
RR

Managing System Software for the Cray® Linux
Environment

S–2393–5101

© 2005, 2006-2013 Cray Inc. All Rights Reserved. This document or parts thereof may not be reproduced in any
form unless permitted by contract or by written permission of Cray Inc.

U.S. GOVERNMENT RESTRICTED RIGHTS NOTICE

The Computer Software is delivered as "Commercial Computer Software" as defined in DFARS 48 CFR
252.227-7014.

All Computer Software and Computer Software Documentation acquired by or for the U.S. Government is provided
with Restricted Rights. Use, duplication or disclosure by the U.S. Government is subject to the restrictions described
in FAR 48 CFR 52.227-14 or DFARS 48 CFR 252.227-7014, as applicable.

Technical Data acquired by or for the U.S. Government, if any, is provided with Limited Rights. Use, duplication or
disclosure by the U.S. Government is subject to the restrictions described in FAR 48 CFR 52.227-14 or DFARS 48
CFR 252.227-7013, as applicable.

The following are trademarks of Cray Inc. and are registered in the United States and other countries: Cray and
design, Sonexion, Urika, and YarcData. The following are trademarks of Cray Inc.: ACE, Apprentice2, Chapel,
Cluster Connect, CrayDoc, CrayPat, CrayPort, ECOPhlex, LibSci, NodeKARE, Threadstorm. The following system
family marks, and associated model number marks, are trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT, and
XT. The registered trademark Linux is used pursuant to a sublicense from LMI, the exclusive licensee of Linus
Torvalds, owner of the mark on a worldwide basis. Other trademarks used in this document are the property of
their respective owners.

AMD is a trademark of Advanced Micro Devices, Inc. Aries, Gemini, Intel, and Intel Xeon Phi are trademarks of
Intel Corporation or its subsidiaries in the United States and other countries. DDN is a trademark of DataDirect
Networks. Dell and PowerEdge are trademarks of Dell, Inc. Engenio and SANtricity are trademarks of NetApp, Inc.
InfiniBand is a trademark of InfiniBand Trade Association. Java, MySQL Enterprise, MySQL, NFS, and Solaris
are trademarks of Oracle and/or its affiliates. Kerberos is a trademark of Massachusetts Institute of Technology.
LSF, Platform, Platform Computing, and Platform LSF are trademarks of Platform Computing Corporation. LSI
is a trademark of LSI Corporation. Lustre is a trademark of Xyratex and/or its affiliates. Mac, Mac OS, and OS X
are trademarks of Apple Inc. Moab is a trademark of Adaptive Computing Enterprises, Inc. Novell is a trademark
of Novell, Inc. NVIDIA and Tesla are trademarks of NVIDIA Corporation. PBS Professional is a trademark of
Altair Engineering, Inc. PGI is a trademark of The Portland Group Compiler Technology, STMicroelectronics, Inc.
Red Hat is a trademark of Red Hat, Inc. RSA is a trademark of RSA Security Inc. TotalView is a trademark of
Rogue Wave Software, Inc. UNIX is a trademark of The Open Group. Whamcloud is a trademark of Whamcloud,
Inc. Windows is a trademark of Microsoft Corporation.

RECORD OF REVISION

S–2393–5101 Published December 2013 Supports the Cray Linux Environment (CLE) 5.1.UP01 release and the
System Management Workstation (SMW) 7.1.UP01 release.

S–2393–4202 Published October 2013 Supports the Cray Linux Environment (CLE) 4.2.UP02 release and the
System Management Workstation (SMW) 7.1.UP00 release.

S–2393–51 Published September 2013 Supports the Cray Linux Environment (CLE) 5.1.UP00 release and the
System Management Workstation (SMW) 7.1.UP00 release.

S–2393–4201 Published July 2013 Supports the Cray Linux Environment (CLE) 4.2.UP01 release and the System
Management Workstation (SMW) 7.0.UP03 release.

S–2393–5003 Published June 2013 Supports the Cray Linux Environment (CLE) 5.0.UP03 release and the System
Management Workstation (SMW) 7.0.UP03 release.

S–2393–42 Published April 2013 Supports the Cray Linux Environment (CLE) 4.2 release and the System
Management Workstation (SMW) 7.0.UP02 release.

S–2393–5002 Published March 2013 Supports the Cray Linux Environment (CLE) 5.0.UP02 release and the System
Management Workstation (SMW) 7.0.UP02 release.

S–2393–4101 Published December 2012 Supports the Cray Linux Environment (CLE) 4.1.UP01 release and the
System Management Workstation (SMW) 7.0.UP01 release.

S–2393–5001 Published November 2012 Limited Availability (LA) draft; supports the Cray Linux Environment
(CLE) 5.0.UP01 release and the System Management Workstation (SMW) 7.0.UP01 release.

S–2393–41 Published August 2012 Limited Availability (LA) draft; supports the Cray Linux Environment (CLE)
4.1.UP00 LA release and the System Management Workstation (SMW) 7.0.UP00 LA release.

S–2393–4003 Published March 2012 Supports the Cray Linux Environment (CLE) 4.0.UP03 release and the System
Management Workstation (SMW) 6.0.UP03 release.

S–2393–4002 Published December 2011 Supports the Cray Linux Environment (CLE) 4.0.UP02 release and the
System Management Workstation (SMW) 6.0.UP02 release.

S–2393–4001 Published September 2011 Supports the Cray Linux Environment (CLE) 4.0.UP01 release and the
System Management Workstation (SMW) 6.0.UP01 release.

S–2393–4001 Published August 2011 Limited Availability draft; supports the Cray Linux Environment (CLE)
4.0.UP00 release and the System Management Workstation (SMW) 6.0.UP00 release.

S–2393–3102 Published December 2010 Supports the Cray Linux Environment (CLE) 3.1.02 release and the System
Management Workstation (SMW) 5.1.02 release.

3.1 Published June 2010 Supports the Cray Linux Environment (CLE) 3.1 release and the System Management
Workstation (SMW) 5.1 release.

3.0 Published March 2010 Supports the Cray Linux Environment (CLE) 3.0 release and the System Management
Workstation (SMW) 5.0 release.

2.2 Published July 2009 Supports the general availability (GA) release of Cray XT systems running the
Cray Linux Environment (CLE) 2.2 release and the general availability (GA) release of the System Management
Workstation (SMW) 4.0 release.

2.1 Published November 2008 Supports the general availability (GA) release of Cray XT systems running the
Cray Linux Environment (CLE) 2.1 release and the System Management Workstation (SMW) 3.1 release as of
the SMW 3.1.09 update.

2.0 Published October 2007 Supports general availability (GA) release of Cray XT series systems running the Cray
XT series Programming Environment 2.0, UNICOS/lc 2.0, and System Management Workstation 3.0.1 releases.

1.5 Published October 2006 Supports general availability (GA) release of Cray XT series systems running the Cray
XT series Programming Environment 1.5, UNICOS/lc 1.5, and System Management Workstation 1.5 releases.

1.4 Published May 2006 Supports Cray XT3 systems running the Cray XT3 Programming Environment 1.4, Cray
XT3 RAS and Management System (CRMS) 1.4, and UNICOS/lc 1.4 releases.

1.3 Published November 2005 Supports Cray XT3 systems running the Cray XT3 Programming Environment 1.3,
System Management Workstation (SMW) 1.3, and UNICOS/lc 1.3 releases.

1.2 Published September 2005 Supports Cray XT3 systems running the Cray XT3 Programming Environment 1.2,
System Management Workstation (SMW) 1.2, and UNICOS/lc 1.2 releases.

1.1 Published June 2005 Supports Cray XT3 systems running the Cray XT3 Programming Environment 1.1, System
Management Workstation (SMW) 1.1, and UNICOS/lc 1.1 releases.

1.0 Published February 2005 Draft documentation to support Cray XT3 limited availability (LA) systems.

Changes to this Document

Managing System Software for the Cray® Linux Environment S–2393–5101

S–2393–5101

Added information

• Added Resource Utilization Reporting (RUR) plugins timestamp, exit_code, and user_output
to Plugin Architecture on page 345.

S–2393–51

Revised information

• State Manager on page 51: The state manager uses the Lightweight Log Manager (LLM). The log data
from state manager is written to /var/opt/cray/log/sm-yyyymmdd. The default setting for state
manager is to enable LLM logging.

• Updated naming conventions in Table 1.

• Procedure 51 on page 222 includes additional steps and updated Note.

• Increasing the Boot Manager Time-out Value on page 265 shows revised
/opt/cray/hss/default/etc/bm.ini boot_timeout values, depending on system size.

Deleted information

• ALPS_NIDORDER was removed from /etc/sysconfig/alps Configuration File on page 275 as the
tuning associated with this parameter is no longer relevant to the Cray XC30 system topology.

S–2393–5003

Added information

• Figure 11 shows the port assignments for InfiniBand interfaces on IO Base Blades.

Revised information

• Dumping Information Using the xtdumpsys Command on page 91.

• The xtclear_link_alerts command is deprecated for users and is only run internally by the
xtnlrd command. When run internally by xtnlrd, xtclear_link_alerts saves a list of the
components that had alerts, to allow xtnlrd to put the alert flags back onto the components and LCBs
in case of failure so that an warmswap --add or warmswap --sync command is done correctly
before handling any link or blade failures.

• Added resFullNode, cleanSharedTimeout, cleanSharedAge, and
cleanSharedInterval apsched options to The alps.conf Configuration File on
page 278.

• Configuring Fine-grained Routing with clcvt on page 333.

S–2393–5002

Added information

• Creating Logical Machines on Cray XC30 Systems on page 194.

• Rebooting Controllers of a Cabinet or Blade on page 75.

• Initiating a Network Discovery Process on page 76.

• Displaying System Network Congestion Protection Information on page 103.

• Configuring Fine-grained Routing with clcvt on page 333.

Revised information

• Table 1. Physical ID Naming Conventions.

• Using the xthotbackup Command to Back Up Boot Root and Shared Root on page 260 has been
updated to point to Logical Volume Manager (LVM) backup configuration procedures in Installing and
Configuring Cray Linux Environment (CLE) Software.

• Checking the Status of System Components: added a description of the new xtcli status -m option
usage.

• Procedure 51 on page 222: added new step 2, which executes the xtbounce --linktune=all
command to tune PCIe and HSN links on the system.

• HSS Commands on page 363.

• Procedure 107 on page 377 was updated to use the new xtccreboot command to reboot all cabinet
controllers at once.

• Manually Cleaning ALPS and PBS or TORQUE and Moab After Downed Login Node on page 286 was
updated to reflect that the procedure applies to both TORQUE and Moab and PBS Professional.

• Configuring Node Health Checker (NHC) on page 168 was updated to include a description of the
Sigcont Plugin test.

Deleted information

• Deleted the instructions for changing the correctable MCE threshold setting via the rc.local script in
Callout to rc.local During Boot on page 197. This method is valid for AMD™ CPUs only.

S–2393–5001

Added information

• Cray XC30 systems use the cdump and crash utilities; see cdump and crash Utilities for Node Memory
Dump and Analysis on page 92.

• Monitoring the Health of PCIe Channels on page 104 describes the new xtpcimon command.

• The Node ARP Management Daemon (rca_arpd) on page 194 describes a new daemon that manages
the system ARP cache.

• Larger system configuration LNET directives may exceed the 1024 character limit of modprobe.conf
entries. Procedure 90 on page 329 allows administrators to source ip2nets and routes information
from files to work around this limitation.

Revised information

• Changing the Class of a Node on page 143 has been updated to show that the xtnce -c command must
be executed from within xtopview.

Contents

Page

Introduction [1] 31

1.1 Audience for This Guide . 31

1.2 Cray System Administration Publications 32

1.3 Related Publications . 33

Introducing System Components [2] 35

2.1 System Management Workstation (SMW) 37

2.2 Cray Linux Environment (CLE) . 38

2.3 Boot Root File System . 38

2.4 Shared Root File System . 38

2.5 Service Nodes . 39

2.5.1 Boot Node . 39

2.5.2 Service Database (SDB) Node 40

2.5.3 Syslog Node . 40

2.5.4 Login Nodes . 40

2.5.5 Network Nodes . 41

2.5.6 I/O Nodes . 41

2.5.7 Services on the Service Nodes 41

2.5.7.1 Resiliency Communication Agent (RCA) 41

2.5.7.2 Lustre File System . 42

2.5.7.3 Cray Data Virtualization Service (Cray DVS) 42

2.5.7.4 ALPS for Compute Nodes 43

2.5.7.5 Cluster Compatibility Mode 43

2.5.7.6 Repurposing CNL Compute Nodes as Service Nodes 44

2.5.7.7 IP Implementation . 44

2.6 Compute Nodes . 44

2.7 Job Launch Commands . 46

2.8 Node Health Checker (NHC) . 46

2.9 Comprehensive System Accounting (CSA) 46

2.10 Optional Workload-management (Batch) System Software Products 47

S–2393–5101 9

Managing System Software for the Cray® Linux Environment

Page

2.11 Hardware Supervisory System (HSS) 47

2.11.1 HSS Network . 48

2.11.2 HSS Interface . 48

2.11.3 Blade Controllers and Cabinet Controllers 49

2.11.4 NTP Server . 49

2.11.5 Event Router . 50

2.11.6 HSS Managers . 50

2.11.6.1 State Manager . 51

2.11.6.2 Boot Manager . 51

2.11.6.3 System Environmental Data Collections (SEDC) Manager 51

2.11.6.4 NID Manager . 52

2.11.7 Automatically Discover and Configure Cray System Hardware 53

2.11.8 Cray System Network Routing Utility 53

2.11.9 Log Files . 53

2.11.9.1 Event Logs . 54

2.11.9.2 Boot Logs . 54

2.11.9.3 Dump Logs . 54

2.12 SEC Software for Log Monitoring and Event Processing 54

2.13 Storage . 55

2.14 Other Administrative Information 55

2.14.1 Identifying Components . 55

2.14.1.1 Physical ID . 56

2.14.1.2 Node ID (NID) . 60

2.14.1.3 Class Name . 61

2.14.2 Topology Class . 61

2.14.3 Persistent /var Directory 61

2.14.4 Default Network IP Addresses 62

2.14.5 /etc/hosts Files . 62

2.14.6 Realm-Specific IP Addressing (RSIP) for Compute Nodes 63

2.14.7 Security Auditing . 63

2.14.8 Logging Failed Login Attempts 64

2.14.9 Logical Machines . 64

Managing the System [3] 65

3.1 Connecting the SMW to the Console of a Service Node 65

3.2 Logging On to the Boot Node . 65

3.3 Preparing a Service Node and Compute Node Boot Image 65

3.3.1 Using shell_bootimage_LABEL.sh to Prepare Boot Images 66

10 S–2393–5101

Contents

Page

3.3.2 Customizing Existing Boot Images 69

3.3.3 Changing Boot Parameters . 71

3.4 Booting Nodes . 71

3.4.1 Booting the System . 71

3.4.2 Using the xtcli boot Command to Boot a Node or Set of Nodes 74

3.4.3 Rebooting a Single Compute Node 75

3.4.4 Rebooting Login or Network Nodes 75

3.5 Rebooting Controllers of a Cabinet or Blade 75

3.6 Requesting and Displaying System Routing 76

3.7 Initiating a Network Discovery Process 76

3.8 Bouncing Blades Repeatedly Until All Blades Succeed 77

3.9 Shutting Down the System Using the auto.xtshutdown File 77

3.10 Shutting Down Service Nodes Using the xtshutdown Command 78

3.11 Shutting Down the System or Part of the System Using the xtcli shutdown Command . . . 79

3.12 Stopping System Components . 79

3.12.1 Reserving a Component . 80

3.12.2 Powering Down Blades or Cabinets 80

3.12.3 Halting Selected Nodes . 81

3.13 Restarting a Blade or Cabinet . 81

3.14 Aborting Active Sessions on the HSS Boot Manager 82

3.15 Displaying and Changing Software System Status 82

3.15.1 Displaying the Status of Nodes from the Operating System 82

3.15.2 Viewing and Changing the Status of Nodes 82

3.15.3 Marking a Compute Node as a Service Node 84

3.15.4 Finding Node Information . 84

3.15.4.1 Translating Between Physical ID Names and Integer NIDs 84

3.15.4.2 Finding Node Information Using the xtnid2str Command 84

3.15.4.3 Finding Node Information Using the nid2nic Command 85

3.16 Displaying and Changing Hardware System Status 85

3.16.1 Generating HSS Physical IDs 85

3.16.2 Disabling Hardware Components 86

3.16.3 Enabling Hardware Components 86

3.16.4 Setting Components to Empty 87

3.16.5 Locking Components . 88

3.16.6 Unlocking Components . 88

3.17 Performing Parallel Operations on Service Nodes 88

3.18 Performing Parallel Operations on Compute Nodes 89

S–2393–5101 11

Managing System Software for the Cray® Linux Environment

Page

3.19 xtbounce Error Message Indicating Cabinet Controller and Its Blade Controllers Not in Sync . . 90

3.20 Handling Bus Errors . 90

3.21 Handling Component Failures . 91

3.22 Capturing and Analyzing System-level and Node-level Dumps 91

3.22.1 Dumping Information Using the xtdumpsys Command 91

3.22.2 cdump and crash Utilities for Node Memory Dump and Analysis 92

3.22.3 Using dumpd to Automatically Dump and Reboot Nodes 92

3.22.3.1 Enabling dumpd . 93

3.22.3.2 /etc/opt/cray-xt-dumpd/dumpd.conf Configuration File 94

3.22.3.3 Using the dumpd-dbadmin Tool 95

3.22.3.4 Using the dumpd-request Tool 95

3.23 Using xtnmi Command to Collect Debug Information from Hung Nodes 96

Monitoring System Activity [4] 97

4.1 Monitoring the System with the System Environmental Data Collector (SEDC) 97

4.2 Displaying Installed SMW Release Level 97

4.3 Displaying Current and Installed CLE Release Information 97

4.4 Displaying Boot Configuration Information 98

4.5 Managing Log Files Using CLE and HSS Commands 98

4.5.1 Filtering the Event Log . 99

4.5.2 Adding Entries to Log Files . 99

4.5.3 Examining Log Files . 99

4.5.4 Removing Old Log Files . 100

4.6 Checking the Status of System Components 100

4.7 Checking the Status of Compute Processors 101

4.8 Checking CNL Compute Node Connection 102

4.9 Checking Link Control Block and Router Errors 103

4.10 Displaying System Network Congestion Protection Information 103

4.11 Monitoring the Health of PCIe Channels 104

4.12 Monitoring the Status of Jobs Started Under a Third-party Batch System 104

4.13 Using the cray_pam Module to Monitor Failed Login Attempts 105

4.14 Monitoring DDN RAID . 105

4.15 Monitoring NetApp, Inc. Engenio RAID 105

4.16 Monitoring HSS Managers . 105

4.16.1 Examining Activity on the HSS Boot Manager 105

4.16.2 Polling a Response from an HSS Daemon, Manager, or the Event Router 106

4.17 Monitoring Events . 106

4.18 Monitoring Node Console Messages 106

12 S–2393–5101

Contents

Page

4.19 Showing the Component Alert, Warning, and Location History 107

4.20 Displaying Component Information 107

4.21 Displaying Alerts and Warnings 109

4.22 Clearing Flags . 110

4.23 Displaying Error Codes . 110

Managing User Access [5] 111

5.1 Load Balancing Across Login Nodes 111

5.2 Passwords . 111

5.2.1 Changing Default SMW Passwords After Completing Installation 112

5.2.2 Changing root and crayadm Passwords on Boot and Service Nodes 112

5.2.3 Changing the root Password on CNL Compute Nodes 113

5.2.4 Changing the HSS Data Store (MySQL) Password 113

5.2.5 Changing Default MySQL Passwords on the SDB 114

5.2.6 Assigning and Changing User Passwords 118

5.2.7 Logins That Do Not Require Passwords 118

5.3 Administering Accounts . 119

5.3.1 Managing Boot Node Accounts 119

5.3.2 Managing User Accounts That Must Be Maintained on the Cray System Directly 119

5.3.2.1 Adding a User or Group 120

5.3.2.2 Removing a User or Group 120

5.3.2.3 Changing User or Group Information 121

5.3.2.4 Assigning Groups of CNL Compute Nodes to a User Group 121

5.3.2.5 Associating Users with Projects 121

5.3.2.6 Enabling LDAP Support for User Authentication 121

5.3.3 Setting Disk Quotas for a User on the Cray Local, Non-Lustre File System 123

5.4 About Modules and Modulefiles . 123

5.5 About the /etc/*rc.local Files 124

5.6 System-wide Default Modulefiles 124

5.7 Configuring the Default Programming Environment (PE) 125

5.8 Using the pam_listfile Module in the Shared Root Environment 126

5.9 ulimit Stack Size Limit . 126

5.10 Stopping a User's Job . 126

5.10.1 Stopping a Job Running in Interactive Mode 127

5.10.2 Stopping a Job Running Under a Batch System 127

Modifying an Installed System [6] 129

6.1 Configuring the Shared-root File System on Service Nodes 129

S–2393–5101 13

Managing System Software for the Cray® Linux Environment

Page

6.1.1 Specialization . 130

6.1.2 Visible Shared-root File System Layout 131

6.1.3 How Specialization Is Implemented 133

6.1.4 Working with the Shared-root File System 134

6.1.4.1 Managing System Configuration with the xtopview Tool 135

6.1.4.2 Updating Specialized Files From Within the xtopview Shell 138

6.1.4.3 Specializing Files . 138

6.1.4.4 Determining which Files are Specialized 140

6.1.4.5 Checking Shared-root Configuration 142

6.1.4.6 Verifying the Coherency of /etc/init.d Files Across All Shared Root Views . . . 142

6.1.4.7 Cloning a Shared-root Hierarchy 143

6.1.4.8 Changing the Class of a Node 143

6.1.4.9 Removing Specialization 144

6.1.4.10 Displaying RCS Log Information for Shared Root Files 144

6.1.4.11 Checking Out an RCS Version of Shared Root Files 145

6.1.4.12 Listing Shared Root File Specification and Version Information 146

6.1.4.13 Performing Archive Operations on Shared Root Files 147

6.1.5 Logging Shared-root Activity 148

6.2 PBS Professional Licensing Requirements for Cray Systems 148

6.3 Disabling Secure Shell (SSH) on Compute Nodes 148

6.4 Modifying SSH Keys for Compute Nodes 149

6.5 Configuring the System Environmental Data Collector (SEDC) 151

6.6 Configuring Optional RPMs in the CNL Boot Image 151

6.7 Configuring Memory Control Groups 151

6.8 Configuring the Zone Moveable Feature for Compute Nodes 153

6.9 Configuring Cray Enhanced Linux Security Features 153

6.9.1 Security Auditing and Cray Audit Extensions 154

6.9.1.1 Lustre File System Requirements for Cray Audit 158

6.9.1.2 System Performance Considerations for Cray Audit 159

6.9.2 Using the cray_pam PAM to Log Failed Login Attempts 159

6.10 Configuringcron Services . 164

6.11 Configuring the Load Balancer . 167

6.12 Configuring Node Health Checker (NHC) 168

6.12.1 /etc/opt/cray/nodehealth/nodehealth.conf Configuration File . . . 168

6.12.2 Configuring Node Health Checker Tests 170

6.12.2.1 Guidance About NHC Tests 174

6.12.2.2 NHC Control Variables 178

14 S–2393–5101

Contents

Page

6.12.2.3 Global Configuration Variables That Affect All NHC Tests 178

6.12.2.4 Standard Variables That Affect Individual NHC Tests 181

6.12.3 Suspect Mode . 183

6.12.4 NHC Messages . 184

6.12.5 What if a Login Node Crashes While xtcheckhealth Binaries are Monitoring Nodes? . . 185

6.12.6 Disabling NHC . 187

6.12.7 nodehealth Modulefile 187

6.12.8 Configuring the Node Health Checker to Use SSL 187

6.13 Activating Process Accounting for Service Nodes 188

6.14 Configuring Failover for Boot and SDB Nodes 188

6.14.1 Configuring Boot-node Failover 188

6.14.2 Configuring SDB Node Failover 192

6.14.3 The Node ARP Management Daemon (rca_arpd) 194

6.15 Creating Logical Machines . 194

6.15.1 Creating Logical Machines on Cray XC30 Systems 194

6.15.1.1 Multiple Group Systems 194

6.15.1.2 Single Group, Multiple-chassis Systems 195

6.15.1.3 Single Chassis Systems 195

6.15.2 Configuring a Logical Machine 195

6.15.3 Booting a Logical Machine 196

6.16 Updating Boot Configuration . 196

6.17 Modifying Boot Automation Files 197

6.18 Callout to rc.local During Boot 197

6.19 Changing the System Software Version to be Booted 197

6.19.1 Minor Release Switching Within a System Set 198

6.19.2 Major Release Switching Using Separate System Sets 198

6.20 Changing the Service Database (SDB) 199

6.20.1 Service Database Tables . 200

6.20.2 Database Security . 201

6.20.3 Updating Database Tables . 201

6.20.3.1 Changing Nodes and Classes 203

6.21 Viewing the Service Database Contents with MySQL Commands 204

6.22 Configuring the Lustre File System 205

6.23 Exporting Lustre with NFSv3 . 205

6.24 Enabling File-locking for Lustre Clients 208

6.25 Backing Up and Restoring Lustre Failover Tables 208

6.26 Configuring Cray Data Virtualization Service (Cray DVS) 209

S–2393–5101 15

Managing System Software for the Cray® Linux Environment

Page

6.27 Setting and Viewing Node Attributes 209

6.27.1 Setting Node Attributes Using the /etc/opt/cray/sdb/attr.xthwinv.xml and
/etc/opt/cray/sdb/attr.defaults Files 210

6.27.1.1 Generating the /etc/opt/cray/sdb/attributes File 210

6.27.2 SDB attributes Table 211

6.27.3 Setting Attributes Using the xtprocadmin Command 212

6.27.4 Viewing Node Attributes . 213

6.28 Using the XTAdmin Database segment Table 213

6.29 Configuring Networking Services 214

6.29.1 Changing the High-speed Network (HSN) 214

6.29.2 Network File System (NFS) 215

6.29.3 Configuring Ethernet Link Aggregation (Bonding, Channel Bonding) 215

6.29.4 Configuring a Virtual Local Area Network (VLAN) Interface 216

6.29.5 Increasing Size of ARP Tables 217

6.29.6 Configuring Realm-specific IP Addressing (RSIP) 217

6.29.6.1 Using the CLEinstall Program to Install and Configure RSIP 218

6.29.7 IP Routes for CNL Nodes in the /etc/routes File 222

6.30 Updating the System Configuration After a Blade Change 222

6.30.1 Updating the System Configuration When the System is Not Booted 222

6.30.2 Updating the System Configuration While the System is Booted 224

6.30.2.1 Reusing One or More Previously-failed HSN Links 225

6.30.2.2 Reusing One or More Previously-failed Blades, ANCs, or Cabinets 225

6.30.2.3 Planned Removal of a Compute Blade 226

6.30.2.4 Planned Installation of a Compute Blade 227

6.31 Changing the Location to Log syslog-ng Information 227

6.32 Cray Lightweight Log Management (LLM) System 228

6.32.1 Configuring LLM . 228

6.32.2 State Manager LLM Logging 229

6.32.3 LLM Configuration Tips . 229

Managing Services [7] 231

7.1 Configuring the SMW to Synchronize to a Site NTP Server 231

7.2 Synchronizing Time of Day on Compute Node Clocks with the Clock on the Boot Node 231

7.3 Adding and Starting a Service Using Standard Linux Mechanisms 232

7.4 Creating a Snapshot of /var . 232

7.5 Setting Soft and Hard Limits to Prevent Login Node Hangs 233

7.6 Rack-mount SMW: Creating a Cray System Management Workstation (SMW) Bootable Backup Drive 234

7.7 Desk-side SMW: Creating an System Management Workstation (SMW) Bootable Backup Drive . . 244

16 S–2393–5101

Contents

Page

7.8 Rack-mount SMW: Setting Up the Bootable Backup Drive as an Alternate Boot Device 252

7.9 Desk-side SMW: Setting Up the Bootable Backup Drive as an Alternate Boot Device 255

7.10 Archiving the SDB . 257

7.11 Backing Up Limited Shared-root Configuration Data 257

7.11.1 Using the xtoparchive Utility to Archive the Shared-root File System 258

7.11.2 Using Linux Utilities to Save the Shared-root File System 258

7.12 Backing Up Boot Root and Shared Root 259

7.12.1 Using the xthotbackup Command to Back Up Boot Root and Shared Root 260

7.12.2 Using dump and restore Commands to Back Up Boot Root and Shared Root 261

7.13 Backing Up User Data . 262

7.14 Rebooting a Stopped SMW . 262

7.15 SMW Recovery . 262

7.16 Restoring the HSS Database . 263

7.17 Recovering from Service Database Failure 263

7.17.1 Database Server Failover . 264

7.17.2 Rebuilding Corrupted SDB Tables 264

7.18 Using Persistent SCSI Device Names 264

7.19 Using a Linux iptables Firewall to Limit Services 265

7.20 Handling Single-node Failures . 265

7.21 Increasing the Boot Manager Time-out Value 265

7.22 RAID Failure . 266

Using the Application Level Placement Scheduler (ALPS) [8] 267

8.1 ALPS Functionality . 267

8.2 ALPS Architecture . 268

8.2.1 ALPS Clients . 269

8.2.1.1 The aprun Client . 270

8.2.1.2 The apstat Client . 270

8.2.1.3 The apkill Client . 271

8.2.1.4 The apmgr Client . 271

8.2.1.5 The apbasil Client . 271

8.2.2 ALPS Daemons . 272

8.2.2.1 The apbridge Daemon 272

8.2.2.2 The apsched Daemon 272

8.2.2.3 The apsys Daemon . 272

8.2.2.4 The apwatch Daemon 273

8.2.2.5 The apinit Daemon 273

8.2.2.6 The apres Daemon . 274

S–2393–5101 17

Managing System Software for the Cray® Linux Environment

Page

8.2.2.7 ALPS Log Files . 274

8.2.2.8 Changing Debug Message Level of apsched and apsys Daemons 274

8.3 Configuring ALPS . 275

8.3.1 /etc/sysconfig/alps Configuration File 275

8.3.2 The alps.conf Configuration File 278

8.4 Resynchronizing ALPS and the SDB Command After Manually Changing the SDB 283

8.5 Identifying Reserved Resources . 283

8.6 Terminating a Batch Job . 284

8.7 Setting a Compute Node to Batch or Interactive Mode 284

8.8 Manually Starting and Stopping ALPS Daemons on Service Nodes 285

8.9 Manually Cleaning ALPS and PBS or TORQUE and Moab After Downed Login Node 286

8.10 Verifying that ALPS is Communicating with Cray System Compute Nodes 287

8.11 ALPS and Node Health Monitoring Interaction 287

8.11.1 aprun Actions . 288

8.11.2 apinit Actions . 289

8.11.3 apsys Actions . 290

8.11.4 Node Health Checker Actions 291

8.11.5 Verifying Application Cleanup 291

Using Comprehensive System Accounting [9] 293

9.1 Interacting with Batch Entry Systems or the PAM job Module 294

9.2 CSA Configuration File Values . 294

9.3 Configuring CSA . 296

9.3.1 Obtaining File System and Node Information 296

9.3.2 Editing the csa.conf File 297

9.3.3 Editing Other System Configuration Files 300

9.3.4 Creating a CNL Image with CSA Enabled 301

9.3.5 Setting Up CSA Project Accounting 301

9.3.5.1 Disabling Project Accounting 303

9.3.6 Setting Up Job Accounting . 304

9.4 Creating Accounting cron Jobs 304

9.4.1 csanodeacct cron Job for Login Nodes 305

9.4.2 csarun cron Job . 305

9.4.3 csaperiod cron Job . 305

9.5 Enabling CSA . 306

9.6 Using LDAP with CSA . 306

18 S–2393–5101

Contents

Page

Dynamic Shared Objects and Cluster Compatibility Mode in CLE [10] 307

10.1 Configuring the Compute Node Root Runtime Environment (CNRTE) Using CLEinstall . . 307

10.2 Configuring Cluster Compatibility Mode 309

10.2.1 Preconditions . 311

10.2.2 Configuration Options . 312

Using InfiniBand and OpenFabrics Interconnect Drivers [11] 319

11.1 InfiniBand and OFED Overview 319

11.2 Using InfiniBand . 320

11.2.1 Storage Area Networking . 320

11.2.2 Lustre Routing . 321

11.2.3 IP Connectivity . 322

11.3 Configuration . 322

11.4 InfiniBand Configuration . 323

11.5 Subnet Manager (OpenSM) Configuration 325

11.5.1 Starting OpenSM at Boot Time 325

11.6 Internet Protocol over InfiniBand (IPoIB) Configuration 326

11.7 Configuring SCSI RDMA Protocol (SRP) on Cray Systems 326

11.8 Lustre Networking (LNET) Router 327

11.8.1 Configuring the LNET Router 328

11.8.2 Configuring Routes for the Lustre Server 331

11.8.3 Configuring the LNET Compute Node Clients 331

11.9 Configuring Fine-grained Routing with clcvt 333

11.9.1 Prerequisite Files . 333

11.9.1.1 info.file-system-identifier 334

11.9.1.2 client-system.hosts 336

11.9.1.3 client-system.ib . 338

11.9.1.4 cluster-name.ib . 339

11.9.1.5 client-system.rtrIm 339

11.9.2 Generating ip2nets and routes Information 340

Resource Utilization Reporting [12] 345

12.1 RUR Basics . 345

12.1.1 Plugin Architecture . 345

12.2 Included Data Plugins . 346

12.2.1 energy . 346

12.2.2 gpustat . 346

12.2.3 taskstats . 346

S–2393–5101 19

Managing System Software for the Cray® Linux Environment

Page

12.2.4 timestamp . 347

12.3 Included Output Plugins . 347

12.3.1 file . 347

12.3.2 llm . 347

12.3.3 user . 348

12.4 Enabling RUR . 348

12.5 Disabling RUR . 349

12.6 Configuring RUR . 349

12.6.1 Enabling/Disabling Plugins 349

12.6.2 RUR Configuration File . 350

12.7 RUR Plugins . 352

12.7.1 Data Plugins . 352

12.7.1.1 Data Plugin Staging Component 353

12.7.1.2 Data Plugin Post Processing Component 354

12.7.2 Output Plugins . 355

12.7.3 Implementing a New RUR Plugin 355

12.7.4 Additional Plugin Examples 357

12.8 Migration Tips . 359

12.8.1 Application Completion Reporting (ACR) 360

12.8.1.1 ACR Job Reporting . 360

12.8.1.2 ACR Timespan Reporting 360

12.8.1.3 ACR Exit Code Reporting 361

Appendix A SMW and CLE System Administration Commands 363

A.1 HSS Commands . 363

A.2 Cray Lightweight Log Management (LLM) System Commands 366

A.3 CLE System Administration Commands 366

Appendix B System States 371

Appendix C Remote Access to the SMW 373

Appendix D Updating the Time Zone 377

Appendix E Creating Modulefiles 383

E.1 Modulefile Template . 383

E.2 Sharing Your Modulefile . 386

E.3 Modulefile Help . 386

20 S–2393–5101

Contents

Page

Appendix F PBS Professional Licensing for Cray Systems 387

F.1 Introduction . 387

F.2 Migrating the PBS Professional Server and Scheduler 388

F.3 Configuring RSIP to the SDB Node 390

F.4 Network Address Translation (NAT) IP Forwarding 393

F.5 Installing and Configuring a NIC . 395

Appendix G Installing RPMs 399

G.1 Generic RPM Usage . 399

Appendix H Sample LNET Router Controller Script 401

Appendix I Enabling an Integrated Dell™ Remote Access Controller (iDRAC6)
on a Rack-mount SMW 403

I.1 Before You Start . 403

I.2 Enabling an Integrated Dell Remote Access Controller (iDRAC6) on a Rack-mount SMW 403

I.3 Using the iDRAC6 . 410

Appendix J Rack-mount SMW: Replacing a Failed LOGDISK or DBDISK Disk Drive 413

J.1 Rack-mount SMW: Replacing a Failed LOGDISK or DBDISK Disk Drive 413

Procedures
Procedure 1. Logging on to the boot node 65

Procedure 2. Preparing a boot image for CNL compute nodes and service nodes 66

Procedure 3. Creating a Cray boot image from existing file system images 70

Procedure 4. Manually booting the boot node and service nodes 72

Procedure 5. Booting the compute nodes 73

Procedure 6. Shutting down service nodes 78

Procedure 7. Reserving a component 80

Procedure 8. Powering down a specified blade 80

Procedure 9. Halting a node . 81

Procedure 10. Power up blades in a cabinet 81

Procedure 11. Power-cycling a component 90

Procedure 12. Enabling dumpd . 93

Procedure 13. Showing boot configuration information for the entire system 98

Procedure 14. Showing boot configuration information for a partition of a system 98

Procedure 15. Showing the status of a component 100

Procedure 16. Displaying the location history for component c0-0c0s0n1 107

Procedure 17. Changing the root and crayadm passwords on boot and service nodes 112

Procedure 18. Changing the root password on CNL compute nodes 113

S–2393–5101 21

Managing System Software for the Cray® Linux Environment

Page

Procedure 19. Changing default MySQL passwords on the SDB 114

Procedure 20. Stopping a job running in interactive mode 127

Procedure 21. Specializing a file by class login 139

Procedure 22. Specializing a file by node 139

Procedure 23. Specializing a file by node without entering xtopview 140

Procedure 24. Finding files in /etc that are specialized by a node 140

Procedure 25. Disabling SSH daemon (sshd) on CNL compute nodes 149

Procedure 26. Using dropbear to generate site-specific SSH keys 149

Procedure 27. Adjusting the memory control group limit 152

Procedure 28. Disabling memory control groups 152

Procedure 29. Enabling Zone Moveable 153

Procedure 30. Configuring Cray Audit 155

Procedure 31. Configuringcray_pam to log failed login attempts 161

Procedure 32. Configuringcron for the SMW and the boot node 164

Procedure 33. Configuringcron for the shared root with persistent /var 164

Procedure 34. Configuringcron for the shared root without persistent /var 165

Procedure 35. Configuringlbnamed on the SMW 167

Procedure 36. Installing the load balancer on an external "white box" server 168

Procedure 37. Recovering from a login node crash when a login node will not be rebooted 186

Procedure 38. Configuring boot-node failover 190

Procedure 39. Disabling boot-node failover 192

Procedure 40. Configuring a logical machine 195

Procedure 41. Booting a system set 199

Procedure 42. Examining the service databases with MySQL commands 204

Procedure 43. Configuring the NFS server for Lustre export 206

Procedure 44. Configuring the NFS client to mount the exported Lustre file system 207

Procedure 45. Manually backing up Lustre failover tables 209

Procedure 46. Manually restoring Lustre failover tables 209

Procedure 47. Configuring an I/O service node bonding interface 215

Procedure 48. Configuring a Virtual Local Area Network (VLAN) interface 216

Procedure 49. Installing, configuring, and starting RSIP clients and servers 219

Procedure 50. Adding isolated service nodes as RSIP clients 221

Procedure 51. Updating the SMW configuration after hardware changes 222

Procedure 52. Using CLEinstall to update the system configuration after adding a blade to a system 223

Procedure 53. Rerouting the HSN to use previously-failed links 225

Procedure 54. Clearing all alerts associated with the failed blades/ANCs/cabinets and bringing them back
into the HSN configuration . 225

Procedure 55. Removing a compute blade for maintenance or replacement while the system is running . 226

22 S–2393–5101

Contents

Page

Procedure 56. Returning a blade into service 227

Procedure 57. Configuring the SMW to synchronize to a site NTP server 231

Procedure 58. Preventing login node hangs by setting soft and hard limits 233

Procedure 59. Rack-mount SMW: Creating an SMW bootable backup drive 234

Procedure 60. Desk-side SMW: Creating an SMW bootable backup drive 245

Procedure 61. Rack-mount SMW: Setting up the bootable backup drive as an alternate boot device . . 252

Procedure 62. Desk-side SMW: Setting up the bootable backup drive as an alternate boot device . . . 255

Procedure 63. Backing up limited shared-root configuration data 258

Procedure 64. Backing up the boot root and shared root using the dump and restore commands . 261

Procedure 65. Rebooting a stopped SMW 262

Procedure 66. SMW primary disk failure recovery 262

Procedure 67. Restoring the HSS database 263

Procedure 68. Releasing a reserved system service protection domain 283

Procedure 69. Starting and stopping ALPS daemons on a specific service node 285

Procedure 70. Restarting ALPS daemon on a specific service node 286

Procedure 71. Manually cleaning up ALPS and TORQUE and Moab or PBS after a login node goes
down . 286

Procedure 72. Obtaining file system and node information 296

Procedure 73. Editing CSA parameters for the example system 297

Procedure 74. Setting up CSA project accounting 301

Procedure 75. Disabling project accounting 303

Procedure 76. Setting up CSA job accounting for non-CCM CNOS jobs 304

Procedure 77. Using DVS to mount home directories on the compute nodes for CCM 312

Procedure 78. Modifying CCM and Platform-MPI system configurations 313

Procedure 79. Setting up files for the cnos class 313

Procedure 80. Linking the CCM prologue/epilogue scripts for use with PBS and Moab TORQUE on login
nodes . 314

Procedure 81. Using qmgr to create a general CCM queue and queues for separate ISV applications . 315

Procedure 82. Configuring Platform LSF for use with CCM 315

Procedure 83. Creating custom resources with PBS 317

Procedure 84. Creating custom resources with Moab 317

Procedure 85. Configuring InfiniBand on service nodes 323

Procedure 86. Starting a single instance of OpenSM on a service node at boot time 325

Procedure 87. Configuring IP Over InfiniBand (IPoIB) on Cray systems 326

Procedure 88. Configuring and enabling SRP on Cray Systems 326

Procedure 89. Configuring the LNET routers 328

Procedure 90. Specifying service node LNET routes and ip2nets directives with files . . . 329

Procedure 91. Manually controlling LNET routers 330

S–2393–5101 23

Managing System Software for the Cray® Linux Environment

Page

Procedure 92. Configuring the InfiniBand Lustre Server 331

Procedure 93. Configuring the LNET Compute Node Clients 331

Procedure 94. Creating the client-system.rtrIm file on the SMW 340

Procedure 95. Creating the persistent-storage file 341

Procedure 96. Create ip2nets and routes information for the compute nodes 341

Procedure 97. Create ip2nets and routes information for service node Lustre clients (MOM and
internal login nodes) . 342

Procedure 98. Create ip2nets and routes information for the LNET router nodes 343

Procedure 99. Create ip2nets and routes information for the Lustre server nodes 344

Procedure 100. Enabling RUR through ALPS 348

Procedure 101. Modify RUR to define and configure a site written plugin 355

Procedure 102. Starting the VNC server 373

Procedure 103. For workstation or laptop running Linux: Connecting to the VNC server through an ssh
tunnel, using the vncviewer -via option 374

Procedure 104. For workstation or laptop running Linux: Connecting to the VNC server through an ssh
tunnel . 375

Procedure 105. For workstation or laptop running Mac OS X: Connecting to the VNC server through an
ssh tunnel . 375

Procedure 106. For workstation or laptop running Windows: Connecting to the VNC server through an ssh
tunnel . 376

Procedure 107. Changing the time zone for the SMW and the blade and cabinet controllers 377

Procedure 108. Changing the time zone on the boot root and shared root 378

Procedure 109. Changing the time zone for compute nodes 380

Procedure 110. Migrating PBS off the SDB node 389

Procedure 111. Creating a simple RSIP configuration with the SDB node as a client 391

Procedure 112. Adding the SDB node as an RSIP client to an existing RSIP configuration 392

Procedure 113. Configuring NAT IP forwarding for the SDB node 393

Procedure 114. Installing and configuring a NIC on the SDB node 395

Procedure 115. Changing a R815 slave node's BIOS and iDRAC settings 403

Procedure 116. Enabling an Integrated Dell Remote Access Controller (iDRAC6) on a rack-mount
SMW . 409

Procedure 117. Changing the default iDRAC Password 410

Procedure 118. Using the iDRAC6 410

Procedure 119. Rack-mount SMW: Replacing a failed LOGDISK or DBDISK disk drive 413

Examples
Example 1. Sample /etc/opt/cray/sdb/node_classes file 61

Example 2. Making a boot image with new parameters for service and CNL compute nodes 71

Example 3. Booting all service nodes with a specific image 74

Example 4. Booting all compute nodes with a specific image 75

24 S–2393–5101

Contents

Page

Example 5. Booting compute nodes using a load file 75

Example 6. Rebooting a single compute node 75

Example 7. Rebooting login or network nodes 75

Example 8. Rebooting cabinet controller c0-0, with verbose output 76

Example 9. Displaying routing information 76

Example 10. Routing the entire system 76

Example 11. Bounce failed blades repeatedly until all blades succeed 77

Example 12. Shutting down the system using the auto.xtshutdown file 77

Example 13. Shutting down all compute nodes 79

Example 14. Shutting down specified compute nodes 79

Example 15. Shutting down all nodes of a system 79

Example 16. Forcing nodes to shut down (immediate halt) 79

Example 17. Aborting a session running on the boot manager 82

Example 18. Looking at node characteristics 83

Example 19. Viewing all node attributes 83

Example 20. Viewing selected node attributes of selected nodes 83

Example 21. Disabling a node . 83

Example 22. Disabling all processors 83

Example 23. Finding the physical ID for node 38 84

Example 24. Finding the physical ID for nodes 0, 1, 2, and 3 84

Example 25. Finding the physical IDs for Aries IDs 0-7 85

Example 26. Printing the nid-to-nic address mappings for the node with NID 31. 85

Example 27. Printing the nid-to-nic address mappings for the same node as shown in Example 26, but
specifying the NIC value in the command line 85

Example 28. Creating a list of node identifiers that are not in the DISABLE, EMPTY, or OFF state . 85

Example 29. Disabling the Aries ASIC c0-0c1s3a0 86

Example 30. Setting a blade to the empty state 87

Example 31. Locking cabinet c0-0 88

Example 32. Show all session (lock) data 88

Example 33. Unlocking cabinet c0-0 88

Example 34. Restarting the NTP service 89

Example 35. Dumping information about a working component 91

Example 36. Displaying installed SMW release level 97

Example 37. Displaying the current xtrelease value 97

Example 38. Displaying the most recently installed CLE release information 98

Example 39. Finding information in the event log 99

Example 40. Adding entries to syslog file 99

Example 41. Display nodes that were repurposed with the xtcli mark_node command . . . 101

S–2393–5101 25

Managing System Software for the Cray® Linux Environment

Page

Example 42. Identifying nodes in down or admindown state 101

Example 43. Display current allocation and status of each compute processing element and the application
that it is running . 101

Example 44. Verifying that a compute node is connected to the network 102

Example 45. Running xtnetwatch to monitor the system interconnection network 103

Example 46. Reporting PCIe-related errors to stdout 104

Example 47. Looking at a session running on the boot manager 105

Example 48. Checking the boot manager 106

Example 49. Monitoring for specific events 106

Example 50. Checking events except heartbeat: 106

Example 51. Identifying all service nodes 107

Example 52. Showing compute nodes in the disabled state 108

Example 53. Showing components with a status of not empty 109

Example 54. Show all alerts on the system 109

Example 55. Clear all warnings in specified cabinet 110

Example 56. Displaying HSS error codes 110

Example 57. Displaying an HSS error code using its bit mask number 110

Example 58. Adding a group . 120

Example 59. Adding a user account 120

Example 60. Removing a user account 120

Example 61. Creating a pam_listfile list file 126

Example 62. Adding a line to /etc/pam.d/sshd to enable pam_listfile 126

Example 63. Stopping a job running under PBS Professional 127

Example 64. Shared-root links . 133

Example 65. Starting the xtopview shell for a node 136

Example 66. Starting the xtopview shell for a class of nodes 136

Example 67. Starting the xtopview shell for a directory other than /rr/current 136

Example 68. Sample xtopview session 137

Example 69. Starting xtopview using node_classes for information 137

Example 70. Running xtopview from the SMW while the system is not booted 137

Example 71. Updating a file within xtopview shell 138

Example 72. Finding files in /etc that are specialized by class 141

Example 73. Finding specialization of a file on a node 141

Example 74. Finding nodes on which a file is specialized 141

Example 75. Finding specialization of a file on a node without invoking the xtopview shell . . . 141

Example 76. Finding specialization of files by class without invoking the xtopview shell 142

Example 77. Finding the class of a node 143

Example 78. Adding a node to a class 143

26 S–2393–5101

Contents

Page

Example 79. Removing node specialization 144

Example 80. Removing class specialization 144

Example 81. Printing the latest version of a file 145

Example 82. Printing the RCS log for /etc/fstab in the node 3 view 145

Example 83. Displaying differences between two versions of the /etc/fstab file 145

Example 84. Checking out a version 1.2 copy of /etc/fstab 145

Example 85. Recreating the file link for /etc/fstab to the current view's /etc/fstab file . . 146

Example 86. Printing specifications for login class specialized files 146

Example 87. Printing specifications for all node specialized files 147

Example 88. Printing specifications for files modified in the default view and include any warning
messages . 147

Example 89. Adding files specified by specifications listed in specfile to an archive file 148

Example 90. Listing specifications for files currently in the archive.20110422 archive file . . 148

Example 91. Default /etc/auditd.conf file 159

Example 92. Modified PAM configuration files configured to report failed login by using an alternate
path . 163

Example 93. Creating a logical machine with a boot node and SDB node specifying the boot image path 195

Example 94. Updating boot configuration 196

Example 95. Sample mount line from compute node /etc/fstab 208

Example 96. Using node attribute labels to assign nodes to user groups 211

Example 97. Using the xtoparchive utility to archive the shared-root file system 258

Example 98. Using the xthotbackup command to create a bootable backup system set 260

Example 99. Using the xthotbackup command to copy selected file systems from source to the backup
system set . 260

Example 100. Recovering from an SDB failure 264

Example 101. Increasing the boot_timeout value 265

Example 102. Sample /etc/sysconfig/alps configuration file 277

Example 103. Sample alps.conf configuration file 281

Example 104. Retrieving node allocation status 285

Example 105. Verifying that ALPS is communicating with Cray system compute nodes 287

Example 106. Running a csanodeacct cron job on each login node to move local accounting files 305

Example 107. Executing the csarun script 305

Example 108. Running periodic accounting at different intervals than the regular system accounting
interval . 305

Example 109. Location of queue configuration files 316

Example 110. Sample info.file-system-identifier file: info.snx11029 336

Example 111. Sample info.file-system-identifier file using multiple IB interfaces per router . . . 336

Example 112. Sample client-system.hosts file: hera.hosts 337

Example 113. Sample client-system.ib file: hera.ib 338

S–2393–5101 27

Managing System Software for the Cray® Linux Environment

Page

Example 114. Sample client-system.ib file using multiple IB interfaces per router 339

Example 115. Sample cluster-name.ib file: snx11029n.ib 339

Example 116. Sample client-system.rtrIm file: hera.rtrIm 340

Example 117. Data plugin staging component 353

Example 118. Data plugin post processing component 354

Example 119. Output plugin . 355

Example 120. Huge pages data plugin staging component (version A) 357

Example 121. Huge pages data plugin staging component (version B) 357

Example 122. Huge pages data plugin post processing component 359

Example 123. Modulefile example 385

Example 124. Installing an RPM on the SMW 400

Example 125. Installing an RPM on the boot node root 400

Example 126. Installing an RPM on the shared root 400

Figures
Figure 1. Administrative Components of a Cray System 35

Figure 2. Types of Specialization . 129

Figure 3. Shared-root Implementation 132

Figure 4. ALPS Process . 269

Figure 5. Cray System Job Distribution Cross-section 310

Figure 6. CCM Job Flow Diagram . 311

Figure 7. The OFED Stack (source: OpenFabrics Alliance) 320

Figure 8. Cray System Connected to Storage Using SRP 321

Figure 9. Cray Service Node Acting as an InfiniBand Lustre Router 321

Figure 10. Cray Service Node in IP over IB Configuration 322

Figure 11. Cray XC30 InfiniBand Port Assignment 335

Figure 12. Dell 815 Boot Settings Menu 404

Figure 13. Dell 815 Boot Sequence Menu 404

Figure 14. Dell 815 Boot Sequence Settings 405

Figure 15. Dell 815 Integrated Devices (NIC) Settings 405

Figure 16. Dell 815 Serial Communication BIOS Settings 406

Figure 17. Dell 815 Embedded Server Management Settings 407

Figure 18. Dell 815 User-defined LCD String Settings 407

Figure 19. Dell 815 DRAC LAN Parameters Settings 408

Figure 20. Dell 815 DRAC IPv4 Parameter Settings 409

Tables
Table 1. Physical ID Naming Conventions 56

28 S–2393–5101

Contents

Page

Table 2. File Specialization by Class 130

Table 3. File Specialization by Node 131

Table 4. Shared-root Commands . 134

Table 5. Service Database Tables . 200

Table 6. Database Privileges . 201

Table 7. Service Database Update Commands 201

Table 8. CSA Parameters That Must Be Specific to Your System 295

Table 9. Project Accounting Parameters That Must Be Specific to Your System 302

Table 10. Upper Layer InfiniBand I/O Protocols for Cray Systems 323

Table 11. LNET Network Address Configuration for Cray Systems 328

Table 12. HSS Commands . 363

Table 13. LLM Commands . 366

Table 14. CLE Commands . 366

Table 15. State Definitions . 371

Table 16. Additional State Definitions 372

Table 17. xtcli Commands and Allowed States 372

S–2393–5101 29

Introduction [1]

The release documents provided with your Cray Linux Environment (CLE) operating
system and Cray System Management Workstation (SMW) release packages state the
specific Cray platforms supported with each release package.

A Cray system is a massively parallel processing (MPP) system that has a shared-root
file system available to all service-processing elements nodes). Cray has combined
commodity and open-source components with custom-designed components to create
a system that can operate efficiently at immense scale.

The Cray Linux Environment (CLE) operating system includes Cray's customized
version of the SUSE Linux Enterprise Server (SLES) 11 Service Pack 2 (SP2)
operating system, with a Linux 3.0.58 kernel. This full-featured operating system
runs on the Cray system's service nodes. Service nodes perform the functions needed
to support users, administrators, and applications running on compute nodes. Above
the operating system level are specialized daemons and applications that perform
functions unique to each service node.

Compute nodes on Cray systems run the CNL compute node operating system,
which runs a Linux kernel. The kernel provides support for application execution
without the overhead of a full operating-system image. The kernel interacts with an
application process in very limited ways. It provides virtual memory addressing and
physical memory allocation, memory protection, access to the message-passing layer,
and a scalable job loader. Support for I/O operations is limited inside the compute
node's kernel. For a more complete description, see Compute Nodes on page 44.

Note: Functionality marked as deferred in this documentation is planned to be
implemented in a later release.

1.1 Audience for This Guide
The audience for this guide is system administrators and those who manage the
operation of a Cray system. Prerequisites for using this guide include a working
knowledge of Linux to administer the system and a review of the Cray system
administration documentation listed in Cray System Administration Publications and
in Related Publications on page 33, of this guide. This guide assumes that you have a
basic understanding of your Cray system and the software that runs on it.

S–2393–5101 31

Managing System Software for the Cray® Linux Environment

1.2 Cray System Administration Publications
This publication is one of a set of related manuals that cover information about the
structure and operation of your Cray system. See also:

• Installing Cray System Management Workstation (SMW) Software (S–2480)

• Cray System Management Workstation (SMW) Software Release Errata

• Cray System Management Workstation (SMW) Software Release README file

• Cray System Management Workstation (SMW) Software Release Notes file

• Cray Linux Environment (CLE) Software Release Overview (S–2425)

• Cray Linux Environment (CLE) Software Release Overview Supplement (S–2497)

• Installing and Configuring Cray Linux Environment (CLE) Software (S–2444)

• Limitations for the CLE Release

• CLE Release Errata

• Managing Lustre for the Cray Linux Environment (CLE) (S–0010)

• Introduction to Cray Data Virtualization Service (S–0005)

• Configuring SEC Software for a Cray XC System (S–2542)

• Network Resiliency for Cray XC30 Systems (S–0041)

• Using and Configuring System Environment Data Collections (SEDC) (S–2491)

• Using the GNI and DMAPP APIs (S–2446)

• Workload Management and Application Placement for the Cray Linux
Environment (S–2496)

• Writing a Node Health Checker (NHC) Plugin Test (S–0023)

• Using Cray Performance Measurement and Analysis Tools (S–2376)

• Cray Programming Environment User's Guide (S–2529)

• Cray Programming Environments Installation Guide (S–2372)

• Modifying Your Application to Avoid Aries Network Congestion (S–0048)

32 S–2393–5101

Introduction [1]

1.3 Related Publications
Because your Cray system runs a combination of software developed by Cray, other
vendors' software, and open-source software, the following websites may be useful:

• Linux Documentation Project — See http://www.tldp.org

• SLES 11 and Linux documentation — See http://www.novell.com/linux

• Data Direct Networks documentation — See
http://www.ddn.com/support/product-downloads-and-documentation

• NetApp, Inc. Engenio® storage system documentation — See
http://www.netapp.com/us/products/storage-systems

• MySQL™ documentation — See http://www.mysql.com/documentation

• Lustre File System documentation — See
https://wiki.hpdd.intel.com/display/PUB/Documentation

• Batch system documentation:

PBS
Professional:

Altair Engineering,
Inc.

http://www.pbsworks.com

Moab and
TORQUE:

Adaptive Computing
Enterprises Inc.

http://www.adaptivecomputing.com

Platform LSF: Platform Computing
Corporation

http://www.platform.com

S–2393–5101 33

http://www.tldp.org
http://www.novell.com/linux
http://www.ddn.com/support/product-downloads-and-documentation
http://www.netapp.com/us/products/storage-systems
http://www.mysql.com/documentation
https://wiki.hpdd.intel.com/display/PUB/Documentation
http://www.pbsworks.com
http://www.adaptivecomputing.com
http://www.platform.com

Managing System Software for the Cray® Linux Environment

34 S–2393–5101

Introducing System Components [2]

Cray systems separate calculation and monitoring functions. Figure 1 shows the
components of a Cray system that an administrator manages.

Figure 1. Administrative Components of a Cray System

Parallel Storage

Ethernet

High speed network

10 GigE

1 GigE

Fibre Channel

Boot RAID

Scratch

High speed
network

(data)

Boot

Network
(many)

Login
(many)

SDB

I/O
(filesystem)

(many)

Fibre Channel

10 GigE

1 GigE

Compute
Nodes

Service
Nodes

Ethernet (HSS)

SMW

Boot

Users

External
data

System

User

KEY

S–2393–5101 35

Managing System Software for the Cray® Linux Environment

A Cray system contains operational components plus storage:

• The System Management Workstation (SMW) is the single point of control for
system administration. (For additional information about the SMW, see System
Management Workstation (SMW) on page 37.)

Note: For a system configured for SMW high availability (HA) with the
SMW failover feature, there are two SMWs in an active-passive failover
configuration. A virtual host name provides access to the active SMW, so that
there is still a single point of control. For more information, see Installing,
Configuring, and Managing SMW Failover on the Cray XC30 System (S–0044).

• The Hardware Supervisory System (HSS) monitors the system and handles
component failures. The HSS is an integrated system of hardware and software
that monitors components, manages hardware and software failures, controls
system startup and shutdown, manages the system interconnection network, and
maintains system states. (For additional information about HSS, see Hardware
Supervisory System (HSS) on page 47.)

• The Cray Linux Environment (CLE) operating system is the operating
system for Cray systems. (For additional information about CLE, see
Cray Linux Environment (CLE) on page 38.)

• Service nodes perform the management functions that enable the computations
to occur. (For additional information about service nodes, see Service Nodes
on page 39.)

• Compute nodes are primarily dedicated to computation. (For additional
information about compute nodes, see Compute Nodes on page 44.)

• RAID is partitioned for a variety of storage functions such as boot RAID,
database storage, and parallel and user-file system storage. (For additional
information about RAID, see Boot Root File System on page 38 and Storage
on page 55.)

36 S–2393–5101

Introducing System Components [2]

A Cray system has six network components:

• The 10-GigE network is a high-speed Ethernet pipe that provides external NFS
access. It connects to the network nodes and is specifically configured to transfer
large amounts of data in and out of the system.

• Users access a 1-GigE network server connection to the login nodes. Logins are
distributed among the login nodes by a load-leveling service through the Domain
Name Service (DNS) that directs them to the least loaded login node.

• Fibre Channel networks connect storage to the system components.

• The RAID controllers connect to the SMW through the HSS network. This
storage sends log messages to the SMW when a failure affects the ability of the
disk farm to reliably store and retrieve data.

• The system interconnection network includes custom Cray components that
provide high-bandwidth, low-latency communication between all the service
nodes and compute nodes in the system. The system interconnection network is
often referred to as the high-speed network (HSN).

• The HSS network performs the reliability, accessibility, and serviceability
functions. The HSS consists of an internet protocol (IP) address and associated
control platforms that monitor all nodes.

2.1 System Management Workstation (SMW)
The SMW is the administrator's console for managing a Cray system. The SMW is
a server that runs a combination of the SUSE Linux Enterprise Server version 11
operating system with a Service Pack, Cray developed software, and third-party
software. The SMW is also a single point of control for the HSS. The HSS data
is stored on an internal hard drive of the SMW. For more information about the
HSS, see Hardware Supervisory System (HSS) on page 47. For information about
installing the SMW release software, see Installing Cray System Management
Workstation (SMW) Software (S–2480).

Note: For a system configured for SMW HA with the SMW failover feature, see
Installing, Configuring, and Managing SMW Failover on the Cray XC30 System
(S-0044).

You log on to an SMW window on the console to perform SMW functions. From the
SMW, you can log on to a disk controller or use a web-browser-based interface from
the SMW to configure a RAID controller or Fibre Channel switch. You can log on
to the boot node from the SMW as well. From the SMW, you cannot log on directly
(ssh) to any service node except the boot node.

S–2393–5101 37

Managing System Software for the Cray® Linux Environment

Most system logs are collected and stored on the SMW. The SMW plays no role
in computation after the system is booted. From the SMW, you can initiate the
boot process, access the database that keeps track of system hardware, and perform
standard administrative tasks.

2.2 Cray Linux Environment (CLE)
CLE is the operating system for Cray systems. CLE is the Cray customized version
of the SLES 11 SP2 operating system with a Linux 3.0.58 kernel. This full-featured
operating system runs on the Cray service nodes. The Cray compute nodes run a
kernel developed to provide support for application execution without the overhead
of a full operating-system image. In the compute node root runtime environment
(CNRTE), compute nodes have access to the service node shared root (via chroot)
such that compute nodes can access the full features of a Linux environment.

CLE commands enable administrators to perform administrative functions on the
service nodes to control processing. The majority of CLE commands are launched
from the boot node, making the boot node the focal point for CLE administration.

For a complete list of Cray developed CLE administrator commands, see Appendix
A, SMW and CLE System Administration Commands on page 363.

2.3 Boot Root File System
The boot node has its own root file system, bootroot, which is created on the boot
RAID during installation. You install and configure the boot RAID from the SMW
before you boot the boot node. The boot node mounts the bootroot from the boot
RAID.

2.4 Shared Root File System
A Cray system has a root file system that is distributed as a read-only shared file
system among all the service nodes except the boot node. Each service node has
the same directory structure, which is made up of a set of symbolic links to the
shared-root file system. For most files, only one version of the file exists on the
system, so if you modify the single copy, it affects all service nodes. This makes the
administration process similar to that of a single system.

You manage the shared-root file system from the boot node through the xtopview
command (see Managing System Configuration with the xtopview Tool on
page 135).

38 S–2393–5101

Introducing System Components [2]

If you need unique files on a specific node or class of nodes (that is, nodes of a
certain type), you can set up a modified directory structure. This process, called
specialization, creates a new directory hierarchy that overlays the existing root
directory on the specified nodes and contains symbolic links that point to the unique
files. For information about the shared root and file specialization, see Configuring
the Shared-root File System on Service Nodes on page 129.

2.5 Service Nodes
Service nodes can be specialized and categorized by the services that run on them.

Service nodes run the CLE operating system. The administrator commands for these
nodes are standard Linux commands and Cray system-specific commands.

You log on to the boot node through the SMW console, then from the boot node
you can log on to the other service nodes.

Service nodes perform the functions needed to support users, administrators, and
applications running on compute nodes. As the system administrator, you define
service node classes by the service they perform. Configuration information in the
service database on the SDB node determines the functions of the other nodes and
services, such as where a batch subsystem runs. In small configurations, some
services can be combined on the same node: for example, the sdb and syslog
services can both run on the same node.

You can start services system-wide or on specific nodes. You can start services during
the boot process or later on specific nodes of a running system. How you start a
service depends on the type of service.

Service nodes, unlike compute nodes, are generally equipped with Peripheral
Component Interconnect (PCI) protocol card slots to support external devices.

Service nodes run a full-featured version of the Linux operating system. Service node
kernels are configured to enable Non-Uniform Memory Access (NUMA), which
minimizes traffic between sockets by using socket-local memory whenever possible.

System management tools are a combination of Linux commands and Cray system
commands that are analogous to standard Linux commands but operate on more than
one node. For more information about Cray system commands, see Appendix A,
SMW and CLE System Administration Commands on page 363. After the system is
up, you can access any service node from any other service node, provided you have
the correct permissions.

2.5.1 Boot Node

Use the boot node to manage files, add users, and mount and export the shared-root
file system to the rest of the service nodes. These shared-root files are mounted from
the boot node as read-only.

S–2393–5101 39

Managing System Software for the Cray® Linux Environment

You can configure two boot nodes per system or per partition, one primary and one
for backup (secondary). The two boot nodes must be located on different blades.
When the primary boot node is booted, the backup boot node also begins to boot.
But the backup boot node boot process is suspended until a primary boot-node
failure event is detected. For information about configuring boot-node failover, see
Configuring Boot-node Failover on page 188.

2.5.2 Service Database (SDB) Node

The SDB node hosts the service database (SDB), which is a MySQL database that
resides on a separate file system on the boot RAID. The SDB is accessible to every
service node (see Changing the Service Database (SDB) on page 199). The SDB
provides a central location for storing information so that it does not need to be stored
on each node. You can access the SDB from any service node after the system is
booted, provided you have the correct authorizations.

The SDB stores the following information:

• Global state information of compute processors. This information is used by
the Application Level Placement Scheduler (ALPS), which allocates compute
processing elements for compute nodes running CNL. For more information
about ALPS, see ALPS for Compute Nodes on page 43.

• System configuration tables that list and describe processor attribute and service
information.

The SDB node is the second node that is started during the boot process.

You can configure two SDB nodes per system or per partition, one primary and one
for backup (secondary). The two SDB nodes must be located on different system
blades. For more information, see Configuring SDB Node Failover on page 192.

2.5.3 Syslog Node

By default, the boot node forwards syslog traffic from the service nodes to the
SMW for storage in log files. An optional syslog node may be specified (see the
CLEinstall.conf(5) man page); however, this service node must be provisioned
and configured to be able to reach the SMW directly over an attached Ethernet link.

2.5.4 Login Nodes

Users log on to a login node, which is the single point of control for applications that
run on the compute nodes. Users do not log on to the compute nodes.

40 S–2393–5101

Introducing System Components [2]

You can use the Linux lbnamed load balancer software provided to distribute user
logins across login nodes (see Configuring the Load Balancer on page 167). The
number of login nodes depends upon the installation and user requirements. For
typical interactive usage, a single login node handles 20 to 30 batch users or 20 to 40
interactive users with double this number of user processes.

!
Caution: Login nodes, as well as other service nodes, do not have swap space. If
users consume too many resources, Cray service nodes can run out of memory.
When an out of memory condition occurs, the node can become unstable or may
crash. System administrators should take steps to manage system resources
on service nodes. For example, resource limits can be configured using the
pam_limits module and the /etc/security/limits.conf file. For more
information, see the limits.conf(5) man page.

2.5.5 Network Nodes

Network nodes connect to the external network with a 10-GigE card. These nodes
are designed for high-speed data transfer.

2.5.6 I/O Nodes

I/O nodes host the Lustre file system; see Lustre File System on page 42. The
I/O nodes connect to the RAID subsystems that contain the Lustre file system.
Two I/O nodes connect to each RAID device for resiliency; each I/O node has full
accessibility to all storage on the connected RAID device. Cray provides support
for RAID subsystems from two different vendors, Data Direct Networks™ (DDN)
and NetApp, Inc.

Cray Data Virtualization Service (Cray DVS) servers run on an I/O node; see Cray
Data Virtualization Service (Cray DVS) on page 42. DVS servers cannot run on the
same I/O nodes as Lustre servers. On I/O nodes, DVS servers act as external file
system clients. DVS will project the external file systems to service and compute
node clients within the system.

2.5.7 Services on the Service Nodes

Service nodes provide the services described in this section.

2.5.7.1 Resiliency Communication Agent (RCA)

The RCA is the message path between the CLE operating system and the HSS. The
RCA runs on all service nodes and CNL compute nodes.

S–2393–5101 41

Managing System Software for the Cray® Linux Environment

The service_config table of the SDB maintains a list of services that RCA
starts. For the services listed in the service_config table, the RCA daemon
(rcad_svcs) starts and restarts all services that must run on a node. You can
determine or modify services available through the SDB service_config table
by using the xtservconfig command.

Note: Services can also be started manually or automatically by using standard
Linux mechanisms (see Adding and Starting a Service Using Standard Linux
Mechanisms on page 232).

The SDB serv_cmd table stores information about each service, such as, service
type, service instance, heartbeat interval, and restart policy.

The configuration file for service nodes is
/etc/opt/cray/rca/rcad_svcs.service.conf. By default, this
configuration file starts the rca_dispatcher and the failover manager.

The RCA consists of a kernel-mode driver and a user-mode daemon on CLE. The
RCA driver, rca.ko, runs as a kernel-loadable module for the service partition.
On CNL compute nodes, the RCA operates through system calls and communicates
with the HSS to track the heartbeats (see Blade Controllers and Cabinet Controllers
on page 49) of any programs that have registered with it and to handle event traffic
between the HSS and the applications that register to receive events. The RCA
driver starts as part of the kernel boot, and the RCA daemon starts as part of the
initialization scripts.

2.5.7.2 Lustre File System

Cray systems running CLE support the Lustre file system, which provides a
high-performance, highly scalable, POSIX-compliant shared file system. You can
configure Lustre file systems to operate in the most efficient manner for the I/O needs
of applications, ranging from a single metadata server (MDS) and object storage
target (OST) to a single MDS with up to 128 OSTs. User directories and files are
shared and are globally visible from all compute and service node Lustre clients.

For more information, see Managing Lustre for the Cray Linux Environment (CLE)
(S–0010) and Installing and Configuring Cray Linux Environment (CLE) Software
(S–2444).

2.5.7.3 Cray Data Virtualization Service (Cray DVS)

The Cray Data Virtualization Service (Cray DVS) is a parallel I/O forwarding service
that provides for transparent use of multiple file systems on Cray systems with
close-to-open coherence, much like NFS.

For additional information, see the Installing and Configuring Cray Linux
Environment (CLE) Software (S–2444) and Introduction to Cray Data Virtualization
Service (S–0005).

42 S–2393–5101

Introducing System Components [2]

2.5.7.4 ALPS for Compute Nodes

For compute nodes running CNL, the Application Level Placement Scheduler
(ALPS) is provided. ALPS provides application placement, launch, and management
functionality and cooperates with third-party batch systems for application
scheduling. The third-party batch system (such as PBS Professional, Moab,
TORQUE, or Platform LSF) makes the policy and scheduling decisions, and
ALPS provides a mechanism to place and launch the applications contained within
batch jobs. ALPS also supports placement and launch functionality for interactive
applications.

An Extensible Markup Language (XML) interface is provided by ALPS for
communication with third-party batch systems. This interface is available through use
of the apbasil client. ALPS uses application resource reservations to guarantee
resource availability to batch system schedulers.

The ALPS application placement and launch functionality is provided for applications
executing on compute nodes only; ALPS does not provide placement and launch
functionality for service nodes.

Note: Only one application can be placed per node; two different executables
cannot be run on the same node at the same time.

ALPS is automatically loaded as part of the CNL environment when booting CNL.
The RCA starts the ALPS apinit daemon on the compute nodes.

When a job is running on CNL compute nodes, the aprun process (see Job Launch
Commands on page 46) interacts with ALPS to keep track of the processors that
the job uses.

For more information about ALPS, see Chapter 8, Using the Application Level
Placement Scheduler (ALPS) on page 267.

2.5.7.5 Cluster Compatibility Mode

Cluster Compatibility Mode (CCM) provides the services needed to run most
cluster-based independent software vendor (ISVs) applications "out of the box." CCM
is tightly coupled to the workload management system. It enables users to execute
cluster applications alongside workload-managed jobs running in a traditional MPP
batch or interactive queue. Support for dynamic shared objects and expanded services
on CNL compute nodes, using the compute node root runtime environment (CNRTE),
provide the services to compute nodes within the cluster queue. Essentially, CCM
uses the batch system to logically designate part of the Cray system as an emulated
cluster for the duration of the job. For more information about CCM, see Chapter 10,
Dynamic Shared Objects and Cluster Compatibility Mode in CLE on page 307.

S–2393–5101 43

Managing System Software for the Cray® Linux Environment

2.5.7.6 Repurposing CNL Compute Nodes as Service Nodes

Some services on Cray systems have resource requirements or limitations (for
example, memory, processing power or response time) that you can address by
configuring a dedicated service node, such as a Cray Data Virtualization Service
(Cray DVS) node or a batch system management (MOM) node. On Cray systems,
service I/O node hardware (on a service blade) is equipped with Peripheral
Component Interconnect (PCI) protocol card slots to support external devices.
Compute node hardware (on a compute blade) does not have PCI slots. For services
that do not require external connectivity, you can configure the service to run on
a single, dedicated compute node and avoid using traditional service I/O node
hardware.

When you configure a node on a compute blade to boot a service node image and
perform a service node role, that node is referred to as a repurposed compute node.

For additional information, see the section on repurposing compute nodes in
Installing and Configuring Cray Linux Environment (CLE) Software (S–2444).

2.5.7.7 IP Implementation

Ethernet interfaces handle IP connectivity to external components. Both IPv4 and
IPv6 are supported; IPv4 is the default.

Note: The IPv6 capability is limited to the Ethernet interfaces and localhost.
Therefore, IPv6 connectivity is limited to service nodes that have Ethernet cards
installed. Routing of IPv6 traffic between service nodes across the HSN is not
supported.

2.6 Compute Nodes
Cray XC30 system compute nodes run the CNL compute node operating system.
CNL is a lightweight compute node operating system. It includes a run-time
environment based on the SLES 11 SP2 distribution, with a Linux 3.0.58 kernel and
with Cray specific modifications. Device drivers for hardware not supported on
Cray systems were eliminated from the kernel. CNL features scalability; only the
features required to run high-performance computing applications are available on
CNL compute nodes. Other features and services are available from service nodes.
Cray has configured and tuned the kernel to minimize processing delays caused by
inefficient synchronization. CNL compute node kernels are configured to enable
Non-Uniform Memory Access (NUMA), which minimizes traffic between sockets by
using socket-local memory whenever possible. CNL also includes a set of supported
system calls and standard networking.

44 S–2393–5101

Introducing System Components [2]

Several libraries and compilers are linked at the user level to support I/O and
communication service. Cray, PGI, PathScale, and the GNU Compiler Collection
(GCC) C, C++, and Intel compilers are supported. For information about using
modulefiles and configuring the default programming environment, see About
Modules and Modulefiles on page 123 and Configuring the Default Programming
Environment (PE) on page 125. For information about the libraries that Cray systems
host, see the Cray Application Developer's Environment User's Guide (S–2396).

The Resiliency Communication Agent (RCA) daemon, rcad-svcs, handles node
services (see Services on the Service Nodes on page 41).

The Application Level Placement Scheduler (ALPS), handles application launch,
monitoring, and signaling and coordinates batch job processing with third-party batch
systems. If you are running ALPS, use the xtnodestat command to report job
information.

The following user-level BusyBox commands are functional on CNL compute nodes:
ash, busybox, cat, chmod, chown, cp, cpio, free, grep, gunzip, kill,
killall, ln, ls, mkdir, mktemp, more, ps, rm, sh, tail, test, vi, and
zcat. For information about supported command options, see the busybox(1)
man page.

The following administrator-level busybox commands and associated options are
functional on CNL compute nodes:

• dmesg -c -n -s
• fuser -m -k -s -4 -6 -SIGNAL
• logger -s -t -p
• mount -a -f -n -o -r -t -w
• ping -c -s -q
• sysctl -n -w -p -a -A
• umount -a -n -r -l -f -D

A compute-node failure affects only the job running on that node; the rest of the
system continues running.

The CLEinstall program creates
/var/opt/cray/install/shell_bootimage_LABEL.sh which uses the
xtclone and xtpackage utilities on the SMW. Use these commands to set
up boot images. You can boot CNL on compute nodes. For more information,
see Preparing a Service Node and Compute Node Boot Image on page 65, the
xtclone(8), xtpackage(8), and xtnodestat(8) man pages, and the Installing
and Configuring Cray Linux Environment (CLE) Software (S–2444).

S–2393–5101 45

Managing System Software for the Cray® Linux Environment

2.7 Job Launch Commands
Users run applications from a login node and use the aprun command to launch
CNL applications. The aprun command provides options for automatic and
manual application placement. With automatic job placement, aprun distributes the
application instances on the number of processors requested, using all of the available
nodes.

With manual job placement, users can control the selection of the compute nodes
on which to run their applications. Users select nodes on the basis of desired
characteristics (node attributes), allowing a placement scheduler to schedule jobs
based on the node attributes. To provide the application launcher with a list of
nodes that have a particular set of characteristics (attributes), the user invokes the
cnselect command to specify node-selection criteria. The cnselect script uses
these selection criteria to query the table of node attributes in the SDB; then it returns
a node list to the user based on the results of the query. For an application to be run
on CNL compute nodes, the nodes satisfying the requested node attributes are passed
by the aprun utility to the ALPS placement scheduler as the set of nodes from which
to make an allocation. For detailed information about ALPS, see Chapter 8, Using the
Application Level Placement Scheduler (ALPS) on page 267.

For more information about the aprun and cnselect commands, see the
aprun(1) and cnselect(8) man pages.

2.8 Node Health Checker (NHC)
NHC is automatically invoked by ALPS upon the termination of an application.
ALPS passes a list of CNL compute nodes associated with the terminated application
to NHC. NHC performs specified tests to determine if compute nodes allocated to the
application are healthy enough to support running subsequent applications. If not, it
removes any compute nodes incapable of running an application from the resource
pool. The CLE installation and upgrade processes automatically install and enable
NHC software; there is no need for you to change any installation configuration
parameters or issue any commands. To configure NHC tests and to optionally
configure NHC to use the secure sockets layer (SSL) protocol, see Configuring Node
Health Checker (NHC) on page 168.

2.9 Comprehensive System Accounting (CSA)
Comprehensive System Accounting (CSA) is open-source software that includes
changes to the Linux kernel so that CSA can collect more types of system resource
usage data than under standard Fourth Berkeley Software Distribution (BSD) process
accounting. CSA software also contains interfaces for the Linux process aggregates
(paggs) and jobs software packages. The CSA software package includes
accounting utilities that perform standard types of system accounting processing on

46 S–2393–5101

Introducing System Components [2]

the CSA generated accounting files. CSA, with Cray modifications, is included with
CLE and runs on login nodes and CNL compute nodes only. For more information,
see Chapter 9, Using Comprehensive System Accounting on page 293.

2.10 Optional Workload-management (Batch) System Software
Products

For information about optional batch systems software products for Cray systems, see
the following websites.

PBS
Professional:

Altair
Engineering,
Inc.

http://www.pbsworks.com

Moab and
TORQUE:

Cluster
Resources, Inc.

http://www.clusterresources.com

Platform
LSF:

Platform
Computing
Corporation

http://www.platform.com

Note: Specific third-party batch system software releases are required for
Checkpoint/Restart (CPR) support. For more information, access the 3rd Party
Batch SW link on the CrayPort website at http://www.crayport.cray.com.

2.11 Hardware Supervisory System (HSS)
The HSS is an integrated system of hardware and software that monitors the hardware
components of the system and proactively manages the health of the system. The
HSS communicates with nodes and with the management processors over an internal
(private) Ethernet network that operates independently of the system interconnection
network. The HSS data is stored on an internal hard drive of the SMW.

For a complete list of Cray developed HSS commands, see Appendix A, SMW and
CLE System Administration Commands on page 363.

S–2393–5101 47

http://www.pbsworks.com
http://www.clusterresources.com/
http://www.platform.com/
http://crayport.cray.com

Managing System Software for the Cray® Linux Environment

The HSS includes the following components:

• The HSS network (see HSS Network on page 48).

• The HSS interface (see HSS Interface on page 48).

• Blade and cabinet control processors (see Blade Controllers and Cabinet
Controllers on page 49).

• Network Time Protocol (NTP) server (see NTP Server on page 49).

• Event router (see Event Router on page 50).

• HSS managers (see HSS Managers on page 50).

• xtdiscover command (see Automatically Discover and Configure Cray
System Hardware on page 53).

• Various logs (see Event Logs on page 54, Boot Logs on page 54, Dump Logs
on page 54).

2.11.1 HSS Network

The SMW, with its HSS Ethernet network, performs reliability, accessibility, and
serviceability tasks. The HSS commands monitor and control the physical aspects
of the system.

The SMW manages the HSS network. A series of Ethernet switches connects the
SMW to all the cabinets in the system.

2.11.2 HSS Interface

The HSS has a command-line interface to manage and monitor your system. You can
use the command-line interface to manage your Cray system from the SMW. For
usage information, see Chapter 3, Managing the System on page 65 and Chapter 4,
Monitoring System Activity on page 97. For a list of all HSS system administration
commands, see Appendix A, SMW and CLE System Administration Commands
on page 363.

48 S–2393–5101

Introducing System Components [2]

2.11.3 Blade Controllers and Cabinet Controllers

A blade control processor (blade controller) is hierarchically the lowest component
of the monitoring system. One blade controller resides on each compute blade and
service blade, monitoring only the nodes and ASICs. It provides access to status and
control registers for the components of the blade. The blade controller also monitors
the general health of components, including items such as voltages, temperature,
and other failure indicators. A version of Linux optimized for embedded controllers
runs on each blade controller.

Note: In some contexts, the blade controller is referred to as a slot.

On Cray XC30 systems, the blade controller is referred to as the BC.

Each cabinet has a cabinet control processor (cabinet controller) that monitors and
controls the cabinet power and cooling equipment and communicates with all the
blade controllers in the cabinet. It sends a periodic heartbeat to the SMW to indicate
cabinet health.

The cabinet controller connects to the chassis controller and in turn the chassis
controller connects to the blade controllers (via the backplane) on each blade by
Ethernet cable and routes HSS data to and from the SMW. The cabinet controller
runs embedded Linux.

The monitoring system operates by periodic heartbeats. Processes send heartbeats
within a time interval. If the interval is exceeded, the system monitor generates a fault
event that is sent to the state manager. The fault is recorded in the event log, and the
state manager (see State Manager on page 51) sets an alert flag for the component
(blade controller or cabinet controller) that spawned it.

The cabinet and blade controllers use ntpclient to keep accurate time with the
SMW.

You can dynamically configure the cabinet controller system daemon and the blade
controller system daemon with the xtdaemonconfig --daemon_name command
(see the xtdaemonconfig(8) man page for detailed information).

Note: There is no NV write protection feature on the cabinet and blade controllers;
you should not assume the write protection functionality on the cabinet controller
front panel display will protect the NV memory on the cabinet and blade
controllers.

2.11.4 NTP Server

The SMW workstation is the primary NTP server for the Cray system. The blade
controllers use the HSS network to update themselves according to the NTP protocol.
To change the NTP server, see Configuring the SMW to Synchronize to a Site NTP
Server on page 231.

S–2393–5101 49

Managing System Software for the Cray® Linux Environment

2.11.5 Event Router

HSS functions are event-driven. The event router daemon, erd, is the root of the
HSS. It is a system daemon that runs on the SMW, cabinet controllers, and blade
controllers. The SMW runs a separate thread for each cabinet controller. The cabinet
controller runs a separate thread for each blade controller. HSS managers subscribe to
events and inject events into the HSS system by using the services of the erd. (For
descriptions of HSS managers, see HSS Managers on page 50) The event router starts
as each of the devices (SMW, cabinet controller, blade controller) are started.

When the event router on the SMW receives an event from either a connected agent
or from another event router in the hierarchy, the event is logged and then processed.
The xtcli commands, which are primary HSS control commands, also access the
event router to pass information to the managers.

The xtconsumer command (see Monitoring Events on page 106) monitors the
erd. The xtconsole command (see Monitoring Node Console Messages on
page 106) operates a shell window that displays all node console messages.

2.11.6 HSS Managers

HSS managers are located in /opt/cray/hss/default/etc. They report to
the event router and get information from it.

The HSS managers are started by running the /etc/init.d/rsms start
command.

You can configure HSS daemons dynamically by executing the xtdaemonconfig
command. For a list of the HSS daemons, see the xtdaemonconfig(8) man page.
This section highlights the following key HSS daemons:

• state manager
• boot manager
• system environmental data collections (SEDC) manager
• NID manager

50 S–2393–5101

Introducing System Components [2]

2.11.6.1 State Manager

Every component has a state at all times. The state manager, state_manager,
runs on the SMW and uses a relational database (also referred to as the HSS
database) to read and write the system state. The state manager keeps the
database up to date with the current state of components and retrieves component
information from the database when needed. The state manager uses the
Lightweight Log Manager (LLM). The log data from state manager is written to
/var/opt/cray/log/sm-yyyymmdd. The default setting for state manager is to
enable LLM logging. In addition, the dynamic system state persists between boots.
The state manager performs the following functions:

• Updates and maintains component state information (see Appendix B, System
States on page 371)

• Monitors events to update component states

• Detects and handles state notification upon failure

• Provides state and configuration information to HSS applications so that they do
not interfere with other applications working on the same component

The state manager listens to the erd, records changes of states, and shares those
states with other daemons.

2.11.6.2 Boot Manager

The boot manager, bootmanager, runs on the SMW. It controls the acts of placing
kernel data into node memories and requesting that they begin booting.

During the boot process, the state manager provides state information that allows the
nodes to be locked for booting. After the nodes boot, the state manager removes
the locks and notifies the boot manager. The boot manager logging facility includes
a timestamp on log messages.

2.11.6.3 System Environmental Data Collections (SEDC) Manager

The System Environment Data Collections (SEDC) manager, sedc_manager,
monitors the system's health and records the environmental data and status of
hardware components such as power supplies, processors, temperature, and fans.
SEDC can be set to run at all times or only when a client is listening. The SEDC
configuration file provided by Cray has automatic data collection set as the default
action.

S–2393–5101 51

Managing System Software for the Cray® Linux Environment

The SEDC configuration file
(/opt/cray/hss/default/etc/sedc_srv.ini by default) configures the
SEDC server. In this file, you can also create sets of different configurations as
groups so that the blade and cabinet controller daemons can scan components at
different frequencies. The sedc_manager sends out the scanning configuration
for specific groups to the cabinet and blade controllers and records the incoming
data by group. For information about configuring the SEDC manager, see
Using and Configuring System Environment Data Collections (SEDC) and the
sedc_manager(8) man page.

To view System Environment Data Collections (SEDC) scan data, use the
xtsedcviewer command-line interface. This utility allows you to view the server
configurations (groups) as well as the SEDC scan data from blade and cabinet
controllers. For information about viewing SEDC server configuration and the SEDC
scan data, see Using and Configuring System Environment Data Collections (SEDC)
and the xtsedcviewer(8) man page.

2.11.6.4 NID Manager

The NID (node ID) manager, nid_mgr, runs on the SMW and provides a NID
mapping service for the rest of the HSS environment.

Along with the ability to assign NIDs automatically, the nid_mgr supports a
mechanism that allows an administrator to control the NID assignment; this is useful
for handling unique configurations. Administrator-controlled NID assignment is
accomplished through the nids.ini NID assignment file.

!
Caution: The nids.ini file can have a major impact on the functionality of a
Cray system and should only be used or modified at the recommendation of Cray
support personnel. Setting up this file incorrectly could make the Cray system
unroutable.

Typically, after a NID mapping is defined for a system, this mapping is used until
some major event occurs, such as a hardware configuration change (see Updating the
System Configuration After a Blade Change on page 222). This may require the NID
mapping to change, depending on the nature of the configuration change. Adding
additional cabinets to the ends of rows does not typically result in a new mapping.
Adding additional rows most likely does result in a new mapping. If the configuration
change is such that the topology class of the system is changed, this will require a
new NID mapping. Otherwise, the NID mapping remains static.

The nid_mgr generates a list of mappings between the physical location and
Network Interface Controller ID (NIC ID) and distributes this information to the
blade controllers. Because the operating system always uses node IDs (NIDs), the
HSS converts these to NIC IDs when sending them onto the HSS network and back to
NIDs when forwarding events from the HSS network to a node.

For more information about node IDs, see Identifying Components on page 55.

52 S–2393–5101

Introducing System Components [2]

2.11.7 Automatically Discover and Configure Cray System Hardware

The xtdiscover command automatically discovers the hardware components on a
Cray system and creates entries in the system database to reflect the current hardware
configuration. The xtdiscover status command can correctly identify missing
or nonresponsive cabinets, empty or nonfunctioning slots, the blade type (service or
compute) in each slot, and the CPU type and other attributes of each node in the
system. The xtdiscover command and the state manager ensure that the system
status represents the real state of the hardware. When it has finished, you can use the
xtcli command to display the current configuration. No previous configuration
of the system is required; the hardware is discovered and made available, and you
can modify the components after xtdiscover has finished creating entries in the
system database.

The xtdiscover interface steps a system administrator through the discovery
process. The xtdiscover.ini file allows you to predefine values such as
topology class, cabinet layout, and so on. A template xtdiscover.ini
file is installed with the SMW software. The default location of the file is
/opt/cray/hss/default/etc/xtdiscover.ini.

Note: When xtdiscover creates a default partition, it uses c0-0c0s0n1 as
the default for the boot node and c0-0c0s1n1 as the default SDB node.

The xtdiscover command does not use or configure the Cray High Speed
Network (HSN). The HSN configuration is done when booting the system with the
xtbootsys command.

If there are changes to the system hardware, such as adding a new cabinet or
removing a blade and replacing it with a blade of a different type (for example, a
service blade that is replaced with a compute blade), then xtdiscover must be
executed again, and it will perform an incremental discovery of the hardware changes
without disturbing the rest of the system.

For more information, see the xtdiscover(8) man page.

2.11.8 Cray System Network Routing Utility

Use the rtr command to perform a variety of routing-related tasks. The rtr
command is also invoked as part of the xtbootsys process. For more information,
see the rtr(8) man page.

2.11.9 Log Files

For more information about examining log files, see Managing Log Files Using CLE
and HSS Commands on page 98.

S–2393–5101 53

Managing System Software for the Cray® Linux Environment

2.11.9.1 Event Logs

The event router records events to the event log in the
/var/opt/cray/log/event-yyyymmdd file. When the log grows beyond a
reasonable size, it turns over and its contents are stored in a numbered file in the
directory.

2.11.9.2 Boot Logs

The /var/opt/cray/log/session-id directory is a repository for files
collected by commands such as xtbootsys, xtconsole, xtconsumer, and
xtnetwatch for the currently booted session. To determine the current sessionid,
see the xtsession(8) man page.

Note: A symbolic link will be created from
/var/opt/cray/log/partition-current to the currently booted session
directory.

2.11.9.3 Dump Logs

The /var/opt/cray/dump directory is a repository for files collected by the
xtdumpsys command. It contains time-stamped dump files.

For more information about examining log files, see Managing Log Files Using CLE
and HSS Commands on page 98.

2.12 SEC Software for Log Monitoring and Event Processing
The simple event correlator (SEC) is released under the GNU Public License (GPL)
v2. As described at http://simple-evcorr.sourceforge.net/, SEC is "... an event
correlation tool for advanced event processing which can be harnessed for event log
monitoring, for network and security management, for fraud detection, and for any
other task which involves event correlation. Event correlation is a procedure where a
stream of events is processed, in order to detect (and act on) certain event groups that
occur within predefined time windows. Unlike many other event correlation products
which are heavyweight solutions, SEC is a lightweight and platform-independent
event correlator which runs as a single process. The user can start it as a daemon,
employ it in shell pipelines, execute it interactively in a terminal, run many SEC
processes simultaneously for different tasks, and use it in a wide variety of other
ways."

A simplified description of SEC is that it parses every line being appended to system
log files, watches for specific strings to show up that represent significant events
occurring in the system, and sends out E-mail notification that the event has occurred.

