\

AR

AN N

AR

\\\\\
\\\\\\
\\\\\‘
\\\\\\“‘
\\\\\\ ‘\‘

\\\~\\\\\“\

: ‘\\\\\\\\\
‘\xxx\\“\“t‘
.<‘\\\‘\““

‘\\\\\\\“\
.\\\\““
\\\\\“‘
\\\“\‘
.\“\\
.‘\‘\\

IS IS
lleiieeealliiinin
' ' I".’."':‘
) ',:oooou.‘
| |

(/’/I
T NN
00250000053 SREE SRERES
1] 4 + + ‘k“\""
1,0 1',4 'ﬂ) ‘:‘ RN
AV 4 4 3 . NI
{ | + s YL SR A
Ill T \“\\\
!II ‘*‘ » \\“\‘\
oA SO 28 N
lI' ot NN
I ‘\‘\\\\\\“\‘
{ “ \\\\\\“">~
“‘\\\\\\““
M \\\\\\\\““‘
} \\\\\\\\“‘
‘\\ \\\\\“\ i
) Laa
PR RINND N
\\\\\\\\\ VS
LSRR
\\\\\\\\\\\‘\
S S SR o
N AR E R TR RN
\\\\\\\\ \“~\
\\\\\\“\\\‘ v
\\\\\\\\\\\\\\ \\
\ \
\\\\\\ \\\\\\ \\ \
\\\\ AN \\\ \\ \‘\‘\ \
\\ v \\ \\ \ \ \
) \\\ \\\\\\\ \ '
v
SRR SRR o
A9 WV Vv o
\ W\ Voo '
\ \

\
B Vv oy vty
W \\\ AT) Yy
WY \\\ vy IR
\\\ P o
! \\\ WYy v . N ‘ "
_\\ \\\ \\\\ vy ot N \‘\
Wi S A A TR
W vy v Y \ ‘
WA Y Vot ‘
Wity v
AN vy oty oy '
AW Y RN
\\ \\ WSt s et Yy
‘\}\)\\\\\\\\\“ Yy byt .
\ \
B WP U I IR I ERE

Contents

Contents

1 About the XC™ Series CoNfIQUuIrator USEI GUITE.........uuuueiiiiiieaaiaiiaiitt ettt e e ettt et e e e e e e e e e e s s aianbbebeeeeaaaaaeeaeas 4
2 Introduction t0 the Cray CONfIQUIALON.ueiiiiieii ettt e et e e e e e e e s e s bbbt ee e e e e e e e e e e e e aaaannbebeeeeeeas 7
2.1 About Configuration SErviCe PACKAGES.uuuuuiiiiiieeeeiii ittt et e e e e e e s s e st e e e e e e e e s e s ss et a e e reeeaaeeeeesaaaanns 7

A A o o101 @ o TS = PR 8

2.3 About Configuration WOIKSREELS..........oiiiiiiiiei et 10

2.4 About Variable Names in the Configurator and Configuration Worksheets.............ccocoveviiiiiiiiiiniiienen, 10

3 Config Set and ConfigUrator OPEIAtIONS. e iiiie ettt e e e e e e e et e e et e e e e e e s s s aanbbebeeeeeeaaaaaeasaaannbbnbeeeeeans 12
3.1 Config Set Create/UpPAate PrOCESS.uiiiiiiiiiiiee ettt e e e e e e e e e e e e s s bbb b e aeeeeaaaeaeeaaaaans 13

3.2 Use Mode to Choose How to Interact with the Configurator..............ccccciiieiiiiie e 16

3.3 Use Filters to Choose What to See with the Configurator.............cueeeiiiiiiiciiiiiiecce e 17

3.4 Create @ CONTIG SOL.....eiiiiiiiiiie ettt bt e et b e e e s et b bt e e e e et be e e e e e aabbe e e e e e abbbe e e e e abbeeeeean 18

3.4.1 Create a Config Set from Configuration WOrkSheets.ccccveeiiiiiiiiiiiiiie e 19

3.4.2 Create a Config Set DY ClIONING.......cooiiiiiiei ettt e e e e e e e e e nnee e 21

3.4.3 Create a Config Set Without CallDACKS............eeiiiiiiiiiii e 21

3.4.4 Create a Config Set INEraCtiVEIY.........uuuiiiiiiie e a e e e e 22

T oo F= L (== W O] T ST P 22

3.5.1 Update a Config Set INtEraCtiVelY..........eoiiiiiiiiiie e 23

3.5.2 Update a Config Set from Configuration WOrkSheets............cccuveiiiiiiiiiiiiiiiie e 24

3.5.3 Update a Config Set without CallDacKS..........ccc.uuiiiiiiiiiiae e 26

3.5.4 RENAME @ CONTIG SOL...ciiiiiiiiiiie ettt e e e e e e e s e e bbbt e e e e e e e e e e e e e aaaannes 26

3.5.5 Update a Single Service in @ Config Sel.......uiiiiiii i 26

I ST = T Vol o J= @0 g Vi o 1R =) PP PREERP 27

3.7 Retrieve or Modify Configuration Data Using the Command Line Interface...........ccccccceevveeeiiiiiicivinnnnnn, 28

3.7.1 Use cfgset get to Retrieve Config St DAta..........ccuveieiiiiiiiieiiiiiee et 31

3.7.2 Use cfgset modify to Edit Config Set Data.........ccevveeeiiiiiiiiiniiiiiiieieee e e 31

3.8 Manually Edit Configuration FilES.............ccciuiiiiiiiiii e e e e e e e e s s e s e e e e aaee s 34

3.8.1 Manually Edit Service Enable/INherit Data..............eeeiiiieeeiiiiiiiiieecee e e 34

3.8.2 Manually Edit Class-Scoped Setting Datal............cueeiiiiiieeeiiiiiee et 35

3.8.3 Manually Edit Multival-Scoped Setting Data............cueeieiiiiiiiieiiiiee et 35

3.9 Validate a Config Set and List Validation RUIES............coociiiiiiiiiii e 38

3.10 REMOVE @ CONFIG SEL......uutieeiiiiieiie ittt e oottt ettt e e e e e e e et bbb e e et e e aaeeeseaasnbbbbeseeeeaaaeaeeaaaann 40

3.11 Back Up or Restore User, Group, and Permissions Information Files...........ccccccccieeeiiiiiiiiiiiiineeeeeenn, 40

y/to] a1 iTo U = 1(o QU EST =T gl g (=1 o = Lo =SSR 43
4.1 Tips for Configurator INEraCtive SESSIONS..........uiii ittt e e et e e s st e e e s sbeeeeeeaaes 43

4.2 Configurator Data Types and HOW t0 Set THEM.........oooiiiiiiiii e 47

S2560 2

Contents

4.3 Configurator SCrEENS NG IMEINUS.ottt e e e e e e e e e e b ettt eeaaaaeasassanbasbesaeeeeaaaaeesaaanns 58
4.4 Basic Configurator Ul OPEIAtiONS.cc..uuuiiieiieieeeee ettt et e e e e e e e e s s aaibbbees et et e aaee e s s s s abbsbeeeeeeeaaaeeesaaanns 62
5 Common Tasks When Using the Configurator INteractively.............ueeeiiiiiee i 64
5.1 Locate a Configuration Parameter in @ CONfig Set..........coiiiiiiiiiiiiiiee e 64
5.2 Change a Basic Setting Field during a Configurator SESSION............eiiiiiiiiiiiiiiiiiie e 65
5.3 Change a List Setting Field during a Configurator SESSION..........c.couiiiiiieiiiiiiie et 67
5.4 Change a Multival Setting Field during a Configurator SESSION..........cc.cuiiiiiiiiiiiiiiiiee e 69
5.5 Change the Service Enabled/Disabled Status during a Configurator SESSION............ccooviiviiiiiieieneeeennn. 72
5.6 Change Service Inheritance during a Configurator SESSION...........uuveiiiieeeiiiiiiiiiiiee e 73
5.7 Revert a Field to its Default Value during a Configurator SESSION..........ccccvviiiieirieie e e e 74
6 Common Tasks When Using Configuration Worksheets for Bulk IMport...........cccooiveiiiiinieee e 76
6.1 Change the Service Enabled Field in a Configuration Worksheet............ccccoviiiiiiii e 76
6.2 Change the Service Inherit Field in a Configuration WOrkSheet.............cccccciiiiiiiiiiiiiiiie e 77
6.3 Change a Basic Setting Field in a Configuration WOrkSheet................oeeiiiiiiiiiiiiiiieee e 79
6.4 Change a Multival Setting Field in a Configuration WOrkSheet...........ccccvvveieiiiiiiiiiiiieeeeeee e 80
A0 FT A (0181 o] 1=T] oo 41 o TN I 01 SRR 83

S2560 3

About the XC™ Series Configurator User Guide

1 About the XC™ Series Configurator User Guide

The XC™ Series Configurator User Guide (S-2560) describes the configurator tool within the context of the Cray
configuration management framework (CMF) and provides procedures and examples for using that tool both
interactively and with configuration worksheets.

Release CLE 6.0.UP07

This publication of XC™ Series Configurator User Guide supports Cray software release CLE 6.0.UPO07, released
on 12 JUL 2018.

New in this release

e There are no major revisions to this publication for the CLE 6.0.UPQ7 release.

Audience and Scope

This publication is intended for system installers, administrators, and anyone who configures software services on
a Cray XC™ Series system. Use of the term user throughout refers to the intended audience, not to end users of
the system.

Command Prompt Conventions

Host name The host name in a command prompt indicates where the command must be run. The account
and account in that must run the command is also indicated in the prompt.
command

prompts e The root or super-user account always has the # character at the end of the prompt.

e Any non-root account is indicated with account @host nane>. A user account that is
neither root nor crayadnm is referred to as user.

Run the command on the SMW as root.
Smw#
Run the command on the CMC as root.
cmc#
Run the command on the SDB node as root.
sdb#
Run the command on the boot node as the crayadm user.
crayadm@boot>
; Run the command on any login node as any non-root user.
user@login>
Run the command on the specified system as root.
host nanme#

S2560 4

About the XC™ Series Configurator User Guide

Command
prompt inside
chroot

Directory path
in command
prompt

Run the command on the specified system as any non-root user.
user@host nanme>

For a system configured with the SMW failover feature there are two

gmw%z SMWs—one in an active role and the other in a passive role. The
SMW that is active at the start of a procedure is smwl1. The SMW that
is passive is smw?2.
i} In some scenarios, the active SMW is smwl1 at the start of a
SEDILIYES procedure—then the procedure requires a failover to the other SMW.
smwpassive#)

In this case, the documentation will continue to refer to the formerly
active SMW as smw1, even though smw?2 is now the active SMW. If
further clarification is needed in a procedure, the active SMW will be

called smwactive and the passive SMW will be called smwpassive.

If the chroot command is used, the prompt changes to indicate that it is inside a chroot
environment on the system.

smw# chroot /path/to/chroot

chroot-smw#

Example prompts do not include the directory path, because long paths can reduce the clarity
of examples. Most of the time, the command can be executed from any directory. When it
matters which directory the command is invoked within, the cd command is used to change
into the directory, and the directory is referenced with a period (.) to indicate the current
directory.

For example, here are actual prompts as they appear on the system:

smw:~ # cd /etc

smw:/etc# cd /var/tmp
smw:/var/tmp# Is _/Tile
smw:/var/tmp# su - crayadm
crayadm@smw:~> cd Zusr/bin
crayadm@smw:/usr/bin> _/command

And here are the same prompts as they appear in this publication:

smw# cd /etc

smw# cd /var/tmp

smw# Is _/Ffile

smw# su - crayadm
crayadm@smw> cd Zusr/bin
crayadm@smw> ./command

Typographic Conventions

Monospace Indicates program code, reserved words, library functions, command-line prompts,
screen output, file/path names, and other software constructs.
Monospaced Bold Indicates commands that must be entered on a command line or in response to an

interactive prompt.

S2560

About the XC™ Series Configurator User Guide

bliqueorltalics Indicates user-supplied values in commands or syntax definitions.

Proportional Bold Indicates a GUI Window, GUI element, cascading menu (e.g., Ctrl - Alt - Delete),
or key strokes (e.g., press Enter).

\ (backslash) At the end of a command line, indicates the Linux® shell line continuation character
(lines joined by a backslash are parsed as a single line).

Trademarks

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY and
design, SONEXION, URIKA, and YARCDATA. The following are trademarks of Cray Inc.: APPRENTICEZ2,
CHAPEL, CLUSTER CONNECT, CRAYDOC, CRAYPAT, CRAYPORT, DATAWARP, ECOPHLEX, LIBSCI,
NODEKARE. The following system family marks, and associated model number marks, are trademarks of Cray
Inc.: CS, CX, XC, XE, XK, XMT, and XT. The registered trademark LINUX is used pursuant to a sublicense from
LMI, the exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis. Other trademarks used in
this document are the property of their respective owners.

S2560 6

Introduction to the Cray Configurator

2 Introduction to the Cray Configurator

To configure Cray XC systems (CLE 6.0 and later) and manage configuration content, system installers and
administrators use the Cray configuration management framework (CMF). The CMF comprises configuration
data, the tools to manage and distribute that data, and software to apply the configuration data to the running
image at boot time. The cfgset command and the configurator that it invokes are the primary tools that Cray
provides for managing configuration data. This user guide describes all of the cfgset subcommands and many
of the options needed to manage configuration data; however it focuses on the subset of subcommands and
options that invoke the configurator tool. Use of the term user throughout refers to system installers and
administrators, not to end users of the system.

The Configurator and the CMF Components it Touches

Within the CMF, configuration begins with the installation of configuration service packages on the system's
management node. Then cfgset is used to pull configuration content from those service packages to create a
central repository called a configuration set or config set, which is where the Cray Linux Environment (CLE) stores
all configuration information necessary to operate the system. The configurator, invoked through the cfgset
command, finds configuration templates from each service package that match the config set type and copies
them into the config set. The configurator then gathers site-specific configuration data interactively or through bulk
upload of data entered in configuration worksheets (optional), merges any new data with the data in the config set
that was pulled from the service packages, and writes it out to config set templates and configuration worksheets.

To complete the picture, configuration continues (without the help of the configurator) through the actions of other
CMF components. The IMPS Distribution Service (IDS) makes config sets, resident on the management node,
available to all nodes in the system as read-only content. At each node, config set data is consumed by Ansible
plays, another component of the CMF, which act upon that data during the booting phase to enable each node to
dynamically self-configure.

2.1 About Configuration Service Packages

Configuration content (data and software) is installed as configuration service packages on the management node
of Cray XC systems (in Zopt/cray/imps_config/<service package>/default/configurator by
default). Each service package delivers configuration content for one or more system services. Cray-supplied
configuration service packages may be augmented by site-supplied service packages as well, if sites wish to
create their own. In both cases, the contents of each service package reside in the following subdirectories:

ansible Ansible play content.
callbacks Pre- and post-configuration scripts.
dist Other content, such as static files required for the configuration of a service.

template Configuration templates that define the configuration settings for a service and provide some
default values. These templates are never modified by administrators or other users.

S2560 7

Introduction to the Cray Configurator

rules Validation rules scripts are located here.

Configuration service packages are installed for system updates and upgrades as well as for initial installation.

Configuration Templates

Configuration templates define the parameters (configuration data) that are required by the system to dynamically
self-configure. Each template defines a single service, which is a logical grouping of data needed to configure that
service (networking, time, user settings, etc.). The data for configuring a service is composed of settings, which
act as logical groupings of configuration data within a service. Configuration templates may include pre-populated
data (default values) provided by the service package as a convenience or to specify values that are required for
the service to function. Configuration templates in a configuration service package are never modified by sites.
When configuration template content is pulled into a config set, the configuration templates created within the
config set are modified by the site and become the repository for all the data needed to define the services.

Templates are implemented as YAML files and adhere to a specific, versioned schema. The configuration
template schema defines general service-level attributes as well as the validation, documentation, and format of
configuration data for each service. The template naming convention is <si t e>_<ser vi ce>_config.yaml.
Cray-provided configuration templates use the prefix cray_ as the <si t e> portion of the file name. For example,
the Cray-provided template for the networking service is cray_net_config.yaml.

Callback Scripts

When config sets are created or updated, scripts found in the service package cal Ibacks subdirectory are
executed prior to and immediately after a configurator session. These scripts act on the data in the configuration
templates and create content necessary for system configuration, which they place into the fi les subdirectory of
a config set when it is created or updated. All files in the service package callbacks location are executed if they
are marked as executable in the file system.

Ansible and Dist Content

The configuration of a service on the system may require certain static files or Ansible content to be included in
the config set for use in the rest of the system. The ansible and dist subdirectories act as repositories for that
content. Each time a config set is updated, the content from these subdirectories overwrites content in the config
set that originated from the service package.

Validation Rules

Validation rules are scripts that are run by the cfgset val idate command. These Cray-provided scripts are
used to provide validation beyond the basic checking done by the configurator. Examples include checking the
correctness of settings within services, between services, and between global and non-global config sets.

2.2 About Config Sets

Users invoke the cfgset command to take configuration content delivered in service packages and combine it
with site-specific configuration content gathered either interactively or through bulk import. The results are used
by cfgset to create a config set, which is a central repository that stores all configuration information necessary
to operate the system. Config sets reside on the management node (e.g., the SMW)

S2560 8

Introduction to the Cray Configurator

in /var/opt/cray/imps/config/sets by default. The contents of each config set reside in the following
subdirectories:

ansible Local site-provided Ansible play content can be placed here for distribution with the config set.
When the config set is created, cfgset copies Ansible content from service packages to this
location. Whenever the config set is updated, cfgset copies Ansible content from service
packages again, overwriting the previous service-package Ansible content and leaving the site-
provided content unchanged.

changelog YAML change logs from previous sessions with the configurator.

config Configuration templates containing configuration information. When the config set is created, the
configurator copies service package templates to this location. Users can modify the content of
these templates using cfgset to invoke the configurator. Whenever the config set is updated,
the configurator merges service package templates with the templates in this location.

dist Other site-provided content, such as static files required for the configuration of a service, can be
placed here for distribution with the config set. When the config set is created, cfgset copies
dist content from service packages to this location. Whenever the config set is updated, cfgset
copies dist content from service packages again, overwriting the previous service-package dist
content and leaving the site-provided content unchanged.

files Files necessary for system configuration that are distributed with the config set. They can be
placed here by:

e the cfgset command, which runs configuration callback scripts to generate some
configuration files (e.g., /etc/hosts)

e the Simple Sync service
e |ocal site administrators

worksheets Configuration worksheets generated by the configurator using data stored in the configuration
templates in the config subdirectory of the config set. Administrators copy these worksheets to
a location outside the config set, edit them with site-specific configuration data, and then import
them to create a new config set or update an existing one.

Config Set Types

All config sets have a type associated with them that is specified upon creation. XC systems require both a
global config set type and a cle config set type. After a config set of a given type is created, its type cannot be
changed. A user may create multiple config sets to support partitioned systems or alternate configurations.
Typically a config set of type cle is created for each partition to store partition- and CLE-specific content, and
another config set of type global is created to store configuration data that pertains to the management node
domain as well as configuration data that can be easily shared among cle config sets. Config sets can be
portable between partitions or to other systems if their partition-specific information is modified accordingly.

Configuration Service Inheritance

When a config set is created or updated, only service package templates that match the type of the config set can
be included in the config set. Cray provides several service package templates that match both types and can be
included in both cle and global config sets. In such cases, the user can choose which template will be used to
configure the service in question. When a cle config set is created, and a service that has a template of both
types is ready for configuration, the configurator will inject an initial question for the user to choose between
configuring the service (i.e., using the cle version of the template) or letting the service inherit configuration
values from the global config set (i.e., inheriting values from the global version of the template). Configuration

S2560 9

Introduction to the Cray Configurator

worksheets for such services also provide that choice by including an inherit field, which can be set to true or
false. If the user sets it to true, the configuration data from the global config set version of the service will be used.
When the Cray-provided cray-ansible service (part of the Cray Configuration Management Framework) is run
at boot time or at the system administrator's discretion, it uses the value of the inherit field to determine which
configuration template data (global or cle) to use.

