
Urika®-GX Analytic Applications Guide

(2.2.UP00)

S-3015

Contents
1 About the Urika®-GX Analytic Applications Guide ... 4

2 Analytic Software Stack Components...6

3 Urika-GX Service Modes.. 7

4 Access Urika-GX Applications.. 10

4.1 Disable Framing on Urika Applications Interface (UAI)... 11

5 Authentication Mechanisms..13

6 Apache Hadoop Support.. 15

6.1 Load Data into the Hadoop Distributed File System (HDFS).. 16

6.2 Run a Simple Hadoop Job...17

6.3 Run a Simple Word Count Application Using Hadoop...18

6.4 Monitor Hadoop Applications...19

6.5 Use Tiered Storage on Urika-GX...20

6.6 Assign the HDFS/ptmp Directory to Use SSDs for Block Storage.. 22

6.7 Change the Default HDFS Storage Policy...22

7 Apache Spark Support..24

7.1 Monitor Spark Applications..26

7.2 Remove Temporary Spark Files from SSDs..28

7.3 Obtain Additional Temporary Space for Running Spark Jobs... 28

7.4 Enable Anaconda Python and the Conda Environment Manager... 29

7.5 Provide Kerberos Credentials to Spark... 30

7.6 Redirect a Spark Job to a Specific Directory... 31

7.7 Modify the Default Number of Maximum Spark Cores.. 31

7.8 Execute Spark Jobs on Kubernetes.. 33

7.9 Multi-tenant Spark Thrift Server on Urika-GX..35

8 Use Apache Mesos on Urika-GX ...38

8.1 Access the Apache Mesos Web UI... 40

8.2 Use mrun to Retrieve Information About Marathon and Mesos Frameworks..40

8.3 Clean Up Residual mrun Jobs...44

8.4 Launch an HPC Job Using mrun... 45

8.5 Manage Resources on Urika-GX...46

8.6 Manage Long Running Services Using Marathon... 48

8.7 Flex up a YARN sub-cluster on Urika-GX..51

9 Access the Jupyter Notebook UI.. 53

9.1 Create a Jupyter Notebook..54

9.2 Share or Upload a Jupyter Notebook.. 56

Contents

S3015 2

9.3 Create a Custom Python Based Kernel for JupyterHub.. 59

10 Get Started with Using Grafana..60

10.1 Urika-GX Performance Analysis Tools.. 62

10.2 Update the InfluxDB Data Retention Policy...62

11 Use Docker on Urika-GX.. 64

11.1 Image Management with Docker and Kubernetes.. 65

11.2 Run the Native Docker Engine on Marathon... 66

12 Start Individual Kafka Brokers.. 68

13 Overview of the Cray Application Management UI... 69

14 Update the InfluxDB Data Retention Policy.. 71

15 Manage the Spark Thrift Server as a Non-Admin User.. 73

16 Use Tableau® with Urika-GX...74

16.1 Connect Tableau to HiveServer2 Using LDAP.. 74

16.2 Connect Tableau to HiveServer2 Securely..78

16.3 Connect Tableau to the Spark Thrift Server ... 81

16.4 Connect Tableau to the Spark Thrift Server Securely... 85

16.5 Connect Tableau to Apache Spark Thrift Server on a VM...89

16.6 Enable SSL for Spark Thrift Server of a Tenant.. 92

17 File Systems... 94

18 Check the Current Service Mode..95

19 Fault Tolerance on Urika-GX.. 96

20 Default Urika-GX Configurations.. 97

20.1 Default Grafana Dashboards...99

20.2 Performance Metrics Collected on Urika-GX...110

20.3 Default Log Settings.. 114

20.4 Tunable Hadoop and Spark Configuration Parameters...115

20.5 Node Types... 117

20.6 Service to Node Mapping.. 118

20.7 Port Assignments.. 121

20.8 Major Software Components Versions.. 124

21 Troubleshooting.. 126

21.1 Diagnose and Troubleshoot Orphaned Mesos Tasks..126

21.2 Analytic Applications Log File Locations... 127

21.3 Clean Up Log Data.. 129

21.4 Ensure Long Running Spark Jobs Finish Executing... 130

21.5 Troubleshoot Common Analytic and System Management Issues .. 130

Contents

S3015 3

1 About the Urika®-GX Analytic Applications Guide
This publication describes the analytic components, workload management and performance analysis tools of the
Cray® Urika®-GX system.

Typographic Conventions
Monospace Indicates program code, reserved words, library functions, command-line prompts,

screen output, file/path names, key strokes (e.g., Enter and Alt-Ctrl-F), and
other software constructs.

Monospaced Bold Indicates commands that must be entered on a command line or in response to an
interactive prompt.

Oblique or Italics Indicates user-supplied values in commands or syntax definitions.

Proportional Bold Indicates a graphical user interface window or element.

\ (backslash) At the end of a command line, indicates the Linux® shell line continuation character
(lines joined by a backslash are parsed as a single line). Do not type anything after
the backslash or the continuation feature will not work correctly.

Scope and Audience
The audience of this publication are users and system administrators of the Urika®-GX system. This publication is
not intended to provide detailed information about open source and third party tools installed on the system.
References to online documentation are included wherever applicable.

Record of Revision
Date Release

September, 2018 2.2UP00

May, 2018 2.1UP00

December, 2017 2.0UP00

April, 2017 1.2UP00

December, 2016 1.1.UP00

August, 2016 1.0.UP00

March, 2016 0.5.UP00

● New Information:

About the Urika®-GX Analytic Applications Guide

S3015 4

Information about multitenant Spark.

● Updated Content:

○ Updates to Tableau related information.

Trademarks
The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY and
design, SONEXION, Urika-GX, Urika-XA, Urika-GD, and YARCDATA. The following are trademarks of Cray Inc.:
APPRENTICE2, CHAPEL, CLUSTER CONNECT, CRAYDOC, CRAYPAT, CRAYPORT, DATAWARP, ECOPHLEX,
LIBSCI, NODEKARE. The following system family marks, and associated model number marks, are trademarks
of Cray Inc.: CS, CX, XC, XE, XK, XMT, and XT. The registered trademark LINUX is used pursuant to a
sublicense from LMI, the exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis. Other
trademarks used in this document are the property of their respective owners.

About the Urika®-GX Analytic Applications Guide

S3015 5

2 Analytic Software Stack Components
Cray Urika-GX is a high performance big data analytics platform, which is optimized for multiple workflows. It
combines a highly advanced hardware platform with a comprehensive analytics software stack to help derive
optimal business value from data. The system's analytics platform provides an optimized set of tools for capturing
and organizing a wide variety of data types from different sources and executing a variety of analytic jobs.

Major components of the analytic software stack include:

● Apache Hadoop - Hadoop is a software framework that provides the means for distributed storing and
processing of large data sets. In addition to the core Hadoop components, Urika-GX ships with a number of
Hadoop ecosystem components for increased productivity.

● Apache Spark - Spark is a general data processing framework that simplifies developing fast, end-to-end big
data applications. It provides the means for executing batch, streaming, and interactive analytics jobs. In
addition to the core Spark components, Urika-GX ships with a number of Spark ecosystem components.

● Cray Graph Engine (CGE) - CGE is a highly optimized and scalable graph analytics application software,
which is designed for high-speed processing of interconnected data. It features an advanced platform for
searching very large, graph-oriented databases and querying for complex relationships between data items in
the database.

Analytic Software Stack Components

S3015 6

3 Urika-GX Service Modes
Urika-GX features application and data security for a number of applications. Many security mechanisms play a
role in the overall security architecture to ensure the system is protected against unauthorized access.

● Default Mode - All the installed analytic applications are available under the default service mode.
Applications are configured with basic security levels wherever possible, though certain applications may
provide no security features. More specifically, HDFS runs using its simple authentication mode under the
default service mode.

● Secure Mode - Urika-GX uses Kerberos authentication while running under the secure mode. Only a limited
number of analytic applications are available under this mode and those applications are configured to run in
a secure configuration, the exact details of which vary by application. Typically, this means that applications
that interact with HDFS require valid Kerberos credentials. Moreover, user interfaces are either disabled or
require authentication under this mode.

CAUTION: If the Urika GX system is running in the secure mode, Cray does not recommend toggling
back to the default mode while in production. In the default service mode, the security assurances
provided by secure service mode are not in place and the security of data that was protected by secure
mode may be compromised while running in the default mode. Cray cannot extend the secure mode
security assurances to any system that has run in a production state in the default mode until that system
has been fully re-deployed.

Table 1. List of Services Available Under the Default and Secure Service Modes

Service Available in Default Service
Mode

Available in Secure Service
Mode

Cray Programming Environment Yes No

SELinux Yes No

Analytic Applications and Resource Management Tools

ZooKeeper Yes Yes

Spark Yes Yes

Mesos Master Yes No

Mesos Slave Yes No

Kubernetes No Yes

HDFS NameNode Yes Yes

HDFS Secondary NameNode Yes Yes

HDFS DataNode Yes Yes

CGE Yes No

Urika-GX Service Modes

S3015 7

Spark History Server Yes No

Spark Thrift Server Yes No

YARN Yes No

YARN Resource Manager Yes No

YARN Node Managers Yes No

Hadoop Job History Server Yes No

Hadoop Application Timeline Server Yes No

Hive MetaStore Yes No

HiveServer2 Yes No

Hive WebHCat Yes No

HUE Yes No

Oozie Server Yes No

Marathon Yes No

Grafana Yes No

InfluxDB Yes No

JupyterHub Yes No

System Management Tools

HSS Yes Yes

Nagios Yes Yes

Cobbler Yes Yes

Secret Manager Yes Yes

Tenant management and proxy tools Yes Yes

Analytic programming environment
components

● R

● Numpy

● Scipy

● GIT

● Environment modules

● glibc-devel

● gcc

● Python 34

● Python 27

● Scala

● Apache Maven

Yes Yes

Urika-GX Service Modes

S3015 8

● Anaconda Python

Miscellaneous Tools and UIs

YAM Yes No

mrun Yes No

Urika Application Management (UAM) Yes No

Urika-GX Application Interface (UAI) Yes No

HAProxy Yes Yes

Connectivity to Tableau Yes No

Docker No Yes

Any additional services installed on the system will use their own security mechanisms and will not be affected by
Urika-GX's default and secure modes.

Table 2. Relationship Between Access Levels and Service Modes

Mode Restricted Access Relaxed Access

As Member on
Tenant

On Physical Node As Member on
Tenant

On Physical Node

Secure Has proxied
access to Spark
and HDFS
commands

No access Has proxied access
to Spark and HDFS
commands

Has direct access to all the
services supported in the secure
mode

Default Unsupported Unsupported Unsupported Has direct access to all the
services supported in the default
mode

Urika-GX Service Modes

S3015 9

4 Access Urika-GX Applications
Access Urika-GX applications using:

● Urika-GX Applications Interface (UAI). UAI is the primary entry point to a number of web applications
running on Urika-GX. Access this UI by pointing a browser at http://hostname-login1. This UI an also
be used for viewing system health information and accessing learning resources, such as pre-installed
Jupyter notebooks and Urika-GX PDF publications.

Figure 1. Urika-GX Applications Interface

● HTTP ports numbers that the applications are configured to run on. Use the ports configured in the HAProxy
file if SSL is enabled.

TIP: If applications are accessed using ports/URLs, the UI of the accessed application will not display
the top banner, which contains additional links, including System Health, Learning Resources and
Help. Therefore, it is recommended to use the Urika-GX Applications Interface to access these
applications.

Access Urika-GX Applications

S3015 10

Table 3. Accessing User Interfaces Using URLs and Ports (when SSL is disabled)

Application URL(s)

Urika-GX Applications Interface ○ http://hostname-login1:80

○ http://hostname-login1

YARN Resource Manager ○ http://hostname-login1:8088

○ http://hostname-login2:8088

HUE ○ http://hostname-login1:8888

○ http://hostname-login2:8888

Oozie Server ○ http://hostname-login1:11000/oozie

○ http://hostname-login2:11000/oozie

Hadoop Job History Server ○ http://hostname-login1:19888

○ http://hostname-login2:19888

Hadoop Application Timeline Server ○ http://hostname-login1:8188

○ http://hostname-login2:8188

Marathon ○ http://hostname-login1:8080

○ http://hostname-login2:8080

Mesos Master ○ http://hostname-login1:5050

○ http://hostname-login2:5050

Spark History Server ○ http://hostname-login1:18080

○ http://hostname-login2:18080

Grafana http://hostname-login2:3000

HDFS NameNode ○ http://hostname-login1:50070

○ http://hostname-login2:50070

HDFS Secondary NameNode ○ http://hostname-login1:50090

○ http://hostname-login2:50090

Jupyter Notebook http://hostname-login1:7800

Urika Application Management http://hostname-login1/applications

Access Urika-GX Applications

S3015 11

4.1 Disable Framing on Urika Applications Interface (UAI)

Prerequisites
This procedure requires root privileges.

About this task
The default behaviour of UAI is to display the user interfaces for applications inside of a frame, which allows for
providing a consistent navigation experience across the user interface. However, for some sites this may not be
desirable. For example, in the case where SSL has been enabled, some applications may not display correctly
due to browser security policies. It is possible to override this behaviour by changing the values of the
FRAME_APPLICATIONS and FRAME_SECURE_APPLICATIONS variables found in
the /opt/cray/ui-application-management/default/application_management/settings.py file.

Procedure

1. Log on to login node 1 as root.

2. Switch to the /opt/cray/ui-application-management/default/application_management
directory.

3. Edit the settings.py file and set the values of the FRAME_APPLICATIONS and
FRAME_SECURE_APPLICATIONS variables according to the desired behaviour.

● If the first variable is set to true, all applications will always be framed, regardless of the setting of the
second variable.

● If the first variable is set to false but the second variable is set to true, only the applications for which
SSL is enabled will be framed, whereas all the other applications will be displayed without frames.

● If both the variables are set to false, all the applications will be displayed without frames.

4. Save and quit the settings.py file.

5. Restart the httpd service.

service httpd restart

Access Urika-GX Applications

S3015 12

5 Authentication Mechanisms
Table 4. Authentication Mechanisms

Application Authentication Mechanism

Cray Application Management UI LDAP. Users can also log in with the default account
shipped with the system. This account has the following
credentials:

username: admin

password: admin

Urika-GX Applications Interface Not available.

Documentation and Learning Resources UI Not available.

Grafana UI LDAP. The system also ships with a default account that
can be used to log on to Grafana. The credentials of this
account are:

username: admin

password: admin

Jupyter Notebook UI LDAP. The system also ships with a default account that
can be used to log on to Jupyter. The credentials of this
account are:

username: crayadm

password: initial0

HUE UI LDAP. The system also ships with a default admin
account that can be used to log on to HUE. The
credentials of this account are:

username: admin

password: initial0

Hadoop/Spark related UIs, such as Spark History
Server, Hadoop History Server, YARN Resource
Manager, etc.

Not available

Marathon UI Not available.

Mesos UI User name: LDAP user name

Authentication Mechanisms

S3015 13

Application Authentication Mechanism

Password: Mesos secret, found in
the /security/secrets/userName.mesos file,
located on all the nodes.

Spark Thrift Server Urika-GX ships with LDAP authentication enabled for
Spark Thrift server. SSL authentication can be set up if
required. For instructions, refer to Urika®-GX System
Administration Guide. Storage based authorization is
supported for Spark Thrift Server.

HiveServer2 LDAP authentication for HiveServer2 can be enabled if
required. Storage based and SQL standard based
authorizations are supported for HiveServer2. For more
information, refer to Urika®-GX System Administration
Guide

Nagios UI Default credentials:

● User name: crayadm

● Password: initial0

Authentication Mechanisms

S3015 14

6 Apache Hadoop Support
Urika-GX ships with Hortonworks® Data Platform (HDP), which is a distribution package comprising of a number
of Apache Hadoop projects. In addition to the core Hadoop elements, the following Hadoop ecosystem
components are pre-installed and pre-configured on Urika-GX:

● Apache™ Avro™ - Data serialization system.

● Apache™ DataFu™ - Collection of libraries for working with large-scale data in Hadoop.

● Apache™ Flume™ - Distributed, reliable, and available service for efficiently collecting, aggregating, and
moving large amounts of log data.

● Apache™ Hive™ -Data warehouse framework that facilitates querying and management of large datasets
residing in a distributed store/file system like the Hadoop Distributed File System (HDFS). Subcomponents of
Apache Hive include:

○ Apache™ HCatalog™- Table and storage management layer for Hadoop that enables users with different
data processing tools to more easily read and write data on the grid.

○ Apache™ WebHCat™ - REST API for HCatalog, which acts as the storage management layer for
Hadoop.

● Apache™ Hue™ - Set of web applications that enable interacting with a Hadoop cluster and browsing HDFS.

● Apache™ Kafka™ -Publish-subscribe messaging service.

● Apache™ Mahout™ - Scalable machine learning and data mining library.

● Apache™ Oozie™ - Job work-flow scheduling and coordination manager for managing the jobs executed on
Hadoop.

● Apache™ Parquet™ - Columnar storage format available to any project in the Hadoop ecosystem, regardless
of the choice of data processing framework, data model or programming language.

● Apache™ Pig™ - Software framework which offers a run-time environment for execution of MapReduce jobs
on a Hadoop cluster via a high-level scripting language called Pig Latin.

● Apache™ Sqoop™ - Apache Sqoop is a tool designed for efficiently transferring the data between Hadoop
and Relational Databases (RDBMS).

● Apache™ HiveServer2™/Hive™ Thrift Server - Apache HiveServer2 is a server interface that enables
remote clients to execute queries against Hive and retrieve the results. The current implementation, based on
Thrift RPC, is an improved version of HiveServer and supports multi–client concurrency and authentication. It
is designed to provide better support for open API clients like JDBC and ODBC.

HiveServer2 and Spark Thrift server are used on Urika-GX for enabling connections from ODBC/JDBC
clients, such as Tableau.

● Apache™ ZooKeeper™ - Centralized coordination service that is responsible for maintaining configuration
information, offering coordination in a distributed fashion, and a host of other capabilities.

None of the Urika-GX components are currently configured to send data to the Hadoop Application Timeline
Server. Users must configure their own applications to send data to the Hadoop Application Timeline Server.

For more information, visit http://hortonworks.com/ and http://www.apache.org

Apache Hadoop Support

S3015 15

http://hortonworks.com/
http://www.apache.org

HDFS Data Storage
HDFS data is stored on the SSDs and HDDs of Urika-GX's compute nodes, which results in faster data transfer
and lower latency.

Designated HDFS Data Nodes:

● 3 sub-rack/48 node system - nid[00001-00015], nid[00017-00029], and nid[00033-00045]

● 2 sub-rack/32 node system - nid[00001-00007, 00009-00013, 00017-00029]

● Single sub-rack/16 node system - nid[00001-00007], [00009-00013], [00017-00029]

Executing Hadoop Commands on Urika-GX
Flex up the YARN sub-cluster using the urika-yam-flexup command before executing Hadoop commands.
For more information, see the urika-yam-flexup man page.

6.1 Load Data into the Hadoop Distributed File System (HDFS)

Prerequisites
This procedure requires the HDFS service to be up and running.

About this task
The first step in using Hadoop is loading data into HDFS, which provides storage across the cluster nodes. The
following set of steps retrieve a copies the content of books by Mark Twain and James Fenimore Cooper into files
and then copies those files into HDFS.

Procedure

1. Log on to a login node.

2. Use the wget Linux utility to download content from Twain and Cooper's books.

wget is a computer program that retrieves content from web servers, to download the Twain and Cooper's
works.

$ wget -U firefox http://www.gutenberg.org/cache/epub/76/pg76.txt
$ wget -U firefox http://www.gutenberg.org/cache/epub/3285/pg3285.txt

3. Rename the newly created files to names of choice.

$ mv pg3285.txt DS.txt
$ mv pg76.txt HF.txt

4. Load the content of both Twain and Cooper's books into the HDFS file system.

CAUTION: The following command will fail if the /user/userID directory does not exist. This is
because users do not have write access to HDFS unless and administrator provides them a
designated folder under hdfs:///user.

Apache Hadoop Support

S3015 16

$ hdfs dfs -mkdir /user/userID

5. Move the DS.txt and HF.txt files to HDFS.

$ hdfs dfs -put HF.txt /user/userID
$ hdfs dfs -put DS.txt /user/userID

6. Load the article and compress the text file using the gzip utility.

$ gzip DS.txt
$ gzip HF.txt

7. Execute the hdfs dfs command.

$ hdfs dfs –put DS.txt.gz /user/userID
$ hdfs dfs –put HF.txt.gz /user/userID

8. Verify that the files have been loaded into HDFS.

$ hdfs dfs -ls /user/userID
Found 2 items
-rw-r--r-- 1 crayadm supergroup 459386 2012-08-08 19:34 /user/crayadm/DS.txt.gz
-rw-r--r-- 1 crayadm supergroup 597587 2012-08-08 19:35 /user/crayadm/HF.txt

6.2 Run a Simple Hadoop Job

About this task
The instructions documented in this procedure can be used to run a TeraSort benchmark, which is a simple
Hadoop job. TeraSort uses the Regular MapReduce sorting, except for a custom partitioner that splits the mapper
output into N-1 sample keys to ensure that each of the N reducer receives records with key K, such that
sample[i-1] <=K < sample[i], where i is the reducer instance number.

This procedure can be considered as running an equivalent of a "Hello World" program. The goal of the TeraSort
benchmark is to sort data as fast as possible. In the following instructions, data is generated using TeraGen,
which is a MapReduce program for generating data. Furthermore, the results are validated via TeraValidate, which
is a MapReduce program for validating that the output is sorted.

CAUTION: Please be aware that this example will fail on a 16 node Urika-GX as 16 node machines only
have 9 HDFS data nodes and TeraSort expects to make 10 replications. Those who wish to still run
TeraSort on a 16 node Urika-GX can increase the value of dfs.replication.max in hdfs-site.xml,
but be aware there may be adverse effects of attempting to create more replications than there are HDFS
datanodes in the system.

Procedure

1. Log on to a login node.

2. Flex up a YARN sub-cluster using the urika-yam-flexup command. For more information on using this
command, see the urika-yam-flexup man page.

Apache Hadoop Support

S3015 17

CAUTION: If YARN node managers are not flexed up when a Hadoop job is started, the Hadoop job
will hang indefinitely until resources are provided by flexing up YARN node managers.

3. Generate the input data via TeraGen, using default MapReduce options.

In the following example, the command hdfs dfs -rm -R /tmp/10gsort is only needed if the
tmp/10gsort directory already exists.

$ hdfs dfs -rm -R /tmp/10gsort
$ yarn jar /usr/hdp/current/hadoop-mapreduce-client/hadoop-mapreduce-examples.jar teragen 100 /tmp/10gsort/input

4. Execute the TeraSort benchmark on the input data.

$ yarn jar /usr/hdp/current/hadoop-mapreduce-client/hadoop-mapreduce-examples.jar terasort /tmp/10gsort/input /tmp/10gsort/output

5. Validate the sorted output data via TeraValidate.
$ yarn jar /usr/hdp/current/hadoop-mapreduce-client/hadoop-mapreduce-examples.jar teravalidate /tmp/10gsort/output /tmp/10gsort/validate

6. Verify the success of the validation.

$ hdfs dfs -ls /tmp/10gsort/validate

Found 2 items
-rw-r--r-- 3 user hdfs 0 2015-08-12 17:15
/tmp/10gsort/validate/_SUCCESS
-rw-r--r-- 3 user hdfs 20 2015-08-12 17:15
/tmp/10gsort/validate/part-r-00000

6.3 Run a Simple Word Count Application Using Hadoop

About this task
The following code shows how to invoke the word counter program, which is included in the Hadoop example
JAR file.

Procedure

1. Flex up a YARN sub-cluster using the urika-yam-flexup command. For more information on using this
command, see the urika-yam-flexup man page.

CAUTION: If YARN Node Managers are not flexed up when a Hadoop job is started, the Hadoop job
will hang indefinitely until resources are provided by flexing up YARN nodes

2. Remove the output directory if already exists.

$ hdfs dfs -rm /tmp/word_out

3. Execute the following command:

$ yarn jar /usr/hdp/current/hadoop-mapreduce-client/hadoop-mapreduce-examples.jar wordcount \
/tmp/word_in /tmp/word_out

Where /tmp/word_in is the directory containing files whose words are to be counted and /tmp/word_out
is the output directory

4. Verify the results.

$ hdfs dfs -cat /tmp/word_out/part*

Apache Hadoop Support

S3015 18

5. Flex down the YARN sub-cluster using the urika-yam-flexdown command. For more information on using
this command, see the urika-yam-flexdown man page.

6.4 Monitor Hadoop Applications
Hadoop jobs can be monitored using the following tools:

● Hadoop Job History Server UI, which can be accessed via the Urika-GX Applications Interface UI or at:
http://hostname-login1:19888 and http://hostname-login2:19888. Accessing via the Urika-
GX Applications Interface is recommended.

Figure 2. Hadoop Job History Server UI

● YARN Resource Manager UI, which can be accessed via the Urika-GX Applications Interface or at
http://hostname-login1:8088 and http://hostname-login2:8088. Accessing via the Urika-GX
Applications Interface is recommended.

Figure 3. YARN Resource Manager UI

● Cray Application Management UI, which can be access via Urika-GX Applications Interface or at http://
hostname-login1/applications

Apache Hadoop Support

S3015 19

Figure 4. Cray Application Management UI

6.5 Use Tiered Storage on Urika-GX
Storage policies define the policy HDFS uses to persist block replicas of a file to storage types as well as the
desired storage type(s) for each replica of the file blocks being persisted. They allow for fallback strategies,
whereby if the desired storage type is out of space then a fallback storage type is utilized to store the file blocks.
The scope of these policies extends and applies to directories, and all files within them.

