
DataWarp Administration Guide S-2557-5204b

Contents
1 About the DataWarp Administration Guide...3

2 Important Information about this DataWarp Release..4

3 About DataWarp...5

3.1 Overview of the DataWarp Process...6

3.2 DataWarp Concepts..8

3.3 Instances and Fragments - a Detailed Look..10

3.4 Storage Pools..11

3.5 Registrations..12

4 DataWarp Administrator Tools..15

4.1 dwcli(8)..15

4.2 dwstat(1)..23

4.3 xtcheckssd(8)..29

4.4 xtiossdflash(8)...31

4.5 xtssdconfig(8)..32

5 DataWarp Administrator Tasks...34

5.1 Update DWS Configuration Files...34

5.2 DataWarp with DWS: Create a Storage Pool..35

5.3 The dwpoolhelp Command Source Code..38

5.4 Initialize an SSD..45

5.5 Assign a Node to a Storage Pool..47

5.6 Verify the DataWarp Configuration..47

5.7 Enable the Node Health Checker DataWarp Test...49

5.8 Manage Log Files..50

5.9 Drain a Storage Node..50

5.10 Replace a Blown Fuse...51

5.11 Deconfigure DataWarp..52

6 Troubleshooting..54

6.1 Old Nodes in dwstat Output...54

6.2 Dispatch Requests..54

7 Diagnostics...56

7.1 SEC Notification when 90% of SSD Life Expectancy is Reached...56

8 Terminology..57

9 Prefixes for Binary and Decimal Multiples..59

Contents

S2557 2

1 About the DataWarp Administration Guide
This publication covers administrative concepts and tasks for Cray XC™ series systems running CLE5.2.UP04
and installed with DataWarp SSD cards; it is intended for system administrators.

Release Information
This publication includes information, guidance, and procedures for DataWarp on Cray XC series systems running
software release CLE5.2.UP04. It supports both implementations of DataWarp: DataWarp with DWS and Static
DataWarp.

Record of Revision
Revision: b (03-02-16): Included source code for the dwpoolhelp command and modified the DataWarp with
DWS: Create a Storage Pool on page 35 procedure to use dwpoolhelp.

Revision: a (11-06-15): Clean up errors and incorporate bugfixes.

Typographic Conventions
Monospace Indicates program code, reserved words, library functions, command-line prompts,

screen output, file/path names, key strokes (e.g., Enter and Alt-Ctrl-F), and
other software constructs.

Monospaced Bold Indicates commands that must be entered on a command line or in response to an
interactive prompt.

Oblique or Italics Indicates user-supplied values in commands or syntax definitions.

Proportional Bold Indicates a graphical user interface window or element.

\ (backslash) At the end of a command line, indicates the Linux® shell line continuation character
(lines joined by a backslash are parsed as a single line). Do not type anything after
the backslash or the continuation feature will not work correctly.

Feedback
Visit the Cray Publications Portal at http://pubs.cray.com and provide comments online using the Contact Us
button in the upper-right corner or Email pubs@cray.com.

About the DataWarp Administration Guide

S2557 3

http://pubs.cray.com
mailto:pubs@cray.com
mailto:pubs@cray.com

2 Important Information about this DataWarp Release
This release of DataWarp (hereinafter referred to as DataWarp with DWS) marks a significant change from the
original statically-configured release (hereinafter referred to as Static DataWarp). DataWarp with DWS introduces
the following features:

● DataWarp Service (DWS): dynamically allocates DataWarp capacity and bandwidth to jobs on request

● Administrator command line interface - dwcli: a DataWarp resource management tool

● DataWarp status command - dwstat: provides information about the various DataWarp resources

● User API - libdatawarp: provides compute applications with functions to control and query the staging of
data

As a result of these major improvements and additional upcoming features, Static DataWarp is deprecated and
will be removed in the next major release of the Cray Linux Environment (CLE). Cray encourages sites to switch
from Static DataWarp to DataWarp with DWS to take advantage of the features mentioned above.

IMPORTANT: Because this release supports both types of DataWarp, it is important to note the following:

● There are procedural differences during installation. These differences are indicated in DataWarp
Installation and Configuration Guide by the phrases Static DataWarp and DataWarp with DWS.

● The DataWarp Administration Guide supports DataWarp with DWS only.

● The DataWarp User Guide supports DataWarp with DWS only.

TIP: All DataWarp documentation describes units of bytes using the binary prefixes defined by the
International Electrotechnical Commission (IEC), e.g., MiB, GiB, TiB. For further information, see Prefixes
for Binary and Decimal Multiples on page 59.

Important Information about this DataWarp Release

S2557 4

3 About DataWarp
TIP: All DataWarp documentation describes units of bytes using the binary prefixes defined by the
International Electrotechnical Commission (IEC), e.g., MiB, GiB, TiB. For further information, see Prefixes
for Binary and Decimal Multiples on page 59.

Cray DataWarp provides an intermediate layer of high bandwidth, file-based storage to applications running on
compute nodes. It is comprised of commercial SSD hardware and software, Linux community software, and Cray
system hardware and software. DataWarp storage is located on server nodes connected to the Cray system's
high speed network (HSN). I/O operations to this storage completes faster than I/O to the attached parallel file
system (PFS), allowing the application to resume computation more quickly and resulting in improved application
performance. DataWarp storage is transparently available to applications via standard POSIX I/O operations and
can be configured in multiple ways for different purposes. DataWarp capacity and bandwidth are dynamically
allocated to jobs on request and can be scaled up by adding DataWarp server nodes to the system.

Each DataWarp server node can be configured either for use by the DataWarp infrastructure or for a site specific
purpose such as a Hadoop distributed file system (HDFS).

IMPORTANT: Keep in mind that DataWarp is focused on performance and not long-term storage. SSDs
can and do fail.

The following diagram is a high level view of DataWarp. SSDs on the Cray high-speed network enable compute
node applications to quickly read and write data to the SSDs, and the DataWarp file system handles staging data
to and from a parallel filesystem.

Figure 1. DataWarp Overview

DataWarp Use Cases
There are four basic use cases for DataWarp:

Parallel
file

DataWarp can be used to cache data between an application and the PFS. This allows PFS I/O to
be overlapped with an application's computation. Initially, data movement (staging) between

About DataWarp

S2557 5

system
(PFS)
cache

DataWarp and the PFS must be explicitly requested by a job and/or application and then performed
by the DataWarp service. In a future release, data staging between DataWarp and the PFS can also
be done implicitly (i.e., read ahead and write behind) by the DataWarp service without application
intervention. Examples of PFS cache use cases include:

● Checkpoint/Restart: Writing periodic checkpoint files is a common fault tolerance practice for
long running applications. Checkpoint files written to DataWarp benefit from the high bandwidth.
These checkpoints either reside in DataWarp for fast restart in the event of a compute node
failure, or are copied to the PFS to support restart in the event of a system failure.

● Periodic output: Output produced periodically by an application (e.g., time series data) is
written to DataWarp faster than to the PFS. Then as the application resumes computation, the
data is copied from DataWarp to the PFS asynchronously.

● Application libraries: Some applications reference a large number of libraries from every rank
(e.g., Python applications). Those libraries are copied from the PFS to DataWarp once and then
directly accessed by all ranks of the application.

Scratch
storage

DataWarp can provide storage that functions like a /tmp file system for each compute node in a job.
This data typically does not touch the PFS, but it can also be configured as PFS cache. Applications
that use out-of-core algorithms, such as geographic information systems, can use DataWarp scratch
storage to improve performance.

Shared
storage

DataWarp storage can be shared by multiple jobs over a configurable period of time. The jobs may
or may not be related and may run concurrently or serially. The shared data may be available before
a job begins, extend after a job completes, and encompass multiple jobs. Shared data use cases
include:

● Shared input: A read-only file or database (e.g., a bioinformatics database) used as input by
multiple analysis jobs is copied from PFS to DataWarp and shared.

● Ensemble analysis: This is often a special case of the above shared input for a set of similar
runs with different parameters on the same inputs, but can also allow for some minor
modification of the input data across the runs in a set. Many simulation stategies use
ensembles.

● In-transit analysis: This is when the results of one job are passed as the input of a subsequent
job (typically using job dependencies). The data can reside only on DataWarp storage and may
never touch the PFS. This includes various types of workflows that go through a sequence of
processing steps, transforming the input data along the way for each step. This can also be
used for processing of intermediate results while an application is running; for example,
visualization or analysis of partial results.

3.1 Overview of the DataWarp Process
Refer to Figures DataWarp Component Interaction - bird's eye view on page 7 and DataWarp Component
Interaction - detailed view on page 8 for visual representation of the process.

About DataWarp

S2557 6

Figure 2. DataWarp Component Interaction - bird's eye view

1. A user submits a job to a workload manager. Within the job submission, the user must specify: the amount of
DataWarp storage required, how the storage is to be configured, and whether files are to be staged from the
PFS to DataWarp or from DataWarp to the PFS.

2. The workload manager provides queued access to DataWarp by first querying the DataWarp service for the
total aggregate capacity. The requested capacity is used as a job scheduling constraint. When sufficient
DataWarp capacity is available and other WLM requirements are satisfied, the workload manager requests
the needed capacity and passes along other user-supplied configuration and staging requests.

3. The DataWarp service dynamically assigns the storage and initiates the stage in process.

4. After this completes, the workload manager acquires other resources needed for the batch job, such as
compute nodes.

5. After the compute nodes are assigned, the workload manager and DataWarp service work together to make
the configured DataWarp accessible to the job's compute nodes. This occurs prior to execution of the batch
job script.

6. The batch job runs and any subsequent applications can interact with DataWarp as needed (e.g., stage
additional files, read/write data).

7. When the batch job ends, the workload manager stages out files, if requested, and performs cleanup. First,
the workload manager releases the compute resources and requests that the DataWarp service make the
previously accessible DataWarp configuration inaccessible to the compute nodes. Next, the workload
manager requests that additional files, if any, are staged out. When this completes, the workload manager
tells the DataWarp service that the DataWarp storage is no longer needed.

The following diagram includes extra details regarding the interaction between a WLM and the DWS as well as
the location of the various DWS daemons.

About DataWarp

S2557 7

Figure 3. DataWarp Component Interaction - detailed view

3.2 DataWarp Concepts
For basic definitions, refer to Terminology on page 57.

Instances
DataWarp storage is assigned dynamically when requested, and that storage is referred to as an instance. The
space is allocated on one or more DataWarp server nodes and is dedicated to the instance for the lifetime of the
instance. A DataWarp instance has a lifetime that is specified when the instance is created, either
job instance or persistent instance. A job instance is relevant to all previously described use cases
except the shared data use case.

● Job instance: The lifetime of a job instance, as it sounds, is the lifetime of the job that created it, and is
accessible only by the job that created it.

About DataWarp

S2557 8

● Persistent instance: The lifetime of a persistent instance is not tied to the lifetime of any single job and is
terminated by command. Access can be requested by any job, but file access is authenticated and authorized
based on the POSIX file permissions of the individual files. Jobs request access to an existing persistent
instance using a persistent instance name. A persistent instance is relevant only to the shared data use case.

WARNING: New DataWarp software releases may require the re-creation of persistent instances.

When either type of instance is destroyed, DataWarp ensures that data needing to be written to the PFS is written
before releasing the space for reuse. In the case of a job instance, this can delay the completion of the job.

Application I/O
The DataWarp service dynamically configures access to a DataWarp instance for all compute nodes assigned to
a job using the instance. Application I/O is forwarded from compute nodes to the instance's DataWarp server
nodes using the Cray Data Virtualization Service (DVS), which provides POSIX based file system access to the
DataWarp storage.

For this release, a DataWarp instance can be configured as scratch. Additionally, all data staging between either
type of instance and the PFS must be explicitly requested using the DataWarp job script staging commands or the
application C library API (libdatawarp). In a future release, an instance will be configurable as cache, and all
data staging between the cache instance and the PFS will occur implicitly.

A scratch configuration can be accessed in one or more of the following ways:

● Striped: In striped access mode individual files are striped across multiple DataWarp server nodes
(aggregating both capacity and bandwidth per file) and are accessible by all compute nodes using the
instance.