Inheritance is useful for systems with multiple partitions where a subset of partitions need custom configuration of
a service, but another subset of partitions can all share the same global configuration.

2.3 About Configuration Worksheets

Configuration worksheets are a means for users or automated processes to import configuration data directly into
a config set instead of using the configurator user interface. In some situations, large amounts of information may
be needed to configure a specific service or setting in the configuration data (for example, network interfaces),
and gathering this information through an interactive user interface may be too time consuming during a fresh
install. Furthermore, there may be a benefit to gathering configuration data offline prior to system installation and
storing it in a worksheet for use later when the system is ready.

Worksheets are generated each time a config set is created and updated each time a config set is updated. They
are not delivered with the configuration service package itself, but generated from configuration templates in
service packages and placed into the config set. Like configuration templates, worksheets are valid YAML files
and therefore are both human- and machine-readable. Many modern programming languages provide interfaces
to YAML files, thereby making it possible to use configuration worksheets to create and update config sets
through automated processes.

See Create a Config Set from Configuration Worksheets on page 19 or Update a Config Set from Configuration
Worksheets on page 24 for instructions on how to create and update config sets using configuration
worksheets. Also, see Common Tasks When Using Configuration Worksheets for Bulk Import on page 76 for
instructions on how to prepare configuration worksheets for use.

2.4 About Variable Names in the Configurator and Configuration
Worksheets

In the configurator and configuration worksheets, variable names can be quite long because they are composed
of a data structure hierarchy. Each variable name begins with the name of the service to which it belongs. The
next part of each name is always 'settings' to indicate that what follows is a service setting, one of the available
settings for that service. After 'settings' comes the name of the setting, which could be a simple data type (string,
boolean, integer, etc.) or a more complex data type (list, multival, etc.). The next part after the name of the setting
is always 'data’ to indicate that what follows is one of the fields of that setting. For a full description of data types,
see XC™ Series Configurator User Guide (S-2560).

For example, here is the variable for the IP address of the high-speed network (HSN), one of several networks.
cray_net.settings.networks.data.hsn.ipv4 network
This variable belongs to the cray_net service and the networks setting of that service. The networks setting is

of type multival, which means it can have multiple entries, and each entry can have multiple fields to set. This
variable targets the ipv4_network field of the hsn network entry.

S2560 10

Introduction to the Cray Configurator

This example shows the variable for the IP address of the HSN SDB node alias interface (one of several
interfaces) of the SDB node (one of several hosts).

cray_net.settings.hosts.data.sdbnode. interfaces.hsn_sdb _alias.ipv4 address
This variable belongs to the cray_net service and the hosts setting of that service. The hosts setting is of type

multival, and this variable belongs to the sdbnode host entry. The sdb_node host has a field interfaces, which
is also of type multival. This variable targets the 1pv4_address field of the hsn_sdb_al ias interface entry.

S2560 11

Config Set and Configurator Operations

3 Config Set and Configurator Operations

The cfgset command, invoked as root, can be used to perform all necessary operations on config sets: creating,
viewing, updating, copying, comparing, searching, validating, and deleting.

A CAUTION: It is possible for a user or process to modify config set content outside of the cfgset
command. For Cray recommendations, see Manually Edit Configuration Files on page 34.

Config Set Operations
Here is a list of the cfgset subcommands that are used to perform all config set operations.

create Create new config sets, clone existing config sets, and prepare configuration worksheets.
diff Show changes between files in config sets.

list List information for a config set. If no config set specified, list information for all config sets.
push Copy contents of a config set to a remote node.

remove Remove a config set when no longer needed. See Remove a Config Set on page 40.
search Search configuration data in config sets for certain attributes and values.

show Display an audit (or metadata) trail of actions taken on a config set.

update Modify the attributes or contents of a config set or rename it.

validate Check a config set for syntax, regular expressions, structure, etc.
get Retrieve configuration data values of the given path using the command line interface.

modify Change config set data using the command line interface.

In examples provided throughout, command line options to the cfgset command and its subcommands use the
long form of each option (e.g., -—mode instead of —-m). To see the full set of command line options and their short
and long forms, see the cfgset man page or the output of cFfgset SUBCOVIVAND -h.

Configurator Operations

Configurator operations are an important subset of config set operations. The configurator is responsible for all
operations involving configuration templates and worksheets: copying, merging, updating, writing, and validating.
It is also responsible for providing an interface that enables users to add or change configuration data interactively
or through the import of configuration worksheets.

The configurator can be invoked only by using cfgset with one of the following subcommands. There is no way
to invoke the configurator outside of the cfgset command.

create (except when the —-clone option used)
update

S2560 12

Config Set and Configurator Operations

search
val idate

The configurator plays a major role in the Config Set Create/Update Process on page 13. The options selected
for the create and update subcommands determine whether the configurator is run with or without user
interaction (see Use Mode to Choose How to Interact with the Configurator on page 16) and which settings can
be viewed and set by a user (see Use Filters to Choose What to See with the Configurator on page 17).

For details about configurator operations, see the following:

Create a Config Set on page 18
Update a Config Set on page 22
Search a Config Set on page 27
Validate a Config Set and List Validation Rules on page 38

3.1 Config Set Create/Update Process

Config sets are created and updated using the cfgset command with the create and update subcommands,
respectively. Invoking cfgset with one of those subcommands initiates the following process, which defines how
configuration content is discovered from service packages installed on the management node and used, along
with site-supplied content, to create or update a config set.

1.
2.

cfgset searches for service packages in Zopt/cray/imps_config.

cfgset copies to the config set (for create) or overwrites in the config set (for update) ansible and dist
content from each service package. Note that it is only content from service packages that is overwritten;
content placed in those directories manually is unchanged.

NOTE: Manual changes to service package content in this directory will be overwritten!

cfgset runs pre-configuration callback scripts from each service package. Scripts act on the config set to
create content necessary for system configuration, which they place into the fi les subdirectory of the config
set.

cfgset invokes the configurator to do steps 4 through 6.

Configurator finds configuration templates from each service package that match the config set type, and then
copies them into the config set (for create) or merges them with the templates already in the config set (for
update).

Configurator takes one of these actions to further modify config set template data, depending on the
command-line options used:

interacts with Initiates an interactive session with the user and modifies config set template data
user based on the values supplied by the user.

Occurs when —--mode interactive option used or no mode option used, which
defaults to auto mode.

does not interact Does not initiate an interactive session and does no further modification to config set
with user template data beyond the copy/merge of service package data already done in step 4.

S2560 13

Config Set and Configurator Operations

Occurs when —--mode prepare option used. Note that although this action is
associated with preparing worksheets, all three actions result in worksheets being
written in step 6.

imports Imports configuration worksheets and modifies config set template data based on the
worksheets values in each service worksheet.

Occurs when --worksheet-path FI LEPATH option used.

6. Configurator writes configuration template data, configuration worksheets, and a changelog to the config set.
Note that the configurator never modifies the configuration templates in service packages, which are found
in Zopt/cray/imps_config/SERVI CE PACKAGE for each service package.

7. cfgset runs post-configuration callback scripts from each service package.
8. cfgset autosaves the config set to a time-stamped clone.

The following three figures illustrate how this eight-step process is used to create a CLE config set. They differ in
how configuration data in a config set is further modified in step 5, corresponding to the three different actions:
interacting with the user (modification through user interaction), not interacting with the user (no further
modification), and importing worksheets (modification through bulk import of configuration worksheets). Black
lines indicate cfgset actions, and red lines indicate actions taken by the configurator when invoked by cfgset.

This first figure shows how the configurator creates config set templates (in the config subdirectory) from
service package templates in step 4, enables the user to enter new or modify existing configuration data in step 5,
and then saves the new/modified data to the config set templates and worksheets in step 6.

Figure 1. Process to Create a Config Set Interactively

smwk cfgset create pl

£

service package

@—P | template dist rules
| ansible callbacks

D) © 6B

~

~,
config set (p0)
T X
ansible dist
files
o
" config C T~
» worksheets
p changelog
P

(8)——» pO-autosave-2015-12-16T09:30:02

S2560 14

Config Set and Configurator Operations

Figure 2. Process to Create a Config Set and Prepare Worksheets

smw¥ cfgset create —-mode prepare —--type CLE pl

£

service package

| template dist rules
| ansible callbacks
|

® 6@

T

-\
config set (p0)
o ¥
Y
ansible) —’J"—
dist
files
o
> F W
config e
/path/to/worksheets » worksheets

p changelog
o : '
worksheets !
(8)——> po-autosave-2015-12-16T09:30:02

The prepare-mode figure shows how the configurator creates config set templates from service package
templates in step 4, does nothing to that configuration data in step 5, and then saves the data from step 4 to
config set templates and worksheets in step 6. The blue dashed line indicates an action taken by the user after
cfgset has completed the create/update process to prepare worksheets. The user (usually an installer or system
administrator) copies the worksheets prepared by the configurator to a location outside the config set and edits
them (or has other site staff edit them) with site-specific configuration values. It is these edited worksheets that
are used when creating (or updating) a config set from worksheets (shown in worksheets figure).

S2560 15

Config Set and Configurator Operations

Figure 3. Process to Create a Config Set from Worksheets

smw¥ cfgset create --worksheet-path

/path/to/worksheets/* worksheet.yaml --type CLE p0

/' h\

service package

@—b | template | dist ‘ rules
| ansible | callbacks |

) © QD

-
config set (p0)
Configurator ¥
T N
ansible .
dist
files
o
config (T —~
_|worksheets
/path/to/worksheets changelog

>
| edited
worksheets (8)—» po-autosave-2015-12-16T09:30:02

The worksheets figure shows how the configurator creates config set templates from service package templates
in step 4, imports new or modified configuration data from worksheets in step 5, and then saves the new/modified
data to the config set templates and worksheets in step 6.

3.2 Use Mode to Choose How to Interact with the Configurator

The mode option of the cFgset command determines how the configurator interacts with a user. Mode can be
specified only with subcommands create and update.

—--mode | -m Possible values: auto (default), interactive, prepare

In all modes, the configurator begins by copying/merging service package templates to config set templates (step
4 of the Config Set Create/Update Process). And in all modes, the configurator ends by writing templates,
worksheets, and logs to the config set (step 6 of that process). What differentiates these three modes is how the
configurator behaves in the middle (step 5 of the process): whether it initiates an interactive session with the user,
what services and settings it presents, who ends the session, and whether changes are saved. That behavior is
described for each mode here:

S2560 16

Config Set and Configurator Operations

auto

interactive

prepare

The configurator searches through all available configuration templates in the config set. If there
are any configuration settings that meet state and level filtering criteria, the configurator initiates
an interactive session with the user and presents those settings one at a time in a certain order
(taking into account dependencies among services). When all of those settings have been
presented to the user, the configurator automatically ends the interactive session and saves the
config set. In this mode, if there are no settings that meet the specified filtering criteria, no
interactive session is initiated.

The configurator searches through templates as with auto mode, but in interactive mode, it
presents a menu of all available services (or a menu of all available settings, when a service has
been selected) that meet state and level filtering criteria. This mode enables the user to navigate
through the services and settings to view and modify setting values as needed. The user
chooses when to end the interactive session by exiting the configurator, and the user chooses
whether to save any changes to the config set upon exit. In this mode, an interactive session is
always initiated.

The configurator does not initiate an interactive session with the user. The results of merging
service package templates with config set templates are written to the config set templates and
worksheets without any opportunity for modification by the user. This mode is typically used
when a site wants to generate the most up-to-date templates or worksheets for editing to add
site-specific configuration.

Note that when creating or updating a config set using configuration worksheets, the configurator ignores mode.

3.3 Use Filters to Choose What to See with the Configurator

Two cfgset command options act as filters to determine which settings are available to view and set or change.
These options can be specified only with subcommands create, update, and search.

--state | -S

--level | -1

Possible values: unset (default), set, all

Possible values: required, basic (default), advanced

State The configurator keeps track of the configuration state of each service and each of its settings. A field will
be marked as configured if any of the following conditions are met:

e The value for the field is set in the interactive configurator user interface. In this case, the prompt for
the field is answered with anything other than the > response which skips configuration of the field.

e The value for the field is set using the cfgset modify command.

e The value for the field is set by importing a configurator worksheet that has an uncommented line
specifying a value for the field.

e The configurator template in the config set is manually edited to set the configured field of the
corresponding argspec to true (multival settings must also update the unconfigured_keys field).

e The installed template has the configured field of the corresponding argspec set to true by
default.

unset

Settings that have never been configured.

S2560

17

Config Set and Configurator Operations

set Settings that have been configured.

all All settings, whether configured or not.

Level The configurator schema requires each service and each of its settings to have an assigned level. Level
enables users to distinguish between configuration data that is required for basic system functionality and
configuration data that is used by some sites only for tuning specific configuration parameters.

required Settings that must be set or the system will not function. This level is used primarily for
services with settings that are not provided with a default value by the configuration
template, usually because no reasonable default value exists. The config set will not
validate if any required settings are skipped (i.e., left unset). Specify level required in a
cfgset command to filter for required settings only.

basic Settings that are likely to be used by most sites. If a basic setting is left unset, the
template-provided default is used. Specify level basic in a cfgset command to filter for
both basic and required settings.

advanced Optional settings that are likely to be used only by advanced users to tune a service. If an
advanced setting is left unset, the template-provided default is used. Specify level
advanced in a cfgset command to filter for all settings: advanced, basic, and required.

Notes about filters:

e Level filter: although a given configuration service or setting is assigned only one level, the Ievel option
treats the levels as additive for the purpose of filtering. For example, the cfgset create --level basic
command filters for services/settings that are level basic as well as those that are level required, while
specifying level advanced includes services/settings of all three levels, and level required includes only level
required services and settings.

e Both filters: when creating or updating a config set using configuration worksheets, the configurator ignores
filters.

3.4 Create a Config Set

Choosing the best strategy for creating a config set depends on the circumstances ("when to use"):

Strategy When to use Rationale

Create a when performing fresh installs, major Worksheets can be generated, filled out offline
Config Set upgrades, or any time there is a large amount with site-specific data by the appropriate staff,
from of configuration data to set up and then imported when needed.
Configuration

Worksheets

Create a when there is already a config set with site- Cloning is quick, and it is easy to interactively
Config Set by specific data and additional config sets are update the clone with needed variations.
Cloning needed with minor variations (for partitions,

alternate configurations, etc.), or when
manually backing up a config set

S2560 18

Config Set and Configurator Operations

Strategy When to use Rationale

Create a when no hardware is attached to the XC Pre- and post-configuration callback scripts

Config Set system, as in some testing scenarios may invoke utilities that query hardware in

without order to provide additional config set content.

Callbacks

Create a when configuring a smaller system with little Setting all configuration values one at a time in

Config Set configuration data to change response to a series of prompts or when

Interactively selected from a menu can be very time-
consuming.

These strategies all use the cFgset command. Use cfgset create -h for information about the create
subcommand. See Config Set Create/Update Process on page 13 for an outline of the process followed by
cfgset each time the create or update subcommand is used.

Note that when the create subcommand is used in any of these strategies (except cloning), it is necessary to
specify the config set type for any type other than the default cle. Most of the following create procedures omit
—-—type because they are for config sets of type cle.

REMEMBER: Run cfgset as root.
E CAUTION: Boot failure possible if using cfgset under certain conditions.

The cfgset create and cfgset update commands always call pre- and post-configuration scripts.
Some of these scripts require HSS daemons and other CLE services to be running. This can cause
problems under these conditions:

e If xtdiscover is running, cFgset may hang or produce incorrect data that can result in system boot
failure.

e If xtbounce is in progress or if the SMW is not connected to XC hardware, cfgset will fail.

In these circumstances, use the --no-scripts option with cfgset create or cfgset update to
avoid running the scripts. Because using that option results in an invalid config set, remember to run
cfgset update without the —-no-scripts option afterwards, when circumstances permit, to ensure
that all pre- and post-configuration scripts are run.

For more information on creating a config set using -—no-scripts, see Create a Config Set without Callbacks
on page 21

Create Backup Config Sets Automatically

If the auto_clone option in the IMPS configuration file (/etc/opt/cray/imps/imps. json) is enabled,
the cfgset create and cfgset update commands will automatically clone a config set as a backup upon
successful creation/update of the original config set. A failed operation will not create a backup.

The autosave_limit parameter in the IMPS configuration file determines how many clones will be retained.
Config set backups are rotated with the oldest backup removed as a new backup is generated. Config set
backups are saved with names of the

form CONFI GSET-autosave-YYYY- MMt DDTHH: nm SS, where CONFI GSET is the name of the original config
set.

S2560 19

Config Set and Configurator Operations

3.4.1 Create a Config Set from Configuration Worksheets

Prerequisites
This procedure has no prerequisites.

About this task
Use this procedure when performing fresh installs, major upgrades, or any time there is a large amount of
configuration data to set up. To create a config set from configuration worksheets, use this process:

1. Generate the worksheets.

2. Copy the worksheets to a new location on the management node.
3. Edit the worksheets.

4. Import the worksheets.

The detailed steps of this procedure show an example of how to create config set pO of type cle (default) from
configuration worksheets.

Note that the cfgset command is run as root.

Procedure

1. Generate new worksheets from configuration service packages installed on the system.
smw# cfgset create --mode prepare pO
2. Locate the newly generated worksheets and copy them to a new location.

smw# cfgset show --fields path pO
po:
path: /var/opt/cray/imps/config/sets/p0

smw# cp /var/opt/cray/imps/config/sets/p0/worksheets/* /some/edit/location

3. Edit the worksheets to customize them for this site.

The system administrator typically distributes them to site staff members with knowledge about the services
being configured so that they can edit the worksheets and enter appropriate values. Each worksheet is a
YAML file that contains instructions on how to edit it; the basic idea is to locate the settings of interest,
uncomment them, and either retain or change the default setting (if provided).

4. Import the completed worksheets using cfgset update or cfgset create.

Import the completed worksheets by updating the config set created when the worksheets were generated
originally or by creating an entirely new config set. The argument to the —-worksheet-path option is a file
glob to allow multiple worksheets to be imported in a single create/update operation. Full paths to single
worksheets can also be used.

e Import to the config set created with —-mode prepare in step 1.

smw# cfgset update --worksheet-path "/some/edit/location/*_worksheet.yaml® pO
e Import to a new config set.

S2560 20

Config Set and Configurator Operations

smw# cfgset create --worksheet-path "/some/edit/location/* worksheet.yaml® \
pO-new

REMEMBER: When importing worksheets using cfgset with the —-worksheet-path option,

e Always add single quote marks around the worksheet path if a wildcard is used
(e.g.,*_worksheet.yaml).

e Do not add mode, state, level, or service options; the configurator ignores them for worksheet
import.

e The type of the config set must match the type of the worksheets being imported.

3.4.2 Create a Config Set by Cloning

Prerequisites
This procedure assumes that the config set to be cloned (the original) already exists.

About this task

Use this procedure when there is already a config set with site-specific data and additional config sets are needed
with minor variations (for partitions, alternate configurations, etc.), or when manually backing up a config set. This
procedure shows an example of creating config set pO-new by cloning it from existing config set p0O. No callback
scripts or configurator sessions occur when cloning a config set. The clone will have the same config set type as
the original.

Note that the cfgset command is run as root.

Procedure

Create a clone using the —-clone option.

smw# cfgset create --clone pO pO-new

The configurator is not invoked when the ——-clone option is used, so no configurator session occurs, and no
changes are made to the configuration data in the original config set.

3.4.3 Create a Config Set without Callbacks

Prerequisites
This procedure has no prerequisites.

About this task

Pre- and post-configuration callback scripts may invoke utilities that query hardware in order to provide additional
config set content. Use this procedure when no hardware is attached to the XC system, as in some testing
scenarios. This procedure shows an example of creating config set globalO of type global from worksheets
while skipping all callback scripts. The --no-scripts option can also be used when creating a config set
interactively.

Note that the cfgset command is run as root.

