
XC™ Series System Administration Guide
(CLE 6.0.UP01)

Contents
About the XC Series System Administration Guide...8

About the Cray Management System..11

Manage the System...12

Connect the SMW to the Console of a Service Node..12

Configure Remote Access to SMW with VNC...12

About the Integrated Dell Remote Access Controller (iDRAC)..13

Change the Default iDRAC Password...13

R815 SMW: Change the BIOS and iDRAC Settings...13

R630 SMW: Change the BIOS and iDRAC Settings...19

Use the iDRAC..29

Boot the System..30

Run Tests After Boot is Complete...30

Manually Boot the Boot Node and Service Nodes..31

Manually Boot the Compute Nodes...33

Reboot a Single Compute Node..33

Reboot Login or Network Nodes...34

Debug Ansible Failures During System Boot..34

Examine System Logs...34

Look Up Configuration Details...35

Examine Ansible Changelogs...36

Debug Ansible Failures in init..38

Examine System Dumps...39

Log on to the Boot Node..39

Display Boot Configuration Information...40

Update the Boot Configuration..40

Display the Format of the SDB attributes Table...40

Update SDB Tables...41

Boot a Node or Set of Nodes Using the xtcli boot Command..43

Increase the Boot Manager Timeout Value...43

Reboot Controllers of a Cabinet or Blade..44

Bounce Blades Repeatedly Until All Blades Succeed...44

Request and Display System Routing...44

Initiate a Network Discovery Process..45

Configure IP Routes..45

Shut Down the System Using the auto.xtshutdown File..46

Contents

 2

The xtshutdown Command..46

Shut Down the System or Part of the System Using the xtcli shutdown Command......................................47

Shut Down Service Nodes...48

Stop System Components...48

Restart a Blade or Cabinet..49

Abort Active Sessions on the HSS Boot Manager...50

Display and Change Software System Status...50

Configure Current System Timezone..50

View and Change the Status of Nodes..53

Perform Parallel Operations on Compute Nodes..54

Perform Parallel Operations on Service Nodes...55

Mark a Compute Node as a Service Node..55

Find Node Information...55

Display and Change Hardware System Status...57

Generate HSS Physical IDs..57

Disable Hardware Components...57

Enable Hardware Components...58

Set Hardware Components to EMPTY...58

Lock Hardware Components...59

Unlock Hardware Components..59

xtbounce Error Message Indicates Cabinet Controller and Its Blade Controllers Not in Sync......................59

Power-cycle a Component to Handle Bus Errors..60

When a Component Fails..60

Dump and Reboot Nodes Automatically..60

Collect Debug Information From Hung Nodes Using the xtnmi Command...61

Modify BIOS Parameters...61

Increase File System Size...62

Add New Hardware to a System...63

Add a New Disk to a Volume Group in a Storage Set...67

Reboot Controllers of a Cabinet or Blade..68

Bounce Blades Repeatedly Until All Blades Succeed...68

Shut Down the System Using the auto.xtshutdown File..69

The xtshutdown Command..69

Shut Down Service Nodes..69

Shut Down the System or Part of the System Using the xtcli shutdown Command......................................70

Stop System Components...71

Restart a Blade or Cabinet..72

Abort Active Sessions on the HSS Boot Manager...73

Contents

 3

Display and Change Software System Status...73

View and Change the Status of Nodes..73

Mark a Compute Node as a Service Node..74

Find Node Information...75

Display and Change Hardware System Status...76

Generate HSS Physical IDs..76

Disable Hardware Components..76

Enable Hardware Components...77

Set Hardware Components to EMPTY...77

Lock Hardware Components...78

Unlock Hardware Components...78

Set the Turbo Boost Limit..79

Perform Parallel Operations on Service Nodes...79

Perform Parallel Operations on Compute Nodes..79

xtbounce Error Message Indicates Cabinet Controller and Its Blade Controllers Not in Sync......................80

Reduce Impact to SMW Performance of Btrfs Periodic Maintenance...80

Power-cycle a Component to Handle Bus Errors..81

When a Component Fails..81

Capture and Analyze System-level and Node-level Dumps..81

cdump and crash Utilities for Node Memory Dump and Analysis...82

Dump and Reboot Nodes Automatically...83

The /etc/opt/cray-xt-dumpd/dumpd.conf Configuration File..83

The dumpd-dbadmin Tool..84

The dumpd-request Tool...85

Collect Debug Information From Hung Nodes Using the xtnmi Command...85

Modify BIOS Parameters...85

Set or Change the HSS Data Store (MariaDB) Root Password..86

Recover from a Corrupt or Missing SMW MariaDB Database..87

Restore the HSS MariaDB Database from a Backup..88

Regenerate the HSS MariaDB Database from Scratch..89

Troubleshoot Temperature Warnings Reported in an End Cabinet...90

Recover from SMW R630 Boot Disk Hardware RAIDS Failure...92

Recover from SMW R815 Boot Disk Software RAID1 Failure..92

About X.509 Certificates and How to Redistribute Them..95

Update X.509 Host Certificate After SMW Hostname Change...101

Manage System Access..103

Change Account Passwords on the SMW...103

Change Account Passwords on CLE Nodes...103

Contents

 4

Configure the System..105

Cray XC System Configuration..105

About the Configurator..106

Create a Config Set...108

Update a Config Set..112

Config Set Create/Update Process...116

Tips for Configurator Interactive Sessions...119

cfgset Troubleshooting Tips...124

About Simple Sync..125

Configure Files for Cray Simple Sync Service..129

About the Node Image Mapping Service (NIMS)..130

About Node Groups...130

Admin Use Cases..131

Use Case: boot.last Script...131

Use Case: Change a File on a Compute Node...133

Use Case: Install Third-Party Software...135

Use Case: Start a Service on Specific Nodes at Boot Time..136

Use Case: Changing root and crayadm Passwords..137

InfiniBand and OpenFabrics Interconnect Drivers...138

InfiniBand Uses...138

Upper Layer InfiniBand I/O Protocols..140

Subnet Manager (OpenSM) Configuration..140

Monitor the System..142

Manage Log Files Using CLE and HSS Commands...142

Check the Status of System Components...143

Check the Status of Compute Processors...144

Monitor the System with the System Environmental Data Collector (SEDC)..145

Monitor the Health of PCIe Channels..145

Examine Activity on the HSS Boot Manager...146

Poll a Response from an HSS Daemon, Manager, or the Event Router...146

Validate the Health of the HSS..146

Monitor Event Router Daemon (erd) Events...147

Monitor Node Console Messages...147

View Component Alert, Warning, and Location History...148

Display Component Information..148

Display Alerts and Warnings..149

Display System Network Congestion Protection Information..150

Clear Component Flags...150

Contents

 5

Display Error Codes..151

Cray Lightweight Log Management (LLM) System...151

cdump and crash Utilities for Node Memory Dump and Analysis..151

Resource Utilization Reporting..152

The energy Data Plugin (Cray XC Series only)...153

The gpustat Data Plugin..154

The kncstats Data Plugin..155

The memory Data Plugin...155

The taskstats Data Plugin...157

The timestamp Data Plugin...160

The file Output Plugin..160

The llm Output Plugin..160

The user Output Plugin...160

The database Example Output Plugin...161

Create Custom RUR Data Plugins..162

Create Custom RUR Output Plugins...163

Implement a Site-Written RUR Plugin...164

Additional Plugin Examples...165

Application Completion Reporting (ACR) to RUR Migration Tips..168

Application Resource Utilization (ARU) to RUR Migration Tips...169

CSA to RUR Migration Tips...170

Modify an Installed System..173

Disable Boot-node Failover...173

The Node ARP Management Daemon (rca_arpd)..173

Create Logical Machines for Cray XC Series Systems...173

Configure a Logical Machine...174

Boot a Logical Machine...175

Configure the NFS client to Mount the Exported Lustre File System..175

Repurpose Compute Nodes..176

Node Attributes..176

View and Temporarily Set Node Attributes..177

The XTAdmin Database segment Table..177

Reuse One or More Previously-failed HSN Links..178

Add or Remove a High-speed Network Cable from Service...179

Remove a Compute Blade from Service While the System is Running..179

Return a Compute Blade into Service...181

State Manager LLM Logging...182

Boot Manager LLM Logging..182

Contents

 6

Configure Node Health Checker Tests..182

Guidance for the Accelerator Test...185

Guidance for the Application Exited Check and Apinit Ping Tests ..186

Guidance for the Filesystem Test..186

Guidance for the Hugepages Test...187

Guidance for the NHC Lustre File System Test...187

NHC Control Variables..188

Global Configuration Variables that Affect all NHC Tests..188

Standard Variables that Affect Individual NHC Tests...190

NHC Suspect Mode...191

NHC Messages...192

Recover from a Login Node Crash when a Login Node will not be Rebooted..................................193

Contents

 7

About the XC Series System Administration Guide
This publication, released on June 20, 2016, includes administrative tasks for Cray XC series systems running
SMW 8.0 UP01 and CLE 6.0 UP01.

Command Prompt Conventions
hostname in
command
prompts

Hostnames in command prompts indicate where the command must be run.

hostname# Run the command on this hostname.

smw# Run the command on the SMW.

boot# Run the command on the boot node.

sdb# Run the command on the SDB node.

login# Run the command on any login node.

smw1#
smw2#

For a system configured with the SMW failover feature there are two
SMWs—one in an active role and the other in a passive role. The
SMW that is active at the start of a procedure is smw1. The SMW that
is passive is smw2.

smwactive#
smwpassive#

In some scenarios, the active SMW is smw1 at the start of a
procedure—then the procedure requires a failover to the other SMW.
In this case, the documentation will continue to refer to the formerly
active SMW as smw1, even though smw2 is now the active SMW. If
further clarification is needed in a procedure, the active SMW will be
called smwactive and the passive SMW will be called smwpassive.

account name
in command
prompts

The account that must run the command is also indicated in the prompt.

smw#
boot#
sdb#
login#
hostname#

The root or super-user account always has the # character at the
end of the prompt.

crayadm@smw>
crayadm@login>

Any non-root account is indicated with account@hostname.

About the XC Series System Administration Guide

 8

user@hostname> A user account that is neither root nor crayadm is referred to as
user.

command
prompt inside
chroot

If the chroot command is used, the prompt changes to indicate that it is inside a chroot'd
environment on the hostname.

smw# chroot /path/to/chroot
chroot-smw#

directory path
in command
prompt

Sometimes the current path can be so long that including it in the prompt does not add clarity to
the command example. Most of the time, the command can be executed from any directory.
When it matters which directory the command is invoked within, the cd command is used to
change into the directory, and the directory is referenced with a period (.) to indicate the
current directory.

For example, here are actual prompts as they appear on the system:

smw:~ # cd /etc
smw:/etc# cd /var/tmp
smw:/var/tmp# ls ./file
smw:/var/tmp# su - crayadm
crayadm@smw:~> cd /usr/bin
crayadm@smw:/usr/bin> ./command
And here are the same prompts as they would appear in examples in this publication:

smw# cd /etc
smw# cd /var/tmp
smw# ls ./file
smw# su - crayadm
crayadm@smw> cd /usr/bin
crayadm@smw> ./command

Typographic Conventions
Monospace Indicates program code, reserved words, library functions, command-line prompts,

screen output, file/path names, key strokes (e.g., Enter and Alt-Ctrl-F), and
other software constructs.

Monospaced Bold Indicates commands that must be entered on a command line or in response to an
interactive prompt.

Oblique or Italics Indicates user-supplied values in commands or syntax definitions.

Proportional Bold Indicates a graphical user interface window or element.

\ (backslash) At the end of a command line, indicates the Linux® shell line continuation character
(lines joined by a backslash are parsed as a single line). Do not type anything after
the backslash or the continuation feature will not work correctly.

About the XC Series System Administration Guide

 9

Scope and Audience
This publication covers a wide range of system management topics and is intended for experienced Cray system
administrators.

Feedback
Visit the Cray Publications Portal at http://pubs.cray.com and make comments online using the Contact Us button
in the upper-right corner or Email pubs@cray.com. Your comments are important to us and we will respond within
24 hours.

Trademarks
The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY and
design, SONEXION, URIKA, and YARCDATA. The following are trademarks of Cray Inc.: APPRENTICE2,
CHAPEL, CLUSTER CONNECT, CRAYDOC, CRAYPAT, CRAYPORT, DATAWARP, ECOPHLEX, LIBSCI,
NODEKARE. The following system family marks, and associated model number marks, are trademarks of Cray
Inc.: CS, CX, XC, XE, XK, XMT, and XT. The registered trademark LINUX is used pursuant to a sublicense from
LMI, the exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis. Other trademarks used in
this document are the property of their respective owners.

About the XC Series System Administration Guide

 10

http://pubs.cray.com

About the Cray Management System
With Cray Linux Environment (CLE) 6.0, Cray introduces a new management system built on these core
principles:

● Separation of configuration data and software content

● Separation of the management infrastructure from the product content

● Modularity

● Prescriptive results

● Scalability

This Cray Management System (CMS) is intended to improve uptime through staging, reduce the risk associated
with updates and changes, and enable users to extend functionality.

The CMS comprises these primary components:

IMPS Image Management and Provisioning System.

IMPS enables sites to manage software content in a prescriptive way. It leverages and extends industry-
standard tools such as zypper and rpm. IMPS is used to create and distribute repository content (RPMs)
and to create and update standard or custom images. Cray provides image recipes for different node
types: service, login, compute, DAL, etc. The image recipes tie together the collections of software
defined in the package collections and the repositories that contain the software. From them, IMPS builds
a list of all the software and repositories referenced, and passes it to zypper or yum, which resolves the
RPM dependencies and installs the software into the specified image root. See the IMPS man page for
more information.

CMF Configuration Management Framework

The CMF is a combination of software and conventions that enable the modular management and
application of configuration. Each application comes with the software needed to configure that
application. All configuration information needed to operate the logical system is stored in a central
repository called a config set. It is made available to every node in the system by means of the IMPS
Distribution System (IDS), a read-only network share. Cray provides a configurator to enable sites to
create, change, or add new configuration information. Configuration for all applications installed in an
image is applied at boot time using cray-ansible, a wrapper that finds all Ansible plays installed on the
system and executes them with Ansible.

NIMS Node Image Mapping Service

NIMS enables site administrators to assign any node or group of nodes any boot image. It also provides a
mechanism for passing additional kernel parameters to the nodes on boot. See the NIMS man page for
more information.

Ansible is installed into each image. During boot, each node runs all Ansible plays, pulling in the configuration
information needed to self-configure ("pull" mode). Ansible is called twice during system boot—once from
initrd /init before Linux has started up (in_init) and once after normal Linux startup with systemd
(multiuser)—to cover both early and run level 3 use cases. Ansible can be run in “push” mode after boot to
support reconfiguration.

About the Cray Management System

 11

Manage the System
Caution is encouraged when executing system management commands and procedures; hasty actions can result
in down time and lost data.

IMPORTANT: Use persistent SCSI device names.

This does not apply to SMW disks: SCSI device names (/dev/sd*) are not guaranteed to be numbered the same
from boot to boot. This inconsistency can cause serious system problems following a reboot. When installing
CLE, the administrator must use persistent device names for file systems on the Cray system.

Cray recommends using the /dev/disk/by-id/ persistent device names. Use /dev/disk/by-id/ for the
root file system in the initramfs image and in the /etc/sysset.conf installation configuration file as well as
for other file systems, including Lustre (as specified in /etc/fstab and /etc/sysset.conf). For more
information, see XC™ Series Software Initial Installation and Configuration Guide.

Alternatively, the administrator can define persistent names using a site-specific udev rule or cray-scsidev-
emulation. However, only the /dev/disk/by-id method has been verified and tested.

CAUTION: The administrator must use /dev/disk/by-id when specifying the root file system. There is
no support in the initramfs for cray-scsidev-emulation or custom udev rules.

Connect the SMW to the Console of a Service Node
The xtcon command is a console interface for service nodes. When it is executing, the xtcon command
provides a two-way connection to the console of any running node.

With the release CLE 6.x, all service and compute nodes enable the xtcon console by default. If a node fails to
boot, then the init boot sequence halts and drops into a console bash session waiting for the administrator to take
action, such as debug the node. With release CLE 5.x, xtcon and the enablement of console on nodes is
required via the kernel parameters.

See the xtcon(8) man page for additional information.

Configure Remote Access to SMW with VNC
Virtual network computing (VNC) software enables a user to view and interact with the SMW from another
computer.

VNC is optional and enabling VNC is a site choice. With the DRAC on the SMW, many system administrators may
prefer to use DRAC and not configure VNC.

To obtain a VNC client to connect to the server, download a VNC client from a reuptable website such as these:

● RealVNC™: http://www.realvnc.com/

● TightVNC™: http://www.tightvnc.com/

Manage the System

 12

http://www.realvnc.com/
http://www.tightvnc.com/

The VNC software requires a TCP/IP connection between the server and the viewer. Be aware that VNC is
considered to be an insecure protocol, therefore Cray recommends that the VNC client only connect to the VNC
server on the SMW via an SSH tunnel.

About the Integrated Dell Remote Access Controller (iDRAC)
The iDRAC is a systems management hardware and software solution that provides remote management
capabilities, crashed system recovery, and power control functions for the System Management Workstation
(SMW). The iDRAC alerts administrators to server issues, helps them perform remote server management, and
reduces the need for physical access to the server. The iDRAC also facilitates inventory management and
monitoring, deployment and troubleshooting. To help diagnose the probable cause of a system crash, the iDRAC
can log event data and capture an image of the screen when it detects that the system has crashed.

For more information about the iDRAC, refer to online documentation at http://www.dell.com.

Change the Default iDRAC Password

About this task
This procedure describes how to log in to the iDRAC web interface and change a user password.

Procedure

1. Log in to the web interface as root.

2. Select iDRAC settings on the left navigation bar.

3. Select Network/Security on the main top navigation bar.

4. Select Users on the secondary top bar.

5. Select the user whose password is changing. For example, userid 2 and username root.

6. Select Configure User, then Next.

7. Enter the new password into the New Password and Confirm New Password fields.

8. Select Apply to complete the password change.

R815 SMW: Change the BIOS and iDRAC Settings

Prerequisites
This procedure assumes that the SMW is disconnected from the boot RAID and connected to a keyboard,
monitor, and mouse.

About this task
This procedure changes the system setup for a Dell R815 SMW: the network connections, remote power control,
and the remote console. Depending on the server model and version of BIOS configuration utility, there could be
minor differences in the steps to configure the system. For more information, refer to the documentation for the

Manage the System

 13

http://www.dell.com

Dell server used at this site. Because Cray ships systems with most of the installation and configuration
completed, some of the steps may have been done already.

For a Dell R630 SMW, see R630 SMW: Change the BIOS and iDRAC Settings on page 19.

Procedure

1. Remove SMW non-boot internal drives.

Eject all the internal disk drives from the SMW except for the primary boot disk in slot 0 and the secondary
boot disk in slot 1.

2. Power up the SMW. When the BIOS power-on self-test (POST) process begins, quickly press the F2 key
after the following messages appear in the upper-right of the screen.

 F2 = System Setup
 F10 = System Services
 F11 = BIOS Boot Manager
 F12 = PXE Boot
When the F2 keypress is recognized, the F2 = System Setup line changes to Entering System Setup.

After the POST process completes and all disk and network controllers have been initialized, the BIOS
System Setup menu appears.

3. Change system time.

The system time should be in UTC, not in the local timezone.

a. Select System Time in the System Setup menu.

The hours will be highlighted in blue.

b. Set the correct time.

1. Press the space key to change hours.

2. Use the right-arrow key to select minutes, then change minutes with the space key.

3. Use the right-arrow key to select seconds, then change seconds with the space key.

c. Press Esc when the correct time is set.

4. Change boot settings.

a. Select Boot Settings in the System Setup menu, then press Enter.

Manage the System

 14

Figure 1. Dell R815 SMW Boot Settings Menu

A pop-up menu with the following list appears:

Boot Mode .. BIOS
Boot Sequence <ENTER>
USB Flash Drive Emulation Type.................... <ENTER>
Boot Sequence Retry <Disabled>

b. Select Boot Sequence, then press Enter.

Figure 2. Dell R815 SMW Boot Sequence Settings

c. Change the order of items in the Boot Sequence list so that the optical (DVD) drive appears first, then
the hard drive. If Embedded NIC appears in the list, it should end up below the optical drive and hard
drive in the list.

d. Disable embedded NIC.

Select Embedded NIC, then press Enter to disable it.

Manage the System

 15

e. Press Esc to exit the Boot Sequence menu.

f. Press Esc again to exit the Boot Settings menu.

5. Change serial communication.

a. Select Serial Communication in the System Setup menu, then press Enter.

b. Confirm these settings in the Serial Communication menu.

● Serial Communication is set to On with Console Redirection via COM2

● Serial Port Address is set to Serial Device1=COM2, Serial Device2=COM1

● External Serial Connector is set to Serial Device2

● Failsafe Baud Rate is set to 115200

c. Press Esc to exit the Serial Communication menu.

6. Select Embedded Server Management in the System Setup menu, then press Enter.

Figure 3. Dell R815 SMW Embedded Server Management Settings

a. Set Front-Panel LCD Options to User-Defined LCD String in the Embedded Server Management
menu. Use the space key to cycle through the choices, then use the down-arrow key.

b. Set User-Defined LCD String to the login hostname (e.g., cray-drac), then press Enter.

c. Press Esc to exit the Embedded Server Management menu.

7. Insert base operating system DVD into SMW.

Insert the base operating system DVD labeled Cray-SMWbase12- into the DVD drive. (The DVD drive on the
front of the SMW may be hidden by a removable decorative bezel.)

8. Save BIOS changes and exit.

a. Press Esc to exit the BIOS System Setup menu.

A menu with a list of exit options appears.

Manage the System

 16

Save changes and exit
Discard changes and exit
Return to Setup

b. Ensure that Save changes and exit is selected, then press Enter.

The SMW resets automatically.

9. Enter BIOS boot manager.

a. When the BIOS POST process begins again, quickly press the F11 key within 5 seconds of when the
following messages appear in the upper-right of the screen.

 F2 = System Setup
 F10 = System Services
 F11 = BIOS Boot Manager
 F12 = PXE Boot
When the F11 keypress is recognized, the F11 = BIOS Boot Manager line changes to Entering BIOS
Boot Manager.

10. Change the integrated Dell Remote Access Controller (iDRAC) settings.

Watch the screen carefully as text scrolls until the iDRAC6 Configuration Utility 1.57 line is visible. When
the line Press <Ctrl-E> for Remote Access Setup within 5 sec... displays, press Ctrl-E within 5 seconds.

0 5 0 ATA WDC WD5000BPVT-0 1A01 465 GB
LSI Corporation MPT2 boot ROM successfully installed!
iDRAC6 Configuration Utility 1.57
Copyright 2010 Dell Inc. All Rights Reserved
iDRAC6 Firmware Revision version: 1.54.15
Primary Backplane Firmware Revision 1.07

IPv6 Settings

IPv6 Stack : Disabled
Address 1 : ::
Default Gateway : ::

IPv4 Settings

IPv4 Stack : Enabled
IP Address : 172. 31. 73.142
Subnet mask : 255.255.255. 0
Default Gateway : 172. 31. 73. 1
Press <Ctrl-E> for Remote Access Setup within 5 sec...
The iDRAC6 Configuration Utility menu appears.

11. Set iDRAC LAN to ON.

12. Configure the iDRAC LAN.

Select LAN Parameters, then press Enter.

a. Configure iDRAC6 name.

Use the arrow key to scroll down and select iDRAC6 Name, then press Enter. Enter a value for Current
DNS iDRAC6 Name (e.g., smw-drac), then press Enter.

b. Configure domain name.

Manage the System

 17

Use the arrow key to scroll down and select Domain Name, then press Enter. Enter a value for Current
Domain Name (e.g., us.cray.com), then press Enter.

c. Configure hostname string.

Use the arrow key to scroll down and select Host Name String, then press Enter. Enter a value for
Current Host Name String (e.g., smw-drac), then press Enter.

d. Configure IPv4 settings.

Use the arrow key to scroll down into the IPv4 Settings group and confirm that the IPv4 Address Source
is set to static. Then enter values for the following:

IPv4 Address (the SMW DRAC IP address)
Subnet Mask (the SMW iDRAC subnet mask)
Default Gateway (the SMW iDRAC default gateway)
DNS Server 1 (the first site DNS server)
DNS Server 2 (the second site DNS server)

Figure 4. Dell R815 SMW DRAC IPv4 Parameter Settings

e. Configure IPv6 settings.

Use the arrow key to scroll down into the IPv6 Settings group and ensure that IPv6 is disabled.

f. Press Esc to exit LAN Parameters and return to the iDRAC6 Configuration Utility menu.

13. Configure iDRAC virtual media.

a. Select Domain Name, then press Enter.

b. Select Virtual Media Configuration, then press Enter.

c. Select the Virtual Media line and press the space key until it indicates Detached.

d. Press Esc to exit the Virtual Media Configuration menu.

14. Set the password for the iDRAC LAN root account.

Using the arrow keys, select LAN User Configuration, then press Enter. The following configuration is for
both SSH and web browser access to the iDRAC.

Manage the System

 18

a. Select Account User Name and enter the account name "root."

b. Select Enter Password and enter the intended password.

c. Select Confirm Password and enter the intended password again.

d. Press Esc to return to the iDRAC6 Configuration Utility menu.

15. Exit the iDRAC configuration utility.

a. Press Esc to exit the iDRAC6 Configuration Utility menu.

b. Select Save Changes and Exit.

The BIOS Boot Manager menu appears.

16. Choose to boot from SATA Optical Drive.

Using the arrow keys, select the SATA Optical Drive entry, then press Enter.

R630 SMW: Change the BIOS and iDRAC Settings

Prerequisites
This procedure assumes that the internal disk drives of the SMW have just been configured as RAID virtual disks
and the system is rebooting. If the system is not rebooting, press Ctrl-Alt-Delete to reboot.

About this task
This procedure describes how to change the system setup for the SMW: the network connections, remote power
control, and the remote console. This procedure includes detailed steps for the Dell R630 server. Depending on
the server model and version of BIOS configuration utility, there could be minor differences in the steps to
configure the system. For more information, refer to the documentation for the Dell server used at this site.
Because Cray ships systems with most of the installation and configuration completed, some of the steps may
have been done already.

For a Dell R815 server, see R815 SMW: Change the BIOS and iDRAC Settings on page 13.

Procedure

Watch as the system reboots and the BIOS power-on self-test (POST) process begins. Be prepared to
press F2, when prompted, to change the system setup.

1. Press the F2 key immediately after the following messages appear in the upper-rightupper-left of the screen:

F2 = System Setup
F10 = System Services
F11 = BIOS Boot Manager
F12 = PXE Boot
When the F2 keypress is recognized, the F2 = System Setup line changes color from white-on-black to
white-on-blue.

After the POST process completes and all disk and network controllers have been initialized, the Dell System
Setup screen appears. The following submenus are available on the System Setup Main Menu and will be
used in subsequent steps: System BIOS, iDRAC Settings, and Device Settings.

Manage the System

 19

Figure 5. Dell R630 System Setup Main Menu

TIP: In system setup screens,

● Use the Tab key to move to different areas on the screen.

● Use the up-arrow and down-arrow keys to highlight or select an item in a list, then press the
Enter key to enter or apply the item.

● Press the Esc key to exit a submenu and return to the previous screen.

2. Change the BIOS settings.

a. Select System BIOS on the System Setup Main Menu, then press Enter.

The System BIOS Settings screen appears.

Manage the System

 20

Figure 6. Dell R630 System BIOS Settings Screen

b. Change Boot Settings.

1. Select Boot Settings on the System BIOS Settings screen, then press Enter. The Boot Settings
screen appears.

Figure 7. Dell R630 Boot Settings Screen

2. Ensure that Boot Mode is BIOS and not UEFI.

3. Select Boot Option Settings, then press Enter.

Manage the System

 21

4. Select Boot Sequence on the Boot Option Settings screen, then press Enter to view a pop-up
window with the boot sequence.

Figure 8. Dell R630 BIOS Boot Sequence

5. Change the boot order in the pop-up window so that the optical drive appears first, then the hard
drive. If Integrated NIC appears in the list, it should end up below the optical drive and hard drive in
the list.

TIP: Use the up-arrow or down-arrow key to highlight or select an item, then use the + and -
keys to move the item up or down.

6. Select OK, then press Enter to accept the change.

7. Click the box next to Hard drive C: under the Boot Option/Enable/Disable section to enable it. Do
the same for the optical drive, if necessary.

8. Select integrated NIC, then press Enter to disable it.

9. Press Esc to exit Boot Option Settings.

10. Press Esc to exit Boot Settings and return to the System BIOS Settings screen.

c. Change Serial Communication Settings.

Manage the System

 22

Figure 9. Dell R630 System BIOS Settings: Serial Communication

1. Select Serial Communication on the System BIOS Settings screen. The Serial Communication
screen appears.

Figure 10. Dell R630 Serial Communication Screen

2. Select Serial Communication on the Serial Communication screen, then press Enter. A pop-up
window displays the available options.

3. Select On with Console Redirection via COM2 in the pop-up window, then press Enter to accept
the change.

Manage the System

 23

4. Select Serial Port Address, then select Serial Device1=COM1, Serial Device2=COM2, then press
Enter.

5. Select External Serial Connector, then press Enter. A pop-up window displays the available
options.

6. Select Remote Access Device in the pop-up window, then press Enter to return to the previous
screen.

7. Select Failsafe Baud Rate, then press Enter. A pop-up window displays the available options.

8. Select 115200 in the pop-up window, then press Enter to return to the previous screen.

9. Press the Esc key to exit the Serial Communication screen.

10. Press Esc to exit the System BIOS Settings screen. A "Settings have changed" message appears.

11. Select Yes to save changes. A "Settings saved successfully" message appears.

12. Select Ok.

3. Change the iDRAC (Integrated Dell Remote Access Controller) settings.

Select iDRAC Settings on the System Setup Main Menu, then press Enter.

The iDRAC Settings screen appears.

Figure 11. Dell R630 iDRAC Settings Screen

4. Change the iDRAC network.

a. Select Network to display a long list of network settings.

b. Change the DNS DRAC name.

Use the arrow key to scroll down to DNS DRAC Name, then enter an iDRAC hostname that is similar to
the SMW node hostname (e.g., cray-drac).

c. Change the static DNS domain name.

Manage the System

 24

Use the arrow key to scroll down to Static DNS Domain Name, then enter the DNS domain name and
press Enter.

d. Change the IPv4 settings.

Use the arrow key to scroll down to the IPV4 SETTINGS list.

1. Ensure that IPv4 is enabled.

a. If necessary, select Enable IPV4, then press Enter.

b. Select <Enabled> in the pop-up window, then press Enter to return to the previous screen.

2. Ensure that DHCP is disabled.

a. If necessary, select Enable DHCP, then press Enter.

b. Select <Disabled> in the pop-up window, then press Enter to return to the previous screen.

3. Change the IP address.

a. Select Static IP Address.

b. Enter the IP address of the iDRAC interface (ipmi0) for the SMW, then press Enter.

4. Change the gateway.

a. Select Static Gateway.

b. Enter the appropriate value for the gateway of the network to which the iDRAC is connected, then
press Enter.

5. Change the subnet mask.

a. Select Subnet Mask.

b. Enter the subnet mask for the network to which the iDRAC is connected (such as
255.255.255.0), then press Enter.

6. Change the DNS server settings.

a. Select Static Preferred DNS Server, enter the IP address of the primary DNS server, then press
Enter.

b. Select Alternate DNS Server, enter the IP address of the alternate DNS server, then press
Enter.

e. Change the IPMI settings.

Change the IPMI settings to enable the Serial Over LAN (SOL) console.

1. Use the arrow key to scroll down to the IPMI SETTINGS list.

2. Ensure that Enable IPMI over LAN is selected.

TIP: Use the left-arrow or right-arrow to switch between two settings.

3. Ensure that Channel Privilege Level Limit is set to Administrator.

f. Exit Network screen.

Press the Esc key to exit the Network screen and return to the iDRAC Settings screen.

5. Change hostname in iDRAC LCD display.

Change front panel security to show the hostname in LCD display.

a. Use the arrow key to scroll down and highlight Front Panel Security on the iDRAC Settings screen,
then press Enter.

Manage the System

 25

b. Select Set LCD message, then press Enter.

c. Select User-Defined String, then press Enter.

d. Select User-Defined String, then enter the SMW hostname and press Enter.

e. Press the Esc key to exit the Front Panel Security screen.

6. (Optional) Change the iDRAC System Location fields.

Change the System Location configuration on the iDRAC Settings screen to set any of these fields: Data
Center Name, Aisle Name, Rack Name, and Rack Slot.

7. Set the password for the iDRAC root account.

a. Use the arrow key to highlight User Configuration on the iDRAC Settings screen, then press Enter.

b. Confirm that User Name is root. Select User Name, then enter the "root" user name.

c. Select Change Password, then enter a new password.

d. Reenter the new password in the next pop-up window to confirm it (the default password is "calvin").

e. Press the Esc key to exit the User Configuration screen.

8. Exit iDRAC settings.

a. Press the Esc key to exit the iDRAC Settings screen.

A "Settings have changed" message appears.

b. Select Yes, then press Enter to save the changes.

A "Success" message appears.

c. Select Ok, then press Enter.

The main screen (System Setup Main Menu) appears.

9. Change device settings.

These steps disable an integrated NIC device by changing the setting for the integrated NIC on a port from
PXE to None.

a. Change Integrated NIC 1 Port 1

1. Select Device Settings on the System Setup Main Menu, then press Enter. The Device Settings
screen appears.

Manage the System

 26

Figure 12. Dell R630 Device Settings Screen

2. Select Integrated NIC 1 Port 1: ... on the Device Settings screen, then press Enter.

3. Select MBA Configuration Menu on the Main Configuration Page screen, then press Enter.

Figure 13. Dell R630 BIOS MBA Configuration Settings

4. Select Legacy Boot Protocol on the MBA Configuration Menu screen, use the right-arrow or left-
arrow key to highlight None, then press Enter.

5. Press the Esc key to exit the MBA Configuration Menu screen.

Manage the System

 27

6. Press Esc to exit the Main Configuration Page screen. A "Warning Saving Changes" message
appears.

7. Select Yes, then press Enter to save the changes. A "Success" message appears.

8. Select OK, then press Enter. The Device Settings screen appears.

9. Press Esc to exit the Device Settings screen. A "Settings have changed" message appears.

10. Select Yes, then press Enter to save the changes. A "Settings saved successfully" message
appears.

11. Select OK, then press Enter. The main screen (System Setup Main Menu) appears.

b. Change Integrated NIC 1 Port 2

1. Select Device Settings on the System Setup Main Menu, then press Enter. The Device Settings
screen appears.

Figure 14. Dell R630 Device Settings Screen

2. Select Integrated NIC 1 Port 2: ... on the Device Settings screen, then press Enter.

3. Select MBA Configuration Menu on the Main Configuration Page screen, then press Enter.

Manage the System

 28

Figure 15. Dell R630 BIOS MBA Configuration Settings

4. Select Legacy Boot Protocol on the MBA Configuration Menu screen, use the right-arrow or left-
arrow key to highlight None, then press Enter.

5. Press the Esc key to exit the MBA Configuration Menu screen.

6. Press Esc to exit the Main Configuration Page screen. A "Warning Saving Changes" message
appears.

7. Select Yes, then press Enter to save the changes. A "Success" message appears.

8. Select OK, then press Enter. The Device Settings screen appears.

9. Press Esc to exit the Device Settings screen. A "Settings have changed" message appears.

10. Select Yes, then press Enter to save the changes. A "Settings saved successfully" message
appears.

11. Select OK, then press Enter. The main screen (System Setup Main Menu) appears.

Use the iDRAC

Prerequisites
This procedure assumes an integrated Dell Remote Access Controller (iDRAC) has been set up for use with the
SMW.

About this task
An iDRAC enables remote management of a Cray System Management Workstation (SMW). This procedure
describes how to access the SMW console through the iDRAC.

Procedure

1. Bring up a web browser.

Manage the System

 29

2. Go to: https://cray-drac, where cray-drac is the name assigned to the iDRAC during setup. The
iDRAC login screen appears.

3. Enter the account user name and password set up in Change the Default iDRAC Password on page 13 or an
iDRAC setup procedure.

The System Summary window appears.

4. Select Submit.

5. To access the SMW console, select the Console Media tab.

The Virtual Console and Virtual Media window appears.

6. Select Launch Virtual Console.

TIP: By default, the console window has two cursors: one for the console and one for the
administrator's window environment. To switch to single-cursor mode, select Tools, then Single
Cursor. This single cursor will not move outside the console window. To exit single-cursor mode,
press the F9 key.

TIP: To log out of the virtual console, kill the window or select File, then Exit. The web browser is still
logged into the iDRAC.

For detailed information, see the iDRAC documentation at: http://www.dell.com/support.

Boot the System
The xtbootsys command is used to manually boot the boot node, service nodes, and CNL compute nodes. An
administrator can also boot the system using both user-defined and built-in procedures in automation files
(e.g., /opt/cray/hss/default/etc/auto.generic).

crayadm@smw> xtbootsys -a auto.myautobootfile

Before modifying the auto.generic file, Cray recommends making a copy because it will be replaced by an
SMW software upgrade. Avoid strict boot ordering of service nodes in an automated boot file. For related
procedures, see .

The xtbootsys command prevents unintentional booting of currently booted partitions. If a boot automation file
is being used, xtbootsys checks that file to determine if the string shutdown exists within any actions defined
in the file. If it does, xtbootsys assumes that a shutdown is being done, and no further verification of operating
on a booted partition occurs. If the partition is not being shut down and the boot node is in the ready state,
xtbootsys announces this fact and queries for confirmation to proceed. By default, confirmation is enabled. To
disable or enable confirmation when booting booted partitions, use the xtbootsys
config,confirm_booting_booted and the config,confirm_booting_booted_last_session global
TCL variables, the --config name=value on the xtbootsys command line, or the
XTBOOTSYS_CONFIRM_BOOTING_BOOTED and XTBOOTSYS_CONFIRM_BOOTING_BOOTED_LAST_SESSION
environment variables.

Run Tests After Boot is Complete

Prerequisites
This procedure assumes that the system has completed booting.

Manage the System

 30

http://www.dell.com/support

About this task
Log in to the login node as crayadm. This can be done from the SMW to the boot node to the login node or
directly from another computer to the login node without passing through the SMW and boot node. Then perform
these rudimentary functionality checks.

Procedure

1. Run apstat to get the number of nodes to use for the following commands.

crayadm@login> NUMNODES=$(($(apstat -v | grep XT | awk "{print \$3}")))
crayadm@login> echo NUMNODES is $NUMNODES

2. Verify that all nodes run (from /tmp).

crayadm@login> cd /tmp; aprun -b -n $NUMNODES -N 1 /bin/cat /proc/sys/kernel/
hostname

3. Verify that the home directory is working by running a job.

crayadm@login> cd ~; aprun -b -n $NUMNODES -N 1 /bin/cat /proc/sys/kernel/
hostname

4. Verify that the Lustre directory is working by running a job.

crayadm@login> cd /lustre_file_system
crayadm@login> aprun -b -n $NUMNODES -N 1 /bin/cat /proc/sys/kernel/hostname

5. Run xtcheckssd to ensure that SMW databases have the current state of compute node SSDs.

root@login# pcmd -r -n ALL_COMPUTE "/opt/cray/ssd/bin/xtcheckssd"
This needs to be done after an initial installation, SSD hardware change, system update, and periodically
(daily/weekly).

Manually Boot the Boot Node and Service Nodes

Prerequisites
The Lustre file system should start up before the compute nodes, and compute node Lustre clients should be
unmounted before shutting down the Lustre file system.

About this task
If more than one boot image is set up to run, the administrator can check which image is set up to boot with the
xtcli boot_cfg show or xtcli part_cfg show pN commands. To change which image is booting, see
Update the Boot Configuration.

Procedure

1. Log on to the SMW as crayadm.

2. Invoke the xtbootsys command to boot the boot node. If the system is partitioned, invoke xtbootsys with
the --partition pN option.

Manage the System

 31

crayadm@smw:~> xtbootsys
The xtbootsys command prompts with a series of questions. Cray recommends answering yes by typing Y
to each question.

Enter your boot choice:
 0) boot bootnode ...
 1) boot sdb ...
 2) boot compute ...
 3) boot service ...
 4) boot all (not supported) ...
 5) boot all_comp ...
 10) boot bootnode and wait ...
 11) boot sdb and wait ...
 12) boot compute and wait ...
 13) boot service and wait ...
 14) boot all and wait (not supported) ...
 15) boot all_comp and wait ...
 17) boot using a loadfile ...
 18) turn console flood control off ...
 19) turn console flood control on ...
 20) spawn off the network link recovery daemon (xtnlrd)...
 q) quit.

3. Select option 10 (boot bootnode and wait).

A prompt to confirm the selection is displayed. Press the Enter key or type Y to each question to confirm.

Do you want to boot the boot node ? [Yn] Y
Do you want to send the ec_boot event ('no' means to only load memory) ? [Yn] Y
After the boot node is booted, the process returns to the boot choice menu.

4. Select option 11 (boot sdb and wait).

A prompt to confirm the selection is displayed. Press the Enter key or type Y to each question to confirm.

Do you want to boot the sdb node ? [Yn] Y
Do you want to send the ec_boot event ('no' means to only load memory) ? [Yn] Y

5. Select option 13 (boot service and wait).

A prompt to enter a list of service nodes to be booted is displayed.

6. Type p0 to boot the remaining service nodes in the entire system or pN (where N is the partition number) to
boot a partition.

Do you want to boot service p0 ? [Yn] Y
Do you want to send the ec_boot event ('no' means to only load memory) ? [Yn] Y
To confirm the selection, press the Enter key or type Y to each question.

7. Log on to any service nodes for which there are local configuration or startup scripts (such as starting Lustre)
and run the scripts.

Manage the System

 32

Manually Boot the Compute Nodes

Prerequisites
All service and login nodes are booted and Lustre, if configured at this time, has started.

Procedure

1. Invoke the xtbootsys command if it is not running.

crayadm@smw:~> xtbootsys

Enter your boot choice:
 0) boot bootnode ...
 1) boot sdb ...
 2) boot compute ...
 3) boot service ...
 4) boot all (not supported) ...
 5) boot all_comp ...
 10) boot bootnode and wait ...
 11) boot sdb and wait ...
 12) boot compute and wait ...
 13) boot service and wait ...
 14) boot all and wait (not supported) ...
 15) boot all_comp and wait ...
 17) boot using a loadfile ...
 18) turn console flood control off ...
 19) turn console flood control on ...
 20) spawn off the network link recovery daemon (xtnlrd)...
 q) quit.

2. Select option 17 (boot using a loadfile). A series of prompts are displayed. Type the responses indicated in
the following example. For the component list prompt, type p0 to boot the entire system, or pN (where N
is the partition number) to boot a partition. At the final three prompts, press the Enter key.

Enter your boot choice: 17
Enter a boot type string (or nothing to do nothing): CNL0
Enter a boot type option (or nothing to do nothing): compute
Enter a component list (or nothing to do nothing): p0
Enter 'any' to wait for any console output,
 or 'linux' to wait for a linux style boot,
 or anything else (or nothing) to not wait at all: Enter
Enter an alternative CPIO archive name (or nothing): Enter
Do you want to send the ec_boot event ('no' means to only load memory) ? [Yn]
Enter

3. Return to the xtbootsys menu after all compute nodes are booted. Type q to exit the xtbootsys program.

4. Remove the /etc/nologin file from all service nodes to permit a non-root account to log on.

smw:~# ssh root@boot
boot:~# xtunspec -r /rr/current -d /etc/nologin

Reboot a Single Compute Node
A system administrator can initiate a warm boot with the xtbootsys command's --reboot option. This
operation performs minimal initialization followed by a boot of only the selected compute nodes. Unlike the

Manage the System

 33

sequence that is used by the xtbounce command, there is no power cycling of the Cray ASICs or of the node
itself; therefore, the high-speed network (HSN) routing information is preserved. Do not specify a session identifier
(-s or --session option) because --reboot continues the last session and adds the selected components to
it.

Reboot a single comput node

For this example, reboot node c1-0c2s1n2:

crayadm@smw:~> xtbootsys --reboot c1-0c2s1n2

Reboot Login or Network Nodes
Login or network nodes cannot be rebooted through a shutdown or reboot command issued on the node; they
must be restarted through the HSS system using the xtbootsys --reboot idlist SMW command. The HSS
must be used so that the proper kernel is pushed to the node.

IMPORTANT: Do not attempt to warm boot nodes running other services in this manner.

For additional information, see the xtbootsys(8) man page.

Reboot login or network nodes

crayadm@smw:~> xtbootsys --reboot idlist

Debug Ansible Failures During System Boot
Ansible runs in init and Ansible runs a second time after systemd completes the boot process. Ansible failures
in init cause the affected node to drop into a debug shell for node access via xtcon for troubleshooting. When
the debug shell is exited, Ansible is re-executed in init. A node's boot does not proceed until the first run of
cray-ansible in init is successful.

The Ansible callback plugin captures any file changes made by Ansible file modules and stores a record of these
changes in log files located at /var/opt/cray/log/ansible/changelog. The plugin provides detailed
failure information, including the path to the task file being executed and any config set variable references in the
task file.

Ansible logs under /var/opt/cray/log/ansible are collected via cdump and xtdumpsys. In addition,
xtdumpsys collects the files from running nodes, changed by Ansible according to the changelog callback plugin.
When possible, Ansible Cray-provided plays create a backup of files modify by a play to let the administrator to
perform a diff of these files to see the changes made by Ansible. Administrators can use the
ansible_cfg_search command to examine an image and a config set. This command outputs a list of
variables and the Ansible files that accessed each variable.