For information about optionally using SEC for your Cray system, see Configuring
SEC Software for a Cray XC System.

54 S–2393–5101

http://simple-evcorr.sourceforge.net/

Introducing System Components [2]

2.13 Storage
All Cray XC30 systems require RAID storage. RAID storage consists of one or more
physical RAID subsystems; a RAID subsystem is defined as a pair of disk controllers
and all disk modules that connect to the controllers.

Functionally, there are two types of RAID subsystems: system RAID (also referred to
as boot RAID) and file system RAID. The system RAID stores the boot image and
system files and is also partitioned for database functionality, while the file system
RAID stores user files.

File system RAID subsystems use the Lustre file system. Lustre offers high
performance scalable parallel I/O capabilities, POSIX semantics, and scalable
metadata access. For more information on Lustre file system configuration, see
Managing Lustre for the Cray Linux Environment (CLE) (S–0010).

Cray offers RAID subsystems from two vendors: DataDirect Network (DDN) and
NetApp. All DDN RAID subsystems function as dedicated file system RAID, while
NetApp RAID subsystems can function as dedicated file system RAID, a dedicated
system RAID, or a combination of both. Different controller models support Fibre
Channel (FC), Serial ATA (SATA), and Serial Attached SCSI (SAS) disk options.
In addition to vendor solutions for file system RAID, Cray offers an integrated file
system, software and storage product, the Sonexion.

RAID devices are commonly configured with zoning so that only appropriate service
nodes see the disk devices (LUNs) for the services that will be provided by each
node; this is done in order to reduce the possibility of accidental or unauthorized
access to LUNs.

!
Caution: Because the system RAID disk is accessible from the SMW, the service
database (SDB) node, the boot node, and backup nodes, it is important that you
never mount the same file system in more than one place at the same time. If you
do so, the Linux operating system will corrupt the file system.

For more information about configuring RAID, see the documentation for your site's
particular RAID setup.

2.14 Other Administrative Information
This section contains additional information that is helpful for the administrator.

2.14.1 Identifying Components

System components (nodes, blades, chassis, cabinets, etc.) are named and located
by node ID, IP address, physical ID, or class number. Some naming conventions
are specific to CLE.

S–2393–5101 55

Managing System Software for the Cray® Linux Environment

2.14.1.1 Physical ID

The physical ID identifies the cabinet's location on the floor and the component's
location in the cabinet as seen by the HSS.

The table below shows the physical ID naming conventions. Descriptions assume that
you are standing in front of the system cabinets.

Table 1. Physical ID Naming Conventions

Component Format Description

SMW s0, all All components attached to the
SMW.

xtcli power up s0 powers
up all components attached to the
SMW.

cabinet cX-Y Compute/service cabinet, cabinet
controller hostname. Not used for
blower cabinets.

For example: c12-3 is cabinet 12
in row 3.

compute/service cabinet controller
HSS microcontroller

cX-YmM Compute/Service cabinet controller
HSS microcontroller; M is 0.

power rectifier module within a
cabinet

cX-YrR Power rectifier module within a
cabinet; R is 0 to 63.

cabinet controller (CC) FPGA cX-YfF Cabinet controller (CC) FPGA; F is
0.

blower cabinet bX-Y Blower cabinet, cabinet controller
hostname (if applicable). X is 0 to
63; Y is 0 to 15.

For example: b12-3 is blower
cabinet 12 in row 3.

blower cabinet controller bX-YmM Blower cabinet, cabinet controller;
M is 0.

blower within a blower cabinet bX-YbB Blower within a blower cabinet; B
is 0-5.

56 S–2393–5101

Introducing System Components [2]

Component Format Description

chassis cX-YcC Physical unit within cabinet: cX-Y;
cC is the chassis number and C is
0-2. Chassis are numbered bottom
to top.

For example: c0-0c2 is chassis 2
of cabinet c0-0.

chassis host controller cX-YcCmM Chassis host controller; M is 0.

optical connectors cX-YcCjJ Optical connectors per chassis;
there are 40 optical connectors per
chassis. J is 0-63.

chassis host FPGA cX-YcCfF Chassis host FPGA; F is 0.

blade or slot cX-YcCsS Physical unit within a slot of a
chassis cX-YcC; sS is the slot
number of the blade and S is 0-15.

For example: c0-0c2s4 is slot 4
of chassis 2 of cabinet c0-0.

For example: c0-0c2s* is all
slots (0...15) of chassis 2 of cabinet
c0-0.

optical controller groups cX-YcCoO Optical controller groups –
controller groups are associated
with slots by multiplying controller
number by 2 (and optionally adding
1); O is 0-7.

individual optical controller cX-YcCoOxX Individual optical controller within
an optical controller group; X is 0-4.

L0D FPGA within a base blade cX-YcCsSfF L0D FPGA within a base blade; F
is 0.

Aries™ ASIC cX-YcCsSaA Aries ASIC within a base blade.
There is only one Aries ASIC per
blade, and all nodes on the blade
connect to it. aA is the location of
the ASIC within the blade and A is
0.

For example: c0-1c2s3a0.

S–2393–5101 57

Managing System Software for the Cray® Linux Environment

Component Format Description

Aries NIC cX-YcCsSaAnNIC NIC (Network Interface Controller)
within an Aries ASIC; NIC is 0-3.

For example: c0-1c2s3a0n1

LCB tile row/column cX-YcCsSaAlRCol LCB tile row/column. Row 5 is
all processor tiles; all other rows
contain only HSN tiles. Note the
octal numbering. R is 0-5 and Col
is 0-7.

SerDes macro associated with an
LCB

cX-YcCsSaAmRCol SerDes macro associated with an
LCB. Note the octal numbering. R
is 0-5 and Col is 0-7.

SerDes macro network processor
associated with an LCB

cX-YcCsSaApRCol SerDes macro network processor
associated with an LCB. Note the
octal numbering. R is 0-5 and Col
is 0-7.

Aries ASIC VRM cX-YcCsSaAvV Aries ASIC VRM; V is 0.

Processor Daughter Card (PDC)
within a base blade

cX-YcCsSpP Processor Daughter Card within a
base blade; P is 0-3.

quad Processor Daughter Card
(QPDC) within a base blade

cX-YcCsSqQ Quad Processor Daughter Card
within a base blade; Q is 0-1.

general-purpose-accelerator
Processor Daughter Card (GPDC)
within a base blade

cX-YcCsSkK General-purpose-accelerator
Processor Daughter Card (GPDC)
within a base blade; K is 0-1.

L0C FPGA within a PDC cX-YcCsSpPfF L0C FPGA within a PDC; F is 0.

L0C FPGA within a QPDC cX-YcCsSqQfF L0C FPGA within a Quad PDC; F
is 0.

L0C FPGA within a GPDC cX-YcCsSkKfF L0C FPGA within a GPDC; F is 0.

VRM within a PDC associated
with a processor socket

cX-YcCsSpPvV VRM within a PDC associated with
a processor socket; V is 0-1.

SouthBridge chip within a PDC cX-YcCsSpPsSouthBridge SouthBridge chip within a PDC;
SouthBridge is 0.

SouthBridge chip within a QPDC cX-YcCsSqQsSouthBridge SouthBridge chip within a Quad
PDC; SouthBridge is 0-1.

SouthBridge chip within a GPDC cX-YcCsSkKsSouthBridge SouthBridge chip within a GPDC;
SouthBridge is 0-1.

58 S–2393–5101

Introducing System Components [2]

Component Format Description

blade controller HSS
microcontroller within a base
blade

cX-YcCsSmM Blade controller HSS
microcontroller within a base
blade (not the blade controller
CPU); M is 0.

node cX-YcCsSnN Physical node on a base blade; nN
is the location of the node and N is
0-3.

For example: c0-0c2s4n0 is
node 0 on blade 4 of chassis 2 in
cabinet c0-0.

For example: c0-0c2s4n* is all
nodes on blade 4 of chassis 2 of
cabinet c0-0.

accelerator cX-YcCsSnNaA Accelerator associated with a node;
may be any type of supported
accelerator. A is 0-7.

processor socket associated with a
physical node

cX-YcCsSnNsSocket Processor socket associated with a
physical node; Socket is 0-1.

DIMM associated with a processor
socket

cX-YcCsSnNsSocketmM DIMM associated with a processor
socket; M is 0-7.

VDD VRM associated with
processor socket

cX-YcCsSnNsSocketvV VDD VRM associated with
processor socket; V is 0.

VDR VRM associated with
processor socket

cX-YcCsSnNsSocketrR VDR VRM associated with
processor socket; R is 0.

die within a processor socket cX-YcCsSnNsSocketdD Die within a processor socket; D is
0-3.

core within a die cX-YcCsSnNsSocketdDcCore Core within a die; Core is 0-63.

memory controller within a die cX-YcCsSnNsSocketdDmM Memory controller within a die; M
is 0-3.

S–2393–5101 59

Managing System Software for the Cray® Linux Environment

Component Format Description

logical machine (partition) p# A partition is a group of
components that make up a logical
machine. Logical systems are
numbered from 0 to the maximum
number of logical systems minus
one. Because p0 is reserved to refer
to the entire machine as a partition
a configuration with 31 logical
machines would be numbered p1
through p31 (see Logical Machines
on page 64) and p0 would need
to be deactivated or removed as it
would no longer be valid.

2.14.1.2 Node ID (NID)

The node ID (NID) is a decimal numbering of all CLE nodes. NIDs are sequential
numberings of the nodes starting in cabinet c0-0. Each additional cabinet continues
from the highest value of the previous cabinet; so, cabinet 0 has NIDs 0-191, and
cabinet 1 has NIDs 192 - 383, and so on.

A cabinet contains three chassis; chassis 0 is the lower chassis in the cabinet. Each
chassis contains sixteen blades and each blade contains four nodes. The lowest
numbered NID in the cabinet is in chassis 0 slot 0 (lower left corner); slots (blades)
are numbered left to right (slot 0 to slot 15; as you face the front of the cabinet). NID
numbering begins in cabinet 0, cage 0, slot 0 with NIDs 0, 1, 2, and 3; NIDs 4, 5, 6,
and 7 are in slot 1, and this numbering scheme continues to slot 15 and then moves up
to chassis 1 and so on.

Use the xtnid2str command to convert a NID to a physical ID. For information
about using the xtnid2str command, see the xtnid2str(8) man page. To
convert a physical ID to a NID number, you can use the rtr --system-map
command and filter the output. For example:

crayadm@smw:~> rtr --system-map | grep c1-0c0s14n3 | awk '{ print $1 }'
251

Use the nid2nic command to print the nid-to-nic_address mappings,
nic_address-to-nid mappings, and a specific physical_location-to-nic_address
and nid mappings. For information about using the nid2nic command, see the
xtnid2str(8) man page.

60 S–2393–5101

Introducing System Components [2]

2.14.1.3 Class Name

Class names are a CLE construct. The /etc/opt/cray/sdb/node_classes
file is created as part of the system installation, based on the node_class*
settings defined in CLEinstall.conf. During the boot process,
the service_processor database table is populated from the
/etc/opt/cray/sdb/node_classes file, which can be changed if you add or
remove nodes (see Changing Nodes and Classes on page 203).

Note: It is important to keep node class settings in CLEinstall.conf and
/etc/opt/cray/sdb/node_classes consistent in order to avoid errors
during update or upgrade installations (see the Installing and Configuring Cray
Linux Environment (CLE) Software (S–2444).

The only restriction about how you name the classes is that the class name must be
valid (e.g., the name of a directory.) There is no restriction about how many classes
you specify; however, you must use the same class names when you invoke the
xtspec specialization command (see Specializing Files on page 138).

Change the class of a node (see Changing the Class of a Node on page 143) when you
change its function, for example, when you have added an additional login node.

The /etc/opt/cray/sdb/node_classes file describes the nodes associated
with each class.

Example 1. Sample /etc/opt/cray/sdb/node_classes file

node:classes
0:service
1:service
8:login
9:service

2.14.2 Topology Class

Each Cray system is given a topology class based in the number of cabinets and
their cabling. Some commands, such as xtbounce, let you specify topology class
as an option.

You can see the class value of your system in a number of places, such as xtcli
status output, rca-helper -o command output (rca-helper is run from a
Cray node), or by using the xtclass command from the SMW:

smw:~> xtclass
1

2.14.3 Persistent /var Directory

You can set up a persistent, writable /var directory on each service node served with
NFS. The boot node has its own root file system and its own /var directory; the boot
node /var is not part of the NFS exported /snv file system.

S–2393–5101 61

Managing System Software for the Cray® Linux Environment

Because the Cray system root file system is read-only, some subdirectories
of /var are mounted on tmpfs (memory) and not on disk. Persistent
/var retains the contents of /var directories between system boots. If
persistent_var=yes in CLEinstall.conf, CLEinstall configures the
correct values for VAR_SERVER, VAR_PATH, and VAR_MOUNT_OPTIONS in the
/etc/sysconfig/xt file during installation so the service nodes will NFS mount
the proper path at boot time.

Boot scripts and the xtopview utility (see Managing System Configuration with
the xtopview Tool on page 135) respect these configuration values and mount the
correct /var directory.

For more information, see the Installing and Configuring Cray Linux Environment
(CLE) Software (S–2444).

2.14.4 Default Network IP Addresses

The default IP addresses for network components are described in the Installing Cray
System Management Workstation (SMW) Software (S–2480).

2.14.5 /etc/hosts Files

The host file on the boot node is for the HSN and external hosts accessible from login
and network nodes. The hosts file on the SMW is for the HSS network.

The xtcdr2proc utility takes information from the Resiliency Communication
Agent (RCA) to build the /etc/hosts file on the boot node. The /etc/hosts
file on the boot node maps IP addresses to node IDs on the system interconnection
network (see Identifying Components on page 55). The file can also contain aliases
for the physical ID location of the system interconnection network components and
class names. The /etc/hosts file is updated or created at boot time and contains
the default hostname mappings as well as service and HSS names. The upper
octets typically range from 10.128.0.0 to 10.131.255.255. Lower octets for nodes are
derived from their NID. The NID is a sequential numbering of nodes from cabinet
0 up.

The /etc/hosts file on the boot node is generated at boot time to include
the compute nodes. Also, the installation and upgrade process modifies the
/etc/hosts file on the boot root to include compute nodes if they are not included.

The /etc/hosts file on the SMW contains physIDs (physical IDs that map to
the physical location of HSS network components), such as the blade and cabinet
controllers (see Physical ID on page 56).

The default system IP addresses are shown in the Installing Cray System Management
Workstation (SMW) Software (S–2480).

62 S–2393–5101

Introducing System Components [2]

The xtdb2etchosts command converts service information in the SDB to an
/etc/hosts style file. The resulting /etc/hosts file has lines of the following
form, where the first column is the IP address, the second column is the NID, and the
third column is the service type and class ID of the node:

10.131.255.254 nid12345 boot001
10.131.255.253 nid67890 boot002
10.131.255.252 nid55512 login001

The service configuration table (service_config) in the SDB XTAdmin database
provides a line for each service IP address of the form, where SERV1 and SERV2 are
the service names in the service_config table:

1.2.3.1 SERV1
1.2.3.2 SERV2

Note: Each time you update or upgrade your CLE software, CLEinstall
verifies the content of /etc/opt/cray/sdb/node_classes and modifies
/etc/hosts to match the configuration specified in your CLEinstall.conf
file. For additional detail about how CLEinstall modifies the /etc/hosts
file, see Installing and Configuring Cray Linux Environment (CLE) Software
(S–2444).

The xtdb2etchosts command is documented on the xtdb2etchosts(8) man
page.

2.14.6 Realm-Specific IP Addressing (RSIP) for Compute Nodes

Realm-Specific IP Addressing (RSIP) allows compute nodes and the service nodes
to share the IP addresses configured on the external Gigabit and 10 Gigabit Ethernet
interfaces of network nodes. By sharing the external addresses, you may rely on your
system's use of private address space and do not need to configure compute nodes
with addresses within your site's IP address space. The external hosts see only the
external IP addresses of the Cray system.

To configure RSIP for compute nodes, see Configuring Realm-specific IP Addressing
(RSIP) on page 217.

2.14.7 Security Auditing

Cray Audit is a set of Cray specific extensions to standard Linux security auditing.
When the Cray Audit is configured, separate logs are generated for each audited node
on a Cray system. Cray specific utilities simplify administration of auditing options
and log files across a large number of nodes. For more information, see Security
Auditing and Cray Audit Extensions on page 154.

S–2393–5101 63

Managing System Software for the Cray® Linux Environment

2.14.8 Logging Failed Login Attempts

The cray_pam module is a Pluggable Authentication Module (PAM) that, when
configured, provides information to the user at login time about any failed login
attempts since their last successful login. For more information, see Using the
cray_pam PAM to Log Failed Login Attempts on page 159.

2.14.9 Logical Machines

You can subdivide a single Cray system into two or more logical machines
(partitions), which can then be run as independent systems. An operable logical
machine has its own compute nodes and service nodes, external network connections,
boot node, and SDB node. Each logical machine can be booted and dumped
independently of the other logical machines. Once booted, a logical machine appears
as a normal Cray system to the users, limited to the set of hardware included for
the logical machine.

The HSS is common across all logical machines. Because logical machines apply
from the system interconnection network layer and up, the HSS functions continue
to behave as a single system for power control, diagnostics, low-level monitoring,
and so on.

In addition,

• Cray recommends that you do not configure more than one logical machine per
cabinet. That way, if you power down a cabinet, you do not affect more than one
logical machine. A logical machine can include more than one cabinet.

• A job is limited to running within a single logical machine.

• Although the theoretical maximum of allowable logical machines per physical
Cray system is 31 logical machines (as p0 is the entire system), you must
consider your hardware requirements to determine a practical number of logical
machines to configure.

• Because no two logical machines can use the same components, once a system is
partitioned into logical machines p0 is no longer a valid reference and should be
removed or deactivated.

• You can run only a single instance of SMW software.

• Boot and routing commands affect only a single logical machine.

To create logical machines, see Creating Logical Machines on page 194.

64 S–2393–5101

Managing the System [3]

Important: SCSI device names (/dev/sd*) are not guaranteed to be numbered
the same from boot to boot. This inconsistency can cause serious system problems
following a reboot. When installing CLE, you must use persistent device names
for file systems on your Cray system. This does not apply to SMW disks. For
additional information, see Using Persistent SCSI Device Names on page 264.

3.1 Connecting the SMW to the Console of a Service Node
The xtcon command is a console interface for service nodes. When it is executing,
the xtcon command provides a two-way connection to the console of any running
service node.

See the xtcon(8) man page for additional information.

3.2 Logging On to the Boot Node
The standard Cray configuration has a gigabit Ethernet connection between the SMW
and boot node. You can access the other nodes on the Cray system from the boot
node.

Procedure 1. Logging on to the boot node

• From the SMW, log on to the boot node.

crayadm@smw:~> ssh boot
crayadm@boot:~>

Note: You can open an administrator window on the SMW to access the boot
node:

crayadm@smw:~> xterm -ls -vb -sb -sl 2049 6&

After the window opens, use it to ssh to the boot node.

3.3 Preparing a Service Node and Compute Node Boot Image
This section describes how to prepare a Cray service node and compute node boot
image.

S–2393–5101 65

Managing System Software for the Cray® Linux Environment

A boot image is an archive containing all the components necessary to boot Cray
service nodes and compute nodes. In general, a boot image contains the operating
system kernel, ramdisk, and boot parameters used to bring up a node. A single boot
image can contain multiple sets of these files to support booting service nodes and
compute nodes from the same boot image as well as booting different versions of
compute node operating systems. The operating systems supported by a particular
boot image are described through load files. A load file is simply a manifest of
operating system components to include (represented as files) and load address
information to provide to the boot loader. Load files should not be edited by the
administrator.

Cray system compute and service nodes use a RAM disk for booting.
Service nodes and compute nodes use the same initramfs
format and work space environment. This space is created in
/opt/xt-images/machine-xtrelease-LABEL[-partition]/nodetype,
where machine is the Cray hostname, xtrelease is the CLE release level, LABEL is
the system set label in /etc/sysset.conf, partition describes a system partition
and is typically omitted if partitions are not used, and nodetype is either compute
or service.

3.3.1 Using shell_bootimage_LABEL.sh to Prepare Boot Images

The CLEinstall installation program creates a
/var/opt/cray/install/shell_bootimage_LABEL.sh script on the
SMW. This script is unique to the system set label you installed, based on settings in
the CLEinstall.conf and /etc/sysset.conf installation configuration files.
You can re-use this script to automate some of the steps for creating boot images.

Procedure 2. Preparing a boot image for CNL compute nodes and service nodes

Invoke the shell_bootimage_LABEL.sh script to prepare boot images for the
system set with the specified LABEL. This script uses xtclone and xtpackage to
prepare the work space in /opt/xt-images.

66 S–2393–5101

Managing the System [3]

shell_bootimage_LABEL.sh accepts the following options:

-v Run in verbose mode.

-T Do not update the default template link.

-h Display help message.

-c Create and set the boot image for the next boot. The default is to
display xtbootimg and xtcli commands that will generate
the boot image. Use the -c option to invoke these commands
automatically.

-b bootimage

Specify bootimage as the boot image disk device or file name. The
default bootimage is determined by using values for the system
set LABEL when CLEinstall was executed. Use this option to
override the default and manage multiple boot images.

Optionally, this script includes CNL_* parameters that you can use to modify the
CNL boot image configuration you defined in CLEinstall.conf. Edit the script
and set the associated parameter to y to load an optional RPM or change the /tmp
configuration.

1. Execute shell_bootimage_LABEL.sh, where LABEL is the system set
label specified in /etc/sysset.conf for this boot image. For example, if the
system set label is BLUE, log on to the SMW as root and type:

smw:~# /var/opt/cray/install/shell_bootimage_BLUE.sh

On completion, the script displays the xtbootimg and xtcli commands
required to build and set the boot image for the next boot. If you specified the -c
option, the script invokes these commands automatically and you should skip
the remaining steps in this procedure.

2. Create a unified boot image for compute and service nodes by using the
xtbootimg command suggested by the shell_bootimage_LABEL.sh
script.

In the following example, replace bootimage with the mountpoint for
BOOT_IMAGE0 in the system set defined in /etc/sysset.conf. Set
bootimage to either a raw device; for example /raw0 or a file name; for example
/bootimagedir/bootimage.new.

!
Caution: If bootimage is a file, verify that the file exists in the same path on
both the SMW and the boot root.

S–2393–5101 67

Managing System Software for the Cray® Linux Environment

Type the following command:

smw:~# xtbootimg \
-L /opt/xt-images/machine-xtrelease-LABEL/compute/CNL0.load \
-L /opt/xt-images/machine-xtrelease-LABEL/service/SNL0.load \
-c bootimage

a. At the prompt 'Do you want to overwrite', type y to overwrite the existing
boot image file.

b. If bootimage is a file, mount the boot node root file system to /bootroot0,
copy the boot image file from the SMW to the same directory on the
boot root, and then unmount the boot node root file system. If bootimage
is a raw device, skip this step. For example, if the bootimage file is
/bootimagedir/bootimage.new and bootroot_dir is set to
/bootroot0, type these commands.

smw:~ # mount /dev/bootrootdevice /bootroot0
smw:~ # cp -p /bootimagedir/bootimage.new /bootroot0/bootimagedir/bootimage.new
smw:~ # umount /bootroot0

3. Set the boot image for the next system boot using the suggested xtcli
command.

The shell_bootimage_LABEL.sh program suggests an xtcli command
to set the boot image based on the value of BOOT_IMAGE0 for the system set
that you are using. The -i bootimage option specifies the path to the boot image
and is either a raw device, for example, /raw0 or /raw1, or a file such as
/bootimagedir/bootimage.new.

!
Caution: The next boot, anywhere on the system, uses the boot image you
set here.

a. Display the currently active boot image. Record the output of this command.

If the partition variable in CLEinstall.conf is s0, type:

smw:~# xtcli boot_cfg show

Or

If the partition variable in CLEinstall.conf is a partition value such
as p0, p1, and so on, type:

smw:~# xtcli part_cfg show pN

b. Invoke xtcli with the update option to set the default boot configuration
used by the boot manager.

If the partition variable in CLEinstall.conf is s0, type this command to
select the boot image to be used for the entire system.

smw:~# xtcli boot_cfg update -i bootimage

Or

68 S–2393–5101

Managing the System [3]

If the partition variable in CLEinstall.conf is a partition value such as
p0, p1, and so on, type this command to select the boot image to be used
for the designated partition.

smw:~# xtcli part_cfg update pN -i bootimage

3.3.2 Customizing Existing Boot Images

Cray recommends using Procedure 2 on page 66 to prepare production boot images.
However, you may use the xtclone, xtpackage and xtbootimg utilities on
the SMW to modify existing compute node or service node images for the purpose
of experimenting with custom options.

Note: You must have root privileges to invoke the xtclone and xtpackage
commands.

You can customize a boot image on the SMW using a four-step process:

1. Execute the xtclone utility to create your new work area, which is copied from
an existing work area.

2. In your new work area, make necessary changes, for example, install RPMs, edit
configuration files, or add or remove scripts.

3. Execute the xtpackage utility to properly package the operating system
components and prepare a load file for use by xtbootimg.

4. Execute the xtbootimg utility to create a boot image (an archive or cpio file)
from your work area. The xtbootimg utility collects the components described
by one or more load files into a single archive. The load files themselves are also
included in the archive, along with other components, BIOS, and sources listed in
the load file from xtpackage.

The following is a sample service node load file (SNL0.load):

#NODES_REALLY_READY
SNL0/size-initramfs 0x9021C
#Kernel source: /opt/xt-images/hostname-5.0.41-LABEL-s0/service/boot/bzImage-3.0.58-0.6.6.1_1.0500.7272-cray_ari_s
SNL0/bzImage-3.0.58-0.6.6.1_1.0500.7272-cray_ari_s.bin 0x100000
#Parameters source: /opt/xt-images/hostname-5.0.41-LABEL-s0/service/boot/parameters-snl
SNL0/parameters 0x90800
SNL0/initramfs.gz 0xFA00000

To create load files for supporting, for example, different boot parameters or different
RAM disk contents, use the xtpackage command with the -L option.

Use the xtbootimg -L option to specify the path to the CNL compute node load
file and the path to the service node load file.

S–2393–5101 69

Managing System Software for the Cray® Linux Environment

Procedure 3. Creating a Cray boot image from existing file system images

1. Make copies of the compute-node-side and service-node-side of an existing work
area.

Note: It is recommended that your work area be in a subdirectory of
/opt/xt-images, as shown in the example.

smw:~ # xtclone /opt/xt-images/machine-xtrelease-LABEL/compute \
/opt/xt-images/test/compute
smw:~ # xtclone -s /opt/xt-images/machine-xtrelease-LABEL/service \
/opt/xt-images/test/service

2. Make any changes to your work area that are necessary for your site. For
example, you can install or erase RPMs, change configuration files, or add or
remove scripts. Use the xtpackage -s option to create a "service-node-only"
boot image. When you are finished making changes, wrap up (package) the
compute-node-side and service-node-side of your work area.

smw:~ # xtpackage /opt/xt-images/test/compute
smw:~ # xtpackage -s /opt/xt-images/test/service

Note: The xtpackage utility automatically creates an /etc/xt.snl file
in service node initramfs. This allows compute node hardware to boot
service node images, if necessary.

3. Finally, make a boot image (a cpio file) from your work area.

smw:~ # xtbootimg -L /opt/xt-images/test/service/SNL0.load \
-L /opt/xt-images/test/compute/CNL0.load \
-c /opt/xt-images/cpio/test/bootimage

Note: The directory path for bootimage must exist on both the SMW and the boot
node, and the bootimage files in each location must be identical.

Some configurations export /opt/xt-images/cpio via NFS, so the
SMW and the boot node can see the same files in /opt/xt-images/cpio,
although this is not recommended for larger systems. Other configurations use a
non-networked file system at /tmp/boot, in which case, you must put a copy
of smw:/tmp/boot/bootimage.cpio at boot:/tmp/boot/bootimage.
This is required for the boot node to be able to distribute bootimage to the other
service nodes.

For more information about these utilities, see the xtclone(8), xtpackage(8),
and xtbootimg(8) man pages.

70 S–2393–5101

Managing the System [3]

3.3.3 Changing Boot Parameters

!
Caution: Some of the default boot parameters are mandatory. The system may
not boot if they are removed.

Updating the parameters passed to the Linux kernel requires recreating the boot
image with the xtpackage and xtbootimg commands. You can either edit the
files in the file system image or specify a path to a file containing parameters. If
editing the files, the default service and compute node parameters can be found in
boot/parameters-snl and boot/parameters-cnl, respectively.

Example 2. Making a boot image with new parameters for service and CNL
compute nodes

smw:~ # xtpackage -s -p /tmp/parameters-service.new /opt/xt-images/test/service
smw:~ # xtpackage -p /tmp/parameters-compute.new /opt/xt-images/test/compute

smw:~ # xtbootimg -L /opt/xt-images/test/service/SNL0.load \
-L /opt/xt-images/test/compute/CNL0.load -c /raw0

3.4 Booting Nodes
This section describes how to manually boot your boot node, service nodes, and
compute nodes. It also describes how to reboot a single compute node, and reboot
login or network nodes.

For information about modifying boot automation files, see Modifying Boot
Automation Files on page 197.

3.4.1 Booting the System

Use the xtbootsys command to manually boot your boot node, service nodes,
and CNL compute nodes.

Note: You can also boot the system using both user-defined and built-in procedures
in automation files, for example, auto.generic.cnl. Before you modify the
auto.generic.cnl file, Cray recommends copying it first because it will be
replaced by an SMW software upgrade. For related procedures, see Installing and
Configuring Cray Linux Environment (CLE) Software.

S–2393–5101 71

Managing System Software for the Cray® Linux Environment

The xtbootsys command prevents unintentional booting of currently booted
partitions. If a boot automation file is being used, xtbootsys checks that file to
determine if the string shutdown exists within any actions defined in the file. If
it does, then xtbootsys assumes that a shutdown is being done, and no further
verification of operating on a booted partition occurs. If the partition is not being
shut down, and the boot node is in the ready state, then xtbootsys announces
this fact to you and queries you for confirmation that you want to proceed. By
default, confirmation is enabled. To disable or enable confirmation when booting
booted partitions, use the xtbootsys config,confirm_booting_booted
and the config,confirm_booting_booted_last_session
global TCL variables, the --config name=value on the xtbootsys
command line, or the XTBOOTSYS_CONFIRM_BOOTING_BOOTED and
XTBOOTSYS_CONFIRM_BOOTING_BOOTED_LAST_SESSION environment
variables.

Procedure 4. Manually booting the boot node and service nodes

Note: The Lustre file system should start up before the compute nodes, and
compute node Lustre clients should be unmounted before shutting down the Lustre
file system.

Note: If you run more than one boot image, you can check which image you are
set up to boot with the xtcli boot_cfg show or xtcli part_cfg show
pN commands. To change which image you are booting, see Updating Boot
Configuration on page 196.

1. As crayadm, use the xtbootsys command to boot the boot node.

crayadm@smw:~> xtbootsys

Note: If you have a partitioned system, invoke xtbootsys with the
--partition pn option.

The xtbootsys command prompts you with a series of questions. Cray
recommends that you answer yes by typing Y to each question.

72 S–2393–5101

Managing the System [3]

The session pauses at:

Enter your boot choice:
0) boot bootnode ...
1) boot sdb ...
2) boot compute ...
3) boot service ...
4) boot all (not supported) ...
5) boot all_comp ...
10) boot bootnode and wait ...
11) boot sdb and wait ...
12) boot compute and wait ...
13) boot service and wait ...
14) boot all and wait (not supported) ...
15) boot all_comp and wait ...
17) boot using a loadfile ...
18) turn console flood control off ...
19) turn console flood control on ...
20) spawn off the network link recovery daemon (xtnlrd)...
q) quit.

Choose option 10 to boot the boot node and wait.

You are prompted to confirm your selection. Press the Enter key or type Y to
each question to confirm your selection.

Do you want to boot the boot node ? [Yn] Y
Do you want to send the ec_boot event ('no' means to only load memory) ? [Yn] Y

2. After the boot node has finished booting, the process returns to the boot choice
menu. Choose option 11 to boot the SDB node and wait.

You are prompted to confirm your selection. Press the Enter key or type Y to
each question to confirm your selection.

Do you want to boot the sdb node ? [Yn] Y
Do you want to send the ec_boot event ('no' means to only load memory) ? [Yn] Y

3. Next, select option 13 to boot the service nodes and wait.

You are prompted to enter a list of the service nodes to be booted. Type p0 to
boot the remaining service nodes in the entire system, or pN (where N is the
partition number) to boot a partition.

4. To confirm your selection, press the Enter key or type Y to each question.

Do you want to boot service p0 ? [Yn] Y
Do you want to send the ec_boot event ('no' means to only load memory) ? [Yn] Y

5. Log on to any service nodes for which there are local configuration or startup
scripts (such as starting Lustre) and run the scripts.

Procedure 5. Booting the compute nodes

1. After all service and login nodes are booted and Lustre has started (if configured
at this time), return to the xtbootsys menu.

S–2393–5101 73

Managing System Software for the Cray® Linux Environment

2. Select 17 from the xtbootsys menu. A series of prompts are displayed.
Type the responses indicated in the following example. For the component
list prompt, type p0 to boot the entire system, or pN (where N is the partition
number) to boot a partition. At the final three prompts, press the Enter key.

Enter your boot choice: 17
Enter a boot type string (or nothing to do nothing): CNL0
Enter a boot type option (or nothing to do nothing): compute
Enter a component list (or nothing to do nothing): p0
Enter 'any' to wait for any console output,

or 'linux' to wait for a linux style boot,
or anything else (or nothing) to not wait at all: Enter

Enter an alternative CPIO archive name (or nothing): Enter
Do you want to send the ec_boot event ('no' means to only load memory) ? [Yn] Enter

3. After all the compute nodes are booted, return to the xtbootsys menu. Type
q to exit the xtbootsys program.

4. Remove the /etc/nologin file from all service nodes to permit a non-root
account to log on.

smw:~# ssh root@boot
boot:~# xtunspec -r /rr/current -d /etc/nologin

3.4.2 Using the xtcli boot Command to Boot a Node or Set of Nodes

To boot a specific image or load file on a given node or set of nodes, you can execute
the HSS xtcli boot boot_type command, as shown in the following examples.

Warning: Each system boot must be started with an xtbootsys session to
establish a sessionid. Only perform direct boot commands using the xtcli boot
command after a session has been established through xtbootsys.

Note: When using a file for the boot image, the same file must be on both the
SMW and the bootroot at the same path.

Example 3. Booting all service nodes with a specific image

The following example boots all service nodes with the specific image located at
/raw0:

crayadm@smw:~> xtcli boot all_serv_img -i /raw0

74 S–2393–5101

Managing the System [3]

Example 4. Booting all compute nodes with a specific image

The following example boots all compute nodes with the specific image located at
/bootimagedir/bootimage:

crayadm@smw:~> xtcli boot all_comp_img -i /bootimagedir/bootimage

Example 5. Booting compute nodes using a load file

The following example boots all compute nodes in the system with using a load file
name CNL0:

crayadm@smw:~> xtcli boot CNL0 -o compute s0

3.4.3 Rebooting a Single Compute Node

You can initiate a warm boot with the xtbootsys command's --reboot option.
This operation performs minimal initialization followed by a boot of only the selected
compute nodes. Unlike the sequence that is used by the xtbounce command,
there is no power cycling of the Cray ASICs or of the node itself, so the high-speed
network (HSN) routing information is preserved. Do not specify a session identifier
(-s or --session option) because --reboot continues the last session and adds
the selected components to it.

Example 6. Rebooting a single compute node

crayadm@smw:~> xtbootsys --reboot c1-0c2s1n2

3.4.4 Rebooting Login or Network Nodes

Login or network nodes cannot be rebooted through a shutdown or reboot
command issued on the node; they must be restarted through the HSS system using
the xtbootsys --reboot idlist SMW command. The HSS must be used so that
the proper kernel is pushed to the node.

Note: Do not attempt to warm boot nodes running other services in this manner.

Example 7. Rebooting login or network nodes

crayadm@smw:~> xtbootsys --reboot idlist

For additional information, see the xtbootsys(8) man page.

3.5 Rebooting Controllers of a Cabinet or Blade
The xtccreboot command provides a means to reboot controllers. Options allow
for rebooting all controllers of a specified type (cabinet or blade) or providing a list of
controllers of a specified type to be rebooted.

S–2393–5101 75

Managing System Software for the Cray® Linux Environment

Example 8. Rebooting cabinet controller c0-0, with verbose output

smw:~> xtccreboot -v -c c0-0
xtccreboot: /opt/cray-xt-pdsh/default/bin/pdsh -w "c0-0" /sbin/reboot
xtccreboot: reboot sent to specified CCs

For additional information, see the xtccreboot(8) man page.

3.6 Requesting and Displaying System Routing
Use the HSS rtr command to request routing for the HSN, to verify your current
route configuration, or to display route information between nodes. Upon startup,
rtr determines whether it is making a routing request or an information request.

Example 9. Displaying routing information

The --system-map option to rtr writes the current routing information to
stdout or to a specified file. This command can also be helpful for translating node
IDs (NIDs) to physical ID names.

crayadm@smw:~> rtr --system-map

Example 10. Routing the entire system

The rtr -R|--route-system command sends a request to perform system
routing. If no components are specified, the entire configuration is routed as a single
routing domain based on the configuration information provided by the state manager.
If a component list (idlist) is provided, routing is limited to the listed components.
The state manager configuration further limits the routing domain to omit disabled
blades, nodes, and links and empty blade slots.

crayadm@smw:~> rtr --route-system

For more information about displaying system routing information, see the rtr(8)
man page.

3.7 Initiating a Network Discovery Process
Use the HSS rtr --discover command to initiate a network discovery process.

crayadm@smw:~> rtr --discover

Important: The discovery process must be done on the system as a whole; it
cannot be applied to individual partitions. Therefore, discovery will immediately
fail if the system does not have partition p0 enabled.

See the rtr(8) man page for additional information about using the rtr
--discover command.

76 S–2393–5101

Managing the System [3]

3.8 Bouncing Blades Repeatedly Until All Blades Succeed
Example 11. Bounce failed blades repeatedly until all blades succeed

To bounce failed blades multiple times in order to have them eventually all succeed,
complete these steps.

Important: Doing this iterative xtbounce should typically be done in concert
with an xtbootsys automation file where bounce and routing are turned off.

1. Bounce the system.

smw:~> xtbounce s0

2. Bounce any blades that failed the first bounce.

3. Repeat step 2 as necessary.

4. Execute the following command, which copies route configuration files, based
on the idlist (such as s0), to the blade controllers. This avoids having old, partial
route configuration files left on the blades that were bounced in step 2 above and
ensures that the links are initialized correctly. For example,

smw:~> xtbounce --linkinit s0

5. Route and boot the system, without executing xtbounce again; if using a
xtbootsys automation file, specify set data(config,xtbounce) 0, or
you can use the xtbootsys --config xtbounce=0 command.

3.9 Shutting Down the System Using the auto.xtshutdown File
The preferred method to shut down the system is to use the xtbootsys
-s last -a auto.xtshutdown command. This method shuts down
the compute nodes (which are commonly also Lustre clients), then executes
xtshutdown on service nodes, halting the nodes and then stopping processes
on the SMW. You can shut down the system using both user-defined and built-in
procedures in the auto.xtshutdown file, which is located on the SMW in the
/opt/cray/hss/default/etc directory.

Example 12. Shutting down the system using the auto.xtshutdown file

To shut down the system using the auto.xtshutdown file, execute the following
command from the SMW:

crayadm@smw:~> xtbootsys -s last -a auto.xtshutdown

Or

for a partitioned system with partition pN:

smw:~# xtbootsys --partition pN -s last -a auto.xtshutdown

S–2393–5101 77

Managing System Software for the Cray® Linux Environment

For related procedures, see Installing and Configuring Cray Linux Environment
(CLE) Software. For more information about using automation files, see the
xtbootsys(8) man page.

3.10 Shutting Down Service Nodes Using the xtshutdown
Command

The xtshutdown command executes from the boot node to shut down the services
on service nodes and then shut down the service nodes of the Cray system. It executes
a series of commands locally on the boot node and on the service nodes to shut down
the system in an orderly fashion.

Procedure 6. Shutting down service nodes

• Modify the /etc/opt/cray/init-service/xtshutdown.conf file
or in the file specified by the XTSHUTDOWN_CONF environment variable to
define the sequence of shutdown steps and the nodes on which to execute them.
(The /etc/opt/cray/init-service/xtshutdown.conf file resides
on the boot node.)

!
Caution: The xtshutdown command does not shut down compute nodes. To
shut down the compute and service nodes, see Shutting Down the System or
Part of the System Using the xtcli shutdown Command on page 79.

The xtshutdown command uses pdsh to invoke commands on
the service nodes you select. You can choose the boot node, SDB
node, a class of nodes, or a single host. You can define functions to
execute when the system is shut down. Place these functions in the
/etc/opt/cray/init-service/xt_shutdown_local file or the file
defined by the XTSHUTDOWN_LOCAL environment variable.

Note: You must be root user to use the xtshutdown command.
Passwordless ssh must be enabled for the root user from the boot node to all
service nodes.

boot:~ # xtshutdown

After you have shut down the software on the nodes, you can halt the hardware,
reboot, or power down.

For information about shutting down service nodes, see the xtshutdown(8)
man page.

78 S–2393–5101

Managing the System [3]

3.11 Shutting Down the System or Part of the System Using the
xtcli shutdown Command

The HSS xtcli shutdown command allows you to shut down the system or a
part of the system. To shut down compute nodes, execute the xtcli shutdown
command. Under normal circumstances, for example to successfully disconnect from
Lustre, invoking the xtcli shutdown command attempts to gracefully shut down
the specified nodes.

Example 13. Shutting down all compute nodes

To gracefully shut down all compute nodes, execute the following command:

crayadm@smw:~> xtcli shutdown compute

Example 14. Shutting down specified compute nodes

To gracefully shut down only compute nodes in cabinet c13-2:

crayadm@smw:~> xtcli shutdown c13-2

Example 15. Shutting down all nodes of a system

The xtcli shutdown command allows you to shut down the system gracefully;
to shut down a partition, use the pn command, where n is the partition you want
to shut down.

crayadm@smw:~> xtcli shutdown s0

Example 16. Forcing nodes to shut down (immediate halt)

To force nodes to shut down, for example when all nodes of a system must be halted
immediately, use the -f argument; nodes will not go through their normal shutdown
process. You can force a shutdown by using the -f argument, even if the nodes have
an alert status present. For example:

crayadm@smw:~> xtcli shutdown -f s0

After you have shut down the software on the nodes, you can halt the hardware,
reboot, or power down.

For information about shutting down nodes using the xtcli shutdown command,
see the xtcli(8) man page.

3.12 Stopping System Components
When you remove, stop, or power down components, any applications and compute
processes that are running on those components are lost.

S–2393–5101 79

Managing System Software for the Cray® Linux Environment

3.12.1 Reserving a Component

If you want the applications and compute processes to complete before you stop
components, use the HSS xtcli set_reserve idlist command to select the
nodes you want to remove. This prevents them from accepting new jobs.

Note: If you are running CNL and using ALPS, after a node is reserved it is
considered to be down by ALPS. The output from apstat will show the node as
down (DN), even though there may be an application running on that node. This
DN designation indicates that no other work will be placed on the node after the
currently running application has terminated.

Procedure 7. Reserving a component

• Type:

crayadm@smw:~> xtcli set_reserve idlist

For information about reserving a component, see the xtcli_set(8) man page.

3.12.2 Powering Down Blades or Cabinets

Warning: Power down the cabinets with software commands. Tripping the circuit
breakers may result in damage to system components.

Warning: Ensure the operating system is not running before you power down a
blade or a cabinet.

The xtcli power down command powers down the specified cabinet and/or
blades within the specified partition, chassis or list of blades. Cabinets must be in
the READY state (see Appendix B, System States on page 371) to receive power
commands.

The xtcli power force_down and xtcli power down_slot commands
are aliases for the xtcli power down command.

Procedure 8. Powering down a specified blade

The xtcli power down command has the form, where physIDlist is a
comma-separated list of cabinets or blades present on the system (see Physical ID
on page 56).

xtcli power down physIDlist

• To power down a blade with the ID c0-0c0s7, type:

crayadm@smw:~> xtcli power down c0-0c0s7

Warning: Although a blade is powered off, the HSS in the cabinet is live and
has power.

80 S–2393–5101

Managing the System [3]

For information about disabling and enabling components, see Disabling
Hardware Components on page 86, and Enabling Hardware Components on
page 86, respectively. For information about powering down a component, see the
xtcli_power(8) man page.

3.12.3 Halting Selected Nodes

You can halt selected nodes with the HSS xtcli halt command.

Procedure 9. Halting a node

The command has the form:

xtcli halt node

• Type:

crayadm@smw:~> xtcli halt node

For more information about halting a node, see the xtcli(8) man page.

3.13 Restarting a Blade or Cabinet
Note: Change the state of the hardware only when the operating system is not
running or is shut down.

The xtcli power up command powers up the specified cabinet and/or blades
within the specified partition, chassis or list of blades. Cabinets must be in the READY
state (see Appendix B, System States on page 371) to receive power commands.

The xtcli power up command does not attempt to power up network mezzanine
cards or nodes, which are handled by the xtbounce command during system boot.
The xtcli power up_slot command is an alias for the xtcli power up
command.

Use the HSS xtcli power up command to restart a component.

Procedure 10. Power up blades in a cabinet

The xtcli power up command has the form, where physIDlist is a
comma-separated list of cabinets or blades present on the system (see Physical ID
on page 56).

xtcli power up physIDlist

• Power up the selected blade:

crayadm@smw:~> xtcli power up blade

For more information, see the xtcli_power(8) man page.

S–2393–5101 81

Managing System Software for the Cray® Linux Environment

3.14 Aborting Active Sessions on the HSS Boot Manager
Use the HSS xtcli session abort command to abort sessions in the boot
manager. A session corresponds to executing a specific command such as xtcli
power up or xtcli boot.

Example 17. Aborting a session running on the boot manager

To display all running sessions in the boot manager, execute the following command.

crayadm@smw:~> session show BM all

Execute the following HSS xtcli session abort command to abort session 1
running on the boot manager:

crayadm@smw:~> xtcli session abort BM 1

Use this command if you have started an xtcli power or xtcli boot
command but want to stop it before the command has completed.

Note: Only the boot manager supports multiple simultaneous sessions.

For more information about manager sessions, see the xtcli(8) man page.

3.15 Displaying and Changing Software System Status
There are a number of tools that enable you to inspect and change the status of
compute nodes on a running system.

3.15.1 Displaying the Status of Nodes from the Operating System

The user command xtnodestat provides a display of the status of nodes: how
they are allocated and to what jobs. The xtnodestat command provides current
job and node status summary information, and it provides an interface to ALPS
and jobs running on CNL compute nodes. You must be running ALPS in order for
xtnodestat to report job information.

For more information, see the xtnodestat(1) man page.

3.15.2 Viewing and Changing the Status of Nodes

Use the xtprocadmin command on a service node to view the status of
components of a booted system in the processor table of the SDB. The command
enables you to retrieve or set the processing mode (interactive or batch)
of specified nodes. You can display the state (up, down, admindown, route,
or unavailable) of the selected components, if needed. You can also allocate
processor slots or set nodes to become unavailable at a particular time. The node is
scheduled only if the status is up.

82 S–2393–5101

Managing the System [3]

Example 18. Looking at node characteristics

login:~> xtprocadmin
NID (HEX) NODENAME TYPE STATUS MODE

1 0x1 c0-0c0s0n1 service up batch
2 0x2 c0-0c0s0n2 service up batch
5 0x5 c0-0c0s1n1 service up batch
6 0x6 c0-0c0s1n2 service up batch
8 0x8 c0-0c0s2n0 compute up batch
9 0x9 c0-0c0s2n1 compute up batch

10 0xa c0-0c0s2n2 compute up batch
11 0xb c0-0c0s2n3 compute up batch

Example 19. Viewing all node attributes

Use the xtprocadmin command to view current node attributes. The
xtprocadmin -A option lists all attributes of selected nodes. For example:

login:~> xtprocadmin -A
NID (HEX) NODENAME TYPE ARCH OS CPUS CU AVAILMEM PAGESZ CLOCKMHZ GPU SOCKETS DIES C/CU
1 0x1 c0-0c0s0n1 service xt (service) 16 8 32768 4096 2600 0 1 1 2
2 0x2 c0-0c0s0n2 service xt (service) 16 8 32768 4096 2600 0 1 1 2
5 0x5 c0-0c0s1n1 service xt (service) 16 8 32768 4096 2600 0 1 1 2
6 0x6 c0-0c0s1n2 service xt (service) 16 8 32768 4096 2600 0 1 1 2
8 0x8 c0-0c0s2n0 compute xt CNL 32 16 65536 4096 2600 0 2 2 2
9 0x9 c0-0c0s2n1 compute xt CNL 32 16 65536 4096 2600 0 2 2 2
10 0xa c0-0c0s2n2 compute xt CNL 32 16 65536 4096 2600 0 2 2 2

Example 20. Viewing selected node attributes of selected nodes

The xtprocadmin -a attr1,attr2 option lists selected attributes of selected nodes.
For example:

login:~> xtprocadmin -n 8 -a arch,clockmhz,os,cores
NID (HEX) NODENAME TYPE ARCH CLOCKMHZ OS CPUS

8 0x8 c0-0c0s2n0 compute xt 2600 CNL 32

Example 21. Disabling a node

To mark a node as admindown and not allow it to be allocated, type the following
command:

crayadm@nid00004:~> xtprocadmin -n c0-0c0s3n1 -k s admindown

Example 22. Disabling all processors

To mark all processors as admindown and to disable the system's ability to change
their state, type the following command:

crayadm@nid00004:~> xtprocadmin -k s admindown

Note: When the xtprocadmin -ks option is used, then the option can either
a normal argument (up, down, etc.), or it can have a colon in it to represent a
conditional option; for example, the option of the form up:down means "if state
was up, mark down".

For more information, see the xtprocadmin(8) man page.

S–2393–5101 83

Managing System Software for the Cray® Linux Environment

3.15.3 Marking a Compute Node as a Service Node

Use the xtcli mark_node command to mark a node in a compute blade to have
a role of service or compute; compute is the default. It is not permitted to
change the role of a node on a service blade, which always has the service role.

Marking a node on a compute blade as service or compute allows you to load
the desired boot image at boot time. Compute nodes marked as service can run
software-based services. A request to change the role of a running node (that is, the
node is in the ready state and the operating system is running) will be denied.

For more information, see the xtcli(8) man page and Checking the Status of
System Components on page 100.

3.15.4 Finding Node Information

3.15.4.1 Translating Between Physical ID Names and Integer NIDs

To translate between physical ID names (cnames) and integer NIDs, generate a
system map by using the rtr --system-map command on the SMW and filter
the output; for example:

crayadm@smw:~> rtr --system-map | grep cname | awk '{ print $1 }'

For more information, see the rtr(8) man page.

3.15.4.2 Finding Node Information Using the xtnid2str Command

The xtnid2str command converts numeric node identification values to their
physical names (cnames). This allows conversion of Node ID values, ASIC NIC
address values, or ASIC ID values.

Example 23. Finding the physical ID for node 38

smw:~> xtnid2str 28
node id 0x26 = 'c0-0c0s1n2'

Example 24. Finding the physical ID for nodes 0, 1, 2, and 3

smw:~> xtnid2str 0 1 2 3
node id 0x0 = 'c0-0c0s0n0'
node id 0x1 = 'c0-0c0s0n1'
node id 0x2 = 'c0-0c0s1n0'
node id 0x3 = 'c0-0c0s1n1'

84 S–2393–5101

Managing the System [3]

Example 25. Finding the physical IDs for Aries IDs 0-7

smw:~> xtnid2str -a 0-7
aries id 0x0 = 'c0-0c0s0a0'
aries id 0x1 = 'c0-0c0s1a0'
aries id 0x2 = 'c0-0c0s2a0'
aries id 0x3 = 'c0-0c0s3a0'
aries id 0x4 = 'c0-0c0s4a0'
aries id 0x5 = 'c0-0c0s5a0'
aries id 0x6 = 'c0-0c0s6a0'
aries id 0x7 = 'c0-0c0s7a0'

For additional information, see the xtnid2str(8) man page.

3.15.4.3 Finding Node Information Using the nid2nic Command

Use the nid2nic command to print the nid-to-nic address mappings, nic-to-nid
address mappings, and a specific physical_location-to-nic address and nid mappings.

For information about using the nid2nic command, see the nid2nic(8) man
page.

Example 26. Printing the nid-to-nic address mappings for the node with NID 31.

smw:~> nid2nic 31
NID:0x1f NIC:0x1f c0-0c0s7n3

Example 27. Printing the nid-to-nic address mappings for the same node as
shown in Example 26, but specifying the NIC value in the command line

smw:~> nid2nic -n 0x21
NIC:0x21 NID:0x21 c0-0c0s8n1

3.16 Displaying and Changing Hardware System Status
You can execute commands that look at and change the status of the hardware.

!
Caution: Execute commands that change the status of hardware only when the
operating system is shut down.

3.16.1 Generating HSS Physical IDs

Execute the HSS xtgenid command to generate HSS physical IDs, for example,
to create a list of blade controller identifiers for input to the flash manager. You can
restrict your selections to components that are of a particular type.

Note: Only user root can execute the xtgenid command.

Example 28. Creating a list of node identifiers that are not in the DISABLE,
EMPTY, or OFF state

smw:~ # xtgenid -t node --strict

For more information, see the xtgenid(8) man page.

S–2393–5101 85

Managing System Software for the Cray® Linux Environment

3.16.2 Disabling Hardware Components

If links, nodes, or Cray ASICs have hardware problems, you can direct the system to
ignore the components with the xtcli disable command.

By default, when disabling a component, this command takes into consideration the
hierarchy of components, performs the action upon the identified component(s) and
cascades that action to any subcomponent of the identified component(s), unless the
-n option is specified.

Important: The -n option with the xtcli disable command must be used
carefully because this may create invalid system state configurations.

Disabling of a cabinet, chassis, or blade will fail if any nodes under the component
are in the ready state, unless the force option (-f) is used. An error message will
indicate the reason for the failure.

Disabling of a node in the ready state will fail, unless the force option (-f) is used.
An error message will indicate the reason for the failure.

The state of empty components will not change when using the disable
command, unless the force option (-f) is used.

The xtcli disable command has the form:

xtcli disable [{-t type [-a] } | -n][-f] idlist

where idlist is a comma-separated list of components (in cname format) that you want
the system to ignore. The system disregards these links or nodes.

Example 29. Disabling the Aries ASIC c0-0c1s3a0

1. Determine that the ASIC is in the OFF state.

crayadm@smw:~> xtcli status -t aries c0-0c1s3a0

2. If the ASIC is not in the OFF state, power down the blade that contains the ASIC.

crayadm@smw:~> xtcli power down c0-0c1s3

3. Disable the ASIC.

crayadm@smw:~> xtcli disable c0-0c1s3a0

4. Power up the blade that contains the ASIC.

crayadm@smw:~> xtcli power up c0-0c1s3

For detailed information about using the xtcli disable command, see the
xtcli(8) man page.

3.16.3 Enabling Hardware Components

If links, nodes, or Cray ASICs that have been disabled are later fixed, you can add
them back to the system with the xtcli enable command.

86 S–2393–5101

Managing the System [3]

By default, when enabling a component, this command takes into consideration the
hierarchy of components, performs the action upon the identified component(s) and
cascades that action to any subcomponent of the identified component(s), unless the
-n option is specified.

Important: The -n option with the xtcli enable command must be used
carefully because this may create invalid system state configurations.

The state of empty components does not change when using the xtcli enable
command, unless the force option (-f) is used.

The xtcli enable command has the form:

xtcli enable [{-t type [-a] } | -n][-f] idlist

where idlist is a comma-separated list of components (in cname format) that you
want the system to recognize.

The state of off means that a component is present on the system. If the component
is a blade controller, node, or ASIC, then this will also mean that the component
is powered off. If you disable a component, the state shown becomes disabled.
When you use the xtcli enable command to enable that component for use once
again, its state switches from disabled to off. In the same manner, enabling an
empty component means that its state switches from empty to off.

For more information, see the xtcli(8) man page.

3.16.4 Setting Components to Empty

Use the xtcli set_empty command to set a selected component to the
empty state. HSS managers and the xtcli command ignore empty or disabled
components.

Setting a selected component to the empty state is typically done when a component,
usually a blade, is physically removed. By setting it to empty, the system ignores
it and routes around it.

By default, when setting a component to an empty state, this command takes into
consideration the hierarchy of components, performs the action upon the identified
component(s) and cascades that action to any subcomponent of the identified
component(s), unless the -n option is specified.

Note: The -n option with the set_empty command must be used carefully
because this may create invalid system state configurations.

Example 30. Setting a blade to the empty state

Set the blade and all its components to empty:

crayadm@smw:~> xtcli set_empty -a c0-0c1s7

For more information, see the xtcli(8) man page.

S–2393–5101 87

Managing System Software for the Cray® Linux Environment

3.16.5 Locking Components

Components are automatically locked when a command that can change their state is
running. As the command is started, the state manager locks these components so that
nothing else can affect their state while the command executes. When the manager is
finished with the command, it unlocks the components.

Use the HSS xtcli lock command to lock components.

Example 31. Locking cabinet c0-0

The lock command identifies the session ID. Locking a component prints out the
state manager session ID.

crayadm@smw:~> xtcli lock -l c0-0

Example 32. Show all session (lock) data

You can use the xtcli lock show command to show session (lock) information.

crayadm@smw:~> xtcli lock show

3.16.6 Unlocking Components

Use the HSS xtcli lock command to unlock components.

Example 33. Unlocking cabinet c0-0

The xtcli lock command is useful when a manager fails to unlock some set
of components. You can manually check for locks with the xtcli lock show
command and unlock them. Unlocking a component does not print out the state
manager session ID. The -u option must be used to unlock a component.

crayadm@smw:~> xtcli lock -u lock_number

lock_number is the value given when initiating the lock; it is also indicated in
the xtcli lock show query. Unlocking does nothing to the state of the
component other than to release locks associated with it. HSS managers cannot affect
components that are locked by a different session.

3.17 Performing Parallel Operations on Service Nodes
Use the pdsh command, which is the CLE parallel remote shell utility, on a service
node to issue commands to groups of nodes in parallel. You can select the nodes on
which to use the command, exclude nodes from the command, and limit the time
the command is allowed to execute. You must be user root to execute the pdsh
command. The command has the form:

pdsh [options] command

88 S–2393–5101

Managing the System [3]

Example 34. Restarting the NTP service

To restart the network time protocol (NTP) service on the first 9 login nodes, type:

boot:~ # pdsh -w 'login[1-9]' /etc/init.d/ntp restart

For more information, see the pdsh(1) man page.

3.18 Performing Parallel Operations on Compute Nodes
The parallel command tool (pcmd) allows you to execute the same commands on
compute nodes in parallel, similar to pdsh. (You launch the pcmd command from a
service node, but it acts on compute nodes.) It allows administrators and/or, if your
site deems it feasible, other users to securely execute programs in parallel on compute
nodes. You can specify on which nodes to execute the command. Alternatively,
you can specify an application ID (apid) to execute the command on all the nodes
available under that apid.

An unprivileged user must execute the command targeting nodes where the user is
currently running an aprun. A root user is allowed to target any compute node,
regardless of whether there are jobs running there or not. In either case, if the aprun
exits and the associated applications are killed, any commands launched by pcmd
will also exit.

By default, pcmd is installed as a root-only tool. It must be installed as setuid
root in order for unprivileged users to use it.

The pcmd command is located in the nodehealth module. If the nodehealth
module is not part of your default profile, you can load it by specifying:

module load nodehealth

For additional information, see the pcmd(1) man page.

S–2393–5101 89

Managing System Software for the Cray® Linux Environment

3.19 xtbounce Error Message Indicating Cabinet Controller and
Its Blade Controllers Not in Sync

During the gather_cab_pwr_states phase of xtbounce, if the HSS software
on a cabinet controller and any of its blade controllers is out of sync, error messages
such as the following will be printed during the xtbounce:

***** gather_cab_pwr_states *****
18:28:42 - Beginning to wait for response(s)

ERROR: rs_phys_node2ascii() failed for node struct 0xb7e70150080700f8
ERROR: rs_phys_node2ascii() failed for node struct 0xb7e70150080700f8
ERROR: rs_phys_node2ascii() failed for node struct 0xb7e70150080700f8
ERROR: rs_phys_node2ascii() failed for node struct 0xb7e70150080700f8

If this occurs, it indicates that the blade controller software is at a different revision
than the cabinet controller software. xtbounce will print a list of cabinets for which
this error has occurred. The message will be like:

ERROR: power state check error on 2 cabinet(s)
WARNING: unable to find c0-0 in err_cablist
WARNING: unable to find c0-2 in err_cablist

This error is an indication that when the HSS software was previously updated, the
cabinet controllers and the blade controllers were not updated to the same version.

To correct this error, cancel out of xtbounce (with Ctrl-C), wait approximately
five minutes for the xtbounce related activities on the blade controllers to finish,
then reboot the cabinet controller(s) and their associated blade controllers to get the
HSS software synchronized. Following this, the xtbounce may be executed once
again.

3.20 Handling Bus Errors
Bus errors are caused by machine-check exceptions. If you have received a bus error,
try the following procedure.

Procedure 11. Power-cycling a component

Power down then power up components. The physIDlist is a comma-separated list of
components present on the system (see Physical ID on page 56).

1. Power down the components.

crayadm@smw:~> xtcli power down physIDlist

2. Power up the components.

crayadm@smw:~> xtcli power up physIDlist

90 S–2393–5101

Managing the System [3]

3.21 Handling Component Failures
Components that fail are replaced as field replaceable units (FRUs). FRUs include
compute blade components, service blade components, and power and cooling
components.

When a field replaceable unit (FRU) problem arises, contact your Customer Service
Representative to schedule a repair.

3.22 Capturing and Analyzing System-level and Node-level
Dumps

3.22.1 Dumping Information Using the xtdumpsys Command

The xtdumpsys command collects and analyzes information from a Cray system
that is failing or has failed, has crashed, or is hung. Analysis is performed on, for
example, event log data, active heartbeat probing, voltages, temperatures, health
faults, in-memory console buffers, and high-speed interconnection network errors.
When failed components are found, detailed information is gathered from them.

To collect similar information for components that have not failed, invoke the
xtdumpsys command with the --add option and name the components from
which to collect data. The HSS xtdumpsys command saves dump information in
/var/opt/cray/dump/timestamp by default.

Example 35. Dumping information about a working component

To dump the entire system and collect detailed information from all blade controllers
in chassis 0 of cabinet 0, type:

crayadm@smw:~> xtdumpsys --add c0-0c0s0

Note: When using the --add option to add multiple components, separate
components with spaces, not commas.

Effective with the 7.0.UP03 release of the Cray SMW software, the xtdumpsys has
been rewritten. The previous implementation is still supported and has been renamed
xtdumpsys-old.

The new xtdumpsys command is written in Python and support plug-ins written
in Python. A number of plug-in scripts are included in the software release. Call
xtdumpsys --list to view a list of included plug-ins and their respective
directories.

The xtdumpsys command also now supports the use of configuration files to
specify xtdumpsys presets, rather than entering them via the command line.

For more information, see the xtdumpsys(8) man page.

S–2393–5101 91

Managing System Software for the Cray® Linux Environment

3.22.2 cdump and crash Utilities for Node Memory Dump and Analysis

The cdump and crash utilities may be used to analyze the memory on any Cray
service node or CNL compute node. The cdump command is used to dump node
memory to a file. After cdump completes, you may then use the crash utility on the
dump file generated by cdump.

Cray recommends executing the cdump utility only if a node has panicked or is hung,
or if a dump is requested by Cray.

To select the desired access method for reading node memory, use the cdump -r
access option. Valid access methods are:

• xt-bhs: The xt-bhs method uses a basic hardware system server that runs on
the SMW to access and read node memory. xt-bhs is the default access method
for these systems.

• xt-hsn: The xt-hsn method utilizes a proxy that reads node memory through
the High-speed Network (HSN). The xt-hsn method is faster than the xt-bhs
method, but there are situations where it will not work (for example, if the ASIC
is not functional). However, the xt-hsn method is preferable because the dump
completes in a short amount of time and the node can be returned to service
sooner.

• xt-file: The xt-file method is used for memory dump file created by the
-z option. The compressed memory dump file must be uncompressed prior to
executing this command. Use the file name for node-id.

To dump Cray node memory, access takes the following form:

method[@host]

For additional information, see the cdump(8) and crash(8) man pages.

3.22.3 Using dumpd to Automatically Dump and Reboot Nodes

The SMW daemon dumpd initiates automatic dump and reboot of nodes when
requested by Node Health Checker (NHC).

!
Caution: The dumpd daemon is invoked automatically by xtbootsys on
system (or partition) boot. In most cases, system administrators do not need to
use this daemon directly.

You can set global variables in the
/etc/opt/cray/nodehealth/nodehealth.conf configuration file to
control the interaction of NHC and dumpd. For more information about NHC
and the nodehealth.conf configuration file, see Configuring Node Health
Checker (NHC) on page 168.

You can also set variables in the /etc/opt/cray-xt-dumpd/dumpd.conf
configuration file on the SMW to control how dumpd behaves on your system.

92 S–2393–5101

Managing the System [3]

Each CLE release package also includes an example dumpd configuration
file, /etc/opt/cray-xt-dumpd/dumpd.conf.example.
The dumpd.conf.example file is a copy of the
/etc/opt/cray-xt-dumpd/dumpd.conf file provided for an initial
installation.

Important: The /etc/opt/cray-xt-dumpd/dumpd.conf file is not
overwritten during a CLE upgrade if the file already exists. This preserves
your site-specific modifications previously made to the file. However, you
should compare your /etc/opt/cray-xt-dumpd/dumpd.conf file
content with the /etc/opt/cray-xt-dumpd/dumpd.conf.example
file provided with each release to identify any changes, and then update your
/etc/opt/cray-xt-dumpd/dumpd.conf file accordingly.

If the /etc/opt/cray-xt-dumpd/dumpd.conf file does not exist, then the
/etc/opt/cray-xt-dumpd/dumpd.conf.example file is copied to the
/etc/opt/cray-xt-dumpd/dumpd.conf file.

The CLE installation and upgrade processes automatically install dumpd software
but you must explicitly enable it.

3.22.3.1 Enabling dumpd

Procedure 12. Enabling dumpd

1. In the nodehealth.conf configuration file on the shared root (located in
/etc/opt/cray/nodehealth/nodehealth.conf) change:

dumpdon: off

to

dumpdon: on

This allows node health to make requests to dumpd.

2. In the same file, set the maxdumps variable to some number greater than zero if
you want dumps to be taken.

3. Specify an action of dump, reboot, or dumpreboot for any tests for which
you want NHC to make a request of dumpd when that test fails.

4. In dumpd.conf configuration file on the SMW (in
/etc/opt/cray-xt-dumpd/dumpd.conf), change:

enable: no

to

enable: yes

After the changes to the configuration files are made, NHC will request action from
dumpd for any test that fails with an action of dump, reboot, or dumpreboot.

S–2393–5101 93

Managing System Software for the Cray® Linux Environment

3.22.3.2 /etc/opt/cray-xt-dumpd/dumpd.conf Configuration File

The dumpd configuration file, /etc/opt/cray-xt-dumpd/dumpd.conf,
is located on the SMW. There is no need for you to change any
installation configuration parameters; however, you may edit the
/etc/opt/cray-xt-dumpd/dumpd.conf file to customize how dumpd
behaves on your system using the following configuration variables.

enable: yes|no

Provides a quick on/off switch for all dumpd functionality (the
default value in the file provided from Cray Inc. is no.)

partitions: number

Specifies whether or not dumpd acts on specific partitions or ranges
of partitions. Placing ! in front of a partition or range disables it.

For example, specifying

partitions: 1-10,!2-4

enables partitions 1, 5, 6, 7, 8, 9, and 10 but not 2, 3, or 4. Partitions
must be explicitly enabled. Leaving this option blank disables all
partitions.

disabled_action: ignore|queue

Specifies what to do when requests come in for a disabled partition.
If you specify ignore, requests are removed from the database
and not acted upon. If you specify queue, requests continue to
build while dumpd is disabled on a partition. When the partition is
reenabled, the requests will be acted on. Specifying queue is not
recommended if dumpd will be disabled for long periods of time, as
it can cause SMW stress and database problems.

save_output: always|errors|never

Indicates when to save stdout and stderr from dumpd
commands that are executed. If save_output is set to always,
all output is saved. If errors is specified, output is saved only
when the command exits with a nonzero exit code. If never is
specified, output is never saved.

The default is to save output on errors.

command_output: directory

Specifies where to save output of dumpd commands, per the
save_output variable. The command output is put in the file
action.pid.timestamp.out in the directory specified by this option.

94 S–2393–5101

Managing the System [3]

Default directory is /var/opt/cray/dump.

dump_dir: directory

Specifies the directory in which to save dumps.

Default directory is /var/opt/cray/dump.

max_disk: nnnMB|unlimited

Specifies the amount of disk space beyond which no new dumps will
be created. This is not a hard limit; if dumpd sees that this directory
has less than this amount of space, it starts a new dump, even if that
dump subsequently uses enough space to exceed the max_disk
limit.

The default value is max_disk: unlimited.

no_space_action: action

Specifies a command to be executed if the directory specified by the
variable dump_dir does not have enough space free, as specified
by max_disk.

Examples of possible actions:

Deletes the oldest dump in the dump directory:

no_space_action: rm -rf $dump_dir/$(ls -rt $dump_dir | head -1)

Moves the oldest dump somewhere useful:

no_space_action: mv $dump_dir/$(ls -t $dump_dir|head -1) /some/dump/archive

Sends E-mail to an administrator at admin@fictionalcraysite.com:

no_space_action: echo "" | mail -s "Not Enough Space in $dump_dir" \
admin@fictionalcraysite.com

3.22.3.3 Using the dumpd-dbadmin Tool

The dumpd daemon sits and waits for requests from NHC (or some other entity using
the dumpd-request tool on the shared root.) When dumpd gets a request, it
creates a database entry in the mznhc database for the request, and calls the script
/opt/cray-xt-dumpd/default/bin/executor to read the dumpd.conf
configuration file and perform the requested actions.

You can use the dumpd-dbadmin tool to view or delete entries in the mznhc
database in a convenient manner.

3.22.3.4 Using the dumpd-request Tool

You can use the dumpd-request tool to send dump and reboot requests to dumpd
from the SMW or the shared root.

S–2393–5101 95

mailto:admin@fictionalcraysite.com

Managing System Software for the Cray® Linux Environment

A request includes a comma-separated list of actions to perform, and the node or
nodes on which to perform the actions.

A typical request from NHC looks like this:

cname: c0-0c1s4n0 actions: halt,dump,reboot

You can define additional actions in the dumpd.conf configuration file; to use, you
must execute the dumpd-request tool located on the shared root or the SMW.
A typical call would be:

dumpd-request -a halt,dump,reboot -c c0-0c1s4n0

Or

dumpd-request -a myaction1,myaction2 -c c1-0c0s0n0,c1-0c0s0n1,c1-0c0s0n2,c1-0c0s0n3

For this example to work, you must define a myaction1 and myaction2 in the
dumpd.conf file. See the examples in the configuration file for more detail.

3.23 Using xtnmi Command to Collect Debug Information from
Hung Nodes

!
Caution: This is not a harmless tool to use to repeatedly get information from a
node at various times; only use this command when you need debugging data from
nodes that are in trouble. The xtnmi command output may be used to determine
problems such as a core hang.

The sole purpose of the xtnmi command is to collect debug information from
unresponsive nodes. As soon as that debug information is displayed to the console,
the node panics.

For additional information, see the xtnmi(8) man page.

96 S–2393–5101

Monitoring System Activity [4]

4.1 Monitoring the System with the System Environmental Data
Collector (SEDC)

To use the System Environmental Data Collector (SEDC) to collect data about
internal cabinet temperatures, cooling system air pressures, critical voltages, etc., see
Using and Configuring System Environment Data Collections (SEDC).

4.2 Displaying Installed SMW Release Level
Following a successful installation, the file
/opt/cray/hss/default/etc/smw-release is populated with the
installed SMW release level.

Example 36. Displaying installed SMW release level

% cat /opt/cray/hss/default/etc/smw-release
7.1.UP00

4.3 Displaying Current and Installed CLE Release Information
Following a successful installation, several files in the /etc/opt/cray/release
directory are populated with various CLE release information.

The current xtrelease value (build number) is stored in
/etc/opt/cray/release/xtrelease. The most recently
installed CLE version number and update level is stored in
/etc/opt/cray/release/clerelease.

Example 37. Displaying the current xtrelease value

crayadm@login:~> cat /etc/opt/cray/release/xtrelease
DEFAULT=5.1.29

S–2393–5101 97

Managing System Software for the Cray® Linux Environment

The /etc/opt/cray/release/CLEinfo file contains a list of install-time
options that other scripts may want access to, such as network type, installer version,
and existence of the lustre file system.

Example 38. Displaying the most recently installed CLE release information

crayadm@login:~> cat /etc/opt/cray/release/CLEinfo
CLERELEASE=5.1.UP01
INSTALLERVERSION=j03
LUSTRE=yes
NETWORK=ari
XTRELEASE=5.1.29

Note: The CLEinfo file is an install-time "snapshot" and does not change; the
release values may not be the currently booted version on your system.

4.4 Displaying Boot Configuration Information
Use the xtcli command to display the configuration information for the primary
and backup boot nodes, the primary and backup SDB nodes, and the cpio path.

Procedure 13. Showing boot configuration information for the entire system

• To display boot configuration information for the entire system, execute the
xtcli boot_cfg show command:

crayadm@smw:~> xtcli boot_cfg show
Network topology: class 2
=== xtcli_boot_cfg ===
[boot]: c0-0c0s0n1:ready,c0-0c0s0n1:ready
[sdb]: c1-0c0s1n1:ready
[cpio_path]: /tmp/boot/kernel.cpio_5.1.29-wGPFS

Procedure 14. Showing boot configuration information for a partition of a
system

• To display boot configuration information for one partition in a system, specify
the partition number, pN. p0 is always the whole system:

crayadm@smw:~> xtcli part_cfg show p1

4.5 Managing Log Files Using CLE and HSS Commands
Boot, diagnostic, and other Hardware Supervisory System (HSS) events are logged
on the SMW in the /var/opt/cray/log directory, which is created during the
installation process.

CLE logs are saved on the SMW in /var/opt/cray/log/sessionid.

98 S–2393–5101

Monitoring System Activity [4]

Controller logs are saved on the SMW in
/var/opt/cray/log/controller/cabinet_name/controller_name/log_name,
where cabinet_name is of the form c0-0, c1-0, etc.; and where controller_name is
of the form c0-0 c1-0, etc. for the cabinet controller (CC) and is of the form
c0-0c0s0 for each blade controller (BC).

For more information, see the intro_llm_logfiles(5) man page.

4.5.1 Filtering the Event Log

The xtlogfilter command enables you to filter the event log for information
such as the time a particular event occurred or messages from a particular cabinet.

Example 39. Finding information in the event log

To search for all console messages from node c9-2c0s3n2, type:

crayadm@smw:~> xtlogfilter -f
/var/opt/cray/log/event-yyyymmdd c9-2c0s3n2

For more information, see the xtlogfilter(8) man page.

4.5.2 Adding Entries to Log Files

You can add entries to the syslog with the logger command. For example, to
identify the start or finish of system activities, use the /bin/logger command to
log events into the system log. The message is then available to anyone who reads
the log.

Example 40. Adding entries to syslog file

To mark the start of a new system test, type:

login# logger -is "Start of test 4A $(date) "
Start of test 4A Thu Jul 14 16:20:43 CDT 2011

The system log shows:

Jul 14 16:20:43 nid00003 xx[21332]:
Start of test 4A Thu Jul 13 16:20:43 CDT 2012

For more information, see the logger(1) man page.

4.5.3 Examining Log Files

Time-stamped log files of boot, diagnostic and other HSS events are located
on the SMW in the /var/opt/cray/log directory. The time-stamped
bootinfo, console, consumer, and netwatch log files are located in the
/var/opt/cray/log/sessionid directory by default.

S–2393–5101 99

Managing System Software for the Cray® Linux Environment

For example, the HSS xtbootsys command starts the xtconsole
command, which redirects the output to a time-stamped log file, such as
/var/opt/cray/log/p0-20120716t104708/console-20120716.

The SMWinstall, SMWconfig, and SMWinstallCLE commands create several
detailed log files in the /var/adm/cray/logs directory. The log files are named
using the PID of the SMWinstall or the SMWinstallCLE command; the exact
names are displayed when the command is invoked.

4.5.4 Removing Old Log Files

The xttrim utility is used to provide a simple and configurable method to automate
the compression and deletion of old log files. The xttrim utility is intended
to be run on the SMW from cron and is automatically configured to do this as
part of the Cray SMW software installation process. Review the xttrim.conf
configuration file and ensure that xttrim will manage the desired directories and
that the compression and deletion times are appropriate.

Note: The xttrim utility does not perform any action unless the --confirm
flag is used to avoid unintended actions, nor will xttrim perform any action on
open files. All actions are based on file-modified time.

For additional information, see the xttrim(8) and xttrim.conf(5) man pages.

4.6 Checking the Status of System Components
To check the status of the system or a component, use the xtcli status command
on the SMW. By default, the xtcli status command returns the status of nodes.

Procedure 15. Showing the status of a component

• The xtcli status command has the form:

xtcli status [-n] [-m] [{-t type] [-a]} node_list

Note: The list should have component IDs only (no wild cards).

type may be: cc, bc, cage, node, aries, aries_lcb, pdc, or qpdc.

100 S–2393–5101

Monitoring System Activity [4]

Use the -m option to display all nodes that were repurposed by using the xtcli
mark_node command. (The xtcli mark_node command can be used to
repurpose a service node to a compute role or to repurpose a compute node to a
service role.)

Example 41. Display nodes that were repurposed with the xtcli mark_node
command

c0-0c0s2n0 is a service node, repurposed as a compute node. c0-0c0s3n0 is a
compute node, repurposed as a service node.

crayadm@smw:~> xtcli status -m c0-0c0
Network topology: class 2
Network type: Aries

Nodeid: Service Core Arch| Comp state [Flags]

c0-0c0s2n0: - SB16 X86| off [noflags|]
c0-0c0s3n0: service SB16 X86| off [noflags|]

For more information, see the xtcli(8) man page.

4.7 Checking the Status of Compute Processors
To check that compute nodes are available after the system is booted, use the
xtprocadmin command on a service node.

Example 42. Identifying nodes in down or admindown state

To identify if there are any nodes that are in a down or admindown state, execute
the following command from a node:

nid00007:~> xtprocadmin | grep down

Example 43. Display current allocation and status of each compute processing
element and the application that it is running

Use the user xtnodestat command to display the current allocation and status of

S–2393–5101 101

Managing System Software for the Cray® Linux Environment

each compute processing element and the application that it is running. A simplified
text display shows each processing element on the Cray system interconnection
network. For example:

nid00007:~> xtnodestat
Current Allocation Status at Wed Jul 06 13:53:26 2011

C0-0
n3 AAaaaaaa
n2 AAaaaaaa
n1 Aeeaaaa-

c2n0 Aeeaaaaa
n3 Acaaaaa-
n2 cb-aaaa-
n1 AA-aaaa-

c1n0 Aadaaaa-
n3 SASaSa--
n2 SbSaSa--
n1 SaSaSa--

c0n0 SASaSa--
s01234567

Legend:
nonexistent node S service node

; free interactive compute node - free batch compute node
A allocated interactive or ccm node ? suspect compute node
W waiting or non-running job X down compute node
Y down or admindown service node Z admindown compute node

Available compute nodes: 0 interactive, 15 batch

Job ID User Size Age State command line
--- ------ -------- ----- --------- -------- ----------------------------------
a 3772974 user1 48 0h06m run app1
b 3773088 user2 2 0h01m run app2
c 3749113 user3 2 28h26m run app3
d 3773114 user4 1 0h00m run app4
e 3773112 user5 4 0h00m run app5

For more information, see the xtprocadmin(8) and xtnodestat(1) man pages.

4.8 Checking CNL Compute Node Connection
Use the Linux ping command to verify that a compute node is connected to the
network. The Linux ping command must be run from a node, not run on the SMW.

Example 44. Verifying that a compute node is connected to the network

nid00007:~> ping nid00015
PING nid00015 (10.128.0.16) 56(84) bytes of data.
64 bytes from nid00015 (10.128.0.16): icmp_seq=1 ttl=64 time=0.032 ms
64 bytes from nid00015 (10.128.0.16): icmp_seq=2 ttl=64 time=0.010 ms

For more information, see the Linux ping(8) man page.

102 S–2393–5101

Monitoring System Activity [4]

4.9 Checking Link Control Block and Router Errors
The HSS xtnetwatch command monitors the Cray system interconnection
network. It requests link control block (LCB) and router error information from the
blade controller-based router daemons and specifies how often to sample for errors.
It then detects events that contain the error information sent by these daemons and
displays the information as formatted output in a log file.

You can specify which system components to sample and control the level of
verbosity of the output, select the sampling interval, and log results to an output file.

Although the command can be invoked standalone from the SMW prompt, Cray
recommends that you run xtnetwatch each time you boot the system with the
xtbootsys command (the default). The output is a time-stamped log file such as:

/var/opt/cray/log/p0-20120803t185511/netwatch.p0-20120803t185511

Check the log file for fatal link errors and router errors. Fatal link errors signal faulty
hardware. Fatal router errors can be generated either by hardware or software; they
do not cause the network or individual links to become inoperable but imply that a
single transfer was discarded.

Note: To turn off blade controller high-speed interconnect link monitoring, use
the xtnetwatch -d option.

Example 45. Running xtnetwatch to monitor the system interconnection
network

Sample the network once every 10 seconds using the least verbose display format:

crayadm@smw:~> xtnetwatch -i 10
120718 13:31:21 ################ ################ ################# ##################
120718 13:31:21 LCB ID Peer LCB Category Description
120718 13:31:21 ################ ################ ################# ##################
Received all responses to request to start monitoring
Time of last linktune: Wed Jul 18 13:25:53 2012
Number of LCBs : 112
Number of Blades : 17
120718 13:31:22 c1-0c2s8a0l35 c1-0c2s0a0l32 ute Micropacket CRC \

Error, cnt: 122
120718 13:31:22 c1-0c2s8a0l35 c1-0c2s0a0l32 ute
Sequential CRC Error

For more information, see the xtnetwatch(8) man page.

4.10 Displaying System Network Congestion Protection
Information

Two utilities help you more easily identify the time and duration of system network
congestion events, either by parsing through logs (xtcpreport) or in real time
(xtcptop):

• The xtcpreport command uses information contained in the given xtnlrd

S–2393–5101 103

Managing System Software for the Cray® Linux Environment

file to extract and display information related to system network congestion
protection. Using this command, you can display a start time and an end time
of the system network congestion protection information to display. See the
xtcpreport(8) man page for additional information.

• The xtcptop command monitors an xtnlrd file that is currently being
updated and displays real-time system network congestion protection information,
including start time, duration, and apid. See the xtcptop(8) man page for
additional information.

Note: You may need to execute the module load congestion-tools
command to be able to call these utilities.

4.11 Monitoring the Health of PCIe Channels
Processors are connected to the high-speed interconnect network (HSN) ASIC
through PCIe channels. The xtpcimon command is executed from the SMW and
is started and run during the boot process. Any PCIe-related errors are reported
to stdout, unless directed to a log file. xtpcimon also displays CLE-originated
GHAL-based Advanced Error Reporting (AER) errors for PCIe. If the optional
/opt/cray/hss/default/etc/xtpcimon.ini initialization file is present,
the xtpcimon command uses the settings provided in the file.

For more information, see the xtpcimon(8) man page.

Example 46. Reporting PCIe-related errors to stdout

crayadm@smw:~> xtpcimon
starting
----> connection to event router made
121017 04:57:01 ############# ################# ##################
121017 04:57:01 Node Category Description
121017 04:57:01 ############# ################# ##################
Received all responses to request to start monitoring
121017 04:58:01 c0-0c0s7a0n1 CorrectableMemErr 0:0:0 AER Correctable: Non-fatal \

error (mask bit: 1)
121008 05:42:00 c0-0c1s6a0n2 CorrectableMemErr Link CRC error (cnt: 3)
121008 05:43:30 c0-0c1s6a0n2 Info Correctable/CRC error

4.12 Monitoring the Status of Jobs Started Under a Third-party
Batch System

To monitor the status of jobs that were started under a third-party batch system,
use the command appropriate to your batch system. For more information, see the
documentation provided by your batch system vendor.

104 S–2393–5101

Monitoring System Activity [4]

4.13 Using the cray_pam Module to Monitor Failed Login
Attempts

The cray_pam module is a Pluggable Authentication Module (PAM). When
configured, the cray_pam module provides information to the user at login time
about any failed login attempts since their last successful login. See Using the
cray_pam PAM to Log Failed Login Attempts on page 159 and the procedure to
configure the cray_pam module, Procedure 31 on page 161.

4.14 Monitoring DDN RAID
Use Data Direct Networks tools to monitor DDN RAID. These can be accessed
by telnetting to the RAID device from the SMW. To configure remote logging of
DDN messages, see the Cray System Management Workstation (SMW) Software
Installation Guide. For additional information, see your DDN documentation.

4.15 Monitoring NetApp, Inc. Engenio RAID
Use NetApp, Inc. Engenio tools to monitor NetApp, Inc. Engenio RAID. The
NetApp, Inc. Engenio storage system uses SNMP to provide boot RAID messages.
For additional information, see your NetApp, Inc. Engenio Storage System
documentation.

4.16 Monitoring HSS Managers
This section provides procedures to view active sessions and to check whether the
boot manager or the blade or cabinet controller daemons are running.

4.16.1 Examining Activity on the HSS Boot Manager

Use the HSS xtcli session show command to examine sessions in the boot
manager. A session corresponds to running a specific command such as xtcli
power up or xtcli boot. This command reports on sessions, not daemons.

Example 47. Looking at a session running on the boot manager

Execute the HSS xtcli session show command to view the session running on
the boot manager:

crayadm@smw:~> xtcli session show BM

For more information about manager sessions, see the xtcli(8) man page.

S–2393–5101 105

Managing System Software for the Cray® Linux Environment

4.16.2 Polling a Response from an HSS Daemon, Manager, or the Event
Router

Use the HSS xtalive command to verify that an HSS daemon, manager, or the
event router is responsive.

Example 48. Checking the boot manager

crayadm@smw:~> xtalive -l smw -a bm s0

For more information, see the xtalive(8) man page.

4.17 Monitoring Events
The HSS xtconsumer command enables you to monitor events mediated by the
event router daemon erd, which runs passively.

Example 49. Monitoring for specific events

This command shows watching two events: ec_heartbeat_stop, which will
be sent if either the node stops sending heartbeats or if the system interconnection
network ASIC stops sending heartbeats, and ec_l0_health, which will be sent if
any of the subcomponents of a blade controller report a bad health indication.

crayadm@smw:~> xtconsumer -b ec_heartbeat_stop ec_l0_health

Example 50. Checking events except heartbeat:

To display all events except heartbeats:

crayadm@smw:~> xtconsumer -x ec_l1_heartbeat

Use the xthb command to confirm the stopped heartbeat. Use the xthb command
only when you are actively looking into a known problem because it is intrusive and
degrades system performance.

For more information, see the xtconsumer(8) and xthb(8) man pages.

4.18 Monitoring Node Console Messages
The xtbootsys program will automatically start an xtconsole session which
processes console messages for booted partition or system. The console messages
will be written into /var/opt/cray/log/sessionid/console-yyyymmdd
where the administrator may monitor them.

The xtconsole utility may only have one concurrent instance.

For more information, see the xtconsole(8) man page.

106 S–2393–5101

Monitoring System Activity [4]

4.19 Showing the Component Alert, Warning, and Location
History

Use the xtcli comp_hist command to display the component alert, warning,
and location history. Either an error history, which displays alerts or warnings found
on designated components, or a location history may be displayed.

Procedure 16. Displaying the location history for component c0-0c0s0n1

• Type:

crayadm@smw:~> xtcli comp_hist -o loc c0-0c0s0n1

For more information, see the xtcli(8) man page.

4.20 Displaying Component Information
Use the HSS xtshow command to identify compute and service components.
Commands are typed as xtshow --option_name. You can also combine the
--service or --compute option with other xtshow options to limit your
selection to the specified type of node.

For a list of all xtshow --option_names, see the xtshow(8) man page.

Example 51. Identifying all service nodes

crayadm@smw:~> xtshow --service
L1s ...
Cages ...
L0s ...

c0-0c0s0: service X86| ready [noflags|]
c0-0c0s1: service X86| ready [noflags|]
c1-0c0s0: service X86| ready [noflags|]
c1-0c0s1: service X86| ready [noflags|]
c2-0c0s1: service X86| ready [noflags|]
c2-0c1s1: service X86| ready [noflags|]

Nodes ...
c0-0c0s0n0: service X86| empty [noflags|]
c0-0c0s0n1: service SB08 X86| ready [noflags|]
c0-0c0s0n2: service SB08 X86| ready [noflags|]
c0-0c0s0n3: service X86| empty [noflags|]
c0-0c0s1n0: service X86| empty [noflags|]
c0-0c0s1n1: service SB08 X86| ready [noflags|]
c0-0c0s1n2: service SB08 X86| ready [noflags|]
c0-0c0s1n3: service X86| empty [noflags|]
c1-0c0s0n0: service X86| empty [noflags|]
c1-0c0s0n1: service SB08 X86| ready [noflags|]
c1-0c0s0n2: service SB08 X86| ready [noflags|]
c1-0c0s0n3: service X86| empty [noflags|]
c1-0c0s1n0: service X86| empty [noflags|]
c1-0c0s1n1: service SB08 X86| ready [noflags|]
c1-0c0s1n2: service SB08 X86| ready [noflags|]
c1-0c0s1n3: service X86| empty [noflags|]

.

.

S–2393–5101 107

Managing System Software for the Cray® Linux Environment

.
Aries ...

c0-0c0s0a0: service X86| on [noflags|]
c0-0c0s1a0: service X86| on [noflags|]
c1-0c0s0a0: service X86| on [noflags|]
c1-0c0s1a0: service X86| on [noflags|]
c2-0c0s1a0: service X86| on [noflags|]
c2-0c1s1a0: service X86| on [noflags|]

AriesLcbs ...
c0-0c0s0a0l00: service X86| on [noflags|]
c0-0c0s0a0l01: service X86| on [noflags|]
c0-0c0s0a0l02: service X86| on [noflags|]
c0-0c0s0a0l03: service X86| on [noflags|]
c0-0c0s0a0l04: service X86| on [noflags|]
c0-0c0s0a0l05: service X86| on [noflags|]
c0-0c0s0a0l06: service X86| on [noflags|]
c0-0c0s0a0l07: service X86| on [noflags|]
c0-0c0s0a0l10: service X86| on [noflags|]
c0-0c0s0a0l11: service X86| on [noflags|]
c0-0c0s0a0l12: service X86| on [noflags|]
c0-0c0s0a0l13: service X86| on [noflags|]
c0-0c0s0a0l14: service X86| on [noflags|]
c0-0c0s0a0l15: service X86| on [noflags|]
c0-0c0s0a0l16: service X86| on [noflags|]

.

.

.

Example 52. Showing compute nodes in the disabled state

crayadm@smw:~> xtshow --compute --disabled
L1s ...
Cages ...
L0s ...
Nodes ...

c0-0c2s0n3: - X86| disabled [noflags|]
c0-0c2s11n0: - X86| disabled [noflags|]
c0-0c2s11n3: - X86| disabled [noflags|]
c1-0c0s11n2: - X86| disabled [noflags|]

Aries ...
AriesLcbs ...