Storage policies can be enforced during file creation or at any point during the lifetime of the file. For storage
policies that change during the lifetime of the file, HDFS introduces a new tool called Mover that can be run
periodically to migrate all files across the cluster to correct storage types based on their storage policies.

Urika-GX implements the Hadoop 2.7.3 HDFS tiered-storage, combining both the SSDs and hard drives into a
single storage paradigm. The HDFS NameNode considers each DataNode to be a single storage unit with
uniform characteristics. By adding awareness of storage media, HDFS can make better decisions about the
placement of block data with input from applications. An application can choose the distribution of replicas based
on its performance and durability requirements. The storage policy will be DISK by default on Urika-GX if no
storage policy is assigned. Changes to this default value can be made based on requirements and site policies.

Storage Types and Storage Policies
Each DataNode in HDFS is configured with a set of specific disk volumes as storage mount points, on which
HDFS files persist.

CAUTION: It is recommended not to modify how volumes are tagged in hdfs-site.xml.

With Urika-GX, users can tag each volume with a storage type to identify the characteristic of storage media that
represents the volume. For example, a mounted volume may be designated as an archival storage and another
one as flash storage.

Apache Hadoop Support

S3015 20

An example of the hdfs-site.xml file is shown below:

<property>
 <name>dfs.datanode.data.dir</name>
 <value>[SSD]file:///mnt/ssd/hdfs/dd,[DISK]file:///mnt/hdd-2/hdfs/dd</value>
</property>

The available space reported by HDFS commands represents the space consumed by HDDs and SSDs. Even
though Urika-GX has a heterogeneous file system, the default storage type is DISK, unless explicitly set to use
SSD.

TIP: If the system indicates that the disks have reached full capacity and HDFS commands indicate that
there is still some space available, find out the actual space consumed by the storage type by adding up
the available space on the individual directories on each node.

● For HDD = /mnt/hdd-2/hdfs/dd

● For SSD = /mnt/ssd/hdfs/dd

Available Policies
Urika-GX ships with the following pre-defined HDFS polices, which can be assigned to different HDFS directories
and files.

$ hdfs storagepolicies -listPolicies
Block Storage Policies:
 BlockStoragePolicy{HOT:7, storageTypes=[DISK], creationFallbacks=[], replicationFallbacks=[ARCHIVE]}
 BlockStoragePolicy{ONE_SSD:10, storageTypes=[SSD, DISK], creationFallbacks=[SSD, DISK], replicationFallbacks=[SSD, DISK]}
 BlockStoragePolicy{ALL_SSD:12, storageTypes=[SSD], creationFallbacks=[DISK], replicationFallbacks=[DISK]}
 BlockStoragePolicy{LAZY_PERSIST:15, storageTypes=[RAM_DISK, DISK], creationFallbacks=[DISK], replicationFallbacks=[DISK]}

ONE_SSD attempts to place one replica of each block on SSD, whereas ALL_SSD attempts to place all replicas.

Warm and cold storage policies are not supported on Urika-GX.

Use Cases
1. An application creates a file and requests that block replicas be stored on a particular Storage Type.

Variations include:

a. ALL replicas on the same storage type.

b. Replicas on different storage types, for example, two replicas on HDD, one on SSD, etc.

c. Application requests that the Storage Type setting is mandatory. For example, the operator places hot
files, such as the latest partitions of a table on SSDs

2. An application changes the storage media of a file. Variations include:

a. For ALL replicas

b. For some of the replicas

c. Application requests that the new setting is mandatory.

3. The user creates quota for a particular storage media type at a directory.

4. Upon request, the user can move hot data to faster storage media based on access patterns.

Performance Considerations
● The impact of storage policies is minimal for smaller datasets, due to the presence of the OS buffer cache,

which caches files in memory.

Apache Hadoop Support

S3015 21

● For the TeraSort test most of the benefit of the SSDs can be obtained with the ONE_SSD policy, since we only
need to read one replica of each block.

6.6 Assign the HDFS/ptmp Directory to Use SSDs for Block Storage

About this task
Follow this procedure to use SSDs as the block storage for the HDFS/ptmp directory.

Procedure

1. Create the/ptmp directory.

$ hdfs dfs -mkdir /ptmp

2. Change security settings of the /ptmp directory to 1777

$ hdfs dfs -chmod 1777 /ptmp

3. Set the story policy of the /ptmp directory.

$ hdfs storagepolicies -setStoragePolicy -path /ptmp -policy ALL_SSD
Set storage policy ALL_SSD on /ptmp

4. Verify that the storage policy has been changed.

$ hdfs storagepolicies -getStoragePolicy -path /ptmp
The storage policy of /ptmp:
BlockStoragePolicy{ALL_SSD:12, storageTypes=[SSD], creationFallbacks=[DISK],
replicationFallbacks=[DISK]}

6.7 Change the Default HDFS Storage Policy

About this task
HDFS is configured to utilize both DISK and SSD in the hdfs-site.xml file. The default storage policy is HOT,
therefore only DISK is used on Urika-GX. It should be noted that the HDFS UI reports the combined (DISK and
SSD) space available to HDFS.

By default, Urika-GX ships pre-configured with an /ALL_SSD/HDFS directory and a /ONE_SSD/HDFS directory,
with the associated storage policies. This procedure describes how to use SSDs for HDFS storage.

Procedure

1. Log on to a login node.

Apache Hadoop Support

S3015 22

2. Become the user hdfs.

$ su -hdfs

3. Set the storage policy manually to ONE_SSD or ALL_SSD for that HDFS directory using the hdfs
storagepolicies command.

WARNING: Spark scratch space (spark.local.dir) is also located on the SSDs. Setting the
HDFS policy to ONE_SSD or ALL_SSD will reduce the scratch space available to Spark applications.

$ hdfs storagepolicies -setStoragePolicy -path path -policy policy

4. Verify that the storage policy has been changed.

$ hdfs storagepolicies -getStoragePolicy -path /ptmp

Apache Hadoop Support

S3015 23

7 Apache Spark Support
Apache™ Spark™ is a fast and general engine for data processing. It provides high-level APIs in Java, R, Scala
and Python, and an optimized engine.

Spark core and ecosystem components currently supported on the Urika-GX system include:

● Spark Core, DataFrames, and Resilient Distributed Datasets (RDDs) - Spark Core provides distributed
task dispatching, scheduling, and basic I/O functionalities.

● Spark SQL, DataSets, and DataFrames - The Spark SQL component is a layer on top of Spark Core for
processing structured data.

● Spark Streaming - The Spark Streaming component leverages Spark Core's fast scheduling capabilities to
perform streaming analytics.

● MLlib Machine Learning Library - MLlib is a distributed machine learning framework on top of Spark.

● GraphX - GraphX is a distributed graph processing framework on top of Spark. It provides an API for
expressing graph computations.

This section provides a quick guide to using Apache Spark on Urika-GX. Please refer to the official Apache Spark
documentation for detailed information about Spark, as well as documentation of the Spark APIs, programming
model, and configuration parameters.

Run Spark Applications
The Urika-GX software stack includes Spark configured and deployed to run under Mesos.

Mesos on Urika-GX is configured with three Mesos masters using ZooKeeper. To connect to Mesos, Spark’s
Master is set to:

mesos://zk://zoo1:2181,zoo2:2181,zoo3:2181/mesos

This is the default setting on Urika-GX and is configured via the Spark start up scripts installed on the system.

Spark on Urika-GX uses coarse-grained mode by default, but fine-grained can be enabled by setting
spark.mesos.coarse to false in SparkConf.

To launch Spark applications or interactive shells, use the Spark launch wrapper scripts
on /opt/cray/spark2/default/bin on login nodes. These scripts will be located in the user's path as long
as the appropriate Spark module is loaded (it will be spark/2.3.0 by default when users log in to the login
nodes). These wrapper scripts include:

● spark-shell

● spark-submit

● spark-sql

● pyspark

Apache Spark Support

S3015 24

● sparkR

● run-example

By default, spark-shell will start a small, 32 core interactive Spark instance to allow small-scale
experimentation and debugging. To create a larger instance in the Spark shell, pass the --total-executor-
cores No_of_Desired_cores command-line flag to spark-shell. To request a smaller or larger instance,
again pass the --total-executor-cores No_of_Desired_cores command-line flag. Memory allocated to
Spark executors and drivers can be controlled with the --driver-memory and --executor-memory flags. By
default, 16 gigabytes are allocated to the driver, and 96 gigabytes are allocated to each executor, but this will be
overridden if a different value is specified via the command-line, or if a property file is used.

Further details about starting and running Spark applications are available at http://spark.apache.org

Build Spark Applications
Urika-GX ships with Maven installed for building Java applications (including applications utilizing Spark’s Java
APIs), and Scala Build Tool (sbt) for building Scala Applications (including applications using Spark’s Scala APIs).
To build a Spark application with these tools, add a dependence on Spark to the build file. For Scala applications
built with sbt, add this dependence to the .sbt file, such as in the following example:

scalaVersion := "2.11.8"
libraryDependencies += "org.apache.spark" %% "spark-core" % "2.2.0"

For Java applications built with Maven, add the necessary dependence to the pom.xml file, such as in the
following example:

<dependencies>
 <dependency> <!-- Spark dependency -->
 <groupId>org.apache.spark</groupId>
 <artifactId>spark-core_2.11</artifactId>
 <version>2.2.0</version>
 </dependency>
</dependencies>

For detailed information on building Spark applications, please refer to the current version of Spark's
programming guide at http://spark.apache.org.

Conda Environments
When the system is running in the default mode, PySpark on Urika-GX is aware of Conda environments. If there
is an active Conda environment (the name of the environment is prepended to the Unix shell prompt), the
PySpark shell will detect and utilize the environment's Python. To override this behavior, manually set the
PYSPARK_PYTHON environment variable to point to the preferred Python. For more information, see Enable
Anaconda Python and the Conda Environment Manager on page 29.

When the system is running in the secure mode, Spark jobs (running on Kubernetes) are not aware of Conda
environments or user Python versions.

Spark Configuration Differences
Spark’s default configurations on Urika-GX have a few differences from the standard Spark configuration:

● Changes to improve execution over a high-speed interconnect - The presence of the high-speed network
on the system changes some of the tradeoffs between compute time and communication time. Because of
this, the default settings of spark.shuffle.compress has been changed to false and that of

Apache Spark Support

S3015 25

http://spark.apache.org/
http://spark.apache.org/

spark.locality.wait has been changed to 1. This results in improved execution times for some
applications. If an application is running out of memory or temporary space, try changing this back to true.

● Increases to default memory allocation - Spark’s standard default memory allocation is 1 Gigabyte to each
executor, and 1 Gigabyte to the driver. Due to large memory nodes, these defaults were changed to 96
Gigabytes for each executor and 16 Gigabytes for the driver.

● Mesos coarse-grained mode - Urika-GX ships with this mode enabled as coarse-grained mode significantly
lowers startup overheads.

Limitations
Spark Shells using Kubernetes (i.e., those launched under the secure service mode) will be limited to 16 cores
and 60 GiB memory and this cannot be overridden at the command line. This is due to a limitation of the lack of
native Spark Shell support in the Spark on Kubernetes project that Cray has provided a workaround for in this
release.

7.1 Monitor Spark Applications
Urika-GX enables monitoring individual Spark applications as well as the list of completed Spark applications via
Spark web UIs.

Use the urika-service-mode command to check the service mode the system is currently running in, as that
dictates the availability of Spark web UIs. For more information, refer to the urika-service-mode man page
and Urika-GX Service Modes on page 7.

Monitoring Individual Spark Applications
Every Spark application launches a web UI at port 4040. This UI displays useful information about the Spark
application, such as:

● a list of scheduler stages and tasks

● a summary of the Spark Resilient Distributed Dataset (RDDs) sizes and memory usage

● environmental information

● information about the active/running executors

This UI can be accessed at: http://hostname-login1:4040 or http://hostname-login2:4040. If
multiple applications are launched, the subsequent jobs will run on port 4041, 4042, 4043, onwards.

View Completed Spark Applications
The Spark History Server displays information about completed Spark applications. Access the Spark History
Server UI via the Urika-GX Applications Interface. Though this is the recommended method of accessing the
Spark History Server UI, it can also be accessed via the port it runs on, i.e. at: http://hostname-
login1:18080 or http://hostname-login2:18080

Apache Spark Support

S3015 26

Figure 5. Urika-GX Applications Interface

Figure 6. Spark History Server UI

The preceding web UIs contain custom Cray enhancements that link Spark tasks in the UIs to Grafana
dashboards that display compute node system metrics during the tasks' executions. These can be accessed by

Apache Spark Support

S3015 27

clicking links in the executor ID/host column in the tasks table on the Stage tab, or by selecting the Compare
check boxes of multiple tasks in the task table and clicking the Compare link at the top of the table.

7.2 Remove Temporary Spark Files from SSDs

Prerequisites
This procedure requires root privileges.

About this task
Spark writes temporary files to the SSDs of the compute nodes that the Spark executors run on. Ordinarily, these
temporary files are cleaned up by Spark when its execution completes. However, sometimes Spark may fail to
fully clean up its temporary files, such as, when the Spark executors are not shut down correctly. If this happens
too many times, or with very large temporary files, the SSDs may begin to fill up. This can cause Spark jobs to fail
or slow down.

Urika-GX checks for any idle nodes once per hour, and cleans up any left over temporary files. This is handled by
a cron job running on one of the login nodes that executes the /usr/sbin/cleanupssds.sh script once per
hour. Follow the instructions in this procedure if this automated clean up ever proves to be insufficient.

Procedure

1. Log on to one of the login nodes as root.

2. Kill all the processes of running Spark jobs.

3. Execute the /usr/sbin/cleanupssds.sh script.

/usr/sbin/cleanupssds.sh

7.3 Obtain Additional Temporary Space for Running Spark Jobs

Prerequisites
Ensure that the login node is accessible.

About this task
Temporary directories can be configured to use both the SSDs and HDDs to provide additional temporary space
for running large Spark jobs. Although using a combination of SSDs and HDDs for running Spark jobs provides
additional flexibility for running Spark jobs requiring large amount of shuffle space, it is important to note that using
just SSDs for running Spark jobs provides optimal performance.

Apache Spark Support

S3015 28

Procedure

1. Log on to a login node, such as login1.

$ ssh login1

2. Create a file named spark_local_dirs.hdd in the home directory, as shown in the following example:

$ echo true >> /home/users/username/spark_local_dirs.hdd

The preceding example, creates a file named spark_local_dirs.hdd and adds true to its contents.

If the spark_local_dirs.hdd file exists in the home directory, additional temporary scratch space will be
used while running Spark jobs. On the other hand, if this file does not exist in the home directory, the default
option for temporary space will be used, i.e., just the SSDs will be used for running Spark jobs. Delete the
spark_local_dirs.hdd file if it is required to revert to the default settings, using the following command:

$ rm /home/users/username/spark_local_dirs.hdd

7.4 Enable Anaconda Python and the Conda Environment Manager

About this task
In addition to the default system Python, Urika-GX also ships with the Anaconda Python distribution version 4.1.1,
including the Conda package and environment manager. Users can enable and/or disable Anaconda for their
current shell session by using environment modules.

Procedure

1. Log on to a login node.

nid00030 is used as an example for a login node in this procedure.

2. Load the analytics module

$ module load analytics

3. Allocate resources, using workload management specific commands.

Example for allocating resources using Slurm.

$ salloc -N numberOfResources

Example for allocating resources using PBS Pro.

$ qsub -I -lnodes=numberOfResources
$ module load analytics
$ module load openmpi/gcc/64/3.0.0

The path shown in the preceding example for loading the openMPI module depends on the system.

4. Load the anaconda3 module.

Apache Spark Support

S3015 29

[user@nid00030 ~]$ module load anaconda3

Loading the anaconda3 module will make Anaconda Python the default Python, and enable Conda
environment management.

5. Create a Conda environment.

The following example creates a Conda environment with scipy and all of its dependencies loaded:

[user@nid00030 ~]$ conda create --name scipyEnv scipy

IMPORTANT: Use the conda config --add envs_dirs path_to_directory command if it is
required to set an alternate environments directory for Conda. path_to_directory must be a
directory that is mounted within the container. This is particularly useful when the home
directory space is limited.

6. Activate the Conda environment.

[user@nid00030 ~]$ source activate scipyEnv

For more information about Anaconda, refer to https://docs.anaconda.com. For additional information about
the Conda environment manager, please refer to http://conda.pydata.org/docs/

7. Verify that the name of the environment is prepended to the shell prompt to ensure that the Conda
environment has been activated.

In the following example, (scipyEnv) has been prepended in the prompt, which indicates that the Conda
environment has been activated.

(scipyEnv) [user@nid00030 ~]$

Once the Conda environment has been activated, Python and PySpark will both utilize the selected
environment. If it is not required to have PySpark utilize the environment, manually set PYSPARK_PYTHON to
point to a different Python installation.

● To deactivate a Conda environment, use source deactivate:

(scipyEnv) [user@nid00030 ~]$ source deactivate

● To disable Anaconda and Conda, and switch back to the default system Python, unload the module:

(scipyEnv) [user@nid00030 ~]$ module unload anaconda3

For more information about Anaconda, refer to https://docs.anaconda.com. For additional information about
the Conda environment manager, please refer to http://conda.pydata.org/docs/

7.5 Provide Kerberos Credentials to Spark

Prerequisites
Ensure that the Kerberos and Spark services are running.

Apache Spark Support

S3015 30

https://docs.anaconda.com
http://conda.pydata.org/docs/
https://docs.anaconda.com
http://conda.pydata.org/docs/

About this task
Under the secure mode, Spark uses Kerberos to authenticate users with HDFS, thus allowing users to securely
access their data on HDFS. While this is managed automatically for users on Urika-GX, it can also be done
manually if required.

Procedure

1. Manually specify either of the following pairs of arguments to the spark-shell or spark-submit
commands when launching a Spark shell or submitting a Spark job.

● The --principal PRINCIPAL and --keytab KEYTAB_FILE arguments

● The --conf NAME=VALUE arguments with --conf spark.yarn.principal=PRINCIPAL and --
conf spark.yarn.keytab=KEYTAB_FILE

2. Ensure that the log output contains the values that were supplied.

INFO security.UserGroupInformation: Login successful for user user@REALM using keytab file /
path/to/keytab

An error message similar to the following will be returned if the credentials are incorrect:

Exception in thread "main" java.io.IOException: Login failure for user@REALM
from key tab /path/to/keytab: \
javax.security.auth.login.LoginException: Unable to obtain password from user

7.6 Redirect a Spark Job to a Specific Directory

About this task
This procedure provides instructions for redirecting Spark event logs to a directory of choice.

Procedure

1. Log on to a login node.

2. Execute the spark-shell command with the --conf spark.eventLog.dir argument, specifying the
directory of choice.

$ spark-shell --conf spark.eventLog.dir=hdfs:///user/userName/sparkHistory

The preceding Spark job will not be displayed up on the Spark History Server

Apache Spark Support

S3015 31

7.7 Modify the Default Number of Maximum Spark Cores

Prerequisites
Ensure that Spark is not running using the urika-state command. For more information, see the urika-
state man page.

About this task
Defaults for spark-shell and spark-submit can be modified via the --total-executor-cores
NUM_CORES flag.

Procedure

Change the number of default Spark maximum cores using either of the following mechanisms:

● Modify the default Spark maximum cores via Jupyter Notebook

1. Access the Jupiter Notebook UI at http://hostname-login1:7800 or using either the Cray Application
Interface at http://hostname.

2. Create a new notebook with the following content, replacing NUM_CORES with the desired number of
maximum Spark cores.

○ Example for Scala:

sc.stop()
sc = SparkContext(conf=SparkConf().set("spark.cores.max", "NUM_CORES"))

○ Example for PySpark:

import org.apache.spark.SparkContext
import org.apache.spark.SparkConf
val conf = new SparkConf().set("spark.cores.max", "NUM_CORES")
val sc = new SparkContext(conf)

○ Example for SparkR:

sparkR.session(spark.cores.max = "NUM_CORES")

● Change the number of default Spark maximum cores via the command-line

1. Log on to the login node.

$ ssh login1

2. Set spark.cores.max to the desired value by executing the following commands, depending on the
type of shell used.

○ Example for Scala

spark-shell
sc.stop()
sc = SparkContext(conf=SparkConf().set("spark.cores.max", "NUM_CORES"))

○ Example for PySpark

pyspark
import org.apache.spark.SparkContext

Apache Spark Support

S3015 32

import org.apache.spark.SparkConf
val conf = new SparkConf().set("spark.cores.max", "NUM_CORES")
val sc = new SparkContext(conf)

○ Example for SparkR

sparkr
sparkR.session(spark.cores.max = "NUM_CORES")

7.8 Execute Spark Jobs on Kubernetes
Spark jobs run inside containers, which are managed via Kubernetes on the Urika-GX system. This section
provides some examples for executing Spark jobs, retrieving output, and viewing logs etc.

The system needs to be running in the secure mode and the user needs to be logged on a login node to run the
examples shown in this section.

Running a Spark Pi Example Job
The following examples shows how to run a simple Spark Pi job inside a container. It uses
spark.app.name as the Spark job's name.

$ spark-submit --class org.apache.spark.examples.SparkPi \
--conf spark.app.name=spark-pi \
local:///opt/spark/examples/target/scala-2.11/jars/spark-
examples_2.11-2.2.0-k8s-0.5.0.jar

The path to the JAR file must be relative to the path inside the container, not the path that exists
on the system. Inside the container, the Spark home directory is /opt/spark instead
of /opt/cray/spark2/default.

The preceding command produces output similar to the following (only a portion of the output is
shown below for brevity):

2018-02-26 16:16:47 INFO HadoopStepsOrchestrator:54 - Hadoop Conf
directory: /etc/hadoop/conf
2018-02-26 16:16:47 INFO HadoopConfBootstrapImpl:54 -
HADOOP_CONF_DIR defined. Mounting Hadoop specific files
2018-02-26 16:16:48 WARN NativeCodeLoader:62 - Unable to load native-
hadoop library for your platform... using builtin-java classes where
applicable
2018-02-26 16:16:48 INFO LoggingPodStatusWatcherImpl:54 - State
changed, new state:
 pod name: spark-pi-1519683406605-driver
 namespace: username
 labels: spark-app-selector ->
spark-027d506894bd4b2ca86692f03f9fab5a, spark-role -> driver
 pod uid: bceaf8b2-1b42-11e8-8b39-001e67d33475
 creation time: 2018-02-26T22:16:48Z
 service account name: spark
 volumes: spark-local-dir-0-tmp, hadoop-properties, spark-token-
pxz79
 node name: N/A
 start time: N/A
 container images: N/A

Apache Spark Support

S3015 33

 phase: Pending
 status: []
.......

The output of the Spark Driver can be viewed by executing kubectl logs pod_name and
looking at the pod's logs. The pod's name is displayed near the top of the console output, as
shown in the preceding example. Execute the kubectl logs pod_name command and grep
the output, as shown below:

$ kubectl logs spark-pi-1519683406605-driver | grep "is roughly"
Pi is roughly 3.1351356756783786

Spark Executor pods are cleaned up and deleted after they finish running. Therefore, their output
is not accessible.

Running a Spark Pi Example Job
A Pyspark pi example job is very similar to a Scala Spark PI, but information is specified slightly
differently. If there are any JAR files, they should be provided via the --jars flag.

$ bin/spark-submit --conf spark.app.name=pyspark-pi \
--jars local:///opt/spark/examples/target/scala-2.11/jars/spark-
examples_2.11-2.2.0-k8s-0.5.0.jar \
local:///opt/spark/examples/src/main/python/pi.py

Execute the kubectl logs pod_name command and grep the output, as shown below:

kubectl logs pyspark-pi-1519684161476-driver | grep "is roughly"
Pi is roughly 3.141600

Using HDFS
The HADOOP_CONF_DIR parameter will automatically be set to the appropriate value for the current user during
Spark start up.

How to Run Jobs and Use the Resource Staging Server
Simply provide the location of the Spark jar and files on the local file system and they will be loaded into the Spark
Resource Staging Server so that resources will be available inside the Spark container.

$ bin/spark-submit --class TriangleCounts --conf spark.app.name=spark-
triangles \
/home/users/builder/nid00006/workspace/socrates-cactus-spark-tests/
target/scala-2.11/spark-tests_2.11-1.0.jar \
/user/builder/datasets/cactus-spark-triangles/small-triangles.txt

Check the results using the pod name.

$ kubectl logs spark-triangles-1520878896538-driver | grep "riangles:"
numTriangles: 10624230
Number of triangles: 3541410

Apache Spark Support

S3015 34

Resource Configuration for Spark Jobs
The following Spark configuration settings may be used to control the amount of resources that Spark will request
from Kubernetes for any job launched using spark-submit under the secure service mode, i.e., under
Kubernetes:

Table 5. Spark Configuration Settings and their Default Values

Configuration Setting Default Value Notes

spark.executor.instances 5 Number of Spark executor
containers that will be
launched to provide job
execution under
Kubernetes

spark.executor.cores 1 Number of cores
requested per executor

spark.executor.memory 96g Amount of memory
requested per executor

spark.driver.cores 1 Number of cores
requested for the driver

This should be increased if
a job does a lot of work in
the driver e.g.
aggregations, result
collection

spark.driver.memory 16g Amount of memory
requested per driver

CAUTION: Please be aware that due to Kubernetes's service scheduling mechanism, there are always
some services running on all the nodes, using fractional CPU cycles. This may block any requests that
attempt to use the maximum number of cores on the system because a small fraction of those cores is
already allocated.