Examine System Logs
Various logs receive entries during the boot process that can indicate boot problems.

systemd Journal
The systemd init system takes over the boot process after initrd. Use the journalctl -a to display all
kernel messages and other information in the systemd journal. Using journalctl -f displays the most recent

Manage the System

 34

journal entries and continuously prints new entries. systemd stores messages in a custom database, the
systemd journal. The information available in the journal includes:

● syslogd messages

● Kernel log messages

● initrd messages

● Messages written to stdout/stderr for all services

HSS Daemon Logs
The HSS daemons and the rsyslogd daemon running on the SMW logs to files in the /var/opt/cray/log
directory. These daemons include nimsd, xtpmd, xtremoted, xtpowerd, xtsnmpd, xtdiagd, erfsd,
state_manager, bootmanager, sedc_manager, nid_mgr, erdh, and erd.

SMW Command Log
The /var/opt/cray/log/commands log lists the commands issued from the SMW console.

CLE Boot Logs
The output from booting CLE is in the /var/opt/cray/log/p0-current log. For more detailed information,
go to the p0-current directory and examine these log files:

● bootinfo.timestamp
Contains output from the xtbootsys command. Timing information for how long sections of the boot process
take is listed at the bottom of this file.

● console-YYYYMMDD
Contains the combined console output from every node. To find Ansible failures for a node during init,

Look Up Configuration Details
The ansible_cfg_search command line tool lets an administrator on the SMW specify a config set, an IMPS
image root, and optionally, an Ansible play to query for config set lookups and template locations. The intent is to
provide a general understanding of which configuration files are used at specific points in the boot process. The
command uses the playbook structure to inspect the plays, roles, templates, and task files for patterns that
appear to be config set variable lookups. For each lookup found in the Ansible content, the command lists a path
to the configuration template that holds the variable.

Before using ansible_cfg_search, load the system-config module.

ansible_cfg_search [-h] [-p PLAYBOOK] [-s CONFIG_SETTING] [-e LOOKUP_EXPRESSION]
 [-q] config_set image

Required arguments:

config_set The config set to search for config variables.

image The IMPS image root containing ansible content to search. If necessary, use the image list
command to find the IMPS image root.

Optional arguments:

Manage the System

 35

-h, --help Display help information.

-p PLAYBOOK, --playbook PLAYBOOK The Ansible playbook file contained in the IMPS image to
search for configuration lookups.

-s CONFIG_SETTING, --config-setting
CONFIG_SETTING

List the configuration templates and Ansible files that contain
the specified setting.

Example
Examine a config set to determine the settings that the baseopts.yaml play is looking up:

smw: # module load system-config
smw: # ansible_cfg_search p0 \
service-master_cle_6.1.DV00-build6.1.75_sles_12-created20160429 \
--play baseopts.yaml

Output:

/var/opt/cray/imps/image_roots/service-master_cle_6.1.DV00-build6.1.118DV_sles_12-
created20160510/etc/ansible/baseopts.yaml:

 - /var/opt/cray/imps/image_roots/service-master_cle_6.1.DV00-build6.1.118DV_sles_12-
created20160510/etc/ansible/roles/baseopts/tasks/smw.yaml:
 - /var/opt/cray/imps/config/sets/p0/config/cray_user_settings_config.yaml:
 - cray_user_settings.settings.default_modules.data.smw

 - /var/opt/cray/imps/image_roots/service-master_cle_6.1.DV00-build6.1.118DV_sles_12-
created20160510/etc/ansible/roles/baseopts/tasks/main.yaml:
 - /var/opt/cray/imps/config/sets/p0/config/cray_login_config.yaml:
 - cray_login.settings.login_nodes.data.members
 - /var/opt/cray/imps/config/sets/p0/config/cray_user_settings_config.yaml:
 - cray_user_settings.settings.default_modules.data.login
 - cray_user_settings.settings.default_modules.data.service
 - cray_user_settings.settings.default_modules.data.smw

 - /var/opt/cray/imps/image_roots/service-master_cle_6.1.DV00-build6.1.118DV_sles_12-
created20160510/etc/ansible/roles/baseopts/tasks/login.yaml:
 - /var/opt/cray/imps/config/sets/p0/config/cray_user_settings_config.yaml:
 - cray_user_settings.settings.default_modules.data.login

 - /var/opt/cray/imps/image_roots/service-master_cle_6.1.DV00-build6.1.118DV_sles_12-
created20160510/etc/ansible/roles/baseopts/tasks/service.yaml:
 - /var/opt/cray/imps/config/sets/p0/config/cray_user_settings_config.yaml:
 - cray_user_settings.default_modules
 - cray_user_settings.default_modules.login
 - cray_user_settings.default_modules.service
 - cray_user_settings.default_modules.smw
 - cray_user_settings.settings.default_modules.data.service

Examine Ansible Changelogs
The Ansible changelog provides information about files created, modified, and deleted by Ansible. Changelogs
are created for cray-ansible when it first runs during the init phase and again when cray-ansible runs
for the second time, during the booted phase. These logs are on the SMW in /var/opt/cray/log/ansible.

Logs created in the first phase (init):

sitelog-init Contains Ansible play output from each task in executed plays.

file-changelog-init Human-readable listing of each file changed by an Ansible play.

Manage the System

 36

file-changelog-init.yaml Machine-readable listing of each file changed by an Ansible play.

Logs created in the second phase (booted):

sitelog-booted Contains Ansible play output from each task in executed plays.

file-changelog-booted Human-readable listing of each file changed by an Ansible play.

file-changelog-booted.yaml Machine-readable listing of each file changed by an Ansible play.

This sitelog entry shows that a task updated the message of the day (motd) file.

2016-01-17 12:15:27,671 TASK: [cle_motd | task motd, release]

2016-01-17 12:15:27,671 changed: [localhost] => {"changed": true,
"cmd": "grep RELEASE /etc/opt/cray/release/cle-release | awk -F\\='{print $2}'",
"delta": "0:00:00.002536", "end": "2016-01-17 12:15:27.471384", "rc": 0,
"start": "2016-01-17 12:15:27.468848", "stderr": "", "stdout": "6.0.UP01",
"warnings": []}

The location of failing task can be found in plays:

boot# grep -Rn "task motd, release" /etc/ansible \
/etc/opt/cray/config/current/ansible
/etc/ansible/roles/cle_motd/tasks/motd.yaml:15:- name: task motd, release

The file-changelog files show the Ansible phase, each changed file, and the play that changed the file. This
an entry from a file-changelog-init changelog:

Apr 05 2016 21:07:47 (init) template: file '/etc/nologin' changed by Ansible
task file '/etc/ansible/roles/early/tasks/nologin.yaml' with owner=root,
group=root, mode=0775

This an entry from a file-changelog-booted changelog:

May 16 2016 22:26:39 (booted) lineinfile: file '/etc/hosts' changed by Ansible
task file '/etc/ansible/roles/hosts/tasks/main.yaml' with owner=None,
group=None, mode=None

The same entry for the /etc/hosts edit in the file-changelog-booted.yaml changelog:

- backup_file_path: ''
 file_path: /etc/hosts
 group: null
 mode: null
 module: lineinfile
 owner: null
 phase: booted
 play: populate local hostfile
 state: null
 task_file: /etc/ansible/roles/hosts/tasks/main.yaml
 task_name: Add additional hosts to master file
 time: May 16 2016 22:26:39

The changelog entry fields are:

Manage the System

 37

Field Name Description

backup_file_path Location of backup copy of file modified or deleted, if available.

file_path Full path to the file which was modified.

group Group given to the file if created or modified, or null if not specified.

mode Permissions changed on the file if created or modified, or null if permissions were
not changed.

module Ansible module executed.

owner Owner given to the file if created or modified, or null if not specified.

phase Values are "booted" or "init".

play Name of play making change.

state Whether a line should be "present" or "absent".

task_file Name of the task file which made the change.

task_name Name of the task which made this change.

time Format is "Month Day Year HH:mm:ss".

Debug Ansible Failures in init

About this task
Check the console log on the SMW to find out which nodes failed. Ansible failures in init drop a node into
debug shell. The boot process is not allowed to continue until cray-ansible during init is successful on a
node.

Procedure

1. Look for cray-ansible failures in the SMW console log.

crayadm@smw~> /var/opt/cray/log/p0-current> cat console-20160523 | grep
'completed in init - FAILED'

<158>1 2016-05-23T12:01:22.576591-05:00 c0-0c0s0n1 xtconsole 31798
p0-20160523t115109 [console@34] cray-ansible: /etc/ansible/site.yaml completed
in init - FAILED.
<158>1 2016-05-23T12:01:22.576634-05:00 c0-0c0s0n1 xtconsole 31798
p0-20160523t115109 [console@34] cray-ansible: /etc/ansible/site.yaml completed
in init - FAILED.
<158>1 2016-05-23T12:01:34.411653-05:00 c0-0c0s1n2 xtconsole 31798
p0-20160523t115109 [console@34] cray-ansible: /etc/ansible/site.yaml completed
in init - FAILED.
<158>1 2016-05-23T12:01:34.411699-05:00 c1-0c2s1n2 xtconsole 31798
p0-20160523t115109 [console@34] cray-ansible: /etc/ansible/site.yaml completed
in init - FAILED.

2. Access the debug shell with xtcon from the SMW.

smw# xtcon c1-0c2s1n2

Manage the System

 38

nid00035#

3. Inspect Ansible logs on the node in /var/opt/cray/log/ansible, make a configuration change in the
config set, or do some other corrective action. Exiting from the debug shell causes cray-ansible to run
again in init.

Examine System Dumps
The xtdumpsys command collects and analyzes information from a Cray XC system that is failing or has failed,
has crashed, or is hung. The dump file includes:

● Event log data, active heartbeat probing, voltages, temperatures, health faults, in-memory console buffers,
and high-speed interconnection network errors.

● Config sets from the SMW.

● Ansible logs from nodes.

● Ansible changed files log from nodes can be collected.

● NIMS logs from SMW can be collected.

Include the files that Ansible changed by using the ansible_changed_files xtdumpsys plugin.

xtdumpsys --plugins-include=ansible_changed_files --reason="add changed files" -
add c0-0c0s3n2

Include the NIMS logs from the SMW by using the nims_logs xtdumpsys plugin. The NIMS logs are written to
the nims directory in the dump.

xtdumpsys --plugins-include=nims_logs --reason="include NIMS logs"

Log on to the Boot Node

About this task
The standard Cray configuration has a gigabit Ethernet connection between the SMW and boot node. All other
nodes on the Cray system are accessible from the boot node.

Procedure

1. Log on to the SMW as crayadm.

2. There are two methods to log on to the boot node: ssh to the boot node.

● Use ssh:

crayadm@smw:~> ssh boot
crayadm@boot:~>

● Open an administrator window on the SMW:

crayadm@smw:~> xterm -ls -vb -sb -sl 2049 6&
After the window opens, use it to ssh to the boot node.

Manage the System

 39

Display Boot Configuration Information
Use the xtcli command to display the configuration information for the primary and backup boot nodes, the
primary and backup SDB nodes, and the cpio path.

Display boot configuration information for the entire system

crayadm@smw:~> xtcli boot_cfg show
Network topology: class 2
=== xtcli_boot_cfg ===
[boot]: c0-0c0s0n1:ready,c0-0c0s0n1:ready
[sdb]: c1-0c0s1n1:ready
[cpio_path]: /tmp/boot/kernel.cpio_5.2.14-wGPFS

Display boot configuration information for one partition in a system

crayadm@smw:~> xtcli part_cfg show pN
Where pN is the partition number. p0 is always the whole system.

Update the Boot Configuration
The HSS xtcli boot_cfg command allows the administrator to specify the primary and backup boot nodes
and the primary and backup SDB nodes for s0 or p0 (the entire system).

For a partitioned system, use xtcli part_cfg to manage boot configurations for partitions.

For more information, see the xtcli_boot(8) and xtcli_part(8) man pages.

For this example, update the boot configuration using the boot image /bootimagedir/
bootimage, primary boot node (for example, c0-0c0s0n1), backup boot node, primary SDB
node, and the backup SDB node:

crayadm@smw:~> xtcli boot_cfg update -b primaryboot_id,backupboot_id \
-d primarySDB_id,backupSDB_id -i /bootimagedir/bootimage

Display the Format of the SDB attributes Table
When the SDB boots, it reads the /etc/opt/cray/sdb/attributes file and loads it into the SDB
attributes table.

To display the format of the attributes SDB table, use the mysql command:

crayadm@login:~> mysql -e "desc attributes;" -h sdb XTAdmin
+----------+------------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+----------+------------------+------+-----+---------+-------+
| nodeid | int(32) unsigned | NO | PRI | 0 | |
| archtype | int(4) unsigned | NO | | 2 | |

Manage the System

 40

osclass	int(4) unsigned	NO		2	
coremask	int(4) unsigned	NO		1	
availmem	int(32) unsigned	NO		0	
pageszl2	int(32) unsigned	NO		12	
clockmhz	int(32) unsigned	YES		NULL	
label0	varchar(32)	YES		NULL	
label1	varchar(32)	YES		NULL	
label2	varchar(32)	YES		NULL	
label3	varchar(32)	YES		NULL	
numcores	int(4) unsigned	NO		1	
sockets	int(4) unsigned	NO		1	
dies	int(4) unsigned	NO		1	
+----------+------------------+------+-----+---------+-------+
The service database command pair xtdb2attr and xtattr2db enables the system administrator to update
the attributes table in the SDB. For additional information about updating SDB tables using command pairs,
see Update SDB Tables on page 41.

Update SDB Tables
The CLE command pairs shown enable the system administrator to update tables in the SDB. One command
converts the data into an ASCII text file to edit; the other writes the data back into the database file.

Table 1. Service Database Update Commands

Get Command Put Command Table Accessed Reason to Use Default File

xtdb2proc xtproc2db processor Updates the
database when a
node is taken out of
service

./processor

xtdb2attr xtattr2db attributes Updates the
database when
node attributes
change

./attribute

xtdb2nodeclasses xtnodeclasses2db service_proces
sor

Updates the
database when a
node's class
changes

./node_classes

xtdb2segment xtsegment2db segment For nodes with
multiple NUMA
nodes, updates the
database when
attribute information
about node changes

./segment

xtdb2servcmd xtservcmd2db service_cmd Updates the
database when
characteristics of a
service change

./serv_cmd

xtdb2servconfig xtservconfig2db service_config Updates the
database when
services change

./serv_config

Manage the System

 41

Get Command Put Command Table Accessed Reason to Use Default File

xtdb2etchosts none processor Manages IP
mapping for service
nodes

none

xtdb2lustrefailove
r

xtlustrefailover
2db

lustre_failove
r

Updates the
database when a
node's Lustre
failover state
changes

./
lustre_failove
r

xtdb2lustreserv xtlustreserv2db lustre_service Updates the
database when a
file system's failover
process is changed

./lustre_serv

xtdb2filesys xtfilesys2db filesystem Updates the
database when a
file system's status
changes

./filesys

xtdb2gpus xtgpus2db gpus Updates the
database when
attributes about the
accelerators change

./gpus

xtprocadmin none processor Displays or sets the
current value of
processor flags and
node attributes in
the service
database (SDB).
The batch scheduler
and ALPS are
impacted by
changes to these
flags and attributes.

none

xtservconfig none service_config Adds, removes, or
modifies service
configuration in the
SDB
service_config
table

none

Change Nodes and Classes
The service_processor table tracks node IDs (NIDs) and their classes. The table is populated from
the /etc/opt/cray/sdb/node_classes file on the boot node every time the system boots. Change this file to
update the database when the classes of nodes change, for example, when adding login nodes. If changes are
made to /etc/opt/cray/sdb/node_classes, the same changes must be made to the node class settings in
CLEinstall.conf before performing an update or upgrade installation; otherwise, the install utility will complain
about the inconsistency.

Manage the System

 42

The xtnodeclasses2db command inserts the node-class list into the database. It does not make any changes
to the shared root. To change the shared root, invoke the xtnce command.

For more information, see the xtdb2nodeclasses(8), xtnodeclasses2db(8), and xtnce(8) man pages.

Boot a Node or Set of Nodes Using the xtcli boot Command
To boot a specific image or load file on a given node or set of nodes, execute the HSS xtcli boot boot_type
command, as shown in the following examples. When using a file for the boot image, the same file must be on
both the SMW and the bootroot at the same path.

WARNING: Each system boot must be started with an xtbootsys session to establish a sessionid.
Perform direct boot commands using the xtcli boot command only after a session has been
established through xtbootsys.

Boot all service nodes with a specific image

For this example, the specific image is located at /raw0:

crayadm@smw:~> xtcli boot all_serv_img -i /raw0

Boot all compute nodes with a specific image

For this example, the specific image is located at /bootimagedir/bootimage:

crayadm@smw:~> xtcli boot all_comp_img -i /bootimagedir/bootimage

Boot compute nodes using a load file

The following example boots all compute nodes in the system with using a load file name CNL0:

crayadm@smw:~> xtcli boot CNL0 -o compute s0

Increase the Boot Manager Timeout Value
On systems of 4,000 nodes or larger, the time that elapses until the boot manager receives all responses to the
boot requests can be greater than the default 60-second time-out value. This is due, in large part, to the amount
of other event traffic that occurs as each compute node generates its console output.

To avoid this problem, change the boot_timeout value in the /opt/cray/hss/default/etc/bm.ini file on
the SMW to increase the default 60-second time-out value by 60 seconds for every 5,000 nodes; for example:

Increase the boot_timeout value

For systems of 5,000 to 10,000 nodes, change the boot_timeout line to:

boot_timeout 120
For systems of 10,000 to 15,000 nodes, change the boot_timeout line to:

Manage the System

 43

boot_timeout 180

Reboot Controllers of a Cabinet or Blade
The xtccreboot command provides a means to reboot controllers. Options allow for rebooting all controllers of
a specified type (cabinet or blade) or providing a list of controllers of a specified type to be rebooted.

For additional information, see the xtccreboot(8) man page.

Reboot cabinet controller c0-0, with verbose output

smw:~> xtccreboot -v -c c0-0
xtccreboot: /opt/cray-xt-pdsh/default/bin/pdsh -w "c0-0" /sbin/reboot
xtccreboot: reboot sent to specified CCs

Bounce Blades Repeatedly Until All Blades Succeed

About this task
IMPORTANT: This iterative xtbounce should typically be done in concert with an xtbootsys
automation file where bounce and routing are turned off.

Procedure

1. Bounce the system.

smw:~> xtbounce s0

2. Bounce any blades that failed the first bounce. Repeat as necessary.

3. Execute the following command, which copies route configuration files, based on the idlist (such as s0), to
the blade controllers. This avoids having old, partial route configuration files left on the blades that were
bounced earlier and ensures that the links are initialized correctly.

smw:~> xtbounce --linkinit s0

4. Route and boot the system without executing xtbounce again. If using a xtbootsys automation file, specify
set data(config,xtbounce) 0, or use the xtbootsys --config xtbounce=0 command.

Request and Display System Routing
Use the HSS rtr command to request routing for the HSN, to verify current route configuration, or to display
route information between nodes. Upon startup, rtr determines whether it is making a routing request or an
information request.

For more information, see the rtr(8) man page.

Manage the System

 44

Display routing information

The --system-map option to rtr writes the current routing information to stdout or to a
specified file. This command can also be helpful for translating node IDs (NIDs) to physical ID
names.

crayadm@smw:~> rtr --system-map

Route the entire system

The rtr -R | --route-system command sends a request to perform system routing. If no
components are specified, the entire configuration is routed as a single routing domain based on
the configuration information provided by the state manager. If a component list (idlist) is
provided, routing is limited to the listed components. The state manager configuration further
limits the routing domain to omit disabled blades, nodes, and links and empty blade slots.

crayadm@smw:~> rtr --route-system

Initiate a Network Discovery Process
Use the HSS rtr --discover command to initiate a network discovery process.

crayadm@smw:~> rtr --discover
IMPORTANT: The discovery process must be done on the system as a whole; it cannot be applied to
individual partitions. Therefore, discovery will immediately fail if the system does not have partition p0
enabled.

See the rtr(8) man page for additional information.

Configure IP Routes

Prerequisites
Configuring IP routes for compute nodes is not required on a CLE system.

About this task
An /etc/routes file can provide route entries for compute nodes. This provides a mechanism for administrators
to configure routing access from compute nodes to login and network nodes, using external IP destinations
without having to traverse RSIP tunnels. Careful consideration should be given before using this capability for
general purpose routing.

The /etc/routes file will provide a route from the compute nodes to a gateway node (login or network).
However, that gateway node must provide a connection to the network of interest (via IP forwarding, NAT, or
something else). These instructions do not cover providing that connection.

Use the simple_sync functionality to make the /etc/routes file available on the compute nodes.

Manage the System

 45

Procedure

Configure IP routes via simple_sync.

The new /etc/routes file is examined during startup. Non-comment, non-blank lines are passed to the
route add command. The empty file contains comments describing the syntax.

To make the routes file available to the compute nodes, do the following on the SMW.

a. Edit a routes file with the desired compute node routes in a local directory.

smw# vi routes
b. Create the directory etc in the desired config set

directory,
/var/opt/cray/imps/config/sets/<config set>/files/roles/simple_sync/classes/compute
. This will create an /etc directory on the compute nodes.

smw# mkdir -p /var/opt/cray/imps/config/sets/p0/files/roles/simple_sync/
classes/compute/etc

c. Copy the routes files from the local directory into the newly created etc directory. Then, this file will be
available on all of the compute nodes when they boot.

smw# cp -p routes /var/opt/cray/imps/config/sets/p0/files/roles/simple_sync/
classes/compute/etc

Shut Down the System Using the auto.xtshutdown File
The preferred method to shut down the system is to use the xtbootsys command with the auto shutdown file as
follows:

crayadm@smw:~> xtbootsys -s last -a auto.xtshutdown
Or, for a partitioned system with partition pN:

smw:~# xtbootsys --partition pN -s last -a auto.xtshutdown
This method shuts down the compute nodes (which are commonly also Lustre clients), then executes
xtshutdown on service nodes, halting the nodes and then stopping processes on the SMW. A system
administrator can shut down the system using both user-defined and built-in procedures in the
auto.xtshutdown file, which is located on the SMW in the /opt/cray/hss/default/etc directory.

For related procedures, see XC™ Series Software Initial Installation and Configuration Guide. For more
information about using automation files, see the xtbootsys(8) man page.

The xtshutdown Command
The xtshutdown command executes a series of commands locally on the boot node and service nodes to shut
down the system in an orderly fashion. The sequence of shutdown steps and the nodes on which to execute them
are defined by the system administrator in the /etc/opt/cray/init-service/xtshutdown.conf file or in
the file specified by the environment variable XTSHUTDOWN_CONF.

Manage the System

 46

Root user privileges are required to run xtshutdown. Passwordless ssh must be enabled for the root user from
the boot node to all service nodes.

The xtshutdown command uses pdsh to invoke commands on the selected service nodes (i.e., boot node, SDB
node, a class of nodes, or a single host). A system administrator can define functions to execute when the system
is shut down. Place these functions in the /etc/opt/cray/init-service/xt_shutdown_local file or the
file defined by the XTSHUTDOWN_LOCAL environment variable.

Shut Down the System or Part of the System Using the xtcli shutdown
Command
The HSS xtcli shutdown command shuts down the system or a part of the system. To shut down compute
nodes, execute the xtcli shutdown command. Under normal circumstances, for example to successfully
disconnect from Lustre, invoking the xtcli shutdown command attempts to gracefully shut down the specified
nodes.

For information, see the xtcli(8) man page.

Shut down all compute nodes

crayadm@smw:~> xtcli shutdown compute

Shut down specified compute nodes

For this example, shut down only compute nodes in cabinet c13-2:

crayadm@smw:~> xtcli shutdown c13-2

Shut down all nodes of a system

crayadm@smw:~> xtcli shutdown s0

Shut down a partition pN of a system

crayadm@smw:~> xtcli shutdown pN

Force nodes to shut down (immediate halt)

When all nodes of a system must be halted immediately, use the -f argument; nodes will not go
through their normal shutdown process. Forced shutdown occurs even if the nodes have an alert
status present.

crayadm@smw:~> xtcli shutdown -f s0
After the software on the nodes is shutdown, the system administrator can halt the hardware,
reboot, or power down.

Manage the System

 47

Shut Down Service Nodes

Prerequisites
Root user privileges are required to run xtshutdown. Passwordless ssh must be enabled for the root user
from the boot node to all service nodes.

CAUTION: The xtshutdown command does not shut down compute nodes. To shut down the compute
and service nodes, see Shut Down the System or Part of the System Using the xtcli shutdown Command.

About this task
For information about shutting down service nodes, see the xtshutdown(8) man page.

Procedure

1. Modify the /etc/opt/cray/init-service/xtshutdown.conf file or the file specified by the
XTSHUTDOWN_CONF environment variable to define the sequence of shutdown steps and the nodes on which
to execute them. The /etc/opt/cray/init-service/xtshutdown.conf file resides on the boot node.

2. If desired, define functions to execute when the system is shut down. Place these functions in
the /etc/opt/cray/init-service/xt_shutdown_local file or the file defined by the
XTSHUTDOWN_LOCAL environment variable.

3. Execute xtshutdown.

boot:~ # xtshutdown
After the software on the nodes is shutdown, the administrator can halt the hardware, reboot, or power down.

Stop System Components
When a system administrator removes, stops, or powers down components, any applications and compute
processes that are running on those components are lost.

Reserve a Component
To allow applications and compute processes to complete before stopping components, use the HSS xtcli
set_reserve idlist command to prevent the selected nodes from accepting new jobs.

A node running CNL and using ALPS is considered to be down by ALPS after it is reserved using the xtcli
set_reserve command. The output from apstat will show the node as down (DN), even though there may be
an application running on that node. This DN designation indicates that no other work will be placed on the node
after the currently running application has terminated.

For more information, see the xtcli_set(8) man page.

Reserve a component

crayadm@smw:~> xtcli set_reserve idlist

Manage the System

 48

Power Down Blades or Cabinets
WARNING: Power down the cabinets with software commands. Tripping the circuit breakers may result in
damage to system components.

WARNING: Before powering down a blade or a cabinet, ensure the operating system is not running.

The xtcli power down command powers down the specified cabinet and/or blades within the specified
partition, chassis or list of blades. Cabinets must be in the READY state to receive power commands. See System
Component States. The xtcli power down command has the following form, where physIDlist is a comma-
separated list of cabinets or blades present on the system.

xtcli power down physIDlist
The xtcli power force_down and xtcli power down_slot commands are aliases for the xtcli power
down command. For information about disabling and enabling components, see Disable Hardware Components,
and Enable Hardware Components, respectively.

WARNING: Although a blade is powered off, the HSS in the cabinet is live and has power.

For information about powering down a component, see the xtcli_power(8) man page.

Power down a specified blade

For this example, power down a blade with the ID c0-0c0s7:

crayadm@smw:~> xtcli power down c0-0c0s7

Halt Selected Nodes
Use the HSS xtcli halt command to halt selected nodes. For more information, see the xtcli(8) man
page.

Halt a node

For this example, halt node 157:

crayadm@smw:~> xtcli halt 157

Restart a Blade or Cabinet
IMPORTANT: Change the state of the hardware only when the operating system is not running or is shut
down.

The xtcli power up command powers up the specified cabinet and/or blades within the specified partition,
chassis or list of blades. Cabinets must be in the READY state (see System Component States) to receive power
commands. The xtcli power up command does not attempt to power up network mezzanine cards or nodes
that are handled by the xtbounce command during system boot.

Manage the System

 49

The xtcli power up_slot command is an alias for the xtcli power up command.

The xtcli power up command has the following form, where physIDlist is a comma-separated list of
cabinets or blades present on the system.

xtcli power up physIDlist
For more information, see the xtcli_power(8) man page.

Power up blades in c0-0c0s7

crayadm@smw:~> xtcli power up c0-0c0s7

Abort Active Sessions on the HSS Boot Manager

About this task
Use the HSS xtcli session abort command to abort sessions in the boot manager. A session corresponds
to executing a specific command such as xtcli power up or xtcli boot.

For more information about manager sessions, see the xtcli(8) man page.

Procedure

1. Display all running sessions in the boot manager. Only the boot manager supports multiple simultaneous
sessions.

crayadm@smw:~> session show BM all

2. Abort the selected session, session_id.

crayadm@smw:~> xtcli session abort BM session_id

Display and Change Software System Status
The user command xtnodestat provides a display of the status of nodes: how they are allocated and to what
jobs. The xtnodestat command provides current job and node status summary information, and it provides an
interface to ALPS and jobs running on CNL compute nodes. ALPS must be running in order for xtnodestat to
report job information.

For more information, see the xtnodestat(1) man page.

Configure Current System Timezone

Prerequisites
Start with the XC system booted.

Manage the System

 50

About this task
Changing the timezone of a system can be done with a few configuration changes and then rebooting
components.

Procedure

Check current timezone

1. Check timezone on SMW.

smw# date

2. Check timezone on cabinet and blade controllers.

smw# xtrsh -l root -s date

3. Check timezone on boot node.

smw# ssh boot date

4. Check timezone on SDB node. This command works from the SMW if the SDB node is a tier1 node with an
Ethernet connection to the SMW.

smw# ssh sdb date

5. Check timezone on all service nodes.

smw# ssh sdb pcmd -r -n ALL_SERVICE_NOT_ME "date"

6. Check timezone on all compute nodes.

smw# ssh sdb pcmd -r -n ALL_COMPUTE "date"

Change SMW local timezone

7. Execute this command to change the default timezone. The default timezone on the SMW is "America/
Chicago".

smw# yast2 timezone
The change on the SMW will be immediate, but users will need to logout and then login again to get the new
environment.

This does not change the timezone for the CLE nodes or the cabinet and blade controllers. See below to
make those changes.

Change timezone in global config set

8. Set cray_time.settings.service.data.timezone to be the desired timezone. A list of possible
timezones is available on the SMW in /usr/share/zoneinfo/zone1970.tab.

smw# cfgset update -s cray_time -m interactive global

9. Validate the config set.

Manage the System

 51

smw# cfgset validate global

Change timezone in CLE config set

If the CLE config set has cray_time.inherit set to true, then the timezone and other time settings from
the global config set will be inherited by the CLE config set.

If the CLE config set has cray_time.inherit set to false, then use the following command to change the
setting.

10. Set cray_time.settings.service.data.timezone to be the desired timezone. A list of possible
timezones is available on the SMW in /usr/share/zoneinfo/zone1970.tab.

smw# cfgset update -s cray_time -m interactive p0

11. Validate the config set.

smw# cfgset validate p0

Reboot for new timezone

Follow these steps to set a new timezone for all components in the SMW and CLE system after the global
and CLE config sets and SMW yast2 have been updated with the new setting.

12. Reboot SMW.

a. Shutdown CLE and reboot the SMW.

crayadm@smw> xtbootsys -s last -a auto.xtshutdown
crayadm@adm> su - root
smw# reboot

b. Check that the SMW has the desired timezone setting once the SMW reboots.

smw# date

13. Power down the system.

smw# xtcli power down s0

14. Reboot the cabinet controllers

smw# xtccreboot -c all
xtccreboot: reboot sent to specified CCs
smw# sleep 120
smw# xtalive -l cc

15. Power up the system.

smw# xtcli power up s0

16. Boot CLE nodes for new timezone.

crayadm@smw> xtbootsys -a auto.rhine

17. Check current timezone.

Manage the System

 52

a. Check timezone on SMW.

smw# date
b. Check timezone on cabinet and blade controllers.

smw# xtrsh -l root -s date
c. Check timezone on boot node.

smw# ssh boot date
d. Check timezone on SDB node. This command works from the SMW if the SDB node is a tier1 node with

an Ethernet connection to the SMW.

smw# ssh sdb date
e. Check timezone on all service nodes.

smw# ssh sdb pcmd -r -n ALL_SERVICE_NOT_ME "date"
f. Check timezone on all compute nodes.

smw# ssh sdb pcmd -r -n ALL_COMPUTE "date"

View and Change the Status of Nodes
Use the xtprocadmin command on a service node to view the status of components of a booted system in the
processor table of the SDB. The command enables the system administrator to retrieve or set the processing
mode (interactive or batch) of specified nodes. The administrator can display the state (up, down,
admindown, route, or unavailable) of the selected components, if needed. The administrator can also
allocate processor slots or set nodes to become unavailable at a particular time. The node is scheduled only if the
status is up.

When the xtprocadmin -ks option is used, then the option can either a normal argument (up, down, etc.), or it
can have a colon in it to represent a conditional option; for example, the option of the form up:down means "if
state was up, mark down".

For more information, see the xtprocadmin(8) man page.

View node characteristics

login:~> xtprocadmin
 NID (HEX) NODENAME TYPE STATUS MODE
 1 0x1 c0-0c0s0n1 service up batch
 2 0x2 c0-0c0s0n2 service up batch
 5 0x5 c0-0c0s1n1 service up batch
 6 0x6 c0-0c0s1n2 service up batch
 8 0x8 c0-0c0s2n0 compute up batch
 9 0x9 c0-0c0s2n1 compute up batch
 10 0xa c0-0c0s2n2 compute up batch
 11 0xb c0-0c0s2n3 compute up batch

Manage the System

 53

View all node attributes
login:~> xtprocadmin -A
 NID (HEX) NODENAME TYPE ARCH OS CPUS CU AVAILMEM PAGESZ CLOCKMHZ GPU SOCKETS DIES C/
CU LABEL0 LABEL1
LABEL2 LABEL3
 1 0x1 c0-0c0s0n1 service xt (service) 16 8 32768 4096 2600 0 1 1
2
 2 0x2 c0-0c0s0n2 service xt (service) 16 8 32768 4096 2600 0 1 1
2
 5 0x5 c0-0c0s1n1 service xt (service) 16 8 32768 4096 2600 0 1 1
2
 6 0x6 c0-0c0s1n2 service xt (service) 16 8 32768 4096 2600 0 1 1
2
 8 0x8 c0-0c0s2n0 compute xt CNL 32 16 65536 4096 2600 0 2 2
2
 9 0x9 c0-0c0s2n1 compute xt CNL 32 16 65536 4096 2600 0 2 2
2
 10 0xa c0-0c0s2n2 compute xt CNL 32 16 65536 4096 2600 0 2 2
2

View selected attributes of selected nodes

For this example, the -a option lists the selected attributes to display:

login:~> xtprocadmin -n 8 -a arch,clockmhz,os,cores
 NID (HEX) NODENAME TYPE ARCH CLOCKMHZ OS CPUS
 8 0x8 c0-0c0s2n0 compute xt 2600 CNL 32

Disable a node

For this example, the admindown option disables node c0-0c0s3n1 such that it cannot be
allocated:

crayadm@nid00004:~> xtprocadmin -n c0-0c0s3n1 -k s admindown

Disable all processors

crayadm@nid00004:~> xtprocadmin -k s admindown

Perform Parallel Operations on Compute Nodes
The parallel command tool (pcmd) facilitates execution of the same commands on groups of compute nodes in
parallel, similar to pdsh. Although pcmd is launched from a service node, it acts on compute nodes. It allows
administrators and/or, if the site deems it feasible, other users to securely execute programs in parallel on
compute nodes. The user can specify on which nodes to execute the command. Alternatively, the user can
specify an application ID (apid) to execute the command on all the nodes available under that apid.

An unprivileged user must execute the command targeting nodes where the user is currently running an aprun. A
root user is allowed to target any compute node, regardless of whether there are jobs running there or not. In
either case, if the aprun exits and the associated applications are killed, any commands launched by pcmd will
also exit.

By default, pcmd is installed as a root-only tool. It must be installed as setuid root in order for unprivileged
users to use it.

The pcmd command is located in the nodehealth module. If the nodehealth module is not part of the default
profile, load it by specifying:

Manage the System

 54

module load nodehealth
For additional information, see the pcmd(1) man page.

Perform Parallel Operations on Service Nodes
Use pdsh, the CLE parallel remote shell utility for service nodes, to issue commands to groups of nodes in
parallel. The system administrator can select the nodes on which to use the command, exclude nodes from the
command, and limit the time the command is allowed to execute. Only user root can execute the pdsh
command. The command has the following form:

pdsh [options] command
For more information, see the pdsh(1) man page.

Restart the NTP service

boot:~ # pdsh -w 'login[1-9]' /etc/init.d/ntp restart

Mark a Compute Node as a Service Node
Use the xtcli mark_node command to mark a node in a compute blade to have a role of service or
compute; compute is the default. It is not permitted to change the role of a node on a service blade, which
always has the service role.

Marking a node on a compute blade as service or compute allows the administrator to load the desired boot
image at boot time. Compute nodes marked as service can run software-based services. A request to change
the role of a running node (that is, the node is in the ready state and the operating system is running) will be
denied.

For more information, see the xtcli(8) man page and Check the Status of System Components on page 143.

Find Node Information

Translate Between Physical ID Names and Integer NIDs
To translate between physical ID names (cnames) and integer NIDs, generate a system map on the System
Management Workstation (SMW) and filter the output, enter the following command:

crayadm@smw:~> rtr --system-map | grep cname | awk '{ print $1 }'
To translate between physical ID names (rnames) and integer NIDs, generate a system map on the System
Management Workstation (SMW) and filter the output, enter the following command:

crayadm@smw:~> rtr --system-map | grep rname | awk '{ print $1 }'
For more information, see the rtr(8) man page.

Manage the System

 55

Find Node Information Using the xtnid2str Command
The xtnid2str command converts numeric node identification values to their physical names (cnames). This
allows conversion of Node ID values, ASIC NIC address values, or ASIC ID values.

For additional information, see the xtnid2str(8) man page.

Find the physical ID for node 38

smw:~> xtnid2str 28
node id 0x26 = 'c0-0c0s1n2'

Find the physical ID for nodes 0, 1, 2, and 3

smw:~> xtnid2str 0 1 2 3
node id 0x0 = 'c0-0c0s0n0'
node id 0x1 = 'c0-0c0s0n1'
node id 0x2 = 'c0-0c0s1n0'
node id 0x3 = 'c0-0c0s1n1'

Find the physical IDs for Aries IDs 0-7

smw:~> xtnid2str -a 0-7
aries id 0x0 = 'c0-0c0s0a0'
aries id 0x1 = 'c0-0c0s1a0'
aries id 0x2 = 'c0-0c0s2a0'
aries id 0x3 = 'c0-0c0s3a0'
aries id 0x4 = 'c0-0c0s4a0'
aries id 0x5 = 'c0-0c0s5a0'
aries id 0x6 = 'c0-0c0s6a0'
aries id 0x7 = 'c0-0c0s7a0'

Find Node Information Using the nid2nic Command
The nid2nic command prints the nid-to-nic address mappings, nic-to-nid address mappings, and a specific
physical_location-to-nic address and nid mappings.

For information about using the nid2nic command, see the nid2nic(8) man page.

Print the nid-to-nic address mappings for the node with NID 31

smw:~> nid2nic 31
NID:0x1f NIC:0x21 c0-0c0s7n3

Print the nid-to-nic address mappings for the node with NID 31, but specify the NIC value in the command
line

smw:~> nid2nic -n 0x21
NIC:0x21 NID:0x1f c0-0c0s7n3

Manage the System

 56

Display and Change Hardware System Status
A system administrator can execute commands that look at and change the status of the hardware.

CAUTION: Execute commands that change the status of hardware only when the operating system is
shut down.

Generate HSS Physical IDs
The HSS xtgenid command generates HSS physical IDs, for example, to create a list of blade controller
identifiers for input to the flash manager. Selection can be restricted to components of a particular type. Only user
root can execute the xtgenid command.

For more information, see the xtgenid(8) man page.

Create a list of node identifiers that are not in the DISABLE, EMPTY, or OFF state

smw:~ # xtgenid -t node --strict

Disable Hardware Components
If links, nodes, or Cray ASICs have hardware problems, the system administrator can direct the system to ignore
the components with the xtcli disable command.

By default, when disabling a component, this command takes into consideration the hierarchy of components,
performs the action upon the identified component(s) and cascades that action to any subcomponent of the
identified component(s), unless the -n option is specified.

The xtcli disable command has the following form, where idlist is a comma-separated list of components
(in cname format) that the system is to ignore. The system disregards these links or nodes.

xtcli disable [{-t type [-a] } | -n] [-f] idlist
IMPORTANT: The -n option with the xtcli disable command must be used carefully because this
may create invalid system state configurations.

Disabling of a cabinet, chassis, or blade will fail if any nodes under the component are in the ready state, unless
the force option (-f) is used. An error message will indicate the reason for the failure.

Disabling of a node in the ready state will fail, unless the force option (-f) is used. An error message will indicate
the reason for the failure.

The state of empty components will not change when using the disable command, unless the force option (-f)
is used.

For detailed information about using the xtcli disable command, see the xtcli(8) man page.

Disable the Aries ASIC c0-0c1s3a0
1. Determine that the ASIC is in the OFF state.

crayadm@smw:~> xtcli status -t aries c0-0c1s3a0

Manage the System

 57

2. If the ASIC is not in the OFF state, power down the blade that contains the ASIC.

crayadm@smw:~> xtcli power down c0-0c1s3
3. Disable the ASIC.

crayadm@smw:~> xtcli disable c0-0c1s3a0
4. Power up the blade that contains the ASIC.

crayadm@smw:~> xtcli power up c0-0c1s3

Enable Hardware Components
If links, nodes, or Cray ASICs that have been disabled are later fixed, the system administrator can add them
back to the system with the xtcli enable command.

The xtcli enable command has the following form, where idlist is a comma-separated list of components
(in cname format) for the system to recognize.

xtcli enable [{-t type [-a] } | -n] [-f] idlist
By default, when disabling a component, this command takes into consideration the hierarchy of components,
performs the action upon the identified component(s) and cascades that action to any subcomponent of the
identified component(s), unless the -n option is specified.

IMPORTANT: The -n option with the xtcli disable command must be used carefully because this
may create invalid system state configurations.

The state of empty components does not change when using the xtcli enable command, unless the force
option (-f) is used.

The state of off means that a component is present on the system. If the component is a blade controller, node,
or ASIC, then this will also mean that the component is powered off. If the administrator disables a component,
the state shown becomes disabled. When the xtcli enable command is used to enable that component for
use once again, its state switches from disabled to off. In the same manner, enabling an empty component
means that its state switches from empty to off.

For more information, see the xtcli(8) man page.

Set Hardware Components to EMPTY
Use the xtcli set_empty command to set a selected component to the EMPTY state. HSS managers and the
xtcli command ignore empty or disabled components.

Setting a selected component to the EMPTY state is typically done when a component, usually a blade, is
physically removed. By setting it to EMPTY, the system ignores it and routes around it.

By default, when disabling a component, this command takes into consideration the hierarchy of components,
performs the action upon the identified component(s) and cascades that action to any subcomponent of the
identified component(s), unless the -n option is specified.

IMPORTANT: The -n option with the xtcli disable command must be used carefully because this
may create invalid system state configurations.

Manage the System

 58

For more information, see the xtcli(8) man page.

Set a blade to the EMPTY state

crayadm@smw:~> xtcli set_empty -a c0-0c1s7

Lock Hardware Components
Components are automatically locked when a command that can change their state is running. As the command
is started, the state manager locks these components so that nothing else can affect their state while the
command executes. When the manager is finished with the command, it unlocks the components.

Use the HSS xtcli lock command to lock components. Locking a component prints out the state manager
session ID.

For more information, see the xtcli(8) man page.

Lock cabinet c0-0

crayadm@smw:~> xtcli lock -l c0-0

Show all session (lock) data

crayadm@smw:~> xtcli lock show

Unlock Hardware Components
Use the HSS xtcli lock command to unlock components. This command is useful when an HSS manager
fails to unlock some set of components.

The system administrator can manually check for locks with the xtcli lock show command and then unlock
them. Unlocking a component does not print out the state manager session ID. The -u option must be used to
unlock a component as follows:

crayadm@smw:~> xtcli lock -u lock_number
Where lock_number is the value given when initiating the lock; it is also indicated in the xtcli lock show
query. Unlocking does nothing to the state of the component other than to release locks associated with it.

HSS daemons cannot affect components that are locked by a different session.

xtbounce Error Message Indicates Cabinet Controller and Its Blade
Controllers Not in Sync
During the gather_cab_pwr_states phase of xtbounce, if the HSS software on a cabinet controller and any
of its blade controllers is out of sync, error messages such as the following will be printed during the xtbounce.

Manage the System

 59

***** gather_cab_pwr_states *****
18:28:42 - Beginning to wait for response(s)

ERROR: rs_phys_node2ascii() failed for node struct 0xb7e70150080700f8
ERROR: rs_phys_node2ascii() failed for node struct 0xb7e70150080700f8
ERROR: rs_phys_node2ascii() failed for node struct 0xb7e70150080700f8
ERROR: rs_phys_node2ascii() failed for node struct 0xb7e70150080700f8
If this occurs, it indicates that the blade controller software is at a different revision than the cabinet controller
software. xtbounce will print a list of cabinets for which this error has occurred. The message will be similar to
the following:

ERROR: power state check error on 2 cabinet(s)
WARNING: unable to find c0-0 in err_cablist
WARNING: unable to find c0-2 in err_cablist
This error is an indication that when the HSS software was previously updated, the cabinet controllers and the
blade controllers were not updated to the same version.

To correct this error, cancel out of xtbounce (with Ctrl-C), wait approximately five minutes for the xtbounce
related activities on the blade controllers to finish, then reboot the cabinet controller(s) and their associated blade
controllers to get the HSS software synchronized. Following this, the xtbounce may be executed once again.

Power-cycle a Component to Handle Bus Errors

About this task
Bus errors are caused by machine-check exceptions. If a bus error occurs, try power-cycling the component.

