
Cray® Fortran Reference Manual
S–3901–60

© 1995, 1997-2007 Cray Inc. All Rights Reserved. This manual or parts thereof may not be reproduced in any form unless permitted
by contract or by written permission of Cray Inc.

The CF90 compiler includes United States software patents 5,257,696, 5,257,372, and 5,361,354.

U.S. GOVERNMENT RESTRICTED RIGHTS NOTICE

The Computer Software is delivered as "Commercial Computer Software" as defined in DFARS 48 CFR 252.227-7014.

All Computer Software and Computer Software Documentation acquired by or for the U.S. Government is provided with Restricted
Rights. Use, duplication or disclosure by the U.S. Government is subject to the restrictions described in FAR 48 CFR 52.227-14
or DFARS 48 CFR 252.227-7014, as applicable.

Technical Data acquired by or for the U.S. Government, if any, is provided with Limited Rights. Use, duplication or disclosure by the
U.S. Government is subject to the restrictions described in FAR 48 CFR 52.227-14 or DFARS 48 CFR 252.227-7013, as applicable.

Cray, LibSci, UNICOS and UNICOS/mk are federally registered trademarks and Active Manager, Cray Apprentice2,
Cray C++ Compiling System, Cray Fortran Compiler, Cray SeaStar, Cray SeaStar2, Cray SHMEM, Cray Threadstorm, Cray X1,
Cray X1E, Cray X2, Cray XD1, Cray XMT, Cray XT, Cray XT3, Cray XT4, CrayDoc, CRInform, Libsci, RapidArray, UNICOS/lc,
and UNICOS/mp are trademarks of Cray Inc.

AMD and AMD Opteron and Opteron are trademarks of Advanced Micro Devices, Inc. IRIX is a trademark of Silicon Graphics, Inc.
MIPSpro is a trademark of MIPS Technologies, Inc. SPARC is a trademark of SPARC International, Inc. Proper use is allowed under
licensing agreement. Products bearing SPARC trademarks are based on an architecture developed by Sun Microsystems, Inc. UNIX,
the “X device,” X Window System, and X/Open are trademarks of The Open Group in the United States and other countries. All
other trademarks are the property of their respective owners.

The UNICOS, UNICOS/mk, and UNICOS/mp operating systems are derived from UNIX System V. These operating systems
are also based in part on the Fourth Berkeley Software Distribution (BSD) under license from The Regents of the University
of California.

New Features

Cray® Fortran Reference Manual S–3901–60

This document is a consolidation of the Cray Fortran Reference Manual, Fortran Language Reference Manual,
Volume 1, Fortran Language Reference Manual, Volume 2, Fortran Language Reference Manual, Volume 3, and
Fortran Application Programmer's I/O Reference Manual. It documents the Cray Fortran compiler command
options and directives and describes how the Cray Fortran compiler differs from the Fortran 2003 standard

The organization of the contents of Chapter 10, page 179 Cray Fortran Language Extensions, parallels the
organization of the contents of the official manual of the Fortran 2003 Standard, ISO/IEC 1539-1:2004.

The Cray Fortran compiler includes the following new features:

• Abstract type.

• Support for the Cray X2 series system.

• Finalization for non-polymorphic objects. See Section 12.2, page 257.

The Cray Fortran compiler supports the following proposed Fortran 2008 features:

• Submodules

• Separate module procedures.

• CONTAINS followed by an END statement with no internal or module procedure. See Section 10.10.2.2,
page 204.

The following new directive has been documented in this release:

• !PGO$ loop_info, a special form of the !DIR$ loop_info directive. See Section 3.19.28, page 60.

Record of Revision

Version Description

5.6 March 2007
Supports the Cray Fortran compiler 5.6 release running on Cray X1 series systems.

6.0 September 2007
Supports the Cray Fortran compiler 6.0 release running on Cray X1 series and
Cray X2 systems.

S–3901–60 i

Contents

Page

Preface xxiii

Accessing Product Documentation xxiii

Conventions . xxiv

Reader Comments . xxv

Cray User Group . xxv

Introduction [1] 1

X1-specific and X2-specific Content in this Document 2

The Cray Fortran Programming Environment 2

Cross-compiler Platforms . 5

Cray Fortran Compiler Messages . 5

Document-specific Conventions . 6

Fortran Standard Compatibility . 6

Fortran 95 Compatibility . 7

Fortran 90 Compatibility . 7

FORTRAN 77 Compatibility . 7

Related Cray Publications . 7

Related Fortran Publications . 8

Part I: Cray Fortran Commands and Directives

The Trigger Environment (X1 Only) [2] 11

Preparing the Trigger Environment 13

Working in the Programming Environment 14

Invoking the Cray Fortran Compiler [3] 15

-A module_name [, module_name] 16

-b bin_obj_file . 16

S–3901–60 iii

Cray® Fortran Reference Manual

Page

-c . 17

-C cifopts . 17

-d disable and -e enable . 18

-D identifier [=value] . 26

-f source_form . 26

-F . 26

-g . 27

-G debug_lvl . 27

-h arg . 28

-h command . 28

-h cpu=target_system . 28

-h gen_private_callee (X1 only) 29

-h ieee_nonstop . 29

-h keepfiles . 29

-h mpmd, -h nompmd . 30

-h msp (X1 only) . 31

-h ssp (X1 only) . 31

-I incldir . 31

-J dir_name . 32

-l libname . 32

-L ldir . 32

-m msg_lvl . 33

-M msgs . 34

-N col . 34

-O opt [,opt] ... 35

-O n . 37

-O aggress, -O noaggress 38

-O cachen . 38

-O command . 39

-O fpn . 40

iv S–3901–60

Contents

Page

-O fusionn . 43

-Ogcpn . 43

-O gen_private_callee (X1 only) 44

-O infinitevl, -O noinfinitevl 44

-O ipan and -O ipafrom=source[:source] 44

Automatic Inlining . 47

Explicit Inlining . 48

Combined Inlining . 49

-O inlinelib . 49

-O modinline, -O nomodinline 49

-O msgs, -O nomsgs . 50

-O msp (X1 only) . 50

-O negmsgs, -O nonegmsgs 51

-O nointerchange . 51

-O overindex, -O nooverindex 51

-O pattern, -O nopattern 52

-O scalarn . 53

-O shortcircuitn . 54

-O ssp (X1 only) . 55

-O streamn (X1 only) . 56

-O task0, -O task1 . 57

-O unrolln . 58

-O vectorn . 59

-O zeroinc, -O nozeroinc 59

-O -h profile_generate . 60

-O -h profile_data=pgo_opt 60

-o out_file . 60

-p module_site . 60

-Q path . 64

-r list_opt . 64

S–3901–60 v

Cray® Fortran Reference Manual

Page

-R runchk . 68

-s size . 71

Different Default Data Size Options on the Command Line 73

Pointer Scaling Factor . 74

-S asm_file . 75

-T . 75

-U identifier [,identifier] 76

-v . 76

-V . 76

-Wa"assembler_opt" . 76

-Wl"loader_opt" . 77

-Wr"lister_opt" . 77

-x dirlist . 77

-X npes . 78

-Yphase,dirname . 79

-Z . 79

-- . 80

sourcefile[sourcefile.suffix ...] 80

Environment Variables [4] 81

Compiler and Library Environment Variables 81

CRAY_FTN_OPTIONS Environment Variable 82

CRAY_PE_TARGET Environment Variable 82

FORMAT_TYPE_CHECKING Environment Variable 82

FORTRAN_MODULE_PATH Environment Variable 83

LISTIO_PRECISION Environment Variable 83

NLSPATH Environment Variable 84

NPROC Environment Variable . 84

TMPDIR Environment Variable 84

ZERO_WIDTH_PRECISION Environment Variable 85

OpenMP Environment Variable . 85

vi S–3901–60

Contents

Page

Run Time Environment Variables . 86

Cray Fortran Directives [5] 87

Using Directives . 90

Directive Lines . 91

Range and Placement of Directives 92

Interaction of Directives with the -x Command Line Option 94

Command Line Options and Directives 94

Vectorization Directives . 96

Use Cache-exclusive Instructions for Vector Loads: CACHE_EXCLUSIVE 97

Use Cache-shared Instructions for Vector Loads: CACHE_SHARED 97

Avoid Placing Object into Cache: NO_CACHE_ALLOC 98

Copy Arrays to Temporary Storage: COPY_ASSUMED_SHAPE 98

Limit Optimizations: HAND_TUNED 100

Ignore Vector Dependencies: IVDEP 100

Specify Scalar Processing: NEXTSCALAR 101

Request Pattern Matching: PATTERN and NOPATTERN 102

Declare an Array with No Repeated Values: PERMUTATION 102

Designate Loop Nest for Vectorization: PREFERVECTOR 103

Conditional Density: PROBABILITY 104

Allow Speculative Execution of Memory References Within Loops: SAFE_ADDRESS . . . 105

Allow Speculative Execution of Memory References and Arithmetic Operations:
SAFE_CONDITIONAL . 106

Designate Loops with Low Trip Counts: SHORTLOOP, SHORTLOOP128 107

Provide More Information for Loops: LOOP_INFO 108

Unroll Loops: UNROLL and NOUNROLL 112

Example 1: Unrolling outer loops 113

Example 2: Illegal unrolling of outer loops 114

Example 3: Unrolling nearest neighbor pattern 114

Enable and Disable Vectorization: VECTOR and NOVECTOR 115

Enable or Disable, Temporarily, Soft Vector-pipelining: PIPELINE and NOPIPELINE . . . 115

S–3901–60 vii

Cray® Fortran Reference Manual

Page

Specify a Vectorizable Function: VFUNCTION 116

Multistreaming Processor (MSP) Directives (X1 only) 117

Specify Loop to be Optimized for MSP: PREFERSTREAM 118

Optimize Loops Containing Procedural Calls: SSP_PRIVATE 118

Enable MSP Optimization: STREAM and NOSTREAM 120

Inlining Directives . 121

Disable or Enable Cloning for a Block of Code: CLONE and NOCLONE 121

Disable or Enable Inlining for a Block of Code: INLINE, NOINLINE, and RESETINLINE . . 122

Specify Inlining for a Procedure: INLINEALWAYS and INLINENEVER 122

Create Inlinable Templates for Module Procedures: MODINLINE and NOMODINLINE . . . 123

Scalar Optimization Directives . 125

Control Loop Interchange: INTERCHANGE and NOINTERCHANGE 125

Control Loop Collapse: COLLAPSE and NOCOLLAPSE 126

Determine Register Storage: NOSIDEEFFECTS 128

Suppress Scalar Optimization: SUPPRESS 129

Local Use of Compiler Features . 130

Check Array Bounds: BOUNDS and NOBOUNDS 130

Specify Source Form: FREE and FIXED 132

Storage Directives . 132

Permit Cache Blocking: BLOCKABLE Directive 133

Declare Cache Blocking: BLOCKINGSIZE and NOBLOCKING Directives 133

Request Stack Storage: STACK . 135

Miscellaneous Directives . 135

Specify Array Dependencies: CONCURRENT 136

Fuse Loops: FUSION and NOFUSION 137

Create Identification String: ID 137

Disregard Dummy Argument Type, Kind, and Rank: IGNORE_TKR 139

External Name Mapping: NAME 140

Preprocess Include File: PREPROCESS 141

Specify Weak Procedure Reference: WEAK 141

viii S–3901–60

Contents

Page

Cray Streaming Directives (CSDs) (X1 only) [6] 143

CSD Parallel Regions . 144

Start and End Multistreaming: PARALLEL and END PARALLEL 144

Do Loops: DO and END DO . 146

Parallel Do Loops: PARALLEL DO and END PARALLEL DO 149

Synchronize SSPs: SYNC . 150

Specify Critical Regions: CRITICAL and END CRITICAL 150

Define Order of SSP Execution: ORDERED and END ORDERED 151

Suppress CSDs: [NO]CSD . 152

Nested CSDs within Cray Parallel Programming Models 153

CSD Placement . 153

Protection of Shared Data . 154

Dynamic Memory Allocation for CSD Parallel Regions 155

Compiler Options Affecting CSDs 155

Source Preprocessing [7] 157

General Rules . 157

Directives . 158

#include Directive . 158

#define Directive . 159

#undef Directive . 161

(Null) Directive . 161

Conditional Directives . 161

#if Directive . 162

#ifdef Directive . 163

#ifndef Directive . 163

#elif Directive . 163

#else Directive . 163

#endif Directive . 164

Predefined Macros . 164

Command Line Options . 166

S–3901–60 ix

Cray® Fortran Reference Manual

Page

OpenMP Fortran API [8] 167

Cray Implementation Differences . 167

OMP_THREAD_STACK_SIZE Environment Variable 169

OpenMP Optimizations . 170

Compiler Options that Affect OpenMP 172

OpenMP Program Execution . 172

Cray Fortran Defined Externals [9] 173

Conformance Checks . 173

Part II: Cray Fortran and Fortran 2003 Differences

Cray Fortran Language Extensions [10] 179

Characters, Lexical Tokens, and Source Form 179

Low-level Syntax . 179

Characters Allowed in Names 179

Switching Source Forms . 180

Continuation Line Limit . 180

D Lines in Fixed Source Form 180

Types . 180

The Concept of Type . 180

Alternate Form of LOGICAL Constants 181

Cray Pointer Type . 181

Cray Character Pointer Type 186

Boolean Type . 187

Alternate Form of ENUM Statement 187

TYPEALIAS Statement . 187

Data Object Declarations and Specifications 188

Attribute Specification Statements 188

BOZ Constants in DATA Statements 188

Attribute Respecification . 189

x S–3901–60

Contents

Page

AUTOMATIC Attribute and Statement 189

IMPLICIT Statement . 191

IMPLICIT Extensions . 191

Storage Association of Data Objects 191

EQUIVALENCE Statement Extensions 191

COMMON Statement Extensions 191

Expressions and Assignment . 191

Expressions . 191

Rules for Forming Expressions 192

Intrinsic and Defined Operations 192

Intrinsic Operations . 193

Bitwise Logical Expressions . 194

Assignment . 196

Assignment . 196

Execution Control . 196

STOP Code Extension . 196

Input/Output Statements . 197

File Connection . 197

OPEN Statement . 197

Error, End-of-record, and End-of-file Conditions 198

End-of-file Condition and the END-specifier 198

Multiple End-of-file Records 198

Input/Output Editing . 198

Data Edit Descriptors . 198

Integer Editing . 198

Real Editing . 198

Logical Editing . 199

Character Editing . 199

Control Edit Descriptors . 199

Q Editing . 199

S–3901–60 xi

Cray® Fortran Reference Manual

Page

List-directed Formatting . 200

List-directed Input . 200

Namelist Formatting . 201

Namelist Extensions . 201

I/O Editing . 201

Program Units . 204

Main Program . 204

Program Statement Extension 204

Block Data Program Units . 204

Block Data Program Unit Extension 204

Procedures . 204

Procedure Interface . 204

Interface Duplication . 204

Procedure Definition . 204

Recursive Function Extension 204

Empty CONTAINS Sections . 204

Intrinsic Procedures and Modules 205

Standard Generic Intrinsic Procedures 205

Intrinsic Procedures . 205

Exceptions and IEEE Arithmetic . 208

The Exceptions . 208

IEEE Intrinsic Module Extensions 208

Interoperability With C . 210

Interoperability Between Fortran and C Entities 210

BIND(C) Syntax . 210

Co-arrays . 210

Execution Model and Images . 212

Specifying Co-arrays . 212

Referencing Co-arrays . 214

Initializing Co-arrays . 216

xii S–3901–60

Contents

Page

Using Co-arrays with Procedure Calls 216

Specifying Co-arrays in COMMON and EQUIVALENCE Statements 217

Allocatable Co-arrays . 218

Pointer Components in Derived Type Co-arrays 218

Allocatable Components in Derived Type Co-arrays 219

Intrinsic Procedures . 219

Program Synchronization . 220

SYNC_ALL . 220

SYNC_TEAM . 221

SYNC_MEMORY . 222

START_CRITICAL and END_CRITICAL 222

Example 4: Using START CRITICAL and END CRITICAL 223

SYNC_FILE . 224

I/O with Co-arrays . 224

Compiling and Executing Programs Containing Co-arrays 225

ftn and aprun Options Affecting Co-arrays 225

Using the CrayTools Tool Set with Co-array Programs 226

Debugging Programs Containing Co-arrays (Deferred implementation) 226

Analyzing Co-array Program Performance 226

Interoperating with Other Message Passing and Data Passing Models 226

Optimizing Programs with Co-arrays 227

Obsolete Features [11] 229

IMPLICIT UNDEFINED . 230

Type statement with *n . 230

BYTE Data Type . 230

DOUBLE COMPLEX Statement . 231

STATIC Attribute and Statement . 231

Slash Data Initialization . 233

DATA Statement Features . 234

Hollerith Data . 234

S–3901–60 xiii

Cray® Fortran Reference Manual

Page

Hollerith Constants . 235

Hollerith Values . 236

Hollerith Relational Expressions 237

PAUSE Statement . 237

ASSIGN, Assigned GO TO Statements, and Assigned Format Specifiers 238

Form of the ASSIGN and Assigned GO TO Statements 238

Assigned Format Specifiers . 240

Two-branch IF Statements . 240

Two-branch Arithmetic IF . 240

Indirect Logical IF . 241

Real and Double Precision DO Variables 241

Nested Loop Termination . 241

Branching into a Block . 241

ENCODE and DECODE Statements . 242

ENCODE Statement . 242

DECODE Statement . 243

BUFFER IN and BUFFER OUT Statements 244

Asterisk Delimiters . 247

Negative-valued X Descriptor . 248

A and R Descriptors for Noncharacter Types 248

H Edit Descriptor . 249

Obsolete Intrinsic Procedures . 250

Cray Fortran Deferred Implementation and Optional Features [12] 257

ISO_10646 Character Set . 257

Finalizers . 257

Restrictions on Unlimited Polymorphic Variables 257

Enhanced Expressions in Initializations and Specifications 257

User-defined, Derived Type I/O . 258

ENCODING= in I/O Statements . 258

Allocatable Assignment (Optionally Enabled) 258

xiv S–3901–60

Contents

Page

Cray Fortran Implementation Specifics [13] 259

Companion Processor . 259

INCLUDE Line . 259

INTEGER Kinds and Values . 259

REAL Kinds and Values . 260

DOUBLE PRECISION Kinds and Values 260

LOGICAL Kinds and Values . 260

CHARACTER Kinds and Values . 260

Cray Pointers . 260

ENUM Kind . 261

Storage Issues . 261

Storage Units and Sequences . 261

Static and Stack Storage . 262

Dynamic Memory Allocation . 263

Finalization . 263

ALLOCATE Error Status . 264

DEALLOCATE Error Status . 264

ALLOCATABLE Module Variable Status 264

Kind of a Logical Expression . 264

STOP Code Availability . 264

Stream File Record Structure and Position 264

File Unit Numbers . 265

OPEN Specifiers . 265

FLUSH Statement . 266

Asynchronous I/O . 266

REAL I/O of an IEEE NaN . 266

Input of an IEEE NaN . 266

Output of an IEEE NaN . 267

List-directed and NAMELIST Output Default Formats 267

Random Number Generator . 268

S–3901–60 xv

Cray® Fortran Reference Manual

Page

Timing Intrinsics . 268

IEEE Intrinsic Modules . 268

Part III: Cray Fortran Application Programmer's I/O Reference

Using the Assign Environment [14] 271

assign Basics . 272

Assign Objects and Open Processing 272

The assign Command . 273

Assign Library Routines . 276

assign and Fortran I/O . 277

Alternative File Names . 278

File Structure Selection . 279

Unblocked File Structure . 281

assign -s sbin File Processing (not recommended) 282

assign -s bin File Processing 283

assign -s u File Processing 283

text File Structure . 283

cos or blocked File Structure 284

Buffer Specifications . 286

Default Buffer Sizes . 287

Library Buffering . 288

System Cache . 289

Unbuffered I/O . 289

Foreign File Format Specification 290

Memory Resident Files . 290

Fortran File Truncation . 290

The Assign Environment File . 292

Local Assign Mode . 292

Example 5: Local assign mode 292

xvi S–3901–60

Contents

Page

Using FFIO [15] 295

Introduction to FFIO . 295

Using Layered I/O . 298

I/O Layers . 299

Layered I/O Options . 300

FFIO and Common Formats . 301

Reading and Writing Text Files 301

Reading and Writing Unblocked Files 302

Reading and Writing Fixed-length Records 303

Reading and Writing Blocked Files 303

Enhancing Performance . 303

Buffer Size Considerations . 303

Removing Blocking . 304

The syscall Layer . 304

The bufa and cachea Layers 304

The mr Layer . 305

The global Layer (Deferred Implementation) 305

The cache Layer . 305

Sample Programs . 307

Example 6: Unformatted direct mr with unblocked file 307

Example 7: Unformatted sequential mr with blocked file 308

FFIO Layer Reference [16] 311

Characteristics of Layers . 312

The bufa Layer . 313

The cache Layer . 315

The cachea Layer . 316

The cos Blocked Layer . 318

The event Layer . 319

The f77 Layer . 321

The fd Layer . 323

S–3901–60 xvii

Cray® Fortran Reference Manual

Page

The global Layer (Deferred Implementation) 323

The ibm Layer . 324

The mr Layer . 327

The null Layer . 330

The syscall Layer . 331

The system Layer . 332

The text Layer . 332

The user and site Layers . 334

The vms Layer . 334

Creating a user Layer [17] 337

Internal Functions . 337

The Operations Structure . 338

FFIO and the stat Structure . 340

user Layer Example . 341

Numeric File Conversion Routines [18] 363

Conversion Overview . 363

Transferring Data . 364

Using fdcp to Transfer Files . 364

Using ftp to Move Data between Systems 364

Data Item Conversion . 364

Explicit Data Item Conversion . 365

Implicit Data Item Conversion . 365

Choosing a Conversion Method 369

Explicit Conversion . 369

Implicit Conversion . 369

Disabling Conversion Types . 369

Foreign Conversion Techniques . 370

UNICOS/mp and UNICOS/lc Conversions 370

IBM Overview . 371

xviii S–3901–60

Contents

Page

IEEE Conversion . 372

VAX/VMS Conversion . 374

Named Pipe Support [19] 377

Piped I/O Example without End-of-file Detection 378

Example 8: No EOF Detection: program writerd 379

Example 9: No EOF Detection: program readwt 379

Detecting End-of-file on a Named Pipe 380

Piped I/O Example with End-of-file Detection 380

Example 10: EOF Detection: program writerd 381

Example 11: EOF Detection: program readwt 381

Glossary 383

Index 399

Figures
Figure 1. ftn Command Example 4

Figure 2. Optimization Values . 36

Figure 3. Memory Use . 263

Figure 4. Access Methods and Default Buffer Sizes 291

Figure 5. Typical Data Flow . 295

Tables
Table 1. Compiling Options . 18

Table 2. Floating-point Optimization Levels 42

Table 3. Automatic Inlining Specifications 47

Table 4. File Types . 48

Table 5. Scaling Factor in Pointer Arithmetic 75

Table 6. -Yphase Definitions . 79

Table 7. Directives . 87

Table 8. Explanation of Ignored TKRs 140

S–3901–60 xix

Cray® Fortran Reference Manual

Page

Table 9. Compiler-calculated Chunk Size 147

Table 10. Operand Types and Results for Intrinsic Operations 193

Table 11. Cray Fortran Intrinsic Bitwise Operators and the Allowed Types of their Operands . 194

Table 12. Data Types in Bitwise Logical Operations 195

Table 13. Values for Keyword Specifier Variables in an OPEN Statement 197

Table 14. Default Fractional and Exponent Digits 199

Table 15. Summary of Control Edit Descriptors 202

Table 16. Summary of Data Edit Descriptors 202

Table 17. Default Compatibility Between I/O List Data Types and Data Edit Descriptors . . 202

Table 18. RELAXED Compatibility Between Data Types and Data Edit Descriptors 203

Table 19. STRICT77 Compatibility Between Data Types and Data Edit Descriptors 203

Table 20. STRICT90 and STRICT95 Compatibility Between Data Types and Data Edit
Descriptors . 203

Table 21. Cray Fortran IEEE Intrinsic Module Extensions 209

Table 22. Obsolete Features and Preferred Alternatives 229

Table 23. Summary of String Edit Descriptors 250

Table 24. Obsolete Procedures and Alternatives 250

Table 25. Fortran access methods and options 281

Table 26. Default Buffer Sizes for Fortran I/O Library Routines 288

Table 27. FFIO Layers . 299

Table 28. Data Manipulation: bufa Layer 314

Table 29. Supported Operations: bufa Layer 314

Table 30. Data Manipulation: cache Layer 315

Table 31. Supported Operations: cache Layer 316

Table 32. Data Manipulation: cachea Layer 317

Table 33. Supported Operations: cachea Layer 317

Table 34. Data Manipulation: cos Layer 318

Table 35. Supported Operations: cos Layer 319

Table 36. Data Manipulation: f77 Layer 322

Table 37. Supported Operations: f77 Layer 322

Table 38. Data Manipulation: global Layer 324

xx S–3901–60

Contents

Page

Table 39. Supported Operations: global Layer 324

Table 40. Values for Maximum Record Size on ibm Layer 326

Table 41. Values for Maximum Block Size in ibm Layer 326

Table 42. Data Manipulation: ibm Layer 326

Table 43. Supported Operations: ibm Layer 327

Table 44. Data Manipulation: mr Layer 330

Table 45. Supported Operations: mr Layer 330

Table 46. Data Manipulation: syscall Layer 331

Table 47. Supported Operations: syscall Layer 332

Table 48. Data Manipulation: text Layer 333

Table 49. Supported Operations: text Layer 333

Table 50. Values for Record Size: vms Layer 335

Table 51. Values for Maximum Block Size: vms Layer 335

Table 52. Data Manipulation: vms Layer 336

Table 53. Supported Operations: vms Layer 336

Table 54. C Program Entry Points 339

Table 55. Explicit Data Conversion Routines 365

Table 56. Implicit Data Conversion Types 367

S–3901–60 xxi

Preface

The information in this preface is common to Cray documentation provided with
this software release.

Accessing Product Documentation

With each software release, Cray provides books and man pages, and in
some cases, third-party documentation. These documents are provided in the
following ways:

CrayDoc The Cray documentation delivery system that allows you to
quickly access and search Cray books, man pages, and in some
cases, third-party documentation. Access this HTML and PDF
documentation via CrayDoc at the following locations:

• The local network location defined by your system
administrator

• The CrayDoc public website: docs.cray.com

Man pages Access man pages by entering the man command followed by the
name of the man page. For more information about man pages,
see the man(1) man page by entering:

% man man

Third-party documentation

Access third-party documentation not provided through
CrayDoc according to the information provided with the
product.

S–3901–60 xxiii

http://docs.cray.com/

Cray® Fortran Reference Manual

Conventions

These conventions are used throughout Cray documentation:

Convention Meaning

command This fixed-space font denotes literal items, such as file
names, pathnames, man page names, command names, and
programming language elements.

variable Italic typeface indicates an element that you will replace with a
specific value. For instance, you may replace filename with the
name datafile in your program. It also denotes a word or
concept being defined.

user input This bold, fixed-space font denotes literal items that the user
enters in interactive sessions. Output is shown in nonbold,
fixed-space font.

[] Brackets enclose optional portions of a syntax representation for
a command, library routine, system call, and so on.

... Ellipses indicate that a preceding element can be repeated.

name(N) Denotes man pages that provide system and programming
reference information. Each man page is referred to by its name
followed by a section number in parentheses.

Enter:

% man man

to see the meaning of each section number for your particular
system.

xxiv S–3901–60

Preface

Reader Comments

Contact us with any comments that will help us to improve the accuracy and
usability of this document. Be sure to include the title and number of the
document with your comments. We value your comments and will respond to
them promptly. Contact us in any of the following ways:

E-mail:
docs@cray.com

Telephone (inside U.S., Canada):
1–800–950–2729 (Cray Customer Support Center)

Telephone (outside U.S., Canada):
+1–715–726–4993 (Cray Customer Support Center)

Mail:
Customer Documentation
Cray Inc.
1340 Mendota Heights Road
Mendota Heights, MN 55120–1128
USA

Cray User Group

The Cray User Group (CUG) is an independent, volunteer-organized
international corporation of member organizations that own or use Cray Inc.
computer systems. CUG facilitates information exchange among users of Cray
systems through technical papers, platform-specific e-mail lists, workshops, and
conferences. CUG memberships are by site and include a significant percentage
of Cray computer installations worldwide. For more information, contact your
Cray site analyst or visit the CUG website at www.cug.org.

S–3901–60 xxv

file:///tmp/mytmp.6176/mailto:docs%40cray.com
http://www.cug.org

Introduction [1]

This manual describes the differences between the language specified by the
Fortran 2003 Standard and the language implemented by the Cray Fortran
compiler for the Programming Environment 6.0 Release. The Cray Fortran
compiler version 6.0 targets both the Cray X1 series systems and the Cray X2
systems using the UNICOS/mp (3.1 release or later) and UNICOS/lc operating
systems.

The Cray Fortran compiler was developed to support the Fortran 2003 standard
adopted by the International Organization for Standardization (ISO). This
standard, commonly referred to in this manual as the Fortran standard, is
ISO/IEC 1539-1:2004.

Note: The standards organizations continue to interpret the Fortran standard
for Cray and other vendors. To maintain conformance to the Fortran standard,
Cray may need to change the behavior of certain Cray Fortran compiler
features in future releases based on the outcomes of interpretations to the
standard.

Because the Fortran 2003 standard is a superset of previous standards, the Cray
Fortran compiler compiles code written in accordance with previous Fortran
standards.

Note: The ftn(1) man page may get updated more often than this document.
Where the information differs, the information in the man page supersedes the
information contained in this manual.

S–3901–60 1

Cray® Fortran Reference Manual

1.1 X1-specific and X2-specific Content in this Document

Unless explicitly indicated by the notations defined below, the contents of this
manual apply to both the Cray X1 and the Cray X2 systems.

Convention Meaning

(X1 only) This notation indicates that the feature applies only to the Cray
X1 series system. Depending on context, the notation occurs
either before the text (for example, the second paragraph in
section 4.2) or after the text (for example, the chapter title for
Chapter 2, The Trigger Environment).

(X2 only) This notation indicates that the feature applies only to the Cray
X2 system. Depending on context, the notation occurs either
before the text (for example, the fourth paragraph in section 4.2)
or after the text (for example, the third bullet item in section
3.19.3).

1.2 The Cray Fortran Programming Environment

The Cray Fortran Programming Environment consists of the tools and libraries
that you use to develop Fortran applications. To effectively use these tools and
libraries, you must have an understanding of the development environment as
discussed in the two documents: Cray X1 Series System Overview and Cray X2
System Overview.

2 S–3901–60

Introduction [1]

The Cray Fortran Programming Environment provides the following tools and
libraries:

• The ftn command, which invokes the Cray Fortran compiler. For more
information about ftn, see Chapter 3, page 15 or the ftn(1) man page.

• The CrayLibs libraries, which provides library routines, intrinsic procedures,
I/O routines, and data conversion routines.

• The LibSci libraries, which provide scientific library routines.

• The ftnlx command, which generates listings and checks for possible errors
in Fortran programs. See the ftnlx(1) man page for more information.

• The ld command, which invokes the Cray loader. See the ld(1) man page
for more information.

Note: Cray recommends that you use the ftn compiler command
to invoke the loader, because the compiler calls the loader with the
appropriate default libraries. The appropriate default libraries may change
from release to release.

• The CrayPat performance analyzer tool, which can help you analyze program
performance. See the pat(1) man page for more information.

• The Cray Apprentice2 report visualization tool, which can help you further
analyze performance data captured by CrayPat. See the app2(1) man page
for more information.

• The Etnus TotalView debugger, which can help you debug your program.
It includes standard debugging capabilities, such as stepping through code
and setting breakpoints. The -g and -G debug options to the ftn command
line generate symbol tables, which can be used by the debugger. For more
debugger information, see the totalview and totalviewcli man pages.

In the most basic case, the Cray Fortran compiler products are used as follows.
The ftn command invokes the Cray Fortran compiler, processes the input files
named on the command line, and generates a binary file. The compiler then
invokes the loader, which loads the binary file(s) and generates an executable
output file (the default output file is a.out). The ftnlx command generates a
program listing file, if requested.

S–3901–60 3

Cray® Fortran Reference Manual

In the following simple example, the ftn command invokes the Fortran
compiler. Option -r s is specified to generate a source listing. File pgm.f is
your source code input file. You run the program by entering the output file
name as a command; in this example, the default output file name, a.out, is
used. Figure 1 illustrates this example.

% ftn -r s pgm.f

% ./a.out

Command

Cray Fortran
Compiler

 pgm.f
Source
code

 pgm.tmp
 pgm.lst

Listing

pgm.o

a.out

Executable
program

Output data
(stdout)

-r s generates a standard listingftn

Loader
(ld)

Lister
(ftnlx)

Input Data
(stdin)

Figure 1. ftn Command Example

4 S–3901–60

Introduction [1]

By default, the Cray Fortran compiler creates files during processing. It attaches
various extensions to the base file name and places them into your working
directory:

• The compiled code is sent to object file file.o in the current directory.

• The executable file is a.out by default. You can use the -o option to specify
the name of the executable file.

• If specified, assembly language output is sent to file.s. Source file names
ending with .s are assembled, and the assembled code is written to the
corresponding file.o.

You can use the options on the ftn command line to modify the default actions;
for example, you can change the size of the default data types. For more
information about ftn command line options, see Chapter 3, page 15.

1.2.1 Cross-compiler Platforms

The Cray X1 Series Programming Environment and the Cray X2 Programming
Environment also run on cross-compiler platforms. You can use a cross-compiler
platform to compile programs and create binaries for subsequent execution on a
Cray X1 series system or a Cray X2 system. If your site has the proper licensing
in place, you might choose to use one of these other platforms. In the case of
the Cray X1 series system, it will afford faster compile time and give you access
to the Cray Programming Environment when the X1 system is not available.
Supported platforms are listed in the Cray Programming Environment Releases
Overview and Installation Guide.

1.3 Cray Fortran Compiler Messages

You can obtain Cray Fortran compiler message explanations by using the
explain command. For more information, see the explain(1) man page.

S–3901–60 5

Cray® Fortran Reference Manual

1.4 Document-specific Conventions

The following conventions are specific to this document:

Convention Meaning

Rnnn The Rnnn notation indicates that the feature is in the Fortran
standard and can be located in the standard via the Rnnn syntax
rule number.

Cray pointer

The term Cray pointer refers to the Cray pointer data type
extension.

1.5 Fortran Standard Compatibility

In the Fortran standard, the term processor means the combination of a Fortran
compiler and the computing system that executes the code. A processor
conforms to the standard if it compiles and executes programs that conform to
the standard, provided that the Fortran program is not too large or complex for
the computer system in question.

You can direct the compiler to flag and generate messages when nonstandard
usage of Fortran is encountered. For more information about this command line
option (ftn -en), see Section 3.5, page 18 or the ftn(1) man page. When the
option is in effect, the compiler prints messages for extensions to the standard
that are used in the program. As required by the standard, the compiler also flags
the following items and provides the reason that the item is being flagged:

• Obsolescent features

• Deleted features

• Kind type parameters not supported

• Violations of any syntax rules and the accompanying constraints

• Characters not permitted by the processor

• Illegal source form

• Violations of the scope rules for names, labels, operators, and assignment
symbols

6 S–3901–60

Introduction [1]

The Cray Fortran compiler includes extensions to the Fortran standard. Because
the compiler processes programs according to the standard, it is considered to be
a standard-conforming processor. When the option to note deviations from the
Fortran standard is in effect (-en), extensions to the standard are flagged with
ANSI messages when detected at compile time.

1.5.1 Fortran 95 Compatibility

No known issues.

1.5.2 Fortran 90 Compatibility

No known issues.

1.5.3 FORTRAN 77 Compatibility

The format of a floating-point zero written with a G edit descriptor is different
in Fortran 95. The floating-point zero was written with an Ew.d edit descriptor
in FORTRAN 77, but is written with an Fw.d edit descriptor in the Cray Fortran
compiler. FORTRAN 77 output cannot be changed. Therefore, different compare
files must be retained for FORTRAN 77 and Fortran 95 programs that use the G
edit descriptor for floating-point output.

1.6 Related Cray Publications

The following documentation can aid in the development of your Fortran
programs:

• ftn(1) man page

• ftnlx(1) man page

• Cray X1 Series System Overview

• Cray X2 Series System Overview

• Optimizing Applications on Cray X1 Series Systems

• Loader man page, ld(1)

S–3901–60 7

Cray® Fortran Reference Manual

1.7 Related Fortran Publications

For more information about the Fortran language and its history, consult the
following commercially available reference books.

• Fortran 2003 Standard can be downloaded from
http://www.nag.co.uk/sc22wg5/ or http://j3-fortran.org/

• Chapman, S. Fortran 95/2003 for Scientists & Engineers. McGraw Hill, 2007.
ISBN 0073191574.

• Metcalf, M., J. Reid, and M. Cohen. Fortran 95/2003 Explained. Oxford
University Press, 2004. ISBN 0-19-852693-8.

8 S–3901–60

http://www.nag.co.uk/sc22wg5
http://j3-fortran.org/

Part I: Cray Fortran Commands and
Directives

Part I describes the various elements that make up the Cray Fortran
programming language. It includes the following chapters:

• The Trigger Environment (Chapter 2, page 11)

• Invoking the Cray Fortran Compiler (Chapter 3, page 15)

• Environment Variables (Chapter 4, page 81)

• Cray Fortran Directives (Chapter 5, page 87)

• Cray Streaming Directives (Chapter 6, page 143)

• Source Preprocessing (Chapter 7, page 157)

• OpenMP Fortran API (Chapter 8, page 167)

• Cray Fortran Defined Externals (Chapter 9, page 173)

The Trigger Environment (X1 Only) [2]

Users of Cray X1 series systems interact with the system as if all elements of
the Programming Environment are hosted on the Cray X1 series mainframe,
including Programming Environment commands hosted on the Cray
Programming Environment Server (CPES). CPES-hosted commands have
corresponding commands on the Cray X1 series mainframe that have the same
names. These commands are called triggers. Triggers (such as the ftn command)
are required only for the Programming Environment.

In the event that a programming or debugging tool does not work as expected,
understanding the trigger environment aids administrators and end users in
identifying the part of the system in which the problem has occurred.

When a user enters the name of a CPES-hosted command on the command line
of the Cray X1 series mainframe, the corresponding trigger executes, which sets
up an environment for the CPES-hosted command. This environment duplicates
the portion of the current working environment on the Cray X1 series mainframe
that relates to the Programming Environment. This enables the CPES-hosted
commands to function properly.

To replicate the current working environment, the trigger captures the current
working environment on the Cray X1 series system and copies the standard I/O
and error as follows:

• Copies the standard input of the current working environment to the standard
input of the CPES-hosted command.

• Copies the standard output of the CPES-hosted command to standard output
of the current working environment.

• Copies the standard error of the CPES-hosted command to the standard error
of the current working environment.

All catchable interrupts, quit, and terminate signals propagate through
the trigger to reach the CPES-hosted command. Upon termination of the
CPES-hosted command, the trigger terminates and returns with the CPES-hosted
command's return code.

Uncatchable signals have a short processing delay before the signal is passed
to the CPES-hosted command. If you execute its trigger again before the
CPES-hosted command has had time to process the signal, an undefined behavior
may occur.

S–3901–60 11

Cray® Fortran Reference Manual

Because the trigger has the same name, inputs, and outputs as the CPES-hosted
command, user scripts, makefiles, and batch files can function without
modification. That is, running a command in the trigger environment is very
similar to running the command hosted on the Cray X1 series system.

The commands that have triggers include:

• app2

• ar

• as

• c++filt

• c89

• c99

• cc

• ccp

• CC

• ftn

• ftnlx

• ftnsplit

• ld

• nm

• pat_build

• pat_help

• pat_report

• pat_run

• remps

Note: Because of Trigger environment and X11 forwarding issues, the
Cray Apprentice2 data visualization tool does not work in high-security
environments where the CPES is not accessible through the customer network.
This limitation is expected to be removed in a future Cray Programming
Environments update package.

12 S–3901–60

The Trigger Environment (X1 Only) [2]

2.1 Preparing the Trigger Environment

To prepare the trigger environment for use, you must initialize your shell,
load the Modules application, and then use the module command to load the
Programming Environment module. To do so, follow these steps:

1. After you log in to a Cray X1 series system, begin your work session by
initializing your shell. Cray provides initialization files for most common
shells; by default, these are stored in /opt/modules/modules/init. For
example, to initialize a C shell, enter this command:

% source /opt/modules/modules/init/csh

2. The Modules application enables you to dynamically modify your user
environment by using modulefiles. Each module file contains all the
information needed to configure the shell for an application. While it
is possible to use Cray X1 series systems without using the Modules
application, doing so introduces unnecessary complexity and increases the
opportunity for operator error. Initialize the Modules application by using
this command:

% module use /opt/PE/modulefiles

3. After the Modules application is initialized, use the module command to
load the complete and current Programming Environment module:

% module load PrgEnv

The Programming Environment module contains your compilers, libraries,
development tools, man pages, and various other component modules, and
sets up the environment variables necessary to find the include files, libraries,
and product paths on the CPES and the Cray X1 series system.

As you become more familiar with the Programming Environment, you can
choose to add or subtract individual modules, but as a rule, the easiest way
to avoid many common problems is to start by loading the complete PrgEnv
module.

Note: Cray man pages are packaged in the modules with the software they
document. The man pages do not become available until after you have
loaded the appropriate module.

To see the list of products loaded by the PrgEnv module, enter the following
on the command line:

module list

S–3901–60 13

Cray® Fortran Reference Manual

If you have questions about setting up the Programming Environment, contact
your system support staff.

2.2 Working in the Programming Environment

To use the Programming Environment, you must work on a file system that is
cross-mounted to the CPES. If you attempt to use the Programming Environment
from a directory that is not cross-mounted to the CPES, you will receive this
message:

trigrcv: trigger command cannot access current directory.

[directory] is not properly cross-mounted on host [CPES]

The default files used by the Programming Environment are installed in the
/opt/ctl file system. The default include file directory is /opt/ctl/include.
All Programming Environment products are found in the/opt/ctl file system.

14 S–3901–60

Invoking the Cray Fortran Compiler [3]

This chapter describes the ftn command, which invokes the Cray Fortran
compiler. The ftn(1) man page contains information from this chapter in an
abbreviated form.

Note: If the information contained in this manual differs from the ftn(1)
man page, the information in the man page overrides the information in this
manual.

The following files are produced by or accepted by the Cray Fortran compiler:

File Type

a.out Default name of the executable output file. See the
-o out_file option for information about specifying a
different name for the executable file.

file.a Library files to be searched for external references or modules.

file.cg and file.opt

Files containing decompilation of the intermediate
representation of the compiler. These listings resemble the
format of the source code. These files are generated when the
-rd option is specified.

file.f or file.F

Input Fortran source file in fixed source form. If file ends in .F,
the source preprocessor is invoked.

file.f90, file.F90, file.ftn, file.FTN

Input Fortran source file in free source form. If file ends in .F90
or .FTN, the source preprocessor is invoked.

file.i File containing output from the source preprocessor.

file.lst Listing file.

file.o Relocatable object file.

file.s Assembly language file.

file.L File containing binary code and generated assembly language
output.

S–3901–60 15

Cray® Fortran Reference Manual

file.T CIF output file.

modulename.mod

If the -em option is specified, the compiler writes a
modulename.mod file for each module; modulename is created by
taking the name of the module and, if necessary, converting it to
uppercase. This file contains module information, including any
contained module procedures.

The syntax of the ftn command is as follows:

ftn [-A module_name[, module_name] ...] [-b bin_obj_file]

[-c] [-C cifopts] [-d disable] [-D identifier[= value]]

[-e enable] [-f source_form]

[-F] [-g] [-G debug_lvl] [-h arg], [-I incldir]

[-J dir_name] [-l lib_file] [-L ldir] [-m msg_lvl]

[-M msgs] [-N col] [-o out_file] [-O opt[,opt] . . .]

[-p module_site] [-Q path] [-r list_opt] [-R runchk]

[-s size] [-S asm_file] [-T] [-U identifier[, identifier] ...]

[-v] [-V] [-Wphase,"opt..."]

[-x dirlist] [-X npes] [-Yphase,dirname] [-Z] [--]

sourcefile [sourcefile ...]

Note: Some default values shown for ftn command options may have been
changed by your site. See your system support staff for details.

3.1 -A module_name [, module_name] ...

The -A module_name [, module_name] ... option directs the compiler to
behave as if you entered a USE module_name statement for each module_name
into your Fortran source code. The USE statements are entered in every program
unit and interface body in the source file being compiled.

3.2 -b bin_obj_file

The -b bin_obj_file option disables the load step and saves the binary object
file version of your program in bin_obj_file.

16 S–3901–60

Invoking the Cray Fortran Compiler [3]

Only one input file is allowed when the -b bin_obj_file option is specified.
If you have more than one input file, use the -c option to disable the load step
and save the binary files to their default file names. If only one input file is
processed and neither the -b nor the -c option is specified, the binary version of
your program is not saved after the load is completed.

If both the -b bin_obj_file and -c options are specified on the ftn
command line, the load step is disabled and the binary object file is written to the
name specified as the argument to the -b bin_obj_file option. For more
information about the -c option, see Section 3.3, page 17.

By default, the binary file is saved in file.o, where file is the name of the source
file and .o is the suffix used.

3.3 -c

The -c option disables the load step and saves the binary object file version of
your program in file.o, where file is the name of the source file and .o is the
suffix used. If there is more than one input file, a file.o is created for each input
file specified. By default, this option is off.

If only one input file is processed and neither the -b bin_obj_file nor the
-c options are specified, the binary version of your program is not saved after
the load is completed.

If both the -b bin_obj_file and -c options are specified on the ftn
command line, the load step is disabled and the binary object file is written to the
name specified as the argument to the -b bin_obj_file option. For more
information about the -b bin_obj_file option, see Section 3.2, page 16.

If both the -o out_file and the -c option are specified on the ftn command
line, the load step is disabled and the binary file is written to the out_file specified
as an argument to -o. For more information about the -o out_file option, see
Section 3.20, page 60.

3.4 -C cifopts

The -C cifopts option creates one compiler information file (CIF) for each
source file. You can specify "a" for the cifopts argument, which writes all possible
CIF information.

The compiler places each CIF in file.T, where file is the name of the source file
and .T is the CIF suffix. The -r option overrides the -C option, if both are used.

S–3901–60 17

Cray® Fortran Reference Manual

By default, the ftn command does not create a CIF. You must enable the -C
option to create a CIF. The CIF can be used as input to the ftnlx command.

3.5 -d disable and -e enable

The -d disable and -e enable options disable or enable compiling options.
To specify more than one compiling option, enter the options without separators
between them; for example, -eaf. Table 1 shows the arguments to use for disable
or enable.

Table 1. Compiling Options

args Action, if enabled

0 Initializes all undefined local numeric stack variables to 0. If a
user variable is of type character, it is initialized to NUL. If a user
variable is type logical, it is initialized to false. The variables are
initialized upon each execution of each procedure. Enabling this
option can help identify problems caused by using uninitialized
numeric and logical variables.

Default: disabled

a Aborts compilation after encountering the first error.

Default: disabled

B Generates binary output. If disabled, inhibits all optimization and
allows only syntactic and semantic checking.

Default: enabled

c Interface checking: use Cray's system modules to check library
calls in a compilation. If you have a procedure with the same
name as one in the library, you will get errors as the compiler does
not skip user-specified procedures when performing the checks.

Default: disabled

18 S–3901–60

Invoking the Cray Fortran Compiler [3]

args Action, if enabled

d Controls a column-oriented debugging feature when using fixed
source form. When the option is enabled, the compiler replaces
the D or d characters appearing in column 1 of your source with a
blank and treats the entire line as a valid source line. This feature
can be useful, for example, during debugging if you want to insert
PRINT statements.

When disabled, a D or d character in column 1 is treated as a
comment character.

Default: disabled

D Turns on all debugging information. This option is equivalent to
specifying these options: -O0, -g, -m2, -R aCEbcdspi, and -rl.
See also -ed.

Default: disabled

E The -eE option allows existing declarations to duplicate the
declarations contained in a used module. Therefore, you do
not have to modify the older code by removing the existing
declarations. Because the declarations are not removed, the use
associated objects will duplicate declarations already in the code,
which is not standard conforming. However, this option allows
the compiler to accept these statements as long as the declarations
match the declarations in the module.

Existing declarations of a procedure must match the interface
definitions in the module; otherwise an error is generated. Only
existing declarations that declare the function name or generic
name in an EXTERNAL or type statement are allowable under this
option.

S–3901–60 19

Cray® Fortran Reference Manual

args Action, if enabled

This example illustrates some of the acceptable types of existing
declarations. Program older contains the older code, while
module m contains the interfaces to check.
module m

interface

subroutine one(r)

real :: r

end subroutine

function two()

integer :: two

end function

end interface

end module

program older

use m !Or use -Am on the compiler command line

external one !Use associated objects

integer :: two !in declarative statements

call one(r)

j = two()

end program

Default: disabled

g Allows branching into the code block for a DO or DO WHILE
construct. Historically, codes used branches out of and into
DO constructs. Fortran standards prohibit branching into a DO
construct from outside of that construct. By default, the Cray
Fortran compiler will issue an error for this situation. Cray does
not recommend branching into a DO construct, but if you specify
-eg, the code will compile.

Default: disabled

20 S–3901–60

Invoking the Cray Fortran Compiler [3]

args Action, if enabled

h Enables support for 8-bit and 16-bit INTEGER and LOGICAL types
that use explicit kind or star values.

By default (-dh), data objects declared as INTEGER(kind=1),
INTEGER(kind=2), LOGICAL(kind=1), or LOGICAL(kind=2)
are 32 bits long. When this option is enabled (-eh), data objects
declared as INTEGER(kind=1) or LOGICAL(kind=1) types
are 8 bits long, and objects declared as INTEGER(kind=2) and
LOGICAL(kind=2) are 16 bits long. These objects are fully
vectorizable depending on the operations performed, but Cray
discourages their use because their resultant performance is less
than the performance of their 32-bit counterparts.

8- and 16-bit objects are fully vectorizable when they are used in
one of the following operations within a vector context:

• Reads of 8- and 16-bit variables

• Writes to 8- and 16-bit variables, except arrays

• Use of 8- and 16-bit variables as targets in a reduction loop. For
example, c is an 8-bit object in this program fragment:
integer :: i

integer(kind=1) :: a(100), c

c = 0

do i=1,100

c = c + a(i) ! This will vectorize

end do

Default: disabled

I Treats all variables as if an IMPLICIT NONE statement had been
specified. Does not override any IMPLICIT statements or explicit
type statements. All variables must be typed.

Default: disabled

j Executes DO loops at least once.

Default: disabled

S–3901–60 21

Cray® Fortran Reference Manual

args Action, if enabled

L Allows zero-trip shortloops (that is, shortloops that do not
execute) and allows the use of the !DIR$ SHORTLOOP directive
on loops that may have a zero-trip count. For more information,
see Section 5.2.14, page 107.

Default: disabled

m Causes the compiler to create and search .mod files when
compiling modules and satisfying module references.

Note: The compiler creates modules through the MODULE
statement. A module is referenced with the USE statement.

When the option is disabled, the compiler creates and searches .o
files when compiling modules and satisfying module references.

The .mod files are named modulename.mod where modulename is
the name of the module specified in the MODULE statement or the
USE statement.

You cannot mix the .mod files with .o files in the same directory
or specify both on the same ftn command line; however, system
modules will work with either the -e m or -d m option.

By default, module files are written to the directory from
which the ftn command is entered. You can use the -J
dir_name option to specify an alternate output directory. For
more information about the -J dir_name option, see Section
3.13, page 32.

Default: disabled

n Generates messages to note all nonstandard Fortran usage.

Default: disabled

o Display to stderr the optimization options used by the compiler
for this compilation.

Default: disabled

22 S–3901–60

Invoking the Cray Fortran Compiler [3]

args Action, if enabled

p Enables double precision arithmetic.

The -dp option can only be used when the default data size is 64
bits (that is, the -s default64 or -sreal64 option is used).

When this option is disabled, variables declared on a
DOUBLE PRECISION statement and constants specified with the D
exponent are implicitly converted to default real type. This causes
arithmetic operations and intrinsics involving these variables to
have a default real type rather than a double-precision real type.
Similarly, variables declared on a DOUBLE COMPLEX statement
and complex constants specified with the D exponent are implicitly
mapped to the complex type in which each part has a default
real type. Specific double precision and double complex intrinsic
procedure names are mapped to their single precision equivalents.

Default: enabled

P Performs source preprocessing on Fortran source files, but does
not compile (see Section 3.39, page 80 for valid file extensions).
When specified, source code is included by #include directives
but not by Fortran INCLUDE lines. Generates file.i, which
contains the source code after the preprocessing has been
performed and the effects applied to the source program. For
more information about source preprocessing, see Chapter 7,
page 157.

Default: disabled

q Aborts compilation if 100 or more errors are generated.

Default: enabled

Q Controls whether or not the compiler accepts variable names
that begin with a leading underscore (_) character. For example,
when Q is enabled, the compiler accepts _ANT as a variable name.
Enabling this option can cause collisions with system name space
(for example, library entry point names).

Default: disabled

S–3901–60 23

Cray® Fortran Reference Manual

args Action, if enabled

R Compiles all functions and subroutines as if they had been defined
with the RECURSIVE attribute.

Default: disabled

s Scale the values of all KIND=4 count and count_rate arguments
for the SYSTEM_CLOCK intrinsic function. Since the value of a
32-bit count argument can quickly wrap around to zero, the value
of count is scaled down by a factor of 100. KIND=4 count_rate
is scaled in the same way. The Fortran Standard allows using
different kind arguments to count and count_rate, so this scaling
can be disabled. Care should be taken to make sure count and
count_rate are the same kind if this scaling is enabled.

Default: enabled

S Generates assembly language output and saves it in file.s. When
the -eS option is specified on the command line with the -S
asm_file option, the -S asm_file option overrides the -eS
option.

Default: disabled

v Allocates variables to static storage. These variables are treated
as if they had appeared in a SAVE statement. The following
types of variables are not allocated to static storage: automatic
variables (explicitly or implicitly stated), variables declared with
the AUTOMATIC attribute, variables allocated in an ALLOCATE
statement, and local variables in explicit recursive procedures.
Variables with the ALLOCATABLE attribute remain allocated
upon procedure exit, unless explicitly deallocated, but they are
not allocated in static memory. Variables in explicit recursive
procedures consist of those in functions, in subroutines, and in
internal procedures within functions and subroutines that have
been defined with the RECURSIVE attribute. The STACK compiler
directive overrides -ev; for more information about this compiler
directive, see Section 5.7.3, page 135.

Default: disabled

24 S–3901–60

Invoking the Cray Fortran Compiler [3]

args Action, if enabled

w Enables support for automatic memory allocation for allocatable
variables and arrays that are on the left hand side of intrinsic
assignment statements.

The option can potentially decrease run-time performance, even
when automatic memory allocation is not needed. It will affect
optimizations for a code region containing an assignment to
allocatable variables or arrays. For example, it could easily
prevent loop fusion for multiple array syntax assignment
statements with the same shape.

Default: disabled.

y Adds information into the binary files that allows the loader to
find the modules when used in subsequent compiles. The -dy
option disables this information.

Enabling this option is useful if the binary files for the Fortran
modules are not moved prior to the load step. The loader can then
find these binaries without the user adding them to the load line.
If the module binary files will be moved before the load step, this
option should be disabled and the module binary files must be
explicitly specified on the load line. Often this is the case when
module binaries are added to a library archive file.

Default: enabled

Z Performs source preprocessing and compilation on Fortran source
files (see Section 3.39, page 80 for valid file extensions). When
specified, source code is included by #include directives and
by Fortran INCLUDE lines. Generates file.i, which contains the
source code after the preprocessing has been performed and the
effects applied to the source program. For more information about
source preprocessing, see Chapter 7, page 157.

Default: disabled

S–3901–60 25

Cray® Fortran Reference Manual

3.6 -D identifier [=value]

The -D identifier[=value] option defines variables used for source
preprocessing as if they had been defined by a #define source preprocessing
directive. If a value is specified, there can be no spaces on either side of the equal
sign (=). If no value is specified, the default value of 1 is used.

The -U option undefines variables used for source preprocessing. If both -D and
-U are used for the same identifier, in any order, the identifier is undefined. For
more information about the -U option, see Section 3.28, page 76.

This option is ignored unless one of the following conditions is true:

• The Fortran input source file is specified as either file.F, file.F90, or file.FTN.

• The -eP or -eZ options have been specified.

For more information about source preprocessing, see Chapter 7, page 157.

3.7 -f source_form

The -f source_form option specifies whether the Fortran source file is written
in fixed source form or free source form. For source_form, enter free or fixed.
The source_form specified here overrides any source form implied by the source
file suffix. A FIXED or FREE directive specified in the source code overrides this
option (see Section 5.6.2, page 132).

The default source form is fixed for input files that have the .f or .F suffix. The
default source form is free for input files that have the .f90, .F90, .ftn, or
.FTN suffix. Note that the Fortran standard has declared fixed source form to be
obsolescent.

If the file has a .F, .F90, or .FTN suffix, the source preprocessor is invoked. See
Chapter 7, page 157 about preprocessing.

3.8 -F

The -F option enables macro expansion throughout the source file. Typically,
macro expansion occurs only on source preprocessing directive lines. By default,
this option is off.

26 S–3901–60

Invoking the Cray Fortran Compiler [3]

This option is ignored unless one of the following conditions is true:

• The Fortran input source file is specified as either file.F, file.F90, file.FTN.

• The -eP or -eZ option was specified.

For more information about source preprocessing, see Chapter 7, page 157.

3.9 -g

The -g option provides debugging support identical to specifying the -G0
option. By default, this option is off.

3.10 -G debug_lvl

The -G debug_lvl option generates a debug symbol table and establishes
a debugging level. The debugging level determines the points at which
breakpoints can be set. The frequency and position of breakpoints can curtail
optimization partially or totally. At higher debugging levels, fewer breakpoints
can be set, but optimization is increased. By default, this option is off. Enter one
of the following arguments for debug_lvl:

debug_lvl Support

0 Breakpoints can be set at each line. This level of debugging is
supported when optimization is disabled (when -O0, -O ipa0,
-O scalar0, -O stream0, -O task0, and -O vector0 are
in effect).

If -G0 has been specified on the command line along with an
optimization level other than -O0, -O ipa0, -O scalar0,
-O stream0, -O task0, or -O vector0, the compiler issues
a message and disables most optimization. Array syntax
statements vectorize at this level. This level can also be obtained
by specifying the -g option.

S–3901–60 27

Cray® Fortran Reference Manual

1 Allows block-by-block debugging, with the exception of
innermost loops. Streaming is disabled (equivalent to -O
stream0) (X1 only). You can place breakpoints at statement
labels on executable statements and at the beginning and end of
block constructs (such as IF/THEN/ELSE blocks, DO/END DO
blocks, and at SELECT CASE/END SELECT blocks). This
level of debugging can be specified when -O 0 or -O 1 is
specified. Disables some scalar optimization and all loop nest
restructuring.

This debug_lvl allows vectorization of some inner loops and most
array syntax statements. Vectorization is equal to that performed
when -O vector1 is in effect.

2 Allows post-mortem debugging. No breakpoints can be set.
Local information, such as the value of a loop index variable, is
not necessarily reliable at this level because such information
often is carried in registers in optimized code.

3.11 -h arg

The -h arg allows you to access various compiler functionality. For more
information about what to specify for arg, see the following subsections.

3.11.1 -h command

The -h command option provides another way to access the functionality of the
-O command compiler option. For more information about -O command, see
Section 3.19.4, page 39.

The -h command option is offered as a convenience to those who mix Fortran
and C and/or C++ code because the Cray C and Cray C++ compilers have the
same option.

3.11.2 -h cpu=target_system

The -h cpu=target_system option specifies the Cray X1 or X2 systems on
which the absolute binary file is to be executed, where target_system can be one
of cray-x1, cray-x1e or cray-x2.

Default: cray-x1 on X1 systems; cray-x2 on X2 systems

28 S–3901–60

Invoking the Cray Fortran Compiler [3]

The target system may also be specified using the CRAY_PE_TARGET
environment variable. For more information, see Section 4.1.2, page 82.

Note: There are no differences between the code produced for the cray-x1
and cray-x1e targets.

3.11.3 -h gen_private_callee (X1 only)

The -h gen_private_callee option provides another way to access the
functionality of the -O gen_private_callee compiler option. For more
information about -O gen_private_callee, see Section 3.19.8, page 44.

The -h gen_private_callee option is offered as a convenience to those who
mix Fortran and C and/or C++ code because the Cray C and Cray C++ compilers
have the same option.

3.11.4 -h ieee_nonstop

The -h ieee_nonstop option specifies that the IEEE-754 "nonstop"
floating-point environment is used. This environment disables all traps
(interrupts) on floating-point exceptions, enables recording of all floating-point
exceptions in the floating-point status register, and rounds floating-point
operations to nearest. When this option is omitted, invalid, overflow, and divide
by zero exceptions will trap and be recorded; underflow and inexact exceptions
will neither trap nor be recorded; and floating-point operations round to nearest.
For UNICOS/mp, this option requires release 2.5 or later.

3.11.5 -h keepfiles

The -h keepfiles option prevents the removal of the object (.o) files after
an executable is created. Normally, the compiler automatically removes these
files after linking them to create an executable. Since the original object files are
required in order to instrument a program for performance analysis, if you plan
to use CrayPat to conduct performance analysis experiments, you can use this
option to preserve the object files.

S–3901–60 29

Cray® Fortran Reference Manual

3.11.6 -h mpmd, -h nompmd

The -h mpmd option allows program units containing Cray Fortran Co-array
(CAF) code to be used with multiple program, multiple data (MPMD)
applications. Only components of interrelated applications containing Cray
Fortran Co-array (CAF) code must be compiled with the -h mpmd compiler
option. The -h nompmd option does not add MPMD capability to CAF code.

The default is -h nompmd.

You can launch multiple interrelated applications with a single aprun or mpirun
command. The applications must have the following characteristics:

• The applications can use MPI, SHMEM, or CAF to perform
application-to-application communications. Using UPC for
application-to-application communication is not supported.

• Within each application, the supported programming models are MPI,
SHMEM, CAF, and OpenMP.

• (X1 only)All applications must be of the same mode; that is, they must all be
MSP-mode applications or all SSP-mode applications.

• If one or more of the applications in an MPMD job use a shared memory
model (OpenMP or pthreads) and need a depth greater than the default of 1,
then all of the applications will have the depth specified by the aprun or
mpirun -d option, whether they need it or not.

To launch multiple applications with one command, you use the -h mpmd
compiler command option and launch them using aprun or mpirun.

For example, suppose you have created three MPI applications which contain
CAF code as follows:

ftn -o multiabc -h mpmd a.o b.o c.o

ftn -o multijkl -h mpmd j.o k.o l.o

ftn -o multixyz -h mpmd x.o y.o z.o

Note: On Cray X1 series systems, users can launch an executable either by
invoking the aprun command explicitly:

aprun /myapp

or implicitly (called auto aprun):

/myaprun

The auto aprun feature is not supported on Cray X2 systems.

30 S–3901–60

Invoking the Cray Fortran Compiler [3]

The number of processing elements required are 128 for multiabc, 16 for
multijkl, and 4 for multixyz.

To launch all three applications simultaneously, you would enter:

mpirun -np 128 multiabc : -np 16 multijkl : -np 4 multixyz

3.11.7 -h msp (X1 only)

The -h msp option provides another way to access the functionality of the
-O msp compiler option. For more information about -O msp, see Section
3.19.14, page 50.

The -h msp option is offered as a convenience to those who mix Fortran and C
and/or C++ code because the Cray C and Cray C++ compilers have the same
option.

3.11.8 -h ssp (X1 only)

The -h ssp option provides another way to access the functionality of the
-O ssp compiler option. For more information about -O ssp, see Section
3.19.21, page 55.

The -h ssp option is offered as a convenience to those who mix Fortran and C
and/or C++ code because the Cray C and Cray C++ compilers have the same
option.

3.12 -I incldir

The -I incldir option specifies a directory to be searched for files named in
INCLUDE lines in the Fortran source file and for files named in #include source
preprocessing directives.

You must specify an -I option for each directory you want searched. Directories
can be specified in incldir as full path names or as path names relative to the
working directory. By default, only the system directories are searched.

The following example causes the compiler to search for files included within
earth.f in the directories /usr/local/sun and ../moon:

% ftn -I /usr/local/sun -I ../moon earth.f

S–3901–60 31

Cray® Fortran Reference Manual

If the INCLUDE line or #include directive in the source file specifies an absolute
name (that is, one that begins with a slash (/)), that name is used, and no other
directory is searched. If a relative name is used (that is, one that does not begin
with a slash (/)), the compiler searches for the file in the directory of the source
file containing the INCLUDE line or #include directive. If this directory contains
no file of that name, the compiler then searches the directories named by the -I
options, as specified on the command line, from left to right.

3.13 -J dir_name

The -J dir_name option specifies the directory to which file.mod files are
written when the -e m option is specified on the command line. By default,
the module files are written to the directory from which the ftn command was
entered.

The compiler will automatically search the dir_name directory for modules to
satisfy USE statements by giving the dir_name path to the -p module_site
option. You do not need to explicitly use the -p option for the compiler to
do this. The compiler places this -p module_site option on the end of the
command line.

An error is issued if the -em option is not specified when the -J dir_name
is used.

3.14 -l libname

The -l libname option directs the loader to search for the specified object
library file when loading an executable file. To request more than one library file,
specify multiple -l options.

The loader searches for libraries by prepending ldir/lib on the front of libname
and appending .a on the end of it, for each ldir that has been specified by using
the -L option. It uses the first file it finds. See also the -L option.

For more information about library search rules, see Section 3.15, page 32.

3.15 -L ldir

The -L ldir option directs the loader to look for library files in directory ldir. To
request more than one library directory, specify multiple -L options.

32 S–3901–60

Invoking the Cray Fortran Compiler [3]

The loader searches for library files in directory ldir before searching the default
directories: /opt/ctl/libs and /lib.

For example, if -L ../mylib, -L /loclib, and -l m are specified, the loader
searches for the following files and uses the first one found:

../mylibs/libm.a

/loclib/libm.a

/opt/ctl/libs/libm.a

/lib/libm.a

See the ld(1) man page for more information about library searches.

For information about specifying module locations, see Section 3.21, page 60.

3.16 -m msg_lvl

The -m msg_lvl option specifies the minimum compiler message levels to
enable. The following list shows the integers to specify in order to enable each
type of message and which messages are generated by default.

msg_lvl Message types enabled

0 Error, warning, caution, note, and comment

1 Error, warning, caution, and note

2 Error, warning, and caution

3 Error and warning (default)

4 Error

Caution and warning messages denote, respectively, possible and probable user
errors.

By default, messages are sent to the standard error file, stderr, and are
displayed on your terminal. If the -r option is specified, messages are also sent
to the listing file.

To see more detailed explanations of messages, use the explain command.
This command retrieves message explanations and displays them online. For
example, to obtain documentation on message 500, enter the following command:

% explain ftn-500

S–3901–60 33

Cray® Fortran Reference Manual

The default msg_lvl is 3, which suppresses messages at the comment, note,
and caution level. It is not possible to suppress messages at the error level. To
suppress specific comment, note, caution, and warning messages, see Section
3.17, page 34.

To obtain messages regarding nonstandard Fortran usage, specify -e n. For
more information about this option, see Section 3.5, page 18.

3.17 -M msgs

The -M msgs option suppresses specific messages at the warning, caution, note,
and comment levels and can change the default message severity to an error or a
warning level. You cannot suppress or alter the severity of error-level messages
with this option.

To suppress messages, specify one or more integer numbers that correspond to
the Cray Fortran compiler messages you want to suppress. To specify more than
one message number, specify a comma (but no spaces) between the message
numbers. For example, -M 110,300 suppresses messages 110 and 300.

To change a message's severity to an error level or a warning level, specify an E
(for error) or a W (for warning) and then the number of the message. For example,
consider the following option: -M 300,E600,W400. This specification results in
the following messages:

• Message 300 is disabled and is not issued, provided that it is not an
error-level message by default. Error-level messages cannot be suppressed
and cannot have their severity downgraded.

• Message 600 is issued as an error-level message, regardless of its default
severity.

• Message 400 is issued as a warning-level message, provided that it is not an
error-level message by default.

3.18 -N col

The -N col option specifies the line width for fixed- and free-format source
lines. The value used for col specifies the maximum number of columns per line.

For free form sources, col can be set to 132 or 255.

For fixed form sources, col can be set to 72, 80, 132, or 255.

34 S–3901–60

Invoking the Cray Fortran Compiler [3]

Characters in columns beyond the col specification are ignored.

By default, lines are 72 characters wide for fixed-format sources and 132
characters wide for free-form sources.

3.19 -O opt [,opt] ...

The -O opt option specifies optimization features. You can specify more
than one -O option, with accompanying arguments, on the command line. If
specifying more than one argument to -O, separate the individual arguments
with commas and do not include intervening spaces.

Note: The -eo option or the ftnlx command displays all the optimization
options the compiler uses at compile time.

The -O 0, -O 1, -O 2, and -O 3 options allow you to specify a general level
of optimization that includes vectorization, scalar optimization, inlining, and
streaming (X1 only). Generally, as the optimization level increases, compilation
time increases and execution time decreases.

The -O 1, -O 2, and -O 3 specifications do not directly correspond to the
numeric optimization levels for scalar optimization, vectorization, inlining, and
streaming (X1 only). For example, specifying -O 3 does not necessarily enable
vector3. Cray reserves the right to alter the specific optimizations performed
at these levels from release to release.

The other optimization options, such as -O aggress and -O cachen, control
pattern matching, cache management, zero incrementing, and several other
optimization features. Some of these features can also be controlled through
compiler directives. For more information about directives, see Optimizing
Applications on Cray X1 Series Systems and Optimizing Applications on Cray X2
Systems.

Figure 2, page 36 shows the relationships between some of the -O opt values.

S–3901–60 35

Cray® Fortran Reference Manual

str
ea

m0

str
ea

m1

str
ea

m2

str
ea

m3

X

X X

X X

X
X X

X X X

X

X

X

Low compile cost

Moderate compile cost

Potentially high compile cost

No numerical differences from serial
execution (no vector/stream reductions)

Potential numerical differences from
serial execution (vector/stream
reductions)
Potential numerical differences from
unoptimized execution (operator
reassociation)

No optimizations that may create
exceptions

Implies at least scalar1

Implies at least scalar2

Loop nest restructuring

Vectorize array syntax statements

Vectorize/stream only inner loops

OpenMP disabled

X
sc

ala
r0

ve
cto

r0

tas
k0

sc
ala

r1

ve
cto

r1

tas
k1

sc
ala

r2

ve
cto

r2

sc
ala

r3

ve
cto

r3

X X X
X X X X

X X

X

X X X

X X X

X X X

X X
X X
X X

X X X X
X

X

X

X X X X X X X
Optimizations that may create
exceptions X X X X

X X

X XX

Figure 2. Optimization Values

Note: The four columns in the table above (stream0, stream1, stream2, and
stream3) apply only to the X1 series systems.

36 S–3901–60

Invoking the Cray Fortran Compiler [3]

3.19.1 -O n

The -On option performs general optimization at these levels: 0 (none), 1
(conservative), 2 (moderate, default), and 3 (aggressive).

• The -O 0 option inhibits optimization including inlining. This option's
characteristics include low compile time, small compile size, and no global
scalar optimization.

Most array syntax statements are vectorized, but all other vectorizations are
disabled.

• The -O 1 option specifies conservative optimization. This option's
characteristics include moderate compile time and size, global scalar
optimizations, and loop nest restructuring. Results may differ from the results
obtained when -O 0 is specified because of operator reassociation. No
optimizations will be performed that might create false exceptions.

Only array syntax statements and inner loops are vectorized and the system
does not perform some vector reductions. User tasking is enabled, so !$OMP
directives are recognized. The -O 1 option enables automatic multistreaming
of array syntax and entire loop nests (X1 only).

• The -O 2 option specifies moderate optimization. This option's
characteristics include moderate compile time and size, global scalar
optimizations, pattern matching, and loop nest restructuring.

Results may differ from results obtained when -O 1 is specified because of
vector reductions. The -O 2 option enables automatic vectorization of array
syntax and entire loop nests.

This is the default level of optimization.

• The -O 3 option specifies aggressive optimization. This option's
characteristics include a potentially larger compile size, longer compile time,
global scalar optimizations, possible loop nest restructuring, and pattern
matching. The optimizations performed might create false exceptions in rare
instances.

Results may differ from results obtained when -O 1 is specified because of
vector or multistreaming (X1 only) reductions.

S–3901–60 37

Cray® Fortran Reference Manual

3.19.2 -O aggress, -O noaggress

The -O aggress option causes the compiler to treat a program unit (for
example, a subroutine or a function) as a single optimization region. Doing
so can improve the optimization of large program units by raising the limits
for internal tables, which increases opportunities for optimization. This option
increases compile time and size.

The default is -O noaggress.

3.19.3 -O cachen

The -O cachen option specifies the following levels of automatic cache
management. The default on Cray X1 series systems is -O cache0. The default
on Cray X2 systems is -O cache2.

• -O cache0 specifies no automatic cache management; all memory references
are allocated to cache in an exclusive state. Cache directives are still honored.
Characteristics include low compile time.