If a job is not showing any progress, find out the current status of the associated Kubernetes pod by
running kubectl describe pod pod-name. If there are insufficient resources to launch a job, the
system will return a message similar to the following at the end of the output:

Warning FailedScheduling 55s (x8 over 1m) default-scheduler 0/16 nodes are available: 1
PodToleratesNodeTaints, 16 Insufficient cpu.

7.9 Multi-tenant Spark Thrift Server on Urika-GX
Urika-GX enables tenants to have a tenant-isolated Hive MetaStore, in addition to the Spark Thrift Server. The
metastore allows schema to be shared between spark-sql shells and Spark Thrift clients. The Spark Thrift

Apache Spark Support

S3015 35

Server is an 'on demand' service, meaning that users launch it as required and stop it when it is not needed. The
tenant metastore is a pod comprised of two containers running within the tenant's namespace. One of these
containers runs the Hive metastore service, while the other runs a Postgres database.

NOTE:

The metastore allows schema to be shared between spark-sql shells and Spark Thrift clients

Hive Metastore Management
Tenant specific metastores are created as part of the tenant creation process. Tenants can use the following
commands within their VM to interact with the metastore:

● check-metastore - Checks the status of the metastore, indicates to the user whether or not it is running
and the IP address of the metastore.

● start-metastore - Starts the tenant metastore, if there is not one already running.

● stop-metastore - Stops the tenant metastore service.

CAUTION: The metastore must be running in order for the Thrift Server to launch successfully.

Spark Thrift Server Management
Tenants can use the following commands within their VM to interact with the Spark Thrift Server:

● start-thriftserver - Configures the tenant specific Spark Thrift Server and launches the Spark Thrift
Server spark job in the tenant's Kubernetes namespace

● stop-thriftserver - Stops the tenant specific Spark Thrift Server job and does requisite cleanup.

The Spark Thrift Server is a shared service within a tenant, therefore only one Spark Thrift Server instance per
tenant should be running.

Limitations
The current version of Spark on Urika-GX lacks support for long running spark jobs with secure HDFS. As a
result, a Spark Thrift Server instance can only run as long as the HDFS delegation tokens are valid for. Currently
this period is 1 day. After this time, the Spark Thrift Server instance can no longer query data in secure HDFS. If
this happens, the Spark Thrift Server instance must be restarted using the stop/start commands above.

Authentication/Authorization
Tenant users authenticate to the Spark Thrift Server using their LDAP credentials. The Spark Thrift Server relies
on tenant membership for authorizing users. Therefore, if a user is added as a member to a tenant via the ux-
tenant-add-user command, the user will be automatically granted access to the Spark Thrift Server. No
separate authorization mechanisms are necessary.

Administering Tenant Spark Thrift Server Components
It may prove useful for a system administrator to be able to check the status of a tenants Spark Thrift Server
and/or metastore. They may do so using kubectl commands from the login node.

To see the state of the Kubernetes POD containing the Spark Thrift Server driver:

root@login1# kubectl get pods -n TENANT-VM thrift-server-TENANT-VM --show-all

Apache Spark Support

S3015 36

To see if the Spark Thrift Server has fully initialized, assuming the previous command showed the POD was
"Running"

root@login1# kubectl logs -n TENANT-VM thrift-server-TENANT-VM | grep 'Started
ThriftHttpCLIService

To see the state of the Kubernetes POD containing the Metastore server:

root@login1# kubectl get pods -n <TENANT-VM> metastore-TENANT-VM --show-all

The status should be 'Running' and the Status '2/2' (indicating both containers were successfully started).

To see if the Metastore server has fully initialized, assuming the previous command showed the POD was
"Running"

root@login1# kubectl logs -c hive -n <TENANT-VM> metastore-TENANT-VM | grep
'schemaTool completed'

Apache Spark Support

S3015 37

8 Use Apache Mesos on Urika-GX
Apache™ Mesos™ acts as the primary resource manager on the Urika-GX platform. It is a cluster manager that
provides efficient resource isolation and sharing across distributed applications and/or frameworks. It lies between
the application layer and the operating system and simplifies the process of managing applications in large-scale
cluster environments, while optimizing resource utilization.

Architecture
Major components of a Mesos cluster include:

● Mesos agents/slaves - Agents/slaves are the worker instances of Mesos that denote resources of the
cluster.

● Mesos masters - The master manages agent/slave daemons running on each cluster node and implements
fine-grained sharing across frameworks using resource offers. Each resource offer is a list of free resources
on multiple agents/slaves. The master decides how many resources to offer to each framework according to
an organizational policy, such as fair sharing or priority.

By default, Urika-GX ships with three Mesos masters with a quorum size of two. At least two Mesos masters
must be running at any given time to ensure that the Mesos cluster is functioning properly. Administrators can
use the urika-state and urika-inventory commands to check the status of Mesos masters and
slaves. Administrators can also check the status of Mesos by pointing their browser at http:hostname-
login1:5050 and ensuring that it is up. In addition, executing the ps -ef | grep mesos command on
the login nodes displays the running Mesos processes.

Components that Interact with Mesos
● Frameworks - Frameworks run tasks on agents/slaves. The Mesos Master offers resources to frameworks

that are registered with it. Frameworks decide either to accept or reject the offer. If a framework accepts the
offer, Mesos offers the resources and the framework scheduler then schedules the respective tasks on
resources. Each framework running on Mesos consists of two components:

○ A scheduler that is responsible for scheduling the tasks of a framework's job, within the accepted
resources.

○ An executor process that is launched on agent/slave nodes to run the framework's tasks.

● In addition to the aforementioned components, Urika-GX also supports Marathon and mrun (the Cray-
developed application launcher) as ecosystem components of Mesos. mrun is built upon Marathon
commands for ease of use and running data secure distributed applications. The mrun command sets up
resources for CGE and HPC jobs.

On Urika-GX, all tasks launched directly from Marathon need to be run as user marathon, and cannot be run
as any other user ID. If a user tries to launch applications/tasks as non-Marathon user, the application will fail
with error “Not authorized to launch as userID”. This behavior has no impact on Hadoop, Spark,
mrun and/or CGE jobs.

Use Apache Mesos on Urika-GX

S3015 38

Role of HAProxy
Requests received on the login nodes for the following services are proxied using HAProxy to the Urika-GX
compute nodes:

● YARN Resource Manager

● HDFS NameNode

● Secondary HDFS NameNode

● Hadoop Application Timeline Server

● Hadoop Job History Server

● Spark History Server

● Oozie

For services like Mesos Masters and Marathon, while there are 3 instances running, one of them is the active
leader. Requests received by the login node are proxied to the currently active leader. If a leader runs into issues,
one of the backup leaders take over and the requests are proxied to the current leader.

HAProxy can be configured to provide SSL. Some possible solutions are documented in the security section of
"Urika®-GX System Administration Guide".

Viewing Mesos Metrics from the CLI
Use the Cray-developed urika-mesos_metrics script to view Mesos related details. This script is located in
the /root/urika-tools/urika-cli directory on the SMW and needs to be run as root.

Following is a sample output of the urika-mesos_metrics script:

urika-mesos_metrics
 HTTP/1.1 200 OK
 Proceeding further...
******* MESOS CLUSTER METRICS **********
 Total cpus : 984
 Used cpus : 0
 Master elected : 1
******* MESOS FRAMEWORK METRICS **********
 Frameworks active : 1
 Frameworks connected : 1
 Frameworks disconnected: 0
 Frameworks inactive: 0
******* MESOS SLAVE METRICS **********
 Slaves active : 41
 Slaves connected : 41
 Slaves disconnected: 0
 Slaves inactive: 0

Troubleshooting information
● If the system indicates that the mesos-slave process is running, but it is not possible to schedule jobs,

execute the following commands as root on each of the agent/slave node:

systemctl stop urika-mesos-slave
rm -vf /var/log/mesos/agent/meta/slaves/latest
systemctl start urika-mesos-slave

Use Apache Mesos on Urika-GX

S3015 39

● If the Mesos UI displays orphaned Mesos tasks, refer to Diagnose and Troubleshoot Orphaned Mesos Tasks
on page 126 to debug the issue.

● Mesos logs are located at /var/log/mesos, whereas log files of Mesos framework are located
under /var/log/mesos/agent/slaves/ on the node(s) the service runs on.

For more information about Mesos, visit http://mesos.apache.org.

8.1 Access the Apache Mesos Web UI

Prerequisites
● Before performing this procedure use the urika-state script to verify that the Mesos service is running.

● Check the service mode by executing urika-service-mode to ensure that the system is running in the
service mode required for Mesos to run.

About this task
The Mesos web UI can be used to monitor components of the Mesos cluster, such as the Mesos slaves,
aggregated resources and frameworks.

Do not launch applications through Mesos directly because all the frameworks are pre-configured on Urika-GX.
Only a few frameworks (Spark and Marathon) are pre-configured to authenticate with Mesos.

Procedure

1. Access the Mesos UI using once of the following mechanisms:

● Point a browse at the Urika-GX Applications Interface at: http://hostname-login1 and then select
the Mesos icon. This is the recommended approach.

● Point a browser at http://hostname-login1:5050 or http://hostname-login2:5050

2. Enter a username and the Mesos secret in the Authentication Required pop up's UserName and
Password fields respectively.

The Mesos secret can be retrieved from the /security/secrets/userName.mesos file, which is located
on the SMW.

After logging on to the Mesos web UI, the users can view tasks in the summary page as well as resources
reserved for that particular user. crayadm and root are global Mesos users that can view all the running
frameworks and resource usage.

8.2 Use mrun to Retrieve Information About Marathon and Mesos
Frameworks

Cray has developed the mrun command for launching applications. mrun enables running parallel jobs on Urika-
GX using resources managed by Mesos/Marathon. In addition, this command enables viewing the currently active

Use Apache Mesos on Urika-GX

S3015 40

http://mesos.apache.org

Mesos Frameworks and Marathon applications and enables specifying how mrun should redirect STDIN. It
provides extensive details on running Marathon applications and also enables cancelling/stopping currently active
Marathon applications.

The Cray Graph Engine (CGE) uses mrun to launch jobs under the Marathon framework on the Urika®-GX
system.

CAUTION: The mrun command cannot be executed within a tenant VM or while the system is operating
in the secure service mode. Both the munge and ncmd system services must be running for mrun/CGE to
work. If either service is stopped or disabled, mrun will no longer be able to function

The mrun command needs to be executed from a login node. Some examples of using mrun are listed below:

Launch a job with mrun

$ mrun /bin/date
Wed Aug 10 13:31:51 CDT 2016

Display information about frameworks, applications and resources
Use the --info option of the mrun command to retrieve a quick snapshot view of Mesos
frameworks, Marathon applications, and available compute resources.

$ mrun --info
Active Frameworks:
 IBM Spark Shell : Nodes[10] CPUs[240] : User[builder]
 Jupyter Notebook : Nodes[0] CPUs[0] : User[urika-user]
 marathon : Nodes[20] CPUs[480] : User[root]
Active Marathon Jobs:
 /mrun/cge/user.dbport-2016-133-03-50-28.235572
 : Nodes[20] CPUs[320/480] : user:user cmd:cge-
server
Available Resources:
 : Nodes[14] CPUs[336] idle nid000[00-13]
 : Nodes[30] CPUs[480] busy nid000[14-29,32-45]
 : Nodes[2] CPUs[???] down nid000[30-31]

In the example output above, notice the CPUs[320/480] indicates that while the user only
specified mrun --ntasks-per-node=16 -N 20 (meaning the application is running on 320
CPUs), mrun intends ALL applications to have exclusive access to each node it is running on,
and thus will ask Mesos for ALL the CPUs on the node, not just the number of CPUs per node
the user requested to run on.

Retrieve a summary of running Marathon applications
Use the --brief option of the mrun command to obtain a more concise report on just the
running Marathon applications and node availability.

$ mrun --brief
N:20 CPU:320/480 <user> /mrun/cge/
user.dbport-2016-133-03-50-28.235572 cge-server -d /mn...
Status: Idle:14 Busy:30 Unavail:2

Use Apache Mesos on Urika-GX

S3015 41

Retrieve information on a specific Marathon application
Use the --detail option of the mrun command to obtain additional information on a specific
Marathon application. The application ID needs to be specified with this option.

$ mrun --detail /mrun/cge/user.dbport-2016-133-03-50-28.235572
Active Frameworks:
 IBM Spark Shell : Nodes[10] CPUs[240] : User[builder]
 Jupyter Notebook : Nodes[0] CPUs[0] : User[urika-user]
 marathon : Nodes[20] CPUs[480] : User[root]
Active Marathon Jobs:
 /mrun/cge/user.dbport-2016-133-03-50-28.235572
 : Nodes[20] CPUs[320/480] : user:<user> cmd:cge-
server
 : [nid00032.urika.com]: startedAt:
2016-05-12T17:05:53.573Z
 : [nid00028.urika.com]: startedAt:
2016-05-12T17:05:53.360Z
 : [nid00010.urika.com]: startedAt:
2016-05-12T17:05:53.359Z
 : [nid00007.urika.com]: startedAt:
2016-05-12T17:05:53.397Z
 : [nid00001.urika.com]: startedAt:
2016-05-12T17:05:53.384Z
 : [nid00019.urika.com]: startedAt:
2016-05-12T17:05:53.383Z
...
...

The additional information provided by the --detail option includes a list of all the node names
the application is running on, and at what time the application was launched on those nodes.

Stop, cancel or abort a running Marathon application
Use the --cancel option of the mrun command to stop, cancel or abort a running Marathon
application. The application ID needs to be specified with this option.

$ mrun --cancel /mrun/cge/user.3750-2016-133-20-01-07.394582
Thu May 12 2016 15:01:21.284876 CDT[][mrun]:INFO:App /mrun/cge/user.
3750-2016-133-20-01-07.394582 has been cancelled

If the application has already been cancelled, or completes, or does not exist, the following
message is displayed:

$ mrun --cancel /mrun/cge/user.3750-2016-133-20-01-07.394582
App '/mrun/cge/user.3750-2016-133-20-01-07.394582' does not exist

CAUTION: The root user is allowed to use mrun --cancel to kill any
Marathon-started job. All other users can only kill the Marathon jobs they
launched using the mrun command. If a non-root user tries to use mrun --
cancel to cancel any Marathon job that was not launched by that user using
mrun, the system returns the following message:

mrun: error: Users may only cancel their own mrun jobs

Use Apache Mesos on Urika-GX

S3015 42

Retrieve a list of nodes, CPU counts and available memory
● Use the --resources option of the mrun command to obtain a complete list of nodes, CPU

counts, and available memory.

$ mrun --resources
 NID HEX NODENAME CPUs MEM STAT
 0 0x00 nid00000 32 515758 idle
 1 0x01 nid00001 32 515758 busy
 2 0x02 nid00002 32 515758 idle
 3 0x03 nid00003 32 515758 busy
 4 0x04 nid00004 32 515758 busy
 5 0x05 nid00005 32 515758 idle
 6 0x06 nid00006 32 515758 idle
 7 0x07 nid00007 32 515758 busy
 8 0x08 nid00008 32 515758 busy
 9 0x09 nid00009 32 515758 busy
 10 0x0a nid00010 32 515758 busy
 11 0x0b nid00011 32 515758 busy
 12 0x0c nid00012 32 515758 idle
 13 0x0d nid00013 32 515758 idle
 14 0x0e nid00014 32 515758 busy
 15 0x0f nid00015 32 515758 busy
 16 0x10 nid00016 36 515756 idle
 17 0x11 nid00017 36 515756 idle
 18 0x12 nid00018 36 515756 busy
 19 0x13 nid00019 36 515756 busy
 20 0x14 nid00020 36 515756 idle
 21 0x15 nid00021 36 515756 idle
 22 0x16 nid00022 36 515756 busy
 23 0x17 nid00023 36 515756 idle
 24 0x18 nid00024 36 515756 idle
 25 0x19 nid00025 36 515756 busy
 26 0x1a nid00026 36 515756 idle
 27 0x1b nid00027 36 515756 busy
 28 0x1c nid00028 36 515756 busy
 29 0x1d nid00029 36 515756 idle
 30 0x1e nid00030 0 0 unavail
 31 0x1f nid00031 0 0 unavail
 32 0x20 nid00032 24 515758 busy
 33 0x21 nid00033 24 515758 idle
 34 0x22 nid00034 24 515758 idle
 35 0x23 nid00035 24 515758 idle
 36 0x24 nid00036 24 515758 idle
 37 0x25 nid00037 24 515758 idle
 38 0x26 nid00038 24 515758 busy
 39 0x27 nid00039 24 515758 idle
 40 0x28 nid00040 24 515758 idle
 41 0x29 nid00041 24 515758 idle
 42 0x2a nid00042 24 515758 busy
 43 0x2b nid00043 24 515758 busy
 44 0x2c nid00044 24 515758 idle
 45 0x2d nid00045 24 515758 idle

Node names that are marked as unavail are hidden from Mesos as available compute
resources, such as the login node (nid00030). In the example above, some nodes have 24
CPUs/node, some have 32 CPUs/node and some have 36 CPUs/node. While not a typical
situation, mrun does support this configuration, and a command such as mrun -n 144 -N

Use Apache Mesos on Urika-GX

S3015 43

4 would in fact be allowed to proceed, and would be limited to using 4 nodes on
nid000[16-29], as they are the only ones with (144/4 = 36) CPUs per node.

Configuration Files
When mrun is invoked, it sets up some internal default values for required settings. mrun will then check if any
system defaults have been configured in the /etc/mrun/mrun.conf file. An example mrun.conf file is shown
below:

#
(c) Copyright 2016 Cray Inc. All Rights Reserved.
#
Anything after an initial hashtag '#' is ignored
Blank lines are ignored.
#
#NCMDServer=nid00000
#MesosServer=localhost # same as --host
#MesosPort=5050
#MarathonServer=localhost
#MarathonPort=8080
#DebugFLAG=False # same as --debug
#VerboseFLAG=False # same as --verbose
#JobTimeout=0-0:10:0 # ten minutes, same as --time
#StartupTimeout=30 # 30 seconds, same as --immediate
#HealthCheckEnabled=True # Run with Marathon Health Checks enabled
#HCGracePeriodSeconds=5 # Seconds at startup to delay Health Checks
#HCIntervalSeconds=10 # Seconds between Health Check pings
#HCTimeoutSeconds=10 # Seconds to answer Health Check successfully
#HCMaxConsecutiveFailures=3 # How many missed health checks before app killed

If any of the lines above are not commented out, those values will become the new defaults for every mrun
invocation.

Additionally, after the system /etc/mrun/mrun.conf file is loaded (if it exists), the user's private
$HOME/.mrun.conf file will be loaded (if it exists). The following items should be noted:

● Any settings in the user's $HOME/.mrun.conf file will take precedence over any conflicting settings in the
system /etc/mrun/mrun.conf file.

● Any command-line arguments that conflict with any pre-loaded configuration file settings will take precedence
for the current invocation of mrun.

For more information, see the mrun(1) man page.

8.3 Clean Up Residual mrun Jobs

About this task
When the mrun --cancel command does not completely clean up running mrun-based jobs, the residual jobs
need to be manually terminated, as described in this procedure.

Use Apache Mesos on Urika-GX

S3015 44

Procedure

1. Launch an mrun job

$ mrun sleep 100&
[1] 1883

2. Verify the launched mrun job is running

$ mrun --brief
N: 1 CPU: 1/24 user1 /mrun/2016-215-16-07-43.702792 sleep 100...
N:32 CPU: 512/768 user2 /mrun/cge/user2.1025-2016-215-15-29-07.248656 -v /opt/
cray/cge...
Status: Idle:8 Busy:33 Unavail:5

3. Locate the process ID of the mrun job

$ ps -fu $LOGNAME |grep mrun
user1 1883 19311 0 11:07 pts/8 00:00:00 /usr/bin/python /opt/cray/cge/
2.0.1045_re5a05d9_fe2.0.3_2016072716_jenkins/bin/mrun sleep 100
user1 1961 19311 0 11:08 pts/8 00:00:00 grep --color=auto mrun

4. Send a signal to terminate the mrun job

$ kill 1883

5. Verify that the mrun job is no longer running, and the idle node count has increased

$ mrun --brief
N:32 CPU: 512/768 users2 /mrun/cge/user2.1025-2016-215-15-29-07.248656 -v /opt/cray/cge...
Status: Idle:9 Busy:32 Unavail:5

8.4 Launch an HPC Job Using mrun

Prerequisites
Use the urika-state command to ensure that both the Mesos and Marathon services are running and to check
if the system is operating in the service mode that supports using mrun. For more information, see the urika-
state man page and refer to Urika-GX Service Modes on page 7.

About this task
The mrun command can be used to launch HPC jobs on the Urika-GX system.

The mrun command cannot be executed within a tenant VM

Procedure

Launch the HPC job using the mrun command, specifying the number of nodes to allocate.

In the following example, my_hpc_app.exe is used as an example for the name of the application to run.

$ mrun -n 32 -N 8 my_hpc_app.exe arg1 arg2 arg3

Use Apache Mesos on Urika-GX

S3015 45

Refer to the mrun man page for more information, further examples, environment variables, configuration files
and command-line option descriptions of the mrun command.

8.5 Manage Resources on Urika-GX
Mesos is used as the resource manager in the default service mode, whereas Kubernetes works as the resource
manager in the secure services mode.

The resource management model of Mesos is different from traditional HPC schedulers. With traditional HPC
schedulers, jobs request resources and the scheduler decides when to schedule and execute the job. Mesos on
the other hand offers resources to frameworks that are registered with it. It is up to the framework scheduler to
decide whether to accept or reject its resources. If framework rejects the offer, Mesos will continue to make new
offers based on resource availability. Framework refers to implementation of different computing paradigms such
as Spark, Hadoop, CGE etc.

For example, a user submits a spark job that requests 1000 cores to run. Spark registers as a framework with
Mesos. Mesos offers its available resources to Spark. If Mesos offers 800 cores, Spark will either choose to
accept the resources or reject it. If Spark accepts the resource offer, the job will be scheduled on the cluster. If it
rejects the offer, Mesos will continue to make new offers.

Mesos Frameworks on Urika-GX
When users submit jobs to a Mesos cluster, frameworks register with Mesos. Mesos offers resources to registered
frameworks. Frameworks can either choose to accept or reject the resource offer from Mesos. If the resource
offer satisfies the resource requirements for a job, they accept the resources and schedule the jobs on the slaves.
If the resource offer does not satisfy the resource requirements, frameworks can reject them. Frameworks will still
be registered with Mesos. Mesos will update the resources it has at regular intervals (when an existing framework
finishes running its job and releases the resources or when some other frameworks reject the resources) and
continues to offer the resources to registered frameworks.

Each spark job is registered as a separate framework with Mesos. For each spark job that has been submitted,
Mesos makes separate resource offers.

Marathon is registered as a single framework with Mesos. Marathon provides a mechanism to launch non-
framework applications to run under Mesos. Marathon enables long-running services under Mesos such as
databases, streaming engines etc. Cray has developed:

● the mrun command, which sets up resources for CGE and HPC jobs. For more information, see the mrun
man page.

● scripts for setting up resources for YARN

These are submitted as applications to Marathon. Marathon negotiates for resources from Mesos and they get
resources from Marathon.

Mesos tracks the frameworks that have registered with it. If jobs are submitted and there are no resources
available, frameworks will not be dropped. Instead, frameworks will remain registered (unless manually killed by
the user) and will continue to receive updated resource offers from Mesos at regular intervals. As an example,
consider a scenario where there are four Spark jobs running and using all of the resources on the cluster. A user
attempts to submit a job with framework Y and framework Y is waiting for resources. As each Spark job completes
its execution, it releases the resources and Mesos updates its resource availability. Mesos will continue to give
resource offers to the framework Y. Y can chose either to accept or reject resources. If Y decides to accept the

Use Apache Mesos on Urika-GX

S3015 46

resources, it will schedule its tasks. If Y rejects the resources, it will remain registered with Mesos and will
continue to receive resource offers from Mesos.

Allocation of resources to Spark by Mesos
Let us say that the spark-submit command is executed with parameters --total-executor-cores 100
--executor-memory 80G. Each node has 32 cores. Mesos tries to use as few nodes as possible for the 100
cores requested. So in this case it will start Spark executors on 4 nodes (roundup(100 / 32)). Each executor has
been requested to have 80G of memory. Default value for spark.mesos.executor.memoryOverhead is 10%
so it allocates 88G to each executor. So in Mesos, it can been seen that 88 * 4 = 352 GB allocated to the 4
Spark executors. For more information, see the latest Spark documentation at http://spark.apache.org/docs

Additional points to note:

● On Urika-GX, the Mesos cluster runs in High Availability mode, with 3 Mesos Masters and Marathon
instances configured with Zookeeper.

● Unlike Marathon, Mesos does not offer any queue. Urika-GX scripts for flexing clusters and the mrun
command do not submit their jobs unless they know the resource requirement is satisfied. Once the flex up
request is successful, YARN uses its own queue for all the Hadoop workloads.

● Spark accepts resource offers with fewer resources than what it requested. For example, if a Spark job wants
1000 cores but only 800 cores are available, Mesos will offer those 800 to the Spark job. Spark will then
choose to accept or reject the offer. If Spark accepts the offer, the job will be executed on the cluster. By
default, Spark will accept any resource offer even if the number of resources in the offer is much less than the
number of nodes the job requested. However, Spark users can control this behavior by specifying a minimum
acceptable resource ratio; for example, they could require that Spark only accept offers of at least 90% of the
requested cores. The configuration parameter that sets the ratio is
spark.scheduler.minRegisteredResourcesRatio. It can be set on the command line with --conf
spark.scheduler.minRegisteredResourcesRatio=N where N is between 0.0 and 1.0.