Procedure

1. Power down the components. The physIDlist is a comma-separated list of components present on the
system.

crayadm@smw:~> xtcli power down physIDlist

2. Power up the components.

crayadm@smw:~> xtcli power up physIDlist

When a Component Fails
Components that fail are replaced as field replaceable units (FRUs). FRUs include compute blade components,
service blade components, and power and cooling components.

When a field replaceable unit (FRU) problem arises, contact a Customer Service Representative to schedule a
repair.

Dump and Reboot Nodes Automatically
The SMW daemon dumpd initiates automatic dump and reboot of nodes when requested by the Node Health
Checker (NHC).

Manage the System

 60

CAUTION: The dumpd daemon is invoked automatically by xtbootsys on system (or partition) boot. In
most cases, system administrators do not need to use this daemon directly.

A system administrator can set global variables in the /etc/opt/cray/nodehealth/nodehealth.conf
configuration file to control the interaction of NHC and dumpd. For more information about NHC and the
nodehealth.conf configuration file, see Configure the Node Health Checker (NHC).

Variables can also be set in the /etc/opt/cray-xt-dumpd/dumpd.conf configuration file on the SMW to
control how dumpd behaves on the system.

Each CLE release package also includes an example dumpd configuration
file, /etc/opt/cray-xt-dumpd/dumpd.conf.example. The dumpd.conf.example file is a copy of
the /etc/opt/cray-xt-dumpd/dumpd.conf file provided for an initial installation.

IMPORTANT: The /etc/opt/cray-xt-dumpd/dumpd.conf file is not overwritten during a CLE
upgrade if the file already exists. This preserves the site-specific modifications previously made to the file.
Cray recommends comparing the site's /etc/opt/cray-xt-dumpd/dumpd.conf file content with
the /etc/opt/cray-xt-dumpd/dumpd.conf.example file provided with each release to identify any
changes and then update the site's /etc/opt/cray-xt-dumpd/dumpd.conf file accordingly.

If the /etc/opt/cray-xt-dumpd/dumpd.conf file does not exist, then
the /etc/opt/cray-xt-dumpd/dumpd.conf.example file is copied to
the /etc/opt/cray-xt-dumpd/dumpd.conf file.

The CLE installation and upgrade processes automatically install dumpd software, but it must be explicitly
enabled.

Collect Debug Information From Hung Nodes Using the xtnmi
Command

CAUTION: This is not a harmless tool to use to repeatedly get information from a node at various times;
only use this command when debugging data from nodes that are in trouble is needed. The xtnmi
command output may be used to determine problems such as a core hang. xtnmi will stop a running
node. It is best used when a node is not running correctly and debugging information is needed, or to stop
a node that is running incorrectly.

The sole purpose of the xtnmi command is to collect debug information from unresponsive nodes. As soon as
that debug information is displayed to the console, the node panics.

For additional information, see the xtnmi(8) man page.

Modify BIOS Parameters
There are a few, rare circumstances where it may be necessary to modify BIOS parameters, for example, in order
to troubleshoot a problem, or if there is a need to test a new BIOS version on a small set of nodes before
implementing the change across an entire system.

The xtbiosconf command allows administrators to specify BIOS parameters at the node, blade, chassis, or
cabinet level. BIOS parameters can be associated with a BIOS revision, numeric parameter offset or parameter
name, and target nodes. BIOS revision wildcards are supported. The BIOS parameter data is saved in a database

Manage the System

 61

on the SMW, and made available automatically to blade controllers via the ERFS file system. In most cases a cold
reboot of the affected nodes is needed to apply the new settings.

CAUTION: Do not attempt to use this command except under guidance by Cray support personnel, who
will provide all the steps for shutting down the nodes, changing the settings, and bringing the nodes back
up. Improper use of this command can damage a system.

The following command displays the current BIOS Parameter settings for the entire system:

smw~> xtbiosconf --show s0
==============|======|===================================
 | BIOS | BIOS
Node | REV | Parameter
==============|======|===================================
c0-1c0s0n1 | 4030 | numlock=1
c0-1c0s0n1 | 4030 | acpiauto=0
==============|======|===================================
c0-1c0s0n2 | 4030 | numlock=1
c0-1c0s0n2 | 4030 | acpiauto=0
==============|======|===================================
For more information see the xtbiosconf man page.

Increase File System Size

About this task
When a btrfs or xfs file system on the boot RAID needs to be increased, both the
cray_bootraid_config.yaml file needs to be changed for the new size and the commands to grow the file
system need to be done.

Procedure

1. Edit the cray_bootraid_config.yaml file to increase the size for the filesystem which needs to grow.

smw# vi /var/opt/cray/imps/config/sets/global/config/cray_bootraid_config.yaml
For example, to increase the size of the /var/opt/cray/imps file system on the SMW, locate the
"smwdefault" storage set, the smw_node_vg volume group, and the "home" volume within that storage set.
Change the "fs_size" for imps from 600 to 800.

Increase the size of the /home file system on the SMW, in the "smwdefault" storage set, the
"smw_node_vg" volume group, and the "home" volume within that storage set. Change the "fs_size" for
imps from 50 to 100.

 - key: smwdefault
 volume_groups:
 - key: smw_node_vg
 owner: smw
 devices:
 - /dev/disk/by-id/wwn-0x600a0980006b47b7000000e5561260a7
 volumes:
 - key: home
 description: LVM volume for user home directories on the

Manage the System

 62

SMW.
 type: lvm
 fs_type: xfs
 fs_size: 50
 fs_mount_point: /home
 snapshot: false
 mount_options:
 - key: imps
 description: LVM Volume for storage of IMPS
configuration.
 type: lvm
 fs_type: btrfs
 fs_size: 600
 fs_mount_point: /var/opt/cray/imps
 snapshot: false
 mount_options:

2. Extend an LVM volume.

a. Extend the "home" volume in the "smw_node_vg" LVM volume from the existing size to 100GB.

smw# lvextend -L100G /dev/mapper/smw_node_vg-home
b. Extend the "imps" volume in the "smw_node_vg" LVM volume from the existing size to 800GB.

smw# lvextend -L800G /dev/mapper/smw_node_vg-imps

3. Grow a btrfs file system.

smw# btrfs filesystem resize max /var/opt/crayimps

4. Grow an xfs file system.

smw# xfs_growfs /home

Add New Hardware to a System

About this task
Whether adding a single compute blade or a single service blade or several components in a full cabinet or
several cabinets, the process is similar.

Procedure

1. Add new components to system partition.

a. If the system is partitioned, then add the new components to the specific partition. If the system is not
partitioned, then this step can be skipped.

crayadm@smw> xtcli part_cfg show p2
crayadm@smw> xtcli part_cfg deactivate p2

b. Update the members of the partition with the old components and the new components.

Manage the System

 63

crayadm@smw> xtcli part_cfg update p2 -m
c2-0c0s0,c2-0c0s1,c2-0c0s7,c0-0c0s9,c2-0c0s11,c2-0c0s13,c2-0c0s15,c2-0c0s3
crayadm@smw> xtcli part_cfg activate p2

2. Ensure new components are not disabled and are assigned to the desired partition. If they are disabled, they
will not be discovered. If they are not assigned to a partition, they will not be bounced during the xtdiscover
process, and therefore will not be properly discovered.

Full system:

crayadm@smw> xtcli status s0
Partitioned system:

crayadm@smw> xtcli status p1
crayadm@smw> xtcli status p2

3. Discover the new hardware.

 crayadm@smw> su -
 smw# xtdiscover
 smw# exit
a. Run rtr --discover if there is a significant change modifying the routing configuration.

Full system:

crayadm@smw> rtr --discover
Partitioned system:

crayadm@smw> xtcli part_cfg deactivate p1
crayadm@smw> xtcli part_cfg deactivate p2
crayadm@smw> xtcli part_cfg activate p0
crayadm@smw> rtr --discover
crayadm@smw> xtcli part_cfg deactivate p0
crayadm@smw> xtcli part_cfg activate p1
crayadm@smw> xtcli part_cfg activate p2

b. Confirm the new components are now seen.

crayadm@smw> xtcli status s0
If the new components do not show up properly in the status output, do not continue. Power cycle the
whole system, try the xtdiscover again. If they still are not showing, there may be a problem with the
new hardware components.

4. Update firmware on new components. Check whether any firmware needs to be updated on the various
controllers.

crayadm@smw> xtzap -r -v s0
If any are out of date, output like the following from the xtzap command will be seen and the firmware needs
to be updated.

Individual Revision Mismatches:

Type ID Expected Installed
---------- ----------------- ---------- --

Manage the System

 64

cc_bios c0-0 0013 0012
bc_bios c0-0c0s0 0013 0012
bc_bios c0-0c0s1 0013 0012
bc_bios c0-0c0s2 0013 0012
bc_bios c0-0c0s3 0013 0012
a. Update firmware, if not all current.

CAUTION: The xtzap command is normally intended for use by Cray Service personnel only. Improper
use of this restricted command can cause serious damage to the computer system.

If the output of xtzap includes a "Revision Mismatches" section, then some firmware is out of date and
needs to be reflashed. To update, run xtzap with one or more of the options described in the next
paragraph.

While the xtzap -a command can be used to update all components with a single command, it may be
faster to use the xtzap -blade command when only blade types need to be updated, or the xtzap -t
command when only a single type needs to be updated. On larger systems, this can save significant time.

This is the list of all cabinet level components:

cc_mc (CC Microcontroller)
cc_bios (CC Tolapai BIOS)
cc_fpga (CC FPGA)
chia_fpga (CHIA FPGA)
This is a list of all blade level components:

cbb_mc (CBB BC Microcontroller)
ibb_mc (IBB BC Microcontroller)
anc_mc (ANC BC Microcontroller)
bc_bios (BC Tolapai BIOS)
lod_fpga (LOD FPGA)
node_bios (Node BIOS)
loc_fpga (LOC FPGA)
qloc_fpga (QLOC FPGA)
If the output of the xtzap command shows that only a specific type needs to be updated, then use the -t
option with that type (this example uses the node_bios type).

crayadm@smw:~> xtzap -t node_bios s0
If the output of the xtzap command shows that only blade component types need to be updated, then
use the -b option:

crayadm@smw:~> xtzap -b s0
If the output of the xtzap command shows that only cabinet component types need to be updated, then
use the -c option:

crayadm@smw:~> xtzap -c s0
If the output of the xtzap command shows that both blade- and cabinet-level component types need to
be updated, or if unsure of what needs to be updated, then use the -a option:

crayadm@smw:~> xtzap -a s0
b. Perform xtbounce --linktune, if not all current. Force xtbounce to do a linktune on the full system

before checking firmware again.

Manage the System

 65

crayadm@smw> xtbounce --linktune=all s0
c. Check firmware, after update and linktune. After updating them, confirm that they were all updated.

crayadm@smw> xtzap -r -v s0

5. Check routing configuration of the system.

The rtr -R command produces no output unless there is a routing problem.

Full system:

crayadm@smw> rtr -R s0
Partitioned system:

crayadm@smw> rtr -R p1
crayadm@smw> rtr -R p2

6. Update NIMS for new components. Now that the new components have been added, and the firmware is up
to date, several NIMS commands are needed.

a. See what settings are for already existing similar nodes.

crayadm@smw> cnode list -p p0
b. If this blade was swapped out and replaced with a different type (that is, was compute, swapped for

service), remove it from the old group.

crayadm@smw> cnode update --partition p1 -c p1 -G netroot_compute
c0-0c0s1n0 c0-0c0s1n1 c0-0c0s1n2 c0-0c0s1n3

c. Assign the nodes to the correct config set, group (compute, netroot_compute, service, login, dal,
etc.) and image.

crayadm@smw> cnode update --partition p1 -c p1 -g service -i /var/opt/cray/
imps/boot_images/service_XXX.cpio c0-0c0s1n0 c0-0c0s1n1 c0-0c0s1n2 c0-0c0s1n3

d. If this is a netroot_compute node, assign the key for netroot (can be combined with the config set,
group and image assignment in above command).

crayadm@smw> cnode update --partition p1 -s netroot=compute-large_cle_XXX
c0-0c0s1n0 c0-0c0s1n1 c0-0c0s1n2 c0-0c0s1n3

e. If this was a netroot_compute and is not anymore, remove the key.

crayadm@smw> cnode update --partition p1 -K netroot
c0-0c0s1n0 c0-0c0s1n1 c0-0c0s1n2 c0-0c0s1n3

f. If this was a compute node, and is now a service, remove the rest of the extraneous keys.

crayadm@smw> cnode update --partition p1 -c p1 -K hsn_ipv4_mask
c0-0c0s1n0 c0-0c0s1n1 c0-0c0s1n2 c0-0c0s1n3'
crayadm@smw> cnode update --partition p1 -c p1 -K hsn_ipv4_net
c0-0c0s1n0 c0-0c0s1n1 c0-0c0s1n2 c0-0c0s1n3'
crayadm@smw> cnode update --partition p1 -c p1 -K sdbnodeip
c0-0c0s1n0 c0-0c0s1n1 c0-0c0s1n2 c0-0c0s1n3'
crayadm@smw> cnode update --partition p1 -c p1 -K bootnodeip
c0-0c0s1n0 c0-0c0s1n1 c0-0c0s1n2 c0-0c0s1n3'

Manage the System

 66

7. Update config sets with the new components. This will generate a new /etc/hosts file for the CLE nodes.

Full system:

crayadm@smw> su -
smw# cfgset update p0
smw# exit
Partitioned system:

crayadm@smw> su -
smw# cfgset update p1
smw# cfgset update p2
smw# exit

8. Update any workload manager configuration as specified in their documentation. For internal systems running
native slurm, see http://oskernel/wiki/Workload_Managers_Rhine_Redwood#Slurm.

9. Boot the system using the standard boot procedure.

Add a New Disk to a Volume Group in a Storage Set

About this task
When more disk space is needed in an LVM volume group, add another physical volume to the
cray_bootraid_config.yaml file and rerun cray-ansible for the node which owns the storage.

Procedure

1. Edit the cray_bootraid_config.yaml file to add another physical device to the list of devices in the
volume group.

smw# vi /var/opt/cray/imps/config/sets/global/config/cray_bootraid_config.yaml
For example, to add a new disk device called
"/dev/disk/by-id/wwn-0x600a0980006b47b7000000e756127f9d" to the "smw_node_vg" volume
group, add the new disk device. Change this entry:

 - key: smwdefault
 volume_groups:
 - key: smw_node_vg
 owner: smw
 devices:
 - /dev/disk/by-id/wwn-0x600a0980006b47b7000000e5561260a7
To be this:

 - key: smwdefault
 volume_groups:
 - key: smw_node_vg
 owner: smw
 devices:
 - /dev/disk/by-id/wwn-0x600a0980006b47b7000000e5561260a7
 - /dev/disk/by-id/wwn-0x600a0980006b47b7000000e756127f9d

Manage the System

 67

http://oskernel/wiki/Workload_Managers_Rhine_Redwood#Slurm

2. Run cray-ansible on the node.

If the storage was added to the SMW volume group.

smw# /media/SMW/SMWinstall --mode=provision-storage
If the storage was added to the boot node volume group.

boot# /etc/init.d/cray-ansible start
If the storage was added to the SDB node volume group.

sdb# /etc/init.d/cray-ansible start

Reboot Controllers of a Cabinet or Blade
The xtccreboot command provides a means to reboot controllers. Options allow for rebooting all controllers of
a specified type (cabinet or blade) or providing a list of controllers of a specified type to be rebooted.

For additional information, see the xtccreboot(8) man page.

Reboot cabinet controller c0-0, with verbose output

smw:~> xtccreboot -v -c c0-0
xtccreboot: /opt/cray-xt-pdsh/default/bin/pdsh -w "c0-0" /sbin/reboot
xtccreboot: reboot sent to specified CCs

Bounce Blades Repeatedly Until All Blades Succeed

About this task
IMPORTANT: This iterative xtbounce should typically be done in concert with an xtbootsys
automation file where bounce and routing are turned off.

Procedure

1. Bounce the system.

smw:~> xtbounce s0

2. Bounce any blades that failed the first bounce. Repeat as necessary.

3. Execute the following command, which copies route configuration files, based on the idlist (such as s0), to
the blade controllers. This avoids having old, partial route configuration files left on the blades that were
bounced earlier and ensures that the links are initialized correctly.

smw:~> xtbounce --linkinit s0

4. Route and boot the system without executing xtbounce again. If using a xtbootsys automation file, specify
set data(config,xtbounce) 0, or use the xtbootsys --config xtbounce=0 command.

Manage the System

 68

Shut Down the System Using the auto.xtshutdown File
The preferred method to shut down the system is to use the xtbootsys command with the auto shutdown file as
follows:

crayadm@smw:~> xtbootsys -s last -a auto.xtshutdown
Or, for a partitioned system with partition pN:

smw:~# xtbootsys --partition pN -s last -a auto.xtshutdown
This method shuts down the compute nodes (which are commonly also Lustre clients), then executes
xtshutdown on service nodes, halting the nodes and then stopping processes on the SMW. A system
administrator can shut down the system using both user-defined and built-in procedures in the
auto.xtshutdown file, which is located on the SMW in the /opt/cray/hss/default/etc directory.

For related procedures, see XC™ Series Software Initial Installation and Configuration Guide. For more
information about using automation files, see the xtbootsys(8) man page.

The xtshutdown Command
The xtshutdown command executes a series of commands locally on the boot node and service nodes to shut
down the system in an orderly fashion. The sequence of shutdown steps and the nodes on which to execute them
are defined by the system administrator in the /etc/opt/cray/init-service/xtshutdown.conf file or in
the file specified by the environment variable XTSHUTDOWN_CONF.

Root user privileges are required to run xtshutdown. Passwordless ssh must be enabled for the root user from
the boot node to all service nodes.

The xtshutdown command uses pdsh to invoke commands on the selected service nodes (i.e., boot node, SDB
node, a class of nodes, or a single host). A system administrator can define functions to execute when the system
is shut down. Place these functions in the /etc/opt/cray/init-service/xt_shutdown_local file or the
file defined by the XTSHUTDOWN_LOCAL environment variable.

Shut Down Service Nodes

Prerequisites
Root user privileges are required to run xtshutdown. Passwordless ssh must be enabled for the root user
from the boot node to all service nodes.

CAUTION: The xtshutdown command does not shut down compute nodes. To shut down the compute
and service nodes, see Shut Down the System or Part of the System Using the xtcli shutdown Command.

About this task
For information about shutting down service nodes, see the xtshutdown(8) man page.

Manage the System

 69

Procedure

1. Modify the /etc/opt/cray/init-service/xtshutdown.conf file or the file specified by the
XTSHUTDOWN_CONF environment variable to define the sequence of shutdown steps and the nodes on which
to execute them. The /etc/opt/cray/init-service/xtshutdown.conf file resides on the boot node.

2. If desired, define functions to execute when the system is shut down. Place these functions in
the /etc/opt/cray/init-service/xt_shutdown_local file or the file defined by the
XTSHUTDOWN_LOCAL environment variable.

3. Execute xtshutdown.

boot:~ # xtshutdown
After the software on the nodes is shutdown, the administrator can halt the hardware, reboot, or power down.

Shut Down the System or Part of the System Using the xtcli shutdown
Command
The HSS xtcli shutdown command shuts down the system or a part of the system. To shut down compute
nodes, execute the xtcli shutdown command. Under normal circumstances, for example to successfully
disconnect from Lustre, invoking the xtcli shutdown command attempts to gracefully shut down the specified
nodes.

For information, see the xtcli(8) man page.

Shut down all compute nodes

crayadm@smw:~> xtcli shutdown compute

Shut down specified compute nodes

For this example, shut down only compute nodes in cabinet c13-2:

crayadm@smw:~> xtcli shutdown c13-2

Shut down all nodes of a system

crayadm@smw:~> xtcli shutdown s0

Shut down a partition pN of a system

crayadm@smw:~> xtcli shutdown pN

Manage the System

 70

Force nodes to shut down (immediate halt)

When all nodes of a system must be halted immediately, use the -f argument; nodes will not go
through their normal shutdown process. Forced shutdown occurs even if the nodes have an alert
status present.

crayadm@smw:~> xtcli shutdown -f s0
After the software on the nodes is shutdown, the system administrator can halt the hardware,
reboot, or power down.

Stop System Components
When a system administrator removes, stops, or powers down components, any applications and compute
processes that are running on those components are lost.

Reserve a Component
To allow applications and compute processes to complete before stopping components, use the HSS xtcli
set_reserve idlist command to prevent the selected nodes from accepting new jobs.

A node running CNL and using ALPS is considered to be down by ALPS after it is reserved using the xtcli
set_reserve command. The output from apstat will show the node as down (DN), even though there may be
an application running on that node. This DN designation indicates that no other work will be placed on the node
after the currently running application has terminated.

For more information, see the xtcli_set(8) man page.

Reserve a component

crayadm@smw:~> xtcli set_reserve idlist

Power Down Blades or Cabinets
WARNING: Power down the cabinets with software commands. Tripping the circuit breakers may result in
damage to system components.

WARNING: Before powering down a blade or a cabinet, ensure the operating system is not running.

The xtcli power down command powers down the specified cabinet and/or blades within the specified
partition, chassis or list of blades. Cabinets must be in the READY state to receive power commands. See System
Component States. The xtcli power down command has the following form, where physIDlist is a comma-
separated list of cabinets or blades present on the system.

xtcli power down physIDlist

Manage the System

 71

The xtcli power force_down and xtcli power down_slot commands are aliases for the xtcli power
down command. For information about disabling and enabling components, see Disable Hardware Components,
and Enable Hardware Components, respectively.

WARNING: Although a blade is powered off, the HSS in the cabinet is live and has power.

For information about powering down a component, see the xtcli_power(8) man page.

Power down a specified blade

For this example, power down a blade with the ID c0-0c0s7:

crayadm@smw:~> xtcli power down c0-0c0s7

Halt Selected Nodes
Use the HSS xtcli halt command to halt selected nodes. For more information, see the xtcli(8) man
page.

Halt a node

For this example, halt node 157:

crayadm@smw:~> xtcli halt 157

Restart a Blade or Cabinet
IMPORTANT: Change the state of the hardware only when the operating system is not running or is shut
down.

The xtcli power up command powers up the specified cabinet and/or blades within the specified partition,
chassis or list of blades. Cabinets must be in the READY state (see System Component States) to receive power
commands. The xtcli power up command does not attempt to power up network mezzanine cards or nodes
that are handled by the xtbounce command during system boot.

The xtcli power up_slot command is an alias for the xtcli power up command.

The xtcli power up command has the following form, where physIDlist is a comma-separated list of
cabinets or blades present on the system.

xtcli power up physIDlist
For more information, see the xtcli_power(8) man page.

Power up blades in c0-0c0s7

crayadm@smw:~> xtcli power up c0-0c0s7

Manage the System

 72

Abort Active Sessions on the HSS Boot Manager

About this task
Use the HSS xtcli session abort command to abort sessions in the boot manager. A session corresponds
to executing a specific command such as xtcli power up or xtcli boot.

For more information about manager sessions, see the xtcli(8) man page.

Procedure

1. Display all running sessions in the boot manager. Only the boot manager supports multiple simultaneous
sessions.

crayadm@smw:~> session show BM all

2. Abort the selected session, session_id.

crayadm@smw:~> xtcli session abort BM session_id

Display and Change Software System Status
The user command xtnodestat provides a display of the status of nodes: how they are allocated and to what
jobs. The xtnodestat command provides current job and node status summary information, and it provides an
interface to ALPS and jobs running on CNL compute nodes. ALPS must be running in order for xtnodestat to
report job information.

For more information, see the xtnodestat(1) man page.

View and Change the Status of Nodes
Use the xtprocadmin command on a service node to view the status of components of a booted system in the
processor table of the SDB. The command enables the system administrator to retrieve or set the processing
mode (interactive or batch) of specified nodes. The administrator can display the state (up, down,
admindown, route, or unavailable) of the selected components, if needed. The administrator can also
allocate processor slots or set nodes to become unavailable at a particular time. The node is scheduled only if the
status is up.

When the xtprocadmin -ks option is used, then the option can either a normal argument (up, down, etc.), or it
can have a colon in it to represent a conditional option; for example, the option of the form up:down means "if
state was up, mark down".

For more information, see the xtprocadmin(8) man page.

View node characteristics

login:~> xtprocadmin
 NID (HEX) NODENAME TYPE STATUS MODE
 1 0x1 c0-0c0s0n1 service up batch
 2 0x2 c0-0c0s0n2 service up batch
 5 0x5 c0-0c0s1n1 service up batch
 6 0x6 c0-0c0s1n2 service up batch

Manage the System

 73

 8 0x8 c0-0c0s2n0 compute up batch
 9 0x9 c0-0c0s2n1 compute up batch
 10 0xa c0-0c0s2n2 compute up batch
 11 0xb c0-0c0s2n3 compute up batch

View all node attributes
login:~> xtprocadmin -A
 NID (HEX) NODENAME TYPE ARCH OS CPUS CU AVAILMEM PAGESZ CLOCKMHZ GPU SOCKETS DIES C/
CU LABEL0 LABEL1
LABEL2 LABEL3
 1 0x1 c0-0c0s0n1 service xt (service) 16 8 32768 4096 2600 0 1 1
2
 2 0x2 c0-0c0s0n2 service xt (service) 16 8 32768 4096 2600 0 1 1
2
 5 0x5 c0-0c0s1n1 service xt (service) 16 8 32768 4096 2600 0 1 1
2
 6 0x6 c0-0c0s1n2 service xt (service) 16 8 32768 4096 2600 0 1 1
2
 8 0x8 c0-0c0s2n0 compute xt CNL 32 16 65536 4096 2600 0 2 2
2
 9 0x9 c0-0c0s2n1 compute xt CNL 32 16 65536 4096 2600 0 2 2
2
 10 0xa c0-0c0s2n2 compute xt CNL 32 16 65536 4096 2600 0 2 2
2

View selected attributes of selected nodes

For this example, the -a option lists the selected attributes to display:

login:~> xtprocadmin -n 8 -a arch,clockmhz,os,cores
 NID (HEX) NODENAME TYPE ARCH CLOCKMHZ OS CPUS
 8 0x8 c0-0c0s2n0 compute xt 2600 CNL 32

Disable a node

For this example, the admindown option disables node c0-0c0s3n1 such that it cannot be
allocated:

crayadm@nid00004:~> xtprocadmin -n c0-0c0s3n1 -k s admindown

Disable all processors

crayadm@nid00004:~> xtprocadmin -k s admindown

Mark a Compute Node as a Service Node
Use the xtcli mark_node command to mark a node in a compute blade to have a role of service or
compute; compute is the default. It is not permitted to change the role of a node on a service blade, which
always has the service role.

Marking a node on a compute blade as service or compute allows the administrator to load the desired boot
image at boot time. Compute nodes marked as service can run software-based services. A request to change
the role of a running node (that is, the node is in the ready state and the operating system is running) will be
denied.

For more information, see the xtcli(8) man page and Check the Status of System Components on page 143.

Manage the System

 74

Find Node Information

Translate Between Physical ID Names and Integer NIDs
To translate between physical ID names (cnames) and integer NIDs, generate a system map on the System
Management Workstation (SMW) and filter the output, enter the following command:

crayadm@smw:~> rtr --system-map | grep cname | awk '{ print $1 }'
To translate between physical ID names (rnames) and integer NIDs, generate a system map on the System
Management Workstation (SMW) and filter the output, enter the following command:

crayadm@smw:~> rtr --system-map | grep rname | awk '{ print $1 }'
For more information, see the rtr(8) man page.

Find Node Information Using the xtnid2str Command
The xtnid2str command converts numeric node identification values to their physical names (cnames). This
allows conversion of Node ID values, ASIC NIC address values, or ASIC ID values.

For additional information, see the xtnid2str(8) man page.

Find the physical ID for node 38

smw:~> xtnid2str 28
node id 0x26 = 'c0-0c0s1n2'

Find the physical ID for nodes 0, 1, 2, and 3

smw:~> xtnid2str 0 1 2 3
node id 0x0 = 'c0-0c0s0n0'
node id 0x1 = 'c0-0c0s0n1'
node id 0x2 = 'c0-0c0s1n0'
node id 0x3 = 'c0-0c0s1n1'

Find the physical IDs for Aries IDs 0-7

smw:~> xtnid2str -a 0-7
aries id 0x0 = 'c0-0c0s0a0'
aries id 0x1 = 'c0-0c0s1a0'
aries id 0x2 = 'c0-0c0s2a0'
aries id 0x3 = 'c0-0c0s3a0'
aries id 0x4 = 'c0-0c0s4a0'
aries id 0x5 = 'c0-0c0s5a0'
aries id 0x6 = 'c0-0c0s6a0'
aries id 0x7 = 'c0-0c0s7a0'

Find Node Information Using the nid2nic Command
The nid2nic command prints the nid-to-nic address mappings, nic-to-nid address mappings, and a specific
physical_location-to-nic address and nid mappings.

Manage the System

 75

For information about using the nid2nic command, see the nid2nic(8) man page.

Print the nid-to-nic address mappings for the node with NID 31

smw:~> nid2nic 31
NID:0x1f NIC:0x21 c0-0c0s7n3

Print the nid-to-nic address mappings for the node with NID 31, but specify the NIC value in the command
line

smw:~> nid2nic -n 0x21
NIC:0x21 NID:0x1f c0-0c0s7n3

Display and Change Hardware System Status
A system administrator can execute commands that look at and change the status of the hardware.

CAUTION: Execute commands that change the status of hardware only when the operating system is
shut down.

Generate HSS Physical IDs
The HSS xtgenid command generates HSS physical IDs, for example, to create a list of blade controller
identifiers for input to the flash manager. Selection can be restricted to components of a particular type. Only user
root can execute the xtgenid command.

For more information, see the xtgenid(8) man page.

Create a list of node identifiers that are not in the DISABLE, EMPTY, or OFF state

smw:~ # xtgenid -t node --strict

Disable Hardware Components
If links, nodes, or Cray ASICs have hardware problems, the system administrator can direct the system to ignore
the components with the xtcli disable command.

By default, when disabling a component, this command takes into consideration the hierarchy of components,
performs the action upon the identified component(s) and cascades that action to any subcomponent of the
identified component(s), unless the -n option is specified.

The xtcli disable command has the following form, where idlist is a comma-separated list of components
(in cname format) that the system is to ignore. The system disregards these links or nodes.

xtcli disable [{-t type [-a] } | -n] [-f] idlist
IMPORTANT: The -n option with the xtcli disable command must be used carefully because this
may create invalid system state configurations.

Disabling of a cabinet, chassis, or blade will fail if any nodes under the component are in the ready state, unless
the force option (-f) is used. An error message will indicate the reason for the failure.

Manage the System

 76

Disabling of a node in the ready state will fail, unless the force option (-f) is used. An error message will indicate
the reason for the failure.

The state of empty components will not change when using the disable command, unless the force option (-f)
is used.

For detailed information about using the xtcli disable command, see the xtcli(8) man page.

Disable the Aries ASIC c0-0c1s3a0
1. Determine that the ASIC is in the OFF state.

crayadm@smw:~> xtcli status -t aries c0-0c1s3a0
2. If the ASIC is not in the OFF state, power down the blade that contains the ASIC.

crayadm@smw:~> xtcli power down c0-0c1s3
3. Disable the ASIC.

crayadm@smw:~> xtcli disable c0-0c1s3a0
4. Power up the blade that contains the ASIC.

crayadm@smw:~> xtcli power up c0-0c1s3

Enable Hardware Components
If links, nodes, or Cray ASICs that have been disabled are later fixed, the system administrator can add them
back to the system with the xtcli enable command.

The xtcli enable command has the following form, where idlist is a comma-separated list of components
(in cname format) for the system to recognize.

xtcli enable [{-t type [-a] } | -n] [-f] idlist
By default, when disabling a component, this command takes into consideration the hierarchy of components,
performs the action upon the identified component(s) and cascades that action to any subcomponent of the
identified component(s), unless the -n option is specified.

IMPORTANT: The -n option with the xtcli disable command must be used carefully because this
may create invalid system state configurations.

The state of empty components does not change when using the xtcli enable command, unless the force
option (-f) is used.

The state of off means that a component is present on the system. If the component is a blade controller, node,
or ASIC, then this will also mean that the component is powered off. If the administrator disables a component,
the state shown becomes disabled. When the xtcli enable command is used to enable that component for
use once again, its state switches from disabled to off. In the same manner, enabling an empty component
means that its state switches from empty to off.

For more information, see the xtcli(8) man page.

Set Hardware Components to EMPTY
Use the xtcli set_empty command to set a selected component to the EMPTY state. HSS managers and the
xtcli command ignore empty or disabled components.

Manage the System

 77

Setting a selected component to the EMPTY state is typically done when a component, usually a blade, is
physically removed. By setting it to EMPTY, the system ignores it and routes around it.

By default, when disabling a component, this command takes into consideration the hierarchy of components,
performs the action upon the identified component(s) and cascades that action to any subcomponent of the
identified component(s), unless the -n option is specified.

IMPORTANT: The -n option with the xtcli disable command must be used carefully because this
may create invalid system state configurations.

For more information, see the xtcli(8) man page.

Set a blade to the EMPTY state

crayadm@smw:~> xtcli set_empty -a c0-0c1s7

Lock Hardware Components
Components are automatically locked when a command that can change their state is running. As the command
is started, the state manager locks these components so that nothing else can affect their state while the
command executes. When the manager is finished with the command, it unlocks the components.

Use the HSS xtcli lock command to lock components. Locking a component prints out the state manager
session ID.

For more information, see the xtcli(8) man page.

Lock cabinet c0-0

crayadm@smw:~> xtcli lock -l c0-0

Show all session (lock) data

crayadm@smw:~> xtcli lock show

Unlock Hardware Components
Use the HSS xtcli lock command to unlock components. This command is useful when an HSS manager
fails to unlock some set of components.

The system administrator can manually check for locks with the xtcli lock show command and then unlock
them. Unlocking a component does not print out the state manager session ID. The -u option must be used to
unlock a component as follows:

crayadm@smw:~> xtcli lock -u lock_number
Where lock_number is the value given when initiating the lock; it is also indicated in the xtcli lock show
query. Unlocking does nothing to the state of the component other than to release locks associated with it.

HSS daemons cannot affect components that are locked by a different session.

Manage the System

 78

Set the Turbo Boost Limit
The Intel® Xeon Phi™ processors do not support turbo boost limiting.

Because Intel Ivy Bridge and Haswell processors have a high degree of variability in the amount of turbo boost
each processor can supply, limiting the amount of turbo boost can reduce performance variability and reduce
power consumption. The limit applies only when a high number of cores are active. On an N-core processor, the
limit is in effect when the active core count is N, N-1, N-2, or N-3. On a 12-core processor, the limit is in effect
when 12, 11, 10, or 9 cores are active. Set the turbo_boost_limit parameter to 100, 200, or 999. The default
setting is 999. When 100 is specified, 100 MHz is the limit. A value of 200 limits turbo boost to 200 MHz. A value
of 999 implies no turbo boost limit is applied.

Set the turbo boost limit using one of the following methods:

● Add the following action to a boot automation file:

lappend actions { crms_boot_loadfile CNL0 compute $data(idlist)
turbo_boost_limit=value }

● Warm boot the compute nodes using this command:

xtbootsys --reboot -L CNL0 --compute-boot-params turbo_boost_limit=value
idlist

where idlist is a comma-separated list of compute nodes (in cname format) to be booted. This
configuration change is not persisted.

Perform Parallel Operations on Service Nodes
Use pdsh, the CLE parallel remote shell utility for service nodes, to issue commands to groups of nodes in
parallel. The system administrator can select the nodes on which to use the command, exclude nodes from the
command, and limit the time the command is allowed to execute. Only user root can execute the pdsh
command. The command has the following form:

pdsh [options] command
For more information, see the pdsh(1) man page.

Restart the NTP service

boot:~ # pdsh -w 'login[1-9]' /etc/init.d/ntp restart

Perform Parallel Operations on Compute Nodes
The parallel command tool (pcmd) facilitates execution of the same commands on groups of compute nodes in
parallel, similar to pdsh. Although pcmd is launched from a service node, it acts on compute nodes. It allows
administrators and/or, if the site deems it feasible, other users to securely execute programs in parallel on
compute nodes. The user can specify on which nodes to execute the command. Alternatively, the user can
specify an application ID (apid) to execute the command on all the nodes available under that apid.

Manage the System

 79

An unprivileged user must execute the command targeting nodes where the user is currently running an aprun. A
root user is allowed to target any compute node, regardless of whether there are jobs running there or not. In
either case, if the aprun exits and the associated applications are killed, any commands launched by pcmd will
also exit.

By default, pcmd is installed as a root-only tool. It must be installed as setuid root in order for unprivileged
users to use it.

The pcmd command is located in the nodehealth module. If the nodehealth module is not part of the default
profile, load it by specifying:

module load nodehealth
For additional information, see the pcmd(1) man page.

xtbounce Error Message Indicates Cabinet Controller and Its Blade
Controllers Not in Sync
During the gather_cab_pwr_states phase of xtbounce, if the HSS software on a cabinet controller and any
of its blade controllers is out of sync, error messages such as the following will be printed during the xtbounce.

***** gather_cab_pwr_states *****
18:28:42 - Beginning to wait for response(s)

ERROR: rs_phys_node2ascii() failed for node struct 0xb7e70150080700f8
ERROR: rs_phys_node2ascii() failed for node struct 0xb7e70150080700f8
ERROR: rs_phys_node2ascii() failed for node struct 0xb7e70150080700f8
ERROR: rs_phys_node2ascii() failed for node struct 0xb7e70150080700f8
If this occurs, it indicates that the blade controller software is at a different revision than the cabinet controller
software. xtbounce will print a list of cabinets for which this error has occurred. The message will be similar to
the following:

ERROR: power state check error on 2 cabinet(s)
WARNING: unable to find c0-0 in err_cablist
WARNING: unable to find c0-2 in err_cablist
This error is an indication that when the HSS software was previously updated, the cabinet controllers and the
blade controllers were not updated to the same version.

To correct this error, cancel out of xtbounce (with Ctrl-C), wait approximately five minutes for the xtbounce
related activities on the blade controllers to finish, then reboot the cabinet controller(s) and their associated blade
controllers to get the HSS software synchronized. Following this, the xtbounce may be executed once again.

Reduce Impact to SMW Performance of Btrfs Periodic Maintenance

About this task
Btrfs (B-tree file system) runs periodic maintenance. The weekly and monthly maintenance scripts, which include
balance, trim, and scrub actions, can consume large amounts of compute resource. This can impact a site's ability
to use the SMW for normal operations, even using SSH to log into nodes. This procedure explains how to reduce
impact to the SMW by controlling when these scripts are run.

Manage the System

 80

Procedure

1. Create a file /etc/cron.d/cray_btrfs.cron. Set ownership to root,root with permissions 644.

The new cron file needs to be in /etc/cron.d because the Btrfs RPM installs links to maintenance scripts
into the /etc/cron.{weekly,monthly} directories.

2. Add these lines to the new file. Adjust as needed for this site.

Control when btrfs maintenance scripts run by deleting the corresponding
'lastrun' files at a predetermined time. Caveat, this affects all of the
scripts in the corresponding cron directories (/etc/cron.{weekly,monthy})

Run weekly on Saturday at 2 AM as root
0 2 * * 6 root rm -f /var/spool/cron/lastrun/cron.weekly
Run monthly on the first Sunday of the month at 2 AM as root
0 2 * * 0 root [$(date +%d) -le 07] && rm -f /var/spool/cron/lastrun/
cron.monthly

Power-cycle a Component to Handle Bus Errors

About this task
Bus errors are caused by machine-check exceptions. If a bus error occurs, try power-cycling the component.

Procedure

1. Power down the components. The physIDlist is a comma-separated list of components present on the
system.

crayadm@smw:~> xtcli power down physIDlist

2. Power up the components.

crayadm@smw:~> xtcli power up physIDlist

When a Component Fails
Components that fail are replaced as field replaceable units (FRUs). FRUs include compute blade components,
service blade components, and power and cooling components.

When a field replaceable unit (FRU) problem arises, contact a Customer Service Representative to schedule a
repair.

Capture and Analyze System-level and Node-level Dumps
The xtdumpsys command collects and analyzes information from a Cray system that is failing or has failed, has
crashed, or is hung. Analysis is performed on, for example, event log data, active heartbeat probing, voltages,
temperatures, health faults, in-memory console buffers, and high-speed interconnection network errors. When
failed components are found, detailed information is gathered from them.

Manage the System

 81

To collect similar information for components that have not failed, invoke the xtdumpsys command with the --
add option and name the components from which to collect data. The HSS xtdumpsys command saves dump
information in /var/opt/cray/dump/timestamp by default.

NOTE: When using the --add option to add multiple components, separate components with spaces, not
commas.

Dump information about a working component

For this example, dump the entire system and collect detailed information from all blade
controllers in chassis 0 of cabinet 0:

crayadm@smw:~> xtdumpsys --add c0-0c0s0

The xtdumpsys command is written in Python and supports plug-ins written in Python. A number of plug-in
scripts are included in the software release. Call xtdumpsys --list to view a list of included plug-ins and their
respective directories. The xtdumpsys command also now supports the use of configuration files to specify
xtdumpsys presets, rather than entering them via the command line.

For more information, see the xtdumpsys(8) man page.

cdump and crash Utilities for Node Memory Dump and Analysis
The cdump and crash utilities may be used to analyze the memory on any Cray service node or CNL compute
node. The cdump command is used to dump node memory to a file. After cdump completes, the crash utility can
be used on the dump file generated by cdump.

Cray recommends executing the cdump utility only if a node has panicked or is hung, or if a dump is requested by
Cray.

To select the desired access method for reading node memory, use the cdump -r access option. Valid access
methods are:

xt-bhs The xt-bhs method uses a basic hardware system server that runs on the SMW to access and read
node memory. xt-bhs is the default access method for these systems.

xt-hsn The xt-hsn method utilizes a proxy that reads node memory through the High-speed Network
(HSN). The xt-hsn method is faster than the xt-bhs method, but there are situations where it will
not work (for example, if the ASIC is not functional). However, the xt-hsn method is preferable
because the dump completes in a short amount of time and the node can be returned to service
sooner.

xt-file The xt-file method is used for memory dump file created by the -z option. The compressed
memory dump file must be uncompressed prior to executing this command. Use the file name for
node-id.

xc-knc The xc-knc method is used to dump Intel Xeon Phi nodes. Use this method when dumping only the
Xeon Phi coprocessor without dumping the host node. When dumping the host node, do not use xc-
knc. A host node dump automatically includes dumping the Xeon Phi coprocessors unless they are
suppressed by specifying the -n option.

To dump Cray node memory, access takes the following form:

method[@host]
For additional information, see the cdump(8) and crash(8) man pages.

Manage the System

 82

Dump and Reboot Nodes Automatically
The SMW daemon dumpd initiates automatic dump and reboot of nodes when requested by the Node Health
Checker (NHC).

CAUTION: The dumpd daemon is invoked automatically by xtbootsys on system (or partition) boot. In
most cases, system administrators do not need to use this daemon directly.

A system administrator can set global variables in the /etc/opt/cray/nodehealth/nodehealth.conf
configuration file to control the interaction of NHC and dumpd. For more information about NHC and the
nodehealth.conf configuration file, see Configure the Node Health Checker (NHC).

Variables can also be set in the /etc/opt/cray-xt-dumpd/dumpd.conf configuration file on the SMW to
control how dumpd behaves on the system.

Each CLE release package also includes an example dumpd configuration
file, /etc/opt/cray-xt-dumpd/dumpd.conf.example. The dumpd.conf.example file is a copy of
the /etc/opt/cray-xt-dumpd/dumpd.conf file provided for an initial installation.

IMPORTANT: The /etc/opt/cray-xt-dumpd/dumpd.conf file is not overwritten during a CLE
upgrade if the file already exists. This preserves the site-specific modifications previously made to the file.
Cray recommends comparing the site's /etc/opt/cray-xt-dumpd/dumpd.conf file content with
the /etc/opt/cray-xt-dumpd/dumpd.conf.example file provided with each release to identify any
changes and then update the site's /etc/opt/cray-xt-dumpd/dumpd.conf file accordingly.

If the /etc/opt/cray-xt-dumpd/dumpd.conf file does not exist, then
the /etc/opt/cray-xt-dumpd/dumpd.conf.example file is copied to
the /etc/opt/cray-xt-dumpd/dumpd.conf file.

The CLE installation and upgrade processes automatically install dumpd software, but it must be explicitly
enabled.

The /etc/opt/cray-xt-dumpd/dumpd.conf Configuration File
The dumpd configuration file, /etc/opt/cray-xt-dumpd/dumpd.conf, is located on the SMW. There is no
need to change any installation configuration parameters, but a system administrator can edit
the /etc/opt/cray-xt-dumpd/dumpd.conf file to customize how dumpd behaves on the system using the
following configuration variables.

enable: yes|no Provides a quick on/off switch for all dumpd functionality.

Default is no.

partitions: number Specifies whether or not dumpd acts on specific partitions or ranges of partitions.
Placing ! in front of a partition or range disables it.

For example, specifying

partitions: 1-10,!2-4

enables partitions 1, 5, 6, 7, 8, 9, and 10 but not 2, 3, or 4. Partitions must be explicitly
enabled. Leaving this option blank disables all partitions.

disabled_action:
ignore|queue Specifies what to do when requests come in for a disabled partition. If ignore is

specified, requests are removed from the database and not acted upon. If queue is

Manage the System

 83

specified, requests continue to build while dumpd is disabled on a partition. When the
partition is reenabled, the requests will be acted on. Specifying queue is not
recommended if dumpd will be disabled for long periods of time, as it can cause SMW
stress and database problems.

save_output:
always|errors|
never

Indicates when to save stdout and stderr from dumpd commands that are
executed. If save_output is set to always, all output is saved. If errors is
specified, output is saved only when the command exits with a nonzero exit code. If
never is specified, output is never saved.

