
XC™ Series DataWarp™ User Guide (CLE
6.0.UP02) S-2558

Contents
1 About the DataWarp User Guide..3

2 Quick Start to Using DataWarp...4

2.1 Use DataWarp as Application Scratch...4

3 About DataWarp...7

3.1 Overview of the DataWarp Process...8

3.2 DataWarp Concepts..10

4 Check the Status of DataWarp Resources...14

5 DataWarp Job Script Commands...16

5.1 #DW jobdw - Job Script Command...16

5.2 #DW persistentdw - Job Script Command...20

5.3 #DW stage_in - DataWarp Job Script Command..22

5.4 #DW stage_out - Job Script Command...23

5.5 #DW swap - Job Script Command..25

5.6 DataWarp Job Script Command Examples...25

5.7 Diagrammatic View of Batch Jobs...28

6 Additional Considerations when Using DataWarp..32

6.1 DVS Client-side Caching can Improve DataWarp Performance..32

6.2 Use SSD Protection Settings...32

7 libdatawarp - the DataWarp API...34

8 Troubleshooting..37

8.1 Why Do dwcli and dwstat Fail?..37

9 Terminology..39

10 Prefixes for Binary and Decimal Multiples..41

Contents

S2558 2

1 About the DataWarp User Guide
Scope and Audience
XC™ Series DataWarp User Guide covers DataWarp concepts, commands, and the API. It does not cover
specific commands of the supported workload managers. This publication is intended for users of Cray XC™
series systems installed with DataWarp SSD cards.

Release CLE 6.0
This publication supports the CLE 6.0.UP02 release of the Cray Linux Environment (CLE).

Revision Information
November 3, 2016: initial release

Typographic Conventions
Monospace Indicates program code, reserved words, library functions, command-line prompts,

screen output, file/path names, key strokes (e.g., Enter and Alt-Ctrl-F), and
other software constructs.

Monospaced Bold Indicates commands that must be entered on a command line or in response to an
interactive prompt.

Oblique or Italics Indicates user-supplied values in commands or syntax definitions.

Proportional Bold Indicates a graphical user interface window or element.

\ (backslash) At the end of a command line, indicates the Linux® shell line continuation character
(lines joined by a backslash are parsed as a single line). Do not type anything after
the backslash or the continuation feature will not work correctly.

Feedback
Please provide feedback by visiting http://pubs.cray.com and clicking the Contact Us button in the upper-right
corner, or by sending email to pubs@cray.com.

About the DataWarp User Guide

S2558 3

http://pubs.cray.com
mailto:pubs@cray.com
mailto:pubs@cray.com

2 Quick Start to Using DataWarp
DataWarp storage is accessed through a site’s workload manager (WLM) such as PBS, Moab, and SLURM.
DataWarp job script commands are added to a batch script to indicate the amount of DataWarp storage required,
how the storage is to be configured, and whether files are to be staged from the parallel file system (PFS) to
DataWarp or from DataWarp to the PFS.

How the DataWarp storage is to be used determines how it needs to be configured. The most common use cases
are:

● application scratch

● shared storage

● data cache between an application and the PFS

Examples of these configurations are in the process of being developed and will be added in future revisions of
this document. Note that these examples include WLM commands, and that each WLM has its own syntax for
interacting with DataWarp. It is beyond the scope of this guide to detail the various methods. Examples are
provided with the caveat that they may be out of sync with changes made by the WLM vendors. For details, see
the appropriate WLM documentation.

2.1 Use DataWarp as Application Scratch

Prerequisites
This procedure assumes the existence of a successfully runnable job script.

About this task
I/O intensive applications can benefit from the higher bandwidth available to DataWarp storage than to a PFS by
using DataWarp like a /tmp file system.

Procedure

1. Add a #DW jobdw command to the job script to define the scratch instance and how it will be accessed.

#DW jobdw type=scratch capacity=n access_mode=mode

Where:
capacity

Specifies the amount of DataWarp storage

access_mode

Quick Start to Using DataWarp

S2558 4

Defines how the storage looks to the compute nodes. It can be either or both of the
following:

striped Data is striped across multiple DataWarp nodes, and the compute node path to
the storage is $DW_JOB_STRIPE.

private Each of the job's compute nodes has its own, private storage, and the compute
node path to the storage is $DW_JOB_PRIVATE.

#DW jobdw type=scratch access_mode=striped capacity=100TiB

Each compute node has striped/shared access to DataWarp via $DW_JOB_STRIPED.

2. (Optional) Add a #DW stage_in command to the job script to stage data from the PFS into DataWarp storage
as input to the application.

#DW stage_in type=type source=pfs_path destination=dws_path

Where:
type=directory|file|list

Specifies the type of entity for staging; a single directory, including all files and sub-
directories; a single file; or a file containing a list of source-file/destination pairs

source
Specifies a PFS path to which the user has read privileges.

Specifies the path to the directory|file|list within the DataWarp instance. source must start
with $DW_JOB_STRIPE.

destination
Specifies the path to the location within the DataWarp instance where the data is to be
staged. dws_path must start with $DW_JOB_STRIPE.

The following stages data from /pfs/mystuff/data on the PFS to the input directory of the job's
instance pointed to by $DW_JOB_STRIPED.

#DW stage_in type=directory source=/pfs/mystuff/data \
#DW destination=$DW_JOB_STRIPED/input

3. (Optional) Add a #DW stage_out command to the job script to stage data out to the parallel file system (PFS)
for retention.

At the end of a job, the WLM runs a series of commands that, among other things, cleans up any usage of the
DataWarp storage. Therefore, to retain any of the data, it must be staged out to the PFS.

#DW stage_out type=type source=$DW_JOB_STRIPED/path destination=pfs_path

Where:
type=directory|file|list

Specifies the type of entity for staging; a single directory, including all files and sub-
directories; a single file; or a file containing a list of source-file/destination pairs

source
Specifies the path to the directory|file|list within the DataWarp instance. source must start
with $DW_JOB_STRIPE.

destination

Quick Start to Using DataWarp

S2558 5

Specifies a PFS path to which the user has write privileges.

#DW stage_out type=directory source=$DW_JOB_STRIPED/results \
#DW destination=/pfs/mystuff/runresults1

The results directory within the DataWarp instance is staged to the PFS.

4. Provide DataWarp storage access information to the application. Without this information, the application will
not find the storage.

This assumes that the application requires arguments specifying input and/or output paths.

srun app.out app_args_here

A simple SLURM example:

#!/bin/bash
#SBATCH -p regular
#SBATCH -N 4
#SBATCH -t 01:00:00
#DW jobdw type=scratch access_mode=striped capacity=100TiB
#DW stage_in type=directory source=/pfs/mystuff/data destination=$DW_JOB_STRIPED/input
srun app.out $DW_JOB_STRIPED/input

Quick Start to Using DataWarp

S2558 6

3 About DataWarp
Cray DataWarp provides an intermediate layer of high bandwidth, file-based storage to applications running on
compute nodes. It is comprised of commercial SSD hardware and software, Linux community software, and Cray
system hardware and software. DataWarp storage is located on server nodes connected to the Cray system's
high speed network (HSN). I/O operations to this storage completes faster than I/O to the attached parallel file
system (PFS), allowing the application to resume computation more quickly and resulting in improved application
performance. DataWarp storage is transparently available to applications via standard POSIX I/O operations and
can be configured in multiple ways for different purposes. DataWarp capacity and bandwidth are dynamically
allocated to jobs on request and can be scaled up by adding DataWarp server nodes to the system.

Each DataWarp server node can be configured either for use by the DataWarp infrastructure or for a site specific
purpose such as a Hadoop Distributed File System (HDFS).

IMPORTANT: Keep in mind that DataWarp is focused on performance and not long-term storage. SSDs
can and do fail.

The following diagram is a high level view of how applications interact with DataWarp. SSDs on the Cray high-
speed network enable compute node applications to quickly read and write data to the SSDs, and the DataWarp
file system handles staging data to and from a parallel filesystem.

