
DataWarp User Guide S-2558-5204

Contents
About the DataWarp User Guide...3

About DataWarp..4

Overview of the DataWarp Process...5

DataWarp Concepts..7

dwstat(1)..10

dwcli(8)...17

DataWarp Job Script Commands..25

#DW jobdw - Job Script Command...25

#DW persistentdw - Job Script Command...26

#DW stage_in - DataWarp Job Script Command..26

#DW stage_out - Job Script Command...27

DataWarp Job Script Command Examples...27

Diagrammatic View of Batch Jobs...29

libdatawarp - the DataWarp API..32

dw_get_stripe_configuration..32

dw_query_directory_stage..33

dw_query_file_stage..33

dw_query_list_stage..34

dw_set_stage_concurrency...35

dw_stage_directory_in...35

dw_stage_directory_out..36

dw_stage_file_in..37

dw_stage_file_out..38

dw_stage_list_in..39

dw_stage_list_out..39

dw_terminate_directory_stage..40

dw_terminate_file_stage..41

dw_terminate_list_stage..41

dw_wait_directory_stage...42

dw_wait_file_stage..42

dw_wait_list_stage..43

Failed Stage Identification...44

Terminology...46

Prefixes for Binary and Decimal Multiples...48

()

 2
--

About the DataWarp User Guide
Scope and Audience

This publication covers DataWarp commands, DataWarp job script commands, and the DataWarp API and is
intended for users of Cray XC™ series systems with DataWarp SSD cards.

Release Information

This is the initial release of this publication; it supports DataWarp with the DataWarp Service on Cray XC™ series
systems running Cray software release CLE5.2.UP04. It does not support Static DataWarp, the previously
released statically configured implementation with no user interface.

Typographic Conventions

Monospace Indicates program code, reserved words, library functions, command-line prompts,
screen output, file/path names, key strokes (e.g., Enter and Alt-Ctrl-F), and
other software constructs.

Monospaced Bold Indicates commands that must be entered on a command line or in response to an
interactive prompt.

Oblique or Italics Indicates user-supplied values in commands or syntax definitions.

Proportional Bold Indicates a graphical user interface window or element.

\ (backslash) At the end of a command line, indicates the Linux® shell line continuation character
(lines joined by a backslash are parsed as a single line). Do not type anything after
the backslash or the continuation feature will not work correctly.

Feedback

Please provide feedback by visiting http://pubs.cray.com and clicking the Contact Us button in the upper-right
corner, or by sending email to pubs@cray.com.

()

 3
--

http://pubs.cray.com
mailto:pubs@cray.com
mailto:pubs@cray.com

About DataWarp
TIP: All DataWarp documentation describes units of bytes using the binary prefixes defined by the
International Electrotechnical Commission (IEC), e.g., MiB, GiB, TiB. For further information, see Prefixes
for Binary and Decimal Multiples on page 48.

Cray DataWarp provides an intermediate layer of high bandwidth, file-based storage to applications running on
compute nodes. It is comprised of commercial SSD hardware and software, Linux community software, and Cray
system hardware and software. DataWarp storage is located on server nodes connected to the Cray system's
high speed network (HSN). I/O operations to this storage completes faster than I/O to the attached parallel file
system (PFS), allowing the application to resume computation more quickly and resulting in improved application
performance. DataWarp storage is transparently available to applications via standard POSIX I/O operations and
can be configured in multiple ways for different purposes. DataWarp capacity and bandwidth are dynamically
allocated to jobs on request and can be scaled up by adding DataWarp server nodes to the system.

Each DataWarp server node can be configured either for use by the DataWarp infrastructure or for a site specific
purpose such as a Hadoop distributed file system (HDFS).

IMPORTANT: Keep in mind that DataWarp is focused on performance and not long-term storage. SSDs
can and do fail.

The following diagram is a high level view of DataWarp. SSDs on the Cray high-speed network enable compute
node applications to quickly read and write data to the SSDs, and the DataWarp file system handles staging data
to and from a parallel filesystem.

Figure 1. DataWarp Overview

DataWarp Use Cases

There are four basic use cases for DataWarp:

Parallel
file

DataWarp can be used to cache data between an application and the PFS. This allows PFS I/O to
be overlapped with an application's computation. Initially, data movement (staging) between

()

 4
--

system
(PFS)
cache

DataWarp and the PFS must be explicitly requested by a job and/or application and then performed
by the DataWarp service. In a future release, data staging between DataWarp and the PFS can also
be done implicitly (i.e., read ahead and write behind) by the DataWarp service without application
intervention. Examples of PFS cache use cases include:

▪ Checkpoint/Restart: Writing periodic checkpoint files is a common fault tolerance practice for
long running applications. Checkpoint files written to DataWarp benefit from the high bandwidth.
These checkpoints either reside in DataWarp for fast restart in the event of a compute node
failure, or are copied to the PFS to support restart in the event of a system failure.

▪ Periodic output: Output produced periodically by an application (e.g., time series data) is
written to DataWarp faster than to the PFS. Then as the application resumes computation, the
data is copied from DataWarp to the PFS asynchronously.

▪ Application libraries: Some applications reference a large number of libraries from every rank
(e.g., Python applications). Those libraries are copied from the PFS to DataWarp once and then
directly accessed by all ranks of the application.

Scratch
storage

DataWarp can provide storage that functions like a /tmp file system for each compute node in a job.
This data typically does not touch the PFS, but it can also be configured as PFS cache. Applications
that use out-of-core algorithms, such as geographic information systems, can use DataWarp scratch
storage to improve performance.

Shared
storage

DataWarp storage can be shared by multiple jobs over a configurable period of time. The jobs may
or may not be related and may run concurrently or serially. The shared data may be available before
a job begins, extend after a job completes, and encompass multiple jobs. Shared data use cases
include:

▪ Shared input: A read-only file or database (e.g., a bioinformatics database) used as input by
multiple analysis jobs is copied from PFS to DataWarp and shared.

▪ Ensemble analysis: This is often a special case of the above shared input for a set of similar
runs with different parameters on the same inputs, but can also allow for some minor
modification of the input data across the runs in a set. Many simulation stategies use
ensembles.

▪ In-transit analysis: This is when the results of one job are passed as the input of a subsequent
job (typically using job dependencies). The data can reside only on DataWarp storage and may
never touch the PFS. This includes various types of workflows that go through a sequence of
processing steps, transforming the input data along the way for each step. This can also be
used for processing of intermediate results while an application is running; for example,
visualization or analysis of partial results.

Overview of the DataWarp Process
Refer to Figures DataWarp Component Interaction - bird's eye view on page 6 and DataWarp Component
Interaction - detailed view on page 7 for visual representation of the process.

()

Overview of the DataWarp Process 5
--

Figure 2. DataWarp Component Interaction - bird's eye view

1. A user submits a job to a workload manager. Within the job submission, the user must specify: the amount of
DataWarp storage required, how the storage is to be configured, and whether files are to be staged from the
PFS to DataWarp or from DataWarp to the PFS.

2. The workload manager provides queued access to DataWarp by first querying the DataWarp service for the
total aggregate capacity. The requested capacity is used as a job scheduling constraint. When sufficient
DataWarp capacity is available and other WLM requirements are satisfied, the workload manager requests
the needed capacity and passes along other user-supplied configuration and staging requests.

3. The DataWarp service dynamically assigns the storage and initiates the stage in process.

4. After this completes, the workload manager acquires other resources needed for the batch job, such as
compute nodes.

5. After the compute nodes are assigned, the workload manager and DataWarp service work together to make
the configured DataWarp accessible to the job's compute nodes. This occurs prior to execution of the batch
job script.

6. The batch job runs and any subsequent applications can interact with DataWarp as needed (e.g., stage
additional files, read/write data).

7. When the batch job ends, the workload manager stages out files, if requested, and performs cleanup. First,
the workload manager releases the compute resources and requests that the DataWarp service make the
previously accessible DataWarp configuration inaccessible to the compute nodes. Next, the workload
manager requests that additional files, if any, are staged out. When this completes, the workload manager
tells the DataWarp service that the DataWarp storage is no longer needed.

The following diagram includes extra details regarding the interaction between a WLM and the DWS as well as
the location of the various DWS daemons.

()

Overview of the DataWarp Process 6
--

Figure 3. DataWarp Component Interaction - detailed view

DataWarp Concepts
For basic definitions, refer to Terminology on page 46.

Instances

DataWarp storage is assigned dynamically when requested, and that storage is referred to as an instance. The
space is allocated on one or more DataWarp server nodes and is dedicated to the instance for the lifetime of the
instance. A DataWarp instance has a lifetime that is specified when the instance is created, either job instance
or persistent instance. A job instance is relevant to all previously described use cases except the shared data
use case.

