CRANY

Workload Management and Application Placement for
the Cray Linux Environment

S-2496-31

© 2010 Cray Inc. All Rights Reserved. This document or parts thereof may not be reproduced in any form unless
permitted by contract or by written permission of Cray Inc.

U.S. GOVERNMENT RESTRICTED RIGHTS NOTICE

The Computer Software is delivered as "Commercial Computer Software” as defined in DFARS 48 CFR
252.227-7014.

All Computer Software and Computer Software Documentation acquired by or for the U.S. Government is provided
with Restricted Rights. Use, duplication or disclosure by the U.S. Government is subject to the restrictions described
in FAR 48 CFR 52.227-14 or DFARS 48 CFR 252.227-7014, as applicable.

Technical Data acquired by or for the U.S. Government, if any, is provided with Limited Rights. Use, duplication or
disclosure by the U.S. Government is subject to the restrictions described in FAR 48 CFR 52.227-14 or DFARS 48
CFR 252.227-7013, as applicable.

Cray, LibSci, PathScale, and UNICOS are federally registered trademarks and Active Manager, Baker, Cascade,
Cray Apprentice2, Cray Apprentice2 Desktop, Cray C++ Compiling System, Cray CX, Cray CX1, Cray CX1-iWS,
Cray CX1-LC, Cray CX1000, Cray CX1000-C, Cray CX1000-G, Cray CX1000-S, Cray CX1000-SC,

Cray CX1000-SM, Cray CX1000-HN, Cray Fortran Compiler, Cray Linux Environment, Cray SHMEM, Cray X1,
Cray X1E, Cray X2, Cray XD1, Cray XMT, Cray XR1, Cray XT, Cray XTm, Cray XT3, Cray XT4, Cray XT5,
Cray XT5,, Cray XT5m, Cray XT6, Cray XT6ém, CrayDoc, CrayPort, CRInform, ECOphlex, Gemini, Libsci,
NodeKARE, RapidArray, SeaStar, SeaStar2, SeaStar2+, Threadstorm, UNICOS/Ic, UNICOS/mk, and UNICOS/mp
are trademarks of Cray Inc.

GNU is atrademark of The Free Software Foundation. General Parallel File System (GPFS) is a trademark of
International Business Machines Corporation. InfiniBand is atrademark of InfiniBand Trade Association. Intel isa
trademark of Intel Corporation or its subsidiaries in the United States and other countries. Linux is atrademark of
Linus Torvalds. Lustre, AMD is atrademark of Advanced Micro Devices, Inc. NFS, Sun and Java are trademarks of
Oracle and/or its affiliates. PanFSis atrademark of Panasas, Inc. Moab and TORQUE are trademarks of Adaptive
Computing Enterprises, Inc. PBS Professional is atrademark of Altair Grid Technologies. PETSc is atrademark of
Copyright (C) 1995-2004 University of Chicago. PGI is atrademark of The Portland Group Compiler Technology,
STMicroelectronics, Inc. Platform is atrademark of Platform Computing Corporation. SUSE is a trademark of
Novell, Inc. TotalView isatrademark of TotalView Technology, LLC. UNIX, the“X device,” X Window System,
and X/Open are trademarks of The Open Group in the United States and other countries. All other trademarks

are the property of their respective owners.

Version 1.0 Published June 2010 Supports Cray Linux Environment (CLE) 3.1 release.

Workload Management and Application Placement for the Cray Linux Environment S-2496-31

This document inherits some end-user-specific information formerly provided in Cray XT
Programming Environment User's Guide. If users need to launch and execute applications using the
Cray Linux Environment (CLE) 3.1 release and are looking for a reference, this document is a good start.

Contents

System Overviews [1]
1.1 Cray System Features
1.2 Cray XE Features

Running Applications [2]
2.1 Using theapr un Command

2.1.1 Changing the Default Hugepage Size on Cray XE Systems (Deferred implementation)

2.2 Understanding Application Placement
2.2.1 Cray XE Systems Features Specific to Application Placement
2.3 Gathering Application Status and Information on the Cray System
2.3.1apst at Display Support for Cray XE Systems
2.3.2Using thext nodest at Command
2.4 Usingthecnsel ect Command
2.5 Understanding How Much Memory is Available to Applications
2.6 Core Specialization
2.7 Launching an MPMD Application
2.8 Managing Compute Node Processors from an MPI Program
2.9 About apr un Input and Output Modes
2.10 About apr un Resource Limits
2.11 About apr un Signal Processing