Figure 1. DataWarp Overview

Aries HSN

Customer
Application

DataWarp
SSDs

Parallel
Filesystem

w
rit

e read

w
rit

e read

readw
ri
te

DataWarp Use Cases
There are four basic use cases for DataWarp:

Parallel File
System (PFS)
cache

DataWarp can be used to cache data between an application and the PFS. This allows PFS I/O
to be overlapped with an application's computation. In this release there are two ways to use
DataWarp to influence data movement (staging) between DataWarp and the PFS. The first
requires a job and/or application to explicitly make a request and have the DataWarp Service
(DWS) carry out the operation. In the second way, data movement occurs implicitly (i.e., read-

About DataWarp

S2558 7

ahead and write-behind) and no explicit requests are required. Examples of PFS cache use
cases include:

● Checkpoint/Restart: Writing periodic checkpoint files is a common fault tolerance practice
for long running applications. Checkpoint files written to DataWarp benefit from the high
bandwidth. These checkpoints either reside in DataWarp for fast restart in the event of a
compute node failure or are copied to the PFS to support restart in the event of a system
failure.

● Periodic output: Output produced periodically by an application (e.g., time series data) is
written to DataWarp faster than to the PFS. Then as the application resumes computation,
the data is copied from DataWarp to the PFS asynchronously.

● Application libraries: Some applications reference a large number of libraries from every
rank (e.g., Python applications). Those libraries are copied from the PFS to DataWarp once
and then directly accessed by all ranks of the application.

Application
scratch

DataWarp can provide storage that functions like a /tmp file system for each compute node in a
job. This data typically does not touch the PFS, but it can also be configured as PFS cache.
Applications that use out-of-core algorithms, such as geographic information systems, can use
DataWarp scratch storage to improve performance.

Shared
storage

DataWarp storage can be shared by multiple jobs over a configurable period of time. The jobs
may or may not be related and may run concurrently or serially. The shared data may be
available before a job begins, extend after a job completes, and encompass multiple jobs.
Shared data use cases include:

● Shared input: A read-only file or database (e.g., a bioinformatics database) used as input
by multiple analysis jobs is copied from PFS to DataWarp and shared.

● Ensemble analysis: This is often a special case of the above shared input for a set of
similar runs with different parameters on the same inputs, but can also allow for some minor
modification of the input data across the runs in a set. Many simulation stategies use
ensembles.

● In-transit analysis: This is when the results of one job are passed as the input of a
subsequent job (typically using job dependencies). The data can reside only on DataWarp
storage and may never touch the PFS. This includes various types of workflows that go
through a sequence of processing steps, transforming the input data along the way for each
step. This can also be used for processing of intermediate results while an application is
running; for example, visualization or analysis of partial results.

Compute
node swap

When configured as swap space, DataWarp allows applications to over-commit compute node
memory. This is often needed by pre- and post-processing jobs with large memory requirements
that would otherwise be killed.

3.1 Overview of the DataWarp Process
The following figure provides visual representation of the DataWarp process.

About DataWarp

S2558 8

Figure 2. DataWarp Component Interaction - bird's eye view

WLM Job

DataWarp
Service

App

DataWarp
Space

PFS
(client)

service node compute node DW server node

starts

ends

configures

stage out

stage in

aprun

requests
configures IO

 o
ve

r D
VS Compute node

1. A user submits a job to a workload manager. Within the job submission, the user must specify: the amount of
DataWarp storage required, how the storage is to be configured, and whether files are to be staged from the
parallel file system (PFS) to DataWarp or from DataWarp to the PFS.

2. The workload manager (WLM) provides queued access to DataWarp by first querying the DataWarp service
for the total aggregate capacity. The requested capacity is used as a job scheduling constraint. When
sufficient DataWarp capacity is available and other WLM requirements are satisfied, the workload manager
requests the needed capacity and passes along other user-supplied configuration and staging requests.

3. The DataWarp service dynamically assigns the storage and initiates the stage in process.

4. After this completes, the workload manager acquires other resources needed for the batch job, such as
compute nodes.

5. After the compute nodes are assigned, the workload manager and DataWarp service work together to make
the configured DataWarp accessible to the job's compute nodes. This occurs prior to execution of the batch
job script.

6. The batch job runs and any subsequent applications can interact with DataWarp as needed (e.g., stage
additional files, read/write data).

7. When the batch job ends, the workload manager stages out files, if requested, and performs cleanup. First,
the workload manager releases the compute resources and requests that the DataWarp service (DWS) make
the previously accessible DataWarp configuration inaccessible to the compute nodes. Next, the workload
manager requests that additional files, if any, are staged out. When this completes, the workload manager
tells the DataWarp service that the DataWarp storage is no longer needed.

The following diagram includes extra details regarding the interaction between a WLM and the DWS as well as
the location of the various DWS daemons.

About DataWarp

S2558 9

Figure 3. DataWarp Component Interaction - detailed view

DW Server

dwmd

dwsd

xtnhd

dws_*

fragments
dwfs mounts
namespaces

dvs
DW Server

dwmd

xtnhd

dws_*

fragments
dwfs mounts
namespaces

dvs

xtnhd

WLM

SDB
dwrest

login/mom

Cray WLM
Commands

app
dws_*

Compute

scratch
private
mount

scratch
stripe
mount

dvs

xtnhd
app

dws_*

Compute

scratch
private
mount

scratch
stripe
mount

dvs

service node compute node DW server node

stage
operations

setup
operations

heartbeat
registration

heart beat
reg istrat ion

create/stage/destroy

3.2 DataWarp Concepts
For basic definitions, refer to Terminology on page 39.

Instances
DataWarp storage is assigned dynamically when requested, and that storage is referred to as an instance. The
space is allocated on one or more DataWarp server nodes and is dedicated to the instance for the lifetime of the
instance. A DataWarp instance has a lifetime that is specified when the instance is created, either
job instance or persistent instance. A job instance is relevant to all previously described use cases
except the shared data use case.

● Job instance: The lifetime of a job instance, as it sounds, is the lifetime of the job that created it, and is
accessible only by the job that created it.

● Persistent instance: The lifetime of a persistent instance is not tied to the lifetime of any single job and is
terminated by command. Access can be requested by any job, but file access is authenticated and authorized
based on the POSIX file permissions of the individual files. Jobs request access to an existing persistent
instance using a persistent instance name. A persistent instance is relevant only to the shared data use case.

IMPORTANT: New DataWarp software releases may require the re-creation of persistent instances.

When either type of instance is destroyed, DataWarp ensures that data needing to be written to the parallel file
system (PFS) is written before releasing the space for reuse. In the case of a job instance, this can delay the
completion of the job.

About DataWarp

S2558 10

Application I/O
The DataWarp service (DWS) dynamically configures access to a DataWarp instance for all compute nodes
assigned to a job using the instance. Application I/O is forwarded from compute nodes to the instance's DataWarp
server nodes using the Cray Data Virtualization Service (DVS), which provides POSIX based file system access
to the DataWarp storage.

A DataWarp instance is configured as scratch, cache, or swap. For scratch instances, all data staging between
the instance and the PFS is explicitly requested using the DataWarp job script staging commands or the
application C library API (libdatawarp). For cache instances, all data staging between the cache instance and
the PFS occurs implicitly. For swap instances, each compute node has access to a unique swap instance that is
distributed across all server nodes.

Scratch Configuration I/O
A scratch configuration is accessed in one or more of the following ways:

● Striped: In striped access mode individual files are striped across multiple DataWarp server nodes
(aggregating both capacity and bandwidth per file) and are accessible by all compute nodes using the
instance.

● Private: In private access mode individual files are also striped across multiple DataWarp server nodes (also
aggregating both capacity and bandwidth per file), but the files are accessible only to the compute node that
created them (e.g., /tmp). Private access is not supported for persistent instances, because a persistent
instance is usable by multiple jobs with different numbers of compute nodes.

● Load balanced: (deferred implementation) In load balanced access mode individual files are replicated (read
only) on multiple DataWarp server nodes (aggregating bandwidth but not capacity per instance) and compute
nodes choose one of the replicas to use. Load balanced mode is useful when the files are not large enough to
stripe across a sufficient number of nodes.