● Private: In private access mode individual files reside on one DataWarp server node. For scratch instances
the files are only accessible to the compute node that created them (e.g., /tmp). Private access is not
supported for persistent instances, because a persistent instance can be used by multiple jobs with different
numbers of compute nodes.

Private access mode assigns each compute node in a job to one of the DataWarp servers assigned to the
job. The number of compute nodes assigned to a server is proportional to the amount of storage assigned to
the job on that server. For example, if two servers are assigned and each provide half of the requested
storage, then the compute nodes are distributed equally across the two servers. However, if one server
provides 25% and the other 75% of the storage, then the compute nodes are distributed 25% and 75% as
well.

Private access mode assumes that all compute nodes assigned to a job have similar capacity and bandwidth
requirements.

There is a separate file namespace for every instance (job and persistent), type (scratch), and access mode
(striped, private) except persistent/private is not supported. The file path prefix for each is provided to the job via
environment variables.

● Striped: All compute nodes share one namespace; files stripe across all servers.

● Private: Each compute node gets its own namespace. Each namespace maps to one server node, therefore,
files in a namespace are only on one server node.

The following diagram shows a scratch private, scratch stripe, and scratch load balance (deferred
implementation) mount point on each of three compute (client) nodes. For scratch private, each compute node
reads and writes to its own namespace that exists on one of the DataWarp server nodes. For scratch stripe, each
compute node reads and writes to a common namespace, and that namespace spans all three DataWarp

About DataWarp

S2557 9

nodes. For scratch load balance (deferred implementation), each compute node reads from one of many
synchronized namespaces (no writes allowed). The compute node - namespace mapping is based on a hashing
algorithm.

3.3 Instances and Fragments - a Detailed Look
The DataWarp Service (DWS) provides user access to subsets of storage space that exist between an arbitrary
filesystem path (typically that of a Parallel File System) and a client (typically a compute node in a batch job).
Storage space typically exists on multiple server nodes. On each server node, LVM combines block devices and
presents them to the DWS as an LVM volume group. All of the LVM volume groups on all of the server nodes
compose the aggregate storage space. A specific subset of the storage space is called a DataWarp instance, and
typically spans multiple server nodes. Each piece of a DataWarp instance (as it exists on each server node) is
called a DataWarp instance fragment. A DataWarp instance fragment is implemented as an LVM logical volume.

The following figure is an example of three DataWarp instances. DataWarp instance A consists of fragments that
map to LVM logical volumes A1, A2, and A3 on servers x, y, z, respectively. DataWarp Instance B consists of
fragments that map to LVM logical volumes y and z, respectively. DataWarp Instance C consists of a single
fragment that maps to LVM logical volume C1 on server x.

About DataWarp

S2557 10

The following diagram uses Crow's foot notation to illustrate the relationship between an instance-fragment and a
configuration-namespace. One instance has one or more fragments; a fragment can belong to only one instance.
A configuration has 0 or more namespaces; a namespace can belong to only one configuration.

3.4 Storage Pools
A storage pool groups nodes with storage together such that requests for space made against the pool are fufilled
from the nodes associated with the pool with a common allocation granularity. Pools have either byte or node
allocation granularity (pool_AG). This release of DWS only supports byte allocation granularity. There are
tradeoffs in picking allocation granularities too small or too large.

TIP: Throughout these procedures, units of bytes are described using the binary prefixes defined by the
International Electrotechnical Commission (IEC). For further information, see Prefixes for Binary and
Decimal Multiples on page 59.

The following are important considerations when creating a storage pool:

1. The byte-oriented allocation granularity for a pool must be at least 16MiB.

2. Each node's volume group (dwcache, configured in Initialize an SSD on page 45) has a Physical Extent
size (PE_size) and Physical Volume count (PV_count). The default PE_size is 4MiB, and PV_count is

About DataWarp

S2557 11

equal to the number of Physical Volumes specified during volume group creation. DWS places the following
restriction on nodes associated with a pool:

● A node can only be associated with a storage pool if the node's granularity (PE_size * PV_count) is a
factor of the pool's allocation granularity (pool_AG). The dwstat nodes command lists the node's
granularity in the gran column.

3. The more nodes in the pool, the higher the granularity.

4. Ideally, a pool's allocation granularity is defined as a factor of the aggregate space of each node within the
pool; otherwise, some space is not usable and, therefore, is wasted.

The most important considerations are #1 and #2. On all Cray systems, picking a pool granularity of at least
16MiB (16,777,216 bytes) and is a multiple of 16MiB (16,777,216, 33,554,432, 50,331,648, ...) will define a
functioning, but possibly sub-optimal, configuration. The following recommendation table does not take #3 and #4
into consideration but will be a good starting point for all Cray system configurations:

Table 1. Nodes

SSD Nodes in Pool Granularity (bytes)

1 16,777,216

<20 214,748,364,800

<100 429,496,729,600

<200 858,993,459,200

>=200 1,073,741,824,000

The following diagram shows six different DataWarp nodes belonging to a storage pool wlm_pool with a 1TiB
allocation granularity. Each DataWarp node has 6.4TiB of space, which means that 0.4TiB are wasted per node
because only 6 allocation granularities fit on any one node.

About DataWarp

S2557 12

3.5 Registrations
A configuration represents a way to use the DataWarp space. Configurations are used in one of two ways:

● configurations are activated

● data is staged into or out of configurations

When either of these actions are performed, the action must supply a DataWarp session identifier in addition to
other action-specific data such as a mount point. The session identifier is required because the DataWarp Service
(DWS) keeps track of whether a configuration is used and which sessions used it. Then, when requested to
remove either the configuration or session, the DWS cleans things up correctly.

The first time a configuration is used by a session, the DWS automatically creates a registration entry that binds
together the session and configuration. The registration is automatically requested to be removed when either the
linked configuration or session is requested to be removed. The actions performed at registration removal time
depend on two things:

1. The type of configuration linked with the registration

2. The value of the registration's wait attribute

● By default, wait=true, resulting in the execution of some configuration-specific actions prior to the
complete removal of the registration.

For this release, the only type of configuration is scratch. The DWS carries out the following operations for
registrations that are linked with a scratch configuration:

1. Files marked for stage out by a user application (using libdatawarp, see libdatawarp - the DataWarp API)
in a batch job with the DW_STAGE_AT_JOB_END stage type are transitioned to being immediately staged out.

2. All existing stage out activity, including the stage out from the previous step, is allowed to fully complete.

If the above process is interrupted, e.g., a DataWarp server node crashes, the DWS attempts to restore
everything associated with the node and restart the process after the node reboots. This includes restoring any
logical volumes or mount points that are associated with the configuration.

There are times when the previous behavior is not desired. Consider either of the following:

● A DWS or underlying software bug exists that prevents the restoration of the DataWarp state on a crashed
server node

● Hardware fails such that data on the SSD is permanently lost

In situations like this, set wait=false for the registration in order to tell the DWS to abort the normal cleanup
process. For example, the following registration is in the process of being destroyed but cannot finish because a
linked SSD has failed:

user> dwstat registrations
reg state sess conf wait
 2 D---- 5 11 true
Instruct the DWS to abort the normal registration removal tasks by setting the wait=false with the following
dwcli command:

user> dwcli update registration --id 2 --no-wait
WARNING: Use of --no-wait can lead to data loss because some data may not have been staged out
to the PFS.

About DataWarp

S2557 13

WLM Interation with Registrations
Registration removal blocks batch job removal because the registration belongs to a session, which in turn
belongs to a batch job. Each WLM provides its own way to force the removal of a batch job. Each of the
DataWarp-integrated WLMs have been modified to automatically set the wait attribute of registrations to false
when the WLM-specific job removal force option is used. It is only necessary to set wait=false using dwcli for
registrations without a corresponding WLM batch job to force remove.

About DataWarp

S2557 14

4 DataWarp Administrator Tools

4.1 dwcli(8)

NAME
dwcli - Command line interface for DataWarp

SYNOPSIS
dwcli [common_options] [ACTION RESOURCE [resource_attributes]]

DESCRIPTION
The dwcli command provides a command line interface to act upon DataWarp resources. This is primarily an
administration command, although a user can initiate some actions using it. With full WLM support, a user does
not have a need for this command.

IMPORTANT: The dws module must be loaded to use this command.

$ module load dws
COMMON OPTIONS

dwcli accepts the following common options:

--debug
Enable debug mode

-h | --help
Display usage information for the command, actions, and resources:

● dwcli -h
● dwcli action -h

● dwcli action resource -h

-j | --json
Display debug output as json if applicable (not valid with --debug)

-r ROLE
Request a role outside the user's level

-s | --short
Display abbreviated create output

DataWarp Administrator Tools

S2557 15

-v | --version
Display dwcli version information

ACTIONS

The following actions are available:

create Create resource

Valid for: activation, configuration, instance, pool, and session.

ls Display information about a resource

Valid for: activation, configuration, instance, fragment, namespace, node, pool,
registration, and session.

rm Remove a resource

Valid for: activation, configuration, instance, pool, registration, and session.

stage Stage files and directories in or out

Valid for options: in, out, query, and terminate.

update Update the attributes of a resource

Valid for: activation, configuration, instance, node, registration, and session.

RESOURCES

dwcli accepts the following resources:

● activation

A DataWarp activation is an object that represents an available instance configuration on a set of nodes. The
activation resource has the following attributes:

--configuration CONFIGURATION
Numeric configuration ID for activation

--hosts CLIENT_NODES
Hostnames on which the referenced datawarp instance configuration may be activated. If
not defined, the hostnames associated with SESSION are used. If defined, the hostnames
must be a subset of those associated with SESSION.

--id ID
Numeric activation ID

--mount MOUNT
Client mount directory for scratch configurations

--replace-fuse
Directs DWS to replace the activation's fuse and retry activating it

--session SESSION
Numeric ID of session with which the datawarp activation is associated

● configuration

DataWarp Administrator Tools

S2557 16

A DataWarp configuration represents a specific way in which a DataWarp instance is used. The configuration
resource has the following attributes:

--access-type ACCESS_TYPE
Type of access, either stripe or private

--group GROUP_ID
Numeric group ID for the root directory of the storage

-i | --id ID
Numeric configuration ID

--instance INSTANCE
Numeric ID of instance in which this configuration exists

--max-files-created MAX_FILES_CREATED
Maximum number of files allowed to be created in a single configuration namespace

--max-file-size MAX_FILE_SIZE
Maximum file size, in bytes, for any file in the configuration namespace

--replace-fuse
Directs DWS to replace the configuration's fuse and retry configuration tasks

--root-permissions ROOT_PERMISSIONS
File system permissions set on the root directory for storage of type scratch, in octal format
(e.g., 0777)

--type TYPE
Type of configuration; currently only scratch is valid

● fragment

A DataWarp fragment is a subset of managed space found on a DataWarp node. The fragment resource has
no attributes available for this command.

● instance

A DataWarp instance is a collection of DataWarp fragments, where no two fragments in a DataWarp instance
exist on the same node. DataWarp instances are essentially unusable raw space until at least one DataWarp
instance configuration is created, specifying how the space is used and accessed. A DataWarp instance may
not be created unless a DataWarp session is supplied at creation time. The instance resource has the
following attributes:

--capacity size
Instance capacity in bytes

--expiration epoch
Expiration time in Unix, or epoch, time

-i | --id ID
Numeric instance ID

--label LABEL
Instance label name

--optimization OPTIMIZATION
Requested optimization strategy; options are bandwidth, interference, and wear.
Specifying bandwidth optimization results in the DWS picking as many server nodes as

DataWarp Administrator Tools

S2557 17

possible while satisfying the capacity request. Specifying interference optimization
results in the DWS picking as few server nodes as possible when satisfying the capacity
request. Specifying wear optimization results in the DWS picking server nodes primarily on
the basis of the health of the SSDs on the server nodes. Both bandwidth and
interference make use of SSD health data as a second-level optimization.

--pool pname
Name of pool with which the instance is associated

--private
Controls the visibility of the instance being created; private is visible only to administrators
and the user listed in SESSION

--public
Controls the visibility of the instance being created; public is visible to all users. Persistent
datawarp instances, which are meant to be shared by multiple users, are required to be
public.