▪ Job instance: The lifetime of a job instance, as it sounds, is the lifetime of the job that created it, and is
accessible only by the job that created it.

()

DataWarp Concepts 7
--

▪ Persistent instance: The lifetime of a persistent instance is not tied to the lifetime of any single job and is
terminated by command. Access can be requested by any job, but file access is authenticated and authorized
based on the POSIX file permissions of the individual files. Jobs request access to an existing persistent
instance using a persistent instance name. A persistent instance is relevant only to the shared data use case.

When either type of instance is destroyed, DataWarp ensures that data needing to be written to the PFS is written
before releasing the space for reuse. In the case of a job instance, this can delay the completion of the job.

Application I/O

The DataWarp service dynamically configures access to a DataWarp instance for all compute nodes assigned to
a job using the instance. Application I/O is forwarded from compute nodes to the instance's DataWarp server
nodes using the Cray Data Virtualization Service (DVS), which provides POSIX based file system access to the
DataWarp storage.

For this release, a DataWarp instance can be configured as scratch. Additionally, all data staging between either
type of instance and the PFS must be explicitly requested using the DataWarp job script staging commands or the
application C library API (libdatawarp). In a future release, an instance will be configurable as cache, and all data
staging between the cache instance and the PFS will occur implicitly.

A scratch configuration can be accessed in one or more of the following ways:

▪ Striped: In striped access mode individual files are striped across multiple DataWarp server nodes
(aggregating both capacity and bandwidth per file) and are accessible by all compute nodes using the
instance.

▪ Private: In private access mode individual files reside on one DataWarp server node. For scratch instances
the files are only accessible to the compute node that created them (e.g., /tmp). Private access is not
supported for persistent instances, because a persistent instance can be used by multiple jobs with different
numbers of compute nodes.

There is a separate file namespace for every instance (job and persistent), type (scratch), and access mode
(striped, private) except persistent/private is not supported. The file path prefix for each is provided to the job via
environment variables.

▪ Striped: All compute nodes share one namespace; files stripe across all servers.

▪ Private: Each compute node gets its own namespace. Each namespace maps to one server node, therefore,
files in a namespace are only on one server node.

The following diagram shows a scratch private and scratch stripe mount point on each of three compute (client)
nodes. For scratch private, each compute node reads and writes to its own namespace that exists on one of the
DataWarp server nodes. For scratch stripe, each compute node reads and writes to a common namespace, and
that namespace spans all three DataWarp nodes.

()

DataWarp Concepts 8
--

()

DataWarp Concepts 9
--

dwstat(1)
NAME

dwstat - Provides status information about DataWarp resources

SYNOPSIS

dwstat [-h]
dwstat [--all] [-b | -e | -E | -g | -G | -H | -k | -K | -m | -M | -p | -P | -t | -T | -
y | -Y | -z | -Z] [--role role] [resource [resource]...]

DESCRIPTION

The dwstat command provides status information about DataWarp resources in tabular format.

IMPORTANT: The dws module must be loaded to use this command.

$ module load dws
dwstat accepts the following options:

--all Used with nodes resource; displays all nodes. Default display includes nodes with capacity>0
only.

-b Display output in bytes

-e Display output in IEC Exbibyte (EiB) units; for further information, see Prefixes for Binary and
Decimal Multiples on page 48

-E Display output in SI Exabyte (EB) units

-g Display output in IEC gibibyte (GiB) units

-G Display output in SI kigabyte (GB) units

-h | --help Display usage information.

-H Display output in SI units (IEC is default)

-k Display output in IEC kibibyte (KiB) units

-K Display output in SI kilobyte (KB) units

-m Display output in IEC mebibyte (MiB) units

-M Display output in SI megabyte (MB) units

-p Display output in IEC Pebibyte (PiB) units

-P Display output in SI Petabyte (PB) units

--role ROLE Request a role outside of user's level

()

 10
--

-t Display output in IEC Tebibyte (TiB) units

-T Display output in SI Terabyte (TB) units

-y Display output in IEC Yobibyte (YiB) units

-Y Display output in SI Yottabyte (YB) units

-z Display output in IEC Zebibyte (ZiB) units

-Z Display output in SI Zettabyte (ZB) units

Resources

The dwstat command accepts the following resources:

activations Displays a table of current activations; a DataWarp activation is an object that represents an
available instance configuration on a set of nodes.

all Displays the tables for all resource types.

configurations Displays a table of current configurations; a DataWarp configuration represents a specific
way in which a DataWarp instance will be used.

fragments Displays a table of current fragments; a DataWarp fragment is a subset of managed space
on a DataWarp node.

instances Displays a table of current instances; a DataWarp instance is a collection of DataWarp
fragments, where no two fragments in the instance exist on the same node.

most Displays tables for pools, sessions, instances, configurations, registrations, and activations

namespaces Displays a table of current namespaces; a DataWarp namespace represents a partitioning
of a DataWarp scratch configuration.

nodes Displays a table of current nodes; a DataWarp node can host DataWarp capacity, have
DataWarp configurations activated on it, or both. By default, displays nodes with
capacity>0 only.

pools Displays a table of current pools; a DataWarp pool represents an aggregate DataWarp
capacity. (Default output)

registrations Displays a table of current registrations; a DataWarp registration represents a known use of
a configuration by a session.

sessions Displays a table of current sessions; a DataWarp session is an object used to map events
between a client context and a DataWarp service context. A WLM typically creates a
DataWarp session for each batch job that uses the DataWarp service.

EXAMPLE: dwstat pools

$ dwstat pools
 pool units quantity free gran
wlm_pool bytes 0 0 1GiB
 space bytes 7.12TiB 2.88TiB 128GiB
testpool bytes 0 0 16MiB
The column headings are defined as:

pool Pool name

units Pool units; currently only bytes are supported

()

 11
--

quantity Maximum configured space

free Currently available space

gran Granularity - pool stripe size

EXAMPLE: dwstat sessions

$ dwstat sessions
 sess state token creator owner created expiration nodes
 832 CA--- 783000000 tester 12345 2015-09-08T16:20:36 never 20
 833 CA--- 784100000 tester 12345 2015-09-08T16:21:36 never 1
 903 D---- 1875700000 tester 12345 2015-09-08T17:26:05 never 0
The column headings are defined as:

sess Numeric session ID

state Five-character code representing a session's state as follows (left to right):

1. Goal: C = Create; D = Destroy

2. Setup: A = Actualized; - = non-actualized

3. Condition: F = Fuse blown (an error exists); - = fuse intact

4. Status: T = Transitioning; - = inert

5. Spectrum: M = Mixed (tasks remaining); - = no outstanding tasks

token Unique identifier typically created by WLM

creator Typically WLM

owner UID of job

created Creation timestamp

expiration date = expiration date; never = no expiration date

nodes Number of nodes at session set up

EXAMPLE: dwstat instances

$ dwstat instances
 inst state sess bytes nodes created expiration intact label public confs
 753 CA--- 832 128GiB 1 2015-09-08T16:20:36 never true I832-0 false 1
 754 CA--- 833 128GiB 1 2015-09-08T16:21:36 never true I833-0 false 1
 807 D---- 903 128GiB 1 2015-09-08T17:26:05 never false I903-0 false 1
 808 CA--- 904 128GiB 1 2015-09-08T17:26:08 never true I904-0 false 1
 810 CA--- 906 128GiB 1 2015-09-08T17:26:10 never true I906-0 false 1

The column headings are defined as:

inst Numeric instance ID

state Five-character code representing a instance's state as follows (left-to-right):

1. Goal: C = Create; D = Destroy

2. Setup: A = Actualized; - = non-actualized

3. Condition: F = Fuse blown (an error exists); - = fuse intact

()

 12
--

4. Status: T = Transitioning; - = inert

5. Spectrum: M = Mixed (tasks remaining); - = no outstanding tasks

sess Numeric session ID

bytes Instance size

nodes Number of nodes on which this instance is active

created Creation timestamp

expiration date = expiration date; never = no expiration date

intact True, if Goal=C (create), and all fragments associated with this instance are themselves associated
with a node

label User-defined label (name)

public true = shared resource (visible to all users)

confs Number of configurations to which an instance belongs

EXAMPLE: dwstat configurations

$ dwstat configurations
 conf state inst type access_type activs
 715 CA--- 753 scratch stripe 1
 716 CA--- 754 scratch stripe 1
 759 D--T- 807 scratch stripe 0
 760 CA--- 808 scratch stripe 1
The column headings are defined as:

conf Number configuration ID

state Five-character code representing a configuration's state as follows (left-to-right):

