
TMTM

Workload Management and Application Placement for
the Cray Linux Environment

S–2496–31

© 2010 Cray Inc. All Rights Reserved. This document or parts thereof may not be reproduced in any form unless
permitted by contract or by written permission of Cray Inc.

U.S. GOVERNMENT RESTRICTED RIGHTS NOTICE

The Computer Software is delivered as "Commercial Computer Software" as defined in DFARS 48 CFR
252.227-7014.

All Computer Software and Computer Software Documentation acquired by or for the U.S. Government is provided
with Restricted Rights. Use, duplication or disclosure by the U.S. Government is subject to the restrictions described
in FAR 48 CFR 52.227-14 or DFARS 48 CFR 252.227-7014, as applicable.

Technical Data acquired by or for the U.S. Government, if any, is provided with Limited Rights. Use, duplication or
disclosure by the U.S. Government is subject to the restrictions described in FAR 48 CFR 52.227-14 or DFARS 48
CFR 252.227-7013, as applicable.

Cray, LibSci, PathScale, and UNICOS are federally registered trademarks and Active Manager, Baker, Cascade,
Cray Apprentice2, Cray Apprentice2 Desktop, Cray C++ Compiling System, Cray CX, Cray CX1, Cray CX1-iWS,
Cray CX1-LC, Cray CX1000, Cray CX1000-C, Cray CX1000-G, Cray CX1000-S, Cray CX1000-SC,
Cray CX1000-SM, Cray CX1000-HN, Cray Fortran Compiler, Cray Linux Environment, Cray SHMEM, Cray X1,
Cray X1E, Cray X2, Cray XD1, Cray XMT, Cray XR1, Cray XT, Cray XTm, Cray XT3, Cray XT4, Cray XT5,
Cray XT5h, Cray XT5m, Cray XT6, Cray XT6m, CrayDoc, CrayPort, CRInform, ECOphlex, Gemini, Libsci,
NodeKARE, RapidArray, SeaStar, SeaStar2, SeaStar2+, Threadstorm, UNICOS/lc, UNICOS/mk, and UNICOS/mp
are trademarks of Cray Inc.

GNU is a trademark of The Free Software Foundation. General Parallel File System (GPFS) is a trademark of
International Business Machines Corporation. InfiniBand is a trademark of InfiniBand Trade Association. Intel is a
trademark of Intel Corporation or its subsidiaries in the United States and other countries. Linux is a trademark of
Linus Torvalds. Lustre, AMD is a trademark of Advanced Micro Devices, Inc. NFS, Sun and Java are trademarks of
Oracle and/or its affiliates. PanFS is a trademark of Panasas, Inc. Moab and TORQUE are trademarks of Adaptive
Computing Enterprises, Inc. PBS Professional is a trademark of Altair Grid Technologies. PETSc is a trademark of
Copyright (C) 1995-2004 University of Chicago. PGI is a trademark of The Portland Group Compiler Technology,
STMicroelectronics, Inc. Platform is a trademark of Platform Computing Corporation. SUSE is a trademark of
Novell, Inc. TotalView is a trademark of TotalView Technology, LLC. UNIX, the “X device,” X Window System,
and X/Open are trademarks of The Open Group in the United States and other countries. All other trademarks
are the property of their respective owners.

Version 1.0 Published June 2010 Supports Cray Linux Environment (CLE) 3.1 release.

Workload Management and Application Placement for the Cray Linux Environment S–2496–31

This document inherits some end-user-specific information formerly provided in Cray XT
Programming Environment User's Guide. If users need to launch and execute applications using the
Cray Linux Environment (CLE) 3.1 release and are looking for a reference, this document is a good start.

Contents

Page

System Overviews [1] 9

1.1 Cray System Features . 9

1.2 Cray XE Features . 13

Running Applications [2] 15

2.1 Using the aprun Command . 15

2.1.1 Changing the Default Hugepage Size on Cray XE Systems (Deferred implementation) 23

2.2 Understanding Application Placement 24

2.2.1 Cray XE Systems Features Specific to Application Placement 24

2.3 Gathering Application Status and Information on the Cray System 25

2.3.1 apstat Display Support for Cray XE Systems 27

2.3.2 Using the xtnodestat Command 29

2.4 Using the cnselect Command 30

2.5 Understanding How Much Memory is Available to Applications 31

2.6 Core Specialization . 32

2.7 Launching an MPMD Application 33

2.8 Managing Compute Node Processors from an MPI Program 33

2.9 About aprun Input and Output Modes 33

2.10 About aprun Resource Limits 33

2.11 About aprun Signal Processing 34

Running User Programs on Service Nodes [3] 35

Using Workload Management Systems [4] 37

4.1 Creating Job Scripts . 37

4.2 Submitting Batch Jobs . 38

4.3 Getting Job Status . 39

4.4 Removing a Job from the Queue . 40

Dynamic Shared Objects and Libraries (DSLs) [5] 41

5.1 Introduction . 41

S–2496–31 5

Workload Management and Application Placement for the Cray Linux Environment

Page

5.2 About the Compute Node Root Run Time Environment 41

5.2.1 DSL Support . 42

5.2.2 Cray DVS Loadbalance Mode 42

5.3 Configuring DSL . 43

5.4 Building, Launching, and Workload Management Using Dynamic Objects 44

5.4.1 Linker Search Order . 44

5.5 Troubleshooting . 48

5.5.1 Error While Launching with aprun: "error while loading shared libraries" 48

5.5.2 Running an Application Using a Non-Existent Root 48

5.5.3 Performance Implications of Using Dynamic Shared Objects 48

Using Cluster Compatibility Mode in CLE [6] 49

6.1 Cluster Compatibility Mode . 49

6.1.1 CCM implementation . 50

6.2 Installation and Configuration of Applications for CCM 51

6.3 Using CCM . 51

6.3.1 CCM Commands . 51

6.3.1.1 ccmrun . 51

6.3.1.2 ccmlogin . 52

6.3.2 Starting a CCM Batch Job . 52

6.3.3 X11 Forwarding in CCM . 52

6.4 Individual Software Vendor (ISV) Example 53

6.5 Troubleshooting . 54

6.5.1 CCM Initialization Fails . 54

6.5.2 Logging Into Head Node is Slow 54

6.5.3 Using a Transport Protocol Other Than TCP 54

6.6 Caveats and Limitations . 54

6.6.1 ALPS will not accurately reflect CCM job resources 54

6.6.2 Limitations . 55

Using Checkpoint/Restart [7] 57

Optimizing Applications [8] 59

8.1 Using Compiler Optimization Options 59

8.2 Using aprun Memory Affinity Options 61

8.3 Using aprun CPU Affinity Optimizations 62

8.4 Exclusive Access . 62

8.5 Optimizing Process Placement on Multicore Nodes 63

6 S–2496–31

Contents

Page

Example Applications [9] 65

9.1 Running a Basic Application . 65

9.2 Running an MPI Application . 66

9.3 Using the Cray shmem_put Function 67

9.4 Using the Cray shmem_get Function 69

9.5 Running Partitioned Global Address Space (PGAS) Applications 70

9.5.1 Running an Unified Parallel C (UPC) Application 71

9.5.2 Running a Fortran 2008 Application Using Coarrays 71

9.6 Running a Fast_mv Application . 72

9.7 Running a PETSc Application . 73

9.8 Running an OpenMP Application 82

9.9 Running an Interactive Batch Job 86

9.10 Running a Batch Job Script . 87

9.11 Running Multiple Sequential Applications 88

9.12 Running Multiple Parallel Applications 90

9.13 Using aprun Memory Affinity Options 91

9.13.1 Using the aprun -S Option 91

9.13.2 Using the aprun -sl Option 92

9.13.3 Using the aprun -sn Option 92

9.13.4 Using the aprun -ss Option 92

9.14 Using aprun CPU Affinity Options 93

9.14.1 Using the aprun -cc cpu_list Option 93

9.14.2 Using the aprun -cc keyword Options 94

9.15 Using Checkpoint/Restart Commands 94

9.16 Running Compute Node Commands 99

9.17 Using the High-level PAPI Interface 99

9.18 Using the Low-level PAPI Interface 101

9.19 Using CrayPat . 102

9.20 Using Cray Apprentice2 . 106

Appendix A Further Information 109

A.1 Related Publications . 109

A.1.1 Publications for Application Developers 109

Appendix B Cray X6 Compute Node Figures 113

Procedures
Procedure 1. Disabling CSA Accounting for the cnos class view 54

S–2496–31 7

Workload Management and Application Placement for the Cray Linux Environment

Page

Examples
Example 1. Compiling an application 45

Example 2. Launching an application with the Application Level Placement Scheduler (ALPS) using the
compute node root . 46

Example 3. Running an application using a workload management system 47

Example 4. Running a Program Using a Batch Script 47

Example 5. Launching An ISV Application Using CCM 52

Example 6. Launching the UMT/pyMPI Benchmark Using CCM 53

Tables
Table 1. Core/PE Distribution for r=1 32

Table 2. aprun versus qsub Options 38

Figures
Figure 1. Cray DVS Loadbalance Mode Used in the Compute Node Root Run Time Environment . . 43

Figure 2. Cray Job Distribution Cross Section 50

Figure 3. CCM Job Flow Diagram . 51

Figure 4. Cray Apprentice2 Callgraph 107

Figure 5. Cray XT6 Compute Node 113

Figure 6. Cray XE6 Compute Node 114

8 S–2496–31

System Overviews [1]

1.1 Cray System Features
Cray XE and Cray XT supercomputer systems are massively parallel processing
(MPP) systems. Cray has combined commodity and open source components with
custom-designed components to create a system that can operate efficiently at an
immense scale.

Cray MPP systems are based on the Red Storm technology that was developed jointly
by Cray Inc. and the U.S. Department of Energy Sandia National Laboratories.
Cray systems are designed to run applications that require large-scale processing,
high network bandwidth, and complex communications. Typical applications
are those that create detailed simulations in both time and space, with complex
geometries that involve many different material components. These long-running,
resource-intensive applications require a system that is programmable, scalable,
reliable, and manageable.

The Cray XE series consists of Cray XE5 and Cray XE6 systems. The Cray XT
series consists of Cray XT4, Cray XT5 and Cray XT6 systems. The primary
differences among the numbered systems are the type and speed of their compute
node components.

The major features of Cray systems are performance, scalability and resiliency:

• Cray XT systems are designed to scale from fewer than 100 to more than 250,000
processors. The ability to scale to such proportions stems from the design of
system components:

– The basic component is the node. There are two types of nodes. Service nodes
provide support functions, such as managing the user's environment, handling
I/O, and booting the system. Compute nodes run user applications. Because
processors are inserted into standard sockets, customers can upgrade nodes as
faster processors become available.

– Cray XT systems use a simple memory model. Every instance of a distributed
application has its own processors and local memory. Remote memory is the
memory on other nodes that run the associated application instances. There is
no shared memory in Cray XT systems.

S–2496–31 9

Workload Management and Application Placement for the Cray Linux Environment

– The system interconnection network links compute and service nodes. This
is the data-routing resource that Cray XT systems use to maintain high
communication rates as the number of nodes increases. Most Cray XT
systems use a full 3D torus network topology.

• Cray system resiliency features:

– The Node Health Checker (NHC) performs tests to determine if compute
nodes that are allocated to an application are healthy enough to support
running subsequent applications. If not, NHC removes any nodes incapable
of running an application from the resource pool.

– Tools that assist administrators to recover from system or node failures,
including a hot backup utility, and boot node failover, and single or multiple
compute node reboots.

– Error correction code (ECC) technology, which detects and corrects
multiple-bit data storage and transfer errors.

– Lustre file system failover. When administrators enable Lustre automatic
failover, Lustre services switch to standby services if the primary node fails or
Lustre services are temporarily shut down for maintenance.

– Cray XT system cabinets have only one moving part (a blower that cools the
components) and redundant power supplies, reducing the likelihood of cabinet
failure.

– Cray XT system processor boards (called blades) have redundant voltage
regulator modules (VRMs or "verties") or VRMs with redundant circuitry.

– Diskless nodes. The availability of a node is not tied to the availability of a
moving part.

– Multiple redundant RAID controllers, that provide automatic failover
capability and multiple Fibre Channel and InfiniBand connections to disk
storage.

10 S–2496–31

System Overviews [1]

The major software components of Cray systems are:

• Application development tools, comprising:

– Cray Application Development Environment (CADE):

• Message Passing Toolkit (MPI, SHMEM)

• Math and science libraries (LibSci, PETSc, ACML, FFTW, Fast_mv)

• Data modeling and management tools (NetCDF, HDF5)

• GNU debugger (lgdb)

• GCC C, C++, and Fortran compilers

• Java (for developing service node programs)

• Application placement tools:

– Application Level Placement Scheduler (ALPS) application launch and
schedule utility

– Cluster Compatibility Mode allows users to run cluster-based individual
software vendor applications on Cray systems.

– Checkpoint/restart

• Optional products:

– C, C++, and Fortran 95 compilers from PGI and PathScale

– glibc library (the compute node subset)

– Partitioned Global Address Space (PGAS) programming models including
Fortran 2008 with coarrays and Unified Parallel C (UPC)

– Berkeley UPC

– Workload management Systems (PBS Professional, Moab TORQUE)

– TotalView debugger

– DDT debugger

– Cray Apprentice2 performance data visualization tool

– CrayPat performance analysis tool

– Intel Compiler Support

S–2496–31 11

Workload Management and Application Placement for the Cray Linux Environment

– Cray Compiling Environment (CCE)

• Cray C and compilers

• Cray C++ compiler

• Fortran 2003 compiler

• The Cray C compiler supports Unified Parallel C and the Cray Fortran
compiler supports coarrays and several other Fortran 2008 features. All
CCE compilers support OpenMP.

• Cray Application Development Supplement (CADES) for stand alone Linux
application development platforms

• Operating system services. The operating system, Cray Linux Environment
(CLE), is tailored to the requirements of service and compute nodes. A
full-featured SUSE Linux operating system runs on service nodes, and a
lightweight kernel, CNL, runs on compute nodes.

• Parallel file systems support. Cray supports the Lustre parallel file system. CLE
also enables the Cray system to use file systems such as PanFS, NFS and GPFS
(General Parallel File System) by projecting them to compute nodes using Cray
Data Virtualization Services (DVS).

• System management and administration tools

– System Management Workstation (SMW), the single point of control for
system administration.

– Hardware Supervisory System (HSS), which monitors the system and handles
component failures. HSS is independent of computation and service hardware
components and has its own network.

– Comprehensive System Accounting (CSA), a software package that performs
standard system accounting processing. CSA is open-source software that
includes changes to the Linux kernel so that the CSA can collect more types
of system resource usage data than under standard Fourth Berkeley Software
Distribution (BSD) process accounting.

An additional CSA interface enables the project database to use
customer-supplied user, account, and project information that reside on a
separate Lightweight Directory Access Protocol (LDAP) server.

12 S–2496–31

System Overviews [1]

1.2 Cray XE Features
Cray XE5 and Cray XE6 systems build on the base of the scalability and resiliency
introduced in Cray XT systems. Cray XE systems represent a substantial modification
and improvement to the Cray MPP architecture. The following list highlights some of
the changes introduced in the Cray XE platform:

• The system interconnection network links compute and service nodes. The active
component of the system interconnect is the Cray Gemini ASIC, which offers
improved latency, performance, resiliency, and stability over the Cray SeaStar.
It provides support for network address translation, memory registration and
access (as mentioned above), application performance information, quiescence
and reroute upon link failure, and warm swap of blades within the system. Most
Cray XE systems use a full 3D torus network topology.

• Cray XE systems also use a simple memory model with the added ability to
take advantage of a global shared address space memory model supported by
the Cray Gemini application-specific integrated circuit (ASIC). This enables
applications programmers to use Partitioned Global Address Space (PGAS)
programming models such as Unified Parallel C or Fortran 2008 with coarrays,
which can address remote memory directly, without relying on another
communication method such as MPICH. For more information see Using the
GNI and DMAPP APIs.

For more information on both Cray XT and Cray XE system software, see Cray Linux
Environment (CLE) Software Release Overview and Managing System Software for
Cray XE and Cray XT Systems.

S–2496–31 13

Workload Management and Application Placement for the Cray Linux Environment

14 S–2496–31

Running Applications [2]

The aprun utility launches applications on compute nodes. The utility submits
applications to the Application Level Placement Scheduler (ALPS) for placement and
execution, forwards your login node environment to the assigned compute nodes,
forwards signals, and manages the stdin, stdout, and stderr streams.

This chapter describes how to run applications interactively on compute nodes and
get application status reports. For a description of batch job processing, see Chapter
4, Using Workload Management Systems on page 37.

2.1 Using the aprun Command
Use the aprun command to specify the resources your application requires, request
application placement, and initiate application launch.

The format of the aprun command is:

aprun [-a arch] [-b] [-B][-cc cpu_list | keyword][-cp cpu_placement_file_name]
[-d depth] [-D value] [-F access mode][-L node_list] [-m size[h|hs]] [-n pes]
[-N pes_per_node] [-q] [-r cores][-S pes_per_numa_node] [-sl list_of_numa_nodes]
[-sn numa_nodes_per_node] [-ss] [-t sec] executable [arguments_for_executable]

where:

-a arch Specifies the architecture type of the compute node on which the
application will run; arch is xt. If you are using aprun to launch a
compiled and linked executable, you need not include the -a option;
ALPS can determine the compute node architecture type from the
ELF header (see the elf(5) man page).

-b Bypasses the transfer of the executable program to the compute
nodes. By default, the executable is transferred to the compute nodes
during the aprun process of launching an application. For an
example, see Running Compute Node Commands on page 99.

-B Reuses the width, depth, nppn, and memory request options that are
specified with the batch reservation. This option obviates the need to
specify aprun options -n, -d, -N, and -m. aprun will exit with
errors if these options are specified with the -B option.

S–2496–31 15

Workload Management and Application Placement for the Cray Linux Environment

-cc cpu_list | keyword

Binds processing elements (PEs) to CPUs. CNL does not migrate
processes that are bound to a CPU. This option applies to all
multicore compute nodes. The cpu_list is not used for placement
decisions, but is used only by CNL during application execution. For
further information about binding (CPU affinity), see Using aprun
CPU Affinity Optimizations on page 62.

The cpu_list is a comma-separated or hyphen-separated list of logical
CPU numbers and/or ranges. As PEs are created, they are bound to
the CPU in cpu_list corresponding to the number of PEs that have
been created at that point. For example, the first PE created is bound
to the first CPU in cpu_list, the second PE created is bound to the
second CPU in cpu_list, and so on. If more PEs are created than
given in cpu_list, binding starts over at the beginning of cpu_list and
starts again with the first CPU in cpu_list. The cpu_list can also
contain an x, which indicates that the application-created process at
that location in the fork sequence should not be bound to a CPU.

Out-of-range cpu_list values are ignored unless all CPU values are
out of range, in which case an error message is issued. For example,
if you want to bind PEs starting with the highest CPU on a compute
node and work down from there, you might use this -cc option:

% aprun -n 8 -cc 10-4 ./a.out

If the PEs were placed on Cray X6 24-core compute nodes, the
specified -cc range would be valid. However, if the PEs were placed
on Cray XT5 eight-core compute nodes, CPUs 10-8 would be out
of range and therefore not used.

16 S–2496–31

Running Applications [2]

The following keyword values can be used:

• The cpu keyword (the default) binds each PE to a CPU within
the assigned NUMA node. You do not have to indicate a specific
CPU.

If you specify a depth per PE (aprun -d depth), the PEs are
constrained to CPUs with a distance of depth between them to
each PE's threads to the CPUs closest to the PE's CPU.

The -cc cpu option is the typical use case for an MPI
application.

Note: If you oversubscribe CPUs for an OpenMP application,
Cray recommends that you not use the -cc cpu default.
Test the -cc none and -cc numa_node options and
compare results to determine which option produces the better
performance.

• The numa_node keyword constrains PEs to the CPUs within the
assigned NUMA node. CNL can migrate a PE among the CPUs
in the assigned NUMA node but not off the assigned NUMA
node. For example, on 8-core nodes, if PE2 is assigned to NUMA
node 0, CNL can migrate PE2 among CPUs 0-3 but not among
CPUs 4-7.

If PEs create threads, the threads are constrained to the same
NUMA-node CPUs as the PEs. There is one exception. If depth
is greater than the number of CPUs per NUMA node, once the
number of threads created by the PE has exceeded the number of
CPUs per NUMA node, the remaining threads are constrained
to CPUs within the next NUMA node on the compute node.
For example, on 8-core nodes, if depth is 5, threads 0-3 are
constrained to CPUs 0-3 and thread 4 is constrained to CPUs 4-7.

• The none keyword allows PE migration within the assigned
NUMA nodes.

-cp cpu_placement_file_name (Deferred implementation)

Provides the name of a CPU binding placement file. This option
applies to all multicore compute nodes. This file must be located
on a file system that is accessible to the compute nodes. The CPU
placement file provides more extensive CPU binding instructions
than the -cc options.