--replace-fuse
Directs DWS to replace the instance's fuse and retry instance tasks

--session SESSION
Numeric ID of session with which the instance is associated

--write-window-length WW_LENGTH
Write window duration in seconds; used with --write-window-multiplier

--write-window-multiplier WW_MULTIPLIER
Used with --write-window-length, for each fragment comprising the instance, the size
of the fragment is multiplied by WW_MULTIPLIER and the user is allowed to write that much
data to the fragment in a moving window of WW_LENGTH. When the limit is exceeded, the
scratch_limit_action specified by the system administrator in dwsd.yaml, is
performed. This can aid in the detection of anomalous usage of a DataWarp instance.

● node

A DataWarp node can host DataWarp capacity (server node), have DataWarp configurations activated on it
(client node), or both. The node resource has the following attributes that are only valid with update:

--drain
Set drain=true; do not use for future instance requests

-n | --name NAME
Hostname of node

--no-drain
Set drain=false; node is available for requests

--pool POOL
Name of pool to which this node belongs

--rm-pool
Disassociate the node from a pool

● pool

A DataWarp pool represents an aggregate DataWarp capacity. The pool resource has the following attributes:

--granularity GRANULARITY

DataWarp Administrator Tools

S2557 18

Pool allocation granularity in bytes

-n | --name NAME
Pool name

● registration

A DataWarp registration represents a known use of a configuration by a session. The registration resource
has the following attributes:

-i | --id ID
Numeric registration ID

--no-wait
Set wait=false; do not wait for associated configurations to finish asynchronous activities
such as waiting for all staged out data to finish staging out to the PFS

--replace-fuse
Directs DWS to replace the registration's fuse and begin retrying registration tasks

--wait
Set wait=true; wait for associated configurations to finish asynchronous activities

● session

A DataWarp session is an object used to map events between a client context (e.g., a WLM batch job) and a
DataWarp service context. It establishes node authorization rights for activation purposes, and actions
performed through the session are undone when the session is removed. The session resource has the
following attributes:

--creator CREATOR
Name of session creator

--expiration EXPIRATION
Expiration time in Unix, or epoch, time. If 0, the session never expires.

--hosts CLIENT_NODE [CLIENT_NODE...]
List of hostnames to which the session is authorized access

-i | --id ID
Numeric session ID

--owner OWNER
Userid of session owner

--replace-fuse
Directs DWS to replace the session's fuse and retry session tasks

--token TOKEN
Session label

STAGE OPTIONS

The stage action stages files/directories and accepts the following options:

● in: stage a file or directory from a PFS into DataWarp. The following arguments are accepted:

-b | --backing-path BACKING_PATH
Path of file/directory to stage into the DataWarp file system

-c | --configuration CONFIGURATION_ID

DataWarp Administrator Tools

S2557 19

Numeric configuration ID

-d | --dir DIRNAME
Name of directory to stage into the DataWarp file system

-f | --file FILENAME
Name of file to stage into the DataWarp file system

-s | --session SESSION
Numeric session ID

● list: provides a recursive listing of all files with stage attributes for a staging session/configuration. The
following arguments are accepted:

-c | --configuration CONFIGURATION_ID
Numeric configuration ID

-s | --session SESSION
Numeric session ID

● out: stage a file or directory out of the DataWarp file system to a PFS. The following arguments are accepted:

-b | --backing-path BACKING_PATH
PFS path to where file/directory is staged out

-c | --configuration CONFIGURATION_ID
Numeric configuration ID

-d | --dir DIRNAME
Name of directory to stage out to the PFS

-f | --file FILENAME
Name of file to stage out to the PFS

-s | --session SESSION
Numeric session ID

● query: query staging status for a file or directory. The following arguments are accepted:

-c | --configuration CONFIGURATION_ID
Numeric configuration ID

-d | --dir DIRNAME
Name of a DataWarp directory to query (optional)

-f | --file FILENAME
Name of a DataWarp file to query (optional)

-s | --session SESSION
Numeric session ID

● terminate: terminate a current stage operation. The following arguments are accepted:

-c | --configuration CONFIGURATION_ID
Numeric configuration ID

-d | --dir DIRNAME
Name of directory for which staging is terminated

-f | --file FILENAME

DataWarp Administrator Tools

S2557 20

Name of file for which staging is terminated

-s | --session SESSION
Numeric session ID

EXAMPLE: Create a pool
Only an administrator can execute this command.

smw# dwcli create pool --name example-pool --granularity 16777216
created pool name example-pool

EXAMPLE: Assign a node to the pool
Only an administrator can execute this command.

smw# dwcli update node --name example-node --pool example-pool

EXAMPLE: Create a session
Only an administrator can execute this command.

$ dwcli create session --expiration 4000000000 --creator $(id -un) --token example-
session --owner $(id -u) --hosts example-node
created session id 10

EXAMPLE: Create an instance
Only an administrator can execute this command.

$ dwcli create instance --expiration 4000000000 --public --session 10 --pool
example-poolname --capacity 1099511627776 --label example-instance --optimization
bandwidth
created instance id 8

EXAMPLE: Create a configuration

$ dwcli create configuration --type scratch --access-type stripe --root-
permissions 0755 --instance 8 --group 513
created configuration id 7

EXAMPLE: Create an activation

$ create activation --mount /some/pfs/mount/directory --configuration 7 --session
10
created activation id 7

EXAMPLE: Set a registration to --no-wait
Directs DWS to not wait for associated configurations to finish asynchronous activities such as waiting for all
staged out data to finish staging out to the PFS. Note that no output after this command indicates success.

$ dwcli update registration --id 1 --no-wait
$

DataWarp Administrator Tools

S2557 21

EXAMPLE: Remove a pool
Only an administrator can execute this command.

$ dwstat pools
 pool units quantity free gran
canary bytes 3.98GiB 3.97GiB 16MiB
$ dwcli rm pool --name canary
$ dwstat pools
no pools

EXAMPLE: Remove a session
Only an administrator can execute this command.

$ dwstat sessions
sess state token creator owner created expiration nodes
 1 CA--- ok test 12345 2015-09-18T16:31:24 expired 1

$ dwcli rm session --id 1
sess state token creator owner created expiration nodes
 1 D---- ok test 12345 2015-09-18T16:31:24 expired 0

After some time...
$ dwstat sessions
no sessions

EXAMPLE: Fuse replacement
$ dwstat instances
inst state sess bytes nodes created expiration intact label public confs
 1 D-F-M 1 16MiB 1 2015-09-18T17:47:57 expired false canary-instance true 1
$ dwcli update instance --replace-fuse --id 1
$ dwstat instances
inst state sess bytes nodes created expiration intact label public confs
 1 D---M 1 16MiB 1 2015-09-18T17:47:57 expired false canary-instance true 1

EXAMPLE: Stage in a directory, query immediately, then stage list
$ dwcli stage in --session $session --configuration $configuration --dir=/tld/. --backing-path=/tmp/
demo/
path backing-path nss ->c ->q ->f <-c <-q <-f <-m
/tld/. - 1 3 1 - - - - -

$ dwcli stage query --session $session --configuration $configuration
path backing-path nss ->c ->q ->f <-c <-q <-f <-m
/. - 1 4 - - - - - -
/tld/ - 1 4 - - - - - -

$ dwcli stage list --session $session --configuration $configuration
path backing-path nss ->c ->q ->f <-c <-q <-f <-m
/tld/filea /tmp/demo/filea 1 1 - - - - - -
/tld/fileb /tmp/demo/fileb 1 1 - - - - - -
/tld/subdir/subdirfile /tmp/demo/subdir/subdirfile 1 1 - - - - - -
/tld/subdir/subfile /tmp/demo/subdir/subfile 1 1 - - - - - -

EXAMPLE: Stage a file in afterwards, stage list, then query
Note the difference in the stage query output.

$ dwcli stage in --session $session --configuration $configuration --file /dwfsfile --backing-path /tmp/
demo/filea

DataWarp Administrator Tools

S2557 22

path backing-path nss ->c ->q ->f <-c <-q <-f <-m
/dwfsfile /tmp/demo/filea 1 1 - - - - - -

$ dwcli stage list --session $session --configuration $configuration
path backing-path nss ->c ->q ->f <-c <-q <-f <-m
/dwfsfile /tmp/demo/filea 1 1 - - - - - -
/tld/filea /tmp/demo/filea 1 1 - - - - - -
/tld/fileb /tmp/demo/fileb 1 1 - - - - - -
/tld/subdir/subdirfile /tmp/demo/subdir/subdirfile 1 1 - - - - - -
/tld/subdir/subfile /tmp/demo/subdir/subfile 1 1 - - - - - -

$ dwcli stage query --session $session --configuration $configuration
path backing-path nss ->c ->q ->f <-c <-q <-f <-m
/. - 1 5 - - - - - -
/tld/ - 1 4 - - - - - -
/dwfsfile /tmp/demo/filea 1 1 - - - - - -

4.2 dwstat(1)

NAME
dwstat - Provides status information about DataWarp resources

SYNOPSIS

dwstat [-h]
dwstat [--all] [-b | -e | -E | -g | -G | -H | -k | -K | -m | -M |
 -p | -P | -t | -T | -y | -Y | -z | -Z]
 [--role ROLE]
 [RESOURCE [RESOURCE]...]

DESCRIPTION
The dwstat command provides status information about DataWarp resources in tabular format.

IMPORTANT: The dws module must be loaded to use this command.

$ module load dws
The dwstat commands accepts the following options:

-h | --help Displays usage information.

--all Used with nodes resource; displays all nodes. Default display includes nodes with capacity>0
only.

-b Displays output in bytes

-e Displays output in IEC Exbibyte (EiB) units; for further information, see Prefixes for Binary and
Decimal Multiples on page 59

-E Displays output in SI Exabyte (EB) units

-g Displays output in IEC gibibyte (GiB) units

-G Displays output in SI kigabyte (GB) units

DataWarp Administrator Tools

S2557 23

-H Displays output in SI units (IEC is default)

-k Displays output in IEC kibibyte (KiB) units

-K Displays output in SI kilobyte (KB) units

-m Displays output in IEC mebibyte (MiB) units

-M Displays output in SI megabyte (MB) units

-p Displays output in IEC Pebibyte (PiB) units

-P Displays output in SI Petabyte (PB) units

--role ROLE Requests a role outside of user's level

-t Displays output in IEC Tebibyte (TiB) units

-T Displays output in SI Terabyte (TB) units

-y Displays output in IEC Yobibyte (YiB) units

-Y Displays output in SI Yottabyte (YB) units

-z Displays output in IEC Zebibyte (ZiB) units

-Z Displays output in SI Zettabyte (ZB) units

Resources

The dwstat command accepts the following resources:

activations Displays a table of current activations; a DataWarp activation is an object that represents an
available instance configuration on a set of nodes.

all Displays the tables for all resource types.

configurations Displays a table of current configurations; a DataWarp configuration represents a specific
way in which a DataWarp instance will be used.

fragments Displays a table of current fragments; a DataWarp fragment is a subset of managed space
on a DataWarp node.

instances Displays a table of current instances; a DataWarp instance is a collection of DataWarp
fragments, where no two fragments in the instance exist on the same node.

most Displays tables for pools, sessions, instances, configurations, registrations,
and activations

namespaces Displays a table of current namespaces; a DataWarp namespace represents a partitioning
of a DataWarp scratch configuration.

nodes Displays a table of current nodes; a DataWarp node can host DataWarp capacity, have
DataWarp configurations activated on it, or both. By default, displays nodes with
capacity>0 only.

pools Displays a table of current pools; a DataWarp pool represents an aggregate DataWarp
capacity. (Default output)

registrations Displays a table of current registrations; a DataWarp registration represents a known use of
a configuration by a session.

sessions Displays a table of current sessions; a DataWarp session is an object used to map events
between a client context and a DataWarp service context. A WLM typically creates a
DataWarp session for each batch job that uses the DataWarp service.

