ChplBlamer: A Data-centric and
Code-centric Combined Profiler
for Multi-locale Chapel Programs

Hui Zhang, Jeffrey K. Hollingsworth
{hzhang86, hollings}@cs.umd.edu

Department of Computer Science, University of Maryland-
College Park

Multi-locale Chapel

Environment

SMP
CPUs
sk

i | IMe.:mry,llm Int:ar-cm:nectl | %
General H]J]J]J]

. High-Speed
Inter-connect Memory Module gh-5p

Inter-connect
s
| sMp . | — T
High-Speed Inter-{ﬂnng
MHetwork

1]
| =M i | SMP

Motivation

* Why PGAS (Partitioned Global Address Space)
= Parallel programming is too hard
= Unified solution for mixed mode parallelism
 Why Chapel
" Chapel is an emerging PGAS language with productive
parallel programming features

» Potential for performance improvement (especially in
multi-locale) and few Chapel profilers for its users

" |nsights for evolving the language in the future and the
same idea can be applied to other parallel programming
paradigms through generic approaches

¥ Data-centric Profiling

Code-centric Profiling
int busy(int *x) {
// hotspot function

main: 100%
*x = complex(); busy: 100‘;
return *x; 5 ;

} complex: 100%

int main() {
for (i=0; i<n; i++) {
A[i] = busy(&B[i]) +

Data-centric Profiling

busy(&C[i-1]) + A: 100%
busy(&C[i+1]); B: 33.3%
} C: 66.7%

Vg

&¥What is “ChplBlamer”?

il

=
éﬁ!ullj“

e

fuen =

"MISS HARPER — GET ME SoMERODY o BLOME..

“Ididn’t
say you
were to
blame...
I said [am
blaming
you.”

Blame Definition

1) BlameSet(v) = U, cw BackwardSlice(w)

2) isBlamed(v,s) = {if (s € BlameSet(v)) then 1 else 0}

ses isBlamed(v,s)
S|

3) BlamePercentage(v,S) = 2

v: acertain variable

w. a write statement to v's memory region

« W asetofw (all write statements to v's memory region)
s
S

a sample
a set of samples

Blame Calculation

1 a=28;
2 b=a*a;
3 for (i=0;i<N; i++)
4 b=b+i;
5 c=a+b;
Variable Name a b
Result Type inc exc inc exc
BlameSet 1 1 1,2,3,4 2,4
Blame Samples S1 S1 S1,2,3,4 S2,3
Blame 20% 20% 80% 40%

SCIENCE
. VF MARYLAND

//Sample 1
//Sample 2,3
//Sample 4

//Sample 5

inc exc inc exc
1,2,3,4,5 5 3 3

$1,2,3,4,5 S5 S4 S4

20% 20%

100% 20%

‘l ChpIBIamer Framework

Module: Global Variables, Type Run the Program with Sampling and
Instrumentation Enabled

3: Post Processing

Reconstruct calling context for

Analysis (class, record)

Function: Local Variables,

Parameters, Return Values

“ Data Flow

f Control Flow ‘
Analysis

Analysis

B

' samples and combine static info |

Variable Profiles

| (Per Node)
| 0) 4: GUI Presentation

Aggregate Data from All Nodes and Display

[1] Zhang, Hui, and Jeffrey K. Hollingsworth. "Data Centric Performance Measurement Techniques for Chapel
Programs." Parallel and Distributed Processing Symposium (IPDPS), 2017 IEEE International. IEEE, 2017.

ﬁ SCIENCE
MIVERS IF MARYLAND

ulti-locale Challenges

e 15t Challenge:

Aggregate blame of many temporary variables that
point/refer to the distributed variables through remote
data accesses.

e Solution:

= Link variable PvID (privatized id) with different
objects accessed through specifc Chapel runtime
functions: chpl _getPrivatizedCopy, and
chpl _getPrivatizedClass.

ulti-locale Challenges

2"d Challenge:

Recover the hidden data-flow information from Chapel
internal module calls, e.g., chpl gen _comm_get

Recover the interrupted data-flow information from
Chapel runtime calls, e.g., chpl_taskListAddBegin

Solution:

Conduct simplified blame analysis for Chapel module
functions to get data-dependencies between parameters

Resolve actual wrapper task function statically through
function pointers that were passed to certain Chapel
runtime functions

ulti-locale Challenges

3'd Challenge:

Reconstruct the full calling context for each
sample and handle asynchronous&remote tasking

Solution:

Instrument Chapel tasking and communication layer

Log “task function ID”, “task sender’s locale ID”, and
“task receiver’s locale ID” for each remote task

Iteratively glue stacktraces to the current calling context
until having the user “main” frame

New Tool Feature

Load Imbalance Check

Y1 Mode Information For Variable

7 Nodes| -

o=] Mode compute-b27-11. deepthought2 . umd. edu, Total CPU time(s): 26 0449 T
o=] Mode compute-b18-24. deepthought2 . umd. edu, Total CPU time(s): 27966
o=] Mode compute-h27-43 deepthought2 . umd. edu, Total CPU time(s); 25 282
o=] Mode compute-b27-10. deepthought2 . umd. edu, Total CPU time(s): 22 364
o=] Mode compute-bh27-29 deepthought2 . umd. edu, Total CPU time(s); 22 598
o= [Maode: compute-h2 7-8. deepthought2 . umd. edu, Total CPU timefs): 28 35
o= [Mode: compute-h2 7-&. deepthought2 . umd. edu, Total CPU timefs): 42 185
o] Mode: compute-b27-49 deepthought 2. umd. eclu, Total CPU timefs): 27.2

