
XC™ Series Programming Environment User
Guide (17.05) S-2529

Contents
1 Record of Revision...5

2 Introduction...6

2.1 What You Must Know About Your System...6

2.1.1 Processor Type..6

2.1.2 Compute Units and CPUs..6

2.1.3 CPU Numbering...7

2.1.4 Which Network ASIC?..7

2.1.5 Which GPU or Coprocessor?...8

2.1.6 Which Operating System?..8

2.1.7 What Is a Compute Node?...9

2.1.8 Which File System?..9

2.1.9 Which Batch System?..9

2.2 Logging In..10

2.2.1 UNIX or Linux Users...10

2.2.2 Windows Users..10

2.2.3 Apple Users..11

2.3 Navigating the File Systems..11

3 Using Modules..13

3.1 What Is Loaded Now?...13

3.2 What Is Available?...14

3.3 Loading and Unloading Modulefiles..15

3.4 Swapping Compiler Modulefiles..16

3.5 Swapping Other Programming Environment Components..16

3.6 Using Targeting Modules...16

3.6.1 Targeting for a Cray System...17

3.6.2 Targeting for a Standalone Linux workstation, CDL, or Service Node.......................................17

3.6.3 Targeting for an Accelerator...17

3.6.4 Targeting for Intel Xeon Phi..18

3.7 Module Help..19

3.8 For More Information on Module Subcommands..19

4 Batch Systems and Program Execution...21

4.1 PBS-based Systems..21

4.1.1 PBS in Interactive Mode...22

4.1.2 PBS in Batch Mode..23

4.1.3 Using aprun with PBS...24

Contents

S2529 2

4.2 SLURM-based Systems..26

4.2.1 SLURM in Interactive Mode...26

4.2.2 SLURM in Batch Mode...27

5 Using Compilers...29

5.1 About Compiler Drivers...29

5.1.1 Bypassing the Compiler Drivers...30

5.2 About C/C++ Data Types...30

5.3 About the Cray Compiling Environment (CCE)...31

5.3.1 Known Limitations of CCE..31

5.4 About PGI Compilers...31

5.4.1 Known Limitations of PGI...32

5.5 About Intel Compilers..32

5.5.1 Known Limitations of the Intel Compiler Suite..32

5.6 About GNU Compilers...32

5.6.1 Known Limitations of GNU Compilers..33

5.7 About the Chapel Parallel Programming Language..33

5.8 About Cross-compilers..34

6 Dynamic Linking...35

6.1 Implementation..35

6.2 Linking Defaults...35

6.3 Modify Linking Behavior to Use Non-default Libraries...36

7 Libraries..37

When to Use Hugepages..37

7.1 Cray Scientific and Math Libraries (CSML)...37

7.1.1 Basic CSML Components..37

7.1.2 BLAS and LAPACK..38

7.1.3 BLACS and ScaLAPACK..40

7.1.4 Iterative Refinement Toolkit (IRT)...40

7.1.5 Fourier Transformations...41

7.1.6 PETSc..42

7.1.7 Trilinos..43

7.1.8 Cray LibSci_ACC...44

7.2 MPT...45

7.2.1 Using MPI and SHMEM Modules...46

7.2.2 MPI Dynamic Process Management..46

7.2.3 MPI Usage Notes...47

7.2.4 SHMEM Usage Notes..47

7.2.5 GPU-to-GPU Communications...48

Contents

S2529 3

7.3 Hugepages..49

7.3.1 When to Use Hugepages...49

7.3.2 When to Avoid Using Hugepages...49

7.3.3 Cray XC30 Usage..49

7.3.4 Cray XE and Cray XK Usage...50

7.3.5 Cray XT Usage...50

7.3.6 Running Independent Software Vendor (ISV) Applications..50

7.3.7 Known Issues...51

8 Debugging Code ..52

8.1 Cray Debugger Support Tools...52

8.1.1 Using CCDB...53

8.1.2 Using LGDB...54

8.1.3 Using Abnormal Termination Processing (ATP)...55

8.1.4 Using STAT...56

8.2 Using Cray Fast-track Debugging...56

8.2.1 Use Cray Fast-track Debugging...57

8.2.2 Supported Compilers and Debuggers..57

8.3 About Core Files..57

8.4 Using DDT...58

8.4.1 Known Limitations of DDT..59

8.5 Using TotalView...59

8.5.1 Known Limitations of TotalView..60

9 Optimizing Code...61

9.1 Improving I/O...61

9.1.1 Using iobuf..61

9.1.2 Improving MPI I/O..62

9.2 Using Compiler Optimizations...63

9.2.1 Cray Compiling Environment (CCE)...63

9.3 Using the Cray Performance Measurement and Analysis Tools...63

9.3.1 About CrayPat-lite..64

9.3.2 About CrayPat..65

9.3.3 About Cray Apprentice2...66

9.3.4 About Reveal..67

9.3.5 About PAPI...68

10 glibc Functions..73

Contents

S2529 4

1 Record of Revision
S-2529-17.05 Published May 2017 Supports Cray XC series systems running Cray Linux Environment (CLE)
release 5.1 or later and Cray XE and Cray XK systems running Cray Linux Environment (CLE) release 4.2 or
later. Supports Intel® Xeon® Phi™ in autonomous and offload modes.

S-2529-16.10 Published October 2016 Supports Cray XC series systems running Cray Linux Environment (CLE)
release 5.1 or later and Cray XE and Cray XK systems running Cray Linux Environment (CLE) release 4.2 or
later. Supports Intel® Xeon® Phi™ in autonomous and offload modes.

S-2529-116 Published June 2014 Supports Cray XC series systems running Cray Linux Environment (CLE)
release 5.1 or later and Cray XE and Cray XK systems running Cray Linux Environment (CLE) release 4.2 or
later. Supports Intel® Xeon® Phi™ in autonomous and offload modes.

S-2529-114 Published March 2014 Supports Cray XC30 and Cray XC30-AC systems running
Cray Linux Environment (CLE) release 5.0 or later and Cray XE and Cray XK systems running
Cray Linux Environment (CLE) release 3.1 or later. Supports Intel® Xeon® Phi™ in autonomous mode only.

S-2529-111 Published December 2013 Supports Cray XC30 and Cray XC30-AC systems running
Cray Linux Environment (CLE) release 5.0 or later and Cray XE and Cray XK systems running
Cray Linux Environment (CLE) release 3.1 or later.

S-2529-107 Published July 2013 Supports Cray XC30 and Cray XC30-AC systems running
Cray Linux Environment (CLE) release 5.0 or later and Cray XE and Cray XK systems running
Cray Linux Environment (CLE) release 3.1 or later.

S-2529-103 Published March 2013 Supports Cray XC30 and Cray XC30-AC systems running
Cray Linux Environment (CLE) release 5.0 or later and Cray XE and Cray XK systems running
Cray Linux Environment (CLE) release 3.1 or later.

Record of Revision

S2529 5

2 Introduction
This guide describes the software environment and tools used to develop, debug, and run applications on
Cray XT, Cray XE, Cray XK, and Cray XC series systems. It is intended as a general overview and introduction to
the Cray system for new users and application programmers.

This guide is intended to be used in conjunction with Workload Management and Application Placement for the
Cray Linux Environment (S-2496), which describes the Application Level Placement Scheduler (ALPS) and
aprun command in greater detail.

The information contained in this guide is of necessity fairly high-level and generalized, as the Cray platform
supports a wide variety of hardware nodes as well as many different compilers, debuggers, and other software
tools. Therefore, system hardware and software configurations vary considerably from site to site. For specific
information about your site and its installed hardware, software, and usage policies, contact your site
administrator.

2.1 What You Must Know About Your System
Because of processor and network interface differences, you can invoke different options when compiling and
executing your programs. This guide focuses on compilation differences. Execution differences are discussed in
Workload Management and Application Placement for the Cray Linux Environment (S-2496).

2.1.1 Processor Type
The Cray XT, Cray XE, and Cray XK systems use 64-bit AMD Opteron processors as the basic computational
engines. Cray XC series systems use Intel Xeon processors. The number of computational units per node varies
from system to system and sometimes from cabinet to cabinet within a system.

● Cray XT6 and Cray XE6 systems use two AMD Magny-Cours, two AMD Interlagos, or two AMD Abu Dhabi
Opteron processors per compute node.

● Cray XK systems combine one AMD Interlagos or Abu Dhabi Opteron processor and one NVIDIA Tesla or
Kepler GPU per compute node.

● Cray XC series systems use two Intel Xeon processors per compute node. Hybrid systems may combine Intel
Xeon CPUs with NVIDIA GPUs or Intel® Xeon® Phi™ coprocessors on compute nodes.

2.1.2 Compute Units and CPUs
At a high level, AMD and Intel microprocessors differ from each other in the degree and type of resource sharing
used in their diverse architectures. Compute unit affinity gives Cray users more control over job scheduling and
placement to either eliminate or take advantage of the shared resources in the designs of these microprocessors.

Introduction

S2529 6

AMD Interlagos and AMD Abu Dhabi processors consist of up to 8 Bulldozer modules. Each Bulldozer module
consists of 2 integer cores and a shared floating point unit (FPU) and shared L2 cache. Certain applications may
see performance benefit by using only one integer core per compute unit, as opposed to two, thereby not sharing
the FPU or L2 cache located on the same Bulldozer module with other threads or PEs.

Intel processors contain Hyper-Threading Technology (HTT). Using Intel terms, each processor consists of
multiple cores, each of which contains multiple threads. Each thread contains a unique set of registers but shares
execution resources with one or more other threads within the same core. A set of threads sharing the same
execution resource are called a core. Again, the sharing of execution resources has performance implications and
some applications may see performance benefit by not sharing execution resources.

Because AMD and Intel use overlapping terminology to describe distinct entities, Cray uses a terminology
mapping that unifies the common concepts for scheduling and placement purposes as shown below.

Table 1. AMD, Intel, Cray, and BASIL Terminology

AMD Intel Cray

Bulldozer module core compute unit

core thread CPU

Cray Inc. will use the term CPU to refer to both an AMD core and an Intel thread. Cray Inc. will use the term
Compute Unit (CU) to indicate a grouping of one or more CPUs that share execution resources, thus CU refers to
the AMD Bulldozer module in the Interlagos/Abu Dhabi context and the Intel core in the Sandy Bridge context.

Current HTT-enabled Intel microprocessors, such as Sandy Bridge, contain 2 CPUs per CU. Current AMD
Interlagos and Abu Dhabi microprocessors contain 2 CPUs per CU. Earlier architectures (Magny-Cours and prior)
contain 1 CPU per CU.

Please see Using Compute Unit Affinity on Cray Systems for more information.

2.1.3 CPU Numbering
Though the Intel Sandy Bridge and the AMD Abu Dhabi microprocessors both contain 2 CPUs per CU, Intel and
AMD number the CPUs differently. Users should be aware that this difference in the CPU numbering scheme
affects the order in which CPUs are reserved and the order in which software threads/PEs are assigned to CPUs.

AMD numbers the CPUs starting with the first CPU on the first CU, then the second CPU on the first CU, then
moves to the first CPU on the second CU, and so on, incrementally numbering all the CPUs first on one socket,
then the other socket on the node.

Intel first numbers the first CPU in each compute unit, across CUs in all sockets on the node, then continues with
the second CPU in each compute unit, across all sockets in the node. For example, the first CPU in the first CU is
CPU0, then the first CPU in the second CU is CPU1, and so on though all the CUs on all sockets on the node.
Then the numbering wraps back to the second CPU on the first CU, then the second CPU on the second CU, and
finishing with the second CPU on the last CU on the last socket of the node.

2.1.4 Which Network ASIC?
The Cray network application-specific integrated circuit (ASIC) provides an interface between the processors and
the interconnection network with support for message passing, one-sided operations, and global address space
programming models.

● Cray XT systems use SeaStar™ or SeaStar2+™ ASICs to manage inter-processor communications

Introduction

S2529 7

● Cray XE and Cray XK systems use Gemini™ ASICs to manage inter-processor communications

● Cray XC30 systems use Aries™ ASICs for inter-processor communications

Because of the differences in the network ASICs and accompanying network APIs, applications that use inter-
process communication, use different versions of the libraries which implement inter-process communication.

Specifically, SeaStar (Cray XT) systems, Gemini (Cray XE and Cray XK) and Aries (Cray XC30) systems use
different versions of the MPI and SHMEM libraries. Also, the compilers' inter-process communication
functionality depends on network specific versions of the network APIs.

The differences between the versions of MPI and SHMEM are discussed in more detail in MPT on page 45.

For more information about the Generic Network Interface (GNI) and Distributed Shared Memory Application
(DMAPP) APIs, see Using the GNI and DMAPP APIs.

2.1.5 Which GPU or Coprocessor?
Systems equipped with hybrid CPU/GPU nodes require different libraries, depending on which GPU accelerator
or coprocessor is installed. At this time Cray systems support NVIDIA Fermi (K20), Kepler (GK110), and Tesla
(K40) GPUs and the Intel® Xeon® Phi™ coprocessors codenamed Knights Corner. If necessary, use the
cnselect -L subtype command to determine which GPUs or coprocessors are installed on your system. For
example:

$ cnselect -L subtype
nVidia_Kepler
NVIDIA Fermi (K20) GPUs are supported by the craype-accel-nvidia20 module, while NVIDIA Kepler
(GK110) and Tesla (K40) GPUs are supported by the craype-accel-nvidia35 module.

Intel Xeon Phi coprocessors are not accelerators, and therefore do not use a craype-accel module.

If your system has mixed nodes, you can use the cnselect command to identify which nodes have which
accelerators or coprocessors. For example, to find just the nodes with Intel Xeon Phi coprocessors, enter this
command:

> cnselect -e subtype.eq.Intel_KNC
36-43
This information can be used later to specify placement of applications on nodes having the desired hardware.

2.1.6 Which Operating System?
All current Cray systems run the Cray Linux Environment (CLE) operating system on the login nodes and a
lightweight kernel, Compute Node Linux (CNL), on the compute nodes. Some of the options available to
application developers vary depending on which version of CLE is currently running on the system.

● Cray XC30 systems run CLE release 5.0 or later.

● Cray XK systems run CLE release 4.0 or later.

● Cray XE5 and Cray XE6 systems run CLE release 3.1 or later.

● Cray XT6 and Cray XT6m systems run CLE release 3.0 or later.

If you are not certain which release your site is using, check the MOTD (message of the day) when you log in.
If the information is not there, there are several other ways to determine the CLE release number.

Introduction

S2529 8

● On CLE 3.0 and later systems, cat the contents of the /etc/opt/cray/release/clerelease file. This
returns the CLE release and update number.

● Cray Development and Login (CDL) nodes do not run CLE and do not have this file. On those machines, you
will need to be on the actual compute node to check the /etc/opt/cray/release/clerelease file. For
example:

qsub -I -lmppwidth=0
cat /etc/opt/cray/release/clerelease

2.1.7 What Is a Compute Node?
From the application developer's point of view, a Cray system is a tightly integrated network of thousands of
nodes. Some are dedicated to administrative or networking functions and therefore off-limits to application
programmers. Programmers typically use the following node types:

● login nodes - The node you access when you first log in to the system. Login nodes offer the full
Cray Linux Environment (CLE) operating system, are used for basic development tasks such as editing files
and compiling code, generally have access to the network file system, and are shared resources that may be
used concurrently by multiple users.

● Login nodes are also sometimes called service nodes.

● Cray Development and Login (CDL) nodes - External Services system, either managed or unmanaged.
(Formerly esLogin nodes.)

● compute nodes - The nodes on which production jobs are executed. Compute nodes run CNL, can be
accessed only by submitting jobs through a batch management system (e.g., PBS Professional, Moab HPC
Suite, TORQUE Resource Manager, or Platform LSF), generally have access only to the high-performance
parallel file system and are dedicated resources, exclusively yours for the duration of the batch reservation.

When new users first begin working on the Cray system, this difference between login/CDL and compute
nodes can be confusing. Remember, when you first log in to the system, you are placed on a login node. You
cannot execute parallel programs on the login node, nor can you directly access files stored on the high-
performance parallel file system.

Instead, use your site's batch system to place parallel programs on the compute nodes, either from the login
node or from a mount-point on the parallel file system.

NOTE: You can execute serial (single-process) programs on login nodes, but executing large or
long-running serial programs on login nodes is discouraged, as login nodes are shared resources.

2.1.8 Which File System?
All Cray systems require the use of a high-performance parallel file system. Most sites currently use the Lustre
File System, although others are also supported. All examples shown in this guide were developed on a Lustre
file system using Lustre commands. Before copying any examples from this guide verbatim, verify which file
system your site uses and what your site's policies are regarding home directories, scratch space, disk quotas,
backup policies, and so on. If required, adjust the instructions accordingly.

2.1.9 Which Batch System?
Cray systems typically operate under the control of a batch system such as PBS Professional, OpenPBS, Moab
HPC Suite, TORQUE Resource Manager, or Platform LSF. All examples shown in this guide were developed

Introduction

S2529 9

using either PBS Pro 11.0, Moab HPC Suite, or TORQUE Resource Manager. Before copying any examples from
this guide verbatim, verify which batch system your site uses and if required, adjust the instructions accordingly.

2.2 Logging In
User account setup and authentication policies vary widely from site to site. In general, you must contact your site
administrator to get a login account on the system. Any site-specific security or authentication policies (for
example, the correct use of an RSA SecurID token) should be explained to you at that time.

Once your user account is created, log in to the Cray system using SSH (Secure Shell), protocol version 2. SSH
is a remote login program that encrypts all communications between the client and host and replaces the earlier
telnet, rlogin, and rsh programs.

2.2.1 UNIX or Linux Users
If you use a UNIX or Linux workstation, the ssh utility is generally available at any command line and documented
in the ssh(1) man page. To log in to the Cray system, enter:

% ssh -X hostname
The -X option enables X11 display forwarding. Automatic forwarding of X11 windows is highly recommended as
many application development tools use GUI displays.

On some systems, you may be required to enter your user ID as well. This can be done in several different ways.
For example:

% ssh -X -luserID hostnameOr
% ssh -X userID@hostname
In any case, after you SSH to the system, you may have to answer one or more RSA or password challenges,
and then you are logged into the system. A series of system status and MOTD (message of the day) messages
may display, after which you are placed in your home directory on a login node.

/users/userID>
You are now ready to begin working. Jump to Navigating the File Systems on page 11.

2.2.2 Windows Users
If you use a Windows personal computer, you first need to obtain and install a client program for your system that
supports SSH protocol 2, such as PuTTY for Windows. Your system administrator should be able to provide a list
of accepted clients.

You may need to configure your client to support SSH protocol 2 and X11 forwarding. For example, if you are
using PuTTY, you may need to click SSH in the left pane to see the preferred SSH protocol version:

Figure 1. Selecting SSH Protocol

Verify that the Preferred SSH protocol version is set to 2.

Then click X11 in the left pane to view the SSH X11 forwarding options:

Introduction

S2529 10

Figure 2. Enabling X11 Forwarding

If necessary, click the Enable X11 forwarding checkbox.

Then click Session in the left pane to return to the Basic options window.

Figure 3. Logging In

Enter the hostname in the Host Name field and click the Open button to begin your SSH session.

You may need to enter your userID and answer one or more RSA or password challenges, and then you are
logged into the system. A series of system status and MOTD (message of the day) messages may display, after
which you are placed in your home directory on a login node.

/users/userID>
You are now ready to begin working on the Cray system.

2.2.3 Apple Users
The Apple OS X operating system is based on UNIX. Therefore, to log in to the Cray system, open the Terminal
application, and then use the ssh command to connect to the Cray system.

% ssh -X hostname
The -X option enables X11 display forwarding with X11 security extension restrictions. Automatic forwarding of
X11 windows is highly recommended as many application development tools use GUI displays.

NOTE: The version of SSH found in OS X also supports the -Y argument, as well as the -X argument.
The -Y argument enables "trusted" X11 forwarding and may work better than -X for some users.

On some systems, you may be required to enter your user ID as well. This can be done in several
different ways. For example:

% ssh -X -luserID hostnameOr
% ssh -X userID@hostname
In any case, after you SSH to the system, you may have to answer one or more RSA or password
challenges, and then you are logged into the system. A series of system status and MOTD (message of
the day) messages may display, after which you are placed in your home directory on a login node.