1. Goal: C = Create; D = Destroy

2. Setup: A = Actualized; - = non-actualized

3. Condition: F = Fuse blown (an error exists); - = fuse intact

4. Status: T = Transitioning; - = inert

5. Spectrum: M = Mixed (tasks remaining); - = no outstanding tasks

inst Numeric instance ID

type Configuration type - scratch, cache, or swap
access_type Access mode - stripe or private
activs Number of activations to which a configuration belongs

EXAMPLE: dwstat registrations

$ dwstat registrations
 reg state sess conf wait
 648 CA--- 832 715 true
 649 CA--- 833 716 true
 674 CA--- 904 760 true

()

 13
--

The column headings are defined as:

reg Numeric registration ID

state Five-character code representing a registration's state as follows (left-to-right):

1. Goal: C = Create; D = Destroy

2. Setup: A = Actualized; - = non-actualized

3. Condition: F = Fuse blown (an error exists); - = fuse intact

4. Status: T = Transitioning; - = inert

5. Spectrum: M = Mixed (tasks remaining); - = no outstanding tasks

sess Numeric session ID

conf Numeric configuration ID

wait If true, this session is waiting for associated configuration to finish asynchronous activities

EXAMPLE: dwstat activations

$ dwstat activations
activ state sess conf nodes mount
 622 CA--- 832 715 20 /tmp/tst1
 623 CA--- 833 716 1 /tmp/tst2
 648 CA--- 904 760 1 /tmp/tst3
 650 CA--- 906 762 1 /tmp/tst4
The column headings are defined as:

activ Numeric activation ID

state Five-character code representing a activation's state as follows (left-to-right):

1. Goal: C = Create; D = Destroy

2. Setup: A = Actualized; - = non-actualized

3. Condition: F = Fuse blown (an error exists); - = fuse intact

4. Status: T = Transitioning; - = inert

5. Spectrum: M = Mixed (tasks remaining); - = no outstanding tasks

sess Numeric session ID

conf Numeric configuration ID

nodes Number of nodes on which an activation is present

mount Mount point for the activation

EXAMPLE: dwstat fragments

$ dwstat fragments
 frag state inst capacity node
 780 CA-- 753 128GiB nid00066
 781 CA-- 754 128GiB nid00069
 842 D--- 807 128GiB nid00022
 843 CA-- 808 128GiB nid00065

()

 14
--

The column headings are defined as:

frag Numeric fragment ID

state Four-character code representing a fragment's state as follows (left-to-right):

1. Goal: C = Create; D = Destroy

2. Setup: A = Actualized; - = non-actualized

3. Status: T = Transitioning; - = inert

4. Spectrum: M = Mixed (tasks remaining); - = no outstanding tasks

inst Numeric instance ID

capacity Total capacity of a fragment

node Hostname of node on which a fragment is located

EXAMPLE: dwstat namespaces

$ dwstat namespaces
 ns state conf frag span
 758 CA-- 715 780 1
 759 CA-- 716 781 1
 818 CA-- 760 843 1
The column headings are defined as:

ns Numeric namespace ID

state Four-character code representing a namespace's state as follows (left-to-right):

1. Goal: C = Create; D = Destroy

2. Setup: A = Actualized; - = non-actualized

3. Status: T = Transitioning; - = inert

4. Spectrum: M = Mixed (tasks remaining); - = no outstanding tasks

conf Numeric configuration ID

frag Numeric fragment ID

span Number of fragments contained within a namespace

EXAMPLE: dwstat nodes

$ dwstat nodes
 node pool online drain gran capacity insts activs
nid00022 space true false 8MiB 3.64TiB 7 0
nid00065 space true false 16MiB 1023.98GiB 7 0
nid00066 space true false 16MiB 1023.98GiB 7 0
nid00069 space true false 16MiB 1023.98GiB 7 0
nid00070 space true false 16MiB 1023.98GiB 6 0
nid00004 - true false 0 0 0 3
The column headings are defined as:

node Node hostname

()

 15
--

pool Name of pool to which node is assigned

online The node is available

drain true = resource is draining

gran Node granularity

capacity Total capacity of a node

insts Number of instances on a node

activs Number of activations on a node

()

 16
--

dwcli(8)
NAME

dwcli - Command line interface for DataWarp

SYNOPSIS
dwcli [common_options] [ACTION RESOURCE [resource_attributes]]

DESCRIPTION

The dwcli command provides a command line interface to act upon DataWarp resources. This is primarily an
administration command, although a user can initiate some actions using it. With full WLM support, a user does
not have a need for this command.

IMPORTANT: The dws module must be loaded to use this command.

$ module load dws
COMMON OPTIONS

dwcli accepts the following common options:

--debug

Enable debug mode

-h | --help
Display usage information for the command, actions, and resources:

▪ dwcli -h

▪ dwcli action -h

▪ dwcli action resource -h

-j | --json
Display debug output as json if applicable (not valid with --debug)

-r ROLE
Request a role outside the user's level

-s | --short
Display abbreviated create output

-v | --version
Display dwcli version information

ACTIONS

The following actions are available:

create Create resource

()

 17
--

Valid for: activation, configuration, instance, pool, and session.

ls Display information about a resource

Valid for: activations, configurations, instances, fragments, namespaces, nodes, pools,
registrations, and sessions.

rm Remove a resource

Valid for: activation, configuration, instance, pool, registration, and session.

stage Stage files and directories in or out

Valid for options: in, out, query, and terminate.

update Update the attributes of a resource

Valid for: activation, configuration, instance, node, registration, and session.

RESOURCES

dwcli accepts the following resources:

▪ activation

A DataWarp activation is an object that represents an available instance configuration on a set of nodes. The
activation resource has the following attributes:

--configuration CONFIGURATION
Numeric configuration ID for activation

--hosts CLIENT_NODES
Hostnames on which the referenced datawarp instance configuration may be activated. If
not defined, the hostnames associated with SESSION are used.

--id ID
Numeric activation ID

--mount MOUNT
Client mount directory for scratch configurations

--replace-fuse

Directs DWS to replace the activation's fuse and retry activating it

--session SESSION
Numeric ID of session with which the datawarp activation is associated

▪ configuration

A DataWarp configuration represents a specific way in which a DataWarp instance will be used. The
configuration resource has the following attributes:

--access-type ACCESS_TYPE
Type of access, either stripe or private

--group GROUP_ID
Numeric group ID for the root directory of the storage

-i | --id ID
Numeric configuration ID

()

 18
--

--instance INSTANCE
Numeric ID of instance in which this configuration exists

--max-files-created MAX_FILES_CREATED
Maximum number of files allowed to be created in a single configuration namespace

--max-file-size MAX_FILE_SIZE
Maximum file size, in bytes, for any file in the configuration namespace

--replace-fuse

Directs DWS to replace the configuration's fuse and retry configuration tasks

--root-permissions ROOT_PERMISSIONS
File system permissions used for the root directory of the storage for type scratch, in octal
format (e.g., 0777)

--type TYPE
Type of configuration; currently only scratch is valid

▪ fragment

A DataWarp fragment is a subset of managed space found on a DataWarp node. The fragment resource has
no attributes available for this command.

▪ instance

A DataWarp instance is a collection of DataWarp fragments, where no two fragments in a DataWarp instance
exist on the same node. DataWarp instances are essentially unusable raw space until at least one DataWarp
instance configuration is created, specifying how the space is to be used and accessed. A DataWarp instance
may not be created unless a DataWarp session is supplied at creation time. The instance resource has the
following attributes:

--capacity size
Instance capacity in bytes

--expiration epoch
Expiration time in Unix, or epoch, time

-i | --id ID
Numeric instance ID

--label LABEL
Instance label name

--optimization OPTIMIZATION
Requested optimization strategy; options are bandwidth, interference, and wear.
Specifying bandwidth optimization results in the DWS picking as many server nodes as
possible while satisfying the capacity request. Specifying interference optimization
results in the DWS picking as few server nodes as possible when satisfying the capacity
request. Specifying wear optimization results in the DWS picking server nodes primarily on
the basis of the health of the SSDs on the server nodes. Both bandwidth and
interference make use of SSD health data as a second-level optimization.

--pool pname
Name of pool with which the instance is associated

--private

Controls the visibility of the instance being created; private is visible only to administrators
and the user listed in SESSION

()

 19
--

--public

Controls the visibility of the instance being created; public is visible to all users. Persistent
datawarp instances, which are meant to be shared by multiple users, are required to be
public.