DataWarp Administrator Tools

S2557 24

EXAMPLE: dwstat pools
$ dwstat pools
 pool units quantity free gran
wlm_pool bytes 0 0 1GiB
 space bytes 7.12TiB 2.88TiB 128GiB
testpool bytes 0 0 16MiB
The column headings are defined as:

pool Pool name

units Pool units; currently only bytes are supported

quantity Maximum configured space

free Currently available space

gran Granularity - pool stripe size

EXAMPLE: dwstat sessions
$ dwstat sessions
 sess state token creator owner created expiration nodes
 832 CA--- 783000000 tester 12345 2015-09-08T16:20:36 never 20
 833 CA--- 784100000 tester 12345 2015-09-08T16:21:36 never 1
 903 D---- 1875700000 tester 12345 2015-09-08T17:26:05 never 0
The column headings are defined as:

sess Numeric session ID

state Five-character code representing a session's state as follows (left to right):

1. Goal: C = Create; D = Destroy

2. Setup: A = Actualized; - = non-actualized

3. Condition: F = Fuse blown (an error exists); - = fuse intact

4. Status: T = Transitioning; - = idling or blocked from transitioning

5. Spectrum: M = Mixed (goal delayed by registration); - = not delayed

token Unique identifier (typically the batch job id) created by WLM

creator Typically an identifier for the WLM software

owner UID of job

created Creation timestamp

expiration date = expiration date; never = no expiration date

nodes Number of nodes at session set up

EXAMPLE: dwstat instances
$ dwstat instances
 inst state sess bytes nodes created expiration intact label public confs
 753 CA--- 832 128GiB 1 2015-09-08T16:20:36 never true I832-0 false 1
 754 CA--- 833 128GiB 1 2015-09-08T16:21:36 never true I833-0 false 1

DataWarp Administrator Tools

S2557 25

 807 D---- 903 128GiB 1 2015-09-08T17:26:05 never false I903-0 false 1
 808 CA--- 904 128GiB 1 2015-09-08T17:26:08 never true I904-0 false 1
 810 CA--- 906 128GiB 1 2015-09-08T17:26:10 never true I906-0 false 1

The column headings are defined as:

inst Numeric instance ID

state Five-character code representing an instance's state as follows (left-to-right):

1. Goal: C = Create; D = Destroy

2. Setup: A = Actualized; - = non-actualized

3. Condition: F = Fuse blown (an error exists); - = fuse intact

4. Status: T = Transitioning; - = idling or blocked from transitioning

5. Spectrum: M = Mixed (goal delayed by registration); - = not delayed

sess Numeric session ID

bytes Instance size

nodes Number of nodes on which this instance is active

created Creation timestamp

expiration date = expiration date; never = no expiration date

intact True, if Goal=C (create), and all fragments associated with this instance are themselves associated
with a node

label User-defined label (name)

public true = shared resource (visible to all users)

confs Number of configurations to which an instance belongs

EXAMPLE: dwstat configurations
$ dwstat configurations
 conf state inst type access_type activs
 715 CA--- 753 scratch stripe 1
 716 CA--- 754 scratch stripe 1
 759 D--T- 807 scratch stripe 0
 760 CA--- 808 scratch stripe 1
The column headings are defined as:

conf Number configuration ID

state Five-character code representing a configuration's state as follows (left-to-right):

1. Goal: C = Create; D = Destroy

2. Setup: A = Actualized; - = non-actualized

3. Condition: F = Fuse blown (an error exists); - = fuse intact

4. Status: T = Transitioning; - = idling or blocked from transitioning

5. Spectrum: M = Mixed (goal delayed by registration); - = not delayed

inst Numeric instance ID

DataWarp Administrator Tools

S2557 26

type Configuration type - scratch or cache
access_type Access mode - stripe or private
activs Number of activations to which a configuration belongs

EXAMPLE: dwstat registrations
$ dwstat registrations
 reg state sess conf wait
 648 CA--- 832 715 true
 649 CA--- 833 716 true
 674 CA--- 904 760 true
The column headings are defined as:

reg Numeric registration ID

state Five-character code representing a registration's state as follows (left-to-right):

1. Goal: C = Create; D = Destroy

2. Setup: A = Actualized; - = non-actualized

3. Condition: F = Fuse blown (an error exists); - = fuse intact

4. Status: T = Transitioning; - = idling or blocked from transitioning

5. Spectrum: M = Mixed (goal delayed by registration); - = not delayed

sess Numeric session ID

conf Numeric configuration ID

wait If true, then on registration teardown any data in the associated configuration will first finish
asynchronous activities

EXAMPLE: dwstat activations
$ dwstat activations
activ state sess conf nodes mount
 622 CA--- 832 715 20 /tmp/tst1
 623 CA--- 833 716 1 /tmp/tst2
 648 CA--- 904 760 1 /tmp/tst3
 650 CA--- 906 762 1 /tmp/tst4
The column headings are defined as:

activ Numeric activation ID

state Five-character code representing an activation's state as follows (left-to-right):

1. Goal: C = Create; D = Destroy

2. Setup: A = Actualized; - = non-actualized

3. Condition: F = Fuse blown (an error exists); - = fuse intact

4. Status: T = Transitioning; - = idling or blocked from transitioning

5. Spectrum: M = Mixed (goal delayed by registration); - = not delayed

DataWarp Administrator Tools

S2557 27

sess Numeric session ID

conf Numeric configuration ID

nodes Number of nodes on which an activation is present

mount Mount point for the activation

EXAMPLE: dwstat fragments
$ dwstat fragments
 frag state inst capacity node
 780 CA-- 753 128GiB nid00066
 781 CA-- 754 128GiB nid00069
 842 D--- 807 128GiB nid00022
 843 CA-- 808 128GiB nid00065
The column headings are defined as:

frag Numeric fragment ID

state Four-character code representing a fragment's state as follows (left-to-right):

1. Goal: C = Create; D = Destroy

2. Setup: A = Actualized; - = non-actualized

3. Condition: F = Fuse blown (an error exists); - = fuse intact

4. Status: T = Transitioning; - = idling or blocked from transitioning

inst Numeric instance ID

capacity Total capacity of a fragment

node Hostname of node on which a fragment is located

EXAMPLE: dwstat namespaces
$ dwstat namespaces
 ns state conf frag span
 758 CA-- 715 780 1
 759 CA-- 716 781 1
 818 CA-- 760 843 1
The column headings are defined as:

ns Numeric namespace ID

state Four-character code representing a namespace's state as follows (left-to-right):

1. Goal: C = Create; D = Destroy

2. Setup: A = Actualized; - = non-actualized

3. Condition: F = Fuse blown (an error exists); - = fuse intact

4. Status: T = Transitioning; - = idling or blocked from transitioning

conf Numeric configuration ID

frag Numeric fragment ID

DataWarp Administrator Tools

S2557 28

span Number of fragments across which a namespace reads and writes

EXAMPLE: dwstat nodes
$ dwstat nodes
 node pool online drain gran capacity insts activs
nid00022 space true false 8MiB 3.64TiB 7 0
nid00065 space true false 16MiB 1023.98GiB 7 0
nid00066 space true false 16MiB 1023.98GiB 7 0
nid00069 space true false 16MiB 1023.98GiB 7 0
nid00070 space true false 16MiB 1023.98GiB 6 0
nid00004 - true false 0 0 0 3
The column headings are defined as:

node Node hostname

pool Name of pool to which node is assigned

online The node is available

drain true = resource is draining

gran Node granularity

capacity Total capacity of a node

insts Number of instances on a node

activs Number of activations on a node

4.3 xtcheckssd(8)

NAME
xtcheckssd - Report SSD health

SYNOPSIS

xtcheckssd [-h]
xtcheckssd [-d [-i TIME]] [-p PATH] [-r] [-s] [MountPoint]

DESCRIPTION
The xtcheckssd command queries the health of one or all SSDs (both FusionIO and NVMe). It is located
in /opt/cray/diag/default/bin, and must be run as root on an SSD service node, either as a daemon or
as a one-time command. xtcheckssd reports output to: the console (when not run as a daemon); the SMW, via
the /dev/console log; and the CLE system log (syslog) via the RCA event ec_rca_diag.

OPTIONS
xtcheckssd accepts the following options:

DataWarp Administrator Tools

S2557 29

-d
Run as a daemon (default 24-hour wakeup)

-h
Displays usage information

-i TIME
Used with -d, this option sets the reporting interval (TIME) and the interval for generating
the ec_rca_diag event. TIME is defined in seconds (s), minutes (m), hours (h), or days
(d). Default is 1d; minimum is 1m, and maximum is 7d.

-p PATH
Specifies the path to the NVMe utilities

-r
Do not generate ec_rca_diag RCA event

-s
Silent mode; no console output. This has no affect when running as a daemon.

MountPoint
The SSD mount point; if not specified, reports on all SSDs

FILES
/dev/console SMW console log

/what/is/the/path/to/syslog CLE system log

RETURN VALUES
Normal operation:

PCIe slot#:SLOT,Name:VENDOR MODEL,SN:SERIAL#,Size:SIZEGB,Remaining life:RLIFE
%,Temperature:TEMP(c)
Abnormal operation:

Abnormal Operation - No SSds are installed:
 xtcheckssd: 3 No SSDs found

Abnormal Operation - NVMe Utility not found:
 xtcheckssd-error: 4 Path to NVMe-CLI User Utility does not exist

LIMITATIONS
When only a single SSD is attached to a node, xtcheckssd identifies and reports the health of the SSD but is
unable to determine the front panel PCIe slot number.

EXAMPLES
Example 1: Report on all SSDs for a node:

nid00350:# /opt/cray/diag/default/bin/xtcheckssd
PCIe slot#:1,Name:INTEL SSDPECME040T4,SN:CVF8515300094P0DGN-1,Size:
4000GB,Remaining life:100%,Temperature:22(c)

DataWarp Administrator Tools

S2557 30

PCIe slot#:1,Name:INTEL SSDPECME040T4,SN:CVF8515300094P0DGN-2,Size:
4000GB,Remaining life:100%,Temperature:24(c)
PCIe slot#:0,Name:INTEL SSDPECME040T4,SN:CVF85153001V4P0DGN-1,Size:
4000GB,Remaining life:100%,Temperature:22(c)
PCIe slot#:0,Name:INTEL SSDPECME040T4,SN:CVF85153001V4P0DGN-2,Size:
4000GB,Remaining life:100%,Temperature:24(c)
xtcheckssd: 0 Normal program termination
Example 2: Run xtcheckssd as a deamon generating a report every 24 hours:

DWnode:# /opt/cray/diag/default/bin/xtcheckssd -d

4.4 xtiossdflash(8)

NAME
xtiossdflash - Updates the firmware on Intel P3608 SSD cards

SYNOPSIS
xtiossdflash [-vfFh] [-i F3608_FW_IMAGE] target

DESCRIPTION
The xtiossdflash command, which must be run by root on the boot node, updates the firmware on Intel
P3608 SSD cards.

xtiossdflash accepts the following options:

-f Flash a specified firmware

-F Force a flash even if the drive is already flashed to the current version

-h Display this help dialog

-i path Specifies path to Intel P3608 flash image

-v Display current firmware version

xtiossdflash accepts the following argument:

target May be a single node, a comma-separated list of nodes, of the keyword all_service, which includes
all nodes with Intel P3608 SSD cards.

xtiossdflash compares the current flash version to the image flash file and flashes the device only if the two
are different (up or down). This can be overridden by specifying the -F (force) flag.

Service node needs to be rebooted for the new firmware to be loaded .

EXAMPLES
To report the model and firmware version of SSDs:

boot:# xtiossdflash -v all_service

DataWarp Administrator Tools

S2557 31

An example of a successful execution:

boot:# xtiossdflash -f -i /tmp/8DV10151_8B1B0130_signed.bin all_service
c0-0c0s5n2: <nvme_flash>: The firmware for /dev/nvme0 is up to date (8DV10151).
c0-0c0s5n2: <nvme_flash>: The firmware for /dev/nvme1 is up to date (8DV10151).
c0-0c0s5n2: <nvme_flash>: The firmware for /dev/nvme2 is up to date (8DV10151).
c0-0c0s5n2: <nvme_flash>: The firmware for /dev/nvme3 is up to date (8DV10151).
c0-0c0s3n1: <nvme_flash>: The firmware for /dev/nvme0 is up to date (8DV10151).
c0-0c0s3n2: <nvme_flash>: The firmware for /dev/nvme0 is up to date (8DV10151).
c0-0c0s5n1: <nvme_flash>: Flashing /dev/nvme0 using file /tmp/
8DV10151_8B1B0130_signed.bin
An example of an unsuccessful execution:

boot:# xtiossdflash -f -i /tmp/8DV10151_8B1B0130_signed.bin all_service
c0-0c0s5n1: <nvme_flash>: Flashing /dev/nvme0 using file /tmp/
8DV10151_8B1B0130_signed.bin
c0-0c0s5n1: NVME Admin command error:263
c0-0c0s5n1: <nvme_flash>: Firmware activation on /dev/nvme0 failed!
c0-0c0s5n1: <nvme_flash>: Flash failure detected. Exiting.
pdsh@boot: c0-0c0s5n1: ssh exited with exit code 1
c0-0c0s5n2: <nvme_flash>: The firmware for /dev/nvme0 is up to date (8DV10151).

