p oo

P I
I

R R s

A

',,,,/////’¢
R s
R
R

G r e e s AP

i s e

P
- ce s s s bty
AR AE R IR R = =
..f,,,,,fL

VPRSI P POSE R I NN (CLE 6-0-U| 06)
irereisaesisiiiiiiiiin
’//I'll" ',00"“:t‘:‘~“\\:“,
+ LI P
/’I/l'll"4 ';;**] ‘:‘:‘\:“‘:\\"
L S N
020920 + “‘\‘\\‘\\‘._.
l,lll *““\“\\\\‘\\‘
A b SR S NN
II' ““‘\\\“‘\\\~‘ -
! S R R INNNNNE
‘\‘\\\\‘\\\\\\
AU NN N
‘.“ \\\\‘\\\\‘
“‘ \\\\\\ A
‘ ‘\\\\\\ \\\\\
sy NS
‘\\\\\\\ \\\ .
‘\‘\\\\\\ \\\)
‘ \\\\‘\\\ N
RS NN TN
R S NN N
\\\\\\\ \\\ \\\\\ !
\\\\\\\ \\‘\\ \ \ \ .
\\\ \ \ \ \ \
\\\\ \\\\ \‘ \ \ \ . \
AR S \ A
W\ A \ \‘ Voo Y
‘\\\\\ \\ \\\\ \ ‘\ \
\\ \ \ \ \ . \
AN I e
v \ Vv \ \ L
\\\ \\ \ \
\ \ \ \ \ \ \
A\ SR R R D T N
\\ \ AN [. : \
\ \\\ \\ \ \ \ \ \ \ \
\\ \\ \ . ' AN v
\\ \\ \ . \ \ ’ Y
\ \ AN W] \ \
\ \ \ \ \
\\ \ AN \ \ \
\ \ \ \ \
b\\\ VW \\ C vy ' Y
A L0 D D T I S S Y 'y
AN SR D P D Voo \
EA AR D0 P D PR Yy
AN \ AN U ‘ Y\ Y
\\ \ \ \ \ \ \
\\ 1 A W \ \) Yy
ANPE R YRSV PR Yy
\\ \\\\\\ ‘ Yy Yy
ANV SR D B TR RO Yy,
YA SR SRR " \ LI

Contents

Contents

1 About the XC™ Series DVS AdMINIStration GUIAE..........coiiiuiiiiiiiiiieiiee ettt a e e eeeeeaeas 4
A (a1 igeTe [N TeiuTo] g I (o I B A A TP O PPPPUPTPPRN 7
G B)Y ST /[To [TP PRRTURRSR 9
VS @] a7 8= 14 o = o B £ PSSR 13
4.1 Configure DVS USING the CONfIQUIALON.iiiiiiiiie ettt e e e e naees 15

4.2 Configure DVS USING WOTKSNEELS.......coiiiiiiiiii et e et e e e 19

4.3 RecoNfigure DV'S INEIACHVEIYttt e e e e e e e e e s st b e e e e e eaaaaeeee e s 25

4.4 Configure DVS using Modprobe OF ProC FIlES...... ... 30

4.5 Validate the Config Set and Run ANSIDIE PIAYS..........ccoociiiiiiieee e 43

4.6 Quiesce a DVS-ProjeCted File SYSEM......uuuiiiiieiiiiiiiiiie e r e e e e e e e e e aaaeeeeeeseeaanaan 44

4.7 DVS Client-side Write-back Caching can Yield Performance Gains...........ccoovvvivieeiieiiiiiiiiiiieee e 46

4.7.1 About the Close-to-Open Coherency MOdel.............ooiiiiiiiiiiii e 48

4.8 Force a Cache Revalidation 0n a DVS MOUNE POINL......ccciiiiiiiiiiiiiiiiiiie e e e 49

4.9 Disable DVS FairNESS Of SEIVICE.....ccuutiiiiiiiiiiie ettt e et e aaas 50

4.10 Reconfigure DVS for an EXIErNal NFS SEIVEL........uuuuiiiiiiieee ettt e e e e e e e e e e e e e 52

4.11 Improve Performance and Scalability of GPFS (Spectrum Scale) MouNntS........cccevvvveeeeiviieveceeeeeeiiinns 54

5 DVS Configuration Settings, Mount Options, Environment Variables, and ioctl Interfaces..........ccccccccvveeiiiiiinnnns 55
5.1 DVS Configuration Settings and MoUNt OPLIONS...........uiiiiiaiiiiiiiieie et e e 55

5.2 DVS ENVIrONMENT VAIADIES. ...ttt ettt et e e e e e e e e e e e e e e e e e e s e nanenareees 65

5.3 DVS IOCH INTEITACES. ...ttt et e e e et e e e e e bbb bbbttt e e e e e e e e e aeeaeeaesaaannanaees 66

6 DVS RESIlIENCY ANA DIiAgNOSTICS.iciiiiiiiiiiiiiiiiitie ta et e s s s aa s aaeear b e s baesreseeeeereetaaeaaaaaaaeaeaasansans 69
6.1 DVS Supports Failover and FailDacK.............ccccuiiiiiiiiic e 69

6.2 Periodic Sync Promotes Data and Application ReSIENCYcooiiiiiiiiiiiiiii e 70

6.3 DVS Statistics ENADIE ANAIYSIS..........viiiiieiiiii e e 72

6.3.1 DVS StatiStiCS COHBCIEM.coiiiiiiiee et e e e e e e e e e e e annneees 76

6.4 DVS Can Log REQUESLES SENT 1O SEIVEIS.ttt e e e e e et e e e e e e e e e b e e e as 83

6.5 DVS Can Log Details About File System Calls............ccoooiiiiiiiiiiii e 86

6.6 DVS Lists Outstanding CliENt REQUESTS.........uuuiiiiiiiiieiiiiii e eeee e e e e s e s ss s rreeer e e e e aaeeeeeeesessansnsnnsnnrnne 88

6.6.1 DVS Provides a Plugin for Node Health ChecCker ...t 88

7 DVS TrOUBIESNOOTINGttt ettt e e okttt e e ek et e e e e ab b e et e e s aanb b et e e s annnneeee s 89
8 DV'S CBVEALS. ...ttt e oo oottt ettt bt e oo oo oo e et e ettt et e ba b e oo oo et e e e e et e e e enhe e b RR e e e e e e e e e eeeeeeeernbnba e e e aaaas 91
9 Supplemental INFOrMALION. ... ettt e et e et e e e e e e e e e e s e e s bbb bbb a e e eeeeaaaaeaaeaeas 93
9.1 Cray XC System CONfiIQUIALION.eiiieiee e it e e e e e e e s e s s e e e e e e e e e e s e s ssasaarbraaeereaeaaaeeessaassnnnnes 93

LS I Y o o101 B 1 g TSI @0 g ¥ie [UT = Lo) RS 95

9.3 Config Set Create/UpPdate PrOCESS.uiii ittt et e e e s ib e e e e e e s snebaeeas 96

S0005 2

Contents

9.4 ADOUL SIMPIE SYNC...etiiiiiiieiee ettt et e et e e e e e e e e e e s e e e e e e bbb bbbt e s et e e et e eeaaaaaaaaaaaaaaaanas 100
O.5 ADOUL NOGE GIOUPS. ... ittt et e et e e e e e e e ettt ettt e e e e e e e e e s s s o ababb bbbt ettt e e aaaeeaeaesaaasnnbbbbesbeeeeaaaaaaaeaesaan 105
9.6 ADOUL CONFig SEE CAChING......ccii i e e a e e e e e e e e e aaeaaaaaaaeaaaaaaaan 109

S0005 3

About the XC™ Series DVS Administration Guide

1 About the XC™ Series DVS Administration Guide

The XC™ Series DVS Administration Guide (S-0005) describes the Cray Data Virtualization Service (DVS) and
provides guidance on how to configure it to project external file systems.

Release CLE 6.0.UP05
This publication supports Cray software release CLE 6.0.UPQ6, released March 2018.

Audience and Scope

This publication is intended for site personnel who administer and/or configure DVS on Cray XC™ Series
systems.

Command Prompt Conventions

Host name The host name in a command prompt indicates where the command must be run. The account
and account in that must run the command is also indicated in the prompt.
command

prompts e The root or super-user account always has the # character at the end of the prompt.

e Any non-root account is indicated with account@hostname>. A user account that is
neither root nor crayadm is referred to as user.

Run the command on the SMW as root.
smw#
Run the command on the CMC as root.
cmc#
Run the command on the SDB node as root.
sdb#
Run the command on the boot node as the crayadm user.
crayadm@boot>
) Run the command on any login node as any non-root user.
user@login>
Run the command on the specified system as root.
hostname#
Run the command on the specified system as any non-root user.
user@hostname>
14 For a system configured with the SMW failover feature there are two
2?32# SMWs—aone in an active role and the other in a passive role. The

S0005 4

About the XC™ Series DVS Administration Guide

Command
prompt inside
chroot

Directory path
in command
prompt

SMW that is active at the start of a procedure is smwl. The SMW that
is passive is smw2.

In some scenarios, the active SMW is smw1 at the start of a
procedure—then the procedure requires a failover to the other SMW.
In this case, the documentation will continue to refer to the formerly
active SMW as smwl1, even though smw?2 is now the active SMW. If
further clarification is needed in a procedure, the active SMW will be
called smwactive and the passive SMW will be called smwpassive.

smwactive#
smwpassive#

If the chroot command is used, the prompt changes to indicate that it is inside a chroot
environment on the system.

smw# chroot /path/to/chroot
chroot-smw#

Example prompts do not include the directory path, because long paths can reduce the clarity
of examples. Most of the time, the command can be executed from any directory. When it
matters which directory the command is invoked within, the cd command is used to change
into the directory, and the directory is referenced with a period (.) to indicate the current
directory.

For example, here are actual prompts as they appear on the system:

smw:~ # cd /etc

smw:/etc# ed /var/tmp
smw:/var/tmp# 1ls ./file
smw:/var/tmp# su - crayadm
crayadm@smw:~> cd /usr/bin
crayadm@smw: /usr/bin> ./command

And here are the same prompts as they appear in this publication:

smw# cd /etc

smw# cd /var/tmp

smw# ls ./file

smw# su - crayadm
crayadm@smw> ed /usr/bin
crayadm@smw> ./command

Typographic Conventions

Monospace Indicates program code, reserved words, library functions, command-line prompts,
screen output, file/path names, and other software constructs.

Monospaced Bold Indicates commands that must be entered on a command line or in response to an
interactive prompt.

ObliqueOf Ttalics Indicates user-supplied values in commands or syntax definitions.

Proportional Bold Indicates a graphical user interface window or element and key strokes (e.g., Enter,

Alt-Ctrl-F).

S0005

About the XC™ Series DVS Administration Guide

\ (backslash) At the end of a command line, indicates the Linux® shell line continuation character
(lines joined by a backslash are parsed as a single line). Do not type anything after
the backslash or the continuation feature will not work correctly.

Trademarks

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY and
design, SONEXION, URIKA, and YARCDATA. The following are trademarks of Cray Inc.: APPRENTICEZ2,
CHAPEL, CLUSTER CONNECT, CRAYDOC, CRAYPAT, CRAYPORT, DATAWARP, ECOPHLEX, LIBSCI,
NODEKARE. The following system family marks, and associated model number marks, are trademarks of Cray
Inc.: CS, CX, XC, XE, XK, XMT, and XT. The registered trademark LINUX is used pursuant to a sublicense from
LMI, the exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis. Other trademarks used in
this document are the property of their respective owners.

S0005 6

Introduction to DVS

2 Introduction to DVS

Cray Data Virtualization Service (DVS) is a distributed network service that projects local file systems resident on
I/0 nodes or remote file servers to compute and service nodes within the Cray system. Projecting is simply the
process of making a file system available on nodes where it does not physically reside. DVS-specific configuration
settings enable clients (compute nodes) to access a file system projected by DVS servers. Thus, Cray DVS, while
not a file system, represents a software layer that provides scalable transport for file system services. See the
mount (8) and dvs (5) man pages for more information.

DVS Use Cases

DVS plays an essential role in the new Cray management system (CMS) paradigm.
e DVS is tightly coupled with the Simple Shares service.
e During system boot, Netroot is mounted as a DVS mount.

e DVSisusedbythe cray image binding service to distribute the Cray programming environment (PE) to
compute and login nodes.

Cray automatically enables DVS and configures it with the settings necessary to achieve this functionality. Sites
are not required to configure DVS further, which is why this service is level basic rather than required.

This figure illustrates how the system uses DVS to distribute PE images to compute and login nodes. The PE
image is stored on the SMW and a copy is pushed out to the boot node and stored on its local storage. The boot
node shares the PE image with the DVS node using NFS, and then the DVS node projects it to compute and login
nodes using DVS.

Figure 1. PE Distribution to Compute and Login Nodes

SMW

PE
Image Puzh
{as needed)
SMW Disk

Compute/Login Node DWVS Node Boot Node

DVS needs further configuration only if a site plans to use it to project external file systems to nodes within the
Cray system. The cray dvs service configuration parameters enable system administrators to provide their

S0005 7

Introduction to DVS

users with client mounts that can be tuned for high performance in a variety of use cases. When projecting
external file systems, DVS provides I/O performance and scalability to a large number of nodes, far beyond the
typical number of clients supported by a single NFS server. Operating system noise and impact on compute node
memory resources are both minimized in the Cray DVS configuration. Cray DVS uses the Linux-supplied virtual
file system (VFS) interface to process file system access operations. This allows DVS to project any POSIX-
compliant file system. Cray has extensively tested DVS with NFS and General Parallel File System (now
Spectrum Scale).

Figure 2. Cray DVS Projection of External File Systems

Input Files
Large Data Files -
Applications

Lustre
/scratch

[Compute Nodes|
/home, /gpfs,
/scratch

User

Application Input Files

Small Data Files

DVS Network Applications

Service

Shared Data File

me
=

When DVS is used to project external file systems, an administrator's view of Cray DVS looks like this.

Figure 3. Cray DVS In a Cray System

-

-
-

Cray System

=
3

GPFS Lustre NFS
Server Server Server

S0005 8

DVS Modes

3 DVS Modes

A DVS mode is simply the name given to a combination of mount options used to achieve a particular goal. DVS
has two primary modes of use: serial and parallel. In serial mode, one DVS node projects a file system to multiple
compute node clients. In parallel mode, multiple DVS nodes—in configurations that vary in purpose, layout, and
performance—project a file system to multiple compute node clients. Those varying configurations give rise to
several flavors of parallel mode.

The availability of these DVS modes is determined by the system administrator's choice of DVS mount options
during system configuration. Users cannot choose among DVS modes unless the system administrator has
configured the system to make more than one mode available. A system administrator can make several DVS
modes available on the same compute node by mounting a file system with different mount options on different
mount points on that compute node. Here is a summary of the rationale and example configuration settings for
each DVS mode. Note that these modes represent only some of the possible ways to configure DVS. There are
many other mount options available.

In the "Example Configuration Settings" column, the server groups setting is a list of node groups. See the
entry for server groups in DVS Configuration Settings and Mount Options on page 55 for more information.

Mode Rationale Example Configuration Settings
DVS Serial Simplest implementation of DVS. Only option if =~ server_groups: [dyi@,server,serial]
Mode no cluster/shared file system available. S o

(dvs_server serialis anode group that
has a single member, such as c0-Oclslnl)

DVS Cluster
Parallel Mode

Often used for a large file system, must be a
shared file system such as GPFS (Spectrum

server groups: [dvs servers parallel]
options: maxnodes=1

Scale). Can distribute file I/O and metadata
operations among several servers to avoid
overloading any one server and to speed up

(dvs _servers parallel is a node group
that has several members, such as
c0-0cls1nl, c0-0cls1in2, c0-0c0s2nl)

operations. I/O for a single file goes only to the

chosen server.
DVS Stripe Used to distribute file I/O load at the granularity =~ server_groups: [dx_z?serversfparallel]
Parallel Mode of a block of data within a file. Adds another leve| °PH°7%# maxnodes=

of parallelism to better distribute the load. I/O for

a single file may go to multiple servers.
DVS Atomic ~ Used when stripe parallel makes sense and server_groups :d[dx_/g_serv¢rs_parallell
Stripe Parallel POSIX read/write atomicity required. e
Mode

S0005 9

DVS Modes

Mode Rationale Example Configuration Settings

DVS Used for near-optimal load distribution when a server_groups: [dvs_servers parallel]
. . . loadbalance: true

Loadbalance read-only file system is being used. By default,

Mode enables readonly and sets cache=1,
failover=1, maxnodes=1, and
hash on nid=0.

Serial, cluster parallel, and atomic stripe parallel modes all adhere to POSIX read/write atomicity rules, but stripe
parallel mode does not. POSIX read/write atomicity guarantees that all bytes associated with a read or write are
not interleaved with bytes from other read or write operations.

DVS Serial Mode

Serial mode is the simplest implementation of DVS, where each file system is projected from a single DVS server
(node) to multiple clients (compute nodes). DVS can project multiple file systems in serial mode from the same or
different DVS nodes by entering maxnodes=1 in the options configuration setting for each client mount set up
during configuration or reconfiguration.

DVS serial mode adheres to POSIX read/write atomicity rules.

Figure 4. Cray DVS Serial Access Mode

Cray System

Application Application Application Application

DVS Client DVS Client DVS Client DVS Client

DVS Server

FS Client
FS Server
Disk FS

DVS Cluster Parallel Mode

In cluster parallel mode, each client interacts with multiple servers. For example, in the figure below, DVS is
mounted to / foo on the DVS client, and three different fles—bar1, bar2, and bar3—are handled by three
different DVS servers (nodes), thus distributing the load. The server used to perform a file's /0O or metadata
operations is selected using an internal hash involving the underlying file or directory inode number. Once a
server has been selected for a file, cluster parallel mode looks like serial mode: all of that file's /O and metadata
operations from all clients route to the selected server to prevent file system coherency thrash.

DVS cluster parallel mode adheres to POSIX read/write atomicity rules.

S0005 10

DVS Modes

Figure 5. Cray DVS Cluster Parallel Access Mode

Cray System

Application Application Application Application
DVS Client DVS Client DVS Client DVS Client
/5oo/bar2 | [/£oo/part | [/£oo/ars
DVS Server| | DVS Server| [DVS Server
FS Client FS Client FS Client
/500/bar2| [/£oo/art | [/£0o/bars |
FS Server
Disk FS

DVS Stripe Parallel Mode

Stripe parallel mode builds upon cluster parallel mode to provide an extra level of parallelized I/O forwarding for
clustered file systems. Each DVS server (node) can serve all files, and DVS servers are automatically chosen
based on the file inode and offsets of data within the file relative to the DVS block size value (b1ksize). For
example, in the figure below, DVS is mounted to / foo on the DVS client, and the I/O for three different blocks (or
segments) of data within file bar—segl, seg2, and seg3—is handled by three different DVS servers, thus
distributing the load at a more granular level than that achieved by cluster parallel mode. All I/O from all clients
involving the same file routes each block of file data to the same server to prevent file system coherency thrash.
Note that while file 1/O is distributed at the block level, file metadata operations are distributed as in cluster parallel
mode: the metadata operations of a given file are always handled by the same DVS server. Stripe parallel mode
provides the opportunity for greater aggregate 1/0O bandwidth when forwarding 1/0 from a coherent cluster file
system. GPFS (Spectrum Scale) has been tested extensively using this mode.

ATTENTION: NFS cannot be used in stripe parallel mode because NFS implements close-to-open cache
consistency; therefore striping data across the NFS clients could compromise data integrity.

DVS stripe parallel mode does not adhere to POSIX read/write atomicity rules.

Figure 6. Cray DVS Stripe Parallel Mode

Cray System

Application| |Application Application | | Application

DVS Client| | DVS Client DVS Client | | DVS Client

segl || seg2 || seg3

DVS Server| | Dvs Server | [DVS Server

FS Client FS Client FS Client

segl || seg2 || seg3 |

FS Server segt
Disk FS seg2

seg3

o
o
5
o

S0005 11

DVS Modes

DVS Atomic Stripe Parallel Mode

Stripe parallel mode provides parallelism within a file at the granularity of the DVS block size. However, when
applications do not use their own file locking, stripe parallel mode cannot guarantee POSIX read/write atomicity. In
contrast, atomic stripe parallel mode adheres to POSIX read/write atomicity rules while still allowing for possible
parallelism within a file. It is similar to stripe parallel mode in that the server used to perform the I/O or metadata
operation is selected using an internal hash involving the underlying file or directory inode number, and the offset
of data into the file is relative to the DVS block size. However, once that server is selected, the entire read or write
request is handled by that server only. This ensures that all I/0 requests are atomic while allowing DVS clients to
access different servers for subsequent I/O requests if they have different starting offsets within the file.

Users can request atomic stripe parallel mode by setting the bvs_ATOMIC user environment variable to on.

DVS Loadbalance Mode

Loadbalance mode is used to more evenly distribute loads across servers. The clients, Cray system compute
nodes, automatically select the server based on a DVS-internal node ID (NID) from the list of available server
nodes specified in the servers setting within the configurator or configuration worksheet. When loadbalance
is enabled, the underlying DVS implementation automatically sets the readonly setting to true and sets these
additional options: cache=1, failover=1, maxnodes=1, and hash on nid=0.

To enable attribute caching as well, set the attrcache timeout setting for loadbalance client mounts (this is
a separate configuration setting within the configurator or configuration worksheet). This allows attribute-only file
system operations to use local attribute data instead of sending the request to the DVS server. This is useful in
loadbalance mode because with a read-only file system, attributes are not likely to change.

DVS automatically enables the cache mount option in loadbalance mode because using cache on a read-only
mount can improve performance. With cache enabled, a DVS client pulls data from the DVS server the first time it
is referenced, but then the data is stored in the client's page cache. While the application is running, all future
references to that data are local to the client's memory, and DVS will not be involved at all. However, if the node
runs low on memory, the Linux kernel may remove these pages, and then the client must fetch the data from the
DVS server on the next reference to repopulate the client's page cache.

Figure 7. Cray DVS Loadbalance Mode

Cray System

Application Application Application Application
aan nn

DVS Client DVS Client DVS Client DVS Client

aan
FS Server
Disk FS

S0005 12

DVS Configuration and Use

4 DVS Configuration and Use

What Needs DVS?

DVS (cray dvs) is required for Netroot! to function and for distributing the programming environment (PE) to
compute and login nodes using the cray image binding service. However, sites are not required to make any
changes to the cray dvs service to achieve this functionality.

If DVS is used to provide access to DataWarp, some DVS configuration will be required.

What does DVS Need?

For DVS to function properly, the following services may need to be configured. The first two are required for a
functional system regardless of DVS, but they are included because DVS-specific information or a consideration
of how DVS will be used is necessary during their configuration.

cray scalable services Defines which servers are used in the scaling of the system. When configuring
the cray scalable services service, ensure that any DVS servers/nodes
that will be used to project external file systems are NOT added to the list of tier2
servers.

cray net Configures key network attributes. When configuring the cray net service, set
network values to define a network interface for any DVS servers/nodes that will
be used to project external file systems. Needed only for communications using
anything other than the Cray Aries high-speed network (HSN).

cray_lnet DVS uses Lustre™ Networking (LNet) to communicate on Aries networks, so
even if Lustre is not used on this system, the LNet service must be configured.
No DVS-specific settings are necessary; it is sufficient to ensure that the
cray_ lnet service is enabled.

cray multipath Detects and coalesces multiple paths to devices. If the node acting as the DVS
server is natively mounting the file system, it has access to the storage directly,
and if more than one path to the storage is desired, then the cray multipath
service needs to be enabled. This is not typical; DVS is usually a client of the file
system.

Node Groups

To configure DVS, it is necessary to define at least one DVS node group that contains one or more DVS servers.
Sites that are doing a fresh install will have an opportunity to define DVS node groups during the installation
process. Sites that are updating CLE 6.0.UPO1 software to the current release, and had already defined one or

1 Netroot is a mechanism to enable nodes booted with a minimal, local in-memory file system to execute
within the context of a larger, full-featured root file system. For more information, see XC™ Series Software
Installation and Configuration Guide (S-2559).

S0005 13

DVS Configuration and Use

more DVS node groups, will have an opportunity to migrate that node group data to the cray dvs_ worksheet
for the new release. Information about defining and migrating node groups data is found in the XC™ Series
Software Installation and Configuration Guide (S-2559).

See About Node Groups on page 105 for more information about node groups in general.

Procedures to Configure DVS using the Configurator

DVS is one of many services that store service configuration content in CLE configuration sets (config sets) on
Cray systems. DVS can be configured when config sets are created during a fresh install or major upgrade, or it
can be configured/reconfigured later by updating existing config sets during normal system operation (bearing in
mind that some of the DVS module parameters are best set during initial system configuration). These procedures
guide site administrators and staff in entering appropriate values for DVS configuration settings using the
configurator. Whether sites enter values in an interactive configurator session or enter values in a configuration
worksheet for bulk import, the configurator takes the supplied values and ensures that they become part of the
config set being created or updated.

Use one of the following procedures to configure or reconfigure DVS using the configurator. In all procedures,
steps correspond to order of settings as encountered in an interactive session or configuration worksheet.

Configure DVS using the General-purpose procedure, emphasis on decision support.
Configurator e For both initial configuration and reconfiguration
e Detailed description of settings

e No examples

Configure DVS using Worksheets Procedure for editing the DVS worksheet, emphasis on examples.
e For initial configuration or major update

e Detailed steps and examples

Reconfigure DVS Interactively Procedure for using the configurator interactively, emphasis on examples.
e For minor updates

e Detailed steps and examples

Caveat: The above procedures do not cover how to use cfgset and the configurator (which is invoked by
cfgset). See the cfgset man page and the XC™ Series Configurator User Guide (S-2560).

Procedure to Configure DVS using Modprobe.d, Proc Files, and Simple Sync

At this time, there are some DVS configuration parameters that cannot be set using the configurator. For such
cases, configuration files can be created within the config set and distributed throughout the system using the
Simple Sync mechanism, part of the new Cray management system. It is important to make these changes within
the config set directory structure, otherwise changes may not persist. For instructions on how to do that, use this
procedure.

Configure DV'S using Modprobe or Proc Files on page 30

For more information about Simple Sync, see About Simple Sync on page 100. For general information about the
way Cray XC systems are configured, see Cray XC System Configuration on page 93.

S0005 14

DVS Configuration and Use

Procedure to Apply Configuration Changes

After using one of the configuration procedures or making any configuration changes, validate the revised config
set and run Ansible plays to propagate and apply the configuration changes.

Validate the Config Set and Run Ansible Plays on page 43

Procedures to Manage and Optimize DVS Use

Use the following procedures, as needed, during operation or for further configuration.

e Quiesce a DVS-projected File System on page 44

e DVS Client-side Write-back Caching can Yield Performance Gains on page 46

e Force a Cache Revalidation on a DVS Mount Point on page 49

e Disable DVS Fairness of Service on page 50

e Reconfigure DVS for an External NFS Server on page 52

e Improve Performance and Scalability of GPFS (Spectrum Scale) Mounts on page 54

e For procedures to configure a DVS mount of GPFS (Spectrum Scale), see XC Series GPFS Software
Installation Guide (S-2569), which is available at http:/pubs.cray.com

4.1 Configure DVS using the Configurator

Prerequisites
This procedure assumes that the user is either in a configurator interactive session with the DVS service
(cray dvs) selected or is editing the DVS configuration worksheet (cray dvs worksheet.yaml).

e Forinstructions on how to start a configurator session, see step 2 of Reconfigure DVS Interactively on page
25.

e Forinstructions on how to start editing the DVS configuration worksheet, see the prerequisites of Configure
DVS using Worksheets on page 19

About this task

The following steps correspond to the DVS configuration settings available through the configurator, and step
numbering reflects the order in which those settings are presented when using the configurator in auto mode.
They can be accessed in any order if using the configurator in interactive mode or if entering data in the
configuration worksheet.

