
XC™ Series Boot Troubleshooting Guide
(CLE 6.0.UP03) S-2565

Contents
About the XC™ Series Boot Troubleshooting Guide...5

Introduction to Troubleshooting a Boot of an XC™ Series System...8

SMW and CLE Hardware Configuration and Cabling Concepts..9

SMW Daemons, Processes, and Logs..13

Daemons on a Stand-alone SMW...13

Daemons on an SMW HA System..17

SMW Log File Locations..19

Time Synchronization Among XC™ Series System Components...21

About Cray Scalable Services...25

Anatomy of an XC System Boot with xtbootsys...27

About Boot Automation Files...43

The Booting Process from the CLE Node View...45

Booting with PXE Boot for Boot and SDB Nodes..46

Booting tmpfs Method with bnd...48

Booting Netroot Method with bnd..49

cray-ansible and Ansible Logs on a CLE Node...51

Commands Helpful in Troubleshooting a Boot..53

Check RSMS Daemons...53

Check diod daemon...53

Check cray-cfgset-cache Daemon..54

Check DHCP or TFTP Daemons...54

Check Console Messages...55

Log In to a Node..55

Check Daemons Using xtalive...56

Check STONITH on Blade Controller..56

Check for Cabling Issues...57

Check Hardware Inventory..57

Check Boot Configuration..57

Enable or Disable a Component..58

Check Status of Nodes..58

Change Node Role Between Service and Compute...58

Check NIMS Map..59

Check Which Boot Images Have Been Assigned..59

Check Node NIMS Group, Boot Image, and Kernel Parameter Assignment..59

Check Whether Node is Using Netroot or tmpfs..60

Contents

S2565 2

Check Which Boot Images Exist on the System...61

Check Which Image Roots Exist on the System...61

Observe Network Traffic on SMW Network Interfaces..62

Check Firewall...62

Search a Config Set..62

List the Ansible Playbooks in a Config Set and Image Root...63

Search the Ansible Playbooks in a Config Set and Image Root..64

Search Ansible Plays on a Node...64

Check for Warnings, Alerts, and Reservations..65

Check for Locks...66

Check for PCIe Link Errors..66

Check for Hardware Errors..67

Check for LCB and Router Errors..67

Check Time on a Node..68

Techniques for Troubleshooting a Failed Boot...69

xtcli status Fails...69

xtbootsys Fails with xtbounce Error...70

xtbootsys Fails with rtr Error..71

xtbootsys Fails with xtcablecheck Error...71

Boot or SDB Node Fails to PXE Boot..71

Possible Problem with Boot Image Assignment..74

xtbootsys Exits After Failure to Boot the Boot and SDB Nodes..74

xtbootsys Exits After Timeout While Booting the Boot and SDB Nodes..75

xtbootsys Waits for Input After Timeout While Booting the Boot and SDB Nodes...76

xtbootsys Never Begins to Boot Service Nodes..77

xtbootsys Never Begins to Boot Compute Nodes...79

cray-ansible Fails in Init Phase on any Node..80

cray-ansible Fails in Booted Phase on Any Node...82

Node Fails to Mount Local Storage...84

Node Fails to Mount NFS File System..84

Node Fails to Mount Direct-attached Lustre (DAL)..85

Node Fails to Mount External Lustre File System...87

Node Fails to Mount DVS-projected File System..88

Corrupt File System on Boot or SDB Node...88

Check the Duties of a Broken Service Node...88

Check for HSS and Config Set Agreement on Duties of Boot and SDB Nodes..89

Node with Network Interface not Accessible over that Network..90

Boot Fails on a Node that Should be Disabled..91

Contents

S2565 3

Boot Halts with an NMI when DEBUG Shell Entered..91

Check Which Boot Automation File Being Used...92

xtbootsys Fails with Undefined Partition..92

Possible Problem from Mismatch of Netroot Information on a Node...92

Boot Fails on a Node using Netroot...93

Diags Content Missing...94

PE Software Content Missing..95

Node Fails to Mount Config Set from IDS Servers..95

Put a Node in DEBUG and Step Through the Init Phase..96

Information to Gather for Opening a Bug...99

Contents

S2565 4

About the XC™ Series Boot Troubleshooting Guide
Scope and Audience
The XC™ Series Boot Troubleshooting Guide (S-2565) provides guidance and instructions to aid in
troubleshooting a failed boot of an XC Series system running software releases CLE 6.0 and SMW 8.0 or later.

This publication is intended for system installers, administrators, and anyone who installs, configures, or manages
software on a Cray XC™ Series system. It assumes some familiarity with standard Linux and open source tools
(e.g., zypper/yum for RPMs, Ansible, YAML/JSON configuration data).

CLE 6.0.UP02 / CLE 6.0.UP02 / SMW 8.0.UP02 Release
XC™ Series Boot Troubleshooting Guide (CLE 6.0.UP02) S-2565 supports Cray software release CLE 6.0.UP02 /
CLE 6.0.UP02 / SMW 8.0.UP02 for Cray XC™ Series systems, released on 08 012 2016.

New in this release

● New topic: About Boot Automation Files on page 43

● New topic: About Cray Scalable Services on page 25

● New content describing the capability to boot all service and compute nodes at the same time (after boot and
SDB nodes are booted) in this topic: Anatomy of an XC System Boot with xtbootsys on page 27

Command Prompt Conventions
Host name
and account in
command
prompts

The host name in a command prompt indicates where the command must be run. The account
that must run the command is also indicated in the prompt.

● The root or super-user account always has the # character at the end of the prompt.

● Any non-root account is indicated with account@hostname>. A user account that is
neither root nor crayadm is referred to as user.

smw# Run the command on the SMW as root.

cmc# Run the command on the CMC as root.

sdb# Run the command on the SDB node as root.

crayadm@boot> Run the command on the boot node as the crayadm user.

user@login> Run the command on any login node as any non-root user.

About the XC™ Series Boot Troubleshooting Guide

S2565 5

hostname# Run the command on the specified system as root.

user@hostname> Run the command on the specified system as any non-root user.

smw1#
smw2#

For a system configured with the SMW failover feature there are two
SMWs—one in an active role and the other in a passive role. The
SMW that is active at the start of a procedure is smw1. The SMW that
is passive is smw2.

smwactive#
smwpassive#

In some scenarios, the active SMW is smw1 at the start of a
procedure—then the procedure requires a failover to the other SMW.
In this case, the documentation will continue to refer to the formerly
active SMW as smw1, even though smw2 is now the active SMW. If
further clarification is needed in a procedure, the active SMW will be
called smwactive and the passive SMW will be called smwpassive.

Command
prompt inside
chroot

If the chroot command is used, the prompt changes to indicate that it is inside a chroot
environment on the system.

smw# chroot /path/to/chroot
chroot-smw#

Directory path
in command
prompt

Example prompts do not include the directory path, because long paths can reduce the clarity
of examples. Most of the time, the command can be executed from any directory. When it
matters which directory the command is invoked within, the cd command is used to change
into the directory, and the directory is referenced with a period (.) to indicate the current
directory.

For example, here are actual prompts as they appear on the system:

smw:~ # cd /etc
smw:/etc# cd /var/tmp
smw:/var/tmp# ls ./file
smw:/var/tmp# su - crayadm
crayadm@smw:~> cd /usr/bin
crayadm@smw:/usr/bin> ./command
And here are the same prompts as they appear in this publication:

smw# cd /etc
smw# cd /var/tmp
smw# ls ./file
smw# su - crayadm
crayadm@smw> cd /usr/bin
crayadm@smw> ./command

Typographic Conventions
Monospace Indicates program code, reserved words, library functions, command-line prompts,

screen output, file/path names, and other software constructs.

About the XC™ Series Boot Troubleshooting Guide

S2565 6

Monospaced Bold Indicates commands that must be entered on a command line or in response to an
interactive prompt.

Oblique or Italics Indicates user-supplied values in commands or syntax definitions.

Proportional Bold Indicates a graphical user interface window or element and key strokes (e.g., Enter,
Alt-Ctrl-F).

\ (backslash) At the end of a command line, indicates the Linux® shell line continuation character
(lines joined by a backslash are parsed as a single line). Do not type anything after
the backslash or the continuation feature will not work correctly.

Feedback
Your feedback is important to us. Visit the Cray Publications Portal at http://pubs.cray.com and make comments
online using the Contact Us button in the upper-right corner, or email comments to pubs@cray.com.

Trademarks
The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY and
design, SONEXION, URIKA, and YARCDATA. The following are trademarks of Cray Inc.: APPRENTICE2,
CHAPEL, CLUSTER CONNECT, CRAYDOC, CRAYPAT, CRAYPORT, DATAWARP, ECOPHLEX, LIBSCI,
NODEKARE. The following system family marks, and associated model number marks, are trademarks of Cray
Inc.: CS, CX, XC, XE, XK, XMT, and XT. The registered trademark LINUX is used pursuant to a sublicense from
LMI, the exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis. Other trademarks used in
this document are the property of their respective owners.

About the XC™ Series Boot Troubleshooting Guide

S2565 7

http://pubs.cray.com

Introduction to Troubleshooting a Boot of an XC™ Series
System
To troubleshoot failures encountered while booting an XC system, it is important to understand how system
components are logically connected, what tasks are normally done during a successful boot, the interactions
among daemons running on different parts of the XC system, and where to find log files to analyze a boot
session.

Because the software, the steps within the booting process, and the interactions among daemons may change
over time, this guide attempts to stress troubleshooting techniques rather than list specific error messages or
conditions with any temporary workarounds that may later be integrated into software fixes.

Although this guide is intended to help primarily with boot difficulties, the topics on Ansible and config set
troubleshooting may be useful outside the context of a boot as well, if difficulties are encountered while
reconfiguring a system without booting it.

● SMW and CLE Hardware Configuration and Cabling Concepts on page 9: Describes how the SMW and
CLE components are connected to each other for systems with a stand-alone SMW, SMW HA, and eLogin.

● SMW Daemons, Processes, and Logs on page 13:

○ Lists all daemons and processes that run on the SMW and are involved in the boot process.

○ Lists all logs that contain boot-related information and where to find them. Important information is logged
during a boot, which helps with both troubleshooting and submitting a bug to Cray.

○ Describes how time is synchronized among XC system components.

● Anatomy of an XC System Boot with xtbootsys on page 27: Provides a step-by-step guide to the tasks
performed during a typical boot.

● The Booting Process from the CLE Node View on page 45:

○ Describes three ways to boot CLE nodes: PXE boot (boot and SDB nodes only), tmpfs boot (all other
service nodes, and an option for compute nodes), and Netroot boot (option for compute and login nodes
only).

○ Lists all cray-ansible and Ansible logs and where to find them.

● Commands Helpful in Troubleshooting a Boot on page 53: Lists commands that help in investigating what
went wrong. Use this as a reference.

● Techniques for Troubleshooting a Failed Boot on page 69: Lists problems that might be encountered and
what to investigate to find the root cause. References many of the "helpful commands" from the previous
section.

● Information to Gather for Opening a Bug on page 99: Describes what information is most helpful to include
and how to obtain it.

Introduction to Troubleshooting a Boot of an XC™ Series System

S2565 8

SMW and CLE Hardware Configuration and Cabling
Concepts
A familiarity with the hardware and cabling of an XC™ Series system may be helpful when troubleshooting a boot.
These sections describe the basic hardware components and configurations for a system with a stand-alone
SMW, an SMW HA (high availability) system, and a system that includes eLogin capability. The final section is a A
Guide to Hardware Component Names.

Stand-alone SMW
This diagram shows a simplified view of the principal System Management Workstation (SMW) and Cray Linux
Environment (CLE) hardware components for an XC™ Series system with a single, stand-alone SMW. The site
admin or management network (eth0) connects to the system through the SMW only. The SMW, boot node, and
SDB (service database) node are connected to each other over the admin network (eth3) and are each typically
connected to the boot RAID with a Fibre Channel (FC) or serial attached SCSI (SAS) switch.

The SMW has a single Ethernet interface that talks to the cabinet controllers (CC) over an Ethernet switch. Each
cabinet is on its own subnet, and routes are set up on the SMW to go over eth1 to get to each subnet. The SMW
eth1 interface has the address 10.1.1.1/16 on the Hardware Supervisory System (HSS) network.

Figure 1. SMW and CLE Hardware Configuration

SMW and CLE Hardware Configuration and Cabling Concepts

S2565 9

SMW HA
This diagram shows a simplified view of the principal components of an SMW HA system, which features two
SMWs using cluster management software (SuSE High Availability Extension) in active/passive mode. A second
SMW can assume the duties of the first SMW in the event of a software or hardware fault on the first SMW.
Heartbeat networks are eth2 and eth4, while a distributed replicated block device (DRBD) is on an eth5 network.

Figure 2. SMW and CLE Hardware Configuration with High Availability

eLogin
Sites that use eLogin have several options for configuring their systems. This first diagram shows two ways to
connect the SMW to the Cray Management Controller (CMC).

SMW and CLE Hardware Configuration and Cabling Concepts

S2565 10

Figure 3. Connecting SMW to CMC for eLogin

This diagram shows the cabling of Ethernet, FC/SAS to boot RAID, Infiniband (IB) to external Lustre, and the high
speed network (HSN). Here, the eLogin nodes are on the site user network and access the SDB using a routed
connection through the gateway nodes.

Figure 4. eLogin Nodes with Routed SDB and User Access through Gateway Nodes

For other common configurations (e.g., eLogin nodes connected directly to the SDB node) and a description of
the networks used, see XC™ Series eLogin Installation Guide (S-2566) at http://pubs.cray.com.

A Guide to Hardware Component Names
The HSS, which is controlled by the state manager, provides a naming hierarchy for hardware components.
These component names for the hardware are sometimes referred to as cnames (note that in the global or CLE

SMW and CLE Hardware Configuration and Cabling Concepts

S2565 11

http://pubs.cray.com

config set, cname usually means a single node). In the Format column of this table, capital letters represent
numbers, such as in c1-2c0s4n3.

Table 1. Naming Hierarchy of XC™ Series Hardware Components

Component Format Description

System s0, p0 All components attached to the SMW.

Cabinet cX-Y Cabinet column (X) and row (Y).

This is the cabinet controller (CC) hostname.

Chassis cX-YcC Physical chassis in cabinet, where C = 0, 1, or 2.

Blade or slot cX-YcCsS Physical blade slot in chassis, where S = 0–15.

This is the blade controller (BC) hostname.

Node cX-YcCsSnN Node on a blade, where N = 0–3.

This is the node cname (in config sets).

Accelerator or GPU cX-YcCsSnNaA Accelerator or GPU, where A = 0.

Aries ASIC cX-YcCsSaA Cray Aries ASIC on a blade, where A is always 0.

Link cX-YcCsSaAlRC Link port of an Aries ASIC, where RC = 00–57 (octal).
The first digit is the link or LCB row (0–5), and the
second digit is the link or LCB column (0–7).

The tree of the major named components looks like the following. Other components may exist and be named in
the hierarchy, but typically these are the only ones that matter.

s0 (or p0)
|--- cX-Y (cabinet)
 |--- cX-YcC (chassis: 0-2)
 |--- cX-YcCsS (slot: 0-15 (Aries))
 |--- cX-YcCsSnN (node: 0-3)
 |--- cX-YcCsSnNaA (accelerator/GPU: 0)
 |--- cX-YcCsSaA (Aries: 0)
 |--- cX-YcCsSaAlRC (Link or LCB Row (0-5)/Column (0-7))

SMW and CLE Hardware Configuration and Cabling Concepts

S2565 12

SMW Daemons, Processes, and Logs
● Daemons on a Stand-alone SMW on page 13: lists and describes daemons that are started by rsms and

should always be running, daemons that are started only during boot, daemons that distribute config set data
and regenerate the config set cache, and daemons that are necessary for a PXE boot.

● Daemons on an SMW HA System on page 17: describes how to tell whether HA has been installed and
configured, and describes daemons and log files that are HA-specific.

● SMW Log File Locations on page 19: lists the five kinds of log files and where they are found.

● Time Synchronization Among XC™ Series System Components on page 21: describes how time is
synchronized among XC components, how to check/set time, and how to query NTP to find information about
the time synchronization of a node with its server and peers.

Daemons on a Stand-alone SMW
A variety of daemons are involved in booting an XC™ Series system, as shown in this figure.

Figure 5. Daemons on a Stand-alone SMW

SMW Daemons, Processes, and Logs

S2565 13

Daemons started by RSMS that should always be running
Several of the daemons running on the SMW are started and monitored by the RSMS service (rsms). These
daemons should always be running on the SMW: erd, state_manager, bootmanager, rm, sedc_manager, nid_mgr,
erfsd, nimsd, xtpmd, xtpowerd, xtsnmpd, xtremoted, xtdiagd.

Daemons with diverse roles:

nimsd The Node Image Mapping Service (NIMS) daemon (nimsd) maps a node to boot attributes that
are used when the node is booted.

erd The event router daemon (erd) brokers messages from many software components
representing different parts of the XC system. The erd runs on the SMW, but there are also erd
running on every blade controller (BC) and cabinet controller (CC), which funnel information
back to the erd on the SMW. Other daemons can subscribe to certain types of HSS events to
receive notification when those events arrive at the erd.

sm The state_manager (sm) daemon tracks the state of all HSS components (partitions, cabinets,
blades, nodes, network ASICs, links, etc.) and stores this in a persistent HSS database—a
MariaDB (MySQL) database on the SMW. It responds to queries from xtcli status.

bm The bootmanager (bm) daemon coordinates the boot of XC system nodes. bootmanager
responds to events from xtcli boot and sends events to bcsysd on the BC and the boot
node daemon (bnd) on the boot node. It provides for PXE boot of the boot and SDB nodes,
high-speed boot over the HSN for all other nodes, or a low-speed boot over the HSS network
(for troubleshooting).

rm The router manager (rm) daemon sets up a routing table in the HSN (high speed network).

sedc_manager The system environment data collections manager (sedc_manager) daemon monitors system
health and records environmental data for hardware components.

nid_mgr The NID manager (nid_mgr) daemon enables an administrator to control NID assignment and
manages the nic-to-nid relationship.

erfsd The event router file system daemon (erfsd) provides persistent storage for the erd on CCs and
BCs.

Daemons that are part of power management:

xtpmd The power management daemon (xtpmd) handles all database inserts of node level power data
from bcpmd on the BCs and cabinet level power data from ccsysd on the CCs. It also stores ALPS
job event data which can be used for offline job-based correlation and energy accounting.

xtpowerd The xtpowerd daemon allows sites to control the rate at which nodes are powered on/off or booted
over time to smooth out large fluctuations in power use.

xtsnmpd The Cray SNMP daemon (xtsnmpd) acts as a subagent for snmpd. xtsnmpd responds for two Cray-
specific MIBs: CRAY-XC-MIB and CRAY-SMI. The CRAY-SMI MIB provides the structure of
management information for the overall Cray enterprise. The CRAY-XC-MIB MIB contains system-
level power data, including system-level instantaneous/current power, peak power, average power,
and accumulated energy.

xtremoted The xtremoted daemon is the application server which handles CAPMC API requests to connect to
the remote database. In most configurations, the remote database is the local PostgreSQL server
on the SMW, but it can be configured to send to a remote hostname. See the XC™ Series Power
Management Administration Guide (S-0043) for more details about a remote database.

SMW Daemons, Processes, and Logs

S2565 14

xtdiagd The diags daemon (xtdiagd) gets diagnostic data into the Power Management database.

There are two ways to check whether these RSMS daemons are running: see Check RSMS Daemons on page
53 in the "Commands Helpful in Troubleshooting a Boot" section.

Daemons that are started only during boot of a CLE system
These daemons are the standard set of processes started only in the context of a CLE boot session.

xtnlrd The network link resiliency daemon (xtnlrd) monitors the blade controllers (BC) for high speed
network (HSN) failures and performs recovery actions automatically in the event of a failure. xtnlrd
also handles administrative warm swap requests and HSN congestion.

To check whether it is running, see Check Daemons Using xtalive on page 56 in the
"Commands Helpful in Troubleshooting a Boot" section.

xtpcimon The xtpcimon daemon monitors the health of PCIe (peripheral component interconnect express)
channels and logs PCIe link errors to a file.

The xtpe command processes pcimon log files for PCIe link errors.

To check for these errors, see Check for PCIe Link Errors on page 66 in the "Commands Helpful
in Troubleshooting a Boot" section.

xthwerrlogd The xthwerrlogd daemon listens for hardware error events from the ASIC network chip and writes
them to a binary file.

The xthwerrlog command analyzes that binary file.

To check for these errors, see Check for Hardware Errors on page 67 in the "Commands Helpful
in Troubleshooting a Boot" section.

xtnetwatch The xtnetwatch daemon monitors the system high-speed network (HSN) faults interconnect for
link control block (LCB) and router errors, and it logs them to a file.

The xtle command analyzes netwatch log files for HSN errors.

To check for these errors, see Check for LCB and Router Errors on page 67 in the "Commands
Helpful in Troubleshooting a Boot" section.

xtdbsyncd The xtdbsyncd daemon runs on either the boot (default) or SDB node. The xtdbsyncd daemon
synchronizes the SDB to the real hardware status as coordinated by events sent in the hardware
supervisory system (HSS). When nodes become available or unavailable, the HSS sends an
event, and xtdbsyncd makes the appropriate change to the SDB, designating the node as up or
down. Unless a node is designated up, it is not available for allocation by jobs.

bnd When the boot node is up, any requests to boot nodes using the HSN will send a request from the
SMW to the boot node daemon (bnd) on the boot node. The boot node NFS-mounts
the /var/opt/cray/imps/boot_images directory from the SMW to its
own /var/opt/cray/imps/boot_images mount point so that bnd can access all of the
required boot images. bnd will then extract the files from the boot image and initiate a transfer to
node memory for each node in the boot request. bnd will report how many nodes in a request
succeeded or failed. Output from bnd is sent to the SMW and appears
in /var/opt/cray/log/p0-current/messages-YYYYMMDD.

SMW Daemons, Processes, and Logs

S2565 15

To check whether it is running, see Check Daemons Using xtalive on page 56 in the
"Commands Helpful in Troubleshooting a Boot" section.

xtconsumer The xtconsumer daemon monitors the erd for HSS events, and its output is redirected to the
consumer log file in the directory for the boot session. The xtconsumer command monitors the
erd to display HSS events as they occur in real time.

xtconsole The xtconsole daemon monitors the erd for console messages, and its output is redirected to the
console log file in the directory for the boot session.The xtconsole command operates in a shell
window and monitors the erd for console messages. xtconsole can monitor a single node or
multiple nodes. For an example of how to use this command, see Check Console Messages on
page 55 in the "Commands Helpful in Troubleshooting a Boot" section.

Other SMW daemons
diod The distributed I/O daemon (diod) is started by cray-ids-service, which is a systemd service on the

SMW. The diod daemon does I/O forwarding for the IMPS Distribution Service (IDS). Together, cray-
ids-service and diod distribute the config set data to nodes on the XC system.

To check whether it is running, see Check diod daemon on page 53 in the "Commands Helpful in
Troubleshooting a Boot" section.

cfgset-
cache

The cfgset-cache daemon actively monitors config sets for changes on the SMW. Changes to config
sets are processed together, and a SquashFS and associated checksum is generated in response to
one or more changes after a period of four seconds elapses with no further change. CLE nodes use
the associated SquashFS archives and checksums to ensure that configuration is current. New
configuration changes are pulled locally and applied to the CLE node when cray-ansible is run on the
node.

To check whether it is running, see Check cray-cfgset-cache Daemon on page 54 in the "Commands
Helpful in Troubleshooting a Boot" section.

dhcpd,
atftpd

The Dynamic Host Configuration Protocol (DHCP) server daemon (dhcpd) and the Trivial File Transfer
Protocol (TFTP) server daemon (atftpd) are required to PXE boot the boot and SDB nodes.

To check whether they are running, see Check DHCP or TFTP Daemons on page 54 in the
"Commands Helpful in Troubleshooting a Boot" section.

The boot and SDB nodes PXE boot over the admin network (SMW eth3 10.3.0.0 network). The boot
and SDB nodes get /opt/tftpboot/elilo.efi and then $CNAME.conf, bzImage, and
initramfs.gz from the $CNAME directory /opt/tftpboot/elilo.config/$CNAME.

The HSS controllers boot over the HSS network (SMW eth1 10.1.0.0 network). The cabinet controller
(CC) gets its boot image from the SMW (/opt/tftpboot) and caches it in /var/tftp. The CC
receives a temporary IP address and the path (relative to /opt/tftpboot) for its boot image from
the DHCP daemon (dhcpd) on the SMW, whose configuration is in /etc/dhcpd.conf.

The blade controller (BC) boots from its CC with the image served up from /var/tftp on the CC.
The BC receives its temporary IP address and the path (relative to /var/tftp) for its boot image
from the DHCP daemon (dhcpd) on the CC, whose configuration files are
in /var/etc/udhcpd.conf-eth*.

SMW Daemons, Processes, and Logs

S2565 16

Daemons on an SMW HA System
On an SMW HA pair of SMWs, the daemons and processes described for a stand-alone SMW are running only
on the first/primary SMW in the cluster of two SMWs. The cluster resource manager (CRM) ensures that these
essential daemons are running on the first SMW and not running on the second SMW.

How to determine whether SMW HA is installed and configured
To determine if SMW HA software is installed, use one of these methods:

● Method 1:

smw# rpm -q cray-ha-smw
cray-ha-smw-12.0.0.52.geeebae8-2.26.noarch

● Method 2:

smw# cat /etc/opt/cray/release/smwha-release
RELEASE=12.0.UP00
BUILD=12.0.48
DATE=201605180109
ARCH=x86_64

To determine if SMW HA is configured and running properly, use this command (this example shows the output
for an HA pair "minnie" and "mickey"):

smw# /opt/cray/ha-smw/default/sbin/ha_health

Cluster State
--
Health State : Healthy
Active Node : minnie
Node-1 : mickey (online)
Node-2 : minnie (online)
Number of Resources : 33
Number of Resources Running : 33
Number of Resources Stopped : 0
Maintenance Mode : disabled
Stonith Mode : enabled

Indicators in the output that all is well:

● A healthy state

● Both SMWs online

● No resources stopped

● Maintenance mode disabled

● STONITH mode enabled

Note that the number of started resources may be version-specific.

To determine if the distributed replicated block device (DRBD) is healthy, examine /proc/drbd.