108 S–2393–5101

Monitoring System Activity [4]

Example 53. Showing components with a status of not empty

crayadm@smw:~> xtshow --not_empty c0-0c0s0
L1s ...

c0-0: - | on [warn|alert|]
Cages ...
L0s ...

c0-0c0s0: service X86| ready [noflags|]
Nodes ...

c0-0c0s0n1: service SB08 X86| ready [noflags|]
c0-0c0s0n2: service SB08 X86| ready [noflags|]

Aries ...
c0-0c0s0a0: service X86| on [noflags|]

AriesLcbs ...
c0-0c0s0a0l00: service X86| on [noflags|]
c0-0c0s0a0l01: service X86| on [noflags|]
c0-0c0s0a0l02: service X86| on [noflags|]
c0-0c0s0a0l03: service X86| on [noflags|]
c0-0c0s0a0l04: service X86| on [noflags|]
c0-0c0s0a0l05: service X86| on [noflags|]
c0-0c0s0a0l06: service X86| on [noflags|]
c0-0c0s0a0l07: service X86| on [noflags|]
c0-0c0s0a0l10: service X86| on [noflags|]
c0-0c0s0a0l11: service X86| on [noflags|]
c0-0c0s0a0l12: service X86| on [noflags|]
c0-0c0s0a0l13: service X86| on [noflags|]
c0-0c0s0a0l14: service X86| on [noflags|]
c0-0c0s0a0l15: service X86| on [noflags|]
c0-0c0s0a0l16: service X86| on [noflags|]
c0-0c0s0a0l17: service X86| on [noflags|]
c0-0c0s0a0l20: service X86| on [noflags|]
c0-0c0s0a0l21: service X86| on [noflags|]
c0-0c0s0a0l22: service X86| on [noflags|]
c0-0c0s0a0l23: service X86| on [noflags|]
c0-0c0s0a0l24: service X86| on [noflags|]
c0-0c0s0a0l25: service X86| on [noflags|]
c0-0c0s0a0l26: service X86| on [noflags|]
c0-0c0s0a0l27: service X86| on [noflags|]

.

.

.

4.21 Displaying Alerts and Warnings
Use the xtshow command to display alerts and warnings. Type commands as
xtshow --option_name, where option_name is alert, warn, or noflags.

Note: Alerts are not propagated through the system hierarchy, so you only receive
information for the component you are examining. A node can have an alert, but
you would not see it if you ran the xtshow --alert command for a cabinet.
In a similar fashion, you would not detect an alert on a cabinet if you checked the
status of a node.

Example 54. Show all alerts on the system

smw:~> xtshow --alert

S–2393–5101 109

Managing System Software for the Cray® Linux Environment

For additional information, see the xtshow(8) man page.

Alerts and warnings typically occur while the HSS xtcli command operates; these
alerts and warnings are listed in the command output with an error message. After
they are generated, alerts and warnings become part of the state for the component
and remain set until you manually clear them. For example, the temporary loss of a
heartbeat by the blade controller may set a warning state on a chip.

4.22 Clearing Flags
Use the xtclear command to clear system information for components you select.
Type commands as xtclear --option_name, where option_name is alert,
reserve, or warn.

Example 55. Clear all warnings in specified cabinet

To clear all warnings in cabinet c13-2:

smw:~> xtclear --warn c13-2

You must clear alerts, reserves, and warnings before a component can operate.
Clearing an alert on a component frees its state so that subsequent commands can
execute (see Appendix B, System States on page 371).

For more information, see the xtclear(8) man page.

4.23 Displaying Error Codes
When a Hardware Supervisory System (HSS) event error occurs, the related message
is displayed on the SMW. You can also use the xterrorcode command on the
SMW to display a single error code or the entire list of error codes.

Example 56. Displaying HSS error codes

smw:~> xterrorcode errorcode

A system error code entered in a log file is a bit mask; invoking the xterrorcode
bitmask_code_number command on the SMW displays the associated error code.

Example 57. Displaying an HSS error code using its bit mask number

smw:~> xterrorcode 131279
Maximum error code (RS_NUM_ERR_CODE) is 297
code = 207, string = 'node voltage fault'

110 S–2393–5101

Managing User Access [5]

For a description of administrator accounts that enable you to access the functions
described in this chapter, see Administering Accounts on page 119.

5.1 Load Balancing Across Login Nodes
Having all users log on to the same login node may overload the node. (Also, see the
Caution in Login Nodes on page 40.) For typical interactive usage, a single login
node is expected to handle 20 to 30 batch users or 20 to 40 interactive users with
double this number of user processes. You can use the lbnamed load-balancing
software to distribute logins to different login nodes. The lbnamed daemon is a
name server that gathers the output of lbcd client daemons to select the least loaded
node, provides DNS-like responses, interacts with the corporate DNS server, and
directs the user login request to the least busy login node.

Because lbnamed runs on the SMW, eth0 on the SMW must be connected to the
same network from which users log on the login nodes.

Note: If security considerations do not allow you to put the SMW on the public
network, lbnamed may be installed on an external server. This can be any type
of computer running the SUSE Linux Enterprise Server (SLES) operating system
(not a 32-bit system). However, this option is not a tested or supported Cray
configuration.

The behavior of the lbnamed daemon is site-configurable and determined by
the contents of the /etc/opt/cray-xt-lbnamed/lbnamed.conf and
/etc/opt/cray-xt-lbnamed/poller.conf configuration files. For details
about configuring the load balancer, see Configuring the Load Balancer on page 167,
and the lbcd(8), lbnamed(8), and lbnamed.conf(5) man pages.

5.2 Passwords
The default passwords for the root and crayadm accounts are the same for the
System Management Workstation (SMW), the boot node, and the shared root.

S–2393–5101 111

Managing System Software for the Cray® Linux Environment

Default passwords for the root and crayadm accounts are provided in the
Installing and Configuring Cray Linux Environment (CLE) Software. Also,
default MySQL passwords and an example of how to change them are provided
in the Installing and Configuring Cray Linux Environment (CLE) Software. Cray
recommends changing these default passwords as part of the software installation
process.

5.2.1 Changing Default SMW Passwords After Completing Installation

After completing the installation, change the default SMW passwords. The SMW
contains its own /etc/passwd file that is separate from the password file for the
rest of the system. To change the passwords on the SMW, log on to the SMW as
root and execute the following commands:

crayadm@smw:~> su - root
smw:~# passwd root
smw:~# passwd crayadm
smw:~# passwd cray-vnc
smw:~# passwd mysql

To change the default iDRAC6 password see Procedure 117 on page 410.

5.2.2 Changing root and crayadm Passwords on Boot and Service
Nodes

For security purposes, it is desirable to change the passwords for the root and
crayadm accounts on a regular basis.

Use the Linux passwd command to change the /etc/passwd file. For
information about using the passwd command, see the passwd(1) man page.

Procedure 17. Changing the root and crayadm passwords on boot and service
nodes

1. The boot node contains its own /etc/passwd file that is separate from the
password file for the rest of the system. To change the passwords on the boot
node, use these commands. You will be prompted to type and confirm new root
and administrative passwords.

boot:~ # passwd root
boot:~ # passwd crayadm

112 S–2393–5101

Managing User Access [5]

2. To change the passwords on the other service nodes, you must run these
commands on the shared root. Again, you will be prompted to type and confirm
new passwords for the root and crayadm accounts.

Note: If the SDB node is not started, you must add the
-x /etc/opt/cray/sdb/node_classes option to the
xtopview command in this procedure.

boot:~ # xtopview
default/:/ # passwd root
default/:/ # passwd crayadm
default/:/ # exit

For more information about using the xtopview command, see Managing System
Configuration with the xtopview Tool on page 135, and the xtopview(8) man
page.

5.2.3 Changing the root Password on CNL Compute Nodes

Procedure 18. Changing the root password on CNL compute nodes

For compute nodes, update the root account password in the
/opt/xt-images/templates/default/etc/shadow file on
the SMW.

Note: To make these changes for a system partition, rather than for
the entire system, replace /opt/xt-images/templates with
/opt/xt-images/templates-pN, where N is the partition number.

1. Copy the master password file to the template directory.

smw:~ # cp /opt/xt-images/master/default/etc/shadow \
/opt/xt-images/templates/default/etc/shadow

2. Edit the password file to include a new encrypted password for the root account.

smw:~ # vi /opt/xt-images/templates/default/etc/shadow

3. After making these changes, update the boot image by following the steps in
Procedure 2 on page 66.

5.2.4 Changing the HSS Data Store (MySQL) Password

Use the hssds_init command to change the HSS data store (MySQL) root
password. The hssds_init command prompts you for the current HSS data store
(MySQL) root password. When you type the current and new passwords, they
are not echoed.

Note: The hssds_init utility is run by the SMWinstall command, so you do
not have to run it during installation of an SMW release package.

For additional information, see the hssds_init(8) man page.

S–2393–5101 113

Managing System Software for the Cray® Linux Environment

5.2.5 Changing Default MySQL Passwords on the SDB

Procedure 19. Changing default MySQL passwords on the SDB

For security, you should change the default passwords for MySQL database accounts.

1. If you have not set a site-specific MySQL password for root, type the following
commands. Press the Enter key when prompted for a password.

boot:~ # ssh root@sdb
sdb:~ # mysql -h localhost -u root -p
Enter password:
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 4
Server version: 5.0.64'-enterprise'-log MySQL Enterprise Server (Commercial)

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.
mysql> set password for 'root'@'localhost' = password('newpassword');
Query OK, 0 rows affected (0.00 sec)
mysql> set password for 'root'@'%' = password('newpassword');
Query OK, 0 rows affected (0.00 sec)
mysql> set password for 'root'@'sdb' = password('newpassword');
Query OK, 0 rows affected (0.00 sec)

2. (Optional) Set a site-specific password for other MySQL database accounts.

a. To change the password for the sys_mgmt account, type the following
MySQL command. You must also update .my.cnf in step 4.

mysql> set password for 'sys_mgmt'@'%' = password('newpassword');
Query OK, 0 rows affected (0.00 sec)

b. To change the password for the basic account, type the following MySQL
command. You must also update /etc/opt/cray/MySQL/my.cnf in
step 5.

Note: Changing the password for the basic MySQL user account will
not provide any added security. This read-only account is used by the
system to allow all users to run xtprocadmin, xtnodestat, and other
commands that require SDB access.

mysql> set password for 'basic'@'%' = password('newpassword');
Query OK, 0 rows affected (0.00 sec)

114 S–2393–5101

Managing User Access [5]

c. To change the password for the mazama account, type the following MySQL
commands. You must also update /etc/sysconfig/mazama in step 6.

mysql> set password for 'mazama'@'%' = password('newpassword');
Query OK, 0 rows affected (0.00 sec)
mysql> set password for 'mazama'@'localhost' = password('newpassword');
Query OK, 0 rows affected (0.00 sec)

Note: When making changes to the MySQL database, your connection may
time out; however, it is automatically reconnected. If this happens, you will see
messages similar to the following. These messages may be ignored.

ERROR 2006 (HY000): MySQL server has gone away
No connection. Trying to reconnect...
Connection id: 21127
Current database: *** NONE ***

Query OK, 0 rows affected (0.00 sec)

3. Exit from MySQL and the SDB.

mysql> exit
Bye
sdb:~ # exit
boot:~ #

4. (Optional) If you set a site-specific password for sys_mgmt in step 2, update
the .my.cnf file for root with the new password. Additionally, update the
.odbc.ini.root file with the new password.

a. Edit .my.cnf for root on the boot node.

boot:~ # vi /root/.my.cnf
[client]
user=sys_mgmt
password=newpassword

b. Edit .my.cnf for root in the shared root.

boot:~ # xtopview
default/:/ # vi /root/.my.cnf
[client]
user=sys_mgmt
password=newpassword
default/:/ # exit
boot:~ #

c. Edit .odbc.ini.root for the root on the boot node. Update each
database section with the new password.

boot:~ # vi /root/.odbc.ini.root
Driver = MySQL_ODBC
Description = Connector/ODBC Driver DSN
USER = sys_mgmt
PASSWORD = newpassword

S–2393–5101 115

Managing System Software for the Cray® Linux Environment

After updating the file, copy .odbc.ini.root to .odbc.ini.

boot:~ # cp –p /root/.odbc.ini.root /root/.odbc.ini

d. Edit .odbc.ini.root for the root in the shared root. Update each
database section with the new password.

boot:~ # xtopview
default/:/ # vi /root/.odbc.ini.root
Driver = MySQL_ODBC
Description = Connector/ODBC Driver DSN
USER = sys_mgmt
PASSWORD = newpassword
default/:/ # exit
boot:~ #

After updating the file, restart the SDB service on all service nodes.

boot:~ # pdsh -a /etc/init.d/sdb restart

5. (Optional) If you set a site-specific password for basic in step 2, update the
/etc/opt/cray/MySQL/my.cnf file with the new password. Additionally,
update the /etc/opt/cray/sysadm/odbc.ini file with the new
password.

a. Edit /etc/opt/cray/MySQL/my.cnf on the boot node.

boot:~ # vi /etc/opt/cray/MySQL/my.cnf
The following options will be passed to all MySQL clients
[client]
user=basic
password=newpassword

b. Edit /etc/opt/cray/MySQL/my.cnf in the shared root.

boot:~ # xtopview
default/:/ # vi /etc/opt/cray/MySQL/my.cnf
The following options will be passed to all MySQL clients
[client]
user=basic
password=newpassword
default/:/ # exit
boot:~ #

c. Edit /etc/opt/cray/sysadm/odbc.ini for the basic user on the boot
node. Update each database section with the new password.

boot:~ # vi /etc/opt/cray/sysadm/odbc.ini
Driver = MySQL_ODBC
Description = Connector/ODBC Driver DSN
USER = basic
PASSWORD = newpassword

116 S–2393–5101

Managing User Access [5]

d. Edit /etc/opt/cray/sysadm/odbc.ini in the shared root. Update
each database section with the new password.

boot:~ # xtopview
default/:/ # vi /etc/opt/cray/sysadm/odbc.ini
Driver = MySQL_ODBC
Description = Connector/ODBC Driver DSN
USER = basic
PASSWORD = newpassword
default/:/ # exit
boot:~ #

6. (Optional) If you set a site-specific password for mazama in step 2, update the
/etc/sysconfig/mazama file with the new password. In addition, update
the mazama MySQL account on the SMW to match.

a. Edit /etc/sysconfig/mazama on the boot node.

boot:~ # vi /etc/sysconfig/mazama
Type: string
Default: mazama
Config: ""
#
Default password for mazama user in the mazama database
#
passwd=newpassword

b. Edit /etc/sysconfig/mazama in the shared root.

boot:~ # xtopview
default/:/ # vi /etc/sysconfig/mazama
Type: string
Default: mazama
Config: ""
#
Default password for mazama user in the mazama database
#
passwd=newpassword
default/:/ # exit
boot:~ #

c. To change the password for the MySQL accounts on the SMW, type the
following MySQL commands.

boot:~ # ssh smw
smw:~ # mysql -u root -p
mysql> set password for 'mazama'@'%' = password('newpassword');
mysql> set password for 'mazama'@'localhost' = password('newpassword');
mysql> set password for 'mazama'@'smw' = password('newpassword');
mysql> exit

S–2393–5101 117

Managing System Software for the Cray® Linux Environment

d. Update /etc/sysconfig/mazama on the SMW.

smw:~# vi /etc/sysconfig/mazama
Type: string
Default: mazama
Config: ""
#
Default password for mazama user in the mazama database
#
passwd=newpassword

Make the following additional change, unless you are using a remote MySQL
server for CMS logs.

Type: string
Default: mazama
Default password for mazama user in the mazama Log database
#
log_passwd=newpassword

5.2.6 Assigning and Changing User Passwords

Because a Cray system has a read-only shared-root configuration, users cannot
execute the passwd command on a Cray system to change their password. If your
site has an external authentication service such as Kerberos or LDAP, users should
follow your site instructions to update their passwords. If your site does not have
external authentication set up, you can implement a manual mechanism, such as
having users change their password on an external system and you periodically
copying their entries in the external /etc/passwd, /etc/shadow, and
/etc/group files to the equivalent Cray system files in the default xtopview.

Warning: Be careful to not overwrite Cray system accounts (crayadm,
cray_vnc and standard Linux accounts such as root) in the /etc/passwd,
/etc/shadow, and /etc/group files.

5.2.7 Logins That Do Not Require Passwords

All logins must have passwords; however, you can set up passwordless ssh by
creating an ssh key with a null passphrase and distributing that ssh key to another
computer.

While the key-based authentication systems such as OpenSSH are relatively secure,
convenience and security are often mutually exclusive. Setting up passphrase-less
ssh is convenient, but the security ramifications can be dire; if the local host is
compromised, access to the remote host will be compromised as well.

If you wish to use passphrase-less authentication, Cray encourages you to consider
using ssh-agent if available, or take other steps to mitigate risk.

118 S–2393–5101

Managing User Access [5]

5.3 Administering Accounts
Your Cray system supports several types of accounts:

• Boot node accounts allow only system administrator (crayadm) and superuser
(root) access. To modify configuration files, the administrator must become
superuser by supplying the root account password.

• SMW user account access is managed using local files (that is, /etc/passwd,
/etc/shadow, etc.). In addition to the standard Linux system accounts, Cray
includes an account named crayadm; crayadm is used for many of the Cray
system management functions, such as booting the system.

• Cray provides a Virtual Network Computing (VNC) account on the SMW (for
details, see Appendix C, Remote Access to the SMW on page 373).

5.3.1 Managing Boot Node Accounts

The only accounts that are supported on the boot node are root (superuser),
crayadm (administrator), and those accounts for various services such as network
time protocol (NTP). The boot node does not support user accounts.

The boot node has an /etc/passwd file that is separate from the password file for
the rest of the system. For a list of default passwords, see Installing and Configuring
Cray Linux Environment (CLE) Software.

5.3.2 Managing User Accounts That Must Be Maintained on the Cray
System Directly

Note: Normally, user account and passwords are managed through an external
LDAP or Kerberos server. However, for those accounts that must be maintained on
the Cray system directly, in case LDAP or Kerberos service are not available, this
section describes how you manage them in shared root.

User accounts are set up on the shared-root file system by using the xtopview
command. Your Cray system supports 16-bit and 32-bit user IDs (UIDs). The 16-bit
user IDs run 0-65535; that is 0-(216-1). The 32-bit user IDs run 0-(232-1), although
Cray systems are limited to a maximum of 65,536 user accounts, including those that
are predefined, such as root, crayadm, and mysql.

For more information about using the xtopview command in the default view, see
Managing System Configuration with the xtopview Tool on page 135, and the
xtopview(8) man page. For more information about mysql accounts, see Database
Security on page 201.

S–2393–5101 119

Managing System Software for the Cray® Linux Environment

5.3.2.1 Adding a User or Group

To add additional accounts to the shared root for login nodes, use the groupadd and
useradd commands using the xtopview command in the default view.

Example 58. Adding a group

To add the group xtusers with a gid of 5605, type:

boot:~ # xtopview
default/:/ # groupadd -g 5605 xtusers
default/:/ # exit

The above groupadd command adds group xtusers to /etc/group.

Example 59. Adding a user account

This example creates a new user bobp from xtopview in the default view. The
new user account, bobp, has a user ID of 12645, a home directory bobp, and runs
a /bin/bash login shell. Then, as root, create the user's home directory and
chown the directory to the new user.

boot:~ # xtopview
default/:/ # useradd -d /home/users/bobp -g 5605 -s /bin/bash -u 12645 bobp
default/:/ # exit
boot:~ # ssh root@login
login:~ # mkdir -p /home/users/bobp
login:~ # chown -R bobp:xtusers /home/users/bobp

After the account is created, use the passwd command to set a password in either
/etc/passwd or /etc/shadow.

For more information, see the useradd(8), passwd(1), and groupadd(8) man
pages.

5.3.2.2 Removing a User or Group

To remove a user account, first remove all files, jobs, and other references to the user.
Then using the xtopview command in the default view, remove users or groups by
using Linux commands /usr/sbin/userdel and /usr/sbin/groupdel,
respectively; and, as root, remove the user's home directory.

Example 60. Removing a user account

To remove the user bobp and the user's home directory, type:

boot:~ # xtopview
default/:/ # userdel -r bobp
default/:/ # exit
boot:~ # ssh root@login
login:~ # rm -rf /home/users/bobp
login:~ # exit

For more information, see the userdel(8) and groupdel(8) man pages.

120 S–2393–5101

Managing User Access [5]

5.3.2.3 Changing User or Group Information

To change user and group information, use Linux commands. For more information,
see the usermod(8) and groupmod(8) man pages.

5.3.2.4 Assigning Groups of CNL Compute Nodes to a User Group

Use the /etc/opt/cray/sdb/attr.defaults file label attribute
to assign groups of CNL compute nodes to specific user groups without
the need to partition the system. For more information, see Setting Node
Attributes Using the /etc/opt/cray/sdb/attr.xthwinv.xml and
/etc/opt/cray/sdb/attr.defaults Files on page 210.

5.3.2.5 Associating Users with Projects

You can assign project names for users to submit jobs in order to determine project
charges. Project names can be up to 80 characters long.

To associate users with project names, add the following line to their individual login
scripts in their home directories:

set_account a_project_name

After accounts are set, users do not have to manually run the set_account
command at each login.

If your users run batch jobs, they can set a project code; for example, when using
PBS Professional, a user can set a project code with the ENVIRONMENT variable.
This associates the project code with the job in the accounting database. For more
information, see the documentation provided by your batch system vendor.

5.3.2.6 Enabling LDAP Support for User Authentication

To enable LDAP support for user authentication, you must edit files as shown, in
addition to making any other standard LDAP configuration setting changes necessary
for your site.

Note: The following changes should be made using xtopview in the default
view.

boot:~ # xtopview
default/:/ # vi /etc/pam.d/common-account-pc

In file /etc/pam.d/common-account, replace:

account required pam_unix2.so

with

account sufficient pam_ldap.so config=/etc/openldap/ldap.conf
account required pam_unix2.so

default/:/ # vi /etc/pam.d/common-auth-pc

S–2393–5101 121

Managing System Software for the Cray® Linux Environment

In file /etc/pam.d/common-auth, replace:

auth required pam_env.so
auth required pam_unix2.so

with

auth required pam_env.so
auth sufficient pam_ldap.so config=/etc/openldap/ldap.conf
auth required pam_unix2.so

default/:/ # vi /etc/pam.d/common-password-pc

In file /etc/pam.d/common-password, replace:

password required pam_pwcheck.so nullok
password required pam_unix2.so nullok use_authtok

with

password required pam_pwcheck.so nullok
password sufficient pam_ldap.so config=/etc/openldap/ldap.conf
password required pam_unix2.so nullok use_authtok

default/:/ # vi /etc/pam.d/common-session-pc

In file /etc/pam.d/common-session, replace:

session required pam_limits.so
session required pam_unix2.so
session optional pam_umask.so

with

session required pam_limits.so
session sufficient pam_ldap.so config=/etc/openldap/ldap.conf
session required pam_unix2.so
session optional pam_umask.so

Create the /var/run/slapd directory, and set its ownership to the ldap user
and group.

default/:/ # mkdir /var/run/slapd/
default/:/ # chown ldap:ldap /var/run/slapd/

On the boot root, in the xtopview default view, make your site-specific
changes to the /etc/openldap/ldap.conf or /etc/ldap.conf,
/etc/nsswitch.conf, /etc/sysconfig/ldap, /etc/passwd, and
/etc/group files.

Note: Adding the LDAP servers to the local host file allows you to not run DNS
on the SDB and MDS. The SDB and MDS need access to the LDAP server. You
can set up this access through RSIP or NAT; see Configuring Realm-specific IP
Addressing (RSIP) on page 217.

default/:/ # exit

122 S–2393–5101

Managing User Access [5]

5.3.3 Setting Disk Quotas for a User on the Cray Local, Non-Lustre File
System

The quota and quota-nfs RPMs are installed by default. You can activate disk
quotas for a user on service nodes on the Cray local, non-Lustre file system. You
must activate two boot scripts, as discussed in the README.SUSE file located in
/usr/share/doc/packages/quota.

Note: When following the procedure in the README.SUSE file, remember that
any commands should be issued from within the default view of xtopview. Also,
use the chkconfig command instead of the yast2 run level editor to turn on
quota and quotad services:

boot:~ # xtopview
default/:/ # chkconfig boot.quota on
default/:/ # chkconfig quotad on
default/:/ # exit

Then start the services on all service nodes; either reboot the system or execute
/etc/init.d/boot.quota start; /etc/init.d/quotad start on
each service node.

After the quota services have been enabled, for each user you can use standard Linux
quota commands to do the following:

• Enable quotas (quotaon command)
• Check quotas (quotacheck command)
• Set quotas (edquota command)

When a quota is exceeded, the quotas subsystem warns users when they exceed their
allotted limit, but it allows some extra space for current work (that is, there is a hard
limit and a soft limit).

For more information, see the quotaon(8), quotacheck(8), and edquota(8)
Linux man pages.

5.4 About Modules and Modulefiles
The Modules software package enables your users to modify their environment
dynamically by using modulefiles. The module command is a user interface to the
Modules package. The module command interprets modulefiles, which contain
Tool Command Language (Tcl) code, and dynamically modifies shell environment
variables such as PATH, and MANPATH.

For more information about the Modules software package, see the module(1) and
modulefile(4) man pages.

The shell configuration files /etc/csh.cshrc.local and
/etc/bash.bashrc.local contain module commands which
establish the default user environment which is set by the system at login time.

S–2393–5101 123

Managing System Software for the Cray® Linux Environment

To support customer-specific needs, you can create your own modulefiles for a
product set for your users; for details, see Appendix E, Creating Modulefiles on
page 383.

5.5 About the /etc/*rc.local Files
The /etc/csh/cshrc.local and /etc/bash/bashrc.local files contain
several ordered blocks, each clearly delimited by ##BEGIN and ##END tags.

The CLE installation and upgrade process creates and maintains the first two
##BEGIN and ##END blocks. These blocks contain clearly delimited sections for
operating system and programming environment changes only. These sections should
not be modified by the administrator.

The administrator should add site local changes within the SITE-set-up block
only. A CLE upgrade may modify the operating system blocks in place, preserving
SITE-set-up local changes you have made.

5.6 System-wide Default Modulefiles
The /etc/csh/cshrc.local and /etc/bash/bashrc.local files load
Base-opts, which loads two lists of modulefiles: a default list and a site-specified
local list.

The default list differs between the SMW and the Cray system. On the SMW,
the file /etc/opt/cray/modules/Base-opts.default.SMW contains
the list of the CLE modulefiles to load by default. On the Cray system, the file
/etc/opt/cray/modules/Base-opts.default contains the list of CLE
modulefiles to load by default.

Additionally, all the modulefiles listed in the file
/etc/opt/cray/modules/Base-opts.default.local are loaded. Edit
this file to make your site-specific changes.

The /etc/opt/cray/modules/Base-opts.default.local file initially
includes the admin-modules modulefile, which loads a full set of modulefiles.
You do not need to manually load the admin-modules modulefile, unless the
you have removed it from the default list. The CLE installation process removes
admin-modules modulefile from the default list on login nodes.

The files on the Cray system are installed on both the boot root and the shared root.

An example file,
/etc/opt/cray/modules/Base-opts.default.local.example,
is also provided. The example file is a copy of the
/etc/opt/cray/modules/Base-opts.default.local
file provided for an initial installation.

124 S–2393–5101

Managing User Access [5]

5.7 Configuring the Default Programming Environment (PE)
The Cray, PGI, GCC, PathScale (Cray XE systems only), and Intel compilers
are available to Cray System users, if installed. A Programming Environment is
comprised of a compiler and its supporting libraries and tools.

The system wide default PE is set to PrgEnv-cray in the PE-set-up block in the
/etc/*rc.local files. For Cray XE sites without a Cray Compiling Environment
license, PrgEnv-pgi is the default. If you wish to alter the system default PE, do
not edit the PE-set-up block manually.

To change the default PE and add more PE user defaults, add appropriate instructions
to the SITE-set-up block. The instructions in the SITE-set-up block are not
altered by operating system installations. The instructions are evaluated after the
PE-set-up block, so make sure new instructions do not conflict with the ones in
the PE-set-up block.

For example, if you want to change the default PE to PrgEnv-abc, add this to the
SITE-set-up block in /etc/*rc.local files:

module unload PrgEnv-cray
module load PrgEnv-abc

Targeting modules are released in the xt-asyncpe and the craype packages and
installed in either the /opt/cray/xt-asyncpe/default/modulefiles
or /opt/cray/craype/default/modulefiles directory, depending on
the package name.

The following commands display the list of available targeting modulefiles:

module avail xt-asyncpe
module avail craype

If there are no targeting modules loaded in the user's environment, the compiler driver
scripts (cc, CC, ftn) set the CPU target to sandybridge on Cray XC30 systems,
and to interlagos on Cray XE and Cray XK systems. To change the default CPU
target, configure /etc/*rc.local to load the appropriate craype-* target
module.

For example, to set the default target to xyz in the *rc.local files, add the
following line to the SITE-set-up section:

module add craype-xyz

Other commonly used modules and settings in the SITE-set-up block are:

#load a workload manager
module load pbs
#define target architecture
module load craype-abudhabi
#mpich2 is not loaded by PrgEnv-cray
module load cray-mpich2
#enable abnormal termination processing (see intro_atp)
setenv ATP_ENABLED 1

S–2393–5101 125

Managing System Software for the Cray® Linux Environment

5.8 Using the pam_listfile Module in the Shared Root
Environment

The Linux pam_listfile Pluggable Authentication Module (PAM) may be used
to maintain a list of authorized users. Using the pam_listfile PAM may also
help to reduce impacts on service nodes if users consume too many resources (see
Caution in Login Nodes on page 40).

The pam_listfile PAM requires that the file specified with the file= parameter
be a regular file. The usual approach of storing the file in the /etc directory does not
work in the shared-root environment of Cray systems: files in the /etc directory are
symbolic links, so the required file must be created in a directory other than the /etc
directory. For example, you can place it in persistent /var or another directory that
is not controlled by the shared root.

Example 61. Creating a pam_listfile list file

This example assumes you have created an empty pam_listfile called
/var/path/to/pam_listfile_authorized_users_list. It adds authorized
users to it.

boot:~ # xtopview -x /etc/opt/cray/sdb/node_classes -c login
class/login/:# vi /var/path/to/pam_listfile_authorized_users_list

user1
user2
...

Example 62. Adding a line to /etc/pam.d/sshd to enable pam_listfile

Edit the pam.d/sshd file to include an alternative path for file=.

class/login/:# vi /etc/pam.d/sshd

auth required pam_listfile.so \
file=/var/path/to/pam_listfile_authorized_users_list

If you need nodes to have different pam_listfile list files, create the list files and
specialize the PAM configuration files (such as pam.d/sshd) to point to them.

5.9 ulimit Stack Size Limit
The login environment defaults to the kernel default stack size limit. To set up the
default user environment to have an unlimited stack size resource limit, add the
following to /etc/profile.local in the shared root:

ulimit -Ss unlimited

5.10 Stopping a User's Job
This section describes how to stop a user's job.

126 S–2393–5101

Managing User Access [5]

5.10.1 Stopping a Job Running in Interactive Mode

If the job is running on a CNL compute node in interactive mode (through aprun),
perform the following procedure.

Procedure 20. Stopping a job running in interactive mode

• Use the apkill -signal apid command to send a signal to all processes that are
part of the specified application (apid); signal 15 (SIGTERM) is sent by default.

The signaled application must belong to the current user unless the user is a
privileged user. For more information, see the aprun(1) and apkill(1) man pages.

5.10.2 Stopping a Job Running Under a Batch System

To stop a job that is running under a batch system, see the documentation provided
by your batch system vendor.

Example 63. Stopping a job running under PBS Professional

If the job is running under PBS Professional, use the qdel command and name the
job.

To terminate job 104, type:

% qdel 104

For Platform LSF the command to kill a job is bkill.

S–2393–5101 127

Managing System Software for the Cray® Linux Environment

128 S–2393–5101

Modifying an Installed System [6]

6.1 Configuring the Shared-root File System on Service Nodes
CLE implements a shared-root file system where / is exported from the boot node
and is mounted as read-only on all service nodes. To overcome the restriction that all
nodes must have the same shared-root file system, /etc directories can be symbolic
links to unique directories that have the same structure as the default /etc directory
but contain modified files. These node-specific files reside in subdirectories in the
/.shared/base directory.

Specialization is the process of changing the link to a file in the /etc directory to
point to a unique file for one, a few, or all nodes. You can specialize one or more files
for an individual node or for a class (type) of nodes, such as login. You must be root
user to configure the shared-root file system in this manner. You can specialize files
when you install the system or at a later time.

The hierarchical structure of the specialized files is shown in Figure 2. Node
specialization is more specific than class specialization. Class specialization is more
specific than default specialization. Generally, about 98% of what the service nodes
use is the default version of the shared root.

Figure 2. Types of Specialization

default
root directory

/rr

class
root directory

override /rr
default files

node
 root directory

 /etc
and other files

specific to
class

 /etc
and other files

/etc
and other files

specific to
node

 Default
Specialization

 Class
Specialization

 Node
Specialization

override class
default files

S–2393–5101 129

Managing System Software for the Cray® Linux Environment

6.1.1 Specialization

You specialize files when you need to point to a unique version of a file in the /etc
directory rather than to the standard version of the file that is shared on all nodes.
For example, you might specialize files when differences exist in hardware, network
configuration, or boot scripts or when there are services that run on a single node.
You can also specialize files for a class of nodes that have a particular function, such
as login.

Generally, files are specialized as part of the installation process, but the process can
be done at any time. It is good practice to enter the xtopview shell (see Managing
System Configuration with the xtopview Tool on page 135) and then specialize
your files (see Specializing Files on page 138).

Table 2 lists files and directories that you can specialize by class and the reasons
to do so. Table 3 lists files and directories that you can specialize by node and the
reasons to do so. In these tables, * refers to "wildcard" characters that represent no
characters or any number of characters.

Table 2. File Specialization by Class

File or Directory Reason for Specialization

/etc/auditd.conf Cray Audit configured on login nodes.

/etc/audit.rules Cray Audit configured on login nodes.

/etc/cron* Different classes need custom crontabs.

/etc/fstab I/O nodes need to mount other file systems.

/etc/hosts.{allow,deny} Must restrict logins on login nodes.

/etc/init.d/boot.d/* Different classes have different start-up scripts enabled.

/etc/init.d/rc*/ Different classes have different start-up scripts enabled.

/etc/issue Different classes have different messages.

/etc/modprobe.conf I/O and login nodes have different hardware.

/etc/motd Different classes have different messages.

/etc/pam* Authentication is class-specific.

/etc/profile.d/* Login nodes have custom environments.

/etc/resolv.conf Hosts that interact with external servers need special
resolver configurations.

/etc/security/* Authorization and system limits are class-specific.

/etc/sysconfig/network/* I/O and login nodes need custom network configuration.

130 S–2393–5101

Modifying an Installed System [6]

Table 3. File Specialization by Node

File or Directory Reason for Specialization

/etc/cron* Certain service nodes, such as sdb and syslog,
need custom crontabs.

/etc/ntp.conf A node that runs an NTP server needs a different
configuration than NTP clients.

/etc/sysconfig/network/* Each network node should have a different IP
address.

/etc/syslog-ng/syslog-ng.conf.in A node that runs a syslog server needs a different
configuration than syslog clients.

/etc/ssh/*key* Use when sharing keys across systems is
unacceptable.

6.1.2 Visible Shared-root File System Layout

Figure 3 is a detailed illustration of shared-root directory structure. The directory
current is a subdirectory of /rr. The current directory links to a time-stamped
directory (in this example 20110726). The timestamp indicates the date of the
software installation, not the date of the release.

S–2393–5101 131

Managing System Software for the Cray® Linux Environment

Figure 3. Shared-root Implementation

.sharedetc

class default
node

128

base

sbin usrlibbinroot

136

/rr

current20110726

mounts to /
.shared/node/

xxxx/etc

default

class

node

11

etcetc etc

Links Links Links

etc

Files

login io

Files

Files Files Files

Files

etc

etcetc

etcetc

11 128 136

Service nodes mount the /rr/current directory from the boot node as read-only
for use as their root file system. The visible file layout, that is, how it appears from
the node you are viewing it from, contains the following files:

/ Root file system

/root Equivalent to directory of the same name in /rr/current

/bin Equivalent to directory of the same name in /rr/current

/lib Equivalent to directory of the same name in /rr/current

/sbin Equivalent to directory of the same name in /rr/current

/usr Equivalent to directory of the same name in /rr/current

/opt Equivalent to directory of the same name in /rr/current

132 S–2393–5101

Modifying an Installed System [6]

/etc Contains links to the shared-root files

/home Link to /home, a customer-specific location

/tmp Implemented through the tmpfs (in RAM)

/var Directory in the tmpfs and RAMFS but populated with skeleton
files if you do not have persistent /var

/proc Per-node pseudo-file system

/dev Per-node pseudo-file system implemented through the DEVFS

/ufs Mount point for the /ufs file system to be mounted from the ufs
node

6.1.3 How Specialization Is Implemented

The shared-root file system is implemented in the /.shared directory. Only the
/etc directory has been set up for specialization. Files in /etc are symbolic links
to files in /.shared/base. A specialized file is a unique version of the file in the
/.shared/base directory.

The /.shared directory contains four subdirectories: base, node, class, and
default. The node, class, and default directories are also known as view
directories, because you can look at the file system (with the xtopview command)
as if the view directory were /.

The base subdirectory also contains subdirectories called node, class, and
default. These are referred to as base directories. They contain files that are
specific to a certain node, specific to a class of nodes, or shared as the default among
all nodes. Under each of the base directories is a rooted directory hierarchy where
files are stored.

Example 64. Shared-root links

The path of the link shows the type of specialization for the file.

Default specialization:

default/: # ls -la /etc/hosts
lrwxrwxrwx 1 root root 31 Dec 8 17:12 /etc/hosts -> /.shared/base/default/etc/hosts

Class specialization:

class/login/: # ls -la /etc/security/access.conf
lrwxrwxrwx 1 root root 46 Dec 8 17:14 /etc/security/access.conf -> \
/.shared/base/class/login/etc/security/access.conf

Node specialization:

node/128/: # ls -la /etc/resolv.conf
lrwxrwxrwx 1 root root 36 Dec 8 17:15 /etc/resolv.conf -> \
/.shared/base/node/128/etc/resolv.conf

S–2393–5101 133

Managing System Software for the Cray® Linux Environment

6.1.4 Working with the Shared-root File System

CLE commands shown in Table 4 control and monitor the shared-root file system.
For more information, refer to the sections noted and the related man pages.

Table 4. Shared-root Commands

Command Function

xtopview View file layout from the specified node (see Managing
System Configuration with the xtopview Tool on
page 135).

xtopcommit Record file specialization before leaving xtopview
shell (see Updating Specialized Files From Within the
xtopview Shell on page 138).

xtspec Specialize; create a directory structure that links files to
non-default files (see Specializing Files on page 138).

xthowspec Determine the type of specialization (see Determining
which Files are Specialized on page 140).

xtverifyshroot Verify that node-specialized and class-specialized
files are linked correctly (see Checking Shared-root
Configuration on page 142).

xtverifyconfig Verify that start/stop links generated by tools such as
chkconfig are consistent across all views of the
shared root. You can configure xtopview to invoke
xtverifyconfig automatically; this is the preferred
usage. xtverifyconfig is not intended for direct
use. (See Verifying the Coherency of /etc/init.d
Files Across All Shared Root Views on page 142.)

xtverifydefaults Verify and fix inconsistent system default links within
the shared root. You can configure xtopview to
invoke xtverifydefaults automatically; this is
the preferred usage. xtverifydefaults is not
intended for direct use. (See Verifying the Coherency of
/etc/init.d Files Across All Shared Root Views
on page 142.)

xtcloneshared Create a directory structure for a new node or class
based on an existing node or class (see Cloning a
Shared-root Hierarchy on page 143).

xtnce Modify the class of a node or display the current
class of a node (see Changing the Class of a Node on
page 143).

134 S–2393–5101

Modifying an Installed System [6]

Command Function

xtunspec Remove specialization (see Removing Specialization
on page 144).

xtoprlog Display RCS log information for shared root files (see
Displaying RCS Log Information for Shared Root Files
on page 144).

xtopco Check out (restore) RCS versioned shared root files (see
Checking Out an RCS Version of Shared Root Files on
page 145).

xtoprdump Print a list of file specifications that can be used as the
list of files to operate on an archive of shared root file
system files (see Listing Shared Root File Specification
and Version Information on page 146).

xtoparchive Perform operations on an archive of shared root
configuration files (see Performing Archive Operations
on Shared Root Files on page 147).

6.1.4.1 Managing System Configuration with the xtopview Tool

The xtopview tool manages the files in the shared-root file system. You specify
the view of the system you want, such as from a particular node, when you invoke
the command. The system appears as if you were logged in directly to the location
you specify; that is, the files that are specialized for that node appear in the /etc
directory. You can specify location by node ID or hostname.

Changes you make within xtopview are logged to a revision control system
(RCS) file. When you exit the shell, you are prompted to type a message about each
change you have made. Use the c command to comment the work you have done in
xtopview. This information is saved in the Revision Control System (RCS) files.

Tip: Use the -m msg option when starting an xtopview session to make similar
changes to multiple files.

The changed files and messages are then logged to create a history that is stored in
the /.shared/base directory by its specialization (node, class, or default) and
file name. For example, changes and messages relating to default-specialized file
/etc/spk are stored in /.shared/base/default/etc/RCS. Use standard
RCS tools, such as rlog, for retrieving information.

Warning: If you do not want the changes you have made in your xtopview
session, you must invoke any necessary commands to undo them. There is no
automatic way to back out.

S–2393–5101 135

Managing System Software for the Cray® Linux Environment

Cray recommends that you configure the shared root from within the xtopview
shell. Only operations that take place within the xtopview shell are logged. If you
choose to use specialization commands outside of xtopview, they are not logged.
Logs reside in the /rr/current/.shared/log path relative to the boot node.

New files that are created from within the xtopview shell automatically have the
specialization that is associated with the view under which you are operating. You
do not have to specialize them. If you want a file to be used by all service nodes,
create the file in the default view.

The xtopview command is typically executed on the boot node; however, you may
perform xtopview work from the SMW if the system is not booted, for example,
if your system is undergoing hardware maintenance. For more information, see
Example 70.

Example 65. Starting the xtopview shell for a node

To start the xtopview shell for node 131, type:

boot:~ # xtopview -n 131
node/131/: #

Example 66. Starting the xtopview shell for a class of nodes

To start the xtopview shell for the login nodes, type:

boot:~ # xtopview -c login
class/login/: #

Note: If you are using the emacs editor within the xtopview shell, you may see
the following message:

Symbolic link to RCS-controlled source file; follow link [yes or no]?

The symbolic link points to a real file in the /.shared directory. If you choose
yes, you edit the file directly. If you choose no, you replace the symbolic link
with a real file, but when you exit the xtopview shell, the file is moved to the
correct location and the link is recreated. The difference is that if you are editing
the real file, modifications appear immediately in other views.

Example 67. Starting the xtopview shell for a directory other than
/rr/current

To start the xtopview shell in a directory other than /rr/current, which is a
link to the most current directory, type:

boot:~ # xtopview -r /rr/20120901
default/:/ #

136 S–2393–5101

Modifying an Installed System [6]

Example 68. Sample xtopview session

boot:~ # xtopview -n 3
node/3:/ # vi etc/fstab
. . . (edited the file)
node/3:/ # exit
exit
***File /etc/fstab was MODIFIED
operation on file /etc/fstab? (h for help):c
enter description, terminated with single '.' or end of file:
>changed the fstab file to add support for xyz.
boot:~ #

Generally, the xtopview command obtains node and class information from
the SDB. If the SDB is not running, you can direct xtopview to access the
/etc/opt/cray/sdb/node_classes file by selecting the -x option.

Example 69. Starting xtopview using node_classes for information

For nodes:

boot:~ # xtopview -x /etc/opt/cray/sdb/node_classes -n 4

For classes:

boot:~ # xtopview -x /etc/opt/cray/sdb/node_classes -c login

Example 70. Running xtopview from the SMW while the system is not booted

You may use xtopview from the SMW to perform software work while the system
is not booted. This can be quite useful during hardware maintenance periods.

As root on the SMW, verify that the boot node is down:

smw:~ # ping boot

Mount the boot root and shared root file systems (if they are not already mounted).
This example uses the default bootroot_dir and the shared root mount point is
/rr.

smw:~ # mount /dev/disk/by-id/your_system_bootroot_ID /bootroot0
smw:~ # mount /dev/disk/by-id/your_system_shareroot_ID /bootroot0/rr

Start a default view xtopview session:

Note: Additional options like -c class or -n nid can be used here as well.

smw:~ # chroot /bootroot0
smw:/ # xtopview -x /etc/opt/cray/sdb/node_classes -r /rr/current

When you are finished with your changes, exit from the xtopview and chroot
sessions:

default/:~ # exit
smw:/ # exit

S–2393–5101 137

Managing System Software for the Cray® Linux Environment

Unmount the boot root and shared root file systems:

smw:~ # umount /bootroot0/rr
smw:~ # umount /bootroot0

Verify that the boot root and shared root file systems are not mounted:

smw:~ # mount
smw:~ # df

For more information, see the xtopview(8) man page.

6.1.4.2 Updating Specialized Files From Within the xtopview Shell

When you exit the xtopview shell (see Managing System Configuration with the
xtopview Tool on page 135), changes you make are propagated to the shared-root
file system. Use the xtopcommit command to immediately update the shared root
with modifications you have made. You do not need to leave the xtopview shell.

Example 71. Updating a file within xtopview shell

boot:~ # xtopview -n 3
node/3:/ # vi /etc/fstab
node/3:/ # xtopcommit
***File /etc/fstab was MODIFIED
operation on file /etc/fstab? (h for help):h
c:check-in - record changes in RCS file
d:diff - diff between file and backup RCS file
h:help - print this help message
m:message - set message for later checkins
M:nomsg - clear previously set message
l:list - list file info (ls -l)
s:skip - check-in file with empty log message
q:quit - check-in ALL files without querying

6.1.4.3 Specializing Files

Specifying a view with the xtopview command does not automatically specialize
existing files. To specialize existing files, you must use the specialization command
xtspec. The command runs on the boot node and creates a copy of a file that is
unique to a node or class. The xtspec command has the form:

xtspec [options] file

The command specializes the file at the location file and updates each node or class of
nodes that contains the newly specialized file if the new file is the most specialized
file in its view. For example, if a file is specialized by class io, for all nodes with
class io the symbolic links associated with this file are updated to point to the new
file unless they are already specialized by node (see Figure 2), which is a more
restrictive class.

138 S–2393–5101

Modifying an Installed System [6]

If you are not within xtopview (see Managing System Configuration with the
xtopview Tool on page 135) when you specialize a file, you must specify the path
of the shared root with the -r option. In addition, the RCS log of changes has a
generic entry for each file.

Note: The xtspec command can be used only to specify files or directories
residing in or under the /etc directory. If you attempt to specify a file or
directory outside of the /etc directory, the command fails and an error message
is generated.

The -V option of the xtspec command specifies the location from which the file
that is to be the specialized file is copied. If the -V option is specified, the newly
specialized file is a duplicate of the file from the target's view. If the -V option is not
specified, the newly specialized file is a duplicate of the file from the default view.

If you do not specialize a file, the default specialization level is based on the current
view if you are running in the xtopview shell (see Managing System Configuration
with the xtopview Tool on page 135) or on the default view if you are operating
outside the xtopview shell.

Classes are defined in the node_classes file (see Class Name on page 61).

Procedure 21. Specializing a file by class login

1. To specialize the file /etc/dhcpd.conf by the class of login nodes, enter
the login shell.

boot:~ # xtopview -c login

2. Specialize the selected file.

class/login:~ # xtspec /etc/dhcpd.conf

3. Edit /etc/dhcpd.conf if it is the default copy of the file. If you have pointed
to a unique copy of the file in the xtspec command, omit this step.

As a result of this procedure, each node in the class login links to the "new"
/etc/dhcpd.conf file unless the node is already specialized by node.
For example, node 23 might already be specialized and link to a different
/etc/dhcpd.conf file.

Procedure 22. Specializing a file by node

1. To specialize the file /etc/motd for node 11, enter the login shell.

boot:~ # xtopview -n 4

2. Specialize the selected file.

node/11/: # xtspec /etc/motd

This procedure creates a node-specific copy of /etc/motd. That is, the directory
entry in the /etc file associated with node 11 is updated to point to the new
version of /etc/motd and the activity is logged.

S–2393–5101 139

Managing System Software for the Cray® Linux Environment

Procedure 23. Specializing a file by node without entering xtopview

• Specify the root path and view mode.

boot:~ # xtspec -r /rr/current -V -n 4 /etc/motd

As a result of this procedure, the directory entry in the /etc file associated with
node 11 is updated to point to the new version of /etc/motd but the activity
is not logged.

After you have specialized nodes, you can unspecialize them (see xtunspec
command, Removing Specialization on page 144) or determine how they are
specialized (see xthowspec command Determining which Files are Specialized
on page 140). You can also view or change the class type of a particular node (see
xtnce command, Changing the Class of a Node on page 143).

You can use specialization commands only from the boot node. You must be root
user to use them. For more information, see the shared_root(5) and xtspec(8)
man pages.

6.1.4.4 Determining which Files are Specialized

The CLE xthowspec command displays how the files in a specified path are
specialized. For example, you might use this command to examine restrictions on
login nodes.

The xthowspec command has the form:

xthowspec [options] path

You can display file specialization for all nodes or all classes, for a particular node
or class, for the default view, or for a selection of parameters. Inside the xtopview
shell, the xthowspec command acts on files in the current view by default.

Output has the form TYPE:ITEM:FILE:SPEC, where the fields are as follows:

TYPE Node, class or default.

ITEM The specific node or class type; this field is empty for the default
view.

FILE The file upon which the command is acting.

SPEC The specialization level of the file in the view; for example, for
default view this is default; for class view options are class or default.

Procedure 24. Finding files in /etc that are specialized by a node

1. Enter the xtopview shell for the node.

boot:~ # xtopview -n 4

140 S–2393–5101

Modifying an Installed System [6]

2. Use the xthowspec command for the node.

node/4/: # xthowspec -t node /etc
node:4:/etc/fstab.h:node
node:4:/etc/hostname:node

Or, outside the xtopview shell:

boot:~ # xthowspec -r /rr/current -t node -n 4 /etc
node:4:/etc/fstab.h:node
node:4:/etc/hostname:node

Example 72. Finding files in /etc that are specialized by class

To find all files specialized by class, type:

class/login:~ # xthowspec -r /rr/current -t class /etc
node:4:/etc/init.d/rc3.d/K01pbs:class
node:4:/etc/init.d/rc3.d/S11pbs:class
node:16:/etc/init.d/rc3.d/K01pbs:class
node:16:/etc/init.d/rc3.d/S11pbs:class
class:login:/etc/HOSTNAME:class
class:login:/etc/sysconfig/network/routes:class
...

Example 73. Finding specialization of a file on a node

To find the specialization of /etc/dhcpd.conf on node 4, type:

boot:~ # xtopview -n 4
node/4/: # xthowspec /etc/dhcpd.conf
node:4:/etc/dhcpd.conf:default

Example 74. Finding nodes on which a file is specialized

To find the nodes that the /etc/fstab is specialized on, type:

boot:~ # xthowspec -r /rr/current -N /etc/fstab
node:0:/etc/fstab:default
node:1:/etc/fstab:default
node:8:/etc/fstab:class
node:9:/etc/fstab:node

To examine specialization outside the xtopview shell, you must type the full path
name.

Example 75. Finding specialization of a file on a node without invoking the
xtopview shell

To find the specialization of /etc/fstab on node 102, type:

boot:~ # xthowspec -r /rr/current -n 102 /etc/fstab
node:102:/etc/fstab:node

S–2393–5101 141

Managing System Software for the Cray® Linux Environment

Example 76. Finding specialization of files by class without invoking the
xtopview shell

To find all files that are specialized by class in /etc for all nodes, type:

boot:~ # xthowspec -r /rr/current -N -t class /etc
node:11:/etc/crontab:class
node:1:/etc/crontab:class

For more information, see the xthowspec(8) man page.

6.1.4.5 Checking Shared-root Configuration

You can check the configuration of the shared-root file system with the
xtverifyshroot command:

xtverifyshroot [options] path

If there are node-specialized or class-specialized files, the command verifies that
they are linked correctly. If a problem is detected with a file, it is reported but not
corrected.

Note: You must be in the xtopview shell to use the xtverifyshroot
command.

For more information, see the xtverifyshroot(8) man page.

6.1.4.6 Verifying the Coherency of /etc/init.d Files Across All Shared Root Views

The xtopview command is configured to invoke the xtverifyconfig utility
automatically to resolve potential inconsistencies in the mechanism used to configure
various CLE software services on or off.

Note: This is the preferred usage; the xtverifyconfig utility is not intended
for direct use.

When you use the chkconfig utility to configure services on or off, a collection
of encoded symbolic links are generated to determine which system services are
started or shut down and in what order. The chkconfig utility does not account
for the multiple levels of specialization within the shared root when xtopview is
used. As a result, chkconfig occasionally produces a startup or shutdown order
that violates dependencies between services when all levels of specialization are taken
into account. To resolve this problem, you can configure xtopview to invoke the
xtverifyconfig verification utility upon exit. The xtverifyconfig utility
will detect inconsistencies and may rename startup and shutdown links to maintain
the proper dependency ordering. The /.shared/log log file in the shared root
contains a log of modifications xtverifyconfig makes to the shared root.

142 S–2393–5101

Modifying an Installed System [6]

The xtopview command will run xtverifyconfig upon exit if the
XTOPVIEW_VERIFY_INITD environment variable is non-zero when xtopview
is invoked, or if the XTOPVIEW_VERIFY_INITD variable is set to non-zero in the
/etc/sysconfig/xt file on the boot node. By default, this parameter is not
included in the configuration file and this feature is not enabled.

For more information, see the xtverifyconfig(8) man page.

6.1.4.7 Cloning a Shared-root Hierarchy

You can create a directory structure for a new node or class name in the shared-root
hierarchy based on an existing node or class with the xtcloneshared command.
For more information, see the xtcloneshared(8) man page.

6.1.4.8 Changing the Class of a Node

If you remove nodes, you may need to change the class of the remaining nodes.
If you add a login node, you must add it to class login. The xtnce command
displays the current class of a node or modifies its class. The command has the form:

xtnce [options] nodename

Example 77. Finding the class of a node

To identify the class of node 750, type:

boot:~ # xtnce 750
750:snx-lnet

Example 78. Adding a node to a class

Enter xtopview and use the xtnce command for the node and specify the class
it should be:

boot:~ # xtopview -x /etc/opt/cray/sdb/node_classes
default/:/ # xtnce -c login 104

You also need to change /etc/opt/cray/sdb/node_classes on the boot
node so the data is preserved across a boot; this is because the node_classes file
is used to initialize the SDB data on the next boot, and the boot node file cannot be
updated from within xtopview.

Note: If you make changes to /etc/opt/cray/sdb/node_classes, you
must make the same changes to the node class settings in CLEinstall.conf
before performing an update or upgrade installation; otherwise, the install utility
will complain about the inconsistency.

For more information, see the xtnce(8) man page.

Note: The xtnodeclasses2db command inserts the node-class list into the
database, but it does not make any changes to the shared root.

S–2393–5101 143

Managing System Software for the Cray® Linux Environment

6.1.4.9 Removing Specialization

If you specialized a node or class of nodes and, for example, you want to remove
unique start-up scripts from them, you can remove this specialization with the
xtunspec command:

xtunspec [options] path

You can unspecialize files for all nodes and classes (default), for a specified class of
nodes or for a particular node. Cray strongly recommends that you unspecialize files
from within the xtopview shell; if you do not unspecialize your files from within
the xtopview shell (see Managing System Configuration with the xtopview Tool
on page 135), you must also specify the path for the shared root.

Note: You can only use xtunspec on the boot node.

Example 79. Removing node specialization

To remove all versions of /etc/fstab specialized by node, type:

boot:~ # xtopview
default/:/ # xtunspec -N /etc/fstab

Each node is updated so that it uses a version of /etc/fstab based on its class, or
if that is not available, based on the default version of /etc/fstab.

Example 80. Removing class specialization

To remove all versions of /etc/fstab that are specialized by, for example, class
I/O (io), type:

boot:~ # xtopview
default/:/ # xtunspec -c io /etc/fstab

I/O nodes that link to the class-specialized version of the file are changed to link
to the default version of /etc/fstab. However, I/O nodes that already link
to node-specialized versions of /etc/fstab are unchanged. To remove a file
specialized by node, you must use the xtunspec command on the node (see
Example 79).

For more information, see the xtunspec(8) man page.

6.1.4.10 Displaying RCS Log Information for Shared Root Files

The xtoprlog command displays Revision Control System (RCS) log information
for shared root files. Specify the file name using the required filename command-line
argument. The xtoprlog command can be executed from within an xtopview
shell or from the boot node as root. If xtoprlog is executed from within
xtopview, it will operate on the current view; if the command is executed outside
of xtopview on the boot node, then you must specify a view to use with the -d,
-c, or -n options and also the xtopview root location with the --root option.

144 S–2393–5101

Modifying an Installed System [6]

The scope of this tool is limited to identification and manipulation of /etc
configuration data within the shared root. Configuration files on the boot root file
system or on the SMW are not managed by this utility.

For more information, see the xtoprlog(8) man page.

Example 81. Printing the latest version of a file

Use the xtoprlog --version option to print the latest version (revision) number
of a specified file:

default/:/ # xtoprlog --version /etc/fstab
1.1

Example 82. Printing the RCS log for /etc/fstab in the node 3 view

Use the xtoprlog -n option to specify the /etc/fstab node view RCS log
to print:

default/:/ # xtoprlog -n 3 /etc/fstab
RCS file: /.shared/base/node/3/etc/RCS/fstab,v
Working file: /.shared/base/node/3/etc/fstab
head: 1.6
...

Example 83. Displaying differences between two versions of the /etc/fstab
file

Use the xtoprlog -x option with the xtoprlog -r option to display the
differences between the current version of /etc/fstab and version 1.3:

default/:/ # xtoprlog -x -r 1.3 /etc/fstab
===
RCS file: /.shared/base/default/etc/RCS/fstab,v
retrieving revision 1.3
diff -r1.3 /.shared/base/default/etc/fstab
1,3c1,4
< # Default view fstab file 1.3
---> # Default view fstab file 1.7

6.1.4.11 Checking Out an RCS Version of Shared Root Files

Use the xtopco command to check out a version of shared root files. The xtopco
command should be run on the boot node using the xtopview utility in the default
view.

The scope of this tool is limited to identification and manipulation of /etc
configuration data within the shared root. Configuration files on the boot root file
system or on the SMW are not managed by this utility.

Example 84. Checking out a version 1.2 copy of /etc/fstab

Use the xtopco -r option to specify the version of the file to check out:

boot:~ # xtopview
default/:/ # xtopco -r 1.2 /etc/fstab

S–2393–5101 145

Managing System Software for the Cray® Linux Environment

Example 85. Recreating the file link for /etc/fstab to the current view's
/etc/fstab file

To recreate the file link only, use the xtopco --link option:

boot:~ # xtopview
default/:/ # xtopco --link /etc/fstab

For more information, see the xtopco(8) man page.

6.1.4.12 Listing Shared Root File Specification and Version Information

Using RCS information, combined with the xtopview specialization information,
xtoprdump prints a list of file specifications that can be used as the list of files to
operate on an archive of shared root file system files. The xtoprdump command
should be invoked using the xtopview utility unless the --root option is
specified.

The scope of this tool is limited to identification and manipulation of /etc
configuration data within the shared root. Configuration files on the boot root file
system or on the SMW are not managed by this utility.

Example 86. Printing specifications for login class specialized files

Use the xtoprdump -c option to specify the class view; set to login to print
the login class specifications:

boot:~ # xtopview
default/:/ # xtoprdump -c login
class:login:/etc/HOSTNAME:1.2:*
class:login:/etc/fstab:1.2:*
class:login:/etc/fstab.old:1.1:*
class:login:/etc/modprobe.conf.local:1.2:*
class:login:/etc/opt/cray/modules/Base-opts.default.local:1.2:*
class:login:/etc/sysconfig/network/config:1.2:*
class:login:/etc/sysconfig/network/routes:1.1:*
class:login:/etc/yp.conf:1.1:*

146 S–2393–5101

Modifying an Installed System [6]

Example 87. Printing specifications for all node specialized files

Use the xtoprdump -n option to specify the node view; set to all for all nodes:

boot:~ # xtopview
default/:/ # xtoprdump -n all
node:22:/etc/sysconfig/network/ifcfg-ib0:1.1:*
node:23:/etc/sysconfig/network/ifcfg-ib0:1.1:*
node:30:/etc/new_file:1.1:*
node:30:/etc/opt/cray/rsipd/rsipd.conf:1.1:*
node:30:/etc/sysconfig/network/ifcfg-eth0:1.1:*
node:30:/etc/sysctl.conf:1.2:*
node:30:/etc/sysctl.conf.14524:1.1:*
node:30:/etc/udev/rules.d/77-network.rules:1.1:*
node:5:/etc/exports:1.2:*
node:5:/etc/fstab:1.5:*
node:5:/etc/fstab.old:1.4:*
node:5:/etc/init.d/boot.local:1.1:*
node:5:/etc/motd:1.2:*
node:5:/etc/sysconfig/syslog:1.1:*
node:5:/etc/syslog-ng/syslog-ng.conf:1.2:*
node:8:/etc/sysconfig/network/ifcfg-ib0:1.1:*
node:9:/etc/sysconfig/network/ifcfg-ib0:1.1:*

Example 88. Printing specifications for files modified in the default view and
include any warning messages

The following xtoprdump command prints specifications for modified files
(-m option) in the default view (-d option), including warning messages (-w option):

boot:~ # xtopview
default/:/ # xtoprdump -m -d -w
default::/etc/alps.gpus:1.2:*
default::/etc/bash.bashrc.local:1.5:*
default::/etc/bash.bashrc.local.rpmsave:1.2:*
...

For more information, see the xtoprdump(8) man page.

6.1.4.13 Performing Archive Operations on Shared Root Files

Use the xtoparchive command to perform operations on an archive of shared root
configuration files. Run the xtoparchive command on the boot node using the
xtopview utility in the default view. The archive is a text-based file similar to a tar
file and is specified using the required archivefile command-line argument. The
xtoparchive command is intended for configuration files only. Binary files will
not be archived. If a binary file is contained within a specification file list, it will be
skipped and a warning will be issued.

The scope of this tool is limited to identification and manipulation of /etc
configuration data within the shared root. Configuration files on the boot root file
system or on the SMW are not managed by this utility.

S–2393–5101 147

Managing System Software for the Cray® Linux Environment

Example 89. Adding files specified by specifications listed in specfile to an
archive file

Use the following xtoparchive command to add files specified by the
specifications listed in specfile to the archive file archive.20110422; create
the archive file if it does not already exist:

boot:~ # xtopview
default/:/ # xtoparchive -a -f specfile archive.20110422

Example 90. Listing specifications for files currently in the archive.20110422
archive file

Use the xtoparchive -l command to list specifications for files currently in the
archive file archive.20110422:

boot:~ # xtopview
default/:/ # xtoparchive -l archive.20110422

For more information, see the xtoparchive(8) man page.

6.1.5 Logging Shared-root Activity

All specialization activity is logged in the log file /.shared/log, which tracks
additions, deletions, and modifications of files. To view the details of your changes,
you must access the RCS logs that were created during the xtopview session.

Note: If you have exited xtopview with Ctrl-c, you do not log the operations
you performed within the shell, The changes to the system are present nonetheless.
This means that if you want to back out of changes, it is not sufficient to exit
xtopview. You must submit the commands to undo what you have done.

6.2 PBS Professional Licensing Requirements for Cray Systems
The licensing scheme for PBS Professional uses a central license server to allow
licenses to float between servers. The PBS server and scheduler are run on the service
database (SDB) node, therefore, network connectivity must exist between the license
server and the SDB node. For information about network configuration options for
PBS, see Appendix F, PBS Professional Licensing for Cray Systems on page 387.

6.3 Disabling Secure Shell (SSH) on Compute Nodes
By default, the SSH daemon, sshd, is enabled on compute nodes. To disable sshd
follow this procedure.

148 S–2393–5101

Modifying an Installed System [6]

Procedure 25. Disabling SSH daemon (sshd) on CNL compute nodes

1. Edit the CLEinstall.conf file and set ssh_generate_root_sshkeys
to no (by default, this is set to yes).

smw:~ # vi CLEinstall.conf
ssh_generate_root_sshkeys=no

2. Invoke the CLEinstall program on the SMW; you must specify the xtrelease
that is currently installed on the system set that you are using and located in the
CLEmedia directory.

smw:~ # /home/crayadm/install.xtrelease/CLEinstall --upgrade \
--label=system_set_label --XTrelease=xtrelease \
--configfile=/home/crayadm/install.xtrelease/CLEinstall.conf \
--CLEmedia=/home/crayadm/install.xtrelease

3. Type y and press the Enter key to proceed when prompted to update the boot
root and shared root.

*** Do you wish to continue? (y/n) --> y

Upon completion, CLEinstall lists suggested commands to finish the
installation. Those commands are also described here. For more information
about running the CLEinstall program, see Installing and Configuring Cray
Linux Environment (CLE) Software.

4. Rebuild the boot image using the
/var/opt/cray/install/shell_bootimage_LABEL.sh script and
the xtbootimg and xtcli commands. Suggested commands are included in
output from CLEinstall and shell_bootimage_LABEL.sh. For more
information about creating boot images, follow Procedure 3 on page 70.

5. Run the shell_post.sh script on the SMW to unmount the boot root and
shared root file systems and perform other cleanup as necessary.

smw:~# /var/opt/cray/install/shell_post_install.sh
/bootroot0 /sharedroot0

6.4 Modifying SSH Keys for Compute Nodes
The dropbear RPM is provided with the CLE release. Using dropbear SSH
software, you can supply and generate site-specific SSH keys for compute nodes
in place of the keys provided by Cray.

Procedure 26. Using dropbear to generate site-specific SSH keys

Follow these steps to replace the RSA and DSA/DSS keys provided by the
CLEinstall program.

1. Load the dropbear module.

crayadm@smw:~> module load dropbear

S–2393–5101 149

Managing System Software for the Cray® Linux Environment

2. Create a directory for the new keys on the SMW.

crayadm@smw:~> mkdir dropbear_ssh_keys
crayadm@smw:~> cd dropbear_ssh_keys

3. To generate a dropbear compatible RSA key, type:

crayadm@smw:~/dropbear_ssh_keys> dropbearkey -t rsa -f ssh_host_rsa_key.db
Will output 1024 bit rsa secret key to 'ssh_host_rsa_key.db'
Generating key, this may take a while...
Public key portion is:
ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAAAgwCQ9ohUgsrrBw5GNk7w2H5RcaBGajmUv8XN6fxg/YqrsL4t5
CIkNghI3DQDxoiuC/ZVIJCtdwZLQJe708eiZee/tg5y2g8JIb3stg+ol/9BLPDLMeX24FBhCweUpfGCO6Jfm4
Xg4wjKJIGrcmtDJAYoCRj0h9IrdDXXjpS7eI4M9XYZ
Fingerprint: md5 00:9f:8e:65:43:6d:7c:c3:f9:16:48:7d:d0:dd:40:b7
crayadm@smw:~/dropbear_ssh_keys>

To generate a dropbear compatible DSS key, type:

crayadm@smw:~/dropbear_ssh_keys> dropbearkey -t dss -f ssh_host_dss_key.db
Will output 1024 bit dss secret key to 'ssh_host_dss_key.db'
Generating key, this may take a while...
Public key portion is:
ssh-dss AAAAB3NzaC1kc3MAAACBAMEkThlE9N8iczLpfg0wUtuPtPcpIs7Y4KbG3Wg1T4CAEXDnfMCKSyuCy
21TMAvVGCvYd80zPtL04yc1eUtD5RqEKy0h8jSBs0huEvhaJGHx9FzKfGhWi1ZOVX5vG3R+UCOXG+71wZp3LU
yOcv/U+GWhalTWpUDaRU81MPRLW7rnAAAAFQCEqnqW61bouSORQ52d+MRiwp27MwAAAIEAho69yAfGrNzxEI/
kjyDE5IaxjJpIBF262N9UsxleTX6F65OjNoL84fcKqlSL6NV5XJ5O00SKgTuVZjpXO913q9SEhkcI0Zy0vRQ8
H5x3osZZ+Bq20QWof+CtWTqCoWN2xvne0NtET4lg81qCt/KGRq1tY6WG+a01yrvunzQuafQAAACASXvs8h8AA
EK+3TEDj57rBRV4pz5JqWSlUaZStSQ2wJ3Oy1pIJIhKfqGWytv/nSoWnr8YbQbvH9k1BsyQU8sOc5IJyCFu7+
Exom1yrxq/oirfeSgg6xC2rodcs+jH/K8EKoVtTak3/jHQeZWijRok4xDxwHdZ7e3l2HgYbZLmA5Y=
Fingerprint: md5 cd:a0:0b:41:40:79:f9:4a:dd:f9:9b:71:3f:59:54:8b
crayadm@smw:~/dropbear_ssh_keys>

4. As root, copy the SSH keys to the boot image template.

Note: To make these changes for a system partition, rather than for
the entire system, replace /opt/xt-images/templates with
/opt/xt-images/templates-pN, where N is the partition number.

crayadm@smw:~/dropbear_ssh_keys> su root

For the RSA key:

smw:/home/crayadm/dropbear_ssh_keys # cp -p ssh_host_rsa_key.db \
/opt/xt-images/templates/default/etc/ssh/ssh_host_rsa_key

For the DSA/DSS key:

smw:/home/crayadm/dropbear_ssh_keys # cp -p ssh_host_dss_key.db \
/opt/xt-images/templates/default/etc/ssh/ssh_host_dss_key

5. Update the boot image to include these changes; follow the steps in Procedure
2 on page 66.

150 S–2393–5101

Modifying an Installed System [6]

6.5 Configuring the System Environmental Data Collector
(SEDC)

To configure the System Environmental Data Collector (SEDC), which collects data
about internal cabinet temperatures, cooling system air pressures, critical voltages,
etc., see Using and Configuring System Environment Data Collections (SEDC).

6.6 Configuring Optional RPMs in the CNL Boot Image
You can configure which optional RPMs are installed into the CNL boot image
for your system in one of two ways. First, several parameters are available in
the CLEinstall.conf file to control whether specific RPMs are included
during installation or upgrade of your system software. When you edit
CLEinstall.conf prior to running CLEintall, set the CNL_ parameters to
either yes or no to indicate which optional RPMs should be included in your CNL
compute node boot images. For example, to include these optional RPMs, change
the following lines.

CNL_audit=yes
CNL_dvs=yes
CNL_ntpclient=yes
CNL_rsip=yes

The second method is to add or remove specific RPMs by editing the
/var/opt/cray/install/shell_bootimage_LABEL.sh command
used when preparing boot images for CNL compute nodes. Change the settings for
these parameters to y or n to indicate which optional RPMs should be included.
For example, to include the optional Cray Audit, DVS, and RSIP RPMs, change
the following lines.

Note: If you make changes to
/var/opt/cray/install/shell_bootimage_LABEL.sh directly, it is
important that you make similar changes to the CLEinstall.conf file in order
to avoid unexpected configuration changes during update or upgrade installations.

CNL_AUDIT=y
CNL_DVS=y
CNL_RSIP=y

6.7 Configuring Memory Control Groups
CLE allows an administrator to force compute node applications to execute within
memory control groups. Memory control groups are a Linux kernel feature that can
improve the resiliency of the kernel and system services running on compute nodes
while also accounting for application memory usage.

S–2393–5101 151

Managing System Software for the Cray® Linux Environment

Before ALPS launches an application on a compute node, it determines how much
memory is available. It then creates a memory control group for the application with
a memory limit that is slightly less than the amount of available memory on the
compute node. CLE tracks the application's memory usage, and if any allocations
meet or try to exceed this limit, the allocation fails and the application aborts.

Since non-application processes execute outside of the memory control group and are
not bound to this limit, system services should continue to execute normally during
these low memory scenarios, resulting in improved resiliency for the kernel and
system services. For details on how the memory control group limit is calculated, see
the description of the -M option in the apinit(8) man page.

Procedure 27. Adjusting the memory control group limit

You adjust the memory control group limit using one of two methods:

1. Edit the rcad_svcs.conf in the compute node image in
/opt/xt-images.

a. Change the apinit-M value in the compute node image
/etc/opt/cray/rca/rcad_svcs.conf file. The following illustrates
the apinit line within rcad_svcs.conf. The total amount of memory
taken by the memory control group is the -M value multiplied by the number
of cores on the reserved compute node.

apinit 0 3 1 0x7000016 0 /usr/sbin/apinit -n -r -M 400k

b. Rebuild the compute node and service node boot images as detailed in
Preparing a Service Node and Compute Node Boot Image on page 65 to
ensure the new value is used whenever the new boot image is used.

c. Reboot the compute nodes.

d. To ensure the change is not lost during an upgrade of CLE, copy the modified
compute node /etc/opt/cray/rca/rcad_svcs.conf file into the
default template directory in /opt/xt-images/templates/.

2. Alternatively, set the memory control group limit using the mcgroup option
with the apmgr command while the compute node is booted. However, when
the compute node is rebooted it will revert to the settings in the compute node
image /etc/opt/cray/rca/rcad_svcs.conf. See the apmgr(8) man
page for more details.

Procedure 28. Disabling memory control groups

1. Open the /etc/opt/cray/rca/rcad_svcs.conf file in the compute
node image and remove or comment-out the apinit -M option and
corresponding value.

152 S–2393–5101

Modifying an Installed System [6]

2. Within the compute node image edit /boot/parameters-cnl and set the
cgroup_disable parameter to memory:

cgroup_disable=memory

3. Rebuild the compute node boot image as detailed in Preparing a Service Node
and Compute Node Boot Image on page 65.

4. Reboot the compute nodes using the newly created boot image.

There is a slightly higher likelihood that some applications will cause the compute
nodes to experience OOM (out of memory) conditions if they happen run low on
memory and memory control groups are disabled. However, most programs will not
see this condition as it is highly dependent on application and site configurations.

6.8 Configuring the Zone Moveable Feature for Compute Nodes
Zone moveable is a Linux kernel feature used to reduce external memory
fragmentation. It is not a defragmentation mechanism but can possibly help prevent
fragmentation to some degree. The strategy in the zone moveable feature is to
separate user from kernel memory. Although this feature may improve performance
of applications sensitive to memory fragmentation, it does increase the size of the
compute node operating system footprint. Cray therefore leaves zone moveable
disabled by default.

Procedure 29. Enabling Zone Moveable

1. Add the following kernelcore_pct kernel parameter to the
/opt/xt-images/workarea/compute/boot/parameters-cnl file.
Cray recommends a compute node kernel memory percentage of 5%.

kernelcore_pct=5

2. Boot the compute nodes with the rebuilt compute node boot image as detailed in
Preparing a Service Node and Compute Node Boot Image on page 65.

3. (Optional) You can test if a node has the kernel feature enabled by using aprun
with the following syntax:

% aprun -L nid grep 'zone *Movable' /proc/pagetypeinfo

To disable the zone movable kernel parameter, remove the kernelcore_pct
kernel parameter from the parameters-cnl mentioned in Procedure 29 on
page 153, rebuild the compute node image and reboot the compute nodes.

6.9 Configuring Cray Enhanced Linux Security Features
This section describes Cray extensions to Linux security auditing utilities and the
cray_pam PAM module for logging failed login attempts.

S–2393–5101 153

Managing System Software for the Cray® Linux Environment

6.9.1 Security Auditing and Cray Audit Extensions

Cray Audit is a set of Cray specific extensions to standard Linux security auditing.
When the Cray Audit is configured, separate logs are generated for each audited node
on the Cray system. Cray specific utilities simplify administration of auditing options
and log files across a large number of nodes. For more information about standard
Linux security auditing, see the following website: http://www.novell.com/linux.

Cray Audit includes the following components:

• Cluster option to enable Cray Audit. The /etc/auditd.conf includes a
Cray specific option called cluster which, when configured on, will enable
Cray Audit extensions. The standard Linux auditd daemon has been enhanced
to implement this configuration option. The clustered configuration provides a
mechanism to collect audit data on many nodes and store the data in a central
location. The configuration script creates a separate directory for each node and
names and manages the auditing log file in the same way as on a single-node
system. This includes tracking log size, responding to size-related events, and
rotating log files.

!
Caution: If you run Linux security auditing on a Cray system without Cray
Audit extensions, auditing data from the various nodes collide and generate a
corrupt audit log. Because of this, Cray Audit extensions are enabled by default
when Linux auditing is configured on.

Note: The cluster option should not be used when auditing a boot node.

• xtauditctl command. The xtauditctl command distributes auditctl
administrative commands to compute nodes on the system. This command
traverses a list of all running compute nodes and invokes commands that deliver a
signal to the audit daemons on each node. This utility allows an administrator to
apply configuration changes without having to restart every node in the system.
For more information see the xtauditctl(8) and auditctl(8) man pages.

• xtaumerge command. The xtaumerge command merges clustered audit
logs into a single log file. When you use this tool to generate a single audit file,
you can also use Linux audit tools to report on and analyze system-wide audit
data. An additional benefit is that xtaumerge maintains compatibility with the
Linux audit tools; you can move audit data to another Linux platform for analysis.
For more information see the xtaumerge(8) man page.

Note: When you run xtaumerge, the resulting merged data stream loses one
potentially useful piece of information: the node name of the node on which
the event originated. In order to maintain compatibility with standard Linux
utilities, the merged audit log does not include this information. Use Linux
audit utilities directly on the per-node log files to find a specific record if you
require that level of information.

• ALPS interface to security auditing. For compute nodes, the Application Level

154 S–2393–5101

http://www.novell.com/linux

Modifying an Installed System [6]

Placement Scheduler (ALPS) supports security auditing functionality. ALPS
instantiates an application on behalf of the user on specific compute nodes. After
instantiating the application, the ALPS interface calls the auditing system to begin
auditing the application. At job start and end, auditing system utilities write the
audit record to the audit log.

By default, Cray Audit extensions are enabled but will have no impact until Linux
security auditing is configured on. Linux security auditing is configured off by
default. Follow Procedure 30 on page 155 to configure Cray Audit and Linux
security auditing to audit boot, login and compute nodes. This procedure will
direct you to edit the /etc/auditd.conf and /etc/audit.rules files
and define your audit configuration based on site-specific requirements. The file
/usr/share/doc/packages/audit/sample.rules describes a sample
rule set. Once you have established these configuration files, you can make temporary
changes to your audit configuration using xtauditctl and standard Linux
auditctl command options. For more information see the xtauditctl(8) and
auditctl(8) man pages.

Cray recommends that you configure auditing to use a Lustre file system to hold the
audit log files. Follow Procedure 30 on page 155, to specify the Lustre file system
by setting log_file = lustre_pathname. For more information on specific Lustre
file system requirements to run Cray Audit, see Lustre File System Requirements for
Cray Audit on page 158.

Procedure 30. Configuring Cray Audit

By default, Linux security auditing is disabled and Cray Audit extensions are enabled.
Follow these steps to define your site-specific auditing rules and enable standard
Linux auditing.

Note: To make these changes for a system partition, rather than for
the entire system, replace /opt/xt-images/templates with
/opt/xt-images/templates-pN, where N is the partition number.
Also, replace /opt/xt-images/hostname-xtrelease-LABEL with
/opt/xt-images/hostname-xtrelease-LABEL[-pN].

1. Follow these steps to edit the auditing configuration files in the compute node
image and enable auditing on CNL compute nodes.

a. Copy the auditd.conf and audit.rules configuration files to the
template directory so that modifications are retained when new boot images
are created in the future.

smw:~# cp /opt/xt-images/hostname-xtrelease-LABEL/compute/etc/auditd.conf \
/opt/xt-images/templates/default/etc/auditd.conf
smw:~# cp /opt/xt-images/hostname-xtrelease-LABEL/compute/etc/audit.rules \
/opt/xt-images/templates/default/etc/audit.rules

b. Edit /opt/xt-images/templates/default/etc/auditd.conf

S–2393–5101 155

Managing System Software for the Cray® Linux Environment

on the SMW and set the log_file parameter. For example, if the mount
point for your Lustre file system is mylusmnt and you want to place audit
logs in a directory called auditdir, type the following commands.

smw:~# vi /opt/xt-images/templates/default/etc/auditd.conf
log_file = /mylusmnt/auditdir/audit.log

Warning: If you run auditing on compute nodes without configuring the
audit directory, audit records that are written to the local ram-disk could
cause the ram-disk to fill.

c. Edit the
/opt/xt-images/templates/default/etc/audit.rules file
on the SMW. Change this file to set site-specific auditing rules
for the compute nodes. At a minimum, you should set the -e
option to 1 (one) to enable auditing.

smw:~# vi /opt/xt-images/templates/default/etc/audit.rules

Make your changes after the following line; for example:

Feel free to add below this line. See auditctl man page
-e 1

d. Create the following symbolic link.

smw:~# mkdir -p -m 755 /opt/xt-images/templates/default/etc/init.d/rc3.d
smw:~# cd /opt/xt-images/templates/default/etc/init.d/rc3.d
smw:/opt/xt-images/templates/default/etc/init.d/rc3.d # ln -s ../auditd S12auditd

e. If you set CNL_audit=yes in CLEinstall.conf before you ran the
CLEinstall program, update the boot image by following the steps in
Procedure 2 on page 66.

Otherwise, you must first edit the
/var/opt/cray/install/shell_bootimage_LABEL.sh script
and set CNL_AUDIT=y and then update the boot image following the
steps in Procedure 2 on page 66.

2. Follow these steps to enable and configure auditing on login nodes.

a. Log on to the boot node and use the xtopview command to access all
login nodes by class.

smw:~# ssh root@boot
boot:~ # xtopview -c login -m "configuring audit files"

b. Specialize these files to the login class.

class/login:/ # xtspec -c login /etc/auditd.conf
class/login:/ # xtspec -c login /etc/audit.rules

156 S–2393–5101

Modifying an Installed System [6]

c. Edit /etc/auditd.conf and set the log_file parameter. For example,
if your Lustre file system is called filesystem and you want to place audit logs
in a directory called auditdir, type the following commands.

class/login:/ # vi /etc/auditd.conf
log_file = /filesystem/auditdir/audit.log

d. Edit the /etc/audit.rules file to set site-specific auditing rules for the
login nodes. At a minimum, you should set the -e option to 1 (one).

class/login:/ # vi /etc/audit.rules

Make your changes after the following line; for example:

Feel free to add below this line. See auditctl man page
-e 1

e. Exit xtopview.

class/login:/ # exit

3. You must configure auditing on the boot node to use standard Linux auditing.
Follow these steps to turn off Cray audit extensions for the boot node. Configure
the boot node to use the default log_file parameter in the auditd.conf
file and set the cluster entry to no.

a. While logged on to the boot node, edit the /etc/auditd.conf file.

boot:~ # vi /etc/auditd.conf
log_file = /var/log/audit/audit.log
cluster = no

b. Edit the /etc/audit.rules file to set site-specific auditing rules for the
boot node. At a minimum, you should set the -e option to 1 (one).

boot:~ # vi /etc/audit.rules

Make your changes after the following line; for example:

Feel free to add below this line. See auditctl man page
-e 1

c. Configure the audit daemon to start on the boot node.

boot:~ # chkconfig --force auditd on

4. Create the log file directory. Log into a node that has the Lustre file system
mounted and type the following commands:

login:~# mkdir -p /filesystem/auditdir
login:~# chmod 700 /filesystem/auditdir

5. Edit the boot automation file to configure your system to start the Cray audit
daemon on login nodes by invoking /etc/init.d/auditd start on each
login node.

S–2393–5101 157

Managing System Software for the Cray® Linux Environment

6.9.1.1 Lustre File System Requirements for Cray Audit

The audit system stores audit data in a directory tree structure that uses a naming
scheme based on the directory name provided by the log_file parameter. For
example, if you set log_file to /lus/audit/audit.log, the auditing system stores
audit data in files named /lus/audit/node_specific_path/audit.log, where
node_specific_path is a directory structure generated by Cray Audit.

Warning: If you run auditing on compute nodes without configuring the audit
directory, audit records are written to the local ram-disk which may consume all
your resources and cause data loss.

With the exception of the boot node, each audited node in the system must have
access to the Lustre file system that contains the audit directory. Because each node
has its own audit log file, sufficient space must be made available to store audit data.
You configure the log size in the /etc/auditd.conf file. The file system should
be large enough to hold at least twice the maximum configured log size, multiplied by
the number of log files retained and the number of audited nodes, plus enough space
to avoid triggering out of space recovery actions. The following formula can be used
to estimate a reasonable file system size:

(2 * num_logs * max_log_file * nnodes) + space_left

Where:

num_logs is the number of log files kept in rotation.

max_log_file is the maximum size of a log file in megabytes.

nnodes is the number of audited nodes

space_left is the amount of space in megabytes required to avoid out of space
recovery actions.

The num_logs, max_log_file, and space_left parameters are set in the
/etc/auditd.conf file. The default /etc/auditd.conf file is shown in
Example 91.

Note: This formula assumes that you use the default destination for the output of
xtaumerge, placing the merged log file and the per-node log files on the same
file system. This roughly doubles the size of the disk space needed to hold the
audit trail.

158 S–2393–5101

Modifying an Installed System [6]

Example 91. Default /etc/auditd.conf file

#
This file controls the configuration of the audit daemon
#

log_file = /var/log/audit/audit.log
cluster = yes
log_format = RAW
priority_boost = 3
flush = INCREMENTAL
freq = 20
num_logs = 4
#dispatcher = /usr/sbin/audispd
disp_qos = lossy
max_log_file = 5
max_log_file_action = ROTATE
space_left = 75
space_left_action = SYSLOG
action_mail_acct = root
admin_space_left = 50
admin_space_left_action = SUSPEND
disk_full_action = SUSPEND
disk_error_action = SUSPEND

6.9.1.2 System Performance Considerations for Cray Audit

With auditing turned off there is no performance impact from this feature. With
auditing turned on, system performance is impacted. The performance costs for
running Linux audit and the associated Cray extensions vary greatly, depending
on the site-defined audit event selection criteria. Auditing of judiciously chosen
events, for example login or su attempts, do not impact overall system performance.
However, auditing of frequently used system calls has a negative impact on system
performance because each occurrence of an audited system call triggers a file system
write operation to the audit log.

It is the responsibility of the administrator or auditor to design the site security policy
and configure auditing to minimize this impact.

6.9.2 Using the cray_pam PAM to Log Failed Login Attempts

The cray_pam module is a Pluggable Authentication Module (PAM) that, when
configured, provides information to the user at login time about any failed login
attempts since their last successful login. The module provides:

• Date and time of last successful login
• Date and time of last unsuccessful login
• Total number of unsuccessful logins since the user's last successful login

Cray recommends that you configure login failure logging on all service nodes. The
RPMs are installed by default on the boot root and shared root file systems.

S–2393–5101 159

Managing System Software for the Cray® Linux Environment

To use this feature, you must configure the pam_tally and cray_pam PAM
modules. The PAM configuration files provided with the CLE software allow you to
manipulate a common set of configuration files that will be active for all services.

The cray_pam module requires an entry in the PAM common-auth and
common-session files or an entry in the PAM auth section and an entry in
the PAM session section of any PAM application configuration file. Use of the
common files is typically preferable so that other applications such as su also report
failed login information; for example:

crayadm@boot:~> su -
2 failed login attempts since last login.
Last failure Thu May 8 11:41:20 2008 from smw.
boot:~ #

For each log in attempt, a per-user counter is updated. When a successful log
in occurs, the statistics are displayed and the counter is cleared. The default
location of the pam_tally counter file is /var/log/faillog. Additionally,
cray_pam uses a temporary directory, by default, /var/opt/cray/faillog,
to store information about the users. Change these defaults by editing
/etc/opt/cray/pam/faillog.conf and by using the file= option for each
pam_tally and cray_pam entry. You can find an example faillog.conf file
in /opt/cray/pam/pamrelease-version/etc.

You can configure a number of nodes to share information by modifying the default
location for these directories to use a common set of directories, writable to all nodes.
Edit /etc/opt/cray/pam/faillog.conf to reflect an alternate, root-writable
directory. Configure pam_tally to save tally information in an alternate location
using the file= option; each entry for cray_pam must also include the file=
option to specify the alternate location.

Limitations:

• If a login attempt fails, cray_pam in the auth section creates a temporary file;
but because the login attempt failed, the session section is not called and, as a
result, the temporary file is not removed. This is harmless because the file will be
overwritten at the next login attempt and removed at the next successful login.

• Logins that occur outside of the PAM infrastructure will not be noted.

• Host names are truncated after 12 characters. This is a limitation in the underlying
faillog recording.

• The cray_pam module requires pam_tally to be configured.

Note: For additional information on using the cray_pam PAM module, see the
pam(8) and pam_tally(8) man pages.

160 S–2393–5101

Modifying an Installed System [6]

Procedure 31. Configuring cray_pam to log failed login attempts

1. Edit the /etc/pam.d/common-auth, /etc/pam.d/common-account,
and /etc/pam.d/common-session files on the boot node.

Note: In these examples, the pam_faillog.so and pam.tally.so
entries can include an optional file=/path/to/pam_tally/counter/file argument
to specify an alternate location for the tally file.

Example 92 shows these files after they have been modified to report failed
login using an alternate location for the tally file.

a. Edit the /etc/pam.d/common-auth file and add the following lines
as the first and last entries:

boot:~ # vi /etc/pam.d/common-auth
auth required pam_faillog.so [file=alternatepath] (as the FIRST entry)
auth required pam_tally.so [file=alternatepath] (as the LAST entry)

Your modified /etc/pam.d/common-auth file should look like this:

#%PAM-1.0
#
This file is autogenerated by pam-config. All changes
will be overwritten.
#
Authentication-related modules common to all services
#
This file is included from other service-specific PAM config files,
and should contain a list of the authentication modules that define
the central authentication scheme for use on the system
(e.g., /etc/shadow, LDAP, Kerberos, etc.). The default is to use the
traditional Unix authentication mechanisms.
#
auth required pam_faillog.so
auth required pam_env.so
auth required pam_unix2.so
auth required pam_tally.so

b. Edit the /etc/pam.d/common-account file and add the following line
as the last entry:

boot:~ # vi /etc/pam.d/common-account
account required pam_tally.so [file=alternatepath]

S–2393–5101 161

Managing System Software for the Cray® Linux Environment

Your modified /etc/pam.d/common-account file should look like this:

#%PAM-1.0
#
This file is autogenerated by pam-config. All changes
will be overwritten.
#
Account-related modules common to all services
#
This file is included from other service-specific PAM config files,
and should contain a list of the authorization modules that define
the central access policy for use on the system. The default is to
only deny service to users whose accounts are expired.
#
account required pam_unix2.so
account required pam_tally.so

c. Edit the /etc/pam.d/common-session file and add the following line
as the last entry:

boot:~ # vi /etc/pam.d/common-session
session optional pam_faillog.so [file=alternatepath]

Your modified /etc/pam.d/common-session file should look like this:

#%PAM-1.0
#
This file is autogenerated by pam-config. All changes
will be overwritten.
#
Session-related modules common to all services

#
This file is included from other service-specific PAM config files,
and should contain a list of modules that define tasks to be performed
at the start and end of sessions of *any* kind (both interactive and
non-interactive). The default is pam_unix2.
#
session required pam_limits.so
session required pam_unix2.so
session optional pam_umask.so
session optional pam_faillog.so

2. Copy the edited files to the shared root by using xtopview in the default view.

boot:~ # cp -p /etc/pam.d/common-auth /rr/current/software
boot:~ # cp -p /etc/pam.d/common-account /rr/current/software
boot:~ # cp -p /etc/pam.d/common-session /rr/current/software
boot:~ # xtopview -m "configure login failure logging PAM"
default/:/ # cp -p /software/common-auth /etc/pam.d/common-auth
default/:/ # cp -p /software/common-account /etc/pam.d/common-account
default/:/ # cp -p /software/common-session /etc/pam.d/common-session

3. Exit xtopview.

default/:/ # exit
boot:~ #

162 S–2393–5101

Modifying an Installed System [6]

Example 92. Modified PAM configuration files configured to report failed login
by using an alternate path

If you configure pam_tally to save tally information in an alternate location by
using the file= option, each entry for cray_pam must also include the file=
option to specify the alternate location.

