32768 4096 2600 0 1 1
2
 2 0x2 c0-0c0s0n2 service xt (service) 16 8 32768 4096 2600 0 1 1
2
 5 0x5 c0-0c0s1n1 service xt (service) 16 8 32768 4096 2600 0 1 1
2
 6 0x6 c0-0c0s1n2 service xt (service) 16 8 32768 4096 2600 0 1 1
2
 8 0x8 c0-0c0s2n0 compute xt CNL 32 16 65536 4096 2600 0 2 2
2
 9 0x9 c0-0c0s2n1 compute xt CNL 32 16 65536 4096 2600 0 2 2
2
 10 0xa c0-0c0s2n2 compute xt CNL 32 16 65536 4096 2600 0 2 2
2

View selected attributes of selected nodes

For this example, the -a option lists the selected attributes to display:

login:~> xtprocadmin -n 8 -a arch,clockmhz,os,cores
 NID (HEX) NODENAME TYPE ARCH CLOCKMHZ OS CPUS
 8 0x8 c0-0c0s2n0 compute xt 2600 CNL 32

Disable a node

For this example, the admindown option disables node c0-0c0s3n1 such that it cannot be
allocated:

crayadm@nid00004:~> xtprocadmin -n c0-0c0s3n1 -k s admindown

Disable all processors

crayadm@nid00004:~> xtprocadmin -k s admindown

Mark a Compute Node as a Service Node
Use the xtcli mark_node command to mark a node in a compute blade to have a role of service or
compute; compute is the default. It is not permitted to change the role of a node on a service blade, which
always has the service role.

Marking a node on a compute blade as service or compute allows the administrator to load the desired boot
image at boot time. Compute nodes marked as service can run software-based services. A request to change
the role of a running node (that is, the node is in the ready state and the operating system is running) will be
denied.

For more information, see the xtcli(8) man page and Check the Status of System Components on page 197.

Manage the System

S2393 97

Find Node Information

Translate Between Physical ID Names and Integer NIDs
To translate between physical ID names (cnames) and integer NIDs, generate a system map on the System
Management Workstation (SMW) and filter the output, enter the following command:

crayadm@smw:~> rtr --system-map | grep cname | awk '{ print $1 }'
For more information, see the rtr(8) man page.

Find Node Information Using the xtnid2str Command
The xtnid2str command converts numeric node identification values to their physical names (cnames). This
allows conversion of Node ID values, ASIC NIC address values, or ASIC ID values.

For additional information, see the xtnid2str(8) man page.

Find the physical ID for node 38

smw:~> xtnid2str 28
node id 0x26 = 'c0-0c0s1n2'

Find the physical ID for nodes 0, 1, 2, and 3

smw:~> xtnid2str 0 1 2 3
node id 0x0 = 'c0-0c0s0n0'
node id 0x1 = 'c0-0c0s0n1'
node id 0x2 = 'c0-0c0s1n0'
node id 0x3 = 'c0-0c0s1n1'

Find the physical IDs for Aries IDs 0-7

smw:~> xtnid2str -a 0-7
aries id 0x0 = 'c0-0c0s0a0'
aries id 0x1 = 'c0-0c0s1a0'
aries id 0x2 = 'c0-0c0s2a0'
aries id 0x3 = 'c0-0c0s3a0'
aries id 0x4 = 'c0-0c0s4a0'
aries id 0x5 = 'c0-0c0s5a0'
aries id 0x6 = 'c0-0c0s6a0'
aries id 0x7 = 'c0-0c0s7a0'

Find Node Information Using the nid2nic Command
The nid2nic command prints the nid-to-nic address mappings, nic-to-nid address mappings, and a specific
physical_location-to-nic address and nid mappings.

For information about using the nid2nic command, see the nid2nic(8) man page.

Manage the System

S2393 98

Print the nid-to-nic address mappings for the node with NID 31

smw:~> nid2nic 31
NID:0x1f NIC:0x21 c0-0c0s7n3

Print the nid-to-nic address mappings for the node with NID 31, but specify the NIC value in the command
line

smw:~> nid2nic -n 0x21
NIC:0x21 NID:0x1f c0-0c0s7n3

Display and Change Hardware System Status
A system administrator can execute commands that look at and change the status of the hardware.

CAUTION: Execute commands that change the status of hardware only when the operating system is
shut down.

Generate HSS Physical IDs
The HSS xtgenid command generates HSS physical IDs, for example, to create a list of blade controller
identifiers for input to the flash manager. Selection can be restricted to components of a particular type. Only user
root can execute the xtgenid command.

For more information, see the xtgenid(8) man page.

Create a list of node identifiers that are not in the DISABLE, EMPTY, or OFF state

smw:~ # xtgenid -t node --strict

Disable Hardware Components
If links, nodes, or Cray ASICs have hardware problems, the system administrator can direct the system to ignore
the components with the xtcli disable command.

By default, when disabling a component, this command takes into consideration the hierarchy of components,
performs the action upon the identified component(s) and cascades that action to any subcomponent of the
identified component(s), unless the -n option is specified.

The xtcli disable command has the following form, where idlist is a comma-separated list of components
(in cname format) that the system is to ignore. The system disregards these links or nodes.

xtcli disable [{-t type [-a] } | -n] [-f] idlist
IMPORTANT: The -n option with the xtcli disable command must be used carefully because this
may create invalid system state configurations.

Disabling of a cabinet, chassis, or blade will fail if any nodes under the component are in the ready state, unless
the force option (-f) is used. An error message will indicate the reason for the failure.

Manage the System

S2393 99

Disabling of a node in the ready state will fail, unless the force option (-f) is used. An error message will indicate
the reason for the failure.

The state of empty components will not change when using the disable command, unless the force option (-f)
is used.

For detailed information about using the xtcli disable command, see the xtcli(8) man page.

Disable the Aries ASIC c0-0c1s3a0
1. Determine that the ASIC is in the OFF state.

crayadm@smw:~> xtcli status -t aries c0-0c1s3a0
2. If the ASIC is not in the OFF state, power down the blade that contains the ASIC.

crayadm@smw:~> xtcli power down c0-0c1s3
3. Disable the ASIC.

crayadm@smw:~> xtcli disable c0-0c1s3a0
4. Power up the blade that contains the ASIC.

crayadm@smw:~> xtcli power up c0-0c1s3

Enable Hardware Components
If links, nodes, or Cray ASICs that have been disabled are later fixed, the system administrator can add them
back to the system with the xtcli enable command.

The xtcli enable command has the following form, where idlist is a comma-separated list of components
(in cname format) for the system to recognize.

xtcli enable [{-t type [-a] } | -n] [-f] idlist
By default, when disabling a component, this command takes into consideration the hierarchy of components,
performs the action upon the identified component(s) and cascades that action to any subcomponent of the
identified component(s), unless the -n option is specified.

IMPORTANT: The -n option with the xtcli disable command must be used carefully because this
may create invalid system state configurations.

The state of empty components does not change when using the xtcli enable command, unless the force
option (-f) is used.

The state of off means that a component is present on the system. If the component is a blade controller, node,
or ASIC, then this will also mean that the component is powered off. If the administrator disables a component,
the state shown becomes disabled. When the xtcli enable command is used to enable that component for
use once again, its state switches from disabled to off. In the same manner, enabling an empty component
means that its state switches from empty to off.

For more information, see the xtcli(8) man page.

Set Hardware Components to EMPTY
Use the xtcli set_empty command to set a selected component to the EMPTY state. HSS managers and the
xtcli command ignore empty or disabled components.

Manage the System

S2393 100

Setting a selected component to the EMPTY state is typically done when a component, usually a blade, is
physically removed. By setting it to EMPTY, the system ignores it and routes around it.

By default, when disabling a component, this command takes into consideration the hierarchy of components,
performs the action upon the identified component(s) and cascades that action to any subcomponent of the
identified component(s), unless the -n option is specified.

IMPORTANT: The -n option with the xtcli disable command must be used carefully because this
may create invalid system state configurations.

For more information, see the xtcli(8) man page.

Set a blade to the EMPTY state

crayadm@smw:~> xtcli set_empty -a c0-0c1s7

Lock Hardware Components
Components are automatically locked when a command that can change their state is running. As the command
is started, the state manager locks these components so that nothing else can affect their state while the
command executes. When the manager is finished with the command, it unlocks the components.

Use the HSS xtcli lock command to lock components. Locking a component prints out the state manager
session ID.

For more information, see the xtcli(8) man page.

Lock cabinet c0-0

crayadm@smw:~> xtcli lock -l c0-0

Show all session (lock) data

crayadm@smw:~> xtcli lock show

Unlock Hardware Components
Use the HSS xtcli lock command to unlock components. This command is useful when an HSS manager
fails to unlock some set of components.

The system administrator can manually check for locks with the xtcli lock show command and then unlock
them. Unlocking a component does not print out the state manager session ID. The -u option must be used to
unlock a component as follows:

crayadm@smw:~> xtcli lock -u lock_number
Where lock_number is the value given when initiating the lock; it is also indicated in the xtcli lock show
query. Unlocking does nothing to the state of the component other than to release locks associated with it.

HSS daemons cannot affect components that are locked by a different session.

Manage the System

S2393 101

Set the Turbo Boost Limit
Turbo boost limiting is supported on the Intel® Xeon® processor Scalable family. Turbo boost limiting is NOT
supported on Intel® Xeon Phi™ "Knights Landing" (KNL) or on Intel® Xeon® "Sandy Bridge" processors.

Because Intel processors have a high degree of variability in the amount of turbo boost each processor can
supply, limiting the amount of turbo boost can reduce performance variability and reduce power consumption.
Turbo boost can be limited by setting the turbo_boost_limit kernel parameter to one of these valid values:

Value Result

0 Disable turbo boost.

100 Limits turbo boost to 100 MHz.

200 Limits turbo boost to 200 MHz.

300 Limits turbo boost to 300 MHz.

400 Limits turbo boost to 400 MHz.

999 (default) No limit is applied.

The limit applies only when a high number of cores are active. On an N-core processor, the limit is in effect when
the active core count is N, N-1, N-2, or N-3. For example, on a 12-core processor, the limit is in effect when 12,
11, 10, or 9 cores are active.

Set or Change the Turbo Boost Limit Parameter
Set or change the turbo boost limit parameter using one of the following methods:

● TEMPORARY. To make a one-time non-persistent change, warm boot the compute nodes using the --
compute-boot-params option.

smw> xtbootsys --reboot -L DEFAULT --compute-boot-params \
turbo_boost_limit=value idlist
where value is one of the values listed above and idlist is a comma-separated list of compute node
cnames (or all_comp for all compute nodes) to be booted. This configuration change is not persisted.

● PERMANENT. To make a persistent change, use cnode (as root) to change the parameter, and then reboot
the nodes. Note that the following commands target all nodes or all compute nodes. To specify individual
nodes, add their cnames at the end of the command line.

1. To list the current kernel parameters:

smw# cnode list
2. To change the turbo_boost_limit kernel parameter for all compute nodes, substitute one of the

values listed above for value in this command:

smw# cnode update --filter group=compute \
--add-parameter turbo_boost_limit=value

3. To remove the change, if needed, use one of these commands:

smw# cnode update --filter group=compute \
--remove-parameter turbo_boost_limit

Manage the System

S2393 102

Verify that the Turbo Boost Limit Parameter was Changed
If desired, the turbo_boost_limit change can be verified on the nodes after they have been rebooted. To
verify, look at the contents of the following file on the target NIDs.

login> aprun -L nidlist cat /sys/module/cray_power_management/\
parameters/turbo_boost_limit
where nidlist is a comma-separated list of NIDs.

Perform Parallel Operations on Service Nodes
Use pdsh, the CLE parallel remote shell utility for service nodes, to issue commands to groups of nodes in
parallel. The system administrator can select the nodes on which to use the command, exclude nodes from the
command, and limit the time the command is allowed to execute. Only user root can execute the pdsh
command. The command has the following form:

pdsh [options] command
For more information, see the pdsh(1) man page.

Restart the NTP service

boot:~ # pdsh -w 'login[1-9]' /etc/init.d/ntp restart

Perform Parallel Operations on Compute Nodes
The parallel command tool (pcmd) facilitates execution of the same commands on groups of compute nodes in
parallel, similar to pdsh. Although pcmd is launched from a service node, it acts on compute nodes. It allows
administrators and/or, if the site deems it feasible, other users to securely execute programs in parallel on
compute nodes. The user can specify on which nodes to execute the command. Alternatively, the user can
specify an application ID (apid) to execute the command on all the nodes available under that apid.

An unprivileged user must execute the command targeting nodes where the user is currently running an aprun. A
root user is allowed to target any compute node, regardless of whether there are jobs running there or not. In
either case, if the aprun exits and the associated applications are killed, any commands launched by pcmd will
also exit.

By default, pcmd is installed as a root-only tool. It must be installed as setuid root in order for unprivileged
users to use it.

The pcmd command is located in the nodehealth module. If the nodehealth module is not part of the default
profile, load it by specifying:

module load nodehealth
For additional information, see the pcmd(1) man page.

Manage the System

S2393 103

xtbounce Error Message Indicates Cabinet Controller and Its Blade
Controllers Not in Sync
During the gather_cab_pwr_states phase of xtbounce, if the HSS software on a cabinet controller and any
of its blade controllers is out of sync, error messages such as the following will be printed during the xtbounce.

***** gather_cab_pwr_states *****
18:28:42 - Beginning to wait for response(s)

ERROR: rs_phys_node2ascii() failed for node struct 0xb7e70150080700f8
ERROR: rs_phys_node2ascii() failed for node struct 0xb7e70150080700f8
ERROR: rs_phys_node2ascii() failed for node struct 0xb7e70150080700f8
ERROR: rs_phys_node2ascii() failed for node struct 0xb7e70150080700f8
If this occurs, it indicates that the blade controller software is at a different revision than the cabinet controller
software. xtbounce will print a list of cabinets for which this error has occurred. The message will be similar to
the following:

ERROR: power state check error on 2 cabinet(s)
WARNING: unable to find c0-0 in err_cablist
WARNING: unable to find c0-2 in err_cablist
This error is an indication that when the HSS software was previously updated, the cabinet controllers and the
blade controllers were not updated to the same version.

To correct this error, cancel out of xtbounce (with Ctrl-C), wait approximately five minutes for the xtbounce
related activities on the blade controllers to finish, then reboot the cabinet controller(s) and their associated blade
controllers to get the HSS software synchronized. Following this, the xtbounce may be executed once again.

Reduce Impact of Btrfs Periodic Maintenance on SMW Performance

About this task
Btrfs (B-tree file system) runs periodic maintenance. The weekly and monthly maintenance scripts, which include
balance, trim, and scrub actions, can consume large amounts of compute resource. This can impact a site's ability
to use the SMW for normal operations, even using SSH to log into nodes. This procedure describes how to
reduce the impact to SMW performance by controlling when these scripts are run.

Procedure

1. Create a file /etc/cron.d/cray_btrfs.cron.

The new cron file needs to be in /etc/cron.d because the btrfs RPM installs links to maintenance scripts
into the /etc/cron.{weekly,monthly} directories.

smw# vi /etc/cron.d/cray_btrfs.cron

Add these lines to the new file. Adjust as needed for this site.

Control when btrfs maintenance scripts run by deleting the corresponding
'lastrun' files at a predetermined time. Caveat, this affects all of the
scripts in the corresponding cron directories (/etc/cron.{weekly,monthy})

Manage the System

S2393 104

Run weekly on Saturday at 2 AM as root
0 2 * * 6 root rm -f /var/spool/cron/lastrun/cron.weekly
Run monthly on the first Sunday of the month at 2 AM as root
0 2 * * 0 root [$(date +%d) -le 07] && rm -f /var/spool/cron/lastrun/cron.monthly

2. Set ownership of the new cron file to root,root with permissions 644.

smw# chown root:root /etc/cron.d/cray_btrfs.cron
smw# chmod 644 /etc/cron.d/cray_btrfs.cron

Power-cycle a Component to Handle Bus Errors

About this task
Bus errors are caused by machine-check exceptions. If a bus error occurs, try power-cycling the component.

Procedure

1. Power down the components. The physIDlist is a comma-separated list of components present on the
system.

crayadm@smw:~> xtcli power down physIDlist

2. Power up the components.

crayadm@smw:~> xtcli power up physIDlist

When a Component Fails
Components that fail are replaced as field replaceable units (FRUs). FRUs include compute blade components,
service blade components, and power and cooling components.

When a field replaceable unit (FRU) problem arises, contact a Customer Service Representative to schedule a
repair.

Capture and Analyze System-level and Node-level Dumps
The xtdumpsys command collects and analyzes information from a Cray system that is failing or has failed, has
crashed, or is hung. Analysis is performed on, for example, event log data, active heartbeat probing, voltages,
temperatures, health faults, in-memory console buffers, and high-speed interconnection network errors. When
failed components are found, detailed information is gathered from them.

To collect similar information for components that have not failed, invoke the xtdumpsys command with the --
add option and name the components from which to collect data. The HSS xtdumpsys command saves dump
information in /var/opt/cray/dump/timestamp by default.

NOTE: When using the --add option to add multiple components, separate components with spaces, not
commas.

Manage the System

S2393 105

Dump information about a working component

For this example, dump the entire system and collect detailed information from all blade
controllers in chassis 0 of cabinet 0:

crayadm@smw:~> xtdumpsys --add c0-0c0s0

The xtdumpsys command is written in Python and supports plug-ins written in Python. A number of plug-in
scripts are included in the software release. Call xtdumpsys --list to view a list of included plug-ins and their
respective directories. The xtdumpsys command also now supports the use of configuration files to specify
xtdumpsys presets, rather than entering them via the command line.

For more information, see the xtdumpsys(8) man page.

Configure xtdumpsys for Systems Using passwordless ssh
The xtdumpsys command collects data from a system that is failing, crashed, or hung. By default, xtdumpsys
collects information only from the SMW and HSS. To collect data from other system nodes automatically, specify
plugins from the /etc/opt/cray/dumpsys/config/plugin.conf file that enable xtdumpsys to gather the
needed data. xtdumpsys runs all the enabled plugins unless individual plugins are included or excluded on the
command line.

Access to the additional nodes can be achieved using passwordless ssh. xtdumpsys is not aware of site-
specific passwords. When xtdumpsys cannot access a node because of a site-specific password or an inability
to used passwordless ssh, it prompts the user for a password for each time, which could be very often.
xtdumpsys uses the following ssh connections (user@node), and passwordless ssh needs to be set up for
these connections. To skip one or more of these ssh connections in xtdumpsys processing, exclude the plugin
specified with the connection.

● root@boot → root@sdb

○ Skip using --plugins-exclude slurm_status command line option.

● root@boot → crayadm@sdb

○ Skip using the --plugins-exclude slurm_status command line option.

● For each compute node that is down, or admindown, or unavail:

○ root@boot → root@<compute_node>

▪ Skip using the --plugins-exclude alps_compute_logs command line option.

● For each node with the dwrest service (/boot/dwrest_gw.conf):

○ root@boot → root@<node>

▪ Skip using the --plugins-exclude datawarp command line option.

● For each suspect/dead node:

○ root@boot → root@<node>

▪ Skip using the --plugins-exclude knc_host_logs command line option.

● For each service node:

○ crayadm@boot → root@<service_node>

▪ Skip using the --plugins-exclude systemd_status command line option.

Manage the System

S2393 106

● For each node specified by the xtdumpsys --add (node) option:

○ root@<boot> → root@<node>

▪ Skip using the --plugins-exclude ansible_changed_files command line option.

A more permanent way of excluding plugins is to edit the /etc/opt/cray/dumpsys/config/default.conf
file. Add the plugin names, delimited with commas, to the plugins_exclude_default setting.

cdump and crash Utilities for Node Memory Dump and Analysis
The cdump and crash utilities may be used to analyze the memory on any Cray service node or CNL compute
node. The cdump command is used to dump node memory to a file. After cdump completes, the crash utility can
be used on the dump file generated by cdump.

Cray recommends executing the cdump utility only if a node has panicked or is hung, or if a dump is requested by
Cray.

To select the desired access method for reading node memory, use the cdump -r access option. Valid access
methods are:

xt-bhs The xt-bhs method uses a basic hardware system server that runs on the SMW to access and read
node memory. xt-bhs is the default access method for these systems.

xt-hsn The xt-hsn method utilizes a proxy that reads node memory through the High-speed Network
(HSN). The xt-hsn method is faster than the xt-bhs method, but there are situations where it will
not work (for example, if the ASIC is not functional). However, the xt-hsn method is preferable
because the dump completes in a short amount of time and the node can be returned to service
sooner.

xt-file The xt-file method is used for memory dump file created by the -z option. The compressed
memory dump file must be uncompressed prior to executing this command. Use the file name for
node-id.

xc-knc The xc-knc method is used to dump Intel Xeon Phi nodes. Use this method when dumping only the
Xeon Phi coprocessor without dumping the host node. When dumping the host node, do not use xc-
knc. A host node dump automatically includes dumping the Xeon Phi coprocessors unless they are
suppressed by specifying the -n option.

To dump Cray node memory, access takes the following form:

method[@host]
For additional information, see the cdump(8) and crash(8) man pages.

Dump and Reboot Nodes Automatically
The SMW daemon dumpd initiates automatic dump and reboot of nodes when requested by the Node Health
Checker (NHC).

CAUTION: The dumpd daemon is invoked automatically by xtbootsys on system (or partition) boot. In
most cases, system administrators do not need to use this daemon directly.

A system administrator can set global variables in the /etc/opt/cray/nodehealth/nodehealth.conf
configuration file to control the interaction of NHC and dumpd. For more information about NHC and the
nodehealth.conf configuration file, see Configure the Node Health Checker (NHC).

Manage the System

S2393 107

Variables can also be set in the /etc/opt/cray-xt-dumpd/dumpd.conf configuration file on the SMW to
control how dumpd behaves on the system.

Each CLE release package also includes an example dumpd configuration
file, /etc/opt/cray-xt-dumpd/dumpd.conf.example. The dumpd.conf.example file is a copy of
the /etc/opt/cray-xt-dumpd/dumpd.conf file provided for an initial installation.

IMPORTANT: The /etc/opt/cray-xt-dumpd/dumpd.conf file is not overwritten during a CLE
upgrade if the file already exists. This preserves the site-specific modifications previously made to the file.
Cray recommends comparing the site's /etc/opt/cray-xt-dumpd/dumpd.conf file content with
the /etc/opt/cray-xt-dumpd/dumpd.conf.example file provided with each release to identify any
changes and then update the site's /etc/opt/cray-xt-dumpd/dumpd.conf file accordingly.

If the /etc/opt/cray-xt-dumpd/dumpd.conf file does not exist, then
the /etc/opt/cray-xt-dumpd/dumpd.conf.example file is copied to
the /etc/opt/cray-xt-dumpd/dumpd.conf file.

The CLE installation and upgrade processes automatically install dumpd software, but it must be explicitly
enabled.

The /etc/opt/cray-xt-dumpd/dumpd.conf Configuration File
The dumpd configuration file, /etc/opt/cray-xt-dumpd/dumpd.conf, is located on the SMW. There is no
need to change any installation configuration parameters, but a system administrator can edit
the /etc/opt/cray-xt-dumpd/dumpd.conf file to customize how dumpd behaves on the system using the
following configuration variables.

enable: yes|no Provides a quick on/off switch for all dumpd functionality.

Default is no.

partitions: number Specifies whether or not dumpd acts on specific partitions or ranges of partitions.
Placing ! in front of a partition or range disables it.

For example, specifying

partitions: 1-10,!2-4

enables partitions 1, 5, 6, 7, 8, 9, and 10 but not 2, 3, or 4. Partitions must be explicitly
enabled. Leaving this option blank disables all partitions.

disabled_action:
ignore|queue Specifies what to do when requests come in for a disabled partition. If ignore is

specified, requests are removed from the database and not acted upon. If queue is
specified, requests continue to build while dumpd is disabled on a partition. When the
partition is reenabled, the requests will be acted on. Specifying queue is not
recommended if dumpd will be disabled for long periods of time, as it can cause SMW
stress and database problems.

save_output:
always|errors|
never

Indicates when to save stdout and stderr from dumpd commands that are
executed. If save_output is set to always, all output is saved. If errors is
specified, output is saved only when the command exits with a nonzero exit code. If
never is specified, output is never saved.

The default is to save output on errors.

Manage the System

S2393 108

command_output:
directory

Specifies where to save output of dumpd commands, per the save_output variable.
The command output is put in the file action.pid.timestamp.out in the directory
specified by this option.

Default directory is /var/opt/cray/dump.

dump_dir:
directory

Specifies the directory in which to save dumps.

Default directory is /var/opt/cray/dump.

max_disk: nnnMB|
unlimited

Specifies the amount of disk space beyond which no new dumps will be created. This
is not a hard limit; if dumpd sees that this directory has less than this amount of space,
it starts a new dump, even if that dump subsequently uses enough space to exceed
the max_disk limit.

The default value is max_disk: unlimited.

no_space_action:
action

Specifies a command to be executed if the directory specified by the variable
dump_dir does not have enough space free, as specified by max_disk. For
example:

Deletes the oldest dump in the dump directory:

no_space_action: rm -rf $dump_dir/$(ls -rt $dump_dir | head
-1)

Moves the oldest dump somewhere useful:

no_space_action: mv $dump_dir/$(ls -t $dump_dir|head
-1) /some/dump/archive

Sends E-mail to an administrator at admin@fictionalcraysite.com:

no_space_action: echo "" | mail -s "Not Enough Space in
$dump_dir" \
admin@fictionalcraysite.com

The dumpd-dbadmin Tool
The dumpd daemon sits and waits for requests from NHC (or some other entity using the dumpd-request tool).
When dumpd gets a request, it creates a database entry in the mznhc database for the request, and calls the
script /opt/cray-xt-dumpd/default/bin/executor to read the dumpd.conf configuration file and
perform the requested actions.

Use the dumpd-dbadmin tool to view or delete entries in the mznhc database in a convenient manner.

The dumpd-request Tool
Use the dumpd-request tool to send dump and reboot requests to dumpd from the SMW. A request includes a
comma-separated list of actions to perform, and the node or nodes on which to perform the actions.

A typical request from NHC looks like this:

cname: c0-0c1s4n0 actions: halt,dump,reboot

Manage the System

S2393 109

mailto:admin@fictionalcraysite.com

A system administrator can define additional actions in the dumpd.conf configuration file. To use, execute the
dumpd-request tool located on the SMW. A typical call would be:

dumpd-request -a halt,dump,reboot -c c0-0c1s4n0

Or

dumpd-request -a myaction1,myaction2 -c
c1-0c0s0n0,c1-0c0s0n1,c1-0c0s0n2,c1-0c0s0n3

For this example to work, myaction1 and myaction2 must be defined in the dumpd.conf file. See the
examples in the configuration file for more detail.

Collect Debug Information From Hung Nodes Using the xtnmi
Command

CAUTION: This is not a harmless tool to use to repeatedly get information from a node at various times;
only use this command when debugging data from nodes that are in trouble is needed. The xtnmi
command output may be used to determine problems such as a core hang. xtnmi will stop a running
node. It is best used when a node is not running correctly and debugging information is needed, or to stop
a node that is running incorrectly.

The sole purpose of the xtnmi command is to collect debug information from unresponsive nodes. As soon as
that debug information is displayed to the console, the node panics.

For additional information, see the xtnmi(8) man page.

Modify BIOS Parameters
There are a few, rare circumstances where it may be necessary to modify BIOS parameters, for example, in order
to troubleshoot a problem, or if there is a need to test a new BIOS version on a small set of nodes before
implementing the change across an entire system.

The xtbiosconf command allows administrators to specify BIOS parameters at the node, blade, chassis, or
cabinet level. BIOS parameters can be associated with a BIOS revision, numeric parameter offset or parameter
name, and target nodes. BIOS revision wildcards are supported. The BIOS parameter data is saved in a database
on the SMW, and made available automatically to blade controllers via the ERFS file system. In most cases a cold
reboot of the affected nodes is needed to apply the new settings.

CAUTION: Do not attempt to use this command except under guidance by Cray support personnel, who
will provide all the steps for shutting down the nodes, changing the settings, and bringing the nodes back
up. Improper use of this command can damage a system.

The following command displays the current BIOS Parameter settings for the entire system:

smw~> xtbiosconf --show s0
==============|======|===================================
 | BIOS | BIOS
Node | REV | Parameter
==============|======|===================================
c0-1c0s0n1 | 4030 | numlock=1

Manage the System

S2393 110

c0-1c0s0n1 | 4030 | acpiauto=0
==============|======|===================================
c0-1c0s0n2 | 4030 | numlock=1
c0-1c0s0n2 | 4030 | acpiauto=0
==============|======|===================================
For more information see the xtbiosconf man page.

Set or Change the HSS Data Store (MariaDB) Root Password

About this task
The method for setting or changing the HSS data store (database) root password has changed with the release of
CLE 6.0.

Old The HSS database was implemented with MySQL. After initial installation, its root password was changed
from the initial default empty string to a user-defined value by the SMWconfig script, which was run after
SMWinstall and the initial discovery of the system.

New The HSS database is now implemented with MariaDB, a MySQL work-alike database with identically
named commands. As before, the initial default root password is the empty string; however, the
SMWconfig script is no longer used to set it after installation. The administrator must use the following
procedure to set the root password to a user-defined value.

After the MariaDB root password has been set, it must be placed in /root/.my.cnf, a file readable only
by root that has the format shown in step 2. This file is the mechanism by which the installer and the
snaputil command obtain the root password when they access MariaDB as root. If the file does not
exist or it has no password= line, the system will attempt to access MariaDB using the default empty-
string password, which will fail once the password has been changed.

● Create /root/.my.cnf the first time the root password is set to a user-defined value.

● Update /root/.my.cnf to match the MariaDB root password whenever it is changed.

Procedure

1. Set or change the MariaDB root password.

smw# mysqladmin -uroot password -p
a. Enter existing password.

At the "Enter password" prompt, do ONE of the following:

● If setting the root password for the first time (fresh install, migration, database reinitialization), the
existing password is an empty string (the default initial password), so just press Enter.

Enter password: <cr>
● If changing the root password, enter the existing password.

Enter password: existing_password
b. Enter and confirm the new password.

Manage the System

S2393 111

At these prompts, enter the new root password, and then enter it again.

New password:
Confirm new password:

2. Ensure that the root password in the /root/.my.cnf file matches the new root password.

If this file does not yet exist, create it and add the lines shown in the example, substituting the new password
for the placeholder <MariaDB-password>.

smw# vi /root/.my.cnf
[client]
user=root
password=<MariaDB-password>

3. Ensure that only root can see or write to the /root/.my.cnf file.

smw# chmod 600 /root/.my.cnf

Recover from a Corrupt or Missing SMW MariaDB Database

About this task
If the HSS MariaDB (formerly MySQL) database has been damaged or is missing, there are three possible
courses of action:

● Repair.

If the database has become corrupt, MariaDB automatically attempts to repair damaged tables. Look in the
log file (default /var/lib/mysql/machine.err) for suggested manual recovery steps, if any, and try
those first. Repairing the database is the best option when possible.

● Restore and regenerate.

If there are no suggestions or the suggested steps fail to repair the database, use the procedure Restore the
HSS MariaDB Database from a Backup on page 113. Restoring the database from the most recent backup
(provided a more recent manual backup is not available) will restore the database to its state just prior to the
last xtdiscover or warmswap add operation. An incremental discovery to the present system state will
usually be faster than one made from a fresh database, and it will not require administrative state changes
made prior to the backup (such as marking compute nodes as 'service') to be performed again.

TIP: To minimize needed discovery, make more frequent backups:

/usr/bin/mysqldump --add-drop-database --routines -uhssds -phssds hssds
 > /home/crayadm/hss_db_backup/my-new-hssds-backup.sql
The HSS MariaDB database could be backed up after every successful warmswap (xtdiscover --
warmswap), regular xtdiscover, and any administrative state change (e.g., xtcli disable/
enable/set_empty/mark_node). Because these actions are all logged in the commands log, they
could be used to automatically trigger backups.

● Regenerate from scratch.

If all else fails, use the procedure Regenerate the HSS MariaDB Database from Scratch on page 114. In this
case, the database and the database root password are wiped out, and discovery is used to regenerate the
database.

Manage the System

S2393 112

Restore the HSS MariaDB Database from a Backup

About this task
If the HSS MariaDB database becomes corrupt or is missing, and automated attempts to repair damaged tables
have failed, use this procedure to do a partial restoration from backup.

Procedure

1. Stop the HSS daemons (by stopping RSMS) and the MariaDB service.

crayadm@smw> sudo /usr/bin/systemctl stop rsms.service
crayadm@smw> sudo /usr/bin/systemctl stop mysql.service

2. Move the damaged database files out of the database directory.

crayadm@smw> mkdir /tmp/backup12
crayadm@smw> cd /var/lib/mysql
crayadm@smw> sudo mv ibdata1 ib_logfile0 ib_logfile1 hssds /tmp/backup12
This procedure assumes that the old database files cannot be repaired; however, this step retains those old
database files (just in case) and clears out the database directory.

3. Restart MariaDB.

crayadm@smw> sudo /usr/bin/systemctl start mysql.service

4. Ensure the database is gone.

crayadm@smw> mysql -uhssds -phssds -e "drop database hssds"
If the database is gone, the following error message appears:

ERROR 1008 (HY000) at line 1: Can't drop database 'hssds'; database doesn't
exist

5. Load the most recent MariaDB backup (from /home/crayadm/hss_db_backup/).

crayadm@smw> mysql -uhssds -phssds < db_backup.11-17-2014.1120.sql
The backups in /home/crayadm/hss_db_backup/ are from past runs of xtdiscover and xtwarmswap
--add and were taken before the state of the database was updated.

6. Restart the HSS daemons (important!)

crayadm@smw> sudo /usr/bin/systemctl start rsms.service

7. Run xtdiscover to pick up any changes to the system since the backup was taken (or all of the database, if
a backup was not loaded in the previous step).

crayadm@smw> sudo xtdiscover

Manage the System

S2393 113

Regenerate the HSS MariaDB Database from Scratch

About this task
If the HSS MariaDB database becomes corrupt or is missing, and all attempts to repair or restore it have failed,
use this procedure to regenerate the database from scratch. Deleting the contents of /var/lib/mysql removes
everything that stores MariaDB state, including the password (hence the need to re-create it). When MariaDB is
restarted and its directory is empty, /var/lib/mysql will be re-initialized.

Procedure

1. Stop the HSS daemons (by stopping RSMS) and the MariaDB service.

crayadm@smw> sudo /usr/bin/systemctl stop rsms.service
crayadm@smw> sudo /usr/bin/systemctl stop mysql.service

2. Remove the damaged database.

crayadm@smw> sudo mkdir /var/lib/mysql.bad
crayadm@smw> sudo mv /var/lib/mysql/* /var/lib/mysql.bad
crayadm@smw> sudo mv /var/lib/mysql/.??* /var/lib/mysql.bad
The /var/lib/mysql directory is the mount point for a file system from the boot RAID, so it cannot simply
be removed. However, its contents can be removed (moved). The /var/lib/mysql directory will be newly
initialized when the MariaDB service is restarted.

3. Restart MariaDB.

crayadm@smw> sudo /usr/bin/systemctl start mysql.service
The database directory is reinitialized, and the default password is set to the empty string.

4. Reset the MariaDB root password and update the /root/.my.cnf file.

a. Reset the MariaDB root password to its former value.

smw# mysqladmin -uroot password -p
b. Ensure that the root password in the /root/.my.cnf file matches the new root password.

smw# vi /root/.my.cnf
[client]
user=root
password=<MariaDB-password>
If this file does not yet exist, create it and add the lines shown in the example, substituting the new
password for the placeholder <MariaDB-password>.

c. Ensure that only root can see or write to the /root/.my.cnf file.

smw# chmod 600 /root/.my.cnf

5. Initialize the HSS database tables and restore user permission tables.

crayadm@smw> hssds_init
crayadm@smw> dbgrant

Manage the System

S2393 114

The system will prompt for a password after each of the above two commands. Give the newly reset MariaDB
root password each time.

6. Restart the HSS daemons (important!).

crayadm@smw> sudo /usr/bin/systemctl start rsms.service

7. Run xtdiscover twice (first with the --bootstrap option) to regenerate the database.

crayadm@smw> sudo xtdiscover --bootstrap
crayadm@smw> sudo xtdiscover

Troubleshoot Temperature Warnings Reported in an End Cabinet

About this task
If the consumer log or xtcheckhss reports temperature warnings in an end-of-row cabinet of a liquid-cooled
system, the current hss.ini file may not have the necessary temperature set point defined, or the set point
value may not be appropriate for the site. Use this procedure to ensure that this temperature set point is defined
and is set to an appropriate value.

Details In a liquid-cooled cabinet with chassis (cages) that are unevenly populated, the exit temperatures in
each cage will be very different. In a normal cabinet, the water valve is controlled by the average
temperature of the hottest temperature strip. By contrast, the water valve in an end-of-row cabinet is
controlled by the average temperature of all temperature strips. This may lead to inadequate cooling
of a populated cage if the other two cages are not populated or have minimal heat load.

To avoid problems arising from inadequate cooling, the exit air temperatures of the end-of-row
cabinet can be independently controlled. This is achieved through an entry in the hss.ini file that
sets the end-of-row cabinet exit temperature lower than that of other cabinets. The default value is
22°C; however this should be adjusted to meet site-specific requirements. If the end cabinet exit air
temperature is not defined in the hss.ini file, the air temperature will default to the setting defined
for the other cabinets in the cooling row.

What to
look for

The consumer log may show entries similar to the example below:

Mon Jul 28 05:59:47 2014 - rs_event_t at 0x7f5bc0000920
ev_id = 0x080040ed (ec_l1_failed)
ev_src = ::c1-0
ev_gen = ::c0-0c0s0n0
ev_flag = 0x00000002 ev_priority = 0 ev_len = 158 ev_seqnum = 0x00000000
ev_stp = 53d5e6d3.0000176d [Mon Jul 28 05:59:47 2014]
svcid 0: ::c1-0 = svid_inst=0x0/svid_type=0x0/svid_node=c1-0[rsn_node=0x0/
rsn_type=0x3/rsn_state=0x6], err code 65914
- Cabinet Controller Temperature Fault
ev_data...
00000000: 01 00 00 00 00 00 00 00 00 00 00 00 0c 06 00 00 *................*
00000010: 04 00 00 00 00 00 00 00 01 00 00 00 7a 01 01 00 *............z...*
00000020: 7a 00 00 00 30 39 34 7c 57 41 52 4e 7c 54 45 4d *z...094|WARN|TEM*
00000030: 50 7c 2f 64 61 74 61 2f 63 6f 6d 70 75 74 65 5f *P|/data/compute_*
00000040: 63 61 62 69 6e 65 74 2f 61 69 72 5f 73 65 6e 73 *cabinet/air_sens*
00000050: 6f 72 73 2f 63 68 32 2f 61 69 72 5f 74 65 6d 70 *ors/ch2/air_temp*
00000060: 32 3a 64 65 67 63 2a 31 30 30 7c 4d 61 78 69 6d *2:degc*100|Maxim*
00000070: 75 6d 20 73 6f 66 74 20 6c 69 6d 69 74 20 65 78 *um soft limit ex*

Manage the System

S2393 115

00000080: 63 65 65 64 65 64 21 7c 44 61 74 61 3d 33 30 30 *ceeded!|Data=300*
00000090: 32 7c 4c 69 6d 69 74 3d 33 30 30 30 2e 00 *2|Limit=3000....*

With xtcheckhss, the problem may look like this:

No Version Mismatches Found!
===
========== Sensor Warnings =================
===
Component Module Sensor HMIN SMIN DATA UNIT SMAX HMAX
--------- ------------ ------------- ---- ---- ---- -------- ---- ----
c2-0 compute_cabinet ambient_temp0 30 50 324 degc*10 300 350
c2-0 compute_cabinet ambient_temp1 30 50 306 degc*10 300 350
c2-0 compute_cabinet ch0_air_temp0 0 1000 3486 degc*100 3000 3500
c2-0 compute_cabinet ch0_air_temp1 0 1000 3355 degc*100 3000 3500
c2-0 compute_cabinet ch0_air_temp2 0 1000 3338 degc*100 3000 3500
c2-0 compute_cabinet ch0_air_temp3 0 1000 3486 degc*100 3000 3500

No SEEP Errors Found!
No ITP Errors Found!
No NTP Time Sync Errors Found!
No Control Errors Found!

Procedure

1. Edit hss.ini.

Open the /opt/tftpboot/ccrd/hss.ini and look for the following entry.

crayadm@smw> vi /opt/tftpboot/ccrd/hss.ini

----------------- END CABINET -----------------
This group is used to define the attributes that are only applied to the end
cabinet
of a row. The attributes defined here will override the same attributes in
group [ccrd]
above. If no attributes are defined in this group the end cabinet will be
configured
using the attributes of group [ccrd].
[endcabinet]
#define the temperature setpoint for the last cabinet in a row
temp_setpoint=22

2. Adjust the value of temp_setpoint as appropriate for the installation site.

To determine an appropriate value, consider the following:

● The inlet water temperature, which should be below the exit air temperature setting.

● The facility room environment.

Recover from SMW R630 Boot Disk Hardware RAIDS Failure
If one of the disks in the SMW R630, which is part of the hardware RAID5, fails, the hot spare will take over and
the data will be rebuilt using the remaining drives. The bad drive should be removed. When a new disk is inserted
into the SMW, the hardware RAID will begin the process of adding it back into the RAID5 set of drives.

This procedure does not apply to the SMW R815 which has software RAID1 for the boot disk.

Manage the System

S2393 116

Recover from SMW R815 Boot Disk Software RAID1 Failure

About this task
If one of the disks in the SMW R815, part of the software RAID1 mirror, fails, corrective action should be taken.

This procedure does not apply to the SMW R630 which has hardware RAID5 for the boot disk.

Procedure

1. Check status of RAID1 filesystems.

a. Confirm that all RAID1 filesystems are fully synced.

smw# cat /proc/mdstat
b. Get detailed information on RAID1 devices. swap is on /dev/md125, /boot is on /dev/md126, and /

is on /dev/md127.

smw# mdadm -D /dev/md125
smw# mdadm -D /dev/md126
smw# mdadm -D /dev/md127

2. Replace the failed disk drive in slot 0 on the SMW.

a. Shutdown CLE if still booted before the next step of shutting down and booting the SMW itself.

crayadm@smw> xtbootsys -s last -a auto.xtshutdown
b. Shutdown SMW.

smw# shutdown -h now
c. Remove the failed disk drive in slot 0 of the SMW so that drive 1 will become the bootable disk.

d. Boot SMW from drive 1. System boots from drive 1, but calls it /dev/sda since it is the first drive found
and there is no drive in slot 0.

e. Remove failed drive from RAID1 configuration.

smw# mdadm --manage /dev/md127 --fail /dev/sda1
smw# mdadm --manage /dev/md127 --remove /dev/sda1
smw# mdadm --manage /dev/md126 --fail /dev/sda3
smw# mdadm --manage /dev/md126 --remove /dev/sda3
smw# mdadm --manage /dev/md125 --fail /dev/sda2
smw# mdadm --manage /dev/md125 --remove /dev/sda2

f. Replace drive 0. The system still runs.

g. Reboot the SMW.

smw# reboot
h. Check RAID1 status.

System boots and immediately will use /dev/md125 (swap) as shown by this command with [UU],
however, md126 and md127 show [_U] indicating a degraded state.

Manage the System

S2393 117

smw# cat /proc/mdstat
mdadm shows active sync for both drives in /dev/md125 (/dev/sda2 and /dev/sdb2).

smw# mdadm -D /dev/md125
mdadm shows removed for drive 0 but active sync for /dev/sdb1 in /dev/md127 and /dev/sdb3
in /dev/md126.

smw# mdadm -D /dev/md126
smw# mdadm -D /dev/md127

i. Partition new drive correctly using sfdisk or fdisk so it matches drive 1.

smw# sfdisk -d /dev/sdb | sfdisk --force /dev/sda
j. Add drive 0 back to RAID1 configuration to reconstruct degraded RAID1.

smw# mdadm -v --manage /dev/md126 --add /dev/sda3
smw# mdadm -v --manage /dev/md127 --add /dev/sda1

k. Check status of RAID1 rebuild with these commands.

smw# mdadm -D /dev/md126
smw# mdadm -D /dev/md127
Checking mdstat will display the percentage of recovery and an estimate of when it will complete for
each device being reconstructed.

smw# cat /proc/mdstat
When all reconstruction is complete, mdstat will display the percentage of recovery and an estimate of
when it will complete for each device being reconstructed.

smw# cat /proc/mdstat

3. Replace the failed disk drive in slot 1 of the SMW. If drive 1 is removed, then the process is similar to drive 0
above, but there are differences.

a. Confirm that all RAID1 filesystems are fully synced.

smw# cat /proc/mdstat
b. Get detailed information on RAID1 devices.

smw# mdadm -D /dev/md125
smw# mdadm -D /dev/md126
smw# mdadm -D /dev/md127

c. Shutdown CLE, if CLE is still booted, before the next step of shutting down and booting the SMW itself.

d. Shutdown SMW.

smw# shutdown -h now
e. Remove the failed disk drive in slot 1 of the SMW so that drive 0 will become the bootable disk.

smw# mdadm --manage /dev/md127 --fail /dev/sdb1
smw# mdadm --manage /dev/md127 --remove /dev/sdb1

Manage the System

S2393 118

smw# mdadm --manage /dev/md126 --fail /dev/sdb3
smw# mdadm --manage /dev/md126 --remove /dev/sdb3
smw# mdadm --manage /dev/md125 --fail /dev/sdb2
smw# mdadm --manage /dev/md125 --remove /dev/sdb2

f. Boot SMW from drive 0.

g. Replace drive 1. The SMW still runs, but in degraded mode for RAID1 devices. One of the other disks
(local to SMW or in boot RAID) will be called /dev/sdb.

h. Reboot SMW so that drive 1 will appear as /dev/sdb.

smw# reboot
i. Check RAID 1 status. System boots and, unlike with disk 0 above, will not immediately use /dev/md125

(swap) as shown by this command with [U_], also, md126 and md127 show [U_] indicating a degraded
state.

smw# cat /proc/mdstat
mdadm shows removed for drive 1 but active sync for /dev/sda1 in /dev/md127 and /dev/sda3
in /dev/md/126 and /dev/sda2 in /dev/md125.

smw# mdadm -D /dev/md125
smw# mdadm -D /dev/md126
smw# mdadm -D /dev/md127

j. Partition new drive correctly using sfdisk or fdisk so it matches drive 1.

smw# sfdisk -d /dev/sda | sfdisk --force /dev/sdb
k. Add Drive 1 back to RAID1 configuration.

smw# mdadm -v --manage /dev/md125 --add /dev/sdb2
smw# mdadm -v --manage /dev/md126 --add /dev/sdb3
smw# mdadm -v --manage /dev/md127 --add /dev/sdb1

l. Check status of RAID1 rebuild with these commands.

smw# mdadm -v --manage /dev/md125 --add /dev/sdb2
smw# mdadm -v --manage /dev/md126 --add /dev/sdb3
smw# mdadm -v --manage /dev/md127 --add /dev/sdb1
Checking mdstat will display the percentage of recovery and an estimate of when it will complete for
each device being reconstructed.

smw# cat /proc/mdstat
When all reconstruction is complete, mdstat should show all drives as [UU].

smw# cat /proc/mdstat

About X.509 Certificates and How to Redistribute Them
Some features of Cray XC systems, such as Cray Advanced Platform Monitoring and Control (CAPMC), use X.
509 certificate authority files (certificates) for access authorization. These certificates are generated and managed
using the xtmake_ca tool. The certificate authority (CA) resides on the SMW and is typically generated during

Manage the System

S2393 119

the SMW software installation process; however, there may be occasion to rebuild the CA from scratch. The
xtmake_ca man page describes how to do this, but it does not provide details about what certificates are used,
where they are used, and how to redistribute them after rebuilding a CA from scratch. This topic fills that gap.

Here is a summary; details follow.

What uses
certs

Certs used Where How redistributed

CAPMC API
service

certificate_authority.crt
certificate_authority.crl
hosts/host.crt
hosts/host.key
client/xtremoted.crt
client/xtremoted.key

SMW reconfigure and restart
CAPMC API service

CAPMC SDB
node service

certificate_authority.crt
host/sdb-p0.crt
host/sdb-p0.key

SDB node update and apply config set

DataWarp
service

certificate_authority.crt
/etc/opt/cray/dws/$dw_node_name.crt
/etc/opt/cray/dws/$dw_node_name.key

DataWarp
service
nodes

update and apply config set

capmc certificate_authority.crt
client/client.crt
client/client.key

SMW move aside existing capmc
configuration directory and
rerun xtremoted_setup

In the default set of certificates that follows, file paths are specified relative to the certificate authority
directory: /var/opt/cray/certificate_authority.

Certificate Authority
Certificates used to maintain the CA include:

certificate_authority.crt This is the root certificate in which the SMW CA is based. It is used to
validate the authenticity of all other certificates created by the SMW private
CA. It must be distributed to all clients and services that use certificates
generated by the SMW CA.

certificate_authority.key This is the CA private key file, which must be kept private at all times. It must
never be distributed to any system.

certificate_authority.crl This is an optional certificate revocation list. It is a PEM-encoded certificate
containing a list of serial numbers that identify any client access or host
certificates that have been revoked. certificate_authority.crl is
rebuilt each time xtmake_ca buildcrl is invoked.

Manage the System

S2393 120

CAPMC API Service
The CAPMC API service runs on the SMW. It is implemented by nginx, a standard HTTP server that provides
encrypted communications and client authorization, and xtremoted, which handles client requests that have
been authorized by nginx.

Certificates
used

The following certificates are used by the HTTP server (nginx) on the SMW.

certificate_authority.crt nginx uses this certificate to validate that the client access
certificate, presented when a client first connects, was
issued by the SMW CA. If the certificate was not issued by
the local SMW CA, the client is denied access.

certificate_authority.crl If this file exists, the HTTP server checks it for client access
certificates that have been revoked. Any client with a
revoked certificate is denied access.

hosts/host.crt This is the host certificate used by the HTTP server to
enable encrypted communications. It is generated
auotmatically at the time of SMW installation, or when a
system administrator takes an explicit action to regenerate
them using xtmake_ca. The Common Name (CN) field of
the certificate subject line should match the DNS hostname
associated with the SMW. This certificate implements the
X509v3 Subject Alternative Name extension, which uses a
list of DNS attribute values to specify additional host names
that a client should consider valid. The default list of DNS
attribute values includes these two elements:

● the fully qualified domain name (FQDN) of the SMW

● the text string literal "smw"

hosts/host.key This is the private key associated with the SMW host
certificate.

client/xtremoted.crt This is the client access certificate used by xtremoted to
identify itself to remote procedure call handlers. This is
needed because some API calls require xtremoted to
forward a client's request to another server running on the
target partition's system database (SDB) node (see CAPMC
SDB Node Service below).

client/xtremoted.key This is the private key associated with the client access
certificate.

How to
redistribute

If the CA has been rebuilt from scratch, certificate_authority.crl has been rebuilt, or
hosts/host.crt has been modified, reconfigure and restart the CAPMC API service (as root):

smw# xtremoted_setup
This command restarts the CAPMC API service and copies relevant files, with appropriate
permissions, into a directory owned by that xtremoted userid
(/opt/cray/hss/default/etc/xtremoted). This copy is necessary because the userid that

Manage the System

S2393 121

the xtremoted process is running under does not have read access to files located within the
certificate_authority directory.

CAPMC SDB Node Service
The CAPMC SDB node service handles remote procedure call requests issued from the CAPMC API service
running on the SMW. It is implemented by nginx, a front-end HTTP server that performs encryption and client
access authorization, and xtremoted-agent, a remote procedure call handler that handles the specific request.

