
XC™ Series Aries Network Resiliency Guide

(CLE 6.0.UP07)

S-0041

Contents
1 About the XC Series Aries Network Resiliency Guide (S-0041)...3

2 About Link Resiliency... 5

2.1 Automatic Response to Failures..5

2.1.1 Automatic Recovery of a Failed Single HSN Channel .. 6

2.1.2 Automatic Recovery of a Failed High-speed Network Cable... 6

2.1.3 Automatic Recovery of Power Loss to an Aries™ Network Card on a Blade.............................. 7

2.1.4 Automatic Recovery of Power Loss to a Blade.. 8

2.1.5 Automatic Recovery of Power Loss to a Cabinet... 9

2.1.6 Automatic xtnlrd Actions to Respond to Critical Aries™ ASIC Errors.. 9

2.2 Identify Lane Degrades .. 10

2.3 Update the Physical System Configuration While the System is Booted.. 11

2.3.1 Update Config Set Information on Booted Nodes.. 11

2.3.2 Reuse One or More Previously-failed HSN Links.. 12

2.3.3 Reuse One or More Previously-failed Blades, ANCs, or Cabinets...13

2.3.4 Add or Remove High-speed Network Cables from Service... 13

2.3.5 Remove a Compute Blade from Service While the System is Running..................................... 13

2.3.6 Return a Compute Blade into Service.. 15

2.4 Identify Unrouteable Configurations.. 16

2.4.1 Recover a Blade That Failed to Respond to the Reroute Request.. 18

2.5 Link Resiliency Parameters... 19

3 About Network Congestion... 21

3.1 Network Congestion Causes... 21

3.2 Congestion Management Software Components..21

3.3 How Congestion Management Software Detects Network Congestion.. 21

3.4 Congestion Management Log File and Messages.. 22

3.5 Send an Event to ALPS to Terminate the Top Network Congestion Candidate Application....................23

3.6 Find Throttled Applications in the xtnlrd Log... 24

3.7 Identify the User Application that Caused Excessive Network Congestion...25

3.8 Possible Critical Errors Resulting from Network Congestion...27

3.9 SMW Network Congestion Parameters...28

3.10 Blade Controller Network Congestion Parameters..28

Contents

S0041 2

1 About the XC Series Aries Network Resiliency Guide
(S-0041)

The XC™ Series Aries® Network Resiliency Guide (S-0041) describes the link resiliency and congestion
protection features of the Cray® XC™ system. This guide summarizes the automatic responses to failures and
describes how to identify and manage issues with routing and network congestion.

Release CLE 6.0.UP07
This version of the publication supports Cray software release 6.0.UP07 for Cray XC systems. There have been
no updates to this document for this release.

Title Date

XC™ Series Aries® Network Resiliency Guide (CLE 6.0.UP07) S-0041 12 July 2018

XC™ Series Aries® Network Resiliency Guide (CLE 6.0.UP06) S-0041 26 Feb 2018

XC™ Series Aries® Network Resiliency Guide (CLE 6.0.UP05) S-0041 2 Oct 2017

XC™ Series Aries® Network Resiliency Guide (CLE 6.0.UP04) S-0041 12 June 2017

XC™ Series Aries® Network Resiliency Guide (CLE 6.0.UP03) S-0041 Rev A 28 Mar 2017

XC™ Series Aries® Network Resiliency Guide (CLE 6.0.UP03) S-0041 13 Feb 2017

XC™ Series Aries® Network Resiliency Guide (CLE 6.0.UP02) S-0041 8 Dec 2016

XC™ Series Aries® Network Resiliency Guide (CLE 6.0.UP01) S-0041 Rev A 1 Nov 2016

Title Change
This publication was previously titled CLE XC System Network Resiliency Guide (S-0041) and Network Resiliency
for Cray XC Systems (S-0041).

Scope and Audience
This publication is written for experienced Cray system administrators and service personnel. For application-level
information, see the Aries™ Network Tech Note - Application Changes to Avoid Network Congestion (S-0048).

Typographic Conventions
Monospace Indicates program code, reserved words, library functions, command-line prompts,

screen output, file/path names, and other software constructs.

Monospaced Bold Indicates commands that must be entered on a command line or in response to an
interactive prompt.

About the XC Series Aries Network Resiliency Guide (S-0041)

S0041 3

Oblique or Italics Indicates user-supplied values in commands or syntax definitions.

Proportional Bold Indicates a GUI Window, GUI element, cascading menu (Ctrl→Alt→Delete), or
key strokes (press Enter).

\ (backslash) At the end of a command line, indicates the Linux® shell line continuation character
(lines joined by a backslash are parsed as a single line).

Trademarks
The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY and
design, SONEXION, Urika-GX, and YARCDATA. The following are trademarks of Cray Inc.: APPRENTICE2,
CHAPEL, CLUSTER CONNECT, CRAYDOC, CRAYPAT, CRAYPORT, DATAWARP, ECOPHLEX, LIBSCI,
NODEKARE. The following system family marks, and associated model number marks, are trademarks of Cray
Inc.: CS, CX, XC, XE, XK, XMT, and XT. The registered trademark LINUX is used pursuant to a sublicense from
LMI, the exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis. Other trademarks used in
this document are the property of their respective owners.

About the XC Series Aries Network Resiliency Guide (S-0041)

S0041 4

2 About Link Resiliency
The Aries™ high-speed network (HSN) consists of lanes and channels. A lane provides bi-directional
communication between two ports and a channel is three lanes. A Link Control Block (LCB) facilitates the
transport of data across asynchronous chip boundaries by providing buffering and handshake support logic
between higher-level network core logic and lowest-level channel protocol.

Cray XC series systems, which use the Aries™ interconnect technology, have hardware and software support that
allows the system to handle certain types of hardware failures without requiring a system reboot. In addition, the
same technology allows for the removal and replacement of compute blades without a system reboot. These
features contribute to a reduction in both planned and unplanned system downtime.

In the case of loss of power to an Aries™ Network Card (ANC), blade, set of blades, or the warm swap out of a
compute blade, applications running on the affected blades will either be killed, or in the case of a warm swap out,
be allowed to complete.

Warm swap of service blades is not supported.

Recovery from link failure is handled identically for compute blades and for service blades.

There are several components to Aries™ link resiliency:

● Hardware design that permits failed link detection and corrective action

● Software (bcnwd) on each blade controller (BC) that detects failed links and power loss to ANCs.

● A daemon on the System Management Workstation (SMW) (xtnlrd) that coordinates the system response
to failures.

● Another daemon on the SMW (xthwerrlogd) that logs hardware errors.

● An administrative command on the SMW (xtwarmswap) that facilitates warm swap of blades.

For more information, see the xthwerrlogd, xtnlrd, and xtwarmswap man pages.

When the Cray system is booted using the xtbootsys command, the xtnlrd and xthwerrlogd daemons are
started on the SMW. Link monitoring on each BC is also enabled at this time, and link failures are logged by
xthwerrlogd and responded to by xtnlrd rerouting the HSN around the failures.

2.1 Automatic Response to Failures
The following failures are handled automatically by the hardware and software supporting the Aries™
interconnect technology.

● Automatic Recovery of a Failed Single HSN Channel

● Automatic Recovery of a Failed High-speed Network Cable

● Automatic Recovery of Power Loss to an Aries™ Network Card on a Blade

● Automatic Recovery of Power Loss to a Blade

About Link Resiliency

S0041 5

● Automatic Recovery of Power Loss to a Cabinet

● Automatic xtnlrd Actions to Respond to Critical Aries™ ASIC Errors

2.1.1 Automatic Recovery of a Failed Single HSN Channel
When a single Aries™ high-speed network (HSN) channel fails, two link control blocks (LCBs) are reported as
failed by bcnwd on the blade controllers (BCs) at each end of the channel. The failures are reported in the
xtnlrd log file; for example:

2012-11-18 23:45:51 smw 8609 cb_hw_error: failed_component c0-0c0s4a0l30, type 37,
error_code 0x6218, error_category 0x0080
2012-11-18 23:45:51 smw 8609 cb_hw_error: failed_component c0-0c0s5a0l30, type 37,
error_code 0x620a, error_category 0x0080
2012-11-18 23:45:51 smw 8609 cb_hw_error: failed_component c0-0c0s9a0l45, type 37,
error_code 0x6218, error_category 0x0080
2012-11-18 23:45:51 smw 8609 cb_hw_error: failed_component c0-0c0s9a0l45, type 37,
error_code 0x620a, error_category 0x0080

These failures are followed by a series of steps (shown below) as the automatic recovery actions are performed.
The automatic recovery steps typically complete in about 30 seconds. Each link endpoint with a fatal error has an
alert flag set to indicate that the link is not available and should be bypassed.