The -O cache0 option is compatible with all scalar, vector, and (X1 only)
stream optimization levels.

• -O cache1 specifies conservative automatic cache management.
Characteristics include moderate compile time. Data are placed in the cache
when the possibility of cache reuse exists and the predicted cache footprint of
the datum in isolation is small enough to experience the reuse.

The -O cache1 option requires at least -O vector1.

• -O cache2 specifies moderately aggressive automatic cache management.
Characteristics include moderate compile time. Data are placed in the cache
when the possibility of cache reuse exists and the predicted state of the cache
model is such that the datuml will experience the reuse.

The -O cache2 option requires at least -O vector1.

• -O cache3 specifies aggressive automatic cache management.
Characteristics include potentially high compile time. Data are placed in
the cache when the possibility of cache reuse exists and the allocation of the
datum to the cache is predicted to increase the number of cache hits.

The -O cache3 option requires at least -O vector1.

38 S–3901–60

Invoking the Cray Fortran Compiler [3]

3.19.4 -O command

The X1 and X2 implementations of this option are described below in separate
sections.

(The following section applies to the X1 series only.)

The command mode option (-O command) allows you to create commands for
Cray X1 series systems to supplement commands developed by Cray. Command
mode is not suitable for user applications or use with the aprun command.

The commands created with the command mode option cannot multistream, but
will run serially on a single-streaming processor (SSP) within a support node.
These commands will execute immediately without assistance from psched.

To disable vectorization, add the -O vector0 option to the compiler command
line. The compiled commands will have less debugging information, unless you
specify a debugging option. The debugging information does not slow execution
time, but it does result in a larger executable that may take longer to load.

For simplicity, use the Fortran compiler to load your programs built with
the command mode option, because the required options and libraries are
automatically specified and loaded for you.

To load the libraries manually, you must use the loader command (ld) and
specify on its command line the -O command and -O ssp options and the
-L option with the path to the command mode libraries. The command mode
libraries are found in the cmdlibs directory under the path defined by the
CRAYLIBS_SV2 environment variable. These must also be linked:

• Start0.o

• libf library

• libm library

• libu library

Programs linked with the -O ssp option and -O command must have been
previously compiled with the -O command option. That is, do not link object
files built with the command mode option with object files that did not use the
option.

The following sample command line illustrates compiling the code for a
command named fierce:

% ftn -O command -O vector0 -o fierce fierce.ftn

S–3901–60 39

Cray® Fortran Reference Manual

Note: The -h command option is another name for this option.

(The following section applies to the X2 only.)

The command mode option (-O command) allows you to create commands for
Cray X2 systems to supplement commands developed by Cray. Commands
can be run on application nodes using option -n1 to specify a single process.
Executing commands on multiple processes is not supported.

For simplicity, use the Fortran compiler to load your programs built with
the command mode option, because the required options and libraries are
automatically specified and loaded for you.

The following sample command line illustrates compiling the code for a
command named fierce:

% ftn -O command -o fierce fierce.ftn

Note: The -h command option is another name for this option.

3.19.5 -O fpn

The -O fp option allows you to control the level of floating-point optimizations.
The n argument controls the level of allowable optimization; 0 gives the compiler
minimum freedom to optimize floating-point operations, while 3 gives it
maximum freedom. The higher the level, the less the floating-point operations
conform to the IEEE standard.

This option is useful for code that uses unstable algorithms, but which is
optimizable. It is also useful for applications that want aggressive floating-point
optimizations that go beyond what the Fortran standard allows.

40 S–3901–60

Invoking the Cray Fortran Compiler [3]

Generally, this is the behavior and usage for each -O fp level:

• -O fp0 causes your program's executable code to conform more closely to
the IEEE floating-point standard than the default mode (-O fp2). When
this level is specified, many identity optimizations are disabled, executable
code is slower than higher floating-point optimization levels, floating point
reductions are disabled, and a scaled complex divide mechanism is enabled
that increases the range of complex values that can be handled without
producing an underflow.

The-O fp0 option should only be used when your code pushes the limits of
IEEE accuracy or requires strong IEEE standard conformance.

• -O fp1 performs various, generally safe, IEEE non-conforming
optimizations, such as folding a == a to true, where a is a floating point
object. At this level, floating-point reassociation1 is greatly limited, which
may affect the performance of your code.

The -O fp1 options should only be used when your code pushes the limits of
IEEE accuracy, or requires substantial IEEE standard conformance.

• -O fp2 includes optimizations of -O fp1. This is the default.

• -O fp3 includes optimizations of -O fp1 and -O fp2.

The -O fp3 option should be used when performance is more critical than
the level of IEEE standard conformance provided by -O fp2.

1 An example of reassociation is when a+b+c is rearranged to b+a+c, where a, b, and c are floating
point variables.

S–3901–60 41

Cray® Fortran Reference Manual

Table 2 compares the various optimization levels of the -O fp option (levels 2
and 3 are usually the same). The table lists some of the optimizations performed;
the compiler may perform other optimizations not listed. If multiple -h fp
options are used, the compiler will use only the rightmost option and will issue a
message indicating such.

Table 2. Floating-point Optimization Levels

Optimization
Type 0 1 2 (default) 3

Inline selected
mathematical
library
functions

N/A N/A N/A Accuracy is slightly
reduced.

Complex
divisions

Accurate and slower Accurate and
slower

Less accurate (less
precision) and faster.

Less accurate (less
precision) and faster.

Exponentiation
rewrite

None None Maximum
performance2

Maximum
performance2, 3

Strength
reduction

Fast Fast Aggressive Aggressive

Rewrite
division as
reciprocal
equivalent 4

None None Yes Yes

Floating point
reductions

Slow Fast Fast Fast

Safety Maximum Moderate Moderate Low

2 Rewriting values raised to a constant power into an algebraically equivalent series of multiplications
and/or square roots.

3 Rewriting exponentiations (ab) not previously optimized into the algebraically equivalent form exp(b
* ln(a)).

4 For example, x/y is transformed to x * 1.0/y.

42 S–3901–60

Invoking the Cray Fortran Compiler [3]

3.19.6 -O fusionn

The -O fusionn option globally controls loop fusion and changes the
assertiveness of the FUSION directive. Loop fusion can improve the performance
of loops, though in rare cases it may degrade performance.

The n argument allows you to turn loop fusion on or off and determine where
fusion should occur. It also affects the assertiveness of the FUSION directive.
Use one of these values for n:

0 No fusion (ignore all FUSION directives and do not attempt to
fuse other loops)

1 Attempt to fuse loops that are marked by the FUSION directive.

2 (default)

Attempt to fuse all loops (includes array syntax implied loops),
except those marked with the NOFUSION directive.

For more information about loop fusion, see Optimizing Applications on Cray X1
Series Systems and Optimizing Applications on Cray X2 Systems.

3.19.7 -Ogcpn

The -Ogcpn option enables/disables global constant propagation, where the
value of n toggles the optimization on (1) or off (0). This optimization is off by
default. Global constant propagation is an interprocedural optimization that
replaces statically initialized variables with constants. For this optimization to
work, the entire executable program must be presented to the compiler at once,
which requires a large amount of memory and can significantly increase compile
time. If the entire executable is not presented at once, the optimization fails.
Messages are issued that indicate dead ends in the call graph.

This option can be used in conjunction with the -Oipafrom= option. For
example:

% ftn -Oipafrom=ipa.f -Ogcp1 t.f

When using the -Oipafrom= command line option as shown above, the
compiler will only look in ipa.f for routine definitions to use during
interprocedural analysis. To also consider t.f for interprocedural analysis, enter
the following command:

% ftn -Oipafrom=t.f:ipa.f -Ogcp1 t.f

S–3901–60 43

Cray® Fortran Reference Manual

Note: Only routines in t.f will actually get linked into the executable. For a
routine to be linked into an executable, it must be input to the compile step.

Warning: Duplicate definitions of a routine in the input to the compiler and in
the input to -Oipafrom= must be identical or the behavior of the generated
code is unpredictable.

3.19.8 -O gen_private_callee (X1 only)

The -O gen_private_callee option is used when compiling source files
containing subprograms which will be called from streamed regions, whether
those streamed regions are created by Cray streaming directives (CSDs), or by the
use of the SSP_PRIVATE directive to cause autostreaming.

See Chapter 6, page 143 for information about CSDs or to Section 5.3.2, page 118
for information about the SSP_PRIVATE directive.

Note: The -h gen_private_callee option is another name for this option.

3.19.9 -O infinitevl, -O noinfinitevl

The -O infinitevl option assumes that the safe vector length is infinite for
IVDEP directives without the SAFEVL clause. The -O noinfinitevl option
assumes the safe vector length is the maximum vector length supported by the
target for IVDEP directives without the SAFEVL or INFINITEVL clause.

See Section 5.2.6, page 100 for more information about the INFINITEVL and
SAFEVL clause.

The default is -O infinitevl.

3.19.10 -O ipan and -O ipafrom=source[:source] ...

Inlining is the process of replacing a user procedure call with the procedure
definition itself. This saves subprogram call overhead and may allow better
optimization of the inlined code. If all calls within a loop are inlined, the loop
becomes a candidate for parallelization.

44 S–3901–60

Invoking the Cray Fortran Compiler [3]

The -O ipan option specifies automatic inlining. Automatic inlining allows
the compiler to automatically select, depending on the inlining level n, which
functions to inline. Each n specifies a different set of heuristics. When -O ipan is
used alone, the candidates for expansion are all those functions that are present
in the input file to the compile step. If -O ipan is used in conjunction with -O
ipafrom=, the candidates for expansion are those functions present in source. For
an explanation of each lining level, see Table 3, page 47.

The compiler supports the following inlining modes through the indicated
options:

• Automatic inlining allows the compiler to automatically select, depending on
the selected inlining level, which procedures to inline.

• Explicit inlining allows you to explicitly indicate which procedures the
compiler should attempt to inline.

• Combined inlining allows you to specifiy potential targets for inline
expansion, while applying the selected level of inlining heuristics.

Cloning is the attempt to duplicate a procedure under certain conditions
and replace dummy arguments with associated constant actual arguments
throughout the cloned procedure. The compiler attempts to clone a procedure
when a call site contains actual arguments that are scalar integer and/or scalar
logical constants. When the constants are exposed to the optimizer, it can
generate more efficient code.

Automatic cloning is enabled at -Oipa4 and higher.

The compiler will first attempt to inline a call site. If inlining the call site fails, the
compiler will attempt to clone the procedure for the specific call site.

S–3901–60 45

Cray® Fortran Reference Manual

When a clone is made, dummy arguments are replaced with associated constant
values throughout the routine. The following example shows cloning in action:

PROGRAM TEST

CALL SAM(3, .TRUE.) ! Call site with constants

END

SUBROUTINE SAM(I, L)

INTEGER I

LOGICAL L

IF (L) THEN

PRINT *, I

ENDIF

END

Compiling the previous program with the -O ipa4 option, the compiler
produces the following program:

PROGRAM TEST

CALL SAM@1(3, .TRUE.) ! This is a call to a clone of SAM.

END

! Original Subroutine

SUBROUTINE SAM(I, L)

INTEGER I

LOGICAL L

IF (L) THEN

PRINT *, I

ENDIF

END

! Cloned subroutine

SUBROUTINE SAM@1(I, L)

INTEGER I

LOGICAL L

46 S–3901–60

Invoking the Cray Fortran Compiler [3]

IF (.TRUE.) THEN ! The optimizer will eliminate this IF test

PRINT *, 3

ENDIF

END

3.19.10.1 Automatic Inlining

The -O ipan option allows the compiler to automatically decide which
procedures to consider for inlining. Procedures that are potential targets
for inline expansion include all the procedures within the input file to the
compilation. Table 3 explains what is inlined at each level.

Table 3. Automatic Inlining Specifications

Inlining level Description

0 All inlining is disabled. All inlining compiler directives are ignored.

1 Directive inlining. Inlining is attempted for call sites and routines that are under the
control of an inlining compiler directive. See Chapter 5, page 87 for more information
about inlining directives.

2 Call nest inlining. Inline a call nest to an arbitrary depth as long as the nest does not
exceed some compiler-determined threshold. A call nest can be a leaf routine. The
expansion of the call nest must yield straight-line code (code containing no external
calls) for any expansion to occur.

3 Constant actual argument inlining. This includes levels 1 and 2, plus any call site that
contains a constant actual argument. This is the default inlining level.

4 Tiny routine inlining. This includes levels 1, 2, and 3, plus the inlining of very small
routines regardless of where those routines fall in the call graph. The lower limit
threshold is an internal compiler parameter.

Routine cloning is attempted if inlining fails at a given call site.

5 Aggressive inlining. Inlining is attempted for every call site encountered. Cray does
not recommend using this level.

Routine cloning is attempted if inlining fails at a given call site.

S–3901–60 47

Cray® Fortran Reference Manual

3.19.10.2 Explicit Inlining

The -O ipafrom=source[:source] ... option allows you to explicitly indicate
the procedures to consider for inline expansion. The source arguments identify
each file or directory that contains the routines to consider for inlining. Whenever
a call is encountered in the input program that matches a routine in source,
inlining is attempted for that call site.

Note: Blanks are not allowed on either side of the equal sign.

All inlining directives are recognized with explicit inlining. For information
about inlining directives, see Chapter 5, page 87.

Note that the routines in source are not actually loaded with the final program.
They are simply templates for the inliner. To have a routine contained in source
loaded with the program, you must include it in an input file to the compilation.

Use one or more of the objects described in Table 4 in the source argument.

Table 4. File Types

Fortran source
files

The routines in Fortran source files are candidates for inline
expansion. and must contain error-free code.

Source files that are acceptable for inlining are files that have
one of the following extensions

• .f

• .F

• .f90

• .F90

• .ftn

• .FTN

Module files When compiling with -em and -Omodinline in effect,
the precompiled module information is written to
modulename.mod. The compiler writes a modulename.mod file
for each module; modulename is created by taking the name of
the module and, if necessary, converting it to uppercase.

48 S–3901–60

Invoking the Cray Fortran Compiler [3]

You cannot use the Fortran source of a module procedure as
input to the -O ipafrom= option.

dir A directory that contains any of the file types described in
this table.

3.19.10.3 Combined Inlining

Combined inlining is invoked by specifying the -O ipan and -O ipafrom=
options on the command line. This inlining mode will look only in source for
potential targets for expansion, while applying the selected level of inlining
heuristics specified by the -O ipan option.

3.19.11 -O inlinelib

The -O inlinelib option causes the compiler to attempt inlining of those
Cray scientific library routines that are available for inlining. At present this is
a limited subset of the LibSci routines; more inlinable library routines will be
added in future releases. For a report of what was inlined or not, see the -O
msgs,negmsgs option.

This option is off by default.

3.19.12 -O modinline, -O nomodinline

The -O modinline option prepares module procedures so they can be inlined
by directing the compiler to create templates for module procedures encountered
in a module. These templates are attached to file.o or modulename.mod. The files
that contain these inlinable templates can be saved and used later to inline call
sites within a program being compiled.

When -e m is in effect, module information is stored in modname.mod. The
compiler writes a modulename.mod file for each module; modulename is created by
taking the name of the module and, if necessary, converting it to uppercase.

The process of inlining module procedures requires only that file.o or
modulename.mod be available during compilation through the typical module
processing mechanism. The USE statement makes the templates available to the
inliner.

When -O modinline is specified, the MODINLINE and NOMODINLINE directives
are recognized. Using the -O modinline option increases the size of file.o.

S–3901–60 49

Cray® Fortran Reference Manual

To ensure that file.o is not removed, specify this option in conjunction with the
-c option. For information about the -c option, see Section 3.3, page 17.

The default is -O modinline.

3.19.13 -O msgs, -O nomsgs

The -O msgs option causes the compiler to write optimization messages to
stderr. These messages include VECTOR, SCALAR, INLINE, IPA , and STREAM
(X1 only) messages.

When the -O msgs option is in effect, you may request that a listing be produced
so that you can see the optimization messages in the listing. For information
about obtaining listings, see Section 3.23, page 64.

The default is -O nomsgs.

3.19.14 -O msp (X1 only)

The -O msp option causes the compiler to generate code and to select
the appropriate libraries to create an executable that runs on one or more
multistreaming processors (MSPs). This is called MSP mode. Any code, including
Cray distributed memory models, can use MSP mode.

Executables compiled for MSP mode can contain object files compield with SSP
or MSP mode. That is, SSP and MSP object files can be specified during the load
step as follows:

ftn -O msp -c ... !Produce MSP object files

ftn -O ssp -c ... !Produce SSP object files

ftn sspA.o sspB.o msp.o ... !Link MSP and SSP object files

!to create an executable to run on MSPs

Note: Code explicitly compiled with the -O stream0 option can be linked
with object files compiled with SSP or MSP mode. You can use this option to
create a universal library that can be used in SSP or MSP mode.

For more information about SSP and MSP mode, see Section 3.19.21, page 55 and
Optimizing Applications on Cray X1 Series Systems.

This option is on by default.

Note: The -h msp option is another name for this option.

50 S–3901–60

Invoking the Cray Fortran Compiler [3]

3.19.15 -O negmsgs, -O nonegmsgs

The -O negmsgs option causes the compiler to generate messages to stderr
that indicate why optimizations such as vectorization, streaming (X1 only), or
inlining did not occur in a given instance.

The -O negmsgs option enables the -O msgs option. The -rm option enables
the -O negmsgs option.

The default is -O nonegmsgs.

3.19.16 -O nointerchange

The -O nointerchange option inhibits the compiler's attempts to interchange
loops. Interchanging loops by having the compiler replace an inner loop with an
outer loop can increase performance. The compiler performs this optimization by
default.

Specifying the -O nointerchange option is equivalent to specifying a
NOINTERCHANGE directive prior to every loop. To disable loop interchange on
individual loops, use the NOINTERCHANGE directive. For more information about
the NOINTERCHANGE directive, see Section 5.5.1, page 125.

3.19.17 -O overindex, -O nooverindex

The -O nooverindex option declares that there are no array subscripts which
index a dimension of an array that are outside the declared bounds of that
dimension. Short loop code generation occurs when the extent does not exceed
the maximum vector length of the machine.

Specifying -O overindex declares that the program contains code that makes
array references with subscripts that exceed the defined extents. This prevents
the compiler from performing the short loop optimizations described in the
preceding paragraph.

Overindexing is nonstandard, but it compiles correctly as long as data
dependencies are not hidden from the compiler. This technique collapses loops;
that is, it replaces a loop nest with a single loop. An example of this practice
is as follows:

DIMENSION A(20, 20)

DO I = 1, N

A(I, 1) = 0.0

END DO

S–3901–60 51

Cray® Fortran Reference Manual

Assuming that N equals 400 in the previous example, the compiler might generate
more efficient code than a doubly nested loop. However, incorrect results can
occur in this case if -O nooverindex is in effect.

You do not need to specify -O overindex if the overindexed array is a Cray
pointee, has been equivalenced, or if the extent of the overindexed dimension
is declared to be 1 or *. In addition, the -O overindex option is enabled
automatically for the following extension code, where the number of subscripts
in an array reference is less than the declared number:

DIMENSION A(20, 20)

DO I = 1, N

A(I) = 0.0 ! 1-dimension reference;

! 2-dimension array

END DO

Note: The -O overindex option is used by the compiler for detection of
short loops and subsequent code scheduling. This allows manual overindexing
as described in this section, but it may have a negative performance
effect because of fewer recognized short loops and more restrictive code
scheduling. In addition, the compiler continues to assume, by default, a
standard-conforming user program that does not overindex when doing
dependency analysis for other loop nest optimizations.

The default is -O nooverindex.

3.19.18 -O pattern, -O nopattern

The -O pattern option enables pattern matching for library substitution. The
pattern matching feature searches your code for specific code patterns and
replaces them with calls to highly optimized routines.

The -O pattern option is enabled only for optimization levels -O 2,
-O vector2 or higher; there is no way to force pattern matching for lower
levels.

Specifying -O nopattern disables pattern matching and causes the compiler
to ignore the PATTERN and NOPATTERN directives. For information about the
PATTERN and NOPATTERN directives, see Section 5.2.8, page 102.

The default is -O pattern.

52 S–3901–60

Invoking the Cray Fortran Compiler [3]

3.19.19 -O scalarn

The -O scalarn option specifies these levels of scalar optimization:

• scalar0 disables scalar optimization. Characteristics include low compile
time and size.

The -O scalar0 option is compatible with -O task0 or -O task1 and
with -O vector0.

• scalar1 specifies conservative scalar optimization. Characteristics include
moderate compile time and size. Results can differ from the results obtained
when -O scalar0 is specified because of operator reassociation. No
optimizations are performed that could create false exceptions.

The -O scalar1 option is compatible with -O vector0 or -O vector1,
with -O task0 or -O task1, and with -O stream0 (X1 only) or
-O stream1 (X1 only).

• scalar2 specifies moderate scalar optimization. Characteristics include
moderate compile time and size. Results can differ slightly from the results
obtained when -O scalar1 is specified because of possible changes in loop
nest restructuring. Generally, no optimizations are done that could create
false exceptions.

The -O scalar2 option is compatible with all vectorization, multistreaming,
and tasking levels.

This is the default scalar optimization level.

• scalar3 specifies aggressive scalar optimization. Characteristics include
potentially greater compile time and size. Results can differ from the results
obtained when -O scalar1 is specified because of possible changes in loop
nest restructuring.

The optimization techniques used can create false exceptions in rare instances.
Analysis that determines whether a variable is used before it is defined is
enabled at this level.

The -O scalar3 option is compatible with all tasking and vectorization
levels.

S–3901–60 53

Cray® Fortran Reference Manual

3.19.20 -O shortcircuitn

The -O shortcircuitn option specify various levels of short circuit
evaluation. Short circuit evaluation is an optimization in which the compiler
analyzes all or part of a logical expression based on the results of a preliminary
analysis. When short circuiting is enabled, the compiler attempts short circuit
evaluation of logical expressions that are used in IF statement scalar logical
expressions. This evaluation is performed on the .AND. operator and the .OR.
operator.

Example 1: Assume the following logical expression:

operand1 .AND. operand2

The operand2 need not be evaluated if operand1 is false because in that case, the
entire expression evaluates to false. Likewise, if operand2 is false, operand1 need
not be evaluated.

Example 2: Assume the following logical expression:

operand1 .OR. operand2

The operand2 need not be evaluated if operand1 is true because in that case, the
entire expression evaluates to true. Likewise, if operand2 is true, operand1 need
not be evaluated.

The compiler performs short circuit evaluation in a variety of ways, based on
the following command line options:

• -O shortcircuit0 disables short circuiting of IF and ELSEIF statement
logical conditions.

• -O shortcircuit1 specifies short circuiting of IF and ELSEIF logical
conditions only when a PRESENT, ALLOCATED, or ASSOCIATED intrinsic
procedure is in the condition.

The short circuiting is performed left to right. In other words, the left operand
is evaluated first, and if it determines the value of the operation, the right
operand is not evaluated. The following code segment shows how this option
could be used:

SUBROUTINE SUB(A)

INTEGER,OPTIONAL::A

IF (PRESENT(A) .AND. A==0) THEN

...

54 S–3901–60

Invoking the Cray Fortran Compiler [3]

The expression A==0 must not be evaluated if A is not PRESENT. The short
circuiting performed when -O shortcircuit1 is in effect causes the
evaluation of PRESENT(A) first. If that is false, A==0 is not evaluated. If
-O shortcircuit1 is in effect, the preceding example is equivalent to the
following example:

SUBROUTINE SUB(A)

INTEGER,OPTIONAL::A

IF (PRESENT(A)) THEN

IF (A==0) THEN

...

• -O shortcircuit2 specifies short circuiting of IF and ELSEIF logical
conditions, and it is done left to right. All .AND. and .OR. operators in these
expressions are evaluated in this way. The left operand is evaluated, and if it
determines the result of the operation, the right operand is not evaluated.

• -O shortcircuit3 specifies short circuiting of IF and ELSEIF logical
conditions. It is an attempt to avoid making function calls. When this option
is in effect, the left and right operands to .AND. and .OR. operators are
examined to determine if one or the other contains function calls. If either
operand has functions, short circuit evaluation is performed. The operand
that has fewer calls is evaluated first, and if it determines the result of the
operation, the remaining operand is not evaluated. If both operands have no
calls, then no short circuiting is done. For the following example, the right
operand of .OR. is evaluated first. If A==0 then ifunc() is not called:

IF (ifunc() == 0 .OR. A==0) THEN

...

-O shortcircuit3 is the default.

3.19.21 -O ssp (X1 only)

The -O ssp option causes the compiler to compile the source code and select the
appropriate libraries to create an executable that runs on one single-streaming
processor (SSP mode). Any code, including those using Cray distributed memory
models, can use SSP mode. The executable is scheduled by psched and runs on
one SSP on an application node.

S–3901–60 55

Cray® Fortran Reference Manual

Executables compiled for SSP mode can contain only object files compiled in SSP
mode. When loading object files separately from the compile step, the SSP mode
must be specified during the load step as this example shows:

ftn -O ssp -c ... !Produce SSP object files

ftn -O ssp sspA.o sspB.o ... !Link SSP object files

!to create an executable to run on a single SSP

Since SSP mode does not use streaming, the compiler automatically specifies the
-O stream0 option. This option also causes the compiler to ignore CSDs.

Note: Code explicitly compiled with the -O stream0 option can be linked
with object files compiled with SSP or MSP mode. You can use this option to
create a universal library that can be used in SSP or MSP mode.

For more information about SSP and MSP mode, see Section 3.19.14, page 50 and
Optimizing Applications on Cray X1 Series Systems.

This option is off by default.

Note: The -h ssp option is another name for this option.

3.19.22 -O streamn (X1 only)

The -O streamn option controls the multistreaming when multistreaming
is enabled. These levels can be set to no multistreaming optimization, at
-O stream0, to aggressive multistreaming optimization at -O stream3.
Generally, vectorized applications that execute on a one-processor system can
expect to execute up to four times faster on a processor with multistreaming
enabled.

At the default streaming level, -O stream2, the four processors SSP0, SSP1,
SSP2, and SSP3 may be used by the code generated by the Fortran compiler.
Automatic streaming can be turned off by using the -O stream0 option.
This does not mean that SSP1, SSP2, and SSP3 are not used during execution.
These processors can still be used at times by the library routines called by the
generated code. At times, the library routines may park (suspend) the SSP1,
SSP2, and SSP3 processors. These SSPs are not available for other executables
while code compiled with the stream0 option enabled is executing.

56 S–3901–60

Invoking the Cray Fortran Compiler [3]

The MSP optimization levels assume that certain scalar and vectorization
optimization levels are also specified. If incompatible optimization levels are
specified, the compiler adjusts the optimization levels used and issues a message.
The various MSP optimization levels and their compatibilities with other
optimizations are as follows:

• -O stream0 inhibits automatic MSP optimizations. No MSP directives are
recognized.

The -O stream0 option is compatible with all vectorization and scalar
optimization levels.

• -O stream1 is the same as -O stream2, except that stream consolidation
is not done. Stream consolidation is a compiler optimization that attempts to
minimize the synchronization cost of streaming.

• -O stream2 specifies safe MSP optimization. The compiler recognizes MSP
directives. The compiler automatically performs MSP optimizations on loop
nests and appropriate BMM operations.

The -O stream2 option is compatible with -O scalar2, -O scalar3,
-O vector2, and -O vector3.

Default.

• -O stream3 specifies aggressive MSP optimization on all code including
appropriate BMM operations. The compiler recognizes MSP directives.

The -O stream3 option is compatible with -O scalar2, -O scalar3,
-O vector2, and -O vector3.

For information about MSP directives, see Section 5.3, page 117. For information
about optimizing with MSP, see Optimizing Applications on Cray X1 Series Systems.
For more information about the effects the streaming option has on BMM
operators, refer to the bmm man page.

3.19.23 -O task0, -O task1

The -O task0 option causes the compiler to ignore OpenMP directives.
Characteristics of this option include reduced compile time and size.

The -O task0 option is compatible with all vectorization and scalar
optimization levels.

The -O task1 causes to compiler to recognize OpenMP directives.

S–3901–60 57

Cray® Fortran Reference Manual

The -O task1 option is compatible with all vectorization and scalar
optimization levels.

The default is -O task1.

3.19.24 -O unrolln

The -O unrolln option globally controls loop unrolling and changes the
assertiveness of the UNROLL directive. By default, the compiler attempts to
unroll all loops, unless the NOUNROLL directive is specified for a loop. Generally,
unrolling loops increases single processor performance at the cost of increased
compile time and code size.

The n argument allows you to turn loop unrolling on or off and determine where
unrolling should occur. It also affects the assertiveness of the UNROLL directive.
Use one of these values for n:

0 No unrolling (ignore all UNROLL directives and do not attempt to
unroll other loops)

1 Attempt to unroll loops that are marked by the UNROLL
directive. That is, the compiler will unroll the loop if there is
proof that the loop will benefit by unrolling.

2 (default)

Attempt to unroll all loops (includes array syntax implied loops),
except those marked with the NOUNROLL directive.

For more information about unrolling loops, see Optimizing Applications on
Cray X1 Series Systems.

58 S–3901–60

Invoking the Cray Fortran Compiler [3]

3.19.25 -O vectorn

The -O vectorn option specifies these levels of vectorization:

• -O vector0 specifies very conservative vectorization. Characteristics
include low compile time and small compile size.

The -O vector0 option is compatible with all scalar optimization levels
and with task0 or task1. Vector code is generated for most array syntax
statements but not for user-coded loops.

• -O vector1 specifies conservative vectorization. Characteristics include
moderate compile time and size. Loop nests are restructured if scalar level >
0. Only inner loops are vectorized. No vectorizations that might create false
exceptions are performed.

The -O vector1 option is compatible with -O task0 or -O task1 and
with -O scalar1, -O scalar2, -O scalar3, or -O stream1 (X1 only) .

• -O vector2 specifies moderate vectorization. Characteristics include
moderate compile time and size. Loop nests are restructured.

The -O vector2 option is compatible with -O scalar2 or -O scalar3
and with -O task0, -O task1, -O stream0 (X1 only), -O stream1 (X1
only), and -O stream2 (X1 only).

This is the default vectorization level.

• -O vector3 specifies aggressive vectorization. Characteristics include
potentially high compile time and size. Loop nests are restructured.
Vectorizations that might create false exceptions in rare cases may be
performed.

The -O vector3 option is compatible with -O scalar2, -O scalar3, -O
stream2 (X1 only), and -O stream3 (X1 only) and with all tasking levels.

3.19.26 -O zeroinc, -O nozeroinc

The -O zeroinc option causes the compiler to assume that a constant increment
variable (CIV) can be incremented by zero. A CIV is a variable that is incremented
only by a loop invariant value. For example, in a loop with variable J, the
statement J = J + K, where K can be equal to zero, J is a CIV. -O zeroinc can
cause less strength reduction to occur in loops that have variable increments.

The default is -O nozeroinc, which means that you must prevent zero
incrementing.

S–3901–60 59

Cray® Fortran Reference Manual

3.19.27 -O -h profile_generate

The profile_generate option lets you request that the source code be
instrumented for profile information gathering. The compiler will insert calls and
data gathering instructions to allow CPAT to gather information about the loops
in a compilation unit. In order to actually get data out of this feature CPAT must
be run on the resulting executable to link in the CPAT data gathering routines. If
executable is not run through CPAT the inserted code will still execute, however,
the gathered data will not be recorded. See the CPAT manuals for how to extract
useful information for this feature.

3.19.28 -O -h profile_data=pgo_opt

The profile_data option instructs the compiler how to treat !PGO$ directives.
There are two pgo_opt levels: sample and absolute. The default value is
sample. Sample tells the compiler to treat the !PGO$ directive as information
gathered from a sample program. This will keep the compiler from performing
unsafe optimizations with the data. Absolute tells the compiler to treat the
!PGO$ as representing the only data set that the program will ever see; this is
intended for program units that either always are called with the same arguments
or when it is known that the data set will not change from the experimental
runs. The new directive !PGO$ loop_info is a special form of the directive !DIR$
loop_info; it tags the information as having come from profiling.

3.20 -o out_file

The -o out_file option overrides the default executable file name, a.out,
with the name specified by the out_file argument.

If the -o out_file option is specified on the command line along with the
-c option, the load step is disabled and the binary file is written to the out_file
specified as an argument to -o. For more information about the -c option, see
Section 3.3, page 17.

3.21 -p module_site

The -p module_site option tells the compiler where to look for Fortran
modules to satisfy USE statements.

60 S–3901–60

Invoking the Cray Fortran Compiler [3]

Note: The compiler will automatically search for modules you stored in the
directories specified by the -J dir_name option of the current compilation.
You do not need to explicitly use the -p option to have the compiler do this.
The compiler will specify a -p option with the dir_name path and place it on
the end of the command line.

The module_site argument specifies the name of a binary file or directory to search
for modules. The module_site specified can be an archive file, build file (bld file),
or binary file (.o).

When searching files, the compiler searches files suffixed with .o (file.o) or
library files suffixed with .a (lib.a) containing one or more modules. When
searching a directory, the compiler searches files in the named directory that are
suffixed with .o or .a, or if the -e m option is specified, the compiler searches
.mod files. After searching the directory named in module_site, the compiler
searches for modules in the current directory.

File name substitution (such as *.o) is not allowed. If the path name begins
with a slash (/), the name is assumed to be an absolute path name. Otherwise,
it is assumed to be a path name relative to the working directory. If you need
to specify multiple binary files, library files, or directories, you must specify a
-p option for each module_site. There is no limit on the number of -p options
that you can specify. The compiler searches the binary files, library files, and
directories in the order specified.

Cray provides some modules as part of the Cray Fortran Compiler Programming
Environment. These are referred to as system modules. The system files that
contain these modules are searched last.

Example 1: Consider the following command line:

% ftn -p steve.o -p mike.o joe.f

Assume that steve.o contains a module called Rock and mike.o contains
a module called Stone. A reference to use Rock in joe.f causes the compiler
to use Rock from steve.o. A reference to Stone in joe.f causes the compiler
to use Stone from mike.o.

Example 2: The following example specifies binary file murphy.o and library
file molly.a:

% ftn -p murphy.o -p molly.a prog.f

S–3901–60 61

Cray® Fortran Reference Manual

Example 3: In this example, assume that the following directory structure exists
in your home directory:

programs

/ | \

tests one.f two.f

|

use_it.f

The following module is in file programs/one.f, and the compiled version
of it is in programs/one.o:

MODULE one

INTEGER i

END MODULE

The next module is in file programs/two.f, and the compiled version of it is
in programs/two.o:

MODULE two

INTEGER j

END MODULE

The following program is in file programs/tests/use_it.f:

PROGRAM demo

USE one

USE two

. . .

END PROGRAM

To compile use_it.f, enter the following command from your home directory,
which contains the subdirectory programs:

% ftn -p programs programs/tests/use_it.f

62 S–3901–60

Invoking the Cray Fortran Compiler [3]

Example 4: In the next set of program units, a module is contained within the
first program unit and accessed by more than one program unit. The first file,
progone.f, contains the following code:

MODULE split

INTEGER k

REAL a

END MODULE

PROGRAM demopr

USE split

INTEGER j

j = 3

k = 1

a = 2.0

CALL suba(j)

PRINT *, 'j=', j

PRINT *, 'k=', k

PRINT *, 'a=', a

END

The second file, progtwo.f, contains the following code:

SUBROUTINE suba(l)

USE split

INTEGER l

l = 4

k = 5

CALL subb(l)

RETURN

END

SUBROUTINE subb(m)

USE split

INTEGER m

m = 6

a = 7.0

RETURN

END

Use the following command line to compile the two files with one ftn command
and a relative pathname:

% ftn -p progone.o progone.f progtwo.f

S–3901–60 63

Cray® Fortran Reference Manual

When the -e m option is in effect, you can use the -p module_site option to
specify one or more directories that contain module files rather than specifying
every individual module file name.

3.22 -Q path

The -Q option specifies the directory that will contain all saved nontemporary
files from this compilation (for example, all .o and .mod files). Specific file types
(like .o files) are saved to a different directory if the -b, -J, -o, or -S option is
specified.

The following examples use this directory structure:

current_dir

| | |

| | |

| | |

bin_out mod_out all_out

The following example saves all nontemporary files (x.o and any .mod files) in
the current directory:

% ftn -b x.o -em x.f90

The following example saves all nontemporary files in the all_out directory
and x.o in the current directory.

% ftn -Q all_out -em -b x.o x.f90

The following example saves the x.o file to the bin_out and all .mod files to
the all_out directory.

% ftn -Q all_out -b bin_out/x.o -em x.f90

The following example saves the a.out file to the all_out and all .mod files to
the mod_out directory.

% ftn -Q all_out -J mod_out x.f90

3.23 -r list_opt

The -r list_opt option generates a listing. The list_opt argument produces
listings with commonly needed information.

64 S–3901–60

Invoking the Cray Fortran Compiler [3]

If one or more input files are specified on the compiler command line, the listing
is placed in file.lst.

If the -C option is specified with the -r list_opt option, the -C option is
overridden and a warning message is generated.

The arguments for list_opt are shown below.

Note: Options a, c, l, m, o, s, and x invoke the ftnlx command. Option
d provides a decompiled listing and is not CIF based. Option T retains the
CIF. Options b, e, p, and w change the appearance of the listing produced by
ftnlx.

list_opt Listing type

-r a Includes all reports in the listing (including source, cross
references, lint, loopmarks, common block, and options used
during compilation). For more information about loopmarks, see
Optimizing Applications on Cray X1 Series Systems.

-r b Adds page breaks and headers to the listing report.

-r c Listing includes a report of all COMMON blocks and all members
of each common block. It also shows the program units that use
the COMMON blocks.

-r d Decompiles (translates) the intermediate representation of the
compiler into listings that resemble the format of the source code.
This is performed twice, resulting in two output files, at different
points during the optimization process. You can use these files to
examine the restructuring and optimization changes made by the
compiler, which can lead to insights about changes you can make
to your Fortran source to improve its performance.

The compiler produces two decompilation listing files with
these extensions per specified source file: .opt and .cg. The
compiler generates the .opt file after applying most high level
loop nest transformations to the code. The code structure of this
listing most resembles your Fortran code and is readable by most
users. In some cases, because of optimizations, the structure of
the loops and conditionals will be significantly different than the
structure in your source file.

S–3901–60 65

Cray® Fortran Reference Manual

The .cg file contains a much lower level of decompilation. It is
still displayed in a Fortran-like format, but is quite close to what
will be produced as assembly output. This version displays the
intermediate text after all multistreaming translation (X1 only),
vector translation, and other optimizations have been performed.
An intimate knowledge of the hardware architecture of the
system is helpful to understanding this listing.

The .opt and .cg files are intended as a tool for performance
analysis, and are not valid Fortran source code. The format and
contents of the files can be expected to change from release to
release.

The following examples (for the X2) show the listings generated
when -rd is applied to this example:

Note: The column of numbers in the left-hand side of the
.opt and .cg files refer to the line number in the Fortran
source file.

!Source code, in file example.f:

subroutine example(a, b, c)

real a(*), b(*), c(*)

do i = 1,100

a(i) = b(i) * c(i)

enddo

end

Enter the following command:

% ftn -c -rd example.f

66 S–3901–60

Invoking the Cray Fortran Compiler [3]

This is the listing of the example.opt file after loop
optimizations are performed:

1. subroutine example(a, b, c)

3. $Induc01_N4 = 0

3. !dir$ ivdep

3. do

4. A(1 + $Induc01_N4) = C(1 + $Induc01_N4) * B(1 +

4. . $Induc01_N4)

5. $Induc01_N4 = 1 + $Induc01_N4

3. if ($Induc01_N4 >= 100) exit

3. enddo

6. return

6. end

This is the listing of the example.cg file after other
optimizations are performed:

1. subroutine example(a, b, c)

3. ! === Begin Short Vector Loop ===

4. 0[loc(A):100:1] = 0[loc(B):100:1] * 0[loc(C):100:1]

3. ! === End Short Vector Loop ===

6. return

6. end

Note: The entire subroutine is multistreamed.

-r e Expands included files in the source listing.

This option is off by default.

-r l Lists source code and includes lint style checking. The listing
includes the COMMON block report (see the -r c option for more
information about the COMMON block report).

-r m Produces a source listing with loopmark information. To provide
a more complete report, this option automatically enables the -O
negmsg option to show why loops were not optimized. If you
do not require this information, use the -O nonegmsg option on
the same command line.

Loopmark information will not be displayed if the -d B option
has been specified.

-r o Show in the list file all options used by the compiler at compile
time.

S–3901–60 67

Cray® Fortran Reference Manual

-r s Lists source code and messages. Error and warning messages
are interspersed with the source lines. Optimization messages
appear after each program unit. Produces 80-column output by
default.

-r T Retains file.T after processing rather than deleting it. This option
may be specified in addition to any of the other options. For
more information about file.T, see the -C option.

-r w Produces 132-column output, which, when specified in
conjunction with -r s or -r x, overrides the 80-column output
that those options produce by default.

You can specify -r w in conjunction with either the -r s option
or the -r x option. Specifying -r w in conjunction with any
other -r listing option generates a warning message.

-r x Generates a cross-reference listing. Produces 80-column output
by default.

3.24 -R runchk

The -R runchk option lets you specify any of a group of run-time checks for
your program. To specify more than one type of checking, specify consecutive
runchk arguments, such as: -R ab.

Note: Performance is degraded when run-time checking is enabled. This
capability, though useful for debugging, is not recommended for production
runs.

The run-time checks available are as follows:

runchk Checking performed

a Compares the number and types of arguments passed to a
procedure with the number and types expected.

Note: When -R a is specified, some pattern matching may
be lost because some of the library calls typically found in
the generated code may not be present. This occurs when
-R a is specified in conjunction with one of the following
other options: -O 2 (the default optimization level), -O 3,
-O ipa2, -O ipa3, -O ipa4 or -O ipa5.

68 S–3901–60

Invoking the Cray Fortran Compiler [3]

b Enables checking of array bounds. If a problem is detected at
run time, a message is issued but execution continues. The
NOBOUNDS directive overrides this option. For more information
about NOBOUNDS, see Section 5.6.1, page 130.

Note: Bounds checking behavior differs with the optimization
level. At the default optimization level, -O 2, some run-time
checking is inhibited. Complete checking is guaranteed only
when optimization is turned off by specifying -O 0 on the
ftn command line.

c Enables conformance checking of array operands in array
expressions. Even without the -R option, such checking is
performed during compilation when the dimensions of array
operands can be determined.

C Passes a descriptor for the actual arguments as an extra
argument to the called routine and sets a flag to signal the called
routine that this descriptor is included.

d Enables directive checking at run-time. Errors detected at
compile time are reported during compilation and so are not
reported at run-time. The following directives are checked:
collapse, shortloop, shortloop128, and the loop_info
clauses min_trips and max_trips. Violation of a run-time check
results in an immediate fatal error diagnostic.

E Creates a descriptor for the dummy arguments at each entry
point and tests the flag from the caller to see if argument
checking should be performed. If the flag is set, the argument
checking is done.

M msgnum[,msgnum]...

Suppresses one or more specific run-time argument checking
messages.

This suboption cannot be specified along with any other -R
options. For example, if you want to specify -Ra and -RM, you
must specify them as two separate options to the ftn command,
as follows:

ftn -RM1640 -Ra otter.f.

S–3901–60 69

Cray® Fortran Reference Manual

You can use a comma to separate multiple message numbers. In
the following example, run-time argument checking is enabled,
but messages 1953 and 1946 are suppressed:

ftn -Ra -RM1953,1946 raccoon.f

n Compares the number of arguments passed to a procedure with
the number expected. Does not make comparisons with regard
to argument data type (see -R a).

p Generates run-time code to check the association or allocation
status of referenced POINTER variables, ALLOCATABLE arrays, or
assumed-shape arrays. A warning message is issued at run time
for references to disassociated pointers, unallocated allocatable
arrays, or assumed shape dummy arguments that are associated
with a pointer or allocatable actual argument when the actual
argument is not associated or allocated.

s Enables checking of character substring bounds. This option
behaves similarly to option -R b.

Note: Bounds checking behavior differs with the optimization
level. At the default optimization level, -O 2, some run-time
checking is inhibited. Complete checking is guaranteed only
when optimization is turned off by specifying -O 0 on the
ftn command line.

If argument checking is to be done for a particular call, the calling routine must
have been compiled with either -R a or -R C and the called routine must have
been compiled with either -R a or -R E. -R a is equivalent to -R CE. The
separation of -R a into -R C and -R E allows some control over which calls
are checked.

Libraries can be compiled with -R E. If the program that is calling the libraries
is compiled with either -R a or -R C, library calls are checked. If the calling
routines are not compiled with -R a or -R C, no checking occurs.

Slight overhead is added to each entry sequence compiled with -R E or -R a
and to each call site compiled with -R C or -R a. If a call site passes the extra
information to an entry that is compiled to perform checking, the checking itself
costs a few thousand clock periods per call. This cost depends on the number of
arguments at the call.

70 S–3901–60

Invoking the Cray Fortran Compiler [3]

Some nonstandard code behaves differently when argument checking is used.
Different behavior can include run-time aborts or changed results. The following
example illustrates this:

CALL SUB1(10,15)

CALL SUB1(10)

END

SUBROUTINE SUB1(I,K)

PRINT *,I,K

END

Without argument checking, if the two calls in this example share the same stack
space for arguments, subroutine SUB1 prints the values 10 and 15 for both calls.
However, with argument checking enabled, an extra argument is added to the
argument list, overwriting any previous information that was there. In this case,
the second call to SUB1 prints 10, followed by an incorrect value.

If full argument checking is enabled by -R a, a message reporting the
mismatch in the number of arguments is issued. This problem occurs only with
nonstandard code in which the numbers of actual and dummy arguments do
not match.

3.25 -s size

The -s size option allows you to modify the sizes of variables, literal constants,
and intrinsic function results declared as type REAL, INTEGER, LOGICAL,
COMPLEX, DOUBLE COMPLEX, or DOUBLE PRECISION. Use one of these for size:

size Action

byte_pointer

(Default) Applies a byte scaling factor to integers used in pointer
arithmetic involving Cray pointers. That is, Cray pointers are
moved on byte instead of word boundaries. Pointer arithmetic
scaling is explained in Section 3.25.2, page 74.

S–3901–60 71

Cray® Fortran Reference Manual

default32

(Default) Adjusts the data size of default types as follows:

• 32 bits: REAL, INTEGER, LOGICAL

• 64 bits: COMPLEX, DOUBLE PRECISION

• 128 bits: DOUBLE COMPLEX

Note: The data sizes of integers and logicals that use explicit
kind and star values are not affected by this option. However,
they are affected by the -e h option. See Section 3.5, page 18.

default64

Adjust the data size of default types as follows:

• 64 bits: REAL, INTEGER, LOGICAL

• 128 bits: COMPLEX, DOUBLE PRECISION

• 256 bits: DOUBLE COMPLEX

If you used the -s default64 at compile time, you must also
specify this option when invoking the ftn command to call the
loader.

Note: The data sizes of integers and logicals that use explicit
kind and star values are not affected by this option. However,
they are affected by the -eh option. See Section 3.5, page 18.

integer32 (Default) Adjusts the default data size of default integers and
logicals to 32 bits.

integer64 Adjusts the default data size of default integers and logicals to
64 bits.

real32 (Default) Adjusts the default data size of default real types as
follows:

• 32 bits: REAL

• 64 bits: COMPLEX and DOUBLE PRECISION

• 128 bits: DOUBLE COMPLEX

72 S–3901–60

Invoking the Cray Fortran Compiler [3]

real64 Adjusts the default data size of default real types as follows:

• 64 bits: REAL

• 128 bits: COMPLEX and DOUBLE PRECISION

• 256 bits: DOUBLE COMPLEX

word_pointer

Applies a word scaling factor to integers used in pointer
arithmetic involving Cray pointers. That is, Cray pointers are
moved on word instead of byte boundaries. Pointer arithmetic
scaling is explained later in Section 3.25.2, page 74.

The default data size options (for example, -s default64) option does not
affect the size of data that explicitly declare the size of the data (for example,
REAL(KIND=4) R.

3.25.1 Different Default Data Size Options on the Command Line

You must be careful when mixing different default data size options on the
same command line because equivalencing data of one default size with data of
another default size can cause unexpected results. For example, assume that the
following command line is used for a program:

% ftn -s default64 -s integer32 ...

S–3901–60 73

Cray® Fortran Reference Manual

The mixture of these default size options causes the program below to
equivalence 32-bit integer data with 64-bit real data and to incompletely clear
the real array.

Program test

IMPLICIT NONE

real r

integer i

common /blk/ r(10), i(10)

integer overlay(10)

equivalence (overlay, r)

call clear(overlay)

call clear(i)

contains

subroutine clear(i)

integer, dimension (10) :: i

i = 0

end subroutine

end program test

The above program sets only the first 10 32-bit words of array r to zero. It should
instead set 10 64-bit words to zero.

3.25.2 Pointer Scaling Factor

You can specify that the compiler apply a scaling factor to integers used in
pointer arithmetic involving Cray pointers so that the pointer is moved to the
proper word or byte boundary. For example, the compiler views this code
statement:

Cray_ptr = Cray_ptr + integer_value

as

Cray_ptr = Cray_ptr + (integer_value * scaling_factor)

74 S–3901–60

Invoking the Cray Fortran Compiler [3]

The scaling factor is dependent on the size of the default integer and which
scaling option (-s byte_pointer or -s word_pointer) is enabled.

Table 5. Scaling Factor in Pointer Arithmetic

Scaling Option Default Integer Size Scaling Factor

-s byte_pointer 32 or 64 bits 1

-s word_pointer and -s default32 enabled 32 bits 4

-s word_pointer and -s default64 enabled 64 bits 8

Therefore, when the -s byte_pointer option is enabled, this example
increments ptr by i bytes:

pointer (ptr, ptee) !Cray pointer

ptr = ptr + i

When the -s word_pointer and -s default32 options are enabled, the
same example is viewed by the compiler as:

ptr = ptr + (4*i)

When the -s word_pointer and -s default64 options are enabled, the
same example is viewed by the compiler as:

ptr = ptr + (8*i)

3.26 -S asm_file

The -S asm_file option specifies the assembly language output file name.
When -S asm_file is specified on the command line with either the -e S
or -b bin_obj_file options, the -e S and -b bin_obj_file options are
overridden.

3.27 -T

The -T option disables the compiler but displays all options currently in effect.
The Cray Fortran compiler generates information identical to that generated
when the -v option is specified on the command line; when -T is specified,
however, no processing is performed. When this option is specified, output is
written to the standard error file (stderr).

S–3901–60 75

Cray® Fortran Reference Manual

3.28 -U identifier [,identifier] ...

The -U identifier [,identifier] ... option undefines variables used for
source preprocessing. This option removes the initial definition of a predefined
macro or sets a user predefined macro to an undefined state.

The -D identifier [=value] option defines variables used for source
preprocessing. If both -D and -U are used for the same identifier, in any order, the
identifier is undefined. For more information about the -D option, see Section
3.6, page 26.

This option is ignored unless one of the following conditions is true:

• The Fortran input source file is specified as either file.F, file.F90, file.FTN.

• The -e P or -e Z options have been specified.

For more information about source preprocessing, see Chapter 7, page 157.

3.29 -v

The -v option sends compilation information to the standard error file (stderr).
The information generated indicates the compilation phases as they occur and all
options and arguments being passed to each processing phase.

3.30 -V

The -V option displays to the standard error file (stderr) the release version of
the ftn command. Unlike all other command-line options, you can specify this
option without specifying an input file name; that is, specifying ftn -V is valid.

3.31 -Wa"assembler_opt"

The -Wa"assembler_opt" option passes assembler_opt directly to the
assembler. For example, -Wa"-h" passes the -h option directly the as command,
directing it to enable all pseudos, regardless of location field name. This option is
meaningful to the system only when file.s is specified as an input file on the
command line. For more information about assembler options, see the as(1)
man page.

76 S–3901–60

Invoking the Cray Fortran Compiler [3]

3.32 -Wl"loader_opt"

The -Wl"loader_opt" option passes loader_opt directly to the loader. For
example, specifying -Wl"-m" passes the argument -m directly to the loader's -m
option. For more information about loader options, see the ld(1) man page.

Note: Cray recommends that you use the compiler to invoke the loader,
because the compiler calls the loader with the appropriate default libraries.
The appropriate default libraries may change from release to release.

3.33 -Wr"lister_opt"

The -Wr"lister_opt" option passes lister_opt directly to the ftnlx command.
For example, specifying -Wr"-o cfile.o" passes the argument cfile.o
directly to the ftnlx command's -o option; this directs ftnlx to override the
default output listing and put the output file in cfile.o. If you specify the
-Wr"lister_opt" option, you must specify the -r list_opt option. For
more information about options, see the ftnlx man page.

3.34 -x dirlist

The -x dirlist option disables specified directives or specified classes of
directives. If specifying a multiword directive, either enclose the directive name
in quotation marks or remove the spaces between the words in the directive's
name.

S–3901–60 77

Cray® Fortran Reference Manual

For dirlist, enter one of the following arguments:

dirlist Item disabled

all All compiler directives, OpenMP Fortran directives, and CSDs.
For information about the OpenMP directives or CSDs see
Chapter 8, page 167 or Chapter 6, page 143 respectively.

csd All CSDs. See Chapter 6, page 143.

dir All compiler directives.

directive One or more compiler directives or OpenMP Fortran directives.
If specifying more than one, separate them with commas; for
example: -x INLINEALWAYS,"NO SIDE EFFECTS",BOUNDS.

omp All OpenMP Fortran directives.

conditional_omp

All C$ and !$ conditional compilation lines.

3.35 -X npes

The -X npes option specifies the number of processing elements (PEs) to use
during execution. The value for npes ranges from 1 through 4096 inclusive.

Note: (X1 only) Programs compiled with the -X option can be executed
without using the aprun command. If this command is used for these
programs, you must specify to this command the same number of processors
(npes) specified at compile time.

N$PES is a special symbol whose value is equal to the number of PEs available to
your program. When the -X npes option is specified at compile time, the N$PES
constant is replaced by integer value npes.

The N$PES constant can be used only in either of these situations:

• The -X npes option is specified on the command line, or

• The value of the expression containing the N$PES constant is not known until
run time (that is, it can only be used in run-time expressions)

78 S–3901–60

Invoking the Cray Fortran Compiler [3]

One of the many uses for the N$PES symbol is illustrated in the following
example, which declares the size of an array within a subroutine to be dependent
upon the number of processors:

SUBROUTINE WORK

DIMENSION A(N$PES)

Using the N$PES symbol in conjunction with the -X npes option allows the
programmer to program the number of PEs into a program in places that do not
accept run-time values. Specifying the number of PEs at compile time can also
enhance compiler optimization.

3.36 -Yphase,dirname

The -Yphase,dirname option specifies a new directory (dirname) from which
the designated phase should be executed. phase can be one or more of the values
shown in Table 6.

Table 6. -Yphase Definitions

phase System phase Command

0 Compiler ftn

a Assembler as

l Loader ld

3.37 -Z

The -Z option enables the compiler to recognize co-array syntax. Co-arrays are a
syntactic extension to the Fortran language that offers a method for performing
data passing. (Co-arrays are discussed in detail in Chapter 10.)

Data passing is an effective method for programming
single-program-multiple-data (SPMD) parallel computations. Its chief
advantages over message passing are lower latency and higher bandwidth
for data transfers, both of which lead to improved scalability for parallel
applications.

Compared to MPI and SHMEM, co-arrays provide enhanced readability and,
thus, increased programmer productivity. As a language extension, the code can
also be conditionally analyzed and optimized by the compiler.

S–3901–60 79

Cray® Fortran Reference Manual

3.38 --

The -- symbol signifies the end of options. After this symbol, you can specify
files to be processed. This symbol is optional. It may be useful if your input file
names begin with one or more dash (-) characters.

3.39 sourcefile[sourcefile.suffix ...]

The sourcefile[sourcefile.suffix ...] option names the file or files
to be processed. The file suffixes indicate the content of each file and determine
whether the preprocessor, compiler, assembler, or loader will be invoked.

Preprocessor

Files having the F, F90, or FTN suffix invoke the preprocessor.

Compiler Fortran source files having the following prefixes invoke the
compiler:

• .f or .F, indicates a fixed source form file.

• .f90, .F90, .ftn, .FTN, indicates a free source form file.

Note: The source form specified on the -f source_form
option overrides the source form implied by the file
suffixes.

Loader Files with a .o extension (object files) invoke the loader. If only
one source file is specified on the command line, the .o file is
created and deleted. To retain the .o file, use the -c option to
disable the loader.

You can specify object files produced by the Cray Fortran, C,
C++, or assembler compilers. Object files are passed to the loader
in the order in which they appear on the ftn command line. If
the loader is disabled by the -b or -c option, no files are passed
to the loader.

The loader allows other file types. See the -e m option in the ld man page for
more information about these files.

80 S–3901–60

Environment Variables [4]

Environment variables are predefined shell variables, taken from the execution
environment, that determine some of your shell characteristics. Several
environment variables pertain to the Cray Fortran compiler. The Cray Fortran
compiler recognizes general and multiprocessing environment variables.

The multiprocessing variables in the following sections affect the way your
program will perform on multiple processors. Using environment variables lets
you tune the system for parallel processing without rebuilding libraries or other
system software.

The variables allow you to control parallel processing at compile time and at run
time. Compile time environment variables apply to all compilations in a session.

The following examples show how to set an environment variable:

• With the standard shell, enter:

CRAY_FTN_OPTIONS=options

export CRAY_FTN_OPTIONS

• With the C shell, enter:

setenv CRAY_FTN_OPTIONS options

The following sections describe the environment variables recognized by the
Cray Fortran compiler.

Note: Many of the environment variables described in this chapter refer to the
default system locations of Programming Environment components. If the
Cray Fortran Compiler Programming Environment has been installed in a
nondefault location, see your system support staff for path information.

4.1 Compiler and Library Environment Variables

The variables described in the following subsections allow you to control parallel
processing at compile time.

S–3901–60 81

Cray® Fortran Reference Manual

4.1.1 CRAY_FTN_OPTIONS Environment Variable

The CRAY_FTN_OPTIONS environment variable specifies additional options to
attach to the command line. This option follows the options specified directly
on the command line. File names cannot appear. These options are inserted at
the right-most portion of the command line before the input files and binary
files are listed. This allows you to set the environment variable once and have
the specified set of options used in all compilations. This is especially useful for
adding options to compilations done with build tools.

For example, assume that this environment variable was set as follows:

setenv CRI_FTN_OPTIONS -G0

With the variable set, the following two command line specifications are
equivalent:

% ftn -c t.f

% ftn -c -G0 t.f

4.1.2 CRAY_PE_TARGET Environment Variable

The CRAY_PE_TARGET environment variable specifies the target_system for
compilation. The command line option -h cpu=target_system takes
precedence over the CRAY_PE_TARGET setting. The acceptable values for
CRAY_PE_TARGET currently are cray-x1, cray-x1e, and cray-x2.

Note: Currently, there are no differences in the code produced for the cray-x1
and cray-x1e targets. This option was created to allow Cray to support
future changes in optimization and code generation based on experience with
the Cray X1E and future hardware platforms. It is possible that compilations
with the -h cpu=cray-x1e option will not be compatible with Cray X1
machines in future releases.

4.1.3 FORMAT_TYPE_CHECKING Environment Variable

The FORMAT_TYPE_CHECKING environment variable specifies various levels of
conformance between the data type of each I/O list item and the formatted data
edit descriptor.

When set to RELAXED, the run-time I/O library enforces limited conformance
between the data type of each I/O list item and the formatted data edit
descriptor.

82 S–3901–60

Environment Variables [4]

When set to STRICT77, the run-time I/O library enforces strict FORTRAN 77
conformance between the data type of each I/O list item and the formatted data
edit descriptor.

When set to STRICT90 or STRICT95, the run-time I/O library enforces strict
Fortran 90/95 conformance between the data type of each I/O list item and the
formatted data edit descriptor.

See the following tables: Table 17, page 202, Table 18, page 203, Table 19,
page 203, and Table 20, page 203.

4.1.4 FORTRAN_MODULE_PATH Environment Variable

Like the Cray Fortran compiler -p module_site command line option, this
environment variable allows you to specify the files or the directory to search
for the modules to use. The files can be archive files, build files (bld file), or
binary files.

The compiler appends the paths specified by the FORTRAN_MODULE_PATH
environment variable to the path specified by the -p module_site command
line option.

Since the FORTRAN_MODULE_PATH environment variable can specify multiple
files and directories, a colon separates each path as shown in the following
example:

% set FORTRAN_MODULE_PATH='path1 : path2 : path3'

4.1.5 LISTIO_PRECISION Environment Variable

The LISTIO_PRECISION environment variable controls the number of digits of
precision printed by list-directed output. The LISTIO_PRECISION environment
variable can be set to FULL or PRECISION.

• FULL prints full precision (default).

• PRECISION prints x or x + 1 decimal digits, where x is value of the
PRECISION intrinsic function for a given real value. This is a smaller number
of digits, which usually ensures that the last decimal digit is accurate to
within 1 unit. This number of digits is usually insufficient to assure that
subsequent input will restore a bit-identical floating-point value.

S–3901–60 83

Cray® Fortran Reference Manual

4.1.6 NLSPATH Environment Variable

The NLSPATH environment variable specifies the message system library catalog
path. This environment variable affects compiler interactions with the message
system. For more information about this environment variable, see catopen(3).

4.1.7 NPROC Environment Variable

The NPROC environment variable specifies the maximum number of processes
to be run. Setting NPROC to a number other than 1 can speed up a compilation
if machine resources permit.

The effect of NPROC is seen at compilation time, not at execution time. NPROC
requests a number of compilations to be done in parallel. It affects all the
compilers and also make.

For example, assume that NPROC is set as follows:

setenv NPROC 2

The following command is entered:

ftn -o t main.f sub.f

In this example, the compilations from .f files to .o files for main.f and sub.f
happen in parallel, and when both are done, the load step is performed. If NPROC
is unset, or set to 1, main.f is compiled to main.o; sub.f is compiled to sub.o,
and then the link step is performed.

You can set NPROC to any value, but large values can overload the system. For
debugging purposes, NPROC should be set to 1. By default, NPROC is 1.

4.1.8 TMPDIR Environment Variable

The TMPDIR environment variable specifies the directory containing the compiler
temporary files. The location of the directory is defined by your administrator
and cannot be changed.

84 S–3901–60

Environment Variables [4]

4.1.9 ZERO_WIDTH_PRECISION Environment Variable

The ZERO_WIDTH_PRECISION environment variable controls the field width
when field width w of Fw.d is zero on output. The ZERO_WIDTH_PRECISION
environment variable can be set to PRECISION or HALF.

• PRECISION specifies that full precision will be written. This is the default.

• HALF specifies that half of the full precision will be written.

4.2 OpenMP Environment Variable

OMP_THREAD_STACK_SIZE is a Cray specific OpenMP environment variable
that affects programs at run time. It changes the size of the thread stack from the
default size of 16 MB to the specified size. The size of the thread stack should be
increased when private variables may utilize more than 16 MB of memory.

(X1 only) The requested thread stack space is allocated from the local heap when
the threads are created. The amount of space used by each thread for thread
stacks depend on whether you are using MSP or SSP mode. In MSP mode,
the memory used is 5 times the specified thread stack size because each SSP is
assigned one thread stack and one thread stack is used as the MSP common stack.
For SSP mode, the memory used is one times the specified thread stack size.

(X1 only) Since memory is allocated from the local heap, you may want to
consider how increasing the size of the thread stacks will affect available space in
the local heap. To adjust the size of the local heap, see the X1_HEAP_SIZE and
X1_LOCAL_HEAP_SIZE environment variables in the memory(7) man page.

(X2 only) The heaps on X2 do not have to be sized statically as they have to be on
the X1 series systems; their sizes are adjusted as needed.

This is the format for the OMP_THREAD_STACK_SIZE environment variable:

OMP_THREAD_STACK_SIZE n

where n is a hex, octal or decimal integer specifying the amount of memory, in
bytes, to allocate for a thread's stack.

For more information about OpenMP API, see Chapter 8, page 167.

S–3901–60 85

Cray® Fortran Reference Manual

4.3 Run Time Environment Variables

Run time environment variables allow you to adjust the following elements of
your run time environment:

• Stack and heap sizes, see the memory(7) man page for more information.

• Default options for automatic aprun, see the CRAY_AUTO_APRUN_OPTIONS
environment variable in the aprun(1) man page.

• (X1 only) Dynamic COMMON block, see the X1_DYNAMIC_COMMON_SIZE
environment variable in the ld(1) man page.

• The field width w of Fw.d when w is zero on output, refer to the
ZERO_WIDTH_PRECISION environment variable in Section 4.1.9, page 85.

86 S–3901–60

Cray Fortran Directives [5]

Directives are lines inserted into source code that specify actions to be performed
by the compiler. They are not Fortran statements.

This chapter describes the Cray Fortran compiler directives. If you specify
a directive while running on a system that does not support that particular
directive, the compiler generates a message and continues with the compilation.

Note: The Cray Fortran compiler also supports the OpenMP Fortran API
directives. See Chapter 8, page 167 for more information.

Section 5.1, page 90 describes how to use the directives and the effects they have
on programs.

Table 7 categorizes the Cray Fortran compiler directives according to purpose
and directs you to the pages containing more details.

For more information about optimization, see Optimizing Applications on Cray X1
Series Systems.

Table 7. Directives

Purpose and Name Description

Vectorization and tasking:

COPY_ASSUMED_SHAPE Copy arrays to temporary storage. For more information, see
Section 5.2.4, page 98.

HAND_TUNED Assert that the loop has been hand-tuned for maximum
performance and restrict automatic compiler optimizations. For
more information, see Section 5.2.5, page 100.

IVDEP Ignore loop vector-dependencies that a loop might have. For
more information, see Section 5.2.6, page 100.

NEXTSCALAR Disable loop vectorization. For more information, see Section
5.2.7, page 101.

PATTERN, NOPATTERN Replace or do not replace recognized code patterns with
optimized library routines. For more information, see Section
5.2.8, page 102.

PERMUTATION Declare that an integer array has no repeating values. For more
information, see Section 5.2.9, page 102.

S–3901–60 87

Cray® Fortran Reference Manual

Purpose and Name Description

PIPELINE Attempt to force or inhibit software-based vector pipelining. For
more information, see Section 5.2.18, page 115.

PREFERVECTOR Vectorize nested loops. For more information, see Section 5.2.10,
page 103.

PROBABILITY Suggest the probability of a branch being executed. For more
information, see Section 5.2.11, page 104.

SAFE_ADDRESS Speculatively execute memory references within a loop. For more
information, see Section 5.2.12, page 105.

SAFE_CONDITIONAL Speculatively execute memory references and arithmetic
operations within a loop. For more information, see Section
5.2.13, page 106.

SHORTLOOP, SHORTLOOP128 Eliminate testing of conditional statements that terminate a
loop for short loops. For more information, see Section 5.2.14,
page 107.

LOOP_INFO Provide loop count and cache allocation information to the
optimizer to produce faster code sequences. This directive can be
used to replace SHORTLOOP, SHORTLOOP128, NO_CACHE_ALLOC,
or CACHE_SHARED. For more information, see Section 5.2.15,
page 108.

UNROLL, NOUNROLL Unroll or do not unroll loops to improve performance. For more
information, see Section 5.2.16, page 112.

VECTOR, NOVECTOR Vectorize or do not vectorize loops and array statements. For
more information, see Section 5.2.17, page 115.

VFUNCTION Declare the existence of a vectorized external function. For more
information, see Section 5.2.19, page 116.

Multistreaming Processor (MSP) optimization (X1 only):

PREFERSTREAM Optimize the loop following the PREFERSTREAM directive, for
cases where the compiler could perform MSP optimizations on
more than one loop in a loop nest. For more information, see
Section 5.3.1, page 118.

SSP_PRIVATE Optimize loops containing procedural calls. See Section 5.3.2,
page 118.

STREAM, NOSTREAM Optimize or do not optimize loops and arrays. For more
information, see Section 5.3.3, page 120.

88 S–3901–60

Cray Fortran Directives [5]

Purpose and Name Description

Inlining:

CLONE, NOCLONE Attempt cloning or do not attempt cloning at call sites. For more
information, see Section 5.4.1, page 121.

INLINE, NOINLINE Attempt to inline or do not attempt to inline call sites. For more
information, see Section 5.4.2, page 122.

INLINENEVER, INLINEALWAYS Never or always inline the specified procedures. For more
information, see Section 5.4.3, page 122.

MODINLINE, NOMODINLINE Enable or disable inlineable templates for the designated
procedures. For more information, see Section 5.4.4, page 123.

Scalar optimization:

INTERCHANGE, NOINTERCHANGE Interchange or do not interchange the order of the loops. For
more information, see Section 5.5.1, page 125.

NOSIDEEFFECTS Tell the compiler that the data in the registers will not change
when calling the specified subprogram. For more information, see
Section 5.5.3, page 128.

SUPPRESS Suppress scalar optimization of specified variables. For more
information, see Section 5.5.4, page 129.

Local use of compiler features:

BOUNDS, NOBOUNDS Check or do not check the bounds of array references. For more
information, see Section 5.6.1, page 130.

FREE, FIXED Specify that the source uses a free or fixed format. For more
information, see Section 5.6.2, page 132.

Storage:

BLOCKABLE Specify that it is legal to cache block subsequent loops. For more
information, see Section 5.7.1, page 133.

BLOCKINGSIZE, NOBLOCKING Assert that the loop following the directive is or is not involved in
cache blocking. For more information, see Section 5.7.2, page 133.

STACK Allocate variables on the stack. For more information, see Section
5.7.3, page 135.

Miscellaneous:

CONCURRENT Convey user-known array dependencies to the compiler. For
more information, see Section 5.8.1, page 136.

S–3901–60 89

Cray® Fortran Reference Manual

Purpose and Name Description

FUSION, NOFUSION Allow you to fine-tune the selection of which DO loops the
compiler should attempt to fuse. For more information, see
Section 5.8.2, page 137.

ID Insert an identifier string into the .o file. For more information,
see Section 5.8.3, page 137.

IGNORE_TKR Ignore the type, kind, and rank (TKR) of specified dummy
arguments of a procedure interface. For more information, see
Section 5.8.4, page 139.

NAME Define a name that uses characters that are outside of the Fortran
character set. See Section 5.8.5, page 140.

CACHE_EXCLUSIVE Asserts that all vector loads with the specified symbols as the base
are to be made using cache-exclusive instructions. See Section
5.2.1, page 97.

NO_CACHE_ALLOC Suggest data objects that should not be placed into the cache. See
Section 5.2.3, page 98.

CACHE_SHARED Asserts that all vector loads with the specified symbols as the
base are to be made using cache-shared instructions. For more
information, see Section 5.2.2, page 97.

WEAK Define a procedure reference as weak. See Section 5.8.7, page 141.

5.1 Using Directives

This section describes how to use the directives and the effects they have on
programs.

90 S–3901–60

Cray Fortran Directives [5]

5.1.1 Directive Lines

A directive line begins with the characters CDIR$ or !DIR$. How you specify
directives depends on the source form you are using, as follows:

• If you are using fixed source form, indicate a directive line by placing
the characters CDIR$ or !DIR$ in columns 1 through 5. If the compiler
encounters a nonblank character in column 6, the line is assumed to be a
directive continuation line. Columns 7 and beyond can contain one or more
directives. Characters in directives entered in columns beyond the default
column width are ignored.

• If you are using free source form, indicate a directive by the characters !DIR$,
followed by a space, and then one or more directives. If the position following
the !DIR$ contains a character other than a blank, tab, or newline character,
the line is assumed to be a continuation line. The !DIR$ need not start in
column 1, but it must be the first text on a line.

In the following example, an asterisk (*) appears in column 6 to indicate that the
second line is a continuation of the preceding line:

!DIR$ Nosideeffects

!DIR$*ab

The FIXED and FREE directives must appear alone on a directive line and cannot
be continued.

If you want to specify more than one directive on a line, separate each directive
with a comma. Some directives require that you specify one or more arguments;
when specifying a directive of this type, no other directive can appear on the line.

Spaces can precede, follow, or be embedded within a directive, regardless of
source form.

Code portability is maintained despite the use of directives. In the following
example, the ! symbol in column 1 causes other compilers to treat the Cray
Fortran compiler directive as a comment:

A=10.

!DIR$ NOVECTOR

DO 10,I=1,10...

Do not use source preprocessor (#) directives within multiline compiler directives
(CDIR$ or !DIR$).

S–3901–60 91

Cray® Fortran Reference Manual

5.1.2 Range and Placement of Directives

The range and placement of directives are as follows:

• The FIXED and FREE directives can appear anywhere in your source code.
All other directives must appear within a program unit.

• These directives must reside in the declarative portion of a program unit and
apply only to that program unit:

– CACHE_SHARED

– CACHE_EXCLUSIVE

– COPY_ASSUMED_SHAPE

– COERCE_KIND

– IGNORE_RANK

– IGNORE_TKR

– INLINEALWAYS, INLINENEVER

– NAME

– NO_CACHE_ALLOC

– NOSIDEEFFECTS

– STACK

– SSP_PRIVATE (X1 only)

– SYMMETRIC

– SYSTEM_MODULE

– VFUNCTION

– WEAK

• The following directives toggle a compiler feature on or off at the point at
which the directive appears in the code. These directives are in effect until the
opposite directive appears, until the directive is reset, or until the end of the
program unit, at which time the command line settings become the default
for the remainder of the compilation.