SMW Daemons, Processes, and Logs

S2565 17

smw# cat /proc/drbd
version: 8.4.4 (api:1/proto:86-101)
GIT-hash: 3c1f46cb19993f98b22fdf7e18958c21ad75176d build by SuSE Build Service
 0: cs:Connected ro:Primary/Secondary ds:UpToDate/UpToDate C r-----
 ns:905180 nr:0 dw:905772 dr:12762 al:51 bm:0 lo:0 pe:0 ua:0 ap:0 ep:1 wo:f oos:0

Indicators in the output that all is well:

● A connect state (cs) of Connected

● A data state (ds) of UpToDate/UpToDate

To check the cluster status, use this command on either of the SMWs (this example shows the output for an HA
pair "minnie" and "mickey"):

smw# crm_mon -1r
Last updated: Tue Sep 6 11:26:06 2016
Last change: Tue Sep 6 08:52:13 2016
Stack: corosync
Current DC: minnie (167903490) - partition with quorum
Version: 1.1.12-ad083a8
2 Nodes configured
33 Resources configured

Online: [mickey minnie]

Full list of resources:

 ClusterIP (ocf::heartbeat:IPaddr2): Started minnie
 ClusterIP1 (ocf::heartbeat:IPaddr2): Started minnie
 ClusterIP2 (ocf::heartbeat:IPaddr2): Started minnie
 ClusterIP3 (ocf::heartbeat:IPaddr2): Started minnie
 ClusterIP4 (ocf::heartbeat:IPaddr2): Started minnie
 ClusterMonitor (ocf::smw:ClusterMonitor): Started minnie
 ClusterTimeSync (ocf::smw:ClusterTimeSync): Started minnie
 HSSDaemonMonitor (ocf::smw:HSSDaemonMonitor): Started minnie
 Notification (ocf::heartbeat:MailTo): Started minnie
 ResourceInit (ocf::smw:ResourceInit): Started minnie
 cray-cfgset-cache (systemd:cray-cfgset-cache): Started minnie
 dhcpd (systemd:dhcpd.service): Started minnie
 fsync (ocf::smw:fsync): Started minnie
 hss-daemons (lsb:rsms): Started minnie
 stonith-1 (stonith:external/ipmi): Started mickey
 stonith-2 (stonith:external/ipmi): Started minnie
 Resource Group: HSSGroup
 postgresqld (lsb:postgresql): Started minnie
 mysqld (ocf::heartbeat:mysql): Started minnie
 Resource Group: IMPSGroup
 cray-ids-service (systemd:cray-ids-service): Started minnie
 cray-ansible (systemd:cray-ansible): Started minnie
 IMPSFilesystemConfig (ocf::smw:FileSystemConfig): Started minnie
 Resource Group: LogGroup
 rsyslog (systemd:rsyslog.service): Started minnie
 cray-syslog (systemd:llmrd.service): Started minnie
 LogFilesystemConfig (ocf::smw:FileSystemConfig): Started minnie
 Resource Group: SharedFilesystemGroup
 homedir (ocf::heartbeat:Filesystem): Started minnie
 md-fs (ocf::heartbeat:Filesystem): Started minnie
 imps-fs (ocf::heartbeat:Filesystem): Started minnie
 ml-fs (ocf::heartbeat:Filesystem): Started minnie

SMW Daemons, Processes, and Logs

S2565 18

 repos-fs (ocf::heartbeat:Filesystem): Started minnie
 pm-fs (ocf::heartbeat:Filesystem): Started minnie
 ip-drbd-pgsql (ocf::heartbeat:IPaddr2): Started minnie
 Master/Slave Set: ms-drbd-pgsql [drbd-pgsql]
 Masters: [minnie]
 Slaves: [mickey]
Note that the crm_mon output displays the SMW host names as "Online" in alphanumeric order; the first SMW
shown is not necessarily the primary SMW.

Additional daemons on an SMW HA system
These additional daemons run on both SMWs in an SMW HA system.

● /usr/sbin/pacemakerd
● /usr/lib64/pacemaker/cib: cluster information base daemon

● /usr/lib64/pacemaker/stonithd: "shoot the other node in the head" daemon

● /usr/lib64/pacemaker/lrmd: local resource manager daemon

● /usr/lib64/pacemaker/attrd:

● /usr/lib64/pacemaker/pengine: policy engine daemon

● /usr/lib64/pacemaker/crmd: cluster resource manager daemon

These are all part of the SUSE distribution, so for information about them, visit the SUSE Documentation website
at https://www.suse.com/documentation/. To locate the SUSE high availability guide, select SUSE Linux
Enterprise Server 12, then search for "sle-ha."

Additional logs on an SMW HA system
In addition to the log files listed in SMW Log File Locations on page 19, there are two log files that exist only on
SMW HA systems. Note that these are NOT shared between SMWs, so copies from both SMWs may be useful
for trouble-shooting purposes.

● /var/log/pacemaker.log
● /var/log/smwha.log

SMW Log File Locations
There are five kinds of log files:

system-wide The system-wide logs are from the daemons started by the rsms script.

Location SMW

Path /var/opt/cray/log
Files ● bootmanager: bm.out and bm.out.1 (previous)

● erd: event-YYYYMMDD
● nid_manager: nm.out and nm.out.1 (previous)

SMW Daemons, Processes, and Logs

S2565 19

https://www.suse.com/documentation/

● nimsd: nimsd.out and nimsd.out.1 (previous)

● sedc_manager: sedc_manager.out and sedc_manager.out.1 (previous)

● state_manager: sm.out and sm.out.1 (previous)

● xtdiagd: xtdiagd.out and xtdiagd.out.1 (previous)

● xtpmd: pmd.out and pmd.out.1 (previous)

● xtpowerd: xtpowerd.out and xtpowerd.out.1 (previous)

● xtremoted: xtremoted.out and xtremote.out.1 (previous)

● xtsnmpd: xtsnmpd.out and xtnsnmpd.out.1 (previous)

boot
session-
specific

The per boot session logs are from the processes started by xtbootsys and are therefore also
per partition.

Location SMW

Path /var/opt/cray/log/session-ID, where session-ID has format pN-
YYYYMMDDthhmmss (e.g., p3-20111003t104331)

Files ● xtbootsys log: bootinfo.session
● xtconsole: console-YYYYMMDD
● xtconsumer: consumer-YYYYMMDD
● xthwerrlogd: hwerrlog.session
● xtnetwatch: netwatch-YYYYMMDD
● xtpcimon: pcimon-YYYYMMDD
● xtnlrd: nlrd.session

NOTE: Logs that are written to a YYYYMMDD files also have a corresponding .session
file, but this contains only stdout/stderr from the process and is typically empty.

CC and BC The logs from the cabinet controllers (CC) and blade controllers (BC) are available on the
controller but also are transmitted to the SMW.

Location CC/BC and SMW

Path CC/BC: /var/log
SMW: /var/opt/cray/log/controller

Files On the SMW, under the /var/opt/cray/log/controller directory is a
directory for each cabinet in the XC system. Under each cabinet directory is a
directory for the CC and each BC in that cabinet, which is where these files are
found:

● messages-YYYYMMDD
● bios-n[0,1,2,3]-YYYYMMDD

SMW Daemons, Processes, and Logs

S2565 20

commands
executed on
SMW

Logs from commands executed on the SMW are in two locations.

Location SMW

Path Output from running xtdiscover: /var/opt/cray/log/xtdiscover
Output from running other commands: /var/opt/cray/log/commands

systemd With SLES12, use the journalctl command on the SMW to display the systemd log files,
which contain all kernel messages and other available information from systemd..

smw# journalctl -a

Time Synchronization Among XC™ Series System Components
Keeping the clock time synchronized among all the components of a system is important for troubleshooting a
failed boot. Log messages are written from several different nodes to the various system logs. Those messages
must have accurate and consistent timestamps to make it possible to correlate events on the system.

A Cray XC™ Series system uses the Network Time Protocol (NTP) to achieve synchronization among its
components. The SMW is the primary time server, and it provides the reference time for the Hardware
Supervisory System (HSS) and for CLE. Both HSS and CLE use the NTP daemon (nptd). For each node in the
system, there are two paths to get time from the SMW: the HSS path (SMW → cabinet controller → blade
controller → node real-time clock) and the CLE path (SMW → boot node → all other nodes in system). When a
node starts up, its real-time clock (RTC), which is a hardware clock, takes its time from the source on the HSS
path—the RTC of its blade controller. The system time, which is a software clock, is initially set to the node's RTC,
which it obtained from the blade controller. To maintain the system time the node starts the NTP daemon (ntpd)
and queries the source on the CLE path—the boot node.

SMW Daemons, Processes, and Logs

S2565 21

Figure 6. Time Synchronization Among XC™ System Components

Check the time on a node
To access the time on a node, use these commands, which check the time without changing it. There is no
change to the node.

● To check the real-time clock (RTC) time:

node# hwclock
● To check system time:

node# date

Query NTP
To query NTP, use the ntpq program, which can be invoked interactively. To see a list of ntpq commands:

node# ntpq
ntpq> ?
To display help about a command:

node# ntpq
ntpq> ? rl
function: read the system or peer variables included in the variable list
usage: rl [assocID]

SMW Daemons, Processes, and Logs

S2565 22

Use ntpq to find out if the ntpd server thinks it is synchronized
Use the rl command with ntpq to determine whether the ntpd server thinks it is synchronized or not. Here is an
example:

node# ntpq
ntpq> rl
associd=0 status=0615 leap_none, sync_ntp, 1 event, clock_sync,
version="ntpd 4.2.6p5@1.2349-o Tue Apr 28 11:49:15 UTC 2015 (1)",
processor="x86_64", system="Linux/3.12.51-52.39.1_2.2-cray_ari_s", leap=00,
stratum=5, precision=-23, rootdelay=21.255, rootdisp=141.444,
refid=10.3.1.1,
reftime=db1e83d9.949faf83 Wed, Jun 29 2016 12:28:57.580,
clock=db1e8b71.78070fa2 Wed, Jun 29 2016 13:01:21.468, peer=39750,
tc=10, mintc=3, offset=-2.270, frequency=-27.480, sys_jitter=0.000,
clk_jitter=0.913, clk_wander=0.253
The leap variable (shown in bold in the example output) indicates one of four things:

00 = no leap second is expected yet
01 = add a second
10 = subtract a second
11 = the ntpd server is currently unsynchronized

Use ntpq to list information about a node's peers
In this example, the command is used on a login node to list information about a node's peers.

login# ntpq
ntpq> peers

remote refid st t when poll reach delay offset jitter
===
*boot 10.3.1.1 5 u 675 1024 377 0.134 0.841 1.183
What the columns mean:

remote Peers of the node, specified in the ntp.conf file.

* = current time source
= source selected, distance exceeds maximum value
o = source selected, Pulse Per Second (PPS) used
+ = source selected, included in final set
x = source false ticker
. = source selected from end of candidate list
– = source discarded by cluster algorithm
blank = source discarded high stratum, failed sanity

refid The remote source’s synchronization source. (In the example, the source is the SMW, which has IP
address 10.3.1.1.)

st Stratum level of the source.

t Types available.

SMW Daemons, Processes, and Logs

S2565 23

l = local (such as a GPS, WWVB)
u = unicast (most common)
m = multicast
b = broadcast
– = netaddr

when Number of seconds passed since last response

poll Polling interval for source, in seconds.

reach An 8-bit left shift octal value that indicates success/failure to reach source. Success means the bit is
set, failure means the bit is not set. The highest value is 377. (In the example, reach = 377, indicating
that all were successful.)

delay The round-trip time to receive a reply, in milliseconds.

offset Time difference between the client-server and the source, in milliseconds.

jitter The difference between two time samples, in milliseconds.

Jitter Concerns
Non-application software, including ntpd, running on a node can use up the node's resources and add "jitter" to an
application running on the node. This jitter is just the delay caused by the application contending with non-
application software for resources like CPUs. This jitter, which will be referred to as application jitter, is different
than the jitter mentioned by ntpd. The two should not be confused. On compute nodes, application jitter is bad
because it can randomly add some delay to applications running on each node. Parallel programs wait for all
nodes to arrive at a barrier before proceeding, so random delays to any node can cause all nodes to wait and
waste time.

The NTP daemon (ntpd), which runs on both service and compute nodes, has a polling interval that can be
configured to reduce application jitter. The longer the interval, the less jitter is introduced. A short interval (about
10 seconds) works well on service nodes, while compute nodes perform better using a longer polling interval
(about 15 minutes).

SMW Daemons, Processes, and Logs

S2565 24

About Cray Scalable Services
Cray Scalable Services is an essential part of the Cray Management System that is used to both distribute and
aggregate information. Within Cray Scalable Services, nodes are designated as SoA (server of authority), tier1,
tier2, or tier3. A node can be a member of only one of these groups. Tier1 nodes are clients of the SoA and
servers for tier2 nodes. Tier2 nodes are clients of tier1 nodes and servers for tier3 nodes. Tier3 nodes are clients
of tier2 nodes. Configuration of nodes as SoA, tier1, and tier2 is defined in the cray_scalable_services
configuration service, which must be configured properly for the system to function.

The SMW is the designated SoA in Cray XC systems. The boot and SDB nodes are designated tier1 nodes, and
they must have direct network connectivity to the SMW via Ethernet. Typically, tier2 nodes are service nodes or
repurposed compute nodes that have no other duties beyond being part of the Scalable Services. All other nodes
are tier3 nodes.

This table shows what gets distributed or aggregated using Cray Scalable Services.

from SMW to rest of system ● config set data is shared using a 9P file system
and DIOD (distributed I/O daemon)

● zypper software repositories can by used from any
node with the Live Update feature (http forwarding
from the SMW through the tiers)

from boot node to rest of system ● PE (Programming Environment) image root

● diag (online diagnostics) image root

● Netroot image roots1

from rest of system to SMW ● Lightweight Logging Manager (LLM) logging

Here is an example of how Scalable Services works with Live Updates to distribute software out to nodes. Any
tier3 node can run zypper to access the repositories on the SMW because it has an entry
in /etc/zypp/repos.d/liveupdates.repo that points to the tier2 nodes by means of a baseurl, which uses
http protocol listing all of the tier2 nodes. The tier2 nodes, in turn, have an entry
in /etc/zypp/repos.d/liveupdates.repo that lists at least one tier1 node. All tier1 nodes have an entry
in /etc/zypp/repos.d/liveupdates.repo that lists the SMW.

Services that Depend on Cray Scalable Services
It is important to configure Cray Scalable Services correctly. The following features and services use data from the
cray_scalable_services configuration service, and may they not be functional if cray_scalable_services is
configured incorrectly.

Node Image Mapping
Service (NIMS) plugin

Uses cray_scalable_services data to determine tier1 servers and adds the tier1
kernel command line parameter to each tier1 server.

1 Netroot is a mechanism that enables nodes booted with a minimal, local in-memory file system to execute
within the context of a larger, full-featured root file system which available to the node via a network mount.

About Cray Scalable Services

S2565 25

IMPS Distribution
Service (IDS)

Uses cray_scalable_services data to set the ids kernel command line parameter to
the node's parent, from whom it will receive config set data.

DVS Ansible
configuration

Uses cray_scalable_services data to determine which nodes should serve DVS file
systems. This will also impact Netroot functionality, which uses DVS.

CLE liveupdates
functionality

Configured using cray_scalable_services data to determine the parent each node
should contact en route to the package repos stored on the SMW.

LLM Ansible
configuration

Uses cray_scalable_services data to determine the next server to which a node
should send its log data, which depends on the node's tier.

NFS Ansible
configuration

Uses cray_scalable_services data to determine which nodes should act as clients
and servers.

IP forwarding Ansible
configuration

Uses cray_scalable_services data to enable IP forwarding and configure servers'
routes depending on their tier.

About Cray Scalable Services

S2565 26

Anatomy of an XC System Boot with xtbootsys
xtbootsys is a large Tcl script used by the crayadm account to boot and shut down CLE on the nodes in the XC
system. xtbootsys calls several external programs to gather information and run specific commands.

A system administrator can adjust the behavior of xtbootsys by using a boot automation file. The
auto.generic boot automation file is described here. The auto.generic and auto.xtshutdown files
provided by Cray may be changed during a Cray software update or patch. During an initial installation, these files
should be copied to site versions such as auto.hostname.start and auto.hostname.stop (where
hostname is the host name of the XC system) so that they can be customized.

Typical usage for booting is:

crayadm@smw> xtbootsys -a auto.hostname.start

Typical usage for shutdown is:

crayadm@smw> xtbootsys -s last -a auto.hostname.stop

The xtbootsys command can also stop (--stop-daemons), start (--start-daemons) and restart (--
restart-daemons) the background processes that are started by xtbootsys at boot time.

The default boot automation files provided by Cray are in /opt/cray/hss/default/etc. Beginning with CLE
6.0.UP03, service and compute nodes can boot at the same time. For further information about customizing boot
automation files and default boot order, see About Boot Automation Files on page 43.

Tasks done by xtbootsys
Steps done by xtbootsys include calling external programs. These external program might hang, causing a
timeout or failure during the booting process. Where an external program is called, dependencies of that program
are highlighted.

Here are the tasks done during a boot. Once the boot is complete, a summary will be added to the bootinfo log
file with the names and duration of these tasks. When analyzing a failed boot, consult the bootinfo file for that
failed boot session. The order of tasks may vary or there may be some different tasks due to newer software.

1. initialization
a. Create a boot session identifier.

This boot session identifier is of the form p0-20160621t214422, that is, the partition name followed by the
date and time. Notice that there is a "t" character separating the date from the time.

##
Your boot session identifier is p0-20160621t214422
##

b. Create bootinfo log file for this boot session.

Anatomy of an XC System Boot with xtbootsys

S2565 27

The bootinfo log file is created underneath the /var/opt/cray/log directory in a directory named
for the boot session identifier. This log file captures all of the output sent to stdout for the xtbootsys
command, but it also contains information not displayed to stdout, such as boot time statistics and
details about the md5 checksums on the files in the boot images.

##
Your boot information will be in /var/opt/cray/log/p0-20160621t214422
##

c. Record which boot automation file has been used for this boot.

Most boot automation files are in /opt/cray/hss/default/etc/auto.*, but they can be in other
locations.

d. Check whether the boot manager is running.

2. xtcli_part_cfg_show
Check the partition configuration. This step runs xtcli_part_cfg_show p0 for the p0 partition, which lists
the partition, members of the partition, who the boot and SDB nodes are, and all of the boot images required
to boot this partition (as assigned via the NIMS daemon.)

Your partition configuration is as follows:
Network topology: class 0
=== part_cfg ===

[partition]: p0: enable (noflags|)
[members]: c0-0
[boot]: c0-0c0s0n1:halt,c0-0c1s0n1:halt
[sdb]: c0-0c0s1n1:halt,c0-0c1s1n1:halt
[NIMS_image 0]: /var/opt/cray/imps/boot_images/initrd-compute-
large_cle_6.0.UP01-build6.0.96_sles_12-created20160615.cpio
[NIMS_image 1]: /var/opt/cray/imps/boot_images/service_cle_6.0.UP01-
build6.0.96_sles_12-created20160614.cpio
[NIMS_image 2]: /var/opt/cray/imps/boot_images/dal_cle_6.0.UP01-
build6.0.96_centos_6.5-created20160614.cpio
[NIMS_image 3]: /var/opt/cray/imps/boot_images/initrd-login-large_cle_6.0.UP01-
build6.0.96_sles_12-created20160615.cpio
[NIMS_image 4]: /var/opt/cray/imps/boot_images/fio-service_cle_6.0.UP01-
build6.0.96_sles_12-created20160615.cpio

NOTE: This command requires that the state_manager and nimsd daemons be running.

3. user_input
In a default boot automation file, the root password is collected for later use in the boot session. Some sites
disable this interactive step by setting a variable in the boot automation file with the password.

4. analyze_archive
For each boot image, the debug information is extracted from the cpio-formatted file and checksums are
calculated with md5sum for each file. Note that only a portion of the information is shown in this example.

##
Please be patient while I collect additional system information ...
##
##
cpio -itv -F /var/opt/cray/imps/boot_images/initrd-compute-large_cle_6.0.UP01-
build6.0.96_sles_12-created20160615.cpio
'cpio -itv -F /var/opt/cray/imps/boot_images/initrd-compute-large_cle_6.0.UP01-

Anatomy of an XC System Boot with xtbootsys

S2565 28

build6.0.96_sles_12-created20160615.cpio' completed with status 0
drwxrwxrwt 3 root root 0 Jun 15 15:07 .
lrwxrwxrwx 1 root root 12 Jun 15 15:07 initrd-compute-
large_cle_6.0.UP01-build6.0.96_sles_12-created20160615.load -> DEFAULT.load
lrwxrwxrwx 1 root root 7 Jun 15 15:07 initrd-compute-
large_cle_6.0.UP01-build6.0.96_sles_12-created20160615 -> DEFAULT
-rw-r--r-- 1 root root 398 Jun 15 15:07 DEFAULT.load
-rw-r--r-- 1 root root 0 Jun 15 15:06 imps_image
drwxr-xr-x 3 root root 0 Jun 15 15:07 DEFAULT
-rw-r--r-- 1 root root 213632219 Jun 15 15:06 DEFAULT/initramfs.gz
-rw-r--r-- 1 root root 273 Jun 15 15:06 DEFAULT/package.info
drwxr-xr-x 4 root root 0 Jun 15 15:06 DEFAULT/debug
drwxr-xr-x 2 root root 0 Jun 15 15:06 DEFAULT/debug/boot
-rw-r--r-- 1 root root 100456784 May 18 12:25 DEFAULT/debug/boot/
vmlinux
...
-rw-r--r-- 1 root root 4263504 May 18 12:25 DEFAULT/
bzImage-3.12.51-52.31.1_1.0600.9146-cray_ari_c1253859 blocks
cpio -idmu -F /var/opt/cray/imps/boot_images/initrd-compute-large_cle_6.0.UP01-
build6.0.96_sles_12-created20160615.cpio
'cpio -idmu -F /var/opt/cray/imps/boot_images/initrd-compute-large_cle_6.0.UP01-
build6.0.96_sles_12-created20160615.cpio' completed with status 0
IMPS image detected.
IMPS image detected.
Following are the md5sum values for your cpio archive:
md5sum ./DEFAULT.load
'md5sum ./DEFAULT.load' completed with status 0
6b2da3b30e47c74e2e998142f4c47897 ./DEFAULT.load
md5sum ./imps_image
'md5sum ./imps_image' completed with status 0
d41d8cd98f00b204e9800998ecf8427e ./imps_image
md5sum ./DEFAULT/initramfs.gz
...

5. xtcli_status_a
Show the current status of all components in the system using the xtcli status -a s0 command. Note
that this example was simplified to show a single blade with two service nodes and a single compute blade
with four compute nodes. It shows the cabinet controller (CC) c0-0, the blade controller (BC) c0-0c0s0 and
c0-0c0s6, the aries on the blade c0-0c0s0a0 and c0-0c0s6a0, and the nodes on the blades c0-0c0s0n1,
c0-0c0s0n2, and also c0-0c0s6n0, c0-0c0s6n1, c0-0c0s6n2, c0-0c0s6n3. Notice that on this service blade
node c0-0c0s0n0 and c0-0c0s0n3 are marked as empty because there are no node 0 and node 3 on this
service blade. Also, node c0-0c0s6n3 is disabled.

xtcli status -a s0
Network topology: class 2
Network type: Aries
 Nodeid: Service Core Arch| Comp state [Flags]

 c0-0: - | ready [noflags|]
 c0-0c0s0: service X86| ready [noflags|]
 c0-0c0s0a0: service X86| on [noflags|]
 c0-0c0s0n0: service X86| empty [noflags|]
 c0-0c0s0n1: service SB08 X86| ready [noflags|]
 c0-0c0s0n2: service SB08 X86| ready [noflags|]
 c0-0c0s0n3: service X86| empty [noflags|]
...
 c0-0c0s6: - X86| ready [noflags|]
 c0-0c0s6a0: - X86| on [noflags|]
 c0-0c0s6n0: - IV20 X86| on [noflags|]

Anatomy of an XC System Boot with xtbootsys

S2565 29

 c0-0c0s6n1: - IV20 X86| on [noflags|]
 c0-0c0s6n2: - IV20 X86| on [noflags|]
 c0-0c0s6n3: - IV20 X86| disabled [noflags|]
...

NOTE: This command requires that the state_manager daemon be running.

6. xtcli_status_lcb
Show the current status of all aries_lcb components in the system using the xtcli_status_lcb p0
command. Note that the link control blocks are shown as l00 through l57 for a single Aries (the first character
in "l00" and "l57" is the letter "l" for link, not the digit "1" for one.)

xtcli status -t aries_lcb p0
Network topology: class 2
Network type: Aries
 Nodeid: Service Core Arch| Comp state [Flags]
--
 c0-0c0s0a0l00: service X86| on [noflags|]
 c0-0c0s0a0l01: service X86| on [noflags|]
 c0-0c0s0a0l02: service X86| on [noflags|]
 c0-0c0s0a0l03: service X86| on [noflags|]
 c0-0c0s0a0l04: service X86| off [noflags|]
 c0-0c0s0a0l05: service X86| off [noflags|]
 c0-0c0s0a0l06: service X86| off [noflags|]
 c0-0c0s0a0l07: service X86| off [noflags|]
 c0-0c0s0a0l10: service X86| on [noflags|]
 c0-0c0s0a0l11: service X86| on [noflags|]
 c0-0c0s0a0l12: service X86| on [noflags|]
 c0-0c0s0a0l13: service X86| off [noflags|]
 c0-0c0s0a0l14: service X86| off [noflags|]
...
 c0-0c0s0a0l54: service X86| off [noflags|]
 c0-0c0s0a0l55: service X86| off [noflags|]
 c0-0c0s0a0l56: service X86| off [noflags|]
 c0-0c0s0a0l57: service X86| off [noflags|]
 c0-0c0s1a0l00: service X86| on [noflags|]
...

NOTE: This command requires that the state_manager daemon be running.

7. verify_nodelists
Check the list of nodes.

8. clean_up_old_daemons
Remove any daemons associated with a previous boot session.

9. Internal

This step creates the link from /var/opt/cray/log/p0-current to /var/opt/cray/log/SESSIONID,
for the $SESSIONID of this boot session.

10. disable_flood_control
During the boot process, several nodes will start at the same time and may appear to flood the logging
system with console messages. However, this can be tolerated during the booting process and is desirable so
that console log messages from the boot can be viewed. It will be enabled later in the booting process so that
a console flood after boot time can be handled differently.