S–2496–31 17

Workload Management and Application Placement for the Cray Linux Environment

-D value The -D option value is an integer bitmask setting that controls debug
verbosity, where:

• A value of 1 provides a small level of debug messages

• A value of 2 provides a medium level of debug messages

• A value of 4 provides a high level of debug messages

Because this option is a bitmask setting, value can be set to get any
or all of the above levels of debug messages. Therefore, valid values
are 0 through 7. For example, -D 3 provides all small and medium
level debug messages.

-d depth Specifies the number of CPUs for each PE and its threads. ALPS
allocates the number of CPUs equal to depth times pes. The -cc
cpu_list option can restrict the placement of threads, resulting in
more than one thread per CPU.

The default depth is 1.

For OpenMP applications, use both the OMP_NUM_THREADS
environment variable to specify the number of threads and the
aprun -d option to specify the number of CPUs hosting the
threads. ALPS creates -n pes instances of the executable, and the
executable spawns OMP_NUM_THREADS-1 additional threads per
PE. For an OpenMP example, see Running an OpenMP Application
on page 82.

Note: For a PathScale OpenMP program, set the
PSC_OMP_AFFINITY environment variable to FALSE

For Cray systems, compute nodes must have at least depth CPUs.
For Cray XT4 systems, depth cannot exceed 4. For Cray XT5 and
Cray XE5 systems, depth cannot exceed 12. For Cray X6 compute
blades, depth cannot exceed 24.

18 S–2496–31

Running Applications [2]

-L node_list

Specifies the candidate nodes to constrain application placement.
The syntax allows a comma-separated list of nodes (such as
-L 32,33,40), a range of nodes (such as -L 41-87), or a
combination of both formats. Node values can be expressed in
decimal, octal (preceded by 0), or hexadecimal (preceded by 0x).
The first number in a range must be less than the second number
(8-6, for example, is invalid), but the nodes in a list can be in any
order.

This option is used for applications launched interactively; use
the qsub -lmppnodes=\"node_list\" option for batch and
interactive batch jobs.

If the placement node list contains fewer nodes than the number
required, a fatal error is produced. If resources are not currently
available, aprun continues to retry.

A common source of node lists is the cnselect command. See the
cnselect(1) man page for details.

-m size[h|hs]

Specifies the per-PE required Resident Set Size (RSS) memory size
in megabytes. K, M, and G suffixes (case insensitive) are supported
(16M = 16m = 16 megabytes, for example). If you do not include the
-m option, the default amount of memory available to each PE equals
the minimum value of (compute node memory size) / (number of
CPUs) calculated for each compute node.

For example, given Cray XT5 compute nodes with 32 GB of memory
and 8 CPUs, the default per-PE memory size is 32 GB / 8 CPUs =
4 GB. Consider another example; given a mixed-processor system
with 8-core, 32-GB Cray XT5 nodes (32 GB / 8 CPUs = 4 GB) and
4-core, 8-GB Cray XT4 nodes (8 GB / 4 CPUs = 2 GB), the default
per-PE memory size is the minimum of 4 GB and 2 GB = 2 GB.

S–2496–31 19

Workload Management and Application Placement for the Cray Linux Environment

If you want hugepages (2 MB) allocated for a Cray XT
application, use the h or hs suffix. The default and maximum
hugepage size for Cray SeaStar systems is 2 MB. The default
for Cray Gemini systems is 2 MB; it can be modified by the
HUGETLB_DEFAULT_PAGE_SIZE environment variable. For
more information on Cray Gemini hugepage sizes, see Changing
the Default Hugepage Size on Cray XE Systems (Deferred
implementation) on page 23.

-m sizeh Requests size of huge pages to be allocated to each
PE. All nodes use as much memory as they are able
to allocate and 4 KB base pages thereafter.

-m sizehs Requires size of huge pages to be allocated to
each PE. If the request cannot be satisfied, an error
message is issued and the application launch is
terminated.

Note: To use huge pages, you must first load the huge pages
library during the linking phase, such as:

% cc -c my_hugepages_app.c
% cc -o my_hugepages_app my_hugepages_app.o -lhugetlbfs

Then set the huge pages environment variable:

% setenv HUGETLB_MORECORE yes

Or

% export HUGETLB_MORECORE=yes

-n pes Specifies the number of processing elements (PEs) that your
application requires. A PE is an instance of an ALPS-launched
executable. You can express the number of PEs in decimal, octal, or
hexadecimal form. If pes has a leading 0, it is interpreted as octal
(-n 16 specifies 16 PEs, but -n 016 is interpreted as 14 PEs).
If pes has a leading 0x, it is interpreted as hexadecimal (-n 16
specifies 16 PEs, but -n 0x16 is interpreted as 22 PEs). The default
value is 1.

-N pes_per_node

Specifies the number of PEs to place per node. For Cray systems, the
default is the number of available NUMA nodes times the number
of cores per NUMA node.

The maximum pes_per_node is 24 for systems with Cray X6
compute blades.

20 S–2496–31

Running Applications [2]

-F exclusive|share

exclusive mode provides a program with exclusive access to
all the processing and memory resources on a node. Using this
option with the cc option binds processes to those mentioned in
the affinity string. share mode access restricts the application
specific cpuset contents to only the application reserved cores
and memory on NUMA node boundaries, meaning the application
will not have access to cores and memory on other NUMA nodes
on that compute node. The exclusive option does not need to
be specified because exclusive access mode is enabled by default.
However, if nodeShare is set to share in /etc/alps.conf then
you must use the -F exclusive to override the policy set in this
file. You can check the value of nodeShare by executing apstat
-svv | grep access.

-q Specifies quiet mode and suppresses all aprun-generated non-fatal
messages. Do not use this option with the -D (debug) option; aprun
terminates the application if both options are specified. Even with
the -q option, aprun writes its help message and any ALPS fatal
messages when exiting. Normally, this option should not be used.

-r cores Enables core specialization on Cray compute nodes. Core
specialization supports only one system services core, thus 1 is the
only valid value for cores.

-S pes_per_numa_node

Specifies the number of PEs to allocate per NUMA node. You
can use this option to reduce the number of PEs per NUMA
node, thereby making more resources available per PE. For 8-core
Cray XT5 and Cray XE5 nodes, the default is 4. For 12-core
Cray XT5 and Cray XE5 nodes, the default is 6. For 16-core
Cray X6 compute nodes, the default value is 4. For 24-core Cray X6
compute nodes, the default is 6. A zero value is not allowed and
causes a fatal error. For further information, see Using aprun
Memory Affinity Options on page 61.

S–2496–31 21

Workload Management and Application Placement for the Cray Linux Environment

-sl list_of_numa_nodes

Specifies the NUMA node or nodes (comma separated or hyphen
separated) to use for application placement. A space is required
between -sl and list_of_numa_nodes. The list_of_numa_nodes
value can be -sl <0,1> on Cray XT5 compute nodes, -sl
<0,1,2,3> on Cray X6 compute nodes, or a range such as -sl
0-1 and -sl 0-3. The default is no placement constraints. You
can use this option to determine whether restricting your PEs to one
NUMA node per node affects performance.

List NUMA nodes in ascending order; -sl 1-0 and -sl 1,0 are
invalid.

-sn numa_nodes_per_node

Specifies the number of NUMA nodes per node to be allocated.
Insert a space between -sn and numa_nodes_per_node. The
numa_nodes_per_node value can be 1 or 2 on Cray XT5 compute
nodes, or 1, 2, 3, 4 on Cray X6 compute nodes. The default
is no placement constraints. You can use this option to find
out if restricting your PEs to one NUMA node per node affects
performance.

A zero value is not allowed and is a fatal error.

-ss Specifies strict memory containment per NUMA node. When -ss
is specified, a PE can allocate only the memory that is local to its
assigned NUMA node.

The default is to allow remote-NUMA-node memory allocation to
all assigned NUMA nodes. You can use this option to find out if
restricting each PE's memory access to local-NUMA-node memory
affects performance. For more information, see the Memory Affinity
NOTES section.

-t sec Specifies the per-PE CPU time limit in seconds. The sec time limit is
constrained by your CPU time limit on the login node. For example,
if your time limit on the login node is 3600 seconds but you specify a
-t value of 5000, your application is constrained to 3600 seconds
per PE. If your time limit on the login node is unlimited, the sec
value is used (or, if not specified, the time per-PE is unlimited). You
can determine your CPU time limit by using the limit command
(csh) or the ulimit -a command (bash).

: Separates the names of executables and their associated options
for Multiple Program, Multiple Data (MPMD) mode. A space is
required before and after the colon.

22 S–2496–31

Running Applications [2]

2.1.1 Changing the Default Hugepage Size on Cray XE Systems (Deferred
implementation)

The Cray Gemini MRT (Memory Relocation Table) is a feature of the interconnect
hardware on Cray XE systems that enables application processes running on different
compute nodes to directly access each other's memory, when that memory is backed
by hugepages.

Without the Cray Gemini MRT, only 2GB of the application's address space can be
directly accessed from a different compute node. Your application might not run if
you do not place your application's memory on hugepages.

See the libhugetlbfs(7) man page for information about how to use
libhugetlbfs to place your application's memory on hugepages.

CLE supports setting the Cray Gemini MRT page size to one of six different
hugepage sizes: 128KB, 512KB, 2MB, 8MB, 16MB, and 64MB. Set the
libhugetlbfs environment variable HUGETLB_DEFAULT_PAGE_SIZE before
invoking aprun to ask CLE to use a particular Cray Gemini MRT page size on your
application's compute nodes. If you do not set HUGETLB_DEFAULT_PAGE_SIZE,
CLE sets the MRT page size to 2MB.

libhugetlbfs enables you to place different segments of your application's
memory on different hugepage sizes. Generally, you should avoid using
hugepage sizes that are smaller than the MRT page size (as specified by
HUGETLB_DEFAULT_PAGE_SIZE), because such hugepages cannot be mapped by
the MRT. Also, using more than one hugepage size may cause your application to run
out of physical memory due to fragmentation.

You should choose an appropriate MRT page size based on the characteristics of
your application. If you choose an MRT page size that is too large, your application
may run out of memory due to internal fragmentation. If you choose an MRT page
size that is too small, your application may run out of MRT entries, or thrash if the
MRT registration cache is in use.

The format of the HUGETLB_DEFAULT_PAGE_SIZE environment variable is:

HUGETLB_DEFAULT_PAGE_SIZE=[dddd | ddddk |ddddK | ddddm | ddddM |
ddddg | ddddG]

Where dddd consists of decimal digits, or hexadecimal digits preceded by 0x. Here,
k or K implies Kilobytes, m or M implies Megabytes, g or G implies Gigabytes, no
value designator implies bytes.

S–2496–31 23

Workload Management and Application Placement for the Cray Linux Environment

2.2 Understanding Application Placement
The aprun placement options are -n, -N, -d, and -m. ALPS attempts to use the
smallest number of nodes to fulfill the placement requirements specified by the -n,
-N, -d, -S, -sl, -sn, and/or -m values. For example, the command:

% aprun -n 24 ./a.out

places 24 PEs on:

• Cray XT4 single-socket, quad-core processors on 6 nodes

• Cray XT5 dual-socket, quad-core processors on 3 nodes

• Cray XT5 dual-socket, six-core processors on 2 nodes

• Cray X6 dual-socket, eight-core processors on 2 nodes

• Cray X6 dual-socket, 12-core processors on 1 node

The memory and CPU affinity options are optimization options, not placement
options. You use memory affinity options if you think that remote-NUMA-node
memory references are reducing performance. You use CPU affinity options if you
think that process migration is reducing performance.

Note: For examples showing how to use memory affinity options, see Using
aprun Memory Affinity Options on page 91. For examples showing how to use
CPU affinity options, see Using aprun CPU Affinity Options on page 93.

2.2.1 Cray XE Systems Features Specific to Application Placement

Cray Gemini has some differences that, while not directly visible to the user, impact
application placement within the system:

• Node Translation Table (NTT) – assists in addressing remote nodes within the
application and enables software to address other NICs within the resource space
of the application. NTTs have a value assigned to them called the granularity
value. There are 8192 entries per NTT, which represents a granularity value of
1. For applications that use more than 8192 compute nodes, the granularity value
will be greater than 1.

• Protection Tag (pTag) – an 8-bit identifier that provides for memory protection
and validation of incoming remote memory references. ALPS assigns a
pTag-NTT pair to an application. This prevents application interference when
sharing NTT entries.

• Cookies – an application-specific identifier that helps sort network traffic meant
for different layers in the software stack.

24 S–2496–31

Running Applications [2]

• Programmable Network Performance Counters – memory mapped registers in the
Cray Gemini ASIC that ALPS manages for use with CrayPat (Cray performance
analysis tool). Applications can share a Cray Gemini, but only one application
can have reserved access to performance counters. Thus compute nodes are
assigned in pairs to avoid any conflicts.

These parameters interact to schedule applications for placement.

2.3 Gathering Application Status and Information on the Cray
System

Before running applications, you should check the status of the compute nodes.

There are two ways to do this: using the apstat and the xtnodestat commands.

The apstat command provides status information about reservations, compute
resources, pending and placed applications, and cores. The format of the apstat
command is:

apstat [-a][-c][-A apid ... | -R resid ...][-n|-no] [-p] [-r] [-s][-v]
[-X] [-z]

You can use apstat to display the following types of status information:

• all applications

• placed applications

• applications by application IDs (APIDs)

• applications by reservation IDs (ResIDs)

• nodes and cores

• pending applications

• confirmed and claimed reservations

For example:

% apstat -a
Total placed applications: 3
Placed Apid ResID User PEs Nodes Age State Command

48062 39 bill 2 1 2h39m run MPI_Issend_perf
48108 1588 jim 4 1 0h15m run gtp
48109 1589 sue 4 2 0h07m run bench6

S–2496–31 25

Workload Management and Application Placement for the Cray Linux Environment

An APID is also displayed in the apstat display after aprun execution results.
For example:

% aprun -n 2 -d 2 ./omp1
Hello from rank 0 (thread 0) on nid00540
Hello from rank 1 (thread 0) on nid00541
Hello from rank 0 (thread 1) on nid00540
Hello from rank 1 (thread 1) on nid00541
Application 48109 resources: utime ~0s, stime ~0s%

The apstat -n command displays the status of the nodes that are UP and core
status. Nodes are listed in sequential order:

% apstat -n
NID Arch State HW Rv Pl PgSz Avl Conf Placed PEs Apids
48 XT UP I 4 1 1 4K 2048000 512000 512000 1 28489
49 XT UP I 4 1 1 4K 2048000 512000 512000 1 28490
50 XT UP I 4 - - 4K 2048000 0 0 0
51 XT UP I 4 - - 4K 2048000 0 0 0
52 XT UP I 4 1 1 4K 2048000 512000 512000 1 28489
53 XT UP I 4 - - 4K 2048000 0 0 0
54 XT UP I 4 - - 4K 2048000 0 0 0
55 XT UP I 4 - - 4K 2048000 0 0 0
56 XT UP I 8 1 1 4K 4096000 512000 512000 1 28490
58 XT UP I 8 - - 4K 4096000 0 0 0
59 XT UP I 8 - - 4K 4096000 0 0 0

Compute node summary
arch config up use held avail down

XT 20 11 4 0 7 9

The apstat -no command displays the same information as apstat -n,
but the nodes are listed in the order that ALPS used to place an application.
Site administrators can specify non-sequential node ordering to reduce system
interconnect transfer times.

% apstat -no
NID Arch State HW Rv Pl PgSz Avl Conf Placed PEs Apids
14 XT UP B 24 24 - 4K 8192000 8189952 0 0
15 XT UP B 24 1 - 4K 8192000 341248 0 0
16 XT UP B 24 24 24 4K 8192000 8189952 8189952 24 290266
17 XT UP B 24 24 24 4K 8192000 8189952 8189952 24 290266
18 XT UP B 24 24 24 4K 8192000 8189952 8189952 24 290266
19 XT UP B 24 24 24 4K 8192000 8189952 8189952 24 290266
20 XT UP B 24 24 24 4K 8192000 8189952 8189952 24 290266
21 XT UP B 24 24 24 4K 8192000 8189952 8189952 24 290266
32 XT UP B 24 24 24 4K 8192000 8189952 8189952 24 290266
33 XT UP B 24 24 24 4K 8192000 8189952 8189952 24 290266
34 XT UP B 24 24 24 4K 8192000 8189952 8189952 24 290266
35 XT UP B 24 24 24 4K 8192000 8189952 8189952 24 290266
36 XT UP B 24 24 24 4K 8192000 8189952 8189952 24 290266

...snip...

Compute node summary
arch config up use held avail down

XT 1124 1123 379 137 607 1

26 S–2496–31

Running Applications [2]

where HW is the number of cores in the node, Rv is the number of cores held in a
reservation, and Pl is the number of cores being used by an application. If you
want to display a 0 instead of a - in the Rv and Pl fields, add the -z option to the
apstat command.

apstat is also modified to indicate that applications have core specialization
enabled.

The following apstat -n command displays a job using core specialization,
demarked by the + sign:

% apstat -n
NID Arch State HW Rv Pl PgSz Avl Conf Placed PEs Apids
...
84 XT UP B 8 8 7+ 4K 4096000 4096000 4096000 8 1577851
85 XT UP B 8 2 1+ 4K 4096000 4096000 4096000 8 1577851
86 XT UP B 8 8 8 4K 4096000 4096000 4096000 8 1577854

For apid 1577851, a total of 10 PEs are placed. On nid00084, eight cores are
reserved but the 7+ indicates that seven PEs were placed and one core was used for
system services. A similar situation appears on nid00085 three cores are reserved,
two application PEs are placed on two cores, and one core is used for system services.
For more information, see Core Specialization on page 32.

2.3.1 apstat Display Support for Cray XE Systems

apstat provides display support for application placement on Cray XE compute
nodes. The following example shows the changed output to the apstat -av
display:

apstat -av
...
Application detail
Ap[6]: apid 290282, pagg 25130, resId 31, user crayuser,

gid 1037, account 0, time 0, normal
Batch System ID = 315113
Created at Tue May 25 17:36:24 2010
Originator: aprun on NID 2, pid 25221
Number of commands 1, control network fanout 32
Network: pTag 181, cookie 0xde6d0, NTTgran/entries 1/336, hugePageSz 0
Cmd[0]: msgrate -n 5376 -N 16 -sn 4 -ss, 1333MB, XT, nodes 336
Placement list entries: 5376

S–2496–31 27

Workload Management and Application Placement for the Cray Linux Environment

Most of these values were discussed in greater detail in Cray XE Systems Features
Specific to Application Placement on page 24 but the following items are brief
descriptions of the new apstat display values:

• pTag - 8-bit protection tag identifier assigned to application

• cookie - 32-bit identifier used to negotiate traffic between software application

• NTTgran/entries - The NTT granularity value and number of entries assigned to
the application. Valid granularity values are 1, 2, 4, 8, 16 or 32.

• hugePageSz - Indicates hugepage size value for the application.

Changes to the apstat -p option indicate when an application is pending based on
Cray Gemini resource conflicts:

• PerfCtrs - Indicates that a node considered for placement was not available
because it shared a network chip with a node using network performance counters

• pTags - Indicates the application was not able to allocate a free pTag

For further information, see the apstat(1) man page.

28 S–2496–31

Running Applications [2]

2.3.2 Using the xtnodestat Command

The xtnodestat command is another way to display the current job and node
status. Each character in the display represents a single node. For systems running a
large number of jobs, multiple characters may be used to designate a job.

% xtnodestat
Current Allocation Status at Thu May 27 16:25:43 2009

C0-0 C1-0 C2-0 C3-0 C4-0 C5-0 C6-0 C7-0
n3 -------- -------- -------- -------- -------- -------- -------- --------
n2 cccccccc -------- cccccccc -------- cccccccc -------- ccc----- --------
n1 bbbbbccc cccccccc cccccccc cccccccc cccccccc cccccccc cccccccc cccccccc

c2n0 bbbbbbbb bbbbbbbb bbbbbbbb bbbbbbbb bbbbbbbb bbbbbbbb bbbbbbbb bbbbbbbb
n3 bbbbbbbb bbbbbbbb bbbbbbbb bbbbbbbb bbbbbbbb bbbbbbbb bbbbbbbb bbbbbbbb
n2 aaaaaaaa bbbbbbbb aaaaaaaa bbbbbbbb aaaaaaaa bbbbbbbb aabbbbbb bbbbbbbb
n1 aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa

c1n0 aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa
n3 SSSSSaaa aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa Saaaaaaa aaaaaaaa aaaaaaaa
n2 aaa aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaa aaaaaaaa aaaaaaaa
n1 aaa aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaa aaaaaaaa aaaaaaaa

c0n0 SSSSSaaa aaaaaaaa ------*- -----aaa -------- S------- -------- --------
s01234567 01234567 01234567 01234567 01234567 01234567 01234567 01234567

Legend:
nonexistent node S service node

; free interactive compute node - free batch compute node
A allocated, but idle compute node ? suspect compute node
X down compute node Y down or admindown service node
Z admindown compute node
* system dedicated node (DVS)

Available compute nodes: 0 interactive, 145 batch

Job ID User Size Age command line
--- ------ -------- ----- --------------- ----------------------------------
a 221176 user12 342 0h05m app1
b 221180 user12 171 0h04m app2
c 221182 user12 86 0h04m lu.A.64+pat

The xtnodestat command displays the allocation grid, a legend, and a job listing.
The column and row headings of the grid show the physical location of jobs: C
represents a cabinet, c represents a chassis, s represents a slot, and n represents a
node.

