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Abstract

In this paper, we describe how to write efficient, parallel codes for the Cray XMT
system, a massively multithreaded, shared memory computer. To achieve good
performance on Cray XMT systems, programs must exploit not only coarse-grained
parallelism at the algorithmic level, but also fine-grained parallelism at the loop
level. While the Cray XMT compiler is capable of performing the loop-level
optimizations required to expose fine-grained parallelism, it can often do a better
job when additional information is provided by the programmer via pragmas and
language constructs. These hints enable the compiler to perform sophisticated
transformations that ultimately result in highly parallel codes. The Canal tool, part of
the Cray Apprentice2 performance tool suite, can be used to guide the programmer
through the process of tuning a program. When properly optimized, programs written
for Cray XMT systems can achieve significant speed up on problems that have never
been shown to attain speed up on conventional multiprocessor systems.
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Introduction

The Cray XMT system is a massively multithreaded shared memory system purpose-built for parallel
applications that require a large shared address space. Examples of such applications include graph
analysis, database queries, and other problems where partitioning the data precludes any potential gain
from adding more processors. Such applications do not typically run well on conventional distributed
memory systems due to the irregular nature of memory access patterns. The Cray XMT architecture
enables many threads to be running concurrently (up to 128 per processor) so that the memory accesses
from individual threads can be overlapped with those of other threads, effectively hiding some or all of
the actual memory latency.

Programs that exploit both coarse- and fine-grained parallelism are able to take advantage of this latency
hiding capability and perform well on Cray XMT systems. Such programs draw on parallelism at the
algorithmic level as well as at the loop and instruction level.

Programmers are typically better at identifying high-level parallelism at the algorithmic level. Such
parallelism requires an insider’s understanding of the problem space and objectives. In contrast,
compilers are typically better at performing lower level optimizations such as loop parallelization.
Often this requires the compiler to perform other transformations such as loop collapse and scalar
expansion. Unfortunately, for languages like C, which were not originally intended to be parallel,
compilers have a difficult time making the conclusions required to perform such transformations and
efficiently parallelize programmer written loops. At the same time, programmers have a difficult time
understanding what exactly the compiler needs to know in order to best optimize a loop. For the most
effective optimization, both the programmer and the compiler must work together to create an optimized
program that runs well on Cray XMT hardware.

Overview of the Cray XMT System

A Cray XMT system is a distributed, global shared memory machine built to leverage Cray’s MPP
system design. A Cray XMT system includes a compute partition consisting of Cray Threadstorm
processors, and a service partition comprising AMD Opteron™ processors that can be configured for
I/O, login, or system functions. The network topology architecturally resembles a torus, similar to
the Cray MPP systems. Both of the two partitions are made up of blades that hold four processors
each. The processors on the blades are identical and may be either Cray Threadstorm processors or
AMD Opteron processors. The compute partition runs the Cray MTK operating system—a single
system image operating system based on BSD. The processors on the service partition use the
Cray Linux Environment (CLE).

A single Cray Threadstorm processor has 128 hardware contexts (streams) and a 64 KB, four-way
associative instruction cache shared by all the streams. Each stream consists of 32 general purpose
registers, eight target registers, and a status word that includes the PC. The processor will issue an
instruction on every cycle in round-robin fashion to the streams that are ready to execute an instruction.
If no stream is ready to execute an instruction, the processor will stall. A single instruction word can
encode up to three operations: one memory operation, one arithmetic operation, and one control flow
operation.

S–2487–14 4



Optimizing Loop-Level Parallelism in Cray XMT™ Applications

The memory system is a global shared memory address space accessible by all Cray Threadstorm
processors in the compute partition. Each processor can have up to 8 GB of memory associated with it,
all of which is accessible by every other processor in the system. Each eight-byte word of memory has
two additional bits associated with it. One of the two additional bits is called the full-empty bit, used to
associate memory location state with the eight-byte word. A memory location state is considered full if
the bit is set to one, empty if set to zero. The other bit is used by the runtime libraries to service and
implement user traps, some of which are associated with the full-empty bit.

For more details on the Cray XMT architecture, see Proceedings of the 2nd Conference on Computing
Frontiers (May 2005): 28–34.

The Cray XMT Programming Environment and Tools

The Cray XMT Programming Environment includes a C and C++ compiler, a standard runtime library
including support for multithreaded execution, a multithreaded debugger (mdb), the Cray Apprentice2
tool kit, and several auxiliary libraries such as a parallel random number generator libprand, RPC
library libluc, and memory snapshot/restore facilities libsnapshot. For the purposes of this
paper, we will focus on the compiler and the Canal report of the Cray Apprentice2 suite.

The Cray XMT compiler supports C and C++ codes with extensions for parallelization and
multithreaded execution. These XMT extensions include language extensions and compiler directives.
In addition, the compiler can detect loop-level parallelism for multithreaded execution.

Language Extensions

The Cray XMT compiler recognizes two type qualifiers, sync and future, that are used to indicate that
the full-empty bits should be used whenever the variable is accessed.

For sync qualified variables, a use, or load, of the variable can only proceed if the variable’s state is
full; upon completion of the use, its state is set to empty. An assignment, or store, to a sync variable can
only proceed if the variable’s state is empty; upon completion of the assignment, its state is set to full.
Loads and stores that are issued when the variable is not in the required state will be blocked until the
variable’s state changes. State changes occur atomically with the operation.