Anatomy of an XC System Boot with xtbootsys

S2565 30

xtdaemonconfig --partition p0 --type L0 --daemon ER p0 flood_control=0
xtdaemonconfig --partition p0 --type L1 --daemon ER p0 flood_control=0

11. start_xtconsole
Start xtconsole for this boot session. The log from xtconsole will be
in /var/opt/cray/log/p0-current/console-YYYYMMDD for the current day of the month in the year.
Each day a new file will be created for this output. xtconsole monitors the erd (event router daemon) for
console messages from all nodes.

12. config_bcsysd
Set some parameters for the blade controller (BC) system daemon, bcsysd (or l0sysd).

xtdaemonconfig --partition p0 --daemon=l0sysd --type=L0 p0
diag_mode=false,error_logging=true

13. config_bcbwtd
Set some parameters for the bandwidth throttling daemon, bcsysd (or l0sysd), running on the BC.

xtdaemonconfig --partition p0 --daemon=l0bwtd --type=L0 p0 diag_mode=false
14. xtbounce

xtbounce is used to initialize blades, nodes, or partitions (including the whole system). It is typically run early
by xtbootsys, but may also be run stand-alone. The general process is:

1. Gather information about components.

2. Halt the nodes.

3. Power down the nodes.

4. Power down the blades (modules).

5. Power up the blades (modules).

6. Power up the nodes.

7. Initialize the HSN links.

This command will show a summary of how long it took xtbounce to run.

NOTE: This process requires interaction with several HSS daemons: State manager (state_manager)
on the SMW, NID Manager (nid_mgr) on the SMW, ccsysd on the cabinet controllers, and bcsysd on
the blade controllers.

NOTE: Some large systems do the xtbounce and rtr commands before running xtbootsys and
set variables in their boot automation file so that these two steps are skipped when running
xtbootsys.

NOTE: If a boot fails because xtbounce fails, then addressing the problem and running xtbounce
interactively may be needed. However, if a boot succeeded with xtbounce and failed later on,
running xtbounce interactively will mean that the entire xtbootsys will have to be restarted.

xtbounce p0
***** get_class *****
21:46:09 - Beginning to wait for response(s)
21:46:09 - Done waiting for the State Manager
***** get_nids *****
21:46:09 - Beginning to wait for response(s)

Anatomy of an XC System Boot with xtbootsys

S2565 31

21:46:10 - Done waiting for the NID Manager
***** gather_partition_info *****
21:46:10 - Beginning to wait for response(s)
21:46:10 - Done waiting for the State Manager
***** check_partition_info *****
***** gather_user_components *****
21:46:10 - Beginning to wait for response(s)
21:46:11 - Done waiting for the State Manager
***** gather_partition_components *****
***** cross_check *****
INFO: found no accelerators in user-supplied component list
INFO: you will be affecting 1 cabinets, 8 modules, 24 nodes
***** aries_gather_cab_pwr_states *****
21:46:11 - Beginning to wait for response(s)
21:46:11 - Received 1 of 1 responses
INFO: power state checked on 1 cabinets
***** alive *****
21:46:11 - Beginning to wait for response(s)
21:46:12 - Received 8 of 8 responses
***** unload *****
21:46:12 - Beginning to wait for response(s)
21:46:12 - Received 8 of 8 responses
***** aries_download *****
INFO: Executing xtpmaction to apply active power profile
SUCCESS:'/opt/cray/hss/default/etc/pcap.sh p0 /tmp/xtbounce-uQJ9n8/
xtpmaction_node_list' completed with result 0
INFO: creating routing config file 'rtr-cfg.default' in '/tmp/xtbounce-tO3N2F'
INFO: creating AOC routing config file 'rtr-cfg.aoc' in '/tmp/xtbounce-tO3N2F'
INFO: non-default MMR data will not be downloaded
INFO: using DEFAULT Aries NP firmware files from '/opt/cray/serdes/aries/
default/np'
INFO: packing /opt/cray/serdes/aries/default/np/
aries_np_8051_dram_cray_ver_03_0b.txt, 40118 bytes
INFO: packing /opt/cray/serdes/aries/default/np/
aries_np_8051_iram_cray_ver_03_0b.txt, 106496 bytes
INFO: packing /opt/cray/serdes/aries/default/np/np_dram.hex, 40118 bytes
INFO: packing /opt/cray/serdes/aries/default/np/np_fw.hex, 106496 bytes
INFO: No /opt/cray/hss/default/etc/bios_settings file found.
INFO: No /opt/cray/hss/default/etc/phy_cmp_offset file found.
INFO: No /opt/cray/hss/default/etc/pre_nodeup_mmrs file found.
INFO: No /opt/cray/hss/default/etc/snowbush_phy_workaround1.mmrs file found.
Sending: 295784 bytes Total sent so far: 295784 Total to send: 295784
21:46:23 - Beginning to wait for response(s)
21:46:42 - Received 8 of 8 responses
***** halt_node *****
21:46:24 - Beginning to wait for response(s)
21:46:24 - Received 24 of 24 responses
***** node_down *****
21:46:24 - Beginning to wait for response(s)
21:46:25 - Received 0 of 24 response
21:46:31 - Received 24 of 24
responses
***** module_down *****
21:46:31 - Beginning to wait for response(s)
21:46:32 - Received 0 of 8 response
21:46:35 - Received 8 of 8 responses
***** module_up *****
21:46:35 - Beginning to wait for response(s)
21:46:35 - Received 0 of 8 responses
***** aries_node_up *****
21:46:42 - Beginning to wait for response(s)

Anatomy of an XC System Boot with xtbootsys

S2565 32

21:46:42 - Received 0 of 24 responses
21:50:37 - Received 20 of 24 responses
21:50:37 - Received 24 of 24 responses
***** aries_link_init *****
INFO: Performing fast pre-tuned NP/SerDes init.
21:50:37 - Beginning to wait for response(s)
21:50:38 - Received 0 of 8 responses
21:51:07 - Received 8 of 8 responses
***** aries_link_deadstart *****
21:51:07 - Beginning to wait for response(s)
21:51:08 - Received 6 of 8 responses
21:51:08 - Received 8 of 8 responses
***** link_check *****
21:51:08 - Beginning to wait for response(s)
21:51:09 - Received 8 of 8 responses
INFO: Gathering SDB node info for partition p0
Of the 8 L0s and 24 nodes:
8 L0s were found to be alive
8 modules running HSN links
24 nodes are powered up
INFO: removed /tmp/xtbounce-tO3N2F/rtr-cfg.default
INFO: removed /tmp/xtbounce-tO3N2F/rtr-cfg.aoc
INFO: removed /tmp/xtbounce-tO3N2F
Total runtime: 300.0 seconds

15. cable_check
Check the HSN cabling information with xtcablecheck.

16. xthwinv
Prepare hardware inventory information with xthwinv.

NOTE: This command requires that the state_manager daemon be running and that a successful
xtbounce has completed.

17. xthwinv_X
Prepare XML-formatted hardware inventory information with xthwinv -X.

NOTE: This command requires that the state_manager daemon be running and that a successful
xtbounce has completed.

18. xtsdbhwcache
Mark the hwinv cache generated above as being "clean" for the SDB node to use.

19. xtclear_alert
Clear alerts. This ensures that any alerts will be from this booting session.

20. xtclear_warn
Clear warnings. This ensures that any warnings will be from this booting session.

21. route_setup
Route the system with rtr -R. When rtr has success, there is no output. If rtr fails, there will be output
from this command.

NOTE: Some large systems do the xtbounce and rtr commands before running xtbootsys and
set variables in their boot automation file so that these two steps are skipped when running
xtbootsys.

Anatomy of an XC System Boot with xtbootsys

S2565 33

22. start_xtconsole_1
Start xtconsumer for this boot session watching for ec_node_info messages. The log from xtconsumer will
be in /var/opt/cray/log/p0-current/consumer-YYYYMMDD for the current day of the month in the
year. Each day a new file will be created for this output.

23. start_xtnetwatch
Start xtnetwatch for this boot session. The log from xtnetwatch will be
in /var/opt/cray/log/p0-current/netwatch-YYYYMMDD for the current day of the month in the year.
Each day a new file will be created for this output.

24. start_xtpcimon
Start xtpcimon for this boot session. The log from xtpcimon will be
in /var/opt/cray/log/p0-current/pcimon-YYYYMMDD for the current day of the month in the year.
Each day a new file will be created for this output.

This data can be processed with the xtpe command.

25. start_dumpd
Start xtdumpd for this boot session. The log from xtdumpd will be
in /var/opt/cray/log/p0-current/dumpd-YYYYMMDD for the current day of the month in the year.
Each day a new file will be created for this output.

26. start_xthwerrlogd
Start xthwerrlogd for this boot session. The data from xthwerrlogd will be
in /var/opt/cray/log/p0-current/hwerrlog.$SESSIONID. This data can be viewed using the
xthwerrlog command.

27. start_xtnlrd
Start xtnlrd for this boot session. The log from xtnlrd will be
in /var/opt/cray/log/p0-current/nlrd-YYYYMMDD for the current day of the month in the year. Each
day a new file will be created for this output.

28. start_xtwatcher
Start xtwatcher for this boot session. xtwatcher will watch for the daemons started by xtbootsys
(xtconsole, xtnetwatch, xtconsumer, xthwerrlog, xtnlrd, dumpd, and xtpcimon) and restart any which are no
longer running.

29. start_sec
Start cray_sec. See XC™ Series SEC Configuration Guide (S-2542) for details on how to configure the
Simple Event Correlator (SEC).

30. crms_exec for nims_liaison.py
This crms_exec task name means that an external program is being called.

Merge IDS settings from the CLE config set into NIMS map for this boot with the hardware components that
are currently available.

The /opt/cray/imps-distribution/default/bin/nims_liaison.py program will check the Cray
scalable services information in the CLE config set to ensure that kernel parameters for each node reflect
their position within the hierarchy of SMW to tier1 to tier2 to tier3 nodes. Any node should look towards the
SMW to a node in a lower number tier. Nodes will have one to three server IP addresses in their kernel

Anatomy of an XC System Boot with xtbootsys

S2565 34

parameter for IDS. The IDS servers will be used to get config set information for that node during the boot
process.

NOTE: Note: This step requires that the NIMS daemon (nimsd) be running on the SMW.

31. crms_set_failed_option
This action is in the boot automation file.

If the boot or SDB nodes fail, immediately exit xtbootsys. Later this will be changed for other service nodes
to pause for user input rather than exiting xtbootsys.

32. crms_set_failed_timeout
This action is in the boot automation file.

If the boot or SDB nodes time out during their boot, immediately exit xtbootsys. Later this timeout value will
be changed for other service nodes.

33. crms_exec_1 for xtdaemonconfig
This is the earliest point at which commands from the boot automation file will be run. All of the previous tasks
are the same for all XC systems.

For systems with boot node failover or SDB node failover configured, the boot automation file should have
lines similar to these, which enable STONITH on the blades containing the primary boot node and the primary
SDB node. This example uses blades c0-0c0s0 and c0-0c0s1.

lappend actions {crms_exec "xtdaemonconfig c0-0c0s0 stonith=true"}
lappend actions {crms_exec "xtdaemonconfig c0-0c0s1 stonith=true"}

34. boot_bootnode_sdbnode
The next step in the boot automation file is to boot the boot and SDB nodes. The boot and SDB nodes can be
booted via PXE boot at the same time from the SMW (this assumes the SDB image is small enough; if it is
too large, SDB nodes will be booted after the boot nodes). They are both tier1 nodes in Cray scalable
services, with an Ethernet connection to the SMW. This entry in the boot automation file will run the xtcli
boot command.

PXE boot both the bootnode and sdbnode together
lappend actions {crms_boot_bootnode_sdbnode}
And the command will be shown in the bootinfo log file with all of the boot nodes and SDB nodes for this
partition. This example has boot nodes as c0-0c0s0n1 and c0-0c1s0n1 and SDB nodes as c0-0c0s1n1 and
c0-0c1s1n1.

xtcli -s boot service -o pxeboot c0-0c0s0n1,c0-0c1s0n1,c0-0c0s1n1,c0-0c1s1n1
While these nodes are booting, there should be output for each node to the console log file from the
xtconsole session started earlier. This output can also be watched by using the xtconsole command in
another window from where xtbootsys is executing.

smw# xtconsole -at
As the boot and SDB nodes boot, more messages will appear in the xtbootsys window indicating the status
of the PXE boot.

xtcli -s boot service -o pxeboot c0-0c0s0n1,c0-0c1s0n1,c0-0c0s1n1,c0-0c1s1n1
Network topology: class 0

Anatomy of an XC System Boot with xtbootsys

S2565 35

 16 % |**** | 00:00:00
Getting configuration
 33 % |********** | 00:00:00
Starting PXE boot
 50 % |*************** | 00:00:00
State manager transition nodes
 66 % |******************** | 00:00:00
Getting NIMS configuration
 83 % |************************* | 00:00:01
Booting PXE
100 % |*****************************| 00:00:13
Boot request done

 Nodeid| Flags: Result
--
 c0-0c0s0n1| noflags|: Success
 c0-0c0s1n1| noflags|: Success
 c0-0c1s0n1| noflags|: Success
 c0-0c1s1n1| noflags|: Success
--
Tue Jun 21 21:51:33 CDT 2016
It took 13 seconds for 'xtcli' to complete.
'xtcli -s boot service -o pxeboot c0-0c0s0n1,c0-0c0s1n1,c0-0c0s9n2' completed
with status 0

35. extract_debug (several tasks)

Extract debug information from each of the boot images. After the boot and SDB nodes have begun their
boot, debug information is extracted from all boot images using the xtextractdebug command.

36. wait_for_bootnode_sdbnode
The boot session will wait for the event code which means that the boot and SDB nodes have completed.

crms_wait_for_linux_boot: nodelist: c0-0c0s0n1 c0-0c0s1n1 c0-0c1s0n1 c0-0c1s1n1
waiting for 4 nodes to finish booting ...

Tue Jun 21 21:51:58 CDT 2016
While waiting for the 4 nodes to boot, you can ...
 enter a 'q' to quit xtbootsys
 enter a 's' to stop waiting
 enter a '?' to see which nodes we're still waiting for
 enter anything else to see how many nodes we're still waiting for
 do nothing and just watch
node 'c0-0c1s0n1' is done (3 left)
node 'c0-0c1s1n1' is done (2 left)
node 'c0-0c0s0n1' is done (1 left)
node 'c0-0c0s1n1' is done (0 left)
Tue Jun 21 21:58:05 CDT 2016
It took 367 seconds (6 minutes, 7 seconds) for 4 node(s) to boot.

37. crms_set_failed_option_1
This action is in the boot automation file.

Change the setting from the boot and SDB nodes (which would exit xtbootsys if they failed) so that other
service nodes will "prompt" the user about what action to take.

38. crms_set_failed_timeout_1
This action is in the boot automation file.

Anatomy of an XC System Boot with xtbootsys

S2565 36

Change the setting from the boot and SDB nodes (which would exit xtbootsys if they timed out during the
boot) so that other service nodes will "prompt" the user about what action to take.

39. Boot the rest of the service and compute nodes.

There are two different methods for getting the rest of the service and compute nodes booted, depending on
the release and whether direct-attached Lustre (DAL) is used:

Method 1 Boot service and compute
nodes at the same time.

For systems running CLE 6.0.UP03 or a later release and do
not have DAL. Do NOT use this method if there are other
actions to be done after the service nodes complete booting
and before the compute nodes begin booting.

Method 2 Boot service nodes first, then
boot compute nodes.

For systems running CLE 6.0.UP02 or an earlier release, or
systems with DAL, or systems that have other actions to be
done after the service nodes complete booting and before
the compute nodes begin booting.

Method 1: Boot service and compute nodes at the same time.

a. boot_all
Boot all of the remaining service and compute nodes. This action is in the boot automation file.

Since the boot node is up, these nodes will be booted using the HSN via interaction with the boot node
daemon (bnd). The boot node NFS mounts the /var/opt/cray/imps/boot_images directory from
the SMW to its own /var/opt/cray/imps/boot_images mount point so that bnd can access all of
the required boot images. Notice that the primary boot node and primary SDB node are already in the
"ready" state from their previous boot, and the alternate boot node and alternate SDB node also had their
boot initiated earlier, so those nodes will not transition to "Success" when checked for their status after the
boot.

xtcli -s boot all p0
Network topology: class 0
 14 % |**** | 00:00:00
Getting configuration
 28 % |******** | 00:00:00
Starting nodes
 42 % |************ | 00:00:00
State manager transition nodes
 57 % |***************** | 00:00:00
Getting NIMS configuration
 71 % |********************* | 00:00:01
Transferring boot image over HSN
Tue Jun 21 21:58:17 CDT 2016
While waiting for the command to complete, you can ...
 enter a 'q' to quit xtbootsys
 enter a 's' to stop waiting (hang up on spawned process)
 enter anything else to repeat this message
 do nothing and just watch
 85 % |************************* | 00:01:03
Booting requested nodes
100 % |*****************************| 00:01:03
Boot request done

 Nodeid| Flags: Result

Anatomy of an XC System Boot with xtbootsys

S2565 37

 c0-0c0s0n1| noflags|: Item state 'ready' is invalid for
requested command
 c0-0c0s0n2| noflags|: Success
 c0-0c0s1n1| noflags|: Item state 'ready' is invalid for
requested command
 c0-0c0s1n2| noflags|: Success
 c0-0c1s0n1| noflags|: Failover node is in invalid state
for booting
 c0-0c1s0n2| noflags|: Success
 c0-0c1s1n1| noflags|: Failover node is in invalid state
for booting
 c0-0c1s1n2| noflags|: Success

Tue Jun 21 21:59:17 CDT 2016
It took 64 seconds (1 minute, 4 seconds) for 'xtcli' to complete.

b. wait_for_all
Wait for all service and compute nodes to complete their boot. The boot session will wait for the event
code which means that the nodes being booted have completed.

crms_wait_for_linux_boot: nodelist: c0-0c0s2n2 c0-0c0s4n1 c0-0c0s4n2
c0-0c0s5n1 c0-0c0s5n2 c0-0c0s8n0 c0-0c0s8n1 c0-0c0s8n2 c0-0c0s8n3
c0-0c0s10n0 c0-0c0s10n1 c0-0c0s10n2 c0-0c0s10n3
waiting for 13 nodes to finish booting ...

Tue Jun 21 21:59:17 CDT 2016
While waiting for the 13 nodes to boot, you can ...
 enter a 'q' to quit xtbootsys
 enter a 's' to stop waiting
 enter a '?' to see which nodes we're still waiting for
 enter anything else to see how many nodes we're still waiting for
 do nothing and just watch
node 'c0-0c0s4n1' is done (12 left)
node 'c0-0c0s4n2' is done (11 left)
node 'c0-0c0s5n2' is done (10 left)
node 'c0-0c0s5n1' is done (9 left)
node 'c0-0c0s2n2' is done (8 left)
node 'c0-0c0s10n0' is done (7 left)
node 'c0-0c0s10n3' is done (6 left)
node 'c0-0c0s10n1' is done (5 left)
node 'c0-0c0s10n2' is done (4 left)
node 'c0-0c0s8n0' is done (3 left)
node 'c0-0c0s8n2' is done (2 left)
node 'c0-0c0s8n3' is done (1 left)
node 'c0-0c0s8n1' is done (0 left)
Tue Feb 14 10:00:34 CST 2017
It took 365 seconds (6 minutes, 5 seconds) for 13 node(s) to boot.

Method 2: Boot service nodes first, then boot compute nodes.

For systems with DAL or for systems running CLE 6.0.UP02 or an earlier release, the service nodes and
compute nodes must be booted in separate steps. If there are other actions to be done after the service
nodes complete their boot and before the compute nodes begin their boot, then use this method even for
systems running CLE 6.0.UP03 that do not have DAL.

a. boot_all_serv
Boot all of the service nodes. This action is in the boot automation file.

Anatomy of an XC System Boot with xtbootsys

S2565 38

Since the boot node is up, these nodes will be booted using the HSN via interaction with the boot node
daemon (bnd). The boot node NFS mounts the /var/opt/cray/imps/boot_images directory from
the SMW to its own /var/opt/cray/imps/boot_images mountpoint so that bnd can access all of the
required boot images.

Notice that the primary boot node and primary SDB node are already in the "ready" state from their
previous boot and the alternate boot node and alternate SDB node also had their boot initiated earlier, so
those nodes will not transition to "Success" when checked for their status after the boot.

xtcli -s boot all_serv p0
Network topology: class 0
 14 % |**** | 00:00:00
Getting configuration
 28 % |******** | 00:00:00
Starting service nodes
 42 % |************ | 00:00:00
State manager transition nodes
 57 % |***************** | 00:00:00
Getting NIMS configuration
 71 % |********************* | 00:00:02
Transferring boot image over HSN
Tue Jun 21 21:58:17 CDT 2016
While waiting for the command to complete, you can ...
 enter a 'q' to quit xtbootsys
 enter a 's' to stop waiting (hang up on spawned process)
 enter anything else to repeat this message
 do nothing and just watch
 85 % |************************* | 00:01:10
Booting service nodes
100 % |*****************************| 00:01:11
Boot request done

 Nodeid| Flags: Result

 c0-0c0s0n1| noflags|: Item state 'ready' is invalid for
requested command
 c0-0c0s0n2| noflags|: Success
 c0-0c0s1n1| noflags|: Item state 'ready' is invalid for
requested command
 c0-0c0s1n2| noflags|: Success
 c0-0c1s0n1| noflags|: Failover node is in invalid state
for booting
 c0-0c1s0n2| noflags|: Success
 c0-0c1s1n1| noflags|: Failover node is in invalid state
for booting
 c0-0c1s1n2| noflags|: Success

Tue Jun 21 21:59:17 CDT 2016
It took 72 seconds (1 minute, 12 seconds) for 'xtcli' to complete.

b. wait_for_all_serv
Wait for service nodes to complete their boot. The boot session will wait for the event code which means
that the nodes being booted have completed.

crms_wait_for_linux_boot: nodelist: c0-0c0s0n2 c0-0c0s1n2 c0-0c1s0n2
c0-0c1s1n2
waiting for 4 nodes to finish booting ...

Anatomy of an XC System Boot with xtbootsys

S2565 39

Tue Jun 21 21:59:17 CDT 2016
While waiting for the 4 nodes to boot, you can ...
 enter a 'q' to quit xtbootsys
 enter a 's' to stop waiting
 enter a '?' to see which nodes we're still waiting for
 enter anything else to see how many nodes we're still waiting for
 do nothing and just watch
node 'c0-0c0s0n2' is done (3 left)
node 'c0-0c0s1n2' is done (2 left)
node 'c0-0c1s0n2' is done (1 left)
node 'c0-0c1s1n2' is done (0 left)
Tue Jun 21 22:16:01 CDT 2016
It took 404 seconds (6 minutes, 44 seconds) for 4 node(s) to boot.

c. crms_exec_on_bootnode (several)

Run other boot automation commands after service nodes have booted and before starting to boot
compute nodes.

The method shown below for DAL runs two different commands on the boot node as the root username
with the crms_exec_on_bootnode routine. If commands need to be run on another service node, use
the crms_exec_via_bootnode routine and then list which host name, username, and command.

See xtbootsys(8) for more information on what can be done in a boot automation file.

1. Start DAL

For systems with DAL (Direct-attached Lustre), the next step in the boot automation file is to start the
Lustre server on DAL nodes and then mount the Lustre file system on login nodes.

lappend actions { crms_exec_on_bootnode "root" "lustre_control start -f
dal" }
lappend actions { crms_exec_on_bootnode "root" "lustre_control
mount_clients -f dal -w login[1-8]" }
Output from each of these commands will be shown and the status from running them on the
specified nodes.

d. boot_all_comp
Boot all compute nodes.

Since the boot node is up, these nodes will be booted using the HSN via interaction with the boot node
daemon (bnd). The boot node NFS mounts the /var/opt/cray/imps/boot_images directory from
the SMW to its own /var/opt/cray/imps/boot_images mountpoint so that bnd can access all of the
required boot images.

xtcli -s boot all_comp p0
Network topology: class 0
 14 % |**** | 00:00:00
Getting configuration
 28 % |******** | 00:00:00
Starting compute nodes
 42 % |************ | 00:00:00
State manager transition nodes
 57 % |***************** | 00:00:00
Getting NIMS configuration
 71 % |********************* | 00:00:01
Transferring boot image over HSN
Tue Jun 21 22:16:55 CDT 2016

Anatomy of an XC System Boot with xtbootsys

S2565 40

While waiting for the command to complete, you can ...
 enter a 'q' to quit xtbootsys
 enter a 's' to stop waiting (hang up on spawned process)
 enter anything else to repeat this message
 do nothing and just watch
 85 % |************************* | 00:00:13
Booting compute nodes
100 % |*****************************| 00:00:13
Boot request done

 Nodeid| Flags: Result
--
 c0-0c0s8n0| noflags|: Success
 c0-0c0s8n1| noflags|: Success
 c0-0c0s8n2| noflags|: Success
 c0-0c0s8n3| noflags|: Success
 c0-0c1s9n0| noflags|: Success
 c0-0c1s9n1| noflags|: Success
 c0-0c1s9n2| noflags|: Success
 c0-0c1s9n3| noflags|: Success
--
Tue Jun 21 22:16:58 CDT 2016
It took 14 seconds for 'xtcli' to complete.

e. wait_for_all_comp
Wait for compute nodes to complete their boot. The boot session will wait for the event code which means
that the nodes being booted have completed.

crms_wait_for_linux_boot: nodelist: c0-0c0s8n0 c0-0c0s8n1 c0-0c0s8n2
c0-0c0s8n3 c0-0c1s9n0 c0-0c1s9n1 c0-0c1s9n2 c0-0c1s9n3
waiting for 8 nodes to finish booting ...

Tue Jun 21 22:16:58 CDT 2016
While waiting for the 8 nodes to boot, you can ...
 enter a 'q' to quit xtbootsys
 enter a 's' to stop waiting
 enter a '?' to see which nodes we're still waiting for
 enter anything else to see how many nodes we're still waiting for
 do nothing and just watch
node 'c0-0c0s8n0' is done (7 left)
node 'c0-0c0s8n2' is done (6 left)
node 'c0-0c0s8n3' is done (5 left)
node 'c0-0c0s8n1' is done (4 left)
node 'c0-0c1s9n1' is done (3 left)
node 'c0-0c1s9n0' is done (2 left)
node 'c0-0c1s9n2' is done (1 left)
node 'c0-0c1s9n3' is done (0 left)
Tue Jun 21 22:25:12 CDT 2016
It took 493 seconds (6 minutes, 13 seconds) for 8 node(s) to boot.