The default is to save output on errors.

command_output:
directory

Specifies where to save output of dumpd commands, per the save_output variable.
The command output is put in the file action.pid.timestamp.out in the directory
specified by this option.

Default directory is /var/opt/cray/dump.

dump_dir:
directory

Specifies the directory in which to save dumps.

Default directory is /var/opt/cray/dump.

max_disk: nnnMB|
unlimited

Specifies the amount of disk space beyond which no new dumps will be created. This
is not a hard limit; if dumpd sees that this directory has less than this amount of space,
it starts a new dump, even if that dump subsequently uses enough space to exceed
the max_disk limit.

The default value is max_disk: unlimited.

no_space_action:
action

Specifies a command to be executed if the directory specified by the variable
dump_dir does not have enough space free, as specified by max_disk. For
example:

Deletes the oldest dump in the dump directory:

no_space_action: rm -rf $dump_dir/$(ls -rt $dump_dir | head
-1)

Moves the oldest dump somewhere useful:

no_space_action: mv $dump_dir/$(ls -t $dump_dir|head
-1) /some/dump/archive

Sends E-mail to an administrator at admin@fictionalcraysite.com:

no_space_action: echo "" | mail -s "Not Enough Space in
$dump_dir" \
admin@fictionalcraysite.com

The dumpd-dbadmin Tool
The dumpd daemon sits and waits for requests from NHC (or some other entity using the dumpd-request tool
on the shared root.) When dumpd gets a request, it creates a database entry in the mznhc database for the

Manage the System

 84

mailto:admin@fictionalcraysite.com

request, and calls the script /opt/cray-xt-dumpd/default/bin/executor to read the dumpd.conf
configuration file and perform the requested actions.

Use the dumpd-dbadmin tool to view or delete entries in the mznhc database in a convenient manner.

The dumpd-request Tool
Use the dumpd-request tool to send dump and reboot requests to dumpd from the SMW or the shared root. A
request includes a comma-separated list of actions to perform, and the node or nodes on which to perform the
actions.

A typical request from NHC looks like this:

cname: c0-0c1s4n0 actions: halt,dump,reboot

A system administrator can define additional actions in the dumpd.conf configuration file. To use, execute the
dumpd-request tool located on the shared root or the SMW. A typical call would be:

dumpd-request -a halt,dump,reboot -c c0-0c1s4n0

Or

dumpd-request -a myaction1,myaction2 -c
c1-0c0s0n0,c1-0c0s0n1,c1-0c0s0n2,c1-0c0s0n3

For this example to work, myaction1 and myaction2 must be defined in the dumpd.conf file. See the
examples in the configuration file for more detail.

Collect Debug Information From Hung Nodes Using the xtnmi
Command

CAUTION: This is not a harmless tool to use to repeatedly get information from a node at various times;
only use this command when debugging data from nodes that are in trouble is needed. The xtnmi
command output may be used to determine problems such as a core hang. xtnmi will stop a running
node. It is best used when a node is not running correctly and debugging information is needed, or to stop
a node that is running incorrectly.

The sole purpose of the xtnmi command is to collect debug information from unresponsive nodes. As soon as
that debug information is displayed to the console, the node panics.

For additional information, see the xtnmi(8) man page.

Modify BIOS Parameters
There are a few, rare circumstances where it may be necessary to modify BIOS parameters, for example, in order
to troubleshoot a problem, or if there is a need to test a new BIOS version on a small set of nodes before
implementing the change across an entire system.

The xtbiosconf command allows administrators to specify BIOS parameters at the node, blade, chassis, or
cabinet level. BIOS parameters can be associated with a BIOS revision, numeric parameter offset or parameter
name, and target nodes. BIOS revision wildcards are supported. The BIOS parameter data is saved in a database

Manage the System

 85

on the SMW, and made available automatically to blade controllers via the ERFS file system. In most cases a cold
reboot of the affected nodes is needed to apply the new settings.

CAUTION: Do not attempt to use this command except under guidance by Cray support personnel, who
will provide all the steps for shutting down the nodes, changing the settings, and bringing the nodes back
up. Improper use of this command can damage a system.

The following command displays the current BIOS Parameter settings for the entire system:

smw~> xtbiosconf --show s0
==============|======|===================================
 | BIOS | BIOS
Node | REV | Parameter
==============|======|===================================
c0-1c0s0n1 | 4030 | numlock=1
c0-1c0s0n1 | 4030 | acpiauto=0
==============|======|===================================
c0-1c0s0n2 | 4030 | numlock=1
c0-1c0s0n2 | 4030 | acpiauto=0
==============|======|===================================
For more information see the xtbiosconf man page.

Set or Change the HSS Data Store (MariaDB) Root Password

About this task
The method for setting or changing the HSS data store (database) root password has changed with the release of
CLE 6.0.

Old The HSS database was implemented with MySQL. After initial installation, its root password was changed
from the initial default empty string to a user-defined value by the SMWconfig script, which was run after
SMWinstall and the initial discovery of the system.

New The HSS database is now implemented with MariaDB, a MySQL work-alike database with identically
named commands. As before, the initial default root password is the empty string; however, the
SMWconfig script is no longer used to set it after installation. The administrator must use the following
procedure to set the root password to a user-defined value.

Once the MariaDB root password has been set, it must be placed in /root/.my.cnf, a file readable only
by root that has the format shown in step 2. This file serves as the mechanism by which the installer and
the snaputil command obtain the root password when they access MariaDB as root. If the file does not
exist or it has no password= line, the system will attempt to access MariaDB using the default empty-
string password, which will fail once the password has been changed. The first time the root password is
set to a user-defined value, /root/.my.cnf must be created. Afterwards, whenever the MariaDB root
password is changed, /root/.my.cnf must be updated to match.

IMPORTANT: For an SMW HA system, record the new MySQL root password. It will need to be changed
on the second SMW later (by editing /root/.my.cnf). After the SMW HA cluster has been configured,
the MySQL root password needs to be reset with mysqladmin on only one SMW, because the MySQL
database is shared between both SMWs in the HA cluster.

Manage the System

 86

Procedure

1. Set or change the MariaDB root password.

smw# mysqladmin -uroot password -p
Do one of the following at the prompt:

● To set the root password for fresh installs or after the database has been reinitialized, press Enter to
enter an empty string, the default initial password.

Enter password: <cr>
● To change the root password, enter the existing password.

Enter password: existing_password
At these prompts, enter the new root password, and then enter it again.

New password:
Confirm new password:

2. Ensure that the root password in the /root/.my.cnf file matches the new root password.

If this file does not yet exist, create it and add the lines shown in the example, substituting the new password
for the placeholder MariaDB-password.

smw# vi /root/.my.cnf
[client]
user=root
password=MariaDB-password
Ensure that only root can see or write to this file.

smw# chmod 600 /root/.my.cnf

Recover from a Corrupt or Missing SMW MariaDB Database

About this task
If the HSS MariaDB (formerly MySQL) database has been damaged or is missing, there are three possible
courses of action:

● Repair.

If the database has become corrupt, MariaDB automatically attempts to repair damaged tables. Look in the
log file (default /var/lib/mysql/machine.err) for suggested manual recovery steps, if any, and try
those first. Repairing the database is the best option when possible.

● Restore and regenerate.

If there are no suggestions or the suggested steps fail to repair the database, use the procedure Restore the
HSS MariaDB Database from a Backup on page 88. Restoring the database from the most recent backup
(provided a more recent manual backup is not available) will restore the database to its state just prior to the
last xtdiscover or warmswap add operation. An incremental discovery to the present system state will
usually be faster than one made from a fresh database, and it will not require administrative state changes
made prior to the backup (such as marking compute nodes as 'service') to be performed again.

Manage the System

 87

TIP: To minimize needed discovery, make more frequent backups:

/usr/bin/mysqldump --add-drop-database --routines -uhssds -phssds hssds
 > /home/crayadm/hss_db_backup/my-new-hssds-backup.sql
The HSS MariaDB database could be backed up after every successful warmswap (xtdiscover --
warmswap), regular xtdiscover, and any administrative state change (e.g., xtcli disable/
enable/set_empty/mark_node). Because these actions are all logged in the commands log, they
could be used to automatically trigger backups.

● Regenerate from scratch.

If all else fails, use the procedure Regenerate the HSS MariaDB Database from Scratch on page 89. In this
case, the database and the database root password are wiped out, and discovery is used to regenerate the
database.

Restore the HSS MariaDB Database from a Backup

About this task
If the HSS MariaDB database becomes corrupt or is missing, and automated attempts to repair damaged tables
have failed, use this procedure to do a partial restoration from backup.

Procedure

1. Stop the HSS daemons (by stopping RSMS) and the MariaDB service.

crayadm@smw> sudo /usr/bin/systemctl stop rsms.service
crayadm@smw> sudo /usr/bin/systemctl stop mysql.service

2. Move the damaged database files out of the database directory.

crayadm@smw> mkdir /tmp/backup12
crayadm@smw> cd /var/lib/mysql
crayadm@smw> sudo mv ibdata1 ib_logfile0 ib_logfile1 hssds /tmp/backup12
This procedure assumes that the old database files cannot be repaired; however, this step retains those old
database files (just in case) and clears out the database directory.

3. Restart MariaDB.

crayadm@smw> sudo /usr/bin/systemctl start mysql.service

4. Ensure the database is gone.

crayadm@smw> mysql -uhssds -phssds -e "drop database hssds"
If the database is gone, the following error message appears:

ERROR 1008 (HY000) at line 1: Can't drop database 'hssds'; database doesn't
exist

5. Load the most recent MariaDB backup (from /home/crayadm/hss_db_backup/).

crayadm@smw> mysql -uhssds -phssds < db_backup.11-17-2014.1120.sql

Manage the System

 88

The backups in /home/crayadm/hss_db_backup/ are from past runs of xtdiscover and xtwarmswap
--add and were taken before the state of the database was updated.

6. Restart the HSS daemons (important!)

crayadm@smw> sudo /usr/bin/systemctl start rsms.service

7. Run xtdiscover to pick up any changes to the system since the backup was taken (or all of the database, if
a backup was not loaded in the previous step).

crayadm@smw> sudo xtdiscover

Regenerate the HSS MariaDB Database from Scratch

About this task
If the HSS MariaDB database becomes corrupt or is missing, and all attempts to repair or restore it have failed,
use this procedure to regenerate the database from scratch. Deleting the contents of /var/lib/mysql removes
everything that stores MariaDB state, including the password (hence the need to re-create it). When MariaDB is
restarted and its directory is empty, /var/lib/mysql will be re-initialized.

Procedure

1. Stop the HSS daemons (by stopping RSMS) and the MariaDB service.

crayadm@smw> sudo /usr/bin/systemctl stop rsms.service
crayadm@smw> sudo /usr/bin/systemctl stop mysql.service

2. Remove the damaged database.

crayadm@smw> sudo mkdir /var/lib/mysql.bad
crayadm@smw> sudo mv /var/lib/mysql/* /var/lib/mysql.bad
crayadm@smw> sudo mv /var/lib/mysql/.??* /var/lib/mysql.bad
The /var/lib/mysql directory is the mount point for a file system from the boot RAID, so it cannot simply
be removed. However, its contents can be removed (moved). The /var/lib/mysql directory will be newly
initialized when the MariaDB service is restarted.

3. Restart MariaDB.

crayadm@smw> sudo /usr/bin/systemctl start mysql.service
The database directory is reinitialized, and the default password is set to the empty string.

4. Reset the MariaDB root password and update the /root/.my.cnf file.

a. Reset the MariaDB root password to its former value.

smw# mysqladmin -uroot password -p
Do one of the following at the prompt:

● To set the root password for fresh installs or after the database has been reinitialized, press Enter to
enter an empty string, the default initial password.

Manage the System

 89

Enter password: <cr>
● To change the root password, enter the existing password.

Enter password: existing_password
At these prompts, enter the new root password, and then enter it again.

New password:
Confirm new password:

b. Ensure that the root password in the /root/.my.cnf file matches the new root password.

smw# vi /root/.my.cnf
[client]
user=root
password=MariaDB-password
If this file does not yet exist, create it and add the lines shown in the example, substituting the new
password for the placeholder MariaDB-password.

Ensure that only root can see or write to this file.

smw# chmod 600 /root/.my.cnf

5. Initialize the HSS database tables and restore user permission tables.

crayadm@smw> hssds_init
crayadm@smw> dbgrant
The system will prompt for a password after each of the above two commands. Give the newly reset MariaDB
root password each time.

6. Restart the HSS daemons (important!).

crayadm@smw> sudo /usr/bin/systemctl start rsms.service

7. Run xtdiscover twice (first with the --bootstrap option) to regenerate the database.

crayadm@smw> sudo xtdiscover --bootstrap
crayadm@smw> sudo xtdiscover

Troubleshoot Temperature Warnings Reported in an End Cabinet

About this task
If the consumer log or xtcheckhss reports temperature warnings in an end-of-row cabinet of a liquid-cooled
system, the current hss.ini file may not have the necessary temperature set point defined, or the set point
value may not be appropriate for the site. Use this procedure to ensure that this temperature set point is defined
and is set to an appropriate value.

Details In a liquid-cooled cabinet with chassis (cages) that are unevenly populated, the exit temperatures in
each cage will be very different. In a normal cabinet, the water valve is controlled by the average
temperature of the hottest temperature strip. By contrast, the water valve in an end-of-row cabinet is

Manage the System

 90

controlled by the average temperature of all temperature strips. This may lead to inadequate cooling
of a populated cage if the other two cages are not populated or have minimal heat load.

To avoid problems arising from inadequate cooling, the exit air temperatures of the end-of-row
cabinet can be independently controlled. This is achieved through an entry in the hss.ini file that
sets the end-of-row cabinet exit temperature lower than that of other cabinets. The default value is
22°C; however this should be adjusted to meet site-specific requirements. If the end cabinet exit air
temperature is not defined in the hss.ini file, the air temperature will default to the setting defined
for the other cabinets in the cooling row.

What to
look for

The consumer log may show entries similar to the example below:

Mon Jul 28 05:59:47 2014 - rs_event_t at 0x7f5bc0000920
ev_id = 0x080040ed (ec_l1_failed)
ev_src = ::c1-0
ev_gen = ::c0-0c0s0n0
ev_flag = 0x00000002 ev_priority = 0 ev_len = 158 ev_seqnum = 0x00000000
ev_stp = 53d5e6d3.0000176d [Mon Jul 28 05:59:47 2014]
svcid 0: ::c1-0 = svid_inst=0x0/svid_type=0x0/svid_node=c1-0[rsn_node=0x0/
rsn_type=0x3/rsn_state=0x6], err code 65914
- Cabinet Controller Temperature Fault
ev_data...
00000000: 01 00 00 00 00 00 00 00 00 00 00 00 0c 06 00 00 *................*
00000010: 04 00 00 00 00 00 00 00 01 00 00 00 7a 01 01 00 *............z...*
00000020: 7a 00 00 00 30 39 34 7c 57 41 52 4e 7c 54 45 4d *z...094|WARN|TEM*
00000030: 50 7c 2f 64 61 74 61 2f 63 6f 6d 70 75 74 65 5f *P|/data/compute_*
00000040: 63 61 62 69 6e 65 74 2f 61 69 72 5f 73 65 6e 73 *cabinet/air_sens*
00000050: 6f 72 73 2f 63 68 32 2f 61 69 72 5f 74 65 6d 70 *ors/ch2/air_temp*
00000060: 32 3a 64 65 67 63 2a 31 30 30 7c 4d 61 78 69 6d *2:degc*100|Maxim*
00000070: 75 6d 20 73 6f 66 74 20 6c 69 6d 69 74 20 65 78 *um soft limit ex*
00000080: 63 65 65 64 65 64 21 7c 44 61 74 61 3d 33 30 30 *ceeded!|Data=300*
00000090: 32 7c 4c 69 6d 69 74 3d 33 30 30 30 2e 00 *2|Limit=3000....*

With xtcheckhss, the problem may look like this:

No Version Mismatches Found!
===
========== Sensor Warnings =================
===
Component Module Sensor HMIN SMIN DATA UNIT SMAX HMAX
--------- ------------ ------------- ---- ---- ---- -------- ---- ----
c2-0 compute_cabinet ambient_temp0 30 50 324 degc*10 300 350
c2-0 compute_cabinet ambient_temp1 30 50 306 degc*10 300 350
c2-0 compute_cabinet ch0_air_temp0 0 1000 3486 degc*100 3000 3500
c2-0 compute_cabinet ch0_air_temp1 0 1000 3355 degc*100 3000 3500
c2-0 compute_cabinet ch0_air_temp2 0 1000 3338 degc*100 3000 3500
c2-0 compute_cabinet ch0_air_temp3 0 1000 3486 degc*100 3000 3500

No SEEP Errors Found!
No ITP Errors Found!
No NTP Time Sync Errors Found!
No Control Errors Found!

Procedure

1. Edit hss.ini.

Open the /opt/tftpboot/ccrd/hss.ini and look for the following entry.

crayadm@smw> vi /opt/tftpboot/ccrd/hss.ini

Manage the System

 91

----------------- END CABINET -----------------
This group is used to define the attributes that are only applied to the end
cabinet
of a row. The attributes defined here will override the same attributes in
group [ccrd]
above. If no attributes are defined in this group the end cabinet will be
configured
using the attributes of group [ccrd].
[endcabinet]
#define the temperature setpoint for the last cabinet in a row
temp_setpoint=22

2. Adjust the value of temp_setpoint as appropriate for the installation site.

To determine an appropriate value, consider the following:

● The inlet water temperature, which should be below the exit air temperature setting.

● The facility room environment.

Recover from SMW R630 Boot Disk Hardware RAIDS Failure
If one of the disks in the SMW R630, which is part of the hardware RAID5, fails, the hot spare will take over and
the data will be rebuilt using the remaining drives. The bad drive should be removed. When a new disk is inserted
into the SMW, the hardware RAID will begin the process of adding it back into the RAID5 set of drives.

This procedure does not apply to the SMW R815 which has software RAID1 for the boot disk.

Recover from SMW R815 Boot Disk Software RAID1 Failure

About this task
If one of the disks in the SMW R815, part of the software RAID1 mirror, fails, corrective action should be taken.

This procedure does not apply to the SMW R630 which has hardware RAID5 for the boot disk.

Procedure

1. Check status of RAID1 filesystems.

a. Confirm that all RAID1 filesystems are fully synced.

smw# cat /proc/mdstat
b. Get detailed information on RAID1 devices. swap is on /dev/md125, /boot is on /dev/md126, and /

is on /dev/md127.

smw# mdadm -D /dev/md125
smw# mdadm -D /dev/md126
smw# mdadm -D /dev/md127

2. Replace the failed disk drive in slot 0 on the SMW.

a. Shutdown CLE if still booted before the next step of shutting down and booting the SMW itself.

crayadm@smw> xtbootsys -s last -a auto.xtshutdown

Manage the System

 92

b. Shutdown SMW.

smw# shutdown -h now
c. Remove the failed disk drive in slot 0 of the SMW so that drive 1 will become the bootable disk.

d. Boot SMW from drive 1. System boots from drive 1, but calls it /dev/sda since it is the first drive found
and there is no drive in slot 0.

e. Remove failed drive from RAID1 configuration.

smw# mdadm --manage /dev/md127 --fail /dev/sda1
smw# mdadm --manage /dev/md127 --remove /dev/sda1
smw# mdadm --manage /dev/md126 --fail /dev/sda3
smw# mdadm --manage /dev/md126 --remove /dev/sda3
smw# mdadm --manage /dev/md125 --fail /dev/sda2
smw# mdadm --manage /dev/md125 --remove /dev/sda2

f. Replace drive 0. The system still runs.

g. Reboot the SMW.

smw# reboot
h. Check RAID1 status.

System boots and immediately will use /dev/md125 (swap) as shown by this command with [UU],
however, md126 and md127 show [_U] indicating a degraded state.

smw# cat /proc/mdstat
mdadm shows active sync for both drives in /dev/md125 (/dev/sda2 and /dev/sdb2).

smw# mdadm -D /dev/md125
mdadm shows removed for drive 0 but active sync for /dev/sdb1 in /dev/md127 and /dev/sdb3
in /dev/md126.

smw# mdadm -D /dev/md126
smw# mdadm -D /dev/md127

i. Partition new drive correctly using sfdisk or fdisk so it matches drive 1.

smw# sfdisk -d /dev/sdb | sfdisk --force /dev/sda
j. Add drive 0 back to RAID1 configuration to reconstruct degraded RAID1.

smw# mdadm -v --manage /dev/md126 --add /dev/sda3
smw# mdadm -v --manage /dev/md127 --add /dev/sda1

k. Check status of RAID1 rebuild with these commands.

smw# mdadm -D /dev/md126
smw# mdadm -D /dev/md127
Checking mdstat will display the percentage of recovery and an estimate of when it will complete for
each device being reconstructed.

smw# cat /proc/mdstat

Manage the System

 93

When all reconstruction is complete, mdstat will display the percentage of recovery and an estimate of
when it will complete for each device being reconstructed.

smw# cat /proc/mdstat

3. Replace the failed disk drive in slot 1 of the SMW. If drive 1 is removed, then the process is similar to drive 0
above, but there are differences.

a. Confirm that all RAID1 filesystems are fully synced.

smw# cat /proc/mdstat
b. Get detailed information on RAID1 devices.

smw# mdadm -D /dev/md125
smw# mdadm -D /dev/md126
smw# mdadm -D /dev/md127

c. Shutdown CLE, if CLE is still booted, before the next step of shutting down and booting the SMW itself.

d. Shutdown SMW.

smw# shutdown -h now
e. Remove the failed disk drive in slot 1 of the SMW so that drive 0 will become the bootable disk.

smw# mdadm --manage /dev/md127 --fail /dev/sdb1
smw# mdadm --manage /dev/md127 --remove /dev/sdb1
smw# mdadm --manage /dev/md126 --fail /dev/sdb3
smw# mdadm --manage /dev/md126 --remove /dev/sdb3
smw# mdadm --manage /dev/md125 --fail /dev/sdb2
smw# mdadm --manage /dev/md125 --remove /dev/sdb2

f. Boot SMW from drive 0.

g. Replace drive 1. The SMW still runs, but in degraded mode for RAID1 devices. One of the other disks
(local to SMW or in boot RAID) will be called /dev/sdb.

h. Reboot SMW so that drive 1 will appear as /dev/sdb.

smw# reboot
i. Check RAID 1 status. System boots and, unlike with disk 0 above, will not immediately use /dev/md125

(swap) as shown by this command with [U_], also, md126 and md127 show [U_] indicating a degraded
state.

smw# cat /proc/mdstat
mdadm shows removed for drive 1 but active sync for /dev/sda1 in /dev/md127 and /dev/sda3
in /dev/md/126 and /dev/sda2 in /dev/md125.

smw# mdadm -D /dev/md125
smw# mdadm -D /dev/md126
smw# mdadm -D /dev/md127

j. Partition new drive correctly using sfdisk or fdisk so it matches drive 1.

smw# sfdisk -d /dev/sda | sfdisk --force /dev/sdb

Manage the System

 94

k. Add Drive 1 back to RAID1 configuration.

smw# mdadm -v --manage /dev/md125 --add /dev/sdb2
smw# mdadm -v --manage /dev/md126 --add /dev/sdb3
smw# mdadm -v --manage /dev/md127 --add /dev/sdb1

l. Check status of RAID1 rebuild with these commands.

smw# mdadm -v --manage /dev/md125 --add /dev/sdb2
smw# mdadm -v --manage /dev/md126 --add /dev/sdb3
smw# mdadm -v --manage /dev/md127 --add /dev/sdb1
Checking mdstat will display the percentage of recovery and an estimate of when it will complete for
each device being reconstructed.

smw# cat /proc/mdstat
When all reconstruction is complete, mdstat should show all drives as [UU].

smw# cat /proc/mdstat

About X.509 Certificates and How to Redistribute Them
Some features of Cray XC systems, such as Cray Advanced Platform Monitoring and Control (CAPMC), use X.
509 certificate authority files (certificates) for access authorization. These certificates are generated and managed
using the xtmake_ca tool. The certificate authority (CA) resides on the SMW and is typically generated during
the SMW software installation process; however, there may be occasion to rebuild the CA from scratch. The
xtmake_ca man page describes how to do this, but it does not provide details about what certificates are used,
where they are used, and how to redistribute them after rebuilding a CA from scratch. This topic fills that gap.

Here is a summary; details follow.

What uses
certs

Certs used Where How redistributed

CAPMC API
service

certificate_authority.crt
certificate_authority.crl
hosts/host.crt
hosts/host.key
client/xtremoted.crt
client/xtremoted.key

SMW reconfigure and restart
CAPMC API service

CAPMC SDB
node service

certificate_authority.crt
host/sdb-p0.crt
host/sdb-p0.key

SDB node update and apply config set

DataWarp
service

certificate_authority.crt
/etc/opt/cray/dws/$dw_node_name.crt
/etc/opt/cray/dws/$dw_node_name.key

DataWarp
service
nodes

update and apply config set

Manage the System

 95

What uses
certs

Certs used Where How redistributed

capmc certificate_authority.crt
client/client.crt
client/client.key

SMW move aside existing capmc
configuration directory and
rerun xtremoted_setup

In the default set of certificates that follows, file paths are specified relative to the certificate authority
directory: /var/opt/cray/certificate_authority.

Certificate Authority
Certificates used to maintain the CA include:

certificate_authority.crt This is the root certificate in which the SMW CA is based. It is used to
validate the authenticity of all other certificates created by the SMW private
CA. It must be distributed to all clients and services that use certificates
generated by the SMW CA.

certificate_authority.key This is the CA private key file, which must be kept private at all times. It must
never be distributed to any system.

certificate_authority.crl This is an optional certificate revocation list. It is a PEM-encoded certificate
containing a list of serial numbers that identify any client access or host
certificates that have been revoked. certificate_authority.crl is
rebuilt each time xtmake_ca buildcrl is invoked.

CAPMC API Service
The CAPMC API service runs on the SMW. It is implemented by nginx, a standard HTTP server that provides
encrypted communications and client authorization, and xtremoted, which handles client requests that have
been authorized by nginx.

Certificates
used

The following certificates are used by the HTTP server (nginx) on the SMW.

certificate_authority.crt nginx uses this certificate to validate that the client access
certificate, presented when a client first connects, was
issued by the SMW CA. If the certificate was not issued by
the local SMW CA, the client is denied access.

certificate_authority.crl If this file exists, the HTTP server checks it for client access
certificates that have been revoked. Any client with a
revoked certificate is denied access.

hosts/host.crt This is the host certificate used by the HTTP server to
enable encrypted communications. It is generated
auotmatically at the time of SMW installation, or when a
system administrator takes an explicit action to regenerate
them using xtmake_ca. The Common Name (CN) field of
the certificate subject line should match the DNS hostname
associated with the SMW. This certificate implements the

Manage the System

 96

X509v3 Subject Alternative Name extension, which uses a
list of DNS attribute values to specify additional host names
that a client should consider valid. The default list of DNS
attribute values includes these two elements:

● the fully qualified domain name (FQDN) of the SMW

● the text string literal "smw"

hosts/host.key This is the private key associated with the SMW host
certificate.

client/xtremoted.crt This is the client access certificate used by xtremoted to
identify itself to remote procedure call handlers. This is
needed because some API calls require xtremoted to
forward a client's request to another server running on the
target partition's system database (SDB) node (see CAPMC
SDB Node Service below).

client/xtremoted.key This is the private key associated with the client access
certificate.

How to
redistribute

If the CA has been rebuilt from scratch, certificate_authority.crl has been rebuilt, or
hosts/host.crt has been modified, reconfigure and restart the CAPMC API service (as root):

smw# xtremoted_setup
This command restarts the CAPMC API service and copies relevant files, with appropriate
permissions, into a directory owned by that xtremoted userid
(/opt/cray/hss/default/etc/xtremoted). This copy is necessary because the userid that
the xtremoted process is running under does not have read access to files located within the
certificate_authority directory.

CAPMC SDB Node Service
The CAPMC SDB node service handles remote procedure call requests issued from the CAPMC API service
running on the SMW. It is implemented by nginx, a front-end HTTP server that performs encryption and client
access authorization, and xtremoted-agent, a remote procedure call handler that handles the specific request.

Certificates
used

The following certificates are used by the HTTP server (nginx) on the SDB node.

certificate_authority.crt nginx running on the SDB node uses this certificate to validate that the client access
certificate, presented when xtremoted issues a remote procedure call request, was
issued by the SMW CA. If the certificate was not issued by the local SMW CA, the request
is denied. In addition, the CN field of the client access certificate subject line must match
the string "xtremoted" for the request to be accepted.

hosts/sdb-p0.crt This is the host certificate for the SDB node and config set p0.

hosts/sdb-p0.key This is the private key associated with the SDB node host certificate and config set p0.

How to
redistribute

If the CA has been rebuilt from scratch, update the config set and apply it.

Manage the System

 97

1. Update the current configuration set (as root):

smw# cfgset update -m auto p0
When the config set is updated, the config set gets the new certificates by means of the xremoted_agent post-
configuration callback script
(/opt/cray/imps_config/system-config/default/configurator/callbacks/post/xtremoted_agent.py),
which updates the certificates from the /var/opt/cray/certificate_authority location to the config set being
updated.

2. Reboot the system. When the node boots, the config set certificate files are copied from the config set to the node using an
Ansible play.

3. After the Ansible play has run, verify that the certificates have been distributed.

smw> ls -la /var/opt/cray/imps/config/sets/p0/files/roles/common/etc/opt/cray/xtremoted-
agent
total 12
drwxr-xr-x 1 root root 90 Dec 7 15:39 .
drwxr-xr-x 1 root root 42 Dec 7 15:39 ..
-rw------- 1 root root 956 Dec 9 11:18 certificate_authority.crt
-rw------- 1 root root 3002 Dec 9 11:18 sdb-p0.crt
-rw------- 1 root root 916 Dec 9 11:18 sdb-p0.key

DataWarp Service Nodes
DataWarp service nodes (and elogin and compute nodes as well) use the SSL certificates only to connect to the
HTTP API. The client certificates are not essential because they can be regenerated. What is essential is that the
CA on the SMW is trusted on the remote nodes.

Certificates
used

The following certificates are used primarily at the login node and any elogin node. Copies of the
cert chain are made so that client compute nodes and service nodes are able to run tools that
interact with the DataWarp API with no problems.

certificate_authority.crt This file is synced with the certificate on the
DataWarp service.

hosts/$dw_node_name.crt This file is synced with the certificate on the
DataWarp service.

hosts/$dw_node_name.key This file is synced with the certificate on the
DataWarp service.

/etc/opt/cray/dws/$dw_node_name.crt This is the certificate on the DataWarp service.

/etc/opt/cray/dws/$dw_node_name.key This is the private key on the DataWarp
service.

How to
redistribute

Certificates are deployed initially by means of the configurator and Ansible plays when the
DataWarp service is set up. The Ansible plays generate the certificates using xtmake_ca and
synchronize the certificate authority to the remote nodes as needed. If the CA has been rebuilt
from scratch, update the config set and apply it.

1. Update the current configuration set (as root):

Manage the System

 98

smw# cfgset update -m auto p0
When the config set is updated, the config set gets the new certificates by means of a post-
configuration callback script, which updates the certificates from
the /var/opt/cray/certificate_authority location to the config set being updated.

2. Reboot the system. When the node boots, the config set certificate files are copied from the
config set to the node using an Ansible play.

Troubleshooting
Problem:

● capmc outputs a hostname mismatch error.

smw:/etc/opt/cray/capmc # capmc node_rules
 Error - Certificate identity does not match the target hostname

Possible Causes:

● The capmc client configuration, (/etc/opt/cray/capmc/capmc.json) os_service_url, setting is
invalid.

When capmc is being executed from the SMW on an internal Cray service node running the Cray Linux
Environment, the os_service_url setting should configured as follows:

https://smw:8443
When capmc is being executed from an external system, the os_service_url setting should include the
fully qualified domain name of the SMW as follows:

https://my-smw.my-domain.com:8443
○ Resolution:

▪ Reconfigure the os_service_url parameter.

● The SMW capmc API server host certificate contains an incorrect list of acceptable DNS names.

Verify the "Subject Alternative Name" DNS name list contains the SMW FQDN and short hosname smw:

smw:/etc/opt/cray/capmc # openssl x509 -text -noout \
 -in /var/opt/cray/certificate_authority/hosts/host.crt | \
 grep -A 1 "Subject Alternative Name"

X509v3 Subject Alternative Name:
 DNS:my-smw.my-domain.com, DNS:smw
○ Resolution:

▪ Regenerate the SMW host server certificate.

Problem:

● capmc outputs a certificate verification error.

smw:/etc/opt/cray/capmc # capmc node_rules
 Error - url(https://smw:8443/capmc/get_node_rules) \
 [SSL: CERTIFICATE_VERIFY_FAILED] certificate verify failed (_ssl.c:581)

Manage the System

 99

Possible Causes:

● The client's copy of the CA certificate is not from the actual certificate authority that generated the SMW
CAPMC API server certificate.

○ Resolution:

▪ Redistribute the certificate_authority.crt file from the SMW to the client system.

● The SMW CAPMC API server was not restarted after regenerating the certificate authority from scratch.

○ Resolution:

▪ Reconfigure the capmc API server by invoking xtremoted_setup.

Problem

● Capmc client connection times out. IP connectivity is non-functional between the capmc client system and the
SMW.

smw:/etc/opt/cray/capmc # capmc node_rules
 Error - url(https://smw:8443/capmc/get_node_rules) \
 [Errno 113] No route to host

Possible Causes:

● capmc client os_service_url is configured incorrectly.

○ Resolution:

▪ For use on internal Cray service nodes, reconfigure the os_service_url to https://smw:8443.

▪ For use on external nodes, reconfigure the os_service_url to be the SMW's fully qualified domain
name and verify that a valid IP connectivity path is established.

● When using capmc from an internal Cray service node, the IP path taken is over the high speed network, to
the boot node, and on the SMW. IP Routing tables may be misconfigured on the SMW, boot node, or internal
service node.

○ Resolution:

▪ Verify the boot node has IP forwarding enabled.

boot-p0:~ # sysctl net.ipv4.ip_forward
 net.ipv4.ip_forward = 1

▪ Verify the boot node firewall has TCP port 8443 open.

boot-p0:~ # iptables -L
 ...

▪ Verify the SMW has a return route on an internal interface to the high speed network via the boot
node.

For example:

smw:/etc/opt/cray/capmc # netstat -rn
 Kernel IP routing table
 Destination Gateway Genmask Iface
 ...
 10.128.0.0 10.3.1.254 255.255.0.0 UG 0 0 0 eth3
 ...

Manage the System

 100

▪ Verify the internal Cray service node has a route to the SMW's internal interface via the boot node.

For example:

svc-node:~ # netstat -rn
 Kernel IP routing table
 Destination Gateway Genmask ...
Iface
 ...
 10.3.1.1 10.128.255.254 255.255.255.255 UGH 0 0 0
ipogif0
 ...

Update X.509 Host Certificate After SMW Hostname Change

About this task
Whenever the SMW hostname changes, the previously generated x509 SMW host certificate host.crt file will
need to be updated. Failure to perform this step will prevent the capmc client from connecting to the SMW, due to
a host name certificate validation error.

Procedure

1. Create a backup copy of the certificate_authority directory.

smw:~# cd /var/opt/cray
smw:~# cp -a certificate_authority certificate_authority.backup

2. Run the host validation.

smw:~# xtmake_ca validate
You will be notified if the host.crt file has a common name that does not match the current hostname.

..
 - CN in SMW host file matches current hostname (my-smw.example.com)
Alternate names: my-smw.example.com, smw - SMW host certificate file
validation succeeded.
..

3. Generate the new certificate.

● If the SMW was only renamed, rebuild the host certificate using the new hostname.

smw:~# xtmake_ca update
● If a specific SMW hostname or list of alternate names must be specified, manually revoke the SMW host

server certificate and recreate it with a list of appropriate hostnames.

smw:~# xtmake_ca revoke \
/var/opt/cray/certificate_authority/hosts/host.crt
smw:~# xtmake_ca CN=my-smw.example.com,my-smw.local,my-smw

NOTE: This does not require remaking or redistributing existing certificates. xtmake_ca will
recreate only missing certificates. In this case, the only missing certificate should be SMW host

Manage the System

 101

certificate which was intentionally revoked. Any services, such as nginx, running on the SMW
which are using the rebuilt host certificate should be restarted.

This step generates a new host certificate with the currently assigned hostname is listed in the CN field, as
well as a list of additional DNS names which capmc should consider valid.

4. Run the host validation again.

smw:~# xtmake_ca validate

5. Reconfigure and restart nginx on the SMW.

smw:~# xtremoted_setup

6. View the contents of the newly generated SMW host server certificate.

smw:~# openssl x509 -noout -text -in
/var/opt/cray/certificate_authority/hosts/host.crt

Manage the System

 102

Manage System Access

Change Account Passwords on the SMW

About this task
The SMW contains its own /etc/passwd and /etc/shadow files that are separate from the files for the rest of
the CLE system.

Procedure

Execute the following commands to change the passwords on the SMW for the following Linux accounts.

smw# passwd root
smw# passwd crayadm
smw# passwd mysql

Change Account Passwords on CLE Nodes

About this task
Use this procedure to change a password for an account that is local to the CLE nodes, such as root and
crayadm.

For LDAP or other authentication services, passwords are changed through those services.

Procedure

1. Update passwords in cray_local_users.

a. Update the CLE config set to change passwords for root
(cray_local_users.settings.users.data.root.crypt) and crayadm
(cray_local_users.settings.users.data.crayadm.crypt).

Full system:

smw# cfgset update -s cray_local_users -l advanced -m interactive p0
Partitioned system (update a config set for each partition):

smw# cfgset update -s cray_local_users -l advanced -m interactive p1
smw# cfgset update -s cray_local_users -l advanced -m interactive p2

2. Validate config set.

Full system:

Manage System Access

 103

smw# cfgset validate p0
Partitioned system:

smw# cfgset validate p1
smw# cfgset validate p2

3. Activate new passwords for local accounts. The password changes can be made immediately on the CLE
nodes or can take effect at the next boot of the nodes.

a. Activate new passwords immediately on nodes. Doing so immediately does not require a reboot of the
node, merely running cray-ansible again.

On the boot node:

boot# /etc/init.d/cray-ansible start
On the SDB node:

sdb# /etc/init.d/cray-ansible start
On all service nodes:

sdb# pcmd -r -n ALL_SERVICE_NOT_ME "/etc/init.d/cray-ansible start"
On all compute nodes:

sdb# pcmd -r -n ALL_COMPUTE "/etc/init.d/cray-ansible start"

4. Activate new passwords by rebooting nodes. Either a full system reboot or warm booting individual nodes will
cause cray-ansible to activate these new passwords on the CLE nodes.

Manage System Access

 104

Configure the System

Cray XC System Configuration
To configure Cray XC systems and manage configuration content, system administrators use the Cray
configuration management framework (CMF). The CMF comprises configuration data, the tools to manage and
distribute that data, and software to apply the configuration data to the running image at boot time. Its major
components include configuration service packages, config sets, the IMPS (Image Management and Provisioning
System) distribution service (IDS), the configurator, and Ansible.

Configuration Starts with Configuration Service Packages
Configuration content (data and software) is installed as configuration service packages on the management node
of Cray XC systems (in /opt/cray/imps_config/<service package>/default/configurator by
default). Each service package delivers configuration content for one or more system services. The contents of
each service package reside in the following subdirectories:

ansible Drop zone for Cray-provided Ansible play content.

callbacks Pre- and post-configuration scripts.

dist Drop zone for other Cray-provided content, such as static files required for the configuration of a
service.

template Configuration templates that define the configuration settings to be set and provide some default
values. These templates are never modified by administrators or other users.

Configuration service packages are installed for system upgrades and updates as well as for initial installation.

Configuration Information is Stored in Config Sets
Administrators use the cfgset command to manage configuration information. It takes configuration content
delivered in service packages and invokes the configurator tool to combine that content with site-specific
configuration content gathered from administrators either interactively or through bulk import. The results are used
by cfgset to create a configuration set or config set. A config set is a central repository that stores all
configuration information necessary to operate the system. Config sets reside on the management node (e.g., the
SMW) in /var/opt/cray/imps/config/sets by default. The contents of each config set reside in the
following subdirectories:

ansible Drop zone for local site-provided Ansible play content to be distributed with the config set. When
the config set is created, cfgset copies Ansible content from service packages to this location.
Whenever the config set is updated, cfgset copies Ansible content from service packages
again, overwriting the previous service-package Ansible content and leaving the site-provided
content unchanged.

changelog YAML change logs from previous sessions with the configurator.

Configure the System

 105

config Configuration templates containing configuration information. When the config set is created, the
configurator copies service package templates to this location. Administrators can modify the
content of these templates using cfgset and the configurator. Whenever the config set is
updated, the configurator merges service package templates with the templates in this location.

dist Drop zone for other site-provided content, such as static files required for the configuration of a
service. When the config set is created, cfgset copies dist content from service packages to this
location. Whenever the config set is updated, cfgset copies dist content from service packages
again, overwriting the previous service-package dist content and leaving the site-provided content
unchanged.

files Files necessary for system configuration that are generated by configuration callback scripts or
manually and distributed with the config set (e.g., /etc/hosts).

worksheets Configuration worksheets generated by the configurator using data stored in the configuration
templates in the config subdirectory of the config set. Administrators copy these worksheets to
a location outside the config set, edit them with site-specific configuration data, and then import
them to create a new config set or update an existing one.

An administrator may create multiple config sets to support partitions or alternate configurations. Typically a config
set of type cle is created for each partition to store partition- and CLE-specific content, and another config set of
type global is created to store management node and global configuration data.

IDS Distributes Config Sets to Nodes
IDS, a read-only network share of content from the management node to the rest of the system, distributes config
sets to every node in the system. All config sets are shared throughout the system, but only one cle config set is
active on a given node at a time (in addition to an active global config set, which is applies to the entire system).
Currently, IDS leverages the 9P network file system and the Linux automounter facility as its distribution
mechanism; however, the content and use of the config sets is independent of the distribution mechanism.

Ansible Plays Apply Configuration during System Boot
Prior to booting the system, each node will have an image, a global config set, and a cle config set. When the
system boots, each node boots an unconfigured software image. Then Ansible plays, which can be located in
both the image and the config set (config set is the preferred location for site-supplied Ansible plays), apply
configuration to that image, bringing up the services pertinent to each node.

Administrators Configure/Reconfigure the System on an Ongoing Basis
Configuration happens at times other than initial installation. New configuration service packages can be installed
during system upgrades and updates, sites can decide to enable a new service or change the configuration of an
existing service, and so forth. In all of these scenarios, an administrator uses the cfgset command to manage
config sets and the cray-ansible script to apply any configuration changes. The cfgset command and its
associated subcommands and options enable administrators to perform a variety of operations on config sets in
addition to create and update, such as search, diff, list, show, validate, push, and remove. See the cfgset man
page for a description of its subcommands and options and some examples of each.

About the Configurator
The configurator plays a major role in Cray XC system configuration. The configurator gathers configuration data
from several sources (including the user, with helpful prompts and default values), merges and validates it, and

Configure the System

 106

stores it in a central location on the management node, where it is used during boot to configure the entire
system. The configurator is invoked by the cfgset command to:

● handle all configuration template and worksheet operations

● perform steps 4, 5, and 6 of the Config Set Create/Update Process, including providing a user interface to
gather and modify configuration data interactively or through the import of configuration worksheets

The configurator is invoked with the cfgset subcommands create (except when the --clone option used) and
update. It is invoked also with the search subcommand, because that involves searching data stored in the
configuration templates, but no changes are made to the config set using search. The options selected for the
create and update subcommands determine the mode in which the configurator is run (with or without user
interaction), which settings can be viewed and set by a user, and whether callback scripts are run before and after
the configurator session. The configurator is not involved when the remaining cfgset subcommands are used:
diff, list, push, remove, show, and validate. See the cfgset man page for a description of its
subcommands and options and some examples of each, or use cfgset SUBCOMMAND -h to see information
about just one of the subcommands.

Choose How to Interact with the Configurator: Modes
The mode option of the cfgset command determines how the configurator interacts with a user. Mode can be
specified only with subcommands create and update.

--mode | -m Possible values: auto (default), interactive, prepare

auto The configurator searches through all available configuration templates in the config set and
automatically presents all configuration settings that meet state and level filtering criteria. It
presents the configuration settings in a certain order (taking into account dependencies among
services) one at a time until all have been presented to the user, and then it automatically ends
the session and saves the config set.

interactive The configurator searches through templates as with auto mode, but in interactive mode, it
presents a menu of all available services (or a menu of all available settings, when a service has
been selected) that meet state and level filtering criteria. This mode enables the user to navigate
through the services and settings to view and modify the settings as needed. The configuration
session ends when the user exits the session. The user chooses whether to save any changes
to the config set upon exit.

prepare The configurator prepares configuration worksheets, one for each service. Each worksheet
contains all configuration settings (unfiltered) for that service, and the worksheet can be edited
offline and then imported later to create or update a config set. In this mode, the configurator
does not open an interactive session with the user.

Choose What to See with the Configurator: Filters
Two cfgset command options act as filters to determine which settings are available to view and set or update.
These options can be specified only with subcommands create, update, and search.

--state | -S Possible values: unset (default), set, all
--level | -l Possible values: required, basic (default), advanced

Configure the System

 107

required Settings that must be set or the system will not function. The config set will not validate if any
required settings are skipped (i.e., left unset). Specify level required in a cfgset command to
filter for required settings only.

basic Settings that are likely to be used by most sites. If a basic setting is left unset, the template-
provided default is used. Specify level basic in a cfgset command to filter for both basic and
required settings.

advanced Settings that are likely to be used only by advanced users to tune a service. If an advanced setting
is left unset, the template-provided default is used. Specify level advanced in a cfgset command
to filter for all settings: advanced, basic, and required.