Certificates
used

The following certificates are used by the HTTP server (nginx) on the SDB node.

certificate_authority.crt nginx running on the SDB node uses this certificate to validate
that the client access certificate, presented when xtremoted
issues a remote procedure call request, was issued by the SMW
CA. If the certificate was not issued by the local SMW CA, the
request is denied. In addition, the CN field of the client access
certificate subject line must match the string "xtremoted" for the
request to be accepted.

hosts/sdb-p0.crt This is the host certificate for the SDB node and config set p0.

hosts/sdb-p0.key This is the private key associated with the SDB node host
certificate and config set p0.

How to
redistribute

If the CA has been rebuilt from scratch, update the config set and apply it.

1. Update the current configuration set (as root):

smw# cfgset update -m auto p0
When the config set is updated, the config set gets the new certificates by means of the
xremoted_agent post-configuration callback script, which updates the certificates from
the /var/opt/cray/certificate_authority location to the config set being updated. The
xremoted_agent script is located in this directory:

/opt/cray/imps_config/system-config/default/configurator/callbacks/post/xtremoted_agent.py

2. Reboot the system. When the node boots, the config set certificate files are copied from the config
set to the node using an Ansible play.

3. After the Ansible play has run, verify that the certificates have been distributed.

smw> ls -la /var/opt/cray/imps/config/sets/p0/files/roles/common/etc/opt/
cray/xtremoted-agent
total 12
drwxr-xr-x 1 root root 90 Dec 7 15:39 .
drwxr-xr-x 1 root root 42 Dec 7 15:39 ..
-rw------- 1 root root 956 Dec 9 11:18 certificate_authority.crt
-rw------- 1 root root 3002 Dec 9 11:18 sdb-p0.crt
-rw------- 1 root root 916 Dec 9 11:18 sdb-p0.key

Manage the System

S2393 122

DataWarp Service Nodes
DataWarp service nodes (and elogin and compute nodes as well) use the SSL certificates only to connect to the
HTTP API. The client certificates are not essential because they can be regenerated. What is essential is that the
CA on the SMW is trusted on the remote nodes.

Certificates
used

The following certificates are used primarily at the login node and any elogin node. Copies of the
cert chain are made so that client compute nodes and service nodes are able to run tools that
interact with the DataWarp API with no problems.

certificate_authority.crt This file is synced with the certificate on the
DataWarp service.

hosts/$dw_node_name.crt This file is synced with the certificate on the
DataWarp service.

hosts/$dw_node_name.key This file is synced with the certificate on the
DataWarp service.

/etc/opt/cray/dws/$dw_node_name.crt This is the certificate on the DataWarp service.

/etc/opt/cray/dws/$dw_node_name.key This is the private key on the DataWarp
service.

How to
redistribute

Certificates are deployed initially by means of the configurator and Ansible plays when the
DataWarp service is set up. The Ansible plays generate the certificates using xtmake_ca and
synchronize the certificate authority to the remote nodes as needed. If the CA has been rebuilt
from scratch, update the config set and apply it.

1. Update the current configuration set (as root):

smw# cfgset update -m auto p0
When the config set is updated, the config set gets the new certificates by means of a post-
configuration callback script, which updates the certificates from
the /var/opt/cray/certificate_authority location to the config set being updated.

2. Reboot the system. When the node boots, the config set certificate files are copied from the
config set to the node using an Ansible play.

Troubleshooting
Problem:

● capmc outputs a hostname mismatch error.

smw:/etc/opt/cray/capmc # capmc node_rules
 Error - Certificate identity does not match the target hostname

Possible Causes:

● The capmc client configuration, (/etc/opt/cray/capmc/capmc.json) os_service_url, setting is
invalid.

When capmc is being executed from the SMW on an internal Cray service node running the Cray Linux
Environment, the os_service_url setting should configured as follows:

Manage the System

S2393 123

https://smw:8443
When capmc is being executed from an external system, the os_service_url setting should include the
fully qualified domain name of the SMW as follows:

https://my-smw.my-domain.com:8443
○ Resolution:

▪ Reconfigure the os_service_url parameter.

● The SMW capmc API server host certificate contains an incorrect list of acceptable DNS names.

Verify the "Subject Alternative Name" DNS name list contains the SMW FQDN and short hosname smw:

smw:/etc/opt/cray/capmc # openssl x509 -text -noout \
 -in /var/opt/cray/certificate_authority/hosts/host.crt | \
 grep -A 1 "Subject Alternative Name"

X509v3 Subject Alternative Name:
 DNS:my-smw.my-domain.com, DNS:smw
○ Resolution:

▪ Regenerate the SMW host server certificate.

Problem:

● capmc outputs a certificate verification error.

smw:/etc/opt/cray/capmc # capmc node_rules
 Error - url(https://smw:8443/capmc/get_node_rules) \
 [SSL: CERTIFICATE_VERIFY_FAILED] certificate verify failed (_ssl.c:581)

Possible Causes:

● The client's copy of the CA certificate is not from the actual certificate authority that generated the SMW
CAPMC API server certificate.

○ Resolution:

▪ Redistribute the certificate_authority.crt file from the SMW to the client system.

● The SMW CAPMC API server was not restarted after regenerating the certificate authority from scratch.

○ Resolution:

▪ Reconfigure the capmc API server by invoking xtremoted_setup.

Problem

● Capmc client connection times out. IP connectivity is non-functional between the capmc client system and the
SMW.

smw:/etc/opt/cray/capmc # capmc node_rules
 Error - url(https://smw:8443/capmc/get_node_rules) \
 [Errno 113] No route to host

Possible Causes:

● capmc client os_service_url is configured incorrectly.

○ Resolution:

Manage the System

S2393 124

▪ For use on internal Cray service nodes, reconfigure the os_service_url to https://smw:8443.

▪ For use on external nodes, reconfigure the os_service_url to be the SMW's fully qualified domain
name and verify that a valid IP connectivity path is established.

● When using capmc from an internal Cray service node, the IP path taken is over the high speed network, to
the boot node, and on the SMW. IP Routing tables may be misconfigured on the SMW, boot node, or internal
service node.

○ Resolution:

▪ Verify the boot node has IP forwarding enabled.

boot-p0:~ # sysctl net.ipv4.ip_forward
 net.ipv4.ip_forward = 1

▪ Verify the boot node firewall has TCP port 8443 open.

boot-p0:~ # iptables -L
 ...

▪ Verify the SMW has a return route on an internal interface to the high speed network via the boot
node.

For example:

smw:/etc/opt/cray/capmc # netstat -rn
 Kernel IP routing table
 Destination Gateway Genmask Iface
 ...
 10.128.0.0 10.3.1.254 255.255.0.0 UG 0 0 0 eth3
 ...

▪ Verify the internal Cray service node has a route to the SMW's internal interface via the boot node.

For example:

svc-node:~ # netstat -rn
 Kernel IP routing table
 Destination Gateway Genmask ...
Iface
 ...
 10.3.1.1 10.128.255.254 255.255.255.255 UGH 0 0 0
ipogif0
 ...

Update X.509 Host Certificate After SMW Hostname Change

About this task
Whenever the SMW hostname changes, the previously generated x509 SMW host certificate host.crt file will
need to be updated. Failure to perform this step will prevent the capmc client from connecting to the SMW, due to
a host name certificate validation error.

Procedure

1. Create a backup copy of the certificate_authority directory.

Manage the System

S2393 125

smw:~# cd /var/opt/cray
smw:~# cp -a certificate_authority certificate_authority.backup

2. Run the host validation.

smw:~# xtmake_ca validate
You will be notified if the host.crt file has a common name that does not match the current hostname.

..
 - CN in SMW host file matches current hostname (my-smw.example.com)
Alternate names: my-smw.example.com, smw - SMW host certificate file
validation succeeded.
..

3. Generate the new certificate.

● If the SMW was only renamed, rebuild the host certificate using the new hostname.

smw:~# xtmake_ca update
● If a specific SMW hostname or list of alternate names must be specified, manually revoke the SMW host

server certificate and recreate it with a list of appropriate hostnames.

smw:~# xtmake_ca revoke \
/var/opt/cray/certificate_authority/hosts/host.crt
smw:~# xtmake_ca CN=my-smw.example.com,my-smw.local,my-smw

NOTE: This does not require remaking or redistributing existing certificates. xtmake_ca will
recreate only missing certificates. In this case, the only missing certificate should be SMW host
certificate which was intentionally revoked. Any services, such as nginx, running on the SMW
which are using the rebuilt host certificate should be restarted.

This step generates a new host certificate with the currently assigned hostname is listed in the CN field, as
well as a list of additional DNS names which capmc should consider valid.

4. Run the host validation again.

smw:~# xtmake_ca validate

5. Reconfigure and restart nginx on the SMW.

smw:~# xtremoted_setup

6. View the contents of the newly generated SMW host server certificate.

smw:~# openssl x509 -noout -text -in
/var/opt/cray/certificate_authority/hosts/host.crt

Manage the System

S2393 126

Manage System Access

Change Account Passwords on the SMW

About this task
The SMW contains its own /etc/passwd and /etc/shadow files that are separate from the files for the rest of
the CLE system.

Procedure

Execute the following commands to change the passwords on the SMW for the following Linux accounts.

smw# passwd root
smw# passwd crayadm
smw# passwd mysql

Change Account Passwords on CLE Nodes

About this task
Use this procedure to change a password for an account that is local to the CLE nodes, such as root and
crayadm.

For LDAP or other authentication services, passwords are changed through those services.

Procedure

1. Update passwords in cray_local_users.

a. Update the CLE config set to change passwords for root
(cray_local_users.settings.users.data.root.crypt) and crayadm
(cray_local_users.settings.users.data.crayadm.crypt).

Full system:

smw# cfgset update -s cray_local_users -l advanced -m interactive p0
Partitioned system (update a config set for each partition):

smw# cfgset update -s cray_local_users -l advanced -m interactive p1
smw# cfgset update -s cray_local_users -l advanced -m interactive p2

2. Validate config set.

Full system:

Manage System Access

S2393 127

smw# cfgset validate p0
Partitioned system:

smw# cfgset validate p1
smw# cfgset validate p2

3. Activate new passwords for local accounts. The password changes can be made immediately on the CLE
nodes or can take effect at the next boot of the nodes.

a. Activate new passwords immediately on nodes. Doing so immediately does not require a reboot of the
node, merely running cray-ansible again.

On the boot node:

boot# /etc/init.d/cray-ansible start
On the SDB node:

sdb# /etc/init.d/cray-ansible start
On all service nodes:

sdb# pcmd -r -n ALL_SERVICE_NOT_ME "/etc/init.d/cray-ansible start"
On all compute nodes:

sdb# pcmd -r -n ALL_COMPUTE "/etc/init.d/cray-ansible start"

4. Activate new passwords by rebooting nodes. Either a full system reboot or warm booting individual nodes will
cause cray-ansible to activate these new passwords on the CLE nodes.

Manage System Access

S2393 128

Configure the System

Cray XC System Configuration
To configure Cray XC systems and manage configuration content, system administrators use the Cray
configuration management framework (CMF). The CMF comprises configuration data, the tools to manage and
distribute that data, and software to apply the configuration data to the running image at boot time. Its major
components include configuration service packages, config sets, the IMPS distribution service (IDS), the
configurator, cray-ansible, and Ansible.

Configuration Starts with Configuration Service Packages
Configuration content (data and software) is installed as configuration service packages on the management node
of Cray XC systems (in /opt/cray/imps_config/<service package>/default/configurator by
default). Each service package delivers configuration content for one or more system services. The contents of
each service package reside in the following subdirectories:

ansible Drop zone for Cray-provided Ansible play content.

callbacks Pre- and post-configuration scripts.

dist Drop zone for other Cray-provided content, such as static files required for the configuration of a
service.

template Configuration templates that define the configuration settings to be set and provide some default
values. These templates are never modified by administrators or other users.

Configuration service packages are installed for system upgrades and updates as well as for initial installation.

Configuration Information is Stored in Config Sets
Administrators use the cfgset command to manage configuration information. It takes configuration content
delivered in service packages and invokes the configurator tool to combine that content with site-specific
configuration content gathered from administrators either interactively or through bulk import. The results are used
by cfgset to create a configuration set or config set. A config set is a central repository that stores all
configuration information necessary to operate the system. Config sets reside on the management node (e.g., the
SMW) in /var/opt/cray/imps/config/sets by default. The contents of each config set reside in the
following subdirectories:

ansible Drop zone for local site-provided Ansible play content to be distributed with the config set. When
the config set is created, cfgset copies Ansible content from service packages to this location.
Whenever the config set is updated, cfgset copies Ansible content from service packages
again, overwriting the previous service-package Ansible content and leaving the site-provided
content unchanged.

changelog YAML change logs from previous sessions with the configurator.

Configure the System

S2393 129

config Configuration templates containing configuration information. When the config set is created, the
configurator copies service package templates to this location. Administrators can modify the
content of these templates using cfgset and the configurator. Whenever the config set is
updated, the configurator merges service package templates with the templates in this location.

dist Drop zone for other site-provided content, such as static files required for the configuration of a
service. When the config set is created, cfgset copies dist content from service packages to this
location. Whenever the config set is updated, cfgset copies dist content from service packages
again, overwriting the previous service-package dist content and leaving the site-provided content
unchanged.

files Files necessary for system configuration that are generated by configuration callback scripts or
manually and distributed with the config set (e.g., /etc/hosts).

worksheets Configuration worksheets generated by the configurator using data stored in the configuration
templates in the config subdirectory of the config set. Administrators copy these worksheets to
a location outside the config set, edit them with site-specific configuration data, and then import
them to create a new config set or update an existing one.

An administrator may create multiple config sets to support partitions or alternate configurations. Typically a config
set of type cle is created for each partition to store partition- and CLE-specific content, and another config set of
type global is created to store management node and global configuration data.

IDS Distributes Config Sets to Nodes
IDS, a read-only network share of content from the management node to the rest of the system, distributes config
sets to every node in the system. All config sets are shared throughout the system, but only one cle config set is
active on a given node at a time (in addition to an active global config set, which is applied to the entire system).
Currently, IDS leverages the 9P network file system and the Linux automounter facility as its distribution
mechanism; however, the content and use of the config sets is independent of the distribution mechanism.

Ansible Plays Apply Configuration during System Boot
Prior to booting the system, each node will have an image, the global config set, and the cle config set. When
the system boots, each node boots an unconfigured software image. Then Ansible plays, which can be located in
both the image and the config set (config set is the preferred location for site-supplied Ansible plays), apply
configuration to that image, bringing up the services pertinent to each node.

Administrators Configure/Reconfigure the System on an Ongoing Basis
Configuration happens at times other than initial installation. New configuration service packages can be installed
during system upgrades and updates, sites can decide to enable a new service or change the configuration of an
existing service, and so forth. In all of these scenarios, an administrator uses the cfgset command to manage
config sets and the cray-ansible script to apply any configuration changes. The cfgset command and its
associated subcommands and options enable administrators to perform a variety of operations on config sets in
addition to create and update, such as search, diff, list, show, validate, push, and remove. See the cfgset man
page for a description of its subcommands and options and some examples of each.

About the Configurator
The configurator plays a major role in Cray XC system configuration. The configurator gathers configuration data
from several sources (including the user, with helpful prompts and default values), merges and validates it, and

Configure the System

S2393 130

stores it in a central location on the management node, where it is used during boot to configure the entire
system. The configurator is invoked by the cfgset command to:

● handle all configuration template and worksheet operations

● perform steps 4, 5, and 6 of the Config Set Create/Update Process, including providing a user interface to
gather and modify configuration data interactively or through the import of configuration worksheets

The configurator is invoked with the cfgset subcommands create (except when the --clone option used) and
update. It is invoked also with the search subcommand, because that involves searching data stored in the
configuration templates, but no changes are made to the config set using search. The options selected for the
create and update subcommands determine the mode in which the configurator is run (with or without user
interaction), which settings can be viewed and set by a user, and whether callback scripts are run before and after
the configurator session. The configurator is not involved when the remaining cfgset subcommands are used:
diff, list, push, remove, show, and validate. See the cfgset man page for a description of its
subcommands and options and some examples of each, or use cfgset SUBCOMMAND -h to see information
about just one of the subcommands.

Choose How to Interact with the Configurator: Modes
The mode option of the cfgset command determines how the configurator interacts with a user. Mode can be
specified only with subcommands create and update.

--mode | -m Possible values: auto (default), interactive, prepare

auto The configurator searches through all available configuration templates in the config set and
automatically presents all configuration settings that meet state and level filtering criteria. It
presents the configuration settings in a certain order (taking into account dependencies among
services) one at a time until all have been presented to the user, and then it automatically ends
the session and saves the config set.

interactive The configurator searches through templates as with auto mode, but in interactive mode, it
presents a menu of all available services (or a menu of all available settings, when a service has
been selected) that meet state and level filtering criteria. This mode enables the user to navigate
through the services and settings to view and modify the settings as needed. The configuration
session ends when the user exits the session. The user chooses whether to save any changes
to the config set upon exit.

prepare The configurator prepares configuration worksheets, one for each service. Each worksheet
contains all configuration settings (unfiltered) for that service, and the worksheet can be edited
offline and then imported later to create or update a config set. In this mode, the configurator
does not open an interactive session with the user.

Choose What to See with the Configurator: Filters
Two cfgset command options act as filters to determine which settings are available to view and set or update.
These options can be specified only with subcommands create, update, and search.

--state | -S Possible values: unset (default), set, all
--level | -l Possible values: required, basic (default), advanced

Configure the System

S2393 131

required Settings that must be set or the system will not function. The config set will not validate if any
required settings are skipped (i.e., left unset). Specify level required in a cfgset command to
filter for required settings only.

basic Settings that are likely to be used by most sites. If a basic setting is left unset, the template-
provided default is used. Specify level basic in a cfgset command to filter for both basic and
required settings.

advanced Settings that are likely to be used only by advanced users to tune a service. If an advanced setting
is left unset, the template-provided default is used. Specify level advanced in a cfgset command
to filter for all settings: advanced, basic, and required.

Create a Config Set
Choosing the best strategy for creating a config set depends on the circumstances ("when to use"):

Strategy When to use Rationale

Create a
Config Set
from
Configuration
Worksheets

when performing fresh installs, major
upgrades, or any time there is a large amount
of configuration data to set up

Worksheets can be generated, filled out offline
with site-specific data by the appropriate staff,
and then imported when needed.

Create a
Config Set by
Cloning

when there is already a config set with site-
specific data and additional config sets are
needed with minor variations (for partitions,
alternate configurations, etc.), or when
manually backing up a config set

Cloning is quick, and it is easy to interactively
update the clone with needed variations.

Create a
Config Set
without
Callbacks

when no hardware is attached to the XC
system, as in some testing scenarios

Pre- and post-configuration callback scripts
may invoke utilities that query hardware in
order to provide additional config set content.

Create a
Config Set
Interactively

when configuring a smaller system with little
configuration data to change

Setting all configuration values one at a time in
response to a series of prompts or when
selected from a menu can be very time-
consuming.

These strategies all use the cfgset command. Use cfgset create -h for information about the create
subcommand. See Config Set Create/Update Process on page 142 for an outline of the process followed by
cfgset each time the create or update subcommand is used.

Note that when the create subcommand is used in any of these strategies (except cloning), it is necessary to
specify the config set type for any type other than the default cle. Most of the following create procedures omit
--type because they are for config sets of type cle.

REMEMBER: Run cfgset as root.

CAUTION: Boot failure possible if using cfgset under certain conditions.

The cfgset create and cfgset update commands always call pre- and post-configuration scripts.
Some of these scripts require HSS daemons and other CLE services to be running. This can cause
problems under these conditions:

Configure the System

S2393 132

● If xtdiscover is running, cfgset may hang or produce incorrect data that can result in system boot
failure.

● If xtbounce is in progress or if the SMW is not connected to XC hardware, cfgset will fail.

In these circumstances, use the --no-scripts option with cfgset create or cfgset update to
avoid running the scripts. Because using that option results in an invalid config set, remember to run
cfgset update without the --no-scripts option afterwards, when circumstances permit, to ensure
that all pre- and post-configuration scripts are run.

For more information on creating a config set using --no-scripts, see Create a Config Set without Callbacks
on page 135

Create Backup Config Sets Automatically
If the auto_clone option in the IMPS configuration file (/etc/opt/cray/imps/imps.json) is enabled,
the cfgset create and cfgset update commands will automatically clone a config set as a backup upon
successful creation/update of the original config set. A failed operation will not create a backup.

The autosave_limit parameter in the IMPS configuration file determines how many clones will be retained.
Config set backups are rotated with the oldest backup removed as a new backup is generated. Config set
backups are saved with names of the
form CONFIGSET-autosave-YYYY-MM-DDTHH:mm:SS, where CONFIGSET is the name of the original config
set.

Create a Config Set from Configuration Worksheets

Prerequisites
This procedure has no prerequisites.

About this task
Use this procedure when performing fresh installs, major upgrades, or any time there is a large amount of
configuration data to set up. To create a config set from configuration worksheets, use this process:

1. Generate the worksheets.

2. Copy the worksheets to a new location on the management node.

3. Edit the worksheets.

4. Import the worksheets.

The detailed steps of this procedure show an example of how to create config set p0 of type cle (default) from
configuration worksheets.

Note that the cfgset command is run as root.

Procedure

1. Generate new worksheets from configuration service packages installed on the system.

smw# cfgset create --mode prepare p0

2. Locate the newly generated worksheets and copy them to a new location.

Configure the System

S2393 133

smw# cfgset show --fields path p0
p0:
 path: /var/opt/cray/imps/config/sets/p0

smw# cp /var/opt/cray/imps/config/sets/p0/worksheets/* /some/edit/location

3. Edit the worksheets to customize them for this site.

The system administrator typically distributes them to site staff members with knowledge about the services
being configured so that they can edit the worksheets and enter appropriate values. Each worksheet is a
YAML file that contains instructions on how to edit it; the basic idea is to locate the settings of interest,
uncomment them, and either retain or change the default setting (if provided).

4. Import the completed worksheets using cfgset update or cfgset create.

Import the completed worksheets by updating the config set created when the worksheets were generated
originally or by creating an entirely new config set. The argument to the --worksheet-path option is a file
glob to allow multiple worksheets to be imported in a single create/update operation. Full paths to single
worksheets can also be used.

● Import to the config set created with --mode prepare in step 1.

smw# cfgset update --worksheet-path '/some/edit/location/*_worksheet.yaml' p0
● Import to a new config set.

smw# cfgset create --worksheet-path '/some/edit/location/*_worksheet.yaml' \
 p0-new

REMEMBER: When importing worksheets using cfgset with the --worksheet-path option,

● Always add single quote marks around the worksheet path if a wildcard is used
(e.g.,*_worksheet.yaml).

● Do not add mode, state, level, or service options; the configurator ignores them for worksheet
import.

● The type of the config set must match the type of the worksheets being imported.

Create a Config Set by Cloning

Prerequisites
This procedure assumes that the config set to be cloned (the original) already exists.

About this task
Use this procedure when there is already a config set with site-specific data and additional config sets are needed
with minor variations (for partitions, alternate configurations, etc.), or when manually backing up a config set. This
procedure shows an example of creating config set p0-new by cloning it from existing config set p0. No callback
scripts or configurator sessions occur when cloning a config set. The clone will have the same config set type as
the original.

Note that the cfgset command is run as root.

Procedure

Create a clone using the --clone option.

Configure the System

S2393 134

smw# cfgset create --clone p0 p0-new
The configurator is not invoked when the --clone option is used, so no configurator session occurs, and no
changes are made to the configuration data in the original config set.

Create a Config Set without Callbacks

Prerequisites
This procedure has no prerequisites.

About this task
Pre- and post-configuration callback scripts may invoke utilities that query hardware in order to provide additional
config set content. Use this procedure when no hardware is attached to the XC system, as in some testing
scenarios. This procedure shows an example of creating config set global0 of type global from worksheets
while skipping all callback scripts. The --no-scripts option can also be used when creating a config set
interactively.

Note that the cfgset command is run as root.

Procedure

Create a config set without callbacks.

smw# cfgset create --no-scripts --worksheet-path \
'/some/edit/location/*_worksheet.yaml' --type global global0

CAUTION: Skipping callback script processing invalidates a config set. A config set cannot be
considered validated unless it is updated successfully without the --no-scripts option. Update all
config sets to run the callback scripts before using the config set with the system.

Create a Config Set Interactively

Prerequisites
This procedure has no prerequisites.

About this task
This procedure shows examples of creating config set p0 of type cle interactively. For additional examples, use
cfgset create -h.

Note that the cfgset command is run as root.

Procedure

Invoke the configurator in auto mode (default) or interactive mode.

● Auto mode.

To be presented with all settings with state unset (default) and level basic (default) in all services in
config set p0:

smw# cfgset create p0
To be presented with all settings (any state and any level) in all services in config set p0:

Configure the System

S2393 135

smw# cfgset create --state all --level advanced p0
● Interactive mode.

To display a menu of services in config set p0 that have configuration settings with state unset (default)
and level basic (default):

smw# cfgset create --mode interactive p0
To display a menu of all services (with settings of any state and any level):

smw# cfgset create --mode interactive --state all --level advanced p0

Update a Config Set
Choosing the best strategy for updating a config set depends on the circumstances ("when to use"):

Strategy When to use Rationale

Update a
Config Set
Interactively

when one or more config sets require a few
changes (e.g., cloned config sets that need to
be adjusted for a particular purpose), when a
software update introduces just a few new
fields to configure, or to confirm that all
required and basic settings have been set
(very useful!)

Setting just a few configuration values one at a
time in response to a series of prompts or
when selected from a menu works well when
there are just a few settings that need to be
configured or updated.

Update a
Config Set
from
Configuration
Worksheets

when performing system upgrades and
updates, or any time there is a large amount of
configuration data to change

Worksheets can be generated, filled out offline
with site-specific data by the appropriate staff,
and then imported when needed.

Update a
Config Set
without
Callbacks

when no hardware is attached to the XC
system, as in some testing scenarios

Pre- and post-configuration callback scripts
may invoke utilities that query hardware in
order to provide additional config set content.

Rename a
Config Set

when a config set needs to be renamed as well
as updated, or just renamed

This could become necessary for a variety of
reasons.

Update a
Single Service
in a Config Set

when setting up a new service, or when just
one service requires modification

This can be done either interactively or with
worksheets, so refer to those circumstances
and rationales for the right strategy.

These strategies all use the cfgset command. Use cfgset update -h for information about the update
subcommand. See Config Set Create/Update Process on page 142 for an outline of the process followed by
cfgset each time the create or update subcommand is used.

CAUTION: Boot failure possible if using cfgset under certain conditions.

The cfgset create and cfgset update commands always call pre- and post-configuration scripts.
Some of these scripts require HSS daemons and other CLE services to be running. This can cause
problems under these conditions:

● If xtdiscover is running, cfgset may hang or produce incorrect data that can result in system boot
failure.

Configure the System

S2393 136

● If xtbounce is in progress or if the SMW is not connected to XC hardware, cfgset will fail.

In these circumstances, use the --no-scripts option with cfgset create or cfgset update to
avoid running the scripts. Because using that option results in an invalid config set, remember to run
cfgset update without the --no-scripts option afterwards, when circumstances permit, to ensure
that all pre- and post-configuration scripts are run.

For information on updating a config set using --no-scripts, see Update a Config Set without Callbacks on
page 139

Update a Config Set Interactively

Prerequisites
This procedure assumes an existing config set needs to be updated.

About this task
Use this procedure when one or more config sets require a few changes (e.g., cloned config sets that need to be
adjusted for a particular purpose), or to confirm that all required and basic settings have been set (very useful!).
To update just one service in a config set, see Update a Single Service in a Config Set on page 140.

cfgset has two modes that initiate an interactive configurator session: auto (default) and interactive. This
procedure shows examples of updating config set p0 of type cle interactively in either mode. For additional
examples, use cfgset update -h.

Note that the cfgset command is run as root.

Procedure

Invoke the configurator in auto mode (default) or interactive mode.

● Interactive mode.

To display a menu of services in config set p0 that have configuration settings with state unset (default)
and level basic (default):

smw# cfgset update --mode interactive p0
To display a menu of services in config set p0 that have configuration settings with level required and
state unset:

smw# cfgset update --mode interactive --level required p0
To display a menu of all services in config set p0, use the broadest state and level filters:

smw# cfgset update --mode interactive --state all --level advanced p0
● Auto mode.

To confirm that all required and basic settings have been set (in which case, the configurator will not
initiate an interactive session) or to be presented with all settings with state unset (default) and level
basic (default) in all services in config set p0:

smw# cfgset update p0
For a discussion of common outcomes of this command, see cfgset Troubleshooting Tips on page 151.

Configure the System

S2393 137

To be presented with all settings in config set p0, use the broadest state and level filters:

smw# cfgset update --state all --level advanced p0

Update a Config Set from Configuration Worksheets

Prerequisites
This procedure assumes an existing config set needs to be updated.

About this task
Use this procedure when performing system upgrades and updates, or any time there is a large amount of
configuration data to change. The configurator overwrites all data in a service with the contents of the worksheets
specified on the command line. If a worksheet with stale data is used to update the config set, data loss may
occur. To ensure that the worksheets used to update the config set are as up-to-date as possible, use this
process:

1. Generate worksheets from the current config set.

2. Copy the worksheets to a new location on the management node.

3. Edit the worksheets.

4. Import the worksheets to the current config set.

The detailed steps of this procedure show an example of how to update config set p0 of type cle (default) from
configuration worksheets. To update just one service in a config set, see Update a Single Service in a Config Set
on page 140.

Note that the cfgset command is run as root.

Procedure

1. Generate new worksheets from configuration service packages installed on the system and config set p0.

smw# cfgset update --mode prepare p0

2. Locate the newly generated worksheets and copy them to a new location on the management node.

smw# cfgset show --fields path p0
p0:
 path: /var/opt/cray/imps/config/sets/p0

smw# cp /var/opt/cray/imps/config/sets/p0/worksheets/* /some/edit/location

3. Edit one or more worksheets to make the needed changes.

To edit the worksheets, open those with settings that need to be changed and make changes, as needed.
Each worksheet is a YAML file that contains instructions on how to edit it.

4. Import the completed worksheets to p0 using cfgset update.

smw# cfgset update --worksheet-path '/some/edit/location/*_worksheet.yaml' p0
The argument to the --worksheet-path option is a file glob to allow multiple worksheets to be imported in
a single create/update operation. Full paths to single worksheets can also be used. The configurator will

Configure the System

S2393 138

replace config set data with imported worksheet data only for services that have matching worksheets
provided on the command line.

REMEMBER: When importing worksheets using cfgset with the --worksheet-path option,

● Always add single quote marks around the worksheet path if a wildcard is used
(e.g.,*_worksheet.yaml).

● Do not add mode, state, level, or service options; the configurator ignores them for worksheet
import.

● The type of the config set must match the type of the worksheets being imported.

Update a Config Set without Callbacks

Prerequisites
This procedure assumes an existing config set needs to be updated.

About this task
Pre- and post-configuration callback scripts may invoke utilities that query hardware in order to provide additional
config set content. Use this procedure when no hardware is attached to the XC system, as in some testing
scenarios. This procedure shows an example of updating config set p0 of type cle interactively while skipping all
callback scripts. The --no-scripts option can also be used when updating a config set from worksheets.

Note that the cfgset command is run as root.

Procedure

Update a config set without callbacks.

smw# cfgset update --no-scripts p0
CAUTION: Skipping callback script processing invalidates a config set. A config set cannot be
considered validated unless it is updated successfully without the --no-scripts option. Update all
config sets to run the callback scripts before using the config set with the system.

Rename a Config Set

Prerequisites
This procedure assumes an existing config set.

About this task
Use this procedure when a config set needs to be renamed or updated as well as renamed. The renaming
operation follows the same basic configurator flow as a regular update but renames the config set prior to other
processing. If auto-cloning is enabled, config set backups of the original config set will not be renamed. This
procedure shows an example of renaming config set p0.

Note that the cfgset command is run as root.

Procedure

Rename a config set using the update subcommand with the --rename option.

Configure the System

S2393 139

smw# cfgset update p0 --rename p0.new
Note that the config set being operated on (p0 in this example), does not have to be the last argument on the
command line.

Update a Single Service in a Config Set

Prerequisites
This procedure assumes an existing config set.

About this task
Use this procedure when setting up a new service, or when just one service requires modification. This procedure
provides examples of updating a single service at a time instead of the entire config set, and it can be done either
interactively or using a configuration worksheet.

Procedure

Update a single service in config set p0.

● Update interactively: use the --service option.

IMPORTANT: For a service with configuration template file cray_example_config.yaml, use
only the cray_example portion on the command-line when specifying a single service.

To display a menu of settings in the cray_example service in config set p0 that are level required and
any state (default for interactive mode when only one service is specified):

smw# cfgset update --service cray_example --mode interactive \
--level required p0
To display a menu of all settings (with settings of any state and any level):

smw# cfgset update --service cray_example --mode interactive \
--level advanced p0
To be presented with all settings (with settings of any state and any level):

smw# cfgset update --service cray_example --state all --level advanced p0
● Update with a worksheet: use the --worksheet-path option.

To update the service using a worksheet, use the --worksheet-path option instead of --service.
Unlike the --service option, with the --worksheet-path option it is necessary to provide the full path
to the worksheet for that service, which includes the _worksheet.yaml portion.. The configurator will
replace only the config set data that corresponds to the data in the worksheet being imported.

smw# cfgset update --worksheet-path \
/path/to/worksheets/cray_example_worksheet.yaml p0

Validate a Config Set and List Validation Rules
It is important to validate any config set that has been modified, because there is currently no mechanism to
prevent the system from trying to use an invalid config set. Validation is useful for determining if the config set is
minimally viable for use with the system it is intended to configure.

Configure the System

S2393 140

IMPORTANT: Validation ensures that a config set passes all rules stored on the system. A validated
config set does not necessarily equate to a config set with configuration data that will result in a properly
configured system.

When validating a config set, the configurator checks the following:

● Config set has the proper directory structure and permissions.

● All configuration templates have correct YAML syntax.

● All configuration templates adhere to the configurator schema.

● All fields of type lookup reference values and settings that exist in the available configuration services.

● All level required fields in enabled services are configured (i.e., their state is set).

● Pre-configuration and post-configuration callback scripts ran successfully during the latest config set update.

● cfgset validate has run all validation rules installed on the system.

Validate a Config Set with the validate Command
To validate a config set, use the cfgset validate command:

smw# cfgset validate p0
The cfgset validate command runs all rules installed on the system. Users may specify which rules to
include or exclude by using the rules file in /etc/opt/cray/imps/rules.yaml.

The --no-rules subcommand can be used to prevent the cfgset from executing any validation rules against
the config set. All other validation checks will be done.

smw# cfgset validate --no-rules p0
NOTE: Using the --no-rules option will not invalidate a config set, unlike cfgset create/update
--no-scripts command behavior.

The --include-rule subcommand specifies a rule name to execute to validate the config set. Multiple --
include-rule declarations can be made. Rules included via this parameter supersede rules specified in the
rules file (/etc/opt/cray/imps/rules.yaml). Included rules supersede all excluded rules as well.

smw# cfgset validate --include-rule INCLUDE_RULE p0
The --exclude-rule subcommand specifies a rule name to skip when validating the config set. Multiple --
exclude-rule declarations can be made. Rules excluded via this parameter supersede rules specified in the
rules file (/etc/opt/cray/imps/rules.yaml).

To validate the resulting configuration services after a merge of the service packages with the config set content,
add the --merge option.

smw# cfgset validate --merge SERVICE_PACKAGE

List Validation Rules with the list-rules Command
Use the cfgset list-rules command to list the validation rules for a given config set:

smw# cfgset list-rules p0
Listing the rules for the config set.

Configure the System

S2393 141

Rules:

- name: sdb.cray_sdb.CraySDBEnabled
 description: The cray_sdb service must be enabled.
 location: /opt/cray/imps_config/sdb/default/configurator/rules/cray_sdb.py

- name: sdb.cray_sdb.SDBGroupsNodeCheck
 description: The cray_sdb service must only configure tier1 and/or tier2 nodes
as SDB nodes.
 location: /opt/cray/imps_config/sdb/default/configurator/rules/cray_sdb.py
The --service SERVICE subcommand can be used to list the rules that apply to a specified service. The --
service subcommand should not be used with the --name subcommand.

smw# cfgset list-rules --service cray_boot p0
Listing rules for the cray_boot service.

Rules:

- name: system-config.cray_boot.BootGroupsNodeCheck
 description: The cray_boot service must only configure tier1 and/or tier2 nodes
as boot nodes.
 location: /opt/cray/imps_config/system-config/default/configurator/rules/
cray_boot.py

- name: system-config.cray_boot.BootNodeGroupsNotEmpty
 description: The cray_boot service must set at least one node as the boot node.
 location: /opt/cray/imps_config/system-config/default/configurator/rules/
cray_boot.py
The --name NAME subcommand can be used to limit the output of the rule listing to a specified service for the
given config set. The --name subcommand should not be used with the --service subcommand.

smw# cfgset list-rules --name system-config.cray_storage.CrayStorageEnabled p0

- name: system-config.cray_storage.CrayStorageEnabled
 description: The cray_storage service must be enabled.
 location: /opt/cray/imps_config/system-config/default/configurator/rules/
cray_storage.py

Config Set Create/Update Process
Config sets are created and updated using the cfgset command with the create and update subcommands,
respectively. Invoking cfgset with one of those subcommands initiates the following process, which defines how
configuration content is discovered from service packages installed on the management node and used, along
with site-supplied content, to create or update a config set.

1. cfgset searches for service packages in /opt/cray/imps_config.

2. cfgset copies to the config set (for create) or overwrites in the config set (for update) ansible and dist
content from each service package. Note that it is only content from service packages that is overwritten;
content placed in those directories manually is unchanged.

NOTE: Manual changes to service package content in this directory will be overwritten!

3. cfgset runs pre-configuration callback scripts from each service package. Scripts act on the config set to
create content necessary for system configuration, which they place into the files subdirectory of the config
set.

4. cfgset invokes the configurator to do steps 4 through 6.

Configure the System

S2393 142

Configurator finds configuration templates from each service package that match the config set type, and then
copies them into the config set (for create) or merges them with the templates already in the config set (for
update).

5. Configurator takes one of these actions to further modify config set template data, depending on the
command-line options used:

interacts with
user

Initiates an interactive session with the user and modifies config set template data
based on the values supplied by the user.

Occurs when --mode interactive option used or no mode option used, which
defaults to auto mode.

does not interact
with user

Does not initiate an interactive session and does no further modification to config set
template data beyond the copy/merge of service package data already done in step 4.

Occurs when --mode prepare option used. Note that although this action is
associated with preparing worksheets, all three actions result in worksheets being
written in step 6.

imports
worksheets

Imports configuration worksheets and modifies config set template data based on the
values in each service worksheet.

Occurs when --worksheet-path FILEPATH option used.

6. Configurator writes configuration template data, configuration worksheets, and a changelog to the config set.
Note that the configurator never modifies the configuration templates in service packages, which are found
in /opt/cray/imps_config/SERVICE PACKAGE for each service package.

7. cfgset runs post-configuration callback scripts from each service package.

8. cfgset autosaves the config set to a time-stamped clone.

The following three figures illustrate how this eight-step process is used to create a CLE config set. They differ in
how configuration data in a config set is further modified in step 5, corresponding to the three different actions:
interacting with the user (modification through user interaction), not interacting with the user (no further
modification), and importing worksheets (modification through bulk import of configuration worksheets). Black
lines indicate cfgset actions, and red lines indicate actions taken by the configurator when invoked by cfgset.

This first figure shows how the configurator creates config set templates (in the config subdirectory) from
service package templates in step 4, enables the user to enter new or modify existing configuration data in step 5,
and then saves the new/modified data to the config set templates and worksheets in step 6.

Configure the System

S2393 143

Figure 19. Process to Create a Config Set Interactively

Configure the System

S2393 144

Figure 20. Process to Create a Config Set and Prepare Worksheets

The prepare-mode figure shows how the configurator creates config set templates from service package
templates in step 4, does nothing to that configuration data in step 5, and then saves the data from step 4 to
config set templates and worksheets in step 6. The blue dashed line indicates an action taken by the user after
cfgset has completed the create/update process to prepare worksheets. The user (usually an installer or system
administrator) copies the worksheets prepared by the configurator to a location outside the config set and edits
them (or has other site staff edit them) with site-specific configuration values. It is these edited worksheets that
are used when creating (or updating) a config set from worksheets (shown in worksheets figure).

Configure the System

S2393 145

Figure 21. Process to Create a Config Set from Worksheets

The worksheets figure shows how the configurator creates config set templates from service package templates
in step 4, imports new or modified configuration data from worksheets in step 5, and then saves the new/modified
data to the config set templates and worksheets in step 6.

Tips for Configurator Interactive Sessions
When a user invokes cfgset in auto or interactive mode to create or update a config set, cfgset invokes
the configurator to initiate an interactive session with the user. The configurator provides command help to aid
users in navigating the tool and adding/updating configuration data. These tips supplement that help.

Know the difference between the two "interactive" modes
Interactive mode and auto mode can both result in a configurator interactive session, but their uses and behaviors
are quite different.

auto mode Helpful for verifying that all desired settings have been set.

Auto mode initiates an interactive session when there are one or more settings in the config set
that meet state and level filtering criteria. Those settings are presented one at a time, and when
all have been presented, the configurator exits the session.

interactive
mode

Helpful for seeing the "big picture" and having more control over which services/settings are
presented for configuration.

Configure the System

S2393 146

Interactive mode always initiates an interactive session. It provides two tiers of menus from which
users can select one or more services/settings to drill down and configure just what is needed.
The configurator presents the selected settings one at a time, as in auto mode, but when all
selected settings have been presented, it returns the user to the menu from which the selection
was made.

● Service Configuration List Menu (or Service List Menu) lists the services in the config set

● Service Configuration Menu (or service menu) lists the settings in a particular service

Filter wisely
Level and state filters determine what the configurator displays to users: what is included in the menu of services/
settings for selection in interactive mode, and what setting fields are presented automatically for configuration in
auto mode. The filters can be specified on the command line when invoking cfgset, and they can be changed in
interactive mode. If not specified, they default to level basic and state unset (exception: for interactive mode, if
a single service is specified, the default state is all).

In interactive mode, the configurator populates the Service List Menu with only those services that meet state and
level filtering criteria; both filters can be switched to different values on this menu screen. In the case of a service
menu, the configurator populates it with only those setting fields that meet level filtering criteria (shows all states);
level can be switched on this menu screen, but state cannot. Just for fun, cycle through all levels/states, noting
how level affects which services appear in the list, while state affects the status displayed for each service.

TIP: If the desired service/setting is not visible in an interactive-mode menu, simply switch level.

In auto mode, the configurator presents only those setting fields that meet state and level filtering criteria. There is
no opportunity to switch filter values in auto mode, except by first switching to interactive mode.

TIP: A good way to confirm that all basic settings have been set is to run cfgset update p0 (where p0
is the config set name), which defaults to auto mode, level basic, and state unset. If the configurator
does not present any settings, it means that no basic or required settings are unset.

How to switch states and levels (interactive mode only):

switch
states

Enter s at the configurator prompt to switch from the current state to the next one:
unset→set→all. To see all services/settings with the specified level, enter s until state=all
displays in the menu header.

switch
levels

Enter l (lowercase L) at the configurator prompt to switch from the current level to the next one:
basic→advanced→required. To view all services/settings with the specified state, enter l until
level=advanced displays in the menu header.

To see all possible services/settings, switch to state=all and level=advanced.

Get familiar with menus in interactive mode
The Service List Menu and all service menus have the same three-section layout: a list of services/settings,
actions the user can take, and a prompt.

Configure the System

S2393 147

Figure 22. Sections of Interactive-Mode Menus

list The menu name, config set name, and config set type are shown at the top of the list section. This
section is helpful for seeing which services still have unconfigured settings (status column—see what
changes when state is switched) and for selecting which service(s) to configure or reconfigure.

In a service menu, the list items are configuration settings for that particular service, filtered by level
only (state is set to all and cannot be switched). This list is helpful for seeing the current state and
value of the settings and for selecting which setting(s) to set or change.

actions These three submenus show all commands currently available. Always use an action from the Select
Options submenu before using any from the Actions on Selected submenu. Items in the Other
Actions submenu can be used at any time (with the obvious exceptions of the exit commands Q and x,
because when one of those is used, the configurator exits the interactive session).

Select
Options

Actions that select one or more services/settings from the list. The selected services/
settings are the only ones that can be acted upon. Once selected, an asterisk appears
in the Selected column next to the item and its font color changes.

Actions on
Selected

Actions that can be used on the selected service(s) or setting(s); a selection must be
made first. Shows in parentheses how many items have been selected. A few of these
actions, like toggle whether a service is enabled and toggle whether it inherits setting
values from the global version of its template (applies to only a few services) move to
the Other Actions submenu on service menu screens.

Other
Actions

Actions that can be used on all services/settings or on the current configurator
session. The most commonly used are the filter switches and help (?).

prompt The prompt shows which menu is active and what the default action is. Before a selection is made, the
default action is to save and exit (as shown in previous figure). When a selection is made, the default
action is to configure the selected service(s) or setting(s), and the prompt changes to

MENU_NAME [default: configure – C] $

Configure the System

S2393 148

Note that accepting this default action (or entering C) displays the configuration setting screen for the
first selected setting.

Get familiar with configuration setting screens
A configuration setting screen shows users information about the setting field to be configured (default/current
values, data type, level, current state, etc.) and enables the user to navigate among setting fields, enter/change
field values, and switch to interactive mode. The configuration setting screen is displayed when a user makes a
selection and enters C in interactive mode, or when a setting matches state and level filters in auto mode.
Configuration setting screens have a prompt that is packed with useful information. Consider this example of a
prompt:

cray_lmt.settings.lmt_database.data.database_fstype
[<cr>=set 'ext3', <new value>, ?=help, @=less] $
The first line is the full name of the setting field being presented (this is the same as the corresponding entry in
the configuration worksheet for this service). The part that precedes .settings. is the service name
(cray_lmt, the Lustre Monitoring Tool service, in the example), and the part that follows is the setting field being
presented. In the example, the setting is lmt_database and the field to be set (one of several for that setting) is
database_fstype.

The second line lists available commands. In the example, the default command (selected by pressing Enter or
<cr>) sets the value to ext3, which is the default value provided in the configuration template for that service. If
this setting field had already been configured with the value ext3, the default command would be <cr>=keep
'ext3', (set becomes keep). This list of available commands is not exhaustive: to see all possible options,
enter ? after the prompt, which will insert a context-sensitive menu of commands between the information section
and the prompt.

Switch to interactive mode, as needed
When in a configuration setting screen, whether the user has arrived there by invoking cfgset in auto mode or
by making a selection and entering C in interactive mode, it is possible to switch to interactive mode and display
either the service menu (lists settings for a single service) or the Service List Menu (lists services in the config
set).

switch from
setting screen to
a service menu

To switch to interactive mode and display the service menu, enter ^ at the configurator
prompt. Example:

cray_node_health.enabled
[<cr>=keep 'true', <new value>, ?=help, @=less] $ ^

switch from
setting screen to
Service List Menu

To switch to interactive mode and display the Service List Menu, enter ^^ at the
configurator prompt. This action can be taken only if cfgset was invoked for all services
(as this is the default, this is true unless the --service or -s option was used). Example:

cray_node_health.enabled
[<cr>=keep 'true', <new value>, ?=help, @=less] $ ^^

Configure the System

S2393 149

Switch between menus in interactive mode, as needed
switch from
Service List
Menu to service
menu

When a service has been selected from the Service List Menu in interactive mode, enter v
(view settings) to switch to the selected service's menu instead of taking the default action of
Configure (C). The v action is available if only a single service is selected. If multiple
services are selected, C is the only action available. Example:

Service List Menu [default: configure - C] $ v

switch from
service menu to
Service List
Menu

To switch from a service menu to the Service List Menu, enter ^^ at the configurator prompt.
This action can be taken only if cfgset was invoked for all services (as this is the default,
this is true unless the --service or -s option was used). Example:

Node Health Service Menu [default: save & exit - Q] $ ^^

When in doubt, jump out
It is better to leave a setting field unconfigured than set it to an incorrect value or 'none.' If unsure what the value
should be or whether that setting field is needed, jump out using one of these methods:

● Switch to interactive mode, as needed.

● Skip to the next setting field: enter > at the configurator prompt.

Get help early and often
Enter ? at the configurator prompt at any time to see a list of available commands. In interactive mode, this simply
displays a verbose list of the same commands listed in the menu's three action submenus. However, in a
configuration setting screen, entering ? displays a context-sensitive menu of available commands not displayed
elsewhere. Here is an example of the commands available in the context of configuring a multival setting in a
service (multival settings are configured by adding/changing entries). Use the ? command in configuration setting
screens early and often to learn the available commands.

|--- Command Help
| * ++ - double view limit (currently 2)
| * -- - decrease view limit by half (currently 2)
| * * - view all entries (no limit)
| * + - add entries
| * <#>* - change the <#> entry. Example: '2b*' selects sub-item b in entry 2
to change
| * <#>- - delete the <#> entry. Example: '4-' deletes entry 4
| * d - delete all entries in the list
| * <cr> - accept the current value(s)
| * # - set the value to its default
| * < - go back to the previous setting
| * > - skip and go to the next setting
| * ^ - Go to the 'cray_dvs' service menu (interactive mode)
| * ^^ - Go to the service list menu (interactive mode)
| * Q - write out changes and exit the configurator
| * x - revert all changes and exit the configurator
| * r - refresh the screen
| * @ - toggle more/less info
| * ? - show this help

Configure the System

S2393 150

cfgset Troubleshooting Tips

Unable to Update a Service in a Config Set
The following command to update SERVICE in config set p0 can result in a variety of outcomes, depending on the
level and state of the settings in that service.

smw# cfgset update --service SERVICE p0
Note that for a service with configuration template file cray_example_config.yaml, use only the
cray_example portion on the command-line when specifying a single service.

● Outcome 1: No configuration settings presented.

INFO - Running pre-configuration scripts
...
INFO - Merging configuration templates and validating schema.
INFO - Configuration worksheets will be saved to /var/opt/cray/imps/config/sets/
p0/worksheets
INFO - Changelog will be written to
 - /var/opt/cray/imps/config/sets/p0/changelog/
changelog_2015-12-02T16:39:25.yaml
INFO - Running post-configuration scripts
...
INFO - ConfigSet 'p0' has been updated.
The command does not specify mode, level, or state, so defaults are used: auto mode, level basic, and
state unset. Therefore, the configurator looks only for required and basic settings that are unset. If it finds
none, no interaction with the user is necessary, so it proceeds directly to saving worksheets and logs, and
then cfgset runs post-configuration activities and exits automatically. If the intention was to confirm that
all required and basic settings have been set, then this is the desired outcome. However, if the intention
was to view all settings and perhaps change a few, use this command instead:

smw# cfgset update --service SERVICE --level advanced --mode interactive p0
● Outcome 2: Some configuration settings presented, but not the ones that need to be changed.

The settings that need to be set/changed are not presented because either they are already set or they are
level advanced. Try this:

1. Enter ^ at the configurator prompt to switch to interactive mode. Now settings of all states are
displayed in the service menu and can be selected and set/changed. If the desired settings are still not
found in the service menu, continue to the next step.

2. Enter l (lowercase L) at the configurator prompt to switch to the next level (cycles through all three levels)
until level=advanced displays in the service menu header. Now settings of all levels and states are
displayed in the service menu and can be selected and set/changed.

● Outcome 3: Some new and unfamiliar configuration settings presented.

If the service package that contains the service being updated has been reinstalled, the associated service
configuration template may have new or revised settings and values. The configurator will find that template
in /opt/cray/imps_config/SERVICE_PACKAGE/default/configurator/template and merge its
contents with configuration data already in the config set. When the configurator presents those new settings
to the user, they may appear unfamiliar. If settings other than the ones presented need to be set/changed, see
Outcome 2.