40. Additional boot automation commands

Run any remaining boot automation commands after compute nodes have booted.

If there are any other boot automation commands to be done after the compute nodes have booted, they will
be run now.

All of the steps after this point are not in the boot automation.

41. gather_ko

Anatomy of an XC System Boot with xtbootsys

S2565 41

Gather kernel object files from boot node. Several ssh and rsync commands will be run from the SMW to
the boot node to collect more information to be stored on the SMW
in /var/opt/cray/debug/$SESSIONID/boot-root.

Gathering ko files from bootnode:/lib/modules/`uname -r`
42. gather_fstab

This step gathers /etc/fstab from one of the compute nodes.

43. clean_up
44. enable_flood_control

Enable the flood control which was disabled earlier in this boot session. During the boot process, several
nodes will start at the same time and may appear to flood the logging system with console messages.
However, this can be tolerated during the booting process and is desirable so that console log messages from
the boot can be viewed.

xtdaemonconfig --partition p0 --type L0 --daemon ER p0 flood_control=1
xtdaemonconfig --partition p0 --type L1 --daemon ER p0 flood_control=1

45. Boot session summary

A summary of the boot session will be displayed.

This session took 2454 seconds (40 minutes, 54 seconds).

##
Session Boot Summary:
 14 nodes completed their boot
##

46. Display boot time statistics

Boot time statistics are displayed only to the bootinfo log file, but it does show the duration of different parts
of the booting process, identified by the name of the xtbootsys task. This example shows that the ability to
boot all service and compute nodes at the same time can significantly decrease overall system boot time.

##
Boot Time Statistics:
##
TASK CONCURRENT DURATION
initialization 0m0s
xtcli_part_cfg_show 0m4s
user_input 0m4s
analyze_archive 1m12s
xtcli_status_a 0m0s
xtcli_status_lcb 0m0s
verify_nodelists 0m0s
clean_up_old_daemons 0m1s
Internal 0m22s
disable_flood_control 0m1s
start_xtconsole 0m0s
config_bcsysd 0m0s
config_bcbwtd 0m0s
xtbounce 3m53s
cable_check 0m1s
xthwinv 0m2s
xthwinv_X 0m1s

Anatomy of an XC System Boot with xtbootsys

S2565 42

xtsdbhwcache 0m1s
xtclear_alert 0m0s
xtclear_warn 0m1s
route_setup 0m0s
start_xtconsole_1 0m0s
start_xtnetwatch 0m0s
start_xtpcimon 0m0s
start_dumpd 0m0s
start_xthwerrlogd 0m0s
start_xtnlrd 0m0s
start_xtwatcher 0m0s
crms_exec 0m4s
crms_set_failed_option 0m0s
crms_set_failed_timeout 0m0s
boot_bootnode_sdbnode 0m22s
wait_for_bootnode_sdbnode YES 4m32s
extract_debug YES 0m6s
extract_debug_1 YES 0m3s
extract_debug_2 YES 0m5s
extract_debug_3 YES 0m6s
crms_set_failed_option_1 0m0s
crms_set_failed_timeout_1 0m0s
boot_all 1m4s
wait_for_all 6m5s
crms_exec_via_bootnode 0m1s
gather_ko 0m4s
gather_fstab 0m3s
clean_up YES 0m1s
enable_flood_control YES 0m1s
Total 17m55s
##

About Boot Automation Files
New for the CLE 6.0.UP03 release. With this release, the default boot behavior for Cray systems without direct-
attached Lustre (DAL) nodes is to boot all service nodes (other than the boot and SDB nodes) and all compute
nodes can boot at the same time, thereby decreasing overall boot time.

● Default for systems without DAL:

1. Boot + SDB (if SDB image small enough to PXE boot)

2. SDB (if SDB image too large to PXE boot)

3. Service + Compute

● Default for systems with DAL:

1. Boot + SDB (if SDB image small enough to PXE boot)

2. SDB (if SDB image too large to PXE boot)

3. Service

4. Compute

Cray provides the following boot automation files with this release.

auto.generic Used to boot the entire XC system.

auto.xtshutdown Used to shut down the entire XC system.

Anatomy of an XC System Boot with xtbootsys

S2565 43

auto.bootnode Used to boot only the boot node(s).

auto.bootnode+sdb Used to boot only the boot node(s) and SDB node(s).

During a fresh install, sites typically copy auto.generic, rename it with the host name of the system for which it
will be used (auto.hostname.start), and customize it for that site and system. Likewise, sites typically copy
auto.xtshutdown, rename it with the host name of the system for which it will be used
(auto.hostname.stop), and customize it, as needed. The host name is included because different systems
may have different software installed, resulting in different boot or shutdown requirements. For example, on a
system with PBS (a workload manager) installed, extra commands may be needed in the auto.hostname.stop
file to cleanly stop the PBS queues on SDB or MOM nodes before shutting down the nodes.

When is customization of an automation file needed?

● For systems booting tmpfs images (instead of Netroot) with no SDB node failover, no changes may be
necessary.

● For systems booting Netroot images, instructions for making Netroot-related changes after the first boot with
tmpfs are provided at the appropriate place in the fresh install process.

● For systems booting direct-attached Lustre (DAL) images, instructions for making DAL-related changes are
provided at the appropriate place in the fresh install process.

● For systems with added content in the recipe used for SDB nodes, if the resulting custom recipe produces a
boot image too large for a PXE boot, changes to the boot automation file are necessary. If based on
auto.generic, the system boot automation file will have an option (commented out by default) to boot the
boot node via PXE boot and then boot the SDB node via the HSN.

● For systems with a workload manager (WLM) installed, WLM-related changes may be needed. Specific
commands to add will vary based on the WLM.

Anatomy of an XC System Boot with xtbootsys

S2565 44

The Booting Process from the CLE Node View
Boot troubleshooting may include examining one or more nodes during the boot, so an understanding of the
booting process from the node view may be helpful. The booting process is different depending on whether it is a
PXE boot or a boot over the high speed network (HSN), and whether a tmpfs image or Netroot image is being
booted. But much of the process is common to all nodes when cray-ansible begins running on the node and
writing logs of how Ansible plays consume config set data to personalize the node for its role within the system.

About PXE boot versus HSN boot
Most nodes are booted over the HSN, but there are a few nodes that PXE boot from the SMW because they are
nodes with a direct Ethernet connection to the SMW. The boot and SDB nodes are tier1 nodes that PXE boot
from the SMW, as described in Booting with PXE Boot for Boot and SDB Nodes on page 46.

About booting a tmpfs image versus a Netroot image
The Cray XC™ Series root file system for nodes can either reside in RAM (tmpfs) or be mounted from a network
source (Netroot), depending on the type of node. The boot and SDB nodes, all other service nodes (except login
nodes), and all DAL (direct-attached Lustre) nodes must use tmpfs. Compute nodes and login nodes may use
either tmpfs or Netroot.

To check whether node c0-0c0s0n2 is using Netroot from the SMW, run this command:

smw# cnode list c0-0c2s0n1
NAME TYPE GROUP
IMAGE
 CONFIG_SET EXT_PARAMETERS
c0-0c0s0n2 service login
/var/opt/cray/imps/boot_images/initrd-login-large_cle_6.0.UP02-
build6.0.2042_sles_12-created20161215.cpio
 - sdbnodeip=10.131.255.253 bootnodeip=10.131.255.254
hsn_ipv4_mask=255.252.0.0
hsn_ipv4_net=10.128.0.0 NIMS_GROUP=login
netroot=login-large_cle_6.0.UP02-build6.0.2042_sles_12-created20161215
ids=10.128.0.33 config_set=p0
How to interpret the output:

● If the boot image assigned starts with initrd-compute-large or initrd-login-large, then one of the
Cray recipes for Netroot has been used. But this is not a certain indicator of Netroot use, because a site could
change the recipe or rename the boot image.

● If one of the kernel parameters assigned to the node starts with netroot=compute-large or
netroot=login-large, then one of the Cray recipes for Netroot has been used for the image root. But
again, this is not a certain indicator of Netroot use, because a site could change the recipe or rename the
image root.

● If the boot image assigned starts with initrd-compute-large or initrd-login-large and one of the
kernel parameters assigned to the node starts with netroot=compute-large or netroot=login-large,

The Booting Process from the CLE Node View

S2565 45

that means that Netroot is being used. In this case, there should be a strong similarity between the name of
the boot image and the value assigned to the Netroot kernel parameter.

● If there is no kernel parameter netroot= at all, then the node is using the tmpfs method, not Netroot. A node
using tmpfs should not have a boot image assigned such as initrd-compute-large or initrd-login-
large because the initrd-* boot images need a matching image root, which would be specified in the
Netroot kernel parameter.

The HSN boot of a tmpfs image is described in Booting tmpfs Method with bnd on page 48.

The HSN boot of a Netroot image is described in Booting Netroot Method with bnd on page 49.

About the logs generated by cray-ansible and Ansible
The log files that are generated by cray-ansible and the Ansible plays it calls are described in cray-ansible and
Ansible Logs on a CLE Node on page 51.

Booting with PXE Boot for Boot and SDB Nodes
The boot and SDB nodes have an Ethernet connection to the SMW and are capable of being booted over that
Ethernet connection using a PXE boot. The Preboot Execution Environment (PXE) uses Dynamic Host
Configuration Protocol (DHCP) and Trivial File Transfer Protocol (TFTP) as well as code in the node BIOS to boot
the node from software received over the network.

NOTE: There is a limit on the size of boot image for PXE boot. If this limit is exceeded, then xtbootsys
will display the message "Initramfs too big for PXE boot." This size can be adjusted
in /opt/cray/hss/default/etc/bm.ini, but there is a maximum size that cannot be exceeded.

The cray-ansible program, a wrapper for Ansible plays, discovers Ansible plays, orders them, and gathers system
information. It executes twice during the process of booting with a PXE boot. The first execution occurs
when /init calls cray-ansible before Linux starts up; this is called the init phase, as shown in this figure. During
the init phase, Ansible plays create config files for services in preparation for launching those services later in the
process, prepare system storage (LVM volume groups, volumes, and file systems), and set up HSN network
interfaces. After the standard Linux startup, where systemd boots the system and mounts file systems, cray-
ansible runs a second time; this is called the booted phase. During the booted phase, Ansible completes the
configuration of all services and launches them.

The tasks are run in the order shown in this figure for both the boot and SDB nodes, but starting the mysql
database applies to SDB nodes only.

The Booting Process from the CLE Node View

S2565 46

Figure 7. Node Image at Boot Time using PXE Boot

In both the init and booted phases, cray-ansible orders Ansible plays through directives included in the plays:
run_early, run_late, run_after (specifies dependencies), and run_before (also specifies dependencies, reserved
for site use only). Dependencies take precedence over the other two directives, and plays without directives are
run somewhere between early and late. Regardless of directives, all plays are run during each phase (though
some may be no ops in one of the phases). For example, a play with the run_early directive will be run early in the
init phase and early in the booted phase.

Here is the sequence of events for a PXE boot.

1. xtbounce triggers the node power on, which will cause the node to run node BIOS.

2. Successful completion of node BIOS leaves the message "Wait4boot" on the console.

3. When xtbootsys calls xtcli boot for the node, then the node begins the PXE boot process

4. The PXE boot process has the node request an IP address from the SMW via DHCP, then transfer the boot
image via the TFTP over the SMW's eth3 to the node's eth0 network connection.

5. /init from the boot image executes next. There are many actions done in this script: read kernel
parameters from /proc/cmdline, initialize logging, load kernel modules, probe for devices, load RCA, make
the global config set and CLE config set available for cray-ansible.

6. /init calls cray-ansible in the init phase. If this fails, then the node will drop into the DEBUG shell. If it
succeeds, then /init continues. Regardless, cray-ansible will log to:

/var/opt/cray/log/ansible/sitelog-init
/var/opt/cray/log/ansible/file-changelog-init
/var/opt/cray/log/ansible/file-changelog-init.yaml

7. /init finishes and transfers control to systemd.

8. systemd mounts file systems from /etc/fstab, starts all enabled services, and so forth.

The Booting Process from the CLE Node View

S2565 47

9. cray-ansible runs in the booted phase. If this fails, then the node will drop into the DEBUG shell. If it
succeeds, then /init continues. Regardless, cray-ansible will log to:

/var/opt/cray/log/ansible/sitelog-booted
/var/opt/cray/log/ansible/file-changelog-booted
/var/opt/cray/log/ansible/file-changelog-booted.yaml

When boot node failover or SDB node failover is configured, both the primary node and the alternate node must
be set in the HSS database and in the CLE config set. Both of the boot nodes (or both of the SDB nodes) will boot
at the same time, but there is a pause in /init, before calling cray-ansible, if the node detects from a kernel
parameter that it is the alternate node. The alternate node will wait in that state until it receives an RCA event that
the primary node has failed, at which point it will continue running in /init and complete the rest of the booting
steps.

Booting tmpfs Method with bnd
As with the PXE boot of the boot and SDB nodes, cray-ansible executes twice during the process of booting a
node over the high speed network using a tmpfs image. The tasks are run in the order shown in this figure, but if
there are no disks to mount by systemd, then none will be mounted. Likewise, if no mysql database should be
running on this node, it will not be started.

Figure 8. Node Image at Boot Time using tmpfs

Here is the sequence of events for a high speed network (HSN) boot of a tmpfs image with the boot node daemon
(bnd):

1. xtbounce triggers the node power on, which will cause the node to run node BIOS.

2. Successful completion of node BIOS leaves the message "Wait4boot" on the console.

3. When xtbootsys calls xtcli boot for the node, then bnd on the boot node will extract files from the boot
image to transfer to the node's memory.

The Booting Process from the CLE Node View

S2565 48

4. /init from the boot image executes next. There are many actions done in this script: read kernel
parameters from /proc/cmdline, initialize logging, load kernel modules, probe for devices, load RCA, and
make the global config set and CLE config set available for cray-ansible.

5. /init calls cray-ansible in the init phase. If this fails, then the node will drop into the DEBUG shell. If it
succeeds, then /init continues. Regardless, cray-ansible will log to:

/var/opt/cray/log/ansible/sitelog-init
/var/opt/cray/log/ansible/file-changelog-init
/var/opt/cray/log/ansible/file-changelog-init.yaml

6. /init finishes and transfers control to systemd.

7. systemd mounts file systems from /etc/fstab, starts all enabled services, and so forth.

8. cray-ansible runs in the booted phase. If this fails, then the node will drop into the DEBUG shell. If it
succeeds, then /init continues. Regardless, cray-ansible will log to:

/var/opt/cray/log/ansible/sitelog-booted
/var/opt/cray/log/ansible/file-changelog-booted
/var/opt/cray/log/ansible/file-changelog-booted.yaml

When the console for a node is in the DEBUG shell, connect with the xtcon command from the SMW to that
node.

smw# xtcon c0-0c0s0n1
NOTE: To disconnect an xtcon session from the console of a node, type ^] to quit.

If the DEBUG=true kernel parameter is set, then there are several breakpoints at which /init will drop into the
DEBUG shell. See the /init script in the boot image or on the image root
in /var/opt/opt/cray/imps/image_roots/$IMAGE on the SMW to identify these breakpoints.

Booting Netroot Method with bnd
The cray-ansible program executes three times during the process of booting a node over the high speed network
using a Netroot image, as compared to only twice when booting a tmpfs image. The additional phase, called the
Netroot setup phase, occurs just before the init phase, as shown in this figure. During the Netroot setup phase,
only Ansible plays of type netroot_setup are run, and the netroot image is mounted so that it can be accessed
later in the boot process.

The Booting Process from the CLE Node View

S2565 49

Figure 9. Node Image at Boot Time using Netroot

Here is the sequence of events for an HSN boot of a Netroot image with the boot node daemon (bnd):

1. xtbounce triggers the node power on, which will cause the node to run node BIOS.

2. Successful completion of node BIOS leaves the message "Wait4boot" on the console.

3. When xtbootsys calls xtcli boot for the node, then bnd on the boot node will extract files from the boot
image to transfer to the node's memory.

4. /init from the boot image executes next. There are many actions done in this script: read kernel
parameters from /proc/cmdline, initialize logging, load kernel modules, probe for devices, load RCA, make
the global config set and CLE config set available for cray-ansible.

5. /init calls cray-ansible in the Netroot setup phase, in which cray-ansible runs only plays of type netroot-
setup. If this fails, then the node will drop into the DEBUG shell. If it succeeds, then /init continues.
Regardless, cray-ansible will log to:

/var/opt/cray/log/ansible/sitelog-init-netroot_setup
/var/opt/cray/log/ansible/file-changelog-init-netroot_setup
/var/opt/cray/log/ansible/file-changelog-init-netroot_setup.yaml

6. /init calls cray-ansible in the init phase, in which cray-ansible runs only plays of type cle from the Netroot
boot image. If this fails, then the node will drop into the DEBUG shell. If it succeeds, then /init continues.
Regardless, cray-ansible will log to:

/var/opt/cray/log/ansible/sitelog-init
/var/opt/cray/log/ansible/file-changelog-init

The Booting Process from the CLE Node View

S2565 50

/var/opt/cray/log/ansible/file-changelog-init.yaml

7. /init finishes and transfers control to systemd.

8. systemd mounts file systems from /etc/fstab, starts all enabled services, and so forth.

9. cray-ansible runs in the booted phase, in which cray-ansible runs only plays of type cle from the Netroot
image root. If this fails, then the node will drop into the DEBUG shell. If it succeeds, then /init continues.
Regardless, cray-ansible will log to:

/var/opt/cray/log/ansible/sitelog-booted
/var/opt/cray/log/ansible/file-changelog-booted
/var/opt/cray/log/ansible/file-changelog-booted.yaml

cray-ansible and Ansible Logs on a CLE Node
Because cray-ansible is run more than once during the boot of a node, there are different log files to inspect
for issues. cray-ansible is called first by /init and later by systemd after transitioning into multi-user mode. For
nodes with tmpfs images, there is a single call to cray-ansible by /init. For nodes with Netroot images, the first
call to cray-ansible by /init is to do Netroot setup using the Ansible plays in the initrd (boot image), which will
mount the Netroot image root via tier2 nodes from the boot node. The second call to cray-ansible by /init uses
the Ansible plays in the Netroot image root. If cray-ansible fails during the init phase, it will display this message
on the console:

cray-ansible: /etc/ansible/site.yaml completed in init - FAILED
And immediately above that line will be the Ansible play recap and before that the last Ansible task executed that
had an error causing cray-ansible to fail. There may be more context in the full Ansible logs on the node in
the /var/opt/cray/log/ansible directory, but this will provide the first hint as to what failed.

2016-03-24T07:28:05.382423-05:00 c0-0c0s2n0 PLAY RECAP
**
2016-03-24T07:28:05.382437-05:00 c0-0c0s2n0 to retry, use: --limit @/
root/site.yaml.retry
2016-03-24T07:28:05.382451-05:00 c0-0c0s2n0
2016-03-24T07:28:05.382465-05:00 c0-0c0s2n0 localhost : ok=109 changed=14
unreachable=0 failed=1
2016-03-24T07:28:05.382480-05:00 c0-0c0s2n0
2016-03-24T07:28:05.382495-05:00 c0-0c0s2n0 Failed Ansible configuration
After the init phase of cray-ansible is done, /init will transfer control to systemd to start multi-user mode. In
multi-user mode, cray-ansible will be called again in the booted phase. Logs on the node are
in /var/opt/cray/log/ansible.

Netroot setup phase sitelog-init-netroot_setup
file-changelog-init-netroot_setup
file-changelog-init-netroot_setup.yaml

init phase sitelog-init has Ansible play output.

file-changelog-init shows each file changed by an Ansible play.

file-changelog-init.yaml shows each file changed by an Ansible play in YAML.

booted phase sitelog-booted has Ansible play output.

file-changelog-booted shows each file changed by an Ansible play.

The Booting Process from the CLE Node View

S2565 51

file-changelog-booted.yaml shows each file changed by an Ansible play in YAML.

A Cray-specific Ansible plugin will track to the file-changelog-* files all files changed by Ansible modules
affecting files: acl, assemble, blockinfile, copy, fetch, file, find, ini_file, lineinfile, patch, replace, stat, synchronize,
template, unarchive, xtattr.

The sitelog-* files show output from each task in executed plays.

2016-01-17 12:15:27,671 TASK: [cle_motd | task motd, release]

2016-01-17 12:15:27,671 changed: [localhost] => {"changed": true, "cmd":
"grep RELEASE /etc/opt/cray/release/cle-release | awk -F\\='{print $2}'", "delta":
"0:00:00.002536",
"end": "2016-01-17 12:15:27.471384", "rc": 0, "start": "2016-01-17
12:15:27.468848", "stderr": "",
"stdout": "6.0.UP01", "warnings": []}
The location of a task can be found in the Ansible plays. Since the TASK above had the name "task motd,
release," search for that in the locations that have Ansible plays. In /etc/ansible are the plays from the
software image root, and the two locations under /etc/opt/cray/config are the current CLE config set and
the global config set, which might have site-local plays.

boot# grep -Rn "task motd, release" /etc/ansible \
/etc/opt/cray/config/current/ansible /etc/opt/cray/config/global/ansible
/etc/ansible/roles/cle_motd/tasks/motd.yaml:15:- name: task motd, release
The file-changelog-* logs show the timestamp, the Ansible phase (Netroot setup, init, booted), the Ansible
module, the file that was changed, which play changed it, and information about owner, group, and permission
mode on the file.

● file-changelog-init:

Apr 05 2016 21:07:47 (init) template: file '/etc/nologin' changed by Ansible
task file
'/etc/ansible/roles/early/tasks/nologin.yaml' with owner=root, group=root,
mode=0775

● file-changelog-booted:

Apr 05 2016 16:09:43 (booted) lineinfile: file '/etc/sysconfig/nfs' changed by
Ansible
task file '/etc/ansible/roles/fs_share/tasks/nfs_shares.yaml' with owner=None,
group=None, mode=None

The Booting Process from the CLE Node View

S2565 52

Commands Helpful in Troubleshooting a Boot
This section describes commands that may be helpful in troubleshooting a boot. The commands and output
provided here may be referenced from specific scenarios in the next section, Techniques for Troubleshooting a
Failed Boot on page 69.

Check RSMS Daemons
There are two ways to check whether the daemons started by rsms are running.

● Method 1: Use the systemctl command to query systemd.

smw# systemctl status -l -n 99 rsms
rsms.service - hss daemon control
 Loaded: loaded (/usr/lib/systemd/system/rsms.service; enabled)
 Active: active (exited) since Wed 2016-07-06 22:07:19 CDT; 12h ago
 Process: 6744 ExecStart=/opt/cray/hss/default/bin/hssctl start (code=exited,
status=0/SUCCESS)

Jul 06 22:07:19 smw hssctl[6744]: Starting daemons: erd erdh state_manager
nid_mgr bootmanager sedc_manager xtpmd erfsd xtremoted xtpowerd nimsd xtsnmpd
xtdiagd cabroutes boot_cmds sec_cmd

● Method 2: Run the /etc/inti.d/rsms script with the status option.

smw# /etc/init.d/rsms status
PID DAEMON STATE UPTIME
53430 erd running Tue 2016-06-21 22:34:54 CDT
53732 erdh running Tue 2016-06-21 22:34:57 CDT
53927 state_manager running Tue 2016-06-21 22:34:58 CDT
54062 nid_mgr running Tue 2016-06-21 22:34:59 CDT
54196 bootmanager running Tue 2016-06-21 22:35:00 CDT
54330 sedc_manager running Tue 2016-06-21 22:35:01 CDT
55253 xtpmd running Tue 2016-06-21 22:35:10 CDT
56092 erfsd running Tue 2016-06-21 22:35:14 CDT
56510 xtremoted running Tue 2016-06-21 22:35:19 CDT
57482 xtpowerd running Tue 2016-06-21 22:35:23 CDT
57910 nimsd running Tue 2016-06-21 22:35:27 CDT
58107 xtsnmpd running Tue 2016-06-21 22:35:31 CDT
58876 xtdiagd running Tue 2016-06-21 22:35:35 CDT

Check diod daemon
To check whether the distributed I/O daemon (diod) is running on the SMW:

smw# systemctl status -l -n 99 cray-ids-service
cray-ids-service.service - cray-ids-service server
 Loaded: loaded (/usr/lib/systemd/system/cray-ids-service.service; disabled)
 Active: active (running) since Tue 2016-06-21 22:34:52 CDT; 3 weeks 0 days ago

Commands Helpful in Troubleshooting a Boot

S2565 53

 Main PID: 53484 (diod)
 CGroup: /system.slice/cray-ids-service.service
 +-53484 /usr/sbin/diod -U root --export-opts ro --allsquash --no-a...
When the output from the systemctl status command shows a line with "active (running)," it means the
daemon being checked is running.

Active: active (running) since Tue 2016-06-21 22:34:52 CDT; 3 weeks 0 days ago

Check cray-cfgset-cache Daemon
To check whether the cfgset-cache daemon is running on the SMW:

smw# systemctl status -l -n 99 cray-cfgset-cache
cray-cfgset-cache.service - Automatic cache generation for config sets
 Loaded: loaded (/usr/lib/systemd/system/cray-cfgset-cache.service; disabled)
 Active: active (running) since Tue 2016-06-21 22:35:58 CDT; 2 weeks 5 days ago
 Main PID: 62972 (python)
 CGroup: /system.slice/cray-cfgset-cache.service
 тт62972 python /opt/cray/imps-distribution/default/bin/cfgset-cache

Jul 11 14:23:33 smw cfgset-cache[62972]: IDS INFO - Backgrounded cfgset 'p0'
squashfs cache generation.
Jul 11 14:23:37 smw cfgset-cache[62972]: IDS INFO - 361 changes to p0 noted during
last grace window.
Jul 11 14:23:41 smw cfgset-cache[62972]: IDS INFO - 134 changes to p0 noted during
last grace window.
Jul 11 14:23:45 smw cfgset-cache[62972]: IDS INFO - 14 changes to p0 noted during
last grace window.
Jul 11 14:23:48 smw cfgset-cache[62972]: IDS INFO - Backgrounded cfgset 'p0-
autosave-2016-07-11T14:23:48' squashfs cache generation.
Jul 11 14:23:49 smw cfgset-cache[62972]: IDS INFO - 46 changes to p0 noted during
last grace window.
Jul 11 14:23:53 smw cfgset-cache[62972]: IDS INFO - Aggregated 4 changes to cfgset
'p0-autosave-2016-07-11T14:23:48' cache over 4.1 second window.
Jul 11 14:23:53 smw cfgset-cache[62972]: IDS INFO - Aggregated 557 changes to
cfgset 'p0' cache over 20.1 second window.
Jul 11 14:24:29 smw cfgset-cache[62972]: IDS INFO - Backgrounded cfgset 'p0'
squashfs cache generation.
Jul 11 14:24:34 smw cfgset-cache[62972]: IDS INFO - Aggregated 91 changes to
cfgset 'p0' cache over 4.1 second window.