The automatic recovery steps are visible in the xtnlrd log file. In summary, these steps are:

● initial: Waits for failures

● aggregate_failures: Waits 10 seconds by default for any more links to fail

● link_failed: Begins to process the failed links

● alive: Determines which blades are alive

When power loss to a blade occurs, no response to the alive request is received; instead a 30-second
timeout occurs for the blade that lost power.

When power loss to a cabinet occurs, no response to the alive request is received; instead cabinet power
loss results in a maximum of 960 LCB failures being reported to xtnlrd. The exact number depends on the
topology class.

● route_compute: Computes and stages new routes to the BCs

● quiesce: Stops all high-speed network traffic temporarily

● switch_netwatch: Causes the netwatch daemon (bcnwd) on the blades to use the new routes file

● down_unused_links: Causes links that are up but unused to be taken down

● route_install: Asserts new routes in the Aries™ chips

● unquiesce: Resumes all high-speed network traffic

● finish: Performs final cleanup

● initial: Waits for failures (process restarts)

2.1.2 Automatic Recovery of a Failed High-speed Network Cable
Aries™ network connections are divided into three groups: green links (15 per Aries ASIC), black links (15 per
Aries ASIC), and blue links (10 per Aries ASIC). Green links are electrical connections over the backplane to
other Aries in the same chassis. Black links are electrical connections over cables to other chassis within the
same cabinet group. Blue links are optical connections over fiber to other cabinet groups.

About Link Resiliency

S0041 6

Loss of a black network cable results in the failure of at most 6 LCBs, whereas loss of a blue network cable
results in the failure of at most 8 LCBs. These appear in the xtnlrd log file as two entries per failed LCB, and
each of the failed LCBs has an alert flag set. These failures are followed by a series of steps (shown below) as
the automatic recovery actions are performed. The automatic recovery steps typically complete in about 30
seconds.

The automatic recovery steps are visible in the xtnlrd log file. In summary, these steps are:

● initial: Waits for failures

● aggregate_failures: Waits 10 seconds by default for any more links to fail

● link_failed: Begins to process the failed links

● alive: Determines which blades are alive

When power loss to a blade occurs, no response to the alive request is received; instead a 30-second
timeout occurs for the blade that lost power.

When power loss to a cabinet occurs, no response to the alive request is received; instead cabinet power
loss results in a maximum of 960 LCB failures being reported to xtnlrd. The exact number depends on the
topology class.

● route_compute: Computes and stages new routes to the BCs

● quiesce: Stops all high-speed network traffic temporarily

● switch_netwatch: Causes the netwatch daemon (bcnwd) on the blades to use the new routes file

● down_unused_links: Causes links that are up but unused to be taken down

● route_install: Asserts new routes in the Aries™ chips

● unquiesce: Resumes all high-speed network traffic

● finish: Performs final cleanup

● initial: Waits for failures (process restarts)

2.1.3 Automatic Recovery of Power Loss to an Aries™ Network Card on a Blade
Loss of power to an Aries™ Network Card (ANC) results in LCB failures (at most 25 for a class 0, or mini,
topology, or at most 40 for a class 2 topology) being reported by xtnlrd. Although the endpoints on the blade
whose ANC lost power are not reported as failed, the ANC on that blade is reported and alert flags are set on
both the ANC and all LCBs that were reported as failed. This results in the entire blade being routed around.

The following output appears in the xtnlrd log file, including a report of the blade that lost ANC power.

2012-10-26 16:20:21 smw 52404 ***** dispatch: current_state alive *****
2012-10-26 16:20:21 smw 52404 INFO: 47 out of 48 L0s are alive
2012-10-26 16:20:21 smw 52404 Beginning to wait for response(s)
2012-10-26 16:20:21 smw 52404 svid 0:c0-0c0s8 (131282: Mezzanine Voltage Fault)
2012-10-26 16:20:21 smw 52404 Received 47 of 47 responses
2012-10-26 16:20:21 smw 52404 ***** dispatch: current_state check_alive *****
2012-10-26 16:20:21 smw 52404 MODULE ERROR: c0-0c0s8 - 210 - Mezzanine Voltage
Fault
2012-10-26 16:20:21 smw 52404 add_blade_to_list: adding blade c0-0c0s8 to
bladefailed list

The steps that are automatically performed to reroute the HSN are provided below. The automatic recovery steps
typically complete in about 30 seconds.

The automatic recovery steps are visible in the xtnlrd log file. In summary, these steps are:

About Link Resiliency

S0041 7

● initial: Waits for failures

● aggregate_failures: Waits 10 seconds by default for any more links to fail

● link_failed: Begins to process the failed links

● alive: Determines which blades are alive

When power loss to a blade occurs, no response to the alive request is received; instead a 30-second
timeout occurs for the blade that lost power.

When power loss to a cabinet occurs, no response to the alive request is received; instead cabinet power
loss results in a maximum of 960 LCB failures being reported to xtnlrd. The exact number depends on the
topology class.

● route_compute: Computes and stages new routes to the BCs

● quiesce: Stops all high-speed network traffic temporarily

● switch_netwatch: Causes the netwatch daemon (bcnwd) on the blades to use the new routes file

● down_unused_links: Causes links that are up but unused to be taken down

● route_install: Asserts new routes in the Aries™ chips

● unquiesce: Resumes all high-speed network traffic

● finish: Performs final cleanup

● initial: Waits for failures (process restarts)

2.1.4 Automatic Recovery of Power Loss to a Blade
Blade power loss appears very similar to an Aries™ Network Card (ANC) power loss, except that no response to
the alive request is received; instead a 30-second timeout occurs for the blade that lost power. The alive
stage of the recovery process shows a timeout for the blade that lost power, such as:

2012-10-26 15:48:10 smw 52404 generic_rsp_timeout: ERROR: Did not receive responses
from
the following L0s: c0-0c0s9
2012-10-26 15:48:10 smw 52404 ***** dispatch: current_state check_alive *****
2012-10-26 15:48:10 smw 52404 add_blade_to_failed_list: adding blade c0-0c0s9 to
bladefailed list

The automatic recovery steps that are performed are provided below. Due to the timeout, which is 30 seconds by
default, recovery from a failed blade typically takes about 60 seconds.

The automatic recovery steps are visible in the xtnlrd log file. In summary, these steps are:

● initial: Waits for failures

● aggregate_failures: Waits 10 seconds by default for any more links to fail

● link_failed: Begins to process the failed links

● alive: Determines which blades are alive

When power loss to a blade occurs, no response to the alive request is received; instead a 30-second
timeout occurs for the blade that lost power.

When power loss to a cabinet occurs, no response to the alive request is received; instead cabinet power
loss results in a maximum of 960 LCB failures being reported to xtnlrd. The exact number depends on the
topology class.

● route_compute: Computes and stages new routes to the BCs

About Link Resiliency

S0041 8

● quiesce: Stops all high-speed network traffic temporarily

● switch_netwatch: Causes the netwatch daemon (bcnwd) on the blades to use the new routes file

● down_unused_links: Causes links that are up but unused to be taken down

● route_install: Asserts new routes in the Aries™ chips

● unquiesce: Resumes all high-speed network traffic

● finish: Performs final cleanup

● initial: Waits for failures (process restarts)

2.1.5 Automatic Recovery of Power Loss to a Cabinet
Cabinet power loss is the most widespread single high-speed network event that is handled by xtnlrd. This
case is very similar to Automatic Recovery of Power Loss to a Blade on page 8, but rather than a single blade,
cabinet power loss results in a maximum of 960 link control block (LCB) failures being reported to xtnlrd. The
exact number depends on the topology class.