Configure the System

S2393 151

Validation Rule Failure
When cfgset validate encounters a rule failure, a non-zero value is returned and the rule failure is printed:

smw# cfgset validate p0
...
Validating ConfigSet 'p0'

Lookup/Reference Errors (1):
 Template: /var/opt/cray/imps/config/sets/p0.alison/config/cray_dvs_config.yaml
 Error: The configured value 'dvs_servers' is not located in the reference
field 'cray_node_groups.settings.groups'
 Location: cray_dvs.settings.client_mount.data.test-ro.server_groups
Rule failure can be remedied by adjusting config set data to conform with the failed rule. Alternatively, the rule can
be temporarily bypassed using either the --no-rules or --exclude-rule option. See Validate a Config Set
and List Validation Rules on page 140 for more details on bypassing validation rules.

Remove Shallow Checksum after Pushing a Config Set from One SMW to Another

About this task
Whenever a config set is pushed from one SMW to another SMW, a shallow checksum line is added to
the .imps_ConfigSet_metadata file in the top level directory for the CLE config set. After the push is
complete, that shallow checksum line must be removed from that file to prevent config set validation failure.

Here is an example of a validation error due to the presence of the shallow checksum line.

smw# cfgset validate p0
INFO - Checking directory access
INFO - Checking configuration services
INFO - Checking services for valid YAML syntax
INFO - Checking services for schema compliance
INFO - Merging services and validating schema
INFO - Checking services for valid lookup resolution
INFO - Checking services for required fields
INFO - Checking the global configuration services
INFO - Checking services for valid YAML syntax
INFO - Checking services for schema compliance
INFO - Checking services for valid lookup resolution
INFO - Checking global services for required fields

Validating ConfigSet 'p0'

File Errors (1):
 Error: ConfigSet 'p0' shallow cached checksum identity failure.
Total errors: 1

ConfigSet 'p0' is not valid. Please review the configuration errors above.
Error: 1 of 1 config sets failed to validate.
This procedure shows how to remove the shallow checksum line after pushing a config set so that the config set
will validate.

Procedure

1. Push a config set p0 from 'oldsmw' to 'newsmw.'

Configure the System

S2393 152

oldsmw# cfgset push -d newsmw p0

2. Edit the config set metadata file on newsmw.

newsmw# vi /var/opt/cray/imps/config/sets/p0/.imps_ConfigSet_metadata

3. Remove from the file any line with "shallow checksum."

For example:

shallow checksum: 9d247dc0f0a95e0a50d932103cdff56a

4. Validate the config set to ensure that the shallow checksum has been correctly removed and that there are no
other validation issues.

smw# cfgset validate p0

Update cray_sysenv Worksheet

Prerequisites
This procedure assumes that a work area has been set up for editing CLE configuration worksheets and that the
current directory has been set to that work area.

smw# cd /var/adm/cray/release/p0_worksheet_workarea

About this task
The Cray System Environment service enables sites to make any sysctl or limit changes needed within the CLE
system environment. This procedure enables the cray_sysenv configuration service.

ATTENTION: Changes to sysctl settings take effect as soon as cray-ansible is run. However, changes to
limits settings made after a system has booted take effect only at the next boot.

Procedure

1. Edit cray_sysenv_worksheet.yaml.

smw# vi cray_sysenv_worksheet.yaml

2. Uncomment cray_sysenv.enabled and set it to true.

Prepare and Update the Global Config Set

Prerequisites
This procedure assumes that the SMW and CLE software has been installed so that the global config set is
present.

Configure the System

S2393 153

About this task
The global config set must be updated with site-specific information about several services. This procedure
describes how to add site configuration data to the configuration worksheets for each service in the global config
set, update the config set with the edited configuration worksheets, and then run Ansible plays on the SMW to
effect the changes.

Notes on editing a configuration worksheet:

● Uncomment all settings that are marked level=basic and modify values as needed. All settings that remain
commented are considered unconfigured.

● Settings that are already uncommented in the original worksheet are preconfigured to ensure proper
configuration of the system; Cray recommends not modifying those preconfigured settings.

● Leave commented all settings that are marked level=advanced unless a default value needs to be modified.
Leaving them commented (unconfigured) allows the configurator to safely update defaults that may change in
later releases.

● To enter a value for a string that currently is set to '' (empty string), replace the quotes with the new value.
For example, ipv4_network: '' becomes ipv4_network: 10.1.0.0. In cases where the string value
might be interpreted as a number, retain the single quotes. For example, a string setting with value '512'
needs quotes.

● To enter one or more values for a list that is currently set to [] (empty list), remove the brackets and add
each entry on a separate line, preceded by a hyphen and a space (-). For example, a list with multiple
entries would look like this:

cray_global_net.settings.networks.data.management.dns_servers:
- 172.31.84.40
- 172.30.84.40

● Do NOT change or remove the null value in lines like this that appear at the beginning of each set of network,
host, or host interface definitions. This line sets the key, or identifier, for that definition. In this example, "hsn"
is the identifier for the HSN network definition.

cray_net.settings.networks.data.name.hsn: null
For more information about editing configuration worksheets and updating config sets, see XC™ Series
Configurator User Guide (S-2560).

NOTE: (SMW HA only) For SMW HA systems, the following procedures are done only on the first SMW
because the config sets are shared between both SMWs in the HA cluster. In contrast, Ansible plays must
be run on each SMW.

Procedure

1. Save a copy of original global worksheets.

Copy the original configuration worksheets into a new directory to preserve them in case they are needed
later for comparison.

smw# ls -l /var/opt/cray/imps/config/sets/global/worksheets

smw# cp -a /var/opt/cray/imps/config/sets/global/worksheets \
/var/opt/cray/imps/config/sets/global/worksheets.orig

Configure the System

S2393 154

2. Make a work area for global worksheets.

a. Copy the global configuration worksheets to a new work area for editing.

The worksheets should not be edited in their original location for two reasons: (1) the configurator will not
permit updating a config set from worksheets within that config set, and (2) edits would be overwritten
when the config set is updated.

smw# cp -a /var/opt/cray/imps/config/sets/global/worksheets \
/var/adm/cray/release/global_worksheet_workarea

b. Change to the work area directory to simplify the editing commands in the following steps.

smw# cd /var/adm/cray/release/global_worksheet_workarea

UPDATE WORKSHEETS FOR GLOBAL SERVICES

3. Update cray_firewall.

a. Edit cray_firewall_worksheet.yaml.

smw# vi cray_firewall_worksheet.yaml
b. Uncomment cray_firewall.enabled and set it to true.

4. Update cray_global_net.

a. Edit cray_global_net_worksheet.yaml.

smw# vi cray_global_net_worksheet.yaml
b. Uncomment cray_global_net.enabled and ensure that it is set to true.

c. Search in the file for 'networks' DATA, then uncomment all of the lines below it that begin with
cray_global_net.settings.networks so that those settings will be applied and marked as
configured. They define four networks: "admin," "SMW failover," "HSS," and "management."

NOTE: Do NOT uncomment the similar lines under this heading, because they are examples only
and are not configured for these four networks.

** EXAMPLE 'networks' VALUE (with current defaults) **
d. Enter SMW-specific or site-specific values for these management network fields.

cray_global_net.settings.networks.data.management.ipv4_network:
cray_global_net.settings.networks.data.management.ipv4_netmask:
cray_global_net.settings.networks.data.management.ipv4_gateway:
cray_global_net.settings.networks.data.management.dns_servers:
cray_global_net.settings.networks.data.management.dns_search:
cray_global_net.settings.networks.data.management.ntp_servers:
Add values for the dns_servers and dns_search fields for the management network only, not to any
other network. The DNS information to use for these fields was entered during the SLES12 installation, so
those values can be found in /etc/resolv.conf.

NOTE: If this site does not use DNS search but does use DNS domain in /etc/resolv.conf,
then adding a single entry to the dns_search setting is functionally equivalent to setting the
DNS domain.

Configure the System

S2393 155

e. Set the management network external firewall to true.

cray_global_net.settings.networks.data.management.fw_external: true
f. Search in the file for 'hosts' DATA, then uncomment all of the lines that begin with

cray_global_net.settings.hosts so that those settings will be applied and marked as configured.
They define a host called "primary_smw" and two interfaces for it: one that connects to the customer
management network ("customer_ethernet") and one that connects to admin nodes ("admin_interface"),
such as the boot and SDB nodes.

g. Enter SMW-specific or site-specific values for these items.

There are many more fields defining the "primary_smw" host and its interfaces than are included in this
example. These four fields are shown because they are the most likely to need site customization. Sites
may wish to change the values of other fields as well.

See the notes on editing worksheets at the beginning of this procedure for information about changing
empty string and empty list values.

cray_global_net.settings.hosts.data.primary_smw.aliases:
cray_global_net.settings.hosts.data.primary_smw.hostid:
cray_global_net.settings.hosts.data.primary_smw.hostname:
cray_global_net.settings.hosts.data.primary_smw.interfaces.customer_ethernet.ipv4_address:

Note that if the customer Ethernet IP address changes, the output from the hostid command will be
different. After changing the following Ethernet field

cray_global_net.settings.hosts.data.primary_smw.interfaces.customer_ethernet.ipv4_addr
ess

ensure that this field (the SMW host ID) is set to the output of the hostid command.

cray_global_net.settings.hosts.data.primary_smw.hostid

h. Set the unmanaged_interface field of the customer_ethernet and admin_interface interface
settings to true.

This applies to both stand-alone SMWs and SMW HA systems. In the case of an SMW that is or will be
configured for an SMW HA system, this prevents Ansible from managing eth0 and eth3 before the SMW
HA cluster has been configured.

cray_global_net.settings.hosts.data.primary_smw.interfaces.customer_ethernet.unmanaged_interface:
 true
...
cray_global_net.settings.hosts.data.primary_smw.interfaces.admin_interface.unmanaged_interface:
true

i. (Optional) Configure a virtual LAN (VLAN) interface, as needed.

This example shows the configuration fields needed to configure a VLAN interface with common name
set to vlan0. With the vlan_id set to '42' (important to keep the single quotes to ensure that this is
interpreted as a string) and the etherdevice set to eth0, the interface name will be set to eth0.42
(vlan_etherdevice.vlan_id) automatically if the name field is left empty (recommended). If this site
chooses to leave vlan_id empty (NOT recommended), the name field must be set to a non-empty string.

cray_net.settings.hosts.data.primary_smw.interfaces.common_name.vlan0: null
cray_net.settings.hosts.data.primary_smw.interfaces.vlan0.name: ''
cray_net.settings.hosts.data.primary_smw.interfaces.vlan0.vlan_id: '42'
cray_net.settings.hosts.data.primary_smw.interfaces.vlan0.vlan_etherdevice: eth0
cray_net.settings.hosts.data.primary_smw.interfaces.vlan0.ipv4_address: some_IP_address
cray_net.settings.hosts.data.primary_smw.interfaces.vlan0.startmode: auto

j. (Optional) Configure a bonded interface, as needed.

Configure the System

S2393 156

This example shows the configuration fields needed to configure a bonded interface with common name
set to bond0 and interface name set also to bond0. There is no field for bonding master because it is set
automatically when the bonding_slaves list has at least one member.

cray_net.settings.hosts.data.some_host.interfaces.common_name.bond0: null
cray_net.settings.hosts.data.some_host.interfaces.bond0.name: bond0
cray_net.settings.hosts.data.some_host.interfaces.bond0.bonding_slaves:
- eth0
- eth2
cray_net.settings.hosts.data.some_host.interfaces.bond0.bonding_module_opts: mode=active-backup
 miimon=100
cray_net.settings.hosts.data.some_host.interfaces.bond0.ipv4_address: some_IP_address
cray_net.settings.hosts.data.some_host.interfaces.bond0.startmode: onboot
cray_net.settings.hosts.data.some_host.interfaces.bond0.bootproto: static

5. Update cray_global_sysenv.

The cray_global_sysenv config service, new in CLE 6.0.UP04, enables sites to make any sysctl, systemd, or
limit changes needed on the SMW. It provides the same functionality and works the same way as its
counterpart in the CLE config set, cray_sysenv. The only difference between them is that cray_sysenv is used
for CLE nodes and uses node groups to specify the scope of any change, while cray_global_sysenv is used
for the SMW and uses the 'scope' field (always set to 'smw') instead of node groups.

ATTENTION: Changes to sysctl settings take effect as soon as cray-ansible is run. However,
changes to systemd or limits settings made after a system has booted take effect only at the next
boot.

"DefaultTasksMax" and "UserTasksMax" limits on the CLE system and the SMW have been increased in CLE
6.0.UP04. These limit increases will happen automatically, with no need for action by the system
administrator.

a. Edit cray_global_sysenv_worksheet.yaml.

smw# vi cray_global_sysenv_worksheet.yaml
b. Uncomment cray_global_sysenv.enabled, if it is commented out, and ensure that it is set to true.

6. Update cray_ipforward.

a. Edit cray_ipforward_worksheet.yaml.

smw# vi cray_ipforward_worksheet.yaml
b. Uncomment cray_ipforward.enabled, if it is commented out, and ensure that it is set to true.

7. Update cray_liveupdates.

a. Edit cray_liveupdates_worksheet.yaml.

smw# vi cray_liveupdates_worksheet.yaml
b. Uncomment cray_liveupdates.enabled and ensure that it is set to true.

8. Update cray_logging.

a. Edit cray_logging_worksheet.yaml.

smw# vi cray_logging_worksheet.yaml
b. Uncomment cray_logging.enabled and ensure that it is set to true.

Configure the System

S2393 157

c. Uncomment cray_logging.settings.global_options.data.raid. If the boot RAID has a non-
standard IP address, change the value of this setting.

d. Uncomment cray_logging.settings.site_loghost.data.name. If this site has a site_loghost,
change the value of this setting.

9. Update cray_multipath.

Multipath does NOT need to be fully cabled to be used. The multipath driver can handle using one path or
many.

a. Edit cray_multipath_worksheet.yaml.

smw# vi cray_multipath_worksheet.yaml
b. Choose one of the following options, depending on whether this site intends to use multipath.

NOTE: (SMW HA only) Cray recommends configuring multipath before configuring and enabling
HA. If HA is configured and enabled first, then additional precautions must be taken when
enabling multipath, as documented in XC™ Series SMW HA Installation Guide.

Will multipath be used?

If no, then uncomment cray_multipath.enabled and ensure that it is set to false. There is nothing
else to configure in this step; proceed to step 10 on page 159.

If yes, then uncomment cray_multipath.enabled and set it to true. Continue with the following
substeps.

c. Enter the list of multipath nodes.

Uncomment cray_multipath.settings.multipath.data.node_list, remove the [] (denotes
empty list), and add a list of nodes (by cname or host ID) in this system that have multipath devices and
need to have multipath configured. For sites with boot node failover and/or SDB node failover, Cray
recommends adding both the active and passive (failover) nodes to this list.

This example shows a list of three nodes: an SMW with host ID 1eac4e0c, a boot node with cname
c0-0c0s4n1, and an SDB node with cname c0-0c0s3n1.

cray_multipath.settings.multipath.data.node_list:
- 1eac4e0c
- c0-0c0s4n1
- c0-0c0s3n1

d. Configure enabled devices.

Cray has provided a number of enabled devices with pre-populated data under # **
'enabled_devices' DATA **. These storage devices are the devices that will be whitelisted, which
means they will be listed as exceptions to the blacklist. The settings for these devices have default values
provided by the device vendors and do not need to be changed. If this site intends to configure a
multipath device that does not appear in this group of enabled devices, contact a Cray representative for
help.

e. (Optional) Configure aliases for the multipath devices.

This is the equivalent of adding aliases to the multipaths section of the multipath.conf file. If no
aliases are specified, this setting will show as unconfigured when the config set is updated, but this is not
a problem. It can remain unconfigured and will not cause the config set to be invalid.

Configure the System

S2393 158

In the worksheet, copy the two lines below # ** EXAMPLE 'aliases' VALUE (with current
defaults) ** and paste them below # NOTE: Place additional 'aliases' setting
entries here, if desired.
** EXAMPLE 'aliases' VALUE (with current defaults) **
cray_multipath.settings.aliases.data.wwid.sample_key_a: null <-- setting a multival key
cray_multipath.settings.aliases.data.sample_key_a.alias: ''
#

Uncomment the lines, replace sample_key_a with the World Wide Identifier (WWID) of the device to be
aliased (60080e50002e203c00002a085551b2c8 in this example) in all lines, and remove the <--
setting a multival key text at the end of the first line (note that the null value is required; do not
remove or change it). Finally, add the alias for this device (smw_node_pv1 in this example). Repeat this
substep for each device, as needed.

NOTE: Place additional 'aliases' setting entries here, if desired.
cray_multipath.settings.aliases.data.wwid.60080e50002e203c00002a085551b2c8: null
cray_multipath.settings.aliases.data.60080e50002e203c00002a085551b2c8.alias: smw_node_pv1
#***************** END Service Setting: aliases ****************

10. Skip cray_network_boot_packages_worksheet.yaml.

The cray_network_boot_packages configuration service is enabled by default and has no variables that need
to be changed.

11. Update cray_time.

a. Edit cray_time_worksheet.yaml.

smw# vi cray_time_worksheet.yaml
b. Uncomment cray_time.enabled, if it is commented out, and ensure that it is set to true.

c. Uncomment cray_time.settings.service.data.timezone and change its value, as needed.

There are many possible values for time zone, such as I.E., US/Central, US/Eastern, and EMEA/BST.

UPLOAD WORKSHEETS AND UPDATE/VALIDATE GLOBAL CONFIG SET

CAUTION: Boot failure possible if using cfgset under certain conditions.

The cfgset create and cfgset update commands always call pre- and post-configuration
scripts. Some of these scripts require HSS daemons and other CLE services to be running. This
can cause problems under these conditions:

● If xtdiscover is running, cfgset may hang or produce incorrect data that can result in
system boot failure.

● If xtbounce is in progress or if the SMW is not connected to XC hardware, cfgset will fail.

In these circumstances, use the --no-scripts option with cfgset create or cfgset update
to avoid running the scripts. Because using that option results in an invalid config set, remember to
run cfgset update without the --no-scripts option afterwards, when circumstances permit, to
ensure that all pre- and post-configuration scripts are run.

12. Upload modified worksheets into global config set.

Note that the full filepath must be specified in this cfgset command, and it must be enclosed in single
quotes (to prevent the shell trying to expand the file glob).

Configure the System

S2393 159

smw# cfgset update -w \
'/var/adm/cray/release/global_worksheet_workarea/*_worksheet.yaml' global

13. Update the global config set.

Using the configurator in interactive mode to update the global config set is a good way to check whether all
required settings and basic settings have been configured for services that are enabled. If they have, then all
enabled services will show OK status in the Service Configuration List Menu. If configuration of a basic setting
was missed, then the menu will show how many unconfigured settings there are for each service. Set or
change any settings from this menu, as needed.

Note that some basic settings can be left unconfigured, such as aliases for multipath devices, because
configuring them is optional.

smw# cfgset update -m interactive global
When the configurator session completes, it displays a message indicating the file name of the changelog file
for this configuration session. The changelog is written to a file in
the /var/opt/cray/imps/config/sets/global/changelog directory.

14. Validate the global config set.

smw# cfgset validate global

APPLY CONFIGURATION CHANGES ON THE SMW

15. Run Ansible plays on the SMW.

After the global config set has been updated, reapply any Ansible plays that consume global config set data.

NOTE: (SMW HA only) Both SMWs require this command. The procedure to install and configure the
second SMW includes this command.

smw# /etc/init.d/cray-ansible start
Logs from running Ansible plays, such as cray-ansible, are stored on the SMW
in /var/opt/cray/log/ansible.

CHECK TIME SETTINGS

16. Check for external NTP servers.

Check that external NTP servers have been set as desired in the global config set.

NOTE: (SMW HA only) Both SMWs require this command. The procedure to install and configure the
second SMW includes this command.

smw# grep server /etc/ntp.conf
server ntpserver1 minpoll 4 iburst
server ntpserver2 minpoll 4 iburst

17. Put the SMW time zone setting where the cabinet and blade controllers can access it.

This SMW time zone setting will be applied to the cabinet and blade controllers when they are rebooted later
in the process.

NOTE: (SMW HA only) Both SMWs require this command. The procedure to install and configure the
second SMW includes this command.

Configure the System

S2393 160

smw# cp -p /etc/localtime /opt/tftpboot/localtime

About Simple Sync
The Cray Simple Sync service (cray_simple_sync) provides a simple, easy-to-use, generic mechanism for
administrators to make configuration changes to their system without resorting to writing a custom Ansible play.
When enabled, the service automatically copies files found in source directories in the config set on the SMW to
one or more target nodes. Simple Sync is a simple tool and not intended as the sole solution for making
configuration changes to the system. Writing custom Ansible plays might provide better maintainability, flexibility
and scalability in the long term.

The Simple Sync service is enabled by default and has no additional configuration options. It can be enabled or
disabled during the initial installation using worksheets or with the cfgset command at any time.

smw# cfgset update --service cray_simple_sync --mode interactive <config_set_name>
For more information, see man cfgset(8).

How Simple Sync Works
When enabled, Simple Sync is executed on all CLE nodes at boot time and whenever the site administrator
executes /etc/init.d/cray-ansible start on a CLE node. When Simple Sync is executed, files placed in
the following directory structure are copied onto nodes that match these criteria:

smw:/var/opt/cray/imps/config/sets/<config_set>/files/simple_sync/

./common/files/ Matches all nodes.

./hardwareid/<hardwareid>/files/ Matches a specific node with that hardware ID, which is the
cname of a CLE node or the output of the hostid command
(e.g., 1eac0b0c) on other nodes. An admin must create both
the <hardwareid> directory and the files directory.

./hostname/<hostname>/files/ Matches a node with the specified host name. An admin
must create both the <hostname> directory and the files
directory. Use for eLogin nodes ONLY.

./nodegroups/<node_group_name>/files/ Matches all nodes in the specified node group. The
directories for this nodegroups directory are automatically
stubbed out when the config set is updated after node
groups are defined and configured in the cray_node_groups
service.

./platform/[compute, service]/files/ Matches all compute nodes or all service nodes, depending
on whether they are placed in platform/compute/files
or platform/service/files. Each time the config set is
updated, the HSS data store is queried to update which
nodes are service and which are compute.

./README Provides brief guidance on using Simple Sync and a list of
existing node groups in the order in which files will be
copied. This ordering enables an administrator to predict
behavior in cases where a file may be duplicated within the
Simple Sync directory structure.

Configure the System

S2393 161

Simple Sync copies content into place prior to the standard Linux startup (systemd) and before cray-ansible
runs any other services. As a result, Cray services that make small changes to files will operate on the
administrator-provided file. Afterwards, the file will contain both non-conflicting administrator-provided content as
well as the changes made by the Cray service. Because these changes happen prior to Linux startup, the
changes will be in place when the services start up.

Note that there are some config files that are entirely managed by Cray services. Where possible, such files have
a comment at the top indicating that the file is completely under the management of the Cray service. Files that
have been changed by Cray services can be identified by checking the change logs on the running node
in /var/opt/cray/log/ansible. Simple Sync does not provide a mechanism to override changes made by
Cray services. To override changes made by Cray services, refer to the documentation for the specific service.

The ownership and permissions of copied directories and files are preserved when they are copied to root (/) on
the matching target nodes. An administrator can run cray_ansible multiple times, as needed, and only the files
that have changed will be copied to the target nodes.

Because of the way it works, Simple Sync can be used to configure services that have configuration parameters
not currently supported by configuration templates and worksheets. An administrator can create a configuration
file with the necessary settings and values, place it in the Simple Sync directory structure, and it will be distributed
and applied to the specified node(s).

Characteristics of Simple Sync
Simple Sync is: Simple Sync is NOT:

for simple and straightforward use cases a comprehensive system management solution

for copying a moderate number of
moderately sized files*

intended to transfer large objects or a large volume of files

an interface to configure Cray "turnkey" services such as ALPS,
Node Health or Lightweight Log Manager (LLM)

* Bear in mind that anything in the Simple Sync directory structure is part of a config set, and a SquashFS copy of
the current config set is distributed to all nodes in the system. Even though it is a reduced-size config set that is
distributed, it is good practice to not add very large files to a config set, hence the use of "moderate" here.

Introduced with the CLE 6.0.UP00 / SMW 8.0.UP00 release, Simple Sync has been enhanced to:

● run as early in the Ansible execution sequence as possible (it runs BEFORE other cray-ansible plays, so it
can be used to make changes to files that Cray updates, like sshd_config)

● run during the netroot setup sequence, so it can be used to change LNet and DVS settings, if needed

● support Node Groups for targeting which system nodes to copy files to (see About Node Groups on page
166)

Simple Sync does not support:

● removing files

● appending to files

● changing file ownership and permissions (the permissions of the file in the config set are mirrored on-node)

● backing up files

Configure the System

S2393 162

● overriding Cray-set values (it cannot be used to change files that Cray completely overwrites, such as
alps.conf, or change values in files that Cray modifies such as PermitRootLogin
in /etc/ssh/sshd_config)

Cautions about the Use of Simple Sync
● Simple Sync copies files from the config set, which in the case of nodes without a persistent root file-system is

cached in a compressed form, locally, in memory. As a result, each file stored in the config set uses some
memory on the node. Therefore, using Simple Sync to copy binary files or large numbers of files is
inadvisable.

● Be aware of differences in node environments when using Simple Sync. For example, systems configured
with direct-attached Lustre (DAL) have nodes running CentOS instead of SLES. Administrators would have to
be very careful to avoid putting an inappropriate configuration file into place when using the Simple Sync
platform/service target in such a situation.

● Storage and distribution of verbatim config files through Simple Sync creates the potential for unintentional
impact to the system when config files evolve due to software changes. Making minimal necessary changes
through a site-local Ansible playbook provides more flexibility and minimizes the potential for unintended
consequences.

Use Cases

Copy a non-conflicting file to all nodes

1. Place etc/myfile under ./common/files/ in the Simple Sync directory structure.

2. Simple Sync copies it to /etc/myfile on all nodes.

Copy a non-conflicting file to a service node

1. Place etc/servicefile under ./platform/service/files/ in the Simple Sync
directory structure.

2. Simple Sync copies it to /etc/servicefile on all service nodes.

Copy a non-conflicting file to a compute node

1. Place etc/computefile under ./platform/compute/files/ in the Simple Sync
directory structure.

2. Simple Sync copies it to /etc/computefile on all compute nodes.

Copy a non-conflicting file to a specific node

1. Place etc/mynode under ./hardwareid/c0-0c0s0n0/files/ in the Simple Sync
directory structure.

2. Simple Sync copies it to /etc/mynode on c0-0c0s0n0.

Configure the System

S2393 163

Copy a non-conflicting file to a user-defined collection of nodes

1. Create a node group called "my_nodes" containing a list of nodes.

2. Update the config set.

smw# cfgset update p0
3. Place etc/mynodes under ./nodegroups/my_nodes/files/ in the Simple Sync

directory structure.

4. Simple Sync copies it to /etc/mynodes on all nodes listed in node group my_nodes.

Copy to a node a file that has Cray-maintained content

To reduce the number of authentication tries from the default of six,

1. Place a version of sshd_config with the value “MaxAuthTries 3”
under ./nodegroups/login_nodes/files/etc/ssh/ in the Simple Sync directory
structure.

2. The booted system will contain both:

● “MaxAuthTries 3” (from the file copied by Simple Sync)

● “PasswordAuthentication yes” (from modification of file by Cray)

Copy to a node a file that is exclusively maintained by Cray

Files exclusively maintained by Cray such as alps.conf cannot be updated using Simple Sync.
Please refer to the owning service (such as ALPS) for information on how to update the contents.

Copy to a node a file that resides on a file system that will be mounted during Linux boot

No special operational changes are necessary. However, Simple Sync will put the file in place
early in the boot sequence, and then it will be over-mounted by the file system. Because Simple
Sync runs again later, it will copy the file into the mounted file system. Due to the ordering of
operations, the file will not be present between the time the file system was mounted until the late
execution of Ansible.

On netroot login nodes, modify an LNet modprobe parameter

1. Generate a file zz_lnet.conf containing options lnet router_ping_timeout=100.

2. Place zz_lnet.conf under ./nodegroups/login/files/etc/modprobe.d/ in the
Simple Sync directory structure.

3. The lnet router_ping_timeout value will be 100.

Note that normally Simple Sync does not allow the user to override Cray values, but this
procedure takes advantage of the standard Linux mechanism to override Kernel module options.

Configure the System

S2393 164

Copy a file with an incompatible content to a node file that has Cray-maintained content

While Simple Sync allows an administrator to make changes to the same configuration files as
modified by Cray, be very careful to avoid introducing syntax errors or incompatible values that
may cause the system to fail to operate correctly.

Configure Files for Cray Simple Sync Service

About this task
Cray Simple Sync provides a generic mechanism to automatically distribute files to targeted locations on the
system. This mechanism can be used to override or change default system behavior through the contents of the
distributed files. When enabled, the Simple Sync service is executed on all CLE nodes at boot time and whenever
the administrator executes /etc/init.d/cray-ansible start on a CLE node. When Simple Sync is
executed, files placed in the following directory structure are copied to the root file system (/) on the target nodes.

About the Simple Sync Directory Structure

The Simple Sync directory structure has this root:
smw:/var/opt/cray/imps/config/sets/<config_set>/files/simple_sync/
Below that root are the directories listed on the left:

Files placed here are copied to

./common/files/ all nodes

./platform/[compute, service]/files/ all compute or service nodes

./hardwareid/<hardwareid>/files/ nodes with matching hardware ID, which is the cname of a
CLE node or the output of the hostid command (e.g.,
1eac0b0c) on other nodes

./hostname/<hostname>/files/ nodes with matching host name (use this for eLogin nodes
ONLY)

./nodegroups/<node_group_name>/files/ nodes in the matching node group

NOTE: The directory structure for a particular hardware ID or host name (everything
below./hardwareid/ and ./hostname/) must be created manually as needed. This is unnecessary
for node groups because their associated directories are created automatically by post-configuration
callback scripts when the config set is created or updated using cfgset.

Anything (directory structure and files) placed below ./files/ in the Simple Sync directory structure on the
SMW is replicated on the target node starting at root (/). For example, this path on the SMW

/var/opt/cray/imps/config/sets/p0/files/simple_sync/common/files/etc/myapplication.conf

will place the myapplication.conf file on all nodes in this directory:

/etc/myapplication.conf
Note that the ownership and permissions of files in the config set are preserved in the copies made to nodes.

For more information and use cases, see About Simple Sync on page 161.

Configure the System

S2393 165

About the Node Image Mapping Service (NIMS)
The Node Image Mapping Service (NIMS) maps a node to boot attributes, which are used when the node is
booted.

The primary NIMS component is the daemon, nimsd. Interact with nimsd either by sending a Hardware
Supervisory System (HSS) event or by using the NIMS command line interface (CLI). The HSS Boot Manager
daemon communicates with nimsd via HSS events. All other interactions with nimsd take place through the CLI.

The nimsd daemon provides these boot attributes to Boot Manager upon request. Boot Manager uses the boot
attributes when it boots or reboots nodes. Boot Manager also provides the boot attributes to the xtcli command.

Two conceptual components, nodes and maps, are affected by nimsd. A node represents a physical, bootable
node on the mainframe. A map is a collection of nodes, typically all the nodes in a partition, or for a non-
partitioned system, all the nodes in the entire mainframe.

There can be multiple NIMS maps. However, only one map can be active at a time. The reason to have multiple
maps is to differentiate the boot attributes. For example, one map may be a test map to allow booting nodes with
a test boot image or a test Config Set.

About Node Groups
The Cray Node Groups service (cray_node_groups) enables administrators to define and manage logical
groupings of system nodes. Nodes can be grouped arbitrarily, though typically they are grouped by software
functionality or hardware characteristics, such as login, compute, service, DVS servers, and RSIP servers.

Node groups that have been defined in a config set can be referenced by name within all CLE services in that
config set, thereby eliminating the need to specify groups of nodes (often the same ones) for each service
individually and greatly streamlining service configuration. Node groups are used in many Cray-provided Ansible
configuration playbooks and roles and can be also used in site-local Ansible plays. Node groups are similar to but
more powerful than the class specialization feature of releases prior to CLE 6.0. For example, a node can be a
member of more than one node group but could belong to only one class.

Sites are encouraged to define their own node groups and specify their members. Administrators can define and
manage node groups using any of these methods:

● Edit and upload the node groups configuration worksheet (cray_node_groups_worksheet.yaml).

● Use the cfgset command to view and modify node groups interactively with the configurator.

● Edit the node groups configuration template (cray_node_groups_config.yaml) directly. Use cfgset to
update the config set afterwards so that pre- and post-configuration scripts are run.

After using any of these methods, remember to validate the config set.

Characteristics of Node Groups
● Node group membership is not exclusive, that is, a node may be a member of more than one node group.

● Node group membership is specified as a list of cnames. However, if the SMW is part of a node group, it is
specified with the output of the hostid command. Also, host names are used for eLogin nodes that are to be
included in node groups.

● All compute nodes and/or all service nodes can be added as node group members by including the keywords
“platform:compute” and/or “platform:service” in a node group.

● Any CLE configuration service is able to reference any defined node group by name.

Configure the System

S2393 166

● The Configuration Management Framework (CMF) exposes node group membership of the current node
through the local system "facts" provided by the Ansible runtime environment. This means that each node
knows what node groups it belongs to, and that knowledge can be used in Cray and site-local Ansible
playbooks.

Default Node Groups
Default node groups are groups of nodes that

● are likely to be customized and used by many sites

● support useful default values for many of the migrated services

Several of the default node groups require customization by a site to provide the appropriate node membership
information. This table lists the Cray default groups and indicates which ones require site customization.

Table 7. cray_node_groups

Default Node
Group

Requires
Customization?

Notes

compute_nodes No Defines all compute nodes for the given partition. The list of nodes
is determined at runtime.

service_nodes No Defines all service nodes for the given partition. The list of nodes
is determined at runtime.

smw_nodes Yes Add the output of the hostid command for the SMW. For an
SMW HA system, add the host ID of the second SMW also.

boot_nodes Yes Add the cname of the boot node. If there is a failover boot node,
add its cname also.

sdb_nodes Yes Add the cname of the SDB node. If there is a failover SDB node,
add its cname also.

login_nodes Yes Add the cnames of internal login nodes on the system.

elogin_nodes Yes Add the host names of external login nodes on the system. Leave
empty (set to []) if there are no eLogin nodes.

all_nodes Maybe Defines all compute nodes and service nodes on the system. Add
external nodes (e.g., eLogin nodes), if needed.

tier2_nodes Yes Add the cnames of nodes that will be used as tier2 servers in the
cray_scalable_services configuration.

Why is there no "tier1_nodes" default node group? Cray provides a default tier2_nodes node group to support
defaults in the cray_simple_shares service. Cray does not provide a tier1_nodes node group because no default
data in any service requires it. Because it is likely that tier1 nodes will consist of only the boot node and the SDB
node, for which node groups already exist, Cray recommends using those groups to populate the
cray_scalable_services tier1_groups setting rather than defining a tier1_nodes group.

About eLogin nodes. To add eLogin nodes to a node group, use their host names instead of cnames, because
unlike CLE nodes, eLogin nodes do not have cname identifiers. If eLogin nodes are intended to receive

Configure the System

S2393 167

configuration settings associated with the all_nodes group, add them to that group, or change the relevant
settings in other configuration services to include both all_nodes and elogin_nodes.

Additional Platform Keywords
Cray uses these two platform keywords to create default node groups that contain all compute or all service
nodes.

platform:compute
platform:service

Sites that need finer-grained groupings can use these additional platform keywords to create custom node groups
that contain all compute or service nodes with a particular core type.

platform:compute-XXNN
platform:service-XXNN

For XXNN, substitute a four-character processor/core suffix, such as KL64 or KL68, which designate two Intel®
Xeon Phi™ "Knights Landing" (KNL) processors with different core counts. These suffixes are found in the "Core"
column of the output from the following command:

smw# xtcli status p0
Network topology: class 0
Network type: Aries
Nodeid: Service Core Arch| Comp state [Flags]

c0-0c0s0n0: service BW18 X86| ready [noflags|]
c0-0c0s0n1: service BW18 X86| ready [noflags|]
c0-0c0s0n2: service BW18 X86| ready [noflags|]
c0-0c0s0n3: service BW18 X86| ready [noflags|]
c0-0c0s1n0: service BW18 X86| ready [noflags|]
c0-0c0s1n1: service BW18 X86| ready [noflags|]
c0-0c0s1n2: service BW18 X86| ready [noflags|]
c0-0c0s1n3: service BW18 X86| ready [noflags|]
c0-0c0s2n0: - HW12 X86| ready [noflags|]
c0-0c0s2n1: - HW12 X86| ready [noflags|]
c0-0c0s2n2: - HW12 X86| ready [noflags|]
c0-0c0s2n3: - HW12 X86| ready [noflags|]
The following table lists some of the common suffixes supported by Cray.

Table 8. Cray Supported Intel Processor/Core (XXNN) Designations

Processor (XX) Core (NN) Intel Code Name

BW 12, 14, 16, 18, 20, 22, 24, 28, 32, 36, 40, 44 "Broadwell"

HW 04, 06, 08, 10, 12, 14, 16, 18, 20, 24, 28, 32, 36 "Haswell"

IV 02, 04, 06, 08, 10, 12, 16, 20, 24 "Ivy Bridge"

KL 60, 64, 66, 68, 72 "Knights Landing"

SB 04, 06, 08, 12, 16 "Sandy Bridge"

Configure the System

S2393 168

About the Image Management and Provisioning System (IMPS)
The Image Management and Provisioning System (IMPS) allows the system administrator to manage software
content in images. IMPS leverages and extends industry-standard tools such as zypper and yum.

IMPS uses an image recipe to install collections of software (RPMs) into an image root. The image root is used
create a boot image. Image recipes tie together collections of software defined in the package collections and the
repositories that contain the software. IMPS creates an image root from an image recipe and resolves all RPM
dependencies. When building an image root from a image recipe, IMPS builds any subrecipes and then gathers
all specified packages and package collections and software repositories in the image recipe before generating
the call to the package manager (rpm). After the package manager has created the image root, it may be further
modified by non-RPM-based content if there are post-build directives in the recipe.

The Node Image Mapping Service (NIMS) is responsible for keeping track of which images get booted on which
nodes, what additional kernel parameters to pass to nodes at boot time, and which load file to use within a boot
image. The NIMS map is created during installation and changed when other images are created or when nodes
are added, removed, or change function. The administrator can use NIMS to assign a boot image to any node or
group of nodes. For more information, see About the Node Image Mapping Service (NIMS) on page 166.

IMPS objects include:

Image
recipe

Defines the image name and image contents (software). The recipe can include one or more
packages (RPMs), package collections (logical groupings of RPMs), repositories, and other
recipes (called sub-recipes or nested recipes). A recipe can also specify post-boot actions such as
copying files or executing commands using the postbuild_copy and postbuild_chroot
directives.
Custom image recipes can reference remote repositories that are hosted on an external repository
server. For more information, see Install Third-Party Software with a Custom Image Recipe on
page 173.
Location on the SMW: /etc/opt/cray/imps/image_recipes.d/

Image root Directory on the SMW that contains the installed software. IMPS creates an image root from an
image recipe. System administrators can chroot into the image root directory to examine its
contents and the packages (RPMs) that were included to resolve build dependencies.
Location on the SMW: /var/opt/cray/imps/image_roots/

Boot image IMPS creates a boot image (a CPIO file) from an image root by packaging the image root into a
format suitable for booting on a Cray node or eLogin node. Note that a boot image is essentially
unconfigured; the node configuration comes from the config set.
A boot image is the root file system for a node or group of nodes.The Cray XC™ Series root file
system for nodes can either reside in RAM (tmpfs) or be mounted from a network source (netroot),
depending on the type of node. The boot and SDB nodes, all other service nodes (except login
nodes), and all DAL (direct-attached Lustre) nodes must use tmpfs. Compute nodes and login
nodes may use either tmpfs or netroot. For more information, see Where to Place the Root File
System—tmpfs versus netroot on page 172.
Location on the SMW: /var/opt/cray/imps/boot_images/

Package
collection

Logical grouping of RPM packages. A package collection can contain versioned and unversioned
package names, and can include other package collections. (Note that the package collections
installed for CLE are read-only.) Only the top-level packages should be included in a package
collection. The IMPS image creation process takes care of determining package dependencies
and installing them from the defined repositories.

Configure the System

S2393 169

Cray recommends using a package collection because the RPMs can be used in multiple image
types (such as compute and service node images).
Location on the SMW: /etc/opt/cray/imps/package_collections.d/

Repository Logical grouping of RPMs based on repository type and architecture. (The content of SLES
repositories and CentOS repositories should never be mixed.) The installation process creates
and populates the required repositories. System administrators can create their own repositories
for third-party software.

Most operating system and Cray repositories come in pairs (base and updates), such as
sles_12_x86-64 and sles_12_x86-64_updates. The updates repository is for future
patches and security updates.

Location on the SMW: /var/opt/cray/repos/

IMPS Commands for Working with Images
These IMPS commands are available for working with recipes, repositories, package collections, and images:

recipe Creates and manages image recipes.

repo Creates and manages repositories.

pkgcoll Creates and manages package collections.

image Creates and manages image roots and boot images.

imgbuilder Calls several IMPS commands so that multiple images can be built as a set with a single
command. This command can also call the NIMS command cnode to assign boot images to
nodes and adjust the netroot kernel parameter for nodes. The configuration file for imgbuilder
is cray_image_groups.yaml.

The imgbuilder command uses image group configuration information to build boot images.
Image groups are defined in the global config set in the cray_image_groups configuration file
(/var/opt/cray/imps/config/sets/global/config/cray_image_groups.yaml).

For each command, use the list subcommand to display the existing items. Use the -h option to display the
available subcommands and arguments. For more information, see the man pages on the SMW.

Cray-provided Image Recipes
Cray provides read-only image recipes that system administrators can build into bootable images for these node
types: service, compute, admin (for boot and SDB nodes), login, Direct Attached Lustre (DAL), and eLogin. In
addition, administrators can create custom recipes that are based on the read-only recipes.

IMPORTANT: Do not directly modify a Cray-provided image recipe.

The Cray-provided image recipes have names like compute_cle_6.0.up04_sles_12sp2_x86-64_ari. The
name includes the node function (such as compute), Cray product and version (cle_6.0.UP04), OS type and
version (sles_12sp2), architecture (x86-64), and network type (ari for the XC system Aries network).

Custom Image Recipes
System administrators can use IMPS commands to create custom image recipes that are based on the Cray-
provided recipes.There are two ways to customize an image recipe:

Configure the System

S2393 170

● Create a new recipe (with recipe create) and add the existing recipe as a sub-recipe. Cray recommends
this approach for most images because the recipe will receive updates from patches.

● Clone the Cray-provided recipe (with recipe clone) and change the contents. However, the recipe will not
receive modifications from patches. For that reason, Cray does not recommend cloning an image recipe
except for testing purposes.

Local image recipes are stored in the image recipe directory (/etc/opt/cray/imps/image_recipes.d/) in
the file image_recipes.local.json.

For the procedure to create a custom image, see Install Third-Party Software with a Custom Image Recipe on
page 173 and Use a Custom Image Recipe to Change a File on a Compute Node on page 184.

Format of an Image Recipe
An image recipe is in a JSON file. Note that a single JSON file can contain multiple image recipes. Each image
recipe starts with a name and description (a comment describing the intended use for the image). The remaining
elements in a recipe specify the package collections, packages (RPMs), repositories, and other recipes (sub-
recipes). Each item has a rationale (a comment explaining why the item is included in the image). A recipe can
also include post-build actions to copy files and execute commands or scripts in a chroot environment.

An image recipe has the following basic format:

{
"image_recipe_name": {
 "description": "Example recipe",
 "package_collections": { ... },
 "packages": { ... },
 "postbuild_chroot": [...],
 "postbuild_copy": [...],
 ”recipes": { ... },
 "repositories": { ... }
 },
}

The following example shows the format of a custom image recipe for service nodes that includes a workload
manager (WLM). It includes the Cray-provided recipe as a sub-recipe, then specifies post-build actions to copy
WLM files and run the necessary scripts.

"wlm_service": {
 "description": "WLM service node image",
 "package_collections": {},
 "packages": {},
 "postbuild_chroot": [
 "rpm -ivh ${IMPS_POSTBUILD_FILES}/wlm.rpm",
 "${IMPS_POSTBUILD_FILES}/wlm.installer ${IMPS_POSTBUILD_FILES}/
wlm.config"
],
 "postbuild_copy": [
 "/home/crayadm/wlm_install/wlm.rpm",
 "/home/crayadm/wlm_install/wlm.installer",
 "/home/crayadm/wlm_install/wlm.config"
],
 "recipes": {
 "service_cle_6.0up03_sles_12_x86-64_ari": {
 "rationale": "Start from standard service node recipe"
 },

Configure the System

S2393 171

 "repositories": {}
 },

When using post-build actions, use postbuild_copy to copy files and directories from a location on the SMW.
Use postbuild_chroot to execute post-build commands or scripts, which run in the chroot environment of
the image root (on the SMW). Use the following environment variables for post-build scripts:

● IMPS_IMAGE_NAME
● IMPS_VERSION
● IMPS_IMAGE_RECIPE_NAME
● IMPS_POSTBUILD_FILES

Where to Place the Root File System—tmpfs versus netroot
The Cray XC™ Series root file system for nodes can either reside in RAM (tmpfs) or be mounted from a network
source (netroot), depending on the type of node. The boot and SDB nodes, all other service nodes (except login
nodes), and all DAL (direct-attached Lustre) nodes must use tmpfs. Compute nodes and login nodes may use
either tmpfs or netroot. Use the information provided here to decide whether to use netroot for some or all
compute and login nodes at this site.

About netroot and Dynamic Shared Objects and Libraries (DSL)
In releases prior to CLE 6.0 / SMW 8.0, the dynamic shared objects and libraries (DSL) feature was optional. It
was necessary for many sites because it enabled both dynamic shared libraries and large network-based images,
which were needed for systems with NVIDIA GPUs and for most production workloads.

In the current release, DSL is supported by default. Note, however, that the DSL feature no longer includes
provision for large network-based images. That capability is now provided by netroot.

● Sites that require large network-based images and additional storage should use netroot.

● Sites using NVIDIA GPUs must use netroot.

Comparison of tmpfs and netroot
tmpfs By default, the root file system on Cray XC™ Series systems resides in the memory resident file

system, tmpfs.

tmpfs has these characteristics and limitations:

● always used for service nodes (except login nodes) and DAL (direct-attached Lustre) nodes

● efficient and fast root file system access

● large memory footprint

● file system content needs to be restricted to reduce memory footprint

● typically used when minimal commands and libraries required

● works well for compute nodes with well defined workloads and for service nodes that are used
primarily for internal services

netroot netroot is an alternative approach that mounts the root file system from a network source. It is used
only for compute and login nodes. It uses overlayfs to layer tmpfs on top of a read-only network file
system.

Configure the System

S2393 172

Due to the reliance on overlayfs, the decision to use netroot should include consideration of the
characteristics and limitations of overlayfs in addition to those of netroot listed here.

netroot has these characteristics and limitations:

● used only for compute and login nodes, never for service nodes (except login nodes)

● slower root file system access

● increased node boot time

● minimized memory footprint (mounted from network, so requires less disk space)

● no restriction on file system content

● typically used when a robust set of commands and libraries required (netroot enables large
network-based images, formerly enabled through the DSL feature)

● works well for compute nodes with diverse workloads and for compute nodes with a high memory
footprint

● always used for GPUs

● supports a SquashFS compressed image format for better boot performance (recommended)

This comparison of tmpfs and netroot memory footprints is based on a fresh install with nothing extra added.
These numbers could be larger or smaller for a site depending on whether the Cray image recipes for tmpfs and
netroot have been extended (by adding necessary RPMs) or reduced (by removing unnecessary RPMs).

Table 9. Comparison of tmpfs and netroot Memory Footprints

Image Type Memory Consumption Number of RPMs

Admin image root - tmpfs 1400 MB 600

Service image root – tmpfs 1700 MB 670

Login image root – tmpfs 3600 MB 1100

Compute image root – tmpfs 1500 MB 745

Login image root – netroot 125 MB 2500

Compute image root – netroot 150 MB 2380

Install Third-Party Software with a Custom Image Recipe

About this task
Any software that is created independent from Cray and that is not delivered with a Cray system is third-party
software that administrators install as add-ons to the Cray system. (The information in this section does not
pertain to software installed on an external file system that is connected to a Cray system.) There are several
ways to install third-party software:

● (Recommended) Create a custom image recipe for the third-party software and add a Cray-provided recipe
as a subrecipe (also called extending a recipe). This method is preferred because the update to the image is
persisted in the recipe.

Configure the System

S2393 173

● Clone an existing recipe, then modify the clone to add the third-party software. This method is not
recommended because cloned recipes do not receive updates from patches.

● Use the chroot command to install the software to an existing image. Software installed with this method is
lost when a node image is rebuilt from a recipe. However, this approach can be useful when persistence is
not important, such as when testing third-party software.

● Use the zypper command to install software on a node. Software installed with this method is lost the next
time the node is booted. Like the chroot method, this approach can be used when testing software that does
not need to persist in the image.

IMPORTANT: Do not directly modify a Cray-provided recipe.

This procedure describes the recommended method of creating a new image recipe for third-party software that
will run on Cray nodes (except eLogin nodes). The procedure explains how to add a Cray-provided image recipe
as a subrecipe, then add the third-party repositories, package collections, and RPMs, as well as optional non-
RPM content. It then shows how to build an image root, export the image root into a boot image, push the boot
image to the boot node (netroot only), test it on a single node, and assign the tested image to all applicable
nodes.

For more information on image-related concepts and commands, see About the Image Management and
Provisioning System (IMPS) on page 169.

NOTE: This procedure does not apply to eLogin images. To create, build, and transfer custom eLogin
images, see the XC Series eLogin Installation Guide.

Procedure

CREATE REPOSITORY

1. Create a new repository and add the third-party packages (RPMs). Skip this step if the repository already
exists on the SMW or is hosted on a remote repository server.

a. Use the repo create command to create the new repository (for example, my_sles12_repo). This
command requires the architecture (such as x86-64) and operating system type (either SLES12 or
CentOS).

smw# repo create --arch x86-64 --type SLES12 my_sles12_repo
b. Verify that the new repository was created.

smw# repo list my*
my_sles12_repo

c. Add the third-party RPMs to the repository. This example takes all RPMs starting with myrpm in the
example repository path /path/to/repos/ and copies them to the example repo my_sles12_repo.

smw# repo update -a "/path/to/repos/myrpm*.rpm" my_sles12_repo
smw# ls -l /var/opt/cray/repos/my_sles12_repo
-rw-r--r-- 1 crayadm crayadm 485137 Nov 23 08:56 myrpm-11.13.1.1-4.x86_64.rpm

d. (Optional.) Check the contents of the repository. This command displays the packages but not the full
RPM names.

smw# repo show --fields contents

Configure the System

S2393 174

Add the --detailed option to display the version and architecture for each package in the repository.

e. Validate the repository.

smw# repo validate my_sles12_repo

CREATE PACKAGE COLLECTION

2. Create a package collection and add the RPM package names.

A package collection represents a logical grouping of RPMs. Cray recommends using a package collection
because the RPMs can be used in multiple image types (such as compute and service node images).
Package collections are stored on the SMW in /etc/opt/cray/imps/package_collections.d/.

a. Create an empty package collection (for example, my_collection).

smw# pkgcoll create --description "Example package collection" my_collection
b. Verify that the package collection was created.

smw# pkgcoll list my*
my_collection

c. Add the RPM package name or names (for example, myrpm) to the package collection.

smw# pkgcoll update -p myrpm \
--description "My package collection" my_collection

d. Display information about the package collection.

smw# pkgcoll show my_collection
my_collection:
 name: my_collection
 description: My package collection
 package_collections:
 myrpm

CREATE RECIPE

3. Create a new recipe and customize it by adding a subrecipe (the Cray-provided image) and the content for
the third-party software.

a. List the existing recipes to determine which image recipe to include.

smw# recipe list
compute-large_cle_6.0up01_sles_12_x86-64_ari
compute-large_cle_6.0up02_sles_12_x86-64_ari
compute-large_cle_6.0up03_sles_12_x86-64_ari
compute-large_cle_6.0up04_sles_12sp2_x86-64_ari
compute_cle_6.0up01_sles_12_x86-64_ari
compute_cle_6.0up02_sles_12_x86-64_ari
compute_cle_6.0up03_sles_12_x86-64_ari
compute_cle_6.0up04_sles_12sp2_x86-64_ari
dal_cle_6.0up01_centos_6.5_x86-64_ari
dal_cle_6.0up02_centos_6.5_x86-64_ari
dal_cle_6.0up03_centos_6.5_x86-64_ari
dal_cle_6.0up04_centos_6.5_x86-64_ari
elogin_cle_6.0up01_sles_12_x86-64_ari
...