Create a Config Set
Choosing the best strategy for creating a config set depends on the circumstances ("when to use"):

Strategy When to use Rationale

Create a
Config Set
from
Configuration
Worksheets

when performing fresh installs, major
upgrades, or any time there is a large amount
of configuration data to set up

Worksheets can be generated, filled out offline
with site-specific data by the appropriate staff,
and then imported when needed.

Create a
Config Set by
Cloning

when there is already a config set with site-
specific data and additional config sets are
needed with minor variations (for partitions,
alternate configurations, etc.), or when
manually backing up a config set

Cloning is quick, and it is easy to interactively
update the clone with needed variations.

Create a
Config Set
without
Callbacks

when no hardware is attached to the XC
system, as in some testing scenarios

Pre- and post-configuration callback scripts
may invoke utilities that query hardware in
order to provide additional config set content.

Create a
Config Set
Interactively

when configuring a smaller system with little
configuration data to change

Setting all configuration values one at a time in
response to a series of prompts or when
selected from a menu can be very time-
consuming.

These strategies all use the cfgset command. Use cfgset create -h for information about the create
subcommand. See Config Set Create/Update Process on page 116 for an outline of the process followed by
cfgset each time the create or update subcommand is used.

Note that when the create subcommand is used in any of these strategies (except cloning), it is necessary to
specify the config set type for any type other than the default cle. Most of the following create procedures omit
--type because they are for config sets of type cle.

REMEMBER: Run cfgset as root.

Configure the System

 108

Create Backup Config Sets Automatically
If the auto_clone option in the IMPS configuration file (/etc/opt/cray/imps/imps.json) is enabled,
the cfgset create and cfgset update commands will automatically clone a config set as a backup upon
successful creation/update of the original config set. A failed operation will not create a backup.

The autosave_limit parameter in the IMPS configuration file determines how many clones will be retained.
Config set backups are rotated with the oldest backup removed as a new backup is generated. Config set
backups are saved with names of the
form CONFIGSET-autosave-YYYY-MM-DDTHH:mm:SS, where CONFIGSET is the name of the original config
set.

Create a Config Set from Configuration Worksheets

Prerequisites
This procedure has no prerequisites.

About this task
Use this procedure when performing fresh installs, major upgrades, or any time there is a large amount of
configuration data to set up. To create a config set from configuration worksheets, use this process:

1. Generate the worksheets.

2. Copy the worksheets to a new location on the management node.

3. Edit the worksheets.

4. Import the worksheets.

The detailed steps of this procedure show an example of how to create config set p0 of type cle (default) from
configuration worksheets.

Note that the cfgset command is run as root.

Procedure

1. Generate new worksheets from configuration service packages installed on the system.

smw# cfgset create --mode prepare p0

2. Locate the newly generated worksheets and copy them to a new location.

smw# cfgset show --fields path p0
p0:
 path: /var/opt/cray/imps/config/sets/p0

smw# cp /var/opt/cray/imps/config/sets/p0/worksheets/* /some/edit/location

3. Edit the worksheets to customize them for this site.

The system administrator typically distributes them to site staff members with knowledge about the services
being configured so that they can edit the worksheets and enter appropriate values. Each worksheet is a
YAML file that contains instructions on how to edit it; the basic idea is to locate the settings of interest,
uncomment them, and either retain or change the default setting (if provided).

4. Import the completed worksheets using cfgset update or cfgset create.

Configure the System

 109

Import the completed worksheets by updating the config set created when the worksheets were generated
originally or by creating an entirely new config set. The argument to the --worksheet-path option is a file
glob to allow multiple worksheets to be imported in a single create/update operation. Full paths to single
worksheets can also be used.

● Import to the config set created with --mode prepare in step 1.

smw# cfgset update --worksheet-path '/some/edit/location/*_worksheet.yaml' p0
● Import to a new config set.

smw# cfgset create --worksheet-path '/some/edit/location/*_worksheet.yaml' \
 p0-new

REMEMBER: When using cfgset with the --worksheet-path option to import worksheets,

● Always add single quote marks around the worksheet path.

● Do not add mode, state, level, or service options; the configurator ignores them for worksheet
import.

● The type of the config set must match the type of the worksheets being imported.

Create a Config Set by Cloning

Prerequisites
This procedure assumes that the config set to be cloned (the original) already exists.

About this task
Use this procedure when there is already a config set with site-specific data and additional config sets are needed
with minor variations (for partitions, alternate configurations, etc.), or when manually backing up a config set. This
procedure shows an example of creating config set p0-new by cloning it from existing config set p0. No callback
scripts or configurator sessions occur when cloning a config set. The clone will have the same config set type as
the original.

Note that the cfgset command is run as root.

Procedure

Create a clone using the --clone option.

smw# cfgset create --clone p0 p0-new
The configurator is not invoked when the --clone option is used, so no configurator session occurs, and no
changes are made to the configuration data in the original config set.

Create a Config Set without Callbacks

Prerequisites
This procedure has no prerequisites.

About this task
Pre- and post-configuration callback scripts may invoke utilities that query hardware in order to provide additional
config set content. Use this procedure when no hardware is attached to the XC system, as in some testing
scenarios. This procedure shows an example of creating config set global0 of type global from worksheets

Configure the System

 110

while skipping all callback scripts. The --no-scripts option can also be used when creating a config set
interactively.

Note that the cfgset command is run as root.

Procedure

Create a config set without callbacks.

smw# cfgset create --no-scripts --worksheet-path \
'/some/edit/location/*_worksheet.yaml' --type global global0

CAUTION: Skipping callback script processing invalidates a config set. A config set cannot be
considered validated unless it is updated successfully without the --no-scripts option. Update all
config sets to run the callback scripts before using the config set with the system.

Create a Config Set Interactively

Prerequisites
This procedure has no prerequisites.

About this task
This procedure shows examples of creating config set p0 of type cle interactively. For additional examples, use
cfgset create -h.

Note that the cfgset command is run as root.

Procedure

Invoke the configurator in auto mode (default) or interactive mode.

● Auto mode.

To be presented with all settings with state unset (default) and level basic (default) in all services in
config set p0:

smw# cfgset create p0
To be presented with all settings (any state and any level) in all services in config set p0:

smw# cfgset create --state all --level advanced p0
● Interactive mode.

To display a menu of services in config set p0 that have configuration settings with state unset (default)
and level basic (default):

smw# cfgset create --mode interactive p0
To display a menu of all services (with settings of any state and any level):

smw# cfgset create --mode interactive --state all --level advanced p0

Configure the System

 111

Update a Config Set
Choosing the best strategy for updating a config set depends on the circumstances ("when to use"):

Strategy When to use Rationale

Update a
Config Set
Interactively

when one or more config sets require a few
changes (e.g., cloned config sets that need to
be adjusted for a particular purpose), when a
software update introduces just a few new
fields to configure, or to confirm that all
required and basic settings have been set
(very useful!)

Setting just a few configuration values one at a
time in response to a series of prompts or
when selected from a menu works well when
there are just a few settings that need to be
configured or updated.

Update a
Config Set
from
Configuration
Worksheets

when performing system upgrades and
updates, or any time there is a large amount of
configuration data to change

Worksheets can be generated, filled out offline
with site-specific data by the appropriate staff,
and then imported when needed.

Update a
Config Set
without
Callbacks

when no hardware is attached to the XC
system, as in some testing scenarios

Pre- and post-configuration callback scripts
may invoke utilities that query hardware in
order to provide additional config set content.

Rename a
Config Set

when a config set needs to be renamed as well
as updated, or just renamed

This could become necessary for a variety of
reasons.

Update a
Single Service
in a Config Set

when setting up a new service, or when just
one service requires modification

This can be done either interactively or with
worksheets, so refer to those circumstances
and rationales for the right strategy.

These strategies all use the cfgset command. Use cfgset update -h for information about the update
subcommand. See Config Set Create/Update Process on page 116 for an outline of the process followed by
cfgset each time the create or update subcommand is used.

Update a Config Set Interactively

Prerequisites
This procedure assumes an existing config set needs to be updated.

About this task
Use this procedure when one or more config sets require a few changes (e.g., cloned config sets that need to be
adjusted for a particular purpose), or to confirm that all required and basic settings have been set (very useful!).
To update just one service in a config set, see Update a Single Service in a Config Set on page 115.

cfgset has two modes that initiate an interactive configurator session: auto (default) and interactive. This
procedure shows examples of updating config set p0 of type cle interactively in either mode. For additional
examples, use cfgset update -h.

Note that the cfgset command is run as root.

Configure the System

 112

Procedure

Invoke the configurator in auto mode (default) or interactive mode.

● Interactive mode.

To display a menu of services in config set p0 that have configuration settings with state unset (default)
and level basic (default):

smw# cfgset update --mode interactive p0
To display a menu of services in config set p0 that have configuration settings with level required and
state unset:

smw# cfgset update --mode interactive --level required p0
To display a menu of all services in config set p0, use the broadest state and level filters:

smw# cfgset update --mode interactive --state all --level advanced p0
● Auto mode.

To confirm that all required and basic settings have been set (in which case, the configurator will not
initiate an interactive session) or to be presented with all settings with state unset (default) and level
basic (default) in all services in config set p0:

smw# cfgset update p0
For a discussion of common outcomes of this command, see cfgset Troubleshooting Tips on page 124.

To be presented with all settings in config set p0, use the broadest state and level filters:

smw# cfgset update --state all --level advanced p0

Update a Config Set from Configuration Worksheets

Prerequisites
This procedure assumes an existing config set needs to be updated.

About this task
Use this procedure when performing system upgrades and updates, or any time there is a large amount of
configuration data to change. The configurator overwrites all data in a service with the contents of the worksheets
specified on the command line. If a worksheet with stale data is used to update the config set, data loss may
occur. To ensure that the worksheets used to update the config set are as up-to-date as possible, use this
process:

1. Generate worksheets from the current config set.

2. Copy the worksheets to a new location on the management node.

3. Edit the worksheets.

4. Import the worksheets to the current config set.

The detailed steps of this procedure show an example of how to update config set p0 of type cle (default) from
configuration worksheets. To update just one service in a config set, see Update a Single Service in a Config Set
on page 115.

Configure the System

 113

Note that the cfgset command is run as root.

Procedure

1. Generate new worksheets from configuration service packages installed on the system and config set p0.

smw# cfgset update --mode prepare p0

2. Locate the newly generated worksheets and copy them to a new location on the management node.

smw# cfgset show --fields path p0
p0:
 path: /var/opt/cray/imps/config/sets/p0

smw# cp /var/opt/cray/imps/config/sets/p0/worksheets/* /some/edit/location

3. Edit one or more worksheets to make the needed changes.

To edit the worksheets, open those with settings that need to be changed and make changes, as needed.
Each worksheet is a YAML file that contains instructions on how to edit it.

4. Import the completed worksheets to p0 using cfgset update.

smw# cfgset update --worksheet-path '/some/edit/location/*_worksheet.yaml' p0
The argument to the --worksheet-path option is a file glob to allow multiple worksheets to be imported in
a single create/update operation. Full paths to single worksheets can also be used. The configurator will
replace config set data with imported worksheet data only for services that have matching worksheets
provided on the command line.

REMEMBER: When using cfgset with the --worksheet-path option to import worksheets,

● Always add single quote marks around the worksheet path.

● Do not add mode, state, level, or service options; the configurator ignores them for worksheet
import.

● The type of the config set must match the type of the worksheets being imported.

Update a Config Set without Callbacks

Prerequisites
This procedure assumes an existing config set needs to be updated.

About this task
Pre- and post-configuration callback scripts may invoke utilities that query hardware in order to provide additional
config set content. Use this procedure when no hardware is attached to the XC system, as in some testing
scenarios. This procedure shows an example of updating config set p0 of type cle interactively while skipping all
callback scripts. The --no-scripts option can also be used when updating a config set from worksheets.

Note that the cfgset command is run as root.

Procedure

Update a config set without callbacks.

Configure the System

 114

smw# cfgset update --no-scripts p0
CAUTION: Skipping callback script processing invalidates a config set. A config set cannot be
considered validated unless it is updated successfully without the --no-scripts option. Update all
config sets to run the callback scripts before using the config set with the system.

Rename a Config Set

Prerequisites
This procedure assumes an existing config set.

About this task
Use this procedure when a config set needs to be renamed or updated as well as renamed. The renaming
operation follows the same basic configurator flow as a regular update but renames the config set prior to other
processing. If auto-cloning is enabled, config set backups of the original config set will not be renamed. This
procedure shows an example of renaming config set p0.

Note that the cfgset command is run as root.

Procedure

Rename a config set using the update subcommand with the --rename option.

smw# cfgset update p0 --rename p0.new
Note that the config set being operated on (p0 in this example), does not have to be the last argument on the
command line.

Update a Single Service in a Config Set

Prerequisites
This procedure assumes an existing config set.

About this task
Use this procedure when setting up a new service, or when just one service requires modification. This procedure
provides examples of updating a single service at a time instead of the entire config set, and it can be done either
interactively or using a configuration worksheet.

Procedure

Update a single service in config set p0.

● Update interactively: use the --service option.

IMPORTANT: For a service with configuration template file cray_example_config.yaml and
configuration worksheet cray_example_worksheet.yaml, use only the cray_example
portion on the command-line when specifying a single service.

To display a menu of settings in the cray_example service in config set p0 that are level required and
any state (default for interactive mode when only one service is specified):

Configure the System

 115

smw# cfgset update --service cray_example --mode interactive \
--level required p0
To display a menu of all settings (with settings of any state and any level):

smw# cfgset update --service cray_example --mode interactive \
--level advanced p0
To be presented with all settings (with settings of any state and any level):

smw# cfgset update --service cray_example --state all --level advanced p0
● Update with a worksheet: use the --worksheet-path option.

To update the service using a worksheet, use the --worksheet-path option instead of --service.
Unlike the --service option, with the --worksheet-path option it is necessary to provide the full path
to the worksheet for that service, which includes the _worksheet.yaml portion.. The configurator will
replace only the config set data that corresponds to the data in the worksheet being imported.

smw# cfgset update --worksheet-path \
/path/to/worksheets/cray_example_worksheet.yaml p0

Config Set Create/Update Process
Config sets are created and updated using the cfgset command with the create and update subcommands,
respectively. Invoking cfgset with one of those subcommands initiates the following process, which defines how
configuration content is discovered from service packages installed on the management node and used, along
with site-supplied content, to create or update a config set.

1. cfgset searches for service packages in /opt/cray/imps_config.

2. cfgset copies to the config set (for create) or overwrites in the config set (for update) ansible and dist
content from each service package. Note that it is only content from service packages that is overwritten;
content placed in those directories manually is unchanged.

NOTE: Manual changes to service package content in this directory will be overwritten!

3. cfgset runs pre-configuration callback scripts from each service package. Scripts act on the config set to
create content necessary for system configuration, which they place into the files subdirectory of the config
set.

4. cfgset invokes the configurator to do steps 4 through 6.

Configurator finds configuration templates from each service package that match the config set type, and then
copies them into the config set (for create) or merges them with the templates already in the config set (for
update).

5. Configurator takes one of these actions to further modify config set template data, depending on the
command-line options used:

interacts with
user

Initiates an interactive session with the user and modifies config set template data
based on the values supplied by the user.

Occurs when --mode interactive option used or no mode option used, which
defaults to auto mode.

does not interact
with user

Does not initiate an interactive session and does no further modification to config set
template data beyond the copy/merge of service package data already done in step 4.

Configure the System

 116

Occurs when --mode prepare option used. Note that although this action is
associated with preparing worksheets, all three actions result in worksheets being
written in step 6.

imports
worksheets

Imports configuration worksheets and modifies config set template data based on the
values in each service worksheet.

Occurs when --worksheet-path FILEPATH option used.

6. Configurator writes configuration template data, configuration worksheets, and a changelog to the config set.
Note that the configurator never modifies the configuration templates in service packages, which are found
in /opt/cray/imps_config/SERVICE PACKAGE for each service package.

7. cfgset runs post-configuration callback scripts from each service package.

8. cfgset autosaves the config set to a time-stamped clone.

The following three figures illustrate how this eight-step process is used to create a CLE config set. They differ in
how configuration data in a config set is further modified in step 5, corresponding to the three different actions:
interacting with the user (modification through user interaction), not interacting with the user (no further
modification), and importing worksheets (modification through bulk import of configuration worksheets). Black
lines indicate cfgset actions, and red lines indicate actions taken by the configurator when invoked by cfgset.

This first figure shows how the configurator creates config set templates (in the config subdirectory) from
service package templates in step 4, enables the user to enter new or modify existing configuration data in step 5,
and then saves the new/modified data to the config set templates and worksheets in step 6.

Figure 16. Process to Create a Config Set Interactively

Configure the System

 117

Figure 17. Process to Create a Config Set and Prepare Worksheets

The prepare-mode figure shows how the configurator creates config set templates from service package
templates in step 4, does nothing to that configuration data in step 5, and then saves the data from step 4 to
config set templates and worksheets in step 6. The blue dashed line indicates an action taken by the user after
cfgset has completed the create/update process to prepare worksheets. The user (usually an installer or system
administrator) copies the worksheets prepared by the configurator to a location outside the config set and edits
them (or has other site staff edit them) with site-specific configuration values. It is these edited worksheets that
are used when creating (or updating) a config set from worksheets (shown in worksheets figure).

Configure the System

 118

Figure 18. Process to Create a Config Set from Worksheets

The worksheets figure shows how the configurator creates config set templates from service package templates
in step 4, imports new or modified configuration data from worksheets in step 5, and then saves the new/modified
data to the config set templates and worksheets in step 6.

Tips for Configurator Interactive Sessions
When a user invokes cfgset in auto or interactive mode to create or update a config set, cfgset invokes
the configurator to initiate an interactive session with the user. The configurator provides command help to aid
users in navigating the tool and adding/updating configuration data. These tips supplement that help.

Know the difference between the two "interactive" modes
Interactive mode and auto mode can both result in a configurator interactive session, but their uses and behaviors
are quite different.

auto mode Helpful for verifying that all desired settings have been set.

Auto mode initiates an interactive session when there are one or more settings in the config set
that meet state and level filtering criteria. Those settings are presented one at a time, and when
all have been presented, the configurator exits the session.

interactive
mode

Helpful for seeing the "big picture" and having more control over which services/settings are
presented for configuration.

Configure the System

 119

Interactive mode always initiates an interactive session. It provides two tiers of menus from which
users can select one or more services/settings to drill down and configure just what is needed.
The configurator presents the selected settings one at a time, as in auto mode, but when all
selected settings have been presented, it returns the user to the menu from which the selection
was made.

● Service Configuration List Menu (or Service List Menu) lists the services in the config set

● Service Configuration Menu (or service menu) lists the settings in a particular service

Filter wisely
Level and state filters determine what the configurator displays to users: what is included in the menu of services/
settings for selection in interactive mode, and what setting fields are presented automatically for configuration in
auto mode. The filters can be specified on the command line when invoking cfgset, and they can be changed in
interactive mode. If not specified, they default to level basic and state unset (exception: for interactive mode, if
a single service is specified, the default state is all).

In interactive mode, the configurator populates the Service List Menu with only those services that meet state and
level filtering criteria; both filters can be switched to different values on this menu screen. In the case of a service
menu, the configurator populates it with only those setting fields that meet level filtering criteria (shows all states);
level can be switched on this menu screen, but state cannot. Just for fun, cycle through all levels/states, noting
how level affects which services appear in the list, while state affects the status displayed for each service.

TIP: If the desired service/setting is not visible in an interactive-mode menu, simply switch level.

In auto mode, the configurator presents only those setting fields that meet state and level filtering criteria. There is
no opportunity to switch filter values in auto mode, except by first switching to interactive mode.

TIP: A good way to confirm that all basic settings have been set is to run cfgset update p0 (where p0
is the config set name), which defaults to auto mode, level basic, and state unset. If the configurator
does not present any settings, it means that no basic or required settings are unset.

How to switch states and levels (interactive mode only):

switch
states

Enter s at the configurator prompt to switch from the current state to the next one:
unset→set→all. To see all services/settings with the specified level, enter s until state=all
displays in the menu header.

switch
levels

Enter l (lowercase L) at the configurator prompt to switch from the current level to the next one:
basic→advanced→required. To view all services/settings with the specified state, enter l until
level=advanced displays in the menu header.

To see all possible services/settings, switch to state=all and level=advanced.

Get familiar with menus in interactive mode
The Service List Menu and all service menus have the same three-section layout: a list of services/settings,
actions the user can take, and a prompt.

Configure the System

 120

Figure 19. Sections of Interactive-Mode Menus

list The menu name, config set name, and config set type are shown at the top of the list section. This
section is helpful for seeing which services still have unconfigured settings (status column—see what
changes when state is switched) and for selecting which service(s) to configure or reconfigure.

In a service menu, the list items are configuration settings for that particular service, filtered by level
only (state is set to all and cannot be switched). This list is helpful for seeing the current state and
value of the settings and for selecting which setting(s) to set or change.

actions These three submenus show all commands currently available. Always use an action from the Select
Options submenu before using any from the Actions on Selected submenu. Items in the Other
Actions submenu can be used at any time (with the obvious exceptions of the exit commands Q and x,
because when one of those is used, the configurator exits the interactive session).

Select
Options

Actions that select one or more services/settings from the list. The selected services/
settings are the only ones that can be acted upon. Once selected, an asterisk appears
in the Selected column next to the item and its font color changes.

Actions on
Selected

Actions that can be used on the selected service(s) or setting(s); a selection must be
made first. Shows in parentheses how many items have been selected. A few of these
actions, like toggle whether a service is enabled and toggle whether it inherits setting
values from the global version of its template (applies to only a few services) move to
the Other Actions submenu on service menu screens.

Other
Actions

Actions that can be used on all services/settings or on the current configurator
session. The most commonly used are the filter switches and help (?).

prompt The prompt shows which menu is active and what the default action is. Before a selection is made, the
default action is to save and exit (as shown in previous figure). When a selection is made, the default
action is to configure the selected service(s) or setting(s), and the prompt changes to

MENU_NAME [default: configure – C] $

Configure the System

 121

Note that accepting this default action (or entering C) displays the configuration setting screen for the
first selected setting.

Get familiar with configuration setting screens
A configuration setting screen shows users information about the setting field to be configured (default/current
values, data type, level, current state, etc.) and enables the user to navigate among setting fields, enter/change
field values, and switch to interactive mode. The configuration setting screen is displayed when a user makes a
selection and enters C in interactive mode, or when a setting matches state and level filters in auto mode.
Configuration setting screens have a prompt that is packed with useful information. Consider this example of a
prompt:

cray_lmt.settings.lmt_database.data.database_fstype
[<cr>=set 'ext3', <new value>, ?=help, @=less] $
The first line is the full name of the setting field being presented (this is the same as the corresponding entry in
the configuration worksheet for this service). The part that precedes .settings. is the service name
(cray_lmt, the Lustre Monitoring Tool service, in the example), and the part that follows is the setting field being
presented. In the example, the setting is lmt_database and the field to be set (one of several for that setting) is
database_fstype.

The second line lists available commands. In the example, the default command (selected by pressing Enter or
<cr>) sets the value to ext3, which is the default value provided in the configuration template for that service. If
this setting field had already been configured with the value ext3, the default command would be <cr>=keep
'ext3', (set becomes keep). This list of available commands is not exhaustive: to see all possible options,
enter ? after the prompt, which will insert a context-sensitive menu of commands between the information section
and the prompt.

Switch to interactive mode, as needed
When in a configuration setting screen, whether the user has arrived there by invoking cfgset in auto mode or
by making a selection and entering C in interactive mode, it is possible to switch to interactive mode and display
either the service menu (lists settings for a single service) or the Service List Menu (lists services in the config
set).

switch from
setting screen to
a service menu

To switch to interactive mode and display the service menu, enter ^ at the configurator
prompt. Example:

cray_node_health.enabled
[<cr>=keep 'true', <new value>, ?=help, @=less] $ ^

switch from
setting screen to
Service List Menu

To switch to interactive mode and display the Service List Menu, enter ^^ at the
configurator prompt. This action can be taken only if cfgset was invoked for all services
(as this is the default, this is true unless the --service or -s option was used). Example:

cray_node_health.enabled
[<cr>=keep 'true', <new value>, ?=help, @=less] $ ^^

Configure the System

 122

Switch between menus in interactive mode, as needed
switch from
Service List
Menu to service
menu

When a service has been selected from the Service List Menu in interactive mode, enter v
(view settings) to switch to the selected service's menu instead of taking the default action of
Configure (C). The v action is available if only a single service is selected. If multiple
services are selected, C is the only action available. Example:

Service List Menu [default: configure - C] $ v

switch from
service menu to
Service List
Menu

To switch from a service menu to the Service List Menu, enter ^^ at the configurator prompt.
This action can be taken only if cfgset was invoked for all services (as this is the default,
this is true unless the --service or -s option was used). Example:

Node Health Service Menu [default: save & exit - Q] $ ^^

When in doubt, jump out
It is better to leave a setting field unconfigured than set it to an incorrect value or 'none.' If unsure what the value
should be or whether that setting field is needed, jump out using one of these methods:

● Switch to interactive mode, as needed.

● Skip to the next setting field: enter > at the configurator prompt.

Get help early and often
Enter ? at the configurator prompt at any time to see a list of available commands. In interactive mode, this simply
displays a verbose list of the same commands listed in the menu's three action submenus. However, in a
configuration setting screen, entering ? displays a context-sensitive menu of available commands not displayed
elsewhere. Here is an example of the commands available in the context of configuring a multival setting in a
service (multival settings are configured by adding/changing entries). Use the ? command in configuration setting
screens early and often to learn the available commands.

|--- Command Help
| * ++ - double view limit (currently 2)
| * -- - decrease view limit by half (currently 2)
| * * - view all entries (no limit)
| * + - add entries
| * <#>* - change the <#> entry. Example: '2b*' selects sub-item b in entry 2
to change
| * <#>- - delete the <#> entry. Example: '4-' deletes entry 4
| * d - delete all entries in the list
| * <cr> - accept the current value(s)
| * # - set the value to its default
| * < - go back to the previous setting
| * > - skip and go to the next setting
| * ^ - Go to the 'cray_dvs' service menu (interactive mode)
| * ^^ - Go to the service list menu (interactive mode)
| * Q - write out changes and exit the configurator
| * x - revert all changes and exit the configurator
| * r - refresh the screen
| * @ - toggle more/less info
| * ? - show this help

Configure the System

 123

cfgset Troubleshooting Tips

Unable to Update a Service in a Config Set
The following command to update SERVICE in config set p0 can result in a variety of outcomes, depending on the
level and state of the settings in that service.

smw# cfgset update --service SERVICE p0
Note that for a service with configuration template file cray_example_config.yaml and configuration
worksheet cray_example_worksheet.yaml, use only the cray_example portion on the command-line when
specifying a single service.

● Outcome 1: No configuration settings presented.

INFO - Running pre-configuration scripts
...
INFO - Merging configuration templates and validating schema.
INFO - Configuration worksheets will be saved to /var/opt/cray/imps/config/sets/
p0/worksheets
INFO - Changelog will be written to
 - /var/opt/cray/imps/config/sets/p0/changelog/
changelog_2015-12-02T16:39:25.yaml
INFO - Running post-configuration scripts
...
INFO - ConfigSet 'p0' has been updated.
The command does not specify mode, level, or state, so defaults are used: auto mode, level basic, and
state unset. Therefore, the configurator looks only for required and basic settings that are unset. If it finds
none, no interaction with the user is necessary, so it proceeds directly to saving worksheets and logs, and
then cfgset runs post-configuration activities and exits automatically. If the intention was to confirm that
all required and basic settings have been set, then this is the desired outcome. However, if the intention
was to view all settings and perhaps change a few, use this command instead:

smw# cfgset update --service SERVICE --level advanced --mode interactive p0
● Outcome 2: Some configuration settings presented, but not the ones that need to be changed.

The settings that need to be set/changed are not presented because either they are already set or they are
level advanced. Try this:

1. Enter ^ at the configurator prompt to switch to interactive mode. Now settings of all states are
displayed in the service menu and can be selected and set/changed. If the desired settings are still not
found in the service menu, continue to the next step.

2. Enter l (lowercase L) at the configurator prompt to switch to the next level (cycles through all three levels)
until level=advanced displays in the service menu header. Now settings of all levels and states are
displayed in the service menu and can be selected and set/changed.

● Outcome 3: Some new and unfamiliar configuration settings presented.

If the service package that contains the service being updated has been reinstalled, the associated service
configuration template may have new or revised settings and values. The configurator will find that template
in /opt/cray/imps_config/SERVICE_PACKAGE/default/configurator/template and merge its
contents with configuration data already in the config set. When the configurator presents those new settings

Configure the System

 124

to the user, they may appear unfamiliar. If settings other than the ones presented need to be set/changed, see
Outcome 2.

About Simple Sync
The Cray Simple Sync service (cray_simple_sync) provides a simple, easy-to-use, generic mechanism for
administrators to make configuration changes to their system without resorting to writing a custom Ansible play.
When enabled, the service automatically copies files found in source directories in the config set on the SMW to
one or more target nodes. Simple Sync is a simple tool and not intended as the sole solution for making
configuration changes to the system. Writing custom Ansible plays might provide better maintainability, flexibility
and scalability in the long term.

The Simple Sync service is enabled by default and has no additional configuration options. It can be enabled or
disabled during the initial installation using worksheets or with the cfgset command at any time.

smw# cfgset update --service cray_simple_sync --mode interactive <config_set_name>
For more information, see man cfgset(8).

How Simple Sync Works
When enabled, Simple Sync is executed on all CLE nodes at boot time and whenever the site administrator
executes /etc/init.d/cray-ansible start on a CLE node. When Simple Sync is executed, files placed in
the following directory structure are copied onto nodes that match these criteria:

smw:/var/opt/cray/imps/config/sets/<config_set>/files/simple_sync/

./common/files/ Matches all nodes.

./hardwareid/<hardwareid>/files/ Matches a specific node with that hardware ID, which is the
cname of a CLE node or the output of the hostid command
(e.g., 1eac0b0c) on other nodes. An admin must create both
the <hardwareid> directory and the files directory.

./hostname/<hostname>/files/ Matches a node with the specified hostname. An admin must
create both the <hostname> directory and the files
directory.

./nodegroups/<node_group_name>/files/ Matches all nodes in the specified node group. The
directories for this nodegroups directory are automatically
stubbed out when the config set is updated after node
groups are defined in configured in the cray_node_groups
service.

./platform/[compute, service]/files/ Matches all compute nodes or all service nodes, depending
on whether they are placed in platform/compute/files
or platform/service/files. Each time the config set is
updated, the HSS data store is queried to update which
nodes are service and which are compute.

./README Provides brief guidance on using Simple Sync and a list of
existing node groups in the order in which files will be
copied. This ordering enables an administrator to predict

Configure the System

 125

behavior in cases where a file may be duplicated within the
Simple Sync directory structure.

Simple Sync copies content into place prior to the standard Linux startup (systemd) and before cray-ansible
runs any other services. As a result, Cray services that make small changes to files will operate on the
administrator-provided file. Afterwards, the file will contain both non-conflicting administrator-provided content as
well as the changes made by the Cray service. Because these changes happen prior to Linux startup, the
changes will be in place when the services start up.

Note that there are some config files that are entirely managed by Cray services. Where possible, such files have
a comment at the top indicating that the file is completely under the management of the Cray service. Files that
have been changed by Cray services can be identified by checking the change logs on the running node
in /var/opt/cray/log/ansible. Simple Sync does not provide a mechanism to override changes made by
Cray services. To override changes made by Cray services, refer to the documentation for the specific service.

The ownership and permissions of copied directories and files are preserved when they are copied to / on the
matching target nodes. An administrator can run cray_ansible multiple times, as needed, and only the files that
have changed will be copied to the target nodes.

Because of the way it works, Simple Sync can be used to configure services that have configuration parameters
not currently supported by configuration templates and worksheets. An administrator can create a configuration
file with the necessary settings and values, place it in the Simple Sync directory structure, and it will be distributed
and applied to the specified node(s).

Characteristics of Simple Sync
Simple Sync is: Simple Sync is NOT:

for simple and straightforward use cases a comprehensive system management solution

for copying a moderate number of
moderately sized files

intended to transfer large objects or a large volume of files

an interface to configure Cray "turnkey" services such as ALPS,
Node Health or Lightweight Log Manager (LLM)

Simple Sync was introduced with the CLE 6.0.UP00 / SMW 8.0.UP00 release. For this release, Simple Sync
(Simple Sync v2) has been enhanced to:

● run as early in the Ansible execution sequence as possible (it now runs BEFORE other cray-ansible plays, so
it can be used to make changes to files that Cray updates, like sshd_config)

● run during the Netroot setup sequence so it can be used to change LNet and DVS settings, if needed

● support Node Groups for targeting which system nodes to copy files to (the Node Groups feature is not yet
complete, but it can be used with Simple Sync—see About Node Groups on page 130)

Simple Sync v2 still does not support:

● removing files

● appending to files

● changing file ownership and permissions (the permissions of the file in the config set are mirrored on-node)

● backing up files

Configure the System

 126

● overriding Cray-set values (it cannot be used to change files that Cray completely overwrites, such as
alps.conf, or change values in files that Cray modifies such as PermitRootLogin in /etc/ssh/sshd_config)

Note that the original Simple Sync root directory was different: smw:/var/opt/cray/imps/config/sets/
<config_set>/files/roles/simple_sync. This means that users of the original Simple Sync need to
migrate their files from the old location to the new. For help with that, see Migrate Content from Simple Sync to
Simple Sync v2.

Using Simple Sync with eLogin
Sites that want to use Simple Sync on eLogin nodes should note the following issues:

● eLogin uses the original Simple Sync in CLE 6.0UP01, not Simple Sync v2. This means content destined for
the eLogin nodes must be placed in the old Simple Sync directory structure.

● Simple Sync v1 runs late in the sequence, overwriting content put into place by Cray services.

● Simple Sync v1 does not support node groups.

Cautions about the Use of Simple Sync
● Simple Sync copies files from the config set, which in the case of nodes without a persistent root file-system is

cached in a compressed form, locally, in memory. As a result, each file stored in the config set uses some
memory on the node. Therefore, using Simple Sync to copy binary files or large numbers of files is
inadvisable.

● Be aware of differences in node environments when using Simple Sync. For example, systems configured
with direct-attached Lustre (DAL) have nodes running CentOS instead of SLES. Administrators would have to
be very careful to avoid putting an inappropriate configuration file into place when using the Simple Sync
platform/service target in such a situation.

● Storage and distribution of verbatim config files through Simple Sync creates the potential for unintentional
impact to the system when config files evolve due to software changes. Making minimal necessary changes
through a site-local Ansible playbook provides more flexibility and minimizes the potential for unintended
consequences.

Use Cases

Copy a non-conflicting file to all nodes

1. Place etc/myfile under ./common/files/ in the Simple Sync directory structure.

2. Simple Sync copies it to /etc/myfile on all nodes.

Copy a non-conflicting file to a service node

1. Place etc/servicefile under ./platform/service/files/ in the Simple Sync
directory structure.

2. Simple Sync copies it to /etc/servicefile on all service nodes.

Configure the System

 127

Copy a non-conflicting file to a compute node

1. Place etc/computefile under ./platform/compute/files/ in the Simple Sync
directory structure.

2. Simple Sync copies it to /etc/computefile on all compute nodes.

Copy a non-conflicting file to a specific node

1. Place etc/mynode under ./hostname/c0-0c0s0n0/files/ in the Simple Sync directory
structure.

2. Simple Sync copies it to /etc/mynode on c0-0c0s0n0.

Copy a non-conflicting file to a user-defined collection of nodes

1. Create a node group called "my_nodes" containing a list of nodes.

2. Update the config set.

smw# cfgset update p0
3. Place etc/mynodes under ./nodegroups/my_nodes/files/ in the Simple Sync

directory structure.

4. Simple Sync copies it to /etc/mynodes on all nodes listed in node group my_nodes.

Copy to a node a file that has Cray-maintained content

1. Place a version of sshd_config with the value “PermitEmptyPasswords yes”
under ./nodegroups/login/files/etc/ssh/ in the Simple Sync directory structure.

2. The booted system will contain both:

● “PermitEmptyPasswords yes” (from the file copied by Simple Sync)

● “PasswordAuthentication yes” (from modification of file by Cray)

Copy to a node a file that is exclusively maintained by Cray

Files exclusively maintained by Cray such as alps.conf cannot be updated using Simple Sync.
Please refer to the owning service (such as ALPS) for information on how to update the contents.

Copy to a node a file that resides on a file system that will be mounted during Linux boot

No special operational changes are necessary. However, Simple Sync will put the file in place
early in the boot sequence, and then it will be over-mounted by the file system. Because Simple
Sync runs again later, it will copy the file into the mounted file system. Due to the ordering of
operations, the file will not be present between the time the file system was mounted until the late
execution of Ansible.

Configure the System

 128

On Netroot login nodes, modify an LNet modprobe parameter

1. Generate a file zz_lnet.conf containing options lnet router_ping_timeout=100.

2. Place zz_lnet.conf under ./nodegroups/login/files/etc/modprobe.d/ in the
Simple Sync directory structure.

3. The lnet router_ping_timeout value will be 100.

Note that normally Simple Sync does not allow the user to override Cray values, but this
procedure takes advantage of the standard Linux mechanism to override Kernel module options.

Copy a file with an incompatible content to a node file that has Cray-maintained content

While Simple Sync allows an administrator to make changes to the same configuration files as
modified by Cray, be very careful to avoid introducing syntax errors or incompatible values that
may cause the system to fail to operate correctly.

Configure Files for Cray Simple Sync Service

About this task
Cray Simple Sync provides a generic mechanism to automatically distribute files to targeted locations on the
system. When enabled, the Simple Sync service is executed on all CLE nodes at boot time and whenever the
administrator executes /etc/init.d/cray-ansible start on a CLE node. When Simple Sync is executed,
files placed in the following directory structure are copied to the root file system (/) on the target nodes. Create
whatever directory structure is needed to place the target file(s) in the proper location.

The root directory for Simple Sync v2 is as follows:
smw:/var/opt/cray/imps/config/sets/<config_set>/files/simple_sync/

./common/files/ # copies to all nodes

./platform/[compute, service]/files/ # copies to all compute or service nodes

./hardwareid/<hardwareid>/files/ # copies to nodes with matching hardware id

./hostname/<hostname>/files/ # copies to nodes with matching hostname

./nodegroups/<node_group_name>/files/ # copies to members of <node_group_name>

./README

Any directory structure and files below ./files/ in the Simple Sync directory structure on the SMW is replicated
on the target node starting at /. For example,
smw:/var/opt/cray/imps/config/sets/<config_set>/files/simple_sync/common/files/etc/myapplication.conf
will be placed on all nodes as /etc/myapplication.conf.

The ownership and permissions of files in the config set is preserved in the copies made to nodes. For more
information and use cases, see About Simple Sync on page 125.

Configure the System

 129

About the Node Image Mapping Service (NIMS)
The Node Image Mapping Service (NIMS) maps a node to boot attributes, which are used when the node is
booted.

The primary NIMS component is the daemon, nimsd. Interact with nimsd either by sending a Hardware
Supervisory System (HSS) event or by using the NIMS command line interface (CLI). The HSS Boot Manager
daemon communicates with nimsd via HSS events. All other interactions with nimsd take place through the CLI.

The nimsd daemon provides these boot attributes to Boot Manager upon request. Boot Manager uses the boot
attributes when it boots or reboots nodes. Boot Manager also provides the boot attributes to the xtcli command.

Two conceptual components, nodes and maps, are affected by nimsd. A node represents a physical, bootable
node on the mainframe. A map is a collection of nodes, typically all the nodes in a partition, or for a non-
partitioned system, all the nodes in the entire mainframe.

There can be multiple NIMS maps. However, only one map can be active at a time. The reason to have multiple
maps is to differentiate the boot attributes. For example, one map may be a test map to allow booting nodes with
a test boot image or a test Config Set.

About Node Groups
The Cray Node Groups service (cray_node_groups) enables administrators to define and manage logical
groupings of system nodes. Nodes can be grouped arbitrarily, though typically they are grouped by software
functionality or hardware characteristics, such as login, compute, service, DVS servers, and RSIP servers.

Sites are encouraged to define their own node groups and specify their members. Administrators can define and
manage node groups using any of these methods:

● Edit and upload the node groups configuration worksheet (cray_node_groups_worksheet.yaml).

● Use the cfgset command to view and modify node groups interactively with the configurator.

● Edit the node groups configuration template (cray_node_groups_config.yaml) directly.

After using any of these methods, remember to validate the config set.

Characteristics of Node Groups
● Node group membership is not exclusive, that is, a node may be a member of more than one node group.

● Node group membership is specified as a list of cnames. However, if the SMW is part of a node group, it is
specified with the output of the hostid command.

● All compute nodes and/or all service nodes can be added as node group members by including the keywords
“platform:compute” and/or “platform:service” in a node group.

● The Configuration Management Framework (CMF) exposes node group membership of the current node
through the local system "facts" provided by the Ansible runtime environment. This means that each node
knows what node groups it belongs to, and that knowledge can be used in Cray and site-local Ansible
playbooks.

Configure the System

 130

Admin Use Cases
The use cases that follow have been gathered from Cray developers and system administrators and some
customer sites to provide examples of tasks that are done differently within the new Cray system management
model. For XC-40 systems with release CLE 6.0 and later, Cray uses Ansible to orchestrate the boot sequence
and configuration. Configuration content is centralized in a config set located on the SMW. Within a config set,
Cray provides a drop zone for customers to place Ansible plays and other content referenced by those plays. All
content within the config set is accessible by every CLE node on the system, which is how configuration
information is distributed throughout the system.

The example Ansible plays included in many of these use cases contain the following three elements:

hosts Specifies where the play will run. In Cray systems, this is typically set to localhost, because unlike
many configuration management tools that push information out to nodes from a centralized location,
Ansible (as used by Cray in this release) pulls information to the local node and runs all plays there.

vars Defines variables scoped to the play and all other plays that come after it. Ansible provides access to
facts about the system—network interfaces, disks, operating system version, and so forth—for use
within each Ansible play ("built-in" facts). In addition, Cray provides access to facts that are Cray-
specific, such as nid name, cname, node type (smw, sdb, boot, etc.), for use within each Ansible play.
The facts are all accessible without having to define these variables; however it is good practice to
define variables using the provided facts because they can be assigned shorter names and can be set
to useful boolean values.

To view all available built-in facts, run this command on the node where the Ansible plays will run:

smw# ansible <hostname> -m setup
To view Cray-supplied facts, run this Python script:

smw# /etc/ansible/facts.d/cray_system.fact

tasks Each Ansible play task is like a line in a Bash script. Each task must have a name, a directive or
module, and a conditional (a when clause), which indicates the conditions under which the play should
execute that task on the node. See the Module Index in the Ansible Documentation website for a
description of all Ansible modules and their arguments. Look for modules for Ansible 1.9.2 and earlier
versions.

There are many ways to accomplish the same thing in the new system management model. For example, in
some of the use cases that follow, a site could choose to keep using a favorite script within the Ansible
framework, convert it to an Ansible play, or use it outside of the framework.

Use Case: boot.last Script

About this task
Many Cray customer sites used to run a boot.last script, or something like it, to start up and manage additional
services, configurations, and settings, such as tuning Lustre, starting a secondary sshd for a customer network,
starting a workload manager, or setting up service nodes to talk to other service nodes using ssh. It would run
last on each service node as it booted. Its value lay partly in enabling sites to specialize nodes and/or classes in a
scalable way.

This procedure shows two ways to accomplish the same thing using Ansible.

Configure the System

 131

http://docs.ansible.com./ansible/index.html

Procedure

1. Choose how to accomplish the purpose of the original boot.last script.

● Option 1: Write an Ansible play that uses Ansible modules (directives, a bit like function calls) to do
individual steps equivalent to the lines in the boot.last script.

● Option 2: Write an Ansible play that simply uses the shell directive (an Ansible module) to run the
original boot.last script.

● Option 3: Run the boot.last script outside the Ansible framework, after the system nodes have finished
booting.

Options 1 and 2 would be executed when cray-ansible, which is a wrapper around Ansible, gathers all Ansible
plays into a master playbook and then runs that playbook. Option 3 would occur after the system has booted.
Because Option 3 does not use the Ansible framework, it is not described further in this procedure.

2. Write the Ansible play.

In the example code below, the variable run_after is a Cray-provided way to specify the order in which a
play is executed; it is set to a list of Ansible plays that this play should follow. In this example, it is set to
simple_sync, a play that runs at the end of the boot cycle, which is when the boot.last play should run.

The first task in this example corresponds to Option 1. In the example, the task is to start a service named
awesomed. There could be many other tasks that a site would want to include in a boot.last play. The
second task in this example corresponds to Option 2.

 - hosts: localhost
 vars: # Cray-provided node “facts” + config set data
 nid: ansible_local.cray_system.nid
 is_nid7: ansible_local.cray_system.nid == "7"
 is_login: ansible_local.cray_system.hostid in
cray_login.settings.login_nodes.data.members
 is_sdb: “sdb” in ansible_local.cray_system.roles
 in_init: ansible_local.cray_system.in_init
 is_svc: ansible_local.cray_system.platform == "service“

 run_after: # e.g., call out a runtime dependency, a Cray-ism
 - simple_sync

 tasks:
 # Option 1: Use Ansible modules to do individual steps (e.g., start a
service)
 - name: start awesomed service on nid0007, sdb, login nodes
 service: name=awesomed state=started args="-f /path/to/
awesome_config.conf"
 when:
 (is_nid7 or is_login or is_sdb) and not in_init

 # Option 2: Just do everything in my script
 - name: run my script on all service nodes
 shell: /etc/opt/cray/config/current/dist/site_script.sh >> somelog.txt
 when:
 is_svc and not in_init

3. Drop the Ansible play and any supporting content into the config set.

Configure the System

 132

/var/opt/cray/imps/config/sets/p0/ansible/ Location in config set p0 for site Ansible plays,
like this new boot.last.yaml.

