
Limiting Loop Parallelism in Cray XMT™ Applications

June 21, 2010

Abstract

Two new pragmas were added to the XMT C/C++ compiler that enable

users to limit the amount of concurrency and/or the max number of

processors used by a parallel loop. The max processors pragma can be

used to limit the number of processors used by a multiprocessor loop.

The max concurrency pragma can be used to limit either the total

number of streams used by a single or multiprocessor loop, or to limit

the number of futures created by a loop that uses loop future

parallelism.

© 2010 year Cray Inc. All Rights Reserved. This document or parts thereof may not be reproduced in any form unless
permitted by contract or by written permission of Cray Inc.

U.S. GOVERNMENT RESTRICTED RIGHTS NOTICE

The Computer Software is delivered as "Commercial Computer Software" as defined in DFARS 48 CFR 252.227-7014.

All Computer Software and Computer Software Documentation acquired by or for the U.S. Government is provided with
Restricted Rights. Use, duplication or disclosure by the U.S. Government is subject to the restrictions described in
FAR 48 CFR 52.227-14 or DFARS 48 CFR 252.227-7014, as applicable.

Technical Data acquired by or for the U.S. Government, if any, is provided with Limited Rights. Use, duplication or
disclosure by the U.S. Government is subject to the restrictions described in FAR 48 CFR 52.227-14 or
DFARS 48 CFR 252.227 7013, as applicable.

Cray, LibSci, PathScale, and UNICOS are federally registered trademarks and Active Manager, Baker, Cascade,
Cray Apprentice2, Cray Apprentice2 Desktop, Cray C++ Compiling System, Cray CX, Cray CX1, Cray CX1-iWS, Cray CX1-
LC, Cray CX1000, Cray CX1000-C, Cray CX1000-G, Cray CX1000-S, Cray CX1000-SC, Cray CX1000-SM, Cray CX1000-HN,
Cray Fortran Compiler, Cray Linux Environment, Cray SHMEM, Cray X1, Cray X1E, Cray X2, Cray XD1, Cray XE, Cray XE6,
Cray XMT, Cray XR1, Cray XT, Cray XTm, Cray XT3, Cray XT4, Cray XT5, Cray XT5h, Cray XT5m, Cray XT6, Cray XT6m,
CrayDoc, CrayPort, CRInform, ECOphlex, Gemini, Libsci, NodeKARE, RapidArray, SeaStar, SeaStar2, SeaStar2+,
Threadstorm, UNICOS/lc, UNICOS/mk, and UNICOS/mp are trademarks of Cray Inc.

 Limiting Loop Parallelism in Cray XMT™ Application

S–0027–14 Cray Inc. 3

Table of Contents

Introduction ... 4

Max Processors Pragma .. 5

Syntax ... 5

Usage and Limitations .. 6

Example .. 6

Max Concurrency Pragma .. 6

Syntax ... 6

Usage and Limitations .. 6

Examples .. 7

Effect of Pragmas on Loop Fusion and Parallel Region Merging 8

Use Case: Applying Max Processors Pragma to GraphCT 10

References ... 12

 Limiting Loop Parallelism in Cray XMT™ Application

S–0027–14 Cray Inc. 4

Introduction

Users writing applications for the Cray XMT would like to be able to limit the amount of

parallelism used by a loop for multiple reasons, such as to prevent contention on resources or

to improve load balancing across multiple concurrently running threads in applications that

use nested parallelism. Currently, one of the easiest ways the user can limit the parallelism of

a loop is by switching the parallel modes, such as by explicitly using single processor

parallelism instead of multiprocessor parallelism. However, this can be very limiting and the

user may want to be able to easily use multiple processors without having to use all

processors.

As mentioned above, a user may want to limit the amount of parallelism used by a parallel

loop to prevent contention on resources. In some cases, a loop may cause hotspotting on

shared resources, so a user may want to limit the number of processors used by the loop to

prevent or reduce the contention. Using the pragmas to prevent or limit contention could

become more important as the machine size scales up.