S2560 21

Config Set and Configurator Operations

Procedure

Create a config set without callbacks.

smw# cfgset create --no-scripts --worksheet-path \
*/some/edit/location/*_worksheet_yaml® --type global globalO

o~

344

CAUTION: Skipping callback script processing invalidates a config set. A config set cannot be
considered validated unless it is updated successfully without the —-no-scripts option. Update all
config sets to run the callback scripts before using the config set with the system.

Create a Config Set Interactively

Prerequisites
This procedure has no prerequisites.

About this task
This procedure shows examples of creating config set pO of type cle interactively. For additional examples, use
cfgset create -h.

Note that the cfgset command is run as root.

Procedure

Invoke the configurator in auto mode (default) or interactive mode.

3.5

Auto mode.

To be presented with all settings with state unset (default) and level basic (default) in all services in
config set pO:

smw# cfgset create pO

To be presented with all settings (any state and any level) in all services in config set pO:

smw# cfgset create --state all --level advanced pO
Interactive mode.

To display a menu of services in config set p0O that have configuration settings with state unset (default)
and level basic (default):

smw# cfgset create --mode interactive pO

To display a menu of all services (with settings of any state and any level):

smw# cfgset create --mode interactive --state all --level advanced pO

Update a Config Set

Choosing the best strategy for updating a config set depends on the circumstances ("when to use"):

S2560

22

Config Set and Configurator Operations

Strategy

Update a
Config Set
Interactively

Update a
Config Set
from
Configuration
Worksheets

Update a
Config Set
without
Callbacks

Rename a
Config Set

Update a
Single Service
in a Config Set

When to use

when one or more config sets require a few
changes (e.g., cloned config sets that need to
be adjusted for a particular purpose), when a
software update introduces just a few new
fields to configure, or to confirm that all
required and basic settings have been set
(very useful!)

when performing system upgrades and
updates, or any time there is a large amount of
configuration data to change

when no hardware is attached to the XC
system, as in some testing scenarios

when a config set needs to be renamed as well
as updated, or just renamed

when setting up a new service, or when just
one service requires modification

Rationale

Setting just a few configuration values one at a
time in response to a series of prompts or
when selected from a menu works well when
there are just a few settings that need to be
configured or updated.

Worksheets can be generated, filled out offline
with site-specific data by the appropriate staff,
and then imported when needed.

Pre- and post-configuration callback scripts
may invoke utilities that query hardware in
order to provide additional config set content.

This could become necessary for a variety of
reasons.

This can be done either interactively or with
worksheets, so refer to those circumstances
and rationales for the right strategy.

These strategies all use the cfgset command. Use cfgset update -h for information about the update
subcommand. See Config Set Create/Update Process on page 13 for an outline of the process followed by

cfgset each time the create or update subcommand is used.

#

CAUTION: Boot failure possible if using cfgset under certain conditions.

The cfgset create and cfgset update commands always call pre- and post-configuration scripts.
Some of these scripts require HSS daemons and other CLE services to be running. This can cause
problems under these conditions:

e If xtdiscover is running, cFgset may hang or produce incorrect data that can result in system boot
failure.

e If xtbounce is in progress or if the SMW is not connected to XC hardware, cfgset will fail.

In these circumstances, use the --no-scripts option with cfgset create or cfgset update to
avoid running the scripts. Because using that option results in an invalid config set, remember to run

cfgset update without the ——-no-scripts option afterwards, when circumstances permit, to ensure
that all pre- and post-configuration scripts are run.

For information on updating a config set using --no-scripts, see Update a Config Set without Callbacks on

page 26

S2560

23

Config Set and Configurator Operations

3.5.1 Update a Config Set Interactively

Prerequisites
This procedure assumes an existing config set needs to be updated.

About this task

Use this procedure when one or more config sets require a few changes (e.g., cloned config sets that need to be
adjusted for a particular purpose), or to confirm that all required and basic settings have been set (very useful!).
To update just one service in a config set, see Update a Single Service in a Config Set on page 26.

cfgset has two modes that initiate an interactive configurator session: auto (default) and interactive. This
procedure shows examples of updating config set pO of type cle interactively in either mode. For additional
examples, use cfgset update -h.

Note that the cfgset command is run as root.

Procedure

Invoke the configurator in auto mode (default) or interactive mode.
e Interactive mode.

To display a menu of services in config set p0 that have configuration settings with state unset (default)
and level basic (default):

smw# cfgset update --mode interactive pO

To display a menu of services in config set p0 that have configuration settings with level required and
state unset:

smw# cfgset update --mode interactive --level required pO
To display a menu of all services in config set p0, use the broadest state and level filters:

smw# cfgset update --mode interactive --state all --level advanced pO
e Auto mode.

To confirm that all required and basic settings have been set (in which case, the configurator will not
initiate an interactive session) or to be presented with all settings with state unset (default) and level
basic (default) in all services in config set pO:

smw# cfgset update pO

For a discussion of common outcomes of this command, see cfgset Troubleshooting Tips on page 83.

To be presented with all settings in config set p0, use the broadest state and level filters:

smw# cfgset update --state all --level advanced pO

3.5.2 Update a Config Set from Configuration Worksheets

Prerequisites
This procedure assumes an existing config set needs to be updated.

S2560 24

Config Set and Configurator Operations

About this task

Use this procedure when performing system upgrades and updates, or any time there is a large amount of
configuration data to change. The configurator overwrites all data in a service with the contents of the worksheets
specified on the command line. If a worksheet with stale data is used to update the config set, data loss may
occur. To ensure that the worksheets used to update the config set are as up-to-date as possible, use this
process:

1. Generate worksheets from the current config set.

2. Copy the worksheets to a new location on the management node.
3. Edit the worksheets.

4. Import the worksheets to the current config set.

The detailed steps of this procedure show an example of how to update config set pO of type cle (default) from
configuration worksheets. To update just one service in a config set, see Update a Single Service in a Config Set
on page 26.

Note that the cfgset command is run as root.

Procedure

1. Generate new worksheets from configuration service packages installed on the system and config set pO.
smw# cfgset update --mode prepare pO
2. Locate the newly generated worksheets and copy them to a new location on the management node.

smw# cfgset show --Fields path pO
po:
path: /var/opt/cray/imps/config/sets/p0

smw# cp /var/opt/cray/imps/config/sets/p0/worksheets/* /some/edit/location

3. Edit one or more worksheets to make the needed changes.
To edit the worksheets, open those with settings that need to be changed and make changes, as needed.
Each worksheet is a YAML file that contains instructions on how to edit it.

4. Import the completed worksheets to pO using cfgset update.

smw# cfgset update --worksheet-path */some/edit/location/*_worksheet.yaml® pO

The argument to the —--worksheet-path option is a file glob to allow multiple worksheets to be imported in
a single create/update operation. Full paths to single worksheets can also be used. The configurator will
replace config set data with imported worksheet data only for services that have matching worksheets
provided on the command line.

REMEMBER: When importing worksheets using cfgset with the —-worksheet-path option,

e Always add single quote marks around the worksheet path if a wildcard is used
(e.g.,*_worksheet.yaml).

e Do not add mode, state, level, or service options; the configurator ignores them for worksheet
import.

e The type of the config set must match the type of the worksheets being imported.

S2560 25

Config Set and Configurator Operations

3.5.3 Update a Config Set without Callbacks

Prerequisites
This procedure assumes an existing config set needs to be updated.

About this task

Pre- and post-configuration callback scripts may invoke utilities that query hardware in order to provide additional
config set content. Use this procedure when no hardware is attached to the XC system, as in some testing
scenarios. This procedure shows an example of updating config set pO of type cle interactively while skipping all
callback scripts. The ——no-scripts option can also be used when updating a config set from worksheets.

Note that the cfgset command is run as root.

Procedure

Update a config set without callbacks.

smw# cfgset update --no-scripts pO

E CAUTION: Skipping callback script processing invalidates a config set. A config set cannot be
considered validated unless it is updated successfully without the —-no-scripts option. Update all
config sets to run the callback scripts before using the config set with the system.

3.5.4 Rename a Config Set

Prerequisites
This procedure assumes an existing config set.

About this task

Use this procedure when a config set needs to be renamed or updated as well as renamed. The renaming
operation follows the same basic configurator flow as a regular update but renames the config set prior to other
processing. If auto-cloning is enabled, config set backups of the original config set will not be renamed. This
procedure shows an example of renaming config set pO.

Note that the cfgset command is run as root.

Procedure

Rename a config set using the update subcommand with the ——rename option.

smw# cfgset update pO --rename pO.new

Note that the config set being operated on (pO in this example), does not have to be the last argument on the
command line.

S2560 26

Config Set and Configurator Operations

3.5.5 Update a Single Service in a Config Set

Prerequisites
This procedure assumes an existing config set.

About this task

Use this procedure when setting up a new service, or when just one service requires modification. This procedure
provides examples of updating a single service at a time instead of the entire config set, and it can be done either
interactively or using a configuration worksheet.

Procedure

Update a single service in config set pO.

e Update interactively: use the —--service option.

IMPORTANT: For a service with configuration template file cray_example_config.yaml, use
only the cray_example portion on the command-line when specifying a single service.

To display a menu of settings in the cray_example service in config set p0 that are level required and
any state (default for interactive mode when only one service is specified):

smw# cfgset update --service cray_example --mode interactive \
--level required pO

To display a menu of all settings (with settings of any state and any level):

smw# cfgset update --service cray example --mode interactive \
--level advanced pO

To be presented with all settings (with settings of any state and any level):

smw# cfgset update --service cray example --state all --level advanced pO

e Update with a worksheet: use the —--worksheet-path option.
To update the service using a worksheet, use the --worksheet-path option instead of --service.
Unlike the —-service option, with the -—-worksheet-path option it is necessary to provide the full path

to the worksheet for that service, which includes the _worksheet.yaml portion. The configurator will
replace only the config set data that corresponds to the data in the worksheet being imported.

smw# cfgset update --worksheet-path \
/path/to/worksheets/cray_example_worksheet.yaml pO

3.6 Search a Config Set

Use Search to Locate Settings in a Config Set

The search subcommand is helpful when a user wants to view or change a configuration parameter (setting) but
does not know which configuration template or worksheet contains it. To search for a configuration setting/field
name or value, use the cfgset search command:

S2560 27

Config Set and Configurator Operations

smw# cfgset search --term nyval ue CONFI GSET

Search tips:

e To broaden a search, use multiple search terms (a logical OR).
e To narrow a search, use state and level filters.

e Unlike the create and update subcommands, the search subcommand has a default value of al I for the
state filter.

Here's an example that searches for the terms cO0-0c0Os1n1 and lus/ in settings of any level in config set p0:

smw# cfgset search --term c0-0cOslnl --term lus/ --level advanced pO

The configurator outputs highlighted dotted-path notation matches to the search term in a per-service report:

1 match for "c0-0cOslnl® from cray_scalable_services_config.yaml

cray_scalable_services_data.settings.scalable_service.data.tierl: c0-0c0OsOnl, c0-0cOslnl
1 match for "lus/" from cray_node_health_config.yaml

cray_node_health_.settings.filesys plugins.data.Default Filesystem.path: /lus/casel
.. -(more matches not included in example)

To output more information about the fields and values that match the search term(s), add the --format full
command line option. This will display meta information about the setting in which the term was found, such as its
level, state, and default value.

Note that the search subcommand does not search guidance text in the configuration templates and worksheets.

Use Search to Print out the Entire Config Set

To print out an entire config set, simply search the config set and omit the --term option. For example, to view all
required fields that have not been set in config set p0, use the following command:

smw# cfgset search --level required --state unset p0

3.7 Retrieve or Modify Configuration Data Using the Command Line
Interface

The cfgset command with subcommands get or modi fy can be used to retrieve and set configuration data
values from the command line interface to the configurator tool, respectively. Data is retrieved and set on the
command line using the same path to the data that is used in the configuration worksheets for the service being
configured. The modify and get subcommands provide a quick, non-interactive means to modify and retrieve
configuration field data. These subcommands are intended to be non-interactive, scriptable, and targeted. As a
result, the workflow for changing configuration data using cfgset modi Fy differs slightly from changing
configuration data using the existing cfgset create/update commands.

Figure 1 below compares the differences in workflow between using cfgset create/update, cfgset
modify, and cfgset get. A few important workflow changes to note:

e cfgset modify does not invoke pre- and post-configuration scripts; therefore, a successful modification of
configuration data using this command will result in the config set being marked invalid. Remember to run
cfgset update afterwards, when circumstances permit, to ensure that all pre- and post-configuration

S2560 28

Config Set and Configurator Operations

scripts are run. Note that cfgset get only reads data from the config set and thus will not mark a config set
as invalid.

e The configurator will create a changelog file when invoked via cfgset modify of the same format as is
done when modifications are made via cfgset update/create.

e The configurator will not search for management node templates on the SMW and thus will not attempt to
merge templates with the config set service counter-parts. cfgset modify and cfgset get will only
attempt modifications and retrievals of data from the config set services and their existing versions. cfgset
update --mode prepare (or equivalent) must be used to merge template changes into the config set
before modification. As a result, no merge validation will occur when running cfgset modify or cfgset
get.

S2560 29

Config Set and Configurator Operations

Figure 4. Comparing cf gset Workflows

1 1
i ! |:| ! |:| IMPS CLT
cigset create I cigset modify I cigset get
or
cfgset update I I
L T } } _/
‘ Y
I I IMPS API |
Pre- | |
configuration
Scripts | I
| |
Canfig Set Management | | |Config Set | |Config Set
Services Hode Service I Service I Service
{update only) Templates /,J
\ [[I I
I I. L L
I I
i * _ * I Y I Y Cunﬁguratup'l
Cnnﬁ_gu@tlun Configuration Configuration Configuration
Validation Validation | Validation | Validation
(Schema, syntax (Schema, syntax) (Schema, syntax) (Schema, syntax)
(update only) | |
| Y | Y
I_—Cnnfig Services Merge J | Validate and Apply Data | Find Data for User
(update only) from User (given on (given
p ¥ I a0 I :
cemmand ling) on command line)
* I I
: | |
Configuration
Validation | |
(Merge, Lookup) | |
+ | Worksheets |
Write § ;
Ga{ﬂ\erqg:“ fram ugier | out |Config Set Services |
Wo eets or UI
Ch I
(Optional, prepare mode = I ange oy I
no-op) | |
1 | |
. Worksheets I |
Write - | |
out |Config Set Services
Changelog | |
b : : : /
g ™
Y I | IMPS API
ﬁF‘ust-t_ | Y |
canmguration Mark config Set
Scripts I - |
Invalid
| (if successful) |
Y | |
Create Config | |
Set Backup | |
| : | | J
¢ I Y | Y IMPS CLT |
Report to User | Report to User | Report to User
| |

J

Valid path Values

Valid paths for path on the command line for both modify and get interfaces are as follows (with examples from
current CLE configuration services):

e Class-scoped settings fields:
cray_scalable_services.settings.scalable_service.data.tierl _groups

S2560 30

Config Set and Configurator Operations

e Multival-scope settings: cray_node_groups.settings.groups.data
e Embedded multival-scope settings: cray _net.settings.hosts.data.bootnode. interfaces
e Multival-scoped top-level settings entries: cray_node_groups.settings.groups.data.all_nodes

e Multival-scoped embedded settings entries:
cray_net._settings.hosts.data.bootnode. interfaces.network

e Service enabled status: cray boot.enabled
e Service inheritance status: cray_multipath.inherit

Configurator schema meta paths are not supported. This includes all entries under the configurator key in the
configuration service files.

3.7.1 Usecfgset get to Retrieve Config Set Data

The cfgset get interface provides access to configuration data values relative to the path given to the
command line. Paths denoting the full schema path to a data field will provide the value for the entered field. All
output from get for successful retrievals will be printed to STDOUT and all error output will be printed to STDERR.
Output which contains multiple values such as list data or lists of fields will print the values one per line. When the
output includes empty or nul I values, the output will be as follows:

e Zero-length string: The output will be a new line \n.
e Zero-length list: The output will not return any lines.

e null value: The special identifier __ NULL___ will be output to delineate the value to help differentiate the
value from more common string representations such as null.

e Boolean values will be returned as either true or false.

Generally, output from cfgset get for list fields redirected to a file will be usable as file input to cfgset
modi fy. This does not apply to output that lists field names in a setting, as this may produce multiple values.

This example demonstrates querying the p0 config set for the value of cr ay_ssh. enabl ed. The command
interface returns the setting's value, in this case true:

smw# cfgset get cray_ssh. enabl ed p0
true

This example demonstrates querying the same config set for
cray_al ps. settings. common. dat a. xt host nane and
cray_net.settings. networks. data. hsn.i pv4_network:

smw# cfgset get cray_al ps. settings. common. dat a. xt host nane p0

cray

smw# cfgset get cray_net.settings. networks. data. hsn. i pv4d_network pO
10.128.0.0

3.7.2 Use cfgset modify to Edit Config Set Data

The cfgset modiTfy interface provides a method for manipulating data within a config set using the command
line interface. Successful modifications to configuration data via a call to mod i fy will not produce any output to

S2560 31

Config Set and Configurator Operations

STDOUT; all error output wil be printed to STDERR. Error output from mod i fy will use the existing error messages
generated by the configurator for field validation errors. These errors are printed out during cfgset update and
cfgset validate when validation is being performed for those actions. Errors related to improper or unknown
PATH input to cfgset modify or cfgset get will print out the bad path as well as an indication of what the

problem may be. For example, if a simple typo is on the element of the path (boot_node instead of bootnode):

smw# cfgset modify -s c0-0c0OsOnl cray net.settings.hosts.data.boot node.hostid p0
Error: could not modify "p0": path=cray_net.settings.hosts.data.boot_node.hostid
Path entry "boot_node®" not found in schema.

The subcommand modi fy supports the following arguments:

Table 1. cf gset nodi fy Optional Arguments

Argument Description
-s VALUE, --set VALUE Set/replace existing VALUE (non-l1ist fields)
-r VALUE, --remove VALUE Remove VALUE (lists fields only), or remove an

entry named VALUE from a multival settings (multival
settings only)

--remove-Tile FILE Remove value(s) found in FILE (1 ists fields only) or
remove entry/entries found in FILE from a multival
setting (multival settings only)

-a VALUE, --add VALUE Add/append VALUE (I ists fields only), create new
multival entry (multival settings only)

--add-file FILE Add/append value(s) found in FILE (lists fields only)
or create a new entry/entries found in FILE (multival
settings only)

-x, --clear Remove all entries (I ists fields) or set value to empty
(string-type fields) or set value to nul I (numeric/
boolean fields)

-d, --delete Delete all or single entries from a multival setting field.