● mrun and flex scripts do not behave the way Spark behaves (as described in the previous bullet). mrun
accepts two command-line options:

○ --immediate=XXX (default 30 seconds)

○ --wait (default False)

When a user submits an mrun job, if more resources are needed than Mesos currently has available, the
command will return immediately, showing system usage and how many nodes are available vs how many
nodes are needed. If the user supplies the --wait option, this tells mrun to not return, but instead continue to
poll Mesos until enough nodes are available. mrun will continue to poll Mesos for up to --immediate
seconds before timing out. Finally, once Mesos informs mrun there are enough resources available; mrun will
post the job to Marathon.

When the requested resources are not available, flex scripts will display the current resources availability and
exit.

● With mrun, the exact need must be met. If the user asks for 8 nodes, all CPU and memory on 8 nodes must
be free for Marathon to accept the offer on behalf of mrun.

● The Marathon API does not offer a way to ask if the needs of a job can be fully satisfied before a request can
be submitted. Therefore, Mesos is queried for its resource availability.

● Users request for resources from Mesos to give to YARN via Cray developed scripts for starting
NodeManagers. The request is submitted to Marathon. This is called flex up. Once users get the requested
resources, they can run their Hadoop jobs/ Hive queries / Oozie work-flows. Once they complete this, they

Use Apache Mesos on Urika-GX

S3015 47

http://spark.apache.org/docs

release the resources back to Mesos via the Cray flex scripts. Flex scripts require the exact number of nodes
to address requests and cannot run with fewer resources. When the number of resources requested in the
flex up request does not match the current number of resources that are available with Mesos, an error
message is displayed indicating that the number of resources available is less than the number of requested
resources and that the user can submit a new flex up request.

● If the system is loaded and other frameworks (e.g. Spark) keep submitting smaller jobs, flex scripts may keep
exiting if they do not receive the required number of nodes. This could lead to starvation of Hadoop jobs.

8.6 Manage Long Running Services Using Marathon
Marathon is used by the Cray-developed command named mrun to allocate node resources from Mesos and
launch application instances as needed. In addition, Cray-developed scripts for starting a cluster of YARN Node
Managers are also launched through Marathon.

Before using Marathon, ensure that the system is running in the service mode that allows use of this service.
Execute the urika-state or urika-service-mode commands to check the service mode. For more
information, refer to the urika-state or urika-service-mode man pages and see Urika-GX Service Modes
on page 7.

CAUTION: Unless it is required to shut down YARN nodes, analytic applications that use the Cray-
developed scripts for flexing a cluster should not be deleted through the Marathon UI, as doing will lead to
loss of YARN nodes.

On the Urika-GX system, there are always three Mesos Masters and three Marathon instances running, while one
of them is the active leader. Requests received by the login node are proxied to the currently active leader. If a
leader runs into issues, one of the backup leaders take over and the requests are proxied to the current leader.

Access the Marathon web UI by selecting Marathon on the Urika-GX Applications Interface, located at:
http://hostname-login1. Though this is the recommended method of accessing Marathon, it can also be
accessed at the port it runs on, i.e. at http://hostname-login1:8080 or http://hostname-
login2:8080

Use Apache Mesos on Urika-GX

S3015 48

Figure 7. Urika-GX Applications Interface

Figure 8. Marathon UI

Use Apache Mesos on Urika-GX

S3015 49

Marathon also enables creating applications from the UI via the Create Application button, which displays the
New Application pop up:

Figure 9. Create an Application Using the Marathon UI

Figure 10. Marathon UI

For additional information about using Marathon, select the help icon (?) and then select Documentation

Use Apache Mesos on Urika-GX

S3015 50

8.7 Flex up a YARN sub-cluster on Urika-GX
Mesos is used as the main resource broker on Urika-GX, whereas Hadoop Yet Another Resource Manager
(YARN) is the default resource manager for launching Hadoop workloads. To have YARN and Mesos co-exist on
the system, Urika-GX features a number of scripts that are designed for scaling YARN cluster on Mesos. These
scripts can expand or shrink a YARN cluster in response to events as per configured rules and policies. The
cluster remains under the control of Mesos even when the cluster under the Mesos management runs other
cluster managers. These scripts allows Mesos and YARN to co-exist and share resources with Mesos as the
resource manager for Urika-GX. Sharing resources between these two resource allocation systems improves
overall cluster utilization and avoids statically partitioning resources.

When a cluster is statically partitioned, a part of the cluster is reserved for running jobs. For example, a cluster
may be statically partitioned to reserve X number of nodes out of a total of N number nodes to run only Hadoop
jobs at any point of time. Under this configuration, if there are no Hadoop jobs running at a time, the reserved
number nodes are idle, which reflects inefficient resource utilization. Mesos helps avoid static partitioning and also
helps ensure proper resource utilization at any given point of time.

Once the Hadoop job has been launched and completed, the reserved resources need to be released back to
Mesos. This is when the Cray developed script urika-yam-flexdown needs to be called. This script stops all
the node managers of the named application, and then deletes the Marathon application. If there are more than
one application running at a time and being managed by the Cray-developed flex scripts, this script will not stop
the node managers of every application.

Cray-developed Scripts for Flexing Up/Flexing Down YARN Subcluster
The urika-yam-flexup and urika-yam-flexdown scripts are located in
the /opt/cray/urika-yam/default/bin directory on the login nodes and can be executed on either of the
two login nodes.

● To flex up, execute the urika-yam-flexup script, passing the number of nodes to be used as well as a
unique name/identifier for the flex up request.

$ urika-yam-flexup --nodes Number_of_Nodes --identifier identifier_name --
timeout timeoutInMinutes

For more information, see the urika-yam-flexup man page.

● To display the lists of existing applications and the resources allocated to each application, execute the
urika-yam-status script.

$ urika-yam-status

For more information, see the urika-yam-status man page.

● To flex down, execute the urika-yam-flexdown script.

○ Executing the urika-yam-flexdown script as a root user

urika-yam-flexdown --exact fullName

○ Executing the urika-yam-flexdown script as a non-root user

$ urika-yam-flexdown --identifier name

Use Apache Mesos on Urika-GX

S3015 51

CAUTION: The urika-yam-flexdown script needs to be passed the name of the Marathon
application that has been used earlier to flex up. If the name of application is not provided, it will throw
an error message and exit. If the application requested to flex down does not exist, the urika-yam-
flexdown script will throw an error message saying no such application exists. If executing this script
as a root user, please provide the complete/full name, as that returned by the urika-yam-status
command. If executing this script as a non-root user, specify the same identifier as that used when
the flex up request was issued.

● To flex down all the nodes, execute the urika-yam-flexdown-all script as root.

urika-yam-flexdown-all

For more information, see the urika-yam-flexdown-all man page.

Timeout Intervals for Flex Up Requests
To release resources from YARN to Mesos and to ensure better resource utilization, a default timeout interval for
flexing a job is defined in the /etc/yam_conf file. Users can provide a timeout value as a command-line
argument to the flex up request to override the default value specified in /etc/yam_conf. The timeout interval
can be configured either to a timeout value in minutes or it can be set to zero. If set to zero, the application will
never timeout and will need to be manually flexed down. The default timeout value is 15 minutes, as specified in
the /etc/urika-yam.conf file. The minimum acceptable timeout interval is 5 minutes.

Log locations
Logs related to the flex scripts are located under /var/log/urika-yam.log on login nodes

Use Apache Mesos on Urika-GX

S3015 52

9 Access the Jupyter Notebook UI
Prerequisites
Before following this procedure, use the urika-state command to ensure that the Jupyter Notebook service is
running.

About this task
Urika-GX comes pre-installed with the Jupyter Notebook, which is a web application that enables creating and
sharing documents that contain live code, equations, visualizations, and explanatory text.

Urika-GX currently supports the following kernels:

● Bash

● R

● Python2

● Python3

● Spark 2.2.0

○ PySpark

○ Scala

○ sparkR

CAUTION: When using the Jupyter Notebook, if the Spark version changes, the predefined Jupyter
Spark kernels will need to be updated to reflect those changes. Jupyter kernels configurations are stored
under /usr/local/share/jupyter/kernels on login node 1.

TIP: If JupyterHub processes owned by the user remain running after the user has logged out from
Jupyter these processes can be manually killed using the Linux kill command.

The Jupyter Notebook UI contains 3 tabs:

1. Files - Displays a list of existing notebooks on the left side of the screen, and enables creating new
notebooks, folders, terminals, and text files via the New drop down on the right side of the screen. The
Upload button can be used to upload an existing notebook.

2. Running - Displays a list of all the running elements, such as notebooks, and terminals, etc.

3. Clusters - Enables assigning a group of nodes to a configured cluster. Urika-GX does not ship with any pre-
configured Python clusters.

Follow the steps in this procedure to access the Jupiter Notebook Web UI.

Access the Jupyter Notebook UI

S3015 53

Procedure

1. Point a browse at http://hostname-login1 and then select the Jupyter icon.

This presents the Jupyter Notebook's login screen.

2. Enter LDAP credentials to log on to the Jupyter Notebook UI.

The system also ships with a default admin account with crayadm and initial0 as the username and
password respectively. If a new user needs to be assigned as an admin, add that user to
c.Authenticator.admin_users in /etc/jupyterhub/jupyterhub_config.py. Users logging in
with this default account will have the ability to control (start and stop) single notebook servers launched by
end users.

Select Help>User Interface Tour menu For more information about the Jupyter Notebook web UI,

9.1 Create a Jupyter Notebook

Prerequisites
Before following this procedure, use the urika-state command to ensure that the Jupyter Notebook service is
running.

About this task
This procedure can be considered as a Hello World example for using the Jupyter Notebook.

CAUTION: When using the Jupyter Notebook, the Spark Kernel configuration PYTHONPATH will have to
be changed if the spark version changes. Python clusters are currently not supported on Urika-GX.

Procedure

1. Access the Jupyter Notebook using the Urika-GX Applications Interface or via http://hostname-
login1:7800. Access via the Urika-GX Applications Interface is recommended.

Figure 11. Jupiter Notebook Landing Page

2. Select the desired type of notebook from the New drop down. In this example, Python2 is used.

Access the Jupyter Notebook UI

S3015 54

Figure 12. Jupyter Notebook UI

3. Specify a name for the new notebook by clicking on the default assigned name displayed at the top of the UI.
For this example, 'Hello World' is used as the name for the notebook.

4. Enter Python code in the cell provided on the UI to display the text "Hello World".

Figure 13. Jupyter Notebook Enter Code UI

5. Select the Run Cells option from the Cell drop down

Access the Jupyter Notebook UI

S3015 55

Figure 14. Select Run Cells

This displays the results of executing the code, as shown in the following figure:

Figure 15. Results

Add additional cells using the Cell drop down as needed. For additional information, select the Help drop
down.

9.2 Share or Upload a Jupyter Notebook

Prerequisites
Before following this procedure, use the urika-state command to ensure that the Jupyter Notebook service is
running.

Access the Jupyter Notebook UI

S3015 56

About this task
Currently, sharing URL links of Jupyter Notebooks is not directly supported. This procedure describes how to
export a notebook and then share/upload it.

Procedure

1. Select the Learning Resources link from the Urika-GX Applications Interface.

2. Select the notebook of choice from the list of Jupyter Notebooks listed in the Notebooks section of the
Documentation & Learning Resources page.

Figure 16. Documentation & Learning Resources Page

3. Select the blue download icon to download the notebook and save it to a location of choice.

Access the Jupyter Notebook UI

S3015 57

Figure 17. Save Notebook

4. Select the home icon from the left of the UI to go back to the Urika-GX Applications Interface page and then
select the icon for Jupyter Notbooks.

5. Upload the saved notebook to Jupyter using the upload button.

Figure 18. Select Jupyter Notebook from the Urika-GX Applications Interface

The uploaded notebook will appear in the list of notebooks on the Running tab on the interface

Stop any running notebooks before logging off.

CAUTION: If running notebooks are not stopped before logging off, they will continue running in the
background, resulting in unnecessary resource utilization.

Access the Jupyter Notebook UI

S3015 58

9.3 Create a Custom Python Based Kernel for JupyterHub

About this task
The following procedure can be used to create a custom Python based kernel for JupyterHub using any
Anaconda environment a user wishes.

Procedure

1. Setup the environment on the command-line.

a. Load the anaconda module.

$ module load anaconda3

b. Create a Conda environment with the desired packages plus the ipykernel package.

$ conda create -n env ipykernel package-a package-b ...

Alternatively if the user has a pre-existing environment they can simply add ipykernel to it.

$ conda install -n env ipykernel

c. Activate the environment.

$ source activate env

d. Create a Jupyter kernel from the environment. The name specified via the --name flag must be unique
amongst kernels created by the user, otherwise any pre-existing kernel of the same name will be
overwritten

$ python -m ipykernel install --user --name env --display-name "Python (env)"

2. Go to JupyterHub and either create a new Notebook using the newly created kernel, or go to Kernel >
Change Kernel within an existing Notebook to select the newly created kernel.

The kernel will be listed under the value passed to --display-name in the above steps. If the newly created
kernel is not immediately visible, the user will need to first refresh their browser window.

If it is found that additional packages are required during the course of notebook development, add those
packages by using Conda install to update the environment at the command-line. After doing so, go to Kernel
> Restart Kernel in the notebook to pick up the updated environment. For proper display of notebook
widgets, users may also need to add additional packages to their Conda environments, such as ipywidgets

Access the Jupyter Notebook UI

S3015 59

10 Get Started with Using Grafana
Grafana is a feature-rich metrics, dashboard, and graph editor. It provides information about utilization of system
resources, such as CPU, memory, I/O, etc.

Major Grafana components and UI elements include:

● Dashboard - The Dashboard consolidates all the visualizations into a single interface. Urika-GX ships with
pre-defined dashboards for resource utilization information. For information about these dashboards, see
Default Grafana Dashboards on page 99.

● Panels - The Panel is the basic visualization building block of the GUI. Panels support a wide variety of
formatting options and can be dragged, dropped, resized, and rearranged on the Dashboard.

● Query Editor - Each Panel provides a Query Editor for the data source, which is InfluxDB on the Urika-GX
system. Information retrieved from the Query Editor is displayed on the Panel.

● Data Source - Grafana supports many different storage back-ends for retrieving time series data. Each Data
Source has a specific Query Editor that is customized for the features and capabilities that the particular
Data Source exposes. Urika-GX currently supports InfluxDB as its data source.

● Organization - Grafana supports multiple organizations in order to support a wide variety of deployment
models. Each Organization can have one or more Data Sources. All Dashboards are owned by a particular
Organization.

● User - A User is a named account in Grafana. A user can belong to one or more Organizations, and can be
assigned different levels of privileges via roles.

● Row - A Row is a logical divider within a Dashboard, and is used to group Panels together.

Roles
Users and Organizations can be assigned roles to specify permissions/privileges. These roles and their
privileges are listed in the following table:

Table 6. Grafana Roles and Permissions

Role Edit roles View graphs Edit/create
copy of

existing graphs

Add new
graphs to
existing
dashboards

Create new/

import existing

dashboards

Admin Yes Yes Yes Yes Yes (These
dashboards
persist between
sessions)

Viewer (default
role)

No Yes No No No

Get Started with Using Grafana

S3015 60

Role Edit roles View graphs Edit/create
copy of

existing graphs

Add new
graphs to
existing
dashboards

Create new/

import existing

dashboards

Editor No Yes Yes Yes Yes (These
dashboards get
deleted when the
editor logs out)

Read only editor No Yes Yes Yes No

Each role type can also export performance data via the dashboard. When a new user signs up for the first time,
the default role assigned to the user is that of a Viewer. The admin can then change the new user's role if needed.
All users have a default role of a Viewer when they first log on to Grafana. Administrators can change roles
assigned to users as needed using the Admin menu.

Figure 19. Change User Roles Using the Admin Menu

Since the time displayed on the Grafana UI uses the browser's timezone and that displayed on the Spark History
server's UI uses the Urika-GX system's timezone, the timezones displayed on the two UIs may not be the same.

By default, Grafana's refresh rate is turned off on the Urika-GX system. Sometimes the Hadoop and Spark
Grafana dashboards take longer to load than expected. The usual cause of this issue is the time it takes InfluxDB
to return all of the requested data. To reduce the time for the Hadoop and Spark dashboards to display data, refer
to Update the InfluxDB Data Retention Policy on page 62. Reducing the amount of data retained makes
Grafana dashboards display faster.

Get Started with Using Grafana

S3015 61

10.1 Urika-GX Performance Analysis Tools
Performance analysis tools installed on the Urika-GX system can be broadly categorized as:

● Performance analysis tools for monitoring system resources. Urika-GX uses Grafana for monitoring system
resource utilization.

● Debugging tools. The Spark Shell can be used for debugging Spark applications.

● Profiling tools - The Spark History Server can be used for profiling Spark applications. The Spark History
Server contains custom Cray enhancements that link Spark tasks in the UIs to Grafana dashboards that
display compute node system metrics during the tasks' executions. These can be accessed by clicking links
in the executor ID/host column in the tasks table of the stage pages, or by selecting the compare checkboxes
of multiple tasks in the task table and clicking the compare link at the top of the table.

10.2 Update the InfluxDB Data Retention Policy

Prerequisites
This procedure requires root privileges. Before performing this procedure, use the urika-state command to
ensure that the system is operating in the service mode that supports using InfluxDB. For more information, see
the urika-state man page and refer to Urika-GX Service Modes on page 7.

About this task
The data retention policy for InfluxDB defaults to infinite, i.e. data is never deleted. As a result, Spark and Hadoop
Grafana dashboards may take longer to load and InfluxDB may take up more space than necessary. To reduce
the amount of space being used by InfluxDB, the data retention policy for each database needs to be reduced, as
described in this procedure. Reducing the data retention policy for Spark and Hadoop databases can reduce the
load time of the Spark and Hadoop Grafana dashboards.

Procedure

1. Log on to login2 and become root.

2. Switch to the /var/lib/influxdb/data directory.

cd /var/lib/influxdb/data

3. Use the du command to show how much space being used.

The sizes below are shown as examples. Actual sizes on the system may vary.

$ du -sh *
14G Cray Urika GX
1.5G CrayUrikaGXHadoop
906M CrayUrikaGXSpark
21M _internal
#

Get Started with Using Grafana

S3015 62

4. Connect to InfluxDB to view the current data retention policy.

/bin/influx
Visit https://enterprise.influxdata.com to register for updates, InfluxDB server
management, and monitoring.
Connected to http://localhost:8086 version 0.12.2
InfluxDB shell 0.12.2
> show retention policies on "Cray Urika GX"
name duration shardGroupDuration replicaN default
default 0 168h0m0s 1 true

5. Update the data retention policy according to requirements.

In this example the data retention duration is changed from 0 (forever) to 2 weeks (504 hours).

> alter retention policy default on "Cray Urika GX" Duration 2w
> show retention policies on "Cray Urika GX"
name duration shardGroupDuration replicaN default
default 504h0m0s 24h0m0s 1 true
> exit

The change will take a while to be applied. The default is 30 minutes.

6. Verify that the data retention change has taken effect

du -sh *
3G Cray Urika GX
1.5G CrayUrikaGXHadoop
906M CrayUrikaGXSpark
21M _internal

Get Started with Using Grafana

S3015 63

11 Use Docker on Urika-GX
Docker enables packaging applications with their dependencies without having to worry about system
configurations, thus making applications more portable.

Urika-GX features the infrastructure for running Docker containers (orchestrated by Marathon and Mesos) pulled
from the public Docker Hub. Docker is disabled on Urika-GX by default. Use the urika-state command to
check if the Docker service is running. Launching of Docker containers using Docker commands is not supported
on Urika-GX. Use the Marathon Web UI for launching containers.

For more information, visit https://www.docker.com.

Examples

Control Docker
Request an administrator to execute the use urika-start -s docker, urika-stop -s
docker and urika-state commands to start, stop and view the status of Docker, respectively.

Launch Containers
Containers are started like any typical Marathon application by entering the configuration into the
Marathon web UI, or by using the curl command:

curl -X POST
 "http://hostname-login1:8080/v2/apps" -d @"$file" -H "Content-
type:
 application/json"

Considerations
● Resource constraints passed to Docker from Marathon/Mesos:

○ The cpus parameter is not a direct limitation on the number of CPUs available to a Docker container. It is
not a limit on the speed of the CPUs. Docker containers retain access to all host CPUs.

○ Mesos builds a Docker run command, converting the cpus value into a value for Docker’s --cpu-
shares setting, which sets priority weight for that process relative to all others on the machine. An
application run with cpus=2 should receive twice the priority as one using cpus=1.

○ Mesos keeps track of total CPU resources, and subtracts the specified CPUs in the container definition
from the total number available on the node, despite the container not being strictly limited to specific
CPUs.

● Commands vs arguments - Marathon supports an args field in the JSON application. It is invalid to supply
both cmd and args for the same application. The behavior of cmd is the value is wrapped by Mesos

Use Docker on Urika-GX

S3015 64

https://www.docker.com

via /bin/sh -c '${app.cmd}'. The args mode of specifying a command allows for safe usage of
containerizer features like custom Docker entry points.

● Constraints - "constraints": [["hostname", "CLUSTER", "machine-
nid00024.us.cray.com"]].

Refer to https://github.com/mesosphere/marathon/blob/master/docs/docs/constraints.md#cluster-operator for
details about Marathon constraints.

● Privileged Mode and Arbitrary Docker Options - Marathon supports two keys for Docker containers:
privileged and parameters. The privileged flag allows users to run containers in privileged mode.
This flag is set to false by default. The parameters object allows users to supply arbitrary command-line
options for the docker run command executed by the Mesos containerizer.

CAUTION: Any parameters passed in this manner are not guaranteed to be supported in the future,
as Mesos may not always interact with Docker via the CLI.

"privileged": true,
 "parameters": [
 { "key": "hostname", "value": "a.corp.org" },
 { "key": "volumes-from", "value": "another-container" },
 { "key": "lxc-conf", "value": "..." }
]

11.1 Image Management with Docker and Kubernetes

About Docker
Docker provides the ability to package and run an application in a loosely isolated environment called a container.
The isolation and security enables running many containers simultaneously on a given host. Because of the
lightweight nature of containers, users can run more containers on a given hardware combination than if using
virtual machines.

Images shipped with the system are managed by Docker when Urika-GX is operating under the default service
mode. The SMW hosts Urika-GX's container repository, which is a container itself and can only host Cray
developed containers currently.

NOTE: Building and managing new Docker images is currently not supported on Urika-GX.

For more information, visit https://www.docker.com.

About Kubernetes
Kubernetes is used for automating deployment, scaling and management of containerized applications. It groups
containers that make up an application into logical units for easy management and discovery. It performs
container management tasks, such as, running containers across many different machines, scaling up or down by
adding or removing containers when demand changes, keeping storage consistent with multiple instances of an
application, distributing load between the containers and launching new containers on different machines if
something fails.

On Urika-GX, Kubernetes is used to manage containers in the secure service mode.

Use Docker on Urika-GX

S3015 65

https://github.com/mesosphere/marathon/blob/master/docs/docs/constraints.md#cluster-operator
https://www.docker.com

NOTE: Currently, Kubernetes supports only Spark images on Urika-GX.

For more information, visit https://kubernetes.io/.

About the Cray Spark Image
In order to run Spark on Kubernetes, Urika-GX ships with customized Spark images, which are based on the
Spark version used on the system.

11.2 Run the Native Docker Engine on Marathon

Prerequisites
● The Docker engine needs to be running on the login and compute nodes. Use the urika-state command

to check the status of Docker.

● mesos-agent needs to be configured to recognize the Docker container type.

About this task
This procedure describes how to enable the running and orchestration of Docker containers via Marathon and
Mesos to facilitate rapid dynamic application development and service provisioning across the cluster.

Procedure

Define a container for use with Marathon.

Defining a container for use with Marathon is very similar to provisioning an application. The following
information is provided to the Marathon UI via the Web UI or curl command.

{
 "id": "docker-demo",
 "cmd": "python3 -m http.server 8080",
 "cpus": 0.5,
 "mem": 1024.0,
 "instances": 1,
 "constraints": [["hostname", "CLUSTER", "socrates-nid00024.us.cray.com"]],
 "container": {
 "type": "DOCKER",
 "docker": {
 "image": "python:3",
 "network": "BRIDGE",
 "portMappings": [
 { "containerPort": 8080, "hostPort": 0, "servicePort": 9000,
"protocol": "tcp" },
 { "containerPort": 161, "hostPort": 0, "protocol": "udp" }
]
 },
 "volumes": [
 {
 "containerPath": "/mnt/lustre",
 "hostPath": "/mnt/lustre/<path>",
 "mode": "RW"

Use Docker on Urika-GX

S3015 66

https://kubernetes.io/

 }
]
 },
 "healthChecks": [
 {
 "protocol": "HTTP",
 "portIndex": 0,
 "path": "/",
 "gracePeriodSeconds": 5,
 "intervalSeconds": 20,
 "maxConsecutiveFailures": 3
 }
]
}

In the preceding code block:

● servicePort is a helper port intended for performing service discovery using a well-known port per
service. The assigned servicePort value is not used/interpreted by Marathon itself, but is supposed to
be used by the load balancer infrastructure.

● The servicePort parameter is optional and defaults to 0.

A random port will be assigned if the value of servicePort is 0. If Marathon assigns a
servicePortvalue, the value of servicePortvalue will be unique across the cluster. The values for
random service ports fall in the [local_port_min, local_port_max] range, where
local_port_min and local_port_max are command-line options with default values of 10000 and
20000, respectively.

● The protocol parameter is optional and defaults to tcp. Possible values for this parameter include tcp
and udp.

The preceding code block performs the following:

● Creates a container named docker-demo.