Check DHCP or TFTP Daemons
To check whether the Dynamic Host Configuration Protocol (DHCP) server daemon (dhcpd) is running on the
SMW:

smw# systemctl status -l -n 99 dhcpd
To check whether the Trivial File Transfer Protocol (TFTP) server daemon (atftpd) is running on the SMW:

smw# systemctl status -l -n 99 atftpd

Commands Helpful in Troubleshooting a Boot

S2565 54

Check Console Messages
Use the xtconsole command to check console messages. This command subscribes to ec_console_log events
from erd and logs them to stdout. When xtconsole is started during a boot session, stdout is captured and
redirected to a log file in the boot session directory.

One advantage of using xtconsole interactively (i.e., watching stdout) over looking at the log
in /var/opt/cray/log/p0-current/console.* is that this command can be running across multiple boot
sessions. The advantage of the log for a boot session is that it can be analyzed after a problem has occurred.

This example displays console messages for all nodes and adds a timestamp at the beginning of each line.

smw# xtconsole -at
This example displays the console messages, with timestamps, for a particular node (c0-0c0s0n1 in the
example).

smw# xtconsole -t c0-0c0s0n1

Log In to a Node
healthy
system

When a node is operating normally, it should be possible to use ssh to log in to the node. If the
node has partially booted, then it might have booted far enough to start the sshd daemon before
hitting a failure.

from SMW From the SMW, it should be possible to log in to the boot and SDB nodes
directly.

smw# ssh boot
smw# ssh sdb

from boot or
SDB node

From the boot or SDB nodes, it should be possible to log in to any other node.

boot# ssh c0-1c2s7n2
sdb# ssh c1-2c0s15n3

from outside From anywhere outside the XC system, it should be possible to log in to the
login node or gateway node or other nodes with external network connections,
unless firewall rules prevent it. Typically, ssh is permitted through any firewall.

user@host> ssh mycray-login

unhealthy
system

If unable to log in using ssh, then use xtcon to connect. xtcon is a two-way (input and output)
console program used mainly during hardware bring-up and debugging to connect to XC nodes.
See the man page for more details.

smw# xtcon c0-1c2s7n2

user@host> ssh mycray-smw
smw# xtcon c0-1c2s7n2

Commands Helpful in Troubleshooting a Boot

S2565 55

Check Daemons Using xtalive
The xtalive program sends an event to daemons on the SMW, cabinet controllers (CC), or blade controllers
(BC) and waits for the appropriate number of events in response. It is basically a 'ping' to specific daemons to
check whether they are running and responding to HSS events.

crayadm@smw> xtalive
crayadm@smw> xtalive -a DAEMON
In the second command, substitute for DAEMON one of these daemons that can be targeted by xtalive.

Table 2. Targetable Daemons and Where They are Located

daemon located on

erd SMW, CC, BC

state_manager SMW

bootmanager SMW

bnd boot node daemon: boot node

bcsysd BC

ccsysd CC

bcrtrd BC

nid_mgr SMW

bcnwd BC

l0dd BC

bcbwtd BC

xtnlrd SMW

ccrd CC

ccrdhelper BC

ITP BC

Check STONITH on Blade Controller
There are many configuration settings that could be changed on cabinet controller (CC) or blade controller (BC)
daemons with xtdaemonconfig, but the one of interest here is whether STONITH has been enabled on the
blade. Normally STONITH is disabled for all blades. However, when a system has been configured for boot and/or
SDB failover, STONITH is enabled on the blade containing the primary boot node and the primary SDB node to
ensure that proper failover from primary node to alternate node will happen when the primary node misses a
heartbeat.

For CLE releases 6.0.UP00 and UP01, a problem occurs when STONITH is set on a blade, and any node on that
blade drops into the DEBUG shell while booting. While in the DEBUG shell, the node will fail to heartbeat and will
be halted with an NMI (non-maskable interrupt). It does not matter whether the node dropped into the DEBUG

Commands Helpful in Troubleshooting a Boot

S2565 56

shell due to an error from cray-ansible or whether the kernel parameter DEBUG=true is set. This problem was
fixed in CLE 6.0.UP02.

Use this command to check the STONITH setting.

crayadm@smw> xtdaemonconfig | grep stonith=true

Check for Cabling Issues
The xtcablecheck utility compares the link endpoint pairs as known to the routing software with the link ID
values set in MMRs in each link control block (LCB) in the Aries ASIC. When links are deadstarted, they
exchange their physical ID with their peer at the other end of the link. xtcablecheck verifies that the cabling is
correct by comparing the IDs that were exchanged with what is expected, given the configuration of the system.

If xtbootsys fails due to an error from xtcablecheck, then fix the issue and confirm that xtcablecheck has
no error.

crayadm@smw> xtbounce p0

crayadm@smw> xtcablecheck p0

Check Hardware Inventory
The hardware inventory can be checked with xthwinv, which requests blade and node attributes from all blades,
or specified blades, in the system. The output can be human readable, or in XML format for parsing. The XML
version is used by xtbootsys to pass information on nodes to the boot node, where a Perl script parses the
information and stores it into the SDB database when the boot node comes up.

NOTE: This command requires that the state_manager be running on the SMW and that a successful
xtbounce has completed.

crayadm@smw> xthwinv p0

Check Boot Configuration
The xtcli part_cfg command shows information about each partition defined in the system. The entire
system is defined to be p0, but other partitions could be p1 through p31.

Is the partition enabled? If not enabled, then it cannot be booted. Does this output show the expected members
(components) in the partition? Are the correct nodes listed for boot and SDB? Are the correct boot images listed?

crayadm@smw> xtcli part_cfg show
Network topology: class 0
=== part_cfg ===

[partition]: p0: enable (noflags|)
[members]: c0-0
[boot]: c0-0c0s0n1:halt,c0-0c1s0n1:halt
[sdb]: c0-0c0s1n1:halt,c0-0c1s1n1:halt
[NIMS_image 0]: /var/opt/cray/imps/boot_images/initrd-compute-large_cle_6.0.UP01-
build6.0.96_sles_12-created20160615.cpio
[NIMS_image 1]: /var/opt/cray/imps/boot_images/service_cle_6.0.UP01-

Commands Helpful in Troubleshooting a Boot

S2565 57

build6.0.96_sles_12-created20160614.cpio
[NIMS_image 2]: /var/opt/cray/imps/boot_images/dal_cle_6.0.UP01-
build6.0.96_centos_6.5-created20160614.cpio
[NIMS_image 3]: /var/opt/cray/imps/boot_images/initrd-login-large_cle_6.0.UP01-
build6.0.96_sles_12-created20160615.cpio
[NIMS_image 4]: /var/opt/cray/imps/boot_images/fio-service_cle_6.0.UP01-
build6.0.96_sles_12-created20160615.cpio

NOTE: This command requires that the state_manager and nimsd be running.

Enable or Disable a Component
If a boot has an issue with a few of the nodes of a certain type or function, it may be necessary to disable that
component for later hardware action. If a node fails during xtbounce repeatedly, it may be expedient to disable
that node so that xtbounce will succeed.

crayadm@smw> xtcli disable c0-0c0s11n2
And once the hardware issue has been resolved, enable the node again.

crayadm@smw> xtcli enable c0-0c0s11n2
If large numbers of blades are disabled, this may cause a routing problem on the HSN, depending on which slots
and chassis have the disabled components.

Check Status of Nodes
There are many ways to check the status of nodes.

from SMW From the SMW, any hardware component in the HSS database can be checked.

crayadm@smw> xtcli status p0
crayadm@smw> xtcli status c1-2
crayadm@smw> xtcli status c0-0c0s15n0

from boot node user@boot> xtprocadmin

from login node user@login> xtprocadmin

user@login> xtnodestat

user@login> apstat

Change Node Role Between Service and Compute
The configuration of CLE may require that some compute nodes be repurposed as service nodes. These are
called repurposed compute nodes (RCN) and are commonly used to provide tier2 nodes for Cray scalable
services. If a node is in the CLE config set as a tier2 node, then it must be marked as a service node in the HSS
database and must boot a service node boot image.

These commands set or check the node type in the HSS database.

Commands Helpful in Troubleshooting a Boot

S2565 58

set as service smw# xtcli mark_node service c0-0c0s15n0

set as compute smw# xtcli mark_node compute c0-0c0s15n0

check node type smw# xtcli status c0-0c0s15n0

Check NIMS Map
Use the cmap command to show which NIMS map is the active map for a partition. This example shows that the
currently active map is the p0 map. The others were created during a fresh installation or were saved as backups
when applying patches to the system.

smw# cmap list
NAME PARTITION ACTIVE_MAP
autogenerated_map-0.p0 p0 False
backup-pre-CLE_6.0.UP01.PS02-1606141402 p0 False
backup-pre-SMW_8.0.UP01.PS02-1606141432 p0 False
p0 p0 True

Check Which Boot Images Have Been Assigned
Show the boot configuration used by the boot manager. This will list all of the boot images assigned via NIMS.

NOTE: This command requires that the state_manager and nimsd be running.

crayadm@smw> xtcli part_cfg show
Network topology: class 0
=== part_cfg ===

[partition]: p0: enable (noflags|)
[members]: c0-0
[boot]: c0-0c0s0n1:halt,c0-0c1s0n1:halt
[sdb]: c0-0c0s1n1:halt,c0-0c1s1n1:halt
[NIMS_image 0]: /var/opt/cray/imps/boot_images/initrd-compute-large_cle_6.0.UP02-
build6.0.2042_sles_12-created20161215.cpio
[NIMS_image 1]: /var/opt/cray/imps/boot_images/service_cle_6.0.UP02-
build6.0.2042_sles_12-created20161215.cpio
[NIMS_image 2]: /var/opt/cray/imps/boot_images/dal_cle_6.0.UP02-
build6.0.2042_centos_6.5-created20161215.cpio
[NIMS_image 3]: /var/opt/cray/imps/boot_images/initrd-login-large_cle_6.0.UP02-
build6.0.2042_sles_12-created20161215.cpio
[NIMS_image 4]: /var/opt/cray/imps/boot_images/fio-service_cle_6.0.UP02-
build6.0.2042_sles_12-created20161215.cpio

Check Node NIMS Group, Boot Image, and Kernel Parameter
Assignment
Check the information assigned to nodes for the currently active NIMS map. For each node the NIMS group, boot
image, and kernel parameters which have been assigned are displayed.

Commands Helpful in Troubleshooting a Boot

S2565 59

This example shows only three nodes instead of the entire set of nodes in the XC system. The boot node is
c0-0c0s0n1, which boots from a service boot image. The compute node boots with a Netroot boot image (initrd-
compute-large) and netroot=compute-large kernel parameter. The login node boots with a tmpfs boot image.

smw# cnode list
 Node Type
Group Image
 Loadfile Config Set Parameters
c0-0c0s0n1 service service
 /var/opt/cray/imps/boot_images/service_cle_6.0.UP01-build6.0.68_sles_12-
created20160212.cpio
 - NIMS_GROUP=service ids=10.128.0.130,10.128.0.138
config_set=p0
c0-0c0s10n3 compute compute
 /var/opt/cray/imps/boot_images/initrd-compute-large_cle_6.0.UP01-
build6.0.68_sles_12-created20160212.cpio
 - NIMS_GROUP=compute netroot=compute-large_cle_6.0.UP01-
build6.0.68_sles_12-created20160210
 ids=10.128.0.130,10.128.0.138 config_set=p0
c0-0c1s1n1 service login
 /var/opt/cray/imps/boot_images/login_cle_6.0.UP01-build6.0.68_sles_12-
created20160212.cpio
 - NIMS_GROUP=login ids=10.128.0.130,10.128.0.138
config_set=p0
To show only certain components, use a space-separated component list or a list with wildcards.

smw# cnode list c0-0c0s0n1 c0-0c1s0n1 c0-0c0s1n1 c0-0c1s1n1
smw# cnode list c0-0c0s1*

Check Whether Node is Using Netroot or tmpfs
To check whether node c0-0c0s0n2 is using Netroot from the SMW, run this command:

smw# cnode list c0-0c2s0n1
NAME TYPE GROUP
IMAGE
 CONFIG_SET EXT_PARAMETERS
c0-0c0s0n2 service login
/var/opt/cray/imps/boot_images/initrd-login-large_cle_6.0.UP02-
build6.0.2042_sles_12-created20161215.cpio
 - sdbnodeip=10.131.255.253 bootnodeip=10.131.255.254
hsn_ipv4_mask=255.252.0.0
hsn_ipv4_net=10.128.0.0 NIMS_GROUP=login
netroot=login-large_cle_6.0.UP02-build6.0.2042_sles_12-created20161215
ids=10.128.0.33 config_set=p0
How to interpret the output:

● If the boot image assigned starts with initrd-compute-large or initrd-login-large, then one of the
Cray recipes for Netroot has been used. But this is not a certain indicator of Netroot use, because a site could
change the recipe or rename the boot image.

● If one of the kernel parameters assigned to the node starts with netroot=compute-large or
netroot=login-large, then one of the Cray recipes for Netroot has been used for the image root. But
again, this is not a certain indicator of Netroot use, because a site could change the recipe or rename the
image root.

Commands Helpful in Troubleshooting a Boot

S2565 60

● If the boot image assigned starts with initrd-compute-large or initrd-login-large and one of the
kernel parameters assigned to the node starts with netroot=compute-large or netroot=login-large,
that means that Netroot is being used. In this case, there should be a strong similarity between the name of
the boot image and the value assigned to the Netroot kernel parameter.

● If there is no kernel parameter netroot= at all, then the node is using the tmpfs method, not Netroot. A node
using tmpfs should not have a boot image assigned such as initrd-compute-large or initrd-login-
large because the initrd-* boot images need a matching image root, which would be specified in the
Netroot kernel parameter.

Check Which Boot Images Exist on the System
After using xtcli part_cfg show to see which boot images are needed for booting or cnode list to see
which boot images are assigned to which nodes, check that those exact boot image names have been created.

smw# ls -l /var/opt/cray/imps/boot_images

smw# ls -l /var/opt/cray/imps/boot_images/mybootimagename

Check Which Image Roots Exist on the System
Check which images have been built from recipes into image roots.

List all images that have been built from recipes.

smw# image list
compute-large_cle_6.0.UP01-build6.0.96_sles_12-created20160615
fio-service_cle_6.0.UP01-build6.0.96_sles_12-created20160615
initrd-compute-large_cle_6.0.UP01-build6.0.96_sles_12-created20160615
initrd-login-large_cle_6.0.UP01-build6.0.96_sles_12-created20160615
login-large_cle_6.0.UP01-build6.0.96_sles_12-created20160615
service_cle_6.0.UP01-build6.0.96_sles_12-created20160614
Show a specific image to see what path its image root has.

smw# image show imageroot
compute-large_cle_6.0.UP01-build6.0.96_sles_12-created20160615:
 name: compute-large_cle_6.0.UP01-build6.0.96_sles_12-created20160615
 created: 2016-06-15T14:55:15
 history:
 2016-06-15T14:55:22: Successful build of Recipe
'seed_common_6.0up01_sles_12_x86-64' into Image 'compute-large_cle_6.0.UP01-
build6.0.96_sles_12-created20160615'.
 2016-06-15T15:05:25: Successful build of top level recipe 'compute-
large_cle_6.0up01_sles_12_x86-64_ari'.
 2016-06-15T15:05:25: Successful rebuild of RPM database.
 2016-06-15T15:50:27: Remotely cloned to host 'boot'.
 path: /var/opt/cray/imps/image_roots/compute-large_cle_6.0.UP01-
build6.0.96_sles_12-created20160615
Confirm that those image roots exist on the SMW and boot node for any Netroot images for compute or login
nodes.

smw# ls -l /var/opt/cray/imps/image_roots
smw# ls -l /var/opt/cray/imps/image_roots/imageroot

Commands Helpful in Troubleshooting a Boot

S2565 61

boot# ls -l /var/opt/cray/imps/image_roots
boot# ls -l /var/opt/cray/imps/image_roots/imageroot

Observe Network Traffic on SMW Network Interfaces
It may be necessary to check for network traffic on the SMW using tcpdump or wireshark. The wireshark
program requires an X display server.

smw# tcpdump

smw# wireshark
Table 3. What to Monitor in Certain Situations

What to Monitor Situation

eth0 If a problem is suspected with the management network (external to the SMW).

eth1 If a problem is suspected with the HSS network (to the CCs).

eth3 If a problem is suspected with the admin network (to the boot and SDB nodes).

eth2 and eth4 If SMW HA is being used, and a problem is suspected with heartbeat between the new
SMWs.

eth5 If SMW HA is being used, and a problem is suspected with DRBD (distributed replicated
block device) not keeping the Postgresql database (used for power management)
synchronized between the two SMWs.

Check Firewall
The firewall is normally enabled on the SMW with eth0 in the FW_DEV_EXT (external) zone and all other
interfaces on the SMW in the FW_DEV_INT (internal) zone.

Are the firewall daemons running?

smw# systemctl status -l -n 99 SuSEfirewall2_init
smw# systemctl status -l -n 99 SuSEfirewall2
What are the iptables rules?

smw# iptables -L

Search a Config Set

Use Search to Locate Settings in a Config Set
The search subcommand is helpful when a user wants to view or change a configuration parameter (setting) but
does not know which configuration template or worksheet contains it. To search for a configuration setting/field
name or value, use the cfgset search command:

Commands Helpful in Troubleshooting a Boot

S2565 62

smw# cfgset search --term myvalue CONFIGSET
Search tips:

● To broaden a search, use multiple search terms (a logical OR).

● To narrow a search, use state and level filters.

● Unlike the create and update subcommands, the search subcommand has a default value of all for the
state filter.

Here's an example that searches for the terms c0-0c0s1n1 and lus/ in settings of any level in config set p0:

smw# cfgset search --term c0-0c0s1n1 --term lus/ --level advanced p0
The configurator outputs highlighted dotted-path notation matches to the search term in a per-service report:

1 match for 'c0-0c0s1n1' from cray_scalable_services_config.yaml
#--
cray_scalable_services_data.settings.scalable_service.data.tier1: c0-0c0s0n1, c0-0c0s1n1
1 match for 'lus/' from cray_node_health_config.yaml
#--
cray_node_health_.settings.filesys_plugins.data.Default Filesystem.path: /lus/case1
...(more matches not included in example)

To output more information about the fields and values that match the search term(s), add the --format full
command line option. This will display meta information about the setting in which the term was found, such as its
level, state, and default value.

Note that the search subcommand does not search guidance text in the configuration templates and worksheets.

Use Search to Print out the Entire Config Set
To print out an entire config set, simply search the config set and omit the --term option. For example, to view all
required fields that have not been set in config set p0, use the following command:

smw# cfgset search --level required --state unset p0

List the Ansible Playbooks in a Config Set and Image Root
The ansible_cfg_search command on the SMW can list the Ansible plays in a certain config set and image
root.

smw# module load system-config
smw# ansible_cfg_search -q p0 custom_compute_cle
/var/opt/cray/imps/image_roots/custom_compute_cle/etc/ansible/allow_users.yaml
/var/opt/cray/imps/image_roots/custom_compute_cle/etc/ansible/alps.yaml
...
/var/opt/cray/imps/image_roots/custom_compute_cle/etc/ansible/set_hostname.yaml
...
/var/opt/cray/imps/image_roots/custom_compute_cle/etc/ansible/sysenv.yaml
/var/opt/cray/imps/image_roots/custom_compute_cle/etc/ansible/wlm_detect.yaml

Commands Helpful in Troubleshooting a Boot

S2565 63

Search the Ansible Playbooks in a Config Set and Image Root
The ansible_cfg_search command on the SMW will search Ansible plays in a certain config set and image
root to see which plays use which config set data items.

This example shows the specific files included by the set_hostname.yaml playbook which use data items from the
cray_net config service.

smw# ansible_cfg_search -p set_hostname.yaml p0 custom_compute_cle
/var/opt/cray/imps/image_roots/custom_compute_cle/etc/ansible/set_hostname.yaml:
 - /var/opt/cray/imps/image_roots/custom_compute_cle/etc/ansible/roles/
set_hostname/tasks/main.yaml:
 - /var/opt/cray/imps/config/sets/p0/config/cray_netroot_preload_config.yaml:
 - cray_net.settings.hosts.data
 - /var/opt/cray/imps/config/sets/global/config/
cray_network_boot_packages_config.yaml:
 - cray_net.settings.hosts.data
...
 - /var/opt/cray/imps/image_roots/custom_compute_cle/etc/ansible/
set_hostname.yaml:
 - /var/opt/cray/imps/config/sets/global/config/
cray_network_boot_packages_config.yaml:
 - cray_net.enabled
 - cray_net.settings.service.data.cray_managed
...
This example searches for the specified setting (cray_alps.settings.common.data.xthostname) in the
config set files and Ansible files in the image root to determine which Ansible plays do something with its data.

smw# module load system-config
smw# ansible_cfg_search p0 service_cle_6.0.UP01-build6.0.96_sles_12-
created20160614 \
-s cray_alps.settings.common.data.xthostname
/var/opt/cray/imps/image_roots/service_cle_6.0.UP01-build6.0.96_sles_12-
created20160614/etc/ansible/alps.yaml:
 - /var/opt/cray/imps/image_roots/service_cle_6.0.UP01-build6.0.96_sles_12-
created20160614/etc/ansible/roles/alps/tasks/service.yaml:
 - /var/opt/cray/imps/config/sets/p0/config/cray_alps_config.yaml:
 - cray_alps.settings.common.data.xthostname

/var/opt/cray/imps/image_roots/service_cle_6.0.UP01-build6.0.96_sles_12-
created20160614/etc/ansible/compute_node.yaml:
 - /var/opt/cray/imps/image_roots/service_cle_6.0.UP01-build6.0.96_sles_12-
created20160614/etc/ansible/roles/compute_node/tasks/xthostname.yaml:
 - /var/opt/cray/imps/config/sets/p0/config/cray_alps_config.yaml:
 - cray_alps.settings.common.data.xthostname

Search Ansible Plays on a Node
The grep command can search the three locations on a node where Ansible plays can be stored.

node# grep -r "TERM" /etc/ansible /etc/opt/cray/config/current /etc/opt/cray/
config/global
One way to use this is to identify the name of an Ansible task that failed in an Ansible log file, and then locate the
file containing the Ansible task and read the code to understand what was being attempted.

Commands Helpful in Troubleshooting a Boot

S2565 64

In this example Ansible log, the task that failed is "task motd, release."

2016-01-17 12:15:27,671 TASK: [cle_motd | task motd, release]

2016-01-17 12:15:27,671 changed: [localhost] => {"changed": true,
"cmd": "grep RELEASE /etc/opt/cray/release/cle-release | awk -F\\='{print $2}'",
"delta": "0:00:00.002536",
"end": "2016-01-17 12:15:27.471384", "rc": 0, "start": "2016-01-17
12:15:27.468848", "stderr": "",
"stdout": "6.0.UP02", "warnings": []}
The location of a task can be found in the Ansible plays. Because the example shows that the failed task has the
name "task motd, release," search for that name in the locations that have Ansible plays:

● /etc/ansible has Ansible plays from the software image root

● /etc/opt/cray/config/current has Ansible plays from the current CLE config set, which may include
site-local plays

● /etc/opt/cray/config/global has Ansible plays from the global config set, which may include site-
local plays

boot# grep -Rn "task motd, release" /etc/ansible \
/etc/opt/cray/config/current/ansible /etc/opt/cray/config/global/ansible
/etc/ansible/roles/cle_motd/tasks/motd.yaml:15:- name: task motd, release
The grep output shows that the file containing this task
is /etc/ansible/roles/cle_motd/tasks/motd.yaml. Look at line 15 in that file to determine what that
chunk of code is doing.

Check for Warnings, Alerts, and Reservations
There are several related xtshow* commands that can be used on the SMW to display the status of XC system
components. These commands can have a comma-separated or space-separated ID list of components on the
command line or the -f filename option, where the file name has a list of the nodes upon which to act.

xtshow_alert
xtshow_class
xtshow_compute
xtshow_diag
xtshow_disabled
xtshow_empty
xtshow_error
xtshow_halt
xtshow_network
xtshow_noflags
xtshow_not_empty
xtshow_off
xtshow_on
xtshow_ready
xtshow_reserve
xtshow_service
xtshow_standby
xtshow_topology
xtshow_warn
There are several related xtclear* commands that can clear various flags from all components that have those
flags currently set. These commands can either have a comma-separated or space-separated idlist of

Commands Helpful in Troubleshooting a Boot

S2565 65

components on the command line or the -f filename option, where the file name has a list of the nodes upon
which to act.

xtclear_alert
xtclear_reserve
xtclear_warn

Check for Locks
The state manager may have created locks that prevent a boot from completing. Use this command to show all
locks.

smw# xtcli lock show
If there are locks that prevent a boot, they can be removed. See the man page for xtcli.

Check for PCIe Link Errors
The xtpcimon daemon monitors the health of PCIe (peripheral component interconnect express) channels and
logs PCIe link errors to a file.

The xtpe command processes pcimon log files for PCIe link errors.

To decode the xtpcimon log files on the SMW, use one of these commands.

● For a single pcimon log file for the current boot session of p0 on a particular date YYYYMMDD:

crayadm@smw> xtpe /var/opt/cray/log/p0-current/pcimon-YYYYMMDD

● For all pcimon log files for the current boot session of p0. This boot log directory is relative
to /var/opt/cray/log.

crayadm@smw> xtpe -b p0-current

● For a single pcimon log file for a given boot session of p0.

crayadm@smw> xtpe /var/opt/cray/log/p0-20160901t180511/pcimon-YYYYMMDD

● For all pcimon log files for a given boot session of p0. This boot log directory is relative
to /var/opt/cray/log.

crayadm@smw> xtpe -b p0-20160901t180511

To display those errors in real time, creating reports whenever a signal is received, use the -g option.

crayadm@smw> xtpe -g

See the xtpe(8) man page for more information.