Future variables are similar to sync variables, except that a load will only proceed if the state is full (and
leaves the state full) and a store will also only proceed if the state is full (and leaves the state full).
Future variables are typically used with future statements. Future statements define a block of work,
referred to as a future, that is to be executed by some thread. A future variable can be associated with
a future statement to guarantee that the future has been executed. Upon completion of the future, the
future variable associated with the future statement is set to full. Any uses of the future variable will
be blocked until the future has been executed. Future statements describe what we refer to as explicit
parallelism, because the parallelism is made explicitly by the programmer.
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Loop-level Parallelism and Canal

In addition to future statements, the Cray XMT compiler supports implicit parallelism in the form of
compiler-generated loop-level parallelism, the focus of this paper. If the compiler can determine that a
loop can be safely executed in parallel, it will generate loop parallelism by distributing the iterations of a
loop across multiple software threads. The runtime library assigns these threads to hardware streams,
which then execute them in parallel. The compiler also inserts calls to create (fork) and terminate
(join) threads.

The results of loop parallelization and other transformations can be seen in Canal. The Canal report
has two parts: an annotated view of the compiled source code, and a report containing additional
information about loops in the code. The annotated source view contains annotations for each loop in a
users code, as well as a selection of messages about the transformations that were applied to the code.
For example, the following snippet tells us that two nested loops were parallelized, and that reduction
and a manhattan loop collapse, designated by the m, were used.

| for (int i=0; i<sz; i++) {
| int begin = index[i];
| int end = index [i+1];
| for (int j = begin; j<end; j++)

7 PP:m$ | m[i]+=int_fetch_add(&a[j],1);
** reduction moved out of 1 loop

| }

See Compiler Transformations for a discussion of the above transformations in more detail.

The other piece of the Canal report is the additional loop information section. This section contains
details about loops, such as scheduling information and instruction counts. Below is an example of
the additional loop information presented in the Canal report. In this example, we see that Loops 38
and 39 are two stages of a recurrence computation (Linear Recurrences), and both are part of parallel
region 37 (see Parallel Regions). This example also shows information about instruction counts and
requested streams.

Parallel region 37 in main
Multiple processor implementation

Requesting at least 60 streams

Loop 38 in main at line 107 in region 37
Stage 1 of recurrence
Loop summary: 1 memory operations, 0 floating point operations

2 instructions, needs 45 streams for full utilization
pipelined

Loop 39 in main at line 107 in region 37
Stage 2 of recurrence
Loop summary: 4 memory operations, 0 floating point operations

4 instructions, needs 45 streams for full utilization
pipelined

Throughout the remainder of this paper, as we describe various optimizations, transformations, and
conditions for parallelization, we will show how they can be viewed in the Canal report.
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Identifying Parallelism

The Cray XMT compiler attempts to parallelize user codes where ever it is deemed safe and potentially
profitable. Automatic dependence analysis is used to identify loops that have independent iterations. If a
loop’s iterations are independent, they can safely execute in parallel. Users can insert pragmas to aid
dependence analysis in the presence of aliasing. Loop transformations are also automatically applied
to remove unnecessary dependencies.

In this section, we describe how the compiler identifies loops that are safe to parallelize. We start by
discussing the conditions the compiler looks for to establish whether it is safe to parallelize a loop. We
then discuss the transformations that the compiler uses to remove unnecessary dependencies. Finally,
we talk about how user inserted pragmas can assist the compiler with this process.

Conditions for Safe Parallelization

Fundamentally, the Cray XMT compiler has two requirements in order to safely parallelize a loop.
First, it must be able to prove that the loop’s iterations can be safely executed in parallel. Second, the
compiler must be able to determine how to schedule the iterations prior to entering the loop. These
requirements result in four conditions that the compiler looks for to determine whether a loop can
be parallelized:

1. The number of loop iterations can be determined prior to the execution of the loop.

2. The loop does not contain any early exits, such as return or break statements.

3. There are no data dependencies between iterations of the loop.

4. The loop does not cause any observable side effects, such as I/O.

Condition 1 relates to the requirement that the compiler be able to figure out how to schedule the loop’s
iterations. Unless the compiler knows how many iterations will execute, it cannot schedule them;
otherwise, it may schedule iteration N + 1 of a loop that should only iterate N times. For example, the
compiler will not parallelize the following loop:

for(int i=0; i < num_its; i++) {
foo[i] = 2 * i;
num_its -= bar[i];

}

The loop will not be parallelized because the line which decrements num_its changes the loop upper
bound during the loop's execution, making it impossible to determine the number of iterations prior to
entering the loop. This is revealed in the following Canal report.

1 X | for(int i=0; i < num_its; i++) {
1 X | foo[i] = 2 * i;
1 X | num_its -= bar[i];

| }

The X annotation indicates that the loop was not parallelized due to structural problems. In this case, the
compiler is not able to compute the number of iterations.
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Condition 2 also relates to the scheduling requirement. An early exit from the loop bypasses iterations
that would otherwise have executed according to the compiler's calculation of the iteration count. For
example, the compiler can parallelize the following loop.

for (int i = 0; i < n; i++)
my_array[i] = sqrt(i);

The compiler can determine that the loop will iterate n times.

However, the compiler cannot parallelize the following loop.

for (int i = 0; i < n; i++) {
my_array[i] = sqrt(i);
if (rare()) break;

}

If rare() is true for an iteration, the later iterations should not execute. If the loop is parallelized,
though, some of these iterations may execute prior to or in parallel with the iteration where rare()
is true.

The Canal report for the following loop shows us that the multiple exits prevented parallelization.

1 X | for (int i = 0; i < n; i++) {
** loop exit
** multiple exits

1 X | my_array[i] = sqrt(1);
1 X | if (rare)) break;

| }

Condition 3 means that the results of one iteration of the loop will not affect any of the other iterations.
If this were not true, the reordering and interleaving of iterations that occurs when a loop is parallelized
could result in incorrect behavior. Condition 3 can be illustrated by the following routine.

void foo(int *a, int *b, int n) {
for (int i = 0; i < n; i++)

a[i] = b[i];
}

If this routine is called with parameters a and b pointing to overlapping memory, there will be a data
dependence between iterations.