● Pulls the python image with a version specification of 3 from https://hub.docker.com/_/python/

● Sets constraints on the CPU and memory allocated for use by the container

● Runs a command in the container to start a simple HTTP server on port 8080

● Creates a network bridge for the container. This involves mapping:

○ the container port 8080 to a Marathon-assigned port on the host interfaces

○ the container port 9000 to host interfaces

○ the container port 161:udp to a Marathon-assigned port on the host interfaces

● Mounts the host filesystem location /mnt/lustre/path to the container filesystem location
to /mnt/lustre, so it can be accessed by the container.

● Creates a basic Marathon HTTP health check.

For more information, visit https://www.docker.com.

Use Docker on Urika-GX

S3015 67

https://www.docker.com

12 Start Individual Kafka Brokers
About this task
Use the following instructions to start Kafka brokers.

Procedure

1. Log on to a login node.

2. Copy the default Kafka configuration file located
at /usr/hdp/current/kafka-broker/config/server.properities to a local directory.

3. Update the configuration log.dirs parameter from log.dirs=/tmp/kafka-logs to the home directory.

To prevent log files from being locked down by users, the log.dirs file needs to be updated, as described in
this procedure.

4. Redirect the Kafka server logs from /var/log/kafka directory.

Only the user Kafka has permissions to write to that directory, so starting as a non-Kafka or non-root user
results in none of the server logs being recorded. So either the user can choose to not care about that, or
before starting their Kafka broker overwrite LOG_DIR.

$ export LOG_DIR = ~/kafka

5. Start the Kafka broker.

$ /usr/hdp/current/kafka-broker/bin/kafka-server-start.sh ~/server.properties

Start Individual Kafka Brokers

S3015 68

13 Overview of the Cray Application Management UI
The Cray Application Management UI is shown in the following figure:

Figure 20. Cray Application Management UI

The Search field and Quick Filters drop down facilitate searching and filtering submitted jobs, based on the
specified criteria. When these UI elements are used, the results are displayed in a table and the specified search/
filter criteria is displayed at the top of these UI elements. A list of active jobs is displayed when no search/filtering
criteria has been specified. By default, this shows jobs that were started in the last 24 hours, jobs that ended in
the last 24 hours and jobs that are still running . Click on the text active to see a detailed description of
functionality. If both the Search and Quick Filters UI elements are used at the same time, only jobs that match
the selected quick filter will be displayed.

The table displayed on the UI contains information about submitted jobs and contains the following columns:

● Job Id - Displays the job ID for each submitted job. Selecting a job ID opens up another tab, which displays
additional details of the job. For example, if a job ID for a Spark job is selected, a separate tab will be opened,
displaying the Spark History Server.

ATTENTION: Selecting a job ID for a job having "OTHER", "MRUN" or "CGE" as the job type will open
up the Mesos UI in a separate tab.

● Metrics - Displays links that can be used for displaying the graphical representation of the job's metrics on
the Grafana UI, which opens up in a separate browser tab.

● Job Name - Displays the name of the submitted job.

● Type - Displays types of all the submitted jobs. Jobs can be filtered based on type using the filter icon
provided on the UI.

Overview of the Cray Application Management UI

S3015 69

Figure 21. Filtering by Type

● User- Displays the name of the user who submitted the job.

● Start Time - Displays the time the job started executing. Jobs can be filtered based on starting time using the
filter icon provided on the UI.

● End Time - Displays the time the job finished executing. This column will be empty for jobs that have not
finished executed yet.

● Status - Displays the current status of the job, which depends on the job's underlying framework.

To filter a job based on its status, click the filter icon in this column's header.

Make selections as needed and then select the Filter button on the pop-up. Click on the text Failed on the
Status column to view logs for debugging failed jobs. For Spark jobs, this column contains a link titled
Finished, which can be used to view and download logs that help identify whether or not the Spark job
succeeded. Selecting this link will present a login screen, where users will need to enter their LDAP
credentials.

IMPORTANT: If the user logged in with the default user account (having admin/admin as the
username and password), the system will require the user to log in again with their LDAP or system
credentials to view Spark executor logs.

● Action - The kill button displayed in this column enables killing a running job. This column will be empty for
jobs that have finished executing. Users can only kill jobs submitted by themselves. However, the system
administrator can delete any job.

NOTE: If the user logged in with the default user account (having admin/admin as the username and
password), the system will require the user to log in again with their LDAP or system credentials to kill
jobs of type "CGE" or "MRUN".

Overview of the Cray Application Management UI

S3015 70

14 Update the InfluxDB Data Retention Policy
Prerequisites
This procedure requires root privileges. Before performing this procedure, use the urika-state command to
ensure that the system is operating in the service mode that supports using InfluxDB. For more information, see
the urika-state man page and refer to Urika-GX Service Modes on page 7.

About this task
The data retention policy for InfluxDB defaults to infinite, i.e. data is never deleted. As a result, Spark and Hadoop
Grafana dashboards may take longer to load and InfluxDB may take up more space than necessary. To reduce
the amount of space being used by InfluxDB, the data retention policy for each database needs to be reduced, as
described in this procedure. Reducing the data retention policy for Spark and Hadoop databases can reduce the
load time of the Spark and Hadoop Grafana dashboards.

Procedure

1. Log on to login2 and become root.

2. Switch to the /var/lib/influxdb/data directory.

cd /var/lib/influxdb/data

3. Use the du command to show how much space being used.

The sizes below are shown as examples. Actual sizes on the system may vary.

$ du -sh *
14G Cray Urika GX
1.5G CrayUrikaGXHadoop
906M CrayUrikaGXSpark
21M _internal
#

4. Connect to InfluxDB to view the current data retention policy.

/bin/influx
Visit https://enterprise.influxdata.com to register for updates, InfluxDB server
management, and monitoring.
Connected to http://localhost:8086 version 0.12.2
InfluxDB shell 0.12.2
> show retention policies on "Cray Urika GX"
name duration shardGroupDuration replicaN default
default 0 168h0m0s 1 true

5. Update the data retention policy according to requirements.

Update the InfluxDB Data Retention Policy

S3015 71

In this example the data retention duration is changed from 0 (forever) to 2 weeks (504 hours).

> alter retention policy default on "Cray Urika GX" Duration 2w
> show retention policies on "Cray Urika GX"
name duration shardGroupDuration replicaN default
default 504h0m0s 24h0m0s 1 true
> exit

The change will take a while to be applied. The default is 30 minutes.

6. Verify that the data retention change has taken effect

du -sh *
3G Cray Urika GX
1.5G CrayUrikaGXHadoop
906M CrayUrikaGXSpark
21M _internal

Update the InfluxDB Data Retention Policy

S3015 72

15 Manage the Spark Thrift Server as a Non-Admin User
Prerequisites
● Ensure that the system is running in the service mode that allows use of the Spark Thrift Server. Execute the

urika-state or urika-service-mode commands to check the service mode. For more information, refer
to the urika-state or urika-service-mode man pages and see Urika-GX Service Modes on page 7.

● This procedure requires Tableau Desktop (version 10.2) and Simba Spark ODBC driver to be installed on the
client machine:

● If using a MAC, the following procedure requires version 10.11 of the operating system.

About this task
Cray recommends to have the Spark Thrift to be started up by administrators, however, users can use the
following instructions if they need to start up their own Spark Thrift server.

CAUTION: It is recommended for multiple users (admin and non-admin) to use the same Spark Thrift
server (that has been started by an administrator) instead of spinning up their own individual servers, as
doing so could result in resource lockdown. In addition, though it is possible for multiple users to connect
to each other's Spark Thrift server, doing so can result in loss of connectivity if the server is brought down
by the user who brings it up. If a user who starts up the Spark Thrift server brings it down, other users
may experience loss of connection issues.

Procedure

1. Copy the spark-env.sh, spark-defaults.conf and hive-site.xml files to the local $Home directory.

$ cp /opt/cray/spark2/default/conf/spark-env.sh $HOME
$ cp /opt/cray/spark2/default/conf/spark-defaults.conf $HOME
$ cp /opt/cray/spark2/default/conf/hive-site.xml $HOME

2. Modify the hive-site.xml configuration file to set hive.server2.thrift.port to a non-conflicting
port.

3. Increase the number of compute nodes if needed by editing the spark-defaults.conf configuration file
and changing the default value of spark.cores.max from 32 to the desired value.

4. Execute the start-thriftserver.sh script.

$ /opt/cray/spark2/default/sbin/start-thriftserver.sh

5. Stop the Spark Thrift server when finished using it.

$ /opt/cray/spark2/default/sbin/stop-thriftserver.sh

Manage the Spark Thrift Server as a Non-Admin User

S3015 73

16 Use Tableau® with Urika-GX
Tableau is a desktop application running on either Windows or Mac. Urika-GX features connectivity to Tableau®

for data visualization. Tableau connects easily to Urika-GX, as well as to other data sources. It enables viewing
data as visually appealing visualizations called dashboards, quickly and easily.

The following figure depicts how Tableau connects to Urika-GX via the Hive and SparkSQL Thrift servers:

Figure 22. Urika-GX connectivity to Tableau

16.1 Connect Tableau to HiveServer2 Using LDAP

Prerequisites
● Ensure that the system is running in the service mode that allows use of Tableau and HiveServer2. Execute

the urika-state or urika-service-mode commands to check the service mode. For more information,
refer to the urika-state or urika-service-mode man pages and see Urika-GX Service Modes on page
7.

● Ensure that LDAP authentication for Tableau to HiveServer2 is enabled. For more information, refer to section
'Enable LDAP for Connecting Tableau to HiverServer2 of the 'Urika®-GX System Administration Guide'.

● This procedure requires the following software to be installed on the external client machine connected to
Urika-GX:

○ Tableau Desktop (version 10.2)

○ Hortonworks Hive ODBC driver.

Use Tableau® with Urika-GX

S3015 74

● If using a Mac, the following procedure requires version 10.11 or later of the OS X operating system.

● Request an administrator to ensure that the Hive service is up and running.

About this task
CAUTION: It is recommended for multiple users to use the same Hive server (that has been started by an
administrator) instead of spinning up their own individual servers, as doing so could result in resource
lockdown.

Procedure

1. Log on to a Urika-GX system's login node.

2. Request an administrator to flex up the YARN cluster.

NOTE: Cray recommends that YARN clusters for Tableau connectivity be flexed up only by
administrators on Urika-GX. Administrators should use the urika-yam-flexup command and
specify a timeout value of 0 when using this procedure. For more information, administrators should
see the urika-yam-flexup man page or refer to the section titled 'Flex up a YARN sub-cluster on
Urika-GX' of the 'Urika®-GX Analytic Applications Guide'.

3. Launch the Tableau application on a client machine.

This will start the Tableau application and bring up the Tableau UI on the user's desktop.

Use Tableau® with Urika-GX

S3015 75

Figure 23. Tableau UI

4. Navigate to Connect > To a Server > More

5. Select Hortonworks Hadoop Hive from the list of servers.

Use Tableau® with Urika-GX

S3015 76

Figure 24. Selecting Hortonworks Hadoop Hive Server

6. Populate the server connection pop up.

a. Enter hostname-login1 in the Server field, where hostname is used as an example for the name of
the machine and should be replaced with the actual machine name when following this step.

b. Enter 10000 in the Port field.

c. Select HiveServer2 from the Type drop down.

d. Select User Name from the Authentication drop down.

e. Enter values in the Username and Password fields.

f. Select the Sign In button.

Use Tableau® with Urika-GX

S3015 77

Figure 25. Connect HiveServer2 to Tableau

7. Perform data visualization/exploration tasks as needed using Tableau.

8. Request an administrator to flex down the YARN cluster.

NOTE: Cray recommends that YARN clusters for Tableau connectivity be flexed down only by
administrators on Urika-GX. For more information, administrators should see the urika-yam-
flexdown man page or refer to the section titled 'Flex up a YARN sub-cluster on Urika-GX' of the
'Urika®-GX Analytic Applications Guide'.

16.2 Connect Tableau to HiveServer2 Securely

Prerequisites
● Ensure that the system is running in the service mode that allows use of Tableau and HiveServer2. Execute

the urika-state or urika-service-mode commands to check the service mode. For more information,
refer to the urika-state or urika-service-mode man pages and see Urika-GX Service Modes on page
7.

● This procedure requires the following software to be installed on the client machine:

○ Tableau Desktop (version 10.2)

○ Hortonworks Hive ODBC driver.

● If using a Mac, the following procedure requires version 10.11 of the OS X operating system.

● Request and administrator to ensure that the Hive service is up and running.

Use Tableau® with Urika-GX

S3015 78

About this task
CAUTION: It is recommended for multiple users to use the same Hive server (that has been started by an
administrator) instead of spinning up their own individual servers, as doing so could result in resource
lockdown.

Procedure

1. Request an administrator to enable SSL.

Administrators should follow instructions listed in section 'Enable SSL on Urika-GX' of the 'Urika-GX System
Administration Guide' to enable SSL. To connect to the HiveServer2 from Tableau, the
ServerCertificate.crt SSL certificate must be present on the machine running Tableau and needs to
be added to Tableau.

2. Log on to a Urika-GX system's login node.

3. Request an administrator to flex up the YARN cluster.

NOTE: Cray recommends that YARN clusters for Tableau connectivity be flexed up only by
administrators on Urika-GX. Administrators should use the urika-yam-flexup command and
specify a timeout value of 0 when using this procedure. For more information, administrators should
see the urika-yam-flexup man page or refer to the section titled 'Flex up a YARN sub-cluster on
Urika-GX' of the 'Urika®-GX Analytic Applications Guide'.

4. Launch the Tableau application on a client machine.

This will present the Tableau UI.

Figure 26. Tableau UI

5. Navigate to Connect > To a Server > More

6. Select Hortonworks Hadoop Hive from the list of servers.

Use Tableau® with Urika-GX

S3015 79

Figure 27. Selecting Hortonworks Hadoop Hive Server

7. Populate the server connection pop up.

a. Enter machine-login1 in the Server field, using the FQDN to ensure that it matches the domain name
for the SSL certificate. machineName is used as an example for the name of the machine and should be
replaced with the actual machine name when following this step.

b. Enter 10000 (which is the port number configured in HA Proxy) in the Port field.

c. Select HiveServer2 from the Type drop down.

d. Select User Name and Password (SSL) from the Authentication drop down.

e. Enter values in the Username and Password fields.

f. Select the Require SSL check-box.

g. Click on the No custom configuration file specified (click to change)... link.

Use Tableau® with Urika-GX

S3015 80

Figure 28. Connect HiveServer2 to Tableau Securely

h. Select Use the following custom SSL certificate option on the Configure SSL certificate pop up.

Figure 29. Tableau Configure SSL Pop up

i. Select the Browse button to select the SSL certificate file.

j. Select the OK button.

k. Select the Sign In button.

8. Perform data visualization/exploration tasks as needed using Tableau.

9. Request an administrator to flex down the YARN cluster.

NOTE: Cray recommends that YARN clusters for Tableau connectivity be flexed down only by
administrators on Urika-GX. For more information, administrators should see the urika-yam-
flexdown man page or refer to the section titled 'Flex up a YARN sub-cluster on Urika-GX' of the
'Urika®-GX Analytic Applications Guide'.

Use Tableau® with Urika-GX

S3015 81

16.3 Connect Tableau to the Spark Thrift Server

Prerequisites
● Ensure that the system is running in the service mode that allows use of Tableau and Spark Thrift Server.

Execute the urika-state or urika-service-mode commands to check the service mode. For more
information, refer to the urika-state or urika-service-mode man pages and see Urika-GX Service
Modes on page 7.

● This procedure requires the following software to be installed on the client machine, which is an external
machine connected to Urika-GX:

○ Tableau Desktop (version 10.2)

○ Simba Spark ODBC driver.

● If using a Mac, the following procedure requires version 10.11 of the OS X operating system.

About this task
The Spark Thrift Server provides access to SparkSQL via JDBC or ODBC. It supports almost the same API and
many of the features as those supported by HiveServer2. On Urika-GX, HiveServer2/Hive Thrift Server and Spark
Thrift server are used for enabling connections from ODBC/JDBC clients, such as Tableau.

The Spark Thrift server ships pre-configured with LDAP authentication.

CAUTION: The recommended approach for using Tableau with the Spark Thrift server on Urika-GX is to
have multiple users (admin and non-admin) to use the same Spark Thrift server (that has been started by
an administrator) instead of spinning up their own individual servers, as doing so could result in resource
lockdown. In addition, though it is possible for multiple users to connect to each other's Spark Thrift
server, doing so can result in loss of connectivity if the server is brought down by the user who brings it
up.

Procedure

1. Request the administrator to verify that the Spark Thrift server is running and to start it if it is not already up.

Administrators should refer to the section titled, 'Control the Spark Thrift Server' in the 'Urika®-GX System
Administration Guide' to start the Spark Thrift server. Cray recommends to have the Spark Thrift server
stopped by administrators. In order to start the Spark Thrift server non-admins have started without
administrative privileges, non-admins should refer to Manage the Spark Thrift Server as a Non-Admin User on
page 73.

2. Launch the Tableau application on a client machine.

This will present the Tableau UI.

Use Tableau® with Urika-GX

S3015 82

Figure 30. Tableau UI

3. Navigate to Connect > To a Server > More

4. Select Spark SQL server from the list of servers.

Use Tableau® with Urika-GX

S3015 83

Figure 31. Selecting Spark SQL Server

5. Populate the server connection pop up.

a. Enter hostname-login1 in the Server field, where hostname is used as an example for the name of
the machine and should be replaced with the actual machine name when following this step.

b. Enter 10015 in the Port field.

c. Select SparkThriftServer (Spark 1.1 and later) from the Type drop down.

d. Select User Name and Password from the Authentication drop down.

e. Enter values in the Username and Password fields.

f. Select the Sign In button.

Use Tableau® with Urika-GX

S3015 84

Figure 32. Tableau's Spark Connection Pop up

6. Perform data visualization/exploration tasks as needed.

7. Request an administrator to stop the Spark Thrift server service.

Administrators should refer to the section titled, 'Control the Spark Thrift Server' in the 'Urika®-GX System
Administration Guide' to stop the Spark Thrift server. Cray recommends to have the Spark Thrift server
stopped by administrators. In order to stop the Spark Thrift server non-admins have started without
administrative privileges, non-admins should refer to 'Manage the Spark Thrift Server as a Non-Admin User'
of the 'Urika-GX Analytic Applications Guide'.

16.4 Connect Tableau to the Spark Thrift Server Securely

Prerequisites
● Ensure that the system is running in the service mode that allows use of Tableau and Spark Thrift Server.

Execute the urika-state or urika-service-mode commands to check the service mode. For more
information, refer to the urika-state or urika-service-mode man pages and see Urika-GX Service
Modes on page 7.

● This procedure requires the following software to be installed on the client machine:

○ Tableau Desktop (version 10.2)

○ Simba Spark ODBC driver.

● If using a Mac, the following procedure requires version 10.11 of the OS X operating system.

About this task
CAUTION: The recommended approach for using Tableau with the Spark Thrift server on Urika-GX is to
have multiple users (admin and non-admin) to use the same Spark Thrift server (that has been started by
an administrator) instead of spinning up their own individual servers, as doing so could result in resource
lockdown. In addition, though it is possible for multiple users to connect to each other's Spark Thrift

Use Tableau® with Urika-GX

S3015 85

server, doing so can result in loss of connectivity if the server is brought down by the user who brings it
up.

Procedure

1. Request an administrator to verify that SSL is enabled.

Administrators should follow instructions listed in section 'Enable SSL on Urika-GX' of the 'Urika-GX System
Administration Guide' to enable SSL.

2. Request the administrator to verify that the Spark Thrift server is running and to start it if it is not already up.

Administrators should refer to the section titled, 'Control the Spark Thrift Server' in the 'Urika-GX System
Administration Guide' to start the Spark Thrift server. Cray recommends to have the Spark Thrift server
stopped by administrators. In order to start the Spark Thrift server non-admins have started without
administrative privileges, non-admins should refer to 'Manage the Spark Thrift Server as a Non-Admin User'
of the 'Urika-GX Analytic Applications Guide'.

3. Launch the Tableau application.

This will present the Tableau UI.

Use Tableau® with Urika-GX

S3015 86

Figure 33. Tableau UI

4. Navigate to Connect > To a Server > More

5. Select Spark SQL server from the list of servers.

Use Tableau® with Urika-GX

S3015 87

Figure 34. Selecting Spark SQL Server

6. Populate the server connection pop up.

a. Enter machine-login1 in the Server field, using the FQDN to ensure that it matches the domain name
for the SSL certificate. machine is used as an example for the name of the machine and should be
replaced with the actual machine name when following this step.

b. Enter 10015 in the Port field.

c. Select SparkThriftServer (Spark 1.1 and later) from the Type drop down.

d. Select User Name from the Authentication drop down.

e. Enter values in the Username field.

Use Tableau® with Urika-GX

S3015 88

f. Select the Require SSL check box

g. Select the Sign In button.

Figure 35. Tableau's Spark Connection Pop up

7. Perform data visualization/exploration tasks as needed.

8. Request an administrator to stop the Spark Thrift server.

Administrators should refer to the section titled, 'Control the Spark Thrift Server' in the 'Urika-GX System
Administration Guide' to stop the Spark Thrift server. Cray recommends to have the Spark Thrift server
stopped by administrators. In order to stop the Spark Thrift server non-admins have started without
administrative privileges, non-admins should refer to 'Manage the Spark Thrift Server as a Non-Admin User'
of the 'Urika-GX Analytic Applications Guide'.

16.5 Connect Tableau to Apache Spark Thrift Server on a VM

Prerequisites
● Ensure that the system is running in the service mode that allows use of Tableau and Spark Thrift Server.

Execute the urika-state or urika-service-mode commands to check the service mode. For more
information, refer to the urika-state or urika-service-mode man pages and see Urika-GX Service
Modes on page 7.

● This procedure requires the following software to be installed on the client machine:

○ Tableau Desktop (version 10.2)

○ Simba Spark ODBC driver.

Since Tableau Desktop version 10.2, the Mac driver for Spark SQL is installed by default with Tableau
Desktop

● If using a Mac, the following procedure requires version 10.11 of the OS X operating system.

Use Tableau® with Urika-GX

S3015 89

About this task
CAUTION: The recommended approach for using Tableau with the Spark Thrift server on Urika-GX is to
have multiple users (admin and non-admin) to use the same Spark Thrift server (that has been started by
an administrator) instead of spinning up their own individual servers, as doing so could result in resource
lockdown. In addition, though it is possible for multiple users to connect to each other's Spark Thrift
server, doing so can result in loss of connectivity if the server is brought down by the user who brings it
up.

Procedure

1. Launch the Tableau application.

This will present the Tableau UI.

Figure 36. Tableau UI

2. Navigate to Connect > To a Server > More

3. Select Spark SQL server from the list of servers.

Use Tableau® with Urika-GX

S3015 90

Figure 37. Selecting Spark SQL Server

4. Populate the server connection pop up.

Use Tableau® with Urika-GX

S3015 91

a. Enter external ip or hostname in the Server field, where hostname is used as an example for the name
of the machine and should be replaced with the actual machine name when following this step.

b. Enter 10000 in the Port field.

c. Select SparkThriftServer (Spark 1.1 and later) from the Type drop down.

d. Select User Name and Password from the Authentication drop down.

e. Enter values in the Username and Password fields.

f. Select HTTP in transport mode and enter HTTP Path as sparkthrift

g. Select the Sign In button.

Figure 38. Connect Tableau to the Spark Thrift Server Using SSL

5. Perform data visualization/exploration tasks as needed.

6. Request an administrator to stop the Spark Thrift server.

Administrators should refer to the section titled, 'Control the Spark Thrift Server' in the 'Urika-GX System
Administration Guide' to stop the Spark Thrift server. Cray recommends to have the Spark Thrift server
stopped by administrators. In order to stop the Spark Thrift server non-admins have started without
administrative privileges, non-admins should refer to 'Manage the Spark Thrift Server as a Non-Admin User'
of the 'Urika-GX Analytic Applications Guide'.

Use Tableau® with Urika-GX

S3015 92

16.6 Enable SSL for Spark Thrift Server of a Tenant

Prerequisites
This procedure requires root privileges.

About this task
This procedure provides instructions for enabling SSL for Spark Thrift Server of a tenant

Procedure

1. Convert the CA certificate file to Java keystore format by using one of the following methods:

● Update the keystore file.

1. Rename the Java keystore file to the filename keystore

2. Place the keystore file in the /global/tenants/TENANT_NAME/sts/SSL/ directory

● Create a symbolic link to the keystore path:

ln -s /path/to/real/keystore/file /global/tenants/TENANT_NAME/sts/ssl/
keystore

2. Verify that the keystore file exists:

/bin/ls -l /global/tenants/TENANT_NAME/sts/ssl/keystore

3. Modify the /global/tenants/TENANT_NAME/hive/conf/hive-site.xml file to make the following
changes:

a. Change the value of hive.server2.use.SSL to true.

b. Change the value of hive.server2.keystore.password to the keystore's password

c. Stop and the start the Spark Thrift Server if it is currently running.

4. Enable or disable the SSL mode for this Spark Thrift Server, depending on requirements.

● To enable the SSL mode:

1. Modify the hive-site.xml file to change the value of hive.server2.use.SSL to true

2. Stop and the start the Spark Thrift Server if it is currently running.

● To disable the SSL mode:

1. Modify the hive-site.xml file to change the value of hive.server2.use.SSL to false

2. Stop and the start the Spark Thrift Server if it is currently running.

Use Tableau® with Urika-GX

S3015 93

17 File Systems
Supported file system types on Urika-GX include:

● Internal file systems

○ Hadoop Distributed File System (HDFS) - Hadoop uses HDFS for storing data. HDFS is highly fault-
tolerant, provides high throughput access to application data, and is suitable for applications that have
large data sets. Urika-GX also features tiered HDFS storage. HDFS data is transferred over the Aries
network.