--replace-fuse

Directs DWS to replace the instance's fuse and retry instance tasks

--session SESSION
Numeric ID of session with which the instance is associated

--write-window-length WW_LENGTH
Write window duration in seconds; used with --write-window-multiplier

--write-window-multiplier WW_MULTIPLIER
Used with --write-window-length, for each fragment comprising the instance, the size of
the fragment is multiplied by WW_MULTIPLIER and the user is allowed to write that much data
to the fragment in a moving window of the WW_LENGTH. When the limit is exceeded, the
scratch_limit_action specified in dwsd.yaml is performed. This can aid in the
detection of anomalous usage of a datawarp instance.

▪ node

A DataWarp node can host DataWarp capacity (server node), have DataWarp configurations activated on it
(client node), or both. The node resource has the following attributes; they are only valid with update:
--drain

Set drain=true; do not use for future instance requests

-n | --name NAME
Hostname of node

--no-drain

Set drain=false; node is available for requests

--pool POOL
Name of pool to which this node belongs

--rm-pool

Disassociate the node from a pool.

▪ pool

A DataWarp pool represents an aggregate DataWarp capacity. The pool resource has the following attributes:
--granularity GRANULARITY

Pool allocation granularity in bytes

-n | --name NAME
Pool name

▪ registration

A DataWarp registration represents a known use of a configuration by a session. The registration resource
has the following attributes:

-i | --id ID
Numeric registration ID

--no-wait

()

 20
--

Set wait=false; do not wait for associated configuration to finish asynchronous activities
such as waiting for all staged out data to finish staging out to the PFS

--replace-fuse

Directs DWS to replace the registration's fuse and begin retrying registration tasks

--wait

Set wait=true; wait for associated configuration to finish asynchronous activities

▪ session

A DataWarp session is an object used to map events between a client context (e.g., a WLM batch job) and a
DataWarp service context. It establishes node authorization rights for activation purposes, and actions
performed through the session are undone when the session is removed. The session resource has the
following attributes:

--creator CREATOR
Name of session creator

--expiration EXPIRATION
Expiration time in Unix, or epoch, time. If 0, the session never expires.

--hosts CLIENT_NODE [CLIENT_NODE...]
List of hostnames to which the session is authorized access

-i | --id ID
Numeric session ID

--owner OWNER
Userid of session owner

--replace-fuse

Directs DWS to replace the session's fuse and retry session tasks

--token TOKEN
Session label

STAGE OPTIONS

The stage action stages files/directories and accepts the following options:

▪ in: stage a file or directory from a PFS into DataWarp. The following arguments are accepted:
-b | --backing-path BACKING_PATH

Path of file/directory to stage into the DataWarp file system

-c | --configuration CONFIGURATION_ID
Numeric configuration ID

-d | --dir DIRNAME
Name of directory to stage into the DataWarp file system

-f | --file FILENAME
Name of file to stage into the DataWarp file system

-s | --session SESSION
Numeric session ID

▪ list: provides a recursive listing of all files with stage attributes for a staging session/configuration. The
following arguments are accepted:
-c | --configuration CONFIGURATION_ID

()

 21
--

Numeric configuration ID

-s | --session SESSION
Numeric session ID

▪ out: stage a file or directory out of the DataWarp file system to a PFS. The following arguments are accepted:
-b | --backing-path BACKING_PATH

PFS path to where file/directory is staged out

-c | --configuration CONFIGURATION_ID
Numeric configuration ID

-d | --dir DIRNAME
Name of directory to stage out to the PFS

-f | --file FILENAME
Name of file to stage out to the PFS

-s | --session SESSION
Numeric session ID

▪ query: query staging status for a file or directory. The following arguments are accepted:
-c | --configuration CONFIGURATION_ID

Numeric configuration ID

-d | --dir DIRNAME
Name of a DataWarp directory to query (optional)

-f | --file FILENAME
Name of a DataWarp file to query (optional)

-s | --session SESSION
Numeric session ID

▪ terminate: terminate a current stage operation. The following arguments are accepted:
-c | --configuration CONFIGURATION_ID

Numeric configuration ID

-d | --dir DIRNAME
Name of directory for which staging is terminated

-f | --file FILENAME
Name of file for which staging is terminated

-s | --session SESSION
Numeric session ID

EXAMPLE: Create a pool

Only an administrator can execute this command.

smw# dwcli create pool --name example-pool --granularity 16777216
created pool name example-pool

EXAMPLE: Assign a node to the pool

Only an administrator can execute this command.

smw# dwcli update node --name example-node --pool example-pool

()

 22
--

EXAMPLE: Create a session

Only an administrator can execute this command.

$ dwcli create session --expiration 4000000000 --creator $(id -un) --token example-
session --owner $(id -u) --hosts example-node
created session id 10

EXAMPLE: Create an instance

Only an administrator can execute this command.

$ dwcli create instance --expiration 4000000000 --public --session 10 --pool
example-poolname --capacity 1099511627776 --label example-instance --optimization
bandwidth
created instance id 8

EXAMPLE: Create a configuration

$ dwcli create configuration --type scratch --access-type stripe --root-
permissions 0755 --instance 8 --group 513
created configuration id 7

EXAMPLE: Create an activation

$ create activation --mount /some/pfs/mount/directory --configuration 7 --session
10
created activation id 7

EXAMPLE: Set a registration to --no-wait

Directs DWS to not wait for associated configurations to finish asynchronous activities such as waiting for all
staged out data to finish staging out to the PFS. Note that no output after this command indicates success.

$ dwcli update registration --id 1 --no-wait
$

EXAMPLE: Remove a pool

Only an administrator can execute this command.

$ dwstat pools
 pool units quantity free gran
canary bytes 3.98GiB 3.97GiB 16MiB
$ dwcli rm pool --name canary
$ dwstat pools
no pools

EXAMPLE: Remove a session

Only an administrator can execute this command.

$ dwstat sessions
sess state token creator owner created expiration nodes
 1 CA--- ok test 12345 2015-09-18T16:31:24 expired 1

$ dwcli rm session --id 1
sess state token creator owner created expiration nodes

()

 23
--

 1 D---- ok test 12345 2015-09-18T16:31:24 expired 0

After some time...
$ dwstat sessions
no sessions

EXAMPLE: Fuse replacement

$ dwstat instances
inst state sess bytes nodes created expiration intact label
public confs
 1 D-F-M 1 16MiB 1 2015-09-18T17:47:57 expired false canary-
instance true 1
$ dwcli update instance --replace-fuse --id 1
$ dwstat instances
inst state sess bytes nodes created expiration intact label
public confs
 1 D---M 1 16MiB 1 2015-09-18T17:47:57 expired false canary-
instance true 1

EXAMPLE: Stage in a directory, query immediately, then stage list

$ dwcli stage in --session $session --configuration $configuration --dir=/tld/. --backing-path=/tmp/
demo/
path backing-path nss ->c ->q ->f <-c <-q <-f <-m
/tld/. - 1 3 1 - - - - -

$ dwcli stage query --session $session --configuration $configuration
path backing-path nss ->c ->q ->f <-c <-q <-f <-m
/. - 1 4 - - - - - -
/tld/ - 1 4 - - - - - -

$ dwcli stage list --session $session --configuration $configuration
path backing-path nss ->c ->q ->f <-c <-q <-f <-m
/tld/filea /tmp/demo/filea 1 1 - - - - - -
/tld/fileb /tmp/demo/fileb 1 1 - - - - - -
/tld/subdir/subdirfile /tmp/demo/subdir/subdirfile 1 1 - - - - - -
/tld/subdir/subfile /tmp/demo/subdir/subfile 1 1 - - - - - -

EXAMPLE: Stage a file in afterwards, stage list, then query

Note the difference in the stage query output.

$ dwcli stage in --session $session --configuration $configuration --file /dwfsfile --backing-path /tmp/
demo/filea
path backing-path nss ->c ->q ->f <-c <-q <-f <-m
/dwfsfile /tmp/demo/filea 1 1 - - - - - -

$ dwcli stage list --session $session --configuration $configuration
path backing-path nss ->c ->q ->f <-c <-q <-f <-m
/dwfsfile /tmp/demo/filea 1 1 - - - - - -
/tld/filea /tmp/demo/filea 1 1 - - - - - -
/tld/fileb /tmp/demo/fileb 1 1 - - - - - -
/tld/subdir/subdirfile /tmp/demo/subdir/subdirfile 1 1 - - - - - -
/tld/subdir/subfile /tmp/demo/subdir/subfile 1 1 - - - - - -

$ dwcli stage query --session $session --configuration $configuration
path backing-path nss ->c ->q ->f <-c <-q <-f <-m
/. - 1 5 - - - - - -
/tld/ - 1 4 - - - - - -
/dwfsfile /tmp/demo/filea 1 1 - - - - - -

()

 24
--

DataWarp Job Script Commands
In addition to workload manager (WLM) commands, the job script file passed to the WLM submission command
(e.g., qsub, msub) can include DataWarp commands, which are treated as comments by the WLM and passed to
the DataWarp infrastructure. They provide the DataWarp Service (DWS) with information about the DataWarp
resources a job requires. The DataWarp job script commands start with the characters #DW and include:

▪ #DW jobdw - Create and configure access to a DataWarp job instance

▪ #DW persistentdw - Configure access to an existing persistent DataWarp instance

▪ #DW stage_in - Stage files into the DataWarp instance at job start

▪ #DW stage_out - Stage files from the DataWarp instance at job end

#DW jobdw - Job Script Command
NAME
#DW jobdw - Create and configure a DataWarp job instance

SYNOPSIS

#DW jobdw access_mode=mode capacity=n type=scratch

DESCRIPTION

Optional command to create and configure access to a DataWarp job instance with the specified parameters. This
command can appear only once in a job script.