There is a separate file namespace for every scratch instance (job and persistent) and access mode (striped,
private, loadbalanced) except persistent/private is not supported. The file path prefix for each is provided to the
job via environment variables; see the .

The following diagram shows a scratch private and scratch stripe mount point on each of three compute (client)
nodes in a DataWarp installation configured with default settings for CLE 6.0.UP01; where tree represents which
node manages metadata for the namespace, and data represents where file data may be stored. For scratch
private, each compute node reads and writes to its own namespace that spans all allocated DataWarp server
nodes, giving any one private namespace access to all space in an instance. For scratch stripe, each compute
node reads and writes to a common namespace, and that namespace spans all three DataWarp nodes.

About DataWarp

S2558 11

Figure 4. Scratch Configuration Access Modes (with Default Settings)

DataWarp Server DataWarp Server DataWarp Server

namespacetree datadata data

client node
scratch
stripe
mount

client node
scratch
stripe
mount

client node
scratch
stripe
mount

scratch
private
mount

scratch
private
mount

scratch
private
mount

namespacetree datadata data

namespace tree datadata data

namespace treedatadata data

The following diagram shows a scratch private and scratch stripe mount point on each of three compute (client)
nodes in a DataWarp installation where the scratch private access type is configured to not behave in a striped
manner (scratch_private_stripe=no in the dwsd.yaml configuration file). That is, every client node that
activates a scratch private configuration has its own unique namespace on only one server, which is restricted to
one fragment's worth of space. This is the default for CLE 5.2.UP04 and CLE 6.0.UP00 DataWarp. For scratch
stripe, each compute node reads and writes to a common namespace, and that namespace spans all three
DataWarp nodes. As in the previous diagram, tree represents which node manages metadata for the
namespace, and data represents where file data may be stored.

Figure 5. Scratch Configuration Access Modes (with scratch_private_stripe=no)

DataWarp Server DataWarp Server DataWarp Server

namespacetree datadata data

namespace
tree data

namespace
tree data

namespace
tree data

client node
scratch
stripe
mount

client node
scratch
stripe
mount

client node
scratch
stripe
mount

scratch
private
mount

scratch
private
mount

scratch
private
mount

Cache Configuration I/O
A cache configuration is accessed in one or more of the following ways:

● Striped: in striped access mode all read/write activity performed by all compute nodes is striped over all
DataWarp server nodes.

● Load balanced (read only): in load balanced access mode, individual files are replicated on multiple
DataWarp server nodes (aggregating bandwidth but not capacity per instance), and compute nodes choose
one of the replicas to use. Load balanced mode is useful when the files are not large enough to stripe across
a sufficient number of nodes or when data is only read, not written.

About DataWarp

S2558 12

There is only one namespace within a cache configuration; that namespace is essentially the user-provided PFS
path. Private access it is not supported for cached instances because all files are visible in the PFS.

The following diagram shows a cache stripe and cache loadbalance mount point on each of three compute (client)
nodes.

Figure 6. Cache Configuration Access Modes

About DataWarp

S2558 13

4 Check the Status of DataWarp Resources
Prerequisites
The dws module must be loaded:

$ module load dws
TIP: On external login nodes (eLogin), the eswrap service may be configured for dwstat, in which case,
the dws module should not be loaded. The following message is displayed if this command collision
occurs:

Cannot determine gateway via libdws_thin
fatal: Cannot find a valid api host to connect to or no config file found.
This is fixed by removing the dws module from the shell environment:

elogin> module unload dws

The dwstat command
To check the status of various DataWarp resources, invoke the dwstat command, which has the following
format:

dwstat [-h] [unit_options] [RESOURCE [RESOURCE]...]

Where:
unit_options

Includes a number of options that determine the SI or IEC units with which output is
displayed. See the dwstat(1) man page for details.

RESOURCE
May be: activations, all, configurations, fragments, instances, most,
namespaces, nodes, pools, registrations, or sessions.

By default, dwstat displays the status of pools:

$ dwstat
 pool units quantity free gran
wlm_pool bytes 0 0 1GiB
 scratch bytes 7.12TiB 2.88TiB 128GiB
 mypool bytes 0 0 1 6MiB
In contrast, dwstat all reports on all resources for which it finds data:

 pool units quantity free gran
wlm_pool bytes 14.38TiB 13.88TiB 128GiB

Check the Status of DataWarp Resources

S2558 14

 sess state token creator owner created expiration nodes
 4 CA--- 1527 MOAB-TORQUE 1226 2016-09-19T21:16:12 never 0
 7 CA--- 1534 MOAB-TORQUE 1226 2016-09-19T23:53:17 never 0
 138 CA--- 1757 MOAB-TORQUE 827 2016-09-29T14:46:09 never 0
 139 CA--- 1759 MOAB-TORQUE 10633 2016-09-29T16:06:26 never 32

 inst state sess bytes nodes created expiration intact label public confs
 4 CA--- 4 128GiB 1 2016-09-19T21:16:12 never true I4-0 false 1
 7 CA--- 7 128GiB 1 2016-09-19T23:53:17 never true I7-0 false 1
 138 CA--- 138 128GiB 1 2016-09-29T14:46:09 never true I138-0 false 1
 139 CA--- 139 128GiB 1 2016-09-29T16:06:26 never true I139-0 false 1

 conf state inst type activs
 4 CA--- 4 scratch 0
 7 CA--- 7 scratch 0
 138 CA--- 138 scratch 0
 139 CA--- 139 scratch 0

 reg state sess conf wait
 4 CA--- 4 4 true
 7 CA--- 7 7 true
 137 CA--- 139 139 true

 frag state nst capacity node
 10 CA-- 4 128GiB nid00350
 15 CA-- 7 128GiB nid00350
 180 CA-- 138 128GiB nid00350
 181 CA-- 139 128GiB nid00350

 nss state conf frag span
 4 CA-- 4 10 1
 7 CA-- 7 15 1
 138 CA-- 138 180 1
 139 CA-- 139 181 1

 node pool online drain gran capacity insts activs
nid00322 wlm_pool true false 8MiB 5.82TiB 0 0
nid00349 wlm_pool true false 4MiB 1.46TiB 0 0
nid00350 wlm_pool true false 16MiB 7.28TiB 4 0

did not find any cache configurations, swap configurations, activations

For further information, see the dwstat(1) man page.

Check the Status of DataWarp Resources

S2558 15

5 DataWarp Job Script Commands
In addition to workload manager (WLM) commands, the job script file passed to the WLM submission command
(e.g., qsub, msub) can include DataWarp commands that are treated as comments by the WLM and passed to
the DataWarp infrastructure. They provide the DataWarp Service (DWS) with information about the DataWarp
resources a job requires. The DataWarp job script commands start with the characters #DW and include:

● #DW jobdw - Create and configure access to a DataWarp job instance

● #DW persistentdw - Configure access to an existing persistent DataWarp instance

● #DW stage_in - Stage files into the DataWarp instance at job start

● #DW stage_out - Stage files from the DataWarp instance at job end

● #DW swap - Create swap space for each compute node in a job

Each #DW job script command can span multiple lines by placing a backslash (\) at the end of one line and #DW at
the beginning of the next. For example:

#DW jobdw type=scratch \
#DW access_mode=striped

5.1 #DW jobdw - Job Script Command

NAME
#DW jobdw - Create and configure a DataWarp job instance

SYNOPSIS

#DW jobdw access_mode=mode[(MODIFIERS)] capacity=n type=scratch|cache
 [max_mds=yes|no]
 [modified_threshold=N]
 [optimization_strategy=strategy]
 [pfs=path]
 [pool=poolname]
 [read_ahead=N:rasize]
 [sync_on_close=yes|no]
 [sync_to_pfs=yes|no]
 [write_window_multiplier=mult]
 [write_window_length=numsecs]

DataWarp Job Script Commands

S2558 16

DESCRIPTION
Optional command to create and configure access to a DataWarp job instance with the specified parameters; it
can appear only once in a job script.