4.5 xtssdconfig(8)

NAME
xtssdconfig - Displays SSD configuration information

SYNOPSIS

xtssdconfig [-h] [-v]
xtssdconfig [-j] [-m] [-t TIMEOUT] [id,[id,...]

DESCRIPTION
The xtssdconfig command runs xthwinv and parses the output to display SSD information.

OPTIONS
xtssdconfig accepts the following options:

-h|--help
Displays usage information

-j|--json
Format the output as JSON

-m|--mini
Used with -j, displays a brief version of the output

-t|--timeout TIMEOUT

DataWarp Administrator Tools

S2557 32

Defines the response timeout (secs); default is the xthwinv default

-v|--VERSION
Displays tool version

id
Optional; one or more comma-separated IDs (cname). Valid cnames are partitions,
cabinets, cages, or blades.

If a provided cname is the parent of components with SSDs, those child components are
matched. For example, if nodes c0-0c0s1n3 and c0-0c0s7n0 have associated SSDs, then
specifying the cname c0-0c0 matches both nodes because it is the parent of those nodes.

EXAMPLES
Report on all SSD nodes:

crayadm@smw:> xtssdconfig
 node_id ssd_id sub_id bus device func size serial_num

c1-0c2s0n1 0x8086953 0x80863709 0x04 0x00 0x0 CVF85153001S4P0DGN-1
c1-0c2s0n1 0x8086953 0x80863709 0x05 0x00 0x0 CVF85153001S4P0DGN-2
c1-0c2s0n1 0x8086953 0x80863709 0x08 0x00 0x0 CVF85156006B4P0DGN-1
c1-0c2s0n1 0x8086953 0x80863709 0x09 0x00 0x0 CVF85156006B4P0DGN-2
c1-0c2s0n2 0x8086953 0x80863709 0x04 0x00 0x0 CVF85153000Z4P0DGN-1
c1-0c2s0n2 0x8086953 0x80863709 0x05 0x00 0x0 CVF85153000Z4P0DGN-2
c1-0c2s0n2 0x8086953 0x80863709 0x08 0x00 0x0 CVF85153001E4P0DGN-1
c1-0c2s0n2 0x8086953 0x80863709 0x09 0x00 0x0 CVF85153001E4P0DGN-2

DataWarp Administrator Tools

S2557 33

5 DataWarp Administrator Tasks

5.1 Update DWS Configuration Files
There are three DataWarp Service (DWS) configuration files:

1. The scheduler configuration file: /etc/opt/cray/dws/dwsd.yaml
2. The manager daemon configuration file: /etc/opt/cray/dws/dwmd.yaml
3. The API gateway configuration file: /etc/opt/cray/dws/dwrest.yaml
I believe this procedure has to change for CLE6.0, doesn't it?

Use xtopview to modify any of these files from within the shared root. For the changes to take affect, exit
xtopview and either restart or send SIGHUP to the corresponding daemon(s).

The DataWarp Scheduler Daemon (dwsd)

The dwsd, which runs on the sdb node, reads /etc/opt/cray/dws/dwsd.yaml at startup and when it receives
the SIGHUP signal. For example, if a change is made to dwsd.yaml:

boot:# ssh sdb
sdb:# kill -HUP $(</var/opt/cray/dws/dwsd.pid)
sdb:# tail -5 /var/opt/cray/dws/log/dwsd.log
2015-09-17 14:15:26 ========== Event on fd 4
2015-09-17 14:15:26 Caught signal Hangup
2015-09-17 14:15:26 vvvvvvvvvv Configuration Delta Summary vvvvvvv
2015-09-17 14:15:26 log_mask: 0x7 -> 0x587
2015-09-17 14:15:26 ^^^^^^^^^^ End Configuration Delta Summary ^^^
The DataWarp Management Daemon (dwmd)

The dwmd, which runs on each SSD-endowed node, reads /etc/opt/cray/dws/dwmd.yaml at startup and
when it receives the SIGHUP signal. For example, if a change is made to dwmd.yaml:

boot:# ssh nid00777
nid00777:# kill -HUP $(</var/opt/cray/dws/dwmd.pid)
nid00777:# tail -4 /var/opt/cray/dws/log/dwmd.log
2015-09-17 14:21:54 (31678) Caught signal Hangup
2015-09-17 14:21:54 (31678) vvvvvvvvvv Configuration Delta Summary vvvvvvv
2015-09-17 14:21:54 (31678) log_mask: 0xfffff -> 0xf
2015-09-17 14:21:54 (31678) ^^^^^^^^^^ End Configuration Delta Summary ^^^

DataWarp Administrator Tasks

S2557 34

On systems with many SSDs, it may be necessary to send SIGHUP to dwmd daemons on many nodes. The
following command generates a file that contains identifiers that can be used with pcmd to perform the SIGHUP in
parallel:

dwstat nodes | tail -n +2 | cut -d ' ' -f 1 | sed -e 's/[^0-9]//g' -e '/^$/d' |
head -c -1 | tr '\n' ',' >/tmp/dws_servers.nids

sdb:# module load dws
sdb:# dwstat nodes | tail -n +2 | cut -d ' ' -f 1 | sed -e 's/[^0-9]//g' -e '/^$/
d' | head -c -1 | tr '\n' ',' >/tmp/dws_servers.nids
sdb:# module load nodehealth
sdb:# pcmd -f /tmp/dws_servers.nids 'kill -HUP $(</var/opt/cray/dws/dwmd.pid)'
Reply (complete) from nid00065 exit code: 0
Reply (complete) from nid00066 exit code: 0
Reply (complete) from nid00069 exit code: 0
Reply (complete) from nid00070 exit code: 0
The DataWarp RESTful Service (dwrest)

The dwrest component, which typically runs on a single login node,
reads /etc/opt/cray/dws/dwrest.yaml at startup and when it receives the SIGHUP signal. The dwrest
component is displayed in ps ouput as the gunicorn process. Therefore, if a change is made to dwrest.yaml:

boot:# ssh login
login:# kill -HUP $(</var/opt/cray/dws/gunicorn.pid)

5.2 DataWarp with DWS: Create a Storage Pool

Prerequisites
● Access to DataWarp administrator privileges (root, crayadm, or other UID defined in CLEinstall.conf)

is available:

○ Consult the admin entry of the shared root file /etc/opt/cray/dws/dwrest.yaml for a list of
DataWarp administrator UIDs.

● Recommended: Completion of Initialize an SSD on page 45.

About this task
A storage pool groups nodes with storage together such that requests for space made against the pool are fufilled
from the nodes associated with the pool with a common allocation granularity. Pools have either byte or node
allocation granularity (pool_AG). This release of DWS only supports byte allocation granularity. There are
tradeoffs in picking allocation granularities too small or too large.

TIP:

Use dwpoolhelp: Determining an optimal pool allocation granularity for a system is a function of several
factors, including the number of SSD nodes, the number of SSD cards per node, the size of the SSDs, as
well as software requirements, limitiations, and bugs. Therefore, the best value is site specific and likely to
change over time. For this reason, Cray developed the dwpoolhelp command to automate this process.

DataWarp Administrator Tasks

S2557 35

Because the command is not yet released, the source is provided in The dwpoolhelp Command Source
Code on page 38.

The dwpoolhelp command calculates and displays pool allocation granularity values for a range of node
granularity units along with waste per node and waste per pool values in bytes. The dwpoolhelp
command accepts the following options:
-c capacity

Number of bytes available on each node; default = 6401262878720 bytes

-h
Displays usage information

-g granularity
Allocation granularity of each node; default = 16777216 bytes

-m stripes
Maximum number of DVS stripes

-n nodes
Number of nodes in the pool

-s
Suggests only the smallest viable granularity

-v
Displays version information for dwpoolhelp

Sites intending to use dwpoolhelp can jump to step 1 on page 37 of the procedure.

Not using dwpoolhelp: If a site chooses not to build and use the dwpoolhelp command to determine the pool
allocation granularity, the following guidelines are provided as important considerations when creating a storage
pool:

1. The byte-oriented allocation granularity for a pool must be at least 16MiB.

2. Each node's volume group (dwcache, configured in Initialize an SSD on page 45) has a Physical Extent
size (PE_size) and Physical Volume count (PV_count). The default PE_size is 4MiB, and PV_count is
equal to the number of Physical Volumes specified during volume group creation. DWS places the following
restriction on nodes associated with a pool:

● A node can only be associated with a storage pool if the node's granularity (PE_size * PV_count) is a
factor of the pool's allocation granularity (pool_AG). The dwstat nodes command lists the node's
granularity in the gran column.

3. The more nodes in the pool, the higher the granularity.

4. Ideally, a pool's allocation granularity is defined as a factor of the aggregate space of each node within the
pool; otherwise, some space is not usable and, therefore, is wasted.

The most important considerations are #1 and #2. On all Cray systems, picking a pool granularity of at least
16MiB (16,777,216 bytes) and is a multiple of 16MiB (16,777,216, 33,554,432, 50,331,648, ...) will define a
functioning, but possibly sub-optimal, configuration. The following recommendation table does not take #3 and #4
into consideration but will be a good starting point for all Cray system configurations:

DataWarp Administrator Tasks

S2557 36

Table 2. Nodes

SSD Nodes in Pool Granularity (bytes)

1 16,777,216

<20 214,748,364,800

<100 429,496,729,600

<200 858,993,459,200

>=200 1,073,741,824,000

The following diagram shows six different DataWarp nodes belonging to a storage pool wlm_pool with a 1TiB
allocation granularity. Each DataWarp node has 6.4TiB of space, which means that 0.4TiB are wasted per node
because only 6 allocation granularities fit on any one node.

Sites not using dwpoolhelp should jump to step 3 on page 38 of the procedure.

Procedure

1. Build the dwpoolhelp command from the source in The dwpoolhelp Command Source Code on page 38.

$ gcc -o dwpoolhelp dwpoolhelp.c -DPACKAGE_VERSION=\"pubs-copy\"

2. Execute dwpoolhelp with site-specific values.

For example:

$./dwpoolhelp -n 10
== Starting Values ==
Number of nodes: 10
Node capacity: 6401262878720
Allocation granularity on nodes: 16777216

DataWarp Administrator Tasks

S2557 37

== Calculating maximum granules per node ==
Max number of granules in an instance while still being able to access all
capacity is 4096
floor(max_stripes / nodes) -> floor(4096 / 10) = 409
Bug 830114 limits to maximum of 35 granules per node!
Maximum granules per node: 35

== Optimal pool granularities per granules per node ==
Gran / node Pool granularity Waste per node Waste per pool
 1 6401262878720 0 0
 2 3200623050752 16777216 167772160
 3 2133743108096 33554432 335544320
 4 1600311525376 16777216 167772160
 5 1280252575744 0 0
...
 30 213372633088 83886080 838860800
 31 206477197312 469762048 4697620480
 32 200034746368 150994944 1509949440
 33 193961394176 536870912 5368709120
 34 188257140736 520093696 5200936960
 35 182888431616 167772160 1677721600

3. Log in to a booted CLE service node as a DWS administrator.

4. Load the DataWarp Service module.

login:# module load dws

5. Create a storage pool.

login:# dwcli create pool --name pool_name --granularity alloc_gran
Example 1: to create a pool wlm_pool (Cray recommended name) with an allocation granularity of 200 GiB:

login:# dwcli create pool --name wlm_pool --granularity 214748364800
created pool id wlm_pool
Example 2: to create a pool wlm_pool with 30 granularities per node (using the dwpoolhelp output from
above):

login:# dwcli create pool --name wlm_pool2 --granularity 213372633088
created pool id wlm_pool2

6. Verify the pool was created.

login:# dwstat pools
 pool unit quantity free gran
 wlm_pool bytes 0 0 200GiB
wlm_pool2 bytes 0 0 198.72GiB

5.3 The dwpoolhelp Command Source Code
The dwpoolhelp command calculates and displays pool allocation granularity values for a range of node
granularity units along with waste per node and waste per pool values in bytes. This command is not included in

DataWarp Administrator Tasks

S2557 38

any current releases, and source is provided here to aide administrators when creating DataWarp storage pools
(see DataWarp with DWS: Create a Storage Pool on page 35).