Your modified /etc/pam.d/common-auth file should look like this:

#
/etc/pam.d/common-auth - authentication settings common to all services
#
This file is included from other service-specific PAM config files,
and should contain a list of the authentication modules that define
the central authentication scheme for use on the system
(e.g., /etc/shadow, LDAP, Kerberos, etc.). The default is to use the
traditional Unix authentication mechanisms.
#
auth required pam_faillog.so file=/ufs/logs/tally.log
auth required pam_env.so
auth required pam_unix2.so
auth required pam_tally.so file=/ufs/logs/tally.log

Your modified /etc/pam.d/common-account file should look like this:

#
/etc/pam.d/common-account - authorization settings common to all services
#
This file is included from other service-specific PAM config files,
and should contain a list of the authorization modules that define
the central access policy for use on the system. The default is to
only deny service to users whose accounts are expired.
#
account required pam_unix2.so
account required pam_tally.so file=/ufs/logs/tally.log

Your modified /etc/pam.d/common-session file should look like this:

#
/etc/pam.d/common-session - session-related modules common to all services
#
This file is included from other service-specific PAM config files,
and should contain a list of modules that define tasks to be performed
at the start and end of sessions of *any* kind (both interactive and
non-interactive). The default is pam_unix2.
#
session required pam_limits.so
session required pam_unix2.so
session optional pam_umask.so
session optional pam_faillog.so file=/ufs/logs/tally.log

S–2393–5101 163

Managing System Software for the Cray® Linux Environment

6.10 Configuring cron Services
Optional: Configuring cron services is optional on CLE systems.

The cron daemon is disabled, by default, on the shared root file system and the boot
root. It is enabled, by default, on the SMW. Use standard Linux procedures to enable
cron on the boot root, following Procedure 32 on page 164.

On the shared root, how you configure cron for CLE depends on whether you
have set up persistent /var. If you have persistent /var follow Procedure 33 on
page 164; if you have not set up persistent /var, follow Procedure 34 on page 165.

The /etc/cron.* directories include a large number of cron scripts. During
new system installations and any updates or upgrades, the CLEinstall program
disables execute permissions on these scripts and you must manually enable any
scripts you want to use.

Procedure 32. Configuring cron for the SMW and the boot node

Note: By default, the cron daemon on the SMW is enabled and this procedure is
required only on the boot node.

1. Log on to the target node as root and determine the current configuration status
for cron.

On the on the SMW:

smw:~# chkconfig cron
cron on

On the boot node:

boot:~ # chkconfig cron
cron off

2. Use the chkconfig command to configure the cron daemon to start. For
example, to enable cron on the boot node, type the following command:

boot:~ # chkconfig --force cron on

The cron scripts shipped with the Cray customized version of SLES are located
under /etc/cron.hourly, /etc/cron.daily, /etc/cron.weekly, and
/etc/cron.monthly. The system administrator can enable these scripts by using
the chkconfig command. However, if you do not have a persistent /var, Cray
recommends that you follow Procedure 34.

Procedure 33. Configuring cron for the shared root with persistent /var

Use this procedure for service nodes by using the shared root on systems that are set
up with a persistent /var file system.

164 S–2393–5101

Modifying an Installed System [6]

1. Invoke the chkconfig command in the default view to enable the cron
daemon.

boot:~ # xtopview -m "configuring cron"
default/:/ # chkconfig --force cron on

2. Examine the /etc/cron.hourly, /etc/cron.daily,
/etc/cron.weekly, and /etc/cron.monthly directories and change the
file access permissions to enable or disable distributed cron scripts to meet your
needs. To enable a script, invoke chmod ug+x to make the script executable.
By default, CLEinstall removes the execute permission bit to disable all
distributed cron scripts.

!
Caution: Some distributed scripts impact performance negatively on a CLE
system. To ensure that all scripts are disabled, type the following:

default/:/ # find /etc/cron.hourly /etc/cron.daily \
/etc/cron.weekly /etc/cron.monthly \
-type f -follow -exec chmod ugo-x {} \;

3. Exit xtopview.

default/:/ # exit
boot:~ #

Procedure 34. Configuring cron for the shared root without persistent /var

Because CLE has a shared root, the standard cron initialization script
/etc/init.d/cron activates the cron daemon on all service nodes. Therefore,
the cron daemon is disabled by default and you must turn it on with the
xtservconfig command to specify which nodes you want the daemon to run on.

1. Edit the /etc/group file in the default view to add users who do not have root
permission to the "trusted" group. The operating system requires that all cron
users who do not have root permission be in the "trusted" group.

boot:~ # xtopview
default/:/ # vi /etc/group
default/:/ # exit

2. Create a /var/spool/cron directory in the /ufs file system on the ufs
node which is shared among all the nodes of class login.

boot:~ # ssh root@ufs
ufs:~# mkdir /ufs/cron
ufs:~# cp -a /var/spool/cron /ufs
ufs:~# exit

3. Designate a single login node on which to run the scripts in this directory.
Configure this node to start cron with the xtservconfig command rather
than the /etc/init.d/cron script. This enables users, including root, to
submit cron jobs from any node of class login. These jobs are executed only
on the specified login node.

S–2393–5101 165

Managing System Software for the Cray® Linux Environment

a. Create or edit the following entry in the /etc/sysconfig/xt file in the
shared root file system in the default view.

boot:~ # xtopview
default/:/ # vi /etc/sysconfig/xt
CRON_SPOOL_BASE_DIR=/ufs/cron
default/:/ # exit

b. Start an xtopview shell to access all login nodes by class and configure the
spool directory to be shared among all nodes of class login.

boot:~ # xtopview -c login
class/login:/ #

c. Edit the /etc/init.d/boot.xt-local file to add the following lines.

class/login:/ # vi /etc/init.d/boot.xt-local
MYCLASS_NID= r` ca-helper -i
M

`
YCLASS= x` tnce $MYCLASS_NID | awk -F: '{ print $2 }' | tr -d [:space:]

C
`

RONSPOOL= x` tgetconfig CRON_SPOOL_BASE_DIR
i

`
f ["$MYCLASS" = "login" -a -n "$CRONSPOOL"];then
mv /var/spool/cron /var/spool/cron.$$
ln -sf $CRONSPOOL /var/spool/cron

fi

d. Examine the /etc/cron.hourly, /etc/cron.daily,
/etc/cron.weekly, and /etc/cron.monthly directories and
change the file access permissions to enable or disable distributed cron scripts
to meet your needs. To enable a script, invoke chmod ug+x to make the file
executable. By default, CLEinstall removes the execute permission bit to
disable all distributed cron scripts.

!
Caution: Some distributed scripts impact performance negatively on a
CLE system. To ensure that all scripts are disabled, type the following:

class/login:/ # find /etc/cron.hourly /etc/cron.daily \
/etc/cron.weekly /etc/cron.monthly \
-type f -follow -exec chmod ugo-x {} \;

e. Exit from the login class view.

class/login:/ # exit
boot:~ #

f. Use the xtservconfig command to enable the cron service on a single
login node; in this example, node 8.

boot:~ # xtopview -n 8
node/8:/ # xtservconfig -n 8 add CRON
node/8:/ # exit

The cron configuration becomes active on the next reboot. For more
information, see the xtservconfig(8) man page.

166 S–2393–5101

Modifying an Installed System [6]

6.11 Configuring the Load Balancer
Optional: The load balancer service is optional on systems that run CLE.

The load balancer can distribute user logins to multiple login nodes, allowing users to
connect by using the same Cray host name, for example xthostname.

Two main components are required to implement the load balancer, the lbnamed
service (on the SMW and Cray login nodes) and the site-specific domain name
service (DNS).

When an external system tries to resolve xthostname, a query is sent to the
site-specific DNS. The DNS server recognizes xthostname as being part of the Cray
domain and shuttles the request to lbnamed on the SMW. The lbnamed service
returns the IP address of the least-loaded login node to the requesting client. The
client connects to the Cray system login node by using that IP address.

The CLE software installation process installs lbnamed in
/opt/cray-xt-lbnamed on the SMW and in /opt/cray/lbcd
on all service nodes. Configure lbnamed by using the lbnamed.conf and
poller.conf configuration files on the SMW. For more information about
configuring lbnamed, see the lbnamed.conf(5) man page.

Procedure 35. Configuring lbnamed on the SMW

1. (Optional) If site-specific versions of
/etc/opt/cray-xt-lbnamed/lbnamed.conf and
/etc/opt/cray-xt-lbnamed/poller.conf do not already exist, copy
the provided example files to these locations.

smw:~ # cd /etc/opt/cray-xt-lbnamed/
smw:/etc/opt/cray-xt-lbnamed/ # cp -p lbnamed.conf.example lbnamed.conf
smw:/etc/opt/cray-xt-lbnamed/ # cp -p poller.conf.example poller.conf

2. Edit the lbnamed.conf file on the SMW to define the lbnamed host name,
domain name, and polling frequency.

smw:/etc/opt/cray-xt-lbnamed/ # vi lbnamed.conf

For example, if lbnamed is running on the host name smw.mysite.com,
set the login node domain to the same domain specified for the $hostname.
The Cray system xthostname is resolved within the domain specified as
$login_node_domain.

$poller_sleep = 30;
$hostname = "mysite-lb";
$lbnamed_domain = "smw.mysite.com";
$login_node_domain = "mysite.com";
$hostmaster = "rootmail.mysite.com";

S–2393–5101 167

Managing System Software for the Cray® Linux Environment

3. Edit the poller.conf file on the SMW to configure the login node names.

smw:/etc/opt/cray-xt-lbnamed/ # vi poller.conf
#
groups

login mycray1-mycray3

mycray1 1 login
mycray2 1 login
mycray3 1 login

Note: Because lbnamed runs on the SMW, eth0 on the SMW must be
connected to the same network from which users log on to the login nodes. Do
not put the SMW on the public network.

Procedure 36. Installing the load balancer on an external "white box" server

Optional: Install lbnamed on an external "white box" server as an alternative to
installing it on the SMW. Cray does not test or support this configuration.

A "white box" server is any workstation or server that supports the lbnamed service.

1. Shut down and disable lbnamed.

smw:~# /etc/init.d/lbnamed stop
smw:~# chkconfig lbnamed off

2. Locate the cray-xt-lbnamed RPM on the Cray CLE 5.0.UPnn
Software media and install this RPM on the "white box." Do not install the
lbcd RPM.

3. Follow the instructions in the lbnamed.conf(5) man page to configure
lbnamed, taking care to substitute the name of the external server wherever SMW
is indicated, then enable the service.

6.12 Configuring Node Health Checker (NHC)
For an overview of NHC (sometimes referred to as NodeKARE), see the
intro_NHC(8) man page. For additional information about ALPS and how ALPS
cooperates with NHC to perform application cleanup, see Chapter 8, Using the
Application Level Placement Scheduler (ALPS) on page 267.

6.12.1 /etc/opt/cray/nodehealth/nodehealth.conf Configuration
File

NHC can be run under two basic circumstances:

• when a node boots
• immediately after applications within a reservation have terminated and

immediately after a reservation has terminated

168 S–2393–5101

Modifying an Installed System [6]

The latter circumstance calls Compute Node Cleanup (CNCU). Its objective is to
efficiently return compute nodes to the pool of available nodes with as much free
memory as they have when they are first booted. ALPS invokes NHC after every
application completes and after every reservation completes. The NHC tests that run
after applications are an application set. The NHC tests that run after reservations exit
are a reservation set. With multiple test sets executing, CNCU requires more than
one instance of NHC to be running simultaneously. The advanced_features
NHC control variable must be enabled to use CNCU. The default setting of
advanced_features in the example NHC configuration file is on.

To support running NHC at boot time and after applications and reservations
complete, NHC uses two separate and independent configuration files, which enable
NHC to be configured differently for these situations.

After application and reservation termination: The configuration
file that controls NHC behavior after a job has terminated is
/etc/opt/cray/nodehealth/nodehealth.conf, which is
located in the shared root. The CLE installation and upgrade processes automatically
install this file and enable NHC software; there is no need for you to change any
installation configuration parameters or issue any commands. However, if you like,
you may edit this configuration file to customize NHC behavior. After you do so, the
changes you made are reflected in the behavior of NHC the next time that it runs.

When a node boots: The configuration file that controls NHC behavior on boot
is located on the compute node. To change this file, you must instead change its
template, which is located on the SMW, in one of two locations.

On non-partitioned systems, the SMW template is located here:

/opt/xt-images/templates/default/etc/opt/cray/nodehealth/nodehealth.conf

On partitioned systems, the SMW template is located here, where pxis the partition
number:

/opt/xt-images/templates/default-px/etc/opt/cray/nodehealth/nodehealth.conf

In either case, after you have modified the nodehealth.conf file, you must
remake the boot image for the compute node and reboot the node with the new boot
image in order for your changes to take effect.

Each CLE release package also includes an example NHC configuration file,
/opt/cray/nodehealth/default/etc/nodehealth.conf.example.
The nodehealth.conf.example file is a copy of the
/etc/opt/cray/nodehealth/nodehealth.conf file provided
for an initial installation.

S–2393–5101 169

Managing System Software for the Cray® Linux Environment

Important: The /etc/opt/cray/nodehealth/nodehealth.conf file
is not overwritten during a CLE upgrade if the file already exists.
This preserves your site-specific modifications previously
made to the file. However, you should compare your
/etc/opt/cray/nodehealth/nodehealth.conf file content with the
/opt/cray/nodehealth/default/etc/nodehealth.conf.example
file provided with each release to identify any changes, and then update your
/etc/opt/cray/nodehealth/nodehealth.conf file accordingly.

If the /etc/opt/cray/nodehealth/nodehealth.conf
file does not exist, then the
/opt/cray/nodehealth/default/etc/nodehealth.conf.example
file is copied to the /etc/opt/cray/nodehealth/nodehealth.conf
file.

To use an alternate NHC configuration file, use the xtcleanup_after -f
alt_NHCconfigurationfile option to specify which NHC configuration file to
use with the xtcleanup_after script. For additional information, see the
xtcleanup_after(8) man page.

NHC can also be configured to automatically dump, reboot, or dump and
reboot nodes that have failed tests. This is controlled by the action variable
specified in the NHC configuration file that is used with each NHC test and the
/etc/opt/cray-xt-dumpd/dumpd.conf configuration file. For additional
information, see Using dumpd to Automatically Dump and Reboot Nodes on
page 92, the dumpd(8) man page, and the dumpd.conf configuration file on the
System Management Workstation (SMW).

6.12.2 Configuring Node Health Checker Tests

Edit the /etc/opt/cray/nodehealth/nodehealth.conf file to configure
the NHC tests that will test CNL compute node functionality. All tests that are
enabled will run when NHC is in either Normal Mode or in Suspect Mode. Tests
run in parallel, independently of each other, except for the Free Memory Check
test, which requires that the Application Exited Check test passes before
the Free Memory Check test begins.

The xtcheckhealth binary runs the NHC tests; for information about the
xtcheckhealth binary, see the intro_NHC(8) and xtcheckhealth(8) man
pages.

The NHC tests are listed below. In the default NHC configuration file, each test that
is enabled starts with an action of admindown, except for the Free Memory
Check, which starts with an action of log.

Important: Also read important test usage information in Guidance About NHC
Tests on page 174.

170 S–2393–5101

Modifying an Installed System [6]

• Accelerator, which tests the health of any accelerators present on the node. It
is an application set test and should not be run in the reservation set.

The global accelerator test (gat) script detects the type of accelerator(s) present
on the node and then launches a test specific to the accelerator type. The test
fails if it is unable to run successfully on the accelerator, or if the amount of
allocated memory on the accelerator exceeds the amount specified using the gat
-m argument.

The Accelerator test is enabled in the default NHC configuration file.

• Application Exited Check, which verifies that any remaining processes
from the most recent application have terminated. It is an application set test and
should not be run in the reservation set because an application is not associated
with a reservation cancellation.

The Application Exited Check test checks locally on the compute node
to see if there are processes running under the ID of the application (APID).
If there are processes running, then NHC waits a period of time (set in the
configuration file) to determine if the application processes exit properly. If the
process does not exit within that time, then this test fails.

The Application Exited Check test is enabled in the default NHC
configuration file.

• Apinit Log and Core File Recovery, which is a plugin script to copy
apinit core dump and log files to a login/service node. It is an application
set test.

This test is not enabled in the default NHC configuration file. It should not be
enabled until after a destination directory is decided on and specified in the NHC
configuration file.

• Apinit Ping, which verifies that the ALPS daemon is running on the compute
node and is responsive. It is an application set test.

The Apinit Ping test queries the status of the apinit daemon locally on
each compute node; if the apinit daemon does not respond to the query, then
this test fails.

The Apinit Ping test is enabled in the default NHC configuration file.

• Free Memory Check, which examines how much memory is consumed on
a compute node while applications are not running. Use it only as a reservation
test because an application within a reservation may leave data for the another
application in a reservation. If run in the application set, Free Memory Check
could consider data that was intentionally left for the next application to be leaked
memory and mark the node admindown. Run the Free Memory Test only
after the Reservation test passes successfully.

S–2393–5101 171

Managing System Software for the Cray® Linux Environment

The Free Memory Check test is enabled in the default NHC configuration
file; however, its action is log only.

• Filesystem, which ensures that the compute node is able to perform simple
I/O to the specified file system. It is configured as an application set test in the
default configuration, but it can be run in the reservation set. For a file system
that is mounted read-write, the test performs a series of operations on the file
system to verify the I/O. A file is created, written, flushed, synced, and deleted.
If a mount point is not explicitly specified, the mount point(s) from the compute
node /etc/fstabs file will be used and a Filesystem test will be created
for each mount point found in the file. If a mount point is explicitly specified, then
only that file system will be checked. You can specify multiple FileSystem
tests by placing multiple Filesystem lines in the configuration file. One line
could specify the implicit Filesystem test. The next line could specify a
specific file system that does not appear in /etc/fstab. This could continue
for any and all file systems.

If you enable the Filesystem test, you can place an
optional line (such as, Excluding: FileSystem-foo) in the
/etc/opt/cray/nodehealth/nodehealth.conf configuration file that
allows you to list mount points that should not be tested by the Filesystem
test. This allows you to intentionally exclude specific mount points even though
they appear in the fstab file. This action prevents NHC from setting nodes
to admindown because of errors on relatively benign file systems. Explicitly
specified mount points cannot be excluded in this fashion; if they should not be
checked, then they should simply not be specified.

The Filesystem test creates its temporary files in a subdirectory
(.nodehealth.fstest) of the file system root. An error message is written
to the console when the unlink of a file created by this test fails.

The Filesystem test is enabled in the default NHC configuration file.

• Hugepages, which calculates the amount of memory available in a specified
page size with respect to a percentage of /proc/boot_freemen. It is a
reservation set test.

This test will continue to check until either the memory clears up or the time-out
is reached. The default time-out is 300 seconds.

The Hugepages test is disabled in the default NHC configuration file.

• Sigcont Plugin, which sends a SIGCONT signal to the processes of the
current APID. It is an application set test.

The Sigcont Plugin test is disabled in the default NHC configuration file.

• Plugin, which allows scripts and executables not built into NHC to be run,

172 S–2393–5101

Modifying an Installed System [6]

provided they are accessible on the compute node. No plugins are configured by
default and the Plugin test is disabled in the default NHC configuration file so
that local configuration settings may be used.

For information about writing a plugin test, see Writing a Node Health Checker
(NHC) Plugin Test.

• ugni_nhc_plugins, which tests the User level Gemini Network Interface
(uGNI) on compute nodes. It is a reservation set test and an application set test.
By extension, testing the uGNI interface also tests the proper operation of parts
of the network interface card (NIC). The test sends a datagram packet out to the
node's NIC and back again.

• Reservation, which checks for the existence of the
/proc/reservations/rid directory, where rid is the reservation
ID. It is a reservation set test, and should not be run in the application set.

If this directory still exists, the test will attempt to end the reservation and then
wait for the specified timeout value for the directory to disappear. If the test fails
and Suspect Mode is enabled, NHC enters Suspect Mode. In Suspect Mode,
Reservation continues running, repeatedly requesting that the kernel clean
up the reservation, until the test passes or until Suspect Mode times out. If the
directory does not disappear in that time, the test prints information to the console
and exits with a failure.

The Reservation test is enabled in the default NHC configuration file, with a
timeout value of 300 seconds.

Individual tests may appear multiple times in the
/etc/opt/cray/nodehealth/nodehealth.conf file,
with different variable values. Every time a test is specified in the
/etc/opt/cray/nodehealth/nodehealth.conf file, NHC will run that
test. This means if the same line is specified five times, NHC will try to run that
same test five times. This functionality is mainly used in the case of the Plugin
test, allowing you to specify as many additional tests as you want to write, or the
Filesystem test, allowing you to specify as many additional file systems as you
want. However, any test can be specified to run any number of times. Different
parameters and test actions can be set for each test. For example, this could be used
so that you can set up hard limits and soft limits for the Free Memory Check test.
Two Free Memory Check tests could be specified in the configuration file; the
first test configured to only warn about small amounts of non-free memory, and the
second test configured to admindown a node that has large amounts of non-free
memory. See the /etc/opt/cray/nodehealth/nodehealth.conf file
for configuration information.

S–2393–5101 173

Managing System Software for the Cray® Linux Environment

6.12.2.1 Guidance About NHC Tests

Guidance about the Accelerator test: This test uses the global accelerator test
(gat) script (/opt/cray/nodehealth/default/bin/gat.sh) to first
detect the accelerator type and then launch the test specific to that type of accelerator.
The gat script supports two arguments for NVIDIA GPUs:

-m maximum_memory_size

You can specify the maximum_memory_size as either a kilobyte
value or a percentage of total memory. For example, -m 100
specifies that no more than 100 kilobytes of memory can be
allocated, while -m 10% specifies that no more than 10 percent of
memory can be allocated.

In the default NHC configuration file, the specified memory size is
10%.

-r Perform a soft restart on the GPU and then rerun the test. In the
default NHC configuration file, the -r argument is specified.

The gat script has the following options for Intel Xeon Phi:

-M kilobytes or -M n%

This option works exactly as the -m option for the NVIDIA GPUs.

-c Specifies the minimum number of cores that must be active on the
Xeon Phi for the test to pass. If -c is omitted, the minimum number
of active cores required to pass the test is the total number of cores on
the Xeon Phi.

174 S–2393–5101

Modifying an Installed System [6]

Guidance about the Application Exited Check and Apinit Ping
tests: These two tests must be enabled and both tests must have their action set as
admindown or die; otherwise, NHC runs the risk of allowing ALPS to enter a
live-lock. (Specify the die action only when the advanced_features control
variable is turned off.) ALPS must guarantee the following two things about the
nodes in a reservation before releasing that reservation: 1) ALPS must guarantee that
ALPS is functioning on the nodes, and 2) ALPS must guarantee that the previous
application has exited from the nodes. Either those two things are guaranteed or the
nodes must be set to some state other than up. When either ALPS has guaranteed
the two things about the nodes or the nodes have been set to some state other than
up, then ALPS can release the reservation. These two NHC tests guarantee those
two things: 1) the Apinit_ping test guarantees that ALPS is functioning on
the nodes, and 2) the Application_Exited_Check test guarantees that the
previous application has exited from the nodes. If either test fails, then NHC sets
the nodes to suspect state (if Suspect Mode is enabled; otherwise, NHC sets the
nodes to admindown or unavail). In the end, either the nodes pass those tests,
or the nodes are no longer in the up state. In either case, ALPS is free to release
the reservation and the live-lock is avoided. However, this only happens if the two
tests are enabled and their action is set as admindown or die. The log action
does not suffice because it does not change the state of the nodes. If either test is
disabled or has an action of log, then ALPS may live-lock. In this live-lock, ALPS
will call NHC endlessly.

Guidance about the Filesystem test: The NHC Filesystem test can take an
explicit argument (the mount point of the file system) or no argument. If an argument
is provided, then the Filesystem test is referred to as an explicit Filesystem
test. If no argument is given, the Filesystem test is referred to as an implicit
Filesystem test.

The explicit Filesystem test will test the file system located at the specified mount
point.

The implicit Filesystem test will test each file system listed in the /etc/fstab
file on each compute node. The implicit Filesystem test is enabled by default
in the NHC configuration file.

The Filesystem test will determine whether a file system is mounted read-only or
read-write. If the file system is mounted read-write, then NHC will attempt to write to
it. If it is mounted read-only, then NHC will attempt to read the directory entities "."
and ".." in the file system to guarantee, at a minimum, that the file system is readable.

S–2393–5101 175

Managing System Software for the Cray® Linux Environment

Some file systems are mounted on the compute nodes as read-write file systems,
while their underlying permissions are read-only. As an example, for an
auto-mounted file system, the base mount-point may have read-only permissions;
however, it could be mounted as read-write. It would be mounted as read-write,
so that the auto-mounted sub-mount-points could be mounted as read-write. The
read-only permissions prevent tampering with the base mount-point. In a case such as
this, the Filesystem test would see that the base mount-point had been mounted
as a read-write file system. The Filesystem test would try to write to this file
system, but the write would fail due to the read-only permissions. Because the write
fails, then the Filesystem test would fail, and NHC would incorrectly decide
that the compute node is unhealthy because it could not write to this file system.
For this reason, file systems that are mounted on compute nodes as read-write file
systems, but are in reality read-only file systems, should be excluded from the implicit
Filesystem test.

You can exclude tests by adding an "Excluding: file system mount point" line in the
NHC configuration file. See the NHC configuration file for further details and an
example.

A file system is deemed a critical file system if it is needed to run applications. All
systems will likely need at least one shared file system for reading and writing input
and output data. Such a file system would be a critical file system. File systems
that are not needed to run applications or read and write data would be deemed as
noncritical file systems. You need to determine the criticality of each file system.

Cray recommends the following:

• Excluding noncritical file systems from the implicit Filesystem test. See the
NHC configuration file for further details and an example.

• If there are critical file systems that do not appear in the /etc/fstab file
on the compute nodes (such file systems would not be tested by the implicit
Filesystem test), these critical file systems should be checked through explicit
Filesystem tests. You can add explicit Filesystem tests to the NHC
configuration file by providing the mount point of the file system as the final
argument to the Filesystem test. See the NHC configuration file for further
details and an example.

• If you have a file system that is mounted as read-write but it has read-only
permissions, you should exclude it from the implicit Filesystem test. NHC
does not support such file systems.

176 S–2393–5101

Modifying an Installed System [6]

Guidance about the Hugepages test: The Hugepages test runs the
hugepages_check command, which supports two arguments.

-p percentage

Use this argument to specify the percentage of
/proc/boot_freemem. If this test is enabled and this
argument is not supplied, the default of -p 60 is used.

-s size Specify the hugepage size. The valid sizes are 2, 4, 8, 16, 32, 64,
128, 256, and 512. If this test is enabled and this argument is not
supplied, the default of -s 2 is used.

Guidance about the NHC Lustre file system test: The Lustre file system has its
own hard time-out value that determines the maximum time that a Lustre recovery
will last. This time-out value is called RECOVERY_TIME_HARD, and it is located in
the file system's fs_defs file. The default value for the RECOVERY_TIME_HARD
is fifteen minutes.

Important: The time-out value for the NHC Lustre file system test should be
twice the RECOVERY_TIME_HARD value.

The default in the NHC configuration file is thirty minutes, which is
twice the default RECOVERY_TIME_HARD. If you change the value of
RECOVERY_TIME_HARD, you must also correspondingly change the time-out
value of the NHC Lustre file system test.

The NHC time-out value is specified on this line in the NHC configuration file:

Lustre: <warning time-out> <test time-out> <restart delay>
Lustre: 900 1800 60

If you change the RECOVERY_TIME_HARD value, you must change the 1800
seconds (thirty minutes) to reflect your new RECOVERY_TIME_HARD multiplied by
two.

Further, the overall time-out value of NHC's Suspect Mode is based on the maximum
time-out value for all of the NHC tests. Invariably, the NHC Lustre file system test
has the longest time-out value of all the NHC tests.

Important: If you change the NHC Lustre file system test time-out value, then
you must also change the time-out value for Suspect Mode. The time-out value
for Suspect Mode is set by the suspectend variable in the NHC configuration
file. The guidance for setting the value of suspectend is that it should be
the maximum time-out value, plus an additional buffer. In the default case,
suspectend was set to thirty-five minutes – thirty minutes for the Lustre
test, plus an additional five-minute buffer. For more information about the
suspectend variable, see Suspect Mode on page 183.

S–2393–5101 177

Managing System Software for the Cray® Linux Environment

6.12.2.2 NHC Control Variables

The following variables in
/etc/opt/cray/nodehealth/nodehealth.conf affect the fundamental
behavior of NHC.

nhcon: [on|off]

Turning off nhcon disables NHC entirely.

Default: on

advanced_features: [on|off]

If set to on, this variable allows multiple instances of NHC to
run simultaneously. This variable must be on to use CNCU and
reservation sets.

Default: on

dumpdon: [on|off]

If set to off, NHC will not request any dumps or reboots from
dumpd. This is a quick way to turn off dump and reboot requests
from NHC. The dump, reboot, and dumpreboot actions do not
function properly when this variable is off.

Default: on

anyapid: [on|off]

Turning anyapid on specifies that NHC should look for any apid
in /dev/cpuset while running the Application Exited
Check and print stack traces for processes that are found.

Default:off

6.12.2.3 Global Configuration Variables That Affect All NHC Tests

The following global configuration variables may be set in the
/etc/opt/cray/nodehealth/nodehealth.conf file to alter
the behavior of all NHC tests. The global configuration variables are case-insensitive.

Runtests: Frequency

Determines how frequently NHC tests are run on the compute nodes.
Frequency may be either errors or always. When the value
errors is specified, the NHC tests are run only when an application
terminates with a non-zero error code or terminates abnormally.
When the value always is specified, the NHC tests are run after
every application termination. If you do not specify the Runtests
global variable, the implicit default is errors.

178 S–2393–5101

Modifying an Installed System [6]

This variable applies only to tests in the application set; reservations
do not terminate abnormally.

Connecttime: TimeoutSeconds

Specifies the amount of time, in seconds, that NHC waits for a node
to respond to requests for the TCP connection to be established. If
Suspect Mode is disabled and a particular node does not respond
after connecttime has elapsed, then the node is marked
admindown. If Suspect Mode is enabled and a particular node
does not respond after connecttime has elapsed, then the node
is marked suspect. Then, NHC will attempt to contact the node
with a frequency established by the recheckfreq variable. (For
information about Suspect Mode and the recheckfreq variable,
see Suspect Mode on page 183.)

If you do not specify the Connecttime global variable, then
the implicit default TCP time-out value is used. NHC will not
enforce time-out on the connections if none is specified. The
Connecttime: TimeoutSeconds value provided in the default NHC
configuration file is 60 seconds.

The following global variables control the interaction of NHC and dumpd, the SMW
daemon that initiates automatic dump and reboot of nodes.

maxdumps: MaximumNodes

Specifies the number of nodes that fail with the dump or
dumpreboot action that will be dumped. For example, if NHC
was checking on 10 nodes that all failed tests with the dump or
dumpreboot actions, only the number of nodes specified by
maxdumps would be dumped, instead of all of them. The default
value is 1.

To disable dumps of failed nodes with dump or dumpreboot
actions, set maxdumps: 0.

downaction: action

Specifies the action NHC takes when it encounters a down node.
Valid actions are log, dump, reboot, and dumpreboot. The
default action is log.

downdumps: number_dumps

Specifies the maximum number of dumps that NHC will dump for
a given APID, assuming that the downaction variable is either
dump or dumpreboot. These dumps are in addition to any dumps
that occur because of NHC test failures. The default value is 1.

S–2393–5101 179

Managing System Software for the Cray® Linux Environment

The following global variables control the interaction between NHC, ALPS, and
the SDB.

alps_recheck_max: number of seconds

NHC will attempt to verify its view of the nodes's states with the
ALPS view. If NHC is unable to contact ALPS, this variable controls
the maximum delay between rechecks.

Default value: 10 seconds

alps_sync_timeout: number of seconds

If NHC is unable to contact ALPS to verify the nodes's states, this
variable controls the length of time before NHC gives up and aborts.

Default value: 1200 seconds

alps_warn_time: number of seconds

If NHC is unable to contact ALPS to verify the nodes's states, this
variable controls how often warnings are issued.

Default value: 120 seconds

sdb_recheck_max: number of seconds

NHC will contact the SDB to query for the nodes's states. If NHC is
unable to contact the SDB, this variable controls the maximum delay
between rechecks.

Default value: 10 seconds

sdb_warn_time: number of seconds

If NHC is unable to contact the SDB, this variable controls how often
warnings are issued.

Default value: 120 seconds

node_no_contact_warn_time: number of seconds

If NHC is unable to contact a specific node, this variable controls
how often warnings are issued.

Default value: 600 seconds

The following global variable controls NHC's use of node states.

unhealthy_state: swdown

When a node is deemed unhealthy, it is normally is set to
admindown. This variable permits a different state to be chosen
instead.

180 S–2393–5101

Modifying an Installed System [6]

Default: not set

unhealthy_state: rebootq

When a node is going to be rebooted, it normally is set to Unavail.
This variable permits a different state to be chosen instead.

Default: not set

6.12.2.4 Standard Variables That Affect Individual NHC Tests

The following variables are used with each NHC test; set each variable for each
test. All variables are case-insensitive. Each NHC test has values supplied for these
variables in the default NHC configuration file.

Note: Specific NHC tests require additional variables, which are defined in the
nodehealth configuration file.

action Specifies the action to perform if the compute node fails the given
NHC test. action may have one of the following values:

• log — Logs the failure to the system console log; the log
action will not cause a compute node's state to be set to
admindown.

Important: Tests that have an action of Log do not run in
Suspect Mode. If you use plugin scripts with an action of Log,
the script will only be run once, in Normal Mode; this makes
log collecting and various other maintenance tasks easier to
code.

• admindown — Sets the compute node's state to admindown
(no more applications will be scheduled on that node) and logs
the failure to the system console log.

If Suspect Mode is enabled, the node will first be set to
suspect state, and if the test continues to fail, the node will be
set to admindown at the end of Suspect Mode.

• die — Halts the compute node so that no processes can run
on it, sets the compute node's state to admindown, and logs
the failure to the system console log. (The die action is the
equivalent of a kernel panic.) This action is good for catching
bugs because the state of the processes is preserved and can be
dumped at a later time.

Note: If the advanced_features variable is enabled, die
is not allowed.

S–2393–5101 181

Managing System Software for the Cray® Linux Environment

Each subsequent action includes the actions that preceded it; for
example, the die action encompasses the admindown and log
actions.

Note: If NHC is running in Normal Mode and cannot contact a
compute node, and if Suspect Mode is not enabled, NHC will set
the compute node's state to admindown.

The following actions control the NHC and dumpd interaction.

• dump — Sets the compute node's state to admindown and
requests a dump from the SMW, in accordance with the
maxdumps configuration variable.

• reboot — Sets the compute node's state to unavail and
requests a reboot from the SMW. The unavail state is used
rather than the admindown state when nodes are to be rebooted
because a node that is set to admindown and subsequently
rebooted stay in the admindown state. The unavail state does
not have this limitation.

• dumpreboot — Sets the compute node's state to unavail and
requests a dump and reboot from the SMW.

warntime Specifies the amount of test time, in seconds, that should elapse
before xtcheckhealth logs a warning message to the console
file. This allows an administrator to take corrective action, if
necessary, before the timeout is reached.

timeout Specifies the total time, in seconds, that a test should run before an
error is returned by xtcheckhealth and the specified action is
taken.

restartdelay

Valid only when NHC is running in Suspect Mode. Specifies how
long NHC will wait, in seconds, to restart the test after the test fails.
The minimum restart delay is one second.

sets Indicates when to run a test. The default NHC configuration
specifies to run specific tests after application completion and to
run an alternate group of tests at reservation end. When ALPS
calls NHC at the end of the application, tests marked with Sets:
Application are run. By default, these tests are: Filesystem,
Accelerator, ugni_nhc_plugins, Application
Exited Check, Apinit Ping Test, and Apinit Log and
Core File Recovery. At the end of the reservation, ALPS
calls tests marked Sets: Reservation. By default, these are:
Free Memory Check, ugni_nhc_plugins, Reservation,
and Hugepages Check.

182 S–2393–5101

Modifying an Installed System [6]

If no set is specified for a test, it will default to Application, and
run when ALPS calls NHC at the end of the application. If NHC
is launched manually, using the xtcheckhealth command, and
the -m sets argument is not specified on the command line, then
xtcheckhealth defaults to running the Application set.

If a test is marked Sets: All, it will always run, regardless of
how NHC is invoked.

6.12.3 Suspect Mode

Upon entry into Suspect Mode, NHC immediately allows healthy nodes to be
returned to the resource pool. Suspect Mode allows the remaining nodes, which
are all in suspect state, an opportunity to return to healthiness. If the nodes
do not return to healthiness by the end of the Suspect Mode (determined by the
suspectend global variable; see below), their states are set to admindown. For
more information about how Suspect Mode functions, see the intro_NHC(8) man
page.

Important: Suspect Mode is enabled in the default
/etc/opt/cray/nodehealth/nodehealth.conf configuration file.
Cray Inc. recommends that you run NHC with Suspect Mode enabled.

If enabled, the default NHC configuration file provided from Cray Inc. uses the
following Suspect Mode variables:

suspectenable:

Enables Suspect Mode; valid values are y and n. The
/etc/opt/cray/nodehealth/nodehealth.conf
configuration file provided from Cray Inc. has this variable set as
suspectenable: y.

suspectbegin:

Sets the Suspect Mode timer. Suspect Mode starts after the
number of seconds indicated by suspectbegin have expired.
The /etc/opt/cray/nodehealth/nodehealth.conf
configuration file provided from Cray Inc. has this variable set as
suspectbegin: 180.

suspectend:

Suspect Mode ends after the number of seconds indicated
by suspectend have expired. This timer only
starts after NHC has entered Suspect Mode. The
/etc/opt/cray/nodehealth/nodehealth.conf
configuration file provided from Cray Inc. has this variable set as
suspectend: 2100.

S–2393–5101 183

Managing System Software for the Cray® Linux Environment

Considerations when evaluating shortening the length of Suspect
Mode:

• You can shorten the length of Suspect Mode if you do not
have external file systems, such as Lustre, that NHC would be
checking.

• The length of Suspect Mode should be at least a few seconds
longer than the longest time-out value for any of the NHC tests.
For example, if the Filesystem test had the longest time-out
value at 900 seconds, then the length of Suspect Mode should
be at least 905 seconds.

• The longer Suspect Mode is, the longer nodes have to recover
from any unhealthy situations. Setting the length of Suspect
Mode too short reduces this recovery time and increases the
likelihood of the nodes being marked admindown prematurely.

recheckfreq:

Suspect Mode rechecks the health of the nodes in suspect state at
a frequency specified by recheckfreq. This value is in seconds.
The /etc/opt/cray/nodehealth/nodehealth.conf
configuration file provided from Cray Inc. has this variable set as
recheckfreq: 300. (For a detailed description about NHC
actions during the recheck process, see the intro_NHC(8) man
page.)

6.12.4 NHC Messages

NHC messages may be found on the SMW in
/var/opt/cray/log/sessionid/nhc-YYYYMMDD with
'<node_health:M.m>' in the message, where M is the major and m is the
minor NHC revision number. All NHC messages are visible in the console file.

NHC prints a summary message per node at the end of Normal Mode and Suspect
Mode when at least one test has failed on a node. For example:

<node_health:3.1> APID:100 (xtnhc) FAILURES: The following tests have failed in normal mode:
<node_health:3.1> APID:100 (xtnhc) FAILURES: (Admindown) Apinit_Ping
<node_health:3.1> APID:100 (xtnhc) FAILURES: (Admindown) Plugin /example/plugin
<node_health:3.1> APID:100 (xtnhc) FAILURES: (Log Only) Filesystem_Test on /mydir
<node_health:3.1> APID:100 (xtnhc) FAILURES: (Admindown) Free_Memory_Check
<node_health:3.1> APID:100 (xtnhc) FAILURES: End of list of 5 failed test(s)

184 S–2393–5101

Modifying an Installed System [6]

The xtcheckhealth error and warning messages include node IDs and
application IDs and are written to the console file on the SMW; for example:

[2010-04-05 23:07:09][c1-0c2s0n0]<node_health:3.0> APID:2773749
(check_apid) WARNING: Failure: File /dev/cpuset/2773749/tasks exists and is not empty. \
The following processes are running under expired APID
2773749:
[2010-04-05 23:07:09][c1-0c2s0n1]<node_health:3.0> APID:2773749
(check_apid) WARNING: Pid: 300 Name: (marys_program) State: D

The xtcleanup_after script writes its normal launch information to
the /var/log/xtcheckhealth_log file, which resides on the login
nodes. The xtcleanup_after launch information includes the time that
xtcleanup_after was launched and the xtcleanup_after's call to
xtcheckhealth.

The xtcleanup_after script writes error output (launch failure information) to
the /var/log/xtcheckhealth_log file, to the console file on the SMW, and
to the syslog.

Example xtcleanup_after output follows:

Thu Apr 22 17:48:18 CDT 2010 <node_health> (xtcleanup_after) \
/opt/cray/nodehealth/3.0-1.0000.20840.30.8.ss/bin/xtcheckhealth -a 10515 \
-e 1 /tmp/apsysLVNqO9 /etc/opt/cray/nodehealth/nodehealth.conf

6.12.5 What if a Login Node Crashes While xtcheckhealth Binaries are
Monitoring Nodes?

If a login node crashes while some xtcheckhealth binaries on that login node
are monitoring compute nodes that are in suspect state, those xtcheckhealth
binaries will die when the login node crashes. When the login node that crashed
is rebooted, a recovery action takes place. When the login node boots, the
node_health_recovery binary starts up. This script checks for all compute
nodes that are in suspect state and were last set to suspect state by this login
node. The script then determines the APID of the application that was running on
each of these compute nodes at the time of the crash. The script then launches
an xtcheckhealth binary to monitor each of these compute nodes. One
xtcheckhealth binary is launched per compute node monitored.

xtcheckhealth will be launched with this APID, so it can test for any processes
that may have been left behind by that application. This testing only takes place if
the Application_Exited_Check test is enabled in the configuration file. (The
Application_Exited_Check test is enabled in the default NHC configuration
file.) If the Application_Exited_Check test is not enabled, when the recovery
action takes place, NHC does not run the Application_Exited_Check test
and will not check for leftover processes. However, it will run any other NHC tests
that are enabled in the configuration file.

S–2393–5101 185

Managing System Software for the Cray® Linux Environment

Nodes will be changed from suspect state to up or admindown, depending upon
whether they fail any health checks. No system administrator intervention should
be necessary.

NHC automatically recovers the nodes in suspect state when the crashed login
node is rebooted because the recovery feature runs on the rebooted login node. If the
crashed login node is not rebooted, then manual intervention is required to rescue the
nodes from suspect state. This manual recovery can commence as soon as the
login node has crashed. To recover from a login node crash during the case in which
a login node will not be rebooted, the nhc_recovery binary is provided to help
you release the compute nodes owned by the crashed login node; see Procedure 37
on page 186. Also, see the nhc_recovery(8) man page for a description of the
nhc_recovery binary usage.

Procedure 37. Recovering from a login node crash when a login node will not
be rebooted

1. Create a nodelistfile that contains a list of the nodes in the system that are
currently in Suspect Mode. The file must be a list of NIDs, one per line; do not
include a blank line at the end of the file.

2. To list all of the suspect nodes in the system and which login nodes own those
nodes, execute the following command; use the nodelistfile you created in step 1.

nhc_recovery -d nodelistfile

3. Parse the nhc_recovery output for the NID of the login node that crashed.
The file (for example, name it nodelistfile_computenodes) of this
parsed list should contain all of the compute nodes owned by the crashed login
node.

4. If you plan to recover the suspect nodes by using the option in step 6.a below,
then complete this step; otherwise, skip this step.

Note: This recovery method is recommended.

From the list you created in step 3, create nodelistfiles containing nodes that
share the same APID to determine the nodes from the crashed login node.
For example, your nodelistfiles can be named nodelistfile-APID1,
nodelistfile-APID2, nodelistfile-APID3, and so on.

5. Using the file you created in step 3, release all of the suspect compute nodes
owned by the crashed login node. Execute the following command:

nhc_recovery -r nodelistfile_computenodes

6. All of these compute nodes have been released in the database. However, they
are all still in suspect state. Determine what to do with these suspect nodes
from the following three options:

a. (Cray recommends this option) Rerun NHC on a non-crashed login node to
recover the nodes listed in step 4. Invoke NHC for each nodelistfile. Supply

186 S–2393–5101

Modifying an Installed System [6]

as the APID argument the APID that corresponds to the nodelistfile; an
iteration count of 0 (zero), which is the value normally supplied to NHC by
ALPS; and an application exit code of 1 (one). An exit code of 1 ensures that
NHC will run regardless of the value of the runtests variable (always or
errors) in the NHC configuration file. For example:

xtcleanup_after -s nodelistfile-APID1 APID1 0 1
xtcleanup_after -s nodelistfile-APID2 APID2 0 1
xtcleanup_after -s nodelistfile-APID3 APID3 0 1
.
.
.

b. These suspect nodes can be set to admindown and their fate determined
by further analysis.

c. These suspect nodes can be set back to up, but they were in Suspect Mode
for a reason.

6.12.6 Disabling NHC

To disable NHC entirely, set the value of the nhcon global variable in the
/etc/opt/cray/nodehealth/nodehealth.conf file to off (the default
value in the file provided from Cray Inc. is on).

6.12.7 nodehealth Modulefile

To gain access to the NHC functions, the nodehealth module must be loaded. The
admin-modules modulefile loads the nodehealth module, or you can load the
nodehealth module by executing the following command:

module load nodehealth

The Base-opts.default.local file includes the admin-modules
modulefile. For additional information about the Base-opts.default.local
file, see System-wide Default Modulefiles on page 124.

6.12.8 Configuring the Node Health Checker to Use SSL

Note: NHC is configured to use secure sockets layer (SSL) protocol by default.
Although this setting is configurable, Cray recommends that all sites configure
NHC to use SSL.

If your site requires authentication and authorization to protect access to compute
nodes, you can configure compute nodes to perform node health checking by using
the openssl utility and secure sockets layer (SSL) protocol. SSL provides optional
security functionality for NHC.

To enable the use of SSL, set the NHC_SSL setting in the CLEinstall.conf
file to yes.

S–2393–5101 187

Managing System Software for the Cray® Linux Environment

For more information about configuring NHC to use SSL, see Installing and
Configuring Cray Linux Environment (CLE) Software.

6.13 Activating Process Accounting for Service Nodes
The GNU 6.4 accounting package uses Berkeley Software Design (BSD) type process
accounting. The GNU 6.4 process accounting is enabled for the Cray system's service
nodes. The package name is acct; it can be activated using the acct boot script.
To enable the acct boot script, execute the following command on the boot node
root and/or shared root:

boot:~ # chkconfig acct on

The GNU 6.4 process accounting utilities process V2 and V3 format records
seamlessly, even if the data is written to the same file. Output goes to an accounting
file, which by default is /var/account/pacct. The accounting utilities provided
for administration use are: ac, lastcomm, accton, and sa. The related man pages
are accessible by using the man command.

6.14 Configuring Failover for Boot and SDB Nodes
The boot node is integral to the operation of a Cray system. Critical services like the
Application Level Placement Scheduler (ALPS) and Lustre rely on the SDB and
will fail if the SDB node is unavailable. The CLE release provides functionality to
create standby boot and SDB nodes that automatically act as a backup in the event of
primary node failure. Failover allows the system to keep running without an interrupt
to the system or system services.

Note: The boot-node and SDB node failover features do not provide a failback
capability.

A virtual network is configured for the boot and SDB nodes to support failover for
these nodes. The virtual network is configured by default, regardless of the boot or
SDB node failover configuration on your system.

The CLEinstall program provides the capability to change the default virtual
network configuration, however, the default values are acceptable is most cases. For
more information, see Installing and Configuring Cray Linux Environment (CLE)
Software or the CLEinstall.conf(5) man page.

6.14.1 Configuring Boot-node Failover

When you configure a secondary (backup) boot node, boot-node failover occurs
automatically when the primary boot node fails.

188 S–2393–5101

Modifying an Installed System [6]

The following services run on the boot node:

• NFS shared root (read-only)

• NFS persistent /var (read-write)

• Boot node daemon, bnd

• Hardware supervisory system (HSS) and system database (SDB) synchronization
daemon, xtdbsyncd

• ALPS daemons apbridge, apres, and apwatch (for information about
configuring ALPS, see Chapter 8, Using the Application Level Placement
Scheduler (ALPS) on page 267)

When the primary boot node is booted, the backup boot node also begins to boot.
However, the backup boot node makes a call to the rca-helper utility before it
mounts its root file system, causing the backup boot node to be suspended until a
primary boot-node failure event is detected.

The rca-helper daemon running on the backup boot node waits for a primary
boot-node failure event, ec_node_failed. When the heartbeat of the primary
boot node stops, the blade controller begins the heartbeat checking algorithm to
determine if the primary boot node has failed. When the blade controller determines
that the primary boot node has failed, it sends an ec_heartbeat_stop event
to set the alert flag for the primary node. The primary boot node is halted through
STONITH. Setting the alert flag on the node triggers the HSS state manager on
the SMW to send out the ec_node_failed event.

When the rca-helper daemon running on the backup boot node receives an
ec_node_failed event alerting it that the primary boot node has failed, it allows
the boot process of the backup boot node to continue. Any remaining boot actions
occur on the backup boot node. Booting of the backup boot node takes approximately
two minutes.

Each service node runs a failover manager daemon (rca_arpd). When each service
node's rca_arpd receives the ec_node_failed event, it takes appropriate
action. The rca_arpd process updates the ARP cache entry for the boot node
virtual IP address to reference the backup boot node.

S–2393–5101 189

Managing System Software for the Cray® Linux Environment

The purpose of this implementation of boot-node failover is to ensure that the system
continues running, not to guarantee that every job will continue running. Therefore,
note the following:

• During the time the primary boot node has failed, any service node that tries to
access its root file system will be I/O blocked until the backup boot node is online,
at which time the request will be satisfied and the operation will resume. In
general, this means if an application is running on a service node, it can continue
to run if the application is in memory and does not need to access disk. If it
attempts to access disk for any reason, it will be blocked until the backup boot
node is online.

• Applications running on compute nodes are affected only if they cause a service
node to access its root file system, in which case the service node function would
be blocked until the backup boot node is online.

The following is a list of requirements for configuring your system for boot-node
failover:

• The backup boot node requires a Host Bus Adapter (HBA) card to communicate
with the RAID.

Note: You must configure the backup boot node in the same zone as the
primary boot node.

• You must ensure that the boot RAID host port can see the desired LUNs; for
DDN, use the host port mapping; for NetApp (formerly LSI and Engenio), use
SANshare in the SANtricity® Storage Manager.

• The backup boot node also requires a Gigabit Ethernet card connected through a
Gigabit Ethernet switch to the same port on the SMW as the primary boot node
(typically port 4 of the SMW quad Ethernet card).

• You must enable the STONITH capability on the blade or module of the primary
boot node in order to use the boot node failover feature. STONITH is a per blade
setting and not a per node setting. Ensure that your primary boot node is located
on a separate blade from services with conflicting STONITH requirements, such
as Lustre.

Procedure 38. Configuring boot-node failover

Note: If you configured boot-node failover during your CLE software installation
or upgrade (as documented in the Installing and Configuring Cray Linux
Environment (CLE) Software), this procedure is not needed.

Tip: Use the nid2nic or rtr --system-map commands to translate between
node or NIC IDs and physical ID names.

1. As crayadm on the SMW, halt the primary and alternate boot nodes.

190 S–2393–5101

Modifying an Installed System [6]

Warning: Verify that your system is shut down before you invoke the xtcli
halt command.

crayadm@smw:~> xtcli halt primary_id, backup_id

2. Update the default boot configuration used by the boot manager to boot nodes by
using the xtcli command:

crayadm@smw:~> xtcli boot_cfg update -b primary_id,
backup_id -i /bootimagedir/bootimage

Or

If you are using /raw0, use the following command:

crayadm@smw:~> xtcli boot_cfg update -i /raw0

If you are using partitions, use the following command to designate the primary
boot node and the backup boot node:

crayadm@smw:~> xtcli part_cfg update pN -b primary_id,backup_id -i /bootimagedir/bootimage

Or

If you are using /raw0, use the following command:

crayadm@smw:~> xtcli part_cfg update pN -i /raw0

3. Update the CLEinstall.conf file to designate the primary and backup boot
nodes so the file has the correct settings when you do your next upgrade.

4. Boot the boot node.

5. The STONITH capability must be enabled on the blade of the primary boot node
in order to use the boot-node failover feature.

!
Caution: STONITH is a per blade setting, not a per node setting. You must
ensure that your primary boot node is not assigned to a blade that hosts
services with conflicting STONITH requirements, such as Lustre.

a. Use the xtdaemonconfig command to determine the current STONITH
setting on your primary boot node. For example, if the primary boot node is
c0-0c0s0n1 located on blade c0-0c0s0, type this command:

Note: If you have a partitioned system, invoke these commands with the
--partition pn option.

crayadm@smw:~> xtdaemonconfig c0-0c0s0 | grep stonith
c0-0c0s0: stonith=false

b. To enable STONITH on your primary boot node, execute the following
command:

crayadm@smw:~> xtdaemonconfig c0-0c0s0 stonith=true
c0-0c0s0: stonith=true
The expected response was received.

S–2393–5101 191

Managing System Software for the Cray® Linux Environment

c. The STONITH setting does not survive a power cycle. You can maintain the
STONITH setting for the primary boot node by adding the following line
to your boot automation file:

boot bootnode:
lappend actions {crms_exec "xtdaemonconfig c0-0c0s0 stonith=true"}

6. Boot the system.

Procedure 39. Disabling boot-node failover

• To disable boot-node failover, type these commands; in this example procedure,
the primary boot node is c0-0c0s0n1 and the backup boot node is
c2-0c1s7n1.

crayadm@smw:~> xtcli halt c0-0c0s0n1,c2-0c1s7n1
crayadm@smw:~> xtcli boot_cfg update -b c0-0c0s0n1,c0-0c0s0n1
crayadm@smw:~> xtdaemonconfig c0-0c0s0 stonith=false

6.14.2 Configuring SDB Node Failover

When you configure a secondary (backup) SDB node, SDB node failover occurs
automatically when the primary SDB node fails.

The CLE implementation of SDB node failover includes installation configuration
parameters that facilitate automatic configuration, a chkconfig service called
sdbfailover, and a sdbfailover.conf configuration file for defining
site-specific commands to invoke on the backup SDB node.

The backup SDB node uses /etc files that are class or node specialized for the
primary SDB node and not for the backup node itself; the /etc files for the backup
node will be identical to those that existed on the primary SDB node.

192 S–2393–5101

Modifying an Installed System [6]

The following list summarizes requirements to implement SDB node failover on
your Cray system.

• Designate a service node to be the alternate or backup SDB node. The backup
SDB node requires a Host Bus Adapter (HBA) card to communicate with the
RAID. This backup node is dedicated and cannot be used for other service I/O
functions.

• Enable the STONITH capability on the blade or module of the primary SDB node
in order to use the SDB node failover feature. STONITH is a per blade setting
and not a per node setting. Ensure that your primary SDB node is located on
a separate blade from services with conflicting STONITH requirements, such
as Lustre.

• Enable SDB node failover by setting the sdbnode_failover parameter
to yes in the CLEinstall.conf file prior to running the CLEinstall
program.

When this parameter is used to configure SDB node failover, the CLEinstall
program will verify and turn on chkconfig services and associated
configuration files for sdbfailover.

• Specify the primary and backup SDB nodes in the boot configuration by using
the xtcli command with the boot_cfg update -d options. For more
information, see the xtcli(8) man page.

• (Optional) Populate /etc/opt/cray/sdb/sdbfailover.conf with
site-specific commands.

When a failover occurs, the backup SDB node invokes all commands listed in the
/etc/opt/cray/sdb/sdbfailover.conf file. Include commands in this
file that are normally invoked during system start-up through boot automation
scripts. In a SDB node failover situation, these commands must be invoked on the
new (backup) SDB node. For example, you may include commands to start batch
system software (if not started through chkconfig) or commands to add a route
to an external license server.

If at any time you reconfigure your system to use a different primary SDB node,
you must enable STONITH for the new SDB node and disable STONITH for the
previous node.

For procedures to configure SDB node failover during a CLE software installation,
see Installing and Configuring Cray Linux Environment (CLE) Software.

S–2393–5101 193

Managing System Software for the Cray® Linux Environment

6.14.3 The Node ARP Management Daemon (rca_arpd)

The node ARP management daemon (rca_arpd) manages the system ARP cache.
This daemon deletes the IP to hardware address (ARP) mappings for failed nodes
and re-adds them when they become available. It will only manage ARP mappings
on the high speed interconnect network and not external network interfaces such as
Ethernet. If failover is configured, rca_arpd also manages ARP mappings for the
backup boot or SDB node. When a node failed event from the primary boot or SDB
node is received, rca_arpd updates the ARP mapping for the boot or SDB node
virtual IP address to point to the backup node.

This functionality is included in the cray-rca-compute and
cray-rca-service RPMs and is installed by default.

6.15 Creating Logical Machines
Logical Machines on page 64, introduces logical machines. Configure a logical
machine (sometimes known as a system partition) with the xtcli part_cfg
command.

Partition IDs are predefined as p0 to p31. The default partition p0 is reserved for the
complete system and is no longer a valid ID once a system has been partitioned.

6.15.1 Creating Logical Machines on Cray XC30 Systems

Cray XC30 systems can have one or more cabinets. Systems with one or two
compute cabinets scale at the blade level. For larger liquid-cooled Cray XC30
systems, every cabinet is fully populated (with 3 chassis), with the possible exception
of the last cabinet.

For Cray XC30 systems, groups are made up of two-cabinet pairs starting from the
beginning. The last group may not be completely full, and it can consist of 1 through
6 fully-populated chassis.

6.15.1.1 Multiple Group Systems

When a Cray XC30 system contains multiple groups, you may partition the system at
a per-group level of granularity. Groups do not need to be sequentially positioned in
a multi-group partition.

So, if a Cray XC30 system has more than 2 cabinets, every partition can consist of
any number of groups; the last group (or remainder of system chassis that are not
part of a full 6-chassis group) in the system should be considered a group whether
it is fully-populated or not in this partitioning context.

194 S–2393–5101

Modifying an Installed System [6]

6.15.1.2 Single Group, Multiple-chassis Systems

When a Cray XC30 system contains between two and six fully-populated chassis,
then you may partition the system at a per-chassis level of granularity. Each partition
must be at least one full chassis, and a chassis cannot be shared between partitions.
Chassis do not need to be sequentially positioned in a multi-chassis partition.

6.15.1.3 Single Chassis Systems

When a Cray XC30 system is composed of a single fully-populated chassis, each slot
must be in the same partition with its corresponding even/odd pair.

Note: Even/odd pair nodes (for example, slot 0 and slot 1, or slot 8 and slot 9)
share optical connections and therefore must be in the same partition.

There are 16 slots (or blades) in a single chassis, making 8 even/odd slot pairs, and
a maximum of 8 partitions. Single chassis systems can have any combination of
even/odd slot pairs (for example: 4-4, 6-2, 4-2-2, 2-2-1-1-1-1, etc.) and even/odd slot
pairs do not need to be sequentially positioned in a multiple slot pair partition. In
order for a partition to be bootable, however, it must have a boot node, an SDB node,
an I/O node, and a login node.

6.15.2 Configuring a Logical Machine

The logical machine can have one of three states:

• Empty — not configured
• Disabled — configured but not activated
• Enabled — configured and activated

When a partition is defined, its state changes to DISABLED. Undefined partitions
are EMPTY by default.

Procedure 40. Configuring a logical machine

• Use the xtcli part_cfg command with the part_cmd option (add in the
following example) to identify the operation to be performed and the part_option
(-m, -b, -d and -i) to specify the characteristics of the logical machine. The
boot image may be a raw device, such as /raw0, or a file.

Example 93. Creating a logical machine with a boot node and SDB node
specifying the boot image path

crayadm@smw:~> xtcli part_cfg add p2 -m c0-0,c0-1,c0-2,c0-3 \
-b c0-0c0s0n0 -d c0-0c0s2n1 -i /bootimagedir/bootimage

Note: When using a file for the boot image, the same file must be on both the
SMW and the bootroot at the same path.

For the logical machine to be bootable, you must specify boot node and SDB node
IDs.

S–2393–5101 195

Managing System Software for the Cray® Linux Environment

For instructions on booting a logical machine, see Booting a Logical Machine on
page 196.

For information about configuring boot-node failover, see Configuring Boot-node
Failover on page 188.

To watch HSS events on the specified partition, execute the xtconsumer -p
partition_name command.

To display the console text of the specified partition, execute the xtconsole -p
partition_name command.

For more information, see the xtcli_part(8), xtconsole(8), and
xtconsumer(8) man pages.

6.15.3 Booting a Logical Machine

The xtbootsys --partition pN option enables you to indicate which logical
machine (partition) to boot. If you do not specify a partition name, the default
partition p0 (component name for the entire system) is booted. Alternatively, if you
do not specify a partition name and you use the CRMS_PARTITION environment
variable, this variable is used as the default partition name. Valid values are in the
form p#, where # ranges from 0 to 31.

Note: xtbootsys manages a link from
/var/opt/cray/log/partition-current to the current sessionid
directory for that partition, allowing you to be able to change to
/var/opt/cray/log/p1-current for example.

To boot a partition, see Booting the System on page 71.

6.16 Updating Boot Configuration
The HSS xtcli boot_cfg command allow you to specify the primary and
backup boot nodes and the primary and backup SDB nodes for s0 or p0 (the entire
system).

Example 94. Updating boot configuration

Update the boot configuration using the boot image
/bootimagedir/bootimage, primary boot node (for example, c0-0c0s0n1),
backup boot node, primary SDB node, and the backup SDB node:

crayadm@smw:~> xtcli boot_cfg update -b primaryboot_id,backupboot_id \
-d primarySDB_id,backupSDB_id -i /bootimagedir/bootimage

For a partitioned system, use xtcli part_cfg to manage boot configurations for
partitions. For more information, see the xtcli_boot(8) and xtcli_part(8)
man pages.

196 S–2393–5101

Modifying an Installed System [6]

For information about configuring failover, see Configuring Failover for Boot and
SDB Nodes on page 188.

6.17 Modifying Boot Automation Files
Your boot automation files should be located in /opt/cray/hss/default/etc
on the SMW. There are several automation files; for example, auto.generic.cnl
and auto.min.cnl.

For boot automation scripts, the Lustre file system should start up before the compute
nodes.

Note: You can also boot the system or shut down the system using both
user-defined and built-in procedures in the auto.xtshutdown file. For related
procedures, see Installing and Configuring Cray Linux Environment (CLE)
Software.

If you use boot automation files, see the xtbootsys(8) man page, which
provides detailed information about boot automation files, including descriptions
of using the xtbootsys crms_boot_loadfile and xtbootsys
crms_boot_sdb_loadfile automation file procedures.

6.18 Callout to rc.local During Boot
The file /etc/init.d/rc.local is available for local customization of the
boot process. If this file/script is present, it is executed during the compute node
boot process. This script is executed after /init, before any of the scripts in
/etc/init.d/rc3.d and before /etc/fstab is processed.

6.19 Changing the System Software Version to be Booted
Release switching enables you to change between versions and releases of the CLE
software that are installed concurrently on the system.

You must reboot the operating system to switch CLE releases on your Cray system.
You cannot change a release while the mainframe is running. You must reboot each
time you change versions; however, you do not need to reboot the SMW.

Minor release switching allows you to select one of the CLE software versions that
are installed within a single system set and have the same base operating system
release (for example, switching from 4.0.22, back to 4.0.21). Switching is achieved
by modifying sets of symbolic links in the file system to refer to the requested release.

S–2393–5101 197

Managing System Software for the Cray® Linux Environment

Major release switching requires that you have a separate set of disk partitions for
each major operating system (for example, switching from 3.1.72, to 4.0.25). Each
system set provides a complete set of all file system and boot images, thus making
it possible to switch easily between two or more different versions of your CLE
system software. Each system set can be an alternative location for an installation or
upgrade of your Cray system. System sets are defined in the /etc/sysset.conf
file on the SMW.

If multiple versions of the software are installed and no version is chosen, the most
recently installed is used.

6.19.1 Minor Release Switching Within a System Set

The xtrelswitch command performs release switching by manipulating symbolic
links in the file system and by setting the default version of modulefiles that are
loaded at login. xtrelswitch uses a release version that is provided either in the
/etc/opt/cray/release/xtrelease file or by the xtrel= boot parameter.
If the latter is not provided, the former is used. The xtrelswitch command is not
intended to be invoked interactively; rather it is called by other scripts as part of the
boot sequence. Specifically, when the boot node is booted, this command is invoked
to switch the components in the boot node and shared root file systems.

To accomplish minor release switching, you must set the bootimage_xtrel
parameter to yes in your CLEinstall.conf installation configuration file. This
will include the release version in your boot image parameters file. If you routinely
switch between minor levels, you may find it more convenient to use a bootimage in
/bootimagedir (the boot image must be in the same path for both the SMW and the
boot root), instead of the updating the BOOT_IMAGE disk partition.

Note: The xtrelswitch command does not support switching between major
release levels, for example from CLE 4.0 to CLE 5.0.

For additional information, see the xtrelswitch(8) man page.

6.19.2 Major Release Switching Using Separate System Sets

When you use system sets to change the Cray software booted on your Cray system,
you boot an entirely different file system. The switched components include:

• The boot node root file system
• The shared-root file system
• The disk partition containing the SDB
• The syslog, ufs, and persistent /var file systems

198 S–2393–5101

Modifying an Installed System [6]

Booting a system set requires:

• The /etc/sysset.conf file that describes the available system sets.

• Choosing which boot image will be used for the next boot. Each system set label
has at least one BOOT_IMAGE.

• Activating a boot image for the chosen system set label.

The CLEinstall program installs or upgrades a system set to a set of disk
partitions on the Boot RAID. For more information about the CLEinstall program
and the /etc/sysset.conf file, see the Installing and Configuring Cray Linux
Environment (CLE) Software and the sysset.conf(5) man page.

Procedure 41. Booting a system set

1. Choose which system set in the /etc/sysset.conf file should be used for
the boot. For example:

LABEL:BLUE
DESCRIPTION:BLUE system with production

2. For the chosen system set, there is at least one BOOT_IMAGE in the
/etc/sysset.conf file. Look at the /etc/sysset.conf file to
determine which boot image is associated with which raw device. For example, to
get the SMWdevice entry for BOOT_IMAGE0 for the chosen system set:

function SMWdevice host hostdevice mountpoint shared
BOOT_IMAGE0 /dev/disk/by-id/scsi-3600a0b800026e1400000192c4b66eb70-part2 boot \

/dev/disk/by-id/scsi-3600a0b800026e1400000192c4b66eb70-part2 /raw0 no

3. Set the next boot to use the boot image BOOT_IMAGE0
from the BLUE system set, which is the
/dev/disk/by-id/scsi-3600a0b800026e1400000192c4b66eb70-part2

disk partition. There will be a link from /raw0 to
/dev/disk/by-id/scsi-3600a0b800026e1400000192c4b66eb70-part2.

smw:~ # xtcli boot_cfg update -i /raw0

Or, if you are working with a partitioned system, pN:

smw:~ # xtcli part_cfg update pN -i /raw0

6.20 Changing the Service Database (SDB)
The SDB, which is a MySQL database, contains the XTAdmin system database.
The XTAdmin database contains both persistent and nonpersistent tables. The
processor and service_processor tables are nonpersistent and are created
from the HSS data at boot time. The XTAdmin database tables track system
configuration information. The SDB makes the system configuration information
available to the Application Level Placement Scheduler (ALPS), which interacts with
individual compute nodes running CNL.

S–2393–5101 199

Managing System Software for the Cray® Linux Environment

Cray provides commands (see Updating Database Tables on page 201) that enable
you to examine values in the SDB tables and update them when your system
configuration changes.

!
Caution: Do not use MySQL commands to change table values directly. Doing so
can leave the database in an inconsistent state.

Accounts that access MySQL by default contain a .my.cnf file in their home
directories.

6.20.1 Service Database Tables

Table 5 describes the SDB tables, which belong to the XTAdmin database.

Table 5. Service Database Tables

Table Name Function

attributes Stores compute node attribute information

lustre_failover Updates the database when a node's Lustre failover configuration
changes

lustre_service Updates the database when a node's Lustre service configuration
changes

filesystem Updates the database when a Lustre file system's configuration
changes

gpus Stores accelerator module (GPU) information

processor Stores master list of processing elements and their status

segment For nodes with multiple NUMA nodes, stores attribute information
about the compute node and its associated NUMA nodes

service_cmd Stores characteristics of a service

service_config Stores processing element services that the resiliency
communication agent (RCA) starts

service_processor Stores nodes and classes (boot, login, server, I/O, or network)

version Stores the database schema version

200 S–2393–5101

Modifying an Installed System [6]

6.20.2 Database Security

Access to MySQL databases requires a user name and password. The MySQL
accounts and privileges are shown in Table 6. For security purposes, Cray
recommends changing the account passwords on a regular basis. Default MySQL
account passwords and an example of how to change them are documented in
Installing and Configuring Cray Linux Environment (CLE) Software. To change the
default MySQL passwords, also see Changing Default MySQL Passwords on the
SDB on page 114.

Table 6. Database Privileges

Account Privilege

MySQL basic Read access to most tables; most applications
use this account.

MySQL sys_mgmt Most privileged; access to all information and
commands.

6.20.3 Updating Database Tables

The CLE command pairs shown in Table 7 enable you to update tables in the SDB.
One command converts the data into an ASCII text file that you can edit; the other
writes the data back into the database file.

Table 7. Service Database Update Commands

Get Command Put Command Table Accessed Reason to Use Default File

xtdb2proc xtproc2db processor Updates the
database when a
node is taken out
of service

./processor

xtdb2attr xtattr2db attributes Updates the
database when
node attributes
change (see
Setting and
Viewing Node
Attributes on
page 209)

./attribute

xtdb2nodeclasses xtnodeclasses2db service_processor Updates the
database when
a node's class
changes (see

./node_classes

S–2393–5101 201

Managing System Software for the Cray® Linux Environment

Get Command Put Command Table Accessed Reason to Use Default File

Changing Nodes
and Classes on
page 203)

xtdb2segment xtsegment2db segment For nodes with
multiple NUMA
nodes, updates
the database
when attribute
information about
node changes
(see Using
the XTAdmin
Database
segment Table
on page 213)

./segment

xtdb2servcmd xtservcmd2db service_cmd Updates the
database when
characteristics of a
service change

./serv_cmd

xtdb2servconfig xtservconfig2db service_config Updates the
database when
services change

./serv_config

xtdb2etchosts none processor Manages IP
mapping for
service nodes

none

xtdb2lustrefailover xtlustrefailover2db lustre_failover Updates the
database when
a node's Lustre
failover state
changes

./lustre_failover

xtdb2lustreserv xtlustreserv2db lustre_service Updates the
database when
a file system's
failover process is
changed

./lustre_serv

xtdb2filesys xtfilesys2db filesystem Updates the
database when a
file system's status
changes

./filesys

202 S–2393–5101

Modifying an Installed System [6]

Get Command Put Command Table Accessed Reason to Use Default File

xtdb2gpus xtgpus2db gpus Updates the
database when
attributes about
the accelerators
change

./gpus

xtprocadmin none processor Displays or sets
the current value
of processor
flags and node
attributes in the
service database
(SDB). The
batch scheduler
and ALPS are
impacted by
changes to
these flags and
attributes.

none

xtservconfig none service_config Adds, removes, or
modifies service
configuration
in the SDB
service_config

table

none

6.20.3.1 Changing Nodes and Classes

The service_processor table tracks node IDs (NIDs) and their
classes (see Class Name on page 61). The table is populated from the
/etc/opt/cray/sdb/node_classes file on the boot node every time the
system boots. Change this file to update the database when the classes of nodes
change, for example, when you are adding login nodes.

Note: If you make changes to /etc/opt/cray/sdb/node_classes, you
must make the same changes to the node class settings in CLEinstall.conf
before performing an update or upgrade installation; otherwise, the install utility
will complain about the inconsistency.

Note: The xtnodeclasses2db command inserts the node-class list into the
database. It does not make any changes to the shared root. To change the shared
root, invoke the xtnce command (see Changing the Class of a Node on page 143).

For more information, see the xtdb2nodeclasses(8) and
xtnodeclasses2db(8) man pages.

S–2393–5101 203

Managing System Software for the Cray® Linux Environment

6.21 Viewing the Service Database Contents with MySQL
Commands

The service database is configured as part of the system installation (see the Installing
and Configuring Cray Linux Environment (CLE) Software).

!
Caution: Use MySQL commands to examine tables, but do not use them to change
table values directly. Doing so can leave the database in an inconsistent state.

Procedure 42. Examining the service databases with MySQL commands

1. As user crayadm, on the SDB node, enter the MySQL shell.

crayadm@sdb:~> mysql -u basic -p
Enter password: ***********
mysql> show databases;
+-----------+
| Database |
+-----------+
| XTAdmin |
1-----------+
1 row in set (0.04 sec)

2. Select the XTAdmin database.

mysql> use XTAdmin;
Database changed

3. Display the tables in the XTAdmin database.

mysql> show tables;
+-------------------+
| Tables_in_XTAdmin |
+-------------------+
| attributes |
| filesystem |
| gpus |
| lustre_failover |
| lustre_service |
| processor |
| segment |
| service_cmd |
| service_config |
| service_processor |
| version |
+-------------------+
10 rows in set (0.00 sec)

4. Display the format of the service_processor table.

mysql> describe service_processor;
+------------+------------------+------+-----+--------+
Field | Type |Null|Key|Default| Extra|

+--------------+------------------+------+-----+------+
|processor_id|int(10) unsigned| |PRI|0 | |
|service_type|varchar(64) |YES | |NULL | |
+--------------+------------------+------+-----+------+
2 rows in set (0.00 sec)

204 S–2393–5101

Modifying an Installed System [6]

5. Display the contents of all fields in the service_processor table.

mysql> select * from XTAdmin.service_processor;
+--------------+--------------+
| processor_id | service_type |
+--------------+--------------+
0	service
3	service
4	service
7	service
8	service
11	service
12	service
15	service
16	service
19	service
20	service
23	service
24	service
27	service
+--------------+--------------+
14 rows in set (0.00 sec)

6. Display processor_id values from the processor table.

mysql> select processor_id from processor;
+--------------+
| processor_id |
+--------------+
| 0 |
| 3 |
| 4 |
| 7 |
| 8 |
| 103 |
| 104 |
| 107 |

...

| 192 |
| 195 |
+--------------+
162 rows in set (0.00 sec)

6.22 Configuring the Lustre File System
For a description of the Lustre file system and how to configure it, see the Lustre
documentation at https://wiki.hpdd.intel.com/display/PUB/Documentation and your
specific Lustre server documentation.

6.23 Exporting Lustre with NFSv3
Note: This feature is deferred for Cray XC30 systems until direct-attached Lustre
file systems are available for that platform.

S–2393–5101 205

https://wiki.hpdd.intel.com/display/PUB/Documentation

Managing System Software for the Cray® Linux Environment

Cray supports exporting a direct-attached Lustre file system with NFSv3 (NFSv4
support is deferred at this time). This feature allows hosts that are external to the
Cray system to access direct-attached Lustre file systems that would otherwise not be
available and it provides access to data stored on a Lustre file system to hosts that do
not support a Lustre client. A service node Lustre client (with external connectivity
such as Ethernet or InfiniBand™) can mount the Lustre file system and export that
mounted file system via standard NFS methods.

Procedure 43. Configuring the NFS server for Lustre export

1. Enter xtopview for the node view of your service node Lustre client.

boot:~ # xtopview -n 8
node/8:/ #

2. Check the file specialization of the /etc/exports file with xthowspec.

node/8:/ # xthowspec /etc/exports
node:8:/etc/exports:node

Note: The /etc/exports file should be specialized by node. For more
information on specializing files, see the xtspec(8) man page.

3. (Optional) If /etc/exports is not node specialized, specialize the file for
the node.

node/8:/ # xtspec -n 8 /etc/exports

4. Edit the /etc/exports file and add an entry for the mounted Lustre
file system you wish to export via NFS. Specifying insecure gives the
best interoperability with the universe of potential client systems. For more
information on NFS mount options, see the mount(8) and nfs(5) man pages.

node/8:/ # vi /etc/exports
/lus/nid00023 *(rw,insecure,no_root_squash,no_subtree_check)

Note: You can identify the mounted Lustre file systems on a node with the
following command:

crayadm@nid00008:~> mount -t lustre
23@gni1:/lus_hera on /lus/nid00023 type lustre (rw,relatime,flock)

5. Repeat step 2 through step 3 for the /etc/sysconfig/nfs file so that it is
node specialized.

6. Edit the /etc/sysconfig/nfs file and change the following parameter to
disable NFSv4.

Important: NFSv4 is not supported for exporting Lustre at this time.

node/8:/ # vi /etc/sysconfig/nfs
Enable NFSv4 support (yes/no)
#
NFS4_SUPPORT="no"

206 S–2393–5101

Modifying an Installed System [6]

7. Configure the nfsserver and rpcbind services to start at boot with the
chkconfig command.

node/8:/ # chkconfig nfsserver on
nfsserver on
node/8:/ # chkconfig rpcbind on
rpcbind on

8. Restart the nfsserver and rpcbind services to pick up the configuration
changes made earlier.

node/8:/ # service nfsserver restart
Shutting down kernel based NFS server: nfsd done
Starting kernel based NFS server: mountd statd nfsd sm-notify done
node/8:/ # service rpcbind restart
Shutting down rpcbind done
Starting rpcbind done

9. Exit xtopview.

Procedure 44. Configuring the NFS client to mount the exported Lustre file
system

Depending on your client system, your configuration may be different. This
procedure contains general information that will help you configure your client
system to properly mount the exported Lustre file system. Consult your client system
documentation for specific configuration instructions.

1. As root, verify that the nfs client service is started at boot.

2. Add a line to the /etc/fstab file to mount the exported file system. The list
below describes various recommended file system mount options. For more
information on NFS mount options, see the mount(8) and nfs(5) man pages.

server@network:/filesystem /client/mount/point lustre file_system_options 0 0

S–2393–5101 207

Managing System Software for the Cray® Linux Environment

Recommended file system mount options

rsize=1048576,wsize=1048576

Set the read and write buffer sizes from the server at 1MiB.
These options match the NFS read/write transaction to the Lustre
filesystem block size, which reduces cache/buffer thrashing on
the service node providing the NFS server functionality.

soft,intr Use a soft interruptible mount request.

async Use asynchronous NFS I/O. Once the NFS server has
acknowledged receipt of an operation, let the NFS client
move along even though the physical write to disk on the NFS
server has not been confirmed. For sites that need end-to-end
write-commit validation, set this option to sync instead.

proto=tcp Force use of TCP transport; this makes the larger rsize/wsize
operations more efficient. This option reduces the potential
for UDP retransmit occurrences, which improves end-to-end
performance.

relatime,timeo=600,local_lock=none

Lock and time stamp handling, transaction timeout at 10 minutes.

nfsvers=3 Use NFSv3 specifically. NFSv4 is not supported at this time.

3. Mount the file system manually or reboot the client to verify that it mounts
correctly at boot.

6.24 Enabling File-locking for Lustre Clients
To enable file-locking for all Linux clients when mounting the Lustre file
system on service nodes or on compute nodes, you must use the flock
option for mount. For more information, see the Lustre documentation at
http://wiki.whamcloud.com/display/PUB/Documentation..

Example 95. Sample mount line from compute node /etc/fstab

4@gni:136@gni:/filesystem /lus/nid00004 lustre rw,flock 0 0

6.25 Backing Up and Restoring Lustre Failover Tables
To minimize the potential impact of an event that creates data corruption in the SDB
database, Cray recommends that you create a manual backup of the Lustre tables,
which can be restored after a re-initialization of the SDB database.

208 S–2393–5101

http://wiki.whamcloud.com/display/PUB/Documentation

Modifying an Installed System [6]

Procedure 45. Manually backing up Lustre failover tables

1. Log on to the boot node as root.

2. Use the mysqldump command to back up the lustre_service table.

boot# mysqldump -h sdb XTAdmin lustre_service > \
/var/tmp/lustre_service.sql

3. Back up the lustre_failover table.

boot# mysqldump -h sdb XTAdmin lustre_failover > \
/var/tmp/lustre_failover.sql

Procedure 46. Manually restoring Lustre failover tables

1. Log on to the boot node as root.

2. After the SDB database is recreated, use the mysqldump command to restore
the lustre_service table.

boot# boot# mysqldump -h sdb XTAdmin < \
/var/tmp/lustre_service.sql

3. Restore the lustre_failover table.

boot# boot# mysqldump -h sdb XTAdmin <
/var/tmp/lustre_failover.sql

6.26 Configuring Cray Data Virtualization Service (Cray DVS)
For a description of the Cray DVS parallel I/O forwarding service and how to
configure it, see Introduction to Cray Data Virtualization Service.

6.27 Setting and Viewing Node Attributes
Users can control the selection of the compute nodes on which to run their
applications and can select nodes on the basis of desired characteristics (node
attributes). This allows a placement scheduler to schedule jobs based on the node
attributes.

A user invokes the cnselect command to specify node-selection criteria. The
cnselect script uses these selection criteria to query the table of node attributes in
the SDB and returns a node list to the user based on the results of the query.

When launching the application, the user includes the node list using the aprun -L
node_list option as described on the aprun(1) man page. The ALPS placement
scheduler allocates nodes based on this list.

Note: To meet specific user needs, you can modify the cnselect script. For
additional information about the cnselect script, see the cnselect(1) man
page.

S–2393–5101 209

Managing System Software for the Cray® Linux Environment

6.27.1 Setting Node Attributes Using the
/etc/opt/cray/sdb/attr.xthwinv.xml and
/etc/opt/cray/sdb/attr.defaults Files

In order for users to select desired node attributes, you must first set the
characteristics of individual compute nodes. Node attribute information is written
to the /etc/opt/cray/sdb/attributes data file and loaded into the
attributes table in the SDB when the SDB is booted.

6.27.1.1 Generating the /etc/opt/cray/sdb/attributes File

Data for the /etc/opt/cray/sdb/attributes file comes from two
other files: the /etc/opt/cray/sdb/attr.xthwinv.xml file, which
contains information to generate the hardware attributes for each node, and the
/etc/opt/cray/sdb/attr.defaults file, which allows administrators
to set values for specific nodes (or all nodes if a DEFAULT is specified). The
xtprocadmin(8) man page includes a description of the attributes fields used by
these two files.

• The /etc/opt/cray/sdb/attr.xthwinv.xml file is created by
CLEinstall and automatically regenerated by xtbootsys at each boot
through the xthwinv -x command.

To manually generate the /etc/opt/cray/sdb/attr.xthwinv.xml
file, invoke the xthwinv -x command on the System Management
Workstation (SMW) through the boot node, redirecting the output to the
/etc/opt/cray/sdb/attr.xthwinv.xml file on the boot node; for
example:

boot:~ # ssh smw xthwinv -x s0 > /etc/opt/cray/sdb/attr.xthwinv.xml

For additional information about the xthwinv command, see the xthwinv(8)
man page.

Note: If you have blades powered down when you want to upgrade your
software, see the CLEinstall(8) man page for instructions on using the
--xthwinvxmlfile option during your upgrade process.

• The /etc/opt/cray/sdb/attr.defaultsfile can be used to set an
attribute value on any node, but it is primarily used for assigning labels to nodes
(see Example 96).

label0
label1
label2
label3 Each label is a string of up to 32 characters; the string cannot

contain any spaces or shell-sensitive characters.

These labels can be applied to all nodes or to a given set of nodes.

210 S–2393–5101

Modifying an Installed System [6]

Note: Do not attempt to set hardware attributes (memory size,
clock speed, and cores) in the attr.defaults file because
the values will be overwritten by those already specified in the
/etc/opt/cray/sdb/attr.xthwinv.xml file.

To create the attr.defaults file, copy the example file provided in
/opt/cray/sdb/default/etc/attr.defaults.example. Edit the
file to modify the existing attribute settings and to create site-specific attributes
as needed. If you have run CLEinstall previously, attr.defaults was
already copied and exists in that location.

In addition to the attributes in the /etc/opt/cray/sdb/attr.defaults
file, there are two keywords that allow you to describe the node or set of nodes to
which attributes are assigned. For global default-attribute values that apply to the
entire system, the line that specifies an attribute must begin with the DEFAULT:
keyword. For example:

DEFAULT: osclass=2

The nodeid keyword assigns attributes to a specific node or set of nodes and
overrides a default setting. For values that apply only to certain nodes, the line
that specifies the attributes must begin with nodeid=[RANGE], where RANGE
is a comma-separated list of nodes and ranges that have the form m,n or m-n.
For example:

nodeid=234,245-248 label3='GREEN'

Example 96. Using node attribute labels to assign nodes to user groups

The following example uses labels to assign groups of compute nodes to specific
user groups without the need to partition the system:

nodeid=101-500 label0=physicsdept
nodeid=501-1000 label1=csdept
nodeid=50-100,1001 label2=biologydept

6.27.2 SDB attributes Table

When the SDB boots, it reads the /etc/opt/cray/sdb/attributes file and
loads it into the SDB attributes table.

S–2393–5101 211

Managing System Software for the Cray® Linux Environment

To display the format of the attributes SDB table, use the mysql command:

crayadm@login:~> mysql -e "desc attributes;" -h sdb XTAdmin
+----------+------------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+----------+------------------+------+-----+---------+-------+
nodeid	int(32) unsigned	NO	PRI	0	
archtype	int(4) unsigned	NO		2	
osclass	int(4) unsigned	NO		2	
coremask	int(4) unsigned	NO		1	
availmem	int(32) unsigned	NO		0	
pageszl2	int(32) unsigned	NO		12	
clockmhz	int(32) unsigned	YES		NULL	
label0	varchar(32)	YES		NULL	
label1	varchar(32)	YES		NULL	
label2	varchar(32)	YES		NULL	
label3	varchar(32)	YES		NULL	
numcores	int(4) unsigned	NO		1	
sockets	int(4) unsigned	NO		1	
dies	int(4) unsigned	NO		1	
+----------+------------------+------+-----+---------+-------+

The service database command pair xtdb2attr and xtattr2db enables you
to update the attributes table in the SDB. For additional information about
updating SDB tables using command pairs, see Updating Database Tables on
page 201.

6.27.3 Setting Attributes Using the xtprocadmin Command

You can use the xtprocadmin -a attr=value command to temporarily set certain
site-specific attributes. Using the xtprocadmin -a attr=value command to set
certain site-specific attributes is not persistent across reboots. Attribute settings that
are intended to be persistent across reboots (such as labels) must be specified in the
attr.defaults file.

Note: For compute nodes, xtprocadmin changes to attributes requires that
you restart the apbridge daemon on the boot node in order for ALPS to detect
changes that the xtprocadmin command has made to the SDB. Restarting the
other ALPS components (for example, on the SDB node or on the login node if
they are separate nodes) is not necessary. To restart apbridge, log into the boot
node as root and execute the following command:

boot:~ # /etc/init.d/alps restart

212 S–2393–5101

Modifying an Installed System [6]

For example, the following command creates a new label1 attribute value for
the compute node whose NID is 350; you must be user root and execute the
xtprocadmin command from a service node, and the SDB must be running:

boot:~ # xtprocadmin -n 350 -a label1=eedept

The output is:

Connected
NID (HEX) NODENAME TYPE LABEL1
350 0x15e c1-0c1s0n0 compute eedept

Then restart the apbridge daemon on the boot node in order for ALPS to detect
changes that the xtprocadmin command has made to the SDB.

boot:~ # /etc/init.d/alps restart

6.27.4 Viewing Node Attributes

Use the xtprocadmin command to view current node attributes. The
xtprocadmin -A option lists all attributes of selected nodes. The xtprocadmin
-a attr1,attr2 option lists selected attributes of selected nodes.

6.28 Using the XTAdmin Database segment Table
The XTAdmin database contains a segment table that supports the memory affinity
optimization tools for applications and CPU affinity options for all Cray compute
nodes. The CPU affinity options apply to all Cray multicore compute nodes.

The segment table is similar to the attributes table but differs in that a node
may have multiple segments associated with it; the attributes table provides
summary information for each node.

In order to address the application launch and placement requirements for compute
nodes with two or more NUMA nodes, the Application Level Placement Scheduler
(ALPS) requires additional information that characterizes the intranode topology of
the system. This data is stored in the segment table of the XTAdmin database and
acquired by apbridge when ALPS is started, in much the same way that node
attribute data is acquired. (For more information about XTAdmin database tables, see
Changing the Service Database (SDB) on page 199.)

S–2393–5101 213

Managing System Software for the Cray® Linux Environment

The segment table contains the following fields:

• node_id is the node identifier that maps to the nodeid field of the
attributes table and processor_id field of the processor table.

• socket_id contains a unique ordinal for each processor socket.

• die_id contains a unique ordinal for each processor die; with this release,
die_id is 0 in the segment table and is otherwise unused (reserved for future
use).

• numcores is the number of integer cores per node; in systems with accelerators
this only applies to the host processor (CPU).

• coremask is the processor core mask. The coremask has a bit set for each core
of a CPU. 24-core nodes will have a value of 16777215 (hex 0xFFFFFF).

Note: coremask is deprecated and will be removed in a future release.

• mempgs represents the amount of memory available, in Megabytes, to a single
segment.

The /etc/sysconfig/xt file contains SDBSEG field, which
specifies the location of the segment table file; by default,
SDBSEG=/etc/opt/cray/sdb/segment.

To update the segment table, use the following service database commands:

• xtdb2segment, which converts the data into an ASCII text file that can be
edited

• xtsegment2db, which writes the data back into the database file

For more information, see the xtdb2segment(8) and xtsegment2db(8) man
pages.

After manually updating the segment table, you can log on to any login node or the
SDB node as root and execute the apmgr resync command to request ALPS to
reevaluate the configuration node segment information and update its information.

Note: If ALPS or any portion of the feature fails in relation to segment scheduling,
ALPS reverts to the standard scheduling procedure.

6.29 Configuring Networking Services

6.29.1 Changing the High-speed Network (HSN)

To change your system interconnection network (HSN) address ranges, see Installing
and Configuring Cray Linux Environment (CLE) Software.

214 S–2393–5101

Modifying an Installed System [6]

6.29.2 Network File System (NFS)

The Network File System (NFS) version 4 distributed file system protocol is
supported. NFS is enabled by default on the boot, sdb, and ufs service nodes
but is not enabled on compute nodes. Support for NFSv4 is included as part of the
SLES software.

The CLE installation tool supports NFS tuning via /etc/sysconfig/nfs
and /etc/init.d/nfsserver on the boot node. The
nfs_mountd_num_threads and use_kernel_nfsd_number
parameters in the CLEinstall.conf installation configuration file control an
NFS mountd tuning parameter that is added to /etc/sysconfig/nfs and used
by /etc/init.d/nfsserver to configure the number of mountd threads on
the boot node. By default, NFS mountd behavior is a single thread. If you have a
larger Cray system (greater than 50 service I/O nodes), contact your Cray service
representative for assistance changing the default setting.

If you wish to enable the nfsserver service on all service nodes, you may do so
by setting the CLEinstall.conf nfsserver parameter to yes. The default
setting is no.

6.29.3 Configuring Ethernet Link Aggregation (Bonding, Channel
Bonding)

Linux Ethernet link aggregation is generally used to increase aggregate bandwidth by
combining multiple Ethernet channels into a single virtual channel. Bonding can also
be used to increase the availability of a link by utilizing other interfaces in the bond
when one of the links in that bond fails.

Procedure 47. Configuring an I/O service node bonding interface

1. On the boot node, run the xtopview command for the node that needs the
bonding interface configured. For example, to access node 2, type the following:

boot:~ # xtopview -n 2
node/2:/ #

2. Create and specialize the following files:
/etc/sysconfig/network/ifcfg-bond0,
/etc/sysconfig/network/ifcfg-eth0, and
/etc/sysconfig/network/ifcfg-eth1.

node/2:/ # touch /etc/sysconfig/network/ifcfg-bond0
node/2:/ # xtspec -n 2 /etc/sysconfig/network/ifcfg-bond0
node/2:/ # touch /etc/sysconfig/network/ifcfg-eth0
node/2:/ # xtspec -n 2 /etc/sysconfig/network/ifcfg-eth0
node/2:/ # touch /etc/sysconfig/network/ifcfg-eth1
node/2:/ # xtspec -n 2 /etc/sysconfig/network/ifcfg-eth1

S–2393–5101 215

Managing System Software for the Cray® Linux Environment

3. Edit the previously created files to include your specific network settings.

node/2:/ # vi /etc/sysconfig/network/ifcfg-bond0
BOOTPROTO="static"
BROADCAST="10.0.2.255"
IPADDR="10.0.2.10"
NETMASK="255.255.0.0"
NETWORK="10.0.2.0"
REMOTE_IPADDR=""
STARTMODE="onboot"
BONDING_MASTER="yes"
BONDING_MODULE_OPTS="mode=active-backup primary=eth1"
BONDING_SLAVE0="eth0"
BONDING_SLAVE1="eth1"

node/2:/ # vi /etc/sysconfig/network/ifcfg-eth0
BOOTPROTO='static'
STARTMODE='onboot'
MASTER=bond0
SLAVE=yes
REMOTE_IPADDR=''
IPV6INIT=no

node/2:/ # vi /etc/sysconfig/network/ifcfg-eth1
BOOTPROTO='static'
STARTMODE='onboot'
MASTER=bond0
SLAVE=yes
REMOTE_IPADDR=''
IPV6INIT=no

4. Exit from xtopview

node/2:/ # exit

For more information on Ethernet link aggregation, see the Linux documentation
file /usr/src/linux/Documentation/networking/bonding.txt,
installed on your system.