Configure the System

S2393 175

b. Create a new image recipe. This example uses the recipe name site_compute.

smw# recipe create --description \
"Example recipe for 3rd-party software on compute nodes" site_compute

c. Add the existing image recipe as a subrecipe. This example uses the Cray-provided recipe
compute_cle_6.0up04_sles_12sp2_x86-64_ari.

smw# recipe update -i compute_cle_6.0up04_sles_12sp2_x86-64_ari site_compute
d. Add the package collection that contains the third-party RPMs (in this example, my_collection).

smw# recipe update -c my_collection \
--rationale "Include my package collection" site_compute

e. Add the repository that contains the third-party RPMs (for example, my_sles12_repo).

smw# recipe update -r my_sles12_repo \
--rationale "Include third-party RPMs" site_compute
To add a remote repository that is hosted on an external repository server, specify the repository's
Uniform Resource Identifier (URI) starting with http:// or https://.

f. Add the objects mentioned in the subrecipe that are also needed for the parent recipe.

IMPORTANT: The objects mentioned in a subrecipe are used to build that subrecipe but are not
available to the parent recipe. If a package (RPM) or package collection is specified in the parent
recipe, the custom recipe must explicitly contain the set of repositories where the packages can
be found.

1. Determine which repository contains the necessary RPM or RPMs. This example find command
identifies the Cray repository that contains the RPM otherrpm.

smw# find /var/opt/cray/repos -name otherrpm* -ls
2. Select the correct repository:

● Choose the repository for the image's operating system type — use a SLES repository for a
SLES image recipe; use a CentOS repository for a CentOS recipe.

● Most operating system and Cray repositories come in pairs (base and updates), such as
sles_12_x86-64 and sles_12_x86-64_updates. Be sure to select both the base and
base_updates repositories if they exist.

3. Add the required repository or repositories (in this example, otherrepo).

smw# recipe update -r otherrepo \
--rationale "Additional repo for third-party software" site_compute
Repeat the -r option to add multiple repositories, such as a base and base_updates repository
pair.

smw# recipe update -r sles_12_x86-64 \
-r sle-server_12sp2_x86-64 -r sle-server_12sp2_x86-64_updates \
--rationale "SLES12 update repo" site_compute

g. (Optional.) Add post-build actions by manually editing the image recipe
in /etc/opt/cray/imps/image_recipes.d/image_recipes.local.json. In this file, locate the
image recipe definition for the custom image (for example, site_compute).

Configure the System

S2393 176

Post-build actions can add non-RPM content (files or directories) to the image or specify commands to
run in the chroot environment of the image root (on the SMW). For example, the post-build actions could
include copying a tar file into the image, then using chroot to run the commands to untar it and run an
install script.

● In the postbuild_chroot section, add the commands to run in a chroot environment for this
image root.

● In the postbuild_copy section, add the files to copy into the image.

smw# vi /etc/opt/cray/imps/image_recipes.d/image_recipes.local.json
"site_compute": {
 "description": "Example recipe for 3rd-party software on compute nodes",
 "package_collections": { ... }
 "packages": { ... },
 "postbuild_chroot": [
 "command1",
 ...
 "commandN"
],
 "postbuild_copy": [
 "/file/1",
 ...
 "/dir/2/content"
],
 ”recipes": [...]
 "repositories": { ... },
 },

TIP: Post-build scripts can use the following environmental variables:

● IMPS_IMAGE_NAME
● IMPS_VERSION
● IMPS_IMAGE_RECIPE_NAME
● IMPS_POSTBUILD_FILES

h. Validate the image recipe.

smw# recipe validate site_compute
INFO - Validating Image 'site_compute-validate-timestamp'
...
INFO - Calling package manager to validate Recipe 'site_compute'; this can
take a few minutes
Removed Image 'site_compute-validate-timestamp'
INFO - Recipe validates.
This command checks that the JSON syntax of the image recipe is correct. It also validates all
repositories and package collections referenced by the image recipe, checks that all required packages
are included in the recipe, and ensures that it can access any files in the postbuild_copy section.

BUILD AND PACKAGE IMAGE

4. Build the image recipe to create the image root. Choose a unique name for the image root. Cray recommends
using the image recipe name plus the current date/time. This example shows the image root name
site_compute_timestamp.

Configure the System

S2393 177

IMPORTANT: If the image root name is not unique, it will overwrite an existing image root. A unique
name is especially important for images that are pushed to the boot node. Do not overwrite the image
root that is currently used by running nodes.

The image create command builds the image recipe starting with the package manager installation and
then proceeds to step through the postbuild copy and chroot commands (in that order).

smw# image create -r site_compute site_compute_timestamp
INFO - Repository 'my_sles12_repo' validates.
INFO - Recipe 'site_compute' is valid for building.
INFO - Calling Package manager to build new image root; this will take a few
minutes.
INFO - Rebuilding RPM database for Image 'site_compute_timestamp'.
INFO - RPM database does not need to be rebuilt.
INFO - Running post-build scripts for Image 'site_compute_timestamp'.
INFO - Copying postbuild files to /tmp/tmpmAyzGl in Image
'site_compute_timestamp'
INFO - * Executing post-build chroot script: 'chroot_command1'
INFO - post-build chroot script output will be located in /tmp/
site_compute_postbuild_out_20150713-15:55:11g4WA6p
INFO - Build of Recipe 'site_compute' has completed successfully.

5. (Optional.) Display the build history of the image root.

smw# image show site_compute_timestamp
 site_compute_timestamp:
 name: site_compute_timestamp
 created: 2016-07-13T15:54:06
 history:
 2016-07-13T15:55:16: Successful build of Recipe
 'site_compute into Image 'site_compute_timestamp'.
 2016-07-13T15:55:17: Successful rebuild of RPM database.
 path: /var/opt/cray/imps/image_roots/site_compute_timestamp

6. Package the image root into a boot image.

smw# image export site_compute_timestamp

INFO - Copying kernel /var/opt/cray/imps/image_roots/site_compute_timestamp/boot/
bzImage-3.12.28-4.6_1.0000.8685-cray_ari_c into /tmp/temp_tempfs_50LJ93/DEFAULT
INFO - Copying parameters file /var/opt/cray/imps/image_roots/site_compute_timestamp/
boot/parameters-ari_c into /tmp/temp_tempfs_50LJ93/DEFAULT
 .
 .
 .
INFO - Image 'site_compute_timestamp' has been packaged into /var/opt/cray/imps/
boot_images/site_compute_timestamp.cpio.

The image export command displays the boot image file name at the end of the output. This cpio file is
used in the next step.

7. If this is a netroot image, push the image to the boot node.

IMPORTANT: Before pushing the image, make sure that there is sufficient space on the boot node
in /var/opt/cray/imps/image_roots.

smw# image sqpush site_compute_timestamp --destination boot
The image sqpush command puts a SquashFS compressed boot image on the boot node. Cray
recommends using this command instead of image push for better boot performance.

Configure the System

S2393 178

TEST IMAGE

8. Test the new boot image on a single node.

a. Assign the boot image to a node with the NIMS cnode command. This example assigns the boot image
file site_compute_timestamp.cpio (in the directory /var/opt/cray/imps/boot_images/) to
the compute node with the cname c0-0c0s15n3.

● For a tmpfs image:

smw# cnode update -i \
/var/opt/cray/imps/boot_images/site_compute_timestamp.cpio c0-0c0s15n3

● For a netroot image:

smw# cnode update c0-0c0s15n3 \
--set-parameter netroot=site_compute_timestamp

b. Warm-boot the node to test the boot image.

smw# xtcli shutdown c0-0c0s15n3
.
.
.
crayadm@smw> xtbootsys --reboot \
-r "testing new boot image site_compute_timestamp" c0-0c0s15n3

ASSIGN IMAGE TO NODES

9. Change the NIMS map to assign the new image to the applicable nodes.

a. Back up the current map before changing to the new image. First, identify the active map.

smw# cmap list | grep -i 'true'
The following steps use the active map name "current-map".

b. Next, clone the current map.

smw# cmap create -clone current-map new-map
c. Mark the new map as the active map.

smw# cmap setactive new-map
d. Assign the new boot image to all applicable nodes. This example uses "--group compute" to assign

the image to all compute nodes.

● For a tmpfs image:

smw# cnode update --group compute \
-i /var/opt/cray/imps/boot_images/site_compute_timestamp.cpio

● For a netroot image:

smw# cnode update --group compute \
--set-parameter netroot=site_compute_timestamp

Trouble? If problems occur, use this command to revert to the previous map (current-map):

smw# cmap setactive current-map

Configure the System

S2393 179

10. Choose when the nodes should switch to the new image.

● To immediately use the new image, warm-boot all applicable nodes with the new image. This example
specifies the compute nodes as a comma-separated list of cnames; see the xtcli(8) man page for
other ways of specifying multiple nodes.

smw# xtcli shutdown cname, cname, ... cname
.
.
.

smw# xtbootsys --reboot -r "Booting custom image on all compute nodes" \
cname, cname, ... cname

● To have the workload manager (WLM) reboot the node once the current user's job finishes, see Apply
Rolling Patches to Compute Nodes with cnat on page 276.

● Otherwise, wait until the next full system reboot. The nodes will boot with the new image.

After a recipe has been defined and tested, the imgbuilder command can be used to rebuild and package boot
images.

About Config Set Caching
Config sets are defined and reside on the Server of Authority, which on XC systems is the SMW. Config set
content is made available to all nodes in the system by means of Cray Scalable Services.

To make the sharing of config set content both quick and reliable, the cray-cfgset-cache service was created. It
caches config sets locally on nodes (compressed for a smaller footprint). On the SMW, it does the following:

● notices changes to config sets on the SMW

● refreshes the local caches dynamically

● detects failures and retries automatically

The cray-cfgset-cache service ensures that config set content gets refreshed on all nodes whenever config sets
are created or updated on the SMW. It is triggered when cray-ansible is run on a node with the start,
restart, or link commands.

ATTENTION: If the cray-cfgset-cache service is stopped, config set content in node-local memory will not
get refreshed when cray-ansible is run. If that happens, nodes will continue to use the most recent
compressed copy of the config set data created before the service was stopped.

What Gets Cached
The cray-cfgset-cache service does not copy an entire config set to node-local memory. Instead, it uses the config
set on the SMW to create these two files in the root of the config set:

● a compressed copy of the config set using SquashFS tools, (typically < 3 MB)

● a checksum of the compressed copy of the config set

The compressed copy is made available (effectively copied) to node-local RAM, and the checksum is used to
know when the config set in node-local memory no longer matches the config set on the SMW. Even though
Scalable Services makes the entire config set directory structure on the SMW available to the rest of the system,
only the compressed copy and its associated checksum are used by nodes. They are the key to the performance,
scalability, and reliability improvements provided by config set caching.

Configure the System

S2393 180

When cray-ansible is run on a node, the node will do the following:

1. Check to see if the cached node-local version of the compressed config set is out of date.

2. If it is stale, replace it with a newer version available on the SMW and start using that newer version.

Add Kernel Watch Descriptors to Improve Config Set Caching Performance

About this task
Config set caching is a mechanism for exporting config set data to nodes quickly and reliably. The cray-cfgset-
caching service operates on kernel watch descriptors to automatically generate the config set compressed copy
and checksum files. The performance of this service depends on the number of config sets created and the
number of directories within each config set. Service startup performance is affected by large numbers of config
sets and the availability of kernel watch descriptors. Additional watch descriptors may be required to provide
coverage for large numbers of config sets.

For more information about config set caching, see About Config Set Caching on page 180.

Procedure

1. Determine how many watch descriptors are in use.

smw# cd /var/opt/cray/imps/config/sets
smw# find . -type d | wc

2. Increase the total number of available watch descriptors, if desired.

smw# sysctl fs.inotify.max_user_watches=524288

Change a File on a Compute Node

About this task
System administrators sometimes need to change files such as modprobe.conf, fstab, and
nodehealth.conf on compute nodes. For example, to tune DataWarp or Lustre, the modprobe.conf file
might need to be changed. Cray provides configuration templates and Ansible plays for most Cray services (such
as cray_net, cray_rsip, cray_node_health, and cray_dvs), which generate or change such files
automatically as part of the boot process or after reconfiguring a service. If no Cray-provided play exists to make
the needed changes or an existing play does not cover a needed use case, administrators can change these files
directly.

There are three general methods of changing a file on a compute node:

● Option 1: Use chroot, either in a custom image recipe (recommended) or after building an image.

● Option 2: Use the Cray-provided Simple Sync service.

● Option 3: Write an Ansible play that either changes the file directly or runs a script to change the file.

It is important to understand the pros and cons of each method.

Configure the System

S2393 181

Option 1:
chroot

Use chroot to change the file in an image root using one of these methods:

Option 1a: (Recommended) Create a custom image recipe that includes postbuild_chroot. This
method is preferred because the changed file persists in image roots and boot images. Every time
the recipe is built into an image root, the changed file will be there. When the image root is
packaged into a boot image, the boot image will still have this content.

Option 1b: After building an image, use chroot to navigate into the image root and put the file there
(or merge it with an existing file). With this method, the changed file does not persist when rebuilding
an image root and then packaging it into a boot image.

Pros:

● Works well for static files

● Done on the SMW

Cons:

● Option 1b (manual chroot): Must repeat change each time an image recipe is rebuilt or an
image root is packed into a boot image.

For more information: Use a Custom Image Recipe to Change a File on a Compute Node on page
184

Option 2:
Simple
Sync

Use the Cray-provided Simple Sync service.

Pros:

● Easy to do: just put a file in a directory and turn on the Simple Sync service

● Done on the SMW

● Can specialize targets to a limited set of targets: by class, cname, node groups, or hostname
(hostnames used for non-Cray platforms that do not have cnames)

● Works best for providing access during run time to small admin tools (e.g., a widget or script)
and third-party software

Cons:

● Simple Sync writes the file to the desired place without regard for what may already be there, so
must know what else touches the file (such as other Ansible plays)

For more information: About Simple Sync on page 161

Option 3:
Ansible
play

Create an Ansible play using one of these methods:

Option 3a: (Recommended) Use the Ansible module lineinfile (a directive) to change a file
directly.

Option 3b: Use the Ansible module shell to run a script to change the file.

Pros:

● Done on SMW in config set

● Can specialize the target nodes further than possible with Simple Sync; can specify any
grouping of nodes

Configure the System

S2393 182

● Can choose when the Ansible play is run during the boot sequence

● Can edit or replace a file programmatically, but be careful to not delete something that needs to
be there

● Once a play is set up and tested, it is easy to maintain

● Easily scales to large systems

● If play is written at a high enough level of abstraction, can reuse for different systems by using
node groups or by changing the target node list in the play

Cons:

● Requires some knowledge of the boot process (ordering, timing)

● More work up front to set up a play

● Plays/scripts must be tested

For more information: Use an Ansible Play to Change a File on a Compute Node on page 183.

Use an Ansible Play to Change a File on a Compute Node

About this task
This procedure describes how to change a file on a compute node with an Ansible play, which can use several
methods. For other ways to accomplish this task, see Change a File on a Compute Node on page 181.

For information on using Ansible on a Cray system, see the XC Series Ansible Play Writing Guide.

Procedure

1. Choose one of these methods for the play content.

● Option 1: Use the Ansible module lineinfile (a directive) to change a file directly.

● Option 2: Use the Ansible module shell to run a script to change the file.

2. Write the Ansible play.

● Option 1: Use the Ansible module lineinfile to change a file directly. This example changes a specific
line in /etc/fstab.

change_file.yaml
Use Ansible modules to do individual steps
(e.g., add a line to a file)

- hosts: localhost

 vars: # Cray-provided node "facts"
 in_init: ansible_local.cray_system.in_init
 is_compute: ansible_local.cray_system.platform == "compute"

 tasks:
 - name: add mount to fstab
 lineinfile:
 dest=/etc/fstab
 regexp="^172.30.79.66:/home/users"

Configure the System

S2393 183

 line="172.30.79.66:/home/users /home/users nfs nfsvers=3,noacl 0 0"
 backup=yes
 when: in_init and is_compute

In the task, lineinfile specifies the the file to be changed (/etc/fstab) and how to change it. More
information about the Ansible lineinfile module is at: http://docs.ansible.com/ansible/
service_module.html.

● Option 2: Use the Ansible module shell. The following example runs a script named site_script.sh
to change the file.

change_file.yaml
Use the shell directive to do everything in a script

- hosts: localhost
 vars: # Cray-provided node "facts"
 in_init: ansible_local.cray_system.in_init
 is_compute: ansible_local.cray_system.platform == "compute"

 tasks:
 - name: run my script on all service nodes
 shell: /etc/opt/cray/config/current/dist/site_script.sh
 when: in_init and is_compute

Note that the config set path on the SMW, such as /var/opt/cray/imps/config/sets/p0/dist for
the p0 config set, will appear on the node as /etc/opt/cray/config/current/dist.

3. Put the Ansible play and any supporting content into the config set on the SMW.

/var/opt/cray/imps/config/sets/p0/ansible/ Location in config set p0 for site Ansible plays,
like this new change_file.yaml.

/var/opt/cray/imps/config/sets/p0/dist/ Location in config set p0 for content that supports
or is used by site Ansible plays. If using the
Ansible script directive, as in option 2, put the
site script (site_script.sh) here.

4. Test the new Ansible play by running it manually on a compute node.

node# /etc/init.d/cray-ansible change_file.yaml

This Ansible play will be available on all nodes any time that cray-ansible is run on the node to pull new config
set data to the node, order Ansible plays, and then run the Ansible plays. When the system boots, this play will
run on all nodes, and the conditional (when) clauses will determine whether a particular task will execute on any
given node.

Use a Custom Image Recipe to Change a File on a Compute Node

About this task
This procedure describes how to change a file on a compute node by using a custom recipe with post-build
actions (postbuild_copy and postbuild_chroot). For other ways to accomplish this task, see Change a
File on a Compute Node on page 181.

IMPORTANT: Do not directly modify a Cray-provided recipe.

Configure the System

S2393 184

http://docs.ansible.com/ansible/service_module.html
http://docs.ansible.com/ansible/service_module.html

Procedure

1. List the existing recipes to determine which image recipe to include.

smw# recipe list
compute-large_cle_6.0up01_sles_12_x86-64_ari
compute-large_cle_6.0up02_sles_12_x86-64_ari
compute-large_cle_6.0up03_sles_12_x86-64_ari
compute-large_cle_6.0up04_sles_12sp2_x86-64_ari
compute_cle_6.0up01_sles_12_x86-64_ari
compute_cle_6.0up02_sles_12_x86-64_ari
compute_cle_6.0up03_sles_12_x86-64_ari
compute_cle_6.0up04_sles_12sp2_x86-64_ari
dal_cle_6.0up01_centos_6.5_x86-64_ari
dal_cle_6.0up02_centos_6.5_x86-64_ari
dal_cle_6.0up03_centos_6.5_x86-64_ari
dal_cle_6.0up04_centos_6.5_x86-64_ari
elogin_cle_6.0up01_sles_12_x86-64_ari
...

2. Create a new image recipe. This example uses the recipe name site_compute.

smw# recipe create --description \
"Example recipe for 3rd-party software on compute nodes" site_compute

3. Add the existing image recipe as a subrecipe. This example uses the Cray-provided recipe
compute_cle_6.0up04_sles_12sp2_x86-64_ari.

smw# recipe update -i compute_cle_6.0up04_sles_12sp2_x86-64_ari site_compute

4. Add post-build actions by manually editing the image recipe
in /etc/opt/cray/imps/image_recipes.d/image_recipes.local.json. In this file, locate the
image recipe definition for the custom image (for example, site_compute).

Post-build actions can add non-RPM content (files or directories) to the image or specify commands to run in
the chroot environment of the image root (on the SMW). For example, the post-build actions could include
copying a tar file into the image, then using chroot to run the commands to untar it and run an install script.

● In the postbuild_chroot section, add the commands to run in a chroot environment for this image
root.

● In the postbuild_copy section, add the files to copy into the image.

smw# vi /etc/opt/cray/imps/image_recipes.d/image_recipes.local.json
"site_compute": {
 ...
 "postbuild_chroot": [
 "chroot_command1",
 ...
 "chroot_commandN"
],
 "postbuild_copy": [
 "/file/1",
 ...
 "/dir/2/content"
],
 ”recipes": { ... },

Configure the System

S2393 185

 ...
 },

TIP: Post-build scripts can use the following environmental variables:

● IMPS_IMAGE_NAME
● IMPS_VERSION
● IMPS_IMAGE_RECIPE_NAME
● IMPS_POSTBUILD_FILES

5. Validate the image recipe.

smw# recipe validate site_compute
INFO - Validating Image 'site_compute-validate-timestamp'
...
INFO - Calling package manager to validate Recipe 'site_compute'; this can take
a few minutes
Removed Image 'site_compute-validate-timestamp'
INFO - Recipe validates.
This command checks that the JSON syntax of the image recipe is correct. It also validates all repositories
and package collections referenced by the image recipe, checks that all required packages are included in the
recipe, and ensures that it can access any files in the postbuild_copy section.

6. Build the image recipe to create the image root. Choose a unique name for the image root. Cray recommends
using the image recipe name plus the current date/time. This example shows the image root name
site_compute_timestamp.

IMPORTANT: If the image root name is not unique, it will overwrite an existing image root. A unique
name is especially important for images that are pushed to the boot node. Do not overwrite the image
root that is currently used by running nodes.

The image create command builds the image recipe starting with the package manager installation and
then proceeds to step through the postbuild copy and chroot commands (in that order).

smw# image create -r site_compute site_compute_timestamp
INFO - Repository 'my_sles12_repo' validates.
INFO - Recipe 'site_compute' is valid for building.
INFO - Calling Package manager to build new image root; this will take a few
minutes.
INFO - Rebuilding RPM database for Image 'site_compute_timestamp'.
INFO - RPM database does not need to be rebuilt.
INFO - Running post-build scripts for Image 'site_compute_timestamp'.
INFO - Copying postbuild files to /tmp/tmpmAyzGl in Image
'site_compute_timestamp'
INFO - * Executing post-build chroot script: 'chroot_command1'
INFO - post-build chroot script output will be located in /tmp/
site_compute_postbuild_out_20150713-15:55:11g4WA6p
INFO - Build of Recipe 'site_compute' has completed successfully.

7. (Optional.) Display the build history of the image root.

smw# image show site_compute_timestamp
 site_compute_timestamp:
 name: site_compute_timestamp
 created: 2016-07-13T15:54:06
 history:
 2016-07-13T15:55:16: Successful build of Recipe

Configure the System

S2393 186

 'site_compute into Image 'site_compute_timestamp'.
 2016-07-13T15:55:17: Successful rebuild of RPM database.
 path: /var/opt/cray/imps/image_roots/site_compute_timestamp

8. Package the image root into a boot image.

smw# image export site_compute_timestamp

INFO - Copying kernel /var/opt/cray/imps/image_roots/site_compute_timestamp/boot/
bzImage-3.12.28-4.6_1.0000.8685-cray_ari_c into /tmp/temp_tempfs_50LJ93/DEFAULT
INFO - Copying parameters file /var/opt/cray/imps/image_roots/site_compute_timestamp/
boot/parameters-ari_c into /tmp/temp_tempfs_50LJ93/DEFAULT
 .
 .
 .
INFO - Image 'site_compute_timestamp' has been packaged into /var/opt/cray/imps/
boot_images/site_compute_timestamp.cpio.

The image export command displays the boot image file name at the end of the output. This cpio file is
used in the next step.

9. If this is a netroot image, push the image to the boot node.

IMPORTANT: Before pushing the image, make sure that there is sufficient space on the boot node
in /var/opt/cray/imps/image_roots.

smw# image sqpush site_compute_timestamp --destination boot
The image sqpush command puts a SquashFS compressed boot image on the boot node. Cray
recommends using this command instead of image push for better boot performance.

10. Test the new boot image on a single node.

a. Assign the boot image to a node with the NIMS cnode command. This example assigns the boot image
file site_compute_timestamp.cpio (in the directory /var/opt/cray/imps/boot_images/) to
the compute node with the cname c0-0c0s15n3.

● For a tmpfs image:

smw# cnode update -i \
/var/opt/cray/imps/boot_images/site_compute_timestamp.cpio c0-0c0s15n3

● For a netroot image:

smw# cnode update c0-0c0s15n3 \
--set-parameter netroot=site_compute_timestamp

b. Warm-boot the node to test the boot image.

smw# xtcli shutdown c0-0c0s15n3
.
.
.
crayadm@smw> xtbootsys --reboot \
-r "testing new boot image site_compute_timestamp" c0-0c0s15n3

11. Change the NIMS map to assign the new image to the applicable nodes.

a. Back up the current map before changing to the new image. First, identify the active map.

smw# cmap list | grep -i 'true'

Configure the System

S2393 187

The following steps use the active map name "current-map".

b. Next, clone the current map.

smw# cmap create -clone current-map new-map
c. Mark the new map as the active map.

smw# cmap setactive new-map
d. Assign the new boot image to all applicable nodes. This example uses "--group compute" to assign

the image to all compute nodes.

● For a tmpfs image:

smw# cnode update --group compute \
-i /var/opt/cray/imps/boot_images/site_compute_timestamp.cpio

● For a netroot image:

smw# cnode update --group compute \
--set-parameter netroot=site_compute_timestamp

Trouble? If problems occur, use this command to revert to the previous map (current-map):

smw# cmap setactive current-map

12. Choose when the nodes should switch to the new image.

● To immediately use the new image, warm-boot all applicable nodes with the new image. This example
specifies the compute nodes as a comma-separated list of cnames; see the xtcli(8) man page for
other ways of specifying multiple nodes.

smw# xtcli shutdown cname, cname, ... cname
.
.
.

smw# xtbootsys --reboot -r "Booting custom image on all compute nodes" \
cname, cname, ... cname

● To have the workload manager (WLM) reboot the node once the current user's job finishes, see Apply
Rolling Patches to Compute Nodes with cnat on page 276.

● Otherwise, wait until the next full system reboot. The nodes will boot with the new image.

About Custom Ansible Plays
The following procedures provide examples of tasks that can be done with Ansible plays within the Cray
Management System (CMS). In most cases, there are several ways to accomplish the same task. For example, a
site could choose to keep using a favorite script within the Ansible framework, convert it to an Ansible play, or use
it outside of the framework. Using an Ansible play (or a script within the Ansible framework) is useful for sites with
a large number of Cray nodes.

For XC systems with release CLE 6.0 and later, Cray uses Ansible to orchestrate the boot sequence and
configuration. Configuration for all applications installed in an image is applied at boot time using cray-ansible,
a wrapper that finds all Ansible plays installed on the system and executes them with Ansible. Configuration
content is centralized in a config set located on the SMW. All content within the config set is accessible by every

Configure the System

S2393 188

CLE node on the system, which is how configuration information is distributed throughout the system. For more
information, see Cray XC System Configuration on page 129.

For information on using Ansible on a Cray system, see the XC Series Ansible Play Writing Guide.

Built-in and Cray-supplied Facts
Ansible provides access to facts about the system—network interfaces, disks, operating system version, and so
forth—for use within each Ansible play ("built-in" facts). In addition, Cray provides access to facts that are Cray-
specific, such as nid name, cname, node type (smw, sdb, boot, etc.), for use within each Ansible play.

To view the available built-in facts, run this command on the node where the Ansible plays will run:

ansible hostname -m setup
To view the Cray-supplied facts, run this Python script:

/etc/ansible/facts.d/cray_system.fact

Elements in a Typical Ansible Play
The example Ansible plays in this publication contain the following elements:

hosts Specifies where the play will run. In Cray systems, this is typically set to localhost, because unlike
many configuration management tools that push information out to nodes from a centralized location,
Ansible (as used by Cray in this release) pulls information to the local node and runs all plays there.

vars Defines variables scoped to the play and all other plays that come after it. Ansible built-in and Cray-
supplied facts are accessible without having to define these variables; however, it is good practice to
define variables using the provided facts because they can be assigned shorter names and can be set
to useful boolean values.

tasks Each Ansible play task is like a line in a Bash script. Each task must have a name, a directive or
module, and a conditional (a when clause), which indicates the conditions under which the play should
execute that task on the node.

For a description of all Ansible modules and their arguments, see the Module Index in the Ansible
Documentation website. Look for modules for Ansible 1.9.2 and earlier.

Ansible is run twice during the boot of a CLE node: first from the /init script (referred to as “in init”) before Linux
systemd starts, then again after Linux systemd starts (referred to as “booted” and also as “not in init”). When
running plays that control processes, it is usually best to avoid running plays in init. To accomplish that, use the
Cray-provided fact ansible_local.cray_system.in_init which is true if “in init” and false if in “booted”. To
ensure a play is not run in init, but only in the booted phase, use this in a conditional statement:

not ansible_local.cray_system.in_init

Play Ordering
The cray-ansible command gathers all Ansible plays and determines the order in which they are executed.
The following directives allow control over the play order:

● run_before and run_after
● run_early and run_late

Configure the System

S2393 189

http://docs.ansible.com./ansible/index.html
http://docs.ansible.com./ansible/index.html

The run_before and run_after directives are Cray-provided ways to specify dependencies between plays. A
variable can be set to a single play or list of Ansible plays that the play should precede or follow.

The run_early and run_late directives specify a play-ordering group. Plays that specify run_early: true
are run first, then plays that don’t specify a run_ directive, and finally plays that specify run_late: true.
However, plays that call out dependencies with run_before and run_after directives take precedence over all
other play-ordering mechanisms.

Drop Zone for Custom Ansible Plays
Within a config set, Cray provides a drop zone for customers to place Ansible plays and other content referenced
by those plays. By default, the Ansible drop zone is on the SMW in these directories:

/var/opt/cray/imps/config/sets/<config_set>/ansible/ Location in config set for site Ansible
plays.

/var/opt/cray/imps/config/sets/<config_set>/dist/ Location in config set for content that
supports or is used by site Ansible
plays, such as a script used in an
Ansible play.

In the following procedures, the example config set p0 is for the entire system. For a partitioned system,
substitute the partition number (pN) in the example path. For an Ansible play that must run on multiple partitions,
put the play and associated content in the config set for each applicable partition.

Ansible Logs
Ansible logs under /var/opt/cray/log/ansible are collected via cdump and xtdumpsys. For more
information, see Debug Ansible Failures During System Boot on page 44.

Control a Service on Specific Nodes at Boot Time
Using a custom Ansible play is the best way to start or stop a service on specified nodes. This example ensures
that cron runs on login nodes only. Because cron starts automatically on all nodes at boot time, this example
play stops cron on nodes that are not login nodes.

manage_cron_service.yaml
- hosts: localhost
 vars:
 in_init: ansible_local.cray_system.in_init
 is_login: ansible_local.cray_system.hostid |
ismember(cray_login.settings.login_nodes.data.member_groups)

 tasks:
 - name: stop cron on non-login nodes
 service:
 name: cron
 state: stopped
 when: not is_login and not in_init

The cron service starts on all nodes, so this example play causes cron to boot in a stopped state on all nodes
except the login nodes.

In the task, service specifies the service to be started (cron) and what to do to the service. More information
about the Ansible service module is at: http://docs.ansible.com/ansible/service_module.html.

Configure the System

S2393 190

http://docs.ansible.com/ansible/service_module.html

The conditional statement (when) specifies the nodes where the action is to be taken and when to run the play.

● The Cray-provided fact ansible_local.cray_system.in_init indicates when to run the play. Ansible is
run twice during the boot of a CLE node: first from the /init script (referred to as “in init”) before Linux
systemd starts, then again after Linux systemd starts (referred to as “booted” and also as “not in init”).
When running plays that control processes, it is usually best to avoid running plays in init. To accomplish that,
use the Cray-provided fact ansible_local.cray_system.in_init which is true if “in init” and false if in
“booted”.

● The ansible_local.cray_system.hostid string is a Cray-supplied Ansible fact that corresponds to the
cname on CLE nodes.

● To determine if the node running this play is a login node, the Cray-supplied Ansible filter ismember is used
to determine if the current node is a member of the node groups that are configured as login nodes.

When this play runs on a node, cron is stopped if the node is not a login node.

Manage Node Configuration, Services, and Settings at Boot Time (boot.last Script)

About this task
In previous releases, many Cray customer sites used a boot.last script, or something like it, to start up and
manage additional services, configurations, and settings, such as tuning Lustre, starting a secondary sshd for a
customer network, starting a workload manager, or setting up service nodes to talk to other service nodes using
ssh. This script would run last on each service node as it booted. Its value lay partly in enabling sites to specialize
nodes and/or classes in a scalable way.

This procedure shows two ways to accomplish the same thing using Ansible.

Procedure

1. Choose how to accomplish the purpose of the original boot.last script.

● Option 1: Write an Ansible play that uses Ansible modules (directives, a bit like function calls) to do
individual steps equivalent to the lines in the boot.last script.

● Option 2: Write an Ansible play that simply uses the shell directive (an Ansible module) to run the
original boot.last script.

● Option 3: Run the boot.last script outside the Ansible framework, after the system nodes have finished
booting.

Options 1 and 2 are executed when cray-ansible, which is a wrapper around Ansible, gathers all Ansible
plays into a master playbook and then runs that playbook. Option 3 would occur after the system has booted.
Because Option 3 does not use the Ansible framework, it is not described further in this procedure.

2. Write the Ansible play.

● Option 1: Use Ansible modules to perform individual steps. This example play starts a service named
myserviced. There could be many other tasks that a site would want to include in a boot.last play.

boot.last.yaml
Option 1: Use Ansible modules to do individual steps (e.g., start a
service)

 - hosts: localhost
 vars: # Cray-provided node “facts” + config set data
 nid: ansible_local.cray_system.nid

Configure the System

S2393 191

 is_nid7: ansible_local.cray_system.nid == "7"
 is_login: ansible_local.cray_system.hostid |
ismember(cray_login.settings.login_nodes.data.member_groups)
 is_sdb: ansible_local.cray_system.hostid |
ismember(cray_sdb.settings.node_groups.data.sdb_groups)
 in_init: ansible_local.cray_system.in_init
 run_late: true

 tasks:
 - name: start myserviced service on nid0007, sdb, login nodes
 service: name=myserviced state=started args="-f /path/to/
myservice_config.conf"
 when:
 (is_nid7 or is_login or is_sdb) and not in_init

In this example, run_late: true is a Cray-provided directive for play ordering that places the current
play in the last of three groups of Ansible plays that are executed by cray-ansible. Plays that specify
run_early: true are run first, then plays that don’t specify run_early or run_late: true, and
finally plays that specify run_late: true are executed. However, plays that call out dependencies with
the Cray-provided run_after and run_before directives take precedence over all other play ordering
mechanisms.

● Option 2: Use Ansible to run a script on specified nodes: This example play uses script to run a site-
specific script (site_script.sh) on all service nodes.

boot.last.yaml
Option 2: Just do everything in site_script.sh

 - hosts: localhost
 vars: # Cray-provided node “facts” + config set data
 nid: ansible_local.cray_system.nid
 is_nid7: ansible_local.cray_system.nid == "7"
 is_login: ansible_local.cray_system.hostid |
ismember(cray_login.settings.login_nodes.data.member_groups)
 is_sdb: ansible_local.cray_system.hostid |
ismember(cray_sdb.settings.node_groups.data.sdb_groups)
 in_init: ansible_local.cray_system.in_init
 run_late: true

 tasks:
 - name: run site script on all service nodes
 shell: /etc/opt/cray/config/current/dist/site_script.sh
 when:
 (is_nid7 or is_login or is_sdb) and not in_init

3. Put the Ansible play and any supporting content into the config set.

/var/opt/cray/imps/config/sets/p0/ansible/ Location in config set p0 for site Ansible plays,
like this new boot.last.yaml.

/var/opt/cray/imps/config/sets/p0/dist/ Location in config set p0 for content that supports
or is used by site Ansible plays. If using the
Ansible script directive (as in option 2), put the
site script here.

4. Test the new Ansible play by running it manually on two nodes: one where the task should be executed (a
service node), and another where the task should NOT be executed (a compute node).

Configure the System

S2393 192

node# /etc/init.d/cray-ansible start

This Ansible play will be distributed to all nodes. When the system boots, this play will run on all nodes, and the
conditional (when) clauses will determine whether a particular task will execute on any given node.

About Secure Shell Configuration
The Cray secure shell (SSH) configuration service, which generates and manages SSH keys, provides a turnkey
environment that establishes SSH functionality quickly and easily and supports basic customer needs. SSH
functionality can now be established in a variety of ways that support more complex SSH configurations for both
CLE and eLogin nodes. The primary changes are summarized here:

● Automatic SSH key generation can be disabled to prevent interference with site-provided configuration.

The cray_ssh configuration service has a new flag: simple_ssh_keys. It is set to 'true' by default, which
enables automatic SSH key generation/management. If this flag is set to 'false,' that functionality is disabled,
and the site assumes responsibility for providing a working SSH key configuration.

● eLogin nodes can have different SSH keys.

The cray_login configuration service has a new setting that must be set on all systems: elogin_groups. It
specifies which nodes will be used as external login nodes, and it is set to the pre-populated 'elogin_nodes'
node group by default.

IMPORTANT: Action required. Sites that DO NOT have eLogin nodes MUST set elogin_groups to
an empty list ([]). Sites that DO have eLogin nodes must ensure that the node group(s) specified for
elogin_groups contain ALL elogin nodes in the system. Instructions are included in the appropriate
fresh install and software update procedures.

● Simple Sync and node groups are used to synchronize SSH keys.

The location for all SSH keys is now in the Simple Sync directory structure. The new location for common
keys is in the common directory, and keys for specific node groups can be placed in the associated node
group directories.

keys for
CLE
nodes

○ Old common key location: ./files/roles/common
○ New common key location: ./files/simple_sync/common/files
○ New additional key

locations: ./files/simple_sync/nodegroups/my_node_group/files

keys for
eLogin
nodes

○ Old common key location: ./files/roles/common/elogin
○ New common key

location: ./files/simple_sync/nodegroups/elogin_node_group/files

No action required. To migrate keys to new common location, no administrative action is required. If
simple_ssh_keys is 'true' (default), then when the config set is updated, keys that are in the old common
location will be automatically copied to the new common location, but only if there are no keys there already.
Any keys in the new common location will not be overwritten.

Basic Components
These three basic components of SSH configuration can be combined in several ways to create a wide range of
SSH functionality.

Configure the System

S2393 193

SSH key generation ● [default] generated automatically by Cray

● generated entirely by the site

● a mixture of Cray-generated and site-generated

SSH key
synchronization

● [default] synchonized automatically by Cray using Simple Sync or the Cray SSH
play (only if Simple Sync disabled)

● synchonized automatically using Simple Sync only

● synchronized entirely by the site

sshd_config ● [default] minimally modified by the Cray SSH play

● never modified by the Cray SSH play

The following use cases illustrate common combinations of these elements.

Use Case 1: [Default] Automatic SSH Key Management
By default, the Cray SSH play and automatic key management are enabled. This means:

● Generation. System and root user SSH keys will be automatically generated (if none are present in the
common key location) when the config set is updated.

● Synchronization. Keys will be copied automatically from the config set onto the nodes.

● sshd_config. The Cray SSH play will make minimal changes to sshd_config to ensure that basic logins
are enabled.

The behavior is identical to previous CLE 6.0 releases, except that the location in the config set of the SSH files is
now in the Simple Sync directory.

Use Case 2: Site Modifies SSH Content in Simple Sync Directories
The Cray SSH play and automatic key management are enabled, as in Use Case 1, but after installation or
configuration, the site administrator adds new or different content in Simple Sync directories for SSH, such as
different keys for login nodes. This use case illustrates that sites can leave automatic key generation in place but
still customize SSH keys in Simple Sync.

● Generation. Automatic key generation is enabled, as in Use Case 1, but after the admin adds site-specific
content to the common key SSH key location in the Simple Sync directory, no new keys will be generated.

● Synchronization. Same as Use Case 1.

● sshd_config. Same as Use Case 1.

Use Case 3: Automatic SSH Key Management Disabled
Disabling automatic key generation and synchronization (set simple_ssh_keys to 'false' in cray_ssh config
service) enables sites to have complete control over key management. A site may wish to use a configuration that
has no common SSH keys, and because the absence of keys in the common location triggers the generation of
new keys, the site would need to disable automatic SSH key management.

ATTENTION: A site that disables automatic SSH key management assumes responsibility for providing a
working SSH key configuration.

Configure the System

S2393 194

● Generation. No SSH keys will be automatically generated when the config set is updated, even if none are
present in the common key location.

● Synchronization. No special synchronization will be performed for SSH keys beyond generic Simple Sync
functionality.

● sshd_config. Same as Use Case 1.

Use Case 4: SSH Play Disabled
Disabling the Cray SSH play (set cray_ssh.enabled: false in cray_ssh config service) enables sites to
completely replace Cray SSH configuration. The site must provide sshd_config as well as SSH keys. Keys may
be synchronized using Simple Sync or a site-local Ansible play.

● Generation. Same as Use Case 3.

● Synchronization. Site will synchronize keys using Simple Sync or a site-local Ansible play.

● sshd_config. No configuration of sshd_config will take place.

Use Case 4-EZ: SSH Play Disabled after System Boot
Customers who wish total control over SSH and SSH keys can still leverage the Cray SSH infrastructure:

1. Boot the system with Cray SSH play and automatic key management are enabled (Use Case 1).

2. Copy sshd_config from the booted system into the Simple Sync directory.

3. Disable the Cray SSH play (Use Case 4).

Configure the System

S2393 195

Monitor the System

Manage Log Files Using CLE and HSS Commands
Boot, diagnostic, and other Hardware Supervisory System (HSS) events are logged on the SMW in
the /var/opt/cray/log directory, which is created during the installation process. The time-stamped
bootinfo, console, consumer, and netwatch log files are located in the /var/opt/cray/log/sessionid
directory by default.

For example, the HSS xtbootsys command starts the xtconsole command, which redirects the output to a
time-stamped log file, such as /var/opt/cray/log/p0-20120716t104708/console-20120716.

The SMWinstall, SMWconfig, and SMWinstallCLE commands create several detailed log files in
the /var/adm/cray/logs directory. The log files are named using the PID of the SMWinstall or the
SMWinstallCLE command; the exact names are displayed when the command is invoked.

CLE logs are saved on the SMW in /var/opt/cray/log/sessionid.

Controller logs are saved on the SMW
in /var/opt/cray/log/controller/cabinet/controller/messages-yyyymmdd, where cabinet is of
the form c0-0, c1-0, etc.; and controller is either of the form c0-0, c1-0 for cabinet controllers (CC) or
c0-0c0s0 for blade controllers (BC) .

For more information, see the intro_llm_logfiles(5) man page.

Filter the Event Log
The xtlogfilter command enables the system administrator to filter the event log for information such as the
time a particular event occurred or messages from a particular cabinet.

For more information, see the xtlogfilter(8) man page.

Finding information in the event log

For this example, search for all console messages from node c9-2c0s3n2:

crayadm@smw:~> xtlogfilter -f /var/opt/cray/log/event-yyyymmdd
c9-2c0s3n2

Add Entries to Log Files
The system administrator can add entries (e.g., the start or finish of system activities) to the syslog with the
logger command. The entry is then available to anyone who reads the log.

For more information, see the logger(1) man page.

Monitor the System

S2393 196

Add entries to syslog file

For this example, mark the start of a new system test:

login# logger -is "Start of test 4A $(date) "
Start of test 4A Thu Jul 14 16:20:43 CDT 2011
The system log shows:

Jul 14 16:20:43 nid00003 xx[21332]:
Start of test 4A Thu Jul 13 16:20:43 CDT 2012

Examine Log Files
Time-stamped log files of boot, diagnostic and other HSS events are located on the SMW in
the /var/opt/cray/log directory. The time-stamped bootinfo, console, consumer, and netwatch log
files are located in the /var/opt/cray/log/sessionid directory by default.

For example, the HSS xtbootsys command starts the xtconsole command, which redirects the output to a
time-stamped log file, such as /var/opt/cray/log/p0-20120716t104708/console-20120716.

The SMWinstall, SMWconfig, and SMWinstallCLE commands create several detailed log files in
the /var/adm/cray/logs directory. The log files are named using the PID of the SMWinstall or the
SMWinstallCLE command; the exact names are displayed when the command is invoked.

Remove Old Log Files
The xttrim utility provides a simple and configurable method to automate the compression and deletion of old
log files. The xttrim utility is intended to be run on the SMW from cron and is automatically configured to do
this as part of the SMW software installation process. Review the xttrim.conf configuration file and ensure
that xttrim will manage the desired directories and that the compression and deletion times are appropriate.

The xttrim utility does not perform any action unless the --confirm flag is used (to avoid unintended actions),
nor will xttrim perform any action on open files. All actions are based on file-modified time.

For additional information, see the xttrim(8) and xttrim.conf(5) man pages.

Check the Status of System Components
Check the status of the system or a component with the xtcli status command on the System Management
Workstation (SMW). By default, the xtcli status command returns the status of nodes.

The xtcli status command has the following form:

xtcli status [-n] [-m] [{-t type -a}] node_list

Where type may be: cc, bc, cage, node, aries, aries_lcb, pdc, or qpdc. The list must have component IDs
only and contain no wild cards.

Use the -m option to display all nodes that were repurposed by using the xtcli mark_node command. (The
xtcli mark_node command can be used to repurpose a service node to a compute role or to repurpose a
compute node to a service role.)

Monitor the System

S2393 197

For more information, see the xtcli(8) man page.

Show the status of a component

For this example, display all nodes that were repurposed using the xtcli mark_node
command:

crayadm@smw:~> xtcli status -m c0-0c0
Network topology: class 2
Network type: Aries
 Nodeid: Service Core Arch| Comp state [Flags]
 --
 c0-0c0s2n0: - SB16 X86| off [noflags|]
 c0-0c0s3n0: service SB16 X86| off [noflags|]
 --
This shows that c0-0c0s2n0 is a service node repurposed as a compute node, and that
c0-0c0s3n0 is a compute node repurposed as a service node.

Check the Status of Compute Processors
Use the xtprocadmin command on a service node to check that compute nodes are available after the system
is booted.

Use the xtprocadmin command on a node to check that compute nodes are available after the system is
booted.

Identify nodes in down or admindown state

nid00007:~> xtprocadmin | grep down

Use the user xtnodestat command to display the current allocation and status of each compute processing
element and the application that it is running. A simplified text display shows each processing element on the
Cray system interconnection network.

Display current allocation and status of each compute processing element and the application that it is
running

nid00007:~> xtnodestat
Current Allocation Status at Wed Jul 06 13:53:26 2011

 C0-0
 n3 AAaaaaaa
 n2 AAaaaaaa
 n1 Aeeaaaa-
c2n0 Aeeaaaaa
 n3 Acaaaaa-
 n2 cb-aaaa-
 n1 AA-aaaa-
c1n0 Aadaaaa-
 n3 SASaSa--
 n2 SbSaSa--
 n1 SaSaSa--
c0n0 SASaSa--

Monitor the System

S2393 198

 s01234567

Legend:
 nonexistent node S service node
; free interactive compute node - free batch compute node
A allocated interactive or ccm node ? suspect compute node
W waiting or non-running job X down compute node
Y down or admindown service node Z admindown compute node

Available compute nodes: 0 interactive, 15 batch

Job ID User Size Age State command line
--- ------- -------- ----- --------- -------- ---------------
a 3772974 user1 48 0h06m run app1
b 3773088 user2 2 0h01m run app2
c 3749113 user3 2 28h26m run app3
d 3773114 user4 1 0h00m run app4
e 3773112 user5 4 0h00m run app5

For more information, see the xtprocadmin(8) and xtnodestat(1) man pages.

Monitor the System with the System Environmental Data Collector
(SEDC)
The System Environment Data Collections (SEDC) manager, sedc_manager, monitors the system's health and
records the environmental data and status of hardware components such as power supplies, processors,
temperature, and fans. SEDC can be set to run at all times or only when a client is listening. The SEDC
configuration file provided by Cray has automatic data collection set as the default action.

The SEDC configuration file (/opt/cray/hss/default/etc/sedc_srv.ini by default) configures the SEDC
server. In this file, the administrator can create sets of different configurations as groups so that the blade and
cabinet controller daemons can scan components at different frequencies. The sedc_manager sends out the
scanning configuration for specific groups to the cabinet and blade controllers and records the incoming data by
group.

For information about configuring the SEDC manager, see XC™ Series System Environment Data Collections
(SEDC) Guide.

Monitor the Health of PCIe Channels
Processors are connected to the high-speed interconnect network (HSN) ASIC through PCIe channels.

The xtpcimon command is executed from the System Management Workstation (SMW) and is started and run
during the boot process.

Any PCIe-related errors are reported to stdout, unless directed to a log file.

xtpcimon also displays CLE-originated GHAL-based Advanced Error Reporting (AER) errors for PCIe.

If the optional /opt/cray/hss/default/etc/xtpcimon.ini initialization file is present, the xtpcimon
command uses the settings provided in the file.

For more information, see the xtpcimon(8) man page.

Monitor the System

S2393 199

Report PCIe-related errors to stdout

crayadm@smw:~> xtpcimon
starting
----> connection to event router made
121017 04:57:01 ############# ################# ##################
121017 04:57:01 Node Category Description
121017 04:57:01 ############# ################# ##################
Received all responses to request to start monitoring
121017 04:58:01 c0-0c0s7a0n1 CorrectableMemErr 0:0:0 AER Correctable: Non-fatal \
 error (mask bit: 1)
121008 05:42:00 c0-0c1s6a0n2 CorrectableMemErr Link CRC error (cnt: 3)
121008 05:43:30 c0-0c1s6a0n2 Info Correctable/CRC error

Examine Activity on the HSS Boot Manager
Use the HSS xtcli session show command to examine sessions in the boot manager. A session
corresponds to running a specific command such as xtcli power up or xtcli boot. This command reports
on sessions, not daemons.

For more information, see the xtcli(8) man page.

View a session running on the boot manager

crayadm@smw:~> xtcli session show BM

Poll a Response from an HSS Daemon, Manager, or the Event Router
Use the HSS xtalive command to verify that an HSS daemon, manager, or the event router is responsive.

For more information, see the xtalive(8) man page.

Check the boot manager

crayadm@smw:~> xtalive -l smw -a bm s0

Validate the Health of the HSS
The xtcheckhss command initiates a series of tests that validate the health of the HSS by gathering and
displaying information supplied by scripts located on blade controllers (BCs) and cabinet controllers (CCs).
xtcheckhss includes the following tests:

● Version Checker: Reads the current version running on the L0C, QLOC, L0Ds, BC micro, CC micro, CC
FPGA, CHIA FPGAs, Tolapai BIOSes, and Node BIOS. The version that is read from each device is
compared to the currently installed versions on the SMW.

● Sensor Checker: Reads environment sensors including temperatures, voltages, currents, and other data.

● SEEP Checker: Reads serial electrically erasable PROMs (SEEPs) in the system. This test can report any
un-initialized, zeroed, or unreadable SEEPs.

Monitor the System

S2393 200

● AOC Checker: Reads all active optical cable (AOC) data. This test displays any outliers relative to the
average data calculated by previous runs.

● ITP Checker: Validates the embedded ITP path

● NTP Checker: Reads system time on all controllers and compares them with the SMW time; displays any
mismatches.

● Control Checker: Examines and modifies system controls.