– BOUNDS, NOBOUNDS

92 S–3901–60

Cray Fortran Directives [5]

– CLONE, NOCLONE

– INLINE, NOINLINE

– INTERCHANGE, NOINTERCHANGE

– PATTERN, NOPATTERN

– STREAM, NOSTREAM

– VECTOR, NOVECTOR

• The SUPPRESS directive applies at the point at which it appears.

• The ID directive does not apply to any particular range of code. It adds
information to the file.o generated from the input program.

• The following directives apply only to the next loop or block of code
encountered lexically:

– BLOCKABLE

– BLOCKINGSIZE, NOBLOCKING

– CONCURRENT

– HAND_TUNED

– INTERCHANGE, NOINTERCHANGE

– IVDEP

– NEXTSCALAR

– PERMUTATION

– PIPELINE, NOPIPELINE

– PREFERSTREAM

– PREFERVECTOR

– PROBABILITY

– SAFE_ADDRESS

– SAFE_CONDITIONAL

S–3901–60 93

Cray® Fortran Reference Manual

– SHORTLOOP, SHORTLOOP128

– LOOP_INFO

– UNROLL, NOUNROLL

• The MODINLINE and NOMODINLINE directives are in effect for the scope
of the program unit in which they are specified, including all contained
procedures. If one of these directives is specified in a contained procedure,
the contained procedure's directive overrides the containing procedure's
directive.

5.1.3 Interaction of Directives with the -x Command Line Option

The -x option on the ftn command accepts one or more directives as arguments.
When your input is compiled, the compiler ignores directives named as
arguments to the -x option. If you specify -x all, all directives are ignored. If
you specify -x dir, all directives preceded by !DIR$ or CDIR$ are ignored.

For more information about the -x option, see Section 3.34, page 77.

5.1.4 Command Line Options and Directives

Some features activated by directives can also be specified on the ftn command
line. A directive applies to parts of programs in which it appears, but a command
line option applies to the entire compilation.

94 S–3901–60

Cray Fortran Directives [5]

Vectorization, scalar optimization, streaming (X1 only), and tasking can be
controlled through both command line options and directives. If a compiler
optimization feature is disabled by default or is disabled by an argument to the
-O option to the ftn command, the associated !prefix$ directives are ignored.
The following list shows Cray Fortran compiler optimization features, related
command line options, and related directives:

• Specifying the -O 0 option on the command line disables all optimization.
All scalar optimization, vectorization, multistreaming (X1 only), and tasking
directives are ignored.

• Specifying the -O ipa0 option on the command line disables inlining and
causes the compiler to ignore all inlining directives.

• Specifying the -O scalar0 option disables scalar optimization and causes
the compiler to ignore all scalar optimization and all vectorization directives.

• Specifying the -O stream0 option disables MSP optimization and causes the
compiler to ignore all MSP directives (X1 only).

• Specifying the -O task0 option disables tasking and causes the compiler
to ignore tasking directives.

• Specifying the -O vector0 option causes the compiler to ignore all
vectorization directives. Specifying the NOVECTOR directive in a program
unit causes the compiler to ignore subsequent directives in that program unit
that may specify vectorization.

The following sections describe directive syntax and the effects of directives on
Cray Fortran compiler programs.

S–3901–60 95

Cray® Fortran Reference Manual

5.2 Vectorization Directives

This section describes the following directives used to control vectorization and
tasking:

• CACHE_EXCLUSIVE

• CACHE_SHARED

• NO_CACHE_ALLOC

• COPY_ASSUMED_SHAPE

• HAND_TUNED

• IVDEP

• NEXTSCALAR

• PATTERN, NOPATTERN

• PERMUTATION

• PREFERVECTOR

• PROBABILITY

• SAFE_ADDRESS

• SAFE_CONDITIONAL

• SHORTLOOP, SHORTLOOP128

• LOOP_INFO

• UNROLL, NOUNROLL

• VECTOR, NOVECTOR

• PIPELINE, NOPIPELINE

• VFUNCTION

The -O 0, -O scalar0, -O task0, and -O vector0 options on the ftn
command override these directives.

96 S–3901–60

Cray Fortran Directives [5]

5.2.1 Use Cache-exclusive Instructions for Vector Loads: CACHE_EXCLUSIVE

The CACHE_EXCLUSIVE directive asserts that all vector loads with the specified
symbols as the base are to be made using cache-exclusive instructions. This is an
advisory directive; if the compiler honors it, vector load misses cause the cache
line to be allocated in an exclusive state in anticipation of a subsequent store. This
directive is ignored for stores. Scalar loads and stores are also unaffected.

The primary use of this directive is to override automatic cache management
decisions (see Section 3.19.3, page 38).

To use the directive, place it only in the specification part, before any executable
statement.

The syntax of the CACHE_EXCLUSIVE directive is:

!DIR$ CACHE_EXCLUSIVE symbol [, symbol]

symbol A base symbol (an array or scalar structure, but not a member
reference or array element).

Examples of valid CACHE_EXCLUSIVE symbols are A, B, C. Symbols such as A%B
or C(10) cannot be used as CACHE_EXCLUSIVE symbols.

5.2.2 Use Cache-shared Instructions for Vector Loads: CACHE_SHARED

The CACHE_SHARED directive asserts that all vector loads with the specified
symbols as the base are to be made using cache-shared instructions. This an
advisory directive; if the compiler honors it, vector load misses cause the cache
line to be allocated in a shared state, in anticipation of a subsequent load by a
different MSP (X1 only). This directive is not meaningful and will be ignored for
stores. Scalar loads and stores are also unaffected. The compiler may override the
directive when it determines the directive is not beneficial.

The syntax of the CACHE_SHARED directive is:

!DIR$ CACHE_SHARED symbol [, symbol ...]

symbol A base symbol (an array or scalar structure, but not a member
reference or array element).

Examples of valid CACHE_SHARED symbols are A, B, C. Symbols such as A%B or
C(10) cannot be used as CACHE_SHARED symbols.

S–3901–60 97

Cray® Fortran Reference Manual

5.2.3 Avoid Placing Object into Cache: NO_CACHE_ALLOC

The NO_CACHE_ALLOC directive is an advisory directive that specifies objects
that should not be placed into the cache. Advisory directives are directives the
compiler will honor if conditions permit it to. When this directive is honored, the
performance of your code may be improved because the cache is not occupied
by objects that have a lower cache hit rate. Theoretically, this makes room for
objects that have a higher cache hit rate.

Here are some guidelines that will help you determine when to use this directive.
This directive works only on objects that are vectorized. That is, other objects
with low cache hit rates can still be placed into the cache. Also, you should use
this directive for objects you do not want placed into the cache.

To use the directive, you must place it only in the specification part, before any
executable statement.

This is the form of the directive:

!DIR$ NO_CACHE_ALLOC BASE_NAME [, BASE_NAME] ...

BASE_NAME specifies the base name of the object that should not be placed
into the cache. This can be the base name of any object such as an array, scalar
structure, etc., without member references like C(10). If you specify a pointer
in the list, only the references, not the pointer itself, have the no cache allocate
property.

5.2.4 Copy Arrays to Temporary Storage: COPY_ASSUMED_SHAPE

The COPY_ASSUMED_SHAPE directive copies assumed-shape dummy array
arguments into contiguous local temporary storage upon entry to the procedure
in which the directive appears. During execution, it is the temporary storage
that is used when the assumed-shape dummy array argument is referenced or
defined. The format of this directive is as follows:

!DIR$ COPY_ASSUMED_SHAPE [array [, array] ...]

array The name of an array to be copied to temporary storage. If no
array names are specified, all assumed-shape dummy arrays
are copied to temporary contiguous storage upon entry to
the procedure. When the procedure is exited, the arrays in
temporary storage are copied back to the dummy argument
arrays. If one or more arrays are specified, only those arrays
specified are copied. The arrays specified must not have the
TARGET attribute.

98 S–3901–60

Cray Fortran Directives [5]

All arrays specified, or all assumed-shape dummy
arrays (if specified without array arguments), on a single
COPY_ASSUMED_SHAPE directive must be shape conformant
with each other. Incorrect code may be generated if the arrays
are not. You can use the -R c command line option to verify
whether the arrays are shape conformant.

The COPY_ASSUMED_SHAPE directive applies only to the program unit in which
it appears.

Assumed-shape dummy array arguments cannot be assumed to be stored in
contiguous storage. In the case of multidimensional arrays, the elements cannot
be assumed to be stored with uniform stride between each element of the
array. These conditions can arise, for example, when an actual array argument
associated with an assumed-shape dummy array is a non-unit strided array slice
or section.

If the compiler cannot determine whether an assumed-shape dummy array
is stored contiguously or with a uniform stride between each element, some
optimizations are inhibited in order to ensure that correct code is generated. If an
assumed-shape dummy array is passed to a procedure and becomes associated
with an explicit-shape dummy array argument, additional copy-in and copy-out
operations may occur at the call site. For multidimensional assumed-shape
arrays, some classes of loop optimizations cannot be performed when an
assumed-shape dummy array is referenced or defined in a loop or an array
assignment statement. The lost optimizations and the additional copy operations
performed can significantly reduce the performance of a procedure that uses
assumed-shape dummy arrays when compared to an equivalent procedure that
uses explicit-shape array dummy arguments.

The COPY_ASSUMED_SHAPE directive causes a single copy to occur upon
entry and again on exit. The compiler generates a test at run time to determine
whether the array is contiguous. If the array is contiguous, the array is not
copied. This directive allows the compiler to perform all the optimizations it
would otherwise perform if explicit-shape dummy arrays were used. If there
is sufficient work in the procedure using assumed-shape dummy arrays, the
performance improvements gained by the compiler outweigh the cost of the copy
operations upon entry and exit of the procedure.

S–3901–60 99

Cray® Fortran Reference Manual

5.2.5 Limit Optimizations: HAND_TUNED

This directive asserts that the code in the loop that follows the directive has been
arranged by hand for maximum performance and the compiler should restrict
some of the more aggressive automatic expression rewrites. The compiler will
still fully optimize, vectorize, and multistream the loop within the constraints of
the directive.

The syntax of this directive is as follows:

!DIR$ HAND_TUNED

Warning: Exercise caution when using this directive and evaluate code
performance before and after using it. The use of this directive may severely
impair performance.

5.2.6 Ignore Vector Dependencies: IVDEP

When the IVDEP directive appears before a loop, the compiler ignores vector
dependencies, including explicit dependencies, in any attempt to vectorize
the loop. IVDEP applies to the first DO loop or DO WHILE loop that follows
the directive. The directive applies to only the first loop that appears after the
directive within the same program unit.

For array operations, Fortran requires that the complete right-hand side (RHS)
expression be evaluated before the assignment to the array or array section on the
left-hand side (LHS). If possible dependencies exist between the RHS expression
and the LHS assignment target, the compiler creates temporary storage to hold
the RHS expression result. If an IVDEP directive appears before an array syntax
statement, the compiler ignores potential dependencies and suppresses the
creation and use of array temporaries for that statement. Using array syntax
statements allows you to reference referencing arrays in a compact manner. Array
syntax allows you to use either the array name, or the array name with a section
subscript, to specify actions on all the elements of an array, or array section,
without using DO loops.

Whether or not IVDEP is used, conditions other than vector dependencies can
inhibit vectorization. The format of this directive is as follows:

!DIR$ IVDEP [SAFEVL=vlen |

INFINITEVL]

100 S–3901–60

Cray Fortran Directives [5]

vlen Specifies a vector length in which no dependency will occur. vlen
must be an integer between 1 and 1024 inclusive.

INFINITEVL Specifies an infinite safe vector length. That is, no dependency
will occur at any vector length.

If no vector length is specified on the Cray X1 series or X2 systems, the vector
length used is infinity.

If a loop with an IVDEP directive is enclosed within another loop with an IVDEP
directive, the IVDEP directive on the outer loop is ignored.

When the Cray Fortran compiler vectorizes a loop, it may reorder the statements
in the source code to remove vector dependencies. When IVDEP is specified,
the statements in the loop or array syntax statement are assumed to contain
no dependencies as written, and the Cray Fortran compiler does not reorder
loop statements. For information about vector dependencies, see Optimizing
Applications on Cray X1 Series Systems.

5.2.7 Specify Scalar Processing: NEXTSCALAR

The NEXTSCALAR directive disables vectorization for the first DO loop or
DO WHILE loop that follows the directive. The directive applies to only one
loop, the first loop that appears after the directive within the same program unit.
NEXTSCALAR is ignored if vectorization has been disabled. The format of this
directive is as follows:

!DIR$ NEXTSCALAR

If the NEXTSCALAR directive appears prior to any array syntax statement, it
disables vectorization for the array syntax statement.

Note: The NEXTSCALAR directive does not affect multistreaming. (X1 only)

S–3901–60 101

Cray® Fortran Reference Manual

5.2.8 Request Pattern Matching: PATTERN and NOPATTERN

By default, the compiler detects coding patterns in source code sequences and
replaces these sequences with calls to optimized library routines. In most cases,
this replacement improves performance. There are cases, however, in which this
substitution degrades performance. This can occur, for example, in loops with
very low trip counts. In such a case, you can use the NOPATTERN directive to
disable pattern matching and cause the compiler to generate inline code. The
formats of these directives are as follows:

!DIR$ PATTERN

!DIR$ NOPATTERN

When !DIR$ NOPATTERN has been encountered, pattern matching is suspended
for the remainder of the program unit or until a !DIR$ PATTERN directive is
encountered. When the -O nopattern command line option (default) is in
effect, the PATTERN and NOPATTERN compiler directives are ignored. For more
information about -O nopattern, see Section 3.19.18, page 52.

The PATTERN and NOPATTERN directives should be specified before the
beginning of a pattern.

Example: By default, the compiler would detect that the following loop is a
matrix multiply and replace it with a call to a matrix multiply library routine.
By preceding the loop with a !DIR$ NOPATTERN directive, however, pattern
matching is inhibited and no replacement is done.

!DIR$ NOPATTERN

DO k= 1,n

DO i= 1,n

DO j= 1,m

A(i,j) = A(i,j) + B(i,k) * C(k,j)

END DO

END DO

END DO

5.2.9 Declare an Array with No Repeated Values: PERMUTATION

The !DIR$ PERMUTATION directive declares that an integer array has no
repeated values. This directive is useful when the integer array is used as a
subscript for another array (vector-valued subscript). When this directive
precedes a loop to be vectorized, it may cause more efficient code to be generated.

102 S–3901–60

Cray Fortran Directives [5]

The format for this directive is as follows:

!DIR$ PERMUTATION (ia [, ia] ...)

ia Integer array that has no repeated values for the entire routine.

When an array with a vector-valued subscript appears on the left side of
the equal sign in a loop, many-to-one assignment is possible. Many-to-one
assignment occurs if any repeated elements exist in the subscripting array. If it
is known that the integer array is used merely to permute the elements of the
subscripted array, it can often be determined that many-to-one assignment does
not exist with that array reference.

Sometimes a vector-valued subscript is used as a means of indirect addressing
because the elements of interest in an array are sparsely distributed; in this case,
an integer array is used to select only the desired elements, and no repeated
elements exist in the integer array, as in the following example:

!DIR$ PERMUTATION(IPNT) ! IPNT has no repeated values

...

DO I = 1, N

A(IPNT(I)) = B(I) + C(I)

END DO

5.2.10 Designate Loop Nest for Vectorization: PREFERVECTOR

For cases in which the compiler could vectorize more than one loop, the
PREFERVECTOR directive indicates that the loop following the directive should
be vectorized.

This directive can be used if there is more than one loop in the nest that could be
vectorized. The format of this directive is as follows:

!DIR$ PREFERVECTOR

S–3901–60 103

Cray® Fortran Reference Manual

In the following example, both loops can be vectorized, but the compiler
generates vector code for the outer DO I loop. Note that the DO I loop is
vectorized even though the inner DO J loop was specified with an IVDEP
directive:

!DIR$ PREFERVECTOR

DO I = 1, N

!DIR$ IVDEP

DO J = 1, M

A(I) = A(I) + B(J,I)

END DO

END DO

5.2.11 Conditional Density: PROBABILITY

This directive is used to guide inlining decisions, branch elimination
optimizations, branch hint marking, and the choice of the optimal algorithmic
approach to the vectorization of conditional code. The information specified by
this directive is used by interprocedural analysis and the optimizer to produce
faster code sequences.

This directive can appear anywhere executable code is legal, and the syntax of
this directive takes one of three forms.

!DIR$ PROBABILITY const

!DIR$ PROBABILITY_ALMOST_ALWAYS

!DIR$ PROBABILITY_ALMOST_NEVER

Where const is an expression between 0.0 (never) and 1.0 (always) that
evaluates to a floating point constant at compilation time.

The specified probability is a hint, rather than a statement of fact. The directive
applies to the block of code where it appears. It is important to realize that the
directive should not be applied to a conditional test directly; rather, it should
be used to indicate the relative probability of a THEN or ELSE branch being
executed. For example:

IF (A(I) > B(I)) THEN

!DIR$ PROBABILITY 0.3

A(I) = B(I)

ENDIF

This example states that the probability of entering the block of code with the
assignment statement is 0.3, or 30%. In turn, this means that a(i) is expected to
be greater than b(i) 30% of the time as well.

104 S–3901–60

Cray Fortran Directives [5]

For vector IF code, a probability of very low (< 0.1) or
probability_almost_never will cause the compiler to use the vector
gather/scatter methods used for sparse IF vector code instead of the vector
merge methods used for denser IF code. For example:

do i = 1,n

if (a(i) > 0.0) then

!dir$ probability_almost_never

b(i) = b(i)/a(i) + a(i)/b(i) ! Evaluate using sparse methods

endif

enddo

Note that the PROBABILITY directive appears within the conditional, rather than
before the condition. This removes some of the ambiguity of tying the directive
directly to the conditional test.

5.2.12 Allow Speculative Execution of Memory References Within Loops: SAFE_ADDRESS

The SAFE_ADDRESS directive allows you to tell the compiler that it is safe to
speculatively execute memory references within all conditional branches of a
loop. In other words, you know that these memory references can be safely
executed in each iteration of the loop.

For most code, the SAFE_ADDRESS directive can improve performance
significantly by preloading vector expressions. However, most loops do not
require this directive to have preloading performed. The directive is only
required when the safety of the operation cannot be determined or index
expressions are very complicated.

The SAFE_ADDRESS directive is an advisory directive. That is, the compiler may
override the directive if it determines the directive is not beneficial.

If you do not use the directive on a loop and the compiler determines that
it would benefit from the directive, it issues a message indicating such. The
message is similar to this:

do i = 1,n

ftn-6375 ftn_driver.exe: VECTOR X7, File = 10928.f, Line = 110

A loop starting at line 110 would benefit from "!dir$ safe_address".

If you use the directive on a loop and the compiler determines that it does
not benefit from the directive, it issues a message that states the directive is
superfluous and can be removed.

To see the messages you must use the -O msgs option.

S–3901–60 105

Cray® Fortran Reference Manual

Incorrect use of the directive can result in segmentation faults, bus errors, or
excessive page faulting. However, it should not result in incorrect answers.
Incorrect usage can result in very severe performance degradations or program
aborts.

This is the syntax of the SAFE_ADDRESS directive:

!DIR$ SAFE_ADDRESS

In the example below, the compiler will not preload vector expressions, because
the value of j is unknown. However, if you know that references to b(i,j) are
safe to evaluate for all iterations of the loop, regardless of the condition, we can
use the SAFE_ADDRESS directive for this loop as shown below:

subroutine x3(a, b, n, m, j)

real a(n), b(n,m)

!dir$ safe_address

do i = 1,64 ! Vectorized loop

if (a(i).ne.0.0) then

b(i,j) = 0.0 ! Value of 'j' is unknown

endif

enddo

end

With the directive, the compiler can load b(i,j) with a full vector mask, merge
0.0 where the condition is true, and store the resulting vector using a full mask.

5.2.13 Allow Speculative Execution of Memory References and Arithmetic Operations:
SAFE_CONDITIONAL

The SAFE_CONDITIONAL directive expands upon the SAFE_ADDRESS directive.
It implies SAFE_ADDRESS and further specifies that arithmetic operations are
safe, as well as memory operations.

This directive applies to scalar, vector, and multistreamed loop nests. It can
improve performance by allowing the hoisting of invariant expressions from
conditional code and allowing prefetching of memory references.

106 S–3901–60

Cray Fortran Directives [5]

The SAFE_CONDITIONAL directive is an advisory directive. The compiler may
override the directive if it determines that the directive is not beneficial.

!
Caution: Incorrect use of the directive may result in segmentation faults, bus
errors, excessive page faulting, or arithmetic aborts. However, it should not
result in incorrect answers. Incorrect usage may result in severe performance
degradation or program aborts.

The syntax of this directive is as follows:

!DIR$ SAFE_CONDITIONAL

In the example below, the compiler cannot precompute the invariant expression
s1*s2 because these values are unknown and may cause an arithmetic trap if
executed unconditionally. However, if you know that the condition is true at
least once, then it is safe to use the SAFE_CONDITIONAL directive and execute
s1*s2 speculatively.

subroutine safe_cond(a, n, s1, s2)

real a(n), s1, s2

!dir$ safe_conditional

do i = 1,n

if (a(i) /= 0.0) then

a(i) = a(i) + s1*s2

endif

enddo

end

With the directive, the compiler evaluates s1*s2 outside of the loop, rather than
under control of the conditional code. In addition, all control flow is removed
from the body of the vector loop as s1*s2 no longer poses a safety risk.

5.2.14 Designate Loops with Low Trip Counts: SHORTLOOP, SHORTLOOP128

The SHORTLOOP directive, used before a DO or DO WHILE loop with a low trip
count, allows the compiler to generate code that improves program performance
by eliminating run-time tests for determining whether a vectorized DO loop has
been completed. The compiler will diagnose misuse at compile time (when able)
or under option -Rd at run time.

S–3901–60 107

Cray® Fortran Reference Manual

The formats of these directives are as follows:

!DIR$ SHORTLOOP

!DIR$ SHORTLOOP128

You can specify either of the preceding formats, as follows:

• If you specify !DIR$ SHORTLOOP, the loop trip count must be in the
range 1 ≤ trip_count ≤ 64. If trip_count equals 0 or exceeds 64, results are
unpredictable.

• If you specify !DIR$ SHORTLOOP128, the loop trip count must be in the
range 1 ≤ trip_count ≤ 128. If trip_count equals zero or exceeds 128, results
are unpredictable.

SHORTLOOP is ignored in the following cases:

• If vectorization is disabled.

• If the code in question is an array syntax assignment statement.

• If the compiler can determine that the directive is invalid. If so, a diagnostic
message is issued.

The meaning of SHORTLOOP and SHORTLOOP128 can be modified by using the
-eL command. If enabled, this option changes the lower bound to allow zero-trip
loops. For more information, see Section 3.5, page 18.

5.2.15 Provide More Information for Loops: LOOP_INFO

The LOOP_INFO directive allows additional information to be specified about the
behavior of a loop. This currently includes information about the run-time trip
count and hints on cache allocation strategy. The compiler will diagnose misuse
at compile time (when able) or under option -Rd at run time.

With respect to the trip count information, the LOOP_INFO directive is similar to
the SHORTLOOP or SHORTLOOP128 directive, but provides more information to
the optimizer and can produce faster code sequences. LOOP_INFO is used before
a DO or WHILE loop with a low or known trip count.

For cache allocation hints, the LOOP_INFO directive can be used to override
default settings or to supersede earlier NO_CACHE_ALLOC, CACHE_EXCLUSIVE,
or CACHE_SHARED directives.

108 S–3901–60

Cray Fortran Directives [5]

The syntax of the LOOP_INFO directive is as follows:

!DIR$ LOOP_INFO [min_trips(c)] [est_trips(c)] [max_trips(c)]

[cache_ex(symbol [, symbol ...])]

[cache_sh(symbol [, symbol ...])]

[cache_na(symbol [, symbol ...])]

[prefer_amo][prefer_noamo]

[prefetch][noprefetch]

Where min_trips is the guaranteed minimum number of trips, est_trips is
the estimated or average number of trips, and max_trips is the guaranteed
maximum number of trips.

The SHORTLOOP and SHORTLOOP128 directives are equivalent, respectively, to:

! dir$ loop_info min_trips(1) max_trips(64)

! dir$ loop_info min_trips(1) max_trips(128)

The cache_ex, cache_sh, and cache_na options specify symbols that are to
receive the exclusive, shared, and non-allocating cache hints, respectively. If no
hints are specified and no NO_CACHE_ALLOC or CACHE_SHARED directives are
present, the default is exclusive.

The cache hints are local and apply only to the specified loop nest. For
more information about cache_na behavior, see Section 5.2.3, page 98 . For
more information about cache_sh behavior, see Section 5.2.2, page 97. The
cache_ex hint can be used to override locally any earlier NO_CACHE_ALLOC
or CACHE_SHARED directive.

S–3901–60 109

Cray® Fortran Reference Manual

The prefer_amo clause of the loop_info directive only has meaning on
architectures that have vector atomic memory operation capability in hardware
including the Cray X2. On architectures that lack this hardware, such as the Cray
X1 and Cray X1E, the clause is accepted but has no effect. The prefer_amo
clause instructs, but does not require, the compiler to use vector atomic memory
operations as aggressively as possible, including in those cases that the compiler
would normally avoid because it expects the performance to be poor. For
example:

subroutine p_amo(ia, ib, n)

integer (kind=8) ia(n), ib(n)

! The compiler avoids vector AMOs in this case for most access patterns

do i = 1,n

ia(i) = ia(i) + 1

enddo

! Direct the compiler to use vector AMOs when possible

!dir$ loop_info prefer_amo

do i = 1,n

ib(i) = ib(i) + 1

enddo

end

For sample test case p_amo, the compiler does not use a vector atomic memory
operation for the first loop, but it does use it for the second loop because of the
prefer_amo compiler clause of the loop_info directive. A message similar to
the following lines is issued when messages are enabled:

ib(i) = ib(i) + 1

ftn-6385 ftn: VECTOR P_AMO, File = amo.f, Line = 10

A vector atomic memory operation was used for this statement.

110 S–3901–60

Cray Fortran Directives [5]

The prefer_noamo clause instructs, but does not require, the compiler to avoid
all uses of vector atomic memory operations. The compiler may, at its discretion,
continue to use vector atomic memory operations if there is no alternative
solution to vectorizing the loop. The compiler automatically uses vector atomic
memory operations if its assessment shows that the performance will improve.
For example:

subroutine a_amo(a, b, c, ia, ib, n)

integer (kind=8) ia(n), ib(n)

integer (kind=8) a(n), b(n), c(n)

! Compiler automatically uses a vector AMO

do i = 1,n

a(ia(i)) = a(ia(i)) + c(i)

enddo

! Instruct the compiler to avoid using a vector AMO

!dir$ loop_info prefer_noamo

do i = 1,n

b(ib(i)) = b(ib(i)) + c(i)

enddo

end

For sample test case a_amo, the compiler uses a vector atomic memory operation
for the 'update' construct in the first loop. In the second loop, the 'prefer_noamo'
clause of the loop_info directive instructs the compiler to avoid using vector
atomic memory operations. Messages demonstrating the effects of these
directives similar to the following lines are ssued for the two loop bodies:

a(ia(i)) = a(ia(i)) + c(i)

ftn-6385 ftn: VECTOR A_AMO, File = a_amo.f, Line = 6

A vector atomic memory operation was used for this statement.

do i = 1,n

ftn-6371 ftn: VECTOR A_AMO, File = a_amo.f, Line = 10

A vectorized loop contains potential conflicts due to indirect addressing

at line 11, causing less efficient code to be generated.

The hardware vector atomic memory operations for the Cray X2 include 64-bit
integer bitwise and, bitwise or, bitwise exclusive or, and integer
addition. The compiler recognizes these and other operations that can efficiently
map onto the set of instructions.

S–3901–60 111

Cray® Fortran Reference Manual

The prefetch clause (X2 only) instructs the compiler to preload scalar data
into the first-level cache to improve the frequency of cache hits and lower
latency. They are generated in situations where the compiler expects them to
improve performance. Strategic use of prefetch instructions can hide latency
for scalar loads feeding vector instructions or scalar loads in purely scalar
loops. Prefetch instructions are generated at default and higher levels of
optimization. Thus, they are turned off at -O0 or -O1. Prefetch can be turned
off at the loop level via the following directive:

!dir$ loop_info noprefetch

do i = 1, n

5.2.16 Unroll Loops: UNROLL and NOUNROLL

Loop unrolling can improve program performance by revealing cross-iteration
memory optimization opportunities such as read-after-write and read-after-read.
The effects of loop unrolling also include:

• Improved loop scheduling by increasing basic block size

• Reduced loop overhead

• Improved chances for cache hits

The formats of these directives are as follows:

!DIR$ UNROLL [n]

!DIR$ NOUNROLL

n Specifies the total number of loop body copies to be generated. n
is an integer value from 0 through 1024.

If you specify a value for n, the compiler unrolls the loop by that
amount. If you do not specify n, the compiler determines if it is
appropriate to unroll the loop, and if so, the unroll amount.

The subsequent DO loop is not unrolled if you specify UNROLL0,
UNROLL1, or NOUNROLL. These directives are equivalent.

The UNROLL directive should be placed immediately before the DO statement of
the loop that should be unrolled.

Note: The compiler cannot always safely unroll non-innermost loops due to
data dependencies. In these cases, the directive is ignored (see Example 1).

112 S–3901–60

Cray Fortran Directives [5]

The UNROLL directive can be used only on loops whose iteration counts can be
calculated before entering the loop. If UNROLL is specified on a loop that is not
the innermost loop in a loop nest, the inner loops must be nested perfectly. That
is, at each nest level, there is only one loop and only the innermost loop contains
work.

The NOUNROLL directive inhibits loop unrolling.

Note: Loop unrolling occurs for both vector and scalar loops automatically.
It is usually not necessary to use the unrolling directives. The UNROLL
directive should be limited to non-inner loops such as Example 1 in which
unroll-and-jam conditions can occur. Such loop unrolling is associated with
compiler message 6005. Using the UNROLL directive for inner loops may be
detrimental to performance and is not recommended. Typically, loop unrolling
occurs in both vector and scalar loops without need of the UNROLL directive.

Example 1: Unrolling outer loops

Assume that the outer loop of the following nest will be unrolled by two:

!DIR$ UNROLL 2

DO I = 1, 10

DO J = 1,100

A(J,I) = B(J,I) + 1

END DO

END DO

With outer loop unrolling, the compiler produces the following nest, in which the
two bodies of the inner loop are adjacent to each other:

DO I = 1, 10, 2

DO J = 1,100

A(J,I) = B(J,I) + 1

END DO

DO J = 1,100

A(J,I+1) = B(J,I+1) + 1

END DO

END DO

S–3901–60 113

Cray® Fortran Reference Manual

The compiler jams, or fuses, the inner two loop bodies together, producing the
following nest:

DO I = 1, 10, 2

DO J = 1,100

A(J,I) = B(J,I) + 1

A(J,I+1) = B(J,I+1) + 1

END DO

END DO

Example 2: Illegal unrolling of outer loops

Outer loop unrolling is not always legal because the transformation can change
the semantics of the original program. For example, unrolling the following
loop nest on the outer loop would change the program semantics because of the
dependency between A(...,I) and A(...,I+1):

!DIR$ UNROLL 2

DO I = 1, 10

DO J = 1,100

A(J,I) = A(J-1,I+1) + 1

END DO

END DO

Example 3: Unrolling nearest neighbor pattern

The following example shows unrolling with nearest neighbor pattern. This
allows register reuse and reduces memory references from 2 per trip to 1.5 per
trip.

!DIR$ UNROLL 2

DO J = 1,N

DO I = 1,N ! VECTORIZE

A(I,J) = B(I,J) + B(I,J+1)

ENDDO

ENDDO

The preceding code fragment is converted to the following code:

DO J = 1,N,2 ! UNROLLED FOR REUSE OF B(I,J+1)

DO I = 1,N ! VECTORIZED

A(I,J) = B(I,J) + B(I,J+1)

A(I,J+1) = B(I,J+1) + B(I,J+2)

END DO

END DO

114 S–3901–60

Cray Fortran Directives [5]

5.2.17 Enable and Disable Vectorization: VECTOR and NOVECTOR

The NOVECTOR directive suppresses compiler attempts to vectorize loops and
array syntax statements. NOVECTOR takes effect at the beginning of the next loop
and applies to the rest of the program unit unless it is superseded by a VECTOR
directive. These directives are ignored if vectorization or scalar optimization have
been disabled. The formats of these directives are as follows:

!DIR$ VECTOR

!DIR$ NOVECTOR

When !DIR$ NOVECTOR has been used within the same program unit,
!DIR$ VECTOR causes the compiler to resume its attempts to vectorize loops
and array syntax statements. After a VECTOR directive is specified, automatic
vectorization is enabled for all loop nests.

The VECTOR directive affects subsequent loops. The NOVECTOR directive also
affects subsequent loops, but if it is specified within the body of a loop, it affects
the loop in which it is contained and all subsequent loops.

5.2.18 Enable or Disable, Temporarily, Soft Vector-pipelining: PIPELINE and NOPIPELINE

Software-based vector pipelining (software vector pipelining) provides
additional optimization beyond the normal hardware-based vector pipelining.
In software vector pipelining, the compiler analyzes all vector loops and will
automatically attempt to pipeline a loop if doing so can be expected to produce
a significant performance gain. This optimization also performs any necessary
loop unrolling.

In some cases the compiler will either not pipeline a loop that could be pipelined,
or pipeline a loop without producing performance gains. In these cases, you can
use the PIPELINE or NOPIPELINE directives to advise the compiler to pipeline
or not pipeline the loop immediately following the directive.

The format of the pipelining directives is as follows:

!DIR$ PIPELINE

!DIR$ NOPIPELINE

Software vector pipelining is valid only for the innermost loop of a loop nest.

S–3901–60 115

Cray® Fortran Reference Manual

The PIPELINE and NOPIPELINE directives are advisory only. While you can use
the NOPIPELINE directive to inhibit automatic pipelining, and you can use the
PIPELINE directive to attempt to override the compiler's decision not to pipeline
a loop, you cannot force the compiler to pipeline a loop that cannot be pipelined.

Vector loops that have been pipelined generate compile-time messages to that
effect, if optimization messaging is enabled (-O msgs). For more information
about the messages issued, see the Optimizing Applications on Cray X1 Series
Systems.

5.2.19 Specify a Vectorizable Function: VFUNCTION

The VFUNCTION directive declares that a vector version of an external function
exists. The VFUNCTION directive must precede any statement function definitions
or executable statements in a program. VFUNCTION cannot be specified for
internal or module procedures. VFUNCTION cannot be specified for functions
within interface blocks.

This is the format of the VFUNCTION directive:

!DIR$ VFUNCTION function_name [,f] ...

f Symbolic name of a vector external function. The maximum
length is 29 characters because the % character is added at the
beginning and end of the name as part of the calling sequence.
For example, if the function is named FUNC, the CAL vector
version is spelled %FUNC%. (The scalar version is FUNC%.)

116 S–3901–60

Cray Fortran Directives [5]

The following rules and recommendations apply to any function f named as an
argument in a VFUNCTION directive:

• f cannot be declared in an EXTERNAL statement, have its interface specified in
an interface body, or be specified in a PROCEDURE declaration statement.

• f must be written in CAL and must use the call-by-register sequence.

• Arguments to f must be either vectorizable expressions or scalar expressions;
array syntax and array expressions are not allowed.

• A call to f can pass a maximum of seven single-word items or one four-word
item (complex (KIND=KIND(0.0D0))). No structures or character arguments
can be passed. These can be mixed in any order with a maximum of seven
words total.

• f should not change the value of its arguments or variables in common blocks
or modules. Any changed value should be for variables that are distinct from
the arguments.

• f should not reference variables in common blocks or modules that are also
used by a program unit in the calling chain.

• A call to f cannot occur within a WHERE statement or WHERE block.

• f must not have side effects or perform I/O.

Arguments to f are sent to the V registers that have numbers that match the
arguments' ordinal numbers in the argument list: X=VFUNC(v1,v2,v3,v4).
(The scalar version uses the same convention with the S registers.)

If the argument list for f contains both scalar and vector arguments in a vector
loop, the scalar arguments are broadcast into the appropriate vector registers. If
all arguments are scalar or the function reference is not in a vector loop, f is called
with all arguments passed in S registers.

5.3 Multistreaming Processor (MSP) Directives (X1 only)

The MSP directives work with the -O streamn command line option to
determine whether parts of your program are optimized for the MSP. Therefore,
one of the following options must be specified on the ftn command line in
order for these directives to be recognized: -O stream1 or -O stream3. The
default streaming option, -O stream2, also causes recognition of the directives.
For more information about the -O streamn command line option, see Section
3.19.22, page 56.

S–3901–60 117

Cray® Fortran Reference Manual

The MSP directives are as follows:

• PREFERSTREAM

• SSP_PRIVATE

• STREAM, NOSTREAM

The following subsections describe the MSP optimization directives.

5.3.1 Specify Loop to be Optimized for MSP: PREFERSTREAM

For cases in which the compiler could perform MSP optimizations on more than
one loop in a loop nest, the PREFERSTREAM directive indicates that the loop
following the directive is the one to be optimized. The format of this directive
is as follows:

!DIR$ PREFERSTREAM

This directive is ignored if -O stream0 is in effect.

5.3.2 Optimize Loops Containing Procedural Calls: SSP_PRIVATE

The SSP_PRIVATE directive allows the compiler to stream loops that contain
procedural calls. By default, the compiler does not stream procedural calls
contained in a loop, because the call may have side effects that interfere with
correct parallel execution. The SSP_PRIVATE directive asserts that the specified
procedure is free of side effects that inhibit parallelism and that the specified
procedure, and all procedures it calls, will run on one SSP.

An implied condition for streaming loops containing a call to a procedure
specified with the SSP_PRIVATE directive is that the loop body must not
contain any problems that prevent parallelism. The compiler can disregard an
SSP_PRIVATE directive if it detects possible loop-carried dependencies that are not
directly related to a call inside the loop.

Note: The SSP_PRIVATE directive only affects whether or not loops are
automatically streamed. It has no effect on loops within Cray streaming
directive (CSD) parallel regions.

118 S–3901–60

Cray Fortran Directives [5]

When using the SSP_PRIVATE directive, you must ensure that the procedure
called within the body of the loop follows these criteria:

• The procedure does not modify data in one iteration and reference this same
data in another iteration of the streamed loop. This rule applies equally to
arguments, common variables, and data declared by using a SAVE statement.

• The procedure does not reference data in one iteration that is defined in
another iteration.

• If the procedure modifies an argument, common variable, or data declared
in a SAVE statement, the iterations cannot modify data at the same storage
location. unless these variables are scoped as PRIVATE. Following the
streamed loop, the content of private variables are undefined.

The SSP_PRIVATE directive does not force the master thread to execute the
last iteration of the task loop.

• If the procedure uses shared data (for example, global data, actual arguments)
that can be written to and read, you must protect it with a guard (such as the
CSD CRITICAL directive or the lock command) or have the SSPs access the
data disjointedly (where access does not overlap).

• The procedure calls only other procedures that are capable of being called
privately.

• The procedure uses the appropriate synchronization mechanism when calling
I/O.

Note: The preceding list assumes that you have a working knowledge of race
conditions.

The SSP_PRIVATE directive can only be used in the specification part, before
any executable statements. The SSP_PRIVATE directive may be used multiple
times within a procedure.

This is the form of the SSP_PRIVATE directive:

!DIR$ SSP_PRIVATE PROC_NAME[, PROC_NAME] ...

PROC_NAME specifies one or more procedure names called from within the
loops that are candidates for streaming. Procedures specified in the procedure
name list retain the SSP_PRIVATE attribute throughout the entire program unit.
These procedures must be compiled with the -O gen_private_callee option.

S–3901–60 119

Cray® Fortran Reference Manual

The following example demonstrates use of the SSP_PRIVATE directive:

! Code in file1.ftn

subroutine example(X, Y, P, N, M)

dimension X(N), Y(N), P(0:M)

!dir$ ssp_private poly_eval

do I = 1, N

call poly_eval(Y(I), X(I), P, M)

enddo

end

! Code in file2.ftn.

subroutine poly_eval(Y, X, P, M)

dimension P(0:M)

Y = P(M)

do J = M-1, 0, -1

Y = X*Y + P(J)

enddo

end

This example compiles the code:

% ftn -c -O gen_private_callee file2.ftn

% ftn file1.ftn file2.o

Now we run the code:

% aprun a.out

SSP private procedures are appropriate for user-specified math support
functions. Builtin-math functions, like COS are effectively SSP private routines.

5.3.3 Enable MSP Optimization: STREAM and NOSTREAM

The STREAM and NOSTREAM directives specify whether the compiler should
perform MSP optimizations over a range of code. These optimizations are
applied to loops and array syntax statements. The formats of these directives
are as follows:

!DIR$ STREAM

!DIR$ NOSTREAM

120 S–3901–60

Cray Fortran Directives [5]

One of these directives remains in effect until the opposite directive is
encountered or until the end of the program unit. These directives are ignored if
-O stream0 is in effect.

5.4 Inlining Directives

The inlining directives allow you to specify whether the compiler should attempt
to inline certain subprograms or procedures. These are the inlining directives:

• clone, noclone

• inline, noinline, resetinline

• inlinealways, inlinenever

• modinline, nomodinline

These directives work in conjunction with the following command line options:

• -O ipan and -O ipafrom, described in Section 3.19.10, page 44.

• -O modinline and -O nomodinline, described in Section 3.19.12, page 49.

The following subsections describe the inlining directives.

5.4.1 Disable or Enable Cloning for a Block of Code: CLONE and NOCLONE

The clone and noclone directives control whether cloning is attempted over a
range of code. If !dir$ clone is in effect, cloning is attempted at call sites. If
!dir$ noclone is in effect, cloning is not attempted at call sites. The formats of
these directives are as follows:

!dir$ clone

!dir$ noclone

One of these directives remains in effect until the opposite directive is
encountered or until the end of the program unit. These directives are recognized
when cloning is enabled on the command line (-O clone1). These directives are
ignored if the -O ipa0 option is in effect.

S–3901–60 121

Cray® Fortran Reference Manual

5.4.2 Disable or Enable Inlining for a Block of Code: INLINE, NOINLINE, and RESETINLINE

The inline, noinline, and resetinline directives control whether inlining
is attempted over a range of code. If !dir$ inline is in effect, inlining is
attempted at call sites. If !dir$ noinline is in effect, inlining is not attempted
at call sites. After either directive is used, !dir$ resetinline can be used to
return inlining to the default state. These are the formats of these directives:

!dir$ inline

!dir$ noinline

!dir$ resetinline

The inline and noinline directives remain in effect until the opposite
directive is encountered, until the resetinline directive is encountered, or
until the end of the program unit. These directives are ignored if -O ipa0 is
in effect.

5.4.3 Specify Inlining for a Procedure: INLINEALWAYS and INLINENEVER

The inlinealways directive forces attempted inlining of specified procedures.
The inlinenever directive suppresses inlining of specified procedures. The
formats of these directives are as follows:

!dir$ inlinealways name [, name] ...

!dir$ inlinenever name [, name] ...

where name is the name of a procedure.

The following rules determine the scope of these directives:

• A !dir$ inlinenever directive suppresses inlining for name. That is, if
!dir$ inlinenever b appears in routine b, no call to b, within the entire
program, is inlined. If !dir$ inlinenever b appears in a routine other
than b, no call to b from within that routine is inlined.

• A !dir$ inlinealways directive specifies that inlining should always be
attempted for name. That is, if !dir$ inlinealways c appears in routine
c, inlining is attempted for all calls to c, throughout the entire program. If
!dir$ inlinealways c appears in a routine other than c, inlining is
attempted for all calls to c from within that routine.

An error message is issued if inlinenever and inlinealways are specified
for the same procedure in the same program unit.

122 S–3901–60

Cray Fortran Directives [5]

Example: The following file is compiled with -O ipa1:

subroutine s()

!dir$ inlinealways s ! This says attempt

! inlining of s at all calls.

...

end subroutine

subroutine t

!dir$ inlinenever s ! Do not inline any calls to s

! in subroutine t.

call s()

...

end subroutine

subroutine v

!dir$ noinline ! Has higher precedence than inlinealways.

call s() ! Do not inline this call to s.

!dir$ inline

call s() ! Attempt inlining of this call to s.

...

end subroutine

subroutine w

call s() ! Attempt inlining of this call to s.

...

end subroutine

5.4.4 Create Inlinable Templates for Module Procedures: MODINLINE and NOMODINLINE

The MODINLINE and NOMODINLINE directives enable and disable the creation
of inlinable templates for specific module procedures. The formats of these
directives are as follows:

!DIR$ MODINLINE

!DIR$ NOMODINLINE

Note: The MODINLINE and NOMODINLINE directives are ignored if
-O nomodinline is specified on the ftn command line.

S–3901–60 123

Cray® Fortran Reference Manual

These directives are in effect for the scope of the program unit in which they
are specified, including all contained procedures. If one of these directives is
specified in a contained procedure, the contained procedure's directive overrides
the containing procedure's directive.

The compiler generates a message if these directives are specified outside of a
module and ignores the directive.

To inline module procedures, the module being used associated must have been
compiled with -O modinline.

Example:

MODULE BEGIN

...

CONTAINS

SUBROUTINE S() ! Uses SUBROUTINE S's !DIR$

!DIR$ NOMODINLINE

...

CONTAINS

SUBROUTINE INSIDE_S() ! Uses SUBROUTINE S's !DIR$

...

END SUBROUTINE INSIDE_S

END SUBROUTINE S

SUBROUTINE T() ! Uses MODULE BEGIN's !DIR$

...

CONTAINS

SUBROUTINE INSIDE_T() ! Uses MODULE BEGIN's !DIR$

...

END SUBROUTINE INSIDE_T

SUBROUTINE MORE_INSIDE_T

!DIR$ NOMODINLINE

...

END SUBROUTINE MORE_INSIDE_T

END SUBROUTINE T

END MODULE BEGIN

In the preceding example, the subroutines are affected as follows:

• Inlining templates are not produced for S, INSIDE_S, or MORE_INSIDE_T.

• Inlining templates are produced for T and INSIDE_T.

124 S–3901–60

Cray Fortran Directives [5]

5.5 Scalar Optimization Directives

The following directives control aspects of scalar optimization:

• INTERCHANGE and NOINTERCHANGE

• NOSIDEEFFECTS

• SUPPRESS

The following subsections describe these directives.

5.5.1 Control Loop Interchange: INTERCHANGE and NOINTERCHANGE

The loop interchange control directives specify whether or not the order of the
following two or more loops should be interchanged. These directives apply to
the loops that they immediately precede.

The formats of these directives are as follows:

!DIR$ INTERCHANGE (do_variable1,do_variable2 [,do_variable3]...)

!DIR$ NOINTERCHANGE

do_variable

Specifies two or more do_variable names. The do_variable names
can be specified in any order, and the compiler reorders the
loops. The loops must be perfectly nested. If the loops are not
perfectly nested, you may receive unexpected results.

The compiler reorders the loops such that the loop with do_variable1 is outermost,
then loop do_variable2, then loop do_variable3.

The NOINTERCHANGE directive inhibits loop interchange on the loop that
immediately follows the directive.

Example: The following code has an INTERCHANGE directive:

!DIR$ INTERCHANGE (I,J,K)

DO K = 1,NSIZE1

DO J = 1,NSIZE1

DO I = 1,NSIZE1

X(I,J) = X(I,J) + Y(I,K) * Z(K,J)

ENDDO

ENDDO

ENDDO

S–3901–60 125

Cray® Fortran Reference Manual

The following code results when the INTERCHANGE directive is used on the
preceding code:

DO I = 1,NSIZE1

DO J = 1,NSIZE1

DO K = 1,NSIZE1

X(I,J) = X(I,J) + Y(I,K) * Z(K,J)

ENDDO

ENDDO

ENDDO

5.5.2 Control Loop Collapse: COLLAPSE and NOCOLLAPSE

The loop collapse directives control collapse of the immediately following loop
nest or elemental array syntax statement. When the COLLAPSE directive is
applied to a DO-loop nest, the loop control variables of the participating loops
must be listed in order of increasing access stride. NOCOLLAPSE disqualifies the
immediately following DO-loop from collapsing with any other loop; before an
elemental array syntax statement, it inhibits all collapse in said statement.

subroutine S(A, n, n1, n2)

real A(n, *)

!dir$ collapse (i, j)

do i = 1, n1

do j = 1, n2

A(i,j) = A(i,j) + 42.0

enddo

enddo

end

The above yields code equivalent to the following, which should not be coded
directly because as program source, it violates the Fortran language standard.

subroutine S(A, n, n1, n2)

real A(n, *)

do ij = 1, n1*n2

A(ij, 1) = A(ij, 1) + 42.0

enddo

end

126 S–3901–60

Cray Fortran Directives [5]

With array syntax, the collapse directive appears as follows:

subroutine S(A, B)

real, dimension(:,:) :: A, B

!dir$ collapse

A = B ! user promises uniform access stride.

end

In each of the above examples, the directive enables the compiler to assume
appropriate conformity between trip counts and array extends. The compiler will
diagnose misuse at compile time (when able); or, under option -Rd, at run time.

NOCOLLAPSE prevents the compiler from collapsing a given loop with others or
from performing any loop collapse within a specified array syntax statement.
Collapse is almost always desirable, so this directive should be used sparingly.

subroutine S(A, n)

dimension A(n,n)

!dir$ nocollapse

do i = 1, n ! disallow collapse involving i-loop.

do j = 1, n

A(i,j) = 1.2

enddo

enddo

end

Loop collapse is a special form of loop coalesce. Any perfect loop nest may be
coalesced into a single loop, with explicit rediscovery of the intermediate values
of original loop control variables. The rediscovery cost, which generally involves
integer division, is quite high. Hence, coalesce is rarely suitable for vectorization.
It may be beneficial for multithreading.

By definition, loop collapse occurs when loop coalesce may be done without
the rediscovery overhead. To meet this requirement, all memory accesses must
have uniform stride. This typically occurs when a computation can flow from
one column of a multidimensional array into the next, viewing the array as a
flat sequence. Hence, array sections such as A(:,3:7) are generally suitable for
collapse, while a section like A(1:n-1,:) lacks the needed access uniformity. Care
must taken when applying the collapse directive to assumed shape dummy
arguments and Fortran pointers because the underlying storage need not be
contiguous.

S–3901–60 127

Cray® Fortran Reference Manual

5.5.3 Determine Register Storage: NOSIDEEFFECTS

The NOSIDEEFFECTS directive allows the compiler to keep information in
registers across a single call to a subprogram without reloading the information
from memory after returning from the subprogram. The directive is not needed
for intrinsic functions and VFUNCTIONs.

NOSIDEEFFECTS declares that a called subprogram does not redefine any
variables that meet the following conditions:

• Local to the calling program

• Passed as arguments to the subprogram

• Accessible to the calling subprogram through host association

• Declared in a common block or module

• Accessible through USE association

The format of this directive is as follows:

!DIR$ NOSIDEEFFECTS f [, f] ...

f Symbolic name of a subprogram that the user is sure has no side
effects. f must not be the name of a dummy procedure, module
procedure, or internal procedure.

A procedure declared NOSIDEEFFECTS should not define variables in a common
block or module shared by a program unit in the calling chain. All arguments
should have the INTENT(IN) attribute; that is, the procedure must not modify
its arguments. If these conditions are not met, results are unpredictable.

The NOSIDEEFFECTS directive must appear in the specification part of a
program unit and must appear before the first executable statement.

The compiler may move invocations of a NOSIDEEFFECTS subprogram from
the body of a DO loop to the loop preamble if the arguments to that function are
invariant in the loop. This may affect the results of the program, particularly if
the NOSIDEEFFECTS subprogram calls functions such as the random number
generator or the real-time clock.

The effects of the NOSIDEEFFECTS directive are similar to those that can be
obtained by specifying the PURE prefix on a function or a subroutine declaration.
For more information about the PURE prefix, refer to the Fortran Standard.

128 S–3901–60

Cray Fortran Directives [5]

5.5.4 Suppress Scalar Optimization: SUPPRESS

The SUPPRESS directive suppresses scalar optimization for all variables or only
for those specified at the point where the directive appears. This often prevents
or adversely affects vectorization of any loop that contains SUPPRESS. The
format of this directive is as follows:

!DIR$ SUPPRESS [var [, var] ...]

var Variable that is to be stored to memory. If no variables are listed,
all variables in the program unit are stored. If more than one
variable is specified, use a comma to separate vars.

At the point at which !DIR$ SUPPRESS appears in the source code, variables
in registers are stored to memory (to be read out at their next reference), and
expressions containing any of the affected variables are recomputed at their next
reference after !DIR$ SUPPRESS. The effect on optimization is equivalent to that
of an external subroutine call with an argument list that includes the variables
specified by !DIR$ SUPPRESS (or, if no variable list is included, all variables
in the program unit).

SUPPRESS takes effect only if it is on an execution path. Optimization proceeds
normally if the directive path is not executed because of a GOTO or IF.

Example:

SUBROUTINE SUB (L)

LOGICAL L

A = 1.0 ! A is local

IF (L) THEN

!DIR$ SUPPRESS ! Has no effect if L is false

CALL ROUTINE()

ELSE

PRINT *, A

END IF

END

In this example, optimization replaces the reference to A in the PRINT statement
with the constant 1.0, even though !DIR$ SUPPRESS appears between A=1.0
and the PRINT statement. The IF statement can cause the execution path to
bypass !DIR$ SUPPRESS. If SUPPRESS appears before the IF statement, A in
PRINT * is not replaced by the constant 1.0.

S–3901–60 129

Cray® Fortran Reference Manual

5.6 Local Use of Compiler Features

The following directives provide local control over specific compiler features.

• BOUNDS and NOBOUNDS

• FREE and FIXED

The -f and -R command line options apply to an entire compilation, but these
directives override any command line specifications for source form or bounds
checking. The following subsections describe these directives.

5.6.1 Check Array Bounds: BOUNDS and NOBOUNDS

Array bounds checking provides a check of most array references at both compile
time and run time to ensure that each subscript is within the array's declared size.

Note: Bounds checking behavior differs with the optimization level. Complete
checking is guaranteed only when optimization is turned off by specifying -O
0 on the ftn command line.

The -R command line option controls bounds checking for a whole compilation.
The BOUNDS and NOBOUNDS directives toggle the feature on and off within a
program unit. Either directive can specify particular arrays or can apply to all
arrays. The formats of these directives are as follows:

!DIR$ BOUNDS [array [, array] ...]

!DIR$ NOBOUNDS [array [, array] ...]

array The name of an array. The name cannot be a subobject of a
derived type. When no array name is specified, the directive
applies to all arrays.

BOUNDS remains in effect for a given array until the appearance of a NOBOUNDS
directive that applies to that array, or until the end of the program unit. Bounds
checking can be enabled and disabled many times in a single program unit.

Note: To be effective, these directives must follow the declarations for all
affected arrays. It is suggested that they be placed at the end of a program
unit's specification statements unless they are meant to control particular
ranges of code.

130 S–3901–60

Cray Fortran Directives [5]

The bounds checking feature detects any reference to an array element whose
subscript exceeds the array's declared size. For example:

REAL A(10)

C DETECTED AT COMPILE TIME:

A(11) = X

C DETECTED AT RUN TIME IF IFUN(M) EXCEEDS 10:

A(IFUN(M)) = W

The compiler generates an error message when it detects an out-of-bounds
subscript. If the compiler cannot detect the out-of-bounds subscript (for
example, if the subscript includes a function reference), a message is issued for
out-of-bound subscripts when your program runs, but the program is allowed
to complete execution.

Bounds checking does not inhibit vectorization but typically increases program
run time. If an array's last dimension declarator is *, checking is not performed
on the last dimension's upper bound. Arrays in formatted WRITE and READ
statements are not checked.

Note: Array bounds checking does not prevent operand range errors that
result when operand prefetching attempts to access an invalid address outside
an array. Bounds checking is needed when very large values are used to
calculate addresses for memory references.

If bounds checking detects an out-of-bounds array reference, a message is issued
for only the first out-of-bounds array reference in the loop. For example:

DIMENSION A(10)

MAX = 20

A(MAX) = 2

DO 10 I = 1, MAX

A(I) = I

10 CONTINUE

CALL TWO(MAX,A)

END

SUBROUTINE TWO(MAX,A)

REAL A(*) ! NO UPPER BOUNDS CHECKING DONE

END

S–3901–60 131

Cray® Fortran Reference Manual

The following messages are issued for the preceding program:

lib-1961 a.out: WARNING

Subscript 20 is out of range for dimension 1 for array

'A' at line 3 in file 't.f' with bounds 1:10.

lib-1962 a.out: WARNING

Subscript 1:20:1 is out of range for dimension 1 for array

'A' at line 5 in file 't.f' with bounds 1:10.

5.6.2 Specify Source Form: FREE and FIXED

The FREE and FIXED directives specify whether the source code in the program
unit is written in free source form or fixed source form. The FREE and FIXED
directives override the -f option, if specified, on the command line. The formats
of these directives are as follows:

!DIR$ FREE

!DIR$ FIXED

These directives apply to the source file in which they appear, and they allow you
to switch source forms within a source file.

You can change source form within an INCLUDE file. After the INCLUDE file has
been processed, the source form reverts back to the source form that was being
used prior to processing of the INCLUDE file.

5.7 Storage Directives

The following directives specify aspects of storing common blocks, variables,
or arrays:

• BLOCKABLE

• BLOCKINGSIZE and NOBLOCKING

• STACK

The following sections describe these directives.

132 S–3901–60

Cray Fortran Directives [5]

5.7.1 Permit Cache Blocking: BLOCKABLE Directive

The BLOCKABLE directive specifies that it is legal to cache block the subsequent
loops.

The format of this directive is as follows:

!DIR$ BLOCKABLE (do_variable,do_variable [,do_variable]...)

where do_variable specifies the do_variable names of two or more loops. The loops
identified by the do_variable names must be adjacent and nested within each
other, although they need not be perfectly nested.

This directive tells the compiler that these loops can be involved in a blocking
situation with each other, even if the compiler would consider such a
transformation illegal. The loops must also be interchangeable and unrollable.
This directive does not instruct the compiler on which of these transformations
to apply.

5.7.2 Declare Cache Blocking: BLOCKINGSIZE and NOBLOCKING Directives

The BLOCKINGSIZE and NOBLOCKING directives assert that the loop following
the directive either is (or is not) involved in a cache blocking for the primary or
secondary cache.

The formats of these directives are as follows:

!DIR$ BLOCKINGSIZE(n1[,n2])

!DIR$ NOBLOCKING

n1,n2 An integer number that indicates the block size. If the loop is
involved in a blocking, it will have a block size of n1 for the
primary cache and n2 for the secondary cache. The compiler
attempts to include this loop within such a block, but it cannot
guarantee this.

For n1, specify a value such that n1 .GE. 0. For n2, specify a
value such that n2 .LE. 230.

If n1 or n2 are 0, the loop is not blocked, but the entire loop is
inside the block.

S–3901–60 133

Cray® Fortran Reference Manual

Example:

SUBROUTINE AMAT(X,Y,Z,N,M,MM)

REAL(KIND=8) X(100,100), Y(100,100), Z(100,100)

DO K = 1, N

!DIR$ BLOCKABLE(J,I)

!DIR$ BLOCKING SIZE (20)

DO J = 1, M

!DIR$ BLOCKING SIZE (20)

DO I = 1, MM

Z(I,K) = Z(I,K) + X(I,J)*Y(J,K)

END DO

END DO

END DO

END

For the preceding code, the compiler makes 20 x 20 blocks when blocking, but it
could block the loop nest such that loop K is not included in the tile. If it did not,
add a BLOCKINGSIZE(0) directive just before loop K to specify that the compiler
should generate a loop such as the following:

SUBROUTINE AMAT(X,Y,Z,N,M,MM)

REAL(KIND=8) X(100,100), Y(100,100), Z(100,100)

DO JJ = 1, M, 20

DO II = 1, MM, 20

DO K = 1, N

DO J = JJ, MIN(M, JJ+19)

DO I = II, MIN(MM, II+19)

Z(I,K) = Z(I,K) + X(I,J)*Y(J,K)

END DO

END DO

END DO

END DO

END DO

END

Note that an INTERCHANGE directive can be applied to the same loop nest as a
BLOCKINGSIZE directive. The BLOCKINGSIZE directive applies to the loop it
directly precedes; it moves with that loop when an interchange is applied.

The NOBLOCKING directive prevents the compiler from involving the subsequent
loop in a cache blocking situation.

134 S–3901–60

Cray Fortran Directives [5]

5.7.3 Request Stack Storage: STACK

The STACK directive causes storage to be allocated to the stack in the program
unit that contains the directive. This directive overrides the -ev command line
option in specific program units of a compilation unit. For more information
about the -ev command line option, see Section 3.5, page 18.

The format of this directive is as follows:

!DIR$ STACK

Data specified in the specification part of a module or in a DATA statement
is always allocated to static storage. This directive has no effect on this static
storage allocation.

All SAVE statements are honored in program units that also contain a STACK
directive. This directive does not override the SAVE statement.

If the compiler finds a STACK directive and a SAVE statement without any objects
specified in the same program unit, a warning message is issued.

The following rules apply when using this directive:

• It must be specified within the scope of a program unit.

• If it is specified in the specification part of a module, a message is issued. The
STACK directive is allowed in the scope of a module procedure.

• If it is specified within the scope of an interface body, a message is issued.

5.8 Miscellaneous Directives

The following directives allow you to use several different compiler features:

• CONCURRENT

• FUSION and NOFUSION

• ID

• IGNORE_TKR

• NAME

• PREPROCESS

• WEAK

S–3901–60 135

Cray® Fortran Reference Manual

5.8.1 Specify Array Dependencies: CONCURRENT

The CONCURRENT directive conveys array dependency information to
the compiler. This directive affects the loop that immediately follows
it. The CONCURRENT directive is useful when vectorization or MSP (X1
only)optimization is specified by the command line. The format of this directive
is as follows:

!DIR$ CONCURRENT [SAFE_DISTANCE=n]

n An integer number that represents the number of additional
consecutive loop iterations that can be executed in parallel
without danger of data conflict. n must be an integeral constant
> 0.

If SAFE_DISTANCE=n is not specified, the distance is assumed
to be infinite, and the compiler ignores all cross-iteration data
dependencies.

The CONCURRENT directive is ignored if the SAFE_DISTANCE
argument is used and MSP optimizations, streaming (X1 only),
or vectorization is requested on the command line.

Example. Consider the following code:

!DIR$ CONCURRENT SAFE_DISTANCE=3

DO I = K+1, N

X(I) = A(I) + X(I-K)

ENDDO

The CONCURRENT directive in this example informs the optimizer that the
relationship K > 3 is true. This allows the compiler to load all of the following
array references safely during the Ith loop iteration:

X(I-K)

X(I-K+1)

X(I-K+2)

X(I-K+3)

136 S–3901–60

Cray Fortran Directives [5]

5.8.2 Fuse Loops: FUSION and NOFUSION

The FUSION and NOFUSION directives allow you to fine-tune the selection of
which DO loops the compiler should attempt to fuse. If there are only a few loops
out of many that you want to fuse, then use the FUSION directive with the -O
fusion1 option to confine loop fusion to these few loops. If there are only a few
loops out of many that you do not want to fuse, use the NOFUSION directive with
the -O fusion2 option to specify no fusion for these loops.

These are the formats of the directives:

!DIR$ FUSION

!DIR NOFUSION

The FUSION directive should be placed immediately before the DO statement of
the loop that should be fused.

For more information about loop fusion and its benefits, see Optimizing
Applications on Cray X1 Series Systems and Optimizing Applications on Cray X2
Systems.

5.8.3 Create Identification String: ID

The ID directive inserts a character string into the file.o produced for a Fortran
source file. The format of this directive is as follows:

!DIR$ ID "character_string"

character_ string

The character string to be inserted into file.o. The syntax box
shows quotation marks as the character_string delimiter, but you
can use either apostrophes (' ') or quotation marks (" ").

The character_string can be obtained from file.o in one of the following ways:

• Method 1 — Using the what command. To use the what command to retrieve
the character string, begin the character string with the characters @(#). For
example, assume that id.f contains the following source code:

!DIR$ ID '@(#)file.f 03 February 1999'

PRINT *, 'Hello, world'

END

S–3901–60 137

Cray® Fortran Reference Manual

The next step is to use file id.o as the argument to the what command, as
follows:

% what id.o

% id.o:

% file.f 03 February 1999

Note that what does not include the special sentinel characters in the output.

In the following example, character_string does not begin with the characters
@(#). The output shows that what does not recognize the string.

Input file id2.o contains the following:

!DIR$ ID 'file.f 03 February 1999'

PRINT *, 'Hello, world'

END

The what command generates the following output:

% what id2.o

% id2.o:

• Method 2 — Using strings or od. The following example shows how to
obtain output using the strings command.

Input file id.f contains the following:

!DIR$ ID "File: id.f Date: 03 February 1999"

PRINT *, 'Hello, world'

END

138 S–3901–60

Cray Fortran Directives [5]

The strings command generates the following output:

% strings id.o

02/03/9913:55:52f90

3.3cn

$MAIN

@CODE

@DATA

@WHAT

$MAIN

$STKOFEN

f$init

_FWF

$END

*?$F(6(

Hello, world

$MAIN

File: id.f Date: 03 February 1999

% od -tc id.o

... portion of dump deleted

0000000001600 \0 \0 \0 \0 \0 \0 \0 \n F i l e : i d

0000000001620 . f D a t e : 0 3 F e b

0000000001640 r u a r y 1 9 9 9 \0 \0 \0 \0 \0 \0

... portion of dump deleted

5.8.4 Disregard Dummy Argument Type, Kind, and Rank: IGNORE_TKR

The IGNORE_TKR directive directs the compiler to ignore the type, kind, and/or
rank (TKR) of specified dummy arguments in a procedure interface.

The format for this directive is as follows:

!DIR$ IGNORE_TKR [[(letter) dummy_arg] ...]

letter The letter can be T, K, or R, or any combination of these letters
(for example, TK or KR). The letter applies only to the dummy
argument it precedes. If letter appears, dummy_arg must appear.

dummy_arg If specified, it indicates the dummy arguments for which TKR
rules should be ignored.

S–3901–60 139

Cray® Fortran Reference Manual

If not specified, TKR rules are ignored for all dummy arguments
in the procedure that contains the directive.

The directive causes the compiler to ignore the type, kind, and/or rank of the
specified dummy arguments when resolving a generic call to a specific call.
The compiler also ignores the type, kind, and/or rank on the specified dummy
arguments when checking all the specifics in a generic call for ambiguities.

Example: The following directive instructs the compiler to ignore type, kind,
and/or rank rules for the dummy arguments of the following subroutine
fragment:

subroutine example(A,B,C,D)

!DIR$ IGNORE_TKR A, (R) B, (TK) C, (K) D

Table 8 indicates what is ignored for each dummy argument.

Table 8. Explanation of Ignored TKRs

Dummy Argument Ignored

A Type, kind and rank is ignored

B Only rank is ignored

C Type and kind is ignored

D Only kind is ignored

5.8.5 External Name Mapping: NAME

The NAME directive allows you to specify a case-sensitive external name, or a
name that contains characters outside of the Fortran character set, in a Fortran
program. The case-sensitive external name is specified on the NAME directive, in
the following format:

!DIR$ NAME (fortran_name="external_name"

[, fortran_name="external_name"] ...)

fortran_name

The name used for the object throughout the Fortran program.

external_name

The external form of the name.

140 S–3901–60

Cray Fortran Directives [5]

Rules for Fortran naming do not apply to the external_name string; any character
sequence is valid. You can use this directive, for example, when writing calls
to C routines.

Example:

PROGRAM MAIN

!DIR$ NAME (FOO="XyZ")

CALL FOO ! XyZ is really being called

END PROGRAM

Note: The Fortran standard BIND feature provides some of the capability of
the NAME directive.

5.8.6 Preprocess Include File: PREPROCESS

The PREPROCESS directive allows an include file to be preprocessed when the
compilation does not specify the preprocessing command line option. This
directive does not cause preprocessing of included files, unless they too use
the directive. If the preprocessing command line option is used, preprocessing
occurs normally for all files.

To use the directive, it must be the first line in the include file and in each
included file that needs to be preprocessing.

This is the format of the PREPROCESS directive:

!DIR$ PREPROCESS [expand_macros]

The optional expand_macros clause allows the compiler to expand all macros
within the include files. Without this clause, macro expansion occurs only within
preprocessing directives.

5.8.7 Specify Weak Procedure Reference: WEAK

Sometimes, the code path of a program never executes at run time because
of some condition. If this code path references a procedure that is external to
the program (for example, a library procedure), the linker will add the binary
for the procedure to the compiled program, resulting in a larger program. The
WEAK directive can prevent the loader from adding the binary to your program,
resulting in a smaller program and less use of memory.

S–3901–60 141

Cray® Fortran Reference Manual

The WEAK directive is used with procedures and variables to declare weak objects.
The use of a weak object is referred to as a weak reference. The existence of a
weak reference does not cause the loader to add the appropriate binaries into a
compiled program, so executing a weak reference will cause the program to fail.
The compiler support for determining if the binary of a weak object is loaded is
deferred. To cause the loader to add the binaries so the weak reference will work,
you must have a strong reference (a normal reference) somewhere in the program.

The following example illustrates the reason the WEAK directive is used.
The startup code, which is compiled into every Fortran program, calls the
SHMEM initialization routine, which causes the linker to add the binary of the
initialization routine to every compiled program if a strong reference to the
routine is used. This binary is unnecessary if a program does not use SHMEM.
To avoid linking unnecessary code, the startup code uses the WEAK directive for
the initialization routine. In this manner, if the program does not use SHMEM,
the linker does not add the binary of the initialization routine even though
the startup code calls it. However, if the program calls the SHMEM routines
using strong references, the linker adds the necessary binaries, including the
initialization binary into the compiled program.

The WEAK directive has two forms:

!DIR$ WEAK procedure_name [, procedure_name] ...

!DIR$ WEAK procedure_name = stub_name[, procedure_name1

= stub_name1] ...

The first form allows you to specify one or more weak objects. This form
requires you to implement code that senses that the procedure_name procedure is
loaded before calling it. The second form allows you to point a weak reference
(procedure_name) to a stub procedure that exists in your code. This allows
you to call the stub if a strong reference to procedure_name does not exist. If a
strong reference to procedure_name exists, it is called instead of the stub. The
stub_name procedure must have the same name and dummy argument list as
procedure_name.

Note: The linker does not issue an unresolved reference error message for
weak procedure references.

142 S–3901–60

Cray Streaming Directives (CSDs)
(X1 only) [6]

The Cray Streaming Directives (CSDs) are nonadvisory directives that allow you
to more closely control multistreaming for key loops. Nonadvisory means that
the compiler must honor these directives. The intention of these directives is
not to create an additional parallel programming style or demand large effort in
code development. They are meant to assist the compiler in multistreaming your
program. On its own, the compiler should perform multistreaming correctly in
most cases. However, if multistreaming for key loops is not occurring as you
desire, then use CSDs to override the compiler.

CSDs are modeled after the OpenMP directives and are compatible with Pthreads
and all distributed-memory parallel programming models on Cray X1 series
systems. Multistreaming advisory directives (MSP directives) and CSDs cannot
be mixed within the same block of code.

Before explaining the guidelines and other issues, you will need an
understanding of these items:

• CSD parallel regions. (Section 6.1, page 144)

• PARALLEL and END PARALLEL—Starts and ends the CSD parallel region.
(Section 6.2, page 144)

• DO and END DO—Multistreams a DO loop. (Section 6.3, page 146)

• PARALLEL DO and END PARALLEL DO—Combine the CSD parallel and
do directives into one directive pair. (Section 6.4, page 149)

• SYNC—Synchronizes all SSPs within an MSP. (Section 6.5, page 150)

• CRITICAL and END CRITICAL—Defines a critical section of code. (Section
6.6, page 150)

• ORDERED and END ORDERED—Specifies SSPs execute in order. (Section 6.7,
page 151)

• NOCSD—Suppresses recognition of CSDs. (Section 6.8, page 152)

S–3901–60 143

Cray® Fortran Reference Manual

When you are familiar with the directives, these topics will be beneficial to you:

• Nested CSDs within Cray programming models (Section 6.9, page 153)

• CSD placement (Section 6.10, page 153)

• Protection of shared data (Section 6.11, page 154)

• Dynamic memory allocation for CSD parallel regions (Section 6.12, page 155)

• Compiler options affecting CSDs (Section 6.13, page 155)

Note: Sometimes the length of a CSD statement can be longer than the
maximum allowable line length. To continue the statement, you can use an
ampersand character as shown in this example:

!csd$ parallel do private (ii,jj,kk,

!csd$& ll,mm,nn)

6.1 CSD Parallel Regions

CSDs are applied to a block of code (for example, a loop), which is referred to as
the CSD parallel region. All CSDs must be used within this region. You must
not branch into or out of the region.

Multiple CSD parallel regions can exist within a program, but, only one parallel
region will be active at any given time. For example, if a parallel region calls a
procedure containing a parallel region, the procedure will execute as if it did
not contain a parallel region.

The CSD parallel region can contain loops and nonloop constructs, but only
loops are multistreamed. Parallel execution of nonloop constructs, such as
initializing variables for the targeted loop, are performed redundantly on all
SSPs. Procedures called from the region will be multistreamed, but you must
guarantee that the procedure does not cause any side effects. Parallel execution of
the procedure is independent and redundant on all SSPs, except for code blocks
containing stand-alone CSDs. See Section 6.10, page 153.