Note: If xtnodestat indicates that no compute nodes have been allocated for
interactive processing, you can still run your job interactively by using the qsub
-I command Then launch your application with the aprun command.

S–2496–31 29

Workload Management and Application Placement for the Cray Linux Environment

Use the xtprocadmin -A command to display node attributes that show both the
logical node IDs (NID heading) and the physical node IDs (NODENAME heading).
The following example shows the attributes of a system with XIO service nodes and
24-core compute nodes:

% xtprocadmin -A
NID (HEX) NODENAME TYPE ARCH OS CORES AVAILMEM PAGESZ CLOCKMHZ
0 0x0 c0-0c0s0n0 service xt (service) 6 16000 4096 2400
3 0x3 c0-0c0s0n3 service xt (service) 6 16000 4096 2400
4 0x4 c0-0c0s1n0 service xt (service) 6 16000 4096 2400

<snip>
20 0x14 c0-0c0s5n0 compute xt CNL 24 32000 4096 2100
21 0x15 c0-0c0s5n1 compute xt CNL 24 32000 4096 2100
22 0x16 c0-0c0s5n2 compute xt CNL 24 32000 4096 2100
23 0x17 c0-0c0s5n3 compute xt CNL 24 32000 4096 2100

For more information, see the xtnodestat(1) and xtprocadmin(8) man pages.

2.4 Using the cnselect Command
The aprun utility supports manual and automatic node selection. For manual
node selection, first use the cnselect command to get a candidate list of
compute nodes that meet the criteria you specify. Then, for interactive jobs
use the aprun -L node_list option. For batch and interactive batch jobs, add
-lmppnodes=\"node_list\" to the job script or the qsub command line.

The format of the cnselect command is:

cnselect [-l] [-L fieldname] [-V] [-c] [[-e]expression]

where:

• -l lists the names of fields in the compute nodes attributes database.

Note: The cnselect utility displays nodeids, sorted by ascending NID
number or unsorted. For some sites, node IDs are presented to ALPS in
non-sequential order for application placement. Site administrators can specify
non-sequential node ordering to reduce system interconnect transfer times.

• -L fieldname lists the current possible values for a given field.

• -V prints the version number and exits.

• -c gives a count of the number of nodes rather than a list of the nodes
themselves.

• [-e] expression queries the compute node attributes database.

30 S–2496–31

Running Applications [2]

You can use cnselect to get a list of nodes selected by such characteristics as
the number of cores per node (coremask), the amount of memory on the node
(in megabytes), and the processor speed (in megahertz). For example, to run an
application on Cray XT5 8-core nodes with 16 GB of memory or more, use:

% cnselect coremask.eq.255 .and. availmem.gt.16000
128-223,256-351,384-447
% aprun -n 16 -L 128-223 ./app1

To run an application on Cray X6 24-core or 16-core nodes with 32 GB of memory,
use:

% cnselect coremask.eq.16777215 .or. coremask.eq.65535
.and. availmem.eq.32000
14-17,32-39,56-63

Note: The cnselect utility returns -1 to stdout if the coremask criteria
cannot be met; for example coremask.eq.65535 on a system that has no
16-core compute nodes.

You can also use cnselect to get a list of nodes if a site-defined label exists. For
example, to run an application on six-core nodes, you might use:

% cnselect -L label1
HEX-CORE
TWELVE-CORE
% cnselect -e "label1.eq.'HEX-CORE'"
60-63,76,82
% aprun -n 6 -L 60-63,76,82 ./app1

If you do not include the -L option on the aprun command or the -lmppnodes
option on the qsub command, ALPS automatically places the application using
available resources.

2.5 Understanding How Much Memory is Available to
Applications

When running large applications, you should understand how much memory will be
available per node. Cray Linux Environment (CLE) uses memory on each node for
CNL and other functions such as I/O buffering. The remaining memory is available
for user executables; user data arrays; stacks, libraries and buffers; and the SHMEM
symmetric stack heap.

The amount of memory CNL uses depends on the number of cores, memory size,
and whether optional software has been configured on the compute nodes. For a
quad-core node with 8 GB of memory, 7.2 to 7.5 GB of memory is available for
applications.

The default stack size is 16 MB. You can determine the maximum stack size by using
the limit command (csh) or the ulimit -a command (bash).

S–2496–31 31

Workload Management and Application Placement for the Cray Linux Environment

Note: The actual amount of memory CNL uses varies depending on the total
amount of memory on the node and the OS services configured for the node.

You can use the aprun -m size option to specify the per-PE memory limit. For
example, this command launches xthi on cores 0 and 1 of compute nodes 472 and
473. Each node has 8 GB of available memory, allowing 4 GB per PE.

% aprun -n 4 -N 2 -m4000 ./xthi | sort
Application 225108 resources: utime ~0s, stime ~0s
PE 0 nid00472 Core affinity = 0,1
PE 1 nid00472 Core affinity = 0,1
PE 2 nid00473 Core affinity = 0,1
PE 3 nid00473 Core affinity = 0,1
% aprun -n 4 -N 2 -m4001 ./xthi | sort
Claim exceeds reservation's memory

You can change MPI buffer sizes and stack space from the defaults by setting certain
environment variables. For more details, see the intro_mpi(3) man page.

2.6 Core Specialization
CLE 3.1 offers a new core-specialization functionality. Core specialization binds a set
of Linux kernel-space processes and daemons to a single core within a Cray compute
node to enable the software application to fully utilize the remaining cores within its
cpuset. This restricts all possible overhead processing to one core per node within
the reservation and may improve application performance. To help users calculate the
new "scaled-up" width for a batch reservation that uses core specialization, CLE
introduces the apcount tool.

Note: apcount will work only if your system has uniform compute node types.

See the apcount(1) manpage for further information.

This behavior is requested by specifying -r for the aprun command along with
the -B option. The -B option will pass batch options corresponding with -n, -N,
-d, and -m to the aprun command. Table 1 shows representative values for core
specialization scenarios on Cray systems.

Table 1. Core/PE Distribution for r=1

Compute
Blade Type

of Cores Service
Affinity Cores

Compute
Cores

NMAX

Cray XE5 or
Cray XT5

8 7 0-6 7

Cray XE5 or
Cray XT5

12 11 0-10 11

Cray X6 16 15 0-14 15

Cray X6 24 23 0-22 23

32 S–2496–31

Running Applications [2]

2.7 Launching an MPMD Application
The aprun utility supports multiple-program, multiple-data (MPMD) launch mode.
To run an application in MPMD mode under aprun, use the colon-separated -n
pes executable1 : -n pes executable2 : ... format. For MPI applications, all of the
executables share the same MPI_COMM_WORLD process communicator.

For example, this command launches 128 instances of program1 and 256 instances
of program2:

aprun -n 128 ./program1 : -n 256 ./program2

A space is required before and after the colon.

Note: MPMD applications that use the SHMEM parallel programming model,
either standalone or nested within an MPI program, are not supported on Gemini
based systems.

2.8 Managing Compute Node Processors from an MPI Program
MPI programs should call the MPI_Finalize() routine at the conclusion of the
program. This call waits for all processing elements to complete before exiting. If
one of the programs fails to call MPI_Finalize(), the program never completes
and aprun stops responding. There are two ways to prevent this behavior:

• Use the PBS Professional elapsed (wall clock) time limit to terminate the job after
a specified time limit (such as -l walltime=2:00:00).

• Use the aprun -t sec option to terminate the program. This option specifies the
per-PE CPU time limit in seconds. A process will terminate only if it reaches the
specified amount of CPU time (not wallclock time).

For example, if you use:

% aprun -n 8 -t 120 ./myprog1

and a PE uses more than two minutes of CPU time, the application terminates.

2.9 About aprun Input and Output Modes
The aprun utility handles standard input (stdin) on behalf of the user and
handles standard output (stdout) and standard error messages (stderr) for user
applications.

2.10 About aprun Resource Limits
aprun utility does not forward its user resource limits to each compute node (except
for RLIMIT_CORE and RLIMIT_CPU, which are always forwarded).

S–2496–31 33

Workload Management and Application Placement for the Cray Linux Environment

You can set the APRUN_XFER_LIMITS environment variable to 1 (export
APRUN_XFER_LIMITS=1or setenv APRUN_XFER_LIMITS 1) to enable the
forwarding of user resource limits. For more information, see the getrlimit(P)
man page.

2.11 About aprun Signal Processing
The aprun utility forwards the following signals to an application:

• SIGHUP

• SIGINT

• SIGQUIT

• SIGTERM

• SIGABRT

• SIGUSR1

• SIGUSR2

• SIGURG

• SIGWINCH

The aprun utility ignores SIGPIPE and SIGTTIN signals. All other signals
remain at default and are not forwarded to an application. The default behaviors that
terminate aprun also cause ALPS to terminate the application with a SIGKILL
signal.

34 S–2496–31

Running User Programs on Service
Nodes [3]

To compile a program that you want to run on a login or other service node, call the
compiler directly.

• For PGI programs, use the pgcc, pgCC, or pgf95 command.

• For GCC programs, use the gcc, g++, or gfortran command.

• For PathScale programs, use the pathcc, pathCC, or path95 command.

• For Cray compilers, use the cc, CC, or ftn command.

• For Intel compilers, use the icc, icpc, fpp, or ifort command.

These compilers will find the appropriate header files and libraries in their normal
Linux locations.

For example, to run program my_utility on a service node, first compile the
program:

% module load pgi
% pgCC -o my_utility my_utility.C

Then run my_utility:

% my_utility
In main(0)
In functionx(0)
Back in main()

S–2496–31 35

Workload Management and Application Placement for the Cray Linux Environment

36 S–2496–31

Using Workload Management Systems [4]

Your Cray system may include the optional PBS Professional or Moab TORQUE
workload management system (WMS). If so, your system can be configured with a
given number of interactive job processors and a given number of batch processors. A
job that is submitted as a batch process can use only the processors that have been
allocated to the batch subsystem. If a job requires more processors than have been
allocated for batch processing, it remains in the batch queue but never exits.

Note: At any time, the system administrator can change the designation of any
node from interactive to batch or vice versa. This does not affect jobs already
running on those nodes. It applies only to jobs already in the queue and jobs
submitted later.

The basic process for creating and running batch jobs is to create a job script that
includes aprun commands, then use the qsub command to run the script.

4.1 Creating Job Scripts
A job script may consist of directives, comments, and executable statements:

#PBS -N job_name
#PBS -l resource_type=specification
#
command
command
...

PBS Professional and Moab TORQUE provide a number of resource_type options for
specifying, allocating, and scheduling compute node resources, such as mppwidth
(number of processing elements), mppdepth (number of threads), mppnppn
(number of PEs per node), and mppnodes (manual node placement list). See Table 2
and the pbs_resources(7B) man page for details.

S–2496–31 37

Workload Management and Application Placement for the Cray Linux Environment

4.2 Submitting Batch Jobs
To submit a job to the workload management system, load the pbs or moab module:

% module load pbs

Or

% module load moab

Then use the qsub command:

% qsub [-l resource_type=specification] jobscript

where jobscript is the name of a job script that includes one or more aprun
commands.

The qsub command scans the lines of the script file for directives. An initial line in
the script that has only the characters #! or the character: is ignored and scanning
starts at the next line. A line with #!/bin/shell invokes shell from within the
script. Scanning continues until the first executable line. An executable line is not
blank, not a directive, and does not start with #). If directives occur on subsequent
lines, they are ignored.

When you run the script, qsub displays the Job ID. You can use the qstat
command to check on the status of your job and the qdel command to remove a
job from the queue.

If a qsub option is present in both a directive and on the command line, the
command line takes precedence. If an option is present in a directive and not on the
command line, that option and its argument, if any, are processed as if you included
them on the command line.

Table 2 lists aprun options and their counterpart qsub -l options:

Table 2. aprun versus qsub Options

aprun Option qsub -l Option Description

-n 4 -l mppwidth=4 Width (number of PEs)

-d 2 -l mppdepth=2 Depth (number of CPUs hosting
OpenMP threads)

-N 1 -l mppnppn=1 Number of PEs per node

-L 5,6,7 -l mppnodes=\"5,6,7\" Candidate node List

-m 1000 -l mppmem=1000 Memory per PE

For further information about qsub -l options, see the pbs_resources(7B)
man page.

38 S–2496–31

Using Workload Management Systems [4]

For examples of batch jobs that use aprun, see Running a Batch Job Script on
page 87.

4.3 Getting Job Status
The qstat command displays the following information about all batch jobs
currently running:

• The job identifier (Job id) assigned by the WMS

• The job name (Name)

• The job owner (User)

• CPU time used (Time Use)

• The job state S is:

– E (job is exiting)

– H (job is held)

– Q (job is in the queue)

– R (job is running)

– S (job is suspended)

– T (job is being moved to a new location)

– W (job is waiting for its execution time)

• The queue (Queue) in which the job resides

For example:

% qstat
Job id Name User Time Use S Queue
---------------- ---------------- ---------------- -------- - -----
84.nid00003 test_ost4_7 usera 03:36:23 R workq
33.nid00003 run.pbs userb 00:04:45 R workq
34.nid00003 run.pbs userb 00:04:45 R workq
35.nid00003 STDIN userc 00:03:10 R workq

If the -a option is used, queue information is displayed in an alternative format.

% qstat -a
Req'd Req'd Elap

Job ID Username Queue Jobname SessID NDS TSK Memory Time S Time
---------------- -------- -------- ---------- ------ --- --- ------ ----- - -----
84.nid00003 usera workq test_ost4_7 -- 1 1 -- -- Q --
33.nid00003 userb workq run.pbs -- 1 1 -- -- Q --
34.nid00003 userb workq run.pbs -- 1 1 -- -- Q --
35.nid00003 userc workq STDIN -- 1 1 -- -- Q --

For details, see the qstat(1B) man page.

S–2496–31 39

Workload Management and Application Placement for the Cray Linux Environment

4.4 Removing a Job from the Queue
The qdel command removes a batch job from the queue. As a user, you can remove
any batch job for which you are the owner. Jobs are removed from the queue in the
order they are presented to qdel. For more information, see the qdel(1B) man
page.

40 S–2496–31

Dynamic Shared Objects and Libraries
(DSLs) [5]

5.1 Introduction
Cray supports linking with dynamic shared objects on Cray systems. Dynamic
shared objects allow for use of multiple programs that require the same segment of
memory address space to be used during linking and compiling. This functionality
enables many previously unavailable applications to run on Cray systems and may
reduce executable size and improve optimization of system resources. Also, when
shared libraries are changed or upgraded, users will not need to recompile dependent
applications. Cray Linux Environment uses Cray Data Virtualization Service (Cray
DVS) to project the shared root onto the Cray system to compute nodes. Thus, each
compute node using its DVS-projected file system transparently calls shared libraries
located at a central location.

5.2 About the Compute Node Root Run Time Environment
CLE facilitates compute node access to the Cray system shared root by projecting it
through Cray DVS. DVS is an I/O forwarding mechanism that provides transparent
access to remote file systems while reducing client load. DVS allows users and
applications running on compute nodes access to remote POSIX-compliant file
systems such as NFS.

ALPS is updated to run with applications that use read-only shared objects. When a
user runs an application, ALPS launches the application to the compute node root.
After installation, using the compute node root is enabled by default. However, the
administrator can define the default case (DSO support enabled or disabled) per
site policy. It is also possible for users to override the default setup by setting an
environment variable, CRAY_ROOTFS.

S–2496–31 41

Workload Management and Application Placement for the Cray Linux Environment

5.2.1 DSL Support

CLE supports DSLs for following cases:

• linking and loading against programming environments supported by Cray

• Use of the Python interpreter on compute nodes

Launching terminal shells and other programming language interpreters using the
compute node root are not currently supported by Cray.

5.2.2 Cray DVS Loadbalance Mode

DVS supports three access modes:

• Serial mode — clients communicate with one DVS server

• Cluster parallel mode — clients can communicate with multiple DVS servers
on a per-file basis

• Loadbalance mode — clients only communicate with one server; multiple servers
project the underlying read-only file system

Loadbalance mode is a new client access mode for DVS used exclusively for the
compute node root run time environment. The clients, Cray system compute nodes,
automatically select the server based on node ID (NID) from the list of available
server nodes specified at install time. Loadbalance mode is only valid for read-only
mount points. In the case of compute node root servers, the underlying file system is
the NFS-exported shared root. Loadbalance mode accommodates automatic failover
to another DVS server.

42 S–2496–31

Dynamic Shared Objects and Libraries (DSLs) [5]

Figure 1. Cray DVS Loadbalance Mode Used in the Compute Node Root Run
Time Environment

Cray System

FS Server

Disk FS

Application

DVS Client

DVS Server

FS Client

Boot Node

Application

DVS Client

Application

DVS Client

Application

DVS Client

DVS Server

FS Client

5.3 Configuring DSL
The shared root /etc/opt/cray/cnrte/roots.conf file contains
site-specific values for custom root file systems. To specify a different pathname
for roots.conf edit the configuration file /etc/sysconfig/xt.conf and
change the value for the variable, CRAY_ROOTFS_CONF. In the roots.conf
file, the system default compute node root used is specified by the symbolic name
DEFAULT. If no default value is specified, / will be assumed. In the following
example segment of roots.conf, the default case uses the root mounted at on the
compute nodes at /dsl:

DEFAULT=/dsl
INITRAMFS=/
DSL=/dsl

S–2496–31 43

Workload Management and Application Placement for the Cray Linux Environment

A user may override the system default compute node root value by setting the
environment variable, CRAY_ROOTFS, to a value from the roots.conf file.
This setting effectively changes the compute node root used for launching jobs.
For example, to override the use of /dsl the user would enter something like the
following at the command line on the login node:

% export CRAY_ROOTFS=INITRAMFS

If the system default is using initramfs, enter something like the following at
the command line on the login node to switch to using the compute node root path
specified by DSL:

% export CRAY_ROOTFS=DSL

An administrator can modify the contents of this file to restrict user access. For
example, if the administrator only wants to allow applications to launch using the
compute node root, the roots.conf file would read like the following:

% cat /etc/opt/cray/cnrte/roots.conf
DEFAULT=/dsl

For more information, see Managing System Software for Cray XE and Cray XT
Systems.

5.4 Building, Launching, and Workload Management Using
Dynamic Objects

5.4.1 Linker Search Order

Search order is an important detail to consider when compiling and linking
executables. The dynamic linker uses the following search order when loading a
shared object:

• Value of LD_LIBRARY_PATH environment variable

• Value of DT_RUNPATH dynamic section of the executable, which is set using the
ld -rpath command. You can add a directory to the run time library search
path using the ld command. However, setting the library search path is added
automatically when using a supported Cray system programming environment
component. For more information please see the ld(1) manpage.

44 S–2496–31

Dynamic Shared Objects and Libraries (DSLs) [5]

• The contents of the human non-readable cachefile /etc/ld.so.cache. The
/etc/ld.so.conf contains a list of comma or colon separated path names to
which the user can append custom paths.

• The paths /lib and /usr/lib.

Loading a programming environment module before compiling will appropriately set
the LD_LIBRARY_PATH environment variable. Conversely, unloading modules
by using a command such as module purge will clear the stored value of
LD_LIBRARY_PATH. Other useful environment variables are listed in the ld.so(8)
manpage. If a programming environment module is loaded when running an
executable that uses dynamic shared objects, it should be the same programming
environment used to build the executable. For example, if a program is built using the
PathScale compiler, the user should load the module PrgEnv-pathscale when
setting the environment to launch the application.

Example 1. Compiling an application

Compile the following program, reduce_dyn.c, dynamically by including the
compiler option dynamic.