Another situation where the user may want to limit the amount of parallelism used by a loop

could be in cases of nested parallelism. Applications on the XMT would like to use nested

parallelism in order to have multiple parallel loops running concurrently. This is done to

improve the performance and scalability of the application by doing the following:

 limiting the amount of resources used by one parallel loop to prevent it from

hotspotting the system

 improving load balance by distributing resources across multiple parallel loops

 increasing utilization by having multiple parallel loops running concurrently

Over the years of the MTA and XMT, users have struggled to use nested parallelism

efficiently. The cost of nested parallelism is very high, and the users currently have no way to

control the distribution of resources, which can easily lead to poor performance due to load

imbalances. Users have often been forced to either not use nested parallelism, or to modify

their applications to make it possible for the compiler to perform a loop collapse on the loops.

One way that users have tried to use nested parallelism is by creating a small number of

threads with explicit futures and within each future, executing one or more parallel loops. The

user tries to start these futures at approximately the same time to try to ensure that the

hardware resources are distributed across the running loops.

The problem with this approach is that there is no way to ensure that the futures start at the

same time, and even if they do, there is no easy way to limit the number of streams or

processors the runtime could assign to executing a parallel loop. It is possible that one parallel

loop could get a large number of the available streams, which could cause the remaining

parallel loops to have to wait for streams to become available or possibly be starved for

resources and execute a loop with a small number of streams. For example, if each of the

running threads created with the futures has a loop that uses multiprocessor parallelism, one

thread could request all available streams before the others requested any, which could cause

the remaining threads to wait. Another possibility would be that a thread gets only a small

 Limiting Loop Parallelism in Cray XMT™ Application

S–0027–14 Cray Inc. 5

number of the streams it requests because one or more of the other threads acquired the

majority of the streams. This could greatly impact the performance of the thread that only got

a small number of streams.

To make it easier for the user to limit the amount of resources used by a loop to help prevent

hotspotting and to help the user better manage nested parallelism in their application, two new

pragmas were added to the XMT C/C++ compiler to allow the user to limit the max number

of processors and/or the max concurrency used by a parallel loop. The max n processors

pragma can be used to limit the number of processors used by a multiprocessor parallel loop.

The max concurrency c pragma can be used to limit either the total number of streams used

by a single or multiprocessor parallel loop, or to limit the number of futures created for a loop

that uses loop future parallelism.

The new max n processors and max concurrency c pragmas should not be confused with the

use n streams pragma. The use n streams pragma can be used to specify a minimum number

of streams to request per processor, but the pragma does not guarantee that the loop will get n

streams. For example, the runtime may not be able to grant the requested number of streams if

resources are not available. Also, the compiler could request more streams for the loop than

what is specified by the use n streams pragma. However, the new max n processors and

max concurrency c pragmas specify limits on the number of processors to use, the total

number of streams to use, or the number of futures to create. For the case of the max n

processors pragma, the runtime will guarantee that no more than n processors are used by the

multiprocessor loop. For a multiprocessor loop with a max concurrency c pragma, the

runtime will ensure that the number of processors used is the minimum needed to have

enough streams to meet the specified concurrency limit of c. For a single processor parallel

loop with a max concurrency c pragma, the runtime will ensure that no more than c streams

are used. Finally, for a loop futures parallel loop with a max concurrency c pragma, the

runtime will ensure that no more than c futures are created.

Max Processors Pragma

The max n processors pragma can be used to limit the number of processors used by a

multiprocessor parallel loop. This can be useful in applications that have multiple parallel

loops running concurrently that want to limit the parallelism for each loop to help improve

load balancing and prevent starvation. It can also be useful in applications that wish to limit

the number of processors used by a loop to reduce or prevent hotspotting.

Syntax

 #pragma mta max n processors

 Limiting Loop Parallelism in Cray XMT™ Application

S–0027–14 Cray Inc. 6

Usage and Limitations

 Loop level directive so the pragma can only be applied to a loop

 Limits the number of processors used by a multiprocessor loop to n

 n must be a compile-time unsigned integer constant greater than 0

 This pragma can only be used on a multiprocessor parallel loop

 If multiple max n processors pragmas are specified on one loop, the value of n

specified by the last pragma will be used

 For collapsible loop nests, the max processors value specified by the outer loop (if any)

will be used for the collapsed loop

Example

The following is an example of using the max n processors pragma on a multiprocessor

parallel loop.