/users/userID>
You are now ready to begin working on the Cray system.

2.3 Navigating the File Systems
When you first log in to the Cray system, you are placed in your home directory on a login node.

/users/userID>
At this point you have access to all the features and functions of the full Cray Linux Environment (CLE) operating
system, such as the sftp and scp commands. Typically you will also have access to your full network file

Introduction

S2529 11

system. On most systems your home directory on the login node is defined as the environment variable $HOME,
and this variable can be used in any file system command. For example, to return to your home directory from
any other location in the file system(s), enter this command:

> cd $HOME
Remember, you can edit files, manipulate files, compile code, execute serial (single-process) programs, and
otherwise work in your home directory on the login node. However, you cannot execute parallel programs on the
login node.

Parallel programs must be run on the compute nodes, under the control of the batch system, and generally while
mounted on the high-performance parallel file system. To do this, you must first identify the nids (node IDs) of the
file system mount points. On the Lustre file system, this can be done in one of two ways.

Either enter the df -t lustre command to find the Lustre nodes and get a summary report on disk usage:

users/userID> df -t lustre
Filesystem 1K-blocks Used Available Use% Mounted on
8@ptl:/narwhalnid8 8998913280 6946443260 1595348672 82% /lus/nid00008
Or enter the lfs df command to get more detailed information:

users/userID> lfs df
UUID 1K-blocks Used Available Use% Mounted on
nid00008_mds_UUID 179181084 2675664 166265604 1% /lus/nid00008[MDT:0]
ost0_UUID 1124864160 895207088 172517160 79% /lus/nid00008[OST:0]
ost1_UUID 1124864160 838067380 229656540 74% /lus/nid00008[OST:1]
ost2_UUID 1124864160 826599428 241124820 73% /lus/nid00008[OST:2]
ost3_UUID 1124864160 827914052 239801932 73% /lus/nid00008[OST:3]
ost4_UUID 1124864160 964324672 103398548 85% /lus/nid00008[OST:4]
ost5_UUID 1124864160 932986208 134738024 82% /lus/nid00008[OST:5]
ost6_UUID 1124864160 832715148 235009164 74% /lus/nid00008[OST:6]
ost7_UUID 1124864160 828631656 239092572 73% /lus/nid00008[OST:7]

filesystem summary: 8998913280 6946445632 1595338760 77% /lus/nid00008
NOTE: The above commands are specific to the Lustre high-speed parallel file system. If your site uses a
different file system, adjust the instructions accordingly.

In this example, the Lustre mount point is /lus/nid00008. If you cd to this mount point:

users/userID> cd /lus/nid00008
Directory: /lus/nid00008
/lus/nid00008> you are now on the high-performance parallel file system. At
this point you can edit and manipulate files, compile code, and so on; and
you can also execute programs on the compute nodes, typically by using the
batch system.

Introduction

S2529 12

3 Using Modules
The Cray system uses the Modules environment management package to support dynamic modification of the
user environment via modulefiles. Each modulefile contains information needed to configure the shell for a
particular application. To make major changes in your user environment, such as switching to a different compiler,
use the appropriate Modules commands to select the desired modulefiles.

The advantage in using Modules is that you are not required to specify explicit paths for different executable
versions or to set the $MANPATH and other environment variables manually. Instead, all the information required
in order to use a given piece of software is embedded in the modulefile and set automatically when you load the
modulefile.

The simplest way to make certain that the elements of your application development environment function
correctly together is by using the Modules software to keep track of paths and environment variables, rather than
embedding specific directory paths into your startup files, makefiles, and scripts.

3.1 What Is Loaded Now?
When you first log in to the Cray system, a set of site-specific default modules is loaded. This set varies
depending on system hardware, operating system release level, site policies, and installed software. To see which
modules are currently loaded on your system, use the module list command.

users/yourname> module list
Currently Loaded Modulefiles:
 1) modules/3.2.6.7
 2) nodestat/2.2-1.0501.47138.1.78.ari
 3) sdb/1.0-1.0501.48084.4.48.ari
 4) alps/5.1.1-2.0501.8507.1.1.ari
 5) MySQL/5.0.64-1.0000.7096.23.2
 6) lustre-cray_ari_s/2.4_3.0.80_0.5.1_1.0501.7664.13.1-1.0501.14774.17.1
 7) udreg/2.3.2-1.0501.7914.1.13.ari
 8) ugni/5.0-1.0501.8253.10.22.ari
 9) gni-headers/3.0-1.0501.8317.12.1.ari
 10) dmapp/7.0.1-1.0501.8315.8.4.ari
 11) xpmem/0.1-2.0501.48424.3.3.ari
 12) hss-llm/7.1.0
 13) Base-opts/1.0.2-1.0501.47945.4.2.ari
 14) craype-network-aries
 15) craype/2.1.0.4
 16) cce/8.2.4
 17) totalview-support/1.1.5
 18) totalview/8.12.0.1
 19) cray-libsci/12.2.0.2
 20) pmi/5.0.2-1.0000.9906.117.2.ari
 21) rca/1.0.0-2.0501.48090.7.46.ari
 22) atp/1.7.1

Using Modules

S2529 13

 23) PrgEnv-cray/5.1.29
 24) cray-mpich/6.2.2
 25) craype-sandybridge
 26) moab/7.2.6-r12-b152-SUSE11
 27) torque/4.2.6
This list breaks down into three groups: operating system modules, programming environment modules, and
support modules. For example, the craype-sandybridge module indicates that this development environment
is set up to develop code for use on Sandy Bridge processors, while the PrgEnv-cray module indicates that the
Cray Programming Environment, which includes the Cray Compiling Environment (CCE), is currently loaded.

3.2 What Is Available?
To see what modulefiles are available on your system, enter the command:

%
The module avail command produces an alphabetical listing of every modulefile in your module use path
and has no option for "grepping." Therefore, it is usually more useful to use the command with an string
argument. For example, if you are looking for a list of the available programming environments, you would enter
this command:

users/yourname> module avail PrgEnv

-- /opt/cray/modulefiles

PrgEnv-cray/5.1.08 PrgEnv-gnu/5.1.18 PrgEnv-intel/5.1.29
PrgEnv-cray/5.1.10 PrgEnv-gnu/5.1.21 PrgEnv-intel/5.2.07
PrgEnv-cray/5.1.11 PrgEnv-gnu/5.1.22 PrgEnv-intel/5.2.08
PrgEnv-cray/5.1.12b PrgEnv-gnu/5.1.23a PrgEnv-intel/5.2.09
PrgEnv-cray/5.1.14 PrgEnv-gnu/5.1.24 PrgEnv-intel/5.2.10
PrgEnv-cray/5.1.15 PrgEnv-gnu/5.1.25 PrgEnv-intel/5.2.12
PrgEnv-cray/5.1.16 PrgEnv-gnu/5.1.26 PrgEnv-intel/
5.2.13(default)
PrgEnv-cray/5.1.17 PrgEnv-gnu/5.1.28 PrgEnv-pgi/5.1.08
PrgEnv-cray/5.1.18 PrgEnv-gnu/5.1.29 PrgEnv-pgi/5.1.10
PrgEnv-cray/5.1.21 PrgEnv-gnu/5.2.07 PrgEnv-pgi/5.1.11
PrgEnv-cray/5.1.22 PrgEnv-gnu/5.2.08 PrgEnv-pgi/5.1.12b
PrgEnv-cray/5.1.23a PrgEnv-gnu/5.2.09 PrgEnv-pgi/5.1.14
PrgEnv-cray/5.1.24 PrgEnv-gnu/5.2.10 PrgEnv-pgi/5.1.15
PrgEnv-cray/5.1.25 PrgEnv-gnu/5.2.12 PrgEnv-pgi/5.1.16
PrgEnv-cray/5.1.26 PrgEnv-gnu/5.2.13(default) PrgEnv-pgi/5.1.17
PrgEnv-cray/5.1.28 PrgEnv-intel/5.1.08 PrgEnv-pgi/5.1.18
PrgEnv-cray/5.1.29 PrgEnv-intel/5.1.10 PrgEnv-pgi/5.1.21
PrgEnv-cray/5.2.07 PrgEnv-intel/5.1.11 PrgEnv-pgi/5.1.22
PrgEnv-cray/5.2.08 PrgEnv-intel/5.1.12b PrgEnv-pgi/5.1.23a
PrgEnv-cray/5.2.09 PrgEnv-intel/5.1.14 PrgEnv-pgi/5.1.24
PrgEnv-cray/5.2.10 PrgEnv-intel/5.1.15 PrgEnv-pgi/5.1.25
PrgEnv-cray/5.2.12 PrgEnv-intel/5.1.16 PrgEnv-pgi/5.1.26
PrgEnv-cray/5.2.13(default) PrgEnv-intel/5.1.17 PrgEnv-pgi/5.1.28
PrgEnv-gnu/5.1.08 PrgEnv-intel/5.1.18 PrgEnv-pgi/5.1.29
PrgEnv-gnu/5.1.10 PrgEnv-intel/5.1.21 PrgEnv-pgi/5.2.07
PrgEnv-gnu/5.1.11 PrgEnv-intel/5.1.22 PrgEnv-pgi/5.2.08
PrgEnv-gnu/5.1.12b PrgEnv-intel/5.1.23a PrgEnv-pgi/5.2.09
PrgEnv-gnu/5.1.14 PrgEnv-intel/5.1.24 PrgEnv-pgi/5.2.10
PrgEnv-gnu/5.1.15 PrgEnv-intel/5.1.25 PrgEnv-pgi/5.2.12
PrgEnv-gnu/5.1.16 PrgEnv-intel/5.1.26 PrgEnv-pgi/

Using Modules

S2529 14

5.2.13(default)
PrgEnv-gnu/5.1.17 PrgEnv-intel/5.1.28
One module is usually designated as the default version. Whether this is the most recent version of this module
depends on your site's policies. Some sites always make the newest version the default, while others wait until
after the new version has been tested and proven bug- and dependency-free.

Whenever a newer version of a module is installed, the older versions continue to remain available, unless the
site administrator has explicitly chosen to delete them.

The -subsetflag option lets you list a subset of available modules. The following flags may be used alone or in
combinations:

-U
List user modules

-D
List the current default modules

-T
List tool modules (debuggers, performance analysis utilities, and the like)

-L
List library modules (see Libraries on page 37)

-P
List Programming Environment (compiler) modules

-X
List CPU and network targeting modules (Barcelona, Magny-Cours, Interlagos, and the like)

3.3 Loading and Unloading Modulefiles
If a PrgEnv module is already loaded in your module environment, then you must first unload the currently loaded
PrgEnv module before loading a different version. For example, to change from the default version of the CCE
compiler suite to another version, use the module unload command to remove the version currently loaded.

users/yourname> module unload PrgEnv-cray
Use the module load command to load a specific version.

users/yourname> module load PrgEnv-cray/version
If a PrgEnv module is not already loaded, this command loads the currently defined default version of the
PrgEnv-intel module:

users/yourname> module load PrgEnv-intelThis command loads PrgEnv-intel/
version(default) module:
users/yourname> module load PrgEnv-intel/version
Modules may be linked and related. If you enter the module list command after changing the programming
environment, you may see that in addition to the programming environment version change, the supporting
product versions may also have changed.

Using Modules

S2529 15

3.4 Swapping Compiler Modulefiles
Alternatively, you can use the module swap or module switch command to unload one module and load the
comparable module. For example, to switch from the PGI to the Cray Programming Environment, enter this
command:

users/yourname> module swap PrgEnv-pgi PrgEnv-cray
The module list command will show that a different set of supporting modules have been also been loaded
automatically.

To swap to a non-default version of the CCE compiler:

users/yourname> module swap cce cce/8.2.2

3.5 Swapping Other Programming Environment Components
Be aware that for products that contain dynamically linked libraries, such as MPI, switching the MPI module
environment does not completely change the run time environment because the dynamic libraries are located in
the cache used by the run time linker, as specified by /etc/ld.so.conf. To use a non-default version of a
dynamic library at run time the user should prepend CRAY_LD_LIBRARY_PATH to LD_LIBRARY_PATH. For more
detail, see Modify Linking Behavior to Use Non-default Libraries on page 36.

The following commands revert the environment to an earlier version of 6.2 cray-mpich:

module swap cray-mpich/6.2.5 cray-mpich/6.2.0 module unload
LD_LIBRARY_PATH=${CRAY_LD_LIBRARY_PATH}:${LD_LIBRARY_PATH}
If the module switch has reverted to an older major version of MPI (6.X->5.X), there may be other dependent
libraries which need to be switched also. Refer to the release notes to find the compatible libsci and other
dependent libraries. As shown below, you will also need to run craype-pkgconfig to reset environment
variables used by the PE drivers (cc, CC, ftn).

6.X -> 5.X mpi
module swap cray-mpich/6.2.0.2 cray-mpich2/5.6.4 module unload
Reset environment variables needed by the cray pe drivers (cc, CC, ftn)
source craype-pkgconfig disable export
LD_LIBRARY_PATH=${CRAY_LD_LIBRARY_PATH}:${LD_LIBRARY_PATH}
Also see Modify Linking Behavior to Use Non-default Libraries on page 36.

3.6 Using Targeting Modules
The targeting modules deserve special mention. To see which targeting modules are available on your system,
use the module avail -X command. It returns a list like this, which shows the CPU, network-type, and
accelerator modules currently available.

------------------------------ /opt/cray/craype/default/modulefiles ---------------
craype-abudhabi craype-hugepages512M craype-network-aries
craype-abudhabi-cu craype-hugepages64M craype-network-gemini

Using Modules

S2529 16

craype-accel-nvidia20 craype-hugepages8M craype-sandybridge
craype-accel-nvidia35 craype-interlagos craype-shanghai
craype-barcelona craype-interlagos-cu craype-target-compute_node
craype-hugepages128M craype-istanbul craype-target-local_host
craype-hugepages16M craype-ivybridge craype-target-native
craype-hugepages256M craype-mc12 craype-target-petest
craype-hugepages2M craype-mc8 craype-xeon

3.6.1 Targeting for a Cray System
If you are working on a Cray system, your default environment should load the CPU-, network-, and accelerator-
type modules that are correspond to your run time CPU, network, and accelerator platform. For example, if you
have a Cray XC30 system with Sandy Bridge compute nodes, your default environment should include the
craype-network-aries and craype-sandybridge modules.

To change the default CPU target, the system administrator must configure /etc/*rc.local to load the
appropriate craype-* target module. On systems that have heterogeneous CPU types available, the user may
wish to unload/load appropriate targeting modules. Otherwise, the user need not modify the default targeting
environment.

If there are no default targeting modules loaded in the user's environment, the compiler driver scripts (cc, CC,
ftn) set the CPU target to x86.

If you are working on a standalone Linux workstation or CDL node and developing executable code that will then
be moved to and run on a Cray system, always make certain that your local development environment contains
the correct targeting modules for the Cray system on which you plan to run your code. For example, code
compiled with the wrong CPU module loaded, or with the wrong network module loaded, will not run correctly on
the host system. For more information see About Cross-compilers on page 34.

NOTE: Alternatively, if your site has a heterogeneous system with more than one type of compute node
(for example, a Cray XE6 system with both Magny-Cours and Interlagos compute nodes), load the
targeting module for the type of compute node on which you intend to execute your code, and then make
certain your job is placed only on the specified type of compute node. For more information about job
placement, see Workload Management and Application Placement for the Cray Linux Environment.

3.6.1.1 Compiling Without the Cray Networking Libraries
If you are compiling an application to run on the Cray compute nodes, but do not wish to use any of the
networking libraries such as MPI, or the PGAS languages, load craype-network-none instead of the other
craype-network-* modules. Applications compiled without networking libraries can be run without aprun.

3.6.2 Targeting for a Standalone Linux workstation, CDL, or Service Node
If you are working on a standalone Linux workstation or CDL node and compiling code that will be run on a
standalone Linux workstation, CDL, or Service Node, load the craype-network-none module instead of either
of the other network modules, craype-network-gemini or craype-network-aries.

craype-network-none causes no network libraries, to be loaded and network library dependencies are
ignored.

Using Modules

S2529 17

3.6.3 Targeting for an Accelerator
Use the accelerator targeting modules to compile an application that uses CUDA directly, or one of the APIs which
enable the use of the accelerator, such as OpenACC (supported by CCE). Either load the
craype-accel-nvidia20 module to generate code for Fermi, equivalent to compute capability 2.0, or the
craype-accel-nvidia35 module to generate code for Kepler or Atlas, equivalent to compute capability 3.5.
More information about compute capability levels for CUDA-enabled devices is available from NVIDIA. See
https://developer.nvidia.com/cuda-gpus.

Load craype-accel-nvidia* only if you are developing code that will be executed on GPU nodes. Loading
the accelerator module enables dynamic linking by default and loads the libsci_acc module, which causes
increased overhead if the resulting code is executed on non-GPU nodes.

NOTE: The user should be aware that they will need to ensure that buffers are properly synchronized to
the GPU device before a transfer from a device buffer is initiated. See http://docs.nvidia.com/cuda/cuda-
driver-api/index.html#r_main.

3.6.4 Targeting for Intel Xeon Phi
Cray XC30 systems equipped with first generation Intel Xeon Phi coprocessors codenamed Knights Corner have
special requirements, and applications that use the Xeon Phi coprocessors can run in one of two modes on
Cray XC30 systems: offload mode and autonomous mode.

Symmetric mode-that is, using the Xeon and KNC on the same node to run different programs-is not supported on
Cray XC30 systems.

3.6.4.1 Offload Mode
In offload mode, the main part of the code runs on the X86 (host part of the node) while sections of the code may
be "offloaded" to the KNC by the use of special Intel compiler directives. This mode is similar to the accelerator
mode used for GPUs, although offload mode does not use OpenACC directives.

To use offload mode, load the PrgEnv-intel module, and configure your environment as shown below to
access the Intel compiler directives.

> module load PrgEnv-intel
> source ${INTEL_PATH}/bin/compilervars.sh intel64
 (or for CSH) source ${INTEL_PATH}/bin/compilervars.csh intel64
Then compile and run the code as usual. For example:

> cc mycode.c
> aprun -n2 -d4 ./a.out

NOTE: Do not load the craype-intel-knc module, as this will cause the entire application to be
targeted to the KNC. Also, note that in offload mode, dynamic linking is not enabled by default.

3.6.4.2 Autonomous Mode
In autonomous mode, the X86 does not execute any parts of the application; the entire application runs on the
KNC. In order to use this mode, the user must have their environment set up for autonomous mode at build time.

To do so, you first must load the PrgEnv-intel module, then unload any PE products that might already be
loaded and in conflict with KNC, and then load the KNC module. For example:

Using Modules

S2529 18

https://developer.nvidia.com/cuda-gpus
http://docs.nvidia.com/cuda/cuda-driver-api/index.html#r_main
http://docs.nvidia.com/cuda/cuda-driver-api/index.html#r_main

> module swap PrgEnv-cray PrgEnv-intel
> module unload cray-libsci atp craype-sandybridge craype-ivybridge
> module load craype-intel-knc
At runtime, simply add the -k option to aprun: for example,

> aprun -k -d4 ./a.out
NOTE: In autonomous mode, dynamic linking is enabled by default. Codes that use OpenMP must be
linked dynamically because Intel supports only a dynamic version of the OpenMP library.

3.6.4.3 Known Limitations of Intel Xeon Phi
Use of Intel Xeon Phi coprocessors is subject to these limitations.

● Developers must use the Intel Composer compiler suite. Other compilers do not support KNC at this time.

● Developers must use the Intel Math Kernel Library (MKL). Cray Scientific and Math Libraries (CSML) are not
supported on KNC at this time.

● Cray Performance Measurement and Analysis Tools (CPMAT, a.k.a., "CrayPat") release 6.2 or later is
supported on KNC, but subject to limitations as described in Using Cray Performance Measurement and
Analysis Tools. CrayPat-lite is not supported on KNC at this time. Hardware performance counters (PAPI
included) are not supported on KNC at this time. Reveal, being dependent on CCE (Cray Compiling
Environment), is not supported on KNC at this time.

● Cray Debugging Support Tools (CDST) are not supported on KNC at this time.