The #DW jobdw command requires the following arguments:

access_mode=mode Specifies the mode in which this instance is accessed. Valid options are striped,
private, or both.

The compute node path to the instance storage is:

▪ striped access mode: $DW_JOB_STRIPED
▪ striped private mode: $DW_JOB_PRIVATE

capacity=n Specifies the requested amount of space for the instance (MiB|GiB|TiB|PiB). The DataWarp
Service (DWS) may round this value up to the nearest DataWarp allocation unit.

type=scratch Specifies how the DataWarp instance will function; currently only scratch is supported.

()

#DW jobdw - Job Script Command 25
--

#DW persistentdw - Job Script Command
NAME
#DW persistentdw - Configure access to an existing persistent DataWarp instance

SYNOPSIS

#DW persistentdw name=piname

DESCRIPTION

Optional command to configure access to an existing persistent DataWarp instance with the specified parameters.
This command can appear multiple times in a job script.

The #DW persistentdw command requires the following argument:

name=piname The name given when the persistent instance was created; valid values are anything in the
label column of the dwstat instances command where the public value is also true.

The compute node path to the instance storage is as follows, where piname is the name of the persistent instance:

▪ striped access mode: $DW_PERSISTENT_STRIPED_piname

#DW stage_in - DataWarp Job Script Command
NAME
#DW stage_in - Stage files into a DataWarp instance

SYNOPSIS

#DW stage_in destination=dpath source=spath type=type

DESCRIPTION

Optional command to stage files from a parallel file system (PFS) into an existing DataWarp instance at job start.
Missing files will cause the job to fail. This command can appear multiple times in a job script. Currently supports
scratch configurations only.

The #DW stage_in command accepts the following options and parameters:

destination=dpath Specifies the path within the DataWarp instance; destination must always start with
exactly $DW_JOB_STRIPED

source=spath Specifies the path within the PFS; it must be readable by the user.

type=type Specifies the type of entity for staging. Options are:

()

#DW persistentdw - Job Script Command 26
--

▪ directory - Source is a single directory to stage, including all files and sub-
directories. All symlinks, other non-regular files, and hard linked files are ignored.

▪ file - Source is a single file to stage. If the specified file is a directory, other non-
regular file, or has hard links, the stage in fails.

▪ list - Source is a file containing a list of files to stage (one file per line). If a specified
file is a directory, other non-regular file, or has hard links, the stage in fails.

#DW stage_out - Job Script Command
NAME
#DW stage_out - Stage files from a DataWarp instance

SYNOPSIS

#DW stage_out destination=dpath source=spath type=type

DESCRIPTION

Optional command to stage files from a DataWarp instance to the PFS at job end. This command can appear
multiple times in a job script. Currently supports scratch configurations only.

The #DW stage_out command requires the following arguments:

destination=dpath Specifies the path within the PFS; it must be writable by the user.

source=spath Specifies the path within the DataWarp instance; source must always start with exactly
$DW_JOB_STRIPED
Specifies the type of entity for staging. Options are:

▪ directory - Source is a single directory to stage, including all files and subdirectories
within the directory. All symlinks, other non-regular files, and hard linked files are
ignored.

▪ file - Source is a single file to stage. If the specified file is a directory, other non-
regular file, or has hard links, the stage out fails.

▪ list - Source is a file containing a list of files to stage (one file per line). If a specified
file is a directory, other non-regular file, or has hard links, the stage out fails.

DataWarp Job Script Command Examples
For examples using DataWarp with Slurm, see http://www.slurm.schedmd.com/burst_buffer.html.

EXAMPLE: DataWarp job instance, no staging

Batch command:

()

#DW stage_out - Job Script Command 27
--

http://www.slurm.schedmd.com/burst_buffer.html

% qsub -lmppwidth=3,mppnppn=1 job.sh
Job script job.sh:

#DW jobdw type=scratch access_mode=striped,private capacity=100TiB

aprun -n 3 -N 1 my_app $DW_JOB_STRIPED/sharedfile $DW_JOB_PRIVATE/scratchfile

Each compute node has striped/shared access to DataWarp via $DW_JOB_STRIPED and access to a per-
compute node scratch area via $DW_JOB_PRIVATE. At the end of the job, the WLM runs a series of commands
to wait for data staged out by my_app (see libdatawarp - the DataWarp API on page 32) as well as to clean up
any usage of the DataWarp resource.

EXAMPLE: DataWarp persistent instance

Creating persistent instances differs per WLM; some allow users to schedule persistent DataWarp instance
creation, while others rely on the CLI tool. Note that using the CLI tool to create a persistent instance with a WLM
that expects to manage all DataWarp capacity may cause the WLM to become confused or slow down job
scheduling. For further details, see the appropriate WLM documentation.

A user or administrator creates the persistent instance with the mechanism appropriate to the site-specific WLM
prior to job submission:

% dw_wlm_cli -f create_persistent --capacity 100TiB --caller CLI --accessmode
striped --user 12345 --type scratch --token piname
qsub -lmppwidth=3,mppnppn=1 job.sh
Job script job.sh

#DW persistentdw name=piname
aprun -n 3 -N 1 my_app $DW_PERSISTENT_STRIPED_piname/test1

Each compute node has shared access to DataWarp via $DW_PERSISTENT_STRIPED_piname.

EXAMPLE: Use both job and persistent instances

Creating persistent instances differs per WLM; some allow users to schedule persistent DataWarp instance
creation, and others rely on the CLI tool. Note that using the CLI tool to create a persistent instance with a WLM
that expects to manage all DataWarp capacity may cause the WLM to become confused or slow down job
scheduling. For further details, see the appropriate WLM documentation.

A user or administrator creates the persistent instance with the mechanism appropriate to the site-specific WLM
prior to job submission:

% dw_wlm_cli -f create_persistent --capacity 100TiB --caller CLI --accessmode
striped --user 12345 --type scratch --token piname
qsub -lmppwidth=3,mppnppn=1 job.sh
Job script job.sh

#DW jobdw type=scratch access_mode=striped,private capacity=100TiB
#DW persistentdw name=piname

aprun -n 3 -N 1 my_app $DW_PERSISTENT_STRIPED_piname/test1

()

DataWarp Job Script Command Examples 28
--

Each compute node has shared access to the persistent DataWarp instance via $DW_JOB_PRIVATE, shared
access to the job DataWarp instance via $DW_JOB_STRIPED, and access to a per-compute node scratch area via
$DW_JOB_PRIVATE.

EXAMPLE: Staging

qsub -lmppwidth=128,mppnppn=32 job.sh
Job script job.sh

#DW jobdw type=scratch access_mode=striped capacity=100TiB
#DW stage_in type=directory source=/pfs/dir1 destination=$DW_JOB_STRIPED/dir1
#DW stage_in type=list source=/pfs/inlist
#DW stage_in type=file source=/pfs/file1 destination=$DW_JOB_STRIPED/file1
#DW stage_out type=directory destination=/pfs/dir1 source=$DW_JOB_STRIPED/dir1
#DW stage_out type=list source=/pfs/inlist
#DW stage_out type=file destination=/pfs/file1 source=$DW_JOB_STRIPED/file1

aprun -n 128 -N 32 my_app $DW_JOB_STRIPED/file1

EXAMPLE: Interactive job with DataWarp job instance

qsub -I -lmppwidth=3,mppnppn=1 job.sh
Job script job.sh

#DW jobdw type=scratch access_mode=striped,private capacity=100TiB

For the interactive job case, the job script file is only used to specify the DataWarp configuration - all other
commands in the job script are ignored and job commands are taken from the interactive session same as for any
interactive job. This allows the same job script to be used to configure DataWarp instances for both a batch and
interactive job.

Diagrammatic View of Batch Jobs
EXAMPLE: DataWarp job instance, no staging

The following diagram shows how the #DW jobdw request is represented in the DWS for a batch job in which a
job instance is created, but no staging occurs. For this example, assume that the job gets three compute nodes
and the batch job name is WLM.123.