The C version of the program, reduce_dyn.c, looks like:

/* program reduce_dyn.c */
#include <stdio.h>
#include "mpi.h"

int main (int argc, char *argv[])
{
int i, sum, mype, npes, nres, ret;
ret = MPI_Init (&argc, &argv);
ret = MPI_Comm_size (MPI_COMM_WORLD, &npes);
ret = MPI_Comm_rank (MPI_COMM_WORLD, &mype);
nres = 0;
sum = 0;

for (i = mype; i <=100; i += npes)
{
sum = sum + i;
}
(void) printf ("My PE:%d My part:%d\n",mype, sum);
ret = MPI_Reduce (&sum,&nres,1,MPI_INTEGER,MPI_SUM,0,MPI_COMM_WORLD);

if (mype == 0)
{
(void) printf ("PE:%d Total is:%d\n",mype, nres);
}
ret = MPI_Finalize ();

}

Invoke the C compiler using cc and the dynamic option:

% cc -dynamic reduce_dyn.c -o reduce_dyn

S–2496–31 45

Workload Management and Application Placement for the Cray Linux Environment

Alternatively, you can use the environment variable, XTPE_LINK_TYPE, without
any extra compiler options:

% export XTPE_LINK_TYPE=dynamic
% cc reduce_dyn.c -o reduce_dyn

You can tell if an executable uses a shared library by executing the ldd command:

% ldd reduce_dyn
libsci.so => /opt/xt-libsci/10.3.7/pgi/lib/libsci.so (0x00002b1135e02000)

libfftw3.so.3 => /opt/fftw/3.2.1/lib/libfftw3.so.3 (0x00002b1146e92000)
libfftw3f.so.3 => /opt/fftw/3.2.1/lib/libfftw3f.so.3 (0x00002b114710a000)
libsma.so => /opt/mpt/3.4.0.1/xt/sma/lib/libsma.so (0x00002b1147377000)
libmpich.so.1.1 => /opt/mpt/3.4.0.1/xt/mpich2-pgi/lib/libmpich.so.1.1 (0x00002b11474a0000)
librt.so.1 => /lib64/librt.so.1 (0x00002b114777a000)
libpmi.so => /opt/mpt/3.4.0.1/xt/pmi/lib/libpmi.so (0x00002b1147883000)
libalpslli.so.0 => /opt/mpt/3.4.0.1/xt/util/lib/libalpslli.so.0 (0x00002b1147996000)
libalpsutil.so.0 => /opt/mpt/3.4.0.1/xt/util/lib/libalpsutil.so.0 (0x00002b1147a99000)
libportals.so.1 => /opt/xt-pe/2.2.32DSL/lib/libportals.so.1 (0x00002b1147b9c000)
libpthread.so.0 => /lib64/libpthread.so.0 (0x00002b1147ca8000)
libm.so.6 => /lib64/libm.so.6 (0x00002b1147dc0000)
libc.so.6 => /lib64/libc.so.6 (0x00002b1147f15000)
/lib64/ld-linux-x86-64.so.2 (0x00002b1135ce6000)

There are shared object dependencies listed for this executable. For more
information, please consult the ldd(1) manpage.

Example 2. Launching an application with the Application Level Placement
Scheduler (ALPS) using the compute node root

If the system administrator has set up the compute node root run time environment for
the default case, then the user executes aprun without any further argument:

% aprun -n 6 ./reduce_dyn

However, if the administrator sets up the system to use initramfs, then the user
will have to set the environment variable appropriately:

% export CRAY_ROOTFS=DSL
% aprun -n 6 ./reduce_dyn | sort
Application 1555880 resources: utime 0, stime 8

My PE:0 My part:816
My PE:1 My part:833
My PE:2 My part:850
My PE:3 My part:867
My PE:4 My part:884
My PE:5 My part:800
PE:0 Total is:5050

46 S–2496–31

Dynamic Shared Objects and Libraries (DSLs) [5]

Example 3. Running an application using a workload management system

Running a program interactively using a workload management system such as PBS
or Moab TORQUE with the compute node root is essentially the same as running
with the default environment. One exception is that if the compute node root is not
the default execution option, you must set the environment variable after you have run
the batch scheduler command, qsub:

% qsub -I -lmppwidth=4
% export CRAY_ROOTFS=DSL

Alternatively, you can use -V option to pass environment variables to the PBS or
Moab TORQUE job:

% export CRAY_ROOTFS=DSL
% qsub -V -I -lmppwidth=4

Example 4. Running a Program Using a Batch Script

Create the following batch script, reduce_script, to launch the reduce_dyn
executable:

#!/bin/bash
#reduce_script
Define the destination of this job
as the queue named "workq":
#PBS -q workq
#PBS -l mppwidth=6
Tell WMS to keep both standard output and
standard error on the execution host:
#PBS -k eo
cd /lus/nid00008/crayusername
module load PrgEnv-pgi
aprun -n 6 ./reduce_dyn
exit 0

Then launch the script using the qsub command:

% export CRAY_ROOTFS=DSL
% qsub -V reduce_script
1674984.sdb
% cat reduce_script.o1674984
Warning: no access to tty (Bad file descriptor).
Thus no job control in this shell.
My PE:5 My part:800
My PE:4 My part:884
My PE:1 My part:833
My PE:3 My part:867
My PE:2 My part:850
My PE:0 My part:816
PE:0 Total is:5050
Application 1747058 resources: utime ~0s, stime ~0s

S–2496–31 47

Workload Management and Application Placement for the Cray Linux Environment

5.5 Troubleshooting

5.5.1 Error While Launching with aprun: "error while loading shared
libraries"

If you an encounter an error such as the following:

error while loading shared libraries: libsci.so: cannot open shared object file: No such file or directory

your environment is likely not configured to launch applications using shared objects.
Set the environment variable CRAY_ROOTFS to the appropriate value as prescribed
in Example 2.

5.5.2 Running an Application Using a Non-Existent Root

If you erroneously set CRAY_ROOTFS to a file system not specified in
roots.conf, aprun will exit with the following error:

% set CRAY_ROOTFS=WRONG_FS
% aprun -n 4 -N 1 ./reduce_dyn
aprun: Error from DSL library: Could not find shared root symbol WRONG_FS,

specified by env variable CRAY_ROOTFS, in config file: /etc/opt/cray/cnrte/roots.conf

aprun: Exiting due to errors. Application aborted

5.5.3 Performance Implications of Using Dynamic Shared Objects

There is a possibility that using dynamic libraries will introduce delays in application
launch times because of shared object loading and remote page faults. This delay is
an inevitable result of the linking process taking place at execution and the relative
inefficiency of symbol lookup in DSOs. Likewise, since executables are linked
dynamically there may be a small but measurable performance degradation during
execution. If this delay is not acceptable, the solution is to link the application
statically.

48 S–2496–31

Using Cluster Compatibility Mode in CLE [6]

6.1 Cluster Compatibility Mode
A Cray XE or Cray XT system is not a cluster but a massive parallel processing
(MPP) computer. An MPP is simply one computer with many networked processors
used for distributed computation, and, in the case of Cray XT and Cray XE
architectures, a high-speed communications interface that facilitates optimal
bandwidth and memory operations between those processors. When operating as an
MPP machine, the Cray compute node kernel (Cray CNL) typically does not have a
full set of the Linux services available that are used in cluster ISV applications.

Cluster Compatibility Mode (CCM) is a software solution that provides the services
needed to run most cluster-based independent software vendor (ISV) applications
out-of-the-box with some configuration adjustments. CCM supports ISV applications
running in four simultaneous cluster jobs on up to 256 compute nodes per job
instance. It is built on top of the compute node root runtime environment (CNRTE),
the infrastructure used to provide dynamic library support in Cray systems.

S–2496–31 49

Workload Management and Application Placement for the Cray Linux Environment

6.1.1 CCM implementation

CCM is tightly coupled to the workload management system. It enables users to
execute cluster applications alongside workload-managed jobs running in a traditional
MPP batch or interactive queue (see Figure 2). Support for dynamic shared objects
and expanded services on compute nodes using the compute node root runtime
environment (CNRTE) provide the services to compute nodes within the cluster
queue. Essentially, CCM uses the batch system to logically designate part of the Cray
system as an emulated cluster for the duration of the job.

Figure 2. Cray Job Distribution Cross Section

ccm_queue workq

Service Nodes
Free Compute Nodes
Traditional Batch Job
Cluster Compatibility Mode
Application

Cluster Compatibility Mode
batch queue

MPP job batch queue

Users provision the emulated cluster by launching a batch or interactive job in PBS or
Moab using a CCM-specific queue. The nodes the user specifies in the qsub line are
no longer available for MPP jobs for the duration of the job. The user then launches
the application using ccmrun. When the job terminates, the applications cleanup and
the nodes are returned to the free pool of computes (see Figure 3).

50 S–2496–31

Using Cluster Compatibility Mode in CLE [6]

Figure 3. CCM Job Flow Diagram

MPP/workq

qsub -V –I -q ccm_queue -lmppwidth=xxx Imppnppn=x

ccmrun–n1 app1

ccmlogin nidXXXXX

MPP/workq

"Application 1190032
resources: utime ~985s,
stime ~13s"

Free MPP compute nodesFree MPP compute nodes

Nodes are provisioned and placed
in ccm_queue using qsub

User runs application using ccmrun with a batch
script or interactively

Application terminates and CCM processes
cleanup

Cluster job nodes are returned as free MPP
compute nodes
Cluster job nodes are returned as free MPP
compute nodes

While the application runs, ccmlogin provides an
interactive “window” to job

6.2 Installation and Configuration of Applications for CCM
Users are encouraged to install programs using their local scratch directory and set
paths accordingly to use CCM. However, if an ISV application requires root access,
then the site administrator will have to install the application on the boot node's
shared root in xtopview. Compute nodes will then be able to mount the shared
root using the compute node root runtime environment and use services necessary
for the ISV application.

6.3 Using CCM

6.3.1 CCM Commands

The user must first load the ccm module and can then use the following two
commands: ccmrun and ccmlogin.

6.3.1.1 ccmrun

ccmrun, as the name implies, starts the cluster application. The head node is the first
node in the emulated cluster where ccmrun sets up the CCM infrastructure and
propagates the rest of the application. Options supplied to ccmrun will be ignored.
The following is the syntax for ccmrun:

ccmrun application [application_parameters]

S–2496–31 51

Workload Management and Application Placement for the Cray Linux Environment

6.3.1.2 ccmlogin

ccmlogin is a command that allows an interactive user to open an SSH session to
the CCM head node and then other nodes through either SSH or RSH. ccmlogin
takes all options you provide to SSH. For more information, see the ssh(1) man
page.

6.3.2 Starting a CCM Batch Job

You can use either PBS or Moab TORQUE to reserve the nodes for the cluster
using the qsub command then proceed to launch the application using ccmrun.
All standard qsub options are supported with ccmrun. An example using the
application isv_app is shown below:

Example 5. Launching An ISV Application Using CCM

% qsub -I -l mppwidth=32 -q ccm_queue

qsub: waiting for job 434781.sdb to start
qsub: job 434781.sdb ready
Initializing CCM Environment, please wait

Once the user prompt re-appears run the application using ccmrun:

% ccmrun isv_app job=e5 cpus=32

A batch script for the above would look like this:

#PBS -l mppwidth=32
#PBS -q ccm_queue
#PBS -j oe
#PBS -S /bin/bash
cd $PBS_O_WORKDIR
export PATH=${PATH}:/mnt/lustre_server/ccmuser/isv_app/Commands
ln -s ../e5.inp e5.inp
export TMPDIR=${PBS_O_WORKDIR}/temp
mkdir $TMPDIR
ccmrun isv_app job=e5 cpus=32 interactive

6.3.3 X11 Forwarding in CCM

Applications that require X11 forwarding (or tunneling) can use the qsub -V option
to pass the DISPLAY variable to the emulated cluster. Then users can forward X
traffic using ccmlogin as in the following:

ssh -Y login
qsub -V -q=ccm_queue -lmppwidth=1
ccmrun isv_app
ccmlogin nid 00212

52 S–2496–31

Using Cluster Compatibility Mode in CLE [6]

6.4 Individual Software Vendor (ISV) Example
Example 6. Launching the UMT/pyMPI Benchmark Using CCM

The UMT/pyMPI benchmark tests MPI and OpenMP parallel scaling efficiency,
thread compiling, single CPU performance and Python functionality.

The following example runs through the UMT/pyMPI benchmark using CCM and
assumes you have installed it in your user scratch directory. The runSuOlson.py
Python script runs the benchmark. The -V passes environment variables to the cluster
job:

module load ccm
qsub -V -q ccm_queue -I -lmppwidth=2 -l mppnodes=471
cd top_of_directory_where_extrated
a= p` wd
e

`
xport LD_LIBRARY_PATH=${a}/Teton:${a}/cmg2Kull/sources:${a}/CMG_CLEAN/src:${LD_LIBRARY_PATH}

ccmrun -n2 ${a}/Install/pyMPI-2.4b4/pyMPI python/runSuOlson.py

The following runs the UMT test contained in the packaged:

module load ccm
qsub -V -q ccm_queue -I -lmppwidth=2 -l mppnodes=471
qsub: waiting for job 394846.sdb to start
qsub: job 394846.sdb ready

Initializing CCM environment, Please Wait
waiting for jid....
waiting for jid....
CCM Start success, 1 of 1 responses
machine=> cd UMT_TEST
machine=> a= p` wd
m

`
achine=> ccmrun -n2 ${a}/Install/pyMPI-2.4b4/pyMPI python/runSuOlson.py

writing grid file: grid_2_13x13x13.cmg
Constructing mesh.
Mesh construction complete, next building region, opacity, material, etc.
mesh and data setup complete, building Teton object.
Setup complete, beginning time steps.
CYCLE 1 timerad = 3e-06
TempIters = 3 FluxIters = 3 GTAIters = 0
TrMax = 0.0031622776601684 in Zone 47 on Node 1
TeMax = 0.0031622776601684 in Zone 1239 on Node 1
Recommended time step for next rad cycle = 6e-05

********** Run Time Statistics **********
Cycle Advance Accumulated

Time (sec) Angle Loop Time (sec)
RADTR = 47.432 39.991999864578

CYCLE 2 timerad = 6.3e-05

...

The benchmark continues to go through several iterations before completing.

S–2496–31 53

Workload Management and Application Placement for the Cray Linux Environment

6.5 Troubleshooting

6.5.1 CCM Initialization Fails

Immediately after the user enters their qsub command line and they see output like
the following:

Initializing CCM environment, Please Wait
Cluster Compatibility Mode Start failed, 1 of 4 responses

This error is usually caused when /etc files (e.g. nsswitch.conf,
resolv.conf, passwd, shadow, etc) are not specialized to the cnos class view.
If you encounter this error, the system administrator must migrate these files form the
login class view to the cnos class view. For more information, see Managing
System Software for Cray XE and Cray XT Systems.

6.5.2 Logging Into Head Node is Slow

If logging into the head node of a job is slow or hanging, then this is likely due to a
faulty configuration of CSA accounting. CSA accounting should not be enabled in the
cnos class view and should only be enabled for login class views.

Procedure 1. Disabling CSA Accounting for the cnos class view

1. Enter xtopview in the cnos view:

boot:~ # xtopview -c cnos -x /etc/opt/cray/sdb/node_classes

2. Edit /etc/pam.d/common-auth-pc:

class/cnos:/ # vi /etc/pam.d/common-auth-pc

and remove or comment the following line:

session optional /opt/cray/job/default/lib64/security/pam_job.so

6.5.3 Using a Transport Protocol Other Than TCP

CCM only supports the TCP transport protocol. You will receive an error if you try
to use Infiniband:

libibverbs: Fatal: couldn't open sysfs class 'infiniband_verbs'

6.6 Caveats and Limitations

6.6.1 ALPS will not accurately reflect CCM job resources

Since CCM is transparent to the user application, ALPS utilities such as apstat do
not accurately reflect resources used by a CCM job.

54 S–2496–31

Using Cluster Compatibility Mode in CLE [6]

6.6.2 Limitations

The following limitations apply to supporting cluster queues with CLE 3.1 on Cray
systems:

• Applications must fit in the physical node memory because swap space is not
presently supported in CCM.

• Core specialization is not supported with CCM.

• CCM does not include support for applications built in Cray Compiling
Environment (CCE) with Fortran 2008 with coarrays or Unified Parallel C (UPC)
compiling options, nor any Cray built libraries built with these implementations.
Applications built using the Cray SHMEM library are also not compatible with
CCM.

S–2496–31 55

Workload Management and Application Placement for the Cray Linux Environment

56 S–2496–31

Using Checkpoint/Restart [7]

The Cray checkpoint/restart facility allows you to save job state to a checkpoint file
and restart the job from its latest checkpoint at a later time. Cray checkpoint/restart
is based on Berkeley Lab Checkpoint Restart (BLCR). Supported workload
management systems are Moab TORQUE and (Deferred implementation) PBS
Professional.

Parallel applications must use MPI or SHMEM; other parallel programming models
are not supported. In general, MPI-2 applications are supported, but MPI process
management is not supported. No changes to application source code are required
to checkpoint and restart a job.

Cray checkpoint/restart provides these commands:

• qhold, which checkpoints a job, releases resources assigned to the job, and
places the job in hold state in the job queue.

• qchkpt, which checkpoints a job, but the job keeps running.

• qrls, which releases a checkpointed job from hold state; the job resumes
running.

• qrerun, which restarts a previously checkpointed job that has completed, is still
queued in the completed state, and has not yet exited the workload management
system.

Note: A system variable sets the amount of time a job will remain in the queue
in the completed state. Once a job has been removed from the queue, you can
no longer use qrerun to restart it.

For details about these commands, see the qhold(1), qchkpt(1), qrls(1), and
qrerun(1) man pages.

Note: Use the Cray checkpoint/restart commands, not the BLCR commands.
The native BLCR cr_checkpoint and cr_restart commands are not
supported. Also, use the Cray man pages; the BLCR cr_checkpoint(1) and
cr_restart(1) man pages document some features that are not supported on
Cray systems.

To use checkpoint/restart, you need to load the workload management system module
(moab or (Deferred implementation) pbs) and the blcr module. Loading the
blcr module causes subsequent compilations to link the libraries needed to make
the application checkpointable.

S–2496–31 57

Workload Management and Application Placement for the Cray Linux Environment

Note: When you compile an application with checkpoint/restart support (that is,
you load the blcr module), each processing element spawns a thread. You should
take this into account when specifying aprun placement options.

You should be aware of the following factors in using checkpoint/restart:

• You cannot checkpoint/restart applications launched interactively through aprun.

• Checkpointing/restarting applications using TCP/IP sockets is not supported.

• Files are handled by reference only. The checkpoint facility captures the state
only of those files that are open at checkpoint time.

• Linux asynchronous I/O is not supported.

• Applications that connect stdin, stdout , and stderr to a TTY are not supported.

• Checkpoint/restart does not support applications being debugged with an
interactive debugger.

For an example showing how to create, checkpoint, and restart a job, see Using
Checkpoint/Restart Commands on page 94.

58 S–2496–31

Optimizing Applications [8]

8.1 Using Compiler Optimization Options
After you have compiled and debugged your code and analyzed its performance, you
can use a number of techniques to optimize performance. For details about compiler
optimization and optimization reporting options, see the Cray C and C++ Reference
Manual, Cray Fortran Reference Manual, PGI User's Guide, the Using the GNU
Compiler Collection (GCC) manual, the PathScale Compiler Suite User Guide, the
Intel C++ Compiler Professional Edition for Linux, or the Intel Fortran Compiler
Professional Edition for Linux manuals.

Optimization can produce code that is more efficient and runs significantly faster than
code that is not optimized. Optimization can be performed at the compilation unit
level through compiler driver options or to selected portions of code through the use
of directives or pragmas. Optimization may increase compilation time and may make
debugging difficult. It is best to use performance analysis data to isolate the portions
of code where optimization would provide the greatest benefits.

You also can use aprun affinity options to optimize applications.

In the following example, a Fortran matrix multiply subroutine is optimized. The
compiler driver option generates an optimization report.

Source code of matrix_multiply.f90:

subroutine mxm(x,y,z,m,n)
real*8 x(m,n), y(m,n), z(n,n)

do k = 1,n
do j = 1,n
do i = 1,m

x(i,j) = x(i,j) + y(i,k)*z(k,j)
enddo

enddo
enddo

end

PGI Fortran compiler command:

% ftn -c -fast -Minfo matrix_multiply.f90

S–2496–31 59

Workload Management and Application Placement for the Cray Linux Environment

Optimization report:

mxm:
5, Interchange produces reordered loop nest: 7, 5, 9
9, Generated 3 alternate loops for the inner loop

Generated vector sse code for inner loop
Generated 2 prefetch instructions for this loop
Generated vector sse code for inner loop
Generated 2 prefetch instructions for this loop
Generated vector sse code for inner loop
Generated 2 prefetch instructions for this loop
Generated vector sse code for inner loop
Generated 2 prefetch instructions for this loop

To generate an optimizations report (loopmark listing) using the Cray Fortran
compiler, enter:

% module swap PrgEnv-pgi PrgEnv-cray
% ftn -ra -c matrix_multiply.f90

Optimization report (file matrix_multiply.lst):

%%% L o o p m a r k L e g e n d %%%

Primary Loop Type Modifiers
------- ---- ---- ---------

a - vector atomic memory operation
A - Pattern matched b - blocked
C - Collapsed f - fused
D - Deleted i - interchanged
E - Cloned m - streamed but not partitioned
I - Inlined p - conditional, partial and/or computed
M - Multithreaded r - unrolled
P - Parallel/Tasked s - shortloop
V - Vectorized t - array syntax temp used
W - Unwound w - unwound

1. subroutine mxm(x,y,z,m,n)
2. real*8 x(m,n), y(m,n), z(n,n)
3.
4. D------< do k = 1,n
5. D 2----< do j = 1,n
6. D 2 A--< do i = 1,m
7. D 2 A x(i,j) = x(i,j) + y(i,k)*z(k,j)
8. D 2 A--> enddo
9. D 2----> enddo

10. D------> enddo
11.
12. end

ftn-6002 ftn: SCALAR File = matrix_multiply.f90, Line = 4
A loop starting at line 4 was eliminated by optimization.

ftn-6002 ftn: SCALAR File = matrix_multiply.f90, Line = 5
A loop starting at line 5 was eliminated by optimization.

ftn-6202 ftn: VECTOR File = matrix_multiply.f90, Line = 6
A loop starting at line 6 was replaced by a library call.