3.7 Module Help
Most modules on the Cray system include module help that is specific to the module. The exact content of the
module help varies from vendor to vendor and release to release, but generally includes release notes and late-
breaking news, such as lists of bugs fixed in the release, known dependencies and limitations, and product usage
information.

You can view the module help at any time for any module currently installed on the system. The module does not
need to be loaded in order for you to view the module help.

To access the module help, use the module help command. For example, to see the module help associated
with the default CCE module, enter this command:

users/yourname> module help cce
NOTE: Make certain you specify the exact module name (and if not the default, the module version) that
you want. For example, module help PrgEnv-cray and module help cce display different
information.

3.8 For More Information on Module Subcommands
The Modules subcommands are documented in the module(1) and modulefiles(4) man pages. A summary
of Modules subcommands can be displayed by entering the module help command.

Using Modules

S2529 19

users/yourname> module help

 Modules Release 3.2.6.6 2007-02-14 (Copyright GNU GPL v2 1991):

 Usage: module [switches] [subcommand] [subcommand-args]

Switches:
 -H|--help this usage info
 -V|--version modules version & configuration options
 -f|--force force active dependency resolution
 -t|--terse terse format avail and list format
 -l|--long long format avail and list format
 -h|--human readable format avail and list format
 -v|--verbose enable verbose messages
 -s|--silent disable verbose messages
 -c|--create create caches for avail and apropos
 -i|--icase case insensitive
 -u|--userlvl <lvl> set user level to (nov[ice],exp[ert],adv[anced])
 Available SubCommands and Args:
 + add|load modulefile [modulefile ...]
 + rm|unload modulefile [modulefile ...]
 + switch|swap [modulefile1] modulefile2
 + display|show modulefile [modulefile ...]
 + avail [modulefile [modulefile ...]]
 + use [-a|--append] dir [dir ...]
 + unuse dir [dir ...]
 + update
 + refresh
 + purge
 + list
 + clear
 + help [modulefile [modulefile ...]]
 + whatis [modulefile [modulefile ...]]
 + apropos|keyword string
 + initadd modulefile [modulefile ...]
 + initprepend modulefile [modulefile ...]
 + initrm modulefile [modulefile ...]
 + initswitch modulefile1 modulefile2
 + initlist
 + initclear
Different versions of the Modules software are in use at different sites. Accordingly, the module command
arguments and options available on your site may vary from those shown here.

Using Modules

S2529 20

4 Batch Systems and Program Execution
At most sites, access to compute node resources is managed by a batch control system or workload manager.
There are two general classes of workload managers currently in widespread use on Cray systems.

● PBS (Portable Batch System: variants include PBS Professional, Moab HPC Suite, TORQUE Resource
Manager, and integrated systems such as TORQUE/PBS and Moab/Torque

● SLURM (Simple Linux Utility for Resource Management)

The key difference between these two is that PBS-based workload managers are dependent on Cray ALPS
(Application Level Placement Scheduler) and its suite of associated tools (apstat, aprun, apkill, and so on),
while SLURM-based workload managers are completely independent of Cray ALPS and use a different set of
tools and commands (sstat, srun, scancel, and so on) to perform the same functions submitting, running,
monitoring, and controlling jobs.

No matter which workload manager is in use on your system, running an application typically involves these
steps.

1. Determine what system resources you need. Generally, this means deciding how many cores and/or compute
nodes you need for your job.

2. Determine whether the resources you need are available. This is very important when you are planning to run
in an interactive session but less so if you are submitting a batch job, as the workload manager will keep a
batch job in the queue until the resources to run it become available.

3. Translate your requirements into the appropriate batch system and run-time command options, which are not
necessarily the same. If running a batch job, modify your batch script accordingly.

4. For batch jobs, use the appropriate batch command to submit your job script to the workload manager.

5. For interactive jobs, use the appropriate allocation command to request the resources you need and then
launch the interactive session. The commands and procedures for doing so vary significantly depending on
whether your site uses a PBS-based or SLURM-based workload manager.

4.1 PBS-based Systems
On systems that use PBS-based workload managers, the workload manager is dependent on and integrated with
Cray ALPS (Application Level Placement Scheduler) and its suite of tools. User applications are launched on
compute nodes using the application launcher, aprun, which submits applications to ALPS for placement and
execution. The ALPS service is both very powerful and highly flexible, and a thorough discussion of it is beyond
the scope of this document. For more detailed information about ALPS and aprun, see the intro_alps(1) and
aprun(1) man pages.

The following commands provide the user interface to ALPS.

aprun Specifies application resource requirements, requests application placement, and initiates application
launch. For more information, see the aprun(1) man page.

Batch Systems and Program Execution

S2529 21

apstat Displays information about pending and launched applications, node availability, core status, and
resource reservations. For more information, see the apstat(1) man page.

apcount Calculates the "scaled" width of a batch reservation when using the core specialization feature. For
more information, see the apcount(1) man page.

apkill Sends a "kill" signal to a specified launched application. For more information, see the apkill(1)
man page.

As a general rule, use the apstat command first to determine what compute node resources are available on the
system, and then use the aprun command to place your application on those resources, within the context of a
batch system qsub(1B) session.

Note that qsub(1B) man page is specific to PBS, while the the qsub(1p) man page documents the POSIX
qsub command. To avoid confusion, always refer to the qsub(1B) man page.

Also note that the PBS qsub and Cray aprun commands use different arguments to perform similar functions.
These differences are touched on lightly in Using aprun with PBS and described in detail in Chapter 12 of the
PBS Professional User's Guide.

4.1.1 PBS in Interactive Mode
Interactive mode is typically used for debugging or optimizing code, but not for running production code. For
example, to begin an interactive session on a system using PBS Pro, use the qsub -I command.

When you launch an interactive session, always request the maximum number of resources you expect to need.
Once a batch session begins, you can only use fewer resources than initially requested. You cannot use the
aprun command to use more resources than were reserved using the qsub command.

users/yourname> qsub -I
Useful qsub options include:

-I
Begin an interactive session.

-A account

Charge the time to account.

-q debug
Run in the debug queue.

-V
Import any environment variables that were set in the user's shell.

-l resource_list

Allows user to request resources and specify job placement.

The -l resource_list argument supports a large number of options that are described in the qsub(1B) man
page and expanded upon in the pbs_resources(7B) man page, and described in greater detail in the PBS
Professional User's Guide.

After you have launched an interactive session, use the aprun command to launch your application.

When you are finished, enter exit to exit the batch system and return to the command line.

Batch Systems and Program Execution

S2529 22

When you launch an interactive batch session, pay attention to your file system mount points. You must be on the
high-performance parallel file system (for example, if using the Lustre file system, /lus/nidnumber/yourname) in
order to launch jobs on the compute nodes. However, when you launch an interactive batch session, you are by
default placed in your home directory, which is typically on a login node: e.g., /ufs/home/users/yourname. You
may need to cd back to the parallel file system after launching an interactive session.

Also note that when you launch an interactive batch session, a number of environment variables are automatically
defined and exported to the job, as described on the qsub(1B) man page. For example, the environment
variable $PBS_O_WORKDIR is set to the directory from which the batch job was submitted. This can be a
convenient way to return to your mount point, if you cd to the parallel file system before invoking the interactive
batch session.

4.1.2 PBS in Batch Mode
Production jobs are typically run in batch mode. Batch scripts are shell scripts containing flags and commands to
be interpreted by a shell and are used to run a set of commands in sequence.

To use PBS, load the pbs module:

users/yourname> module load pbsTo use Torque/MOAB, load the moab module:
users/yourname> module load moabFor example, to run a batch script using PBS Pro,
use the qsub command.
users/yourname> qsub -l resource_list jobscript
The -l resource_list arguments are described in the pbs_resources(7B) man page.

A typical PBS Pro 11.0 batch script might look like this:

1: #!/bin/sh
2: #PBS -A account
3: #PBS -N job_name
4: #PBS -j oe
5: #PBS -l walltime=1:00:00,mppwidth=192
6:
7: cd $PBS_O_WORKDIR
8: date
9: aprun -n 192 ./a.out > my_output_file 2>&1

Parsing this script line-by-line, it would be interpreted as follows:

Invoke the shell to use to interpret the script.

Specify the account to which this time is billed.

Assign the job a name to use on messages and output.

Join the job's STDOUT and STDERR into STDOUT.

NOTE: While your job is running, STDOUT and STDERR are written to a file or files in a system directory
and the output is copied to your submission directory only after the job completes. Specifying the -j oe
option here and redirecting the output to a file in line 9 makes it possible for you to view STDOUT and
STDERR while the job is running. For more information about the -j option, see the qsub(1B) man page.

Reserve 192 processing elements for one hour.

This line is blank and is ignored.

cd to the submission directory, which presumably is a mount point on the Lustre file system.

Run the date command.

Batch Systems and Program Execution

S2529 23

Execute the executable file a.out on 192 processing elements and redirect any output to
my_output_file.

After the job is submitted using the qsub command, it goes into the queue, where it waits until the
requested resources become available. When they do, the job is launched on the head node of the
allocated resources, and it runs until either it reaches its planned completion or until the wall clock time (if
specified) is up.

While the job is in the queue, a number of optional commands are available.

qstat
Show the status of the job queue. This command is available at any time, whether or not you have a job
in the queue.

qdel job_id
Delete job job_id regardless of its current state and remove it from the queue.

qhold job_id
Place a non-running job on hold. The job remains in the queue but will not execute. This command
cannot be used once the job begins running.

qrls job_id
Release a job that is on hold.

qalter job_id
Alter the characteristics-name, account, number of requested cores, and so on-of a job in the queue. This
command cannot be used once the job begins running.

showq
(Moab only) Similar to qstat but providing more detail.

checkjob job_id
(Moab only) Check the status of a job currently in the queue.

showstart job_id
(Moab only) Show the estimated start time for a job in the queue.

showbf
(Moab only) Show the current backfill. This can help you to build small jobs that can be backfilled
immediately while you are waiting for the resources to become available for your larger jobs.

For more information about batch scripts, see your batch system's user documentation.

4.1.3 Using aprun with PBS
The aprun utility launches applications on compute nodes. The utility submits applications to the Application
Level Placement Scheduler (ALPS) for placement and execution, forwards the login node environment to the
assigned compute nodes, forwards signals, and manages the stdin, stdout, and stderr streams.

Verify that you are in a directory mounted on the high-speed parallel file system before using the aprun
command.

In simplest form, the aprun command looks like this:

/lus/nid00008> aprun -n x ./program_name

Batch Systems and Program Execution

S2529 24

The aprun command supports a large number of options that provide you with a high degree of control over just
exactly how your job is placed and executed on the compute nodes. At a minimum, you must use the -n option to
specify the number of cores on which to run the job.

NOTE: Remember, you use aprun within the context of a batch session and the maximum size of the job
is determined by the resources you requested when you launched the batch session. You cannot use the
aprun command to use more resources than you reserved using the qsub command.

The aprun and qsub commands support comparable but differently named options. This table lists some
of the more commonly used aprun options and their qsub (PBS Pro 11.0) equivalents.

Table 2. aprun Versus qsub Options

aprun Option qsub -l Option Description

-n 4 -l mppwidth=4 Width (number of PEs)

-d 2 -l mppdepth=2 Depth (number of CPUs hosting
OpenMP threads)

-N 1 -l mppnppn=1 Number of PEs per node

-L 5,6,7 -l mppnodes=\"5,6,7\" Candidate node List

-m 1000m -l mppmem=1000mb Memory per PE

The -B option forces aprun to inherit the values associated with the -n, -d, -N, and -m options from the
batch session. The aprun command exits with an error if you specify any of these options and the -B
option at the same time.

A full discussion of aprun options is beyond the scope of this manual. For more information see the
aprun(1) man page, and for detailed explanations and examples, see Workload Management and
Application Placement for the Cray Linux Environment. Also, note that the behavior of aprun and the
aprun command options supported may vary depending on which version of the CLE operating system
is installed on your system.

4.1.3.1 Special Considerations for Intel Xeon Phi
The aprun command supports the -k argument, which is used to specify that the application should be placed
for execution on an Intel Xeon Phi coprocessor. Note that executable programs must be built specially for
execution on a Xeon Phi. If you attempt to run a program not built specially, you will see the following message:

aprun: Binary not built for Xeon Phi. Cross-compile your application or use -b to
run a command.Commands that are already present on the Xeon Phi may be run by
adding the -b switch to bypass copying the binary to the compute node.
If you attempt Xeon Phi application placement on a node which does not have a Xeon Phi coprocessor, the
execution will fail and exit with an error message.

The default aprun -cc cpu option will cause all OpenMP threads to bind to a single KNC thread. Using the -cc
none argument and KMP_AFFINITY=disabled will disable this binding, but may negatively impact code
performance. If -cc none is specified, the -d and -j arguments are ignored.

At this time Cray recommends that for best performance, Xeon Phi code be executed with aprun arguments -cc
depth and -k, and that KMP_AFFINITY be set to balanced. The KMP_AFFINITY values scatter or compact

Batch Systems and Program Execution

S2529 25

may yield better performance with some code, and the aprun -d and/or -j arguments may be used to fine-tune
performance. For more information, see the aprun(1) man page.

4.2 SLURM-based Systems
On systems that use SLURM-based workload managers (also known as "Native SLURM" systems), job
scheduling and placement is completely independent of Cray ALPS. Instead, the following commands provide the
basic user interface to SLURM. Detailed information, including tutorials, documentation, and an FAQ, can be
found on http://slurm.schedmd.com/, while Cray-specific information can be found on http://slurm.schedmd.com/
cray.html.

sinfo Display system partition and node information. For more information, see the
sinfo(1) man page.

squeue Display information about the jobs currently in the queue. For more information, see
the squeue(1) man page.

sbatch
batch_script

Submit a batch script to the queue. For more information, see the sbatch(1) man
page.

scancel job_id Cancel a job that is already in the queue. For more information, see the scancel(1)
man page.

salloc Allocate node resources for an interactive session. For more information, see the
salloc(1) man page.

srun command Execute a command. For more information, see the srun(1) man page.

sacct Display job accounting data. For more information, see the sacct(1) man page.

scontrol Hold, release, update, requeue, report on, or otherwise conrol a job that is in the
queue. For more information, see the scontrol(1) man page.

As a general rule, use the sinfo command first to determine what node resources are available on the system,
then use the srun command to place your application on these resources, within the context of either an
interactive job or an sbatch script. Note that srun is a powerful and flexible command with many options and a
large number of input and output environment variables: see the srun(1) man page for a detailed explanation of
srun options, along with examples.

On large, complex, or heterogenuous Cray systems, it is advisable to begin by running sinfo first, to see which
partitions contain the resources you want to use. If you do not specify a partition in your allocation request or
batch script, your job will be placed on the default partition as designated by the system administrator.

4.2.1 SLURM in Interactive Mode
Interactive mode is typically used for debugging or optimizing code, but not for running production code. There
are two ways to begin an interactive session on a system using SLURM.

● Use the salloc command to allocate the desired node resources and enter an interactive session. Within
this context, use the srun command to execute commands. When you are finished, enter exit to relinquish
the job allocation and return to the command line.

● Use srun command|program to execute a command or launch a program. In this context, srun first creates
a resource allocation, then executes the command or program, and then relinquish the allocation.

Batch Systems and Program Execution

S2529 26

Be mindful of how you launch and exit interactive sessions. If you launch an interactive session using salloc,
the exit command merely ends the job allocation and returns you to the command line. If you launch an
interactive session using srun, the exit command logs you out of the Cray system.

When you launch an interactive session using salloc, always request the maximum number of resources you
expect to need. Once an interactive batch session begins, you can only use fewer resources than initially
requested. You cannot use the srun command to use more resources than were allocated using the salloc
command.

Do not use qsub -I to launch an interactive session. While POSIX qsub recognizes the -I option and will
attempt to call salloc to open an interactive job allocation, POSIX qsub does not recognize any other salloc
options, and specifying salloc resource-related options with qsub will return an error.

Useful salloc options include:

-A account Charge the time to account.

-N number Number of nodes to allocate.

-p partition Specify the partition on which to run. Use the sinfo command to see which partitions are
defined.

--get-user-env Import any environment variables that were set in the user's shell.

-t time_limit Maximum length of time the job allocation will be allowed to run.

After you use salloc to get an interactive job allocation, you can run any command or program as normal, or use
srun to run the command or program on the allocated resources, as shown in this example.

% salloc -N2 -t 00:10:00
salloc: Granted job allocation 1469073
> hostname
narwhal
> srun hostname
nid00009
nid00008
> exit
exit
salloc: Relinquishing job allocation 1469073

4.2.2 SLURM in Batch Mode
Production jobs are typically run in batch mode. Batch scripts are text files that contain lists of SBATCH job
directives and other commands, and are submitted using the sbatch command.

A simple SLURM batch script might look like this:

#!/bin/bash -l

#SBATCH -p partition
#SBATCH -N 32
#SBATCH -t 00:30:00
#SBATCH -A my_department
#SBATCH -J my_job_name

srun -n 1024 ./my_program

Parsing this line-by-line, it would be interpreted as follows.

Batch Systems and Program Execution

S2529 27

#!/bin/bash -l Invoke the shell to use to interpret this script: in this case, bash. The -l
option makes bash behave as if it had been invoked as a login shell.

#SBATCH -p partition Specify the partition in which to run. Partition information is obtained using the
sinfo command.

#SBATCH -N 32 Specify the number of nodes to allocate for this job.

#SBATCH -t 00:30:00 Specify the maximum wallclock time allowed for this job. If the job exceeds
this time limit, it will be put in PENDING state until its status is changed using
scontrol.

#SBATCH -A my_department Specify the account to which this time is to be billed.

#SBATCH -J my_job_name Specify a 15-character (or less) name for this job. This makes it easier to find
on reports.

srun -n 1024 ./my_program The command line to execute my_program. In this example, the -n option is
used to specify the number of tasks to run. While the default is one task per
node, hyperthreading or multicore processors permit much larger numbers of
tasks per node.

To run this script, use the sbatch command.

% sbatch myscript

sbatch starts immediately and exits as soon as the script has been transferred to the Slurm controller and
assigned a job ID. The job then goes into the queue, where it waits until the requested resources become
available.

To check the general status of the all jobs in the queue, use the squeue command. To check on the status of a
particular job, use sstat job_id.

While your job is running, standard output (STDOUT) and standard error (STDERR) are combined and written to
slurm-job_id.out in your submit directory. This output can be renamed using the #SBATCH -o or #SBATCH
-e flags, or redirected using standard shell commands.

Batch Systems and Program Execution

S2529 28

5 Using Compilers
The Cray system supports a variety of compilers from a variety of vendors and support for new compilers and
languages is being added on an ongoing basis. The GNU Fortran, C, and C++ compilers are supplied with all
systems, while all other compilers are available as optional and separately licensed add-ons. At present, the
following compilers from the following vendors are supported on Cray systems.

● Cray Inc., Cray Compiling Environment (CCE) (Fortran, C, and C++)

● The Portland Group, Parallel Fortran, C, and C++

● Intel Inc., Intel Composer (Fortran and C++)

● Chapel Parallel Programming Language

The compilers available on your system depend on which products your site administration has chosen to
license and install.

NOTE: At this time, in order to use the first generation Intel Xeon Phi coprocessors codenamed
Knights Corner, the Intel Composer compiler suite must be used.

5.1 About Compiler Drivers
Because of the multiplicity of possible compilers, Cray supplies compiler drivers, wrapper scripts, and
disambiguation man pages. No matter which vendor's compiler module is loaded, always use one of the following
commands to invoke the compiler.

ftn
Invokes the Fortran compiler, regardless of which compiler module is currently loaded. This command links in the
fundamental libraries required in order to produce code that can be executed on the Cray compute nodes. For
more information, see the ftn(1) man page.

cc
Invokes the C compiler, regardless of which compiler module is currently loaded. This command links in the
fundamental header files and libraries required in order to produce code that can be executed on the Cray
compute nodes. For more information, see the cc(1) man page.

CC
Invokes the C++ compiler, regardless of which compiler module is currently loaded. This command links in the
fundamental header files and libraries required in order to produce code that can be executed on the Cray
compute nodes. For more information, see the CC(1) man page.