6.2 Start and End Multistreaming: PARALLEL and END PARALLEL

The PARALLEL and END PARALLEL directives define the CSD parallel region,
tell the compiler to multistream the region, and optionally specify private data
objects. All other CSDs must be used within the region. You cannot place the
PARALLEL or END PARALLEL directive in the middle of a construct.

144 S–3901–60

Cray Streaming Directives (CSDs) (X1 only) [6]

This is the form of the parallel directives:

!CSD$ PARALLEL [PRIVATE(list)] [ORDERED]

structured-block

!CSD$ END PARALLEL

The PRIVATE clause allows you to specify data objects that are private to each
SSP within the CSD parallel region; that is, each SSP has its own copy of that
object and is not shared with other SSPs. The main reason for having private
objects is because updating them within the CSD parallel region could cause
incorrect updates because of race conditions on their addresses. The list argument
specifies a comma separated list of objects to make private.

By default the variables used only for loop indexing, implied-do indices, and FOR
ALL indices are assumed to be private. Other variables, unless specified in the
PRIVATE clause, are assumed to be shared.

You may need to take special steps when using private variables. If a data object
existed before the parallel region is entered and the object is made private, the
object may not have the same contents inside of the region as it did outside
the region. The same is true when exiting the parallel region. This same
object may not have the same content outside of the region as it did within the
region. Therefore, if you desire that a private object keep the same value when
transitioning in and out of the parallel region, copy its value to a protected shared
object so you can copy it back into the private object later.

The ORDERED clause is needed if there are within the CSD parallel region, but
not within CSD DO loops, any calls to procedures containing stand-alone CSD
ORDERED directives. The clause is not needed if, within the CSD parallel region,
only CSD DO loops contain calls to functions with stand-alone CSD ORDERED
directives. If the clause is used and there are no called procedures containing a
CSD ORDERED directive, the results produced by the code will be correct, but
performance of that code will be slightly degraded. If the ORDERED clause is
missing and there is a called procedure containing a CSD ORDERED directive,
your results will be incorrect.

The following example shows when the ORDERED clause is needed:

!CSD$ PARALLEL ORDERED

call par_sub ! par_sub contains a stand-alone ORDERED directive.

!CSD DO

... !No calls to procedures containing stand-alone ORDERED directives

!CSD END DO

!CSD$ END PARALLEL

S–3901–60 145

Cray® Fortran Reference Manual

The END PARALLEL directive marks the end of the CSD parallel region and has
an implicit barrier synchronization. The implicit barrier protects an SSP from
prematurely accessing shared data.

Note: At the start of the PARALLEL directive, all SSPs are enabled; when the
END PARALLEL directive is encountered, all SSPs are disabled.

This example shows how to use the PARALLEL directive:

!CSD$ PARALLEL PRIVATE(jx)

x = 2 * PI !This line is computed on all SSPs

do I = 1,NN

jx = y(i) * z(i)**x !jx is private to each SSP

...

end do

!CSD$ END PARALLEL

6.3 Do Loops: DO and END DO

The compiler distributes among the SSPs the iterations of DO loops encapsulated
by the CSD DO and END DO directives. Iterations of DO loops not contained by
the CSD DO directives are not distributed among the SSPs, but are all executed
redundantly by all SSPs.

See Section 6.10, page 153 for placement restrictions of the CSD DO directive.

This is the form of the CSD DO directive:

!CSD$ DO [ORDERED] [SCHEDULE(STATIC [, chunk_size])] [ORDERED]

Do loop block

[!CSD$ END DO [NOWAIT]]

The SCHEDULE clause specifies how the loop iterations are distributed among the
SSPs. This iteration distribution is fixed (STATIC) at compile time and cannot be
changed by run time events.

The iteration distribution is calculated by you or the compiler. You or the
compiler will divide the number of iterations into groups or chunks. The
compiler will then statically assign the chunks to the 4 SSPs in a round-robin
fashion in iteration order. An SSP could have one or more chunks. The number
of iterations per chunk is called the chunk size, which is specified by the
chunk_size argument. The chunk_size argument specifies the maximum
number of iterations a chunk can have.

146 S–3901–60

Cray Streaming Directives (CSDs) (X1 only) [6]

You can use these tips to calculate the chunk size:

• Balance the parallel work load across all 4 SSPs (the number of SSPs in an
MSP) by dividing the number of iterations by 4. If you have a remainder,
add one to the chunk size. Using 4 chunks gives you the best performance,
because multiple chunks per SSP increases the overhead caused by the CSD
DO directive. That is, the fewer number of chunks per SSP (minimum 1), the
better the performance.

• The workload distribution among the SSPs will be imbalanced if the chunk
size is greater than one fourth of the total number of iterations.

• If the chunk size is greater than the total number of iterations, the first SSP
(SSP0) will do all the work.

The compiler calculates the iteration distribution (chunk_size) if the SCHEDULE
clause or chunk_size argument is not specified. The value used is dependent
on the conditions shown in Table 9.

Table 9. Compiler-calculated Chunk Size

Calculated chunk size Condition

1 When a CSD SYNC, CRITICAL, or ORDERED directive or a procedural call
appears in the loop.

Iterations / 4 The number of iterations are divided as evenly as possible into 4 chunks if
these CSDs are not present in the CSD parallel region: SYNC, CRITICAL, or
ORDERED directive or a procedural call. This maximum chunk size is 64.

The ORDERED clause is needed if the DO loop encapsulated by the CSD DO
directive calls any procedure containing a stand-alone CSD ORDERED directive.
If the clause is used and there are no called procedures containing a stand-alone
CSD ORDERED directive, the results produced by the code encapsulated by the
directive will be correct, but performance of that code will be slightly degraded.
If the ORDERED clause is missing and there is a called procedure containing
a stand-alone CSD ORDERED directive, the results produced by the code
encapsulated by the directive will be incorrect.

S–3901–60 147

Cray® Fortran Reference Manual

The following example shows when the ORDERED clause is needed:

!CSD$ PARALLEL

!CSD$ DO ORDERED

do i = 1, n

call do_sub(i) !do_sub contains ORDERED directive

end do

!CSD$ END DO

!CSD$ END PARALLEL

The end of the DO loop or the presence of the optional CSD END DO
directive marks the end of the streamed CSD DO region. An implicit barrier
synchronization occurs at the end of the DO region, unless the NOWAIT clause is
also specified. The implicit barrier protects a SSP from prematurely accessing
shared data. The NOWAIT clause assumes that you are guaranteeing that
consumption-before-production cannot occur.

The following examples illustrate compiler and user-calculated chunk sizes.
The compiler calculates the chunk size as 1 for this example, because of the
subprogram call (consequently, the first SSP performs iterations 1, 5, 9,; the
second SSP performs 2, 6, 10, ...; etc.):

!CSD$ DO

DO I = 1, NUM_SAMPLES

CALL PROCESS_SAMPLE(SAMPLE(I))

END DO

!CSD$ END DO

For this example, because there are no SYNC, CRITICAL, or ORDERED directives
or subprogram calls, the compiler calculates the chunk size as MIN(64,
(ARRAY_SIZE + 3) / 4):

!CSD$ DO

DO I = 1, ARRAY_SIZE

PRODUCT(I) = OPERAND1(I) * OPERAND2(I)

END DO

!CSD$ END DO

Adding 3 to the array size produces an optimal chunk size by grouping the
maximum number of iterations into 4 chunks.

148 S–3901–60

Cray Streaming Directives (CSDs) (X1 only) [6]

This example specifies the SCHEDULE clause and a chunk size of 128:

!CSD$ DO SCHEDULE(STATIC, 128)

DO I = 1, ARRAY_SIZE

PRODUCT(I) = OPERAND1(I) * OPERAND2(I)

END DO

!CSD$ END DO

In the above example, the compiler will use the chunk size based on this
statement MIN(ARRAY_SIZE, 128). If the chunk size is larger than the array
size, the compiler will use the array as the chunk size. If this is the case, then all
the work will be done by SSP0.

6.4 Parallel Do Loops: PARALLEL DO and END PARALLEL DO

The PARALLEL DO directive combines most of the functionality of the PARALLEL
and DO directives into one directive. The PARALLEL DO directive is used on
a single DO loop that contains or does not contain nested loops and is the
equivalent to the following statements:

!CSD$ PARALLEL [PRIVATE(list)]

!CSD$ DO [SCHEDULE(STATIC [, chunk])] [ORDERED]

Do_loop_block

!CSD$ END DO

!CSD$ END PARALLEL

The differences between the PARALLEL DO and its counterparts include the lack
of the NOWAIT clause, because it is not needed.

This is the form of the PARALLEL DO directive:

!CSD$ PARALLEL DO [PRIVATE(list)] [SCHEDULE(STATIC

[, chunk_size])]

Do loop block

!CSD$ END PARALLEL DO

For a description of the syntax of the PARALLEL DO directive, refer to the
PARALLEL and DO directives at Section 6.2, page 144 and Section 6.3, page 146.

S–3901–60 149

Cray® Fortran Reference Manual

6.5 Synchronize SSPs: SYNC

The SYNC directive synchronizes all SSPs within a multistreaming processor
(MSP) and may under certain conditions synchronize memory with physical
storage by calling MSYNC. The SYNC directive is normally used where additional
intra-MSP synchronization is needed to prevent race conditions caused by forced
multistreaming.

The SYNC directive can appear anywhere within the CSD parallel region, even
within the CSD DO and PARALLEL DO directives. If the SYNC directive appears
within a CSD parallel region but outside of an enclosed CSD DO directive, then it
performs an MSYNC on all four SSPs.

This example shows how to use the SYNC directive:

!CSD$ PARALLEL DO PRIVATE(J)

DO I = 1, 4

DO J = 1, 100000

X(J, I) = ... ! Produce X

END DO

. . .

!CSD$ SYNC

DO J + 1, 100000

... = X(J, 5-I) * ... ! Consume X

END DO

END DO NOWAIT

!CSD$ END PARALLEL

The two inner loops provide a producer and consumer pair for array x . The
SYNC directive prevents the use of the array by the second inner loop before it is
completely populated.

6.6 Specify Critical Regions: CRITICAL and END CRITICAL

The CRITICAL and END CRITICAL directives specify a critical region where
only one SSP at a time will execute the enclosed region.

This is the form of the CRITICAL directive:

!CSD$ CRITICAL

Block of code

!CSD$ END CRITICAL

150 S–3901–60

Cray Streaming Directives (CSDs) (X1 only) [6]

This example performs a streamed sum reduction of A and uses the CRITICAL
directive to calculate the complete sum:

SUM = 0 !Shared variable

!CSD$ PARALLEL PRIVATE(PRIVATE_SUM)

PRIVATE_SUM = 0

!CSD$ DO

DO I = 1, A_SIZE

PRIVATE_SUM = PRIVATE_SUM + A(I)

END DO

!CSD$ END DO NOWAIT

!CSD$ CRITICAL

SUM = SUM + PRIVATE_SUM

!CSD$ END CRITICAL

!CSD$ END PARALLEL

6.7 Define Order of SSP Execution: ORDERED and END ORDERED

The CSD ORDERED and END ORDERED directives allow you to multistream
loops with particular dependencies by ensuring the execution order of the SSPs
and that only one SSP at a time executes the code. That is, first SSP0 completes
execution of the block of code surrounded by the ordered directive; next SSP1
completes execution of that block of code etc.

If a stand-alone CSD ORDERED directive is placed in a procedure that is called
from a CSD parallel region, the CSD PARALLEL, PARALLEL DO, or DO directives
that most closely encapsulates the call needs to specify the ORDERED clause to
ensure correct results. See the appropriate CSD for more information.

This is the format of the ORDERED directive:

!CSD$ ORDERED

Block of code

!CSD$ END ORDERED

S–3901–60 151

Cray® Fortran Reference Manual

In the following example, successive iterations of the loop depend upon
previous iterations, because of A(I-1) and A(I-2) on the right side of the first
assignment statement. The ORDERED directive ensures that each computation of
A(I) is complete before the next iteration (which occurs on the next SSP) uses
this value as its A(I-1) and similarly for A(I-2):

!CSD$ PARALLEL DO SCHEDULE(STATIC, 1)

DO I = 3, A_SIZE

!CSD$ ORDERED

A(I) = A(I-1) + A(I-2)

!CSD$ END ORDERED

... ! other processing

END DO

!CSD$ END PARALLEL DO

If the execution time for the code indicated by the other processing
comment is larger compared to the time to compute the assignment within the
ORDERED directives, then the loop will mostly run concurrently on the 4 SSPs,
even if the ORDERED directives are used.

6.8 Suppress CSDs: [NO]CSD

The NOCSD directive suppresses recognition of CSDs. It takes effect after the
appearance of the directive and applies to the rest of the program unit unless it is
superseded by a !DIR$ CSD statement. CSDs are also ignored if multistreaming
optimization is disabled by the -O stream0 option.

If the !DIR$ CSD statement follows a !DIR$ NOCSD statement within the same
program unit, the compiler resumes recognition of CSDs.

These are the formats of the directives:

!DIR$ CSD

!DIR$ NOCSD

152 S–3901–60

Cray Streaming Directives (CSDs) (X1 only) [6]

6.9 Nested CSDs within Cray Parallel Programming Models

CSDs can be used within all Cray programming models on Cray X1 series
systems with the CSDs at the deepest level. These are the nesting levels:

1. Distributed memory models (MPI, SHMEM, UPC, and Fortran co-arrays)

2. Shared memory models (OpenMP and Pthreads)

3. Nonadvisory directives (CSDs)

If the shared or distributed programming model is used, then you can nest the
CSDs within either one, but these models cannot be nested within the CSDs. If
both programming models are nested, then the CSDs must be nested within the
shared model, and the shared model nested within the distributed model.

6.10 CSD Placement

CSDs must be used within the CSD parallel region as defined by the parallel
directives (PARALLEL and END PARALLEL). Some must be used where the
parallel directives are used; that is, used within the same block of code. Other
CSDs can be used in the same block of code or be placed in a procedure and
called from the parallel region (in effect, appearing as if they were within the
parallel region). These CSDs will be referred to as stand-alone CSDs.

The CSD DO directive is the only one that must be used within the same block of
code as this example shows:

!CSD$ PARALLEL

...

!CSD$ DO

Do loop block...

!CSD$ END DO

!CSD$ END PARALLEL

The stand-alone CSDs are SYNC, CRITICAL, and ORDERED. If stand-alone CSDs
are placed in a procedure and the procedure is not called from a parallel region,
the code will execute as if no CSD requests were present.

S–3901–60 153

Cray® Fortran Reference Manual

6.11 Protection of Shared Data

Updates to shared data by procedures called from a CSD parallel region must be
protected against simultaneous access by SSPs used for the CSD parallel region.
Shared data includes statically allocated data objects (such as data defined in a
COMMON block or static files), dynamically allocated data objects pointed to by
more than one SSP, and subprogram formal arguments where corresponding
actual arguments are shared. Protecting your shared data includes using the
CRITICAL directive or the DO loop indices.

The CRITICAL directive can protect writes to shared data by ensuring that only
one SSP at any one time can execute the enclosed code that accesses the shared
data.

Using the DO loop indices when accessing array elements is another way to
protect your shared data. Within a CSD parallel region, iterations of a DO loop
are distributed among the SSPs. This distribution can be used to divide the array
among the SSPs, if the iteration of the DO loop are used to access the array. If
each SSP accesses only its portion of the array, then in a sense, that portion of
the array is private to the SSP.

The following example illustrates this principle. The example performs a sum
reduction on the entire shared A array by doing an intermediate sum reduction
on all SSPs to the shared INTER_SUM vector and a final reduction on a single SSP
to the SUM scalar. The INTER_SUM array is the shared array to consider.

INTEGER A(SIZE1, SIZE2)

INTEGER INTER_SUM(SIZE2)

INTEGER SUM

!CSD$ PARALLEL DO PRIVATE(INTER_SUM)

DO I = 1, SIZE2

INTER_SUM(I) = 0

DO J = 1, SIZE1

INTER_SUM(I) = INTER_SUM(I) + A(J, I)

END DO

END DO

!CSD$ END PARALLEL

SUM = 0

DO I = 1, SIZE2

SUM = SUM + INTER_SUM(I)

END DO

154 S–3901–60

Cray Streaming Directives (CSDs) (X1 only) [6]

Although the INTER_SUM array is shared within the parallel region, the accesses
to it are private, because all accesses are indexed by the loop control variable of
the loop to which the CSD DO was applied.

6.12 Dynamic Memory Allocation for CSD Parallel Regions

There are certain precautions you should remember as you allocate or deallocate
dynamic memory for private or shared data objects.

Calls to the ALLOCATE and DEALLOCATE intrinsic procedures from within CSD
parallel regions must be made by only one SSP at a time. In general, this requires
the calls be made from CSD critical regions. This requirement may be relaxed
in a future release.

Dynamic memory for private data objects specified by the PRIVATE list of the
PARALLEL directive must be allocated and deallocated within the CSD parallel
region. Dynamic memory cannot be allocated for private objects before entry into
the CSD parallel region and then made private.

Dynamic memory can be allocated to shared data objects outside or within the
CSD parallel region. If memory for the shared object is allocated or deallocated
within the CSD parallel region, you must ensure that it is allocated or deallocated
by only one SSP.

If the shared or private data object does not have the SAVE attribute, its memory
will be automatically deallocated at the end of the procedure containing the CSD
parallel region. For private objects, this automatic deallocation may cause an
error because deallocation occurs outside of the parallel region. Therefore, you
must ensure that memory allocated to private objects are deallocated before
exiting the CSD parallel region.

6.13 Compiler Options Affecting CSDs

To enable CSDs, compile your code with the -O streamn option with n set to
1 or greater. Also, specify the -O gen_private_callee option to compile
procedures called from the CSD parallel region.

To disable CSDs, compile with -O stream0, -x all, or -x csd option.

S–3901–60 155

Cray® Fortran Reference Manual

156 S–3901–60

Source Preprocessing [7]

Source preprocessing can help you port a program from one platform to another
by allowing you to specify source text that is platform specific.

For a source file to be preprocessed automatically, it must have an uppercase
extension, either .F (for a file in fixed source form), or .F90 or .FTN (for a file in
free source form). To specify preprocessing of source files with other extensions,
including lowercase ones, use the -eP or -eZ options described in Section 7.4,
page 166.

7.1 General Rules

You can alter the source code through source preprocessing directives. These
directives are fully explained in Section 7.2, page 158. The directives must be
used according to the following rules:

• Do not use source preprocessor (#) directives within multiline compiler
directives (CDIR$, !DIR$, CSD$, !CSD$, C$OMP, or !$OMP).

• You cannot include a source file that contains an #if directive without a
balancing #endif directive within the same file.

The #if directive includes the #ifdef and #ifndef directives.

• If a directive is too long for one source line, the backslash character (\) is used
to continue the directive on successive lines. Successive lines of the directive
can begin in any column.

The backslash character (\) can appear in any location within a directive
in which white space can occur. A backslash character (\) in a comment is
treated as a comment character. It is not recognized as signaling continuation.

• Every directive begins with the pound character (#), and the pound character
(#) must be in column 1.

• Blank and tab (HT) characters can appear between the pound character (#)
and the directive keyword.

• You cannot write form feed (FF) or vertical tab (VT) characters to separate
tokens on a directive line. That is, a source preprocessing line must be
continued, by using a backslash character (\), if it spans source lines.

• Blanks are significant, so the use of spaces within a source preprocessing

S–3901–60 157

Cray® Fortran Reference Manual

directive is independent of the source form of the file. The fields of a source
preprocessing directive must be separated by blank or tab (HT) characters.

• Any user-specified identifier that is used in a directive must follow Fortran
rules for identifier formation. The exceptions to this rule are as follows:

– The first character in a source preprocessing name (a macro name) can be
an underscore character (_).

– Source preprocessing names are significant in their first 132 characters
whereas a typical Fortran identifier is significant only in its first 63
characters.

• Source preprocessing identifier names are case sensitive.

• Numeric literal constants must be integer literal constants or real literal
constants, as defined for Fortran.

• Comments written in the style of the C language, beginning with /* and
ending with */, can appear anywhere within a source preprocessing directive
in which blanks or tabs can appear. The comment, however, must begin and
end on a single source line.

• Directive syntax allows an identifier to contain the ! character. Therefore,
placing the ! character to start a Fortran comment on the same line as the
directive should be avoided.

7.2 Directives

The blanks shown in the syntax descriptions of the source preprocessing
directives are significant. The tab character (HT) can be used in place of a
blank. Multiple blanks can appear wherever a single blank appears in a syntax
description.

7.2.1 #include Directive

The #include directive directs the system to use the content of a file. Just as
with the INCLUDE line path processing defined by the Fortran standard, an
#include directive effectively replaces that directive line by the content of
filename. This directive has the following formats:

#include "filename"

#include <filename>

158 S–3901–60

Source Preprocessing [7]

filename A file or directory to be used.

In the first form, if filename does not begin with a slash (/)
character, the system searches for the named file, first in the
directory of the file containing the #include directive, then in
the sequence of directories specified by the -I option(s) on the
ftn command line, and then the standard (default) sequence. If
filename begins with a slash (/) character, it is used as is and is
assumed to be the full path to the file.

The second form directs the search to begin in the sequence of
directories specified by the -I option(s) on the ftn command
line and then search the standard (default) sequence.

The Fortran standard prohibits recursion in INCLUDE files, so recursion is also
prohibited in the #include form.

The #include directives can be nested.

When the compiler is invoked to do only source preprocessing, not compilation,
text will be included by #include directives but not by Fortran INCLUDE lines.
For information about the source preprocessing command line options, see
Section 7.4, page 166.

7.2.2 #define Directive

The #define directive lets you declare a variable and assign a value to the
variable. It also allows you to define a function-like macro. This directive has
the following format:

#define identifier value

#define identifier(dummy_arg_list) value

The first format defines an object-like macro (also called a source preprocessing
variable), and the second defines a function-like macro. In the second format,
the left parenthesis that begins the dummy_arg_list must immediately follow the
identifier, with no intervening white space.

identifier The name of the variable or macro being defined.

Rules for Fortran variable names apply; that is, the name cannot
have a leading underscore character (_). For example, ORIG is a
valid name, but _ORIG is invalid.

S–3901–60 159

Cray® Fortran Reference Manual

dummy_arg_list

A list of dummy argument identifiers.

value The value is a sequence of tokens. The value can be continued
onto more than one line using backslash (\) characters.

If a preprocessor identifier appears in a subsequent #define directive without
being the subject of an intervening #undef directive, and the value in the second
#define directive is different from the value in the first #define directive, then
the preprocessor issues a warning message about the redefinition. The second
directive's value is used. For more information about the #undef directive, see
Section 7.2.3, page 161.

When an object-like macro's identifier is encountered as a token in the source file,
it is replaced with the value specified in the macro's definition. This is referred to
as an invocation of the macro.

The invocation of a function-like macro is more complicated. It consists of the
macro's identifier, immediately followed by a left parenthesis with no intervening
white space, then a list of actual arguments separated by commas, and finally
a terminating right parenthesis. There must be the same number of actual
arguments in the invocation as there are dummy arguments in the #define
directive. Each actual argument must be balanced in terms of any internal
parentheses. The invocation is replaced with the value given in the macro's
definition, with each occurrence of any dummy argument in the definition
replaced with the corresponding actual argument in the invocation.

For example, the following program prints Hello, world. when compiled
with the -F option and then run:

PROGRAM P

#define GREETING 'Hello, world.'

PRINT *, GREETING

END PROGRAM P

The following program prints Hello, Hello, world. when compiled with
the -F option and then run:

PROGRAM P

#define GREETING(str1, str2) str1, str1, str2

PRINT *, GREETING('Hello, ', 'world.')

END PROGRAM P

160 S–3901–60

Source Preprocessing [7]

7.2.3 #undef Directive

The #undef directive sets the definition state of identifier to an undefined value.
If identifier is not currently defined, the #undef directive has no effect. This
directive has the following format:

#undef identifier

identifier The name of the variable or macro being undefined.

7.2.4 # (Null) Directive

The null directive simply consists of the pound character (#) in column 1 with no
significant characters following it. That is, the remainder of the line is typically
blank or is a source preprocessing comment. This directive is generally used
for spacing out other directive lines.

7.2.5 Conditional Directives

Conditional directives cause lines of code to either be produced by the source
preprocessor or to be skipped. The conditional directives within a source file
form if-groups. An if-group begins with an #if, #ifdef, or #ifndef directive,
followed by lines of source code that you may or may not want skipped. Several
similarities exist between the Fortran IF construct and if-groups:

• The #elif directive corresponds to the ELSE IF statement.

• The #else directive corresponds to the ELSE statement.

• Just as an IF construct must be terminated with an END IF statement, an
if-group must be terminated with an #endif directive.

• Just as with an IF construct, any of the blocks of source statements in an
if-group can be empty.

For example, you can write the following directives:

#if MIN_VALUE == 1

#else

...

#endif

Determining which group of source lines (if any) to compile in an if-group
is essentially the same as the Fortran determination of which block of an IF
construct should be executed.

S–3901–60 161

Cray® Fortran Reference Manual

7.2.5.1 #if Directive

The #if directive has the following format:

#if expression

expression An expression. The values in expression must be integer literal
constants or previously defined preprocessor variables. The
expression is an integer constant expression as defined by the
C language standard. All the operators in the expression are
C operators, not Fortran operators. The expression is evaluated
according to C language rules, not Fortran expression evaluation
rules.

Note that unlike the Fortran IF construct and IF statement
logical expressions, expression in an #if directive need not be
enclosed in parentheses.

The #if expression can also contain the unary defined operator, which can be
used in either of the following formats:

defined identifier

defined(identifier)

When the defined subexpression is evaluated, the value is 1 if identifier is
currently defined, and 0 if it is not.

All currently defined source preprocessing variables in expression, except those
that are operands of defined unary operators, are replaced with their values.
During this evaluation, all source preprocessing variables that are undefined
evaluate to 0.

Note that the following two directive forms are not equivalent:

• #if X

• #if defined(X)

In the first case, the condition is true if X has a nonzero value. In the second case,
the condition is true only if X has been defined (has been given a value that could
be 0).

162 S–3901–60

Source Preprocessing [7]

7.2.5.2 #ifdef Directive

The #ifdef directive is used to determine if identifier is predefined by the source
preprocessor, has been named in a #define directive, or has been named in a
ftn -D command line option. For more information about the -D option, see
Section 7.4, page 166. This directive has the following format:

#ifdef identifier

The #ifdef directive is equivalent to either of the following two directives:

• #if defined identifier

• #if defined(identifier)

7.2.5.3 #ifndef Directive

The #ifndef directive tests for the presence of an identifier that is not defined.
This directive has the following format:

#ifndef identifier

This directive is equivalent to either of the following two directives:

• #if ! defined identifier

• #if ! defined(identifier)

7.2.5.4 #elif Directive

The #elif directive serves the same purpose in an if-group as does the ELSE IF
statement of a Fortran IF construct. This directive has the following format:

#elif expression

expression The expression follows all the rules of the integer constant
expression in an #if directive.

7.2.5.5 #else Directive

The #else directive serves the same purpose in an if-group as does the ELSE
statement of a Fortran IF construct. This directive has the following format:

#else

S–3901–60 163

Cray® Fortran Reference Manual

7.2.5.6 #endif Directive

The #endif directive serves the same purpose in an if-group as does the END IF
statement of a Fortran IF construct. This directive has the following format:

#endif

7.3 Predefined Macros

The Cray Fortran compiler source preprocessing supports a number of
predefined macros. They are divided into groups as follows:

• Macros that are based on the host machine

• Macros that are based on UNICOS/mp and UNICOS/lc system targets

The following predefined macros are based on the host system (the system upon
which the compilation is being done):

unix, __unix, __unix__

Always defined. (The leading characters in the second form
consist of 2 consecutive underscores; the third form consists of 2
leading and 2 trailing underscores.)

The following predefined macros are based on UNICOS/mp and UNICOS/lc
systems as targets:

__crayx1

Defined as 1 on all Cray X1 series systems.

__crayx1e

Defined as 1 on all Cray X1E systems.

__crayx2

Defined as 1 on all Cray X2 systems.

_UNICOSMP

Defined as 1 on all Cray X1 series systems.

cray, CRAY, _CRAY

(X1 only) These macros are defined for UNICOS/mp systems
as targets.

164 S–3901–60

Source Preprocessing [7]

_CRAYIEEE

Defined as 1 on all Cray X1 series and X2 systems as targets.

_MAXVL

Defined as the hardware vector register length (64 for the Cray
X1 and 128 for the Cray X2).

_ADDR64

Defined for UNICOS/mp and UNICOS/lc systems as targets.
The target system must have 64-bit address registers.

The following predefined macros are based on the source file:

__line__, __LINE__

Defined to be the line number of the current source line in the
source file.

__file__, __FILE__

Defined to be the name of the current source file.

__date__, __DATE__

Defined to be the current date in the form mm/dd/yy.

__time__, __TIME__

Defined to be the current in the form hh:mm:ss.

S–3901–60 165

Cray® Fortran Reference Manual

7.4 Command Line Options

The following ftn command line options affect source preprocessing.

• The -D identifier[=value] option, which defines variables used for
source preprocessing. For more information about this option, see Section
3.6, page 26.

• The -eP option, which performs source preprocessing on file.f[90],
file.F[90], file.ftn, or file.FTN but does not compile. The -eP
option produces file.i. For more information about this option, see Section
3.5, page 18.

• The -eZ option, which performs source preprocessing and compilation on
file.f[90], file.F[90], file.ftn, or file.FTN. The -eZ option
produces file.i. For more information about this option, see Section 3.5,
page 18.

• The -F option, which enables macro expansion throughout the source file. For
more information about this option, see Section 3.8, page 26.

• The -U identifier [, identifier] ... option, which undefines
variables used for source preprocessing. For more information about this
option, see Section 3.28, page 76.

The -D identifier [=value], -F, and
-U identifier [, identifier] ... options are
ignored unless one of the following is true:

• The Fortran input source file is specified as either file.F, file.F90, or
file.FTN.

• The -eP or -eZ options have been specified.

166 S–3901–60

OpenMP Fortran API [8]

OpenMP Fortran is a parallel programming model that is portable across shared
memory architectures from Cray and other vendors. The Cray Fortran compiler
supports the OpenMP Fortran Application Program Interface, version 2.5 standard.
All OpenMP library procedures and directives, except for limitations in a few
directive clauses, are supported.

All OpenMP directives and library procedures are documented
by the OpenMP Fortran specification which is accessible at
http://www.openmp.org/drupal/node/view/8.

For information about Cray specific OpenMP Fortran information like
implementation differences, see the following sections:

• Cray Implementation Differences (Section 8.1, page 167)

• OMP_THREAD_STACK_SIZE Environment Variable (Section 8.2, page 169)

• OpenMP Optimizations (Section 8.3, page 170)

• Compiler Options that Affect OpenMP (Section 8.4, page 172)

• OpenMP Program Execution (Section 8.5, page 172)

8.1 Cray Implementation Differences

The OpenMP Fortran Application Program Interface specification defines areas
of implementation that have vendor-specific behaviors. This section documents
those areas and other areas not defined by the specification.

These OpenMP items have Cray specific behaviors in areas defined as
implementation-dependent by the OpenMP specification:

• Implementation-dependent areas of parallel region constructs:

– If a parallel region is encountered while dynamic adjustment of the
number of threads is disabled, and the number of threads specified for the
parallel region exceeds the number that the run-time system can supply,
the program will terminate.

– The number of physical processors actually hosting the threads at any
given time is fixed at program startup and is specified by the aprun -d
depth option.

S–3901–60 167

http://www.openmp.org/specs/

Cray® Fortran Reference Manual

• Implementation-dependent areas of DO and PARALLEL DO directives:

– SCHEDULE(GUIDED,chunk)—The size of the initial chunk for the master
thread and other team members is approximately equal to the trip count
divided by the number of threads.

– SCHEDULE(RUNTIME)—The schedule type and chunk size can be chosen
at run time by setting the OMP_SCHEDULE environment variable. If this
environment variable is not set, the schedule type and chunk size default
to GUIDED and 1, respectively.

– Default schedule—In the absence of the SCHEDULE clause, the default
schedule is STATIC and the default chunk size is roughly the number of
iterations divided by the number of threads.

• Implementation-dependent area of the THREADPRIVATE directive—If the
dynamic threads mechanism is enabled, the definition and association status
of a thread's copy of the variable is undefined, and the allocation status of an
allocatable array is undefined.

• Implementation-dependent area of the PRIVATE clause—If a variable is
declared as PRIVATE, and the variable is referenced in the definition of a
statement function, and the statement function is used within the lexical
extent of the directive construct, then the statement function references the
PRIVATE version of the variable.

• Implementation-dependent areas of the ATOMIC directive—The ATOMIC
directive is replaced with a critical section that encloses the statement.

• Implementation-dependent areas of OpenMP library functions:

– OMP_GET_NESTED—This procedure always returns .FALSE. because
nested parallel regions are always serialized.

– OMP_GET_NUM_THREAD—If the number of threads has not been explicitly
set by the user, the default is the depth value defined through the aprun
-d depth option. If this option is not set, the aprun command defaults
depth to 1, which sets the number of threads to one, which value
OMP_GET_NUM_THREAD returns.

– OMP_SET_NUM_THREADS—If dynamic adjustment of the number of
threads is disabled, the number_of_threads argument sets the number
of threads for all subsequent parallel regions until this procedure is called
again with a different value.

– OMP_SET_DYNAMIC—The default for dynamic thread adjustment is on.

168 S–3901–60

OpenMP Fortran API [8]

– OMP_SET_NESTED—Calls to this function are ignored since nested parallel
regions are always serialized.

• Implementation-dependent areas of OpenMP environment variables:

– OMP_DYNAMIC—The default value is .TRUE.

– OMP_SET_NESTED—This environment variable is ignored because nested
parallel regions are always serialized and executed by a team of one
thread.

– OMP_NUM_THREADS—The default value is the value of depth as defined by
the aprun -d depth option or 1 if the option is not specified.

If the requested value of OMP_NUM_THREADS is more than the number
of threads an implementation can support, the behavior of the program
depends on the value of the OMP_DYNAMIC environment variable. If
OMP_DYNAMIC is .FALSE., the program terminates; otherwise, it uses up
to 16 threads on the Cray X1 series and X2 systems.

– OMP_SCHEDULE—The default values for this environment variable are
GUIDED for schedule and 1 for chunk size.

• Implementation-dependent areas of OpenMP library routines that have
generic interfaces—If an OMP run-time library routine interface is defined to
be generic by an implementation, use of arguments of kind other than those
specified by the OMP_*_KIND constants is undefined.

These OpenMP features have Cray specific behaviors in areas not defined as
implementation-dependent by the OpenMP specification:

• If the omp_lib module is not used and the kind of the actual argument does
not match the kind of the dummy argument, the behavior of the procedure
is undefined.

• The omp_get_wtime and omp_get_wtick procedures return
REAL(KIND=8) values instead of DOUBLE PRECISION values.

8.2 OMP_THREAD_STACK_SIZE Environment Variable

OMP_THREAD_STACK_SIZE is a Cray specific OpenMP environment variable
that affects programs at run time. It changes the size of the thread stack from the
default size of 16 MB to the specified size. The size of the thread stack should be
increased when private variables may utilize more than 16 MB of memory.

S–3901–60 169

Cray® Fortran Reference Manual

(X1 only) The requested thread stack space is allocated from the local heap when
the threads are created. The amount of space used by each thread for thread
stacks depend on whether you are using MSP or SSP mode. In MSP mode,
the memory used is 5 times the specified thread stack size because each SSP is
assigned one thread stack and one thread stack is used as the MSP common stack.
For SSP mode, the memory used is one times the specified thread stack size.

(X1 only) Since memory is allocated from the local heap, you may want to
consider how increasing the size of the thread stacks will affect available space in
the local heap. To adjust the size of the local heap, see the X1_HEAP_SIZE and
X1_LOCAL_HEAP_SIZE environment variables in the memory(7) man page.

(X2 only) The heaps on X2 do not have to be sized statically as on X1; their sizes
are adjusted as needed.

This is the format for the OMP_THREAD_STACK_SIZE environment variable:

OMP_THREAD_STACK_SIZE n

where n is a hex, octal or decimal integer specifying the amount of memory, in
bytes , to allocate for a thread's stack.

8.3 OpenMP Optimizations

A certain amount of overhead is associated with multiprocessing a loop. If
the work occurring in the loop is small, the loop can actually run slower by
multiprocessing than by single processing. To avoid this, make the amount of
work inside the multiprocessed region as large as possible, as is shown in the
following examples. For more information about optimization, see Optimizing
Applications on Cray X1 Series Systems(for the X1 series), and Optimizing
Applications on Cray X2 Systems (for the X2 systems).

Example 1: Loop interchange. Consider the following code:

DO K = 1, N

DO I = 1, N

DO J = 1, N

A(I,J) = A(I,J) + B(I,K) * C(K,J)

END DO

END DO

END DO

170 S–3901–60

OpenMP Fortran API [8]

For the preceding code fragment, you can parallelize the J loop or the I loop.
You cannot parallelize the K loop because different iterations of the K loop read
and write the same values of A(I,J). Try to parallelize the outermost DO loop
if possible, because it encloses the most work. In this example, that is the I
loop. For this example, use the technique called loop interchange. Although the
parallelizable loops are not the outermost ones, you can reorder the loops to
make one of them outermost.

Thus, loop interchange would produce the following code fragment:

!$OMP PARALLEL DO PRIVATE(I, J, K)

DO I = 1, N

DO K = 1, N

DO J = 1, N

A(I,J) = A(I,J) + B(I,K) * C(K,J)

END DO

END DO

END DO

Now the parallelizable loop encloses more work and shows better performance.
In practice, relatively few loops can be reordered in this way. However, it does
occasionally happen that several loops in a nest of loops are candidates for
parallelization. In such a case, it is usually best to parallelize the outermost one.

Occasionally, the only loop available to be parallelized has a fairly small amount
of work. It may be worthwhile to force certain loops to run without parallelism
or to select between a parallel version and a serial version, on the basis of the
length of the loop.

Example 2: Conditional parallelism. The loop is worth parallelizing if N is
sufficiently large. To overcome the parallel loop overhead, N needs to be around
1000, depending on the specific hardware and the context of the program. The
optimized version would use an IF clause on the PARALLEL DO directive:

!$OMP PARALLEL DO IF (N .GE. 1000), PRIVATE(I)

DO I = 1, N

A(I) = A(I) + X*B(I)

END DO

S–3901–60 171

Cray® Fortran Reference Manual

8.4 Compiler Options that Affect OpenMP

These Cray Fortran compiler options enable or disable the OpenMP directives or
determine the type of processing elements each thread runs on:

• Enable OpenMP directive recognition: -O task1 (default)

• Disable OpenMP directive recognition: -O 0, -O task0, or -x omp

• (X1 only) Compile the code to allow the threads to run on MSPs or SSPs: -O
msp (default), -O ssp

8.5 OpenMP Program Execution

The -d depth option of the aprun command is required to reserve more than
one physical processor for an OpenMP process. For best performance, depth
should be the same as the maximum number of threads the program uses. This
example shows how to reserve the physical processors:

aprun -d depth ompProgram

(X1 only) If the program is compiled for MSP mode, depth must be less than or
equal to 4; for SSP mode less than or equal to 16. If depth is not specified, the
aprun command defaults depth to 1.

(X2 only) If the program is compiled for X2 systems, depth must be less than or
equal to 4, the size of an X2 SMP node.

If the OMP_NUM_THREADS environment variable is not set, the program behaves
as if OMP_NUM_THREADS is set to the same value as depth.

The aprun options -n processes and -N processes_per_node are
compatible with OpenMP but do not directly affect the execution of OpenMP
programs.

172 S–3901–60

Cray Fortran Defined Externals [9]

This chapter describes global variables used by the Cray Fortran compiler
targeting UNICOS/mp and UNICOS/lc systems.

9.1 Conformance Checks

The amount of error checking of edit descriptors with input/output (I/O) list
items during formatted READ and WRITE statements can be selected through a
loader option or through an environment variable.

The default error checking provides only limited error checking.

Use the loader options to choose the table to be used for the conformance check.
The table is then part of the executable and no environment variable is required
to run the executable. The loader options allow a choice of checking or no
checking with a particular version of the Fortran standard for formatted READ
and WRITE. See the following tables: Table 17, page 202, Table 18, page 203, Table
19, page 203, and Table 20, page 203.

The environment variable FORMAT_TYPE_CHECKING is evaluated during
execution. The environment variable will override a table chosen through the
loader option. The environment variable provides an intermediate type of
checking that is not provided by the loader option. The environment variable
FORMAT_TYPE_CHECKING is described in section 4.1.3.

S–3901–60 173

Cray® Fortran Reference Manual

To select the least amount of checking, use one or more of the following ftn
command line options.

• On UNICOS/mp systems with formatted READ, use:

ftn -W1,-equiv,_RCHK=_RNOCHK ...

• On UNICOS/mp systems with formatted WRITE, use:

ftn -W1,-equiv,_WCHK=_WNOCHK *.f

• On UNICOS/mp systems with both formatted READ and WRITE, use:

ftn -W1,-equiv,_WCHK=_WNOCHK -W1,-equiv,_RCHK=_RNOCHK *.f

• On UNICOS/lc systems with formatted READ, use:

ftn -W1,--defsym,_RCHK=_RNOCHK *.f(note the double

dashes that precede defsym)

• On UNICOS/lc systems with formatted WRITE, use:

ftn -W1,--defsym,_WCHK=_WNOCHK *.f

• On UNICOS/lc systems with both formatted READ and WRITE, use:

ftn -W1,--defsym,_WCHK=_WNOCHK -W1,--defsym,_RCHK=_RNOCHK *.f

174 S–3901–60

Cray Fortran Defined Externals [9]

To select strict amount of checking for either FORTRAN 77 or Fortran 90, use one
or more of the following ftn command line options.

• On UNICOS/mp systems with formatted READ, use:

ftn -W1,-equiv,_RCHK=_RCHK77 *.f

ftn -W1,-equiv,_RCHK=_RCHK90 *.f

• On UNICOS/mp systems with formatted WRITE, use:

ftn -W1,-equiv,_WCHK=_WCHK77 *.f

ftn -W1,-equiv,_WCHK=_WCHK90 *.f

• On UNICOS/mp systems with both formatted READ and WRITE, use:

ftn -W1,-equiv,_WCHK=_WCHK77 -W1,-equiv,_RCHK=_RCHK77 *.f

ftn -W1,-equiv,_WCHK=_WCHK90 -W1,-equiv,_RCHK=_RCHK90 *.f

• On UNICOS/lc systems with formatted READ, use:

ftn -W1,--defsym,_RCHK=_RCHK77 *.f

ftn -W1,--defsym,_RCHK=_RCHK90 *.f

• On UNICOS/lc systems with formatted WRITE, use:

ftn -W1,--defsym,_WCHK=_WCHK77 *.f

ftn -W1,--defsym,_WCHK=_WCHK90 *.f

• On UNICOS/lc systems with both formatted READ and WRITE, use:

ftn -W1,--defsym,_WCHK=_WCHK77 -W1,--defsym,_RCHK=_RCHK77 *.f

ftn -W1,--defsym,_WCHK=_WCHK90 -W1,--defsym,_RCHK=_RCHK90 *.f

S–3901–60 175

Cray® Fortran Reference Manual

176 S–3901–60

Part II: Cray Fortran and Fortran 2003
Differences

The Cray Fortran compiler is based on the Fortran 2003 standard. Part II
documents only the differences between the Cray Fortran implementation and
the Fortran standard. It is divided into the following chapters:

• Cray Fortran Language Extensions (Chapter 10, page 179)

• Cray Fortran Obsolete Features (Chapter 11, page 229)

• Cray Fortran Deferred Implementation and Optional Features (Chapter 12,
page 257)

• Cray Fortran Implementation Specifics (Chapter 13, page 259)

Cray Fortran Language Extensions [10]

The Cray Fortran compiler supports several features beyond those specified
by the standard. These features are referred to as extensions. The extensions
described in this chapter include extensions widely implemented in other
compilers and facilities designed to provide access to hardware features of the
Cray X1 series and X2 systems. Also included are extensions that might become
features in a future Fortran standard. The implementation of such features
in the compiler might be modified as needed in the future to conform to the
new standard. For information about obsolete features, see Obsolete Features
(Chapter 11, page 229).

The listings provided by the compiler will identify language extensions when the
-e n command line option is specified.

10.1 Characters, Lexical Tokens, and Source Form

10.1.1 Low-level Syntax

10.1.1.1 Characters Allowed in Names

Variables, named constants, program units, common blocks, procedures,
arguments, constructs, derived types (types for structures), namelist groups,
structure components, dummy arguments, and function results are among
the elements in a program that have a name. As extensions, the Cray Fortran
compiler permits the following characters in names:

alphanumeric_character is currency_symbol

or at_sign

currency_symbol is $

at_sign is @

A name must begin with a letter and can consist of letters, digits, and
underscores. The Cray Fortran compiler allows you to use the at sign (@) and
dollar sign ($) in a name, but they cannot be the first character of a name.

Cray does not recommend using @ and $ in user names because they could cause
conflicts with the names of internal variables or library routines.

S–3901–60 179

Cray® Fortran Reference Manual

10.1.1.2 Switching Source Forms

The Cray Fortran compiler allows you to switch between fixed and free source
forms within a file or include file by using the FIXED and FREE compiler
directives.

10.1.1.3 Continuation Line Limit

The Cray Fortran compiler allows a statement to have an unlimited number of
continuation lines. The Fortran standard allows only 255 continuation lines.

10.1.1.4 D Lines in Fixed Source Form

The Cray Fortran compiler allows a D or d character to occur in column one in
fixed source form. Typically, the compiler treats a line with a D or d character
in column one as a comment line. When the -e d command line option is in
effect, however, the compiler replaces the D or d character with a blank and treats
the rest of the line as a source statement. This can be used, for example, for
debugging purposes if the rest of the line contains a PRINT statement.

This functionality is controlled through the -e d and -d d options on the
compiler command line. For more information about these options, see the
ftn(1) man page.

10.2 Types

10.2.1 The Concept of Type

The Cray Fortran compiler supports the following additional data types. This
preserves compatibility with other vendor's systems.

• Cray pointer

• Cray character pointer

• Boolean (or typeless)

The Cray Fortran compiler also supports the TYPEALIAS statement as a means
of creating alternate names for existing types and supports an expanded form
of the ENUM statement.

180 S–3901–60

Cray Fortran Language Extensions [10]

10.2.1.1 Alternate Form of LOGICAL Constants

The Cray Fortran compiler accepts .T. and .F. as alternate forms of .true.
and .false., respectively.

10.2.1.2 Cray Pointer Type

The Cray POINTER statement declares one variable to be a Cray pointer (that is,
to have the Cray pointer data type) and another variable to be its pointee. The
value of the Cray pointer is the address of the pointee. This POINTER statement
has the following format:

POINTER (pointer_name, pointee_name [(array_spec)])

[, (pointer_name, pointee_name [(array_spec)])] ...

pointer_name

Pointer to the corresponding pointee_name. pointer_name
contains the address of pointee_name. Only a scalar variable
can be declared type Cray pointer; constants, arrays, statement
functions, and external functions cannot.

pointee_name

Pointee of corresponding pointer_name. Must be a variable name,
array declarator, or array name. The value of pointer_name is
used as the address for any reference to pointee_name; therefore,
pointee_name is not assigned storage. If pointee_name is an array
declarator, it can be explicit-shape (with either constant or
nonconstant bounds) or assumed-size.

array_spec If present, this must be either an explicit_shape_spec_list, with
either constant or nonconstant bounds) or an assumed_size_spec.

Fortran pointers are declared as follows:

POINTER :: [object-name-list]

Cray Fortran pointers and Fortran standard pointers cannot be mixed.

Example:

POINTER(P,B),(Q,C)

This statement declares Cray pointer P and its pointee B, and Cray pointer Q
and pointee C; the pointer's current value is used as the address of the pointee
whenever the pointee is referenced.

S–3901–60 181

Cray® Fortran Reference Manual

An array that is named as a pointee in a Cray POINTER statement is a pointee
array. Its array declarator can appear in a separate type or DIMENSION statement
or in the pointer list itself. In a subprogram, the dimension declarator can contain
references to variables in a common block or to dummy arguments. As with
nonconstant bound array arguments to subprograms, the size of each dimension
is evaluated on entrance to the subprogram, not when the pointee is referenced.
For example:

POINTER(IX, X(N,0:M))

In addition, pointees must not be deferred-shape or assumed-shape arrays. An
assumed-size pointee array is not allowed in a main program unit.

You can use pointers to access user-managed storage by dynamically associating
variables and arrays to particular locations in a block of storage. Cray pointers
do not provide convenient manipulation of linked lists because, for optimization
purposes, it is assumed that no two pointers have the same value. Cray pointers
also allow the accessing of absolute memory locations.

The range of a Cray pointer or Cray character pointer depends on the size of
memory for the machine in use.

Restrictions on Cray pointers are as follows:

• A Cray pointer variable should only be used to alias memory locations by
using the LOC intrinsic.

• A Cray pointer cannot be pointed to by another Cray or Fortran pointer; that
is, a Cray pointer cannot also be a pointee or a target.

• A Cray pointer cannot appear in a PARAMETER statement or in a type
declaration statement that includes the PARAMETER attribute.

• A Cray pointer variable cannot be declared to be of any other data type.

• A Cray character pointer cannot appear in a DATA statement. For more
information about Cray character pointers, see Section 10.2.1.3, page 186.

• An array of Cray pointers is not allowed.

• A Cray pointer cannot be a component of a structure.

182 S–3901–60

Cray Fortran Language Extensions [10]

Restrictions on Cray pointees are as follows:

• A Cray pointee cannot appear in a SAVE, STATIC, DATA, EQUIVALENCE,
COMMON, AUTOMATIC, or PARAMETER statement or Fortran pointer statement.

• A Cray pointee cannot be a dummy argument; that is, it cannot appear in a
FUNCTION, SUBROUTINE, or ENTRY statement.

• A function value cannot be a Cray pointee.

• A Cray pointee cannot be a structure component.

• An equivalence object cannot be a Cray pointee.

Note: Cray pointees can be of type character, but their Cray pointers are
different from other Cray pointers; the two kinds cannot be mixed in the same
expression.

The Cray pointer is a variable of type Cray pointer and can appear in a COMMON
list or be a dummy argument in a subprogram.

The Cray pointee does not have an address until the value of the Cray pointer
is defined; the pointee is stored starting at the location specified by the pointer.
Any change in the value of a Cray pointer causes subsequent references to the
corresponding pointee to refer to the new location.

Cray pointers can be assigned values in the following ways:

• A Cray pointer can be set as an absolute address. For example:

Q = 0

• Cray pointers can have integer expressions added to or subtracted from them
and can be assigned to or from integer variables. For example:

P = Q + 100

However, Cray pointers are not integers. For example, assigning a Cray pointer
to a real variable is not allowed.

The (nonstandard) LOC(3i) intrinsic function generates the address of a variable
and can be used to define a Cray pointer, as follows:

P = LOC(X)

S–3901–60 183

Cray® Fortran Reference Manual

The following example uses Cray pointers in the ways just described:

SUBROUTINE SUB(N)

INTEGER WORDS

COMMON POOL(100000), WORDS(1000)

INTEGER BLK(128), WORD64

REAL A(1000), B(N), C(100000-N-1000)

POINTER(PBLK,BLK), (IA,A), (IB,B), &

(IC,C), (ADDRESS,WORD64)

ADDRESS = LOC(WORDS) + 64*KIND(WORDS)

PBLK = LOC(WORDS)

IA = LOC(POOL)

IB = IA + 1000*KIND(POOL)

IC = IB + N*KIND(POOL)

BLK is an array that is another name for the first 128 words of array WORDS. A is
an array of length 1000; it is another name for the first 1000 elements of POOL. B
follows A and is of length N. C follows B. A, B, and C are associated with POOL.
WORD64 is the same as BLK(65) because BLK(1) is at the initial address of
WORDS.

184 S–3901–60

Cray Fortran Language Extensions [10]

If a pointee is of a noncharacter data type that is one machine word or longer, the
address stored in a pointer is a word address. If the pointee is of type character
or of a data type that is less than one word, the address is a byte address. The
following example also uses Cray pointers:

PROGRAM TEST

REAL X(*), Y(*), Z(*), A(10)

POINTER (P_X,X)

POINTER (P_Y,Y)

POINTER (P_Z,Z)

INTEGER*8 I,J

!USE LOC INTRINSIC TO SET POINTER MEMORY LOCATIONS

!*** RECOMMENDED USAGE, AS PORTABLE CRAY POINTERS ***

P_X = LOC(A(1))

P_Y = LOC(A(2))

!USE POINTER ARITHMETIC TO DEMONSTRATE COMPILER AND COMPILER

!FLAG DIFFERENCES

!*** USAGE NOT RECOMMENDED, HIGHLY NON-PORTABLE ***

P_Z = P_X + 1

I = P_Y

J = P_Z

IF (I .EQ. J) THEN

PRINT *, 'NOT A BYTE-ADDRESSABLE MACHINE'

ELSE

PRINT *, 'BYTE-ADDRESSABLE MACHINE'

ENDIF

END

On Cray X1 series and X2 systems, this prints the following:

Byte-addressable machine

Note: Cray does not recommend the use of pointer arithmetic because it is
not portable.

S–3901–60 185

Cray® Fortran Reference Manual

For purposes of optimization, the compiler assumes that the storage of a pointee
is never overlaid on the storage of another variable; that is, it assumes that a
pointee is not associated with another variable or array. This kind of association
occurs when a Cray pointer has two pointees, or when two Cray pointers are
given the same value. Although these practices are sometimes used deliberately
(such as for equivalencing arrays), results can differ depending on whether
optimization is turned on or off. You are responsible for preventing such
association. For example:

POINTER(P,B), (P,C)

REAL X, B, C

P = LOC(X)

B = 1.0

C = 2.0

PRINT *, B

Because B and C have the same pointer, the assignment of 2.0 to C gives the same
value to B; therefore, B will print as 2.0 even though it was assigned 1.0.

As with a variable in common storage, a pointee, pointer, or argument to
a LOC(3i) intrinsic function is stored in memory before a call to an external
procedure and is read out of memory at its next reference. The variable is also
stored before a RETURN or END statement of a subprogram.

10.2.1.3 Cray Character Pointer Type

If a pointee is declared as character type, its Cray pointer is a Cray character
pointer.

Restrictions for Cray pointers also apply to Cray character pointers. In addition,
the following restrictions apply:

• When included in an I/O statement iolist, a Cray character pointer is
treated as an integer.

• If the length of the pointee is explicitly declared (that is, not of an assumed
length), any reference to that pointee uses the explicitly declared length.

• If a pointee is declared with an assumed length (that is, as CHARACTER(*)),
the length of the pointee comes from the associated Cray character pointer.

• A Cray character pointer can be used in a relational operation only with
another Cray character pointer. Such an operation applies only to the
character address and bit offset; the length field is not used.

186 S–3901–60

Cray Fortran Language Extensions [10]

10.2.1.4 Boolean Type

A Boolean constant represents the literal constant of a single storage unit. There
are no Boolean variables or arrays, and there is no Boolean type statement.
Binary, octal, and hexadecimal constants are used to represent Boolean values.
For more information about Boolean expressions, see Section 10.4.1, page 191.

10.2.1.5 Alternate Form of ENUM Statement

An enumeration defines the name of a group of related values and the name of
each value within the group.

The Cray Fortran compiler allows the following additional form for enum_def
(enumerations):

enum_def_stmt is ENUM, [,BIND(C)] [[::]
type_alias_name]

or ENUM [kind_selector] [[::]
type_alias_name]

• kind_selector. If it is not specified, the compiler uses the default integer kind.

• type_alias_name is the name you assign to the group. This name is treated
as a type alias name.

10.2.1.6 TYPEALIAS Statement

A TYPEALIAS statement allows you to define another name for an intrinsic data
type or user-defined data type. Thus, the type alias and the type specification it
aliases are interchangeable. Type aliases do not define a new type.

This is the form for type aliases:

type_alias_stmt is TYPEALIAS :: type_alias_list

type_alias is type_alias_name => type_spec

S–3901–60 187

Cray® Fortran Reference Manual

This example shows how a type alias can define another name for an intrinsic
type, a user-defined type, and another type alias:

TYPEALIAS :: INTEGER_64 => INTEGER(KIND = 8), &

TYPE_ALIAS => TYPE(USER_DERIVED_TYPE), &

ALIAS_OF_TYPE_ALIAS => TYPE(TYPE_ALIAS)

INTEGER(KIND = 8) :: I

TYPE(INTEGER_64) :: X, Y

TYPE(TYPE_ALIAS) :: S

TYPE(ALIAS_OF_TYPE_ALIAS) :: T

You can use a type alias or the data type it aliases interchangeably. That is,
explicit or implicit declarations that use a type alias have the same effect as if
the data type being aliased was used. For example, the above declarations of I,
X, and Y are the same. Also, S and T are the same.

If the type being aliased is a derived type, the type alias name can be used to
declare a structure constructor for the type.

The following are allowed as the type_spec in a TYPEALIAS statement:

• Any intrinsic type defined by the Cray Fortran compiler.

• Any type alias in the same scoping unit.

• Any derived type in the same scoping unit.

10.3 Data Object Declarations and Specifications

The Cray Fortran compiler accepts the following extensions to declarations.

10.3.1 Attribute Specification Statements

10.3.1.1 BOZ Constants in DATA Statements

The Cray Fortran compiler permits a default real object to be initialized with a
BOZ, typeless, or character (used as Hollerith) constant in a DATA statement. BOZ
constants are formatted in binary, octal, or hexadecimal. No conversion of the
BOZ value, typeless value, or character constant takes place.

188 S–3901–60

Cray Fortran Language Extensions [10]

The Cray Fortran compiler permits an integer object to be initialized with a BOZ,
typeless, or character (used as Hollerith) constant in a type declaration statement.
The Cray Fortran compiler also allows an integer object to be initialized with a
typeless or character (used as Hollerith) constant in a DATA statement.

If the last item in the data_object_list is an array name, the value list can contain
fewer values than the number of elements in the array. Any element that is not
assigned a value is undefined.

The following alternate forms of BOZ constants are supported.

literal-constant is typeless-constant

typeless-constant is octal-typeless-constant

octal-typeless-constant is digit [digit...] B

or " digit [digit...] "O

or ' digit [digit...] 'O

hexadecimal-typeless-constant is X' hex-digit [hex-digit...]'

or X" hex-digit [hex-digit...] "

or ' hex-digit [hex-digit...] 'X

or " hex-digit [hex-digit...] "X

10.3.1.2 Attribute Respecification

The Cray Fortran compiler permits an attribute to appear more than once in a
given type declaration.

10.3.1.3 AUTOMATIC Attribute and Statement

The Cray Fortran AUTOMATIC attribute specifies stack-based storage for a
variable or array. Such variables and arrays are undefined upon entering
and exiting the procedure. The following is the format for the AUTOMATIC
specification:

type, AUTOMATIC [, attribute-list] :: entity-list

automatic-stmt is AUTOMATIC [[::]]entity-list

S–3901–60 189

Cray® Fortran Reference Manual

entity-list

For entity-list, specify a variable name or an array declarator.
If an entity-list item is an array, it must be declared with an
explicit-shape-spec with constant bounds. If an entity-list item is a
pointer, it must be declared with a deferred-shape-spec.

If an entity-list item has the same name as the function in which it is declared,
the entity-list item must be scalar and of type integer, real, logical, complex, or
double precision.

If the entity-list item is a pointer, the AUTOMATIC attribute applies to the pointer
itself and not to any target that may become associated with the pointer.

Subject to the rules governing combinations of attributes, attribute-list can contain
the following:

DIMENSION

TARGET

POINTER

VOLATILE

The following entities cannot have the AUTOMATIC attribute:

• Pointers or arrays used as function results

• Dummy arguments

• Statement functions

• Automatic array or character data objects

An entity-list item cannot have the following characteristics:

• It cannot be defined in the scoping unit of a module.

• It cannot be a common block item.

• It cannot be specified more than once within the same scoping unit.

• It cannot be initialized with a DATA statement or with a type declaration
statement.

• It cannot also have the SAVE or STATIC attribute.

• It cannot be specified as a Cray pointee.

190 S–3901–60

Cray Fortran Language Extensions [10]

10.3.2 IMPLICIT Statement

10.3.2.1 IMPLICIT Extensions

The Cray Fortran compiler accepts the IMPLICIT AUTOMATIC or
IMPLICIT STATIC syntax. It is recommended that none of the IMPLICIT
extensions be used in new code.

10.3.3 Storage Association of Data Objects

10.3.3.1 EQUIVALENCE Statement Extensions

The Cray Fortran compiler allows equivalencing of character data with
noncharacter data. The Fortran standard does not address this. It is
recommended that you do not perform equivalencing in this manner, however,
because alignment and padding differs across platforms, thus rendering your
code less portable.

10.3.3.2 COMMON Statement Extensions

The Cray Fortran compiler treats named common blocks and blank common
blocks identically, as follows:

• Variables in blank common and variables in named common blocks can be
initialized.

• Named common blocks and blank common are always saved.

• Named common blocks of the same name and blank common can be of
different sizes in different scoping units.

10.4 Expressions and Assignment

10.4.1 Expressions

In Fortran, calculations are specified by writing expressions. Expressions look
much like algebraic formulas in mathematics, particularly when the expressions
involve calculations on numerical values.

Expressions often involve nonnumeric values, such as character strings, logical
values, or structures; these also can be considered to be formulas that involve
nonnumeric quantities rather than numeric ones.

S–3901–60 191

Cray® Fortran Reference Manual

10.4.1.1 Rules for Forming Expressions

The Cray Fortran compiler supports exclusive disjunct expressions of the form:

exclusive-disjunct-expr is [exclusive-disjunct-expr .XOR.] inclusive-disjunct-expr

10.4.1.2 Intrinsic and Defined Operations

Cray supports the following intrinsic operators as extensions:

less_greater_op is .LG.

or <>

not_op is .N.

and_op is .A.

or_op is .O.

exclusive_disjunct_op is .XOR.

or .X.

The Cray Fortran less than or greater than intrinsic operation is represented by
the <> operator and the .LG. keyword. This operation is suggested by the
IEEE standard for floating-point arithmetic, and the Cray Fortran compiler
supports this operator. Only values of type real can appear on either side of the
<> or .LG. operators. If the operands are not of the same kind type value, the
compiler converts them to equivalent kind types. The <> and .LG. operators
perform a less-than-or-greater-than operation as specified in the IEEE standard
for floating-point arithmetic.

The Cray Fortran compiler allows abbreviations for the logical and masking
operators. The abbreviations .A., .O., .N., and .X. are synonyms for .AND.,
.OR., .NOT., and .XOR., respectively.

The masking of Boolean operators and their abbreviations, which are extensions
to Fortran, can be redefined as defined operators. If you redefine a masking
operator, your definition overrides the intrinsic masking operator definition. See
Table 11, page 194, for a list of the operators.

192 S–3901–60

Cray Fortran Language Extensions [10]

10.4.1.3 Intrinsic Operations

In the following table, the symbols I, R, Z, C, L, B, and P stand for the types
integer, real, complex, character, logical, Boolean, and Cray pointer, respectively.
Where more than one type for x2 is given, the type of the result of the operation is
given in the same relative position in the next column. Boolean and Cray pointer
types are extensions of the Fortran standard.

Table 10. Operand Types and Results for Intrinsic Operations

Intrinsic operator Type of x1 Type of x2 Type of result

Unary +, - I, R, Z, B, P I, R, Z, I, P

Binary +, -, *, /, ** I I, R, Z, B, P I, R, Z, I, P

R I, R, Z, B R, R, Z, R

Z I, R, Z Z, Z, Z

B I, R, B, P I, R, B, P

P I, B, P P, P, P

(For Cray pointer,
only + and - are
allowed.)

// C C C

.EQ., ==, .NE., /= I I, R, Z, B, P L, L, L, L, L

R I, R, Z, B, P L, L, L, L, L

Z I, R, Z, B, P L, L, L, L, L

B I, R, Z, B, P L, L, L, L, L

P I, R, Z, B, P L, L, L, L, L

C C L

.GT., >, .GE., >=, .LT., <, .LE., <= I I, R, B, P L, L, L, L

R I, R, B L, L, L

C C L

P I, P L, L

.LG., <> R R L

.NOT. L L

S–3901–60 193

Cray® Fortran Reference Manual

Intrinsic operator Type of x1 Type of x2 Type of result

I, R, B B

.AND., .OR., .EQV., .NEQV., .XOR. L L L

I, R, B I, R, B B

The operators .NOT., .AND., .OR., .EQV., and .XOR. can also be used in the
Cray Fortran compiler's bitwise masking expressions; these are extensions to
the Fortran standard. The result is Boolean (or typeless) and has no kind type
parameters.

10.4.1.4 Bitwise Logical Expressions

A bitwise logical expression (also called a masking expression) is an expression in
which a logical operator operates on individual bits within integer, real, Cray
pointer, or Boolean operands, giving a result of type Boolean. Each operand is
treated as a single storage unit. The result is a single storage unit, which is either
32 or 64 bits depending on the -s option specified during compilation. Boolean
values and bitwise logical expressions use the same operators but are different
from logical values and expressions.

Table 11. Cray Fortran Intrinsic Bitwise Operators and the Allowed Types of their Operands

Operator category Intrinsic operator Operand types

Bitwise masking (Boolean)
expressions

.NOT., .AND., .OR.,

.XOR., .EQV., .NEQV.
Integer, real, typeless, or Cray pointer.

Bitwise logical operators can also be written as functions; for example A .AND.
B can be written as IAND(A,B) and .NOT. A can be written as NOT(A).

Table 12, page 195 shows which data types can be used together in bitwise logical
operations.

194 S–3901–60

Cray Fortran Language Extensions [10]

Table 12. Data Types in Bitwise Logical Operations

x1 x2
1 Integer Real Boolean Pointer Logical Character

Integer Masking
operation,
Boolean
result.

Masking
operation,
Boolean
result.

Masking
operation,
Boolean
result.

Masking
operation,
Boolean
result.

Not valid Not valid2

Real Masking
operation,
Boolean
result.

Masking
operation,
Boolean
result.

Masking
operation,
Boolean
result.

Masking
operation,
Boolean
result.

Not valid Not valid2

Boolean Masking
operation,
Boolean
result.

Masking
operation,
Boolean
result.

Masking
operation,
Boolean
result.

Masking
operation,
Boolean
result.

Not valid Not valid2

Pointer Masking
operation,
Boolean
result.

Masking
operation,
Boolean
result.

Masking
operation,
Boolean
result.

Masking
operation,
Boolean
result.

Not valid Not valid2

Logical Not valid2 Not valid2 Not valid2 Not valid2 Logical
operation
logical result

Not valid2

Character Not valid2 Not valid2 Not valid2 Not valid2 Not valid Not valid2

Bitwise logical expressions can be combined with expressions of Boolean or other
types by using arithmetic, relational, and logical operators. Evaluation of an
arithmetic or relational operator processes a bitwise logical expression with no
type conversion. Boolean data is never automatically converted to another type.

1 x1 and x2 represent operands for a logical or bitwise expression, using operators .NOT., .AND., .OR.,
.XOR., .NEQV., and .EQV..

2 Indicates that if the operand is a character operand of 32 or fewer characters, the operand is treated
as a Hollerith constant and is allowed.

S–3901–60 195

Cray® Fortran Reference Manual

A bitwise logical expression performs the indicated logical operation separately
on each bit. The interpretation of individual bits in bitwise multiplication-exprs,
summation-exprs, and general expressions is the same as for logical expressions.
The results of binary 1 and 0 correspond to the logical results TRUE and FALSE,
respectively, in each of the bit positions. These values are summarized as follows:

.NOT. 1100 1100 1100 1100 1100

=0011 .AND. 1010 .OR. 1010 .XOR. 1010 .EQV. 1010

---- ---- ---- ----

1000 1110 0110 1001

10.4.2 Assignment

10.4.2.1 Assignment

The Cray Fortran compiler supports Boolean and Cray pointer intrinsic
assignments. The Cray Fortran compiler supports type Boolean or BOZ constants
in assignment statements in which the variable is of type integer or real. The bits
specified by the constant are moved into the variable with no type conversion.

10.5 Execution Control

10.5.1 STOP Code Extension

The STOP statement terminates the program whenever and wherever it is
executed. The STOP statement is defined as follows:

stop-stmt is STOP [stop_code]

stop-code is scalar_char_constant

or digit ...

The character constant or list of digits identifying the STOP statement is optional
and is called a stop-code. When the stop-code is a string of digits, leading zeros are
not significant; 10 and 010 are the same stop-code. The Cray Fortran compiler
accepts 1 to 80 digits; the standard accepts up to 5 digits.

196 S–3901–60

Cray Fortran Language Extensions [10]

The stop code is accessible following program termination. The Cray Fortran
compiler sends it to the standard error file (stderr). The following are examples of
STOP statements:

STOP

STOP 'Error #823'

STOP 20

10.6 Input/Output Statements

The Fortran standard does not specifically describe the implementation of I/O
processing. This section provides information about processor-dependent areas
and the implementation of the support for I/O.

10.6.1 File Connection

10.6.1.1 OPEN Statement

The OPEN statement specifies the connection properties between the file and the
unit, using keyword specifiers, which are described in this section. Table 13
indicates the Cray Fortran compiler extension in an OPEN statement.

Table 13. Values for Keyword Specifier Variables in an OPEN Statement

Specifier Possible values Default value

FORM= SYSTEM Unformatted with no record marks

The FORM= specifier has the following format:

FORM= scalar-char-expr

A file opened with SYSTEM is unformatted and has no record marks.

S–3901–60 197

Cray® Fortran Reference Manual

10.7 Error, End-of-record, and End-of-file Conditions

10.7.1 End-of-file Condition and the END-specifier

10.7.1.1 Multiple End-of-file Records

The file position prior to data transfer depends on the method of access:
sequential or direct. Although the Fortran standard does not allow files that
contain an end-of-file to be positioned after the end-of-file prior to data transfer,
the Cray Fortran compiler permits more than one end-of-file for some file
structures.

10.8 Input/Output Editing

10.8.1 Data Edit Descriptors

10.8.1.1 Integer Editing

The Cray Fortran compiler allows w to be zero for the G edit descriptor, and it
permits w to be omitted for the I, B, O, Z, or G edit descriptors.

The Cray Fortran compiler allows signed binary, octal, or hexadecimal values
as input.

If the minimum digits (m) field is specified, the default field width is increased, if
necessary, to allow for that minimum width.

Note: UNICOS/mp and UNICOS/lc systems support 1- and 2-byte data types
when the -eh compiler option is enabled. Cray discourages the use of this
option because it can severely degrade performance. For more information
about the -eh option, see Section 3.5, page 18.

10.8.1.2 Real Editing

The Cray Fortran compiler allows the use of B, O, and Z edit descriptors of REAL
data items. The Cray Fortran compiler accepts the D[w.dEe] edit descriptor.

198 S–3901–60

Cray Fortran Language Extensions [10]

The Cray Fortran compiler accepts the ZERO_WIDTH_PRECISION environment
variable, which can be used to modify the default size of the width w field. This
environment variable is examined only upon program startup. Changing the
value of the environment variable during program execution has no effect. For
more information about the ZERO_WIDTH_PRECISION environment, see Section
4.1.9, page 85.

The Cray Fortran compiler allows w to be zero or omitted for the D, E, EN, ES, or
G edit descriptors.

The Cray Fortran compiler does not restrict the use of Ew.d and Dw.d to an
exponent less than or equal to 999. The Ew.dEe form must be used.

Table 14. Default Fractional and Exponent Digits

Data size and representation w d e

4-byte (32-bit) IEEE 17 9 2

8-byte (64-bit) IEEE 26 17 3

16-byte (128-bit) IEEE 46 36 4

10.8.1.3 Logical Editing

The Cray Fortran compiler allows w to be zero or omitted on the L or G edit
descriptors.

10.8.1.4 Character Editing

The Cray Fortran compiler allows w to be zero or omitted on the G edit
descriptor.

10.8.2 Control Edit Descriptors

10.8.2.1 Q Editing

The Cray Fortran supports the Q edit descriptor. The Q edit descriptor is used to
determine the number of characters remaining in the input record. It has the
following format:

Q

S–3901–60 199

Cray® Fortran Reference Manual

When a Q edit descriptor is encountered during execution of an input statement,
the corresponding input list item must be of type integer. Interpretation of
the Q edit descriptor causes the input list item to be defined with a value that
represents the number of characters remaining to be read in the formatted record.

For example, if c is the character position within the current record of the next
character to be read, and the record consists of n characters, then the item is
defined with the following value MAX(n-c+1,0).

If no characters have yet been read, then the item is defined as n (the length of
the record). If all the characters of the record have been read (c>n), then the item
is defined as zero.

The Q edit descriptor must not be encountered during the execution of an output
statement.

The following example code uses Q on input:

INTEGER N

CHARACTER LINE * 80

READ (*, FMT='(Q,A)') N, LINE(1:N)

10.8.3 List-directed Formatting

10.8.3.1 List-directed Input

Input values are generally accepted as list-directed input if they are the same as
those required for explicit formatting with an edit descriptor. The exceptions
are as follows:

• When the data list item is of type integer, the constant must be of a form
suitable for the I edit descriptor. The Cray Fortran compiler permits
binary, octal, and hexadecimal based values in a list-directed input record
to correspond to I edit descriptors.

