
XC™ Series Ansible Play Writing Guide (CLE
6.0.UP03) S-2582

Contents
1 About the XC™ Series Ansible Play Writing Guide...3

2 An Overview of Ansible on a Cray System...6

2.1 Determine When Plays Are Run..6

2.2 Determine Which Plays Are Run...6

2.3 The Order in Which Ansible Plays Are Run...7

2.4 Data Available to Plays..8

2.4.1 Ansible Facts..8

2.4.2 Config Set...9

2.5 Audit Trail of Actions..10

2.6 Simple Shares...11

3 An Approach to Play Development...12

3.1 Syntax Checking and Prototyping...12

3.2 Pull-mode Boilerplate..14

3.3 Using a Config Set to Distribute an Ansible Play to All Nodes on a System...17

4 Ansible Limitations and Caveats...20

Contents

S2582 2

1 About the XC™ Series Ansible Play Writing Guide
The XC™ Series Ansible Play Writing Guide is intended to help users of CLE 6.x software extend or customize
configuration of nodes to fit their purpose. The CLE 6.x releases use a widely-known system configuration tool
called Ansible. This document is not intended to introduce general Ansible use, only to explain how CLE 6.x uses
Ansible since the approach is different from traditional Ansible use. Documentation for Ansible is available from
http://docs.ansible.com. For a comprehensive list of commonly used Ansible terms and their definitions, visit
http://docs.ansible.com/ansible/glossary.html

Ansible is usually used in "push" mode, where a fully booted driver node communicates with a booted, but
unconfigured, set of "target" nodes and communicates a set of actions to be taken to configure services. Since
Cray uses Ansible to configure almost all aspects of the system, including network NICs and requires concurrent
action on many thousands of nodes, Ansible is used in a less commonly found "pull" mode. Plays run ubiquitously
and use provided data to determine what action, if any, is required on the node they are executing on.

Release CLE 6.0.UP03
This publication of XC™ Series Ansible Play Writing Guide supports Cray software release CLE 6.0.UP03,
released on 16 FEB 2017

This is the first publication of this document.

Scope and Audience
This publication is intended for system installers, administrators, and anyone who configures software services on
a Cray system running SMW 8.0/CLE 6.0. Use of the term user throughout refers to the intended audience, not to
end users of the system.

Command Prompt Conventions
Host name
and account in
command
prompts

The host name in a command prompt indicates where the command must be run. The account
that must run the command is also indicated in the prompt.

● The root or super-user account always has the # character at the end of the prompt.

● Any non-root account is indicated with account@hostname>. A user account that is
neither root nor crayadm is referred to as user.

smw# Run the command on the SMW as root.

cmc# Run the command on the CMC as root.

sdb# Run the command on the SDB node as root.

About the XC™ Series Ansible Play Writing Guide

S2582 3

http://docs.ansible.com
http://docs.ansible.com/ansible/glossary.html

crayadm@boot> Run the command on the boot node as the crayadm user.

user@login> Run the command on any login node as any non-root user.

hostname# Run the command on the specified system as root.

user@hostname> Run the command on the specified system as any non-root user.

smw1#
smw2#

For a system configured with the SMW failover feature there are two
SMWs—one in an active role and the other in a passive role. The
SMW that is active at the start of a procedure is smw1. The SMW that
is passive is smw2.

smwactive#
smwpassive#

In some scenarios, the active SMW is smw1 at the start of a
procedure—then the procedure requires a failover to the other SMW.
In this case, the documentation will continue to refer to the formerly
active SMW as smw1, even though smw2 is now the active SMW. If
further clarification is needed in a procedure, the active SMW will be
called smwactive and the passive SMW will be called smwpassive.

Command
prompt inside
chroot

If the chroot command is used, the prompt changes to indicate that it is inside a chroot
environment on the system.

smw# chroot /path/to/chroot
chroot-smw#

Directory path
in command
prompt

Example prompts do not include the directory path, because long paths can reduce the clarity
of examples. Most of the time, the command can be executed from any directory. When it
matters which directory the command is invoked within, the cd command is used to change
into the directory, and the directory is referenced with a period (.) to indicate the current
directory.

For example, here are actual prompts as they appear on the system:

smw:~ # cd /etc
smw:/etc# cd /var/tmp
smw:/var/tmp# ls ./file
smw:/var/tmp# su - crayadm
crayadm@smw:~> cd /usr/bin
crayadm@smw:/usr/bin> ./command
And here are the same prompts as they appear in this publication:

smw# cd /etc
smw# cd /var/tmp
smw# ls ./file
smw# su - crayadm
crayadm@smw> cd /usr/bin
crayadm@smw> ./command

About the XC™ Series Ansible Play Writing Guide

S2582 4

Feedback
Visit the Cray Publications Portal at http://pubs.cray.com and make comments online using the Contact Us button
in the upper-right corner or Email pubs@cray.com. Your comments are important to us and we will respond within
24 hours.

Typographic Conventions
Monospace Indicates program code, reserved words, library functions, command-line prompts,

screen output, file/path names, and other software constructs.

Monospaced Bold Indicates commands that must be entered on a command line or in response to an
interactive prompt.