● Configuration Information Checker: Reads the system hardware configuration and reports the system
setup, including the blade type, daughter card type, CPU type and count, and the CPU and PDC mask.

● PCI checker: Checks for missing or degraded PCIe connectivity on add-in cards on an IBB. This test requires
that the nodes be powered up and bounced. Any cards that do not train to the PCIe Gen or Width specified in
the Link Capability register are flagged. Any cards that are reported as physically present but not seen by the
node are flagged.

For complete information, see the xtcheckhss(8) man page.

Monitor Event Router Daemon (erd) Events
The HSS xtconsumer command enables the system administrator to monitor events mediated by the event
router daemon erd, which runs passively.

Monitor for specific events

For this example, watch two events: ec_heartbeat_stop, which will be sent if either the node
stops sending heartbeats or if the system interconnection network ASIC stops sending
heartbeats, and ec_l0_health, which will be sent if any of the subcomponents of a blade
controller report a bad health indication:

crayadm@smw:~> xtconsumer -b ec_heartbeat_stop ec_l0_health

Use the xthb command to confirm the stopped heartbeat. Use the xthb command only when actively looking
into a known problem because it is intrusive and degrades system performance.

Check events except heartbeat

crayadm@smw:~> xtconsumer -x ec_l1_heartbeat

For more information, see the xtconsumer(8) and xthb(8) man pages.

Monitor Node Console Messages
The xtbootsys command automatically initiates an xtconsole session, which displays the console text of a
specified node(s) or accelerator(s). The xtconsole command operates in a shell window and monitors the event
router daemon (erd) for console messages. The node or accelerator ID appears at the beginning of each line.
The messages are written into /var/opt/cray/log/sessionid/console-yyyymmdd where the
administrator may monitor them.

The xtconsole utility may only have one concurrent instance.

Monitor the System

S2393 201

For more information, see the xtconsole(8) man page.

View Component Alert, Warning, and Location History
Use the xtcli comp_hist command to display component alert, warning, and location history. Either an error
history, which displays alerts or warnings found on designated components, or a location history may be
displayed.

Display the location history for component c0-0c0s0n1

crayadm@smw:~> xtcli comp_hist -o loc c0-0c0s0n1

For more information, see the xtcli(8) man page.

Display Component Information
Use the HSS xtshow command to identify compute and service components. Commands are typed as xtshow
--option_name. Combine the --service or --compute option with other xtshow options to limit the
selection to the specified type of node.

For a list of all xtshow --option_name options, see the xtshow(8) man page.

Identify all service nodes

crayadm@smw:~> xtshow --service
L1s ...
Cages ...
L0s ...
 c0-0c0s0: service X86| ready [noflags|]
 c0-0c0s1: service X86| ready [noflags|]
 c1-0c0s0: service X86| ready [noflags|]
 c1-0c0s1: service X86| ready [noflags|]
 c2-0c0s1: service X86| ready [noflags|]
 c2-0c1s1: service X86| ready [noflags|]
Nodes ...
 c0-0c0s0n0: service X86| empty [noflags|]
 c0-0c0s0n1: service SB08 X86| ready [noflags|]
 c0-0c0s0n2: service SB08 X86| ready [noflags|]
 c0-0c0s0n3: service X86| empty [noflags|]
 c0-0c0s1n0: service X86| empty [noflags|]
 c0-0c0s1n1: service SB08 X86| ready [noflags|]
 .
 .
 .
Aries ...
 c0-0c0s0a0: service X86| on [noflags|]
 c0-0c0s1a0: service X86| on [noflags|]
 c1-0c0s0a0: service X86| on [noflags|]
 c1-0c0s1a0: service X86| on [noflags|]
 c2-0c0s1a0: service X86| on [noflags|]
 c2-0c1s1a0: service X86| on [noflags|]
AriesLcbs ...
 c0-0c0s0a0l00: service X86| on [noflags|]
 c0-0c0s0a0l01: service X86| on [noflags|]

Monitor the System

S2393 202

 c0-0c0s0a0l02: service X86| on [noflags|]
 c0-0c0s0a0l03: service X86| on [noflags|]
 c0-0c0s0a0l04: service X86| on [noflags|]
 c0-0c0s0a0l05: service X86| on [noflags|]
 c0-0c0s0a0l06: service X86| on [noflags|]
 .
 .
 .

Identify compute nodes in the disabled state

crayadm@smw:~> xtshow --compute --disabled
L1s ...
Cages ...
L0s ...
Nodes ...
 c0-0c2s0n3: - X86| disabled [noflags|]
 c0-0c2s11n0: - X86| disabled [noflags|]
 c0-0c2s11n3: - X86| disabled [noflags|]
 c1-0c0s11n2: - X86| disabled [noflags|]
Aries ...
AriesLcbs ...

Identify components with a status of not empty

crayadm@smw:~> xtshow --not_empty c0-0c0s0
L1s ...
 c0-0: - | on [warn|alert|]
Cages ...
L0s ...
 c0-0c0s0: service X86| ready [noflags|]
Nodes ...
 c0-0c0s0n1: service SB08 X86| ready [noflags|]
 c0-0c0s0n2: service SB08 X86| ready [noflags|]
Aries ...
 c0-0c0s0a0: service X86| on [noflags|]
AriesLcbs ...
 c0-0c0s0a0l00: service X86| on [noflags|]
 c0-0c0s0a0l01: service X86| on [noflags|]
 c0-0c0s0a0l02: service X86| on [noflags|]
 c0-0c0s0a0l03: service X86| on [noflags|]
 c0-0c0s0a0l04: service X86| on [noflags|]
 c0-0c0s0a0l05: service X86| on [noflags|]
 c0-0c0s0a0l06: service X86| on [noflags|]
 .
 .
 .

Display Alerts and Warnings
Use the xtshow command to display alerts and warnings. Type commands as xtshow --option_name, where
option_name is alert, warn, or noflags.

Monitor the System

S2393 203

Alerts are not propagated through the system hierarchy, only information for the component being examined is
displayed. For example, invoking the xtshow --alert command for a cabinet does not display an alert for a
node. Similarly, checking the status of a node does not detect an alert on a cabinet.

Show all alerts on the system

crayadm@smw:~> xtshow --alert

Alerts and warnings typically occur while the HSS xtcli command operates; these alerts and warnings are listed
in the command output with an error message. After they are generated, alerts and warnings become part of the
state for the component and remain set until manually cleared.

For example, the temporary loss of a heartbeat by the blade controller may set a warning state on a chip.

For additional information, see the xtshow(8) man page.

Display System Network Congestion Protection Information
Two utilities help to identify the time and duration of system network congestion events, either by parsing through
logs (xtcpreport) or in real time (xtcptop):

xtcpreport This command uses information contained in the given xtnlrd file to extract and display
information related to system network congestion protection. See the xtcpreport(8) man
page for additional information.

xtcptop This command monitors an xtnlrd file that is currently being updated and displays real-time
system network congestion protection information, including start time, duration, and apid. See
the xtcptop(8) man page for additional information.

To use these utilities, load the congestion-tools module if it is not already loaded.

crayadm@smw:~> module load congestion-tools

Clear Component Flags
Use the xtclear command to clear system information for selected components. Type commands as xtclear
--option_name, where option_name is alert, reserve, or warn.

Clear all warnings in specified cabinet

For this example, clear all warnings in cabinet c13-2:

smw:~> xtclear --warn c13-2

Alerts, reserves, and warnings must be cleared before a component can operate. Clearing an alert on a
component frees its state.

For more information, see the xtclear(8) man page.

Monitor the System

S2393 204

Display Error Codes
When an HSS event error occurs, the related message is displayed on the SMW. The xterrorcode command
on the SMW displays a single error code or the entire list of error codes.

Display HSS error codes

crayadm@smw:~> xterrorcode errorcode

A system error code entered in a log file is a bit mask; invoking the xterrorcode bitmask_code_number
command on the SMW displays the associated error code.

Display an HSS error code using its bit mask number

crayadm@smw:~> xterrorcode 131279
Maximum error code (RS_NUM_ERR_CODE) is 447
code = 207, string = 'Node Voltage Fault'

Cray Lightweight Log Management (LLM) System
The Cray Lightweight Log Management (LLM) system is the log infrastructure for Cray systems and must be
enabled for systems to successfully log events. At a high level, a library is used to deliver messages to rsyslog
utilizing the RFC 5424 protocol; rsyslog transports those messages to the SMW and places the messages into
log files.

The LLM system relies on the sessionid that is generated by xtbootsys. Therefore, systems must always be
booted using xtbootsys. If the site has multi-part boot procedures or uses manual procedures, have the
process started by an xtbootsys session. That session can be effectively empty -- it is only needed to initiate a
boot sessionid. Subsequent xtbootsys calls can then use --session last or manual processes.

By default, LLM has a log trimming mechanism enabled called xttrim.

IMPORTANT: Do not use the xtgetsyslog command because it is not compatible with LLM.For
additional information, see Manage Log Files Using CLE and HSS Commands on page 196.

For further information, see the intro_LLM(8) and intro_LLM_logfiles(5) man pages.

Debug the CLE System Debugger Using debugraw and debugmax
The debugraw and debugmax options listed in the cray_logging_config.yaml configurator template are for
debugging the operation of the logging system itself. These settings put messages exactly as received into a log;
normally, these messages are parsed, and the parsed elements are placed in a file based on a file template.
These options are typically disabled and are only intended to be enabled to diagnose a logging issue.

The debugraw option shows the user what was sent to the SMW before being parsed. The debugmax option
puts everything rsyslog knows about the message, including which host sent the message, into a file. The
default value for debugraw and debugmax is false.

Monitor the System

S2393 205

cdump and crash Utilities for Node Memory Dump and Analysis
The cdump and crash utilities may be used to analyze the memory on any Cray service node or CNL compute
node. The cdump command is used to dump node memory to a file. After cdump completes, the crash utility can
be used on the dump file generated by cdump.

Cray recommends executing the cdump utility only if a node has panicked or is hung, or if a dump is requested by
Cray.

To select the desired access method for reading node memory, use the cdump -r access option. Valid access
methods are:

xt-bhs The xt-bhs method uses a basic hardware system server that runs on the SMW to access and read
node memory. xt-bhs is the default access method for these systems.

xt-hsn The xt-hsn method utilizes a proxy that reads node memory through the High-speed Network
(HSN). The xt-hsn method is faster than the xt-bhs method, but there are situations where it will
not work (for example, if the ASIC is not functional). However, the xt-hsn method is preferable
because the dump completes in a short amount of time and the node can be returned to service
sooner.

xt-file The xt-file method is used for memory dump file created by the -z option. The compressed
memory dump file must be uncompressed prior to executing this command. Use the file name for
node-id.

To dump Cray node memory, access takes the following form:

method[@host]
For additional information, see the cdump(8) and crash(8) man pages.

Resource Utilization Reporting
Resource Utilization Reporting (RUR) is an administrator tool for gathering statistics on how system resources are
being used by applications or jobs. RUR is a scalable infrastructure that collects compute node statistics before
an application or job runs and again after it completes. The extensible RUR infrastructure allows plugins to be
easily written to collect data uniquely interesting to each site. Cray supplied plugins collect a variety of data,
including process accounting, energy usage, memory usage, and GPU accounting.

When RUR is enabled on a Cray system running CLE, resource utilization statistics are gathered from compute
nodes running all applications or jobs. RUR is configured to run per application, per job, or both. RUR runs
primarily before an application/job has started and after it ends, ensuring minimal impact on performance.

Prior to application/job runtime, the ALPS or WLM prologue script calls an RUR prologue script that, based on
enabled plugins, initiates pre-application/pre-job data staging on all compute nodes used by the application/job.
This staging may involve resetting counters to zero or collecting initial values of counters. Following application/
job completion, the ALPS or WLM epilogue script calls an RUR epilogue script that gathers these counters,
compares them to the initial values, where applicable, stages the data on the compute nodes, and then transfers
data from the compute nodes to the login/MOM node. RUR post-processes the data to create a summary report
that is written out to a log file or other backing store.

Monitor the System

S2393 206

Plugin Architecture
RUR supports a plugin architecture, allowing many types of usage data to be collected while using the same
software infrastructure. Two basic types of RUR plugins are supported: data plugins, which collect particular
statistics about system resources, and output plugins, which send the output of the RUR software stack to a
backing store.

Cray supplies several plugins as part of the RUR distribution, including data collection plugins, output plugins, and
an example plugin. Sites choose which plugins to enable or disable by modifying the RUR configuration file. See
Enable/Disable Plugins on page 217 for more information. Sites can also create custom plugins, specific to their
needs, as described in Create Custom RUR Data Plugins on page 233 and Create Custom RUR Output Plugins
on page 235.

Overview of RUR Configuration
RUR is one of many services that store service configuration content in CLE configuration sets (config sets) on
Cray systems. RUR can be configured when config sets are created during a fresh install or major update, or it
can be configured/reconfigured later by updating existing config sets during normal system operation. Whether
sites enter values in an interactive configurator session or enter values in a configuration worksheet for bulk
import, the configurator takes the supplied values and ensures that they become part of the config set being
created or updated.

What does RUR Need?
For RUR to function properly, the following tasks are required:

1. Enable and configure the cray_rur service.

2. Update the cray_alps service (or Slurm) to call RUR's prologue and epilogue scripts. This enables per-
application RUR.

3. Modify the WLM prologue and epilogue scripts to call RUR's prologue and epilogue scripts. This enables per-
job RUR.

4. Refresh CLE nodes with updated config set.

Enable and Configure RUR

Prerequisites
This procedure assumes that the user has generated configuration worksheets and is editing the RUR
configuration worksheet (cray_rur_worksheet.yaml). If new worksheets need to be generated, use this
procedure:

1. Generate up-to-date worksheets for config set p0 (merges any new service packages installed on the system
with data already in config set p0).

smw# cfgset update --mode prepare --no-scripts p0
2. Locate the newly generated worksheets and copy them to a new location.

smw# cfgset show --fields path p0
p0:
 path: /var/opt/cray/imps/config/sets/p0
smw# cp /var/opt/cray/imps/config/sets/p0/worksheets/* /some/edit/location

Monitor the System

S2393 207

3. Edit the RUR worksheet.

smw# vi /some/edit/location/cray_rur_worksheet.yaml

About this task
This procedure identifies both necessary and optional settings for RUR to function properly. The following steps
correspond to the configuration settings available in the RUR worksheet, and step numbering reflects the order in
which those settings appear.

TIP: The default values assigned for settings are sufficient for an initial install.

Procedure

1. Edit cray_rur_worksheet.yaml.

2. Uncomment cray_rur.enabled and set it to true.

Enable 'cray_rur' Service? (boolean, level=basic)
cray_rur.enabled: true
#
#********************* END Service Enable/Disable ********************

3. Uncomment the lines corresponding to the base settings. Review the guidance information and default value
for each setting to determine whether or not to modify it.

#
cray_rur.settings.base.data.debug_level: ERROR
#

#
cray_rur.settings.base.data.keep_temp_files: false
#

#
cray_rur.settings.base.data.use_json: false
#

4. Uncomment the lines corresponding to the rur_stage settings. Review the guidance information and default
value for each setting to determine whether or not to modify it.

#
cray_rur.settings.rur_stage.data.stage_timeout: 90
#

#
cray_rur.settings.rur_stage.data.stage_dir: /var/spool/RUR
#

Monitor the System

S2393 208

5. Uncomment the lines corresponding to the rur_gather settings. Review the guidance information and
default value for each setting to determine whether or not to modify it.

#
cray_rur.settings.rur_gather.data.gather_timeout: 90
#

#
cray_rur.settings.rur_gather.data.gather_dir: /tmp/rur
#

6. Uncomment the lines corresponding to the rur_post settings. Review the guidance information and default
value for each setting to determine whether or not to modify it.

#
cray_rur.settings.rur_post.data.post_timeout: 90
#

#
cray_rur.settings.rur_post.data.post_dir: /tmp/rur
#

7. (Optional) Enable the gpustat data plugin.

The gpustat plugin collects utilization statistics for NVIDIA GPUs, if present (see The gpustat Data Plugin
on page 227).

a. Uncomment cray_rur.settings.gpustat.data.enable and set it to true.

#
cray_rur.settings.gpustat.data.enable: true
#

b. Uncomment the remaining gpustat settings.

#
cray_rur.settings.gpustat.data.stage: /opt/cray/rur/default/bin/gpustat_stage.py
#

#
cray_rur.settings.gpustat.data.post: /opt/cray/rur/default/bin/gpustat_post.py
#

8. (Optional) Enable the taskstats data plugin.

The taskstats plugin collects process accounting data (see The taskstats Data Plugin on page 229).

a. Uncomment cray_rur.settings.taskstats.data.enable and set it to true.

#
cray_rur.settings.taskstats.data.enable: true
#

Monitor the System

S2393 209

b. Uncomment the remaining taskstats settings.

#
cray_rur.settings.taskstats.data.stage: /opt/cray/rur/default/bin/taskstats_stage.py
#

#
cray_rur.settings.taskstats.data.post: /opt/cray/rur/default/bin/taskstats_post.py
#

#
cray_rur.settings.taskstats.data.arg: json-dict
#

c. Review the guidance information for cray_rur.settings.taskstats.data.arg and modify its
value if desired.

TIP: The amount of data reported by the taskstats plugin and the format in which it is written is
determined by the value of arg. Examples are included in The taskstats Data Plugin on page
229.

9. (Optional) Enable the energy data plugin.

The energy plugin collects compute node energy usage data (see The energy Data Plugin on page 225).

a. Uncomment cray_rur.settings.energy.data.enable and set it to true.

#
cray_rur.settings.energy.data.enable: true
#

b. Uncomment the remaining energy settings.

#
cray_rur.settings.energy.data.stage: /opt/cray/rur/default/bin/energy_stage.py
#

#
cray_rur.settings.energy.data.post: /opt/cray/rur/default/bin/energy_post.py
#

#
cray_rur.settings.energy.data.arg: json-dict
#

c. Review the guidance information for cray_rur.settings.energy.data.arg and modify its value if
desired.

TIP: The amount of data reported by the energy plugin and the format in which it is written is
determined by the value of arg. Examples are included in The energy Data Plugin on page 225.

10. (Optional) Enable the timestamp data plugin.

The timestamp plugin collects the start and end times of an application or job (see The timestamp Data
Plugin on page 232).

Monitor the System

S2393 210

a. Uncomment cray_rur.settings.timestamp.data.enable and set it to true.

#
cray_rur.settings.timestamp.data.enable: true
#

b. Uncomment the remaining timestamp settings.

#
cray_rur.settings.timestamp.data.stage: /opt/cray/rur/default/bin/timestamp_stage.py
#

#
cray_rur.settings.timestamp.data.post: /opt/cray/rur/default/bin/timestamp_post.py
#

11. (Optional) Enable the memory data plugin.

The memory plugin collects information from /proc and /sys that is useful when assessing the memory
performance of an application or job (see The memory Data Plugin on page 227).

a. Uncomment cray_rur.settings.memory.data.enable and set it to true.

#
cray_rur.settings.memory.data.enable: true
#

b. Uncomment the remaining memory settings.

#
cray_rur.settings.memory.data.stage: /opt/cray/rur/default/bin/memory_stage.py
#

#
cray_rur.settings.memory.data.post: /opt/cray/rur/default/bin/memory_post.py
#

#
cray_rur.settings.memory.data.arg: json-dict
#

c. Review the guidance information for cray_rur.settings.memory.data.arg and modify if desired.

TIP: The amount of data reported by the memory plugin is determined by the value of arg.
Examples are included in The memory Data Plugin on page 227.

12. (Optional) Enable the nodeuse data plugin.

The nodeuse plugin collects compute node usage data within the scope of an application (see The nodeuse
Data Plugin on page 229).

Monitor the System

S2393 211

a. Uncomment cray_rur.settings.nodeuse.data.enable and set it to true.

#
cray_rur.settings.nodeuse.data.enable: true
#

b. Uncomment the remaining nodeuse settings.

#
cray_rur.settings.nodeuse.data.stage: /opt/cray/rur/default/bin/nodeuse_stage.py
#

#
cray_rur.settings.nodeuse.data.post: /opt/cray/rur/default/bin/nodeuse_post.py
#

13. (Optional) Enable the dws data plugin.

The dws plugin collects DataWarp utilization statistics (within the scope of an application) from compute
nodes, if present (see The dws Data Plugin on page 219).

a. Uncomment cray_rur.settings.dws.data.enable and set it to true.

#
cray_rur.settings.dws.data.enable: true
#

b. Uncomment the remaining dws settings.

#
cray_rur.settings.dws.data.stage: /opt/cray/rur/default/bin/dws_stage.py
#

#
cray_rur.settings.dws.data.post: /opt/cray/rur/default/bin/dws_post.py
#

14. (Optional) Enable the dws_server data plugin.

The dws_server plugin collects utilization statistics (within the scope of an application) from DataWarp
servers, if present (see The dws_server Data Plugin on page 222).

a. Uncomment cray_rur.settings.dws_server.data.enable and set it to true.

#
cray_rur.settings.dws_server.data.enable: true
#

b. Uncomment the remaining dws_server settings.

#
cray_rur.settings.dws_server.data.stage: /opt/cray/rur/default/bin/

Monitor the System

S2393 212

dws_server_stage.py
#

#
cray_rur.settings.dws_server.data.post: /opt/cray/rur/default/bin/dws_server_post.py
#

15. (Optional) Enable the dws_job_server data plugin.

The dws_job_server plugin collects utilization statistics (within the scope of a job) from DataWarp servers,
if present (The dws_job_server Data Plugin on page 219).

a. Uncomment cray_rur.settings.dws_job_server.data.enable and set it to true.

#
cray_rur.settings.dws_job_server.data.enable: true
#

b. Uncomment the remaining dws_job_server settings.

Note that the post script is the same as dws_server.

#
cray_rur.settings.dws_job_server.data.stage: /opt/cray/rur/default/bin/dws_job_server_stage.py
#

#
cray_rur.settings.dws_server.data.post: /opt/cray/rur/default/bin/dws_server_post.py
#

16. (Optional) Enable the llm output plugin.

The llm plugin aggregates log messages from various Cray nodes and places them on the SMW (The llm
Output Plugin on page 232).

a. Uncomment cray_llm.settings.llm.data.enable and set it to true.

#
cray_rur.settings.llm.data.enable: true
#

b. Uncomment the other llm setting.

#
cray_rur.settings.llm.data.output: /opt/cray/rur/default/bin/llm_output.py
#

17. (Optional) Enable the user output plugin.

The user plugin writes RUR output for a user's application to the user's home directory (default) or a user-
defined location, only if the user has indicated that this behavior is desired (The user Output Plugin on page
232).

Monitor the System

S2393 213

a. Uncomment cray_rur.settings.user.data.enable and set it to true.

#
cray_rur.settings.user.data.enable: true
#

b. Uncomment the remaining user settings.

#
cray_rur.settings.user.data.output: /opt/cray/rur/default/bin/user_output.py
#

#
cray_rur.settings.user.data.arg: single, opt_in
#

c. Review the guidance information for cray_rur.settings.user.data.arg and modify if desired.

TIP: The number of output files created by the user plugin and its opt-in flag are determined by
the value of arg. Further details are included in The user Output Plugin on page 232.

Next, configure the cray_alps to call the RUR prologue and epilogue scripts. Sites running Slurm must modify
the Slurm configuration file to call the RUR prologue and epilogue scripts.

Configure the cray_alps Service for Per-application RUR

Prerequisites
This procedure assumes that cray_alps has already been enabled.

About this task
Although Resource Utilization Reporting (RUR) is not a part of ALPS, it is initiated by the ALPS prologue and
epilogue scripts. This enables per-application RUR.

During CLE installation, cray_alps might have been configured for RUR. If this is known to be true, then this
procedure may be skipped; however, Cray recommends that sites verify the settings are accurate.

Procedure

1. Edit cray_alps_worksheet.yaml.

2. Verify that cray_alps.enabled is uncommented and set to true.

This should have occurred during the initial CLE installation. If not, exit this procedure and refer to XC™
Series Software Installation and Configuration Guide.

3. Uncomment and define cray_alps.settings.apsys.data.prologPath and
cray_alps.settings.apsys.data.epilogPath.

ALPS supports only one prologue script and one epilogue script; therefore, enabling RUR is dependent on
whether or not these parameters are already defined for ALPS.

Monitor the System

S2393 214

a. If prologPath and epilogPath are not set, define them as follows.

cray_alps.settings.apsys.data.prologPath: /opt/cray/rur/default/bin/rur_prologue.py
cray_alps.settings.apsys.data.epilogPath: /opt/cray/rur/default/bin/rur_epilogue.py

b. For either parameter that is defined, a wrapper script must be written that will run both the ALPS script
and the RUR script. Cray recommends adjusting the prologTimeout and epilogTimeout parameters
to be the sum of the timeouts expected for the constituent scripts. Because RUR supports its own
timeout, it is recommended to run RUR first, with a timeout, allowing the second plugin to run even if RUR
times out.

4. Uncomment cray_alps.settings.apsys.data.prologTimeout and
cray_alps.settings.apsys.data.epilogTimeout, review the guidance information and modify if
desired.

cray_alps.settings.apsys.data.prologTimeout: 300
...
cray_alps.settings.apsys.data.epilogTimeout: 300

Next, configure the workload manager to enable per-job RUR.

Configure a WLM to Enable Per-job RUR

Prerequisites
Task prerequisites.

About this task
Although Resource Utilization Reporting (RUR) is not a part of a workload manager (WLM), it is initiated through
the WLM prologue and epilogue scripts to enable per-job RUR. Job level RUR data is identified by records with
apid: 0 and jobid: ID_of_WLM_job.

Procedure

1. Edit the WLM prologue and epilogue scripts, according to the specific WLM system guidelines, to call the
rur_prologue and rur_epilogue scripts, respectively.

Prologue:

/opt/cray/rur/default/bin/rur_prologue.py -C /etc/opt/cray/rur/rur2.conf -a 0
-j $JOBID -A jobtoken=$JOBID -A jobfile=$JOBFILE -N /tmp/

Epilogue:

/opt/cray/rur/default/bin/rur_epilogue.py -C /etc/opt/cray/rur/rur2.conf -a 0
-j $JOBID -A jobtoken=$JOBID -A jobfile=$JOBFILE -N /tmp/

Where:
-C /etc/opt/cray/rur/rur2.conf

Is required to fully implement job scope RUR

$JOBFILE

Monitor the System

S2393 215

User's job script file that may or may not contain DataWarp directives (#DW)

$JOBID
Job ID selected by the WLM. It is available to the WLM's prologue and epilogue scripts, but
implementation may vary between the various WLMs.

-N nidfile
Points to a file containing a list of the DataWarp node IDs (one node per line). Currently
RUR only addresses the DataWarp nodes within this list.

TIP: To run other job scope RUR plugins, it is necessary to add a second call to rur_prologue and
rur_epilogue scripts (with a different configuration file than used above) within the WLM prologue
and epilogue scripts, respectively.

2. Consult the specific WLM documentation to restart the WLM.

Next, refresh nodes to apply configuration changes.

Refresh Nodes with Updated Config Sets

Prerequisites
This procedure assumes that configuration data has been changed, either by updating the config set using the
configurator (interactive or worksheet upload) or by editing a configuration template
(cray_SERVICE_config.yaml) directly.

About this task
Whenever a cray service (e.g., cray_persistent_data) is modified, it is necessary to update and validate the
config set and run cray-ansible on any affected CLE nodes in order to apply the configuration changes. If the
system will be rebooted, the steps to run cray-ansible are not needed because cray-ansible is run
automatically when the system boots.

Using cfgset update ensures that all pre- and post-configuration scripts get run. Running cray-ansible on
a CLE node triggers a refresh of the CLE config set cache on that node and applies configuration changes on the
node.

Procedure

1. Update the config set, if not already done.

smw# cfgset update p0

2. Validate the config set.

smw# cfgset validate p0

3. Run Ansible plays on the CLE nodes, if the system will not be rebooted.

After the CLE config set has been updated, refresh the local config set cache to pull any config set changes to
the node and run cray-ansible to apply them on the node.

hostname# /opt/cray/imps-distribution/default/bin/refresh.py
hostname# /etc/init.d/cray-ansible start

Monitor the System

S2393 216

Enable/Disable Plugins

About this task
RUR (cray_rur) configuration changes are done within the Cray configuration management framework.
Changes are made either during an interactive configurator session or by modifying the cray_rur worksheet.
The worksheet method is described in the procedure to initially enable and configure RUR. This procedure
invokes an interactive configurator session, which would likely be the method used when only enabling or
disabling plugins.

Procedure

1. Invoke an interactive configurator session.

This example shows that gpustat is enabled, taskstat is disabled, and dws is not defined, which renders
it disabled.

smw# cfgset update -m interactive -s cray_rur -l advanced p0
Service Configuration Menu (Config Set: p0, type: cle)

 cray_rur [status: enabled] [validation: valid]

 Selected # Settings Value/Status (level=basic)

...
 gpustat
 10) enable True
 11) stage /opt/cray/rur/default/bin/gpustat_stage.py
 12) post default=/opt/cray/rur/default/bin/
 gpustat_post.py

 taskstats
 13) enable False
 14) stage /opt/cray/rur/default/bin/taskstats_stage.py
 15) post /opt/cray/rur/default/bin/taskstats_post.py
 16) arg json-dict
...
 dws
 31) enable [unconfigured, default=False]
 32) stage [unconfigured, default=/opt/cray/rur/default
 /bin/dws_stage.py]
 33) post [unconfigured, default=/opt/cray/rur/default
 /bin/dws_post.py]
...

2. Disable a plugin:

a. Select the number corresponding to its enable setting.

RUR service Menu [default: save & exit - Q] $ 10
The setting is highlighted:

 gpustat
 * 10) enable True

b. Set enable to false.

Monitor the System

S2393 217

RUR service Menu [default: configure - C] $ C
...
ray_rur.settings.gpustat.data.enable
[<cr>=keep 'true', <new value>, ?=help, @=less] $ false
The enable status changes.

 gpustat
 10) enable False

3. To enable a configured plugin:

a. Select the number corresponding to its enable setting.

RUR service Menu [default: save & exit - Q] $ 13
The setting is highlighted:

 taskstat
 * 13) enable False

b. Set enable to true.

RUR service Menu [default: configure - C] $ C
...
ray_rur.settings.taskstat.data.enable
[<cr>=keep 'false', <new value>, ?=help, @=less] $ true
The enable status changes.

 taskstat
 * 13) enable True

4. To enable an unconfigured plugin:

a. Select the number corresponding to its enable setting.

RUR service Menu [default: save & exit - Q] $ 31
The setting is highlighted:

 dws
 * 31) enable [unconfigured, default=False]

b. Set enable to true.

RUR service Menu [default: configure - C] $ C
...
ray_rur.settings.dws.data.enable
[<cr>=keep 'false', <new value>, ?=help, @=less] $ true
The enable status changes.

 dws
 * 31) enable True

c. Configure all of the plugin's other settings.

Monitor the System

S2393 218

RUR service Menu [default: save & exit - Q] $ 32
RUR service Menu [default: configure - C] $ C
cray_rur.settings.dws.data.stage
[<cr>=set '/opt/cray/rur/default/bin/dws_stage.py', <new value>, ?=help,
@=less] $ <cr>
RUR service Menu [default: save & exit - Q] $ 33
RUR service Menu [default: configure - C] $ C
cray_rur.settings.dws.data.post
[<cr>=set '/opt/cray/rur/default/bin/dws_post.py', <new value>, ?=help,
@=less] $ <cr>

5. Save and exit the configurator.

RUR service Menu [default: save & exit - Q] $ Q

To apply these configuration changes, refresh the appropriate nodes with the updated config set.

The dws Data Plugin
The dws plugin collects the following DataWarp utilization statistics from compute nodes, if present. This usage
data is available within the scope of an application, not the scope of a job. The data is written in JSON dictionary
format. Additional DataWarp usage data is available through the dws_server and dws_job_server plugins.

bytes_read Number of bytes read

bytes_written Number of bytes written

files_created Number of files created

inodes_created Number of inodes created, including files, directories and links

max_read_offset Maximum byte offset read

max_write_offset Maximum byte offset written

RUR dws output

This example shows dws data as written
to /var/opt/cray/log/partition-current/messages-date on the SMW:

2017-02-03T13:27:32.662733-05:00 c0-1c0s8n0 RUR 16521
p0-20161006t064726 [RUR@34] uid: 12345, apid: 1140449, jobid:
1127.sdb, cmdname: /bin/hostname, plugin:dws {"token": "1127.sdb",
"mountpoint": "/var/opt/cray/dws/mounts/batch/1127.sdb/ss",
"inodes_created": 407, "files_created": 405, "bytes_read":
11207405004, "bytes_written": 6712208222, "max_read_offset":
4096024126, "max_write_offset": 21772241122}

The dws_job_server Data Plugin
The dws_job_server plugin collects utilization statistics from DataWarp servers, if present. This usage
information is within the scope of a job, not the scope of an application. The data is written in JSON dictionary
format. DataWarp server usage information within the scope of an application is available through the
dws_server plugin. Compute node usage of DataWarp is available through the dws plugin.

Monitor the System

S2393 219

Type scratch File Systems
The following data is collected for type=scratch file systems.

Per realm: dwtype Type of DataWarp file system (scratch)

namespace_count Number of namespaces within the realm

realm_id Realm ID

server_count Number of servers in the realm

server_hostname Server hostname

Per
fragment:

bytes_read Number of bytes read from this fragment

bytes_written Number of bytes written to this fragment

capacity_used Amount of file system capacity used

capacity_max Maximum capacity of fragment

files_created Number of files created in this realm

fs_capacity Capacity of file system to which this fragment belongs

max_window_write Maximum amount of data written during a write window period of time

write_high_water The largest amount of data written

write_limit Maximum bytes allowed to be written per fragment

write_moving_avg The average amount of data written during a write window period of time

Per
namespace:

namespace_id Namespace ID

bytes_read Number of bytes read from this namespace

bytes_written Number of bytes written to this namespace

files_create_threshold Maximum number of files allowed to be created within this
namespace

file_size_limit Maximum size (bytes) of one file

files_created Number of files created within this namespace

max_offset_read Maximum byte offset read

max_offset_written Maximum byte offset written

num_data_created Total number of data files created on all DataWarp servers

stage_bytes_read Number of staged bytes read

stage_bytes_written Number of staged bytes written

stripe_size Size of each stripe (bytes)

stripe_width Number of stripes in this namespace

substripe_size Size of each substripe (bytes)

Monitor the System

S2393 220

substripe_width Number of substripes in per stripe

RUR dws_server / dws_job_server output for type=scratch file systems

This example shows data as written
to /var/opt/cray/log/partition-current/messages-date on the SMW:

uid: 12345, apid: 416746, jobid: 21268, cmdname: xio_p,
plugin:dws_server {{"realm": {"server_count": 1, "fragments": [{
{"capacity_used": 128648781824, "fs_capacity": 3296920076288,
"capacity_max": 128648781824, "max_window_write": 86400,
"files_created": 258, "write_high_water": 3407329284614,
"write_moving_avg": 3407329284614, "bytes_read": 3298534883328,
"write_limit": 32985348833280, "bytes_written": 3407329284614,
"server_hostname": "c0-0c1s1n1"], "namespaces": [{ "namespace_id":
9324, "stripe_width": 1, "stripe_size": 8388608, "bytes_read":
3298534883328, "substripe_width": 12, "stage_bytes_read": 0,
"substripe_size": 8388608, "max_offset_read": 1099511627776,
"files_created": 258, "bytes_written": 3407329284614,
"files_create_threshold": 0, "file_size_limit": 0,
"num_data_created": 258, "stage_bytes_written": 0,
"max_offset_written": 1099511627776 }], "realm_id": 3704}}

Type cache File Systems
The following data is collected for type=cache file systems.

Per realm: dwtype Type of DataWarp file system (cache)

pfs_path Backing path

realm_id Realm ID

server_count Number of servers in the realm

Per
fragment:

capacity_highwater Maximum number of bytes used in underlying file system

fs_capacity Capacity of file system to which this fragment belongs

max_offset_read Maximum byte offset read

max_offset_threshold Maximum byte offset allowed to be read/written

max_offset_written Maximum byte offset written

pfs_read Number of bytes read from the PFS

pfs_written Number of bytes written to the PFS

window_write_bytes Number of bytes written during a write window period of time

window_write_seconds Number of seconds in a write window period of time

cache_read Number of DataWarp storage bytes read

cache_written Number of DataWarp storage bytes written

Monitor the System

S2393 221

RUR dws_server / dws_job_server output for type=cache file systems

This example shows data as written
to /var/opt/cray/log/partition-current/messages-date on the SMW:

uid: 12345, apid: 416742, jobid: 21266, cmdname: fdfa1,
{plugin:dws_server "realm": {"fragments": [{ "server_hostname":
"c0-0c1s1n2", "window_write_bytes": 82165273, "fs_capacity": 0,
"capacity_highwater": 0, "window_write_seconds": 21600000,
"cache_written": 82165273, "max_offset_read": 183609,
"max_offset_written": 8388608, "pfs_read": 82165273,
"max_offset_threshold": 0, "pfs_written": 0, "cache_read":
6741137 }, { "server_hostname": "c0-0c1s1n1", "window_write_bytes":
101616737, "fs_capacity": 3856795508736, "capacity_highwater":
2657973817344, "window_write_seconds": 21600000, "cache_written":
101616737, "max_offset_read": 95786, "max_offset_written": 8388608,
"pfs_read": 101616737, "max_offset_threshold": 0, "pfs_written": 0,
"cache_read": 6586671 }], "server_count": 2, "realm_id": 1902,
"pfs_path": "/lus/peel" }}}

The dws_server Data Plugin
The dws_server plugin collects utilization statistics from DataWarp servers, if present. This usage information is
within the scope of an application, not the scope of a job. The data is written in JSON dictionary format. DataWarp
server usage information within the scope of a job is available through the dws_job_server plugin. Compute
node usage of DataWarp is available through the dws plugin.

Type scratch File Systems
The following data is collected for type=scratch file systems.

Per realm: dwtype Type of DataWarp file system (scratch)

namespace_count Number of namespaces within the realm

realm_id Realm ID

server_count Number of servers in the realm

server_hostname Server hostname

Per
fragment:

bytes_read Number of bytes read from this fragment

bytes_written Number of bytes written to this fragment

capacity_used Amount of file system capacity used

capacity_max Maximum capacity of fragment

files_created Number of files created in this realm

fs_capacity Capacity of file system to which this fragment belongs

max_window_write Maximum amount of data written during a write window period of time

write_high_water The largest amount of data written

Monitor the System

S2393 222

write_limit Maximum bytes allowed to be written per fragment

write_moving_avg The average amount of data written during a write window period of time

Per
namespace:

namespace_id Namespace ID

bytes_read Number of bytes read from this namespace

bytes_written Number of bytes written to this namespace

files_create_threshold Maximum number of files allowed to be created within this
namespace

file_size_limit Maximum size (bytes) of one file

files_created Number of files created within this namespace

max_offset_read Maximum byte offset read

max_offset_written Maximum byte offset written

num_data_created Total number of data files created on all DataWarp servers

stage_bytes_read Number of staged bytes read

stage_bytes_written Number of staged bytes written

stripe_size Size of each stripe (bytes)

stripe_width Number of stripes in this namespace

substripe_size Size of each substripe (bytes)

substripe_width Number of substripes in per stripe

RUR dws_server / dws_job_server output for type=scratch file systems

This example shows data as written
to /var/opt/cray/log/partition-current/messages-date on the SMW:

uid: 12345, apid: 416746, jobid: 21268, cmdname: xio_p,
plugin:dws_server {{"realm": {"server_count": 1, "fragments": [{
{"capacity_used": 128648781824, "fs_capacity": 3296920076288,
"capacity_max": 128648781824, "max_window_write": 86400,
"files_created": 258, "write_high_water": 3407329284614,
"write_moving_avg": 3407329284614, "bytes_read": 3298534883328,
"write_limit": 32985348833280, "bytes_written": 3407329284614,
"server_hostname": "c0-0c1s1n1"], "namespaces": [{ "namespace_id":
9324, "stripe_width": 1, "stripe_size": 8388608, "bytes_read":
3298534883328, "substripe_width": 12, "stage_bytes_read": 0,
"substripe_size": 8388608, "max_offset_read": 1099511627776,
"files_created": 258, "bytes_written": 3407329284614,
"files_create_threshold": 0, "file_size_limit": 0,
"num_data_created": 258, "stage_bytes_written": 0,
"max_offset_written": 1099511627776 }], "realm_id": 3704}}

Monitor the System

S2393 223

Type cache File Systems
The following data is collected for type=cache file systems.

Per realm: dwtype Type of DataWarp file system (cache)

pfs_path Backing path

realm_id Realm ID

server_count Number of servers in the realm

Per
fragment:

capacity_highwater Maximum number of bytes used in underlying file system

fs_capacity Capacity of file system to which this fragment belongs

max_offset_read Maximum byte offset read

max_offset_threshold Maximum byte offset allowed to be read/written

max_offset_written Maximum byte offset written

pfs_read Number of bytes read from the PFS

pfs_written Number of bytes written to the PFS

window_write_bytes Number of bytes written during a write window period of time

window_write_seconds Number of seconds in a write window period of time

cache_read Number of DataWarp storage bytes read

cache_written Number of DataWarp storage bytes written

RUR dws_server / dws_job_server output for type=cache file systems

This example shows data as written
to /var/opt/cray/log/partition-current/messages-date on the SMW:

uid: 12345, apid: 416742, jobid: 21266, cmdname: fdfa1,
{plugin:dws_server "realm": {"fragments": [{ "server_hostname":
"c0-0c1s1n2", "window_write_bytes": 82165273, "fs_capacity": 0,
"capacity_highwater": 0, "window_write_seconds": 21600000,
"cache_written": 82165273, "max_offset_read": 183609,
"max_offset_written": 8388608, "pfs_read": 82165273,
"max_offset_threshold": 0, "pfs_written": 0, "cache_read":
6741137 }, { "server_hostname": "c0-0c1s1n1", "window_write_bytes":
101616737, "fs_capacity": 3856795508736, "capacity_highwater":
2657973817344, "window_write_seconds": 21600000, "cache_written":
101616737, "max_offset_read": 95786, "max_offset_written": 8388608,
"pfs_read": 101616737, "max_offset_threshold": 0, "pfs_written": 0,
"cache_read": 6586671 }], "server_count": 2, "realm_id": 1902,
"pfs_path": "/lus/peel" }}}

Monitor the System

S2393 224

The energy Data Plugin
The energy plugin collects compute node energy usage data. The amount of data reported and the format in
which it is written is determined by the value of arg set for the energy plugin within the cray_rur service
settings.

If arg is not set or set to json-dict (default), the plugin reports the following extended energy data, written in
JSON dictionary format:

cpu_energy_used The total energy (joules) used by each node's CPU energy domain. This
statistic is zero for non-KNL nodes.

error If a Python exception occurs during the post or staging scripts, the
following data is reported:

traceback Stack frame list

type Python exception type

value Python exception parameter

nid NID on which exception occurred

cname cname on which exception occurred

memory_energy_used The total energy (joules) used by each node's memory energy domain.
This statistic is zero for non-KNL nodes.

nodes Number of nodes in job

nodes_cpu_throttled Number of nodes experiencing CPU power/thermal throttling

nodes_memory_throttled Number of nodes experiencing memory power/thermal throttling

nodes_power_capped Number of nodes with nonzero power cap

nodes_throttled Number of nodes experiencing any of the following types of throttling:

● CPU power/thermal throttling

● Memory power/thermal throttling

nodes_with_changed_power_cap Number of nodes with power caps that changed during execution. On
nodes with accelerators, this value includes the number of accelerators
with power caps that changed.

max_power_cap Maximum nonzero power cap

energy_used The total energy (joules) used across all nodes. On nodes with
accelerators, this value includes accel_energy_used, the total energy
used by the accelerators.

max_power_cap_count Number of nodes with the maximum nonzero power cap

min_power_cap Minimum nonzero power cap

min_power_cap_count Number of nodes with the minimum nonzero power cap

On nodes with accelerators, the extended data also include the following data:

accel_energy_used Total accelerator energy (joules) used

nodes_accel_power_capped Number of accelerators with nonzero power cap

max_accel_power_cap Maximum nonzero accelerator power cap

Monitor the System

S2393 225

max_accel_power_cap_count Number of accelerators with the maximum nonzero power cap

min_accel_power_cap Minimum nonzero accelerator power cap

min_accel_power_cap_count Number of accelerators with the minimum nonzero power cap

If arg contains the verbose option, a log per node is generated in addition to the standard summary log. The
verbose logs include the following data:

cname The cname of the node

nid The NID of the node

energy_used The total energy (joules) on the node. On nodes with an accelerator, this value
includes accel_energy_used. On a KNL node, this value includes
cpu_energy_used and cpu_memory_used.

cpu_energy_used The total energy (joules) used in the node's CPU energy domain. This statistic is
zero on non-KNL nodes.

memory_energy_used The total energy (joules) used in the node's memory energy domain. This statistic
will be zero on non-KNL nodes

cpu_throttled Non-zero if the node experienced CPU power/thermal throttling

memory_throttled Non-zero if the node experienced memory power/thermal throttling

start_power_cap Power cap at start of execution, if set

stop_power_cap Power cap at end of execution, if set

accel_energy_used Total accelerator energy (joules) used

start_accel_power_cap Accelerator power cap at start of execution, if set

stop_accel_power_cap Accelerator power cap at end of execution, if set

changed_power_cap A power cap changed (includes changed accelerator power cap)

RUR extended energy output

This example shows extended energy data as written
to /var/opt/cray/log/partition-current/messages-date on the SMW:

2017-02-03T15:44:23.583598-05:00 c0-0c0s7n1 RUR 6048
p1-20160906t093257 [RUR@34] uid: 12345, apid: 18554, jobid: 0,
cmdname: /bin/cat, plugin: energy {"nodes_throttled": 0,
"memory_energy_used": 120,"min_accel_power_cap_count": 0,
"nodes_with_changed_power_cap": 0,"max_power_cap_count": 0,
"energy_used": 1214, "max_power_cap": 0,"nodes_memory_throttled": 0,
"accel_energy_used": 0,"max_accel_power_cap_count": 0,
"nodes_accel_power_capped": 0,"min_power_cap": 0,
"max_accel_power_cap": 0, "min_power_cap_count":
0,"min_accel_power_cap": 0, "nodes_power_capped": 0, "nodes": 4,
"cpu_energy_used": 752, "nodes_cpu_throttled": 0}

If arg is set to json-list (deprecated), the plugin reports the following, written in JavaScript Object Notation
(JSON) list format:

energy_used The total energy (joules) used across all nodes. On nodes with accelerators, this value includes
accel_energy_used, the total energy used by the accelerators. On KNL nodes, this value

Monitor the System

S2393 226

includes cpu_energy_used and cpu_memory_used, the total energy used by the CPU and
memory energy domains.

RUR energy output using json-list (deprecated)

This example shows default energy data as written
to /var/opt/cray/log/partition-current/messages-date on the SMW:

2017-01-30T11:19:06.545114-05:00 c0-0c0s2n2 RUR 18657
p2-20130829t090349 [RUR@34] uid: 12345, apid: 10963, jobid: 0,
cmdname: /opt/intel/vtune_xe_2013/bin64/amplxe-cl plugin: energy
['energy_used', 318]

The gpustat Data Plugin
The gpustat plugin collects the following utilization statistics for NVIDIA GPUs, if present. The data is written in
JSON list format.

maxmem Maximum memory used across all nodes

summem Total memory used across all nodes

gpusecs Time spent processing on GPUs

RUR gpustat output

This example shows gpustat data as written
in /var/opt/cray/log/partition-current/messages-date on the SMW.

2017-02-03T15:50:42.761257-05:00 c0-0c0s2n2 RUR 11329
p2-20130709t145714 [RUR@34] uid: 12345, apid: 8410, jobid: 0,
cmdname: /tmp/dostuff plugin: gpustats ['maxmem', 108000, 'summem',
108000, 'gpusecs', 44]

The memory Data Plugin
The memory plugin collects information from /proc and /sys that is useful when assessing the memory
performance of an application or job. The data is written in JSON dictionary format. The type of data reported is
determined by the value of arg set for the memory within the cray_rur service settings.

IMPORTANT: The memory plugin does not provide consolidated information for all nodes within an
application; instead it reports memory statistics for each node within the application. This can result in a
large amount of RUR output data for systems of even modest size. When the memory plugin is enabled, it
produces a significant amount of output.

If arg is not set (default), the plugin reports the following data:

%_of_boot_mem The % of boot memory for each order chunk in /proc/buddyinfo summed across all
memory zones

Active(anon) Total amount of memory in active use by the application

Active(file) Total amount of memory in active use by cache and buffers

boot_freemem Contents of /proc/boot_freemem

Monitor the System

S2393 227

current_freemem Contents of /proc/current_freemem
free Number of hugepages that are not yet allocated

hugepages-sizekB The hugepage size for the select entries
from /sys/kernel/mm/hugepages/hugepages-*kB/*

Inactive(anon) Total amount of memory that is candidate to be swapped out

Inactive(file) Total amount of memory that is candidate to be dropped from cache

nr Number of hugepages that exist at this point

resv Number of hugepages committed for allocation, but no allocation has occurred

Slab Total amount of memory used by the kernel

surplus Number of hugepages above nr

RUR default memory output

This example shows the default memory data as written
to /var/opt/cray/log/partition-current/messages-date on the SMW.

2017-02-03T11:37:24.480982-05:00 c0-0c0s0n2 RUR 23710
p0-20140321t091957 [RUR@34] uid: 12345, apid: 33079, jobid: 0,
cmdname: /bin/hostname, plugin: memory {"current_freemem": 21858372,
"meminfo": {"Active(anon)": 35952, "Slab": 105824, "Inactive(anon)":
1104}, "hugepages-2048kB": {"nr": 5120, "surplus": 5120},
"%_of_boot_mem": ["67.23", "67.23", "67.23", "67.22", "67.21",
"67.18", "67.11", "67.04", "66.94", "66.83", "66.77", "66.66",
"66.53", "66.38", "65.87", "65.07", "63.05", "61.43"], "nid": "8",
"cname": "c0-0c0s2n0", "boot_freemem": 32432628}

If arg is set to extended_buddy, the output relating to /proc/buddyinfo includes NUMA node granularity
information in addition to the existing node granularity information. This information is useful when troubleshooting
certain fragmentation related issues.

RUR extended memory output

This example shows extended memory data as written
to /var/opt/cray/log/partition-current/messages-date on the SMW:

2017-02-03T11:37:24.480982-05:00 c0-0c0s0n2 RUR 23710
p0-20140321t091957 [RUR@34] uid: 12345, apid: 33079, jobid: 0,
cmdname: /bin/hostname, plugin: memory {"current_freemem": 21858372,
"meminfo": {"Active(anon)": 35952, "Slab": 105824, "Inactive(anon)":
1104}, "hugepages-2048kB": {"nr": 5120, "surplus": 5120},
"Node_0_zone_DMA": ["0.05", "0.05", "0.05", "0.05", "0.05", "0.05",
"0.05", "0.05", "0.05", "0.04", "0.04", "0.03", "0.00", "0.00",
"0.00", "0.00", "0.00", "0.00"],"%_of_boot_mem": ["67.23", "67.23",
"67.23", "67.22", "67.21", "67.18", "67.11", "67.04", "66.94",
"66.83", "66.77", "66.66", "66.53", "66.38", "65.87", "65.07",
"63.05", "61.43"], "nid": "8", "cname": "c0-0c0s2n0", "boot_freemem":
32432628, "Node_0_zone_DMA32": ["6.07", "6.07", "6.07", "6.07",
"6.07", "6.07", "6.07", "6.06", "6.05", "6.04", "6.01", "5.94",
"5.86", "5.76", "5.46", "4.85", "3.23", "3.23"], "Node_0_zone_Normal":
["61.11", "61.11", "61.11", "61.11", "61.09", "61.07", "60.99",

Monitor the System

S2393 228

"60.93", "60.84", "60.75", "60.72", "60.70", "60.67", "60.62",
"60.42", "60.22", "59.81", "58.20"]}

The nodeuse Data Plugin
The nodeuse plugin collects the following compute node usage data within the scope of an application. The data
is written in JSON dictionary format.

nodes Number of nodes reserved

nidlist NIDs of the reserved nodes

RUR nodeuse output

This example shows nodeuse data as written
to /var/opt/cray/log/partition-current/messages-date on the SMW:

2017-01-08T15:44:23.583598-05:00 uid: 12345, apid: 35489, jobid: 0,
cmdname: /usr/bin/df, plugin: nodeuse {"nodes": 6, "nidlist":
"36-38, 40-41, 43"}

The taskstats Data Plugin
The taskstats plugin collects process accounting data. The amount of data reported and the format in which it
is written is determined by the value of arg set for the taskstats plugin within the cray_rur service settings.