Note that while you always use one of the above commands (either on the command line or in your make files) to
invoke the compiler, the arguments used with the commands vary according to which compiler module is loaded.
For example, the arguments and options supported by the PGI Fortran compiler are different from those
supported by the Cray Fortran (CCE) compiler.

Using Compilers

S2529 29

IMPORTANT: Regardless of which compiler module you have loaded, do not use the native compiler
commands. For example, if you are using the PGI compiler suite, do not use the pgf95 command to
invoke the Fortran compiler. If you do so, your code may appear to compile and link successfully, but it
will be linked to the wrong libraries and the resulting program can be executed on login nodes only; it
cannot be executed on compute nodes.

5.1.1 Bypassing the Compiler Drivers
In special cases you may want to bypass the compiler drivers and use the native compiler commands. Do not do
so. Instead, load the special targeting module, craype-target-native, and then continue to use the ftn, cc,
and CC commands as before. The craype-target-native module enables the compiler driver commands to
function as native compiler commands-for example, if the PGI programming environment is loaded, the ftn
command works as if it is pgf95, but eliminates all default library links while also preventing any linking to
incorrect libraries.

To restore normal compiler driver behavior, unload the craype-target-native module.

5.2 About C/C++ Data Types
The C/C++ compilers differ on the size of the long double data type. The PGI and CCE compilers define long
double as being 8 bytes. All other compilers define the long double as being 16 bytes.

Table 3. C/C++ Data Type Sizes

Data Type Size in Bytes

unsigned char 1

signed char 1

unsigned short 2

signed short 2

unsigned int 4

signed int 4

unsigned long 8

signed long 8

unsigned long long 8

signed long long 8

float 4

_float128 16

_float128 complex 32

double 8

long double 8 or 16, depending on compiler

Using Compilers

S2529 30

Data Type Size in Bytes

char * 8

enum 4

5.3 About the Cray Compiling Environment (CCE)
Table 4. Cray Compiler Basics

Module: PrgEnv-cray
Command: ftn, cc, CC
Compiler-specific man pages: crayftn(1), craycc(1), crayCC(1)

NOTE: Compiler-specific man pages are available only when the
compiler module is loaded.

Online help: None provided

Documentation: Cray Fortran Reference Manual, Cray C and C++ Reference Manual

5.3.1 Known Limitations of CCE
● If you use the Cray Fortran compiler with the PETSc (Portable, Extensible Toolkit for Scientific Computation)

library, either add the directive !dir$ PREPROCESS EXPAND_MACROS to the source code or add the -F
option to the ftn command line.

● At this time, CCE does not support the first generation Intel Xeon Phi coprocessors codenamed Knights
Corner.

5.4 About PGI Compilers
Table 5. PGI Compiler Basics

Module: PrgEnv-pgi
Command: ftn, cc, CC
Compiler-specific man pages: pgf95(1), pgcc(1), pgCC(1)

NOTE: Compiler-specific man pages are available only when the
compiler module is loaded.

Online help: pgf95 -help, pgcc -help, pgCC -help,

Documentation: /opt/pgi/version/linux86-64/version/doc

Using Compilers

S2529 31

5.4.1 Known Limitations of PGI
● At this time, PGI compilers do not support the first generation Intel Xeon Phi coprocessors codenamed

Knights Corner.

● The PGI compilers are not able to handle template-based libraries such as Tpetra.

● When linking in ACML routines, you must compile and link all program units with -Mcache_align or an
aggregate option that incorporates -Mcache_align such as fastsse.

● The -Mconcur (auto-concurrentization of loops) option is not supported on Cray systems.

● The -mprof=mpi, -Mmpi, and -Mscalapack options are not supported.

● The PGI debugger, PGDBG, is not supported on Cray systems.

● The PGI profiling tools, pgprof and pgcollect, are not supported on Cray systems.

● The PGI Compiler Suite does not support the UPC or Coarray Fortran parallel programming models.

5.5 About Intel Compilers
Table 6. Intel Composer Basics

Module: PrgEnv-intel
Command: ftn, cc, CC
Compiler-specific man pages: ifort(1), fpp(1), icc(1), icpc(1)

NOTE: Compiler-specific man pages are available only when
the compiler module is loaded.

Online help: ifort --help, icc --help
Documentation: /opt/intel/Compiler/version/Documentation/language

5.5.1 Known Limitations of the Intel Compiler Suite
● The Intel Compiler Suite (Intel Composer) must be installed in the default location. The optional Intel C/C++

only installation is not supported because the Intel Fortran run time libraries are required by Cray libraries
such as libsci when using the Intel compiler.

● The Intel Composer does not support the UPC or Coarray Fortran parallel programming models.

● The Intel Composer is the only compiler suite that supports first generation Intel Xeon Phi coprocessors
codenamed Knights Corner.

Using Compilers

S2529 32

5.6 About GNU Compilers
Table 7. GNU Compiler Basics

Module: PrgEnv-gnu
Command: ftn, cc, CC
Compiler-specific man pages: gfortran(1), gcc(1), g++(1)

NOTE: Compiler-specific man pages are available only when the
compiler module is loaded.

Online help: gfortran --help, gcc --help, g++ --help

5.6.1 Known Limitations of GNU Compilers
● The GNU compilers do not support the UPC or Coarray Fortran parallel programming models.

● At this time, the GNU compilers do not support the first generation Intel Xeon Phi coprocessors codenamed
Knights Corner.

5.7 About the Chapel Parallel Programming Language
Chapel is an emerging parallel programming language whose design and development is being led by Cray Inc.
Chapel is being developed as an open-source effort with contributions from academia, industry, and scientific
computing centers. Chapel emerged from Cray's entry in the DARPA-led High Productivity Computing Systems
program (HPCS).

Chapel is designed to improve the productivity of high-end computer users while also serving as a portable
parallel programming model that can be used on commodity clusters or desktop multicore systems. Chapel
strives to vastly improve the programmability of large-scale parallel computers while matching or beating the
performance and portability of current programming models like MPI.

Chapel supports a multithreaded execution model via high-level abstractions for data parallelism, task parallelism,
concurrency, and nested parallelism. Chapel's locale type enables users to specify and reason about the
placement of data and tasks on a target architecture in order to tune for locality. Chapel supports global-view data
aggregates with user-defined implementations, permitting operations on distributed data structures to be
expressed in a natural manner. In contrast to many previous higher-level parallel languages, Chapel is designed
around a multiresolution philosophy, permitting users to initially write very abstract code and then incrementally
add more detail until they are as close to the machine as their needs require. Chapel supports code reuse and
rapid prototyping via object-oriented design, type inference, and features for generic programming.

Chapel was designed from first principles rather than by extending an existing language. It is an imperative block-
structured language, designed to be easy to learn for users of C, C++, Fortran, Java, Perl, Matlab, and other
popular languages. While Chapel builds on concepts and syntax from many previous languages, its parallel
features are most directly influenced by ZPL, High-Performance Fortran (HPF), and the Cray MTA/Cray XMT
extensions to C and Fortran.

For more information about Chapel, see: http://chapel.cray.com.

Using Compilers

S2529 33

http://chapel.cray.com

5.8 About Cross-compilers
The Cray system supports using standalone Linux workstations as code development platforms for CLE 4.X
systems. Install the Cray Application Developer's Environment (CADE), release 6.17 or later, on Cray XE or Cray
XK systems running CLE release 4.0, 4.1, or 4.2.

The Cray system supports using Cray Development and Login (CDL) hosts as development platforms for CLE 5.X
systems. Install the Cray Developer Toolkit (CDT), release 1.16 or later, on Cray XC30 systems running Cray
Linux Environment (CLE) release 5.1 or later.

When the Cray Application Developer's Environment (CADE) is installed on a suitable Linux or CDL system,
programs can be written and compiled on that system and then exported to the Cray system for subsequent
execution, debugging, and optimization.

For instructions on installing CADE and CDT, please see Cray Programming Environments Installation Guide.
After CADE or CDT is installed and your compilers are installed and configured on your Linux system, follow
these steps to begin developing code.

Using Compilers

S2529 34

6 Dynamic Linking
Dynamic linking, or run time linking, potentially reduces memory allocated for a program on a compute node.
Dynamically linked applications contain references to dynamic libraries, also known as dynamic shared objects. It
allows the user to benefit from library upgrades, without having to recompile.

The module environment, in combination with the Cray compiler drivers (CC, cc, ftn), define the default link-type,
cpu-target, network-target, accelerator-target, compiler and other information required to create an executable.

6.1 Implementation
There have been changes to the implementation of dynamic linking within the drivers and PE product installation,
beginning with the 5.0 release of CLE, which includes a new craype package (formerly named xt-asyncpe). To
the user, changes to the implementation of dynamic linking should be transparent but it is helpful to be aware of
default behavior.

If a user wishes to modify the default run time programming environment for a dynamically linked application, they
will need to modify the default search path for dynamically linked libraries.

6.2 Linking Defaults
By default, the compiler driver scripts, CC, cc, ftn, set the -static option. If one of the GPU targeting modules
is loaded (craype-accel-nvidia20, craype-accel-nvidia35), or if the Intel Xeon Phi module is loaded
(craype-intel-knc), the default linking behavior changes to dynamic because the required libraries are
dynamic. To modify the linking behavior, use the -dynamic or -static option on the compiler driver script.
Alternatively, a user may wish to set the shell environment variable CRAYPE_LINK_TYPE to dynamic or static
to change the default link type.

Generally, when a new, non-compiler Cray product containing dynamic libraries is set as the default by the
administrator, the installation process adds run time links to the /opt/cray/lib64 directory and
executes /sbin/ldconfig to add /opt/cray/lib64 to the ld cache making these dynamic libraries
accessible to the run time environment.

Runtime linking is against the list of links in /opt/cray/lib64. This set of run time links reflects the set of
products installed as "default" by the system administrator. The non-compiler Cray product installation configures
the run time linker's cache, not RPATH, nor LD_LIBRARY_PATH to define the run time link path for dynamically
linked applications.

The compilers (pgi, cce, gcc, and intel) as well stat may control the run time link path and set the RPATH
stored in the executable. For example, the CCE compiler script, craycc, passes the -Wl,-rpath= option to the
compiler driver to specify the associated set of Craylibs to use during run time.

Dynamic Linking

S2529 35

When a dynamically linked executable runs in the Cray environment, it finds dynamically linked libraries according
to the following search order:

● LD_LIBRARY_PATH environment variable

● RPATH embedded in the header of the executable.

● Directories in /etc/ld.so.cache, the dynamic linker's cache, created by the ldconfig command which is
run during the installation process. Cray programming environment products' dynamic libraries are installed
in /opt/cray/lib64.

When there are entries in LD_LIBRARY_PATH, and RPATH those directory paths are searched first for each
library that is referenced by the run time application, affecting the run time for applications, particularly at
higher node counts. For this reason, the default programming environment does not use LD_LIBRARY_PATH.

6.3 Modify Linking Behavior to Use Non-default Libraries
The environment variable CRAY_LD_LIBRARY_PATH, is set to a colon-separated list of every product library path
in the current environment, and is automatically generated by the module environment. When modules are
unloaded and loaded, its value changes accordingly. It is not recognized by the loader, nor consumed by the
programming environment, but it is provided to facilitate the modification of the user's LD_LIBRARY_PATH, if
needed.

If a non-default product is loaded or if a user suspects an issue with the default version of a library, the user may
wish to prepend the CRAY_LD_LIBRARY_PATH to LD_LIBRARY_PATH. For example, a user who wishes to run
an application against a product set that contains some non-default product, can prepend
CRAY_LD_LIBRARY_PATH to LD_LIBRARY_PATH as follows:

module load PrgEnv-cray
module swap cray-libsci cray-libsci/version
module swap cray-mpich cray-mpich/version
setenv LD_LIBRARY_PATH $CRAY_LD_LIBRARY_PATH:$LD_LIBRARY_PATH
aprun ./a.out
The use of LD_LIBRARY_PATH does have a performance impact and should be reserved for special cases.
Programs that needed to be locked to a specific version of a Programming Environment library should use the link
option -Wl,-rpath=, or static linking, if possible.

Dynamic Linking

S2529 36

7 Libraries
Cray provides a large variety of libraries to support application development and interprocess communications on
Cray systems. New libraries are being ported to the Cray system on an ongoing basis.

The following libraries can be used with all compilers currently supported on the Cray system, except where noted
in Using Compilers on page 29.

When to Use Hugepages
● For SHMEM applications, map the static data and/or private heap onto huge pages.

● For applications written in Unified Parallel C, Coarray Fortran, and other languages based on the PGAS
programming model, map the static data and/or private heap onto huge pages.

● For MPI applications, map the static data and/or heap onto huge pages.

● For an application which uses shared memory, which needs to be concurrently registered with the high speed
network drivers for remote communication.

● For an application doing heavy I/O.

● To improve memory performance for common access patterns on large data sets.

7.1 Cray Scientific and Math Libraries (CSML)
The Cray Scientific and Math Libraries (CSML, also known as LibSci) are a collection of numerical routines
optimized for best performance on Cray systems. All programming environment modules load cray-libsci by
default, except where noted. When possible, you should use calls to the CSML routines in your code in place of
calls to public-domain or user-written versions.

NOTE: CSML is not supported for first generation Intel Xeon Phi coprocessors codenamed Knights
Corner. When building a program that is to use the Intel Xeon Phi coprocessor, unload the cray-libsci
module before loading the craype-intel-knc module. Developers writing code to run on Intel Xeon
Phi coprocessors must use the Intel Math Kernel Library (MKL) instead of CSML.

7.1.1 Basic CSML Components
Table 8. CSML Basics

Module: cray-libsci

Libraries

S2529 37

Man pages: intro_libsci(3s), intro_libsci_acc(3s), intro_blas1(3s),
intro_blas2(3s), intro_blas3(3s), intro_blacs(3s),
intro_lapack(3s), intro_lapacke(3s), intro_scalapack(3s),
intro_irt(3), intro_fft(3s), intro_fftw2(3), intro_fftw3(3)

NOTE: Library-specific man pages are available only when the
associated module is loaded.

The CSML collection contains the following Scientific Libraries.

● BLAS (Basic Linear Algebra Subroutines)

● BLACS (Basic Linear Algebra Communication Subprograms)

● LAPACK (Linear Algebra Routines)

● LAPACKE (C interfaces to LAPACK Routines)

● ScaLAPACK (Scalable LAPACK)

● FFT (Fast Fourier Transform Routines)

● FFTW2 (the Fastest Fourier Transforms in the West, release 2)

● FFTW3 (the Fastest Fourier Transforms in the West, release 3)

In addition, the Cray LibSci collection contains three libraries developed by Cray.

● IRT (Iterative Refinement Toolkit)

● LibSci_ACC (Accelerated BLAS and LAPACK routines, optimized for use on systems with GPU accelerators)

7.1.2 BLAS and LAPACK
The BLAS and LAPACK libraries are loaded by default as part of the cray-libsci module. The BLAS (Basic
Linear Algebra Subroutines) library contains three levels of optimized subroutines. Level 1 BLAS perform the
following types of basic vector-vector operations:

● Dot products and various vector norms

● Scaling, copying, swapping, and computing linear combination of vector

● Generate or apply plane or modified plane rotations

For more information, see the intro_blas1(3s) man page.

Level 2 BLAS perform matrix-vector operations, and generally produce improved code performance when
inlined. For more information about Level 2 BLAS, see the intro_blas2(3s) man page.

Level 3 BLAS perform matrix-matrix operations. For more information about Level 3 BLAS, see the
intro_blas3(3s) man page.

LAPACK is a public domain library of subroutines for solving dense linear algebra problems, including the
following:

● Systems of linear equations

● Linear least squares problems

● Eigenvalue problems

● Singular value decomposition (SVD) problems

Libraries

S2529 38

LAPACK is the successor to the older LINPACK and EISPACK packages. It extends the functionality of these
packages by including equilibration, iterative refinement, error bounds, and driver routines for linear systems,
routines for computing and reordering the Schur factorization, and condition estimation routines for
eigenvalue problems. Performance issues are addressed by implementing the most computationally-intensive
algorithms using Level 2 and Level 3 BLAS.

For more information about LAPACK, see the intro_lapack(3s) man page.

7.1.2.1 Notes on BLAS and LAPACK
● BLAS library behavior is dependent on the craype-processor module. At most sites this module is

typically loaded by default and transparent to the user. However, if your site has multiple types of compute
nodes, or if you are working in an unmanaged CDL or Linux cross-compiling environment, it may be
necessary to load the craype-processor module corresponding to the compute nodes on the Cray system
for which you intend to develop code in order to obtain best performance. Your choices are:

○ craype-barcelona (AMD quad core, Cray XT4)

○ craype-shanghai (AMD quad core, Cray XT5)

○ craype-istanbul (AMD six cores)

○ craype-mc8 (AMD eight cores)

○ craype-mc12 (AMD twelve cores)

○ craype-interlagos (AMD sixteen cores)

○ craype-interlagos-cu (AMD sixteen cores, optimized for Compute Unit Affinity)

○ craype-abudhabi (AMD sixteen cores)

○ craype-abudhabi-cu (AMD sixteen cores, optimized for Compute Unit Affinity)

○ craype-sandybridge (Intel eight cores/sixteen threads)

○ craype-ivybridge (Intel twelve cores/twenty-four threads)

NOTE: If you select a processor type with fewer cores than are actually present on the Cray
compute nodes, your code will not make full use of the Cray system resources and may either run
slowly or cause conflicts with aprun options and placement. If you select a processor type with
more cores than are actually present on the Cray compute nodes, your application may appear to
compile successfully but will not run.

● If you require a C interface to BLAS and LAPACK but want to use Cray LibSci BLAS or LAPACK routines, use
the Fortran interfaces.

● To obtain threading behavior, set OMP_NUM_THREADS, as described in BLACS and ScaLAPACK on page
40.

● You can access the Fortran interfaces from a C program by adding an underscore to the respective routine
names and passing arguments by reference (rather than by value). For example, you can call the dgetrf()
function as follows:

dgetrf_(&uplo, &m, &n, a, &lda, ipiv, work, &lwork, &info);
● C programmers using the Fortran interface must order arrays in Fortran column-major order.

● Some older versions of the Cray BLAS and LAPACK libraries optimized to support older AMD processors
include routines from the 64-bit libGoto library from the University of Texas. Use of libGoto library routines
in Cray libraries is being phased out.

Libraries

S2529 39

7.1.3 BLACS and ScaLAPACK
The BLACS (Basic Linear Algebra Communication Subprograms) and ScaLAPACK (Scalable LAPACK) libraries
are loaded by default as part of the cray-libsci module. BLACS is a package of routines that provide the
same functionality for message-passing linear algebra communication as the Basic Linear Algebra Subprograms
(BLAS) provide for linear algebra computation. With these two packages, software for dense linear algebra can
use calls to BLAS for computation and calls to BLACS for communication. The BLACS consist of communication
primitives routines, global reduction routines, and support routines.

For more information about BLACS, see the intro_blacs(3s) man page.

The ScaLAPACK library uses BLACS primitives to provide optimized routines for solving real or complex general,
triangular, or positive definite distributed systems; for reducing distributed matrices to condensed form and an
eigenvalue problem solver for real symmetric distributed matrices; and to perform basic operations involving
distributed matrices and vectors.

LU and Cholesky routines in ScaLAPACK have been modified to allow the user to choose an underlying
broadcast algorithm during run time. It can be done either via an environment variable, or by calling a helper
routine in a program.

For more information about ScaLAPACK, see the intro_scalapack(3s) man page.

7.1.3.1 Notes on ScaLAPACK
● Some ScaLAPACK routines require the Basic Linear Algebra Communication Subprograms (BLACS) to be

initialized. This can be done through a call to BLACS_GRIDINIT. Also, each distributed array that is passed
as an argument to a ScaLAPACK routine requires a descriptor, which is set through a call to DESCINIT.

● The ScaLAPACK and BLACS libraries can be used in MPI and SHMEM applications. Cray LibSci also
supports hybrid MPI/ScaLAPACK applications, which use threaded BLAS on a compute node and MPI
between nodes. To use ScaLAPACK in a hybrid application:

Adjust the process grid dimensions in ScaLAPACK to account for the decrease in BLACS nodes.