To build the command, execute the following:

$ gcc -o dwpoolhelp dwpoolhelp.c -DPACKAGE_VERSION=\"pubs-copy\"

/*
 * (c) 2015 Cray Inc. All Rights Reserved. Unpublished Proprietary
 * Information. This unpublished work is protected to trade secret,
 * copyright and other laws. Except as permitted by contract or
 * express written permission of Cray Inc., no part of this work or
 * its content may be used, reproduced or disclosed in any form.
 */

#ifdef HAVE_CONFIG_H
include <config.h>
#endif

#include <stdlib.h>
#include <stdio.h>
#include <stdint.h>
#include <inttypes.h>
#include <limits.h>
#include <getopt.h>
#include <string.h>
#include <errno.h>
#include <stdbool.h>

#define GETOPT_OPTS "hvsn:c:g:m:"
enum {
 OPTION_HELP = 'h',
 OPTION_VERSION = 'v',
 OPTION_NODES = 'n',
 OPTION_NODE_CAPACITY = 'c',
 OPTION_NODE_GRANULARITY = 'g',
 OPTION_SMALLEST = 's',
 OPTION_MAX_STRIPES = 'm'
};

static const struct option long_opts[] = {
 {"nodes", required_argument, NULL, OPTION_NODES},
 {"node-capacity", required_argument, NULL, OPTION_NODE_CAPACITY},
 {"node-granularity", required_argument, NULL, OPTION_NODE_GRANULARITY},
 {"max-stripes", required_argument, NULL, OPTION_MAX_STRIPES},
 {"smallest", no_argument, NULL, OPTION_SMALLEST},
 {"help", no_argument, NULL, OPTION_HELP},
 {"version", no_argument, NULL, OPTION_VERSION},
 {0, 0, 0, 0}
};

static void print_table(int nodes, int gran_per_node,
 int64_t capacity, int64_t node_gran);
static void print_smallest(int nodes, int gran_per_node,
 int64_t capacity, int64_t node_gran);
static int parse_args(int argc, char *const* argv, int *ret_nodes,
 int64_t *ret_capacity, int64_t *ret_node_gran,
 bool *ret_smallest, int *ret_max_stripes);
static void print_version(FILE *fp, const char *cmd_name);
static void print_usage(FILE *fp, const char *cmd_name);

DataWarp Administrator Tasks

S2557 39

static int strtoi_helper(const char *str, int *val);
static int strtoll_helper(const char *str, int64_t *val);

int
main(int argc, char *const*argv)
{
 int ret = EXIT_FAILURE;
 int err;
 int max_stripes = 4096; /* Hard-coded DVS limit */
 bool smallest = false;
 int nodes = 300;
 int64_t capacity = 6401262878720;
 int64_t node_gran = 16777216;
 int64_t node_alloc_gran;
 int gran_per_node;

 do {
 if ((err = parse_args(argc, argv,
 &nodes, &capacity, &node_gran,
 &smallest, &max_stripes))) {
 ret = err;
 break;
 }
 /* Output givens */
 printf("== Starting Values ==\n");
 printf("Number of nodes: %d\n", nodes);
 printf("Node capacity: %"PRId64"\n", capacity);
 printf("Allocation granularity on nodes: %"PRId64"\n\n",
 node_gran);

 /* Granules per node */
 printf("== Calculating maximum granules per node ==\n");
 printf("Max number of granules in an instance while still "
 "being able to access all capacity is %d\n",
 max_stripes);
 gran_per_node = max_stripes / nodes;
 printf("floor(max_stripes / nodes) -> floor(%d / %d) = %d\n",
 max_stripes, nodes, gran_per_node);
 if (gran_per_node > 35) {
 printf("Bug 830114 limits to maximum of 35 granules per node!\n");
 gran_per_node = 35;
 } else {
 printf("No further downward adjustment needed\n");
 }
 printf("Maximum granules per node: %d\n", gran_per_node);
 if (node_gran < 16777216) {
 /* Handle XFS minimum size */
 node_alloc_gran = ((16777216 + (node_gran - 1)) / node_gran) *
node_gran;
 printf("Using %"PRId64" bytes for actual allocation "
 "granularity on nodes to satisfy "
 "XFS requirements\n", node_alloc_gran);
 } else {
 node_alloc_gran = node_gran;
 }
 printf("\n");

 if (smallest) {
 print_smallest(nodes, gran_per_node, capacity,
 node_alloc_gran);
 } else {

DataWarp Administrator Tasks

S2557 40

 print_table(nodes, gran_per_node, capacity,
 node_alloc_gran);
 }

 ret = EXIT_SUCCESS;
 } while (0);

 return ret;
}

static void
print_table(int nodes, int gran_per_node, int64_t capacity, int64_t node_gran)
{
 int i;
 int64_t granularity;

 /* Results table */
 printf("== Optimal pool granularities per granules per node ==\n");
 printf("%11s %20s %15s %20s\n",
 "Gran / node", "Pool granularity",
 "Waste per node", "Waste per pool");
 for (i = 1; i <= gran_per_node; i++) {
 granularity = capacity / i;
 granularity -= granularity % node_gran;
 printf("%11d %20"PRId64" %15"PRId64" %20"PRId64"\n",
 i, granularity, capacity % granularity,
 capacity % granularity * nodes);
 }
 return;
}

static void
print_smallest(int nodes, int gran_per_node, int64_t capacity, int64_t node_gran)
{
 int64_t granularity;

 /* Granule size */
 printf("== Calculating granule size that wastes the least amount of space ==
\n");
 granularity = capacity / gran_per_node;
 printf("Starting point for granularity is "
 "floor(capacity / gran_per_node) "
 "-> %"PRId64" / %d = %"PRId64"\n",
 capacity, gran_per_node, granularity);
 if (granularity % node_gran) {
 printf("Adjusting granularity downward to be a multiple "
 "of the node granularity\n");
 printf("granularity - granularity %% node_gran "
 "-> %"PRId64" - %"PRId64" %% %"PRId64" "
 "= %"PRId64"\n",
 granularity, granularity, node_gran,
 granularity - granularity % node_gran);
 granularity -= granularity % node_gran;
 } else {
 printf("Starting point is a multiple of the "
 "node granularity (%"PRId64")\n", node_gran);
 }

 /* Results */
 printf("\n== Results ==\n");
 printf("RECOMMENDED POOL GRANULARITY: %"PRId64"\n",

DataWarp Administrator Tasks

S2557 41

 granularity);
 printf("BYTES LOST PER NODE: %"PRId64"\n",
 capacity % granularity);
 printf("BYTES LOST ACROSS %d NODES: %"PRId64"\n",
 nodes, capacity % granularity * nodes);

 return;
}

static int
parse_args(int argc, char *const* argv, int *ret_nodes, int64_t *ret_capacity,
 int64_t *ret_node_gran, bool *ret_smallest, int *ret_max_stripes)
{
 const char *prog_name = strrchr(argv[0], '/');
 int opt = -1;

 if (prog_name == NULL) {
 prog_name = argv[0];
 } else {
 prog_name += 1;
 }

 if (argc > 1) {
 while ((opt = getopt_long(argc, argv, GETOPT_OPTS, long_opts, NULL))
 != EOF) {
 switch (opt) {
 case OPTION_HELP:
 print_usage(stdout, prog_name);
 exit(EXIT_SUCCESS);
 case OPTION_VERSION:
 print_version(stdout, prog_name);
 exit(EXIT_SUCCESS);
 case OPTION_NODES:
 if (strtoi_helper(optarg, ret_nodes)) {
 exit(EXIT_FAILURE);
 }
 if (*ret_nodes < 1) {
 fprintf(stderr, "Must supply at least "
 "one node\n");
 exit(EXIT_FAILURE);
 }
 break;
 case OPTION_MAX_STRIPES:
 if (strtoi_helper(optarg, ret_max_stripes)) {
 exit(EXIT_FAILURE);
 }
 if (*ret_max_stripes < 1) {
 fprintf(stderr, "Must supply at least "
 "one stripe\n");
 exit(EXIT_FAILURE);
 }
 break;
 case OPTION_NODE_CAPACITY:
 if (strtoll_helper(optarg, ret_capacity)) {
 exit(EXIT_FAILURE);
 }
 if (*ret_capacity < 0) {
 fprintf(stderr, "Must have at least "
 "16777216 bytes of capacity\n");
 exit(EXIT_FAILURE);
 }

DataWarp Administrator Tasks

S2557 42

 break;
 case OPTION_NODE_GRANULARITY:
 if (strtoll_helper(optarg, ret_node_gran)) {
 exit(EXIT_FAILURE);
 }
 if (*ret_node_gran < 1) {
 fprintf(stderr, "Node granularity must "
 "be at least 1 byte\n");
 exit(EXIT_FAILURE);
 }
 break;
 case OPTION_SMALLEST:
 *ret_smallest = true;
 break;
 default:
 print_usage(stderr, prog_name);
 exit(EXIT_FAILURE);
 }
 }
 if (*ret_capacity < *ret_node_gran) {
 fprintf(stderr, "Node capacity must be larger than "
 "node granularity\n");
 exit(EXIT_FAILURE);
 }
 if (*ret_nodes > *ret_max_stripes) {
 fprintf(stderr, "Nodes most not exceed max stripes\n");
 exit(EXIT_FAILURE);
 }
 }

 return 0;
}

static void
print_usage(FILE *fp, const char *cmd_name)
{
 fprintf(fp, "Usage: %s [OPTIONS]\n",
 cmd_name);
 fprintf(fp,
 " -h, --help Print this help message and exit\n"
 " -v, --version Print %s version information and exit\n"
 " -s, --smallest Suggest only the smallest viable granularity\n"
 " -n N, --nodes=N Number of nodes that will be in the pool\n"
 " -c C, --node-capacity=C Number of bytes available on each node\n"
 " -g G, --node-granularity=G Allocation granularity of each node\n"
 " -m M, --max-stripes=M Maximum number of DVS stripes\n",
 cmd_name);
}

static void
print_version(FILE *fp, const char *cmd_name)
{
 fprintf(fp, "%s (DWS) Version %s\n", cmd_name, PACKAGE_VERSION);
#ifdef EXTRA_BUILD_INFO
 fprintf(fp, "%s\n", EXTRA_BUILD_INFO);
#endif
}

static int
strtoi_helper(const char *str, int *val)
{

DataWarp Administrator Tasks

S2557 43

 char *endp;
 long strval;

 if (str == NULL) {
 fprintf(stderr, "NULL token\n");
 return -1;
 }

 errno = 0;
 strval = strtol(str, &endp, 0);

 if (errno == EINVAL) {
 /* Shouldn't ever see this... */
 fprintf(stderr, "Invalid base\n");
 return -1;
 } else if (errno == ERANGE || strval < INT_MIN || strval > INT_MAX) {
 fprintf(stderr, "'%s' not in suitable range for integers\n", str);
 return -1;
 } else if (endp == str) {
 fprintf(stderr, "'%s' is not an integer\n", str);
 return -1;
 } else if (*endp != 0) {
 fprintf(stderr, "'%s' has trailing non-integer junk\n", str);
 return -1;
 }

 *val = strval;
 return 0;
}

static int
strtoll_helper(const char *str, int64_t *val)
{
 char *endp;
 int64_t strval;

 if (str == NULL) {
 fprintf(stderr, "NULL token\n");
 return -1;
 }

 errno = 0;
 strval = strtoll(str, &endp, 0);

 if (errno == EINVAL) {
 /* Shouldn't ever see this... */
 fprintf(stderr, "Invalid base\n");
 return -1;
 } else if (errno == ERANGE || strval < INT64_MIN || strval > INT64_MAX) {
 fprintf(stderr, "'%s' not in suitable range for int64_t\n", str);
 return -1;
 } else if (endp == str) {
 fprintf(stderr, "'%s' is not an integer\n", str);
 return -1;
 } else if (*endp != 0) {
 fprintf(stderr, "'%s' has trailing non-integer junk\n", str);
 return -1;
 }

 *val = strval;

DataWarp Administrator Tasks

S2557 44

 return 0;
}

5.4 Initialize an SSD

Prerequisites
● Ability to log in as root

About this task
During the CLE installation process, the system administrator selects SSD-endowed nodes whose space the
DWS will manage. This step ensures that the correct DWS daemon, dwmd, is started at boot time on these nodes.
It does not prepare the SSDs for use with the DWS; this is performed manually using the following instructions.