A CAUTION: Configure DVS and all services only through the configurator or by placing/editing
configuration files in the Simple Sync directory structure within the config set. Do not configure DVS by
manually adding lines to /etc/£fstab or other /etc files. In general, changes to those files are not
persistent, and rebooting could result in loss of data.

IMPORTANT: When configurator guidance indicates a relationship or interaction between one or more
settings, it is advisory only; the configurator does not automatically check to ensure compatibility among
settings. However, the underlying implementation of DVS is unchanged, and it does automatically set

S0005 15

http://pubs.cray.com

DVS Configuration and Use

related mount options when certain mount options are specified. To prevent mount failure, enter setting
values that are compatible, in accordance with the instructions in this publication.

Procedure

1. Enable Cray DVS service.

Ensure that cray dvs.enabledis setto true.

2. Configure a DVS client mount. Repeat this step to configure multiple client mounts, as needed.

A client mount defines the file system shares to be projected from DVS nodes to all (or selected) compute
nodes. Each client mount is specified by a multival setting, which has a single key field followed by one or
more other fields. The following substeps correspond to the fields (settings) of a client mount setting; substep
numbering reflects the order in which these settings are presented when using the configurator in auto mode.

a. Set the client mount reference.

reference A human-readable string—a name—that is used to uniquely identify a client
mount. reference cannot be set by accepting the default: a non-empty string
is required.

Related settings/options: Because this is the key field of a client mount setting
entry, each setting within the client mount setting includes this string in its full
setting name.

b. Set the pathname of the mount point on the client.

mount point A string that specifies the full pathname on the client of the projected file
system. mount point cannot be set by accepting the default: a non-empty
string is required.

Related settings/options: none
c. Set the pathname of the mount point on the DVS server node.

spath A string that specifies the full pathname on the DVS server of the file system
that is to be projected for a client mount. It must be an absolute path and it
must exist on the DVS server. spath cannot be set by accepting the default: a
non-empty string is required.

Related settings/options: none

d. Setthe list of DVS server groups.

server_groups A list of node groups that will function as DVS servers for a client mount. Enter
one node group per line (see About Node Groups on page 105).
server groups cannot be set by accepting the default: a non-empty list is
required.

IMPORTANT: DVS servers should be dedicated because they use
unlimited amounts of CPU and memory resources based directly on
the 1/0 requests sent from DVS clients. Avoid using nodes that have
other services (Lustre nodes, login nodes, etc.) or are tier2 nodes.

S0005 16

DVS Configuration and Use

e.

f.

Related settings/options: Functionally equivalent to the nodename or
nodefile "additional" option in the options setting of the client mount
setting. The use of those two additional options is deprecated.

Set the list of DVS client groups.

client groups

A list of node groups that will function as DVS clients for a client mount. Enter
node groups one per line. Unlike server groups, client groups can be
set to an empty list. If no node groups are specified, the mount will be
performed on all suitable compute nodes (a compute node functioning as a
DVS server is an example of an unsuitable node). This is common.

Related settings/options: none

Set the loadbalance option.

loadbalance

Used to specify loadbalance mode, which more evenly distributes loads across
DVS servers. Loadbalance mode is valid only for read-only mounts. For more
information, see DVS Loadbalance Mode.

Related settings/options: When loadbalance is enabled, the underlying DVS
implementation automatically sets the readonly setting to true and sets
these additional options: cache=1, failover=1, maxnodes=1, and
hash on nid=0. Cray recommends setting the attrcache timeout
setting as well to take advantage of the mount being read-only. If
loadbalance is enabled, leave the readonly setting unconfigured or set it
to t rue to maintain consistency with the way DVS implements 1oadbalance.

g. Set the attribute cache timeout option.

h. Set the read-only option.

attrcache_timeout Enables client-side attribute caching, which can significantly increase

readonly

performance, most notably in pathname lookup situations. When attribute
caching is disabled, DVS clients must send a lookup request to a DVS server
for every level of a pathname, and repeat this for every pathname operation.
When it is enabled, it sends a lookup request to a DVS server for every level of
a pathname once per n seconds.

The configurator default is 14400 seconds. The underlying DVS
implementation default is 3 seconds, which is safer for read-write mounts. This
means that to enhance system performance for read-only mounts, configure
this setting by accepting the configurator default (or entering some other
value). Leaving this setting unconfigured will result in the underlying default
being used.

Related settings/options: The Ansible play that consumes DVS configuration
data prevents use of this mount option for read-write file systems due to the
risk of file system corruption. Run-time mounts not accompanied by that
Ansible play do not have that safeguard. In such cases, if a read-write mount
is created, it is safe to leave attrcache timeout unconfigured so that the
underlying default is used.

Determines whether the client mount is read-only or read-write. If intending to
enable client-side caching of read data on a non-writable file system, use this

S0005

17

DVS Configuration and Use

readonly setting to force the DVS mount to be read-only. This will disable
write caching.

The configurator default is true or 1. The underlying DVS implementation
default is false. Leaving this setting unconfigured will result in the underlying
DVS default being used.

Related settings/options: When loadbalance is enabled, DVS automatically
enables readonly but the configurator does not, so either leave this setting
unconfigured or accept the configurator default. If the attrcache timeout
setting is set for this client mount, readonly should be enabled (set to true) in
the configurator/worksheet. If the cache option is specified in the options
setting for this client mount, enabling readonly is the only way to enable read
caching without enabling write caching as well).

i. Set other client mount options.

options

Provides the only way to specify mount options in addition to the ones already
specified in the other mount point settings. Enter a string with mount options
separated by comma and no spaces. For information about available options
and their implications, see Additional Options for Use in the Options Setting of
a Client Mount. Note that it is necessary to specify maxnodes=1 here for a
read-write client mount of an NFS or other non-cluster, non-coherent file
system.

Related settings/options: Options contained in this setting will be appended to
the mount options specified in other settings. Any that are functionally
redundant with settings already configured (such as nodenamelnodefile,
which are redundant with the server groups setting) will override those
settings.

This completes the entry of a client mount setting. Review the setting fields in the configurator summary or
configuration worksheet. Revisit any of the settings to make changes, if needed. Repeat Step 2: Configure a
DVS client mount to specify additional client mounts.

Set DVS kernel module parameters.

Two DVS kernel module parameters can be set using the configurator by following the substeps below. Note
that changing these parameters after initial configuration may require reloading the module to enable the
change to take effect. To change other kernel module parameters, see Configure DVS using Modprobe or

Proc Files on page 30.

a. Setthe DVS interprocess communication (IPC) heartbeat timeout.

dvsipc_heartbeat
timeout

DVS inter-process communication (IPC) heartbeat timeout, in seconds. This
parameter is no longer used; it has been preserved only to maintain
backwards compatibility with existing DVS config files. Leave this parameter
unconfigured or accept the default value.

Related settings/options: none

b. Setthe DVS debug mask.

dvs_debug mask

Hex mask of the bits to set to enable debug output to be printed to the
console. It can flood the console file and negatively affects performance, so it

S0005

18

DVS Configuration and Use

is generally used only for development or troubleshooting. Different mask
values enable the output of different sets of debug information. Leave this
parameter unconfigured or accept the default value.

Related settings/options: none

4. When done configuring DVS, take one of the following actions:

If configuring Do this

DVS
interactively Save the changes and exit the configurator session.
Cray DVS Service Menu [default: save & exit - Q] $ Q
cfgset will save all of the configuration settings in the config set (in configuration
worksheets and templates), run post-configuration scripts, create a time-stamped clone
of the config set, and exit automatically.
using the Import the completed DVS worksheet by updating the config set and specifying the
worksheet worksheet path.

smw# cfgset update --worksheet-path \
'/some/edit/location/cray dvs_worksheet.yaml' p0

Proceed to Validate the Config Set and Run Ansible Plays on page 43.

4.2 Configure DVS using Worksheets

Prerequisites

This procedure assumes that the user has generated configuration worksheets and is editing the DVS
configuration worksheet (cray dvs worksheet.yaml). If new worksheets need to be generated, use this
procedure:

1.

Generate up-to-date worksheets for config set p0 (merges any new service packages installed on the system
with data already in config set p0).

smw# cfgset update --mode prepare --no-scripts pO

Make a copy of the CLE configuration worksheets directory outside the config set to be used as a work area

for editing. The worksheets should not be edited in their original location for two reasons: (1) the configurator
will not permit updating a config set from worksheets within that config set, and (2) edits would be overwritten
when the config set is updated.

smw# cp /var/opt/cray/imps/config/sets/p0/worksheets/* \
/var/adm/cray/release/p0_worksheet workarea

(This is the same work area used in an initial installation of SMW/CLE software.
Edit the DVS worksheet:

smw# vi /var/adm/cray/release/p0 worksheet workarea/cray dvs worksheet.yaml

S0005 19

DVS Configuration and Use

About this task

The

following steps correspond to the configuration settings available in the DVS worksheet, and step numbering

reflects the order in which those settings appear there.

A\

CAUTION: Configure DVS and all services only through the configurator or by placing/editing
configuration files in the Simple Sync directory structure within the config set. Do not configure DVS by
manually adding lines to /etc/fstab or other /etc files. In general, changes to those files are not
persistent, and rebooting could result in loss of data.

IMPORTANT: When configurator guidance indicates a relationship or interaction between one or more
settings, it is advisory only; the configurator does not automatically check to ensure compatibility among
settings. However, the underlying implementation of DVS is unchanged, and it does automatically set
related mount options when certain mount options are specified. To prevent mount failure, enter setting
values that are compatible, in accordance with the instructions in this publication.

Procedure

1.

Enable Cray DVS service.

Uncomment the line that sets the cray dvs.enabled setting, and ensure that it is set to true.

Enable 'cray dvs' Service? (boolean, level=basic)
cray dvs.enabled: true
#

frrkxkkkxkkkxxk*x** END Service Enable/Disable ****kkkxkxkkkkkkkkk

Configure a client mount. Repeat this step to configure multiple mounts, as needed.

This step defines the file system shares to be projected from DVS nodes to all or selected compute nodes.
Each client mount entry is a multival setting, which means it has a single key field followed by one or more
other fields.

In the worksheet, copy the nine lines below # ** EXAMPLE 'client mount' VALUE (with current
defaults) ** and paste them below the line # NOTE: Place additional 'client mount'
setting entries here, if desired. Repeat this for each client mount.

** EXAMPLE 'client mount' VALUE (with current defaults) **

cray_dvs.settings.client mount.data.reference.sample key a: null <-- setting a multival key
cray_dvs.settings.client mount.data.sample key a.mount point: ''

cray dvs.settings.client mount.data.sample key a.spath: ''

cray_dvs.settings.client mount.data.sample key a.server groups: []

cray dvs.settings.client mount.data.sample key a.client groups: []

cray dvs.settings.client mount.data.sample key a.loadbalance: false

cray _dvs.settings.client mount.data.sample key a.attrcache timeout: 14400

cray dvs.settings.client mount.data.sample key a.readonly: true

cray dvs.settings.client mount.data.sample key a.options: ''

Uncomment the lines and remove the <-- setting a multival key text atthe end of the first line (note
that the null value is required; do not remove or change it). Finally, modify the values as needed for this site.
The substeps that follow provide guidance for changing or keeping the default value for each field. To leave a
setting unconfigured, keep/restore the comment symbol at the beginning of the line.

a. Set the client mount reference.

S0005 20

DVS Configuration and Use

reference

NOTE:
cray dvs.
cray dvs.
cray dvs.
cray dvs.
cray dvs.
cray dvs.
cray dvs.
cray dvs.settings

cray dvs.settings
#****************

settings
settings
settings
settings
settings
settings
settings

Place additional
.client mount.
.client mount.
.client mount.
.client mount.
.client mount.
.client mount.
.client mount.
.client mount.
.client mount.

A human-readable string—a name—that is used to uniquely identify a client
mount. reference cannot be set by accepting the default: a non-empty string
is required. Replace sample key a with the chosen string (REF-NAME in
example below) in all lines. Do not change the null value in the first line.

Related settings/options: Because this is the key field of a client mount setting
entry, each setting within the client mount setting includes this string in its full
setting name.

'client mount’ if desired.
data.reference.REF-NAME:
data.REF-NAME.mount point:
data.REF-NAME. spath: ''
data.REF-NAME.server groups:
data.REF-NAME.client groups: []
data.REF-NAME. loadbalance: false
data.REF-NAME.attrcache timeout:
data.REF-NAME.readonly: true
data.REF-NAME.options: ''

END Service Setting: client mount **x*xkxkxkxskxdkxkx

setting entries here,
null

[]

14400

Set the pathname of the mount point on the client.

mount_point

cray dvs.settings.

A string that specifies the full pathname on the client of the projected file
system. mount point cannot be set by accepting the default: a non-empty
string is required. Replace the default empty string with a full pathname.

Related settings/options: none

client mount.data.REF-NAME.mount point: /CLIENT-PATH

Set the pathname of the mount point on the DVS server node.

spath

A string that specifies the full pathname on the DVS server of the file system
that is to be projected for a client mount. It must be an absolute path and it
must exist on the DVS server. spath cannot be set by accepting the default: a
non-empty string is required. Replace the default empty string with a
pathname that is an absolute path that exists on the DVS server.

Related settings/options: none

cray dvs.settings.client mount.data.REF-NAME.spath: /DVS-PATHNAME

d. Set the list of DVS server nodes.

server_ groups

A list of node groups that will function as DVS servers for a client mount. Enter
one node group per line (see About Node Groups on page 105).

server groups cannot be set by accepting the default: a non-empty list is
required.

IMPORTANT: DVS servers should be dedicated because they use
unlimited amounts of CPU and memory resources based directly on
the 1/0O requests sent from DVS clients. Avoid using nodes that have
other services (Lustre nodes, login nodes, etc.) or are tier2 nodes.

S0005

21

DVS Configuration and Use

e.

f.

Replace the default empty list with one or more node groups; if no node
groups are entered, no mount is made.

Related settings/options: Functionally equivalent to the nodename or
nodefile "additional" option in the options setting of the client mount
setting. The use of those two additional options is deprecated.

cray dvs.settings.client mount.data.REF-NAME.server_ groups:

node-group-1
node-group-2

Set the list of DVS client nodes.

client groups

A list of node groups that will function as DVS clients for a client mount. Enter
node groups one per line. Unlike server groups, client groups can be
set to an empty list. If no node groups are specified, the mount will be
performed on all suitable compute nodes (a compute node functioning as a
DVS server is an example of an unsuitable node). This is common.

Related settings/options: none

cray dvs.settings.client mount.data.REF-NAME.client groups:

node-group-3

Set the loadbalance option.

loadbalance

Used to specify loadbalance mode, which more evenly distributes loads across
DVS servers. Loadbalance mode is valid only for read-only mounts. For more
information, see DVS Loadbalance Mode.

Related settings/options: When 1oadbalance is enabled, the underlying DVS
implementation automatically sets the readonly setting to true and sets
these additional options: cache=1, failover=1, maxnodes=1, and
hash on nid=0. Cray recommends setting the attrcache timeout
setting as well to take advantage of the mount being read-only. If
loadbalance is enabled, leave the readonly setting unconfigured or set it
to true to maintain consistency with the way DVS implements 1oadbalance.

cray dvs.settings.client mount.data.REF-NAME.loadbalance: true

g. Set the attribute cache timeout option.

attrcache_timeout Enables client-side attribute caching, which can significantly increase

performance, most notably in pathname lookup situations. When attribute
caching is disabled, DVS clients must send a lookup request to a DVS server
for every level of a pathname, and repeat this for every pathname operation.
When it is enabled, it sends a lookup request to a DVS server for every level of
a pathname once per n seconds.

The configurator default is 14400 seconds. The underlying DVS
implementation default is 3 seconds, which is safer for read-write mounts. This
means that to enhance system performance for read-only mounts, configure
this setting by accepting the configurator default (or entering some other

S0005

22

DVS Configuration and Use

value). Leaving this setting unconfigured will result in the underlying default
being used.

Related settings/options: The Ansible play that consumes DVS configuration
data prevents use of this mount option for read-write file systems due to the
risk of file system corruption. Run-time mounts not accompanied by that
Ansible play do not have that safeguard. In such cases, if a read-write mount
is created, it is safe to leave attrcache timeout unconfigured so that the
underlying default is used.

cray dvs.settings.client _mount.data.REF-NAME.attrcache timeout: 14400

h. Set the read-only option.

readonly Determines whether the client mount is read-only or read-write. If intending to
enable client-side caching of read data on a non-writable file system, use this
readonly setting to force the DVS mount to be read-only. This will disable
write caching.

The configurator default is true or 1. The underlying DVS implementation
default is false. Leaving this setting unconfigured will result in the underlying
DVS default being used.

Related settings/options: When 1oadbalance is enabled, DVS automatically
enables readonly but the configurator does not, so either leave this setting
unconfigured or accept the configurator default. If the attrcache timeout
setting is set for this client mount, readonly should be enabled (set to true) in
the configurator/worksheet. If the cache option is specified in the options
setting for this client mount, enabling readonly is the only way to enable read
caching without enabling write caching as well).

cray dvs.settings.client mount.data.REF-NAME.readonly: true

i. Set other client mount options.

options Provides the only way to specify mount options in addition to the ones already
specified in the other mount point settings. Enter a string with mount options
separated by comma and no spaces. For information about available options
and their implications, see Additional Options for Use in the Options Setting of
a Client Mount. Note that it is necessary to specify maxnodes=1 here for a
read-write client mount of an NFS or other non-cluster, non-coherent file
system.

Related settings/options: Options contained in this setting will be appended to
the mount options specified in other settings. Any that are functionally
redundant with settings already configured (such as nodenamelnodefile,
which are redundant with the server groups setting) will override those
settings.

In the example, this client mount point is being set to atomic stripe parallel mode.

cray dvs.settings.client mount.data.REF-NAME.options: maxnodes=3,atomic

S0005 23

DVS Configuration and Use

This completes the entry of a client mount setting. Review the setting fields and make changes, if needed.
Repeat step 2 on page 20 to configure additional client mount points.

3. Set DVS kernel module parameters.

Two DVS kernel module parameters can be set in this worksheet by following the substeps below. Note that
changing these parameters after initial configuration may require reloading the module to enable the change
to take effect. To change other kernel module parameters, see Configure DVS using Modprobe or Proc Files
on page 30.

a.

b.

Set the DVS interprocess communication (IPC) heartbeat timeout.

dvsipc_heartbeat DVS inter-process communication (IPC) heartbeat timeout, in seconds. This

timeout parameter is no longer used; it has been preserved only to maintain
backwards compatibility with existing DVS config files. Leave this parameter
unconfigured or accept the default value.

Related settings/options: none

(i oomoooooooooooos kernel param : dvsipc_ heartbeat timeout ----------------

#cray dvs.settings.kernel param.data.dvsipc _heartbeat timeout: 60

Set the DVS debug mask.

dvs_debug_mask Hex mask of the bits to set to enable debug output to be printed to the
console. It can flood the console file and negatively affects performance, so it
is generally used only for development or troubleshooting. Different mask
values enable the output of different sets of debug information. Leave this
parameter unconfigured or accept the default value.

Related settings/options: none

e kernel param : dvs_debug mask ----------------

#cray dvs.settings.kernel param.data.dvs_debug mask: 0

4. Import the completed DVS worksheet by updating the config set and specifying the worksheet path.

smw# cfgset update --worksheet-path \
'/some/edit/location/cray dvs_worksheet.yaml' p0

When the config set is updated using the configurator, all of the pre-and post-configuration scripts are run.

REMEMBER: When importing worksheets using cfgset with the -—-worksheet-path option,

e Always add single quote marks around the worksheet path if a wildcard is used
(e.g.,* worksheet.yaml).

e Do not add mode, state, level, or service options; the configurator ignores them for worksheet
import.

e The type of the config set must match the type of the worksheets being imported.

5. Proceed to Validate the Config Set and Run Ansible Plays on page 43.

S0005

24

DVS Configuration and Use

4.3 Reconfigure DVS Interactively

Prerequisites

This procedure assumes that a config set has been created and DVS is already configured.

About this task

This procedure describes how to reconfigure DVS by updating the DVS service in config set p0. To use the
commands in the examples, replace p0 with the name of the config set being updated.

A

CAUTION: Configure DVS and all services only through the configurator or by placing/editing
configuration files in the Simple Sync directory structure within the config set. Do not configure DVS by
manually adding lines to /etc/fstab or other /etc files. In general, changes to those files are not
persistent, and rebooting could result in loss of data.

IMPORTANT: When configurator guidance indicates a relationship or interaction between one or more
settings, it is advisory only; the configurator does not automatically check to ensure compatibility among
settings. However, the underlying implementation of DVS is unchanged, and it does automatically set
related mount options when certain mount options are specified. To prevent mount failure, enter setting
values that are compatible, in accordance with the instructions in this publication.

Procedure

1.

(Optional) Use the cfgset command to view current DVS settings.
smw# cfgset search --service cray dvs --level advanced p0

Use cfgset to update DVS.
To reconfigure DVS interactively:
smw# cfgset update -s cray dvs -1 advanced --mode interactive p0

The cfgset command invokes the configurator in interactive mode, and the configurator presents the Cray
DVS Service Menu, which displays all DVS settings and their values.

Service Configuration Menu (Config Set : p0O, type: cle)

cray dvs { status: enabled } { validation: valid }
Selected # Settings Value/Status (level=advanced)
1) client mount
reference: CSS [OK]
reference: ComputeHome [OK]

kernel param
2) dvsipc_heartbeat timeout 60
3) dvs debug mask 0

S0005 25

DVS Configuration and Use

Cray DVS Service Menu [default: save & exit - Q] $

3. Make changes to an existing client mount (client mount) or kernel module parameter (kernel param),
or add a new client mount.

e To make changes to an existing client mount, enter 1 at the prompt and press <cr> (Enter), then enter C
and press <cr> to display the configuration setting screen.

Service Configuration Menu (Config Set : p0O, type: cle)
Cray DVS Service Menu [default: save & exit - Q] $ 1

Cray DVS Service Menu [default: configure - C] $ C
XAk Kk Kk)k Khk*k*x*k Cray_dVS.Settings.client_mount XA Ak Kk khk k) khkhkxk*xk*x

client mount
<guidance>

Configured Values:
1) 'CsSsS'
a) mount point: /cray
b) spath: /cray
Cc) server groups:
dvs nodes

d) client_@roups: (none)

e) loadbalance: False

f) attrcache timeout: 3

g) readonly: False

h) options: maxnodes=1
2) 'ComputeHome'

a) mount point: /home
b) spath: /home
Cc) server groups:

dvs nodes

d) client_&roups: (none)
e) loadbalance: False

f) attrcache timeout: 3
g) readonly: False

h) options: maxnodes=1

cray dvs.settings.client mount
[<cr>=set 2 entries, +=add an entry, ?=help, @=less] $

In the configuration setting screen:

o To modify the setting values of an existing client mount, enter the number of the client mount to be
modified and the letter of the setting to be modified, followed by an asterisk. In this example, the
second client mount is selected and the setting corresponding to list item 'b' is selected (the spath
setting).

cray dvs.settings.client mount
[<cr>=set 2 entries, +=add an entry, ?=help, @=less] $ 2b%*

o To delete a client mount, enter the number of the client mount to be deleted, followed by a minus sign.
In this example, the second client mount is deleted.

cray dvs.settings.client mount
[<cr>=set 2 entries, +=add an entry, ?=help, @=less] $ 2-

S0005 26

DVS Configuration and Use

e To set or change one of the kernel module parameters listed in the Cray DVS Service Menu, enter the
number of the parameter to be set/changed at the prompt and press <cr>, then enter C and press <cr>
to display the configuration setting screen. In this example, setting 2 is selected, which is the first kernel
parameter. To change kernel module parameters that do not appear in the Cray DVS Service Menu, see
Configure DV'S using Modprobe or Proc Files on page 30.

Cray DVS Service Menu [default: save & exit - Q] $ 2
Cray DVS Service Menu [default: configure - C] $ C

cray dvs.settings.kernel param.data.dvsipc heartbeat timeout
[<cr>=keep'60', <new value>, ?=help, @=less] $

In the configuration setting screen, accept the current value (<ecr>), revert to the default value (#), or
enter a new value. Enter ? to see a list of possible commands.

e To add a new client mount, follow these instructions:

a. Select the client mount setting.
Cray DVS Service Menu [default: save & exit - Q] $ 1
é%éy DVS Service Menu [default: configure - C] $ C
b. Add a new client mount entry.

cray dvs.settings.client mount
[<cr>=set 2 entries, +=add an entry, ?=help, @=less] $ +

c. Set the client mount reference.

reference A human-readable string—a name—that is used to uniquely identify a client
mount. reference cannot be set by accepting the default: a non-empty string
is required.

Related settings/options: Because this is the key field of a client mount setting
entry, each setting within the client mount setting includes this string in its full
setting name.

In this example, the string tmp failover is used as the client mount reference. Whatever is chosen as
the reference is used in the full setting names of all of the rest of that mount's settings.

cray dvs.settings.client mount.data.reference
[<cr>=set '', <new value>, ?=help, @=less] $ tmp_failover

d. Set the pathname of the mount point on the client.

mount point A string that specifies the full pathname on the client of the projected file
system. mount point cannot be set by accepting the default: a non-empty
string is required.

Related settings/options: none

cray dvs.settings.client mount.data.tmp failover.mount point
[<cr>=set '', <new value>, ?=help, @=less] $ /here

e. Set the pathname of the mount point on the DVS server node.

S0005 27

DVS Configuration and Use

spath A string that specifies the full pathname on the DVS server of the file system
that is to be projected for a client mount. It must be an absolute path and it
must exist on the DVS server. spath cannot be set by accepting the default: a
non-empty string is required.

Related settings/options: none

cray dvs.settings.client mount.data.tmp failover.spath
[<cr>=set '', <new value>, ?=help, @=less] $ /tmp

f. Set the list of DVS server nodes.

server_groups A list of node groups that will function as DVS servers for a client mount. Enter
one node group per line (see About Node Groups on page 105).
server groups cannot be set by accepting the default: a non-empty list is
required.

IMPORTANT: DVS servers should be dedicated because they use
unlimited amounts of CPU and memory resources based directly on
the 1/0 requests sent from DVS clients. Avoid using nodes that have
other services (Lustre nodes, login nodes, etc.) or are tier2 nodes.

Related settings/options: Functionally equivalent to the nodename or
nodefile "additional" option in the options setting of the client mount
setting. The use of those two additional options is deprecated.

cray dvs.settings.client mount.data.tmp failover.servers
[<cr>=set 0 entries, +=add an entry, ?=help, @=less] $ +
Add servers (Ctrl-d to exit) $ c0-0c2slnl
Add servers (Ctrl-d to exit) $ c0-0cls2nl
Add servers (Ctrl-d to exit) $ <Ctrl-d>

2 entries added. Press <cr> to set.
cray dvs.settings.client mount.data.tmp failover.servers
[<cr>=set 2 entries, +=add an entry, ?=help, @=less] $ <cr>

g. Setthe list of DVS clients.
client groups A list of node groups that will function as DVS clients for a client mount. Enter
node groups one per line. Unlike server groups, client groups can be
set to an empty list. If no node groups are specified, the mount will be

performed on all suitable compute nodes (a compute node functioning as a
DVS server is an example of an unsuitable node). This is common.