-h, --help Show all available arguments

The following example demonstrates retrieving the current value for cray_net.enabled using cfgset get,
using cfgset modify --set to modify the existing value, and retrieving the value again to verify the change:

smw# cfgset get cray_net.enabl ed p0

false

smw# cfgset modify --set true cray_net.enabl ed p0
smw# cfgset get cray_ net.enabl ed p0

true

This example demonstrates using cfgset modify --add to add a new node group called t est _nodes to
cray_node_groups.settings.groups.data in the p0 config set, then using cfgset get to view the
current node groups:

S2560 32

Config Set and Configurator Operations

NOTE: A new multival setting entry is created by adding a multival key to the setting for both top-level
and embedded multival settings. When the entry is created, all non-key fields will be populated with their
default values.

smw# cfgset modify --add test _nodes cray_node_groups. settings. groups. data p0
smw# cfgset get cray_ node_groups. settings. groups.data p0
compute_nodes

service_nodes

smw_nodes

boot nodes

sdb_nodes

login_nodes

all_nodes

tier2_nodes

test nodes

Multiple entries can be added or removed at a time using --add or --remove:

smw# cfgset modify --add c0-0c0s1n3 --add
cl-1cl1ls1n3 cray_node_groups. settings. groups. data.test_nodes. menbers pO

Use --add-file FI LE or --remove-file Fl LE to add the values found in a text file (one value per line) to a
setting:

smw# vim /tmp/test nodes.txt
c2-2c2s1n3
c3-3c3s1n3

smw# cfgset modify --add-

file /tnp/test _nodes.txt cray_node groups.settings.groups. data.test nodes. nenbers p0
smw# cfgset get cray_node_groups. settings. groups. data.test nodes. nenbers p0
c0-0c0s1n3

cl-1cl1s1n3

c2-2c2s1n3

c3-3c3s1n3

The --clear option can be used to set a value to NULL in a boolean or numeric (integer or float) field, set a
value to empty in a string-type field, or remove all entries in a list field:

smw# cfgset modify --clear
cray_node_groups. settings. groups. data.test_nodes. nenbers p0

smw# cfgset get cray node groups.settings.groups. data.test nodes. nenbers p0
SmMw#

To delete an entry from a multival setting field, use —-delete. This example demonstrates deleting the
test_nodes entry followed by deleting all entries in cray_node_groups.settings.groups.data:

smw# cfgset modify --delete cray_node groups. settings. groups. data.test nodes pO
smw# cfgset get cray node_groups. settings. groups.data p0
compute_nodes

service_nodes

smw_nodes

boot nodes

sdb_nodes

login_nodes

all_nodes

tier2_nodes

smw# cfgset modify --delete cray node_groups. settings. groups. data p0

S2560 33

Config Set and Configurator Operations

smw# cfgset get cray_ node_groups. settings. groups.data p0
SmMw#

3.8 Manually Edit Configuration Files

Cray recommends using only the configurator to modify data in config set configuration templates. Configuration
worksheets and the available configurator user interfaces are the proper means to add, remove, and modify
configuration data. However, configuration content is available in the config set directory for viewing or editing if
required. Since the configurator not only manages configuration data, but also the configuration state of the data,
users must take care that manual edits change both data and configuration status correctly to mimic the action of
the configurator during cfgset create, cfgset modify, and cfgset update operations. For more
information on how a setting is marked as configured, see Use Filters to Choose What to See with the
Configurator on page 17. Manual edits to configuration data and status are not known to the configurator and
therefore are not reflected in the changelog files produced when the configurator is invoked to modify
configuration data.

If content has been modified by a user or process outside of the cfgset command and its subcommands, care
should be taken to ensure that the content within the config set is viable for downstream consumers of this data,
as is done with Cray-provided tools. Specifically, if configuration templates are modified in the config set, the
config set should be updated to run the pre- and post-config script hooks with the cfgset update --mode
prepare command. The config set should also be revalidated with the cfgset validate command after
modification. This will ensure basic syntax, schema, and error checking of the configuration data.

3.8.1 Manually Edit Service Enable/lnherit Data

Procedure

1. Open the configuration data YAML file using a text editor and make the desired changes to the enabled and
inherit fields located at the top of the YAML file. This example uses the cray_time configuration service
in cray_time_config.yaml:

cray_time:
enabled: true
inherit: false
settings:

2. Locate the configurator field that contains the configuration metadata for the top-level service data fields
that were modified in the previous step. This section is located after all service settings, near the end of the
YAML file. Change the configured field to true if the value of the enabled field was modified. Similarly,
change the value of the configured_inherit field to true if the value of the inherit field was modified.
If the value of either field was already set to true, no action is required:

configurator:
configured: false # <- set configuration status for "enabled”
field
configured_inherit: false # <- set configuration status for “inherit-

S2560 34

Config Set and Configurator Operations

field

3.8.2 Manually Edit Class-Scoped Setting Data

Procedure

1. The configurator represents simple key-value pairs of data in settings called class-scoped settings. To
properly manually edit class-scoped data, first verify that the setting is of scope_type: class by checking
the scope_type field in the setting to be modified:

cray_time:

settings:
service:
configurator:

scope_type: class

2. |If the value of the scope_type field is multival, see Manually Edit Multival-Scoped Setting Data on page
35. To manually edit a scope_type: class data field, first edit the data field itself. This example
demonstrates editing the timezone field in cray_time:

cray_time:

settings:
service:
data:

timezone: US/Central # <- modify as required

3. Edit the configuration status of the modified field. Locate the configurator metadata section for the modified
field and set the value of the configured field to true. In this example, since the timezone field was
modified, the corresponding configuration metadata section will be set to true:

cray_time:
settings:
service:
configurator:
argspec:
timezone:
allow_none: false
configured: false # <- set to true

S2560 35

Config Set and Configurator Operations

3.8.3 Manually Edit Multival-Scoped Setting Data

Procedure

1. The configurator represents multiple entries of key-value pairs of data in settings called multival-scoped
settings. To properly manually edit a multival-scoped data, first verify that the setting is of scope_type:
multival by checking the value of the scope_type field in the setting to be modified:

cray_simple_shares:
ééitings:
NFS:
ééﬁfigurator:

scope_type: multival

2. If the value of the scope_type field is class, see Manually Edit Class-Scoped Setting Data on page 35. To
manually edit a scope_type: multival data field, first edit the data fields for the desired entries in the
NFS setting data key. This example demonstrates editing fs_mount_opt in the NFS setting in
cray_simple_shares. For instance, if changes are desired in the /var/opt/cray/imps
and /non_volati le entries, find the entries in the data and modify the value of the fs_mount_opt field:

cray_simple_shares:
ééitings:
NFS:
data:
- key: /var/opt/cray/imps
%é;mount_opt: ro # <- modify as required
- ké&: /non_volatile
%é;mount_opt: " # <- modify as required

3. Edit the configuration status of the modified field. Locate the configurator metadata section for the modified
field (in this example, fs_mount_opt) and locate the configured and unconfigured_keys fields:

cray_simple_shares:
ééftings:
NFS:
ééﬁfigurator:
argspec:
%é;mount_opt:
ééﬁfigured: true
unconfigured_keys:

S2560 36

Config Set and Configurator Operations

- /var/opt/cray/imps
- /non_volatile

With multival-scope settings, the configurator keeps track of the configuration status of each individual entry in
the setting. In this case, the configured field contains the overall configuration status of the
Ts_mount_opt portion of all entries. Exceptions to the status are maintained in the unconfigured_keys
field. The table below describes the scenarios for how configuration status is determined by the configurator
for individual fields in multival-scoped settings

configured Field unconfigured_keys Field Configuration Status

false N/A All entries of the field are
considered not configured,
regardless of the entries in the
unconfigured_keys field.

true Empty List All entries of the field are
considered to be configured.

true Non-Empty List All entries except the entries with
the keys in the
unconfigured_keys list are
considered to be configured.

For this example, the /var/opt/cray/imps and /non_volati le entries are removed from the
unconfigured_keys tag, since these entries were modified in step 2. The configured tag is then set to
true as seen in the screenshot below.

E CAUTION: The value of the unconfigured_keys field must always be of list type, as understood
by YAML. If all elements are removed from the value of the unconfigured_keys field, the value of
the field should be set to an empty list by placing brackets in the value of the field:
unconfigured_keys: []

cray_simple_shares:
ééitings:
NFS:
ééﬁfigurator:
argspec:
%é;mount_opt:
ééﬁfigured: true
unconfigured_keys: []

For multival settings nested within other multival settings, the unconfigured_keys field will contain period-
delimited keys. For example, the unconfigured_keys list entry for
cray_net._settings.hosts.data.bootnode. interfaces.hsn_boot_alias.ipv4_address would
be as follows in the configurator file cray_net_config.yaml:

cray_net:

settings:

S2560 37

Config Set and Configurator Operations

hosts:
configurator:
argspec:
interfaces:
argspec:

i;-)\-/4_add ress:

configured: true
unconfigured_keys:
- bootnode.hsn_boot _alias

3.9 Validate a Config Set and List Validation Rules

It is important to validate any config set that has been modified, because there is currently no mechanism to
prevent the system from trying to use an invalid config set. Validation is useful for determining if the config set is
minimally viable for use with the system it is intended to configure.

IMPORTANT: Validation ensures that a config set passes all rules stored on the system. A validated
config set does not necessarily equate to a config set with configuration data that will result in a properly
configured system.

When validating a config set, the configurator checks the following:

e Config set has the proper directory structure and permissions.

e All configuration templates have correct YAML syntax.

e All configuration templates adhere to the configurator schema.

e Allfields of type lookup reference values and settings that exist in the available configuration services.

e Alllevel required fields in enabled services are configured (i.e., their state is set).

e Pre-configuration and post-configuration callback scripts ran successfully during the latest config set update.

e cfgset validate has run all validation rules installed on the system.

Validate a Config Set with the val idate Command

To validate a config set, use the cfgset validate command:

smw# cfgset validate pO

The cfgset validate command runs all rules installed on the system. Users may specify which rules to
include or exclude by using the rules file in Zetc/opt/cray/imps/rules._yaml.

The --no-rulles subcommand can be used to prevent the cfgset from executing any validation rules against
the config set. All other validation checks will be done.
smw# cfgset validate --no-rules p0

NOTE: Using the --no-rules option will not invalidate a config set, unlike cfgset create/update
--no-scripts command behavior.

S2560 38

Config Set and Configurator Operations

The --include-rule subcommand specifies a rule name to execute to validate the config set. Multiple --
include-rule declarations can be made. Rules included via this parameter supersede rules specified in the
rules file (/etc/opt/cray/imps/rules._yaml). Included rules supersede all excluded rules as well

smw# cfgset validate --include-rule | NCLUDE RULE pO

The --exclude-rule subcommand specifies a rule name to skip when validating the config set. Multiple —-
exclude-rule declarations can be made. Rules excluded via this parameter supersede rules specified in the
rules file (/etc/opt/cray/imps/rules.yaml).

To validate the resulting configuration services after a merge of the service packages with the config set content,
add the —-merge option.

smw# cfgset validate --merge SERVI CE_PACKAGE

List Validation Rules with the 1 ist-rules Command

Use the cfgset list-rules command to list the validation rules for a given config set:

smw# cfgset list-rules p0
Listing the rules for the config set.

Rules:

- name: sdb.cray_sdb.CraySDBEnabled
description: The cray_sdb service must be enabled.
location: /opt/cray/imps_config/sdb/default/configurator/rules/cray_sdb.py

- name: sdb.cray_ sdb.SDBGroupsNodeCheck

description: The cray _sdb service must only configure tierl and/or tier2 nodes as
SDB nodes.

location: /opt/cray/imps_config/sdb/default/configurator/rules/cray_sdb.py

The --service SERVI CE subcommand can be used to list the rules that apply to a specified service. The —-
service subcommand should not be used with the --name subcommand.

smw# cfgset list-rules --service cray_boot pO
Listing rules for the cray_boot service.

Rules:

- name: system-config.cray_ boot.BootGroupsNodeCheck

description: The cray boot service must only configure tierl and/or tier2 nodes
as boot nodes.

location: /opt/cray/imps_config/system-config/default/configurator/rules/
cray_boot.py

- name: system-config.cray boot.BootNodeGroupsNotEmpty
description: The cray boot service must set at least one node as the boot node.
location: /opt/cray/imps_config/system-config/default/configurator/rules/
cray_boot.py

The --name NAME subcommand can be used to limit the output of the rule listing to a specified service for the
given config set. The —-name subcommand should not be used with the —-service subcommand.

smw# cfgset list-rules --name system config.cray_storage. CraySt orageEnabl ed pO

- name: system-config.cray storage.CrayStorageEnabled

S2560 39

Config Set and Configurator Operations

description: The cray storage service must be enabled.
location: /opt/cray/imps_config/system-config/default/configurator/rules/
cray_storage.py

3.10 Remove a Config Set

To remove a config set, use the cfgset remove command:

smw# cfgset remove CONFI GSET

for a config set named CONFI GSET. The remove subcommand also accepts wildcards for removing multiple
config sets at a time:

smw# cfgset remove pO.test*

This is especially helpful if config set auto-cloning/backup is enabled and removing all of the backups of a config
set is desired. See the cfgset man page for a description of its subcommands and options and some examples
of each, or use cfgset remove -h for help.

3.11 Back Up or Restore User, Group, and Permissions Information
Files

Administrators can back up and restore the user, group, and permissions information of files contained under the
cfgset directories using the cfgset_export_perms.py and cfgset _restore_perms.py scripts,
respectively. These scripts are normally found in Zopt/cray/imps/default/etc/ and preserve the user ID
(UID), group ID (GID), and file permissions of the specified directory. The default directory to be backed up or
restored to is the current working directory. This is typically a cfgset directory

in /var/opt/cray/imps/config/sets/. The output of cFgset_export _perms.py can be checked in to a
source control program, such as Git, enabling a site to safely back up and restore config sets to a central source
control server.

Back Up Using cfgset_export_perms.py

The cfgset_export_perms.py script will create a backup file cfgset_permissions_metadata that is
placed in the current working directory. Any time a change is made to a config set, cfgset_export_perms.py
should be run to capture the addition or removal of any files and permission or ownership changes. The following
example demonstrates backing up the user, group, and permissions information located in

the /var/opt/cray/imps/config/sets/p0 directory and viewing the backup file

cfgset permissions_metadata_ pO created. Note the use of the -—output subcommand to specify the
backup file name:

smw# _/cfgset_export_perms.py --output

cfgset _perm ssions_metadata _pO /var/opt/cray/inps/config/sets/p0

smw# s

cfgset _export perms.py cfgset restore perms.py cfgset permissions_metadata
smw# vim cfgset permissions metadata pO

*,0,0,"0755"

""_imps_ConfigSet_metadata',0,0,"0644"

S2560 40

Config Set and Configurator Operations

"ansible'",0,0,"0755"

"dist",0,0,"0755"

"dist/compute-preload.cray',0,0,"0660"
"dist/login-preload.cray",0,0,"0660"

"dist/README™,0,0,"0660"

"dist/simple_examples',0,0,"0755"
"dist/simple_examples/sample_config_tasks.yaml',0,0,"0660"
“dist/simple_examples/roles™,0,0,"0755"
"dist/simple_examples/roles/example’,0,0,"0755"
"dist/simple_examples/roles/example/defaults',0,0,"0755"
"dist/simple_examples/roles/example/defaults/README",0,0,"0660"
"dist/simple_examples/roles/example/files",0,0,"0755"
"dist/simple_examples/roles/example/files/README",0,0,"'0660"
“dist/simple_examples/roles/example/handlers,0,0,"0755"
"dist/simple_examples/roles/example/handlers/README™,0,0,"0660"
"dist/simple_examples/roles/example/meta’™,0,0,"0755"

Restore Using cfgset_restore_perms.py

The cfgset_restore_perms.py script will restore the user, group, and permissions information contained in a
backup file given to the script. By default, the script will search for a backup file named

cfgset _permissions_metadata in the current working directory and restore permissions to the working
directory. A different backup file to read from or a different directory to restore permissions to may optionally be
specified. The following example demonstrates restoring permissions

to /var/opt/cray/imps/config/sets/p0 using the cfgset_permissions_metadata_pO backup file.
Note the use of the —-input subcommand to specify the backup file to read from:

smw# _/cfgset _restore _perms.py --input
cfgset _perm ssions_metadata_p0O /var/opt/cray/inps/config/sets/globa

Integrate Scripts as Git Hooks

The cfgset_export_perms.py can be specified as a pre-commit hook. The cfgset_restore_perms.py
script can be specified as a post-merge or post-checkout hook. It is recommended that a separate Git repo be
configured for each config set. To establish a Git repo in the cfgset directory, follow the steps below:

1. If Gitis not currently installed, install Git using Zypper:

zypper in git

2. Establish the Git directory in each config set directory that is to be backed up:
smw# cd /var/opt/cray/inps/config/sets/p0
smw# git init

smw# git add -A
smw# git commit -m "lnitial check-in of PO config set"

3. Optionally, establish any site-specific Git remotes.
To designate either script as a Git hook, follow these steps:
1. Copy the desired script(s) to the .git/hooks directory of the Git repository.

2. To use cfgset_export_perms.py as a pre-commit hook, rename the copied script to: pre-commit. To
use cfgset_restore_perms.py as a post-checkout or post-merge hook, rename the copied script(s) to
either: post-checkout or post-merge. It is suggested that cfgset restore_ perms.py be installed as
both a post-checkout and post-merge hook, as the post-checkout commit hook is only called when doing a

S2560 41

Config Set and Configurator Operations

git checkout operation. Likewise, the post-merge commit hook is called only when performing a git
pull or similar operation. Note that to use cfgset_restore_perms.py as both a post-checkout and post-
merge script, the script must be copied to the .git/hooks directory twice, with one copied script renamed
as post-checkout and the other copied script renamed as post-merge.

3. Ensure all scripts are executable.

S2560 42

Configurator User Interface

4 Configurator User Interface

The configurator provides a text-based user interface for setting configuration data in an interactive session. It
also provides help on how to use the Ul: within the configurator interface, enter ? at any point to display a
contextual help menu with input, navigation, and control options appropriate for the current screen.

For a quick introduction to using the configurator user interface, see Tips for Configurator Interactive Sessions on
page 43.

For a more in-depth look at data types, menus, and basic operations, see the following topics, which are based on
cray_example, an example service created for illustrative purposes only.

e Configurator Data Types and How to Set Them on page 47
e Configurator Screens and Menus on page 58 (includes a description of navigation controls)

e Basic Configurator Ul Operations on page 62 (how to change filters, switch modes, view changes, and exit
a session)

4.1 Tips for Configurator Interactive Sessions

When a user invokes cfgset in auto or interactive mode to create or update a config set, cfgset invokes
the configurator to initiate an interactive session with the user. The configurator provides command help to aid
users in navigating the tool and adding/updating configuration data. These tips supplement that help.

Know the difference between the two "interactive" modes
Interactive mode and auto mode can both result in a configurator interactive session, but their uses and behaviors
are quite different.

auto mode Helpful for verifying that all desired settings have been set.

Auto mode initiates an interactive session when there are one or more settings in the config set
that meet state and level filtering criteria. Those settings are presented one at a time, and when
all have been presented, the configurator exits the session.

interactive Helpful for seeing the "big picture" and having more control over which services/settings are
mode presented for configuration.

Interactive mode always initiates an interactive session. It provides two tiers of menus from which
users can select one or more services/settings to drill down and configure just what is needed.
The configurator presents the selected settings one at a time, as in auto mode, but when all
selected settings have been presented, it returns the user to the menu from which the selection
was made.

e Service Configuration List Menu (or Service List Menu) lists the services in the config set

S2560 43

Configurator User Interface

e Service Configuration Menu (or service menu) lists the settings in a particular service

Filter wisely

Level and state filters determine what the configurator displays to users: what is included in the menu of services/
settings for selection in interactive mode, and what setting fields are presented automatically for configuration in
auto mode. The filters can be specified on the command line when invoking cfgset, and they can be changed in
interactive mode. If not specified, they default to level basic and state unset (exception: for interactive mode, if
a single service is specified, the default state is all).

In interactive mode, the configurator populates the Service List Menu with only those services that meet state and
level filtering criteria; both filters can be switched to different values on this menu screen. In the case of a service
menu, the configurator populates it with only those setting fields that meet level filtering criteria (shows all states);
level can be switched on this menu screen, but state cannot. Just for fun, cycle through all levels/states, noting
how level affects which services appear in the list, while state affects the status displayed for each service.

TIP: If the desired service/setting is not visible in an interactive-mode menu, simply switch level.

In auto mode, the configurator presents only those setting fields that meet state and level filtering criteria. There is
no opportunity to switch filter values in auto mode, except by first switching to interactive mode.

TIP: A good way to confirm that all basic settings have been set is to run cfgset update pO (where pO
is the config set name), which defaults to auto mode, level basic, and state unset. If the configurator
does not present any settings, it means that no basic or required settings are unset.

How to switch states and levels (interactive mode only):

switch Enter s at the configurator prompt to switch from the current state to the next one:

states unset-set-all. To see all services/settings with the specified level, enter s until state=all
displays in the menu header.

switch Enter I (lowercase L) at the configurator prompt to switch from the current level to the next one:

levels basic-advanced - required. To view all services/settings with the specified state, enter 1 until

level=advanced displays in the menu header.
To see all possible services/settings, switch to state=all and level=advanced.
Get familiar with menus in interactive mode

The Service List Menu and all service menus have the same three-section layout: a list of services/settings,
actions the user can take, and a prompt.