/var/opt/cray/imps/config/sets/p0/dist/ Location in config set p0 for content that supports
or is used by site Ansible plays. If using Option 2,
drop the boot.last script here.

4. Run the new Ansible play manually to test it.

smw# /etc/init.d/cray-ansible boot.last.yaml

This Ansible play will be distributed to all nodes. When the system boots, this play will run on all nodes, and the
conditional (when) clauses will determine whether a particular task will execute on any given node. This play will
run after the simple_sync play, and both of the tasks will execute only during the second phase of running
Ansible plays, which occurs after Linux finishes booting. The first phase, init, occurs prior to Linux booting.

Use Case: Change a File on a Compute Node

About this task
System administrators sometimes need to change files such as modprobe.conf, fstab, and nodehealth.conf on
compute nodes. For example, to tune DataWarp or Lustre, the modprobe.conf file might need to be changed.
Cray provides configuration templates and Ansible plays for most Cray services (e.g., cray_net, cray_rsip,
cray_node_health, and cray_dvs), which generate or change such files automatically as part of the boot
process or after reconfiguring a service. If no Cray-provided play exists to make the needed changes or an
existing play does not cover a needed use case, administrators can change these files directly.

This procedure shows three approaches to changing a file on a compute node. Cray recommends the third
approach, which is also applicable to changing files on any node, not just compute nodes.

Procedure

1. Choose an approach:

● Option 1: After building an image, chroot into the node and put the file there (or merge it with an existing
file).

● Option 2: Use the Cray-provided Simple Sync service.

● Option 3: (recommended) Write an Ansible play that changes the file directly or runs a script to change
the file.

Option Pros Cons

Option 1
(chroot)

● works well for static files

● easy to do: just copy/edit a file

● done on the SMW

a maintenance headache:

● if done manually, would need to be done
for lots of compute images after each
image rebuild

● if done using Extended Image Recipes,
would need to clone and customize the
base Cray image recipe with the desired
extensions, and repeat that every time a
new Cray image recipe became available

Configure the System

 133

Option Pros Cons

Option 2
(Simple
Sync)

● easy to do: just put a file in a directory and
turn on the Simple Sync service

● done on the SMW

● can specialize targets to a limited set of
targets: by class, cname, or hostname
(hostnames used for non-Cray platforms
that do not have cnames)

● works best for providing access during run
time to small admin tools (e.g., a widget or
script like the shell alps script workaround)
and third-party software

● Simple Sync writes the file to the desired
place without regard for what may already
be there, so without knowledge of what
else touches the file (e.g., other Ansible
plays), admins risk killing the node

● does not scale well

● not reusable on a different system

Option 3
(Ansible)

● done on SMW in config set

● can specialize the target nodes further than
possible with Simple Sync: any grouping of
nodes

● can choose when the Ansible play is run
during the boot sequence

● can edit or replace a file programmatically,
careful to not clobber something that needs
to be there

● once a play is set up and tested, easy to
maintain

● easily scales to large systems

● if play written at a high enough level of
abstraction, can reuse for different systems
(just change the target node list)

● requires some knowledge of the boot
process (ordering, timing)

● more work up front to set up a play

● plays/scripts must be tested

The remaining steps provide instructions for Option 3 only.

2. Write the Ansible play.

The first task in this example corresponds to using the Ansible module lineinfile to change a file directly
(Option 3a). The second task in this example corresponds to using the Ansible module shell to run a script
to change a file (Option 3b).

 - hosts: localhost
 vars: # Cray-provided node “facts” + config set data
 in_init: ansible_local.cray_system.in_init

 tasks:
 # Option 3a: Use Ansible modules to do individual steps (e.g., add a
line to a file)
 - name: add mount to fstab
 lineinfile:
 dest=/etc/fstab
 regexp="^172.30.79.66:/home/users"

Configure the System

 134

 line="172.30.79.66:/home/users /home/users nfs nfsvers=3,noacl 0 0"
 backup=yes
 when: in_init

 # Option 3b: Just do everything in my script
 - name: run my script on all service nodes
 shell: /etc/opt/cray/config/current/dist/site_script.sh >> somelog.txt
 when: in_init

3. Drop the Ansible play and any supporting content into the config set.

/var/opt/cray/imps/config/sets/p0/ansible/ Location in config set p0 for site Ansible plays,
like this new change_file.yaml.

/var/opt/cray/imps/config/sets/p0/dist/ Location in config set p0 for content that supports
or is used by site Ansible plays. If using Option
3b, drop the script here.

4. Run the new Ansible play manually to test it.

smw# /etc/init.d/cray-ansible change_file.yaml

This Ansible play will be distributed to all nodes. When the system boots, this play will run on all nodes, and the
conditional (when) clauses will determine whether a particular task will execute on any given node.

Use Case: Install Third-Party Software

About this task
Any software that is created independent from Cray and that is not delivered with a Cray system is third-party
software that administrators install as add-ons to the Cray system. The information in this section does not pertain
to software installed on an external file system that is connected to a Cray system. There are several ways to
install third-party software:

● Add a third-party software package to an image recipe.

● Use the chroot command to install the software to an existing image.

● Use the zypper to install software on a node.

Installing software via an image recipe is the best method to use because the update to the image is persisted in
the recipe and each time a node boots from the image, the third-party software is available. Using chroot or
zypper to install software is usually less desirable because the installations are not persisted. However, using
chroot or zypper can be useful when persistence is not important, such as during testing of third-party
software. Installations using zypper are lost the next time the node is booted. Installations using chroot are lost
when a node image is rebuilt from a recipe.

To include third-party software in an image recipe:

Procedure

1. Find the image recipe to update with third-party software.

smw:~# recipe list

Configure the System

 135

The console displays a list of the available recipes.

2. Clone the recipe that needs updating. Create, for example, the my_recipe recipe.

smw:~#recipe create -clone original_recipe my_recipe

3. Add the RPM package of the third-party software, my_package, to the recipe using the update subcommand
and the -p option.

smw:~# recipe update my_recipe -p my_package

4. Build the new image, my_image, for example.

smw:~# image create -r my_recipe my_image

5. Export the new image.

smw:~#image export my_image

6. Use the cnode to change the node to use the new image.

smw:~#cnode update --set-image /path/to/my_image.cpio for --node cname

7. Reboot the node to use the new image.

Use Case: Start a Service on Specific Nodes at Boot Time
Using an Ansible play is the best way to start a service on specified. In this use case, the objective is to start
cron at boot time on login nodes only.

- name: only run cron on login nodes
 hosts: localhost

 tasks:
 - name: control cron
 service:
 name: cron
 state: stopped
 when:
 ansible_local.cray_system.hostid not in
cray_login.settings.login_nodes.data.members
 and not ansible_local.cray_system.in_init

Specify the service to be started (cron). Specify what to do to the service (stop, start, or restart). Provide a
conditional state to specify the nodes where the action is to be taken. Service is Ansible module. More information
about the service module is at: http://docs.ansible.com/ansible/service_module.html

Provide a conditional statement to specify the nodes where the action is to be taken. The cron service starts on
all nodes, so the play causes cron to boot in a stopped state on all nodes except the login nodes. So if the node
that the play is running on is not a login node, the cron is stopped. The
cray_login.settings.login_nodes.data.members string refers to the listed login nodes in
the /var/opt/cray/imps/config/sets/p0/config/cray_login_config.yaml file. The

Configure the System

 136

http://docs.ansible.com/ansible/service_module.html

ansible_local.cray_system.hostid string is a Cray-provided Ansible fact that is used to specify the local
node. To view Cray-supplied facts, run this Python script: /etc/ansible/facts.d/cray_system.fact.

A second condition indicates when to run the play. Ansible is run twice during boot: either in init before Linux
starts or after Linux starts. These runs are called early Ansible and late Ansible. When running plays that control
processes, it is usually best to avoid running plays in init. To accomplish that, use not
ansible_local.cray_system.in_init, which is a Cray-supplied fact.

Use Case: Changing root and crayadm Passwords

About this task
Cray system passwords are initially set during system installation by either editing the
cray_local_users_config.yaml directly or by using the Configurator in interactive mode. The procedure in
this section is to make password changes by editing the yaml file directly. All system user passwords can be
changed using the method in this section, not just the root and crayadm passwords.

Procedure

1. Generate an encrypted password using the mkpasswd command or an equivalent command. Users will likely
do this step themselves and provide the encrypted output to the administrator.

smw:~# mkpasswd --method=sha-512

2. Edit the /var/opt/cray/imps/config/sets/p0/config/cray_local_users_config.yaml file.
Locate the users section of the file. The example code that follows shows the crayadm user.

users:
 data:
 - key: crayadm
 uid: '12795'
 group: crayadm
 crypt: 6[...]y2/
 other_groups: []
 description: default cray administrative user
 shell: /bin/bash
 home: /home/crayadm
 system: true
 deleted: false
 domains:
 - compute
 - login
 - admin
 passwordless_ssh: false

3. Paste the encrypted new password in the crypt field. The length of the encrypted password in the preceding
example is shortened.

4. Run Ansible or reboot the system to propagate passwords.

Configure the System

 137

InfiniBand and OpenFabrics Interconnect Drivers
InfiniBand (IB) and OpenFabrics remote direct memory access (RDMA) is supported on service nodes for Cray
systems running the Cray Linux Environment (CLE) operating system.

No separate installation is required. The kernel-space libraries and drivers are built against Cray's kernel.
OpenFabrics Enterprise Distribution (OFED™) and InfiniBand RPMs are included in the CLE release and installed
by default. However, OFED will not run on the Cray system until the I/O nodes are configured to use IB.

To configure IB and OFED, see the procedures provided in this chapter; to configure IB and OFED during
installation or upgrade of the CLE software, see XC™ Series Software Initial Installation and Configuration Guide.

Cray supports InfiniBand as an I/O interconnect. IB enables efficient zero-copy, low-latency RDMA transfers
between network peers. As a result, IB gives Cray systems the most efficient transfer mechanism from the high
speed network (HSN) to external I/O devices.

CLE includes a subset of the OpenFabrics Enterprise Distribution (OFED) to support the use of InfiniBand on
Cray I/O nodes. OFED is the software stack on the host that coordinates user-space and kernel-space access to
the IB hardware. IB support is restricted to I/O service nodes that are equipped with PCI Express (PCIe) cards for
network connectivity.

IB can be used on Lustre router nodes as a network interconnect between the Cray system and external Lustre
servers.

The OFED software stack consists of many different components. These components can be categorized as
kernel modules (drivers) and user/system libraries and utilities, commands and daemons for InfiniBand
administration, configuration, and diagnostics; Cray maintains the kernel modules so that they are compatible with
CLE.

Figure 20. The OFED Stack (source: OpenFabrics Alliance)

InfiniBand

iWARP

Key Apps &
Access
Methods
for using
OF Stack

Common
Hardware Specific

Driver

UDAPL

SDP
Library

Hardware
Specific Driver

Hardware Specific
Driver

Connection
ManagerMAD

InfiniBand Verbs / API

SA
Client

Connection
Manager

Connection Manager
Abstraction (CMA)

User Level
Verbs / API

SDPIPoIB SRP iSER RDS

User Level
MAD API

Open
SM

Diag
Tools

Cluster

SMA

R-NIC Driver API

Clustered
DB Access

(Oracle
10g RAC)

Sockets
Based
Access

(IBM DB2)

Various
MPIs

Block
Storage
Access

NFS-RDMA
RPC

InfiniBand HCAInfiniBand HCA iiWWARP ARP RR-NIC-NIC

File Sys

IP Based

Access
App File

Access to

Systems

Kernel Space

Subnet
Administrator

Management
Datagram

Subnet Manager
Agent

Performance
Mananger Agent

IP over InfiniBand

Sockets Direct
Protocol

SCSI RDMA
Protocol (Initiator)

ISCSI RDMA
Protocol (Initiator)

Reliable Datagram
Service

User Direct Access
Programming Lib

Host Channel
Adapter

RDMA NIC

SA

MAD

SMA

PMA

IPo IB

SDP

SRP

ISER

RDS

UDAPL

HCA

R-NIC

User
APIs

Upper
Layer
Protocol

Mid-Layer

Provider

Hardware

Application
Level

InfiniBand Uses
InfiniBand is a payload-agnostic transport. It can move small messages or large blocks efficiently between
network endpoints. The following examples demonstrate how Cray uses InfiniBand and the OFED stack to
support block I/O, file I/O, and standard network inter-process communication.

Configure the System

 138

Storage Area Networking
InfiniBand can transport block I/O requests to external storage targets. ANSI T10's SCSI RDMA Protocol (SRP) is
currently the only SCSI-transporting protocol supported on Cray systems with InfiniBand. Cray System Connected
to Storage Using SRP on page 139 shows SRP on InfiniBand connecting the Cray to an external RAID array. The
OFED stack is shown in the storage array for clarity; it is provided by the site-specific third party storage vendor.

Figure 21. Cray System Connected to Storage Using SRP

RAID StorageCompute Node

User Application

VFS

Lustre Client Lustre Server ldiskfs
Block I/O

SRP
OFED RDMA

IB Driver

IB HCA

I/O Node

Cray HSN

IB Driver

SRP
RAID

OFED RDMA
IB Driver

IB HCA

Linux Lustre Cray OFED Vendor

InfiniBand

Cray XE System

gni LNDgni LND

Gemini DriverGemini Driver

Gemini ASIC Gemini ASIC

Lustre Routing
Cray uses InfiniBand on the service nodes to connect Cray compute nodes to Lustre File System by Cray (CLFS)
servers, as shown in Cray Service Node Acting as an InfiniBand Lustre Router on page 139. In this configuration,
the Cray service node is no longer a Lustre server. Instead, it runs a Lustre router provided by the LNet layer. The
router moves LNet messages between the Cray HSN and the external IB network, which transports file-level I/O
requests between the clients on the Cray HSN and the servers over the IB fabric. Please speak with a Cray
service representative regarding an CLFS solution.

Figure 22. Cray Service Node Acting as an InfiniBand Lustre Router

External Lustre ServerCompute Node

User Application

VFS

Lustre Client

IB HCA IB HCA

I/O Node

Cray HSN

Linux Lustre Cray OFED

InfiniBand

Lustre Server

HBA

OFED RDMA
IB Driver

Lustre Router
o2ib LND Block I/O

HBA DriverIB Driver

o2ib LND
ldiskfs

SAN

Cray XE System

gni LND gni LND

Gemini DriverGemini Driver

Gemini ASIC Gemini ASIC IB HCA

OFED RDMA

IP Connectivity
InfiniBand can also carry socket-based inter-process traffic typical of commodity clusters and TCP/IP networking.
InfiniBand supports the IP over IB (IPoIB) protocol. Since IB plugs-in below the socket interface, neither the
application nor the service needs to be recompiled to communicate over an InfiniBand network. Both protocols
are diagrammed on a service node in Cray Service Node in IP over IB Configuration on page 140.

Configure the System

 139

Figure 23. Cray Service Node in IP over IB Configuration

 TCP Host

IB HCA

I/O Node

Cray HSN

Linux Cray OFED

InfiniBand

IB Driver

Application

IPoIB

sockets

IB Driver

OFED RDMA OFED RDMA

IPoIB

sockets

TCP/IPTCP/IP

Service

Cray XE System

Gemini ASIC IB HCA

Upper Layer InfiniBand I/O Protocols
In addition to the OFED RDMA stack, Cray supports three upper layer protocols (ULPs) on its service nodes as
shown in the table. Because all ULPs use the OFED stack, the InfiniBand configuration must be followed for all IB
service nodes. It is only necessary to configure the specific ULPs intended for use on the service node.

For example, a Lustre server with an IB direct-attached storage array uses the SCSI RDMA Protocol (SRP), not
the LNet Router. On the other hand, if the Lustre servers are external to the Cray system, the service node uses
the LNet router instead of SRP. IP over InfiniBand (IPoIB) is used to connect non-RDMA socket applications
across the IB network.

Table 2. Upper Layer InfiniBand I/O Protocols for Cray Systems

Upper Layer Protocol Purpose

IP over IB (IPoIB) Provides IP connectivity between hosts over IB.

Lustre (OFED LND) Base driver for Lustre over IB. On service nodes, this protocol
enables efficient routing of LNet messages from Lustre clients
on the Cray HSN to external IB-connected Lustre servers. The
name of the LND is o2iblnd.

SCSI RDMA Protocol (SRP) T10 standard for mapping SCSI over IB and other RDMA
fabrics. Supported by DDN and LSI for their IB-based storage
controllers.

Subnet Manager (OpenSM) Configuration
InfiniBand fabrics require at least one Subnet Manager (SM) operating on each IB subnet in order to activate its
respective IB port connected to the fabric. This is one critical difference between IB fabrics and Ethernet, where
simply connecting a cable to an Ethernet port is sufficient to get an active link. Managed IB switches typically
include an SM and, therefore, do not require any additional configuration of any of the hosts. Unmanaged IB
switches, which are considerably less expensive, do not include a SM and, thus, at least one host connected to
the switch must act as a subnet manager. InfiniBand standards also support switchless (point-to-point)
connections as long as an SM is installed. An example of this case is when a service node is connected to direct-
attached storage through InfiniBand.

Configure the System

 140

The OpenFabrics distribution includes OpenSM, an open-source IB subnet management and subnet
administration utility. Either one of the following configuration steps is necessary if no other subnet manager is
available on the IB fabric. The subnet manager RPMs are installed in the shared root by running CLEinstall.
OpenSM can be started from the service node on a single port at boot time or manually from the command line to
load multiple instances per host.

Start OpenSM at Boot Time

About this task
Follow this procedure to start a single instance of OpenSM on a service node at boot time.

This procedure assumes that the IB HCA is in node 8.

Procedure

1. Access the service node that will host the instance of OpenSM.

boot:~ # xtopview -x /etc/opt/cray/sdb/node_classes -n 8

2. Specialize /etc/sysconfig/opensm for the IB node.

node/8:/ # xtspec -n 8 /etc/sysconfig/opensm

3. Edit /etc/sysconfig/opensm to have OpenSM start at boot time

To start OpenSM automatically set ONBOOT=yes
ONBOOT=yes

4. Add IB services to the service nodes by using standard Linux mechanisms, such as executing the
chkconfig command while in the xtopview utility or executing /etc/init.d/opensmd start|stop|
restart|status (which starts or stops the OpenSM service immediately). The chkconfig command can
be used to ensure that the OpenSM service is started at system boot.

node/8:/ # /sbin/chkconfig --force opensmd on

Configure the System

 141

Monitor the System

Manage Log Files Using CLE and HSS Commands
Boot, diagnostic, and other Hardware Supervisory System (HSS) events are logged on the SMW in
the /var/opt/cray/log directory, which is created during the installation process. The time-stamped
bootinfo, console, consumer, and netwatch log files are located in the /var/opt/cray/log/sessionid
directory by default.

For example, the HSS xtbootsys command starts the xtconsole command, which redirects the output to a
time-stamped log file, such as /var/opt/cray/log/p0-20120716t104708/console-20120716.

The SMWinstall, SMWconfig, and SMWinstallCLE commands create several detailed log files in
the /var/adm/cray/logs directory. The log files are named using the PID of the SMWinstall or the
SMWinstallCLE command; the exact names are displayed when the command is invoked.

CLE logs are saved on the SMW in /var/opt/cray/log/sessionid.

Controller logs are saved on the SMW
in /var/opt/cray/log/controller/cabinet/controller/messages-yyyymmdd, where cabinet is of
the form c0-0, c1-0, etc.; and controller is either of the form c0-0, c1-0 for cabinet controllers (CC) or
c0-0c0s0 for blade controllers (BC) .

For more information, see the intro_llm_logfiles(5) man page.

Filter the Event Log
The xtlogfilter command enables the system administrator to filter the event log for information such as the
time a particular event occurred or messages from a particular cabinet.

For more information, see the xtlogfilter(8) man page.

Finding information in the event log

For this example, search for all console messages from node c9-2c0s3n2:

crayadm@smw:~> xtlogfilter -f /var/opt/cray/log/event-yyyymmdd
c9-2c0s3n2

Add Entries to Log Files
The system administrator can add entries (e.g., the start or finish of system activities) to the syslog with the
logger command. The entry is then available to anyone who reads the log.

For more information, see the logger(1) man page.

Monitor the System

 142

Add entries to syslog file

For this example, mark the start of a new system test:

login# logger -is "Start of test 4A $(date) "
Start of test 4A Thu Jul 14 16:20:43 CDT 2011
The system log shows:

Jul 14 16:20:43 nid00003 xx[21332]:
Start of test 4A Thu Jul 13 16:20:43 CDT 2012

Examine Log Files
Time-stamped log files of boot, diagnostic and other HSS events are located on the SMW in
the /var/opt/cray/log directory. The time-stamped bootinfo, console, consumer, and netwatch log
files are located in the /var/opt/cray/log/sessionid directory by default.

For example, the HSS xtbootsys command starts the xtconsole command, which redirects the output to a
time-stamped log file, such as /var/opt/cray/log/p0-20120716t104708/console-20120716.

The SMWinstall, SMWconfig, and SMWinstallCLE commands create several detailed log files in
the /var/adm/cray/logs directory. The log files are named using the PID of the SMWinstall or the
SMWinstallCLE command; the exact names are displayed when the command is invoked.

Remove Old Log Files
The xttrim utility provides a simple and configurable method to automate the compression and deletion of old
log files. The xttrim utility is intended to be run on the SMW from cron and is automatically configured to do
this as part of the SMW software installation process. Review the xttrim.conf configuration file and ensure
that xttrim will manage the desired directories and that the compression and deletion times are appropriate.

The xttrim utility does not perform any action unless the --confirm flag is used (to avoid unintended actions),
nor will xttrim perform any action on open files. All actions are based on file-modified time.

For additional information, see the xttrim(8) and xttrim.conf(5) man pages.

Check the Status of System Components
Check the status of the system or a component with the xtcli status command on the System Management
Workstation (SMW). By default, the xtcli status command returns the status of nodes.

The xtcli status command has the following form:

xtcli status [-n] [-m] [{-t type -a}] node_list

Where type may be: cc, bc, cage, node, aries, aries_lcb, pdc, or qpdc. The list must have component IDs
only and contain no wild cards.

Use the -m option to display all nodes that were repurposed by using the xtcli mark_node command. (The
xtcli mark_node command can be used to repurpose a service node to a compute role or to repurpose a
compute node to a service role.)

Monitor the System

 143

For more information, see the xtcli(8) man page.

Show the status of a component

For this example, display all nodes that were repurposed using the xtcli mark_node
command:

crayadm@smw:~> xtcli status -m c0-0c0
Network topology: class 2
Network type: Aries
 Nodeid: Service Core Arch| Comp state [Flags]
 --
 c0-0c0s2n0: - SB16 X86| off [noflags|]
 c0-0c0s3n0: service SB16 X86| off [noflags|]
 --
This shows that c0-0c0s2n0 is a service node repurposed as a compute node, and that
c0-0c0s3n0 is a compute node repurposed as a service node.

Check the Status of Compute Processors
Use the xtprocadmin command on a service node to check that compute nodes are available after the system
is booted.

Use the xtprocadmin command on a node to check that compute nodes are available after the system is
booted.

Identify nodes in down or admindown state

nid00007:~> xtprocadmin | grep down

Use the user xtnodestat command to display the current allocation and status of each compute processing
element and the application that it is running. A simplified text display shows each processing element on the
Cray system interconnection network.

Display current allocation and status of each compute processing element and the application that it is
running

nid00007:~> xtnodestat
Current Allocation Status at Wed Jul 06 13:53:26 2011

 C0-0
 n3 AAaaaaaa
 n2 AAaaaaaa
 n1 Aeeaaaa-
c2n0 Aeeaaaaa
 n3 Acaaaaa-
 n2 cb-aaaa-
 n1 AA-aaaa-
c1n0 Aadaaaa-
 n3 SASaSa--
 n2 SbSaSa--
 n1 SaSaSa--
c0n0 SASaSa--

Monitor the System

 144

 s01234567

Legend:
 nonexistent node S service node
; free interactive compute node - free batch compute node
A allocated interactive or ccm node ? suspect compute node
W waiting or non-running job X down compute node
Y down or admindown service node Z admindown compute node

Available compute nodes: 0 interactive, 15 batch

Job ID User Size Age State command line
--- ------- -------- ----- --------- -------- ---------------
a 3772974 user1 48 0h06m run app1
b 3773088 user2 2 0h01m run app2
c 3749113 user3 2 28h26m run app3
d 3773114 user4 1 0h00m run app4
e 3773112 user5 4 0h00m run app5

For more information, see the xtprocadmin(8) and xtnodestat(1) man pages.

Monitor the System with the System Environmental Data Collector
(SEDC)
The System Environment Data Collections (SEDC) manager, sedc_manager, monitors the system's health and
records the environmental data and status of hardware components such as power supplies, processors,
temperature, and fans. SEDC can be set to run at all times or only when a client is listening. The SEDC
configuration file provided by Cray has automatic data collection set as the default action.

The SEDC configuration file (/opt/cray/hss/default/etc/sedc_srv.ini by default) configures the SEDC
server. In this file, the administrator can create sets of different configurations as groups so that the blade and
cabinet controller daemons can scan components at different frequencies. The sedc_manager sends out the
scanning configuration for specific groups to the cabinet and blade controllers and records the incoming data by
group.

For information about configuring the SEDC manager, see XC™ Series System Environment Data Collections
(SEDC) Guide.

Monitor the Health of PCIe Channels
Processors are connected to the high-speed interconnect network (HSN) ASIC through PCIe channels.

The xtpcimon command is executed from the System Management Workstation (SMW) and is started and run
during the boot process.

Any PCIe-related errors are reported to stdout, unless directed to a log file.

xtpcimon also displays CLE-originated GHAL-based Advanced Error Reporting (AER) errors for PCIe.

If the optional /opt/cray/hss/default/etc/xtpcimon.ini initialization file is present, the xtpcimon
command uses the settings provided in the file.

For more information, see the xtpcimon(8) man page.

Monitor the System

 145

Report PCIe-related errors to stdout

crayadm@smw:~> xtpcimon
starting
----> connection to event router made
121017 04:57:01 ############# ################# ##################
121017 04:57:01 Node Category Description
121017 04:57:01 ############# ################# ##################
Received all responses to request to start monitoring
121017 04:58:01 c0-0c0s7a0n1 CorrectableMemErr 0:0:0 AER Correctable: Non-fatal \
 error (mask bit: 1)
121008 05:42:00 c0-0c1s6a0n2 CorrectableMemErr Link CRC error (cnt: 3)
121008 05:43:30 c0-0c1s6a0n2 Info Correctable/CRC error

Examine Activity on the HSS Boot Manager
Use the HSS xtcli session show command to examine sessions in the boot manager. A session
corresponds to running a specific command such as xtcli power up or xtcli boot. This command reports
on sessions, not daemons.

For more information, see the xtcli(8) man page.

View a session running on the boot manager

crayadm@smw:~> xtcli session show BM

Poll a Response from an HSS Daemon, Manager, or the Event Router
Use the HSS xtalive command to verify that an HSS daemon, manager, or the event router is responsive.

For more information, see the xtalive(8) man page.

Check the boot manager

crayadm@smw:~> xtalive -l smw -a bm s0

Validate the Health of the HSS
The xtcheckhss command initiates a series of tests that validate the health of the HSS by gathering and
displaying information supplied by scripts located on blade controllers (BCs) and cabinet controllers (CCs).
xtcheckhss includes the following tests:

● Version Checker: Reads the current version running on the L0C, QLOC, L0Ds, BC micro, CC micro, CC
FPGA, CHIA FPGAs, Tolapai BIOSes, and Node BIOS. The version that is read from each device is
compared to the currently installed versions on the SMW.

● Sensor Checker: Reads environment sensors including temperatures, voltages, currents, and other data.

● SEEP Checker: Reads serial electrically erasable PROMs (SEEPs) in the system. This test can report any
un-initialized, zeroed, or unreadable SEEPs.

Monitor the System

 146

● AOC Checker: Reads all active optical cable (AOC) data. This test displays any outliers relative to the
average data calculated by previous runs.

● ITP Checker: Validates the embedded ITP path

● NTP Checker: Reads system time on all controllers and compares them with the SMW time; displays any
mismatches.

● Control Checker: Examines and modifies system controls.

● Configuration Information Checker: Reads the system hardware configuration and reports the system
setup, including the blade type, daughter card type, CPU type and count, and the CPU and PDC mask.

● PCI checker: Checks for missing or degraded PCIe connectivity on add-in cards on an IBB. This test requires
that the nodes be powered up and bounced. Any cards that do not train to the PCIe Gen or Width specified in
the Link Capability register are flagged. Any cards that are reported as physically present but not seen by the
node are flagged.

For complete information, see the xtcheckhss(8) man page.

Monitor Event Router Daemon (erd) Events
The HSS xtconsumer command enables the system administrator to monitor events mediated by the event
router daemon erd, which runs passively.

Monitor for specific events

For this example, watch two events: ec_heartbeat_stop, which will be sent if either the node
stops sending heartbeats or if the system interconnection network ASIC stops sending
heartbeats, and ec_l0_health, which will be sent if any of the subcomponents of a blade
controller report a bad health indication:

crayadm@smw:~> xtconsumer -b ec_heartbeat_stop ec_l0_health

Use the xthb command to confirm the stopped heartbeat. Use the xthb command only when actively looking
into a known problem because it is intrusive and degrades system performance.

Check events except heartbeat

crayadm@smw:~> xtconsumer -x ec_l1_heartbeat

For more information, see the xtconsumer(8) and xthb(8) man pages.

Monitor Node Console Messages
The xtbootsys command automatically initiates an xtconsole session, which displays the console text of a
specified node(s) or accelerator(s). The xtconsole command operates in a shell window and monitors the event
router daemon (erd) for console messages. The node or accelerator ID appears at the beginning of each line.
The messages are written into /var/opt/cray/log/sessionid/console-yyyymmdd where the
administrator may monitor them.

The xtconsole utility may only have one concurrent instance.

Monitor the System

 147

For more information, see the xtconsole(8) man page.

View Component Alert, Warning, and Location History
Use the xtcli comp_hist command to display component alert, warning, and location history. Either an error
history, which displays alerts or warnings found on designated components, or a location history may be
displayed.

Display the location history for component c0-0c0s0n1

crayadm@smw:~> xtcli comp_hist -o loc c0-0c0s0n1

For more information, see the xtcli(8) man page.

Display Component Information
Use the HSS xtshow command to identify compute and service components. Commands are typed as xtshow
--option_name. Combine the --service or --compute option with other xtshow options to limit the
selection to the specified type of node.

For a list of all xtshow --option_name options, see the xtshow(8) man page.

Identify all service nodes

crayadm@smw:~> xtshow --service
L1s ...
Cages ...
L0s ...
 c0-0c0s0: service X86| ready [noflags|]
 c0-0c0s1: service X86| ready [noflags|]
 c1-0c0s0: service X86| ready [noflags|]
 c1-0c0s1: service X86| ready [noflags|]
 c2-0c0s1: service X86| ready [noflags|]
 c2-0c1s1: service X86| ready [noflags|]
Nodes ...
 c0-0c0s0n0: service X86| empty [noflags|]
 c0-0c0s0n1: service SB08 X86| ready [noflags|]
 c0-0c0s0n2: service SB08 X86| ready [noflags|]
 c0-0c0s0n3: service X86| empty [noflags|]
 c0-0c0s1n0: service X86| empty [noflags|]
 c0-0c0s1n1: service SB08 X86| ready [noflags|]
 .
 .
 .
Aries ...
 c0-0c0s0a0: service X86| on [noflags|]
 c0-0c0s1a0: service X86| on [noflags|]
 c1-0c0s0a0: service X86| on [noflags|]
 c1-0c0s1a0: service X86| on [noflags|]
 c2-0c0s1a0: service X86| on [noflags|]
 c2-0c1s1a0: service X86| on [noflags|]
AriesLcbs ...
 c0-0c0s0a0l00: service X86| on [noflags|]
 c0-0c0s0a0l01: service X86| on [noflags|]

Monitor the System

 148

 c0-0c0s0a0l02: service X86| on [noflags|]
 c0-0c0s0a0l03: service X86| on [noflags|]
 c0-0c0s0a0l04: service X86| on [noflags|]
 c0-0c0s0a0l05: service X86| on [noflags|]
 c0-0c0s0a0l06: service X86| on [noflags|]
 .
 .
 .

Identify compute nodes in the disabled state

crayadm@smw:~> xtshow --compute --disabled
L1s ...
Cages ...
L0s ...
Nodes ...
 c0-0c2s0n3: - X86| disabled [noflags|]
 c0-0c2s11n0: - X86| disabled [noflags|]
 c0-0c2s11n3: - X86| disabled [noflags|]
 c1-0c0s11n2: - X86| disabled [noflags|]
Aries ...
AriesLcbs ...

Identify components with a status of not empty

crayadm@smw:~> xtshow --not_empty c0-0c0s0
L1s ...
 c0-0: - | on [warn|alert|]
Cages ...
L0s ...
 c0-0c0s0: service X86| ready [noflags|]
Nodes ...
 c0-0c0s0n1: service SB08 X86| ready [noflags|]
 c0-0c0s0n2: service SB08 X86| ready [noflags|]
Aries ...
 c0-0c0s0a0: service X86| on [noflags|]
AriesLcbs ...
 c0-0c0s0a0l00: service X86| on [noflags|]
 c0-0c0s0a0l01: service X86| on [noflags|]
 c0-0c0s0a0l02: service X86| on [noflags|]
 c0-0c0s0a0l03: service X86| on [noflags|]
 c0-0c0s0a0l04: service X86| on [noflags|]
 c0-0c0s0a0l05: service X86| on [noflags|]
 c0-0c0s0a0l06: service X86| on [noflags|]
 .
 .
 .

Display Alerts and Warnings
Use the xtshow command to display alerts and warnings. Type commands as xtshow --option_name, where
option_name is alert, warn, or noflags.

Monitor the System

 149

Alerts are not propagated through the system hierarchy, only information for the component being examined is
displayed. For example, invoking the xtshow --alert command for a cabinet does not display an alert for a
node. Similarly, checking the status of a node does not detect an alert on a cabinet.

Show all alerts on the system

crayadm@smw:~> xtshow --alert

Alerts and warnings typically occur while the HSS xtcli command operates; these alerts and warnings are listed
in the command output with an error message. After they are generated, alerts and warnings become part of the
state for the component and remain set until manually cleared.

For example, the temporary loss of a heartbeat by the blade controller may set a warning state on a chip.

For additional information, see the xtshow(8) man page.

Display System Network Congestion Protection Information
Two utilities help to identify the time and duration of system network congestion events, either by parsing through
logs (xtcpreport) or in real time (xtcptop):

xtcpreport This command uses information contained in the given xtnlrd file to extract and display
information related to system network congestion protection. See the xtcpreport(8) man
page for additional information.

xtcptop This command monitors an xtnlrd file that is currently being updated and displays real-time
system network congestion protection information, including start time, duration, and apid. See
the xtcptop(8) man page for additional information.

To use these utilities, load the congestion-tools module if it is not already loaded.

crayadm@smw:~> module load congestion-tools

Clear Component Flags
Use the xtclear command to clear system information for selected components. Type commands as xtclear
--option_name, where option_name is alert, reserve, or warn.

Clear all warnings in specified cabinet

For this example, clear all warnings in cabinet c13-2:

smw:~> xtclear --warn c13-2

Alerts, reserves, and warnings must be cleared before a component can operate. Clearing an alert on a
component frees its state so that subsequent commands can execute System Component States.

For more information, see the xtclear(8) man page.

Monitor the System

 150

Display Error Codes
When an HSS event error occurs, the related message is displayed on the SMW. The xterrorcode command
on the SMW displays a single error code or the entire list of error codes.

Display HSS error codes

crayadm@smw:~> xterrorcode errorcode

A system error code entered in a log file is a bit mask; invoking the xterrorcode bitmask_code_number
command on the SMW displays the associated error code.

Display an HSS error code using its bit mask number

crayadm@smw:~> xterrorcode 131279
Maximum error code (RS_NUM_ERR_CODE) is 447
code = 207, string = 'Node Voltage Fault'

Cray Lightweight Log Management (LLM) System
The Cray Lightweight Log Management (LLM) system is the log infrastructure for Cray systems and must be
enabled for systems to successfully log events. At a high level, a library is used to deliver messages to rsyslog
utilizing the RFC 5424 protocol; rsyslog transports those messages to the SMW and places the messages into
log files.

The LLM system relies on the sessionid that is generated by xtbootsys. Therefore, systems must always be
booted using xtbootsys. If the site has multi-part boot procedures or uses manual procedures, have the
process started by an xtbootsys session. That session can be effectively empty -- it is only needed to initiate a
boot sessionid. Subsequent xtbootsys calls can then use --session last or manual processes.

By default, LLM has a log trimming mechanism enabled called xttrim.

IMPORTANT: Do not use the xtgetsyslog command because it is not compatible with LLM.For
additional information, see Manage Log Files Using CLE and HSS Commands on page 142.

For further information, see the intro_LLM(8) and intro_LLM_logfiles(5) man pages.

cdump and crash Utilities for Node Memory Dump and Analysis
The cdump and crash utilities may be used to analyze the memory on any Cray service node or CNL compute
node. The cdump command is used to dump node memory to a file. After cdump completes, the crash utility can
be used on the dump file generated by cdump.

Cray recommends executing the cdump utility only if a node has panicked or is hung, or if a dump is requested by
Cray.

To select the desired access method for reading node memory, use the cdump -r access option. Valid access
methods are:

Monitor the System

 151

xt-bhs The xt-bhs method uses a basic hardware system server that runs on the SMW to access and read
node memory. xt-bhs is the default access method for these systems.

xt-hsn The xt-hsn method utilizes a proxy that reads node memory through the High-speed Network
(HSN). The xt-hsn method is faster than the xt-bhs method, but there are situations where it will
not work (for example, if the ASIC is not functional). However, the xt-hsn method is preferable
because the dump completes in a short amount of time and the node can be returned to service
sooner.

xt-file The xt-file method is used for memory dump file created by the -z option. The compressed
memory dump file must be uncompressed prior to executing this command. Use the file name for
node-id.

To dump Cray node memory, access takes the following form:

method[@host]
For additional information, see the cdump(8) and crash(8) man pages.

Resource Utilization Reporting
Resource Utilization Reporting (RUR) is an administrator tool for gathering statistics on how system resources are
being used by applications or jobs. RUR is a low-noise, scalable infrastructure that collects compute node
statistics before an application or job runs and again after it completes. The extensible RUR infrastructure allows
plugins to be easily written to collect data uniquely interesting to each site. Cray supplied plugins collect a variety
of data, including process accounting, energy usage, memory usage, and GPU accounting.

When RUR is enabled on a Cray system running CLE, resource utilization statistics are gathered from compute
nodes running all applications or jobs. RUR is configured to run per application, per job, or both. RUR runs
primarily before an application/job has started and after it ends, ensuring minimal impact on performance.

Prior to application/job runtime, the ALPS or WLM prologue script calls an RUR prologue script that, based on
enabled plugins, initiates pre-application/pre-job data staging on all compute nodes used by the application/job.
This staging may involve resetting counters to zero or collecting initial values of counters. Following application/
job completion, the ALPS or WLM epilogue script calls an RUR epilogue script that gathers these counters,
compares them to the initial values, where applicable, stages the data on the compute nodes, and then transfers
data from the compute nodes to the login/MOM node. RUR post-processes the data to create a summary report
that is written out to a log file or other backing store.

Plugin Architecture
RUR supports a plugin architecture, allowing many types of usage data to be collected while using the same
software infrastructure. Two basic types of RUR plugins are supported: data plugins, which collect particular
statistics about system resources, and output plugins, which send the output of the RUR software stack to a
backing store.

Cray supplies plugins as part of the RUR distribution, including six data collection plugins, three output plugins,
and one example plugin. Sites choose which plugins to enable or disable by modifying the RUR configuration file.
See Enable/Disable Plugins for more information. Sites can also create custom plugins, specific to their needs, as
described in Create Custom RUR Data Plugins on page 162 and Create Custom RUR Output Plugins on page
163.

Monitor the System

 152

RUR Configuration File
The RUR configuration file /etc/opt/cray/rur/rur.conf is located on the shared root. The file consists of
distinct sections, identified by a header, [section], that contain settings for specific RUR components.
Changing the behavior of RUR components is possible through modification of the config file. Configurable values
fall into five categories:

● Script/binary location

● Temporary data storage location

● Component timeout specs

● Enabling/disabling plugins

● Optional plugin behavior

Changes to the configuration file are automatically propagated to the nodes via the shared-root mount, requiring
no administrator intervention or system reboot. An example configuration file rur.config.example is
distributed with the RPM.

The energy Data Plugin (Cray XC Series only)
The energy plugin collects compute node energy usage data. The amount of data reported and the format in
which it is written is determined by the value of the argument arg set in the [energy] section of the RUR
configuration file.

If arg is not set (default) or set to json-list, the plugin reports the following, written in JavaScript Object
Notation (JSON) list format:

energy_used The total energy (joules) used across all nodes. On nodes with accelerators, this value includes
accel_energy_used, the total energy used by the accelerators.

RUR default energy output

This example shows default energy data as written
to /var/opt/cray/log/partition-current/messages-date on the SMW:

2013-08-30T11:19:06.545114-05:00 c0-0c0s2n2 RUR 18657
p2-20130829t090349 [RUR@34] uid: 12345, apid: 10963, jobid: 0,
cmdname: /opt/intel/vtune_xe_2013/bin64/amplxe-cl plugin: energy
['energy_used', 318]

If arg is set to json-dict, the plugin also reports the following extended energy data, written in JSON dictionary
format:

error If a Python exception occurs during the post or staging scripts, the
following data is reported:

traceback Stack frame list

type Python exception type

value Python exception parameter

nid NID on which exception occurred

cname cname on which exception occurred

Monitor the System

 153

nodes Number of nodes in job

nodes_cpu_throttled Number of nodes experiencing CPU power/thermal throttling

nodes_memory_throttled Number of nodes experiencing memory power/thermal throttling

nodes_power_capped Number of nodes with nonzero power cap

nodes_throttled Number of nodes experiencing any of the following types of throttling:

● CPU power/thermal throttling

● Memory power/thermal throttling

nodes_with_changed_power_cap Number of nodes with power caps that changed during execution. On
nodes with accelerators, this value includes the number of accelerators
with power caps that changed.

max_power_cap Maximum nonzero power cap

max_power_cap_count Number of nodes with the maximum nonzero power cap

min_power_cap Minimum nonzero power cap

min_power_cap_count Number of nodes with the minimum nonzero power cap

On nodes with accelerators, the extended data also include the following data:

accel_energy_used Total accelerator energy (joules) used

nodes_accel_power_capped Number of accelerators with nonzero power cap

max_accel_power_cap Maximum nonzero accelerator power cap

max_accel_power_cap_count Number of accelerators with the maximum nonzero power cap

min_accel_power_cap Minimum nonzero accelerator power cap

min_accel_power_cap_count Number of accelerators with the minimum nonzero power cap

RUR extended energy output

This example shows extended energy data as written
to /var/opt/cray/log/partition-current/messages-date on the SMW:

2014-01-17T10:05:54.026557-06:00 c0-0c0s1n1 RUR 11674
p0-20140116t214834 [rur@34] uid: 12345, apid: 286342, jobid: 0,
cmdname: /bin/cat, plugin: energy {"energy_used": 5641,
"accel_energy_used": 1340, "nodes": 32, "nodes_power_capped": 3,
"min_power_cap": 155, "min_power_cap_count": 2, "max_power_cap": 355,
"max_power_cap_count": 1, "nodes_accel_power_capped": 3,
"min_accel_power_cap: 200, min_accel_power_cap_count": 3,
"max_accel_power_cap": 200, "max_accel_power_cap_count": 3,
"nodes_throttled": 0, "nodes_with_changed_power_cap": 0}

The gpustat Data Plugin
The gpustat plugin collects the following utilization statistics for NVIDIA GPUs, if present. The data is written in
JSON list format.

Monitor the System

 154

maxmem Maximum memory used across all nodes

summem Total memory used across all nodes

gpusecs Time spent processing on GPUs

RUR gpustat output

This example shows gpustat data as written
in /var/opt/cray/log/partition-current/messages-date on the SMW.

2013-07-09T15:50:42.761257-05:00 c0-0c0s2n2 RUR 11329
p2-20130709t145714 [RUR@34] uid: 12345, apid: 8410, jobid: 0,
cmdname: /tmp/dostuff plugin: gpustats ['maxmem', 108000, 'summem',
108000, 'gpusecs', 44]

The kncstats Data Plugin
The kncstats plugin collects the following process accounting data from Intel Xeon Phi (KNC) coprocessors, if
present. The data is written in JSON list format.

core Set to 1 if core dump occurred

exitcode Lists all unique exit codes

max_rss Maximum memory used

rchar Characters read by process

stime System time

utime User time

wchar Characters written by process

RUR kncstats output

This example shows kncstats data as written
to /var/opt/cray/log/partition-current/messages-date on the SMW:

2014-02-25T18:49:12.101383-06:00 c0-0c0s1n1 RUR 11274
p0-20140225t135439 [RUR@34] uid: 12345, apid: 539224, jobid: 0,
cmdname: /bin/date, plugin: kncstats ['utime', 8000, 'stime', 20000,
'max_rss', 620, 'rchar', 2730, 'wchar', 119, 'exitcode:signal',
['0:0'], 'core', 0]

The memory Data Plugin
The memory plugin collects information from /proc and /sys that is useful when assessing the memory
performance of an application or job. The data is written in JSON dictionary format. The type of data reported is
determined by the value of the argument arg set in the [memory] section of the RUR configuration file.