/* Use at most 4 processors with default number of streams per

proc. */

#pragma mta max 4 processors

 for(i = 0; i < size; i++) {

 array[i] += array[i] + (size + i);

 }

Max Concurrency Pragma

The max concurrency c pragma can be used to limit the max concurrency of any parallel

loop. This pragma will limit the total number of streams used by either a single or

multiprocessor parallel loop and will limit the number of futures created by a loop that uses

loop future parallelism. This pragma is similar to the max n processors pragma in that it can

be useful in applications that have multiple parallel loops running concurrently that want to

better manage the nested parallelism, and in applications that want to limit resources used by

a loop to help reduce or prevent contention.

Syntax

 #pragma mta max concurrency c

Usage and Limitations

 Loop level directive so the pragma can only be applied to a loop.

 Limits the number of streams used by a single processor parallel loop to the min(c,

<num_streams_per_processor>), where <num_streams_per_processor> is the number

of streams the compiler requests.

 Limiting Loop Parallelism in Cray XMT™ Application

S–0027–14 Cray Inc. 7

 Limits the number of processors used by a multiprocessor parallel loop to max(1, c /

<num_streams_per_processor>), where <num_streams_per_processor> is the number

of streams the compiler requests for each processor used by the parallel loop.

 If c is larger than or equal to <num_streams_per_processor>, the total number of

streams used by the parallel loop will be at most c.

 If c is less than <num_streams_per_processor>, one processor will be used and

<num_streams_per_processor> streams will be requested by the compiler.

 Limits the number of futures created for a loop that uses loop future parallelism to c.

 If multiple max concurrency c pragmas are specified on one loop, the value of c

specified by the last pragma will be used.

 For collapsible loop nests, the max concurrency value specified by the outer loop (if

any) will be used for the collapsed loop.

 The max concurrency c pragma is not allowed to be used on a loop that also uses the

use n streams pragma.

Examples

The following example illustrates using the max concurrency c pragma on a single processor

parallel loop.

 /* Use at most 95 streams. */

#pragma mta loop single processor

#pragma mta max concurrency 95

 for(i = 0; i < size; i++) {

 array[i] += array[i] + (size + i);

 }

The following example illustrates using the max concurrency c pragma on a multiprocessor

parallel loop.

 /* Use at most 512 streams across all processors. */

#pragma mta max concurrency 512

 for(i = 0; i < size; i++) {

 array[i] += array[i] + (size + i);

 }

 Limiting Loop Parallelism in Cray XMT™ Application

S–0027–14 Cray Inc. 8

The following example illustrates using the max concurrency c pragma on a loop that uses

loop future parallelism.

 /* Create at most 512 futures. */

#pragma mta loop future

#pragma mta max concurrency 512

 for(i = 0; i < size; i++) {

 array[i] += array[i] + (size + i);

 }

Multiprocessor parallel loops are allowed to use both the max n processors and max

concurrency c pragmas, and can use both on a single loop. In cases where both pragmas are

used, the lower bound of the number of processors estimated by the two limits will be the

limit used on the loop. For example, the following code illustrates the use of both pragmas on

one multiprocessor parallel loop.

 /* Use at most 512 streams across all processors or

 * at most 8 processors, whichever is smaller.

 */

#pragma mta max concurrency 512

#pragma mta max 8 processors

 for(i = 0; i < size; i++) {

 array[i] += array[i] + (size + i);

 }

In the above example, if the compiler were to request 64 streams per processor, then the max

concurrency 512 would estimate that 8 processors should be used for the loop (i.e., 512/64).

The max 8 processors has the same limit on the number of processors so the loop would be

limited to 8 processors. If the compiler instead requested 32 streams per processor, then the

max concurrency 512 would estimate that 16 processors should be used, which is more than

the limit of 8 specified by the max 8 processors, so the loop would be limited to 8 processors.