S2560 44

Configurator User Interface

Figure 5. Sections of Interactive-Mode Menus

list

actions

Service Configunration List Menun (Config Set: pl0, type: cle)

¥% gplect Options *%*

*F Aotions on Selected *%F

¥% Other Actions *%*

prompt Service List Menu [defanlt: save & exit = Q] §

list

actions

prompt

The menu name, config set name, and config set type are shown at the top of the list section. This
section is helpful for seeing which services still have unconfigured settings (status column—see what
changes when state is switched) and for selecting which service(s) to configure or reconfigure.

In a service menu, the list items are configuration settings for that particular service, filtered by level
only (state is set to al I and cannot be switched). This list is helpful for seeing the current state and
value of the settings and for selecting which setting(s) to set or change.

These three submenus show all commands currently available. Always use an action from the Select
Options submenu before using any from the Actions on Selected submenu. Items in the Other
Actions submenu can be used at any time (with the obvious exceptions of the exit commands Q and x,
because when one of those is used, the configurator exits the interactive session).

Select Actions that select one or more services/settings from the list. The selected services/
Options settings are the only ones that can be acted upon. Once selected, an asterisk appears
in the Selected column next to the item and its font color changes.

Actions on Actions that can be used on the selected service(s) or setting(s); a selection must be

Selected made first. Shows in parentheses how many items have been selected. A few of these
actions, like toggle whether a service is enabled and toggle whether it inherits setting
values from the global version of its template (applies to only a few services) move to
the Other Actions submenu on service menu screens.

Other Actions that can be used on all services/settings or on the current configurator
Actions session. The most commonly used are the filter switches and help (?).

The prompt shows which menu is active and what the default action is. Before a selection is made, the
default action is to save and exit (as shown in previous figure). When a selection is made, the default
action is to configure the selected service(s) or setting(s), and the prompt changes to

MENU_NAME [default: configure — C] $

S2560

45

Configurator User Interface

Note that accepting this default action (or entering C) displays the configuration setting screen for the
first selected setting.

Get familiar with configuration setting screens

A configuration setting screen shows users information about the setting field to be configured (default/current
values, data type, level, current state, etc.) and enables the user to navigate among setting fields, enter/change
field values, and switch to interactive mode. The configuration setting screen is displayed when a user makes a
selection and enters C in interactive mode, or when a setting matches state and level filters in auto mode.
Configuration setting screens have a prompt that is packed with useful information. Consider this example of a
prompt:

cray_Imt.settings. Imt _database.data.database fstype
[<cr>=set "ext3", <new value>, ?=help, @=less] $

The first line is the full name of the setting field being presented (this is the same as the corresponding entry in
the configuration worksheet for this service). The part that precedes .settings. is the service name
(cray_Imt, the Lustre Monitoring Tool service, in the example), and the part that follows is the setting field being
presented. In the example, the setting is Imt_database and the field to be set (one of several for that setting) is
database_ fstype.

The second line lists available commands. In the example, the default command (selected by pressing Enter or
<cr>) sets the value to ext3, which is the default value provided in the configuration template for that service. If
this setting field had already been configured with the value ext3, the default command would be <cr>=keep
"ext3", (set becomes keep). This list of available commands is not exhaustive: to see all possible options,
enter ? after the prompt, which will insert a context-sensitive menu of commands between the information section
and the prompt.

Switch to interactive mode, as needed
When in a configuration setting screen, whether the user has arrived there by invoking cfgset in auto mode or

by making a selection and entering C in interactive mode, it is possible to switch to interactive mode and display
either the service menu (lists settings for a single service) or the Service List Menu (lists services in the config
set).

switch from To switch to interactive mode and display the service menu, enter ~ at the configurator
setting screen to prompt. Example:

a service menu
cray_node_health.enabled
[<cr>=keep "true®, <new value>, ?=help, @=less] $

switch from To switch to interactive mode and display the Service List Menu, enter A at the
setting screen to configurator prompt. This action can be taken only if cFgset was invoked for all services
Service List Menu (as this is the default, this is true unless the --service or -s option was used). Example:

cray_node_health.enabled

[<cr>=keep "true®, <new value>, ?=help, @=less] $ ™

Switch between menus in interactive mode, as needed

switch from When a service has been selected from the Service List Menu in interactive mode, enter v
Service List (view settings) to switch to the selected service's menu instead of taking the default action of

S2560 46

Configurator User Interface

Menu to service Configure (C). The v action is available if only a single service is selected. If multiple services
menu are selected, C is the only action available. Example:

Service List Menu [default: configure - C] $ v

switch from To switch from a service menu to the Service List Menu, enter A at the configurator prompt.
service menu to This action can be taken only if cFgset was invoked for all services (as this is the default,
Service List this is true unless the —-service or -s option was used). Example:

Menu

Node Health Service Menu [default: save & exit - Q] $ ™

When in doubt, jump out
It is better to leave a setting field unconfigured than set it to an incorrect value or 'none." If unsure what the value
should be or whether that setting field is needed, jump out using one of these methods:

e Switch to interactive mode, as needed.

e Skip to the next setting field: enter > at the configurator prompt.

Get help early and often

Enter ? at the configurator prompt at any time to see a list of available commands. In interactive mode, this simply
displays a verbose list of the same commands listed in the menu's three action submenus. However, in a
configuration setting screen, entering ? displays a context-sensitive menu of available commands not displayed
elsewhere. Here is an example of the commands available in the context of configuring a multival setting in a
service (multival settings are configured by adding/changing entries). Use the ? command in configuration setting
screens early and often to learn the available commands.

Command Help

I

| * ++ - double view limit (currently 2)

| * -— - decrease view limit by half (currently 2)

| * * - view all entries (no limit)

| * + - add entries

| =~ <#>* - change the <#> entry. Example: "2b*" selects sub-item b in entry 2
to change

| * <#>- - delete the <#> entry. Example: "4-" deletes entry 4
| * d - delete all entries in the list

| * <cr> - accept the current value(s)

| * # - set the value to its default

| =~ < - go back to the previous setting

| * > - skip and go to the next setting

| * 2 - Go to the “cray _dvs" service menu (interactive mode)
| * AR - Go to the service list menu (interactive mode)

| * Q - write out changes and exit the configurator

| * X - revert all changes and exit the configurator

| * r - refresh the screen

| * @ - toggle more/less info

I~ ?

- show this help

S2560 47

Configurator User Interface

4.2 Configurator Data Types and How to Set Them

Basic: String, Integer, Float, Boolean

To enter values for string, integer, and float data, enter the value of the field at the prompt, then press the Enter
(<cr>) key. To accept the default value instead (if available), just press Enter. For booleans, valid values are true
and false.

xxx cray_example.settings.basic _example.data.basic_string value ***x
basic_string_value -- Basic String Value
This field is part of the basic_example setting in the cray_example
service. It is a string value that only allows lowercase letters. The
configurator will validate the value for this field that it is a string
and matches the letters. Its default value is "abc”.

Default: Current:
abc not configured yet

Value: string, blank values not allowed, regex="[a-z]*$
level=basic, state=unset

Inputs: <string> -- OR -- menu commands (? for help)

cray_example.settings.basic_example.data.basic_string_value
[<cr>=set "abc", <new value>, ?=help, @=less] $

Advanced: Protected

For configuration data of type protected, which is often used for password fields, the configurator prompts the
user to enter the value twice, and the entered value is not echoed to the terminal. The prompt changes slightly to
indicate this different input mechanism.

cray_example.settings.basic_example.data.basic_protected value
[+=modify, ?=help, @=less] $

To set or change a protected value (basic_protected_value in this example), press the + key to enter input mode,
then enter the value of the field as directed.

cray_example.settings.basic_example.data.basic_protected value
[+=modify, ?=help, @=less] $ +

Modify basic_protected value (Ctrl-d to cancel, <cr> to set) $ << value entered >>
Re-enter value for basic_protected value (Ctrl-d to cancel, <cr> to set) $ << value
entered >>

[---next screen rendered...]

Advanced: List
Some configuration data has type 1ist, which accepts multiple entries for the value. For list data, the

configurator prompt changes slightly to indicate this different input mechanism.

cray_example.settings.basic_example.data.basic_list_value
[<cr>=set O entries, +=add an entry, ?=help, @=less] $

To set or change a list value (basic_list_value in this example), enter + to enter input mode, then enter the
value of the field as directed:

S2560 48

Configurator User Interface

cray_example.settings.basic_example.data.basic_list value
[<cr>=set 0 entries, +=add an entry, ?=help, @=less] $ +
Add basic_list value (Ctrl-d to exit) $ first value

Add basic_list value (Ctrl-d to exit) $ second value

Add basic_list value (Ctrl-d to exit) $ << Ctrl-d >>

After Ctrl-d is pressed to exit input mode, the configurator redraws the field description with the proposed
changes.

*xxxxkxx cray_example.settings.basic_example.data.basic_list value ******x*

basic_list value -- Basic List Value
This field is part of the basic_example setting in the cray_example
service. It is a list value. The input mechanism is slightly different
for protected values.

Default: Current:
(none) 1) first_value
2) second_value

Value: list, blank values not allowed
level=basic, state=unset

Inputs: menu commands (? for help)

|--- Information
| * 2 entries added. Press <cr> to set.

cray_example.settings.basic_example.data.basic_list_value
[<cr>=set 2 entries, +=add an entry, ?=help, @=less] $

The configurator adds an informational message about the input that was just added and lists the new values
under Current. To actually set the list entries as the value of this field, press the Enter (<cr>) key.

IMPORTANT: When finished editing list entries, always press Enter to set the entries as the value of the
list field. If the save and exit command (Q) is issued before the entries are set, the configurator will not
save the entries and will not write out the new data.

Advanced: Multival

Configuration data of type multival is used for entities that typically occur as multiple instances and each
instance has a set of properties that need to be configured, such as network interfaces or DVS client mounts. A
multival setting is basically a setting with one or more subsettings (entries), where each entry consists of a key
(the entry name) and one or more fields of any data type (the fields do not need to have the same data type). One
or more of the fields in a entry could be another multival!

As with list data, when a multival field is presented by the configurator, enter + to add a new entry. For each new
entry, the configurator will present the multival key field to create the entry name, then cycle through the rest of
the fields for the multival entry. The multival setting will be presented at the end for an opportunity to review,
modify, add, or set new multival entries, as shown in this example. This multival setting has two entries defined,
each of which has a key field (always a string), a string field, a protected field, and a list field.

FrRIxAxxAxxA* cray_example.settings.multival _example ****xx*xxix

multival_example
Multiple hostnames can be configured in this service. For each
hostname, a few simple values are available for further

S2560 49

Configurator User Interface

configuration.

Configured Values:
1) "foo*"
a) basic_string value: foovalue
b) basic_protected value: *** <hidden> ***
c) basic_list value:
foovaluel
foovalue2

2) "bar*
a) basic_string value: barvalue
b) basic_protected value: *** <hidden> ***
c) basic_list value:
barvaluel
barvalue2

Inputs: menu commands (? for help)

|--- Information
| * Multiple "multival_example® entries can be added using this menu

cray_example.settings.multival _example
[<cr>=set 2 entries, +=add an entry, ?=help, @=less] $

IMPORTANT: As with list data, when finished editing multival entries, always press Enter to set the
entries as the value of the multival setting. If the save and exit command (Q) is issued before the entries
are set, the configurator will not save the entries and will not write out the new data.

Advanced: Lookup

The Cray Node Groups feature allows quickly switching between a field that needs to set its values as hames of
node groups and the node groups configuration service. The Cray Node Groups feature uses lookup fields to
assign node group names to various other fields throughout the configuration set. Configuration 1ookup fields
allow the user to specify values that are set in other fields and configuration services. Lookup fields act in a
similar manner as list fields with the exception that only values that are set in the reference field are valid in the
lookup field. The configurator specifies the extra options ! and v when presenting a 1ookup field. The T option
will navigate the user back to the reference field to add/modify/delete reference field entries. The v option will
show the user all available values that can be used in the currently displyed lookup field.

The following example shows configuration of node-groups-based fields via the configurator user interface. In this
example, the login nodes are configured using 1ookup fields in the cray_login configurator template. After the
new configurator templates have been installed on the system, begin by running cfgset update on the config
set to be updated. This example uses the -s cray_login option to specifically target and update only the
cray_login service within a config set p0.

smw# cfgset update -s cray_ login p0

INFO - Running pre-configuration scripts

INFO - Validating templates and configuration data. One moment please.

INFO - Validating configuration templates for YAML syntax.

INFO - Validating configuration templates for schema compliance.

INFO - Template “cray_image_layering_config.yaml® found in config set with no
matching template to merge.

INFO - Merging configuration templates and validating schema.

INFO - Validating configuration templates for lookup resolution.

FrRExAxxAxA** cray_login.settings.login_nodes.data.member_groups ****x**xkxtk

S2560 50

Configurator User Interface

member_groups -- Groups of login nodes
A list of all internal node groups that will be used as login or mom
nodes. The nodes iIn these groups are nodes which have been connected
via ethernet to the system and are to be used by end users to access
the system.

Enter the node groups of the login nodes.

Default: Current:
(none) (none)

Value: lookup, blank values not allowed
level=basic, state=unset

Inputs: menu commands (? for help)
Information

The values for this field need to be defined in the following setting:
- "cray_node_groups.settings.groups”

Type "1" at the prompt to modify "cray node_groups.settings.groups”®
Type "v" at the prompt to view values of "cray node_groups.settings.groups”®

X % % X

cray_login.settings.login_nodes.data.member_groups
[<cr>=set 0 entries, +=add an entry, ?=help, @=less] $

The configurator presents a new field called member_groups that needs to be configured. The member_groups
setting is a lookup field, meaning it will expect whatever values the user enters to be present in the field it
references. In this case, the reference field is cray_node_groups.settings.groups, the field that defines
node groups. To view acceptable values for a lookup field, type v at the prompt. In this example, typing v will
display the values currently defined in the cray _node_groups.settings.groups setting. The output below
shows the result of typing v and pressing Enter at the prompt.

FrxAxxxAx* cray_login.settings.login_nodes.data.member_groups **xx*iixkix
member_groups -- Groups of login nodes
A list of all internal node groups that will be used as login or mom
nodes. The nodes In these groups are nodes which have been connected
via ethernet to the system and are to be used by end users to access

the system.
Enter the node groups of the login nodes.
Default: Current:

(none) (none)

Value: lookup, blank values not allowed
level=basic, state=unset
Inputs: menu commands (? for help)
Information
The values for this field need to be defined in the following setting:
- "cray_node_groups.settings.groups”

Type “1° at the prompt to modify "cray_node_groups.settings.groups”
Type "v" at the prompt to view values of "cray node_groups.settings.groups”®
The values of the reference field "cray node groups.settings.groups® are:

- compute_nodes

- service_nodes

- smw_nodes

- boot_nodes

ok % ok X b % % o X

S2560 51

Configurator User Interface

sdb_nodes
login_nodes
all_nodes
tier2 _nodes

* Ok ok %
|

cray_login.settings.login_nodes.data.member_groups
[<cr>=set O entries, +=add an entry, ?=help, @=less] $

The configurator allows the user to temporarily switch to the cray_node_groups.settings.groups setting to
define a new node group if none of the existing node groups are appropriate for the current lookup field being
configured. Type ! at the prompt to temporarily switch to the refence field to add, delete, or modify reference field
entires. The output below shows the result of typing ! and pressing Enter:

groups
Define node groups for referencing lists of CLE nodes in other CLE
configuration data fields in this config set. Node groups can be
arbitrary groupings of CLE nodes, but nodes within a group are often
related by specific software functionality or hardware characteristics.
Examples of commonly-defined groups are login nodes, DVS servers, RSIP
servers, etc. Each group may contain multiple nodes, and nodes may be
included in more than one node group. Nodes do not need to be
explicitly assigned to a node group.
Configured Values:
1) "compute_nhodes*
a) members:
platform:compute
2) “service_nodes*
a) members:
platform:service
--. 6 more groups entries...
Inputs: menu commands (? for help)
--— Information
* You were editing "cray_login.settings.login_nodes.data.member_groups”
The configurator will return to that field when you are finished here.

Multiple "groups® entries can be added using this menu

cray_node_groups.settings.groups
[<cr>=set 8 entries, +=add an entry, ?=help, @=less] $

At this point, the configurator is editing the groups setting of the cray_node_groups configurator service. The
output below shows how to edit the login nodes group to add the cname of the login node to be added to the
group. First, show all defined groups by typing * and pressing Enter:

groups

Define node groups for referencing lists of CLE nodes in other CLE
configuration data fields in this config set. Node groups can be
arbitrary groupings of CLE nodes, but nodes within a group are often
related by specific software functionality or hardware characteristics.
Examples of commonly-defined groups are login nodes, DVS servers, RSIP
servers, etc. Each group may contain multiple nodes, and nodes may be
included in more than one node group. Nodes do not need to be
explicitly assigned to a node group.

Configured Values:
1) "compute_nodes*

a) members:
platform:compute

S2560 52

Configurator User Interface

2) "service_nodes*”
a) members:
platform:service

3) "smw_nodes®

a) members: (none)
4) "boot nodes*®

a) members: (none)
5) "sdb_nodes*

a) members: (none)
6) "login_nodes®

a) members: (none)
7) "all_nodes*

a) members:
platform:compute
platform:service

8) "tier2_nodes®
a) members: (none)
Inputs: menu commands (? for help)
|--- Information
| * No viewing limit set. Type "*" to limit view to 2 entries.
I —_
cray_node_groups.settings.groups
[<cr>=set 8 entries, +=add an entry, ?=help, @=less] $

Above, the configurator shows a node group defined with the name login_nodes, so this example will add login
nodes to the members list of that group. Modify that group's list of members by typing the number and letter of the

field to edit followed by an asterisk. In this case, entering 6a* will select login_nodes - members. Press
Enter to confirm selection:

FrRIxAX*X* cray_node_groups.settings.groups.data.login_nodes.members *****x*xix*
groups (current key: login_nodes)

Define node groups for referencing lists of CLE nodes in other CLE

configuration data Ffields in this config set. Node groups can be

arbitrary groupings of CLE nodes, but nodes within a group are often
related by specific software functionality or hardware

characteristics. Examples of commonly-defined groups are login nodes,
DVS servers, RSIP servers, etc. Each group may contain multiple nodes,

and nodes may be included in more than one node group. Nodes do not
need to be explicitly assigned to a node group.

members -- Node Group Member List

Supply the name of the nodes that are members of this group. For CLE
nodes, this is the c-name of the node. If an SMW node is included in
the group, enter the output of the "hostid® command from the SMW
node. For elLogin nodes, the output of the “hostname® command should
be used. The "platform:compute™ and "platform:service®” keywords can
be used to include all compute or service nodes in the current
partition in the group, respectively. Group members prefixed by a
tilde (~) are excluded from the group. This applies to c-names,
hostids, hostnames, and the "platform:service® or "“platform:compute*®

keywords.
Default: Current:
(none) (none)

Value: list, blank values not allowed, regex="~?c\d+-\d+c[0-2]s(\d|
1[0-5D)n[0-3]%$ | ~?platform:service$|~?platform:compute$|*~?[0-9a-F]{8} | *~?[A-Za-
z0-9][A-Za-z0-9-]1{0,252}%

level=required, state=all

Inputs: menu commands (? for help)
cray_node_groups.settings.groups.data.login_nodes.members
[<cr>=set 0 entries, +=add an entry, ?=help, @=less] $

S2560

53

Configurator User Interface

Type + to add desired login nodes' cnames to this node group. Then type the login node cnames, one per line,
and terminate the list of members by pressing Ctrl-d (EOF):

FrRExAXAX* cray_node_groups.settings.groups.data.login_nodes.members *****x*xixx
groups (current key: login_nodes)
Define node groups for referencing lists of CLE nodes in other CLE
configuration data fields in this config set. Node groups can be
arbitrary groupings of CLE nodes, but nodes within a group are often
related by specific software functionality or hardware
characteristics. Examples of commonly-defined groups are login nodes,
DVS servers, RSIP servers, etc. Each group may contain multiple nodes,
and nodes may be included in more than one node group. Nodes do not
need to be explicitly assigned to a node group.
members -- Node Group Member List

Supply the name of the nodes that are members of this group. For CLE
nodes, this is the c-name of the node. If an SMW node is included in
the group, enter the output of the "hostid® command from the SMW
node. For elLogin nodes, the output of the “hostname® command should
be used. The "platform:compute™ and "platform:service®” keywords can
be used to include all compute or service nodes in the current
partition in the group, respectively. Group members prefixed by a
tilde (~) are excluded from the group. This applies to c-names,
hostids, hostnames, and the "platform:service” or "platform:compute*®

keywords.
Default: Current:
(none) (none)

Value: list, blank values not allowed, regex="~?c\d+-\d+c[0-2]s(\d]|
1[0-51)n[0-3]%$ | ~?platform:service$|~?platform:compute$|*~?[0-9a-F]{8} | ~?[A-Za-
z0-9][A-Za-z0-9-]1{0,252}%

level=required, state=all

Inputs: menu commands (? for help)
cray_node_groups.settings.groups.data.login_nodes.members
[<cr>=set 0 entries, +=add an entry, ?=help, @=less] $ +
Add members (Ctrl-d to exit) $ c0-0c0sOn2
Add members (Ctrl-d to exit) $ c0-0cOslinl
Add members (Ctrl-d to exit) $

The configurator then displays the list of nodes entered for the members field of the login_nodes node group:

FrIxAxxXx*x cray_hode_groups.settings.groups.data.login_nodes.members ****x*xxixx
groups (current key: login_nodes)
Define node groups for referencing lists of CLE nodes in other CLE
configuration data fields in this config set. Node groups can be
arbitrary groupings of CLE nodes, but nodes within a group are often
related by specific software functionality or hardware
characteristics. Examples of commonly-defined groups are login nodes,
DVS servers, RSIP servers, etc. Each group may contain multiple nodes,
and nodes may be included in more than one node group. Nodes do not
need to be explicitly assigned to a node group.
members -- Node Group Member List
Supply the name of the nodes that are members of this group. For CLE
nodes, this is the c-name of the node. If an SMW node is included in
the group, enter the output of the "hostid®™ command from the SMW
node. For eLogin nodes, the output of the "hostname®™ command should
be used. The "platform:compute® and "platform:service” keywords can
be used to include all compute or service nodes in the current
partition in the group, respectively. Group members prefixed by a
tilde (~) are excluded from the group. This applies to c-names,
hostids, hostnames, and the "platform:service® or "platform:compute*®
keywords.