#DW jobdw type=scratch access_mode=striped,private capacity=4TiB

If any of the referenced boxes are removed (e.g., dwcli rm session --id id), then all boxes that it points to,
recursively, are removed. In this example, the scratch stripe configuration gets one namespace and the scratch
private configuration gets three namespaces, one for each compute node. The 4TiB capacity request is satisfied
by having an instance of size 4TiB, which in turn consists of two 2TiB fragments that exist on two separate DW
servers.

()

Diagrammatic View of Batch Jobs 29
--

EXAMPLE: Use both job and persistent instances

The following diagram shows how the #DW jobdw request is represented in the DWS for a batch job in which
both a job and persistent instance are created. For this example, assume that the existing persistent DataWarp
instance rrr has a stripe configuration of 2TiB capacity and the batch job name is WLM.234.

#DW jobdw type=scratch access_mode=striped,private capacity=4TiB
#DW persistentdw name=rrr

()

Diagrammatic View of Batch Jobs 30
--

()

Diagrammatic View of Batch Jobs 31
--

libdatawarp - the DataWarp API
libdatawarp is a C library API for use by applications to control the staging of data to/from a DataWarp
configuration, and to query staging and configuration data.

The behavior of the explicit staging APIs is affected by the DataWarp access mode. For this release,
libdatawarp supports explicit staging in and out only on DataWarp configurations of type scratch for striped or
private access modes. Batch jobs, however, only support staging in and out for striped access mode and stage in
for load balance mode.

▪ For striped access mode any rank can call the APIs and all ranks see the effects of the API call. If multiple
ranks on any node stage the same file concurrently, all but the first will get an error indicating a stage is
already in progress. The actual stage will run in parallel on one or more DW nodes depending on the size of
the file and number of DW nodes assigned.

IMPORTANT: Before compiling programs that use libdatawarp, load the datawarp module.

> module load datawarp

dw_get_stripe_configuration
- Get stripe configuration

SYNOPSIS

int dw_get_stripe_configuration(int fd,
 int *stripe_size,
 int *stripe_width,
 int *starting_index)

DESCRIPTION

The dw_get_stripe_configuration function returns the current stripe configuration for a file. The
stripe_width represents the maximum number of stripes the file can have, not the current number it is actually
using. For a file that has no stripe configuration, dw_get_stripe_configuration returns the default values
for the DataWarp type and access mode of the file.

PARAMETERS

fd Open file descriptor of the file or directory to be queried

stripe_size Pointer to an int to receive the size of a stripe.

stripe_width Pointer to an int to receive the maximum number of stripes available to the file.

()

dw_get_stripe_configuration 32
--

starting_index Pointer to an int to receive the stripe index (between 0 and stripe_width) for file offset 0

RETURN VALUES

0 Success

<0 Error; the negative integer value represents the error (as defined in Linux errno.h).

dw_query_directory_stage
- Query stage operations for a DataWarp directory

SYNOPSIS

int dw_query_directory_stage(const char *dw_directory_path,
 int *complete,
 int *pending,
 int *deferred,
 int *failed)

DESCRIPTION

The dw_query_directory_stage function queries all files within a directory and all subdirectories. Files and
directories the caller does not have permission to read are skipped and not included in any count.

PARAMETERS

dw_directory_path Path of DataWarp directory to query.

complete The number of completed stage operations.

pending The number of pending (active and waiting) stage operations.

deferred The number of deferred stage operations.

failed The number of failed stage operations.

RETURN VALUES

0 Success.

-ENOENT Specified directory does not exist.

-EINVAL Invalid dw_directory_path argument.

<0 Error; the negative integer value represents the error (as defined in Linux errno.h).

dw_query_file_stage
- Query stage operations for a DataWarp file

()

dw_query_directory_stage 33
--

SYNOPSIS

int dw_query_file_stage(const char *dw_file_path,
 int *complete,
 int *pending,
 int *deferred,
 int *failed)

PARAMETERS

dw_file_path Path of DataWarp file to query.

complete The number of completed stage operations.

pending The number of pending (active and waiting) stage operations.

deferred The number of deferred stage operations.

failed The number of stage operations that failed.

RETURN VALUES

0 Success.

-ENOENT Specified file does not exist.

-EINVAL Specified file has not had a stage operation initiated on it.

<0 Error; the negative integer value represents the error (as defined in Linux errno.h).

For a single file query, only one of the returned counts will be non-zero.

dw_query_list_stage
- Query stage operations for all files in a list

SYNOPSIS

int dw_query_list_stage(const char **dw_list_path,
 int *complete,
 int *pending,
 int *deferred,
 int *failed)

DESCRIPTION
The dw_query_list_stage function queries stage operations for all files from dw_list_path that exist at the
time the call is made.

PARAMETERS

dw_list_path A NULL-terminated list of DW files to query.

complete The number of completed stage operations.

()

dw_query_list_stage 34
--

pending The number of pending (active and waiting) stage operations.

deferred The number of deferred stage operations.

failed The number of stage operations that have failed.

RETURN VALUES

0 Success.

-ENOENT A file specified in the list does not exist.

-EINVAL A file specified in the list has not had a stage operation initiated on it.

<0 Error; the negative integer value represents the error (as defined in Linux errno.h).

dw_set_stage_concurrency
- Set the maximum number of concurrent stage operations

SYNOPSIS

int dw_set_stage_concurrency(const char *dw_instance_path, unsigned int
concurrent_stages)

DESCRIPTION

The dw_set_stage_concurrency function sets the maximum number of concurrent stage operations.

PARAMETERS

dw_instance_path Path to the DW instance for which the concurrency value is to be set. The path must exist
and be readable.

concurrent_stages The maximum number of concurrent stage operations the system can keep active. The
value supplied applies to the entire instance and may be silently constrained by the
DataWarp infrastructure. The concurrent stages are evenly distributed across all server
nodes in the target instance.

Changes to concurrent_stages may take some amount of time to become effective.

RETURN VALUES

0 Success

<0 Error; the negative integer value represents the error (as defined in Linux errno.h).

()

dw_set_stage_concurrency 35
--

dw_stage_directory_in
- Stage in all files from a PFS directory

SYNOPSIS

int dw_stage_directory_in(const char *dw_directory, const char *pfs_directory)

DESCRIPTION
The dw_stage_directory_in function stages all regular files (that exist, are readable and have no hard links
when the call is made) from pfs_directory into dw_directory. Individual files are staged asynchronously; nested
directories are staged recursively. The PFS must be mounted on the compute nodes and DataWarp service
nodes using the same path.

PARAMETERS

dw_directory Path to the DataWarp directory. The directory must exist and be writable.

pfs_directory Path to the PFS directory. All files in this directory are staged in to dw_directory. The directory
must be readable.

RETURN VALUES

0 Success.

<0 Error; the negative integer value represents the error (as defined in Linux errno.h).

dw_stage_directory_out
- Stage files to the PFS

SYNOPSIS

int dw_stage_directory_out(const char *dw_directory,
 const char *pfs_directory,
 enum dw_stage_type stage_type)

DESCRIPTION

The dw_stage_directory_out function stages all regular files (that exist, are readable, and have no hard links
when the call is made) in dw_directoryto pfs_directory. Individual files are staged asynchronously; nested
directories are staged recursively. The PFS must be mounted on the compute nodes and DataWarp service
nodes using the same path.

When this API returns, the stage state is persistent. When this API is used to swap the DW_STAGE_AT_JOB_END
state of 2 files (e.g., set DW_STAGE_AT_JOB_END on one and DW_REVOKE_STAGE_AT_JOB_END on another),
the order of the calls must be considered:

▪ If DW_REVOKE_STAGE_AT_JOB_END is done first, a DataWarp infrastructure failure may result in neither file
being staged at job end.

()

dw_stage_directory_out 36
--

▪ If DW_STAGE_AT_JOB_END is done first, a DataWarp infrastructure failure may result in both files being
staged at job end.

Stage out requests that are active when an instance is deleted (when a job ends for a job instance) will continue
until they either complete successfully or fail. For job instances, the job does not complete and the storage is not
released until the stage out completes. Any failures of stage out requests in progress when the job exits are
reported in the batch jobs stderr file.

PARAMETERS

dw_directory Path to the DataWarp directory; the directory must be readable.

pfs_directory Path to the PFS directory; the directory must exist and be writable.

stage_type The type of stage behavior requested:

▪ DW_STAGE_IMMEDIATE: Stage the file as soon as possible.

▪ DW_STAGE_AT_JOB_END: Defer staging the file until the job ends, either normally or
abnormally.