IMPORTANT:

The possibility exists for a user program to unintentionally cause excessive activity to SSDs, which can
diminish the lifetime of the devices. To mitigate this issue, the #DW jobdw command includes options that
help the DataWarp service (DWS) detect when a program’s behavior is anomalous and then react based
on configuration settings.

Cray encourages users to implement SSD protection options to prevent unintentional activity that over
utilizes the SSDs through excessive activity. Use of these options can prolong the lifetime of these
devices. For further information, see Use SSD Protection Settings on page 32.

#DW jobdw type Argument
The type argument specifies how the DataWarp instance will function. Options are:

scratch
All data staging between a scratch instance and the parallel file system (PFS) is explicitly
requested using DataWarp job script staging commands.

cache
All data staging between a cache instance and the PFS occurs implicitly.

Command Arguments and Options for Scratch Configurations
When type = scratch, the #DW jobdw command requires the following arguments:

access_mode=striped | private[(MODIFIERS)]

The compute node path to the instance storage is communicated via the following
automatically-created environment variables:

● scratch striped access mode: $DW_JOB_STRIPED
● scratch private access mode: $DW_JOB_PRIVATE
Additionally, the access_mode option accepts the following modifiers:

client_cache=yes|
no

Enable or disable client-side caching. Although many workloads
can benefit from client-side caching because it can reduce the
frequency and necessity of network operations, others will be
negatively affected. In some cases (e.g., many compute nodes
modifying a specific file simultaneously with this access mode)
data corruption can occur. It is important to understand how
client-side caching works before invoking this option.

MFS=mfs For SSD protection: maximum size of any file in the access
mode

MFC=mfc For SSD protection: maximum number of files created in the
access mode. For private access mode, each compute node
can create up to that many files. Valid for type = scratch
only.

DataWarp Job Script Commands

S2558 17

capacity=n
Requested amount of space for the instance (MiB|GiB|TiB|PiB). The DataWarp Service
(DWS) may round this value up to the nearest DataWarp allocation unit or higher to improve
performance. Note that optimization_strategy influences how capacity is selected.

When type = scratch, the #DW jobdw command also accepts the following options:

max_mds=yes|no

Controls whether or not multiple MDS servers (up to the number of DataWarp servers
assigned to the instance) are used in order to improve the metadata transaction rate. When
enabled, a mount point is created for each metadata server. This is only effective if the
application is written to make use of it by calling the dw_get_mds_path library function to
decode which paths to use on the compute nodes. If not, max_mds creates the multiple
mount points, but only one is used.

For further information, see the dw_get_mds_path(3) man page.

optimization_strategy=strategy
Specifies a preference for how space is chosen on server nodes. The chosen strategy is
best effort; it is not guaranteed. The default is controlled by the
instance_optimization_default parameter in dwsd.yaml and is modifiable by an
administrator.

Strategy options are:

bandwidth (default) Assign as many servers as possible (as determined by the capacity
request, pool granularity and available space) to maximize
bandwidth

interference Assign as few servers as possible to minimize interference (e.g.,
sharing servers) from other jobs

wear Assign servers with the least wear (i.e., most remaining endurance/
lifetime)

pool=poolname
Suggests which storage pool to use. This option is only supported by SLURM.

write_window_multiplier=mult
Number of times capacity number of bytes may be written in a period defined by
write_window_length; default = 10.

write_window_length=numsecs
Number of seconds to use when calculating the moving average of bytes written; default =
86,400 (24 hours).

Command Arguments and Options for Cache Configurations
When type = cache, the #DW jobdw command requires the following arguments:

access_mode=striped | ldbalance[(MODIFIERS)]

The compute node path to the instance storage is communicated via the following
automatically-created environment variables:

● cache striped access mode: $DW_JOB_STRIPED_CACHE
● cache ldbalance access mode: $DW_JOB_LDBAL_CACHE

DataWarp Job Script Commands

S2558 18

Additionally, the access_mode option accepts the following modifiers:

client_cache=yes|
no

Enable or disable client-side caching. Although many workloads
can benefit from client-side caching because it can reduce the
frequency and necessity of network operations, others will be
negatively affected. In some cases (e.g., many compute nodes
modifying a specific file simultaneously with this access mode)
data corruption can occur. It is important to understand how
client-side caching works before invoking this option.

MFS=mfs For SSD protection: maximum size of any file in the access
mode

When type = cache, the #DW jobdw command also accepts the following options:

modified_threshold=N
Maximum amount of modified data (in bytes or MiB|GiB|TiB) cached per file before write
back to PFS starts

● If modified_threshold=0, no maximum is set and modified data can be written back
at any time; default = 256MiB.

● If modified_threshold=-1, an infinite maximum is set and modified data will not be
written back until a close or sync occurs or the cache is full.

optimization_strategy=strategy
Specifies a preference for how space is chosen on server nodes. The strategy chosen is
best effort; it is not guaranteed. The default is controlled by the
instance_optimization_default parameter in dwsd.yaml and is modifiable by an
administrator.

Strategy options are:

bandwidth (default) Assign as many servers as possible (as determined by the capacity
request, pool granularity and available space) to maximize
bandwidth

interference Assign as few servers as possible to minimize interference (e.g.,
sharing servers) from other jobs

wear Assign servers with the least wear (i.e., most remaining endurance/
lifetime)

pfs=path
Path to a directory on the parallel file system

pool=poolname
Suggests which pool to use. This option is only supported by Slurm.

read_ahead=N:rasize
N specifies the minimum amount of data (in bytes or MiB|GiB|TiB) read sequentially per
stripe before read ahead starts; rasize specifies the amount (in bytes or MiB|GiB|TiB) to
read ahead. Default is no read ahead.

sync_on_close=yes|no
Controls whether modified data should be flushed to the PFS on close; default = no.

sync_to_pfs=yes|no

DataWarp Job Script Commands

S2558 19

Controls whether a POSIX sync or fsync request flushes to the PFS or just to DataWarp
storage; default = no.

write_window_multiplier=mult
Number of times capacity number of bytes may be written in a period defined by
write_window_length; default = 10.

write_window_length=numsecs
Number of seconds to use when calculating the moving average of bytes written; default =
86,400 (24 hours).

NOTES
The #DW jobdw command can span multiple lines by placing a backslash (\) at the end of one line and #DW at
the beginning of the next. For example:

#DW jobdw type=scratch \
#DW access_mode=striped

5.2 #DW persistentdw - Job Script Command

NAME
#DW persistentdw - Configure access to an existing persistent DataWarp instance

SYNOPSIS
#DW persistentdw name=resname [client_cache=yes|no]
#DW persistentdw name=resname [type=type access_mode=mode[(MODIFIERS)]]

DESCRIPTION
Optional command to configure access to an existing persistent DataWarp instance (created through the WLM)
with the specified parameters; it can appear multiple times in a job script.

The #DW persistentdw command requires the following argument:
name=resname

The name given when the persistent instance was created; valid values are anything in the
label column of the dwstat instances command where the public value is also
true.

Common Command Option
The #DW persistentdw command accepts the following option:
client_cache=yes|no

Enable or disable client-side caching. Although many workloads can benefit from client-side
caching because it can reduce the frequency and necessity of network operations, others

DataWarp Job Script Commands

S2558 20

can be negatively affected. It is important to understand how client-side caching works
before invoking this option. Not valid with options type and access_mode.

Command Options for Persistent Scratch Configurations
When type = scratch, the following option must also be set:

access_mode=striped[(MODIFIER)]
Currently only striped access mode (files are striped across multiple DataWarp nodes) is
valid for scratch configurations.

The compute node path to the instance storage is:

● scratch stripe access mode: $DW_PERSISTENT_STRIPED_resname
where resname is the name of the persistent instance.

Additionally, the access_mode option accepts the following optional modifier:

client_cache=yes|
no

Enable or disable client-side caching. Although many workloads
can benefit from client-side caching because it can reduce the
frequency and necessity of network operations, others will be
negatively affected. In some cases (e.g., many compute nodes
modifying a specific file simultaneously with this access mode)
data corruption can occur. It is important to understand how
client-side caching works before invoking this option.