S2560 54

Configurator User Interface

Default: Current:
(none) 1) c0-0c0s0n2
2) c0-0c0s1nl
Value: list, blank values not allowed, regex="~?c\d+-\d+c[0-2]s(\d]
1[0-5])n[0-3]$8|~?platform:service$ | ~?platform:compute$ | ~?[0-9a-F]{8} | ~?[A-Za-
z0-9][A-Za-z0-9-]1{0,252}%
level=required, state=all
Inputs: menu commands (? for help)
|--- Information
| * 2 entries modified. Press <cr> to set.
I___
cray_node_groups.settings.groups.data.login_nodes.members
[<cr>=set 2 entries, +=add an entry, ?=help, @=less] $

Press Enter to accept the values. This brings the user back to the groups setting:

B cray_node_groups-settings-groups B
groups
Define node groups for referencing lists of CLE nodes in other CLE
configuration data fields in this config set. Node groups can be
arbitrary groupings of CLE nodes, but nodes within a group are often
related by specific software functionality or hardware characteristics.
Examples of commonly-defined groups are login nodes, DVS servers, RSIP
servers, etc. Each group may contain multiple nodes, and nodes may be
included in more than one node group. Nodes do not need to be
explicitly assigned to a node group.
Configured Values:
1) "compute_nodes”
a) members:
platform:compute
2) “service_nodes*
a) members:
platform:service
3) "smw_nodes*
a) members: (none)
4) “boot_nodes*
a) members: (none)
5) "sdb_nodes*
a) members: (none)
6) "login_nodes*
a) members:
c0-0c0s0n2
c0-0c0s1nl
7) "all_nodes*
a) members:
platform: compute
platform:service
8) "“tier2_nodes®
a) members: (none)
Inputs: menu commands (? for help)
|--- Information
| = Multiple "groups® entries can be added using this menu
I___
cray_node_groups.settings.groups
[<cr>=set 8 entries, +=add an entry, ?=help, @=less] $

At this point, more node groups may be defined by typing + and pressing Enter. Adding additional node groups
works just like adding elements to other multival type settings in the configurator. In this example, all desired
login_nodes node group members have been entered. Press Enter to leave

S2560 55

Configurator User Interface

cray_node_groups.settings.groups and return to
cray_login.settings.login_nodes.data.member_groups:

FrRExAXAI*A* cray_login.settings. login_nodes.data.member_groups *****x*xxix
member_groups -- Groups of login nodes
A list of all internal node groups that will be used as login or mom
nodes. The nodes in these groups are nodes which have been connected
via ethernet to the system and are to be used by end users to access

the system.
Enter the node groups of the login nodes.
Default: Current:

(none) (none)

Value: lookup, blank values not allowed
level=basic, state=all
Inputs: menu commands (? for help)
-—- Information
The values for this field need to be defined in the following setting:
- "cray_node_groups.settings.groups”

Type "1" at the prompt to modify "cray node_groups.settings.groups”
Type "v" at the prompt to view values of "cray node groups.settings.groups”

cray_login.settings.login_nodes.data.member_groups
[<cr>=set 0 entries, +=add an entry, ?=help, @=less] $

Now that the desired login nodes have been added to the node group named login_nodes as defined in the
reference field cray_node_groups.settings.groups, the login_nodes group can be added to the
cray_login.settings.login_nodes.data.member_groups setting by typing +, pressing Enter, and
entering the name of the node group:

FrRIxAxxAx*A* cray_login.settings.login_nodes.data.member_groups *****x*xxix
member_groups -- Groups of login nodes
A list of all internal node groups that will be used as login or mom
nodes. The nodes iIn these groups are nodes which have been connected
via ethernet to the system and are to be used by end users to access

the system.
Enter the node groups of the login nodes.
Default: Current:

(none) (none)

Value: lookup, blank values not allowed
level=basic, state=all
Inputs: menu commands (? for help)
--- Information
* The values for this field need to be defined in the following setting:
- "cray_node_groups.settings.groups”

Type "1" at the prompt to modify "cray node_groups.settings.groups”

Type "v" at the prompt to view values of "cray node_groups.settings.groups”®
cray_login.settings.login_nodes.data.member_groups

[<cr>=set 0 entries, +=add an entry, ?=help, @=less] $ +

Add member_groups (Ctrl-d to exit) $ login_nodes

Add member_groups (Ctrl-d to exit) $

Pressing Ctr1-d terminates the list and displays the value of the member_groups field:

FrRFIxAxxAxx* cray_login.settings.login_nodes.data.member_groups *****xx*xxix
member_groups -- Groups of login nodes
A list of all internal node groups that will be used as login or mom

S2560 56

Configurator User Interface

nodes. The nodes iIn these groups are nodes which have been connected
via ethernet to the system and are to be used by end users to access

the system.
Enter the node groups of the login nodes.
Default: Current:

(none) 1) login_nodes

Value: lookup, blank values not allowed
level=basic, state=all

Inputs: menu commands (? for help)
|--- Information
| * 1 entry modified. Press <cr> to set.
I —_
cray_login.settings.login_nodes.data.member_groups
[<cr>=set 1 entries, +=add an entry, ?=help, @=less] $

Pressing Enter again finishes configuring all new settings that need to be configured for node groups. Once the
user saves and exits the configurator, the member_groups setting of the cray_login service will be configured
with the node group that is configured in the cray_node_groups service as shown below in the output of cfgset
search of a config set pO:

smw# cfgset search -s cray login --level basic p0
2 matches for "." from cray login_config.yaml

cray_login.settings.login_nodes.data.member_groups: login_nodes
cray_login.settings.login_nodes.data.login_prohibited after_boot: false

smw# cfgset search -s cray _node groups --level basic p0
16 matches for "_." from cray_node_groups_config.yaml

cray_node_groups.settings.groups.data.compute nodes.description: Default node group
which contains all the compute nodes for the current partition.
cray_node_groups.settings.groups.data.compute nodes.members: platform:compute
cray_node_groups.settings.groups.data.service_nodes.description: Default node group
which contains all the service nodes for the current partition.
cray_node_groups.settings.groups.data.service _nodes.members: platform:service
cray_node_groups.settings.groups.data.smw_nodes.description: Default node group
which contains the primary and failover (if applicable) SMW nodes.
cray_node_groups.settings.groups.data.smw_nodes.members: [] # (empty)
cray_node_groups.settings.groups.data.boot _nodes.description: Default node group
which contains the primary and failover (if applicable) boot nodes associated with
the current partition.

cray_node_groups.settings.groups.data.boot _nodes.members: [] # (empty)
cray_node_groups.settings.groups.data.sdb_nodes.description: Default node group
which contains the primary and failover (if applicable) SDB nodes associated with
the current partition.

cray_node_groups.settings.groups.data.sdb_nodes.members: [] # (empty)
cray_node_groups.settings.groups.data.login_nodes.description: Default node group
which contains the login nodes for the configured system.
cray_node_groups.settings.groups.data.login_nodes.members: c0-0c0s0On2, c0-0cOslnl
cray_node_groups.settings.groups.data.all_nodes.description: Default node group
which contains all of the nodes applicable to the current system. May also contain
SMW nodes and external login nodes.
cray_node_groups.settings.groups.data.all_nodes.members: platform:compute,
platform:service

cray_node_groups.settings.groups.data.tier2 nodes.description: Default node group
which contains the tier 2 nodes in the system. See the guidance in the
cray_scalable_services service for a detailed description of tier 2 nodes.
cray_node_groups.settings.groups.data.tier2_nodes.members: [] # (empty)

S2560 57

Configurator User Interface

4.3 Configurator Screens and Menus

Service Configuration List Menu (Interactive Mode)

When the configurator is invoked in interactive mode for all services, it presents the Service Configuration List
Menu (also referred to as Service List Menu), which displays all services currently in the config set that meet the
specified state and level filters.

Here is an example command and the resulting menu for a config set p0.staging of type cle. The list includes
only services with configuration level basic and state unset (not included in command because those are
defaults).

smw# cfgset update --mode interactive p0.staging

Service Configuration List Menu (Config Set: pO.staging, type: cle)

Selected # Service Status (level=basic, state=unset)
1) cray_example unconfigured service, 8/8 unconfigured
settings
2) cray_example2 [OK], 6/7 unconfigured settings

**** Select Options ****

a: all n: none c: configured
u: unconfigured e: enabled d: disabled
i: inheriting #: toggle #
**** Actions on Selected (0 services) ****
C: configure E: toggle enable 1: toggle inherit
@: show guidance v: view settings
**** Other Actions ****
?: help 1: switch level s: switch state
r: refresh $: view changelog Q: save & exit

X: exit without save

Service List Menu [default: save & exit - Q] $

Information about the config set is shown at the top after the menu title. The services are presented in a list,
followed by options for operations on the services. Multiple services can be selected using the filters listed in the
Select Options submenu. For example, to select all of the unconfigured services in the list, enter u at the prompt
(in this case, the cray_example service would be selected). Services can be selected by entering a range of
numbers (e.g., 1-2), a list of numbers and ranges (e.g., 1-2,4,7-9), or by number directly (e.g., entering 2 will
select the cray_example2 service). To deselect all selections, enter n, and to deselect one or a subset of
services, select them again to toggle selection off.

After one or more services are selected, the Actions On Selected submenu can be used to perform operations
on the selected services. The following options are available:

C Configures the services by entering auto mode and presenting configuration setting screen(s), then returns
to interactive mode and this menu when complete.

S2560 58

Configurator User Interface

E Switches each selected service to enabled if currently disabled and vice versa.

I Switches each selected service to inheriting if not and vice versa. Applies only to services in the current
config set that have a global version of the configuration template.

@ Shows the top-level service guidance for each service.

v View the service menu for the selected service (this option appears only when a single service is selected,
not when multiple are selected).

When one or more services are selected, the default menu option changes from save & exit - Q to configure - C.
Pressing Enter when one or more services are selected will begin configuration on the selected services.

The Other Actions submenu provides options that act on all services or on the current configurator session. The
following options are available:

? Display help content on all input options in this menu and short descriptions of the commands.

I Switch the configuration level from the current level to the next level. The level is cycled from basic to
advanced to required to basic and so on. The menu will update with the effects of the filtering.

s Switch the configuration state from the current state to the next state. The state is cycled from unset to set
to all to unset and so on. The menu will update with the effects of the filtering.

—

Refresh the screen by clearing any help, guidance, and information messages.
View a list of changes that have been made to the services in the current session.

Exit the configuration session completely and save any changes.

X O @

Exit the configuration session completely and do not save any changes.

Service Configuration Menu (Interactive Mode)

When the configurator is invoked in interactive mode for a specific service, it presents the Service Configuration
Menu (service menu), which displays the specified service. The configurator also displays this menu if the v (view
service settings) option is used when that service is selected in the Service List Menu.

Here is an example command and the resulting menu for servicecray_example in config set pO.staging of
type cle. The list of settings includes only those with configuration level basic (not included in command
because it is the default). In the service menu, settings of all states are shown, regardless of any state specified
on the command line.

smw# cfgset update --mode interactive --service cray_example p0O.staging

Service Configuration Menu (Config Set: pO.staging, type: cle)
cray_example [status: enabled] [validation: valid]

basic_example

1) basic_string_value [unconfigured, default=abc]
2) basic_protected value [unconfigured, default=(none)]
3) basic_list_value [unconfigured, default=(none)]
4) multival_example [4 sub-settings unconfigured,

select and enter C to add entries]

**** Select Options ****

S2560 59

Configurator User Interface

a: all n: none c: configured
u: unconfigured #: toggle #
**** Actions on Selected (0 settings) ****
C: configure @: show guidance
x* Other Actions *
?: help 1: switch level > toggle enable
1: toggle inherit Az go to service list r: refresh
$: view changelog Q: save & exit X: exit without save

Cray Example Service Menu [default: save & exit - Q] $

NOTE: A status of val idation: valid as seen in the above screenshot does not take into account
validation rules.

Information about the config set and the status of the service is shown at the top of the menu. The settings within
the service are presented in a list, followed by options for operations on the settings. Multiple settings can be
selected using the filters listed in the Select Options submenu. For example, to select all of the unconfigured
settings in the list, enter u at the prompt (in this case, all settings would be selected). Settings can be selected by
entering a range of numbers (e.g., 1-2), a list of numbers and ranges (e.g., 1-2,4,7-9), or by number directly
(e.g., entering 2 will select the basic_protected_value setting). To deselect all selections, enter n, and to
deselect one or a subset of settings, select them again to toggle selection off.

After one or more settings are selected, the Actions On Selected submenu can be used to perform operations
on the selected settings and fields. The following options are available:

C Configures the settings by entering auto mode and presenting configuration setting screen(s), then returns to
interactive mode and this menu when complete.

@ Shows the guidance for each field.

When one or more settings are selected, the default menu option changes from save & exit - Q to configure - C.
Pressing Enter when one or more services are selected will display the configuration setting screen so that the
user can begin configuration on the selected settings. See Configuration Setting Screen (Interactive and Auto
Mode).

The Other Actions submenu provides options that act on all settings or on the current configurator session. The
following options are available:

? Display help content on all input options in this menu and short descriptions of the commands.

I Switch the configuration level from the current level to the next level. The level is cycled from basic to
advanced to required to basic and so on. The menu will update with the effects of the filtering.

E Switches the service to enabled if disabled and vice versa.

I Switches the service to inheriting if not and vice versa. Applies only to services in the current config set that
have a global version of the configuration template.

AN Navigate up to the Service List Menu (effective only if the configurator was invoked on all services, i.e.,
without the --service option).

r Refresh the screen by clearing any help, guidance, and information messages.
$ View a list of changes that have been made to the service in the current session.

Q Exit the configuration session completely and save any changes.

S2560 60

Configurator User Interface

x Exit the configuration session completely and do not save any changes.

Configuration Setting Screen (Interactive and Auto Mode)

When the configurator is in auto mode, it presents a configuration setting screen, which displays a setting to be
configured. The configurator can get into auto mode by being invoked in that mode, or by dropping into it from
interactive mode, when the user drills down to configure a particular setting/field.

Here is the template for a configuration setting screen.

{{field name} -- {{Field title}}
{{ field guidance }}

Default: Current:
{{default value}} {{current value, if configured}}

Value: {{data type}}, {{validation criteria}}
{{configuration level/state}}

Inputs: <{{data type}}> -- OR -- menu commands (? for help)

|--- Information/Errors
| * {{messages}}
E==

[<cr>=set "{{default value}}", <new value>, ?=help, @={{more/less}}] $

Here is an example of invoking the configurator in auto mode for a config set pO.staging of type cle. The
configurator will present only settings with configuration level basic and state unset (not included in command

because those are defaults).

smw# cfgset create p0.staging

This is the configuration setting screen for the field basic_string_value in the cray_example service in
config set pO.staging.

*xxxxkxx cray_example.settings.basic_example.data.basic_string value ******
basic_string value -- Basic String Value
This field is part of the basic_example setting in the cray_example
service. It is a string value that only allows lowercase letters. The
configurator will validate the value for this field that it is a string
and matches the letters. Its default value is "abc”.

Default: Current:
abc not configured yet

Value: string, blank values not allowed, regex="[a-z]*$
level=basic, state=unset

Inputs: <string> -- OR -- menu commands (? for help)

cray_example.settings.basic_example.data.basic_string_value
[<cr>=set "abc", <new value>, ?=help, @=less] $

The first line of output is the full name of the setting field (or 'path.to.field' because it is the exact location of the
data value for the field in the config set configuration template). The full name is output in cfgset search
output, and it is also used in configuration worksheets.

S2560 61

Configurator User Interface

The last line of output is a prompt to accept input. Information messages are shown only when requested through
a menu command, and error messages are shown only when incorrect input is received. The following options
are available:

<cr> (Enter User presses Enter to accept the default value, which in this case is
or Return key) setting basic_string_example to the value abc.

<new value> User enters a new value at the prompt and then presses Enter to to
change basic_string_example from its current or default value.

? User enters ? at the prompt and then presses Enter to print the contextual help menu to the
screen.
@ User enters @ at the prompt and then presses Enter to toggle configurator verbosity to show

more or less information about the basic_string_example field.

Navigating in a Configuration Setting Screen (Interactive and Auto Mode)

When navigating through the configuration settings for a given service, it may be necessary to go back and review
a previous setting or skip a current setting so it can be configured at a later time. The configurator user interface
enables the user to do this with a set of commands that are entered at the prompt in the configuration setting
screen. One of these commands enables users to switch to interactive mode by navigating up to the service

menu and Service List Menu. The following navigation options are available:

> Skip to the next configuration setting field screen. The configurator will not mark the current screen's field as
being configured if this command is selected.

< Navigate back to the previous setting field screen. If the current screen is the first field that was marked for
configuration, use the commands to navigate to the service menu or Service List Menu instead.

N Navigate "up” from the configuration setting screen to the service menu. This places the configurator in
interactive mode.

AN Navigate "up” from the configuration setting screen or the service menu to the Service List Menu (this
navigates to the service menu if the --service option was added when invoking the configurator
originally). This places the configurator in interactive mode.

4.4 Basic Configurator Ul Operations

Change Configuration Filters During a Session
To change configuration filters during a configurator session when in interactive mode:
e Enter I (lowercase L) at the menu prompt to cycle through the level filters.

e Enter s at the menu prompt to cycle through the state filters. Applicable only in the Service List Menu; all
states are displayed in a service menu.

Switch Configuration Modes During a Session

To switch to interactive mode when in a configuration setting screen (displayed when configurator invoked in auto
mode or when configuring selected services/settings in interactive mode):

S2560 62

Configurator User Interface

e Enter ” at the menu prompt to display the service menu.

e Enter ™ at the menu prompt to display the Service List Menu. Applicable only if the configurator was invoked
without the --service option.