For example, if we make the call foo(&bar[0], &bar[1], 100);, the i=1 iteration of the loop
will write to the memory location bar[1], which is also read by the i=0 iteration. If this loop is not
parallelized, the i=0 iteration will complete before i=1 iteration begins and the memory at bar[0]
will get set to the original value of bar[1]. If, however, this loop were parallelized, the i=1 iteration
might occur before the i=0 iteration. The memory at bar[0] would then end up with whatever value
was written to bar[1] in the i=1 iteration. Because of this data dependence, the compiler will not
parallelize the loop. This is shown in the Canal report below.

| void foo(int *a, int *b, int n) {
| for (int i = 0; i < n; i++)

1 S | a[i] = b[i];
| }
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The S annotation indicates that the compiler did not parallelize the loop due to a data dependence
associated with the source line where the S appears. If we know that a and b will never refer to
overlapping memory we can get this loop to parallelize with the noalias pragma or the restrict type
qualifier, as detailed in the Pragmas section.

The fourth condition simply ensures that any observable side effects will not occur out of order, as
demonstrated by the following example.

for(int i = 0; i < 1000; i++)
printf{"Number %d\n", i);

This loop should count up from 0 to 999. However, if it is parallelized, the output may appear out of
order. For this reason, the compiler will avoid parallelizing loops with function calls that may generate
side effects. The Canal report indicates this with the function with unknown effects message as seen
below.

| for(int i = 0; i < 1000; i++)
1 S | printf("Number %d\n", i);

**function with unknown side effects:printf
| }

If reordering of side effects is not a concern, then pragmas may be used to parallelize the above loop,
as is further explained in the Pragmas section.

Compiler Transformations

In Conditions for Safe Parallelization, we described the conditions that are necessary for the Cray XMT
compiler to parallelize a loop. However, many loops that may not appear to meet these conditions, can
be transformed into equivalent loops that are able to be parallelized. As a simple example, loops that
contain function calls with unknown side effects can sometimes be parallelized if the compiler inlines
the call. The compiler aggressively seeks to identify and transform loops that would benefit from these
optimizations.

In this section, we describe some of the most commonly applied automatic loop transforms used by
the compiler, and show examples of loops that benefit. In particular, we discuss scalar expansion,
reductions, linear recurrences, and various flavors of loop collapse.

Scalar Expansion

Scalar expansion is a commonly used loop transformation that eliminates data dependencies due to
unnecessary sharing of scalar variables. For example, consider the following loop:

for (i = 0; i < n; ++i) {
t = sqrt(b[i]);
...
a[i] = t + 5;

}

In this loop, every iteration will be writing to, and reading from, the same integer variable t. This
creates a data dependence because each iteration must read the value it wrote to t before another
iteration comes along and overwrites t.
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However, the compiler is able to recognize that each iteration only needs the value that it wrote to
t, and does not care about the values written by other iterations. Thus, the scalar integer t can be
converted into an array of integers t[n], and each iteration can be rewritten to use a separate element
of the array. The compiler will use this knowledge to automatically transform the above code into the
following equivalent, but dependence-free, version:

for (i = 0; i < n; ++i) {
t[i] = sqrt(b[i]);
...
a[i] = t[i] + 5;

}

The compiler then successfully parallelizes the loop, as seen in the Canal report:

| for (i = 0; i < n; ++i) {
5 P:e | t = sqrt(b[i + 1]);

...
5 P | a[i] = t + 5;

| }

The P annotation indicates that the loop was parallelized, and e indicates that the compiler
automatically applied scalar expansion.

Reductions

Reduction is a loop transformation used to parallelize loops containing associative updates of scalar
variables. The Cray XMT compiler supports sum, product, minimum, and maximum reductions. For
example, consider the following loop:

for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {

sum = sum +
array[i*m + j];

if (array[i*m + j] < min)
min = array[i*m + j];

}
}

This loop contains a dependence on the variable sum (and min as well), because interleaving of the
reads and writes to sum from different iterations could result in incorrect computation of the final
value. This can be solved by making the read and write behave as a single atomic memory operation
(AMO), using either the Cray XMT system’s int_fetch_add operation or its full/empty bits. This
would allow the loop to be parallelized, but has the potential to cause hotspotting—a degradation of
network performance due to saturation of network links. The AMO solution causes every thread to send
memory references to the same memory address inside a tight loop, which can create hotspotting on the
links leading to the node containing that address.

To avoid the potential hotspotting inherent in the AMO solution, the compiler instead converts loops
containing associative updates into reductions. Each thread computes the operation over a subset of the
input data and saves the value in a private variable. The threads then combine their results, taking
advantage of the associative nature of the operation, in a tree like fashion to obtain the final result.
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The Canal report displays reductions:

| for (int i = 0; i < n; i++) {
| for (int j = 0; j < m; j++) {

36 PP:$ | sum = sum + array[i*m + j];
** reduction moved out of 2 loops
36 PP:$ | if (array[i*m + j] < min)
** reduction moved out of 2 loops

| min = array[i*m + j];
| }
| }

The reduction message appears after the line containing the associative update that was replaced with a
reduction. The message also indicates the number of nested loop levels out of which the compiler
hoisted the global combining phase.