If arg is not set or set to json-dict (default), the plugin reports the following basic process accounting data
similar to that provided by UNIX process accounting or getrusage. This data is written in JSON dictionary
format. If arg is set to json-list (deprecated), the data is written in JSON list format. These values are sums
across all nodes, except for the memory used, which is the maximum value across all nodes.

core Set to 1 if core dump occurred

exitcode Lists all unique exit codes

max_rss Maximum memory used

rchar Characters read by process

stime System time

utime User time

wchar Characters written by process

RUR taskstats output

This example shows taskstats output as written
to /var/opt/cray/log/partition-current/messages-date on the SMW.

For a job that exits normally:

2017-02-02T11:09:49.457770-05:00 c0-0c1s1n2 RUR 2417
p0-20161101t153028 [RUR@34] uid: 12345, apid: 86989, jobid: 0,
cmdname: /lus/tmp/rur01.2338/./CPU01-2338 plugin: taskstats {"utime":

Monitor the System

S2393 229

10000000, "stime": 0, "max_rss": 940, "rchar": 107480, "wchar": 90,
"exitcode:signal": ["0:0"], "core": 0}
For a job that core dumps:

2017-02-02T11:12:45.020716-05:00 c0-0c1s1n2 RUR 3731
p0-20131101t153028 [RUR@34] uid: 12345, apid: 86996, jobid: 0,
cmdname: /lus/tmp/rur01.3657/./exit04-3657 plugin: taskstats {"utime":
4000, "stime": 144000, "max_rss": 7336, "rchar": 252289, "wchar": 741,
"exitcode:signal": ["0:9", "139:0", "0:11", "0:0"], "core": 1}

If arg is set to xpacct, the plugin also provides the following extended process accounting data similar to that
which was collected by the deprecated Cray System Accounting (CSA).

abortinfo If abnormal termination occurs, a list of abort_info fields is reported

apid Application ID as defined by application launcher

bkiowait Total delay time (ns) waiting for synchronous block I/O to complete

btime UNIX time when process started

comm String containing process name. May be different than the header, which is the process run by the
launcher.

coremem Integral of RSS used by process in MB-usec

ecode Process exit code

etime Total elapsed time in microseconds

gid Group ID

jid Job ID - the PAGG job container used on the compute node

majfault Number of major page faults

minfault Number of minor page faults

nice POSIX nice value of process

nid String containing node ID

pgswapcnt Number of pages swapped; should be 0 on Cray compute nodes

pid Process ID

pjid Parent job ID - the PAGG job container on the MOM node

ppid Parent process ID

prid Job project ID

rcalls Number of read system calls

rchar Characters read by process

rss RSS highwater mark

1 The current memory usage is added to these counters (i.e., coremem, vm) every time. A tick is charged to a
task's system time. Therefore, at the end we will have memory usage multiplied by system time and an
average usage per system time unit can be calculated.

Monitor the System

S2393 230

sched Scheduling discipline used on node

uid User ID

vm Integral of virtual memory used by process in MB-usecs2

wcalls Number of write system calls

wchar Characters written by process

RUR extended taskstats output

This example shows RUR extended taskstats output:

2017-02-03T10:29:38.285378-05:00 c0-0c0s1n1 RUR 24393
p1-20131018t081133 [RUR@34] uid: 12345, apid: 370583, jobid: 0,
cmdname: /bin/cat, plugin: taskstats {"btime": 1386061749, "etime":
8000, "utime": 0, "stime": 4000, "coremem": 442, "max_rss": 564,
"max_vm": 564, "pgswapcnt": 63, "minfault": 15, "majfault": 48,
"rchar": 2608, "wchar": 686, "rcalls": 19, "wcalls": 7, "bkiowait":
1000, "exitcode:signal": [0], "core": 0]

If arg is set to xpacct, per-process, the plugin reports extended accounting data for every compute node
process rather than a summary of all processes for an application. per-process must be set in combination with
xpacct.

CAUTION: If per-process is set and many processes are run on each node, the volume of data
generated and stored on disk can become an issue.

RUR per-process taskstats output

This example shows RUR per-process taskstats output.

2017-02-03T13:25:34.446167-06:00 c0-0c2s0n2 RUR 7623
p3-20131202t090205 [RUR@34] uid: 12345, apid: 1560, jobid: 0,
cmdname: ./it.sh, plugin: taskstats {"uid": 12345, "wcalls": 37,
"pid": 2997, "vm": 16348, "jid": 395136991233, "bkiowait": 1201616,
"majfault": 1, "etime": 0, "btime": 1386098731, "gid": 0, "ppid":
2992, "utime": 0, "nice": 0, "sched": 0, "nid": "92", "prid": 0,
"comm": "mount", "stime": 4000, "wchar": 3465, "rss": 1028,
"minfault": 352, "coremem": 1109, "ecode": 0, "rcalls": 22, "pjid":
7045, "pgswapcnt": 0, "rchar": 12208}

2017-02-03T13:25:34.949138-06:00 c0-0c2s0n2 RUR 7623
p3-20131202t090205 [RUR@34] uid: 12345, apid: 1560, jobid: 0,
cmdname: ./it.sh, plugin: taskstats {"uid": 12345, "wcalls": 0, "pid":
2998, "vm": 20268, "jid": 395136991233, "bkiowait": 0, "majfault": 0,
"etime": 0, "btime": 1386098731, "gid": 0, "ppid": 2992, "utime": 0,
"nice": 0, "sched": 0, "nid": "92", "prid": 0, "apid": 1560, "comm":
"ls", "stime": 4000, "wchar": 0, "rss": 1040, "minfault": 360,

2 The current memory usage is added to these counters (i.e., coremem, vm) every time. A tick is charged to a
task's system time. Therefore, at the end we will have memory usage multiplied by system time and an
average usage per system time unit can be calculated.

Monitor the System

S2393 231

"coremem": 3140, "ecode": 0, "rcalls": 19, "pjid": 7045, "pgswapcnt":
0, "rchar": 10629}

The timestamp Data Plugin
The timestamp plugin collects the start and end times of an application or job.

RUR timestamp output

This example shows timestamp data, as written
in /var/opt/cray/log/partition-current/messages-date on the SMW, for an
application that slept 20 seconds:

2017-01-30T14:32:07.593469-05:00 c0-0c0s5n2 RUR 12882
p3-20130830t074847 [RUR@34] uid: 12345, apid: 6640, jobid: 0,
cmdname: /bin/sleep plugin: timestamp APP_START 2013-08-30T14:31:46CDT
APP_STOP 2013-08-30T14:32:06CDT

The file Output Plugin
The file plugin allows RUR data to be stored to a flat text file on any file system to which the login node can
write. This plugin is also intended as a very simple guide for anyone interested in writing an output plugin.

This example shows sample output from file to a location defined in the RUR configuration file:

uid: 1000, apid: 8410, jobid: 0, cmdname: /tmp/dostuff plugin:
taskstats ['utime', 32000, 'stime', 132000, 'max_rss', 1736, 'rchar',
44524, 'wchar', 289] uid: 1000, apid: 8410, jobid: 0, cmdname: /tmp/
dostuff plugin: energy ['energy_used', 24551] uid: 1000, apid: 8410,
jobid: 0, cmdname: /tmp/dostuff plugin: gpustats ['maxmem', 108000,
'summem', 108000]

The llm Output Plugin
The llm plugin aggregates log messages from various Cray nodes and places them on the SMW. llm has its
own configuration options, but typically it will place RUR messages into the messages log
file /var/opt/cray/log/partition-current/messages-date on the SMW. The messages shown in the
previous sections are in LLM log format.

The user Output Plugin
The user plugin writes RUR output for a user's application to the user's home directory (default) or a user-defined
location, only if the user has indicated that this behavior is desired (as described below).

The naming of the default output file(s), rur.suffix, is dependent on the value of the argument arg, which
defines a report type and is set in the user section of the RUR configuration file. If arg is set to:

apid An output file is created for each application executed and suffix is the apid.

jobid An output file is created for each job submitted and suffix is the jobid
single All output is placed in a single file and no suffix is appended to the output file name.

Monitor the System

S2393 232

User Options
Users have the option to opt-in or out for the user plugin, redirect plugin output to a specific file or directory, or
override the default report type.

● By default, RUR data is written to a user's directory. A user must either create the file
~/.rur/user_output_optin to indicate that data should be written, or create a file that initiates one of the
following two options.

1. Users may redirect the output of RUR by specifying a redirect location in
~/.rur/user_output_redirect. The contents of this file must be a single line that specifies the
absolute or relative (from the user's home directory) path of the directory or file to which the RUR output
data is to be written. If the redirect file either does not exist, points to a path that does not exist, or points
to a path to which the user does not have write permission, then the output is written to the user's home
directory.

2. A user with an existing ~/.rur/user_output_redirect file can temporarily stop RUR data from
being written by setting the redirect path to /dev/null.

● Additionally, the user may override the default report type by specifying a valid report type in
~/.rur/user_output_report_type. Valid report types are apid, jobid, or single, resulting in the
user's RUR data being written to one file per application, one file per job, or a single file, respectively. If the file
~/.rur/user_output_report_type is empty or contains an invalid type, then the default report type, as
defined in the configuration file, is created.

The database Example Output Plugin
The database plugin is provided as a guide for sites wanting to output RUR data to a site-supplied database.
Sites will need to configure their own systems, provide an external database, create their own tables, and modify
database_output.py to collect the desired data.

MySQL is the database supported by the example plugin. The following arguments are defined for connecting to a
database:

● DB_NAME='rur'
● DB_USER='rur_user'
● DB_PASS='rur_pass'
● DB_HOST='rur_host'

The database plugin collects the values: energy_used, apid, jobid, and uid, and saves this data to a
table, energy. It does this by performing the following:

● Digests RUR data into a dictionary and saves it to class DbData
● Creates rules for saving data collected in DbData to particular tables

● Uses the rules to scan the DbData dictionary and INSERT that data into a database

Cray recommends that the database is not hosted on SDB or login nodes. It should also be noted that,
depending on job load, interacting with an external database may cause system latency.

Create Custom RUR Data Plugins
A data plugin is comprised of a staging component and a post processing component. The data plugin staging
component is called by rur-stage.py on the compute node prior to the application/job running and again after
the application/job has completed. The staging component may reset counters before application/job execution

Monitor the System

S2393 233

and collect them after application/job completion, or it may collect initial and final values prior to and after
application/job execution, respectively, and then calculate the delta values. Python functions have been defined to
simplify writing plugins, although it is not necessary for the plugin to be written in Python. The interface for the
data plugin staging component is through command line arguments.

Data Plugin Staging Component
All data plugin staging components must support the following arguments:

--apid=apid Defines the application ID of the running application.

--timeout=time Defines a timeout period in seconds during which the plugin must finish
running. Set to 0 for unlimited; default is unlimited.

--pre Indicates the plugin is being called prior to the application/job.

--post Indicates the plugin is being called after the application/job.

--outputfile=output_file Defines where the output data is written. Each plugin should define a default
output file in /var/spool/RUR/ if this argument is not provided.

--arg=arg A plugin-specific argument, set in the RUR config file. RUR treats this as an
opaque string.

The output of an RUR data plugin staging component is a temporary file located in /var/spool/RUR on the
compute node. The file name must include both the name of the plugin, as defined in the RUR config file,
and .apid. The RUR gather phase will automatically gather the staged files from all compute nodes after the
application/job has completed and place it in gather_dir as defined in the configuration file.

Data plugin staging component

#
Copyright (c) 2013 Cray Inc. All rights reserved.
#
Sample data plugin staging component
#
#!/usr/bin/env python
import sys, os, getopt
from rur_plugins import rur_plugin_args
def main():
 apid, inputfile, outputfile, timeout, pre, post, \
 parg = rur_plugin_args(sys.argv[1:])
 if outputfile is "":
 outputfile = "/var/spool/RUR/pluginname."+str(apid)
 if (pre==1):
 zero_counters()
 else:
 write_postapp_stateto(outputfile)

if __name__ == "__main__":
 main()

Data Plugin Post Processing Component
A data plugin also requires a post processing component that processes the data staged by the staging
component and collected during the RUR gather phase. The post processing component is called by

Monitor the System

S2393 234

rur-post.py. The input file contains records, one node per line, of all of the statistics created by the staging
component. The output of the post processing component is a file containing the summary of data from all
compute nodes.

All data plugin post processing components must support the following arguments:

--apid=apid Defines the application ID of the running application.

--timeout=time Defines a timeout period in seconds during which the plugin must finish
running. Set to 0 for unlimited; default is unlimited.

--inputfile=input_file Specifies the file from which the plugin gets its input data.

--outputfile=output_file Specifies the file to which the plugin writes its output data.

Data plugin post processing component

#
Copyright (c) 2013 Cray Inc. All rights reserved.
#
Sample data plugin post processing component
#
#!/usr/bin/env python
import sys, os
from rur_plugins import rur_args

def main():
 apid, inputfile, outputfile, timeout = rur_args(sys.argv[1:])
 if outputfile is "":
 outputfile = inputfile + ".out"

 pc = PostCompute()
 pc.process_file(inputfile)
 formated = pc.present_entries([('plugin_foo_data','sum')])
 fout=open(outputfile, 'w+')
 fout.write("energy %s" % formated)

if __name__ == "__main__":
 main()

Create Custom RUR Output Plugins
Output plugins allow RUR data to be outputted to an arbitrary backing store. This can be a storage device or
another piece of software that then consumes the RUR data. The output plugin is passed a number of command
line arguments that describe the application/job run and provide a list of input working files (the output of data
plugin post processing components). The plugin takes the data in the working files and exports it to the
destination specified in the RUR configuration file for the specific output plugin.

Data passed to custom output plugins can be optionally configured to be JSON-formatted by adding the
use_json argument to the [global] section of the configuration file and setting it to
True, yes, 1, or enable.

TIP: If there is an error from an output plugin, the error message appears in the ALPS
log /var/opt/cray/alps/log/apsys on the service node rather than the LLM logs on the SMW.

Monitor the System

S2393 235

Output Plugin

#
Copyright (c) 2013 Cray Inc. All rights reserved.
#
Sample output plugin
#
#!/usr/bin/env python
import sys, os
from rur_plugins import rur_output_args

def main():
 apid, jobid, uid, cmdname, inputfilelist, timeout, \
 parg = rur_output_args(sys.argv[1:])

 outfile = open(parg, "a")
 for inputfile in inputfilelist:
 infile = open(inputfile, "r")
 lines = infile.readlines()
 for line in lines:
 outfile.write(line)
 infile.close()
 outfile.close()

Implement a Site-Written RUR Plugin

About this task
For a site written plugin to run, it must be added to the cray_rur service settings and enabled.

Procedure

1. Ensure that the site written plugin is located on a file system that is readable by compute nodes, owned by
root, and not writeable by non-root users.

2. Invoke an interactive configurator session.

smw# cfgset update -m interactive -s -l interactive cray_rur p0
Service Configuration Menu (Config Set: p0, type: cle)

 cray_rur [status: enabled] [validation: valid]

 Selected # Settings Value/Status (level=basic)

...
 42) data_plugins [5 sub-settings unconfigured, select
 and enter C to add entries]
 43) output_plugins [4 sub-settings unconfigured, select
 and enter C to add entries]

3. Add a site-written data plugin.

a. Select the number corresponding to the data_plugins setting.

RUR service Menu [default: save & exit - Q] $ 42

Monitor the System

S2393 236

The setting is highlighted:

 * 42) data_plugins True
b. Add a data plugin name.

RUR service Menu [default: configure - C] $ C
...
cray_rur.settings.data_plugins
[<cr>=set 0 entries, +=add an entry, ?=help, @=less] $ +
cray_rur.settings.data_plugins.data.plugin_name
[<cr>=set '', <new value>, ?=help, @=less] $ sitedataplug

c. Add the complete path to the data plugin's staging script.

cray_rur.settings.data_plugins.data.sitedataplug.stage
[<cr>=set 'none', <new value>, ?=help, @=less] $ /opt/cray/rur/default/bin/
sitedataplug_stage.py

d. Add the complete path to the data plugin's post script.

cray_rur.settings.data_plugins.data.sitedataplug.post
[<cr>=set 'none', <new value>, ?=help, @=less] $ /opt/cray/rur/default/bin/
sitedataplug_post.py

e. (Optional) Add a data plugin argument arg.

cray_rur.settings.data_plugins.data.sitedataplug.arg
[<cr>=set 'none', <new value>, ?=help, @=less] $ <cr>

f. Enable the data plugin.

cray_rur.settings.data_plugins.data.sitedataplug.enable
[<cr>=set 'true', <new value>, ?=help, @=less] $ <cr>
The configured values are displayed:

 1) 'sitedataplug'
 a) stage: /opt/cray/rur/default/bin/sitedataplug_stage.py
 b) post: /opt/cray/rur/default/bin/sitedataplug_post.py
 c) arg: none
 d) enable: True

g. Set the completed data plugin entry.

cray_rur.settings.data_plugins
[<cr>=set 1 entries, +=add an entry, ?=help, @=less] $ <cr>
The data_plugins setting is updated.

 42) data_plugins
 plugin_name: sitedataplug [OK]

4. Add a site-written output plugin.

a. Select the number corresponding to the output_plugins setting.

RUR service Menu [default: save & exit - Q] $ 43
The setting is highlighted:

Monitor the System

S2393 237

 * 43) output_plugins True
b. Add an output plugin name.

RUR service Menu [default: configure - C] $ C
...
cray_rur.settings.output_plugins
[<cr>=set 0 entries, +=add an entry, ?=help, @=less] $ +
cray_rur.settings.output_plugins.data.plugin_name
[<cr>=set '', <new value>, ?=help, @=less] $ siteoutplug

c. Add the path to the output plugin script or binary.

cray_rur.settings.output_plugins.data.siteoutplug.output
[<cr>=set 'none', <new value>, ?=help, @=less] $ /opt/cray/rur/site/bin/
siteoutplug_output.py

d. (Optional) Add an output plugin argument arg.

cray_rur.settings.output_plugins.data.siteoutplug.arg
[<cr>=set 'none', <new value>, ?=help, @=less] $ <cr>

e. Enable the output plugin.

cray_rur.settings.output_plugins.data.siteoutplug.enable
[<cr>=set 'true', <new value>, ?=help, @=less] $ <cr>
The configured values are displayed:

 1) 'siteoutplug'
 a) output: /opt/cray/rur/site/bin/siteoutplug_output.py
 b) arg: none
 c) enable: True

f. Set the completed output plugin entry.

cray_rur.settings.output_plugins
[<cr>=set 1 entries, +=add an entry, ?=help, @=less] $ <cr>
The output_plugins setting is updated.

 42) output_plugins
 plugin_name: siteoutplug [OK]

5. Save and exit the configurator.

RUR service Menu [default: save & exit - Q] $ Q

To apply these configuration changes, refresh the appropriate nodes with the updated config set.

Additional Plugin Examples
This is a set of RUR plugins that report information about the number of available huge pages on each node. The
huge page counts are reported in /proc/buddyinfo. There are two versions of the staging component: one
that reports what is available and the second that reports changes during the application run.

Monitor the System

S2393 238

Huge pages data plugin staging component (version A)

#
Copyright (c) 2013 Cray Inc. All rights reserved.
#
This is an RUR plugin that reports information about the number of
available
huge pages on each node. This is reported in /proc/buddyinfo.
#
Each node reports its nid and the number of available pages of
each size.
#
#!/usr/bin/env python
import sys, os, getopt
from rur_plugins import rur_plugin_args
def main():
 apid, inputfile, outputfile, timeout, pre, post, parg
=rur_plugin_args(sys.argv[1:])
 if outputfile == 0:
 outputfile = "/var/spool/RUR/buddyinfo."+str(apid)
 if (pre==1):
 zero_counters()
 else:
 nidf = open("/proc/cray_xt/nid", "r")
 n = nidf.readlines()
 nid = int(n[0])
 inf = open("/proc/buddyinfo", "r")
 b = inf.readlines()
 sizes = dict([('2M' , 0), ('4M', 0), ('8M', 0), ('16M',
0), ('32M', 0), ('64M', 0)])

 for line in b:
 l = line.split()
 sizes['2M'] += int(l[13])
 sizes['4M'] += int(l[14])
 sizes['8M'] += int(l[15])
 sizes['16M'] += int(l[16])
 sizes['32M'] += int(l[17])
 sizes['64M'] += int(l[18])

 o = open(outputfile, "w")
 o.write("{6} {0} {1} {2} {3} {4}
{5}".format(sizes['2M'],sizes['4M'], \
 sizes['8M'], sizes['16M'], sizes['32M'], sizes['64M'], nid))
 o.close()

if __name__ == "__main__":
 main()

Huge pages data plugin staging component (version B)

#
Copyright (c) 2013 Cray Inc. All rights reserved.
#
This is an RUR plugin that reports information about the number of
available
huge pages on each node. This is reported in /proc/buddyinfo.
#

Monitor the System

S2393 239

This plugin records the number of available pages before the job
is launched.
At job completion time it reports the change
#
#!/usr/bin/env python
import sys, os, getopt
from rur_plugins import rur_plugin_args
def main():
 apid, inputfile, outputfile, timeout, pre, post, parg
=rur_plugin_args(sys.argv[1:])
 if outputfile == 0:
 outputfile = "/var/spool/RUR/buddyinfo."+str(apid)
 if (pre==1):
 inf = open("/proc/buddyinfo", "r")
 b = inf.readlines()
 sizes = dict([('2M' , 0), ('4M', 0), ('8M', 0),
('16M', 0), ('32M', 0), ('64M', 0)])
 for line in b:
 l = line.split()
 sizes['2M'] += int(l[13])
 sizes['4M'] += int(l[14])
 sizes['8M'] += int(l[15])
 sizes['16M'] += int(l[16])
 sizes['32M'] += int(l[17])
 sizes['64M'] += int(l[18])

 o = open("/tmp/buddyinfo_save", "w")
 o.write("{0} {1} {2} {3} {4}
{5}".format(sizes['2M'],sizes['4M'], \
 sizes['8M'], sizes['16M'], sizes['32M'],
sizes['64M']))
 o.close()
 else:
 nidf = open("/proc/cray_xt/nid", "r")
 n = nidf.readlines()
 nid = int(n[0])
 inf = open("/proc/buddyinfo", "r")
 b = inf.readlines()
 sizes = dict([('2M' , 0), ('4M', 0), ('8M', 0),
('16M', 0), ('32M', 0), ('64M', 0)])

 for line in b:
 l = line.split()
 sizes['2M'] += int(l[13])
 sizes['4M'] += int(l[14])
 sizes['8M'] += int(l[15])
 sizes['16M'] += int(l[16])
 sizes['32M'] += int(l[17])
 sizes['64M'] += int(l[18])

 obf = open("/tmp/buddyinfo_save", "r")
 ob = obf.readlines()
 n=0

 obd0 = ob[0]
 obd = obd0.split()

 diff = [
 (int(obd[0]) - sizes['2M']),
 (int(obd[1]) - sizes['4M']),
 (int(obd[2]) - sizes['8M']),

Monitor the System

S2393 240

 (int(obd[3]) - sizes['16M']),
 (int(obd[4]) - sizes['32M']),
 (int(obd[5]) - sizes['64M'])
]

 o = open(outputfile, "w")
 # uncomment the following line to get the actual sizes
 #o.write("sizes {6} {0} {1} {2} {3} {4}
{5}\n".format(sizes['2M'],sizes['4M'], \
 sizes['8M'], sizes['16M'], sizes['32M'],
sizes['64M'], nid))
 o.write("diff {6} {0} {1} {2} {3} {4} {5}".format(diff[0],
diff[1], diff[2], \
 diff[3], diff[4], diff[5], nid))
 o.close()
 os.unlink("/tmp/buddyinfo_save")

if __name__ == "__main__":
 main()

Huge pages data plugin post processing component

#
Copyright (c) 2013 Cray Inc. All rights reserved.
#
This is a RUR postprocessing pluging for the buddyinfo data
collection. It copies the input files to output, adding a
"buddyinfo" label.
#
#!/usr/bin/env python
import sys, os
from rur_plugins import rur_args

def main():
 apid, inputfile, outputfile, timeout = rur_args(sys.argv[1:])
 if outputfile == 0:
 outputfile = inputfile + ".out"

 fin=open(inputfile, "r")
 l = fin.readlines()

 fout=open(outputfile, 'w+')
 for line in l:
 fout.write("buddyinfo {0}".format(line))

if __name__ == "__main__":
 main()

Application Completion Reporting (ACR) to RUR Migration Tips
Cray supplied RUR data plugins collect the same data found in Mazama's Application Completion Reporting
(ACR) feature (deprecated), but RUR does not include a reporting utility like mzreport. When using RUR's llm
output plugin, the type of data reported by mzreport can be extracted from the output files as demonstrated in
the following sections.

Monitor the System

S2393 241

ACR Job Reporting
The information provided by mzreport -j and mzreport --job can easily be obtained in the RUR
environment from the log files /var/opt/cray/log/partition-current/messages-date by invoking the
following command:

smw:~ # grep -e "RUR" messages-* |grep -e "jobid: jobid"

ACR Timespan Reporting
In ACR, mzreport -t and mzreport -T control the span of time over which job completions are reported. The
following example is a simple Python script, timesearch.py, that provides this functionality.

#cat timesearch.py
#!/usr/bin/env python
for rurline in [line for line in open(sys.argv[1], 'r') if 'RUR' in line]:
 if (rurline.split(' ')[1] > sys.argv[2]) and (rurline.split(' ')[1] <
sys.argv[3]):
 print rurline

The script is called with the log file of interest and the desired start/stop time stamps, where start_time and
end_time are formatted as "yyyy-mm-ddThh:mm:ss", as follows:

smw:~ # python ./timesearch.py messages-date "start_time" "end_time"

ACR Exit Code Reporting
The get_exit.py Python script listed here provides a list of the user IDs with the most non-zero exit codes.

cat get_exit.py
#!/usr/bin/env python
import os,sys,re

statre = re.compile("'(\w*):(\w*)',\s*\[('(\w*):(\w*)'(,)?)+\]")
statsre = re.compile("(\w*):(\w*)")
uidre = re.compile("uid:\s*(\w*)")
cnt = {}

for rurline in [line for line in open(sys.argv[1], 'r') if 'RUR' in line]:
 if 'taskstats' in rurline:
 sus = statre.search(rurline)
 status = sus.group()
 stats = statsre.findall(status)
 for stat in stats[1:]:
 if stat[0] != '0':
 uid = int(uidre.findall(rurline)[0])
 if cnt.get(str(uid)):
 cnt[str(uid)] += 1
 else:
 cnt[str(uid)] = 1

x = sorted(cnt, key = cnt.get, reverse=True)
print "uids with the most non-zero exit codes %s" % x[:sys.argv[2]]

The script is called with the log file of interest and the number of user IDs on which to report, as follows:

smw:~ # python ./get_exit.py messages-date num

Monitor the System

S2393 242

Application Resource Utilization (ARU) to RUR Migration Tips
Sites that use ARU (deprecated) will have an easy transition to RUR as all of the data provided in ARU is
available in RUR, but in a slightly different format.

This example shows that the following ARU output is available by enabling the taskstats
plugin's default behavior:

ARU output:

2012-11-26T08:52:37.802113-06:00 c0-0c0s0n2 apsys 19864
p0-20121126t060549 -
apid=6240364, Finishing, user=8855, batch_id=114.sdb, exit_code=0,
exitcode_array=0,
exitsignal_array=0, utime=0 stime=0 maxrss=3168 inblocks=0 outblocks=0
cpus=8
start=Mon Nov 26 08:52:37 2012 stop=Wed Dec 31 18:00:00 1969
cmd=growfiles
RUR taskstats default output:

2013-11-02T11:09:49.457770-05:00 c0-0c1s1n2 RUR 2417
p0-20131101t153028 [RUR@34]
uid: 10973, apid: 86989, jobid: 0, cmdname: /lus/esfs/overby/
rur01.2338/./CPU01-2338
plugin: taskstats ['utime', 10000000, 'stime', 0, 'max_rss', 940,
'rchar', 107480,
'wchar', 90, 'exitcode:signal', ['0:0'], 'core', 0]

This example shows that the following ARU output is available by enabling the RUR timestamp
plugin.

ARU output:

2012-11-26T08:53:15.618239-06:00 c0-0c0s0n2 apsys 20604
p0-20121126t060549 -
apid=6240378, Finishing,user=8855, batch_id=121.sdb, exit_code=0,
exitcode_array=0,
exitsignal_array=0, utime=0 stime=0 maxrss=3152 inblocks=0 outblocks=0
cpus=1
start=Mon Nov 26 08:52:51 2012 stop=Wed Dec 31 18:00:00 1969
cmd=close2_01
RUR timestamp plugin output:

2013-08-30T14:32:07.593469-05:00 c0-0c0s5n2 RUR 12882
p3-20130830t074847 [RUR@34] uid: 0,
apid: 6640, jobid: 0, cmdname: /bin/sleep plugin: timestamp APP_START
2013-08-30T14:31:46CDT APP_STOP 2013-08-30T14:32:06CDT

CSA to RUR Migration Tips
The Cray supplied RUR data plugin taskstats, when enabled and configured for extended accounting data,
collects all of the data in the CSA process accounting record with the exception of ac_sbu, the system billing
units.

Monitor the System

S2393 243

RUR extended taskstats output

This example shows RUR extended taskstats output:

2017-02-03T10:29:38.285378-05:00 c0-0c0s1n1 RUR 24393
p1-20131018t081133 [RUR@34] uid: 12345, apid: 370583, jobid: 0,
cmdname: /bin/cat, plugin: taskstats {"btime": 1386061749, "etime":
8000, "utime": 0, "stime": 4000, "coremem": 442, "max_rss": 564,
"max_vm": 564, "pgswapcnt": 63, "minfault": 15, "majfault": 48,
"rchar": 2608, "wchar": 686, "rcalls": 19, "wcalls": 7, "bkiowait":
1000, "exitcode:signal": [0], "core": 0]

RUR does not include the report generation capabilities provided by CSA, however, the type of data reported by
CSA can be extracted from the messages files on the SMW. The following is a short Python script for searching
through these files. It allows filtering for group ID (-g), job ID (-j), user ID (-u), and system time exceeding a
certain value (-s); similar to the csacom filters -g, -j, -u, -O, respectively.

#!/usr/bin/env python
Usage: filter-messages [-g gid] [-j jid] [-u uid] [-s stime] -f messages-date
import os,sys,re,getopt,collections

def getcmdlineargs(args):
 arglist = collections.defaultdict(lambda: 0, {})
 options, remainder = getopt.getopt(args,
 'g:j:u:s:f:',
 ['gid=', 'jid=', 'uid=', 'Stimeexceeds=', 'filename='])

 for opt,arg in options:
 if opt in ('-g', '--gid'):
 arglist['gid'] = arg
 if opt in ('-j', '--jid'):
 arglist['jid'] = arg
 if opt in ('-u', '--uid'):
 arglist['uid'] = arg
 if opt in ('-s', '--Stimeexceeds'):
 arglist['stimeexceeds'] = arg
 if opt in ('-f', '--filename'):
 arglist['filename'] = arg
 return arglist

def reeqgt(tag, restr, rurline, eq):
 retre = re.compile("'" + str(restr) + "'," + "\s*(\w*)")
 field = retre.findall(rurline)
 if field == []:
 return False
 if eq and tag == field[0]:
 return True
 elif (not eq) and tag <= field[0]:
 return True
 return False

arglist = getcmdlineargs(sys.argv[1:])
if not arglist['filename']:
 exit(1)
for rurline in [line for line in open(arglist['filename'], 'r') if 'RUR' in
line]:
 if 'taskstats' in rurline:
 if arglist['jid'] and not (reeqgt(arglist['jid'], 'jid', rurline, 1)):

Monitor the System

S2393 244

 continue
 if arglist['uid'] and not (reeqgt(arglist['uid'], 'uid', rurline, 1)):
 continue
 if arglist['gid'] and not (reeqgt(arglist['gid'], 'gid', rurline, 1)):
 continue
 if arglist['stimeexceeds'] and not (reeqgt(arglist['stimeexceeds'],
'stime',
 rurline, 0)):
 continue

 print "%s" % rurline,

Monitor the System

S2393 245

Modify an Installed System

Configure a Boot Failover Node

Prerequisites
The system must be shut down before invoking the xtcli halt command, which is used in this procedure.

About this task
When a secondary (backup) boot node is configured, boot-node failover occurs automatically when the primary
node fails. If boot node failover was configured during the CLE software installation or upgrade, this procedure is
not needed.

A boot node must have a Fibre Channel or SAS connection to the boot RAID. If boot node failover is enabled,
then each boot node should have such a connection to the boot RAID. Also, each boot node must have an
Ethernet connection to the network shared with the SMW in order to PXE boot and transfer data as a tier1 node.

Procedure

1. Configure cray_multipath for the failover boot node, if cray_multipath is enabled.

cray_multipath is in the global config set and may be inherited by the CLE config set. If the global
cray_multipath is enabled and the CLE cray_multipath is set to inherit from the global config set, then
make the changes in the global cray_multipath service. If the CLE cray_multipath service is enabled
and not set to inherit from the global config set, then make the changes in the CLE cray_multipath
service.

Enter the list of multipath nodes.

Change cray_multipath.settings.multipath.data.node_list, so that it includes both the primary
(active) boot node and the secondary (passive) failover boot node.

This example shows a list of three nodes: an SMW with host ID 1eac4e0c, a primary boot node with cname
c0-0c0s4n1, a secondary boot node with cname c0-2c0s4n1, and an SDB node with cname c0-0c0s3n1.

cray_multipath.settings.multipath.data.node_list:
- 1eac4e0c
- c0-0c0s4n1
- c0-2c0s4n1
- c0-0c0s3n1

2. Configure cray_node_groups to add a failover boot node.

In the CLE config set, the cray_node_groups service should have these settings configured with the proper
cnames for all boot and SDB nodes. The boot_nodes node group should list as members the primary boot
node (c0-0c0s4n1) and the secondary boot node (c0-2c0s3n1).

Modify an Installed System

S2393 246

cray_node_groups.settings.groups.data.group_name.boot_nodes: null
cray_node_groups.settings.groups.data.boot_nodes.description: Default node
 group which contains the primary and failover (if applicable) boot
 nodes associated with the current partition.
cray_node_groups.settings.groups.data.boot_nodes.members:
- c0-0c0s4n1
- c0-2c0s3n1

3. Configure cray_persistent_data to add the boot_nodes node group.

Ensure that this setting includes the boot_nodes node group and the sdb_nodes node group.

cray_persistent_data.settings.mounts.data./var/lib/nfs.client_groups:
- boot_nodes
- sdb_nodes

4. Configure cray_scalable_services to add boot_nodes node group.

Ensure that this setting includes the boot_nodes node group and the sdb_nodes node group.

cray_scalable_services.settings.scalable_service.data.tier1_groups:
- boot_nodes
- sdb_nodes

5. Configure cray_net to add secondary boot node.

These settings define the secondary boot node (backup_bootnode) when using boot node failover. Configure
a host as the second boot node for boot node failover. If using the boot node failover feature, then define a
backup boot node host with the standby_node variable set to true.

NOTE: The host name for the primary and backup boot node should both be set to boot. The aliases
can be different so that the /etc/hosts entry for the cname has the host name alias.

cray_net.settings.hosts.data.common_name.backup_bootnode: null
cray_net.settings.hosts.data.backup_bootnode.description: backup Boot node for the system
cray_net.settings.hosts.data.backup_bootnode.aliases:
- cray-boot2
cray_net.settings.hosts.data.backup_bootnode.hostid: c0-2c0s3n1
cray_net.settings.hosts.data.backup_bootnode.host_type: admin
cray_net.settings.hosts.data.backup_bootnode.hostname: boot
cray_net.settings.hosts.data.backup_bootnode.standby_node: true

cray_net.settings.hosts.data.backup_bootnode.interfaces.common_name.hsn_boot_alias: null
cray_net.settings.hosts.data.backup_bootnode.interfaces.hsn_boot_alias.name: ipogif0:1
cray_net.settings.hosts.data.backup_bootnode.interfaces.hsn_boot_alias.description: Well
known address used for boot node services.
cray_net.settings.hosts.data.backup_bootnode.interfaces.hsn_boot_alias.vlan_id: ''
cray_net.settings.hosts.data.backup_bootnode.interfaces.hsn_boot_alias.vlan_etherdevice:
''
cray_net.settings.hosts.data.backup_bootnode.interfaces.hsn_boot_alias.bonding_slaves: []
cray_net.settings.hosts.data.backup_bootnode.interfaces.hsn_boot_alias.bonding_module_opt
s: mode=active-backup
 miimon=100
cray_net.settings.hosts.data.backup_bootnode.interfaces.hsn_boot_alias.aliases: []
cray_net.settings.hosts.data.backup_bootnode.interfaces.hsn_boot_alias.network: hsn
cray_net.settings.hosts.data.backup_bootnode.interfaces.hsn_boot_alias.ipv4_address:
10.131.255.254
cray_net.settings.hosts.data.backup_bootnode.interfaces.hsn_boot_alias.ipv4_secondary_add
resses: []
cray_net.settings.hosts.data.backup_bootnode.interfaces.hsn_boot_alias.mac: ''
cray_net.settings.hosts.data.backup_bootnode.interfaces.hsn_boot_alias.startmode: ''
cray_net.settings.hosts.data.backup_bootnode.interfaces.hsn_boot_alias.bootproto: static
cray_net.settings.hosts.data.backup_bootnode.interfaces.hsn_boot_alias.mtu: ''

Modify an Installed System

S2393 247

cray_net.settings.hosts.data.backup_bootnode.interfaces.hsn_boot_alias.extra_attributes:
[]
cray_net.settings.hosts.data.backup_bootnode.interfaces.hsn_boot_alias.module: ''
cray_net.settings.hosts.data.backup_bootnode.interfaces.hsn_boot_alias.params: ''
#cray_net.settings.hosts.data.backup_bootnode.interfaces.hsn_boot_alias.unmanaged_interfa
ce: false

cray_net.settings.hosts.data.backup_bootnode.interfaces.common_name.primary_ethernet:
null
cray_net.settings.hosts.data.backup_bootnode.interfaces.primary_ethernet.name: eth0
cray_net.settings.hosts.data.backup_bootnode.interfaces.primary_ethernet.description:
Ethernet connecting boot node to the SMW.
cray_net.settings.hosts.data.backup_bootnode.interfaces.primary_ethernet.vlan_id: ''
cray_net.settings.hosts.data.backup_bootnode.interfaces.primary_ethernet.vlan_etherdevice
: ''
cray_net.settings.hosts.data.backup_bootnode.interfaces.primary_ethernet.bonding_slaves:
[]
cray_net.settings.hosts.data.backup_bootnode.interfaces.primary_ethernet.bonding_module_o
pts: mode=active-backup
 miimon=100
cray_net.settings.hosts.data.backup_bootnode.interfaces.primary_ethernet.aliases: []
cray_net.settings.hosts.data.backup_bootnode.interfaces.primary_ethernet.network: admin
cray_net.settings.hosts.data.backup_bootnode.interfaces.primary_ethernet.ipv4_address:
10.3.1.254
cray_net.settings.hosts.data.backup_bootnode.interfaces.primary_ethernet.ipv4_secondary_a
ddresses: []
cray_net.settings.hosts.data.backup_bootnode.interfaces.primary_ethernet.mac: ''
cray_net.settings.hosts.data.backup_bootnode.interfaces.primary_ethernet.startmode: ''
cray_net.settings.hosts.data.backup_bootnode.interfaces.primary_ethernet.bootproto:
static
cray_net.settings.hosts.data.backup_bootnode.interfaces.primary_ethernet.mtu: ''
cray_net.settings.hosts.data.backup_bootnode.interfaces.primary_ethernet.extra_attributes
: []
cray_net.settings.hosts.data.backup_bootnode.interfaces.primary_ethernet.module: ''
cray_net.settings.hosts.data.backup_bootnode.interfaces.primary_ethernet.params: ''
#cray_net.settings.hosts.data.backup_bootnode.interfaces.primary_ethernet.unmanaged_inter
face: false

6. Update the config set to regenerate the CLE /etc/hosts file so that it contains the appropriate backup node
settings.

smw# cfgset update p0
smw# cfgset validate p0

7. Halt the primary and backup boot nodes.

crayadm@smw> xtcli halt boot_primary_id,boot_backup_id

8. Set the primary and backup boot nodes using the xtcli command. Use the -b argument for a boot node.

crayadm@smw> xtcli part_cfg update p0 -b boot_primary_id,boot_backup_id

9. Add boot node failover to the boot automation file, auto.hostname.start.

When boot node failover is used, then the boot automation file should have a setting to ensure that STONITH
has been enabled on the blade that has the primary boot node. The STONITH setting does not survive a
power cycle. To maintain the STONITH setting, add these lines to the boot automation file.

Use the blade that contains the primary boot node. For example, if the primary boot node is c0-0c0s0n1, then
the blade to use is c0-0c0s0. Add these lines before the line for booting the boot node.

Set STONITH for primary boot node
lappend actions {crms_exec "xtdaemonconfig c0-0c0s0 stonith=true"}

Modify an Installed System

S2393 248

10. Enable the xtfailover_halt command in the auto.hostname.stop file.

Uncomment the second of these lines in auto.hostname.stop. This file
in /opt/cray/hss/default/etc is normally copied from auto.xtshutdown to auto.hostname.stop
during a fresh install. The xtfailover_halt command ensures that the xtbootsys shutdown process
sends a STOP NMI to the failover nodes.

Enable the following line if boot or sdb failover is enabled:
lappend actions { crms_exec \
"/opt/cray/hss/default/bin/xtfailover_halt --partition $data(partition,given) --
shutdown"

11. Assign the bootimage to the failover boot node.

Check which NIMS group and boot image are being used for the primary boot node and the secondary boot
node.

smw# cnode list boot_primary_id
smw# cnode list boot_backup_id
If the secondary boot node does not have the same NIMS group and boot image assigned, update the
secondary boot node.

Remove any old NIMS group from the secondary boot node.

smw# cnode update -G oldNIMSgroup boot_backup_id
Assign the primary boot nodes NIMS group and boot image to the secondary boot. node.

smw# cnode update -g primaryNIMSgroup \
-i /path/to/primary/bootimage boot_backup_id
Confirm the change.

smw# cnode list boot_backup_id

12. Boot the system.

crayadm@smw> xtbootsys -a auto.hostname.start

Disable Boot Node Failover

About this task
For the examples in this procedure, the primary boot node is c0-0c0s0n1 and the backup boot node is
c2-0c1s7n1.

Procedure

1. Halt the primary and backup boot nodes.

crayadm@smw:~> xtcli halt c0-0c0s0n1,c2-0c1s7n1

2. Update the default boot configuration.

Modify an Installed System

S2393 249

crayadm@smw:~> xtcli boot_cfg update -b c0-0c0s0n1,c0-0c0s0n1

3. Update the HSS daemon.

crayadm@smw:~> xtdaemonconfig c0-0c0s0 stonith=false

Configure an SDB Failover Node

Prerequisites
The system must be shut down before invoking the xtcli halt command, which is used in this procedure.

About this task
When a secondary (backup) services database (SDB) node is configured, boot-node failover occurs automatically
when the primary node fails. If SDB node failover was configured during the CLE software installation or upgrade,
this procedure is not needed.

A service database (SDB) node must have a Fibre Channel or SAS connection to the boot RAID. If SDB node
failover is enabled, then each SDB node should have such a connection to the boot RAID. Also, each SDB node
must have an Ethernet connection to the network shared with the SMW in order to PXE boot and transfer data as
a tier1 node.

Procedure

1. Configure cray_multipath for the failover node, if cray_multipath is enabled.

cray_multipath is in the global config set and may be inherited by the CLE config set. If the global
cray_multipath is enabled and the CLE cray_multipath is set to inherit from the global config set, then
make the changes in the global cray_multipath service. If the CLE cray_multipath service is enabled
and not set to inherit from the global config set, then make the changes in the CLE cray_multipath
service.

Enter the list of multipath nodes.

Change cray_multipath.settings.multipath.data.node_list, so that it includes both the primary
(active) SDB node and the secondary (passive) failover SDB node.

This example shows a list of four nodes: an SMW with host ID 1eac4e0c, a primary boot node with cname
c0-0c0s4n1, a secondary boot node with cname c0-2c0s4n1, a primary SDB node with cname c0-0c0s3n1,
and a secondary SDB ndoe with cname c0-4c0s3n1.

cray_multipath.settings.multipath.data.node_list:
- 1eac4e0c
- c0-0c0s4n1
- c0-2c0s4n1
- c0-0c0s3n1
- c0-4c0s3n1

2. Configure cray_node_groups to add failover SDB node.

In the CLE config set, the cray_node_groups service should have these settings configured with the proper
cnames for all boot and SDB nodes.

Modify an Installed System

S2393 250

The sdb_nodes node group should list as members the primary SDB node (c0-2c0s4n1) and the secondary
SDB node (c0-4c0s3n1).

cray_node_groups.settings.groups.data.group_name.sdb_nodes: null
cray_node_groups.settings.groups.data.sdb_nodes.description: Default node
 group which contains the primary and failover (if applicable) SDB
 nodes associated with the current partition.
cray_node_groups.settings.groups.data.sdb_nodes.members:
- c0-2c0s4n1
- c0-4c0s3n1

3. Configure cray_persistent_data to add the sdb_nodes node group.

Ensure that this setting includes the boot_nodes node group and the sdb_nodes node group.

cray_persistent_data.settings.mounts.data./var/lib/nfs.client_groups:
- boot_nodes
- sdb_nodes

4. Configure cray_scalable_services to add the sdb_nodes node group.

Ensure that this setting includes the boot_nodes node group and the sdb_nodes node group.

cray_scalable_services.settings.scalable_service.data.tier1_groups:
- boot_nodes
- sdb_nodes

5. Configure cray_net to add secondary SDB node.

These settings define the secondary SDB node (backup_sdbnode) when using SDB node failover.Configure
a host as the second SDB node for SDB node failover. When using the SDB node failover feature, then define
a backup SDB node host with the standby_node variable set to true.

NOTE: The host name for the primary and backup SDB node should both be set to sdb. The aliases
can be different so that the /etc/hosts entry for the cname has the host name alias.

These settings define the secondary SDB node (backup_sdbnode) when using SDB node failover.

cray_net.settings.hosts.data.common_name.backup_sdbnode: null
cray_net.settings.hosts.data.backup_sdbnode.description: backup SDB node for the system
cray_net.settings.hosts.data.backup_sdbnode.aliases:
- cray-sdb2
cray_net.settings.hosts.data.backup_sdbnode.hostid: c0-4c0s3n1
cray_net.settings.hosts.data.backup_sdbnode.host_type: admin
cray_net.settings.hosts.data.backup_sdbnode.hostname: sdb
cray_net.settings.hosts.data.backup_sdbnode.standby_node: true

cray_net.settings.hosts.data.backup_sdbnode.interfaces.common_name.hsn_boot_alias: null
cray_net.settings.hosts.data.backup_sdbnode.interfaces.hsn_boot_alias.name: ipogif0:1
cray_net.settings.hosts.data.backup_sdbnode.interfaces.hsn_boot_alias.description: Well
known address used for SDB node services.
cray_net.settings.hosts.data.backup_sdbnode.interfaces.hsn_boot_alias.vlan_id: ''
cray_net.settings.hosts.data.backup_sdbnode.interfaces.hsn_boot_alias.vlan_etherdevice:
''
cray_net.settings.hosts.data.backup_sdbnode.interfaces.hsn_boot_alias.bonding_slaves: []
cray_net.settings.hosts.data.backup_sdbnode.interfaces.hsn_boot_alias.bonding_module_opts
: mode=active-backup
 miimon=100
cray_net.settings.hosts.data.backup_sdbnode.interfaces.hsn_boot_alias.aliases: []
cray_net.settings.hosts.data.backup_sdbnode.interfaces.hsn_boot_alias.network: hsn
cray_net.settings.hosts.data.backup_sdbnode.interfaces.hsn_boot_alias.ipv4_address:
10.131.255.253

Modify an Installed System

S2393 251

cray_net.settings.hosts.data.backup_sdbnode.interfaces.hsn_boot_alias.ipv4_secondary_addr
esses: []
cray_net.settings.hosts.data.backup_sdbnode.interfaces.hsn_boot_alias.mac: ''
cray_net.settings.hosts.data.backup_sdbnode.interfaces.hsn_boot_alias.startmode: auto
cray_net.settings.hosts.data.backup_sdbnode.interfaces.hsn_boot_alias.bootproto: static
cray_net.settings.hosts.data.backup_sdbnode.interfaces.hsn_boot_alias.mtu: ''
cray_net.settings.hosts.data.backup_sdbnode.interfaces.hsn_boot_alias.extra_attributes:
[]
cray_net.settings.hosts.data.backup_sdbnode.interfaces.hsn_boot_alias.module: ''
cray_net.settings.hosts.data.backup_sdbnode.interfaces.hsn_boot_alias.params: ''
#cray_net.settings.hosts.data.backup_sdbnode.interfaces.hsn_boot_alias.unmanaged_interfac
e: false

cray_net.settings.hosts.data.backup_sdbnode.interfaces.common_name.primary_ethernet: null
cray_net.settings.hosts.data.backup_sdbnode.interfaces.primary_ethernet.name: eth0
cray_net.settings.hosts.data.backup_sdbnode.interfaces.primary_ethernet.description:
Ethernet connecting SDB node to the SMW.
cray_net.settings.hosts.data.backup_sdbnode.interfaces.primary_ethernet.aliases: []
cray_net.settings.hosts.data.backup_sdbnode.interfaces.primary_ethernet.network: admin
cray_net.settings.hosts.data.backup_sdbnode.interfaces.primary_ethernet.ipv4_address:
10.3.1.253
cray_net.settings.hosts.data.backup_sdbnode.interfaces.primary_ethernet.ipv4_secondary_ad
dresses: []
cray_net.settings.hosts.data.backup_sdbnode.interfaces.primary_ethernet.mac: ''
cray_net.settings.hosts.data.backup_sdbnode.interfaces.primary_ethernet.startmode: auto
cray_net.settings.hosts.data.backup_sdbnode.interfaces.primary_ethernet.bootproto: static
cray_net.settings.hosts.data.backup_sdbnode.interfaces.primary_ethernet.mtu: ''
cray_net.settings.hosts.data.backup_sdbnode.interfaces.primary_ethernet.extra_attributes:
 []
cray_net.settings.hosts.data.backup_sdbnode.interfaces.primary_ethernet.module: ''
cray_net.settings.hosts.data.backup_sdbnode.interfaces.primary_ethernet.params: ''
#cray_net.settings.hosts.data.backup_sdbnode.interfaces.primary_ethernet.unmanaged_interf
ace: false

6. Update the config set to regenerate the hosts file so that it contains the appropriate backup node settings.

smw# cfgset update p0
smw# cfgset validate p0

7. Halt the primary and backup SDB nodes using their cnames.

crayadm@smw> xtcli halt sdb_primary_id,sdb_backup_id

8. Set the primary and backup SDB nodes using the xtcli command. Use the -d argument for an SDB node.

crayadm@smw> xtcli part_cfg update p0 -d sdb_primary_id,sdb_backup_id

9. Add SDB node failover to the boot automation file, auto.hostname.start.

When SDB node failover is used, then the boot automation file should have a setting to ensure that STONITH
has been enabled on the blade that has the primary SDB node. The STONITH setting does not survive a
power cycle. To maintain the STONITH setting, add these lines to the boot automation file.