View Session Changes

To view all changes to configuration data made (so far) during a configurator session when in interactive mode (in
either the Service List Menu or a service menu):

e Enter $ at the menu prompt to display setting and field name(s) along with previous and current values if
anything has changed during the configurator session.

These changes are also provided in the change 1og subdirectory of the config set for each completed
configurator session.

Exit a Configurator Session (with or without saving changes)

To exit a configurator session from any configurator screen or menu, whether in auto or interactive mode:
e Enter Q at the menu prompt to exit and save all changes.

e Enter x at the menu prompt to exit and without saving changes.

IMPORTANT: Because configuration callback scripts are run before and after a configurator session, the
config set may not be exactly the same even if the configurator session is exited without saving changes.
Exiting without saving changes only guarantees that any changes to configuration data made during the
session are not saved.

S2560 63

Common Tasks When Using the Configurator Interactively

5 Common Tasks When Using the Configurator
Interactively

The following tasks are easy to do using the configurator in interactive mode. All assume that a config set already
exists, and all use configuration settings in service cray_example in config set p0.staging to illustrate how to
perform the tasks. Most also assume that the name of the configuration setting is known as well as which
service(s) contain it. That information is necessary to invoke the configurator to update only the necessary service
and setting. If that information is not known, see Locate a Configuration Parameter in a Config Set on page 64.

e Change a Basic Setting Field during a Configurator Session on page 65, where a basic setting is of type
string, integer, float, or boolean.

e Change a List Setting Field during a Configurator Session on page 67.

e Change a Multival Setting Field during a Configurator Session on page 69, which is a setting with one or
more subsettings (requires an extra step or two to edit).

e Change the Service Enabled/Disabled Status during a Configurator Session on page 72.

e Change Service Inheritance during a Configurator Session on page 73, which applies only to those services
with templates of both types: cle and global.

e Revert a Field to its Default Value during a Configurator Session on page 74.

5.1 Locate a Configuration Parameter in a Config Set

Here are suggestions for finding out whether a parameter is in a config set and if so, which service(s) it belongs
to.

Use cfgset search

If the setting or field corresponding to the parameter of interest is known, use the search subcommand. For
example, to locate the field basic_string_value in config set pO.staging:

smw# cfgset search --term basic_string_value --level advanced p0O.staging

The configurator displays the following results.

3 matches for "basic_list _value® from cray_example_config.yaml
cray_example.settings.basic_example.data.basic_string value: abc
cray_example.settings.multival _example.data.foo.basic_string value: foovalue
cray_example.settings.multival _example.data.bar.basic_string value: barvalue

1 match for "basic_list value®™ from cray_example2_config.yaml

cray_example2.settings.basic_example.data.basic_string value: def

S2560 64

Common Tasks When Using the Configurator Interactively

In this example, assume that the particular field that needs to be changed

is cray_example.settings.basic_example.data.basic_string_value. This field is found in

the cray_example service, basic_example setting. To change that field, see Change a Basic Setting Field
during a Configurator Session on page 65.

Navigate through interactive menus

Navigating through the interactive menus can be helpful when the user has some idea of what they are looking for
and can narrow it down to a single service or two. For example, to see all services in config set p0.staging:

smw# cfgset update --mode interactive --level advanced p0O.staging

Print out all settings in the config set

To print out the entire config set, simply search the config set and omit the —-term option.

For example, to print out all required settings in config set p0.staging that are not yet configured:

smw# cfgset search --level required --state unset pO.staging

To print out all required and basic settings, both set and unset (uses defaults for level and state):

smw# cfgset search p0O.staging

To print out all settings (uses default for state):

smw# cfgset search --level advanced pO.staging

5.2 Change a Basic Setting Field during a Configurator Session

Prerequisites

This procedure assumes that the config set to be updated already exists and the name and location (service) of
the setting field to be changed is known. If the name or location is not known, see Locate a Configuration
Parameter in a Config Set on page 64.

About this task

This procedure describes how to change a basic setting field (i.e., a field of type string, integer, float, or boolean)
using the example of changing field basic_string_value in service cray_example in config set
pO.staging.

Procedure

1. Invoke the configurator in interactive mode for the service that contains the setting field.

smw# cfgset update --mode interactive --level advanced --service cray_example
pO.staging

The configurator displays the Service Configuration Menu (service menu). The field to be changed is #1 in the
list of settings.

S2560 65

Common Tasks When Using the Configurator Interactively

Service Configuration Menu (Config Set: pO.staging, type: cle)

cray_example [status: enabled] [validation: valid]
Selected # Settings Value/Status (level=advanced)
basic_example
1) basic_string_value abc
2) basic_protected value *** <hidden> ***
3) basic_list_value first _value, second value
4) basic_integer_value 456
5) multival_example
hostname: foo [OK]
hostname: bar [OK]
**** Select Options ****
a: all n: none c: configured
u: unconfigured #: toggle #
**** Actions on Selected (1 settings) ****
C: configure @: show guidance
**** Other Actions ****
?: help 1: switch level E: toggle enable
1: toggle inherit Az go to service list r: refresh
$: view changelog Q: save & exit X> exit without save

Cray Example Service Menu [default: save & exit - Q] $
2. Select the setting/field to be changed.

Cray Example Service Menu [default: save & exit - Q] $ 1

The configurator redraws the service menu with an asterisk next to the selected item and a different prompt.

3. Configure the selected setting/field.

Enter C or press Enter (<cr>) to accept the default action of configure - C.

Cray Example Service Menu [default: configure - C] $ C

The configurator displays the configuration setting screen for the basic_string_value field.

*xx*xx* cray_example.settings.basic_example.data.basic_string value *******

basic_string _value -- Basic String Value
This field is part of the basic _example setting in the cray_example
service. It is a string value that only allows lowercase letters. The
configurator will validate the value for this field that it is a string
and matches the letters only validation criteria. Its default value is

"abc".
Default: Current:
abc abc

Value: string, blank values not allowed, regex="[a-z]*$
level=basic, state=unset

S2560 66

Common Tasks When Using the Configurator Interactively

Inputs: <string> -- OR -- menu commands (? for help)

cray_example.settings.basic_example.data.basic_string_value
[<cr>=keep "abc®, <new value>, ?=help, @=less] $

The user can now make the desired changes to this field.
4. Enter the new value, then press Enter to set the value of that field.

cray_example.settings.basic_example.data.basic_string value
[<cr>=keep "abc", <new value>, ?=help, @=less] $ hello

5.3 Change a List Setting Field during a Configurator Session

Prerequisites

This procedure assumes that the config set to be updated already exists and the name and location (service) of
the setting field to be changed is known. If the name or location is not known, see Locate a Configuration
Parameter in a Config Set on page 64.

About this task
This procedure describes how to change a list field using the example of changing field basic_list_value in
service cray_example in config set pO.staging.

Procedure

1. Invoke the configurator in interactive mode for the service that contains the setting field.

smw# cfgset update --mode interactive --level advanced --service cray_example
pO.staging

The configurator displays the Service Configuration Menu (service menu). The field to be changed is #3 in the
list of settings.

Service Configuration Menu (Config Set: pO.staging, type: cle)

cray_example [status: enabled] [validation: valid]
Selected # Settings Value/Status (level=advanced)
basic_example
1) basic_string value abc
2) basic_protected value *** <hidden> ***
3) basic_list value Ffirst value, second value
4) basic_integer_value 456
5) multival _example
hostname: foo [OK]
hostname: bar [OK]
**** Select Options ****
a: all n: none c: configured

S2560 67

Common Tasks When Using the Configurator Interactively

u: unconfigured #: toggle #
**** Actions on Selected (1 settings) ****
C: configure @: show guidance
**** Other Actions ****
?: help I1: switch level E: toggle enable
1: toggle inherit Az go to service list r: refresh
$: view changelog Q: save & exit X: exit without save

Cray Example Service Menu [default: save & exit - Q] $
2. Select the setting/field to be changed.

Cray Example Service Menu [default: save & exit - Q] $ 3

The configurator redraws the service menu with an asterisk next to the selected item and a different prompt.
3. Configure the selected setting.
Enter C or press Enter (<cr>) to accept the default action of configure - C.

Cray Example Service Menu [default: configure - C] $ C

The configurator displays the configuration setting screen for the basic_list_value field.

*x*xEkxx cray_example.settings.basic_example.data.basic_list value ******x*

basic_list value -- Basic List Value
This field is part of the basic_example setting in the cray_example
service. It is a list value. The input mechanism is slightly different
for protected values.

Default: Current:
(none) 1) first_value
2) second_value

Value: list, blank values not allowed
level=basic, state=unset

Inputs: menu commands (? for help)

Command Help

I

| * + - add entries

| * <#>* - change the <#> entry. "2*" changes entry 2
| * <#>- - delete the <#> entry. "4-" deletes entry 4
| * d - delete all entries in the list

| * u - undo all changes

| * <cr> - accept the current value(s)

| * # - set the value to its default

| * [-.- some help entries removed ...]

| * ? - show this help

I

| Press Enter/return to take default action (current: <cr> - accept), OR enter a
new value at prompt

cray_example.settings.basic_example.data.basic_list value
[<cr>=set 2 entries, +=add an entry, ?=help, @=less] $

S2560 68

Common Tasks When Using the Configurator Interactively

The user can now make the desired changes to this field. In this example, assume that the second entry in
basic_list_value needs to be changed.

4. Select which list entry to change and enter the new value.

Select the second entry, enter a new value, then press Enter. Use the (Ctrl-d to exit) instruction only to
cancel the modification, if necessary.

cray_example.settings.basic_example.data.basic_list_value
[<cr>=set 2 entries, +=add an entry, ?=help, @=less] $ 2*
Modify basic_list value second value (Ctrl-d to exit) $ second value new

The configurator redisplays the configuration setting screen for the basic_list_value field with the
changed list.

Default: Current:
(none) 1) first value
2) second_value_new

5. Press Enter to set the entries as the value of the list field.

cray_example.settings.basic_example.data.basic_list_value
[<cr>=set 2 entries, +=add an entry, ?=help, @=less] $ <cr>

IMPORTANT: When finished editing list entries, always press Enter (<cr>) to set the entries as the
value of the list field. If the save and exit command (Q) is issued before the entries are set, the
configurator will not save the entries and will not write out the new data.

5.4 Change a Multival Setting Field during a Configurator Session

Prerequisites

This procedure assumes that the config set to be updated already exists and the name and location (service) of
the setting to be changed is known. If the name or location is not known, see Locate a Configuration Parameter in
a Config Set on page 64.

About this task

This procedure describes how to change a multival setting using the example of changing setting
multival_example in service cray_example in config set p0.staging. A multival setting defines what each
subsetting (entry) comprises. In this example, each entry is a hostname, and each hostname has three fields
that need to be configured:

the key that identifies the hostname entry
a string value
an integer value

Procedure

1. Invoke the configurator in interactive mode for the service that contains the setting.

smw# cfgset update --mode interactive --service cray_example p0.staging

S2560 69

Common Tasks When Using the Configurator Interactively

The configurator displays the Service Configuration Menu (service menu). The setting to be changed is #4 in
the list of settings.

Service Configuration Menu (Config Set: pO.staging, type: cle)

cray_example [status: enabled] [validation: valid]
Selected # Settings Value/Status (level=basic)
basic_example
1) basic_string_value def
2) basic_protected value *** <hidden> ***
3) basic_list_value first _value, second value
4) multival _example
hostname: foo [OK]
hostname: bar [OK]
**** Select Options ****
a: all n: none c: configured
u: unconfigured #: toggle #

**** Actions on Selected (1 settings) ****
C: configure @: show guidance

**** Other Actions ****

?: help 1: switch level : toggle enable
: toggle inherit Az o go to service list r: refresh
$: view changelog Q: save & exit X: exit without save

Cray Example Service Menu [default: save & exit - Q] $
2. Select the setting/field to be changed.

Cray Example Service Menu [default: save & exit - Q] $ 4

The configurator redraws the service menu with an asterisk next to the selected item and a different prompt.

3. Configure the selected setting.

Enter C or press Enter (<cr>) to accept the default action of configure - C.

Cray Example Service Menu [default: configure - C] $ C

The configurator displays the configuration setting screen for the multival_example setting with the fields for
each of the two entries (“foo" and "bar").

FrRExAXAIxAX* cray_example.settings.multival_example ***x**xxixtix

multival_example
Multiple hostnames can be configured in this service. For each
hostname, a few simple values are available for further
configuration.

Configured Values:
1) "foo*"
a) basic_string value: foovalue
b) basic_protected value: *** <hidden> ***
c) basic_list value:
foovaluel

S2560 70

Common Tasks When Using the Configurator Interactively

foovalue2

2) “bar-
a) basic_string_value: barvalue
b) basic protected value: *** <hidden> ***
c) basic_list value:
barvaluel
barvalue2

Inputs: menu commands (? for help)

|--- Information
| * Multiple "multival_example® entries can be added using this menu

cray_example._settings.multival_example
[<cr>=set 2 entries, +=add an entry, ?=help, @=less] $

For this menu, the configurator offers the following options to modify the multival entries:

+ Add a new entry to the multival setting.

<#>* Modify the # entry, where # is the alphanumeric identifier of a multival entry (subsetting) and field (e.qg.,
2c* would select the basic_list_value field of the 'bar' entry for modification).

<#>- Delete the entire # multival entry from the list (e.g., 2- would delete the entire 'bar' entry, and d delete
all entries (both 'foo' and 'bar").

Select the multival entry to be changed.

cray_example.settings.multival _example
[<cr>=set 2 entries, +=add an entry, ?=help, @=less] $ 2a*

The configurator redraws the service menu with an asterisk next to the selected item and a different prompt.

Configure the selected entry.

Enter C or press Enter (<cr>) to accept the default action of configure - C.

Cray Example Service Menu [default: configure - C] $ C

The configurator displays the configuration setting screen for the basic_string_value field of the 'bar’
entry.

** cray_example._settings.multival_example.data.bar.basic_string_value **

basic_string value -- Basic String Value
This field is part of the basic _example setting in the cray_example
service. It is a string value that only allows lowercase letters. The
configurator will validate the value for this field that it is a string
and matches the letters only validation criteria. Its default value is

"abc".
Default: Current:
none barvalue

Value: string, blank values not allowed, regex="[a-z]*$
level=basic, state=set

Inputs: <string> -- OR -- menu commands (? for help)

S2560 71

Common Tasks When Using the Configurator Interactively

cray_example._settings.multival_example.data.bar._basic_string_value
[<cr>=keep "barvalue®, <new value>, ?=help, @=less] $

The user can now make the desired changes to this field.
Enter the new value, then press Enter to set the value of that field.

cray_example.settings.multival_example.data.bar.basic_string value
[<cr>=keep "barvalue®, <new value>, ?=help, @=less] $ new_barvalue

5.5 Change the Service Enabled/Disabled Status during a

Configurator Session

Prerequisites
This procedure assumes that the config set to be updated already exists.

About this task
This procedure describes how to configure a service as enabled or disabled using config set pO0.staging as an
example.

Procedure

1.

Invoke the configurator in interactive mode.

smw# cfgset update --mode interactive p0.staging

The configurator displays the Service List Menu.

Service Configuration List Menu (Config Set: pO.staging, type: cle)

Selected # Service Status (level=basic, state=unset)
1) cray_example [OK]
2) cray_example2 disabled, 7/7 unconfigured settings

**** Select Options ****

a: all n: none c: configured
u: unconfigured e: enabled d: disabled
i: inheriting #: toggle #

**** Actions on Selected (0 services) ****
C: configure E: toggle enable 1: toggle inherit
@: show guidance

**** QOther Actions ****
?: help I: switch level
r: refresh $: view changelog
X: exit without save

: switch state
. save & exit

o0

S2560 72

Common Tasks When Using the Configurator Interactively

Service List Menu [default: save & exit - Q] $

2. Select the service to enable or disable, then toggle its enabled/disabled status.

Enter the number of the service to be enabled or disabled, then press Enter to select it. At the new prompt,
enter E, then press Enter to toggle its enabled/disabled status.

Service List Menu [default: save & exit - Q] $ 2

Service List Menu [default: configure - C] $ E

Because the cray_example2 service was disabled, toggling its status has enabled it.

3. Enter Q to save changes and exit the configurator.

5.6 Change Service Inheritance during a Configurator Session

Prerequisites
This procedure assumes that the service to be changed is inheritable (i.e., one that has a template of both cle

and global type), and that the service is being configured as part of a cle config set.

About this task

This procedure describes how to configure a service to inherit (or not) setting values from its global
configuration template. It uses the cray_example service in config set pO.staging as an example.

NOTE: If the service is configured to inherit from its global template, the values of all the other settings/
fields in the service will still be saved in the configuration data of that config set. However, the processes
that consume the data will ignore those setting/field values. Those values are used for configuration only
when the service is configured to not inherit.

Procedure

1. Invoke the configurator in interactive mode.

smw# cfgset update --mode interactive p0.staging

The configurator displays the Service Configuration List Menu (Service List Menu).

Service Configuration List Menu (Config Set: pO.staging, type: cle)

Selected # Service Status (level=basic, state=unset)
1) cray_example inheriting from global config
2) cray_example2 disabled, 7/7 unconfigured settings

**** Select Options ****

a: all n: none c: configured
u: unconfigured e: enabled d: disabled
i: inheriting #: toggle #

S2560 73

Common Tasks When Using the Configurator Interactively

**** Actions on Selected (0 services) ****
C: configure E: toggle enable 1: toggle inherit
@: show guidance

**** Other Actions ****
?: help 1: switch level s: switch state
r: refresh $: view changelog Q: save & exit
X: exit without save

Service List Menu [default: save & exit - Q] $

2. Select the service to change, then toggle its inherit status.

Enter the number of the service to be changed, then press Enter to select it. At the new prompt, enter I, then
press Enter to toggle its inherit status.

Service List Menu [default: save & exit - Q] $ 1
Service List Menu [default: configure - C] $ I

3. Enter Q to save changes and exit the configurator.

5.7 Revert a Field to its Default Value during a Configurator Session

Prerequisites
This procedure assumes that the config set to be updated already exists and the setting to be changed has a
default value.

About this task
This procedure describes how to revert a configuration field to its default value using the example of reverting field
basic_string_value in service cray_example in config set pO.staging.

Procedure

1. Invoke the configurator in interactive mode.

smw# cfgset update --mode interactive --service cray_example p0O.staging

The configurator displays the service menu for the specified service.

2. Select the setting/field to be changed and open the configuration setting screen.

Enter the number of the setting/field to be changed, then press Enter to select it. At the new prompt, enter C,
then press Enter to display the configuration setting screen.

Service List Menu [default: save & exit - Q] $ 1
Service List Menu [default: configure - C] $ C

*x*xxx cray_example.settings.basic _example.data.basic_string value ******

S2560 74

Common Tasks When Using the Configurator Interactively

basic_string value -- Basic String Value
This field is part of the basic_example setting in the cray_example
service. It is a string value that only allows lowercase letters. The
configurator will validate the value for this field that it is a string
and matches the letters only validation criteria. Its default value is

"abc".
Default: Current:
abc def

Value: string, blank values not allowed, regex="[a-z]*$
level=basic, state=unset

Inputs: <string> -- OR -- menu commands (? for help)

cray_example.settings.basic_example.data.basic_string_value
[<cr>=keep "def", <new value>, ?=help, @=less] $

Note that although there is a current value shown and the prompt uses keep, the state is shown as unset.
This can occur if the template for this service provided prepopulated data for this setting that was different
than the default.