After CLE boots, the following one-time manual device configuration must be performed for each node specified
in datawarp_manager_nodes in CLEinstall.conf.

The diagram below shows how the logical volume manager (LVM) volume group dwcache is constructed on each
DW node. In this diagram, two SSD block devices have been converted to LVM physical devices with the
pvcreate command. These two LVM physical volumes were combined into the LVM volume group dwcache
with the vgcreate command.

TIP: Throughout these procedures, units of bytes are described using the binary prefixes defined by the
International Electrotechnical Commission (IEC). For further information, see Prefixes for Binary and
Decimal Multiples on page 59.

Procedure

1. Log in to an SSD-endowed node as root.

This example uses nid00349.

2. Identify the SSD block devices.

nid00349:~ # lsblk
NAME MAJ:MIN RM SIZE RO MOUNTPOINT
nvme0n1 254:0 0 1.8T 0
nvme1n1 254:64 0 1.8T 0

DataWarp Administrator Tasks

S2557 45

3. Clean up existing uses of the SSDs (required only if the SSDs were previously used).

This may include:

● Unmounting any file systems on the SSDs

● Stopping swap services

● Using LVM to remove the SSDs from an existing volume group

● Removing any existing partitioning scheme on the SSDs with:

dd if=/dev/zero of=phys_vol bs=512 count=1
WARNING: This operation destroys any existing data on an SSD.

4. Initialize each physical device for later use by LVM. Note that Cray currently sells systems with 1, 2, or 4
physical devices on a node.

WARNING: This operation destroys any existing data on an SSD. Back up any existing data before
proceeding.

nid00349:# pvcreate phys_vol [phys_vol...]
For example:

nid00349:# pvcreate /dev/nvme0n1 /dev/nvme1n1 /dev/nvme2n1 /dev/nvme3n1
Physical volume "/dev/nvme0n1" successfully created
Physical volume "/dev/nvme1n1" successfully created
Physical volume "/dev/nvme2n1" successfully created
Physical volume "/dev/nvme3n1" successfully created

5. Create an LVM volume group called dwcache that uses these physical devices.

Requirements for the LVM physical volumes specified are:

● Any number of physical devices may be specified.

● Each physical volume specified must be the exact same size.

○ To verify physical volume size, execute the command: pvs --units b and examine the PSize
column of the output.

nid00349:# vgcreate dwcache phys_vol [phys_vol...]

nid00349:# vgcreate dwcache /dev/nvme0n1 /dev/nvme1n1 /dev/nvme2n1 /dev/nvme3n1
Volume group "dwcache" successfully created

6. Restart the dwmd service.

For example:

nid00349:# service dwmd restart
Shutting down
dwmd done
Starting dwmd 2015-08-06 14:13:55 (10924) Beginning dwmd initialization
2015-08-06 14:13:55 (10924) Daemonizing...
2015-08-06 14:13:55 (10925) Redirecting stdout and stderr to /var//opt/cray/dws/
log/dwmd.log. If this step fails, there's no way to log an error.

7. Verify that DWS recognizes the node with storage.

DataWarp Administrator Tasks

S2557 46

nid00349:# module load dws
nid00349:# dwstat nodes
 node pool online drain gran capacity insts activs
nid00349 - true false 8MiB 3.64TiB 0 0

5.5 Assign a Node to a Storage Pool

Prerequisites
● At least one storage pool exists, see DataWarp with DWS: Create a Storage Pool on page 35.

● At least one SSD is initialized for use with the DWS, see Initialize an SSD on page 45.

● Access to DataWarp administrator privileges (root, crayadm, or other UID defined in CLEinstall.conf)
is available.

About this task
Follow this procedure to associate an SSD-endowed node with an existing storage pool.

Procedure

1. Log in to a booted CLE service node as a DWS administrator.

2. Load the DataWarp Service module.

login:# module load dws

3. Associate an SSD-endowed node with a storage pool.

login:# dwcli update node --name hostname --pool pool_name
For example, to associate a node (hostname nid00349) with a storage pool called wlm_pool:

login:# dwcli update node --name nid00349 --pool wlm_pool
The association may fail. If it does, ensure that the pool exists (dwstat pools) and that the node's
granularity (dwstat nodes -b) is a factor of the pool's granularity (dwstat pools -b).

4. Verify the node is associated with the pool.

login:# dwstat pools nodes
 pool units quantity free gran
wlm_pool bytes 3.64TiB 3.64TiB 910GiB

 node pool online drain gran capacity insts activs
nid00349 wlm_pool true false 8MiB 3.64TiB 0 0

DataWarp Administrator Tasks

S2557 47

5.6 Verify the DataWarp Configuration

Prerequisites
● At least one storage node is assigned to a storage pool, see Assign a Node to a Storage Pool on page 47.

● Access to DataWarp administrator privileges (root, crayadm, or other UID defined in CLEinstall.conf) is
available.

About this task
There are a few ways to verify that the DataWarp configuration is as desired.

TIP: Throughout these procedures, units of bytes are described using the binary prefixes defined by the
International Electrotechnical Commission (IEC). For further information, see Prefixes for Binary and
Decimal Multiples on page 59.

Procedure

1. Log in to a booted service node and load the DataWarp Service module.

login:# module load dws

2. Request status information about DataWarp resources.

login:# dwstat pools nodes
 pool units quantity free gran
 space bytes 3.5TiB 3.38TiB 128GiB

 node pool online drain gran capacity insts activs
nid00065 space true false 16MiB 1023.98GiB 1 0
nid00066 space true false 16MiB 1023.98GiB 0 0
nid00070 space true false 16MiB 1023.98GiB 0 0
nid00069 space true false 16MiB 1023.98GiB 0 0
nid00022 - true false 8MiB 3.64TiB 0 0
nid00004 - true false 0 0 0 0
nid00005 - true false 0 0 0 0

3. Check the following combinations for each row.

● If pool is - and capacity ≠ 0: This is a server node that has not yet been associated with a storage pool.
See Assign a Node to a Storage Pool on page 47.

● If pool is - and capacity is 0: This is a non-server node (e.g., client/compute) and does not need to be
associated with a storage pool.

● If pool is something and capacity ≠ 0: This is a server node that belongs to the pool called
<something>.

● If pool is something and capacity is 0: This is a non-server node that belongs to a pool. Since the non-
server node contributes no space to the pool, this association is not necessary but harmless.

This completes the process to configure DataWarp with DWS as outlined in DataWarp with DWS: Post-boot
Configuration. Refer to the site-specific Workload Manager documentation for further configuration steps to
integrate the WLM with Cray DataWarp.

DataWarp Administrator Tasks

S2557 48

5.7 Enable the Node Health Checker DataWarp Test

Prerequisites
● Ability to log in as root

About this task
The Node Health Checker (NHC) is automatically invoked by ALPS upon the termination of an application. ALPS
passes a list of compute nodes associated with the terminated application to NHC. NHC performs specified tests
to determine if compute nodes allocated to the application are healthy enough to support running subsequent
applications. The DataWarp test is a plugin script to check that any reservation-affiliated DataWarp mount points
have been removed. The plugin can only detect a problem once the last reservation on a node completes.

The configuration file that controls NHC behavior after a job has terminated
is /etc/opt/cray/nodehealth/nodehealth.conf, located in the shared root. The CLE installation and
upgrade processes automatically install this file and enable NHC software. By default, the DataWarp test is
disabled.

For further information about NHC, see the intro_NHC(8) man page and CLE XC™ System Administration
Guide (S-2393).

Procedure

1. Log on to the boot node and invoke xtopview.

smw# ssh root@boot
boot:# xtopview

2. Edit the NHC configuration file on the shared root.

default/:/# vi /etc/opt/cray/nodehealth/nodehealth.conf

3. Search for the DataWarp test entry datawarp.sh.

4. Enable the test by uncommenting the entire [plugin] entry.

[Plugin]
Command: datawarp.sh
Action: Admindown
WarnTime: 30
Timeout: 360
RestartDelay: 65
Uid: 0
Gid: 0
Sets: Reservation

For information regarding the standard variables used with the DataWarp test, see CLE XC™ System
Administration Guide (S-2393).

DataWarp Administrator Tasks

S2557 49

5. Save the changes and exit back to the SMW. Changes made to the NHC configuration file are reflected in the
behavior of NHC the next time that it runs.

5.8 Manage Log Files
The DataWarp scheduler daemon (dwsd), manager daemon (dwmd), and RESTful service (dwrest) write to log
files within /var/opt/cray/dws/log. Cray recommends using logrotate to control the size of these log files
by activating it on the following:

● sdb node

● dw_api_gateway node

● all nodes in the datawarp_manager_nodes list (see DataWarp with DWS: Set CLEinstall.conf Parameters
for the DataWarp Service)

Normally, logrotate is run as a daily cron job. For further information, see the logrotate(8) and cron(8)
man pages, CLE Installation and Configuration Guide (S-2444), and the Use logrotate to Control File Size
procedure in Cray XC Native Slurm Installation Guide (S-2538).

5.9 Drain a Storage Node

About this task
After an administrator assigns a node to a pool, any capacity on the node may be used when satisfying instance
requests. There are times when a site does not want to allow new instances to be placed on a node and also
does not want to disassociate the node from a pool. The drain attribute on a node controls this behavior. If a
node is in a drain state, the DWS will not place new instances on the node and will also remove that node's free
capacity contribution to a pool. The dwstat nodes pools command displays this information.

Procedure

1. Check the node and pool information.

crayadm@sys:> dwstat nodes pools
 node pool online drain gran capacity insts activs
nid00022 space true false 8MiB 3.64TiB 0 0

 pool units quantity free gran
space bytes 7.12TiB 7.12TiB 128GiB

2. Drain the storage node.

smw:# dwcli update node --name hostname --drain
where hostname is the hostname of the node to be drained

For example:

DataWarp Administrator Tasks

S2557 50

smw:# dwcli update node --name nid00022 --drain
smw:# dwstat nodes pools
 node pool online drain gran capacity insts activs
nid00022 space true true 8MiB 3.64TiB 0 0

 pool units quantity free gran
space bytes 7.12TiB 3.5TiB 128GiB

3. (Optional) If shutting down a node after draining it, wait for existing instances to be removed from the node.
The dwstat nodes command displays the number of instances present in the inst column; 0 indicates no
instances are present. In a healthy system, instances are removed over time as batch jobs complete. If it
takes longer than expected, or to clean up the node more quickly, identify the fragments (pieces of instances)
on the node by consulting the node column output of the dwstat fragments command and then finding
the corresponding instance by looking at the inst column output:

smw:# dwstat fragments
frag state inst capacity node
 102 CA-- 47 745.19GiB nid00022

4. (Optional) Remove that instance.

smw:# dwcli rm instance --id 47
Persistent DataWarp instances, which have a lifetime that may span multiple batch jobs, must also be
removed, either through a WLM-specific command or with dwcli.