Each of these LCBs is marked with an alert flag as part of the recovery process. In addition, the Aries™ chip on
each blade in the failed cabinet is marked with an alert flag. During the recovery process, all blades in the failed
cabinet time out and are removed from routing.

The automatic recovery steps that are performed are provided below. Due to the timeout, which is 30 seconds by
default, recovery from a failed cabinet typically takes about 60 seconds.

The automatic recovery steps are visible in the xtnlrd log file. In summary, these steps are:

● initial: Waits for failures

● aggregate_failures: Waits 10 seconds by default for any more links to fail

● link_failed: Begins to process the failed links

● alive: Determines which blades are alive

When power loss to a blade occurs, no response to the alive request is received; instead a 30-second
timeout occurs for the blade that lost power.

When power loss to a cabinet occurs, no response to the alive request is received; instead cabinet power
loss results in a maximum of 960 LCB failures being reported to xtnlrd. The exact number depends on the
topology class.

● route_compute: Computes and stages new routes to the BCs

● quiesce: Stops all high-speed network traffic temporarily

● switch_netwatch: Causes the netwatch daemon (bcnwd) on the blades to use the new routes file

● down_unused_links: Causes links that are up but unused to be taken down

● route_install: Asserts new routes in the Aries™ chips

● unquiesce: Resumes all high-speed network traffic

● finish: Performs final cleanup

● initial: Waits for failures (process restarts)

About Link Resiliency

S0041 9

2.1.6 Automatic xtnlrd Actions to Respond to Critical Aries™ ASIC Errors
In addition to link failure due to a bad Link Control Block (LCB), cable, Aries™ Network Card (ANC), blade, or
cabinet, critical errors on the Aries ASIC are also monitored by bcnwd and responded to by xtnlrd. Depending
on which logic block in the Aries reported the critical error, different actions are taken by xtnlrd. The following
table explains the various actions:

Table 1. Automatic xtnlrd Actions to Respond to Critical Aries™ ASIC Errors

Block Component Action Note

NIC rt_node Alert on node

PI rt_node Alert on node

LB_NIC rt_node Alert on node Some LB errors related to a specific NIC
or PI, so for these, an alert is set on the
node.

LB rt_node Route around Aries Other LB errors are Aries-wide

NL rt_node Route around Aries Netlink errors can affect the whole Aries,
but significant error analysis needs to be
done to determine the scope of each NL
error.

NT rt_aries_lcb Route around failed link Do not consult the critical error table.

PT rt_aries_lcb Route around Aries Ptile errors are not necessarily internal to
that group of Ptiles. Need to distinguish
between a critical Ntile error (row 0-4)
where we just route around a bad link,
and a critical Ptile error (row 5) where we
route around the bad Aries.

RTR rt_aries Route around Aries Router errors affect the whole Aries.

PCIe rt_node

rt_aries_nic

Alert on node

2.2 Identify Lane Degrades
Each High Speed Network (HSN) link is comprised of three SerDes lanes in each direction. Under normal
circumstances, all three lanes are operational and running cleanly. The Aries™ SerDes and LCB hardware do a
very good job of keeping the lanes and links alive, even in the presence of soft errors. There can, however, be
cases where lane hardware is faulty, such as a bad cable. In those cases, one or more lanes can give up and shut
down due to excessive errors. This is due to bad signal paths in the HSN hardware. The link itself will continue to
run at reduced bandwidth as long as there is at least one lane running. If a lane degrades, the hardware involved
needs to be serviced.

About Link Resiliency

S0041 10

Use the xtnetwatch log to identify degraded lanes. In this example, lanemask=6, which means that lane 0 is
down.

130625 09:41:35 ############## ############## ############### ################
130625 09:41:35 LCB ID Peer LCB Category Description
130625 09:41:35 ############## ############## ############### ##############
130625 13:30:18 c0-0c2s10a0l23 c1-0c1s10a0l22 Info RX Lane
Degrade,
lanemask: 6
130625 13:30:18 c0-0c2s10a0l23 c1-0c1s10a0l22 Info TX Lane
Degrade,
lanemask: 6

2.3 Update the Physical System Configuration While the System is
Booted

To change the system configuration physically while the system is booted, use the xtwarmswap command to
remove or add one or more blades or high-speed network (HSN) cables.

CAUTION: When reserving nodes for maintenance, an admindown of any node in use by a current batch
job can cause a subsequent aprun in the job to fail. Instead, it is recommended that a batch subsystem
be used to first reserve nodes for maintenance, and then verify that a node is not in use by a batch job
prior to setting a node to admindown. Contact a Cray service representative to reserve nodes for
maintenance.

The xtwarmswap command runs on the SMW and coordinates with the xtnlrd daemon to take the necessary
steps to perform warm swap operations. For additional information, see the xtwarmswap(8) man page.

Note that the global config set and active CLE config set must be updated after any hardware changes so that
platform information is updated appropriately, and cray-ansible must be run on all currently booted nodes so
that updated config set info is pulled to those nodes.

2.3.1 Update Config Set Information on Booted Nodes

Prerequisites
This procedure assumes that the CLE system is booted.

About this task
Whenever physical hardware information is changed, the global config set and the CLE config set for the affected
nodes must be updated on the SMW, and the updated config set information must be propagated to all affected
CLE nodes. An example of a change to physical hardware is the reintroduction of originally disabled nodes to the
XC system by means of a warmswap.

Procedure

1. Update the global config set.

About Link Resiliency

S0041 11

smw# cfgset update --mode prepare global

2. Update the CLE config set (p0 in the example).

smw# cfgset update --mode prepare p0

3. Run cray-ansible on all affected CLE nodes to refresh the config set information on them.

On the boot node:

boot# /etc/init.d/cray-ansible start

On the SDB node:

sdb# /etc/init.d/cray-ansible start

On all service nodes:

sdb# pcmd -r -n ALL_SERVICE_NOT_ME "/etc/init.d/cray-ansible start"

On all compute nodes:

sdb# pcmd -r -n ALL_COMPUTE "/etc/init.d/cray-ansible start"

2.3.2 Reuse One or More Previously-failed HSN Links

About this task
To integrate failed links back into the HSN configuration, the xtwarmswap command may be invoked with one of
the following:

● -s LCB, ..., specifying the list of LCBs to bring back up

● -s all, to bring in all available LCBs

● -s none, to cause a reroute without changing the LCBs that are in use

Procedure

1. Execute an xtwarmswap -s LCB_names -p partition_name to tell the system to reroute the HSN
using the specified set of LCBs in addition to those that are currently in use.

Doing so will clear the alert flags on the specified LCBs automatically. If the warm swap fails, the alert flag will
be restored to the specified LCBs.

2. Execute an xtwarmswap -s all -p partition_name command to tell the system to reroute the HSN
using all available links.

The xtwarmswap command results in xtnlrd performing the same link recovery steps as for a failed link, but
with two differences: no alert flags are set, and an init_new_links and a reset_new_links step are
performed to initialize both ends of any links to be used, before new routes are asserted into the Aries™ routing
tables.

The elapsed time for the warm swap synchronization operation is typically about 30 seconds.

About Link Resiliency

S0041 12

2.3.3 Reuse One or More Previously-failed Blades, ANCs, or Cabinets

About this task
Failed blades have alert flags set on the ASICs and the LCBs. These alert flags must be cleared before the blade,
ANCs, or cabinets can be reused.

Perform an xtwarmswap --add operation to bring the blades back into the HSN configuration. Doing so clears
any alert flags on the added blades and LCBs relating to those blades, initializes the blades, runs the BIOS on the
nodes, and initializes the links to the blades.

Procedure

1. Ensure that blades/ANCs/cabinets have power.

2. Ensure that an xtalive command to all required blades succeeds.

3. Add the blade(s) to the HSN by executing the xtwarmswap --add blade_ID,... command. Note that this
command automatically executes a mini-xtdiscover command after the warm swap steps have completed
successfully. No manual invocation of xtdiscover, which gets the new hardware attributes from the added
blades, is necessary.