Oblique or Italics Indicates user-supplied values in commands or syntax definitions.

Proportional Bold Indicates a GUI Window, GUI element, cascading menu (Ctrl→Alt→Delete), or
key strokes (press Enter).

\ (backslash) At the end of a command line, indicates the Linux® shell line continuation character
(lines joined by a backslash are parsed as a single line).

Trademarks
The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY and
design, SONEXION, URIKA, and YARCDATA. The following are trademarks of Cray Inc.: APPRENTICE2,
CHAPEL, CLUSTER CONNECT, CRAYDOC, CRAYPAT, CRAYPORT, DATAWARP, ECOPHLEX, LIBSCI,
NODEKARE. The following system family marks, and associated model number marks, are trademarks of Cray
Inc.: CS, CX, XC, XE, XK, XMT, and XT. The registered trademark LINUX is used pursuant to a sublicense from
LMI, the exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis. Other trademarks used in
this document are the property of their respective owners.

About the XC™ Series Ansible Play Writing Guide

S2582 5

http://pubs.cray.com

2 An Overview of Ansible on a Cray System
Separating Content from Configuration
The approach to system configuration in CLE 6.x releases is very different to previous Cray releases. The
intention is to separate the node configuration data from the boot image propagated at boot time. This allows
images to be built once and then assigned to nodes at boot time, or even transferred to other Cray 6.x systems
and booted against configuration data on that system. To make boot images portable between nodes on the HSN,
they contain very little configuration. Instead, each node configures required services and functionality on every
boot, driven by configuration data stored on the SMW, a "config set", that is propagated to all nodes comprising
the system. This data allows Ansible plays to make coherent changes to configuration within the booting image to
provide system services across the Cray system.

2.1 Determine When Plays Are Run
As CLE nodes boot, they run the script /init which provides low-level initialization. Under pre-CLE 6.x releases,
the script would identify the node's service/compute type and load kernel modules appropriate for the
environment. The script would then invoke the Linux init(1) process and system services would be started as
codified in the shared root filesystem. This was assumed to proceed without error and leave the node in a usable
state.

In CLE 6.x releases, configuration is performed by Ansible plays and /init uses Ansible to complete most
configuration tasks. Early /init processing initializes the available NICs based on kernel command line
parameters and makes config set data available. Ansible plays are then run, before the systemd(1) system is
started. This allows time for plays to control loading of modules, or enabling of operating system services during
later systemd(1) startup processing. Note that init(1) is still used for DAL nodes running CentOS 6.5;
however, since most nodes run SLES 12, systemd(1) should be preferred over init(1).

When control is transfered to systemd(1), "normal" Linux startup occurs and systemd starts services in much
the same way as previous CLE releases. When Run Level 3 or Multi.User.target is reached, a final run
of Ansible plays is made. This final run starts services and facilities that rely on standard Linux services started by
systemd(1), or provide higher level coordination with other nodes. Late in this sequence of plays,
NodeHealthCheck is invoked and, if successful, it generates an HSS event that marks the node as booted. This
is intended to provide a clear indication that not only has systemd(1) completed, but that the set of services the
config set specifies for this node have been properly initialized.

An Overview of Ansible on a Cray System

S2582 6

2.2 Determine Which Plays Are Run
While boot images have little configuration at boot time, the images do contain all Cray-provided plays for any
functionality they contain. The plays are installed in the directory /etc/ansible along with other Ansible RPM
content. These plays are supplemented by plays found in the ansible directory of the config set with which the
booting node is associated.

The cray-ansible script, found in /etc/init.d, is used as a wrapper to start Ansible plays. The script looks
for files suffixed with .yaml in /etc/ansible and in the ansible directories of the current and global config
sets. Thus plays specific to the system, or even the config set, are treated as peers of Cray provided plays during
the boot process.

Plays can be optionally designated as arbitrary types and cray-ansible can be directed to run plays of specific
types. The default type for plays not explicitly declaring such can also be designated when cray-ansible runs. This
play type selection is used, for instance, during /init on nodes designated as netroot nodes to mount the root
filesystem image from the boot node.

2.3 The Order in Which Ansible Plays Are Run
When cray-ansible has selected a series of plays for execution it produces a file that includes each candidate
play and calls ansible-playbook(1) to run that file. The order that plays occur in the file determines the order
of operation. This has implications for services with dependencies on other services and functionalities. Cray-
provided plays signal to cray-ansible their ordering requirements using a convention based on play variables.

The cray-ansible script will group plays into three general groups: plays that declare or provide dependencies
to other plays, plays that should be run late, and plays that don't indicate or provide dependenies for another play.
Plays that don't declare the run_late variable but do declare or provide dependencies to other plays run first,
while plays that want to run late declare the variable run_late. Plays that do not declare run_late or
run_after and are not referenced in any run_after list are run in indeterminate order between the other two
groups. When developing plays, identify other plays that may be modifying the same file and set up play
dependency accordingly.