Linear Recurrences

The Cray XMT compiler is also able to parallelize certain loops that compute linear recurrences.
Broadly, a recurrence computation computes each element of an array based on the results of computing
prior elements, for example:

for (int i = st; i < size; i++)
a[i] = foo(a[i-1],a[i-2],...,a[i-st]);

In the general case, loops of this form cannot be parallelized due to the dependences on previous
iterations. However, certain recurrences known as linear recurrences can be parallelized. In a linear
recurrence, the computation of element i has the form:

a [i] = a [i� k]� f [i] + g [i]

In the above equation, k is a constant, and both f and g can be replaced by scalars or constants. A
common example is a loop that computes the prefix sum of an array:

for (int i = 1; i < size; i++)
array[i] = array[i] + array[i - 1];

The Cray XMT compiler can parallelize linear recurrences where k � 3 using a technique based on
cyclic reductions.
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We illustrate this process with the prefix sum example from above, where k = 1. The compiler starts
by breaking the array into contiguous blocks. Threads claim blocks and compute the recurrence over
each block, pretending that all values before the block are 0. After a block is computed, we store the
result of the final element:

id = block_number;
start = block_start[id];
end = block_start[id + 1];
previous_1 = 0;
for (int i = start; i < end; i++) {
temp_array[i] = previous_1 + array[i];
previous_1 = temp_array[i];

}
block_result_1[id] = previous_1;

Once all of the blocks have been computed, each block combines its final result with the final results
of all of the previous blocks. This combination is done in parallel in a tree-like manner similar to
reductions (as described in Reductions). This result is then used as a starting point to recompute the
values of the next block (e.g., we use the combined result of the first three blocks to recompute the
fourth block). In our prefix sum example, this step looks like:

id = block_number;
start = block_start[id];
end = block_start[id + 1];
previous_1 = combined_result_1[id - 1];
for (int i = start; i < end; i++) {
array[i] = previous_1 + array[i];
previous_1 = array[i];

}

The Canal report’s annotated source listing shows users where the compiler applied the parallel linear
recurrence transformation:

| int recur(int *array, int size) {
| for (int i = 1; i < size; i++)

2 L | array[i] = array[i] + array[i-1];
| return array[size-1];
| }

The L annotation indicates that the compiler used cyclic reduction to parallelize a loop computing a
linear recurrence.

Nested Parallelism and Loop Collapse

The Cray XMT compiler has two approaches for handling nested parallel loops: nesting parallel regions
(parallel regions are a blocks of code executed in parallel, and surrounded by a single fork and join—see
Parallel Regions for more details), and loop collapse. Consider the following pair of parallel loops:

for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++)

foo[i] += bar[j];
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If the compiler parallelized these loops with nested parallel regions, the code would first go parallel for
the outer loop. Each iteration would then go parallel again to execute the inner loop in parallel. Parallel
region startup and tear down has a high overhead, however, so this approach is costly. In addition,
multiple parallel regions can compete with each other for streams. Thus, the compiler’s preferred
approach is to collapse the loops into a single equivalent loop. In this case, that collapsed loop might
look like:

for (int k = 0; k < n*m; k++) {
i = k / m;
j = k % m;
foo[i] += bar[j];

}

The collapsed loop can then be parallelized with a single fork and join.

In the rest of this section we describe two of the most common forms of loop collapse—rectangular
collapse and manhattan collapse. Rectangular collapse is used when the bounds of the inner loop are
fixed across all iterations of the outer loop, while manhattan collapse is used when the bounds of the
inner loop may vary between iterations of the outer loop.

Rectangular loop collapse—The compiler uses rectangular loop collapse to collapse two perfectly
nested parallel loops (i.e., the outer loop contains only the inner loop and nothing else) where the
bounds of the inner loop are known to be fixed across all iterations of the outer loop. The loop nest in
the following example is eligible because the inner loop is perfectly nested and has bounds y_start
and y_end, neither of which is changed inside the outer loop:

for (x = x_start; x < x_end; x++)
for (y = y_start; y < y_end; y++)

grid[x][y] = 1;

If the two loops are not perfectly nested the compiler can sometimes distribute (i.e., split) the outer loop
into multiple loops such that one of these loops contains only the perfectly nested inner loop. For
example, consider the following loop:

for (x = x_start; x < x_end; x++) {
row_start[x] = y_start;
for (y = y_start; y < y_end; y++)

grid[x][y] = 1;
}

The compiler can split this loop into two loops:

for (x = x_start; x < x_end; x++)
row_start[x] = y_start;

for (x = x_start; x < x_end; x++)
for (y = y_start; y < y_end; y++)

grid[x][y] = 1;

The inner loop is now perfectly nested, and the compiler can collapse it with the outer loop. These loops
can still be implemented as part of a single parallel region (Parallel Regions).
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In a rectangular collapse, the nested pair is transformed into a single loop whose iterations simulate
every iteration of the original nested pair. The first step is to normalize the loops to start at 0:

for (i = 0; i < x_end - x_start; i++)
for (j = 0; j < y_end - y_start; j++) {

x = i + x_start;
y = j + y_start;
grid[x][y] = 1;

}

The next step is to replace the loop nest with a single loop whose upper bound is the product of the
upper bounds of the previous pair:

int new_bound = (x_end - x_start) *
(y_end - y_start);

for (k = 0; k < new_bound; k++) { ... }

Finally, the compiler rewrites the body of the loop to compute the original index values:

int new_bound = (x_end - x_start) *
(y_end - y_start);

for (k = 0; k < new_bound; k++) {
i = k / (y_end - y_start);
j = k % (y_end - y_start);
x = i + x_start;
y = j + y_start;
grid[x][y] = 1;