5. When the node is fit for being used by the DWS again, unset the drain, thereby allowing the DWS to place
new instances on the node.

smw:# dwcli update node --name nid00022 --no-drain
 node pool online drain gran capacity insts activs
nid00022 space true false 8MiB 3.64TiB 0 0

 pool units quantity free gran
space bytes 7.12TiB 7.12TiB 128GiB

5.10 Replace a Blown Fuse
After a workload manager sends DataWarp requests to the DWS, the DWS begins preparing the SSDs and
compute nodes for the corresponding batch job. When things are working well, this process is quick and does not
require admin intervention. The dwstat command reports CA--- or CA-- in the state column for all objects
associated with the batch job. See dwstat(1) on page 23 for a description of the State column codes. If the DWS
encounters difficulty creating or destroying an object, it retries a configurable number of times (defined in
dwsd.yaml, see Update DWS Configuration Files on page 34) but eventually stops trying. To convey that the
retry threshold has been exceeded, the DWS borrows terminology from another domain and reports that the
object's fuse is blown. The dwstat command reports this as an F in the 3rd hyphen position of the state
column. For example, C-F-- as in the following dwstat activations output:

% dwstat activations
activ state sess conf nodes
 2 C-F-- 5 11 1

DataWarp Administrator Tasks

S2557 51

When dwstat reports that an object's fuse is blown, it likely indicates a serious error that needs investigating by a
system administrator. Clues as to what broke and why may be found in either the scheduler's log file (dwsd) or in
the manager dameon's log files (the various dwmd, one per SSD-endowed node).

When the issue is understood and resolved, use the dwcli command to replace the blown fuse associated with
the object, and thereby inform the DWS to retry the operations associated with the failed object. For example,
continuing with the above failed activation:

% dwcli update activation --id 2 --replace-fuse
Use dwstat to find the status of the object again. Fuses are replaceable as many times as necessary.

5.11 Deconfigure DataWarp

Prerequisites
● Ability to log in as root
● The system is not running

About this task
Follow this procedure to remove the DataWarp configuration from a system.

Procedure

1. Log on to the SMW as root.

2. Disable DataWarp:

a. Edit CLEinstall.conf.

b. Set datawarp=no.

c. Make a note of the SSD nodes listed in datawarp_manager_nodes as these are needed later in the
procedure.

3. Execute CLEinstall to reconfigure.

smw:# CLEinstall --reconfigure

4. Reboot the system.

5. Log on to an SSD-endowed node as root.

This example uses nid00349.

6. Remove the data.

a. Remove the LVM volume group.

nid00349:# vgremove dwcache

DataWarp Administrator Tasks

S2557 52

A confirmation prompt may appear:

Do you really want to remove volume group "dwcache" containing 1 logical
volumes? [y/n]:

b. Answer yes.

c. Identify the SSD block devices.

nid00349:# pvs
 PV VG Fmt Attr PSize PFree
 /dev/nvme0n1 dwcache lvm2 a-- 1.46t 1.46t
 /dev/nvme1n1 dwcache lvm2 a-- 1.46t 1.46t
 /dev/nvme2n1 dwcache lvm2 a-- 1.46t 1.46t
 /dev/nvme3n1 dwcache lvm2 a-- 1.46t 1.46t

d. Remove LVM ownership of devices. Specify all SSD block devices on the node.

nid00349:# pvremove /dev/nvme0n1,/dev/nvme1n1,/dev/nvme2n1,/dev/nvme3n1
Labels on physical volume "/dev/nvme0n1" successfully wiped
Labels on physical volume "/dev/nvme1n1" successfully wiped
Labels on physical volume "/dev/nvme2n1" successfully wiped
Labels on physical volume "/dev/nvme3n1" successfully wiped

7. Repeat steps 5 on page 52 through 6 on page 52 for all SSD nodes listed in datawarp_manager_nodes.

DataWarp is deconfigured.

DataWarp Administrator Tasks

S2557 53

6 Troubleshooting

6.1 Old Nodes in dwstat Output
The DataWarp Service (DWS) learns about node existence from two sources:

1. Heartbeat registrations between the dwsd process and the dwmd processes

2. Hostnames provided by workload managers as users are granted access to compute nodes as part of their
batch jobs

The dwsd process on the sdb node stores the DWS state in its state file and controls the information displayed by
dwstat nodes. On dwsd process restart, dwsd removes a node from its state file if the node meets the
following criteria:

1. the node is not in a pool

2. there are no instances on the node

3. there are no activations on the node

4. the node does not belong to a session

If a node lingers in the dwstat nodes output longer than expected, verify the above criterion are met, and then
restart the dwsd process on the sdb node: service dwsd restart.

6.2 Dispatch Requests
The dwsd is designed to dispatch requests to the dwmd processes as soon as there is work for the dwmd
processes to perform. If the dwsd gets confused or has a bug, it may fail to dispatch a request at the appropriate
time. If this is suspected, send SIGUSR1 to the dwsd process on the sdb node, forcing it to look for tasks to
perform.

sdb:# kill -USR1 $(</var/opt/cray/dws/dwsd.pid)
sdb:# tail -6 /var/opt/cray/dws/log/dwsd.log
2015-09-17 15:24:05 ========== Event on fd 4
2015-09-17 15:24:05 Caught signal User defined signal 1
2015-09-17 15:24:05 Alerting the task manager to wake up
2015-09-17 15:24:05 ========== Event on fd 7
2015-09-17 15:24:05 Finding tasks to spawn
2015-09-17 15:24:05 Nothing can be done right now

Troubleshooting

S2557 54

More likely than not, the dwsd cannot yet perform the action in question. Check if any nodes are not online
(dwstat nodes) and if all prerequisites to the action are met. For example, the dwsd will not dispatch a request
to create a configuration until after the corresponding instance has been created.

Troubleshooting

S2557 55

7 Diagnostics

7.1 SEC Notification when 90% of SSD Life Expectancy is Reached
When a DataWarp SSD reaches 90% of its life expectancy, a message is written to the console log file. If
enabled, the Simple Event Correlator (SEC) monitors system log files for significant events such as this and
sends a notification (either by email, IRC, writing to a file, or some user-configurable combination of all three) that
this has happened. The notification for nearing the end of life of an SSD is as follows:

Mon 8/17/2015 3:17 PM
SEC: 15:17 sitename-systemname: Low SSD Life Remaining 8% c3-0c0s2n1 PCIe slot
-1
 Please contact your Cray support personnel or sales representative for SSD card
replacements.

 12 hours -- skip repeats period, applies on a per SSD basis.

 System: sitename-systemname, sn9000
 Event: Low ioMemory SSD Life Remaining (8%) c3-0c0s2n1 PCIe faceplate slot:
Unknown (only one slot is populated in this node)
 Time: 15:17:04 in logged string.
 Mon Aug 17 15:17:05 2015 -- Time when SEC observed the logged string.

 Entire line in log file:
 /var/opt/cray/log/p0-20150817t070336/console-20150817

 2015-08-17T15:17:04.871808-05:00 c3-0c0s2n1 PCIe slot#:-1,Name:ioMemory
SX300-3200,SN:1416G0636,Size:3200GB,Remaining life: 8%,Temperature:41(c)

 SEC rule file:

 /opt/cray/sec/default/rules/aries/h_ssd_remaining_life.sr

 Note:

 The skip repeats period is a period during which any repeats of this event
type that occur will not be reported by SEC. It begins when the first message
that triggered this email was observed by SEC.

For detailed information about configuring SEC, see Configure Cray SEC Software (S-2542).

Diagnostics

S2557 56

8 Terminology
The following diagram shows the relationship between the majority of the DataWarp Service terminology using
Crow's foot notation. A session can have 0 or more instances, and an instance must belong to only one
session. An instance can have 0 or more configurations, but a configuration must belong to only one instance. A
registration belongs to only one configuration and only one session. Sessions and configurations can have 0 or
more registrations. An activation must belong to only one configuration, registration and session. A configuration
can have 0 or more activations. A registration is used by 0 or no activations. A session can have 0 or more
activations.

Figure 4. DataWarp Component Relationships

Activation An object that represents making a DataWarp configuration available to one or more client
nodes, e.g., creating a mount point.

Client Node A compute node on which a configuration is activated; that is, where a DVS client mount
point is created. Client nodes have direct network connectivity to all DataWarp server
nodes. At least one parallel file system (PFS) is mounted on a client node.

Configuration A configuration represents a way to use the DataWarp space.

Fragment A piece of an instance as it exists on a DataWarp service node.

The following diagram uses Crow's foot notation to illustrate the relationship between an
instance-fragment and a configuration-namespace. One instance has one or more
fragments; a fragment can belong to only one instance. A configuration has 0 or more
namespaces; a namespace can belong to only one configuration.

Terminology

S2557 57

Figure 5. Instance/Fragment ↔ Configuration/Namespace Relationship

Instance A specific subset of the storage space comprised of DataWarp fragments, where no two
fragments exist on the same node. An instance is essentially raw space until there exists at
least one DataWarp instance configuration that specifies how the space is to be used and
accessed.

DataWarp Service The DataWarp Service (DWS) manages access and configuration of DataWarp instances in
response to requests from a workload manager (WLM) or a user.

Fragment A piece of an instance as it exists on a DataWarp service node

Job Instance A DataWarp instance whose lifetime matches that of a batch job and is only accessible to
the batch job because the public attribute is not set.

Namespace A piece of a scratch configuration; think of it as a folder on a file system.

Node A DataWarp service node (with SSDs) or a compute node (without SSDs). Nodes with
space are server nodes; nodes without space are client nodes.

Persistent
Instance

A DataWarp instance whose lifetime matches that of possibly multiple batch jobs and may
be accessed by multiple user simultaneously because the public attribute is set.

Pool Groups server nodes together so that requests for capacity (instance requests) refer to a
pool rather than a bunch of nodes. Each pool has an overall quantity (maximum configured
space), a granularity of allocation, and a unit type. The units are either bytes or nodes
(currently only bytes are supported). Nodes that host storage capacity belong to at most
one pool.

Registration A known usage of a configuration by a session.

Server Node An IO service blade that contains two SSDs and has network connectivity to the PFS.

Session An intagible object (i.e., not visible to the application, job, or user) used to track interactions
with the DWS; typically maps to a batch job.

Terminology

S2557 58

9 Prefixes for Binary and Decimal Multiples
Multiples of bytes

SI decimal prefixes IEC binary prefixes

Name Symbol Standard SI Binary Usage Name Symbol Value

kilobyte kB 103 210 kibibyte KiB 210

megabyte MB 106 220 mebibyte MiB 220

gigabyte GB 109 230 gibibyte GiB 230

terabyte TB 1012 240 tebibyte TiB 240

petabyte PB 1015 250 pebibyte PiB 250

exabyte EB 1018 260 exbibyte EiB 260

zettabyte ZB 1021 270 zebibyte ZiB 270

yottabyte YB 1024 280 yobibyte YiB 280

For a detailed explanation, including a historical perspective, see http://physics.nist.gov/cuu/Units/binary.html.

Prefixes for Binary and Decimal Multiples

S2557 59

http://physics.nist.gov/cuu/Units/binary.html

	Contents
	1 About the DataWarp Administration Guide
	2 Important Information about this DataWarp Release
	3 About DataWarp
	3.1 Overview of the DataWarp Process
	3.2 DataWarp Concepts
	3.3 Instances and Fragments - a Detailed Look
	3.4 Storage Pools
	3.5 Registrations

	4 DataWarp Administrator Tools
	4.1 dwcli(8)
	4.2 dwstat(1)
	4.3 xtcheckssd(8)
	4.4 xtiossdflash(8)
	4.5 xtssdconfig(8)

	5 DataWarp Administrator Tasks
	5.1 Update DWS Configuration Files
	5.2 DataWarp with DWS: Create a Storage Pool
	5.3 The dwpoolhelp Command Source Code
	5.4 Initialize an SSD
	5.5 Assign a Node to a Storage Pool
	5.6 Verify the DataWarp Configuration
	5.7 Enable the Node Health Checker DataWarp Test
	5.8 Manage Log Files
	5.9 Drain a Storage Node
	5.10 Replace a Blown Fuse
	5.11 Deconfigure DataWarp

	6 Troubleshooting
	6.1 Old Nodes in dwstat Output
	6.2 Dispatch Requests

	7 Diagnostics
	7.1 SEC Notification when 90% of SSD Life Expectancy is Reached

	8 Terminology
	9 Prefixes for Binary and Decimal Multiples