Plays provided by Cray will use a variable called run_after to list any plays that should run before the current
play is run. The plays listed by run_after are not required to exist; non-existent plays are ignored, but all
existing plays in the list will run before the play declaring the run_after variable. The list of plays to run behind
does not require a path element or a .yaml suffix. The following declaration demonstrates a list of plays to run
beforehand:

=
 vars:
 - run_after:
 - common
 - task1
=

The above declaration specifies that the play should not run before /etc/ansible/common.yaml
or /etc/opt/cray/config/current/ansible/task1.yaml if it exists.

In order to allow config set provided plays to insert themselves into the ordering of Cray supplied plays, it is also
possible to declare a similar variable called run_before. This variable effectively adds the nominating play's
name to the run_after list in the listed plays.

An Overview of Ansible on a Cray System

S2582 7

NOTE: The ordering of plays is not affected by whether the plays are running before or after systemd
start of system services.

2.4 Data Available to Plays
There are two broad categories of data that drive configuration: the config sets provided by IMPS Distribution
Service (IDS), and Ansible "facts" provided to all plays by Ansible infrastructure. Both categories appear to plays
as hierarchy's of dotted variables of values, lists and dictionaries. For instance, the fact
ansible_devices.sda.size gives the size of sda on the node the play is running on as a string, whereas
cray_node_groups.settings.groups.data is the list of defined node groups for the config set associated
with the node.

The set of configuration plays selected by cray-ansible are commonly the same across large numbers of the
nodes comrpising the system. All nodes booting the same computer node image will, for instance, run exactly the
same set of plays. Similarly, all service node images will result in the same set of plays running during boot on
every service node. Differences in configuration of the individual nodes comes from how those plays react to the
data they consume.

2.4.1 Ansible Facts
More information on Ansible facts is available from the standard Ansible documentation, but it is worth noting that
Cray uses the provided framework to make facts available to plays based on the running node's configuration. All
such facts appear under ansible_local.cray_system.

Table 1. Commonly Used Cray Ansible Facts

Name Description

is_cray_blade A boolean value. The node is on the HSN if this value
is true.

hostid A string. The cname of HSN nodes, or the data
returned by hostid(1) for elogin or SMW instances.

node_groups A list of strings. The node groups that the current node
is a member of.

in_init Whether the play is currently running before system
services are available.

The fact ansible_local.cray_system.in_init can be used to separate actions taken to configure things
that normal Linux boot processing should do, including things that require system services to be started. A
complete list of current Cray supplied facts can be seen in the output of the
script /etc/ansible/facts.d/cray_system.fact as seen below on an SMW node:

smw# /etc/ansible/facts.d/cray_system.fact
{"hostid": "1eac3f0c", "roles": ["smw"], "platform": "unknown",
"is_cray_blade": false, "host_type": "management", "uses_systemd": true,
"in_init": false, "sessionid": "", "node_groups": [], "nims_group": [],
"standby_node": false}

An Overview of Ansible on a Cray System

S2582 8

The same script running on a compute node:

nid00023# /etc/ansible/facts.d/cray_system.fact
{"topology_class": 2, "mcdram_cfg": "", "primary_boot_node_cname": "c0-1c0s0n1",
"node_groups": ["login_nodes", "service_nodes", "all_nodes"], "backup_boot_node":
145, "sdb_node": 386,
"primary_sdb_node_cname": "c0-1c0s0n2", "platform": "service",
"max_torus_dimension": [1, 5, 15],
"max_node_id": 767, "nid": 13, "in_init": false, "sessionid":
"p0-20170213t101658", "hostid": "c0-0c0s3n1",
"standby_node": false, "num_sys_nodes": 158, "max_sys_nodes": 768, "roles": [],
"is_cray_blade": true,
"uses_systemd": true, "cname": "c0-0c0s3n1", "sys_nodes": [1, 2, 5, 6, 9, 10, 13,
14, 17, 18, 20, 21, 22, 23,
24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43,
44, 45, 46, 47, 48, 49, 50,
51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73,
74, 77, 78, 80, 81, 82, 83,
89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107,
120, 121, 122, 123, 124, 125,
126, 127, 128, 129, 130, 131, 133, 134, 136, 137, 138, 139, 140, 141, 142, 143,
145, 146, 148, 149, 150, 151,
152, 153, 154, 155, 156, 157, 158, 159, 168, 169, 170, 171, 172, 173, 174, 175,
176, 177, 178, 179, 384, 385,
386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 400, 401, 402, 403, 416, 417,
418, 419, 424, 425, 426, 427],
"host_type": "", "boot_node": 385, "nims_group": ["login"], "backup_sdb_node": 74}

2.4.2 Config Set
Config set data is comprised of two parts: the global config set and the CLE config set. The global config set is
common to the SMW and all partitions. The CLE config set is associated with a CLE partition and passed to a
booting CLE node as a kernel parameter which is prepared using NIMS (cnode command). The eLogin nodes
also have both the global and CLE config sets available to them. On the SMW, the config set data is located in
these directories:

● /var/opt/cray/imps/config/sets/global

● /var/opt/cray/imps/config/sets/CLE_config_set_name
On a node, the config set data is located in these directories:

● /etc/opt/cray/config/global

● /etc/opt/cray/config/current

NOTE: Notice that this is the current CLE config set for this node and is always called current.