Related settings/options: none

cray dvs.settings.client mount.data.tmp failover.clients
[<cr>=set 0 entries, +=add an entry, ?=help, @=less] $ <cr>

This example sets clients to an empty list.

h. Set the loadbalance option.

loadbalance Used to specify loadbalance mode, which more evenly distributes loads across
DVS servers. Loadbalance mode is valid only for read-only mounts. For more
information, see DVS Loadbalance Mode.

S0005 28

DVS Configuration and Use

Related settings/options: When 1oadbalance is enabled, the underlying DVS
implementation automatically sets the readonly setting to true and sets
these additional options: cache=1, failover=1, maxnodes=1, and
hash on nid=0. Cray recommends setting the attrcache timeout
setting as well to take advantage of the mount being read-only. If
loadbalance is enabled, leave the readonly setting unconfigured or set it
to true to maintain consistency with the way DVS implements 1oadbalance.

cray dvs.settings.client mount.data.tmp failover.loadbalance
[<cr>=set 'false', <new value>, ?=help, @=less] $ <cr>

Pressing <er> accepts the configurator default, which is to not enable loadbalance.

Set the attribute cache timeout option.

attrcache_timeout

Enables client-side attribute caching, which can significantly increase
performance, most notably in pathname lookup situations. When attribute
caching is disabled, DVS clients must send a lookup request to a DVS server
for every level of a pathname, and repeat this for every pathname operation.
When it is enabled, it sends a lookup request to a DVS server for every level of
a pathname once per n seconds.

The configurator default is 14400 seconds. The underlying DVS
implementation default is 3 seconds, which is safer for read-write mounts. This
means that to enhance system performance for read-only mounts, configure
this setting by accepting the configurator default (or entering some other
value). Leaving this setting unconfigured will result in the underlying default
being used.

Related settings/options: The Ansible play that consumes DVS configuration
data prevents use of this mount option for read-write file systems due to the
risk of file system corruption. Run-time mounts not accompanied by that
Ansible play do not have that safeguard. In such cases, if a read-write mount
is created, it is safe to leave attrcache timeout unconfigured so that the
underlying default is used.

cray dvs.settings.client mount.data.tmp failover.attrcache timeout
[<cr>=set '14400', <new value>, ?=help, (@=less] $ <cr>

Pressing <er> accepts the configurator default of 14400, which will be fine because the next setting will
make this a read-only mount.

Set the read-only option.

readonly

Determines whether the client mount is read-only or read-write. If intending to
enable client-side caching of read data on a non-writable file system, use this
readonly setting to force the DVS mount to be read-only. This will disable
write caching.

The configurator default is true or 1. The underlying DVS implementation
default is false. Leaving this setting unconfigured will result in the underlying
DVS default being used.

Related settings/options: When 1oadbalance is enabled, DVS automatically
enables readonly but the configurator does not, so either leave this setting

S0005

29

DVS Configuration and Use

unconfigured or accept the configurator default. If the attrcache timeout
setting is set for this client mount, readonly should be enabled (set to true) in
the configurator/worksheet. If the cache option is specified in the options
setting for this client mount, enabling readonly is the only way to enable read
caching without enabling write caching as well).

cray dvs.settings.client mount.data.tmp failover.readonly

[<cr>=set 'true', <new value>, ?=help, @=less] $ <cr>

k. Set other client mount options.

options Provides the only way to specify mount options in addition to the ones already
specified in the other mount point settings. Enter a string with mount options
separated by comma and no spaces. For information about available options
and their implications, see Additional Options for Use in the Options Setting of
a Client Mount. Note that it is necessary to specify maxnodes=1 here for a
read-write client mount of an NFS or other non-cluster, non-coherent file
system.

Related settings/options: Options contained in this setting will be appended to
the mount options specified in other settings. Any that are functionally
redundant with settings already configured (such as nodenamelnoderfile,
which are redundant with the server groups setting) will override those
settings.

cray dvs.settings.client mount.data.tmp failover.options
[<cr>=set '', <new value>, ?=help, @=less] $ failover, cache

cray dvs.settings.client mount
[<cr>=set 3 entries, +=add an entry, ?=help, @=less] $ <cr>

Suppose a desired option was omitted. Because the options setting is a string rather than a list, another
option can be added only by entering a new string with all desired options, which replaces the old string.
Reuvisit that setting (enter 1 at the service menu prompt and press <cr> twice, then enter 3h*, where 3 is
the number of the mount entry, at the configuration setting screen prompt) and enter the new string of
options.

cray dvs.settings.client mount.data.tmp failover.options

[<cr>=keep 'failover,cache', <new value>, ?=help, @=less] $
failover,cache,maxnodes=3

4. Save the changes and exit the configurator session when done making changes.

Cray DVS Service Menu [default: save & exit - Q] $ Q

cfgset will save all of the configuration settings in the config set (in configuration worksheets and
templates), run post-configuration scripts, create a time-stamped clone of the config set, and exit
automatically.

5. Proceed to Validate the Config Set and Run Ansible Plays on page 43.

S0005 30

DVS Configuration and Use

4.4 Configure DVS using Modprobe or Proc Files

Most DVS kernel module parameters cannot be changed using the configurator. These parameters are typically
changed by adding lines to a modprobe . d configuration file or echoing values to a /proc file. Changes to a
modprobe. d file are made prior to booting the affected nodes, and the changes take effect at boot. To ensure
that these changes persist across boots, the modprobe . d files can be placed in the Simple Sync directory of the

working CLE config set. Changes made to those files will then be propagated to all target nodes using the Simple
Sync mechanism.

The dvs.conf file is one of many files that are generated automatically and controlled by the Cray Configuration
Management Framework (CMF). Such files can be identified by the warning statement in the file header, which
includes a statement that the file should not be modified directly or updated using Simple Sync. For this reason,
Cray recommends that sites create a local DVS configuration file (dvs-1ocal.conf) for configuring the kernel
module parameters listed in this section. Then dvs-local.conf can be placed in the appropriate Simple Sync
directory to augment the configuration specified in dvs.conf.

The Simple Sync Mechanism and File Structure

Cray Simple Sync provides a generic mechanism to automatically distribute files to targeted locations on a Cray
XC system. This mechanism can be used to override or change default system behavior through the contents of
the distributed files. When enabled, the Simple Sync service is executed on all internal CLE nodes and elLogin

nodes at boot time and whenever the administrator executes /etc/init.d/cray-ansible startonaCLE

node or eLogin node. When Simple Sync is executed, files placed in the following directory structure are copied to
the root file system (/) on the target nodes.

The Simple Sync directory structure has this root:
smw:/var/opt/cray/imps/config/sets/<config set>/files/simple sync/

Below that root are the directories listed on the left. Files placed in those directories are copied to their associated
target nodes.

Files placed here are copied to
./common/files/ all internal and eLogin nodes

./platform/ [compute|service]/files/ all CLE compute nodes or all service nodes (not applicable
to eLogin nodes)

./hardwareid/<hardwareid>/files/ nodes with matching hardware 1D, which is the cname of a
CLE node or the output of the hostid command (e.g.,
leac0ObOc) on other nodes (not applicable to eLogin nodes)

./hostname/<hostname>/files/ nodes with matching host name (use this for eLogin nodes
ONLY)

./nodegroups/<node group name>/files/ nodes in the matching node group

NOTE: The directory structure for a particular hardware ID or host name (everything

below. /hardwareid/ and . /hostname/) must be created manually as needed. This is unnecessary
for node groups because their associated directories are created automatically by post-configuration
callback scripts when the config set is created or updated using cfgset.

Anything (directory structure and files) placed below . /files/ in the Simple Sync directory structure on the
SMW is replicated on the target node starting at root (/). For example, if the myapplication.conf file is placed
in this path on the SMW

S0005 31

DVS Configuration and Use

/var/opt/cray/imps/config/sets/p0/files/simple sync/common/files/etc/myapplication.conft

then Simple Sync will place myapplication.conf here on all nodes:

/etc/myapplication.conf
Note that the ownership and permissions of files in the config set are preserved in the copies made to nodes.

For more information and use cases about Simple Sync, see Supplemental Information on page 93.

Change Kernel Module Parameters Prior to Boot using Modprobe.d Files and Simple Sync

To make a change to DVS kernel module parameters that will persist across boots, edit the local copy of the DVS
configuration file (modprobe.d/dvs-local.cont), and then place it under the Simple Sync directory structure
that targets the appropriate nodes in the system. The lines to add to modprobe.d/dvs-local.conf are
provided for each kernel module parameter in the list that follows. Substitute the appropriate Simple Sync
directory structure (that is, the one that targets the appropriate nodes) for <simple sync path>shown in the
instructions for each parameter.

Procedure for Changing Kernel Module Parameters Prior to Boot using Modprobe.d Files and Simple
Sync
In this example, DVS request logging is enabled on a node with hardware ID c0-0c0s3n2 in config set pO0.

1. Change directory to the Simple Sync root directory.

smw# cd /var/opt/cray/imps/config/sets/p0/files/simple_sync
2. Create and change to the directory under the Simple Sync root that targets the appropriate nodes. Use the

above table to determine what directory that should be. This example targets a particular hardware ID, so the
directory is hardwareid/c0-0c0s3n2/files/.

smw# mkdir -p hardwareid/c0-0cOs3n2/files
smw# cd hardwareid/c0-0c0s3n2/files

The file path that results is referred to as <simple sync path>inthe "To change prior to boot" instructions
for each kernel module parameter listed below.

3. Create and change to the directory structure that is to be replicated on the target node. For a modprobe.d file,
that is /etc/modprobe.d

smw# mkdir -p etc/modprobe.d
smw# cd etc/modprobe.d

4. Create or edit the DVS configuration file and add the options line(s) for the parameter to be set/changed. For
this example, the lines are from the dvs request log enabled entry of the DVS kernel module
parameters list below. Then comment/uncomment the appropriate lines, depending on which action is to be
taken.

Disable DVS request log
options dvsproc dvs_request_log_enabled=0

Enable DVS request log
options dvsproc dvs_request log_enabled=1

5. When done with all changes to kernel module parameters, proceed to Validate the Config Set and Run
Ansible Plays on page 43.

S0005 32

DVS Configuration and Use

Change Kernel Module Parameters Dynamically using Proc Files

Some of the kernel module parameters in the following list can be changed dynamically by echoing values
to /proc files on the appropriate nodes. Those that can be changed using that method are indicated in the list,
including the name of the /proc file and the values to use. Note that such changes do not persist.

List of DVS Kernel Module Parameters not Accessible through the Configurator

dvs_request_log_enabled
Logs each DVS request sent to servers.

e Default value: 1 (enabled)

e To view read-only:
cat /sys/module/dvsproc/parameters/dvs_ request log enabled

e To change prior to boot, add these lines to

<simple sync path>/etc/modprobe.d/dvs-local.conf:

Disable DVS request log
options dvsproc dvs_request log_enabled=0

Enable DVS request log
options dvsproc dvs_request log enabled=1

e To change dynamically:

hostname# echo 0 > /proc/fs/dvs/request log
hostname# echo 1 > /proc/fs/dvs/request log
hostname# echo 2 > /proc/fs/dvs/request log

The value 2 resets the log.
dvs_request_log_size_kb
Size (KB) of the request log buffer.
e Default value: 16384 KB (16384 * 1024 bytes)

e To view read-only:
cat /sys/module/dvsproc/parameters/dvs_request log size kb

e To change prior to boot, add these lines to
<simple sync path>/etc/modprobe.d/dvs-local.conf:

Set size (in kb) of the request log buffer
options dvsproc dvs_request_log_size kb=17000

e To change dynamically:
hostname# echo 17000 > /proc/fs/dvs/request log size kb
To determine the current buffer size, cat the file. For example:

hostname# cat /proc/fs/dvs/request log size kb
16384

dvs_request_log_min_time_secs
Defines a threshold of time for data to be logged to the request log.

S0005 33

DVS Configuration and Use

Default value: 15 seconds

To view read-only:
cat /sys/module/dvsproc/parameters/dvs_request log time min secs

To change prior to boot, add these lines to

<simple sync path>/etc/modprobe.d/dvs-local.conf:

Set threshold (in seconds) for time a DVS request
takes before logged. Requests taking fewer seconds
will not be logged.

options dvsproc dvs_request log_ time min secs

To change dynamically:

hostname# echo 15 > /proc/fs/dvs/request log time min_ secs

dvs_fs_log_enabled

Logs information on I/O operations made from DVS to the underlying file system on DVS
server nodes.

Default value: 1 (enabled)

To view read-only:
cat /sys/module/dvsproc/parameters/dvs_fs log enabled

To change prior to boot, add these lines to

<simple sync path>/etc/modprobe.d/dvs-local.conf

Disable DVS fs log
options dvsproc dvs_fs log enabled=0

Enable DVS fs log
options dvsproc dvs_fs log_enabled=1

To change dynamically:

hostname# echo 0 > /proc/fs/dvs/fs_log
hostname# echo 1 > /proc/fs/dvs/fs_log
hostname# echo 2 > /proc/fs/dvs/fs_log

dvs_fs_log_size_kb
Size (KB) of the log bulffer.

Default value: 32768 KB (32768 * 1024 bytes)

To view read-only:
cat /sys/module/dvsproc/parameters/dvs_fs log size kb

To change prior to boot, add these lines to
<simple sync path>/etc/modprobe.d/dvs-local.conf

Set size (in kb) of the fs log buffer
options dvsproc dvs_fs log size kb=17000

To change dynamically:

S0005

34

DVS Configuration and Use

hostname# echo 17000 > /proc/fs/dvs/fs_log size kb

To determine the current buffer size, cat the file. For example:

hostname# cat /proc/fs/dvs/fs_log size kb
32768

dvs_fs_log_min_time_secs
Defines a threshold of time for data to be logged to the £s 1og.

e Default value: 15 seconds

e To view read-only:
cat /sys/module/dvsproc/parameters/dvs_fs log time min secs

e To change prior to boot, add these lines to
<simple sync path>/etc/modprobe.d/dvs-local.conf:

Set threshold (in seconds) for time a DVS requests
takes before logged. Requests taking fewer seconds
will not be logged.

options dvsproc dvs_fs log_time min secs

e To change dynamically:

hostname# echo 15 > /proc/fs/dvs/fs_log time min secs

dvs_instance_info
Contains the following fields, which are parameters for the DVS thread pool in the DVS IPC
layer. Most of these fields can be changed through other module parameters (e.g.,
dvsipc msg thread limit and dvsipc single msg queue); however, this module
parameter has priority over the individual ones and if set, will override them.

Field Definition

thread_min Number of threads created at startup.

thread_max Maximum number of persistent threads.

thread_limit Maximum number of valid threads that DVS IPC allows

to exist at one time. DVS IPC will dynamically scale up
the number of threads to this number as the load
increases.

thread_concurrent_creates Maximum number of IPC threads that can be in the
process of forking a new thread.

thread_nice Nice value for the threads.

single_msg_queue Disables/enables fairness of service. Setting to 1
disables fairness of service by processing incoming
requests with a FIFO method. Setting to O (default)
groups requests into different queues (ghdrs) based on
apid, and round-robbins the queues to maintain quality of
service (QOS) among jobs.

S0005 35

DVS Configuration and Use

Field Definition

init_free_qghdrs Low water mark for the pool of unused ghdrs. When the

pool falls below this number, more are allocated. Used
only if single_msg_queue = 0.

max_free_ghdrs Maximum number of unused ghdrs that can exist before

the system starts freeing them. Used only if
single_msg_queue = 0.

Interactions among fields:

thread_min <= thread_max <= thread_limit
thread_concurrent_creates <= thread_limit
init_free_ghdrs and max_free_ghdrs used only when single_msg_queue ==

IMPORTANT: For this parameter to be valid, values must be specified for all
of the fields. To avoid unintentional changes, be careful when changing any
field values.

Default value: see modprobe.d examples
To view read-only: cat /sys/module/dvsipc/parameters/dvs instance info

To change prior to boot, add these lines to
<simple sync path>/etc/modprobe.d/dvs-local.conf (comment out either
the compute or service line, depending on the type of node(s) being configured):

Set parameters for DVS thread pool in DVS IPC layer
Defaults for compute nodes
options dvsipc dvs_instance_info=4,16,1000,0,0,0,1,1

Defaults for service nodes
options dvsipc dvs_instance info=16,64,1000,0,0,0,64,2048

For compute nodes, this translates to dvs_instance_info = thread_min = 4, thread_max
= 16, thread_limit = 1000, thread_concurrent_creates = 0, thread_nice = 0,
single_msg_queue = 0, init_free_ghdrs = 1, max_free_ghdrs = 1.

For service nodes, this translates to dvs_instance_info=thread_min = 16, thread_max =
64, thread_limit = 1000, thread_concurrent_creates = 0, nice = 0, single_msg_queue =
0, init_free_qghdrs = 64, max_free_qghdrs = 2048.

Note that if using the defaults for a compute node, ensure that dvsipc_config_type=0 is
also set, and likewise, for a service node, ensure that dvsipc_config_type=1 for
consistency.

To change dynamically: N/A

dvsipc_config_type

Forces DVS to load in a mode optimized for DVS clients (0) or servers (1). This parameter
can be used to make DVS load in a non-default manner. Frequently used for repurposed
compute nodes.

Default value: 0 for compute nodes, 1 for service nodes

S0005

36

DVS Configuration and Use

To view read-only: cat /sys/module/dvsipc/parameters/dvsipc_config type

To change prior to boot, add these lines to
<simple sync path>/etc/modprobe.d/dvs-local.conf (comment out either
the client or server line, depending on the type of node(s) being configured):

Load DVS as a client
options dvsipc dvsipc config type=0

Load DVS as a server
options dvsipc dvsipc config type=1

To change dynamically:

hostname# echo 0 > /proc/fs/dvs/ipc/config-type
hostname# echo 1 > /proc/fs/dvs/ipc/config-type

dvsipc_single_msg_queue

Disables fairness of service, which is enabled by default. Setting this parameter to 1
disables fairness of service by forcing DVS to use a single message queue instead of a list
of queues.

Default value: 0 (fairness of service enabled)

To view read-only:
cat /sys/module/dvsipc/parameters/dvsipc _single msg queue

To change prior to boot, use the single msg queue field of the

dvs instance info parameter. If no other fields in dvs instance info need to
be changed, it may be easier to change the dvsipc single msg queue parameter
directly by adding these lines to

<simple sync path>/etc/modprobe.d/dvs-local.conf:

Disable fairness of service
options dvsipc dvsipc_single msg_ queue=l

Enable fairness of service
options dvsipc dvsipc_single msg queue=0

To change dynamically: N/A

dvsof concurrent_reads

Controls how many threads are allowed into the read path on the server. A value of -1
disables, 0 uses the number of cores on the CPU, and any other positive number sets the
number of threads. Set to O for best DataWarp performance.

Default value: -1

To view read-only:
cat /sys/module/dvs/parameters/dvsof concurrent reads

To change prior to boot, add these lines to

<simple sync path>/etc/modprobe.d/dvs-local.conf:

Disable concurrent reads
options dvs dvsof concurrent_ reads=-1

S0005

37

DVS Configuration and Use

Set number of threads able to do concurrent
reads = number of cores on CPU
options dvs dvsof concurrent_reads=0

Set number of threads able to do concurrent

reads = a positive number (e.g., 3)
options dvs dvsof concurrent reads=3

To change dynamically: N/A

dvsof concurrent_writes

Controls how many threads are allowed into the write path on the server. A value of -1
disables, 0 uses the number of cores on the CPU, and any other positive number sets the
number of threads. Set to O for best DataWarp performance.

Default value: -1

To view read-only:
cat /sys/module/dvs/parameters/dvsof concurrent writes

To change prior to boot, add these lines to
<simple sync path>/etc/modprobe.d/dvs-local.conf:

Disable concurrent writes
options dvs dvsof concurrent writes=-1

Set number of threads able to do concurrent
writes = number of cores on CPU
options dvs dvsof concurrent writes=0

Set number of threads able to do concurrent

writes = a positive number (e.g., 3)
options dvs dvsof concurrent writes=3

To change dynamically: N/A

dvsproc_stat_control

(deprecated) Controls DVS statistics. This legacy parameter has been maintained for
backward compatibility, but values are overridden by dvsproc stat defaults, if
specified.

Default value: 1 (enabled)
To view: cat /sys/module/dvsproc/parameters/dvsproc_stat control
To change prior to boot, add these lines to

<simple sync path>/etc/modprobe.d/dvs-local.conf:

Disable DVS statistics
options dvsproc dvsproc_stat control=0

Enable DVS statistics
options dvsproc dvsproc_stat_control=1l

To change dynamically:

This is root writable
at /sys/module/dvsproc/parameters/dvsproc stat control, but changes

S0005

38

DVS Configuration and Use

should be made only through the /proc/fs/dvs/stats interface, as shown in this
example.

hostname# echo 0 > /proc/fs/dvs/stats
hostname# echo 1 > /proc/fs/dvs/stats
hostname# echo 2 > /proc/fs/dvs/stats

dvsproc_stat_defaults

Controls DVS statistics. Use this parameter to disable/enable and format DVS statistics. The
options that can be specified are listed in Option Values for Controlling DVS Statistics on
page 74.

e Default values: enable, legacy, brief, plain, notest
e Toview: cat /sys/module/dvsproc/parameters/dvsproc_stat defaults

e To change prior to boot, add these lines to
<simple sync path>/etc/modprobe.d/dvs-local.conf:

Disable/enable and format DVS statistics
options dvsproc
dvsproc_stat_defaults="enable,legacy,brief,plain, notest"

e To change dynamically:

This is root writable

at /sys/module/dvsproc/parameters/dvsproc_stat defaults, but changes
should be made only through the /proc/fs/dvs/stats interface, as shown in this
example.

hostname# echo disable > /proc/fs/dvs/stats
hostname# echo enable > /proc/fs/dvs/stats
hostname# echo reset > /proc/fs/dvs/stats
hostname# echo json,pretty > /proc/fs/dvs/stats

estale_max_retry

Controls the number of times to retry an operation on the original server after it returns
ESTALE.

e Default value: 36 iterations at a fixed 5 seconds per iteration (3 minutes)
e To view read-only: cat /sys/module/dvsproc/parameters/estale max retry
e To change prior to boot, add these lines to

<simple sync path>/etc/modprobe.d/dvs-local.conf

Set the number of times to retry an operation
on the original server after it returns ESTALE
options dvsproc estale max_retry=

e To change dynamically (example changes estale max_ retry to 40 for illustration
only):
hostname# echo 40 > /proc/fs/dvs/estale_timeout_secs

estale_timeout_secs
Controls the time to wait between retries of an operation after it returns ESTALE.

S0005 39

DVS Configuration and Use

e Default value: 300 seconds

e To view read-only:

cat /sys/module/dvsproc/parameters/estale timeout secs

e To change prior to boot, add these lines to
<simple sync path>/etc/modprobe.d/dvs-local.conf:

Set the time to wait between retries of an
operation that returns ESTALE
options dvsproc estale_ timeout secs=

e To change dynamically (example changes estale timeout secsto 400 for

illustration only):

hostname# echo 400 > /proc/fs/dvs/estale_timeout_ secs

kdwfs_instance_info

Contains the following fields, which are parameters for the DataWarp thread pool in the DVS

IPC layer.

Field Definition

thread_min Number of threads created at startup.

thread_max Maximum number of persistent threads.

thread_limit Maximum number of valid threads that DVS IPC allows to

exist at one time. DVS IPC will dynamically scale up the
number of threads to this number as the load increases.

thread_concurrent_creates

Maximum number of IPC threads that can be in the
process of forking a new thread.

thread_nice

Nice value for the threads.

single_msg_queue

Disables/enables fairness of service. Setting to 1 disables
fairness of service by processing incoming requests with
a FIFO method. Setting to O (default) groups requests
into different queues (ghdrs) based on apid, and round-
robbins the queues to maintain quality of service (QOS)
among jobs.

init_free_qghdrs

Low water mark for the pool of unused ghdrs. When the
pool falls below this number, more are allocated. Used
only if single_msg_queue = 0.

max_free_ghdrs

Maximum number of unused ghdrs that can exist before
the system starts freeing them. Used only if
single_msg_queue = 0.

Interactions among fields:

performance)

thread_min <= thread_max <= thread_limit (set all three equal for best DataWarp

thread_concurrent_creates <= thread_limit

S0005

40

DVS Configuration and Use

Ind_name

Field Definition

init_free_ghdrs and max_free_ghdrs used only when single_msg_queue ==

IMPORTANT: For this parameter to be valid, values must be specified for all
of the fields. To avoid unintentional changes, be careful when changing any
field values.

e Default value: 1,1,1024,4,-10,1,1,1

e To view read-only:
cat /sys/module/dvsipc/parameters/kdwfs instance info

e To change prior to boot, add these lines to
<simple sync path>/etc/modprobe.d/dvs-dws.conf (values shown are
defaults):

Set parameters for DataWarp thread pool in DVS IPC layer
options dvsipc kdwfs instance info=256,256,1024,4,-10,1,1,1

This translates to kdwfs_instance_info thread_min = 256, thread_max = 256,
thread_limit = 1024, thread_concurrent_creates = 4, nice = -10, single_msg_queue =1,
init_free_ghdrs =1, max_free_qghdrs = 1.

e To change dynamically: N/A

1nd name uniquely identifies the LNet network that DVS will use. DVS communicates it to
the LNet service when DVS is being initialized. It must match the

cray lnet.settings.local lnet.data.lnet name value setinthe cray lnet
service for DVS to boot properly. To find that value, search the CLE config set (this example
searches in config set p0 and finds Inet_name = gni4):

smw# cfgset search --term lnet name \
--state all --service cray lnet p0
1 match for 'lnet name' from cray lnet config.yaml

cray lnet.settings.local lnet.data.lnet name: gni4
e Default value: gni99
e To view read-only: not visible in /sys/module

e To change prior to boot, add these lines to
<simple sync path>/etc/modprobe.d/dvs-local.conf, substituting for gnix

the value found from the config set search:

Set identifier of LNet network DVS will use
options dvsipc_ lnet 1lnd_name=gnix

e To change dynamically: N/A

sync_dirty timeout_secs

S0005

41

DVS Configuration and Use

On DVS servers, specifies the number of seconds that must have passed since the file was
written before DVS syncs it. The objective is to reduce unnecessary sync operations for files
actively being updated. Decreasing this number increases the likelihood that the file is in
use when it is synced. Increasing this number increases the likelihood that processes are
killed during a server failure.