}

Manhattan loop collapse—The rectangular collapse described above works whenever the inner loop
bounds are the same for every iteration of the outer loop. Many of the graph-based codes that are
frequently run on the Cray XMT system, however, contain loop nests that do not meet this condition.
For example:

for (int i=0; i < sz; i++) {
int begin = index[i];
int end = index[i+1];
for (int j=begin; j < end; j++) {

total += adj[j];
}

}

In this situation, the compiler will instead attempt to use a manhattan loop collapse. A loop nest is
eligible for manhattan collapse if both loops are parallelizable, and the inner loop is perfectly nested
except for statements that compute the inner loop bounds. If the nesting is not perfect, the compiler will
attempt to make it perfect by using loop distribution (as described previously).
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A manhattan loop collapse comprises two steps. First, the compiler creates a new loop that computes
the number of inner loop iterations. The result of this loop is an array tripcnt[] whose i-th
element contains the number of inner loop iterations executed during the first i iterations of the outer
loop. Thus, tripcnt[0] is 0, tripcnt[1] is the number of inner loop iterations during the first
outer loop iteration, tripcnt[2] is the number of inner loop iterations during the first two outer loop
iterations, etc. In our example, the tripcnt[] loop looks like:

tripcnt[0] = 0;
for (int t = 0; t < sz; t++) {
int begin = index[t];
int end = index[t+1];
int iterations = end - begin;
tripcnt[t+1] = tripcnt[t] + iterations;

}

The compiler recognizes that this loop is just a prefix-sum linear recurrence calculation, and parallelizes
it accordingly (see Linear Recurrences).

The second step of the manhattan collapse creates a single loop which simulates the execution of the
original loop nest. The upper bound of the new loop will be tripcnt[N], where N is the number of
iterations of the outer loop. In our example, this would be:

for (int k = 0; k < tripcnt[sz]; k++) {...}

Here, iteration k will correspond to the k-th iteration of the original inner loop. Inside the new loop,
we use the tripcnt[] array to determine which values of the inner and outer loop indices correspond
to the k-th iteration of the collapsed loop. The outer loop index will be the element of tripcnt[]
containing the highest element less than or equal to k. This is computed by a routine which performs a
binary search on the tripcnt[] array (note that tripcnt[] will be an ordered array):

int i = highest_less_than(tripcnt, k);

We determine the inner loop index by computing the difference between k and tripcnt[i]:

int j = k - tripcnt[i];

We then execute the inner loop body, using the computed indices. Putting it all together, we have:

tripcnt[0] = 0;
for (int t = 0; t < sz; t++) {
int begin = index[t];
int end = index[t+1];
int iterations = end - begin;
tripcnt[t+1] = tripcnt[t] + iterations;

}
for (int k = 0; k < tripcnt[sz]; k++) {
int i = highest_less_than(tripcnt, k);
int j = k - tripcnt[i];
total += adj[j];

}
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The m annotation in the Canal report’s annotated source listing indicates that the compiler performed
a manhattan loop collapse:

| for (int i=0; i < sz; i++) {
6 P:e | int begin = index[i];
6 P:e | int end = index[i+1];

| for (int j=begin; j < end; j++) {
10 PP:m$ | total += adj[j];
** reduction moved out of 2 loops

| }
| }

In this loop, we can also see that the compiler applied the reduction and scalar expansion
transformations.

Pragmas

The Cray XMT compiler supports a set of pragmas that programmers can use to provide more
information about their codes, and that can thus help identify parallelism. These pragmas have the form:

#pragma mta assert ...

The mta assert pragmas can be thought of as “promises” to the compiler about properties of user
codes. These promises can be a very powerful way to improve parallelization and thus performance
of applications. However, it is important to note that the compiler will rely on the accuracy of these
promises, so it is critical to ensure that the promises are in fact true. Otherwise, the compiler may make
incorrect assumptions and generate bad code. In this section, we discuss three of the most commonly
used assert pragmas: assert noalias, assert no dependence, and assert parallel.
Additional pragmas are described in the Cray XMT Programming Environment User's Guide.

The assert noalias pragma takes a list of pointer or array variables as an argument, and is a
promise to the compiler that every variable x on the list points to memory which is only accessed
through x. It applies to the entire scope of x. For example, consider the following code:

void vector_x2(int *x, int key,
int n) {

int *z = fetch_vector(key, n);
for (int i = 0; i < n; i++) {

x[i] = 2 * z[i];
}

}

The compiler will not parallelize this loop, because it does not know if the write to x modifies memory
that is read in another iteration through z. We can see this in the canal report:

| void vector_x2(int *x, int key,
| int n) {
| int *z = fetch_vector(key, n);
| for (int i = 0; i < n; i++) {

1 S | x[i] = 2 * z[i];
| }
| }
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However, we can get this loop to parallelize by adding an assert noalias pragma:

void vector_x2(int *x, int key, int n) {
#pragma mta assert noalias *x

int *z = fetch_vector(key, n);
for (int i = 0; i < n; i++)
x[i] = 2 * z[i];

}

In this code, the programmer asserts that x does not refer to the same memory as z (or any other
variable in its scope). The compiler uses this information to deduce that there are no dependencies
between iterations and that the loop is thus parallelizable.

The C99 restrict type qualifier is also available in the Cray XMT compiler. Pointers with the
restrict qualifier are treated like noalias variables, so the previous example can be rewritten as
follows and still parallelize:

void vector_x2(int * restrict x, int key,
int n) {

int *z = fetch_vector(key, n);
for (int i = 0; i < n; i++)

x[i] = 2 * z[i];
}

The restrict qualifier can be used in some situations where noalias is not allowed, such as in
type declarations (e.g., fields of struct declarations can have restrict-qualified pointer types). On the
other hand, programs using restrict may be less portable because some C++ compilers do not
support the restrict keyword (unsupported keywords lead to syntax errors, whereas unsupported
pragmas are typically ignored).