Ensure that the number of BLACS processes required is equal to the number of nodes required, not the
number of cores.

Set the OMP_NUM_THREADS environment variable.

7.1.4 Iterative Refinement Toolkit (IRT)
The Iterative Refinement Toolkit (IRT) is a library of Fortran subroutines that provides solutions to linear systems
using 32-bit factorizations while preserving accuracy through mixed-precision iterative refinement. IRT exploits the
fact that single-precision solvers can be up to twice as fast as double-precision solvers, and uses an iterative
refinement process to obtain solutions accurate to double-precision. IRT includes both serial and parallel
implementations of the LU and Cholesky algorithms, and serial versions of the QR algorithm for real and complex
matrices.

IRT includes the following features:

● Sophisticated stopping criteria

● Potential minimization of forward error

● Ability to return error bounds

● Return an estimate of the condition number of matrix A

Libraries

S2529 40

● Return to the double-precision factorization-and-solve process if IRT cannot obtain a solution

IRT provides two interfaces:

● Benchmarking interface. The benchmarking interface routines replace the high-level drivers of LAPACK and
ScaLAPACK. The names of the benchmark API routines are identical to their LAPACK or ScaLAPACK
counterparts or replace calls to successive factorization and solver routines. This allows you to use the IRT
process without modifying your application.

● For example, the IRT dgesv() routine replaces either the LAPACK dgesv() routine or the LAPACK
dgetrf() and dgetrs() routines. To use the benchmarking interface, set the IRT_USE_SOLVERS
environment variable to 1.

NOTE: Use this interface with caution; calls to the LAPACK LU, QR or Cholesky routines are
intercepted and the IRT is used instead.

● Expert interface. The expert interface routines give you greater control of the iterative refinement process and
provide details about the success or failure of the process. The format of advanced API calls is:

call irt_factorization-method_data-type_processing-mode(arguments)such as: call
irt_po_real_parallel(arguments).
For more information about IRT, see the intro_irt(3) man page.

7.1.5 Fourier Transformations
Fast Fourier transforms are handled by using FFTW. Alternatively, on Cray XT, Cray XE, and Cray XK systems,
FFT can be handled using ACML.

The intro_fft(3s) man page is a disambiguation page.

7.1.5.1 FFTW
FFTW is a C subroutine library with Fortran interfaces for computing the discrete Fourier transform in one or more
dimensions, of arbitrary input size, and of both real and complex data (as well as of even/odd data, such as the
discrete cosine/sine transforms). The Fast Fourier Transform algorithm is applied for many problem sizes.

Cray LibSci includes both version 2.1.5.x and multiple 3.2.x and 3.3.x versions of the Fastest Fourier Transform
in the West (FFTW) library. By default, no version of FFTW is loaded.

The FFTW 3.3.x and FFTW 2.1.5.1 modules cannot be loaded at the same time. If a module is already loaded,
you must first unload one module, before loading the desired module. For example, if you have loaded the FFTW
3.3.x library and want to use FFTW 2.1.5.1 instead, use:

% module swap fftw/3.3.0.2 fftw/2.1.5.1
For more information about FFTW, see the intro_fftw2(3) and intro_fftw3(3) man pages.

7.1.5.2 ACML
The AMD Core Math Library (ACML) is available for Cray XT, Cray XE, and Cray XK systems equipped with AMD
Opteron CPUs only.

The ACML module is not loaded as part of the default Cray LibSci. However, if you need ACML for FFT functions,
math functions, or random number generators, you can load the library using the acml module:

% module load acml

Libraries

S2529 41

NOTE: If you load the acml module manually, you must also use -l acml option when compiling and
linking to link in the ACML library.

ACML includes:

● A suite of Fast Fourier Transform (FFT) routines for real and complex data

● Fast scalar, vector, and array math transcendental library routines optimized for high performance

● A comprehensive random number generator suite:

○ Base generators plus a user-defined generator

○ Distribution generators

○ Multiple-stream support

ACML's internal timing facility uses the clock() function. If you run an application on compute
nodes that uses the plan feature of FFTs, underlying timings will be done using the native version
of clock(). On CNL, clock() returns the sum of user and system CPU times.

7.1.6 PETSc
Table 9. PETSc Basics

Modules: cray-petsc, cray-petsc-complex, cray-tpsl
Man pages: intro_petsc(3s)

NOTE: Library-specific man pages are available only when the
associated module is loaded.

Website: http://www.mcs.anl.gov/petsc/petsc-as/

PETSc (Portable, Extensible, Toolkit for Scientific Computation) is an open source library of parallel linear and
nonlinear equation solvers intended for use in large-scale C, C++, or Fortran applications. PETSc uses standard
MPI functions for all message-passing communication.

The PETSc modules are not loaded by default. PETSC is dependent on the cray-libsci and craype
modules. Make certain these modules are loaded before using PETSc. When you load the petsc module, the
Third-Party Scientific Libraries (cray-tpsl) module is automatically loaded as well, to provide access to the
libraries required to support PETSc.

NOTE: Always use the cray-tpsl module that is linked to the PETSc module. PETSc and Trilinos are
asynchronous products and may at times use different versions of the TPSL libraries.

PETSc provides many of the mechanisms needed for parallel applications, such as simple parallel matrix
and vector assembly routines that allow the overlap of communication and computation. In addition,
PETSc includes support for parallel distributed arrays useful for finite difference methods, such as:

● Parallel vectors, including code for communicating ghost points

● Parallel matrices, including several sparse storage formats

● Scalable parallel preconditioners

● Krylov subspace methods

● Parallel Newton-based nonlinear solvers

● Parallel time-stepping ordinary differential equation (ODE) solvers

Libraries

S2529 42

http://www.mcs.anl.gov/petsc/petsc-as/

The following packages are included in PETSc/TPSL.

● MUMPS (MUltifrontal Massively Parallel sparse direct Solver) is a package of parallel, sparse, direct
linear-system solvers based on a multifrontal algorithm. For further information, see http://graal.ens-
lyon.fr/MUMPS/.

● SuperLU is a sequential version of SuperLU_dist (not included with petsc-complex), and a
sequential incomplete LU preconditioner that can accelerate the convergence of Krylov subspace
iterative solvers. For further information, see http://crd.lbl.gov/~xiaoye/SuperLU/.

● SuperLU_dist is a package of parallel, sparse, direct linear-system solvers (available in Cray LibSci).
For further information, see http://crd.lbl.gov/~xiaoye/SuperLU/.

● ParMETIS (Parallel Graph Partitioning and Fill-reducing Matrix Ordering) is a library of routines that
partition unstructured graphs and meshes and compute fill-reducing orderings of sparse matrices. For
further information, see http://glaros.dtc.umn.edu/gkhome/views/metis/.

● HYPRE is a library of high-performance preconditioners that use parallel multigrid methods for both
structured and unstructured grid problems (not included with petsc-complex). For further
information, see http://www.llnl.gov/CASC/linear_solvers/.

● SUNDIALS (SUite of Nonlinear and DIfferential/ALgebraic equation Solvers) consists of 5 solvers:
CVODE, CVODES, IDA, IDAS, and KINSOL. In addition, SUNDIALS provides a MATLAB interface to
CVODES, IDAS, and KINSOL that is called sundialsTB. For further information, see https://
computation.llnl.gov/casc/sundials/main.html.

● Scotch is a software package and libraries for sequential and parallel graph partitioning, static
mapping, sparse matrix block ordering, and sequential mesh and hypergraph partitioning. For further
information, see http://www.labri.fr/perso/pelegrin/scotch/.

Although you can access these packages individually, Cray supports their use only through the
PETSc or Trilinos interface.

7.1.6.1 Notes on PETSc
● If you use PETSc with the Cray Fortran compiler, either add the directive !dir$ PREPROCESS

EXPAND_MACROS to the source code or add the -F option to the ftn command line.

● The solvers in Cray PETSc are heavily optimized using the Cray Adaptive Sparse Kernels (CASK) library.
CASK is an auto-tuned library within the Cray PETSc package that is transparent to the application developer,
but improves the performance of most PETSc iterative solvers. You can expect the largest performance
improvements when using blocked matrices (BAIJ or SBAIJ), but may also see large gains when using
standard compressed sparse row (CSR) AIJ PETSc matrices.

7.1.7 Trilinos
Table 10. Trilinos Basics

Modules: cray-trilinos, cray-tpsl
Man pages: intro_trilinos(1),

NOTE: Library-specific man pages are available only when the
associated module is loaded.

Website: http://trilinos.sandia.gov/

Libraries

S2529 43

http://graal.ens-lyon.fr/MUMPS/
http://graal.ens-lyon.fr/MUMPS/
http://crd.lbl.gov/~xiaoye/SuperLU/
http://crd.lbl.gov/~xiaoye/SuperLU/
http://glaros.dtc.umn.edu/gkhome/views/metis/
http://www.llnl.gov/CASC/linear_solvers/
https://computation.llnl.gov/casc/sundials/main.html
https://computation.llnl.gov/casc/sundials/main.html
http://www.labri.fr/perso/pelegrin/scotch/
http://trilinos.sandia.gov/

Trilinos is a separate module, comparable to PETSc, that provides abstract, object-oriented interfaces to
established libraries such as Metis/ParMetis, SuperLU, Aztec, BLAS, and LAPACK. Trilinos also includes a set of
Cray Adaptive Sparse Kernels (CASK) that perform SpMV, and include optimized versions of single- and multiple-
vector matrix vector multiplies.

The Trilinos module is not loaded by default. Trilinos is dependent on the cray-libsci and craype modules.
Make certain these modules are loaded before using Trilinos. When you load the cray-trilinos module, the
Third-party Scientific Libraries (cray-tpsl) module is automatically loaded as well, to provide access to the
libraries required to support Trilinos.

NOTE: Always use the cray-tpsl module that is linked to the Trilinos module. Trilinos and PETSc are
asynchronous products and may at times use different versions of the TPSL libraries.

To use the Trilinos packages, load your compiling environment of choice, and then load the Trilinos
module.

% module load cray-trilinos
After you load the Trilinos module, all header and library locations are set automatically and you are ready
to compile your code. No Trilinos-specific linking information is required on the command line.

If linking to more than one Trilinos package, the libraries are linked automatically in the correct order of
package dependency. For more information about link order, see http://trilinos.sandia.gov/packages/
interoperability.html.

7.1.8 Cray LibSci_ACC
Cray LibSci_ACC is a library of BLAS, LAPACK and ScaLAPACK routines optimized for use on Cray systems
equipped with GPU accelerators (i.e., Cray XK systems and future CPU/GPU hybrid systems). These routines
enhance user application performance by generating and executing autotuned kernels for GPUs. Cray
LibSci_ACC also provides a C language API to allow pass-by-value semantics for input parameters. Cray
LibSci_ACC provides both automatic selection of the appropriate CPU or GPU algorithm based on problem size
and data layout, and manual selection for programmers who want to control the accelerator resources used by
their applications.

The Cray LibSci_ACC library is supported in the Cray and GNU programming environments by CCE 8.0 or later.

Table 11. Cray LibSci_ACC Basics

Modules: cray-libsci-acc, cray-libsci, PrgEnv-PE_type, craype-accel-
GPU_type

Man pages: intro_libsci_acc(3s), intro_libsci(3s), intro_blas1(3s),
intro_blas2(3s), intro_blas3(3s), intro_lapack(3s),
intro_scalapack(3s)

NOTE: Library-specific man pages are available only when the
associated module is loaded.

The Cray LibSci_ACC module, cray-libsci-acc, is not loaded by default. Cray LibSci_ACC requires that the
following modules be loaded:

● cray-libsci (loaded by default)

● A programming environment module, either PrgEnv-cray or PrgEnv-gnu

Libraries

S2529 44

http://trilinos.sandia.gov/packages/interoperability.html
http://trilinos.sandia.gov/packages/interoperability.html

● The correct accelerator module for the type of GPU present, either craype-accel-nvidia20 for systems
with NVIDIA Fermi GPUs or craype-accel-nvidia35 for systems with NVIDIA Kepler GPUs.

7.2 MPT
Table 12. MPT Basics

Modules: cray-mpich and cray-shmem,

Man pages: intro_mpi(3), intro_shmem(3)
NOTE: Library-specific man pages are available only when the
associated module is loaded.

Documentation: Getting Started on MPI I/O

Websites: http://www.mpi-forum.org/

http://openshmem.org/

The Cray Message Passing Toolkit (MPT) consists of two components.

● MPI (Message-Passing Interface)

● SHMEM (SHared MEMory)

MPI is a widely used parallel programming model that establishes a practical, portable, efficient, and flexible
standard for passing messages between ranks in parallel processes. Cray MPI is derived from Argonne
National Laboratory MPICH and implements the MPI-3.0 standard as documented by the MPI Forum in MPI:
A Message Passing Interface Standard, Version 3.0, with the exceptions noted in MPI Usage Notes on page
47. Cray MPI is supported on all current Cray systems, for use with the Cray (CCE), GNU, Intel, and PGI
compilers.

SHMEM is a similar parallel programming model, except based on using data-passing routines to put and get
data in the Partitioned Global Address Space (PGAS). SHMEM was originally developed by Cray Research
for use on the Cray T3D system, but has since become an open standard. Cray SHMEM is fully compliant
with OpenSHMEM 1.0 and supported on all current Cray systems, for use with the Cray (CCE), GNU, Intel,
and PGI compilers.

Programmers can use MPI independently of SHMEM, SHMEM independently of MPI, or both together. This
has implications for module usage and linking options. For more information, see Using MPI and SHMEM
Modules on page 46.

Support for MPI and SHMEM varies depending on whether you are using a Cray XC30 system with Aries
interconnect, a Cray XE or Cray XK system with Gemini interconnect, or a Cray XT system with SeaStar
interconnect, and depending on which version of CLE your site uses. Because of these issues, Cray provides
a variety of different MPI and SHMEM modules. These modules are hardware- and OS-dependent, so your
system administrator should install only the modules that support your hardware on your system.

To see which functions and environment variables are supported on your system, always check the
intro_mpi(3) or intro_shmem(3) man pages.

Man Pages intro_hugepages(1)

Libraries

S2529 45

http://www.mpi-forum.org/
http://openshmem.org/

Hugepages are virtual memory pages which are bigger than the default base page size of 4KB. Hugepages can
improve memory performance for common access patterns on large data sets. Access to hugepages is provided
through a virtual file system called hugetlbfs. Every file on this file system is backed by huge pages and is
directly accessed with mmap() or read().

The libhugetlbfs library allows an application to use huge pages more easily than it could by directly
accessing the hugetlbfs file system. A user may use libhugetlbfs to back application text and data
segments.

Due to differing memory management mechanisms on Cray XT and Cray XE/Cray XK systems, the
implementation of the libhugetlbfs library differs on these two architectures. Due to the different router chips,
implementation on Gemini-based (Cray XE/Cray XK) and Aries-based (Cray XC30) systems also differs.

7.2.1 Using MPI and SHMEM Modules
No MPT-related modules are loaded by default.

● If your code uses MPI code only, load the cray-mpich module before compiling or linking. This ensures that
your code is linked using the -lmpich option.

● If your code uses SHMEM code only, load the cray-shmem module before compiling or linking. This ensures
that your code is linked using the -lsma option.

● If your code uses both MPI and SHMEM, load both the cray-mpich and cray-shmem modules. Your code
will be linked using both the -lmpich and -lsma options.

7.2.2 MPI Dynamic Process Management
Cray MPT supports a subset of MPI 2.2 dynamic process management functions. The following process-creation
functions are supported:

● MPI_CLOSE_PORT and MPI_OPEN_PORT

● MPI_COMM_ACCEPT

● MPI_COMM_CONNECT and MPI_COMM_DISCONNECT

● MPI_LOOKUP_NAME

● MPI_PUBLISH_NAME and MPI_UNPUBLISH_NAME

● MPI_COMM_JOIN

The following process-creation functions are not supported:

● MPI_COMM_SPAWN and MPI_COMM_SPAWN_MULTIPLE

● MPI_COMM_GET_ATTR - with attribute MPI_UNIVERSE_SIZE or MPI_APPNUM

Support for dynamic process management is currently limited in the following ways:

● Only ALPS is supported.

● A single user must launch all server and client jobs.

Support for other workload managers and multiple users is planned for a future MPT release. The environment
variable MPICH_DPM_DIR should be set whenever a job uses MPI's dynamic process management functionality.
See the intro_mpi man page for more details.

Libraries

S2529 46

To use dynamic process management, ensure the system is configured to allow for the creation of user pdomains.
System Administrator assistance may be required. Use apstat -P to see the user pdomains that have already
been created:

> apstat -P
 PDomainID Type Uid Cookie Cookie2
some_pdomain user 12345 0xe7440000 0xe7450000
Create a pdomain using apmgr:

> apmgr pdomain -c my_pdomain
> apstat -P
 PDomainID Type Uid Cookie Cookie2
some_pdomain user 12345 0xe7440000 0xe7450000
my_pdomain user 98765 0xe7480000 0xe7490000
Run an application using the aprun -p option:

> aprun -p my_pdomain -n 2 -N 1 ./program
Release a pdomain when finished using apmgr pdomain -r my_pdomain:

> apmgr pdomain -r my_pdomain
> apstat -P
 PDomainID Type Uid Cookie Cookie2
some_pdomain user 12345 0xe7440000 0xe7450000

7.2.3 MPI Usage Notes
On Cray XE, Cray XK, and Cray XC30 systems, rank 0 on each node may appear to some software (for example,
malloc) to be multi-threaded, even if the code is not actually multi-threaded. This is caused by the MPICH
internal error thread that runs on each node and uses the threading library, libpthreads, and may safely be
ignored.

The MPI_LONG_DOUBLE data type is supported for Intel and GNU compilers only. It is not supported for CCE
(Cray) or PGI compilers.

MPT supports the -default64 argument for the PGI and Cray CCE compilers only. See the ftn(1) man page
for more information about this argument. MPI-3 features, in particular new MPI-3 subroutine calls, are not
supported for -default64.

7.2.4 SHMEM Usage Notes
On Cray XE, Cray XK, and Cray XC30 systems, rank 0 on each node may appear to some software (for example,
malloc) to be multi-threaded even if the code is not actually multi-threaded. This is caused by the DMAPP
internal error thread that runs on each node and uses the threading library, libpthreads, and may safely be
ignored.

Typically, target or source arrays that reside on remote processing elements (PEs) are identified by passing the
address of the corresponding data object on the local PE. The local existence of a corresponding data object
implies that a data object is symmetric.

Symmetric accessible data objects passed to SHMEM routines can be arrays or scalars. A symmetric data
object is one where the local and remote addresses have a known relationship. You can use SHMEM routines to
access remote symmetric data objects by using the address of the corresponding data object on the local PE.

Libraries

S2529 47

The following data objects are symmetric:

● Fortran data objects in common blocks or with the SAVE attribute.

● Non-stack C and C++ variables.

● Fortran arrays allocated with shpalloc(3f)
● C and C++ data allocated by shmalloc(3c)

Only local addresses can be used as arguments to SHMEM calls. For instance, using an address obtained by
exchanging addresses between PEs is not supported.

Whether the addresses returned by a collective call to shmalloc are the same for all PEs depends on the
configuration of Virtual Memory Randomization (VMR), a Linux kernel feature:

● Default configuration (VMR is turned OFF): The addresses returned by a collective call to shmalloc may or
may not return the same addresses for all PEs, depending on application characteristics. For a well-behaved
application, the addresses may be the same for all PEs.

● Non-default configuration (VMR is turned ON): The Cray SHMEM library prints an informational message
similar to LIBSMA INFO: PE0: Linux VM Randomization is turned on on this system. A
collective call to shmalloc does not return the same addresses for all PEs.

A SHMEM application must call start_pes or shmem_init as the very first SHMEM routine called within
the application to guarantee that lower-level resources are set up correctly. Otherwise, the SHMEM
application does not execute correctly. Similarly, a SHMEM application must call shmem_finalize as the
very last SHMEM routine called within the application to guarantee correct cleanup of previously allocated
network protocol resources.

SHMEM routines can be used in conjunction with Message Passing Interface (MPI) routines in the same
application. Programs that use both MPI and SHMEM should call MPI_Init followed by start_pes or
shmem_init. At the end of the program, shmem_finalize should be called followed by MPI_Finalize.
SHMEM processing element numbers are equal to the MPI rank within the MPI_COMM_WORLD communicator,
if the MPI job consists of a single application.