On DVS clients, specifies the number of seconds that must have passed since the file was
written before DVS asks the server for an updated sync time. Decreasing this number
increases the number of DVS requests being sent. Increasing this number increases the
likelihood that processes are killed during a server failure.

e Default value: 300 (servers and clients)

e To view read-only:
cat /sys/module/dvs/parameters/sync_dirty timeout secs

e To change prior to boot, add these lines to
<simple sync path>/etc/modprobe.d/dvs-local.conf:

Set the timeout (seconds) for syncing
dirty files on a DVS server or client
options dvs sync dirty timeout secs=300

e To change dynamically:

hostname# echo 300 > /proc/fs/dvs/sync_dirty timeout_ secs

sync_num_threads

Specifies the number of threads on the DVS server that perform sync operations. The
number of threads must be a minimum of 1 thread and a maximum of 32. Note that it can
take up to sync_period secs for changes to this value to take effect.

e Default value: 8
e To view read-only: cat /sys/module/dvs/parameters/sync num threads

e To change prior to boot, add these lines to
<simple sync path>/etc/modprobe.d/dvs-local.conf:

Set the number of threads that perform
sync operations on a DVS server
options dvs sync_num_ threads=8

e To change dynamically:

hostname# echo 8 > /proc/fs/dvs/sync_num threads

sync_period_secs

On DVS servers, specifies the number of seconds before the sync_num_ threads syncs
files on the DVS server (if necessary).

On DVS clients, specifies the number of seconds between checks for dirty files that need to
request the last sync time from the server.

e Default value: 300 (server), 600 (client)

e To view read-only: cat /sys/module/dvs/parameters/sync period secs

S0005

42

DVS Configuration and Use

e To change prior to boot, add these lines to
<simple sync path>/etc/modprobe.d/dvs-local.conf

Set the sync period (seconds) on DVS server/client
options dvs sync period secs=300

e To change dynamically:

hostname# echo 300 > /proc/fs/dvs/sync_period secs

4.5 Validate the Config Set and Run Ansible Plays

Prerequisites

This procedure assumes that configuration data has been changed.

About this task

Whenever data in a global or CLE config set has been changed, it is necessary to update and validate that config
set and run cray-ansible on the SMW (for global config set changes) and any affected CLE nodes (for CLE
config set changes) in order to apply the configuration changes. If the system will be rebooted, the steps to run
cray-ansible are not needed because cray-ansible is run automatically when the system boots.

Using cfgset update ensures that all pre- and post-configuration scripts get run. Running cray-ansible on
the SMW applies global configuration changes there. Running cray-ansible on a CLE node triggers a refresh
of the CLE config set cache on that node and applies configuration changes on the node.

The example commands use a CLE config set named p0; substitute the correct CLE config set name for this
system.

Procedure

1. (If cfgset update not already run) Update the config set.
When the config set is updated using the configurator, all of the pre-and post-configuration scripts are run.

Use one or both of these commands, depending on which config sets have been changed.
smw# cfgset update pO0
smw# cfgset update global

2. Validate the config set.

Use one or both of these commands, depending on which config sets have been updated.
smw# cfgset validate p0

smw# cfgset wvalidate global

3. (If global config set updated and system will not be rebooted) Run Ansible plays on the SMW.

S0005 43

DVS Configuration and Use

After the global config set has been updated, run any Ansible plays that consume global config set data to
apply that data on the SMW (cray-ansible runs all of them).

smw# /etc/init.d/cray-ansible start

4. (If CLE config set updated and node will not be rebooted) Run Ansible plays on the CLE nodes.

After the CLE config set has been updated, refresh the local config set cache to pull any config set changes to

the node and run cray-ansible to apply them on the node.

hostname# /opt/cray/imps-distribution/default/bin/refresh.py
hostname# /etc/init.d/cray-ansible start

4.6 Quiesce a DVS-projected File System

Sites can use the DVS quiesce capability to temporarily suspend traffic to a DVS-projected file system on any
number of DVS servers. When a directory is quiesced, the DVS server completes any outstanding requests but
does not honor any new requests for that directory. Any outstanding requests for that directory are displayed

in /proc/fs/dvs/quiesce file system interface. Administrators can read that proc file to know when it is safe
to perform operations on the quiesced directory without any possibility of interference by a DVS client. DVS
guiesce can be used when a file system needs to be repaired or to safely take a DVS server node out of service.

A CAUTION: Because it may cause data corruption, do not use DVS quiesce to:
e Quiesce a directory that is being used by DataWarp

e Quiesce a directory on every DVS server

To use DVS quiesce, an administrator writes into and reads from /proc/fs/dvs/quiesce, as shown in the
following use cases.

Use Case 1: Quiesce a single directory on a single DVS server

An admin wants to quiesce a directory /gpfs/test/foo on a DVS server. This is an unlikely use case but an
illustrative example.

1. Onthe DVS server, quiesce the directory.

dvsl# echo quiesce /gpfs/test/foo > /proc/fs/dvs/quiesce

2. Ensure that the directory was properly quiesced and see if there are any outstanding requests. Repeat this
occasionally to know when all outstanding requests have been cleared.

dvsl# cat /proc/fs/dvs/quiesce
/gpfs/test/foo/: Outstanding Requests 3

3. When finished with the directory, unquiesce it.

dvsl# echo unquiesce /gpfs/test/foo > /proc/fs/dvs/quiesce

4. Ensure that the directory is no longer on the quiesced list.

dvsl# cat /proc/fs/dvs/quiesce

S0005 44

DVS Configuration and Use

Use Case 2: Quiesce all directories on a DVS server
An admin wants to remove a DVS server from service but wants to let any outstanding request complete first.

1. Onthe DVS server, quiesce all directories on that server.

dvsl# echo quiesce / > /proc/fs/dvs/quiesce
2. Look for any outstanding requests. Repeat this occasionally to know when all outstanding requests have been
cleared.

dvsl# cat /proc/fs/dvs/quiesce
/: Outstanding Requests 3

When no outstanding requests remain, the server can be removed from service.

3. To allow traffic to this server to resume, unquiesce all of its projected directories.

dvsl# echo unquiesce / > /proc/fs/dvs/quiesce

How Quiesce Works: the Userspace Application View

Userspace applications have no visibility into any specific quiesce information. A quiesced directory will present in
one of two ways:

e Entirely normally, if the directory is quiesced only on servers that the application is not using.

e Useable but with degraded performance, if the application finds that its main server is quiesced and must
query other servers.

How Quiesce Works: the Server View

To provide the quiesce capability, DVS servers keep a list of quiesced directories and the current outstanding
requests on each quiesced directory. When an admin requests that DVS quiesce a directory on a server, DVS
does the following:

e Adds that directory to the server's list of quiesced directories

e lterates over all open files, closing any file that resides in the quiesced directory and setting a flag to indicate
that the file was closed due to the directory being quiesced

When a DVS server receives a request from a client, DVS checks the request path against the list of quiesced
directories. The comparison between the path name in the request and the quiesced directory is a simple string
compare to avoid any access of the underlying file system that has been quiesced. If DVS finds that the request is
for a quiesced file system, it sends a reply indicating that the request could not be completed due to a quiesce
and noting which directory is quiesced. If the client request is for a file that has been closed due to quiesce, the
server returns a reply to the client indicating that the request could not be completed due to a quiesce.

When an admin unquiesces a directory on a DVS server, DVS simply removes that directory from the server's list
of quiesced directories and clears all quiesce-related flags for that directory.

How Quiesce Works: the Client View

When making a request of a server, a client may get back reply indicating that the request was for a file in a
quiesced directory. The client then retries the operation on the next server in its server list. If it makes the request
of every server in its server list and gets the same reply from each of them, then one of two things happens,
depending on the type of request:

S0005 45

DVS Configuration and Use

path name If the request is a path name request (lookup, stat, file open, etc.), then DVS reattempts the
request operation on a different server in a round-robin fashion until it finds a server that allows the
operation to complete successfully.

open file If the request is for an open file (read, write, Iseek, etc.), then DVS attempts the operation on a
different server. If the file is not open on any other servers, DVS attempts to open on the file on a
server in a round robin fashion until it gets a successful open. DVS will then attempt to perform
the operation.

If a client receives a reply indicating a quiesced directory, the client adds that directory to a list of quiesced
directories held on the DVS superblock. This is intended to reduce network traffic by avoiding requests that target
quiesced directories. The client's list of quiesced directories expires about every 60 seconds, thereby allowing
clients to try those directories again in case one or more have been unquiesced during that time. This mechanism
enables DVS to strike a balance between the timely unquiescing of a file system and a large reduction in network
traffic and requests coming into the server. It also has the effect of naturally staggering clients when they start to
use a server.

4.7 DVS Client-side Write-back Caching can Yield Performance Gains

With the advent of DataWarp and faster backing storage, the overhead of network operations has become an
increasingly large portion of overall file system operation latency. DVS provides the ability to cache both read and
write data on a client node while preserving close-to-open coherency and without contributing to out-of-memory
issues on compute nodes. Instead of using network communication for all read/write operations, DVS can
aggregate those operations and reuse data already read by or written from a client. This can provide a substantial
performance benefit for these 1/O patterns, which typically bear the additional cost of network latency:

e Small reads and writes
e Reads following writes

e Multiple reads of the same data

Client-side Write-back Caching may not be Suitable for all Applications
A CAUTION: Possible data corruption or performance penalty!

Using the page cache may not provide a benefit for all applications. Applications that require very large reads or

writes may find that introducing the overhead of managing the page cache slows down I/O handling. Benefit can
also depend on write access patterns: small, random writes may not perform as well as sequential writes. This is
due to pages being aggregated for write-back. If random writes do not access sequential pages, then less-than-

optimal-sized write-backs may have to be issued when a break in contiguous cache pages is encountered.

More important, successful use of write-back caching on client nodes requires a clear understanding and
acceptance of the limitations of close-to-open coherency. It is important for site system administrators to ensure
that users at their site understand how client-side write-back caching works before enabling it. Without that
understanding, users could experience data corruption issues.

S0005 46

DVS Configuration and Use

How to Use Client-side Write-back Caching

Client-side write-back caching is disabled by default. Both write caching and read-only caching must be explicitly
enabled.

To enable both read and write file caching on a client mount, follow these steps. This example assumes that two
client mounts have been previously configured in CLE config set p0. See one of the DVS configuration topics for
information about how to configure a new client mount.

1. Invoke the configurator for only the cray dvs service (example uses config set p0).
smw# cfgset update --service cray dvs --level advanced \
--mode interactive p0

2. At the first configurator prompt, enter 1 to select the client mount setting, and then enter C to configure it.

Cray DVS Service Menu [default: save & exit - Q] $ 1

Cray DVS Service Menu [default: configure - C] $ C

3. Ensure that readonly is set to false. Entering 2 selects the second client mount, g selects the readonly
setting of that mount, and the asterisk (*) indicates that setting is to be edited. For a more complete view of
the configuration setting screen, see Reconfigure DVS Interactively on page 25.

cray dvs.settings.client mount
[<cr>=set 2 entries, +=add an entry, ?=help, @=less] $ 2g¥*

cray dvs.settings.client mount.data.my mount.readonly
[<cr>=set 'true', <new value>, ?=help, @=less] $ false

4. Use the options setting to specify the DVS cache mount option, and specify maxnodes=1 (entering 2h*
selects the options setting of the second client mount for editing).

cray dvs.settings.client mount
[<cr>=set 2 entries, +=add an entry, ?=help, @=less] $ 2h¥*

cray dvs.settings.client mount.data.my mount.options
[<cr>=keep 'maxnodes=1', <new value>, ?=help, @=less] $ maxnodes=1l,cache

5. Set the client mount entries, then save changes and exit the configurator.

cray dvs.settings.client mount
[<cr>=set 2 entries, +=add an entry, ?=help, @=less] $ <cr>

Cray DVS Service Menu [default: save & exit - Q] $ <ecr>

To enable only the caching of read data on a non-writable file system, enable caching as shown above, but
ensure that the readonly setting is set to true to force the DVS mount to be read-only. In this example, it is
already set to true, so only a <cr> is necessary to set it.

cray dvs.settings.client mount
[<cr>=set 2 entries, +=add an entry, ?=help, @=less] $ 2g¥*

cray dvs.settings.client mount.data.my mount.readonly

[<cr>=set 'true', <new value>, ?=help,_@=less} S <ecr>

When done, remember to set the client mount entries, then save changes and exit the configurator, as in step 5
above.

S0005 47

DVS Configuration and Use

Use of Associated Variables and Functions

Exercise caution if using the DVS_CACHE environment variable or its ioctl counterpart, DVS SET FILE CACHE.
Allowing an application to bypass cached data on the file system could lead to coherency issues between the
local cached file data and what is read from the backing file system. Allowing a file to read data from the backing
store could also cause issues with an inode shared between cached and uncached open file handles by updating
inode attributes and putting the inode out of sync with the current state of cached data.

The ro cache mount option is no longer needed, except in this use case: to allow read data to be cached as
possible while allowing a file to be written and still maintain proper coherency across different DVS clients.

Because DVS now supports client-side caching of write data, the MAP SHARED flag can now be specified to the
memory map function mmap () on writable cached mounts. DVS continues to support the MAP_ PRIVATE flag as
well.

How Client-side Caching Works

Client-side caching of both read and write data is implemented as a write-back type of cache. This type of cache
allows write data to be targeted to local cache on the client, aggregating the data before it is later 'written back' to
the backing file system storage on a DVS server, thus providing low latency and high throughput for write
operations. Aggregation of write data allows the DVS client to wait until a larger amount of data needs to be
written, and to then write all the data with a single network operation rather than a network operation for each
write performed by an application. This enables an application to complete writes more quickly while reducing
overall network traffic and the total utilization load on DVS servers. A write-back cache also enables caching of
read data and reuse of previously read or written data in the cache.

Note that DVS does not provide perfect cache coherency across disparate client nodes. Instead, it provides close-
to-open coherency, which is described in About the Close-to-Open Coherency Model on page 48.

DVS write-back cache uses the standard Linux VFS page-cache mechanism and address-space operations
interface, to which it adds its own write-back model and heuristics. The Linux kernel-provided functionality writes
back cached data and reclaims cache pages as memory pressure increases or when a specified time limit is
reached. To this, DVS adds the tracking of data being cached on the client, and when an optimal amount of
contiguous data has been written, it is immediately written back to the DVS server with a single DVS remote
memory access (RMA) operation. This provides a more steady and optimal flow of data to DVS servers, and it
helps to avoid large amounts of cached data waiting to be written at file close time or when the cache timeout is
reached. This DVS-provided functionality also helps to minimize the risk of large amounts of cached data
contributing to out-of-memory issues on client nodes, because kernel memory management is able to reclaim the
‘clean’ (i.e., already written back) pages immediately without having to attempt to first initiate a write-back of the
pages to the server.

4.7.1 About the Close-to-Open Coherency Model

The DVS read/write cache capability provides a close-to-open coherency model, which means:

e File read operations are only guaranteed to see file data that was available on the server at the time the file
was opened.

e Write data cached on the client is not guaranteed to be written back to, and thus visible on, the DVS server
and backing file system storage until file close time.

This does not imply that server data newer than file open time cannot be read by the client or that some amount
of client write data will not be written to the server prior to file close. Rather, that file open and close are the only
times this can be guaranteed. To preserve the close-to-open coherency, any remaining 'dirty’ (i.e., not yet written

S0005 48

DVS Configuration and Use

back) cached client data for a file is written back to the DVS server at file close time, and any cached client data is
invalidated at file open if the file on the server is newer than the cached data. This coherency model is similar to
that provided by NFS.

How Granularity Affects Coherency

The kernel VFS interface provides caching with the granularity of a kernel page, which is 4 Kb for the SLES12
kernel. This implies that 4Kb is the smallest amount of data that is stored in cache and that data is read from and
written to the server in a minimum of 4Kb blocks. This page granularity affects coherency. Shared file access from
different DVS clients are coherent only at page cache size boundaries. If two DVS clients attempt to write within
the boundary of the same kernel page, coherency cannot be preserved, even if the two clients are writing non-
overlapping byte ranges within that page. This is because both clients would attempt to cache and write-back the
entire page, unable to see the data from the other client and ultimately conflicting with each other when writing
back their cache pages. Cache access from separate clients can preserve coherency if they maintain the cache
page size boundaries. If the separate clients each only write and cache distinct pages, then there will be no
conflicts on the server when the pages are written back.

If More Fine-grained Control is Needed

Beyond using file opens and closes to control coherency, user applications can achieve more fine-grained control,
if required. Here are two possible options.

Linux file Applications can use the generic Linux file operations sync, flush, and invalidate (for example,

operations madvise or fadvise) to force write-back of data or to clear existing data from the local cache.

with file Using those operations in conjunction with file locking can enable applications on different

locking client nodes to preserve coherency. Either approach by itself may not be sufficient to preserve
coherency.

O_DIRECT flag Applications can open a file with the 0_DIRECT flag to trigger any operations for that file to
bypass the local cache entirely and read and write directly to the backing file system on the
server, just as a non-cached DVS file system would do normally. However, this poses the risk
of a cached file and a direct IO file on a client not being consistent with each other, because
the direct 10O file sees only the server data and not any local cached data, and file operations
using the local cache may not see the direct written data from the server.

4.8 Force a Cache Revalidation on a DVS Mount Point

About this task

Enabling the attrcache timeout option for a DVS client mount can improve performance because cached file
attributes on a DVS client reduce the need to make requests of the DVS server. However, this used to create a
problem if the file attributes of the DVS mounted file system changed, because the only way to revalidate the
cache was to wait the entire timeout, often as long as four hours (14400 seconds). This procedure enables a
system administrator with root privilege to force a cache revalidation at any time without having to wait for the
timeout to expire.

S0005 49

DVS Configuration and Use

Procedure

1. Force a cache revalidation on a DVS client using one of the following methods:

e To revalidate all cached attributes on a single DVS mount point, echo 1 into that mount point's
drop caches proc file. The following example uses the second mount point on the client and uses the
cat command first to confirm that is the desired mount point. To specify a different mount point, replace
the 2 with some other integer (0-n).

hostname# cat /proc/fs/dvs/mounts/2/mount
hostname# echo 1 > /proc/fs/dvs/mounts/2/drop_caches

e To revalidate all attributes across all DVS mounts, echo 1 into the universal DVS drop caches /proc
file. For example:

hostname# echo 1 > /proc/fs/dvs/drop_caches

2. (Optional) Clear out other caches on the DVS client to ensure that all data is revalidated.

hostname# echo 3 > /proc/sys/vm/drop_caches

3. (Optional) Clear out other caches on the DVS server to ensure that all data is revalidated.

If an NFS file system is the underlying file system, it is also likely that the same procedure will be required on
the DVS servers to allow all of the changes on the NFS file system to properly propagate out to the DVS
clients. This has to do with NFS caching behavior.

hostname# echo 3 > /proc/sys/vm/drop_caches

4.9 Disable DVS Fairness of Service

About this task
Fairness of Service, described below, is enabled by default. This procedure describes how to disable it.

DVS creates user- or job-specific request queues for clients. Originally, DVS used one queue to handle requests
in a FIFO (first-in, first out) fashion. This meant that since all clients shared one queue, a demanding job could tax
the server disproportionately and the other clients would have to wait until the demanding client's request(s)
completed. Fairness of Service was implemented to address that issue. With it enabled, DVS creates a list of
gueues—one queue for each client and/or job. The list of queues is processed in a circular fashion. When a
message thread is available, it fetches the first queue on the list, moves that queue to the end of the list, and
processes the first message in that queue. This helps to distribute the workload and potentially helps contending
applications perform better.

Procedure

1. Stop DVS on all servers.

Note that stopping and restarting DVS on all server nodes would typically be done only during a maintenance
interval. See Quiesce a DVS-projected File System on page 44 for information about how to do this.

S0005 50

DVS Configuration and Use

2. Disable Fairness of Service by setting the single message queue parameter to 1.

Use one of the following kernel module parameters to set the single message queue parameter. Because
these parameters cannot be set using the configurator, use the procedure Change Kernel Module Parameters
Prior to Boot using Modprobe.d Files and Simple Sync on page 32 and the following information, both from
the topic Configure DVS using Modprobe or Proc Files on page 30.

dvsipc_single_msg_queue
Disables fairness of service, which is enabled by default. Setting this parameter to 1
disables fairness of service by forcing DVS to use a single message queue instead of a list
of queues.

e Default value: 0 (fairness of service enabled)

e To view read-only:
cat /sys/module/dvsipc/parameters/dvsipc_single msg queue

e To change prior to boot, use the single msg queue field of the
dvs instance info parameter. If no other fields in dvs instance info need to
be changed, it may be easier to change the dvsipc single msg queue parameter
directly by adding these lines to
<simple sync path>/etc/modprobe.d/dvs-local.conf:

Disable fairness of service
options dvsipc dvsipc_single_msg_queue=l

Enable fairness of service
options dvsipc dvsipc_single msg queue=0

e To change dynamically: N/A

dvs_instance_info
Contains the following fields, which are parameters for the DVS thread pool in the DVS IPC
layer. Most of these fields can be changed through other module parameters (e.g.,
dvsipc msg thread limit and dvsipc single msg queue); however, this module
parameter has priority over the individual ones and if set, will override them.

Field Definition

thread_min Number of threads created at startup.

thread_max Maximum number of persistent threads.

thread_limit Maximum number of valid threads that DVS IPC allows

to exist at one time. DVS IPC will dynamically scale up
the number of threads to this number as the load

increases.

thread_concurrent_creates Maximum number of IPC threads that can be in the
process of forking a new thread.

thread_nice Nice value for the threads.

single_msg_queue Disables/enables fairness of service. Setting to 1

disables fairness of service by processing incoming
requests with a FIFO method. Setting to O (default)
groups requests into different queues (ghdrs) based on
apid, and round-robbins the queues to maintain quality of
service (QOS) among jobs.

S0005 51

DVS Configuration and Use

Field Definition

init_free_ghdrs Low water mark for the pool of unused ghdrs. When the

pool falls below this number, more are allocated. Used
only if single_msg_queue = 0.

max_free_ghdrs Maximum number of unused ghdrs that can exist before

the system starts freeing them. Used only if
single_msg_queue = 0.

Interactions among fields:

thread_min <= thread_max <= thread_limit
thread_concurrent_creates <= thread_limit
init_free_ghdrs and max_free_ghdrs used only when single_msg_queue ==

IMPORTANT: For this parameter to be valid, values must be specified for all
of the fields. To avoid unintentional changes, be careful when changing any
field values.

Default value: see modprobe.d examples
To view read-only: cat /sys/module/dvsipc/parameters/dvs instance info

To change prior to boot, add these lines to
<simple sync path>/etc/modprobe.d/dvs-local.conf (comment out either
the compute or service line, depending on the type of node(s) being configured):

Set parameters for DVS thread pool in DVS IPC layer
Defaults for compute nodes
options dvsipc dvs_instance_info=4,16,1000,0,0,0,1,1

Defaults for service nodes
options dvsipc dvs_instance info=16,64,1000,0,0,0,64,2048

For compute nodes, this translates to dvs_instance_info = thread_min = 4, thread_max
=16, thread_limit = 1000, thread_concurrent_creates = 0, thread_nice = 0,
single_msg_queue = 0, init_free_ghdrs = 1, max_free_ghdrs = 1.

For service nodes, this translates to dvs_instance_info=thread_min = 16, thread_max =
64, thread_limit = 1000, thread_concurrent_creates = 0, nice = 0, single_msg_queue =
0, init_free_qghdrs = 64, max_free_qghdrs = 2048.

Note that if using the defaults for a compute node, ensure that dvsipc_config_type=0 is
also set, and likewise, for a service node, ensure that dvsipc_config_type=1 for
consistency.

To change dynamically: N/A

3. Restart DVS on all servers.

S0005

52

DVS Configuration and Use

4.10 Reconfigure DVS for an External NFS Server

Prerequisites
This procedure assumes that initial software installation and system configuration have occurred, though
configuration may be incomplete.

About this task
This procedure reconfigures the system to add an external NFS server. Note that because DVS is a somewhat
complex service, this procedure involves touching multiple service configuration templates.

Procedure

1.

Update the network configuration on the DVS node to add a host, its network interfaces, and possibly a
network if those interfaces are connected to a network that is not the same as the login node network.

The following command line invokes cfgset to update service (-s) cray net in config set p0. By specifying
level (-1) advanced, all levels of configuration setting can be reviewed and changed. By specifying
interactive mode (-m), any of those settings can be visited in any order. Settings of all states are visible
by default in interactive mode. See the cfgset man page for a complete list of subcommands and options.

NOTE: Reconfiguration tasks usually use the configurator in interactive mode to update a config set.
smw# cfgset update --service cray net --level advanced --mode interactive p0
Update the DVS configuration on the DVS node to specify how to access an external NFS server.

smw# cfgset update -s cray dvs -1 advanced --state all p0

In this example, the configurator is invoked in auto mode (default) to update cray dvs service settings of all
states (--state all) and levels. Auto mode ensures that all specified states and levels of configuration
setting are presented in a predefined, logical order. For more information about updating the DVS
configuration, see Reconfigure DVS Interactively on page 25

Configure LDAP.

Configure this service to have the same accounts on the CLE system as on the file server. This service can
be configured either for Microsoft Active Directory style of schema for LDAP or the OpenLDAP style of
schema for LDAP. Alternatively, the service can be configured for NIS, if the site uses that directory service.

smw# cfgset update -S all -s cray_auth --level advanced p0

Configure automount files on the DVS node using Simple Sync.

This step uses Simple Sync to push some automount files to a specific DVS node. In this example, the
specific DVS node is c0-0c0s0n2, the automount files are found on the SMW in /home/crayadm/etc, the
NFS server name is CSS, and the CLE config set is p0. Substitute the correct node, filepath, NFS server
name, and config set name for this site.

smw# cd /var/opt/cray/imps/config/sets/p0/files

smw# mkdir -p simple_sync/hardwareid/c0-0cOsOn2/files/etc/auto.master.d
smw# cd simple sync/hardwareid/c0-0c0Os0On2/files/etc

smw# cp -p /home/crayadm/etc/auto.css

smw# cp -p /home/crayadm/etc/auto.master.d/css.autofs auto.master.d

S0005 53

DVS Configuration and Use

5. Run cray-ansible on the DVS node to pull that content to the DVS node.

dvs# /etc/init.d/cray-ansible start

4.11 Improve Performance and Scalability of GPFS (Spectrum Scale)
Mounts

For procedures to configure a DVS mount of GPFS (Spectrum Scale), see XC Series GPFS Software Installation
Guide (S-2569), which is available at http://pubs.cray.com.

The performance of a typical GPFS (Spectrum Scale) read-write mount can be improved by setting
attrcache timeout to enable client-side attribute caching. The more frequently content changes, the smaller
the timeout value should be (e.g., 3 to 10 seconds).

When highly scalable access to read-only (or read-mostly) data, such as shared libraries and input files, is
needed, Cray recommends configuring a separate DVS compute node mount of Spectrum Scale using the
following options:

loadbalance The loadbalance option allows all servers to be used to access the same file. The
server is chosen based on the compute node doing the access. This maximizes the
scalability of both reads and meta operations like open, stat, and close because all
servers can be used for every file.

Enable this option using the 1oadbalance setting of a client mount setting in the
configurator or the DVS configuration worksheet.

cache The cache option allows the compute node to cache file data in memory for the
duration of an application execution. At the end of every application, the compute
node page cache is cleared to maximize the availability of huge pages for the next
application (from the same job or a different job).

This option does not have a corresponding setting; enable it using the options
setting of a client mount setting in the configurator or the DVS configuration
worksheet.

attrcache_ timeout=5 The attrcache timeout option allows the results of file lookups (both successful
and unsuccessful) to be cached on the compute nodes. Setting it to 5 (or more than 5
depending on how often the underlying content changes) allows the caching to be
effective during the start-up of an application. DVS will detect a stale or deleted
existing file on every open, so attrcache timeout is needed primarily to prevent
a previous failed access (due to ENOENT) from masking the subsequent creation of
that file for too long.