Within each of these directories are subdirectories named config which house the actual YAML files that contain
data to be used by plays. If the files end with _config.yaml, the contents are combinations of configured values
and metadata used by the cfgset(8) utility to maintain the YAML files. Each file introduces a namespace that
will be available to plays at runtime when cray-ansible is used to prepare for play execution; for example,
cray_net_config.yaml provides cray_net.

Generally, the current and global config set data sets use different namespaces for configuration values. However,
some configuration data might logically not depend on which config set is actually current, resulting in
configuration data using both namespaces. For example, the config data file cray_time_config.yaml exists in
both current and global directory trees; both current and global data sets provide cray_time. This conflict is
resolved using the inherit Boolean value setting. The inherit setting determines whether to defer to the

An Overview of Ansible on a Cray System

S2582 9

global settings when a conflict is detected. If inherit is set to true, values are inherited from the global config
set; otherwise, if no conflict is detected, the current specified values are used.

Files in config set directories can also provide non-configurator data. If a file ends with the .yaml suffix but lacks
_config in its name, any correctly formatted YAML structures will be available to plays using the config set. The
files will be ignored by the configurator and can be used for manually maintained configuration settings for ad-hoc
use. Since the runtime behaviour of plays without _config is undefined, care should be taken to avoid
duplicately-named YAML files that are not designated with _config in the filename, or commonly named data
structures, in the global and current config subdirectories.

2.5 Audit Trail of Actions
When cray-ansible runs Ansible plays, log data is captured in files in the
directory /var/opt/cray/log/ansible. Generally, if errors occur during boot for a CLE node or an eLogin
node, cray-ansible will attempt to copy the tail of these log files to the console device in case the node is
unresponsive to login attempts. Each time cray-ansible runs, it rotates these logs; however, the number of logs
kept is limited. If Ansible runs are restarted, some history may be lost. For the SMW, the log files are:

● /var/opt/cray/log/ansible/ansible-booted

● /var/opt/cray/log/ansible/file-changelog-booted

● /var/opt/cray/log/ansible/file-changelog-booted.yaml

For CLE nodes which are not booted with netroot images and for eLogin nodes, the log files from when /init
calls cray-ansible in the init phase are:

● /var/opt/cray/log/ansible/sitelog-init

● /var/opt/cray/log/ansible/file-changelog-init

● /var/opt/cray/log/ansible/file-changelog-init.yaml

For CLE nodes which are not booted with netroot images and for eLogin nodes, the log files from when systemd
calls cray-ansible in the booted phase are:

● /var/opt/cray/log/ansible/sitelog-booted

● /var/opt/cray/log/ansible/file-changelog-booted

● /var/opt/cray/log/ansible/file-changelog-booted.yaml

For CLE nodes which are booted with netroot images, the log files from when /init calls cray-ansible in the
netroot setup phase are:

● /var/opt/cray/log/ansible/sitelog-init-netroot_setup

● /var/opt/cray/log/ansible/file-changelog-init-netroot_setup

● /var/opt/cray/log/ansible/file-changelog-init-netroot_setup.yaml

For CLE nodes which are booted with netroot images, the log files from when /init calls calls cray-ansible in the
init phase:

● /var/opt/cray/log/ansible/sitelog-init

● /var/opt/cray/log/ansible/file-changelog-init

● /var/opt/cray/log/ansible/file-changelog-init.yaml

An Overview of Ansible on a Cray System

S2582 10

For CLE nodes which are booted with netroot images, the log files from when systemd calls cray-ansible in the
booted phase are:

● /var/opt/cray/log/ansible/sitelog-booted

● /var/opt/cray/log/ansible/file-changelog-booted

● /var/opt/cray/log/ansible/file-changelog-booted.yaml

For details about cray-ansible being run during the booting process, see the XC™ Series Boot Troubleshooting
Guide.

2.6 Simple Shares
The Simple Filesystem Sharing service quickly shares files between compute nodes that are connected to the
high speed network (HSN). Plays that declare the variable fs_export_needed and either include the
fs_share role, or make it a dependency of the play, expect the named directory to appear in the
cray_simple_shares configuration file. That storage will be mounted and shared across CLE nodes as
specified in the simple shares config before the play runs. Simple shares are not meant to cover all cases of intra-
node mounting, but have several convenient use cases. Any play can use this mechanism, as several Cray
provided plays do.

An Overview of Ansible on a Cray System

S2582 11

3 An Approach to Play Development
Ansible’s flexible nature allows many different approaches to the development of Ansible plays. Presented here
are Ansible play creation suggestions and guidelines based on what Cray has found to be desirable properties for
configuring XC Series systems. There are several conventions that Cray-provided plays adhere to that are not
requirements forced by Ansible. Initially, avoiding these Cray-provided conventions means that functional plays
can be developed and distributed across a system without taking part in boot time configuration. Even when plays
are placed in their final locations and file names, as previously noted, they can declare cray_play_types which
will avoid their invocation until confidence is built in their operation. While adding plays to boot time configuration
is not difficult, the fact that all boot time configuration is expected to succeed to allow predictable final state means
that a minor mistake can have major impacts on the ability to reboot systems and return them to a productive
state. The use of NIMS maps and Config Set clones can be used to limit the impact of boot time problems to
specific, predictable, nodes which might allow normal operation on the majority of nodes as development
continues. It is important to validate play behavior before committing the entire system to their utility. The steps
outlined in this section help to avoid testing plays via system reboots.