○ Network File System (NFS) - The Urika-GX SMW hosts NFS, which is made available to every node via
the management network.

○ /mnt/lustre - This is a directory that hosts Lustre file system data if DAL/Sonexion is used.

CAUTION: Avoid using NFS for high data transfers and/or large writes as this will cause the network
to operate much slower or timeout. NFS, as configured for Urika-GX home directories, is not capable
of handling large parallel writes from multiple nodes without data loss. Though It is possible to
configure NFS to handle parallel writes, it would require a hard mount, which would have undesired
consequences.

File Locations
● Home directories are mounted on (internal) NFS, with limited space

● Distributed file system (Lustre), if provisioned, is mounted at /mnt/lustre and is suitable for larger files.

Lustre mounts are isolated, with individual tenants having their own mount point.

File Systems

S3015 94

18 Check the Current Service Mode
Prerequisites
This procedure requires root privileges on the SMW.

About this task
Urika-GX supports two service modes, which dictate the list of services available. These modes include:

● Default

● Secure

Use the following instructions to determine the service mode the system is currently running in.

Procedure

1. Log on to the SMW as root.

ssh root@hostname-smw

2. Display the current service mode by using one of the following options:

● Execute the urika-state command. This displays the current service mode as well as the status of all
the services that are supported in that mode.

● Execute the urika-service-mode command.

urika-service-mode
Current mode is: default

For more information, refer to the urika-service-mode and urika-state man pages.

Check the Current Service Mode

S3015 95

19 Fault Tolerance on Urika-GX
Fault tolerance refers to the ability of a system to continue functioning with minimal intervention in spite of failures
and its ability to cope with various kinds of failures.

Urika-GX features fault tolerance to ensure resiliency against system failures. Failed jobs are rescheduled
automatically for optimized performance.

● Zookeeper - Zookeeper enables highly reliable distributed coordination. On Urika-GX, there are 3 Zookeeper
instances running with a quorum of 2. On Urika-GX, Mesos and Marathon use Zookeeper to help provide fault
tolerance.

● Hadoop - Hadoop is highly fault-tolerant. Whenever there is a failure in the execution of a Hadoop/
MapReduce job, the corresponding process is reported to the master and is rescheduled.

○ HDFS - HDFS is the data store for all the Hadoop components on Urika-GX. The Secondary HDFS
NameNode periodically stores the edits information and the FS Image. HDFS NameNode is the single
point of failure. In case of a HDFS NameNode failure, the Hadoop administrator can start the Hadoop
cluster with the help of these FS images and edits. Information in the file system is replicated, so if one
data node goes down, the data is still available.

● Spark - Spark uses a directed acyclic lineage graph to track transformations and actions. Whenever there is
failure, Spark checkpoints the failure in the graph and reschedules the next set of computations from that
checkpoint on another node.

● Mesos - Mesos is the main resource broker for Urika-GX and runs in high availability mode. There are 3
masters running at all times, so that even if one fails, one of the remaining two masters is elected as the
leader and there is no disturbance in the process of resource brokering. Furthermore, the Mesos UI is
configured using HA proxy to detect the active Mesos master and direct incoming request to it directly.

● Marathon - Marathon is a Mesos framework/scheduler that is used to launch and manage long-running
services on a cluster. There are three Marathon instances running at all times on the Urika-GX system. If an
active Marathon instance goes down, one of the backup Marathon instances is assigned as the leader.
Services defined within Marathon are launched and managed anywhere on the cluster where there are
available resources. If a Mesos task fails, Marathon will accept more resources from Mesos and another task
will be launched, usually on a different node. Re-scheduling of the tasks is usually a framework related
decision.

Fault Tolerance on Urika-GX

S3015 96

20 Default Urika-GX Configurations
The following table document some basic configuration settings that Urika-GX ships with. This is not an
exhaustive list.

Table 8. Urika-GX Default Configurations

Component Configuration parameter and file location

Spark ● spark.shuffle.compress: false

● spark.locality.wait: 1 second

● Event logging: enabled

● Default cores: 8 for spark-shell, 128 for spark-submit and everything else

● Default memory allocation:

○ 96 Gigabytes for each executor

○ 16 Gigabytes to the driver

Mesos Name of the cluster is configured in an Ansible file located
at: /etc/mesos-master/cluster. If this configuration has to be changed specific to
the site, it should be done at the time of configuration. The change should be made in
the Ansible file's cluster_name variable.

Cray Graph Engine
(CGE)

Default logging level: INFO

NVP settings - See the 'Cray® Graph Engine User Guide'.

Configuration files are located under:

● CGE_CONFIG_FILE_NAME

● CGE_CONFIG_DIR_NAME/cge.properties

● Current_Working_Directory/cge.properties

● Data Directory/cge.properties

● Home_Directory/.cge/cge.properties

mrun ● NCMDServer=nid00000

● MesosServer=localhost # same as --host

● MesosPort=5050

● MarathonServer=localhost

● MarathonPort=8080

● DebugFLAG=False # same as --debug

Default Urika-GX Configurations

S3015 97

Component Configuration parameter and file location

● VerboseFLAG=False # same as --vebose

● JobTimeout=0-0:10:0 # ten minutes, same as --time

● StartupTimeout=30 # 30 seconds, same as --immediate

● HealthCheckEnabled=True # Run with Marathon Health Checks
enabled

● HCGracePeriodSeconds=5 # Seconds at startup to delay Health
Checks

● HCIntervalSeconds=10 # Seconds between Health Check pings

● HCTimeoutSeconds=10 # Seconds to answer Health Check
successfully

● HCMaxConsecutiveFailures=3 # How many missed health checks
before app killed

Flex scripts:

● urika-yam-
status

● urika-yam-
flexup

● urika-yam-
flexdown

● urika-yam-
flexdown-all

The default timeout interval is 15 minutes. The configuration file is located
at /etc/urika-yam.conf. The recommended default is 15, unit for timeout is
minutes. This can be changed per site requirements.

Grafana ● When a new user signs up for the first time, the default role assigned to the user is
that of a Viewer. The admin can then change the new user's role if needed.

● By default, Grafana's refresh rate is turned off on the Urika-GX system.

● The default timezone displayed on Grafana is in UTC.

● Default Grafana roles and permissions are depicted in the following table:

Table 9. Default Grafana Roles and Permissions

Role E
di
t
r
ol
e
s

Vie
w
gr
ap
hs

Edit/
crea
te
cop
y of

exist
ing
grap
hs

Add
new
graph
s to
existi
ng
dash
board
s

Create new/

import existing

dashboards

Admin X X X X X (These dashboards persist between sessions)

Default Urika-GX Configurations

S3015 98

Component Configuration parameter and file location

Role E
di
t
r
ol
e
s

Vie
w
gr
ap
hs

Edit/
crea
te
cop
y of

exist
ing
grap
hs

Add
new
graph
s to
existi
ng
dash
board
s

Create new/

import existing

dashboards

Viewer
(default
role)

X X

Editor X X X X (These dashboards get deleted when the editor
logs out)

Read
only
editor

X X X

20.1 Default Grafana Dashboards
The default set of Grafana dashboards shipped with Urika-GX include:

● Aggregate Compute Node Performance Statistics - Displays graphs representing statistical data related to
network, CPU, and I/O utilization for all Urika-GX nodes.

This dashboard contains the following graphs:

○ CPU AND MEMORY

▪ CPU utilization - Displays the overall CPU utilization for all nodes.

▪ Memory utilization - Displays the overall memory used by all nodes.

○ FILE SYSTEM DATA RATES

▪ SSD Reads/Writes Bytes/Second - Displays SSD utilization for all nodes.

▪ Second Hard Drive (/dev/sdb) Reads/Writes Bytes/Sec - Displays utilization of secondary hard
disk space for all nodes.

▪ Root FS HDD (/dev/sda) Reads/Writes Bytes/Sec - Displays utilization of root files system on the
hard drive for all nodes.

▪ Lustre Reads/Writes Bytes/Second - Displays the aggregate Lustre I/O for all the nodes.

○ NETWORK READS AND WRITES

▪ Aries HSN Bytes/Sec In/Out - Displays the overall Aries network TCP traffic information for nodes.
Note that non-TCP Aries traffic, including most traffic generated by CGE, is not shown here.

Default Urika-GX Configurations

S3015 99

▪ Operational network Bytes/sec In/Out - Displays the overall operational network traffic information
for all nodes.

▪ Management network Bytes/sec In/Out - Displays the overall management network traffic
information for all nodes.

Figure 39. Aggregate Compute Node Performance Statistics

● Basic Metrics - Displays graphs representing statistical data related to network, CPU, and I/O utilization for
the Urika-GX system, as a whole.

TIP: It is recommended that administrators use the Basic Metrics dashboard before using other
dashboards to retrieve a summary of the system's health.

This dashboard contains the following graphs:

○ CPU AND MEMORY

▪ Used and File Cached Memory - Displays the used and file cached memory for each node.

▪ CPU Utilization User + System - Displays the CPU utilization by the user and system for each node

○ FILE SYSTEM DATA RATES

▪ Root File System Hard Drive (/dev/sda) Reads/Writes Bytes/Sec (200MB/sec max) - Displays
information about the usage of memory on the root file system for each node.

Default Urika-GX Configurations

S3015 100

▪ 2nd Hard Drive (/dev/sdb) Read/Writes - Displays information about the usage of memory on the
secondary hard drive of each node.

▪ Lustre Read/Writes Bytes/Second - Displays the number of Lustre reads/writes for each node.

▪ SSD Read/Writes Bytes/Second - Displays the number of reads/writes of the SSDs installed on the
system.

○ NETWORK READS/WRITES

▪ Aries HSN Bytes/Sec In/Out - Displays the Aries network TCP traffic information for each node.
Note that non-TCP Aries traffic, including most traffic generated by CGE, is not shown here.

▪ Operational network Bytes/sec In/Out - Displays the overall operational network traffic information
for each node.

▪ Management network Bytes/sec In/Out - Displays the overall management network traffic
information for each node.

○ FILE SYSTEM UTILIZATION

▪ Root File System Hard Drive (/dev/sda) Reads/Writes Bytes/Sec (200MB/sec max) - Displays
information about the usage of memory on the root file system for each node.

▪ 2nd Hard Drive (/dev/sdb) Read/Writes - Displays information about the usage of memory on the
secondary hard drive of each node.

▪ Lustre Read/Writes Per/Second - Displays the number of Lustre reads/writes for each node.

▪ SSD Read/Writes Per/Second - Displays the number of reads/writes of each node's SSDs.

○ NETWORK ERRORS AND DROPED PACKETS

▪ Aries HSN Dropped Packets and Errors Per Sec - Displays the number of dropped packets/errors
per second for the Aries network TCP traffic information for each node. Note that non-TCP Aries
traffic, including most traffic generated by CGE, is not shown here.

▪ Operational network Dropped Packets and Errors Per Sec - Displays the number of dropped
packets/errors per second for the operational network TCP traffic information for each node.

▪ Management network Dropped Packets and Errors Per Sec - Displays the number of dropped
packets/errors per second for the management network TCP traffic information for each node.

Default Urika-GX Configurations

S3015 101

Figure 40. Basic Metrics Dashboard

● Compute Node Performance Statistics - Displays graphs representing statistical data related to network,
CPU, and I/O utilization for all Urika-GX compute nodes.

This dashboard contains the following graphs:

○ ▪ CPU MEMORY UTILIZATION

▪ CPU utilization - Displays the overall CPU utilization for all the compute nodes.

▪ Memory utilization - Displays the overall memory (in KB or GB) used by all the compute nodes.

○ FILE SYSTEM READS/WRITE BYTES/SEC

▪ Root File System Hard Drive (/dev/sda) Reads/Writes Bytes/Sec (200MB/sec max) - Displays
information about the usage of memory on the root file system by compute nodes..

▪ 2nd Hard Drive (/dev/sdb) Read/Writes - Displays information about the usage of memory by
compute nodes on the secondary hard drive.

▪ Lustre Read/Writes Per/Second - Displays the number of Lustre reads/writes by compute nodes.

▪ SSD Read/Writes Per/Second - Displays the number of reads/writes of the compute node SSDs
installed on the system.

○ NETWORK READS/WRITES

Default Urika-GX Configurations

S3015 102

▪ Aries HSN Bytes/Sec In/Out - Displays the Aries network TCP traffic information for compute nodes.
Note that non-TCP Aries traffic, including most traffic generated by CGE, is not shown here.

▪ Operational network Bytes/sec In/Out - Displays the overall operational network traffic information
for compute nodes.

▪ Management network Bytes/sec In/Out - Displays the overall management network traffic
information for compute nodes.

Figure 41. Compute Node Performance Statistics

● Hadoop Application Metrics - This section contains the following graphs:

○ Node Manager Memory Usage - Displays the average memory usage per application in mega bytes per
second (MBPS). The Y-axis is in MBPS.

○ Node Manager Core Usage - Displays the average CPU usage per application in MilliVcores . The Y-
axis refers to MilliVcores.

Default Urika-GX Configurations

S3015 103

Figure 42. Hadoop Applications Metrics Dashboard

● Hadoop Cluster Metrics - Displays graphs representing statistical data related to Hadoop components, such
as HDFS Data Nodes and HDFS Name Nodes.

This dashboard contains the following sections:

○ Cluster BlockReceivedAndDeletedAvgTime - Displays the average time in milliseconds for the hdfs
cluster to send and receive blocks. The Y-axis represents time in milliseconds.

○ NumActive Node Manager - Displays the number of Node Managers up and running in the Hadoop
cluster at a given time. The Y-axis represents a linear number.

○ AllocatedContainers - Displays the number of allocated YARN containers by all the jobs in the hadoop
cluster. The Y-axis represents a linear number.

○ DataNode Bytes Read/Write - Displays the number of bytes read or write per node from local client in
the hadoop cluster. The Y-axis refers to a linear number. Read is shown on the positive scale. Write is
shown on the negative scale.

○ Data Node Remote bytes Read/Written - Displays the number of bytes read or written per node from
remote clients in the Hadoop cluster. The Y-axis represents a linear number. The number of reads are
shown on the positive scale. The number of writes are shown on the negative scale.

Default Urika-GX Configurations

S3015 104

○ Figure 43. Hadoop Cluster Metrics Dashboard

● Non-compute Node Performance Statistics - Displays graphs representing statistical data related to
network, CPU, and I/O utilization for all the non-compute (I/O and login) nodes of Urika-GX.

This dashboard contains the following graphs:

○ CPU MEMORY UTILIZATION

▪ CPU utilization - Displays the overall CPU utilization for I/O and login (non-compute) nodes.

▪ Memory utilization - Displays the overall memory (in KB or GB) used by all the I/O and login nodes.

○ FILE SYSTEM READS/WRITE BYTES/SEC

▪ Root File System Hard Drive (/dev/sda) Reads/Writes Bytes/Sec (200MB/sec max) - Displays
information about the usage of memory on the root file system by I/O and login nodes.

▪ 2nd Hard Drive (/dev/sdb) Read/Writes - For I/O and login nodes, displays information about the
usage of memory by compute nodes on the secondary hard drive.

▪ Lustre Read/Writes Bytes/Second - Displays the number of Lustre reads/writes by I/O and login
nodes.

▪ SSD Read/Writes Bytes/Second - Displays the number of SSD reads/writes of the I/O and login
nodes.

○ NETWORK READS/WRITES

Default Urika-GX Configurations

S3015 105

▪ Aries HSN Bytes/Sec In/Out - Displays the Aries network TCP traffic information for I/O and login
nodes. Note that non-TCP Aries traffic, including most traffic generated by CGE, is not shown here.

▪ Operational network Bytes/sec In/Out - Displays the overall operational network traffic information
for I/O and login nodes.

▪ Management network Bytes/sec In/Out - Displays the overall management network traffic
information for I/O and login nodes.

Figure 44. Non-compute Node Performance Statistics

● Per Node Performance Statistics - Displays graphs representing statistical data related to network, CPU,
and I/O utilization for individual Urika-GX nodes. The node's hostname can be selected using the hostname
drop down provided on the UI.

This dashboard contains the following graphs:

○ CPU utilization - Displays the CPU utilization for the selected node.

○ Memory utilization - Displays the memory (in KB or GB) used by the selected node.

○ Root File System Hard Drive (/dev/sda) Reads/Writes Bytes/Sec- Displays the HDD SDA utilization for
the selected node.

○ 2nd Hard Drive (/dev/sdb) Read/Writes - Displays the HDD SDB utilization for the selected node.

○ SSD Read/Writes Bytes/Second - Displays the number of SSD reads/writes per second for each node.

Default Urika-GX Configurations

S3015 106

○ Lustre Read/Writes Bytes/Second - Displays the number of Lustre reads/writes by the selected node.

○ Aries HSN Bytes/Sec In/Out - Displays the Aries network TCP traffic information for the selected node.
Note that non-TCP Aries traffic, including most traffic generated by CGE, is not shown here.

○ Operational network Bytes/sec In/Out - Displays the overall operational network traffic information for
the selected node.

○ Management network Bytes/sec In/Out - Displays the overall management network traffic information
for the selected node.

○ NFS HDFS Lustre Percentage Used - Displays the percentage of NFS, HDFS and Lustre used by the
selected node.

○ File System Percent Used - Displays the percentage of file system used by the selected node.

Figure 45. Per Node Performance Statistics

● SMW Metrics/ - Displays graphs representing statistical data related to SMW's resources, such as the CPU's
memory utilization, root file system, etc.

This dashboard contains the following sections:

○ CPU and MEMORY UTILIZATION - Displays the memory consumption by the SMW's CPU.

▪ User/System CPU Utilization MACHINE_NAME

▪ Memory utilization

○ Root File System Data Rates and Utilization - Displays memory usage and data rate of the SMW's root
file system.

Default Urika-GX Configurations

S3015 107

▪ Root File System Hard Drive (/dev/sda) Reads/Writes Bytes/Sec - Displays information about the
usage of memory on the root file system of the SMW

▪ Root File System Percent Used - Displays the percentage for used SMW root file system space.

○ NETWORK DATA RATES

▪ Operational Network Traffic Bytes/sec - Displays the operational network's data rate.

▪ Management Network Traffic Bytes/sec - Displays the management network's data rate.

○ NETWORK PACKET DROPS/SEC AND ERRORS/SEC

▪ Operational Network Dropped and Errors Per Sec - Displays the number of dropped packets and
errors per second for the operational network.

▪ Management Network Dropped and Errors Per Sec - Displays the number of dropped packets and
errors per second for the management network.

Figure 46. SMW Metrics Dashboard

● Spark Metrics - Displays graphs representing statistical data related to Spark jobs. This dashboard also
contains links for viewing the Spark Web UI and Spark History Server.

Default Urika-GX Configurations

S3015 108

Figure 47. Grafana Spark Metrics Dashboard

Graphs displayed on this dashboard are grouped into the following sections:

○ READ/WRITE: Displays statistics related to the file system statistics of a Spark executor. Results in the
graphs of this section are displayed per node for a particular Spark Job. The Y-axis displays the number
in bytes, whereas the X-axis displays the start/stop time of the task for a particular Spark Job.

This section contains the following graphs:

▪ Executor HDFS Read/Write Per Job (in bytes): Reading and writing from HDFS.

▪ Executor File System Read/Write Per Job (in bytes): Reading and writing from a File System.

○ SPARK JOBS: Displays statistics related to the list of executors per node for a particular Spark Job. The
Y-axis displays the number of tasks and X-axis displays the start/stop time of the task for a particular
Spark Job.

This section contains the following graphs:

▪ Completed Tasks Per Job: The approximate total number of tasks that have completed execution.

▪ Active Tasks Per Job: The approximate number of threads that are actively executing tasks.

▪ Current Pool Size Per Job: The current number of threads in the pool.

▪ Max Pool Size Per Job: The maximum allowed number of threads that have ever simultaneously
been in the pool.

○ DAG Scheduler - Displays statistics related to Spark's Directed Acyclic Graphs.

This section contains the following graphs:

▪ DAG Schedule Stages - This graph displays the following types of DAG stages:

▪ Waiting Stages: Stages with parents to be computed.

▪ Running Stages: Stages currently being run.

▪ Failed Stages: Stages that failed due to fetch failures (as reported by CompletionEvents for
FetchFailed end reasons) and are going to be resubmitted.

Default Urika-GX Configurations

S3015 109

▪ DAG Scheduler Jobs - This graph displays the following types of DAG scheduler jobs:

▪ All Jobs - The number of all jobs

▪ Active Jobs - The number of active jobs

▪ DAG Scheduler Message Processing Time - This graph displays the processing time of the DAG
Scheduler.

○ JVM Memory Usage - The memory usage dashboards represent a snapshot of used memory.

▪ JVM Memory Usage - init: Represents the initial amount of memory (in bytes) that the Java virtual
machine requests from the operating system for memory management during start up. The Java
virtual machine may request additional memory from the operating system and may also release
memory to the system over time. The value of init may be undefined.

▪ JVM Memory Usage - Used: Represents the amount of memory currently used (in bytes).

▪ JVM Memory Usage - Committed: Represents the amount of memory (in bytes) that is guaranteed
to be available for use by the Java virtual machine. The amount of committed memory may change
over time (increase or decrease). The Java virtual machine may release memory to the system and
committed could be less than init. Committed will always be greater than or equal to used.

▪ JVM Memory Usage - Max: Represents the maximum amount of memory (in bytes) that can be used
for memory management. Its value may be undefined. The maximum amount of memory may change
over time if defined. The amount of used and committed memory will always be less than or equal to
max if max is defined. A memory allocation may fail if it attempts to increase the used memory such
that used > committed even if used <= max is still true, for example, when the system is low on
virtual memory.

▪ JVM Heap Usage: Represents the maximum amount of memory used by the JVM heap space

▪ JVM Non-Heap Usage: Represents the maximum amount of memory used by the JVM non-heap
space

20.2 Performance Metrics Collected on Urika-GX
Table 10. CPU Metrics

Metric Description

cputotals.user Percentage of node usage utilized in user mode

cputotals.nice Percentage of CPU time spent executing a process with a “nice”
value

cputotals.sys Percentage of CPU memory used in system mode

cputotals.wait Percentage of CPU time spent in wait state

cputotals.idle Percentage of CPU time spent in idle state

cputotals.irq Percentage of CPU time spent processing interrupts

cputotals.soft Percentage of CPU time spent processing soft interrupts

cputotals.steal Percentage of CPU time spent running virtualized (always 0)

Default Urika-GX Configurations

S3015 110

Metric Description

ctxint.ctx Number of context switches

ctxint.int Number of interrupts

ctxint.proc Number of process creations/sec

ctxint.runq Number of processes in the Run queue

cpuload.avg1 Average CPU load over the last minute

cpuload.avg5 Average CPU load over the last 5 minutes

cpuload.avg15 Average CPU load over the last 15 minutes

Table 11. Disk Metrics

Metric Description

disktotals.reads Combined number of reads for all hard drives and SSD on this node

disktotals.readkbs Combined number of KB/sec read for all hard drives and SSD on this
node

disktotals.writes Combined number of writes for all hard drives and SSD on this node

disktotals.writekbs Combined number of KB/sec written for all hard drives and SSD on
this node

diskinfo.reads.sda Number of memory reads on system hard drive

diskinfo.readkbs.sda KB/seconds read on system hard drive

diskinfo.writes.sda Number of memory writes on system hard drive

diskinfo.writekbs.sda KB/seconds written on system hard drive

diskinfo.rqst.sda Number of IO requests (readkbs + writekbs)/(reads + writes) on
system hard drive

diskinfo.qlen.sda Average number of IO requests queued on system hard drive

diskinfo.wait.sda Average time in msec for a request has been waiting in the queue on
system hard drive

diskinfo.util.sda Percentage of CPU time during which I/O requests were issued on
system hard drive

diskinfo.time.sda Average time in msec for a request to be serviced by the system hard
drive

diskinfo.reads.sdb Number of memory reads on second hard drive

diskinfo.readkbs.sdb KB/seconds read on second hard drive

diskinfo.writes.sdb Number of memory writes on second hard drive

diskinfo.writekbs.sdb KB/seconds written on second hard drive

diskinfo.rqst.sdb Number of IO requests (readkbs + writekbs)/(reads + writes) on
second hard drive

Default Urika-GX Configurations

S3015 111

Metric Description

diskinfo.qlen.sdb Average number of IO requests queued on second hard drive

diskinfo.wait.sdb Average time in Milliseconds for a request has been waiting in the
queue on second hard drive

diskinfo.time.sdb Average time in msec for a request to be serviced by the second
hard drive

diskinfo.util.sdb Percentage of CPU time during which I/O requests were issued on
second hard drive

diskinfo.reads.nvme0n1 Number of memory reads on SSD

diskinfo.readkbs.nvme0n1 KB/seconds read on SSD

diskinfo.writes.nvme0n1 Number of memory writes on SSD

diskinfo.writekbs.nvme0n1 KB/seconds written on SSD

diskinfo.rqst.nvme0n1 Number of IO requests (readkbs + writekbs)/(reads + writes) on SSD

diskinfo.qlen.nvme0n1 Average number of IO requests queued on SSD

diskinfo.wait.nvme0n1 Average time in msec for a request has been waiting in the queue on
SSD

diskinfo.util.nvme0n1 Percentage of CPU time during which I/O requests were issued on
SSD

diskinfo.time.nvme0n1 Average time in msec for a request to be serviced by the SSD

Table 12. Memory Metrics

Metric Description

meminfo.tot Total node memory

meminfo.free Unallocated node memory

meminfo.shared Unused memory

meminfo.buf Memory used for system buffers

meminfo.cached Memory used for caching data between the kernel and disk, direct I/O
does not use the cache

meminfo.used Amount of used physical memory not including kernel memory

meminfo.slab Amount of memory used for slab allocations in the kernel

meminfo.map Amount of memory mapped by processes

meminfo.hugetot Amount memory allocated through huge pages

meminfo.hugefree Amount of available memory via huge pages

meminfo.hugersvd Amount of memory reserved via huge pages

Swap memory metrics

swapinfo.total Total swap memory

Default Urika-GX Configurations

S3015 112

Metric Description

swapinfo.free Total available swap memory

swapinfo.used Amount of swap memory used

swapinfo.in Kilobytes of swapped memory coming in per second

swapinfo.out Kilobytes of swapped memory going out per second

Page memory metrics

pageinfo.fault Page faults/sec resolved by not going to disk

pageinfo.majfault These page faults are resolved by going to disk

pageinfo.in Total number of pages read by block devices

pageinfo.out Total number of pages written by block devices

Table 13. Socket Metrics

Metric Description

sockinfo.used Total number if socket allocated which can include additional types such
as domain

sockinfo.tcp Total TCP sockets currently in use

sockinfo.orphan Number of TCP orphaned connections

sockinfo.alloc TCP sockets allocated

sockinfo.mem Number of pages allocated by TCP sockets

sockinfo.udp Total UDP sockets currently in use

sockinfo.tw Number of connections in TIME_WAIT

sockinfo.raw Number of RAW connections in use

sockinfo.frag Number of fragment connections

sockinfo.fragm Memory in bytes

Table 14. Lustre Metrics

Metric Description

lusclt.reads Number of reads by Lustre clients

lusclt.readkbs Number of reads in KB by Lustre clients

lusclt.writes Number of writes by Lustre clients

lusclt.writekbs Number of writes in KB by Lustre clients

lusclt.numfs Number of Lustre file systems

Default Urika-GX Configurations

S3015 113

20.3 Default Log Settings
The following table lists the default log levels of various Urika-GX analytic components. If a restart of the service
is needed, please first stop services using the urika-stop command, change the log level, and then restart
services using the urika-start command.