60 S–2496–31

Optimizing Applications [8]

8.2 Using aprun Memory Affinity Options
On Cray systems, each compute node has local-NUMA-node memory and
remote-NUMA-node memory. Remote-NUMA-node memory references, such
as a NUMA node 0 PE accessing NUMA node 1 memory, can adversely affect
performance. To give you run time controls that may optimize memory references,
Cray has added aprun memory affinity options.

Applications can use one or all NUMA nodes of a Cray system compute node. If an
application is placed using one NUMA node, other NUMA nodes are not used. In
this case, the application processes are restricted to using local-NUMA-node memory.
This memory usage policy is enforced by running the application processes within a
cpuset. A cpuset consists of cores and local memory on a compute node.

When an application is placed using all NUMA nodes, the cpuset includes all
node memory and all CPUs. In this case, the application processes allocate
local-NUMA-node memory first. If insufficient free local-NUMA-node memory
is available, the allocation may be satisfied using remote-NUMA-node memory.
In other words, if there is not enough NUMA node 0 memory, the allocation may
be satisfied using NUMA node 1 memory. The one exception is the -ss (strict
memory containment) option. For this option, memory accesses are restricted
to local-NUMA-node memory even if both NUMA nodes are available to the
application.

The aprun memory affinity options are:

• -S pes_per_numa_node

• -sn numa_nodes_per_node

• -sl list_of_numa_nodes

• -ss

For details, see Using the aprun Command on page 15.

You can use these aprun options for each element of an MPMD application and can
vary them with each MPMD element.

Only Cray XT5, Cray XE5 or Cray X6 compute nodes are considered for the
application placement if any of the following are true:

• The -sn value is 2.

• The -sl list has more than one entry.

• The -sl list is NUMA node 1 (Cray XT4 systems have single-NUMA-node
compute nodes, defined as NUMA node 0).

• The -S value along with a -N value requires two NUMA nodes (such as -N 4
-S 2).

S–2496–31 61

Workload Management and Application Placement for the Cray Linux Environment

You can use cnselect coremask.eq.16777215 to get a list of Cray X6
compute nodes. You can use the cnselect coremask.eq.255 or cnselect
coremask.eq.4095 command to get a list of Cray XT5 compute nodes. You
can use the aprun -L or qsub -lmppnodes options to specify those lists or a
subset of those lists. For additional information, see the aprun(1), cnselect(1),
and qsub(1) man pages.

8.3 Using aprun CPU Affinity Optimizations
CNL can dynamically distribute work by allowing PEs and threads to migrate from
one CPU to another within a node. In some cases, moving processes from CPU
to CPU increases cache misses and translation lookaside buffer (TLB) misses and
therefore reduces performance. Also, there may be cases where an application runs
faster by avoiding or targeting a particular CPU. The aprun CPU affinity options let
you bind a process to a particular CPU or the CPUs on a NUMA node. These options
apply to all Cray multicore compute nodes.

Applications are assigned to a cpuset and can run only on the CPUs specified by
the cpuset. Also, applications can allocate memory only on memory defined by the
cpuset. A cpuset can be a compute node (default) or a NUMA node.

The CPU affinity options are:

• -cc cpu-list | keyword

• (Deferred implementation) -cp cpu_placement_file_name

For details, see Using the aprun Command on page 15.

These aprun options can be used for each element of an MPMD application and can
vary with each MPMD element.

Cray XT4 systems have single-NUMA-node compute nodes. Their default CPU
affinity keyword is the same as for other Cray systems — aprun -cc cpu.

8.4 Exclusive Access
A new -F affinity option is available for aprun to provide a program with exclusive
access to all the processing and memory resources on a node.

This option was initially introduced with the CLE 2.2.UP01 update package. This
option assigns all compute node cores and compute node memory to the application's
cpuset. Using it together with the -cc option allows an application programmer to
bind processes to those mentioned in the affinity string.

62 S–2496–31

Optimizing Applications [8]

There are two modes: exclusive and share. The share mode restricts the
application specific cpuset contents to only the application reserved cores and
memory on NUMA node boundaries. For example, if an application requests and is
assigned cores and memory on NUMA node 0, then only NUMA node 0 cores and
memory are contained within the application cpuset. The application will not have
access to the cores and memory on other NUMA nodes on that compute node.

Administrators can modify /etc/alps.conf to set a policy for access modes. If
nodeShare is not specified in this file, the default remains exclusive; setting
to share makes the default share access mode. Users can override the system-wide
policy by specifying aprun -F exclusive at the command line or within their
respective batch scripts. For additional information, see the aprun(1) man page.

8.5 Optimizing Process Placement on Multicore Nodes
Because multicore systems can run more tasks simultaneously, overall system
performance can increase. The trade-offs are that each core has less local memory
(because it is shared by the cores) and less system interconnection bandwidth (which
is also shared).

Processes are placed in packed rank-sequential order, starting with the first node.
So, for a 100-core, 50-node job running on dual-core nodes, the layout of ranks on
cores is:

Node 1 Node 2 Node 3 … Node 50

Core 0 1 0 1 0 1 … 0 1

Rank 0 1 2 3 4 5 … 98 99

MPI supports multiple interconnect device drivers for a single MPI job. This allows
each process (rank) of an MPI job to create the most optimal messaging path to every
other process in the job, based on the topology of the given ranks.

Two device drivers are supported: the SMP driver and the Portals device driver.
The SMP device driver is based on shared memory and is used for communication
between ranks that share a node. The Portals device driver is used for communication
between ranks that span nodes.

To attain the fastest possible run time, try running your program on only one core
of each node. (In this case, the other cores are allocated to your job but idle.) This
allows each process to have full access to the system interconnection network.

S–2496–31 63

Workload Management and Application Placement for the Cray Linux Environment

For example, you could use the commands:

% cnselect coremask.gt.1
20-175
% aprun -n 64 -N 1 -L 20-175 ./prog1

to launch prog1 on one core of each of 64 multicore nodes.

64 S–2496–31

Example Applications [9]

This chapter gives examples showing how to compile, link, and run applications.

Verify that your work area is in a Lustre-mounted directory. Then use the module
list command to verify that the correct modules are loaded. Each following
example lists the modules that have to be loaded.

9.1 Running a Basic Application
This example shows how to compile program simple.c and launch the executable.

One of the following modules required:

PrgEnv-cray
PrgEnv-pgi
PrgEnv-gnu
PrgEnv-pathscale
PrgEnv-intel

Create a C program, simple.c:

#include "mpi.h"

int main(int argc, char *argv[])
{

int rank;
int numprocs;
MPI_Init(&argc,&argv);
MPI_Comm_rank(MPI_COMM_WORLD,&rank);
MPI_Comm_size(MPI_COMM_WORLD,&numprocs);

printf("hello from pe %d of %d\n",rank,numprocs);
MPI_Finalize();

}

Compile the program:

% cc -o simple simple.c

S–2496–31 65

Workload Management and Application Placement for the Cray Linux Environment

Run the program:

% aprun -n 6 ./simple
hello from pe 0 of 6
hello from pe 5 of 6
hello from pe 4 of 6
hello from pe 3 of 6
hello from pe 2 of 6
hello from pe 1 of 6
Application 135891 resources: utime ~0s, stime ~0s

9.2 Running an MPI Application
This example shows how to compile, link, and run an MPI program. The MPI
program distributes the work represented in a reduction loop, prints the subtotal for
each PE, combines the results from the PEs, and prints the total.

One of the following modules required:

PrgEnv-cray
PrgEnv-pgi
PrgEnv-gnu
PrgEnv-pathscale
PrgEnv-intel

Create a Fortran program, mpi.f90:

program reduce
include "mpif.h"

integer n, nres, ierr

call MPI_INIT (ierr)
call MPI_COMM_RANK (MPI_COMM_WORLD,mype,ierr)
call MPI_COMM_SIZE (MPI_COMM_WORLD,npes,ierr)

nres = 0
n = 0

do i=mype,100,npes
n = n + i

enddo

print *, 'My PE:', mype, ' My part:',n

call MPI_REDUCE (n,nres,1,MPI_INTEGER,MPI_SUM,0,MPI_COMM_WORLD,ierr)

if (mype == 0) print *,' PE:',mype,'Total is:',nres

call MPI_FINALIZE (ierr)

end

Compile mpi.f90:

% ftn -o mpi mpi.f90

66 S–2496–31

Example Applications [9]

Run program mpi:

% aprun -n 6 ./mpi | sort
PE: 0 Total is: 5050

My PE: 0 My part: 816
My PE: 1 My part: 833
My PE: 2 My part: 850
My PE: 3 My part: 867
My PE: 4 My part: 884
My PE: 5 My part: 800

Application 3016865 resources: utime ~0s, stime ~0s

If desired, you could use this C version of the program:

/* program reduce */

#include <stdio.h>
#include "mpi.h"

int main (int argc, char *argv[])
{

int i, sum, mype, npes, nres, ret;
ret = MPI_Init (&argc, &argv);
ret = MPI_Comm_size (MPI_COMM_WORLD, &npes);
ret = MPI_Comm_rank (MPI_COMM_WORLD, &mype);
nres = 0;
sum = 0;
for (i = mype; i <=100; i += npes) {
sum = sum + i;

}

(void) printf ("My PE:%d My part:%d\n",mype, sum);
ret = MPI_Reduce (&sum,&nres,1,MPI_INTEGER,MPI_SUM,0,MPI_COMM_WORLD);
if (mype == 0)
{
(void) printf ("PE:%d Total is:%d\n",mype, nres);

}
ret = MPI_Finalize ();

}

9.3 Using the Cray shmem_put Function
This example shows how to use the shmem_put64() function to copy a contiguous
data object from the local PE to a contiguous data object on a different PE.

One of the following modules required:

PrgEnv-cray
PrgEnv-pgi
PrgEnv-gnu
PrgEnv-pathscale
PrgEnv-intel

S–2496–31 67

Workload Management and Application Placement for the Cray Linux Environment

Source code of C program (shmem_put.c):

/*
* simple put test
*/

#include <stdio.h>
#include <stdlib.h>
#include <mpp/shmem.h>

/* Dimension of source and target of put operations */
#define DIM 1000000

long target[DIM];
long local[DIM];

main(int argc,char **argv)
{

register int i;
int my_partner, my_pe;

/* Prepare resources required for correct functionality
of SHMEM on XT. Alternatively, shmem_init() could
be called. */

start_pes(0);

for (i=0; i<DIM; i++) {
target[i] = 0L;
local[i] = shmem_my_pe() + (i * 10);

}

my_pe = shmem_my_pe();

if(shmem_n_pes()%2) {
if(my_pe == 0) printf("Test needs even number of processes\n");
/* Clean up resources before exit. */
shmem_finalize();
exit(0);

}

shmem_barrier_all();

/* Test has to be run on two procs. */
my_partner = my_pe % 2 ? my_pe - 1 : my_pe + 1;

shmem_put64(target,local,DIM,my_partner);

/* Synchronize before verifying results. */
shmem_barrier_all();

/* Check results of put */
for(i=0; i<DIM; i++) {
if(target[i] != (my_partner + (i * 10))) {

fprintf(stderr,"FAIL (1) on PE %d target[%d] = %d (%d)\n",
shmem_my_pe(), i, target[i],my_partner+(i*10));

shmem_finalize();
exit(-1);

}

68 S–2496–31

Example Applications [9]

}

printf(" PE %d: Test passed.\n",my_pe);

/* Clean up resources. */
shmem_finalize();

}

Compile shmem_put.c and create executable shmem_put:

% cc -o shmem_put shmem_put.c

Run shmem_put:

% aprun -n 12 -L 56 ./shmem_put
PE 5: Test passed.
PE 6: Test passed.
PE 3: Test passed.
PE 1: Test passed.
PE 4: Test passed.
PE 2: Test passed.
PE 7: Test passed.
PE 11: Test passed.
PE 10: Test passed.
PE 9: Test passed.
PE 8: Test passed.
PE 0: Test passed.

Application 57916 exit codes: 255
Application 57916 resources: utime ~1s, stime ~2s

9.4 Using the Cray shmem_get Function
This example shows how to use the shmem_get() function to copy a contiguous
data object from a different PE to a contiguous data object on the local PE.

One of the following modules required:

PrgEnv-cray
PrgEnv-pgi
PrgEnv-gnu
PrgEnv-pathscale
PrgEnv-intel

Note: The Fortran module for Cray SHMEM is not supported. Use the INCLUDE
'mpp/shmem.fh' statement instead.

S–2496–31 69

Workload Management and Application Placement for the Cray Linux Environment

Source code of Fortran program (shmem_get.f90):

program reduction
include 'mpp/shmem.fh'

real values, sum
common /c/ values
real work

call start_pes(0)
values=my_pe()
call shmem_barrier_all! Synchronize all PEs
sum = 0.0
do i = 0,num_pes()-1

call shmem_get(work, values, 1, i) ! Get next value
sum = sum + work ! Sum it

enddo

print*, 'PE',my_pe(),' computedsum=',sum

call shmem_barrier_all
call shmem_finalize

end

Compile shmem_get.f90 and create executable shmem_get:

% ftn -o shmem_get shmem_get.f90

Run shmem2:

% aprun -n 6 ./shmem_get
PE 0 computedsum= 15.00000
PE 5 computedsum= 15.00000
PE 4 computedsum= 15.00000
PE 3 computedsum= 15.00000
PE 2 computedsum= 15.00000
PE 1 computedsum= 15.00000

Application 137031 resources: utime ~0s, stime ~0s

9.5 Running Partitioned Global Address Space (PGAS)
Applications

To run Unified Parallel C (UPC) or Fortran 2008 coarrays applications, use the Cray
C compiler. These are not supported for PGI, GCC, PathScale, or Intel C compilers.

This example shows how to compile and run a Cray C program that includes Unified
Parallel C (UPC) functions.

70 S–2496–31

Example Applications [9]

Modules required:

PrgEnv-cray

On Cray XE systems check that these additional modules are loaded. These are part
of the default modules on the login node loaded with the module Base-opts, but
you will encounter an error with PGAS applications on Gemini systems with these
modules unloaded:

udreg
ugni
dmapp

9.5.1 Running an Unified Parallel C (UPC) Application

The following is the source code of program upc_cray.c:

#include <upc.h>
#include <stdio.h>
int main (int argc, char *argv[])
{

int i;
for (i = 0; i < THREADS; ++i)
{

upc_barrier;
if (i == MYTHREAD)

printf ("Hello world from thread: %d\n", MYTHREAD);
}

return 0;
}

Compile upc_cray.c and run executable cray_upc:

% cc -h upc -o upc_cray upc_cray.c
% aprun -n 2 ./upc_cray
Hello world from thread: 0
Hello world from thread: 1
Application 251523 resources: utime ~0s, stime ~0s

Note: You need to include the -h upc option on the cc command line.

9.5.2 Running a Fortran 2008 Application Using Coarrays

The following is the source code of program simple_caf.f90:

program simple_caf
implicit none

integer :: npes,mype,i
real :: local_array(1000),total
real :: coarray[*]

mype = this_image()
npes = num_images()

if (npes < 2) then

S–2496–31 71

Workload Management and Application Placement for the Cray Linux Environment

print *, "Need at least 2 images to run"
stop

end if

do i=1,1000
local_array(i) = sin(real(mype*i))

end do

coarray = sum(local_array)
sync all

if (mype == 1) then
total = coarray + coarray[2]
print *, "Total from images 1 and 2 is ",total

end if

end program simple_caf

Compile simple_caf.f90 and run the executable:

% ftn -hcaf -o simple_caf simple_caf.f90
/opt/cray/xt-asyncpe/3.9.39/bin/ftn: INFO: linux target is being used
% aprun -n2 simple_caf

Total from images 1 and 2 is 1.71800661
Application 39512 resources: utime ~0s, stime ~0s

9.6 Running a Fast_mv Application
These examples show the ftn command line functions to use vector, scalar, and
array log() functions

Modules required:

libfast

and one of the following:

PrgEnv-pgi
PrgEnv-pathscale

Source code of program manlog8.f90:

program test_log8
real(8) rslt(40),x(40)

do j= 1, 40
x(j)= j
rslt(j)= log(x(j))

end do
print *,'log(1)=', rslt(1)
print *,'log(40)=', rslt(40)
end

72 S–2496–31

Example Applications [9]

This PGI command calls scalar log from Fast_mv:

\% module load PrgEnv-pgi
% ftn -Mcache_align manlog8.f90 -lfast_mv
% aprun -n 1 ./a.out
log(1)= 0.000000000000000
log(40)= 3.688879454113936

Application 238832 resources: utime ~0s, stime ~0s

This PGI command calls vector log from Fast_mv:

% module load PrgEnv-pgi
% ftn -fastsse -Mcache_align manlog8.f90 -lfast_mv
% aprun -n 1 ./a.out
log(1)= 0.000000000000000
log(40)= 3.688879454113936

Application 238844 resources: utime ~0s, stime ~0s

This PathScale command calls scalar log from Fast_mv:

\% module load PrgEnv-pathscale
% ftn manlog8.f90 -lfast_mv
% aprun -n 1 ./a.out
log(1)= 0.E+0
log(40)= 3.6888794541139363

Application 238861 resources: utime ~0s, stime ~0s

This PathScale command calls vector log from Fast_mv:

\% module load PrgEnv-pathscale
% ftn -Ofast manlog8.f90 -lfast_mv
% aprun -n 1 ./a.out
log(1)= 0.E+0
log(40)= 3.6888794541139363

Application 238865 resources: utime ~0s, stime ~0s

This PathScale command calls array log from Fast_mv. The -LNO:vintr=2
argument is not required for exp(), but it is required for other functions the compiler
recognizes, including log().

% module load PrgEnv-pathscale
% ftn -O3 -LNO:vintr=2 manlog8.f90 -lfast_mv
% aprun -n 1 ./a.out
log(1)= 0.E+0
log(40)= 3.6888794541139363

Application 238869 resources: utime ~0s, stime ~0s

9.7 Running a PETSc Application
This example (Copyright 1995-2004 University of Chicago) shows how to use PETSc
functions to solve a linear system of partial differential equations.

S–2496–31 73

Workload Management and Application Placement for the Cray Linux Environment

Note: There are many ways to use the PETSc solvers. This example is intended to
show the basics of compiling and running a PETSc program on a Cray system. It
presents one simple approach and may not be the best template to use in writing
user code. For issues that are not specific to Cray systems, you can get technical
support through petsc-users@mcs.anl.gov.

The source code for this example includes a comment about the use of the
mpiexec command to launch the executable. Use aprun instead.

Modules required:

petsc

and one of the following:

PrgEnv-cray
PrgEnv-pgi
PrgEnv-gnu
PrgEnv-pathscale
PrgEnv-intel

Source code of program ex2f.F:

!
! Description: Solves a linear system in parallel with KSP (Fortran code).
! Also shows how to set a user-defined monitoring routine.
!
! Program usage: mpiexec -np ex2f [-help] [all PETSc options]
!
!/*T
! Concepts: KSP^basic parallel example
! Concepts: KSP^setting a user-defined monitoring routine
! Processors: n
!T*/
!
! ---

program main
implicit none

! -
! Include files
! -
!
! This program uses CPP for preprocessing, as indicated by the use of
! PETSc include files in the directory petsc/include/finclude. This
! convention enables use of the CPP preprocessor, which allows the use
! of the #include statements that define PETSc objects and variables.
!
! Use of the conventional Fortran include statements is also supported
! In this case, the PETsc include files are located in the directory
! petsc/include/foldinclude.
!
! Since one must be very careful to include each file no more than once
! in a Fortran routine, application programmers must exlicitly list
! each file needed for the various PETSc components within their
! program (unlike the C/C++ interface).
!
! See the Fortran section of the PETSc users manual for details.