Use the blade that contains the primary SDB node. For example, if the primary SDB node is c0-0c1s0n1, then
the blade to use is c0-0c1s0. Add these lines before the line for booting the SDB node.

Set STONITH for primary SDB node
lappend actions {crms_exec "xtdaemonconfig c0-0c1s0 stonith=true"}

10. Enable the xtfailover_halt command in the auto.hostname.stop file.

Modify an Installed System

S2393 252

Uncomment the second of these lines in auto.hostname.stop. This file
in /opt/cray/hss/default/etc is normally copied from auto.xtshutdown to auto.hostname.stop
during a fresh install. The xtfailover_halt command ensures that the xtbootsys shutdown process
sends a STOP NMI to the failover nodes.

Enable the following line if boot or sdb failover is enabled:
lappend actions { crms_exec \
"/opt/cray/hss/default/bin/xtfailover_halt --partition $data(partition,given) --
shutdown" }
If the above lines are not present in your auto.hostname.stop automation file for shutting down CLE, add
them.

11. Assign the bootimage to the failover boot node.

Check which NIMS group and boot image are being used for the primary boot node and the secondary boot
node.

smw# cnode list boot_backup_id
smw# cnode list boot_backup_id
If the secondary boot node does not have the same NIMS group and boot image assigned, update the
secondary boot node.

Remove any old NIMS group from the secondary boot node.

smw# cnode update -G oldNIMSgroup boot_backup_id
Assign the primary boot nodes NIMS group and boot image to the secondary boot node.

smw# cnode update -g primaryNIMSgroup \
-i /path/to/primary/bootimage boot_backup_id
Confirm the change.

smw# cnode list boot_backup_id

12. Boot the system.

crayadm@smw> xtbootsys -a auto.hostname.start

Perform SDB Node Failback

About this task
When a primary SDB node fails and a secondary node takes over, bring the primary node back online without
doing a full system boot.

Procedure

Use the xtbootsys command to restore the primary SDB node.

smw# xtbootsys --reboot primary_id

Modify an Installed System

S2393 253

Perform Boot Node Failback

About this task
When a primary boot node fails and a secondary node takes over, bring the primary node back online without
doing a full system boot. An xtbootsys --reboot command is prohibited on the boot node. Therefore, enter
several commands to reintroduce a failed primary node to the system.

Procedure

1. Shut down the primary boot node.

smw# xtcli shutdown primary_id

2. Bounce the primary boot node.

smw# xtbounce -s primary_id

3. Boot the primary boot node.

smw# xtcli boot DEFAULT primary_id

Configure Realm-Specific IP

About this task
RSIP (realm-specific IP) helps to maintain packet integrity by allowing an RSIP host to borrow one or more IP
addresses from a set of configured RSIP gateways. This procedure configures some basic settings in the Cray
RSIP configuration service worksheet to add site-specific data.

Procedure

1. Edit cray_rsip_worksheet.yaml.

smw# vi cray_rsip_worksheet.yaml

2. Uncomment cray_rsip.enabled and set it as follows.

Will this system use RSIP, that is, does it have any service nodes that will provide the RSIP service?

● If yes, set it to true. Proceed to the next step.

● If no, set it to false. Skip the remaining steps. There is nothing else to configure in this worksheet.

3. (Only for systems with RSIP) Enter the node group (or groups) of the nodes that will be RSIP servers on this
system.

To create one or more node groups that contain the RSIP server nodes (by cname) for this system
(rsip_nodes in this example), edit cray_node_groups_worksheet.yaml.

Modify an Installed System

S2393 254

Uncomment cray_rsip.settings.service.data.server_groups, remove the empty list ([]), and
add the node group(s) on separate lines prefixed by a hyphen and space (-).

cray_rsip.settings.service.data.server_groups:
- rsip_nodes

4. (Only for systems with RSIP) Enter the node group (or groups) of the service nodes that will be RSIP clients
on this system, such as a MOM node.

To create one or more node groups that contain the RSIP client nodes (by cname) for this system
(rsip_servicenode_clients in this example), edit cray_node_groups_worksheet.yaml.

Uncomment cray_rsip.settings.service.data.node_groups_as_client, remove the empty list
([]), and add the node group(s) on separate lines prefixed by a hyphen and space (-).

cray_rsip.settings.service.data.node_groups_as_client:
- rsip_servicenode_clients

5. (Only for systems with RSIP) Set cray_rsip.settings.service.data.use_xtrsipcfg to false.

If the system has a complex RSIP configuration, then set
cray_rsip.settings.service.data.use_xtrsipcfg to false during the initial configuration of
complex RSIP. Run /opt/cray-xt-rsipd/default/bin/xtrsipcfg_v2 to generate the more complex
RSIP configuration files to be placed into the config set, and then set
cray_rsip.settings.service.data.use_xtrsipcfg to true. The cray_rsip service guidance
describes how to invoke xtrsipcfg_v2 to make a complex RSIP configuration.

Use the xtrsipcfg_v2 Script for an Advanced RSIP Configuration

Prerequisites
The configuration in this example requires a dedicated RSIP node.

About this task
The xtrsipcfg_v2 script generates RSIP client and server configuration files, including configuring RSIP
methods RSA-IP and RSAP-IP. This example configuration sets up an RSIP server that utilizes two IP addresses.

Procedure

1. Clone a config set to create a workspace for the new RSIP settings.

smw# cfgset create --clone p0 myconfigset-p0

2. Generate worksheets from configuration service packages installed on the system and config set
myconfigset-p0.

smw# cfgset update --mode prepare myconfigset-p0

3. Locate the newly generated worksheets and copy them to a new location on the management node.

Modify an Installed System

S2393 255

smw# cfgset show --fields path myconfigset-p0
myconfigset-p0:
 path: /var/opt/cray/imps/config/sets/myconfigset-p0
smw# cp /var/opt/cray/imps/config/sets/myconfigset-p0/worksheets/* /some/edit/
location

4. From the SMW, run the xtrsipcfg_v2 script using the -b flag, which specifies that the rsipd.NID.conf
files for each server be created.

crayadm@smw> xtrsipcfg_v2 -b

5. When the script prompts for the name of the config set to update, enter the config set name.

config_set_name: myconfigset-p0
Gathering Node Information

6. The script prompts whether to add isolated service nodes as RSIP clients. For this example, enter N, the
default. If the response to this question is y, a list of the isolated service nodes displays. Enter a space
delimited list of c-names to configure them as RSA clients. All other isolated nodes are configured as RSAP
clients.

Should the isolated service nodes be setup as RSIP clients? [y/N]:
Note that the list of isolated service nodes could be missing an isolated node that is targeted as an RSIP
client. The SDB node for instance, may not show up because it has an Ethernet interface. Do not attempt to
use non-isolated nodes as RSIP clients. However, exceptions can be made if the node simply has an
interface that is connected only internally. The next prompt asks if there were any missing nodes to be added
as RSIP clients (RSAP or RSA). It is possible to add the previously described nodes as clients in response to
these prompts, but be very careful to only add nodes that do not have external network connectivity.

7. The script creates a list of compute nodes in a default location unless an alternative location is specified.

By default a file containing all compute_names is created in /tmp/
rsip_compute_names.txt
Refer to this file for the next steps if necessary.
Enter Alternate filepath for compute_names file or hit return:

8. Specify compute nodes to be used as RSA clients. By default all compute nodes are configured as RSAP
clients. For this example, do not enter any nodes for RSA client configuration.

Enter a space delimited list of COMPUTE Node cnames to be RSA CLIENTS.
** Unlisted nodes will be configured as RSAP CLIENTS **

Compute RSA Clients:
The script displays connectivity information to use in response to subsequent questions from the script.

Service node network connectivity:
(login) c1-0c0s0n2: eth0 : 192.0.2.88 255.255.240.0
 eth1 : DOWN -
 c1-0c1s3n1: eth0 : DOWN -
 eth1 : DOWN -
 eth2 : DOWN -
 eth3 : DOWN -
 c1-0c1s3n2: eth0 : 192.0.2.253 255.255.0.0
 eth1 : DOWN -
 eth2 : 192.0.2.17 255.255.255.0

Modify an Installed System

S2393 256

 eth3 : DOWN -
 c1-0c1s4n1: eth0 : DOWN -
 eth1 : DOWN -
 eth2 : DOWN -
 eth3 : DOWN -
 c1-0c1s4n2: eth0 : 192.0.2.43 255.255.240.0
 eth1 : DOWN -
 eth2 : DOWN -
 eth3 : DOWN -

9. The script prompts for the c-names of service nodes to use as RSIP servers. Specify only a dedicated RSIP
node. Clients are automatically assigned to servers by the script. Specify one or more service nodes from the
connectivity information just provided by the script.

Auto Config Servers: c1-0c1s4n2

Provide an Address Pool as a combination of IPs and IP ranges in a space
delimited list.
ex: 192.0.2.0-192.0.2.24 192.0.2.30 192.0.2.34-192.0.2.40
Leave this field empty if using RSAP-IP with the server's primary external
interface

10. The c-names of the specified servers are displayed. For each server, provide a pool of IP addresses to use.
The script accepts a space-delimited list or a range of IP addresses. Not specifying a pool of available IP
addresses causes the server to instead utilize its primary external interface. In this example, use multiple IP
addresses for the node c1-0c1s4n2. The specified addresses should be on the same subnet. Accept the
default for IPs reserved for RSA because no RSA clients or servers are configured in this example.

c1-0c1s4n2: 192.0.2.43 192.0.2.43
How many IPs should be reserved for RSA? [Default 0]:

11. Specify RSIP servers to manually assign clients to them. This example does not include any manually
assigned clients to any servers, so press Enter.

Enter a space delimited list of node cnames for nodes that will be RSIP SERVERS.
For example: c0-0c0s7n0 c0-0c0s7n3 c0-0c1s1n3
* RSIP Servers may be manually or automatically configured with clients
You will list below the servers which you will manually assign clients to,
followed by the servers which you want clients automatically assigned to.
* RSIP Servers MUST have external network connectivity.

Manual Config Servers:

12. The script prompts for an RSIP port range and a system port range for each server. For this example, accept
the defaults by pressing Enter.

Provide RSIP port range and System port range for the following servers (Non
overlapping ranges).
These ranges will be used only for RSAP IP.
Defaults RSIP: 1-60000 Default System: 60001-65535. Hit enter to use defaults
c1-0c1s4n2
 RSIP:
 System:
Should all subsequent servers utilize these settings? (Y/n):

13. The script displays the locations of the configuration files that it has created.

Modify an Installed System

S2393 257

Created krsip config file at /var/opt/cray/imps/config/sets/myconfigset-p0/files/roles/rsip/etc/krsip.yaml
Created RSIPD.<nid>.conf files in /var/opt/cray/imps/config/sets/myconfigset-p0/files/roles/rsip/etc/opt/cray/
rsipd/
Created rsipd.yaml at /var/opt/cray/imps/config/sets/myconfigset-p0/files/roles/rsip/etc/opt/cray/rsipd/rsipd.yaml

14. Verify the contents of the RSIP configuration file.

crayadm@smw> cd /var/opt/cray/imps/config/sets/myconfigset-p0/files/roles/rsip/
etc/opt/cray/rsipd
rsipd.c1-0c1s4n2.conf rsipd.yaml
crayadm@smw> grep "pool " rsipd.c1-0c1s4n2.conf
pool 192.0.2.43.90
pool 192.0.2.43.91

Go to the topic Update cray_net Worksheet for an Advanced RSIP Configuration on page 258 to continue this
configuration example.

Update cray_net Worksheet for an Advanced RSIP Configuration

Prerequisites
This procedure assumes that:

● The xtrsipcfg_v2 script has been run.

● A work area has been set up for editing CLE configuration worksheets.

● The current directory is set to that work area.

smw# cd /some/edit/location

About this task
Update the cray_net worksheet with advanced RSIP settings. Then administer the config set mapping and re-
run cray-ansible.

Procedure

1. Edit cray_net_worksheet.yaml.

smw# vi cray_net_worksheet.yaml

2. Update the RSIP host definition with values (bolded) shown in the following listing. If a RSIP host is not
defined in the config set, add a host definition stanza for the RSIP server like the following one, placing it
under NOTE: Place additional 'host' setting entries here, if desired. A sample host
definition that includes default host settings is included in the worksheet under
cray_net.settings.hosts.data.common_name.sample_key_a: null.

cray_net.settings.hosts.data.common_name.rsip_node: null
cray_net.settings.hosts.data.rsip_node.description: RSIP node
cray_net.settings.hosts.data.rsip_node.aliases:
- rsip
cray_net.settings.hosts.data.rsip_node.hostid: c1-0c1s4n2
cray_net.settings.hosts.data.rsip_node.host_type: ''
cray_net.settings.hosts.data.rsip_node.hostname: rsip1
cray_net.settings.hosts.data.rsip_node.standby_node: false
cray_net.settings.hosts.data.rsip_node.interfaces.common_name.eth0: null

Modify an Installed System

S2393 258

cray_net.settings.hosts.data.rsip_node.interfaces.eth0.name: eth0
cray_net.settings.hosts.data.rsip_node.interfaces.eth0.description: Ethernet
connecting the RSIP node to the customer network.
cray_net.settings.hosts.data.rsip_node.interfaces.eth0.aliases: []
cray_net.settings.hosts.data.rsip_node.interfaces.eth0.network: login
cray_net.settings.hosts.data.rsip_node.interfaces.eth0.ipv4_address: 192.0.2.43
cray_net.settings.hosts.data.rsip_node.interfaces.eth0.mac: ''
cray_net.settings.hosts.data.rsip_node.interfaces.eth0.startmode: auto
cray_net.settings.hosts.data.rsip_node.interfaces.eth0.bootproto: static
cray_net.settings.hosts.data.rsip_node.interfaces.eth0.mtu: ''
cray_net.settings.hosts.data.rsip_node.interfaces.eth0.extra_attributes:
- IPADDR1='192.0.2.43.90/20'
- IPADDR2='192.0.2.43.91/20'
#cray_net.settings.hosts.data.rsip_node.interfaces.eth0.module: ''
#cray_net.settings.hosts.data.rsip_node.interfaces.eth0.params: ''
#cray_net.settings.hosts.data.rsip_node.interfaces.eth0.unmanaged_interface:
false

3. Import the completed cray_net worksheet to myconfigset-p0.

smw# cfgset update --worksheet-path \
'/some/edit/location/cray_net_worksheet.yaml' myconfigset-p0

4. Link the nodes to the config set. The following example updates my_map to link all system nodes to the new
config set.

smw# cmap update --config-set myconfigset-p0 my_map

5. Use the cmap setactive command if necessary to make my_map active.

smw# cmap setactive my_map

6. Log in to the RSIP server node and re-run cray-ansible.

smw# ssh boot
crayadm@boot> ssh c1-0c1s4n2
user@host> /etc/init.d/cray-ansible start

7. Verify that multiple inets are displayed when the following command is run on the RSIP server node.

user@host> ip addr show eth0

The Node ARP Management Daemon (rca_arpd)
The node ARP management daemon (rca_arpd) manages the system ARP cache. This daemon deletes the IP
to hardware address (ARP) mappings for failed nodes and reads them when they become available. It only
manages ARP mappings on the high speed interconnect network and not external network interfaces such as
Ethernet. If failover is configured, rca_arpd also manages ARP mappings for the backup boot or SDB node.
When a node failed event from the primary boot or SDB node is received, rca_arpd updates the ARP mapping
for the boot or SDB node virtual IP address to point to the backup node.

This functionality is included in the cray-rca-compute and cray-rca-service RPMs and is installed by
default.

Modify an Installed System

S2393 259

Create Logical Machines for Cray XC Series Systems
Configure a logical machine (sometimes known as a system partition) with the xtcli part_cfg command.
Partition IDs are predefined as p0 to p31. The default partition p0 is reserved for the complete system and is no
longer a valid ID once a system has been partitioned.

Cray XC Series systems can have one or more cabinets. Systems with one or two compute cabinets scale at the
blade level. For larger liquid-cooled systems, every cabinet is fully populated (with 3 chassis), with the possible
exception of the last cabinet.

For Cray XC Series systems, groups are made up of two-cabinet pairs starting from the beginning. The last group
may not be completely full, and it can consist of 1 to 6 fully-populated chassis.

Multiple Group Systems
When a Cray XC Series system contains multiple groups, the system administrator can partition the system at a
per-group level of granularity. Groups do not need to be sequentially positioned in a multi-group partition.

If a Cray XC Series system has more than 2 cabinets, every partition can consist of any number of groups; the
last group (or remainder of system chassis that is not part of a full 6-chassis group) in the system should be
considered a group whether it is fully-populated or not in this partitioning context.

Single Group, Multiple-chassis Systems
When a Cray XC Series system contains between two and six fully-populated chassis, then the administrator can
partition the system at a per-chassis level of granularity. Each partition must be at least one full chassis, and a
chassis cannot be shared between partitions. Chassis do not need to be sequentially positioned in a multi-chassis
partition.

Single Chassis Systems
When a Cray XC Series system is composed of a single fully-populated chassis, each slot must be in the same
partition with its corresponding even/odd pair, because even/odd pair nodes (for example, slot 0 and slot 1, or slot
8 and slot 9) share optical connections and therefore must be in the same partition.

There are 16 slots (or blades) in a single chassis, making 8 even/odd slot pairs, and a maximum of 8 partitions.
Single chassis systems can have any combination of even/odd slot pairs (e.g., 4-4, 6-2, 4-2-2, 2-2-1-1-1-1), and
even/odd slot pairs do not need to be sequentially positioned in a multiple slot pair partition. In order for a partition
to be bootable, it must have a boot node, an SDB node, an I/O node, and a login node.

Configure a Logical Machine
The logical machine can have one of three states:

● EMPTY - not configured

● DISABLED - configured but not activated

● ENABLED - configured and activated

When a partition is defined, its state changes to DISABLED. Undefined partitions are EMPTY by default.

Modify an Installed System

S2393 260

The xtcli part_cfg command
Use the xtcli part_cfg command with the part_cmd option (add in the following example) to identify the
operation to be performed and the part_option (-m, -b, -d and -i) to specify the characteristics of the logical
machine. The boot image may be a raw device, such as /raw0, or a file.

Create a logical machine with a boot node and SDB node specifying the boot image path

● When using a file for the boot image, the same file must be on both the SMW and the
bootroot at the same path.

● For the logical machine to be bootable, both the boot node and SDB node IDs must be
specified.

crayadm@smw:~> xtcli part_cfg add p2 -m c0-0,c0-1,c0-2,c0-3 \
-b c0-0c0s0n0 -d c0-0c0s2n1 -i /bootimagedir/bootimage

To watch HSS events on the specified partition, execute the xtconsumer -p partition_name command.

To display the console text of the specified partition, execute the xtconsole -p partition_name command.

For more information, see the xtcli_part(8), xtconsole(8), and xtconsumer(8) man pages.

Boot a Logical Machine
The xtbootsys --partition pN option enables the administrator to indicate which logical machine (partition)
to boot. If a partition name is not specified, the default partition p0 (component name for the entire system) is
booted. Alternatively, if a partition name is not specified and the CRMS_PARTITION environment variable is
defined, this variable is used as the default partition name. Valid values are in the form pN, where N ranges from 0
to 31.

xtbootsys manages a link from /var/opt/cray/log/partition-current to the current sessionid
directory for that partition, allowing changes to /var/opt/cray/log/p1-current, for example.

Boot the System Using Another Snapshot

Prerequisites
A user must be root to run snaputil.

About this task
Use the snaputil command to roll back the system to a previous snapshot if a system becomes unstable or
broken. Rolling back or forward can require switching the active config set if settings differ between the
snapshots. Snapshot and config set synchronization is particularly critical when rolling back or forward between
CLE releases because of significant config set differences.

Procedure

1. List the snapshots available on the system.

Modify an Installed System

S2393 261

smw: # snapshot list

Status Name
Created
-------- --

 @ 2016-08-10
01:35:35
 SMW-8.1DV00_CLE-6.1DV00.20160928 2016-09-28
10:41:59
 SMW-8.1DV00_CLE-6.1DV00.20160928.save1.postinstall 2016-09-28
12:15:30
 SMW-8.1DV00_CLE-6.1DV00.20160928.save2.postboot 2016-09-28
13:29:30
 SMW-8.1DV00_CLE-6.1DV00.20161003.save0.preupdate 2016-10-03
08:10:00
cur,def SMW-8.1DV00_CLE-6.1DV00.20161003 2016-10-03
08:13:50
 SMW-8.1DV00_CLE-6.1DV00.20161003.save1.postinstall 2016-10-03
10:09:52
 SMW-8.1DV00_CLE-6.1DV00.20161003.save2.postboot 2016-10-03
11:24:28

2. Roll back to the snapshot dated 20160928.

smw # snaputil default SMW-8.1DV00_CLE-6.1DV00.20160928

subvolume SMW-8.1DV00_CLE-6.1DV00.20160928 is now default.

3. When a snapshot switch requires config set synchronization, use the cmap command to specify the config set
to use when booting CLE nodes with a new default snapshot.

smw # cmap update --config-set config_set_name

4. Reboot the SMW. When the system is booted, it will use the new default snapshot.

Configure the NFS client to Mount the Exported Lustre File System

About this task
Depending on the site client system, the configuration may be different. This procedure contains general
information that will help configure the client system to properly mount the exported Lustre file system. Consult
the client system documentation for specific configuration instructions.

Procedure

1. As root, verify that the nfs client service is started at boot.

2. Add a line to the /etc/fstab file to mount the exported file system. (For more information on NFS mount
options, see the mount(8) and nfs(5) man pages.)

server@network:/filesystem /client/mount/point lustre file_system_options 0 0

Recommended file system mount options.

Modify an Installed System

S2393 262

rsize=1048576,wsize=1048576 Set the read and write buffer sizes from the server at 1MiB.
These options match the NFS read/write transaction to the
Lustre filesystem block size, which reduces cache/buffer
thrashing on the service node providing the NFS server
functionality.

soft,intr Use a soft interruptible mount request.

async Use asynchronous NFS I/O. Once the NFS server has
acknowledged receipt of an operation, let the NFS client
move along even though the physical write to disk on the
NFS server has not been confirmed. For sites that need end-
to-end write-commit validation, set this option to sync
instead.

proto=tcp Force use of TCP transport—this makes the larger rsize/
wsize operations more efficient. This option reduces the
potential for UDP retransmit occurrences, which improves
end-to-end performance.

relatime,timeo=600,local_lock=none Lock and time stamp handling, transaction timeout at 10
minutes.

nfsvers=3 Use NFSv3 specifically. NFSv4 is not supported at this time.

3. Mount the file system manually or reboot the client to verify that it mounts correctly at boot.

Define Bind Mount Points Within a Configuration Set

About this task
When a site's directory needs to be bind-mounted much like the programming environment image root, create a
new image root that populates the bind mount point.

Procedure

1. Create a new image root using a recipe that populates a site directory, for example, /opt/site. This
example uses an image root called site_image_root_name as the result of building this recipe into an
image root.

smw# recipe create site_image_recipe

2. Extend the new recipe with sub-recipes, repositories, package collections, RPMs, and post_build_chroot
commands and post_build_copy files to get the site content into /opt/site of the image root.

3. Build the image root from the recipe.

smw# image create -r site_image_recipe site_image_root_name

4. Push the site_image_root_name image from the SMW to the boot node.

smw# image sqpush -d boot site_image_root_name

Modify an Installed System

S2393 263

5. Update the cray_image_binding worksheet with a new profile named site. The profile settings define the
image name and the bind directories. The listing that follows shows the necessary settings.

cray_image_binding.settings.profiles.data.profile_name.site: null
#cray_image_binding.settings.profiles.data.site.image: site_image_root_name
cray_image_binding.settings.profiles.data.site.bind_directories:
/opt/site
#cray_image_binding.settings.profiles.data.site.callbacks: []
cray_image_binding.settings.profiles.data.site.enabled: false

To have more than one directory from this image root bind mounted, add them to the directories setting.

cray_image_binding.settings.profiles.data.site.bind_directories:
/opt/site
/opt/another_site
/opt/last_site

Enable Multipath on an Installed XC System

Prerequisites
This procedure assumes that the Cray XC system has already been installed and configured without multipath
having been enabled. If performing a fresh install, this procedure is not necessary if multipath was already set up
using Prepare and Update the Global Config Set on page 153 or Update cray_multipath Worksheet.

About this task
This procedure describes how to enable multipath on a Cray XC system that has already been installed and
configured. Note that multipath does NOT need to be fully cabled to be used. The multipath driver can handle
using one path or many.

IMPORTANT: If this system has partitions, repeat any steps that modify 'p0' for each partition. Multipath
must be enabled everywhere or nowhere; enabling it on only part of the system causes problems.

Procedure

1. Start the multipath daemon now.

smw# systemctl start multipathd

Later in this procedure, the cray-ansible command will be used to enable the multipath daemon.

2. Obtain the host ID of the SMW and the cnames of any nodes in the system that are connected to the boot
RAID with an HBA (host bus adapter).

The system should be bounced or booted for xtcheckhss to return a proper list.

smw# hostid
{8 digit hostid}
smw# xtcheckhss --detail=f --pci

Modify an Installed System

S2393 264

Look for cnames with HBAs like 'QLogic_ISP2532_8Gb_Fibre_Channel_HBA.'

––––––– UPDATE CRAY_MULTIPATH IN GLOBAL CONFIG SET –––––––

3. Use the configurator to update cray_multipath in the global config set.

smw# cfgset update -s cray_multipath -m interactive -l advanced global

a. Enable multipath.

Enter E at the configurator prompt to toggle the enable status of the multipath service, which is disabled
by default.

Cray Multipath Configuration Service Menu [default: save & exit - Q] $ E

b. Add the host ID and cnames obtained in step 2.

At the prompt, enter 1 to select the node_list setting, then enter C to configure it. At the prompt for that
setting, enter values + to add node_list entries: add the host IDs and cnames obtained in step 2, one per
line. When finished, press Ctrl-d and then <cr> to set the entries.

Cray Multipath Configuration Service Menu [default: save & exit - Q] $ 1
...
Cray Multipath Configuration Service Menu [default: configure - C] $ C
...
cray_multipath.settings.multipath.data.node_list
[<cr>=set 0 entries, +=add an entry, ?=help, @=less] $ +
Add node_list (Ctrl-d to exit) $

4. Correct the values of three pre-populated multipath device settings.

Perform this step if this system was updated from CLE 6.0.UP03 or an earlier release AND these values were
not corrected during the update.

a. View all enabled devices.

At the prompt, enter 33 to select the enabled_devices setting, then enter C to configure it.

Cray Multipath Configuration Service Menu [default: save & exit - Q] $ 33

Cray Multipath Configuration Service Menu [default: configure - C] $ C
At the prompt for this setting, enter * to view all of the pre-populated device settings.

cray_multipath.settings.enabled_devices
[<cr>=set 11 entries, +=add an entry, ?=help, @=less] $ *

b. Change the value of the path grouping policy field for the DDN_EF3015 device.

Find the DDN_EF3015 device in the list of enabled devices, and enter its number (5 in this example)
followed by 'd' and '*' to select and edit the path_grouping_policy field.

cray_multipath.settings.enabled_devices
[<cr>=set 11 entries, +=add an entry, ?=help, @=less] $ 5d*
If this field is not already set to group_by_prio, set it to that value now.

Modify an Installed System

S2393 265

cray_multipath.settings.enabled_devices.data.DDN_EF3015.path_grouping_policy
[<cr>=keep 'multibus', <new value>, ?=help, @=less] $ group_by_prio

c. Change the value of the product field for the DDN_SFA12K_20 device.

Find the DDN_SFA12K_20 device in the list of enabled devices, and enter its number (10 in this example)
followed by 'b' and '*' to select and edit the product field.

cray_multipath.settings.enabled_devices
[<cr>=set 11 entries, +=add an entry, ?=help, @=less] $ 10b*
If this field is not already set to SFA12K-20, set it to that value now.

cray_multipath.settings.enabled_devices.data.DDN_SFA12K_20.product
[<cr>=keep 'SFA12K20', <new value>, ?=help, @=less] $ SFA12K-20

d. Change the value of the product field for the DDN_SFA12K_40 device.

Find the DDN_SFA12K_40 device in the list of enabled devices, and enter its number (11 in this example)
followed by 'b' and '*' to select and edit the product field.

cray_multipath.settings.enabled_devices
[<cr>=set 11 entries, +=add an entry, ?=help, @=less] $ 11b*
If this field is not already set to SFA12K-40|SFA12KX*, set it to that value now.

cray_multipath.settings.enabled_devices.data.DDN_SFA12K_40.product
[<cr>=keep 'SFA12K40', <new value>, ?=help, @=less] $ SFA12K-40|SFA12KX*
Set the enabled_devices entries, but DO NOT save changes and exit the configurator yet.

cray_multipath.settings.enabled_devices
[<cr>=set 11 entries, +=add an entry, ?=help, @=less] $ <cr>

5. Correct the syntax of the multipath blacklist devices setting.

Perform this step if this system was updated from CLE 6.0.UP03 or an earlier release AND these values were
not corrected during the update.

The multipath configuration contains syntax that works under SLES 12 but not under SLES 12 SP2. That
syntax must be corrected in three places (more if there is more than one CLE config set):

● the /etc/multipath.conf file in the new SP2 snapshot

● multipath configuration service template in the global config set

● multipath configuration service template in every CLE config set in use

The /etc/multipath.conf file must be corrected manually because the corrections are needed for the init
boot phase, and any changes to the multipath configuration service (the preferred approach) would not be
reflected in /etc/multipath.conf until cray-ansible runs, which on the SMW occurs only in the multi-user
boot phase. However, correcting only /etc/multipath.conf is not sufficient, because when cray-ansible
runs in multi-user phase, that file is replaced with one that reflects the settings in the multipath configuration
service. Therefore, the corrections must be made in the global and CLE config sets as well. Note that the
corrected syntax works under both SLES 12 and SLES 12 SP2.

a. Select the blacklist_devices setting.

At the configuration service menu prompt, enter 31 to select blacklist_devices, and then enter C to
configure that setting. Both the vendor and product values will be changed from * to .*.

Modify an Installed System

S2393 266

Cray Multipath Configuration Service Menu [default: save & exit - Q] $ 31
Cray Multipath Configuration Service Menu [default: configure - C] $ C
**************************** cray_multipath.settings.blacklist_devices

 blacklist_devices
 Enter the devices which you would like to blacklist for multipath.
By
 default, all devices are blacklisted. Remove the 'all' key in this
 setting to de-blacklist all devices.

 Configured Values:
 1) 'all'
 a) vendor: *
 b) product: *

 Inputs: menu commands (? for help)

|--- Information
* Multiple 'blacklist_devices' entries can be added using this menu

cray_multipath.settings.blacklist_devices
[<cr>=set 1 entries, +=add an entry, ?=help, @=less] $

b. Enter 1a* to change the vendor value.

cray_multipath.settings.blacklist_devices
[<cr>=set 1 entries, +=add an entry, ?=help, @=less] $ 1a*

c. Enter .* to update the current value to the correct value.

cray_multipath.settings.blacklist_devices.data.all.vendor
[<cr>=keep '*', <new value>, ?=help, @=less] $.*

d. Enter 1b* to change the product value.

cray_multipath.settings.blacklist_devices
[<cr>=set 1 entries, +=add an entry, ?=help, @=less] $ 1b*

e. Enter .* to update the current value to the correct value.

cray_multipath.settings.blacklist_devices.data.all.product
[<cr>=keep '*', <new value>, ?=help, @=less] $.*

f. Set the changed blacklist_devices entry.

cray_multipath.settings.blacklist_devices
[<cr>=set 1 entries, +=add an entry, ?=help, @=less] $ <cr>

g. Save changes and exit the configurator.

Cray Multipath Configuration Service Menu [default: save & exit - Q] $ Q
h. Edit the multipath configuration file.

smw# vi /etc/multipath.conf
The following section in /etc/multipath.conf shows the incorrect vendor and product values of
"*" and "*":

Modify an Installed System

S2393 267

blacklist {
 devnode "^(ram|raw|loop|fd|md|dm-|sr|scd|st)[0-9]*"
 devnode "^hd[a-z]"
 devnode "^cciss!c[0-9]d[0-9]*"
 device {
 vendor "*"
 product "*"
 }
}
The same section displayed with correct vendor and product values:

blacklist {
 devnode "^(ram|raw|loop|fd|md|dm-|sr|scd|st)[0-9]*"
 devnode "^hd[a-z]"
 devnode "^cciss!c[0-9]d[0-9]*"
 device {
 vendor ".*"
 product ".*"
 }
}

6. If still in the configurator, save changes and exit the configurator now.

If the previous step was skipped because the values had already been corrected during an update or this
system had a fresh install of CLE 6.0.UP04, then the configurator may still be running from an earlier step.

Cray Multipath Configuration Service Menu [default: save & exit - Q] $ Q

––––––– UPDATE CRAY_BOOTRAID IN GLOBAL CONFIG SET –––––––

7. Use the configurator to update cray_bootraid in the global config set.

smw# cfgset update -s cray_bootraid -m interactive global

a. Select the storage sets setting to configure it.

Boot RAID Configuration Service Menu [default: save & exit - Q] $ 1
...
Boot RAID Configuration Service Menu [default: configure - C] $ C

b. For each device in the cledefault and smwdefault storage sets, modify the path name from scsi to dm-
uuid-mpath.

This example shows selecting the cledefault (1) volume group (a) boot_node_vg (1) devices (b) field. The
* indicates that the selection is to be edited.

cray_bootraid.settings.storage_sets
[<cr>=set 2 entries, +=add an entry, ?=help, @=less] $ 1a1b*

Remove the scsi path name and replace it with the dm-uuid-mpath name.

cray_bootraid.settings.storage_sets.data.cledefault.volume_groups.boot_node_vg.devices
[<cr>=set 1 entries, +=add an entry, ?=help, @=less] $ 1-

cray_bootraid.settings.storage_sets.data.cledefault.volume_groups.boot_node_vg.devices
[<cr>=set 0 entries, +=add an entry, ?=help, @=less] $ +
Add devices (Ctrl-d to exit) $ /dev/disk/by-id/dm-uuid-mpath-3600a0980009ec0750000010a5762af70

Modify an Installed System

S2393 268

Add devices (Ctrl-d to exit) $ <Ctrl-d>

Press Enter (<cr>) to set the entries for the boot_node_vg volume group.

cray_bootraid.settings.storage_sets.data.cledefault.volume_groups.boot_node_vg.devices
[<cr>=set 1 entries, +=add an entry, ?=help, @=less] $ <cr>

Repeat substep b for each device in the cledefault and smwdefault storage sets. Enter * at the prompt to
see all storage set entries.

● To select the next cledefault volume group device (sdb_node_vg), enter 1a2b* at the prompt. If there
are more cledefault volume groups, increment the third character to select each one (1a3b*, 1a4b*,
and so forth).

● To select the first smwdefault volume group device (smw_node_vg), enter 2a1b* at the prompt. If
there are more smwdefault volume groups, increment the third character to select each one (2a2b*,
2a3b*, and so forth).

c. Set the storage set entries, then save changes and exit the configurator.

cray_bootraid.settings.storage_sets
[<cr>=set 2 entries, +=add an entry, ?=help, @=less] $ <cr>
...
Boot RAID Configuration Service Menu [default: save & exit - Q] $ Q

––––––– UPDATE CRAY_MULTIPATH IN CLE CONFIG SET(S) –––––––

8. Use the configurator to set up inheritance for multipath in the CLE config set of the active SMW.

This example uses 'p0' as the name of the CLE config set. Substitute the actual name used for this system.

smw# cfgset update -s cray_multipath -m interactive p0

Enter I at the configurator prompt to toggle the inherit status of the multipath service, which is disabled by
default. This means that multipath settings in the global config set will be used instead of multipath settings in
the CLE config set.

Cray Multipath Configuration Service Menu [default: save & exit - Q] $ I

Repeat this step for each CLE config set.

––––––– VALIDATE CONFIG SETS AND APPLY CHANGES –––––––

9. Validate the config sets and run cray-ansible to apply the config set changes.

a. Validate the config sets.

smw# cfgset validate global

smw# cfgset validate p0
b. Run cray-ansible.

smw# /etc/init.d/cray-ansible start

Modify an Installed System

S2393 269

––––––– FOR SYSTEMS USING DAL –––––––

10. For systems using direct-attached Lustre (DAL), update the dal.fs_defs file.

Repeat these steps for each partition.

a. Locate the current fs_defs files (typically stored in /home/crayadm).

smw# find /home/crayadm -name "*fs_defs*"

b. Find the fs_defs files that are currently installed and compare with the one found in /home/crayadm.

smw# cd /var/opt/cray/imps/config/sets
smw# find p0 -name "*fs_defs*"

smw# diff /home/crayadm/dal.fs_defs \
p0/lustre/.lctrl/dal.fs_defs.20160205.1454685527

c. Edit the dal.fs_defs file to ensure that it has the proper mpath paths in it.

smw# cd /home/crayadm

smw# sed -i.nompath \
's/\/dev\/disk\/by-id\/scsi/\/dev\/disk\/by-id\/dm-uuid-mpath/g' \
dal.fs_defs

smw# cp -p dal.fs_defs dal.fs_defs.mpath

d. Install the new dal.fs_defs file using lustre_control.

smw# lustre_control install -c p0 /home/crayadm/dal.fs_defs

––––––– SHUT DOWN AND REBOOT SYSTEM –––––––

11. Shut down all partitions of the Cray system.

12. Reboot the SMW.

13. Boot the Cray system.

Change Lustre Versions

Prerequisites
System must be installed.

About this task
This procedure describes how to build image root and boot images with a version of Lustre other than the default
version in the standard image recipes for CLE 6.x systems.

Modify an Installed System

S2393 270

Procedure

1. Identify recipes with non-default Lustre.

With CLE 6.x, the default Lustre version is Lustre 2.7.2 and that version is included in the package collections
for all recipes. However, a second set of recipes exist which use package collections with the non-default
version of Lustre rpms (2.5.4). These additional recipes can be located by this command.

smw# recipe list | grep lustre
compute-large-lustre-2.5_cle_6.0up04_sles_12sp2_x86-64_ari
compute-lustre-2.5_cle_6.0up04_sles_12sp2_x86-64_ari
elogin-large-lustre-2.5_cle_6.0up04_sles_12sp2_x86-64_ari
elogin-lustre-2.5_cle_6.0up04_sles_12sp2_x86-64_ari
initrd-compute-large-lustre-2.5_cle_6.0up04_sles_12sp2_x86-64_ari
initrd-login-large-lustre-2.5_cle_6.0up04_sles_12sp2_x86-64_ari
initrd-login-lustre-2.5_cle_6.0up04_sles_12sp2_x86-64_ari
login-large-lustre-2.5_cle_6.0up04_sles_12sp2_x86-64_ari
login-lustre-2.5_cle_6.0up04_sles_12sp2_x86-64_ari
service-lustre-2.5_cle_6.0up04_sles_12sp2_x86-64_ari

BUILD CLE IMAGES WITH NON-DEFAULT LUSTRE VERSION

2. Customize the cray_image_groups configuration file, as needed, by
editing /var/opt/cray/imps/config/sets/global/config/cray_image_groups.yaml and by
adding stanzas for standard and/or netroot images to be created.

Choose only the set of tmpfs recipes or the set of netroot recipes which matches the existing recipes in use
on this system. There is a single recipe for service since it is always tmpfs.

smw# vi /var/opt/cray/imps/config/sets/global/config/cray_image_groups.yaml

For tmpfs.

cray_image_groups:
 lustre25:
 - recipe: "compute-lustre-2.5_cle_6.0up04_sles_12sp2_x86-64_ari"
 dest: "compute-lustre-2.5{note}_cle_{cle_release}-build{cle_build}{patch}_sles_12sp2-
created{date}.cpio"
 nims_group: "compute"
 - recipe: "login-lustre-2.5_cle_6.0up04_sles_12sp2_x86-64_ari"
 dest: "login-lustre-2.5{note}_cle_{cle_release}-build{cle_build}{patch}_sles_12sp2-
created{date}.cpio"
 nims_group: "login"
 - recipe: "service-lustre-2.5_cle_6.0up04_sles_12sp2_x86-64_ari"
 dest: "service-lustre-2.5{note}_cle_{cle_release}-build{cle_build}{patch}_sles_12sp2-
created{date}.cpio"
 nims_group: "service"

For netroot.

cray_image_groups
 lustre25:
 - recipe: "initrd-compute-large-lustre-2.5_cle_6.0up04_sles_12sp2_x86-64_ari"
 dest: "initrd-compute-large-lustre-2.5{note}_cle_{cle_release}-build{cle_build}
{patch}_sles_12sp2-created{date}.cpio"
 nims_group: "compute"
 - recipe: "initrd-login-large-lustre-2.5_cle_6.0up04_sles_12sp2_x86-64_ari"
 dest: "login-large-lustre-2.5{note}_cle_{cle_release}-build{cle_build}{patch}_sles_12sp2-
created {date}.cpio"
 nims_group: "login"
 - recipe: "service-lustre-2.5_cle_6.0up04_sles_12sp2_x86-64_ari"
 dest: "service-lustre-2.5{note}_cle_{cle_release}-build{cle_build}{patch}_sles_12sp2-
created{date}.cpio"
 nims_group: "service"

3. Run imgbuilder to make Lustre images.

smw# imgbuilder -g lustre25

Modify an Installed System

S2393 271

a. For netroot only, push image roots to login node.

smw# image sqpush -d boot login-large-lustre-2.5_cle_version_and_build.cpio

b. For netroot only, push image roots to compute node.

smw# image sqpush -d boot compute-large-lustre-2.5_cle_version_and_build.cpio

ASSIGN NEW LUSTRE IMAGES TO TEST NODES

4. Determine names of boot images built above.

smw# image list | grep lustre

5. Use cnode to assign the boot images to nodes for testing.

a. Assign service image.

smw# cnode update -i \
/var/opt/cray/imps/boot_images/service-lustre-2.5_cle_version_and_build.cpio c9-9c0s0n1

b. Assign DAL image.

smw# cnode update -i \
/var/opt/cray/imps/boot_images/dal-lustre-2.5_cle_version_and_build.cpio c8-8c0s0n2

c. Assign login image.

● For tmpfs:

smw# cnode update -i \
/var/opt/cray/imps/boot_images/login-lustre-2.5_cle_version_and_build.cpio c8-8c0s0n1

● For netroot:

smw# cnode update -i \
/var/opt/cray/imps/boot_images/initrd-login-large-lustre-2.5_cle_version_and_build.cpio \
-k netroot=login-large-lustre-2.5_cle_version_and_build c8-8c0s0n1

d. Assign compute image.

● For tmpfs:

smw# cnode update -i \
/var/opt/cray/imps/boot_images/compute-lustre-2.5_cle_version_and_build.cpio c7-7c0s0n1

● For netroot:

smw# cnode update -i \
/var/opt/cray/imps/boot_images/initrd-compute-large-lustre-2.5_cle_version_and_build.cpio \
-k netroot=compute-large-lustre-2.5_cle_version_and_build c7-7c0s0n1

WARMBOOT TEST NODES WITH NEW LUSTRE IMAGES

6. Warmboot test nodes with new Lustre images.

a. Login as crayadm.

smw# su - crayadm

b. Shutdown node.

crayadm@smw> xtnmi c8-8c0s0n1

c. Wait sixty seconds.

Modify an Installed System

S2393 272

crayadm@smw> sleep 60

d. Reboot node with new image.

crayadm@smw> xtbootsys --reboot -r "warmboot to test Lustre-2.5" c8-8c0s0n1

e. Repeat for each type of node to be tested.

REBOOT ENTIRE CLE SYSTEM WITH NEW LUSTRE IMAGES

7. Assign Lustre 2.5 images to all nodes.

a. Assign to all service nodes.

smw# cnode update --filter group=service -i \
/var/opt/cray/imps/boot_images/service-lustre-2.5_cle_version_and_build.cpio

b. Assign to all login nodes.

● For tmpfs:

smw# cnode --filter group=login update -i \
/var/opt/cray/imps/boot_images/login-lustre-2.5_cle_version_and_build.cpio

● For netroot:

smw# cnode update \
-i /var/opt/cray/imps/boot_images/initrd-login-large-lustre-2.5_cle_version_and_build.cpio \
-k netroot=login-large-lustre-2.5_cle_version_and_build --filter group=login

c. Assign to all compute nodes.

● For tmpfs:

smw# cnode update --filter group=compute -i \
/var/opt/cray/imps/boot_images/compute-lustre-2.5_cle_version_and_build.cpio

● For netroot:

smw# cnode update -i \
/var/opt/cray/imps/boot_images/initrd-compute-large-lustre-2.5_cle_version_and_build.cpio \
-k netroot=compute-large-lustre-2.5_cle_version_and_build.cpio --filter group=compute

For netroot only, if the compute-large and login-large image roots were not pushed to the boot node when
testing the new images, push them to the boot node before rebooting the entire system. The boot node must
be booted for the image sqpush command to succeed.

8. Shutdown CLE.

crayadm@smw> xtbootsys -s last -a auto.xtshutdown

9. Boot CLE.

crayadm@smw> xtbootsys -a auto.sitestartup

10. Build recipes and deploy boot image for eLogin nodes using non-default Lustre.

To build eLogin images, export them to the CMC and reboot the eLogin node with the new boot image
described in the "Configure and Manage an eLogin Image" section of the XC Series eLogin Installation Guide.

The important difference from that guide is choosing the appropriate image recipe which includes the non-
default version of Lustre. This example shows the elogin recipes which match the netroot and tmpfs login
recipes configured for the XC system. Select the image recipe that most closely resembles what the XC login
node uses.

Modify an Installed System

S2393 273

smw# recipe list | grep lustre | grep elogin
elogin-large-lustre-2.5_cle_6.0up04_sles_12sp2_x86-64_ari
elogin-lustre-2.5_cle_6.0up04_sles_12sp2_x86-64_ari

Repurpose Compute Nodes
When a compute node is configured for a non-compute role, that node is a repurposed compute node. Compute
nodes can be repurposed to become service nodes for use as tier2 servers (recommended) or in other capacities.
Compute nodes should not be repurposed as service nodes for services that require external connectivity.

Use the xtcli mark_node command to repurpose a node in a compute blade. In this example, two compute
nodes are being repurposed as service nodes and marked accordingly in the HSS database.

crayadm@smw> xtcli mark_node service c0-0c0s2n0,c0-0c0s2n1
Note that service nodes can be repurposed as compute nodes as well. In that case, the command would be
xtcli mark_node compute.

Node Attributes
Users can control the selection of the compute nodes on which to run their applications and can select nodes on
the basis of desired characteristics (node attributes). This allows a placement scheduler to schedule jobs based
on the node attributes.

A user invokes the cnselect command to specify node-selection criteria. The cnselect script uses these
selection criteria to query the table of node attributes in the SDB and returns a node list to the user based on the
results of the query. When launching the application, the user includes the node list using the aprun -L
node_list option as described on the aprun(1) man page. The ALPS placement scheduler allocates nodes
based on this list.

To meet specific user needs, the administrator can modify the cnselect script. For additional information about
the cnselect script, see the cnselect(1) man page.

View and Temporarily Set Node Attributes
Use the xtprocadmin command to view current node attributes. The xtprocadmin -A option lists all attributes
of selected nodes. The xtprocadmin -a attr1,attr2 option lists selected attributes of selected nodes.

An administrator can use the xtprocadmin -a attr=value command to temporarily set certain site-specific
attributes. Using the xtprocadmin -a attr=value command to set certain site-specific attributes is not
persistent across reboots. Attribute settings that are intended to be persistent across reboots (such as labels)
must be specified in the attr.defaults file.

NOTE: For compute nodes, xtprocadmin changes to attributes require restarting the apbridge
daemon on the boot node in order for ALPS to detect changes that the xtprocadmin command has
made to the SDB. Restarting the other ALPS components (for example, on the SDB node or on the login
node if they are separate nodes) is not necessary. To restart apbridge, log into the boot node as root
and execute the following command:

boot:~ # /etc/init.d/alps restart

Modify an Installed System

S2393 274

For example, the following command creates a new label1 attribute value for the compute node whose NID is
350. The xtprocadmin command must be executed by root from a service node and the SDB must be
running:

boot:~ # xtprocadmin -n 350 -a label1=eedept

Connected
NID (HEX) NODENAME TYPE LABEL1
350 0x15e c1-0c1s0n0 compute eedept

Then restart the apbridge daemon on the boot node in order for ALPS to detect changes that the
xtprocadmin command has made to the SDB.

boot:~ # /etc/init.d/alps restart

The XTAdmin Database segment Table
The XTAdmin database contains a segment table that supports the memory affinity optimization tools for
applications and CPU affinity options for all Cray compute nodes. The CPU affinity options apply to all Cray
multicore compute nodes.

The segment table is similar to the attributes table but differs in that a node may have multiple segments
associated with it; the attributes table provides summary information for each node.

In order to address the application launch and placement requirements for compute nodes with two or more
NUMA nodes, the Application Level Placement Scheduler (ALPS) requires additional information that
characterizes the intranode topology of the system. This data is stored in the segment table of the XTAdmin
database and acquired by apbridge when ALPS is started, in much the same way that node attribute data is
acquired.

The segment table contains the following fields:

node_id The node identifier that maps to the nodeid field of the attributes table and processor_id
field of the processor table.

socket_id Contains a unique ordinal for each processor socket.

die_id Contains a unique ordinal for each processor die; with this release, die_id is 0 in the segment
table and is otherwise unused (reserved for future use).

numcores The number of integer cores per node; in systems with accelerators this only applies to the host
processor (CPU).

coremask The processor core mask. The coremask has a bit set for each core of a CPU. 24-core nodes will
have a value of 16777215 (hex 0xFFFFFF).

coremask is deprecated and will be removed in a future release.

mempgs Represents the amount of memory available, in Megabytes, to a single segment.

The /etc/sysconfig/xt file contains SDBSEG field, which specifies the location of the segment table file; by
default, SDBSEG=/etc/opt/cray/sdb/segment.

To update the segment table, use the following service database commands:

● xtdb2segment, which converts the data into an ASCII text file that can be edited

● xtsegment2db, which writes the data back into the database file

Modify an Installed System

S2393 275

For more information, see the xtdb2segment(8) and xtsegment2db(8) man pages.

After manually updating the segment table, log on to any login node or the SDB node as root and execute the
apmgr resync command to request that ALPS reevaluate the configuration node segment information and
update its information.

If ALPS or any portion of the feature fails in relation to segment scheduling, ALPS reverts to the standard
scheduling procedure.

Apply Rolling Patches to Compute Nodes with cnat
Prerequisites
● The system requires access to a workload manager (WLM) with administrative privileges.

● Enable the rolling patches service in the config set by editing the cray_cnat_worksheet.yaml file.
Uncomment cray_cnat.enabled and set it to true.

About this task
A rolling patch applies a patch to a set of compute nodes without rebooting the system. The patch is applied to
compute nodes between jobs. Applying rolling patches using cnat (short for compute node administrative tool) is
not supported for service nodes. Patches with dependencies requiring a full system reboot do not support rolling
patches. Another qualification for rolling patches is that patches must be updated within a CLE update release.
Upgrades between update releases (for example, from CLE 6.0 UP01 to CLE 6.0 UP02) require a system reboot.

The cnat command runs a batch script through a workload manager and ensures that it runs successfully on
each specified node. This allows administrative tasks, such as a rolling patch, to run on compute nodes without
interfering with user jobs. The cnat (1) man page on the login node provides syntax and other details.

For patches that require node reboots, the cnat command uses the provided cnat-reboot script to control the
reboot of compute nodes specified for a rolling patch. The cnat-status command returns information about a
cnat run. See the cnat-reboot (1) and cnat-status (1) man pages for information about these
commands.