IMPORTANT: The memory plugin does not provide consolidated information for all nodes within an
application; instead it reports memory statistics for each node within the application. This can result in a
large amount of RUR output data for systems of even modest size. When the memory plugin is enabled, it
produces a significant amount of output.

Monitor the System

 155

If arg is not set (default), the plugin reports the following data:

error If a Python exception occurs during the post or staging scripts, the following data is
reported:

traceback Stack frame list

type Python exception type

value Python exception parameter

nid NID on which exception occurred

cname cname on which exception occurred

%_of_boot_mem The % of boot memory for each order chunk in /proc/buddyinfo summed across all
memory zones

Active(anon) Total amount of memory in active use by the application

Active(file) Total amount of memory in active use by cache and buffers

boot_freemem Contents of /proc/boot_freemem
current_freemem Contents of /proc/current_freemem
free Number of hugepages that are not yet allocated

hugepages-sizekB The hugepage size for the select entries
from /sys/kernel/mm/hugepages/hugepages-*kB/*

Inactive(anon) Total amount of memory that is candidate to be swapped out

Inactive(file) Total amount of memory that is candidate to be dropped from cache

nr Number of hugepages that exist at this point

resv Number of hugepages committed for allocation, but no allocation has occurred

Slab Total amount of memory used by the kernel

surplus Number of hugepages above nr

RUR default memory output

This example shows the default memory data as written
to /var/opt/cray/log/partition-current/messages-date on the SMW.

2014-03-21T11:37:24.480982-05:00 c0-0c0s0n2 RUR 23710
p0-20140321t091957 [RUR@34] uid: 12345, apid: 33079, jobid: 0,
cmdname: /bin/hostname, plugin: memory {"current_freemem": 21858372,
"meminfo": {"Active(anon)": 35952, "Slab": 105824, "Inactive(anon)":
1104}, "hugepages-2048kB": {"nr": 5120, "surplus": 5120},
"%_of_boot_mem": ["67.23", "67.23", "67.23", "67.22", "67.21",
"67.18", "67.11", "67.04", "66.94", "66.83", "66.77", "66.66",
"66.53", "66.38", "65.87", "65.07", "63.05", "61.43"], "nid": "8",
"cname": "c0-0c0s2n0", "boot_freemem": 32432628}

If arg is set to extended_buddy, the output relating to /proc/buddyinfo includes NUMA node granularity
information in addition to the existing node granularity information. This information is useful when troubleshooting
certain fragmentation related issues.

Monitor the System

 156

RUR extended memory output

This example shows extended memory data as written
to /var/opt/cray/log/partition-current/messages-date on the SMW:

2014-03-21T11:37:24.480982-05:00 c0-0c0s0n2 RUR 23710
p0-20140321t091957 [RUR@34] uid: 12345, apid: 33079, jobid: 0,
cmdname: /bin/hostname, plugin: memory {"current_freemem": 21858372,
"meminfo": {"Active(anon)": 35952, "Slab": 105824, "Inactive(anon)":
1104}, "hugepages-2048kB": {"nr": 5120, "surplus": 5120},
"Node_0_zone_DMA": ["0.05", "0.05", "0.05", "0.05", "0.05", "0.05",
"0.05", "0.05", "0.05", "0.04", "0.04", "0.03", "0.00", "0.00",
"0.00", "0.00", "0.00", "0.00"],"%_of_boot_mem": ["67.23", "67.23",
"67.23", "67.22", "67.21", "67.18", "67.11", "67.04", "66.94",
"66.83", "66.77", "66.66", "66.53", "66.38", "65.87", "65.07",
"63.05", "61.43"], "nid": "8", "cname": "c0-0c0s2n0", "boot_freemem":
32432628, "Node_0_zone_DMA32": ["6.07", "6.07", "6.07", "6.07",
"6.07", "6.07", "6.07", "6.06", "6.05", "6.04", "6.01", "5.94",
"5.86", "5.76", "5.46", "4.85", "3.23", "3.23"], "Node_0_zone_Normal":
["61.11", "61.11", "61.11", "61.11", "61.09", "61.07", "60.99",
"60.93", "60.84", "60.75", "60.72", "60.70", "60.67", "60.62",
"60.42", "60.22", "59.81", "58.20"]}

The taskstats Data Plugin
ATTENTION: The default setting of the configuration argument arg will change from json-list to
json-dict in release CLE6.0. This will result in changes to the content and format of the default output.
json-list is deprecated and will be removed in a future release but will remain functional until that
time.

The taskstats plugin collects process accounting data. The amount of data reported and the format in which it
is written is determined by the value of the argument arg set in the [taskstats] section of the RUR
configuration file.

If arg is not set (default), the plugin reports the following basic process accounting data similar to that provided by
UNIX process accounting or getrusage. These values are sums across all nodes, except for the memory used,
which is the maximum value across all nodes. The data is written in JSON list format.

core Set to 1 if core dump occurred

exitcode Lists all unique exit codes

max_rss Maximum memory used

rchar Characters read by process

stime System time

utime User time

wchar Characters written by process

RUR default taskstats output

This example shows default taskstats output as written
to /var/opt/cray/log/partition-current/messages-date on the SMW.

For a job that exits normally:

Monitor the System

 157

2013-11-02T11:09:49.457770-05:00 c0-0c1s1n2 RUR 2417
p0-20131101t153028 [RUR@34] uid: 12345, apid: 86989, jobid: 0,
cmdname: /lus/tmp/rur01.2338/./CPU01-2338 plugin: taskstats ['utime',
10000000, 'stime', 0, 'max_rss', 940, 'rchar', 107480, 'wchar', 90,
'exitcode:signal', ['0:0'], 'core', 0]
For a job that core dumps:

2013-11-02T11:12:45.020716-05:00 c0-0c1s1n2 RUR 3731
p0-20131101t153028 [RUR@34] uid: 12345, apid: 86996, jobid: 0,
cmdname: /lus/tmp/rur01.3657/./exit04-3657 plugin: taskstats ['utime',
4000, 'stime', 144000, 'max_rss', 7336, 'rchar', 252289, 'wchar', 741,
'exitcode:signal', ['0:9', '139:0', '0:11', '0:0'], 'core', 1]

If arg is set to xpacct, the plugin also provides the following extended process accounting data similar to that
which was collected by the deprecated Cray System Accounting (CSA).

abortinfo If abnormal termination occurs, a list of abort_info fields is reported

apid Application ID as defined by application launcher

bkiowait Total delay time (ns) waiting for synchronous block I/O to complete

btime UNIX time when process started

comm String containing process name. May be different than the header, which is the process run by the
launcher.

coremem Integral of RSS used by process in MB-usec

ecode Process exit code

etime Total elapsed time in microseconds

gid Group ID

jid Job ID - the PAGG job container used on the compute node

majfault Number of major page faults

minfault Number of minor page faults

nice POSIX nice value of process

nid String containing node ID

pgswapcnt Number of pages swapped; should be 0 on Cray compute nodes

pid Process ID

pjid Parent job ID - the PAGG job container on the MOM node

ppid Parent process ID

prid Job project ID

rcalls Number of read system calls

1 The current memory usage is added to these counters (i.e., coremem, vm) every time. A tick is charged to a
task's system time. Therefore, at the end we will have memory usage multiplied by system time and an
average usage per system time unit can be calculated.

Monitor the System

 158

rchar Characters read by process

rss RSS highwater mark

sched Scheduling discipline used on node

uid User ID

vm Integral of virtual memory used by process in MB-usecs2

wcalls Number of write system calls

wchar Characters written by process

RUR extended taskstats output

This example shows RUR extended taskstats output:

2013-10-18T10:29:38.285378-05:00 c0-0c0s1n1 RUR 24393
p1-20131018t081133 [RUR@34] uid: 12345, apid: 370583, jobid: 0,
cmdname: /bin/cat, plugin: taskstats ['btime', 1386061749, 'etime',
8000, 'utime', 0, 'stime', 4000, 'coremem', 442, 'max_rss', 564,
'max_vm', 564, 'pgswapcnt', 63, 'minfault', 15, 'majfault', 48,
'rchar', 2608, 'wchar', 686, 'rcalls', 19, 'wcalls', 7, 'bkiowait',
1000, 'exitcode:signal', [0], 'core', 0]

If arg is set to xpacct, per-process, the plugin reports extended accounting data for every compute node
process rather than a summary of all processes for an application. per-process must be set in combination with
xpacct.

CAUTION: If per-process is set and many processes are run on each node, the volume of data
generated and stored on disk can become an issue.

RUR per-process taskstats output

This exaple shows RUR per-process taskstats output. This output was generated with the
json-dict option set.

2013-12-03T13:25:34.446167-06:00 c0-0c2s0n2 RUR 7623
p3-20131202t090205 [RUR@34] uid: 12345, apid: 1560, jobid: 0,
cmdname: ./it.sh, plugin: taskstats {"uid": 12795, "wcalls": 37,
"pid": 2997, "vm": 16348, "jid": 395136991233, "bkiowait": 1201616,
"majfault": 1, "etime": 0, "btime": 1386098731, "gid": 0, "ppid":
2992, "utime": 0, "nice": 0, "sched": 0, "nid": "92", "prid": 0,
"comm": "mount", "stime": 4000, "wchar": 3465, "rss": 1028,
"minfault": 352, "coremem": 1109, "ecode": 0, "rcalls": 22, "pjid":
7045, "pgswapcnt": 0, "rchar": 12208}

2013-12-03T13:25:34.949138-06:00 c0-0c2s0n2 RUR 7623
p3-20131202t090205 [RUR@34] uid: 12345, apid: 1560, jobid: 0,
cmdname: ./it.sh, plugin: taskstats {"uid": 12795, "wcalls": 0, "pid":
2998, "vm": 20268, "jid": 395136991233, "bkiowait": 0, "majfault": 0,

2 The current memory usage is added to these counters (i.e., coremem, vm) every time. A tick is charged to a
task's system time. Therefore, at the end we will have memory usage multiplied by system time and an
average usage per system time unit can be calculated.

Monitor the System

 159

"etime": 0, "btime": 1386098731, "gid": 0, "ppid": 2992, "utime": 0,
"nice": 0, "sched": 0, "nid": "92", "prid": 0, "apid": 1560, "comm":
"ls", "stime": 4000, "wchar": 0, "rss": 1040, "minfault": 360,
"coremem": 3140, "ecode": 0, "rcalls": 19, "pjid": 7045, "pgswapcnt":
0, "rchar": 10629}

If arg is set to json-dict, the data is written in JSON dictionary format.

If arg is set to json-list, the data is written in JSON list format (default).

The timestamp Data Plugin
The timestamp plugin collects the start and end times of an application or job.

RUR timestamp output

This example shows timestamp data, as written
in /var/opt/cray/log/partition-current/messages-date on the SMW, for an
application that slept 20 seconds:

2013-08-30T14:32:07.593469-05:00 c0-0c0s5n2 RUR 12882
p3-20130830t074847 [RUR@34] uid: 12345, apid: 6640, jobid: 0,
cmdname: /bin/sleep plugin: timestamp APP_START 2013-08-30T14:31:46CDT
APP_STOP 2013-08-30T14:32:06CDT

The file Output Plugin
The file plugin allows RUR data to be stored to a flat text file on any file system to which the login node can
write. This plugin is also intended as a very simple guide for anyone interested in writing an output plugin.

This example shows sample output from file to a location defined in the RUR configuration file:

uid: 1000, apid: 8410, jobid: 0, cmdname: /tmp/dostuff plugin:
taskstats ['utime', 32000, 'stime', 132000, 'max_rss', 1736, 'rchar',
44524, 'wchar', 289] uid: 1000, apid: 8410, jobid: 0, cmdname: /tmp/
dostuff plugin: energy ['energy_used', 24551] uid: 1000, apid: 8410,
jobid: 0, cmdname: /tmp/dostuff plugin: gpustats ['maxmem', 108000,
'summem', 108000]

The llm Output Plugin
The llm plugin aggregates log messages from various Cray nodes and places them on the SMW. llm has its
own configuration options, but typically it will place RUR messages into the messages log
file /var/opt/cray/log/partition-current/messages-date on the SMW. The messages shown in the
previous sections are in LLM log format.

The user Output Plugin
The user plugin writes RUR output for a user's application to the user's home directory (default) or a user-defined
location, only if the user has indicated that this behavior is desired (as described below).

The naming of the default output file(s), rur.suffix, is dependent on the value of the argument arg, which
defines a report type and is set in the user section of the RUR configuration file. If arg is set to:

Monitor the System

 160

apid An output file is created for each application executed and suffix is the apid.

jobid An output file is created for each job submitted and suffix is the jobid
single All output is placed in a single file and no suffix is appended to the output file name.

User Options
Users have the option to opt-in or out for the user plugin, redirect plugin output to a specific file or directory, or
override the default report type.

● By default, RUR data is written to a user's directory. A user must either create the file
~/.rur/user_output_optin to indicate that data should be written, or create a file that initiates one of the
following two options.

1. Users may redirect the output of RUR by specifying a redirect location in
~/.rur/user_output_redirect. The contents of this file must be a single line that specifies the
absolute or relative (from the user's home directory) path of the directory or file to which the RUR output
data is to be written. If the redirect file either does not exist, points to a path that does not exist, or points
to a path to which the user does not have write permission, then the output is written to the user's home
directory.

2. A user with an existing ~/.rur/user_output_redirect file can temporarily stop RUR data from
being written by setting the redirect path to /dev/null.

● Additionally, the user may override the default report type by specifying a valid report type in
~/.rur/user_output_report_type. Valid report types are apid, jobid, or single, resulting in the
user's RUR data being written to one file per application, one file per job, or a single file, respectively. If the file
~/.rur/user_output_report_type is empty or contains an invalid type, then the default report type, as
defined in the configuration file, is created.

The database Example Output Plugin
The database plugin is provided as a guide for sites wanting to output RUR data to a site-supplied database.
Sites will need to configure their own systems, provide an external database, create their own tables, and modify
database_output.py to collect the desired data.

MySQL is the database supported by the example plugin. The following arguments are defined for connecting to a
database:

● DB_NAME='rur'
● DB_USER='rur_user'
● DB_PASS='rur_pass'
● DB_HOST='rur_host'

The database plugin collects the values: energy_used, apid, jobid, and uid, and saves this data to a
table, energy. It does this by performing the following:

● Digests RUR data into a dictionary and saves it to class DbData
● Creates rules for saving data collected in DbData to particular tables

● Uses the rules to scan the DbData dictionary and INSERT that data into a database

Cray recommends that the database is not hosted on SDB or login nodes. It should also be noted that,
depending on job load, interacting with an external database may cause system latency.

Monitor the System

 161

Create Custom RUR Data Plugins
A data plugin is comprised of a staging component and a post processing component. The data plugin staging
component is called by rur-stage.py on the compute node prior to the application/job running and again after
the application/job has completed. The staging component may reset counters before application/job execution
and collect them after application/job completion, or it may collect initial and final values prior to and after
application/job execution, respectively, and then calculate the delta values. Python functions have been defined to
simplify writing plugins, although it is not necessary for the plugin to be written in Python. The interface for the
data plugin staging component is through command line arguments.

Data Plugin Staging Component
All data plugin staging components must support the following arguments:

--apid=apid Defines the application ID of the running application.

--timeout=time Defines a timeout period in seconds during which the plugin must finish
running. Set to 0 for unlimited; default is unlimited.

--pre Indicates the plugin is being called prior to the application/job.

--post Indicates the plugin is being called after the application/job.

--outputfile=output_file Defines where the output data is written. Each plugin should define a default
output file in /var/spool/RUR/ if this argument is not provided.

--arg=arg A plugin-specific argument, set in the RUR config file. RUR treats this as an
opaque string.

The output of an RUR data plugin staging component is a temporary file located in /var/spool/RUR on the
compute node. The file name must include both the name of the plugin, as defined in the RUR config file,
and .apid. The RUR gather phase will automatically gather the staged files from all compute nodes after the
application/job has completed and place it in gather_dir as defined in the configuration file.

Data plugin staging component

#
Copyright (c) 2013 Cray Inc. All rights reserved.
#
Sample data plugin staging component
#
#!/usr/bin/env python
import sys, os, getopt
from rur_plugins import rur_plugin_args
def main():
 apid, inputfile, outputfile, timeout, pre, post, \
 parg = rur_plugin_args(sys.argv[1:])
 if outputfile is "":
 outputfile = "/var/spool/RUR/pluginname."+str(apid)
 if (pre==1):
 zero_counters()
 else:
 write_postapp_stateto(outputfile)

if __name__ == "__main__":
 main()

Monitor the System

 162

Data Plugin Post Processing Component
A data plugin also requires a post processing component that processes the data staged by the staging
component and collected during the RUR gather phase. The post processing component is called by
rur-post.py. The input file contains records, one node per line, of all of the statistics created by the staging
component. The output of the post processing component is a file containing the summary of data from all
compute nodes.

All data plugin post processing components must support the following arguments:

--apid=apid Defines the application ID of the running application.

--timeout=time Defines a timeout period in seconds during which the plugin must finish
running. Set to 0 for unlimited; default is unlimited.

--inputfile=input_file Specifies the file from which the plugin gets its input data.

--outputfile=output_file Specifies the file to which the plugin writes its output data.

Data plugin post processing component

#
Copyright (c) 2013 Cray Inc. All rights reserved.
#
Sample data plugin post processing component
#
#!/usr/bin/env python
import sys, os
from rur_plugins import rur_args

def main():
 apid, inputfile, outputfile, timeout = rur_args(sys.argv[1:])
 if outputfile is "":
 outputfile = inputfile + ".out"

 pc = PostCompute()
 pc.process_file(inputfile)
 formated = pc.present_entries([('plugin_foo_data','sum')])
 fout=open(outputfile, 'w+')
 fout.write("energy %s" % formated)

if __name__ == "__main__":
 main()

Create Custom RUR Output Plugins
Output plugins allow RUR data to be outputted to an arbitrary backing store. This can be a storage device or
another piece of software that then consumes the RUR data. The output plugin is passed a number of command
line arguments that describe the application/job run and provide a list of input working files (the output of data
plugin post processing components). The plugin takes the data in the working files and exports it to the
destination specified in the RUR configuration file for the specific output plugin.

Data passed to custom output plugins can be optionally configured to be JSON-formatted by adding the
use_json argument to the [global] section of the configuration file and setting it to
True, yes, 1, or enable.

Monitor the System

 163

TIP: If there is an error from an output plugin, the error message appears in the ALPS
log /var/opt/cray/alps/log/apsys on the service node rather than the LLM logs on the SMW.

Output Plugin

#
Copyright (c) 2013 Cray Inc. All rights reserved.
#
Sample output plugin
#
#!/usr/bin/env python
import sys, os
from rur_plugins import rur_output_args

def main():
 apid, jobid, uid, cmdname, inputfilelist, timeout, \
 parg = rur_output_args(sys.argv[1:])

 outfile = open(parg, "a")
 for inputfile in inputfilelist:
 infile = open(inputfile, "r")
 lines = infile.readlines()
 for line in lines:
 outfile.write(line)
 infile.close()
 outfile.close()

Implement a Site-Written RUR Plugin

About this task
For a site written plugin to run, it must be added to the RUR configuration file and enabled. Follow the procedure
to define and configure a new plugin.

Procedure

1. Ensure that the site written plugin is located on a file system that is readable by compute nodes, owned by
root, and not writeable by non-root users.

2. Add a new plugin definition section to the RUR configuration file:

a. If adding a data plugin, the definition section must include: the plugin name, a stage definition (the
complete path to the plugin's data staging script), and a post definition (the complete path to the plugin's
post processing script).

For example, to define the site written data plugin siteplug, the entry within the RUR configuration
would be similar to the following:

The siteplug Data Plugin collects data that is
of particular interest to this site.
Stage - The staging component run by rur_stage on the
compute node
Post - The post-processing component run by rur_post on
the login/mom node
[siteplug]

Monitor the System

 164

stage: /opt/cray/rur/default/bin/siteplug_stage.py
post: /opt/cray/rur/default/bin/siteplug_post.py

b. If adding an output plugin, the definition section must include: the plugin name, an output definition (the
complete path to the output plugin script or binary), and an optional argument.

For example, to define the site written output plugin siteout, the entry within the RUR configuration
would be similar to the following:

The siteout output plugin.
Write RUR output to a text file on the site's huge
archive file system.
[siteout]
output:/opt/cray/rur/site/bin/site_output.py
arg:hsmuser@hsmbackup.site.com:/hsmuser/rurbackup

3. Add the new plugin to either the data plugin or output plugin configuration section, labeled [plugins] or
[outputplugins], respectively. Indicate true to enable or false to disable plugin execution.

This example shows the new siteplug data plugin enabled and the siteout output plugin disabled:

Data Plugins section Configuration
Define the supported Data plugins and enable/disable
them. Plugins defined as "Plugin: False" will not run,
but will be parsed for correct config file syntax.
[plugins]
gpustat: true
taskstats: true
siteplug: true

Output Plugins section Configuration
Define which output plugins are supported, and enable/
disable them. Plugins defined as "Plugin: False" will
not run, but will be parsed for correct config file
syntax.
[outputplugins]
llm: true
file: false
siteout: false

Additional Plugin Examples
This is a set of RUR plugins that report information about the number of available huge pages on each node. The
huge page counts are reported in /proc/buddyinfo. There are two versions of the staging component: one
that reports what is available and the second that reports changes during the application run.

Huge pages data plugin staging component (version A)

#
Copyright (c) 2013 Cray Inc. All rights reserved.
#
This is an RUR plugin that reports information about the number of
available
huge pages on each node. This is reported in /proc/buddyinfo.
#
Each node reports its nid and the number of available pages of
each size.

Monitor the System

 165

#
#!/usr/bin/env python
import sys, os, getopt
from rur_plugins import rur_plugin_args
def main():
 apid, inputfile, outputfile, timeout, pre, post, parg
=rur_plugin_args(sys.argv[1:])
 if outputfile == 0:
 outputfile = "/var/spool/RUR/buddyinfo."+str(apid)
 if (pre==1):
 zero_counters()
 else:
 nidf = open("/proc/cray_xt/nid", "r")
 n = nidf.readlines()
 nid = int(n[0])
 inf = open("/proc/buddyinfo", "r")
 b = inf.readlines()
 sizes = dict([('2M' , 0), ('4M', 0), ('8M', 0), ('16M',
0), ('32M', 0), ('64M', 0)])

 for line in b:
 l = line.split()
 sizes['2M'] += int(l[13])
 sizes['4M'] += int(l[14])
 sizes['8M'] += int(l[15])
 sizes['16M'] += int(l[16])
 sizes['32M'] += int(l[17])
 sizes['64M'] += int(l[18])

 o = open(outputfile, "w")
 o.write("{6} {0} {1} {2} {3} {4}
{5}".format(sizes['2M'],sizes['4M'], \
 sizes['8M'], sizes['16M'], sizes['32M'], sizes['64M'], nid))
 o.close()

if __name__ == "__main__":
 main()

Huge pages data plugin staging component (version B)

#
Copyright (c) 2013 Cray Inc. All rights reserved.
#
This is an RUR plugin that reports information about the number of
available
huge pages on each node. This is reported in /proc/buddyinfo.
#
This plugin records the number of available pages before the job
is launched.
At job completion time it reports the change
#
#!/usr/bin/env python
import sys, os, getopt
from rur_plugins import rur_plugin_args
def main():
 apid, inputfile, outputfile, timeout, pre, post, parg
=rur_plugin_args(sys.argv[1:])
 if outputfile == 0:

Monitor the System

 166

 outputfile = "/var/spool/RUR/buddyinfo."+str(apid)
 if (pre==1):
 inf = open("/proc/buddyinfo", "r")
 b = inf.readlines()
 sizes = dict([('2M' , 0), ('4M', 0), ('8M', 0),
('16M', 0), ('32M', 0), ('64M', 0)])
 for line in b:
 l = line.split()
 sizes['2M'] += int(l[13])
 sizes['4M'] += int(l[14])
 sizes['8M'] += int(l[15])
 sizes['16M'] += int(l[16])
 sizes['32M'] += int(l[17])
 sizes['64M'] += int(l[18])

 o = open("/tmp/buddyinfo_save", "w")
 o.write("{0} {1} {2} {3} {4}
{5}".format(sizes['2M'],sizes['4M'], \
 sizes['8M'], sizes['16M'], sizes['32M'],
sizes['64M']))
 o.close()
 else:
 nidf = open("/proc/cray_xt/nid", "r")
 n = nidf.readlines()
 nid = int(n[0])
 inf = open("/proc/buddyinfo", "r")
 b = inf.readlines()
 sizes = dict([('2M' , 0), ('4M', 0), ('8M', 0),
('16M', 0), ('32M', 0), ('64M', 0)])

 for line in b:
 l = line.split()
 sizes['2M'] += int(l[13])
 sizes['4M'] += int(l[14])
 sizes['8M'] += int(l[15])
 sizes['16M'] += int(l[16])
 sizes['32M'] += int(l[17])
 sizes['64M'] += int(l[18])

 obf = open("/tmp/buddyinfo_save", "r")
 ob = obf.readlines()
 n=0

 obd0 = ob[0]
 obd = obd0.split()

 diff = [
 (int(obd[0]) - sizes['2M']),
 (int(obd[1]) - sizes['4M']),
 (int(obd[2]) - sizes['8M']),
 (int(obd[3]) - sizes['16M']),
 (int(obd[4]) - sizes['32M']),
 (int(obd[5]) - sizes['64M'])
]

 o = open(outputfile, "w")
 # uncomment the following line to get the actual sizes
 #o.write("sizes {6} {0} {1} {2} {3} {4}
{5}\n".format(sizes['2M'],sizes['4M'], \
 sizes['8M'], sizes['16M'], sizes['32M'],
sizes['64M'], nid))

Monitor the System

 167

 o.write("diff {6} {0} {1} {2} {3} {4} {5}".format(diff[0],
diff[1], diff[2], \
 diff[3], diff[4], diff[5], nid))
 o.close()
 os.unlink("/tmp/buddyinfo_save")

if __name__ == "__main__":
 main()

Huge pages data plugin post processing component

#
Copyright (c) 2013 Cray Inc. All rights reserved.
#
This is a RUR postprocessing pluging for the buddyinfo data
collection. It copies the input files to output, adding a
"buddyinfo" label.
#
#!/usr/bin/env python
import sys, os
from rur_plugins import rur_args

def main():
 apid, inputfile, outputfile, timeout = rur_args(sys.argv[1:])
 if outputfile == 0:
 outputfile = inputfile + ".out"

 fin=open(inputfile, "r")
 l = fin.readlines()

 fout=open(outputfile, 'w+')
 for line in l:
 fout.write("buddyinfo {0}".format(line))

if __name__ == "__main__":
 main()

Application Completion Reporting (ACR) to RUR Migration Tips
Cray supplied RUR data plugins collect the same data found in Mazama's Application Completion Reporting
(ACR) feature (deprecated), but RUR does not include a reporting utility like mzreport. When using RUR's llm
output plugin, the type of data reported by mzreport can be extracted from the output files as demonstrated in
the following sections.

ACR Job Reporting
The information provided by mzreport -j and mzreport --job can easily be obtained in the RUR
environment from the log files /var/opt/cray/log/partition-current/messages-date by invoking the
following command:

smw:~ # grep -e "RUR" messages-* |grep -e "jobid: jobid"

Monitor the System

 168

ACR Timespan Reporting
In ACR, mzreport -t and mzreport -T control the span of time over which job completions are reported. The
following example is a simple Python script, timesearch.py, that provides this functionality.

#cat timesearch.py
#!/usr/bin/env python
for rurline in [line for line in open(sys.argv[1], 'r') if 'RUR' in line]:
 if (rurline.split(' ')[1] > sys.argv[2]) and (rurline.split(' ')[1] <
sys.argv[3]):
 print rurline

The script is called with the log file of interest and the desired start/stop time stamps, where start_time and
end_time are formatted as "yyyy-mm-ddThh:mm:ss", as follows:

smw:~ # python ./timesearch.py messages-date "start_time" "end_time"

ACR Exit Code Reporting
The get_exit.py Python script listed here provides a list of the user IDs with the most non-zero exit codes.

cat get_exit.py
#!/usr/bin/env python
import os,sys,re

statre = re.compile("'(\w*):(\w*)',\s*\[('(\w*):(\w*)'(,)?)+\]")
statsre = re.compile("(\w*):(\w*)")
uidre = re.compile("uid:\s*(\w*)")
cnt = {}

for rurline in [line for line in open(sys.argv[1], 'r') if 'RUR' in line]:
 if 'taskstats' in rurline:
 sus = statre.search(rurline)
 status = sus.group()
 stats = statsre.findall(status)
 for stat in stats[1:]:
 if stat[0] != '0':
 uid = int(uidre.findall(rurline)[0])
 if cnt.get(str(uid)):
 cnt[str(uid)] += 1
 else:
 cnt[str(uid)] = 1

x = sorted(cnt, key = cnt.get, reverse=True)
print "uids with the most non-zero exit codes %s" % x[:sys.argv[2]]

The script is called with the log file of interest and the number of user IDs on which to report, as follows:

smw:~ # python ./get_exit.py messages-date num

Application Resource Utilization (ARU) to RUR Migration Tips
Sites that use ARU (deprecated) will have an easy transition to RUR as all of the data provided in ARU is
available in RUR, but in a slightly different format.

This example shows that the following ARU output is available by enabling the taskstats
plugin's default behavior:

Monitor the System

 169

ARU output:

2012-11-26T08:52:37.802113-06:00 c0-0c0s0n2 apsys 19864
p0-20121126t060549 -
apid=6240364, Finishing, user=8855, batch_id=114.sdb, exit_code=0,
exitcode_array=0,
exitsignal_array=0, utime=0 stime=0 maxrss=3168 inblocks=0 outblocks=0
cpus=8
start=Mon Nov 26 08:52:37 2012 stop=Wed Dec 31 18:00:00 1969
cmd=growfiles
RUR taskstats default output:

2013-11-02T11:09:49.457770-05:00 c0-0c1s1n2 RUR 2417
p0-20131101t153028 [RUR@34]
uid: 10973, apid: 86989, jobid: 0, cmdname: /lus/esfs/overby/
rur01.2338/./CPU01-2338
plugin: taskstats ['utime', 10000000, 'stime', 0, 'max_rss', 940,
'rchar', 107480,
'wchar', 90, 'exitcode:signal', ['0:0'], 'core', 0]

This example shows that the following ARU output is available by enabling the RUR timestamp
plugin.

ARU output:

2012-11-26T08:53:15.618239-06:00 c0-0c0s0n2 apsys 20604
p0-20121126t060549 -
apid=6240378, Finishing,user=8855, batch_id=121.sdb, exit_code=0,
exitcode_array=0,
exitsignal_array=0, utime=0 stime=0 maxrss=3152 inblocks=0 outblocks=0
cpus=1
start=Mon Nov 26 08:52:51 2012 stop=Wed Dec 31 18:00:00 1969
cmd=close2_01
RUR timestamp plugin output:

2013-08-30T14:32:07.593469-05:00 c0-0c0s5n2 RUR 12882
p3-20130830t074847 [RUR@34] uid: 0,
apid: 6640, jobid: 0, cmdname: /bin/sleep plugin: timestamp APP_START
2013-08-30T14:31:46CDT APP_STOP 2013-08-30T14:32:06CDT

CSA to RUR Migration Tips
The Cray supplied RUR data plugin taskstats, when enabled and configured for extended accounting data,
collects all of the data in the CSA process accounting record with the exception of ac_sbu, the system billing
units.

RUR extended taskstats output

This example shows RUR extended taskstats output:

2013-10-18T10:29:38.285378-05:00 c0-0c0s1n1 RUR 24393
p1-20131018t081133 [RUR@34] uid: 12345, apid: 370583, jobid: 0,
cmdname: /bin/cat, plugin: taskstats ['btime', 1386061749, 'etime',
8000, 'utime', 0, 'stime', 4000, 'coremem', 442, 'max_rss', 564,

Monitor the System

 170

'max_vm', 564, 'pgswapcnt', 63, 'minfault', 15, 'majfault', 48,
'rchar', 2608, 'wchar', 686, 'rcalls', 19, 'wcalls', 7, 'bkiowait',
1000, 'exitcode:signal', [0], 'core', 0]

RUR does not include the report generation capabilities provided by CSA, however, the type of data reported by
CSA can be extracted from the messages files on the SMW. The following is a short Python script for searching
through these files. It allows filtering for group ID (-g), job ID (-j), user ID (-u), and system time exceeding a
certain value (-s); similar to the csacom filters -g, -j, -u, -O, respectively.

#!/usr/bin/env python
Usage: filter-messages [-g gid] [-j jid] [-u uid] [-s stime] -f messages-date
import os,sys,re,getopt,collections

def getcmdlineargs(args):
 arglist = collections.defaultdict(lambda: 0, {})
 options, remainder = getopt.getopt(args,
 'g:j:u:s:f:',
 ['gid=', 'jid=', 'uid=', 'Stimeexceeds=', 'filename='])

 for opt,arg in options:
 if opt in ('-g', '--gid'):
 arglist['gid'] = arg
 if opt in ('-j', '--jid'):
 arglist['jid'] = arg
 if opt in ('-u', '--uid'):
 arglist['uid'] = arg
 if opt in ('-s', '--Stimeexceeds'):
 arglist['stimeexceeds'] = arg
 if opt in ('-f', '--filename'):
 arglist['filename'] = arg
 return arglist

def reeqgt(tag, restr, rurline, eq):
 retre = re.compile("'" + str(restr) + "'," + "\s*(\w*)")
 field = retre.findall(rurline)
 if field == []:
 return False
 if eq and tag == field[0]:
 return True
 elif (not eq) and tag <= field[0]:
 return True
 return False

arglist = getcmdlineargs(sys.argv[1:])
if not arglist['filename']:
 exit(1)
for rurline in [line for line in open(arglist['filename'], 'r') if 'RUR' in
line]:
 if 'taskstats' in rurline:
 if arglist['jid'] and not (reeqgt(arglist['jid'], 'jid', rurline, 1)):
 continue
 if arglist['uid'] and not (reeqgt(arglist['uid'], 'uid', rurline, 1)):
 continue
 if arglist['gid'] and not (reeqgt(arglist['gid'], 'gid', rurline, 1)):
 continue
 if arglist['stimeexceeds'] and not (reeqgt(arglist['stimeexceeds'],
'stime',
 rurline, 0)):
 continue

Monitor the System

 171

 print "%s" % rurline,

Monitor the System

 172

Modify an Installed System

Disable Boot-node Failover

About this task
For the examples in this procedure, the primary boot node is c0-0c0s0n1 and the backup boot node is
c2-0c1s7n1.

Procedure

1. Halt the primary and backup boot nodes.

crayadm@smw:~> xtcli halt c0-0c0s0n1,c2-0c1s7n1

2. Update the default boot configuration.

crayadm@smw:~> xtcli boot_cfg update -b c0-0c0s0n1,c0-0c0s0n1

3. Update the HSS daemon.

crayadm@smw:~> xtdaemonconfig c0-0c0s0 stonith=false

The Node ARP Management Daemon (rca_arpd)
The node ARP management daemon (rca_arpd) manages the system ARP cache. This daemon deletes the IP
to hardware address (ARP) mappings for failed nodes and reads them when they become available. It only
manages ARP mappings on the high speed interconnect network and not external network interfaces such as
Ethernet. If failover is configured, rca_arpd also manages ARP mappings for the backup boot or SDB node.
When a node failed event from the primary boot or SDB node is received, rca_arpd updates the ARP mapping
for the boot or SDB node virtual IP address to point to the backup node.

This functionality is included in the cray-rca-compute and cray-rca-service RPMs and is installed by
default.

Create Logical Machines for Cray XC Series Systems
Configure a logical machine (sometimes known as a system partition) with the xtcli part_cfg command.
Partition IDs are predefined as p0 to p31. The default partition p0 is reserved for the complete system and is no
longer a valid ID once a system has been partitioned.

Modify an Installed System

 173

systems can have one or more cabinets. Systems with one or two compute cabinets scale at the blade level. For
larger liquid-cooled systems, every cabinet is fully populated (with 3 chassis), with the possible exception of the
last cabinet.

For systems, groups are made up of two-cabinet pairs starting from the beginning. The last group may not be
completely full, and it can consist of 1 to 6 fully-populated chassis.

Multiple Group Systems
When a system contains multiple groups, the system administrator can partition the system at a per-group level of
granularity. Groups do not need to be sequentially positioned in a multi-group partition.

If a system has more than 2 cabinets, every partition can consist of any number of groups; the last group (or
remainder of system chassis that is not part of a full 6-chassis group) in the system should be considered a group
whether it is fully-populated or not in this partitioning context.

Single Group, Multiple-chassis Systems
When a system contains between two and six fully-populated chassis, then the administrator can partition the
system at a per-chassis level of granularity. Each partition must be at least one full chassis, and a chassis cannot
be shared between partitions. Chassis do not need to be sequentially positioned in a multi-chassis partition.

Single Chassis Systems
When a system is composed of a single fully-populated chassis, each slot must be in the same partition with its
corresponding even/odd pair, because even/odd pair nodes (for example, slot 0 and slot 1, or slot 8 and slot 9)
share optical connections and therefore must be in the same partition.

There are 16 slots (or blades) in a single chassis, making 8 even/odd slot pairs, and a maximum of 8 partitions.
Single chassis systems can have any combination of even/odd slot pairs (e.g., 4-4, 6-2, 4-2-2, 2-2-1-1-1-1), and
even/odd slot pairs do not need to be sequentially positioned in a multiple slot pair partition. In order for a partition
to be bootable, it must have a boot node, an SDB node, an I/O node, and a login node.

Configure a Logical Machine
The logical machine can have one of three states:

● EMPTY - not configured

● DISABLED - configured but not activated

● ENABLED - configured and activated

When a partition is defined, its state changes to DISABLED. Undefined partitions are EMPTY by default.

The xtcli part_cfg command
Use the xtcli part_cfg command with the part_cmd option (add in the following example) to identify the
operation to be performed and the part_option (-m, -b, -d and -i) to specify the characteristics of the logical
machine. The boot image may be a raw device, such as /raw0, or a file.

Create a logical machine with a boot node and SDB node specifying the boot image path

● When using a file for the boot image, the same file must be on both the SMW and the
bootroot at the same path.

Modify an Installed System

 174

● For the logical machine to be bootable, both the boot node and SDB node IDs must be
specified.

crayadm@smw:~> xtcli part_cfg add p2 -m c0-0,c0-1,c0-2,c0-3 \
-b c0-0c0s0n0 -d c0-0c0s2n1 -i /bootimagedir/bootimage

To watch HSS events on the specified partition, execute the xtconsumer -p partition_name command.

To display the console text of the specified partition, execute the xtconsole -p partition_name command.

For more information, see the xtcli_part(8), xtconsole(8), and xtconsumer(8) man pages.

Boot a Logical Machine
The xtbootsys --partition pN option enables the administrator to indicate which logical machine (partition)
to boot. If a partition name is not specified, the default partition p0 (component name for the entire system) is
booted. Alternatively, if a partition name is not specified and the CRMS_PARTITION environment variable is
defined, this variable is used as the default partition name. Valid values are in the form pN, where N ranges from 0
to 31.

xtbootsys manages a link from /var/opt/cray/log/partition-current to the current sessionid
directory for that partition, allowing changes to /var/opt/cray/log/p1-current, for example.

Configure the NFS client to Mount the Exported Lustre File System

About this task
Depending on the site client system, the configuration may be different. This procedure contains general
information that will help configure the client system to properly mount the exported Lustre file system. Consult
the client system documentation for specific configuration instructions.

Procedure

1. As root, verify that the nfs client service is started at boot.

2. Add a line to the /etc/fstab file to mount the exported file system. The list below describes various
recommended file system mount options. For more information on NFS mount options, see the mount(8)
and nfs(5) man pages.

server@network:/filesystem /client/mount/point lustre file_system_options 0 0
Recommended file system mount options.

rsize=1048576,wsize=1048576 Set the read and write buffer sizes from the server at 1MiB.
These options match the NFS read/write transaction to the
Lustre filesystem block size, which reduces cache/buffer
thrashing on the service node providing the NFS server
functionality.

soft,intr Use a soft interruptible mount request.

Modify an Installed System

 175

async Use asynchronous NFS I/O. Once the NFS server has
acknowledged receipt of an operation, let the NFS client
move along even though the physical write to disk on the
NFS server has not been confirmed. For sites that need end-
to-end write-commit validation, set this option to sync
instead.

proto=tcp Force use of TCP transport—this makes the larger rsize/
wsize operations more efficient. This option reduces the
potential for UDP retransmit occurrences, which improves
end-to-end performance.

relatime,timeo=600,local_lock=none Lock and time stamp handling, transaction timeout at 10
minutes.

nfsvers=3 Use NFSv3 specifically. NFSv4 is not supported at this time.

3. Mount the file system manually or reboot the client to verify that it mounts correctly at boot.

Repurpose Compute Nodes
When a compute node is configured for a non-compute role, that node is a repurposed compute node. Compute
nodes can be repurposed to become service nodes for use as tier2 servers (recommended) or in other capacities.
Compute nodes should not be repurposed as service nodes for services that require external connectivity, such
as dynamically shared libraries (DSL).

NOTE: (SMW HA only) For SMW HA systems, perform this step only on the first SMW. This procedure is
not required on the second SMW.

Use the xtcli mark_node command to repurpose a node in a compute blade. In this example, two compute
nodes are being repurposed as service nodes and marked accordingly in the shared database.

crayadm@smw> xtcli mark_node service c0-0c0s2n0,c0-0c0s2n1
Note that service nodes can be repurposed as compute nodes as well. In that case, the command would be
xtcli mark_node compute.

Node Attributes
Users can control the selection of the compute nodes on which to run their applications and can select nodes on
the basis of desired characteristics (node attributes). This allows a placement scheduler to schedule jobs based
on the node attributes.

A user invokes the cnselect command to specify node-selection criteria. The cnselect script uses these
selection criteria to query the table of node attributes in the SDB and returns a node list to the user based on the
results of the query. When launching the application, the user includes the node list using the aprun -L
node_list option as described on the aprun(1) man page. The ALPS placement scheduler allocates nodes
based on this list.

To meet specific user needs, the administrator can modify the cnselect script. For additional information about
the cnselect script, see the cnselect(1) man page.

Modify an Installed System

 176

View and Temporarily Set Node Attributes
Use the xtprocadmin command to view current node attributes. The xtprocadmin -A option lists all attributes
of selected nodes. The xtprocadmin -a attr1,attr2 option lists selected attributes of selected nodes.

An administrator can use the xtprocadmin -a attr=value command to temporarily set certain site-specific
attributes. Using the xtprocadmin -a attr=value command to set certain site-specific attributes is not
persistent across reboots. Attribute settings that are intended to be persistent across reboots (such as labels)
must be specified in the attr.defaults file.

NOTE: For compute nodes, xtprocadmin changes to attributes require restarting the apbridge
daemon on the boot node in order for ALPS to detect changes that the xtprocadmin command has
made to the SDB. Restarting the other ALPS components (for example, on the SDB node or on the login
node if they are separate nodes) is not necessary. To restart apbridge, log into the boot node as root
and execute the following command:

boot:~ # /etc/init.d/alps restart
For example, the following command creates a new label1 attribute value for the compute node whose NID is
350. The xtprocadmin command must be executed by root from a service node and the SDB must be
running:

boot:~ # xtprocadmin -n 350 -a label1=eedept

Connected
NID (HEX) NODENAME TYPE LABEL1
350 0x15e c1-0c1s0n0 compute eedept

Then restart the apbridge daemon on the boot node in order for ALPS to detect changes that the
xtprocadmin command has made to the SDB.

boot:~ # /etc/init.d/alps restart

The XTAdmin Database segment Table
The XTAdmin database contains a segment table that supports the memory affinity optimization tools for
applications and CPU affinity options for all Cray compute nodes. The CPU affinity options apply to all Cray
multicore compute nodes.

The segment table is similar to the attributes table but differs in that a node may have multiple segments
associated with it; the attributes table provides summary information for each node.

In order to address the application launch and placement requirements for compute nodes with two or more
NUMA nodes, the Application Level Placement Scheduler (ALPS) requires additional information that
characterizes the intranode topology of the system. This data is stored in the segment table of the XTAdmin
database and acquired by apbridge when ALPS is started, in much the same way that node attribute data is
acquired.

The segment table contains the following fields:

node_id The node identifier that maps to the nodeid field of the attributes table and processor_id
field of the processor table.

socket_id Contains a unique ordinal for each processor socket.

Modify an Installed System

 177

die_id Contains a unique ordinal for each processor die; with this release, die_id is 0 in the segment
table and is otherwise unused (reserved for future use).

numcores The number of integer cores per node; in systems with accelerators this only applies to the host
processor (CPU).

coremask The processor core mask. The coremask has a bit set for each core of a CPU. 24-core nodes will
have a value of 16777215 (hex 0xFFFFFF).

coremask is deprecated and will be removed in a future release.

mempgs Represents the amount of memory available, in Megabytes, to a single segment.

The /etc/sysconfig/xt file contains SDBSEG field, which specifies the location of the segment table file; by
default, SDBSEG=/etc/opt/cray/sdb/segment.

To update the segment table, use the following service database commands:

● xtdb2segment, which converts the data into an ASCII text file that can be edited

● xtsegment2db, which writes the data back into the database file

For more information, see the xtdb2segment(8) and xtsegment2db(8) man pages.

After manually updating the segment table, log on to any login node or the SDB node as root and execute the
apmgr resync command to request that ALPS reevaluate the configuration node segment information and
update its information.

If ALPS or any portion of the feature fails in relation to segment scheduling, ALPS reverts to the standard
scheduling procedure.