74 S–2496–31

Example Applications [9]

!
! The following include statements are required for KSP Fortran programs:
! petsc.h - base PETSc routines
! petscvec.h - vectors
! petscmat.h - matrices
! petscpc.h - preconditioners
! petscksp.h - Krylov subspace methods
! Include the following to use PETSc random numbers:
! petscsys.h - system routines
! Additional include statements may be needed if using additional
! PETSc routines in a Fortran program, e.g.,
! petscviewer.h - viewers
! petscis.h - index sets
!
#include "include/finclude/petsc.h"
#include "include/finclude/petscvec.h"
#include "include/finclude/petscmat.h"
#include "include/finclude/petscpc.h"
#include "include/finclude/petscksp.h"
#include "include/finclude/petscsys.h"
!
! -
! Variable declarations
! -
!
! Variables:
! ksp - linear solver context
! ksp - Krylov subspace method context
! pc - preconditioner context
! x, b, u - approx solution, right-hand-side, exact solution vectors
! A - matrix that defines linear system
! its - iterations for convergence
! norm - norm of error in solution
! rctx - random number generator context
!
! Note that vectors are declared as PETSc "Vec" objects. These vectors
! are mathematical objects that contain more than just an array of
! double precision numbers. I.e., vectors in PETSc are not just
! double precision x(*).
! However, local vector data can be easily accessed via VecGetArray().
! See the Fortran section of the PETSc users manual for details.
!

double precision norm
PetscInt i,j,II,JJ,m,n,its
PetscInt Istart,Iend,ione
PetscErrorCode ierr
PetscMPIInt rank,size
PetscTruth flg
PetscScalar v,one,neg_one
Vec x,b,u
Mat A
KSP ksp
PetscRandom rctx

! These variables are not currently used.
! PC pc
! PCType ptype
! double precision tol

S–2496–31 75

Workload Management and Application Placement for the Cray Linux Environment

! Note: Any user-defined Fortran routines (such as MyKSPMonitor)
! MUST be declared as external.

external MyKSPMonitor,MyKSPConverged

! -
! Beginning of program
! -

call PetscInitialize(PETSC_NULL_CHARACTER,ierr)
m = 3
n = 3
one = 1.0
neg_one = -1.0
ione = 1
call PetscOptionsGetInt(PETSC_NULL_CHARACTER,'-m',m,flg,ierr)
call PetscOptionsGetInt(PETSC_NULL_CHARACTER,'-n',n,flg,ierr)
call MPI_Comm_rank(PETSC_COMM_WORLD,rank,ierr)
call MPI_Comm_size(PETSC_COMM_WORLD,size,ierr)

! -
! Compute the matrix and right-hand-side vector that define
! the linear system, Ax = b.
! -

! Create parallel matrix, specifying only its global dimensions.
! When using MatCreate(), the matrix format can be specified at
! runtime. Also, the parallel partitioning of the matrix is
! determined by PETSc at runtime.

call MatCreate(PETSC_COMM_WORLD,A,ierr)
call MatSetSizes(A,PETSC_DECIDE,PETSC_DECIDE,m*n,m*n,ierr)
call MatSetFromOptions(A,ierr)

! Currently, all PETSc parallel matrix formats are partitioned by
! contiguous chunks of rows across the processors. Determine which
! rows of the matrix are locally owned.

call MatGetOwnershipRange(A,Istart,Iend,ierr)

! Set matrix elements for the 2-D, five-point stencil in parallel.
! - Each processor needs to insert only elements that it owns
! locally (but any non-local elements will be sent to the
! appropriate processor during matrix assembly).
! - Always specify global row and columns of matrix entries.
! - Note that MatSetValues() uses 0-based row and column numbers
! in Fortran as well as in C.

! Note: this uses the less common natural ordering that orders first
! all the unknowns for x = h then for x = 2h etc; Hence you see JH = II +- n
! instead of JJ = II +- m as you might expect. The more standard ordering
! would first do all variables for y = h, then y = 2h etc.

do 10, II=Istart,Iend-1
v = -1.0
i = II/n

76 S–2496–31

Example Applications [9]

j = II - i*n
if (i.gt.0) then
JJ = II - n
call MatSetValues(A,ione,II,ione,JJ,v,INSERT_VALUES,ierr)

endif
if (i.lt.m-1) then
JJ = II + n
call MatSetValues(A,ione,II,ione,JJ,v,INSERT_VALUES,ierr)

endif
if (j.gt.0) then
JJ = II - 1
call MatSetValues(A,ione,II,ione,JJ,v,INSERT_VALUES,ierr)

endif
if (j.lt.n-1) then
JJ = II + 1
call MatSetValues(A,ione,II,ione,JJ,v,INSERT_VALUES,ierr)

endif
v = 4.0
call MatSetValues(A,ione,II,ione,II,v,INSERT_VALUES,ierr)

10 continue

! Assemble matrix, using the 2-step process:
! MatAssemblyBegin(), MatAssemblyEnd()
! Computations can be done while messages are in transition,
! by placing code between these two statements.

call MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY,ierr)
call MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY,ierr)

! Create parallel vectors.
! - Here, the parallel partitioning of the vector is determined by
! PETSc at runtime. We could also specify the local dimensions
! if desired -- or use the more general routine VecCreate().
! - When solving a linear system, the vectors and matrices MUST
! be partitioned accordingly. PETSc automatically generates
! appropriately partitioned matrices and vectors when MatCreate()
! and VecCreate() are used with the same communicator.
! - Note: We form 1 vector from scratch and then duplicate as needed.

call VecCreateMPI(PETSC_COMM_WORLD,PETSC_DECIDE,m*n,u,ierr)
call VecSetFromOptions(u,ierr)
call VecDuplicate(u,b,ierr)
call VecDuplicate(b,x,ierr)

! Set exact solution; then compute right-hand-side vector.
! By default we use an exact solution of a vector with all
! elements of 1.0; Alternatively, using the runtime option
! -random_sol forms a solution vector with random components.

call PetscOptionsHasName(PETSC_NULL_CHARACTER, &
& "-random_exact_sol",flg,ierr)
if (flg .eq. 1) then

call PetscRandomCreate(PETSC_COMM_WORLD,rctx,ierr)
call PetscRandomSetFromOptions(rctx,ierr)
call VecSetRandom(u,rctx,ierr)
call PetscRandomDestroy(rctx,ierr)

else
call VecSet(u,one,ierr)

S–2496–31 77

Workload Management and Application Placement for the Cray Linux Environment

endif
call MatMult(A,u,b,ierr)

! View the exact solution vector if desired

call PetscOptionsHasName(PETSC_NULL_CHARACTER, &
& "-view_exact_sol",flg,ierr)
if (flg .eq. 1) then

call VecView(u,PETSC_VIEWER_STDOUT_WORLD,ierr)
endif

! -
! Create the linear solver and set various options
! -

! Create linear solver context

call KSPCreate(PETSC_COMM_WORLD,ksp,ierr)

! Set operators. Here the matrix that defines the linear system
! also serves as the preconditioning matrix.

call KSPSetOperators(ksp,A,A,DIFFERENT_NONZERO_PATTERN,ierr)

! Set linear solver defaults for this problem (optional).
! - By extracting the KSP and PC contexts from the KSP context,
! we can then directly directly call any KSP and PC routines
! to set various options.
! - The following four statements are optional; all of these
! parameters could alternatively be specified at runtime via
! KSPSetFromOptions(). All of these defaults can be
! overridden at runtime, as indicated below.

! We comment out this section of code since the Jacobi
! preconditioner is not a good general default.

! call KSPGetPC(ksp,pc,ierr)
! ptype = PCJACOBI
! call PCSetType(pc,ptype,ierr)
! tol = 1.e-7
! call KSPSetTolerances(ksp,tol,PETSC_DEFAULT_DOUBLE_PRECISION,
! & PETSC_DEFAULT_DOUBLE_PRECISION,PETSC_DEFAULT_INTEGER,ierr)

! Set user-defined monitoring routine if desired

call PetscOptionsHasName(PETSC_NULL_CHARACTER,'-my_ksp_monitor', &
& flg,ierr)
if (flg .eq. 1) then

call KSPMonitorSet(ksp,MyKSPMonitor,PETSC_NULL_OBJECT, &
& PETSC_NULL_FUNCTION,ierr)
endif

! Set runtime options, e.g.,
! -ksp_type <type> -pc_type <type> -ksp_monitor -ksp_rtol
! These options will override those specified above as long as
! KSPSetFromOptions() is called _after_ any other customization
! routines.

78 S–2496–31

Example Applications [9]

call KSPSetFromOptions(ksp,ierr)

! Set convergence test routine if desired

call PetscOptionsHasName(PETSC_NULL_CHARACTER, &
& '-my_ksp_convergence',flg,ierr)
if (flg .eq. 1) then

call KSPSetConvergenceTest(ksp,MyKSPConverged, &
& PETSC_NULL_OBJECT,ierr)
endif

!
! -
! Solve the linear system
! -

call KSPSolve(ksp,b,x,ierr)

! -
! Check solution and clean up
! -

! Check the error

call VecAXPY(x,neg_one,u,ierr)
call VecNorm(x,NORM_2,norm,ierr)
call KSPGetIterationNumber(ksp,its,ierr)
if (rank .eq. 0) then

if (norm .gt. 1.e-12) then
write(6,100) norm,its

else
write(6,110) its

endif
endif

100 format('Norm of error ',e10.4,' iterations ',i5)
110 format('Norm of error < 1.e-12,iterations ',i5)

! Free work space. All PETSc objects should be destroyed when they
! are no longer needed.

call KSPDestroy(ksp,ierr)
call VecDestroy(u,ierr)
call VecDestroy(x,ierr)
call VecDestroy(b,ierr)
call MatDestroy(A,ierr)

! Always call PetscFinalize() before exiting a program. This routine
! - finalizes the PETSc libraries as well as MPI
! - provides summary and diagnostic information if certain runtime
! options are chosen (e.g., -log_summary). See PetscFinalize()
! manpage for more information.

call PetscFinalize(ierr)
end

! --
!
! MyKSPMonitor - This is a user-defined routine for monitoring

S–2496–31 79

Workload Management and Application Placement for the Cray Linux Environment

! the KSP iterative solvers.
!
! Input Parameters:
! ksp - iterative context
! n - iteration number
! rnorm - 2-norm (preconditioned) residual value (may be estimated)
! dummy - optional user-defined monitor context (unused here)
!

subroutine MyKSPMonitor(ksp,n,rnorm,dummy,ierr)

implicit none

#include "include/finclude/petsc.h"
#include "include/finclude/petscvec.h"
#include "include/finclude/petscksp.h"

KSP ksp
Vec x
PetscErrorCode ierr
PetscInt n,dummy
PetscMPIInt rank
double precision rnorm

! Build the solution vector

call KSPBuildSolution(ksp,PETSC_NULL_OBJECT,x,ierr)

! Write the solution vector and residual norm to stdout
! - Note that the parallel viewer PETSC_VIEWER_STDOUT_WORLD
! handles data from multiple processors so that the
! output is not jumbled.

call MPI_Comm_rank(PETSC_COMM_WORLD,rank,ierr)
if (rank .eq. 0) write(6,100) n
call VecView(x,PETSC_VIEWER_STDOUT_WORLD,ierr)
if (rank .eq. 0) write(6,200) n,rnorm

100 format('iteration ',i5,' solution vector:')
200 format('iteration ',i5,' residual norm ',e10.4)

ierr = 0
end

! --
!
! MyKSPConverged - This is a user-defined routine for testing
! convergence of the KSP iterative solvers.
!
! Input Parameters:
! ksp - iterative context
! n - iteration number
! rnorm - 2-norm (preconditioned) residual value (may be estimated)
! dummy - optional user-defined monitor context (unused here)
!

subroutine MyKSPConverged(ksp,n,rnorm,flag,dummy,ierr)

implicit none

#include "include/finclude/petsc.h"

80 S–2496–31

Example Applications [9]

#include "include/finclude/petscvec.h"
#include "include/finclude/petscksp.h"

KSP ksp
PetscErrorCode ierr
PetscInt n,dummy
KSPConvergedReason flag
double precision rnorm

if (rnorm .le. .05) then
flag = 1

else
flag = 0

endif
ierr = 0

end

Use the following makefile.F:

.SUFFIXES: .mod .o .F

Compilers, linkers and flags.

FC = ftn
LINKER = ftn
FCFLAGS =
LINKLAGS =

Fortran optimization options.

FOPTFLAGS = -O3

.F.o:
$(FC) -c ${FOPTFLAGS} ${FCFLAGS} $*.F

all : ex2f
ex2f : ex2f.o
$(LINKER) -o $@ ex2f.o

S–2496–31 81

Workload Management and Application Placement for the Cray Linux Environment

Create and run executable ex2f, including the PETSc run time option -mat_view
to display the nonzero values of the 9x9 matrix A:

% make -f makefile.F
% aprun -n 2 ./ex2f -mat_view
row 0: (0, 4) (1, -1) (3, -1)
row 1: (0, -1) (1, 4) (2, -1) (4, -1)
row 2: (1, -1) (2, 4) (5, -1)
row 3: (0, -1) (3, 4) (4, -1) (6, -1)
row 4: (1, -1) (3, -1) (4, 4) (5, -1) (7, -1)
row 5: (2, -1) (4, -1) (5, 4) (8, -1)
row 6: (3, -1) (6, 4) (7, -1)
row 7: (4, -1) (6, -1) (7, 4) (8, -1)
row 8: (5, -1) (7, -1) (8, 4)
row 0: (0, 0.25) (3, -1)
row 1: (1, 0.25) (2, -1)
row 2: (1, -0.25) (2, 0.266667) (3, -1)
row 3: (0, -0.25) (2, -0.266667) (3, 0.287081)
row 0: (0, 0.25) (1, -1) (3, -1)
row 1: (0, -0.25) (1, 0.266667) (2, -1) (4, -1)
row 2: (1, -0.266667) (2, 0.267857)
row 3: (0, -0.25) (3, 0.266667) (4, -1)
row 4: (1, -0.266667) (3, -0.266667) (4, 0.288462)
Norm of error < 1.e-12,iterations 7
Application 155514 resources: utime 0, stime 12

9.8 Running an OpenMP Application
This example shows how to compile and run an OpenMP/MPI application.

One of the following modules required:

PrgEnv-cray
PrgEnv-pgi
PrgEnv-gnu
PrgEnv-pathscale
PrgEnv-intel

Note: To compile an OpenMP program using a PGI or PathScale compiler,
include -mp on the compiler driver command line. For a GCC compiler, include
-fopenmp. For in Intel compiler, include -openmp. No option is required for
the Cray compilers; -h omp is the default.

For a PathScale OpenMP program, set the PSC_OMP_AFFINITY environment
variable to FALSE.

82 S–2496–31

Example Applications [9]

Source code of C program xthi.c:

#define _GNU_SOURCE

#include <stdio.h>
#include <unistd.h>
#include <string.h>
#include <sched.h>
#include <mpi.h>
#include <omp.h>

/* Borrowed from util-linux-2.13-pre7/schedutils/taskset.c */
static char *cpuset_to_cstr(cpu_set_t *mask, char *str)
{

char *ptr = str;
int i, j, entry_made = 0;
for (i = 0; i < CPU_SETSIZE; i++) {
if (CPU_ISSET(i, mask)) {

int run = 0;
entry_made = 1;
for (j = i + 1; j < CPU_SETSIZE; j++) {

if (CPU_ISSET(j, mask)) run++;
else break;

}
if (!run)

sprintf(ptr, "%d,", i);
else if (run == 1) {

sprintf(ptr, "%d,%d,", i, i + 1);
i++;

} else {
sprintf(ptr, "%d-%d,", i, i + run);
i += run;

}
while (*ptr != 0) ptr++;

}
}
ptr -= entry_made;
*ptr = 0;
return(str);

}

int main(int argc, char *argv[])
{

int rank, thread;
cpu_set_t coremask;
char clbuf[7 * CPU_SETSIZE], hnbuf[64];

MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
memset(clbuf, 0, sizeof(clbuf));
memset(hnbuf, 0, sizeof(hnbuf));
(void)gethostname(hnbuf, sizeof(hnbuf));
#pragma omp parallel private(thread, coremask, clbuf)
{
thread = omp_get_thread_num();
(void)sched_getaffinity(0, sizeof(coremask), &coremask);
cpuset_to_cstr(&coremask, clbuf);
#pragma omp barrier

S–2496–31 83

Workload Management and Application Placement for the Cray Linux Environment

printf("Hello from rank %d, thread %d, on %s. (core affinity = %s)\n",
rank, thread, hnbuf, clbuf);

}
MPI_Finalize();
return(0);

}

Load the PrgEnv-pathscale module:

% module swap PrgEnv-pgi PrgEnv-pathscale

Set the PSC_OMP_AFFINITY environment variable to FALSE:

% setenv PSC_OMP_AFFINITY FALSE

or

% export PSC_OMP_AFFINITY=FALSE

Compile and link xthi.c:

% cc -mp -o xthi xthi.c

Set the OpenMP environment variable equal to the number of threads in the team:

% setenv OMP_NUM_THREADS 2

or

% export OMP_NUM_THREADS=2

Note: If you are running Intel-compiled code, you must use one of the alternate
methods when setting OMP_NUM_THREADS:

• Increase the aprun -d depth value by one.

• Use the aprun -cc numa_node affinity option.

84 S–2496–31

Example Applications [9]

Run program xthi:

% export OMP_NUM_THREADS=24
% aprun -n 1 -d 24 -L 56 xthi | sort
Application 57937 resources: utime ~1s, stime ~0s
Hello from rank 0, thread 0, on nid00056. (core affinity = 0)
Hello from rank 0, thread 10, on nid00056. (core affinity = 10)
Hello from rank 0, thread 11, on nid00056. (core affinity = 11)
Hello from rank 0, thread 12, on nid00056. (core affinity = 12)
Hello from rank 0, thread 13, on nid00056. (core affinity = 13)
Hello from rank 0, thread 14, on nid00056. (core affinity = 14)
Hello from rank 0, thread 15, on nid00056. (core affinity = 15)
Hello from rank 0, thread 16, on nid00056. (core affinity = 16)
Hello from rank 0, thread 17, on nid00056. (core affinity = 17)
Hello from rank 0, thread 18, on nid00056. (core affinity = 18)
Hello from rank 0, thread 19, on nid00056. (core affinity = 19)
Hello from rank 0, thread 1, on nid00056. (core affinity = 1)
Hello from rank 0, thread 20, on nid00056. (core affinity = 20)
Hello from rank 0, thread 21, on nid00056. (core affinity = 21)
Hello from rank 0, thread 22, on nid00056. (core affinity = 22)
Hello from rank 0, thread 23, on nid00056. (core affinity = 23)
Hello from rank 0, thread 2, on nid00056. (core affinity = 2)
Hello from rank 0, thread 3, on nid00056. (core affinity = 3)
Hello from rank 0, thread 4, on nid00056. (core affinity = 4)
Hello from rank 0, thread 5, on nid00056. (core affinity = 5)
Hello from rank 0, thread 6, on nid00056. (core affinity = 6)
Hello from rank 0, thread 7, on nid00056. (core affinity = 7)
Hello from rank 0, thread 8, on nid00056. (core affinity = 8)
Hello from rank 0, thread 9, on nid00056. (core affinity = 9)

The aprun command created one instance of xthi, which spawned 23 additional
threads running on separate cores.

Here's another run of xthi:

% export OMP_NUM_THREADS=6
% aprun -n 4 -d 6 -L 56 xthi | sort
Application 57948 resources: utime ~1s, stime ~1s
Hello from rank 0, thread 0, on nid00056. (core affinity = 0)
Hello from rank 0, thread 1, on nid00056. (core affinity = 1)
Hello from rank 0, thread 2, on nid00056. (core affinity = 2)
Hello from rank 0, thread 3, on nid00056. (core affinity = 3)
Hello from rank 0, thread 4, on nid00056. (core affinity = 4)
Hello from rank 0, thread 5, on nid00056. (core affinity = 5)
Hello from rank 1, thread 0, on nid00056. (core affinity = 6)
Hello from rank 1, thread 1, on nid00056. (core affinity = 7)
Hello from rank 1, thread 2, on nid00056. (core affinity = 8)
Hello from rank 1, thread 3, on nid00056. (core affinity = 9)
Hello from rank 1, thread 4, on nid00056. (core affinity = 10)
Hello from rank 1, thread 5, on nid00056. (core affinity = 11)
Hello from rank 2, thread 0, on nid00056. (core affinity = 12)
Hello from rank 2, thread 1, on nid00056. (core affinity = 13)
Hello from rank 2, thread 2, on nid00056. (core affinity = 14)
Hello from rank 2, thread 3, on nid00056. (core affinity = 15)
Hello from rank 2, thread 4, on nid00056. (core affinity = 16)
Hello from rank 2, thread 5, on nid00056. (core affinity = 17)
Hello from rank 3, thread 0, on nid00056. (core affinity = 18)
Hello from rank 3, thread 1, on nid00056. (core affinity = 19)

S–2496–31 85

Workload Management and Application Placement for the Cray Linux Environment

Hello from rank 3, thread 2, on nid00056. (core affinity = 20)
Hello from rank 3, thread 3, on nid00056. (core affinity = 21)
Hello from rank 3, thread 4, on nid00056. (core affinity = 22)
Hello from rank 3, thread 5, on nid00056. (core affinity = 23)

The aprun command created four instances of xthi which spawned five additional
threads per instance. All PEs are running on separate cores and each instance is
confined to NUMA node domains on one compute node.

9.9 Running an Interactive Batch Job
This example shows how to compile and run an OpenMP/MPI application (see
Running an OpenMP Application on page 82) on 16-core Cray X6 compute nodes
using an interactive batch job.