NOTE: Alternatively, you can use the MPICH_GNI_DMAPP_INTEROP environment variable to control
MPI, SHMEM, UPC, and Coarray Fortran interoperability.

Multi-binary SHMEM jobs are not currently supported on CNL.

The SHMEM routines reside in libsma.a. The following command lines compile programs that
include SHMEM routines:

cc c_program.c
CC cplusplus_program.C
ftn fortran_program.f

7.2.5 GPU-to-GPU Communications
The GPU-to-GPU feature allows an MPI application to use GPU pointers in MPI point-to-point and collective
communication routines. The GPU-to-GPU feature improves performance by pipelining data transfers between
GPU, host CPU, and network, and simplifies the code by eliminating explicit CUDA calls for moving data between
GPU and host.

The following example illustrates the steps needed to compile and execute a program that performs a reduction of
data residing in GPU buffers and stores the results in the rank 0 host buffer.

Libraries

S2529 48

7.3 Hugepages
Table 13. Hugepages Basics

Modules: craype-hugepagespagesize
Man pages: intro_hugepages(1)

Hugepages are virtual memory pages which are bigger than the default base page size of 4KB. Hugepages can
improve memory performance for common access patterns on large data sets. Access to hugepages is provided
through a virtual file system called hugetlbfs. Every file on this file system is backed by huge pages and is directly
accessed with mmap() or read().

The libhugetlbfs library allows an application to use huge pages more easily than it could by directly
accessing the hugetlbfs file system. A user may use libhugetlbfs to back application text and data
segments.

Due to differing memory management mechanisms on Cray XT and Cray XE/Cray XK systems, the
implementation of the libhugetlbfs library differs on these two architectures. Due to the different router chips,
implementation on Gemini-based (Cray XE/Cray XK) and Aries-based (Cray XC30) systems also differs.

7.3.1 When to Use Hugepages
● For SHMEM applications, map the static data and/or private heap onto huge pages.

● For applications written in Unified Parallel C, Coarray Fortran, and other languages based on the PGAS
programming model, map the static data and/or private heap onto huge pages.

● For MPI applications, map the static data and/or heap onto huge pages.

● For an application which uses shared memory, which needs to be concurrently registered with the high speed
network drivers for remote communication.

● For an application doing heavy I/O.

● To improve memory performance for common access patterns on large data sets.

7.3.2 When to Avoid Using Hugepages
Applications sometimes consist of many steering programs in addition to the core application. Applying huge page
behavior to all processes would not provide any benefit and would consume huge pages that would otherwise
benefit the core application.

7.3.3 Cray XC30 Usage
On Cray XC30 systems, huge pages are available by default. Modules craype-hugepages2M,
craype-hugepages4M, craype-hugepages8M, craype-hugepages16M, craype-hugepages32M,
craype-hugepages64M, craype-hugepages128M, craype-hugepages256M, and
craype-hugepages512M set the necessary link options and environment variables (e.g.,

Libraries

S2529 49

HUGETLB_DEFAULT_PAGE_SIZE, HUGETLB_MORECORE, HUGETLB_ELFMAP) to facilitate the usage of 2MB,
8MB, 16MB, 32MB, 64MB, 128MB, 256BMB, and 512MB huge pages, respectively.

In Cray systems that have the Aries NIC, the Aries IO Memory Management Unit (IOMMU) provides hardware
support for memory protection and address translation. The Aries IOMMU uses an entirely different memory
translation mechanism than Gemini uses: the IOMMU is divided into 16 translation context registers (TCRs). Each
translation context (TC) supports a single page size. The TCRs can independently address different page sizes
and present that to the network as a contiguous memory domain. The TCR entries are used to set and clear the
page table entries (PTEs) used by GNI. PTE entries are cached in Aries NIC memory in a page table. Up to 512
PTEs can be used by applications. 512MiB (largest hugepage size) x 512 PTEs = 256GiB of addressable memory
per node on Aries systems.

For more detailed information and examples see the intro_hugepages(1), and aprun(1) man pages, and
Workload Management and Application Placement for the Cray Linux Environment.

7.3.4 Cray XE and Cray XK Usage
By default, the system is configured to have huge pages available. Pre-allocated huge pages are reserved inside
the kernel and cannot be used for other purposes. On Cray XE and Cray XK systems, PGAS, SHMEM and MPI
applications are likely to require the usage of huge pages for static data and/or the heap.

Modules craype-hugepages128K, craype-hugepages512K, craype-hugepages2M,
craype-hugepages8M, craype-hugepages16M, and craype-hugepages64M set the necessary link options
and environment variables (e.g., HUGETLB_DEFAULT_PAGE_SIZE, HUGETLB_MORECORE, HUGETLB_ELFMAP) to
facilitate the usage of 128KB, 512KB, 2MB, 8MB, 16MB, or 64MB huge pages, respectively.

It is not required to use the -m option on the aprun command on the Cray XE/Cray XK system to allocate huge
pages, because the kernel allows the dynamic creation of huge pages. However, it is advisable to specify this
option and preallocate an appropriate number of huge pages, when memory requirements are known, to reduce
operating system overhead.

For more detailed information and examples see the intro_hugepages(1), and aprun(1) man pages, and
Workload Management and Application Placement for the Cray Linux Environment.

7.3.5 Cray XT Usage
Nodes do not have huge pages allocated by default.

To use hugepages, link an application with the libhugetlbfs library.

At run time, define the environment variable HUGETLB_MORECORE=yes.

The application launcher, aprun, must be told that a given application wants to use huge pages. Specify a per-PE
huge page memory requirement on the aprun invocation line using the -m sizeh|hs option.

For more information see the aprun(1) man page, and Workload Management and Application Placement for
the Cray Linux Environment.

7.3.6 Running Independent Software Vendor (ISV) Applications
To enable a dynamically linked executable, that was not originally linked with libhugetlbfs, to use Cray's
libhugetlbfs library at run time, you must first load a hugepages module and set the environment variable
LD_PRELOAD so that it contains the libhugetlbfs pathname:

Libraries

S2529 50

module load craype-hugepages2M
export LD_PRELOAD=/usr/lib64/libhugetlbfs.soIf an ISV application is already using
LD_PRELOAD to set dynamic library dependencies, then use a white-space separated
list. For example:
export LD_PRELOAD="/usr/lib64/libhugetlbfs.so /directory_name/lib.so"To confirm
the usage of hugepages, one may set HUGETLB_VERBOSE to 3 or higher:
export HUGETLB_VERBOSE=3 Statically linked executables can only use Cray's
libhugetlbfs if they are linked with it. Statically linked executables do not
process LD_PRELOAD; therefore statically linked ISVs must be relinked with
libhugetlbfs.
The nm and ldd commands are useful for determining the contents and dynamic dependencies of executables.

NOTE: ISV applications sometimes consist of scripts which run several executables, only some of which
need to run with huge pages. The environment variable HUGETLB_RESTRICT_EXE enables the
libhugetlbfs library to selectively map only the named executables onto huge pages.

7.3.7 Known Issues
Huge pages are a per-node resource, not a per-job resource, nor a per-process resource. There is no guarantee
that the requested number of huge pages will be available on the compute nodes. If the memory pool becomes
fragmented, which it can over time, the number of free blocks that are equal to or larger than the huge page size
can decrease below the number needed to service the request, even though there may be enough free memory
in the pool when summing free blocks of all sizes. For this reason, use huge page sizes no larger than needed.

If the heap is mapped to huge pages (by setting HUGETLB_MORECORE to yes) and if a malloc call requires that
the heap be extended, and if there are not enough free blocks in the memory pool large enough to support the
required number of huge pages, libhugetlbfs will issue the following WARNING message and then glibc will
fall back to allocating base pages.

libhugetlbfs [nid000xx:xxxxx]: WARNING: New heap segment map at
0x10000000 failed: Cannot allocate memory
This is a warning and jobs are able to continue running. The allocated base pages use GART entries; however,
because there are a limited number of GART entries, future memory requests may fail altogether due to lack of
available GART entries.

With craype-hugepages modules loaded, it is no longer necessary to include -lhugetlbfs on the link line.
Doing so will result in messages indicating multiple definitions, such as:

//usr/lib64/libhugetlbfs.a(elflink.o): In function
`__libhugetlbfs_do_remap_segments':

/usr/src/packages/BUILD/cray-libhugetlbfs-2.11/elflink.c:2012:
multiple definition of `__libhugetlbfs_do_remap_segments'

//usr/lib64/libhugetlbfs.a(elflink.o):/usr/src/packages/BUILD/
cray-libhugetlbfs-2.11/elflink.c:2012: first defined here
Adjust makefiles or build scripts accordingly.

Libraries

S2529 51

8 Debugging Code
The Cray system supports a variety of debugging options ranging from simple command-line debuggers to
separately licensed third-party GUI tools. These options are capable of performing a variety of tasks ranging from
analyzing core files to setting breakpoints and debugging running parallel programs.

As a rule, your code must be compiled using the -g command line option before you can use any of the
debuggers to produce meaningful information. If, however, you are using both a compiler and a debugger that
support Fast-track Debugging, the -g option is replaced by using the -G fast option.

NOTE: The PGI debugger, PGDBG, is not supported on Cray systems.

At this time, systems equipped with Intel Xeon Phi coprocessors are supported by DDT and TotalView
only. The Cray Debugger Support Tools and Cray Fast-track Debugging are not supported on Intel Xeon
Phi systems. If your site is configured to load the atp module by default, you must unload this module
before loading the craype-intel-knc module.

To begin using CCDB on the Cray system, load the cray-ccdb module:

> module load cray-ccdb
Launch the CCDB application using the ccdb command. After you do so, the main control and display window
pops open.

> ccdb
NOTE: Users running CCDB remotely on a workstation may be prompted for a password when
attempting to access a Cray system.

CCDB includes an integrated help system that includes all additional information about using CCDB. Help
is accessible whenever CCDB is running by either clicking the ? button in the current window or selecting
Help from the menu bar of the CCDB monitor window.

CCDB is a GUI tool that requires your workstation to support the X Window System. Depending on your
system configuration, you may need to use the ssh -X option to enable X Window System support in
your shell session. Depending on your workstation configuration, you may also need to enable X Window
System hosting on your workstation or load an X Window client such as Xming.

The STAT command naming convention has changed; statgui and statview are deprecated and will be
removed in the next release of STAT. They are replaced by stat-gui and stat-view.

STAT (Stack Trace Analysis Tool) gathers and merges the stack traces from a parallel application's processes and
produces 2D spatial and 3D spatial-temporal call graphs that encode the calling behavior of the application
processes in the form of a prefix tree. The 2D graph represents a single snapshot of the entire application, while
the 3D form represents a series of snapshots from the application taken over time.

Debugging Code

S2529 52

8.1 Cray Debugger Support Tools
Cray provides a collection of basic debugging packages that are referred to collectively as the Cray Debugger
Support Tools and are installed as a single rpm, but loaded and used as individual modules. These packages are:

● CCDB: Cray's comparative debugger features a graphical user interface and extends the comparative
debugging capabilities of lgdb, allowing users to easily compare data structures between two executing
applications.

● LGDB: a GDB-based parallel debugger used to debug applications compiled with CCE, PGI, GNU, Intel
Fortran, C and C++ compilers. It allows programmers to either launch an application or attach to an already-
running application that was launched with aprun.

● ATP: a system that monitors user applications and replaces the core dump with a more comprehensive stack
backtrace and analysis.

● STAT: stack trace analysis tool

Table 14. ccdb Basics

Module: cray-ccdb
Command: ccdb
Man page: ccdb(1)

8.1.1 Using CCDB
Table 15. ccdb Basics

Module: cray-ccdb
Command: ccdb
Man page: ccdb(1)

Tool-specific man pages are available only when the
associated module is loaded.

Online help: Embedded in user interface.

To begin using CCDB on the Cray system, load the cray-ccdb module:

> module load cray-ccdb
Launch the CCDB application using the ccdb command. After you do so, the main control and display window
pops open.

> ccdb
Users running CCDB remotely on a workstation may be prompted for a password when attempting to access a
Cray system.

CCDB includes an integrated help system that includes all additional information about using CCDB. Help is
accessible whenever CCDB is running by either clicking the ? button in the current window or selecting Help from
the menu bar of the CCDB monitor window.

Debugging Code

S2529 53

CCDB is a GUI tool that requires your workstation to support the X Window System. Depending on your system
configuration, you may need to use the ssh -X option to enable X Window System support in your shell session.
Depending on your workstation configuration, you may also need to enable X Window System hosting on your
workstation or load an X Window client such as Xming.

8.1.2 Using LGDB
Table 16. lgdb Basics

Module: cray-lgdb
Command: lgdb
Man page: lgdb(1)

NOTE: Tool-specific man pages are available only when the associated
module is loaded.

Online help: Embedded in user interface.

To initiate an LGDB session, enter the lgdb command. After you do so, the debugger command prompt is
displayed:

lgdb 2.3 - Cray Line Mode Parallel Debugger
With Cray Comparative Debugging Technology.
Copyright 2007-2013 Cray Inc. All Rights Reserved.
Copyright 1996-2013 Monash University. All rights Reserved.

Type "help" for a list of commands.
dbg all>
Once lgdb is running and the command prompt is displayed, the program uses a command-line interface similar
to that used by gdb.

LGDB includes extensive online help. Enter help at the command prompt to display the list of help topics.

dbg all> help
assign Change the value of a program variable.
attach Attach to an application under debugger control.
backtrace Print backtrace of all stack frames.
break Set breakpoint at specified line or function.
build Build an assertion script.
compare Compare the contents of two variables.
continue Continue program being debugged, after signal or breakpoint.
decomposition Define a decomposition scheme.
defset Create a set of processes.
delete Delete a breakpoint.
disable Disable a breakpoint.
down Move down one or more stack frames.
enable Enable a breakpoint.
finish Execute program being debugged until current function returns.
focus Set the current process set.
frame Print the currently selected stack frame.
gdbmode Enter gdb direct mode (experimental).
halt Halt execution of application under debugger control.
help Display help information about commands.
info Display information about the application being debugged.
kill Kill an application under debugger control.

Debugging Code

S2529 54

launch Launch an application under debugger control.
list List source for specified function or line.
maint Commands for use by ccdb maintainers.
next Step program, proceeding through subroutine calls.
print Print the value of an expression.
quit Exit the debugger.
release Release an application from debugger control.
session Create a new WLM session.
set Set information about the debugger environment.
show Show information about the debugger environment.
source Read debugger commands from a file.
start Start executing a dataflow graph.
step Step program until it reaches a different source line.
stop Stop the currently executing dataflow graph.
tbreak Set a temporary breakpoint at a specified line or function.
unset Unset information in the debugger environment.
up Move up one or more stack frames.
usage Display usage information about deferred mode commands.
viewset Display information about process sets.
watch Set watchpoint on specified expression.
whatis Print the data type of an expression.
Enter help topic for more information about a given topic.

For more information about using the launch command to launch an application from within LGDB or using the
attach command to attach the debugger to an already-running process, see the lgdb(1) man page and the
launch and attach topics in the help system.

8.1.3 Using Abnormal Termination Processing (ATP)
Table 17. atp Basics

Module: atp
Commands: ataprun
Man page: intro_atp(1)

NOTE: Tool-specific man pages are available only when the
associated module is loaded.

Abnormal Termination Processing (ATP) monitors user applications. When the atp module is loaded and ATP is
enabled, ATP is launched when a job is started and delivers a heuristically determined set of core files in the
event of an application crash. If an application takes a system trap, ATP performs analysis on the dying
application. All stack backtraces of the application processes are gathered into a merged stack backtrace tree and
written to disk as the file, atpMergedBT.dot. The stack backtrace tree for the first process to die is sent to
stderr as is the number of the signal that caused the application to fail.

The atpMergedBT.dot file can be viewed with stat-view, (the Stack Trace Analysis Tool viewer). The merged
stack backtrace tree provides a concise yet comprehensive view of what the application was doing at the time of
its termination. For more information about using stat-view, see the stat-view(1) man page.

NOTE: The stat-view command and man page are available only when the stat module is loaded.

ATP is designed to analyze failing applications. It does not play any role with commands. That is, an
application must use a supported parallel programming model, such as MPI, SHMEM, OpenMP, CAF, or
UPC, in order to benefit from ATP analysis. When the atp module is loaded, ATP sets the

Debugging Code

S2529 55

MPICH_ABORT_ON_ERROR, SHMEM_ABORT_ON_ERROR, and DMAPP_ABORT_ON_ERROR environment
variables. This enables MPI, SHMEM, and DMAPP applications to raise a signal when they discover
usage errors-rather than only printing to stderr and exiting-which, therefore, enables ATP to notice the
problem and perform its analysis.

Using ATP disables the Linux standard of dumping core and replaces it with dumping a set of files named
atp.core.apid.rank for application crashes.

ATP is site-configurable to be enabled by default and launched automatically whenever a job is launched
using the aprun command. For more information about using ATP, see the intro_atp(1) man page.

Table 18. STAT Basics

Module: stat
Commands: stat-gui, stat-view
Man pages: intro_stat(1), stat-gui(1), stat-view(1)

8.1.4 Using STAT
Table 19. STAT Basics

Module: stat
Commands: stat-gui, stat-view
Man pages: intro_stat(1), stat-gui(1), stat-view(1)

Tool-specific man pages are available only when the
associated module is loaded.

Online help: http://www.paradyn.org/STAT/STAT.html

The STAT command naming convention has changed; statgui and statview are deprecated and will be
removed in the next release of STAT. They are replaced by stat-gui and stat-view.

STAT (Stack Trace Analysis Tool) gathers and merges the stack traces from a parallel application's processes and
produces 2D spatial and 3D spatial-temporal call graphs that encode the calling behavior of the application
processes in the form of a prefix tree. The 2D graph represents a single snapshot of the entire application, while
the 3D form represents a series of snapshots from the application taken over time.

8.2 Using Cray Fast-track Debugging
Normally, code must be compiled using the -g option before it can be debugged using a conventional debugger.
The -g option typically disables all compiler optimizations, producing an executable containing full DWARF
information that can be breakpointed, stepped-through, or paused and restarted anywhere, but at the cost of a
much larger and far slower-running program.

Cray Fast-track Debugging significantly increases the speed of the debugging process by producing executables
that contain both full DWARF information and run at optimized-code speed. Essentially this is done by producing
two parallel executables: one that is fully optimized, and another that is not. While this combined executable is

Debugging Code

S2529 56

http://www.paradyn.org/STAT/STAT.html

considerably larger than a normal executable, when it is executed under the control of a debugger that supports
fast-track debugging, it runs at optimized-code speed until it hits a break point-at which time it switches to the
unoptimized code, and allows you to set breakpoints, examine registers, pause, resume, and step through the
code as if the entire program was compiled using the -g option.

As far as the debugger is concerned, there are no user interface changes, aside from the possibility that you
might pursue a backtrace far enough back to begin seeing internal names instead of user names for variables.
(For example, instead of foo, you might see debug$foo.) All the work involved in using fast-track debugging is
done on the compiler side.

8.2.1 Use Cray Fast-track Debugging

About this task
Using Cray Fast-track Debugging is a two-step process, requiring both a compiler and a debugger that support
fast-track debugging. The steps are:

Procedure

1. Compile your program using your compiler's fast-track debugging option. For example, if you are using the
Cray Fortran compiler, compile and link your code using the -G fast option:

users/yourname> ftn -Gfast myapp.f

2. Execute your program using your debugger's normal control method. For example, if you are using the lgdb
command line debugger to debug a single-rank application, first execute lgdb and then use the launch
command to launch the application:

$ lgdb
dbg all> launch $a ./myapp
Once the debugging session is launched, fast-track debugging is transparent to the user. Sections of the code
that contain breakpoints execute slowly, as if compiled using the -g option. Other sections of the code that do
not contain breakpoints execute at normal speed, as if compiled using normal optimizations.

For more information about lgdb, see the lgdb(1) man page and the help system within lgdb.

8.2.2 Supported Compilers and Debuggers
At this time, Cray Fast-track Debugging is supported on the front end by the Cray Compiling Environment (CCE)
compilers.