Reuse One or More Previously-failed HSN Links

About this task
To integrate failed links back into the HSN configuration, the xtwarmswap command may be invoked with one of
the following:

● -s LCB, ..., specifying the list of LCBs to bring back up

● -s all, to bring in all available LCBs

● -s none, to cause a reroute without changing the LCBs that are in use

Procedure

1. Execute an xtwarmswap -s LCB_names -p partition_name to tell the system to reroute the HSN
using the specified set of LCBs in addition to those that are currently in use.

Doing so will clear the alert flags on the specified LCBs automatically. If the warm swap fails, the alert flag will
be restored to the specified LCBs.

2. Execute an xtwarmswap -s all -p partition_name command to tell the system to reroute the HSN
using all available links.

The xtwarmswap command results in xtnlrd performing the same link recovery steps as for a failed link, but
with two differences: no alert flags are set, and an init_new_links and a reset_new_links step are

Modify an Installed System

 178

performed to initialize both ends of any links to be used, before new routes are asserted into the Aries™ routing
tables.

The elapsed time for the warm swap synchronization operation is typically about 30 seconds.

Add or Remove a High-speed Network Cable from Service
To specify a high-speed network (HSN) cable to add or remove from service, use the xtwarmswap --add-
cable cable command or the xtwarmswap --remove-cable cable command, respectively.

These options provide the ability to replace a single cable without removing blades or shutting down the system.
The routing of the Cray HSN will be updated to route around the removed cable.

The --add-cable and --remove-cable options are not supported if more than a single active partition exists
in the system. Do not specify the -p|--partition option when using these options. In addition, do not use the
--linktune option when using the --remove-cable option.

Remove a Compute Blade from Service While the System is Running

About this task
A compute blade can be physically removed for maintenance or replacement while the system is running;
however, the applications using the nodes on the blade to be removed must be allowed to drain, or be killed
beforehand.

Before starting this warm swap procedure, verify that the proposed system configuration is routable. Doing this in
advance of idling the nodes on the blades to be removed provides assurance that a valid set of nodes is being
taken out of service before affecting the system. Log on to the SMW as crayadm and execute the following
command, where pN is the partition from which the blades are being removed:

smw:~> rtr -S --id test --remove=blade_ID pN
CAUTION: This procedure warm swaps a compute blade from service while the system is running. Do
not warm swap service blades, unless the blade is an I/O base blade (IBB) that has InfiniBand cards and
is an LNET blade. Before attempting to warm swap any service blade, it is advisable to consult with a
Cray service representative.

Procedure

1. Log on to the login node as root.

2. Ensure that the batch system or Slurm marks the blade as unavailable for scheduling.

3. Execute the following command to mark the nodes on the compute blade as admindown. This tells ALPS not
to launch new applications onto them. (This command may also be executed from the boot node as user
root.)

login:~ # xtprocadmin -k s admindown -n blade_ID

Modify an Installed System

 179

The arguments to the -n option should be the NID values for the nodes on the blade being removed, as
shown by executing xtprocadmin | grep bladename.

For example, to find the NID values for the nodes on the blade c0-0c0s2 being removed:

login:~ # xtprocadmin | grep c0-0c0s2
 8 0x8 c0-0c0s2n0 compute up batch
 9 0x9 c0-0c0s2n1 compute up batch
 10 0xa c0-0c0s2n2 compute up batch
 11 0xb c0-0c0s2n3 compute up batch

4. From the login node, execute the apstat -n command or the appropriate Slurm command to determine if
any applications are running on the node marked admindown. This example shows that apid 675722 is
running on all nodes of blade c0-0c0s2.

login:~ # apstat -n | egrep -w 'NID|8|9|10|11
 8 XT UP B 32 32 1 4K 16777216 8388608 262144 1 675722
 9 XT UP B 32 32 1 4K 16777216 8388608 262144 1 675722
 10 XT UP B 32 32 1 4K 16777216 8388608 262144 1 675722
 11 XT UP B 32 32 1 4K 16777216 8388608 262144 1 675722

5. Wait until the applications using the nodes on the blade finish or use the apkill apid command to kill the
application.

6. Log on to the SMW as crayadm.

7. Execute the xtcli halt blade_ID command to halt the blade.

smw:~> xtcli halt blade_ID

8. Execute the xtwarmswap --remove blade_ID command to remove the compute blade from service. The
routing of the Cray HSN will be updated to route around the removed blade.

The --remove stage of the xtwarmswap process uses the Aries™ resiliency infrastructure and takes about
30 seconds to complete.

smw:~> xtwarmswap --remove blade_ID

9. Execute the xtcli power down blade_ID command, which helps to identify which blade to pull (all lights
are off on the blade).

smw:~> xtcli power down blade_ID

10. Physically remove the blade, if desired. To complete this step, see the hardware maintenance and
replacement procedures documentation for the Cray system, or contact a Cray Service representative.

CAUTION: If a blade cannot be reinstalled in the empty slot within 2 minutes, install a filler blade
assembly in the empty slot; failure to do so can cause other blades in the system to overheat.

Modify an Installed System

 180

Return a Compute Blade into Service

About this task
After a blade has been repaired or when a replacement blade is available, use the following procedure to return
the blade into service.

Procedure

1. Physically insert the blade into the slot. To complete this step, see the hardware maintenance and
replacement procedures documentation for the Cray system, or contact a Cray Service representative.

2. On the SMW, execute the xtcli power up blade_ID command.

smw:~> xtcli power up blade_ID

3. Ensure that the blade is ready by entering the following command, and wait until the command returns the
correct response:

smw:~> xtalive blade_ID
The expected response was received.

4. Verify the status of the blade controller to ensure that its "Comp state" is "up" and that there are no flags set.

smw:~> xtcli status -t bc blade_ID

5. Bounce the blade.

smw:~> xtbounce blade_ID

6. If the blade or PDC type is different, su to root, execute the xtdiscover command, and then exit root.
Otherwise, skip this step.

smw:~> su - root
smw:~> xtdiscover
smw:~> exit
smw:~>

7. Execute the xtzap --blade command to update the BC BIOS, node BIOS, microcontroller, and FPGAs as
required.

smw:~> xtzap --blade blade_cname

8. Execute the xtbounce --linkdown blade_ID command to prepare the blade for the warm swap (takes
down all HSN links on the blade).

smw:~> xtbounce --linkdown blade_ID

9. Add the blade(s) to the HSN by executing the xtwarmswap --add blade_ID,... command. This
command activates routing on the newly installed blade and automatically executes a mini-xtdiscover
command once the warm swap steps have completed successfully. No additional manual invocation of
xtdiscover, which gets the new hardware attributes from the added blades, is necessary.

Modify an Installed System

 181

smw:~> xtwarmswap --add blade_ID
Because the xtwarmswap --add command initializes the added blades, the time to return the blades back
to service is about 10 minutes, including the time to initialize the blades, run the BIOS on the nodes, and
initialize the links to the blades.

10. Boot the nodes on the blade(s) by executing the xtcli boot CNL0 blade_ID,... command on the
SMW.

smw:~> xtcli boot CNL0 blade_ID

11. As root on the login node, execute the following command to mark the nodes on the compute blade as up.
This tells ALPS that new applications may be launched onto those nodes. (This command may also be
executed from the boot node as user root.)

login:~ # xtprocadmin -k s up -n blade_ID

12. Verify that the blade is up.

login:~ # xtprocadmin | grep blade_ID

13. Ensure that the batch system or Slurm marks the blade as available for scheduling.

State Manager LLM Logging
The log data from the State Manager is written to /var/opt/cray/log/sm-yyyymmdd. The default setting for
the State Manager is to enable LLM logging. If LLM or craylog failures occur, State Manager logging is not
disrupted. Logging then reverts to behavior that is very similar to legacy State Manager logging, which is also
used when State Manager LLM logging is turned off.

To disable LLM logging for the State Manager, add the -L noption to
the /opt/cray/hss/default/bin/rsms script entry:

sm=(/opt/cray/hss/default/bin/state_manager sm "-L n")

Boot Manager LLM Logging
The log data from the Boot Manager is written to /var/opt/cray/log/bm-yyyymmdd. If the -L command line
option is used with the bootmanager command or if LLM is not enabled, Boot Manager reverts to legacy logging,
which writes log data to /var/opt/cray/log/bm.out. This is a less satisfactory logging method because each
Boot Manager restart creates a new log and moves the previous log to bm.out.1. A third restart can possibly
cause recent log data to be lost.

Configure Node Health Checker Tests
NHC is automatically invoked by ALPS upon the termination of an application. ALPS passes a list of CNL
compute nodes associated with the terminated application to NHC. NHC performs specified tests to determine if
compute nodes allocated to the application are healthy enough to support running subsequent applications. If not,
it removes any compute nodes incapable of running an application from the resource pool. The CLE installation

Modify an Installed System

 182

and upgrade processes automatically install and enable NHC software; there is no need to change any
installation configuration parameters or issue any commands.

Use the cray_node_health_worksheet.yaml file or configurator to configure the NHC tests, which test CNL
compute node functionality. All tests that are enabled will run when NHC is in either Normal Mode or in Suspect
Mode. Tests run in parallel, independently of each other, except for the Free Memory Check test, which
requires that the Application Exited Check test passes before the Free Memory Check test begins.

The xtcheckhealth binary runs the NHC tests; for information about the xtcheckhealth binary, see the
intro_NHC(8) and xtcheckhealth(8) man pages.

The NHC tests are listed below. In the default NHC configuration file, each test that is enabled starts with an
action of admindown, except for Free Memory Check, which starts with an action of log.

Also read important test usage information in Guidance for the Accelerator Test on page 185, Guidance for the
Application Exited Check and Apinit Ping Tests on page 186, Guidance for the Filesystem Test on page 186,
Guidance for the Hugepages Test on page 187, and Guidance for the NHC Lustre File System Test on page
187.

Accelerator Tests the health of any accelerators present on the node. It is an application set test and
should not be run in the reservation set.

The global accelerator test (gat) script detects the type of accelerator(s) present on the
node and then launches a test specific to the accelerator type. The test fails if it is
unable to run successfully on the accelerator, or if the amount of allocated memory on
the accelerator exceeds the amount specified using the gat -m argument.

Default: enabled

Application
Exited Check

Verifies that any remaining processes from the most recent application have terminated.
It is an application set test and should not be run in the reservation set because an
application is not associated with a reservation cancellation.

The Application Exited Check test checks locally on the compute node for
processes running under the ID of the application (APID). If processes are running,
NHC waits a period of time (defined in the configuration file) to determine if the
application processes exit properly. If the process does not exit within that time, this test
fails.

Default: enabled

Apinit Log and
Core File
Recovery

A plugin script to copy apinit core dump and log files to a login/service node. It is an
application set test.

Default: not enabled. Apinit Log and Core File Recovery should not be
enabled until a destination directory is determined and specified in the NHC
configuration file.

Apinit Ping Verifies that the ALPS daemon is running on the compute node and is responsive. It is
an application set test.

The Apinit Ping test queries the status of the apinit daemon locally on each
compute node; if the apinit daemon does not respond to the query, then this test fails.

Default: enabled

DataWarp A plugin script to check that any reservation-affiliated DataWarp mount points have
been removed. Note that the plugin can only detect a problem after the last reservation
on a node completes.

Modify an Installed System

 183

Default: disabled

Free Memory Check Examines how much memory is consumed on a compute node while applications are
not running. Use it only as a reservation test because an application within a reservation
may leave data for another application in a reservation. If run in the application set,
Free Memory Check could consider data that was intentionally left for the next
application to be leaked memory and mark the node admindown. Run the Free
Memory Check only after the Reservation test passes successfully.

Default: enabled (action is log only)

Filesystem Ensures that the compute node is able to perform simple I/O to the specified file
system. It is configured as an application set test in the default configuration, but it can
be run in the reservation set. For a file system that is mounted read-write, the test
performs a series of operations on the file system to verify the I/O. A file is created,
written, flushed, synced, and deleted. If a mount point is not explicitly specified, the
mount point(s) from the compute node /etc/fstabs file will be used and a
Filesystem test will be created for each mount point found in the file. If a mount point
is explicitly specified, then only that file system will be checked. An administrator can
specify multiple FileSystem tests by placing multiple Filesystem lines in the
configuration file. For example, one line could specify the implicit Filesystem test, and
the next line could specify a specific file system that does not appear in /etc/fstab.
This could continue for any and all file systems.

When enabling the Filesystem test, an administrator can exclude mount points that
should not be tested using the excluding setting in the configuration to list mount
points that should not be tested by the Filesystem test. This allows intentionally
excluding specific mount points even though they appear in the fstab file. This action
prevents NHC from setting nodes to admindown because of errors on relatively benign
file systems. Explicitly specified mount points cannot be excluded in this fashion; if they
should not be checked, then they should simply not be specified.

The Filesystem test creates its temporary files in a subdirectory
(.nodehealth.fstest) of the file system root. An error message is written to the
console when the unlink of a file created by this test fails.

Default: enabled

Hugepages Calculates the amount of memory available in a specified page size with respect to a
percentage of /proc/boot_freemem. It is a reservation set test.

This test will continue to check until either the memory clears up or the time-out is
reached. The default time-out is 300 seconds.

Default: disabled

Sigcont Plugin Sends a SIGCONT signal to the processes of the current APID. It is an application set
test.

Default: disabled

Plugin Allows scripts and executables not built into NHC to be run, provided they are
accessible on the compute node. .

Default: disabled so that local configuration settings may be used

Modify an Installed System

 184

ugni_nhc_plugins Tests the User level Gemini Network Interface (uGNI) on compute nodes. It is a
reservation set test and an application set test. By extension, testing the uGNI interface
also tests the proper operation of parts of the network interface card (NIC). The test
sends a datagram packet out to the node's NIC and back again.

Reservation checks for the existence of the /proc/reservations/rid directory, where rid is
the reservation ID. It is a reservation set test, and should not be run in the application
set.

If this directory still exists, the test will attempt to end the reservation and then wait for
the specified timeout value for the directory to disappear. If the test fails and Suspect
Mode is enabled, NHC enters Suspect Mode. In Suspect Mode, Reservation
continues running, repeatedly requesting that the kernel clean up the reservation, until
the test passes or until Suspect Mode times out. If the directory does not disappear in
that time, the test prints information to the console and exits with a failure.

Default: enabled with a timeout value of 300 seconds

CCM plugin validates the cleanup of a cluster compatibility mode (CCM) environment at the end of a
reservation. It is a reservation set test, and it will not run if it is misconfigured as an
application test.

This test runs on a compute node only when /var/crayccm is detected. The test
removes the /var/lib/{empty,debus} directories, unmounts CCM mount points if
they still exist, and unmounts /dsl/dev/random and /dsl/dev/pts. If the
unmounts are successful, the test removes the /var/crayccm, /var/lib/rpcbind,
and /var/spool/{PBS,torque} directories.

The CCM plugin is not included in a site's NHC configuration file. Administrators must
add the test to their configuration in order to use it. See the
cray_node_health_worksheet.yaml file for CCM plugin settings to copy into a
site's NHC configuration file.

Individual tests may appear multiple times in the configuration, with different variable values. Every time a test is
specified, NHC will run that test. This means if the same line is specified five times, NHC will try to run that same
test five times. This functionality is mainly used in the case of the Plugin test, allowing the administrator to
specify as many additional tests as have been written for the site, or the Filesystem test, allowing the
adminstrator to specify as many additional file systems as wanted. However, any test can be specified to run any
number of times. Different parameters and test actions can be set for each test. For example, this could be used
to set up hard limits and soft limits for the Free Memory Check test. Two Free Memory Check tests could be
specified in the configuration file; the first test configured to only warn about small amounts of non-free memory,
and the second test configured to admindown a node that has large amounts of non-free memory. See the
cray_node_health_worksheet.yaml file for configuration information.

Guidance for the Accelerator Test
This test uses the global accelerator test (gat) script (/opt/cray/nodehealth/default/bin/gat.sh) to
first detect the accelerator type and then launch the test specific to that type of accelerator.

The gat script supports two arguments for NVIDIA GPUs:

-mmaximum_memory_size Specify the maximum_memory_size as either a kilobyte value or a percentage of
total memory. For example, -m 100 specifies that no more than 100 kilobytes of
memory can be allocated, while -m 10% specifies that no more than 10 percent of
memory can be allocated.

Modify an Installed System

 185

In the default NHC configuration file, the specified memory size is 10%.

-r Perform a soft restart on the GPU and then rerun the test. In the default NHC
configuration file, the -r argument is specified.

The gat script has the following options for Intel Xeon Phi:

-M kilobytes or -M n% This option works exactly as the -m option for the NVIDIA GPUs.

-c Specifies the minimum number of cores that must be active on the Xeon Phi for the
test to pass. If -c is omitted, the minimum number of active cores required to pass the
test is the total number of cores on the Xeon Phi.

Guidance for the Application Exited Check and Apinit Ping Tests
These two tests must be enabled and both tests must have their action set as admindown or die; otherwise,
NHC runs the risk of allowing ALPS to enter a live-lock. Only specify the die action when the
advanced_features control variable is turned off.

ALPS must guarantee two conditions about the nodes in a reservation before releasing that reservation:

● that ALPS is functioning on the nodes

● that the previous application has exited from the nodes

Either those two conditions are guaranteed or the nodes must be set to some state other than up. When either
ALPS has guaranteed these two conditions about the nodes or the nodes have been set to some state other than
up, then ALPS can release the reservation.

These NHC tests guarantee two conditions:

● Apinit_ping guarantees that ALPS is functioning on the nodes

● Application_Exited_Check guarantees that the previous application has exited from the nodes

If either test fails, then NHC sets the nodes to suspect state if Suspect Mode is enabled; otherwise, NHC sets
the nodes to admindown or unavail. Therefore, either the nodes pass these tests or the nodes are no longer in
the up state. In either case, ALPS is free to release the reservation and the live-lock is avoided. Note that this only
happens if the two tests are enabled and their action is set as admindown or die. The log action does not
suffice because it does not change the state of the nodes. If either test is disabled or has an action of log, then
ALPS may live-lock. In this live-lock, ALPS will call NHC endlessly.

Guidance for the Filesystem Test
The NHC Filesystem test can take an explicit argument (the mount point of the file system) or no argument. If
an argument is provided, the Filesystem test is referred to as an explicit Filesystem test. If no argument is
given, the Filesystem test is referred to as an implicit Filesystem test.

The explicit Filesystem test will test the file system located at the specified mount point.

The implicit Filesystem test will test each file system listed in the /etc/fstab file on each compute node. The
implicit Filesystem test is enabled by default in the NHC configuration file.

The Filesystem test will determine whether a file system is mounted read-only or read-write. If the file system is
mounted read-write, then NHC will attempt to write to it. If it is mounted read-only, then NHC will attempt to read
the directory entities "." and ".." in the file system to guarantee, at a minimum, that the file system is readable.

Some file systems are mounted on the compute nodes as read-write file systems, while their underlying
permissions are read-only. As an example, for an auto-mounted file system, the base mount-point may have read-

Modify an Installed System

 186

only permissions; however, it could be mounted as read-write. It would be mounted as read-write, so that the
auto-mounted sub-mount-points could be mounted as read-write. The read-only permissions prevent tampering
with the base mount-point. In a case such as this, the Filesystem test would see that the base mount-point had
been mounted as a read-write file system. The Filesystem test would try to write to this file system, but the
write would fail due to the read-only permissions. Because the write fails, the Filesystem test would fail, and
NHC would incorrectly decide that the compute node is unhealthy because it could not write to this file system.
For this reason, file systems that are mounted on compute nodes as read-write file systems, but are in reality
read-only file systems, should be excluded from the implicit Filesystem test.

The administrator can exclude tests by adding an "Excluding: file system mount point" entry in the NHC
configuration file. See the NHC configuration file for further details and an example.

A file system is deemed a critical file system if it is needed to run applications. All systems will likely need at least
one shared file system for reading and writing input and output data. Such a file system would be a critical file
system. File systems that are not needed to run applications or read and write data would be deemed as
noncritical file systems. The administrator must determine the criticality of each file system.

Cray recommends the following:

● Exclude noncritical file systems from the implicit Filesystem test. See the NHC configuration file for further
details and an example.

● If there are critical file systems that do not appear in the /etc/fstab file on the compute nodes (such file
systems would not be tested by the implicit Filesystem test), these critical file systems should be checked
through explicit Filesystem tests. Add explicit Filesystem tests to the NHC configuration file by providing
the mount point of the file system as the final argument to the Filesystem test. See the NHC configuration
file for further details and an example.

● If a file system that is mounted as read-write but it has read-only permissions, exclude it from the implicit
Filesystem test. NHC does not support such file systems.

Guidance for the Hugepages Test
The Hugepages test runs the hugepages_check command, which supports two arguments:

-t threshold Use this argument to specify the threshold as a percentage of /proc/boot_freemem. If
this test is enabled and this argument is not supplied, the default of -t 90 is used.

-s size Specify the hugepage size. The valid sizes are 2, 4, 8, 16, 32, 64, 128, 256, and 512. If this
test is enabled and this argument is not supplied, the default of -s 2 is used.

Guidance for the NHC Lustre File System Test
The Lustre file system has its own hard time-out value that determines the maximum time that a Lustre recovery
will last. This time-out value is called RECOVERY_TIME_HARD, and it is located in the file system's fs_defs file.
The default value for the RECOVERY_TIME_HARD is 15 minutes.

IMPORTANT: The time-out value for the NHC Lustre file system test should be twice the
RECOVERY_TIME_HARD value.

The default in the NHC configuration file is 30 minutes, which is twice the default RECOVERY_TIME_HARD. If the
value of RECOVERY_TIME_HARD is changed, the time-out value of the NHC Lustre file system test must also
change correspondingly.

Modify an Installed System

 187

The NHC time-out value is specified on the following line in the NHC configuration file:

Lustre: <warning time-out> <test time-out> <restart delay>
Lustre: 900 1800 60

Further, the overall time-out value of NHC's Suspect Mode is based on the maximum time-out value for all of the
NHC tests. Invariably, the NHC Lustre file system test has the longest time-out value of all the NHC tests.

IMPORTANT: If the NHC Lustre file system test time-out value is changed, then the time-out value for
Suspect Mode must also be changed. The time-out value for Suspect Mode is set by the suspectend
variable in the NHC configuration file. The guidance for setting the value of suspectend is that it should
be the maximum time-out value, plus an additional buffer. In the default case, suspectend was set to 35
minutes -- 30 minutes for the Lustre test, plus an additional 5 minute buffer. For more information about
the suspectend variable, see NHC Suspect Mode.

NHC Control Variables
The following variables in /etc/opt/cray/nodehealth/nodehealth.conf affect the fundamental behavior
of NHC.

advanced_features If set to on, this variable allows multiple instances of NHC to run simultaneously. This
variable must be on to use CNCU and reservation sets.

Default: on

dumpdon If set to off, NHC will not request any dumps or reboots from dumpd. This is a quick
way to turn off dump and reboot requests from NHC. The dump, reboot, and
dumpreboot actions do not function properly when this variable is off.

Default: on

anyapid Turning anyapid on specifies that NHC should look for any apid in /dev/cpuset
while running the Application Exited Check and print stack traces for processes
that are found.

Default: off

Global Configuration Variables that Affect all NHC Tests
The following global configuration variables may be set in
the /etc/opt/cray/nodehealth/nodehealth.conf file to alter the behavior of all NHC tests. The global
configuration variables are case-insensitive.

Runtests:
Frequency

Determines how frequently NHC tests are run on the compute nodes. Frequency may be
either errors or always. When the value errors is specified, the NHC tests are run
only when an application terminates with a non-zero error code or terminates abnormally.
When the value always is specified, the NHC tests are run after every application
termination. If the Runtests global variable is not specified, the implicit default is
errors.

This variable applies only to tests in the application set; reservations do not terminate
abnormally.

Connecttime:
TimeoutSeconds

Specifies the amount of time, in seconds, that NHC waits for a node to respond to
requests for the TCP connection to be established. If Suspect Mode is disabled and a

Modify an Installed System

 188

particular node does not respond after connecttime has elapsed, then the node is
marked admindown. If Suspect Mode is enabled and a particular node does not respond
after connecttime has elapsed, then the node is marked suspect. NHC will then
attempt to contact the node with a frequency established by the recheckfreq variable.

If the Connecttime global variable is not specified, then the implicit default TCP time-out
value is used. NHC will not enforce time-out on the connections if none is specified. The
Connecttime: TimeoutSeconds value provided in the default NHC configuration file is
60 seconds.

The following global variables control the interaction of NHC and dumpd, the SMW daemon that initiates
automatic dump and reboot of nodes.

maxdumps:
MaximumNodes

Specifies the number of nodes that fail with the dump or dumpreboot action that will be
dumped. For example, if NHC was checking on 10 nodes that all failed tests with the dump
or dumpreboot actions, only the number of nodes specified by maxdumps would be
dumped, instead of all of them. The default value is 1.

To disable dumps of failed nodes with dump or dumpreboot actions, set maxdumps: 0.

downaction:
action

Specifies the action NHC takes when it encounters a down node. Valid actions are log,
dump, reboot, and dumpreboot. The default action is log.

downdumps:
number_dumps

Specifies the maximum number of dumps that NHC will dump for a given APID, assuming
that the downaction variable is either dump or dumpreboot. These dumps are in
addition to any dumps that occur because of NHC test failures. The default value is 1.

The following global variables control the interaction between NHC, ALPS, and the SDB.

alps_recheck_max:
number of seconds

NHC will attempt to verify its view of the states of the nodes with the
ALPS view. If NHC is unable to contact ALPS, this variable controls
the maximum delay between rechecks.

Default value: 10 seconds

alps_sync_timeout:
number of seconds

If NHC is unable to contact ALPS to verify the states of the nodes, this
variable controls the length of time before NHC gives up and aborts.

Default value: 1200 seconds

alps_warn_time:
number of seconds

If NHC is unable to contact ALPS to verify the states of the nodes, this
variable controls how often warnings are issued.

Default value: 120 seconds

sdb_recheck_max:
number of seconds

NHC will contact the SDB to query for the states of the nodes. If NHC
is unable to contact the SDB, this variable controls the maximum delay
between rechecks.

Default value: 10 seconds

sdb_warn_time:
number of seconds

If NHC is unable to contact the SDB, this variable controls how often
warnings are issued.

Default value: 120 seconds

Modify an Installed System

 189

node_no_contact_warn_time:
number of seconds

If NHC is unable to contact a specific node, this variable controls how
often warnings are issued.

Default value: 600 seconds

The following global variable controls NHC's use of node states.

unhealthy_state:
swdown

When a node is deemed unhealthy, it is normally set to admindown. This variable
permits a different state to be chosen instead.

Default: not set

unhealthy_state:
rebootq

When a node is going to be rebooted, it is normally set to Unavail. This variable
permits a different state to be chosen instead.

Default: not set

Standard Variables that Affect Individual NHC Tests
The following variables are used with each NHC test; set each variable for each test. All variables are case-
insensitive. Each NHC test has values supplied for these variables in the default NHC configuration file.

Specific NHC tests require additional variables, which are defined in the nodehealth configuration file.

action Specifies the action to perform if the compute node fails the given NHC test. action may
have one of the following values:

log Logs the failure to the system console log. The log action will not cause a
compute node's state to be set to admindown.

IMPORTANT: Tests that have an action of Log do not run in Suspect
Mode. If using plugin scripts with an action of Log, the script will only
be run once, in Normal Mode. This makes log collecting and various
other maintenance tasks easier to code.

admindown Sets the compute node's state to admindown (no more applications will be
scheduled on that node) and logs the failure to the system console log.

If Suspect Mode is enabled, the node will first be set to suspect state, and if
the test continues to fail, the node will be set to admindown at the end of
Suspect Mode.

die Halts the compute node so that no processes can run on it, sets the compute
node's state to admindown, and logs the failure to the system console log. (The
die action is the equivalent of a kernel panic.) This action is good for catching
bugs because the state of the processes is preserved and can be dumped at a
later time.

If the advanced_features variable is enabled, die is not allowed.

Each subsequent action includes the actions that preceded it; for example, the
die action encompasses the admindown and log actions.

If NHC is running in Normal Mode and cannot contact a compute node, and if
Suspect Mode is not enabled, NHC will set the compute node's state to
admindown.

Modify an Installed System

 190

The following actions control the NHC and dumpd interaction.

dump Sets the compute node's state to admindown and requests a dump from the
SMW, in accordance with the maxdumps configuration variable.

reboot Sets the compute node's state to unavail and requests a reboot from the
SMW. The unavail state is used rather than the admindown state when
nodes are to be rebooted because a node that is set to admindown and
subsequently rebooted stays in the admindown state. The unavail state
does not have this limitation.

dumpreboot Sets the compute node's state to unavail and requests a dump and reboot
from the SMW.

The following actions control the NHC and dumpd interaction.

warntime Specifies the amount of elapsed test time, in seconds, before xtcheckhealth logs a warning
message to the console file. This allows an administrator to take corrective action, if
necessary, before the timeout is reached.

timeout Specifies the total time, in seconds, that a test should run before an error is returned by
xtcheckhealth and the specified action is taken.

restartdelay Valid only when NHC is running in Suspect Mode. Specifies how long NHC will wait, in
seconds, to restart the test after the test fails. The minimum restart delay is one second.

sets Indicates when to run a test. The default NHC configuration specifies to run specific tests after
application completion and to run an alternate group of tests at reservation end. When ALPS
calls NHC at the end of the application, tests marked with Sets: Application are run. By
default, these tests are: Filesystem, Accelerator, ugni_nhc_plugins, Application
Exited Check, Apinit Ping Test, and Apinit Log and Core File Recovery. At
the end of the reservation, ALPS calls tests marked Sets: Reservation. By default, these
are: Free Memory Check, ugni_nhc_plugins, Reservation, and Hugepages Check.

If no set is specified for a test, it will default to Application, and run when ALPS calls NHC
at the end of the application. If NHC is launched manually, using the xtcheckhealth
command, and the -m sets argument is not specified on the command line, then
xtcheckhealth defaults to running the Application set.

If a test is marked Sets: All, it will always run, regardless of how NHC is invoked.

NHC Suspect Mode
Upon entry into Suspect Mode, NHC immediately allows healthy nodes to be returned to the resource pool.
Suspect Mode allows the remaining nodes, which are all in suspect state, an opportunity to return to
healthiness. If the nodes do not return to healthiness by the end of the Suspect Mode (determined by the
suspectend global variable; see below), their states are set to admindown. For more information about how
Suspect Mode functions, see the intro_NHC(8) man page.

IMPORTANT: Suspect Mode is enabled in the default configuration. Cray recommends that sites run
NHC with Suspect Mode enabled.

If enabled, the default NHC configuration file uses the following Suspect Mode variables:

suspectenable: Enables Suspect Mode; valid values are y and n.

Default: y

Modify an Installed System

 191

suspectbegin: Sets the Suspect Mode timer. Suspect Mode starts after the number of seconds indicated
by suspectbegin have expired.

Default: 180

suspectend: Suspect Mode ends after the number of seconds indicated by suspectend have expired.
This timer only starts after NHC has entered Suspect Mode.

Default: 2100
Considerations when evaluating shortening the length of Suspect Mode:

● The length of Suspect Mode can be shortened if there are no external file systems, such
as Lustre, for NHC to check.

● Cray recommends that the length of Suspect Mode be at least a few seconds longer
than the longest time-out value for any of the NHC tests. For example, if the
Filesystem test had the longest time-out value at 900 seconds, then the length of
Suspect Mode should be at least 905 seconds.

● The longer the Suspect Mode, the longer nodes have to recover from any unhealthy
situations. Setting the length of Suspect Mode too short reduces this recovery time and
increases the likelihood of the nodes being marked admindown prematurely.

recheckfreq: Suspect Mode rechecks the health of the nodes in suspect state at a frequency specified
by recheckfreq. This value is in seconds.

For a detailed description about NHC actions during the recheck process, see the
intro_NHC(8) man page.

Default: 300

NHC Messages
NHC messages may be found on the SMW in /var/opt/cray/log/sessionid/nhc-YYYYMMDD with
'<node_health:M.m>' in the message, where M is the major and m is the minor NHC revision number. All NHC
messages are visible in the console file.

NHC prints a summary message per node at the end of Normal Mode and Suspect Mode when at least one test
has failed on a node. For example:

<node_health:3.1> APID:100 (xtnhc) FAILURES: The following tests have failed in
normal mode:
<node_health:3.1> APID:100 (xtnhc) FAILURES: (Admindown) Apinit_Ping
<node_health:3.1> APID:100 (xtnhc) FAILURES: (Admindown) Plugin /example/plugin
<node_health:3.1> APID:100 (xtnhc) FAILURES: (Log Only) Filesystem_Test on /
mydir
<node_health:3.1> APID:100 (xtnhc) FAILURES: (Admindown) Free_Memory_Check
<node_health:3.1> APID:100 (xtnhc) FAILURES: End of list of 5 failed test(s)

The xtcheckhealth error and warning messages include node IDs and application IDs and are written to the
console file on the SMW; for example:

[2010-04-05 23:07:09][c1-0c2s0n0]<node_health:3.0> APID:2773749
(check_apid) WARNING: Failure: File /dev/cpuset/2773749/tasks exists and is not
empty. \
The following processes are running under expired APID
2773749:

Modify an Installed System

 192

[2010-04-05 23:07:09][c1-0c2s0n1]<node_health:3.0> APID:2773749
(check_apid) WARNING: Pid: 300 Name: (marys_program) State: D

The xtcleanup_after script writes its normal launch information to the /var/log/xtcheckhealth_log file,
which resides on the login nodes. The xtcleanup_after launch information includes the time that
xtcleanup_after was launched and the time xtcleanup_after called xtcheckhealth.

The xtcleanup_after script writes error output (launch failure information) to
the /var/log/xtcheckhealth_log file, to the console file on the SMW, and to the syslog.

Example xtcleanup_after output follows:

Thu Apr 22 17:48:18 CDT 2010 <node_health> (xtcleanup_after)
/opt/cray/nodehealth/3.0-1.0000.20840.30.8.ss/bin/xtcheckhealth -a 10515
-e 1 /tmp/apsysLVNqO9 /etc/opt/cray/nodehealth/nodehealth.conf

Recover from a Login Node Crash when a Login Node will not be Rebooted

About this task
If a login node crashes while xtcheckhealth binaries on that login node are monitoring compute nodes that are
in suspect state, those xtcheckhealth binaries will die when the login node crashes. When the login node
that crashed is rebooted, a recovery action takes place. When the login node boots, the
node_health_recovery binary starts up. This script checks for all compute nodes that are in suspect state
and were last set to suspect state by this login node. The script then determines the APID of the application that
was running on each of these compute nodes at the time of the crash. The script then launches an
xtcheckhealth binary to monitor each of these compute nodes. One xtcheckhealth binary is launched per
compute node monitored.

If the Application_Exited_Check test is enabled in the configuration file (default), xtcheckhealth is
launched with this APID to test for processes that may have been left behind by that application. Otherwise, NHC
does not run the Application_Exited_Check test and will not check for leftover processes, but will run any
other NHC tests that are enabled in the configuration file.

Nodes are changed from suspect state to up or admindown, depending upon whether they fail any health
checks. No system administrator intervention should be necessary.

NHC automatically recovers the nodes in suspect state when the crashed login node is rebooted because the
recovery feature runs on the rebooted login node. If the crashed login node is not rebooted, then manual
intervention is required to rescue the nodes from suspect state. This manual recovery can commence as soon
as the login node has crashed. To recover from a login node crash during the case in which a login node will not
be rebooted, the nhc_recovery binary is provided to help release the compute nodes owned by the crashed
login node; see Recover from a Login Node Crash when a Login Node will not be Rebooted. Also, see the
nhc_recovery(8) man page for a description of the nhc_recovery binary usage.

Procedure

1. Create a file, nodelistfile, that contains a list of the nodes in the system that are currently in Suspect
Mode. The file must be a list of NIDs, one per line; do not include a blank line at the end of the file.

2. List all of the suspect nodes in the system and the login nodes to which they belong.

Modify an Installed System

 193

smw:~# nhc_recovery -d nodelistfile

3. Parse the nhc_recovery output for the NID of the login node that crashed, creating a file, computenodes,
that contains all of the compute nodes owned by the crashed login node.

4. Use the computenodes file to create nodelist files containing nodes that share the same APID (to
determine the nodes from the crashed login node). For example, the files can be named
nodelistfile-APID1, nodelistfile-APID2, nodelistfile-APID3, etc.

5. Release all of the suspect compute nodes owned by the crashed login node.

smw:~# nhc_recovery -r computenodes
All of these compute nodes are released in the database, but they are all still in suspect state.

6. Determine what to do with these suspect nodes from the following three options:

● (Cray recommends this option) Rerun NHC on a non-crashed login node to recover the nodes listed in
step 4 on page 194. Invoke NHC for each nodelist-APID file. Supply the APID that corresponds to the
nodelistfile; an iteration count of 0 (zero), which is the value normally supplied to NHC by ALPS; and
an application exit code of 1 as the APID argument. An exit code of 1 ensures that NHC will run
regardless of the value of the runtests variable (always or errors) in the NHC configuration file. For
example:

smw:~# xtcleanup_after -s nodelist-APID1 APID1 0 1
smw:~# xtcleanup_after -s nodelist-APID2 APID2 0 1
smw:~# xtcleanup_after -s nodelist-APID3 APID3 0 1
.
.
.

● Set the suspect nodes to admindown and determine their fate by further analysis.

● Set the suspect nodes back to up, keeping in mind that they were in Suspect Mode for a reason.

Modify an Installed System

 194

	Contents
	About the XC Series System Administration Guide
	About the Cray Management System
	Manage the System
	Connect the SMW to the Console of a Service Node
	Configure Remote Access to SMW with VNC
	About the Integrated Dell Remote Access Controller (iDRAC)
	Change the Default iDRAC Password
	R815 SMW: Change the BIOS and iDRAC Settings
	R630 SMW: Change the BIOS and iDRAC Settings
	Use the iDRAC

	Boot the System
	Run Tests After Boot is Complete
	Manually Boot the Boot Node and Service Nodes
	Manually Boot the Compute Nodes
	Reboot a Single Compute Node
	Reboot Login or Network Nodes

	Debug Ansible Failures During System Boot
	Examine System Logs
	Look Up Configuration Details
	Examine Ansible Changelogs
	Debug Ansible Failures in init
	Examine System Dumps

	Log on to the Boot Node
	Display Boot Configuration Information
	Update the Boot Configuration
	Display the Format of the SDB attributes Table
	Update SDB Tables
	Boot a Node or Set of Nodes Using the xtcli boot Command
	Increase the Boot Manager Timeout Value
	Reboot Controllers of a Cabinet or Blade
	Bounce Blades Repeatedly Until All Blades Succeed
	Request and Display System Routing
	Initiate a Network Discovery Process
	Configure IP Routes
	Shut Down the System Using the auto.xtshutdown File
	The xtshutdown Command
	Shut Down the System or Part of the System Using the xtcli shutdown Command
	Shut Down Service Nodes
	Stop System Components
	Restart a Blade or Cabinet
	Abort Active Sessions on the HSS Boot Manager
	Display and Change Software System Status
	Configure Current System Timezone
	View and Change the Status of Nodes
	Perform Parallel Operations on Compute Nodes
	Perform Parallel Operations on Service Nodes
	Mark a Compute Node as a Service Node
	Find Node Information
	Display and Change Hardware System Status
	Generate HSS Physical IDs
	Disable Hardware Components
	Enable Hardware Components
	Set Hardware Components to EMPTY
	Lock Hardware Components
	Unlock Hardware Components
	xtbounce Error Message Indicates Cabinet Controller and Its Blade Controllers Not in Sync
	Power-cycle a Component to Handle Bus Errors
	When a Component Fails
	Dump and Reboot Nodes Automatically
	Collect Debug Information From Hung Nodes Using the xtnmi Command
	Modify BIOS Parameters
	Increase File System Size
	Add New Hardware to a System
	Add a New Disk to a Volume Group in a Storage Set
	Reboot Controllers of a Cabinet or Blade
	Bounce Blades Repeatedly Until All Blades Succeed
	Shut Down the System Using the auto.xtshutdown File
	The xtshutdown Command
	Shut Down Service Nodes

	Shut Down the System or Part of the System Using the xtcli shutdown Command
	Stop System Components
	Restart a Blade or Cabinet
	Abort Active Sessions on the HSS Boot Manager
	Display and Change Software System Status
	View and Change the Status of Nodes
	Mark a Compute Node as a Service Node
	Find Node Information

	Display and Change Hardware System Status
	Generate HSS Physical IDs
	Disable Hardware Components
	Enable Hardware Components
	Set Hardware Components to EMPTY
	Lock Hardware Components
	Unlock Hardware Components

	Set the Turbo Boost Limit
	Perform Parallel Operations on Service Nodes
	Perform Parallel Operations on Compute Nodes
	xtbounce Error Message Indicates Cabinet Controller and Its Blade Controllers Not in Sync
	Reduce Impact to SMW Performance of Btrfs Periodic Maintenance
	Power-cycle a Component to Handle Bus Errors
	When a Component Fails
	Capture and Analyze System-level and Node-level Dumps
	cdump and crash Utilities for Node Memory Dump and Analysis
	Dump and Reboot Nodes Automatically
	The /etc/opt/cray-xt-dumpd/dumpd.conf Configuration File
	The dumpd-dbadmin Tool
	The dumpd-request Tool

	Collect Debug Information From Hung Nodes Using the xtnmi Command
	Modify BIOS Parameters
	Set or Change the HSS Data Store (MariaDB) Root Password
	Recover from a Corrupt or Missing SMW MariaDB Database
	Restore the HSS MariaDB Database from a Backup
	Regenerate the HSS MariaDB Database from Scratch

	Troubleshoot Temperature Warnings Reported in an End Cabinet
	Recover from SMW R630 Boot Disk Hardware RAIDS Failure
	Recover from SMW R815 Boot Disk Software RAID1 Failure
	About X.509 Certificates and How to Redistribute Them
	Update X.509 Host Certificate After SMW Hostname Change

	Manage System Access
	Change Account Passwords on the SMW
	Change Account Passwords on CLE Nodes

	Configure the System
	Cray XC System Configuration
	About the Configurator
	Create a Config Set
	Create a Config Set from Configuration Worksheets
	Create a Config Set by Cloning
	Create a Config Set without Callbacks
	Create a Config Set Interactively

	Update a Config Set
	Update a Config Set Interactively
	Update a Config Set from Configuration Worksheets
	Update a Config Set without Callbacks
	Rename a Config Set
	Update a Single Service in a Config Set

	Config Set Create/Update Process
	Tips for Configurator Interactive Sessions
	cfgset Troubleshooting Tips

	About Simple Sync
	Configure Files for Cray Simple Sync Service

	About the Node Image Mapping Service (NIMS)
	About Node Groups
	Admin Use Cases
	Use Case: boot.last Script
	Use Case: Change a File on a Compute Node
	Use Case: Install Third-Party Software
	Use Case: Start a Service on Specific Nodes at Boot Time
	Use Case: Changing root and crayadm Passwords

	InfiniBand and OpenFabrics Interconnect Drivers
	InfiniBand Uses
	Upper Layer InfiniBand I/O Protocols
	Subnet Manager (OpenSM) Configuration
	Start OpenSM at Boot Time

	Monitor the System
	Manage Log Files Using CLE and HSS Commands
	Check the Status of System Components
	Check the Status of Compute Processors
	Monitor the System with the System Environmental Data Collector (SEDC)
	Monitor the Health of PCIe Channels
	Examine Activity on the HSS Boot Manager
	Poll a Response from an HSS Daemon, Manager, or the Event Router
	Validate the Health of the HSS
	Monitor Event Router Daemon (erd) Events
	Monitor Node Console Messages
	View Component Alert, Warning, and Location History
	Display Component Information
	Display Alerts and Warnings
	Display System Network Congestion Protection Information
	Clear Component Flags
	Display Error Codes
	Cray Lightweight Log Management (LLM) System
	cdump and crash Utilities for Node Memory Dump and Analysis
	Resource Utilization Reporting
	The energy Data Plugin (Cray XC Series only)
	The gpustat Data Plugin
	The kncstats Data Plugin
	The memory Data Plugin
	The taskstats Data Plugin
	The timestamp Data Plugin
	The file Output Plugin
	The llm Output Plugin
	The user Output Plugin
	The database Example Output Plugin
	Create Custom RUR Data Plugins
	Create Custom RUR Output Plugins
	Implement a Site-Written RUR Plugin
	Additional Plugin Examples
	Application Completion Reporting (ACR) to RUR Migration Tips
	Application Resource Utilization (ARU) to RUR Migration Tips
	CSA to RUR Migration Tips

	Modify an Installed System
	Disable Boot-node Failover
	The Node ARP Management Daemon (rca_arpd)
	Create Logical Machines for Cray XC Series Systems
	Configure a Logical Machine
	Boot a Logical Machine
	Configure the NFS client to Mount the Exported Lustre File System
	Repurpose Compute Nodes
	Node Attributes
	View and Temporarily Set Node Attributes
	The XTAdmin Database segment Table
	Reuse One or More Previously-failed HSN Links
	Add or Remove a High-speed Network Cable from Service
	Remove a Compute Blade from Service While the System is Running
	Return a Compute Blade into Service
	State Manager LLM Logging
	Boot Manager LLM Logging
	Configure Node Health Checker Tests
	Guidance for the Accelerator Test
	Guidance for the Application Exited Check and Apinit Ping Tests
	Guidance for the Filesystem Test
	Guidance for the Hugepages Test
	Guidance for the NHC Lustre File System Test
	NHC Control Variables
	Global Configuration Variables that Affect all NHC Tests
	Standard Variables that Affect Individual NHC Tests
	NHC Suspect Mode
	NHC Messages
	Recover from a Login Node Crash when a Login Node will not be Rebooted