Because the use n streams pragma cannot be used on the same loop as a max concurrency c

pragma, the loop will use the default number of streams determined by the compiler. The user

will need to look at the canal details for a loop to determine the default number of streams

being requested by the compiler.

Effect of Pragmas on Loop Fusion and Parallel Region Merging

The new pragmas can prevent the compiler from fusing loops if the loops involved do not

have the same limits for the max processors and max concurrency. This is because the

compiler will need to put the loops into different parallel regions in order to limit the

processors and/or concurrency as requested by the user. This could potentially have a negative

impact on the performance of a user's application, so users may need to look at the canal

output to see what loops the compiler fused.

 Limiting Loop Parallelism in Cray XMT™ Application

S–0027–14 Cray Inc. 9

The pragmas could also prevent the compiler from merging the parallel regions for different

loops into a single parallel region. The limitation for concurrency or processors specified by

the new pragmas applies to the current parallel region that contains the loop with the pragmas.

The compiler must ensure that all loops in a parallel region have the same limits for max

processors and max concurrency. If the loops do not have matching limits, the compiler will

put them in different parallel regions to ensure the user's limits on processors and/or

concurrency can be correctly applied. This could potentially have a negative impact on the

performance of a user's application because more time will be spent tearing down and starting

new parallel regions. In the case of nested parallel regions, any limitations for concurrency or

processors specified with the pragmas on either region do not affect the other region. For

example, if the outer parallel region has a max 8 processors, that pragma will not affect the

inner parallel region because the pragmas apply to the current parallel region only. The user

can determine what loops the compiler placed in a parallel region by looking at the canal

output. The “Additional Loop Details” shows which parallel region a loop is in, and the

details for parallel regions state what limits for processors or concurrency (if any) are being

applied to the region.

The following is an example of two loops that have matching limits for max n processors

that could be fused and placed into one parallel region by the compiler.

#pragma mta max 64 processors

 for(i = 0; i < size; i++)

 array[i] = i;

#pragma mta max 64 processors

 for(i = 0; i < size; i++) {

 array[i] += array[i] + (size + i);

 }

The following is an example of two loops that cannot be fused or put into one parallel region

because the loops specify different limits for the max processors.

#pragma mta max 256 processors

 for(i = 0; i < size; i++)

 array[i] = i;

#pragma mta max 512 processors

 for(i = 0; i < size; i++) {

 array[i] += array[i] + (size + i);

 }

The following is another example of two loops that cannot be fused or put into one parallel

region because the loops specify different limits for the max processors. The first loop does

not use the max n processors pragma, which implies there is no user specified limit.

 for(i = 0; i < size; i++)

 array[i] = i;

 Limiting Loop Parallelism in Cray XMT™ Application

S–0027–14 Cray Inc. 10

#pragma mta max 512 processors

 for(i = 0; i < size; i++) {

 array[i] += array[i] + (size + i);

 }

Use Case: Applying Max Processors Pragma to GraphCT

An example application that uses nested parallelism to improve system utilization and reduce

contention on shared data structures is GraphCT (Graph Characterization Toolkit) [1].

GraphCT consists of multiple kernels that perform operations on a graph and the kernel

focused on in this example is betweenness centrality.

The betweenness centrality kernel of GraphCT is executed concurrently by a small number of

threads using loop future parallelism, and each thread uses multiprocessor parallelism to

compute the betweenness centrality of a node. The betweenness centrality kernel of GraphCT

can see significant variance in performance due to issues with load balancing across the

threads. The max n processors pragma can be used to help improve load balancing and

increase utilization by evenly distributing the processors across the threads.

The betweenness centrality kernel of GraphCT consists of two functions, kcentrality and

kcent_core. The kcentrality function creates a small number of threads using loop

future parallelism, and each of those threads calls kcent_core to compute the betweenness

centrality for the nodes in the graph. Both of these functions were updated to make use of the

new max n processors pragma.

The changes to kcent_core are limited to applying the max n processors pragma to each

parallel loop in the function. The limit for the number of processors to use per thread was

determined experimentally based on the default number of threads created in kcentrality

in the release version 0.4 of GraphCT, which is 20. This would give each thread

approximately 6 processors on a 128P XMT system if each thread got the same number of

processors. This led to trying a limit of 8 processors per thread in kcent_core.