Commands Helpful in Troubleshooting a Boot

S2565 66

Check for Hardware Errors
The xthwerrlogd daemon listens for hardware error events from the ASIC network chip and writes them to a
binary file.

The xthwerrlog command analyzes that binary file.

To decode the hardware error log (hwerrlog) on the SMW, use one of these commands.

● For all boot sessions of p0:

crayadm@smw> xthwerrlog -P /var/opt/cray/log/p0

● For the current boot session of p0:

crayadm@smw> xthwerrlog -P /var/opt/cray/log/p0-current

● for all logs from p0 for June, 2016:

crayadm@smw> xthwerrlog -P /var/opt/cray/log/p0-201606

To display those errors in real time, as they occur, no options are needed.

crayadm@smw> xthwerrlog

See the xthwerrlog(8) man page for more information.

Check for LCB and Router Errors
The xtnetwatch daemon monitors the system high-speed network (HSN) faults interconnect for link control block
(LCB) and router errors, and it logs them to a file.

The xtle command analyzes netwatch log files for HSN errors.

To analyze HSN link errors, use one of these commands.

● For the current boot session of p0:

crayadm@smw> xtle -b p0-current

● For the current boot session of p0 on a particular date YYYYMMDD:

crayadm@smw> xtle /var/opt/cray/log/p0-current/netwatch-YYYYMMDD

To display HSN link errors in real time, creating reports whenever a signal is received, use this command.

crayadm@smw> xtle -g

See the xtle(8) man page for more information.

Commands Helpful in Troubleshooting a Boot

S2565 67

Check Time on a Node
To access the time on a node, use these commands, which check the time without changing it. There is no
change to the node.

● To check the real-time clock (RTC) time:

node# hwclock
● To check system time:

node# date

Commands Helpful in Troubleshooting a Boot

S2565 68

Techniques for Troubleshooting a Failed Boot
This topic is organized around things to investigate or information to gather for different types of failures in some
aspect of the booting process. Many of the techniques described here reference information provided in these
topics:

● Anatomy of an XC System Boot with xtbootsys on page 27

● SMW Daemons, Processes, and Logs on page 13

● Commands Helpful in Troubleshooting a Boot, which is a list of topics that begins with Check RSMS
Daemons on page 53.

A general technique for troubleshooting a boot is to start with the command that failed and look at appropriate
logs to determine what might have caused that command to fail. The command that failed might be xtbootsys,
which calls several other commands, and the real problem is that one of the called commands failed. One of the
called commands may have failed because one of the normal daemons on the SMW is not running properly.

Another general technique is to check the ansible logs on a node (/var/opt/cray/log/ansible/) to find out
what the relevant playbook tried to do compared to what it was supposed to do.

A standard diagnostic step is to ensure that all of the normal daemons on the SMW are running properly. Many of
the commands called by xtbootsys depend on these daemons to be running on the SMW. Use one of these
commands:

smw# /etc/init.d/rsms status

smw# systemctl status -l -n 99 rsms
If one of the rsms daemons is not running, start it using these commands:

smw# systemctl stop rsms
smw# systemctl start rsms
Each of the following topics describes a problem that can be encountered when booting an XC system and
suggests ways to troubleshoot the problem.

xtcli status Fails

Procedure

1. Run the xtcli status command.

smw# xtcli status p0

2. If xtcli status fails, check whether all of the rsms processes are running.

smw# /etc/init.d/rsms status
If any are not running, then resolve that problem before proceeding to the next step.

Techniques for Troubleshooting a Failed Boot

S2565 69

3. Run the xtcli status command again.

smw# xtcli status p0

xtbootsys Fails with xtbounce Error

About this task
If xtbootsys fails because of an error from xtbounce, the problem that caused xtbounce to fail must be
resolved before the rest of the boot session will be able to succeed.

Procedure

1. Check the blade controller (BC) logs on the SMW.

When xtbounce fails, it may be useful to look at the logs on the BC. These are sent to the SMW and will
appear in the /var/opt/cray/log/controller directory structure. For example, for node c0-0c0s7n1,
look in /var/opt/cray/log/controller/c0-0/c0-0c0s7.

Whether looking on the SMW or directly on the BC, there is a BIOS file for each node on the blade and a
messages file for general syslog info from the BC. On the SMW, the log files will have a date stamp on their
file name in /var/opt/cray/log/controller/c0-0/c0-0c0s7.

bios-n0-YYYYMMDD
bios-n1-YYYYMMDD
bios-n2-YYYYMMDD
bios-n3-YYYYMMDD
messages-YYYYMMDD

2. If BC logs not yet transferred, log in to BC and check them there.

If the logs from the BC have not been transferred, then use xtlogin to log in to the BC and look
in /var/log.

crayadm@smw> xtlogin c0-0c0s7
c0-0c0s7# cd /var/log
On the BC, the log files will have more detail.

bios_log.node0
bios_log.node1
bios_log.node2
bios_log.node3
messages

There will probably be five older versions of these log files on the BC.

3. If one node on a blade has failed, compare its bios_log file with a node that did not fail.

4. Check the firmware on the blade with xtzap to ensure that it is current.

5. If firmware is stale, update it.

Techniques for Troubleshooting a Failed Boot

S2565 70

6. Power down and up the blade or ask a hardware person to reseat the memory, cards, or the entire blade in
the chassis.

7. Run xtbounce again.

If the xtbounce problem cannot be resolved, it might be possible to disable some individual nodes or blades and
then retry the xtbounce.

xtbootsys Fails with rtr Error

About this task
If xtbootsys fails because of an error from the rtr command, then the problem must be resolved before trying
xtbootsys again. Routing can fail if too many components in key locations have been disabled.

Procedure

1. Run the rtr command to compute and place routes in the system.

smw# rtr -R p0

2. When the rtr command completes without any errors, then try xtbootsys again.

xtbootsys Fails with xtcablecheck Error

About this task
If xtbootsys fails because of an error from xtcablecheck, then fix the issue and confirm that xtcablecheck
has no error.

Procedure

Run these commands to confirm that xtcablecheck has no error.

crayadm@smw> xtbounce p0

crayadm@smw> xtcablecheck p0

Boot or SDB Node Fails to PXE Boot

Procedure

1. Check the messages in the console log for the node.

2. Check the Ethernet connection between the boot or SDB node and the SMW.

Techniques for Troubleshooting a Failed Boot

S2565 71

Failure to PXE boot could be due to a missing Ethernet connection between the node and the SMW. This
could be caused by a faulty cable, or the cable not plugged into the "admin" network (which should have
connections from SMW, boot nodes, and SDB nodes), or an Ethernet switch with incorrect VLAN for one of
the ports on the admin network.

3. Check that the SMW eth3 interface is configured as "up" and with the IP address 10.3.1.1.

NOTE: SMW HA will show 10.3.1.2 on one SMW and 10.3.1.3 on the other, but the primary/first SMW
will respond to 10.3.1.1. This example shows both 10.3.1.2 and 10.3.1.1 on the eth3 interface
because this SMW is the first SMW of an SMW HA pair.

smw# wicked show eth3
eth3 up
 link: #5, state up, mtu 1500
 type: ethernet, hwaddr d4:ae:52:e6:9f:58
 config: compat:suse:/etc/sysconfig/network/ifcfg-eth3
 leases: ipv4 static granted
 addr: ipv4 10.3.1.2/16 [static]
 addr: ipv4 10.3.1.1/16
 route: ipv4 10.128.0.0/14 via 10.3.1.254
If that does show state "up" with the proper IP address, check /etc/sysconfig/network/ifcfg-eth3.

smw# cat /etc/sysconfig/network/ifcfg-eth3
BOOTPROTO='static'
IPADDR='10.3.1.1/16'
NAME='eth3 Boot node Network'
PREFIXLEN='16'
STARTMODE='auto'
USERCONTROL='no'
LINK_REQUIRED='no'

4. Check that the DHCP daemon (dhcpd) on the SMW is running properly, and if not, start it.

smw# systemctl status -l -n 99 dhcpd
If dhcpd is not running, start it with this command:

smw# systemctl start dhcpd

5. Check that the TFTP daemon (atftpd) on the SMW is running properly, and if not, start it.

smw# systemctl status -l -n 99 atftpd
If atftpd is not running, start it with this command:

smw# systemctl start atftpd

6. Check whether the firewall settings on SMW eth3 are preventing TFTP, and if they are, change them.

If the firewall settings on SMW eth3 prevent TFTP, the PXE boot will fail. The SMW eth3 should be in
FW_DEV_INT and not in FW_DEV_EXT in /etc/sysconfig/SuSEfirewall2. If eth3 was set to the
external firewall zone using yast2 firewall, then use that command to change it back.

smw# yast2 firewall
The admin network in the global config set should be set to fw_external=false.

Techniques for Troubleshooting a Failed Boot

S2565 72

smw# cfgset search -l advanced -t fw_external global
cray_global_net.settings.networks.data.admin.fw_external: false
If it is set to true, that means it is in the external zone for the firewall. Change it to false.

smw# cfgset update -m interactive -l advanced -s cray_global_net global
Global Networking Menu [default: save & exit - Q] $ 1
Global Networking Menu [default: configure - C] $ C
...
cray_global_net.setting.networks
[<cr>=set 5 entries, +=add an entry, ?=help, @=less] $ 1i*
...
cray_global_net.setting.networks.data.admin.fw_external
[<cr>=set 'true', <new value>, ?=help, @=less] $ false
Remember to press Enter several times to set the new value and save changes to the config set.

7. Check whether the boot or SDB node has the correct boot image assigned to it.

Ensure that the assigned kernel parameters do not include a setting for Netroot. Only login and compute
nodes can use the Netroot kernel parameter when they have Netroot boot images assigned.

smw# cnode list c0-0c0s0n1

8. Check whether the boot image is too large for PXE boot.

There is a limit on the size of the boot image that will successfully PXE boot. If this is a problem, xtbootsys
will display an error message "Initramfs too big for PXE boot." That limit can be adjusted by changing a
setting in /opt/cray/hss/default/etc/bm.ini.

9. Check the status of the cray-ids-service on the SMW.

The IMPS Distribution Service (IDS) distributes the config set data to nodes on the XC system. The
distributed I/O daemon (diod) does I/O forwarding for IDS. The output from systemctl status may
indicate that cray-ids-service had a problem starting the diod daemon or the diod daemon may no longer be
running. IDS requires that diod be running for config sets to be distributed to the CLE nodes.

smw# systemctl status -l -n 99 cray-ids-service
cray-ids-service.service - cray-ids-service server
 Loaded: loaded (/usr/lib/systemd/system/cray-ids-service.service; disabled)
 Active: active (running) since Tue 2016-06-21 22:34:52 CDT; 3 weeks 0 days
ago
 Main PID: 53484 (diod)
 CGroup: /system.slice/cray-ids-service.service
 +-53484 /usr/sbin/diod -U root --export-opts ro --allsquash --no-a...

10. Check which upstream IDS servers are listed in the IDS kernel parameter for the node.

For the boot and SDB nodes (as tier1 nodes), the only node listed in the IDS kernel parameter should be
ids=10.3.1.1, which is the SMW's IP address on eth3. This is the server from which the boot and SDB
nodes will mount the config set.

boot# cat /proc/cmdline
BOOT_IMAGE=net0:/opt/tftpboot/elilo.config/c0-0c0s0n1/
bzImage-3.12.51-52.31.1_1.0600.9146-cray_ari_s
earlyprintk=serial,115200 load_ramdisk=1 ramdisk_size=80000
console=ttyS0,115200n8
bootproto=ipog oops=panic elevator=noop pcie_ports=native iommu=on
intel_iommu=off bad_page=panic

Techniques for Troubleshooting a Failed Boot

S2565 73

apei_disable hest_disable erst_disable ghes_disable cgroup_disable=memory
audit=0
sessionid=p0-20160621t214422 sdbnodeip=10.131.255.253 bootnodeip=10.131.255.254
hsn_ipv4_mask=255.252.0.0
hsn_ipv4_net=10.128.0.0 tier1=1 NIMS_GROUP=service ids=10.3.1.1 config_set=p0
crayname=c0-0c0s0n1

Possible Problem with Boot Image Assignment
Have all nodes been assigned a boot image by NIMS?

Show the boot configuration used by the boot manager. This will list all of the boot images assigned via NIMS.

NOTE: This command requires that the state_manager and nimsd be running.

crayadm@smw> xtcli part_cfg show
Network topology: class 0
=== part_cfg ===

[partition]: p0: enable (noflags|)
[members]: c0-0
[boot]: c0-0c0s0n1:halt,c0-0c1s0n1:halt
[sdb]: c0-0c0s1n1:halt,c0-0c1s1n1:halt
[NIMS_image 0]: /var/opt/cray/imps/boot_images/initrd-compute-large_cle_6.0.UP02-
build6.0.2042_sles_12-created20161215.cpio
[NIMS_image 1]: /var/opt/cray/imps/boot_images/service_cle_6.0.UP02-
build6.0.2042_sles_12-created20161215.cpio
[NIMS_image 2]: /var/opt/cray/imps/boot_images/dal_cle_6.0.UP02-
build6.0.2042_centos_6.5-created20161215.cpio
[NIMS_image 3]: /var/opt/cray/imps/boot_images/initrd-login-large_cle_6.0.UP02-
build6.0.2042_sles_12-created20161215.cpio
[NIMS_image 4]: /var/opt/cray/imps/boot_images/fio-service_cle_6.0.UP02-
build6.0.2042_sles_12-created20161215.cpio
Is there a boot image in this list that is unexpected? If the NIMS_image 0 has a null value, that means that some
node does not have any boot image assigned to it. This might show up as a "Boot manager CPIO package error"
from the xtcli boot command.

xtbootsys Exits After Failure to Boot the Boot and SDB Nodes

About this task
If xtbootsys exits after failing to boot the boot and SDB nodes, it usually means that the xtcli boot command
used to boot the nodes had a failure. This might be due to a missing boot image.

Procedure

Check for a missing boot image.

See the following topics for information about how to do this:

● Check Which Boot Images Have Been Assigned on page 59

● Check Node NIMS Group, Boot Image, and Kernel Parameter Assignment on page 59

● Check Which Boot Images Exist on the System on page 61

Techniques for Troubleshooting a Failed Boot

S2565 74

xtbootsys Exits After Timeout While Booting the Boot and SDB Nodes

About this task
If xtbootsys exits after a timeout while booting the boot and SDB nodes, this means that the xtcli boot
command was able to send the boot image to the node. However, it probably means that the node has an issue,
which will be displayed on the console log for this node.

A timeout is likely to be hit if the node has dropped into the DEBUG shell. The console log will clearly indicate that
the node is in the DEBUG shell and what reason caused it to enter the DEBUG shell. For example:

2016-06-16T15:59:36.173243-05:00 c0-0c0s9n1 DEBUG SHELL: reason for being in DEBUG
shell; exit will resume
2016-06-16T15:59:36.173255-05:00 c0-0c0s9n1 DEBUG SHELL
2016-06-16T15:59:36.173486-05:00 c0-0c0s9n1 :/ #
This procedure investigates why this command entered the DEBUG shell.

Procedure

1. Check whether the node has the DEBUG=true kernel parameter set.

If the node has the DEBUG=true kernel parameter set, then that is why it entered the DEBUG shell and the
console-log reason will show one of the debug breakpoints in the /init script of the image root. While in the
DEBUG shell, explore the state of things on the node, then enter exit so that /init can continue to do
steps until the next breakpoint, which will enter the DEBUG shell again and show the next reason for being in
the DEBUG shell.

This node has DEBUG set:

smw# cnode list c0-0c0s0n1 | grep DEBUG
c0-0c0s0n1 service service /var/opt/cray/imps/boot_images/
service_cle_6.0.UP01-build6.0.96_sles_12-created20160705.cpio
- sdbnodeip=10.131.255.253 bootnodeip=10.131.255.254 tier1=1
hsn_ipv4_mask=255.252.0.0
DEBUG=true hsn_ipv4_net=10.128.0.0 NIMS_GROUP=service ids=10.3.1.1 config_set=p0
This node does not have DEBUG set:

smw# cnode list c0-0c0s0n1 | grep DEBUG
smw#

2. Check whether the node failed when /init called cray-ansible.

If the node had a failure when /init called cray-ansible, then it displays messages to the console
related to the last Ansible task that failed and enters the DEBUG shell. This needs administrator interaction on
the console.

a. Connect to the node to interact with the DEBUG shell.

smw# xtcon c0-0c0s0n1
DEBUG#

b. Run commands to explore the state of the node.

Techniques for Troubleshooting a Failed Boot

S2565 75

Be aware that systemd has not started at this point, so several daemons will not be running, and any
systemctl status commands will probably fail.

c. If a config set change is need to resolve the Ansible error, make the change on the SMW and then test it
on the node by running cray-ansible again.

DEBUG# /etc/init.d/cray-ansible start
If cray-ansible succeeds, it will show a success message. If cray-ansible fails, inspect the Ansible error
log and repeat the process to change the config set.

3. Exit the DEBUG shell.

DEBUG# exit
Once the DEBUG shell is exited, cray-ansible will be run again. If it succeeds, then /init will continue and
move to systemd startup, then cray-ansible will run again in the booted phase. If it fails, then the console will
return to the DEBUG shell again for another attempt to resolve the problem.

NOTE: To disconnect an xtcon session from the console of a node, type ^] to quit.

xtbootsys Waits for Input After Timeout While Booting the Boot and
SDB Nodes

About this task
If xtbootsys detects that the service nodes have exceeded the boot timeout, then xtbootsys will display a
prompt asking whether to pause the boot. A response is expected within 300 seconds or the boot will continue
with the next task in the boot automation file.

Procedure

1. In the xtbootsys screen, enter ? to see which nodes failed.

##
Wed Jun 15 16:05:04 CDT 2016
1 service node failed to boot, you can ...
 enter a 'q' to quit xtbootsys
 enter a 'c' to continue xtbootsys
 enter a 'p' to pause xtbootsys
 enter a '?' to see which nodes failed
 do nothing and this menu will time out in 300 seconds and xtbootsys will
continue.
?
If no response is provided in within 300 seconds, then this message will be displayed and the boot will
continue with the next task in the boot automation file.

Nothing was chosen in the allotted time, xtbootsys will continue...
Depending on what services are provided by the failed service nodes, the next steps may fail. If service nodes
failed to boot, then the boot of compute nodes afterwards may fail and appear to be the problem, but it is this
earlier service node failure that needs to be fixed first.

Techniques for Troubleshooting a Failed Boot

S2565 76

2. In the xtbootsys screen, enter p to pause xtbootsys and investigate why those nodes had a problem.

3. If the problem on the failed nodes can be resolved, then return to xtbootsys and enter c to continue to the
next step in the boot automation file.

xtbootsys Never Begins to Boot Service Nodes

About this task
If xtbootsys never begins to boot service nodes, except for the boot and SDB nodes, it is because there is a
problem with the xtcli boot all_serv command used to boot the service nodes.

Procedure

1. Check whether proper boot images are assigned to the service nodes.

It is possible that different service nodes have different boot images, so check all of them. There are several
ways to do this.
Option Description

all nodes Check all boot image assignments (this is probably too much output since it will show
all nodes in the system).

smw# cnode list

just the nodes that
failed

Check the list of nodes that failed.

smw# cnode list c0-0c0s7n1 c0-0c1s3n2

all service nodes Check all nodes in the "service" NIMS group.

smw# cnode list --filter group=service

all login nodes Check all nodes in the "login" NIMS group. Was it only login nodes that failed to boot?

smw# cnode list --filter group=login

all DAL nodes Check all nodes in the "dal" NIMS group. Was it only DAL nodes that failed to boot?

smw# cnode list --filter group=dal

DataWarp nodes
with FIO SSDs

Check all nodes in the "fio-service" NIMS group. Was it only DataWarp nodes with
Fusion I/O SSDs using the fio-service boot image that failed to boot?

smw# cnode list --filter group=fio-service

other There could be other custom NIMS groups in use on the machine. Check those as
well.

2. Check whether the boot node did an NFS mount of /var/opt/cray/imps/boot_images from the SMW.

When the boot node is up, any requests to boot nodes using the HSN will send a request from the SMW to
the boot node daemon (bnd) on the boot node. The boot node NFS mounts

Techniques for Troubleshooting a Failed Boot

S2565 77

the /var/opt/cray/imps/boot_images directory from the SMW to its
own /var/opt/cray/imps/boot_images mount point so that bnd can access all of the required boot
images. bnd needs this to be able to use the boot images for boots over the HSN.

a. Is /etc/exports incorrect on the SMW?

smw# grep boot_images /etc/exports
/var/opt/cray/imps/boot_images
10.0.0.0/8(secure,rw,no_subtree_check,no_root_squash)

b. Is the nfsserver daemon running on the SMW? If not, start it.

smw# systemctl status -l -n 99 nfsserver
nfsserver.service - LSB: Start the kernel based NFS daemon
 Loaded: loaded (/etc/init.d/nfsserver)
 Active: active (running) since Tue 2016-06-21 12:54:58 CDT; 3 weeks 1
days ago
 CGroup: /system.slice/nfsserver.service
 +-4025 /usr/sbin/rpc.idmapd -p /var/lib/nfs/rpc_pipefs
 +-4066 /usr/sbin/rpc.mountd
If nfsserver is not running, start it with this command.

smw# systemctl start nfsserver
c. Is the nfsd daemon running on the SMW?

smw# ps -ef | grep nfs
ps -ef | grep nfs
root 4025 1 0 Jun21 ? 00:00:00 /usr/sbin/rpc.idmapd -p /var/lib/
nfs/rpc_pipefs
root 4135 2 0 Jun21 ? 00:00:00 [nfsd4]
root 4136 2 0 Jun21 ? 00:00:00 [nfsd4_callbacks]
root 4162 2 0 Jun21 ? 00:00:00 [nfsd]
root 4163 2 0 Jun21 ? 00:00:02 [nfsd]
root 4164 2 0 Jun21 ? 00:00:00 [nfsd]
root 4165 2 0 Jun21 ? 00:00:01 [nfsd]

d. Is /etc/fstab incorrect on the boot node?

boot# grep boot_images /etc/fstab
smw:/var/opt/cray/imps/boot_images /var/opt/cray/imps/boot_images nfs ro 0 0

3. Check whether the boot node daemon (bnd) is running on the boot node.

boot# ps -ef | grep bnd

4. Check bnd logs on the SMW.

Output from bnd is sent to the SMW in /var/opt/cray/log/p0-current/messages-YYYYMMDD and
can be found by searching for "bnd" in that file.

smw# grep bnd /var/opt/cray/log/p0-current/messages-20160621
Look for the section that looks similar to this for the boot image being used:

2016-06-21T21:58:17.708852-05:00 c0-0c0s0n1 bnd 11958 p0-20160621t214422
[sys_boot@34] ***** HSN Booting 5 nodes using DEFAULT in

Techniques for Troubleshooting a Failed Boot

S2565 78

/var/opt/cray/imps/boot_images/service_cle_6.0.UP01-build6.0.96_sles_12-
created20160614.cpio
There will be more messages after this point that describe how many nodes were being booted and what the
status code is from each.

xtbootsys Never Begins to Boot Compute Nodes

About this task
If xtbootsys never begins booting compute nodes, there is a problem with the xtcli boot all_comp
command used to boot the compute nodes.

Procedure

1. Check whether proper boot images are assigned to the compute nodes.

It is possible that different compute nodes have different boot images, so check all of them. There are several
ways to do this.
Option Description

all nodes Check all boot image assignments (this is probably too much output since it will show
all nodes in the system).

smw# cnode list

just the nodes that
failed

Check the list of nodes that failed.

smw# cnode list c0-0c0s9n3 c0-0c2s14n2

all compute nodes Check all nodes in the "compute" NIMS group.

smw# cnode list --filter group=compute

other There could be other custom NIMS groups in use on the machine. Check those as
well.

2. Check bnd logs on the SMW.

Output from bnd is sent to the SMW in /var/opt/cray/log/p0-current/messages-YYYYMMDD and
can be found by searching for "bnd" in that file.

smw# grep bnd /var/opt/cray/log/p0-current/messages-20160621
Look for the section that looks similar to this for the boot image being used:

2016-06-21T22:16:51.290601-05:00 c0-0c0s0n1 bnd 13100 p0-20160621t214422
[sys_boot@34] ***** HSN Booting 1 nodes using DEFAULT in
/var/opt/cray/imps/boot_images/initrd-compute-large_cle_6.0.UP01-
build6.0.96_sles_12-created20160615.cpio
There will be more messages after this point that describe how many nodes were being booted and what the
status code is from each.

Techniques for Troubleshooting a Failed Boot

S2565 79

cray-ansible Fails in Init Phase on any Node

About this task
If cray-ansible fails during the init phase, it will display this message on the node's console.

cray-ansible: /etc/ansible/site.yaml completed in init - FAILED
If the node had a failure when /init called cray-ansible, then it displays messages to the console related to the
last Ansible task that failed and enters the DEBUG shell. This needs administrator interaction on the console.

Procedure

1. Connect to the node to interact with the DEBUG shell.

smw# xtcon c0-0c0s0n1
DEBUG#

2. Run commands to explore the state of the node.

Be aware that systemd has not started at this point, so several daemons will not be running, and any
systemctl status commands will probably fail.

3. Identify which Ansible task failed.

Look at the Ansible logs on the node in /var/opt/cray/log/ansible. See cray-ansible and Ansible Logs
on a CLE Node on page 51 for names and contents of the log files.

In this example Ansible log, the task that failed is "task motd, release."

2016-01-17 12:15:27,671 TASK: [cle_motd | task motd, release]

2016-01-17 12:15:27,671 changed: [localhost] => {"changed": true,
"cmd": "grep RELEASE /etc/opt/cray/release/cle-release | awk -F\\='{print
$2}'", "delta": "0:00:00.002536",
"end": "2016-01-17 12:15:27.471384", "rc": 0, "start": "2016-01-17
12:15:27.468848", "stderr": "",
"stdout": "6.0.UP02", "warnings": []}
In this example Ansible log, the task that failed is "task motd, release."