Command Options for Persistent Cache Configurations
When type=cache, the following option must also be set:

access_mode=striped|ldbalance[(MODIFIER)]
Valid access modes are:

striped Files are striped across multiple DataWarp nodes.

ldbalance Files are replicated on multiple DataWarp nodes; valid only for cache
configurations.

The compute node path to the instance storage is as follows, where resname is the name
of the persistent instance:

● cache striped access mode: $DW_PERSISTENT_STRIPED_CACHE_resname
● cache ldbalance access mode: $DW_PERSISTENT_LDBAL_CACHE_resname
Additionally, the access_mode option accepts the following optional modifier:

client_cache=yes|
no

Enable or disable client-side caching. Although many workloads
can benefit from client-side caching because it can reduce the
frequency and necessity of network operations, others will be
negatively affected. In some cases (e.g., many compute nodes
modifying a specific file simultaneously with this access mode)
data corruption can occur. It is important to understand how
client-side caching works before invoking this option.

DataWarp Job Script Commands

S2558 21

NOTES
The #DW persistentdw command can span multiple lines by placing a backslash (\) at the end of one line and
#DW at the beginning of the next. For example:

#DW persistentdw type=scratch \
#DW access_mode=striped

5.3 #DW stage_in - DataWarp Job Script Command

NAME
#DW stage_in - Stage files into a DataWarp scratch instance

SYNOPSIS

#DW stage_in destination=dpath source=spath type=type
 [tolerate_errors=yes|no|nerror]

DESCRIPTION
Optional command, currently valid for scratch configurations only, to stage files from a parallel file system (PFS)
into an existing DataWarp instance at job start; it can appear multiple times in a job script. Missing files cause the
job to fail.

The #DW stage_in command requires the following arguments:

destination=dpath Path of the DataWarp instance; destination must start with the exact string
$DW_JOB_STRIPED, or $DW_PERSISTENT_STRIPED_resname if staging in to a
persistent instance. Not valid when type=list.

source=spath The PFS path; it must be readable by the user.

type=type The type of entity for staging; options are:

● directory - source is a single directory to stage, including all files and sub-
directories. All symlinks, other non-regular files, and hard linked files are ignored.

● file - source is a single file to stage. If the specified file is a directory, other non-
regular file, or has hard links, the stage in fails.

● list - source is a file containing a list of files to stage (one file/destination pair per
line); the destination parameter is not used. If a specified file is a directory, other
non-regular file, or has hard links, the stage out fails.

Additionally, the list file path must be accessible to the workload manager,
wherever it runs. Valid locations are site dependent and certain workload manager
configurations may be incompatible with the list option.

The #DW stage_in command also accepts the following option:

DataWarp Job Script Commands

S2558 22

tolerate_errors=yes|
no|nerror

Determines behavior if stage in operations fail. By default, stage in errors are not
tolerated, causing the job to fail. Valid values for tolerate_errors are:
yes

Allow the job to continue although there are stage in failures.
In this case, the job fails if the default maximum number of
failures allowed (set by the administrator) is reached.

no
Stage in errors are not tolerated; the job fails (default).

nerror
Number of errors to tolerate (implicitly sets
tolerate_errors=yes).

● If nerror=0, tolerate all stage in errors.

● If nerror>0, tolerate a maximum of nerror stage in
errors before the job fails.

Note that an application can detect a stage in failure using one of the libdatawarp query stage functions.

NOTES
Each #DW stage_in command can span multiple lines by placing a backslash (\) at the end of one line and
#DW at the beginning of the next. For example:

#DW stage_in destination=dpath \
#DW source=spath \
#DW type=type

5.4 #DW stage_out - Job Script Command

NAME
#DW stage_out - Stage files from a DataWarp instance

SYNOPSIS

#DW stage_out destination=dpath source=spath type=type
 [tolerate_errors=yes|no|nerror]

DESCRIPTION
Optional command to stage files from a DataWarp instance to the PFS at job end; can appear multiple times in a
job script. Valid for scratch configurations only.

The #DW stage_out command requires the following arguments:

destination=dpath Path within the PFS; it must be writable by the user. Not valid with type=list.

DataWarp Job Script Commands

S2558 23

source=spath Path within the DataWarp instance; source must start with the exact string
$DW_JOB_STRIPED, or $DW_PERSISTENT_STRIPED_resname if staging out from a
persistent instance.

type=type Specifies the type of entity for staging. Options are:

directory source is a single directory to stage, including all files and sub-
directories. All symlinks, other non-regular files, and hard linked files are
ignored.

file source is a single file to stage. If the specified file is a directory, other
non-regular file, or has hard links, the stage out fails.

list source is a file containing a list of files to stage (one file/destination pair
per line); the destination parameter is not used. If a specified file is a
directory, other non-regular file, or has hard links, the stage out fails.

Additionally, the list file path must be accessible to the workload
manager, wherever it runs. Valid locations are site dependent and certain
workload manager configurations may be incompatible with the list
parameter.

The #DW stage_out command also accepts the following option:

tolerate_errors=yes|
no|nerror

Determines behavior if stage out operations fail. By default, stage out errors are
not tolerated, causing the job to fail. Valid values for tolerate_errors are:
yes

Allow the job to continue although there are stage out failures.
In this case, the job fails if the default maximum number of
failures allowed (set by the administrator) is reached.

no
Stage out errors are not tolerated; the job fails (default).

nerror
Number of errors to tolerate (implicitly sets
tolerate_errors=yes).

● If nerror=0, tolerate all stage out errors.

● If nerror>0, tolerate a maximum of nerror stage out
errors before the job fails.

Note that an application can detect a stage out failure using one of the libdatawarp query stage functions.

NOTES
Each #DW stage_out command can span multiple lines by placing a backslash (\) at the end of one line and
#DW at the beginning of the next. For example:

#DW stage_out destination=dpath \
#DW source=spath \
#DW type=type

DataWarp Job Script Commands

S2558 24

5.5 #DW swap - Job Script Command

NAME
swap - Configure swap space per compute node

SYNOPSIS

#DW swap n

DESCRIPTION
Optional command to configure n GiB of swap space per compute node assigned to the job; can appear only
once in the job script. The job instance capacity must be large enough to provide N GiB of space to each node in
the node list, or the job will fail.

#DW swap is only valid with type = scratch, and the swap space is shared with any other use of a scratch
instance.

5.6 DataWarp Job Script Command Examples
For examples using DataWarp with Slurm, see http://www.slurm.schedmd.com/burst_buffer.html.

EXAMPLE: Job instance (type=scratch), no staging
Batch command:

% qsub -lmppwidth=3,mppnppn=1 job.sh
Job script job.sh:

#DW jobdw type=scratch access_mode=striped,private capacity=100TiB
aprun -n 3 -N 1 my_app $DW_JOB_STRIPED/sharedfile $DW_JOB_PRIVATE/scratchfile

Each compute node has striped/shared access to DataWarp via $DW_JOB_STRIPED and access to a per-
compute node scratch area via $DW_JOB_PRIVATE. At the end of the job, the WLM runs a series of commands
to initiate and wait for data staged out as well as to clean up any usage of the DataWarp resource.

EXAMPLE: Job instance (type=scratch), uses SSD write protection, no staging
Job script job.sh:

#DW jobdw type=scratch access_mode=striped(MFC=1000),private capacity=100TiB \
#DW write_window_length=86400 write_window_multiplier=10
aprun -n 3 -N 1 $DW_JOB_STRIPED/sharedfile $DW_JOB_PRIVATE/scratchfile

DataWarp Job Script Commands

S2558 25

http://www.slurm.schedmd.com/burst_buffer.html

This is the previous example with SSD write protection (see Use SSD Protection Settings on page 32) added. It
specifies that the job may write 10 * 100TiB = 1PiB of data in any window of 86400 seconds (1 day). Over the
entire batch job, only 1000 files can be re-created within the striped access mode. When either threshold is hit,
continued violations result in either a log message to the system console, an IO error to the application process,
or both. The error action is determined by a DataWarp configuration option.