Running User Programs on Service Nodes [3]

Using Workload Management Systems [4]
4.1 Creating Job Scripts

4.2 Submitting Batch Jobs

4.3 Getting Job Status

4.4 Removing a Job from the Queue

Dynamic Shared Objectsand Libraries (DSLS) [5]
5.1 Introduction

S-2496-31

Page

13

15
15
23
24
24
25
27
29
30
31
32
33
33
33
33
34

35

37
37
38
39
40

4
4

Workload Management and Application Placement for the Cray Linux Environment

Page

5.2 About the Compute Node Root Run Time Environment C e e e 41
52.1DSL Support e e 42
5.2.2 Cray DV'S Loadbalance Mode 42
5.3 Configuring DSL 43
5.4 Building, Launching, and Workload Management Using Dynamic Objects 44
5.4.1 Linker Search Order 44
5.5 Troubleshooting 48
5.5.1 Error While Launching with apr un: "error while loading shared libraries’ e 48
5.5.2 Running an Application Using a Non-Existent Root Ce e 48
5.5.3 Performance Implications of Using Dynamic Shared Objects 48
Using Cluster Compatibility Modein CLE [6] 49
6.1 Cluster Compatibility Mode 49
6.1.1 CCM implementation e e s 50
6.2 Installation and Configuration of Applications for CCM Ce e 51
6.3 Using CCM e e e e e e 51
6.3.1 CCM Commands C e e e e 51
6.3.1.1ccnrun C e e 51
6.3.1.2ccm ogi n C e s 52

6.3.2 Starting a CCM Batch Job e e s 52
6.3.3 X11 Forwarding in CCM C e e 52
6.4 Individual Software Vendor (ISV) Example 53
6.5 Troubleshooting 54
6.5.1 CCM Initialization Fails 54
6.5.2 Logging Into Head Node is Slow 54
6.5.3 Using a Transport Protocol Other Than TCP 54
6.6 Caveats and Limitations 54
6.6.1 ALPS will not accurately reflect CCM job resources 54
6.6.2 Limitations C e e e 55
Using Checkpoint/Restart [7] 57
Optimizing Applications [8] 59
8.1 Using Compiler Optimization Options C e e 59
8.2 Using apr un Memory Affinity Options Ce e 61
8.3Using apr un CPU Affinity Optimizations 62
84 Exclusive Access Lo Lo 62
8.5 Optimizing Process Placement on Multicore Nodes Ce e 63

6 S-2496-31

Contents

Example Applications [9]

9.1 Running aBasic Application

9.2 Running an MPI Application

9.3 Using the Cray shnem put Function

9.4 Using the Cray shnem get Function

9.5 Running Partitioned Global Address Space (PGAS) Applications
9.5.1 Running an Unified Parallel C (UPC) Application
9.5.2 Running a Fortran 2008 Application Using Coarrays

9.6 Running a Fast_mv Application

9.7 Running a PETSc Application

9.8 Running an OpenMP Application

9.9 Running an Interactive Batch Job

9.10 Running a Batch Job Script

9.11 Running Multiple Sequential Applications

9.12 Running Multiple Parallel Applications

9.13 Using apr un Memory Affinity Options
9.13.1 Usingtheapr un - SOption
9.13.2 Usingtheapr un - sl Option
9.13.3 Using theapr un - sn Option
9.13.4 Usingtheapr un -ss Option

9.14 Using apr un CPU Affinity Options .o
9.14.1Usingtheapr un -cc cpu_list Option
9.14.2 Usingtheapr un -cc keyword Options

9.15 Using Checkpoint/Restart Commands

9.16 Running Compute Node Commands

9.17 Using the High-level PAPI Interface

9.18 Using the Low-level PAPI Interface

9.19 Using CrayPat

9.20 Using Cray Apprentice2

Appendix A Further Information
A.1 Related Publications
A.1.1 Publications for Application Developers

Appendix B Cray X6 Compute Node Figures

Procedures
Procedure 1. Disabling CSA Accounting for thecnos classview

S-2496-31

Page

65
65
66
67
69
70
71
71
72
73
82
86
87
88
90
91
91
92
92
92
93
93
94
94
99
99
101
102
106