Because the xtwarmswap --add command initializes the added blades, the time to return the blades back
to service is about 10 minutes, including the time to initialize the blades, run the BIOS on the nodes, and
initialize the links to the blades.

4. Boot the nodes on the blade(s) by executing the xtcli boot CNL0 blade_ID,... command on the
SMW.

2.3.4 Add or Remove High-speed Network Cables from Service
To specify one or more high-speed network (HSN) cables to add or remove from service, use the xtwarmswap
--add-cable command or the xtwarmswap --remove-cable command, respectively. These options
provide the ability to replace one or more cables without removing blades or shutting down the system. The
routing of the Cray HSN will be updated to route around the removed cable or cables.

To add or remove a single HSN cable, specify one cable argument as in this --add-cable example:

xtwarmswap --add-cable cable

To add or remove multiple HSN cables, specify a comma-separated list of cables, as in this --remove-cable
example:

xtwarmswap --remove-cable cable1,cable2,...,cableN

The --add-cable and --remove-cable options are not supported if more than a single active partition exists
in the system. Do not specify the -p|--partition option when using these options. In addition, do not use the
--linktune option when using the --remove-cable option.

About Link Resiliency

S0041 13

2.3.5 Remove a Compute Blade from Service While the System is Running

About this task
A compute blade can be physically removed for maintenance or replacement while the system is running;
however, the applications using the nodes on the blade to be removed must either be allowed to drain or be killed
beforehand.

CAUTION: This procedure warm swaps a compute blade from service while the system is running. Do
not warm swap service blades, unless the blade is an I/O base blade (IBB) that has InfiniBand cards and
is an LNET blade. Before attempting to warm swap any service blade, it is advisable to consult with a
Cray service representative.

Procedure

1. Log on to the login node as root.

2. Ensure that the batch system or Slurm marks the blade as unavailable for scheduling.

3. Execute the following command to mark the nodes on the compute blade as admindown. This tells ALPS not
to launch new applications onto them. (This command may also be executed from the boot node as user
root.)

login# xtprocadmin -k s admindown -n blade_ID

The arguments to the -n option should be the NID values for the nodes on the blade being removed, as
shown by executing xtprocadmin | grep bladename.

For example, to find the NID values for the nodes on the blade c0-0c0s2 being removed:

login# xtprocadmin | grep c0-0c0s2
 8 0x8 c0-0c0s2n0 compute up batch
 9 0x9 c0-0c0s2n1 compute up batch
 10 0xa c0-0c0s2n2 compute up batch
 11 0xb c0-0c0s2n3 compute up batch

4. From the login node, execute the apstat -n command or the appropriate Slurm command to determine if
any applications are running on the node marked admindown. This example shows that apid 675722 is
running on all nodes of blade c0-0c0s2.

login# apstat -n | egrep -w 'NID|8|9|10|11
 8 XT UP B 32 32 1 4K 16777216 8388608 262144 1 675722
 9 XT UP B 32 32 1 4K 16777216 8388608 262144 1 675722
 10 XT UP B 32 32 1 4K 16777216 8388608 262144 1 675722
 11 XT UP B 32 32 1 4K 16777216 8388608 262144 1 675722

5. Wait until the applications using the nodes on the blade finish or use the apkill apid command to kill the
application.

6. Log on to the SMW as crayadm.

7. Execute the xtcli halt blade_ID command to halt the blade.

smw# xtcli halt blade_ID

About Link Resiliency

S0041 14

8. Execute the xtwarmswap --remove blade_ID command to remove the compute blade from service. The
routing of the Cray HSN will be updated to route around the removed blade.

The --remove stage of the xtwarmswap process uses the Aries™ resiliency infrastructure and takes about
30 seconds to complete.

smw# xtwarmswap --remove blade_ID

9. Execute the xtcli power down blade_ID command, which helps to identify which blade to pull (all lights
are off on the blade).

smw# xtcli power down blade_ID

10. Physically remove the blade, if desired. To complete this step, see the hardware maintenance and
replacement procedures documentation for the Cray system, or contact a Cray Service representative.

CAUTION: If a blade cannot be reinstalled in the empty slot within 2 minutes, install a filler blade
assembly in the empty slot; failure to do so can cause other blades in the system to overheat.

2.3.6 Return a Compute Blade into Service

About this task
After a blade has been repaired or when a replacement blade is available, use the following procedure to return
the blade into service.

Procedure

1. Physically insert the blade into the slot. To complete this step, see the hardware maintenance and
replacement procedures documentation for the Cray system, or contact a Cray Service representative.

2. On the SMW, execute the xtcli power up blade_ID command.

smw# xtcli power up blade_ID

3. Ensure that the blade is ready by entering the following command, and wait until the command returns the
correct response:

smw# xtalive blade_ID
The expected response was received.

4. Verify the status of the blade controller to ensure that its "Comp state" is "up" and that there are no flags set.

smw# xtcli status -t bc blade_ID

5. Bounce the blade.

smw# xtbounce blade_ID

6. If the blade or PDC type is different, su to root, execute the xtdiscover command, and then exit root.
Otherwise, skip this step.

smw# su - root
smw# xtdiscover

About Link Resiliency

S0041 15

smw# exit
smw#

7. Execute the xtzap --blade command to update the BC BIOS, node BIOS, microcontroller, and FPGAs as
required.

smw# xtzap --blade blade_ID

8. Execute the xtbounce --linkdown blade_ID command to prepare the blade for the warm swap (takes
down all HSN links on the blade).

smw# xtbounce --linkdown blade_ID

9. Add the blade(s) to the HSN by executing the xtwarmswap --add blade_ID,... command. This
command activates routing on the newly installed blade and automatically executes a mini-xtdiscover
command once the warm swap steps have completed successfully. No additional manual invocation of
xtdiscover, which gets the new hardware attributes from the added blades, is necessary.

smw# xtwarmswap --add blade_ID

Because the xtwarmswap --add command initializes the added blades, the time to return the blades back
to service is about 10 minutes, including the time to initialize the blades, run the BIOS on the nodes, and
initialize the links to the blades.

10. Boot the nodes on the blade(s) by executing the xtcli boot CNL0 blade_ID,... command on the
SMW.

smw# xtcli boot CNL0 blade_ID

11. As root on the login node, execute the following command to mark the nodes on the compute blade as up.
This tells ALPS that new applications may be launched onto those nodes. (This command may also be
executed from the boot node as user root.)

login# xtprocadmin -k s up -n blade_ID

12. Verify that the blade is up.

login# xtprocadmin | grep blade_ID

13. Ensure that the batch system or Slurm marks the blade as available for scheduling.

2.4 Identify Unrouteable Configurations
Cray XC series systems have a dragonfly network topology that provides for less restrictive connectivity than a
torus based network topology. Because of this, it is expected that there will also be fewer unrouteable
configurations. The main requirement for any Cray XC series system configuration to be routeable is that it must
be fully connected. Another characteristic of the configuration that is not strictly required, but is highly desirable, is
that every group is connected to every other group. If this is not the case, performance between some pairs of
groups can be greatly impacted.

In other cases however, the configuration per se is fine, but one blade is unable to complete the request due to
some unexpected failure specific to the blade (or rarely, to multiple blades). Such blades are typically operating

About Link Resiliency

S0041 16

fine otherwise, and may be actively running jobs, but cannot complete the new routing operation. This can happen
with any routing attempt; that is, it is not limited to the removal of components.