3. Revert the field to its default value.

Enter # at the prompt or enter the default value, which is displayed in the middle of the configuration setting
screen.

cray_example.settings.basic_example.data.basic_string_value
[<cr>=keep "def", <new value>, ?=help, @=less] $ #

4. Enter Q to save changes and exit the configurator.

S2560 75

Common Tasks When Using Configuration Worksheets for Bulk Import

6 Common Tasks When Using Configuration
Worksheets for Bulk Import

Configuration worksheets are a bulk upload alternative to the configurator user interface for gathering
configuration data and placing it into the config set. Worksheets are recommended when large amounts of data
are required or when preparing the data for a config set beforehand is desired. Configuration worksheets contain
documentation about their format, contents, and how to edit them. The information and examples provided here
supplement that documentation.

e Worksheets are valid YAML files. Invalid YAML syntax in any worksheet file that is input to the config set will
cause the config set creation or update to fail.

e Worksheets contain the same guidance and validation information (as comments) that is displayed in the
configurator user interface.

e Default values for settings are presented as commented values in the worksheet unless the configuration
template has marked them as pre-populated, configured data. To set a value in the config set, uncomment the
value in the worksheet. Because the configurator not only sets and validates data, but also keeps track of the
changes and configuration status of data, values must be uncommented by the user to signify that the value
should be set.

e Information on how to regenerate configuration worksheets and how to create and update config sets using
them is provided in the header section of each worksheet and in Create a Config Set from Configuration
Worksheets on page 19 and Update a Config Set from Configuration Worksheets on page 24.

See the following for examples of how to do these common tasks in a configuration worksheet.
e Change the Service Enabled Field in a Configuration Worksheet on page 76

e Change the Service Inherit Field in a Configuration Worksheet on page 77

e Change a Basic Setting Field in a Configuration Worksheet on page 79

e Change a Multival Setting Field in a Configuration Worksheet on page 80

6.1 Change the Service Enabled Field in a Configuration Worksheet

Prerequisites
This procedure assumes that the most current configuration worksheet is being edited.

About this task
This procedure describes how to edit a worksheet to configure a service as enabled or disabled using the
cray_example_worksheet.yaml template as an example.

S2560 76

Common Tasks When Using Configuration Worksheets for Bulk Import

Procedure

1. Open the worksheet for editing.

2. Move to the Service Enable/Disable section.

If the section is labeled Service Enablel/lnherit instead, see also Change the Service Inherit Field in a
Configuration Worksheet on page 77.

The worksheet begins with general instructions and guidance about editing and using worksheets. Move to
the Service Enable/Disable section, which provides specific guidance for the cray_example service to help
the user determine whether to enable the service. The data value for enabling the service is near the end of
this section, just below the information that a YAML boolean value is expected for

the cray_example.enabled field and that its configuration level is basic

2 # ** INSTRUCTIONS **

3 # This section provides the overall description of the service and an

4 # enable/disable functionality for the entire service.

5 #

6 # NOTICE: IT the service is disabled, the values for all other settings in
7 # this worksheet (listed below this section) will be ignored when

8 # configuration is applied, for example, at boot time. However, values that
9 # are configured will be marked as such in the config set and honored when
10 # the service is re-enabled.

11 #

12 # Guidance for cray example (Cray Example Service):

13 # The Cray Example service is used as an example service for the purpose of
14 # demonstrating configurator functionality. The default behavior is to

15 # disable this service.

16 #

17 #

18 # Enable "cray_example® Service? (boolean, level=basic)
19 #cray_example.enabled: false

20 #

2] #FAAAAAAAAAkx END Service Enable/Disable ** %k

3. Edit the service enabled field.
e To enable the service, uncomment line 19 and set the value to true.
18 # Enable "cray_example®™ Service? (boolean, level=basic)
19 cray_example.enabled: true

e To disable the service, uncomment line 19 and leave the value as false.

e To leave the value for the service enable field unconfigured so that the configurator will prompt users in
subsequent Ul sessions, leave the field commented.

6.2 Change the Service Inherit Field in a Configuration Worksheet

Prerequisites
This procedure assumes that the most current configuration worksheet is being edited and that the service to be
changed is inheritable (i.e., one that has a template of both cle and global type).

S2560 77

Common Tasks When Using Configuration Worksheets for Bulk Import

About this task
This procedure describes how to edit a worksheet to configure a service to inherit (or not) setting values from its
global configuration template. It uses the cray_example_worksheet.yaml worksheet as an example.

NOTE: If the service is configured to inherit (inherit field set to true), the values of all the other settings/
fields in the worksheet will still be read into the configurator and saved in the configuration data of that
config set. However, the processes that consume the data will ignore those setting/field values. Those
values are used for configuration only when the service is configured to not inherit (inherit field set to
false).

Procedure

1. Open the worksheet for editing.

2. Move to the Service Enablel/lnherit section.

OCO~NOUITAWN

HFHEFHFHFHFHHFHFHFHFHEH SR

** INSTRUCTIONS **
This section provides the overall description of the service and an
enable/disable functionality for the entire service.

NOTICE: If the service is disabled, the values for all other settings

in this worksheet (listed below this section) will be ignhored when
configuration is applied, for example, at boot time. However, values
that are configured will be marked as such in the config set and honored
when the service is re-enabled.

** INHERITANCE **
The values iIn this service are inheritable, meaning they can be
overridden by those contained within a "global® config set version.
Would you like to inherit values? This value should remain false if this
worksheet is being configured for a global config set. If the service is
inherited, the values for all other settings in this worksheet (listed
below this section) will be ignored at boot time. Values that are
configured will be marked as such in the config set and honored when the
service is enabled and no longer inherited.

Inherit Values for service cray example from a Global Config Set? (boolean)
cray_example.inherit: false

Guidance for cray_example (Cray Example Service):
The Cray Example service is used as an example service for the purpose
of demonstrating configurator functionality. The default behavior is
to disable this service.

HHIFHHFHH

Enable "cray_example® Service? (boolean, level=basic)
cray_example.enabled: true
#

3. Edit the service inherit field.

To inherit values for the service from a global config set version of the service, set the value in line 24 to
true.

S2560

78

Common Tasks When Using Configuration Worksheets for Bulk Import

To disable inheritance, leave the value in line 24 as false.

To leave the value for the service inherit field unconfigured so that the configurator will prompt users in
subsequent Ul sessions, comment out line 24.

6.3 Change a Basic Setting Field in a Configuration Worksheet

Prerequisites
This procedure assumes that the most current configuration worksheet is being edited

About this task

This procedure describes how to change a basic setting field (i.e., a field of type string, integer, float, or boolean)
in a worksheet using the example of changing the basic_string_value field in the
cray_example_worksheet.yaml worksheet.

Procedure

1. Open the worksheet for editing.

2. Move to the START Service Setting: basic_example section.

The basic_example setting has two fields: basic_string_value (starts at line 11)

and basic_integer_value (starts at line 24). The basic_string_value field on line 22 is unconfigured
(because it is commented out), is currently set to its default value, and has configuration level basic.

The basic_integer_value field on line 33 is configured (because it is uncommented), is set to a value
other than its default, and has configuration level advanced.

O©CoO~NOOIAWNPE

HHFEHFHFHHFHFH T HFF TR

frxFrxAxxAxk START Service Setting: basic _example **x**xxixxx
** INSTRUCTIONS **

This section describes configuration values for the “basic_example*®
setting. Uncomment and change (if desired) a value to configure it.

IT a Field is uncommented in the original worksheet, this value has been
preconfigured by the service since it is expected to be present to
properly configure the system. It is recommended that the uncommented
data is kept as specified in this file.

————————— basic_example : basic_string_value --—————-—-—-
Basic String Value (type=string, level=basic)
Guidance:

This field is part of the basic_example setting in the cray_example
service. It is a string value that only allows lowercase letters. The
configurator will validate the value for this field that it is a string
and matches the letters-only validation criteria. Its default value

is "abc".

Validation: regex="[a-z]*$
cray_example.settings.basic_example.data.basic_string value: abc

————————— basic_example : basic_integer value --———————-

Basic Integer Value (type=integer, level=advanced)

S2560

79

Common Tasks When Using Configuration Worksheets for Bulk Import

26 # Guidance:

27 # This field is part of the basic_example setting in the cray_example
28 # service. It is a integer value that only allows numbers. The

29 # configurator will validate the value for this field that it is an
30 # integer. Its default value is 123.

31 #

32 #

33 cray_example.settings.basic_example.data.basic_integer_value: 456

35 #rFxFxxkxxkix END Service Setting: basic_example *****xxixxix

3. Setthe basic_string_value field.

To set the basic_string_value field, uncomment line 22. Change the value, if desired.

6.4 Change a Multival Setting Field in a Configuration Worksheet

Prerequisites
This procedure assumes that the most current configuration worksheet is being edited.

About this task

This procedure describes how to modify a multival setting in a worksheet using the example of changing the
multival_example setting in the cray_example_worksheet.yaml worksheet. A multival setting defines
what each subsetting (entry) comprises. In this example, each entry is a hostname, and each hostname has
three fields that need to be configured:

the key that identifies the hostname entry
a string value
an integer value

The configurator schema supports the case where multival settings can be embedded within other multival
settings. In this case, the configuration worksheet will provide guidance for configuring these settings as it does
for non-embedded multival settings.

E CAUTION: When editing worksheets for config sets that have already been created, any multival data
previously configured will already be present in the worksheet. If any of this data is removed from the
worksheet, then when the worksheet is used to update the config set, the data removed from the
worksheet will also be removed from the config set.

Procedure

1. Open the worksheet for editing.

2. Move to the START Service Setting: multival_example section.

The configuration worksheet provides guidance for the overall mnultival _example setting, an example of
how to specify a multival_example entry (lines 21-24), and then provides guidance, validation criteria,
and specification of each field in an entry. If any entries for the multival_example setting had been
configured, they would be located at the end of the setting section (line 72).

S2560 80

Common Tasks When Using Configuration Worksheets for Bulk Import

1 #Fx***ixx START Service Setting: multival_example ****xx*ix

2 # ** INSTRUCTIONS **

3 # This section describes configuration values for the "multival_example*
4 # setting. Multiple values of "multival_example® can be configured in

5 # this worksheet by giving each entry a unique key identifier called a

6 # "multival key". Each entry must have a unique multival key field to

7 # differentiate its values from others that may be configured. The

8 # multival key field for the "multival_example® setting is “"hostname-.

9 # Some settings may also contain multiple levels of embedded settings

10 # within their definition. The example "multival_example® value shown

11 # below will provide the proper structure for these embedded fields if
12 # they exist for the current setting.

13 #

14 # Specify values for "multival_example® setting at the end of this section.
15 #

16 # ** GUIDANCE FOR "multival_example® SETTING:

17 # Multiple hostnames can be configured in this service. For each

18 # hostname, a string value and an integer value are available for

19 # further configuration.

20 #

21 # ** EXAMPLE “"multival_example® VALUE (with current defaults) **

22 # cray_example.settings.multival_example.data.hostname.sample_key a: null

<-- setting a multival key

23 # cray_example.settings.multival_example.data.sample_key a.basic_string_value: abc
24 # cray_example._settings.multival_example.data.sample_key_a.basic_integer_value: 123
25 #

26 #

27 # ** "multival_example® FIELD SPECIFICATION -- MULTIVAL KEY FIELD **

28 H#-——m - multival_example : hostname ------——----

29 # Hostname (type=string, level=basic)
30 # Guidance:

31 # Provide a hostname for this example multival key field. The values for
32 # this field will be keys in the data structure.
33 #

34 #
35 # Default Value:
36 # hostname: hostname_foo

37 #
38 #
39 # ** "multival_example® FIELD SPECIFICATION -- OTHER FIELDS **
40 H-———————- multival_example : basic_string value ---———————-
41 # Basic String Value (type=string, level=basic)
42 # Guidance:
43 # This field is part of the basic_example setting in the cray_example
44 # service. It is a string value that only allows lowercase letters. The
45 # configurator will validate the value for this field that it is a string
46 # and matches the letters only validation criteria. Its default value
47 # is "abc".
48 #
49 # Validation: regex="[a-z]*$

50 #

51 # Default Value:

52 # basic_string_value: abc

53 #

54 #——mm———— multival_example : basic_integer_value --——-—-—-—-—-

55 # Basic Integer Value (type=integer, level=advanced)

56 # Guidance:

57 # This field is part of the basic_example setting in the cray_example
58 # service. It is a integer value that only allows numbers. The

59 # configurator will validate the value for this field that it is an

60 # integer. Its default value is 123.

61 #

62 #

63 # Default Value:

64 # Dbasic_integer_value: 123

65 #

66 #

67 # ** END "multival_example® FIELD SPECIFICATION

68 #

69 # ** "multival_example®™ DATA **

70 #

71 # NOTE: Place additional "multival_example® setting entries here, if desired.
72

~
w

fr*x*xxxxskx END Service Setting: multival_example **x***iixx

S2560 81

Common Tasks When Using Configuration Worksheets for Bulk Import

3. Add an entry for the multival_example setting.

a.

Copy lines 22-24, paste them at line 72, and uncomment them.

72 cray_example.settings.multival_example.data.hostname.sample_key a: null

<-- setting a multival key
73 cray_example.settings.multival_example.data.sample_key a.basic_string_value: abc
74 cray_example.settings.multival_example.data.sample_key a.basic_integer_value: 123

Replace sample_key_a in lines 72—74 with the key for the new entry, and remove the <-- setting a
multival key text at the end of line 72.

Note that the 'null’ value in line 72 is required. Do not remove or change it. This is true for all multival entry
keys.

72 cray_example.settings.multival_example.data.hostname.foo: null
73 cray_example.settings.multival_example.data.foo.basic_string_value: abc
74 cray_example.settings.multival_example.data.foo.basic_integer_value: 123

Replace the values of basic_string_value in line 73 and basic_integer_value in line 74 with the
desired values.

73 cray_example.settings.multival_example.data.foo.basic_string_value: foo_value
74 cray_example.settings.multival_example.data.foo.basic_integer_value: 456

4. Repeat step 3 to add another entry for the multival_example setting with the following values: hostname
key = 'bar,' string = 'bar_value,' and integer = '789."

67
68
69
70
71
72
73
74
75
76
77
78
79

** END "multival_example® FIELD SPECIFICATION

#

** "multival_example® DATA **

#

NOTE: Place additional "multival_example® setting entries here, if desired.
cray_example._settings.multival_example.data.hostname.foo: null
cray_example.settings.multival_example.data.foo.basic_string_value: foo_value
cray_example._settings.multival_example.data.foo.basic_integer_value: 456

cray_example.settings.multival_example.data.hostname.bar: null
cray_example._settings.multival_example.data.foo.basic_string_value: bar_value
cray_example.settings.multival_example.data.foo.basic_integer_value: 789
frFFxxxxAAAx END Service Setting: multival_example *****xxxx

S2560

82

cfgset Troubleshooting Tips

7

cfgset Troubleshooting Tips

Unable to Update a Service in a Config Set

The following command to update SERVI CE in config set pO can result in a variety of outcomes, depending on the
level and state of the settings in that service.

smw# cfgset update --service SERVI CE pO

Note that for a service with configuration template file cray_example_config.yaml, use only the
cray_example portion on the command-line when specifying a single service.

Outcome 1: No configuration settings presented.

INFO - Running pre-configuration scripts

INFO - Merging configuration templates and validating schema.
INFO - Configuration worksheets will be saved to /var/opt/cray/imps/config/
sets/p0/worksheets
INFO - Changelog will be written to
- /var/opt/cray/imps/config/sets/p0/changelog/
changelog 2015-12-02T16:39:25.yaml
INFO - Running post-configuration scripts

INFO - ConfigSet "p0°" has been updated.

The command does not specify mode, level, or state, so defaults are used: auto mode, level basic, and
state unset. Therefore, the configurator looks only for required and basic settings that are unset. If it finds
none, no interaction with the user is necessary, so it proceeds directly to saving worksheets and logs, and
then cfgset runs post-configuration activities and exits automatically. If the intention was to confirm that
all required and basic settings have been set, then this is the desired outcome. However, if the intention
was to view all settings and perhaps change a few, use this command instead:

smw# cfgset update --service SERVI CE --level advanced --mode interactive pO

Outcome 2: Some configuration settings presented, but not the ones that need to be changed.

The settings that need to be set/changed are not presented because either they are already set or they are
level advanced. Try this:

1. Enter ” at the configurator prompt to switch to interactive mode. Now settings of all states are
displayed in the service menu and can be selected and set/changed. If the desired settings are still not
found in the service menu, continue to the next step.

2. Enter I (lowercase L) at the configurator prompt to switch to the next level (cycles through all three levels)
until level=advanced displays in the service menu header. Now settings of all levels and states are
displayed in the service menu and can be selected and set/changed.

Outcome 3: Some new and unfamiliar configuration settings presented.

S2560 83

cfgset Troubleshooting Tips

If the service package that contains the service being updated has been reinstalled, the associated service
configuration template may have new or revised settings and values. The configurator will find that template
in Zopt/cray/imps_config/SERVI CE_PACKAGE/default/configurator/template and merge its
contents with configuration data already in the config set. When the configurator presents those new settings

to the user, they may appear unfamiliar. If settings other than the ones presented need to be set/changed, see
Outcome 2.

Validation Rule Failure

When cfgset validate encounters a rule failure, a non-zero value is returned and the rule failure is printed:

smw# cfgset validate pO

Validating ConfigSet "p0-

Lookup/Reference Errors (1):
Template: /var/opt/cray/imps/config/sets/p0.alison/config/cray_dvs_config.yaml
Error: The configured value "dvs_servers®" is not located in the reference
field "cray_node groups.settings.groups”
Location: cray_dvs.settings.client_mount.data.test-ro.server_groups

Rule failure can be remedied by adjusting config set data to conform with the failed rule. Alternatively, the rule can
be temporarily bypassed using either the —-no-rules or --exclude-rule option. See Validate a Config Set
and List Validation Rules on page 38 for more details on bypassing validation rules.

S2560 84

	Contents
	1 About the XC™ Series Configurator User Guide
	2 Introduction to the Cray Configurator
	2.1 About Configuration Service Packages
	2.2 About Config Sets
	2.3 About Configuration Worksheets
	2.4 About Variable Names in the Configurator and Configuration Worksheets

	3 Config Set and Configurator Operations
	3.1 Config Set Create/Update Process
	3.2 Use Mode to Choose How to Interact with the Configurator
	3.3 Use Filters to Choose What to See with the Configurator
	3.4 Create a Config Set
	3.4.1 Create a Config Set from Configuration Worksheets
	3.4.2 Create a Config Set by Cloning
	3.4.3 Create a Config Set without Callbacks
	3.4.4 Create a Config Set Interactively

	3.5 Update a Config Set
	3.5.1 Update a Config Set Interactively
	3.5.2 Update a Config Set from Configuration Worksheets
	3.5.3 Update a Config Set without Callbacks
	3.5.4 Rename a Config Set
	3.5.5 Update a Single Service in a Config Set

	3.6 Search a Config Set
	3.7 Retrieve or Modify Configuration Data Using the Command Line Interface
	3.7.1 Use cfgset get to Retrieve Config Set Data
	3.7.2 Use cfgset modify to Edit Config Set Data

	3.8 Manually Edit Configuration Files
	3.8.1 Manually Edit Service Enable/Inherit Data
	3.8.2 Manually Edit Class-Scoped Setting Data
	3.8.3 Manually Edit Multival-Scoped Setting Data

	3.9 Validate a Config Set and List Validation Rules
	3.10 Remove a Config Set
	3.11 Back Up or Restore User, Group, and Permissions Information Files

	4 Configurator User Interface
	4.1 Tips for Configurator Interactive Sessions
	4.2 Configurator Data Types and How to Set Them
	4.3 Configurator Screens and Menus
	4.4 Basic Configurator UI Operations

	5 Common Tasks When Using the Configurator Interactively
	5.1 Locate a Configuration Parameter in a Config Set
	5.2 Change a Basic Setting Field during a Configurator Session
	5.3 Change a List Setting Field during a Configurator Session
	5.4 Change a Multival Setting Field during a Configurator Session
	5.5 Change the Service Enabled/Disabled Status during a Configurator Session
	5.6 Change Service Inheritance during a Configurator Session
	5.7 Revert a Field to its Default Value during a Configurator Session

	6 Common Tasks When Using Configuration Worksheets for Bulk Import
	6.1 Change the Service Enabled Field in a Configuration Worksheet
	6.2 Change the Service Inherit Field in a Configuration Worksheet
	6.3 Change a Basic Setting Field in a Configuration Worksheet
	6.4 Change a Multival Setting Field in a Configuration Worksheet

	7 cfgset Troubleshooting Tips