Modules required:

pbs or moab

and one of the following:

PrgEnv-cray
PrgEnv-pgi
PrgEnv-gnu
PrgEnv-pathscale
PrgEnv-intel

Use the cnselect command to get a list of eight-core, dual-socket compute nodes:

% cnselect coremask.eq.65535
14-17,128-223,256-351,384-479,512-607,640-715

Initiate an interactive batch session:

% qsub -I -l mppwidth=8 -l mppdepth=4 -l mppnodes=\"14-15\"

Set the OpenMP environment variable equal to the number of threads in the team:

% setenv OMP_NUM_THREADS 4

or

% export OMP_NUM_THREADS=4

86 S–2496–31

Example Applications [9]

Run program omp:

% aprun -n 8 -d 4 -L14-15 ./xthi | sort
Application 57953 resources: utime ~2s, stime ~2s
Hello from rank 0, thread 0, on nid00014. (core affinity = 0)
Hello from rank 0, thread 1, on nid00014. (core affinity = 1)
Hello from rank 0, thread 2, on nid00014. (core affinity = 2)
Hello from rank 0, thread 3, on nid00014. (core affinity = 3)
Hello from rank 1, thread 0, on nid00014. (core affinity = 4)
Hello from rank 1, thread 1, on nid00014. (core affinity = 5)
Hello from rank 1, thread 2, on nid00014. (core affinity = 6)
Hello from rank 1, thread 3, on nid00014. (core affinity = 7)
Hello from rank 2, thread 0, on nid00014. (core affinity = 8)
Hello from rank 2, thread 1, on nid00014. (core affinity = 9)
Hello from rank 2, thread 2, on nid00014. (core affinity = 10)
Hello from rank 2, thread 3, on nid00014. (core affinity = 11)
Hello from rank 3, thread 0, on nid00014. (core affinity = 12)
Hello from rank 3, thread 1, on nid00014. (core affinity = 13)
Hello from rank 3, thread 2, on nid00014. (core affinity = 14)
Hello from rank 3, thread 3, on nid00014. (core affinity = 15)
Hello from rank 4, thread 0, on nid00015. (core affinity = 0)
Hello from rank 4, thread 1, on nid00015. (core affinity = 1)
Hello from rank 4, thread 2, on nid00015. (core affinity = 2)
Hello from rank 4, thread 3, on nid00015. (core affinity = 3)
Hello from rank 5, thread 0, on nid00015. (core affinity = 4)
Hello from rank 5, thread 1, on nid00015. (core affinity = 5)
Hello from rank 5, thread 2, on nid00015. (core affinity = 6)
Hello from rank 5, thread 3, on nid00015. (core affinity = 7)
Hello from rank 6, thread 0, on nid00015. (core affinity = 8)
Hello from rank 6, thread 1, on nid00015. (core affinity = 9)
Hello from rank 6, thread 2, on nid00015. (core affinity = 10)
Hello from rank 6, thread 3, on nid00015. (core affinity = 11)
Hello from rank 7, thread 0, on nid00015. (core affinity = 12)
Hello from rank 7, thread 1, on nid00015. (core affinity = 13)
Hello from rank 7, thread 2, on nid00015. (core affinity = 14)
Hello from rank 7, thread 3, on nid00015. (core affinity = 15)

9.10 Running a Batch Job Script
In this example, a batch job script requests six PEs to run program mpi.

Modules required:

pbs or moab

and one of the following:

PrgEnv-cray
PrgEnv-pgi
PrgEnv-gnu
PrgEnv-pathscale
PrgEnv-intel

S–2496–31 87

Workload Management and Application Placement for the Cray Linux Environment

Create script1:

#!/bin/bash
#
Define the destination of this job
as the queue named "workq":
#PBS -q workq
#PBS -l mppwidth=6
Tell WMS to keep both standard output and
standard error on the execution host:
#PBS -k eo
cd /lus/nid0008/user1
aprun -n 6 ./mpi
exit 0

Set permissions to executable:

% chmod +x script1

Submit the job:

% qsub script1

The qsub command produces a batch job log file with output from mpi (see
Running an MPI Application on page 66). The job output is in a script1.onnnnn
file.

% cat script1.o238830 | sort
Application 848571 resources: utime ~0s, stime ~0s
My PE: 0 My part: 816
My PE: 1 My part: 833
My PE: 2 My part: 850
My PE: 3 My part: 867
My PE: 4 My part: 884
My PE: 5 My part: 800

PE: 0 Total is: 5050

9.11 Running Multiple Sequential Applications
To run multiple sequential applications, the number of processors you specify as an
argument to qsub must be equal to or greater than the largest number of processors
required by a single invocation of aprun in your script. For example, in job script
mult_seq, the -l mppwidth value is 6 because the largest aprun n value is 6.

Modules required:

pbs or moab

and one of the following:

PrgEnv-cray
PrgEnv-pgi
PrgEnv-gnu
PrgEnv-pathscale
PrgEnv-intel

88 S–2496–31

Example Applications [9]

Create script mult_seq:

#!/bin/bash
#
Define the destination of this job
as the queue named "workq":
#PBS -q workq
#PBS -l mppwidth=6
Tell WMS to keep both standard output and
standard error on the execution host:
#PBS -k eo
cd /lus/nid000015/user1
aprun -n 2 ./simple
aprun -n 3 ./mpi
aprun -n 6 ./shmem_put
aprun -n 6 ./shmem_get
exit 0

The script launches applications simple (see Running a Basic Application on
page 65), mpi (see Running an MPI Application on page 66), shmem_put (see
Using the Cray shmem_put Function on page 67), and shmem_get (see Using the
Cray shmem_get Function on page 69).

Set file permission to executable:

% chmod +x mult_seq

Run the script:

% qsub mult_seq

List the output:

% cat mult_seq.o465713
hello from pe 0 of 2
hello from pe 1 of 2
My PE: 0 My part: 1683
My PE: 1 My part: 1717
My PE: 2 My part: 1650
PE: 0 Total is: 5050

PE 0: Test passed.
PE 1: Test passed.
PE 2: Test passed.
PE 3: Test passed.
PE 4: Test passed.
PE 5: Test passed.
PE 0 computedsum= 15.00000
PE 1 computedsum= 15.00000
PE 2 computedsum= 15.00000
PE 3 computedsum= 15.00000
PE 4 computedsum= 15.00000
PE 5 computedsum= 15.00000

S–2496–31 89

Workload Management and Application Placement for the Cray Linux Environment

9.12 Running Multiple Parallel Applications
If you are running multiple parallel applications, the number of processors must be
equal to or greater than the total number of processors specified by calls to aprun.
For example, in job script mult_par, the -l mppwidth value is 11 because
the total of the aprun n values is 11.

Modules required:

pbs or moab

and one of the following:

PrgEnv-cray
PrgEnv-pgi
PrgEnv-gnu
PrgEnv-pathscale
PrgEnv-intel

Create mult_par:

#!/bin/bash
#
Define the destination of this job
as the queue named "workq":
#PBS -q workq
#PBS -l mppwidth=11
Tell WMS to keep both standard output and
standard error on the execution host:
#PBS -k eo
cd /lus/nid00007/user1
aprun -n 2 ./simple &
aprun -n 3 ./mpi &
aprun -n 6 ./shmem_put &
aprun -n 6 ./shmem_get &
wait
exit 0

The script launches applications simple (see Running a Basic Application on
page 65), mpi (see Running an MPI Application on page 66), shmem_put (see
Using the Cray shmem_put Function on page 67), and shmem_get (see Using the
Cray shmem_get Function on page 69).

Set file permission to executable:

% chmod +x mult_par

Run the script:

% qsub mult_par

90 S–2496–31

Example Applications [9]

List the output:

% cat mult_par.o7231
hello from pe 0 of 2
hello from pe 1 of 2
Application 520255 resources: utime ~0s, stime ~0s
My PE: 0 My part: 1683
My PE: 2 My part: 1650
My PE: 1 My part: 1717

PE: 0 Total is: 5050
Application 520256 resources: utime ~0s, stime ~0s
PE 0: Test passed.
PE 5: Test passed.
PE 4: Test passed.
PE 3: Test passed.
PE 2: Test passed.
PE 1: Test passed.

Application 520258 exit codes: 64
Application 520258 resources: utime ~0s, stime ~0s
PE 0 computedsum= 15.00000
PE 5 computedsum= 15.00000
PE 4 computedsum= 15.00000
PE 3 computedsum= 15.00000
PE 2 computedsum= 15.00000
PE 1 computedsum= 15.00000

Application 520259 resources: utime ~0s, stime ~0s

9.13 Using aprun Memory Affinity Options
In some cases, remote-NUMA-node memory references can reduce the performance
of applications. You can use the aprun memory affinity options to control
remote-NUMA-node memory references. For the -S, -sl, and -sn options,
memory allocation is satisfied using local-NUMA-node memory. If there is not
enough NUMA node 0 memory, NUMA node 1 memory may be used. For the -ss,
only local-NUMA-node memory can be allocated.

9.13.1 Using the aprun -S Option

This example runs each PE on a specific NUMA node 0 CPU:

% aprun -n 4 ./xthi | sort
Application 225110 resources: utime ~0s, stime ~0s
PE 0 nid00045 Core affinity = 0
PE 1 nid00045 Core affinity = 1
PE 2 nid00045 Core affinity = 2
PE 3 nid00045 Core affinity = 3

This example runs one PE on each NUMA node of nodes 45 and 70:

% aprun -n 4 -S 1 ./xthi | sort
Application 225111 resources: utime ~0s, stime ~0s
PE 0 nid00045 Core affinity = 0
PE 1 nid00045 Core affinity = 4
PE 2 nid00070 Core affinity = 0
PE 3 nid00070 Core affinity = 4

S–2496–31 91

Workload Management and Application Placement for the Cray Linux Environment

9.13.2 Using the aprun -sl Option

This example runs all PEs on NUMA node 1:

% aprun -n 4 -sl 1 ./xthi | sort
Application 57967 resources: utime ~1s, stime ~1s
Hello from rank 0, thread 0, on nid00014. (core affinity = 4)
Hello from rank 1, thread 0, on nid00014. (core affinity = 5)
Hello from rank 2, thread 0, on nid00014. (core affinity = 6)
Hello from rank 3, thread 0, on nid00014. (core affinity = 7)

This example runs all PEs on NUMA node 2:

% aprun -n 4 -sl 2 ./xthi | sort
Application 57968 resources: utime ~1s, stime ~1s
Hello from rank 0, thread 0, on nid00014. (core affinity = 8)
Hello from rank 1, thread 0, on nid00014. (core affinity = 9)
Hello from rank 2, thread 0, on nid00014. (core affinity = 10)
Hello from rank 3, thread 0, on nid00014. (core affinity = 11)

9.13.3 Using the aprun -sn Option

This example runs four PEs on NUMA node 0 of node 45 and four PEs on NUMA
node 0 of node 70:

% aprun -n 8 -sn 1 ./xthi | sort
Application 2251114 resources: utime ~0s, stime ~0s
PE 0 nid00045 Core affinity = 0
PE 1 nid00045 Core affinity = 1
PE 2 nid00045 Core affinity = 2
PE 3 nid00045 Core affinity = 3
PE 4 nid00070 Core affinity = 0
PE 5 nid00070 Core affinity = 1
PE 6 nid00070 Core affinity = 2
PE 7 nid00070 Core affinity = 3

9.13.4 Using the aprun -ss Option

When -ss is specified, a PE can allocate only the memory local to its assigned
NUMA node. The default is to allow remote-NUMA-node memory allocation. For
example, by default any PE running on NUMA node 0 can allocate NUMA node 1
memory (if NUMA node 1 has been reserved for the application).

92 S–2496–31

Example Applications [9]

This example runs PEs 0-3 on NUMA node 0, PEs 4-7 on NUMA node 1, PEs 8-11
on NUMA node 2, and PEs 12-15 on NUMA node 3. PEs 0-3 cannot allocate NUMA
node 1, 2, or 3 memories, PEs 4-7 cannot allocate NUMA node 0, 2, 3 memories, etc.

% aprun -n 16 -sl 0,1,2,3 -ss ./xthi | sort

Application 57970 resources: utime ~9s, stime ~2s
PE 0 nid00014. (core affinity = 0-3)
PE 10 nid00014. (core affinity = 8-11)
PE 11 nid00014. (core affinity = 8-11)
PE 12 nid00014. (core affinity = 12-15)
PE 13 nid00014. (core affinity = 12-15)
PE 14 nid00014. (core affinity = 12-15)
PE 15 nid00014. (core affinity = 12-15)
PE 1 nid00014. (core affinity = 0-3)
PE 2 nid00014. (core affinity = 0-3)
PE 3 nid00014. (core affinity = 0-3)
PE 4 nid00014. (core affinity = 4-7)
PE 5 nid00014. (core affinity = 4-7)
PE 6 nid00014. (core affinity = 4-7)
PE 7 nid00014. (core affinity = 4-7)
PE 8 nid00014. (core affinity = 8-11)
PE 9 nid00014. (core affinity = 8-11)

9.14 Using aprun CPU Affinity Options
The following examples show how you can use aprun CPU affinity options to bind a
process to a particular CPU or the CPUs on a NUMA node.

9.14.1 Using the aprun -cc cpu_list Option

This example binds PEs to CPUs 0-4 and 7 on an 8-core node:

% aprun -n 6 -cc 0-4,7 ./xthi | sort
Application 225116 resources: utime ~0s, stime ~0s
PE 0 nid00045 Core affinity = 0
PE 1 nid00045 Core affinity = 1
PE 2 nid00045 Core affinity = 2
PE 3 nid00045 Core affinity = 3
PE 4 nid00045 Core affinity = 4
PE 5 nid00045 Core affinity = 7

S–2496–31 93

Workload Management and Application Placement for the Cray Linux Environment

9.14.2 Using the aprun -cc keyword Options

Processes can migrate from one CPU to another on a node. You can use the -cc
option to bind PEs to CPUs. This example uses the -cc cpu (default) option to
bind each PE to a CPU:

% aprun -n 8 -cc cpu ./xthi | sort
Application 225117 resources: utime ~0s, stime ~0s
PE 0 nid00045 Core affinity = 0
PE 1 nid00045 Core affinity = 1
PE 2 nid00045 Core affinity = 2
PE 3 nid00045 Core affinity = 3
PE 4 nid00045 Core affinity = 4
PE 5 nid00045 Core affinity = 5
PE 6 nid00045 Core affinity = 6
PE 7 nid00045 Core affinity = 7

This example uses the -cc numa_node option to bind each PE to the CPUs within
a NUMA node:

% aprun -n 8 -cc numa_node ./xthi | sort
Application 225118 resources: utime ~0s, stime ~0s
PE 0 nid00045 Core affinity = 0-3
PE 1 nid00045 Core affinity = 0-3
PE 2 nid00045 Core affinity = 0-3
PE 3 nid00045 Core affinity = 0-3
PE 4 nid00045 Core affinity = 4-7
PE 5 nid00045 Core affinity = 4-7
PE 6 nid00045 Core affinity = 4-7
PE 7 nid00045 Core affinity = 4-7

9.15 Using Checkpoint/Restart Commands
To checkpoint and restart a job, first load these modules:

moab
blcr

This example shows the use of the qhold and qchkpt checkpoint commands and
the qrls and qrerun restart commands.

Source code of cr.c:

#include <stdio.h>
#include <unistd.h>
#include <errno.h>
#include "mpi.h"
#include <signal.h>

static void sig_handler(int);

static unsigned int Cnt = 0; /* Counter that is
incremented each time app is checkpointed. */

static int me;

94 S–2496–31

Example Applications [9]

int
main (int argc, char *argv[])
{

int all, ret;
int sleep_time=100000;
ret = MPI_Init(&argc, &argv);
ret = MPI_Comm_rank (MPI_COMM_WORLD, &me);
ret = MPI_Comm_size(MPI_COMM_WORLD, &all);

if (me == 0) {

if (signal(SIGCONT, sig_handler) == SIG_ERR) {
printf("Can't catch SIGCONT\n");
ret = MPI_Finalize();
exit(3);

}
printf ("Partition size is = %d\n", all);

}

ret = 999;
while (ret != 0) {

Cnt += 1;
ret = sleep(sleep_time);
if (ret != 0) {

printf("PE %d PID %d interrupted at cnt: %d\n", me, getpid(), Cnt);
sleep_time = ret;

}
}

printf ("Finished with count at: &d, exiting \n", Cnt);

ret = MPI_Finalize();
}

static void
sig_handler(int signo)
{

printf("\n");

}

Load the modules and compile cr.c:

% module load moab
% module load blcr
% cc -o cr cr.c

S–2496–31 95

Workload Management and Application Placement for the Cray Linux Environment

Create script cr_script:

#!/usr/bin/ksh
#PBS -l mppwidth=2
#PBS -l mppnppn=1
#PBS -j oe
#PBS -l walltime=6:00:00
#PBS -c enabled

cd to directory where job was submitted from:
cd /lus/nid00015/user12/c

export MPICH_VERSION_DISPLAY=1

aprun -n 2 -N 1 ./cr

wait;

Launch the job:

% qsub cr_script
87151.nid00003

The WMS returns the job identifier 87151.nid00003. Use just the first part
(sequence number 87151) in checkpoint/restart commands.

Check the job status:

% qstat
Job id Name User Time Use S Queue
------------------------- ---------------- --------------- -------- - -----
87151.nid00003 cr_script user12 00:00:00 R workq

The job is running (qstat state S is R).

Check the status of application cr:

% apstat
Compute node summary

arch config up use held avail down
XT 72 72 2 0 70 0

No pending applications are present

Total placed applications: 1
Placed Apid ResId User PEs Nodes Age State Command

331897 6 user12 2 2 0h03m run cr

The application is running (State is run).

96 S–2496–31

Example Applications [9]

Checkpoint the job, place it in hold state, and recheck job and application status:

% qhold 87151
% qstat
Job id Name User Time Use S Queue
------------------------- ---------------- --------------- -------- - -----
87151.nid00003 cr_script user12 00:00:00 H workq
% apstat
Compute node summary

arch config up use held avail down
XT 72 72 0 0 72 0

No pending applications are present

No placed applications are present

The job is checkpointed and its state changes from run to hold. Application cr is
checkpointed (apstat State field is chkpt), then stops running.

Note: The qhold command checkpointed the job because it was submitted with
the -c enabled option.

Release the job, get status to verify, then restart it:

% qrls 87151
% qstat
Job id Name User Time Use S Queue
------------------------- ---------------- --------------- -------- - -----
87151.nid00003 cr_script user12 00:00:00 R workq
% apstat
Compute node summary

arch config up use held avail down
XT 72 72 2 0 70 0

No pending applications are present

Total placed applications: 1
Placed Apid ResId User PEs Nodes Age State Command

331899 7 user12 2 2 0h00m run cr

The job is running (qstat S field is R and application State is run).

S–2496–31 97

Workload Management and Application Placement for the Cray Linux Environment

Checkpoint the job but keep it running:

% qchkpt 87151
% qstat
Job id Name User Time Use S Queue
------------------------- ---------------- --------------- -------- - -----
87151.nid00003 cr_script user12 00:00:00 R workq
% apstat
Compute node summary

arch config up use held avail down
XT 72 72 2 0 70 0

No pending applications are present

Total placed applications: 1
Placed Apid ResId User PEs Nodes Age State Command

331899 7 user12 2 2 0h02m run cr

The qstat S field changed to R, and the application state changed from chkpt to
run.

Use qdel to stop the job:

% qdel 87151
% qstat
Job id Name User Time Use S Queue
------------------------- ---------------- --------------- -------- - -----
87151.nid00003 cr_script user12 00:00:00 C workq

Use the qrerun command to restart a completed job previously checkpointed:

% qrerun 87151
% qstat
Job id Name User Time Use S Queue
------------------------- ---------------- --------------- -------- - -----
87151.nid00003 cr_script user12 00:00:00 R workq
% apstat
Compute node summary

arch config up use held avail down
XT 72 72 2 0 70 0

No pending applications are present

Total placed applications: 1
Placed Apid ResId User PEs Nodes Age State Command

331901 8 user12 2 2 0h00m run cr

You can use qrerun to restart a job as long as the job remains queued in the
completed state.

98 S–2496–31

Example Applications [9]

At any step in the checkpoint/restart process, you can use the qstat -f option to
displays details about the job and checkpoint files:

% qstat -f 87151
Job Id: 87151.nid00003

Job_Name = cr_script
Job_Owner = user12@nid00004

<snip>
Checkpoint = enabled

<snip>
comment = Job 87151.nid00003 was checkpointed and continued to /lus/scratc

h/BLCR_checkpoint_dir/ckpt.87151.nid00003.1237761585 at Sun Mar 22 17:
39:45 2009

<snip>
checkpoint_dir = /lus/scratch/BLCR_checkpoint_dir
checkpoint_name = ckpt.87151.nid00003.1237761585
checkpoint_time = Sun Mar 22 17:39:45 2009
checkpoint_restart_status = Successfully restarted job

You can get details about the checkpointed files in checkpoint_dir:

% cd /lus/scratch/BLCR_checkpoint_dir
% ls -al
<snip>
drwx------ 3 user12 dev1 4096 2009-03-22 17:35 ckpt.87151.nid00003.1237761347
drwx------ 3 user12 dev1 4096 2009-03-22 17:39 ckpt.87151.nid00003.123776158
% cd ckpt.87151.nid00003.123776158
% ls
331899 cpr.context info.7828
% cd 331899
% ls
context.0 context.1

There is a context.n file for each width value (-l mppwidth=2).

9.16 Running Compute Node Commands
You can use the aprun -b option to run compute node BusyBox commands.

The following aprun command runs the compute node grep command to find
references to MemTotal in compute node file /proc/meminfo:

% aprun -b grep MemTotal /proc/meminfo
MemTotal: 8124872 kB

9.17 Using the High-level PAPI Interface
PAPI provides simple high-level interfaces for instrumenting applications written in C
or Fortran. This example shows the use of the PAPI_start_counters() and
PAPI_stop_counters() functions.