If a warmswap operation fails during the test reroute stage, then something is preventing the operation from
completing due to a failure to route the proposed new (that is, post-warmswap) configuration, and the following
output is displayed, as in this example of a warmswap remove operation. Note that if a large number of blades
encounter problems, the warmswap output might display only an overall error count.

smw:~# xtwarmswap --remove c0-0c2s15
Adding 0 blades and removing 1 blade in partition p0
Removing blades:
 c0-0c2s15

Sending command to xtnlrd
17:43:35(T+00:00) Warm swap beginning
17:43:35(T+00:00) Setting alert flag on blades being removed
17:43:35(T+00:00) Turning link monitoring off for blades being removed
17:43:35(T+00:00) Link monitoring turned off for blades being removed
17:43:35(T+00:00) Testing for routeability
17:43:36(T+00:01) Test reroute proceeding...
17:43:46(T+00:11) Test reroute proceeding...
17:43:56(T+00:21) Test reroute proceeding...
17:44:06(T+00:31) Test reroute proceeding...
17:44:16(T+00:41) Test reroute proceeding...
17:44:26(T+00:51) Test reroute proceeding...
17:44:35(T+01:00) ERROR: test route exited with an error status
17:44:35(T+01:00) Timeouts were reported on the following blade(s):
17:44:35(T+01:00) c0-0c2s13
17:44:35(T+01:00) Clearing alert flags for blades that could not be removed
17:44:35(T+01:00) Clearing alert flags on blades that failed to be removed
17:44:35(T+01:00) Turning link monitoring on for blades that could not be removed
17:44:35(T+01:00) Cleaning up

Daemon reported errno 11 (Resource temporarily unavailable)
Error text:
Error during route computation
1 of 45 blades reported timeouts during routing.
You may need to reboot these blade controllers, or warmswap the blades out,
before trying again.

FAILURE: Warm swap command failed.

A failure could also occur during a warmswap add operation; for example:

smw:~# xtwarmswap --add c0-0c2s15
Adding 1 blade and removing 0 blades in partition p0
Adding blades:
 c0-0c2s15

Sending command to xtnlrd
17:48:59(T+00:00) Warm swap beginning
17:48:59(T+00:00) Clearing alert flags on blades being added
17:49:00(T+00:01) Finished clearing link alerts
17:49:00(T+00:01) Testing for routeability
17:49:01(T+00:01) ERROR: test route exited with an error status
17:49:01(T+00:01) Failures were reported on the following blade(s):
17:49:01(T+00:01) c0-0c2s13
17:49:01(T+00:01) Marking HSN links down on blades that could not be added
17:49:01(T+00:01) Correcting alert flags for blades or LCBs that could not be added
or removed

About Link Resiliency

S0041 17

17:49:01(T+00:01) Restoring alert flags for blades that failed to be added
17:49:01(T+00:01) Cleaning up

Daemon reported errno 11 (Resource temporarily unavailable)
Error text:
Error during route computation
1 of 45 blades reported errors during routing.
You may need to reboot these blade controllers, or warmswap the blades out,
before trying again.

FAILURE: Warm swap command failed.

Usually, this type of failure will result in the blades being automatically removed from the system if a critical
resiliency operation is triggered to address a failed component. However, this is not the case for warmswap
operations, as manual recovery may be possible without the blade's removal, allowing running jobs to be
preserved and the blade to be left in the system. For the blade or blades that were reported as having failed or
timed out, see Recover a Blade That Failed to Respond to the Reroute Request on page 18.

Note that these types of failures are normally expected for one or a very small number of blades. If large numbers
of blades are indicated to have failed, then a more general routing issue may be the ultimate cause instead. This
may be an indirect indication that the new configuration is not routable or may indicate a more general system
issue.

If a routing issue appears to have occurred, additional information may be found in the output of the rtr
command corresponding to the failed test reroute. This output is recorded in the xtnlrd (nlrd-YYYYMMDD) log.
Use the following command to display the relevant log entries:

smw:~# grep "CMD: rtr:" nlrd-YYYYMMDD
CMD: rtr: WARNING: c0-0c2s15: ERROR: <error-string>; procedure aborted
CMD: rtr: ERROR: 1 errors, rtr failed
CMD: rtr: WARNING: c0-0c0s4: bcrtr process died due to signal 6"
CMD: rtr: ERROR: 1 errors, rtr failed
CMD: rtr: WARNING: c0-0c0s1: bcrtr process exited abnormally with status 14"
CMD: rtr: ERROR: 1 errors, rtr failed
CMD: rtr: ERROR: Timeout while executing bcrtr -f /var/tmp/rtr-cfg.test -S --id
test --instance=0x82e5, didn't hear from 1 BC: c0-0c2s6

2.4.1 Recover a Blade That Failed to Respond to the Reroute Request

Prerequisites
● The xtwarmswap command was executed and failed during the test reroute stage, and an otherwise routable

individual blade (or blades) fails to respond to the reroute request.

● The failed blade was identified in the output of the failing xtwarmswap command.

About this task
For warmswap operations, a manual recovery of a blade may be possible without the blade's removal, allowing
running jobs to be preserved and the blade to be left in the system.

Procedure

1. Reboot the blade controllers for the blade or blades reporting problems.

About Link Resiliency

S0041 18

smw:~# xtrsh -m s -l root -s reboot
comma-separated list of blade controller names

2. Rerun the previously-failing xtwarmswap command.

smw:~# xtwarmswap --remove c0-0c2s15

3. If the command fails a second time due to a routing failure, note the still-failing blade or blades reported in the
xtwarmswap output. Then remove these blades with xtwarmswap --remove before reattempting the original
warmswap operation.

2.5 Link Resiliency Parameters
Parameters in the xtnlrd.ini file control the system response to failures of link resiliency on the system.

aggregate_timeout

Seconds to wait after a link failure occurs before taking action to route around it, to allow any other link failures to
arrive (default is 10 seconds)

alive_timeout

Seconds to wait for alive responses from blades (default is 30 seconds)

init_new_blades_timeout

Seconds to wait for blade initialization to finish (default is 1200 seconds)

init_new_links_timeout

Seconds to wait for link initialization to finish (default is 600 seconds)

quiesce_timeout

Seconds to wait for quiesce to finish (default is 120 seconds)

reroute_l0_timeout

Seconds to wait for route requests to BCs to time out (default is 60 seconds)

reroute_retries

Number of route command retries on error (default is 1)

reroute_retry_wait

Seconds between route command retries on failure (default is 5 seconds)

reroute_smw_timeout

Seconds to wait for route requests to the SMW to time out (default is 15 seconds)

route_compute_timeout

Seconds to wait for route computation to finish (default is 300 seconds)

route_install_timeout

Seconds to wait for route installation to finish (default is 60 seconds)

unquiesce_timeout

Seconds to wait for unquiesce to finish (default is 120 seconds)

About Link Resiliency

S0041 19

userexit_on_failure

Calls user exit script /opt/cray/hss/default/etc/xtnlrd.userexit if link recovery fails (default is y)

About Link Resiliency

S0041 20

3 About Network Congestion
Network congestion is a condition that occurs when the volume of the traffic on the high-speed network (HSN)
exceeds the network's capacity to handle it. This causes traffic in the network to stall and make extremely slow
forward progress. In and of itself, network congestion is not a problem and is not unique to any particular network.
However, in the rare case of extreme congestion, problems can arise that may affect system performance.

On the Aries™ network, packets must reach their destinations quickly enough to avoid various higher level
timeouts and to enable reasonable transit latencies. The Outstanding Request Buffer (ORB) is a logic block in the
Aries ASIC that tracks sent packets. The ORB waits for response packets to match the extant entries. If the
sending ORB does not receive a response packet within some number of seconds then a timeout occurs. Under
normal conditions, this implies a lost packet that is then reported to higher-level clients for handling. If a timeout
occurs, the Hardware Supervisory System (HSS) on the blade detects the condition and executes an algorithm to
safely scrub the timed-out ORB entries. The scrub algorithm includes a 10-second quiesce of the Network
Interface Card (NIC) whose ORB indicated a timeout condition. When the HSN experiences congestion, however,
a timeout may not actually reflect a lost packet. Instead, in a congested network, the response packet's latency
will increase, which is the motivation for quiescing the NIC to ensure only truly lost packets get reported.

3.1 Network Congestion Causes
Congestion on the Aries™ network may result from a variety of causes. Congestion occurs most often when
application programmers use one-sided programming models such as PGAS (Partitioned Global Address Space)
and Cray SHMEM with applications that perform many- or all-to-one communication. Missing or compromised
lanes, routes, links and channels on the HSN can also cause congestion. It is possible that the Lustre Network
Driver (kgnilnd) or any of the higher level software that relies on it (e.g., Lustre and Data Virtualization Services)
can cause congestion.