Table 15. Default Log Levels

Component Default Log Level Restarting
service
required after
changing log
level?

Spark Default log levels are controlled by
the
/opt/cray/spark/default/conf/log4j.properties
file. Default Spark settings are used when the system is
installed, but can be customized by creating a new
log4j.properties file. A template for this can be found
in the log4j.properties.template file.

No

Hadoop Default log levels are controlled by the
log4j.properties file. Default Hadoop settings are
used when the system is installed, but can be customized
by editing the log4j.properties file.

Yes

Mesos INFO Yes

Marathon INFO. Log levels can be modified by editing the
log4j.properties file.

Yes

Grafana INFO. Log properties can be modified by editing
the /etc/grafana/grafana.ini file.

Yes

Jupyter Notebook Log levels are controlled by the
Application.log_level configuration parameter
in /etc/jupyterhub/jupyterhub_config.py. It is set
to 30 by default.

Yes

Cray Graph Engine (CGE) INFO. The log-reconfigure —log-level number
command can be used to modify the log level. Use the drop
down on the CGE UI to set the log level for the specific
action being performed, i.e. query, update or
checkpoint. Use the drop down on the Edit Server
Configuration page to set the log level. Changing the log
level in this manner persists until CGE is shut down.

No. Restarting
CGE reverts
the log level to
INFO

Flex scripts:

● urika-yam-status

● urika-yam-flexup

● urika-yam-flexdown

INFO. Changing the log level for these scripts is not
supported.

NA

Default Urika-GX Configurations

S3015 114

Component Default Log Level Restarting
service
required after
changing log
level?

● urika-yam-flexdown-all

Spark Thrift server INFO. Yes

HiverServer2 INFO. Yes

Tenant proxy logs DEBUG No

Urika-GX security manager logs INFO No

20.4 Tunable Hadoop and Spark Configuration Parameters
This section lists the supported list of Hadoop and Spark parameters on the system.

Hadoop
Before tuning any Hadoop configuration parameters, services should be stopped via the urika-stop command.
After the parameters have been changed, services should be started using the urika-start command.

● MapReduce Configuration Parameters - Common configuration parameters (along with default values on
Urika-GX) that can be tuned in the mapred-site.xml file include:

○ mapreduce.am.max-attempts (defaults to 2)

○ mapreduce.job.counters.max (defaults to 130)

○ mapreduce.job.reduce.slowstart.completedmaps (defaults to 0.05)

○ mapreduce.map.java.opts (defaults to -Xmx8192m)

○ mapreduce.map.log.level (defaults to INFO)

○ mapreduce.map.memory.mb (defaults to 10240)

○ mapreduce.map.output.compress (defaults to false)

○ mapreduce.map.sort.spill.percent (defaults to 0.7)

○ mapreduce.output.fileoutputformat.compress (defaults to false)

○ mapreduce.output.fileoutputformat.compress.type (defaults to BLOCK)

○ mapreduce.reduce.input.buffer.percent (defaults to 0.0)

○ mapreduce.reduce.java.opts (defaults to -Xmx8192m)

○ mapreduce.reduce.log.level (defaults to INFO)

○ mapreduce.reduce.shuffle.fetch.retry.enabled (defaults to 1)

○ mapreduce.reduce.shuffle.fetch.retry.interval-ms (defaults to 1000)

○ mapreduce.reduce.shuffle.fetch.retry.timeout-ms (defaults to 30000)

Default Urika-GX Configurations

S3015 115

○ mapreduce.reduce.shuffle.input.buffer.percent (defaults to 0.7)

○ mapreduce.reduce.shuffle.merge.percent (defaults to 0.66)

○ mapreduce.reduce.shuffle.parallelcopies (defaults to 30)

○ mapreduce.task.io.sort.factor (defaults to 100)

○ mapreduce.task.io.sort.mb (defaults to 1792)

○ mapreduce.task.timeout (defaults to 300000)

○ yarn.app.mapreduce.am.log.level (defaults to INFO)

○ yarn.app.mapreduce.am.resource.mb (defaults to 10240)

● YARN Configuration Parameters - Common configuration parameters (along with default values on Urika-
GX) that can be tuned in the yarn-site.xml file include:

○ yarn.nodemanager.container-monitor.interval-ms (defaults to 3000)

○ yarn.resourcemanager.am.max-attempts (defaults to 2)

○ yarn.nodemanager.health-checker.script.timeout-ms (defaults to 60000)

○ yarn.scheduler.maximum-allocation-mb (defaults to 225280)

○ yarn.nodemanager.vmem-pmem-ratio (defaults to < 2.1)

○ yarn.nodemanager.delete.debug-delay-sec (defaults to 0)

○ yarn.nodemanager.health-checker.interval-ms (defaults to 135000)

○ yarn.nodemanager.resource.memory-mb (defaults to 225280)

○ yarn.nodemanager.resource.percentage-physical-cpu-limit (defaults to 80)

○ yarn.nodemanager.log.retain-second (defaults to 604800)

○ yarn.resourcemanager.zk-num-retries (defaults to 1000)

○ yarn.resourcemanager.zk-retry-interval-ms (defaults to 1000)

○ yarn.resourcemanager.zk-timeout-ms (defaults to 10000)

○ yarn.scheduler.minimum-allocation-mb (defaults to 10240)

○ yarn.scheduler.maximum-allocation-vcores (defaults to 19)

○ yarn.scheduler.minimum-allocation-vcores (defaults to 1)

○ yarn.log-aggregation.retain-seconds (defaults to 2592000)

○ yarn.nodemanager.disk-health-checker.min-healthy-disks (defaults to 0.25)

Spark
Cray Spark configuration defaults are chosen based on internal verification and benchmarking to provide strong
performance across a range of workloads. These defaults may not be ideal for all workloads and thus, there may
be a need to change configuration settings. This can be done on a per-job basis to optimize performance of
individual workloads.

Users can change Spark configuration parameters when they launch jobs using the --conf command line flag.

Common Spark configuration parameters (along with default values on Urika-GX) that can be tuned in the
spark-default.conf file include:

Default Urika-GX Configurations

S3015 116

● spark.cores.max (defaults to 32 cores). For more information about changing this default, see
Modify the Default Number of Maximum Spark Cores on page 31

● spark.executor.memory (defaults to 96g)

● spark.shuffle.compress (defaults to false)

● spark.locality.wait (defaults to 1)

● spark.eventLog.enabled (defaults to true)

● spark.driver.memory (defaults to 16g)

● spark.driver.maxResultSize (defaults to 1g)

● spark.serializer (defaults to org.apache.spark.serializer.JavaSerializer)

● spark.storage.memoryFraction (defaults to 0.6)

● spark.shuffle.memoryFraction (defaults to 0.2)

● spark.speculation (defaults to false)

● spark.speculation.multiplier (defaults to 1.5)

● spark.speculation.quantile (defaults to 0.75)

● spark.task.maxFailures (defaults to 4)

● spark.app.name (default value: none)

Refer to online documentation for a description of these parameters.

20.5 Node Types
Urika-GX contains the following types of nodes:

● 1 sub-rack system:

○ I/O nodes: nid00007 and nid00015

○ Login nodes: nid00006 and nid00014 (login node1) login node 1 and 2 respectively.

○ Service nodes: nid00000, nid00001 and nid00002

○ Compute nodes: all the remaining nodes.

● 2 sub-rack system:

○ I/O nodes: nid00015 and nid00031

○ Login nodes: nid00014 (login node1) and nid00030 (login node2)

○ Service nodes: nid00000, nid00001 and nid00002

○ Compute nodes: all the remaining nodes.

● 3 sub-rack system:

○ I/O nodes: nid00031 and nid00047

○ Login nodes: nid00030 (login node1) and nid00046 (login node2)

○ Service nodes: nid00000, nid00016 and nid00032

○ Compute nodes: all the remaining nodes.

Default Urika-GX Configurations

S3015 117

20.6 Service to Node Mapping
The list of services available for use depends on the security mode the system is running under. For more
information, refer to Urika-GX Service Modes on page 7.

Table 16. Urika-GX Service to Node Mapping (2 Sub-rack System)

Node ID(s) Service(s) Running on Node /Role of Node

nid00000 ● ZooKeeper

● ncmd

● Mesos Master

● Marathon

● Primary HDFS NameNode

● Hadoop Application Timeline Server

● Collectl

● nrpe

● kubelet

nid000[01-07, 09-13, 17-29] ● Collectl

● Mesos Slave

● Data Node

● YARN Node Manager (if running)

● nrpe

● kubelet

nid00008 ● ZooKeeper

● Secondary HDFS NameNode

● Mesos Master

● Oozie

● Hive Server2

● Spark Thrift Server

● Hive Metastore

● WebHCat

● Postgres database

● Marathon

● YARN Resource Manager

● Collectl

● nrpe

Default Urika-GX Configurations

S3015 118

Node ID(s) Service(s) Running on Node /Role of Node

● kubelet

nid00014 (Login node 1) ● HUE

● HAProxy

● Collectl

● Urika-GX Applications Interface UI

● Cray Application Management UI

● Jupyter Notebook

● Service for flexing a YARN cluster

● Documentation and Learning Resources UI

● nrpe

● kubelet

● Kubernetes Controller

nid00015, nid00031 (I/O nodes) These are nodes that run Lustre clients and nrpe

nid00016 ● ZooKeeper

● Mesos Master

● Marathon

● Hadoop Job History Server

● Spark History Server

● Collectl

● nrpe

● kubelet

nid00030 (Login node 2) ● HUE

● HA Proxy

● Collectl

● Service for flexing a YARN cluster

● Grafana

● InfluxDB

● nrpe

● kubelet

Table 17. Urika-GX Service to Node Mapping (3 Sub-rack System)

Node ID(s) Service(s) Running on Node /Role of Node

nid00000 ● ZooKeeper

Default Urika-GX Configurations

S3015 119

Node ID(s) Service(s) Running on Node /Role of Node

● ncmd

● Mesos Master

● Marathon

● Primary HDFS NameNode

● Hadoop Application Timeline Server

● Collectl

● nrpe

● kubelet

nid00001-nid00015, nid00017-
nid00029, nid00033-nid00045

● Collectl

● Mesos Slave

● Data Node

● YARN Node Manager (if running)

● nrpe

● kubelet

nid00016 ● ZooKeeper

● Mesos Master

● Marathon

● Hadoop Job History Server

● Spark History Server

● Collectl

● nrpe

● kubelet

nid00030 (Login node 1) ● HUE

● HA Proxy

● Collectl

● Urika-GX Applications Interface UI

● Jupyter Notebook

● Service for flexing a YARN cluster

● Documentation and Learning Resources UI

● nrpe

● kubelet

● Kubernetes Controller

nid00031, nid00047 (I/O nodes) These are nodes that run Lustre clients

● kubelet

Default Urika-GX Configurations

S3015 120

Node ID(s) Service(s) Running on Node /Role of Node

nid00032 ● ZooKeeper

● Secondary NameNode

● Mesos Master

● Oozie

● Hive Server2

● Hive Metastore

● WebHcat

● Postgres database

● Marathon

● YARN Resource Manager

● Collectl

● Spark Thrift Server

● nrpe

● kubelet

nid00046 (Login node 2) ● HUE

● HA Proxy

● Collectl

● Grafana

● InfluxDB

● Service for flexing a YARN cluster

● nrpe

● kubelet

For additional information, use the urika-inventory command as root on the SMW to view the list of services
running on node, as shown in the following example:

urika-inventory

For more information, see the urika-inventory man page.

20.7 Port Assignments
Table 18. Services Running on the System Management Workstation (SMW)

Service Name Default Port

SSH 22

Default Urika-GX Configurations

S3015 121

Table 19. Services Running on the I/O Nodes

Service Name Default Port

SSH 22

Table 20. Services Running on the Compute Nodes

Service Name Default Port

ssh 22

YARN Node Managers 8040, 8042, 45454, and 13562

Mesos slaves on all compute
nodes

5051

DataNode Web UI to access the
status, logs and other
information

50075

DataNode use for data transfers 50010

DataNode used for metadata
operations.

8010

Table 21. Services Accessible via the Login Nodes via the Hostname

Service Default Port

Mesos Master UI 5050. This UI is user-visible.

Spark History Server's web UI 18080. This UI is user-visible.

HDFS NameNode UI for
viewing health information

50070. This UI is user-visible.

Secondary NameNode web UI 50090. This UI is user-visible.

Web UI for Hadoop Application
Timeline Server

8188. This UI is user-visible.

YARN Resource Manager web
UI

8088. This UI is user-visible.

Marathon web UI 8080. This UI is user-visible.

Hive Server2 SSL - 29207

Non-SSL - 10000

Hive Metastore 9083.

Hive WebHCat 50111.

Oozie server 11000. The Oozie dashboard UI runs on this port and is user-visible.

Hadoop Job History Server 19888 on nid00016. This is a user-visible web UI.

Default Urika-GX Configurations

S3015 122

Service Default Port

HUE server 8888 on login1 and login2. The web UI for the HUE dashboard runs on this
port and is user-visible.

CGE cge-launch command 3750. See S-3010, "Cray® Graph Engine Users Guide" for more information
about the cge-launch command or see the cge-launch man page.

CGE Web UI and SPARQL
endpoints

3756

Spark Web UI 4040. This port is valid only when a Spark job is running. If the port is already
in use, the port number's value is incremented until an open port is found.
Spark Web UI runs on whichever login node (1 or 2) that the user executes
spark-submit/spark-shell/spark-sql/pyspark on. This UI is user-
visible.

InfluxDB 8086 on login2. InfluxDB runs on nid00046 on three sub-rack, and on
nid00030 on a two sub-rack system.

InfluxDB port for listening for
collectl daemons on
compute nodes

2003. InfluxDB runs on login node 2 on the Urika-GX system.

InfluxDB cluster communication 8084

Grafana 3000 on login2 (login node 2). The Grafana UI is a user-visible.

Web UI for Jupyter Notebook 7800. Jupyter Notebook internally uses HTTP proxy, which listens to ports
7881 and 7882

Urika-GX Applications Interface 80 on login1 (login node 1).

Urika-GX Application
Management

80 on login1 (login node 1).

Spark SQL Thrift Server SSL - 29208

Non-SSL - 10015

Kubernetes Master 6443 on login1 (login node 1).

Additional Ports and Services

Table 22. Additional Services and Ports They Run on

Service Port

Apache ZooKeeper 2181

Kafka (not configured by default) 9092

Flume (not configured by
default)

41414

Port for SSH 22

Default Urika-GX Configurations

S3015 123

20.8 Major Software Components Versions
Table 23. Software Component Versions

Component Version

Ant 1.9.2

Cray Graph Engine 3.2UP03

collectl 3.7.4

Cobbler 2.6

Docker 1.12.3

emacs editor 24.3.1

Environment modules (software for switching
versions of other packages)

3.2.10

gcc (C/C++ compiler) 4.8.5

glibc (GNU C libraries) 2.17

Git (version control tool) 1.8.3.1

Grafana 3.0.1

HAProxy 1.5.18

InfluxDB 0.12.2

Java runtime execution environment OpenJDK 1.8

Java development environment OpenJDK 1.8

Jupyter Hub 0.6.1

Jupyter 4.2.0

Jupyter Notebook 4.2.3

kdump 3.10.0

Kubernetes 1.9.2

Lustre server (on I/O nodes) and Lustre client (on all
nodes) software

2.7.1

Marathon 1.1.1

Maven 3.3.9

Apache Mesos 1.1.0

Nagios 4.3.4

mrun 2.7

Default Urika-GX Configurations

S3015 124

Component Version

Python language interpreter 2.7.5, 3.4.3, and Anaconda Python 3.5.2 (via Anaconda
distribution version 4.1.1)

R language interpreter 3.4.3

SBT 0.13.9

Scala compiler 2.11.8

Apache Spark Cray customized version of the Spark on Kubernetes
project, which is based on Spark 2.2.0.

vi editor VIM 7.4

Operating System

Operating system on system nodes and SMW CentOS 7.4

Hadoop and Hadoop ecosystem components

In the following list, items marked with a * are installed but not configured on the Urika-GX system.

Apache Hadoop 2.7.3

HUE 3.10.0

HDFS 2.7.3

Hortonworks Data Platform (HDP) 2.6.1.0-129

*Flume 1.5.2

Hive 1.2.1

*Kafka 0.9.0

*Mahout 0.9.0

Oozie 4.2.0

*Sqoop 1.4.6

*Pig 0.16.0

ZooKeeper 3.4.6

gdb (Debugger for C/C++ programs) is not installed on the system by default, but can be installed by
administrators via YUM if required, as shown in the following example:

yum install gdb

For additional information, execute the urika-rev and urika-inventory commands as root from the SMW,
as shown in the following examples:

● # urika-rev

● # urika-inventory

Default Urika-GX Configurations

S3015 125

21 Troubleshooting

21.1 Diagnose and Troubleshoot Orphaned Mesos Tasks

Prerequisites
This procedure requires root access and the system to be running in the default service mode. Execute the
urika-state command to ensure that Mesos is running and that the system is operating in the default service
mode.

About this task
The metrics displayed in Mesos UI can also be retrieved using CURL calls. Cray-developed scripts (for flexing up
a YARN sub-cluster) and mrun use these curl calls in as they interoperate with Mesos for resource brokering. If
the metrics displayed by Mesos UI and the metrics that the curl calls return different results Mesos may not work
correctly and all the Mesos frameworks will be affected. As such, the aforementioned Cray-developed scripts and
mrun will not be able to retrieve the needed resources. This behavior can be identified when:

● there is a disconnect between the CURL calls and the Mesos UI. Specifically, there will be an indication of
orphaned Mesos tasks if the CURL call returns a higher number of CPUs used than that returned by the UI.
Cray-developed scripts for flexing YARN sub-clusters use curl calls, and hence do not allow flexing up if there
are not enough resources reported.

● there are orphaned Mesos tasks, as indicated in the Mesos Master and Mesos Slave logs
at /var/log/mesos. Mesos Master will reject task status updates because it will not recognize the
framework those tasks are being sent from.

If this behavior is encountered, follow the instructions listed in this procedure:

Procedure

1. Log on to the System Management Workstation (SMW) as root

2. Clear the slave meta data on all the nodes with Mesos slave processes running

The following example can be used on a 3 sub-rack system:

pdsh -w nid000[00-47] -x nid000[00,16,30,31,32,46,47] \
'rm -vf /var/log/mesos/agent/meta/slaves/latest'

3. Stop the cluster

urika-stop

Troubleshooting

S3015 126

4. Start the cluster

urika-start

After following the aforementioned steps, the system should be restored to its original state. For additional
information, contact Cray Support.

21.2 Analytic Applications Log File Locations
Log files for a given service are located on the node(s) the respective service is running on, which can be
identified using the urika-inventory command. For more information, see the urika-inventory man page.

Table 24. Analytics Applications Log File Locations

Application/Script Log File Location

Mesos /var/log/mesos

Marathon /var/log/messages

HA Proxy /var/log/haproxy.log

Mesos frameworks:

● Marathon

● Spark

/var/log/mesos/agent/slaves/. Within this directory, a framework’s output is placed in
files called stdout and stderr, in a directory of the form slave-X/fw-Y/Z,
where X is the slave ID, Y is the framework ID, and multiple subdirectories Z are
created for each attempt to run an executor for the framework. These files can also
be accessed via the web UI of the slave daemon. The location of the Spark logs is
determined by the cluster resource manager that it runs under, which is Mesos on
Urika-GX.

Grafana /var/log/grafana/grafana.log

InfluxDB /var/log/influxdb/influxd.log

collectl collectl does not produce any logging information. It uses logging as a mechanism
for storing metrics. These metrics are exported to InfluxDB. If collectl fails at service
start time, the cause can be identified by executing the collectl command on the
command line and observing what gets printed. It will not complain if the InfluxDB
socket is not available.

Hadoop The following daemon logs appear on the node they are running on:

● /var/log/hadoop/hdfs/hadoop-hdfs-namenode-nid.log

● /var/log/hadoop/hdfs/hadoop-hdfs-datanode-nid.log

● /var/log/hadoop/yarn/yarn-yarn-nodemanager-nid.log

● /var/log/hadoop/yarn/yarn-yarn-resourcemanager-nid.log

In the above locations, nid is used as an example for the node name.

Application specific logs reside in HDFS at /app-logs

Spark ● Spark event logs (used by the Spark History server) reside at:
hdfs://user/spark/applicationHistory

Troubleshooting

S3015 127

Application/Script Log File Location

● Spark executor logs (useful to debug Spark applications) reside with the other
Mesos framework logs on the individual compute nodes (see above)
at: /var/log/mesos/agent/slaves/

Jupyter Notebook /var/log/jupyterhub.log

Flex scripts:

● urika-yam-status

● urika-yam-
flexdown

● urika-yam-
flexdown-all

● urika-yam-flexup

/var/log/urika-yam.log

ZooKeeper /var/log/zookeeper

Hive Metastore /var/log/hive

HiveServer2 /var/log/hive

HUE /var/log/hue

Spark Thrift Server /var/log/spark

Spark Audit Logs
A per-user Spark audit log that details start and stop of applications is located
at /var/log/spark/k8s/username.log with entries of the following form:

Tue Apr 03 07:54:05 CDT 2018 username spark-test-1522760043061-driver START \
Application Started with 1 driver plus 5.0 executors using 6.0 cores and 496.0GB memory
Tue Apr 03 07:54:38 CDT 2018 username spark-test-1522760043061-driver STOP \
Application Stopped
Tue Apr 3 08:15:51 CDT 2018 username username-shell-159738-5d5b87c8b-82td6 \
START spark-shell Shell Started with 1 driver using 16.0 cores and 60GB memory
Tue Apr 3 08:16:36 CDT 2018 username username-shell-159738-5d5b87c8b-82td6 \
STOP spark-shell Shell Stopped
Wed Apr 04 04:28:45 CDT 2018 username spark-test-1522834122688-driver START \
Application Started with 1 driver plus 7.0 executors using 8.0 cores and 688.0GB memory
Wed Apr 04 04:29:38 CDT 2018 username spark-test-1522834122688-driver STOP \
Application Stopped
Wed Apr 04 04:30:09 CDT 2018 username spark-test-1522834207396-driver START \
Application Started with 1 driver plus 2.0 executors using 3.0 cores and 208.0GB memory
Wed Apr 04 04:30:42 CDT 2018 username spark-test-1522834207396-driver STOP \
Application Stopped
Wed Apr 04 04:32:05 CDT 2018 username spark-test-1522834323513-driver START \
Application Started with 1 driver plus 2.0 executors using 17.0 cores and 208.0GB memory
Wed Apr 04 04:32:28 CDT 2018 username spark-test-1522834323513-driver STOP \
Application Stopped

These log files will be located on whatever node an application is submitted from, typically login1, though maybe
elsewhere depending how the system enables users to access the system.

This log has the general format date username driver-pod-name action message, where:

● driver-pod-name is the Kubernetes pod name that is the driver for the application that can be used to link
this information to more detailed information from Kubernetes.

● action is either START or STOP

● message contains informational content, such as resources requested by the users application.

Troubleshooting

S3015 128

CAUTION: In the event of a failed or cancelled job (i.e. user executes a Ctrl+C/kill on the job) there may
be no corresponding STOP event registered for a job reported as started.

21.3 Clean Up Log Data
As jobs are executed on the system, a number of logs are generated, which need to be cleaned up, otherwise
they may consume unnecessary space. Log data is useful for debugging issues, but if it is certain that this data is
no longer needed, it can be deleted.

● Mesos logs - Mesos logs are stored under var/log/mesos, whereas the Mesos framework logs are stored
under /var/log/mesos/agent/slaves. These logs need to be deleted manually.