[sample 1386

[sample 408

[() sample 139

[sample 272 -

Node information for Ab of HPL on 32 locales

ﬁ SCIENCE
HIVERS F MARYLAN

Experiment — ISx

myBucketedKeys 41.1% 22.9%
myKeys 36.9% 20.9%
sendOffsets 27.3% 15.4%
bucketOffsets 26.9% 15.2%
barri 10.3% 20.8%
L : : myBucketedKeys 41.11% 17.78%
sendOffsets 27.28% 6.02%
bucketSort 80.9% 64.2%
il - . bucketOffsets 26.85% 5.46%
bucketizeLocalKeys 40.2% 22.3%
countLocalKeys 11.4% 6.4% bucketizeLocalKeys 40.24% 24.54%
pthread_spin_lock 16.7% 29.3%
chpl_comm_barrier 0 3.46%

1. Optimize “Barrier” module
2. Apply “local” clause

ﬁ SCIENCE
NIVERS)F MARYLAND

Experiment - LULESH

Variable Type Blame Context
(Elems Struct 74.3% chpl_gen_main \
elemToNode Struct 60.4% chpl_gen_main
xd/yd/zd Struct 48.0% chpl_gen_main
_ x/y/z Struct 37.0% chpl_gen_main)
fx/fy/fz Struct 35.6% chpl_gen_main
dvdx/dvdy/dvdz Struct 33.4% CalcHourglassControlForElems
[x8n/y8n/z8n Struct 33.3% CalcHourglassControlForElems]
elemMass Struct 29.5% chpl_gen_main
hgfx/hgfy/hgfz Array 26.7% CalcFBHourglassForceForElems
shx/shy/shz Double 26.7% CalcElemFBHourglassForce
hx/hy/hz Array 26.6% CalcElemFBHourglassForce
dxx/dyy/dzz Struct 12.2% CalcLagrangeElements

ﬁ SCIENCE
MIVERS IF MARYLAND

LULESH Optimization:

Globalization

Variable Blame
Elems 74.3%
elemToNode 60.4%
xd/yd/zd 48.0%
x/y/z 37.0%
fx/fy/fz 35.6%

Context Problem:

chpl_gen_main proc CalcHourglassControlForElems (determ) {
var dvdx, dvdy, dydz, x8n, y8n, z8n: [Elems] 8*real;

chpl_gen_main
chpl_gen_main
Solution:

chpl_gen_main

chpl_gen_main Hoisting distributed local variables to the global

dvdx/dvdy/dvdz 33.4%

x8n/y8n/z8n 33.3%

space so that they won’t be dynamically
allocated frequently.

CalcHourglassControlForElems

CalcHourglassControlForElems

elemMass 29.5%

hgfx/hgfy/hgfz 26.7%

shx/shy/shz 26.7%
hx/hy/hz 26.6%
dxx/dyy/dzz 12.2%

ﬁ SCIENCE
NIVERS F MARYLAND

. Result:
chpl_gen_main
30.00
0
CalcFBHourglassForceForElems < 2500
£ 20.00
|—
CalcElemFBHourglassForce s 15.00 ® Original
€ 10.00 Globalization
CalcElemFBHourglassForce b
x 5.00
[F]
CalcLagrangeElements 0.00
2 4 8 16 32 #nodes

LULESH Optimization:

Replication

Variable Blame Context Problem:
/" Elems 74.3% chpl_gen_main) Frequent calls to “localizeNeighborNodes ” on
slemToNode | 60.4% P these variables which incurs sequential remote
data accesses.
xd/yd/zd 48.0% chpl_gen_main
. . iin 1..nodesPerElem |
\ x/y/z 37.0% chpl_gen_main J { Locale 1 ' Locale 2
. |
fx/fy/fz 35.6% chpl_gen_main constpot = | O S
elemToNode[eli][i];] n/"l’ L
dvdx/dvdy/dvdz 33.4% CalcHourglassControlForElems x_IocaI[i] = x[noil; 5 T l © Node
y_local[i] = y[noi]; (T Element
x8n/y8n/z8n 33.3% CalcHourglassControlForElems . .),
z_local[i] = z[noi]; / é/v
elemMass 29.5% chpl_gen_main }

hgfx/hgfy/hgfz 26.7% CalcFBHourglassForceForElems SOIution,'

shx/shy/shz | 26.7% | CalcElemFBHourglassForce Allocate global maps to prestore neighboring
hx/hy/hz 26.6% CalcElemFBHourglassForce nodes for each element using the same

domain: var x_map: [Elems] nodesPerElem*real
dxx/dyy/dzz 12.2% CalcLagrangeElements —

ﬁ SCIENCE
HIVERS JF MARYLAND

Conclusion

LULESH

25.00 . move from having
T 20.00 | —e—original slowdown as more locales
Q 1
14x

3 1500 . - were added to having
£ .\./._.\. : == Globalization
1000 | speedups!

5.00 Globalization+Replication

0.00 # nodes
2 4 8 16 32

= Data-centric Profiling and Blame Analysis
"= Multi-locale Support and New Features

= Benchmark Profiling and Optimization