200 S–3901–60

Cray Fortran Language Extensions [10]

10.8.4 Namelist Formatting

10.8.4.1 Namelist Extensions

The Cray Fortran compiler has extended the namelist feature. The following
additional rules govern namelist processing:

• An ampersand (&) or dollar sign ($) can precede the namelist group name or
terminate namelist group input. If an ampersand precedes the namelist group
name, either the slash (/) or the ampersand must terminate the namelist
group input. If the dollar sign precedes the namelist group name, either the
slash or the dollar sign must terminate the namelist group input.

• Octal and hexadecimal constants are allowed as input to integer and
single-precision real namelist group items. An error is generated if octal
and hexadecimal constants are specified as input to character, complex, or
double-precision real namelist group items.

Octal constants must be of the following form:

– O"123"

– O'123'

– o"123"

– o'123'

Hexadecimal constants must be of the following form:

– Z"1a3"

– Z'1a3'

– z"1a3"

– z'1a3'

10.8.5 I/O Editing

Usually, data is stored in memory as the values of variables in some binary form.
On the other hand, formatted data records in a file consist of characters. Thus,
when data is read from a formatted record, it must be converted from characters
to the internal representation. When data is written to a formatted record, it must
be converted from the internal representation into a string of characters.

S–3901–60 201

Cray® Fortran Reference Manual

Table 15 and Table 16, list the control and data edit descriptor extensions
supported by the Cray Fortran compiler and provide a brief description of each.

Table 15. Summary of Control Edit Descriptors

Descriptor Description

$ or \ Suppress carriage control

Table 16. Summary of Data Edit Descriptors

Descriptor Description

Q Return number of characters left in record

For more information about the Q edit descriptor, see Section 10.8.2.1, page 199.

The following tables show the use of the Cray Fortran compiler's edit descriptors
with all intrinsic data types. In these tables:

• NA indicates invalid usage that is not allowed.

• I,O indicates that usage is allowed for both input and output.

• I indicates legal usage for input only.

Table 17. Default Compatibility Between I/O List Data Types and Data Edit Descriptors

Data types Q Z R O L I G F ES EN E D B A

Integer I I,O I,O I,O NA I,O I,O NA NA NA NA NA I,O I,O

Real NA I,O I,O I,O NA NA I,O I,O I,O I,O I,O I,O I,O I,O

Complex NA I,O I,O I,O NA NA I,O I,O I,O I,O I,O I,O I,O I,O

Logical NA I,O I,O I,O I,O NA I,O NA NA NA NA NA I,O I,O

Character NA NA NA NA NA NA I,O NA NA NA NA NA NA I,O

Table 18, page 203 shows the restrictions for the various data types that are
allowed when you set the FORMAT_TYPE_CHECKING environment variable to
RELAXED. Not all data edit descriptors support all data sizes; for example, you
cannot read/write a 16–byte real variable with an I edit descriptor.

202 S–3901–60

Cray Fortran Language Extensions [10]

Table 18. RELAXED Compatibility Between Data Types and Data Edit Descriptors

Data types Q Z R O L I G F ES EN E D B A

Integer I I,O I,O I,O I,O I,O I,O I,O I,O I,O I,O NA I,O I,O

Real NA I,O I,O I,O I,O I,O I,O I,O I,O I,O I,O I,O I,O I,O

Complex NA I,O I,O I,O NA NA I,O I,O I,O I,O I,O I,O I,O I,O

Logical NA I,O I,O I,O I,O I,O I,O I,O I,O I,O I,O NA I,O I,O

Character NA NA NA NA NA NA I,O NA NA NA NA NA NA I,O

Table 19 shows the restrictions for the various data types that are allowed when
you set the FORMAT_TYPE_CHECKING environment variable to STRICT77.

Table 19. STRICT77 Compatibility Between Data Types and Data Edit Descriptors

Data types Q Z R O L I G F ES EN E D B A

Integer NA I,O NA I,O NA I,O NA NA NA NA NA NA I,O NA

Real NA NA NA NA NA NA I,O I,O NA NA I,O I,O NA NA

Complex NA NA NA NA NA NA I,O I,O NA NA I,O I,O NA NA

Logical NA NA NA NA I,O NA NA NA NA NA NA NA NA NA

Character NA NA NA NA NA NA NA NA NA NA NA NA NA I,O

Table 20 shows the restrictions for the various data types that are allowed when
you set the FORMAT_TYPE CHECKING environment variable to STRICT90 or
STRICT95.

Table 20. STRICT90 and STRICT95 Compatibility Between Data Types and Data Edit Descriptors

Data types Q Z R O L I G F ES EN E D B A

Integer NA I,O NA I,O NA I,O I,O NA NA NA NA NA I,O NA

Real NA NA NA NA NA NA I,O I,O I,O I,O I,O I,O NA NA

Complex NA NA NA NA NA NA I,O I,O I,O I,O I,O I,O NA NA

Logical NA NA NA NA I,O NA I,O NA NA NA NA NA NA NA

Character NA NA NA NA NA NA I,O NA NA NA NA NA NA I,O

S–3901–60 203

Cray® Fortran Reference Manual

10.9 Program Units

10.9.1 Main Program

10.9.1.1 Program Statement Extension

The Cray Fortran compiler supports the use of a parenthesized list of args at
the end of a program statement. The compiler ignores any args specified after
program-name

10.9.2 Block Data Program Units

10.9.2.1 Block Data Program Unit Extension

The Cray Fortran compiler permits named common blocks to appear in more
than one block data program unit.

10.10 Procedures

10.10.1 Procedure Interface

10.10.1.1 Interface Duplication

The Cray Fortran compiler allows you to specify an interface body for the
program unit being compiled if the interface body matches the program unit
definition.

10.10.2 Procedure Definition

10.10.2.1 Recursive Function Extension

The Cray Fortran compiler allows direct recursion for functions that do not
specify a RESULT clause on the FUNCTION statement.

10.10.2.2 Empty CONTAINS Sections

The Cray Fortran compiler allows a CONTAINS statement with no internal or
module procedure following. This is proposed for the 2008 Fortran standard.

204 S–3901–60

Cray Fortran Language Extensions [10]

10.11 Intrinsic Procedures and Modules

10.11.1 Standard Generic Intrinsic Procedures

10.11.1.1 Intrinsic Procedures

The Cray Fortran compiler has implemented intrinsic procedures in addition to
the ones required by the standard. These procedures have the status of intrinsic
procedures, but programs that use them may not be portable. It is recommended
that such procedures be declared INTRINSIC to allow other processors to
diagnose whether or not they are intrinsic for those processors.

The nonstandard intrinsic procedures supported by the Cray Fortran compiler
that are not obsolete are summarized in the following list. For more information
about a particular procedure, see its man page.

ACOSD Arccosine, value in degrees

ADD_CARRY@ Add vectors with carry

ADD_CARRY_S@

Add scalars with carry

AMO_AADD Atomic memory add

AMO_AFADD Atomic memory add, return old

AMO_AAX Atomic memory logicals

AMO_AFAX Atomic memory logicals, return old

AMO_ACSWAP Atomic compare and swap

ASIND Arcsine, value in degrees

ATAND Arctangent, value in degrees

ATAND2 Arctangent, value in degrees

COSD Cosine, argument in degrees

COT Cotangent

DSHIFTL Double word left shift

DSHIFTR Double word right shift

S–3901–60 205

Cray® Fortran Reference Manual

END_CRITICAL

End of a critical region

EXIT Program termination

FREE Free Cray pointee memory

GET_BORROW@

Get vector borrow bits

GET_BORROW_S@

Get scalar borrow bit

GSYNC Complete outstanding memory references

IBCHNG Reverse bit within a word

ILEN Length in bits of an integer

INT_MULT_UPPER

Upper bits of integer product

LEADZ Number of leading 0 bits

LOC Address of argument

LOG2_IMAGES

Logarithm base 2 of number of images

M@CLR Clears BML bit

M@LD Bit matrix load

M@LDMX Combined bit matrix load and multiply

M@MOR Bit matrix inclusive or

M@MX Bit matrix multiply

M@UL Bit matrix unload

MALLOC Allocate Cray pointee memory

MASK Creates a bit mask in a word

NUMARG Number of arguments in a call

206 S–3901–60

Cray Fortran Language Extensions [10]

NUM_IMAGES Number of executing images

POPCNT Number of 1 bits in a word

POPPAR XOR reduction of bits in a word

QPROD Quad precision product

REM_IMAGES Mod (num_images(), 2**log2_images())

SET_BORROW@

Set vector borrow bits

SET_BORROW_S@

Set scalar borrow bits

SET_CARRY@ Set vector carry bits

SET_CARRY_S@

Set scalar carry bits

SHIFTA Arithmetic right shift

SHIFTL Left shift, zero fill

SHIFTR Right shift, zero fill

SIND Sin, argument in degrees

SIZEOF Size of argument in bytes

SSPID@ SSP number within an MSP (0..3) (X1 only)

START_CRITICAL

Begin critical region

STREAMING@ Indicates if streaming is allowed (X1 only)

SUB_BORROW@

Subtract vector with borrow

SUB_BORROW_S@

Subtract scalar with borrow

SYNC_ALL Synchronize all images

S–3901–60 207

Cray® Fortran Reference Manual

SYNC_FILE Synchronize file access among images

SYNC_IMAGES

Synchronize indicated images

SYNC_MEMORY

Memory barrier (same as GSYNC)

SYNC_TEAM Synchronize a team of images

TAND Tangent, argument in degrees

THIS_IMAGE Image number of executing image

All Cray Fortran intrinsic procedures are described in man pages that can be
accessed online through the man(1) command.

Many intrinsic procedures have both a vector and a scalar version. If a vector
version of an intrinsic procedure exists, and the intrinsic is called within a
vectorizable loop, the compiler uses the vector version of the intrinsic. For
information about which intrinsic procedures vectorize, see intro_intrin(3i).

10.12 Exceptions and IEEE Arithmetic

10.12.1 The Exceptions

10.12.1.1 IEEE Intrinsic Module Extensions

The intrinsic module IEEE_EXCEPTIONS supplied with the Cray Fortran
compiler contains three named constants in addition to those specified by the
standard. These are of type IEEE_STATUS_TYPE and can be used as arguments
to the IEEE_SET_STATUS subroutine. Their definitions correspond to common
combinations of settings and allow for simple and fast changes to the IEEE mode
settings. The constants are:

208 S–3901–60

Cray Fortran Language Extensions [10]

Table 21. Cray Fortran IEEE Intrinsic Module Extensions

Name
Effect of CALL IEEE_SET_STATUS
(Name)

ieee_cri_silent_mode
• Clears all currently set exception flags

• Disables halting for all exceptions

• Disables setting of all exception flags

• Sets rounding mode to
round_to_nearest

ieee_cri_nostop_mode
• Clears all currently set exception flags

• Disables halting for all exceptions

• Enables setting of all exception flags

• Sets rounding mode to
round_to_nearest

ieee_cri_default_mode
• Clears all currently set exception flags

• Enables halting for overflow,
divide_by_zero, and invalid

• Disables halting for underflow and
inexact

• Enables setting of all exception flags

• Sets rounding mode to
round_to_nearest

S–3901–60 209

Cray® Fortran Reference Manual

10.13 Interoperability With C

10.13.1 Interoperability Between Fortran and C Entities

10.13.1.1 BIND(C) Syntax

The proc-language-binding-spec specification allows Fortran programs to
interoperate with C objects. The optional commas in SUBROUTINE name(),
BIND(C) and FUNCTION name(), BIND(C) are Cray extensions to the Fortran
standard.

10.14 Co-arrays

The Cray Fortran compiler implements co-arrays as a mechanism for data
exchange in parallel programs.

Data passing has proven itself to be an effective method for programming
single-program-multiple-data (SPMD) parallel computation. Its chief advantage
over message passing is lower latency for data transfers, which leads to better
scalability of parallel applications. Co-arrays are a syntactic extension to the
Fortran Language that offers a method for programming data passing.

Data passing can also be accomplished by using the shared memory (SHMEM)
library routines. Using SHMEM, the program transfers data from an object
on one processing element to an object on another via subroutine calls. This
technique is often referred to as one-sided communication.

Co-arrays provide an alternative syntax for specifying these transfers. With
co-arrays, the concept of a processing element is replaced by the concept of an
image. When data objects are declared as co-arrays, the corresponding co-arrays
on different images can be referenced or defined in a fashin similar to the way
in which arrays are referenced or defined in Fortran. This is done by adding
additional dimensions, or co-dimensions, within brackets ([]) to an object's
declarations and references. These extra dimensions express the image upon
which the object resides. Since no subroutine calls are involved in data passing
using co-arrays, this technique is referred to as zero-sided communication.

210 S–3901–60

Cray Fortran Language Extensions [10]

Co-arrays offer the following advantages over SHMEM:

• Co-arrays are syntax-based, so programs that use them can be analyzed and
optimized by the compiler. This offers greater opportunity for hiding data
transfer latency.

• Co-array syntax can eliminate the need to create and copy data to local
temporary arrays.

• Co-arrays express data transfer naturally through the syntax of the language,
making the code more readable and maintainable.

• The unique bracket syntax allows you to scan for and to identify
communication in a program easily.

Consider the following SHMEM code fragment from a finite differencing
algorithm:

CALL SHMEM_REAL_GET(T1, U, NROW, LEFT)

CALL SHMEM_REAL_GET(T2, U, NROW, RIGHT)

NU(1:NROW) = NU(1:NROW) + T1(1:NROW) + T2(1:NROW)

Co-arrays can be used to express this fragment simply as:

NU(1:NROW) = NU(1:NROW) + U(1:NROW)[LEFT] + U(1:NROW)[RIGHT]

Notice that the resulting code is more concise, easier to read, and that the copies
to local temporary objects T1 and T2 are eliminated.

Co-arrays can interoperate with the other message passing and data passing
models. This interoperability allows you to introduce co-arrays gradually into
codes that presently use the Message Passing Interface (MPI) or SHMEM.

This chapter describes the syntax and semantics of the co-array extension to the
Cray Fortran compiler.

S–3901–60 211

Cray® Fortran Reference Manual

The following technical papers may be of use to you when using co-arrays:

• R. W. Numrich and J. Reid, Co-array Fortran for Parallel Programming, vol. 17,
Number 2 (ACM Fortran Forum, 1998), 1–31

You can also access the document at this address:

ftp://matisa.cc.rl.ac.uk/pub/reports/nrRAL98060.ps.gz

• R. W. Numrich, J. L. Steidel, B. H. Johnson, B. D. de Dinechin, G. W. Elsesser,
G. S. Fischer, and T. A. MacDonald, Definition of the F– – Extension to Fortran 90,
Proceedings of the 10th International Workshop on Languages and Compilers
for Parallel Computers, Lectures on Computer Science Series, Number 1366,
(Speinger-Verlag, 1998), 282–306

10.14.1 Execution Model and Images

Programs with Cray Fortran co-arrays use the single-program-multiple-data
(SPMD) execution model. In the SPMD model, the program and all its data are
replicated and executed asynchronously. Each replication of the program is an
image. Each image is executed on a processing element.

Images are numbered consecutively starting with one.

Note: (X1 only) Indicating the processing element type an image runs on
(multistreaming processor (MSP) or single streaming processor (SSP)), is
determined at the command line of the Cray Fortran compiler. See Section
10.15.1, page 225.

The total number of images that are executing can be accessed through the
NUM_IMAGES intrinsic function. An image can access its own image number
through the THIS_IMAGE intrinsic function. Images can synchronize through the
SYNC_ALL intrinsic subroutine.

10.14.2 Specifying Co-arrays

A co-array is a data object that is identically allocated on each image and, more
significantly, can be directly referenced by any other image syntactically.

A co-array specification consists of the local object specification and the
co-dimensions specification. The local object is the data object to be replicated
on each image. The co-dimensions are the dimensions of the co-array, which are
specified within brackets ([]) and appended to the specification for the local
object.

212 S–3901–60

Cray Fortran Language Extensions [10]

Example 1. The following statements show co-array declarations:

REAL, DIMENSION(20)[8,*] :: A, C

REAL :: B(20)[8,*], D[*], E[0:*]

INTEGER :: IB(10)[*]

Note: Generally, a co-dimension specification in brackets takes the same
form as a dimension specification in parentheses. The exception is that for
co-dimensions, the upper bound of the right-most co-dimension must be an
asterisk (*). This is because co-array objects are replicated on all images, so
co-size is always equal to NUM_IMAGES.

Elements of co-arrays on other images can be referenced by appending square
brackets to the end of a reference to the local object. As the following shows, the
brackets contain subscripts, one for each co-dimension:

A(5)[7,3] = IB(5)[3]

D[11] = E

A(:)[2,3] = C(1)[1,1]

The co-dimension specification of a co-array creates a mapping of subscripts
to images. This mapping is identical to the mapping that parenthesized array
dimensions create between subscripts and elements of an array. For example, the
following table lists the image number for some references of the objects declared
in Example 1:

Reference Image

IB(5)[3] 3

A(5)[7,3] 31

D[11] 11

E[11] 12

The terms local rank, local size, and local shape refer to the rank, size and shape
of the local object of a co-array. The terms co-rank, co-size, and co-shape refer to
those properties implied by the co-dimensions of a co-array. For example, for
co-array A declared in the preceding list, its local rank is 1; its local size is 20; its
co-rank is 2; and its co-size is equal to NUM_IMAGES. The co-rank of a co-array
cannot exceed 7.

S–3901–60 213

Cray® Fortran Reference Manual

The local object of a co-array can be of a derived type, but a co-array cannot be a
component within a derived type. For example:

TYPE DTYPE1

REAL :: X

REAL :: Y

END TYPE DTYPE1

TYPE(DTYPE1) :: DT(100)[*] ! PERMITTED: CO-ARRAY OF DERIVED TYPE

TYPE DTYPE2

REAL :: X

REAL :: Y[*] ! NOT PERMITTED:

! CO-ARRAY IN DERIVED TYPE

END TYPE DTYPE2

Most objects can be the local object of a co-array, but the following list indicates
restrictions on co-array specifications:

• Co-arrays with assumed-size local size are not supported. For example:

REAL :: Y(*)[*] ! NOT SUPPORTED: LOCAL OBJECT ASSUMED SIZE

• Co-arrays with deferred-shape local shape or co-shape are supported, but
the co-array must be allocatable. Co-array pointers are not supported. For
example:

REAL, ALLOCATABLE :: WA(:)[:] ! SUPPORTED: ALLOCATABLE

REAL, POINTER :: WP(:)[:] ! NOT SUPPORTED: POINTER

• Co-arrays with assumed-shape local shape or co-shape are not supported.
For example:

SUBROUTINE S1(Z1, Z2)

REAL :: Z1(:)[*] ! NOT SUPPORTED: ASSUMED-SHAPE LOCAL SHAPE

REAL :: Z2(:)[:] ! NOT SUPPORTED: ASSUMED-SHAPE CO-SHAPE

• Automatic co-arrays are not supported. For example:

SUBROUTINE S2(A, N)

REAL :: A(N)[*] ! SUPPORTED: CO-ARRAY ACTUAL ARGUMENT

REAL :: W(N)[*] ! NOT SUPPORTED: AUTOMATIC LOCAL OBJECT

10.14.3 Referencing Co-arrays

Co-arrays can be referenced two ways: with brackets and without brackets.

214 S–3901–60

Cray Fortran Language Extensions [10]

When brackets are omitted, the object local to the invoking image is referenced;
this is called a local reference. For example:

REAL, DIMENSION(100)[*] :: A, B, C, D, E

A(I) = B(I) + C(I) ! LOCAL REFERENCES TO A, B, C

D = E ! LOCAL REFERENCES TO D, E

When brackets are specified, the object on the image specified by the subscripts
within the brackets is referenced. This is called a bracket reference. For example:

A(I)[IP] = B(I) + C(I) ! REFERENCE TO A ON IMAGE "IP";

! LOCAL REFERENCES TO B, C

D(:) = E(:)[IP2] ! REFERENCES TO E ON IMAGE "IP2"

! LOCAL REFERENCES TO D

Components of derived type co-arrays are specified by appending the component
specification after the brackets. For example:

TYPE DTYPE3

REAL :: X(100)

INTEGER :: ICNT

END TYPE DTYPE3

TYPE (DTYPE3) :: DT3[*]

DT3%ICNT = DT3[IP]%ICNT ! SUPPORTED: BRACKET IN DERIVED TYPE

DT3%X(J) = DT3[IP]%X(J) ! COMPONENT REFERENCES

The co-subscripts of a co-array reference must translate to an image number
between 1 and NUM_IMAGES, otherwise the behavior of the reference is
undefined.

There is a restriction for co-array references. Specification of subscripts
for co-dimensions generally follows the specification of subscripts within
parentheses. However, support for triplet subscript notation within brackets is
not supported. For example:

D(K)[1:N:2] = E(K)[1:N:2] ! NOT SUPPORTED:

! TRIPLET NOTATION IN []S

S–3901–60 215

Cray® Fortran Reference Manual

10.14.4 Initializing Co-arrays

Co-arrays can be initialized using the DATA statement, but only the initialization
of the local object can be specified. Bracket references are not allowed in a DATA
statement. For example:

REAL :: AI(100)[*]

DATA AI(3) /1.0/ ! PERMITTED

DATA AI(3)[11] /1.0/ ! NOT PERMITTED

When the program is executed, the co-array local objects on every image are
initialized identically, as specified.

10.14.5 Using Co-arrays with Procedure Calls

If a procedure with a co-array dummy argument is called, the called procedure
must have an explicit interface, and the actual argument must be a local reference
to a co-array. If the actual argument has subscripts, their values should be the
same across all images, otherwise the program behavior is undefined. For
example:

INTERFACE

SUBROUTINE S3(A, N)

REAL :: A(N)[*]

END INTERFACE

REAL :: X(100,100), Y(100,100)[*]

CALL S3(X(1,K), 100) ! NOT PERMITTED:

! LOCAL ACTUAL, CO-ARRAY DUMMY

CALL S3(Y(1,K), 100) ! PERMITTED: CO-ARRAY ACTUAL AND DUMMY;

! UNDEFINED IF "K" NOT SAME VALUE ON

! ALL IMAGES

Bracket references cannot appear as actual arguments in subroutine calls or
function calls. For example:

CALL S3(Y(1,K)[IP], 100) ! NOT PERMITTED: BRACKET ACTUAL

Co-array bracket references can appear within an actual argument, but only as
part of an expression that is passed as the actual argument. Parentheses can be
used to turn a bracket reference into an expression. For example:

CALL S3((Y(1,K)[IP]), 100) ! PERMITTED: ACTUAL IS EXPRESSION

216 S–3901–60

Cray Fortran Language Extensions [10]

The rules of resolving generic procedure references are the same as those in the
Fortran standard.

The following restrictions affect co-arrays used in procedures:

• A function result is not permitted to be a co-array.

• A pure procedure is not permitted to contain any co-arrays.

10.14.6 Specifying Co-arrays in COMMON and EQUIVALENCE Statements

Co-arrays can be specified in COMMON statements. For example:

COMMON /CCC/ W1(100)[*], W2(100)[16,*] ! PERMITTED:

! CO-ARRAYS IN COMMON

The layout of the common block on any one image is as if all objects of the
common block were declared without co-dimensions.

Data objects that are not co-array data objects can appear in the same common
block as co-arrays.

Co-arrays can be specified in EQUIVALENCE statements, but bracket references
cannot appear in EQUIVALENCE statements. For example:

REAL :: V1(100)[*], V2(100)[*], V3(100)

EQUIVALENCE (V1(50), V2(1)) ! PERMITTED: CO-ARRAYS

EQUIVALENCE (V1(1)[16], V2(1)[1]) ! NOT PERMITTED:

! SQUARE BRACKETS

Data objects that are not co-array data objects cannot be equivalenced to co-array
data objects. For example:

EQUIVALENCE (V1(50), V3(1)) ! NOT PERMITTED: V3 NOT

! CO-ARRAY OBJECT

S–3901–60 217

Cray® Fortran Reference Manual

10.14.7 Allocatable Co-arrays

A co-array can be allocatable. Co-dimensions are specified by appending
brackets containing the co-dimension specification to the co-array local
specification in an ALLOCATE statement. For example:

REAL, ALLOCATABLE :: A1(:)[:], A2(:)[:,:]

ALLOCATE (A1(10)[*]) ! PERMITTED: ALLOCATABLE CO-ARRAY

ALLOCATE (A2(24)[0:7,0:*])

As with the specification of statically allocated co-arrays, the upper bound of the
final co-dimension must be an asterisk (*) and the values of all other bounds
must be identical across all images.

!
Caution: Execution of ALLOCATE and DEALLOCATE statements containing
co-array objects causes an implicit barrier synchronization of all images. All
images must participate in the execution of these statements, or deadlock can
occur.

10.14.8 Pointer Components in Derived Type Co-arrays

A pointer cannot be declared as a co-array, but a co-array can be of a derived type
containing a pointer component. This enables construction of irregularly sized
data structures across images and indirect addressing of non-co-array data. For
example:

TYPE DTYPE4

INTEGER :: LEN

REAL, POINTER :: AP(:)

END TYPE DTYPE4

TYPE(DTYPE4) :: D4[*] ! PERMITTED: CO-ARRAY OF DERIVED

! TYPE CONTAINING POINTER

To help prevent the possibility of pointers being assigned invalid data, co-array
bracket references cannot appear in pointer assignment statements. For example:

REAL :: Q(100)

D4[IP]%AP => Q ! NOT PERMITTED: BRACKET IN

Q => D4[IP]%AP ! POINTER ASSIGNMENT

Pointer components of a co-array can be associated only with a local target, either
through pointer assignment or allocation.

218 S–3901–60

Cray Fortran Language Extensions [10]

10.14.9 Allocatable Components in Derived Type Co-arrays

Co-array derived types are allowed to have allocatable components. This enables
construction of irregularly sized data structures across images.

TYPE DTYPE4

INTEGER :: LEN

REAL, ALLOCATABLE :: AP(:)

END TYPE DTYPE4

TYPE(DTYPE4) :: D4[*] ! PERMITTED: CO-ARRAY OF DERIVED

! TYPE CONTAINING ALLOCATABLE COMPONENT

A bracket reference to a allocatable component in a derived type co-array returns
the value from the object on the specified image. For example, the reference
D4[7]%AP(22) returns the value of D4%AP(22) as evaluated on image 7.

Allocatable components are allocated independently on each image. The
allocation must not include square brackets.

10.14.10 Intrinsic Procedures

These co-array intrinsics return information about images:

• LOG2_IMAGES returns the base 2 logarithm of the number of executing
images, truncated to an integer

• NUM_IMAGES returns the total number of Co-array Fortran images executing

• REM_IMAGES returns MOD(NUM_IMAGES(), 2**LOG2_IMAGES())

• THIS_IMAGE returns the index of, or co-subscripts related to, the invoking
image

Only NUM_IMAGES, LOG2_IMAGES, and REM_IMAGES can appear in specification
statements. None of the intrinsics are permitted in initialization expressions.

S–3901–60 219

Cray® Fortran Reference Manual

These co-array intrinsic subroutines synchronize access to co-array data among
the images:

• SYNC_ALL

• SYNC_TEAM

• SYNC_MEMORY

• START_CRITICAL and END_CRITICAL

• SYNC_FILE

The following sections contain more information about these intrinsic
procedures.

10.14.11 Program Synchronization

Co-arrays provide synchronization procedures which allow you to ensure that
access to co-array data in primary memory is coherent (reliable) across all images
or a group of images called a team. That is, any image that modifies co-array data
that is expected to be read by another image, or any image that reads data that
is modified by another image must call the co-array synchronization intrinsic
functions to ensure valid data is accessed by other images.

10.14.11.1 SYNC_ALL

The SYNC_ALL intrinsic guarantees to all images executing a corresponding call
to SYNC_ALL that the calling procedure has completed all preceding accesses to
co-array data. The access must either be a direct read or write of the data or a
procedure call that references the data. The SYNC_ALL intrinsic returns when all
images have made a corresponding call to SYNC_ALL.

For example, consider the following subroutine:

SUBROUTINE TST(A,B,C,D,N,IP)

REAL :: A(N)[*], B(N)[*], C(N)[*], D(N)

A(:) = B(:)[IP]

CALL SUB1(C,N)

D(:) = 0.0

CALL SYNC_ALL()

END

220 S–3901–60

Cray Fortran Language Extensions [10]

When an image executes the SYNC_ALL call as in the preceding example, it
guarantees to all images executing a corresponding SYNC_ALL call that its access
to A and B are complete and that all accesses to C by SUB1 are complete. It does
not guarantee that its accesses to D are complete, since D is not declared as a
co-array. This is true even if the actual argument for D is a co-array.

Access behavior to the same data by different images without such
corresponding synchronization calls is undefined.

This is the syntax of the SYNC_ALL intrinsic:

CALL SYNC_ALL([wait])

Calling SYNC_ALL without the wait argument is the same as calling
SYNC_TEAM(all), where all has the value (/ (I,I=1,num_images()) /).
Calling SYNC_ALL(wait) is the same as calling SYNC_TEAM(all, wait). See
Section 10.14.11.2, page 221 for more information about the wait argument.

Calling SYNC_ALL implies a call to SYNC_MEMORY function.

10.14.11.2 SYNC_TEAM

The SYNC_TEAM intrinsic function can be used to synchronize a subset (or team)
of images.

The syntax is:

CALL SYNC_TEAM(team [,wait])

The team argument specifies the members of the team. It has the INTENT(IN)
attribute and can be either an integer array of rank one or an integer scalar.

To create a team of two or more, pass an integer array containing the image
numbers of all members of the team, including the image calling SYNC_TEAM.
Valid values for each element are from 1 through NUM_IMAGES inclusive. The
array must not contain duplicate image numbers.

This example synchronizes a team consisting of images 2, 4, and 6:

Note: The calling image must be either image 2, 4 or 6.

CALL SYNC_TEAM((/2,4,6/))

You can also pass an integer scalar to create a team of two where the image
calling SYNC_TEAM is an implied member of the team and the scalar integer
specifies the image number of the other team member.

S–3901–60 221

Cray® Fortran Reference Manual

For example, this code synchronizes a team consisting of the executing image
and image 4:

CALL SYNC_TEAM(4)

The presence of the optional wait argument tells an image to wait only for a
subset of the team members to make a corresponding call. The wait argument has
the INTENT(IN) attribute and is either an integer array or integer scalar.

For the array case, it contains the numbers of the images to wait for. It should
contain no duplicate entries. The scalar case is treated as if the argument were
the array (/wait/).

For example, this code synchronizes a team consisting of images 2, 4, 6, and 8,
while waiting for images 4 and 6:

CALL SYNC_TEAM((/2,4,6,8/, /4,6/))

All images participating in a SYNC_TEAM call must call with identical arguments.
Otherwise the results are undefined.

10.14.11.3 SYNC_MEMORY

The SYNC_MEMORY intrinsic guarantees to other images that the image calling the
function has completed all preceding accesses to co-array data.

This is the syntax of the intrinsic:

CALL SYNC_MEMORY()

10.14.11.4 START_CRITICAL and END_CRITICAL

The START_CRITICAL and END_CRITICAL intrinsic functions mark the
beginning and end of a critical section. Only one image at a time may execute
statements in a critical region. If an image executes a START_CRITICAL intrinsic
while another image is in the critical region, it waits. Also, both intrinsics, like
the SYNC_MEMORY intrinsic, ensure that the calling image has completed all
preceding accesses to co-array data.

This is the syntax of the intrinsics:

CALL START_CRITICAL()

CALL END_CRITICAL()

222 S–3901–60

Cray Fortran Language Extensions [10]

Example 4: Using START CRITICAL and END CRITICAL

Source code:

program critical

implicit none

real :: sum_local, median_local

integer:: mype

! Distribute work and calculate sum and median values for each image

! For the sake of simplicity, we just assign values to sum_local and

! median_local

mype = this_image()

select case(mype)

case (1)

sum_local = 1000.

median_local = 1234.

case(2)

sum_local = 2000.

median_local = 2345.

end select

! By putting these write statements in a critical region, you will get

! readable contiguous output on stdout. Without the critical region,

! lines of output from various images could be intermixed and unreadable.

call start_critical()

write (*,*) "********** Results for end of pass 1 on image ",mype," *********"

write (*,*) " sum = ",sum_local

write (*,*) "median = ",median_local

write (*,*) "---"

write (*,*)

call end_critical()

end program

Commands to compile and run program:

% ftn -o caf_critical -Z caf_critical.ftn

% module load pbs

% qsub -I -l mppe=2

S–3901–60 223

Cray® Fortran Reference Manual

qsub: waiting for job <job id> to start

% aprun -n 2 /ptmp/user1/caf_critical

Output:

********** Results for end of pass 1 on image 2 *********

sum = 2000.

median = 2345.

********** Results for end of pass 1 on image 1 *********

sum = 1000.

median = 1234.

10.14.11.5 SYNC_FILE

To synchronize file accesses among images, use the SYNC_FILE intrinsic
function. The intrinsic flushes data to a file to ensure that all images have access
to valid data. The intrinsic affects only the I/O unit connected an image. If the
unit is not connected or does not exist, the intrinsic has no effect. If the unit is
connected for sequential access, a call to SYNC_FILE causes all WRITE requests to
advance input or output.

This is the syntax of SYNC_FILE:

CALL SYNC_FILE(unit)

The unit argument is a scalar integer with the INTENT(IN) attribute. The unit
argument specifies a Fortran I/O unit.

10.14.12 I/O with Co-arrays

An image can perform input only on the portion of a co-array that is local to that
image. An image can perform output on any portion of a co-array. For example:

REAL :: X(100)[*]

...

READ *, X(I) ! PERMITTED: LOCAL CO_ARRAY REFERENCE

READ *, X(I)[IP] ! NOT PERMITTED: BRACKET CO-ARRAY REFERENCE

PRINT *, X(I)[IP] ! PERMITTED: OUTPUT OF BRACKET CO-ARRAY REFERENCE

224 S–3901–60

Cray Fortran Language Extensions [10]

Each image has its own set of independent I/O units. A file can be opened on one
image when it is already open on another, but only the BLANK, DELIM, PAD, ERR,
and IOSTAT specifiers can have values that differ from those in effect on other
images.

!
Caution: For a unit identified by an asterisk (*) in a READ or WRITE statement,
there is a single position for all images. Only one image executes a statement
for such a unit at any one time. The system introduces synchronization when
necessary. Otherwise, each image positions each file independently. If the
access order is important, the program must provide its own synchronization
between images.

10.15 Compiling and Executing Programs Containing Co-arrays

There are various commands, tools, and products available in the programming
environment to use for compiling and executing programs containing co-arrays.

10.15.1 ftn and aprun Options Affecting Co-arrays

The -Z compiler option on the ftn command line must be specified in order for
co-array syntax to be recognized and translated. Otherwise, the co-array syntax
generates ERROR messages.

Upon execution of an a.out file that has been compiled and loaded with the -Z
option, an image is created and executed on every processing element assigned to
the job. Images 1 through NUM_IMAGES are assigned to processing elements 0
through N$PES-1, consecutively.

You can set the number of processing elements assigned to a job at compile time
by specifying the -X option on the ftn command. The number of processing
elements can also be set at run time by executing the a.out file by using the
aprun command with the -n option specified.

(X1 only) Processing elements are either MSPs or SSPs. To run the images on
SSPs, you must specify the -O ssp compiler option. To run on MSPs, you do not
specify this option. For more information about SSP and MSP mode, see Section
3.19.21, page 55.

Bounds checking is performed by specifying the -Rb option on the ftn
command line. This feature is not implemented for co-dimensions of co-arrays.

For more information about the ftn and aprun commands, see the ftn(1) and
aprun(1) man pages.

S–3901–60 225

Cray® Fortran Reference Manual

10.15.2 Using the CrayTools Tool Set with Co-array Programs

The CrayTools tool set, which includes TotalView, and Cray performance
analyzer tool (CrayPat), does not contain special support for co-arrays and does
not support the bracket notation. In most cases, however, these tools can still be
used effectively to analyze programs containing co-arrays.

The following sections discuss issues related to the interaction of these tools with
programs containing co-arrays.

10.15.2.1 Debugging Programs Containing Co-arrays (Deferred implementation)

The totalview debugger does not support the bracket notation. Co-arrays
generally appear as their corresponding local object with co-dimensions stripped
off.

Co-array data can be viewed and referenced by switching the totalview
Process window to the processing element corresponding to the desired image
and accessing the co-array with local references.

10.15.2.2 Analyzing Co-array Program Performance

To the CrayTools performance tools, which include CrayPat, co-arrays generally
appear as their corresponding local object with co-dimensions stripped off. For
more information about CrayPat, see Optimizing Applications on Cray X1 Series
Systems.

!
Caution: References to co-arrays on different images appear to the
performance tools as local data references. This may skew the remote reference
statistics of these tools.

10.15.3 Interoperating with Other Message Passing and Data Passing Models

Co-arrays can interoperate with all other message and data passing models: MPI
and SHMEM. This allows you to introduce co-arrays into existing application
codes incrementally.

These models are implemented through procedure calls, so the language
interaction between co-arrays and these models is well defined. For more
information about passing co-arrays to procedure calls, see Section 10.14.5,
page 216.

226 S–3901–60

Cray Fortran Language Extensions [10]

!
Caution: MPI and SHMEM generally use processing element numbers, which
start at zero, but the co-array model generally deals with image numbers,
which start at one. For information about the mapping between processing
elements and image numbers, see Section 10.15.1, page 225

Co-arrays are symmetric for the purposes of SHMEM programming. Pointers in
co-arrays of derived type, however, may not necessarily point to symmetric data.

For more information about the other message passing and data passing models,
see one of the following publications:

• Message Passing Toolkit Release Overview

• intro_shmem(3) command and man page.

10.15.4 Optimizing Programs with Co-arrays

Programs containing co-arrays benefit from all the usual steps you can take to
improve run-time performance of code that runs on a single image.

Loops containing references to co-arrays can and should be vectorized. On
UNICOS/mp systems such loops may also be multistreamed. On UNICOS/mp
systems if a co-array vector memory reference references multiple images, you
may receive a "No Forward Progress" exception. In this case, you should try
vectorizing along a different dimension of the co-array or running the application
in accelerated mode (aprun -A).

S–3901–60 227

Cray® Fortran Reference Manual

228 S–3901–60

Obsolete Features [11]

The Cray Fortran compiler supports legacy features to allow the continued use
of existing codes. In general, these features should not be used in new codes.
The obsolete features are divided into two groups. The first is the set of features
identified in Annex B of the Fortran standard as deleted. These were part of the
Fortran language but their usage is explicitly discouraged in new codes. The
second group is the set of legacy extensions supported in the Cray compiler for
which preferred alternatives now exist. The obsolete features and their preferred
alternatives are listed in Table 22.

Table 22. Obsolete Features and Preferred Alternatives

Obsolete feature Preferred alternative

IMPLICIT UNDEFINED IMPLICIT NONE

Type statements with *n Type statements with KIND= parameters

BYTE data type INTEGER(KIND=1)

DOUBLE COMPLEX statement COMPLEX statement with KIND parameter

STATIC attribute and statement SAVE attribute and statement

Slash data initialization Standard initialization syntax

DATA statement features Standard conforming DATA statements

Hollerith data Character data

PAUSE statement READ statement

ASSIGN, assigned GOTO statements and assigned
format specifiers

Standard branching constructs

Two-branch IF statements IF construct or statement

Real and double precision DO variables Integer DO variables

Nested loop termination Separate END DO statements

Branching into a block Restructure code

ENCODE and DECODE statements WRITE and READ with internal file

BUFFER IN and BUFFER OUT statements Asynchronous I/O statements

Asterisk character constant delimiters Use standard character delimiters

Negative-values X descriptor TL descriptor

S–3901–60 229

Cray® Fortran Reference Manual

Obsolete feature Preferred alternative

A descriptor used for noncharacter conventional data
and R descriptor

Character type and other conventional matchings
of data and descriptors

H edit descriptor Character constants

Obsolete intrinsic procedures For list and replacements, see Section 11.21, page 250

Initialization using long strings Replace the numeric target with a character item.
Replace a Hollerith constant with a character
constant

11.1 IMPLICIT UNDEFINED

The Cray Fortran compiler accepts the IMPLICIT UNDEFINED statement. It is
equivalent to the IMPLICIT NONE statement.

11.2 Type statement with *n

The Cray Fortran compiler defines the following additional forms of
type_declaration_stmt:

type_spec is INTEGER* length_value

or REAL* length_value

or DOUBLE PRECISION* length_value

or COMPLEX* length_value

or LOGICAL* length_value

• length-value is the size of the data object in bytes.

Data type declarations that include the data length are outmoded. The Cray
Fortran compiler recognizes this usage in type statements, IMPLICIT statements,
and FUNCTION statements, mapping these numbers onto kind values appropriate
for the target machine.

11.3 BYTE Data Type

The BYTE statement and data type declares a 1–byte value. This data type is
equivalent to the INTEGER(KIND=1) and INTEGER*1 declarations.

230 S–3901–60

Obsolete Features [11]

11.4 DOUBLE COMPLEX Statement

The DOUBLE COMPLEX statement is used to declare an item to be of type double
complex. The format for the DOUBLE COMPLEX statement is as follows:

DOUBLE COMPLEX [, attribute-list ::] entity-list

Items declared as DOUBLE COMPLEX contain two double precision entities.

When the -dp option is in effect, double complex entities are affected as follows:

• The nonstandard DOUBLE COMPLEX declaration is treated as a
single-precision complex type.

• Double precision intrinsic procedures are changed to the corresponding
single-precision intrinsic procedures.

The -ep or -dp specification is used for all source files compiled with a single
invocation of the Cray Fortran compiler command. If a module is compiled
separately from a program unit that uses the module, they both shall be compiled
with the same -ep or -dp specification.

11.5 STATIC Attribute and Statement

The STATIC attribute and statement provides the same effect as the SAVE
attribute and statement. Variables with the Cray Fortran STATIC attribute
retain their value and their definition, association, and allocation status after the
subprogram in which they are declared completes execution. Variables without
this attribute cannot be depended on to retain its value and status, although the
Cray Fortran compiler treats named common blocks as if they had this attribute.
This attribute should always be specified for an object or the object's common
named block, if it is necessary for the object to retain its value and status.

In Cray's implementation, the system retains the value of an object that is in a
module whether or not the STATIC specifier is used.

Objects declared in recursive subprograms can be given the attribute. Such
objects are shared by all instances of the subprogram.

Any object that is data initialized (in a DATA statement or a type declaration
statement) has the STATIC attribute by default.

S–3901–60 231

Cray® Fortran Reference Manual

The following is a format for a type declaration statement with the attribute:

type, STATIC [, attribute-list] :: entity-decl-list

static-stmt is STATIC [[::] static-entity-list]

static-entity is data-object-name

or / common-block-name /

A statement without an entity list is treated as though it contained the names
of all items that could be saved in the scoping unit. The Cray Fortran compiler
allows you to insert multiple statements without entity lists in a scoping unit.

If STATIC appears in a main program as an attribute or a statement, it has no
effect.

The following objects must not be saved:

• A procedure

• A function result

• A dummy argument

• A named constant

• An automatic data object

• An object in a common block

• A namelist group

A variable in a common block cannot be saved individually; the entire named
common block must be saved if you want any variables in it to be saved.

A named common block saved in one scoping unit of a program is saved
throughout the program.

If a named common block is specified in a main program, it is available to any
scoping unit of the program that specifies the named common block; it does not
need to be saved.

The statement also confers the attribute. It is subject to the same rules and
restrictions as the attribute.

232 S–3901–60

Obsolete Features [11]

The following example shows an entity-oriented declaration:

CHARACTER(LEN = 12), SAVE :: NAME

CHARACTER(LEN = 12), STATIC :: NAME

The following example shows an attribute-oriented declaration:

CHARACTER*12 NAME

STATIC NAME !Use SAVE OR STATIC, but not both on the same name

The following example shows saving objects and named common blocks:

STATIC A, B, /BLOCKA/, C, /BLOCKB/

11.6 Slash Data Initialization

The Fortran type declaration statements provide a means for data initialization.
For example, the following two methods are standard means for initializing
integer data:

• Method 1:

INTEGER :: I=3

• Method 2:

INTEGER I

DATA I /3/

The Cray Fortran compiler supports an additional method for each data type.
The following example shows the additional, nonstandard method, used to
define integer data:

• Method 3:

INTEGER [::] I /3/

S–3901–60 233

Cray® Fortran Reference Manual

11.7 DATA Statement Features

The DATA statement has the following outmoded features:

• A constant need not exist for each element of a whole array named in a
data-stmt-object-list if the array is the last item in the list.

• A Hollerith or character constant can initialize more than one element of
an integer or single-precision real array if the array is specified without
subscripts.

Example 1: If the -s default32 compiler option is used (default), an array
is declared by INTEGER A(2), the following DATA statements have the same
effect:

DATA A /'12345678'/

DATA A /'1234','5678'/

Example 2: If the -s default64 compiler option is specified, an array is
declared by INTEGER A(2), the following DATA statements have the same
effect:

DATA A /'1234567890123456'/

DATA A /'12345678','90123456'/

An integer or single-precision real array can be defined in the same way in a
DATA implied-DO statement.

11.8 Hollerith Data

Before the character data type was added to the Fortran 77 standard, Hollerith
data provided a method of supplying character data.

234 S–3901–60

Obsolete Features [11]

11.8.1 Hollerith Constants

A Hollerith constant is expressed in one of three forms. The first of these is
specified as a nonzero integer constant followed by the letter H, L, or R and as
many characters as equal the value of the integer constant. The second form of
Hollerith constant specification delimits the character sequence between a pair of
apostrophes followed by the letter H, L, or R. The third form is like the second,
except that quotation marks replace apostrophes. For example:

Character sequence: ABC 12

Form 1: 6HABC 12

Form 2: 'ABC 12'H

Form 3: "ABC 12"H

Two adjacent apostrophes or quotation marks appearing between delimiting
apostrophes or quotation marks are interpreted and counted by the compiler as
a single apostrophe or quotation mark within the sequence. Thus, the sequence
DON'T USE "*" would be specified with apostrophe delimiters as 'DON''T
USE "*"'H, and with quotation mark delimiters as "DON'T USE ""*"""H.

Each character of a Hollerith constant is represented internally by an 8-bit code,
with up to 32 such codes allowed. This limit corresponds to the size of the largest
numeric type, COMPLEX(KIND = 16). The ultimate size and makeup of the
Hollerith data depends on the context. If the Hollerith constant is larger than the
size of the type implied by context, the constant is truncated to the appropriate
size. If the Hollerith constant is smaller than the size of the type implied by
context, the constant is padded with a character dependent on the Hollerith
indicator. When an H Hollerith indicator is used, the truncation and padding is
done on the right end of the constant. The pad character is the blank character
code (20).

Null codes can be produced in place of blank codes by substituting the letter L for
the letter H in the Hollerith forms described above. The truncation and padding
is also done on the right end of the constant, with the null character code (00) as
the pad character.

Using the letter R instead of the letter H as the Hollerith indicator means
truncation and padding is done on the left end of the constant with the null
character code (00) used as the pad character.

S–3901–60 235

Cray® Fortran Reference Manual

All of the following Hollerith constants yield the same Hollerith constant and
differ only in specifying the content and placement of the unused portion of the
single 64-bit entity containing the constant:

Hollerith Internal byte, beginning on bit:

constant 0 8 16 24 32 40 48 56

6HABCDEF A B C D E F 2016 2016

'ABCDEF'H A B C D E F 2016 2016

"ABCDEF" H A B C D E F 2016 2016

6LABCDEF A B C D E F 00 00

'ABCDEF'L A B C D E F 00 00

"ABCDEF"L A B C D E F 00 00

6RABCDEF 00 00 A B C D E F

'ABCDEF'R 00 00 A B C D E F

"ABCDEF"R 00 00 A B C D E F

A Hollerith constant is limited to 32 characters except when specified in a CALL
statement, a function argument list, or a DATA statement. An all-zero computer
word follows the last word containing a Hollerith constant specified as an actual
argument in an argument list.

A character constant of 32 or fewer characters is treated as if it were a Hollerith
constant in situations where a character constant is not allowed by the standard
but a Hollerith constant is allowed by the Cray Fortran compiler. If the character
constant appears in a DATA statement value list, it can be longer than 32
characters.

11.8.2 Hollerith Values

A Hollerith value is a Hollerith constant or a variable that contains Hollerith data.
A Hollerith value is limited to 32 characters.

A Hollerith value can be used in any operation in which a numeric constant can
be used. It can also appear on the right-hand side of an assignment statement in
which a numeric constant can be used. It is truncated or padded to be the correct
size for the type implied by the context.

236 S–3901–60

Obsolete Features [11]

11.8.3 Hollerith Relational Expressions

Used with a relational operator, the Hollerith value e1 is less than e2 if its value
precedes the value of e2 in the collating sequence and is greater if its value
follows the value of e2 in the collating sequence.

The following examples are evaluated as true if the integer variable LOCK
contains the Hollerith characters K, E, and Y in that order and left-justified with
five trailing blank character codes:

3HKEY.EQ.LOCK

'KEY'.EQ.LOCK

LOCK.EQ.LOCK

'KEY1'.GT.LOCK

'KEY0'H.GT.LOCK

11.9 PAUSE Statement

Execution of a PAUSE statement requires operator or system-specific intervention
to resume execution. In most cases, the same functionality can be achieved as
effectively and in a more portable way with the use of an appropriate READ
statement that awaits some input data.

The execution of the PAUSE statement suspends the execution of a program. This
is now redundant, because a WRITE statement can be used to send a message to
any device, and a READ statement can be used to wait for and receive a message
from the same device.

The PAUSE statement is defined as follows:

pause-stmt is PAUSE [stop-code]

The character constant or list of digits identifying the PAUSE statement is called
the stop-code because it follows the same rules as those for the STOP statement's
stop code. The stop code is accessible following program suspension. The Cray
Fortran compiler sends the stop-code to the standard error file (stderr). The
following are examples of PAUSE statements:

PAUSE

PAUSE 'Wait #823'

PAUSE 100

S–3901–60 237

Cray® Fortran Reference Manual

11.10 ASSIGN, Assigned GO TO Statements, and Assigned Format Specifiers

The ASSIGN statement assigns a statement label to an integer variable. During
program execution, the variable can be assigned labels of branch target
statements, providing a dynamic branching capability in a program. The
unsatisfactory property of these statements is that the integer variable name can
be used to hold both a label and an ordinary integer value, leading to errors that
can be hard to discover and programs that can be difficult to read.

A frequent use of the ASSIGN statement and assigned GO TO statement is to
simulate internal procedures, using the ASSIGN statement to record the return
point after a reusable block of code has completed. The internal procedure
mechanism of Fortran now provides this capability.

A second use of the ASSIGN statement is to simulate dynamic format
specifications by assigning labels corresponding to different format statements to
an integer variable and using this variable in I/O statements as a format specifier.
This use can be accomplished in a clearer way by using character strings as
format specifications. Thus, it is no longer necessary to use either the ASSIGN
statement or the assigned GO TO statement.

Execution of an ASSIGN statement causes the variable in the statement to become
defined with a statement label value.

When a numeric storage unit becomes defined, all associated numeric storage
units of the same type become defined. Variables associated with the variable in
an ASSIGN statement, however, become undefined as integers when the ASSIGN
statement is executed. When an entity of double precision real type becomes
defined, all totally associated entities of double precision real type become
defined.

Execution of an ASSIGN statement causes the variable in the statement to become
undefined as an integer. Variables that are associated with the variable also
become undefined.

11.10.1 Form of the ASSIGN and Assigned GO TO Statements

Execution of an ASSIGN statement assigns a label to an integer variable.
Subsequently, this value can be used by an assigned GO TO statement or by
an I/O statement to reference a FORMAT statement. The ASSIGN statement is
defined as follows:

assign-stmt is ASSIGN label TO scalar-int-variable

238 S–3901–60

Obsolete Features [11]

The term default integer type in this section means that the integer variable
shall occupy a full word in order to be able to hold the address of the
statement label. Programs that contain an ASSIGN statement and are compiled
with -s default32 shall ensure that the scalar-int-variable is declared as
INTEGER(KIND=8). This ensures that it occupies a full word.

The variable shall be a named variable of default integer type. It shall not be an
array element, an integer component of a structure, or an object of nondefault
integer type.

The label shall be the label of a branch target statement or the label of a FORMAT
statement in the same scoping unit as the ASSIGN statement.

When defined with an integer value, the integer variable cannot be used as a
label.

When assigned a label, the integer variable cannot be used as anything other
than a label.

When the integer variable is used in an assigned GO TO statement, it shall be
assigned a label.

As the following example shows, the variable can be redefined during program
execution with either another label or an integer value:

ASSIGN 100 TO K

Execution of the assigned GO TO statement causes a transfer of control to the
branch target statement with the label that had previously been assigned to the
integer variable.

The assigned GO TO statement is defined as follows:

assigned-goto-stmt is GO TO scalar-int-variable [[,] (label-list)]

The variable shall be a named variable of default integer type. That is, it shall
not be an array element, a component of a structure, or an object of nondefault
integer type.

The variable shall be assigned the label of a branch target statement in the same
scoping unit as the assigned GO TO statement.

S–3901–60 239

Cray® Fortran Reference Manual

If a label list appears, such as in the following examples, the variable shall have
been assigned a label value that is in the list:

GO TO K

GO TO K (10, 20, 100)

The ASSIGN statement also allows the label of a FORMAT statement to be
dynamically assigned to an integer variable, which can later be used as a format
specifier in READ, WRITE, or PRINT statements. This hinders readability, permits
inconsistent usage of the integer variable, and can be an obscure source of error.

This functionality is available through character variables, arrays, and constants.

11.10.2 Assigned Format Specifiers

When an I/O statement containing the integer variable as a format specifier is
executed, the integer variable can be defined with the label of a FORMAT specifier.

11.11 Two-branch IF Statements

Outmoded IF statements are the two-branch arithmetic IF and the indirect
logical IF.

11.11.1 Two-branch Arithmetic IF

A two-branch arithmetic IF statement transfers control to statement s1 if
expression e is evaluated as nonzero or to statement s2 if e is zero. The arithmetic
expression should be replaced with a relational expression, and the statement
should be changed to an IF statement or an IF construct. This format is as
follows:

IF (e) s1, s2

e Integer, real, or double precision expression

s Label of an executable statement in the same program unit

Example:

IF (I+J*K) 100,101

240 S–3901–60

Obsolete Features [11]

11.11.2 Indirect Logical IF

An indirect logical IF statement transfers control to statement st if logical
expression le is true and to statement sf if le is false. An IF construct or an IF
statement should be used in place of this outmoded statement. This format is as
follows:

IF (le) st, sf

le Logical expression

st, sf Labels of executable statements in the same program unit

Example:

IF(X.GE.Y)148,9999

11.12 Real and Double Precision DO Variables

The Cray Fortran compiler allows real variables and values as the DO variable
and limits in DO statements. The preferred alternative is to use integer values
and compute the desired real value.

11.13 Nested Loop Termination

Older Cray Fortran compilers allowed nested DO loops to terminate on a single
END DO statement if the END DO statement had a statement label. The END DO
statement is included in the Fortran standard. The Fortran standard specifies
that a separate END DO statement shall be used to terminate each DO loop, so
allowing nested DO loops to end on a single, labeled END DO statement is an
outmoded feature.

11.14 Branching into a Block

Although the standard does not permit branching into the code block for a DO
construct from outside of that construct, the Cray Fortran compiler permits
branching into the code block for a DO or DO WHILE construct. By default,
the Cray Fortran compiler issues an error for this situation. Cray does not
recommend branching into a DO construct, but if you specify the ftn -eg
command, the code will compile.

S–3901–60 241

Cray® Fortran Reference Manual

11.15 ENCODE and DECODE Statements

A formatted I/O operation defines entities by transferring data between I/O list
items and records of a file. The file can be on an external media or in internal
storage.

The Fortran standard provides READ and WRITE statements for both formatted
external and internal file I/O. This is the preferred method for formatted internal
file I/O. It is the only method for list-directed internal file I/O.

The ENCODE and DECODE statements are an alternative to standard Fortran READ
and WRITE statements for formatted internal file I/O.

An internal file in standard Fortran I/O shall be declared as character, while the
internal file in ENCODE and DECODE statements can be any data type. A record
in an internal file in standard Fortran I/O is either a scalar character variable or
an array element of a character array. The record size in an internal file in an
ENCODE or DECODE statement is independent of the storage size of the variable
used as the internal file. If the internal file is a character array in standard
Fortran I/O, multiple records can be read or written with internal file I/O. The
alternative form does not provide the multiple record capability.

11.15.1 ENCODE Statement

The ENCODE statement provides a method of converting or encoding the internal
representation of the entities in the output list to a character representation. The
format of the ENCODE statement is as follows:

ENCODE (n, f, dest) [elist]

n Number of characters to be processed. Nonzero integer
expression not to exceed the maximum record length for
formatted records. This is the record size for the internal file.

f Format identifier. It cannot be an asterisk.

dest Name of internal file. It can be a variable or array of any data
type. It cannot be an array section, a zero-sized array, or a
zero-sized character variable.

elist Output list to be converted to character during the ENCODE
statement.

The output list items are converted using format f to produce a sequence of n
characters that are stored in the internal file dest. The n characters are packed
8 characters per word.

242 S–3901–60

Obsolete Features [11]

An ENCODE statement transfers one record of length n to the internal file dest. If
format f attempts to write a second record, ENCODE processing repositions the
current record position to the beginning of the internal file and begins writing at
that position.

An error is issued when the ENCODE statement attempts to write more than n
characters to the record of the internal file. If dest is a noncharacter entity and n is
not a multiple of 8, the last word of the record is padded with blanks to a word
boundary. If dest is a character entity, the last word of the record is not padded
with blanks to a word boundary.

Example 1: The following example assumes a machine word length of 64 bits and
uses the underscore character (_) as a blank:

INTEGER ZD(5), ZE(3)

ZD(1)='THIS____'

ZD(2)='MUST____'

ZD(3)='HAVE____'

ZD(4)='FOUR____'

ZD(5)='CHAR____'

1 FORMAT(5A4)

ENCODE(20,1,ZE)ZD

DO 10 I=1,3

PRINT 2,'ZE(',I,')="',ZE(I),'"'

10 CONTINUE

2 FORMAT(A,I2,A,A8,A)

END

The output is as follows:

>ZE(1)="THISMUST"

>ZE(2)="HAVEFOUR"

>ZE(3)="CHAR____"

11.15.2 DECODE Statement

The DECODE statement provides a method of converting or decoding from a
character representation to the internal representation of the entities in the input
list. The format of the DECODE statement is as follows:

DECODE (n, f, source) [dlist]

n Number of characters to be processed. Nonzero integer
expression not to exceed the maximum record length for
formatted records. This is the record size for the internal file.

S–3901–60 243

Cray® Fortran Reference Manual

f Format identifier. It cannot be an asterisk.

source Name of internal file. It can be a variable or array of any data
type. It cannot be an array section or a zero-sized array or a
zero-sized character variable.

dlist Input list to be converted from character during the DECODE
statement.

The input list items are converted using format f from a sequence of n characters
in the internal file source to an internal representation and stored in the input list
entities. If the internal file source is noncharacter, the internal file is assumed to
be a multiple of 8 characters.

Example 1: An example of a DECODE statement is as follows:

INTEGER ZD(4), ZE(3)

ZE(1)='WHILETHI'

ZE(2)='S HAS F'

ZE(3)='IVE '

3 FORMAT(4A5)

DECODE(20,3,ZE)ZD

DO 10 I=1,4

PRINT 2,'ZD(',I,')="',ZD(I),'"'

10 CONTINUE

2 FORMAT(A,I2,A,A8,A)

END

The output is as follows:

>ZD(1)="WHILE "

>ZD(2)="THIS "

>ZD(3)="HAS "

>ZD(4)="FIVE "

11.16 BUFFER IN and BUFFER OUT Statements

You can use the BUFFER IN and BUFFER OUT statements to transfer data.

Data can be transferred while allowing the subsequent execution sequence
to proceed concurrently. This is called asynchronous I/O. Asynchronous I/O
may require the use of nondefault file formats or FFIO layers, as discussed in
Chapter 15, page 295. BUFFER IN and BUFFER OUT operations may proceed
concurrently on several units or files. If they do not proceed asynchronously,
they will use synchronous I/O.

244 S–3901–60

Obsolete Features [11]

BUFFER IN is for reading, and BUFFER OUT is for writing. A BUFFER IN
or BUFFER OUT operation includes only data from a single array or a single
common block.

Either statement initiates a data transfer between a specified file or unit (at
the current record) and memory. If the unit or file is completing an operation
initiated by any earlier BUFFER IN or BUFFER OUT statement, the current
BUFFER IN or BUFFER OUT statement suspends the execution sequence
until the earlier operation is complete. When the unit's preceding operation
terminates, execution of the BUFFER IN or BUFFER OUT statement completes
as if no delay had occurred.

You can use the UNIT(3i) or LENGTH(3i) intrinsic procedures to delay the
execution sequence until the BUFFER IN or BUFFER OUT operation is complete.
These functions can also return information about the I/O operation at its
termination.

The general format of the BUFFER IN and BUFFER OUT statements follows:

buffer_in_stmt is BUFFER IN (id, mode) (start_loc, end_loc)

buffer_out_stmt is BUFFER OUT (id, mode) (start_loc, end_loc)

io_unit is external_file_unit

or file_name_expr

mode is scalar_integer_expr

start_loc is variable

end_loc is variable

In the preceding definition, the variable specified for start_loc and end_loc cannot
be of a derived type if you are performing implicit data conversion. The data
items between start_loc and end_loc must be of the same type.

The BUFFER IN and BUFFER OUT statements are defined as follows.

BUFFER IN (io_unit, mode) (start_loc, end_loc)

BUFFER OUT (io_unit, mode) (start_loc, end_loc)

io_unit An identifier that specifies a unit. The I/O unit is a scalar
integer expression with a nonnegative value, an asterisk (*), or
a character literal constant (external name). The I/O unit forms
indicate that the unit is a formatted sequential access external
unit.

S–3901–60 245

Cray® Fortran Reference Manual

mode Mode identifier. This integer expression controls the record
position following the data transfer. The mode identifier is
ignored on files that do not contain records; only full record
processing is available.

start_loc, end_loc

Symbolic names of the variables, arrays, or array elements that
mark the beginning and ending locations of the BUFFER IN or
BUFFER OUT operation. These names must be either elements
of a single array (or equivalenced to an array) or members of the
same common block. If start_loc or end_loc is of type character,
then both must be of type character. If start_loc and end_loc are
noncharacter, then the item length of each must be equal.

For example, if the internal length of the data type of start_loc is
64 bits, the internal length of the data type of end_loc must be 64
bits. To ensure that the size of start_loc and end_loc are the same,
use the same data type for both.

The mode identifier, mode, controls the position of the record at unit io_unit after
the data transfer is complete. The values of mode have the following effects:

• Specifying mode ≥ 0 causes full record processing. File and record positioning
works as with conventional I/O. The record position following such a transfer
is always between the current record (the record with which the transfer
occurred) and the next record. Specifying BUFFER OUT with mode ≥ 0 ends a
series of partial-record transfers.

• Specifying mode < 0 causes partial record processing. In BUFFER IN, the
record is positioned to transfer its (n +1)th word if the nth word was the last
transferred. In BUFFER OUT, the record is left positioned to receive additional
words.

The amount of data to be transferred is specified in words without regard to
types or formats. However, the data type of end_loc affects the exact ending
location of a transfer. If end_loc is of a multiple-word data type, the location of the
last word in its multiple-word form of representation marks the ending location
of the data transfer.

BUFFER OUT with start_loc = end_loc + 1 and mode ≥ 0 causes
a zero-word transfer and concludes the record being created. Except for
terminating a partial record, start_loc following end_loc in a storage sequence
causes a run-time error.

246 S–3901–60

Obsolete Features [11]

Example:

PROGRAM XFR

DIMENSION A(1000), B(2,10,100), C(500)

...

BUFFER IN(32,0) (A(1),A(1000))

...

DO 9 J=1,100

B(1,1,J) = B(1,1,J) + B(2,1,J)

9 CONTINUE

BUFFER IN(32,0) (C(1),C(500))

BUFFER OUT(22,0) (A(1),A(1000))

...

END

The first BUFFER IN statement in this example initiates a transfer of 1000 words
from unit 32. If asynchronous I/O is available, processing unrelated to that
transfer proceeds. When this is complete, a second BUFFER IN is encountered,
which causes a delay in the execution sequence until the last of the 1000 words
is received. A transfer of another 500 words is initiated from unit 32 as the
execution sequence continues. BUFFER OUT begins a transfer of the first 1000
words to unit 22. In all cases mode = 0, indicating full record processing.

11.17 Asterisk Delimiters

The asterisk was allowed to delimit a literal character constant. It has been
replaced by the apostrophe and quotation mark.

h1 h2 ... hn

* Delimiter for a literal character string

h Any ASCII character indicated by a C that is capable of internal
representation

Example:

AN ASTERISK EDIT DESCRIPTOR

S–3901–60 247

Cray® Fortran Reference Manual

11.18 Negative-valued X Descriptor

A negative value could be used with the X descriptor to indicate a move to the
left. This has been replaced by the TL descriptor.

[-b]X

b Any nonzero, unsigned integer constant

X Indicates a move of as many positions as indicated by b

Example:

-55X ! Moves current position 55 spaces left

11.19 A and R Descriptors for Noncharacter Types

The Rw descriptor and the use of the Aw descriptor for noncharacter data are
available primarily for programs that were written before a true character type
was available. Other uses include adding labels to binary files and the transfer of
data whose type is not known in advance.

List items can be of type real, integer, complex, or logical. For character use,
the binary form of the data is converted to or from ASCII codes. The numeric
list item is assumed to contain ASCII characters when used with these edit
descriptors.

Complex items use two storage units and require two A descriptors, for the first
and second storage units respectively.

The Aw descriptor works with noncharacter list items containing character data in
essentially the same way as described in the Fortran standard. The Rw descriptor
works like Aw with the following exceptions:

• Characters in an incompletely filled input list item are right-justified with the
remainder of that list item containing binary zeros.

• Partial output of an output list item is from its rightmost character positions.

248 S–3901–60

Obsolete Features [11]

The following example shows the Aw and Rw edit descriptors for noncharacter
data types:

INTEGER IA

LOGICAL LA

REAL RA

DOUBLE PRECISION DA

COMPLEX CA

CHARACTER*52 CHC

CHC='ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz'

READ(CHC,3) IA, LA, RA, DA, CA

3 FORMAT(A4,A8,A10,A17,A7,A6)

PRINT 4, IA, LA, RA, DA, CA

4 FORMAT(1x,3(A8,'-'),A16,'-',2A8)

READ(CHC,5) IA, LA, RA

5 FORMAT(R2,R8,R9)

PRINT 4, IA, LA, RA

END

The output of this program would be as follows:

> ABCD -EFGHIJKL-OPQRSTUV-XYZabcdefghijklm-nopqrst uvwxyz

> ooooooAB-CDEFGHIJ-LMNOPQRS-

The arrow (>) indicates leading blanks in the use of the A edit descriptor. The
lowercase letter o is used to indicate where binary zeros have been written with
the R edit descriptor.

The binary zeros are not printable characters, so the printed output simply
contains the characters without the binary zeros.

11.20 H Edit Descriptor

This edit descriptor can be a source of error because the number of characters
following the descriptor can be miscounted easily. The same functionality is
available using the character constant edit descriptor, for which no count is
required.

The following information pertains to the H edit descriptor:

S–3901–60 249

Cray® Fortran Reference Manual

Table 23. Summary of String Edit Descriptors

Descriptor Description

H Transfer of text character to output record

'text' Transfer of a character literal constant to output record

"text" Transfer of a character literal constant to output record

11.21 Obsolete Intrinsic Procedures

The Cray Fortran compiler supports many intrinsic procedures that have been
used in legacy codes, but that are now obsolete. The following table indicates the
obsolete procedures and the preferred alternatives. For more information about a
particular procedure, see its man page.

Table 24. Obsolete Procedures and Alternatives

Obsolete Intrinsic Procedure Replacement

AND IAND

BITEST BTEST

BJTEST BTEST

BKTEST BTEST

CDABS ABS

CDCOS COS

CDEXP EXP

CDLOG LOG

CDSIN SIN

CDSQRT SQRT

CLOC LOC or C_LOC

COMPL NOT

COTAN COT

CQABS ABS

CQDEXP EXP

CQSIN SIN

250 S–3901–60

Obsolete Features [11]

Obsolete Intrinsic Procedure Replacement

CQSQRT SQRT

CSMG MERGE

CVMGM MERGE

CVMGN MERGE

CVMGP MERGE

CVMGZ MERGE

CVMGT MERGE

DACOSD ACOSD

DASIND ASIND

DATAN2D ATAN2D

DATAND ATAND

DCMPLX CMPLX

DCONJG CONJG

DCOSD COSD

DCOT COT

DCOTAN COT

DFLOAT REAL

DFLOATI REAL

DFLOATJ REAL

DFLOATK REAL

DIMAG AIMAG

DREAL REAL

DSIND SIND

DTAND TAND

EQV NOT, IEOR

FCD (none)

FLOATI REAL

FLOATJ REAL

FLOATK REAL

S–3901–60 251

Cray® Fortran Reference Manual

Obsolete Intrinsic Procedure Replacement

FP_CLASS IEEE_CLASS

IDATE DATE_AND_TIME

IEEE_REAL REAL

IIABS ABS

IIAND IAND

IIBCHNG IBCHNG

IIBCLR IBCLR

IIBITS IBITS

IIBSET IBSET

IIEOR IEOR

IIDIM DIM

IIDINT INT

IIFIX INT

IINT INT

IIOR IOR

IIQINT INT

IISHA SHIFTA

IISHC ISHFT

IISHFT ISHFTC

IISHFTC ISHFTC

IISHL ISHFT

IISIGN SIGN

IMAG AIMAG

IMOD MOD

ININT NINT

INT2 INT

INT4 INT

INT8 INT

INOT NOT

252 S–3901–60

Obsolete Features [11]

Obsolete Intrinsic Procedure Replacement

IQNINT NINT

IRTC SYSTEM_CLOCK

ISHA SHIFTA

ISHC ISHFTC

ISHL IEEE_IS_NAN

JDATE DATE_AND_TIME

JFIX INT

JIABS ABS

JIAND IAND

JIBCHNG IBCHNG

JIBCLR IBCLR

JIBITS IBITS

JIBSET IBSET

JIEOR IEOR

JIDIM DIM

JIDINT INT

JIFIX INT

JINT INT

JIOR IOR

JIQINT INT

JISHA SHIFTA

JISHC ISHFTC

JISHFT ISHFT

JISHFTC ISHFTC

JISHL ISHFT

JISIGN SIGN

JMOD MOD

JNINT NINT

JNOT NOT

S–3901–60 253

Cray® Fortran Reference Manual

Obsolete Intrinsic Procedure Replacement

KIABS ABS

KIAND IAND

KIBCHNG IBCHNG

KIBCLR IBCLR

KIBITS IBITS

KIBSET IBSET

KIEOR IEOR

KIDIM DIM

KIDINT INT

KINT INT

KIOR IOR

KIQINT INT

KISHA SHIFTA

KISHC ISHFTC

KISHFT ISHFT

KISHFTC ISHFTC

KISHL ISHFT

KISIGN SIGN

KMOD MOD

KNINT NINT

KNOT NOT

LENGTH (none)

LONG INT

LSHIFT ISHFT or SHIFTL

MY_PE THIS_IMAGE

MEMORY_BARRIER SYNC_MEMORY

NEQV IEOR

OR IOR

QABS ABS

254 S–3901–60

Obsolete Features [11]

Obsolete Intrinsic Procedure Replacement

QACOS ACOS

QACOSD ACOSD

QASIN ASIN

QASIND ASIND

QATAN ATAN

QATAN2 ATAN2

DATAN2D ATAN2D

QATAND ATAND

QCMPLX CMPLX

QCONJG CONJG

QCOS COS

QCOSD COSD

QCOSH COSH

QCOT COT

QCOTAN COT

QDIM DIM

QEXP EXP

QEXT REAL

QFLOAT REAL

QFLOATI REAL

QFLOATJ REAL

QFLOATJ REAL

QFLOATK REAL

QIMAG AIMAG

QINT AINT

QLOG LOG

QLOG10 LOG10

QMAX1 MAX

QMIN1 MIN

S–3901–60 255

Cray® Fortran Reference Manual

Obsolete Intrinsic Procedure Replacement

QMOD MOD

QNINT ANINT

QREAL REAL

QSIGN SIGN

QSIN SIN

QSIND SIND

QSINH SINH

QSQRT SQRT

QTAN TAN

QTAND TAND

QTANH TANH

RAN RANDOM_NUMBER

RANF RANDOM_NUMBER

RANGET RANDOM_SEED

RANSET RANDOM_SEED

REMOTE_WRITE_BARRIER SYNC_MEMORY

RSHIFT ISHFT or SHIFTR

RTC SYSTEM_CLOCK

SECNDS CPU_TIME

SHIFT ISHFTC

SHORT INT

SNGLQ REAL

TIME DATE_AND_TIME

UNIT WAIT statement

WRITE_MEMORY_BARRIER SYNC_MEMORY

XOR IEOR

256 S–3901–60

Cray Fortran Deferred Implementation and
Optional Features [12]

The PE 6.0 release of the Cray Fortran compiler supports most of the features
specified by the Fortran standard. One supported feature must be turned on
with an option. This chapter identifies the Fortran 2003 features that are not fully
supported. It is expected that these remaining features will be implemented in
future releases of the Cray Fortran compiler.

12.1 ISO_10646 Character Set

The Fortran 2003 features related to supporting the ISO_10646 character set are
not supported. This includes declarations, constants, and operations on variables
of character(kind=4) and I/O operations.