Set this option using the attrcache timeout setting of a client mount setting
in the configurator or the DVS configuration worksheet.

Having a dedicated mount configured with these options has the advantage of providing maximum scalability of
access. However, having more than one mount has the disadvantage of requiring users, jobs, and applications to
know which mount (path) to use when. This could be mitigated by setting environment variables (e.g.,

LD LIBRARY PATH to use the loadbalance path) for each path.

S0005 54

http://pubs.cray.com

DVS Configuration Settings, Mount Options, Environment Variables, and ioctl Interfaces

5 DVS Configuration Settings, Mount Options,
Environment Variables, and ioctl Interfaces

The following reference topics provide information about DVS configuration settings, additional mount options,
user environment variables, and ioct1 interfaces.

e DVS Configuration Settings and Mount Options on page 55
o Client Mount Settings
o Additional Options for Use in the Options Setting of a Client Mount
o Kernel Module Parameter Settings

e DVS Environment Variables on page 65

e DVS ioctl Interfaces on page 66

5.1 DVS Configuration Settings and Mount Options

Administrators configure Cray DVS (Data Virtualization Service) using the configurator and modprobe . d files in
the Simple Sync directory structure, not on the command line or by adding lines to /etc files

(e.g., /etc/£fstab). The following sections describe the settings that are available within the configurator for that
purpose. The first two sections cover settings that are part of the client mount setting. The last section covers the
remaining DVS settings, which are kernel module parameters.

IMPORTANT: When configurator guidance indicates a relationship or interaction between one or more
settings, it is advisory only; the configurator does not automatically check to ensure compatibility among
settings. However, the underlying implementation of DVS is unchanged, and it does automatically set
related mount options when certain mount options are specified. To prevent mount failure, enter setting
values that are compatible, in accordance with the instructions in this publication.

Client Mount Settings

reference A human-readable string—a name—that is used to uniquely identify a client mount.
reference cannot be set by accepting the default: a non-empty string is required.

e Full setting name:
cray dvs.settings.client mount.data.reference.REF-NAME (Where
REF-NAME is the user-provided client mount reference name)

e Level: basic

e Default value: ' ' (empty string)

S0005 55

DVS Configuration Settings, Mount Options, Environment Variables, and ioctl Interfaces

mount_point

spath

server_groups

client groups

Associated environment variable: none

Related settings/options: Because this is the key field of a client mount setting entry,
each setting within the client mount setting includes this string in its full setting
name.

A string that specifies the full pathname on the client of the projected file system.
mount point cannot be set by accepting the default: a non-empty string is required.

Full setting name:
cray dvs.settings.client mount.data.REF-NAME.mount point

Level: basic
Default value: ' ' (empty string)
Associated environment variable: none

Related settings/options: none

A string that specifies the full pathname on the DVS server of the file system that is to
be projected for a client mount. It must be an absolute path and it must exist on the DVS
server. spath cannot be set by accepting the default: a non-empty string is required.

Full setting name:
cray dvs.settings.client mount.data.REF-NAME.spath

Level: basic
Default value: ' ' (empty string)
Associated environment variable: none

Related settings/options: none

A list of node groups that will function as DVS servers for a client mount. Enter one
node group per line (see About Node Groups on page 105). server groups cannot
be set by accepting the default: a non-empty list is required.

IMPORTANT: DVS servers should be dedicated because they use unlimited
amounts of CPU and memory resources based directly on the 1/O requests
sent from DVS clients. Avoid using nodes that have other services (Lustre
nodes, login nodes, etc.) or are tier2 nodes.

Full setting name:
cray dvs.settings.client mount.data.REF-NAME.servers

Level: basic
Default value: [] (empty list)
Associated environment variable: none

Related settings/options: Functionally equivalent to the nodename or nodefile
"additional" option in the options setting of the client mount setting. The use of
those two additional options is deprecated.

A list of node groups that will function as DVS clients for a client mount. Enter node
groups one per line. Unlike server groups, client groups can be setto an empty

S0005

56

DVS Configuration Settings, Mount Options, Environment Variables, and ioctl Interfaces

loadbalance

attrcache_timeout

list. If no node groups are specified, the mount will be performed on all suitable compute
nodes (a compute node functioning as a DVS server is an example of an unsuitable
node). This is common.

Full setting name:
cray dvs.settings.client mount.data.REF-NAME.clients

Level: basic
Default value: [] (empty list)
Associated environment variable: none

Related settings/options: none

Used to specify loadbalance mode, which more evenly distributes loads across DVS
servers. Loadbalance mode is valid only for read-only mounts. For more information,
see DVS Loadbalance Mode.

Full setting name:
cray dvs.settings.client mount.data.REF-NAME.loadbalance

Level: advanced
Default value: false or 0
Associated environment variable: none

Related settings/options: When loadbalance is enabled, the underlying DVS
implementation automatically sets the readonly setting to true and sets these
additional options: cache=1, failover=1, maxnodes=1, and hash on nid=0
Cray recommends setting the attrcache timeout setting as well to take
advantage of the mount being read-only. If 1oadbalance is enabled, leave the
readonly setting unconfigured or set it to true to maintain consistency with the
way DVS implements 1loadbalance.

Enables client-side attribute caching, which can significantly increase performance,
most notably in pathname lookup situations. File attributes and dentries for getattr
requests, pathname lookups, etc. are read from DVS servers and cached on the DVS
client for n seconds. Subsequent lookups or getattr requests use the cached
attributes until the timeout expires, at which point they are read and cached again on
first reference. When attribute caching is disabled, DVS clients must send a lookup
request to a DVS server for every level of a pathname, and repeat this for every
pathname operation. When it is enabled, it sends a lookup request to a DVS server for
every level of a pathname once per n seconds.

NOTICE: An administrator with root privilege can force a cache revalidation at
any time, not just when the timeout has expired. See Force a Cache
Revalidation on a DVS Mount Point on page 49.

Full setting name:
cray dvs.settings.client mount.data.
REF-NAME.attrcache timeout

Level: advanced

S0005

57

DVS Configuration Settings, Mount Options, Environment Variables, and ioctl Interfaces

readonly

options

Default value: 14400 seconds for read-only mounts.

IMPORTANT: This is the configurator default. The underlying DVS
implementation default is 3 seconds, which is safer for read-write mounts.
This means that to enhance system performance for read-only mounts,
configure this setting by accepting the configurator default (or entering
some other value). Leaving this setting unconfigured will result in the
underlying default being used.

Associated environment variable: none

Related settings/options: The Ansible play that consumes DVS configuration data
prevents use of this mount option for read-write file systems due to the risk of file
system corruption. Run-time mounts not accompanied by that Ansible play do not
have that safeguard. In such cases, if a read-write mount is created, it is safe to

leave attrcache timeout unconfigured so that the underlying default is used.

Determines whether the client mount is read-only or read-write. If intending to enable
client-side caching of read data on a non-writable file system, use this readonly
setting to force the DVS mount to be read-only. This will disable write caching.

Full setting name:
cray dvs.settings.client mount.data.REF-NAME.readonly

Level: basic
Default value: true or 1

IMPORTANT: This is the configurator default. The underlying DVS
implementation default is false. Leaving this setting unconfigured will
result in the underlying DVS default being used.

Associated environment variable: none

Related settings/options: When loadbalance is enabled, DVS automatically
enables readonly but the configurator does not, so either leave this setting
unconfigured or accept the configurator default. If the attrcache timeout setting
is set for this client mount, readonly should be enabled (set to true) in the
configurator/worksheet. If the cache option is specified in the options setting for
this client mount, enabling readonly is the only way to enable read caching
without enabling write caching as well).

Provides the only way to specify mount options in addition to the ones already specified
in the other mount point settings. Enter a string with mount options separated by comma
and no spaces. For information about available options and their implications, see
Ad(ditional Options for Use in the Options Setting of a Client Mount. Note that it is
necessary to specify maxnodes=1 here for a read-write client mount of an NFS or other
non-cluster, non-coherent file system.

Full setting name:
cray dvs.settings.client mount.data.REF-NAME.options

Level: advanced

Default value: "™ (empty string)

S0005

58

DVS Configuration Settings, Mount Options, Environment Variables, and ioctl Interfaces

Associated environment variable: none

Related settings/options: Options contained in this setting will be appended to the
mount options specified in other settings. Any that are functionally redundant with
settings already configured (such as nodename/nodefile, which are redundant
with the server groups setting) will override those settings.

Additional Options for Use in the Options Setting of a Client Mount

All of the mount options listed in this section can be used only in the options setting of a client mount setting in the
configurator or DVS configuration worksheet. The options setting is level advanced, so specify -1 advanced
when invoking the configurator to be able to use these mount options.

atomic / noatomic

attrcache_timeout

blksize=n

cache | nocache

atomic enables atomic stripe parallel mode. This ensures that stripe parallel
requests adhere to POSIX read/write atomicity rules. DVS clients send each I/
O request to a single DVS server to ensure that the bytes are not interleaved
with other requests from DVS clients. The DVS server used to perform the
read, write, or metadata operation is selected using an internal hash involving
the underlying file or directory inode number and the offset of data into the file
relative to the DVS block size.

noatomic disables atomic stripe parallel mode. If there are multiple DVS
servers and neither loadbalance nor cluster parallel mode is specified, DVS
stripes 1/O requests across multiple servers and does not necessarily adhere
to POSIX read/write atomicity rules if file locking is not used.

e Default value: noatomic or 0
e Associated environment variable: DVS_ATOMIC

e Related settings/options: none

Do not use this option in the options setting. Use the configurator setting
(attrcache timeout) instead.

blksize=n sets the DVS block size to n bytes. Used in striping.
e Default value: 524288 (512 KB)
e Associated environment variable: DVS_ BLOCKSIZE

e Related settings/options: none

cache enables client-side caching of both read and write data. The client node
caches reads from the DVS server node, caches writes from user applications
that are aggregated and later ‘written back' to the backing file system storage
on the DVS server node, and provides data to user applications from the page
cache if possible, instead of performing a data transfer from the DVS server
node. For more information, see DVS Client-side Write-back Caching can
Yield Performance Gains on page 46. Cray DVS is not a clustered file system;
no coherency is maintained among multiple DVS client nodes reading and
writing to the same file. If cache is enabled and data consistency is required,
applications must take care to synchronize their accesses to the shared file.

nocache disables client-side read/write caching.

S0005

59

DVS Configuration Settings, Mount Options, Environment Variables, and ioctl Interfaces

cache_read sz

closesync | noclosesync

datasync | nodatasync

e Default value: nocache or 0
e Associated environment variable: DVS CACHE (use with caution)

e Related settings/options: When loadbalance is enabled, DVS
automatically enables cache. If readonly enabled and the cache option
is used, the client node will cache only read data (this is equivalent to
disabling write caching).

IMPORTANT: If enabling read/write caching, read DVS Client-side
Write-back Caching can Yield Performance Gains on page 46 to
understand the implications and prevent data corruption.

cache read sz is a limit that can be specified to prevent reads or writes
over this size from being cached in the Linux page cache.

e Default value: 0
e Associated environment variable: DVS CACHE READ Sz

e Related settings/options: If cache is not enabled, DVS ignores
cache read sz.

closesync enables data synchronization on last close of a file. When a
process performs the final close of a file descriptor, in addition to forwarding
the close to the DVS server, the DVS server node waits until data has been
written to the underlying media before indicating that the close has completed.
Because DVS does not cache data on client nodes (unless the cache option
is used) and has no replay capabilities, this ensures that data is not lost if a
server node crashes after an application has exited.

noclosesync causes DVS to return a close () requestimmediately.
e Default value: noclosesync or 0
e Associated environment variable: DVS_CLOSESYNC

e Related settings/options: The closesync option is redundant with
periodic sync, which is enabled by default. Because periodic sync is more
efficient than closesync, Cray recommends letting periodic sync take
care of data synchronization instead of using this mount option. (See
Periodic Sync Promotes Data and Application Resiliency on page 70.)

datasync enables data synchronization. The DVS server node waits until
data has been written to the underlying media before indicating that the write
has completed. Can significantly impact performance.

nodatasync causes a DVS server node to return from a write request as
soon as the user's data has been written into the page cache on the server
node.

e Default value: nodatasync or 0
e Associated environment variable: DVS_ DATASYNC

e Related settings/options: none

S0005

60

DVS Configuration Settings, Mount Options, Environment Variables, and ioctl Interfaces

deferopens | nodeferopens deferopens defers DVS client open requests to DVS servers for a given set

distribute create ops/
nodistribute_create_ ops

dwfs | nodwfs

failover | nofailover

of conditions. When a file is open in stripe parallel mode or atomic stripe
parallel mode, DVS clients send the open request to a single DVS server only.
Additional open requests are sent as necessary when the DVS client performs
a read or write to a different server for the first time. The deferopens option
deviates from POSIX specifications. For example, if a file was removed after
the initial open succeeded but before deferred opens were initiated by a read
or write operation to a new server, the read or write operation would fail with
errno Set to ENOENT because the open was unable to open the file.

nodeferopens disables the deferral of DVS client open requests to DVS
servers. When a file is open in stripe parallel mode or atomic stripe parallel
mode, DVS clients send open requests to all DVS servers denoted by
nodename or nodefile.

e Default value: nodeferopens or 0
e Associated environment variable: DVS DEFEROPENS
e Related settings/options: The deferopens option must be used if the

dwfs option is used.

distribute create ops causes DVS to change its hashing algorithm so
that create and lookup requests are distributed across all of the servers, as
opposed to being distributed to a single server. This applies to creates, mkdirs,
lookups, mknods, links, and symlinks.

nodistribute create ops causes DVS to use its normal algorithm of
using just one target server.

e Default value: nodistribute create ops or 0

e Associated environment variable: none

e Related settings/options: none

dwfs specifies that the remote file system mounted under DVS is dwfs

(DataWarp file system). This should be used even if there are layers between
DVS and dwfs (e.g., DVS -> accountfs -> dwfs).

nodwfs is the default, where DVS does not support a DataWarp file system.
e Default value: nodwfs or of f.
e Associated environment variable: none

e Related settings/options: The dwfs option can be used only if the
deferopens option is used.

failover enables failover and failback of DVS servers. If all servers falil,
operations for the mount point behave as described by the retry option until
at least one server is rebooted and has loaded DVS. If multiple DVS servers
are listed for a client mount and one or more of the servers fails, operations for
that mount continue by using the subset of servers still available. When the
downed servers are rebooted and start DVS, any client mounts that had

S0005

61

DVS Configuration Settings, Mount Options, Environment Variables, and ioctl Interfaces

hash

hash_on nid

killprocess |/
nokillprocess

performed failover operations failback to once again include the servers as
valid nodes for I/O forwarding operations.

nofailover disables failover and failback of DVS servers. If one or more
servers for a given client mount fail, operations for that mount behave as
described by the retry or noretry option specified for the client mount.

e Default value: failover orl

e Associated environment variable: none

e Related settings/options: When the failover option is enabled (occurs
automatically when loadbalance is enabled), the noretry option
cannot be enabled.

Except in cases of extremely advanced administrators or specific advice from
DVS developers, do not use the hash mount option. The best course of action
is to let DVS use its default value. The hash option has three possible values:

fnv-la hash=fnv-1a offers the best overall performance with very little
variation due to differing numbers of servers.

jenkins hash=jenkins is the hash that DVS previously used. It is
included in the unlikely case of end-case pathological issues with
the fnv-1a hash, but it has worse overall performance.

modulo hash=modulo does not do any hash at all, but rather takes the
modulo of the seed that it is given. This option can potentially
have high load balancing characteristics, but is extremely
vulnerable to pathological cases such as file systems that only
allocate even numbered inodes or a prime number of servers.

e Default value: fnv-1a

e Associated environment variable: none

e Related settings/options: none

With hash on nid setto on, DVS uses the nid of the client as the hash seed
instead of using the file inode number. This effectively causes all request traffic
for the compute node to go to a single server. This can help metadata

operation performance by avoiding lock thrashing in the underlying file system
when each process on a set of DVS clients is using a separate file.

e Default value: off or 0
e Associated environment variable: none

e Related settings/options: When hash _on_nid is enabled (set to 1), DVS
automatically sets the hash option to modulo. When loadbalance is
enabled, DVS automatically sets hash on nid=0.

killprocess enables killing processes that have one or more file descriptors
with data that has not yet been written to the backing store. DVS provides this
option to minimize the risk of silent data loss, such as when data still resides in

S0005

62

DVS Configuration Settings, Mount Options, Environment Variables, and ioctl Interfaces

loadbalancel
noloadbalance

magic

maxnodes

the kernel or file system page cache on the DVS server after a write has
completed.

nokillprocess disables the killing of processes that have written data to a
DVS server when a server fails. When a server fails, processes that have
written data to the server are not killed. If a process continues to perform
operations with an open file descriptor that had been used to write data to the
server, the operations fail (with errno set to EHOSTDOWN). A new open of the
file is allowed, and subsequent operations with the corresponding file
descriptor function normally.

e Default value: killprocessor1l
e Associated environment variable: DVS KILLPROCESS

e Related settings/options: With the periodic sync feature (enabled by
default), DVS servers attempt to £sync dirty files to minimize the number
of processes that are killed and will also £sync a dirty file's data when the
file is closed. If periodic sync is disabled (not recommended), the
killprocess option alone cannot fully guarantee prevention of silent
data loss (though it is highly unlikely) because a close () does not
guarantee that data has been transferred to the underlying media (see the
closesync option).

Do not use this option in the options setting. Use the configurator setting
(Loadbalance) instead.

magic defines what the expected file system magic value for the projected file
system on the DVS servers should be. When a DVS client attempts to mount
the file system from a server, it verifies that the underlying file system has a
magic value that matches the specified value. If not, the DVS client excludes
that DVS server from the list of servers it uses for the mount point and prints a
message to the system console. Once the configuration issue on the DVS
server has been addressed and the client mounts the correct file system, DVS
can be restarted on the server. All clients subsequently verify that the server is
configured correctly and include the server for that mount point. Many file
system magic values are defined in the /usr/include/linux/magic.h
file. Commonly used magic values on Cray systems are:

NFS 0x6969

GPFS 0x47504653
BTRFS 0x9123683E
TMPFS 0x01021994

e Default value: the underlying file system's magic value
e Associated environment variable: none

e Related settings/options: none

maxnodes is used in configuring DVS modes. See DVS Modes on page 9.

S0005

63

DVS Configuration Settings, Mount Options, Environment Variables, and ioctl Interfaces

mds

nodefile

nodename

path

retry [noretry

ro_cachelno_ro_cache

e Default value: number of nodes available (nnodes)
e Associated environment variable: DVS_MAXNODES
e Related settings/options: When loadbalance is enabled, DVS

automatically sets maxnodes=1.

mds=server, Where server is the hosthame for a DVS server, specifies
which DVS server to use for metadata operations. Metadata will be sent only
to the server specified. Used only for DataWarp file systems.

e Default value: none
e Associated environment variable: none
e Related settings/options: When the dwfs option is used, mds must be

used. Cray recommends not using mds if the dwfs option is not used.

nodefileis the file name of a file with a list of server nodes specified as
cnames separated by a colon () and no spaces. Do not use this option in the
options setting. Use the configurator setting (server groups) instead.

nodename is a list of server nodes specified as cnames separated by a colon
(:) and no spaces. Do not use this option in the options setting. Use the
configurator setting (server groups) instead.

Do not use this option in the options setting. Use the configurator setting
(spath) instead.

retry enables the retry option, which affects how a DVS client node behaves
in the event of a DVS server node going down. If retry is specified, any user
I/0O request is retried until it succeeds, receives an error other than a "node
down" indication, or receives a signal to interrupt the I/O operation.

noretry disables retries of user I/0 requests when the DVS server receiving
the request is down.

e Default value: retryor1
e Associated environment variable: none
e Related settings/options: When the failover option is enabled, the

noretry option cannot be enabled.

ro_cache enables read-only caching for files on writable client mounts. Files
opened with read-only permissions in ro cache mode are treated as if they
were on a DVS read-only cached client mount. If the file has any concurrent
open that has write permissions, all instances of that file revert to the default
no_ro_cache mode for the current and subsequent reads.

no_ro_cache disables read-only caching for files on writable client mounts.
e Default value: no_ro cacheor 0
e Associated environment variable: none

e Related settings/options: none

S0005

64

DVS Configuration Settings, Mount Options, Environment Variables, and ioctl Interfaces

userenv | nouserenv userenv specifies that DVS must honor end user environment variable
overrides for DVS mount options.

nouserenv allows the administrator to block end user environment variable
overrides for DVS mount options.

e Default value: userenv or 1
e Associated environment variable: none

e Related settings/options: none

Kernel Module Parameter Settings

Setting kernel module parameters during initial system configuration is just like setting any other configuration
data values. However, changing them later to reconfigure a service may require reloading the module to enable
the change to take effect. That is why Cray recommends viewing all module parameter settings as permanent
once they are set during initial configuration, before modules are loaded.

dvsipc_heartbeat timeout DVS inter-process communication (IPC) heartbeat timeout, in seconds. This
parameter is no longer used; it has been preserved only to maintain
backwards compatibility with existing DVS config files. Leave this parameter
unconfigured or accept the default value.

e Full setting name:
cray dvs.settings.dvsipc heartbeat timeout

e Level: advanced
e Default value: 60

e Related settings/options: none

dvs_debug_mask Hex mask of the bits to set to enable debug output to be printed to the
console. It can flood the console file and negatively affects performance, so it
is generally used only for development or troubleshooting. Different mask
values enable the output of different sets of debug information. Leave this
parameter unconfigured or accept the default value.

e Full setting name: cray dvs.settings.dvs debug mask
e Level: advanced
e Default value: 0 (disabled)

e Related settings/options: none

Additional Kernel Module Parameters

There are many DVS kernel module parameters that cannot be set within the configurator. For a list of them and
instructions on how to set them, see Configure DVS using Modprobe or Proc Files on page 30.

S0005 65

DVS Configuration Settings, Mount Options, Environment Variables, and ioctl Interfaces

5.2 DVS Environment Variables

By default, user environment variables allow client override of options specified during configuration and are
evaluated whenever a file is opened by DVS. However, if the nouserenv option is included in the options
setting of the c1ient mount configuration setting, then user environment variables are disabled for that client
mount.

The following environment variables are for use in the default case:

Variable Name Options | Purpose

DVS_ATOMIC on|off [Overrides the atomic or noatomic mount options.
DVS_BLOCKSIZE n A nonzero number, n overrides the b1ksize mount option.
DVS_CACHE on|off [Overrides the cache or nocache mount options.

Exercise caution if using this variable. Allowing an application to bypass
cached data on the file system could lead to coherency issues between the
local cached file data and what is read from the backing file system. Allowing
a file to read data from the backing store could also cause issues with an
inode shared between cached and uncached open file handles by updating
inode attributes and putting the inode out of sync with the current state of
cached data. For additional cautions about write caching, see "Client-side
Write-back Caching may not be Suitable for all Applications" in DVS Client-
side Write-back Caching can Yield Performance Gains on page 46.

DVS CACHE READ SZ|n A positive integer, n overrides the cache read sz mount option.

DVS CLOSESYNC on|off | Overrides the closesync Or noclosesync mount options.

NOTE: Periodic sync functions similarly to the DVS closesync
mount option, but it is more efficient and is enabled by default. Cray
recommends not using closesync or this associated environment
variable.

DVS DATASYNC on|off | Overrides the datasync Or nodatasync mount options.

NOTE: Setting DVS_DATASYNC to on can slow down an application
considerably. The periodic sync feature, enabled by default, is a
better way to synchronize data. See Periodic Sync Promotes Data
and Application Resiliency on page 70.

DVS DEFEROPENS on|off | Overrides the deferopens or nodeferopens mount options.

DVS_KILLPROCESS on|off | Overrides the killprocess or nokillprocess mount options.

DVS_ MAXNODES n A nonzero number, n overrides the maxnodes mount option. The specified
value of maxnodes must be greater than zero and less than or equal to the
number of server nodes specified on the mount, otherwise the variable has
no effect.

S0005 66

DVS Configuration Settings, Mount Options, Environment Variables, and ioctl Interfaces

5.3 DVS ioctl Interfaces

The following are provided for advanced users who require DVS ioctl interfaces. Most are correlates of
environment variable and mount options with the same name.

Variable Name

DVS_GET FILE ATOMIC/
DVS_SET FILE ATOMIC

DVS_GET FILE BLK SIZE/
DVS_SET FILE BLK SIZE

DVS GET FILE CACHE/
DVS_SET FILE CACHE

DVS GET FILE CACHE READ SZ/

DVS_SET FILE CACHE READ S7

DVS GET FILE CLOSESYNC/
DVS_SET FILE CLOSESYNC

DVS_GET FILE_DATASYNC /
DVS_SET FILE_DATASYNC

DVS_GET FILE_DEFEROPENS /
DVS_SET FILE DEFEROPENS

DVS_GET FILE KILLPROCESS/
DVS_SET FILE KILLPROCESS

DVS GET FILE STRIPE WIDTH/
DVS SET FILE STRIPE WIDTH

DVS_GET NNODES

Argument TypelSize
signed 16-bit (must be 0 or
1 for SET)

signed 32-bit (must be >0
for SET)

signed 16-bit (must be 0 or
1 for SET)

signed 32-bit (must be >0
for SET)

signed 16-bit (must be 0 or
1 for SET)

signed 16-bit (must be 0 or
1 for SET)

signed 16-bit (must be O or
1 for SET)

signed 16-bit (must be 0 or
1 for SET)

signed 32-bit (must be >0
for SET)

signed 32-bit

Purpose

Retrieves/sets the atomic option value
for a file on a DVS mount.

Retrieves/sets the DVS block size for a
file on a DVS mount.

Retrieves/sets the cache option for a file
on a DVS mount.

Exercise caution if using

DVS SET FILE CACHE. Allowing an
application to bypass cached data on the
file system could lead to coherency
issues between the local cached file data
and what is read from the backing file
system. Allowing a file to read data from
the backing store could also cause
issues with an inode shared between
cached and uncached open file handles
by updating inode attributes and putting
the inode out of sync with the current
state of cached data. For additional
cautions about write caching, see
"Client-side Write-back Caching may not
be Suitable for all Applications" in DVS
Client-side Write-back Caching can Yield
Performance Gains on page 46.

Retrieves/sets the cache read sz
value for a file on a DVS mount.

Retrieves/sets the closesync option for
a file on a DVS mount.

Retrieves/sets the current datasync
value for a file on a DVS mount.

Retrieves/sets the deferopens value
for a file on a DVS mount.

Retrieves/sets the killprocess option
for a file on a DVS mount.

Retrieves/sets the stripe width size for a
file on a DVS mount. To set the stripe
width, loadbalance option must be set.

Retrieves the number of nodes currently
available for a mount point.

S0005

67

DVS Configuration Settings, Mount Options, Environment Variables, and ioctl Interfaces

Variable Name
DVS GET REMOTE FS MAGIC

DVS BCAST TIOCTL

DVS AUGMENTED BCAST TOCTL

DVS_ TUNNEL TIOCTL

DVS AUGMENTED TUNNEL TIOCTL

Argument TypelSize
unsigned 64-bit

struct
dvs_ioctl tunnel

struct
dvs_augmented ioctl
_tunnel

struct
dvs_ioctl tunnel

struct
dvs_augmented ioctl
_tunnel

Purpose

Gets the remote file system type for a file
on a DVS mount.