2016-01-17 12:15:27,671 TASK: [cle_motd | task motd, release]

2016-01-17 12:15:27,671 changed: [localhost] => {"changed": true,
"cmd": "grep RELEASE /etc/opt/cray/release/cle-release | awk -F\\='{print
$2}'", "delta": "0:00:00.002536",
"end": "2016-01-17 12:15:27.471384", "rc": 0, "start": "2016-01-17
12:15:27.468848", "stderr": "",
"stdout": "6.0.UP02", "warnings": []}

4. Determine which Ansible play contained the task that failed.

The location of a task can be found in the Ansible plays. Because the example shows that the failed task has
the name "task motd, release," search for that name in the locations that have Ansible plays:

● /etc/ansible has Ansible plays from the software image root

Techniques for Troubleshooting a Failed Boot

S2565 80

● /etc/opt/cray/config/current has Ansible plays from the current CLE config set, which may
include site-local plays

● /etc/opt/cray/config/global has Ansible plays from the global config set, which may include site-
local plays

boot# grep -Rn "task motd, release" /etc/ansible \
/etc/opt/cray/config/current/ansible /etc/opt/cray/config/global/ansible
/etc/ansible/roles/cle_motd/tasks/motd.yaml:15:- name: task motd, release
The grep output shows that the file containing this task
is /etc/ansible/roles/cle_motd/tasks/motd.yaml. Look at line 15 in that file to determine what that
chunk of code is doing.

5. Check the cray_system facts for this node.

Look at the Ansible code in the identified task/play. Check that the boot_node, backup_boot_node, sdb_node,
and backup_sdb_node are correct, and that the nims_group is the expected one for this node (which is
related to which image might be used on the node). Use this command to display the cray_system facts for
this node.

DEBUG# /etc/ansible/facts.d/cray_system.fact
{"topology_class": 0, "host_type": "admin", "node_groups": [], "sdb_node": 38,
"platform": "service", "max_torus_dimension": [0, 0, 9], "max_node_id": 39,
"nid": 1,
"in_init": false, "sessionid": "p0-20160621t214422", "hostid": "c0-0c0s0n1",
"standby_node": false, "num_sys_nodes": 16, "max_sys_nodes": 16, "roles":
["boot"],
"is_cray_blade": true, "uses_systemd": true, "cname": "c0-0c0s0n1",
"sys_nodes": [0, 1, 2, 3, 4, 5, 6, 7, 32, 33, 34, 35, 36, 37, 38, 39],
"boot_node": 1,
"nims_group": ["service"], "backup_sdb_node": 5}

6. Check the kernel parameters that were passed to the node.

These should match what was assigned to the node with NIMS (using the cnode list command), but will
also show the nodes (represented by their IP address) assigned for the ids kernel parameter.

DEBUG# cat /proc/cmdline
earlyprintk=serial,115200 load_ramdisk=1 ramdisk_size=80000 console=ttyS0,
115200n8 bootproto=ipog oops=panic elevator=noop pcie_ports=native iommu=on
intel_iommu=off bad_page=panic apei_disable hest_disable erst_disable
ghes_disable
cgroup_disable=memory audit=0 sessionid=p0-20160712t104308
hsn_ipv4_mask=255.252.0.0
hsn_ipv4_net=10.128.0.0 sdbnodeip=10.131.255.253 bootnodeip=10.131.255.254
NIMS_GROUP=login netroot=login-large_cle_6.0.UP02-build6.0.2042 _sles_12-
created20161215
ids=10.128.1.134,10.128.0.79,10.128.0.78 config_set=p0

7. Check whether the nodes in the ids kernel parameter are not booted.

If none of the nodes (represented by their IP address) in the ids kernel parameter are booted, then this node
will fail to boot. Shift the analysis to those nodes instead of this node. The tier1 nodes (boot and SDB nodes)
will have the SMW eth3 10.3.1.1 IP address for IDS. The tier2 nodes will have the IP addresses on the HSN
of the tier1 nodes. All other nodes are tier3 nodes, which will have IP addresses on the HSN of the tier2
nodes.

Techniques for Troubleshooting a Failed Boot

S2565 81

8. If a config set change is needed to resolve the Ansible error, make that change on the SMW and test it on the
node.

a. Update the config set on the SMW.

smw# cfgset update -m interactive CONFIGSET
Substitute the applicable config set (global, p0, etc.) for CONFIGSET, depending on which services/
parameters need to be changed.

b. Run cray-ansible on the node to test the config set change there.

node# /etc/init.d/cray-ansible start
If cray-ansible succeeds, it will show a success message. If cray-ansible fails, return to step 3.

9. Exit the DEBUG shell:

DEBUG# exit
Once the DEBUG shell is exited, cray-ansible will be run again. If cray-ansible succeeds, then /init will
continue and move to systemd startup, then cray-ansible will run again in the booted phase. If cray-ansible
fails, then the console will return to the DEBUG shell again for another attempt to resolve the problem.

NOTE: To disconnect an xtcon session from the console of a node, type ^] to quit.

cray-ansible Fails in Booted Phase on Any Node

About this task
If a node fails because of a cray-ansible failure in the booted phase, an error message like this appears:

cray-ansible: /etc/ansible/site.yaml completed in booted - FAILED
When this happens, it is difficult to know how many of the Ansible plays were executed prior to the Ansible play
that failed. Try this procedure:

Procedure

1. Get access to the failed node.

If the node has partially booted, then it might have booted far enough to start the sshd daemon before hitting
a failure, thereby making it possible to log in using ssh. Otherwise, use xtcon to connect.

Option Description

If ssh available Use ssh to log in from the SMW to the boot or SDB node.

smw# ssh boot
smw# ssh sdb
Then from that node, log in to the failed node.

boot# ssh c0-1c2s7n2
sdb# ssh c1-2c0s15n3

Techniques for Troubleshooting a Failed Boot

S2565 82

Option Description

If ssh not available Use xtcon to connect from the SMW to the failed node.

smw# xtcon c0-1c2s7n2
Note: To disconnect an xtcon session from the console of a node, type ^] to quit.

Now commands can be run on the failed node to explore the state of the node.

2. Identify which Ansible task failed.

Look at the Ansible logs on the node in /var/opt/cray/log/ansible. See cray-ansible and Ansible Logs
on a CLE Node on page 51 for names and contents of the log files.

3. Check the cray_system facts for this node.

Look at the Ansible code in the identified task/play. Check that the boot_node, backup_boot_node, sdb_node,
and backup_sdb_node are correct, and that the nims_group is the expected one for this node (which is
related to which image might be used on the node). Use this command to display the cray_system facts for
this node.

node# /etc/ansible/facts.d/cray_system.fact
{"topology_class": 0, "host_type": "admin", "node_groups": [], "sdb_node": 38,
"platform": "service", "max_torus_dimension": [0, 0, 9], "max_node_id": 39,
"nid": 1,
"in_init": false, "sessionid": "p0-20160621t214422", "hostid": "c0-0c0s0n1",
"standby_node": false, "num_sys_nodes": 16, "max_sys_nodes": 16, "roles":
["boot"],
"is_cray_blade": true, "uses_systemd": true, "cname": "c0-0c0s0n1",
"sys_nodes": [0, 1, 2, 3, 4, 5, 6, 7, 32, 33, 34, 35, 36, 37, 38, 39],
"boot_node": 1,
"nims_group": ["service"], "backup_sdb_node": 5}

4. Check the kernel parameters that were passed to the node.

These should match what was assigned to the node with NIMS (using the cnode list command), but will
also show the nodes assigned for the ids kernel parameter.

node# cat /proc/cmdline
earlyprintk=serial,115200 load_ramdisk=1 ramdisk_size=80000
console=ttyS0,115200n8
bootproto=ipog oops=panic elevator=noop pcie_ports=native iommu=on
intel_iommu=off
bad_page=panic apei_disable hest_disable erst_disable ghes_disable
cgroup_disable=memory
audit=0 sessionid=p0-20160712t104308 hsn_ipv4_mask=255.252.0.0
hsn_ipv4_net=10.128.0.0
sdbnodeip=10.131.255.253 bootnodeip=10.131.255.254 NIMS_GROUP=login
netroot=gin-large_cle_6.0.UP01-build6.0.96_sles_12-created2016061
ids=10.128.1.134,10.128.0.79,10.128.0.78 config_set=p0

5. If a config set change is needed to resolve the Ansible error, make that change on the SMW and test it on the
node.

a. Update the config set on the SMW.

smw# cfgset update -m interactive CONFIGSET

Techniques for Troubleshooting a Failed Boot

S2565 83

Substitute the applicable config set (global, p0, etc.) for CONFIGSET, depending on which services/
parameters need to be changed.

b. Run cray-ansible on the node to test the config set change there.

node# /etc/init.d/cray-ansible start
If cray-ansible succeeds, it will show a success message. If cray-ansible fails, return to step 2.

Node Fails to Mount Local Storage

Procedure

1. Log in to the node using ssh or xtcon.

For details about how to do this, see step 1 of cray-ansible Fails in Booted Phase on Any Node on page 82.

2. Check what disk devices are available on the node.

node# lsscsi
node# fdisk -l

3. If some disk devices are missing, ensure that the node has an FC or SAS card by inspecting lspci output.

node# lspci
This output can be very verbose. If the vendor of the FC or SAS card is known, search for that in the output.

node# lspci | grep -i qlogic
05:00.0 Fibre Channel: QLogic Corp. ISP8324-based 16Gb Fibre Channel to PCI
Express Adapter (rev 02)
05:00.1 Fibre Channel: QLogic Corp. ISP8324-based 16Gb Fibre Channel to PCI
Express Adapter (rev 02)

4. If the FC or SAS card is present but no devices are seen, check the cabling and the zoning.

a. Check the cabling between the card and the FC or SAS switch.

b. Check the zoning on the FC or SAS switch to ensure that the node is permitted to see the storage.

Node Fails to Mount NFS File System

Procedure

1. Check that the proper entry is in /etc/fstab on the node.

2. If the node is supposed to automount the NFS file system, investigate the following.

a. Are the proper files in /etc/auto.master and /etc/auto.master.d on the node?

For information about how to configure automount files on a DVS node using Simple Sync, see
"Reconfigure DVS for an External NFS Server" in XC™ Series DVS Administration Guide (S-0005).

Techniques for Troubleshooting a Failed Boot

S2565 84

b. Are these files being distributed using the cray_simple_sync service?

Look in the /var/opt/cray/imps/config/sets/p0/files/simple_sync directory on the SMW.

● Is this node listed there (by cname) in the hardwareid subdirectory? If so, look in
hardwareid/NODE_CNAME/files to see if the proper files are there.

● Is this node supposed to be in one of the node groups in the nodegroups subdirectory? If so, look in
nodegroups/NODEGROUP/files to see if the proper files are there.

c. If the proper files are in simple_sync, is this node a member of that node group in the cray_node_groups
service?

This command will search for a node group (from the simple_sync directory structure) with the name
NODEGROUP.

smw# cfgset search -t NODEGROUP -s cray_node_groups p0

3. Is the NFS server exporting the NFS file system to this node?
Option Description

external NFS
server

If the NFS server is external to the XC system, then look in /etc/exports on the
external NFS server.

internal NFS
server

If he NFS server is internal to the XC system, then look for the NFS section of the
cray_simple_shares service in the CLE config set, and check the guidance text for the
displayed settings.

smw# cfgset search -l advanced -s cray_simple_shares p0 | grep NFS

This node might be DVS-projecting the NFS file system to other nodes. If so, those other nodes will fail to DVS-
mount this file system.

Node Fails to Mount Direct-attached Lustre (DAL)

Procedure

1. Check the gni number. Is it wrong?

The command to mount the DAL file system includes the LNet nid of the Lustre MGS, which consists of the
nid number, followed by an '@' symbol, followed by the LNet name, such as gni or gni1. For example, if the
nid number of the DAL MGS is nid00009, and the LNet name is gni1, then the LNet nid is 9@gni1.

a. Find the LNet name being used in the CLE config set.

The LNet name that has been added to the configuration data can be found by searching for "gni" in the
CLE config set (p0 in this example) on the SMW.

smw# cfgset search -t gni -l advanced -s cray_lnet p0
2 matches for 'gni' from cray_lnet_config.yaml
#---
cray_lnet.settings.local_lnet.data.lnet_name: gni4
cray_lnet.settings.flat_routes.data.o2ib.src_lnet: gni4

b. Find the LNet nid of the Lustre client node.

Techniques for Troubleshooting a Failed Boot

S2565 85

node# lctl list_nids
c. Find the LNet nid of the DAL MGS node.

The gni number should be the same as the client.

mgs# lctl list_nids
d. From the client node, ping the DAL MGS node by its LNet nid, and then from the MGS node, ping the

client node by its LNet nid.

In this example, the LNet nid of the MGS iss 9@gni1, and the LNet nid of the client node is 30@gni1.

node# lctl ping 9@gni1
mgs# lctl ping 30@gni1
If these two nodes cannot ping each other, this might be due to different gni numbers or to some other
CLE-side problem.

2. Check to see if the DAL file system is started.

If the user knows the name of the DAL file system, e.g. "dal", then instead of the "-a" option to lustre_control
they can use "lustre_control status -f $FS_NAME", where FS_NAME is the name of the DAL file system.

boot# module load lustre-utils
boot# lustre_control status -a
If the name of the DAL file system is known (e.g., "dal"), then use the -f option with the DAL file system
name instead of the -a option. This command will ssh from the boot node to the Lustre servers (MGS, MDS,
OSS), check whether the targets (MGT, MDT, OST) are mounted on the nodes, and report this information in
a table.

boot# lustre_control status -f $dal
The lustre_control commands to start the DAL file system and mount it on clients should be in the boot
automation file. See XC™ Series Software Installation and Configuration Guide (S-2559) for these
commands.

3. Check Ansible logs and config set data.

a. Check the config set data on the SMW to ensure that it is configured correctly.

b. Look at Ansible logs on the client node.

Search for "lustre_client" in /var/opt/cray/log/ansible/sitelog-booted. Look at the tasks, to
see if the tasks that supposed to mount the Lustre file systems are being skipped.

c. Look at the config set data on the client node
in /etc/opt/cray/config/current/config/cray_lustre_client_config.yaml and compare
it to the config data on the SMW.

If config data is different on the SMW than on the client node, there may be a problem with the config set
cache not being updated. See Check cray-cfgset-cache Daemon on page 54.

Techniques for Troubleshooting a Failed Boot

S2565 86

Node Fails to Mount External Lustre File System

Procedure

1. Check to see if the external Lustre server is up and serving the file system.

2. Check to see if the LNet routes are set up properly on the external Lustre servers.

The external Lustre servers live on an InfiniBand network, so they have LNet nids with an LNet name starting
with 'o2ib' (e.g., 10.149.0.1@o2ib). They need a route to reach the CLE client nodes that are only on the HSN
network and thus have only LNet nids with an LNet name starting with 'gni' (e.g. 30@gni1). Thus, the Lustre
servers need a route from LNet nids on o2ib to LNet nids on gni. This route will be through the CLE LNet
router nodes, which have both InfiniBand and HSN interfaces, and thus have both gni and o2ib LNet nids. If
these routes are not set up correctly on the Lustre servers, it might look like there is an error with routes on
the CLE nodes because they cannot ping the servers, but the problem might be on the server side. For more
information about setting up LNet routes, see XC™ Series Lustre® Administration Guide.

3. Check the gni number. Is it wrong?

a. Find the LNet name being used in the CLE config set.

The LNet name that has been added to the configuration data can be found by searching for "gni" in the
CLE config set (p0 in this example) on the SMW.

smw# cfgset search -t gni -l advanced -s cray_lnet p0
2 matches for 'gni' from cray_lnet_config.yaml
#---
cray_lnet.settings.local_lnet.data.lnet_name: gni4
cray_lnet.settings.flat_routes.data.o2ib.src_lnet: gni4

b. Find the LNet nid of the Lustre client node.

The LNet nid of a node consists of the node nid number, followed by an '@' symbol, followed by the LNet
name, such as gni or gni1.

node# lctl list_nids
c. Find the LNet nid of the LNet router node.

LNet routers have two or more LNet nids that will be listed in the output of this command. One of them
should have the same LNet name as the client.

lnet# lctl list_nids
10.149.0.34@o2ib
33@gni99
33@gni1

d. From the client node, ping the router node by its LNet nid, and then from the router node, ping the client
node by its LNet nid.

In this example, the LNet nid of the router is 33@gni1, and the LNet nid of the client node is 30@gni1.

node# lctl ping 33@gni1
lnet# lctl ping 30@gni1
If these two nodes cannot ping each other, this might be due to different gni numbers or to some other
CLE-side problem.

Techniques for Troubleshooting a Failed Boot

S2565 87

e. If these two pings work, then on the LNet router, use lctl ping to ping the external Lustre server by its
LNet nid.

The LNet nid(s) of the MGS(s) can be found in the
cray_lustre_client.settings.client_mounts.data.<key>.mgs_lnet_nids configuration
setting. In this example, the external Lustre server has LNet nid 10.149.0.1@o2ib.

lnet# lctl ping 10.149.0.1@o2ib

Node Fails to Mount DVS-projected File System

Procedure

1. Check the file system mount points of each DVS server listed for that file system.

a. On one of the nodes that is mounting a file system from a DVS server, check /etc/fstab to see which
DVS servers are listed for the file system.

b. On each DVS server, check /etc/fstab to see if it has the file system mounted properly.

c. On each DVS server, check whether the file system that is supposed to be DVS-projected is actually
mounted on the DVS server.

dvs# mount

2. Are all of the DVS servers in the node's /etc/fstab unavailable?

At least one should be available to mount the file system.

Corrupt File System on Boot or SDB Node

About this task
If one of the boot or SDB nodes that mount file systems from the boot RAID has file system corruption, there are a
few different ways to repair the file system.

See XC™ Series System Administration Guide (S-2393) for procedures to repair Btrfs and XFS file systems.

Procedure

1. Unmount the file system from the node and repair it on that node, if possible.

2. Shut down the node and repair it from the SMW, if repairing it on the node is not possible.

Check the Duties of a Broken Service Node
To find out which duties a broken service node performs for a system, search the CLE config set. This example
finds all of the places node c0-0c2s3n2 is mentioned in config set p0.

smw# cfgset search -t c0-0c2s3n2 -l advanced p0

Techniques for Troubleshooting a Failed Boot

S2565 88

If the node has network interfaces, results from cray_net will be displayed.

If the node is part of a node group, results from cray_node_groups will be displayed.

If the node is listed explicitly as a client or server for a feature, results from other config set services will be
displayed.

Check for HSS and Config Set Agreement on Duties of Boot and SDB
Nodes
If there is a mismatch between the boot and SDB nodes in the output from these two commands, there will be
issues with the boot.

This first command shows that the Hardware Supervisory System (HSS) database recognizes two nodes as boot
and two as SDB (because boot node failover and SDB node failover are both enabled).

smw# xtcli part_cfg show
Network topology: class 0
=== part_cfg ===

[partition]: p0: enable (noflags|)
[members]: c0-0
[boot]: c0-0c0s0n1:halt,c0-0c1s0n1:halt
[sdb]: c0-0c0s1n1:halt,c0-0c1s1n1:halt
[NIMS_image 0]: /var/opt/cray/imps/boot_images/initrd-compute-large_cle_6.0.UP01-
build6.0.96_sles_12-created20160705.cpio
[NIMS_image 1]: /var/opt/cray/imps/boot_images/service_cle_6.0.UP01-
build6.0.96_sles_12-created20160705.cpio
[NIMS_image 2]: /var/opt/cray/imps/boot_images/dal_cle_6.0.UP01-
build6.0.96_centos_6.5-created20160705.cpio
[NIMS_image 3]: /var/opt/cray/imps/boot_images/initrd-login-large_cle_6.0.UP01-
build6.0.96_sles_12-created20160705.cpio
[NIMS_image 4]: /var/opt/cray/imps/boot_images/fio-service_cle_6.0.UP01-
build6.0.96_sles_12-created20160705.cpio
================
This search command (applied once for the boot node and again for the SDB node) searches the CLE config set
for the host IDs of those two nodes.

smw# cfgset search -t bootnode -s cray_net p0 | grep hostid
cray_net.settings.hosts.data.bootnode.hostid: c0-0c0s0n1

smw# cfgset search -t sdbnode -s cray_net p0 | grep hostid
cray_net.settings.hosts.data.sdbnode.hostid: c0-0c0s1n1
cray_net.settings.hosts.data.backup_sdbnode.hostid: c0-0c0s9n2
Notice that the first "cfgset search" command shows only a single boot node, unlike the "xtcli part_cfg show"
command which shows two boot nodes. The second "cfgset search" command shows a backup_sdbnode host ID
that does not match the second SDB node cname from the "xtcli part_cfg show" command.

This is an example of mismatched data between the HSS database and the config set. The data needs to be
corrected to match.

Techniques for Troubleshooting a Failed Boot

S2565 89

Node with Network Interface not Accessible over that Network

About this task
This procedure investigates whether the network interface is configured with correct networking information, is
marked as "up," has a cable connected, sees network traffic, and sees network traffic on the correct network
based on IP address and netmask.

Procedure

1. Find the node's network interface.

Search for that node (c1-0c0s7n1 in the example) in cray_net, and then check the displayed information.

smw# cfgset search -t c1-0c0s7n1 -s cray_net -l advanced p0
If the node has a network interface, it will be listed as being on a network.

2. Ensure that the IP address for the network interface is on the network with the given netmask.

Search for that network (network42 in the example) in cray_net, and then check the displayed information.

smw# cfgset search -t network42 -s cray_net -l advanced p0

3. Is the network interface (eth3 in the example) "up" and configured with IP address 10.3.1.1?

smw# wicked show eth3
eth3 up
 link: #5, state up, mtu 1500
 type: ethernet, hwaddr d4:ae:52:e6:9f:58
 config: compat:suse:/etc/sysconfig/network/ifcfg-eth3
 leases: ipv4 static granted
 addr: ipv4 10.3.1.2/16 [static]
 addr: ipv4 10.3.1.1/16
 route: ipv4 10.128.0.0/14 via 10.3.1.254

4. If the network interface does not show state "up" with the proper IP address,
check /etc/sysconfig/network/ifcfg-eth3.

smw# cat /etc/sysconfig/network/ifcfg-eth3
BOOTPROTO='static'
IPADDR='170.30.13.52/24'
NAME='eth2'
PREFIXLEN='24'
STARTMODE='auto'
USERCONTROL='no'
LINK_REQUIRED='no'
Not being up or having the wrong IP address could be caused by:

● a missing Ethernet connection on the node due to a faulty cable

● the cable not plugged into the proper network

● an Ethernet switch with the incorrect VLAN

Techniques for Troubleshooting a Failed Boot

S2565 90

Boot Fails on a Node that Should be Disabled

Procedure

Did someone enable a node that had previously been disabled for some reason?

Look on the SMW in /var/opt/cray/log/commands for any xtcli disable and xtcli enable
commands.

Boot Halts with an NMI when DEBUG Shell Entered

About this task
This procedure applies to CLE release 6.0.UP00 and 6.0.UP01 only.

If the boot of a node halts with a non-maskable interrupt (NMI) as soon as it drops into the DEBUG shell, the
cause may be that the node is on a blade that has kernel parameter stonith=true.

With boot node failover and SDB node failover, the stonith=true parameter must be set on the blade that has
the primary node. This is part of the required configuration so that the failover will happen from the primary node
to the alternate node. However, this STONITH setting also applies to all of the other nodes on that blade.

When a system administrator wants to boot a node with the DEBUG shell to analyze a problem by stepping
through the breakpoints in the /init script, they will set the kernel parameter DEBUG=true. Any node on a blade
that has stonith=true and has the kernel parameter DEBUG=true will have an NMI error. It can also occur if
the boot drops into the DEBUG shell for a different reason, such as a problem with Ansible code in the init phase.
The node drops into the DEBUG shell and shows the DEBUG shell prompt, but before a command can be typed
in the DEBUG shell, the NMI error message appears.

2016-06-16T15:59:36.173243-05:00 c0-0c0s9n1 DEBUG SHELL: pre configuration; exit
will resume
2016-06-16T15:59:36.173255-05:00 c0-0c0s9n1 DEBUG SHELL
2016-06-16T15:59:36.173486-05:00 c0-0c0s9n1 :/ # tsc: Refined TSC clocksource
calibration: 2099.986 MHz
2016-06-16T15:59:36.173644-05:00 c0-0c0s9n1 Switched to clocksource tsc
2016-06-16T16:02:09.065204-05:00 c0-0c0s9n1 Stop NMI detected on CPU 0
This issue has been fixed in CLE 6.0 UP.02. For sites running CLE 6.0.UP00 and UP01, try the following.

Procedure

1. Run the xtdaemonconfig command to determine whether the above node has stonith=true set for its
blade.

For example, to check for node c0-0c0s9n1, use the blade c0-0c0s9.

smw# xtdaemonconfig c0-0c0s9 | grep stonith
c0-0c0s9: stonith=true

To disable this setting

smw# xtdaemonconfig c0-0c0s9 stonith=false

Techniques for Troubleshooting a Failed Boot

S2565 91

Note: Setting stonith=false for this blade means that if the blade has the
primary boot node or primary SDB node, then boot node failover or SDB node
failover will be unable to fail to the alternate node.

2. If stonith=true for the node, disable that setting.

smw# xtdaemonconfig c0-0c0s9 stonith=false
NOTE: Setting stonith=false for this blade means that if the blade has the primary boot node or
primary SDB node, then boot node failover or SDB node failover will be unable to fail to the alternate
node.

Check Which Boot Automation File Being Used
Is the wrong boot automation file being used? The boot automation file passed to xtbootsys is logged to the
beginning of the /var/opt/cray/log/p0-current/bootinfo* file.

smw# head /var/opt/cray/log/p0-current/bootinfo*
bootrecorder is available
NIMS is enabled
Using automation file '/opt/cray/hss/default/etc/auto.panda.start'

xtbootsys Fails with Undefined Partition

About this task
If xtbootsys fails with a message indicating that a partition is not defined, it may be that the partition parameter
was omitted from the command.

Non-partitioned systems are assumed to be p0. If booting a partitioned system, the --partition parameter
must be added to the xtbootsys command. For example,

smw# xtbootsys --partition p3

Possible Problem from Mismatch of Netroot Information on a Node
When Netroot is being used, the boot image should be initrd-something and the kernel parameter should be
netroot=something for this node.