The assert no dependence pragma is a promise to the compiler regarding dependencies between
iterations of a loop. It must appear directly before the loop to which it refers. There are two forms of
the no dependence pragma: one with a comma-separated list of noalias (or restrict) variables,
and the other without a variable list.

The form that takes a variable list promises that references to memory through variables on the list do
not create any dependencies between iterations. For example, consider the following loop:

for (int i = 0; i < num_move; i++)
arr[dst[i]] = arr[src[i]];

The compiler will not parallelize this loop because there may be overlap between the elements of arr
pointed to by src and dst. This overlap would create a dependence. If, however, the programmer
knows that src and dst will point to disjoint subsets of arr, they can use a no dependence
pragma:

#pragma mta assert no dependence *arr
for (int i = 0; i < num_move; i++)
arr[dst[i]] = arr[src[i]];

The above loop will parallelize.
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The alternate form of assert no dependence takes no variable list, and is a promise that there are
no data dependencies between iterations. The no variable list form is useful when dependencies involve
variables that cannot be declared as noalias or restrict. For example, consider the following
code:

int *dst = &arr[new_start];
for (int i = 0; i < num_move; i++)
*(dst++) = arr[src[i]];

In this case, we cannot declare arr to be noalias because dst does in fact refer to part of the array
arr. This prevents us from using the variable list version of assert no dependence. We can still
use the no-list version, however, and get parallelization:

#pragma mta assert no dependence
for (int i = 0; i < num_move; i++)
*(dst++) = arr[src[i]];

The assert parallel pragma can be thought of as the “big hammer” of the Cray XMT compiler’s
assertion pragmas. It is a promise that the loop which follows the pragma can safely be executed in
parallel as written. This does not guarantee that the loop will be parallelized (e.g., if the compiler cannot
determine an iteration count parallelization will not occur), but it is a strong suggestion. The assert
parallel pragma will even cause side effects to be ignored. For example, the following loop will
parallelize despite the possibility that the output may appear out of order:

#pragma mta assert parallel
for(int i = 0; i < 1000; i++)

printf("Number %d\n", i);

The assert parallel pragma can be a powerful tool to get difficult loops to parallelize; however,
it should only be used as a last resort when other techniques fail. Use of assert parallel may
limit optimizations and transformations that the compiler might otherwise perform, because the
programmer is only telling the compiler that the loop is safe to parallelize, without explaining why.
Since the compiler does not understand why it is safe to parallelize, it must be careful not to do anything
which might affect that optimization. In turn, this can potentially hurt performance.

Implementing Parallelism

Once parallel loops have been identified, the next step is to determine the most efficient implementation
strategy. The Cray XMT compiler supports three styles of parallelism: single processor, multiple
processor, and a highly dynamic style known as loop futures. The compiler also supports a number of
different iteration scheduling strategies, and attempts to combine nearby parallel loops into parallel
regions with a single fork and join to reduce overhead.

In this section we discuss these strategies, and show how you can view the implementation choices
made by the compiler. We also discuss how you can override these decisions with pragmas.
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Parallel Regions

The Cray XMT compiler will attempt to merge nearby parallel loops, and possibly intervening serial
code, into a single parallel region. A parallel region is a section of code executed by multiple threads
and surrounded by a single fork and join to begin and end the parallelism. Barriers are added to ensure
correct execution. This merging allows the compiler to avoid paying the overhead of any extra forks
and joins.

A parallel region consists of a series of parallel loops, serial code sections, and barriers. Barriers are
used to ensure that we complete sections of the region before the results are needed by subsequent code
in the region. Whenever a thread hits a barrier, it waits there until every other thread reaches the barrier.
For example, consider the following code structure:

LOOP A
STATEMENT B // depends on A
STATEMENT C // depends on A
LOOP D // depends on B,C
LOOP E // depends on B,C

The compiler can implement this structure as a single parallel region:

FORK
LOOP A
barrier()
if (thread_id == 0)

STATEMENT B
else if (thread_id == 1)

STATEMENT C
barrier()
LOOP D
LOOP E
JOIN

Every thread will execute its portion of the iterations of LOOP A, then wait at the barrier until all of
the other threads have completed their portions. Threads 0 and 1 will then execute STATEMENTS B
and C in parallel and wait at the barrier. Finally, every thread will execute its portion of loops D and E.
Since LOOP E does not depend on LOOP D, the threads will not wait between finishing their portion
of D and beginning their portion of E.

The extent of parallel regions can be seen in the additional loop info section of the Canal report. Every
loop reports either its region or the loop in which it is nested. If a loop is nested in another loop, users
can refer to the outer loop to discover the region. For example, in the following Canal report Loop 2
and Loop 3 are part of parallel region 1:

Parallel region 1 in foo
...
Loop 2 in foo in region 1
...
Loop 3 in foo at line 7 in loop 2
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Styles of Parallelism

The Cray XMT compiler supports three styles of parallelism, each with differing overheads and
performance characteristics. Single processor parallelism has the lowest overhead, but only takes
advantage of the streams on a single processor of the Cray XMT system. Multiprocessor parallelism
takes advantage of the streams on all of the processors allocated to the job, but has significantly
higher overhead. Finally, loop future parallelism has the highest overhead, but is also the only form
of parallelism that can dynamically grow to use more streams as they become available and/or are
needed. The compiler will choose a parallelism style by default, but this choice can be overridden by
user directives.