On the back end, Cray Fast-track Debugging is supported by ccdb, lgdb and Allinea DDT debuggers.

8.3 About Core Files
On Cray systems, in the absence of ATP, when an application fails, one core file is generated for the first failing
process. If a file named core already exists in the current working directory, it is not overwritten.

Debugging Code

S2529 57

On large MPP systems where an application might be running thousands of processes, a conventional core file
may not be sufficient to indicate the actual cause of the failure. For this reason, Cray systems support Abnormal
Termination Processing (ATP). If ATP is enabled, a failing application generates a heuristically determined set of
core files in place of a single core file. A core file is created for each set of processes that have the same
backtrace, which is determined by comparing routine names (not line numbers or memory addresses) and after
pruning out system routines. For SPMD (Single Program, Multiple Data) programs, this typically causes only a
small handful of core files to be generated.

For more information about ATP, see Using Abnormal Termination Processing (ATP) on page 55.

8.4 Using DDT
Table 20. DDT Basics

Module: ddt
Commands: ddt
Man page: ddt(1)

NOTE: Tool-specific man pages are available only when the associated
module is loaded.

Online help: The DDT GUI includes an extensive online help system accessible by selecting
Help from the menu. If you have problems displaying the help, see the DDT User
Guide for information about configuring X-Windows forwarding and VNC
connections.

Documentation: /opt/cray/ddt/version/doc

DDT, an optional product from Allinea Software is a scalable debugger with a graphical user interface. It can be
used to debug Fortran, C, and C++ programs, including MPI and OpenMP code, and to launch and debug
programs, attach to already running programs, or open and debug core files. DDT is compatible with the Cray,
PGI, GCC, and Intel compilers.

The DDT GUI requires either X-Windows forwarding or VNC in order to work.

DDT can be used either within an interactive shell or via the batch system. Submission through a batch system
requires the use of template files that specify the batch parameters. Sample template files are found
in /opt/cray/ddt/version/templates.

In an interactive shell, the fastest way to launch DDT is by entering the ddt command:

users/yourname> ddt
Assuming X-Windows forwarding is configured correctly, the main program window displays a pop-up menu
offering the following options.

● Run and Debug a Program

● Debug a Multi-Process Non-MPI Program

● Attach to a Running Program

● Open a Core File

● Restore a Checkpoint

Debugging Code

S2529 58

● Cancel

Select the option you want to use, or Cancel to close the pop-up menu and proceed to the DDT main window.
All the above options are also available through the Sessions menu Run option.

8.4.1 Known Limitations of DDT
DDT has a number of defaults that affect batch queue submission behavior. When you begin a DDT session,
either by selecting Run and Debug a Program from the pop-up Welcome menu or by selecting Run from the
Session menu in the DDT main window, the Queue Submission Mode window displays. If you use a batch
queuing system such as PBS Pro, always verify the Queue Submission Parameters before proceeding.

In particular, verify that the default Queue name and Procs Per Node match your system's configuration. The
default Queue name is generally site-specific, while the Procs Per Node value must match your system's
processor types: dual-core, quad-core, and so on.

If you need to change the Queue Submission Parameters, click the Change button on the Queue Submission
Mode window to do so for the duration of the current session. Alternatively, you can create a template file that
stores your preferred parameters. Instructions for creating and using template files are provided in the DDT User
Guide.

To change your system's default Queue Submission Parameters for all users, contact your site administrator.
Default configuration information is stored in the /opt/cray/ddt/version/default-config.ddt file. This
information includes the name of the default template, which currently
is /opt/cray/ddt/version/templates/xt4.qtf. The actual default queue submission parameters are
specified in the default template file.

8.5 Using TotalView
Table 21. TotalView Basics

Module: totalview
Commands: totalview, totalviewcli
Man page: totalview(1)

NOTE: Tool-specific man pages are available only when the
associated module is loaded.

Online help: The TotalView GUI contains an extensive HTML online help system but
requires that $TV_HTMLHELP_VIEWER be defined before use. For more
information, see the Totalview documentation.

Documentation: /opt/totalview/version/doc

TotalView is an optional product from Rogue Wave Software that provides source-level debugging of applications
running on multiple compute nodes. TotalView is compatible with the Cray, PGI, GNU, and Intel compilers.

TotalView can be launched in either or two modes: in GUI mode (using the totalview command), or in
command-line mode (using the totalviewcli command). TotalView is typically run interactively. If your site has

Debugging Code

S2529 59

not designated any compute nodes for interactive processing, use the qsub -I command to reserve the number
of compute nodes you want to use in interactive mode.

Using TotalView to control program execution

To debug an application on the Cray system, use TotalView to launch aprun, which in turn
launches the application to be debugged.

users/yourname> totalview aprun -a aprun_arguments ./myapp
myapp_arguments

The -a option is a TotalView option indicating that the arguments that follow apply to aprun, not
TotalView.

Debugging a core file

To use TotalView to examine a core file, use the totalview command to launch the GUI. Then,
in the New Program window, click the Open a core file button and use the browse functions to
find, select, and open the core file you want to examine.

Attaching TotalView to a running process

To attach TotalView to a running process, you must be logged in to the same login node that you
used to launch the process, and then you must attach to the instance of aprun that was used to
launch the process, not the process itself. To do so:

Use the totalview command to launch the GUI.

In the New Program window, click the Attach to process button. The list of processes currently
running displays.

Select the instance of aprun that you want, and click OK. TotalView displays a process window
showing both aprun and the program threads that were launched by that instance of aprun.

8.5.1 Known Limitations of TotalView
The TotalView debugging suite for Cray systems differs in functionality from the standard TotalView
implementation. It does not support:

● Debugging MPI_Spawn(), OpenMP, or Cray SHMEM programs.

● Compiled EVAL points and expressions.

● Type transformations for the PGI C++ compiler standard template library collection classes.

● Exception handling for the PGI C++ compiler run time library.

● Spawning a process onto the compute processors.

● Machine partitioning schemes, gang scheduling, or batch systems.

Debugging Code

S2529 60

9 Optimizing Code
After your code is compiled, debugged, and capable of running to completion or planned termination, you can
begin looking for ways in which to improve execution speed. In general, the opportunities for optimization fall into
three categories, which require progressively more programmer effort. These categories are:

● Improving overall I/O

● Improving use of compiler-generated optimizations

● Analyzing code behavior and rewriting code to optimize performance

9.1 Improving I/O
Table 22. IOBUF Basics

Module: iobuf
Man page: iobuf(3)
Environment variable: IOBUF_PARAMS

9.1.1 Using iobuf
IOBUF is an I/O buffering library that can reduce the I/O wait time for programs that read or write large files
sequentially. IOBUF intercepts standard I/O calls such as read and open and adds a layer of buffering, thus
improving program performance by enabling asynchronous prefetching and caching of file data.

IOBUF can also gather run time statistics and print a summary report of I/O activity for each file.

IOBUF is not suitable for all I/O styles. IOBUF does not maintain coherent buffering between processes that open
the same file. For this reason, do not use IOBUF with shared file I/O, such as MPI-IO routines like
MPI_File_write_all. IOBUF is not thread-safe, so do not use it with multithreaded programs in which the
threads perform buffered I/O. IOBUF can be linked into programs that use these I/O styles, but buffering should
not be enabled on those files.

In general, no program source changes are needed in order to take advantage of IOBUF. Instead, IOBUF is
implemented by following these steps:

Load the IOBUF module:

% module load iobuf
Relink the program.

Set the IOBUF_PARAMS environment variable as needed.

Optimizing Code

S2529 61

% setenv IOBUF_PARAMS='*:verbose'
Execute the program.

If a memory allocation error occurs, buffering is reduced or disabled for that file and a diagnostic is printed to
stderr. When the file is opened, a single buffer is allocated if buffering is enabled. The allocation of additional
buffers is done when a buffer is needed. When a file is closed, its buffers are freed (unless asynchronous I/O is
pending on the buffer and lazyclose is specified).

The behavior of IOBUF is controlled by the use of environment variables:

● IOBUF_PARAMS

● Selects files and sets parameters for buffering. If this environment variable is not set, the default state is no
buffering and the I/O call is passed on to the next layer without intervention.

● The simplest parameter specification is export IOBUF_PARAMS='*'. This setting matches all files and
enables buffering with default parameters. For more information about valid IOBUF_PARAMS parameters and
their usage, see the iobuf(3) man page.

● IOBUF_DEBUG
● If set, library debugging output is printed. This feature is mainly for debugging the library itself. Valid settings

are read, write, heap, open, buffers, wait, params, and all.

● IOBUF_MAX_FILES
● The maximum file descriptor number managed by IOBUF. Roughly equivalent to the maximum number of files

which can be open with buffering at the same time. The default is 256. Each file descriptor requires about 512
bytes, so the default setting requires 32 KB of memory.

See the iobuf(3) man page for more information regarding the usage of the IOBUF library.

Table 23. MPI I/O Basics

Module: cray-mpich2
Man page: intro_mpi(3)
Environment variables: MPICH_MPIIO_HINTS, MPICH_RANK_REORDER_METHOD, others

Documentation: Getting Started on MPI I/O

9.1.2 Improving MPI I/O
When working with MPI code, one of the most effective ways to realize significant improvements in program
execution speed is by fine-tuning MPI rank placement and I/O usage. The Cray Message Passing Toolkit (MPT)
provides more than forty environment variables designed to help you do just that, the two most significant of
which are MPICH_MPIIO_HINTS and MPICH_RANK_REORDER_METHOD. For a listing of the MPI environment
variables and their valid values and uses, see the intro_mpi(3) man page.

A full discussion of MPI I/O optimization is beyond the scope of this document. For more information on this
subject, including detailed explanations and examples, see Getting Started on MPI I/O.

Optimizing MPI rank placement can require considerably more detailed analysis. Alternately, you can use Cray
Performance Analysis Tools to instrument your program to study MPI behavior, and then to generate suggested
MPI rank reordering information. For more details, see the intro_craypat(1), pat_build(1), and
pat_report(1) man pages, and Using Cray Performance Measurement and Analysis Tools.

Optimizing Code

S2529 62

9.2 Using Compiler Optimizations
This section collects some of the more common tips and tricks for getting better-performing code out of the
compilers. This section will be expanded as information is developed.

9.2.1 Cray Compiling Environment (CCE)
The Cray Fortran and C/C++ compilers are optimizing compilers that perform substantial analysis during
compilation and generate highly optimized code automatically. The Cray compilers also support a large number of
command-line arguments that enable you to exert manual control over compiler optimizations, and fine-tune the
behavior of the compiler.

For more detailed information about the Cray Fortran, C, and C++ compiler command-line arguments, see the
crayftn(1), craycc(1), and crayCC(1) man pages, respectively.

Two of the most useful compiler command-line arguments are the Fortran -rd and C/C++ -h list=m options
that instruct the compiler to generate annotated loopmark listings showing what optimizations were performed and
their locations. Together with the -h negmsgs option that generates listings showing potential optimizations that
were not performed, and why, these arguments can help you zero-in on areas in your code that are compiling
without error, but not with maximum efficiency.

For more detailed information about generating and reading loopmark listings, see the Cray Fortran Reference
Manual and Cray C and C++ Reference Manual.

The Cray compilers also support a large number of pragmas and directives that enable you to exert manual
control over compiler optimization behavior. In many cases, code that is not optimizing well can be corrected
without substantial changes to the code itself, but simply by applying the right pragmas or directives.

For more information about Cray compiler pragmas and directives, see the intro_directives(1) man page.

9.3 Using the Cray Performance Measurement and Analysis Tools
Table 24. Performance Analysis Basics

Module: perftools, perftools-lite
Commands: pat_build, pat_report, app2
Man pages: intro_craypat(1), craypat-lite(1), pat_build(1),

pat_report(1), pat_help(1), app2(1), reveal(1), intro_papi(3),
hwpc(5), nwpc(5), accpc(5), rapl(5)

NOTE: Tool-specific man pages are available only when the
associated module is loaded.

Online help: CrayPat includes an extensive online help system that features many
examples and the answers to many frequently asked questions. To access the
help system, enter pat_help at the command line.

Documentation: Using Cray Performance Measurement and Analysis Tools

Optimizing Code

S2529 63

NOTE: The PGI profiling tools, pgprof and pgcollect, are not supported on Cray systems.

The GNU profiling tool, gprof is not supported on Cray systems.

After you have compiled and debugged your program, you are ready to begin analyzing its performance.
The Cray Performance Analysis Tools are a suite of optional utilities that enable you to capture and
analyze performance data generated during the execution of your program in order to help you to find
answers to two fundamental questions: How fast is my program running? and
How can I make it run faster?

The performance analysis process consists of three basic steps.

Instrument your program, to specify what kind of data you want to collect under what conditions.

Execute your instrumented program, to generate and capture the desired data.

Analyze the resulting data.

Accordingly, the Cray Performance Measurement and Analysis Tools suite consists of these major
components:

● CrayPat-lite: a new, simplified, and easier-to-use front-end for CrayPat that provides basic
performance analysis information automatically, with a minimum of user interaction.

● CrayPat: the full-featured performance analysis tool set, which enables users to instrument programs,
capture performance data during program execution, and generate extensive text reports from the
resulting data

● Cray Apprentice2: the second-level data analysis tool, used to visualize, manipulate, explore, and
compare sets of program performance data in a GUI environment

● Reveal: the next-generation integrated performance analysis and code optimization tool, which
enables users to correlate performance data captured during program execution directly to the
original source, and identify opportunities for further optimization

● PAPI: the Performance Application Programming Interface

At this time, CrayPat-lite is not supported on systems equipped with Intel Xeon Phi coprocessors. The
full version of CrayPat is supported on such systems, but with reduced functionality. In particularly,
hardware counter data collection and all functions and reports related to the PAT_RT_PERFCTR set of
environment variables are not currently supported.

9.3.1 About CrayPat-lite
CrayPat-lite is a simplified, easy-to-use version of the Cray Performance Measurement and Analysis Tool set.
CrayPat-lite provides basic performance analysis information automatically, with a minimum of user interaction,
and yet offers information useful to users wishing to explore their program's behavior further using the full CrayPat
tool set.

To use CrayPat-lite, load the perftools-lite module.

CrayPat-lite supports three basic experiments:

● sample_profile - A sampling experiment, which reports execution time, aggregate MFLOP count, the top
time-consuming functions and routines, MPI behavior in user functions (if the application is an MPI program),
and generates the data files listed above. This is the default experiment.

● event_profile - A tracing experiment, which generates a profile of the top functions traced as well as node
observations and possible rank order suggestions.

● gpu - Tracing experiments that focus on the program's use of GPU accelerators.

Optimizing Code

S2529 64

To switch from using CrayPat-lite to using the full CrayPat tool set, unload the perftools-lite module and
load the perftools module.

For more information about CrayPat-lite, see Using Cray Performance Measurement and Analysis Tools.

9.3.2 About CrayPat
CrayPat is the full-featured performance analysis tool set, and consists of three major components:

● pat_build, which is the utility used to instrument programs for data capture

● the CrayPat run time environment, which controls the conditions under which the program executes and the
amounts and types of data captured

● pat_report, which is the utility used to generate reports from the resulting captured data

To begin working with the performance analysis tools, first load your programming environment of choice, and
then load the perftools module.

users/yourname> module load perftools
For successful results, the perftools module must be loaded before you compile the program to be
instrumented, instrument the program, execute the instrumented program, or generate a report. If you want to
instrument a program that was compiled before the perftools module was loaded, you may under some
circumstances find that relinking is sufficient, but as a rule it's best to load the perftools module and then
recompile.

9.3.2.1 Instrumenting the Program
After the program is compiled and linked, use the pat_build command to instrument the program for
performance analysis. In simplest form, pat_build is used like this:

> pat_build executableThis produces a copy of your original program, which is
named executable+pat (for example, a.out+pat) and instrumented for the default
experiment, Automatic Profiling Analysis. Your original executable remains
untouched.
The pat_build command supports a large number of options and directives, including an API that enables you
to instrument specified regions of your code. These options and directives are summarized in the pat_build(1)
man page and documented more extensively in Using Cray Performance Measurement and Analysis Tools.

9.3.2.2 Collecting Data
Instrumented programs are executed just like any other program; either by using the aprun command if your site
permits interactive sessions or by using your system's batch commands.

CrayPat supports more than fifty optional run time environment variables that enable you to control instrumented
program behavior and data collection during execution. For example, if you use the C shell and want to collect
data in detail rather than in aggregate, consider setting the PAT_RT_SUMMARY environment variable to 0 (off)
before launching your program.

/lus/nid00008> setenv PAT_RT_SUMMARY 0
Doing so records data with timestamps, which makes additional reports available in Cray Apprentice2, but at the
cost of potentially much larger data file sizes and somewhat increased overhead.

Optimizing Code

S2529 65

The CrayPat run time environment variables are summarized in the intro_craypat(1) man page and
documented more extensively in Using Cray Performance Measurement and Analysis Tools.

9.3.2.3 Analyzing Data
Assuming your instrumented program runs to completion or planned termination, CrayPat outputs one or more
data files. The exact number, location, and content of the data file(s) varies depending on the nature of your
program, the type of experiment for which it was instrumented, and the run time environment variable settings in
effect at the time of program execution.

All initial data files are output in .xf format, with a generated file name consisting of your original program name,
plus pat, plus the execution process ID number, plus a code string indicating the type of data contained within the
file. Depending on the program run and the types of data collected, CrayPat output may consist of either a
single .xf data file or a directory containing multiple .xf data files. If the program was instrumented for
Automatic Profiling Analysis, a file with the suffix .apa is also generated. This file is a customized template for
this program and is created for use with future instrumentation experiments.

To begin analyzing the captured data, use the pat_report command. In simplest form, it looks like this:

/lus/nid00008> pat_report myprog+pat+PID-nodes.xf
The pat_report command accepts either a file or directory name as input and processes the .xf file(s) to
generate a text report. In addition, it also exports the .xf data to a single .ap2 file, which is both a self-contained
archive that can be reopened later using the pat_report command and the exported-data file format used by
Cray Apprentice2.

The pat_report command provides more than thirty predefined report templates, as well as a large variety of
user-configurable options. These reports and options are summarized in the pat_report(1) man page and
documented more extensively in Using Cray Performance Measurement and Analysis Tools.

9.3.2.4 For More Information on Cray Performance Measurement and Analysis Tools
In addition to Using Cray Performance Measurement and Analysis Tools and the intro_craypat(1),
pat_build(1), and pat_report(1) man pages, there is a substantial amount of information, including an
FAQ and examples, in the CrayPat online help system. The help system is accessible whenever the perftools
module is loaded; to access the help system, enter pat_help at the command line. For more information about
using the help system, see the pat_help(1) man page.

9.3.3 About Cray Apprentice2
Cray Apprentice2 is an optional GUI tool that is used to visualize and manipulate the performance analysis data
captured during program execution. Cray Apprentice2 can be run either on the Cray system or, optionally, on a
standalone Linux desktop machine. Cray Apprentice2 can display a wide variety of reports and graphs, depending
on the type of program being analyzed, the way in which the program was instrumented for data capture, and the
data that was collected during program execution.

Cray Apprentice2 is not directly integrated with CrayPat. You cannot launch Cray Apprentice2 from within
CrayPat, nor can you set up or run performance analysis experiments from within Cray Apprentice2. Rather, use
CrayPat first, to instrument your program and capture performance analysis data, and then use Cray Apprentice2
to visualize and explore the resulting data files.

The number and appearance of the reports that can be generated using Cray Apprentice2 is determined by the
kind and quantity of data captured during program execution, which in turn is determined by the way in which the

Optimizing Code

S2529 66

program was instrumented and the environment variables in effect at the time of program execution. For example,
changing the PAT_RT_SUMMARY environment variable to 0 before executing the instrumented program nearly
doubles the number of reports available when analyzing the resulting data in Cray Apprentice2.

To run Cray Apprentice2, load the perftools module, if it is not already loaded.

users/yourname> module load perftools
Then use the app2 command to launch Cray Apprentice2.

users/yourname> app2 datafile.ap2 &
NOTE: Cray Apprentice2 requires that your workstation be configured to host X Window System
sessions. If the app2 command returns an "unable to open display" error, contact your system
administrator for help in configuring X Window System hosting and forwarding.