6.29.4 Configuring a Virtual Local Area Network (VLAN) Interface

This procedure configures an 802.1Q standard VLAN.

Procedure 48. Configuring a Virtual Local Area Network (VLAN) interface

1. On the boot node, run the xtopview command for the node that needs the
VLAN configured. For example, to access node 2, type the following:

boot:~ # xtopview -n 2
node/2:/ #

2. Create and specialize a file named
/etc/sysconfig/network/ifcfg-vlanN, where N is the VLAN ID.
The following example creates and specializes the vlan2 file:

node/2:/ # touch /etc/sysconfig/network/ifcfg-vlan2
node/2:/ # xtspec -n 2 /etc/sysconfig/network/ifcfg-vlan2

216 S–2393–5101

Modifying an Installed System [6]

3. Edit the /etc/sysconfig/network/ifcfg-vlanN file to include
your usual network settings. It must also include variable ETHERDEVICE
that provides the real interface for the VLAN. The real interface will be set up
automatically; it does not require a configuration file. For additional information,
see the ifcfg-vlan(5) man page. The following example sets up vlan2 on
top of eth0:

ifcfg-vlan2
STARTMODE=onboot
ETHERDEVICE=eth0
IPADDR=192.168.3.27/24

An interface named vlan2 will be created when the system boots.

4. Exit from xtopview.

node/2:/ # exit

6.29.5 Increasing Size of ARP Tables

To increase the size of ARP tables, change the ARP_OVERHEAD parameter in the
/etc/sysconfig/xt file. ARP_OVERHEAD should be set to a value greater than
the number of hosts in all locally attached external networks; the current default is 0.

6.29.6 Configuring Realm-specific IP Addressing (RSIP)

Realm-Specific Internet Protocol (RSIP) enables internal client nodes, such as
compute nodes, to reach external IP networking resources. Support for RSIP is
available with CLE on systems that have CNL compute nodes.

Note: RSIP for IPv4 TCP and User Datagram Protocol (UDP) transport protocols
are supported. Internet Protocol Security (IPSec) and IPv6 protocols are not
supported.

RSIP is composed of two main components: RSIP clients and RSIP servers
or gateways. You configure RSIP and select servers using RSIP parameters in
CLEinstall.conf. By default, when RSIP is enabled, all CNL compute nodes
are configured to be RSIP clients.

On your Cray system, RSIP servers must be service nodes with an external IP
interface such as a 10-GbE network interface card (NIC). You can configure multiple
RSIP servers using multiple service nodes, however only one RSIP daemon (rsipd)
and one external interface is allowed per service node. Cray requires that you
configure RSIP servers as dedicated network nodes.

Warning: Do not configure login nodes or service nodes that provide Lustre or
batch services as RSIP servers. Failure to set up an RSIP server as a dedicated
network node will disrupt network functionality.

S–2393–5101 217

Managing System Software for the Cray® Linux Environment

The performance impact of configuring RSIP is negligible; very little noise is
generated by the RSIP client. RSIP clients will issue a lease refresh message
request/response pair once an hour, at a rate of 10 clients per second, but otherwise
are largely silent.

To configure RSIP for your Cray system, first determine which service nodes and
associated Ethernet devices will be used to provide RSIP services. Optionally,
determine if you will configure service nodes with no external IP interfaces (isolated
service nodes) to act as RSIP clients. After selecting RSIP servers based on your
machine-specific networking hardware configuration, follow Procedure 49 on
page 219 to complete a default RSIP configuration and setup.

Enhancements to the default RSIP configuration require a detailed analysis of specific
site configuration and requirements. Contact your Cray representative for assistance
in changing the default RSIP configuration.

6.29.6.1 Using the CLEinstall Program to Install and Configure RSIP

The CLEinstall program can be configured to automatically install RSIP either
during a system software upgrade or as a separate event. In either case, you will
need to update the compute node boot image and restart your Cray system before
RSIP is functional.

When you set the following RSIP-specific parameters in the CLEinstall.conf
file, CLEinstall will load the RSIP RPM, modify rsipd.conf and invoke the
appropriate xtrsipcfg commands to configure RSIP for your system.

rsip_nodes=

Specifies the RSIP servers. Populate with the node IDs of the nodes
you have identified as RSIP servers.

rsip_interfaces=

Specifies the IP interface for each RSIP server node. List the
interfaces in the same order specified by the rsip_nodes
parameter.

rsip_servicenode_clients=

Specifies a space separated integer list of service nodes you would
like to use for RSIP clients.

218 S–2393–5101

Modifying an Installed System [6]

Warning: Do not configure service nodes with external network
connections as RSIP clients. Configuring a network node as an
RSIP client will disrupt network functionality. Service nodes with
external network connections will route all non-local traffic into
the RSIP tunnel and IP may not function as desired.

CNL_rsip=yes

Enables the RSIP client on CNL compute
nodes. Optionally, you can edit the
/var/opt/cray/install/shell_bootimage_LABEL.sh
script and set CNL_RSIP=y.

If you are configuring RSIP for the first time during an installation or upgrade of
your CLE system software, follow RSIP-specific instructions in the Installing and
Configuring Cray Linux Environment (CLE) Software. If you are configuring RSIP
as a separate event, follow Procedure 49 on page 219. If you already configured
RSIP and want to add isolated service nodes as RSIP clients, follow Procedure 50
on page 221.

For additional information about configuring RSIP, see the xtrsipcfg(8),
rsipd(8), and rsipd.conf(5) man pages.

Procedure 49. Installing, configuring, and starting RSIP clients and servers

1. Edit CLEinstall.conf for your RSIP configuration. For example, to
configure nodes 16 and 20 as RSIP servers with an external interface named
eth0 and node 64 as an RSIP server with an external interface named eth1; and
node 0 as a service node RSIP client, make these changes.

smw:~ # vi /home/crayadm/install.xtrelease/CLEinstall.conf
rsip_nodes=16 20 64
rsip_interfaces=eth0 eth0 eth1
rsip_servicenode_clients=0
CNL_rsip=yes

2. Invoke the CLEinstall program on the SMW; you must specify the xtrelease
that is currently installed on the system set you are using and located in the
CLEmedia directory.

smw:~ # /home/crayadm/install.xtrelease/CLEinstall --upgrade \
--label=system_set_label --XTrelease=xtrelease \
--configfile=/home/crayadm/install.xtrelease/CLEinstall.conf \
--CLEmedia=/home/crayadm/install.xtrelease

3. Type y and press the Enter key to proceed when prompted to update the boot
root and again for the shared root.

*** Do you wish to continue? (y/n) --> y

Upon completion, CLEinstall lists suggested commands to finish the

S–2393–5101 219

Managing System Software for the Cray® Linux Environment

installation. Those commands are also described here. For more information
about running the CLEinstall program, see Installing and Configuring Cray
Linux Environment (CLE) Software.

4. Rebuild the boot image using
/var/opt/cray/install/shell_bootimage_LABEL.sh,
xtbootimg and xtcli commands. Suggested commands are included in
output from CLEinstall and shell_bootimage_LABEL.sh. For more
information about creating boot images, follow Procedure 2 on page 66.

5. Run the shell_post_install.sh script on the SMW to unmount the boot
root and shared root file systems and perform other cleanup as necessary.

smw:~# /var/opt/cray/install/shell_post_install.sh /bootroot0 /sharedroot0

6. (Optional) If you are configuring a service node RSIP client, edit the boot
automation file to start the RSIP client. On the isolated service node, invoke a
modprobe of the krsip module with an IP argument pointing to the HSN
IP address of an RSIP server node. For example, if the IP address of the RSIP
server is 10.128.0.17 and the isolated service node is nid00000, make
these changes.

crayadm@smw:~> vi /opt/cray/etc/auto.xthostname
After the line or lines that start the RSIP servers add:
RSIP client startup
lappend actions { crms_exec_via_bootnode "nid00000" "root" "modprobe krsip
ip=10.128.0.17 rsip_local_ports=1" }

7. Boot your Cray system; for example:

crayadm@smw:~> xtbootsys -a auto.xthostname

Note: RSIP clients on the compute nodes make connections to the RSIP
server(s) during system boot. Initiation of these connections is staggered
at a rate of 10 clients per second; during that time, connectivity over RSIP
tunnels will be unreliable. Avoid using RSIP services for several minutes
following a system boot; larger systems will require more time for connections
to complete.

8. Test RSIP functionality. From a login node, log on to an RSIP client node
(compute node) and ping the IP address of the SMW or other host external to
your Cray system. For example, if nid00074 is a compute node and 10.3.1.1 is a
valid external IP address, type these commands.

crayadm@login:~> ssh root@nid00074
root@nid00074's password:
Welcome to the initramfs
ping 10.3.1.1
10.3.1.1 is alive!
#

220 S–2393–5101

Modifying an Installed System [6]

Procedure 50. Adding isolated service nodes as RSIP clients

You can configure service nodes that are isolated from the network as RSIP clients.
This procedure assumes that RSIP is already configured and functional on your
Cray system. If you have not installed and configured RSIP on your system, follow
Procedure 49 on page 219, which includes an optional step to configure isolated
service nodes as RSIP clients.

Warning: Do not configure service nodes with external network connections as
RSIP clients. Configuring a network node as an RSIP client will disrupt network
functionality; Service nodes with external network connections will route all
non-local traffic into the RSIP tunnel and IP may not function as desired.

1. Select one of your RSIP servers to provide access for the isolated service node. In
this example, we have chosen the RSIP server nid00016.

2. Log on to the boot node and invoke xtopview in the node view for the RSIP
server you have selected; for example:

boot:~ # xtopview -n 16
node/16:/ #

Modify max_clients in the rsipd.conf file to add an additional client for
each isolated service node you are configuring. For example, if you configured
300 RSIP clients (compute nodes), change 300 to 301.

node/16:/ # vi /etc/opt/cray/rsipd/rsipd.conf
max_clients 301

3. Load the RSIP client on the node. On the isolated service node, invoke a
modprobe of the krsip module with an IP argument pointing to the HSN
IP address of the RSIP server node you selected in step 1. For example, if the
IP address of the RSIP server is 10.128.0.17 and the isolated service node
is nid00023, type these commands.

boot:~ # ssh nid00023
nid00023:~ # modprobe krsip ip=10.128.0.17 rsip_local_ports=1

4. Edit the boot automation file to start the RSIP client. Using the example from the
previous steps, make these changes.

crayadm@smw:~> vi /opt/cray/etc/auto.xthostname
After the line or lines that start the RSIP servers add:
RSIP client startup
lappend actions { crms_exec_via_bootnode "nid00023" "root" "modprobe krsip \
ip=10.128.0.17 rsip_local_ports=1" }

S–2393–5101 221

Managing System Software for the Cray® Linux Environment

6.29.7 IP Routes for CNL Nodes in the /etc/routes File

You can edit the /etc/routes file in the compute node template image on the
SMW to provide route entries for compute nodes. This provides a simple mechanism
for you to configure routing access from compute nodes to login and network
nodes using external IP destinations without having to traverse RSIP tunnels. This
mechanism is not intended to be used for general-purpose routing of internal HSN IP
traffic. It is intended only to provide IP routes for compute nodes that need to reach
external IP addresses or external networks. A new /etc/routes file is created in
the compute images and is examined during startup. Non-comment, non-blank lines
are passed to the route add command. The empty template file provided contains
comments describing the syntax.

6.30 Updating the System Configuration After a Blade Change
When a blade is changed in a Cray system, you need to update the configuration of
the system. You will need to do this after:

• Adding additional blades to the system
• Removing a blade from your system configuration
• Changing a blade from a compute blade to a service blade
• Changing a blade from a service blade to a compute blade

You can update the system configuration when the system is not booted (see Updating
the System Configuration When the System is Not Booted on page 222) or while the
system is booted (see Updating the System Configuration While the System is Booted
on page 224).

6.30.1 Updating the System Configuration When the System is Not
Booted

Important: After you have made hardware changes and you want to update the
system configuration when the system is not booted, follow the procedures in this
section.

Procedure 51. Updating the SMW configuration after hardware changes

Note: When blades are changed that have the same blade type and Processor
Daughter Card (PDC) type, xtdiscover does not need to be executed. If these
blades are changed or if cabling changes are made and xtdiscover does
not have to be executed, you must still execute the xtbounce --linktune
command, which forces xtbounce to do full tuning on the system. For
more information about the xtbounce --linktune command, see the
xtbounce(8) man page.

1. Execute the xtdiscover command, which updates the system configuration to
reflect the changed blade configuration.

222 S–2393–5101

Modifying an Installed System [6]

2. If the blade or PDC type is different, execute the xtdiscover command.

smw:~ # xtdiscover

3. If the blade or PDC type is different, you must execute the xtzap --blade
command.

smw:~ # xtzap --blade blade_cname

4. Execute the xtbounce --linktune=all command to tune PCIe and HSN
links on the system. If using a partition and not the entire machine, use pN
instead of s0.

smw:~ # xtbounce --linktune=all s0

5. Capture the system configuration for CLEinstall by executing the following
xthwinv commands. (The CLEinstall --xthwinvxmlfile option will
order the CLEinstall program to use this captured configuration information.)
If using a partition and not the entire machine, use pN instead of s0.

smw:~ # xthwinv -x s0 > /home/crayadm/install.5.1.29/xthwinv.s0.xml

For additional information about the CLEinstall and xthwinv commands,
see the CLEinstall(8) and xthwinv(8) man pages.

Procedure 52. Using CLEinstall to update the system configuration after
adding a blade to a system

1. Update the CLEinstall.conf file with the blade changes.

2. Execute the CLEinstall command, including the --xthwinvxmlfile
option, to update the system and prepare a boot image. The CLEinstall
--xthwinvxmlfile option orders the CLEinstall program to use
previously captured configuration information (see Procedure 51 on page 222). If
using a partition and not the entire machine, use pN instead of s0.

smw:~ # ./CLEinstall --label=LABEL --upgrade --XTrelease=5.1.29 \
--xthwinvxmlfile=/home/crayadm/install.5.1.29/xthwinv.s0.xml \
--configfile=/home/crayadm/install.5.1.29/CLEinstall.conf

3. Run the shell_bootimage_LABEL.sh script, where LABEL is the system
set label specified in /etc/sysset.conf for this boot image. Specify the
-c option to automatically create and set the boot image for the next boot. For
example:

smw:~ # /var/opt/cray/install/shell_bootimage_LABEL.sh -c

For information about additional options accepted by this script, use the -h
option to display a help message.

4. Run the shell_post_install.sh script on the SMW to unmount the boot
root and shared root file systems and perform other cleanup as needed.

smw:~ # /var/opt/cray/install/shell_post_install.sh
/bootroot0 /sharedroot0

S–2393–5101 223

Managing System Software for the Cray® Linux Environment

5. If you are adding a compute blade into the system configuration, boot the system
as you normally boot your system.

If you are adding a service blade into the system configuration, complete the
following steps.

a. Boot the boot node.

b. If the login node(s) or RSIP node(s) have changed, edit
/etc/sysconfig/network/ifcfg-eth0.

c. Boot the SDB node and all other service nodes.

d. Update ssh keys for new service nodes.

1) Create a backup copy of your boot:/root/.ssh/known_hosts
file.

2) Delete your boot:/root/.ssh/known_hosts file.

3) Run the /var/opt/cray/install/shell_ssh.sh script,
which creates a new known_hosts file. These keys are used for ssh
commands to the blades, including pdsh commands that are called by
xtshutdown and /etc/init.d/lustre and possibly by actions
specified in the boot automation file on the SMW.

boot:~ # /var/opt/cray/install/shell_ssh.sh

e. Configure the new nodes to support the role that they were added for.

f. Update SMW boot automation files if new service nodes have been added or
removed that are providing services (such as ALPS on login nodes) that are
explicitly started by hostname in the boot automation file.

g. Complete booting the system (or reboot using the boot automation file).

6.30.2 Updating the System Configuration While the System is Booted

To change the system configuration physically while the system is booted, use the
xtwarmswap command to remove or add one or more blades. The xtwarmswap
command runs on the SMW and coordinates with the xtnlrd daemon to take the
necessary steps to perform warm swap operations. See the xtwarmswap(8) man
page for additional information about using the xtwarmswap command.

!
Caution: When reserving nodes for maintenance, an admindown of any node
in use by a current batch job can cause a subsequent aprun in the job to fail;
instead, it is recommended that a batch subsystem be used to first reserve nodes
for maintenance, and then verify that a node is not in use by a batch job prior to
setting a node to admindown. Contact your Cray service representative to reserve
nodes for maintenance.

224 S–2393–5101

Modifying an Installed System [6]

6.30.2.1 Reusing One or More Previously-failed HSN Links

To integrate failed links back into the HSN configuration, the xtwarmswap
command may be invoked with one of the following:

• -s LCB, ..., specifying the list of LCBs to bring back up

• -s all, to bring in all available LCBs

• -s none, to cause a reroute without changing the LCBs that are in use

Procedure 53. Rerouting the HSN to use previously-failed links

1. Execute an xtwarmswap -s LCB_names -p partition_name to tell the
system to reroute the HSN using the specified set of LCBs in addition to those
that are currently in use.

Note: Doing so will clear the alert flags on the specified LCBs automatically.
If the warm swap fails, the alert flag will be restored to the specified LCBs.

2. Execute an xtwarmswap -s all -p partition_name command to tell the
system to reroute the HSN using all available links.

The xtwarmswap command results in xtnlrd performing the same link recovery
steps as for a failed link, but with two differences: no alert flags are set, and an
init_new_links and a reset_new_links step are performed to initialize
both ends of any links to be used, before new routes are asserted into the Aries
routing tables.

The elapsed time for the warm swap synchronization operation is typically about 30
seconds.

6.30.2.2 Reusing One or More Previously-failed Blades, ANCs, or Cabinets

Failed blades have alert flags set on the ASICs and the LCBs. These alert flags must
be cleared before the blades, ANCs, or cabinets can be reused.

Perform an xtwarmswap --add operation to bring the blades back into the HSN
configuration. Doing so clears any alert flags on the added blades and LCBs relating
to those blades, initializes the blades, runs the BIOS on the nodes, and initializes
the links to the blades.

Procedure 54. Clearing all alerts associated with the failed
blades/ANCs/cabinets and bringing them back into the HSN configuration

1. Ensure that blades/ANCs/cabinets have power.

2. Ensure that an xtalive command to all required blades succeeds.

3. Add the blade(s) to the HSN by executing the xtwarmswap --add
blade_ID,... command. Note that this command automatically executes

S–2393–5101 225

Managing System Software for the Cray® Linux Environment

a mini-xtdiscover command after the warm swap steps have completed
successfully. No manual invocation of xtdiscover, which gets the new
hardware attributes from the added blades, is necessary.

4. Boot the nodes on the blade(s) by executing the xtcli boot CNL0
blade_ID,... command on the SMW.

Because the xtwarmswap --add command initializes the added blades, the
time to return the blades back to service is about 10 minutes, including the time to
initialize the blades, run the BIOS on the nodes, and initialize the links to the blades.

6.30.2.3 Planned Removal of a Compute Blade

You can physically remove a compute blade for maintenance or replacement while
the system is running; however, the applications using the nodes on the blade to be
removed must be allowed to drain, or be killed beforehand.

Procedure 55. Removing a compute blade for maintenance or replacement while
the system is running

1. Log on to the boot node as root.

a. Execute the xtprocadmin -n nid[,nid...]-k s admindown
command to mark the nodes on the compute blade as admindown. This tells
ALPS not to launch new applications onto them. The arguments to the -n
option should be the NID values for the nodes on the blade being removed, as
shown by executing xtprocadmin | grep bladename.

b. Find the NID values for the nodes on the blade being removed.

boot:~ # xtprocadmin | grep c0-0c0s2
8 0x8 c0-0c0s2n0 compute up batch
9 0x9 c0-0c0s2n1 compute up batch

10 0xa c0-0c0s2n2 compute up batch
11 0xb c0-0c0s2n3 compute up batch

c. Execute the apstat -n command to determine if any applications are
running on the node you marked admindown. In this example, you can see
that apid 675722 is running on all nodes of blade c0-0c0s2:

boot:~ # apstat -n | egrep -w 'NID|8|9|10|11
8 XT UP B 32 32 1 4K 16777216 8388608 262144 1 675722
9 XT UP B 32 32 1 4K 16777216 8388608 262144 1 675722

10 XT UP B 32 32 1 4K 16777216 8388608 262144 1 675722
11 XT UP B 32 32 1 4K 16777216 8388608

262144 1 675722

d. Wait until the applications using the nodes on the blade finish or use the
apkill apid command to kill the application.

2. Log on to the SMW as crayadm.

a. Execute the xtcli halt blade command to halt the blade.

226 S–2393–5101

Modifying an Installed System [6]

b. Execute the xtwarmswap --remove blade command to remove the
compute blade from service.

c. Physically remove the blade, if desired.

The --remove stage of the xtwarmswap process uses the Aries resiliency
infrastructure and takes about 30 seconds to complete.

6.30.2.4 Planned Installation of a Compute Blade

After a blade has been repaired or when a replacement blade is available, you can use
the following procedure to return the blade into service.

Procedure 56. Returning a blade into service

1. Physically insert the blade into the slot.

2. Ensure that blades/ANCs/cabinets have power.

3. Ensure that an xtalive command to all required blades succeeds.

4. If the blade or PDC type is different, execute the xtdiscover command.

smw:~ # xtdiscover

5. Execute the xtzap --blade command.

smw:~ # xtzap --blade blade_cname

6. Add the blade(s) to the HSN by executing the xtwarmswap --add
blade_ID,... command. Note that this command automatically executes
a mini-xtdiscover command once the warm swap steps have completed
successfully. No additional manual invocation of xtdiscover, which gets the
new hardware attributes from the added blades, is necessary.

7. Boot the nodes on the blade(s) by executing the xtcli boot CNL0
blade_ID,... command on the SMW.

Because the xtwarmswap --add command initializes the added blades, the
time to return the blades back to service is about 10 minutes, including the time to
initialize the blades, run the BIOS on the nodes, and initialize the links to the blades.

6.31 Changing the Location to Log syslog-ng Information
Syslog messages from the service partition are only present on the SMW in
/var/opt/cray/log/sessionid. The log system does not support customization
of the configuration files, but if you wish to have custom log formats, you may
configure the log system to forward all system logs from the SMW to your
site-provided log server. See the intro_llm(8) and CLEinstall.conf(5) man
pages for more information.

S–2393–5101 227

Managing System Software for the Cray® Linux Environment

6.32 Cray Lightweight Log Management (LLM) System
The Cray Lightweight Log Management (LLM) system is the log infrastructure for
Cray systems and must be enabled for systems to successfully log events. At a high
level, a library is used to deliver messages to rsyslog utilizing the RFC 5424
protocol; rsyslog transports those messages to the SMW and places the messages
into log files.

For an overview of LLM, see the intro_LLM(8) man page.

For an overview of the LLM log files, see the intro_LLM_logfiles(5) man
page.

The LLM system relies on the sessionid that is generated by xtbootsys. Therefore,
systems must always be booted using xtbootsys. If you have multi-part boot
procedures or if you use manual procedures, have the process started by an
xtbootsys session. That session can be effectively empty – it is only needed to
initiate a boot sessionid. Subsequent xtbootsys calls can then use --session
last or manual processes.

By default, LLM has a log trimming mechanism enabled called xttrim. For
additional information, see Removing Old Log Files on page 100.

Note: Do not use the xtgetsyslog command because it is not compatible with
LLM.

6.32.1 Configuring LLM

The LLM system is intended to work as a turnkey system. In most cases little or no
configuration is required.

Both the SMW and CLE software installation tools allow certain LLM settings to be
defined. The installation tool enforces any of these settings in the LLM configuration
file, which means that these settings will not be accidentally lost during an upgrade
due to changes in the llm.conf file that is distributed with the LLM software.

Note: The llm.conf file may be automatically replaced during the upgrade
process. The previous version will be renamed llm.conf.rpmsave. Settings
made in the SMWinstall.conf and CLEinstall.conf files will be
enforced in the new llm.conf configuration file. It is important to review the
resulting llm.conf file after a software update to ensure all settings are as
intended.

The most critical parameter is LLM= in the SMWinstall.conf and
CLEinstall.conf files. This parameter must be set to LLM=yes, which ensures
that enabled=yes is set in the llm.conf file. The LLM=yes setting is the only
one needed for basic LLM operation.

228 S–2393–5101

Modifying an Installed System [6]

Important: It is recommended that the minimal possible configuration be
performed in order achieve the needed results. Only set or change items if
needed. If you must change a setting, change it in the SMWinstall.conf
and/or CLEinstall.conf files if they provide a mechanism to change
that value. Only change values in the llm.conf configuration file
(/etc/opt/cray/llm/llm.conf) directly if you require the change and the
SMWinstall.conf and CLEinstall.conf files do not provide a mechanism
to change that value.

!
Caution: The rsyslog.conf configuration file is not intended to be modified
locally. Configurable settings can be found in the llm.conf configuration file.
Modifications outside of those provided by llm.conf may cause failure in other
Cray software components, such as xtdumpsys. If the provided configuration
does not have the needed functionality, it is recommended that the logs be
forwarded to another host where custom file processing can be performed without
risk to critical software components.

For a description of all LLM configuration settings, see the llm.conf(5) man page
or the llm.conf configuration file.

6.32.2 State Manager LLM Logging

The log data from the State Manager is written to
/var/opt/cray/log/smyyyymmdd. The default setting for the State Manager is
to enable LLM logging. If LLM or craylog failures occur, State Manager logging
is not disrupted. Logging then reverts to behavior that is very similar to legacy
State Manager logging, which is also used when State Manager logging is turned
off. To disable LLM logging for the State Manager, add the "-L n"option to the
/opt/cray/hss/default/bin/rsms script entry:

sm=(/opt/cray/hss/default/bin/state_manager sm "-L n")

6.32.3 LLM Configuration Tips

• If your RAID controllers do not have IP addresses that begin with 10.1.0., make
sure you specify the llm_raid_ip= option in your SMWinstall.conf
file. Failure to set this correctly will result in the RAID logs not going into their
specified location of /var/opt/cray/log/raid-yyyymmdd.

• Verify that your /var/opt/cray/log directory is on a different disk than
the root hard drive. The subdirectories of /var/opt/cray should be links
to a different disk.

• If you delete an active log file while rsyslog is running, rsyslog will
continue to write to the file handle even though there is no longer an entry for the
file in the directory table of contents. Once rsyslog exits, all references to

S–2393–5101 229

Managing System Software for the Cray® Linux Environment

that file handle are gone, so the contents will be lost. To delete a currently open
log file, the suggested approach is to rename or remove the file and then hup
rsyslog (/etc/init.d/cray-syslog hup) to tell it to reopen files.

• Make sure your site log host system can handle the log files load. Otherwise, the
messages will back up on the SMW and cause unexpected behavior.

230 S–2393–5101

Managing Services [7]

This chapter describes how to manage Cray system services to best use the system
or to modify a service.

For a list of administrator accounts that enable you to access these functions, see
Administering Accounts on page 119.

7.1 Configuring the SMW to Synchronize to a Site NTP Server
The components of the Cray system synchronize time with the System Management
Workstation (SMW) through Network Time Protocol (NTP). By default, the NTP
configuration of the SMW is configured to stand alone; however, the SMW can
optionally be configured to synchronize with a site NTP server. Use the following
procedure to configure the SMW to synchronize to a site NTP server.

Procedure 57. Configuring the SMW to synchronize to a site NTP server

1. Stop the NTP server by issuing the /etc/init.d/ntp stop command; this
command must be executed as user root:

smw:~ # /etc/init.d/ntp stop

2. Edit the /etc/ntp.conf file on the SMW to point to the new server.

3. Restart the NTP server by issuing the /etc/init.d/ntp restart
command:

smw:~ # /etc/init.d/ntp start

The SMW can continue to update the rest of the system by proxy. By default, the
SMW qualifies as a stratum 3 (local) NTP server. For more information about NTP,
refer to the Linux documentation.

7.2 Synchronizing Time of Day on Compute Node Clocks with
the Clock on the Boot Node

A network time protocol (NTP) client, ntpclient, is available to install on
compute nodes. By default, ntpclient is not installed. When installed, the time of
day on compute node clocks is synchronized with the clock on the boot node.

S–2393–5101 231

Managing System Software for the Cray® Linux Environment

Without this feature, compute node clocks will drift apart over time, as much as 18
seconds a day. When ntpclient is installed on the compute nodes, the clocks drift
apart for a four-hour calibration period and then slowly converge on the time reported
by the boot node.

Note: The standard Cray system configuration includes an NTP daemon (ntpd)
on the boot node that synchronizes with the clock on the SMW. Additionally, the
service nodes run ntpd to synchronize with the boot node.

To install the ntpclient RPM in the compute node boot image, edit the
shell_bootimage_LABEL.sh script and specify CNL_NTPCLIENT=y,
and then update the CNL boot image. Optionally, you can enable this feature
as part of a CLE software upgrade by setting CNL_ntpclient=yes in the
CLEinstall.conf file before the CLEinstall program is run.

On compute nodes, the computational overhead for ntpclient is negligible and a
small increase (800K) to the memory footprint will be incurred. Minimal network
overhead for the boot node is required to process NTP requests. For each compute
node on the system, the boot node will send and receive one packet every 15
minutes. Even on very large Cray systems, the boot node will process fewer than 25
transactions a second to support ntpclient requests.

7.3 Adding and Starting a Service Using Standard Linux
Mechanisms

Services can be added to the service nodes by using standard Linux mechanisms,
such as executing the chkconfig command while in the xtopview utility on the
boot node or executing /etc/init.d/servicename start|stop|restart
(which starts, stops, or restarts a service immediately) on the service node. This is the
recommended approach for most services.

7.4 Creating a Snapshot of /var
The /var directory on a Cray system can be configured either as persistent
(see Installing and Configuring Cray Linux Environment (CLE) Software) or
nonpersistent. In the latter case, the /var directory is volatile, and its initial contents
are rebuilt at boot time from a skeleton archive, /.shared/var-skel.tgz.

The advantage of using a nonpersistent /var directory is ease of management. Each
time the system is rebooted, the /var directory is freshly re-created from the central
skeleton file, so accumulation of files and potential corruption of files with the /var
directory is much less of a concern. However, because the contents of /var are
not saved, if there is a need to update the initial contents of the /var directory (for
example, when a new package requires a directory), the skeleton archive must be
updated.

232 S–2393–5101

Managing Services [7]

The xtpkgvar command creates a compressed tar file with a skeleton snapshot of
the /var directory. To add files to the directory, make changes in the xtopview
shell to the /var directory and take a snapshot of it with the xtpkgvar command.

!
Caution: Use the xtpkgvar command only when you are configuring the
shared-root file system. The xtpkgvar command is used by the CLEinstall
utility.

For more information, see the xtpkgvar(8) man page.

7.5 Setting Soft and Hard Limits to Prevent Login Node Hangs
A login node can be caused to hang or become nearly unresponsive by having all
available processes on the node in use. A hang of this type can be identified primarily
by the presence of cannot fork error messages, but it is also associated with
an unusually large number of processes running concurrently, the machine taking
several minutes to make a prompt available, or never making a prompt available. In
the case of an overwhelming number of total processes, it is often a large number of
the same process overwhelming the system, which indicates a fork() system call
error in that particular program.

This problem can be prevented by making a few changes to configuration files in
/etc on the shared root of the login node. These configurations set up the ulimit
built-in and the Linux Pluggable Authentication Module (PAM) to enforce limits on
resources as specified in the configuration files. There are two types of limits that can
be specified, a soft limit and a hard limit. Users receive a warning when they reach
the soft limit specified for a resource, but they can temporarily increase this limit up
to the hard limit using the ulimit command. The hard limit can never be exceeded
by a normal user. Because of the shared root location of the configuration files, the
changes must be made from the boot node using the xtopview tool.

Procedure 58. Preventing login node hangs by setting soft and hard limits

1. On the boot node type the following in order to make changes to the shared root,
where login is the class name for login nodes.

boot:~ # xtopview -c login

2. Next, add the following lines to the /etc/security/limits.conf file,
where soft_lim_num and hard_lim_num are the number of processes at which
you would like the hard and soft limits enforced. The * represents "apply to all
users" but can also be configured to apply specific limits by user or group (see the
limits.conf file's comments for further options).

class/login:/ # vi /etc/security/limits.conf
* soft nproc soft_lim_num
* hard nproc hard_lim_num

Save the file.

S–2393–5101 233

Managing System Software for the Cray® Linux Environment

3. Verify that the following line is included in the appropriate PAM configuration
files for any authentication methods for which you want limits enforced; the PAM
configuration files are located in the /etc/pam.d/ directory. For example, to
enforce limits for users connecting through ssh, add the pam_limits.so
line to the file /etc/pam.d/sshd. Other applicable authentication methods
to include also are su in the file /etc/pam.d/su and local logins in
/etc/pam.d/login.

session required pam_limits.so

For more information about the Pluggable Authentication Module (PAM), see
the PAM(8) man page.

4. Type exit to return to the normal prompt on the boot node; the changes you
made should be effective immediately on login nodes.

class/login:/ # exit
boot:~ #

5. To test that the limits are in place, from a login node type the following
command, which should return the number specified as the soft limit for the
number of processes available to a user, for example:

boot:~ # ssh login
login:~ # ulimit -u

For more information about using the ulimit command, see the ulimit(P)
man page.

7.6 Rack-mount SMW: Creating a Cray System Management
Workstation (SMW) Bootable Backup Drive

The following procedure creates a bootable backup drive for a rack-mount SMW in
order to replace the primary drive if the primary drive fails. When this procedure is
completed, the backup drive on the SMW will be a bootable replacement for the
primary drive when the backup drive is plugged in as or cabled as the primary drive.

Procedure 59. Rack-mount SMW: Creating an SMW bootable backup drive

Important: The disk device names shown in this procedure are only examples.
You should substitute the actual disk device names for your system. The boot disk
is phy7 and is slot 0, and the bootable backup disk is phy6 and is slot 1.

!
Caution: Shut down the Cray system before you begin this procedure.

Also be aware that there may be a considerable load on the SMW while creating
the SMW bootable backup drive.

234 S–2393–5101

Managing Services [7]

1. Log on to the SMW as crayadm and su to root.

crayadm@smw:~> su -
Password:
smw:~ # ls -al /dev/disk/by-path
total 0
drwxr-xr-x 2 root root 380 Mar 15 13:21 .
drwxr-xr-x 6 root root 120 Mar 11 18:42 ..
lrwxrwxrwx 1 root root 9 Mar 11 18:42 pci-0000:00:11.0-scsi-0:0:0:0 -> ../../sr0
lrwxrwxrwx 1 root root 9 Mar 11 18:42 pci-0000:00:12.2-usb-0:3:1.0-scsi-0:0:0:0 -> ../../sdf
lrwxrwxrwx 1 root root 9 Mar 11 18:42 pci-0000:00:12.2-usb-0:3:1.1-scsi-0:0:0:0 -> ../../sr1
lrwxrwxrwx 1 root root 9 Mar 11 18:42 pci-0000:00:12.2-usb-0:3:1.1-scsi-0:0:0:1 -> ../../sdg
lrwxrwxrwx 1 root root 9 Mar 11 18:42 pci-0000:00:13.2-usb-0:2.1:1.0-scsi-0:0:0:0 -> ../../sde
lrwxrwxrwx 1 root root 10 Mar 11 18:42 pci-0000:00:13.2-usb-0:2.1:1.0-scsi-0:0:0:0-part1 -> ../../sde1
lrwxrwxrwx 1 root root 10 Mar 11 18:42 pci-0000:00:13.2-usb-0:2.1:1.0-scsi-0:0:0:0-part2 -> ../../sde2
lrwxrwxrwx 1 root root 9 Mar 11 18:42 pci-0000:05:00.0-sas-phy4-...
lrwxrwxrwx 1 root root 10 Mar 14 15:57 pci-0000:05:00.0-sas-phy4-...
lrwxrwxrwx 1 root root 9 Mar 11 18:42 pci-0000:05:00.0-sas-phy5-...
lrwxrwxrwx 1 root root 10 Mar 14 16:00 pci-0000:05:00.0-sas-phy5-...
lrwxrwxrwx 1 root root 9 Mar 11 18:42 pci-0000:05:00.0-sas-phy6-...
lrwxrwxrwx 1 root root 10 Mar 15 13:21 pci-0000:05:00.0-sas-phy6-...
lrwxrwxrwx 1 root root 10 Mar 15 13:21 pci-0000:05:00.0-sas-phy6-...
lrwxrwxrwx 1 root root 9 Mar 11 18:42 pci-0000:05:00.0-sas-phy7-...
lrwxrwxrwx 1 root root 10 Mar 11 18:42 pci-0000:05:00.0-sas-phy7-...
lrwxrwxrwx 1 root root 10 Mar 11 18:42 pci-0000:05:00.0-sas-phy7-...

2. Standardize the SMW's boot-time drive names with the Linux run-time drive
names.

Important: If your SMW configuration files on the SMW root drive have
been modified already (that is, your site has completed this step at least
once after installing your updated SMW base operating system), skip to
step 3; otherwise, complete this step to standardize the SMW's boot-time
drive names with the Linux run-time drive names.

Set up ordered drives on your rack-mount SMW.

a. Identify the installed SMW drive model numbers, serial numbers, and
associated Linux device (/dev) names.

S–2393–5101 235

Managing System Software for the Cray® Linux Environment

Execute the smwmapdrives.sh script on the SMW to identify local
(internal) drives mounted in the SMW and provide their Linux device (/dev)
names.

Note: Effective with the SMW 7.1.UP00 release, the
smwmapdrives.sh script is provided both as a separate file
in the release and in the base operating system RPM. Prior to do this
update you will need to use the separate file, but when backing up your
SMW at a later date you can use the installed version.

smw:~ # ./smwmapdrives.sh
List of SMW-installed disk drives

Physical slot 0:

/dev/sda
/dev/disk/by-id/ata-FUJITSU_MHZ2160BK_G2_K85DTB227RDS
/dev/disk/by-id/scsi-SATA_FUJITSU_MHZ2160_K85DTB227RDS
/dev/disk/by-path/pci-0000:05:00.0-sas-phy7-0x4433221107000000-lun-0

Physical slot 1:
/dev/sdc
/dev/disk/by-id/ata-FUJITSU_MHZ2160BK_G2_K85DTB227RD7
/dev/disk/by-id/scsi-SATA_FUJITSU_MHZ2160_K85DTB227RD7
/dev/disk/by-path/pci-0000:05:00.0-sas-phy6-0x4433221106000000-lun-0

Physical slot 2:
/dev/sdd
/dev/disk/by-id/ata-FUJITSU_MHZ2160BK_G2_K85DTB227RF3
/dev/disk/by-id/scsi-SATA_FUJITSU_MHZ2160_K85DTB227RF3
/dev/disk/by-path/pci-0000:05:00.0-sas-phy5-0x4433221105000000-lun-0

Physical slot 3:
/dev/sdb
/dev/disk/by-id/ata-ST9500620NS_9XF0665V
/dev/disk/by-id/scsi-SATA_ST9500620NS_9XF0665V
/dev/disk/by-path/pci-0000:05:00.0-sas-phy4-0x4433221104000000-lun-0

Physical slot 4:
NOT INSTALLED

Physical slot 5:
NOT INSTALLED

The device names for by-id are persistent and will reference the drive,
regardless of the slot in which the drive is installed.

by-path names reference a physical drive slot only and do not identify the
drive installed in that slot. This is the naming used by default for the logging
and database drives when the SMW was installed. This by-path name
is used to specifically install logging and database file systems because the
by-id device names refer to the physical drive slots expected to be used
for those file systems and are provided as the default examples in the SMW
installation configuration process.

The /dev/sdX drive names are not persistent, except for the /dev/sda
drive name, which always refers to the drive installed in physical slot 0 (zero)
of the SMW; the other /dev/sdX names can change with each SMW boot

236 S–2393–5101

Managing Services [7]

and will change if drives are added, removed, or reordered in the SMW slots.
Only the /dev/sda drive name may ever be used for the rack-mount SMW
for this reason.

Either the by-id naming or the by-path naming should be chosen for the
site administrative policy for managing the SMW-install disk drives. The
following documentation provides the steps necessary to implement this
selection on the SMW prior to creating an SMW bootable backup drive.

b. Back up the following files before proceeding:

smw# cp -p /boot/grub/device.map /boot/grub/device.map-YYYYMMDD
smw# cp -p /boot/grub/menu.lst /boot/grub/menu.lst-YYYYMMDD
smw# cp -p /etc/fstab /etc/fstab-YYYYMMDD

c. Edit the grub device.map file to reflect physical drive locations.

To provide a direct mapping of the SMW disk drive physical slots to the boot
loader (BIOS and GRUB) drive namings, the device.map mapping file
used by grub should be replaced. Perform the following steps to install new
device.map file entries to effect this mapping.

1) Edit the grub device.map file.

2) Delete all lines.

3) Enter the following lines into the file. These lines show each drive slot's
physical location mapped to its boot-time hd? name.

Note: by-id names should not be used in the device.map file.

Dell Rackmount r805 SMW
grub(8) device mapping for boot-drive identification
hd? numbers are being mapped to their physical
(hd0) /dev/disk/by-path/pci-0000:05:00.0-sas-phy7-0x4433221107000000-lun-0
(hd1) /dev/disk/by-path/pci-0000:05:00.0-sas-phy6-0x4433221106000000-lun-0
(hd2) /dev/disk/by-path/pci-0000:05:00.0-sas-phy5-0x4433221105000000-lun-0
(hd3) /dev/disk/by-path/pci-0000:05:00.0-sas-phy4-0x4433221104000000-lun-0
(hd4) /dev/disk/by-path/pci-0000:05:00.0-sas-phy3-0x4433221103000000-lun-0
(hd5) /dev/disk/by-path/pci-0000:05:00.0-sas-phy2-0x4433221102000000-lun-0

d. Modify the SMW boot drive /etc/fstab file to utilize by-id or
by-path naming.

Modify the SMW file system mounting configuration file to utilize SMW disk
by-id or by-path naming. Complete this step to replace any /dev/sdX
disk partition references.

Note: The output of the smwmapdrives.sh script in step 2.a should be
referenced for drive names.

Edit /etc/fstab, replacing drive /dev/sdX references with either the
by-id or by-path name's corresponding device name.

When a reference to /dev/sda1 is being replaced, replace it with the

S–2393–5101 237

Managing System Software for the Cray® Linux Environment

corresponding "partition" file system suffixed with -part1. File system
partitions for /dev/sda are indicated by the numeral appended to the
device name; for example, /dev/sda1 refers to partition 1 on /dev/sda.
Replace it with the by-id and by-path device names and suffix the device
name with -part1, keeping the same numeral identification.

For example, if the root and swap file systems are currently configured to
mount /dev/sda2, they should be changed. Using the by-id device name
from the example in step 2.a, the fstab lines would change from:

/dev/sda1 swap swap defaults 0 0
/dev/sda2 / ext3 acl,user_xattr 1 1

to:

/dev/disk/by-id/ata-FUJITSU_MHZ2160BK_G2_K85DTB227RDS-part1 swap swap defaults 0 0
/dev/disk/by-id/ata-FUJITSU_MHZ2160BK_G2_K85DTB227RDS-part2 / ext3 acl,user_xattr 1 1

e. Modify /boot/grub/menu.lst to reflect the device.map
BIOS/boot-up drive changes for the sdX remapping.

The same device name replacement performed on /etc/fstab should
also be performed on the GRUB bootloader /boot/grub/menu.lst
configuration file. All references to /dev/sdX devices should be replaced
with corresponding by-id or by-path device names.

f. Invoke the grub utility to reinstall the SMW boot loader on the primary
boot drive.

Once the changes to device.map, fstab, and menu.lst have been
completed, the GRUB bootloader boot blocks must be updated to reflect
changes to the device names. Complete this step to update the boot loader
on the boot drive.

Invoke the grub utility and reinstall SMW root-drive boot blocks.

smw:~ # grub --no-curses
GNU GRUB version 0.97 (640K lower / 3072K upper memory)

[Minimal BASH-like line editing is supported. For the first word, TAB
lists possible command completions. Anywhere else TAB lists the possible
completions of a device/filename.]

grub> root (hd0,1)
root (hd0,1)
Filesystem type is ext2fs, partition type 0x83

grub> setup (hd0)
Checking if "/boot/grub/stage1" exists... yes
Checking if "/boot/grub/stage2" exists... yes
Checking if "/boot/grub/e2fs_stage1_5" exists... yes
Running "embed /boot/grub/e2fs_stage1_5 (hd0)"... 17 sectors \

are embedded. Succeeded
Running "install /boot/grub/stage1 (hd0) (hd0)1+17 p (hd0,1)/boot/grub/stage2 \

/boot/grub/menu.lst"... succeeded
Done.
grub> quit

238 S–2393–5101

Managing Services [7]

3. If the backup drive disk partition table already exists and the partition table on the
backup drive matches the partition table that is on the primary boot drive, skip
this step; otherwise, create the backup drive disk partition table.

In this example, the partition table consists of the following:

• Slice 1: 4 GB Linux swap partition

• Slice 2: Balance of disk space used for the root file system

a. Use the fdisk command to display the boot disk partition layout. (Example
output spacing was modified to fit on the printed page.)

mw:~ # fdisk -lu /dev/disk/by-path/pci-0000:05:00.0-sas-phy7-0x4433221107000000-lun-0
Disk /dev/disk/by-path/pci-0000:05:00.0-sas-phy7-0x4433221107000000-lun-0: 160.0 GB, \
160041885696 bytes
255 heads, 63 sectors/track, 19457 cylinders, total 312581808 sectors
Units = sectors of 1 * 512 = 512 bytes
Disk identifier: 0x00000082

Device
/dev/disk/by-path/pci-0000:05:00.0-sas-phy7-0x4433221107000000-lun-0-part1 \

Boot Start End Blocks Id System
63 16771859 8385898+ 82 Linux swap / Solaris

/dev/disk/by-path/pci-0000:05:00.0-sas-phy7-0x4433221107000000-lun-0-part2 \
Boot Start End Blocks Id System
* 16771860 312576704 147902422+ 83 Linux

b. Use the fdisk command to configure the bootable backup disk partition
layout. Set the bootable backup disk partition layout to match the boot disk
partition layout. First, clear all of the old partitions using the d command
within fdisk; next create a Linux swap and a Linux partition; and then
write your changes to the disk. For help, type m within fdisk (see the
following sample output, spacing was modified to fit on the printed page.)

smw:~ # fdisk -u /dev/disk/by-path/pci-0000:05:00.0-sas-phy6-0x4433221106000000-lun-0

The number of cylinders for this disk is set to 19457.
There is nothing wrong with that, but this is larger than 1024,
and could in certain setups cause problems with:
1) software that runs at boot time (e.g., old versions of LILO)
2) booting and partitioning software from other OSs

(e.g., DOS FDISK, OS/2 FDISK)

Command (m for help): p

Disk /dev/disk/by-path/pci-0000:05:00.0-sas-phy6-0x4433221106000000-lun-0: 160.0 GB, \
160041885696 bytes
255 heads, 63 sectors/track, 19457 cylinders, total 312581808 sectors
Units = sectors of 1 * 512 = 512 bytes
Disk identifier: 0x00000080

Device
/dev/disk/by-path/pci-0000:05:00.0-sas-phy6-0x4433221106000000-lun-0-part1 \

Boot Start End Blocks Id System
63 16771859 83828 82 Linux swap / Solaris

Partition 1 does not end on cylinder boundary.
/dev/disk/by-path/pci-0000:05:00.0-sas-phy6-0x4433221106000000-lun-0-part2 \

Boot Start End Blocks Id System
167719 312581807 156207044+ 83 Linux

S–2393–5101 239

Managing System Software for the Cray® Linux Environment

Command (m for help): d
Partition number (1-4): 2

Command (m for help): d
Selected partition 1

Command (m for help): n
Command action

e extended
p primary partition (1-4)

p
Partition number (1-4): 1
First sector (63-312581807, default 63): (Press the Enter key)
Using default value 63
Last sector, +sectors or +size{K,M,G} (63-312581807, default 312581807): 16771859
Command (m for help): t
Selected partition 1
Hex code (type L to list codes): 82
Changed system type of partition 1 to 82 (Linux swap / Solaris)

Command (m for help): n
Command action

e extended
p primary partition (1-4)

p
Partition number (1-4): 2
First sector (16771860-312581807, default 16771860): (Press the Enter key)
Using default value 16771860
Last sector, +sectors or +size{K,M,G} (16771860-312581807, default 312581807): (Press the Enter key)
Using default value 312581807

Command (m for help): w
The partition table has been altered!

Calling ioctl() to re-read partition table.
Syncing disks.

c. Display the boot backup disk partition layout and confirm it matches your
phy7 sector information.

smw:~ # fdisk -lu /dev/disk/by-path/pci-0000:05:00.0-sas-phy6-0x4433221106000000-lun-0
Disk /dev/disk/by-path/pci-0000:05:00.0-sas-phy6:1-0x4433221106000000:0-lun0: 160.0 GB, \
160041885696 bytes
255 heads, 63 sectors/track, 19457 cylinders, total 312581808 sectors

4. Initialize the swap device.

smw:~ # mkswap /dev/disk/by-path/pci-0000:05:00.0-sas-phy6-0x4433221106000000-lun-0-part1
mkswap: /dev/disk/by-path/pci-0000:05:00.0-sas-phy6:1-0x4433221106000000:0-lun0-part1:
warning: don't erase bootbits sectors

(DOS partition table detected). Use -f to force.
Setting up swapspace version 1, size = 8385892 KiB
no label, UUID=c0ef22ac-b405-4236-855b-e4a09b6e94ed

240 S–2393–5101

Managing Services [7]

5. Create a new file system on the backup drive root partition by executing the
mkfs command.

smw:~ # mkfs -t ext3 \
/dev/disk/by-path/pci-0000:05:00.0-sas-phy6-0x4433221106000000-lun-0-part2
mke2fs 1.41.9 (22-Aug-2009)
Filesystem label=
OS type: Linux
Block size=4096 (log=2)
Fragment size=4096 (log=2)
9248768 inodes, 36976243 blocks
1848812 blocks (5.00%) reserved for the super user
First data block=0
Maximum filesystem blocks=4294967296
1129 block groups
32768 blocks per group, 32768 fragments per group
8192 inodes per group
Superblock backups stored on blocks:

32768, 98304, 163840, 229376, 294912, 819200, 884736, 1605632, 2654208,
4096000, 7962624, 11239424, 20480000, 23887872

Writing inode tables: done
Creating journal (32768 blocks): done
Writing superblocks and filesystem accounting information: done

This filesystem will be automatically checked every 37 mounts or
180 days, whichever comes first. Use tune2fs -c or -i to override.

6. Mount the new backup root file system on /mnt.

smw:~ # mount /dev/disk/by-path/pci-0000:05:00.0-sas-phy6-0x4433221106000000-lun-0-part2 \
/mnt

7. Confirm that the backup root file system is mounted.

smw:~ # df
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/sda2 303528624 6438700 281671544 3% /
udev 1030332 116 1030216 1% /dev
/dev/sdb2 306128812 195568 290505224 1% /mnt

The running root file system device is the one mounted on /.

S–2393–5101 241

Managing System Software for the Cray® Linux Environment

8. Dump the running root file system to the backup drive.

smw:~ # cd /mnt
smw:~ # dump 0f - /dev/disk/by-path/pci-0000:05:00.0-sas-phy7-0x4433221107000000-lun-0-part2 \
| restore rf -

DUMP: WARNING: no file /` etc/dumpdates'
DUMP: Date of this level 0 dump: Tue Mar 15 13:43:17 2011
DUMP: Dumping /dev/sda2 (/) to standard output
DUMP: Label: none
DUMP: Writing 10 Kilobyte records
DUMP: mapping (Pass I) [regular files]
DUMP: mapping (Pass II) [directories]
DUMP: estimated 7898711 blocks.
DUMP: Volume 1 started with block 1 at: Tue Mar 15 13:44:40 2011
DUMP: dumping (Pass III) [directories]
DUMP: dumping (Pass IV) [regular files]

restore: ./lost+found: File exists
DUMP: 79.34% done at 20890 kB/s, finished in 0:01
DUMP: Volume 1 completed at: Tue Mar 15 13:52:13 2011
DUMP: Volume 1 7908080 blocks (7722.73MB)
DUMP: Volume 1 took 0:07:33
DUMP: Volume 1 transfer rate: 17457 kB/s
DUMP: 7908080 blocks (7722.73MB)
DUMP: finished in 453 seconds, throughput 17457 kBytes/sec
DUMP: Date of this level 0 dump: Tue Mar 15 13:43:17 2011
DUMP: Date this dump completed: Tue Mar 15 13:52:13 2011
DUMP: Average transfer rate: 17457 kB/s
DUMP: DUMP IS DONE

9. Modify the backup drive's fstab and menu.lst files to reflect the backup
drive's device, replacing the primary drive's device name.

Note: This step is only necessary if by-id names are used. If by-path
names are being utilized for the root and swap devices, changes are not
necessary; these devices reference physical slots, and the backup drive will be
moved to the same physical slot (slot 0) when replacing a failed primary boot
drive.

a. Edit /mnt/etc/fstab; replace the root and swap partitions' by-id
device names with those used for this backup device, replacing the original
disk device name.

For example, change:

/dev/disk/by-id/ata-FUJITSU_MHZ2160BK_G2_K85DTB227RDS-part1 swap swap defaults
/dev/disk/by-id/ata-FUJITSU_MHZ2160BK_G2_K85DTB227RDS-part2 / ext3 acl,user_xattr

to:

/dev/disk/by-id/ata-FUJITSU_MHZ2160BK_G2_K85DTB227RD7-part1 swap swap defaults
/dev/disk/by-id/ata-FUJITSU_MHZ2160BK_G2_K85DTB227RD7-part2 / ext3 acl,user_xattr

242 S–2393–5101

Managing Services [7]

b. Edit /mnt/boot/grub/menu.lst; replace the root= and resume=
device names with those used for this backup device, replacing the original
disk device name.

Note: The root= entry normally refers to partition -part2, and the
resume= entry normally refers to partition -part1; these partition
references must be maintained.

For example, replace the menu.lst configuration references of:

root=/dev/disk/by-id/ata-FUJITSU_MHZ2160BK_G2_K85DTB227RDS-part2

with:

root=/dev/disk/by-id/ata-FUJITSU_MHZ2160BK_G2_K85DTB227RD7-part2

or similarly with the by-id device names, if those are preferred.

Replace the resume= references similarly.

10. Install the grub boot loader.

To make the backup drive bootable, reinstall the grub boot facility on that drive.

!
Caution: Although all of the disks connected to the SMW are available to the
system, grub only detects the first 16 devices. Therefore, if you add a disk to
the SMW after the SMW is connected to the boot RAID, it is advisable to
reboot the SMW before continuing this procedure.

a. Create a unique file on the backup drive to be used to identify that drive to
grub boot facility.

smw:~ # cd /
smw:~ # touch /mnt/THIS_IS_6

b. Invoke the grub boot utility. Within the grub boot utility:

1) Execute the find command to locate the drive designation that grub
uses.

2) Select the drive to which the boot blocks will be installed with the root
command.

3) Use the setup command to set up and install the grub boot blocks
on that drive.

Note: The Linux grub utility and boot system always refer to drives as
hd, regardless of the actual type of drives.

S–2393–5101 243

Managing System Software for the Cray® Linux Environment

For example:

smw:~ # grub --no-curses
GNU GRUB version 0.97 (640K lower / 3072K upper memory)

[Minimal BASH-like line editing is supported. For the first word, TAB
lists possible command completions. Anywhere else TAB lists the possible
completions of a device/filename.]

grub> find /THIS_IS_6
(hd2,1)
grub> root (hd2,1)
root (hd2,1)
Filesystem type is ext2fs, partition type 0x83

grub> setup (hd2)
Checking if "/boot/grub/stage1" exists... yes
Checking if "/boot/grub/stage2" exists... yes
Checking if "/boot/grub/e2fs_stage1_5" exists... yes
Running "embed /boot/grub/e2fs_stage1_5 (hd2)"... 17 sectors are embedded.

succeeded
Running "install /boot/grub/stage1 (hd2) (hd2)1+17 p (hd2,1)/boot/grub/stage2 \

/boot/grub/menu.lst"... succeeded
Done.
grub> quit

Important: For rack-mount SMWs, grub recreates device.map with
the short names, not the persistent names. The /dev/sdx names must not
be trusted. Always use find the next time you execute grub because it
is possible that grub root may not be hd2 the next time you execute
grub.

11. Unmount the backup root partition.

smw:~ # umount /mnt

The drive is now bootable once plugged in or cabled as the primary drive.

7.7 Desk-side SMW: Creating an System Management
Workstation (SMW) Bootable Backup Drive

The following procedure creates a System Management Workstation (SMW) bootable
backup drive for a desk-side SMW in order to replace the primary drive if the primary
drive fails. When this procedure is completed, the backup drive on the SMW will be a
bootable replacement for the primary drive when the backup drive is plugged in as
or cabled as the primary drive.

Note: In the following procedure, /dev/sdX2 is the SMW disk (either
/dev/sdb2 or /dev/sdc2).

244 S–2393–5101

Managing Services [7]

Procedure 60. Desk-side SMW: Creating an SMW bootable backup drive

Important: The disk device names shown in this procedure are only examples.
You should substitute the actual disk device names for your system. For example,
on an SMW with three SMW disks, the boot disk is /dev/sda and the bootable
backup disk is /dev/sdc; on an SMW with two SMW disks, the boot disk is
/dev/sda and the bootable backup disk is /dev/sdb.

!
Caution: Shut down the Cray system before you begin this procedure.

Also be aware that there may be a considerable load on the SMW while creating
the SMW bootable backup drive.

1. Log on to the SMW as crayadm and su to root.

crayadm@smw:~> su - root
smw:~ #

2. If the backup drive disk partition table already exists and the partition table on the
backup drive matches the partition table that is on the primary boot drive, skip
this step; otherwise, create the backup drive disk partition table.

Note: For optimal performance, the source and destination disks should be
on different buses; drive slots 0 and 1 are on a different bus than drive slots
2 and 3.

In this example, the partition table consists of the following:

• Slice 1: 4 GB Linux swap partition

• Slice 2: Balance of disk space used for the root file system

a. Use the fdisk command to display the boot disk partition layout.

smw:~ # fdisk -lu /dev/sda
Disk /dev/sda: 320.0 GB, 320072933376 bytes
255 heads, 63 sectors/track, 38913 cylinders, total 625142448 sectors
Units = sectors of 1 * 512 = 512 bytes

Device Boot Start End Blocks Id System
/dev/sda1 63 8401994 4200966 82 Linux swap / Solaris
/dev/sda2 * 8401995 625137344 308367675 83 Linux

b. Use the fdisk command to configure the bootable backup disk partition
layout. Set the bootable backup disk partition layout to match the boot disk
partition layout. First, clear all of the old partitions using the d command
within fdisk; next create a Linux swap and a Linux partition; and then
write your changes to the disk. For help, type m within fdisk (see the
following sample output).

smw:~ # fdisk -u /dev/sdb

The number of cylinders for this disk is set to 38913.
There is nothing wrong with that, but this is larger than 1024,
and could in certain setups cause problems with:

S–2393–5101 245

Managing System Software for the Cray® Linux Environment

1) software that runs at boot time (e.g., old versions of LILO)
2) booting and partitioning software from other OSs

(e.g., DOS FDISK, OS/2 FDISK).

Command (m for help): p
Disk /dev/sdb: 320.0 GB, 320072933376 bytes
255 heads, 63 sectors/track, 38913 cylinders, total 625142448 sectors
Units = sectors of 1 * 512 = 512 bytes

Device Boot Start End Blocks Id System
/dev/sdb1 63 8401994 4200966 82 Linux swap
/dev/sdb2 8401995 625105214 308351610 83 Linux

Command (m for help): d
Partition number (1-5): 2
Command (m for help): d
Selected partition 1
Command (m for help): n
Command action
e extended
p primary partition (1-4)
p
Partition number (1-4): 1
First sector (63-625105215, default 63): (Press the Enter key)
Using default value 63
Last sector or +size or +sizeM or +sizeK (63-625105215, default 625105215): 8401994

Command (m for help): t
Selected partition 1
Hex code (type L to list codes): 82
Changed system type of partition 1 to 82 (Linux swap / Solaris)

Command (m for help): n
Command action
e extended
p primary partition (1-4)
p
Partition number (1-4): 2
First sector (8401995-625105215, default 8401995): (Press the Enter key)
Using default value 8401995
Last sector or +size or +sizeM or +sizeK (8401995-625105215, default 625105215): \

(Press the Enter key)
Using default value 625105215

Command (m for help): w
The partition table has been altered!

Calling ioctl() to re-read partition table.
Syncing disks.

246 S–2393–5101

Managing Services [7]

c. Display the boot backup disk partition layout.

smw:~ # fdisk -lu /dev/sdb
Disk /dev/sdb: 320.0 GB, 320072933376 bytes
255 heads, 63 sectors/track, 38913 cylinders, total 625142448 sectors
Units = sectors of 1 * 512 = 512 bytes

Device Boot Start End Blocks Id System

/dev/sdc1 63 8401994 4200966 82 Linux swap / Solaris
/dev/sdc2 * 8401995 625137344 308367675 83 Linux

3. Initialize the swap device.

smw:~ # mkswap /dev/sdb1

4. Standardize the /etc/fstab and grub disk device names.

The device names that the installation process writes into the
/boot/grub/menu.lst file are UDEV-based names (for example,
/dev/disk/by-id/scsi-SATA_ST3320620AS_922J3-part2 or
/dev/disk/by-id/ata-ST3320620A_9QFA85PV-part2) instead
of the more commonly used device names (for example, /dev/sda2 or
/dev/hda2). In the following procedures, edit the /boot/grub/menu.lst
file to change only the long UDEV-based name to the shorter, commonly used
device name reflected in the output of the df command on your system.

If the device names have already been standardized, skip to step 5.

!
Caution: Mistakes in the /boot/grub/menu.lst file will affect your
ability to boot the SMW.

a. SLES 11 sets up /etc/fstab and /boot/grub/menu.lst with
UDEV-based names for the root device. For example:

smw:~ # head -2 /etc/fstab
/dev/disk/by-id/scsi-SATA_ST3320620AS_9QF922J3-part2 / ext3 acl,user_xattr 1 1
/dev/disk/by-id/scsi-SATA_ST3320620AS_9QF922J3-part1 swap swap defaults 0 0

smw:~ # more /boot/grub/menu.lst
###Don't change this comment - YaST2 identifier: Original name: linux###
title SUSE Linux Enterprise Server 11 - 2.6.27.19-5

root (hd0,1)
kernel /boot/vmlinuz-2.6.27.19-5-default \
root=/dev/disk/by-id/ata-ST3320620AS_5QF00F84-part2 \
resume=/dev/sda1 splash=silent crashkernel=256M-:128M@16M
showopts vga=0x31a initrd /boot/initrd-2.6.27.19-5-default

###Don't change this comment - YaST2 identifier: Original name: failsafe###
title Failsafe -- SUSE Linux Enterprise Server 11 - 2.6.27.19-5

root (hd0,1)
kernel /boot/vmlinuz-2.6.27.19-5-default \
root=/dev/disk/by-id/ata-ST3320620AS_5QF00F84-part2 showopts \
ide=nodma apm=off noresume edd=off powersaved=off nohz=off highres=off
processor.max_cstate=1 x11failsafe vga=0x31a
initrd /boot/initrd-2.6.27.19-5-default

S–2393–5101 247

Managing System Software for the Cray® Linux Environment

b. Execute the df command to get the name of the device to use in the
/etc/fstab and /boot/grub/menu.lst files to replace the
long UDEV-based device name. Then edit your /etc/fstab and
/boot/grub/menu.lst files appropriately.

1) Execute the df command to get the name of the device to use in the
/etc/fstab and /boot/grub/menu.lst files to replace the long
UDEV-based device name. For example:

smw:# df
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/sda2 303528624 40652904 247457340 15% /
udev 1030780 460 1030320 1% /dev

2) Save a copy of your /etc/fstab and /boot/grub/menu.lst
files.

smw:# cp -p /etc/fstab /etc/fstab.save
smw:# cp -p /boot/grub/menu.lst /boot/grub/menu.lst.save

3) Edit your /etc/fstab file appropriately; you will use the
device name (dev) you got from the df command output. In
this example, the "1" and "2" refer to the partition names on the
device. Change the following lines, which changes the long name
disk/by-id/scsi-SATA_ST3320620AS_9QF922J3-part2
to sda2 and changes
disk/by-id/scsi-SATA_ST3320620AS_9QF922J3-part1 to
sda1. Ensure that your swap is on sda1:

/dev/disk/by-id/scsi-SATA_ST3320620AS_9QF922J3-part2 / ext3 acl,user_xattr 1 1
/dev/disk/by-id/scsi-SATA_ST3320620AS_9QF922J3-part1 swap swap defaults 0 0

to:

/dev/sda2 / ext3 acl,user_xattr 1 1
/dev/sda1 swap swap defaults 0 0

4) Edit your /boot/grub/menu.lst file appropriately; use the device
name (dev) you got from the df command output. Change the long name
disk/by-id/scsi-SATA_ST3320620AS_9QF922J3-part2 to
sda2. Change the following lines:

title SUSE Linux Enterprise Server 11 - 2.6.27.19-5
kernel /boot/vmlinuz-2.6.27.19-5-default \
root=/dev/disk/by-id/ata-ST3320620AS_5QF00F84-part2 \
resume=/dev/sda1 splash=silent crashkernel=256M-:128M@16M showopts vga=0x31a

to:

title SUSE Linux Enterprise Server 11 - 2.6.27.19-5
kernel /boot/vmlinuz-2.6.27.19-5-default \
root=/dev/sda2 resume=/dev/sda1 splash=silent \
crashkernel=256M-:128M@16M showopts vga=0x31a

248 S–2393–5101

Managing Services [7]

and change the following lines:

title Failsafe -- SUSE Linux Enterprise Server 11 - 2.6.27.19-5
kernel /boot/vmlinuz-2.6.27.19-5-default \
root=/dev/disk/by-id/ata-ST3320620AS_5QF00F84part2 \
showopts ide=nodma apm=off noresume edd=off powersaved=off nohz=off \
highres=off processor.max_cstate=1 x11failsafe vga=0x31a

to:

title Failsafe -- SUSE Linux Enterprise Server 11 - 2.6.27.19-5
kernel /boot/vmlinuz-2.6.27.19-5-default \
root=/dev/sda2 showopts ide=nodma apm=off noresume edd=off \
powersaved=off nohz=off highres=off processor.max_cstate=1 x11failsafe vga=0x31a

5) Verify that the edited files are correct and matches the output of the df
command.

smw:~ # head -2 /etc/fstab
/dev/sda2 / ext3 acl,user_xattr 1 1
/dev/sda1 swap swap defaults 0 0

smw:~ # more /boot/grub/menu.lst
###Don't change this comment - YaST2 identifier: Original name: linux###
title SUSE Linux Enterprise Server 11 - 2.6.27.19-5

root (hd0,1)
kernel /boot/vmlinuz-2.6.27.19-5-default root=/dev/sda2 \
resume=/dev/sda1 splash=silent crashkernel=256M-:128M@16M showopts
initrd /boot/initrd-2.6.27.19-5-default

###Don't change this comment - YaST2 identifier: Original name: failsafe###
title Failsafe -- SUSE Linux Enterprise Server 11 - 2.6.27.19-5

root (hd0,1)
kernel /boot/vmlinuz-2.6.27.19-5-default \
root=/dev/sda2 showopts ide=nodma apm=off noresume edd=off
powersaved=off nohz=off highres=off initrd /boot/initrd-2.6.27.19-5-default

5. Update the grub device table to recognize any new drives added since the initial
operating system installation.

!
Caution: Although all of the disks connected to the SMW are available to the
system, grub only detects the first 16 devices. Therefore, if you add a disk to
the SMW after the SMW is connected to the boot RAID, it is advisable to
reboot the SMW before continuing this procedure.

a. Back up the current grub device mapping file.

smw:~ # mv /boot/grub/device.map /boot/grub/device.map-YYYYMMDD

b. Invoke the grub utility to create a new device mapping file.

smw:~ # grub --device-map=/boot/grub/device.map
Probing devices to guess BIOS drives. This may take a long time.

GNU GRUB version 0.97 (640K lower / 3072K upper memory)
grub> quit

S–2393–5101 249

Managing System Software for the Cray® Linux Environment

The file /boot/grub/device.map is now updated to reflect all drives,
utilizing the standardized drive naming. This file can be viewed for verification;
for example:

smw:~ # cat /boot/grub/device.map
(fd0) /dev/fd0
(hd0) /dev/sda
(hd1) /dev/sdc

6. Create a new file system on the backup drive root partition by executing the
mkfs command.

smw:~ # mkfs -t ext3 /dev/sdb2
mke2fs 1.41.1 (01-Sep-2008)
Filesystem label=
OS type: Linux
Block size=4096 (log=2)
Fragment size=4096 (log=2)
19275776 inodes, 77091918 blocks
3854595 blocks (5.00%) reserved for the super user
First data block=0
Maximum filesystem blocks=4294967296
2353 block groups
32768 blocks per group, 32768 fragments per group
8192 inodes per group
Superblock backups stored on blocks:

32768, 98304, 163840, 229376, 294912, 819200, 884736, 1605632, 2654208,
4096000, 7962624, 11239424, 20480000, 23887872, 71663616

Writing inode tables: done
Creating journal (32768 blocks): done
Writing superblocks and filesystem accounting information: done

This filesystem will be automatically checked every 33 mounts or
180 days, whichever comes first. Use tune2fs -c or -i to override.
smw:~ #

7. Mount the new backup root file system on /mnt.

smw:~ # mount /dev/sdb2 /mnt

8. Confirm the running root file system device.

smw:~ # df
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/sda2 303528624 6438700 281671544 3% /
udev 1030332 116 1030216 1% /dev
/dev/sdb2 306128812 195568 290505224 1% /mnt

The running root file system device is the one mounted on /.

250 S–2393–5101

Managing Services [7]

9. Dump the running root file system to the backup drive.

smw:~ # cd /mnt
smw:~ # dump 0f - /dev/sda2 | restore rf -
DUMP: WARNING: no file /` etc/dumpdates'
DUMP: Date of this level 0 dump: Thu Nov 11 06:55:29 2010
DUMP: Dumping /dev/sda2 (/) to standard output
DUMP: Label: none
DUMP: Writing 10 Kilobyte records
DUMP: mapping (Pass I) [regular files]
DUMP: mapping (Pass II) [directories]
DUMP: estimated 4003398 blocks.
DUMP: Volume 1 started with block 1 at: Thu Nov 11 06:57:38 2010
DUMP: dumping (Pass III) [directories]
DUMP: dumping (Pass IV) [regular files]
restore: ./lost+found: File exists
DUMP: 81.99% done at 10941 kB/s, finished in 0:01
DUMP: Volume 1 completed at: Thu Nov 11 07:04:01 2010
DUMP: Volume 1 4008910 blocks (3914.95MB)
DUMP: Volume 1 took 0:06:23
DUMP: Volume 1 transfer rate: 10467 kB/s
DUMP: 4008910 blocks (3914.95MB)
DUMP: finished in 383 seconds, throughput 10467 kBytes/sec
DUMP: Date of this level 0 dump: Thu Nov 11 06:55:29 2010
DUMP: Date this dump completed: Thu Nov 11 07:04:01 2010
DUMP: Average transfer rate: 10467 kB/s
DUMP: DUMP IS DONE

10. Install the grub boot loader.

To make the backup drive bootable, reinstall the grub boot facility on that drive.

!
Caution: Although all of the disks connected to the SMW are available to the
system, grub only detects the first 16 devices. Therefore, if you add a disk to
the SMW after the SMW is connected to the boot RAID, it is advisable to
reboot the SMW before continuing this procedure.

a. Create a unique file on the backup drive to be used to identify that drive to
grub boot facility.

smw:~ # cd /
smw:~ # touch /mnt/THIS_IS_SDX

b. Invoke the grub boot utility. Within the grub boot utility:

1) Execute the find command to locate the drive designation that grub
uses.

2) Select the drive to which the boot blocks will be installed with the root
command.

3) Use the setup command to set up and install the grub boot blocks
on that drive.

Note: The Linux grub utility and boot system always refer to drives as
hd, regardless of the actual type of drives.

S–2393–5101 251

Managing System Software for the Cray® Linux Environment

For example:

smw:~ # grub --no-curses
GNU GRUB version 0.97 (640K lower / 3072K upper memory)
[Minimal BASH-like line editing is supported. For the first word, TAB^[
lists possible command completions. Anywhere else TAB lists the possible
completions of a device/filename.]
grub> find /THIS_IS_SDX
find /THIS_IS_SDX
(hd1,1)
grub> root (hd1,1)
root (hd1,1)
Filesystem type is ext2fs, partition type 0x83
grub> setup (hd1)
setup (hd1)
Checking if "/boot/grub/stage1" exists... yes
Checking if "/boot/grub/stage2" exists... yes
Checking if "/boot/grub/e2fs_stage1_5" exists... yes
Running "embed /boot/grub/e2fs_stage1_5 (hd1)"... 17 sectors are embedded.
succeeded
Running "install /boot/grub/stage1 (hd1) (hd1)1+17 p
(hd1,1)/boot/grub/stage2 /boot/grub/menu.lst"... succeeded
Done.
grub> quit

11. Unmount the backup root partition.

smw:~ # umount /dev/sdb2

The drive is now bootable once plugged in or cabled as the primary drive.

7.8 Rack-mount SMW: Setting Up the Bootable Backup Drive as
an Alternate Boot Device

Warning: You must be running the SUSE Linux Enterprise Server version 11
Service Pack 2 (SLES 11 SP2) or Service Pack 3 (SLES 11 SP3) SMW base
operating system and a release of SMW 7.0 or later on your SMW in order to
perform the procedures in this chapter.

The following procedure modifies a bootable backup drive for a rack-mount SMW in
order to boot from and run the rack-mount SMW from the backup root partition.

Important: To boot from this backup drive, the primary boot drive must still be
operable and able to boot the grub boot blocks installed. If the backup drive is
modified to boot as an alternate boot device, it will no longer function as a bootable
backup if the primary drive fails.

Procedure 61. Rack-mount SMW: Setting up the bootable backup drive as an
alternate boot device

Note: This procedure will not provide a usable backup drive that can be booted
in the event of a primary drive failure.

252 S–2393–5101

Managing Services [7]

!
Caution: The disk device names shown in this procedure are only examples. You
should substitute the actual disk device names for your system. The boot disk is
phy7 and is slot 0, and the bootable backup disk is phy6 and is slot 1.

1. Mount the backup drive's root partition.

smw:~ # mount /dev/disk/by-path/pci-0000:05:00.0-sas-phy6-0x4433221106000000-lun-0-part2 /mnt

2. Create a new boot entry in the /boot/grub/menu.lst file. This entry should
be a duplicate of the primary boot entry with the following changes:

• Modify the title to uniquely identify the backup boot entry.

• Modify the root (hd0,1) directive to reflect the grub name of the backup
drive.

• Modify the root= and resume= specifications to reference the backup
drive device.

S–2393–5101 253

Managing System Software for the Cray® Linux Environment

An example /boot/grub/menu.lst file follows. Note the new entry for the
backup drive. This example references phy7 (slot 0) and as the primary drive
and phy6 (slot 1) as the backup drive.

smw:~ # cp -p /boot/grub/menu.lst /boot/grub/menu.lst.20110317
smw:~ # vi /boot/grub/menu.lst
smw:~ # cat /boot/grub/menu.lst
Modified by YaST2. Last modification on Wed Jun 27 12:32:43 CDT 2012
default 0
timeout 8
##YaST - generic_mbr
gfxmenu (hd0,1)/boot/message
##YaST - activate

###Don't change this comment - YaST2 identifier: Original name: linux###
title SUSE Linux Enterprise Server 11 SP3 - 3.0.26-0.7

root (hd0,1)
kernel /boot/vmlinuz-3.0.26-0.7-default \
root=/dev/disk/by-path/pci-0000:05:00.0-sas-phy7-0x4433221107000000-lun-0-part2 \
resume=/dev/disk/by-path/pci-0000:05:00.0-sas-phy7-0x4433221107000000-lun-0-part1 \
splash=silent crashkernel=256M-:128M showopts vga=0x31a
initrd /boot/initrd-3.0.26-0.7-default

New entry allowing a boot of the back-up drive when the primary drive
is still present.
title BACK-UP DRIVE - SUSE Linux Enterprise Server 11 SP3 - 3.0.26-0.7

root (hd1,1)
kernel /boot/vmlinuz-3.0.26-0.7-default \
root=/dev/disk/by-path/pci-0000:05:00.0-sas-phy6-0x4433221106000000-lun-0-part2 \
resume=/dev/disk/by-path/pci-0000:05:00.0-sas-phy6-0x4433221106000000-lun-0-part1 \
splash=silent crashkernel=256M-:128M showopts vga=0x31a
initrd (hd0,1)/boot/initrd-3.0.26-0.7-default

###Don't change this comment - YaST2 identifier: Original name: failsafe###
title Failsafe -- SUSE Linux Enterprise Server 11 SP3 - 3.0.26-0.7

root (hd0,1)
kernel /boot/vmlinuz-3.0.26-0.7-default \
root=/dev/disk/by-path/pci-0000:05:00.0-sas-phy7-0x4433221107000000-lun-0-part2 \
showopts ide=nodma apm=off noresume edd=off powersaved=off \
nohz=off highres=off processor.max_cstate=1 nomodeset x11failsafe vga=0x31a
initrd /boot/initrd-3.0.26-0.7-default

3. Modify the backup drive's /etc/fstab file to reference the secondary drive
slot rather than the first drive slot.

a. Examine the backup drive's fstab file.

smw:~ # cp -p /mnt/etc/fstab /mnt/etc/fstab.20110317
smw:~ # cat /mnt/etc/fstab
/dev/disk/by-path/pci-0000:05:00.0-sas-phy7-0x4433221107000000-lun-0-part1 \
swap swap defaults 0 0
/dev/disk/by-path/pci-0000:05:00.0-sas-phy7-0x4433221107000000-lun-0-part2 \
/ ext3 acl,user_xattr 1 1
proc /proc proc defaults 0 0
sysfs /sys sysfs noauto 0 0
debugfs /sys/kernel/debug debugfs noauto 0 0
usbfs /proc/bus/usb usbfs noauto 0 0
devpts /dev/pts devpts mode=0620,gid=5 0 0

254 S–2393–5101

Managing Services [7]

b. Edit the /mnt/etc/fstab file, changing phy7 to phy6 device names
to reference the backup drive. In the following example, the backup drive
is phy6:1-....

smw:~ # vi /mnt/etc/fstab
smw:~ # cat /mnt/etc/fstab
/dev/disk/by-path/pci-0000:05:00.0-sas-phy6-0x4433221106000000-lun-0-part1 \
swap swap defaults 0 0
/dev/disk/by-path/pci-0000:05:00.0-sas-phy6-0x4433221106000000-lun-0-part2 \
/ ext3 acl,user_xattr 1 1
proc /proc proc defaults 0 0
sysfs /sys sysfs noauto 0 0
debugfs /sys/kernel/debug debugfs noauto 0 0
usbfs /proc/bus/usb usbfs noauto 0 0
devpts /dev/pts devpts mode=0620,gid=5 0 0

4. Unmount the backup drive.

smw:~ # umount /mnt

The SMW can now be shut down and rebooted. Upon display of the Please select
boot device prompt, select the BACK-UP DRIVE - SLES 11 entry to boot the
backup root partition.

7.9 Desk-side SMW: Setting Up the Bootable Backup Drive as
an Alternate Boot Device

The following procedure modifies a bootable backup drive for a desk-side SMW in
order to boot from and run the desk-side SMW from the backup root partition.

Important: To boot from this backup drive, the primary boot drive must still be
operable and able to boot the grub boot blocks installed. If the backup drive is
modified to boot as an alternate boot device, it will no longer function as a bootable
backup if the primary drive fails.

Procedure 62. Desk-side SMW: Setting up the bootable backup drive as an
alternate boot device

Note: This procedure will not provide a usable backup drive that can be booted
in the event of a primary drive failure.

!
Caution: The disk device names shown in this procedure are provided as examples
only. Substitute the correct disk devices for your system. For example, on an SMW
with three SMW disks, the boot disk is /dev/sda and the bootable backup disk is
/dev/sdc; on an SMW with two SMW disks, the boot disk is /dev/sda and
the bootable backup disk is /dev/sdb.

1. Mount the backup drive's root partition.

smw:~ # mount /dev/sdX2 /mnt

S–2393–5101 255

Managing System Software for the Cray® Linux Environment

2. Create a new boot entry in the /boot/grub/menu.lst file. This entry should
be a duplicate of the primary boot entry with the following changes:

• Modify the title to uniquely identify the backup boot entry.

• Modify the root (hd0,1) directive to reflect the grub name of the
backup drive. If you do not know the grub name of the backup drive, it is
provided in the /boot/grub/device.map file on the primary drive.

• Modify the root= and resume= specifications to reference the backup
drive device.

An example /boot/grub/menu.lst file follows. Note the new entry at the
end of the file. This example references /dev/sda as the primary drive and
/dev/sdc as the backup drive.

smw:~ # cat /boot/grub/menu.lst
Modified by YaST2. Last modification on Wed Dec 9 15:09:52 UTC 2009
default 0
timeout 8
##YaST - generic_mbr
gfxmenu (hd0,1)/boot/message
##YaST - activate

###Don't change this comment - YaST2 identifier: Original name: linux###
title SUSE Linux Enterprise Server 11 - 2.6.27.19-5

root (hd0,1)
kernel /boot/vmlinuz-2.6.27.19-5-default root=/dev/sda2 \
resume=/dev/sda1 splash=silent crashkernel=256M-:128M@16M showopts vga=0x31a \
initrd /boot/initrd-2.6.27.19-5-default

###Don't change this comment - YaST2 identifier: Original name: failsafe###
title Failsafe -- SUSE Linux Enterprise Server 11 - 2.6.27.19-5

root (hd0,1)
kernel /boot/vmlinuz-2.6.27.19-5-default root=/dev/sda2 showopts \
ide=nodma apm=off noresume edd=off powersaved=off nohz=off highres=off \
processor.max_cstate=1 x11failsafe vga=0x31a \
initrd /boot/initrd-2.6.27.19-5-default

###Don't change this comment - YaST2 identifier: Original name: floppy###
title Floppy

rootnoverify (fd0)
chainloader +1

New entry allowing a boot of the back-up drive when the primary drive
is still present.
title BACK-UP DRIVE - SUSE Linux Enterprise Server 11 - 2.6.27.19-5

root (hd0,1)
kernel /boot/vmlinuz-2.6.27.19-5-default root=/dev/sdc2 \
resume=/dev/sdc1 splash=silent crashkernel=256M-:128M@16M showopts vga=0x31a \
initrd /boot/initrd-2.6.27.19-5-default

3. Modify the backup drive's /etc/fstab file to reference the secondary drive
slot rather than the first drive slot.

256 S–2393–5101

Managing Services [7]

a. Examine the backup drive's fstab file.

smw:~ # cat /mnt/etc/fstab
/dev/sda1 swap swap defaults 0 0
/dev/sda2 / ext3 acl,user_xattr 1 1
proc /proc proc defaults 0 0
sysfs /sys sysfs noauto 0 0
debugfs /sys/kernel/debug debugfs noauto 0 0
usbfs /proc/bus/usb usbfs noauto 0 0
devpts /dev/pts devpts mode=0620,gid=5 0 0

b. Edit the /mnt/etc/fstab file, changing /dev/sda1 and /dev/sda2
to reference the backup drive. In the following example, the backup drive is
/dev/sdc.

smw:~ # vi /mnt/etc/fstab
/dev/sdc1 swap swap defaults 0 0
/dev/sdc2 / ext3 acl,user_xattr 1 1
proc /proc proc defaults 0 0
sysfs /sys sysfs noauto 0 0
debugfs /sys/kernel/debug debugfs noauto 0 0
usbfs /proc/bus/usb usbfs noauto 0 0
devpts /dev/pts devpts mode=0620,gid=5 0 0

4. Unmount the backup drive.

smw:~ # umount /dev/sdX2

The SMW can now be shut down and rebooted. Upon display of the Please select
boot device prompt, select the BACK-UP DRIVE - SLES 11 entry to boot the
backup root partition.

7.10 Archiving the SDB
The service database (SDB) can be archived by using the mysqldump command.
For more information, see http://www.dev.mysql.com/doc/.

7.11 Backing Up Limited Shared-root Configuration Data
Cray recommends that if you cannot make a full copy, make a backup copy of the
.shared root structure before making significant changes to the shared root. You
can use the xtoparchive utility or the Linux utilities (cp, tar, cpio) to save the
shared-root file system. Run these procedures from the boot node.

S–2393–5101 257

http://dev.mysql.com/doc

Managing System Software for the Cray® Linux Environment

7.11.1 Using the xtoparchive Utility to Archive the Shared-root File
System

Use the xtoparchive command to perform operations on an archive of shared root
configuration files. Run the xtoparchive command on the boot node using the
xtopview utility in the default view. The archive is a text-based file similar to a tar
file and is specified using the required archivefile command-line argument. The
xtoparchive command is intended for configuration files only. Binary files will
not be archived. If a binary file is contained within a specification file list, it will be
skipped and a warning will be issued.

Example 97. Using the xtoparchive utility to archive the shared-root file
system

Use the following xtoparchive command to add files specified by the
specifications listed in specfile to the archive file archive.042208; create the
archive file if it does not already exist:

% xtoparchive -a -f specfile archive.042208

Note: To archive any specialized files that have changed, invoke the
archive_etc.sh script. You can do this while your system is booted or
from the boot root and shared root in a system set that is not booted. The
archive_etc.sh script uses the xtoprdump and xtoparchive commands
to generate an archive of specialized files on the shared root. For more information
about archiving and upgrading specialized files, see the shared_root(5),
xtoparchive(8), xtopco(8), xtoprdump(8), and xtoprlog(8) man pages.

7.11.2 Using Linux Utilities to Save the Shared-root File System

Use the Linux utilities (cp, tar, cpio) to save the shared-root file system.

Procedure 63. Backing up limited shared-root configuration data

Cray recommends that if you cannot make a full copy, make a backup copy of the
.shared root structure before making significant changes to the shared root. Run
this procedure from the boot node.

1. Change to the shared root directory that you are backing up.

boot:/rr # cd /rr/current

2. Create a tar file for the directory.

boot:/rr/current # tar czf /rr/dot_shared-20120929.tgz .shared

3. Change to the /rr directory.

boot:/rr/current # cd /rr

258 S–2393–5101

Managing Services [7]

4. Verify that the file exists.

boot:/rr # ls -al dot_shared-20120929.tgz
-rw-r--r-- 1 root root 7049675 Sep 29 14:21
dot_shared-20050929.tgz
boot:/rr #

For more information, see the cp(1), tar(1), and cpio(1) man pages.

7.12 Backing Up Boot Root and Shared Root
Before you back up your boot root and shared root, consider the following issues.

• You must be root to do this procedure.

• Do not have file systems mounted on the SMW and the Cray system at the same
time.

• File system device names may be different at your site.

• If the backup file systems have not been used yet, you may need to run mkfs first.

• File systems should be quiescent and clean (fsck) to get an optimal dump and
restore.

You can back up the boot root and the shared root by using the xthotbackup
command or by using the Linux dump and restore commands.

S–2393–5101 259

Managing System Software for the Cray® Linux Environment

7.12.1 Using the xthotbackup Command to Back Up Boot Root and
Shared Root

Execute the xthotbackup command on the SMW to create a bootable backup.
The xthotbackup command must be executed with root privileges. The system
set labels in /etc/sysset.conf define disk partitions for backup and source
system sets which are used by xthotbackup to generate the appropriate dump
and restore commands. The entire contents of the disk partitions defined in a
source system set are copied to the corresponding disk partitions in the backup system
set. The backup and source system sets must be configured with identical partitions.
(Follow the steps provided on the xthotbackup(8) man page in the Initial Setup
section to set up identical system sets.) The disk partitions in the backup system set
are formatted prior to the dump and restore commands.

Important: The xthotbackup utility can also work with Logical Volume
Manager (LVM) volumes, but this requires extra configuration before LVM
snapshots can be created. For more information on LVM configuration and
xthobackup use with LVM, see Installing and Configuring Cray Linux
Environment (CLE) Software and the xthotbackup(8) man page.

Note: By default, xthotbackup forces file system checks by using fsck -f,
unless you use the xthotbackup -n option. All fsck activity is done in
parallel (by default, xthotbackup uses the fsck -p option to check all file
systems in parallel), unless you use the xthotbackup -l option.

Load the cray-install-tools module to access the xthotbackup utility
and the xthotbackup(8) man page.

Example 98. Using the xthotbackup command to create a bootable backup
system set

Enter the following to dump all of the partitions from the source label, BLUE, to the
backup label, GREEN, and then make them bootable.

Warning: Do not use the xthotbackup command when either the source or
destination system set is booted. Running xthotbackup with a booted system
set or partition could cause data corruption.

smw:~ # xthotbackup -a -b BLUE GREEN

The xthotbackup command can also be used to copy selected file systems from
source to the backup system set.

Example 99. Using the xthotbackup command to copy selected file systems
from source to the backup system set

The following example dumps only the SDB and SYSLOG partitions in the system set
labelled BLUE to the system set labelled GREEN.

260 S–2393–5101

Managing Services [7]

Warning: Do not use the xthotbackup command when either the source or
destination system set is booted. Running xthotbackup with a booted system
set or partition could cause data corruption.

smw:~ # xthotbackup -f SDB,SYSLOG BLUE GREEN

7.12.2 Using dump and restore Commands to Back Up Boot Root and
Shared Root

Procedure 64. Backing up the boot root and shared root using the dump and
restore commands

1. Verify that the Cray system is halted.

2. Open a root session.

crayadm@smw:~> su -

3. Mount the boot root to the SMW.

smw:~ # mount /dev/sda1 /bootroot0

4. Mount the backup boot root to the SMW.

smw:~ # mount /dev/sdb1 /bootroot1

5. Change directories to the backup boot root.

smw:~ # cd /bootroot1

6. Dump and restore boot root to the backup boot root.

smw:/bootroot1 # dump -0 -f - /bootroot0 | restore -rf -

7. When the dump is complete, unmount both boot-root file systems.

smw:/bootroot1 # cd /
smw:/ # umount /bootroot0 /bootroot1

8. Mount the shared root to the SMW.

smw:/ # mount /dev/sdc6 /sharedroot0

9. Mount the backup shared root to the SMW.

smw:/ # mount /dev/sdg6 /sharedroot1

10. Change directories to the backup shared root.

smw:/ # cd /sharedroot1

11. Dump and restore shared root to the backup shared root.

smw:/sharedroot1 # dump -0 -f - /sharedroot0 | restore -rf -

S–2393–5101 261

Managing System Software for the Cray® Linux Environment

12. When the dump is complete, unmount both shared root file systems.

smw:/sharedroot1 # cd /
smw:/ # umount /sharedroot0 /sharedroot1

13. Exit the root session.

smw:~ # exit

7.13 Backing Up User Data
Backing up user data is a site-specific activity. You can use Linux utilities to back up
user files and directories.

7.14 Rebooting a Stopped SMW
If the SMW is down or being rebooted (that is, not fully working), the blade
controllers will automatically throttle the high-speed network because they are no
longer hearing SMW heartbeats. This is done in order to prevent possible network
congestion, which normally requires the SMW to be up in order to respond to such
congestion. Once the SMW is up again, the blade controllers will unthrottle the
network. (No attempt is made to prevent loss of data or to carry out operations that
occur when the SMW is offline.) The consequences of throttling are that the network
will perform much more slowly than normal.

When the SMW comes up, it restarts, establishes communications with all external
interfaces, restores the proper state in the state manager, and continues normal
operation without user intervention.

For a scheduled or unscheduled shutdown and reboot of the SMW, it is necessary to
have uncorrupted configuration files on a local SMW disk.

Procedure 65. Rebooting a stopped SMW

1. Verify that your configuration files contain the most recent system configuration.

2. Boot the SMW.

7.15 SMW Recovery
Procedure 66. SMW primary disk failure recovery

The following procedure describes how to recover an SMW primary disk failure. To
find out how to create a System Management Workstation (SMW) bootable backup
drive, see Procedure 60 on page 245. To find out how to modify a bootable backup
drive, in order to boot from and run the SMW from the backup root partition, see
Procedure 61 on page 252.