3.2 Congestion Management Software Components
To manage congestion on the Aries™ network, HSS software monitors and throttles traffic injected into the
network when necessary. Congestion protection is implemented by two daemons: one on the SMW, called
xtnlrd, and one on the BC controllers, called bcbwtd. It limits the aggregate injection bandwidth across all
compute nodes to less than the ejection bandwidth of a single node. This alleviates congestion in the system,
which in turn has the effect of reducing network latency. This trade-off is acceptable because Congestion
Protection is active only in cases of extreme congestion.

About Network Congestion

S0041 21

3.3 How Congestion Management Software Detects Network
Congestion

The bcbwtd daemon running on the BC monitors the percentage of time that traffic trying to enter the network
from the nodes attached to the BC is stalled and the percentage of time network tiles are stalled. When these
percentages cross a high water mark threshold, bcbwtd communicates that information to the xtnlrd daemon
running on the SMW. After the congestion subsides, bcbwtd again relays this information to the SMW. When the
SMW receives a number of notifications of congestion sufficient to cross another high water mark threshold,
Congestion Protection is enabled.

Congestion protection remains active until congestion subsides and the number of congested tiles and nodes
drops below their respective low water mark thresholds. If an application (or combination of applications)
persistently congests the network, Congestion Protection is reapplied and released periodically until the
application terminates.

3.4 Congestion Management Log File and Messages
The daemon handling congestion management on the SMW, called xtnlrd, produces a log file that includes:

● Following an increase in overall system congestion, a chronological, component-based history of each
congestion event is generated, ranging from the first detection of congestion to the time total system
congestion again returns to zero (non-increases are omitted to help readability; that is, only up-ticks are
logged).

● Because once congestion begins, it can spread to its neighbors quickly, this history is displayed in the order in
which xtnlrd receives the congestion events from the individual blades. The congestion history is logged for
all incidents of detected congestion, even those that do not reach the threshold for throttling the system. This
history includes the network ASIC reporting the congestion, how much was reported, and which NICs were
congested, as well as the resulting effect on the overall system tile and NIC congestion. The congestion
history is displayed following the system's return to zero overall reported congestion.

● Events received from the Application Level Placement Scheduler (ALPS) when an application starts and
ends.

● A periodic update showing all applications that are running, repeated every five minutes, or whenever a
congestion protection event occurs.

● A list of the top 10 applications by aggregate ejection bandwidth (e.g., the per-node ejection bandwidth
summed across all nodes in the application) whenever a congestion protection event occurs.

● A list of the top 10 nodes by ejection flit counts whenever a congestion protection event occurs, which is
useful for identifying certain congesting many-to-few communications patterns.

● The applications running on those nodes, including APID, number of nodes, the user ID, and the application
name.

The xtnlrd log file is located in /var/opt/cray/log/session-id/nlrd.session-id.

The following log messages are produced in the xtnlrd log file when a throttle event is triggered and additional
information is gathered about the event:

2012-02-09 19:51:01 smw check_for_throttle_action: tile_weight 32 nic_weight 1
2012-02-09 19:51:01 smw do_throttle: Telling all blades to throttle network
bandwidth
2012-02-09 19:51:01 smw _do_throttle: sending throttle mask 0xf to 1632 blades
2012-02-09 19:51:06 smw Executing: Bandwidth data gathering

About Network Congestion

S0041 22

2012-02-09 19:51:11 smw Command succeeded.
2012-02-09 19:51:11 smw Executing: Unthrottle service blades only
2012-02-09 19:51:13 smw Command succeeded.

In addition, any time a congestion protection event occurs, a message like the following is inserted by aprun
into /var/opt/cray/log/pn-current/messages-YYYYMMDD. A similar message is also written to the user's
standard out:

Feb 9 11:32:40 nid00002 aprun[14718]: apid=6204, Network throttled,
user=10320, batch_id=unknown, nodes_throttled=20, node_seconds=00:01:50

3.5 Send an Event to ALPS to Terminate the Top Network Congestion
Candidate Application

Use xtnlrd, which is the daemon on the SMW that handles congestion management, to send an event to ALPS
to terminate the top congestion candidate based on the worst (individual) node's ejection flit counts after the
application appears N consecutive times at the top of the list of nodes. However, this feature carries the risk that
innocent applications may be terminated before ultimately killing the congesting application, due to the possibility
of other congestion patterns that may not be unambiguously detected by this scheme. Consequently, the default
value is n (no).

To use this feature, change the bw_congest_kill_top_app parameter in
the /opt/cray/hss/default/etc/xtnlrd.ini file to y (yes) and restart xtnlrd to enable it. xtnlrd can
be restarted by killing all xtnlrd processes and executing xtbootsys --start-daemons pN, where N is the
partition number (see SMW Network Congestion Parameters on page 28). This functionality does not involve
the top 10 applications by aggregate bandwidth, only the top 10 by ejection flit count. The former is a completely
separate metric.

Example: xtnlrd messages showing top congested nodes
The following messages provide a sample snapshot of the 10 nodes where congestion appears to be highest,
based on the assumption that the congestion has been caused by a many-to-few communications pattern,
including the application at the top of the list. More information about interpreting the flit count values found in this
listing is provided in Identify the User Application that Caused Excessive Network Congestion on page 25.

2012-02-09 19:51:13 smw responder_work_func: Top 10 nodes involved with network congestion
2012-02-09 19:51:13 smw Congestion candidate node 1: c8-1c0s7n1 (1237956 flits/sec)
(nid 1871; apid 384488 userid 51668 numnids 1024 apname xyz)
2012-02-09 19:51:13 smw Congestion candidate node 2: c3-0c0s6n2 (89834 flits/sec)
(nid 6060; apid 384498 userid 35032 numnids 128 apname pqr)
2012-02-09 19:51:13 smw Congestion candidate node 3: c3-0c0s6n3 (74578 flits/sec)
(nid 6061; apid 384498 userid 35032 numnids 128 apname pqr)
2012-02-09 19:51:13 smw Congestion candidate node 4: c1-0c0s6n2 (66725 flits/sec)
(nid 6226; apid 384498 userid 35032 numnids 128 apname pqr)
2012-02-09 19:51:13 smw Congestion candidate node 5: c3-0c0s6n1 (64722 flits/sec)
(nid 6131; apid 384498 userid 35032 numnids 128 apname pqr)
2012-02-09 19:51:13 smw Congestion candidate node 6: c8-1c0s7n0 (61527 flits/sec)
(nid 1870; apid 384486 userid 51668 numnids 1024 apname xyz)
2012-02-09 19:51:13 smw Congestion candidate node 7: c3-0c1s7n2 (50087 flits/sec)
(nid 6064; apid 384498 userid 35032 numnids 128 apname pqr)
2012-02-09 19:51:13 smw Congestion candidate node 8: c1-0c0s6n0 (46784 flits/sec)
(nid 6156; apid 384498 userid 35032 numnids 128 apname pqr)
2012-02-09 19:51:13 smw Congestion candidate node 9: c1-0c0s6n1 (41545 flits/sec)
(nid 6157; apid 384498 userid 35032 numnids 128 apname pqr)
2012-02-09 19:51:13 smw Congestion candidate node 10: c3-0c0s6n0 (41137 flits/sec)
(nid 6130; apid 384498 userid 35032 numnids 128 apname pqr)
2012-02-09 19:51:13 smw responder_work_func: found new apid 384488 userid 51668
numnids 1024 apname xyz at top of congestion list since last time we throttled

About Network Congestion

S0041 23

Example: xtnlrd messages when an application is killed
The following messages demonstrate xtnlrd sending an event to ALPS to kill an application after it appeared at
the top of the congestion list two consecutive times.

2012-02-09 19:51:53 smw Saw apid 384488 userid 51668 numnids 1024 apname xyz at
top
of congestion list for 2 consecutive times; killing application by sending event
to
ALPS for node c8-1c0s7n1 (nid 1871)!