12.2 Finalizers

Type bound FINAL routines are not supported for polymorphic objects, and code
is not generated to invoke final routines of polymorphic objects.

12.3 Restrictions on Unlimited Polymorphic Variables

If the -e h option is specified to cause packed storage for short integers
and logicals, unlimited polymorphic variables whose dynamic types are
integer(1), integer(2), logical(1), or logical(2) are not supported.

12.4 Enhanced Expressions in Initializations and Specifications

The Fortran 2003 standard greatly expands the list of Fortran intrinsic functions
that may be referenced in initialization and specification expressions, used
mainly to create constants in declarations. Support for using some of these
intrinsics, including the trigonometric intrinsic functions, is included in the PE
6.0 release, but the full list is not yet implemented.

S–3901–60 257

Cray® Fortran Reference Manual

12.5 User-defined, Derived Type I/O

User-defined, derived type I/O routines are not supported.

12.6 ENCODING= in I/O Statements

The ENCODING= specifier in I/O statements is accepted by the compiler but has
no effect in the PE 6.0 release.

12.7 Allocatable Assignment (Optionally Enabled)

The Fortran 2003 standard allows an allocatable variable in an intrinsic
assignment statement (variable = expression) to have a shape different
from the expression. If the shapes are different, the variable is automatically
deallocated and reallocated with the shape of the expression. This feature is
available in the PE 6.0 Cray Fortran compiler but is not enabled by default
because of potential adverse effects on performance. The new behavior is enabled
by the -e w command line option.

258 S–3901–60

Cray Fortran Implementation Specifics [13]

The Fortran standard specifies the rules for writing a standard conforming
Fortran program. Many of the details of how such a program is compiled
and executed are intentionally not specified or are explicitly specified as being
processor-dependent. This chapter describes the implementation used by the
Cray Fortran compiler. Included are descriptions of the internal representations
used for data objects and the values of processor-dependent language
parameters.

13.1 Companion Processor

For the purpose of C interoperability, the Fortran standard refers to a "companion
processor." The companion processor for the Cray Fortran compiler is the Cray C
compiler.

13.2 INCLUDE Line

There is no limit to the nesting level for INCULDE lines. The character literal
constant in an INCLUDE line is interpreted as the name of the file to be included.
This case-sensitive name may be prefixed with additional characters based on
the -I compiler command line option.

13.3 INTEGER Kinds and Values

INTEGER kind type parameters of 1, 2, 4, and 8 are supported. The default kind
type parameter is 4 unless the -s default64 or -s integer64 command
line option is specified, in which case the default kind type parameter is 8. The
interpretation of kinds 1 and 2 depend on whether the -e h command line
option is specified. Integer values are represented as two's complement binary
values.

S–3901–60 259

Cray® Fortran Reference Manual

13.4 REAL Kinds and Values

REAL kind type parameters of 4, 8, and 16 are supported. The default kind type
parameter is 4 unless the -s default64 or -s real64 command lines option
is specified, in which case, the default kind type parameter is 8. Real values are
represented in the format specified by the IEEE 754 standard, with kinds 4, 8, and
16 corresponding to the 32, 64, and 128 bit IEEE representations.

13.5 DOUBLE PRECISION Kinds and Values

The DOUBLE PRECISION type is an alternate specification of a REAL type.
The kind type parameter of that REAL type is twice the value of the kind type
parameter for default REAL unless the -dp command line option is specified,
in which case, the kind type parameter for DOUBLE PRECISION and default
REAL are the same, and REAL constants with a D exponent are treated as if the D
were an E. Note that if the -dp option is specified, the compiler is not standard
conforming.

13.6 LOGICAL Kinds and Values

LOGICAL kind type parameters of 1, 2, 4, and 8 are supported. The default kind
type parameter is 4 unless the -s default64 or -s integer64 command
line option is specified, in which case, the default kind type parameter is 8. The
interpretation of kinds 1 and 2 depend on whether the -e h command line
option is specified. Logical values are represented by a bit sequence in which the
low order bit is set to 1 for the value .true. and to 0 for .false., and the other
bits in the representation are set to 0.

13.7 CHARACTER Kinds and Values

The CHARACTER kind type parameter of 1 is supported. The default kind type
parameter is 1. Character values are represented using the 8-bit ASCII character
encoding.

13.8 Cray Pointers

Cray pointers are 64-bit objects.

260 S–3901–60

Cray Fortran Implementation Specifics [13]

13.9 ENUM Kind

An enumerator that specifies the BIND(C) attribute creates values with a kind
type parameter of 4.

13.10 Storage Issues

This section describes how the Cray Fortran compiler uses storage, including
how this compiler accommodates programs that use overindexing of blank
common.

13.10.1 Storage Units and Sequences

The size of the numeric storage units is 32 bits, unless the -s default64
option is specified, in which case the numeric storage unit is 64 bits. If the -s
real64 or -s integer64option is specified alone, or the -dp is specified in
addition to -s default64 or -s real64, the relative sizes of the storage
assigned for default intrinsic types do not conform to the standard. In this case,
storage sequence associations involving variables declared with default intrinsic
noncharacter types may be invalid and should be avoided.

S–3901–60 261

Cray® Fortran Reference Manual

13.10.2 Static and Stack Storage

The Cray Fortran compiler allocates variables to storage according to the
following criteria:

• Variables in common blocks are always allocated in the order in which they
appear in COMMON statements.

• Data in modules are statically allocated.

• User variables that are defined or referenced in a program unit, and that also
appear in SAVE or DATA statements, are allocated to static storage, but not
necessarily in the order shown in your source program.

• Other referenced user variables are assigned to the stack. If -ev is specified
on the Cray Fortran compiler command line, referenced variables are
allocated to static storage. This allocation does not necessarily depend on the
order in which the variables appear in your source program.

• Compiler-generated variables are assigned to a register or to memory (to the
stack or heap), depending on how the variable is used. Compiler-generated
variables include DO-loop trip counts, dummy argument addresses,
temporaries used in expression evaluation, argument lists, and variables
storing adjustable dimension bounds at entries.

• Automatic objects may be allocated to either the stack or to the heap,
depending on how much stack space is available when the objects are
allocated.

• Heap or stack allocation can be used for TASK COMMON variables and some
compiler-generated temporary data such as automatic arrays and array
temporaries.

• Unsaved variables may be assigned to a register by optimization and not
allocated storage.

• Unreferenced user variables not appearing in COMMON statements are not
allocated storage.

262 S–3901–60

Cray Fortran Implementation Specifics [13]

13.10.3 Dynamic Memory Allocation

Many FORTRAN 77 programs contain a memory allocation scheme that
expands an array in a common block located in central memory at the end of
the program. This practice of expanding a blank common block or expanding a
dynamic common block (sometimes referred to as overindexing) causes conflicts
between user management of memory and the dynamic memory requirements
of UNICOS/mp and UNICOS/lc libraries. It is recommended that you modify
programs rather than expand blank common blocks, particularly when migrating
from other environments.

Figure 3 shows the structure of a program under the UNICOS/mp and
UNICOS/lc operating systems in relation to expanding a blank common block.
In both figures, the user area includes code, data, and common blocks.

Heap

User
area

Without an expandable
common block:

Heap

User
area

With an expandable
common block:

Dynamic
area

Address 0

Figure 3. Memory Use

13.11 Finalization

A finalizable object in a module is not finalized in the event that there is no longer
any active procedure referencing the module.

S–3901–60 263

Cray® Fortran Reference Manual

A finalizable object that is allocated via pointer allocation is not finalized in the
event that it later becomes unreachable due to all pointers to that object having
their pointer association status changed.

13.12 ALLOCATE Error Status

If an error occurs during the execution of an ALLOCATE statement with a stat=
specifier, subsequent items in the allocation list are not allocated.

13.13 DEALLOCATE Error Status

If an error occurs during the execution of an DEALLOCATE statement with a
stat= specifier, subsequent items in the deallocation list are not deallocated.

13.14 ALLOCATABLE Module Variable Status

An unsaved allocatable module variable remains allocated if it is allocated when
the execution of an END or RETURN statement results in no active program unit
having access to the module.

13.15 Kind of a Logical Expression

For an expression such as x1 op x2 where op is a logical intrinsic binary operator
and the operands are of type logical with different kind type parameters, the kind
type parameter of the result is the larger kind type parameter of the operands.

13.16 STOP Code Availability

If a STOP code is specified in a STOP statement, its value is output to the stderr
file when the STOP statement is executed.

13.17 Stream File Record Structure and Position

A formatted file written with stream access may be later read as a record file. In
that case, embedded newline characters (char(10)) indicate the end of a record
and the terminating newline character is not considered part of the record.

264 S–3901–60

Cray Fortran Implementation Specifics [13]

The file storage unit for a formatted stream file is a byte. The position is
the ordinal byte number in the file; the first byte is position 1. Positions
corresponding to newline characters (char(10)) that were inserted by the I/O
library as part of record output do not correspond to positions of user-written
data.

13.18 File Unit Numbers

The values of INPUT_UNIT, OUTPUT_UNIT, and ERROR_UNIT defined in the
ISO_Fortran_env module are 100, 101, and 102, respectively. These three
unit numbers are reserved and may not be used for other purposes. The files
connected to these units are the same files used by the companion C processor
for standard input (stdin), output (stdout), and error (stderr). An asterisk (*)
specified as the unit for a READ statement specifies unit 100. An asterisk specified
as the unit for a WRITE statement, and the unit for PRINT statements is unit 101.
All positive default integer values are available for use as unit numbers.

13.19 OPEN Specifiers

If the ACTION= specifier is omitted from an OPEN statement, the default value
is determined by the protections associated with the file. If both reading and
writing are permitted, the default value is READWRITE.

If the ENCODING= specifier is omitted or specified as DEFAULT in an OPEN
statement for a formatted file, the encoding used is ASCII.

The case of the name specified in a FILE= specifier in an OPEN statement is
significant.

If the FILE= specifier is omitted, fort. is prepended to the unit number.

If the RECL= specifier is omitted from an OPEN statement for a sequential access
file, the default value for the maximum record length is 1024.

If the file is connected for unformatted I/O, the length is measured in 8-bit bytes.

The FORM= specifier may also be SYSTEM for unformatted files.

If the ROUND= specifier is omitted from an OPEN statement, the default value
is NEAREST. Specifying a value of PROCESSOR_DEFINED is equivalent to
specifying NEAREST.

S–3901–60 265

Cray® Fortran Reference Manual

If the STATUS= specifier is omitted or specified as UNKNOWN in an OPEN
statement, the specification is equivalent to OLD if the file exists, otherwise, it is
equivalent to NEW.

13.20 FLUSH Statement

Execution of a FLUSH statement causes memory resident buffers to be flushed
to the physical file. Output to the unit specified by ERROR_UNIT in the
ISO_Fortran_env module is never buffered; execution of FLUSH on that unit
has no effect.

13.21 Asynchronous I/O

The ASYNCHRONOUS= specifier may be set to YES to allow asynchronous I/O
for a unit or file.

Asynchronous I/O is used if the FFIO layer attached to the file provides
asynchronous access.

13.22 REAL I/O of an IEEE NaN

An IEEE NaN may be used as an I/O value for the F, E, D, or G edit descriptor or
for list-directed or namelist I/O.

13.22.1 Input of an IEEE NaN

The form of NaN is an optional sign followed by the string 'NAN' optionally
followed by a hexadecimal digit string enclosed in parentheses. The input is
case insensitive. Some examples are:

NaN - quiet NaN

nAN() - quiet NaN

-nan(ffffffff) - quiet NaN

NAn(7f800001) - signalling NaN

NaN(ffc00001) - quiet NaN

NaN(ff800001) - signalling NaN

The internal value for the NaN will become a quiet NaN if the hexadecimal string
is not present or is not a valid NaN.

266 S–3901–60

Cray Fortran Implementation Specifics [13]

A '+' or '-' preceding the NaN on input will be used as the high order bit of the
corresponding READ input list item. An explicit sign overrides the sign bit from
the hexadecimal string. The internal value becomes the hexadecimal string if it
represents an IEEE NaN in the internal data type. Otherwise, the form of the
internal value is undefined.

13.22.2 Output of an IEEE NaN

The form of an IEEE NaN for the F, E, D, or G edit descriptor or for list-directed
or namelist output is:

1. If the field width w is absent, zero, or greater than (5 + 1/4 of the size of the
internal value in bits), the output consists of the string 'NaN' followed by the
hexadecimal representation of the internal value within a set of parentheses.
An example of the output field is:

NaN(7fc00000)

2. If the field width w is at least 3 but less than (5 + 1/4 of the size of the internal
value in bits), the string 'NaN' will be right-justified in the field with blank
fill on the left.

3. If the field width w is 1 or 2, the field is filled with asterisks.

The output field has no '+' or '-'; the sign is contained in the hexadecimal string.

To get the same internal value for a NaN, write it with a list-directed write
statement and read it with a list-directed read statement.

To write and then read the same NaN, the field width w in D, E, F, or G must be at
least the number of hexadecimal digits of the internal datum plus 5.

REAL(4): w >= 13

REAL(8): w >= 21

REAL(16): w >= 37

13.23 List-directed and NAMELIST Output Default Formats

The length of the output value in NAMELIST and list-directed output depends on
the value being written. Blanks and unnecessary trailing zeroes are removed
unless the -w option to the assign command is specified, which turns off this
compression.

S–3901–60 267

Cray® Fortran Reference Manual

By default, full-precision printing is assumed unless a precision is specified by
the LISTIO_PRECISION environment variable (for more information about the
LISTIO_PRECISION environment variable, see Section 4.1.5, page 83).

13.24 Random Number Generator

A linear congruential generator is used to produce the output of the
RANDOM_NUMBER intrinsic subroutine. The seed array contains two 32-bit integer
values.

13.25 Timing Intrinsics

A call to the SYSTEM_CLOCK intrinsic subroutine with the COUNT argument
present translates into the inline instructions that directly access the hardware
clock register. See the description of the -e s and -d s command line options
for information about the values returned for the count and count rate. For
fine-grained timing, Cray recommends using a kind = 8 count variable.

The CPU_TIME subroutine obtains the value of its argument from the
getrusage system call. Its execution time is significantly longer than for the
SYSTEM_CLOCK routine, but the values returned are closer to those used by
system accounting utilities.

13.26 IEEE Intrinsic Modules

The IEEE intrinsics modules IEEE_EXCEPTIONS, IEEE_ARITHMETIC, and
IEEE_FEATURES are supplied. Denormal numbers are not supported on Cray
X1 or X2 hardware. The IEEE_SUPPORT_DENORMAL inquiry function returns
.false. for all kinds of arguments.

At the start of program execution, the IEEE halting modes are set such that
overflow, divide_by_zero, and invalid exceptions cause a trap, while
traps are disabled for underflow and inexact.

268 S–3901–60

Part III: Cray Fortran Application
Programmer's I/O Reference

Part III describes advanced Fortran input/output (I/O) techniques for use on
Cray X1 series systems. It includes the following chapters:

• Using the Assign Environment (Chapter 14, page 271)

• Using FFIO (Chapter 15, page 295)

• FFIO Layer Reference (Chapter 16, page 311)

• Creating a user Layer (Chapter 17, page 337)

• Numeric File Conversion Routines (Chapter 18, page 363)

• Named Pipe Support (Chapter 19, page 377)

The reader should be familiar with the information presented in the following
Cray man pages:

• The assign(1), assign(3f), and ffassign(3f) man pages

• The intro_ffio(1) man page, which describes the FFIO system and
performance options available with the FFIO layers

For additional information about I/O, see Optimizing Applications on Cray X1
Series Systems.

Using the Assign Environment [14]

Fortran programs require the ability to alter many details of a Fortran file
connection. You may need to specify device residency, an alternative file name,
a file space allocation scheme, file structure, or data conversion properties of a
connected file. These details comprise the assign environment.

In addition, Cray X1 series and X2 systems support flexible file I/O (FFIO), which
uses layered I/O to implement sophisticated I/O strategies. When used in the
context of the assign environment, FFIO enables you to implement different I/O
techniques and realize significant improvements in I/O performance without
modifying source code.

This chapter describes the assign(1) command and the assign(3f) library
routine, which together define the assign environment.

The FFIO system is described in Chapter 15, page 295.

The ffassign(3c) command provides an interface to assign processing from
C/C++. See the ffassign(3c) man page for details about its use.

S–3901–60 271

Cray® Fortran Reference Manual

14.1 assign Basics

The assign command information is stored in the assign environment file,
.assign, or in a shell environment variable. To begin using the assign
environment to control a program's I/O behavior, follow these steps.

1. Set the FILENV environment variable to the desired path:

set FILENV environment-file

2. Run the assign command to define the current assign environment:

assign arguments assign-object

For example:

assign -F cachea g:su

3. Run your program:

./a.out arguments

4. If you are not satisfied with the I/O performance observed during program
execution, return to step 2, use the assign command to adjust the assign
environment, and try again.

The assign(1) command passes information to Fortran open statements and to
the ffopen(3c) routine to identify the following elements:

• A list of unit numbers

• File names

• File name patterns that have attributes associated with them

The assign object is the file name, file name pattern, unit number, or type of I/O
open request to which the assign environment applies. When the unit or file is
opened from Fortran, the environment defined by the assign command is used
to establish the properties of the connection.

14.1.1 Assign Objects and Open Processing

The I/O library routines apply options to a file connection for all related assign
objects.

If the assign object is a unit, the application of options to the unit occurs
whenever that unit becomes connected.

272 S–3901–60

Using the Assign Environment [14]

If the assign object is a file name or pattern, the application of options to the file
connection occurs whenever a matching file name is opened from a Fortran
program.

When any of the library I/O routines opens a file, it uses the specified assign
environment options for any assign objects that apply to the open request. Any of
the following assign objects or categories might apply to a given open request:

• g:all options apply to any open request.

• g:su, g:du, g:sf, g:df, and g:ff all apply to types of open requests. These
equate to sequential unformatted, direct unformatted, sequential formatted,
direct formatted, or ffopen, respectively.

• u:unit-number applies whenever unit-number is opened.

• p:pattern applies whenever a file whose name matches pattern is opened.
The assign environment can contain only one p:assign-object that
matches the current open file. The exception is that the p:%pattern (which
uses the % wildcard character) is silently ignored if a more specific pattern also
matches the current file name being opened.

• f:filename applies whenever a file with the name filename is opened.

Options from the assign objects in these categories are collected to create the
complete set of options used for any particular open. The options are collected in
the listed order, with options collected later in the list of assign objects overriding
those collected earlier.

14.1.2 The assign Command

Here is the syntax for the assign command:

assign [-I] [-O] [-a actualfile] [-b bs] [-f fortstd] [-m setting]

[-s ft] [-t] [-u bufcnt] [-y setting] [-B setting] [-C charcon]

[-D fildes] [-F spec[,specs]] [-N numcon] [-R] [-S setting]

[-T setting] [-U setting] [-V] [-W setting]

[-Y setting] [-Z setting] assign-object

The following specifications cannot be used with any other options:

assign -R [assign-object]

assign -V [assign-object]

A summary of the assign command options follows. For details, see the
assign(1) and intro_ffio(3f) man pages.

S–3901–60 273

Cray® Fortran Reference Manual

Here are the assign command control options:

-I Specifies an incremental use of assign. All attributes are added to
the attributes already assigned to the current assign-object. This
option and the -O option are mutually exclusive.

-O Specifies a replacement use of assign. This is the default control
option. All currently existing assign attributes for the current
assign-object are replaced. This option and the -I option are
mutually exclusive.

-R Removes all assign attributes for assign-object. If assign-object is
not specified, all currently assigned attributes for all assign-objects
are removed.

-V Views attributes for assign-object. If assign-object is not specified,
all currently assigned attributes for all assign-objects are printed.

Here are the assign command attribute options:

-a actualfile

The file= specifier or the actual file name.

-b bs Library buffer size in 4096-byte (512-word) blocks.

-f fortstd Specifies compatibility with a Fortran standard, where fortstd is
either 2003 for the current Cray Fortran or 95 for Cray Fortran
95. If the value 95 is set, the list-directed and namelist output of
a floating point will remain 0.E+0.

-m setting Special handling of a direct access file that will be accessed
concurrently by several processes or tasks. Special handling
includes skipping the check that only one Fortran unit be
connected to a unit, suppressing file truncation to true size by the
I/O buffering routines, and ensuring that the file is not truncated
by the I/O buffering routines. Enter either on or off for setting.

-s ft File type. Enter text, cos, blocked, unblocked, u, sbin, or
bin for ft. The default is text.

-t Temporary file.

-u bufcnt Buffer count. Specifies the number of buffers to be allocated for a
file.

-y setting Suppresses repeat counts in list-directed output. setting can be
either on or off. The default setting is off.

274 S–3901–60

Using the Assign Environment [14]

-B setting Activates or suppresses the passing of the O_DIRECT flag to the
open(2) system call. Enter either on or off for setting. This is an
important feature for I/O optimization; if this is on, it enables
reads and writes directly to and from the user program buffer.

-C charcon Character set conversion information. Enter ascii, or ebcdic
for charcon. If you specify the -C option, you must also specify
the -F option.

-D fildes Specifies a connection to a standard file. Enter stdin, stdout,
or stderr for fildes.

-F spec [,specs]

Flexible file I/O (FFIO) specification. See the assign(1) man
page for details about allowed values for spec and for details
about hardware platform support. See the intro_ffio(3f) man
page for details about specifying the FFIO layers.

-N numcon Foreign numeric conversion specification. See the assign(1)
man page for details about allowed values for numcon and for
details about hardware platform support.

-S setting Suppresses use of a comma as a separator in list-directed output.
Enter either on or off for setting. The default setting is off.

-T setting Activates or suppresses truncation after write for sequential
Fortran files. Enter either on or off for setting.

-U setting Produces a non-UNICOS form of list-directed output. This is a
global setting that sets the value for the -y, -S, and -W options.
Enter either on or off for setting. The default setting is off.

-W setting Suppresses compressed width in list-directed output. Enter
either on or off for setting. The default setting is off.

-Y setting Skips unmatched namelist groups in a namelist input record.
Enter either on or off for setting. The default setting is off.

-Z setting Recognizes –0.0 for IEEE floating-point systems and writes the
minus sign for edit-directed, list-directed, and namelist output.
Enter either on or off for setting. The default setting is on.

S–3901–60 275

Cray® Fortran Reference Manual

assign-object

Specify either a file name or a unit number for assign-object. The
assign command associates the attributes with the file or unit
specified. These attributes are used during the processing of
Fortran open statements or during implicit file opens.

Use one of the following formats for assign-object:

• f:file-name (for example, f:file1)

• g:io-type; io-type can be su, sf, du, df, or ff (for example, g:ff for
ffopen(3C)

• p:pattern (for example, p:file%)

• u:unit-number (for example, u:9)

• file-name (for example, myfile)

When the p: pattern form is used, the % and _ wildcard characters can be
used. The % matches any string of 0 or more characters. The _ matches any
single character. The % performs like the * when doing file name matching in
shells. However, the % character also matches strings of characters containing
the / character.

14.1.3 Assign Library Routines

The assign(3f), asnunit(3f), asnfile(3f), and asnrm(3f) routines can be
called from a Fortran program to access and update the assign environment. The
assign routine provides an easy interface to assign processing from a Fortran
program. The asnunit and asnfile routines assign attributes to units and
files, respectively. The asnrm routine removes all entries currently in the assign
environment.

The calling sequences for the assign library routines are as follows:

call assign (cmd, ier)

call asnunit (iunit,astring,ier)

call asnfile (fname,astring,ier)

call asnrm (ier)

276 S–3901–60

Using the Assign Environment [14]

cmd Fortran character variable that contains a complete assign
command in the format that is also acceptable to the pxfsystem
routine.

ier Integer variable that is assigned the exit status on return from the
library interface routine.

iunit Integer variable or constant that contains the unit number to
which attributes are assigned.

astring Fortran character variable that contains any attribute options and
option values from the assign command. Control options -I,
-O, and -R can also be passed.

fname Character variable or constant that contains the file name to
which attributes are assigned.

A status of 0 indicates normal return and a status of greater than 0 indicates a
specific error status. Use the explain command to determine the meaning of
the error status. For more information about the explain command, see the
explain(1) man page.

The following calls are equivalent to the assign -s u f:file command:

call assign('assign -s u f:file',ier)

call asnfile('file','-s u',ier)

The following call is equivalent to executing the assign -I -n 2 u:99
command:

iun = 99

call asnunit(iun,'-i -n 2',ier)

The following call is equivalent to executing the assign -R command:

call asnrm(ier)

14.2 assign and Fortran I/O

Assign processing lets you tune file connections. This sections describes several
areas of assign command usage and provide examples of each use.

S–3901–60 277

Cray® Fortran Reference Manual

14.2.1 Alternative File Names

The -a option specifies the actual file name to which a connection is made. This
option allows files to be created in different directories without changing the
FILE= specifier on an OPEN statement.

For example, consider the following assign command issued to open unit 1:

assign -a /tmp/mydir/tmpfile u:1

The program then opens unit 1 with any of the following statements:

WRITE(1) variable ! implicit open

OPEN(1) ! unnamed open

OPEN(1,FORM='FORMATTED') ! unnamed open

Unit 1 is connected to file /tmp/mydir/tmpfile. Without the -a attribute, unit
1 would be connected to file fort.1.

When the -a attribute is associated with a file, any Fortran open that is set
to connect to the file causes a connection to the actual file name. An assign
command of the following form causes a connection to file $FILENV/joe:

assign -a $FILENV/joe ftfile

This is true when the following statement is executed in a program:

OPEN(IUN,FILE='ftfile')

If the following assign command is issued and is in effect, any Fortran
INQUIRE statement whose FILE= specification is foo refers to the file named
actual instead of the file named foo for purposes of the EXISTS=, OPENED=, or
UNIT= specifiers:

assign -a actual f:foo

If the following assign command is issued and is in effect, the -a attribute does
not affect INQUIRE statements with a UNIT= specifier:

assign -a actual ftfile

When the following OPEN statement is executed,
INQUIRE(UNIT=n,NAME=fname) returns a value of ftfile in
fname, as if no assign had occurred:

OPEN(n,file='ftfile')

278 S–3901–60

Using the Assign Environment [14]

The I/O library routines use only the actual file (-a) attributes from the assign
environment when processing an INQUIRE statement. During an INQUIRE
statement that contains a FILE= specifier, the I/O library searches the assign
environment for a reference to the file name that the FILE= specifier supplies.
If an assign-by-filename exists for the file name, the I/O library determines
whether an actual name from the -a option is associated with the file name. If
the assign-by-filename supplied an actual name, the I/O library uses that name
to return values for the EXIST=, OPENED=, and UNIT= specifiers; otherwise, it
uses the file name. The name returned for the NAME= specifier is the file name
supplied in the FILE= specifier. The actual file name is not returned.

14.2.2 File Structure Selection

A file structure defines the way records are delimited and how the end-of-file
is represented. The assign command supports two mutually exclusive file
structure options:

• To select a structure using an FFIO layer, use assign -F

• To select a structure explicitly, use assign -s

Using FFIO layers is far more flexible than selecting structures explicitly. FFIO
allows nested file structures, buffer size specifications, and support for file
structures that are not available through the -s option. You will also realize
better I/O performance by using the -F option and FFIO layers.

For more information about the -F option and FFIO layers, see Chapter 15,
page 295.

The remainder of this section covers the -s option.

Fortran sequential unformatted I/O uses four different file structures: f77
blocked structure, text structure, unblocked structure, and COS blocked
structure. By default, the f77 blocked structure is used unless a file structure is
selected at open time. If an alternative file structure is needed, the user can select
a file structure by using the -s or -F option on the assign command.

S–3901–60 279

Cray® Fortran Reference Manual

The -s and -F options are mutually exclusive. The following list summarizes
how to select the different file structures with different options to the assign
command:

Structure assign command

F77 blocked

assign -F f77

text

assign -F text

assign -s text

unblocked

assign -F system

assign -s unblocked

COS blocked

assign -F cos

assign -s cos

The following examples address file structure selection:

• To select an unblocked file structure for a sequential unformatted file:

IUN = 1

CALL ASNUNIT(IUN,'-s unblocked',IER)

OPEN(IUN,FORM='UNFORMATTED',ACCESS='SEQUENTIAL')

• You can use the assign -s u command to specify the unblocked file
structure for a sequential unformatted file. When this option is selected,
the I/O is unbuffered. Each Fortran READ or WRITE statement results in a
read(2) or write(2) system call such as the following:

CALL ASNFILE('fort.1','-s u',IER)

OPEN(1,FORM='UNFORMATTED',ACCESS='SEQUENTIAL')

• Use the following command to assign unit 10 a COS blocked structure:

assign -s cos u:10

280 S–3901–60

Using the Assign Environment [14]

The full set of options allowed with the assign -s command are as follows:

• bin (not recommended)

• blocked

• cos

• sbin

• text

• unblocked

Table 25 summarizes the Fortran access methods and options.

Table 25. Fortran access methods and options

Access and form assign -s ft defaults assign -s ft options

Sequential unformatted, BUFFER IN
and BUFFER OUT

blocked / cos / f77 bin

sbin

u

unblocked

Direct unformatted unblocked bin

sbin

u

unblocked

Sequential formatted text blocked

cos

sbin/text

Direct formatted text sbin/text

14.2.2.1 Unblocked File Structure

A file with an unblocked file structure contains undelimited records. Because it
does not contain any record control words, it does not have record boundaries.
The unblocked file structure can be specified for a file that is opened with either
unformatted sequential access or unformatted direct access. It is the default file
structure for a file opened as an unformatted direct-access file.

Do not reposition a file with unblocked file structure with a BACKSPACE
statement. You cannot reposition the file to a previous record when record
boundaries do not exist.

S–3901–60 281

Cray® Fortran Reference Manual

BUFFER IN and BUFFER OUT statements can specify a file that has an
unbuffered and unblocked file structure. If the file is specified with assign
-s u, BUFFER IN and BUFFER OUT statements can perform asynchronous
unformatted I/O.

You can specify the unblocked data file structure by using the assign(1)
command in several ways. All methods result in a similar file structure but with
different library buffering styles, use of truncation on a file, alignment of data,
and recognition of an end-of-file record in the file. The following unblocked data
file structure specifications are available:

Specification Structure

assign -s unblocked Library-buffered

assign -F system No library buffering

assign -s sbin Buffering that is compatible with
standard I/O; for example, both
library and system buffering.

The type of file processing for an unblocked data file structure depends on the
assign -s ft option declared or assumed for a Fortran file.

For more information about buffering, see Section 14.2.3, page 286.

An I/O request for a file specified using the assign -s unblocked command
does not need to be a multiple of a specific number of bytes. Such a file is
truncated after the last record is written to the file. Padding occurs for files
specified with the assign -s bin command and the assign -s unblocked
command. Padding usually occurs when noncharacter variables follow character
variables in an unformatted direct-access file.

No padding is done in an unformatted sequential access file. An unformatted
direct-access file created by a Fortran program on UNICOS/mp and UNICOS/lc
systems contain records that are the same length. The end-of-file record is
recognized in sequential-access files.

14.2.2.2 assign -s sbin File Processing (not recommended)

You can use an assign -s sbin specification for a Fortran file that is opened
with either unformatted direct access or unformatted sequential access. The file
does not contain record delimiters. The file created for assign -s sbin in this
instance has an unblocked data file structure and uses unblocked file processing.

282 S–3901–60

Using the Assign Environment [14]

The assign -s sbin option can be specified for a Fortran file that is declared
as formatted sequential access. Because the file contains records that are
delimited with the new-line character, it is not an unblocked data file structure.
It is the same as a text file structure.

The assign -s sbin option is compatible with the standard C I/O functions.

Note: Cray discourages the use of assign -s sbin because of poor I/O
performance. If you cannot use an FFIO layer, use assign -s text for
formatted files and assign -s unblocked for unformatted files.

14.2.2.3 assign -s bin File Processing

An I/O request for a file that is specified with assign -s bin does not need to
be a multiple of a specific number of bytes. Padding occurs when noncharacter
variables follow character variables in an unformatted record.

The I/O library uses an internal buffer for the records. If opened for sequential
access, a file is not truncated after each record is written to the file.

14.2.2.4 assign -s u File Processing

The assign -s u command specifies undefined or unknown file processing.
An assign -s u specification can be specified for a Fortran file that is declared
as unformatted sequential or direct access. Because the file does not contain
record delimiters, it has an unblocked data file structure. Both synchronous
and asynchronous BUFFER IN and BUFFER OUT processing can be used with
u file processing.

Fortran sequential files declared by using assign -s u are not truncated after
the last word written. The user must execute an explicit ENDFILE statement on
the file.

14.2.2.5 text File Structure

The text file structure consists of a stream of 8-bit ASCII characters. Every
record in a text file is terminated by a newline character (\n, ASCII 012). Some
utilities may omit the newline character on the last record, but the Fortran library
will treat such an occurrence as a malformed record. This file structure can be
specified for a file that is declared as formatted sequential access or formatted
direct access. It is the default file structure for formatted sequential access files. It
is also the default file structure for formatted direct access files.

S–3901–60 283

Cray® Fortran Reference Manual

The assign -s text command specifies the library-buffered text file structure.
Both library and system buffering are done for all text file structures.

An I/O request for a file using assign -s text does not need to be a multiple
of a specific number of bytes.

You cannot use BUFFER IN and BUFFER OUT statements with this structure.
You can use a BACKSPACE statement to reposition a file with this structure.

14.2.2.6 cos or blocked File Structure

The cos or blocked file structure uses control words to mark the beginning of
each sector and to delimit each record. You can specify this file structure for a file
that is declared as unformatted sequential access. Synchronous BUFFER IN and
BUFFER OUT statements can create and access files with this file structure.

You can specify this file structure with one of the following assign(1)
commands:

assign -s cos

assign -s blocked

assign -F cos

assign -F blocked

These four assign commands result in the same file structure.

An I/O request on a blocked file is library buffered.

In a cos file structure, one or more ENDFILE records are allowed. BACKSPACE
statements can be used to reposition a file with this structure.

A blocked file is a stream of words that contains control words called Block
Control Word (BCW) and Record Control Words (RCW) to delimit records. Each
record is terminated by an EOR (end-of-record) RCW. At the beginning of the
stream, and every 512 words thereafter (including any RCWs), a BCW is inserted.
An end-of-file (EOF) control word marks a special record that is always empty.
Fortran considers this empty record to be an endfile record. The end-of-data
(EOD) control word is always the last control word in any blocked file. The EOD
is always immediately preceded by an EOR, or an EOF and a BCW.

Each control word contains a count of the number of data words to be found
between it and the next control word. In the case of the EOD, this count is 0.
Because there is a BCW every 512 words, these counts never point forward more
than 511 words.

284 S–3901–60

Using the Assign Environment [14]

A record always begins at a word boundary. If a record ends in the middle of
a word, the rest of that word is zero filled; the ubc field of the closing RCW
contains the number of unused bits in the last word.

The following illustration and table is a representation of the structure of a BCW.

m unused bdf unused bn fwi

(4) (7) (1) (19) (24) (9)

Field Bits Description

m 0–3 Type of control word; 0 for BCW

bdf 11 Bad Data flag (1-bit, 1=bad data)

bn 31–54 Block number (modulo 224)

fwi 55–63 Forward index; the number of words to next control word

The following illustration and table is a representation of the structure of an
RCW.

m ubc tran bdf srs unused pfi pri fwi

(4) (6) (1) (1) (1) (7) (20) (15) (9)

Field Bits Description

m 0–3 Type of control word; 108 for EOR, 168 for EOF, and 178 for EOD.

ubc 4–9 Unused bit count; number of unused low-order bits in last word of previous
record.

tran 10 Transparent record field (unused).

bdf 11 Bad data flag (unused).

srs 12 Skip remainder of sector (unused).

pfi 20–39 Previous file index; offset modulo 220 to the block where the current file starts
(as defined by the last EOF).

S–3901–60 285

Cray® Fortran Reference Manual

Field Bits Description

pri 40–54 Previous record index; offset modulo 215 to the block where the current record
starts.

fwi 55–63 Forward index; the number of words to next control word.

14.2.3 Buffer Specifications

A buffer is a temporary storage location for data while the data is being
transferred. A buffer is often used for the following purposes:

• Small I/O requests can be collected into a buffer, and the overhead of making
many relatively expensive system calls can be greatly reduced.

• Many data file structures such as cos contain control words. During the
write process, a buffer can be used as a work area where control words can
be inserted into the data stream (a process called blocking). The blocked data
is then written to the device. During the read process, the same buffer work
area can be used to remove the control words before passing the data on to
the user (called deblocking).

• When data access is random, the same data may be requested many times. A
cache is a buffer that keeps old requests in the buffer in case these requests are
needed again. A cache that is sufficiently large or efficient can avoid a large
part of the physical I/O by having the data ready in a buffer. When the data is
often found in the cache buffer, it is referred to as having a high hit rate. For
example, if the entire file fits in the cache and the file is present in the cache,
no more physical requests are required to perform the I/O. In this case, the
hit rate is 100%.

• Running the I/O devices and the processors in parallel often improves
performance; therefore, it is useful to keep processors busy while data is
being moved. To do this when writing, data can be transferred to the buffer
at memory-to-memory copy speed. Use an asynchronous I/O request. The
control is then immediately returned to the program, which continues to
execute as if the I/O were complete (a process called write-behind). A similar
process called read-ahead can be used while reading; in this process, data is
read into a buffer before the actual request is issued for it. When it is needed,
it is already in the buffer and can be transferred to the user at very high speed.
This is another use of a cache.

286 S–3901–60

Using the Assign Environment [14]

• When direct I/O is enabled (assign -B on), data is staged in the system
buffer cache. While this can yield improved performance, it also means that
performance is affected by program competition for system buffer cache. To
minimize this effect, avoid public caches when possible.

• In many cases, the best asynchronous I/O performance can be realized by
using the FFIO cachea layer (assign -F cachea). This layer supports
read-ahead, write-behind, and improved cache reuse.

The size of the buffer used for a Fortran file can have a substantial effect on I/O
performance. A larger buffer size usually decreases the system time needed to
process sequential files. However, large buffers increase a program's memory
usage; therefore, optimizing the buffer size for each file accessed in a program on
a case-by-case basis can help increase I/O performance and minimize memory
usage.

The -b option on the assign command specifies a buffer size, in blocks, for the
unit. The -b option can be used with the -s option, but it cannot be used with
the -F option. Use the -F option to provide I/O path specifications that include
buffer sizes; the -b, and -u options do not apply when -F is specified.

For more information about the selection of buffer sizes, see the assign(1) man
page.

The following examples of buffer size specification illustrate using the assign
-b and assign -F options:

• If unit 1 is a large sequential file for which many Fortran READ or WRITE
statements are issued, you can increase the buffer size to a large value, using
the following assign command:

assign -b buffer-size u:buffer-count

• If file foo is a small file or is accessed infrequently, minimize the buffer size
using the following assign command:

assign -b 1 f:foo

14.2.3.1 Default Buffer Sizes

The Fortran I/O library automatically selects default buffer sizes according to
file access type as shown in Table 26. You can override the defaults by using
the assign(1) command. The following subsections describe the default buffer
sizes on various systems.

Note: One block is 4,096 bytes on UNICOS/mp and UNICOS/lc systems.

S–3901–60 287

Cray® Fortran Reference Manual

The default buffer sizes are as follows:

Table 26. Default Buffer Sizes for Fortran I/O Library Routines

Access Type Default Buffer Size

Sequential formatted 16 blocks (65,536 bytes)

Sequential unformatted 128 blocks (524,288 bytes)

Direct formatted The smaller of:

• The record length in bytes + 1

• 16 blocks (65,536 bytes)

Direct unformatted The larger of:

• The record length

• 16 blocks (65,536 bytes)

Four buffers of default size are allocated. For more information, see the
description of the cachea layer in the intro_ffio(3F) man page.

14.2.3.2 Library Buffering

The term library buffering refers to a buffer that the I/O library associates with
a file. When a file is opened, the I/O library checks the access, form, and any
attributes declared on the assign command to determine the type of processing
that should be used on the file. Buffers are an integral part of the processing.

If the file is assigned with one of the following assign(1) options, library
buffering is used:

-s blocked

-F spec (buffering as defined by spec)

-s cos

-s bin

-s unblocked

288 S–3901–60

Using the Assign Environment [14]

The -F option specifies flexible file I/O (FFIO), which uses library buffering if
the specifications selected include a need for buffering. In some cases, more
than one set of buffers might be used in processing a file. For example, the -F
bufa,cos option specifies two library buffers for a read of a blank compressed
COS blocked file. One buffer handles the blocking and deblocking associated
with the COS blocked control words, and the second buffer is used as a work
area to process blank compression. In other cases (for example, -F system), no
library buffering occurs.

14.2.3.3 System Cache

The operating system uses a set of buffers in kernel memory for I/O operations.
These are collectively called the system cache. The I/O library uses system calls to
move data between the user memory space and the system buffer. The system
cache ensures that the actual I/O to the logical device is well formed, and it tries
to remember recent data in order to reduce physical I/O requests.

The following assign(1) command options can be expected to use system cache:

-s sbin

-F spec (FFIO, depends on spec)

For the assign -F cachea command, a library buffer ensures that the actual
system calls are well formed and the system buffer cache is bypassed. This is not
true for the assign -s u option. If you plan to use assign -s u to bypass
the system cache, all requests must be well formed.

14.2.3.4 Unbuffered I/O

The simplest form of buffering is none at all; this unbuffered I/O is known as
direct I/O. For sufficiently large, well-formed requests, buffering is not necessary
and can add unnecessary overhead and delay. The following assign(1)
command specifies unbuffered I/O:

assign -s u ...

Use the assign command to bypass both library buffering and the system cache
for all well-formed requests. The data is transferred directly between the user
data area and the logical device. Requests that are not well formed will result
in I/O errors.

S–3901–60 289

Cray® Fortran Reference Manual

14.2.4 Foreign File Format Specification

The Fortran I/O library can read and write files with record blocking and data
formats native to operating systems from other vendors. The assign -F
command specifies a foreign record blocking; the assign -C command specifies
the type of character conversion; the -N option specifies the type of numeric data
conversion. When -N or -C is specified, the data is converted automatically
during the processing of Fortran READ and WRITE statements. For example,
assume that a record in file fgnfile contains the following character and integer
data:

character*4 ch

integer int

open(iun,FILE='fgnfile',FORM='UNFORMATTED')

read(iun) ch, int

Use the following assign command to specify foreign record blocking and
foreign data formats for character and integer data:

assign -F ibm.vbs -N ibm -C ebcdic fgnfile

14.2.5 Memory Resident Files

The assign -F mr command specifies that a file will be memory resident.
Because the mr flexible file I/O layer does not define a record-based file structure,
it must be nested beneath a file structure layer when record blocking is needed.

For example, if unit 2 is a sequential unformatted file that is to be memory
resident, the following Fortran statements connect the unit:

CALL ASNUNIT (2,'-F cos,mr',IER)

OPEN(2,FORM='UNFORMATTED')

The -F cos,mr specification selects COS blocked structure with memory
residency.

14.2.6 Fortran File Truncation

The assign -T option activates or suppresses truncation after the writing of a
sequential Fortran file. The -T on option specifies truncation; this behavior is
consistent with the Fortran standard and is the default setting for most assign
-s fs specifications.

290 S–3901–60

Using the Assign Environment [14]

The assign(1) man page lists the default setting of the -T option for each -s fs
specification. It also indicates if suppression or truncation is allowed for each
of these specifications.

FFIO layers that are specified by using the -F option vary in their support for
suppression of truncation with -T off.

Figure 4 summarizes the available access methods and the default buffer sizes.

Blocked Unblocked

Access method
 assign option

Blocked
-s cos

Text
-s text

Undef
-s u

Binary
-s bin

Unblocked
-s unblocked

Buffer size
for default

Formatted sequential I/O
 WRITE(9,20)
 PRINT

Valid
Default 16

Formatted direct I/O
 WRITE(9,20,REC=)

Unformatted sequential I/O
 WRITE(9)

Unformatted direct I/O
 WRITE(9,REC=)

Buffer in/buffer out

Control words Yes NEWLINE No

Library buffering

System cached

BACKSPACE

Record size

Default library buffer size* 48 16 16

Any

Varies

Valid

Valid

Valid

Valid
Default

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid
Default

16

128

No No

Yes Yes Yes YesNo

min(recl+1, 8) bytes

max(16, recl) blocks

Any Any Any

Yes

No Yes

Yes No

No† No††

8*n

No No

Valid

*

†
††

Cached if not well-formed
No guarantee when physical size not 512 words
In units of 4096 bytes, unless otherwise specified*

16 None

Blocked
-F f77

Yes

16

Any

Yes

Yes

Yes

Valid
Default

Valid
Default

Figure 4. Access Methods and Default Buffer Sizes

S–3901–60 291

Cray® Fortran Reference Manual

14.3 The Assign Environment File

The assign command information is stored in the assign environment file. The
location of the active assign environment file must be provided by setting the
FILENV environment variable to the desired path and file name.

14.4 Local Assign Mode

The assign environment information is usually stored in the .assign
environment file. Programs that do not require the use of the global .assign
environment file can activate local assign mode. If you select local assign mode,
the assign environment will be stored in memory. Thus, other processes can not
adversely affect the assign environment used by the program.

The ASNCTL(3f) routine selects local assign mode when it is called by using one
of the following command lines:

CALL ASNCTL('LOCAL',1,IER)

CALL ASNCTL('NEWLOCAL',1,IER)

Example 5: Local assign mode

In the following example, a Fortran program activates local assign mode and then
specifies an unblocked data file structure for a unit before opening it. The -I
option is passed to ASNUNIT to ensure that any assign attributes continue to have
an effect at the time of file connection.

C Switch to local assign environment

CALL ASNCTL('LOCAL',1,IER)

IUN = 11

C Assign the unblocked file structure

CALL ASNUNIT(IUN,'-I -s unblocked',IER)

C Open unit 11

OPEN(IUN,FORM='UNFORMATTED')

292 S–3901–60

Using the Assign Environment [14]

If a program contains all necessary assign statements as calls to ASSIGN,
ASNUNIT, and ASNFILE, or if a program requires total shielding from any
assign commands, use the second form of a call to ASNCTL, as follows:

C New (empty) local assign environment

CALL ASNCTL('NEWLOCAL',1,IER)

IUN = 11

C Assign a large buffer size

CALL ASNUNIT(IUN,'-b 336',IER)

C Open unit 11

OPEN(IUN,FORM='UNFORMATTED')

S–3901–60 293

Cray® Fortran Reference Manual

294 S–3901–60

Using FFIO [15]

This chapter provides an overview of the capabilities of the flexible file I/O
(FFIO) system and describes how to use FFIO with common file structures to
enhance code performance without changing source code.

Flexible file I/O, sometimes called layered I/O, is used to perform many
I/O-related tasks. For details about each individual I/O layer, see Chapter 16,
page 311.

15.1 Introduction to FFIO

The FFIO system is based on the concept that for all I/O a list of processing steps
must be performed to transfer the user data between the user's memory and the
desired I/O device. I/O can be the slowest part of a computational process, and
the speed of I/O access methods varies depending on computational processes.

Figure 5 illustrates the typical flow of data from the user's variables to and from
the I/O device.

Kernel
job

User ’s

System
call

Figure 5. Typical Data Flow

It is useful to think of each of these boxes as a stopover for the data, and each
transition between stopovers as a processing step. It is also important to realize
that the actual I/O path can skip one or more steps in this process, depending on
the I/O features used at a given point in a given program.

S–3901–60 295

Cray® Fortran Reference Manual

Each transition has benefits and costs. Different applications might use the total
I/O system in different ways. For example, if I/O requests are large, the library
buffer is unnecessary because the buffer is used primarily to avoid making
system calls for every small request. You can achieve better I/O throughput with
large I/O requests by not using library buffering.

If library buffering is not used, I/O requests should be large; otherwise, I/O
performance will be degraded. On the other hand, if all I/O requests are small,
the library buffer is essential to avoid making a costly system call for each I/O
request.

It is useful to be able to modify the I/O process to prevent intermediate steps
(such as buffering of data) for existing programs without requiring that the
source code be changed. The assign(1) command lets you modify the total user
I/O path by establishing an I/O environment.

The FFIO system lets you specify each stopover. You can specify a
comma-separated list of one or more processing steps by using the assign -F
command:

assign -F spec1,spec2,spec3...

Each spec in the list is a processing step that requests one I/O layer, or logical
grouping of layers. The layer specifies the operations that are performed on the
data as it is passed between the user and the I/O device. A layer refers to the
specific type of processing being done. In some cases, the name corresponds
directly to the name of one layer. In other cases, however, specifying one layer
invokes the routines used to pass the data through multiple layers. See the
intro_ffio(3f) man page for details about using the -F option to the assign
command.

Processing steps are ordered as if the -F side (the left side) is the user and the
system/device is the right side, as in the following example:

assign -F user,bufa,system

With this specification, a WRITE operation first performs the user operation
on the data, then performs the bufa operation, and then sends the data to the
system. In a READ operation, the process is performed from right to left. The data
moves from the system to the user. The layers closest to the user are higher-level
layers; those closer to the system are lower-level layers.

The FFIO system has an internal model of the world of data, which it maps to any
given actual logical file type. Four of these concepts are basic to understanding
the inner workings of the layers.

296 S–3901–60

Using FFIO [15]

Concept Definition

Data Data is a stream of bits.

Record marks

End-of-record (EOR) marks are boundaries between logical
records.

File marks End-of-file (EOF) marks are special types of record marks that
exist in some file formats.

End-of-data (EOD)

An end-of-data (EOD) is a point immediately beyond the last
data bit, EOR, or EOF in the file.

All files are streams of 0 or more bits that may contain record and/or file marks.

Individual layers have varying rules about which of these things can appear and
in which order they can appear in a file.

Fortran programmers and C programmers can use the capabilities described in
this document. Fortran users can use the assign(1) command to specify these
FFIO options. For C users, the FFIO layers are available only to programs that
call the FFIO routines directly (ffopen(3c), ffread(3c), and ffwrite(3c)).

You can use FFIO with the Fortran I/O forms listed in the following table. For
each form, the equivalent assign command is shown.

Fortran I/O Form Equivalent assign Command

Buffer I/O assign -F f77

Unformatted sequential assign -F f77

Unformatted direct access assign -F cache

Formatted sequential assign -F text

Namelist assign -F text

List-directed assign -F text

S–3901–60 297

Cray® Fortran Reference Manual

15.2 Using Layered I/O

The specification list on the assign -F command comprises all of the
processing steps that the I/O system performs. If assign -F is specified, any
default processing is overridden. For example, unformatted sequential I/O is
assigned a default structure of f77 on UNICOS/mp and UNICOS/lc systems.
The -F f77 option provides the same structure. The FFIO system provides
detailed control over I/O processing requests. However, to effectively use the
f77 option (or any FFIO option), you must understand the I/O processing
details.

As a very simple example, suppose you were making large I/O requests and did
not require buffering or blocking on your data. You could specify:

assign -F system

The system layer is a generic system interface that chooses an appropriate layer
for your file. If the file is on a disk, it chooses the syscall layer, which maps
each user I/O request directly to the corresponding system call. A Fortran READ
statement is mapped to one or more read(2) system calls and a Fortran WRITE
statement to one or more write(2) system calls.

If you want your file to be F77 blocked (the default blocking for Fortran
unformatted I/O on UNICOS/mp and UNICOS/lc systems), you can specify:

assign -F f77

If you want your file to be COS blocked, you can specify:

assign -F cos

Note: In all assign -F specifications, the system layer is the implied
last layer. The above example is functionally identical to assign -F
cos,system.

These two specs request that each WRITE request first be blocked (blocking adds
control words to the data in the file to delimit records). The f77 layer then sends
the blocked data to the system layer. The system layer passes the data to the
device.

The process is reversed for READ requests. The system layer retrieves blocked
data from the file. The blocked data is passed to the next higher layer, the f77
layer, where it is deblocked. The deblocked data is then presented to the user.

298 S–3901–60

Using FFIO [15]

15.2.1 I/O Layers

Several different layers are available for the spec argument. Each layer invokes
one or more layers, which then handles the data it is given in an appropriate
manner. For example, the syscall layer essentially passes each request to an
appropriate system call. The mr layer tries to hold an entire file in a buffer that
can change size as the size of the file changes; it also limits actual I/O to lower
layers so that I/O occurs only at open, close, and overflow.

Table 27 defines the classes you can specify for the spec argument to the assign
-F option. For detailed information about each layer, see Chapter 16, page 311.

Table 27. FFIO Layers

Layer Function

bufa Asynchronous buffering layer

cache Memory-cached I/O

cachea Asynchronous memory-cached I/O

cos or blocked COS blocking. This is the default for Fortran
sequential unformatted I/O on UNICOS and
UNICOS/mk systems.

event I/O monitoring layer

f77 FORTRAN 77/UNIX Fortran record blocking.
This is the default for Fortran sequential
unformatted I/O on UNICOS/mp and
UNICOS/lc systems and the common
blocking format used by most FORTRAN 77
compilers on UNIX systems.

fd File descriptor open

global Distributed cache layer for MPI, SHMEM,
OpenMP, and Co-array Fortran

ibm IBM file formats

mr Memory-resident file handlers

null Syntactic convenience for users (does
nothing)

site User-defined site-specific layer

syscall System call I/O

S–3901–60 299

Cray® Fortran Reference Manual

Layer Function

system Generic system interface

text Newline separated record formats

user User-defined layer

vms VAX/VMS file formats

15.2.2 Layered I/O Options

You can modify the behavior of each I/O layer. The following spec format shows
how you can specify a class and one or more opt and num fields:

class.opt1.opt2:num1:num2:num3

For class, you can specify one of the layers listed in Table 27. Each layer has a
different set of options and numeric parameter fields that can be specified. This is
necessary because each layer performs different duties. The following rules apply
to the spec argument:

• The class and opt fields are case-insensitive. For example, the following two
specs are identical:

Ibm.VBs:100:200

IBM.vbS:100:200

• The opt and num fields are usually optional, but sufficient separators must be
specified as placeholders to eliminate ambiguity. For example, the following
specs are identical:

cos..::40, cos.::40

cos::40

In this example, opt1, opt2, num1, and num2 can assume default values.

• To specify more than one spec, use commas between specs. Within each spec,
you can specify more than one opt and num. Use periods between opt fields,
and use colons between num fields.

The following options all have the same effect. They all specify the vms layer and
set the initial allocation to 100 blocks:

-F vms:100

-F vms.:100

-F vms..:100

300 S–3901–60

Using FFIO [15]

The following option contains one spec for an vms layer that has an opt field of
scr (which requests scratch file behavior):

-F vms.scr

The following option requests two classes with no opts:

-F f77,vms

The following option contains two specs and requests two layers: cos and vms.
The cos layer has no options; the vms layer has options scr and ovfl, which
specify that the file is a scratch file that is allowed to overflow and that the
maximum allocation is 1000 sectors:

-F cos,vms.scr.ovfl::1000

When possible, the default settings of the layers are set so that optional fields
are seldom needed.

15.3 FFIO and Common Formats

This section describes the use of FFIO with common file structures and the
correlation between the common or default file structures and the FFIO usage
that handles them.

15.3.1 Reading and Writing Text Files

Use the fdcp command to copy files while converting record blocking.

Most human-readable files are in text format; this format contains records
comprised of ASCII characters with each record terminated by an ASCII line-feed
character, which is the newline character in UNIX terminology. The FFIO
specification that selects this file structure is assign -F text.

The FFIO package is seldom required to handle text files. In the following types
of cases, however, using FFIO may be necessary:

• Optimizing text file access to reduce I/O wait time

• Handling multiple EOF records in text files

• Converting data files to and from other formats

I/O speed is important when optimizing text file access. Using assign -F
text is expensive in terms of processor time, but it lets you use memory-resident
files, which can reduce or eliminate I/O wait time.

S–3901–60 301

Cray® Fortran Reference Manual

The FFIO system also can process text files that have embedded EOF records. The
~e string alone in a text record is used as an EOF record. Editors such as sed(1)
and other standard utilities can process these files, but it is sometimes easier with
the FFIO system.

The text layer is also useful in conjunction with the fdcp(1) command. The
text layer provides a standard output format. Many forms of data that are not
considered foreign are sometimes encountered in a heterogeneous computing
environment. If a record format can be described with an FFIO specification, it
can usually be converted to text format by using the following script:

OTHERSPEC=$1

INFILE=$2

OUTFILE=$3

assign -F ${OTHERSPEC} ${INFILE}

assign -F text ${OUTFILE}

fdcp ${INFILE} ${OUTFILE}

If the name of the script is to.text, you can invoke it as follows:

% to.text cos data_cos data_text

15.3.2 Reading and Writing Unblocked Files

The simplest data file format is the binary stream or unblocked data. It contains no
record marks, file marks, or control words. This is usually the fastest way to
move large amounts of data, because it involves a minimal amount of processor
and system overhead.

The FFIO package provides several layers designed specifically to handle a
binary stream of data. These layers are syscall, mr, bufa, cache, cachea,
and global. These layers behave the same from the user's perspective; they
only use different system resources. The unblocked binary stream is usually
used for unformatted data transfer. It is not usually useful for text files or when
record boundaries or backspace operations are required. The complete burden
is placed on the application to know the format of the file and the structure and
type of the data contained in it.

This lack of structure also allows flexibility; for example, a file declared with one
of these layers can be manipulated as a direct-access file with any record length.

In this context, fdcp can be called to do the equivalent of the cp(1) command
only if the input file is a binary stream and to remove blocking information only
if the output file is a binary stream.

302 S–3901–60

Using FFIO [15]

15.3.3 Reading and Writing Fixed-length Records

The most common use for fixed-length record files is for Fortran direct access.
Both unformatted and formatted direct-access files use a form of fixed-length
records. The simplest way to handle these files with the FFIO system is with
binary stream layers, such as system, syscall, cache, cachea, global,
and mr. These layers allow any requested pattern of access and also work with
direct-access files. The syscall and system layers, however, are unbuffered
and do not give optimal performance for small records.

The FFIO system also directly supports some fixed-length record formats.

15.3.4 Reading and Writing Blocked Files

The f77 blocking format is the default file structure for all Fortran sequential
unformatted files. The f77 layer is provided to handle these files.

The f77 layer is the default file structure on Cray X1 and X2 systems. If you
specify another layer, such as mr, you may have to specify a f77 layer to get
f77 blocking.

15.4 Enhancing Performance

FFIO can be used to enhance performance in a program without changing or
recompiling the source code. This section describes some basic techniques used
to optimize I/O performance. Additional optimization options are discussed in
Chapter 16, page 311.

15.4.1 Buffer Size Considerations

In the FFIO system, buffering is the responsibility of the individual layers;
therefore, you must understand the individual layers in order to control the use
and size of buffers.

The cos layer has high payoff potential to the user who wants to extract top
performance by manipulating buffer sizes. As the following example shows, the
cos layer accepts a buffer size as the first numeric parameter:

assign -F cos:42 u:1

If the buffer is sufficiently large, the cos layer also lets you keep an entire file in
the buffer and avoid almost all I/O operations.

S–3901–60 303

Cray® Fortran Reference Manual

15.4.2 Removing Blocking

I/O optimization usually consists of reducing overhead. One part of the
overhead in doing I/O is the processor time spent in record blocking. For many
files in many programs, this blocking is unnecessary. If this is the case, the FFIO
system can be used to deselect record blocking and thus obtain appropriate
performance advantages.

The following layers offer unblocked data transfer:

Layer Definition

syscall System call I/O

bufa Buffering layer

cachea Asynchronous cache layer

cache Memory-resident buffer cache

global SHMEM and MPI cache layer

mr Memory-resident (MR) I/O

You can use any of these layers alone for any file that does not require the
existence of record boundaries. This includes any applications that are written in
C that require a byte stream file.

15.4.2.1 The syscall Layer

The syscall layer offers a simple, direct system interface with a minimum of
system and library overhead. If requests are larger than approximately 64 K,
this method can be appropriate.

15.4.2.2 The bufa and cachea Layers

The bufa and cachea layers permit efficient file processing. Both layers provide
asynchronous buffering managed by the library, and the cachea layer allows
recently accessed parts of a file to be cached in memory.

The number of buffers and the size of each buffer are tunable. In the
bufa:bs:nbufs or cachea:bs:nbufs FFIO specifications, the bs argument specifies
the size in 4096-byte blocks of each buffer. The default depends on the
st_blksize field returned from a stat(2) system call of the file; if this return
value is 0, the default is 8 for all files. The nbufs argument specifies the number of
buffers to use. bufa defaults to 2 buffers, while cachea defaults to 512 buffers.

304 S–3901–60

Using FFIO [15]

15.4.2.3 The mr Layer

The mr layer lets you use main memory as an I/O device for many files. Used in
combination with the other layers, cos blocked files, text files, and direct-access
files can all reside in memory without recoding. This can result in excellent
performance for a file, or part of a file, that can reside in memory.

The mr layer features both scr and save mode, and it directs overflow to the
next lower layer automatically.

The assign -F command specifies the entire set of processing steps that are
performed when I/O is requested. If a file is blocked, you must specify the
appropriate layer for the handling of block and record control words as in the
following examples:

assign -F f77,mr u:1

assign -F cos,mr fort.1

Section 15.5, page 307 contains several mr program examples.

15.4.2.4 The global Layer (Deferred Implementation)

The global layer is a caching layer that distributes data across all multiple
SHMEM or MPI processes. Open and close operations require participation by all
processes that access the file; all other operations are performed independently
by one or more processes. File positions can be private to a process or global to
all processes.

You can specify both the cache size and the number of cache pages to use. Since
this layer is used by parallel processes, the actual number of cache pages used is
the number specified times the number of processes.

15.4.2.5 The cache Layer

The cache layer permits efficient file processing for repeated access to one or
more regions of a file. It is a library-managed buffer cache that contains a tunable
number of pages of tunable size.

To specify the cache layer, use the following option:

assign -F cache[:[bs][:[nbufs]]]

S–3901–60 305

Cray® Fortran Reference Manual

The bs argument specifies the size in 4096-byte blocks of each cache page; the
default is 16. The nbufs argument specifies the number of cache pages to use. The
default is 4. You can achieve improved I/O performance by using one or more of
the following strategies:

• Use a cache page size that is a multiple of the user's record size. This ensures
that no user record straddles two cache pages. If this is not possible or
desirable, it is best to allocate a few additional cache pages (nbufs).

• Use a number of cache pages that is greater than or equal to the number of file
regions the code accesses at one time.

If the number of regions accessed within a file is known, the number of cache
pages can be chosen first. To determine the cache page size, divide the amount
of memory to be used by the number of cache pages. For example, suppose a
program uses direct access to read 10 vectors from a file and then writes the sum
to a different file:

integer VECTSIZE, NUMCHUNKS, CHUNKSIZE

parameter(VECTSIZE=1000*512)

parameter(NUMCHUNKS=100)

parameter(CHUNKSIZE=VECTSIZE/NUMCHUNKS)

read a(CHUNKSIZE), sum(CHUNKSIZE)

open(11,access='direct',recl=CHUNKSIZE*8)

call asnunit (2,'-s unblocked',ier)

open (2,form='unformatted')

do i = 1,NUMCHUNKS

sum = 0.0

do j = 1,10

read(11,rec=(j-1)*NUMCHUNKS+i)a

sum=sum+a

enddo

write(2) sum

enddo

end

If 4 MB of memory are allocated for buffers for unit 11, 10 cache pages should be
used, each of the following size:

4MB/10 = 400000 bytes = 97 blocks

Make the buffer size an even multiple of the record length of 409600 bytes by
rounding it up to 100 blocks (= 409600 bytes), then use the following assign
command:

assign -F cache:100:10 u:11

306 S–3901–60

Using FFIO [15]

15.5 Sample Programs

The following examples illustrate the use of the mr layers.

Example 6: Unformatted direct mr with unblocked file

In the following example, batch job ex8 contains a program that uses
unformatted direct-access I/O with an mr layer:

#QSUB -r ex8 -lT 10 -lQ 500000

#QSUB -eo -o ex8.out

date

set -x

cd $TMPDIR

cat > ex8.f <<EOF

program example8

dimension r(512)

data r/512*2.0/

open(1,form='unformatted',access='direct',recl=4096)

do 100 i=1,100

write(1,rec=i,iostat=ier)r

if(ier.ne.0)then

if(ier.eq.5034)then

print *,"overflow to disk at record=",i

else

print *,"error on write=",ier

end if

end if

100 continue

do 200 i=100,1,-1

read(1,rec=i,iostat=ier)r

if(ier.ne.0)then

print *,"error on read=",ier

end if

200 continue

close(1)

end

EOF

ftn ex8.f -o ex8 # compile and compile

assign -R # reset assign parameters

assign -F mr.scr.ovfl::50: fort.1

assign file fort.1 to be mr with a

50 block limit

./ex8 # execute

S–3901–60 307

Cray® Fortran Reference Manual

The program writes the first 50 blocks of fort.1 to the memory-resident layer.
The next 50 blocks overflow the mr buffer and will be written to a disk. Because
the scr option is specified, the file is not saved when fort.1 is closed.

Example 7: Unformatted sequential mr with blocked file

The following program uses an mr layer with unformatted sequential I/O:

program example4a

integer r(512)

data r/512*1.0/

C Reset assign environment, then assign file without FFIO

C to be read back in by subsequent program.

call assign('assign -R',ier1)

call assign('assign -a /tmp/file1 -s unblocked f:fort.1',ier2)

if(ier1.ne.0.or.ier2.ne.0)then

print *,"assign error"

goto200

end if

open(1,form='unformatted')

C write out 100 records to disk file: /tmp/file1

do 100 k=1,100

write(1)r

100 continue

close(1)

200 continue

end

In the program unit example4b that follows, the assign command arguments
contain the following options to use blocked file structure:

assign -R

assign -a /tmp/file1 -F f77,mr.save.ovfl u:3

example4b writes an unblocked file disk file, /tmp/file1. If you want to use
a blocked file structure, the assign command arguments should contain the
following instructions in program unit example4a:

assign -R

assign -a /tmp/file1 f:fort.1

program example4b

integer r(512)

C Reset assign environment, then assign file

C with an mr layer.

308 S–3901–60

Using FFIO [15]

call assign('assign -R',ier1)

call assign('assign -a /tmp/file1

& -F mr.save.ovfl u:3',ier2)

if(ier1.ne.0.or.ier2.ne.0)then

print *,"assign error"

goto300

end if

C open the previously written file '/tmp/file1',

C load it into memory

open(3,form='unformatted')

C read 5 records

do 200 k=1,5

read(3)r1

200 continue

rewind(3)

close(3)

300 continue

end

A sequential formatted file must always have a text specification before the
residency layer specification so that the I/O library can determine the end of
a record.

S–3901–60 309

Cray® Fortran Reference Manual

310 S–3901–60

FFIO Layer Reference [16]

This chapter provides details about each of the following FFIO layers:

Layer Definition

bufa Library-managed asynchronous buffering

cache Memory-cached layer

cachea Asynchronous memory-cached layer

cos or blocked

COS blocking layer

event I/O monitoring layer

f77 Common UNIX Fortran record blocking

fd File descriptor open layer

global Distributed I/O for MPI, SHMEM, OpenMP, and Co-array
Fortran programs

ibm IBM file formats

mr Memory-resident file handlers

null Syntactic convenience for users

site User-defined site-specific layer

syscall System call I/O

system Generic system layer

text Newline-separated record formats

user User-defined layer

vms VAX/VMS file formats

Section 16.1 describes how to interpret the information presented in the
remaining sections of this chapter. See the intro_ffio(3) man page for more
details about FFIO layers.

S–3901–60 311

Cray® Fortran Reference Manual

16.1 Characteristics of Layers

In the descriptions of the layers that follow, the Data Manipulation tables use the
following categories of characteristics:

Characteristic Description

Granularity Indicates the smallest amount of data
that the layer can handle. As of the
Programming Environment 5.2 release,
all layers use 8-bit (1-byte) granularity.

Data model Indicates the data model. Three main
data models are discussed in this section.
The first type is the Record model, which
has data with record boundaries and may
have an end-of-file (EOF).

The second type is Stream (a stream of
bits). None of these support the EOF.

The third type is the Filter, which
does not have a data model of its own
but derives it from the lower-level
layers. Filters usually perform a
data transformation (such as blank
compression or expansion).

Truncate on write Indicates whether the layer forces an
implied EOD on every write operation
(EOD implies truncation).

Implementation strategy Describes the internal routines that are
used to implement the layer.

The X-records type under
Implementation Strategy (if used in
the tables) refers to a record type
in which the length of the record is
prepended and appended to the record.
For f77 files, the record length is
contained in 4 bytes at the beginning and
the end of a record.

312 S–3901–60

FFIO Layer Reference [16]

In the descriptions of the layers, the Supported Operations tables use the
following categories:

Operation

Lists the operations that apply to that particular layer. The
following is a list of supported operations:

ffopen ffclose

ffread ffflush

ffreadc ffweof

ffwrite ffweod

ffwritec ffseek

ffbksp

Support Uses three potential values: Yes, No, or Passed through. Passed
through indicates that the layer does not directly support the
operation but relies on the lower-level layers to support it.

Used Lists two values: Yes or No. Yes indicates that the operation
is required of the next lower-level layer. No indicates that
the operation is never required of the lower-level layer. Some
operations are not directly required but are passed through to
the lower-layer if requested of this layer. These are noted in the
comments.

Comments Describes the function or support of the layer's function.

On many layers, you can also specify the numeric parameters by using a
keyword.

16.2 The bufa Layer

The bufa layer provides library-managed asynchronous buffering. It is
optimized to perform sequential I/O using adaptive I/O techniques, meaning
the bufa layer transforms READ and WRITE requests into read-ahead and
write-behind requests. This can minimize I/O wait time and reduce the number
of low-level I/O requests for some files.

The syntax is as follows:

bufa:[num1]:[num2]

The keyword syntax is as follows:

bufa[.bufsize=num1][.num_buffers=num2]

S–3901–60 313

Cray® Fortran Reference Manual

The num1 argument specifies the size, in 4096-byte blocks, of each buffer.
The default buffer size depends on the device on which your file is located.
The maximum allowed value on UNICOS/mp and UNICOS/lc systems
1,073,741,823. You may not, however, be able to use a value this large because this
much memory may not be available.

The num2 argument specifies the number of buffers to be used. The default is 2.

Table 28. Data Manipulation: bufa Layer

Granularity Data model Truncate on write

8 bits Stream No

Table 29. Supported Operations: bufa Layer

Supported operations Required of next lower level?

Operation Supported Comments Used Comments

ffopen Yes Yes

ffread Yes Yes

ffreadc Yes No

ffwrite Yes Yes

ffwritec Yes No

ffclose Yes Yes

ffflush Yes Yes

ffweof Passed
through

Yes Only if explicitly requested

ffweod Yes Yes

ffseek Yes Only if supported by the
underlying layer

Yes Only if explicitly requested

ffbksp No NA

314 S–3901–60

FFIO Layer Reference [16]

16.3 The cache Layer

The cache layer improves nonsequential I/O by dividing files into cache
page-sized sections, then keeping whichever pages are currently being accessed
in main memory. This can significantly improve data reuse, with appropriately
configured buffers, and can also reduce the number of low-level I/O requests
for random access.

When used as the last layer above the system or syscall layer, the cache layer
supports the assign -B option to enable or disable direct I/O.

This layer also offers efficient sequential access when a buffered, unblocked file is
needed. The syntax is as follows:

cache[.type]:[num1]:[num2][num3]

The keyword syntax is as follows:

cache[.type][.page_size=num1][.num_pages=num2

[.bypass_size=num3]]

The type argument can be mem. mem directs that cache pages reside in main
memory. num1 specifies the size, in 4096–byte blocks, of each cache page buffer.
The default is 16. The maximum allowed value is 1,073,741,823. You may not,
however, be able to use a value this large because this much memory may not
be available.

num2 specifies the number of cache pages. The default is 4. num3 is the size
in 4096-byte blocks at which the cache layer attempts to bypass cache layer
buffering. If a user's I/O request is larger than num3, the request might not be
copied to a cache page. The default is num3=num1×num2.

When a cache page must be preempted to allocate a page to the currently
accessed part of a file, the least recently accessed page is chosen for preemption.
Every access stores a time stamp with the accessed page so that the least recently
accessed page can be found at any time.

Table 30. Data Manipulation: cache Layer

Granularity Data model Truncate on write

8 bit Stream No

512 words Stream No

S–3901–60 315

Cray® Fortran Reference Manual

Table 31. Supported Operations: cache Layer

Supported operations Required of next lower level?

Operation Supported Comments Used Comments

ffopen Yes Yes

ffread Yes No

ffreadc Yes No

ffwrite Yes No

ffwritec Yes No

ffclose Yes Yes

ffflush Yes No

ffweof No No

ffweod Yes Yes

ffseek Yes Yes Requires underlying interface to
be a stream

ffbksp No NA

16.4 The cachea Layer

The cachea layer is similar to the cache layer in that it improves data reuse and
nonsequential I/O by dividing files into cache page-sized sections, then keeping
whichever pages are currently being accessed in main memory. However, like
the bufa layer, it also applies adaptive I/O techniques, transforming READ and
WRITE operations into read-ahead and write-behinds. Furthermore, unlike
the bufa layer, there can be multiple threads (I/O chains) of read-aheads and
write-behinds, depending on how the file is being accessed.

As a result, this layer can provide high write performance by asynchronously
writing out selective cache pages. It can also provide high read performance by
detecting sequential read access, both forward and backward. When sequential
access is detected and when read-ahead is chosen, file page reads are anticipated
and issued asynchronously in the direction of file access.