S–2496–31 99

Workload Management and Application Placement for the Cray Linux Environment

Modules required:

xt-papi

and one of the following:

PrgEnv-cray
PrgEnv-pgi
PrgEnv-gnu
PrgEnv-pathscale
PrgEnv-intel

Source of papi_hl.c:

#include <papi.h>
void main()
{

int retval, Events[2]= {PAPI_TOT_CYC, PAPI_TOT_INS};
long_long values[2];

if (PAPI_start_counters (Events, 2) != PAPI_OK) {
printf("Error starting counters\n");
exit(1);

}

/* Do some computation here... */

if (PAPI_stop_counters (values, 2) != PAPI_OK) {
printf("Error stopping counters\n");
exit(1);

}

printf("PAPI_TOT_CYC = %lld\n", values[0]);
printf("PAPI_TOT_INS = %lld\n", values[1]);

}

Compile papi_hl.c:

% cc -o papi_hl papi_hl.c

Run papi_hl:

% aprun ./papi_hl
PAPI_TOT_CYC = 4020
PAPI_TOT_INS = 201
Application 520262 exit codes: 19
Application 520262 resources: utime ~0s, stime ~0s

100 S–2496–31

Example Applications [9]

9.18 Using the Low-level PAPI Interface
PAPI provides an advanced low-level interface for instrumenting applications.
The PAPI library must be initialized before calling any of these functions;
initialization can be done by issuing either a high-level function call or a
call to PAPI_library_init(). This example shows the use of the
PAPI_create_eventset(), PAPI_add_event(), PAPI_start(), and
PAPI_read() functions.

Modules required:

xt-papi

and one of the following:

PrgEnv-cray
PrgEnv-pgi
PrgEnv-gnu
PrgEnv-pathscale
PrgEnv-intel

Source of papi_ll.c:

#include <papi.h>
void main()
{

int EventSet = PAPI_NULL;
long_long values[1];

/* Initialize PAPI library */
if (PAPI_library_init(PAPI_VER_CURRENT) != PAPI_VER_CURRENT) {
printf("Error initializing PAPI library\n");
exit(1);

}

/* Create Event Set */
if (PAPI_create_eventset(&EventSet) != PAPI_OK) {
printf("Error creating eventset\n");

exit(1);
}

/* Add Total Instructions Executed to eventset */
if (PAPI_add_event (EventSet, PAPI_TOT_INS) != PAPI_OK) {
printf("Error adding event\n");
exit(1);

}

/* Start counting ... */
if (PAPI_start (EventSet) != PAPI_OK) {
printf("Error starting counts\n");
exit(1);

}

/* Do some computation here...*/

if (PAPI_read (EventSet, values) != PAPI_OK) {
printf("Error stopping counts\n");

S–2496–31 101

Workload Management and Application Placement for the Cray Linux Environment

exit(1);
}
printf("PAPI_TOT_INS = %lld\n", values[0]);

}

Compile papi_ll.c:

% cc -o papi_ll papi_ll.c

Run papi_ll:

% aprun ./papi_ll
PAPI_TOT_INS = 97
Application 520264 exit codes: 18
Application 520264 resources: utime ~0s, stime ~0s

9.19 Using CrayPat
This example shows how to instrument a program, run the instrumented program,
and generate CrayPat reports.

Modules required:

xt-craypat

and one of the following:

PrgEnv-cray
PrgEnv-pgi
PrgEnv-gnu
PrgEnv-pathscale
PrgEnv-intel

Source code of pa1.f90:

program main
include 'mpif.h'

call MPI_Init(ierr) ! Required
call MPI_Comm_rank(MPI_COMM_WORLD,mype,ierr)
call MPI_Comm_size(MPI_COMM_WORLD,npes,ierr)

print *,'hello from pe',mype,' of',npes

do i=1+mype,1000,npes ! Distribute the work
call work(i,mype)

enddo

call MPI_Finalize(ierr) ! Required
end

Source code of pa2.c:

void work_(int *N, int *MYPE)
{

int n=*N, mype=*MYPE;

if (n == 42) {

102 S–2496–31

Example Applications [9]

printf("PE %d: sizeof(long) = %d\n",mype,sizeof(long));
printf("PE %d: The answer is: %d\n",mype,n);

}
}

Compile pa2.c and pa1.f90 and create executable perf:

% cc -c pa2.c
% ftn -o perf pa1.f90 pa2.o

Run pat_build to generate instrumented program perf+pat:

% pat_build -u -g mpi perf perf+pat
INFO: A trace intercept routine was created for the function 'MAIN_'.
INFO: A trace intercept routine was created for the function 'work_'.

The tracegroup (-g option) is mpi.

Run perf+pat:

% aprun -n 4 ./perf+pat | sort
CrayPat/X: Version 5.0 Revision 2635 06/04/09 03:13:22
Experiment data file written:
/mnt/lustre_server/user12/perf+pat+1652-30tdt.xf
Application 582809 resources: utime ~0s, stime ~0s
hello from pe 0 of 4
hello from pe 1 of 4
hello from pe 2 of 4
hello from pe 3 of 4

PE 1: sizeof(long) = 8
PE 1: The answer is: 42

Note: When executed, the instrumented executable creates directory
progname+pat+PIDkeyletters, where . PID is the process ID that was assigned to
the instrumented program at run time.

S–2496–31 103

Workload Management and Application Placement for the Cray Linux Environment

Run pat_report to generate reports perf.rpt1 (using default pat_report
options) and perf.rpt2 (using the -O calltree option).

% pat_report perf+pat+1652-30tdt.xf > perf.rpt1
pat_report: Creating file: perf+pat+1652-30tdt.ap2
Data file 1/1: [....................]
% pat_report -O calltree perf+pat+1652-30tdt.xf > perf.rpt2
pat_report: Using existing file: perf+pat+1652-30tdt.ap2
Data file 1/1: [....................]
% pat_report -O calltree -f ap2 perf+pat+1652-30tdt.xf
Output redirected to: perf+pat+1652-30tdt.ap2

Note: The -f ap2 option is used to create a *.ap2 file for input to
Cray Apprentice2 (see Using Cray Apprentice2 on page 106).

List perf.rpt1:

CrayPat/X: Version 5.0 Revision 2635 (xf 2571) 06/04/09 03:13:22

Number of PEs (MPI ranks): 4

Number of Threads per PE: 1

Number of Cores per Processor: 4

<snip>

Table 1: Profile by Function Group and Function

Time % | Time |Imb. Time | Imb. | Calls |Group
| | | Time % | | Function
| | | | | PE='HIDE'

100.0% | 0.000151 | -- | -- | 257.0 |Total
|--
| 98.9% | 0.000150 | -- | -- | 253.0 |USER
||---
|| 81.0% | 0.000122 | 0.000002 | 2.3% | 1.0 |MAIN_
|| 14.5% | 0.000022 | 0.000001 | 4.8% | 1.0 |exit
|| 2.1% | 0.000003 | 0.000001 | 20.1% | 1.0 |main
|| 1.2% | 0.000002 | 0.000000 | 10.2% | 250.0 |work_
||===
| 1.1% | 0.000002 | -- | -- | 4.0 |MPI
|==

<snip>

Table 2: Load Balance with MPI Message Stats

Time % | Time |Group
| | PE

100.0% | 0.000189 |Total
|------------------------
| 98.6% | 0.000186 |USER
||-----------------------
|| 25.5% | 0.000193 |pe.1

104 S–2496–31

Example Applications [9]

|| 24.7% | 0.000187 |pe.0
|| 24.3% | 0.000183 |pe.2
|| 24.1% | 0.000182 |pe.3
||=======================
| 1.4% | 0.000003 |MPI
||-----------------------
|| 0.4% | 0.000003 |pe.1
|| 0.4% | 0.000003 |pe.2
|| 0.3% | 0.000003 |pe.0
|| 0.3% | 0.000003 |pe.3
|========================

<snip>

Table 5: Program Wall Clock Time, Memory High Water Mark

Process | Process |PE
Time | HiMem |

| (MBytes) |

0.033981 | 20 |Total
|-----------------------
| 0.034040 | 19.742 |pe.2
| 0.034023 | 19.750 |pe.3
| 0.034010 | 19.754 |pe.0
| 0.033851 | 19.750 |pe.1
|=======================

========= Additional details ============================

Experiment: trace

<snip>

Estimated minimum overhead per call of a traced function,
which was subtracted from the data shown in this report
(for raw data, use the option: -s overhead=include):
Time 0.241 microseconds

Number of traced functions: 102
(To see the list, specify: -s traced_functions=show)

S–2496–31 105

Workload Management and Application Placement for the Cray Linux Environment

List perf.rpt2:

CrayPat/X: Version 5.0 Revision 2635 (xf 2571) 06/04/09 03:13:22

Number of PEs (MPI ranks): 4

Number of Threads per PE: 1

Number of Cores per Processor: 4

<snip>

Table 1: Function Calltree View

Time % | Time | Calls |Calltree
| | | PE='HIDE'

100.0% | 0.000181 | 657.0 |Total
|-------------------------------------
| 69.7% | 0.000126 | 255.0 |MAIN_
||------------------------------------
|| 67.7% | 0.000122 | 1.0 |MAIN_(exclusive)
|| 1.0% | 0.000002 | 250.0 |work_
||====================================
| 12.2% | 0.000022 | 1.0 |exit
| 1.8% | 0.000003 | 1.0 |main
|=====================================

========= Additional details ============================

Experiment: trace

<snip>

Estimated minimum overhead per call of a traced function,
which was subtracted from the data shown in this report
(for raw data, use the option: -s overhead=include):
Time 0.241 microseconds

Number of traced functions: 102
(To see the list, specify: -s traced_functions=show)

9.20 Using Cray Apprentice2
In the CrayPat example (Using CrayPat on page 102), we ran the instrumented
program perf and generated file perf+pat+1652-30tdt.ap2.

To view this Cray Apprentice2 file, first load the apprentice2 module.

% module load apprentice2

Then launch Cray Apprentice2:

% app2 perf+pat+1652-30tdt.ap2

106 S–2496–31

Example Applications [9]

Display the results in call-graph form:

Figure 4. Cray Apprentice2 Callgraph

S–2496–31 107

Workload Management and Application Placement for the Cray Linux Environment

108 S–2496–31

Further Information [A]

A.1 Related Publications
Cray systems run with a combination of Cray proprietary, third-party, and open
source products, as documented in the following publications.

A.1.1 Publications for Application Developers

• Cray Application Developer's Environment User's Guide

• Cray Application Developer's Environment Installation Guide

• Cray Linux Environment (CLE) Software Release Overview

• Cray C and C++ Reference Manual

• Cray Fortran Reference Manual

• Cray compiler command options man pages (craycc(1), crayftn(1))

• PGI User's Guide

• PGI Tools Guide

• PGI Fortran Reference

• PGI compiler command options man pages: pgcc(1), pgCC(1), pgf95(1)

• GCC manuals: http://gcc.gnu.org/onlinedocs/

• GCC compiler command options man pages: gcc(1), g++(1), gfortran(1)

• PathScale manuals: http://www.pathscale.com/docs.html

• PathScale compiler command options man pages: pathcc(1), pathCC(1),
path95(1), eko(7)

• Cray XT compiler driver commands man pages: cc(1), CC(1), ftn(1)

• Modules utility man pages: module(1), modulefile(4)

• Application launch command man page: aprun(1)

S–2496–31 109

http://gcc.gnu.org/onlinedocs/
http://www.pathscale.com/docs.html

Workload Management and Application Placement for the Cray Linux Environment

• Parallel programming models:

– Cray MPICH2 man pages (read the intro_mpi(3) man page first)

– Cray SHMEM man pages (read the intro_shmem(3) man page first)

– OpenMP documentation: http://www.openmp.org/

– Cray UPC man pages (read the intro_upc(3c) man page first)

Unified Parallel C (UPC) documents: Berkeley UPC
website (http://upc.lbl.gov/docs/) and Intrepid UPC website
(http://www.intrepid.com/upc/cray_xt3_upc.html).

• Cray scientific library, XT-LibSci, documentation:

– Basic Linear Algebra Subroutines (BLAS) man pages

– LAPACK linear algebra man pages

– ScaLAPACK parallel linear algebra man pages

– Basic Linear Algebra Communication Subprograms (BLACS) man pages

– Iterative Refinement Toolkit (IRT) man pages (read the intro_irt(3) man
page first)

– SuperLU sparse solver routines guide (SuperLU Users' Guide)

• AMD Core Math Library (ACML) manual

• FFTW 2.1.5 and 3.1.1 man pages (read the intro_fftw2(3) or
intro_fftw3(3) man page first)

• Portable, Extensible Toolkit for Scientific Computation (PETSc) library, an
open source library of sparse solvers. See the intro_petsc(3) man page and
http://www-unix.mcs.anl.gov/petsc/petsc-as/index.html

• NetCDF documentation (http://www.unidata.ucar.edu/software/netcdf/)

• HDF5 documentation (http://www.hdfgroup.org/HDF5/whatishdf5.html)

• Lustre lfs(1) man page

• PBS Professional 9.0 User's Guide

• PBS Professional man pages (qsub(1B) , qstat(1B), and qdel(1B))

• Moab TORQUE documentation (http://www.clusterresources.com/)

• TotalView documentation (http://www.totalviewtech.com/)

• GNU debugger documentation (see the lgdb(1) man page and the GDB User
Manual at http://www.gnu.org/software/gdb/documentation/).

• PAPI man pages (read the intro_papi(3) man page first)

110 S–2496–31

http://www.openmp.org/
http://upc.lbl.gov/docs/
http://www.intrepid.com/upc/cray_xt3_upc.html
http://www-unix.mcs.anl.gov/petsc/petsc-as/index.html
http://www.unidata.ucar.edu/software/netcdf/
http://www.hdfgroup.org/HDF5/whatishdf5.html
http://www.clusterresources.com/
http://www.totalviewtech.com/
http://www.gnu.org/software/gdb/documentation/

Further Information [A]

• PAPI manuals (see http://icl.cs.utk.edu/papi/)

• Using Cray Performance Analysis Tools

• CrayPat man pages (read the intro_craypat(1) man page first)

• Cray Apprentice2 man page (app2(1))

• CLE man pages

• SUSE LINUX man pages

• Linux documentation (see the Linux Documentation Project at
http://www.tldp.org and SUSE documentation at http://www.suse.com)

S–2496–31 111

http://icl.cs.utk.edu/papi/
http://www.tldp.org
http://www.suse.com

Workload Management and Application Placement for the Cray Linux Environment

112 S–2496–31

Cray X6 Compute Node Figures [B]

This release supports Cray X6 compute blades in Cray XE and Cray XT systems.
Each Cray X6 compute blade has AMD G34 sockets and includes four compute
nodes with four NUMA nodes each (one per processor die); up to 96 processor cores
per blade, or 2,304 processor cores per cabinet. Each Cray X6 compute node is
designed to efficiently run up to 24 MPI tasks, or alternately can be programmed to
run OpenMP within a compute node and MPI between nodes. Each NUMA node is
logically coupled with its own memory in the compute node and can access remote
NUMA node memory through HyperTransport links on the compute node. Requests
between compute nodes are facilitated by the Cray SeaStar or Cray Gemini ASICs.

Figure 5. Cray XT6 Compute Node

HyperTransport
Links

Cray
SeaStar

AMD
Opteron

Processor

NUMA Node 1

 D
I
M
M
S

 AMD
Opteron

Processor

NUMA Node 0

 D
I
M
M
S

 AMD
Opteron

Processor

NUMA Node 2

 D
I
M
M
S

 AMD
Opteron

Processor

NUMA Node 3

 D
I
M
M
S

 AMD
Opteron

Processor

Socket 0 Socket 1

S–2496–31 113

Workload Management and Application Placement for the Cray Linux Environment

Figure 6. Cray XE6 Compute Node

Cray
Gemini

HT0

HT1

To 2nd Node

AMD
Opteron

Processor

Hyper
Transport

Links

NUMA Node 1

 D
I
M
M
S

 AMD
Opteron

Processor

NUMA Node 0

 D
I
M
M
S

 AMD
Opteron

Processor

NUMA Node 2

 D
I
M
M
S

 AMD
Opteron

Processor

NUMA Node 3

 D
I
M
M
S

 AMD
Opteron

Processor

Socket 0 Socket 1

114 S–2496–31

	Workload Management and Application Placement for the Cray Linux
	Workload Management and Application Placement for the Cray Linux
	System Overviews [1]
	1.1 Cray System Features
	1.2 Cray XE Features

	Running Applications [2]
	2.1 Using the aprun Command
	2.1.1 Changing the Default Hugepage Size on Cray XE Systems (Defe

	2.2 Understanding Application Placement
	2.2.1 Cray XE Systems Features Specific to Application Placement

	2.3 Gathering Application Status and Information on the Cray Syst
	2.3.1 apstat Display Support for Cray XE Systems
	2.3.2 Using the xtnodestat Command

	2.4 Using the cnselect Command
	2.5 Understanding How Much Memory is Available to Applications
	2.6 Core Specialization
	2.7 Launching an MPMD Application
	2.8 Managing Compute Node Processors from an MPI Program
	2.9 About aprun Input and Output Modes
	2.10 About aprun Resource Limits
	2.11 About aprun Signal Processing

	Running User Programs on Service Nodes [3]
	Using Workload Management Systems [4]
	4.1 Creating Job Scripts
	4.2 Submitting Batch Jobs
	4.3 Getting Job Status
	4.4 Removing a Job from the Queue

	Dynamic Shared Objects and Libraries (DSLs) [5]
	5.1 Introduction
	5.2 About the Compute Node Root Run Time Environment
	5.2.1 DSL Support
	5.2.2 Cray DVS Loadbalance Mode

	5.3 Configuring DSL
	5.4 Building, Launching, and Workload Management Using Dynamic Ob
	5.4.1 Linker Search Order

	5.5 Troubleshooting
	5.5.1 Error While Launching with aprun: "error while loading shar
	5.5.2 Running an Application Using a Non-Existent Root
	5.5.3 Performance Implications of Using Dynamic Shared Objects

	Using Cluster Compatibility Mode in CLE [6]
	6.1 Cluster Compatibility Mode
	6.1.1 CCM implementation

	6.2 Installation and Configuration of Applications for CCM
	6.3 Using CCM
	6.3.1 CCM Commands
	6.3.1.1 ccmrun
	6.3.1.2 ccmlogin

	6.3.2 Starting a CCM Batch Job
	6.3.3 X11 Forwarding in CCM

	6.4 Individual Software Vendor (ISV) Example
	6.5 Troubleshooting
	6.5.1 CCM Initialization Fails
	6.5.2 Logging Into Head Node is Slow
	6.5.3 Using a Transport Protocol Other Than TCP

	6.6 Caveats and Limitations
	6.6.1 ALPS will not accurately reflect CCM job resources
	6.6.2 Limitations

	Using Checkpoint/Restart [7]
	Optimizing Applications [8]
	8.1 Using Compiler Optimization Options
	8.2 Using aprun Memory Affinity Options
	8.3 Using aprun CPU Affinity Optimizations
	8.4 Exclusive Access
	8.5 Optimizing Process Placement on Multicore Nodes

	Example Applications [9]
	9.1 Running a Basic Application
	9.2 Running an MPI Application
	9.3 Using the Cray shmem_put Function
	9.4 Using the Cray shmem_get Function
	9.5 Running Partitioned Global Address Space (PGAS) Applications
	9.5.1 Running an Unified Parallel C (UPC) Application
	9.5.2 Running a Fortran 2008 Application Using Coarrays

	9.6 Running a Fast_mv Application
	9.7 Running a PETSc Application
	9.8 Running an OpenMP Application
	9.9 Running an Interactive Batch Job
	9.10 Running a Batch Job Script
	9.11 Running Multiple Sequential Applications
	9.12 Running Multiple Parallel Applications
	9.13 Using aprun Memory Affinity Options
	9.13.1 Using the aprun -S Option
	9.13.2 Using the aprun -sl Option
	9.13.3 Using the aprun -sn Option
	9.13.4 Using the aprun -ss Option

	9.14 Using aprun CPU Affinity Options
	9.14.1 Using the aprun -cc cpu_list Option
	9.14.2 Using the aprun -cc keyword Options

	9.15 Using Checkpoint/Restart Commands
	9.16 Running Compute Node Commands
	9.17 Using the High-level PAPI Interface
	9.18 Using the Low-level PAPI Interface
	9.19 Using CrayPat
	9.20 Using Cray Apprentice2

	Further Information [A]
	A.1 Related Publications
	A.1.1 Publications for Application Developers

	Cray X6 Compute Node Figures [B]
	List of Figures
	Figure 1. Cray DVS Loadbalance Mode Used in the Compute Node Roo
	Figure 2. Cray Job Distribution Cross Section
	Figure 3. CCM Job Flow Diagram
	Figure 4. Cray Apprentice2 Callgraph
	Figure 5. Cray XT6 Compute Node
	Figure 6. Cray XE6 Compute Node

	List of Examples
	Example 1. Compiling an application
	Example 2. Launching an application with the Application Level P
	Example 3. Running an application using a workload management sy
	Example 4. Running a Program Using a Batch Script
	Example 5. Launching An ISV Application Using CCM
	Example 6. Launching the UMT/pyMPI Benchmark Using CCM

	List of Procedures
	Procedure 1. Disabling CSA Accounting for the cnos class view

	List of Tables
	Table 1. Core/PE Distribution for r=1
	Table 2. aprun versus qsub Options