▪ DW_ACTIVATE_DEFERRED_STAGE: Stage a directory previously staged with
DW_STAGE_AT_JOB_END as soon as possible. The pfs_directory parameter is ignored.

▪ DW_REVOKE_STAGE_AT_JOB_END: Revoke a previous DW_STAGE_AT_JOB_END request.
The pfs_directory parameter is ignored.

RETURN VALUES

0 Success.

<0 Error; the negative integer value represents the error (as defined in Linux errno.h).

dw_stage_file_in
- Stage in a PFS file to DataWarp

SYNOPSIS

int dw_stage_file_in(const char *dw_file_path, const char *pfs_file_path)

DESCRIPTION
The dw_stage_file_in function initiates an asynchronous stage in from the PFS into the DataWarp instance.
The DataWarp infrastructure initiates asynchronous stage operations on all DataWarp nodes associated with the
file. When the stage is complete, fsync() is called for the DataWarp file. Only one stage request can be active on
a file at any given time.

PARAMETERS

dw_file_path Path to the DataWarp file. If the file exists, it must be writable or an error occurs. If the file does
not exist, it is created. The file is truncated before the stage in starts.

pfs_file_path Path to the PFS source file. The file must be a readable, regular file with no hard links.

()

dw_stage_file_in 37
--

RETURN VALUES

0 Success.

<0 Error; the negative integer value represents the error (as defined in Linux errno.h).

dw_stage_file_out
- Stage out DataWarp file to PFS

SYNOPSIS

int dw_stage_file_out(const char *dw_file_path,
 const char *pfs_file_path,
 enum dw_stage_type stage_type)

DESCRIPTION

The dw_stage_file_out initiates an asynchronous stage out from the DataWarp instance into the PFS. The
DataWarp infrastructure initiates asynchronous stage operations on all DataWarp nodes associated with the file.
When the stage is complete, fsync() is called for the PFS file. Only one stage request can be active on a file at
any given time.

When this API returns the stage state is persistent. When this API is used to swap the DW_STAGE_AT_JOB_END
state of 2 files (e.g., set DW_STAGE_AT_JOB_END on one and DW_REVOKE_STAGE_AT_JOB_END on another),
the order of the calls must be considered:

▪ If DW_REVOKE_STAGE_AT_JOB_END is done first, a DW infrastructure failure may result in neither file being
staged at job end.

▪ If DW_STAGE_AT_JOB_END is done first, a DW infrastructure failure may result in both files being staged at
job end.

Stage out requests that are active when an instance is deleted (when a job ends for a job instance) continue until
they either complete successfully or fail. For job instances, the job does not complete and the storage is not
released until the stage out completes. Any failures of stage out requests in progress when the job exits are
reported in the batch job stderr file.

PARAMETERS

dw_file_path Path to the DataWarp file to be staged out; the file must be a readable, regular file with no hard
links.

pfs_file_path Path to the PFS destination file. If the file exists, it must be writable or an error occurs. If the file
does not exist, it is created. The file is truncated before the stage out starts.

stage_type The requested type of stage behavior:

▪ DW_STAGE_IMMEDIATE: Stage the file as soon as possible.

▪ DW_STAGE_AT_JOB_END: Defer staging the file until the job ends, either normally or
abnormally.

()

dw_stage_file_out 38
--

▪ DW_ACTIVATE_DEFERRED_STAGE: Stage a file previously staged with
DW_STAGE_AT_JOB_END as soon as possible. The pfs_file_path parameter is ignored.

▪ DW_REVOKE_STAGE_AT_JOB_END: Revoke a previous DW_STAGE_AT_JOB_END request;
the pfs_file_path parameter is ignored.

RETURN VALUES

0 Success.

<0 Error; the negative integer value represents the error (as defined in Linux errno.h).

dw_stage_list_in
- Stage in all files from a list

SYNOPSIS

int dw_stage_list_in(const char *dw_directory, const char **pfs_list)

DESCRIPTION
The dw_stage_list_in function stages all regular files (that exist, are readable, and have no hard links when
the call is made) from pfs_list into dw_directory. Individual files are staged asynchronously.

PARAMETERS

dw_directory Path to the DataWarp directory; the directory must exist and be writable.

pfs_list A NULL-terminated array of pointers to the paths of the PFS files to be staged (directories are not
supported). Each file in this list is staged in to dw_directory.

RETURN VALUES

0 Success.

<0 Error; the negative integer value represents the error (as defined in Linux errno.h).

dw_stage_list_out
- Stage out all files in a list

SYNOPSIS

int dw_stage_list_out(const char **dw_list,
 const char *pfs_directory,
 enum dw_stage_type stage_type)

()

dw_stage_list_in 39
--

DESCRIPTION

The dw_stage_list_out function stages all files from dw_list, present at the time the call is made, into
pfs_directory. Individual files are staged asynchronously.

When this API returns the stage state is persistent. When this API is used to swap the DW_STAGE_AT_JOB_END
state of 2 files (e.g., set DW_STAGE_AT_JOB_END on one and DW_REVOKE_STAGE_AT_JOB_END on another),
the order of the calls must be considered:

▪ If DW_REVOKE_STAGE_AT_JOB_END is done first, a DataWarp infrastructure failure may result in neither file
being staged at job end.

▪ If DW_STAGE_AT_JOB_END is done first, a DW infrastructure failure may result in both files being staged at
job end.

Stage out requests active when an instance is deleted (when a job ends for a job instance) continue until they
either complete successfully or fail. For job instances, the job does not complete and the storage is not be
released until the stage out completes. Any failures of stage out requests in progress when the job exits are
reported to the batch job stderr file.

PARAMETERS

dw_list A NULL-terminated array of pointers to the paths of the DataWarp files to be staged (directories
are not supported). Each file in this list is staged out to pfs_directory.

pfs_directory Path to the PFS directory; the directory must exist and be writable.

stage_type The requested type of stage behavior:

▪ DW_STAGE_IMMEDIATE: Stage the file as soon as possible.

▪ DW_STAGE_AT_JOB_END: Defer staging the file until the job ends, either normally or
abnormally.

▪ DW_ACTIVATE_DEFERRED_STAGE: Stage the files in dw_list previously staged with
DW_STAGE_AT_JOB_END as soon as possible. The pfs_directory parameter is ignored.

▪ DW_REVOKE_STAGE_AT_JOB_END: Revoke a previous DW_STAGE_AT_JOB_END request;
the pfs_file_path parameter is ignored.

RETURN VALUES

0 Success

<0 Error; the negative integer value represents the error (as defined in Linux errno.h).

dw_terminate_directory_stage
- Terminate stage operations

SYNOPSIS

int dw_terminate_directory_stage(const char *dw_directory_path)

()

dw_terminate_directory_stage 40
--

DESCRIPTION
The dw_terminate_directory_stage fuction terminates one or more in-progress or waiting stage
operations. If the stage is in progress, the amount of data written by the stage is undefined.

PARAMETERS

dw_directory_path Path to the DataWarp directory of files for which staging is terminated.

RETURN VALUES

0 Success.

-ENOENT Specified directory does not exist.

<0 Error; the negative integer value represents the error (as defined in Linux errno.h).

dw_terminate_file_stage
- Terminate a stage operation

SYNOPSIS

int dw_terminate_file_stage(const char *dw_file_path)

DESCRIPTION
The dw_terminate_file_stage function terminates an in-progress or waiting stage operation. If the stage is
in progress, the amount of data written by the stage is undefined.

PARAMETERS

dw_file_path Path of the DataWarp file for which staging is terminated.

RETURN VALUES

0 Success.

-ENOENT Specified file does not exist.

-EINVAL Specified file has not had a stage operation initiated on it.

<0 Error; the negative integer value represents the error (as defined in Linux errno.h).

dw_terminate_list_stage
- Terminate stage operations

()

dw_terminate_file_stage 41
--

SYNOPSIS

int dw_terminate_list_stage(const char **dw_list)

DESCRIPTION
The dw_terminate_list_stage function terminates one or more in-progress or waiting stage operations. If
the stage is in progress, the amount of data written by the stage is undefined.

PARAMETERS

dw_list Pointer to a NULL-terminated list of DataWarp files for which staging is terminated.

RETURN VALUES

0 Success.

-ENOENT A specified file does not exist.

-EINVAL Specified file has not had a stage operation initiated on it.

<0 Error; the negative integer value represents the error (as defined in Linux errno.h).

dw_wait_directory_stage
- Wait for stage operations to complete

SYNOPSIS

int dw_wait_directory_stage(const char *dw_directory_path)

DESCRIPTION
The dw_wait_directory_stage function waits for one or all stage operations to complete. The calling process
is blocked until the staging is complete. This request is not interruptible by a signal.