EXAMPLE: Job instance (type=cache)
Job script job.sh

#DW jobdw type=cache access_mode=striped pfs=/lus/users/seymour \
#DW modified_threshold=500MiB read_ahead=8MiB:2MiB sync_on_close=yes \
#DW sync_to_pfs=yes capacity=100TiB
aprun -n 3 -N 1 ./a.out $DW_JOB_STRIPED_CACHE

DWS implicitly caches reads and writes to any files in /lus/users/seymour via the $DW_JOB_STRIPE_CACHE
mount on computes. Write back starts when a file has at least 500MiB of modified data in the cache, or sooner if
the cache fills up. Read ahead (in 2MiB chunks) starts after 8MiB of contiguous reads. The file is sync'd to the
PFS on the last close and every fsync request.

EXAMPLE: Persistent instance
Creating persistent instances is done via the site-specific WLM. Each WLM has its own syntax for this, and it is
beyond the scope of this guide to detail the various methods. The following examples are provided with the
caveat that they may be out of sync with changes made by the WLM vendors. For details, see the appropriate
WLM documentation.

Slurm: This example creates a persistent instance persist1.

#!/bin/bash
#SBATCH -n 1 -t 1
#BB create_persistent name=persist1 capacity=700GB access=striped type=scratch

Which results in:

$ dwstat most
 pool units quantity free gran
 kiddie bytes 5.82TiB 4.66TiB 397.44GiB
wlm_pool bytes 17.47TiB 16.69TiB 397.44GiB

sess state token creator owner created expiration nodes
9924 CA--- persist1 CLI 29993 2016-02-25T23:04:04 never 0

inst state sess bytes nodes created expiration intact label public confs
3234 CA--- 9924 794.88GiB 2 23:04:04 never true persist1 true 1
Each compute node has shared access to DataWarp via $DW_PERSISTENT_STRIPED_piname (scratch
instances), $DW_PERSISTENT_STRIPED_CACHE_piname (cache instances), or
$DW_PERSISTENT_LDBAL_CACHE_piname (cache instances) as described in #DW persistentdw - Job Script
Command on page 20.

To remove the persistent instance (with or without the hurry option):

#!/bin/bash
#SBATCH -n 1 -t 1
#BB destroy_persistent name=persist1 hurry

DataWarp Job Script Commands

S2558 26

See http://www.slurm.schedmd.com/burst_buffer.html for more Slurm examples.

Moab: The ac_dw_admin_cli command creates a persistent instance and has the following syntax:

$ ac_dw_admin_cli -h

Options:
 -c: Create a DW persistent instance
 -d: Diagnose user job requesting DW storage

Additional params for (-c) Create:
 Params: -n name, -u user, -S size, -p pool-name, -s start-time, -d duration
 Params from dw_create_persistent_instance: --type, --access_mode, --pfs,
 --modified_threshold, --read_ahead, --sync_on_close, --sync_to_pfs

Additional params for (-d) Diagnose:
 Params: -j jobid, --logs-stagein, --logs-stageout, --logs-teardown
For example:

$ ac_dw_admin_cli -c -n dwname -u username -S 256GiB -p poolname -s +0:00:00:00 \
-d +1:00:00:00 --type scratch --access_mode striped
Each compute node has shared access to DataWarp via $DW_PERSISTENT_STRIPED_piname (scratch
instances), $DW_PERSISTENT_STRIPED_CACHE_piname (cache instances), or
$DW_PERSISTENT_LDBAL_CACHE_piname (cache instances) as described in #DW persistentdw - Job Script
Command on page 20.

EXAMPLE: Staging

qsub -lmppwidth=128,mppnppn=32 job.sh
Job script job.sh

#DW jobdw type=scratch access_mode=striped capacity=100TiB
#DW stage_in type=directory source=/pfs/dir1 destination=$DW_JOB_STRIPED/dir1
#DW stage_in type=list source=/pfs/inlist
#DW stage_in type=file source=/pfs/file1 destination=$DW_JOB_STRIPED/file1
#DW stage_out type=directory destination=/pfs/dir1 source=$DW_JOB_STRIPED/dir1
#DW stage_out type=list source=/pfs/inlist
#DW stage_out type=file destination=/pfs/file1 source=$DW_JOB_STRIPED/file1

aprun -n 128 -N 32 my_app $DW_JOB_STRIPED/file1

EXAMPLE: Compute node swap
Job script job.sh:

#DW jobdw type=scratch access_mode=striped capacity=100GiB
#DW swap 10GiB
#Supports up to 10 compute nodes in this case
aprun -n 10 -N 1 big_memory_application

Each compute node has striped access to a unique swap instance (10GiB) via $DW_JOB_STRIPED.

DataWarp Job Script Commands

S2558 27

http://www.slurm.schedmd.com/burst_buffer.html

EXAMPLE: Interactive PBS job with DataWarp job instance

qsub -I -lmppwidth=3,mppnppn=1 job.sh
Job script job.sh

#DW jobdw type=scratch access_mode=striped,private capacity=100TiB

For the interactive PBS job case, the job script file is only used to specify the DataWarp configuration - all other
commands in the job script are ignored and job commands are taken from the interactive session same as for any
interactive job. This allows the same job script to be used to configure DataWarp instances for both a batch and
interactive job.

5.7 Diagrammatic View of Batch Jobs
These diagrams are graphs of how these batch jobs look and how the objects are linked with each other, as seen
in dwstat output.

EXAMPLE: DataWarp job instance (type = scratch), no staging
The following diagram shows how the #DW jobdw request is represented in the DWS for a batch job in which a
job instance is created, but no staging occurs. For this example, assume that the job gets three compute nodes
and the batch job name is WLM.123.

#DW jobdw type=scratch access_mode=striped,private capacity=4TiB

If any of the referenced boxes are removed (e.g., dwcli rm session --id id), then all boxes that it points to,
recursively, are removed. In this example, the scratch stripe configuration gets one namespace and the scratch
private configuration gets three namespaces, one for each compute node. The 4TiB capacity request is satisfied
by having an instance of size 4TiB, which in turn consists of two 2TiB fragments that exist on two separate DW
servers.

DataWarp Job Script Commands

S2558 28

Figure 7. Job Instance (type = scratch) with No Staging

session
token=WLM.123

instance
size=4TiB

type=scratch
access=striped

registration

configuration configuration

activation
clients mount

same namespace

fragment
size=2TiB

fragment
size=2TiB

namespace
spans instance

type=scratch
access=private

namespace
spans fragment

namespace
spans fragment

namespace
spans fragment registration

activation
clients mount

unique namespace

EXAMPLE: Use both job and persistent instances
The following diagram shows how the #DW jobdw request is represented in the DWS for a batch job in which
both a job and persistent instance are created. For this example, assume that the existing persistent DataWarp
instance rrr has a stripe configuration of 2TiB capacity and the batch job name is WLM.234.

#DW jobdw type=scratch access_mode=striped,private capacity=4TiB
#DW persistentdw name=rrr

DataWarp Job Script Commands

S2558 29

Figure 8. Job and Persistent Instances (type = scratch)

session
token=WLM.234

instance
size=4TiB

type=scratch
access=striped

registration

activation
clients mount

same namespace

fragment
size=2TiB

fragment
size=2TiB

namespace
spans instance

session
token=<some id>

instance

configuration

configuration

label=rrr
size=2TiB

fragment
size=1TiB

fragment
size=1TiB type=scratch

access=striped

namespace
spans instanceregistration

activation
clients mount

same namespace

EXAMPLE: Job Instance for Cache Configuration
The following diagram shows how the #DW jobdw command is represented in the DWS for a batch job for a
cache configuration.

#DW jobdw type=cache access_mode=stripe,ldbalance capacity=4TiB pfs=/lus/peel/
users/seymour

In this example, the cache stripe configuration and cache loadbalance configuration read and/or write to the files
in the PFS at the /lus/peel/users/seymour path. The 4TiB capacity request is satisfied by having an
instance of size 4TiB, which in turn consists of two 2TiB fragments that exist on two separate DataWarp servers.