Procedure

1. Set up the WLM. These WLMs are supported: Cobalt, Moab/Torque, PBS, and Slurm. The following setup
information is for PBS and Slurm. Moab/Torque do not require any special setpup.

● For PBS:

1. Enable manager access to the server for the user running cnat.

crayadm@login> qmgr -c 'set server managers+="user@hostname"'
2. Add cnat to the PBS_HOME/server_priv/resourcedef file by appending this line to the file:

cnat type=boolean flag=h

3. Restart the PBS sever.

crayadm@login> /etc/init.d/pbs restart

Modify an Installed System

S2393 276

● For Slurm, cnat must be configured to submit to a partition without Shared=FORCE set. cnat must be
run as SlurmUser or root.

2. Make a directory on the SMW (if it does not already exist) to hold any patches that may be available on
CrayPort.

smw# mkdir -p /var/opt/cray/patchsets

3. Download patches to the patchsets directory on the SMW, as described in the release notes. The default
location is /var/adm/cray/release/patchsets.

4. Run the LOAD script that is included in the patch.

A LOAD script usually does following setup tasks:

● Creates a SMW file system snapshot (optionally)

● Backs up the Node Image Mapping Service (NIMS) active map

● Backs up the CLE and global config sets

● Mounts the patch ISO image file

● Copies the RPMs from the ISO to the appropriate repositories on the SMW

● Refreshes the repository metadata

● Copies patch instructions and support files to /var/opt/cray/patchsets/patchset_directory

5. Follow the instructions in the /var/opt/cray/patchsets/patchset_directory/README file.

An INSTALL script in the patch directory performs the necessary tasks to get the patched code into the
appropriate image roots and boot images. This script will print further instructions required to get the patch
changes onto the affected compute nodes.

6. When the README indicates that rolling updates are supported for the patch, run the cnat command as
instructed by the README. Run cnat on the login node as the crayadm user, though some WLMs may
have different user execution requirements. The example that follows calls the cnat-reboot script to reboot
the patched compute nodes, but not all patches require a reboot.

crayadm@login> module load cnat
crayadm@login> cnat -n <node_list> /opt/cray/cnat/default/bin/cnat-reboot

7. Use the cnat-status script for information about the cnat run. The example command that follows
specifies the output directory created for the cnat run that initiated the update. The cnat-status script
output is placed in this directory and also displayed on the console.

crayadm@login> cnat-status cnat-20160502101159

Apply Live Updates to Nodes

Prerequisites
Enable the live updates service in the config set by editing the cray_liveupdate_worksheet.yaml file.
Uncomment cray_liveupdate.enabled and set it to true.

Modify an Installed System

S2393 277

About this task
A live update is an update that can be applied to running nodes. Live updates use package managers, such as
zypper and yum, to install updated content on booted nodes. Live updates can be applied to both service nodes
and compute nodes.

The INSTALL script for a patch updates the package repositories and node images on the SMW. When a patch
can be applied with live updates, the patch script and README file provide further instructions to the administrator
to properly update the images on the relevant booted nodes.

Procedure

1. Make a directory on the SMW (if it does not already exist) to hold any patches that may be available on
CrayPort.

smw# mkdir -p /var/opt/cray/patchsets

2. Download patches to the patchsets directory on the SMW, as described in the release notes. The default
location is /var/adm/cray/release/patchsets.

3. Run the LOAD script that is included in the patch.

A LOAD script usually does following setup tasks:

● Creates a SMW file system snapshot (optionally)

● Backs up the Node Image Mapping Service (NIMS) active map

● Backs up the CLE and global config sets

● Mounts the patch ISO image file

● Copies the RPMs from the ISO to the appropriate repositories on the SMW

● Refreshes the repository metadata

● Copies patch instructions and support files to /var/opt/cray/patchsets/patchset_directory

4. Follow the instructions in the /var/opt/cray/patchsets/patchset_directory/README file.

An INSTALL script in the patch directory performs the necessary tasks to get the patched code into the
appropriate system images. This script will print further instructions required to get the patch changes onto the
affected system nodes.

Reuse One or More Previously-failed HSN Links

About this task
To integrate failed links back into the HSN configuration, the xtwarmswap command may be invoked with one of
the following:

● -s LCB, ..., specifying the list of LCBs to bring back up

● -s all, to bring in all available LCBs

● -s none, to cause a reroute without changing the LCBs that are in use

Modify an Installed System

S2393 278

Procedure

1. Execute an xtwarmswap -s LCB_names -p partition_name to tell the system to reroute the HSN
using the specified set of LCBs in addition to those that are currently in use.

Doing so will clear the alert flags on the specified LCBs automatically. If the warm swap fails, the alert flag will
be restored to the specified LCBs.

2. Execute an xtwarmswap -s all -p partition_name command to tell the system to reroute the HSN
using all available links.

The xtwarmswap command results in xtnlrd performing the same link recovery steps as for a failed link, but
with two differences: no alert flags are set, and an init_new_links and a reset_new_links step are
performed to initialize both ends of any links to be used, before new routes are asserted into the Aries™ routing
tables.

The elapsed time for the warm swap synchronization operation is typically about 30 seconds.

Add or Remove from Service
To specify one or more high-speed network (HSN) cables to add or remove from service, use the xtwarmswap
--add-cable command or the xtwarmswap --remove-cable command, respectively. These options
provide the ability to replace one or more cables without removing blades or shutting down the system. The
routing of the Cray HSN will be updated to route around the removed cable or cables.

To add or remove a single HSN cable, specify one cable argument as in this --add-cable example:

xtwarmswap --add-cable cable
To add or remove multiple HSN cables, specify a comma-separated list of cables, as in this --remove-cable
example:

xtwarmswap --remove-cable cable1,cable2,...,cableN
The --add-cable and --remove-cable options are not supported if more than a single active partition exists
in the system. Do not specify the -p|--partition option when using these options. In addition, do not use the
--linktune option when using the --remove-cable option.

Remove a Compute Blade from Service While the System is Running

About this task
A compute blade can be physically removed for maintenance or replacement while the system is running;
however, the applications using the nodes on the blade to be removed must be allowed to drain, or be killed
beforehand.

Before starting this warm swap procedure, verify that the proposed system configuration is routable. Doing this in
advance of idling the nodes on the blades to be removed provides assurance that a valid set of nodes is being
taken out of service before affecting the system. Log on to the SMW as crayadm and execute the following
command, where pN is the partition from which the blades are being removed:

Modify an Installed System

S2393 279

smw:~> rtr -S --id test --remove=blade_ID pN
CAUTION: This procedure warm swaps a compute blade from service while the system is running. Do
not warm swap service blades, unless the blade is an I/O base blade (IBB) that has InfiniBand cards and
is an LNET blade. Before attempting to warm swap any service blade, it is advisable to consult with a
Cray service representative.

Procedure

1. Log on to the login node as root.

2. Ensure that the batch system or Slurm marks the blade as unavailable for scheduling.

3. Execute the following command to mark the nodes on the compute blade as admindown. This tells ALPS not
to launch new applications onto them. (This command may also be executed from the boot node as user
root.)

login:~ # xtprocadmin -k s admindown -n blade_ID
The arguments to the -n option should be the NID values for the nodes on the blade being removed, as
shown by executing xtprocadmin | grep bladename.

For example, to find the NID values for the nodes on the blade c0-0c0s2 being removed:

login:~ # xtprocadmin | grep c0-0c0s2
 8 0x8 c0-0c0s2n0 compute up batch
 9 0x9 c0-0c0s2n1 compute up batch
 10 0xa c0-0c0s2n2 compute up batch
 11 0xb c0-0c0s2n3 compute up batch

4. From the login node, execute the apstat -n command or the appropriate Slurm command to determine if
any applications are running on the node marked admindown. This example shows that apid 675722 is
running on all nodes of blade c0-0c0s2.

login:~ # apstat -n | egrep -w 'NID|8|9|10|11
 8 XT UP B 32 32 1 4K 16777216 8388608 262144 1 675722
 9 XT UP B 32 32 1 4K 16777216 8388608 262144 1 675722
 10 XT UP B 32 32 1 4K 16777216 8388608 262144 1 675722
 11 XT UP B 32 32 1 4K 16777216 8388608 262144 1 675722

5. Wait until the applications using the nodes on the blade finish or use the apkill apid command to kill the
application.

6. Log on to the SMW as crayadm.

7. Execute the xtcli halt blade_ID command to halt the blade.

smw:~> xtcli halt blade_ID

8. Execute the xtwarmswap --remove blade_ID command to remove the compute blade from service. The
routing of the Cray HSN will be updated to route around the removed blade.

The --remove stage of the xtwarmswap process uses the Aries™ resiliency infrastructure and takes about
30 seconds to complete.

Modify an Installed System

S2393 280

smw:~> xtwarmswap --remove blade_ID

9. Execute the xtcli power down blade_ID command, which helps to identify which blade to pull (all lights
are off on the blade).

smw:~> xtcli power down blade_ID

10. Physically remove the blade, if desired. To complete this step, see the hardware maintenance and
replacement procedures documentation for the Cray system, or contact a Cray Service representative.

CAUTION: If a blade cannot be reinstalled in the empty slot within 2 minutes, install a filler blade
assembly in the empty slot; failure to do so can cause other blades in the system to overheat.

Return a Compute Blade into Service

About this task
After a blade has been repaired or when a replacement blade is available, use the following procedure to return
the blade into service.

Procedure

1. Physically insert the blade into the slot. To complete this step, see the hardware maintenance and
replacement procedures documentation for the Cray system, or contact a Cray Service representative.

2. On the SMW, execute the xtcli power up blade_ID command.

smw:~> xtcli power up blade_ID

3. Ensure that the blade is ready by entering the following command, and wait until the command returns the
correct response:

smw:~> xtalive blade_ID
The expected response was received.

4. Verify the status of the blade controller to ensure that its "Comp state" is "up" and that there are no flags set.

smw:~> xtcli status -t bc blade_ID

5. Bounce the blade.

smw:~> xtbounce blade_ID

6. If the blade or PDC type is different, su to root, execute the xtdiscover command, and then exit root.
Otherwise, skip this step.

smw:~> su - root
smw:~> xtdiscover
smw:~> exit
smw:~>

7. Execute the xtzap --blade command to update the BC BIOS, node BIOS, microcontroller, and FPGAs as
required.

Modify an Installed System

S2393 281

smw:~> xtzap --blade blade_cname

8. Execute the xtbounce --linkdown blade_ID command to prepare the blade for the warm swap (takes
down all HSN links on the blade).

smw:~> xtbounce --linkdown blade_ID

9. Add the blade(s) to the HSN by executing the xtwarmswap --add blade_ID,... command. This
command activates routing on the newly installed blade and automatically executes a mini-xtdiscover
command once the warm swap steps have completed successfully. No additional manual invocation of
xtdiscover, which gets the new hardware attributes from the added blades, is necessary.

smw:~> xtwarmswap --add blade_ID
Because the xtwarmswap --add command initializes the added blades, the time to return the blades back
to service is about 10 minutes, including the time to initialize the blades, run the BIOS on the nodes, and
initialize the links to the blades.

10. Boot the nodes on the blade(s) by executing the xtcli boot CNL0 blade_ID,... command on the
SMW.

smw:~> xtcli boot CNL0 blade_ID

11. As root on the login node, execute the following command to mark the nodes on the compute blade as up.
This tells ALPS that new applications may be launched onto those nodes. (This command may also be
executed from the boot node as user root.)

login:~ # xtprocadmin -k s up -n blade_ID

12. Verify that the blade is up.

login:~ # xtprocadmin | grep blade_ID

13. Ensure that the batch system or Slurm marks the blade as available for scheduling.

State Manager LLM Logging
The log data from the State Manager is written to /var/opt/cray/log/sm-yyyymmdd. The default setting for
the State Manager is to enable LLM logging. If LLM or craylog failures occur, State Manager logging is not
disrupted. Logging then reverts to behavior that is very similar to legacy State Manager logging, which is also
used when State Manager LLM logging is turned off.

To disable LLM logging for the State Manager, add the -L noption to
the /opt/cray/hss/default/bin/rsms script entry:

sm=(/opt/cray/hss/default/bin/state_manager sm "-L n")

Boot Manager LLM Logging
The log data from the Boot Manager is written to /var/opt/cray/log/bm-yyyymmdd. If the -L command line
option is used with the bootmanager command or if LLM is not enabled, Boot Manager reverts to legacy logging,

Modify an Installed System

S2393 282

which writes log data to /var/opt/cray/log/bm.out. This is a less satisfactory logging method because each
Boot Manager restart creates a new log and moves the previous log to bm.out.1. A third restart can possibly
cause recent log data to be lost.

Configure Node Health Checker Tests
NHC is automatically invoked by ALPS upon the termination of an application. ALPS passes a list of CNL
compute nodes associated with the terminated application to NHC. NHC performs specified tests to determine if
compute nodes allocated to the application are healthy enough to support running subsequent applications. If not,
it removes any compute nodes incapable of running an application from the resource pool. The CLE installation
and upgrade processes automatically install and enable NHC software; there is no need to change any
installation configuration parameters or issue any commands.

Use the cray_node_health_worksheet.yaml file or configurator to configure the NHC tests, which test CNL
compute node functionality. All tests that are enabled will run when NHC is in either Normal Mode or in Suspect
Mode. Tests run in parallel, independently of each other, except for the Free Memory Check test, which
requires that the Application Exited Check test passes before the Free Memory Check test begins.

The xtcheckhealth binary runs the NHC tests; for information about the xtcheckhealth binary, see the
intro_NHC(8) and xtcheckhealth(8) man pages.

The NHC tests are listed below. In the default NHC configuration file, each test that is enabled starts with an
action of admindown, except for Free Memory Check, which starts with an action of log.

Also read important test usage information in Guidance for the Accelerator Test on page 286, Guidance for the
Application Exited Check and Apinit Ping Tests on page 286, Guidance for the Filesystem Test on page 287,
Guidance for the Hugepages Test on page 287, and Guidance for the NHC Lustre File System Test on page
288.

Accelerator Tests the health of any accelerators present on the node. It is an application set test and
should not be run in the reservation set.

The global accelerator test (gat) script detects the type of accelerator(s) present on the
node and then launches a test specific to the accelerator type. The test fails if it is
unable to run successfully on the accelerator, or if the amount of allocated memory on
the accelerator exceeds the amount specified using the gat -m argument.

Default: enabled

Application
Exited Check

Verifies that any remaining processes from the most recent application have terminated.
It is an application set test and should not be run in the reservation set because an
application is not associated with a reservation cancellation.

The Application Exited Check test checks locally on the compute node for
processes running under the ID of the application (APID). If processes are running,
NHC waits a period of time (defined in the configuration file) to determine if the
application processes exit properly. If the process does not exit within that time, this test
fails.

Default: enabled

Apinit Log and
Core File
Recovery

A plugin script to copy apinit core dump and log files to a login/service node. It is an
application set test.

Modify an Installed System

S2393 283

Default: not enabled. Apinit Log and Core File Recovery should not be
enabled until a destination directory is determined and specified in the NHC
configuration file.

Apinit Ping Verifies that the ALPS daemon is running on the compute node and is responsive. It is
an application set test.

The Apinit Ping test queries the status of the apinit daemon locally on each
compute node; if the apinit daemon does not respond to the query, then this test fails.

Default: enabled

DataWarp A plugin script to check that any reservation-affiliated DataWarp mount points have
been removed. Note that the plugin can only detect a problem after the last reservation
on a node completes.

Default: disabled

Free Memory Check Examines how much memory is consumed on a compute node while applications are
not running. Use it only as a reservation test because an application within a reservation
may leave data for another application in a reservation. If run in the application set,
Free Memory Check could consider data that was intentionally left for the next
application to be leaked memory and mark the node admindown. Run the Free
Memory Check only after the Reservation test passes successfully.

Default: enabled (action is log only)

Filesystem Ensures that the compute node is able to perform simple I/O to the specified file
system. It is configured as an application set test in the default configuration, but it can
be run in the reservation set. For a file system that is mounted read-write, the test
performs a series of operations on the file system to verify the I/O. A file is created,
written, flushed, synced, and deleted. If a mount point is not explicitly specified, the
mount point(s) from the compute node /etc/fstabs file will be used and a
Filesystem test will be created for each mount point found in the file. If a mount point
is explicitly specified, then only that file system will be checked. An administrator can
specify multiple FileSystem tests by placing multiple Filesystem lines in the
configuration file. For example, one line could specify the implicit Filesystem test, and
the next line could specify a specific file system that does not appear in /etc/fstab.
This could continue for any and all file systems.

When enabling the Filesystem test, an administrator can exclude mount points that
should not be tested using the excluding setting in the configuration to list mount
points that should not be tested by the Filesystem test. This allows intentionally
excluding specific mount points even though they appear in the fstab file. This action
prevents NHC from setting nodes to admindown because of errors on relatively benign
file systems. Explicitly specified mount points cannot be excluded in this fashion; if they
should not be checked, then they should simply not be specified.

The Filesystem test creates its temporary files in a subdirectory
(.nodehealth.fstest) of the file system root. An error message is written to the
console when the unlink of a file created by this test fails.

Default: enabled

Hugepages Calculates the amount of memory available in a specified page size with respect to a
percentage of /proc/boot_freemem. It is a reservation set test.

Modify an Installed System

S2393 284

This test will continue to check until either the memory clears up or the time-out is
reached. The default time-out is 300 seconds.

Default: disabled

Sigcont Plugin Sends a SIGCONT signal to the processes of the current APID. It is an application set
test.

Default: disabled

Plugin Allows scripts and executables not built into NHC to be run, provided they are
accessible on the compute node. .

Default: disabled so that local configuration settings may be used

ugni_nhc_plugins Tests the User level Gemini Network Interface (uGNI) on compute nodes. It is a
reservation set test and an application set test. By extension, testing the uGNI interface
also tests the proper operation of parts of the network interface card (NIC). The test
sends a datagram packet out to the node's NIC and back again.

Reservation checks for the existence of the /proc/reservations/rid directory, where rid is
the reservation ID. It is a reservation set test, and should not be run in the application
set.

If this directory still exists, the test will attempt to end the reservation and then wait for
the specified timeout value for the directory to disappear. If the test fails and Suspect
Mode is enabled, NHC enters Suspect Mode. In Suspect Mode, Reservation
continues running, repeatedly requesting that the kernel clean up the reservation, until
the test passes or until Suspect Mode times out. If the directory does not disappear in
that time, the test prints information to the console and exits with a failure.

Default: enabled with a timeout value of 300 seconds

CCM plugin validates the cleanup of a cluster compatibility mode (CCM) environment at the end of a
reservation. It is a reservation set test, and it will not run if it is misconfigured as an
application test.

This test runs on a compute node only when /var/crayccm is detected. The test
removes the /var/lib/{empty,debus} directories, unmounts CCM mount points if
they still exist, and unmounts /dsl/dev/random and /dsl/dev/pts. If the
unmounts are successful, the test removes the /var/crayccm, /var/lib/rpcbind,
and /var/spool/{PBS,torque} directories.

The CCM plugin is not included in a site's NHC configuration file. Administrators must
add the test to their configuration in order to use it. See the
cray_node_health_worksheet.yaml file for CCM plugin settings to copy into a
site's NHC configuration file.

Individual tests may appear multiple times in the configuration, with different variable values. Every time a test is
specified, NHC will run that test. This means if the same line is specified five times, NHC will try to run that same
test five times. This functionality is mainly used in the case of the Plugin test, allowing the administrator to
specify as many additional tests as have been written for the site, or the Filesystem test, allowing the
adminstrator to specify as many additional file systems as wanted. However, any test can be specified to run any
number of times. Different parameters and test actions can be set for each test. For example, this could be used
to set up hard limits and soft limits for the Free Memory Check test. Two Free Memory Check tests could be
specified in the configuration file; the first test configured to only warn about small amounts of non-free memory,

Modify an Installed System

S2393 285

and the second test configured to admindown a node that has large amounts of non-free memory. See the
cray_node_health_worksheet.yaml file for configuration information.

Guidance for the Accelerator Test
This test uses the global accelerator test (gat) script (/opt/cray/nodehealth/default/bin/gat.sh) to
first detect the accelerator type and then launch the test specific to that type of accelerator.

The gat script supports two arguments for NVIDIA GPUs:

-mmaximum_memory_size Specify the maximum_memory_size as either a kilobyte value or a percentage of
total memory. For example, -m 100 specifies that no more than 100 kilobytes of
memory can be allocated, while -m 10% specifies that no more than 10 percent of
memory can be allocated.

In the default NHC configuration file, the specified memory size is 10%.

-r Perform a soft restart on the GPU and then rerun the test. In the default NHC
configuration file, the -r argument is specified.

The gat script has the following options for Intel Xeon Phi:

-M kilobytes or -M n% This option works exactly as the -m option for the NVIDIA GPUs.

-c Specifies the minimum number of cores that must be active on the Xeon Phi for the
test to pass. If -c is omitted, the minimum number of active cores required to pass the
test is the total number of cores on the Xeon Phi.

Guidance for the Application Exited Check and Apinit Ping Tests
These two tests must be enabled and both tests must have their action set as admindown or die; otherwise,
NHC runs the risk of allowing ALPS to enter a live-lock. Only specify the die action when the
advanced_features control variable is turned off.

ALPS must guarantee two conditions about the nodes in a reservation before releasing that reservation:

● that ALPS is functioning on the nodes

● that the previous application has exited from the nodes

Either those two conditions are guaranteed or the nodes must be set to some state other than up. When either
ALPS has guaranteed these two conditions about the nodes or the nodes have been set to some state other than
up, then ALPS can release the reservation.

These NHC tests guarantee two conditions:

● Apinit_ping guarantees that ALPS is functioning on the nodes

● Application_Exited_Check guarantees that the previous application has exited from the nodes

If either test fails, then NHC sets the nodes to suspect state if Suspect Mode is enabled; otherwise, NHC sets
the nodes to admindown or unavail. Therefore, either the nodes pass these tests or the nodes are no longer in
the up state. In either case, ALPS is free to release the reservation and the live-lock is avoided. Note that this only
happens if the two tests are enabled and their action is set as admindown or die. The log action does not
suffice because it does not change the state of the nodes. If either test is disabled or has an action of log, then
ALPS may live-lock. In this live-lock, ALPS will call NHC endlessly.

Modify an Installed System

S2393 286

Guidance for the Filesystem Test
The NHC Filesystem test can take an explicit argument (the mount point of the file system) or no argument. If
an argument is provided, the Filesystem test is referred to as an explicit Filesystem test. If no argument is
given, the Filesystem test is referred to as an implicit Filesystem test.

The explicit Filesystem test will test the file system located at the specified mount point.

The implicit Filesystem test will test each file system listed in the /etc/fstab file on each compute node. The
implicit Filesystem test is enabled by default in the NHC configuration file.

The Filesystem test will determine whether a file system is mounted read-only or read-write. If the file system is
mounted read-write, then NHC will attempt to write to it. If it is mounted read-only, then NHC will attempt to read
the directory entities "." and ".." in the file system to guarantee, at a minimum, that the file system is readable.

Some file systems are mounted on the compute nodes as read-write file systems, while their underlying
permissions are read-only. As an example, for an auto-mounted file system, the base mount-point may have read-
only permissions; however, it could be mounted as read-write. It would be mounted as read-write, so that the
auto-mounted sub-mount-points could be mounted as read-write. The read-only permissions prevent tampering
with the base mount-point. In a case such as this, the Filesystem test would see that the base mount-point had
been mounted as a read-write file system. The Filesystem test would try to write to this file system, but the
write would fail due to the read-only permissions. Because the write fails, the Filesystem test would fail, and
NHC would incorrectly decide that the compute node is unhealthy because it could not write to this file system.
For this reason, file systems that are mounted on compute nodes as read-write file systems, but are in reality
read-only file systems, should be excluded from the implicit Filesystem test.

The administrator can exclude tests by adding an "Excluding: file system mount point" entry in the NHC
configuration file. See the NHC configuration file for further details and an example.

A file system is deemed a critical file system if it is needed to run applications. All systems will likely need at least
one shared file system for reading and writing input and output data. Such a file system would be a critical file
system. File systems that are not needed to run applications or read and write data would be deemed as
noncritical file systems. The administrator must determine the criticality of each file system.

Cray recommends the following:

● Exclude noncritical file systems from the implicit Filesystem test. See the NHC configuration file for further
details and an example.

● If there are critical file systems that do not appear in the /etc/fstab file on the compute nodes (such file
systems would not be tested by the implicit Filesystem test), these critical file systems should be checked
through explicit Filesystem tests. Add explicit Filesystem tests to the NHC configuration file by providing
the mount point of the file system as the final argument to the Filesystem test. See the NHC configuration
file for further details and an example.

● If a file system that is mounted as read-write but it has read-only permissions, exclude it from the implicit
Filesystem test. NHC does not support such file systems.

● Client mounts may fail as a system is booting because not all routes have had sufficient time to be
established. The retry ensures a mount attempt will be made after all routes are up.

Guidance for the Hugepages Test
The Hugepages test runs the hugepages_check command, which supports two arguments:

-t threshold Use this argument to specify the threshold as a percentage of /proc/boot_freemem. If
this test is enabled and this argument is not supplied, the default of -t 90 is used.

Modify an Installed System

S2393 287

-s size Specify the hugepage size. The valid sizes are 2, 4, 8, 16, 32, 64, 128, 256, and 512. If this
test is enabled and this argument is not supplied, the default of -s 2 is used.

Guidance for the NHC Lustre File System Test
The Lustre file system has its own hard time-out value that determines the maximum time that a Lustre recovery
will last. This time-out value is called RECOVERY_TIME_HARD, and it is located in the file system's fs_defs file.
The default value for the RECOVERY_TIME_HARD is 15 minutes.

IMPORTANT: The time-out value for the NHC Lustre file system test should be twice the
RECOVERY_TIME_HARD value.

The default in the NHC configuration file is 30 minutes, which is twice the default RECOVERY_TIME_HARD. If the
value of RECOVERY_TIME_HARD is changed, the time-out value of the NHC Lustre file system test must also
change correspondingly.

The NHC time-out value is specified on the following line in the NHC configuration file:

Lustre: <warning time-out> <test time-out> <restart delay>
Lustre: 900 1800 60

Further, the overall time-out value of NHC's Suspect Mode is based on the maximum time-out value for all of the
NHC tests. Invariably, the NHC Lustre file system test has the longest time-out value of all the NHC tests.

IMPORTANT: If the NHC Lustre file system test time-out value is changed, then the time-out value for
Suspect Mode must also be changed. The time-out value for Suspect Mode is set by the suspectend
variable in the NHC configuration file. The guidance for setting the value of suspectend is that it should
be the maximum time-out value, plus an additional buffer. In the default case, suspectend was set to 35
minutes -- 30 minutes for the Lustre test, plus an additional 5 minute buffer. For more information about
the suspectend variable, see NHC Suspect Mode.

NHC Control Variables
The following variables in /etc/opt/cray/nodehealth/nodehealth.conf affect the fundamental behavior
of NHC.

advanced_features If set to on, this variable allows multiple instances of NHC to run simultaneously. This
variable must be on to use CNCU and reservation sets.

Default: on

dumpdon If set to off, NHC will not request any dumps or reboots from dumpd. This is a quick
way to turn off dump and reboot requests from NHC. The dump, reboot, and
dumpreboot actions do not function properly when this variable is off.

Default: on

anyapid Turning anyapid on specifies that NHC should look for any apid in /dev/cpuset
while running the Application Exited Check and print stack traces for processes
that are found.

Default: off

Modify an Installed System

S2393 288

Global Configuration Variables that Affect all NHC Tests
The following global configuration variables may be set in
the /etc/opt/cray/nodehealth/nodehealth.conf file to alter the behavior of all NHC tests. The global
configuration variables are case-insensitive.

Runtests:
Frequency

Determines how frequently NHC tests are run on the compute nodes. Frequency may be
either errors or always. When the value errors is specified, the NHC tests are run
only when an application terminates with a non-zero error code or terminates abnormally.
When the value always is specified, the NHC tests are run after every application
termination. If the Runtests global variable is not specified, the implicit default is
errors.

This variable applies only to tests in the application set; reservations do not terminate
abnormally.

Connecttime:
TimeoutSeconds

Specifies the amount of time, in seconds, that NHC waits for a node to respond to
requests for the TCP connection to be established. If Suspect Mode is disabled and a
particular node does not respond after connecttime has elapsed, then the node is
marked admindown. If Suspect Mode is enabled and a particular node does not respond
after connecttime has elapsed, then the node is marked suspect. NHC will then
attempt to contact the node with a frequency established by the recheckfreq variable.

If the Connecttime global variable is not specified, then the implicit default TCP time-out
value is used. NHC will not enforce time-out on the connections if none is specified. The
Connecttime: TimeoutSeconds value provided in the default NHC configuration file is
60 seconds.

The following global variables control the interaction of NHC and dumpd, the SMW daemon that initiates
automatic dump and reboot of nodes.

maxdumps:
MaximumNodes

Specifies the number of nodes that fail with the dump or dumpreboot action that will be
dumped. For example, if NHC was checking on 10 nodes that all failed tests with the dump
or dumpreboot actions, only the number of nodes specified by maxdumps would be
dumped, instead of all of them. The default value is 1.

To disable dumps of failed nodes with dump or dumpreboot actions, set maxdumps: 0.

downaction:
action

Specifies the action NHC takes when it encounters a down node. Valid actions are log,
dump, reboot, and dumpreboot. The default action is log.

downdumps:
number_dumps

Specifies the maximum number of dumps that NHC will dump for a given APID, assuming
that the downaction variable is either dump or dumpreboot. These dumps are in
addition to any dumps that occur because of NHC test failures. The default value is 1.

The following global variables control the interaction between NHC, ALPS, and the SDB.

alps_recheck_max:
number of seconds

NHC will attempt to verify its view of the states of the nodes with the
ALPS view. If NHC is unable to contact ALPS, this variable controls
the maximum delay between rechecks.

Default value: 10 seconds

alps_sync_timeout:
number of seconds

If NHC is unable to contact ALPS to verify the states of the nodes, this
variable controls the length of time before NHC gives up and aborts.

Modify an Installed System

S2393 289

Default value: 1200 seconds

alps_warn_time:
number of seconds

If NHC is unable to contact ALPS to verify the states of the nodes, this
variable controls how often warnings are issued.

Default value: 120 seconds

sdb_recheck_max:
number of seconds

NHC will contact the SDB to query for the states of the nodes. If NHC
is unable to contact the SDB, this variable controls the maximum delay
between rechecks.

Default value: 10 seconds

sdb_warn_time:
number of seconds

If NHC is unable to contact the SDB, this variable controls how often
warnings are issued.

Default value: 120 seconds

node_no_contact_warn_time:
number of seconds

If NHC is unable to contact a specific node, this variable controls how
often warnings are issued.

Default value: 600 seconds

The following global variable controls NHC's use of node states.

unhealthy_state:
swdown

When a node is deemed unhealthy, it is normally set to admindown. This variable
permits a different state to be chosen instead.

Default: not set

unhealthy_state:
rebootq

When a node is going to be rebooted, it is normally set to Unavail. This variable
permits a different state to be chosen instead.

Default: not set

Standard Variables that Affect Individual NHC Tests
The following variables are used with each NHC test; set each variable for each test. All variables are case-
insensitive. Each NHC test has values supplied for these variables in the default NHC configuration file.

Specific NHC tests require additional variables, which are defined in the nodehealth configuration file.

action Specifies the action to perform if the compute node fails the given NHC test. action may
have one of the following values:

log Logs the failure to the system console log. The log action will not cause a
compute node's state to be set to admindown.

IMPORTANT: Tests that have an action of Log do not run in Suspect
Mode. If using plugin scripts with an action of Log, the script will only
be run once, in Normal Mode. This makes log collecting and various
other maintenance tasks easier to code.

admindown Sets the compute node's state to admindown (no more applications will be
scheduled on that node) and logs the failure to the system console log.

Modify an Installed System

S2393 290

If Suspect Mode is enabled, the node will first be set to suspect state, and if
the test continues to fail, the node will be set to admindown at the end of
Suspect Mode.

die Halts the compute node so that no processes can run on it, sets the compute
node's state to admindown, and logs the failure to the system console log. (The
die action is the equivalent of a kernel panic.) This action is good for catching
bugs because the state of the processes is preserved and can be dumped at a
later time.

If the advanced_features variable is enabled, die is not allowed.

Each subsequent action includes the actions that preceded it; for example, the
die action encompasses the admindown and log actions.

If NHC is running in Normal Mode and cannot contact a compute node, and if
Suspect Mode is not enabled, NHC will set the compute node's state to
admindown.

The following actions control the NHC and dumpd interaction.

dump Sets the compute node's state to admindown and requests a dump from the
SMW, in accordance with the maxdumps configuration variable.

reboot Sets the compute node's state to unavail and requests a reboot from the
SMW. The unavail state is used rather than the admindown state when
nodes are to be rebooted because a node that is set to admindown and
subsequently rebooted stays in the admindown state. The unavail state
does not have this limitation.

dumpreboot Sets the compute node's state to unavail and requests a dump and reboot
from the SMW.

The following actions control the NHC and dumpd interaction.

warntime Specifies the amount of elapsed test time, in seconds, before xtcheckhealth logs a warning
message to the console file. This allows an administrator to take corrective action, if
necessary, before the timeout is reached.

timeout Specifies the total time, in seconds, that a test should run before an error is returned by
xtcheckhealth and the specified action is taken.

restartdelay Valid only when NHC is running in Suspect Mode. Specifies how long NHC will wait, in
seconds, to restart the test after the test fails. The minimum restart delay is one second.

sets Indicates when to run a test. The default NHC configuration specifies to run specific tests after
application completion and to run an alternate group of tests at reservation end. When ALPS
calls NHC at the end of the application, tests marked with Sets: Application are run. By
default, these tests are: Filesystem, Accelerator, ugni_nhc_plugins, Application
Exited Check, Apinit Ping Test, and Apinit Log and Core File Recovery. At
the end of the reservation, ALPS calls tests marked Sets: Reservation. By default, these
are: Free Memory Check, ugni_nhc_plugins, Reservation, and Hugepages Check.

If no set is specified for a test, it will default to Application, and run when ALPS calls NHC
at the end of the application. If NHC is launched manually, using the xtcheckhealth

Modify an Installed System

S2393 291

command, and the -m sets argument is not specified on the command line, then
xtcheckhealth defaults to running the Application set.

If a test is marked Sets: All, it will always run, regardless of how NHC is invoked.

NHC Suspect Mode
Upon entry into Suspect Mode, NHC immediately allows healthy nodes to be returned to the resource pool.
Suspect Mode allows the remaining nodes, which are all in suspect state, an opportunity to return to
healthiness. If the nodes do not return to healthiness by the end of the Suspect Mode (determined by the
suspectend global variable; see below), their states are set to admindown. For more information about how
Suspect Mode functions, see the intro_NHC(8) man page.

IMPORTANT: Suspect Mode is enabled in the default configuration. Cray recommends that sites run
NHC with Suspect Mode enabled.

If enabled, the default NHC configuration file uses the following Suspect Mode variables:

suspectenable: Enables Suspect Mode; valid values are y and n.

Default: y

suspectbegin: Sets the Suspect Mode timer. Suspect Mode starts after the number of seconds indicated
by suspectbegin have expired.

Default: 180

suspectend: Suspect Mode ends after the number of seconds indicated by suspectend have expired.
This timer only starts after NHC has entered Suspect Mode.

Default: 2100
Considerations when evaluating shortening the length of Suspect Mode:

● The length of Suspect Mode can be shortened if there are no external file systems, such
as Lustre, for NHC to check.

● Cray recommends that the length of Suspect Mode be at least a few seconds longer
than the longest time-out value for any of the NHC tests. For example, if the
Filesystem test had the longest time-out value at 900 seconds, then the length of
Suspect Mode should be at least 905 seconds.

● The longer the Suspect Mode, the longer nodes have to recover from any unhealthy
situations. Setting the length of Suspect Mode too short reduces this recovery time and
increases the likelihood of the nodes being marked admindown prematurely.

recheckfreq: Suspect Mode rechecks the health of the nodes in suspect state at a frequency specified
by recheckfreq. This value is in seconds.

For a detailed description about NHC actions during the recheck process, see the
intro_NHC(8) man page.

Default: 300

Modify an Installed System

S2393 292

NHC Messages
NHC messages may be found on the SMW in /var/opt/cray/log/sessionid/nhc-YYYYMMDD with
'<node_health:M.m>' in the message, where M is the major and m is the minor NHC revision number. All NHC
messages are visible in the console file.

NHC prints a summary message per node at the end of Normal Mode and Suspect Mode when at least one test
has failed on a node. For example:

<node_health:3.1> APID:100 (xtnhc) FAILURES: The following tests have failed in
normal mode:
<node_health:3.1> APID:100 (xtnhc) FAILURES: (Admindown) Apinit_Ping
<node_health:3.1> APID:100 (xtnhc) FAILURES: (Admindown) Plugin /example/plugin
<node_health:3.1> APID:100 (xtnhc) FAILURES: (Log Only) Filesystem_Test on /
mydir
<node_health:3.1> APID:100 (xtnhc) FAILURES: (Admindown) Free_Memory_Check
<node_health:3.1> APID:100 (xtnhc) FAILURES: End of list of 5 failed test(s)

The xtcheckhealth error and warning messages include node IDs and application IDs and are written to the
console file on the SMW; for example:

[2010-04-05 23:07:09][c1-0c2s0n0]<node_health:3.0> APID:2773749
(check_apid) WARNING: Failure: File /dev/cpuset/2773749/tasks exists and is not
empty. \
The following processes are running under expired APID
2773749:
[2010-04-05 23:07:09][c1-0c2s0n1]<node_health:3.0> APID:2773749
(check_apid) WARNING: Pid: 300 Name: (marys_program) State: D

The xtcleanup_after script writes its normal launch information to the /var/log/xtcheckhealth_log file,
which resides on the login nodes. The xtcleanup_after launch information includes the time that
xtcleanup_after was launched and the time xtcleanup_after called xtcheckhealth.

The xtcleanup_after script writes error output (launch failure information) to
the /var/log/xtcheckhealth_log file, to the console file on the SMW, and to the syslog.

Example xtcleanup_after output follows:

Thu Apr 22 17:48:18 CDT 2010 <node_health> (xtcleanup_after)
/opt/cray/nodehealth/3.0-1.0000.20840.30.8.ss/bin/xtcheckhealth -a 10515
-e 1 /tmp/apsysLVNqO9 /etc/opt/cray/nodehealth/nodehealth.conf

Recover from a Login Node Crash when a Login Node will not be Rebooted

About this task
If a login node crashes while xtcheckhealth binaries on that login node are monitoring compute nodes that are
in suspect state, those xtcheckhealth binaries will die when the login node crashes. When the login node
that crashed is rebooted, a recovery action takes place. When the login node boots, the
node_health_recovery binary starts up. This script checks for all compute nodes that are in suspect state
and were last set to suspect state by this login node. The script then determines the APID of the application that
was running on each of these compute nodes at the time of the crash. The script then launches an
xtcheckhealth binary to monitor each of these compute nodes. One xtcheckhealth binary is launched per
compute node monitored.

Modify an Installed System

S2393 293

If the Application_Exited_Check test is enabled in the configuration file (default), xtcheckhealth is
launched with this APID to test for processes that may have been left behind by that application. Otherwise, NHC
does not run the Application_Exited_Check test and will not check for leftover processes, but will run any
other NHC tests that are enabled in the configuration file.

Nodes are changed from suspect state to up or admindown, depending upon whether they fail any health
checks. No system administrator intervention should be necessary.

NHC automatically recovers the nodes in suspect state when the crashed login node is rebooted because the
recovery feature runs on the rebooted login node. If the crashed login node is not rebooted, then manual
intervention is required to rescue the nodes from suspect state. This manual recovery can commence as soon
as the login node has crashed. To recover from a login node crash during the case in which a login node will not
be rebooted, the nhc_recovery binary is provided to help release the compute nodes owned by the crashed
login node; see Recover from a Login Node Crash when a Login Node will not be Rebooted. Also, see the
nhc_recovery(8) man page for a description of the nhc_recovery binary usage.

Procedure

1. Create a file, nodelistfile, that contains a list of the nodes in the system that are currently in Suspect
Mode. The file must be a list of NIDs, one per line; do not include a blank line at the end of the file.

2. List all of the suspect nodes in the system and the login nodes to which they belong.

smw:~# nhc_recovery -d nodelistfile

3. Parse the nhc_recovery output for the NID of the login node that crashed, creating a file, computenodes,
that contains all of the compute nodes owned by the crashed login node.

4. Use the computenodes file to create nodelist files containing nodes that share the same APID (to
determine the nodes from the crashed login node). For example, the files can be named
nodelistfile-APID1, nodelistfile-APID2, nodelistfile-APID3, etc.

5. Release all of the suspect compute nodes owned by the crashed login node.

smw:~# nhc_recovery -r computenodes
All of these compute nodes are released in the database, but they are all still in suspect state.

6. Determine what to do with these suspect nodes from the following three options:

● (Cray recommends this option) Rerun NHC on a non-crashed login node to recover the nodes listed in
step 4 on page 294. Invoke NHC for each nodelist-APID file. Supply the APID that corresponds to the
nodelistfile; an iteration count of 0 (zero), which is the value normally supplied to NHC by ALPS; and
an application exit code of 1 as the APID argument. An exit code of 1 ensures that NHC will run
regardless of the value of the runtests variable (always or errors) in the NHC configuration file. For
example:

smw:~# xtcleanup_after -s nodelist-APID1 APID1 0 1
smw:~# xtcleanup_after -s nodelist-APID2 APID2 0 1
smw:~# xtcleanup_after -s nodelist-APID3 APID3 0 1
.
.
.

Modify an Installed System

S2393 294

● Set the suspect nodes to admindown and determine their fate by further analysis.

● Set the suspect nodes back to up, keeping in mind that they were in Suspect Mode for a reason.

Modify an Installed System

S2393 295

	Contents
	About the XC Series System Administration Guide
	About the Cray Management System
	Manage the System
	Connect the SMW to the Console of a Service Node
	Configure Remote Access to SMW with VNC
	About the Integrated Dell Remote Access Controller (iDRAC)
	Change the Default iDRAC Password
	Dell R815 SMW: Change the BIOS and iDRAC Settings
	Dell R630 SMW: Change the BIOS and iDRAC Settings
	Use the iDRAC

	Hardware Component Identification
	Physical ID for Cray XC Series Systems
	Node ID (NID) on Cray XC Series Systems
	Extended Node ID (XNID)
	Topology Class

	Boot the System
	Run Tests after Boot is Complete
	Manually Boot the Boot Node and Service Nodes
	Manually Boot the Compute Nodes
	Reboot a Single Compute Node
	Reboot Login or Network Nodes
	Reboot Many Nodes

	Boot the SMW in Rescue Mode
	Debug Ansible Failures During System Boot
	Examine System Logs
	Look Up Configuration Details
	Examine Ansible Changelogs
	Debug Ansible Failures in init
	Examine System Dumps

	Log on to the Boot Node
	Display Boot Configuration Information
	Update the Boot Configuration
	Display the Format of the SDB attributes Table
	Update SDB Tables
	Free Up Disk Space in the btrfs File System After Removing SMW Snapshots
	Boot a Node or Set of Nodes Using the xtcli boot Command
	Increase the Boot Manager Timeout Value
	Reboot Controllers of a Cabinet or Blade
	Bounce Blades Repeatedly Until All Blades Succeed
	Request and Display System Routing
	Initiate a Network Discovery Process
	Configure IP Routes
	Shut Down the System Using the auto.xtshutdown File
	The xtshutdown Command
	Shut Down the System or Part of the System Using the xtcli shutdown Command
	Shut Down Service Nodes
	Stop System Components
	Restart a Blade or Cabinet
	System Component States
	Abort Active Sessions on the HSS Boot Manager
	Display and Change Software System Status
	Configure Current System Timezone
	View and Change the Status of Nodes
	Perform Parallel Operations on Compute Nodes
	Perform Parallel Operations on Service Nodes
	Mark a Compute Node as a Service Node
	Find Node Information
	Display and Change Hardware System Status
	Recreate HSS Database File System After Corruption
	Dynamic Fan Speed Control
	Enable Dynamic Fan Speed Control
	Configure and Validate Dynamic Cooling Control Variables

	Disable Hardware Components
	Enable Hardware Components
	Check Current State of Compute Node SSDs
	Set Hardware Components to EMPTY
	Lock Hardware Components
	Unlock Hardware Components
	Over-provision an Intel P3608 SSD
	xtbounce Error Message Indicates Cabinet Controller and Its Blade Controllers Not in Sync
	Power-cycle a Component to Handle Bus Errors
	When a Component Fails
	Dump and Reboot Nodes Automatically
	Collect Debug Information From Hung Nodes Using the xtnmi Command
	Modify BIOS Parameters
	Increase File System Size
	Add New Hardware to a System
	Add a New Disk to a Volume Group in a Storage Set
	Reboot Controllers of a Cabinet or Blade
	Bounce Blades Repeatedly Until All Blades Succeed
	Shut Down the System Using the auto.xtshutdown File
	The xtshutdown Command
	Shut Down Service Nodes

	Shut Down the System or Part of the System Using the xtcli shutdown Command
	Stop System Components
	Restart a Blade or Cabinet
	Abort Active Sessions on the HSS Boot Manager
	Display and Change Software System Status
	View and Change the Status of Nodes
	Mark a Compute Node as a Service Node
	Find Node Information

	Display and Change Hardware System Status
	Generate HSS Physical IDs
	Disable Hardware Components
	Enable Hardware Components
	Set Hardware Components to EMPTY
	Lock Hardware Components
	Unlock Hardware Components

	Set the Turbo Boost Limit
	Perform Parallel Operations on Service Nodes
	Perform Parallel Operations on Compute Nodes
	xtbounce Error Message Indicates Cabinet Controller and Its Blade Controllers Not in Sync
	Reduce Impact of Btrfs Periodic Maintenance on SMW Performance
	Power-cycle a Component to Handle Bus Errors
	When a Component Fails
	Capture and Analyze System-level and Node-level Dumps
	Configure xtdumpsys for Systems Using passwordless ssh
	cdump and crash Utilities for Node Memory Dump and Analysis
	Dump and Reboot Nodes Automatically
	The /etc/opt/cray-xt-dumpd/dumpd.conf Configuration File
	The dumpd-dbadmin Tool
	The dumpd-request Tool

	Collect Debug Information From Hung Nodes Using the xtnmi Command
	Modify BIOS Parameters
	Set or Change the HSS Data Store (MariaDB) Root Password
	Recover from a Corrupt or Missing SMW MariaDB Database
	Restore the HSS MariaDB Database from a Backup
	Regenerate the HSS MariaDB Database from Scratch

	Troubleshoot Temperature Warnings Reported in an End Cabinet
	Recover from SMW R630 Boot Disk Hardware RAIDS Failure
	Recover from SMW R815 Boot Disk Software RAID1 Failure
	About X.509 Certificates and How to Redistribute Them
	Update X.509 Host Certificate After SMW Hostname Change

	Manage System Access
	Change Account Passwords on the SMW
	Change Account Passwords on CLE Nodes

	Configure the System
	Cray XC System Configuration
	About the Configurator
	Create a Config Set
	Create a Config Set from Configuration Worksheets
	Create a Config Set by Cloning
	Create a Config Set without Callbacks
	Create a Config Set Interactively

	Update a Config Set
	Update a Config Set Interactively
	Update a Config Set from Configuration Worksheets
	Update a Config Set without Callbacks
	Rename a Config Set
	Update a Single Service in a Config Set

	Validate a Config Set and List Validation Rules
	Config Set Create/Update Process
	Tips for Configurator Interactive Sessions
	cfgset Troubleshooting Tips
	Remove Shallow Checksum after Pushing a Config Set from One SMW to Another

	Update cray_sysenv Worksheet
	Prepare and Update the Global Config Set
	About Simple Sync
	Configure Files for Cray Simple Sync Service

	About the Node Image Mapping Service (NIMS)
	About Node Groups
	About the Image Management and Provisioning System (IMPS)
	Where to Place the Root File System—tmpfs versus netroot
	Install Third-Party Software with a Custom Image Recipe

	About Config Set Caching
	Add Kernel Watch Descriptors to Improve Config Set Caching Performance

	Change a File on a Compute Node
	Use an Ansible Play to Change a File on a Compute Node
	Use a Custom Image Recipe to Change a File on a Compute Node

	About Custom Ansible Plays
	Control a Service on Specific Nodes at Boot Time
	Manage Node Configuration, Services, and Settings at Boot Time (boot.last Script)

	About Secure Shell Configuration

	Monitor the System
	Manage Log Files Using CLE and HSS Commands
	Check the Status of System Components
	Check the Status of Compute Processors
	Monitor the System with the System Environmental Data Collector (SEDC)
	Monitor the Health of PCIe Channels
	Examine Activity on the HSS Boot Manager
	Poll a Response from an HSS Daemon, Manager, or the Event Router
	Validate the Health of the HSS
	Monitor Event Router Daemon (erd) Events
	Monitor Node Console Messages
	View Component Alert, Warning, and Location History
	Display Component Information
	Display Alerts and Warnings
	Display System Network Congestion Protection Information
	Clear Component Flags
	Display Error Codes
	Cray Lightweight Log Management (LLM) System
	Debug the CLE System Debugger Using debugraw and debugmax
	cdump and crash Utilities for Node Memory Dump and Analysis
	Resource Utilization Reporting
	Overview of RUR Configuration
	Enable and Configure RUR
	Configure the cray_alps Service for Per-application RUR
	Configure a WLM to Enable Per-job RUR
	Refresh Nodes with Updated Config Sets
	Enable/Disable Plugins
	The dws Data Plugin
	The dws_job_server Data Plugin
	The dws_server Data Plugin
	The energy Data Plugin
	The gpustat Data Plugin
	The memory Data Plugin
	The nodeuse Data Plugin
	The taskstats Data Plugin
	The timestamp Data Plugin
	The file Output Plugin
	The llm Output Plugin
	The user Output Plugin
	The database Example Output Plugin
	Create Custom RUR Data Plugins
	Create Custom RUR Output Plugins
	Implement a Site-Written RUR Plugin
	Additional Plugin Examples
	Application Completion Reporting (ACR) to RUR Migration Tips
	Application Resource Utilization (ARU) to RUR Migration Tips
	CSA to RUR Migration Tips

	Modify an Installed System
	Configure a Boot Failover Node
	Disable Boot Node Failover
	Configure an SDB Failover Node
	Perform SDB Node Failback
	Perform Boot Node Failback
	Configure Realm-Specific IP
	Use the xtrsipcfg_v2 Script for an Advanced RSIP Configuration
	Update cray_net Worksheet for an Advanced RSIP Configuration

	The Node ARP Management Daemon (rca_arpd)
	Create Logical Machines for Cray XC Series Systems
	Configure a Logical Machine
	Boot a Logical Machine
	Boot the System Using Another Snapshot
	Configure the NFS client to Mount the Exported Lustre File System
	Define Bind Mount Points Within a Configuration Set
	Enable Multipath on an Installed XC System
	Change Lustre Versions
	Repurpose Compute Nodes
	Node Attributes
	View and Temporarily Set Node Attributes
	The XTAdmin Database segment Table
	Apply Rolling Patches to Compute Nodes with cnat
	Apply Live Updates to Nodes
	Reuse One or More Previously-failed HSN Links
	Add or Remove from Service
	Remove a Compute Blade from Service While the System is Running
	Return a Compute Blade into Service
	State Manager LLM Logging
	Boot Manager LLM Logging
	Configure Node Health Checker Tests
	Guidance for the Accelerator Test
	Guidance for the Application Exited Check and Apinit Ping Tests
	Guidance for the Filesystem Test
	Guidance for the Hugepages Test
	Guidance for the NHC Lustre File System Test
	NHC Control Variables
	Global Configuration Variables that Affect all NHC Tests
	Standard Variables that Affect Individual NHC Tests
	NHC Suspect Mode
	NHC Messages
	Recover from a Login Node Crash when a Login Node will not be Rebooted