PARAMETERS

dw_directory_path Path to the DataWarp directory containing files for which staging must complete before the
job continues.

RETURN VALUES

0 Success.

-ENOENT Specified directory does not exist.

<0 Error; the negative integer value represents the error (as defined in Linux errno.h).

()

dw_wait_directory_stage 42
--

dw_wait_file_stage
- Wait for stage operation to complete

SYNOPSIS

int dw_wait_file_stage(const char *dw_file_path)

DESCRIPTION
The dw_wait_file_stage function waits for a stage operation to complete for the target file. The calling
process is blocked until staging is complete. This request is not interruptible by a signal.

PARAMETERS

dw_file_path Path to DataWarp file for which staging must complete before the job continues.

RETURN VALUES

0 Success.

-ENOENT Specified file does not exist.

-EINVAL Specified file has not had a stage operation initiated on it

<0 Error; the negative integer value represents the error (as defined in Linux errno.h).

dw_wait_list_stage
- Wait for stage operations to complete

SYNOPSIS

int dw_wait_list_stage(const char **dw_list)

DESCRIPTION
The dw_wait_list_stage function waits for one or all stage operations to complete. The calling process is
blocked until staging is complete. This request is not interruptible by a signal.

PARAMETERS

dw_list Path to NULL-terminated list of DataWarp files for which staging must complete before the job
continues.

RETURN VALUES

0 Success.

-ENOENT A specified file does not exist.

-EINVAL Specified file has not had a stage operation initiated on it.

()

dw_wait_list_stage 43
--

<0 Error; the negative integer value represents the error (as defined in Linux errno.h).

Failed Stage Identification
- Identify failed stages

SYNOPSIS

int dw_open_failed_stage (const char *dw_instance_path, dw_failed_stage_t **handle)

int dw_read_failed_stage (dw_failed_stage_t *handle, char *path,
 int path_size,
 int *ret_errno)

int dw_close_failed_stage (dw_failed_stage_t *handle)

DESCRIPTION

These functions are used in combination to identify failed stages.

PARAMETERS

dw_instance_path DataWarp directory path from which to begin file tree walk

path Pointer to memory to receive the DataWarp path name of a failed stage

path_size Maximum size of the path to be returned to the path parameter

ret_errno Errno reason that the stage failed

handle Value returned from a prior open_failed_stage

RETURN VALUES

open_failed_stage ▪ ==0: Success, pointer to newly created dw_failed_stage_t handle for use in
read_failed_stage and close_failed_stage returned in handle argument

▪ <0: Error; the negative integer value represents the error (as defined in Linux
errno.h).

read_failed_stage ▪ >0: path and ret_errno returned successfully. Return value is length of returned
path.

▪ ==0: Completed path walk, no more failed stages.

▪ <0: Error; the negative integer value represents the error (as defined in Linux
errno.h).

close_failed_stage ▪ ==0: Success, handle has been cleaned up.

()

Failed Stage Identification 44
--

▪ <0: Error; the negative integer value represents the error (as defined in Linux
errno.h).

read_failed_stage returns the DataWarp path of a stage operation that has failed. It should be called multiple
times to discover all failed stage operations. A file remains a failed stage until the file is either unlinked, the stage
is terminated or the stage is restarted. To restart a failed stage scan, the handle must be closed and reopened
(i.e., there is no equivalent of lseek).

If the list of failed stages changes asynchronously after an open_failed_stage is started those changes may
not be visible to that instance of open_failed_stage. Changes made to a failed stage already seen by an
instance of open_failed_stage (for example terminating or restarting a stage or unlinking the file) will not
affect that instance.

EXAMPLE

dw_open_failed_stage("dw_instance_path", &hdl);
rval = dw_read_failed_stage(hdl, &buf, 1024, &errval);
while (rval > 0) {
 printf("Stage failed on: %s, errno: %d\n", buf, errval);
 rval = dw_read_failed_stage(hdl, &buf, 1024, &errval);
}
dw_close_failed_stage(hdl);

()

Failed Stage Identification 45
--

Terminology
The following diagram shows the relationship between the majority of the DataWarp Service terminology using
Crow's foot notation. A session can have 0 or more instances, and an instance must belong to only one
session. An instance can have 0 or more configurations, but a configuration must belong to only one instance. A
registration belongs to only one configuration and only one session. Sessions and configurations can have 0 or
more registrations. An activation must belong to only one configuration, registration and session. A configuration
can have 0 or more activations. A registration is used by 0 or no activations. A session can have 0 or more
activations.

Figure 4. DataWarp Component Relationships

Activation An object that represents making a DataWarp configuration available to one or more client
nodes, e.g., creating a mount point.

Client Node A compute node on which a configuration is activated; that is, where a DVS client mount
point is created. Client nodes have direct network connectivity to all DataWarp server
nodes. At least one parallel file system (PFS) is mounted on a client node.

Configuration A configuration represents a way to use the DataWarp space.

Fragment A piece of an instance as it exists on a DataWarp service node.

The following diagram uses Crow's foot notation to illustrate the relationship between an
instance-fragment and a configuration-namespace. One instance has one or more
fragments; a fragment can belong to only one instance. A configuration has 0 or more
namespaces; a namespace can belong to only one configuration.

()

 46
--

Figure 5. Instance/Fragment ↔ Configuration/Namespace Relationship

Instance A specific subset of the storage space comprised of DataWarp fragments, where no two
fragments exist on the same node. An instance is essentially raw space until there exists at
least one DataWarp instance configuration that specifies how the space is to be used and
accessed.

DataWarp Service The DataWarp Service (DWS) manages access and configuration of DataWarp instances in
response to requests from a workload manager (WLM) or a user.

Fragment A piece of an instance as it exists on a DataWarp service node

Job Instance A DataWarp instance whose lifetime matches that of a batch job and is only accessible to
the batch job because the public attribute is not set.

Namespace A piece of a scratch configuration; think of it as a folder on a file system.

Node A DataWarp service node (with SSDs) or a compute node (without SSDs). Nodes with
space are server nodes; nodes without space are client nodes.

Persistent
Instance

A DataWarp instance whose lifetime matches that of possibly multiple batch jobs and may
be accessed by multiple user simultaneously because the public attribute is set.

Pool Groups server nodes together so that requests for capacity (instance requests) refer to a
pool rather than a bunch of nodes. Each pool has an overall quantity (maximum configured
space), a granularity of allocation, and a unit type. The units are either bytes or nodes
(currently only bytes are supported). Nodes that host storage capacity belong to at most
one pool.

Registration A known usage of a configuration by a session.

Server Node An IO service blade that contains two SSDs and has network connectivity to the PFS.

Session An intagible object (i.e., not visible to the application, job, or user) used to track interactions
with the DWS; typically maps to a batch job.

()

 47
--

Prefixes for Binary and Decimal Multiples
Multiples of bytes

SI decimal prefixes IEC binary prefixes

Name Symbol Standard SI Binary Usage Name Symbol Value

kilobyte kB 103 210 kibibyte KiB 210

megabyte MB 106 220 mebibyte MiB 220

gigabyte GB 109 230 gibibyte GiB 230

terabyte TB 1012 240 tebibyte TiB 240

petabyte PB 1015 250 pebibyte PiB 250

exabyte EB 1018 260 exbibyte EiB 260

zettabyte ZB 1021 270 zebibyte ZiB 270

yottabyte YB 1024 280 yobibyte YiB 280

For a detailed explanation, including a historical perspective, see http://physics.nist.gov/cuu/Units/binary.html.

()

 48
--

http://physics.nist.gov/cuu/Units/binary.html

	Contents
	About the DataWarp User Guide
	About DataWarp
	Overview of the DataWarp Process
	DataWarp Concepts

	dwstat(1)
	dwcli(8)
	DataWarp Job Script Commands
	#DW jobdw - Job Script Command
	#DW persistentdw - Job Script Command
	#DW stage_in - DataWarp Job Script Command
	#DW stage_out - Job Script Command
	DataWarp Job Script Command Examples
	Diagrammatic View of Batch Jobs

	libdatawarp - the DataWarp API
	dw_get_stripe_configuration
	dw_query_directory_stage
	dw_query_file_stage
	dw_query_list_stage
	dw_set_stage_concurrency
	dw_stage_directory_in
	dw_stage_directory_out
	dw_stage_file_in
	dw_stage_file_out
	dw_stage_list_in
	dw_stage_list_out
	dw_terminate_directory_stage
	dw_terminate_file_stage
	dw_terminate_list_stage
	dw_wait_directory_stage
	dw_wait_file_stage
	dw_wait_list_stage
	Failed Stage Identification

	Terminology
	Prefixes for Binary and Decimal Multiples