262 S–2393–5101

Managing Services [7]

!
Caution: Booting from the bootable backup disk is intended only for emergency
use in the event of failure or loss of data on the primary disk.

To recover an SMW, you must reorder the drives at the front of the SMW. No BIOS
or software configuration changes are required.

1. Shutdown the OS on the SMW, if possible.

2. Power the SMW off.

3. Unplug the power cord.

4. For a desk-side SMW, open the disk drive access door, which is on the front of
the SMW.

5. Remove the primary disk from its slot. For a desk-side SMW, the primary disk is
located at the bottom of the column of disk drives at the front of the SMW. For a
Rack-mount SMW, remove the disk drive that is in slot 0.

6. Remove the bootable backup disk and place it in the primary disk slot.

7. Press the reset button (front), if required.

8. Boot the SMW.

7.16 Restoring the HSS Database
When your execute the xtdiscover command, it automatically makes a backup
copy of partition information, the entire HSS database, and the /etc/hosts file.
In the event that the HSS database is lost or corrupted for any reason, such as a disk
failure, you can restore the HSS database.

Procedure 67. Restoring the HSS database

• Execute these commands on the SMW.

smw:~> rsms stop

smw:~> mysql -uhssds -phssds < /home/crayadm/hss_db_backup/database_backup_file

smw:~> cp /home/crayadm/hss_db_backup/hosts_backup_file /etc/hosts

smw:~> rsms start

7.17 Recovering from Service Database Failure
If you notice problems with the SDB, for example, if commands like xtprocadmin
do not work, restart the service-node daemons.

S–2393–5101 263

Managing System Software for the Cray® Linux Environment

Example 100. Recovering from an SDB failure

Type the following command on the SDB node:

sdb:~ # /etc/init.d/sdb restart

Commands in this file stop and restart MySQL.

7.17.1 Database Server Failover

The SDB uses dual-ported local RAID to store files.

If you have SDB node failover configured, one service processor acts as the primary
SDB server. If the primary server daemon dies, or the node on which it is running
dies, the secondary (backup) SDB server that connects to the same RAID storage
starts automatically. IP failover directs all new TCP/IP connections to the server,
which now becomes the primary SDB server. Connections to the failed server are
ended, and an error is reported to the client.

7.17.2 Rebuilding Corrupted SDB Tables

The boot process creates all SDB tables except the accounting and boot tables. If you
notice a small corruption and you do not want to reboot, you can change the content
of a database table manually by using the tools in Table 7. If you cannot recover a
database table in any other way, as a last resort reboot the system.

7.18 Using Persistent SCSI Device Names
Important: The information provided in this section does not apply to SMW
disks.

SCSI device names (/dev/sd*) are not guaranteed to be numbered the same from
boot to boot. This inconsistency can cause serious system problems following a
reboot. When installing CLE, you must use persistent device names for file systems
on your Cray system.

Cray recommends that you use the /dev/disk/by-id/ persistent device
names. Use /dev/disk/by-id/ for the root file system in the initramfs
image and in the /etc/sysset.conf installation configuration file as well
as for other file systems, including Lustre (as specified in /etc/fstab and
/etc/sysset.conf). For more information, see Installing and Configuring Cray
Linux Environment (CLE) Software.

Alternatively, you can define persistent names using a site-specific udev rule or
cray-scsidev-emulation. However, only the /dev/disk/by-id method
has been verified and tested.

264 S–2393–5101

Managing Services [7]

!
Caution: You must use /dev/disk/by-id when specifying
the root file system. There is no support in the initramfs for
cray-scsidev-emulation or custom udev rules.

7.19 Using a Linux iptables Firewall to Limit Services
You can set up a firewall to limit services that are running on your system. Cray has
enabled the Linux kernel to provide this capability. Use the iptables command to
set up, maintain, and inspect tables that contain rules to filter IP packets.

For more information about iptables, see the iptables(8) man page.

7.20 Handling Single-node Failures
A single-node failure is visible when you use the xtnodestat command.

You can parse the syslog to look for failures.

If you suspect problems with a node, invoke the xtcli status command. Nodes
that have failed show an alert status. Jobs are not scheduled on the node as long as
the alert is set. If problems persist, consult your service representative.

To see cabinet status, use the System Environmental Data Collections (SEDC); see
Using and Configuring System Environment Data Collections (SEDC).

For more information, see the xtnodestat(1), xtcli(8), and
xtsedcviewer(8) man pages.

7.21 Increasing the Boot Manager Time-out Value
On systems of 4,000 nodes or larger, the time that elapses until the boot manager
receives all responses to the boot requests can be greater than the default 60-second
time-out value. This is due, in large part, to the amount of other event traffic that
occurs as each compute node generates its console output.

To avoid this problem, change the boot_timeout value in the
/opt/cray/hss/default/etc/bm.ini file on the SMW to increase the
default 60-second time-out value by 60 seconds for every 5,000 nodes; for example:

Example 101. Increasing the boot_timeout value

For systems of 5,000 to 10,000 nodes, change the boot_timeout line to

boot_timeout 120

For systems of 10,000 to 15,000 nodes, change the boot_timeout line to

boot_timeout 180

S–2393–5101 265

Managing System Software for the Cray® Linux Environment

7.22 RAID Failure
System RAID has its own recovery system that the manufacturer supplies. For more
information, refer to the manufacturer documentation.

266 S–2393–5101

Using the Application Level Placement
Scheduler (ALPS) [8]

ALPS (Application Level Placement Scheduler) is the Cray supported mechanism for
placing and launching applications on compute nodes. ALPS provides application
placement, launch, and management functionality and cooperates closely with
third-party batch systems for application scheduling across Cray systems. The
third-party batch systems make policy and scheduling decisions, while ALPS
provides a mechanism to place and launch the applications contained within batch
jobs.

Note: ALPS application placement and launch functionality is only for
applications executing on compute nodes. ALPS does not provide placement or
launch functionality on service nodes.

8.1 ALPS Functionality
ALPS performs the following functions:

• Assigns application IDs.

• Manages compute node resources by relaying a reservation to third-party batch
systems.

• Launches applications.

• Delivers signals to applications.

• Returns Supports and stderr from applications.

• Provides application placement and reservation information.

• Supports batch and interactive workloads.

• Supports huge pages functionality for CNL applications.

• Provides an XML interface for third-party batch-system communication.

• Provides launch assistance to debuggers, such as TotalView.

• Supports application placement of nonuniform numbers of processing elements
(PEs) per node, allowing full use of all compute node resources on mixed-node
machines.

S–2393–5101 267

Managing System Software for the Cray® Linux Environment

• Works with the CLE Node Health software to perform application cleanup
following the non-orderly exit of an application (see ALPS and Node Health
Monitoring Interaction on page 287). For additional information about the CLE
Node Health software, see Configuring Node Health Checker (NHC) on page 168.

8.2 ALPS Architecture
The ALPS architecture includes the following clients and daemons, each intended
to fulfill a specific set of responsibilities as they relate to application and system
resource management. The ALPS components use TCP/IP sockets and User
Datagram Protocol (UDP) datagrams to communicate with each other. The apinit
daemon executes on compute nodes. All other ALPS components execute on service
nodes (login, SDB, and boot nodes).

ALPS clients (for detailed descriptions, see ALPS Clients on page 269 and the man
page for each ALPS client):

• aprun: Application submission

• apstat: Application placement and reservation status

• apkill: Application signaling

• apmgr: Collection of functions usually used by the system administrator in
exceptional circumstances to manage ALPS

• apbasil: Workload manager interface

ALPS daemons (for detailed descriptions, see ALPS Daemons on page 272 and the
man page for each ALPS daemon):

• apsys: Client local privileged contact

• apinit: Application management on compute nodes

• apsched: Reservations and placement decisions

• apbridge: System data collection

• apwatch: Event monitoring

• apres: ALPS database event watcher restart daemon

ALPS uses memory-mapped files to consolidate and distribute data efficiently,
reducing the demand on the daemons that maintain these files by allowing clients
and other daemons direct access to data they require. Figure 4, illustrates the ALPS
process.

268 S–2393–5101

Using the Application Level Placement Scheduler (ALPS) [8]

Figure 4. ALPS Process

Login Node

aprun

Application
Process

Network

Key:

PE0

SDB Node

Compute Nodes

apsys apsched

Boot Node

apbridge

apwatch

apres

apinit

apinitApplication
Shepherd

Application
Process

Application
Process

Application
Process

Application
Shepherd

Application
Process

Application
Process

Application
Process

Application
Process

Parent/Child

8.2.1 ALPS Clients

The ALPS clients provide the user interface to ALPS and application management.
They are separated into the following distinct areas of functionality: application
submission, application and reservation status, application signaling, administrator
interface to ALPS, and batch system integration.

S–2393–5101 269

Managing System Software for the Cray® Linux Environment

8.2.1.1 The aprun Client

The aprun client is used for application submission. Specifically, a user executes
the aprun command to run a program across one or more compute nodes. The
aprun client serves as the local representative of the application and is the primary
interface between the user and an application running on compute nodes. The
aprun client parses command-line arguments to determine the application resource
requirements. These requirements are submitted locally to apsys, which forwards
them to apsched for application placement.

After the application has an assigned placement list of compute nodes, aprun
provides application-launch information to the apinit daemon on the first compute
node in the placement list. The aprun client also provides user identity and
environment information to apinit so that the user's login node session can be
replicated for the application on the assigned set of compute nodes. This information
includes the aprun current working directory, which must be accessible from the
compute nodes.

The aprun client forwards stdin data to apinit, which is delivered to the first
processing element (PE) of the application. Application stdout and stderr data
is sent from apinit to aprun on the login node.

The aprun client catches certain signals (see the aprun(8) man page) and forwards
the signal information to apinit for delivery to the application. Any signal that
cannot be caught and that terminates aprun causes apinit to terminate the
application.

Note: Do not suspend aprun. It is the local representative of the application that
is running on compute nodes. If aprun is suspended, the application cannot
communicate with ALPS, such as sending exit notification to aprun that the
application has completed.

For more information about using the aprun command, see the aprun(8) man page.

8.2.1.2 The apstat Client

The apstat client reports on application placement and reservation information. It
reflects the state of apsched placement decisions. The apstat client does not have
dynamic run-time information about an application, so the apstat display does
not imply anything about the running state of an application. The apstat display
indicates statically that an application was placed and that the aprun claim against
the reserved resources has not yet been released.

If no application ID (apid) is specified when executing the apstat command, the
apstat command displays a brief overview of all applications.

For detailed information about this status information, see the apstat(1) man page.

270 S–2393–5101

Using the Application Level Placement Scheduler (ALPS) [8]

8.2.1.3 The apkill Client

The apkill client is used for application signaling. It parses the command-line
arguments and sends signal information to its local apsys daemon. The apkill
command can be invoked on any login or service node and does not need to be on the
same node as the aprun client for that application. Based upon the application ID,
apsys finds the aprun client for that application and sends the signal to aprun,
which sends signal information to apinit for delivery to the application.

The apkill client can send a signal only to a placed application, not a pending
application.

For more information about the actions of this client, see the apkill(1) man page
and the Linux signal(7) man page.

8.2.1.4 The apmgr Client

The apmgr command is a collection of ALPS-related functions for use by system
administrators. These functions (subcommands) often require root permission
and are usually used in exceptional circumstances to manage ALPS. The apmgr
command is not typically installed on the boot node's file system; it is available on
and is run from service nodes other than the boot node.

For information about using the apmgr subcommands, see the apmgr(8) man page.

8.2.1.5 The apbasil Client

The apbasil client is used for batch system integration. It is the interface between
ALPS and the batch scheduling system. The apbasil client implements the Batch
and Application Scheduler Interface Layer (BASIL). When a job is submitted to
the batch system, the batch scheduler uses apbasil to obtain ALPS information
about available and assigned compute node resources to determine whether sufficient
compute node resources exist to run the batch job.

After the batch scheduler selects a batch job to run, the batch scheduler uses
apbasil to submit a resource reservation request to the local apsys daemon.
The apsys daemon forwards this reservation request to apsched. If the
reservation-request resources are available, specific compute node resources are
reserved at that time for the batch scheduler use only.

When the batch job is initiated, the prior confirmed reservation is bound to this
particular batch job. Any aprun client invoked from within this batch job can claim
compute node resources only from this confirmed reservation.

The batch system uses apbasil to cancel the confirmed reservation after the batch
job terminates. The apbasil client again contacts the local apsys daemon to
forward the cancel-reservation request to apsched. The compute node resources
from that reservation are available for other use after the application has been
released.

S–2393–5101 271

Managing System Software for the Cray® Linux Environment

For additional information, see the apbasil(1) and basil(7) man pages.

8.2.2 ALPS Daemons

ALPS daemons provide support for application submission, placement, execution,
and cleanup on the system.

8.2.2.1 The apbridge Daemon

The apbridge daemon collects data about the hardware configuration from the
service database (SDB) and sends it to the apsched daemon. It also works with the
apwatch daemon to supply ongoing compute node status information to apsched.
The apbridge daemon is the bridge from the architecture-independent ALPS
software to the architecture-dependent specifics of the underlying system.

The apbridge daemon is not intended for direct use; it is only installed in the boot
root and is invoked from within /etc/init.d/alps.

For more information, see the apbridge(8) man page.

8.2.2.2 The apsched Daemon

The apsched daemon manages memory and processor resources of applications
running on compute nodes.

Note: Only one instance of the ALPS scheduler can run across the entire system
at a time.

When apsched receives a request for application placement from aprun, it either
returns a message regarding placement or a message indicating why placement is
not possible (errors in the request or temporarily unavailable resources). When an
application terminates, an exit message is sent to apsched, and it releases the
resources reserved for the application.

The apsched daemon writes a log file on the node on which apsched is executing.
By default, this is the SDB node.

For more information, see the apsched(8) man page.

8.2.2.3 The apsys Daemon

The apsys daemon provides a central privileged point of contact and coordination
between ALPS components running on login and other service nodes. The apsys
daemon receives incoming requests and forks child agent processes to delegate
responsibilities and improve scalability and responsiveness. An apsys daemon
executes on each login node and writes a log file on each login node.

272 S–2393–5101

Using the Application Level Placement Scheduler (ALPS) [8]

Each aprun client has an apsys agent associated with it. Those two programs are
on the same login node and communicate with each other over a persistent TCP/IP
socket connection that lasts for the lifetime of the aprun client. The apsys daemon
passes aprun messages to apsched over a transitory TCP/IP socket connection and
returns the response to aprun.

An apsys agent is created to service apbasil and apkill messages. These
programs communicate over transitory TCP/IP socket connections. The apsys agent
handles the apkill message itself and forwards apbasil messages to apsched.

Each apsys agent maintains a separate agents file that is located in the
ALPS shared directory. The file name format is agents.nid, for example,
/ufs/alps_shared/agents.40. For information about defining the ALPS
shared directory, see /etc/sysconfig/alps Configuration File on page 275.

For more information, see the apsys(8) man page.

8.2.2.4 The apwatch Daemon

The apwatch daemon waits for events and sends compute node status changes to
apbridge, which sends it to apsched. The apwatch daemon is not intended
for direct use; it is only installed in the boot root and is invoked from within
/etc/init.d/alps.

For more information, see the apwatch(8) man page.

8.2.2.5 The apinit Daemon

The apinit daemon launches and manages new applications. A master apinit
daemon resides on every compute node, initiates all new activity on that node, and
writes a log file on the compute node. The aprun client connects to the apinit
daemon on the first node of an application's allocated node set and sends a launch
message containing all of the information the compute nodes need to launch and
manage the new application.

The apinit daemon then forks a child process (referred to as the apshepherd or just
shepherd) and transfers responsibility for managing the application on that node to
that child. If the application requires more compute nodes, the shepherd process
communicates to the apinit daemon on the next compute node, which forks
another shepherd child process.

If the application is placed on more than one compute node, ALPS uses
a TCP fan-out control tree network for application management messages
to do binary transfer of the application when requested, and to handle
application stdin, stdout, and stderr data. The root of the fan-out
control tree is aprun. The width of the fan out is configured within the
/etc/opt/cray/alps/alps.conf file and is 32, by default.

S–2393–5101 273

Managing System Software for the Cray® Linux Environment

The apinit daemon is under the control of RCA. If the apinit daemon fails,
RCA restarts apinit. If RCA is unable to restart apinit after several attempts,
ALPS is notified and the node is made unavailable (DOWN) for applications.

For more information, see the apinit(8) man page.

8.2.2.6 The apres Daemon

The ALPS apres event watcher restart daemon registers with the event router
daemon to receive ec_service_started events. When the service type is the
SDB (RCA_SVCTYPE_SDBD), ALPS updates its data to reflect the current values
in the SDB. The apres daemon is invoked as part of the ALPS startup process on
the boot node.

The apres daemon is not intended for direct use; it is only installed in the boot root
and is invoked from within /etc/init.d/alps.

For more information, see the apres(8) man page.

8.2.2.7 ALPS Log Files

Each of the ALPS daemons writes information to its log file in
/var/opt/cray/alps on whichever node that runs the daemon. The name of
the log file consists of the daemon name appended with the month and day, such as
apsched0302.

The apinit log file is in the /var/opt/cray/alps directory on each compute
node and also has a node ID appended to it, such as apinit0302.00206. Because
this directory is in memory, the apinit log file is lost when a compute node is
rebooted.

Each system has one apbridge daemon, one apwatch daemon, and one apres
daemon, all of which must execute on the same node. By default, this is the boot
node. These three daemons write to one log file on that node. The log file name
format is apbridgemmdd, for example, apbridge1027.

8.2.2.8 Changing Debug Message Level of apsched and apsys Daemons

The level of debug messages written by the apsched and apsys daemons is
defined in the /etc/opt/cray/alps/alps.conf configuration file. You can
change the debug level dynamically by modifying the alps.conf file and sending a
SIGHUP signal to apsched or apsys, as applicable, to read the alps.conf file.

274 S–2393–5101

Using the Application Level Placement Scheduler (ALPS) [8]

8.3 Configuring ALPS
ALPS uses the following three files:

• /etc/sysconfig/alps configuration file

• /etc/opt/cray/alps/alps.conf configuration file

• /etc/init.d/alps file, which is used to start and stop ALPS components
and does not require customization

Note: When configuring the RAID LUNs (logical units), verify that write
caching is enabled on the LUN that contains the ALPS shared file system. For
more information about RAID configuration, see the Installing Cray System
Management Workstation (SMW) Software and the Installing and Configuring Cray
Linux Environment (CLE) Software.

8.3.1 /etc/sysconfig/alps Configuration File

The /etc/sysconfig/alps file is in both the boot root and in the shared
root. If you defined the ALPS-related parameters in your CLEinstall.conf
file, after installation the parameters and settings are placed into your
/etc/sysconfig/alps file.

If you do not define the ALPS-related parameters in your CLEinstall.conf file,
to use ALPS you must define the parameters in your /etc/sysconfig/alps file
(required parameters are indicated) and then start the ALPS daemons.

Note: When changing parameter settings, update the /etc/sysconfig/alps
file in both the boot root and in the shared root and restart the ALPS daemons on
all service nodes.

ALPS_MASTER_NODE

(Required) Specifies the node name (uname -n) of the service
node that runs apsched. Cray recommends that the SDB
node be used as the ALPS_MASTER_NODE. For example:
ALPS_MASTER_NODE="nid00005"

ALPS_BRIDGE_NODE

(Required) Specifies the node name (uname -n) of the
service node that runs apbridge. This is usually the boot
node. Network connectivity between the SMW and the
ALPS_BRIDGE_NODE parameter is required. (Such connectivity
is guaranteed to exist from the boot node.) This default value
is enforced in the /etc/init.d/alps file. For example:
ALPS_BRIDGE_NODE="boot"

S–2393–5101 275

Managing System Software for the Cray® Linux Environment

ALPS_MOUNT_SHARED_FS

Specifies if a separate file system is to be mounted at ALPS startup
to hold control data; default is no. For configurations using multiple
login nodes, a shared file system is required, and the shared file
system must be mounted before ALPS is started. For example:
ALPS_MOUNT_SHARED_FS="no"

ALPS_SHARED_DEV_NAME

Specifies the device to mount at ALPS start-up. If it is null and
ALPS_MOUNT_SHARED_FS is yes, the device is determined
by /etc/fstab. This parameter is not used unless yes
is specified for ALPS_MOUNT_SHARED_FS. For example:
ALPS_SHARED_DEV_NAME="ufs:/ufs/alps_shared"

ALPS_SHARED_MOUNT_OPTIONS

Specifies the shared mount options. Set this parameter
only if ALPS_MOUNT_SHARED_FS is yes and
ALPS_SHARED_DEV_NAME is not null. For example:
ALPS_SHARED_MOUNT_OPTIONS="-t nfs -o tcp,rw"

ALPS_IP_PREFIX

(Deferred implementation) Use of this parameter has no effect.
Specifies the first two octets for IP addresses on the high-speed
network (HSN). These are internal addresses within the HSN. For
example: ALPS_IP_PREFIX="192.168"

APWATCH_LIBRARY_PATH

The LD_LIBRARY_PATH "add-on" needed for apwatch; it
includes the path to the gnet and glib libraries and the rsms and
erd libraries.

For example:

APWATCH_LIBRARY_PATH="/opt/gnet/lib:/opt/glib/lib:/opt/cray/librsmsevent.so: \
/opt/cray/libcray_event_router.so:/opt/gnome/lib64"

APWATCH_ERD

(Required) The host that has the event router daemon (ERD) running;
typically, this is the host name of the SMW.

For example: APWATCH_ERD="smw"

A separate file system for control data is mounted at ALPS startup. This
is assumed to be a mount point. Specify the device to mount at ALPS
start-up using the parameter ALPS_SHARED_DEV_NAME. If it is null and
ALPS_MOUNT_SHARED_FS is yes, the device is determined by /etc/fstab.

276 S–2393–5101

Using the Application Level Placement Scheduler (ALPS) [8]

The following example shows a sample /etc/sysconfig/alps configuration
file.

Example 102. Sample /etc/sysconfig/alps configuration file

#ALPS Configuration File

ALPS_MASTER_NODE="sdb"

ALPS_BRIDGE_NODE="boot"

ALPS_NIDORDER="-Ox"

ALPS_MOUNT_SHARED_FS="no"

Type: string
Default: ""
Example: "ufs:/ufs/alps_shared"
#
Device to mount at ALPS start-up. If it is null
but ALPS_MOUNT_SHARED_FS is "yes", then the device
will be determined by /etc/fstab. This parameter
is not used unless ALPS_MOUNT_SHARED_FS is "yes".
#

ALPS_SHARED_DEV_NAME=""

Type: string
Default: ""
Example: "-t nfs -o tcp,rw"
#
This parameter is not used unless ALPS_MOUNT_SHARED_FS
is "yes" and ALPS_SHARED_DEV_NAME is not null.
#

ALPS_SHARED_MOUNT_OPTIONS=""

APWATCH_LIBRARY_PATH=
"/opt/gnet/2.0.5/64/lib:/opt/glib/2.4.2/64/lib:/opt/cray/lib64:/opt/gnome/lib64"

APWATCH_ERD="smw"

S–2393–5101 277

Managing System Software for the Cray® Linux Environment

8.3.2 The alps.conf Configuration File

The /etc/opt/cray/alps/alps.conf file is in the shared root and contains
ALPS static configuration information used by the apsched and apsys daemons.
The configuration parameters are described in this section.

Note: You can change the parameter settings dynamically by modifying the
alps.conf file and sending a SIGHUP signal to apsched or apsys, as
applicable, to re-read the alps.conf file.

bridge Enables the apbridge daemon to provide dynamic rather than
static information about the system node configuration to apsched.
Cray strongly recommends setting the bridge parameter to use the
apbridge daemon. By default, it is set to 1 (enabled).

alloc If this field is set to 0 or is not specified, the distinction between
batch and interactive nodes is enforced. If this field is set as nonzero,
no distinction is made by ALPS; job schedulers will likely still limit
their placement only to nodes marked as batch. By default, it is set
to 0.

fanout This field is set to a default level of 32. This value controls the width
of the ALPS TCP/IP network fan-out tree used by apinit on the
compute nodes for ALPS application launch, transfer, and control
messages.

debug This field is set to a default level of 1 for both apsched and
apsys. For information about valid values, see the apsched(8)
and apsys(8) man pages.

cpuAffinity

Supports switchable default CPU affinity in apsched. Valid values
are cpu, none, and numa; the default value is cpu. aprun checks
for and uses the default cpuAaffinity string from apsched. If
the user has not explicitly set the aprun -cc option, aprun will
use the default supplied by apsched. If there is not a default from
apsched, aprun sets a default of cpu. For more information, see
the aprun(1) man page.

lustreFlush

Supports switchable default Lustre cache flushing as part of
application exit processing on the compute nodes. Enabling this
Lustre cache flushing provides more consistent application run
times. When Lustre cache flushing is enabled, all of the Lustre cache
flushing completes as part of the application exit processing. The
next application executing on the same set or subset of compute
nodes no longer inherits a variable amount of run time due to Lustre
cache flushing from a previous application.

278 S–2393–5101

Using the Application Level Placement Scheduler (ALPS) [8]

Valid values are 0 (disabled) and 1 (enabled); the default value is 1
(enabled). Apsched provides this default lustreFlush value to
the apinit daemon to enable or disable Lustre cache flushing as
part of application exit processing.

Note: This value cannot be set on an individual application basis;
it is a system-wide setting.

nodeShare Controls which compute node cores and memory are put into an
application cpuset on the compute node. The valid values are
exclusive and share. The default value is exclusive.

The exclusive setting puts all of a compute node's cores
and memory resources into an application-specific cpuset on the
compute node. This allows the application access to any and all
of the compute node cores and memory. This can be useful when
specifying a particular CPU affinity binding string through the
aprun -cc option.

The share setting restricts the application specific cpuset contents
to only the application reserved cores and memory on NUMA node
boundaries. That is, if an application requests and is assigned cores
and memory on NUMA node 0, then only NUMA node 0 cores
and memory will be contained within the application cpuset. The
application will not have access to the cores and memory on other
NUMA nodes on that compute node.

To override the default system-wide setting in
/etc/opt/cray/alps/alps.conf on an individual
basis, use the aprun -F option. For more information, see the
aprun(1) man page.

cleanup_cto

Specifies the maximum amount of time, in milliseconds, allowed for
the connect system call to respond before assuming the target node is
down. Default value is 1000 milliseconds.

Note: The cleanup_cto value applies only when you have also
specified cleanup_version=2.

resFullNode

When set to a non-zero value set, reservations will get all node
resources (threads) regardless of other reservation parameters. The
other reservation parameters will be taken into account to determine
how many nodes are needed to accommodate the reservation.

For example, a reservations with a width of 8 and an nppn
of 4 will reserve two nodes. When resFullNode is not set,

S–2393–5101 279

Managing System Software for the Cray® Linux Environment

ALPS would limit the user to launching only four instances of the
application on each node. With resFullNode set, ALPS will
still reserve two nodes but it will reserve all the hyper-threads and
associated resources on both nodes. Also, the user would be allowed
to launch as many application instances as there are hyper-threads.

batchCPCU Specifies the default number of CPUs per compute unit for nodes
whose allocation mode attribute is marked as batch. The default
on Gemini systems is 0.

interactiveCPCU

Specifies the default number of CPUs per compute unit for nodes
whose allocation mode attribute is marked as interactive. The
default on Gemini systems is 0.

pTagFreeDelay

Specifies the number of seconds to delay allocation of a PTag used
previously. (The current PTag allocation implementation rotates
through the PTags range.) Default value is 30 seconds.

cms (Deferred implementation) Indicates whether or not ALPS will use
CMS to store reservation and claim information. Valid settings are
no and yes; the default setting is no.

pTagGlobalNodes

The minimum application size in nodes that forces ALPS to assign a
global pTag value.

pDomainMax Maximum number of concurrent pre-allocated protection domains
allowed. The default is 0 or disabled. The absolute maximum is 256
and apsched will silently truncate higher values to 256.

pDomainIDs A comma separated list of one or more system service dedicated
protection domain identifiers.

cmsTimeout Maximum time in milliseconds that calls to CMS have before timing
out.

cmsLogTime Logs the calls that take longer than the time specified for
cmsTimeout.

sharedDir Note: ALPS_SHARED_DIR_PATH was removed from
/etc/sysconfig/alps.

280 S–2393–5101

Using the Application Level Placement Scheduler (ALPS) [8]

(Required) Specifies the directory path to the file that contains ALPS
control data. If ALPS_MOUNT_SHARED_FS is set to yes, this is
assumed to be a mount point. Default is /ufs/alps_shared. For
example: sharedDir /ufs/alps_shared.

cleanSharedTimeout

Time at which cleanShared calls time out.

cleanSharedAge

Remove files older than this age.

cleanSharedInterval

Time between apmgr cleanShared calls (in seconds). A value
of 0 (zero) disables this feature.

Application and reservation cleanup can be configured with the cleanup variable
followed by application and reservation variables and configuration
variables for application and/or reservation cleanup:

configured on (default) | off

iterationSleep

Specifies the time in milliseconds to pause between cleanup
iterations.

iterationMax

Specifies the maximum cleanup iterations to execute before giving
up.

connectTimeout

Specifies the time to allow an inter-node connection to be
established.

connectAttempts

Specifies the maximum number of inter-node connection attempts.

waitMin Specifies the minimum time to give any cleanup iteration to
complete.

The following example shows a sample /etc/opt/cray/alps/alps.conf
configuration file.

Example 103. Sample alps.conf configuration file

ALPS configuration file

apsched
alloc 0
bridge 1

S–2393–5101 281

Managing System Software for the Cray® Linux Environment

fanout 32
debug 1

Default CPU affinity: values cpu (default), none, numa
cpuAffinity cpu
Default lustre cache flushing at app exit: values 0, 1
lustreFlush 1
Default app node share mode for cores and memory: values exclusive, share
nodeShare exclusive
#
Value used for systems with Gemini/Aries network:
- pTagGlobalNodes: if set to X, apps >= than X nodes
will use a global PTag (and NOT use the NTT)
pTagGlobalNodes 5000
#
CMS variables:
- cms: if yes (no default), apsched will send reservations/claims to CMS
- cmsTimeout: if set to X, calls to CMS will timeout in X msec
- cmsLogTime: if set to X, log calls to CMS taking longer than X msec
(X < 0: no logging, X = 0: log all calls)
#

cms yes
cmsTimeout 5000
cmsLogTime 1000

#

aruEnable - Y or Yes generates Application Resource Utilization (ARU) files
aruEnable Yes

aruPath - file name template for ARU file
specified name will have the apid appended when the file is created
ignored unless aruEnable is set to Y or Yes
aruPath /tmp/arufile

#

/apsched

apsys
debug 1

/apsys
apstat
nodeTable NID,Arch,State,CU,Rv,Pl,PgSz,Avl,Conf,Placed,PEs,Apids
pDomainTable PDomainID,Type,Uid,Cookie,Cookie2
/apstat
cleanup
application
configured on
iterationSleep 1000
iterationMax 10
connectTimeout 1000
connectAttempts 5
waitMin 5000

/application
reservation
configured on
iterationSleep 1000

282 S–2393–5101

Using the Application Level Placement Scheduler (ALPS) [8]

iterationMax 10
connectTimeout 1000
connectAttempts 5
waitMin 5000

/reservation
/cleanup

Procedure 68. Releasing a reserved system service protection domain

1. Ensure that no applications are running or reboot the system.

2. Remove the desired identifier from the /etc/opt/cray/alps/alps.conf
pDomainIDs list.

3. Send a SIGHUP signal to apsched so that it restarts and reads the new
pDomainIDs list.

8.4 Resynchronizing ALPS and the SDB Command After
Manually Changing the SDB

Manual changes to node attributes and status can be reflected in ALPS by using the
apmgr resync command. The apmgr resync command requests ALPS to
reevaluate the configuration and attribute information and update its information. For
example, after making manual changes to the SDB using the xtprocadmin -e or
xtprocadmin --noevent command, use the apmgr resync command so that
ALPS becomes aware of the changes.

8.5 Identifying Reserved Resources
The apstat -r command displays the batch job ID in the From field; for
executables launched interactively, apstat displays aprun in the From field:

% apstat -r
ResId ApId From Arch PEs N d Memory State

A 140 2497406 batch:741789 XT 512 - - 1333 conf,claim
141 2497405 batch:741790 XT 768 24 1 1333 NID list,conf,claim

A 141 2497407 batch:741790 XT 768 - - 1333 conf,claim

S–2393–5101 283

Managing System Software for the Cray® Linux Environment

The apstat -A apid command filters information by application IDs. You can
include multiple application IDs, but it must be a space-separated list of IDs. For
example:

% apstat -avv -A 3848874
Total (filtered) placed applications: 1
Placed Apid ResId User PEs Nodes Age State Command

3848874 1620 crayuser 512 22 0h07m run dnsp3+pat

Application detail
Ap[0]: apid 3848874, pagg 0x2907, resId 1620, user crayuser,

gid 1037, account 0, time 0, normal
Reservation flags = 0x2001
Created at Tue Jul 12 14:20:08 2011
Originator: aprun on NID 8, pid 6369
Number of commands 1, control network fanout 32
Network: pTag 131, cookie 0xfb860000, NTTgran/entries 1/22, hugePageSz 2M
Cmd[0]: dnsp3+pat -n 512, 1365MB, XT, nodes 22
Placement list entries: 512
Placement list: 6-7,11,20-21,24-25,36-39,56-59,69-71,88-91

The apstat -R resid command filters information about reservation IDs. You can
include multiple reservation IDs, but it must be a space-separated list of IDs. For
example:

% apstat -rvv -R 1620
ResId ApId From Arch PEs N d Memory State
1620 3848874 aprun XT 512 0 1 1365 atomic,conf,claim

Reservation detail for resid 1620
Res[1]: apid 3848874, pagg 0, resId 619, user crayuser,

gid 1037, account 8944, time 0, normal
Batch System ID = 1971375
Created at Tue Jul 12 14:20:08 2011
Number of commands 1, control network fanout 32
Cmd[0]: dnsp3+pat -n 512, 1365MB, XT, nodes 22
Reservation list entries: 512
Reservation list: 6-7,11,20-21,24-25,36-39,56-59,69-71,88-91

8.6 Terminating a Batch Job
To terminate a batch job, use the job ID from the apstat -r display.

8.7 Setting a Compute Node to Batch or Interactive Mode
To set a node to be either batch or interactive mode, use the xtprocadmin
command to set the alloc_mode column of the SDB processor table. Then
execute the apmgr resync command so that ALPS becomes aware of the changes.

284 S–2393–5101

Using the Application Level Placement Scheduler (ALPS) [8]

Example 104. Retrieving node allocation status

The apstat -n command displays the application placement status of nodes that
have a state of UP and their allocation mode (B for batch or I for interactive) in the
State column.

Note: The apstat utility does not have dynamic run-time information about an
application, so an apstat display does not imply anything about the running state
of an application. An apstat display indicates statically that an application was
placed and that the aprun claim against the reserved resources has not yet been
released.

% apstat -n
NID Arch State HW Rv Pl PgSz Avl Conf Placed PEs Apids
20 XT UP B 12 - - 4K 3072000 0 0 0
21 XT UP B 12 - - 4K 3072000 0 0 0
22 XT UP B 12 - - 4K 3072000 0 0 0
23 XT UP B 12 - - 4K 3072000 0 0 0

<snip>
63 XT UP B 12 12 12 4K 3072000 3072000 1572864 12 221180
64 XT UP B 12 12 12 4K 3072000 3072000 1572864 12 221180
65 XT UP B 12 12 12 4K 3072000 3072000 1572864 12 221180
66 XT UP B 12 12 12 4K 3072000 3072000 1572864 12 221182

<snip>
Compute node summary

arch config up use held avail down
XT 744 744 46 12 686 0

8.8 Manually Starting and Stopping ALPS Daemons on Service
Nodes

ALPS is automatically loaded and started when CNL is booted on compute nodes.

You can manually start and stop the ALPS daemons on the service nodes as shown in
the following procedures.

Procedure 69. Starting and stopping ALPS daemons on a specific service node

1. To start the ALPS daemons on a specific service node, log on to that service node
as root and type the /etc/init.d/alps start command; for example,
to start the ALPS daemons on the boot node:

boot:~ # /etc/init.d/alps start

2. To stop the ALPS daemons on a specific service node, log on to that service node
as root and type the /etc/init.d/alps stop command; for example, to
stop the ALPS daemons on the boot node:

boot:~ # /etc/init.d/alps stop

S–2393–5101 285

Managing System Software for the Cray® Linux Environment

Procedure 70. Restarting ALPS daemon on a specific service node

• To restart the ALPS daemon on a specific service node, log on to the service
node as root and type the /etc/init.d/alps restart command; for
example, to restart the ALPS daemons on the boot node:

boot:~ # /etc/init.d/alps restart

The /etc/init.d/alps restart command stops and then starts the ALPS
daemons on the node.

8.9 Manually Cleaning ALPS and PBS or TORQUE and Moab
After Downed Login Node

If a login node goes down and will not be rebooted, job reservations associated with
jobs deleted with qdel may not be released by ALPS. In this case, the apstat -r
command lists the reservations as state pendCancel and leaves the jobs orphaned.
Use the following procedure to manually clean up ALPS and the workload manager.

Procedure 71. Manually cleaning up ALPS and TORQUE and Moab or PBS after
a login node goes down

1. Verify that the batch job still appears in the qstat output.

crayadm@smw:~> qstat -as 106728.sdb

sdb:
Req'd Req'd Elap

Job ID Username Queue Jobname SessID NDS TSK Memory Time S Time
--------------- -------- -------- ---------- ------ --- --- ------ ----- -

106728.sdb root workq qsub.scrip 6231 1 1 -- -- R
00:00

Job run at Thu Dec 03 at 14:31 on (login1:ncpus=1)

2. Purge job from the workload manager and verify that it was purged. On the
SDB node, type:

sdb:~ # qdel -W force 106728.sdb

3. Verify that the job no longer exists.

sdb:~ # qstat -as 106728.sdb
qstat: Unknown Job Id 106728.sdb
sdb:~ #

4. Restart apsched on the SDB node:

sdb:~# /etc/init.d/alps restart

286 S–2393–5101

Using the Application Level Placement Scheduler (ALPS) [8]

5. Use apmgr to cancel the reservation that still exists in ALPS.

sdb:~ # apstat -r | grep 106728
ResId ApId From Arch PEs N d Memory State

5 2949806 batch:106728 XT 1 0 1 500 conf

sdb:~ # apmgr cancel 5

6. Use apstat to verify that the reservation no longer exists.

sdb:~ # apstat -r | grep 106728
sdb:~ #

8.10 Verifying that ALPS is Communicating with Cray System
Compute Nodes

Executing the following aprun command on a login node will return a list of host
names of the Cray system compute nodes used to execute the last program.

Example 105. Verifying that ALPS is communicating with Cray system compute
nodes

crayadm@login:~> cd /tmp
crayadm@login:/tmp> aprun -b -n 16 -N 1 /bin/cat /proc/sys/kernel/hostname

8.11 ALPS and Node Health Monitoring Interaction
ALPS and node health monitoring cooperate in performing application cleanup
following an application exit. The Node Health Checker (NHC) is automatically
invoked by ALPS upon the termination of an application.

During normal operations, applications are run on a set of nodes, complete
successfully, then those node resources are freed up to be reallocated for other
applications. When an application exit is considered orderly, a set of up to four
unique application process exit codes and exit signals is gathered and consolidated by
ALPS on each compute node within the application placement list. Once all of the
application processes on a compute node have exited, that compute node adds its
local exit information to this consolidated list of exit data.

The exit information is sent to aprun over the ALPS application specific TCP
fan-out tree control network. All of the application processes must have completely
exited before this exit information is received by aprun. aprun forwards the
compiled exit information to apsys just before aprun itself exits.

Once all exit information has been received from the compute nodes, the application
exit is considered orderly. An orderly exit does not necessarily mean that the
application completed successfully. An orderly exit means that exit information about
the application was received by aprun and forwarded to apsys. apsys sends
an exit message to apsched, which releases the reserved resources for another
application.

S–2393–5101 287

Managing System Software for the Cray® Linux Environment

An unorderly exit means that exit information has not been received by apsys prior
to an aprun exit. A typical occurrence of an unorderly exit consists of a SIGKILL
signal being sent to aprun by the batch system after the application's wall time
limit is exceeded.

Since there is no exit information available to apsys during an unorderly exit,
apsys does not know the true state of the application processes on the compute
nodes. Therefore, ALPS must perform application cleanup on each of the assigned
compute nodes before it is safe to free those application resources for another
application.

Application cleanup begins with ALPS contacting each assigned compute node and
sending a SIGKILL signal to any remaining application processes. Node health
monitoring checks compute node conditions and marks a compute node admindown
if it detects a problem.

ALPS cannot free the application resources for reallocation until all of the application
processes have exited or node health monitoring has marked applicable compute
nodes admindown or suspect. Until that time, the application will continue to
be shown in apstat displays.

8.11.1 aprun Actions

The aprun command is the ALPS application launch command on login nodes and
the SDB node. aprun has a persistent TCP connection to a local apsys. aprun
also has a persistent TCP connection to an apinit daemon child on the first
compute node with in the assigned placement list, but not to an apinit on each
assigned compute node.

After receiving a placement list from apsched, aprun writes information into
the syslog as in the example below.

May 18 10:38:16 nid00256 aprun[22477]: apid=1985825, Starting, user=10320,
batch_id=2325008, cmd_line="aprun -n 1 -b /tmp/hostname.xx ",
num_nodes=1, node_list=384

May 18 10:38:16 nid00256 aprun[22477]: apid=1985825, Error, user=10320,
batch_id=2325008, [NID 00384] 2010-05-18 10:38:15 Apid 1985825: cannot
execute: exit(107) exec failed

May 18 10:38:17 nid00256 apsys[22480]: apid=1985825, Finishing, user=10320,
batch_id=2325008

In a typical case of an orderly exit, aprun receives application exit information over
the connection from that apinit. aprun then forwards the exit information over
the connection to apsys. The ordering of application exit signals and exit codes is
arbitrary. aprun displays any nonzero application exit information and uses the
application exit information to determine its own exit code:

Application 284004 exit signals: Terminated

288 S–2393–5101

Using the Application Level Placement Scheduler (ALPS) [8]

In the case of an unorderly exit, aprun exits without receiving application exit
information. When aprun exits, its TCP connections are closed. The socket closes
trigger application cleanup activity by both apinit and apsys as described in
following sections.

An unorderly exit may occur for various reasons. The usual causes of an unorderly
exit include the following cases:

• The batch system sends a SIGKILL signal to aprun due to the application wall
time expiring

• apkill or kill are used to send a SIGKILL signal to aprun

• aprun receives a fatal message from apinit due to some fatal error during
launch or at other points during the application lifetime, causing aprun to write
the message to stderr and exit

• aprun receives a fatal read, write or unexpected close error on the TCP socket
it uses to communicate with apinit

8.11.2 apinit Actions

apinit is the ALPS privileged daemon that launches and manages applications
on compute nodes. For each application, the apinit daemon forks a child
apshepherd process. Within ps displays, the child apshepherd processes retain
the name "apinit".

The per-application TCP fan-out control tree has aprun as the root. Each compute
node apshepherd within this control tree has a parent controller and may have a
set of controlling nodes. Whenever a parent controller socket connection closes, the
local apshepherd attempts to kill any application processes still executing and then
will exit. This socket closing process results in a ripple effect through the fan-out
control tree, resulting in automatic application tear down.

Whenever the aprun TCP connection to the apshepherd on the first compute
node within the placement list closes, the tear down process begins. During an
application orderly exit, the exit information is sent to aprun, followed by the
aprun closure of the socket connection, resulting in the exit of the apshepherd.
The apshepherd exit causes its controlling socket connections to close as well.
Each of those apshepherds will exit, and the application specific fan-out tree
shuts down.

When the aprun TCP socket closure is not expected and the application processes
are still executing, the apshepherd will send a SIGKILL signal to each local
application process and then exit. There can be local delays in kernel delivery of the
SIGKILL signal to the application processes due to application I/O activity. The
application process will process the SIGKILL signal after the I/O completes. The
apinit daemon is then responsible to monitor any remaining application processes.

S–2393–5101 289

Managing System Software for the Cray® Linux Environment

This kill and exit process ripples throughout the control tree. However, if any
compute node within the control tree is unresponsive, the ripple effect will stop
for any compute nodes beyond that branch portion of the tree. In response to this
situation, ALPS must take action independent of the shutdown of the control tree to
ensure all of the application processes have exited or that compute nodes are marked
either admindown or suspect by node health monitoring. The apsys daemon is
involved in invoking the independent action.

8.11.3 apsys Actions

apsys is a local privileged ALPS daemon that runs on each login node and
the SDB node. When contacted by aprun, the apsys daemon forks a child
agent process to handle that specific local aprun. The apsys agent provides a
privileged communication path between aprun and apsched for placement and
exit information exchanges. The apsys agent name remains "apsys" within ps
displays.

During an orderly application exit, the apsys agent receives exit information from
aprun and forwards that information to apsched. However, during an unorderly
exit, when the aprun socket connection closes prior to receipt of exit information,
the apsys agent is responsible to start application cleanup on the assigned compute
nodes.

To begin application cleanup, the apsys agent invokes cleanup version 1
(apmgrcleanup) or cleanup version 2, and the apsys agent blocks until cleanup
completes. (Which cleanup version is controlled by the cleanup_version
configuration parameter in alps.conf file; see The alps.conf Configuration
File on page 278 for more information.)

At the start of application cleanup, the /var/log/alps/apsysMMDD log file
displays data similar to the following messages.

Cleanup version 1 messages:

14:00:20: [32606] Agent unexpected close of peer connection 6, apid 227061
14:00:20: [32606] Agent invoking cleanup v1 for apid 227061
14:00:22: /opt/cray/alps/5.0.0-2.0500.7497.1.1.ari/bin/apmgrcleanup [32824] invoking
/opt/cray/nodehealth/default/bin/xtcleanup_after /tmp/apsysiY08fc 227061 0 with 1 entries

290 S–2393–5101

Using the Application Level Placement Scheduler (ALPS) [8]

Cleanup version 2 messages:

14:00:20: [32606] Agent unexpected close of peer connection 6, apid 227061
14:00:20: [32606] Agent invoking cleanup v2 for apid 227061
14:00:20: Beginning cleanup of apid 227061, iteration 1
14:00:21: Post-cleanup: apid 227061 definitely resident on 1/1 nodes, maybe on 0
others
14:00:21: Beginning cleanup of apid 227061, iteration 2
14:00:21: Target Nodes: Match list portion for apid 227061 (1/1): 20
14:00:21: Target Nodes: Unreached list portion for apid 227061 (0/0):
14:00:21: Post-cleanup: apid 227061 definitely resident on 0/1 nodes, maybe on 0
others
14:00:21: Invoking health check: /opt/cray/nodehealth/default/bin/xtcleanup_after
/tmp/apsysWRPpna 227061 0
14:00:30: Successfully cleaned up apid 227061 on 1 nodes

After apmgrcleanup returns, the apsys log file contains something similar to the
sample message below:

14:02:30: [32606] Agent sending ALPSMSG_EXIT message to apsched fd 7, apid 227061
14:02:30: [32606] Agent received ALPSMSG_EXITCONFIRM from apsched fd 7, apid 227061

In the above example, apsched has been told that the resources assigned to that
aprun can now be reallocated to another application. The apstat display will no
longer show information about this application.

8.11.4 Node Health Checker Actions

The Node Health Checker (NHC) is automatically invoked by ALPS upon the
termination of an application. ALPS passes a list of nodes associated with the
terminated application to NHC. NHC performs specified tests, which are specified in
the NHC configuration file, to determine if compute nodes allocated to the application
are healthy enough to support running subsequent applications. If not, it removes any
nodes incapable of running an application from the resource pool.

NHC verifies that the Application Level Placement Scheduler (ALPS) acknowledges
a change that NHC has made to a node's state. If ALPS does not acknowledge a
change, then NHC recognizes this disagreement between itself and ALPS. NHC then
changes the node's state to admindown state and exits.

For an overview of NHC, see the intro_NHC(8) man page. For additional
information about configuring node health checker, see Configuring Node Health
Checker (NHC) on page 168.

8.11.5 Verifying Application Cleanup

There are a number of circumstances that can delay completion of application cleanup
after an unorderly exit. This delay is often detected through apstat displays that
still show the application and the resource reservation for that application.

S–2393–5101 291

Managing System Software for the Cray® Linux Environment

As described in previous sections, check the various log files to understand what
activity has taken place for a specific application.

• Check the /var/log/alps/apsysMMDD log files for that apid; verify
cleanup version 1 (apmgrcleanup) or cleanup version 2 has been invoked.

• If using cleanup version 1 on that same login node, use ps to check if
apmgrcleanup is still executing.

• Check the applicable node health monitoring log file
(/var/log/xtcheckhealth_log) for that apid.

• Check the SMW
/var/opt/cray/log/sessionid/console-YYMMDDHHMM log
file for that apid.

292 S–2393–5101

Using Comprehensive System Accounting [9]

Comprehensive System Accounting (CSA) is open-source software that includes
changes to the Linux kernel so that the CSA can collect more types of system
resource usage data than under standard Fourth Berkeley Software Distribution
(BSD) process accounting. CSA software also contains interfaces for the Linux
process aggregates (paggs) and jobs software packages. The CSA software package
includes accounting utilities that perform standard types of system accounting
processing on the CSA generated accounting files. CSA, with Cray modifications,
provides:

• Project accounting capabilities, which provide a way to charge computer system
resources to specific projects

• An interface with various other job management systems in use at Cray sites

• A data management system for collecting and reporting accounting data

• An interface that you use to create the project account and user account databases,
and to later modify them, as needed

• An interface that allows the project database to use customer–supplied user,
account, and project information that resides on a separate Lightweight Directory
Access Protocol (LDAP) server

• An interface with the ALPS application management systems so that application
accounting records that include application start, termination, and placement
information can be entered into the system accounting database

Specific third-party software releases are required for batch system compatibility with
CSA on Cray systems. For more information, access the 3rd Party Batch SW link
on the CrayPort website at http://www.crayport.cray.com.

Complete features and capabilities of CSA are described in the csa(8) and
intro_csa(8) man pages. The accounting utilities provided for administrative
use are: csanodeacct, csaperiod, and csarun. The related man pages are
accessible by using the man command.

Note: CSA runs only on login nodes and compute nodes. The SMW, boot node,
SDB node, Lustre MDS nodes, and Lustre OSS nodes do not support CSA.

S–2393–5101 293

http://crayport.cray.com

Managing System Software for the Cray® Linux Environment

9.1 Interacting with Batch Entry Systems or the PAM job
Module

Jobs are created on the system using either a batch job entry system (when such a
system is used to launch jobs) or by the PAM job module for interactive sessions.

Note: You must be running TORQUE snapshot (release)
2.4.0-snap.20080925140 or later to take advantage of CSA
support for the Cray platform.

You must run PBS Professional 9.2 or later to take advantage of CSA support for
the Cray platform.

Compute node project accounting for applications submitted through workload
managers (for example, PBS Professional) depends on the ability of the workload
manager to obtain and propagate the project ID to ALPS at job submission time.
If the workload manager does not support the ability to obtain and propagate the
project ID to ALPS at job submission, the project ID must be set by using the
account command prior to issuing an ALPS aprun command. Otherwise, project
ID information will not be included in any CSA accounting records for the job.

9.2 CSA Configuration File Values
The CSA configuration file, csa.conf, is included with the
Cray Linux Environment (CLE) software release package. This file contains default
settings for several configuration parameters you must change to tailor CSA to your
individual site configuration. On Cray systems csa.conf is located on the shared
root in /etc/opt/cray/csa/csa.conf for login nodes and on the SMW in
/opt/xt-images/templates/default/etc/opt/cray/csa/csa.conf
for compute nodes.

Note: The two copies of this file must be identical with the exception of the
NODE_PROCESS_ACCOUNT parameter.

Each Cray system that runs CNL has its own unique hardware configuration,
including the number of nodes on the system, the physical location of the nodes, and
a unique file system configuration. For this reason, the default csa.conf files can
only be used as a template. A new version of the CNL compute node image must be
created after editing csa.conf in order to implement the changes.

The parameters shown in the following table are used to define the accounting file
system configuration and the node configuration for your system. You must change
the settings of these parameters so that they conform to your system configuration.

294 S–2393–5101

Using Comprehensive System Accounting [9]

Table 8. CSA Parameters That Must Be Specific to Your System

Parameter Description

CSA_START Defines whether CSA is enabled (on) or disabled (off). By default,
CSA is disabled.

ACCT_SIO_NODES Declares the number of account file system mount points. There
must be at least one account file system mount point. The maximum
number of mount points is 10. Multiple mount points are allowed so
that the individual node accounting files can be distributed across
more than one file system in order to provide better scaling for
large system configurations. Use the df command to display the
possible file system mount points. The actual maximum number of
ACCT_SIO_NODES that may be specified is limited by the number
of file systems available on your system.

ACCT_FILE_SYSTEM_00

...

ACCT_FILE_SYSTEM_nn

Must be one entry for each declared file system mount point.
Numbering must begin with 00, and numbers must be consecutive.
For example, if you have specified ACCT_SIO_NODES 1,
you will only define ACCT_FILE_SYSTEM_00. If you have
specified ACCT_SIO_NODES 2, you will also need to define
ACCT_FILE_SYSTEM_01.

_lus_nid00023_csa_XT The default file system mount point. It must be changed to
correspond to a file system that exists on your system. There is one
of these entries for each ACCT_FILE_SYSTEM declared.

Note: The program that parses the configuration file does not
allow any special characters, other than the underscore character
(_) in configuration names. Therefore, in the file system paths
used in the mount point description, each forward slash character
(/) character must be represented by an underscore (_) character.
This also means that an account file system mount point cannot
have a _ character in the pathname.

SYSTEM_CSA_PATH Defines the pathname on the common file system where CSA
establishes its working directories for generating accounting reports.
This parameter is only used on the service node image. It is not used
on the compute nodes.

NODE_PROCESS_ACCOUNT Defines whether all process account records written on a node
will be written to the common file system, or whether the process
account records for each application will be combined into a single
application summary record that represents the total execution of the
application on a node. This parameter may be set differently on the
shared root and compute node images.

For other parameters in csa.conf, default settings should be acceptable.

S–2393–5101 295

Managing System Software for the Cray® Linux Environment

9.3 Configuring CSA
CSA is disabled by default. When CSA is enabled, all system accounting, including
service node accounting, is performed by CSA. Therefore, there is no need to have
BSD process accounting enabled on service nodes. To enable CSA, set CSA_START
to on in csa.conf.

Note: You must include the CSA RPM in your CNL boot image. If you set values
in the shell_bootimage.sh script, make sure to edit the same values in
CLEinstall.conf so that any new features remain enabled after the next CLE
update or upgrade.

Perform the procedures in this section, in order, to correctly set up CSA.

9.3.1 Obtaining File System and Node Information

Procedure 72. Obtaining file system and node information

1. From a login node, enter the df command to determine which file systems are
available for writing CSA accounting data.

login:~ > df

rootfs 173031424 158929920 5311488 97% /
initramdevs 8268844 76 8268768 1% /dev
10.131.255.254:/rr/current

173031424 158929920 5311488 97% /
10.131.255.254:/rr/current//.shared/node/8/etc

173031424 158929920 5311488 97% /etc
10.131.255.254:/snv 48070496 13872768 31755840 31% /var
10.131.255.254:/snv 48070496 13872768 31755840 31% /var
none 8268844 12 8268832 1% /var/lock
none 8268844 940 8267904 1% /var/run
none 8268844 0 8268844 0% /var/tmp
tmpfs 8268844 12 8268832 1% /tmp
ufs:/ufs 38457344 26436608 10067968 73% /ufs
ufs:/ostest 20169728 10874880 8269824 57% /ostest
23@gni:/lus_system 215354196400 60192583820 144222067004 30% /lus/nid00011
30@gni:/ib54ex 114821632416 5588944 108983420416 1% /lus/nid00064

2. Determine and record the file system information you want to use for CSA.

The files systems of interest for saving accounting data are those two systems
whose mount points are /lus/nid00011 and /lus/nid00064, respectively.
Record this information for later use.

3. Determine the hardware node configuration on your system.

296 S–2393–5101

Using Comprehensive System Accounting [9]

Run the xtprocadmin command to get a complete list of nodes.

login:~ > xtprocadmin

NID (HEX) NODENAME TYPE STATUS MODE PSLOTS FREE
0 0x0 c0-0c0s0n0 service up batch 4 0
3 0x3 c0-0c0s0n3 service up batch 4 0
4 0x4 c0-0c0s1n0 service up batch 4 4
7 0x7 c0-0c0s1n3 service up batch 4 4

...
475 0x1db c3-0c2s6n3 compute up batch 4 4
476 0x1dc c3-0c2s7n0 compute up batch 4 4
477 0x1dd c3-0c2s7n1 compute up batch 4 4
478 0x1de c3-0c2s7n2 compute up batch 4 4
479 0x1df c3-0c2s7n3 compute up batch 4 4

For this example system, you want to choose a set of nodes that will have their
accounting files written to /lus/nid00011 and another set of nodes that will
have their accounting files written to /lus/nid00064. You also need to make
sure there is no overlap between the two sets of nodes.

9.3.2 Editing the csa.conf File

After you have the file system mount point and node configuration
information for your system, you are ready to edit the csa.conf
file. On Cray systems this file is located on the shared root at
/etc/opt/cray/csa/csa.conf for login nodes and on the SMW at
/opt/xt-images/templates/default/etc/opt/cray/csa/csa.conf
for compute nodes.

Note: You must use xtopview to edit the shared root image of
csa.conf file on the boot node. You can use any text editor to
edit the compute node image of csa.conf file on the SMW. If the
/opt/xt-images/templates/default/etc/opt/cray/csa/csa.conf
files does not exist on the SMW, you may copy the file from the shared root.

Procedure 73. Editing CSA parameters for the example system

1. Enable CSA by setting CSA_START to on.

2. Set the number for the ACCT_SIO_NODES parameter.

From Procedure 72 on page 296, you know that both /lus/nid00011 and
/lus/nid000064 will be used to host individual node accounting files. The
number of file systems (in this case two) to be used to contain accounting files
is the value for the ACCT_SIO_NODES parameter. Since this example shows
using /lus/nid00011 and /lus/nid00064 to contain accounting files,
set ACCT_SIO_NODES to 2:

ACCT_SIO_NODES 2

S–2393–5101 297

Managing System Software for the Cray® Linux Environment

3. Declare a file system mount point for each SIO node specified.

Note: The program that parses the configuration file does not allow any special
characters, other than the underscore character (_) in configuration names.
Therefore, in the file system paths used in the mount point description, each
forward slash character (/) character must be represented by an underscore
(_) character. This also means that an account file system mount point cannot
have a _ character in the pathname.

The df command from the previous procedure showed a mount point on
/lus/nid00011 and another one on /lus/nid00064, these are the two
mount points that need to be declared. Just because there are multiple mount
points, however, does not mean that you need to use them. You may choose to
have all accounting files written to a single file system. Since in this example you
are configuring two mount points, you must specify ACCT_FILE_SYSTEM_00
and ACCT_FILE_SYSTEM_01 parameters:

ACCT_FILE_SYSTEM_00 _lus_nid00011
ACCT_FILE_SYSTEM_01 _lus_nid00064

4. Determine the node range values for the account system mount point parameters.

All accounting file directories have csa as the first element of the path name,
following the mount point. The next element in the path name after csa
describes the node type. For Cray node types, the next element of the path name
is XT.

For Cray systems, the CSA software uses the node name, otherwise known as the
cname, when creating pathnames for accounting files. For example, node name
c1-0c2s7n3 has a pathname of cab1/row0/chassis2/slot7/mcomp3.
This path name is appended to applicable accounting system mount point name in
order to create a full path name for the accounting file.

The xtprocadmin command output from the previous procedure shows that
the system has 4 cabinets, c0-c3. One simple way to configure the accounting
file systems so that the files are divided fairly evenly between the two file systems
in this example would be to specify that cabinet 0 and cabinet 1 have their data
written to /lus/nid00011, and cabinet 2 and cabinet 3 have their data written
to /lus/nid00064.

Using the pathname conventions described above, and the node name data from
Procedure 72 on page 296, you can define the file system mount point parameters:

_lus_nid00011_csa_XT c0-0c0s0n0--c1-0c2s7n3
_lus_nid00064_csa_XT c2-0c0s0n0--c3-0c2s7n3

5. Define the SYSTEM_CSA_PATH parameter.

The SYSTEM_CSA_PATH parameter describes the file pathname for the system
wide csa directories that are used for CSA work areas, and for containing the
system-wide pacct file. The system-wide pacct file contains the merged

298 S–2393–5101

Using Comprehensive System Accounting [9]

contents of the individual node pacct files. Since the file pathname for the
SYSTEM_CSA_PATH is not used as an input to the configuration file parser, the
file path name is allowed to contain the / character.

Usually the SYSTEM_CSA_PATH parameter uses an account file system
mount point as its base directory, however, this is not required. The
SYSTEM_CSA_PATH parameter is only used on the login node where CSA file
processing is performed. It is not necessary to set this parameter in the compute
node image of csa.conf on the SMW, but setting it there does not cause any
problems.

For this example, use the /lus/nid00011 mount point for the CSA work
areas:

SYSTEM_CSA_PATH /lus/nid00011/csa

6. Define the NODE_PROCESS_ACCOUNT parameter.

The NODE_PROCESS_ACCOUNT parameter defines how much
detailed accounting data is to be collected, processed, and saved from
the nodes on the system. This parameter may be set differently in
/opt/xt-images/templates/default/etc/opt/cray/csa/csa.conf
on the SMW for the compute node image than in
/etc/opt/cray/csa/csa.conf in the shared root file system
for login nodes.

To understand the usefulness of this parameter, it may be helpful to know how
CSA accounting records are handled on Cray systems. When ALPS launches an
application to the compute nodes on a Cray system, CSA process accounting
occurs on each compute node. All CSA job and process accounting records for
each compute node are written to an in-memory file system on the node, and
the records remain there until the application terminates. When the application
terminates, ALPS notifies the CSA software on each compute node to process
the accounting data for that node. The NODE_PROCESS_ACCOUNT parameter
allows CSA to make a decision whether to write all of the individual process
accounting records for each compute node to the common file system, or to
read the individual process accounting records and combine them into a single
application summary record that represents the total resources used by the
application on the compute node. By choosing to have application summary
records, the amount of data transferred from each compute node to the common
file system may be substantially reduced. In doing so, the amount of internal
system network traffic and the amount of data moved from compute nodes to
disk can be decreased. Also, the total amount of CSA accounting data that must
be processed later for creating usage reports, and the amount of CSA data to
be permanently stored can be reduced.

You may want to set NODE_PROCESS_ACCOUNT off for compute nodes, and
to set it on for service nodes. This provides more accounting process detail on

S–2393–5101 299

Managing System Software for the Cray® Linux Environment

the login nodes where such information may be more useful. Therefore, this
single parameter may be set differently on the shared root image than it is set on
the compute node image of csa.conf on the SMW.

To use this split configuration, specify the following:

Shared root version of /etc/opt/cray/csa/csa.conf:
NODE_PROCESS_ACCOUNT ON

Compute node image (on SMW) of /opt/xt-images/templates/default/etc/opt/cray/csa/csa.conf:
NODE_PROCESS_ACCOUNT OFF

7. Change the parameter that defines the group name used for setting the ownership
and group on accounting files. This parameter is named CHGRP and defaults to:

CHGRP csaacct

If you use a different group name, change the parameter to match your system
configuration.

9.3.3 Editing Other System Configuration Files

You also must make configuration changes to other system files. Use the xtopview
command on the boot node to make the changes. For detailed information about
using xtopview, see Managing System Configuration with the xtopview Tool on
page 135 or the xtopview(8) man page.

• Add the csaacct user name to /etc/passwd on the shared root.

csaacct:*:391:391:CSA:/var/lib/csa:/sbin/nologin

• Add the csaacct group name to /etc/group on the shared root.

csaacct:!:391:

• Update the shadow password file to reflect the changes you have made:

/usr/sbin/pwconv

• Add the csaacct group name to /etc/group on the CNL image.

Note: The csaacct group and gid must be the same on the shared root and
CNL image.

• Create additional PAM entries in /etc/pam.d/common-session to enable
CSA. For more information about creating PAM entries, see Setting Up Job
Accounting on page 304.

300 S–2393–5101

Using Comprehensive System Accounting [9]

9.3.4 Creating a CNL Image with CSA Enabled

After you have modified the compute node copy of csa.conf on the SMW, you
must rebuild the compute node image. For more information about how to rebuild
the compute node image, see Preparing a Service Node and Compute Node Boot
Image on page 65.

You can edit the shared root version of csa.conf and install the new version using
the xtopview command. For more information about editing the shared root image
of csa.conf using the xtopview utility, see Managing System Configuration
with the xtopview Tool on page 135 or the xtopview(8) man page.

9.3.5 Setting Up CSA Project Accounting

The project database allows your site to define project names and assign an account
number to each project. Users can have a list of account numbers that they can use
for charging computing resources. Each user has a default account number that is
assigned at login time.

Note: If you do not want to use CSA project accounting, complete Procedure 75 on
page 303 instead of Procedure 74 on page 301.

Procedure 74. Setting up CSA project accounting

The project database resides on the system SDB node as a MySQL database. To set
up a CSA project accounting for your system, perform this procedure.

1. Establish the project database, UserProject, and define the project database
tables on the System Data Base (SDB) server:

sdb:~ # mysql -u root -h sdb -p < /opt/cray/projdb/default/sql/create_UserProject.sql

2. Grant administrative access privileges to the project database:

sdb:~ # mysql -u root -h sdb -p < /opt/cray/projdb/default/sql/create_accounts.sql

3. Use the xtopview command from the boot node to create and edit the
/etc/opt/cray/projdb/projects file on the shared root so that it
contains a list of valid account numbers and the associated project names.

The /etc/opt/cray/projdb/projects file consists of a list of entries
where each entry contains a project number followed by a project name. A colon
character separates the project number from the project name. A project number
and an account number are the same thing. The following example shows a
simple project file:

0:root
100:sysadm
101:ProjectA
102:ProjectB
103:Big_Name_Project_that_is_insignificant_and_unimportant
1234567890:Big Name Project with Blanks in the Name

S–2393–5101 301

Managing System Software for the Cray® Linux Environment

4. Use the xtopview command from the boot node to create and edit the
/etc/opt/cray/projdb/useracct file on the shared root so that it
contains a list of authorized users and the valid account numbers for each user.

Each line of the user accounts file contains the login name of a user and list of
accounts that are valid for that user. The first account number in the list is the
user's default account. The default account number is assigned to the user at login
time by the pam_job module. The user name is separated from the first account
ID by a colon (:). Additional account numbers are separated by a comma (,).

The following shows a simple user account file:

root:0
u1000:100
u1001:101,103
u1002:100,101
u1003:100,103,1234567890

5. On the login node, edit the ~crayadm/.my.cnf file in the home directory of
the project database administrator so that it contains the following lines:

[client]
user=sys_mgmt
password=sys_mgmt
host=sdb

6. On the login node, change the permissions and owner on the
~crayadm/.my.cnf file, as follows:

login:/home/crayadm:~> chmod 600 ~crayadm/.my.cnf
login:/home/crayadm:~> chown crayadm:crayadm ~crayadm/.my.cnf

7. If you are using customer–supplied user, account, and project information that
resides on a separate LDAP server, use the xtopview command from the
boot node to edit the /etc/opt/cray/projdb/projdb.conf project
accounting configuration file so that it contains site-specific values for the
parameters listed in Table 9.

Table 9. Project Accounting Parameters That Must Be Specific to Your
System

Parameter Description

PROJDBTYPE If you are using customer–supplied user, account, and project
information that resides on a separate LDAP server, change from
MYSQL (default) to CUSTOM.

CUSTOM_VALIDATE If you are using customer–supplied user, account, and
project information that resides on a separate LDAP
server, specify the full path name to the customer–supplied
function that performs the necessary validation, for example
/usr/local/sbin/validate_account.

302 S–2393–5101

Using Comprehensive System Accounting [9]

Parameter Description

Input parameters to the validation function are position order
dependent, as follows:
user_name account_number

8. On a login node, run the projdb command with the -c option to create the
project database. After the project database has been established, any users
gaining access to the system through the job PAM module are assigned a default
account ID at the time of system access.

login:/home/crayadm:~> projdb -c -p /etc/opt/cray/projdb/projects -u
/etc/opt/cray/projdb/useracct -v

Note: The project database package commands are installed in
/opt/cray/projdb/default/bin, which must be in your PATH
variable to access the commands.

9.3.5.1 Disabling Project Accounting

If you do not want to use project accounting on your site, either as provided by the
MySQL database, or by a separate customer-supplied LDAP server, use the following
procedure to disable project accounting.

Note: If you want to use CSA project accounting, complete Procedure 74 on
page 301 instead of Procedure 75 on page 303.

Procedure 75. Disabling project accounting

1. In the /etc/opt/cray/projdb/projdb.conf file, set the PROJDBTYPE
parameter to CUSTOM.

2. In the /etc/opt/cray/projdb/projdb.conf file,
declare a CUSTOM_VALIDATE parameter and define it as
/usr/local/sbin/validate_account.

3. As root, create the /usr/local/sbin/validate_account file with file
permissions set to 755 and the following contents:

#!/bin/sh
echo 0

S–2393–5101 303

Managing System Software for the Cray® Linux Environment

9.3.6 Setting Up Job Accounting

Note: You must include the csa RPM in your CNL boot image. To do this
either set CNL_csa=yes in the CLEinstall.conf before the CLEinstall
program is run or edit the shell_bootimage_LABEL.sh script and specify
CNL_CSA=y prior to updating your CNL boot image. If you do set values
in the shell_bootimage.sh script, make sure to edit the same values in
CLEinstall.conf so that any new features remain enabled after the next CLE
update or upgrade.

Procedure 76. Setting up CSA job accounting for non-CCM CNOS jobs

1. Cluster Compatibility Mode (CCM) does not support CSA accounting. However,
the CNOS class must support CSA accounting for non-CCM jobs. To accomplish
this, use the following configuration.

xtopview default/:/# vi /etc/opt/cray/ccm/ccm_mounts.local
/etc/pam.d/common-session-pc.ccm /etc/pam.d/common-session bind 0
default/:/# exit

2. In CNOS Class view:

common-session includes:
session optional pam_mkhomedir.so skel=/software/skel
session required pam_limits.so
session required pam_unix2.so
session optional pam_ldap.so
session optional pam_umask.s
session optional /opt/cray/job/default/lib64/security/pam_job.so
common-session.ccm does not include the pam_job entry:
session optional pam_mkhomedir.so skel=/software/skel
session required pam_limits.so
session required pam_unix2.so
session optional pam_ldap.so

For the procedure to disable CSA for the CNOS class view, see Workload
Management and Application Placement for the Cray Linux Environment.

For additional information about setting up job accounting on your system, read the
INSTALL file that is included in the job RPM.

For more information about editing the shared root image of the pam configuration
files using the xtopview utility, see Managing System Configuration with the
xtopview Tool on page 135 or the xtopview(8) man page.

9.4 Creating Accounting cron Jobs
CSA depends on your system having a persistent /var file system for the shared
root. For CSA to run successfully, you must establish the following cron jobs.

The normal order for the cron jobs is: csanodeacct, csarun, and then
csaperiod (if necessary).

304 S–2393–5101

Using Comprehensive System Accounting [9]

9.4.1 csanodeacct cron Job for Login Nodes

On Cray system compute nodes, when an application terminates, the Application
Launch and Placement Scheduler (ALPS) initiates the CSA software that moves
the local node accounting file records to a node-specific directory on the common
file system (Lustre). On login nodes, this does not happen, and accounting records
continue to accumulate indefinitely until the csanodeacct script is invoked to
move the data to the common file system. Therefore, you need to periodically run a
cron job on each login node to make sure that the local accounting files are moved
as needed. This cron job must be owned by root.

Example 106. Running a csanodeacct cron job on each login node to move
local accounting files

The following example shows moving accounting files from the local file system
to the common file system on an hourly basis at 10 minutes before the hour. This
crontab must be executed for each login node:

50 * * * * /opt/cray/csa/default/sbin/csanodeacct

9.4.2 csarun cron Job

You normally execute the csarun script at defined intervals to generate a set of
system accounting reports.

Example 107. Executing the csarun script

To run csarun once per day at one minute before midnight, use a crontab entry
of the following form:

59 23 * * * /opt/cray/csa/default/sbin/csarun

Note: This crontab must be executed from only one login node since it executes
the csanodemerg script that merges all of the local node accounting files into
a single system wide accounting file.

9.4.3 csaperiod cron Job

You can invoke the csaperiod script to run periodic accounting at different
intervals than the regular system accounting interval.

Example 108. Running periodic accounting at different intervals than the regular
system accounting interval

To run csaperiod once a week on Sunday at 5 minutes after midnight, use a
crontab entry of the following form:

5 0 * * 0 /opt/cray/csa/default/sbin/csaperiod

Note: This crontab must be executed from only one login node since it executes
the csanodemerg script that merges all of the local node accounting files into
a single system-wide accounting file.

S–2393–5101 305

Managing System Software for the Cray® Linux Environment

9.5 Enabling CSA
Using the xtopview command on the boot node is the only method to configure,
enable, or disable services on the shared-root file system. You cannot configure,
enable, or disable services on the login node itself. If your site has configured a
login class for your system, invoke the following command sequence from the
boot node as root:

boot# xtopview -x /etc/opt/cray/sdb/node_classes -c login
class/login:/# chkconfig job on
class/login:/# chkconfig csa on
class/login/# xtspec -c login /etc/init.d/job
class/login/# xtspec -c login /etc/init.d/csa
class/login:/# exit

On the subsequent system boot, this starts up the specified services on all nodes of
the login class.

Note: If your site has not configured a login class, you must enable CSA for the
individual login nodes using the xtopview -n [nid#] syntax rather than the
xtopview -c login syntax shown. You must repeat the process for each login
node. See the xtopview(8) man page for complete command option information.

9.6 Using LDAP with CSA
The projdb command and the -l option on the account command are not
supported with customer-provided account validation.

The following Cray supplied library functions do not support this
feature: db_add_project, db_add_user, db_get_proj_acct,
db_get_proj_name, db_get_user_accts, db_has_table,
db_print_table, db_truncate_table, and db_validate_acct.

For a description of the /etc/opt/cray/projdb/projdb.conf file and
additional information on using a customer-supplied database, see the projdb(8)
and intro_csa(8) man pages.

306 S–2393–5101

Dynamic Shared Objects and Cluster
Compatibility Mode in CLE [10]

10.1 Configuring the Compute Node Root Runtime Environment
(CNRTE) Using CLEinstall

Users can link and load dynamic shared objects in their applications by using the
compute node root runtime environment (CNRTE) in the Cray Linux Environment
(CLE). CLE includes software that enables compiling with dynamic libraries,
using an alternate to the initramfs file system on the CNL compute nodes,
called the compute node root. The compute node root is essentially the read-only
DVS-projected shared root file system. This supports the ability to run a limited set of
dynamically linked binaries on compute nodes.

The main benefit of this feature is expanded use of programs and libraries that require
shared libraries on Linux cluster systems. If an independent software vendor (ISV)
program ships with compiled binaries and dynamic libraries, you can also take
advantage of this feature. Users are able to effectively reduce memory and executable
footprint when shared objects, called multiple times, use the same segment of
memory address space. Users can create applications that no longer need recompiling
when libraries change.

Administrators enable this option at install time by modifying parameters in the
CLEinstall.conf file.

For additional information, see Installing and Configuring Cray Linux Environment
(CLE) Software and Workload Management and Application Placement for the Cray
Linux Environment.

CNRTE is the framework used to allow compute node access to dynamic shared
objects and libraries. Configuring and installing the compute node root runtime
environment involves setting up the shared root as a DVS-projected file system. This
process entails configuring DVS server nodes and updating the compute node boot
images to enable them as clients.

To configure the compute node root runtime environment for CLE, do the following:

1. Determine which service or compute nodes will be the compute node root
servers.

S–2393–5101 307

Managing System Software for the Cray® Linux Environment

There are essentially two classes of nodes in a Cray system: service or compute.
Service nodes have connectivity to external file systems and networks, access to
the shared root of the boot node, and a full set of Linux services. Compute nodes
have reduced services and a lightweight kernel to allow a maximized utilization
of computational resources. Some services do not require external connectivity
but are still desirable. There is also a practical limit to the number of available
service nodes for each site. CLE allows you to run the service node image on a
node otherwise considered a compute node to act as an internal DVS server of
the Cray system shared root.

Note: Any compute nodes you choose here will no longer be a part of the
available compute node pool. An allocation mode of other will be assigned
to these compute nodes in the service database (SDB). These nodes will no
longer belong to the group of batch and interactive nodes in the SDB and they
will be unavailable to ALPS.

!
Caution: Do not place DVS servers on the same node as a Lustre (Object
Storage, Metadata or Management) server. Doing so can cause load
oversubscription on the node and reduce performance.

If the /etc files are specialized with a cnos class, the cnos class /etc files
will be mounted on top of the projected shared root content on the compute
nodes. This class specialization allows the compute nodes to have access to
a different set of /etc files that exist on the DVS servers. Otherwise, the
compute nodes will use the set of /etc files that are specific to their DVS
server and that are contained in the shared root of the DVS server projects.

2. When editing the CLEinstall.conf file and running the CLEinstall
program, modify the parameters specific to shared object support according to
your site-specific configuration.

When you set the following parameters in the CLEinstall.conf file,
the CLEinstall program will automatically configure your system for the
compute node root runtime environment.

DSL=yes This variable enables dynamic shared objects and libraries for
CLE. The default is no.

Note: Setting this option to yes will automatically enable
DVS.

DSL_nodes=17 20

The decimal NIDs of the nodes that will act as compute node
root servers. These nodes can be a combination of service or
compute nodes. Each NID is separated by a space.

308 S–2393–5101

Dynamic Shared Objects and Cluster Compatibility Mode in CLE [10]

DSL_mountpoint=/dsl

This path is the DVS mount point on the compute nodes; it is the
projection of the shared root file system.

DSL_attrcache_timeout=14400

This value is the attribute cache time out for compute node root
servers. The value represents the number of seconds before DVS
attributes are considered invalid and they are retrieved from the
server again.

3. Follow the appropriate procedures in Installing and Configuring Cray Linux
Environment (CLE) Software to complete the installation.

The /etc/opt/cray/cnrte/roots.conf file contains site-specific values for
custom root file systems. To specify a different pathname for roots.conf edit the
configuration file /etc/sysconfig/xt and change the value for the variable,
CRAY_ROOTFS_CONF. In the roots.conf file, the system default compute
node root used is specified by the symbolic name DEFAULT. If no default value is
specified, / will be assumed. In the following example segment of roots.conf,
the default case uses /dsl as the reference root file system:

DEFAULT=/dsl
INITRAMFS=/
DSL=/dsl

Users can override the system default compute node root value by setting the
CRAY_ROOTFS environment variable to a value from the roots.conf file. This
changes the compute node root used for launching jobs. For example, to override the
use of /dsl set CRAY_ROOTFS to INITRAMFS.

An administrator can modify the contents of this file to restrict user access. For
example, if the administrator only wants to allow applications to launch using the
compute node root, the roots.conf file would read like the following:

% cat /etc/opt/cray/cnrte/roots.conf
DEFAULT=/dsl

10.2 Configuring Cluster Compatibility Mode
A Cray XE series system is not a cluster but a massive parallel processing (MPP)
computer. An MPP is simply one computer with many networked processors used
for distributed computation, and, in the case of Cray XE architectures, a high-speed
communications processor that facilitates optimal bandwidth and memory operations
between those processors. When operating as an MPP machine, the Cray compute
node kernel (Cray CNL) typically does not have a full set of the Linux services
available that are used in cluster ISV applications.

S–2393–5101 309

Managing System Software for the Cray® Linux Environment

Cluster Compatibility Mode (CCM) is a software solution that provides the services
needed to run most cluster-based independent software vendor (ISV) applications
out-of-the-box. CCM supports ISV applications running in four simultaneous cluster
jobs on up to 256 CNL compute nodes per job instance. It is built on top of the
Compute Node Root Runtime Environment (CNRTE), the infrastructure used to
provide dynamic library support in Cray systems.

CCM is tightly coupled to the workload management system. It enables users to
execute cluster applications alongside workload-managed jobs running in a traditional
MPP batch or interactive queue. Essentially, CCM uses the batch system to logically
designate part of the Cray system as an emulated cluster for the duration of the job as
shown in Figure 5 and Figure 6.

Figure 5. Cray System Job Distribution Cross-section

ccm_queue workq

Service Nodes
Free Compute Nodes
Traditional Batch Job
Cluster Compatibility Mode
Application

Cluster Compatibility Mode
batch queue

MPP job batch queue

310 S–2393–5101

Dynamic Shared Objects and Cluster Compatibility Mode in CLE [10]

Figure 6. CCM Job Flow Diagram

MPP/workq

qsub -V -I -q ccm_queue -lmppwidth=1

ccmrun -n1 app1

MPP/workq

"Application 119003 2 resources: utime ~985s,stime ~13s"

Free MPP compute nodesFree MPP compute nodesNodes are provisioned and
placed in ccm_queue using
qsub or bsub

User runs application using
ccmrun with a batch
script or interactively

Application terminates
and CCM processes
cleanup

Cluster job nodes are
returned as free MPP
compute nodes

Cluster job nodes are
returned as free MPP
compute nodes

bsub -V -Is -n1 -q ccm_queue

10.2.1 Preconditions

• Dynamic library support is installed.

• (Optional) RSIP must be installed if you have applications that need access to a
license server; see Installing and Configuring Cray Linux Environment (CLE)
Software.

• PBS 10.2RC2 (Emerald), LSF 8.0, or
Torque-2.4.1b1-snap.200908271407 or later versions are installed.

S–2393–5101 311

Managing System Software for the Cray® Linux Environment

10.2.2 Configuration Options

The following are exclusively post-install options included in
/etc/opt/cray/ccm/ccm.conf:

CCM_DEBUG=no

Setting this option to yes enables debug logging for
CCM. These logs will be stored on the PBS MOM node
in/var/log/crayccm. Cray recommends the site setting this
option to yes.

CCM_RESOURCES="ccm ccm2"

This option indicates that the administrator has configured a custom
application resource that can be allocated and used for a job. Users
requesting a job will consume one of the pool of available resources
listed here. The job submission is checked against the list provided
when making a determination whether the job is a CCM targeted job.

Note: Only one of CCM_RESOURCES or CCM_QUEUES is
required.

To configure yp, /etc/defaultdomain and /etc/yp.conf must be properly
configured on the compute node specialized view. Cray recommends that you use the
cnos class within xtopview to set up this specialized view.

Procedure 77. Using DVS to mount home directories on the compute nodes
for CCM

For each DVS server node you have configured, mount the path to the user home
directories. Typically, these will be provided from a location external to the Cray
system.

1. Specialize and add a line to the /etc/fstab file on the DVS server by using
xtopview in the node view. For example, if your DVS server is c0-0c0s2n3
(node 27 on a Cray XE system), type the following:

boot:~ # xtopview -m "mounting home dirs" -n 27
node/27:/ # xtspec -n 27 /etc/fstab
node/27:/ # vi /etc/fstab
nfs_home_server:/home /home nfs tcp,rw 0 0
node/27:/ # exit

2. Log into each DVS server and mount the file system:

boot:~ # ssh nid00027
nid00027:~ # mount /home
nid00027:~ # exit

312 S–2393–5101

Dynamic Shared Objects and Cluster Compatibility Mode in CLE [10]

3. To allow the compute nodes to mount their DVS partitions, add an entry in the
/etc/fstab file in the compute image for each DVS file system. For example:

smw:~ # vi /opt/xt-images/templates/default/etc/fstab
/home /home dvs path=/home,nodename=c0-0c0s2n3

4. For each DVS mount in the /etc/fstab file, create a mount point in the
compute image.

smw:~ # mkdir -p /opt/xt-images/templates/default/home

5. Update the boot image to include these changes; follow the steps in Procedure
2 on page 66.

Note: You can defer this step and update the boot image once before you finish
booting the system.

Procedure 78. Modifying CCM and Platform-MPI system configurations

1. If you wish to enable additional features such as debugging and Linux NIS
(Network Information Service) support, edit the CCM configuration file by using
xtopview in the default view.

boot:~ # xtopview -m "configuring ccm.conf"
default/:/ # vi /etc/opt/cray/ccm/ccm.conf

If you wish to configure additional CCM debugging, set CCM_DEBUG=yes.

If you wish to enable NIS support, set CCM_ENABLENIS=yes.

2. (Optional) You may have a site configuration where the paths for the qstat
command is not at a standard location. Change the values in the configuration
file for CRAY_QSTAT_PATH and CRAY_BATCH_VAR accordingly for your
site configuration.

3. Save and close ccm.conf.

4. Exit xtopview.

default/:/ # exit
boot:~ #

Important: If your applications will use Platform-MPI (previously known as
HP-MPI), Cray recommends that users populate their ~/.hpmpi.conf (or
~/.pmpi.conf) file with these values.

MPI_REMSH=ssh
MPIRUN_OPTIONS="-cpu_bind=MAP_CPU:0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,\
22,23,24,25,26,27,28,29,30,31"

Procedure 79. Setting up files for the cnos class

The cnos compute nodes that have access to the shared root through CNRTE will
have a specialized class of its own /etc files. Login files and all /etc files should
be migrated to the cnos class in order for CCM to work.

S–2393–5101 313

Managing System Software for the Cray® Linux Environment

1. Use xtopview to access the cnos class specialized files:

boot:~# xtopview -m "CCM cnos setup" -c cnos

Note: If the SDB has not been started, use the -x
/etc/opt/cray/sdb/node_classes option to specify node/class
relationships.

2. To add a file or modify a file, edit the file and then specialize it for the cnos
class.

class/cnos:/# vi /etc/file
class/cnos:/# xtspec -c cnos /etc/file

Repeat the above steps for each new file that you want to add or modify for the
compute nodes.

3. Exit xtopview.

class/cnos:/# exit

Note: You are prompted to type c and enter a brief comment describing the
changes you made. To complete your comment, type Ctrl-d or a period
on a line by itself. Do this each time you exit xtopview to log a record of
revisions into a version control system.

Procedure 80. Linking the CCM prologue/epilogue scripts for use with PBS and
Moab TORQUE on login nodes

Prerequisites: This procedure requires that you have already installed a workload
management system such as PBS or Moab TORQUE.

Add a line to reference to append the CCM prologue and epilogue scripts to the end
of the existing batch prologue and epilogue. The PBS batch prologue is configured
on all PBS MOM nodes in /var/spool/PBS/mom_priv/prologue. The
Moab TORQUE batch prologue is configured on all TORQUE MOM nodes in
/var/spool/torque/mom_priv/prologue.

Note: This procedure assumes that you are using /bin/bash as your shell, but
this can be modified appropriately for others.

1. Add the following lines to prologue:

#!/bin/bash
ccm_dir=/opt/cray/ccm/default/etc

if [-x $ccm_dir/cray-ccm-prologue] ; then
$ccm_dir/cray-ccm-prologue $1 $2 $3

fi

314 S–2393–5101

Dynamic Shared Objects and Cluster Compatibility Mode in CLE [10]

2. Add the following lines to epilogue:

#!/bin/bash
ccm_dir=/opt/cray/ccm/default/etc

if [-f $ccm_dir/cray-ccm-epilogue] ; then
$ccm_dir/cray-ccm-epilogue $1 $2 $3 $4 $5 $6 $7 $8 $9

fi

3. Set the executable bit for prologue and epilogue if not set:

system :/var/spool/PBS/mom_priv # chmod a+x prologue epilogue

4. Change the default batch time-out value. Cray recommends
changing this to 120 seconds. This allows the system enough time
to startup and shutdown all infrastructure on the nodes associated
with the CCM job. To change the batch time out, append the
following line to /var/spool/PBS/mom_priv/config or
/var/spool/torque/mom_priv/config:

$prologalarm 120

Procedure 81. Using qmgr to create a general CCM queue and queues for
separate ISV applications

1. Set up a general CCM queue by issuing the following qmgr commands on the
PBS server node:

module load pbs
qmgr
Qmgr: create queue ccm_queue
Qmgr: set queue ccm_queue queue_type = Execution
Qmgr: set queue ccm_queue resources_max.mpparch = XT
Qmgr: set queue ccm_queue resources_min.mpparch = XT
Qmgr: set queue ccm_queue resources_min.mppwidth = 1
Qmgr: set queue ccm_queue resources_default.mpparch = XT
Qmgr: set queue ccm_queue resources_default.mppwidth = 1
Qmgr: set queue ccm_queue enabled = True
Qmgr: set queue ccm_queue started = True
Qmgr: exit

For Moab TORQUE, add this command while creating the queue:

set server query_other_jobs = True

2. Repeat step 1 for additional application-specific queues, if desired.

Procedure 82. Configuring Platform LSF for use with CCM

Prerequisites: This procedure requires that you have already installed the Platform
LSF workload management system.

1. Determine the path to the directory on your system that contains
the files lsb.queues and lsb.params. This path is

S–2393–5101 315

Managing System Software for the Cray® Linux Environment

${LSF_TOP}/conf/lsbatch/${LSF_CLUSTER_NAME}/configdir,
where LSF_TOP and LSF_CLUSTER_NAME are themselves paths that were
defined at install time.

Example 109. Location of queue configuration files

If

LSF_TOP=/opt/xt-lsfhpc

and

LSF_CLUSTER_NAME=nid00196

the full path to the directory containing the queue configuration files would be:

/opt/xt-lsfhpc/conf/lsbatch/nid00196/configdir.

2. Create a ccm_queue for Platform LSF. Refer to Platform documentation for
information on managing LSF queues.

3. Enable PRE_EXEC and POST_EXEC scripts for the queue set up in Procedure 81
on page 315 by setting the following parameters in lsb.queues:

QUEUE_NAME = ccm_queue
PRE_EXEC = /opt/cray/ccm/default/etc/lsf_ccm_pre
POST_EXEC = /opt/cray/ccm/default/etc/lsf_ccm_post
LOCAL_MAX_PREEXEC_RETRY=1
DESCRIPTION=ccm_queue

To enable LSF using an application profile rather than a queue, set the following
in lsb.applications:

Begin Application
NAME=ccm
DESCRIPTION=Sets up an application profile for CCM
PRE_EXEC=/opt/cray/ccm/default/etc/lsf_ccm_pre
POST_EXEC=/opt/cray/ccm/default/etc/lsf_ccm_post
LOCAL_MAX_PREEXEC_RETRY=1

For more information on the lsb.applications file, see the Platform LSF
Configuration Reference manual.

4. In the file lsb.params set the JOB_INCLUDE_POSTPROC to ensure that the
job reservation remains in a running state until execution of the POST_EXEC
script completes and all necessary clean up has finished:

JOB_INCLUDE_POSTPROC=Y

5. On the boot node shared root file system, update /etc/lsf.sudoers using
xtopview:

boot:~ # xtopview
default/:/ # vi /etc/lsf.sudoers

Make the root user the LSB_PRE_POST_EXEC_USER:

LSB_PRE_POST_EXEC_USER=root

316 S–2393–5101

Dynamic Shared Objects and Cluster Compatibility Mode in CLE [10]

6. Exit the editor and change the default permissions for /etc/lsf.sudoers so
that the batch system infrastructure can properly communicate with compute
nodes:

default/:/ # chmod 600 /etc/lsf.sudoer

7. Exit xtopview.

Once you have completed system configuration and started the system compute
nodes, you should verify that write permissions are correct. You can accomplish this
by using touch to create a dummy file within CCM:

% ccmrun touch foo

If foo is created in the user directory then the write permissions are set correctly.

Procedure 83. Creating custom resources with PBS

1. Edit the /var/spool/PBS/server_priv/resourcedef file on the SDB
node.

2. Add the following line:

ccm type=boolean

3. Invoke one of the following commands to submit your custom resource.

• Batch:

qsub -lmppwidth=width -lccm=1 job_script.pbs

• Interactive:

qsub -I -lmppwidth=width -lccm=1 ./job_script.pbs

Procedure 84. Creating custom resources with Moab

Moab custom resources are managed as generic global node resources. These can
be configured in the moab.cfg file in the installed Moab spool directory (e.g.,
/var/spool/moab/moab.cfg.