NOTE:

The following changes are introduced in UP03 and should be noted by customers upgrading from UP01
or UP02 installs and site local plays.There are only two major Ansible play changes with UP03. These
changes may adversely affect existing site-local plays:

● xc_node top level play has been removed

● cle_lustre_client top level play is now cray_lustre_client
All existing top level plays that have been previously configured still exist and function as no-op
checkpoints for their prior functionality. Checkpoints will be deprecated in future releases; determining
proper run_after order at this time is strongly suggested. Top level plays scheduled for future
deprecation are:

● early
● compute_node
● service_node
● common
● login_node

3.1 Syntax Checking and Prototyping
Since configuration plays are ubiquitous and driven by data, it is often useful to investigate the data which will be
used to control the actions of plays. Aside from reading Cray plays or files in the config directory, there are a
number of ways to explore the data available to plays.

An Approach to Play Development

S2582 12

Ansible The ansible command can provide a comprehensive list of facts available to plays at runtime using
the "setup" module. The list of facts available is extensive and includes values from all plugins. The
following command line example demonstrates using the ansible command to lookup the value for
the ansible_kernel fact on a boot node and smw respectively.

boot# ansible -m setup localhost | grep ansible_kernel
 "ansible_kernel": "3.12.60-52.49.1_2.2-cray_ari_s"

smw# ansible -m setup localhost | grep ansible_kernel
 "ansible_kernel": "3.12.51-52.39-default"

Fact
Plugins

Facts can be augmented by adding files or scripts to installations in drop directories. CLE, SMW, and eLogin
nodes will provide different sets of facts using this mechanism, which must be accommodated by plays
installed in all three environments. These files are easy sources to examine for Cray-specific facts. The
example below demonstrates running the cray_system.fact script on an eLogin node to view a list of
available Cray system facts. For more information on Ansible facts, see section Ansible Facts on page 8.

elogin# /etc/ansible/facts.d/cray_system.fact
 {"hostid": "percival-elogin1", "roles": [], "platform": "unknown",
 "is_cray_blade": false, "host_type": "", "uses_systemd": true,
"in_init": false,
 "sessionid": "", "node_groups": ["elogin_nodes"],
 "nims_group": [], "standby_node": false}

cfgset
search

The configurator cfgset command features several subcommands that are helpful for exploring system
data. The example below shows searching all level advanced data in service cray_global_net for the
term admin global.

smw# cfgset search --level advanced -s cray_global_net -t admin global | head -15

 INFO - Checking services for valid YAML syntax
 INFO - Checking services for schema compliance
 # 23 matches for 'admin' from cray_global_net_config.yaml

#--
 cray_global_net.settings.networks.data.admin.description: Network
that connects the SMW, boot and SDB nodes.
 cray_global_net.settings.networks.data.admin.ipv4_network: 10.3.0.0
 cray_global_net.settings.networks.data.admin.ipv4_netmask:
255.255.0.0
 cray_global_net.settings.networks.data.admin.ipv4_broadcast: #
(empty)
 cray_global_net.settings.networks.data.admin.ipv4_gateway: # (empty)
 cray_global_net.settings.networks.data.admin.dns_servers: [] #
(empty)
 cray_global_net.settings.networks.data.admin.dns_search: [] #
(empty)
 cray_global_net.settings.networks.data.admin.ntp_servers: [] #
(empty)
 cray_global_net.settings.networks.data.admin.fw_external: false

cray_global_net.settings.hosts.data.primary_smw.interfaces.admin_interface.name:
eth3

An Approach to Play Development

S2582 13

For a full list of cfgset commands, as well as examples of how to use them, see the
XC_Series_Configurator_User_Guide_CLE60UP03_S-2560.ditamap#C320271.

cfgsetquery This tool searches config set data on SMW or HSN nodes. cfgsetquery only searches for
variable name and sub path matches, but provides the namespace path, helpful when writing
Ansible plays. This command can be run anywhere config set data is found, including eLogin
nodes. The example below demonstrates searching for all config set values that contain the
networks.data path.

smw# /opt/cray/cfgutils/bin/cfgsetquery networks.data | head -11
 cray_global_net.settings.networks.data:
 - ipv4_gateway:
 dns_servers:
 description: Network that connects the SMW,
boot and SDB nodes.
 fw_external: False
 ntp_servers:
 dns_search:
 ipv4_network: 10.3.0.0
 ipv4_netmask: 255.255.0.0
 key: admin
 ipv4_broadcast:

Configurator Multival Fields
While administrators are provided tools that help isolate them from some details of configuration data, play writers
are forced to be aware of some of the configurator data handling details. The most commonly encountered of
these details are data dictionaries and the handling of multival fields. Multival fields are lists of collections of
config values that administrators might want to refer to logically.