How apevent communicates application start and end events
To help with congestion management, the apevent daemon running on the boot node is used to send application
start and end information to HSS software on the SMW. It does this by connecting with the apsched daemon and
converting apsched messages into events that are consumed by HSS software. The event includes the
application ID (apid), the user ID, the command name, the batch system ID, and the list of NIDs where the
application is running. When apevent first makes a connection with apsched, it requests a sync message,
which will contain information about all running applications. Following that, apsched sends a message to
apevent before sending a (successful) placement reply message back to aprun and sends another message
after it receives an exit message from the application. To make sure that ALPS software and the HSS software
are synchronized (even in the event of daemons starting/stopping), apevent periodically requests another sync
message from apsched. The time between sync messages is configurable by using the apevent -r option.

3.6 Find Throttled Applications in the xtnlrd Log
When the system initiates Congestion Protection software, xtnlrd outputs a list of applications and their APIDs
subject to system throttling. An example of output from xtnlrd:

2012-08-31 16:49:39 host1 53037 responder_work_func: List of all currently running applications:
2012-08-31 16:49:39 host1 53037 APPS_WHILE_THROTTLED: APID 3107982 USERID 31633 NIDS 32 NAME bnt
2012-08-31 16:49:39 host1 53037 APPS_WHILE_THROTTLED: APID 3107988 USERID 31633 NIDS 22 NAME
AlltoAll_allput
2012-08-31 16:49:39 host1 53037 APPS_WHILE_THROTTLED: APID 3107967 USERID 31633 NIDS 19 NAME
fma_multiple_pu
2012-08-31 16:49:39 host1 53037 APPS_WHILE_THROTTLED: APID 3107975 USERID 31633 NIDS 19 NAME bnt3
2012-08-31 16:49:39 host1 53037 APPS_WHILE_THROTTLED: APID 3107977 USERID 31633 NIDS 19 NAME
AlltoAll_allput
2012-08-31 16:49:39 host1 53037 APPS_WHILE_THROTTLED: APID 3107917 USERID 31633 NIDS 16 NAME
AlltoAll_allput
2012-08-31 16:49:39 host1 53037 APPS_WHILE_THROTTLED: APID 3107989 USERID 31633 NIDS 9 NAME
fma_simple_put_
2012-08-31 16:49:39 host1 53037 APPS_WHILE_THROTTLED: APID 3107985 USERID 31633 NIDS 2 NAME
AlltoAll_allput

In addition, an application list sorted by aggregate throttled ejection bandwidth is output to the xtnlrd log. This
list identifies the applications generating the most HSN traffic at the time of the throttling incident; however, it does
not necessarily include the application responsible for the congestion that triggered the throttling. A well behaved
application run on many nodes can generate a very large volume of traffic without causing congestion.
Nevertheless, in the absence of an obvious congestion candidate within the list of individual nodes with the
highest throttled ejection bandwidths (see the example in Send an Event to ALPS to Terminate the Top Network
Congestion Candidate Application on page 23), the applications shown in this aggregate throttled ejection
bandwidth list may be considered for closer scrutiny. For example:

TOP_BANDWIDTH_APPS: 0: apid 3145021 userid 12795 numnids 16 apname bnt Kflits/sec: Total 486 Per-node:
30
TOP_BANDWIDTH_APPS: 1: apid 3145020 userid 12795 numnids 16 apname bnt Kflits/sec: Total 481 Per-node:

About Network Congestion

S0041 24

30
Done with apps; all other bandwidth values are zero

3.7 Identify the User Application that Caused Excessive Network
Congestion

Prerequisites
All of the congestion protection event information provided in the xtnlrd log file for the boot session in which the
event occurred is gathered from /var/opt/cray/log/session-id/nlrd.session-id. This is the starting
point for further analysis. See Congestion Management Log File and Messages on page 22 for information related
to congestion protection that can be found in this file.

About this task
Use this procedure as a guideline to determine which user application caused the network congestion.

Procedure

1. If the congestion-tools module is available on the SMW, it is highly recommended to load it and use the
xtcpreport tool that it provides to perform the initial analysis of the xtnlrd log file.

smw:~> module load congestion-tools
smw:~> xtcpreport /var/opt/cray/log/session-id/nlrd.session-id

This command provides a helpful at-a-glance summary of each congestion incident contained within the log; a
quick scan can potentially reveal patterns in the applications involved with a congestion protection event. The
generated report details all congestion protection incidents over the period of time covered by the nlrd log
file, typically the time since the machine was booted.

The first four lines produced by the report provide an overall summary of the congestion protection activity
that has occurred, if any. If and when congestion protection is invoked, each incident is grouped into a series
made up of one or more throttles occurring in succession. This log-wide summary will list the total number of
throttles and the total number of series over which they occurred, along with the time covered by the nlrd log
provided, and the overall peak congestion value that was measured. These peak numbers are given on a tile
and NIC basis, representing the number of each that was considered to be in a congested state in the system
when the measurement occurred.

Following this summary, the report then provides zero or more detailed reports corresponding to each
individual congestion protection series. These will include the list of applications that were running during the
congestion protection series, the length of that series, and the peak amount of congestion that was observed.

To help identify the responsible application, all of the applications running during at least part of the
congestion protection series are listed with their start and end times in descending order according to their
node count. This makes it easy to see at a glance if any applications began running around the time the
congestion series started, or if any completed around the time it ended. Note that xtcpreport can be
executed on a live system; therefore, applications still in progress will be listed without an end time.

In addition, the user id (UID) for each application is given, along with the ALPS application ID (APID), so that
each application can be traced back to a specific job invocation. Finally, the Max Flits/s column presents
the bandwidth data found in the top 10 worst nodes by ejection bandwidth list (mentioned in the previous

About Network Congestion

S0041 25

section) intended to detect many-to-few patterns. If multiple node measurements are associated with a single
application, only the overall worst is listed.

An example report produced by xtcpreport is:

Congestion Protection Report for 2012-10-10T23:02:37-5 through
2012-10-12T10:02:58-5
Peak Tile: 139 Peak NIC: 19
Total Series: 1 Total Throttles: 1

Information for Throttle Series 1 of 1 2012-10-24
 Series Start: 19:19:08 Last Throttle Start: 19:19:08
 Series End: 19:19:28 Throttling Duration: 00:00:20
 Series Duration: 00:00:20 Throttled 1 times
 Series Peak Tile: 139 Series Peak NIC: 19

 Max
APID Name Nodes Flits/s UID Start End

10114 all2all 9728 -- 1450 18:41:28 19:24:23
10147 wlfc 4560 23419 5961 19:09:06 19:19:27
10114 qmc 1536 -- 9549 18:41:33
10147 ptest 23 -- 1450 19:09:01 19:09:30
10147 ptest 23 -- 1450 19:09:08 19:09:37
10146 P-G.pgi 16 -- 7921 19:08:18 19:40:41

2. Alternately, administrators can also directly get the complete list of throttled applications in the xtnlrd log
file; the list of these applications is logged with every congestion protection event. For sample output, see
Find Throttled Applications in the xtnlrd Log on page 24.

3. With the proper data in hand, begin isolating the application that caused the congestion event.

The clearest evidence, provided enough data exists, comes from establishing a pattern based on the past
behavior of the set of applications involved with the current congestion protection event. This includes
whether they ran previously and if so, whether they were associated with any previous congestion protection
events. Recall that the xtnlrd log file records all applications and their node counts, as well as all those that
are associated with a congestion event; therefore, these logs may be useful for cross-referencing the
applications currently under consideration. Regardless of the method used, the node counts of the
applications must be a significant consideration, because the communication patterns of many applications
may only become problematic from a congestion standpoint when they are run at a sufficiently large node
count.

Although this method may suffice if new applications are relatively infrequent, it is clearly suboptimal to simply
wait for such patterns to become apparent.

Therefore, the following guidelines are frequently helpful in determining whether a given application is likely to
be the cause of a congestion event:

● With the exception of truly huge applications using perhaps thousands of nodes, congestion-causing
applications will almost never be pure MPI codes; they typically use PGAS programming models (CAF
and UPC), SHMEM, or uGNI-MPI hybrid approaches.