1. Add the following entry to moab.cfg to allow up to 1024 ccm instances on
the system at one time:

NODECFG[GLOBAL] GRES=ccm:1024

2. To consume this resource at runtime, invoke the following command:

qsub -I -lmppwidth=1 -lgres=ccm

The result of this submit is that the following information is set for the job:

Resource_List.gres = ccm

S–2393–5101 317

Managing System Software for the Cray® Linux Environment

318 S–2393–5101

Using InfiniBand and OpenFabrics
Interconnect Drivers [11]

InfiniBand (IB) and OpenFabrics remote direct memory access (RDMA) is supported
on service nodes for Cray systems running the Cray Linux Environment (CLE)
operating system.

No separate installation is required. The kernel-space libraries and drivers are built
against Cray's kernel. OFED and InfiniBand RPMs are included in the CLE release
and installed by default. However, OFED will not run on your Cray system until
you configure the I/O nodes to use IB.

To configure IB and OFED, see the procedures provided in this chapter; to configure
IB and OFED during installation or upgrade of your CLE software, see Installing and
Configuring Cray Linux Environment (CLE) Software.

11.1 InfiniBand and OFED Overview
Cray supports InfiniBand as an I/O interconnect. IB enables efficient zero-copy,
low-latency RDMA transfers between network peers. As a result, IB gives Cray
systems the most efficient transfer mechanism from the high speed network (HSN)
to external I/O devices.

CLE includes a subset of the OpenFabrics Enterprise Distribution (OFED) to support
the use of InfiniBand on Cray I/O nodes. OFED is the software stack on the host
that coordinates user-space and kernel-space access to the IB hardware. IB support
is restricted to I/O service nodes that are equipped with PCI Express (PCIe) cards
for network connectivity.

IB can be used on Lustre router nodes as a network interconnect between the Cray
system and external Lustre servers.

The OFED software stack consists of many different components. These components
can be categorized as kernel modules (drivers) and user/system libraries and
utilities, commands and daemons for InfiniBand administration, configuration, and
diagnostics; Cray maintains the kernel modules so that they are compatible with CLE.

S–2393–5101 319

Managing System Software for the Cray® Linux Environment

Figure 7. The OFED Stack (source: OpenFabrics Alliance)

InfiniBand

iWARP

Key Apps &
Access
Methods
for using
OF Stack

Common

RDMA NICR-NIC

Host Channel
Adapter

HCA

User Direct Access
Programming Lib

UDAPL

Reliable Datagram
Service

RDS

iSCSI RDMA
Protocol (Initiator)

iSER

SCSI RDMA
Protocol (Initiator)

SRP

Sockets Direct
Protocol

SDP

IP over InfiniBandIPoIB

Performance
Manager Agent

PMA

Subnet Manager
Agent

SMA

Management
Datagram

MAD

Subnet
Administrator

SA

InfiniBand HCAInfiniBand HCA iWARP RiWARP R--NICNIC

Hardware
Specific Driver

Hardware Specific
Driver

Connection
ManagerMAD

InfiniBand Verbs / API

SA
Client

Connection
Manager

Connection Manager
Abstraction (CMA)

User Level
Verbs / API

SDPIPoIB SRP iSER RDS

UDAPL

SDP
Library

User Level
MAD API

Open
SM

Diag
Tools

Hardware

Provider

Mid-Layer

Upper
Layer
Protocol

User
APIs

Kernel Space

User Space

NFS-RDMA
RPC

Cluster
File Sys

Application
Level

SMA

R-NIC Driver API

Clustered
DB Access

(Oracle
10g RAC)

Sockets
Based
Access

(IBM DB2)

Various
MPIs

Access to
File

Systems

Block
Storage
Access

IP Based
App

Access

Hardware
Specific Driver

Hardware Specific
Driver

Connection
ManagerMAD

InfiniBand Verbs / API

SA
Client

Connection
Manager

Connection Manager
Abstraction (CMA)

User Level
Verbs / API

SDPIPoIB SRP iSER RDS

UDAPL

SDP
Library

User Level
MAD API

Open
SM

Diag
Tools

Cluster
File Sys

SMA

R-NIC Driver API

Clustered
DB Access

(Oracle
10g RAC)

Sockets
Based
Access

(IBM DB2)

Various
MPIs

Access to
File

Systems

Block
Storage
Access

IP Based
App

Access

NFS-RDMA
 RPC

InfiniBand HCA iWARP R-NIC

11.2 Using InfiniBand
InfiniBand is a payload-agnostic transport. It can move small messages or large
blocks efficiently between network endpoints. The following examples demonstrate
how Cray uses InfiniBand and the OFED stack to support block I/O, file I/O, and
standard network inter-process communication.

11.2.1 Storage Area Networking

InfiniBand can transport block I/O requests to external storage targets. ANSI T10's
SCSI RDMA Protocol (SRP) is currently the only SCSI-transporting protocol
supported on Cray systems with InfiniBand. Figure 8 shows SRP on InfiniBand
connecting the Cray to an external RAID array. The OFED stack is shown in the
storage array for clarity; it is provided by your site-specific third party storage vendor.

320 S–2393–5101

Using InfiniBand and OpenFabrics Interconnect Drivers [11]

Figure 8. Cray System Connected to Storage Using SRP

RAID StorageCompute Node

User Application

VFS

Lustre Client
Lustre Server ldiskfs

Block I/O
SRP

OFED RDMA
IB Driver

IB HCA

I/O NodeI/O Node

Cray HSN

IB Driver

SRP

RAID

OFED RDMA
IB Driver

IB HCA

Linux Lustre Cray OFED Vendor

InfiniBand

Cray XE System

gni LNDgni LND

Gemini DriverGemini Driver

Gemini ASIC Gemini ASIC

11.2.2 Lustre Routing

Cray uses InfiniBand on the service nodes to connect Cray compute nodes to
Cray Lustre File System (CLFS) servers, as shown in Figure 9. In this configuration,
the Cray service node is no longer a Lustre server. Instead, it runs a Lustre router
provided by the LNET layer. The router moves LNET messages between the Cray
HSN and the external IB network, which transports file-level I/O requests between the
clients on the Cray HSN and the servers over the IB fabric. Please speak with your
Cray service representative regarding an CLFS solution for your Cray system.

Figure 9. Cray Service Node Acting as an InfiniBand Lustre Router

External Lustre ServerCompute Node

User Application

VFS

Lustre Client

IB HCA

I/O NodeI/O Node

Cray HSN

Linux Lustre Cray OFED

InfiniBand

Lustre Server

IB HCA HBA

OFED RDMA

IB Driver

Lustre Router

o2ib LND Block I/O

HBA Driver
OFED RDMA

IB Driver

o2ib LND

ldiskfs

SAN

Cray XE System

gni LND gni LND

Gemini DriverGemini Driver

Gemini ASICGemini ASIC

S–2393–5101 321

Managing System Software for the Cray® Linux Environment

11.2.3 IP Connectivity

InfiniBand can also carry socket-based inter-process traffic typical of commodity
clusters and TCP/IP networking. InfiniBand supports the IP over IB (IPoIB) protocol.
Since IB plugs-in below the socket interface, neither the application nor the service
needs to be recompiled to communicate over an InfiniBand network. Both protocols
are diagrammed on a service node in Figure 10.

Figure 10. Cray Service Node in IP over IB Configuration

TCP Host

IB HCA

I/O NodeI/O Node

Cray HSN

Linux Cray OFED

InfiniBand

IB HCA

IB Driver
OFED RDMA

Application

IPoIB

sockets

TCP/IP

IB Driver
OFED RDMA

IPoIB

sockets

TCP/IP

Service

Cray XE System

Gemini ASIC

11.3 Configuration
In addition to the OFED RDMA stack, Cray supports three upper layer protocols
(ULPs) on its service nodes as shown in Table 10. Because all ULPs use the OFED
stack, the InfiniBand Configuration must be followed for all IB service nodes.

Note: It is only necessary to configure the specific ULPs that you intend to use on
the service node.

For example, a Lustre server with an IB direct-attached storage array uses the SCSI
RDMA Protocol (SRP), not the LNET Router. On the other hand, if the Lustre
servers are external to the Cray system, the service node uses the LNET router
instead of SRP. IP over InfiniBand (IPoIB) is used to connect non-RDMA socket
applications across the IB network.

322 S–2393–5101

Using InfiniBand and OpenFabrics Interconnect Drivers [11]

Table 10. Upper Layer InfiniBand I/O Protocols for Cray Systems

Upper Layer Protocol Purpose

IP over IB (IPoIB) Provides IP connectivity between hosts over
IB.

Lustre (OFED LND) Base driver for Lustre over IB. On service
nodes, this protocol enables efficient routing
of LNET messages from Lustre clients on the
Cray HSN to external IB-connected Lustre
servers. The name of the LND is o2iblnd.

SCSI RDMA Protocol (SRP) T10 standard for mapping SCSI over IB and
other RDMA fabrics. Supported by DDN and
LSI for their IB-based storage controllers.

11.4 InfiniBand Configuration
Procedure 85. Configuring InfiniBand on service nodes

InfiniBand includes the core OpenFabrics stack and a number of upper layer
protocols (ULPs) that use this stack. Configure InfiniBand by modifying
/etc/sysconfig/infiniband for each IB service node.

1. Use the xtopview command to access service nodes with IB HCAs.

For example, if the service nodes with IB HCAs are part of a node class called
lnet, type the following command:

boot:~ # xtopview -x /etc/opt/cray/sdb/node_classes -c lnet

Or

Access each IB service node by specifying either a node ID or physical ID. For
example, access node 27 by typing the following:

boot:~ # xtopview -x /etc/opt/cray/sdb/node_classes -n 27

2. Specialize the /etc/sysconfig/infiniband file:

node/27:/ # xtspec -n 27 /etc/sysconfig/infiniband

3. Add IB services to the service nodes by using standard Linux mechanisms, such
as executing the chkconfig command while in the xtopview utility or
executing /etc/init.d/openibd start | stop | restart (which
starts or stops the InfiniBand services immediately). Use the chkconfig
command to ensure that IB services are started at system boot.

node/27:/ # chkconfig --force openibd on

S–2393–5101 323

Managing System Software for the Cray® Linux Environment

4. While in the xtopview session, edit /etc/sysconfig/infiniband and
make these changes.

node/27:/ # vi /etc/sysconfig/infiniband

a. By default, IB services do not start at system boot. Change the ONBOOT
parameter to yes to enable IB services at boot.

ONBOOT=yes

b. By default at boot time, the Internet Protocol over InfiniBand (IPoIB) driver
loads on all nodes where IB services are configured. Verify that the value for
IPOIB_LOAD is set to yes to enable IPoIB services.

IPOIB_LOAD=yes

Important: LNET routers use IPoIB to select the paths that data will
travel via RDMA.

c. The SCSI RDMA Protocol (SRP) driver loads by default on all nodes where
IB services are configured to load at boot time. If your Cray system needs
SRP services, verify that the value for SRP_LOAD is set to yes to enable
SRP.

SRP_LOAD=yes

Important: Direct-attached InfiniBand file systems require SRP; Lustre
file systems external to the Cray system do not require SRP.

5. Exit xtopview.

node/27:/ # exit
boot:~ #

Note: You are prompted to type c and enter a brief comment describing the
changes you made. To complete your comment, type Ctrl-d or a period
on a line by itself. Do this each time you exit xtopview to log a record of
revisions into an RCS system.

6. Proper IPoIB operation requires additional configuration. See Procedure 87 on
page 326.

324 S–2393–5101

Using InfiniBand and OpenFabrics Interconnect Drivers [11]

11.5 Subnet Manager (OpenSM) Configuration
InfiniBand fabrics require at least one Subnet Manager (SM) operating on each IB
subnet in order to activate its respective IB port connected to the fabric. This is one
critical difference between IB fabrics and Ethernet, where simply connecting a cable
to an Ethernet port is sufficient to get an active link. Managed IB switches typically
include an SM and, therefore, do not require any additional configuration of any of
the hosts. Unmanaged IB switches, which are considerably less expensive, do not
include a SM and, thus, at least one host connected to the switch must act as a subnet
manager. InfiniBand standards also support switchless (point-to-point) connections
as long as an SM is installed. An example of this case is when a service node is
connected to direct-attached storage through InfiniBand.

The OpenFabrics distribution includes OpenSM, an open-source IB subnet
management and subnet administration utility. Either one of the following
configuration steps is necessary if no other subnet manager is available on the
IB fabric. The subnet manager RPMs are installed in the shared root by running
CLEinstall. OpenSM can be started from the service node on a single port at boot
time or manually from the command line to load multiple instances per host.

11.5.1 Starting OpenSM at Boot Time

Procedure 86. Starting a single instance of OpenSM on a service node at boot
time

Note: This procedure assumes that the IB HCA is in node 8.

1. Use xtopview to access the service node that will host your instance of
OpenSM.

boot:~ # xtopview -x /etc/opt/cray/sdb/node_classes -n 8

2. Specialize /etc/sysconfig/opensm for the IB node.

node/8:/ # xtspec -n 8 /etc/sysconfig/opensm

3. Edit /etc/sysconfig/opensm to have OpenSM start at boot time

To start OpenSM automatically set ONBOOT=yes
ONBOOT=yes

4. Add IB services to the service nodes by using standard Linux mechanisms, such
as executing the chkconfig command while in the xtopview utility or
executing /etc/init.d/opensmd start|stop|restart|status
(which starts or stops the OpenSM service immediately). The chkconfig
command can be used to ensure that the OpenSM service is started at system
boot.

node/8:/ # /sbin/chkconfig --force opensmd on

S–2393–5101 325

Managing System Software for the Cray® Linux Environment

11.6 Internet Protocol over InfiniBand (IPoIB) Configuration
Procedure 87. Configuring IP Over InfiniBand (IPoIB) on Cray systems

1. Use xtopview to access each service node with an IB HCA by specifying either
a node ID or physical ID. For example, to access node 27, type the following:

boot:~ # xtopview -x /etc/opt/cray/sdb/node_classes -n 27

2. Specialize the /etc/sysconfig/network/ifcfg-ib0 file.

node/27:/ # xtspec -n 27 /etc/sysconfig/network/ifcfg-ib0

3. Modify the site-specific /etc/sysconfig/network/ifcfg-ib0 file on
each service node with an IB HCA.

node/27:/ # vi /etc/sysconfig/network/ifcfg-ib0

For example, to use static IP address, 172.16.0.1, change the BOOTPROTO line in
the file.

BOOTPROTO='static'

Add the following lines to the file.

IPADDR='172.16.0.1'
NETMASK='255.128.0.0'

To configure the interface at system boot, change the STARTMODE line in the file.

STARTMODE='onboot'

4. (Optional) If you would like to configure IPoIB for another IB
interface connected to this node, repeat step 2 and step 3 for
/etc/sysconfig/network/ifcfg-ibn.

Note: For LNET traffic, each IB interface should be assigned a unique IP
address from the subnet that it will operate on. For TCP/IP traffic, multiple
IB interfaces on a node must be assigned unique IP addresses from different
subnets.

11.7 Configuring SCSI RDMA Protocol (SRP) on Cray Systems
Procedure 88. Configuring and enabling SRP on Cray Systems

1. Use the xtopview command to access service nodes with IB HCAs.

For example, if the service nodes with IB HCAs are part of a node class called
ib, type the following command:

boot:~ # xtopview -x /etc/opt/cray/sdb/node_classes -c ib

2. Edit /etc/sysconfig/infiniband

ib/:/ # vi /etc/sysconfig/infiniband

326 S–2393–5101

Using InfiniBand and OpenFabrics Interconnect Drivers [11]

and change the value of SRP_DAEMON_ENABLE to yes:

SRP_DAEMON_ENABLE=yes

3. Edit srp_daemon.conf to increase the maximum sector size for SRP.

ib/:/ # vi /etc/srp_daemon.conf

a max_sect=8192

4. Edit /etc/modprobe.conf.local to increase the maximum number of
gather-scatter entries per SRP I/O transaction.

ib/:/ # vi /etc/modprobe.conf.local

options ib_srp srp_sg_tablesize=255

5. Exit from xtopview.

ib/:/ # exit
boot:~ #

11.8 Lustre Networking (LNET) Router
LNET is the Lustre networking layer. LNET isolates the file system code from the
Lustre Networking Drivers (LNDs), which provide an interface to the underlying
network transport. For more information on Lustre networking please see the Lustre
documentation at http://wiki.whamcloud.com/display/PUB/Documentation.

Although LNET is automatically loaded with the Lustre servers and clients, it can be
launched by itself to create a standalone router between networks instantiated by
LNDs. LNET routing is most efficient when the underlying transports are capable
of remote direct memory access (RDMA). Cray Lustre currently supports LNDs
for a number of RDMA transports, including gnilnd, which is used for Cray
systems using the Gemini or Aries interconnects, and o2iblnd, which is used
for the OpenFabrics InfiniBand stack. Cray builds and distributes the OFED LND
(o2iblnd) and gnilnd as part of its Lustre distribution.

Note: LNET routing is also available over GigE and 10GigE networks with
socklnd, although this configuration does not support RDMA.

Routing Lustre involves configuring router nodes to route traffic between Lustre
servers and Lustre clients which are on different networks. Routing Lustre requires
that three types of nodes be configured: the router, the client, and the InfiniBand
server. LNET assigns node IDs to each node on the network. While gnilnd uses
node IDs (for example, nnn@gni) to enumerate ports on the Cray side, o2iblnd
uses InfiniBand IP addresses (for example, nn.nn.nnn.nnn@o2ib) for hosts. As
a result, IPoIB must be configured on each IB port. See Internet Protocol over
InfiniBand (IPoIB) Configuration on page 326 for more information. For the rest of
this discussion, assume that LNET routers are being created on two Cray service

S–2393–5101 327

http://wiki.whamcloud.com/display/PUB/Documentation

Managing System Software for the Cray® Linux Environment

nodes, both of which have a single IB port connected to a switched InfiniBand fabric.
The network configuration is shown in Internet Protocol over InfiniBand (IPoIB)
Configuration on page 326.

Table 11. LNET Network Address Configuration for Cray Systems

gni Address Network Component InfiniBand Address

27 Router 1 10.10.10.28

31 Router 2 10.10.10.32

10.128.0.255 IP Subnet 10.10.10.255

255.255.255.0 Subnet Mask 255.255.255.0

11.8.1 Configuring the LNET Router

Procedure 89. Configuring the LNET routers

The following description covers the configuration of the LNET router nodes.

1. Use xtopview to access the default view of the shared root.

boot:~ # xtopview -x /etc/opt/cray/sdb/node_classes

2. Create your /etc/init.d/lnet router controller (RC) script. An RC script
is necessary to start LNET in the absence of any Lustre file services. A sample
RC script is available in Appendix H, Sample LNET Router Controller Script
on page 401.

Note: Cray does not provide an RC script with its release packages. You must
verify that this script will work for your configuration or contact your Cray
service representative for more information.

a. Create the /etc/init.d/lnet file in the default view.

default/:/ # vi /etc/init.d/lnet

b. Copy the sample script into your new file and write it.

3. Use chkconfig to enable LNET since there are no mounts or Lustre server
activity to load the LNET module implicitly.

default/:/ # /sbin/chkconfig lnet on

328 S–2393–5101

Using InfiniBand and OpenFabrics Interconnect Drivers [11]

4. Add the following LNET directives to the Cray shared root in
/etc/modprobe.conf.local.

options lnet ip2nets="gni0 10.128.0.*; o2ib 10.10.10.*"
options lnet routes="gni0 10.10.10.[28,32]@o2ib; o2ib [27,31]@gni0"

Note: Larger system configuration LNET directives may exceed the 1024
character limit of modprobe.conf entries. Procedure 90 on page 329 allows
administrators to source ip2nets and routes information from files to
work around this limitation.

o2ib is the LNET name for the OFED LND and gni is the LNET name for the
Cray LND. Here ip2nets is used instead of networks because it provides for
an identical modprobe.conf across all Lustre clients in the Cray system.

The ip2nets directive tells LNET to load both LNDs and associates each LND
with an IP subnet. It overrides any previous networks directive (for example,
lnet networks=gni). On service nodes without an IB adapter, the o2ib
LND does not load because there are no ports with the IP subnet used defined
in ip2nets.

Note: Each Cray system sharing an external Lustre file system must have a
unique gni identifier for the LNET options listed in this step. In this case,
the Cray system is using gni0. Other systems would use other numbers to
identify their LNET networks (such as gni1, gni2, and so on).

5. Cray recommends enabling these options to improve network resiliency. Edit
/etc/modprobe.conf.local on the Cray shared root to include:

options ko2iblnd timeout=100 peer_timeout=130
options ko2iblnd credits=2048 ntx=2048
options ko2iblnd peer_credits=126 concurrent_sends=63 peer_buffer_credits=128
options kgnilnd credits=2048 peer_health=1

options lnet check_routers_before_use=1
options lnet dead_router_check_interval=60
options lnet live_router_check_interval=60
options lnet router_ping_timeout=50
options lnet large_router_buffers=1024 small_router_buffers=16384

Note: You will need to configure these values for your specific system size.

6. Exit from xtopview.

You are prompted to add a comment about the operations you have performed.
Enter c, and then enter a brief comment about the changes you made to the file.

Procedure 90. Specifying service node LNET routes and ip2nets directives
with files

1. Enter xtopview and create the following files (if they do not already exist):

boot:~ # xtopview
default/:/ # touch /etc/lnet_ip2nets.conf
default/:/ # touch /etc/lnet_routes.conf

S–2393–5101 329

Managing System Software for the Cray® Linux Environment

2. Exit xtopview.

default/:/ # exit

3. Enter the correct view of xtopview for the service node or node class that you
wish to modify modprobe directives for and specialize the two files you created
in step 1.

boot:~ # xtopview -c login
class/login:/ # xtspec /etc/lnet_ip2nets.conf
class/login:/ # xtspec /etc/lnet_routes.conf

4. Add the following lines to /etc/lnet_ip2nets.conf (substitute your
site-specific values here).

gni0 10.128.0.*
o2ib 10.10.10.*

5. Add the following lines to /etc/lnet_routes.conf (substitute your
site-specific values here).

gni0 10.10.10.[28,32]@o2ib
o2ib [27,31]@gni0

6. Add the following LNET directives to the Cray shared root in
/etc/modprobe.conf.local.

options lnet ip2nets="/etc/lnet_ip2nets.conf"
options lnet routes="/etc/lnet_routes.conf"

7. Exit xtopview.

class/login:/ # exit

Procedure 91. Manually controlling LNET routers

• If /etc/init.d/lnet is not provided, send the following commands to each
LNET router node to control them manually:

• Startup:

modprobe lnet
lctl net up

• Shutdown:

lctl net down
lustre_rmmod

330 S–2393–5101

Using InfiniBand and OpenFabrics Interconnect Drivers [11]

11.8.2 Configuring Routes for the Lustre Server

Procedure 92. Configuring the InfiniBand Lustre Server

The Lustre servers must be configured with proper routes to allow them to reach the
Cray client nodes on the gni network. If there are multiple Cray systems involved,
each Cray must use a unique gni network identifier (for example, gni0, gni1). The
server routes configuration maps each gni network to the corresponding Cray
router nodes. Add an lnet routes directive for each Cray system. Perform these
steps on the remote host:

1. Edit /etc/modprobe.conf on the remote host to include the route to the
LNET network.

options lnet ip2nets="o2ib"
options lnet routes="gni0 10.10.10.[28,32]@o2ib"

If there are two Cray systems accessing the file system exported by these hosts,
then both Cray systems must be included in the lnet routes directive.

options lnet routes="gni0 10.10.10.[28,32]@o2ib; \
gni1 10.10.10.[71,72,73,74]@o2ib"

In this example, there are two Cray systems: gni0 with two router nodes and
gni1 with four.

2. Add the following options to /etc/modprobe.conf to improve network
resiliency :

options ko2iblnd timeout=100 peer_timeout=0 keepalive=30
options ko2iblnd credits=2048 ntx=2048
options ko2iblnd peer_credits=126 concurrent_sends=63

options lnet avoid_asym_router_failure=1
options lnet dead_router_check_interval=60
options lnet live_router_check_interval=60
options lnet router_ping_timeout=50
options lnet check_routers_before_use=1

Because Lustre is running on the external host, there is no need to start LNET
explicitly.

11.8.3 Configuring the LNET Compute Node Clients

Procedure 93. Configuring the LNET Compute Node Clients

Since compute nodes are running the Lustre client, they do not need explicit
commands to start LNET. There is, however, additional configuration required for
compute nodes to be able to access the remote Lustre servers via the LNET routers.
These changes are made to /etc/modprobe.conf for the compute node image
used in booting the system.

1. Edit /etc/modprobe.conf for the compute node boot image. The lnet

S–2393–5101 331

Managing System Software for the Cray® Linux Environment

ip2nets directive identifies the LND. If there is more than one Cray system
sharing the file system, then this identifier (gni) must be unique for each Cray
system.

options lnet ip2nets="gni0"
options lnet routes="o2ib [27,31]@gni0"

2. Add the following options to /etc/modprobe.conf to improve network
resiliency :

options lnet avoid_asym_router_failure=1
options lnet dead_router_check_interval=60
options lnet live_router_check_interval=60
options lnet router_ping_timeout=50
options lnet check_routers_before_use=1

3. (Optional) For InfiniBand-connected LNET clients (such as
Cray Development and Login (CDL) nodes), add the following
options to /etc/modprobe.conf:

options ko2iblnd timeout=100 peer_timeout=0 keepalive=30
options ko2iblnd credits=2048 ntx=2048
options ko2iblnd peer_credits=126 concurrent_sends=63

4. Modify /etc/fstab in the compute node boot image to identify the external
server. The file system is described by the LNET node ID of the MGS server (and
its failover partner if Lustre failover is configured)

10.10.10.1@o2ib:10.10.10.2@o2ib: /boss1 /mnt/boss1 lustre rw,flock,lazystatfs

Here, the fstab mount option rw gives read/write access to the client node. The
flock option is to allow Lustre's client node to have exclusive access to the
file lock, and the lazystatfs option prevents command hangs (such as df)
if one or more OSTs are unavailable.

In this example, the Lustre file system with the fsname "boss1" is provided
by the Lustre management server (MGS) on the InfiniBand fabric at IP address
10.10.10.1 (with 10.10.10.2 being the failover partner). Because both
routers have access to this subnet, the Lustre client performs a round-robin with
its requests to the routers.

5. Update the boot image to include these changes; follow the steps in Procedure
2 on page 66.

Important: Accessing any externally supplied Lustre file system requires that both
the file server hosts and the LNET routers be up and available before the clients
attempt to mount the file system. Boot time scripts in the compute node image
take care of reading fstab and running the necessary mount commands. In
production, this is the only opportunity to run Lustre mount commands because
kernel modules get deleted at the end of the boot process.

332 S–2393–5101

Using InfiniBand and OpenFabrics Interconnect Drivers [11]

11.9 Configuring Fine-grained Routing with clcvt

The clcvt command, available on the boot node and the SMW, aids in the
configuration of LNET fine-grained routing (FGR). FGR is a routing scheme that
aims to group sets of Lustre servers on the file system storage array with LNET
routers on the Cray system. This grouping maximizes file system performance on
larger systems by using a router-to-server ratio where the relative bandwidth is
roughly equal on both sides. FGR also minimizes the number of LNET network hops
(hop count) and file system network congestion by sending traffic to particular Lustre
servers over dedicated network lanes instead of the default round-robin configuration.

The clcvt command takes as input several file-system-specific files and generates
LNET kernel module configuration information that can be used to configure the
servers, routers, and clients for that file system. The utility can also create cable
maps in HTML, CSV, and human-readable formats and validate cable connection
on installed systems. For more information, such as available options and actions
for clcvt, see the clcvt(8) man page.

11.9.1 Prerequisite Files

The clcvt command requires several prerequisite files in order to compute the
ip2nets and routes information for your specific configuration. Before clcvt
can be executed for the first time, these files must be placed in an empty directory on
the boot node or SMW, depending on where you run clcvt.

S–2393–5101 333

Managing System Software for the Cray® Linux Environment

Deciding how to assign which routers to which OSSs, what FGR ratios to use, which
interface on which router to use for a LNET group, and router placement are all
things that can vary greatly from site to site. LNET configuration is determined as the
system is ordered and configured; see your Cray representative for your site-specific
values.

info.file-system-identifier

A file with global file system information for the cluster-name server
machine and each client system that will access it.

client-system.hosts

A file that maps the client system (such as the Cray mainframe) IP
addresses to unique host names, such as the boot node /etc/hosts
file. The client-system name must match one of the clients in the
info.file-system-identifier file.

client-system.ib

A file that maps the client system LNET router InfiniBand IP
addresses to system hardware cnames. The client-system name must
match one of the clients in the info.file-system-identifier file.
This file must be created by an administrator.

clustername.ib

A file that maps the Lustre server InfiniBand IP addresses to cluster
(for example, Sonexion) host names. The clustername name must
match the clustername in the info.file-system-identifier file.
This file must be created by an administrator.

client-system.rtrIm

A file that contains rtr -Im command output (executed on the
SMW) for the client-system.

11.9.1.1 info.file-system-identifier

info.file-system-identifier is a manually-created file that contains global file
system information for the Lustre server machine and each client system that will
access it. Based on the ratio of server to LNET routers in your configuration, the
[clustername] section and each [client-system] section will define which servers
and routers will belong to each InfiniBand subnet.

This file is of the form of a ini style file, and the possible keywords in the [info]
section include clustername, ssu_count, and clients.

334 S–2393–5101

Using InfiniBand and OpenFabrics Interconnect Drivers [11]

clustername defines the base name used for all file system servers. For
a Sonexion file system, as in the example below, it might be something like
snxs11029n and all server hostnames will be snxs11029nNNN, where NNN is
a three digit number starting at 000 and 001 for the primary and secondary Cray
Sonexion Management Servers (CSMS), 002 for the MGS, 003 for the MDS, 004
for the first OSS, and counting up from there for all remaining OSSs.

ssu_count defines how many SSUs make up a Sonexion file system. If this is
missing, then this is not a Sonexion file system but an CLFS installation.

clients defines a comma-separated list of mainframe names that front-end this
filesystem.

The info.file-system-identifier file also needs a [client-system] section for each
client system listed in the clients line of the [info] section to describe the
client systems and a [clustername] section to describe the Lustre server system.
Each of these sections contain a literal lnet_network_wildcard in the format
of LNET-name:IP-wildcard which instructs the LNET module to match a host's IP
address to IP-wildcard and, if it matches, instantiate LNET LNET-name on them.
Example 110 shows a sample info.file-system-identifier configuration file.

The hostname fields in the [client-system] section of this file are fully-qualified
interface specifications of the form hostname(ibn), where (ib0) is the assumed
default if not specified. Cray XC30 systems can support multiple InfiniBand
interfaces per router. Configure the second IB interface (see Procedure 87 on
page 326) and append the interface names (ibn)to the cnames for the routers. See
Example 111 for reference. You will also need to append these interface names to the
client-system.ib file. InfiniBand port assignments are shown below in Figure 11.

Figure 11. Cray XC30 InfiniBand Port Assignment

ib0 ib1

ib2 ib3

ib2 ib3

ib0 ib1

1

I/O MODULE

0

3

2

mlx4_0 Port 1 mlx4_0 Port 2 mlx4_1 Port 1 mlx4_1 Port 2

mlx4_1 Port 1 mlx4_1 Port 2 mlx4_0 Port 1 mlx4_0 Port 2

Outer Slot

Inner Slot

LEFT - LOWER SLOT

ACTIVITY
POWER

Node 2 Node 1

S–2393–5101 335

Managing System Software for the Cray® Linux Environment

Example 110. Sample info.file-system-identifier file: info.snx11029

This section describes the size of this filesystem.
[info]
clustername = snx11029n
SSU_count = 6
clients = hera

[hera]
lnet_network_wildcard = gni1:10.128.*.*

Because of our cabling assumptions and naming conventions, we only
need to know which XIO nodes are assigned to which LNETs. From that
our tool can actually generate a "cable map" for the installation folks.
o2ib6000: c0-0c2s2n0, c0-0c2s2n2 ; MGS and MDS
o2ib6002: c1-0c0s7n0, c1-0c0s7n1, c1-0c0s7n2, c1-0c0s7n3 ; OSSs 2/4/6
o2ib6003: c3-0c1s5n0, c3-0c1s5n1, c3-0c1s5n2, c3-0c1s5n3 ; OSSs 3/5/7
o2ib6004: c3-0c1s0n0, c3-0c1s0n1, c3-0c1s0n2, c3-0c1s0n3 ; OSSs 8/10/12
o2ib6005: c3-0c2s4n0, c3-0c2s4n1, c3-0c2s4n2, c3-0c2s4n3 ; OSSs 9/11/13

[snx11029n]
lnet_network_wildcard = o2ib6:10.10.100.*

o2ib6000: snx11029n002, snx11029n003 ; MGS and MDS
o2ib6002: snx11029n004, snx11029n006, snx11029n008 ; OSSs 2/4/6
o2ib6003: snx11029n005, snx11029n007, snx11029n009 ; OSSs 3/5/7
o2ib6004: snx11029n010, snx11029n012, snx11029n014 ; OSSs 8/10/12
o2ib6005: snx11029n011, snx11029n013, snx11029n015 ; OSSs 9/11/13

Example 111. Sample info.file-system-identifier file using multiple IB interfaces
per router

[info]
clustername = snx11014n
SSU_count = 4
clients = crystal

[crystal]
lnet_network_wildcard = gni0:10.128.*.*

o2ib1000: c2-0c0s1n1, c2-0c1s1n1 ; MGS and MDS
o2ib1002: c0-0c0s1n2(ib0), c3-0c0s0n1(ib0), c3-0c0s0n2(ib0) ; OSSs 4/6/8/10
o2ib1003: c0-0c0s1n2(ib2), c3-0c0s0n1(ib2), c3-0c0s0n2(ib2) ; OSSs 5/7/9/11

[snx11014n]
lnet_network_wildcard = o2ib:10.10.100.*

o2ib1000: snx11014n002, snx11014n003 ; MGS and MDS
o2ib1002: snx11014n004, snx11014n006, snx11014n008, snx11014n010 ; OSSs 4/6/8/10
o2ib1003: snx11014n005, snx11014n007, snx11014n009, snx11014n011 ; OSSs 5/7/9/11

11.9.1.2 client-system.hosts

For a typical Cray system, this file can be the /etc/hosts file taken from the boot
node. Simply make a copy of the /etc/hosts file from the boot node and save it to
a working directory where you will later run the clcvt command.

336 S–2393–5101

Using InfiniBand and OpenFabrics Interconnect Drivers [11]

Example 112. Sample client-system.hosts file: hera.hosts

#
hosts This file describes a number of hostname-to-address
mappings for the TCP/IP subsystem. It is mostly
used at boot time, when no name servers are running.
On small systems, this file can be used instead of a
"named" name server.
Syntax:
#
IP-Address Full-Qualified-Hostname Short-Hostname
#

127.0.0.1 localhost

special IPv6 addresses
::1 ipv6-localhost localhost ipv6-loopback

fe00::0 ipv6-localnet

ff00::0 ipv6-mcastprefix
ff02::1 ipv6-allnodes
ff02::2 ipv6-allrouters
ff02::3 ipv6-allhosts
Licenses
172.30.74.55 tic tic.us.cray.com
172.30.74.56 tac tac.us.cray.com
172.30.74.57 toe toe.us.cray.com
172.30.74.206 cflls01 cflls01.us.cray.com
172.30.74.207 cflls02 cflls02.us.cray.com
172.30.74.208 cflls03 cflls03.us.cray.com
##LDAP Server Info
172.30.12.46 kingpin kingpin.us.cray.com kingpin.cray.com
172.30.12.48 kingfish kingfish.us.cray.com kingfish.cray.com
##esLogin Info
172.30.48.62 kiyi kiyi.us.cray.com el-login0.us.cray.com
10.2.0.1 kiyi-eth1
##Networker server
#172.30.74.90 booboo booboo.us.cray.com

10.3.1.1 smw
10.128.0.1 nid00000 c0-0c0s0n0 dvs-0
10.128.0.2 nid00001 c0-0c0s0n1 boot001 boot002
10.128.0.31 nid00030 c0-0c0s0n2 #old ddn6620_mds
10.128.0.32 nid00031 c0-0c0s0n3 hera-rsip2
10.128.0.3 nid00002 c0-0c0s1n0
10.128.0.4 nid00003 c0-0c0s1n1
10.128.0.29 nid00028 c0-0c0s1n2
10.128.0.30 nid00029 c0-0c0s1n3
10.128.0.5 nid00004 c0-0c0s2n0
10.128.0.6 nid00005 c0-0c0s2n1
10.128.0.27 nid00026 c0-0c0s2n2
10.128.0.28 nid00027 c0-0c0s2n3
10.128.0.7 nid00006 c0-0c0s3n0
10.128.0.8 nid00007 c0-0c0s3n1
10.128.0.25 nid00024 c0-0c0s3n2
10.128.0.26 nid00025 c0-0c0s3n3

S–2393–5101 337

Managing System Software for the Cray® Linux Environment

10.128.0.9 nid00008 c0-0c0s4n0 login login1 hera
10.128.0.10 nid00009 c0-0c0s4n1 sdb001 sdb002
10.128.0.23 nid00022 c0-0c0s4n2 hera-rsip hera-rsip1
10.128.0.24 nid00023 c0-0c0s4n3 mds nid00023_mds
...

11.9.1.3 client-system.ib

The client-system.ib file contains client-system LNET router InfiniBand IP address
to cname mapping information in a /etc/hosts style format. The hostname field
in this file is a fully-qualified interface specification of the form hostname(ibn),
where (ib0) is the assumed default if not specified. Cray XC30 systems can support
multiple InfiniBand interfaces per router; configure the second IB interface (see
Procedure 87 on page 326) and append the interface names (ibn)to the cnames for
the routers. The LNET router InfiniBand IP addresses should be within the same
subnet as the Lustre servers (MGS/MDS/OSS); one possible address assignment
scheme would be to use a contiguous set of IP addresses, with ib0 and ib2 on each
node having adjacent addresses. See Example 114 for reference. You will also need
to append these interface names to the info.file-system-identifier file. This file must
be created by an administrator.

Example 113. Sample client-system.ib file: hera.ib

#
This is the /etc/hosts-like file for Infiniband IP addresses
on "hera".
#
10.10.100.101 c0-0c2s2n0
10.10.100.102 c0-0c2s2n2
10.10.100.103 c1-0c0s7n0
10.10.100.104 c1-0c0s7n1
10.10.100.105 c1-0c0s7n2
10.10.100.106 c1-0c0s7n3
10.10.100.107 c3-0c1s0n0
10.10.100.108 c3-0c1s0n1
10.10.100.109 c3-0c1s0n2
10.10.100.110 c3-0c1s0n3
10.10.100.111 c3-0c1s5n0
10.10.100.112 c3-0c1s5n1
10.10.100.113 c3-0c1s5n2
10.10.100.114 c3-0c1s5n3
10.10.100.115 c3-0c2s4n0
10.10.100.116 c3-0c2s4n1
10.10.100.117 c3-0c2s4n2
10.10.100.118 c3-0c2s4n3

338 S–2393–5101

Using InfiniBand and OpenFabrics Interconnect Drivers [11]

Example 114. Sample client-system.ib file using multiple IB interfaces per router

#
This is the /etc/hosts-like file for Infiniband IP addresses
on "crystal".
#
10.10.100.101 c0-0c0s1n2
10.10.100.102 c0-0c0s1n2(ib2)
10.10.100.103 c3-0c0s0n1
10.10.100.104 c3-0c0s0n1(ib2)
10.10.100.105 c3-0c0s0n2
10.10.100.106 c3-0c0s0n2(ib2)
10.10.100.107 c2-0c0s1n1
10.10.100.108 c2-0c1s1n1

11.9.1.4 cluster-name.ib

The cluster-name.ib file contains Lustre server InfiniBand IP addresses to cluster
(for example, Sonexion) host name mapping information in a /etc/hosts style
format. This file must be created by an administrator.

Example 115. Sample cluster-name.ib file: snx11029n.ib

#
This is the /etc/hosts-like file for Infiniband IP addresses
on the Sonexion known as "snx11029n".
#
10.10.100.1 snx11029n000 #mgmnt
10.10.100.2 snx11029n001 #mgmnt
10.10.100.3 snx11029n002 #mgs
10.10.100.4 snx11029n003 #mds
10.10.100.5 snx11029n004 #first oss, oss0
10.10.100.6 snx11029n005
10.10.100.7 snx11029n006
10.10.100.8 snx11029n007
10.10.100.9 snx11029n008
10.10.100.10 snx11029n009
10.10.100.11 snx11029n010
10.10.100.12 snx11029n011
10.10.100.13 snx11029n012
10.10.100.14 snx11029n013
10.10.100.15 snx11029n014
10.10.100.16 snx11029n015 #last oss, oss11

11.9.1.5 client-system.rtrIm

The client-system.rtrIm file contains output from the rtr -Im command as
executed from the SMW. When capturing the command output to a file, use the
-H option to remove the header information from rtr -Im or open the file after
capturing and delete the first two lines.

S–2393–5101 339

Managing System Software for the Cray® Linux Environment

Procedure 94. Creating the client-system.rtrIm file on the SMW

1. Log on to the SMW.

crayadm@boot:~> ssh smw
Password:
Last login: Sun Feb 24 23:05:29 2013 from boot
crayadm@hera-smw:~>

2. Run the following command to capture the rtr -Im output (without header
information) to a file:

crayadm@hera-smw:~> rtr -Im -H > hera.rtrIm

3. Move the hera.rtrIm file to the working directory that you will later run the
clcvt command from.

crayadm@hera-smw:~> mv hera.rtrIm /path/to/working/dir/.

Example 116. Sample client-system.rtrIm file: hera.rtrIm

0 0 c0-0c0s0n0 c0-0c0s0g0 0 0 0
1 1 c0-0c0s0n1 c0-0c0s0g0 0 0 0
2 4 c0-0c0s1n0 c0-0c0s1g0 0 0 1
3 5 c0-0c0s1n1 c0-0c0s1g0 0 0 1
4 8 c0-0c0s2n0 c0-0c0s2g0 0 0 2
5 9 c0-0c0s2n1 c0-0c0s2g0 0 0 2
6 12 c0-0c0s3n0 c0-0c0s3g0 0 0 3
7 13 c0-0c0s3n1 c0-0c0s3g0 0 0 3
8 16 c0-0c0s4n0 c0-0c0s4g0 0 0 4
9 17 c0-0c0s4n1 c0-0c0s4g0 0 0 4
10 20 c0-0c0s5n0 c0-0c0s5g0 0 0 5
11 21 c0-0c0s5n1 c0-0c0s5g0 0 0 5
12 24 c0-0c0s6n0 c0-0c0s6g0 0 0 6
13 25 c0-0c0s6n1 c0-0c0s6g0 0 0 6
14 28 c0-0c0s7n0 c0-0c0s7g0 0 0 7
15 29 c0-0c0s7n1 c0-0c0s7g0 0 0 7
30 32 c0-0c0s0n2 c0-0c0s0g1 0 1 0
31 33 c0-0c0s0n3 c0-0c0s0g1 0 1 0
28 36 c0-0c0s1n2 c0-0c0s1g1 0 1 1
29 37 c0-0c0s1n3 c0-0c0s1g1 0 1 1
...

11.9.2 Generating ip2nets and routes Information

Once you have created and gathered your prerequisite files, you can generate the
persistent-storage file with the clcvt generate action; this portable
file will then be used to create ip2nets and routes directives for the servers,
routers, and clients.

The following procedures frequently use the --split-routes=4 flag, which will
print information that can be loaded into ip2nets and routes files. This method
of adding modprobe.conf directives is particularly valuable for large systems
where the directives might otherwise exceed the modprobe buffer limit.

340 S–2393–5101

Using InfiniBand and OpenFabrics Interconnect Drivers [11]

Procedure 95. Creating the persistent-storage file

1. Move all of your prerequisite files to an empty directory on the boot node or
SMW (the clcvt command is only available on the boot node or the SMW).
Your working directory should look similar to this when you are ready:

crayadm@hera-smw:~/working_dir> ll
total 240
-rw-rw-r-- 1 crayadm crayadm 23707 Feb 8 14:27 hera.hosts
-rw-rw-r-- 1 crayadm crayadm 548 Feb 8 14:27 hera.ib
-rw-rw-r-- 1 crayadm crayadm 36960 Feb 8 14:27 hera.rtrIm
-rw-rw-r-- 1 crayadm crayadm 1077 Feb 8 14:27 info.snx11029
-rw-rw-r-- 1 crayadm crayadm 662 Feb 8 14:27 snx11029n.ib

2. Create the persistent-storage file.

crayadm@hera-smw:~/working_dir> clcvt generate

Note: The clcvt command does not print to stdout with successful
completion; however, if there are errors when you run the command, you can
add debugging information with the --debug flag.

Procedure 96. Create ip2nets and routes information for the compute nodes

1. Execute the clcvt command with the compute flag to generate directives
for the compute nodes.

crayadm@hera-smw:~/working_dir> clcvt compute --split-routes=4
Place the following line(s) in the appropriate 'modprobe' file.
#vvv
options lnet ip2nets=/path/to/ip2nets-loading/filename
options lnet routes=/path/to/route-loading/filename
#^^^
Place the following line(s) in the appropriate ip2nets-loading file.
#vvv
gni1 10.128.*.*
#^^^
Place the following line(s) in the appropriate route-loading file.
#vvv
o2ib6000 1 [68,90]@gni1
o2ib6002 1 [750,751,752,753]@gni1
o2ib6003 1 [618,619,628,629]@gni1
o2ib6004 1 [608,609,638,639]@gni1
o2ib6005 1 [648,649,662,663]@gni1
o2ib6000 2 [608,609,618,619,628,629,638,639,648,649,662,663,750,751,752,753]@gni1
o2ib6002 2 [608,609,638,639]@gni1
o2ib6003 2 [648,649,662,663]@gni1
o2ib6004 2 [750,751,752,753]@gni1
o2ib6005 2 [618,619,628,629]@gni1
#^^^

2. Follow the procedures in Procedure 93 on page 331 to update the compute
node boot image modprobe information using the ip2nets and routes
information produced by the previous step.

S–2393–5101 341

Managing System Software for the Cray® Linux Environment

Procedure 97. Create ip2nets and routes information for service node Lustre
clients (MOM and internal login nodes)

1. Execute the clcvt command with the login flag to generate directives for
the service node Lustre clients.

crayadm@hera-smw:~/working_dir> clcvt login --split-routes=4
Place the following line(s) in the appropriate 'modprobe' file.
#vvv
options lnet ip2nets=/path/to/ip2nets-loading/filename
options lnet routes=/path/to/route-loading/filename
#^^^
Place the following line(s) in the appropriate ip2nets-loading file.
#vvv
gni1 10.128.*.*
#^^^
Place the following line(s) in the appropriate route-loading file.
#vvv
o2ib6000 1 [68,90]@gni1
o2ib6002 1 [750,751,752,753]@gni1
o2ib6003 1 [618,619,628,629]@gni1
o2ib6004 1 [608,609,638,639]@gni1
o2ib6005 1 [648,649,662,663]@gni1
o2ib6000 2 [608,609,618,619,628,629,638,639,648,649,662,663,750,751,752,753]@gni1
o2ib6002 2 [608,609,638,639]@gni1
o2ib6003 2 [648,649,662,663]@gni1
o2ib6004 2 [750,751,752,753]@gni1
o2ib6005 2 [618,619,628,629]@gni1
#^^^

2. Follow the procedures in Procedure 90 on page 329 to update the modprobe
information for the default view of the shared root using the ip2nets and
routes information produced by the previous step.

342 S–2393–5101

Using InfiniBand and OpenFabrics Interconnect Drivers [11]

Procedure 98. Create ip2nets and routes information for the LNET router
nodes

1. Execute the clcvt command with the router flag to generate directives for
the LNET router nodes.

crayadm@hera-smw:~/working_dir> clcvt router --split-routes=4
Place the following line(s) in the appropriate 'modprobe' file.
#vvv
options lnet ip2nets=/path/to/ip2nets-loading/filename
options lnet routes=/path/to/route-loading/filename
#^^^
Place the following line(s) in the appropriate ip2nets-loading file.
#vvv
gni1 10.128.*.*
o2ib6000 10.10.100.[101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118]
o2ib6002 10.10.100.[103,104,105,106,107,108,109,110]
o2ib6003 10.10.100.[111,112,113,114,115,116,117,118]
o2ib6004 10.10.100.[103,104,105,106,107,108,109,110]
o2ib6005 10.10.100.[111,112,113,114,115,116,117,118]
#^^^
Place the following line(s) in the appropriate route-loading file.
#vvv
o2ib6000 1 [68,90]@gni1
o2ib6002 1 [750,751,752,753]@gni1
o2ib6003 1 [618,619,628,629]@gni1
o2ib6004 1 [608,609,638,639]@gni1
o2ib6005 1 [648,649,662,663]@gni1
o2ib6000 2 [608,609,618,619,628,629,638,639,648,649,662,663,750,751,752,753]@gni1
o2ib6002 2 [608,609,638,639]@gni1
o2ib6003 2 [648,649,662,663]@gni1
o2ib6004 2 [750,751,752,753]@gni1
o2ib6005 2 [618,619,628,629]@gni1
#^^^

2. Follow the procedures in Procedure 90 on page 329 to update the modprobe
information for the LNET router view of the shared root using the ip2nets and
routes information produced by the previous step.

S–2393–5101 343

Managing System Software for the Cray® Linux Environment

Procedure 99. Create ip2nets and routes information for the Lustre server
nodes

1. Execute the clcvt command with the server flag to generate directives for
the Lustre server nodes.

crayadm@hera-smw:~/working_dir> clcvt server --split-routes=4
Place the following line(s) in the appropriate 'modprobe' file.
#vvv
options lnet ip2nets=/path/to/ip2nets-loading/filename
options lnet routes=/path/to/route-loading/filename
#^^^
Place the following line(s) in the appropriate ip2nets-loading file.
#vvv
o2ib6 10.10.100.*
o2ib6000 10.10.100.[3,4]
o2ib6002 10.10.100.[5,7,9]
o2ib6003 10.10.100.[6,8,10]
o2ib6004 10.10.100.[11,13,15]
o2ib6005 10.10.100.[12,14,16]
#^^^
Place the following line(s) in the appropriate route-loading file.
#vvv
gni1 1 10.10.100.[101,102]@o2ib6000
gni1 1 10.10.100.[103,104,105,106]@o2ib6002
gni1 1 10.10.100.[111,112,113,114]@o2ib6003
gni1 1 10.10.100.[107,108,109,110]@o2ib6004
gni1 1 10.10.100.[115,116,117,118]@o2ib6005
gni1 2 10.10.100.[103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118]@o2ib6000
gni1 2 10.10.100.[107,108,109,110]@o2ib6002
gni1 2 10.10.100.[115,116,117,118]@o2ib6003
gni1 2 10.10.100.[103,104,105,106]@o2ib6004
gni1 2 10.10.100.[111,112,113,114]@o2ib6005
#^^^

2. Update the modprobe information for your Lustre servers using the ip2nets
and routes information produced by the previous step. For more information,
refer to your Lustre server documentation.

344 S–2393–5101

Resource Utilization Reporting [12]

Resource Utilization Reporting (RUR) is an administrator tool for gathering statistics
on how system resources are being used by applications. RUR is a low-noise,
scalable infrastructure that collects compute node statistics before an application
runs and again after it completes. The extensible RUR infrastructure allows plugins
to be easily written to collect data uniquely interesting to each site administrator.
Cray supplied plugins collect process accounting data, energy usage data, and GPU
accounting data.

12.1 RUR Basics
When RUR is enabled on a Cray system running CLE, resource utilization statistics
are gathered from compute nodes running all applications. RUR runs primarily before
an application has started and after it ends, ensuring minimal impact on application
performance.

Prior to application runtime, the ALPS prologue script calls an RUR prologue script
that, based on enabled plugins, initiates pre-application data staging on all compute
nodes used by the application. This staging may involve resetting counters to zero
or collecting initial values of counters. Following application completion, the ALPS
epilogue script calls an RUR epilogue script that gathers these counters, compares
them to the initial values, where applicable, stages the data on the compute nodes,
and then transfers data from the compute nodes onto the login/mom node. The data
is then post-processed to create a summary report that is written out to a log file or
other backing store.

12.1.1 Plugin Architecture

RUR supports plugin architecture, allowing many types of usage data to be collected
while using the same software infrastructure. Two basic types of RUR plugins are
supported: data plugins, which collect particular statistics about system resources,
and output plugins, which take the output of the RUR software stack and send it to a
backing store.

Cray supplies plugins as part of the RUR distribution, including four data collection
plugins and three output plugins as described in the following sections. Sites choose
which plugins to enable or disable by modifying the RUR configuration file. See
Enabling/Disabling Plugins on page 349 for more information.

S–2393–5101 345

Managing System Software for the Cray® Linux Environment

12.2 Included Data Plugins
Cray supplied data plugins collect data on process accounting, GPU accounting,
and energy usage. Sites may develop other data plugins to collect information not
supported by Cray plugins, as described in RUR Plugins on page 352.

12.2.1 energy

The energy plugin records the total energy used, measured in joules, by all nodes.
This value tracks the entire per-node energy usage.

The following example shows energy data as written in
/var/opt/cray/log/partition-current/messages-date on the SMW:

2013-08-30T11:19:06.545114-05:00 c0-0c0s2n2 RUR 18657 p2-20130829t090349 [rur@34]
uid: 5229, apid: 10963, jobid: 0, cmdname: /opt/intel/vtune_xe_2013/bin64/amplxe-cl
energy ['energy_used', 318]

12.2.2 gpustat

The gpustat plugin provides utilization statistics for NVIDIA GPUs on Cray
systems. It reports both GPU compute time and memory used summed across all
nodes as well as the maximum GPU memory used by the application across all nodes.

The following example shows gpustat data as written in
/var/opt/cray/log/partition-current/messages-date on the
SMW:

2013-07-09T15:50:42.761257-05:00 c0-0c0s2n2 RUR 11329 p2-20130709t145714 [rur@34]
uid: 1000, apid: 8410, jobid: 0, cmdname: /tmp/dostuff gpustats ['maxmem', 108000,
'summem', 108000, 'gpusecs', 44]

12.2.3 taskstats

The taskstats plugin provides basic process accounting similar to that provided
by Unix process accounting or getrusage. This includes the system and user CPU
time, maximum memory used, and the amount of file input and output from the
application. These values are sums across all nodes, except for the memory used,
which is the maximum value across all nodes. Additionally, all unique exit codes
are reported.

The following examples show taskstats data as written in
/var/opt/cray/log/partition-current/messages-date on the
SMW.

For a job that exits normally:

2013-11-02T11:09:49.457770-05:00 c0-0c1s1n2 RUR 2417 p0-20131101t153028 [rur@34]
uid: 10973, apid: 86989, jobid: 0, cmdname: /lus/esfs/overby/rur01.2338/./CPU01-2338
taskstats ['utime', 10000000, 'stime', 0, 'max_rss', 940, 'rchar', 107480, 'wchar', 90,
'exitcode:signal', ['0:0'], 'core', 0]

346 S–2393–5101

Resource Utilization Reporting [12]

For a job that core dumps:

2013-11-02T11:12:45.020716-05:00 c0-0c1s1n2 RUR 3731 p0-20131101t153028 [rur@34]
uid: 10973, apid: 86996, jobid: 0, cmdname: /lus/esfs/overby/rur01.3657/./exit04-3657
taskstats ['utime', 4000, 'stime', 144000, 'max_rss', 7336, 'rchar', 252289, 'wchar', 741,
'exitcode:signal', ['0:9', '139:0', '0:11', '0:0'], 'core', 1]

12.2.4 timestamp

The timestamp plugin collects the start and end times of an
application. The following example shows timestamp data, as written
in /var/opt/cray/log/partition-current/messages-date on the SMW,
for an application that slept 20 seconds:

2013-08-30T14:32:07.593469-05:00 c0-0c0s5n2 RUR 12882 p3-20130830t074847 [rur@34] uid: 0,
apid: 6640, jobid: 0, cmdname: /bin/sleep timestamp APP_START 2013-08-30T14:31:46CDT
APP_STOP 2013-08-30T14:32:06CDT

12.3 Included Output Plugins
Cray supplied output plugins support Lightweight Log Manager (LLM), a flat text
file, or a user owned file as the backing store for RUR data. Sites may develop other
output plugins to satisfy site-specific output needs not supported by Cray plugins, as
described in RUR Plugins on page 352.

12.3.1 file

The file plugin allows RUR data to be stored to a flat text file on any file system to
which the login node can write. This plugin is also intended as a very simple guide
for anyone interested in writing an output plugin.

The following is sample output from file to a location defined in the RUR
configuration file:

uid: 1000, apid: 8410, jobid: 0, cmdname: /tmp/dostuff taskstats ['utime', 32000,
'stime', 132000, 'max_rss', 1736, 'rchar', 44524, 'wchar', 289]
uid: 1000, apid: 8410, jobid: 0, cmdname: /tmp/dostuff energy ['energy_used', 24551]
uid: 1000, apid: 8410, jobid: 0, cmdname: /tmp/dostuff gpustats ['maxmem', 108000,
'summem', 108000

12.3.2 llm

The llm (Lightweight Log Manager) plugin aggregates log messages from
various Cray nodes and places them on the SMW. llm has its own configuration
options, but typically it will place RUR messages into the messages log file
/var/opt/cray/log/partition-current/messages-date on the SMW. The
messages shown in the previous sections are in LLM log format.

S–2393–5101 347

Managing System Software for the Cray® Linux Environment

12.3.3 user

The user plugin allows administrators to configure RUR such that the RUR
output for each user's application is written to the user's home directory (default)
or a user-defined location. The naming of the default output file(s), rur.suffix, is
dependent on the value of the argument arg, which defines a report type and is set
in the user plugin configuration section within the RUR configuration file. If arg
is set to:

apid An output file is created for each application executed and suffix
is the apid.

jobid An output file is created for each job submitted and suffix is the jobid.

single All output is placed in a single file and no suffix is appended to the
output file name.

Users may redirect the output of RUR by specifying a redirect location in
~/.rur/user_output_redirect. The contents of this file must be a single
line that specifies the absolute or relative (from the user's home directory) path of the
directory or file to which the RUR output data is to be written. If the redirect file
~/.rur/user_output_redirect does not exist, points to a path that does not
exist, or points to a path to which the user does not have write permission, then the
output is written to the user's home directory. Users that do not want to collect RUR
data can set the redirect path to /dev/null.

Additionally, the user may override the default report type by specifying a valid
report type in ~/.rur/user_output/report_type. Valid report types
are apid, jobid, or single, resulting in the user's RUR data being written to
one file per application, one file per job, or a single file, respectively. If the file
~/.rur/user_output/report_type is empty or contains an invalid type, the
default report type, as defined in the configuration file, is created.

12.4 Enabling RUR
By default, RUR is installed, but not enabled, during the CLE installation process.
Although RUR is not a part of ALPS, it is initiated through the ALPS prologue and
epilogue scripts.

Procedure 100. Enabling RUR through ALPS

1. Edit /etc/opt/cray/alps/alps.conf on the shared root such that the
apsys section includes these variable definitions:

apsys
prologPath /opt/cray/rur/default/bin/rur_prologue.py
epilogPath /opt/cray/rur/default/bin/rur_epilogue.py
prologTimeout 60
epilogTimeout 60

/apsys

348 S–2393–5101

Resource Utilization Reporting [12]

2. Restart ALPS on the login node(s).

boot:~ # /etc/init.d/alps restart

3. Verify that the rur argument is set to True, yes, 1, or enable within the
RUR configuration file.

12.5 Disabling RUR
Disable RUR by setting the rur argument to False, no, 0, or disable within the
RUR configuration file.

12.6 Configuring RUR
Changing the behavior of specific RUR components is possible through modification
of the RUR config file /etc/opt/cray/rur/rur.conf located on the shared
root. Configurable values fall into four categories:

• Script/binary location
• Temporary data storage location
• Component timeout specs
• Enabling/disabling plugins

Changes to the configuration file are automatically propagated to the nodes via the
shared-root mount, requiring no administrator intervention or system reboot. .

12.6.1 Enabling/Disabling Plugins

Plugins are enabled or disabled within the RUR configuration file. For a plugin
to be enabled, it must be listed under the [plugin] (for data plugins) or
[outputplugin] (for output plugins) header and set to true. A plugin is
disabled if it is set to false or if it does not appear in either the [plugin] or
[outputplugin] list. For example, the following data plugin configuration
section from the configuration file explicitly enables data plugins taskstats and
timestamp, but disables gpustat. Note, however, that the plugin energy is
implicitly disabled by its absence from the list.

Data Plugins section Configuration
Define the supported Data plugins and enable/disable
them. Plugins defined as "Plugin: False" will not run,
but will be parsed for correct config file syntax.
[plugins]
gpustat: false
taskstats: true
timestamp: true

S–2393–5101 349

Managing System Software for the Cray® Linux Environment

12.6.2 RUR Configuration File

The following listing is the example RUR configuration file
/opt/cray/rur/default/etc/rur.conf.example.

Copyright (c) 2013 Cray Inc. All rights reserved.
Written by Andrew Bary <abarry@cray.com>
#
Sample configuration file for RUR

###################
RUR Global Section - Misc settings to control RUR operation.
rur - enable or disable RUR. Set to False, no, 0, or disable
to prevent RUR from running. Default is enabled.
###################
[global]
rur: True

###################
Rur stages - post, stage, gather, output
Each stage of RUR operation has configuration variables
that affect the software's behavior.
###################

Configuration section for rur_post
post_timeout - time after which post processing is terminated.
Set to 0 for unlimited, default to unlimited.
post_dir - Path to directory into which the post-processor
writes its output.
[rur_post]
post_timeout: 300
post_dir: /tmp/rur/

Configuration section for rur_stage
stage_timeout - time after which staging is terminated.
Set to 0 for unlimited, default to unlimited.
stage_dir - Path to directory into which data is staged
on compute nodes
[rur_stage]
stage_dir: /tmp/rur/
stage_timeout: 60

Configuration section for rur_gather
gather_timeout - time after which gather is terminated.
Set to 0 for unlimited, default to unlimited.
gather_dir - Path to directory on login/mom node, into
which gathered data is copied.
[rur_gather]
gather_dir: /tmp/rur/
gather_timeout: 300

###################
RUR plugins
Data plugins and output plugins are defined and enabled.
Each plugin also can be configured to alter behavior.
###################

Data Plugins section Configuration

350 S–2393–5101

Resource Utilization Reporting [12]

Define the supported Data plugins and enable/disable
them. Plugins defined as "Plugin: False" will not run,
but will be parsed for correct config file syntax.
[plugins]
gpustat: true
taskstats: true
timestamp: true

Output Plugins section Configuration
Define which output plugins are supported, and enable/
disable them. Plugins defined as "Plugin: False" will
not run, but will be parsed for correct config file
syntax.
[outputplugins]
llm: true
file: false
user: false

The GpuStat Data plugin. - This plugin collects data
about the use of GPUs by applications.
Stage - The staging plugin run by rur_stage on the
compute node
Post - The post-processing plugin run by rur_post on
the login/mom node
[gpustat]
post: /opt/cray/rur/default/bin/gpustat_post.py
stage: /opt/cray/rur/default/bin/gpustat_stage.py

The TaskStats Data plugin. - This plugin collects data
about CPU, memory, and filesystem usage by
applications.
Stage - The staging plugin run by rur_stage on the
compute node
Post - The post-processing plugin run by rur_post on
the login/mom node
[taskstats]
post: /opt/cray/rur/default/bin/taskstats_post.py
stage: /opt/cray/rur/default/bin/taskstats_stage.py

The Energy Data plugin. - This plugin collects data
about energy used by cx compute nodes used by
applications.
Stage - The staging plugin run by rur_stage on the
compute node
Post - The post-processing plugin run by rur_post on
the login/mom node
[energy]
post: /opt/cray/rur/default/bin/energy_post.py
stage: /opt/cray/rur/default/bin/energy_stage.py

The Timestamp plugin. - This plugin will collect
the start and end time of an application
[timestamp]
post: /opt/cray/rur/default/bin/timestamp_post.py
stage: /opt/cray/rur/default/bin/timestamp_stage.py

The LLM output plugin.
Write RUR output to an LLM log stream.

S–2393–5101 351

Managing System Software for the Cray® Linux Environment

[llm]
output: /opt/cray/rur/default/bin/llm_output.py
#no arg for llm plugin

The File output plugin.
Write RUR output to a single plain text file
Arg - The destination text file
[file]
output: /opt/cray/rur/default/bin/file_output.py
#arg: path-to-flat-textfile
arg: /lus/scratch/RUR/output/rur.output

The User output plugin.
Write RUR output to a text file in the user's homedir
User may redirect this output by putting a new path
into ~/.rur/user_output_redirect
[user]
output: /opt/cray/rur/default/bin/user_output.py
#arg: apid | jobid | single
apid - a new output file is created for each apid
jobid - an output file is created for each job
single - all output is placed in a single file
arg: single

12.7 RUR Plugins
All RUR data is collected via plugins. Plugins bring flexibility to the RUR
infrastructure such that it is easily modified to collect various statistics from compute
nodes. Several widely used plugins are provided by Cray; see Included Data Plugins
on page 346. Sites can create additional plugins, specific to their needs, that are easily
incorporated into the RUR infrastructure.

12.7.1 Data Plugins

A data plugin is comprised of a staging component and a post processing component.
The data plugin staging component is called by rur-stage.py on the compute
node prior to the application running and again after the application has completed.
The staging component may reset counters before application execution and collect
them after application completion, or it may collect initial and final values prior to
and after application execution, respectively, and then calculate the delta values.
Python functions have been defined to simplify writing plugins, although it is not
necessary for the plugin to be written in Python. The interface for the data plugin
staging component is through command line arguments.

352 S–2393–5101

Resource Utilization Reporting [12]

12.7.1.1 Data Plugin Staging Component

All data plugin staging components must support the following arguments:

--apid=apid

Defines the apid of the running application.

--timeout=time

Defines a timeout period in seconds during which the plugin must
finish running. Set to 0 for unlimited; default is unlimited.

--pre Indicates the plugin is being called prior to the application.

--post Indicates the plugin is being called after the application.

--outputfile=output_file

Defines where the output data is written. Each plugin should define
a default output file in /var/spool/RUR/ if this argument is not
provided.

--arg=arg A plugin-specific argument, set in the RUR config file. RUR treats
this as an opaque string.

The output of an RUR data plugin staging component is a temporary file located in
/var/spool/RUR on the compute node. The file name must include both the name
of the plugin, as defined in the RUR config file, and .apid. The RUR gather phase will
automatically gather the staged files from all compute nodes after the application has
completed and place it in gather_dir as defined in the configuration file.

The following is an example of a simple data plugin staging component:

Example 117. Data plugin staging component

#
Copyright (c) 2013 Cray Inc. All rights reserved.
#
Sample data plugin staging component
#
#!/usr/bin/env python
import sys, os, getopt
from rur_plugins import rur_plugin_args
def main():

apid, inputfile, outputfile, timeout, pre, post, \
parg = rur_plugin_args(sys.argv[1:])

if outputfile is "":
outputfile = "/var/spool/RUR/pluginname."+str(apid)

if (pre==1):
zero_counters()

else:
write_postapp_stateto(outputfile)

if __name__ == "__main__":
main()

S–2393–5101 353

Managing System Software for the Cray® Linux Environment

12.7.1.2 Data Plugin Post Processing Component

A data plugin also requires a post processing component that processes the data
staged by the staging component and collected during the RUR gather phase. The
post processing component is called by rur-post.py. The input file contains
records, one node per line, of all of the statistics created by the staging component.
The output of the post processing component is a file containing the summary of data
from all compute nodes.

All data plugin post processing components must support the following arguments:

--apid=apid

Defines the apid of the running application.

--timeout=time

Defines a timeout period in seconds during which the plugin must
finish running. Set to 0 for unlimited; default is unlimiteḋ.

--inputfile=input_file

Specifies the file from which the plugin gets its input data.

--outputfile=output_file

Specifies the file to which the plugin writes its output data.

The following is an example of a simple data plugin post processing component:

Example 118. Data plugin post processing component

#
Copyright (c) 2013 Cray Inc. All rights reserved.
#
Sample data plugin post processing component
#
#!/usr/bin/env python
import sys, os
from rur_plugins import rur_args

def main():
apid, inputfile, outputfile, timeout = rur_args(sys.argv[1:])
if outputfile is "":

outputfile = inputfile + ".out"

pc = PostCompute()
pc.process_file(inputfile)
formated = pc.present_entries([('plugin_foo_data','sum')])
fout=open(outputfile, 'w+')
fout.write("energy %s" % formated)

if __name__ == "__main__":
main()

354 S–2393–5101

Resource Utilization Reporting [12]

12.7.2 Output Plugins

Output plugins allow RUR data to be outputted to an arbitrary backing store. This can
be a storage device or another piece of software that then consumes the RUR data.
The output plugin is passed a number of command line arguments that describe the
application run and provide a list of input working files (the output of data plugin post
processing components). The plugin takes the data in the working files and exports
it to the destination specified in the RUR configuration file for the specific output
plugin.

Tip: If there is an error from an output plugin, the error message appears in the
ALPS log /var/log/cray/alps/log/apsys on the service node rather
than the LLM logs on the SMW.

The following is an example of a simple output plugin.

Example 119. Output plugin

#
Copyright (c) 2013 Cray Inc. All rights reserved.
#
Sample output plugin
#
#!/usr/bin/env python
import sys, os
from rur_plugins import rur_output_args

def main():
apid, jobid, uid, cmdname, inputfilelist, timeout, \
parg = rur_output_args(sys.argv[1:])

outfile = open(parg, "a")
for inputfile in inputfilelist:

infile = open(inputfile, "r")
lines = infile.readlines()
for line in lines:

outfile.write(line)
infile.close()

outfile.close()

12.7.3 Implementing a New RUR Plugin

For a site written plugin to run, it must be added to the RUR configuration file and
enabled. Follow the procedure to define and configure a new plugin.

Procedure 101. Modify RUR to define and configure a site written plugin

1. Ensure that the site written plugin is located on a file system that is readable by
compute nodes, owned by root, and not writeable by non-root users.

2. Add a new plugin definition section to the RUR configuration file:

a. If adding a data plugin, the definition section must include: the plugin name,

S–2393–5101 355

Managing System Software for the Cray® Linux Environment

a stage definition — the complete path to the plugin's data staging script,
and a post definition — the complete path to the plugin's post processing
script.

For example, to define the site written data plugin siteplug, the entry
within the RUR configuration would appear as follows:

The siteplug Data Plugin collects data that is
of particular interest to this site.
Stage - The staging component run by rur_stage on the
compute node
Post - The post-processing component run by rur_post on
the login/mom node
[SitePlug]
stage: /opt/cray/rur/default/bin/siteplug_stage.py
post: /opt/cray/rur/default/bin/siteplug_post.py

b. If adding an output plugin, the definition section must include: the plugin
name, an output definition — the complete path to the output plugin script
or binary, and an optional argument.

For example, to define the site written output plugin siteout, the entry
within the RUR configuration would appear as follows:

The siteout output plugin.
Write RUR output to a text file on the site's huge
archive file system.
[siteout]
output:/opt/cray/rur/site/bin/site_output.py
arg:hsmuser@hsmbackup.site.com:/hsmuser/rurbackup

3. Add the new plugin to either the data plugin or output plugin configuration
section, labeled [plugins] or [outputplugins], respectively. Indicate
true to enable or false to disable plugin execution.

Data Plugins section Configuration
Define the supported Data plugins and enable/disable
them. Plugins defined as "Plugin: False" will not run,
but will be parsed for correct config file syntax.
[plugins]
gpustat: true
taskstats: true
SitePlug: true

Output Plugins section Configuration
Define which output plugins are supported, and enable/
disable them. Plugins defined as "Plugin: False" will
not run, but will be parsed for correct config file
syntax.
[outputplugins]
llm: true
file: false
siteout: false

356 S–2393–5101

Resource Utilization Reporting [12]

12.7.4 Additional Plugin Examples

This is a set of RUR plugins that report information about the number of
available huge pages on each node. The huge page counts are reported in
/proc/buddyinfo. There are two versions of the staging component: one that
reports what is available and the second that reports changes during the application
run.

Example 120. Huge pages data plugin staging component (version A)

#
Copyright (c) 2013 Cray Inc. All rights reserved.
#
This is an RUR plugin that reports information about the number of available
huge pages on each node. This is reported in /proc/buddyinfo.
#
Each node reports its nid and the number of available pages of each size.
#
#!/usr/bin/env python
import sys, os, getopt
from rur_plugins import rur_plugin_args
def main():

apid, inputfile, outputfile, timeout, pre, post, parg =rur_plugin_args(sys.argv[1:])
if outputfile == 0:

outputfile = "/var/spool/RUR/buddyinfo."+str(apid)
if (pre==1):

zero_counters()
else:

nidf = open("/proc/cray_xt/nid", "r")
n = nidf.readlines()
nid = int(n[0])
inf = open("/proc/buddyinfo", "r")
b = inf.readlines()
sizes = dict([('2M' , 0), ('4M', 0), ('8M', 0), ('16M', 0), ('32M', 0), ('64M', 0)])

for line in b:
l = line.split()
sizes['2M'] += int(l[13])
sizes['4M'] += int(l[14])
sizes['8M'] += int(l[15])
sizes['16M'] += int(l[16])
sizes['32M'] += int(l[17])
sizes['64M'] += int(l[18])

o = open(outputfile, "w")
o.write("{6} {0} {1} {2} {3} {4} {5}".format(sizes['2M'],sizes['4M'], \

sizes['8M'], sizes['16M'], sizes['32M'], sizes['64M'], nid))
o.close()

if __name__ == "__main__":
main()

Example 121. Huge pages data plugin staging component (version B)

#
Copyright (c) 2013 Cray Inc. All rights reserved.
#
This is an RUR plugin that reports information about the number of available

S–2393–5101 357

Managing System Software for the Cray® Linux Environment

huge pages on each node. This is reported in /proc/buddyinfo.
#
This plugin records the number of available pages before the job is launched.
At job completion time it reports the change
#
#!/usr/bin/env python
import sys, os, getopt
from rur_plugins import rur_plugin_args
def main():

apid, inputfile, outputfile, timeout, pre, post, parg =rur_plugin_args(sys.argv[1:])
if outputfile == 0:

outputfile = "/var/spool/RUR/buddyinfo."+str(apid)
if (pre==1):

inf = open("/proc/buddyinfo", "r")
b = inf.readlines()
sizes = dict([('2M' , 0), ('4M', 0), ('8M', 0), ('16M', 0), ('32M', 0), ('64M', 0)])
for line in b:
l = line.split()
sizes['2M'] += int(l[13])
sizes['4M'] += int(l[14])
sizes['8M'] += int(l[15])
sizes['16M'] += int(l[16])
sizes['32M'] += int(l[17])
sizes['64M'] += int(l[18])

o = open("/tmp/buddyinfo_save", "w")
o.write("{0} {1} {2} {3} {4} {5}".format(sizes['2M'],sizes['4M'], \

sizes['8M'], sizes['16M'], sizes['32M'], sizes['64M']))
o.close()

else:
nidf = open("/proc/cray_xt/nid", "r")
n = nidf.readlines()
nid = int(n[0])
inf = open("/proc/buddyinfo", "r")
b = inf.readlines()
sizes = dict([('2M' , 0), ('4M', 0), ('8M', 0), ('16M', 0), ('32M', 0), ('64M', 0)])

for line in b:
l = line.split()
sizes['2M'] += int(l[13])
sizes['4M'] += int(l[14])
sizes['8M'] += int(l[15])
sizes['16M'] += int(l[16])
sizes['32M'] += int(l[17])
sizes['64M'] += int(l[18])

obf = open("/tmp/buddyinfo_save", "r")
ob = obf.readlines()
n=0

obd0 = ob[0]
obd = obd0.split()

diff = [
(int(obd[0]) - sizes['2M']),
(int(obd[1]) - sizes['4M']),
(int(obd[2]) - sizes['8M']),
(int(obd[3]) - sizes['16M']),

358 S–2393–5101

Resource Utilization Reporting [12]

(int(obd[4]) - sizes['32M']),
(int(obd[5]) - sizes['64M'])
]

o = open(outputfile, "w")
uncomment the following line to get the actual sizes

#o.write("sizes {6} {0} {1} {2} {3} {4} {5}\n".format(sizes['2M'],sizes['4M'], \
sizes['8M'], sizes['16M'], sizes['32M'], sizes['64M'], nid))

o.write("diff {6} {0} {1} {2} {3} {4} {5}".format(diff[0], diff[1], diff[2], \
diff[3], diff[4], diff[5], nid))

o.close()
os.unlink("/tmp/buddyinfo_save")

if __name__ == "__main__":
main()

Example 122. Huge pages data plugin post processing component

#
Copyright (c) 2013 Cray Inc. All rights reserved.
#
This is a RUR postprocessing pluging for the buddyinfo data
collection. It copies the input files to output, adding a
"buddyinfo" label.
#
#!/usr/bin/env python
import sys, os
from rur_plugins import rur_args

def main():
apid, inputfile, outputfile, timeout = rur_args(sys.argv[1:])
if outputfile == 0:

outputfile = inputfile + ".out"

fin=open(inputfile, "r")
l = fin.readlines()

fout=open(outputfile, 'w+')
for line in l:

fout.write("buddyinfo {0}".format(line))

if __name__ == "__main__":
main()

12.8 Migration Tips
This section includes tips on replacing the functionality previously provided by
deprecated accounting software.

Note: Tips relevant to CSA and ARU will be added in a future release.

S–2393–5101 359

Managing System Software for the Cray® Linux Environment

12.8.1 Application Completion Reporting (ACR)

Cray supplied RUR data plugins collect the same data found in Mazama's Application
Completion Reporting (ACR) feature, but RUR does not include a reporting utility
like mzreport. When using RUR's llm output plugin, the type of data reported by
mzreport can be extracted from the output files as demonstrated in the following
sections.

12.8.1.1 ACR Job Reporting

The information provided by mzreport -j and mzreport --job
can easily be obtained in the RUR environment from the log files
/var/opt/cray/log/partition-current/messages-date by invoking the
following command:

smw:~ # grep -e "RUR" messages-* |grep -e "jobid: jobid"

12.8.1.2 ACR Timespan Reporting

In ACR, mzreport -t and mzreport -T control the span of time over which
job completions are reported. The following example is a simple Python script,
timesearch.py, that provides this functionality.

#cat timesearch.py
#!/usr/bin/env python
for rurline in [line for line in open(sys.argv[1], 'r') if 'RUR' in line]:

if (rurline.split(' ')[1] > sys.argv[2]) and (rurline.split(' ')[1] < sys.argv[3]):
print rurline

The script is called with the log file of interest and the desired start/stop time stamps,
as follows:

smw:~ # python ./timesearch.py messages-date "start_time" "end_time"

Where start_time and end_time are formatted as "yyyy-mm-ddThh:mm:ss".

360 S–2393–5101

Resource Utilization Reporting [12]

12.8.1.3 ACR Exit Code Reporting

The get_exit.py Python script listed here provides a list of the uids with the
most non-zero exit codes.

cat get_exit.py
#!/usr/bin/env python
import os,sys,re

statre = re.compile("'(\w*):(\w*)',\s*\[('(\w*):(\w*)'(,)?)+\]")
statsre = re.compile("(\w*):(\w*)")
uidre = re.compile("uid:\s*(\w*)")
cnt = {}

for rurline in [line for line in open(sys.argv[1], 'r') if 'RUR' in line]:
if 'taskstats' in rurline:

sus = statre.search(rurline)
status = sus.group()
stats = statsre.findall(status)
for stat in stats[1:]:

if stat[0] != '0':
uid = int(uidre.findall(rurline)[0])
if cnt.get(str(uid)):

cnt[str(uid)] += 1
else:

cnt[str(uid)] = 1

x = sorted(cnt, key = cnt.get, reverse=True)
print "uids with the most non-zero exit codes %s" % x[:sys.argv[2]]

The script is called with the log file of interest and the number of user IDs on which
to report, as follows:

smw:~ #python ./get_exit.py messages-date num

S–2393–5101 361

Managing System Software for the Cray® Linux Environment

362 S–2393–5101

SMW and CLE System Administration
Commands [A]

In addition to the SUSE Linux Enterprise Server (SLES) commands available to
you, this appendix lists the Cray developed commands for administering CLE on
your Cray system.

The system provides the following types of commands for the system administrator:

• Hardware Supervisory System (HSS) commands invoked from the System
Management Workstation (SMW) to control HSS operations; HSS commands are
provided with SMW release packages.

• Cray Lightweight Log Management (LLM) System commands invoked from the
SMW or on a CLE service node; the LLM commands are provided with both the
SMW release packages and the CLE release packages.

• Cray Linux Environment (CLE) commands invoked from a node to control the
service and compute partitions; CLE commands are provided with CLE release
packages.

A.1 HSS Commands
Table 12 shows the HSS commands and their functions.

Table 12. HSS Commands

Command Description

dbMonitor Controls the monitor process script that starts during system boot to
watch mysqld and restart mysqld if it should crash

getSedcLogValues Displays specified sedc_manager log file records

hss_make_default_initrd Creates the default HSS controller boot image

hssbootlink Links a Linux kernel bzImage file, an initramfs file, and a
parameters file so that they can be booted on a Controller by using
PXE boot on an SMW

hssclone Clones the master image directory

S–2393–5101 363

Managing System Software for the Cray® Linux Environment

Command Description

hssds_init Creates the Hardware Supervisory System (HSS) data store; ensures
the proper HSS data store user credentials are created and that the data
store is ready for operation

hsspackage Facilitates creation of controller boot images

nid2nic Prints all nid-to-nic address mappings

rtr Routes the Cray network

sedc_manager Invokes the System Environment Data Collections (SEDC) SMW
manager

SMWconfig Automatically configures software on SMW

SMWinstall Automatically installs and configures software on SMW

SMWinstallCLE Updates the CMS software on bootroot and sharedroot for
system sets with CLE software installed

xtalive Gets a response from an HSS daemon

xtbootdump Parses a bootinfo-file to determine if xtdumpsys needs to be invoked

xtbootimg Creates, extracts, or updates a Cray bootable image file

xtbootsys Boots specified components in a Cray system

xtbounce Powers components of the Cray system down then up

xtccreboot Reboots specified cabinet or blade controllers

xtcheckmac Checks for duplicate MAC addresses among L1 and L0 controllers

xtclass Displays the network topology class for this system

xtclear Clears component flags in the state manager

xtclear_link_alerts Clears alert flags

xtcli Runs the HSS command line

xtcli boot Specifies the types of components to boot

xtcli clear Clears flag status in component state

xtcli part Updates partition configurations

xtcli power Powers a component up or down

xtcli set Sets flag status in the component state

xtcon Provides a two-way connection to the console of any running service
node

xtconsole Displays console text from a node

xtconsumer Displays HSS events

xtcpreport Parses xtnlrd log file and display system network congestion
protection information

364 S–2393–5101

SMW and CLE System Administration Commands [A]

Command Description

xtcptop Parses specified xtnlrd log file and displays real-time system
network congestion protection information as it is written to the file

xtdiscover Discovers and configures the Cray system hardware

xtdumpsys Gathers information when a system stops responding or fails

xterrorcode Displays event error codes

xtfileio Reads or writes a file on an L1 or L0 controller

xtgenid Generates HSS physical IDs

xthb Node heartbeat checker

xthwerrlog Reports hardware errors

xthwerrlogd Logs Gemini network errors

xthwinv Retrieves hardware component information for selected modules

xtlogfilter Filters information from event router log files

xtlogin Logs on to cabinet and blade control processors

xtmcinfo Gets microcontroller information from cabinet and blade control
processors

xtmem2file Reads CPU or Cray Gemini memory and saves it in a file

xtmemio Reads or writes 32-bit or 64-bit words from CPU or Cray Gemini
memory

xtnetwatch Watches the Cray system interconnection network for link control
block (LCB) and router errors

xtnid2str Converts node identification numbers to physical names

xtnlrd Responds to fatal link errors by rerouting the system

xtnmi Collects debug information from unresponsive nodes

xtpcimon Monitors health of PCIe channels

xtpget Displays current system power usage and applied capping parameters.

xtpmaction Implements power management actions.

xtpmdbconfig Modifies power management configuration parameters and provides a
mechanism for an operator to hook into database rotation events.

xtresview Displays the current state of cabinets, blades, and links, and whether
any have failed or been warm swapped out

xtrsh Invokes a diagnostic utility that concurrently executes programs on
batches of cabinet control processors and/or blade control processors

xtsedcviewer Command-line interface for SEDC

S–2393–5101 365

Managing System Software for the Cray® Linux Environment

Command Description

xtshow Shows components with selected characteristics

xtwarmswap Allows Cray system blades, chassis, or cabinets to be warm swapped

xtwatchsyslog Shows all log messages for cabinet control processors (L1 controllers)
and blade control processors (L0 controllers)

A.2 Cray Lightweight Log Management (LLM) System
Commands

Table 13 shows the LLM commands and their functions.

Table 13. LLM Commands

Command Description

cray-syslog Starts, stops, restarts, or checks the status of the log system

xtlog Delivers messages to the Cray Lightweight Log Management (LLM) system

xtsession Displays the current boot sessionid

xttail Outputs the last part of Cray Lightweight Log Management (LLM) files

xttoday Provides today's date in same format that is used to time stamp Cray Lightweight
Log Management (LLM) log files

xttrim Provides a simple and configurable method to automate the compression and
deletion of old log files

A.3 CLE System Administration Commands
Table 14 shows CLE commands and their functions.

Table 14. CLE Commands

Command Description

apmgr Provides interface for ALPS to cancel pending reservations.

apconf A utility for manipulating and modifying ALPS configuration files.

cdump Dumps node memory.

clcvt A utility for configuring and validating Fine-grained Routing (FGR)
on Cray systems.

crash Analyzes Linux crash dump data or a live system (Red Hat utility).

csacon Condenses records from the sorted pacct file.

csanodeacct Initiates the end of application accounting on a node.

366 S–2393–5101

SMW and CLE System Administration Commands [A]

Command Description

csanodemerg Initiates collection of individual compute node accounting files.

csanodesum Reads and consolidates application node accounting records.

dumpd Initiates automatic dump and reboot of nodes when requested by
Node Health Checker (NHC).

lastlogin Records last date on which each user logged in

lbcd Invokes the load balancer client daemon.

lbnamed Invokes the load balancer service daemon.

lustre_control Manages direct-attached and external Lustre file systems using
standard Lustre commands and site specific Lustre file system
definition and tuning files.

nhc_recovery Releases compute nodes on a crashed login node that will not be
rebooted.

pdsh Issues commands to groups of hosts in parallel.

projdb Creates and updates system project database for CSA.

rca-helper Used in various administrative scripts to retrieve information from the
Resiliency Communication Agent (RCA).

rsipd Invokes the Realm-Specific IP Gateway Server.

sdbwarmswap Updates the Service Database (SDB) when blades are replaced or
added.

xt-lustre-proxy Invokes the Lustre startup/shutdown, health monitor, and automatic
failover utility.

xtalloc2db Converts a text file to the alloc_mode table in the Service Database
(SDB).

xtattr2db Converts a text file to the attributes table in the Service Database
(SDB).

xtauditctl Distributes auditctl requests to nodes on a Cray system.

xtaumerge Merges audit logs from multiple nodes into a single audit log file.

xtcdr2proc Gets information from the RCA.

xtcheckhealth Executes the Node Health Checker.

xtcleanup_after Called by ALPS to check node health.

xtclone Clones the master image directory and overlays a site-specific
template.

xtcloneshared Clones node or class directory in shared root hierarchy.

xtdb2alloc Converts the alloc_mode table in the Service Database (SDB) to a
text file.

S–2393–5101 367

Managing System Software for the Cray® Linux Environment

Command Description

xtdb2attr Converts the attributes table in the Service Database (SDB) to a
text file.

xtdb2etchosts Converts service information in the SDB to a text file.

xtdb2filesys Converts the filesystem table of the SDB to a text file.

xtdb2gpus Converts the gpus table in the Service Database (SDB) to a text file.

xtdb2lustrefailover Converts the lustre_failover table in the SDB to a text file.

xtdb2lustreserv Converts the lustre_serv table of the SDB to a text file.

xtdb2nodeclasses Converts the service_processor table of the SDB to a text file.

xtdb2order Converts the processor table od_allocator_id field in the
Service Database (SDB) to a text file.

xtdb2proc Converts the processor table of the SDB to a text file.

xtdb2segment Converts segment table in the Service Database (SDB) to a text file.

xtdb2servcmd Converts the service_cmd table of the SDB to a text file.

xtdb2servconfig Converts the service_config table of the SDB to a text file.

xtdbsyncd Invokes the HSS/SDB synchronization daemon.

xtfilesys2db Converts a text file to the SDB filesystem table.

xtfsck Checks file systems on a system set defined in
/etc/sysset.conf.

xtgetconfig Gets configuration information from /etc/sysconfig/xt file.

xtgetdslroot Returns compute node root path used within an environment.

xtgpus2db Converts a text file to the SDB gpus table.

xthotbackup Creates a backup copy of a system set on the boot RAID.

xthowspec Displays file specialization in the shared root directory.

xtlusfoevntsndr Sends failover events to clients for Lustre imperative recovery.

xtlusfoadmin Displays Lustre automatic failover database tables and
enables/disables Lustre server failover.

xtlustrefailover2db Converts a text file to the SDB lustre_failover table.

xtlustreserv2db Converts a text file to the SDB lustre_service table.

xtmount Allows administrators to mount storage devices on the SMW based
on their LABEL and FUNCTION roles in the sysset.conf file
instead of long /dev/disk/by-id names.

xtnce Displays or changes the class of a node.

xtnodeclasses2db Converts a text file to the service_processor table in the SDB.

xtnodestat Provides current job and node status summary information on a CNL
compute node.

368 S–2393–5101

SMW and CLE System Administration Commands [A]

Command Description

xtoparchive Performs archive operations on shared root files from a given
specification list.

xtopco Checks out RCS versioned shared root specialized files.

xtopcommit Commits changes made inside an xtopview session.

xtoprdump Lists shared root file specification and version information.

xtoprlog Provides RCS log information about shared root specialized files.

xtopview Views file system as it would appear on any node, class of nodes, or
all service nodes.

xtorder2db Converts a text file to values in the od_allocator_id field of the
processor table in the Service Database (SDB).

xtpackage Facilitates creation of boot images.

xtpkgvar Creates a skeleton structure of /var.

xtproc2db Converts a text file to the processor table of the SDB.

xtprocadmin Gets/sets the processor flag in the SDB.

xtrelswitch Performs release switching by manipulating symbolic links in the
file system and by setting the default version of modulefiles that are
loaded at login.

xtrsipcfg Generates and optionally installs the necessary RSIP client and server
configuration files.

xtsegment2db Converts a text file to segment table in the Service Database (SDB).

xtservcmd2db Converts a text file to the service_cmd table of the SDB.

xtservconfig Adds, removes, or modifies the service_config table of the
SDB.

xtservconfig2db Converts a text file to the service_config table of the SDB.

xtshutdown Shuts down the service nodes in an orderly fashion.

xtspec Specializes files for nodes or classes.

xtunspec Unspecializes files for nodes or classes.

xtverifyconfig Verifies the coherency of /etc/init.d files across all shared root
views.

xtverifydefaults Verifies and fixes inconsistent system default links within the shared
root.

xtverifyshroot Checks the configuration of the shared-root file system.

S–2393–5101 369

Managing System Software for the Cray® Linux Environment

370 S–2393–5101

System States [B]

Table 15 defines state definitions for system components. States are designated by
uppercase letters. Table 16 shows states that are common to all components.

Note: The state of off means that a component is present on the system. If
the component is a blade controller, node, or ASIC, then this will also mean
that the component is powered off. If you disable a component, the state shown
becomes disabled. When you use the xtcli enable command to enable
that component for use once again, its state switches from disabled to off.
In the same manner, enabling an empty component means that its state switches
from empty to off.

The state of EMPTY components does not change when using the xtcli enable
or the xtcli disable command, unless the force option (-f) is used.

Disabling of a cabinet, chassis, or blade will fail if any nodes under the component
are in the ready state, unless the force option (-f) is used. An error message
will indicate the reason for the failure.

Table 15. State Definitions

State
Cabinet
Controller

Blade
Controller Cray ASIC CPU Link

OFF Powered
off

Powered
off

Powered
off

Powered
off

Link is
down

ON Powered on Powered on Powered
on and
operational

Powered on Link is up

HALT – – – CPU halted –

STANDBY – – – Booting
was
initiated

–

READY Operational Operational Operational Booted Operational

S–2393–5101 371

Managing System Software for the Cray® Linux Environment

Table 16. Additional State Definitions

State Description

DISABLED Operator disabled this component.

EMPTY Component does not exist.

N/A Component cannot be accessed by the system.