Experiments showed that using 8 processors per thread performed better than the release

version of GraphCT with 20 threads and no max n processors pragmas. A power of two was

chosen so the number of processors in the system could be easily divided by the number of

processors used per thread. A limit of 16 processors per thread was also tested and was shown

to have reasonable performance that could be very similar to the performance with a limit of

8, especially for larger graphs (scale >= 28). The following code snippets show how the max

n processors pragma was used for each loop in kcent_core. In these examples,

MAX_PROCS is a preprocessor macro that has been defined as 8.

<...>

#pragma mta max MAX_PROCS processors

#pragma mta assert nodep

 for (j = 0; j < NV; j++) {marks[j] = sigma[NV*(K+1) + j] =

0;}

<...>

 Limiting Loop Parallelism in Cray XMT™ Application

S–0027–14 Cray Inc. 11

#pragma mta max MAX_PROCS processors

#pragma mta assert nodep

 for (j = 0; j < (K+1)*NV; j++) {

 dist[j] = -1;

 sigma[j] = child_count[j] = 0;

 }

<...>

#pragma mta max MAX_PROCS processors

#pragma mta assert no dependence

#pragma mta block dynamic schedule

#pragma mta use 100 streams

 for (j = Qstart; j < Qend; j++) {

<...>

#pragma mta max MAX_PROCS processors

#pragma mta assert nodep

#pragma mta assert no alias *sigma *Q *child *start *QHead

#pragma mta use 100 streams

 for (n = QHead[p]; n < QHead[p+1]; n++) {

<...>

#pragma mta max MAX_PROCS processors

 for (j=0; j<(K+1)*NV; j++) delta[j] = 0.0;

<...>

#pragma mta max MAX_PROCS processors

#pragma mta assert nodep

#pragma mta block dynamic schedule

#pragma mta assert no alias *sigma *Q *BC *delta *child *start

*QHead

#pragma mta use 100 streams

 for (n = Qstart; n < Qend; n++) {

<...>

The pragma was used on all parallel loops in the function to ensure that each thread that calls

kcent_core is limited to the desired number of processors, which is 8 in this case. Also,

because all of the parallel loops in kcent_core have the same limit for the max processors,

the compiler will not need to put the loops into different parallel regions because of a

mismatch in limits. Grouping the loops into one region can help reduce the cost of going

parallel and improve performance by avoiding starting and tearing down multiple parallel

regions.

The kcentrality function was modified to compute the number of threads at runtime

based on the number of processors used by the application and the number of processors used

per thread in kcent_core. The number of threads, INC, is a preprocessor macro in version

0.4 of GraphCT. However, the modifications to kcentrality changed INC to a variable

that is computed at runtime. The following code snippet shows the changes made to

kcentrality. Again, MAX_PROCS used in the example below has been defined as 8.

 Limiting Loop Parallelism in Cray XMT™ Application

S–0027–14 Cray Inc. 12

<...>

/*Compute INC based on the number of processors we're using

and limiting each thread to MAX_PROCS processors (in

kcent_core()).*/

 int INC;

 INC = mta_get_max_teams();

 INC = INC / MAX_PROCS;

 INC = MTA_INT_MAX(1, INC);

<...>

#pragma mta loop future

 for(x=0; x<INC; x++)

 {

 <...>

 for (int claimedk = int_fetch_add (&k, 1);

 claimedk < Vs;

 claimedk = int_fetch_add (&k, 1))

 {

 <...>

 kcent_core(G, BC, K, s, Q, dist, sigma, marks, QHead,

 child, child_count);

 <...>

 }

 }

<...>

These changes to GraphCT helped the betweenness centrality kernel have better load

balancing across the threads and achieve higher system utilization, which improved the

performance and scalability of the kernel.

References

[1] “GraphCT – Streaming Graph Analysis”,

http://trac.research.cc.gatech.edu/graphs/wiki/GraphCT, May 4, 2010.

http://trac.research.cc.gatech.edu/graphs/wiki/GraphCT