In the configurator output displayed in the cfgset search example, the output shows the namespace path to
the admin data to be cray_global_net.settings.networks.data.admin. In YAML format, this path is a
set of dictionaries with nested keys for each of the elements. An administrator may want to logically refer to the
group of values, admin, by a name that is not a valid YAML identifier. To avoid this, the configurator stores the
collections of values as a list and adds a key field which contains the admin element's logical name. It then
converts between the stored and the displayed presentations as needed. Since the configurator keeps metadata-
describing fields in the same file as the fields themselves, the configurator maintains separation between the two
by storing values in a dictionary named data and metadata in a dictionary named configurator. These
dictionaries are apparent when examining the config files, but are hidden in configuration presentation to
administrators.

In contrast, the output of cfgsetquery only hides the configurator metadata. The paths presented can be used
directly in plays as variable references and the "multival" value containing the values for a network are exposed
as a list, with the key value. Processing the data in a play will need to walk the list and match keys.

3.2 Pull-mode Boilerplate
On Cray systems, Ansible is used in pull mode. Most Cray provided plays take the same form. Plays are
comprised of two parts: a top-level file that declares variables (for example, declaring play dependencies), and

An Approach to Play Development

S2582 14

roles. The roles of a play are used to implement changes, often with when clauses in the case of cray_managed
services. Most Cray provided templates and config files have a hidden setting which allows customers to indicate
they will manage the service or functionality themselves. Note that this setting is separate from the enabled
boolean flag which might be used to shut down a running service if set to false.

The following boilerplate from Cray-provided plays can be used to model new plays:

- hosts: localhost
 name: "Network's status"
 vars:
 - run_late: True
 tasks:
 - name: "Show known networks' names"
 debug: var=item.key
 with_items: cray_global_net.settings.networks.data
 - name: "Ask systemctl about network service"
 shell: systemctl status -l network | head -5
 when: not ansible_local.cray_system.in_init
 register: systemctl
 - name: "Show what we learned"
 debug: var=systemctl.stdout
A play is a yaml list of dictionaries containing one element, with keys hosts, name, vars, and tasks. The main
difference between this example play and a Cray provided "top level" play, is that this play uses tasks, rather than
roles, to perform actions. The list of hosts that are targeted is always localhost; note that this is a pull mode,
self initiated play. The list element's name key is used to find the name that should be used in any logging
generated by use of the play. The tasks are similarly tagged and will also be identified by those strings in logs.
This is a useful practice to maintain as it makes analysis of activity easier in debug. Explicit use of quotes for the
name string allows characters to be used that would otherwise cause YAML parsing errors. While it is unused
here, the run_late variable will place this play towards the end of cray-ansible activity if it is renamed or copied
into one of the well known locations mentioned previously. Finally, one of the tasks uses systemctl to check on the
state of a service, this will only work after systemd starts, so that task is constrained to act only if the available
facts indicate that the play is not acting while in the /init script. This boilerplate can be placed in any convenient
file during development. Placing it in a file such as /root/ns eliminates the possibility of interference with normal
processing when run to test its behavior:

boot# ansible-playbook /root/ns
...
PLAY [Network's status] **

GATHERING FACTS ***
ok: [localhost]

TASK: [Show known networks' names] **
ok: [localhost] => (item={'ipv4_gateway': '', 'dns_servers': [], 'description':
'Network that connects the SMW, boot and SDB nodes.', 'fw_external': False,
'ntp_servers': [], 'dns_search': [], 'ipv4_network': '10.3.0.0', 'ipv4_netmask':
'255.255.0.0', 'key': 'admin', 'ipv4_broadcast': ''}) => {
 "item": {
 "description": "Network that connects the SMW, boot and SDB nodes.",
 "dns_search": [],
 "dns_servers": [],
 "fw_external": false,
 "ipv4_broadcast": "",
 "ipv4_gateway": "",
 "ipv4_netmask": "255.255.0.0",
 "ipv4_network": "10.3.0.0",
 "key": "admin",

An Approach to Play Development

S2582 15

 "ntp_servers": []
 },
 "var": {
 "item.key": "admin"
 }
}
...
 "ipv4_network": "172.30.12.0",
 "key": "management",
 "ntp_servers": [
 "cfntp-4-1",
 "cfntp-4-2"
]
 },
 "var": {
 "item.key": "management"
 }
}

TASK: [Ask systemctl about network service] ***********************************
changed: [localhost]

TASK: [Show what we learned] **
ok: [localhost] => {
 "var": {
 "systemctl.stdout": "wicked.service - wicked managed network interfaces
\n Loaded: loaded (/usr/lib/systemd/system/wicked.service; enabled)\n Active:
active (exited) since Thu 2016-11-17 13:24:23 CST; 51min ago\n Main PID: 6033
(code=exited, status=0/SUCCESS)\n CGroup: /system.slice/wicked.service"
 }
}

PLAY RECAP **
localhost : ok=4 changed=1 unreachable=0 failed=0
#
Note that much of the output is not shown in the above screenshot, but the various names and processing
elements from the networks should be apparent. There's nothing inherently wrong with a simple play having a few
tasks in a top level file as shown here, but there are some drawbacks. For instance, if the play was added as-is to
the boot-time configuration, then the list processing would occur twice, as would the Show what we learned
task. That's not a particular problem in this instance - if we wished to change the behaviour we could add when:
to the two tasks and replicate the conditionals. But that does open the door to simple human error if the conditions
change, perhaps as the nodes targeted to take the actions changed during devlopmental testing.