At this point the GUI takes over. If you specified a data file name with the app2 command, the file is
opened and parsed and the Overview report is displayed. If you did not specify a data file name, the
Open File window opens and you can use standard GUI tools to browse through the file system and
select the data file you want to open.

For more information about using Cray Apprentice2, see the app2(1) man page, the Cray Apprentice2
help system, and Using Cray Performance Measurement and Analysis Tools.

9.3.4 About Reveal
Reveal is Cray's next-generation integrated performance analysis and code optimization tool. Reveal extend's
Cray's existing performance measurement, analysis, and visualization technology by combining run time
performance statistics and program source code visualization with Cray Compiling Environment (CCE) compile-
time optimization feedback.

NOTE: Reveal requires use of CCE, and therefore is not supported on Intel Xeon Phi coprocessor
systems at this time.

Reveal supports source code navigation using whole-program analysis data and program libraries
provided by the Cray Compiling Environment, coupled with performance data collected during program
execution by the Cray performance tools, to understand which high-level serial loops could benefit from
improved parallelism. Reveal provides enhanced loopmark listing functionality, dependency information
for targeted loops, and assists users optimizing code by providing variable scoping feedback and
suggested compiler directives.

To begin using Reveal on the Cray system, verify that the perftools module is loaded:

> module load perftools
Launch the Reveal application using the reveal command:

> reveal
Reveal requires that your workstation be configured to host X Window System sessions. If the reveal
command returns an "cannot open display" error, contact your system administrator for help in
configuring X Window System hosting.

You can specify data files to be opened when you launch Reveal. For example, this command launches
Reveal and opens both the compiler-generated program library file and the CrayPat-generated run time
performance data file, thus enabling you to correlate performance data captured during program
execution with specific lines and loops in the original source code:

Optimizing Code

S2529 67

> reveal my_program_library.pl my_performance datafile.ap2Alternately,
Reveal opens a file selection window and you can then select the data
file(s) you want to open.
For more information about using the reveal command, see the reveal(1) man page.

9.3.5 About PAPI
CrayPat uses PAPI, the Performance API. This interface is normally transparent to the user. However, if you want
more information about PAPI, see the intro_papi(3) and papi_counters(5) man pages.

NOTE: To access PAPI functions and utilities directly, you must first unload the perftools module and
then load the papi module. However, after you do so, Cray-originated man pages, the pat_help
command, and the $CRAYPAT_ROOT path will be unavailable. Therefore, if you plan to use utilities or
develop programs that use PAPI directly, plan your work and save your reference information accordingly.

Additional information about using PAPI is available through the PAPI website, at http://icl.cs.utk.edu/
papi/.

glibc Functions

The supported glibc functions and system calls are listed in Supported glibc Functions. For further
information, see the man pages.

Some fcntl() commands are not supported for applications that use Lustre. The supported commands
are:

● F_GETFL
● F_SETFL
● F_GETLK
● F_SETLK
● F_SETLKW64
● F_SETLKW
● F_SETLK64

Also, asynchronous I/O (aio) calls are not supported for applications that use Lustre.

Table 25. Supported glibc Functions

a64l abort abs access

addmntent alarm alphasort argz_add

argz_add_sep argz_append argz_count argz_create

argz_create_sep argz_delete argz_extract argz_insert

argz_next argz_replace argz_stringify asctime

asctime_r asprintf atexit atof

atoi atol atoll basename

bcmp bcopy bind_textdomain_codeset bindtextdomain

bsearch btowc bzero calloc

catclose catgets catopen cbc_crypt

Optimizing Code

S2529 68

http://icl.cs.utk.edu/papi/
http://icl.cs.utk.edu/papi/

chdir chmod chown clearenv

clearerr clearerr_unlocked close closedir

confstr copysign copysignf copysignl

creat ctime ctime_r daemon

daylight dcgettext dcngettext des_setparity

dgettext difftime dirfd dirname

div dngettext dprintf drand48

dup dup2 dysize ecb_crypt

ecvt ecvt_r endfsent endmntent

endttyent endusershell envz_add envz_entry

envz_get envz_merge envz_remove envz_strip

erand48 err errx exit

fchmod fchown fclose fcloseall

fcntl fcvt fcvt_r fdatasync

fdopen feof feof_unlocked ferror

ferror_unlocked fflush fflush_unlocked ffs

ffsl ffsll fgetc fgetc_unlocked

fgetgrent fgetpos fgetpwent fgets

fgets_unlocked fgetwc fgetwc_unlocked fgetws

fgetws_unlocked fileno fileno_unlocked finite

flock

flockfile fnmatch fopen fprintf

fputc fputc_unlocked fputs fputs_unlocked

fputwc fputwc_unlocked fputws fputws_unlocked

fread fread_unlocked free freopen

frexp fscanf fseek fseeko

fsetpos fstat fsync ftell

ftello ftime ftok ftruncate

ftrylockfile funlockfile fwide fwprintf

fwrite fwrite_unlocked gcvt get_current_dir_n
ame

getc getc_unlocked getchar getchar_unlocked

getcwd getdate getdate_r getdelim

getdirentries getdomainname getegid getenv

Optimizing Code

S2529 69

geteuid getfsent getfsfile getfsspec

getgid gethostname getline getlogin

getlogin_r getmntent getopt getopt_long

getopt_long_only getpagesize getpass getpid

getprotoent getprotobyname getprotobynumber

getrlimit getrusage gettext gettimeofday

getttyent getttynam getuid getusershell

getw getwc getwc_unlocked getwchar

getwchar_unlocked gmtime gmtime_r gsignal

hasmntopt hcreate hcreate_r hdestroy

hsearch iconv iconv_close iconv_open

imaxabs index initstate insque

ioctl isalnum isalpha isascii

isblank iscntrl isdigit isgraph

isinf islower isnan isprint

ispunct isspace isupper iswalnum

iswalpha iswblank iswcntrl iswctype

iswdigit iswgraph iswlower iswprint

iswpunct iswspace iswupper iswxdigit

isxdigit jrand48 kill l64a

labs lcong48 ldexp lfind

link llabs localeconv localtime

localtime_r lockf longjmp lrand48

lsearch lseek lstat malloc

mblen mbrlen mbrtowc mbsinit

mbsnrtowcs mbsrtowcs mbstowcs mbtowc

memccpy memchr memcmp memcpy

memfrob memmem memmove memrchr

memset mkdir mkdtemp mknod

mkstemp mktime modf modff

modfl mrand48 nanosleep ngettext

nl_langinfo nrand48 on_exit open

opendir passwd2des pclose perror

pread printf psignal putc

Optimizing Code

S2529 70

putc_unlocked putchar putchar_unlocked putenv

putpwent puts putw putwc

putwc_unlocked putwchar putwchar_unlocked pwrite

qecvt qecvt_r qfcvt qfcvt_r

qgcvt qsort raise rand

random re_comp re_exec read

readdir readlink readv realloc

realpath regcomp regerror regexec

regfree registerrpc remove remque

rename rewind rewinddir rindex

rmdir scandir scanf seed48

seekdir setbuf setbuffer setegid

setenv seteuid setfsent setgid

setitimer setjmp setlinebuf setlocale

setlogmask setmntent setrlimit setstate

setttyent setuid setusershell setvbuf

sigaction sigaddset sigdelset

sigemptyset sigfillset sigismember siglongjmp

signal sigpending sigprocmask sigsuspend

sleep snprintf sprintf srand

srand48 srandom sscanf ssignal

stat stpcpy stpncpy strcasecmp

strcat strchr strcmp strcoll

strcpy strcspn strdup strerror

strerror_r strfmon strfry strftime

strlen strncasecmp strncat strncmp

strncpy strndup strnlen strpbrk

strptime strrchr strsep strsignal

strspn strstr strtod strtof

strtok strtok_r strtol strtold

strtoll strtoq strtoul strtoull

strtouq strverscmp strxfrm svcfd_create

swab swprintf symlink syscall

sysconf tdelete telldir textdomain

Optimizing Code

S2529 71

tfind time timegm timelocal

timezone tmpfile toascii tolower

toupper towctrans towlower towupper

truncate tsearch ttyslot twalk

tzname tzset umask umount

uname ungetc ungetwc unlink

unsetenv usleep utime vasprintf

vdprintf verr verrx versionsort

vfork vfprintf vfscanf vfwprintf

vprintf vscanf vsnprintf vsprintf

vsscanf vswprintf vwarn vwarnx

vwprintf warn warnx wcpcpy

wcpncpy wcrtomb wcscasecmp wcscat

wcschr wcscmp wcscpy wcscspn

wcsdup wcslen wcsncasecmp wcsncat

wcsncmp wcsncpy wcsnlen wcsnrtombs

wcspbrk wcsrchr wcsrtombs wcsspn

wcsstr wcstok wcstombs wcswidth

wctob wctomb wctrans wctype

wcwidth wmemchr wmemcmp wmemcpy

wmemmove wmemset wprintf write

writev xdecrypt xencrypt

Optimizing Code

S2529 72

10 glibc Functions
The supported glibc functions and system calls are listed in the table below. For further information, see the man
pages.

Some fcntl() commands are not supported for applications that use Lustre. The supported commands are:

● F_GETFL
● F_SETFL
● F_GETLK
● F_SETLK
● F_SETLKW64
● F_SETLKW
● F_SETLK64
Also, asynchronous I/O (aio) calls are not supported for applications that use Lustre.

Table 26. Supported glibc Functions

a641 abort abs access

addmntent alarm alphasort argz_add

argz_add_sep argz_append argz_count argz_create

argz_create_sep argz_delete argz_extract argz_insert

argz_next argz_replace argz_stringify asctime

asctime_r asprintf atexit atof

atoi atol atoll basename

bcmp bcopy bind_textdomain_codeset bindtextdomain

bsearch btwoc bzero calloc

catclose catgets catopen cbc_crypt

chdir chmod chown clearenv

clearerr clearerr_unlocked close closedir

confstr copysign copysignf copysignal

creat ctime ctime_r daemon

daylight dcgettext dcngettext des_setparity

dgettext difftime dirfd dirname

glibc Functions

S2529 73

div dngettext dprintf drand48

dup dup2 dysize ecb_crypt

ecvt ecvt_r endfsent endmntent

endttyent endusershell envz_add envz_entry

envz_get envz_merge envz_remove envz_strip

erand48 err errx exit

fchmod fchown fclose fcloseall

fcntl fcvt fcvt_r fdatasync

fdopen feof feof_unlocked ferror

ferror_unlocked fflush fflush_unlocked ffs

ffsl ffsll fgetc fgetc_unlocked

fgetgrent fgetpos fgetpwent fgets

fgets_unlocked fgetwc fgetwc_unlocked getws

fgetws_unlocked fileno fileno_unlocked finite

flock

flockfile fnmatch fopen fprintf

fputc fputc_unlocked fputs fputs_unlocked

fputwc fputwc_unlocked fputws fputws_unlocked

fread fread_unlocked free freopen

frexp fscanf fseek fseeko

fsetpos fstat fsync ftell

ftello ftime ftok ftruncate

ftrylockfile funlockfile fwide fwprintf

fwrite fwrite_unlocked gcvt get_current_dir_name

getc getc_unlocked getchar getchar_unlocked

getcwd getdate getdate_r getdelim

getdirentries getdomainname getegid getenv

geteuid getfsent getfsfile getfsspec

getgid gethostname getline getlogin

getlogin_r getmntent getopt getopt_long

getopt_long_only getpagesize getpass getpid

getprotoent getprotobyname getprotobynumber

getrlimit getrusage gettext gettimeofday

getttyent getttynam getuid getusershell

glibc Functions

S2529 74

getw getwc getwc_unlocked getwchar

getwchar_unlocked gmtime gmtime_r gsignal

hasmntopt hcreate hcreate_r hdestroy

hsearch iconv iconv_close iconv_open

imaxabs index initstate insque

ioctl isalnum isalpha isascii

isblank iscntrl isdigit isgraph

isinf islower isnan isprint

ispunct isspace isupper iswalnum

iswalpha iswblank iswcntrl iswctype

iswdigit iswgraph iswlower iswprint

iswpunct iswspace iswupper iswxdigit

isxdigit jrand48 kill 164a

labs lcong48 ldexp lfind

link llabs localeconv localtime

localtime_r lockf longjmp lrand48

lsearch lseek lstat malloc

mblen mbrlen mbrtowc mbsinit

mbsnrtowcs mbsrtowcs mbstowcs mbtowc

memccpy memchr memcmp memcpy

memfrob memmem memmove memrchr

memset mkdir mkdtemp mknod

mkstemp mktime modf modff

modfl mrand48 nanosleep ngettext

nl_langinfo nrand48 on_exit open

opendir passwd2des pclose perror

pread printf psignal putc

putc_unlocked putchar putchar_unlocked putenv

putpwent puts putw putwc

putwc_unlocked putwchar putwchar_unlocked pwrite

qecvt qecvt_r qfcvt qfcvt_r

qgcvt qsort raise rand

random re_comp re_exec read

readdir readlink ready realloc

glibc Functions

S2529 75

realpath regcomp regerror regexec

regfree registerrpc remove remque

rename rewind rewinddir rindex

rmdir scandir scanf seed48

seekdir setbuf setbuffer setegid

setenv seteuid setfsent setgid

setitimer setjmp setlinebuf setlocale

setlogmask setmntent setrlimit setstate

setttyent setuid setusershell setvbuf

sigaction sigaddset sigdelset

sigemptyset sigfillset sigismember siglongjmp

signal sigpending sigprocmask sigsuspend

sleep snprintf sprintf srand

srand48 srandom sscanf ssignal

stat stpcpy stpncpy strcasecmp

strcat strchr strcmp strcoll

strcpy strcspn strdup strerror

strerror_r strfmon strfry strftime

strlen strncasecmp strncat strncmp

strncpy strndup strnlen strpbrk

strptime strrchp strsep strsignal

strspn strstr strtod strtof

strtok strtok_r strtol strtold

strtoll strtoq strtoul strtoull

strtouq strverscmp strxfrm svcfd_create

swab swprintf symlink syscall

sysconf tdelete telldir textdomain

tfind time timegm timelocal

timezone tmpfile toascii tolower

toupper towctrancs towlower towupper

truncate tsearch ttyslot twalk

tzname tzset umask umount

uname ungetc ungetwc unlink

unsetenv usleep utime vasprintf

glibc Functions

S2529 76

vdprintf verr verrx versionsort

vfork vfprintf vfscanf vfwprintf

vprintf vscanf vsnprintf vsprintf

vsscanf vswprintf vwarn vwarnx

vwprintf warn warnx wcpcpy

wcpncpy wcrtomb wcscasecmp wcscat

wcschr wcscmp wcspy wcscspn

wcsdup wcslen wcncasecmp wcsncat

wcsncmp wcsncpy wcsnlen wcsnrtombs

wcspbrk wcsrchr wcsrtombs wcsspn

wcsstr wcstok wcstombs wcswidth

wctob wctomb wctrans wctype

wcwidth wmemchr wmemcmp wmemcpy

wmemmove wmemset wprintf write

writev xdecrypt xencrypt

glibc Functions

S2529 77

	Contents
	1 Record of Revision
	2 Introduction
	2.1 What You Must Know About Your System
	2.1.1 Processor Type
	2.1.2 Compute Units and CPUs
	2.1.3 CPU Numbering
	2.1.4 Which Network ASIC?
	2.1.5 Which GPU or Coprocessor?
	2.1.6 Which Operating System?
	2.1.7 What Is a Compute Node?
	2.1.8 Which File System?
	2.1.9 Which Batch System?

	2.2 Logging In
	2.2.1 UNIX or Linux Users
	2.2.2 Windows Users
	2.2.3 Apple Users

	2.3 Navigating the File Systems

	3 Using Modules
	3.1 What Is Loaded Now?
	3.2 What Is Available?
	3.3 Loading and Unloading Modulefiles
	3.4 Swapping Compiler Modulefiles
	3.5 Swapping Other Programming Environment Components
	3.6 Using Targeting Modules
	3.6.1 Targeting for a Cray System
	3.6.1.1 Compiling Without the Cray Networking Libraries

	3.6.2 Targeting for a Standalone Linux workstation, CDL, or Service Node
	3.6.3 Targeting for an Accelerator
	3.6.4 Targeting for Intel Xeon Phi
	3.6.4.1 Offload Mode
	3.6.4.2 Autonomous Mode
	3.6.4.3 Known Limitations of Intel Xeon Phi

	3.7 Module Help
	3.8 For More Information on Module Subcommands

	4 Batch Systems and Program Execution
	4.1 PBS-based Systems
	4.1.1 PBS in Interactive Mode
	4.1.2 PBS in Batch Mode
	4.1.3 Using aprun with PBS
	4.1.3.1 Special Considerations for Intel Xeon Phi

	4.2 SLURM-based Systems
	4.2.1 SLURM in Interactive Mode
	4.2.2 SLURM in Batch Mode

	5 Using Compilers
	5.1 About Compiler Drivers
	5.1.1 Bypassing the Compiler Drivers

	5.2 About C/C++ Data Types
	5.3 About the Cray Compiling Environment (CCE)
	5.3.1 Known Limitations of CCE

	5.4 About PGI Compilers
	5.4.1 Known Limitations of PGI

	5.5 About Intel Compilers
	5.5.1 Known Limitations of the Intel Compiler Suite

	5.6 About GNU Compilers
	5.6.1 Known Limitations of GNU Compilers

	5.7 About the Chapel Parallel Programming Language
	5.8 About Cross-compilers

	6 Dynamic Linking
	6.1 Implementation
	6.2 Linking Defaults
	6.3 Modify Linking Behavior to Use Non-default Libraries

	7 Libraries
	When to Use Hugepages
	7.1 Cray Scientific and Math Libraries (CSML)
	7.1.1 Basic CSML Components
	7.1.2 BLAS and LAPACK
	7.1.2.1 Notes on BLAS and LAPACK

	7.1.3 BLACS and ScaLAPACK
	7.1.3.1 Notes on ScaLAPACK

	7.1.4 Iterative Refinement Toolkit (IRT)
	7.1.5 Fourier Transformations
	7.1.5.1 FFTW
	7.1.5.2 ACML

	7.1.6 PETSc
	7.1.6.1 Notes on PETSc

	7.1.7 Trilinos
	7.1.8 Cray LibSci_ACC

	7.2 MPT
	7.2.1 Using MPI and SHMEM Modules
	7.2.2 MPI Dynamic Process Management
	7.2.3 MPI Usage Notes
	7.2.4 SHMEM Usage Notes
	7.2.5 GPU-to-GPU Communications

	7.3 Hugepages
	7.3.1 When to Use Hugepages
	7.3.2 When to Avoid Using Hugepages
	7.3.3 Cray XC30 Usage
	7.3.4 Cray XE and Cray XK Usage
	7.3.5 Cray XT Usage
	7.3.6 Running Independent Software Vendor (ISV) Applications
	7.3.7 Known Issues

	8 Debugging Code
	8.1 Cray Debugger Support Tools
	8.1.1 Using CCDB
	8.1.2 Using LGDB
	8.1.3 Using Abnormal Termination Processing (ATP)
	8.1.4 Using STAT

	8.2 Using Cray Fast-track Debugging
	8.2.1 Use Cray Fast-track Debugging
	8.2.2 Supported Compilers and Debuggers

	8.3 About Core Files
	8.4 Using DDT
	8.4.1 Known Limitations of DDT

	8.5 Using TotalView
	8.5.1 Known Limitations of TotalView

	9 Optimizing Code
	9.1 Improving I/O
	9.1.1 Using iobuf
	9.1.2 Improving MPI I/O

	9.2 Using Compiler Optimizations
	9.2.1 Cray Compiling Environment (CCE)

	9.3 Using the Cray Performance Measurement and Analysis Tools
	9.3.1 About CrayPat-lite
	9.3.2 About CrayPat
	9.3.2.1 Instrumenting the Program
	9.3.2.2 Collecting Data
	9.3.2.3 Analyzing Data
	9.3.2.4 For More Information on Cray Performance Measurement and Analysis Tools

	9.3.3 About Cray Apprentice2
	9.3.4 About Reveal
	9.3.5 About PAPI

	10 glibc Functions