The parallelism style applies to an entire parallel region, and the overhead is paid once per region.
Because of this, it rarely makes sense to specify different parallelism styles for nearby loops. It will
force the loops into separate regions and likely cause additional overhead. For example, consider the
following pair of loops:

// Small loop
for (int i = 0; i < SMALL_N; i++) { ... }
// Big loop
for (int j = 0; j < BIG_N; j++) { ... }

The user might be tempted to request single processor parallelism for the small loop here, thinking
that the performance benefit of using multiple processors does not justify the higher overhead of
multiprocessor parallelism. However, if we were to then request multiprocessor parallelism for the big
loop (because there is much more to be gained from using many processors in that case), we would end
up paying the overhead of a single processor fork and join, followed by the overhead of a multiple
processor fork and join. On the other hand, if both are implemented using multiprocessor parallelism,
the compiler can merge them into a single region and only pay the overhead of a single fork and join.

Single processor—Single processor parallelism is typically used for small loops (loops that have a low
iteration count and only do a small amount of work). The performance gains are limited because the
loop can only take advantage of the streams available on a single processor. However, this form of
parallelism is significantly cheaper than the others, and so can be beneficial when the amount of work
to be parallelized is small. For example, the compiler will usually select single processor parallelism
for this loop:

for (int i = 0; i < 500; i++)
a[i] = b[i];

This can be seen in the Canal report by looking at the information for the region containing the loop:

Parallel region 1 in foo
Single processor implementation
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If the compiler cannot estimate the amount of work done by a loop (e.g., if the iteration count is not a
compile-time constant), it will assume that it is large and choose a different style of parallelism. The
user can override this choice via a command line flag or a pragma. The -par1 flag causes the compiler
to use single processor parallelism as its default for all loops in the program. Similarly, the parallel
single processor pragma tells the compiler to use single processor parallelism for all subsequent
loops in the source file in which it appears. It takes precedence over any conflicting command line flags.
Finally, the loop single processor pragma tells the compiler to use single processor parallelism
for the following loop, and takes precedence over any other flags or pragmas.

Multiprocessor—Multiprocessor parallelism has higher startup overhead than single processor
parallelism, but also allows your program to take advantage of streams on all processors allocated to
your job. The compiler chooses it when the amount of work is large (or not known). For example, if we
double the iteration count in our previous example, the compiler will choose multiprocessor parallelism:

for (int i = 0; i < 1000; i++)
a[i] = b[i];

We can once again see this by viewing the additional information for the region containing the loop:

Parallel region 1 in foo
Multiple processor implementation

The user can specify multiprocessor parallelism using the -par command line flag (this is the default
in the current version of the compiler), or via the parallel multiprocessor pragma or the
loop multiprocessor pragma. These flags and pragmas have the same meanings as their single
processor equivalents.

Loop Futures—Loop future parallelism is a highly dynamic form of parallelism that is useful for
recursive parallel loops where the workload may vary greatly between iterations, such as in the
following example from a recursive depth-first search routine called DFS:

#pragma mta loop future
for (i = firstNode; i < lastNode; i++) {
int nbr = Neighbors[i];
// Ensure that only one thread visits nbr
int v = int_fetch_add(&Visited;[nbr], 1);
if (v == 0) DFS(nbr, A);
}

Unlike the other forms of parallelism, loop future regions are not allocated a fixed number of streams
when the region starts up. Instead, the compiler produces pointers to a piece of code that executes
iterations of the loop. These pointers, or continuations, are placed on a queue managed by the runtime
library. As streams become available, they check the queue, grab any available continuations, and begin
executing iterations of the loop. This allows the region to grow as resources are needed and become
available, but adds significant overhead. The continuations from all loop future regions are placed into
the same queue, so this can also help with load balancing across multiple levels of a recursive parallel
loop (such as in the DFS example above). As with the other forms of parallelism, you can view loop
futures in the Canal report:

Parallel region 1 in foo
Implemented with futures
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The compiler does not typically choose loop future parallelism because of the high overhead and
difficulty of analyzing recursive loops. However, you can request it with the -parfuture flag or with
the parallel future pragma and loop future pragma. These flags and pragmas have the same
meanings as their single processor equivalents.

Loop Scheduling

The Cray XMT compiler has a number of different idioms at its disposal for scheduling the iterations of
a parallel loop. Each of these idioms provides a different set of trade-offs between overhead and load
balancing. The compiler attempts to choose an idiom based on its analysis of the characteristics of the
loop, but pragmas are once again available to allow the programmer to direct the compiler’s decisions.

The cheapest of the scheduling idioms is block scheduling. In a block scheduled loop, each thread will
execute a contiguous block of iterations/threads iterations. For example, if we have three
threads executing a block scheduled parallel loop with 100 iterations, one thread will execute iterations
0-32, another iterations 33-65, and the third iterations 66-99. Each thread can quickly calculate the
iterations it should execute at the beginning of the loop with no inter-thread communication, making
this the cheapest scheduling technique. It may also allow for some reuse of register data since threads
will be executing contiguous iterations. However, if the work done by each iteration varies significantly,
some threads may end up doing more work than others. This results in poor load balancing, where some
threads complete their work early and then have to wait for other threads with more work to finish.