Used for DataWarp to allow specialized
ioctl calls to be passed through DVS to a
remote server.

Used for DataWarp to allow specialized
ioctl calls to be passed through DVS to a
remote server.

Used for DataWarp to allow specialized
ioctl calls to be passed through DVS to a
remote server.

Used for DataWarp to allow specialized
ioctl calls to be passed through DVS to a
remote server.

S0005

68

DVS Resiliency and Diagnostics

6 DVS Resiliency and Diagnostics

Cray has developed the following DVS features to promote resiliency and enable diagnosis of DVS and the Cray
system:

e DVS Supports Failover and Failback for parallel modes. The topic describes how it works and includes
example console messages.

e DVS Periodic Sync Promotes Data and Application Resiliency and is more efficient than the DVS mount
option closesync. The topic describes how it works and how it can be tuned.

e DVS Statistics Enable Analysis of DVS performance on client and server nodes in CLE. The topic shows
where the statistics are stored and describes how to enable/disable and format statistics. There are many per-
mount statistics available. All currently collected statistics are listed and described in DVS Statistics Collected
on page 76.

e DVS Can Log Requests Sent to Servers to aid in debugging. The topic shows an example log file and
describes how to enable, disable, and reset request logging.

e DVS Can Log Details About File System Calls that the DVS server node makes. The topic describes what
type of infromation is collected along with how to adjust buffer content.

e DVS Lijsts Outstanding Client Requests, including the DVS server node and the amount of time the request
has been waiting for a response. In addition, DVS Provides a Plugin for Node Health Checker that outputs
information on the oldest outstanding client request.

6.1 DVS Supports Failover and Failback

DVS clients use resiliency communication agent (RCA) events to determine when server nodes have failed, when
DVS has been unloaded from a server node, and when server nodes have been booted and DVS is reloaded.
This ensures that all clients are informed of server failures and reboots in the same manner at the same time,
which reduces the underlying file system coherency traffic associated with rerouting 1/0 operations away from
downed servers and back to rebooted servers.

Cray DVS supports failover and failback for parallel modes:

e For cluster, stripe, and atomic stripe parallel modes, add the failover option to the options setting of a
client mount setting inthe cray dvs service to specify failover and failback.

e For loadbalance mode, failover and failback are specified by default.

DVS failover and failback are done in an active-active manner. Multiple servers must be specified in the servers
setting of a c1lient mount setting in the cray dvs service for failover and failback to function. When a server
fails, it is taken out of the list of servers to use for the client mount until it is rebooted. All open and new files use
the remaining servers as described below. Files not using the failed server are not affected.

When failover occurs:

S0005 69

DVS Resiliency and Diagnostics

e |If all servers fall, I/O is retried as described by the retry option (see Additional Options for Use in the
Options Setting of a Client Mount on page 59).

e Any mount point using loadbalance mode automatically recalibrates the existing client-to-server routes to
ensure that the clients are evenly distributed across the remaining servers. When failback occurs, this
process is repeated.

e Any mount point using cluster parallel mode automatically redirects 1/O to one of the remaining DVS servers
for any file that previously routed to the now-down server. When failback occurs, files are rerouted to their
original server.

e Any mount point using stripe parallel mode or atomic stripe parallel mode automatically restripes 1/0O across
the remaining DVS servers in an even manner. When failback occurs, files are restriped to their original
pattern.

Client System Console Message: "DVS: file_node_down: removing c0-0c2s1n3 from list of
available servers for 2 mount points”

The following message indicates that a DVS server has failed.

DVS: file node down: removing c0-0c2sln3 from list of available
servers for 2 mount points

In this example, c0-0c2s1n3 is the DVS server that has failed and has been removed from the
list of available servers provided in the servers setting of the DVS client mount.

After the issue is resolved, the following message is printed to the console log of each client of
the projection:

DVS: file node up: adding c0-0c2sln3 back to list of available servers
for 2 mount points

6.2 Periodic Sync Promotes Data and Application Resiliency

DVS periodic sync improves data resiliency and facilitates a degree of application resiliency so that applications
may continue executing in the event of a stalled file system or DVS server failure. Without periodic sync, such an
event would result in DVS clients killing any processes with open files that were written through the failed server.
Any data written through that server that was only in the server's page cache and not written to disk would be lost,
and processes using the file would see data corruption.

Periodic sync works by periodically performing an £sync on individual files with written data on the DVS servers,
to ensure that those files are written to disk. For each file, the DVS client tracks when a DVS server performs a
file sync and when processes on DVS clients write to it, and then notifies the DVS server when £sync is needed.
Periodic sync functions similarly to the DVS closesync mount option, but it is more efficient because it is aware
of which files may have written data. Unlike closesync and datasync, periodic sync can sync data over time
asyncronously so that the client does not need to wait for the sync operation to complete.

DVS periodic sync is effectively enabled by default because the sync_period secs parameter, which affects
the amount of time between syncs on the server, is non-zero by default. The only way to effectively disable
periodic sync is to set that parameter to 0. Cray recommends keeping periodic sync enabled instead of using the
closesync mount option.

S0005 70

DVS Resiliency and Diagnostics

Use the following three parameters to tune DVS periodic sync behavior. Because these parameters cannot be set
using the configurator, use the procedure Change Kernel Module Parameters Prior to Boot using Modprobe.d
Files and Simple Sync on page 32 and the following information, both from the topic Configure DVS using
Modprobe or Proc Files on page 30.

sync_num_threads

Specifies the number of threads on the DVS server that perform sync operations. The
number of threads must be a minimum of 1 thread and a maximum of 32. Note that it can
take up to sync_period secs for changes to this value to take effect.

e Default value: 8
e To view read-only: cat /sys/module/dvs/parameters/sync num threads
e To change prior to boot, add these lines to

<simple sync path>/etc/modprobe.d/dvs-local.conf

Set the number of threads that perform
sync operations on a DVS server
options dvs sync num threads=8

e To change dynamically:

hostname# echo 8 > /proc/fs/dvs/sync_num threads
sync_dirty_timeout_secs

On DVS servers, specifies the number of seconds that must have passed since the file was
written before DVS syncs it. The objective is to reduce unnecessary sync operations for files
actively being updated. Decreasing this number increases the likelihood that the file is in
use when it is synced. Increasing this number increases the likelihood that processes are
killed during a server failure.

On DVS clients, specifies the number of seconds that must have passed since the file was
written before DVS asks the server for an updated sync time. Decreasing this number
increases the number of DVS requests being sent. Increasing this number increases the
likelihood that processes are killed during a server failure.

e Default value: 300 (servers and clients)

e To view read-only:
cat /sys/module/dvs/parameters/sync _dirty timeout secs

e To change prior to boot, add these lines to
<simple sync path>/etc/modprobe.d/dvs-local.conf:

Set the timeout (seconds) for syncing
dirty files on a DVS server or client
options dvs sync dirty timeout_secs=300

e To change dynamically:

hostname# echo 300 > /proc/fs/dvs/sync_dirty timeout_secs
sync_period_secs

On DVS servers, specifies the number of seconds before the sync_num threads syncs
files on the DVS server (if necessary).

On DVS clients, specifies the number of seconds between checks for dirty files that need to
request the last sync time from the server.

S0005 71

DVS Resiliency and Diagnostics

e Default value: 300 (server), 600 (client)
e Toview read-only: cat /sys/module/dvs/parameters/sync period secs

e To change prior to boot, add these lines to
<simple sync path>/etc/modprobe.d/dvs-local.conf:

Set the sync period (seconds) on DVS server/client
options dvs sync_period_secs=300

e To change dynamically:

hostname# echo 300 > /proc/fs/dvs/sync_period secs

Afourth /proc file, /procsfs/dvs/sync_stats, collects statistics of the syncing behavior. This setting is not
tunable (read only).

6.3 DVS Statistics Enable Analysis

DVS provides both aggregate and per-mount statistics to enable performance and root-cause analysis. It reports
statistics for CLE client and server nodes in the following stats files. Each stats file is readable and writable.

/proc/fs/dvs/stats Contains aggregate statistics for the node. These reflect system
operations that cannot be correlated to a specific DVS mount point and
are therefore most interesting on DVS servers.

/proc/fs/dvs/mounts/nnn/stats Contains per-mount statistics for the node, where nnn is a decimal
integer value global to DVS on that node. Every invocation of the
mount command creates the numbered mount directory and
increments nnn. Every invocation of the umount command deletes the
numbered mount directory but does not decrement nnn. The value of
nnn appears inthe statsfile=/proc/fs/dvs/mounts/nnn/
stats parameter in the mount options for the mounted DVS file
system. This can be obtained using the mount -t dvs command.
More information about each of these mount points can be obtained by
viewing the mount file that resides in the same directory
(/proc/fs/dvs/mounts/nnn/mount).

/proc/fs/dvs/ipc/stats Contains DVS interprocess communication (IPC) statistics, such as
bytes transferred and received, NAK counts, and so forth. It also
contains message counts by type and size.

NOTE: The mount -t dvs list produced by Linux will no longer show the mntid=nnn flag, but will
instead show statsfile=/proc/fs/dvs/mounts/nnn/stats. This enables easier scripting: simply
parse the output for comma-separated options, pick out the statsfile option, and use whatever value it
provides as the stats file path.

How to Collect and Report DVS Statistics
DVS statistics are enabled and collected by default. Statistics can be controlled by
e specifying a module parameter at module load time

e writing text values into the corresponding stats file

S0005 72

DVS Resiliency and Diagnostics

Use one of the following parameters to enable and control DVS statistics. Because these parameters cannot be
set using the configurator, use the procedure Change Kernel Module Parameters Prior to Boot using Modprobe.d
Files and Simple Sync on page 32 and the following information, both from the topic Configure DVS using
Modprobe or Proc Files on page 30.

dvsproc_stat_control

(deprecated) Controls DVS statistics. This legacy parameter has been maintained for
backward compatibility, but values are overridden by dvsproc stat defaults, if
specified.

e Default value: 1 (enabled)
e Toview: cat /sys/module/dvsproc/parameters/dvsproc_stat control

e To change prior to boot, add these lines to
<simple sync path>/etc/modprobe.d/dvs-local.conf

Disable DVS statistics
options dvsproc dvsproc_stat_control=0

Enable DVS statistics
options dvsproc dvsproc_stat control=1

e To change dynamically:

This is root writable

at /sys/module/dvsproc/parameters/dvsproc_stat control, but changes
should be made only through the /proc/fs/dvs/stats interface, as shown in this
example.

hostname# echo 0 > /proc/fs/dvs/stats
hostname# echo 1 > /proc/fs/dvs/stats
hostname# echo 2 > /proc/fs/dvs/stats

dvsproc_stat_defaults

Controls DVS statistics. Use this parameter to disable/enable and format DVS statistics. The
options that can be specified are listed in Option Values for Controlling DVS Statistics on
page 74.

e Default values: enable, legacy, brief, plain, notest
e Toview: cat /sys/module/dvsproc/parameters/dvsproc_stat defaults
e To change prior to boot, add these lines to

<simple sync path>/etc/modprobe.d/dvs-local.conf:

Disable/enable and format DVS statistics
options dvsproc
dvsproc_stat_defaults="enable,legacy,brief,plain, notest"

e To change dynamically:

This is root writable

at /sys/module/dvsproc/parameters/dvsproc_stat defaults, but changes
should be made only through the /proc/fs/dvs/stats interface, as shown in this
example.

S0005 73

DVS Resiliency and Diagnostics

hostname#
hostname#
hostname#
hostname#

echo disable > /proc/fs/dvs/stats
echo enable > /proc/fs/dvs/stats

echo reset > /proc/fs/dvs/stats

echo json,pretty > /proc/fs/dvs/stats

To sample DVS statistics, read the contents of the corresponding stats file. All output is readable (ASCII) and in a
self-describing format. Note that in future releases, Cray may change the order of lines and may deprecate (or
remove as obsolete) individual statistics.

Control and Format Options

Use the options and values described in this table to control the collection and reporting of statistics.

e Multiple options can be specified, separated by commas, semicolons, spaces, or line-feeds.

e If incompatible options within the same category are specified (e.g., "verbose,brief"), the last option specified

will govern.

e If incompatible options from different categories are specified (e.g., "disable,json"), the option in a higher level
category will take precedence. The order of precedence (decreasing) for option categories is: control, format,
flags. For example, control options such as "disable" take precedence over format options such as "json."

e Options not specified will continue to use their existing values.

Table 1. Option Values for Controlling DVS Statistics

Option Option Value | Result
Category
legacy 0 Disables statistics collection and reporting (deprecated).
1 Enables statistics collection and reporting (deprecated).
2 Resets statistics (deprecated). It is not used with module parameters.
control disable Disables statistics collection and reporting.
enable Enables statistics collection and reporting.
reset Resets statistics.
format help Displays current information about the statistics values collected and reported.
legacy Presents statistics in text format (legacy format).
flat Displays statistics in flattened text format.
json Displays statistics in JSON structured format.
flags brief | verbose | ¢ Brief: omits statistics that have not been collected.

e Verbose: displays all statistics, even those that have not been collected.
Applies to flat and json formats only.

plain | pretty

e Plain: uses a more machine-readable presentation.

e Pretty: uses a more human-readable presentation. Applies to flat and json
formats only.

S0005

74

DVS Resiliency and Diagnostics

Option Option Value | Result
Category

test| notest |4 Test: overrides data with a test pattern, which means the statistics data is
replaced with fixed test data designed to be used for regression testing of
the formatting alone.

e Notest: removes the test pattern override and restores normal operation.

These combinations of format and flag options are common:

flat, plain Structured data is displayed as key/value pairs, one pair per line, key and value separated by a
single space. The format is: [container.[container.]...]key value[,value[,value...]]. Multiple comma-
separated values represent an array of values.

flat, pretty Same as "flat, plain” except that the single space is expanded to produce columns to enhance
readability.

json, plain Structured data is displayed in JSON format. It consists of a single, unnamed JSON object that
contains key/value pairs. There are no spaces or line-feed characters to enhance readability.

json, pretty Same as "json, plain" except that spaces and line-feeds are added to enhance readability.

These examples illustrate the order of precedence when the options specified are incompatible:
e ‘"legacy,json,pretty” resolves to "json pretty" for the printing format.
e "legacy,pretty” resolves to "legacy" because pretty and plain apply to the json and flat formats only.

o “flat,pretty,disable” resolves to "disable" and turns off stats.

Legacy Statistics

Cray left legacy statistics unchanged to ensure that existing scripts do not break, but does not provide formal
documentation of them. To provide statistics in a legacy-compatible format, specify options in the legacy category.
The legacy options are deprecated with this release and will be removed altogether in a future release.

Statistics and Caching

DVS statistics measure 1/O that passes through DVS. In general, all read, aio_read, write, and aio_write
operations specified by the user application result in a DVS read, aio_read, write, or aio_write operation. DVS
records the total bytes reported to the application for each read or write, and the maximum file offset accessed.
These are recorded regardless of whether the file system is cache-enabled.

If caching is disabled, each read or write operation is forwarded to the server(s). This results in a file system read
or write on the server and a transfer of data between client and server. The accumulated totals in the statistics
represent actual load on the DVS transport.

If (client) caching is enabled, the read or write operation is not forwarded to the server(s). Instead, it is diverted to
a Linux routine that attempts to satisfy the read or write using the Linux file system cache.

e If the data is already in the cache, Linux completes this operation entirely in memory. The accumulated totals
in the statistics represent no load on the DVS transport.

e If the data is not already in the cache, Linux issues a page read/write operation to DVS, which results in a
read/write sent to the server(s). DVS statistics record the total bytes reported for this cache read/write.

S0005 75

DVS Resiliency and Diagnostics

The effectiveness of the cache is represented by the ratio of user read/write bytes to cache read/write bytes.

ratio > 1.0 Indicates that the cache is being used effectively, with more cache hits than misses.

ratio = 1.0 Represents something like sequential reads of a very large file: reads force continual cache fills, but
the reads then consume all of the bytes in the cache before forcing a new cache fill.

ratio < 1.0 Indicates that cache is thrashing, such as would be caused by making small reads from a large
number of open files, such that only a tiny fraction of each cache page is ever consumed.

It is not feasible to determine whether any specific user application read/write "hit" or "missed" the cache, without
modifying the Linux kernel.

Statistics and the mmap () Functions

The mmap () functions use the same mechanisms as the Linux cache: mmap can be thought of as a named,
“private" Linux cache that the application sets up. The mmap () functions cannot be used unless the DVS file
system is cache-enabled. As a result, any attempt to read or write the file is diverted to the same Linux routine as
would be used for any caching. The Linux routine determines that this is a mmap () file and sends a page request
to DVS, then satisfies the read or write from memory. As in the case of caching, DVS statistics track the user
application's reads/writes and the Linux page requests separately. As with caching, it cannot be determined
whether a specific read/write "hit" or "missed” the mmap.

Because it is difficult to link a user application read/write with a corresponding page read/write, which is usually a
many-to-one linkage, it is difficult to distinguish between a Linux file system cache operation and an mmap ()
cache operation.

Rates and Averaging

Performance rate measurements are simply counts that are automatically zeroed when sampled by reading the
stats file. The resulting total is displayed, divided by the time since the last stats file read. Therefore it is possible
to create real-time performance data with one-second resolution by reading the stats file every second. Because
the DVS code normalizes the value by dividing by the time elapsed since the last sample, variations in the
sampling rate should not be reflected in the averages. For example, if the actual data transfer rate is a steady
1GB/sec, a rate of 1GB/sec will be displayed every time the stats file is sampled, even if it is sampled manually at
random intervals. If the actual data transfer rate is fluctuating, all of the fluctuating rates will be averaged together
(unweighted) over the entire sampling window, however long that may be.

Races

To keep DVS performance high, statistics reporting is not atomic: atomic values are sampled as each line of
output is rendered, while DVS is running. As a result, counts that might be expected to have an exact
mathematical relationship may not. For example, if all applications are reading in fixed-size blocks, one might
expect an exact relationship between iops and bytes read. However, that relationship will not generally be exact,
because values are actually sampled as the statistics output is rendered, and values rendered later in time will
contain new counts not found in values rendered earlier.

6.3.1 DVS Statistics Collected

The following table shows the full keys in flat format and describes whether the statistic is aggregate across all
mounts (/proc/fs/dvs/stats), or per-mount (/proc/fs/dvs/mounts/nnn/stats), or both.

S0005 76

DVS Resiliency and Diagnostics

Table 2. Aggregate (AGG) and Per-mount (MNT) Statistics Collected by DVS

Key AGG | MNT | Meaning

STATS.version . . Current version of statistics. Any time this number changes, the
format or content of the statistics have changed. Because DVS
uses a self-describing format (key/value or JSON), analysis
code may be able to run with new versions without code
changes; however, there is no guarantee.

STATS.flags . . Current option flags.

RQ.reg.req.ok . . Count of requests sent by this host that resulted in successful
response. See the table Valid req Values for valid values for
the RQ keys.

RQ.reg.req.err . . Count of requests sent by this host that resulted in a failed
send or a failure response.

RQ.reg.regp.ok . ¢ | Count of requests received by this host that resulted in
successful action on this host.

RQ.reg.regp.err 2 2 Count of requests received by this host that resulted in failed
action on this host.

RQ.reg.regp.dur.prv . . Duration (seconds) of the most recent request received and
processed by this host.

RQ.reg.reqp.dur.max . . Maximum duration (seconds) of any requests received and
processed by this host.

OP.fileop.ok . . Count of successful file operations called by Linux on this host.
See the table Valid fileop Values for valid values for the OP
keys.

OP.fileop.err . . Count of failed file operations called by Linux on this host.

OP.fileop.dur.prv . . Duration (seconds) of the most recent file operation on this
host.

OP.fileop.dur.max . . Maximum duration (seconds) of any file operations on this host.

IPC.requests.ok . These have the same meanings as the RQ.reg.reg.ok and

IPC.requests.ert . RQ.reqg.req.err keys above, except for these differences:

e |PC keys show aggregated messages across all mounts

IPC.async_requests.ok M (RQ keys show individual messages)

IPC.async_requests.err . e IPC keys grouped by whether messages sent

IPC.replies.ok - synchronously, asynchronously, or as a reply message

IPC.replies.err .

PERF.user.read.min_len . Low-water mark of all nonzero-length user read operations.
Includes both read() and aio_read() calls.

PERF.user.read.max_len . High-water mark of all nonzero-length user read operations.

PERF.user.read.max_off . High-water mark of all file byte offsets read by user calls.

S0005

77

DVS Resiliency and Diagnostics

Key AGG | MNT | Meaning

PERF.user.read.total.iops . Accumulated 1/O operation count of all user read operations
since module load.

PERF.user.read.total.bytes ¢ | Accumulated byte transfer count of all user read operations
since module load.

PERF.user.read.rate.iops . Accumulated 1/O operation count of all user read operations
since the last read of stats, divided by the number of seconds
since the last read of stats.

PERF.user.read.rate.bytes ¢ | Accumulated byte transfer count of all user read operations
since the last read of stats, divided by the number of seconds
since the last read of stats.

PERF.user.write.min_len . Low-water mark of all nonzero-length user write operations.
Includes both write() and aio_write() calls.

PERF.user.write.max_len . High-water mark of all nonzero-length user write operations.

PERF.user.write.max_off . High-water mark of all file byte offsets written by user calls.

PERF.user.write.total.iops ¢ | Accumulated I/O operation count of all user write operations
since module load.

PERF.user.write.total.bytes ¢ | Accumulated byte transfer count of all user write operations
since module load.

PERF.user.write.rate.iops 2 Accumulated 1/O operation count of all user write operations
since the last read of stats, divided by the number of seconds
since the last read of stats.

PERF.user.write.rate.bytes ¢ | Accumulated byte transfer count of all user write operations
since the last read of stats, divided by the number of seconds
since the last read of stats.

PERF.cache.read.min_len . Low-water mark of all nonzero-length Linux cache read
operations.

PERF.cache.read.max_len . High-water mark of all nonzero-length Linux cache read
operations.

PERF.cache.read.max_off . High-water mark of all file byte offsets read by Linux cache
calls.

PERF.cache.read.total.iops . Accumulated 1/O operation count of all Linux cache read
operations since module load.

PERF.cache.read.total.bytes ¢ | Accumulated byte transfer count of all Linux cache read
operations since module load.

PERF.cache.read.rate.iops . Accumulated 1/O operation count of all Linux cache read
operations since last read of stats, divided by the number of
seconds since the last read of stats.

PERF.cache.read.rate.bytes ¢ | Accumulated byte transfer count of all Linux cache read

operations since last read of stats, divided by the number of
seconds since the last read of stats.

S0005

78

DVS Resiliency and Diagnostics

Key AGG | MNT | Meaning

PERF.cache.write.min_len . Low-water mark of all nonzero-length Linux cache write
operations.

PERF.cache.write.max_len . High-water mark of all nonzero-length Linux cache write
operations.

PERF.cache.write.max_off * High-water mark of all file byte offsets written by Linux cache
calls.

PERF.cache.write.total.iops ¢ | Accumulated I/O operation count of all Linux cache write

operations since module load.

PERF.cache.write.total.bytes ¢ | Accumulated byte transfer count of all Linux cache write
operations since module load.

PERF.cache.write.rate.iops ¢ | Accumulated I/O operation count of all Linux cache write
operations since the last read of stats, divided by the number of
seconds since the last read of stats.

PERF.cache.write.rate.bytes ¢ | Accumulated byte transfer count of all Linux cache write
operations since the last read of stats, divided by the number of
seconds since the last read of stats.

PERF.legacy.inodes.created ¢ | Accumulated count of inodes created on this host (includes
mirrored inodes that represent existing files on the server).

PERF.legacy.inodes.deleted ¢ | Accumulated count of inodes deleted on this host.

PERFfiles.created ¢ | Accumulated count of regular files created on server file
systems.

PERFfiles.deleted ¢ | Accumulated count of regular files deleted on server file
systems.

PERF-files.open . Current count of DVS files open.

PERF.symlinks.created ¢ | Accumulated count of symlinks created on server file systems.

PERF.symlinks.deleted ¢ | Accumulated count of symlinks deleted on server file systems.

PERF.directories.created ¢ | Accumulated count of directories created on server file
systems.

PERF.directories.deleted ¢ | Accumulated count of directories deleted on server file
systems.

DVS Messages

The following table shows the valid reqg values to be used in the RQ statistics, as described in the table
Aggregate (AGG) and Per-mount (MNT) Statistics Collected by DVS on page 77. They represent messages
passed between the DVS client and server.

Table 3. Valid req Values

req Meaning

RQ_CLOSE Close open file on the server.

S0005 79

DVS Resiliency and Diagnostics

req

Meaning

RQ_CREATE

Create a regular file on the server.

RQ_FASYNC

RQ_FLUSH

RQ_FSYNC

RQ_GETATTR

Get file attributes on the server.

RQ_GETEOI

RQ_GETXATTR

Get file extended attributes on the server.

RQ_IOCTL

Perform a general ioctl on the server.

RQ_LINK

RQ_LISTXATTR

List extended attributes on the server.

RQ_LOCK

RQ_LOOKUP

RQ_MKDIR Create a directory on the server.
RQ_MKNOD Create a special device file on the server.
RQ_OPEN Open a file on the server.

RQ_PARALLEL_READ

RQ_PARALLEL_WRITE

RQ_PERMISSION

RQ_READDIR

RQ_READLINK

Read the contents of a symlink on the server.

RQ_READPAGE_ASYNC

RQ_READPAGE_DATA

RQ_READPAGES_RP

RQ_READPAGES_RQ

RQ_REMOVEXATTR

Remove extended attributes on the server.

RQ_RENAME

Rename a file on the server.

RQ_RMDIR

Remove a directory on the server.

RQ_RO_CACHE_DISABLE

RQ_SETATTR

RQ_SETXATTR

RQ_STATFS

Perform a file stat on the server.

S0005

80

DVS Resiliency and Diagnostics

req Meaning

RQ_SYMLINK Create a symlink on the server.

RQ_SYNC_UPDATE

RQ_TRUNCATE Truncate an open file on the server.
RQ_UNLINK Unlink (delete) a file object on the server.
RQ_VERIFYFS

RQ_WRITEPAGES_RP

RQ_WRITEPAGES_RQ

Virtual File System Operations

The following table shows the valid £ileop values to be used in IPC statistics, as described in the table
Aggregate (AGG) and Per-mount (MNT) Statistics Collected by DV'S on page 77. They are virtual file system
(VFS) operations requested by the Linux VFS framework, and they represent file system actions to be performed
by the kernel on behalf of a user-space application. For example, a call to open () in a user application results in
a call to the open handler (£fileop = open in the following table), requesting that the DVS file system open a file.
VFS operations may operate locally (for example, out of local cache memory), or they may result in one or more
request messages sent to the server. The d_, f , and |_ prefixes are vestigial references to the file system object
on which the operation is performed. They will be removed in a future release.

Table 4. Valid £1i1eop Values

fileop Meaning

aio_read Perform a vectorized read from an open file.
aio_write Perform a vectorized write to an open file.
d_create Create a new regular file in a directory.
d_getattr Get attributes for a directory.

d_getxattr Get extended attributes for a directory.

d_link Create a new dentry (link) for an inode.
d_listxattr List extended attributes for a directory.
d_lookup Find the dentry corresponding to an inode.
d_mkdir Create a subdirectory within a directory.
d_mknod Create a special device file within a directory.
d_permission Check access permissions for an object in a directory for current user.
d_removexattr Remove extended attributes for a directory.
d_rename Rename an object within a directory.
d_revalidate Revalidate an object within a directory.