● Therefore, large non-MPI applications should always be considered the primary suspects until proven
otherwise. In addition, smaller non-MPI applications should also be considered suspects if very large MPI
applications are not present on the system.

● The most unambiguous evidence that a particular application is to blame for network congestions is when
the Max Flits/s value for the (single) worst node on the top-10 congestion candidates list is in the
millions, as this indicates an extremely high likelihood that a large many-to-few pattern is responsible for

About Network Congestion

S0041 26

the congestion protection event. It is also the most likely scenario in which congestion protection will be
invoked on small- to moderate-sized systems. Unfortunately, the reverse is not implied if the worst
individual node flit count value does not reach this level. In that case, a many-to-few pattern could still be
the culprit in certain instances.

● In contrast to smaller systems, many-to-few patterns may be harder to detect on large, multi-row systems.
Smaller many-to-few applications can cause congestion events that would not be possible on lower-
dimension networks, and more transient patterns that might otherwise escape trouble can cause just
enough congestion to be an issue.

● Finally, once a culprit application has been identified, work with the user to avoid future congestion-
protection incidents. Application users may interact with congestion management software as it provides
congestion protection in an attempt to curb congestion system-wide. Upon the termination of a throttled
application, a message like the following appears in stderr:

Application apid network throttled: nodecount nodes throttled, time node-
seconds

This message shows the number of nodes that were throttled and the duration of throttling in node-
seconds. A node-second is one wall clock second on one node.

ALPS logs and aprun output contain additional information about congestion protection-related activity.

All users running applications while the system is throttled will receive a message upon application
completion indicating this throttling event. Therefore, receipt of this message alone does not necessarily
indicate that a user's application has caused the throttling event; however, all applications running on the
system are affected when throttling occurs.

For more information about how to avoid network congestion in a user's program, see Aries™ Network
Tech Note - Application Changes to Avoid Network Congestion (S-0048).

3.8 Possible Critical Errors Resulting from Network Congestion
In the rare event that the software is unable to successfully protect the system, a delayed response for a timed-
out packet can cause an ORB critical error event. An ORB critical error event will abort the application and
provide messages for the user and administrator. The following message will appear on the application's stderr
during ORB error events:

Cray HSN detected critical error 0xNNNptag N.

where the particular HSN critical errors (0xNNN) that may result from excessive network congestion are:

● 0x4801: ORB Request with No Entry - This indicates that there was no matching entry for the
response packet within the ORB.

● 0x4802: ORB Command Mismatch - This indicates that the command stored in the ORB entry is different
than the command indicated by the response packet.

● 0x480a: ORB DWORD Flit Mismatch - This indicates that the response packet size is different than the
corresponding entry in the ORB.

CAUTION: If administrators or application programmers receive reports of the above errors, contact a
Cray service representative for more information.

To learn how application programmers can modify their programs to prevent these types of errors on
Cray XC series systems, see Aries™ Network Tech Note - Application Changes to Avoid Network
Congestion (S-0048).

About Network Congestion

S0041 27

3.9 SMW Network Congestion Parameters
Parameters in the xtnlrd.ini file control the system response to failures of network congestion on the system.

bw_congest_kill_top_app

Controls whether xtnlrd should tell ALPS to kill the top congesting application after
bw_congest_max_consecutive_hits times at the top of the list (default is n)

bw_congest_max_consecutive_hits

Number of times an APID has to be at the top of the congestion list to be eligible to be killed (default is 2)

bw_congest_throttle_delay

Seconds to wait before the parent xtnlrd gathers ejection bandwidth data (default is 5)

bw_congest_top_nodes

Number of non-service nodes to log as having high ejection bandwidth (default is 10)

bw_throttle_nic_enable

Throttle based on NIC congestion (default is y)

bw_throttle_nic_hi_num

Total number of congested NICs to initiate throttling (default is 10)

bw_throttle_nic_lo_num

Total number of congested NICs before unthrottling is done (default is 6)

bw_throttle_tile_enable

Throttle based on tile congestion (default is y)

bw_throttle_tile_hi_num

Total number of congested tiles to initiate throttling (default is 20)

bw_throttle_tile_lo_num

Total number of congested tiles before unthrottling is done (default is 12)

bw_unthrottle_interval

Minimum seconds for a throttle to persist (default is 20 seconds)

3.10 Blade Controller Network Congestion Parameters
Parameters in the xtnlrd.ini file control the system response to failures of network congestion on the system.

bw_em_sample_interval_sec

Seconds between ejection bandwidth samples on a blade controller (BC); the default is 4

bw_qos_rate_b1=511999

Do not change; this parameter is related to the unthrottled and throttled Aries™ traffic shaping control settings

About Network Congestion

S0041 28

bw_qos_rate_b2=5119

Do not change; this parameter is related to the unthrottled and throttled Aries™ traffic shaping control settings

bw_qos_size_b1=17

Do not change; this parameter is related to the unthrottled and throttled Aries™ traffic shaping control settings

bw_qos_size_b2=1

Do not change; this parameter is related to the unthrottled and throttled Aries™ traffic shaping control settings

bw_throttle_heartbeat_misses

Number of missed xtnlrd heartbeats before gmbwtd locally throttles that blade. Receipt of a heartbeat while
locally throttled causes an unthrottle; the default is 3

bw_throttle_heartbeat_sec

Time in seconds between heartbeats from xtnlrd to gmbwtd to indicate the SMW and HSS network is still alive.
These heartbeats are intended to protect the system from HSN congestion if the HSS system is dead (0 ==
off); the default is 3

bw_throttle_nic_history

Number of sample periods in a row before sending a congestion notification (ec_l0_bw_throttle); the default
is 3

bw_throttle_node_stall_thresh

Ration of stalls to forwarded flits in the NIC; the default is 200000

bw_throttle_sample_usec

Sample rate, in microseconds, to sample MMRs for congestion detection; the default is 500000

bw_throttle_tile_vc0_stall_thresh

Ratio of stalls to forwarded flits on the request channel; the default is 200000

bw_throttle_tile_history

Number of sample periods in a row before sending a congestion notification (ec_l0_bw_throttle); the default
is 3

About Network Congestion

S0041 29

	Contents
	1 About the XC Series Aries Network Resiliency Guide (S-0041)
	2 About Link Resiliency
	2.1 Automatic Response to Failures
	2.1.1 Automatic Recovery of a Failed Single HSN Channel
	2.1.2 Automatic Recovery of a Failed High-speed Network Cable
	2.1.3 Automatic Recovery of Power Loss to an Aries™ Network Card on a Blade
	2.1.4 Automatic Recovery of Power Loss to a Blade
	2.1.5 Automatic Recovery of Power Loss to a Cabinet
	2.1.6 Automatic xtnlrd Actions to Respond to Critical Aries™ ASIC Errors

	2.2 Identify Lane Degrades
	2.3 Update the Physical System Configuration While the System is Booted
	2.3.1 Update Config Set Information on Booted Nodes
	2.3.2 Reuse One or More Previously-failed HSN Links
	2.3.3 Reuse One or More Previously-failed Blades, ANCs, or Cabinets
	2.3.4 Add or Remove High-speed Network Cables from Service
	2.3.5 Remove a Compute Blade from Service While the System is Running
	2.3.6 Return a Compute Blade into Service

	2.4 Identify Unrouteable Configurations
	2.4.1 Recover a Blade That Failed to Respond to the Reroute Request

	2.5 Link Resiliency Parameters

	3 About Network Congestion
	3.1 Network Congestion Causes
	3.2 Congestion Management Software Components
	3.3 How Congestion Management Software Detects Network Congestion
	3.4 Congestion Management Log File and Messages
	3.5 Send an Event to ALPS to Terminate the Top Network Congestion Candidate Application
	3.6 Find Throttled Applications in the xtnlrd Log
	3.7 Identify the User Application that Caused Excessive Network Congestion
	3.8 Possible Critical Errors Resulting from Network Congestion
	3.9 SMW Network Congestion Parameters
	3.10 Blade Controller Network Congestion Parameters