There are three ways to misconfigure this such that the node does not boot correctly:

● initrd boot image, but no Netroot kernel parameter

● non-initrd boot image, but has Netroot kernel parameter

● initrd boot image and Netroot kernel parameter, but the initrd boot image does not match the paired image
root in the Netroot kernel parameter

Use this command to look for these situations:

Techniques for Troubleshooting a Failed Boot

S2565 92

smw# cnode list c2-3c0s5n2

Boot Fails on a Node using Netroot

About this task
When using Netroot for a login or compute node, the Netroot image root (the one that is listed in the node's
Netroot kernel parameter) must be pushed from the SMW to the boot node before booting the login or compute
node.

Procedure

1. Find the boot image for the node.

smw# cnode list | grep netroot
c0-0c0s1n0 service login
/var/opt/cray/imps/boot_images/initrd-login-large_cle_6.0.UP01-
build6.0.96_sles_12-created20160705.cpio
 - sdbnodeip=10.131.255.253 bootnodeip=10.131.255.254
hsn_ipv4_mask=255.252.0.0
hsn_ipv4_net=10.128.0.0 NIMS_GROUP=login
netroot=login-large_cle_6.0.UP01-build6.0.96_sles_12-created20160705
ids=10.128.0.37
config_set=p0

2. Check on the SMW for the image root that was shown in the Netroot kernel parameter in step 1.

smw# ls -l /var/opt/cray/imps/image_roots/\
login-large_cle_6.0.UP01-build6.0.96_sles_12-created20160705

3. Check on the boot node for that image root.

boot# ls -l /var/opt/cray/imps/image_roots/\
login-large_cle_6.0.UP01-build6.0.96_sles_12-created20160705

4. Take one of these actions, depending on whether the image root is on the boot node.
Option Description

If image root
missing
from boot
node

Push the image root from the SMW to the boot node.

smw# image push -d boot
login-large_cle_6.0.UP01-build6.0.96_sles_12-created20160705

If image root
on boot
node

If the node failed to access the image root properly, perhaps the transfer of the image root
was not complete before the node started to boot. In this case, warm boot the node.

smw# su crayadm
crayadm@smw> xtbootsys --reboot c0-0c0s1n0

If image root
partially
transferred
to boot node

First, remove the image root directory from the boot node.

CAUTION: Use this rm command on the BOOT NODE ONLY.

Techniques for Troubleshooting a Failed Boot

S2565 93

Option Description

boot# rm -rf /var/opt/cray/imps/image_roots

Then, when the image root directory has been removed from the boot node, use the
following command to push the image root from the SMW to the boot node again.

smw# image push -d boot \
login-large_cle_6.0.UP01-build6.0.96_sles_12-created20160705

Diags Content Missing

About this task
If diags content is missing, was the diag image root pushed from the SMW to the boot node?

Procedure

1. Check on the SMW for the diags image root.

smw# ls -l /var/opt/cray/imps/image_roots/diag-all_cle_60up01_sles_12_x86-64

2. Check on the boot node for the diags image root.

boot# ls -l /var/opt/cray/imps/image_roots/diag-all_cle_60up01_sles_12_x86-64

3. Take one of these actions, depending on whether the image root is on the boot node.
Option Description

If image root missing
from boot node

Push the image root from the SMW to the boot node.

smw# image push -d boot diag-all_cle_60up01_sles_12_x86-64

If image root on boot
node

If the node failed to access the image root properly, perhaps the transfer of the
image root was not complete before the node started to boot. In this case, warm
boot the node.

smw# su crayadm
crayadm@smw> xtbootsys --reboot c0-0c0s1n0

If image root
partially transferred
to boot node

Remove the image roots directory and push the image root from the SMW to the
boot node again.

boot# rm /var/opt/cray/imps/image_roots/diag-
all_cle_60up01_sles_12_x86-64

smw# image push -d boot diag-all_cle_60up01_sles_12_x86-64

Techniques for Troubleshooting a Failed Boot

S2565 94

PE Software Content Missing

About this task
If Cray Programming Environment (PE) software content is missing, was the PE software image root pushed from
the SMW to the boot node?

Procedure

1. Check on the SMW for the PE software image root.

smw# ls -l /var/opt/cray/imps/image_roots/pe_compute_cle_6.0up01_sles_12

2. Check on the boot node for the PE software image root.

boot# ls -l /var/opt/cray/imps/image_roots/pe_compute_cle_6.0up01_sles_12

3. Take one of these actions, depending on whether the image root is on the boot node.
Option Description

If image root missing
from boot node

Push the image root from the SMW to the boot node.

smw# image push -d boot pe_compute_cle_6.0up01_sles_12

If image root on boot
node

If the node failed to access the image root properly, perhaps the transfer of the
image root was not complete before the node started to boot. In this case, warm
boot the node.

smw# su crayadm
crayadm@smw> xtbootsys --reboot c0-0c0s1n0

If image root
partially transferred
to boot node

Remove the image roots directory and push the image root from the SMW to the
boot node again.

boot# rm /var/opt/cray/imps/image_roots/
pe_compute_cle_6.0up01_sles_12

smw# image push -d boot pe_compute_cle_6.0up01_sles_12

Node Fails to Mount Config Set from IDS Servers

About this task
If a node fails to mount the config set from IDS servers, find out if incorrect or unreachable nodes are set in that
node's IDS kernel parameter.

Procedure

Check the IDS kernel parameter for the node.

Techniques for Troubleshooting a Failed Boot

S2565 95

smw# cnode list c1-2c0s5n3
NAME TYPE GROUP IMAGE
 CONFIG_SET EXT_PARAMETERS

c0-0c0s11n3 compute compute
/var/opt/cray/imps/boot_images/initrd-compute-large_cle_6.0.UP01-
build6.0.96_sles_12-created20160705.cpio -
 NIMS_GROUP=compute netroot=compute-large_cle_6.0.UP01-build6.0.96_sles_12-
created20160705
ids=10.128.2.70,10.128.1.201,10.128.0.195 config_set=p0
This example shows ids=10.128.2.70,10.128.1.201,10.128.0.195. Check which nodes are
assigned these three IP addresses. The node in this example is dependent on these three nodes to get config
set information from IDS.

Did any of these nodes have a problem booting? If all of them had a problem booting, then that is why this
node had a problem. With Cray scalable services, tier3 nodes (most of the CLE nodes) all have tier2 nodes
listed in their IDS kernel parameter. And tier2 nodes all have tier1 nodes listed in their IDS kernel parameter.
The tier1 nodes all have the SMW eth3 IP address (10.3.1.1) in their IDS kernel parameter. With SMW HA,
the tier1 nodes still have 10.3.1.1 in the IDS kernel parameter, because that IP address is used by the first
SMW in the SMW HA pair.

Put a Node in DEBUG and Step Through the Init Phase

Prerequisites
This procedure requires two windows to be open:

● window 1 for connecting to the node in question (c8-0c2s8n1/nid01697 in this example) using xtcon
● window 2 for typing administrative commands on the SMW

About this task
The /init script runs during the early stages of a boot, and it contains breakpoints that enable a user to examine
various system values and files during the boot. Check /init on the SMW
in /var/opt/cray/imps/image_roots/node_image_root, where node_image_root is the image root
directory corresponding to the boot image for the node.

Here are some of the breakpoints in /init. The list of breakpoints in the /init script may change over time and
software releases.

${DEBUG} && echo "DEBUG SHELL: in setup_netroot; exit will init vars" > $
{con_debug}
${DEBUG} && echo "DEBUG SHELL: in setup_netroot; exit will contruct netroot" > $
{con_debug}
${DEBUG} && echo "DEBUG SHELL: prior to DVS lower mount; exit will resume" > $
{con_debug}
${DEBUG} && echo "DEBUG SHELL: prior to chroot prep; exit will resume" > $
{con_debug}
${DEBUG} && echo "DEBUG SHELL: post netroot preload debug; exit will resume" > $
{con_debug}
${DEBUG} && echo "DEBUG SHELL: prior to mounting merge layer tmpfs" > ${con_debug}
${DEBUG} && echo "DEBUG SHELL: prior to chroot Ansible; exit will resume" > $
{con_debug}
${DEBUG} && echo "DEBUG SHELL: prior to bind mounts of upper and lower; exit will

Techniques for Troubleshooting a Failed Boot

S2565 96

resume" > ${con_debug}
${DEBUG} && echo "DEBUG SHELL: prior to switch_root; exit will switch" > $
{con_debug}
${DEBUG} && echo "DEBUG SHELL: pre configuration; exit will resume" > ${con_debug}
${DEBUG} && msg_severity=3 && echo "DEBUG SHELL: pre config service; exit will
resume" > ${con_debug}
${DEBUG} && msg_severity=3 && echo "DEBUG SHELL: pre ansible/netroot; exit will
resume" > ${con_debug}
${DEBUG} && msg_severity=3 && echo "DEBUG SHELL: pre systemd; exit will resume" > $
{con_debug}

Procedure

1. In window 1, connect to the node and wait to interact with the DEBUG shell (occurs in step 5).

smw# xtcon c8-0c2s8n1

2. In window 2, check the node's current parameters.

smw# cnode list c8-0c2s8n1
NAME TYPE GROUP IMAGE

CONFIG_SET EXT_PARAMETERS
c8-0c2s8n1 compute compute
/var/opt/cray/imps/boot_images/roe-initrd-compute-large_cle_6.1.DV00-
build6.1.50DV_sles_12-created20160201.cpio
 p0-brt-20160202 hsn_ipv4_mask=255.252.0.0 hsn_ipv4_net=10.128.0.0
sdbnodeip=10.131.255.253
bootnodeip=10.131.255.254 NIMS_GROUP=compute
netroot=compute-large_cle_6.1.DV00-build6.1.50DV_sles_12-created20160201
ids=10.128.8.216,10.128.0.66,10.128.3.202 config_set=p0-brt-20160202

3. In window 2, update the node's parameter so that /init will drop into the DEBUG shell.

smw# cnode update -k DEBUG=true c8-0c2s8n1
smw# cnode list c8-0c2s8n1
NAME TYPE GROUP IMAGE

CONFIG_SET EXT_PARAMETERS
c8-0c2s8n1 compute compute
/var/opt/cray/imps/boot_images/roe-initrd-compute-large_cle_6.1.DV00-
build6.1.50DV_sles_12-created20160201.cpio
 p0-brt-20160202 sdbnodeip=10.131.255.253 bootnodeip=10.131.255.254
hsn_ipv4_mask=255.252.0.0
hsn_ipv4_net=10.128.0.0 DEBUG=true NIMS_GROUP=compute
netroot=compute-large_cle_6.1.DV00-build6.1.50DV_sles_12-created20160201
ids=10.128.8.216,10.128.0.66,10.128.3.202 config_set=p0-brt-20160202

4. In window 2, reboot the node to use the new kernel parameters.

crayadm@smw> xtbootsys --reboot -r "testing init" c8-0c2s8n1

5. In window 1, interact with the DEBUG shell.

NOTE: While in the DEBUG shell, type "exit" in the console terminal to advance /init to the next
breakpoint.

Techniques for Troubleshooting a Failed Boot

S2565 97

6. In window 2, when done interacting with the DEBUG shell, remove the DEBUG kernel parameter from this
node and confirm its removal.

smw# cnode update -K DEBUG c8-0c2s8n1
smw# cnode list c8-0c2s8n1

At this point, the system administrator may wish to keep the node running as it is or warm boot the node to ensure
that the next boot will come up cleanly and not in DEBUG mode.

Techniques for Troubleshooting a Failed Boot

S2565 98

Information to Gather for Opening a Bug
If a bug needs to be opened, collect the information from xtshowrev, xtdumpsys and cdump, xtcheckhss,
any pertinent log files, and all or a portion of the global config set and CLE config set. The following sections show
how to gather this information.

Collecting information about an SMW HA system entails using several commands in addition to those used for a
non-HA system. The final section describes these commands and provides examples.

xtshowrev
Every bug opened should include information about the XC system and the software installed. This information is
displayed by the xtshowrev command on the SMW. For command usage, type xtshowrev -h.

crayadm@smw> module load xtshowrev
crayadm@smw> xtshowrev
Site: CRAY/INTERNAL
S/N: 9999
System Type: XC40
Install Date: 2016-06-15
System Name: panda
CNL/CLE Release: 6.0.UP01
XT Release: 6.0.96
CLE Kernel: 3.12.51-52.31.1_1.0600.9146
CLE OS: SLES12
CLE Patch Sets: 02 03 04 06 07
CLE FNs:
Lustre Version: 2.7
OS Type: CLE
SMW Release: 8.0.UP01
SMW Build: 8.0.96
HSS Release: 8.0__446__ge75851a-49.1
SMW Kernel: 3.12.51-52.39
SMW OS: SLES12
SLE Patch Sets:
SMW Patch Sets: 02
SMW FNs: 5844c
SEC Release: Cray_SEC 8.0__6__g689802a (sec 2.7.6)
Current Date: 2016-07-06 14:59:10
crayadm@smw>

xtdumpsys and cdump
For most bugs, it is helpful to include the output from xtdumpsys and cdump.

The xtdumpsys program dumps logs and other information from a running system into a directory
in /var/opt/cray/log. This is very useful in the case of a node crash or failure to boot. xtdumpsys is often
used in combination with cdump of a specific node or nodes that may have crashed or hung.

Information to Gather for Opening a Bug

S2565 99

xtdumpsys collects and analyzes information from a Cray XC system that is failing or has failed, has crashed, or
is hung. If doing a full dump (recommended), xtdumpsys will gather the following by default:

● event log data, active heartbeat probing, voltages, temperatures, health faults, in-memory console buffers,
and high-speed interconnection network errors

● config sets from SMW

● NIMS logs from SMW

● Ansible logs from nodes (only those nodes that have Ansible failures in the console log)

● Ansible changed-files log from nodes

NOTE: xtdumpsys does not gather the Ansible changed-files log unless the --add option is used to
specify which nodes to gather it from.

The cdump command is used to dump node memory to a file from a panicked or hung node. It is typically used
with the -A option to automatically include important supporting data files, such as vmlinux and systemp.map.

To use xtdumpsys and cdump together, open a second terminal window. In window 1, enter one of the following.

● For a full dump:

window1 crayadm@smw> xtdumpsys [--partition pN] -r 'REASON'
● For a full dump that includes Ansible changed-files log from nodes in NODE_LIST (a space-separated list of

nodes):

window1 crayadm@smw> xtdumpsys [--partition pN] -r 'REASON' \
--add NODE_LIST

● For a partial dump of only the NIMS and Ansible information from nodes in NODE_LIST (a space-separated
list of nodes):

window1 crayadm@smw> xtdumpsys [--partition pN] -r 'REASON' \
--add NODE_LIST --plugins-include ansible_logs ansible_changed_files \
lsb_path_logs nims_logs
Note that the LSB Path Logs plugin is needed in this command because it collects the console log, which is
used to determine which nodes have Ansible failures.

Then in window 2, do the following:

1. For hung CLE node(s), use xtnmi to kill the node(s) before capturing the cdump. Note that the ID_LIST is a
comma-separated list of nodes.

window2 crayadm@smw> xtnmi -k halt ID_LIST
2. Use the cdump command to capture information about the node(s). Note that NODE_LIST is a space-

separated list of nodes.

window2 crayadm@smw> cd <dumpdir>
window2 crayadm@smw> mkdir cdump
window2 crayadm@smw> cd cdump
window2 crayadm@smw> cdump -A -r xt-hsn@boot-pN NODE_LIST

If a cdump has been taken, it can be examined using the crash command on the SMW.

For more information about these commands, see their man pages.

Information to Gather for Opening a Bug

S2565 100

xtcheckhss
A few bugs may require the output from xtcheckhss.

The xtcheckhss command is designed to validate the health of the HSS by gathering and displaying information
supplied by scripts located on blade controllers (BC) and cabinet controllers (CC) on a Cray XC Series system.
xtcheckhss includes these tests:

Version Checker Reads the current firmware version running on the L0C, QLOC, L0Ds, BC micro, CC micro,
CC FPGA, CHIA FPGAs, Tolapai BIOSes, and Node BIOS. The version that is read from
each device is compared to the currently installed versions on the SMW.

Sensor Checker Reads environment sensors including temperatures, voltages, currents, and other data.

SEEP Checker Reads serial electrically erasable PROMs (SEEP) in the system. This test can report any
un-initialized, zeroed, or unreadable SEEPs.

AOC Checker Reads all active optical cable (AOC) data. This test displays any outliers relative to the
average data calculated by previous runs.

ITP Checker Validates the embedded in-target probe (ITP) path. A simple power check is performed via
the ITP.

NTP Checker Reads system time on all controllers and compares them with the SMW time; displays any
mismatches.

Control Checker Examines system controls.

● Performs a Micronet throughput test on the CC or BC microcontroller.

● Gets the uptime and reset cause of the CC or BC microcontroller.

● Verifies that the rectifiers are outputting the correct voltage for their current state.

● Verifies that the Aries sensors are reading expected values for its current state.

● Verifies that the blower sensors are reading expected values for its current state.

● Prints the blade type and the voltage regulator module (VRM) type.

● Validates that water valves are open and that sensors are within expected range.

Configuration
Information
Checker

Reads the system hardware configuration and reports the system setup, including the
blade type, daughter card type, CPU type and count, and the CPU and processor daughter
card (PDC) mask.

PCI checker Checks for missing or degraded PCIe (peripheral component interconnect express)
connectivity on add-in cards on an I/O base blade (IBB). This test requires that the nodes
be powered up and bounced. Any cards that do not train to the PCIe Gen or Width
specified in the Link Capability register are flagged. Any cards that are reported as
physically present but not seen by the node are flagged.

NOTE: If any of these show a warning or error, further investigation may be needed.

crayadm@smw> xtcheckhss
No Version Mismatches Found!
No Sensor Warnings Found!
No SEEP Errors Found!
No AOC Errors Found!
No ITP Errors Found!
No NTP Time Sync Errors Found!

Information to Gather for Opening a Bug

S2565 101

No Control Errors Found!
No Info Errors Found!
No Expander Errors Found!
No PCIe Card Errors Found!
crayadm@smw>

log files
Although some SMW and Ansible logs (from a node that had an error when running cray-ansible) may be
included in xtdumpsys, other SMW and Ansible logs may be useful in debugging a boot failure. See SMW Log
File Locations on page 19 for specific log files and which daemons or processes write to them.

Further requests for information may include running commands to capture their output.

Collect Additional Information from SMW HA Systems
Because xtshowrev does not yet collect software release info for SMW HA systems, use this command to
gather that information:

smw# cat /etc/opt/cray/release/smwha-release
RELEASE=12.0.UP00
BUILD=12.0.48
DATE=201605180109
ARCH=x86_64

To gather information about the SMW HA configuration, use this command (this example shows the output for an
HA pair "minnie" and "mickey"):

smw# /opt/cray/ha-smw/default/sbin/ha_health

Cluster State
--
Health State : Healthy
Active Node : minnie
Node-1 : mickey (online)
Node-2 : minnie (online)
Number of Resources : 33
Number of Resources Running : 33
Number of Resources Stopped : 0
Maintenance Mode : disabled
Stonith Mode : enabled

To gather information about the distributed replicated block device (DRBD), use this command:

smw# cat /proc/drbd
version: 8.4.4 (api:1/proto:86-101)
GIT-hash: 3c1f46cb19993f98b22fdf7e18958c21ad75176d build by SuSE Build Service
 0: cs:Connected ro:Primary/Secondary ds:UpToDate/UpToDate C r-----
 ns:905180 nr:0 dw:905772 dr:12762 al:51 bm:0 lo:0 pe:0 ua:0 ap:0 ep:1 wo:f oos:0

To check the cluster status, use this command on either of the SMWs (this example shows the output for an HA
pair "minnie" and "mickey"):

smw# crm_mon -1r
Last updated: Tue Sep 6 11:26:06 2016

Information to Gather for Opening a Bug

S2565 102

Last change: Tue Sep 6 08:52:13 2016
Stack: corosync
Current DC: minnie (167903490) - partition with quorum
Version: 1.1.12-ad083a8
2 Nodes configured
33 Resources configured

Online: [mickey minnie]

Full list of resources:

 ClusterIP (ocf::heartbeat:IPaddr2): Started minnie
 ClusterIP1 (ocf::heartbeat:IPaddr2): Started minnie
 ClusterIP2 (ocf::heartbeat:IPaddr2): Started minnie
 ClusterIP3 (ocf::heartbeat:IPaddr2): Started minnie
 ClusterIP4 (ocf::heartbeat:IPaddr2): Started minnie
 ClusterMonitor (ocf::smw:ClusterMonitor): Started minnie
 ClusterTimeSync (ocf::smw:ClusterTimeSync): Started minnie
 HSSDaemonMonitor (ocf::smw:HSSDaemonMonitor): Started minnie
 Notification (ocf::heartbeat:MailTo): Started minnie
 ResourceInit (ocf::smw:ResourceInit): Started minnie
 cray-cfgset-cache (systemd:cray-cfgset-cache): Started minnie
 dhcpd (systemd:dhcpd.service): Started minnie
 fsync (ocf::smw:fsync): Started minnie
 hss-daemons (lsb:rsms): Started minnie
 stonith-1 (stonith:external/ipmi): Started mickey
 stonith-2 (stonith:external/ipmi): Started minnie
 Resource Group: HSSGroup
 postgresqld (lsb:postgresql): Started minnie
 mysqld (ocf::heartbeat:mysql): Started minnie
 Resource Group: IMPSGroup
 cray-ids-service (systemd:cray-ids-service): Started minnie
 cray-ansible (systemd:cray-ansible): Started minnie
 IMPSFilesystemConfig (ocf::smw:FileSystemConfig): Started minnie
 Resource Group: LogGroup
 rsyslog (systemd:rsyslog.service): Started minnie
 cray-syslog (systemd:llmrd.service): Started minnie
 LogFilesystemConfig (ocf::smw:FileSystemConfig): Started minnie
 Resource Group: SharedFilesystemGroup
 homedir (ocf::heartbeat:Filesystem): Started minnie
 md-fs (ocf::heartbeat:Filesystem): Started minnie
 imps-fs (ocf::heartbeat:Filesystem): Started minnie
 ml-fs (ocf::heartbeat:Filesystem): Started minnie
 repos-fs (ocf::heartbeat:Filesystem): Started minnie
 pm-fs (ocf::heartbeat:Filesystem): Started minnie
 ip-drbd-pgsql (ocf::heartbeat:IPaddr2): Started minnie
 Master/Slave Set: ms-drbd-pgsql [drbd-pgsql]
 Masters: [minnie]
 Slaves: [mickey]
Note that the crm_mon output displays the SMW host names as "Online" in alphanumeric order; the first SMW
shown is not necessarily the primary SMW.

Information to Gather for Opening a Bug

S2565 103

	Contents
	About the XC™ Series Boot Troubleshooting Guide
	Introduction to Troubleshooting a Boot of an XC™ Series System
	SMW and CLE Hardware Configuration and Cabling Concepts
	SMW Daemons, Processes, and Logs
	Daemons on a Stand-alone SMW
	Daemons on an SMW HA System
	SMW Log File Locations
	Time Synchronization Among XC™ Series System Components

	About Cray Scalable Services
	Anatomy of an XC System Boot with xtbootsys
	About Boot Automation Files

	The Booting Process from the CLE Node View
	Booting with PXE Boot for Boot and SDB Nodes
	Booting tmpfs Method with bnd
	Booting Netroot Method with bnd
	cray-ansible and Ansible Logs on a CLE Node

	Commands Helpful in Troubleshooting a Boot
	Check RSMS Daemons
	Check diod daemon
	Check cray-cfgset-cache Daemon
	Check DHCP or TFTP Daemons
	Check Console Messages
	Log In to a Node
	Check Daemons Using xtalive
	Check STONITH on Blade Controller
	Check for Cabling Issues
	Check Hardware Inventory
	Check Boot Configuration
	Enable or Disable a Component
	Check Status of Nodes
	Change Node Role Between Service and Compute
	Check NIMS Map
	Check Which Boot Images Have Been Assigned
	Check Node NIMS Group, Boot Image, and Kernel Parameter Assignment
	Check Whether Node is Using Netroot or tmpfs
	Check Which Boot Images Exist on the System
	Check Which Image Roots Exist on the System
	Observe Network Traffic on SMW Network Interfaces
	Check Firewall
	Search a Config Set
	List the Ansible Playbooks in a Config Set and Image Root
	Search the Ansible Playbooks in a Config Set and Image Root
	Search Ansible Plays on a Node
	Check for Warnings, Alerts, and Reservations
	Check for Locks
	Check for PCIe Link Errors
	Check for Hardware Errors
	Check for LCB and Router Errors
	Check Time on a Node

	Techniques for Troubleshooting a Failed Boot
	xtcli status Fails
	xtbootsys Fails with xtbounce Error
	xtbootsys Fails with rtr Error
	xtbootsys Fails with xtcablecheck Error
	Boot or SDB Node Fails to PXE Boot
	Possible Problem with Boot Image Assignment
	xtbootsys Exits After Failure to Boot the Boot and SDB Nodes
	xtbootsys Exits After Timeout While Booting the Boot and SDB Nodes
	xtbootsys Waits for Input After Timeout While Booting the Boot and SDB Nodes
	xtbootsys Never Begins to Boot Service Nodes
	xtbootsys Never Begins to Boot Compute Nodes
	cray-ansible Fails in Init Phase on any Node
	cray-ansible Fails in Booted Phase on Any Node
	Node Fails to Mount Local Storage
	Node Fails to Mount NFS File System
	Node Fails to Mount Direct-attached Lustre (DAL)
	Node Fails to Mount External Lustre File System
	Node Fails to Mount DVS-projected File System
	Corrupt File System on Boot or SDB Node
	Check the Duties of a Broken Service Node
	Check for HSS and Config Set Agreement on Duties of Boot and SDB Nodes
	Node with Network Interface not Accessible over that Network
	Boot Fails on a Node that Should be Disabled
	Boot Halts with an NMI when DEBUG Shell Entered
	Check Which Boot Automation File Being Used
	xtbootsys Fails with Undefined Partition
	Possible Problem from Mismatch of Netroot Information on a Node
	Boot Fails on a Node using Netroot
	Diags Content Missing
	PE Software Content Missing
	Node Fails to Mount Config Set from IDS Servers
	Put a Node in DEBUG and Step Through the Init Phase

	Information to Gather for Opening a Bug