S0005 81

DVS Resiliency and Diagnostics

fileop Meaning

d_rmdir Remove a subdirectory within a directory.
d_setattr Set attributes a directory.

d_setxattr Set extended attributes for a directory.
d_symlink Create a symlink within a directory.
d_truncate OBSOLETE

d_unlink Delete an object within a directory.
direct_io Perform vectorized 1/0 bypassing Linux cache.
evict_inode

f create NOT USED

f_getattr

f getxattr

f_link NOT USED

f_listxattr

f_mkdir NOT USED

f_mknod NOT USED

f_permission NOT USED

f_removexattr

f rename NOT USED

f_rmdir NOT USED

f_setattr

f setxattr

f_symlink NOT USED

f_truncate OBSOLETE

f_unlink NOT USED

fasync Control asynchronous I/O notifications.
flock BSD file locking not supported.

flush

fsync Perform fsync on an open file.
|_follow_link Follow a symlink.

|_getattr

|_put_link Free kernel memory after following a symlink.

S0005 82

DVS Resiliency and Diagnostics

fileop Meaning

|_readlink Read the contents of a symlink.
|_setattr

llseek Seek to a position in an open file.
lock Control discretionary file locks.
mmap

open Open a file system object.

put_super Free kernel memory for superblocks.
read Perform sequential read from an open file.
readdir

readpage

readpages

release

show_options

statfs

Get status of a file path.

unlocked_ioctl

write Perform sequential write to an open file.
write_begin Prefetch for a cached write.

write_end Perform a cached write.

writepage

writepages

write_super OBSOLETE

6.4 DVS Can Log Requests Sent to Servers

To aid in debugging problems that may arise, DVS request logging is enabled by default. To reduce the overhead
to each client request, DVS logs only those requests that take more than a certain number of seconds to
complete. For each request that exceeds the threshold, DVS writes a single line

to /proc/fs/dvs/request_ log. That minimum threshold can be changed (default is 15 seconds) to see more

or fewer requests in the log.

There are two ways to make changes to DVS request logging. When the system is running, an administrator can
ssh to a node and make changes dynamically by writing values to certain /proc files. Alternatively, to set the
behavior from the moment the DVS kernel modules load, administrators can set kernel module parameters prior

to boot.

S0005

83

DVS Resiliency and Diagnostics

Control DVS Request Logging and the Log Buffer Size

To disable, enable, or reset DVS request logging and to change the buffer size, use these kernel module
parameters. Because these parameters cannot be set using the configurator, use the procedure Change Kernel
Module Parameters Prior to Boot using Modprobe.d Files and Simple Sync on page 32 and the following
information, both from the topic Configure DV'S using Modprobe or Proc Files on page 30.

dvs_request_log_enabled
Logs each DVS request sent to servers.

e Default value: 1 (enabled)

e To view read-only:
cat /sys/module/dvsproc/parameters/dvs_ request log enabled

e To change prior to boot, add these lines to

<simple sync path>/etc/modprobe.d/dvs-local.conf

Disable DVS request log
options dvsproc dvs_request log enabled=0

Enable DVS request log
options dvsproc dvs_request_log_enabled=1

e To change dynamically:

hostname# echo 0 > /proc/fs/dvs/request log
hostname# echo 1 > /proc/fs/dvs/request log
hostname# echo 2 > /proc/fs/dvs/request log

The value 2 resets the log.

dvs_request_log_size_kb
Size (KB) of the request log buffer.
e Default value: 16384 KB (16384 * 1024 bytes)

e To view read-only:
cat /sys/module/dvsproc/parameters/dvs_request log size kb

e To change prior to boot, add these lines to
<simple sync path>/etc/modprobe.d/dvs-local.conf:

Set size (in kb) of the request log buffer
options dvsproc dvs_request_log size kb=17000

e To change dynamically:

hostname# echo 17000 > /proc/fs/dvs/request log size kb

To determine the current buffer size, cat the file. For example:

hostname# cat /proc/fs/dvs/request log size kb
16384

dvs_request_log_min_time_secs
Defines a threshold of time for data to be logged to the request log.

S0005 84

DVS Resiliency and Diagnostics

e Default value: 15 seconds

e To view read-only:
cat /sys/module/dvsproc/parameters/dvs_request log time min secs

e To change prior to boot, add these lines to
<simple sync path>/etc/modprobe.d/dvs-local.conf

Set threshold (in seconds) for time a DVS request
takes before logged. Requests taking fewer seconds
will not be logged.

options dvsproc dvs_request log_ time min secs

e To change dynamically:

hostname# echo 15 > /proc/fs/dvs/request log time min_ secs

Example DVS Request Log
Here is an example DVS request log.

hostname# cat /proc/fs/dvs/request log

2016-12-7 21:59:54-UTC: pid=34548 cmd=pkg-config path=/var/opt/cray/imps/image roots/pe compute cle 6.0-latest sles 12/
opt/cray/pe/pmi/5.0.11-20.0000.c0dc009.413.0.ari/1ib64/pkgconfig type=dir reg=RQ OPEN count=1 node=c0-0c2s15n0
time=0.000

2016-12-7 21:59:54-UTC: pid=34548 cmd=pkg-config path=/var/opt/cray/imps/image roots/pe compute cle 6.0-latest sles 12/
opt/cray/pe/pmi/5.0.11-20.0000.c0dc009.413.0.ari/1ib64/pkgconfig type=dir reg=RQ READDIR count=1 node=c0-0c2s15n0
time=0.000

2016-12-7 21:59:54-UTC: pid=34548 cmd=pkg-config path=/var/opt/cray/imps/image roots/pe compute cle 6.0-latest sles 12/
opt/cray/pe/pmi/5.0.11-20.0000.c0dc009.413.0.ari/1ib64/pkgconfig type=dir reg=RQ READDIR count=1 node=c0-0c2s15n0
time=0.004

2016-12-7 21:59:54-UTC: pid=34548 cmd=pkg-config path=/var/opt/cray/imps/image roots/pe compute cle 6.0-latest sles 12/
opt/cray/pe/pmi/5.0.11-20.0000.c0dc009.413.0.ari/1ib64/pkgconfig type=dir reg=RQ CLOSE count=1 node=c0-0c2s15n0
time=0.000

2016-12-7 21:59:54-UTC: pid=34548 cmd=pkg-config path=/var/opt/cray/imps/image roots/pe compute cle 6.0-latest sles 12/
opt/cray/pe/craype/2.5.10.1/pkg-config type=dir req=RQ OPEN count=1 node=c0-0c2s15n0 time=0.000

2016-12-7 21:59:54-UTC: pid=34548 cmd=pkg-config path=/var/opt/cray/imps/image roots/pe compute cle 6.0-latest sles 12/
opt/cray/pe/craype/2.5.10.1/pkg-config type=dir req=RQ READDIR count=1 node=c0-0c2s15n0 time=0.000

2016-12-7 21:59:54-UTC: pid=34548 cmd=pkg-config path=/var/opt/cray/imps/image roots/pe compute cle 6.0-latest _sles_ 12/
opt/cray/pe/craype/2.5.10.1/pkg-config type=dir req=RQ READDIR count=1 node=c0-0c2s15n0 time=0.000

2016-12-7 21:59:54-UTC: pid=34548 cmd=pkg-config path=/var/opt/cray/imps/image roots/pe compute cle 6.0-latest sles 12/
opt/cray/pe/craype/2.5.10.1/pkg-config type=dir reg=RQ CLOSE count=1 node=c0-0c2s15n0 time=0.000

2016-12-7 21:59:54-UTC: pid=34548 cmd=pkg-config path=/var/opt/cray/imps/image roots/pe compute cle 6.0-latest sles 12/
opt/cray/pe/iobuf/2.0.7/1ib/pkgconfig type=dir regq=RQ OPEN count=1 node=c0-0c2s15n0 time=0.000

2016-12-7 21:59:54-UTC: pid=34548 cmd=pkg-config path=/var/opt/cray/imps/image roots/pe compute cle 6.0-latest sles 12/
opt/cray/pe/iobuf/2.0.7/1ib/pkgconfig type=dir req=RQ READDIR count=1 node=c0-0c2s15n0 time=0.000

[oool

Each line in the log contains this information:

date/time Date and time (in UTC) of request.

pid User process ID of the process initiating the request.
cmd Command being executed by the user process ID.
path Path on the server node that is being referenced.
type Type of path (file, directory, link, etc.).

req Type of DVS request.

count Number of servers the request was sent to.

Some DVS client operations send a request to a single server, and others send a request to multiple
servers. The former will log a line with count=1, and the latter will log a line with count=N, where N is
the number of servers the request was sent to. When the request has been sent to multiple servers,
the single line in the log is a summary of the requests.

S0005 85

DVS Resiliency and Diagnostics

node Node is set to the node that the DVS request was sent to. If multiple nodes were targeted (i.e., the
count field is > 1), then the value displayed is [multiple].

time Time is set to the amount of time in seconds it took for the request to be sent to the server, execute, and
for the reply to be received by the client. Granularity is milliseconds, so 0.000 is displayed for requests that
take less than a millisecond.

6.5 DVS Can Log Details About File System Calls

DVS can log details about the calls that the DVS server node makes into the underlying file system. The log files
are created in /proc/fs/dvs/fs_log and can provide the administrator with useful information, such as:

e The pid and name of the thread making the file system call

e The operation being executed (open, close, read, write, getattr, ...)

e The uid of the thread making the file system call, which DVS sets to the uid of the process on the DVS client
e The APID of the process that made the request on the client node (if ALPS was used as the job launcher)

e The c-name of the client node that sent the request to the server

e The path corresponding to the operation, if any

The file system operations logged are a larger set than the list of DVS requests. This is because it is sometimes
necessary to make multiple and different file system calls to complete a single DVS request. For these secondary
file system operations, the operation logged contains op [func] where op is the file system operation performed
and func is the DVS function that contained the call. This lets the reader distinguish the primary from the
secondary file system calls.

hostname# cat /proc/fs/dvs/fs_log enable

2017-5-1 12:47:20-UTC: pid=31764 cmd=DVS-IPC msg op=open uid=13299 apid=491654 node=c0-0c0s11n0
time=0.001 path=/cray

Note: For some code paths, there is only access to the "basename" portion of the path.

Control DVS Log Details and Adjust Buffer Content

The following kernel module parameters are available to create log files and adjust buffer content if desired.
Because these parameters cannot be set using the configurator, use the procedure Change Kernel Module
Parameters Prior to Boot using Modprobe.d Files and Simple Sync on page 32 and the following information, both
from the topic Configure DVS using Modprobe or Proc Files on page 30.

dvs_fs_log_enabled

Logs information on I/O operations made from DVS to the underlying file system on DVS
server nodes.

e Default value: 1 (enabled)

e To view read-only:
cat /sys/module/dvsproc/parameters/dvs_fs log enabled

S0005 86

DVS Resiliency and Diagnostics

To change prior to boot, add these lines to
<simple sync path>/etc/modprobe.d/dvs-local.conf

Disable DVS fs log
options dvsproc dvs_fs log enabled=0

Enable DVS fs log
options dvsproc dvs_fs log_enabled=1

To change dynamically:

hostname# echo 0 > /proc/fs/dvs/fs_log
hostname# echo 1 > /proc/fs/dvs/fs_log
hostname# echo 2 > /proc/fs/dvs/fs_log

dvs_fs_log_size_kb
Size (KB) of the log buffer.

Default value: 32768 KB (32768 * 1024 bytes)

To view read-only:
cat /sys/module/dvsproc/parameters/dvs_fs log size kb

To change prior to boot, add these lines to
<simple sync path>/etc/modprobe.d/dvs-local.conf

Set size (in kb) of the fs log buffer
options dvsproc dvs_fs log size kb=17000

To change dynamically:

hostname# echo 17000 > /proc/fs/dvs/fs_log size kb

To determine the current buffer size, cat the file. For example:

hostname# cat /proc/fs/dvs/fs_log size kb
32768

dvs_fs_log_min_time_secs

Defines a threshold of time for data to be logged to the £s 1og.

Default value: 15 seconds

To view read-only:
cat /sys/module/dvsproc/parameters/dvs_fs log time min secs

To change prior to boot, add these lines to

<simple sync path>/etc/modprobe.d/dvs-local.conf:

Set threshold (in seconds) for time a DVS requests
takes before logged. Requests taking fewer seconds
will not be logged.

options dvsproc dvs_fs log_time min secs

To change dynamically:

hostname# echo 15 > /proc/fs/dvs/fs_log time min secs

S0005

87

DVS Resiliency and Diagnostics

6.6 DVS Lists Outstanding Client Requests

DVS provides a list of outstanding requests on client nodes in /proc/fs/dvs/ipc/requests, which lists the
DVS server node, the request, the DVS file system path, uid, time that the request has been waiting for a
response, and the associated apid. If the request is from a process that was not spawned through aprun, the
request apid is 0. An example output of the file looks like:

% cat /proc/fs/dvs/ipc/requests
server: c0-0c0s0n0 request: RQ LOOKUP path: /cray home user: 12795 time: 0.000 sec
apid: 3871

The file appears on DVS servers but returns an error when a user tries to access it.

6.6.1 DVS Provides a Plugin for Node Health Checker

The Node Health Checker (NHC) in CLE performs specified tests to determine if compute nodes allocated to an
application are healthy enough to support running subsequent applications. These tests are enabled by various
plugin scripts. These scripts run according to the node health configuration, typically after an abnormal
termination of a user application, as evidenced by a crash or a non-zero exit code.

Cray DVS provides dvs_request, a plugin script that outputs information on the oldest outstanding client
request in the /proc/fs/dvs/ipc/requests file, including the cname of the DVS server processing the

request. This plugin is included by default on systems that have an initial install (as opposed to an update) of CLE

5.2.UPO0O or later.

For more information on configuring and using NHC, see "Configure the Node Health Checker (NHC)" in XC
System Administration Guide.

S0005

88

DVS Troubleshooting

7 DVS Troubleshooting

Here are some issues that could arise when using DVS.

DVS Does Not Start after Data Store Moved to External Lustre File System

If DVS fails after the Cray system's data store is moved to a shared external Lustre file system, verify that DVS
has the correct 1nd_name.

1nd name uniquely identifies the LNet network that DVS will use. DVS communicates it to the LNet service when
DVS is being initialized. It must match the cray lnet.settings.local lnet.data.lnet name value set
inthe cray lnet service for DVS to boot properly. To find that value, search the CLE config set (this example
searches in config set p0 and finds Inet_name = gni4):

smw# cfgset search --term lnet name \
--state all --service cray lnet p0
1 match for 'lnet name' from cray lnet config.yaml

cray lnet.settings.local lnet.data.lnet name: gni4

If Ind name does not match 1net name from the cray Ilnet service, change it. Because 1nd name is a
kernel module parameter that cannot be set using the configurator, add these lines to

<simple sync path>/etc/modprobe.d/dvs-local.conf, substituting for gnix the value found from the
config set search:

Set identifier of LNet network DVS will use
options dvsipc lnet lnd name=gnix

For information about what <simple sync path> should be, see the procedure Change Kernel Module
Parameters Prior to Boot using Modprobe.d Files and Simple Sync on page 32, which is found in Configure DVS
using Modprobe or Proc Files on page 30.

ALPS Kills a Process to Avoid Potential Data Loss

DVS forwards file system writes from clients to servers. The data written on the DVS server may reside in the
server's page cache for an indeterminate time before the Linux kernel writes the data to backing store. If the
server crashes before the data is written to backing store, this data is lost. To prevent silent data loss, DVS kills
the processes on the clients that wrote the data. If the Application Level Placement Scheduler (ALPS) was used
to launch the application, the system displays the following message to the terminal before aprun exits: "DVS
server failure detected: killing process to avoid potential data loss."

To avoid this error message, do one of the following:

e Add the datasync option to the options setting of the client mount setting for that client mount in the
cray_dvs service, or use the DVS_DATASYNC user environment variable. This avoids the error message

S0005 89

DVS Troubleshooting

because each write operation is followed by fsync before it is considered complete. However, be aware that
this also exacts a substantial performance penalty.

e Addthe nokillprocess option to the options field of the client mount setting for that client mount in
the cray dvs service or set the DVS KILLPROCESS user environment variable to of £. When a server fails,
processes that have written data to the server are not killed. If a process continues to perform operations with
an open file descriptor that had been used to write data to the server, the operations fail (with errno set to
EHOSTDOWN). A new open of the file is allowed, and subsequent operations with the corresponding file
descriptor function normally.

Application Hangs as a Result of NFS File Locking
Applications may hang when NFS file systems are projected through DVS and file locking is used. To avoid this
issue, add the nolock option to the options field of the client mount setting for the NFS client mount in the

cray dvs service. See the nfs (5) man page for more information on the nolock option.

DVS Ignores User Environment Variables

If the nouserenv option has not been specified when configuring a DVS client mount, and a DVS user
environment variable that was set does not override the associated DVS mount option, it appears as if DVS is
ignoring user environment variables. This can be caused by the addition of a large number of user environment
variables. Due to the nature of Linux, if a user adds a large number of user environment variables (large enough
that the kernel needs to store that information somewhere other than the usual location), DVS may not be able to
find and apply those user environment variables, producing unexpected results.

To define a large number of user environment variables, Cray recommends that users include those definitions in
the user's shell so that they are available at startup and stored where DVS can always locate them.

S0005 90

DVS Caveats

8 DVS Caveats

Read the following caveats and limitations to avoid common pitfalls when configuring and using Cray DVS.

When Configuring DVS
GPFS (Spectrum When projecting a general parallel file system (Spectrum Scale), the client mount option
Scale) blksize blksize must match or be a multiple of the Spectrum Scale file system blocksize. When

projecting multiple Spectrum Scale file systems that have different block sizes, configure
a separate DVS client mount for each file system.

For example, projecting two Spectrum Scale file systems, one with a 64 kilobyte (KB)
block size, and another with a 1024KB block size, the client mount settings might have
these values:

1) 'gpfsl'
a) mount point: /gpfsl
b) spath: /dvsl
c) servers:

c0-0c0s0n2
d) clients: (none)
e) loadbalance: False
f) attrcache timeout: 14400
g) readonly: True
h) options: blksize=65536
2) 'gpfs2'

a) mount point: /gpfs2
b) spath: /dvs2
Cc) servers:

c0-0c0s0n3
clients: (none)
loadbalance: False
attrcache timeout: 14400
readonly: True
options: blksize=1048576

oQ Hh D Q.

expanded file system Setting up and mounting target file systems on Cray service nodes is the sole

support responsibility of the customer or an agent of the customer. Cray Custom Engineering is
available to provide a tailored file system solution. Please contact a Cray service
representative for more information.

S0005 91

DVS Caveats

When Using DVS Programmatically

client consistency

flock () not
supported

DVS supports close-to-open consistency, which means that files on client and server are
consistent at open () and close (). However, while a file is open, DVS does not
guarantee that the file on the client and the file on the server are consistent.

DVS does not support £1ock () system calls and will return an error. DVS will set errno
to ENOTSUPP when a £lock () call is attempted for a DVS-projected file system.

DVS supports file locking with fecnt1 (). For more information, see the fecntl (2) man
page.

S0005

92

Supplemental Information

9 Supplemental Information

With the SMW 8.0 / CLE 6.0 release, Cray has changed the way software is installed, configured, and managed
on XC Series systems. The new Cray Management System (CMS) leverages standard Linux and common open
source tools (e.g., zypper/yum for RPMs, Ansible, YAML/JSON configuration data), and it centralizes
configuration, keeping it separate from software images until it is applied to nodes at boot time or whenever cray-
ansible is run.

The core elements of this new management system are:

IMPS Image Management and Provisioning System (IMPS) is responsible for creating and distributing
repository content and for prescriptive image creation. Note that although filepaths for configuration data
and tools include imps, this is an artifact of an early implementation that grouped both image and
configuration management under IMPS. IMPS is now image management only.

CMF Configuration Management Framework (CMF) comprises the configuration data (stored in config sets on
the SMW), tools to manage and distribute that data (e.g., the configurator and the IMPS Distribution
System (IDS)), and software to apply the configuration data to the running image (Ansible plays).

NIMS Node Image Mapping Service (NIMS) is responsible for keeping track of which images get booted on
which nodes, what additional kernel parameters to pass to nodes at boot time, and which load file to use
within a boot image.

The following topics have been added to this DVS guide to provide additional information that may help in
understanding the DVS-specific procedures that comprise the bulk of this guide.

e Cray XC System Configuration on page 93

e About the Configurator on page 95

e Config Set Create/Update Process on page 96
e About Simple Sync on page 100

e About Node Groups on page 105

e About Config Set Caching on page 109

9.1 Cray XC System Configuration

To configure Cray XC systems and manage configuration content, system administrators use the Cray
configuration management framework (CMF). The CMF comprises configuration data, the tools to manage and
distribute that data, and software to apply the configuration data to the running image at boot time. Its major
components include configuration service packages, config sets, the IMPS distribution service (IDS), the
configurator, cray-ansible, and Ansible.

S0005 93

Supplemental Information

Configuration Starts with Configuration Service Packages

Configuration content (data and software) is installed as configuration service packages on the management node
of Cray XC systems (in /opt/cray/imps config/<service package>/default/configurator by
default). Each service package delivers configuration content for one or more system services. The contents of
each service package reside in the following subdirectories:

ansible Drop zone for Cray-provided Ansible play content.
callbacks Pre- and post-configuration scripts.

dist Drop zone for other Cray-provided content, such as static files required for the configuration of a
service.

template Configuration templates that define the configuration settings to be set and provide some default
values. These templates are never modified by administrators or other users.

Configuration service packages are installed for system upgrades and updates as well as for initial installation.

Configuration Information is Stored in Config Sets
Administrators use the cfgset command to manage configuration information. It takes configuration content

delivered in service packages and invokes the configurator tool to combine that content with site-specific
configuration content gathered from administrators either interactively or through bulk import. The results are used
by cfgset to create a configuration set or config set. A config set is a central repository that stores all
configuration information necessary to operate the system. Config sets reside on the management node (e.g., the
SMW) in /var/opt/cray/imps/config/sets by default. The contents of each config set reside in the
following subdirectories:

ansible Drop zone for local site-provided Ansible play content to be distributed with the config set. When
the config set is created, cfgset copies Ansible content from service packages to this location.
Whenever the config set is updated, cfgset copies Ansible content from service packages
again, overwriting the previous service-package Ansible content and leaving the site-provided
content unchanged.

changelog YAML change logs from previous sessions with the configurator.

config Configuration templates containing configuration information. When the config set is created, the
configurator copies service package templates to this location. Administrators can modify the
content of these templates using cfgset and the configurator. Whenever the config set is
updated, the configurator merges service package templates with the templates in this location.

dist Drop zone for other site-provided content, such as static files required for the configuration of a
service. When the config set is created, cfgset copies dist content from service packages to this
location. Whenever the config set is updated, cfgset copies dist content from service packages
again, overwriting the previous service-package dist content and leaving the site-provided content
unchanged.

files Files necessary for system configuration that are generated by configuration callback scripts or
manually and distributed with the config set (e.g., /etc/hosts).

worksheets Configuration worksheets generated by the configurator using data stored in the configuration
templates in the config subdirectory of the config set. Administrators copy these worksheets to
a location outside the config set, edit them with site-specific configuration data, and then import
them to create a new config set or update an existing one.

S0005 94

Supplemental Information

An administrator may create multiple config sets to support partitions or alternate configurations. Typically a config
set of type cle is created for each partition to store partition- and CLE-specific content, and another config set of
type global is created to store management node and global configuration data.

IDS Distributes Config Sets to Nodes

IDS, a read-only network share of content from the management node to the rest of the system, distributes config
sets to every node in the system. All config sets are shared throughout the system, but only one cle config set is
active on a given node at a time (in addition to an active global config set, which is applied to the entire system).
Currently, IDS leverages the 9P network file system and the Linux automounter facility as its distribution
mechanism; however, the content and use of the config sets is independent of the distribution mechanism.

Ansible Plays Apply Configuration during System Boot

Prior to booting the system, each node will have an image, the global config set, and the cle config set. When
the system boots, each node boots an unconfigured software image. Then Ansible plays, which can be located in
both the image and the config set (config set is the preferred location for site-supplied Ansible plays), apply
configuration to that image, bringing up the services pertinent to each node.

Administrators Configure/Reconfigure the System on an Ongoing Basis

Configuration happens at times other than initial installation. New configuration service packages can be installed
during system upgrades and updates, sites can decide to enable a new service or change the configuration of an
existing service, and so forth. In all of these scenarios, an administrator uses the cfgset command to manage
config sets and the cray-ansible script to apply any configuration changes. The cfgset command and its
associated subcommands and options enable administrators to perform a variety of operations on config sets in
addition to create and update, such as search, diff, list, show, validate, push, and remove. See the cfgset man
page for a description of its subcommands and options and some examples of each.

9.2 About the Configurator

The configurator plays a major role in Cray XC system configuration. The configurator gathers configuration data
from several sources (including the user, with helpful prompts and default values), merges and validates it, and
stores it in a central location on the management node, where it is used during boot to configure the entire
system. The configurator is invoked by the cfgset command to:

e handle all configuration template and worksheet operations

e perform steps 4, 5, and 6 of the Config Set Create/Update Process, including providing a user interface to
gather and modify configuration data interactively or through the import of configuration worksheets

The configurator is invoked with the cfgset subcommands create (except when the —-clone option used) and
update. It is invoked also with the search subcommand, because that involves searching data stored in the
configuration templates, but no changes are made to the config set using search. The options selected for the
create and update subcommands determine the mode in which the configurator is run (with or without user
interaction), which settings can be viewed and set by a user, and whether callback scripts are run before and after
the configurator session. The configurator is not involved when the remaining cfgset subcommands are used:
diff, list, push, remove, show, and validate. See the cfgset man page for a description of its
subcommands and options and some examples of each, or use cfgset SUBCOMMAND -h to see information
about just one of the subcommands.

S0005 95

Supplemental Information

Choose How to Interact with the Configurator: Modes
The mode option of the cfgset command determines how the configurator interacts with a user. Mode can be

specified only with subcommands create and update.

--mode | -m Possible values: auto (default), interactive, prepare

auto The configurator searches through all available configuration templates in the config set and
automatically presents all configuration settings that meet state and level filtering criteria. It
presents the configuration settings in a certain order (taking into account dependencies among
services) one at a time until all have been presented to the user, and then it automatically ends
the session and saves the config set.

interactive The configurator searches through templates as with auto mode, but in interactive mode, it
presents a menu of all available services (or a menu of all available settings, when a service has
been selected) that meet state and level filtering criteria. This mode enables the user to navigate
through the services and settings to view and modify the settings as needed. The configuration
session ends when the user exits the session. The user chooses whether to save any changes
to the config set upon exit.

prepare The configurator prepares configuration worksheets, one for each service. Each worksheet
contains all configuration settings (unfiltered) for that service, and the worksheet can be edited
offline and then imported later to create or update a config set. In this mode, the configurator
does not open an interactive session with the user.

Choose What to See with the Configurator: Filters

Two cfgset command options act as filters to determine which settings are available to view and set or update.
These options can be specified only with subcommands create, update, and search.