The above play can be re-arranged and made more convenient by using a role and adding conditions when
invoked. When a play references a role, Ansible will look for the specified role in three different locations: in a
roles directory co-located with the play, in /etc/ansible, and in the config set. During testing, creating a role
directory as a peer of the play being tested allows roles to be associated with the developing play. Because of the
common list of directories searched, role names should be carefully considered to avoid possible confusion with
existing Cray-written role names. Locally devised roles can be prefaced with org_ (or another chosen prefix) for
easy identification. If the example of the tasks above were placed in the file
roles/sle_net_serv_chk/tasks/main.yaml, the top level play might become:

- hosts: localhost
 name: "Network's status"
 vars:
 - run_late: True
 roles:

An Approach to Play Development

S2582 16

 - role: sle_net_srv_chk
 when: not ansible_local.cray_system.in_init
The effect of the when clause on either role invocation or include statements is to add an implicit matching
when clause to every task in the referenced text, and end with when clauses that those tasks specify (in this
example, the three tasks previously in the top level play). This makes the when clause guarding the systemctl
use redundant and allows other constraints to be later applied to all tasks in the role by extending the when
clause in the top level play. During play development, this is a convenient way of affecting where and when the
play takes effect.

3.3 Using a Config Set to Distribute an Ansible Play to All Nodes on a
System

The tools and techniques listed here can assist with integrating an Ansible play into a config set. Working with
files in tmpfs storage limits both the longevity of the play and its utility across the system. The use of user or
admin accounts on a system allows use of persistent storage and can be useful for testing on a wider set of
nodes if the directories are widely cross-mounted. If the play being developed is configuring facilities not currently
covered by Cray-provided plays, it is possible to develop the play in isolation - timing of the integration of the play
into the overall boot-time configuration runs becomes a matter of convenience. If the play provides a modified
environment for Cray plays, or has dependencies on modified configurations from Cray plays, it is often
necessary to perform play integration with the config set before play development completes. In these cases, it is
recommended to control what the play under development uses and where the play under development is used.
The tools and techniques listed here can assist with integrating an Ansible play into a config set.

Use Cray-Ansible Link to Refresh Config Set Data
Content in the the config set is cached on each node in the system. The CLE nodes use a squashfs image to
reduce memory impact of config set data on nodes. Previously, cray-ansible's linking of config set data into the
environment for plays was mentioned. At the time that linking is done, cray-ansible also checks to see that the
most recent version of config set data is in use on the node. If a play is being developed, it's possible that the
config set will be modified in order to change the play or the data it operates on. In such cases it will be necessary
to invoke the link command. The link command in this instance is used to check for new config set data. If
new config set data is available, it is pulled to the node and the new config set data is made available. In this first
example, new data is available for the p0 config set as shown by the IDS INFO line:

hostname# /etc/init.d/cray-ansible link
IDS INFO - Cached squashfs '/var/opt/cray/imps-distribution/source/config/sets/p0'
checksum differs from upstream; replacing local content with upstream
configuration.

Updating host_vars, this may make it harder to interpret sitelogs.
...
In this second example, the lack of a notification shows that no new data is available:

hostname# /etc/init.d/cray-ansible link

Updating host_vars, this may make it harder to interpret sitelogs.
...

An Approach to Play Development

S2582 17

Note that the update of the config set is node-local. If the play is being widely tested, it may be necessary to run
the link command on each node.

Declare Play Types with cray_play_type
While early play development allows any file name or location to be used for plays, when testing with other boot-
time configuration begins, the standard config set locations and file naming conventions must be followed. Cray-
ansible examines plays for various attributes using a convention of variable declarations. One indication a play
can make is its type; a play can declare itself to be an arbitrary type using the cray_play_type variable:

 vars:
 cray_play_type:
 - prototype
The above fragment shows the play is type prototype. The default play type, for plays not declaring an explicit
type, can be set when cray-ansible is executed (the list of play_types a cray-ansible run should use can also be
set at execution time). In order to maintain isolation of unproven or in-development plays, these plays can indicate
that they are of a non-default type; cray-ansible can then be directed to include that type when invoked after boot
to test the play. When cray-ansible runs at boot time, it uses a default play type of cle and selects plays of type
cle to run. This means that a play of type prototype would not be invoked at boot time, or when cray-ansible is
invoked as normal:

hostname# /etc/init.d/cray-ansible start

cray-ansible: /etc/ansible/site.yaml completed after boot - SUCCEEDED.
Sending ec_node_info with boot code 8 (NODE_INFO_OS_BOOT_SUCCEEDED) for nid 4
hostname# grep -C 2 new.yaml /etc/ansible/site.yaml
- include: /etc/ansible/sysenv.yaml
#Play's play types (prototype) are excluded
#- include: /etc/opt/cray/config/current/ansible/new.yaml
- include: /etc/ansible/wlm_trans.yaml
- include: /etc/ansible/xtremoted.yaml
Notice that in the above case, similar to boot node, the new play was excluded - but can easily be included if any
run if cray-ansible is run with the appropriate arguments. This allows testing of operations post-rc/systemd start
wtihout impacting system boot time operation. The following example shows running cray-ansible and including
plays with type cle and prototype:

hostname# /etc/init.d/cray-ansible -t cle,prototype start
cray-ansible: /etc/ansible/site.yaml completed after boot-prototype - SUCCEEDED.
Sending ec_node_info with boot code 8 (NODE_INFO_OS_BOOT_SUCCEEDED) for nid 4
hostname# grep new /etc/ansible/site.yaml
- include: /etc/opt/cray/config/current/ansible/new.yaml
#

Test Play Boot Time Behavior
It is necessary to test boot-time behavior of new plays to ensure proper function. Since the config set is being
used to propagate both the play in development and possible new data (or modified existing data), it can be
helpful to isolate the scope of changes. The following procedure allows a rapid switch between production and
play development configurations, useful when circumstances temporarily halt play development.

1. Clone the target config set. The cloned config set will receive the new plays and data:

An Approach to Play Development

S2582 18

smw# cfgset create --clone p0 p0.proving
2. Clone the active NIMS map. The cloned NIMS map will be modified for testing:

smw# cmap list | grep -i true
smw# cmap create --clone <grepped-map> p0.proving

3. Start Proofing. Making the cloned map active allows config set associations to be changed. The <test-node>
will be used for proofing, including node reboot behavior as needed. Nodes can be designated as test nodes
by simply changing the config set associated with them:

smw# cmap setactive p0.proving
smw# cnode update -c p0.proving <test-node>

4. Switch back to production. As circumstances require, the system can be restored to normal operating by
updating the active NIMS map:

smw# cmap setactive <grepped-map>
smw# xtbootsys --reboot <test-nodes>
Return to play development can be achieved in the same was as production configuration was restored, using
the p0.proving map in the last step listed above.

Test Different Node Environments
It is important to test plays not only on nodes intended to be modified, but also on nodes that are not intended
play participants since all plays are candidates for inclusion on all nodes if the play type is set to cle or
undefined. Similarly, normal boot time activity will run the play both before and after rc/systemd starts. In the
p0.proving NIMS test map, it's worth including a node with each image used by the system that is not being
affected by new plays being tested: WLM, netroot, elogin, and DAL nodes shouldn't be forgotten if used in the
system.

An Approach to Play Development

S2582 19

4 Ansible Limitations and Caveats
Service Configuration in in_init
One of the reasons cray-ansible runs before systemd starts is to allow plays to influence which standard Linux
services will be started during the boot with minimal Ansible action. However, because systemd is not yet started,
normal procedures to enable the service via systemctl usually cannot be used. Systemd's current mechanism for
recording enabled services' states are filesytem-based and use simple symbolic links. The following is an
example of how the standard syslog service is enabled as part of the boot:

- name: task llm, enable/disable rsyslogd
 file:
 path: /etc/systemd/system/multi-user.target.wants/rsyslog.service
 state: "{{ 'link' if ansible_local.cray_system.platform != 'compute' else
'absent' }}"
 src: /usr/lib/systemd/system/rsyslog.service
 force: yes
 when: ansible_local.cray_system.in_init
 and ansible_local.cray_system.uses_systemd
Notice the guards to ensure that the action is only taken on nodes that use systemd and when running before
systemd starts. The task also behaves differently on compute and non compute nodes.

References Parsed Even if Skipped
It is common for roles to use the set_fact module to update the data available for plays at runtime. This can
lead to problems if the fact is referenced in some contexts later. If a contraint is placed on the role that casues the
set_fact to be skipped, and a later task references the fact in a when clause, for instance, the fact will be
undefined and cause the play, and the cray-ansible run, to fail even though the same constraint that skipped the
set_fact will skip the failing task. It is not always easy to tell whether a fact reference will be parsed by Ansible,
but in cases where it does occur using the jinja filter |default(true) will avoid the error by providing a value.
Thorough testing on uninvolved nodes will help identify such issues.

Ansible Limitations and Caveats

S2582 20

	Contents
	1 About the XC™ Series Ansible Play Writing Guide
	2 An Overview of Ansible on a Cray System
	2.1 Determine When Plays Are Run
	2.2 Determine Which Plays Are Run
	2.3 The Order in Which Ansible Plays Are Run
	2.4 Data Available to Plays
	2.4.1 Ansible Facts
	2.4.2 Config Set

	2.5 Audit Trail of Actions
	2.6 Simple Shares

	3 An Approach to Play Development
	3.1 Syntax Checking and Prototyping
	3.2 Pull-mode Boilerplate
	3.3 Using a Config Set to Distribute an Ansible Play to All Nodes on a System

	4 Ansible Limitations and Caveats