RESVD Reserved; new jobs are not allocated to this component.

There are two notification flags, which can occur with any state.

• WARNING

A condition of the component was detected that is outside the normal operating
range but is not yet dangerous.

• ALERT

A dangerous condition or fatal error has been detected for the component.

Table 17 shows the states by component for which the xtcli commands run.

Note: Administrative states are hierarchal, so disabling or enabling a component
has a cascading effect on that component's children. A component may not be
enabled if its parent component is disabled, but a subcomponent may be disabled
without affecting its parents.

Table 17. xtcli Commands and Allowed States

xtcli Command Subcommand
Cabinet
Controller Blade Controller Node

power up ON OFF OFF

down READY ON ON, HALT, DIAG

up_slot (an alias
for up)

down_slot (an
alias for down)

force_down (an
alias for down)

halt N/A N/A STANDBY,
READY

boot N/A N/A ON, HALT

372 S–2393–5101

Remote Access to the SMW [C]

Virtual Network Computing (VNC) software enables you to view and interact
with the SMW from another computer. The Cray system provides a VNC
server, Xvnc; you must download a VNC client to connect to it. See RealVNC
(http://www.realvnc.com/) or TightVNC (http://www.tightvnc.com/) for more
information.

Note: The VNC software requires a TCP/IP connection between the server and the
viewer. Some firewalls and site security do not allow this connection.

Cray supplies a VNC account cray-vnc.

Procedure 102. Starting the VNC server

1. Log on to the SMW as root user.

2. Use the chkconfig command to check the current status of the server:

smw:~ # chkconfig vnc
vnc off

3. Disable xinetd startup of Xvnc.

If the chkconfig command you executed in step 2 reports that Xvnc was
started by INET services (xinetd):

smw:~ # chkconfig vnc
vnc xinetd

Execute the following commands to disable xinetd startup of Xvnc
(xinetd startup of Xvnc is the SLES 11 default, but it usually is disabled by
chkconfig):

smw:~ # chkconfig vnc off
smw:~ # /etc/init.d/xinetd reload
Reload INET services (xinetd). done

If no other xinetd services have been enabled, the reload command will
return failed instead of done. If the reload command returns failed, this
is normal and you can ignore the failed notification.

4. Use the chkconfig command to start Xvnc at boot time:

smw:~ # chkconfig vnc on

5. Start the Xvnc server immediately:

smw:~ # /etc/init.d/vnc start

S–2393–5101 373

http://www.realvnc.com/
http://www.tightvnc.com/

Managing System Software for the Cray® Linux Environment

If the password for cray-vnc has not already been established, the system
prompts you for one. You must enter a password to access the server.

Password: ********
Verify:
Would you like to enter a view-only password (y/n)? n
xauth: creating new authority file /home/cray-vnc/.Xauthority

New 'X' desktop is smw-xt:1

Creating default startup script /home/cray-vnc/.vnc/xstartup
Starting applications specified in /home/cray-vnc/.vnc/xstartup
Log file is /home/cray-vnc/.vnc/smw-xt:1.log

smw:~ # ps -eda | grep vnc
1839 pts/0 00:00:00 Xvnc

Note: The startup script starts the Xvnc server for display :1.

To access the Xvnc server, use a VNC client, such as vncviewer,
tight_VNC, vnc4, or a web browser. Direct it to the SMW that is running
Xvnc. Many clients allow you to specify whether you want to connect in
view-only or in an active mode. If you choose active participation, every mouse
movement and keystroke made in your client is sent to the server. If more than
one client is active at the same time, your typing and mouse movements are
intermixed.

Note: Commands entered through the VNC client affect the system as if they
were entered from the SMW. However, the main SMW window and the VNC
clients cannot detect each other. It is a good idea for the administrator who is
sitting at the SMW to access the system through a VNC client.

Procedure 103. For workstation or laptop running Linux: Connecting to the VNC
server through an ssh tunnel, using the vncviewer -via option

Important: This procedure is for use with the TightVNC client program.

Verify that you have the vncviewer -via option available. If you do not, use
Procedure 104 on page 375.

• If you are connecting from a workstation or laptop running Linux, enter the
vncviewer command shown below.

The first password you enter is for crayadm on the SMW. The second password
you enter is for the VNC server on the SMW, which was set when the VNC server
was started for the first time using /etc/init.d/vnc start on the SMW.

/home/mary> vncviewer -via crayadm@smw localhost:1
Password: ********
VNC server supports protocol version 3.130 (viewer 3.3)
Password: ********
VNC authentication succeeded
Desktop name "cray-vnc's X desktop (smw:1)"
Connected to VNC server, using protocol version 3.3

374 S–2393–5101

Remote Access to the SMW [C]

Procedure 104. For workstation or laptop running Linux: Connecting to the VNC
server through an ssh tunnel

Note: This procedure assumes that the VNC server on the SMW is running with
the default port of 5901.

1. This ssh command starts an ssh session between the local Linux computer and
the SMW, and it also creates an SSH tunnel so that port 5902 on the localhost is
forwarded through the encrypted SSH tunnel to port 5901 on the SMW. You will
be prompted for the crayadm password on the SMW.

local_linux_prompt> ssh -L 5902:localhost:5901 smw -l crayadm
Password:
crayadm@smw>

2. Now vncviewer can be started using the local side of the SSH tunnel, which
is port 5902. You will be prompted for the password of the VNC server on the
SMW. This password was set when the VNC server was started for the first time
using /etc/init.d/vnc start on the SMW.

local_linux_prompt> vncviewer localhost:2
Connected to RFB server, using protocol version 3.7
Performing standard VNC authentication
Password:

The VNC window from the SMW appears. All traffic between the vncviewer
on the local Linux computer and the VNC server on the SMW is now encrypted
through the SSH tunnel.

Procedure 105. For workstation or laptop running Mac OS X: Connecting to
the VNC server through an ssh tunnel

Note: This procedure assumes that the VNC server on the SMW is running with
the default port of 5901.

1. This ssh command starts an ssh session between the local Mac OS X computer
and the SMW, and it also creates an SSH tunnel so that port 5902 on the
localhost is forwarded through the encrypted SSH tunnel to port 5901 on the
SMW. You will be prompted for the crayadm password on the SMW.

local_mac_prompt> ssh -L 5902:localhost:5901 smw -l crayadm
Password:
crayadm@smw>

2. Now vncviewer can be started using the local side of the SSH tunnel, which
is port 5902. You will be prompted for the password of the VNC server on the
SMW. This password was set when the VNC server was started for the first time
using /etc/init.d/vnc start on the SMW.

If you type this on the Mac OS X command line after having prepared the SSH
tunnel, the vncviewer will pop up:

local_mac_prompt% open vnc://localhost:5902

S–2393–5101 375

Managing System Software for the Cray® Linux Environment

The VNC window from the SMW appears. All traffic between the vncviewer
on the local Mac OS X computer and the VNC server on the SMW is now
encrypted through the SSH tunnel.

Procedure 106. For workstation or laptop running Windows: Connecting to
the VNC server through an ssh tunnel

Note: If you are connecting from a computer running Windows, then both a
VNC client program, such as TightVNC and an SSH program, such as PuTTY,
SecureCRT, or OpenSSH are recommended.

1. The same method described in Procedure 104 can be used for computers running
the Windows operating system.

Although TightVNC encrypts VNC passwords sent over the network, the rest
of the traffic is sent unencrypted. To avoid a security risk, install and configure
an SSH program that creates an SSH tunnel between TightVNC on the local
computer (localhost port 5902) and the remote VNC server (localhost port
5901).

Note: Details about how to create the SSH tunnel vary amongst the different
SSH programs for Windows computers.

2. After installing TightVNC, start the VNC viewer program by double-clicking
on the TightVNC icon. Enter the hostname and VNC screen number,
localhost:number (such as, localhost:2 or localhost:5902), and
then click on the Connect button.

376 S–2393–5101

Updating the Time Zone [D]

When you install the Cray Linux Environment (CLE) operating system, the Cray
system time is set at US/Central Standard Time (CST), which is six hours behind
Greenwich Mean Time (GMT). You can change this time.

Note: When a Cray system is initially installed, the time zone set on the SMW is
copied to the boot root, shared root and CNL boot images.

To change the time zone on the SMW, L0 controller, L1 controller, boot root, shared
root, or for the compute node image, follow the appropriate procedure below.

Procedure 107. Changing the time zone for the SMW and the blade and cabinet
controllers

Warning: Perform this procedure while the Cray system is shut down; do not flash
blade and cabinet controllers while the Cray system is booted.

You must be logged on as root. In this example, the time zone is changed from
"America/Chicago" to "America/New_York".

1. Ensure the blade and cabinet controllers are responding. For example:

smw:~ # xtalive -a l0sysd s0

2. Check the current time zone setting for the SMW and controllers.

smw:~ # date
Wed Aug 01 21:30:06 CDT 2012

smw:~ # xtrsh -l root -s /bin/date s0
c0-0c0s2 : Wed Aug 01 21:30:51 CDT 2012
c0-0c0s5 : Wed Aug 01 21:30:51 CDT 2012
c0-0c0s7 : Wed Aug 01 21:30:51 CDT 2012
c0-0c1s1 : Wed Aug 01 21:30:51 CDT 2012
.
.
.
c0-0 : Wed Aug 01 21:30:52 CDT 2012

3. Verify that the zone.tab file in the /usr/share/zoneinfo directory
contains the time zone you want to set.

smw:~ # grep America/New_York /usr/share/zoneinfo/zone.tab
US +404251-0740023 America/New_York Eastern Time

S–2393–5101 377

Managing System Software for the Cray® Linux Environment

4. Create the time conversion information files.

smw:~ # date
Wed Aug 01 21:32:52 CDT 2012
smw:~ # /usr/sbin/zic -l America/New_York
smw:~ # date
Wed Aug 01 22:33:05 EDT 2012

5. Modify the clock file in the /etc/sysconfig directory to set the
DEFAULT_TIMEZONE and the TIMEZONE variables to the new time zone.

smw:/etc/sysconfig # grep TIMEZONE /etc/sysconfig/clock
TIMEZONE="America/Chicago"
DEFAULT_TIMEZONE="US/Eastern"
smw:~ # vi /etc/sysconfig/clock
make changes
smw:~ # grep TIMEZONE /etc/sysconfig/clock
TIMEZONE="America/New_York"
DEFAULT_TIMEZONE="US/Eastern"

6. Copy the /etc/localtime file to /opt/tfptboot, and then restart the
log system and rsms.

smw:~ # cp /etc/localtime /opt/tftpboot
smw:~ # /etc/init.d/cray-syslog restart
smw:~ # /etc/init.d/rsms restart

For Cray XC30 systems, continue with step 7.

7. For Cray XC30 systems only: Reboot the cabinet controllers to get the updated
time zone.

a. Power down the system.

smw:~ # xtcli power down s0

b. Reboot the cabinet controllers, then ensure that all cabinet controllers are up.

smw:~ # xtccreboot -c all
xtccreboot: reboot sent to specified CCs
smw:~ # xtalive -l cc

c. Power up the system.

smw:~ # xtcli power up s0

d. Exit from the root login.

smw:~ # exit

8. Bounce the system.

crayadm@smw:~> xtbounce s0

Procedure 108. Changing the time zone on the boot root and shared root

Perform the following steps to change the time zone. You must be logged on as
root. In this example, the time zone is changed from "America/Chicago"
to "America/New_York".

378 S–2393–5101

Updating the Time Zone [D]

1. Confirm the time zone setting on the SMW.

smw:~ # cd /etc/sysconfig
smw:/etc/sysconfig # grep TIMEZONE clock
TIMEZONE="America/New_York"
DEFAULT_TIMEZONE="US/Eastern"

2. Log on to the boot node.

smw:/etc/sysconfig # ssh root@boot
boot:~ #

3. Verify that the zone.tab file in the /user/share/zoneinfo directory
contains the time zone you want to set.

boot:~ # cd /usr/share/zoneinfo
boot:/usr/share/zoneinfo # grep America/New_York zone.tab
US +404251-0740023 America/New_York Eastern Time

4. Create the time conversion information files.

boot:/usr/share/zoneinfo # date
Mon Jul 30 22:50:52 CDT 2012
boot:/usr/share/zoneinfo # /usr/sbin/zic -l America\New_York
boot:/usr/share/zoneinfo # date
Mon Jul 30 23:59:38 EDT 2012

5. Modify the clock file in the /etc/sysconfig directory to set the
DEFAULT_TIMEZONE and the TIMEZONE variables to the new time zone.

boot:/usr/share/zoneinfo # cd /etc/sysconfig
boot:~ # grep TIMEZONE clock
TIMEZONE="America/Chicago"
DEFAULT_TIMEZONE="US/Eastern"
boot:~ # vi clock
make changes
boot:~ # grep TIMEZONE clock
TIMEZONE="America/New_York"
DEFAULT_TIMEZONE="US/Eastern"

6. Switch to the default view by using xtopview.

Note: If the SDB node has not been started, you must include the -x
/etc/opt/cray/sdb/node_classes option when you invoke the
xtopview command.

boot:~ # xtopview
default/:/ #

7. Verify that the zone.tab file in the /user/share/zoneinfo directory
contains the time zone you want to set.

default/:/ # grep America/New_York /usr/share/zoneinfo zone.tab
US +404251-0740023 America/New_York Eastern Time

S–2393–5101 379

Managing System Software for the Cray® Linux Environment

8. Create the time conversion information files.

default/:/ # date
Mon Jul 30 23:10:52 CDT 2012
default/:/ # /usr/sbin/zic -l America/New_York
default/:/ # date
Tue Jul 31 00:11:38 EDT 2012

9. Modify the clock file in the /etc/sysconfig directory to set the
DEFAULT_TIMEZONE and the TIMEZONE variables to the new time zone.

default/:/ # cd /etc/sysconfig
default/:/etc/sysconfig # grep TIMEZONE clock
TIMEZONE="America/Chicago"
DEFAULT_TIMEZONE="US/Eastern"
default/:/etc/sysconfig # vi clock
make changes
default/:/etc/sysconfig # grep TIMEZONE clock
TIMEZONE="America/New_York"
DEFAULT_TIMEZONE="US/Eastern"

10. Exit xtopview.

default/:/etc/sysconfig # exit
boot:/usr/share/zoneinfo #

Procedure 109. Changing the time zone for compute nodes

1. Exit from the boot node and confirm the time zone setting on the SMW.

boot:/usr/share/zoneinfo # exit
smw:/etc/sysconfig # grep TIMEZONE clock
TIMEZONE="America/New_York"
DEFAULT_TIMEZONE="US/Eastern"

2. Copy the new /etc/localtime file from the SMW to the bootimage template
directory.

smw:/etc/sysconfig # cp -p /etc/localtime \
/opt/xt-images/templates/default/etc/localtime

3. Copy the new /usr/share/zoneinfo file from the SMW to the bootimage
template directory. The directory to contain the time zone file must be created in
the bootimage template area.

smw:/etc/sysconfig # mkdir -p \
/opt/xt-images/templates/default/usr/share/zoneinfo/America
smw:~# cp -p /usr/share/zoneinfo/America/New_York \
/opt/xt-images/templates/default/usr/share/zoneinfo/America/New_York

Note: This procedure enables a single time zone for the compute nodes. If
users will be setting the TIMEZONE variable to time zones which are not the
system default, you may wish to either copy a few of the common time zones
used by the user community or the entire /usr/share/zoneinfo directory
to the /opt/xt-images/templates/default/ area.

380 S–2393–5101

Updating the Time Zone [D]

4. Update the boot image to include these changes; follow the steps in Procedure
2 on page 66.

The time zone is not changed until you boot the compute nodes with the updated
boot image.

S–2393–5101 381

Managing System Software for the Cray® Linux Environment

382 S–2393–5101

Creating Modulefiles [E]

This appendix provides a template and an example of a modulefile that you can use as
you construct modulefiles for your site.

E.1 Modulefile Template
The following listing provides a template of the elements required in a modulefile.
Use this as your guide when creating your own modulefiles.

#%Module##
#
Generic modulefile template
#

###
Add your verbiage into ModulesHelp area. This information
will be seen by those invoking
module help [my_product]
###

proc ModulesHelp { } {
puts stderr "This modulefile defines the library paths and"
puts stderr "include paths needed to use "
puts stderr "[my_product]."
puts stderr ""
}

###
[my_product] is the name consistently used in the modulefile
to set environment variables. It may be the same name as
the modulefile and the rpm, however the modulefile and rpm
will be named in a lower case name while [my_product] should
be upper case, i.e. "module load acml" and ACML_DIR.
###

set is_module_rm [module-info mode remove]

###
If [my_product] will not be versioned, then set
[my_product]_CURPATH to the location of [my_product].
If you use versions, then you only need to change one
number as you create a module for another product version.
###

set [my_product]_LEVEL [product-version]
set [my_product]_CURPATH /opt/[installed-product-name]/$[my_product]_LEVEL

S–2393–5101 383

Managing System Software for the Cray® Linux Environment

setenv [my_product]_DIR $[my_product]_CURPATH

###
Add your executable to PATH.
###
#prepend-path PATH $[my_product]_CURPATH/bin

###
Add your dynamic library path. This is *NOT* for statically built
libraries. For those use [my_product]_POST_LINK_OPTS below.
###
#prepend-path LD_LIBRARY_PATH $[my_product]_CURPATH/lib

###
Add MANPATH and INFOPATH
###
if { [file isdirectory $[my_product]_CURPATH/info] == 1} {
prepend-path INFOPATH $[my_product]_CURPATH/info

}

if { [file isdirectory $[my_product]_CURPATH/man] == 1} {
prepend-path MANPATH $[my_product]_CURPATH/man]

}

###
To make our product work in commandline generation, you must
add [my_product] to the PE_PRODUCT_LIST. The options for the products listed
in PE_PRODUCT_LIST will display
on the command line in reverse order. For example, if PE_PRODUCT_LIST is X:Y, the \
compile/link command line
will contain:
"... <options for product Y> <options for product X> ..."

###
append-path PE_PRODUCT_LIST [my_product]

###
The following 5 *_OPTS environment variables allow placement of compiler
commandline options. The PRE and POST in the names refers to
the location before or after the user-specified arguments.
Remember that, in general, the linker evaluates its commandline from left
to right, but the compiler generally uses the last argument in the list.
The commandline is created for you in this order:
cc [PRE_COMPILE_OPTS] [PRE_LINK_OPTS] user_args [POST_COMPILE_OPTS] \
[POST_LINK_OPTS] [INCLUDE_OPTS]
###

###
Compiler options. The first character in this list must be a
space and the list must be double quoted.
#
You can define a fortran modules path for pgi-compiled files by adding it
as a "-I' options to [my_product]_PRE_COMPILE_OPTS.

#setenv [my_product]_PRE_COMPILE_OPTS
#setenv [my_product]_POST_LINK_OPTS

###

384 S–2393–5101

Creating Modulefiles [E]

Options passed to the linker, including
-L paths and -l library names. The -L and -l are used for statically built
libraries. The first character in the list must be a space and the list
must be double quoted. The -L and -l arguments should be added to
[my_product]_POST_LINK_OPTS.

#setenv [my_product]_PRE_LINK_OPTS
#setenv [my_product]_POST_COMPILE_OPTS

#
Include search path
#

#setenv [my_product]_INCLUDE_OPTS

Example 123. Modulefile example

This example shows a product, kate, with library files libkate.a and
libkit.a, which were built with 64-bit PGI. Naming directories pgi64 helps keep
track of library formats. You can create whatever directory structure works for you.
Likewise, naming the modulefile kate-pgi tells a potential user that this would
be loaded when compiling using PGI.

#%Module##
#
kate-pgi modulefile
#

proc ModulesHelp { } {
puts stderr "This modulefile defines the library paths and"
puts stderr "include paths needed to use the pgi-compiled kate."
puts stderr "Libraries -libkate.a, libkit.a, libkate.so and compiler"
puts stderr "option, -Mprof=mpi, are added. The utility run-kate"
puts stderr "is added to PATH."
}

###
The modulefile kate-gnu could load gnu-built kate libraries,
which are defined at $KATE_CURPATH/gnu64/lib
###

set is_module_rm [module-info mode remove]

set KATE_LEVEL 2.0
set KATE_CURPATH /opt/kate/$KATE_LEVEL

prepend-path PATH $KATE_CURPATH/bin
prepend-path LD_LIBRARY_PATH $KATE_CURPATH/pgi64/lib
prepend-path MANPATH $KATE_CURPATH/man

append-path PE_PRODUCT_LIST KATE

S–2393–5101 385

Managing System Software for the Cray® Linux Environment

###
Definitions for these must begin with a space.
Remember that in general the linker evaluates its command-line
options left to right, while the compiler takes the last one
it detects. You can define a Fortran modules path for pgi compiler
by adding it as a "-I" option to *_POST_COMPILE_OPTS.
###
setenv KATE_PRE_COMPILE_OPTS " -Mprof=mpi"
setenv KATE_POST_LINK_OPTS " -L $KATE_CURPATH/lib -lkate -lkit"
setenv KATE_POST_COMPILE_OPTS " -I $KATE_CURPATH/fortran_modules_dir"
setenv KATE_INCLUDE_OPTS " -I $KATE_CURPATH/include"

E.2 Sharing Your Modulefile
Add your modulefile to /opt/modulefiles or to another directory. If you
use another directory, you must add the path to your environment by using a
module use command; for example, module use /my/module/path.
To make the new modulefile path available to all users, edit the file
/opt/modules/init/.modulespath.

E.3 Modulefile Help
Using the module command, you can get online help about any module in your
system:

module help modulefile

386 S–2393–5101

PBS Professional Licensing for Cray
Systems [F]

F.1 Introduction
PBS Professional uses a licensing scheme based on a central license server
that allows licenses to float between servers. This reduces the complexity of
managing environments with multiple, independent PBS installations and simplifies
configuration when you run other software packages that use the same license
manager.

The PBS server and scheduler run on the Cray service database (SDB) node. By
default, the SDB node is only connected to the Cray system high-speed network
(HSN) and cannot access an external license server. Various options to set up network
connectivity between the license server and the SDB node are detailed below.
Determine which option is best suited to your needs and implement that solution prior
to installing the PBS Professional software from Altair.

Note: Regardless of the option chosen, you must run a PBS Professional MOM
daemon on each login node where users may launch jobs.

PBS Professional configuration options on a Cray system include:

• Running the PBS Professional server and scheduler on a Cray system service
node. If you choose to run the PBS Professional scheduler and server on a login
node, you should be aware that these daemons consume processor and memory
resources and have the potential to impact other processes running on the login
node. In addition, any service running on a node where users are allowed to run
processes increases the potential for interruption of that service. While these
risks are generally low, it is important that you consider them before selecting
this option. Refer to Migrating the PBS Professional Server and Scheduler on
page 388 to configure PBS Professional using this strategy.

• Moving the PBS Professional server and scheduler external to the Cray
system. The PBS Professional scheduler requests MPP data from one of the
MOM daemons running on the Cray system login nodes. The volume of this
data is dependent upon the size and utilization of the Cray system. If you run
the PBS Professional scheduler outside of the Cray system, the scheduler
cycle time could increase due to decreased bandwidth and increased latency in
network communication. In most cases, the difference in cycle time is negligible.

S–2393–5101 387

Managing System Software for the Cray® Linux Environment

However, if your system has larger node counts (> 8192), you may want to avoid
this option. To configure PBS Professional for this strategy, refer to Migrating the
PBS Professional Server and Scheduler on page 388.

• Configuring the SDB node as an RSIP client. This options allows you to leave
the PBS Professional scheduler and server on the SDB node. If you are already
running RSIP, this may be an attractive option. Cray recommends a dedicated
network node for the RSIP server, which may not be desirable if you are not
already running RSIP. Follow the appropriate procedure in Configuring RSIP to
the SDB Node on page 390 to configure the SDB node as an RSIP client.

• Configuring Network Address Translation (NAT) to forward IP packets to
and from the SDB node. This may be the best choice if you intend to use packet
forwarding exclusively for PBS Professional licensing and do not mind running
NAT services on a login node. The steps to configure NAT IP forwarding to the
SDB node are described in Network Address Translation (NAT) IP Forwarding
on page 393.

• Installing a network card in the SDB node to connect it to the external
network. With this option you do not need to configure RSIP or NAT, but you
must purchase a PCIe network interface card (NIC) for a modest cost. This is an
attractive option if you want to access the SDB node directly from your external
network. This procedure does not require connection through another node on
the Cray system. The steps to configure this option are covered in Installing and
Configuring a NIC on page 395.

Cray recommends that system administrators consult their local networking and
security staff prior to selecting one of these options. Once you have chosen and
configured a method for accessing the license server, complete the PBS Professional
license manager configuration as described in the Altair License Management System
Installation Guide. For additional information about using the qmgr command to
set up the pbs_license_file_location resource, see the PBS Professional
Installation and Upgrade Guide from Altair Engineering, Inc. For more information,
see: http://www.pbsworks.com.

F.2 Migrating the PBS Professional Server and Scheduler
Before migrating the PBS Professional server and scheduler off of the SDB node
you must first select the target host. PBS Professional versions 9.2 and beyond are
MPP aware, meaning they are capable of scheduling jobs to Cray systems. If you
already have a central PBS Professional server and scheduler, simply add the Cray
system to the list of nodes.

388 S–2393–5101

http://www.pbsworks.com

PBS Professional Licensing for Cray Systems [F]

The first step is to install PBS Professional on the Cray system as described in the
PBS Professional Installation and Upgrade Guide. The install procedure configures
the SDB node as the PBS Professional server and scheduler host. You must modify
the default configuration to ensure that the PBS Professional scheduler and server do
not start automatically on the SDB node.

Procedure 110. Migrating PBS off the SDB node

1. If the PBS scheduler and server are running on the SDB node, log on to the SDB
and stop the services.

sdb:~ # /etc/init.d/pbs stop

2. Log on to the Cray system boot node as root and unspecialize the PBS
Professional configuration file for the SDB node. For example, your SDB is node
3, type the following commands:

boot:~ # xtopview -m "Unspecialize pbs.conf on the SDB" -n 3
node/3:/ # xtunspec /etc/pbs.conf
node/3:/ # exit
boot:~ #

3. Edit the PBS Professional configuration file for the login nodes to point to the
new server. The new server may be one of the login nodes or a host external
to the Cray system. Set PBS_SERVER in /etc/pbs.conf to the new PBS
Professional server host. For example, if your server is named myserver, type the
following commands:

boot:~ # xtopview -m "Update pbs.conf for new server" -c login
class/login/: # vi /etc/pbs.conf
PBS_SERVER=myserver.domain.com
class/login/: exit
boot:~#

4. To migrate the server and scheduler to a login node and start PBS Professional
automatically at boot time, specialize the /etc/pbs.conf file for that node. If
the services are being moved to an external host, skip this step. For example, if
the node ID of the login node is 4, type the following commands:

boot:~ # xtopview -m "Specialize pbs.conf for new server" -n 4
node/4:/ # xtspec /etc/pbs.conf

5. Modify the /etc/pbs.conf file to start all of the PBS Professional services;
for example:

node/4:/ # vi /etc/pbs.conf
PBS_START_SERVER=1
PBS_START_SCHED=1
PBS_START_MOM=1

node/4:/ # exit
boot:~ #

6. Log on to each of the login nodes as root and modify the PBS Professional

S–2393–5101 389

Managing System Software for the Cray® Linux Environment

MOM configuration file /var/spool/PBS/mom_priv/config. Change
the $clienthost value to the name of the new PBS Professional server. For
example, if your server is named myserver, type the following commands:

login2:~ # vi /var/spool/PBS/mom_priv/config
$clienthost myserver.domain.com

7. After the configuration file has been updated, restart PBS Professional on each
login node.

login2:~ # /etc/init.d/pbs restart

Note: This command starts the PBS Professional scheduler and server if you
have migrated them to a login node.

8. Log on to the new PBS Professional server host and add a host entry for each
of the login nodes.

myserver:~ # qmgr
Qmgr: create node mycrayxt1
Qmgr: set node mycrayxt1 resources_available.mpphost=xthostname
Qmgr: create node mycrayxt2
Qmgr: set node mycrayxt2 resources_available.mpphost=xthostname
Qmgr: exit
myserver:~

At this point, the login nodes should be visible to the PBS Professional server.

F.3 Configuring RSIP to the SDB Node
Follow the instructions in this section to configure the SDB node as an RSIP client.
Once the SDB node is configured as an RSIP client, refer to the Altair License
Management System Installation Guide for detailed instructions about obtaining and
installing the appropriate license manager components.

If you have not configured RSIP on your system, follow Procedure 111 on page 391
to generate a simple RSIP configuration with a single server and only the SDB node
as a client.

Using the CLEinstall Program to Install and Configure RSIP on page 218
includes procedures to configure RSIP on a Cray system using the CLEinstall
installation program. If you have already configured RSIP using these procedures
during your Cray Linux Environment (CLE) installation or upgrade, follow Procedure
112 on page 392 to add the SDB node as an RSIP client for one of your existing
RSIP servers.

For additional information on configuring RSIP services, see Configuring
Realm-specific IP Addressing (RSIP) on page 217.

390 S–2393–5101

PBS Professional Licensing for Cray Systems [F]

Procedure 111. Creating a simple RSIP configuration with the SDB node as a
client

Important: Cray strongly recommends Procedure 49 on page 219 for RSIP
configuration.

1. Boot the system as normal. Ensure all the service nodes are available, and ensure
that the system is setup to allow password-less ssh access for the root user.

2. Select a service node to run the RSIP server. The RSIP server node must have
external Ethernet connectivity and must not be a login node. In this example the
physical ID for the RSIP server is c0-0c0s6n1.

3. Specialize the rsipd.conf file by node ID and install the rsip.conf file to
the shared root. Additionally, tune the RSIP servers by updating the associated
sysctl.conf file. Invoke the following steps for the RSIP server node.

a. Log on to the boot node and invoke xtopview in the node view.

boot:~ # xtopview -n c0-0c0s6n1
node/c0-0c0s6n1:/ #

b. Specialize /etc/opt/cray/rsipd/rsipd.conf for the specified
node.

node/c0-0c0s6n1:/ # xtspec /etc/opt/cray/rsipd/rsipd.conf

c. Copy the rsip.conf template file from the SMW to the shared root.

node/c0-0c0s6n1:/ # scp crayadm@smw:/opt/cray-xt-rsipd/default/etc/rsipd.conf.example \
/etc/opt/cray/rsipd/rsipd.conf

d. Modify the port_range, ext_if and max_clients parameters in the
rsipd.conf file as follows:

node/c0-0c0s6n1:/ # vi /etc/opt/cray/rsipd/rsipd.conf
port_range 8192-60000
max_clients 2
Uncomment:
ext_if eth0

Note: If your external Ethernet interface is not eth0, modify ext_if
accordingly. For example,

ext_if eth1

e. Specialize the /etc/sysctl.conf file and modify the OS port range so
that it does not conflict with the RSIP server.

node/c0-0c0s6n1:/ # xtspec /etc/sysctl.conf
node/c0-0c0s6n1:/ # vi /etc/sysctl.conf
net.ipv4.ip_local_port_range = 60001 61000

S–2393–5101 391

Managing System Software for the Cray® Linux Environment

f. If the specified RSIP server is using a 10GbE interface, update the
default socket buffer settings by modifying the following lines in the
sysctl.conf file.

net.ipv4.tcp_timestamps = 0
net.ipv4.tcp_sack = 0
net.core.rmem_max = 524287
net.core.wmem_max = 524287
net.core.rmem_default = 131072
net.core.wmem_default = 131072
net.ipv4.tcp_rmem = 131072 1000880 9291456
net.ipv4.tcp_wmem = 131072 1000880 9291456
net.ipv4.tcp_mem = 131072 1000880 9291456

g. Update the udev rules to skip the ifup of the rsip interfaces
as they are created. Add rsip* to the list of interface names for
GOTO="skip_ifup".

node/c0-0c0s6n1:/ # xtspec /etc/udev/rules.d/31-network.rules
node/c0-0c0s6n1:/ # vi /etc/udev/rules.d/31-network.rules
SUBSYSTEM=="net", ENV{INTERFACE}=="rsip*|ppp*|ippp*|isdn*|plip*|lo*|irda*| \
dummy*|ipsec*|tun*|tap*|bond*|vlan*|modem*|dsl*", GOTO="skip_ifup"

h. Exit the xtopview session.

node/c0-0c0s6n1:/ # exit

4. Update the boot automation script to start the RSIP client on the SDB node. This
line is simply a modprobe of the krsip module with the IP argument pointing
to the HSN IP address of the RSIP server node; place the new line towards the
end of the file, immediately before any 'motd' or 'ip route add' lines.
For example, if the IP address of the RSIP server is 10.128.0.14, type the
following commands.

crayadm@smw:~> vi /opt/cray/etc/auto.xthostname
RSIP client startup
lappend actions { crms_exec_via_bootnode "sdb" "root" "modprobe krsip
ip=10.128.0.14 rsip_local_ports=1" }

Procedure 112. Adding the SDB node as an RSIP client to an existing RSIP
configuration

1. Select one of your RSIP servers to provide RSIP access for the SDB node. In this
example, we have chosen the RSIP server with the physical ID c0-0c0s6n1.

2. Log on to the boot node and invoke xtopview in the node view for the RSIP
server you have selected.

boot:~ # xtopview -n c0-0c0s6n1
node/c0-0c0s6n1:/ #

392 S–2393–5101

PBS Professional Licensing for Cray Systems [F]

3. Modify the max_clients parameters in the rsipd.conf file; Add 2 more
clients to make room for the new SDB node. For example, if you configured 300
RSIP clients (compute nodes), type the following:

node/c0-0c0s6n1:/ # vi /etc/opt/cray/rsipd/rsipd.conf
max_clients 302

4. Update the boot automation script to start the RSIP client on the SDB node. Do
this after the line that starts the RSIP server. This line is simply a modprobe
of the krsip module with the IP argument pointing to the HSN IP address
of the RSIP server node. For example, if the IP address of the RSIP server is
10.128.0.14, type the following commands.

crayadm@smw:~> vi /opt/cray/etc/auto.xthostname
RSIP client startup
lappend actions { crms_exec_via_bootnode "sdb" "root" "modprobe krsip
ip=10.128.0.14 rsip_local_ports=1" }

F.4 Network Address Translation (NAT) IP Forwarding
Follow Procedure 113 on page 393 to configure NAT IP forwarding for the SDB
node.

Procedure 113. Configuring NAT IP forwarding for the SDB node

1. Select a login node to act as the NAT router. Cray recommends that you select the
node with the lowest load or network latency. For this example the login node is
named login2.

2. Log on to the node you have selected and invoke the ifconfig command to
obtain the IP address of the routing node.

If you have a Cray system with a Gemini-based, system interconnection network,
type this command:

login2:/ # ifconfig ipogif0
ipogif0 Link encap:Ethernet HWaddr 00:01:01:00:00:04

inet addr:10.128.0.3 Mask:255.252.0.0
inet6 addr: fe80::201:1ff:fe00:4/64 Scope:Link
UP RUNNING NOARP MTU:16000 Metric:1
RX packets:1543290 errors:0 dropped:0 overruns:0 frame:0
TX packets:1640783 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:1643894879 (1567.7 Mb) TX bytes:1446996661 (1379.9 Mb)

The IP address of the routing node is indicated as inet addr (in this case,
10.128.0.3).

3. Record the Ethernet interface used on this login node. For example:

login2:/ # netstat -r | grep default
default cfgw-12-hsrp.us 0.0.0.0 UG 0 0 0 eth0

S–2393–5101 393

Managing System Software for the Cray® Linux Environment

Following this example, use the Ethernet interface, eth0, in the NAT startup
script that is created in the next step.

4. Edit /etc/hosts on the shared root to include the external license server(s).
Add these entries prior to the first local Cray IP addresses; that is, before the
10.128.x.y entries. For example:

boot:~# xtopview
default/:/ # vi /etc/hosts
10.0.0.55 tic tic.domain.com
10.0.0.56 tac tac.domain.com
10.0.0.57 toe toe.domain.com
default/:/ # exit
boot:~#

5. In the same manner, edit /etc/hosts on the boot root to include entries for
the external license server(s).

boot:~# vi /etc/hosts
10.0.0.55 tic tic.domain.com
10.0.0.56 tac tac.domain.com
10.0.0.57 toe toe.domain.com

6. In the default xtopview view, create and/or edit the
/etc/init.d/local.start-nat file on the shared root, adding the
following text:

boot:~# xtopview
default/:/ # vi /etc/init.d/local.start-nat

#!/bin/bash
BEGIN INIT INFO
Provides: local.start-nat
Required-Start:
Required-Stop:
Default-Start:
Default-Stop:
Description: Set up NAT IP forwarding
END INIT INFO

echo "Setting up NAT IP forwarding."
echo 1 > /proc/sys/net/ipv4/ip_forward
iptables -t nat -F
iptables -A FORWARD -i eth0 -o ipogif0 -m state --state ESTABLISHED,RELATED -j ACCEPT
iptables -A FORWARD -i ipogif0 -o eth0 -j ACCEPT
iptables -A FORWARD -j LOG
iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE

7. Add execute permissions to the local.start-nat file:

default/:/ # chmod 755 /etc/init.d/local.start-nat

8. Exit the xtopview session.

default/:/ # exit
boot:~#

394 S–2393–5101

PBS Professional Licensing for Cray Systems [F]

9. Log on as root to the selected router node and start the NAT service. Use the
iptables command to verify that forwarding is active.

login2:~ # /etc/init.d/local.start-nat
login2:~ # iptables -L -n
Chain INPUT (policy ACCEPT)
target prot opt source destination

Chain FORWARD (policy ACCEPT)
target prot opt source destination
ACCEPT all -- 0.0.0.0/0 0.0.0.0/0 state RELATED,ESTABLISHED
ACCEPT all -- 0.0.0.0/0 0.0.0.0/0
LOG all -- 0.0.0.0/0 0.0.0.0/0 LOG flags 0 level 4

Chain OUTPUT (policy ACCEPT)
target prot opt source destination
login2:~ #

10. Add a new default route on the SDB node. Ensure that this route does not
currently exist. For example, if the routing node IP interface you identified in
step 2 is 10.128.0.3, type this command:

login2:~ # ssh sdb /sbin/route add default gw 10.128.0.3

11. Test the new route by invoking the ping command and ensuring the service node
can access external servers by name.

12. Edit the boot automation script to Configure NAT services. For example, if the IP
address you identified in step 2 is 10.128.0.3:

smw:~# vi /opt/cray/etc/auto.xthostname

Add the following lines just prior to the ALPS/PBS startup:

lappend actions { crms_exec_via_bootnode "login2" "root" \
"/etc/init.d/local.start-nat" }
lappend actions { crms_exec_via_bootnode "sdb" "root" \
"/sbin/route add default gw 10.128.0.3" }

NAT services should now restart automatically upon the next reboot of the Cray
system.

F.5 Installing and Configuring a NIC
Obtain a PCIe compliant NIC. Intel 82546 based cards have been verified with Cray
system SDB nodes. Follow Procedure 114 on page 395 to install the network card in
the SDB node and connect it to the external network. Note that you are required to
reboot your system as part of this procedure.

Procedure 114. Installing and configuring a NIC on the SDB node

1. Prior to shutting the system down, perform the following steps on the boot node
to ensure the new NIC is configured upon the ensuing reboot. Invoke xtopview
in the node view for the SDB node. For example, if your SDB is node 3, the

S–2393–5101 395

Managing System Software for the Cray® Linux Environment

IP address to assign on the external network is 172.30.10.100, the appropriate
netmask is 255.255.0.0, and the default gateway IP is 172.30.10.1, type these
commands.

boot:~# xtopview -m "add eth0 interface" -n 3
node/3:/ # cd /etc/sysconfig/network
node/3:/ # xtspec ifcfg-eth0
node/3:/ # vi ifcfg-eth0
Add the following content to the ifcfg-eth0 file:
DEVICE="eth0"
BOOTPROTO="static"
STARTMODE="onboot"
IPADDR=172.30.10.100
NETMASK=255.255.0.0
node/3:/ # touch routes
node/3:/ # xtspec routes
node/3:/ # echo 'default 172.30.10.1 - -' >routes
node/3:/ # exit
boot:~ #

2. Edit the /etc/hosts file on the shared root and add entries for the external
license server(s). For example:

boot:~# xtopview
default/:/ # vi /etc/hosts
Add these entries prior to the first local Cray system IP addresses; that is, before the 192.168.x.y entries.
10.0.0.55 tic tic.domain.com
10.0.0.56 tac tac.domain.com
10.0.0.57 toe toe.domain.com

default/:/ # exit
boot:~# exit

3. Shut down the system.

smw:~# xtbootsys -s last -a auto_xtshutdown

4. Power down the slot where the SDB node is installed. For example:

smw:~# xtcli power down_slot -f c0-0c0s0

5. Pull the blade, physically insert the new NIC into the PCIe slot of the SDB node
and reinsert the blade into the slot.

6. Power up the slot where the SDB node is installed. For example:

smw:~# xtcli power up_slot -f c0-0c0s0

7. Connect the NIC to the Ethernet network on which the license server is
accessible.

8. Boot the Cray system.

396 S–2393–5101

PBS Professional Licensing for Cray Systems [F]

9. Log on to the SDB node and invoke the ifconfig command to confirm that the
SDB shows the new eth0 interface.

nid00003:~ # /sbin/ifconfig eth0
eth0 Link encap:Ethernet HWaddr 00:04:23:DF:4C:56

inet addr:172.30.10.100 Bcast:172.30.10.1 Mask:255.255.0.0
inet6 addr: 2001:408:4000:40c:204:23ff:fedf:4c56/64 Scope:Global
inet6 addr: 2600:805:100:40c:204:23ff:fedf:4c56/64 Scope:Global
inet6 addr: fe80::204:23ff:fedf:4c56/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:428807 errors:0 dropped:0 overruns:0 frame:0
TX packets:10400 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:34426088 (32.8 Mb) TX bytes:1292332 (1.2 Mb)
Base address:0x2fc0 Memory:fece0000-fed00000

10. Confirm that you can ping the license server from the SDB node.

nid00003:~ # ping tic.domain.com

S–2393–5101 397

Managing System Software for the Cray® Linux Environment

398 S–2393–5101

Installing RPMs [G]

A variety of software packages are distributed as standard Linux RPM Package
Manager (RPM) packages. RPM packages are self-contained installation files that
must be executed with the rpm command in order to create all required directories
and install all component files in the correct locations.

G.1 Generic RPM Usage
To install RPMs on a Cray system, you must use xtopview on the boot node to
access and modify the shared root. The rpm command is not able to modify the
RPM database from a login node or other service node; the root directory is read-only
from these nodes.

Any changes to the shared root apply to all service nodes. If the RPM you are
installing modifies files in /etc, you must invoke xtopview to perform any class
or node specialization that may be required. xtopview specialization applies only
to /etc in the shared root.

For some Cray distributed RPMs, you can set the CRAY_INSTALL_DEFAULT
environment variable to configure the new version as the default. Set this variable
before you install the RPM. For more information, see the associated installation
guide.

For more information on installing RPMs, see the xtopview(8) man page and the
installation documentation for the specific software package you are installing.

S–2393–5101 399

Managing System Software for the Cray® Linux Environment

Example 124. Installing an RPM on the SMW

As root, use the following command:

smw:~# rpm -ivh /directorypath/filename.rpm

Example 125. Installing an RPM on the boot node root

As root, use the following command:

boot:~ # rpm -ivh /directorypath/filename.rpm

Example 126. Installing an RPM on the shared root

As root, use the following commands:

Note: If the SDB node has not been started, you must include the -x
/etc/opt/cray/sdb/node_classes option when you invoke the
xtopview command.

boot:~ # cp -a /tmp/filename.rpm /rr/current/software
boot:~ # xtopview
default/:/ # rpm -ivh /software/filename.rpm

400 S–2393–5101

Sample LNET Router Controller Script [H]

#Lnet.rc
#!/bin/bash
#
$Id: lnet.rc bogl Exp $
#
BEGIN INIT INFO
Provides: lnet
Required-Start: $network openibd
Required-Stop: $network openibd
X-UnitedLinux-Should-Start:
Default-Start: 3
Default-Stop: 0 1 2 5 6
Description: Enable lnet routers
END INIT INFO
#set -x
PATH=/bin:/usr/bin:/usr/sbin:/sbin:/opt/cray/lustre-cray_ari_s/default/sbin
. /etc/rc.status
rc_reset
case "$1" in

start)
echo -n "Starting lnet "
modprobe lnet
lctl net up > /dev/null
rc_status -v
;;

stop)
echo -n "Stopping lnet "
lctl net down > /dev/null
lustre_rmmod || true
rc_status -v
;;

restart)
$0 stop
$0 start
rc_status
;;

*)
echo "Usage: $0 {start|stop|restart}"
exit 1
;;

esac
rc_exit

S–2393–5101 401

Managing System Software for the Cray® Linux Environment

402 S–2393–5101

Enabling an Integrated Dell™ Remote
Access Controller (iDRAC6) on a Rack-mount

SMW [I]

Enabling an Integrated Dell Remote Access Controller (iDRAC6) allows you to
manage your rack-mount SMW remotely.

I.1 Before You Start
Before you enable an iDRAC6 on a rack-mount SMW, you must:

• Have physical access to the SMW console

• Know your iDRAC6 IP address, subnet mask, and default gateway.

• Know your SMW root account password

• Have Java™ installed on your SMW console

I.2 Enabling an Integrated Dell Remote Access Controller
(iDRAC6) on a Rack-mount SMW

Procedure 115. Changing a R815 slave node's BIOS and iDRAC settings

Use the following procedure to change the BIOS and iDRAC settings on a Dell
R815 system.

1. Power up the slave node. When the BIOS power-on self-test (POST) process
begins, quickly press the F2 key after the following messages appear in the
upper-right of the screen.

F2 = System Setup
F10 = System Services

F11 = BIOS Boot Manager
F12 = PXE Boot

When the F2 keypress is recognized, the F2 = System Setup line changes
to Entering System Setup.

2. Select Boot Settings, then press Enter.

S–2393–5101 403

Managing System Software for the Cray® Linux Environment

Figure 12. Dell 815 Boot Settings Menu

a. Select Boot Sequence, then press Enter to view the boot settings.

b. In the pop-up window, change the boot order so that the integrated NIC
appears first, before the optical (DVD) drive. The hard drive should be last on
the list.

Figure 13. Dell 815 Boot Sequence Menu

404 S–2393–5101

Enabling an Integrated Dell™ Remote Access Controller (iDRAC6) on a Rack-mount SMW [I]

Figure 14. Dell 815 Boot Sequence Settings

c. Press Enter to return to the BIOS Boot Settings screen.

3. Press Esc to return to the System Setup Menu, scroll down and select Integrated
Devices.

Figure 15. Dell 815 Integrated Devices (NIC) Settings

a. Set Embedded NIC 1 to Enabled with PXE.

b. Set Embedded Gb NIC 2 to Enabled.

c. Scroll down and set Embedded NIC 3 to Enabled.

S–2393–5101 405

Managing System Software for the Cray® Linux Environment

d. Set Embedded Gb NIC 4 to Enabled.

e. Press Esc to return to the System Settings Menu.

4. Change the serial communication settings.

Figure 16. Dell 815 Serial Communication BIOS Settings

a. Select Serial Communication.

b. Select Serial Communication and set it to On with Console Redirection
via COM2.

c. Select Serial Port Address and set it to Serial Device=COM1, Serial
Device2=COM2.

d. Set External Serial Connector, and set it to Remote Access Device.

e. Set Failsafe Baud Rate to 115200.

f. Press Esc to return to the System Setup Menu.

5. Select Embedded Server Management.

406 S–2393–5101

Enabling an Integrated Dell™ Remote Access Controller (iDRAC6) on a Rack-mount SMW [I]

Figure 17. Dell 815 Embedded Server Management Settings

a. Set Front-Panel LCD Options to User-Defined LCD String.

b. Set User-Defined LCD String to your login hostname, such as eslogin1.

Figure 18. Dell 815 User-defined LCD String Settings

6. Save your changes and exit.

a. Press Escape to exit the System Setup Main Menu.

b. The utility displays the prompt "Are you sure you want to exit and reboot?"
Select Yes.

S–2393–5101 407

Managing System Software for the Cray® Linux Environment

7. When the system reboots, press Ctrl-E to configure the iDRAC port settings.

www.dell.com

iDRAC6 Configuration Utility 1.60
Copyright 2011 Dell Inc. All Rights Reserved
Four 2.10 GHz Twelve-core Processors, L2/L3 Cache: 6 MB/10 MB
iDRAC6 FirmwareaRevisionHversion: 1.70.21
.
.
.'
IPv4 Stack : Enabled
IP Address : 10.148. 0 . 2
Subnet mask : 255.255. 0 . 0
Default Gateway : 0 . 0 . 0 . 0

Press <Ctrl-E> for Remote Access Setup within 5 sec......

a. Set the iDRAC6 LAN to ON.

b. Set IPMI Over LAN to ON.

Figure 19. Dell 815 DRAC LAN Parameters Settings

c. Select LAN Parameters and press Enter. Set the IPv4 address to next
available IP address on the esmaint-net network (10.148.0.x).

d. Press Esc to return to the iDRAC 6 menu, and Esc to exit and save.

408 S–2393–5101

Enabling an Integrated Dell™ Remote Access Controller (iDRAC6) on a Rack-mount SMW [I]

Figure 20. Dell 815 DRAC IPv4 Parameter Settings

Procedure 116. Enabling an Integrated Dell Remote Access Controller (iDRAC6)
on a rack-mount SMW

1. If the SMW is up, su to root and shut it down.

crayadm@smw:~> su - root
smw:~ # shutdown -h now;exit

2. Connect Ethernet cable to the iDRAC6 port. The cable is located on back of a
rack-mount SMW in the lower left corner.

3. Power up the SMW.

4. After the BIOS, Dell PowerEdge Expandable RAID Controller (PERC) card,
and disk map have displayed, the IPv4/IPv6 information displays. When the
IPv4/IPv6 information displays, press Ctrl-E.

5. Using the arrow keys, select Lan Parameters, then press Enter.

6. Select NIC Selection and set it to Dedicated. Then press Esc.

7. Using the arrow keys, scroll down and select the IPv4 settings section.

a. Ensure that IPv4 is enabled.

b. Confirm that the IPv4 address source is set to static:

IPv4 Address Source: Static

c. Enter your iDRAC6 IP addresses for the following:

• Address:
• Subnet Mask:
• Default Gateway:

d. Ensure that IPv6 is disabled.

S–2393–5101 409

Managing System Software for the Cray® Linux Environment

e. Press Esc and return to the Lan Parameters window.

8. Using the arrow keys, select Lan User Configuration, then press Enter.

Note: This configuration is for both ssh and web browser access to the
iDRAC.

a. Enter the root account name and iDRAC password. (See the table
of Default System Passwords in Installing Cray System Management
Workstation (SMW) Software.)

Account User name: root
Enter Password: ******
Confirm Password: ******

b. Press Esc.

9. Press Esc again.

10. Select Save Changes and Exit, then press Enter. The SMW will complete
booting up; no user intervention is required.

Procedure 117. Changing the default iDRAC Password

1. Log into the web interface as root.

2. Select iDRAC settings on the left-hand bar.

3. Select network/Security on the main top bar.

4. Select Users on the secondary top bar.

5. Select the user whose password you are changing. For example, userid 2 and
username root.

6. Select Configure User, then Next.

7. Type the new password into the New Password and Confirm New Password
text boxes.

8. Select Apply to complete the password change.

I.3 Using the iDRAC6
Procedure 118. Using the iDRAC6

1. Bring up a web browser.

2. Go to: https://cray-drac. A login screen appears.

3. Enter the account user name and password that you set up in Procedure 116 on
page 409, step 8.a. Then click on Submit.

The System Summary window appears.

410 S–2393–5101

Enabling an Integrated Dell™ Remote Access Controller (iDRAC6) on a Rack-mount SMW [I]

4. To access the SMW console, click on the Console Media tab.

The Virtual Console and Virtual Media window appears.

5. Click on Launch Virtual Console.

Tip: By default, your console window has two cursors: one for the console and
one for your own windowing environment. To switch to single-cursor mode, click
on Tools, then Single Cursor. This single cursor will not move outside the console
window. To exit single-cursor mode, press the F9 key.

Tip: To logout of the virtual console, kill the window or click on File, then Exit.
You will still be logged into the iDRAC6 in your web browser.

For detailed information, download the iDRAC6 documentation at:

http://goo.gl/4Jm4T

S–2393–5101 411

http://www.dell.com/support/Manuals/us/en/19/Product/integrated-dell-remote-access-cntrllr-6-for-monolithic-srvr-v1.7

Managing System Software for the Cray® Linux Environment

412 S–2393–5101

Rack-mount SMW: Replacing a Failed
LOGDISK or DBDISK Disk Drive [J]

J.1 Rack-mount SMW: Replacing a Failed LOGDISK or DBDISK
Disk Drive

Warning: You must be running the SUSE Linux Enterprise Server version 11
Service Pack 2 (SLES 11 SP2) or Service Pack 3 (SLES 11 SP3) SMW base
operating system and a release of SMW 7.0 or later on your SMW in order to
perform the procedures in this chapter.

Procedure 119. Rack-mount SMW: Replacing a failed LOGDISK or DBDISK disk
drive

Note: This procedure specifies replacing the LOGDISK disk. If you are replacing
the DBDISK, use the appropriate /dev/disk/by-path/pci* device name.

1. Replace the failed drive with the new drive.

2. Reboot the SMW.

smw:~ # reboot

3. Reconfigure LOGDISK.

smw:~ # /sbin/fdisk
/dev/disk/by-path/pci-0000:05:00.0-sas-phy4-0x4433221104000000-lun-0
Command (m for help): p

a. Delete all the current partitions, if there are any.

Command (m for help): d
Partition number 4
Command (m for help): d
Partition number 3
Command (m for help): d
Partition number 2
Command (m for help): d
Partition number 1
Command (m for help): p

S–2393–5101 413

Managing System Software for the Cray® Linux Environment

b. Create the new, single partition.

Command (m for help): n
Command action
e extended
p primary partition (1-4)

p
Partition number (1-4): 1
First cylinder (1-121601, default 1): # Hit return, take the default
Using default value 1
Last cylinder, +cylinders or +size{K,M,G} (1-121601, default 121601):
Hitreturn, take the default
Using default value 121601

Command (m for help): p

Disk /dev/disk/by-path/pci-0000:05:00.0-sas-phy4-0x4433221104000000-lun-0:1000.2 GB, \
1000204886016 bytes
255 heads, 63 sectors/track, 121601 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes
Disk identifier: 0x00000083

Device Boot Start End Blocks Id System
/dev/disk/by-path/pci-0000:05:00.0-sas-phy4-0x4433221104000000-lun-0-part1 1 121601 976760001 83 Linux

Command (m for help): w
The partition table has been altered!

Calling ioctl() to re-read partition table.
Syncing disks.

4. Recreate the file system.

smw:~ # mkfs -t ext3 -b 4096
/dev/disk/by-path/pci-0000:05:00.0-sas-phy4-0x4433221104000000-lun-0-part1

5. Mount the newly created file system.

smw:~ # mount /dev/disk/by-path/pci-0000:05:00.0-sas-phy4-0x4433221104000000\
-lun-0-part1/var/opt/cray/disk/1

6. The symbolic links should already be there to link this to
/var/opt/cray/log.

smw:~ # ls -al /var/opt/cray

7. Create the following new directories:

smw:~> mkdir /var/opt/cray/disk/1/log
smw:~> mkdir /var/opt/cray/disk/1/debug
smw:~> mkdir /var/opt/cray/disk/1/dump

8. Restart the rsms and mazama daemons.

smw:~ # /etc/init.d/rsms restart
smw:~ # /etc/init.d/cray-mzsd restart
smw:~ # /etc/init.d/cray-mzwatcher restart
smw:~ # /etc/init.d/dbMonitor restart

414 S–2393–5101

	Managing System Software for the Cray® Linux Environment
	Changes to this Document
	Introduction [1]
	1.1 Audience for This Guide
	1.2 Cray System Administration Publications
	1.3 Related Publications

	Introducing System Components [2]
	2.1 System Management Workstation (SMW)
	2.2 Cray Linux Environment (CLE)
	2.3 Boot Root File System
	2.4 Shared Root File System
	2.5 Service Nodes
	2.5.1 Boot Node
	2.5.2 Service Database (SDB) Node
	2.5.3 Syslog Node
	2.5.4 Login Nodes
	2.5.5 Network Nodes
	2.5.6 I/O Nodes
	2.5.7 Services on the Service Nodes
	2.5.7.1 Resiliency Communication Agent (RCA)
	2.5.7.2 Lustre File System
	2.5.7.3 Cray Data Virtualization Service (Cray DVS)
	2.5.7.4 ALPS for Compute Nodes
	2.5.7.5 Cluster Compatibility Mode
	2.5.7.6 Repurposing CNL Compute Nodes as Service Nodes
	2.5.7.7 IP Implementation

	2.6 Compute Nodes
	2.7 Job Launch Commands
	2.8 Node Health Checker (NHC)
	2.9 Comprehensive System Accounting (CSA)
	2.10 Optional Workload-management (Batch) System Software Product
	2.11 Hardware Supervisory System (HSS)
	2.11.1 HSS Network
	2.11.2 HSS Interface
	2.11.3 Blade Controllers and Cabinet Controllers
	2.11.4 NTP Server
	2.11.5 Event Router
	2.11.6 HSS Managers
	2.11.6.1 State Manager
	2.11.6.2 Boot Manager
	2.11.6.3 System Environmental Data Collections (SEDC) Manager
	2.11.6.4 NID Manager

	2.11.7 Automatically Discover and Configure Cray System Hardware
	2.11.8 Cray System Network Routing Utility
	2.11.9 Log Files
	2.11.9.1 Event Logs
	2.11.9.2 Boot Logs
	2.11.9.3 Dump Logs

	2.12 SEC Software for Log Monitoring and Event Processing
	2.13 Storage
	2.14 Other Administrative Information
	2.14.1 Identifying Components
	2.14.1.1 Physical ID
	2.14.1.2 Node ID (NID)
	2.14.1.3 Class Name

	2.14.2 Topology Class
	2.14.3 Persistent /var Directory
	2.14.4 Default Network IP Addresses
	2.14.5 /etc/hosts Files
	2.14.6 Realm-Specific IP Addressing (RSIP) for Compute Nodes
	2.14.7 Security Auditing
	2.14.8 Logging Failed Login Attempts
	2.14.9 Logical Machines

	Managing the System [3]
	3.1 Connecting the SMW to the Console of a Service Node
	3.2 Logging On to the Boot Node
	3.3 Preparing a Service Node and Compute Node Boot Image
	3.3.1 Using shell_bootimage_LABEL.sh to Prepare Boot Images
	3.3.2 Customizing Existing Boot Images
	3.3.3 Changing Boot Parameters

	3.4 Booting Nodes
	3.4.1 Booting the System
	3.4.2 Using the xtcli boot Command to Boot a Node or Set of Node
	3.4.3 Rebooting a Single Compute Node
	3.4.4 Rebooting Login or Network Nodes

	3.5 Rebooting Controllers of a Cabinet or Blade
	3.6 Requesting and Displaying System Routing
	3.7 Initiating a Network Discovery Process
	3.8 Bouncing Blades Repeatedly Until All Blades Succeed
	3.9 Shutting Down the System Using the auto.xtshutdown File
	3.10 Shutting Down Service Nodes Using the xtshutdown Command
	3.11 Shutting Down the System or Part of the System Using the xtc
	3.12 Stopping System Components
	3.12.1 Reserving a Component
	3.12.2 Powering Down Blades or Cabinets
	3.12.3 Halting Selected Nodes

	3.13 Restarting a Blade or Cabinet
	3.14 Aborting Active Sessions on the HSS Boot Manager
	3.15 Displaying and Changing Software System Status
	3.15.1 Displaying the Status of Nodes from the Operating System
	3.15.2 Viewing and Changing the Status of Nodes
	3.15.3 Marking a Compute Node as a Service Node
	3.15.4 Finding Node Information
	3.15.4.1 Translating Between Physical ID Names and Integer NIDs
	3.15.4.2 Finding Node Information Using the xtnid2str Command
	3.15.4.3 Finding Node Information Using the nid2nic Command

	3.16 Displaying and Changing Hardware System Status
	3.16.1 Generating HSS Physical IDs
	3.16.2 Disabling Hardware Components
	3.16.3 Enabling Hardware Components
	3.16.4 Setting Components to Empty
	3.16.5 Locking Components
	3.16.6 Unlocking Components

	3.17 Performing Parallel Operations on Service Nodes
	3.18 Performing Parallel Operations on Compute Nodes
	3.19 xtbounce Error Message Indicating Cabinet Controller and Its
	3.20 Handling Bus Errors
	3.21 Handling Component Failures
	3.22 Capturing and Analyzing System-level and Node-level Dumps
	3.22.1 Dumping Information Using the xtdumpsys Command
	3.22.2 cdump and crash Utilities for Node Memory Dump and Analysi
	3.22.3 Using dumpd to Automatically Dump and Reboot Nodes
	3.22.3.1 Enabling dumpd
	3.22.3.2 /etc/opt/cray-xt-dumpd/dumpd.conf Configuration File
	3.22.3.3 Using the dumpd-dbadmin Tool
	3.22.3.4 Using the dumpd-request Tool

	3.23 Using xtnmi Command to Collect Debug Information from Hung N

	Monitoring System Activity [4]
	4.1 Monitoring the System with the System Environmental Data Coll
	4.2 Displaying Installed SMW Release Level
	4.3 Displaying Current and Installed CLE Release Information
	4.4 Displaying Boot Configuration Information
	4.5 Managing Log Files Using CLE and HSS Commands
	4.5.1 Filtering the Event Log
	4.5.2 Adding Entries to Log Files
	4.5.3 Examining Log Files
	4.5.4 Removing Old Log Files

	4.6 Checking the Status of System Components
	4.7 Checking the Status of Compute Processors
	4.8 Checking CNL Compute Node Connection
	4.9 Checking Link Control Block and Router Errors
	4.10 Displaying System Network Congestion Protection Information
	4.11 Monitoring the Health of PCIe Channels
	4.12 Monitoring the Status of Jobs Started Under a Third-party Ba
	4.13 Using the cray_pam Module to Monitor Failed Login Attempts
	4.14 Monitoring DDN RAID
	4.15 Monitoring NetApp, Inc. Engenio RAID
	4.16 Monitoring HSS Managers
	4.16.1 Examining Activity on the HSS Boot Manager
	4.16.2 Polling a Response from an HSS Daemon, Manager, or the Eve

	4.17 Monitoring Events
	4.18 Monitoring Node Console Messages
	4.19 Showing the Component Alert, Warning, and Location History
	4.20 Displaying Component Information
	4.21 Displaying Alerts and Warnings
	4.22 Clearing Flags
	4.23 Displaying Error Codes

	Managing User Access [5]
	5.1 Load Balancing Across Login Nodes
	5.2 Passwords
	5.2.1 Changing Default SMW Passwords After Completing Installatio
	5.2.2 Changing root and crayadm Passwords on Boot and Service Nod
	5.2.3 Changing the root Password on CNL Compute Nodes
	5.2.4 Changing the HSS Data Store (MySQL) Password
	5.2.5 Changing Default MySQL Passwords on the SDB
	5.2.6 Assigning and Changing User Passwords
	5.2.7 Logins That Do Not Require Passwords

	5.3 Administering Accounts
	5.3.1 Managing Boot Node Accounts
	5.3.2 Managing User Accounts That Must Be Maintained on the Cray
	5.3.2.1 Adding a User or Group
	5.3.2.2 Removing a User or Group
	5.3.2.3 Changing User or Group Information
	5.3.2.4 Assigning Groups of CNL Compute Nodes to a User Group
	5.3.2.5 Associating Users with Projects
	5.3.2.6 Enabling LDAP Support for User Authentication

	5.3.3 Setting Disk Quotas for a User on the Cray Local, Non-Lustr

	5.4 About Modules and Modulefiles
	5.5 About the /etc/*rc.local Files
	5.6 System-wide Default Modulefiles
	5.7 Configuring the Default Programming Environment (PE)
	5.8 Using the pam_listfile Module in the Shared Root Environment
	5.9 ulimit Stack Size Limit
	5.10 Stopping a User's Job
	5.10.1 Stopping a Job Running in Interactive Mode
	5.10.2 Stopping a Job Running Under a Batch System

	Modifying an Installed System [6]
	6.1 Configuring the Shared-root File System on Service Nodes
	6.1.1 Specialization
	6.1.2 Visible Shared-root File System Layout
	6.1.3 How Specialization Is Implemented
	6.1.4 Working with the Shared-root File System
	6.1.4.1 Managing System Configuration with the xtopview Tool
	6.1.4.2 Updating Specialized Files From Within the xtopview Shell
	6.1.4.3 Specializing Files
	6.1.4.4 Determining which Files are Specialized
	6.1.4.5 Checking Shared-root Configuration
	6.1.4.6 Verifying the Coherency of /etc/init.d Files Across All S
	6.1.4.7 Cloning a Shared-root Hierarchy
	6.1.4.8 Changing the Class of a Node
	6.1.4.9 Removing Specialization
	6.1.4.10 Displaying RCS Log Information for Shared Root Files
	6.1.4.11 Checking Out an RCS Version of Shared Root Files
	6.1.4.12 Listing Shared Root File Specification and Version Infor
	6.1.4.13 Performing Archive Operations on Shared Root Files

	6.1.5 Logging Shared-root Activity

	6.2 PBS Professional Licensing Requirements for Cray Systems
	6.3 Disabling Secure Shell (SSH) on Compute Nodes
	6.4 Modifying SSH Keys for Compute Nodes
	6.5 Configuring the System Environmental Data Collector (SEDC)
	6.6 Configuring Optional RPMs in the CNL Boot Image
	6.7 Configuring Memory Control Groups
	6.8 Configuring the Zone Moveable Feature for Compute Nodes
	6.9 Configuring Cray Enhanced Linux Security Features
	6.9.1 Security Auditing and Cray Audit Extensions
	6.9.1.1 Lustre File System Requirements for Cray Audit
	6.9.1.2 System Performance Considerations for Cray Audit

	6.9.2 Using the cray_pam PAM to Log Failed Login Attempts

	6.10 Configuring cron Services
	6.11 Configuring the Load Balancer
	6.12 Configuring Node Health Checker (NHC)
	6.12.1 /etc/opt/cray/nodehealth/nodehealth.conf Configuration Fil
	6.12.2 Configuring Node Health Checker Tests
	6.12.2.1 Guidance About NHC Tests
	6.12.2.2 NHC Control Variables
	6.12.2.3 Global Configuration Variables That Affect All NHC Tests
	6.12.2.4 Standard Variables That Affect Individual NHC Tests

	6.12.3 Suspect Mode
	6.12.4 NHC Messages
	6.12.5 What if a Login Node Crashes While xtcheckhealth Binaries
	6.12.6 Disabling NHC
	6.12.7 nodehealth Modulefile
	6.12.8 Configuring the Node Health Checker to Use SSL

	6.13 Activating Process Accounting for Service Nodes
	6.14 Configuring Failover for Boot and SDB Nodes
	6.14.1 Configuring Boot-node Failover
	6.14.2 Configuring SDB Node Failover
	6.14.3 The Node ARP Management Daemon (rca_arpd)

	6.15 Creating Logical Machines
	6.15.1 Creating Logical Machines on Cray XC30 Systems
	6.15.1.1 Multiple Group Systems
	6.15.1.2 Single Group, Multiple-chassis Systems
	6.15.1.3 Single Chassis Systems

	6.15.2 Configuring a Logical Machine
	6.15.3 Booting a Logical Machine

	6.16 Updating Boot Configuration
	6.17 Modifying Boot Automation Files
	6.18 Callout to rc.local During Boot
	6.19 Changing the System Software Version to be Booted
	6.19.1 Minor Release Switching Within a System Set
	6.19.2 Major Release Switching Using Separate System Sets

	6.20 Changing the Service Database (SDB)
	6.20.1 Service Database Tables
	6.20.2 Database Security
	6.20.3 Updating Database Tables
	6.20.3.1 Changing Nodes and Classes

	6.21 Viewing the Service Database Contents with MySQL Commands
	6.22 Configuring the Lustre File System
	6.23 Exporting Lustre with NFSv3
	Recommended file system mount options
	6.24 Enabling File-locking for Lustre Clients
	6.25 Backing Up and Restoring Lustre Failover Tables
	6.26 Configuring Cray Data Virtualization Service (Cray DVS)
	6.27 Setting and Viewing Node Attributes
	6.27.1 Setting Node Attributes Using the /etc/opt/cray/sdb/attr.x
	6.27.1.1 Generating the /etc/opt/cray/sdb/attributes File

	6.27.2 SDB attributes Table
	6.27.3 Setting Attributes Using the xtprocadmin Command
	6.27.4 Viewing Node Attributes

	6.28 Using the XTAdmin Database segment Table
	6.29 Configuring Networking Services
	6.29.1 Changing the High-speed Network (HSN)
	6.29.2 Network File System (NFS)
	6.29.3 Configuring Ethernet Link Aggregation (Bonding, Channel Bo
	6.29.4 Configuring a Virtual Local Area Network (VLAN) Interface
	6.29.5 Increasing Size of ARP Tables
	6.29.6 Configuring Realm-specific IP Addressing (RSIP)
	6.29.6.1 Using the CLEinstall Program to Install and Configure RS

	6.29.7 IP Routes for CNL Nodes in the /etc/routes File

	6.30 Updating the System Configuration After a Blade Change
	6.30.1 Updating the System Configuration When the System is Not B
	6.30.2 Updating the System Configuration While the System is Boot
	6.30.2.1 Reusing One or More Previously-failed HSN Links
	6.30.2.2 Reusing One or More Previously-failed Blades, ANCs, or C
	6.30.2.3 Planned Removal of a Compute Blade
	6.30.2.4 Planned Installation of a Compute Blade

	6.31 Changing the Location to Log syslog-ng Information

	6.32 Cray Lightweight Log Management (LLM) System
	6.32.1 Configuring LLM
	6.32.2 State Manager LLM Logging
	6.32.3 LLM Configuration Tips

	Managing Services [7]
	7.1 Configuring the SMW to Synchronize to a Site NTP Server
	7.2 Synchronizing Time of Day on Compute Node Clocks with the Clo
	7.3 Adding and Starting a Service Using Standard Linux Mechanisms
	7.4 Creating a Snapshot of /var
	7.5 Setting Soft and Hard Limits to Prevent Login Node Hangs
	7.6 Rack-mount SMW: Creating a Cray System Management Workstation
	7.7 Desk-side SMW: Creating an System Management Workstation (SMW
	7.8 Rack-mount SMW: Setting Up the Bootable Backup Drive as an Al
	7.9 Desk-side SMW: Setting Up the Bootable Backup Drive as an Alt
	7.10 Archiving the SDB
	7.11 Backing Up Limited Shared-root Configuration Data
	7.11.1 Using the xtoparchive Utility to Archive the Shared-root F
	7.11.2 Using Linux Utilities to Save the Shared-root File System

	7.12 Backing Up Boot Root and Shared Root
	7.12.1 Using the xthotbackup Command to Back Up Boot Root and Sha
	7.12.2 Using dump and restore Commands to Back Up Boot Root and S

	7.13 Backing Up User Data
	7.14 Rebooting a Stopped SMW
	7.15 SMW Recovery
	7.16 Restoring the HSS Database
	7.17 Recovering from Service Database Failure
	7.17.1 Database Server Failover
	7.17.2 Rebuilding Corrupted SDB Tables

	7.18 Using Persistent SCSI Device Names
	7.19 Using a Linux iptables Firewall to Limit Services
	7.20 Handling Single-node Failures
	7.21 Increasing the Boot Manager Time-out Value
	7.22 RAID Failure

	Using the Application Level Placement Scheduler (ALPS) [8]
	8.1 ALPS Functionality
	8.2 ALPS Architecture
	8.2.1 ALPS Clients
	8.2.1.1 The aprun Client
	8.2.1.2 The apstat Client
	8.2.1.3 The apkill Client
	8.2.1.4 The apmgr Client
	8.2.1.5 The apbasil Client

	8.2.2 ALPS Daemons
	8.2.2.1 The apbridge Daemon
	8.2.2.2 The apsched Daemon
	8.2.2.3 The apsys Daemon
	8.2.2.4 The apwatch Daemon
	8.2.2.5 The apinit Daemon
	8.2.2.6 The apres Daemon
	8.2.2.7 ALPS Log Files
	8.2.2.8 Changing Debug Message Level of apsched and apsys Daemons

	8.3 Configuring ALPS
	8.3.1 /etc/sysconfig/alps Configuration File
	8.3.2 The alps.conf Configuration File

	8.4 Resynchronizing ALPS and the SDB Command After Manually Chang
	8.5 Identifying Reserved Resources
	8.6 Terminating a Batch Job
	8.7 Setting a Compute Node to Batch or Interactive Mode
	8.8 Manually Starting and Stopping ALPS Daemons on Service Nodes
	8.9 Manually Cleaning ALPS and PBS or TORQUE and Moab After Downe
	8.10 Verifying that ALPS is Communicating with Cray System Comput
	8.11 ALPS and Node Health Monitoring Interaction
	8.11.1 aprun Actions
	8.11.2 apinit Actions
	8.11.3 apsys Actions
	8.11.4 Node Health Checker Actions
	8.11.5 Verifying Application Cleanup

	Using Comprehensive System Accounting [9]
	9.1 Interacting with Batch Entry Systems or the PAM job Module
	9.2 CSA Configuration File Values
	9.3 Configuring CSA
	9.3.1 Obtaining File System and Node Information
	9.3.2 Editing the csa.conf File
	9.3.3 Editing Other System Configuration Files
	9.3.4 Creating a CNL Image with CSA Enabled
	9.3.5 Setting Up CSA Project Accounting
	9.3.5.1 Disabling Project Accounting

	9.3.6 Setting Up Job Accounting

	9.4 Creating Accounting cron Jobs
	9.4.1 csanodeacct cron Job for Login Nodes
	9.4.2 csarun cron Job
	9.4.3 csaperiod cron Job

	9.5 Enabling CSA
	9.6 Using LDAP with CSA

	Dynamic Shared Objects and Cluster Compatibility Mode in CLE [10]
	10.1 Configuring the Compute Node Root Runtime Environment (CNRTE
	10.2 Configuring Cluster Compatibility Mode
	10.2.1 Preconditions
	10.2.2 Configuration Options

	Using InfiniBand and OpenFabrics Interconnect Drivers [11]
	11.1 InfiniBand and OFED Overview
	11.2 Using InfiniBand
	11.2.1 Storage Area Networking
	11.2.2 Lustre Routing
	11.2.3 IP Connectivity

	11.3 Configuration
	11.4 InfiniBand Configuration
	11.5 Subnet Manager (OpenSM) Configuration
	11.5.1 Starting OpenSM at Boot Time

	11.6 Internet Protocol over InfiniBand (IPoIB) Configuration
	11.7 Configuring SCSI RDMA Protocol (SRP) on Cray Systems
	11.8 Lustre Networking (LNET) Router
	11.8.1 Configuring the LNET Router
	11.8.2 Configuring Routes for the Lustre Server
	11.8.3 Configuring the LNET Compute Node Clients

	11.9 Configuring Fine-grained Routing with clcvt
	11.9.1 Prerequisite Files
	11.9.1.1 info.file-system-identifier
	11.9.1.2 client-system.hosts
	11.9.1.3 client-system.ib
	11.9.1.4 cluster-name.ib
	11.9.1.5 client-system.rtrIm

	11.9.2 Generating ip2nets and routes Information

	Resource Utilization Reporting [12]
	12.1 RUR Basics
	12.1.1 Plugin Architecture

	12.2 Included Data Plugins
	12.2.1 energy
	12.2.2 gpustat
	12.2.3 taskstats
	12.2.4 timestamp

	12.3 Included Output Plugins
	12.3.1 file
	12.3.2 llm
	12.3.3 user

	12.4 Enabling RUR
	12.5 Disabling RUR
	12.6 Configuring RUR
	12.6.1 Enabling/Disabling Plugins
	12.6.2 RUR Configuration File

	12.7 RUR Plugins
	12.7.1 Data Plugins
	12.7.1.1 Data Plugin Staging Component
	12.7.1.2 Data Plugin Post Processing Component

	12.7.2 Output Plugins
	12.7.3 Implementing a New RUR Plugin
	12.7.4 Additional Plugin Examples

	12.8 Migration Tips
	12.8.1 Application Completion Reporting (ACR)
	12.8.1.1 ACR Job Reporting
	12.8.1.2 ACR Timespan Reporting
	12.8.1.3 ACR Exit Code Reporting

	SMW and CLE System Administration Commands [A]
	A.1 HSS Commands
	A.2 Cray Lightweight Log Management (LLM) System Commands
	A.3 CLE System Administration Commands

	System States [B]
	Remote Access to the SMW [C]
	Updating the Time Zone [D]
	Creating Modulefiles [E]
	E.1 Modulefile Template
	E.2 Sharing Your Modulefile
	E.3 Modulefile Help

	PBS Professional Licensing for Cray Systems [F]
	F.1 Introduction
	F.2 Migrating the PBS Professional Server and Scheduler
	F.3 Configuring RSIP to the SDB Node
	F.4 Network Address Translation (NAT) IP Forwarding
	F.5 Installing and Configuring a NIC

	Installing RPMs [G]
	G.1 Generic RPM Usage

	Sample LNET Router Controller Script [H]
	Enabling an Integrated Dell Remote Access Controller (iDRAC6) o
	I.1 Before You Start
	I.2 Enabling an Integrated Dell Remote Access Controller (iDRAC6)
	I.3 Using the iDRAC6

	Rack-mount SMW: Replacing a Failed LOGDISK or DBDISK Disk Drive[
	J.1 Rack-mount SMW: Replacing a Failed LOGDISK or DBDISK Disk Dri

	List of Figures
	Figure 1. Administrative Components of a Cray System
	Figure 2. Types of Specialization
	Figure 3. Shared-root Implementation
	Figure 4. ALPS Process
	Figure 5. Cray System Job Distribution Cross-section
	Figure 6. CCM Job Flow Diagram
	Figure 7. The OFED Stack (source: OpenFabrics Alliance)
	Figure 8. Cray System Connected to Storage Using SRP
	Figure 9. Cray Service Node Acting as an InfiniBand Lustre Route
	Figure 10. Cray Service Node in IP over IB Configuration
	Figure 11. Cray XC30 InfiniBand Port Assignment
	Figure 12. Dell 815 Boot Settings Menu
	Figure 13. Dell 815 Boot Sequence Menu
	Figure 14. Dell 815 Boot Sequence Settings
	Figure 15. Dell 815 Integrated Devices (NIC) Settings
	Figure 16. Dell 815 Serial Communication BIOS Settings
	Figure 17. Dell 815 Embedded Server Management Settings
	Figure 18. Dell 815 User-defined LCD String Settings
	Figure 19. Dell 815 DRAC LAN Parameters Settings
	Figure 20. Dell 815 DRAC IPv4 Parameter Settings

	List of Examples
	Example 1. Sample /etc/opt/cray/sdb/node_classes file
	Example 2. Making a boot image with new parameters for service a
	Example 3. Booting all service nodes with a specific image
	Example 4. Booting all compute nodes with a specific image
	Example 5. Booting compute nodes using a load file
	Example 6. Rebooting a single compute node
	Example 7. Rebooting login or network nodes
	Example 8. Rebooting cabinet controller c0-0, with verbose outpu
	Example 9. Displaying routing information
	Example 10. Routing the entire system
	Example 11. Bounce failed blades repeatedly until all blades suc
	Example 12. Shutting down the system using the auto.xtshutdown f
	Example 13. Shutting down all compute nodes
	Example 14. Shutting down specified compute nodes
	Example 15. Shutting down all nodes of a system
	Example 16. Forcing nodes to shut down (immediate halt)
	Example 17. Aborting a session running on the boot manager
	Example 18. Looking at node characteristics
	Example 19. Viewing all node attributes
	Example 20. Viewing selected node attributes of selected nodes
	Example 21. Disabling a node
	Example 22. Disabling all processors
	Example 23. Finding the physical ID for node 38
	Example 24. Finding the physical ID for nodes 0, 1, 2, and 3
	Example 25. Finding the physical IDs for Aries IDs 0-7
	Example 26. Printing the nid-to-nic address mappings for the nod
	Example 27. Printing the nid-to-nic address mappings for the sam
	Example 28. Creating a list of node identifiers that are not in
	Example 29. Disabling the Aries ASIC c0-0c1s3a0
	Example 30. Setting a blade to the empty state
	Example 31. Locking cabinet c0-0
	Example 32. Show all session (lock) data
	Example 33. Unlocking cabinet c0-0
	Example 34. Restarting the NTP service
	Example 35. Dumping information about a working component
	Example 36. Displaying installed SMW release level
	Example 37. Displaying the current xtrelease value
	Example 38. Displaying the most recently installed CLE release i
	Example 39. Finding information in the event log
	Example 40. Adding entries to syslog file
	Example 41. Display nodes that were repurposed with the xtcli ma
	Example 42. Identifying nodes in down or admindown state
	Example 43. Display current allocation and status of each comput
	Example 44. Verifying that a compute node is connected to the ne
	Example 45. Running xtnetwatch to monitor the system interconnec
	Example 46. Reporting PCIe-related errors to stdout
	Example 47. Looking at a session running on the boot manager
	Example 48. Checking the boot manager
	Example 49. Monitoring for specific events
	Example 50. Checking events except heartbeat:
	Example 51. Identifying all service nodes
	Example 52. Showing compute nodes in the disabled state
	Example 53. Showing components with a status of not empty
	Example 54. Show all alerts on the system
	Example 55. Clear all warnings in specified cabinet
	Example 56. Displaying HSS error codes
	Example 57. Displaying an HSS error code using its bit mask numb
	Example 58. Adding a group
	Example 59. Adding a user account
	Example 60. Removing a user account
	Example 61. Creating a pam_listfile list file
	Example 62. Adding a line to /etc/pam.d/sshd to enable pam_listf
	Example 63. Stopping a job running under PBS Professional
	Example 64. Shared-root links
	Example 65. Starting the xtopview shell for a node
	Example 66. Starting the xtopview shell for a class of nodes
	Example 67. Starting the xtopview shell for a directory other th
	Example 68. Sample xtopview session
	Example 69. Starting xtopview using node_classes for information
	Example 70. Running xtopview from the SMW while the system is no
	Example 71. Updating a file within xtopview shell
	Example 72. Finding files in /etc that are specialized by class
	Example 73. Finding specialization of a file on a node
	Example 74. Finding nodes on which a file is specialized
	Example 75. Finding specialization of a file on a node without i
	Example 76. Finding specialization of files by class without inv
	Example 77. Finding the class of a node
	Example 78. Adding a node to a class
	Example 79. Removing node specialization
	Example 80. Removing class specialization
	Example 81. Printing the latest version of a file
	Example 82. Printing the RCS log for /etc/fstab in the node 3 vi
	Example 83. Displaying differences between two versions of the /
	Example 84. Checking out a version 1.2 copy of /etc/fstab
	Example 85. Recreating the file link for /etc/fstab to the curre
	Example 86. Printing specifications for login class specialized
	Example 87. Printing specifications for all node specialized fil
	Example 88. Printing specifications for files modified in the de
	Example 89. Adding files specified by specifications listed in s
	Example 90. Listing specifications for files currently in the ar
	Example 91. Default /etc/auditd.conf file
	Example 92. Modified PAM configuration files configured to repor
	Example 93. Creating a logical machine with a boot node and SDB
	Example 94. Updating boot configuration
	Example 95. Sample mount line from compute node /etc/fstab
	Example 96. Using node attribute labels to assign nodes to user
	Example 97. Using the xtoparchive utility to archive the shared-
	Example 98. Using the xthotbackup command to create a bootable b
	Example 99. Using the xthotbackup command to copy selected file
	Example 100. Recovering from an SDB failure
	Example 101. Increasing the boot_timeout value
	Example 102. Sample /etc/sysconfig/alps configuration file
	Example 103. Sample alps.conf configuration file
	Example 104. Retrieving node allocation status
	Example 105. Verifying that ALPS is communicating with Cray syst
	Example 106. Running a csanodeacct cron job on each login node t
	Example 107. Executing the csarun script
	Example 108. Running periodic accounting at different intervals
	Example 109. Location of queue configuration files
	Example 110. Sample info.file-system-identifier file: info.snx1
	Example 111. Sample info.file-system-identifier file using multi
	Example 112. Sample client-system.hosts file: hera.hosts
	Example 113. Sample client-system.ib file: hera.ib
	Example 114. Sample client-system.ib file using multiple IB inte
	Example 115. Sample cluster-name.ib file: snx11029n.ib
	Example 116. Sample client-system.rtrIm file: hera.rtrIm
	Example 117. Data plugin staging component
	Example 118. Data plugin post processing component
	Example 119. Output plugin
	Example 120. Huge pages data plugin staging component (version A
	Example 121. Huge pages data plugin staging component (version B
	Example 122. Huge pages data plugin post processing component
	Example 123. Modulefile example
	Example 124. Installing an RPM on the SMW
	Example 125. Installing an RPM on the boot node root
	Example 126. Installing an RPM on the shared root

	List of Procedures
	Procedure 1. Logging on to the boot node
	Procedure 2. Preparing a boot image for CNL compute nodes and se
	Procedure 3. Creating a Cray boot image from existing file syste
	Procedure 4. Manually booting the boot node and service nodes
	Procedure 5. Booting the compute nodes
	Procedure 6. Shutting down service nodes
	Procedure 7. Reserving a component
	Procedure 8. Powering down a specified blade
	Procedure 9. Halting a node
	Procedure 10. Power up blades in a cabinet
	Procedure 11. Power-cycling a component
	Procedure 12. Enabling dumpd
	Procedure 13. Showing boot configuration information for the ent
	Procedure 14. Showing boot configuration information for a parti
	Procedure 15. Showing the status of a component
	Procedure 16. Displaying the location history for component c0-0
	Procedure 17. Changing the root and crayadm passwords on boot an
	Procedure 18. Changing the root password on CNL compute nodes
	Procedure 19. Changing default MySQL passwords on the SDB
	Procedure 20. Stopping a job running in interactive mode
	Procedure 21. Specializing a file by class login
	Procedure 22. Specializing a file by node
	Procedure 23. Specializing a file by node without entering xtopv
	Procedure 24. Finding files in /etc that are specialized by a no
	Procedure 25. Disabling SSH daemon (sshd) on CNL compute nodes
	Procedure 26. Using dropbear to generate site-specific SSH keys
	Procedure 27. Adjusting the memory control group limit
	Procedure 28. Disabling memory control groups
	Procedure 29. Enabling Zone Moveable
	Procedure 30. Configuring Cray Audit
	Procedure 31. Configuring cray_pam to log failed login attempts
	Procedure 32. Configuring cron for the SMW and the boot node
	Procedure 33. Configuring cron for the shared root with persiste
	Procedure 34. Configuring cron for the shared root without persi
	Procedure 35. Configuring lbnamed on the SMW
	Procedure 36. Installing the load balancer on an external "white
	Procedure 37. Recovering from a login node crash when a login no
	Procedure 38. Configuring boot-node failover
	Procedure 39. Disabling boot-node failover
	Procedure 40. Configuring a logical machine
	Procedure 41. Booting a system set
	Procedure 42. Examining the service databases with MySQL command
	Procedure 43. Configuring the NFS server for Lustre export
	Procedure 44. Configuring the NFS client to mount the exported L
	Procedure 45. Manually backing up Lustre failover tables
	Procedure 46. Manually restoring Lustre failover tables
	Procedure 47. Configuring an I/O service node bonding interface
	Procedure 48. Configuring a Virtual Local Area Network (VLAN) in
	Procedure 49. Installing, configuring, and starting RSIP clients
	Procedure 50. Adding isolated service nodes as RSIP clients
	Procedure 51. Updating the SMW configuration after hardware chan
	Procedure 52. Using CLEinstall to update the system configuratio
	Procedure 53. Rerouting the HSN to use previously-failed links
	Procedure 54. Clearing all alerts associated with the failed bla
	Procedure 55. Removing a compute blade for maintenance or replac
	Procedure 56. Returning a blade into service
	Procedure 57. Configuring the SMW to synchronize to a site NTP s
	Procedure 58. Preventing login node hangs by setting soft and ha
	Procedure 59. Rack-mount SMW: Creating an SMW bootable backup dr
	Procedure 60. Desk-side SMW: Creating an SMW bootable backup dri
	Procedure 61. Rack-mount SMW: Setting up the bootable backup dri
	Procedure 62. Desk-side SMW: Setting up the bootable backup driv
	Procedure 63. Backing up limited shared-root configuration data
	Procedure 64. Backing up the boot root and shared root using the
	Procedure 65. Rebooting a stopped SMW
	Procedure 66. SMW primary disk failure recovery
	Procedure 67. Restoring the HSS database
	Procedure 68. Releasing a reserved system service protection dom
	Procedure 69. Starting and stopping ALPS daemons on a specific s
	Procedure 70. Restarting ALPS daemon on a specific service node
	Procedure 71. Manually cleaning up ALPS and TORQUE and Moab or P
	Procedure 72. Obtaining file system and node information
	Procedure 73. Editing CSA parameters for the example system
	Procedure 74. Setting up CSA project accounting
	Procedure 75. Disabling project accounting
	Procedure 76. Setting up CSA job accounting for non-CCM CNOS job
	Procedure 77. Using DVS to mount home directories on the compute
	Procedure 78. Modifying CCM and Platform-MPI system configuratio
	Procedure 79. Setting up files for the cnos class
	Procedure 80. Linking the CCM prologue/epilogue scripts for use
	Procedure 81. Using qmgr to create a general CCM queue and queue
	Procedure 82. Configuring Platform LSF for use with CCM
	Procedure 83. Creating custom resources with PBS
	Procedure 84. Creating custom resources with Moab
	Procedure 85. Configuring InfiniBand on service nodes
	Procedure 86. Starting a single instance of OpenSM on a service
	Procedure 87. Configuring IP Over InfiniBand (IPoIB) on Cray sys
	Procedure 88. Configuring and enabling SRP on Cray Systems
	Procedure 89. Configuring the LNET routers
	Procedure 90. Specifying service node LNET routes and ip2nets di
	Procedure 91. Manually controlling LNET routers
	Procedure 92. Configuring the InfiniBand Lustre Server
	Procedure 93. Configuring the LNET Compute Node Clients
	Procedure 94. Creating the client-system.rtrIm file on the SMW
	Procedure 95. Creating the persistent-storage file
	Procedure 96. Create ip2nets and routes information for the comp
	Procedure 97. Create ip2nets and routes information for service
	Procedure 98. Create ip2nets and routes information for the LNET
	Procedure 99. Create ip2nets and routes information for the Lust
	Procedure 100. Enabling RUR through ALPS
	Procedure 101. Modify RUR to define and configure a site written
	Procedure 102. Starting the VNC server
	Procedure 103. For workstation or laptop running Linux: Connecti
	Procedure 104. For workstation or laptop running Linux: Connecti
	Procedure 105. For workstation or laptop running Mac OS X: Conne
	Procedure 106. For workstation or laptop running Windows: Connec
	Procedure 107. Changing the time zone for the SMW and the blade
	Procedure 108. Changing the time zone on the boot root and share
	Procedure 109. Changing the time zone for compute nodes
	Procedure 110. Migrating PBS off the SDB node
	Procedure 111. Creating a simple RSIP configuration with the SDB
	Procedure 112. Adding the SDB node as an RSIP client to an exist
	Procedure 113. Configuring NAT IP forwarding for the SDB node
	Procedure 114. Installing and configuring a NIC on the SDB node
	Procedure 115. Changing a R815 slave node's BIOS and iDRAC setti
	Procedure 116. Enabling an Integrated Dell Remote Access Control
	Procedure 117. Changing the default iDRAC Password
	Procedure 118. Using the iDRAC6
	Procedure 119. Rack-mount SMW: Replacing a failed LOGDISK or DBD

	List of Tables
	Table 1. Physical ID Naming Conventions
	Table 2. File Specialization by Class
	Table 3. File Specialization by Node
	Table 4. Shared-root Commands
	Table 5. Service Database Tables
	Table 6. Database Privileges
	Table 7. Service Database Update Commands
	Table 8. CSA Parameters That Must Be Specific to Your System
	Table 9. Project Accounting Parameters That Must Be Specific to
	Table 10. Upper Layer InfiniBand I/O Protocols for Cray Systems
	Table 11. LNET Network Address Configuration for Cray Systems
	Table 12. HSS Commands
	Table 13. LLM Commands
	Table 14. CLE Commands
	Table 15. State Definitions
	Table 16. Additional State Definitions
	Table 17. xtcli Commands and Allowed States