--state| -8 Possible values: unset (default), set, all

--level| -1 Possible values: required, basic (default), advanced

required Settings that must be set or the system will not function. The config set will not validate if any
required settings are skipped (i.e., left unset). Specify level required in a cfgset command to
filter for required settings only.

basic Settings that are likely to be used by most sites. If a basic setting is left unset, the template-
provided default is used. Specify level basic in a cfgset command to filter for both basic and
required settings.

advanced Settings that are likely to be used only by advanced users to tune a service. If an advanced setting
is left unset, the template-provided default is used. Specify level advanced in a cfgset command
to filter for all settings: advanced, basic, and required.

9.3 Config Set Create/Update Process

Config sets are created and updated using the cfgset command with the create and update subcommands,
respectively. Invoking cfgset with one of those subcommands initiates the following process, which defines how

S0005 96

Supplemental Information

configuration content is discovered from service packages installed on the management node and used, along
with site-supplied content, to create or update a config set.

1. cfgset searches for service packages in /opt/cray/imps config.

2. cfgset copies to the config set (for create) or overwrites in the config set (for update) ansible and dist
content from each service package. Note that it is only content from service packages that is overwritten;
content placed in those directories manually is unchanged.

NOTE: Manual changes to service package content in this directory will be overwritten!

3. cfgset runs pre-configuration callback scripts from each service package. Scripts act on the config set to
create content necessary for system configuration, which they place into the £iles subdirectory of the config
set.

4. cfgset invokes the configurator to do steps 4 through 6.

Configurator finds configuration templates from each service package that match the config set type, and then
copies them into the config set (for create) or merges them with the templates already in the config set (for
update).

5. Configurator takes one of these actions to further modify config set template data, depending on the
command-line options used:

interacts with Initiates an interactive session with the user and modifies config set template data
user based on the values supplied by the user.

Occurs when --mode interactive option used or no mode option used, which
defaults to auto mode.

does not interact Does not initiate an interactive session and does no further modification to config set
with user template data beyond the copy/merge of service package data already done in step 4.

Occurs when --mode prepare option used. Note that although this action is
associated with preparing worksheets, all three actions result in worksheets being
written in step 6.

imports Imports configuration worksheets and modifies config set template data based on the
worksheets values in each service worksheet.

Occurs when --worksheet-path FILEPATH option used.

6. Configurator writes configuration template data, configuration worksheets, and a changelog to the config set.
Note that the configurator never modifies the configuration templates in service packages, which are found
in /opt/cray/imps config/SERVICE PACKAGE for each service package.

7. cfgset runs post-configuration callback scripts from each service package.
8. cfgset autosaves the config set to a time-stamped clone.

The following three figures illustrate how this eight-step process is used to create a CLE config set. They differ in
how configuration data in a config set is further modified in step 5, corresponding to the three different actions:
interacting with the user (modification through user interaction), not interacting with the user (no further
modification), and importing worksheets (modification through bulk import of configuration worksheets). Black
lines indicate cfgset actions, and red lines indicate actions taken by the configurator when invoked by cfgset.

This first figure shows how the configurator creates config set templates (in the config subdirectory) from
service package templates in step 4, enables the user to enter new or modify existing configuration data in step 5,
and then saves the new/modified data to the config set templates and worksheets in step 6.

S0005 97

Supplemental Information

Figure 8. Process to Create a Config Set Interactively

smwi cfgset create pl

T

ﬂ m

-
config set (p0)
Configurator
ansible dist
files
T e
config C T~
worksheets
> changelog
i

(8)——» pO-autosave-2015-12-16T09:30:02

S0005 98

Supplemental Information

Figure 9. Process to Create a Config Set and Prepare Worksheets

smw¥ cfgset create —-mode prepare —--type CLE pl

T

£

service package

| template

dist rules

| ansible
|

callbacks

/path/to/worksheets

__ edited
workshests

®

© 0

config set (p0)

[X
ansible dist

files

T S
"l config C T~
» worksheets

P changelog

d P

The prepare-mode figure shows how the configurator creates config set templates from service package
templates in step 4, does nothing to that configuration data in step 5, and then saves the data from step 4 to
config set templates and worksheets in step 6. The blue dashed line indicates an action taken by the user after
cfgset has completed the create/update process to prepare worksheets. The user (usually an installer or system
administrator) copies the worksheets prepared by the configurator to a location outside the config set and edits
them (or has other site staff edit them) with site-specific configuration values. It is these edited worksheets that
are used when creating (or updating) a config set from worksheets (shown in worksheets figure).

S0005

99

Supplemental Information

Figure 10. Process to Create a Config Set from Worksheets

smw¥ cfgset create --worksheet-path

/path/to/worksheets/* worksheet.yaml --type CLE p0

/' h\

service package

@—b | template | dist ‘ rules
| ansible | callbacks |

) © QD

-
config set (p0)
Configurator ¥
fL
ansible .
dist
files
o
config (T —~
_|worksheets
/path/to/worksheets changelog

>
| edited
worksheets (8)—» po-autosave-2015-12-16T09:30:02

The worksheets figure shows how the configurator creates config set templates from service package templates
in step 4, imports new or modified configuration data from worksheets in step 5, and then saves the new/modified
data to the config set templates and worksheets in step 6.

9.4 About Simple Sync

The Cray Simple Sync service (cray_simple_sync) provides a simple, generic mechanism for copying user-
defined content to internal and external nodes in a Cray XC system. When executed, the service automatically
copies files found in source directories in the config set to one or more target nodes. The Simple Sync service is
enabled by default and has no additional configuration options. It can be enabled or disabled during the initial
installation using worksheets or with the cfgset command at any time. For more information, see man cfgset(8).

With regard to external nodes like eLogin nodes, the exclusions specified in the cray_cfgset_exclude
configuration service are applied when the CLE config set is transferred to the node, and some portions of the
Simple Sync directory in the config set are excluded. The "Files Excluded from eLogin Nodes" section contains
more details.

Simple Sync is a simple tool and not intended as the sole solution for making configuration changes to the
system. Writing custom Ansible plays might provide better maintainability, flexibility, and scalability in the long
term.

S0005 100

Supplemental Information

How Simple Sync Works

When enabled, the Simple Sync service is executed on all internal CLE nodes and eLogin nodes at boot time and
whenever the administrator executes /etc/init.d/cray-ansible start on a CLE node or eLogin node.
When Simple Sync is executed, files placed in the following directory structure are copied to the root file system

(/) on the target nodes.

The Simple Sync directory structure has this root:

smw:/var/opt/cray/imps/config/sets/<config set>/files/simple sync/

Below that root are the directories listed on the left. Files placed in those directories are copied to their associated

target nodes.

./common/files/

./hardwareid/<hardwareid>/files/

./hostname/<hostname>/files/

. /nodegroups/<node_group name>/files/

./platform/[compute|service] /files/

. /README

Targets all nodes, both internal CLE nodes and eLogin
nodes.

Targets a specific node with that hardware 1D, which is the
cname of a CLE node or the output of the hostid command
(e.g., 1eac0bO0c) on other nodes. An admin must create both
the <hardwareid> directory and the £iles directory.

Used ONLY for eLogin nodes. Targets a node with the
specified host name. An admin must create both the
<hostname> directory and the £iles directory.

Targets all nodes in the specified node group. The
directories for this nodegroups directory are automatically
stubbed out when the config set is updated after node
groups are defined and configured in the cray_node_groups
service.

Targets all compute nodes or all service nodes, depending
on whether they are placed in platform/compute/files
orplatform/service/files. Each time the config set is
updated, the HSS data store is queried to update which
nodes are service and which are compute.

Provides brief guidance on using Simple Sync and a list of
existing node groups in the order in which files will be
copied. This ordering enables an administrator to predict
behavior in cases where a file may be duplicated within the
Simple Sync directory structure.

Simple Sync copies content into place prior to the standard Linux startup (systemd) and before cray-ansible

runs any other services.

The ownership and permissions of copied directories and files are preserved when they are copied to root on the
target nodes. An administrator can run cray-ansible multiple times, as needed, and only the files that have

changed will be copied to the target nodes.

Because of the way it works, Simple Sync can be used to configure services that have configuration parameters
not currently supported by configuration templates and worksheets. An administrator can create a configuration
file with the necessary settings and values, place it in the Simple Sync directory structure, and it will be distributed

and applied to the target nodes.

S0005

101

Supplemental Information

Files Excluded from eLogin Nodes

Because elLogin nodes use the cray_cfgset_exclude configuration service, some directories within the Simple
Sync directory structure on the SMW can be excluded from transfer to eLogin nodes. The default “elogin_security”
profile will exclude the following config set directories from being transferred to an eLogin node when the CLE
config set is pushed to the node from the SMW.

e files/simple sync/common/files/etc/ssh

e files/simple sync/common/files/root/.ssh

To specify other areas within the Simple Sync directory structure that should not be transferred to eLogin nodes,
create a customized site profile in cray_cfgset_exclude.

Simple Sync and Configuration File Management
Configuration files can be managed in one of three ways:
e Managed entirely by a site system administrator

Such config files are considered non-conflicting because there is no potential conflict between administrator-
provided content and Cray-managed content.

e Managed entirely by Cray configuration services

Where possible, such config files have a comment at the top indicating that the file is completely under the
management of the Cray service. Files that have been changed by Cray services can be identified by
checking the change logs on the running node in /var/opt/cray/log/ansible. Simple Sync does not
provide a mechanism to override changes made by Cray services. To override changes made by Cray
services, refer to the documentation for the specific service.

e Jointly managed by a system administrator and by Cray config services

These config files can contain both administrator-managed content and Cray-managed content, so there is
potential for conflict. Administrator changes to Cray-managed content can be overridden. Content that is not
managed by Cray is considered non-conflicting because any admin changes to it will not conflict with changes
made by Cray services.

Because Simple Sync copies administrator-provided files into place before cray-ansible runs, any Cray
services that make small changes to jointly managed files will operate on the administrator-provided files.
Afterwards, that file will contain both non-conflicting administrator-provided content as well as the changes
made by the Cray service. Because these changes happen prior to Linux startup, the changes will be in place
when the services start up.

Characteristics of Simple Sync

Simple Sync is: Simple Sync is NOT:

for simple and straightforward use cases |a comprehensive system management solution

for copying a moderate number of intended to transfer large objects or a large volume of files
moderately sized files*

an interface to configure Cray "turnkey" services such as ALPS,
Node Health or Lightweight Log Manager (LLM)

S0005 102

Supplemental Information

* Bear in mind that anything in the Simple Sync directory structure is part of a config set, and a SquashFS copy of
the current config set is distributed to all nodes in the system. Even though it is a reduced-size config set that is
distributed, it is good practice to not add very large files to a config set, hence the use of "moderate" here.

Simple Sync:

e runs as early in the Ansible execution sequence as possible (it runs BEFORE other cray-ansible plays, so
it can be used to make changes to files that Cray updates, like sshd config)

e runs during the netroot setup sequence, so it can be used to change LNet and DVS settings, if needed

e supports node groups for targeting which system nodes to copy files to (see About Node Groups on page
105)

Simple Sync does not support:

e removing files

appending to files
e changing file ownership and permissions (the permissions of the file in the config set are mirrored on-node)
e backing up files

e overriding Cray-set values (it cannot be used to change files that Cray completely overwrites, such as
alps.conf, or change values in files that Cray modifies such as PermitRootLogin
in /etc/ssh/sshd _config)

Cautions about the Use of Simple Sync

e Simple Sync copies files from the config set, which in the case of nodes without a persistent root file-system is
cached in a compressed form, locally, in memory. As a result, each file stored in the config set uses some
memory on the node. Therefore, using Simple Sync to copy binary files or large numbers of files is
inadvisable.

e Be aware of differences in node environments when using Simple Sync. For example, systems configured
with direct-attached Lustre (DAL) have nodes running CentOS instead of SLES. Administrators would have to
be very careful to avoid putting an inappropriate configuration file into place when using the Simple Sync
platform/service target in such a situation.

e Storage and distribution of verbatim config files through Simple Sync creates the potential for unintentional
impact to the system when config files evolve due to software changes. Making minimal necessary changes
through a site-local Ansible playbook provides more flexibility and minimizes the potential for unintended
conseqguences.

Use Cases

Copy a non-conflicting file to all nodes
1. Place etc/myfile under ./common/files/ in the Simple Sync directory structure.

2. Simple Sync copies itto /etc/myfile on all nodes.

Copy a non-conflicting file to a service node

1. Place etc/servicefile under ./platform/service/files/ inthe Simple Sync
directory structure.

S0005 103

Supplemental Information

2. Simple Sync copiesitto /etc/servicefile on all service nodes.

Copy a non-conflicting file to a compute node

1. Place etc/computefile under ./platform/compute/files/ in the Simple Sync
directory structure.

2. Simple Sync copiesitto /etc/computefile on all compute nodes.

Copy a non-conflicting file to a specific node

1. Place etc/mynode under . /hardwareid/c0-0c0s0n0/files/ in the Simple Sync
directory structure.

2. Simple Sync copies it to /etc/mynode on c0-0c0sOn0.

Copy a non-conflicting file to a user-defined collection of nodes

1. Create a node group called "my_nodes" containing a list of nodes.

2. Update the config set.

smw# cfgset update pO0

3. Place etc/mynodes under . /nodegroups/my nodes/files/ in the Simple Sync
directory structure.

4. Simple Sync copies itto /etc/mynodes on all nodes listed in node group my_nodes.

Copy to a node a file that has Cray-maintained content
To reduce the number of authentication tries from the default of six,

1. Place a version of sshd config (entire file) that includes “MaxAuthTries 3”
under . /nodegroups/login nodes x86 64/files/etc/ssh/
and . /nodegroups/login nodes aarché64/files/etc/ssh/ inthe Simple Sync
directory structure.

2. The booted system will contain both:
e “MaxAuthTries 3" (from the files copied by Simple Sync)

e “PasswordAuthentication yes” (from modification of file by Cray)

Copy to a node a file that is exclusively maintained by Cray

Files exclusively maintained by Cray such as alps.conf cannot be updated using Simple Sync.
Please refer to the owning service (such as ALPS) for information on how to update the contents.

Copy to a node a file that resides on a file system that will be mounted during Linux boot

No special operational changes are necessary. However, Simple Sync will put the file in place
early in the boot sequence, and then it will be over-mounted by the file system. Because Simple

S0005

104

Supplemental Information

Sync runs again later, it will copy the file into the mounted file system. Due to the ordering of
operations, the file will not be present between the time the file system was mounted and the late
execution of Ansible.

On netroot login nodes, modify an LNet modprobe parameter
1. Generate afile my 1net.conf containing options lnet router ping timeout=100.

2. Place my lnet.conf under ./nodegroups/login/files/etc/modprobe.d/ inthe
Simple Sync directory structure.

3. The lnet router ping timeout value will be 100.

Note that normally Simple Sync does not allow the user to override Cray values, but this
procedure takes advantage of the standard Linux mechanism to override Kernel module options.

Copy a file with incompatible content to a node file that has Cray-maintained content

While Simple Sync allows an administrator to make changes to configuration files that are
modified by Cray, be very careful to avoid introducing syntax errors or incompatible values that
may cause the system to fail to operate correctly.

9.5 About Node Groups

The Cray Node Groups service (cray_node_groups) enables administrators to define and manage logical
groupings of system nodes. Nodes can be grouped arbitrarily, though typically they are grouped by software
functionality or hardware characteristics, such as login, compute, service, DVS servers, and RSIP servers.

Node groups that have been defined in a config set can be referenced by name within all CLE services in that
config set, thereby eliminating the need to specify groups of nodes (often the same ones) for each service
individually and greatly streamlining service configuration. Node groups are used in many Cray-provided Ansible
configuration playbooks and roles and can be also used in site-local Ansible plays. Node groups are similar to but
more powerful than the class specialization feature of releases prior to CLE 6.0. For example, a node can be a
member of more than one node group but could belong to only one class.

The figure below demonstrates how several nodes may belong to more than one node group. In this example,
node group A contains nodes 1-5, node group B contains nodes 4-5, and node group C contains nodes 4-9.
Nodes 4 and 5 belong to node groups A, B, and C. In this example, if nodes 1-5 are the desired target for an
Ansible play, the play can target node group A instead of specifying each node individually.

S0005 105

Supplemental Information

Figure 11. Node Group Member Overlap

N

Node

Node \
Group A Group C .
\\
Node 1 Node 6 \\
Node 2 Node 7
Node 3 Node 8 /
Node 9
oae /

Sites are encouraged to define their own node groups and specify their members. Administrators can define and
manage node groups using any of these methods:

e Edit and upload the node groups configuration worksheet (cray node groups worksheet.yaml).
e Use the cfgset command to view and modify node groups interactively with the configurator.

e Usethe cfgset get and cfgset modify CLI commands to view and modify node groups at the command
line. Note that CLI modifications must be followed by a config set update.

After using any of these methods, remember to validate the config set.

Characteristics of Node Groups
e Node group membership is not exclusive, that is, a node may be a member of more than one node group.

e Node group membership is specified as a list of cnames. However, if the SMW is part of a node group, it is
specified with the output of the hostid command. Also, host names are used for eLogin nodes that are to be
included in node groups.

e All compute nodes and/or all service nodes can be added as node group members by including the keywords
“platform:compute” and/or “platform:service” in a node group.

e Any CLE configuration service is able to reference any defined node group by name.

e The Configuration Management Framework (CMF) exposes node group membership of the current node
through the local system "facts" provided by the Ansible runtime environment. This means that each node
knows what node groups it belongs to, and that knowledge can be used in Cray and site-local Ansible
playbooks.

Default Node Groups
Default node groups are groups of nodes that
e are likely to be customized and used by many sites

e support useful default values for many of the migrated services

S0005 106

Supplemental Information

Several of the default node groups require customization by a site to provide the appropriate node membership
information. This table lists the Cray default groups and indicates which ones require site customization.

Note that as of CLE 6.0.UP06, Cray no longer supports a single node group for all login nodes. Instead, there are
two architecture-specific login node groups: one for all login nodes with the x86-64 architecture and one for all
login nodes with the AArch64 architecture. To specify all login nodes in the system, use both of those node

groups.

Table 5. cray_node_groups

Default Node

Requires

Notes

Group Customization?

compute_nodes No Contains all compute nodes in the given partition. The list of nodes
is determined at runtime.

compute_nodes_x86 | No Contains all x86-64 compute nodes in the given partition. The list

_64 of nodes is determined at runtime.

compute_nodes_aar | No Contains all AArch64 compute nodes in the given partition. The list

ch64 of nodes is determined at runtime.

service_nodes No Contains all service nodes in the given partition. The list of nodes
is determined at runtime.

service_nodes x86_ | No Contains all x86-64 service nodes in the given partition. The list of

64 nodes is determined at runtime.

service_nodes_aarc |No Contains all AArch64 service nodes in the given partition. The list

h64 of nodes is determined at runtime.

smw_nodes Yes Add the output of the hostid command for the SMW. For an
SMW HA system, add the host ID of the second SMW also.

boot_nodes Yes Add the cname of the boot node. If there is a failover boot node,
add its cname also.

sdb_nodes Yes Add the cname of the SDB node. If there is a failover SDB node,
add its cname also.

login_nodes x86 64 | Yes Add the cnames of all x86-64 internal login nodes on the system.

login_nodes_aarch6 | Yes Add the cnames of all AArch64 internal login nodes on the system.

4 Leave empty (set to []) if there are none.

elogin_nodes Yes Add the host names of external login nodes on the system. Leave
empty (setto []) if there are no eLogin nodes.

all_nodes Maybe Contains all compute nodes and service nodes on the system.
Add external nodes (e.g., eLogin nodes), if needed.

all_nodes_x86_ 64 No Contains all x86-64 nodes in the given partition. The list of nodes
is determined at runtime.

all_nodes_aarch64 |No Contains all AArch64 nodes in the given partition. The list of nodes

is determined at runtime.

S0005

107

Supplemental Information

Default Node Requires Notes

Group Customization?

tier2_nodes Yes Add the cnames of nodes that will be used as tier2 servers in the
cray_scalable_services configuration.

Why is there no "tierl_nodes" default node group? Cray provides a default tier2_nodes node group to support
defaults in the cray_simple_shares service. Cray does not provide a tierl_nodes node group because no default
data in any service requires it. Because it is likely that tierl nodes will consist of only the boot node and the SDB
node, for which node groups already exist, Cray recommends using those groups to populate the
cray_scalable_services tierl_groups setting rather than defining a tierl_nodes group.

About eLogin nodes. To add eLogin nodes to a node group, use their host names instead of cnames, because
unlike CLE nodes, eLogin nodes do not have chname identifiers. If eLogin nodes are intended to receive
configuration settings associated with the all_nodes group, add them to that group, or change the relevant
settings in other configuration services to include both all_nodes and elogin_nodes.

Additional Platform Keywords

Cray uses these two platform keywords to create default node groups that contain all compute or all service
nodes.

platform:compute

platform:service

New in CLE 6.0.UP06:

e Additional platform keywords are used to create pre-populated node groups that contain all compute or
service nodes with the x86-64 or AArch64 architecture.

platform:compute-X86
platform:service-X86
platform:compute-ARM

platform:service-ARM

e All platform keywords, such as platform:compute, platform:service-ARM, and
platform:compute-HW12, include nodes that have been disabled.

e Anewplatform:disabled keyword can be used by administrators to identify disabled nodes.

e (not new but previously undocumented) Groups of nodes can be excluded using a negation operator: ~ (the
tilde symbol). For example, a node group that contains all enabled compute and service nodes would have
the following list as its members:

- platform:compute
- platform:service
- ~platform:disabled

The ordering of the list does not matter: all non-negated keywords are resolved first, then negated ones are
removed.

Sites that need finer-grained groupings can use additional platform keywords to create custom node groups. For a
node group that contains all compute or service nodes with a particular processor/core type, use one of the
following platform keywords.

S0005 108

Supplemental Information

platform:compute-XX##

platform:service-XX##

For xx##, substitute a processor/core code, such as KL64 or KL68, which designate two Intel® Xeon Phi™
"Knights Landing" (KNL) processors with different core counts. To find the code associated with each node on a
Cray system, use the xtcli status pO0 command and look in the "Core" column of the output, as shown in the

following example.

smw# xtcli status pO
Network topology: cl
Network type: Aries

Nodeid: Service Core

c0-0c0s0n0: service
c0-0c0s0Onl: service
c0-0c0s0n2: service
c0-0c0s0n3: service
c0-0c0s1ln0: service
c0-0cO0slnl: service
c0-0c0sln2: service
c0-0c0sln3: service

c0-0c0s2n0: - HW12 X
c0-0c0s2nl: - HW12 X
c0-0c0s2n2: - HW1l2 X
c0-0c0s2n3: - HW12 X

ass 0

Arch| Comp state [Flags]

BW18 X86| ready
BW18 X86| ready
BW18 X86| ready
BW18 X86| ready
BW18 X86| ready
BW18 X86| ready
BW18 X86| ready
BW18 X86| ready

[noflags]|]
[noflags]|]
[noflags]|]
[noflags|]
[noflags|]
[noflags]|]
[noflags]|]
[noflags]|]

noflags]|]

86| ready [noflags]|]
86| ready [
86| ready [noflags]|]
86| ready [

noflags]|]

The following table lists some of the common processor/core codes supported by Cray.

Table 6. Cray Supported Intel Processor/Core (XX##) Codes

Processor (XX) Core (##) Intel Code Name
BW 12, 14, 16, 18, 20, 22, 24, 28, 32, 36, 40, 44 "Broadwell"

HW 04, 06, 08, 10, 12, 14, 16, 18, 20, 24, 28, 32, 36 "Haswell"

v 02, 04, 06, 08, 10, 12, 16, 20, 24 "lvy Bridge"

KL 60, 64, 66, 68, 72 "Knights Landing"
SB 04, 06, 08, 12, 16 "Sandy Bridge"
SK 04, 08, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56 "Skylake"

9.6 About Config Set Caching

Config sets are defined and reside on the Server of Authority, which on XC systems is the SMW. Config set
content is made available to all nodes in the system by means of Cray Scalable Services.

To make the sharing of config set content both quick and reliable, the cray-cfgset-cache service was created. It
caches config sets locally on nodes (compressed for a smaller footprint). On the SMW, it does the following:

e notices changes to con

fig sets on the SMW

e refreshes the local caches dynamically

S0005

109

Supplemental Information

e detects failures and retries automatically

The cray-cfgset-cache service ensures that config set content gets refreshed on all nodes whenever config sets
are created or updated on the SMW. It is triggered when cray-ansible is run on a node with the start,
restart, or 1ink commands.

ATTENTION: If the cray-cfgset-cache service is stopped, config set content in node-local memory will not
get refreshed when cray-ansible is run. If that happens, nodes will continue to use the most recent
compressed copy of the config set data created before the service was stopped.

What Gets Cached

The cray-cfgset-cache service does not copy an entire config set to node-local memory. Instead, it uses the config
set on the SMW to create these two files in the root of the config set:

e acompressed copy of the config set using SquashFS tools, (typically < 3 MB)
e achecksum of the compressed copy of the config set

The compressed copy is made available (effectively copied) to node-local RAM, and the checksum is used to
know when the config set in node-local memory no longer matches the config set on the SMW. Even though
Scalable Services makes the entire config set directory structure on the SMW available to the rest of the system,
only the compressed copy and its associated checksum are used by nodes. They are the key to the performance,
scalability, and reliability improvements provided by config set caching.

When cray-ansible is run on a node, the node will do the following:

1. Check to see if the cached node-local version of the compressed config set is out of date.

2. Ifitis stale, replace it with a newer version available on the SMW and start using that newer version.

S0005 110

	Contents
	1 About the XC™ Series DVS Administration Guide
	2 Introduction to DVS
	3 DVS Modes
	4 DVS Configuration and Use
	4.1 Configure DVS using the Configurator
	4.2 Configure DVS using Worksheets
	4.3 Reconfigure DVS Interactively
	4.4 Configure DVS using Modprobe or Proc Files
	4.5 Validate the Config Set and Run Ansible Plays
	4.6 Quiesce a DVS-projected File System
	4.7 DVS Client-side Write-back Caching can Yield Performance Gains
	4.7.1 About the Close-to-Open Coherency Model

	4.8 Force a Cache Revalidation on a DVS Mount Point
	4.9 Disable DVS Fairness of Service
	4.10 Reconfigure DVS for an External NFS Server
	4.11 Improve Performance and Scalability of GPFS (Spectrum Scale) Mounts

	5 DVS Configuration Settings, Mount Options, Environment Variables, and ioctl Interfaces
	5.1 DVS Configuration Settings and Mount Options
	5.2 DVS Environment Variables
	5.3 DVS ioctl Interfaces

	6 DVS Resiliency and Diagnostics
	6.1 DVS Supports Failover and Failback
	6.2 Periodic Sync Promotes Data and Application Resiliency
	6.3 DVS Statistics Enable Analysis
	6.3.1 DVS Statistics Collected

	6.4 DVS Can Log Requests Sent to Servers
	6.5 DVS Can Log Details About File System Calls
	6.6 DVS Lists Outstanding Client Requests
	6.6.1 DVS Provides a Plugin for Node Health Checker

	7 DVS Troubleshooting
	8 DVS Caveats
	9 Supplemental Information
	9.1 Cray XC System Configuration
	9.2 About the Configurator
	9.3 Config Set Create/Update Process
	9.4 About Simple Sync
	9.5 About Node Groups
	9.6 About Config Set Caching