DataWarp Job Script Commands

S2558 30

Figure 9. Job Instance (type = cache)

session
token=WLM.123

instance
size=4TiB

type=cache
access=striped

registration

activation

fragment
size=2TiB

fragment
size=2TiB

type=cache
access=loadbalance

registration

activation

configuration configuration

DataWarp Job Script Commands

S2558 31

6 Additional Considerations when Using DataWarp

6.1 DVS Client-side Caching can Improve DataWarp Performance
With the advent of DataWarp and faster backing storage, the overhead of network operations has become an
increasingly large portion of overall file system operation latency. In this release, DVS provides the ability to cache
both read and write data on a client node while preserving close-to-open coherency and without contributing to
out-of-memory issues on compute nodes. Instead of using network communication for all read/write operations,
DVS can aggregate those operations and reuse data already read by or written from a client. This can provide a
substantial performance benefit for these I/O patterns, which typically bear the additional cost of network latency:

● small reads and writes

● reads following writes

● multiple reads of the same data

Client-side Write-back Caching may not be Suitable for all Applications
CAUTION: Possible data corruption or performance penalty!

Using the page cache may not provide a benefit for all applications. Applications that require very large reads or
writes may find that introducing the overhead of managing the page cache slows down I/O handling. Benefit can
also depend on write access patterns: small, random writes may not perform as well as sequential writes. This is
due to pages being aggregated for write-back. If random writes do not access sequential pages, then less-than-
optimal-sized write-backs may have to be issued when a break in contiguous cache pages is encountered.

More important, successful use of write-back caching on client nodes requires a clear understanding and
acceptance of the limitations of close-to-open coherency. It is important for site system administrators to ensure
that users at their site understand how client-side write-back caching works before enabling it. Without that
understanding, users could experience data corruption issues.

For detailed information about DVS client-side caching, see XC™ Series DVS Administration Guide (S-0005).

6.2 Use SSD Protection Settings
The possibility exists for a user program to unintentionally cause excessive activity to SSDs, and thereby diminish
the lifetime of the devices. To mitigate this issue, DataWarp includes both administrator-defined configuration
options and user-specified job script command options that help the DataWarp service (DWS) detect when a
program’s behavior is anomalous and then react based on configuration settings.

Additional Considerations when Using DataWarp

S2558 32

Job Script Command Options
The #DW jobdw job script command provides users with options for the following DataWarp SSD protection
features:

● write tracking

● File creation limits

● File size limits

Users are encouraged to implement the following options to prevent unintentional activity that over utilizes the
SSDs through excessive writes. Use of these options can prolong the lifetime of these devices. The #DW jobdw
SSD protection options are:
write_window_multiplier=mult

Number of times capacity number of bytes may be written in a period defined by
write_window_length; default = 10.

write_window_length=numsecs
Number of seconds to use when calculating the moving average of bytes written; default =
86,400 (24 hours).

Example 1: This #DW jobdw command indicates that the user may write up to 10 * 222GiB in any 10 second
rolling window:

#DW jobdw type=scratch access_mode=striped capacity=222GiB \
#DW write_window_length=10 write_window_multiplier=10

Example 2: This #DW jobdw command indicates that the user does not require files greater than 16777216
bytes, and does not intend to create more than 12 files:

#DW jobdw type=scratch access_mode=striped(MFS=16777216,MFC=12) capacity=222GiB

For further information regarding the #DW jobdw command and the SSD protection options, see #DW jobdw -
Job Script Command on page 16 and DataWarp Job Script Command Examples on page 25.

Additional Considerations when Using DataWarp

S2558 33

7 libdatawarp - the DataWarp API
libdatawarp is a C library API for use by applications to control the staging of data to/from a DataWarp
configuration, and to query staging and configuration data.

The behavior of the explicit staging APIs is affected by the DataWarp access mode. For this release,
libdatawarp supports explicit staging in and out only on DataWarp configurations of type scratch for striped or
private access modes. Batch jobs, however, only support staging in and out for striped access mode.

● For striped access mode, any rank can call the APIs and all ranks see the effects of the API call. If multiple
ranks on any node stage the same file concurrently, all but the first will get an error indicating a stage is
already in progress. The actual stage will run in parallel on one or more DW nodes depending on the size of
the file and number of DW nodes assigned.

IMPORTANT: Before compiling programs that use libdatawarp, load the datawarp module.

$ module load datawarp

API Routines
The libdatawarp routines and a brief description of their functionality are listed in the following table. For
complete details of a specific routine, see its man page (e.g., dw_stage_file_in(3)).

Table 1. libdatawarp Routines

Routine Function

dw_get_mds_path Returns the MDS path

dw_get_stripe_configuration Returns the current stripe configuration for a file

dw_query_directory_stage Queries all files within a directory and all subdirectories

dw_query_file_stage Queries stage operations for a DataWarp file

dw_query_list_stage Queries stage operations for all files within a list

dw_set_stage_concurrency Sets the maximum number of concurrent stage
operations

dw_stage_directory_in Stages all regular files from a PFS directory into a
DataWarp directory

dw_stage_directory_out Stages all regular files in a DataWarp directory to a
PFS directory

dw_stage_file_in Stage a PFS file into a DataWarp file

dw_stage_file_out Stages from a DataWarp file into a PFS file

libdatawarp - the DataWarp API

S2558 34

Routine Function

dw_stage_list_in Stages all regular PFS files within a list into a
DataWarp directory

dw_stage_list_out Stages all DataWarp files within a list into a PFS
directory

dw_terminate_directory_stage Terminates one or more in-progress or waiting stage
operations

dw_terminate_file_stage Terminates an in-progress or waiting stage operation

dw_terminate_list_stage Terminates one or more in-progress or waiting stage
operations (within a list)

dw_wait_directory_stage Waits for one or all stage operations to complete

dw_wait_file_stage Waits for a stage operation to complete for a target file

dw_wait_list_stage Waits for one or all stage operations within a list to
complete

dw_open_failed_stage,
dw_read_failed_stage,
dw_close_failed_stage

Used in combination to identify failed stages

Example
The following C program uses several of the API routines found in libdatawarp.

#include <stdio.h>
#include <string.h>
#include <errno.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <sys/ioctl.h>
#include <linux/limits.h>

#include <datawarp.h>

/* build with:
 * gcc dirstageandwait.c -o dirstageandwait `pkg-config --cflags \
 * --libs cray-datawarp`
 */

int main(int argc, char **argv)
{
 int ret;
 int comp, pend, defer, fail;

 if (argc != 4) {
 printf("Error: Expected usage: \n"
 "%s [in | out | defer | revoke | terminate] [dw dir] [PFS dir]\n",
 argv[0]);

libdatawarp - the DataWarp API

S2558 35

 return 0;
 }

 /* perform stage in */
 if (strcmp(argv[1], "in") == 0) {
 ret = dw_stage_directory_in(argv[2], argv[3]);a
 /* perform stage out */
 } else if (strcmp(argv[1], "out") == 0) {
 ret = dw_stage_directory_out(argv[2], argv[3], DW_STAGE_IMMEDIATE);
 /* mark files as deferred stage */
 } else if (strcmp(argv[1], "defer") == 0) {
 ret = dw_stage_directory_out(argv[2], argv[3], DW_STAGE_AT_JOB_END);
 /* revoke deferred stage tag */
 } else if (strcmp(argv[1], "revoke") == 0) {
 ret = dw_stage_directory_out(argv[2], NULL, DW_REVOKE_STAGE_AT_JOB_END);
 /* cancel an in progress or deferred stage */
 } else if (strcmp(argv[1], "terminate") == 0) {
 ret = dw_terminate_directory_stage(argv[2]);
 } else {
 printf("%s: invalid option - %s\n", argv[0], argv[1]);
 return 0;
 }

 if (ret != 0) {
 printf("%s: dw_stage_file error - %d %s\n", argv[0], ret,
 strerror(-ret));
 return ret;
 }

 printf("%s: STAGE SUCCESS!\n", argv[0]);

 /* wait for stage request to complete */
 ret = dw_wait_directory_stage(argv[2]);
 if (ret != 0) {
 printf("%s: dw_wait_dir_stage error %d %s\n", argv[0], ret,
 strerror(-ret));
 return ret;
 }

 /* query final stage state of dw target */
 ret = dw_query_directory_stage(argv[2], &comp, &pend, &defer, &fail);
 if (ret != 0) {
 printf("%s: query_file_stage error %d %s\n", argv[0], ret, strerror(-ret));
 return ret;
 }

 printf("%s: Wait and query complete: complete %d pending %d defer %d
 failed %d\n", argv[0], comp, pend, defer, fail);

 return 0;
}

libdatawarp - the DataWarp API

S2558 36

8 Troubleshooting

8.1 Why Do dwcli and dwstat Fail?
The dwcli and dwstat commands fail for a variety of reasons, some of which are described here.