When used as the last layer above the system or syscall layer, the cachea
layer supports the assign -B option to enable or disable direct I/O.

316 S–3901–60

FFIO Layer Reference [16]

The syntax is as follows:

cachea[type]:[num1]:[num2]:[num3]

The keyword syntax is as follows:

cachea[type][.page_size=num1][.num_pages=num2] [.max_lead=num3]

type Directs that cache pages reside in memory (mem).

num1 Specifies the size, in 4096-byte blocks, of each cache page buffer.
Default is 512. The maximum allowed value is 1,073,741,823. You
may not, however, be able to use a value this large because this
much memory may not be available.

num2 Specifies the number of cache pages to be used. Default is 8.

num3 Specifies the number of cache pages to asynchronously read
ahead when sequential read access patterns are detected. The
default is either (num-2 - 1) or 8, whichever is smaller.

Table 32. Data Manipulation: cachea Layer

Granularity Data model Truncate on write

8 bit Stream (mimics UNICOS/mp system
calls)

No

Table 33. Supported Operations: cachea Layer

Supported operations Required of next lower level?

Operation Supported Comments Used Comments

ffopen Yes Yes

ffread Yes No

ffreadc Yes No

ffwrite Yes No

ffwritec Yes No

ffclose Yes Yes

ffflush Yes No

ffweof No No

S–3901–60 317

Cray® Fortran Reference Manual

Supported operations Required of next lower level?

Operation Supported Comments Used Comments

ffweod Yes Yes

ffseek Yes Yes Requires that the
underlying interface
be a stream

ffbksp No NA

16.5 The cos Blocked Layer

The cos layer performs COS blocking and deblocking on a stream of data. The
general format of the cos specification follows:

cos:[.type][.num1]

The keyword syntax is as follows:

cos[.type][.bufsize=num1]

The num1 argument specifies the working buffer size in 4096-byte blocks.

If not specified, the default buffer size is the larger of the following: the large I/O
size, the preferred I/O block size (see the stat(2) man page for details), or 48
blocks. See the intro_ffio(3F) man page for more details.

When writing, full buffers are written in full record mode. Reads are always
performed in partial read mode; therefore, you do not have to know the block
size to read it (if the block size is larger than the buffer, partial mode reads ensure
that no parts of blocks are skipped).

Table 34. Data Manipulation: cos Layer

Granularity Data model Truncate on write Implementation strategy

8 bit Records with multi-EOF
capability

Yes cos specific

318 S–3901–60

FFIO Layer Reference [16]

Table 35. Supported Operations: cos Layer

Supported operations Required of next lower level?

Operation Supported Comments Used Comments

ffopen Yes Yes

ffread Yes Yes

ffreadc Yes No

ffwrite Yes Yes

ffwritec Yes No

ffclose Yes Yes

ffflush Yes No-op Yes

ffweof Yes No

ffweod Yes Yes Truncation occurs only on close

ffseek Yes Minimal support (see
following note)

Yes

ffbksp Yes No records No

Note: seek operations are supported only to allow for rewind
(seek(fd,0,0)) and seek-to-end (seek(fd,0,2)).

16.6 The event Layer

The event layer enables you to monitor, on a per-file basis, the I/O activity that
occurs in I/O layer immediately preceding it. It generates statistics as a text log
file and reports information such as the number of times an event was called, the
event wait time, the number of bytes requested, and so on. You can request the
following types of statistics:

• A list of all event types

• Event types that occur at least once

• A single line summary of activities that shows information such as amount of
data transferred and the data transfer rate.

S–3901–60 319

Cray® Fortran Reference Manual

Statistics are reported to stderr by default. The FFIO_EVENT_LOGFILE
environment variable can be used to name a file to which statistics are written by
the event layer. The default action is to overwrite the existing statistics file if it
exists. You can append reports to the existing file by specifying a plus sign (+)
before the file name, as in this example:

setenv FFIO_EVENT_LOGFILE +saveIO

This layer report counts all I/O (read, write, etc.) and I/O-related (open,
close, fcntl, etc.) requests. These counts represent the number of calls made
by the parent layer above the event layer to the child layer below it. (The terms
"above" and "below" are somewhat arbitrary, with the "higher" layers being closer
to the program or application and the "lower" layers being closer to the operating
system.) Both the numbers and types of requests can change as you move down
the FFIO chain, as FFIO layers will consolidate multiple I/O requests into fewer
requests and convert requests from one type to another (i.e., from synchronous
to asynchronous).

The event layer is enabled by default and is included in the executable file;
you do not have to relink to study the I/O performance of your program. To
obtain event statistics, rerun your program with the event layer specified on the
assign command, as in this example:

assign -F bufa,cachea,event,system

In the above example, the log file will show the I/O activity in the cachea layer.

The syntax for the event layer is as follows:

event[.type]

There is no alternate keyword specification for this layer.

320 S–3901–60

FFIO Layer Reference [16]

The type argument selects the level of performance information to be written to
the log file; it can have one of the following values:

Value Definition

nostat No information is reported.

brief Generates a report on the amount of data transferred through
the event layer.

summary (default)

Generates three reports:

• The brief report.

• A report on file information, including the file size.

• A list of all the I/O and I/O-related requests that passed
through the event layer.

16.7 The f77 Layer

The f77 layer handles blocking and deblocking of the f77 record type, which
is common to most UNIX Fortran implementations, for sequential unformatted
files. The syntax for this layer is as follows:

f77[.type]:[num1]:[num2]

The keyword syntax is as follows:

f77[.type][.recsize=num1][.bufsize=num2]

type Specifies the record type and can take one of two values:

nonvax Control words in a format common to
computers such as the MC68000 (big-endian);
default.

vax VAX format (byte-swapped) control words.

The specification of vax or nonvax is not relevant to data
conversion.

num1 Maximum record size, in bytes. The default is 2 MB. The
maximum value that can be specified is 4 MB.

num2 Buffer size, in bytes. The default is 65 KB.

S–3901–60 321

Cray® Fortran Reference Manual

To achieve maximum performance, ensure that the working buffer size is large
enough to hold any records that are written plus the control words (control
words consist of two 4-byte fields; one at the beginning of the record and one at
the end of the record). If a record plus control words are larger than the buffer,
the layer must perform some inefficient operations to do the write. If the buffer is
large enough, these operations can be avoided.

On reads, the buffer size is not as important, although larger sizes will usually
perform better.

Table 36. Data Manipulation: f77 Layer

Granularity Data model Truncate on write Implementation strategy

8 bits Record Yes x records

Table 37. Supported Operations: f77 Layer

Supported operations Required of next lower level?

Operation Supported Comments Used Comments

ffopen Yes Yes

ffread Yes Yes

ffreadc Yes No

ffwrite Yes Yes

ffwritec Yes No

ffclose Yes Yes

ffflush Yes No

ffweof Passed
through

Yes Only if explicitly requested

ffweod Yes Yes

ffseek Yes ffseek(fd,0,0)
equals rewind;
ffseek(fd,0,2)
seeks to end

Yes

ffbksp Yes Only in lower-level
layer

No

322 S–3901–60

FFIO Layer Reference [16]

16.8 The fd Layer

The fd layer allows connection of a FFIO file to a system file descriptor. You
must specify the fd layer, as follows:

fd:[num1]

The keyword specification is as follows:

fd[.file_descriptor=num1]

The num1 argument must be a system file descriptor for an open file. The
ffopen or ffopens request opens a FFIO file descriptor that is connected to the
specified file descriptor. The file connection does not affect the file whose name
is passed to ffopen.

When used as the last layer above the system or syscall layer, the fd layer
supports the assign -B option to enable or disable direct I/O.

All other properties of this layer are the same as the system layer. See Section
16.14, page 332 for details.

16.9 The global Layer (Deferred Implementation)

The global layer is a caching layer that distributes data across all multiple
SHMEM, MPI, OpenMP, or Co-array Fortran processes. Open and close
operations require participation by all processes that access the file; all other
operations are independently performed by one or more processes.

The syntax for this layer is as follows:

global[. type]:[num1]:[num2]

The keyword syntax is as follows:

global[. type][.page_size=num1][.num_pages=num2]

The type argument can be privpos (default), in which the file position is private
to a process, or (deferred implementation) globpos, in which the file position is
global to all processes.

The num1 argument specifies the size in 4096-byte blocks of each cache page.
The default is 16.num2 specifies the number of cache pages to be used on each
process. The default is 4. If there are n processes, then n × num2 cache pages
are used.

S–3901–60 323

Cray® Fortran Reference Manual

num2 buffer pages are allocated on every process that shares access to a global
file. File pages are direct-mapped onto processes such that page n of the file will
always be cached on process (n mod NPES), where NPES is the total number of
processes sharing access to the global file. Once the process is identified where
caching of the file page will occur, a least-recently-used method is used to assign
the file page to a cache page within the caching process.

Table 38. Data Manipulation: global Layer

Granularity Data model Truncate on write

8 bits Stream No

Table 39. Supported Operations: global Layer

Supported operations Required of next lower level?

Operation Supported Comments Used Comments

ffopen Yes Yes

ffread Yes No

ffreadc Yes No

ffwrite Yes No

ffwritec Yes No

ffclose Yes Yes

ffflush Yes No

ffweof No No

ffweod Yes Yes

ffseek Yes Yes Requires underlying interface to be
a stream

ffbksp No NA

16.10 The ibm Layer

The ibm layer handles record blocking for seven common record types on IBM
operating systems. The general format of the specification follows:

ibm.[type]:[num1]:[num2]

324 S–3901–60

FFIO Layer Reference [16]

The keyword syntax is as follows:

ibm[.type][.recsize=num1][.mbs=num2]

The supported type values are as follows:

Value Definition

u IBM undefined record type

f IBM fixed-length records

fb IBM fixed-length blocked records

v IBM variable-length records

vb IBM variable-length blocked records

vbs IBM variable-length blocked spanned records

The f format is fixed-length record format. For fixed-length records, num1 is the
fixed record length (in bytes) for each logical record. Exactly one record is placed
in each block.

The fb format records are the same as f format records except that you can place
more than one record in each block. num1 is the length of each logical record.
num2 must be an exact multiple of num1.

The v format records are variable-length records. recsize is the maximum number
of bytes in a logical record. num2 must exceed num1 by at least 8 bytes. Exactly
one logical record is placed in each block.

The vb format records are variable-length blocked records. This means that you
can place more than one logical record in a block. num1 and num2 are the same
as with v format.

The vbs format records have no limit on record size. Records are broken into
segments, which are placed into one or more blocks. num1 should not be
specified. When reading, num2 must be at least large enough to accommodate the
largest physical block expected to be encountered.

The num1 field is the maximum record size that may be read or written. The vbs
record type ignores it.

The num2 (maximum block size) field is the maximum block size that the layer
uses on reads or writes.

S–3901–60 325

Cray® Fortran Reference Manual

Table 40. Values for Maximum Record Size on ibm Layer

Field Minimum Maximum Default Comments

u 1 32,760 32,760

f 1 32,760 None Required

fb 1 32,760 None Required

v 5 32,756 32,752 Default is num2, 8 if not specified.

vb 5 32,756 32,752 Default is num2, 8 if not specified.

vbs 1 None None No maximum record size

Table 41. Values for Maximum Block Size in ibm Layer

Field Minimum Maximum Default Comments

u 1 32,760 32,760 Should be equal to num1

f 1 32,760 num1 Must be equal to num1

fb 1 32,760 num1 Must be multiple of num1

v 9 32,760 32,760 Must be >= num1 + 8

vb 9 32,760 32,760 Must be >= num1 + 8

vbs 9 32,760 32,760

Table 42. Data Manipulation: ibm Layer

Granularity Data model Truncate on write Implementation strategy

8 bits Record No for f and fb records. Yes for
v, vb, and vbs records.

f records for f and fb. v records for
u, v, vb, and vbs.

326 S–3901–60

FFIO Layer Reference [16]

Table 43. Supported Operations: ibm Layer

Supported operations Required of next lower level?

Operation Supported Comments Used Comments

ffopen Yes Yes

ffread Yes Yes

ffreadc Yes No

ffwrite Yes Yes

ffwritec Yes No

ffclose Yes Yes

ffflush Yes No

ffweof Passed through Yes

ffweod Yes Yes

ffseek Yes seek(fd, 0,
0) only (equals
rewind)

Yes seek(fd,0,0) only

ffbksp No No

16.11 The mr Layer

The memory-resident (mr) layer lets users declare that all or part of a file will
reside in memory. This can improve performance for relatively small files that
are heavily accessed or for larger files where the first part of the file is heavily
accessed (for example, a file which contains a frequently updated directory at
the beginning.) The mr layer tries to allocate a buffer large enough to hold the
entire file.

Note: It is generally more advantageous to configure the layer preceding the
mr layer to make the file buffer-resident, assuming that layer can support
buffers of sufficient size.

The options are as follows:

mr[.type[.subtype]]:num1:num2:num3

S–3901–60 327

Cray® Fortran Reference Manual

The keyword syntax is as follows:

mr[.type[.subtype]][.start_size=num1][.max_size=num2]

[.inc_size=num3]

The type field specifies whether the file in memory is intended to be saved or is
considered a scratch file. This argument accepts the following values:

Value Definition

save Default. The file is loaded into memory when opened and
written back to the next lower layer when closed. The save
option also modifies the behavior of overflow processing.

scr Scratch file. The file is not read into memory when opened and
not written when closed.

The subtype field specifies the action to take when the data can no longer fit in the
allowable memory space. It accepts the following values:

Value Definition

ovfl Default. Data which does not fit (overflows) the maximum
specified memory allocation is written to the next lower layer,
which is typically a disk file. An informative message is written
to stderr on the first overflow.

ovflnomsg Identical to ovfl, except that no message is issued when the
data overflows the memory-resident buffer.

novfl If data does not fit in memory, then subsequent write(1)
operations fail.

328 S–3901–60

FFIO Layer Reference [16]

The num1, num2, and num3 fields are nonnegative integer values that state the
number of 4096-byte blocks to use in the following circumstances:

Field Definition

num1 The initial size of the memory allocation, specified in 4,096-byte
blocks. The default is 0.

num2 The maximum size of the memory allocation, specified in
4,096-byte blocks. The default is either num1 or 256 blocks (1
MB), whichever is larger.

num3 Increment size of the memory allocation, specified in 4,096-byte
blocks. This value is used when allocation additional memory
space. The default is 256 blocks (1 MB) or (num2-num1),
whichever is smaller.

The num1 and num3 fields represent best-effort values. They are intended
for tuning purposes and usually do not cause failure if they are not satisfied
precisely as specified. For example, if the available memory space is only 100
blocks and the chosen num3 value is 200 blocks, growth is allowed to use the 100
available blocks rather than failing to grow, because the full 200 blocks requested
for the increment are unavailable.

!
Caution: When using the mr layer, you must ensure that the size of the
memory-resident portions of the files are limited to reasonable values.
Unrestrained and unmanaged growth of such file portions can cause heap
fragmentation, exhaustion of all available memory, and program abort. If
this growth has consumed all available memory, the program may not abort
gracefully, making such a condition difficult to diagnose.

Large memory-resident files may reduce I/O performance for sites that provide
memory scheduling that favors small processes over large processes. Check with
your system administrator if I/O performance is diminished.

Increment sizes which are too small can also contribute to heap fragmentation.

Memory allocation is done by using the malloc(3c) and realloc(3c) library
routines. The file space in memory is always allocated contiguously.

When allocating new chunks of memory space, the num3 argument is used in
conjunction with realloc as a minimum first try for reallocation.

S–3901–60 329

Cray® Fortran Reference Manual

Table 44. Data Manipulation: mr Layer

Primary function Granularity Data model Truncate on write

Avoid I/O to the extent
possible, by holding the
file in memory.

8 bit Stream (mimics UNICOS/mp
system calls)

No

Table 45. Supported Operations: mr Layer

Supported operations Required of next lower level?

Operation Supported Comments Used Comments

ffopen Yes Yes Sometimes delayed until overflow

ffread Yes Yes Only on open

ffreadc Yes No

ffwrite Yes Yes Only on close, overflow

ffwritec Yes No

ffclose Yes Yes

ffflush Yes No-op No

ffweof No No representation No No representation

ffweod Yes Yes

ffseek Yes Full support
(absolute, relative,
and from end)

Yes Used in open and close processing

ffbksp No No records No

16.12 The null Layer

The null layer is a syntactic convenience for users; it has no effect. This layer
is commonly used to simplify the writing of a shell script when a shell variable
is used to specify a FFIO layer specification. For example, the following line is
from a shell script with a file using the assign command and overlying blocking
is expected (as specified by BLKTYP):

assign -F $BLKTYP,cos fort.1

330 S–3901–60

FFIO Layer Reference [16]

If BLKTYP is undefined, the illegal specification list ,cos results. The existence
of the null layer lets the programmer set BLKTYP to null as a default, and
simplify the script, as in:

assign -F null,cos fort.1

This is identical to the following command:

assign -F cos fort.1

When used as the last layer above the system or syscall layer, the null layer
supports the assign -B option to enable or disable direct I/O.

16.13 The syscall Layer

The syscall layer directly maps each request to an appropriate system call.
The layer does not accept any options.

Table 46. Data Manipulation: syscall Layer

Granularity Data model Truncate on write

8 bits (1 byte) Stream (UNICOS/mp system calls) No

S–3901–60 331

Cray® Fortran Reference Manual

Table 47. Supported Operations: syscall Layer

Operation Supported Comments

ffopen Yes open

ffread Yes read

ffreadc Yes read plus code

ffwrite Yes write

ffwritec Yes write plus code

ffclose Yes close

ffflush Yes None

ffweof No None

ffweod Yes trunc(2)

ffseek Yes lseek(2)

ffbksp No

Lower-level layers are not allowed.

16.14 The system Layer

The system layer is implicitly appended to all specification lists, if not explicitly
added by the user (unless the syscall or fd layer is specified). It maps requests
to appropriate system calls.

For a description of options, see the syscall layer. Lower-level layers are not
allowed.

16.15 The text Layer

The text layer performs text blocking by terminating each record with a newline
character. It can also recognize and represent the EOF mark. The text layer
is used with character files and does not work with binary data. The general
specification follows:

text[.type]:[num1]:[num2]

The keyword syntax is as follows:

text[.type][.newline=num1][.bufsize=num2]

332 S–3901–60

FFIO Layer Reference [16]

The type field can have one of the following values:

Value Definition

nl Newline-separated records.

eof Newline-separated records with a special string such as ~e.
More than one EOF in a file is allowed.

The num1 field is the decimal value of a single character that represents the
newline character. The default value is 10 (octal 012, ASCII line feed).

The num2 field specifies the working buffer size (in decimal bytes). If any
lower-level layers are record oriented, this is also the block size.

Table 48. Data Manipulation: text Layer

Granularity Data model Truncate on write

8 bits Record No

Table 49. Supported Operations: text Layer

Supported operations Required of next lower level?

Operation Supported Comments Used Comments

ffopen Yes Yes

ffread Yes Yes

ffreadc Yes No

ffwrite Yes Yes

ffwritec Yes No

ffclose Yes Yes

ffflush Yes No

ffweof Passed
through

Yes Only if explicitly requested

ffweod Yes Yes

ffseek Yes Yes

ffbksp No No

S–3901–60 333

Cray® Fortran Reference Manual

16.16 The user and site Layers

The user and site layers let users and site administrators build user-defined or
site-specific layers to meet special needs. The syntax follows:

user[num1]:[num2]

site:[num1]:[num2]

The open processing passes the num1 and num2 arguments to the layer and are
interpreted by the layers.

See Chapter 17, page 337 for an example of how to create a user FFIO layer.

16.17 The vms Layer

The vms layer handles record blocking for three common record types on
VAX/VMS operating systems. The general format of the specification follows:

vms.[type.subtype]:[num1]:[num2]

The following is the alternate keyword syntax for this layer:

vms.[type.subtype][.recsize=num1][.mbs=num2]

The following type values are supported:

Value Definition

f VAX/VMS fixed-length records

v VAX/VMS variable-length records

s VAX/VMS variable-length segmented records

In addition to the record type, you must specify a record subtype, which has one
of the following four values:

Value Definition

bb Format used for binary blocked transfers

disk Same as binary blocked

tr Transparent format, for files transferred as a bit stream to and
from the VAX/VMS system

tape VAX/VMS labeled tape

334 S–3901–60

FFIO Layer Reference [16]

The num1 field is the maximum record size that may be read or written. It is
ignored by the s record type.

Table 50. Values for Record Size: vms Layer

Field Minimum Maximum Default Comments

v.bb 1 32,767 32,767

v.tape 1 9995 2043

v.tr 1 32,767 2044

s.bb 1 None None No maximum record size

s.tape 1 None None No maximum record size

s.tr 1 None None No maximum record size

The num2 field is the maximum segment or block size that is allowed on input
and is produced on output. For vms.f.tr and vms.f.bb, num2 should be equal
to the record size (num1). Because vms.f.tape places one or more records in
each block, vms.f.tape num2 must be greater than or equal to num1.

Table 51. Values for Maximum Block Size: vms Layer

Field Minimum Maximum Default Comments

v.bb 1 32,767 32,767

v.tape 6 32,767 2,048

v.tr 3 32,767 32,767 N/A

s.bb 5 32,767 2,046

s.tape 7 32,767 2,048

s.tr 5 32,767 2,046 N/A

For vms.v.bb and vms.v.disk records, num2 is a limit on the maximum record
size. For vms.v.tape records, it is the maximum size of a block on tape; more
specifically, it is the maximum size of a record that will be written to the next
lower layer. If that layer is tape, num2 is the tape block size. If it is cos, it will
be a COS record that represents a tape block. One or more records are placed
in each block.

S–3901–60 335

Cray® Fortran Reference Manual

For segmented records, num2 is a limit on the block size that will be produced.
No limit on record size exists. For vms.s.tr and vms.s.bb, the block size is an
upper limit on the size of a segment. For vms.s.tape, one or more segments
are placed in a tape block. It functions as an upper limit on the size of a segment
and a preferred tape block size.

Table 52. Data Manipulation: vms Layer

Granularity Data model Truncate on write Implementation strategy

8 bits Record No for f records. Yes for v and s
records.

f records for f formats. v records for
v formats.

Table 53. Supported Operations: vms Layer

Supported operations Required of next lower level?

Operation Supported Comments Used Comments

ffopen Yes Yes

ffread Yes Yes

ffreadc Yes No

ffwrite Yes Yes

ffwritec Yes No

ffclose Yes Yes

ffflush Yes No

ffweof Yes and
passed
through

Yes for s records;
passed through for
others

Yes Only if explicitly requested

ffweod Yes Yes

ffseek Yes seek(fd,0,0) only
(equals rewind)

Yes seek(fd,0,0) only

ffbksp No No

336 S–3901–60

Creating a user Layer [17]

This chapter explains some of the internals of the FFIO system and explains the
ways in which you can put together a user or site layer.

17.1 Internal Functions

The FFIO system has an internal model of data that maps to any given actual
logical file type based on the following concepts:

• Data is a stream of bits. Layers must declare their granularity by using the
fffcntl(3c) call.

• Record marks are boundaries between logical records.

• End-of-file (EOF) marks are a special type of record that exists in some file
structures.

• End-of-data (EOD) is a point immediately beyond the last data bit, EOR, or
EOF in the file. You cannot read past or write after an EOD. In a case when
a file is positioned after an EOD, a write operation (if valid) immediately
moves the EOD to a point after the last data bit, end-of-record (EOR), or EOF
produced by the write.

All files are streams that contain zero or more data bits that may contain record
or file marks.

No inherent hierarchy or ordering is imposed on the file structures. Any number
of data bits or EOR and EOF marks may appear in any order. The EOD, if
present, is by definition last. Given the EOR, EOF, and EOD return statuses from
read operations, only EOR may be returned along with data. When data bits are
immediately followed by EOF, the record is terminated implicitly.

Individual layers can impose restrictions for specific file structures that are more
restrictive than the preceding rules. For instance, in COS blocked files, an EOR
always immediately precedes an EOF.

Successful mappings were used for all logical file types supported, except
formats that have more than one type of partitioning for files (such as
end-of-group or more than one level of EOF). For example, some file formats
have level numbers in the partitions. FFIO maps level 017 to an EOF. No other
handling is provided for these level numbers.

S–3901–60 337

Cray® Fortran Reference Manual

Internally, there are two main protocol components: the operations and the stat
structure.

17.1.1 The Operations Structure

Many of the operations try to mimic the UNICOS/mp and UNICOS/lc system
calls. In the man pages for ffread(3c), ffwrite(3c), and others, the calls can
be made without the optional parameters and appear like the system calls.
Internally, all parameters are required.

Table 54 provides a brief synopsis of the interface routines that are supported at
the user level. Each of these ff entry points checks the parameters and issues the
corresponding internal call. Each interface routine provides defaults and dummy
arguments for those optional arguments that the user does not provide.

Each layer must have an internal entry point for all of these operations, although
in some cases the entry point may simply issue an error or do nothing. For
example, the syscall layer uses _ff_noop for the ffflush entry point
because it has no buffer to flush, and it uses _ff_err2 for the ffweof entry
point because it has no representation for EOF. No optional parameters for calls
to the internal entry points exist. All arguments are required.

338 S–3901–60

Creating a user Layer [17]

Table 54 lists the variables for the internal entry points and the variable
definitions. An internal entry point must be provided for all of these operations:

Table 54. C Program Entry Points

Variable Definition

fd The FFIO pointer (struct fdinfo *)fd.

file A char* file.

flags File status flag for open, such as O_RDONLY.

buf Bit pointer to the user data.

nb Number of bytes.

ret The status returned; >=0 is valid, <0 is error.

stat A pointer to the status structure.

fulp The value FULL or PARTIAL defined in ffio.h for full
or partial-record mode.

&ubc A pointer to the unused bit count; this ranges from 0 to
7 and represents the bits not used in the last byte of the
operation. It is used for both input and output.

pos A byte position in the file.

opos The old position of the file, just like the system call.

whence The same as the syscall.

cmd The command request to the fffcntl(3c) call.

arg A generic pointer to the fffcntl argument.

mode Bit pattern denoting file's access permissions.

argp A pointer to the input or output data.

len The length of the space available at argp. It is used
primarily on output to avoid overwriting the available
memory.

S–3901–60 339

Cray® Fortran Reference Manual

17.1.2 FFIO and the stat Structure

The stat structure contains four fields in the current implementation. They
mimic the iows structure of the UNICOS/mp and UNICOS/lc ASYNC
syscalls to the extent possible. All operations are expected to update the stat
structure on each call. The SETSTAT and ERETURN macros are provided in the
ffio.h file for this purpose.

The fields in the stat structure are as follows:

Status field Description

stat.sw_flag 0 indicates outstanding; 1 indicates I/O complete.

stat.sw_error 0 indicates no error; otherwise, the error number.

stat.sw_count Number of bytes transferred in this request. This
number is rounded up to the next integral value if
a partial byte is transferred.

stat.sw_stat This tells the status of the I/O operation. The
FFSTAT(stat) macro accesses this field. The
following values are valid:

FFBOD: At beginning-of-data (BOD).

FFCNT: Request terminated by count (either the
count of bytes before EOF or EOD in the file or the
count of the request).

FFEOR: Request termination by EOR or a full
record mode read was processed.

FFEOF: EOF encountered.

FFEOD: EOD encountered.

FFERR: Error encountered.

If count is satisfied simultaneously with EOR, the FFEOR is returned.

340 S–3901–60

Creating a user Layer [17]

The EOF and EOD status values must never be returned with data. This means
that if a byte-stream file is being traversed and the file contains 100 bytes and
then an EOD, a read of 500 bytes will return with a stat value of FFCNT and a
return byte count of 100. The next read operation returns FFEOD and a count
of 0.

A FFEOF or FFEOD status is always returned with a 0-byte transfer count.

17.2 user Layer Example

This section gives a complete and working user layer. It traces I/O at a given
level. All operations are passed through to the next lower-level layer, and a
trace record is sent to the trace file.

The first step in generating a user layer is to create a table that contains the
addresses for the routines that will fulfill the required functions described in
Section 17.1.1, page 338 and Section 17.1.2, page 340. The format of the table
can be found in struct xtr_s, which is found in the <ffio.h> file. No
restriction is placed on the names of the routines, but the table must be called
_usr_ffvect for it to be recognized as a user layer. In the example, the
declaration of the table can be found with the code in the _usr_open routine.

To use this layer, you must take advantage of the weak external files in the
library. The following script fragment is suggested for UNICOS/mp and
UNICOS/lc systems:

-D_LIB_INTERNAL is required to obtain the

declaration of struct fdinfo in <ffio.h>

#

cc -c -D_LIB_INTERNAL -hcalchars usr*.c

cat usr*.o > user.o

#

Note that the -F option is selected that loads

and links the entries despite not having any

hard references.

cc -o user.o myprog.o

assign -F user,others... fort.1

./abs

S–3901–60 341

Cray® Fortran Reference Manual

static char USMID[] = "@(#)code/usrbksp.c 1.0 ";

/* COPYRIGHT CRAY INC.

* UNPUBLISHED -- ALL RIGHTS RESERVED UNDER

* THE COPYRIGHT LAWS OF THE UNITED STATES.

*/

#include <ffio.h>

#include "usrio.h"

/*

* trace backspace requests

*/

int

_usr_bksp(struct fdinfo *fio, struct ffsw *stat)

{

struct fdinfo *llfio;

int ret;

llfio = fio->fioptr;

_usr_enter(fio, TRC_BKSP);

_usr_pr_2p(fio, stat);

ret = XRCALL(llfio, backrtn) llfio, stat);

_usr_exit(fio, ret, stat);

return(0);

}

342 S–3901–60

Creating a user Layer [17]

static char USMID[] = "@(#)code.usrclose.c 1.0 ";

/* COPYRIGHT CRAY INC.

* UNPUBLISHED -- ALL RIGHTS RESERVED UNDER

* THE COPYRIGHT LAWS OF THE UNITED STATES.

*/

#include <stdio.h>

#include <malloc.h>

#include <ffio.h>

#include "usrio.h"

/*

* trace close requests

*/

int

_usr_close(struct fdinfo *fio, struct ffsw *stat)

{

struct fdinfo *llfio;

struct trace_f *pinfo;

int ret;

llfio = fio->fioptr;

/*

* lyr_info is a place in the fdinfo block that holds

* a pointer to the layer's private information.

*/

pinfo = (struct trace_f *)fio->lyr_info;

_usr_enter(fio, TRC_CLOSE);

_usr_pr_2p(fio, stat);

/*

* close file

*/

ret = XRCALL(llfio, closertn) llfio, stat);

/*

* It is the layer's responsibility to clean up its mess.

*/

free(pinfo->name);

pinfo->name = NULL;

free(pinfo);

_usr_exit(fio, ret, stat);

(void) close(pinfo->usrfd);

return(0);

}

static char USMID[] = "@(#)code/usrfcntl.c 1.0 ";

S–3901–60 343

Cray® Fortran Reference Manual

/* COPYRIGHT CRAY INC.

* UNPUBLISHED -- ALL RIGHTS RESERVED UNDER

* THE COPYRIGHT LAWS OF THE UNITED STATES.

*/

#include <ffio.h>

#include "usrio.h"

/*

* trace fcntl requests

*

* Parameters:

* fd - fdinfo pointer

* cmd - command code

* arg - command specific parameter

* stat - pointer to status return word

*

* This fcntl routine passes the request down to the next lower

* layer, so it provides nothing of its own.

*

* When writing a user layer, the fcntl routine must be provided,

* and must provide correct responses to one essential function and

* two desirable functions.

*

* FC_GETINFO: (essential)

* If the 'cmd' argument is FC_GETINFO, the fields of the 'arg' is

* considered a pointer to an ffc_info_s structure, and the fields

* must be filled. The most important of these is the ffc_flags

* field, whose bits are defined in <ffio.h>.(Look for FFC_STRM

* through FFC_NOTRN)

* FC_STAT: (desirable)

* FC_RECALL: (desirable)

*/

int

_usr_fcntl(struct fdinfo *fio, int cmd, void *arg, struct ffsw *stat)

{

struct fdinfo *llfio;

struct trace_f *pinfo;

int ret;

llfio = fio->fioptr;

pinfo = (struct trace_f *)fio->lyr_info;

_usr_enter(fio, TRC_FCNTL);

_usr_info(fio, "cmd=%d ", cmd);

ret = XRCALL(llfio, fcntlrtn) llfio, cmd, arg, stat);

344 S–3901–60

Creating a user Layer [17]

_usr_exit(fio, ret, stat);

return(ret);

}

static char USMID[] = "@(#)code/usropen.c 1.0 ";

/* COPYRIGHT CRAY INC.

* UNPUBLISHED -- ALL RIGHTS RESERVED UNDER

* THE COPYRIGHT LAWS OF THE UNITED STATES.

*/

#include <stdio.h>

#include <fcntl.h>

#include <malloc.h>

#include <ffio.h>

#include "usrio.h"

#define SUFFIX ".trc"

/*

* trace open requests;

* The following routines compose the user layer. They are declared

* in "usrio.h"

*/

/*

* Create the _usr_ffvect structure. Note the _ff_err inclusion to

* account for the listiortn, which is not supported by this user

* layer

*/

struct xtr_s _usr_ffvect =

{

_usr_open, _usr_read, _usr_reada, _usr_readc,

_usr_write, _usr_writea, _usr_writec, _usr_close,

_usr_flush, _usr_weof, _usr_weod, _usr_seek,

_usr_bksp, _usr_pos, _usr_err, _usr_fcntl

};

_ffopen_t

_usr_open(

const char *name,

int flags,

mode_t mode,

struct fdinfo * fio,

union spec_u *spec,

S–3901–60 345

Cray® Fortran Reference Manual

struct ffsw *stat,

long cbits,

int cblks,

struct gl_o_inf *oinf)

{

union spec_u *nspec;

struct fdinfo *llfio;

struct trace_f *pinfo;

char *ptr = NULL;

int namlen, usrfd;

_ffopen_t nextfio;

char buf[256];

namlen = strlen(name);

ptr = malloc(namlen + strlen(SUFFIX) + 1);

if (ptr == NULL) goto badopen;

pinfo = (struct trace_f *)malloc(sizeof(struct trace_f));

if (pinfo == NULL) goto badopen;

fio->lyr_info = (char *)pinfo;

/*

* Now, build the name of the trace info file, and open it.

*/

strcpy(ptr, name);

strcat(ptr, SUFFIX);

usrfd = open(ptr, O_WRONLY | O_APPEND | O_CREAT, 0666);

/*

* Put the file info into the private data area.

*/

pinfo->name = ptr;

pinfo->usrfd = usrfd;

ptr[namlen] = '\0';

/*

* Log the open call

*/

_usr_enter(fio, TRC_OPEN);

sprintf(buf,"(\"%s\", %o, %o...);\n", name, flags, mode);

_usr_info(fio, buf, 0);

/*

* Now, open the lower layers

*/

nspec = spec;

NEXT_SPEC(nspec);

346 S–3901–60

Creating a user Layer [17]

nextfio = _ffopen(name, flags, mode, nspec, stat, cbits, cblks,

NULL, oinf);

_usr_exit_ff(fio, nextfio, stat);

if (nextfio != _FFOPEN_ERR)

{

DUMP_IOB(fio); /* debugging only */

return(nextfio);

}

/*

* End up here only on an error

*

*/

badopen:

if(ptr != NULL) free(ptr);

if (fio->lyr_info != NULL) free(fio->lyr_info);

_SETERROR(stat, FDC_ERR_NOMEM, 0);

return(_FFOPEN_ERR);

}

_usr_err(struct fdinfo *fio)

{

_usr_info(fio,"ERROR: not expecting this routine\n",0);

return(0);

}

S–3901–60 347

Cray® Fortran Reference Manual

static char USMID[] = "@(#)code/usrpos.c 1.1 ";

/* COPYRIGHT CRAY INC.

* UNPUBLISHED -- ALL RIGHTS RESERVED UNDER

* THE COPYRIGHT LAWS OF THE UNITED STATES.

*/

#include <ffio.h>

#include "usrio.h"

/*

* trace positioning requests

*/

_ffseek_t

_usr_pos(struct fdinfo *fio, int cmd, void *arg, int len, struct ffsw *stat)

{

struct fdinfo *llfio;

struct trace_f *usr_info;

_ffseek_t ret;

llfio = fio->fioptr;

usr_info = (struct trace_f *)fio->lyr_info;

_usr_enter(fio,TRC_POS);

_usr_info(fio, " ", 0);

ret = XRCALL(llfio, posrtn) llfio, cmd, arg, len, stat);

_usr_exit_sk(fio, ret, stat);

return(ret);

}

static char USMID[] = "@(#)code/usrprint.c 1.1 ";

/* COPYRIGHT CRAY INC.

* UNPUBLISHED -- ALL RIGHTS RESERVED UNDER

* THE COPYRIGHT LAWS OF THE UNITED STATES.

*/

#include <stdio.h>

#include <ffio.h>

#include "usrio.h"

static char *name_tab[] =

{

348 S–3901–60

Creating a user Layer [17]

"???",

"ffopen",

"ffread",

"ffreadc",

"ffwrite",

"ffwritec",

"ffclose",

"ffflush",

"ffweof",

"ffweod",

"ffseek",

"ffbksp",

"fflistio",

"fffcntl",

};

/*

* trace printing stuff

*/

int

_usr_enter(struct fdinfo *fio, int opcd)

{

char buf[256], *op;

struct trace_f *usr_info;

op = name_tab[opcd];

usr_info = (struct trace_f *)fio->lyr_info;

sprintf(buf, "TRCE: %s ",op);

write(usr_info->usrfd, buf, strlen(buf));

return(0);

}

void

_usr_info(struct fdinfo *fio, char *str, int arg1)

{

char buf[256];

struct trace_f *usr_info;

usr_info = (struct trace_f *)fio->lyr_info;

sprintf(buf, str, arg1);

write(usr_info->usrfd, buf, strlen(buf));

}

S–3901–60 349

Cray® Fortran Reference Manual

void

_usr_exit(struct fdinfo *fio, int ret, struct ffsw *stat)

{

char buf[256];

struct trace_f *usr_info;

usr_info = (struct trace_f *)fio->lyr_info;

fio->ateof = fio->fioptr->ateof;

fio->ateod = fio->fioptr->ateod;

sprintf(buf, "TRCX: ret=%d, stat=%d, err=%d\n",

ret, stat->sw_stat, stat->sw_error);

write(usr_info->usrfd, buf, strlen(buf));

}

void

_usr_exit_ss(struct fdinfo *fio, ssize_t ret, struct ffsw *stat)

{

char buf[256];

struct trace_f *usr_info;

usr_info = (struct trace_f *)fio->lyr_info;

fio->ateof = fio->fioptr->ateof;

fio->ateod = fio->fioptr->ateod;

sprintf(buf, "TRCX: ret=%ld, stat=%d, err=%d\n",

ret, stat->sw_stat, stat->sw_error);

write(usr_info->usrfd, buf, strlen(buf));

}

void

_usr_exit_ff(struct fdinfo *fio, _ffopen_t ret, struct ffsw *stat)

{

char buf[256];

struct trace_f *usr_info;

usr_info = (struct trace_f *)fio->lyr_info;

sprintf(buf, "TRCX: ret=%d, stat=%d, err=%d\n",

ret, stat->sw_stat, stat->sw_error);

write(usr_info->usrfd, buf, strlen(buf));

}

void

_usr_exit_sk(struct fdinfo *fio, _ffseek_t ret, struct ffsw *stat)

{

char buf[256];

350 S–3901–60

Creating a user Layer [17]

struct trace_f *usr_info;

usr_info = (struct trace_f *)fio->lyr_info;

fio->ateof = fio->fioptr->ateof;

fio->ateod = fio->fioptr->ateod;

sprintf(buf, "TRCX: ret=%ld, stat=%d, err=%d\n",

ret, stat->sw_stat, stat->sw_error);

#endif

write(usr_info->usrfd, buf, strlen(buf));

}

void

_usr_pr_rwc(

struct fdinfo *fio,

bitptr bufptr,

size_t nbytes,

struct ffsw *stat,

int fulp)

{

char buf[256];

struct trace_f *usr_info;

usr_info = (struct trace_f *)fio->lyr_info;

sprintf(buf,"(fd / %lx */, &memc[%lx], %ld, &statw[%lx], ",

fio, BPTR2CP(bufptr), nbytes, stat);

write(usr_info->usrfd, buf, strlen(buf));

if (fulp == FULL)

sprintf(buf,"FULL");

else

sprintf(buf,"PARTIAL");

write(usr_info->usrfd, buf, strlen(buf));

}

void

_usr_pr_rww(

struct fdinfo *fio,

bitptr bufptr,

size_t nbytes,

struct ffsw *stat,

int fulp,

int *ubc)

{

char buf[256];

struct trace_f *usr_info;

usr_info = (struct trace_f *)fio->lyr_info;

S–3901–60 351

Cray® Fortran Reference Manual

sprintf(buf,"(fd / %lx */, &memc[%lx], %ld, &statw[%lx], ",

fio, BPTR2CP(bufptr), nbytes, stat);

write(usr_info->usrfd, buf, strlen(buf));

if (fulp == FULL)

sprintf(buf,"FULL");

else

sprintf(buf,"PARTIAL");

write(usr_info->usrfd, buf, strlen(buf));

sprintf(buf,", &conubc[%d]; ", *ubc);

write(usr_info->usrfd, buf, strlen(buf));

}

void

_usr_pr_2p(struct fdinfo *fio, struct ffsw *stat)

{

char buf[256];

struct trace_f *usr_info;

usr_info = (struct trace_f *)fio->lyr_info;

sprintf(buf,"(fd / %lx */, &statw[%lx], ",

fio, stat);

write(usr_info->usrfd, buf, strlen(buf));

}

352 S–3901–60

Creating a user Layer [17]

static char USMID[] = "@(#)code/usrread.c 1.0 ";

/* COPYRIGHT CRAY INC.

* UNPUBLISHED -- ALL RIGHTS RESERVED UNDER

* THE COPYRIGHT LAWS OF THE UNITED STATES.

*/

#include <ffio.h>

#include "usrio.h"

/*

* trace read requests

*

* Parameters:

* fio - Pointer to fdinfo block

* bufptr - bit pointer to where data is to go.

* nbytes - Number of bytes to be read

* stat - pointer to status return word

* fulp - full or partial read mode flag

* ubc - pointer to unused bit count

*/

ssize_t

_usr_read(

struct fdinfo *fio,

bitptr bufptr,

size_t nbytes,

struct ffsw *stat,

int fulp,

int *ubc)

{

struct fdinfo *llfio;

char *str;

ssize_t ret;

llfio = fio->fioptr;

_usr_enter(fio, TRC_READ);

_usr_pr_rww(fio, bufptr, nbytes, stat, fulp, ubc);

ret = XRCALL(llfio, readrtn) llfio, bufptr, nbytes, stat,

fulp, ubc);

_usr_exit_ss(fio, ret, stat);

return(ret);

}

S–3901–60 353

Cray® Fortran Reference Manual

/*

* trace reada (asynchronous read) requests

*

* Parameters:

* fio - Pointer to fdinfo block

* bufptr - bit pointer to where data is to go.

* nbytes - Number of bytes to be read

* stat - pointer to status return word

* fulp - full or partial read mode flag

* ubc - pointer to unused bit count

*/

ssize_t

_usr_reada(

struct fdinfo *fio,

bitptr bufptr,

size_t nbytes,

struct ffsw *stat,

int fulp,

int *ubc)

{

struct fdinfo *llfio;

char *str;

ssize_t ret;

llfio = fio->fioptr;

_usr_enter(fio, TRC_READA);

_usr_pr_rww(fio, bufptr, nbytes, stat, fulp, ubc);

ret = XRCALL(llfio,readartn)llfio,bufptr,nbytes,stat,fulp,ubc);

_usr_exit_ss(fio, ret, stat);

return(ret);

}

354 S–3901–60

Creating a user Layer [17]

/*

* trace readc requests

*

* Parameters:

* fio - Pointer to fdinfo block

* bufptr - bit pointer to where data is to go.

* nbytes - Number of bytes to be read

* stat - pointer to status return word

* fulp - full or partial read mode flag

*/

ssize_t

_usr_readc(

struct fdinfo *fio,

bitptr bufptr,

size_t nbytes,

struct ffsw *stat,

int fulp)

{

struct fdinfo *llfio;

char *str;

ssize_t ret;

llfio = fio->fioptr;

_usr_enter(fio, TRC_READC);

_usr_pr_rwc(fio, bufptr, nbytes, stat, fulp);

ret = XRCALL(llfio, readcrtn)llfio, bufptr, nbytes, stat,

fulp);

_usr_exit_ss(fio, ret, stat);

return(ret);

}

S–3901–60 355

Cray® Fortran Reference Manual

/*

* _usr_seek()

*

* The user seek call should mimic the UNICOS/mp lseek system call as

* much as possible.

*/

_ffseek_t

_usr_seek(

struct fdinfo *fio,

off_t pos,

int whence,

struct ffsw *stat)

{

struct fdinfo *llfio;

_ffseek_t ret;

char buf[256];

llfio = fio->fioptr;

_usr_enter(fio, TRC_SEEK);

sprintf(buf,"pos %ld, whence %d\n", pos, whence);

_usr_info(fio, buf, 0);

ret = XRCALL(llfio, seekrtn) llfio, pos, whence, stat);

_usr_exit_sk(fio, ret, stat);

return(ret);

}

356 S–3901–60

Creating a user Layer [17]

static char USMID[] = "@(#)code/usrwrite.c 1.0 ";

/* COPYRIGHT CRAY INC.

* UNPUBLISHED -- ALL RIGHTS RESERVED UNDER

* THE COPYRIGHT LAWS OF THE UNITED STATES.

*/

#include <ffio.h>

#include "usrio.h"

/*

* trace write requests

*

* Parameters:

* fio - Pointer to fdinfo block

* bufptr - bit pointer to where data is to go.

* nbytes - Number of bytes to be written

* stat - pointer to status return word

* fulp - full or partial write mode flag

* ubc - pointer to unused bit count (not used for IBM)

*/

ssize_t

_usr_write(

struct fdinfo *fio,

bitptr bufptr,

size_t nbytes,

struct ffsw *stat,

int fulp,

int *ubc)

{

struct fdinfo *llfio;

ssize_t ret;

llfio = fio->fioptr;

_usr_enter(fio, TRC_WRITE);

_usr_pr_rww(fio, bufptr, nbytes, stat, fulp, ubc);

ret = XRCALL(llfio, writertn) llfio, bufptr, nbytes, stat,

fulp,ubc);

_usr_exit_ss(fio, ret, stat);

return(ret);

}

S–3901–60 357

Cray® Fortran Reference Manual

/*

* trace writea requests

*

* Parameters:

* fio - Pointer to fdinfo block

* bufptr - bit pointer to where data is to go.

* nbytes - Number of bytes to be written

* stat - pointer to status return word

* fulp - full or partial write mode flag

* ubc - pointer to unused bit count (not used for IBM)

*/

ssize_t

_usr_writea(

struct fdinfo *fio,

bitptr bufptr,

size_t nbytes,

struct ffsw *stat,

int fulp,

int *ubc)

{

struct fdinfo *llfio;

ssize_t ret;

llfio = fio->fioptr;

_usr_enter(fio, TRC_WRITEA);

_usr_pr_rww(fio, bufptr, nbytes, stat, fulp, ubc);

ret = XRCALL(llfio, writeartn) llfio, bufptr, nbytes, stat,

fulp,ubc);

_usr_exit_ss(fio, ret, stat);

return(ret);

}

/*

* trace writec requests

*

* Parameters:

* fio - Pointer to fdinfo block

* bufptr - bit pointer to where data is to go.

* nbytes - Number of bytes to be written

* stat - pointer to status return word

* fulp - full or partial write mode flag

*/

358 S–3901–60

Creating a user Layer [17]

ssize_t

_usr_writec(

struct fdinfo *fio,

bitptr bufptr,

size_t nbytes,

struct ffsw *stat,

int fulp)

{

struct fdinfo *llfio;

ssize_t ret;

llfio = fio->fioptr;

_usr_enter(fio, TRC_WRITEC);

_usr_pr_rwc(fio, bufptr, nbytes, stat, fulp);

ret = XRCALL(llfio, writecrtn)llfio,bufptr, nbytes, stat,

fulp);

_usr_exit_ss(fio, ret, stat);

return(ret);

}

/*

* Flush the buffer and clean up

* This routine should return 0, or -1 on error.

*/

int

_usr_flush(struct fdinfo *fio, struct ffsw *stat)

{

struct fdinfo *llfio;

int ret;

llfio = fio->fioptr;

_usr_enter(fio, TRC_FLUSH);

_usr_info(fio, "\n",0);

ret = XRCALL(llfio, flushrtn) llfio, stat);

_usr_exit(fio, ret, stat);

return(ret);

}

S–3901–60 359

Cray® Fortran Reference Manual

/*

* trace WEOF calls

*

* The EOF is a very specific concept. Don't confuse it with the

* UNICOS/mp EOF, or the truncate(2) system call.

*/

int

_usr_weof(struct fdinfo *fio, struct ffsw *stat)

{

struct fdinfo *llfio;

int ret;

llfio = fio->fioptr;

_usr_enter(fio, TRC_WEOF);

_usr_info(fio, "\n",0);

ret = XRCALL(llfio, weofrtn) llfio, stat);

_usr_exit(fio, ret, stat);

return(ret);

}

/*

* trace WEOD calls

*

* The EOD is a specific concept. Don't confuse it with the UNICOS/mp

* EOF. It is usually mapped to the truncate(2) system call.

*/

int

_usr_weod(struct fdinfo *fio, struct ffsw *stat)

{

struct fdinfo *llfio;

int ret;

llfio = fio->fioptr;

_usr_enter(fio, TRC_WEOD);

_usr_info(fio, "\n",0);

ret = XRCALL(llfio, weodrtn) llfio, stat);

_usr_exit(fio, ret, stat);

return(ret);

}

/* USMID @(#)code/usrio.h 1.1 */

/* COPYRIGHT CRAY INC.

360 S–3901–60

Creating a user Layer [17]

* UNPUBLISHED -- ALL RIGHTS RESERVED UNDER

* THE COPYRIGHT LAWS OF THE UNITED STATES.

*/

#define TRC_OPEN 1

#define TRC_READ 2

#define TRC_READA 3

#define TRC_READC 4

#define TRC_WRITE 5

#define TRC_WRITEA 6

#define TRC_WRITEC 7

#define TRC_CLOSE 8

#define TRC_FLUSH 9

#define TRC_WEOF 10

#define TRC_WEOD 11

#define TRC_SEEK 12

#define TRC_BKSP 13

#define TRC_POS 14

#define TRC_UNUSED 15

#define TRC_FCNTL 16

struct trace_f

{

char *name; /* name of the file */

int usrfd; /* file descriptor of trace file */

};

/*

* Prototypes

*/

extern int _usr_bksp(struct fdinfo *fio, struct ffsw *stat);

extern int _usr_close(struct fdinfo *fio, struct ffsw *stat);

extern int _usr_fcntl(struct fdinfo *fio, int cmd, void *arg,

struct ffsw *stat);

extern _ffopen_t _usr_open(const char *name, int flags,

mode_t mode, struct fdinfo * fio, union spec_u *spec,

struct ffsw *stat, long cbits, int cblks,

struct gl_o_inf *oinf);

extern int _usr_flush(struct fdinfo *fio, struct ffsw *stat);

extern _ffseek_t _usr_pos(struct fdinfo *fio, int cmd, void *arg,

int len, struct ffsw *stat);

extern ssize_t _usr_read(struct fdinfo *fio, bitptr bufptr,

size_t nbytes, struct ffsw *stat, int fulp, int *ubc);

extern ssize_t _usr_reada(struct fdinfo *fio, bitptr bufptr,

S–3901–60 361

Cray® Fortran Reference Manual

size_t nbytes, struct ffsw *stat, int fulp, int *ubc);

extern ssize_t _usr_readc(struct fdinfo *fio, bitptr bufptr,

size_t nbytes, struct ffsw *stat, int fulp);

extern _ffseek_t _usr_seek(struct fdinfo *fio, off_t pos, int whence,

struct ffsw *stat);

extern ssize_t _usr_write(struct fdinfo *fio, bitptr bufptr,

size_t nbytes, struct ffsw *stat, int fulp, int *ubc);

extern ssize_t _usr_writea(struct fdinfo *fio, bitptr bufptr,

size_t nbytes, struct ffsw *stat, int fulp, int *ubc);

extern ssize_t _usr_writec(struct fdinfo *fio, bitptr bufptr,

size_t nbytes, struct ffsw *stat, int fulp);

extern int _usr_weod(struct fdinfo *fio, struct ffsw *stat);

extern int _usr_weof(struct fdinfo *fio, struct ffsw *stat);

extern int _usr_err();

/*

* Prototypes for routines that are used by the user layer.

*/

extern int _usr_enter(struct fdinfo *fio, int opcd);

extern void _usr_info(struct fdinfo *fio, char *str, int arg1);

extern void _usr_exit(struct fdinfo *fio, int ret, struct ffsw *stat);

extern void _usr_exit_ss(struct fdinfo *fio, ssize_t ret,

struct ffsw *stat);

extern void _usr_exit_ff(struct fdinfo *fio, _ffopen_t ret,

struct ffsw *stat);

extern void _usr_exit_sk(struct fdinfo *fio, _ffseek_t ret,

struct ffsw *stat);

extern void _usr_pr_rww(struct fdinfo *fio, bitptr bufptr,

size_t nbytes, struct ffsw *stat, int fulp, int *ubc);

extern void _usr_pr_2p(struct fdinfo *fio, struct ffsw *stat);

362 S–3901–60

Numeric File Conversion Routines [18]

This chapter contains information about data conversion, moving data between
machines, and implicit and explicit data conversion. It also explains the support
provided for reading and writing files in foreign formats, including record
blocking and numeric and character conversion.

These routines convert data (primarily floating-point data, but also integer and
character data, as well as Fortran complex and logical data) from your system's
native representation to a foreign representation, and vice versa.

18.1 Conversion Overview

Data can be transferred between UNICOS/mp and UNICOS/lc systems and
other computer systems in several ways. These methods include the use of
utilities built on TCP/IP (such as ftp). You can also use the data conversion
library routines to convert data.

Cray X1 and X2 systems support the Institute of Electrical and Electronics
Engineers (IEEE) format by default and also support conversion to and from IBM,
VAX/VMS, and other formats. For each foreign file type, several supported file
and record formats exist or explicit or implicit data conversion can also be used.

When processing foreign data, you must consider the interactions between the
data formats and the method of data transfer. This section describes, in broad
terms, the techniques available to do data conversion.

Explicit conversion is the process by which the user performs calls to subroutines
that convert the native data to and from the foreign data formats. These routines
are provided for many data formats. This is discussed in more detail in Section
18.3.1, page 365.

Implicit conversion is the process by which you declare that a particular file
contains foreign data and/or record blocking and then request that the run-time
library perform appropriate transformations on the data to make it useful to the
program at I/O time. This method of record and data format conversion requires
changes in command scripts. This is discussed in more detail in Section 18.3.2,
page 365.

S–3901–60 363

Cray® Fortran Reference Manual

18.2 Transferring Data

This section describes several ways to transfer data, including using the fdcp
and other TCP/IP tools.

18.2.1 Using fdcp to Transfer Files

The fdcp(1) command can handle data that is not a simple disk-resident
byte stream. The fdcp command assumes that both the data and any record,
including an end-of-file (EOF) record, can be copied from one file to another.
Record structures can be preserved or removed. EOF records can be preserved
either as EOF records in the output file or used to separate the delimited data in
the input file into separate files.

The fdcp command does not perform data conversion; the only transformations
done are on the record and file structures (fdcp transforms block, record, and file
control words from one format to another).

If no assign(1) information is available for a file, the system layer is used. If
the file being accessed is on disk and if no assign -F attribute is used, the
syscall layer is used.

18.2.2 Using ftp to Move Data between Systems

When transferring a file to a foreign system, FFIO can create the file in the correct
foreign format, but ftp cannot establish the right attributes on the file so that the
foreign operating system can handle it correctly. Therefore, ftp is not useful as a
transfer agent on IBM and VMS systems for binary data. Its utility is limited to
those systems that do not embed record attributes in the system file information.

18.3 Data Item Conversion

The UNICOS/mp operating system provides both the implicit and explicit
conversion of data items. Explicit conversion means that your code invokes the
routines that convert between native systems and foreign representations.

Options to the assign(1) command control implicit conversion. Implicit
conversion is usually transparent to users and is available only to Fortran
programmers. The following sections describe these data conversion types and
provides direction in choosing the best one for your situation.

364 S–3901–60

Numeric File Conversion Routines [18]

18.3.1 Explicit Data Item Conversion

The Cray Fortran compiler library contains a set of subroutines that convert
between Cray data formats and the formats of various vendors. These routines
are callable from any programming language supported by Cray. The explicit
conversion routines convert between IBM, VAX/VMS, or generic IEEE binary
data formats and Cray 32-bit IEEE binary data formats. For complete details, see
the individual man pages for each routine. These subroutines provide an efficient
way to convert data that was read into system central memory.

Table 55 lists the explicit data conversion subroutines.

Table 55. Explicit Data Conversion Routines

Cray X1 and X2 Systems

Name Foreign -> Cray Cray -> Foreign

IBM IBM2IEG IEG2IBM

VAX/VMS VAX2IEG IEG2VAX

IEEE little-endian IEU2IEG IEG2IEU

Cray T3E IEEE (64-bit) CRI2IEG IEG2CRI

SGI MIPS MIPS2IEG IEG2MIPS

User conversion USR2IEG IEG2USR

Site conversion STE2IEG IEG2STE

See the individual man pages for details about the syntax and arguments for
each routine.

18.3.2 Implicit Data Item Conversion

Implicit data conversion in Fortran requires no explicit action by the program to
convert the data in the I/O stream other than using the assign command to
instruct the libraries to perform conversion. For details, see the assign(1) man
page.

The implicit data conversion process is performed in two steps:

1. Record format conversion

2. Data conversion

S–3901–60 365

Cray® Fortran Reference Manual

Record format conversion interprets or converts the internal record blocking
structures in the data stream to gain record-level access to the data. The data
contained in the records can then be converted.

Using implicit conversion, you can select record blocking or deblocking alone, or
you can request that the data items be converted automatically. When enabled,
record format conversion and data item conversion occur transparently and
simultaneously. Changes are usually not required in your Fortran code.

To enable conversion of foreign record formats, specify the appropriate record
type with the assign -F command. The -N (numeric conversion) and -C
(character conversion) assign options control conversion of data contained in a
record. If -F is specified but -N and -C are not, the libraries interpret the record
format but they do not convert data. You can obtain information about the type
of data that will be converted (and, therefore, the type of conversion that will be
performed) from the Fortran I/O list.

If -N is used and -C is not, an appropriate character conversion type is selected
by default, as shown in Table 56.

366 S–3901–60

Numeric File Conversion Routines [18]

Table 56. Implicit Data Conversion Types

-N option -C default Meaning

none none No numeric conversion

default default No numeric conversion; IEEE 32-bit

cray ASCII Cray “classic” floating-point

ibm EBCDIC IBM 360/370-style numeric conversion

vms ASCII VAX/VMS numeric conversion

ieee ASCII Generic IEEE data (no data conversion)

ieee_32 ASCII Generic 32-bit IEEE data. No data conversion except for items which
are promoted via -s default64 (or -sreal64 or -sinteger64).
They are handled as if they had not been promoted. That is, default
sized variables will be read and written as if no -s option is specified.

mips ASCII SGI MIPS IEEE numeric conversion (128-bit floating-point is “double
double” format)

ieee_64 ASCII Cray 64-bit IEEE numeric conversion

ieee_le ASCII Little endian 32-bit IEEE numeric conversion

ultrix ASCII Alias for above

t3e ASCII Cray 64-bit IEEE numeric conversion; denormalized numbers flushed
to zero

t3d ASCII Alias for t3e

user ASCII User defined numeric conversion

site ASCII Site defined numeric conversion

ia ASCII Intel architecture

swap_endian ASCII The endian of data and control images is swapped during unformatted
input and output

Cray supports conversion of the supported formats and data types through
standard Fortran formatted, unformatted, list-directed, and namelist I/O and
through BUFFER IN and BUFFER OUT statements.

Generally, read, write, and rewind are supported for all record formats. Other
capabilities such as backspace are usually not available but can be made to work
if a blocking type can be used to support it. See the sections on the specific layers
for complete details.

S–3901–60 367

Cray® Fortran Reference Manual

If you select the -N option, the libraries perform data conversion for Fortran
unformatted statements and BUFFER IN and BUFFER OUT I/O statements. Data
is converted between its native representation and a foreign representation,
according to its Fortran data type.

If the value in a native element is too large to fit in the foreign element, the
foreign element is set to the largest or smallest possible value; no error is
generated. When converting from a native element to a smaller foreign element,
precision is also lost due to truncation of the floating-point mantissa.

If the assign -N user or assign -N site command is specified, the user or
site must provide site numeric data conversion routines. They follow the same
calling conventions as the other explicit routines.

For implicit conversion, specify format characteristics on an assign command.

Files can be converted to either:

• A disk file

• A file transferred from a computer other than the Cray X1 or X2 system

When a Fortran I/O operation is performed on the file, the appropriate file
format and data conversions are performed during the I/O operation. Data
conversion is performed on each data item, based on the type of the Fortran
variable in the I/O list.

For example, if the first read of a foreign file format is like the following example,
the library interprets any blocking structures in the file that precede the first
data record:

INTEGER(KIND=8) INT

REAL(KIND=8) FLOAT1, FLOAT2

READ (10) INT,FLOAT1,FLOAT2

These vary depending on the file type and record format. The first 32 bits of data
(in IBM format, for example) are extracted, sign-extended, and stored in the INT
Fortran variable. The next 32 bits are extracted, converted to native floating-point
format, and stored in the FLOAT1 Fortran variable.

The next 32 bits are extracted, converted, and stored into the FLOAT2 Fortran
variable. The library then skips to the end of the foreign logical record. When
writing from a native system to a foreign format (for example, if in the previous
example WRITE(10) was used), precision is lost when converting from a 64-bit
representation to 32-bit representation if the program was compiled with the
-s default64 compiler option and the INT, FLOAT1, and FLOAT2 variables
are default types.

368 S–3901–60

Numeric File Conversion Routines [18]

18.3.3 Choosing a Conversion Method

As with any software process, the various options for data conversion have
advantages and disadvantages, which are discussed in this section. As a set,
various data conversion options provide choices in methods of file processing for
front-end systems. No one option is best for all applications.

18.3.3.1 Explicit Conversion

Explicit data conversion has some distinct advantages, including:

• Providing direct control (including some options not available through
implicit conversion) over data conversion

• Allowing programmers to control and schedule the conversion for a
convenient and appropriate time

• Performing conversion on large data areas as vector operations, usually
increasing performance

One disadvantage of using explicit conversion is that explicit routines require
changes to the source code.

18.3.3.2 Implicit Conversion

An advantage when using implicit conversion is that you do not have to change
the source code.

Disadvantages of using implicit conversion include:

• Requiring script changes to the assign(1) command

• Making conversion less efficient on a record-by-record basis

• Doing conversion at I/O time according to the declared data types, allowing
little flexibility for nonstandard requirements

18.3.4 Disabling Conversion Types

The subroutines required to handle data conversion must be loaded into absolute
binary files. By default, the run-time libraries include references to routines
required to support the forms of implicit conversion enabled in the foreign data
conversion configuration file, usually named fdcconfig.h.

S–3901–60 369

Cray® Fortran Reference Manual

18.4 Foreign Conversion Techniques

This section contains some tips and techniques for the following conversion
types:

Conversion type Convert data to/from

UNICOS files Older Cray UNICOS systems

IBM conversion IBM machines

IEEE conversion Various types of workstations and different
vendors that support IEEE floating-point format

VAX/VMS conversion DEC VAX machines that run MVS

18.4.1 UNICOS/mp and UNICOS/lc Conversions

The UNICOS/mp and UNICOS/lc operating systems use f77 format as the
default format for Fortran unformatted sequential files.

To swap the data and control images when accessing unformatted files created on
a system with a different endian, use the following command:

assign -N swap_endian f:filename

Previous UNICOS operating systems used COS blocking for all blocked files, so
conversion is necessary when moving unformatted, blocked, sequential files from
those Cray systems to the UNICOS/mp and UNICOS/lc operating systems. Two
common COS file types require some conversion to make them useful on the
UNICOS/mp and UNICOS/lc operating systems.

370 S–3901–60

Numeric File Conversion Routines [18]

To read or write unformatted files from UNICOS systems, use one of the
following commands:

• If moving a Cray floating point format file from a Cray SV1 series system,
use the following command:

assign -F cos -N cray cosfile

• If moving an IEEE floating point format file from a Cray SV1 series system,
use the following command:

assign -F cos -N ieee_64 cosfile

• If moving a file from a Cray T3E system, use the following command:

assign -F cos -N t3e cosfile

18.4.2 IBM Overview

To convert and transfer data between Cray X1 series or X2 systems and an
IBM/MVS or VM (360/370 style) system, you must understand the differences
between the UNICOS/mp and UNCOS/lc file system and file formats, and those
on the IBM system(s). On both VM and MVS, the file system is record-oriented.

The most obvious form of data conversion is between the IBM EBCDIC character
set and the ASCII character set used on UNICOS/mp and UNICOS/lc systems.
Most of the utilities that transfer files to and from the IBM systems automatically
convert both the record structures and character set to the UNICOS/mp
and UNICOS/lc text format and to ASCII. For example, ftp performs these
conversions and does not require any further conversion on UNICOS/mp and
UNICOS/lc systems.

Binary data, however, is more complicated. You must first find a way to transfer
the file and to preserve the record boundaries. If workstations are available, this
is simple. Few problems are caused by transferring the file and preserving record
boundaries.

S–3901–60 371

Cray® Fortran Reference Manual

Cray supports the following IBM record formats:

Format Description

U Undefined record format

F Fixed-length records, one record per block

FB Fixed-length, blocked records

V Variable-length records

VB Variable-length, blocked records

VBS Variable-length, blocked, spanned records

18.4.3 IEEE Conversion

By default Cray X1 series and X2 systems use 32-bit IEEE standard floating point,
with two's-complement arithmetic and the ASCII character set. This standard is
also used by many workstations and personal computers. The logical values in
these implementations are usually the same for Fortran and C; they use zero for
false and nonzero for true. It is also common to see the Fortran record blocking
used by the Fortran run-time library on unformatted sequential files.

No IEEE record format exists, but the IEEE implicit and explicit data conversion
routine facilities are provided with the assumption that many of these things
are true.

Most computer systems that use the IEEE data formats run operating systems
based on UNIX software and use f77 record blocking. You can use the rcp or
ftp commands to transfer files. In most cases, the following command should
work:

assign -F f77 fort.1

When writing files in the Fortran format, remember that you can gain a large
performance boost by ensuring that the records being written fit in the working
buffer of the Fortran layer.

On Cray X1 series and X2 systems, data types can be declared as 32 bits in size
and can then be read or written directly. This is the most direct and efficient
method to read or write data files for IEEE workstations. The user can alter
the declarations of the variables used in the Fortran I/O list to declare them as
KIND=4 or as REAL*4 (or INTEGER*4).

372 S–3901–60

Numeric File Conversion Routines [18]

For example, to read a file on a Cray X1 series or X2 system that has 32-bit
integers and 32-bit floating-point numbers, consider the following code
fragments.

To swap the unformatted data and control images when accessing unformatted
files created on a system with a different endian, use one of the following
commands:

assign -N swap_endian u:unit

assign -N swap_endian f:filename

Existing program:

REAL RVAL ! Default size (32-bits)

INTEGER IVAL ! Default size (32-bits)

...

READ (1) IVAL, RVAL

This program will expect both the integer and floating-point data to be the same
size (32 bits). However, it can be modified to explicitly declare the variables to
be the same size as the expected data.

Modified program (#1):

REAL (KIND=4) RVAL ! Explicit 32-bits

INTEGER (KIND=4) IVAL ! Explicit 32-bits

...

READ (1) IVAL, RVAL

This program will correctly read the expected data. However, if this type of
modification is too extensive, only the variables used in the I/O statement list
need be modified.

Modified program (#2):

REAL RVAL ! Default size (32-bits)

INTEGER IVAL ! Default size (32-bits)

REAL (KIND=8) RTMP ! Explicit 64-bits

INTEGER (KIND=4) ITMP ! Explicit 32-bits

...

READ (1) ITMP, RTMP !

Change explicitly sized data to default sized data:

RVAL = RTMP

IVAL = ITMP

S–3901–60 373

Cray® Fortran Reference Manual

On some systems, data types can be declared as 32 bits in size and can then be
read or written directly. This is the most direct and efficient method to read
or write data files for Cray X1 series and X2 systems. The user can alter the
declarations of the variables used in the Fortran I/O list to declare them as
KIND=4 or as REAL*4 (or INTEGER*4).

Other IEEE data conversion variants are also available, but not all variants are
available on all systems:

ieee or ieee_32

The default workstation conversion specification. Data sizes are
based on 32-bit words.

ieee_64 The default IEEE specification on Cray T90/IEEE and Cray T3E
systems. Data sizes are based on 64-bit words.

ieee_le or ultrix

Data sizes are based on 32-bit words and are little-endian.

mips Data sizes are based on 32-bit words, except for 128-bit floating
point data which uses a "double double" format.

ia IEEE data types with Intel-style little-endian.

18.4.4 VAX/VMS Conversion

Nine record types are supported for VAX/VMS record conversion. This includes
a combination of three record types and the three types of storage medium, as
defined in the following list:

Record type Definition

f Fixed-length records

v Variable-length records

s Segmented records

Media Definition

tr For transparent access to files

bb For unlabeled tapes and bb station transfers

tape For labeled tapes

374 S–3901–60

Numeric File Conversion Routines [18]

Segmented records are mainly used by VAX/VMS Fortran. The following
examples show some combinations of segmented records in different types of
storage media:

Example Definition

vms.s.tr Use as an FFIO specification to read or write a file containing
segmented records with transparent access. In the fetch and
dispose commands, specify the -f tr option for the file.

vms.s.tape Use as an FFIO specification to read or write a file containing
segmented records on a labeled tape.

vms.s.bb Use as an FFIO specification to read or write a file containing
segmented records on an unlabeled tape. In the fetch and
dispose commands, specify the -f bb option for the file if it is
not a tape.

The VAX/VMS system stores its data as a stream of bytes on various devices.
Cray X1 series and X2 systems number their bytes from the most-significant bits
to the least-significant bits, while the VAX system numbers the bytes from lowest
significance up. The Cray X1 series and X2 systems make this byte-ordering
transparent when you use text files. When data conversion is used, byte
swapping sometimes must be done.

S–3901–60 375

Cray® Fortran Reference Manual

376 S–3901–60

Named Pipe Support [19]

Named pipes, or UNIX FIFO special files for I/O requests, are created with the
mknod(2) system call; these special files allow any two processes to exchange
information. The system call creates an inode for the named pipe and establishes
it as a named pipe that can be read to or written from. It can then be used by
standard Fortran I/O or C I/O. Piped I/O is faster than normal I/O and requires
less memory than memory-resident files.

Fortran programs can communicate with each other using named pipes. After a
named pipe is created, Fortran programs can access that pipe almost as if it were
a normal file. The unique aspects of process communication using named pipes
are discussed in the following list; the examples show how a Fortran program
can use standard Fortran I/O on pipes:

• A named pipe must be created before a Fortran program opens it. The
following syntax for the command creates a named pipe called fort.13. The
p argument makes it a pipe.

/bin/mknod fort.13 p

A named pipe can be created from within a Fortran program by using the
pxfsystem function. The following example creates a named pipe:

INTEGER ILEN,IERROR

ILEN=0

CALL PXFSYSTEM ('/bin/mknod fort.13 p',ILEN,IERROR)

• Fortran programs can use two named pipes: one to read and one to write. A
Fortran program can read from or write to any named pipe, but it cannot
do both at the same time. This is a Fortran restriction on pipes, not a system
restriction. It occurs because Fortran does not allow read and write access
at the same time.

• I/O transfers through named pipes use memory for buffering. A separate
buffer is created for each named pipe. The PIPE_BUF parameter defines the
kernel buffer size in the /sys/param.h parameter file. The default value of
PIPE_BUF is 8 blocks (8 * 512 words), but the full size may not be needed
or used.

I/O to named pipes does not transfer to or from a disk. However, if I/O
transfers fill the buffer, the writing process waits for the receiving process to
read the data before refilling the buffer. If the size of the PIPE_BUF parameter
is increased, I/O performance may decrease because of buffer contention.

S–3901–60 377

Cray® Fortran Reference Manual

If memory has already been allocated for buffers, more space will not be
allocated.

• Binary data transferred between two processes through a named pipe must
use the correct file structure. An undefined file structure (specified by assign
-s u) should be specified for a pipe by the sending process. An unblocked
structure (specified by assign -s unblocked) should be specified for a
pipe by the receiving process.

You can also select a file specification of system (assign -F system) for
the sending process.

The file structure of the receiving or read process can be set to either an
undefined or an unblocked file structure. However, if the sending process
writes a request that is larger than PIPE_BUF, it is essential for the receiving
process to read the data from a pipe set to an unblocked file structure. A read
of a transfer larger than PIPE_BUF on an undefined file structure yields only
the amount of data specified by PIPE_BUF. The receiving process does not
wait to see whether the sending process is refilling the buffer. The pipe may
be less than the value of PIPE_BUF.