Interleaved scheduling is another cheap scheduling idiom that can in some cases provide improved load
balancing. In an interleaved parallel loop, each thread executes iterations separated by the number
of threads. For instance, if there were three threads and 12 iterations, the first thread would execute
iterations 0, 3, 6, and 9, the second iterations 1, 4, 7, and 10, and the third iterations 2, 5, 8, and 11. Like
block scheduling, interleaved scheduling requires only cheap and local computations. In certain cases,
interleaved scheduling can also provide better load balancing, e.g., with triangular loop nests. The code
sample below is a good example of where interleaved scheduling improves load balancing:

for(int i = 0; i < n; i++)
for (int j = 0; j < i; j ++)

In the above example, later iterations of the outer loop will do significantly more work than earlier
iterations. Interleaved scheduling will help load balancing because every thread will execute a similar
mix of early and late iterations. On the other hand, interleaved scheduling may not allow for the same
reuse of register data that is possible with block scheduling because threads do not execute contiguous
iterations.
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Dynamic scheduling provides good load balancing for more generalized cases of loops whose work
varies between iterations. In a dynamically scheduled parallel loop, a shared counter is used to keep
track of iterations. Each thread retrieves the value of the counter to determine which iteration to execute,
and increments it so that the next thread will claim the next iteration. As threads complete each
iteration, they once again fetch and increment the counter to claim another iteration. The compiler uses
the Cray XMT system’s atomic fetch-and-add instruction (int_fetch_add) to retrieve and update
the counter in order to avoid races between threads. Dynamic scheduling provides good load balancing
for many loops because threads never stop claiming and executing iterations until every iteration has
been claimed by some thread—thus, we keep threads working as long as possible. However, dynamic
scheduling has a high overhead because every thread must access the shared counter after every
iteration. This adds an extra global memory reference per iteration, possibly causing contention.

Block dynamic scheduling provides a compromise between the load balancing of dynamic scheduling
and the low overhead of block scheduling. In a block dynamic scheduled loop, threads claim blocks of
iterations instead of single iterations. This reduces the overhead by decreasing the number of accesses to
the shared counter, while still maintaining some of the load balancing properties of dynamic scheduling.

Loop scheduling choices can be viewed in the Canal report by looking at the additional loop info
section, such as in the sample below:

Loop 34 in count2 at line 107 in region 33
Interleave scheduled

Users can direct the compiler to use different scheduling idioms with the following pragmas:

#pragma mta block schedule
#pragma mta interleave schedule
#pragma mta dynamic schedule
#pragma mta block dynamic schedule

The above pragmas will only apply to the next loop that occurs within your code.

An Example Loop

In this section we show how to apply the information in this paper and in the Canal report to improve
the performance of an example code. The code we use contains a search-breakout style loop, where we
iterate over an array until a sought element is found. This example initially does not parallelize, but we
show how knowledge of the conditions necessary for parallelism (Conditions for Safe Parallelization),
combined with the information contained in the Canal report, can be used to rewrite the code and
achieve parallelism.

Consider the following routine that copies the elements from an array b into an array a until an element
key is found in b:

bool foo(int *a, int *b, int n, int key) {
int i;
for (i = 0; i < n; i++) {

if (b[i] == key) break;
a[i] = b[i];

}
return (i < n);

}
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If we compile this routine and view the Canal report, we will see that the for loop is not parallelized:

1 X | for (i = 0; i < n; i++) {
** loop exit
** multiple exits

1 X | if (b[i] == key) break;
** loop exit

1 X | a[i] = b[i];
| }

The Canal report tells us that this loop could not be parallelized because it has an early exit (the break)
and thus violates Condition 2 from the Conditions for Safe Parallelization. To fix this, we need to find a
way to rewrite the loop and remove the break statement. We can do this by splitting the original loop
into two loops. The first loop will identify the minimum index of b at which key occurs (this can be
parallelized as a reduction, as described in the Reductions section.) The second loop will then copy all
the elements of b up to the index identified in the first loop:

bool foo(int *a, int *b, int n, int key) {
int i;
int found_index = n;
for(i = 0; i < n; i++) {

if (b[i] == key)
if (i < found_index)

found_index = i;
}
for(int i = 0; i < found_index; i++)

a[i] = b[i];
return (found_index < n);

}

If we compile this and view the Canal report, we see that the search loop now parallelizes as a
reduction:

| for(i = 0; i < n; i++) {
3 P:$| if (b[i] == key)
** reduction moved out of 1 loop

| if (i < found_index)
| found_index = i;
| }
| for(int i = 0; i < found_index; i++)

4 S | a[i] = b[i];

24 S–2487–14



Optimizing Loop-Level Parallelism in Cray XMT™ Applications

However, the copy loop is not parallelized. The S annotation tells us that there is a dependence
involving the line that copies from b into a. If we look more closely at this routine, we see that a and
b are pointers that could point anywhere—including to overlapping memory, which would create a
dependence. If we know that this routine will only be called with parameters that point to disjoint
arrays, we can use the noalias pragma as in the following code example:

bool foo(int *a, int *b, int n, int key) {
#pragma mta assert noalias *a
int i;
int found_index = n;
for(i = 0; i < n; i++) {

if (b[i] == key)
if (i < found_index)
found_index = i;

}
for(int i = 0; i < found_index; i++)

a[i] = b[i];
return (found_index < n);

}

If we compile this new version, both loops parallelize as shown in this Canal report:

|#pragma mta assert noalias *a
| int i;
| int found_index = n;
| for(i = 0; i < n; i++) {

3 P:$| if (b[i] == key)
** reduction moved out of 1 loop

| if (i < found_index)
| found_index = i;
| }
| for(int i = 0; i < found_index; i++)

5 P | a[i] = b[i];

Summary

The Cray XMT compiler has sophisticated program analysis and transformation capabilities to help
users take advantage of the massive multithreading possible on the Cray XMT system. In order to
take full advantage of these capabilities, a user needs to have an understanding of how the compiler
transforms and parallelizes codes. In this paper, we discussed these processes, and showed how to use
the Canal report to gain further insights. Armed with this knowledge, and the feedback from the Canal
report, programmers can tune their applications to achieve efficient, scalable loop parallelism.
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