1. Both commands fail if the DataWarp service is not configured or not up and running.

> dwstat
Cannot determine gateway via libdws_thin
fatal: Cannot find a valid api host to connect to or no config file found.
Fix: Contact site support personnel.

2. Both commands fail if the dws module is not loaded. See item 4 on page 37 if executing on an external
login node (eLogin).

> dwstat
If 'dwstat' is not a typo you can use command-not-found to lookup the package
that contains it, like this:
cnf dwstat
Fix: load the module and try again.

> module load dws
> dwstat
 pool units quantity free gran
 wlm_pool bytes 53.12TiB 16.74TiB 1GiB

3. Both commands fail if the DataWarp scheduler daemon goes offline.

> dwstat
cannot communicate with dwsd daemon at sdb-hostname port 2015
[Errno 111] Connection refused
Fix: Contact site support personnel.

4. Both commands fail when executed by a user on an external login node (eLogin) on which the eswrap
service has been configured for dwcli and dwstat after loading the dws module.

elogin> module load dws
dwstat
Cannot determine gateway via libdws_thin
fatal: Cannot find a valid api host to connect to or no config file found.
Fix: Determine if dwstat/dwcli are among the available wrapped commands, and if so, remove the dws
module from the shell environment.

Troubleshooting

S2558 37

elogin> eswrap
eswrap version 2.0.3
...
 Valid commands:
...
 dwstat
 dwcli
...
elogin> module unload dws
dwstat
 pool units quantity free gran
 wlm_pool bytes 53.12TiB 16.74TiB 1GiB

5. Both commands fail if the DataWarp configuration option allow_dws_cli_from_computes is set to false
and one of the following is true:

● the command is executed from a batch script

● the command is executed from a compute node

Both commands output an error message similar to the following:

Connecting to https://dwrest-nodename yielded fatal error:
[SSL: CERTIFICATE_VERIFY_FAILED] certificate verify failed (_ssl.c:581)
Fix: To have this functionality, the system administrator must change the configuration setting and restart
DataWarp.

6. Depending on the options and actions invoked, dwcli can fail when dwmd is not functional.

> dwcli stage in -c 1 -s 1 --backing-path /etc/lvm/ --dir /test
cannot communicate with backend dwmd daemon at datawarp port 49214
[Errno 111] Connection refused
Fix: Contact site support personnel.

Troubleshooting

S2558 38

9 Terminology
The following diagram shows the relationship between the majority of the DataWarp service terminology using
Crow's foot notation. A session can have 0 or more instances, and an instance must belong to only one
session. An instance can have 0 or more configurations, but a configuration must belong to only one instance. A
registration belongs to only one configuration and only one session. Sessions and configurations can have 0 or
more registrations. An activation must belong to only one configuration, registration and session. A configuration
can have 0 or more activations. A registration is used by 0 or no activations. A session can have 0 or more
activations.

Figure 10. DataWarp Component Relationships

session

instance

configuration

registration

activation

Activation An object that represents making a DataWarp configuration available to one or more client
nodes, e.g., creating a mount point.

Client Node A compute node on which a configuration is activated; that is, where a DVS client mount
point is created. Client nodes have direct network connectivity to all DataWarp server nodes.
At least one parallel file system (PFS) is mounted on a client node.

Configuration A configuration represents a way to use the DataWarp space.

Fragment A piece of an instance as it exists on a DataWarp service node.

The following diagram uses Crow's foot notation to illustrate the relationship between an
instance-fragment and a configuration-namespace. One instance has one or more
fragments; a fragment can belong to only one instance. A configuration has 0 or more
namespaces; a namespace can belong to only one configuration.

Terminology

S2558 39

Figure 11. Instance/Fragment ↔ Configuration/Namespace Relationship

instance configuration

fragment namespace

Instance A specific subset of the storage space comprised of DataWarp fragments, where no two
fragments exist on the same node. An instance is essentially raw space until there exists at
least one DataWarp instance configuration that specifies how the space is to be used and
accessed.

DataWarp
Service

The DataWarp Service (DWS) manages access and configuration of DataWarp instances in
response to requests from a workload manager (WLM) or a user.

Fragment A piece of an instance as it exists on a DataWarp service node

Job Instance A DataWarp instance whose lifetime matches that of a batch job and is only accessible to
the batch job because the public attribute is not set.

Namespace A piece of a scratch configuration; think of it as a folder on a file system.

Node A DataWarp service node (with SSDs) or a compute node (without SSDs). Nodes with space
are server nodes; nodes without space are client nodes.

Persistent
Instance

A DataWarp instance whose lifetime matches that of possibly multiple batch jobs and may
be accessed by multiple user simultaneously because the public attribute is set.

Pool Groups server nodes together so that requests for capacity (instance requests) refer to a
pool rather than a bunch of nodes. Each pool has an overall quantity (maximum configured
space), a granularity of allocation, and a unit type. The units are either bytes or nodes
(currently only bytes are supported). Nodes that host storage capacity belong to at most one
pool.

Registration A known usage of a configuration by a session.

Server Node An IO service blade that contains two SSDs and has network connectivity to the PFS.

Session An intagible object (i.e., not visible to the application, job, or user) used to track interactions
with the DWS; typically maps to a batch job.

Terminology

S2558 40

10 Prefixes for Binary and Decimal Multiples
Multiples of bytes

SI decimal prefixes IEC binary prefixes

Name Symbol Standard SI Binary Usage Name Symbol Value

kilobyte kB 103 210 kibibyte KiB 210

megabyte MB 106 220 mebibyte MiB 220

gigabyte GB 109 230 gibibyte GiB 230

terabyte TB 1012 240 tebibyte TiB 240

petabyte PB 1015 250 pebibyte PiB 250

exabyte EB 1018 260 exbibyte EiB 260

zettabyte ZB 1021 270 zebibyte ZiB 270

yottabyte YB 1024 280 yobibyte YiB 280

For a detailed explanation, including a historical perspective, see http://physics.nist.gov/cuu/Units/binary.html.

Prefixes for Binary and Decimal Multiples

S2558 41

http://physics.nist.gov/cuu/Units/binary.html

	Contents
	1 About the DataWarp User Guide
	2 Quick Start to Using DataWarp
	2.1 Use DataWarp as Application Scratch

	3 About DataWarp
	3.1 Overview of the DataWarp Process
	3.2 DataWarp Concepts

	4 Check the Status of DataWarp Resources
	5 DataWarp Job Script Commands
	5.1 #DW jobdw - Job Script Command
	5.2 #DW persistentdw - Job Script Command
	5.3 #DW stage_in - DataWarp Job Script Command
	5.4 #DW stage_out - Job Script Command
	5.5 #DW swap - Job Script Command
	5.6 DataWarp Job Script Command Examples
	5.7 Diagrammatic View of Batch Jobs

	6 Additional Considerations when Using DataWarp
	6.1 DVS Client-side Caching can Improve DataWarp Performance
	6.2 Use SSD Protection Settings

	7 libdatawarp - the DataWarp API
	8 Troubleshooting
	8.1 Why Do dwcli and dwstat Fail?

	9 Terminology
	10 Prefixes for Binary and Decimal Multiples