For example, the following assign commands specify that the file structure
of the named pipe (unit 13, file name pipe) for the sending process should
be undefined (-s u). The named pipe (unit 15, file name pipe) is type
unblocked (-s unblocked) for the read process.

assign -s u -a pipe u:13

assign -s unblocked -a pipe u:15

• A read from a pipe that is closed by the sender causes an end-of-file (EOF).
To detect EOF on a named pipe, the pipe must be opened as read-only by the
receiving process. The remainder of this chapter presents more information
about detecting EOF.

19.1 Piped I/O Example without End-of-file Detection

In this example, two Fortran programs communicate without end-of-file (EOF)
detection. Program writerd generates an array, which contains the elements 1
to 3, and writes the array to named pipe pipe1. Program readwt reads the
three elements from named pipe pipe1, prints out the values, adds 1 to each
value, and writes the new elements to named pipe pipe2. Program writerd
reads the new values from named pipe pipe2 and prints them. The -a option
of the assign command allows the two processes to access the same file with
different assign characteristics.

378 S–3901–60

Named Pipe Support [19]

Example 8: No EOF Detection: program writerd

program writerd

parameter(n=3)

dimension ia(n)

do 10 i=1,n

ia(i)=i

10 continue

write (10) ia

read (11) ia

do 20 i=1,n

print*,'ia(',i,') is ',ia(i),' in writerd'

20 continue

end

Example 9: No EOF Detection: program readwt

program readwt

parameter(n=3)

dimension ia(n)

read (15) ia

do 10 i=1,n

print*,'ia(',i,') is ',ia(i),' in readwt'

ia(i)=ia(i)+1

10 continue

write (16) ia

end

The following command sequence executes the programs:

ftn -o readwt readwt.f

ftn -o writerd writerd.f

/bin/mknod pipe1 p

/bin/mknod pipe2 p

assign -s u -a pipe1 u:10

assign -s unblocked -a pipe2 u:11

assign -s unblocked -a pipe1 u:15

assign -s u -a pipe2 u:16

readwt &

writerd

S–3901–60 379

Cray® Fortran Reference Manual

This is the output of the two programs:

ia(1) is 1 in readwt

ia(2) is 2 in readwt

ia(3) is 3 in readwt

ia(1) is 2 in writerd

ia(2) is 3 in writerd

ia(3) is 4 in writerd

19.2 Detecting End-of-file on a Named Pipe

The following conditions must be met to detect end-of-file on a read from a
named pipe within a Fortran program:

• The program that sends data must open the pipe in a specific way, and the
program that receives the data must open the pipe as read-only.

• The program that sends or writes the data must open the named pipe
as read and write or write-only. Read and write is the default because
the /bin/mknod command creates a named pipe with read and write
permission.

• The program that receives or reads the data must open the pipe as read-only.
A read from a named pipe that is opened as read and write waits indefinitely
for the data.

19.3 Piped I/O Example with End-of-file Detection

This example uses named pipes for communication between two Fortran
programs with end-of-file detection. The programs in this example are similar to
the programs used in the preceding section. This example shows that program
readwt can detect the EOF.

Program writerd generates array ia and writes the data to the named pipe
pipe1. Program readwt reads the data from the named pipe pipe1, prints
the values, adds one to each value, and writes the new elements to named pipe
pipe2. Program writerd reads the new values from pipe2 and prints them.
Finally, program writerd closes pipe1 and causes program readwt to detect
the EOF.

380 S–3901–60

Named Pipe Support [19]

This command sequence executes these programs:

ftn -o readwt readwt.f

ftn -o writerd writerd.f

assign -s u -a pipe1 u:10

assign -s unblocked -a pipe2 u:11

assign -s unblocked -a pipe1 u:15

assign -s u -a pipe2 u:16

/bin/mknod pipe1 p

/bin/mknod pipe2 p

readwt &

writerd

Example 10: EOF Detection: program writerd

program writerd

parameter(n=3)

dimension ia(n)

do 10 i=1,n

ia(i)=i

10 continue

write (10) ia

read (11) ia

do 20 i=1,n

print*,'ia(',i,') is',ia(i),' in writerd'

20 continue

close (10)

end

Example 11: EOF Detection: program readwt

program readwt

parameter(n=3)

dimension ia(n)

C open the pipe as read-only

open(15,form='unformatted', action='read')

read (15,end = 101) ia

do 10 i=1,n

print*,'ia(',i,') is ',ia(i),' in readwt'

ia(i)=ia(i)+1

10 continue

write (16) ia

read (15,end = 101) ia

goto 102

S–3901–60 381

Cray® Fortran Reference Manual

101 print *,'End of file detected'

102 continue

end

This is the output of the two programs:

ia(1) is 1 in readwt

ia(2) is 2 in readwt

ia(3) is 3 in readwt

ia(1) is 2 in writerd

ia(2) is 3 in writerd

ia(3) is 4 in writerd

End of file detected

382 S–3901–60

Glossary

absolute address

1. A unique, explicit identification of a memory location, a peripheral device, or
a location within a peripheral device. 2. A precise memory location that is an
actual address number rather than an expression from which the address can
be calculated.

accelerated mode

One of two modes of execution for an application on UNICOS/mp systems; the
other mode is flexible mode. Applications running in accelerated mode perform
in a predictable period of processor time, though their wall clock time may vary
depending on I/O usage, network use, and/or whether any oversubscription
occurs on the relevant nodes. Due to the characteristics of the memory address
space, accelerated applications must run on logically contiguous nodes. See also
flexible mode.

application node

For UNICOS/mp systems, a node that is used to run user applications.
Application nodes are best suited for executing parallel applications and are
managed by the strong application placement scheduling and gang scheduling
mechanism Psched. See also node; node flavor.

array assignment statement

See array syntax statement.

array syntax statement

A Fortran statement that allows you to use the array name (or the array name
with a section subscript) to specify actions on all the elements of an array (or
array section) without using DO loops. For example, the A = B array syntax
statement assigns all the values of array A to array B. Sometimes called an array
assignment statement.

assign environment

The set of information used in Fortran to alter the details of a Fortran connection.
This information includes a list of unit numbers, file names, and file name
patterns that have attributes associated with them. Any file name, file name
pattern, or unit number to which assign options are attached is called an assign

S–3901–60 383

Cray® Fortran Reference Manual

object. When the unit or file is opened from Fortran, the options are used to set
up the properties of the connection.

asynchronous I/O

I/O operation during which the program performs other operations that do not
involve the data in the I/O operation. Control is returned to the calling program
after the I/O is initiated. The program may perform calculations unrelated to
the previous I/O request, or it may issue another unrelated I/O request while
waiting for the first I/O request to complete. An operation is complete when all
data has been moved.

barrier

An obstacle within a program that provides a mechanism for synchronizing
tasks. When a task encounters a barrier, it must wait until all specified tasks
reach the barrier.

barrier synchronization

1. An event initiated by software that prevents cooperating tasks from continuing
to issue new program instructions until all of the tasks have reached the same
point in the program. 2. A feature that uses a barrier to synchronize the
processors within a partition. All processors must reach the barrier before they
can continue the program.

basic block

A section of a program that does not cross any conditional branches, loop
boundaries, or other transfers of control. There is a single entry point and a single
exit point. Many compiler optimizations occur within basic blocks.

binary blocked

A file format that describes blocked, nontranslatable data.

binary stream

An ordered sequence of characters that can transparently record internal data.
Data read in from a binary stream equals data that was written earlier out to that
stream under the same implementation.

384 S–3901–60

Glossary

binding

The way in which one component in a resource specification is related to another
component.

block data

A type of Fortran program unit. A block data program unit contains only data
definitions. It specifies initial values for a restricted set of data objects.

blocking

An optimization that involves changing the iteration order of loops that access
large arrays so that groups of array elements are processed as many times as
possible while they reside in cache.

C interoperability

A Fortran feature that allows Fortran programs to call C functions and access C
global objects and also allows C programs to call Fortran procedures and access
Fortran global objects.

cache line

A division of cache. Each cache line can hold multiple data items. For Cray
X1 and X2 systems, a cache line is 32 bytes, which is the maximum size of a
hardware message.

co-array

A syntactic extension to Fortran that offers a method for programming data
passing; a data object that is identically allocated on each image and can be
directly referenced syntactically by any other image.

co-dimensions

The dimensions of a co-array; specified within brackets ([]). A co-array
specification consists of the local object specification and the co-dimensions
specification.

common block

An area of memory, or block, that can be referenced by any program unit. In
Fortran, a named common block has a name specified in a Fortran COMMON
or TASKCOMMON statement, along with specified names of variables or arrays

S–3901–60 385

Cray® Fortran Reference Manual

stored in the block. A blank common block, sometimes referred to as blank
common, is declared in the same way but without a name.

compute module

For a Cray X1 and X2 series mainframes, the physical, configurable, scalable
building block. Each compute module contains either one node with 4
MCMs/4MSPs (Cray X1 modules) or two nodes with 4 MCMs/8MSPs (Cray X1E
modules). Sometimes referred to as a node module. See also node.

construct

A sequence of statements in Fortran that starts with a SELECT CASE, DO, IF, or
WHERE statement and ends with the corresponding terminal statement.

Cray Fortran Compiler

The compiler that translates Fortran programs into Cray object files. The Cray
Fortran Compiler fully supports the Fortran language through the Fortran 2003
Standard, ISO/IEC 1539-1:2004.

Cray pointee

See Cray pointer.

Cray pointer

A variable whose value is the address of another entity, which is called a pointee.
The Cray pointer type statement declares both the pointer and its pointee. The
Cray pointee does not have an address until the value of the Cray pointer is
defined; the pointee is stored starting at the location specified by the pointer.

Cray Programming Environment Server (CPES)

A server for the Cray X1 and X2 series systems that runs the Programming
Environment software.

Cray streaming directives (CSDs)(X1 only)

Nonadvisory directives that allow you to more closely control multistreaming
for key loops.

Cray X1 series system

The Cray system that combines the single-processor performance and

386 S–3901–60

Glossary

single-shared address space of Cray parallel vector processor (PVP) systems with
the highly scalable microprocessor-based architecture that is used in Cray T3E
systems. Cray X1 and Cray X1E systems utilize powerful vector processors,
shared memory, and a modernized vector instruction set in a highly scalable
configuration that provides the computational power required for advanced
scientific and engineering applications.

CrayDoc

Cray's documentation system for accessing and searching Cray books, man
pages, and glossary terms from a web browser.

CrayPat

For Cray X1 and X2 series systems, the primary high-level tool for identifying
opportunities for optimization. CrayPat allows you to perform profiling,
sampling, and tracing experiments on an instrumented application and to
analyze the results of those experiments; no recompilation is needed to produce
the instrumented program. In addition, the CrayPat tool provides access to all
hardware performance counters.

data passing

Transferring data from one object to another; useful for programming
single-program-multiple-data (SPMD) parallel computation. Its chief advantage
over message passing is lower latency for data transfers, which leads to better
scalability of parallel applications. Data passing can be achieved by using
SHMEM library routines or by using co-arrays.

deferred implementation

The label used to introduce information about a feature that will not be
implemented until a later release.

direct-access I/O

I/O operation where the a peripheral device or a channel controls data transfer
in and out of the computer. The data transfers directly to or from storage and
bypasses the processor.

dynamic thread adjustment

In OpenMP, the automatic adjustment of the number of threads between parallel
regions. Also known as dynamic threads or the dynamic thread mechanism.

S–3901–60 387

Cray® Fortran Reference Manual

entry point

A location in a program or routine at which execution begins. A routine may
have several entry points, each serving a different purpose. Linkage between
program modules is performed when the linkage editor binds the external
references of one group of modules to the entry points of another module.

environment variable

A variable that stores a string of characters for use by your shell and the
processes that execute under the shell. Some environment variables are
predefined by the shell, and others are defined by an application or user.
Shell-level environment variables let you specify the search path that the shell
uses to locate executable files, the shell prompt, and many other characteristics
of the operation of your shell. Most environment variables are described in the
ENVIRONMENT VARIABLES section of the man page for the affected command.

Etnus TotalView

A symbolic source-level debugger designed for debugging the multiple processes
of parallel Fortran, C, or C++ programs.

explicit data conversion

The process by which the user performs calls to subroutines that convert native
data to and from foreign data formats.

flexible file I/O (FFIO)

A method of I/O, sometimes called layered I/O, wherein each processing step
requests one I/O layer or grouping of layers. A layer refers to the specific type of
processing being done. In some cases, the name corresponds directly to the name
of one layer. In other cases, however, specifying one layer invokes the routines
used to pass the data through multiple layers.

flexible mode

One of two modes of execution for an application on UNICOS/mp systems; the
other mode is accelerated mode. Applications running in flexible mode may run
on noncontiguous nodes; they perform in a less predictable amount of processor
time than applications running in accelerated mode due to the exclusive use of
source processor address translation. See also accelerated mode.

388 S–3901–60

Glossary

folding

A basic compiler optimization that converts operations on constants to simpler
forms as these examples show: Operation to fold Folded operation 1
+ 2 3 5.0/3.0 + 1.7 3.366... (if the -O fp1 (Fortran) or -h
fp1 (C/C++) or greater is used.) sin(1.3) 0.96355818...
3 + n - 4 n - 1

formatted I/O

Data transfer with editing. Formatted I/O can be edit-directed, list-directed,
or namelist I/O. If the format identifier is an asterisk, the I/O statement is a
list-directed I/O statement. All other format identifiers indicate edit-directed
I/O. Formatted I/O should be avoided when I/O performance is important.

gather/scatter

An operation that copies data between remote and local memory or within
local memory. A gather is any software operation that copies a set of data
that is nonsequential in a remote (or local) processor, usually storing into a
sequential (contiguous) area of local processor memory. A scatter copies data
from a sequential, contiguous area of local processor memory) into nonsequential
locations in a remote (or local) memory.

implicit data conversion

The process by which you declare that a particular file contains foreign data
and/or record blocking and then request that the run-time library perform
appropriate transformations on the data to make it useful to the program at I/O
time.

implicit open

The opening of a file or a unit when the first reference to a unit number is an
I/O statement other than OPEN, CLOSE, INQUIRE, BACKSPACE, ENDFILE,
or REWIND.

invariant

A rule, such as the ordering of an ordered list or heap, that applies throughout
the life of a data structure or procedure. Each change to the data structure must
maintain the correctness of the invariant.

S–3901–60 389

Cray® Fortran Reference Manual

kind

Data representation (for example, single precision, double precision). The kind
of a type is referred to as a kind parameter or kind type parameter of the type.
The kind type parameter KIND indicates the decimal range for the integer type,
the decimal precision and exponent range for the real and complex types, and the
machine representation method for the character and logical types.

layered I/O

See flexible file I/O (FFIO).

lexical extent

In OpenMP, statements that reside within a structured block. See also structured
block.

list-directed I/O

I/O where the records consist of a sequence of values separated by value
separators such as commas or spaces. A tab is treated as a space in list-directed
input, except when it occurs in a character constant that is delimited by
apostrophes or quotation marks.

lock

1. Any device or algorithm that is used to ensure that only one process will
perform some action or use some resource at a time. 2. A synchronization
mechanism that, by convention, forces some data to be accessed by tasks in a
serial fashion. Locks have two states: locked and unlocked. 3. A facility that
monitors critical regions of code.

loop collapse

An optimization that combines loop interchange and loop fusion to convert a
loop nest into a single loop, with an iteration count that is the product of the
iteration counts of the original loops.

loop fusion

An optimization that takes the bodies of loops with identical iteration counts and
fuses them into a single loop with the same iteration count.

390 S–3901–60

Glossary

loop interchange

An optimization that changes the order of loops within a loop nest, to achieve
stride minimization or eliminate data dependencies.

loop invariant

A value that does not change between iterations of a loop.

loop unrolling

An optimization that increases the step of a loop and duplicates the expressions
within a loop to reflect the increase in the step. This can improve instruction
scheduling and reduce memory access time.

master thread

The thread that creates a team of threads when an OpenMP parallel region is
entered.

Message Passing Interface (MPI)

A widely accepted standard for communication among nodes that run a parallel
program on a distributed-memory system. MPI is a library of routines that can be
called from Fortran, C, and C++ programs.

module file

A metafile that defines information specific to an application or collection of
applications. (This term is not related to the module statement of the Fortran
language; it is related to setting up the Cray system environment.) For example,
to define the paths, command names, and other environment variables to use the
Programming Environment for Cray systems, you use the module file PrgEnv,
which contains the base information needed for application compilations. The
module file mpt sets a number of environment variables needed for message
passing and data passing application development.

multistreaming processor (MSP) (X1 only)

For UNICOS/mp systems, a basic programmable computational unit. Each MSP
is analogous to a traditional processor and is composed of four single-streaming
processors (SSPs) and E-cache that is shared by the SSPs. See also node.

S–3901–60 391

Cray® Fortran Reference Manual

multithreading

The concurrent use of multiple threads of control that operate within the same
address space.

named pipe

A first-in, first-out file that allows communication between two unrelated
processes running on the same host.

namelist I/O

I/O that allows you to group variables by specifying a namelist group name. On
input, any namelist item within that list may appear in the input record with a
value to be assigned. On output, the entire namelist is written.

NaN

An IEEE floating-point representation for the result of a numerical operation that
cannot return a valid number value; that is, not a number, NaN.

node

For UNICOS/mp systems, the logical group of four multistreaming processors
(MSPs), cache-coherent shared local memory, high-speed interconnections, and
system I/O ports. A Cray X1 system has one node with 4 MSPs per compute
module. A Cray X1E system has two nodes of 4 MSPs per node, providing a total
of 8 MSPs on its compute module. Software controls how a node is used: as an
OS node, application node, or support node. See also compute module; .

node

In networking, a processing location. A node can be a computer (host) or some
other device, such as a printer. Every node has a unique network address.

node flavor

For UNICOS/mp systems, software controls how a node is used. A node's
software-assigned flavor dictates the kind of processes and threads that can use
its resources. The three assignable node flavors are application, OS, and support.
See also application node; OS node; support node; system node.

OpenMP

An industry-standard, portable model for shared memory parallel programming.

392 S–3901–60

Glossary

OS node

For UNICOS/mp systems, the node that provides kernel-level services, such as
system calls, to all support nodes and application nodes. See also node; node flavor.

overindexing

The nonstandard practice of referencing an array with a subscript not contained
between the declared lower and upper bounds of the corresponding dimension
for that array. This practice sometimes, but not always, leads to referencing a
storage location outside of the entire array.

page size

The unit of memory addressable through the Translation Lookaside Buffer (TLB).
For a UNICOS/mp system, the base page size is 65,536 bytes, but larger page
sizes (up to 4,294,967,296 bytes) are also available.

parallel processing

Processing in which multiple processors work on a single application
simultaneously.

parallel region

See serial region.

partitioning

Configuring a UNICOS/mp system into logical systems (partitions). Each
partition is independently operated, booted, dumped, and so on without impact
on other running partitions. Hardware and software failures in one partition
do not affect other partitions.

piped I/O

I/O that uses named pipes; faster than normal I/O because it requires less
memory than memory-resident files. See also named pipe.

pointer

A data item that consists of the address of a desired item.

Psched

The UNICOS/mp application placement scheduling tool. The psched command

S–3901–60 393

Cray® Fortran Reference Manual

can provide job placement, load balancing, and gang scheduling for all
applications placed on application nodes.

rank

The number of dimensions in a Fortran array. Rank is declared when the array is
declared and cannot change.

reduction

The process of transforming an expression according to certain reduction rules.
The most important forms are beta reduction (application of a lambda abstraction
to one or more argument expressions) and delta reduction (application of a
mathematical function to the required number of arguments). An evaluation
strategy (or reduction strategy) determines which part of an expression to reduce
first. There are many such strategies. Also called contraction.

reduction loop

A loop that contains at least one statement that reduces an array to a scalar value
by doing a cumulative operation on many of the array elements. This involves
including the result of the previous iteration in the expression of the current
iteration.

scalar processing

A form of fine-grain serial processing whereby iterative operations are performed
sequentially on the elements of an array, with each iteration producing one result.

scoping unit

Part of a program in which a name has a fixed meaning. A program unit or
subprogram generally defines a scoping unit. Type definitions and procedure
interface bodies also constitute scoping units. Scoping units do not overlap,
although one scoping unit may contain another in the sense that it surrounds it.
If a scoping unit contains another scoping unit, the outer scoping unit is referred
to as the host scoping unit of the inner scoping unit.

serial region

An area within a program in which only the master task is executing. Its opposite
is a parallel region.

394 S–3901–60

Glossary

SHMEM

A library of optimized functions and subroutines that take advantage of shared
memory to move data between the memories of processors. The routines can
either be used by themselves or in conjunction with another programming style
such as Message Passing Interface. SHMEM routines can be called from Fortran,
C, and C++ programs.

shortloop

A loop that is vectorized but that has been determined by the compiler to have
trips less than or equal to the maximum vector length. In this case, the compiler
deletes the loop to the top of the loop. If the shortloop directive is used or the
trip count is constant, the top test for number of trips is deleted. A shortloop is
more efficient than a conventional loop.

side effects

The result of modifying shared data or performing I/O by concurrent streams
without the use of an appropriate synchronization mechanism. Modifying shared
data (where multiple streams write to the same location or write/read the same
location) without appropriate synchronization can cause unreliable data and
race conditions. Performing I/O without appropriate synchronization can cause
an I/O deadlock. Shared data, in this context, occurs when any object may be
referenced by two or more single-streaming processors (X1 only). This includes
globally visible objects (for example, COMMON, MODULE data), statically allocated
objects (SAVE, C static), dummy arguments that refer to SHARED data and
objects in the SHARED heap.

single-streaming processor (SSP) (X1 only)

For UNICOS/mp systems, a basic programmable computational unit. See also
node.

stack allocation

A method of allocating memory for variables used by a called routine during
program execution. Variables are reset for each invocation of a subprogram.
Stack mode is required for multitasked code.

stride

The relationship between the layout of an array's elements in memory and
the order in which those elements are accessed. A stride of 1 means that

S–3901–60 395

Cray® Fortran Reference Manual

memory-adjacent array elements are accessed on successive iterations of an
array-processing loop.

structured block

In Fortran OpenMP, a collection of one or more executable statements with a
single point of entry at the top and a single point of exit at the bottom. Execution
must always proceed with entry at the top of the block and exit at the bottom
with only one exception: the block is allowed to have a STOP statement inside
a structured block. This statement has the well-defined behavior of terminating
the entire program.

support node

For UNICOS/mp systems, the node that is used to run serial commands, such
as shells, editors, and other user commands (ls, for example). See also node;
node flavor.

symbol table

A table of symbolic names (for example, variables) used in a program to store
their memory locations. The symbol table is part of the executable object
generated by the compiler. Debuggers use it to help analyze the program.

synchronous I/O

I/O operation during which an executing program relinquishes control until the
operation is complete. An operation is not complete until all data is moved.

system cache

A set of buffers in kernel memory used for I/O operations by the operating
system. The system cache ensures that the actual I/O to the logical device is well
formed, and it tries to remember recent data in order to reduce physical I/O
requests. In many cases, however, it is desirable to bypass the system cache and
to perform I/O directly between the user's memory and the logical device.

system node

For UNICOS/mp systems, the node that is designated as both an OS node and a
support node; this node is often called a system node; however, there is no node
flavor of "system." See also node; node flavor.

396 S–3901–60

Glossary

system time

The amount of time that the operating system spends providing services to an
application.

thread

The active entity of execution. A sequence of instructions together with machine
context (processor registers) and a stack. On a parallel system, multiple threads
can be executing parts of a program at the same time.

TKR

An acronym that represents attributes for argument association. It represents the
data type, kind type parameter, and rank of the argument.

trigger

A command that a user logged into a Cray X1 series system uses to launch
Programming Environment components residing on the CPES. Examples of
trigger commands are ftn, CC, and pat_build.

type

A means for categorizing data. Each intrinsic and user-defined data type has
four characteristics: a name, a set of values, a set of operators, and a means to
represent constant values of the type in a program.

unblocked file structure

A file that contains undelimited records. Because it does not contain any record
control words, it does not have record boundaries.

unformatted I/O

Transfer of binary data without editing between the current record and the
entities specified by the I/O list. Exactly one record is read or written. The unit
must be an external unit.

UNICOS/lc

The operating system for Cray X2 series systems.

UNICOS/mp

The operating system for Cray X1 series (Cray X1 and Cray X1E) systems.

S–3901–60 397

Cray® Fortran Reference Manual

unrolling

A single-processing-element optimization technique in which the statements
within a loop are copied. For example, if a loop has two statements, unrolling
might copy those statements four times, resulting in eight statements. The loop
control variable would be incremented for each copy, and the stride through the
array would also be increased by the number of copies. This technique is often
performed directly by the compiler, and the number of copies is usually between
two and four.

vector

A series of values on which instructions operate; this can be an array or any
subset of an array such as row, column, or diagonal. Applying arithmetic,
logical, or memory operations to vectors is called vector processing. See also
vector processing.

vector length

The number of elements in a vector.

vector processing

A form of instruction-level parallelism in which the vector registers are used to
perform iterative operations in parallel on the elements of an array, with each
iteration producing up to 64 simultaneous results. See also vector.

vector register

The register that serves as a source and destination for vector operations.

vectorization

The process, performed by the compiler, of analyzing code to determine whether
it contains vectorizable expressions and then producing object code that uses the
vector unit to perform vector processing.

398 S–3901–60

Index

(null) directive, 161
-- option, 80
32 bit default types, 72
64 bit default types, 72

A
a.out, 5, 15, 60
Advisory directives defined, 98
ALLOCATE statement, 24, 218
American National Standards Institute (ANSI), 1
ANSI, 1
aprun command, 172, 225
Assembly language

file.s, 15
output, 5, 24
output file, 15

assign environment
alternative file names, 278
assign command syntax, 273
basic usage, 272
buffer size defaults, 287
buffer size specification, 287
C/C++ interface, 271
changing from within a Fortran program, 276
defined, 271
foreign file format specification, 290
Fortran file truncation, 290
Fortran I/O, 277
library calling sequence, 276
library routines, 276
local assign mode, 292
memory resident files, 290
selecting file structure, 279
setting the FILENV variable, 292
system cache, 289
unbuffered I/O, 289
using FFIO in, 271

assign objects

open processing, 272
ASSIGN statement, 238
Assignment, 191
Asterisk delimiter, 247
Asynchronous I/O, 266
AUTOMATIC attribute and statement, 189

B
-b bin_file option, 17
-b bin_obj_file option, 16, 24, 75, 80
BACKSPACE statement, 281
Barriers, 218
bin file structure

defined, 283
padding, 283

binary data streams, 302
Binary file, creating, 16
BIND(C) syntax, 210
Bitwise logical expressions, 194
Block Control Word, 284
BLOCKABLE, 93
BLOCKABLE directive, 133
blocked file structure

defined, 284
using BUFFER IN/OUT, 284
using ENDFILE, 284

blocked layer
defined, 299

BLOCKINGSIZE, 93
BLOCKINGSIZE directive, 133
Boolean data type

introduction, 187
Bounds checking, 225
BOUNDS directive, 92, 130
BOZ constant, 189
Bracket reference, 219
Branching, 241
bufa layer, 304

S–3901–60 399

Cray® Fortran Reference Manual

defined, 299
specification, 313

BUFFER IN statement, 244
BUFFER OUT statement, 244
Buffer sizes, 287
Buffer specifications, 286
buffers
bufa layer, 313
cachea layer, 316
memory-resident files, 327
named pipes, 377
sizes, 303
using binary stream layers, 303
write-behind and read-ahead, 286

BYTE data type, 230
Byte size scaling, 73–74
byte_pointer, 71, 74

C
-C cifopts option, 17
-c option , 17, 60, 80
cache layer, 305

defined, 299
improving I/O performance with, 306
specification, 305, 315

Cache management, 38
CACHE_SHARED directive, 92, 97–98
cachea layer, 304

defined, 299
specification, 316

CAL, 24
CDIR$, 87
!CDIR$ directive, 91
Character constant, 189
CIF, 16, 18
CLONE directive, 92, 121
Co-array Fortran, 323
Co-array syntax, 79
Co-arrays

co-dimension, 217–218
co-rank, 213
co-shape, 213

co-size, 213
local rank, 213
local shape, 213
local size, 213
LOG2_IMAGES, 219
NUM_IMAGES, 219
related publications, 212
REM_IMAGES, 219
SSP mode, 225
SYNC_ALL, 219
THIS_IMAGE, 219

COERCE_KIND directive, 92
COLLAPSE directive, 126
Column widths, 34
Command line options
-Y option, 79

Common
blocks, 191

COMMON statement, 191
Common-block report, 65
Compilation phases
-Yphase,dirname, 79

Compiler Information File (CIF)
See CIF

CONCURRENT directive, 93, 136
Conditional compilation, 76

overview, 157
CONTAINS statement, 204
conversion methods, 369
COPY_ASSUMED_SHAPE directive, 92, 98
COS data conversion, 370
cos file structure

defined, 284
using BUFFER IN/OUT, 284
using ENDFILE IN/OUT, 284

cos layer
defined, 299
specification, 318

CPES, 11
Cray Apprentice2, 12
Cray C, 80
Cray C++, 80

400 S–3901–60

Index

Cray character pointer data representation, 260
Cray Performance Analyzer Too, 3
Cray pointers and scaling factors, 71, 73–74
Cray Programming Environment Server

(CPES), 11
Cray streaming directives

See CSDs
CRAY_FTN_OPTIONS, 82
CRAY_PE_TARGET environment variable, 82
CrayPat, 3, 226
creating a user-defined FFIO layer, 337
CRITICAL directive, 150
Cross-compiler platforms, 5
CSD

continuing long CSD statements, 144
long CSD statements, 144

CSD directive, 152
CSDs, 78, 143

chunk size, 147
compatibility, 143
compiler options, 155
dynamic memory allocation within, 155
incorrect results, 145
Nested, 153
ORDERED clause, 145
parallel regions, 144
placement, 153
PRIVATE clause, 145
SCHEDULE clause, 146
shared data protection, 154
stand-alone, 153

D
-d disable option, 18
-D identifier [=value] option, 26
Data

global, 191
data item conversion

absolute binary files, 369
explicit conversion, 369
implicit conversion, 369

Data passing, 210

DATA statement, 216, 234
Data type, 180

Boolean, 187
Cray pointer, 181

debugging
using the event layer to monitor I/O

activity, 319
Debugging support, 3, 27
DECODE statement, 243
default types, size of, 72
default64, 72
Defaults
-d n, 22
-d Z, 25
-d0, 18
-da, 18
-dc, 18
-dd, 19
-dD, 19
-dE, 20
-dg, 20
-dh, 21
-dI, 21
-dj, 21
-dL, 22
-dm, 22
-do, 22
-dP, 23
-dQ, 23
-dR, 24
-ds, 24
-dS, 24
-dv, 24
-eB, 18
-eg, 20
-Ep, 23
-Eq, 23
-Ey, 25
-h msp, 31
-h nompmd, 30
-O 2, 37
-O fp2, 40

S–3901–60 401

Cray® Fortran Reference Manual

-O infinitevl, 44
-O ipa3, 44
-O modinline, 49
-O msp, 50
-O noaggress, 38
-O nointerchange, 51
-O nomsgs, 50
-O nonegmsgs, 51
-O nooverindex, 51
-O nopattern, 52
-O nozeroinc, 59
-O scalar2, 53
-O shortcircuit3, 54
-O stream2, 56
-O task1, 57
-O vector2, 59
O- cache0, 38
-s byte_pointer, 71
-s default32, 72
-s integer32, 72
-s real32, 72

#define directive, 159
Defined externals, 173
Descriptors

noncharacter data, 248
!DIR$, 87
!DIR$ directive, 91
Directive

conditional compilation, 158
Directives

advisory, defined, 98
conditional, 161
continuing, 91
Cray streaming

See CSDs
disabling, 77
for local control, 130
for scalar optimization, 125
for storage, 132
for vectorization, 96
inlining, 121
interaction with -x dirlist option, 94

interaction with command line, 94
interaction with optimization options, 95
miscellaneous, 135
OpenMP Fortran API, 167
overview, 87
parallel, 144
range and placement, 92

Directories
phase execution, 79

distributed I/O, 323
DO directive, 146
DOUBLE COMPLEX statement, 23, 231

See also STATIC attribute and statement
Double precision, enabling/disabling, 23
Dynamic memory allocation, 263

E
-e enable option, 18
#elif directive, 163
#else directive, 163
ENCODE statement, 242
END DO directive, 146
END ORDERED directive, 151
END PARALLEL directive, 144
END PARALLEL DO directive, 149
END_CRITICAL intrinsic function, 222
#endif directive, 164
Enumeration, 187
Enumerator, 187
environment variables
FILENV, 272

Environment variables, 81
EQUIVALENCE statement, 217
event layer

defined, 299
log file, 320
specification, 319

examples
named pipes, 377
piped I/O with no EOF detection, 378
user layer, 341

Exclusive disjunct expression, 192

402 S–3901–60

Index

Executable output file, 15
explain command, 5
Explicit kind values, 72
Expressions, 191

F
-F option, 26
-f source_form option, 26
.f suffix, 26
.F suffix, 26
f77 layer

defined, 299
specification, 321

.f90 suffix, 26

.F90 suffix, 26

.f90, .F90, .ftn, .FTN, 15
fd layer

defined, 299
specification, 323

FFIO
blocked layer, 299
bufa layer, 299
buffer size considerations, 303
cache layer, 299
cachea layer, 299
cachea library buffer, 289
common formats, 301
converting data files, 301
cos layer, 299
creating a user-defined layer, 337
data granularity, 312
defined, 271, 295
event layer, 299
f77 files, 303
f77 layer, 299
fd layer, 299
Fortran I/O forms, 297
global layer, 299
handling binary data, 302
handling multiple EOFs in text files, 301
I/O status fields, 340
ibm layer, 299

layer options, 300
library buffering, 289
list of supported layers, 299
modifying layer behavior, 300
mr layer, 290, 299
null layer, 299
reading and writing f77 files, 303
reading and writing fixed-length records, 303
reading and writing text files, 301
reading and writing unblocked files, 302
removing blocking, 304
selecting file structure, 279
site layer, 299
specifying layers, 299
supported operations, 313
syscall layer, 299
system layer, 298, 300
text files, 301
text layer, 300
unblocked files, 302
usage rules, 300
user layer, 300
using, 298
using sequential layers, 296
using the bufa layer, 304
using the cache layer, 305
using the cachea layer, 304
using the global layer, 305
using the mr layer, 305
using the syscall layer, 304
using with assign, 271
vms layer, 300

FFIO and foreign data
foreign conversion tips, 374
IEEE conversion, 372

FFIO layer reference
bufa layer, 313
cache layer, 315
cachea layer, 316
cos layer, 318
event layer, 319
f77 layer, 321

S–3901–60 403

Cray® Fortran Reference Manual

fd layer, 323
global layer, 323
ibm layer, 324
layer definitions, 311
mr layer, 327
null layer, 330
site layer, 334
syscall layer, 331
system layer, 332
text layer, 332
user layer, 334
vms layer, 334

File suffixes for input files, 26
file.a, 15
file.cg, 15
file.f, 15
file.F, 15
file.f90, 15
file.F90, 15
file.ftn, 15
file.FTN, 15
file.i, 15
file.L, 15
file.lst, 15
file.M, 60
file.o, 5, 15, 17
file.opt, 15
file.s, 5, 15
file.T, 16–17, 68
FILENV
environment variables, 272

files
bin file structure, 283
blocked file structure, 284
data conversion, 301
default file structure, 279
enabling/suppressing truncation, 290
handling multiple EOFs in text files, 301
memory-resident, 290
reading and writing f77 files, 303
reading and writing fixed-length records, 303
reading and writing text files, 301

reading and writing unblocked files, 302
tuning connections, 277
undefined/unknown file structure, 283

Files
COS blocked, 280
cos file structure, 284
F77 blocked, 280
foreign format specification, 290
Fortran access methods, 281
positioning, 198
selecting structure, 279
text, 280
text file structure, 283
unblocked, 280
unblocked file structure, 281

FIXED directive, 92, 132
Fixed source form, 26, 34, 80, 91
Fixed source form D lines, 180
FLUSH statement, 266
foreign file conversion

choosing conversion methods, 369
conversion techniques, 370
COS conversions, 370
IBM, 371
IEEE, 372
implicit data item conversion, 365
VAX/VMS, 374

FORMAT_TYPE_CHECKING environment
variable, 82

Formatted I/O and internal files, 242
Fortran

co-arrays, 323
I/O forms, 297
mapping I/O requests to system calls, 298

Fortran 2003 standard, 1
FORTRAN 77

compatibility, 7
FORTRAN 77 standard, 1
Fortran 90

compatibility, 6
Fortran 95 standard, 1
Fortran 95/2003 Explained, 8

404 S–3901–60

Index

Fortran 95/2003 for Scientists & Engineers, 8
Fortran lister, 3

See also lister
FORTRAN_MODULE_PATH environment

variable, 83
FREE directive, 92, 132
Free source form, 26, 80, 91
Free source form lines, 180
ftn, 3

command example, 4
command line and options, 15

ftn command, 225
.ftn suffix, 26
.FTN suffix, 26
ftnlx, 3, 64

interaction with the -r list_opt option, 64
FUSION directive, 137
Fusion, defined, 114

G
-G debug_lvl option, 27
-g option, 27
global I/O, 323
global layer, 305

defined, 299
specification, 323

Global variables, 173

H
-h ieee_nonstop, 29
-h keepfiles, 29
-h mpmd, 30
-h msp option, 31
-h nompmd, 30
HAND_TUNED directive, 100
Hollerith constant, 189
Hollerith constants, 235

I
-I incldir option, 31
I/O

editing, 201

formatted, 242
I/O processing

log file, 320
overriding defaults, 298
specifying I/O class, 296
unblocked data transfer, 304

I/O processing steps
specifying I/O class, 296

I/O specifiers, 225
IBM data conversion, 371
ibm layer

defined, 299
specification, 324

ID directive, 93, 137
IEEE conversion, 372
#if directive, 162
IF statement, 240
#ifdef directive, 163
#ifndef directive, 163
IGNORE_RANK directive, 92
IGNORE_TKR directive, 92, 139
implicit data item conversion, 365

supported conversions, 367
IMPLICIT NONE statement, 21
#include directive, 158
INCLUDE lines, 31
Indirect logical IF, 241
INLINE directive, 92, 122
INLINEALWAYS directive, 92, 122
INLINENEVER directive, 92, 122
Inlining

command line options, 44
directives, 121
main discussion, 44

Input
list directed, 200

inputfile.suffix option, 80
INQUIRE statement, 279
INT intrinsic

obsolete, 250
INTERCHANGE directive, 93, 125
Interface blocks, 204

S–3901–60 405

Cray® Fortran Reference Manual

International Organization for Standardization
(ISO), 1

Intrinsic
assignment, 196
operations, 193
operators, 192

Intrinsic procedures, 205, 219
ISO, 1
IVDEP directive, 93, 100

J
-J option, 32

L
-L ldir option, 32
-l libname option, 32
Language elements and source form, 179

lexical tokens
names, 179
operators, 179

layered I/O
bufa layer, 313
cache layer, 315
cachea layer, 316
cos layer, 318
data model, 312
defined, 295
event layer, 319
f77 layer, 321
fd layer, 323
global layer, 323
ibm layer, 324
implementation strategy, 312
mr layer, 327
null layer, 330
site layer, 334
site-specific layers, 334
supported operations, 313
syscall layer, 331
system layer, 332
text layer, 332
user layer, 334

user-defined layers, 334
vms layer, 334

ld, 80
Library

return status, 277
Library files, 32
libsci, 52
List file, 65
List-directed

input, 200
Lister, 3
Listing files, 64
Listing, producing, 64
LISTIO_PRECISION environment variable, 83
Loader, 80
ld, 3
preferred method for invoking, 3

LOG2_IMAGES, 219
Logical editing, 199
Loop collapse, defined, 51
Loop fusion, defined, 114
Loop optimization
FUSION, 137
LOOP_INFO, 108
NOFUSION, 137
NOUNROLL, 112
SAFE_ADDRESS, 105
SHORTLOOP, 107
SHORTLOOP128, 107
UNROLL, 112

LOOP_INFO directive, 108
.lst file, 65

See also list file

M
-m msg_lvl option, 33
-M msgs option, 34
Macros

predefined, 164
_ADDR64, 165
cray, CRAY, _CRAY, 164
_CRAYIEEE, 165

406 S–3901–60

Index

__crayx1, 164
__crayx1e, 164
__crayx2, 164
_MAXVL, 165
__UNICOSMP, 164
unix, 164
__unix, 164
__unix__, 164

man pages
asnctl(3f), 292
asnfile, 276
asnrm, 276
assign, 273, 276
assign(1), 269
assign(3f), 269
asunuit, 276
cp(1), 302
fdcp(1), 301
ffassign(3c), 271
ffassign(3f), 269
ffopen, 272
ffread(3c), 297
ffwrite(3c), 297
intro_ffio(1), 269

Maximum name length, 179
Memory allocation, 263
memory-resident files, 290
memory-resident layer, 327
Message Passing Interface (see also MPI), 211
Messages, 5
Messages, suppressing, 33–34
MODINLINE directive, 94, 123
Module file destination directory, 32
modulename.mod, 16
Modules, 13
MPI, 211, 226, 305, 323
MPMD, 30
mr layer, 305

defined, 299
example, 305
specification, 327

MSP mode, defined, 50

multiple end-of-file records in text files, 301
Multiple program, multiple data (MPMD), 30
Multiprocessing

work quantum, 170
Multiprocessing variables, 81
Multistreaming process (MSP) directives, 117
Multistreaming processor, 56

N
-N col option, 34
N$PES-1, 225
NAME directive, 92, 140
Name length, maximum, 179
named pipes

buffers, 377
creating, 377
defined, 377
detecting EOF, 380
differences from normal I/O, 377
example, 377
piped I/O example (no EOF detection), 378
restrictions, 377
specifying file structure for binary data, 378

Namelist processing, 201
Naming rules, 179
Nested loop termination, 241
NEXTSCALAR directive, 93, 101
NLSPATH environment variable, 84
NO_CACHE_ALLOC directive, 92
NOBLOCKING, 93
NOBLOCKING directive, 133
NOBOUNDS directive, 92, 130
NOCLONE directive, 92, 121
NOCOLLAPSE directive, 126
NOCSD directive, 152
NOFUSION directive, 137
NOINLINE directive, 92, 122
NOINTERCHANGE directive, 93, 125
NOMODINLINE directive, 94, 123
Nonstandard syntax, 6
NOPATTERN, 92
NOPATTERN directive, 102

S–3901–60 407

Cray® Fortran Reference Manual

NOSIDEEFFECTS directive, 92, 128
NOSTREAM directive, 92, 120
NOUNROLL directive, 93, 112
NOVECTOR directive, 92, 115
NPROC environment variable, 84
null layer

defined, 299
specification, 330

NUM_IMAGES, 219, 225
Numeric editing, 198

O
-O 0 option, 37
-O 1 option, 37
-O 2 option, 37
-O 3 option, 37
-O aggress option, 38
-O cachen, 38
-O ipa option, 44
-O ipafrom option, 44
-O modinline

option, 49
-O msgs option, 50
-O msp option, 50
-O negmsgs option, 51
-O noaggress option, 38
-O nointerchange option, 51
-O nomodinline

option, 49
-O nomsgs option, 50
-O nonegmsgs option, 51
-O nooverindex option, 51
-O nopattern option, 52
-O nozeroinc option, 59
-O opt [, opt] option, 95
-O opt [,opt] option, 35
-o out_file option, 60
-O overindex option, 51
-O pattern option, 52
-O scalar0 option, 53
-O scalar1 option, 53

-O scalar2 option, 53
-O scalar3 option, 53
-O shortcircuit option, 54
-O ssp option, 55
-O stream0 option, 56
-O stream1 option, 56
-O stream2 option, 56
-O stream3 option, 56
-O task0 option, 57
-O task1 option, 57
-O vector0 option, 59
-O vector1 option, 59
-O vector2 option, 59
-O vector3 option, 59
-O zeroinc option, 59
Obsolete features, 229
OPEN

statement, 197
OpenMP, 323

enabling compiler recognition of, 57
memory considerations, 85, 169

OpenMP Fortran API, 167
Operators, 179

intrinsic, 192
Optimization

messages, 51
options, 35
scalar, 53
streaming, 56
tasking, 57
vectorization, 59
with debugging, 27

optimizing
I/O performance, 303
text file I/O, 301
using the event layer to monitor I/O

activity, 319
ORDERED directive, 151
Outmoded features, 229
Output file, 15
Overindexing, 51

408 S–3901–60

Index

P
-p module_site option, 60
PARALLEL directive, 144
PARALLEL DO directive, 149
Parallelism

conditional, 171
pat(1), 3
PATTERN directive, 102
Pattern matching, 52
PAUSE statement, 237
Performance tool, 3
PERMUTATION directive, 93, 102
PIPELINE directive, 93, 115
Pointer arithmetic, 185
POINTER statement, 181
Pointers, 218
Predefined macros, 164
PREFERSTREAM directive, 93, 118
PREFERVECTOR directive, 93, 103
PREPROCESS directive, 141
Preprocessing

file extensions, 26
source preprocessing, 23, 25–26, 31, 76, 157

PROBABILITY directive, 104
Program units, 204

block data, 204

Q
-Q path, 64

R
-r list_opt option, 64
-R runchk option, 68
READ statement, 225
read-ahead
bufa layer, 313
cachea layer, 316
defined, 286

Record Control Word, 284
Recursion
STATIC attribute, 231

Redursive functions, 204

REM_IMAGES, 219
removing record blocking, 304
RESETINLINE directive, 122
Run-time checking, 68

S
-s byte_pointer, 71, 74
-s default32, 72
-s size option, 71
-S source_file option, 24, 75
-s word_pointer, 73–74
SAFE_ADDRESS directive, 105
SAFE_CONDITIONAL directive, 106
Scalar optimization, 53
Scalar optimization directives, 125
Scaling factor, 71, 73–74

See also Cray pointers and scaling factors
Shared memory (See also SHMEM), 210
Shell variables, 81
SHMEM, 210–211, 226, 305, 323
Short circuiting, 54
SHORTLOOP directive, 93, 107
Shortloop option, 22
SHORTLOOP128 directive, 93, 107
Single-program-multiple-data (also see

SPMD), 210
site layer

defined, 299
specification, 334

site-specific FFIO layers, 337
Slash data initialization, 233
Source files, Fortran, 26
Source form, 180
Source forms, 26, 80
Source preprocessing

See Preprocessing
Source Preprocessing, 157
Source preprocessing variable, defined, 159
SPMD, 210, 212
SSP mode

universal library, 50, 56
SSP mode for co-arrays, 225

S–3901–60 409

Cray® Fortran Reference Manual

SSP mode, defined, 55
SSP_PRIVATE directive, 92, 118
STACK directive, 92, 135
Standards, 1
Star values, 72
START_CRITICAL intrinsic function, 222
STATIC attribute and statement, 231
STOP statement, 196
Storage, 261
Storage directives, 132
STREAM directive, 92, 120
Streaming, 56
Strong reference, 142
supported implicit data conversions, 367
SUPPRESS directive, 93, 129
SYMMETRIC directive, 92
SYNC directive, 150
SYNC_ALL, 219
SYNC_ALL intrinsic function, 220
SYNC_MEMORY intrinsic function, 222
SYNC_TEAM intrinsic function, 221
Synchronization, 218
syscall layer

defined, 299, 304
specification, 331

system calls
in user-defined FFIO layers, 338

system layer
defined, 298, 300
implicit usage of, 332
specification, 332

SYSTEM_MODULE directive, 92

T
-T option, 75
Tasking, 57
text file structure

using BACKSPACE, 284
using BUFFER IN/OUT, 284

text layer
defined, 300
specification, 332

THIS_IMAGE, 219
TL descriptor, 248
TMPDIR environment variable, 84
Token

lexical, 179
TotalView, 3, 226
Trigger environment, 11
Triggers, 11
Two-branch arithmetic IF, 240
Type

alias, 187
Typeless constant, 189

U
-U identifier [,identifier] ... option, 76
unblocked data transfer

using I/O layers, 304
Unblocked file structure

specifications, 282
#undef directive, 161
Universal library for SSP and MSP mode, 50, 56
UNIX FFIO special files, 377
UNROLL directive, 93, 112
user layer

creating, 337
defined, 300
example, 341
specification, 334

user-defined FFIO layers
creating, 337
I/O status fields, 340
using system calls, 338

V
-v option, 76
-V option, 76
Variables
STATIC attribute and values, 231

Variables, environment, 81
VAX/VMS

explicit data item conversion, 365
record conversion, 374

410 S–3901–60

Index

transferring files, 364
VECTOR directive, 92, 115
Vector length, 44, 100–101
Vector pipelining, 115
Vectorization, 59
Vectorization directives, 96
Version, release, 76
VFUNCTION directive, 92, 116
vms layer

defined, 300
example, 300
specification, 334

W
WEAK directive, 92, 141
Word size scaling, 71, 74
word_pointer, 73–74

Work quantum, 170
WRITE statement, 225
write-behind
bufa layer, 313
cachea layer, 316
defined, 286

X
-x dirlist option, 77, 94
-X npes option, 78

Y
-Yphase,dirname, 79

Z
-Z option, 79

S–3901–60 411

	Cray® Fortran Reference Manual
	New Features
	Preface
	Accessing Product Documentation
	Conventions
	Reader Comments
	Cray User Group

	Introduction [1]
	1.1 X1-specific and X2-specific Content in this Document
	1.2 The Cray Fortran Programming Environment
	1.2.1 Cross-compiler Platforms

	1.3 Cray Fortran Compiler Messages
	1.4 Document-specific Conventions
	1.5 Fortran Standard Compatibility
	1.5.1 Fortran 95 Compatibility
	1.5.2 Fortran 90 Compatibility
	1.5.3 FORTRAN 77 Compatibility

	1.6 Related Cray Publications
	1.7 Related Fortran Publications

	Part I: Cray Fortran Commands and Directives
	The Trigger Environment (X1 Only) [2]
	2.1 Preparing the Trigger Environment
	2.2 Working in the Programming Environment

	Invoking the Cray Fortran Compiler [3]
	3.1 -A module_name [, module_name] ...
	3.2 -b bin_obj_file
	3.3 -c
	3.4 -C cifopts
	3.5 -d disable and -e enable
	3.6 -D identifier [= value]
	3.7 -f source_form
	3.8 -F
	3.9 -g
	3.10 -G debug_lvl
	3.11 -h arg
	3.11.1 -h command
	3.11.2 -h cpu= target_system
	3.11.3 -h gen_private_callee (X1 only)
	3.11.4 -h ieee_nonstop
	3.11.5 -h keepfiles
	3.11.6 -h mpmd, -h nompmd
	3.11.7 -h msp (X1 only)
	3.11.8 -h ssp (X1 only)

	3.12 -I incldir
	3.13 -J dir_name
	3.14 -l libname
	3.15 -L ldir
	3.16 -m msg_lvl
	3.17 -M msgs
	3.18 -N col
	3.19 -O opt [, opt] ...
	3.19.1 -O n
	3.19.2 -O aggress, -O noaggress
	3.19.3 -O cache n
	3.19.4 -O command
	3.19.5 -O fp n
	3.19.6 -O fusion n
	3.19.7 -Ogcp n
	3.19.8 -O gen_private_callee (X1 only)
	3.19.9 -O infinitevl, -O noinfinitevl
	3.19.10 -O ipa n and -O ipafrom = source [:source] ...
	3.19.10.1 Automatic Inlining
	3.19.10.2 Explicit Inlining
	3.19.10.3 Combined Inlining

	3.19.11 -O inlinelib
	3.19.12 -O modinline, -O nomodinline
	3.19.13 -O msgs, -O nomsgs
	3.19.14 -O msp (X1 only)
	3.19.15 -O negmsgs, -O nonegmsgs
	3.19.16 -O nointerchange
	3.19.17 -O overindex, -O nooverindex
	3.19.18 -O pattern, -O nopattern
	3.19.19 -O scalar n
	3.19.20 -O shortcircuit n
	3.19.21 -O ssp (X1 only)
	3.19.22 -O stream n (X1 only)
	3.19.23 -O task0, -O task1
	3.19.24 -O unroll n
	3.19.25 -O vector n
	3.19.26 -O zeroinc, -O nozeroinc
	3.19.27 -O -h profile_generate
	3.19.28 -O -h profile_data=pgo_opt

	3.20 -o out_file
	3.21 -p module_site
	3.22 -Q path
	3.23 -r list_opt
	3.24 -R runchk
	3.25 -s size
	3.25.1 Different Default Data Size Options on the Command Line
	3.25.2 Pointer Scaling Factor

	3.26 -S asm_file
	3.27 -T
	3.28 -U identifier [, identifier] ...
	3.29 -v
	3.30 -V
	3.31 -Wa" assembler_opt "
	3.32 -Wl" loader_opt "
	3.33 -Wr" lister_opt "
	3.34 -x dirlist
	3.35 -X npes
	3.36 -Y phase, dirname
	3.37 -Z
	3.38 --
	3.39 sourcefile [sourcefile . suffix ...]

	Environment Variables [4]
	4.1 Compiler and Library Environment Variables
	4.1.1 CRAY_FTN_OPTIONS Environment Variable
	4.1.2 CRAY_PE_TARGET Environment Variable
	4.1.3 FORMAT_TYPE_CHECKING Environment Variable
	4.1.4 FORTRAN_MODULE_PATH Environment Variable
	4.1.5 LISTIO_PRECISION Environment Variable
	4.1.6 NLSPATH Environment Variable
	4.1.7 NPROC Environment Variable
	4.1.8 TMPDIR Environment Variable
	4.1.9 ZERO_WIDTH_PRECISION Environment Variable

	4.2 OpenMP Environment Variable
	4.3 Run Time Environment Variables

	Cray Fortran Directives [5]
	5.1 Using Directives
	5.1.1 Directive Lines
	5.1.2 Range and Placement of Directives
	5.1.3 Interaction of Directives with the -x Command Line Option
	5.1.4 Command Line Options and Directives

	5.2 Vectorization Directives
	5.2.1 Use Cache-exclusive Instructions for Vector Loads: CACHE_E
	5.2.2 Use Cache-shared Instructions for Vector Loads: CACHE_SHAR
	5.2.3 Avoid Placing Object into Cache: NO_CACHE_ALLOC
	5.2.4 Copy Arrays to Temporary Storage: COPY_ASSUMED_SHAPE
	5.2.5 Limit Optimizations: HAND_TUNED
	5.2.6 Ignore Vector Dependencies: IVDEP
	5.2.7 Specify Scalar Processing: NEXTSCALAR
	5.2.8 Request Pattern Matching: PATTERN and NOPATTERN
	5.2.9 Declare an Array with No Repeated Values: PERMUTATION
	5.2.10 Designate Loop Nest for Vectorization: PREFERVECTOR
	5.2.11 Conditional Density: PROBABILITY
	5.2.12 Allow Speculative Execution of Memory References Within L
	5.2.13 Allow Speculative Execution of Memory References and Arit
	5.2.14 Designate Loops with Low Trip Counts: SHORTLOOP, SHORTLOO
	5.2.15 Provide More Information for Loops: LOOP_INFO
	5.2.16 Unroll Loops: UNROLL and NOUNROLL
	5.2.17 Enable and Disable Vectorization: VECTOR and NOVECTOR
	5.2.18 Enable or Disable, Temporarily, Soft Vector-pipelining: P
	5.2.19 Specify a Vectorizable Function: VFUNCTION

	5.3 Multistreaming Processor (MSP) Directives (X1 only)
	5.3.1 Specify Loop to be Optimized for MSP: PREFERSTREAM
	5.3.2 Optimize Loops Containing Procedural Calls: SSP_PRIVATE
	5.3.3 Enable MSP Optimization: STREAM and NOSTREAM

	5.4 Inlining Directives
	5.4.1 Disable or Enable Cloning for a Block of Code: CLONE and N
	5.4.2 Disable or Enable Inlining for a Block of Code: INLINE, NO
	5.4.3 Specify Inlining for a Procedure: INLINEALWAYS and INLINEN
	5.4.4 Create Inlinable Templates for Module Procedures: MODINLIN

	5.5 Scalar Optimization Directives
	5.5.1 Control Loop Interchange: INTERCHANGE and NOINTERCHANGE
	5.5.2 Control Loop Collapse: COLLAPSE and NOCOLLAPSE
	5.5.3 Determine Register Storage: NOSIDEEFFECTS
	5.5.4 Suppress Scalar Optimization: SUPPRESS

	5.6 Local Use of Compiler Features
	5.6.1 Check Array Bounds: BOUNDS and NOBOUNDS
	5.6.2 Specify Source Form: FREE and FIXED

	5.7 Storage Directives
	5.7.1 Permit Cache Blocking: BLOCKABLE Directive
	5.7.2 Declare Cache Blocking: BLOCKINGSIZE and NOBLOCKING Direct
	5.7.3 Request Stack Storage: STACK

	5.8 Miscellaneous Directives
	5.8.1 Specify Array Dependencies: CONCURRENT
	5.8.2 Fuse Loops: FUSION and NOFUSION
	5.8.3 Create Identification String: ID
	5.8.4 Disregard Dummy Argument Type, Kind, and Rank: IGNORE_TKR
	5.8.5 External Name Mapping: NAME
	5.8.6 Preprocess Include File: PREPROCESS
	5.8.7 Specify Weak Procedure Reference: WEAK

	Cray Streaming Directives (CSDs) (X1 only) [6]
	6.1 CSD Parallel Regions
	6.2 Start and End Multistreaming: PARALLEL and END PARALLEL
	6.3 Do Loops: DO and END DO
	6.4 Parallel Do Loops: PARALLEL DO and END PARALLEL DO
	6.5 Synchronize SSPs: SYNC
	6.6 Specify Critical Regions: CRITICAL and END CRITICAL
	6.7 Define Order of SSP Execution: ORDERED and END ORDERED
	6.8 Suppress CSDs: [NO] CSD
	6.9 Nested CSDs within Cray Parallel Programming Models
	6.10 CSD Placement
	6.11 Protection of Shared Data
	6.12 Dynamic Memory Allocation for CSD Parallel Regions
	6.13 Compiler Options Affecting CSDs

	Source Preprocessing [7]
	7.1 General Rules
	7.2 Directives
	7.2.1 #include Directive
	7.2.2 #define Directive
	7.2.3 #undef Directive
	7.2.4 # (Null) Directive
	7.2.5 Conditional Directives
	7.2.5.1 #if Directive
	7.2.5.2 #ifdef Directive
	7.2.5.3 #ifndef Directive
	7.2.5.4 #elif Directive
	7.2.5.5 #else Directive
	7.2.5.6 #endif Directive

	7.3 Predefined Macros
	7.4 Command Line Options

	OpenMP Fortran API [8]
	8.1 Cray Implementation Differences
	8.2 OMP_THREAD_STACK_SIZE Environment Variable
	8.3 OpenMP Optimizations
	8.4 Compiler Options that Affect OpenMP
	8.5 OpenMP Program Execution

	Cray Fortran Defined Externals [9]
	9.1 Conformance Checks

	Part II: Cray Fortran and Fortran 2003 Differences
	Cray Fortran Language Extensions [10]
	10.1 Characters, Lexical Tokens, and Source Form
	10.1.1 Low-level Syntax
	10.1.1.1 Characters Allowed in Names
	10.1.1.2 Switching Source Forms
	10.1.1.3 Continuation Line Limit
	10.1.1.4 D Lines in Fixed Source Form

	10.2 Types
	10.2.1 The Concept of Type
	10.2.1.1 Alternate Form of LOGICAL Constants
	10.2.1.2 Cray Pointer Type
	10.2.1.3 Cray Character Pointer Type
	10.2.1.4 Boolean Type
	10.2.1.5 Alternate Form of ENUM Statement
	10.2.1.6 TYPEALIAS Statement

	10.3 Data Object Declarations and Specifications
	10.3.1 Attribute Specification Statements
	10.3.1.1 BOZ Constants in DATA Statements
	10.3.1.2 Attribute Respecification
	10.3.1.3 AUTOMATIC Attribute and Statement

	10.3.2 IMPLICIT Statement
	10.3.2.1 IMPLICIT Extensions

	10.3.3 Storage Association of Data Objects
	10.3.3.1 EQUIVALENCE Statement Extensions
	10.3.3.2 COMMON Statement Extensions

	10.4 Expressions and Assignment
	10.4.1 Expressions
	10.4.1.1 Rules for Forming Expressions
	10.4.1.2 Intrinsic and Defined Operations
	10.4.1.3 Intrinsic Operations
	10.4.1.4 Bitwise Logical Expressions

	10.4.2 Assignment
	10.4.2.1 Assignment

	10.5 Execution Control
	10.5.1 STOP Code Extension

	10.6 Input/Output Statements
	10.6.1 File Connection
	10.6.1.1 OPEN Statement

	10.7 Error, End-of-record, and End-of-file Conditions
	10.7.1 End-of-file Condition and the END-specifier
	10.7.1.1 Multiple End-of-file Records

	10.8 Input/Output Editing
	10.8.1 Data Edit Descriptors
	10.8.1.1 Integer Editing
	10.8.1.2 Real Editing
	10.8.1.3 Logical Editing
	10.8.1.4 Character Editing

	10.8.2 Control Edit Descriptors
	10.8.2.1 Q Editing

	10.8.3 List-directed Formatting
	10.8.3.1 List-directed Input

	10.8.4 Namelist Formatting
	10.8.4.1 Namelist Extensions

	10.8.5 I/O Editing

	10.9 Program Units
	10.9.1 Main Program
	10.9.1.1 Program Statement Extension

	10.9.2 Block Data Program Units
	10.9.2.1 Block Data Program Unit Extension

	10.10 Procedures
	10.10.1 Procedure Interface
	10.10.1.1 Interface Duplication

	10.10.2 Procedure Definition
	10.10.2.1 Recursive Function Extension
	10.10.2.2 Empty CONTAINS Sections

	10.11 Intrinsic Procedures and Modules
	10.11.1 Standard Generic Intrinsic Procedures
	10.11.1.1 Intrinsic Procedures

	10.12 Exceptions and IEEE Arithmetic
	10.12.1 The Exceptions
	10.12.1.1 IEEE Intrinsic Module Extensions

	10.13 Interoperability With C
	10.13.1 Interoperability Between Fortran and C Entities
	10.13.1.1 BIND(C) Syntax

	10.14 Co-arrays
	10.14.1 Execution Model and Images
	10.14.2 Specifying Co-arrays
	10.14.3 Referencing Co-arrays
	10.14.4 Initializing Co-arrays
	10.14.5 Using Co-arrays with Procedure Calls
	10.14.6 Specifying Co-arrays in COMMON and EQUIVALENCE Statement
	10.14.7 Allocatable Co-arrays
	10.14.8 Pointer Components in Derived Type Co-arrays
	10.14.9 Allocatable Components in Derived Type Co-arrays
	10.14.10 Intrinsic Procedures
	10.14.11 Program Synchronization
	10.14.11.1 SYNC_ALL
	10.14.11.2 SYNC_TEAM
	10.14.11.3 SYNC_MEMORY
	10.14.11.4 START_CRITICAL and END_CRITICAL
	10.14.11.5 SYNC_FILE

	10.14.12 I/O with Co-arrays

	10.15 Compiling and Executing Programs Containing Co-arrays
	10.15.1 ftn and aprun Options Affecting Co-arrays
	10.15.2 Using the CrayTools Tool Set with Co-array Programs
	10.15.2.1 Debugging Programs Containing Co-arrays (Deferred impl
	10.15.2.2 Analyzing Co-array Program Performance

	10.15.3 Interoperating with Other Message Passing and Data Passi
	10.15.4 Optimizing Programs with Co-arrays

	Obsolete Features [11]
	11.1 IMPLICIT UNDEFINED
	11.2 Type statement with *n
	11.3 BYTE Data Type
	11.4 DOUBLE COMPLEX Statement
	11.5 STATIC Attribute and Statement
	11.6 Slash Data Initialization
	11.7 DATA Statement Features
	11.8 Hollerith Data
	11.8.1 Hollerith Constants
	11.8.2 Hollerith Values
	11.8.3 Hollerith Relational Expressions

	11.9 PAUSE Statement
	11.10 ASSIGN, Assigned GO TO Statements, and Assigned Format Spe
	11.10.1 Form of the ASSIGN and Assigned GO TO Statements
	11.10.2 Assigned Format Specifiers

	11.11 Two-branch IF Statements
	11.11.1 Two-branch Arithmetic IF
	11.11.2 Indirect Logical IF

	11.12 Real and Double Precision DO Variables
	11.13 Nested Loop Termination
	11.14 Branching into a Block
	11.15 ENCODE and DECODE Statements
	11.15.1 ENCODE Statement
	11.15.2 DECODE Statement

	11.16 BUFFER IN and BUFFER OUT Statements
	11.17 Asterisk Delimiters
	11.18 Negative-valued X Descriptor
	11.19 A and R Descriptors for Noncharacter Types
	11.20 H Edit Descriptor
	11.21 Obsolete Intrinsic Procedures

	Cray Fortran Deferred Implementation and Optional Features [12]
	12.1 ISO_10646 Character Set
	12.2 Finalizers
	12.3 Restrictions on Unlimited Polymorphic Variables
	12.4 Enhanced Expressions in Initializations and Specifications
	12.5 User-defined, Derived Type I/O
	12.6 ENCODING= in I/O Statements
	12.7 Allocatable Assignment (Optionally Enabled)

	Cray Fortran Implementation Specifics [13]
	13.1 Companion Processor
	13.2 INCLUDE Line
	13.3 INTEGER Kinds and Values
	13.4 REAL Kinds and Values
	13.5 DOUBLE PRECISION Kinds and Values
	13.6 LOGICAL Kinds and Values
	13.7 CHARACTER Kinds and Values
	13.8 Cray Pointers
	13.9 ENUM Kind
	13.10 Storage Issues
	13.10.1 Storage Units and Sequences
	13.10.2 Static and Stack Storage
	13.10.3 Dynamic Memory Allocation

	13.11 Finalization
	13.12 ALLOCATE Error Status
	13.13 DEALLOCATE Error Status
	13.14 ALLOCATABLE Module Variable Status
	13.15 Kind of a Logical Expression
	13.16 STOP Code Availability
	13.17 Stream File Record Structure and Position
	13.18 File Unit Numbers
	13.19 OPEN Specifiers
	13.20 FLUSH Statement
	13.21 Asynchronous I/O
	13.22 REAL I/O of an IEEE NaN
	13.22.1 Input of an IEEE NaN
	13.22.2 Output of an IEEE NaN

	13.23 List-directed and NAMELIST Output Default Formats
	13.24 Random Number Generator
	13.25 Timing Intrinsics
	13.26 IEEE Intrinsic Modules

	Part III: Cray Fortran Application Programmer's I/O Reference
	Using the Assign Environment [14]
	14.1 assign Basics
	14.1.1 Assign Objects and Open Processing
	14.1.2 The assign Command
	14.1.3 Assign Library Routines

	14.2 assign and Fortran I/O
	14.2.1 Alternative File Names
	14.2.2 File Structure Selection
	14.2.2.1 Unblocked File Structure
	14.2.2.2 assign -s sbin File Processing (not recommended)
	14.2.2.3 assign -s bin File Processing
	14.2.2.4 assign -s u File Processing
	14.2.2.5 text File Structure
	14.2.2.6 cos or blocked File Structure

	14.2.3 Buffer Specifications
	14.2.3.1 Default Buffer Sizes
	14.2.3.2 Library Buffering
	14.2.3.3 System Cache
	14.2.3.4 Unbuffered I/O

	14.2.4 Foreign File Format Specification
	14.2.5 Memory Resident Files
	14.2.6 Fortran File Truncation

	14.3 The Assign Environment File
	14.4 Local Assign Mode

	Using FFIO [15]
	15.1 Introduction to FFIO
	15.2 Using Layered I/O
	15.2.1 I/O Layers
	15.2.2 Layered I/O Options

	15.3 FFIO and Common Formats
	15.3.1 Reading and Writing Text Files
	15.3.2 Reading and Writing Unblocked Files
	15.3.3 Reading and Writing Fixed-length Records
	15.3.4 Reading and Writing Blocked Files

	15.4 Enhancing Performance
	15.4.1 Buffer Size Considerations
	15.4.2 Removing Blocking
	15.4.2.1 The syscall Layer
	15.4.2.2 The bufa and cachea Layers
	15.4.2.3 The mr Layer
	15.4.2.4 The global Layer (Deferred Implementation)
	15.4.2.5 The cache Layer

	15.5 Sample Programs

	FFIO Layer Reference [16]
	16.1 Characteristics of Layers
	16.2 The bufa Layer
	16.3 The cache Layer
	16.4 The cachea Layer
	16.5 The cos Blocked Layer
	16.6 The event Layer
	16.7 The f77 Layer
	16.8 The fd Layer
	16.9 The global Layer (Deferred Implementation)
	16.10 The ibm Layer
	16.11 The mr Layer
	16.12 The null Layer
	16.13 The syscall Layer
	16.14 The system Layer
	16.15 The text Layer
	16.16 The user and site Layers
	16.17 The vms Layer

	Creating a user Layer [17]
	17.1 Internal Functions
	17.1.1 The Operations Structure
	17.1.2 FFIO and the stat Structure

	17.2 user Layer Example

	Numeric File Conversion Routines [18]
	18.1 Conversion Overview
	18.2 Transferring Data
	18.2.1 Using fdcp to Transfer Files
	18.2.2 Using ftp to Move Data between Systems

	18.3 Data Item Conversion
	18.3.1 Explicit Data Item Conversion
	18.3.2 Implicit Data Item Conversion
	18.3.3 Choosing a Conversion Method
	18.3.3.1 Explicit Conversion
	18.3.3.2 Implicit Conversion

	18.3.4 Disabling Conversion Types

	18.4 Foreign Conversion Techniques
	18.4.1 UNICOS/mp and UNICOS/lc Conversions
	18.4.2 IBM Overview
	18.4.3 IEEE Conversion
	18.4.4 VAX/VMS Conversion

	Named Pipe Support [19]
	19.1 Piped I/O Example without End-of-file Detection
	19.2 Detecting End-of-file on a Named Pipe
	19.3 Piped I/O Example with End-of-file Detection

	Glossary
	Index
	List of Tables
	Table 1. Compiling Options
	Table 2. Floating-point Optimization Levels
	Table 3. Automatic Inlining Specifications
	Table 4. File Types
	Table 5. Scaling Factor in Pointer Arithmetic
	Table 6. -Y phase Definitions
	Table 7. Directives
	Table 8. Explanation of Ignored TKRs
	Table 9. Compiler-calculated Chunk Size
	Table 10. Operand Types and Results for Intrinsic Operations
	Table 11. Cray Fortran Intrinsic Bitwise Operators and the Allow
	Table 12. Data Types in Bitwise Logical Operations
	Table 13. Values for Keyword Specifier Variables in an OPEN Stat
	Table 14. Default Fractional and Exponent Digits
	Table 15. Summary of Control Edit Descriptors
	Table 16. Summary of Data Edit Descriptors
	Table 17. Default Compatibility Between I/O List Data Types and
	Table 18. RELAXED Compatibility Between Data Types and Data Edit
	Table 19. STRICT77 Compatibility Between Data Types and Data Edi
	Table 20. STRICT90 and STRICT95 Compatibility Between Data Types
	Table 21. Cray Fortran IEEE Intrinsic Module Extensions
	Table 22. Obsolete Features and Preferred Alternatives
	Table 23. Summary of String Edit Descriptors
	Table 24. Obsolete Procedures and Alternatives
	Table 25. Fortran access methods and options
	Table 26. Default Buffer Sizes for Fortran I/O Library Routines
	Table 27. FFIO Layers
	Table 28. Data Manipulation: bufa Layer
	Table 29. Supported Operations: bufa Layer
	Table 30. Data Manipulation: cache Layer
	Table 31. Supported Operations: cache Layer
	Table 32. Data Manipulation: cachea Layer
	Table 33. Supported Operations: cachea Layer
	Table 34. Data Manipulation: cos Layer
	Table 35. Supported Operations: cos Layer
	Table 36. Data Manipulation: f77 Layer
	Table 37. Supported Operations: f77 Layer
	Table 38. Data Manipulation: global Layer
	Table 39. Supported Operations: global Layer
	Table 40. Values for Maximum Record Size on ibm Layer
	Table 41. Values for Maximum Block Size in ibm Layer
	Table 42. Data Manipulation: ibm Layer
	Table 43. Supported Operations: ibm Layer
	Table 44. Data Manipulation: mr Layer
	Table 45. Supported Operations: mr Layer
	Table 46. Data Manipulation: syscall Layer
	Table 47. Supported Operations: syscall Layer
	Table 48. Data Manipulation: text Layer
	Table 49. Supported Operations: text Layer
	Table 50. Values for Record Size: vms Layer
	Table 51. Values for Maximum Block Size: vms Layer
	Table 52. Data Manipulation: vms Layer
	Table 53. Supported Operations: vms Layer
	Table 54. C Program Entry Points
	Table 55. Explicit Data Conversion Routines
	Table 56. Implicit Data Conversion Types

	List of Examples
	Example 1: Unrolling outer loops
	Example 2: Illegal unrolling of outer loops
	Example 3: Unrolling nearest neighbor pattern
	Example 4: Using START CRITICAL and END CRITICAL
	Example 5: Local assign mode
	Example 6: Unformatted direct mr with unblocked file
	Example 7: Unformatted sequential mr with blocked file
	Example 8: No EOF Detection: program writerd
	Example 9: No EOF Detection: program readwt
	Example 10: EOF Detection: program writerd
	Example 11: EOF Detection: program readwt