● Marathon logs - Marathon logs are stored under var/log/message and need to be deleted manually.

● HA Proxy logs - HA Proxy logs are stored under var/log/message and need to be deleted manually.

● Jupyter logs - Juypter log file are located at var/log/jupyterhub/jupyterhub.log and need to be
deleted manually.

● Grafana and InfluxDB logs - Grafana logs are stored under var/log/grafana, whereas InfluxDB logs are
stored under var/log/influxdb. Influxdb log files are compressed. Both Grafana and InfluxDB use the
logrotate utility to keep log files from using too much space. Log files are rolled daily by default, but if
space is critical, logs can be deleted manually.

● Spark logs - Shuffle data files on the SSDs is automatically deleted on Urika-GX. Spark logs need to be
deleted manually and are located at the following locations:

○ Spark event logs - Located at hdfs://user/spark/applicationHistory

○ Spark executor logs - Located on individual compute nodes at /var/log/mesos/agent/slaves/

● Hadoop logs - Hadoop log files are located in the following locations and need to be deleted manually:

○ Core Hadoop - Log files are generated under the following locations:

▪ var/log/hadoop/hdfs

▪ var/log/hadoop/yarn

▪ var/log/hadoop/mapreduce

○ ZooKeeper - ZooKeeper logs are generated under var/log/zookeeper

○ Hive (metastore and hive server2) - These logs are generated under var/log/hive

○ Hive Webhcat - These logs are generated under var/log/webhcat

○ Oozie - Oozie logs are stored under /var/log/oozie

○ HUE - HUE logs are generated under /var/log/hue

● Flex scripts (urika-yam-status, urika-yam-flexup, urika-yam-flexdown, urika-yam-flexdown-all) - These
scripts generate log files under /var/log/urika-yam.log and need to be deleted manually.

● mrun - mrun does not generate logs.

● Cray Graph Engine (CGE) logs - The path where CGE log files are located is specified via the -l parameter
of the cge-launch command. Use the cge-cli log-reconfigure command to change the location after
CGE is started with cge-launch. CGE logs need to be deleted manually. Users can also use --log-level

Troubleshooting

S3015 129

argument to CGE CLI commands to set the log level on a per request basis. In addition, the
cge.server.DefaultLogLevel parameter in the cge.properties file can be used to set the log level to
the desired default.

21.4 Ensure Long Running Spark Jobs Finish Executing

Prerequisites
This procedure requires root privileges and needs to be carried out on SMW node.

About this task
Delegation tokens are acquired from the HDFS NameNode when a job starts executing. These tokens need to be
renewed after they have expired. The default expiration period/lifetime of delegation tokens is 1 day. Spark jobs
that interact with HDFS can successfully complete if the execution time is less than the delegation token's lifetime.
The lifetimes of the tokens can be modified by changing certain properties in the hdfs-site.xml file, as
described in this procedure.

Procedure

1. Log on to the SMW as root.

2. Stop the HDFS service.

urika-stop -s hdfs

3. Edit the hdfs-site.xml file to set the following values greater than or equal to the Spark Job execution
time.

● dfs.namenode.delegation.key.update-interval

● dfs.namenode.delegation.token.max-lifetime

● dfs.namenode.delegation.token.renew-interval

4. Copy the modified hdfs-site.xml file to all the nodes.

5. Restart the HDFS service.

urika-start -s hdfs

21.5 Troubleshoot Common Analytic and System Management Issues
The following table contains a list of some common error messages and their description. Please note that this is
not an exhaustive list. Online documentation and logs should be referenced for additional debugging/
troubleshooting. For a list of Cray Graph Engine error messages and troubleshooting information, please refer to
the Cray® Graph Engine User Guide.

Troubleshooting

S3015 130

Table 25. System Management Error Messages

Error Message Description Notes/Resolution

ERROR: unauthorized command
'cat' requested by client

This message is returned when a
restricted user, logged in to a tenant
VM, attempts to execute a
command that is not part of set of
the white listed commands.

Only white listed commands can be
executed by restricted users who
are logged into tenant VMs. For
more information, refer to the
'Urika®-GX System Administration
Guide'.

Error message: ERROR: tag(s)
not found in playbook:
non_existent_service.
possible values:
collectl,grafana,hdfs,hdfs
_dn,hdfs_nn,hdfs_sn,hdp_ap
p_timeline,hdp_hist,hive,h
ive2,hive_met,hive_web,hue
,influxdb,jupyterhub,marat
hon,
mesos,nodemanager,oozie,sp
ark_hist,yarn,yarn_rm,
zookeeper

Description: User has specified a
service that does not exist to the
urika-stop or urika-start
command.

Resolution: Use the correct name of
the services by selecting one of the
options listed in the error message.

Error message: You are not
authorized to log into this system --
to obtain access please contact
your system administrator

su: Permission denied

This message may be returned by
the urika-state command on a
freshly deployed system if the hdfs
user has not yet been created.

Wait until the main_run/
main_update playbooks have
finished creating the hdfs user

Table 26. Spark Error Messages

Error Message Description Resolution

INFO
mesos.CoarseMesosSchedulerBac
kend: Blacklisting Mesos slave
20151120-121737-1560611850-505
0-20795-S0 due to too many
failures; is Spark installed on it?

INFO
mesos.CoarseMesosSchedulerBac
kend: Mesos task 30 is now
TASK_FAILED

There may be something preventing
a Mesos slave from starting the
Spark executor. Common causes
include:

● The SSD is too full

● The user does not have
permission to write to Spark
temporary files
under /var/spark/tmp/

Refer to Spark logs.

ERROR
mesos.MesosCoarseGrainedSched
ulerBackend: Mesos error: Master
refused authentication Exiting due
to error from cluster scheduler:
Master refused authentication

This message appears when Spark
is not able to authenticate with
Mesos.

The user may not have Mesos
credentials, in which case the user
would need to be added via the
usm-sync-users script script.
In other cases, this error may be a
result of the user's credentials being
in a bad state, in which case the

Troubleshooting

S3015 131

Error Message Description Resolution

admin would need to run the usm-
recreate-secret script to create
a new secret for the user. For more
information, refer to the 'Urika®-GX
System Administration Guide'.

Lost executor # on host Something has caused the Spark
executor to die. One of the reasons
may be that there is not enough
memory allocated to the executors.

Increase the memory allocated to
executors via one of the following
parameters:

● --executor-memory

● spark.executor.memory
configuration

Refer to Spark logs for additional
information.

Table 27. Flex Scripts Error Messages

Error Message Description Resolution

The number of nodes requested to
flex up is greater than the total
number of resources available.
Please enter a valid number of
nodes

The user is attempting to flex up
more nodes than are available
which using the urika-yam-
flexup command.

Enter a lower number of nodes for
the flex up request.

No time out specified by user
through commandline argument,
setting the timeout from /etc/urika-
yam.conf file. in /etc/urika-yam.conf
val: 15 minutes

The user has not specified a
timeout while using the urika-
yam-flexup command.

This error message can safely be
ignored if it is required to use the
default timeout value, which is 15
minutes. Otherwise, please specify
the desired value when using the
urika-yam-flexup command.

ID names can only contain
alphanumeric, dot '.' and dash '-'
characters. '@' not allowed in
jhoole@#$. Usage: urika-yam-
flexup --nodes #nodes --identifier
name --timeout timeoutInMinutes

The user has specified an incorrect
identifier/application name when
using the urika-yam-flexup
command.

Reenter the command with the
correct identifier.

Minimum timeout is 5 minutes. A
timeout less than the minimum
timeout cannot be requested, with
an exception of zero timeout.
Please note that you can request a
zero timeout (set value of timeout to
0) by which you do not call timeout,
you chose to flex down the nodes
manually using urika-yam-
flexdown. Please submit a new
flex up request with valid timeout.

Incorrect minimum timeout was
specified.

Submit a new flex up request with
valid timeout (Request for timeout
greater than minimum timeout).

Troubleshooting

S3015 132

Error Message Description Resolution

Currently only "x" nodes are
available in the cluster. Please wait
till the number of nodes you require
are available Or submit a new flex
up request with nodes less than "x"

This error is seen when the number
of nodes requested to flex up is not
available.

Either wait till the number of nodes
required are available Or submit a
new flex up request with nodes less
than "x".

Invalid app name. Your app name
can consist of a series of names
separated by slashes. Each name
must be at least 1 character. The
name may only contain digits (0-9),
dashes (-), dots (.), and lowercase
letters (a-z). The name may not
begin or end with a dash.

This error is seen when the
identifier provided by user for the
flex up request is invalid.

Follow the rules mentioned there
and re-submit a new flex up
request.

Total number of resources not set in
the /etc/urika-yam.conf file, please
re-check the configuration file

In /etc/urika-yam.conf file, the
number of resources is set by
default. The total number of
resources may not have been set.

Re-check the status of mesos
cluster.

Hostname is not set in the /etc/
urika-yam.conf file, please re-check
the configuration file.

In /etc/urika-yam.conf file, the
parameter hostname is set by
default. The value set may not be
correct or may not have been set.

Ensure that this parameter is set,
and the value is the same as default
value.

Mesos port is not set in the /etc/
urika-yam.conf file, please re-check
the configuration file

In /etc/urika-yam.conf file, the
parameter marathon_port is set
by default. This parameter may not
have been set or value set may not
be set to the same as the default
value.

Ensure that this parameter is set,
and the value is the same as default
value.

Marathon port is not set in the /etc/
urika-yam.conf file, please re-check
the configuration file.

In /etc/urika-yam.conf file, the
parameter marathon_port is set by
default. This parameter may not
have been set or value set may not
be set to the same as the default
value..

It should be ensured that this
parameter is set, and the value is
the same as default value.

The number of nodes you
requested to flex up is greater than
the total number of resources
available. Please enter a valid
number of nodes

This error is seen when the number
of nodes requested to flex up is
more than the total number of
nodes available in the cluster

Submit a new flex up request with
nodes less than or equal to the
number of nodes available in the
cluster.

App '/$marathon_app_name' does
not exist. Please re-check the
identifier corresponding nodes you
flex up, that you would like to flex
down

The identifier provided for flex down
does not exist.

Re-check the usage: if operating as
the root user, please provide the
complete name as seen in urika-
yam-status or as a non-root user,
ensure to provide the same
identifier used at the time of flex up.
In addition, check
if /var/log/urika-yam.log

Troubleshooting

S3015 133

Error Message Description Resolution

reflects any log messages where
timeout criteria has been matched
and there was a flex down of the
app already.

Looks like there is some problem
with flex up. Please try urika-yam-
status or look at the logs to find the
problem

The job failed to launch. Review logs (stored
at /var/log/urika-yam.log on
login nodes) or execute the urika-
yam-status command to identify if
there is any problem. Please check
if there are any issues related to
Mesos and/or Marathon. If the
Mesos and/or Marathon web UI
cannot be accessed, contact the
administrator, who should verify that
the Mesos and Marathon daemons
are up and running. If any of these
daemons are not running for some
reason, report the logs to Cray
Support and restart the Mesos
cluster using the urika-start
command. For more information,
see the urika-start man page.

Could not find the script urika-yam-
start-nodemanager in hdfs. Looks
like there is an error with your urika-
yam installation Please contact your
sysadmin

The urika-yam-start-
nodemanager script is a
component of the Cray developed
scripts for flexing up a YARN cluster
and is installed as part of the
installation of these flex scripts.

If this issue is encountered, the
administrator should verify that:

● HDFS is in a healthy state

● Marathon and Mesos services
are up and running.

The status of the aforementioned
services can be checked using the
urika-state command. For more
information, see the urika-state
man page. Contact support for
additional information about
resolving this issue.

INFO: can not flexup YAM in secure
mode

This message indicates that the
user is attempting to execute the
urika-yam-flexup script while
the system is in the secure service
mode, instead of in the default
mode.

The urika-yam-flexup script
can only be used in the secure
service mode. For more information,
refer to the Urika-GX System
Administration Guide.

INFO: can not flexdown YAM in
secure mode

This message indicates that the
user is attempting to execute the
urika-yam-flexdown script while
the system is in the secure service
mode, instead of in the default
mode.

The urika-yam-flexdown script
can only be used in the secure
service mode. For more information,
refer to the Urika-GX System
Administration Guide.

Troubleshooting

S3015 134

Error Message Description Resolution

INFO: can not flexdown-all YAM in
secure mode

This message indicates that the
user is attempting to execute the
urika-yam-flexdown-all script
while the system is in the secure
service mode, instead of in the
default mode.

The urika-yam-flexdown-
allscript can only be used in the
secure service mode. For more
information, refer to the Urika-GX
System Administration Guide.

INFO: can not get YAM status in
secure mode

This message indicates that the
user is attempting to execute the
urika-yam-status script while
the system is in the secure service
mode, instead of in the default
mode.

The urika-yam-status script
can only be used in the secure
service mode. For more information,
refer to the Urika-GX System
Administration Guide.

Table 28. Marathon/Mesos/mrun Error Messages

Error Message Description Resolution

ERROR:mrun: Force Terminated
job /mrun/
2016-193-12-13-03.174056
Cancelled due to Timeout

Examples:

● error("mrun: --immediate timed
out while waiting")

● error("mrun: Timed out waiting
for mrund : %s" % appID)

● error("mrun: Force Terminated
job %s Cancelled due to
Timeout" %

These errors indicate timeout and
resource contention issues, such as
the job timed out, the machine is
busy, too many users running too
many jobs, a user waiting for their
job to start, but previous jobs have
not freed up nodes, etc.
Additionally, if a user set a job
timeout's to 1 hour, and the job
lasted longer than 1 hour, the user
would get a Job Cancelled
timeout error.

Ensure that the there are enough
resources available and that the
timeout interval is set correctly.

HWERR[r0s1c0n3][64]:0x4b14:The
SSID received an unexpected
response:Info1=0x19100000000000
3:Info2=0x7

Mesos is not able to talk to the
Zookeeper cluster and is attempting
to shut itself down.

Restart Mesos using the urika-
start command.

WARN
component.AbstractLifeCycle:
FAILED
SelectChannelConnector@0.0.0.0:4
040: java.net.BindException:
Address already in use

User is attempting to execute a job
on a port that is already in use.

This message can be safely
ignored.

ERROR:Unexpected 'frameworks'
data from Mesos

● Examples:

○ error("Mesos Response:
%s" % ret)

These errors occur when mrun is
not able to connect/communicate
with Mesos and/or Marathon.

Refer to online Mesos/Marathon
documentation.

Troubleshooting

S3015 135

Error Message Description Resolution

○ error("Unexpected
'frameworks' data from
Mesos")

○ error("mrun: Getting mrund
state threw exception - %s"
%

○ error("getting marathon
controller state threw
exception - %s" %

○ error("Unexpected 'apps'
data from Marathon")

○ error("mrun: Launching
mrund threw exception -
%s" % (str(e)))

○ error("mrun: unexpected
'app' data from Marathon:
exception - %s" % (str(e)))

○ error("mrun: startMrund
failed")

○ error("mrun: Exception
received while waiting for "

● error("mrun: select(): Exception
%s" % str(e))

● error("mrun: error socket")

● error("mrund:

● error %r:%s died\n" %
(err,args[0]))

● error("mrund: select():
Exception %s\n" % str(e))

These errors may be encountered
in situations where an admin
physically unplugs an Ethernet
cable while a CGE job was running,
or a node died, etc.

Ensure that the Ethernet cable is
plugged while jobs are running.

● NCMD: Error leasing cookies
MUNGE:

● Munge authentication failure
[%s] (%s).\n

These error only occur if the specific
system services have failed.

Refer to log messages
under /var/log/messages on the
node the message was
encountered on.

ERROR:Not enough CPUs for
exclusive access. Available: 0
Needed: 1

Examples

● parser.error("Only --
mem_bind=local supported")

● parser.error("Only --cpu-
freq=high supported")

These errors are typically caused by
user errors, typos and when not
enough nodes are available to run a
job.

Ensure that there are enough nodes
available and there are no typos in
the issues command.

Troubleshooting

S3015 136

Error Message Description Resolution

● parser.error("Only --kill-on-bad-
exit=1 supported")

● parser.error("-n should equal (-
N * --ntasks-per-node)")

● parser.error("-N nodes must be
>= 1")

● parser.error("-n images must be
>= -N nodes")

● parser.error("No command
specified to launch"); error("Not
enough CPUs. "

● error("Not enough CPUs for
exclusive access. "

● error("Not enough nodes. "

● parser.error("name [%s] must
only contain 'a-z','0-9','-' and '.'"

● parser.error("[%s] is not
executable file" % args[0])

ERROR: Zero read: Scaling DOWN
not supported

This error message is returned
when mrun is not expecting one of
the remote nodes to abruptly close
its socket. When mrun goes to read
the socket, it detects the error,
generates the message, and the
application dies (or is killed).

Marathon UI to scale down mrun
jobs is not supported.

This message can occur in the
following conditions:

● The user used the —kill-on-
scaledown option of the mrun
command.

● The first remote compute node
did not exit successfully

Thus, this error message can only
occur if the application is killed or if
someone used the Marathon REST
API in an attempt to scale the
application down. No action needs
to be taken in either case.

mrun: error: Users may only cancel
their own mrun jobs

This message comes when a non-
root user tries to use mrun --
cancel to cancel any Marathon job
that was not launched by that user
using mrun.

User root is allowed to use "mrun
--cancel" to kill any Marathon-
started job. All other users should
only kill the Marathon jobs they
launched using the mrun command.

INFO: Can not run this application
in secure mode, cancelling app

This message indicates that the
user is attempting to use mrun
while the system is in the secure
service mode, instead of in the
default mode.

mrun can only be used in the
default service mode. For more
information, refer to the Urika-GX
System Administration Guide.

Troubleshooting

S3015 137

Table 29. Hadoop Error Messages

Error Message Description Resolution

org.apache.hadoop.hdfs.server.\
namenode.SafeModeException:
Cannot create or delete a file. Name
node is in safe mode.

During the start up, the NameNode
goes into a safe mode to check for
under replicated and corrupted
blocks. A Safe mode for the
NameNode is essentially a read-
only mode for the HDFS cluster,
where it does not allow any
modifications to file system or
blocks. Normally, the NameNode
disables the safe mode
automatically, however, if there are
there are too many corrupted
blocks, it may not be able to get out
of the safe mode by itself.

Force the NameNode out of safe
mode by running the following
command as a HDFS user:

$ hdfs dfsadmin -safemode
leave

Too many underreplicated blocks in
the NameNode UI

Couple of dataNodes may be down.
Please check the availability of all
the dataNodes

If all the DataNodes are up and still
there are under replicated blocks.
Run the following 2 commands in
order as a HDFS user:

$ hdfs fsck / | grep 'Under replicated' |
awk -F':' '{print $1}' >> \
/tmp/under_replicated_files
$ for hdfsfile in `cat /tmp/
under_replicated_files`; \
do echo "Fixing $hdfsfile :" ; \
hadoop fs -setrep 3 $hdfsfile; \
done

Too many corrupt blocks in name
node UI

The NameNode might not have
access to at least one replication of
the block.

Check if any of the DataNodes are
down. If all the DataNodes are up
and the files are no longer needed,
execute the following command:

$ hdfs fsck / -delete

org.apache.hadoop.ipc.\
RemoteException(java.io.IOExcepti
on): \ File /tmp/test could only be
replicated to \ 0 nodes instead of
minReplication (=1).

HDFS space may have reached full
capacity. Even though Urika-GX has
a heterogeneous file system, the
default storage type is DISK unless
explicitly set to use SSD.

The user might have filled up the
default storage, which is why HDFS
would not be able to write more
data to DISK.

To identify the used capacity by
storage type, use the following
commands:For both DISK and SSD,
calculate the sum of usage on all
the DataNodes.

For DISK:

$ df /mnt/hdd-2/hdfs/dd | awk
'NR==2{print $3}'

For SSD:

$ df /mnt/ssd/hdfs/dd | awk
'NR==2{print $3}'

YARN job is not running. You can
see the status of the job as
ACCEPTED: waiting for AM
container to be allocated, launched
and register with RM.

The NodeManagers may not be
running to launch the containers.

Check the number of available node
managers by executing the
following command:

$ yarn node -list

Troubleshooting

S3015 138

Additional Tips and Troubleshooting Information
● If JupyterHub processes owned by the user remain running after the user has logged out from Jupyter these

processes can be manually killed using the Linux kill command.

● The system will return the message, "Service 'serviceName' is not supported in the current
security mode" if it is attempted to start a service that is not supported in the current service mode. Use
the urika-state or urika-service-mode commands to check which service mode the system is running
in. For more information, refer to Urika-GX Service Modes on page 7

● If for any reason, Marathon does not start after a system crash, as a result of the queue reaching full capacity,
use the urika-stop command, followed by the urika-start command to resolve the issue.

● In Urika-GX's multi tenant environment, individual tenant members are restricted from overriding the global
Hadoop configuration directory and from specifying a specific NameNode on the CLI. As such, certain
arguments passed to HDFS commands on the CLI are ignored to ensure security of tenant data. If these
arguments are passed to the CLI, the system will return a warning indicating that it detected an argument that
is not allowed for restricted users and that the argument is being removed

● Use one of the following mechanisms if it is required to kill Spark jobs:

○ Kill the job using the Spark UI - Click on the text (kill) in the Description column of the Stages tab.

○ Kill the job using the Linux kill command.

○ Kill the job using the Ctrl+C keyboard keys.

● The system will return the following error if a user attempts to view help information for an unsupported Lustre
lfs sub-command:

The sub-command command is either unknown or not supported for tenant users. For
more information on tenant user rules try 'lfs help tenant-rules'.

● When modifying the number of CPUs or memory for a tenant VM, the system will return an error if it is
attempted to allocate more than the acceptable value of CPU or memory to a tenant VM via the ux-tenant-
alter-vm command. For more information, refer to the ux-tenant-alter-vm man page.

● In rare cases, switching from the secure to default mode may result in some Romana network policy
information that is not translated into the appropriate IP table rules. This allows a recently created pod to ping
a pod in a different Kubernetes name space. Contact Cray support if this problem is encountered.

Troubleshooting

S3015 139

	Contents
	1 About the Urika®-GX Analytic Applications Guide
	2 Analytic Software Stack Components
	3 Urika-GX Service Modes
	4 Access Urika-GX Applications
	4.1 Disable Framing on Urika Applications Interface (UAI)

	5 Authentication Mechanisms
	6 Apache Hadoop Support
	6.1 Load Data into the Hadoop Distributed File System (HDFS)
	6.2 Run a Simple Hadoop Job
	6.3 Run a Simple Word Count Application Using Hadoop
	6.4 Monitor Hadoop Applications
	6.5 Use Tiered Storage on Urika-GX
	6.6 Assign the HDFS/ptmp Directory to Use SSDs for Block Storage
	6.7 Change the Default HDFS Storage Policy

	7 Apache Spark Support
	7.1 Monitor Spark Applications
	7.2 Remove Temporary Spark Files from SSDs
	7.3 Obtain Additional Temporary Space for Running Spark Jobs
	7.4 Enable Anaconda Python and the Conda Environment Manager
	7.5 Provide Kerberos Credentials to Spark
	7.6 Redirect a Spark Job to a Specific Directory
	7.7 Modify the Default Number of Maximum Spark Cores
	7.8 Execute Spark Jobs on Kubernetes
	7.9 Multi-tenant Spark Thrift Server on Urika-GX

	8 Use Apache Mesos on Urika-GX
	8.1 Access the Apache Mesos Web UI
	8.2 Use mrun to Retrieve Information About Marathon and Mesos Frameworks
	8.3 Clean Up Residual mrun Jobs
	8.4 Launch an HPC Job Using mrun
	8.5 Manage Resources on Urika-GX
	8.6 Manage Long Running Services Using Marathon
	8.7 Flex up a YARN sub-cluster on Urika-GX

	9 Access the Jupyter Notebook UI
	9.1 Create a Jupyter Notebook
	9.2 Share or Upload a Jupyter Notebook
	9.3 Create a Custom Python Based Kernel for JupyterHub

	10 Get Started with Using Grafana
	10.1 Urika-GX Performance Analysis Tools
	10.2 Update the InfluxDB Data Retention Policy

	11 Use Docker on Urika-GX
	11.1 Image Management with Docker and Kubernetes
	11.2 Run the Native Docker Engine on Marathon

	12 Start Individual Kafka Brokers
	13 Overview of the Cray Application Management UI
	14 Update the InfluxDB Data Retention Policy
	15 Manage the Spark Thrift Server as a Non-Admin User
	16 Use Tableau® with Urika-GX
	16.1 Connect Tableau to HiveServer2 Using LDAP
	16.2 Connect Tableau to HiveServer2 Securely
	16.3 Connect Tableau to the Spark Thrift Server
	16.4 Connect Tableau to the Spark Thrift Server Securely
	16.5 Connect Tableau to Apache Spark Thrift Server on a VM
	16.6 Enable SSL for Spark Thrift Server of a Tenant

	17 File Systems
	18 Check the Current Service Mode
	19 Fault Tolerance on Urika-GX
	20 Default Urika-GX Configurations
	20.1 Default Grafana Dashboards
	20.2 Performance Metrics Collected on Urika-GX
	20.3 Default Log Settings
	20.4 Tunable Hadoop and Spark Configuration Parameters
	20.5 Node Types
	20.6 Service to Node Mapping
	20.7 Port Assignments
	20.8 Major Software Components Versions

	21 Troubleshooting
	21.1 Diagnose and Troubleshoot Orphaned Mesos Tasks
	21.2 Analytic Applications Log File Locations
	21.3 Clean Up Log Data
	21.4 Ensure Long Running Spark Jobs Finish Executing
	21.5 Troubleshoot Common Analytic and System Management Issues