109
109
109

113

Workload Management and Application Placement for the Cray Linux Environment

Page
Examples
Examplel. Compilinganapplication 45
Example 2. Launching an application with the Application Level Placement Scheduler (ALPS) using the
computenoderoot L L. e 46
Example3. Running an application using aworkload management system 47
Example4. Running aProgram Using a Batch Script Ce e 47
Example5. Launching AnlISV ApplicationUsngCCM 52
Example 6. Launching the UMT/pyMPI Benchmark Using CCM Ce e 53
Tables
Tablel. Core/PE Distribution for r =1 C e e 32
Table2. aprunversusqsub Options 38
Figures
Figure1l. Cray DVS Loadbalance Mode Used in the Compute Node Root Run Time Environment .o 43
Figure2. Cray Job Distribution Cross Section Ce e 50
Figure3. CCM Job Flow Diagram 51
Figure4. Cray Apprentice2Callgraph 107
Figure5. Cray XT6 Compute Node C e e 113
Figure 6. Cray XE6 Compute Node C e e 114

8 S-2496-31

System Overviews [1]

1.1 Cray System Features

S-2496-31

Cray XE and Cray XT supercomputer systems are massively parallel processing
(MPP) systems. Cray has combined commodity and open source components with
custom-designed components to create a system that can operate efficiently at an
immense scale.

Cray MPP systems are based on the Red Storm technology that was developed jointly
by Cray Inc. and the U.S. Department of Energy Sandia National Laboratories.

Cray systems are designed to run applications that require large-scale processing,
high network bandwidth, and complex communications. Typical applications

are those that create detailed simulations in both time and space, with complex
geometries that involve many different material components. These long-running,
resource-intensive applications require a system that is programmable, scalable,
reliable, and manageable.

The Cray XE series consists of Cray XE5 and Cray XE6 systems. The Cray XT
series consists of Cray XT4, Cray XT5 and Cray XT6 systems. The primary
differences among the numbered systems are the type and speed of their compute
node components.

The major features of Cray systems are performance, scalability and resiliency:

* Cray XT systems are designed to scale from fewer than 100 to more than 250,000
processors. The ability to scale to such proportions stems from the design of
system components:

— The basic component is the node. There are two types of nodes. Service nodes
provide support functions, such as managing the user's environment, handling
I/0, and booting the system. Compute nodes run user applications. Because
processors are inserted into standard sockets, customers can upgrade nodes as
faster processors become available.

— Cray XT systems use a simple memory model. Every instance of a distributed
application has its own processors and local memory. Remote memory isthe
memory on other nodes that run the associated application instances. Thereis
no shared memory in Cray XT systems.

Workload Management and Application Placement for the Cray Linux Environment

The system interconnection network links compute and service nodes. This
is the data-routing resource that Cray XT systems use to maintain high
communication rates as the number of nodes increases. Most Cray XT
systems use afull 3D torus network topology.

e Cray system resiliency features:

10

The Node Health Checker (NHC) performs tests to determine if compute
nodes that are allocated to an application are healthy enough to support
running subsequent applications. If not, NHC removes any nodes incapable
of running an application from the resource pool.

Tools that assist administrators to recover from system or node failures,
including a hot backup utility, and boot node failover, and single or multiple
compute node reboots.

Error correction code (ECC) technology, which detects and corrects
multiple-bit data storage and transfer errors.

Lustre file system failover. When administrators enable Lustre automatic
failover, Lustre services switch to standby services if the primary node fails or
Lustre services are temporarily shut down for maintenance.

Cray XT system cabinets have only one moving part (a blower that cools the
components) and redundant power supplies, reducing the likelihood of cabinet
failure.

Cray XT system processor boards (called blades) have redundant voltage
regulator modules (VRMs or "verties") or VRMs with redundant circuitry.

Diskless nodes. The availability of anode is not tied to the availability of a
moving part.

Multiple redundant RAID controllers, that provide automatic failover
capability and multiple Fibre Channel and InfiniBand connections to disk
storage.

S-2496-31

System Overviews [1]

S-2496-31

The major software components of Cray systems are:

* Application development tools, comprising:

Cray Application Development Environment (CADE):

» Message Passing Toolkit (MPI, SHMEM)

* Math and science libraries (LibSci, PETSc, ACML, FFTW, Fast_mv)
« Datamodeling and management tools (NetCDF, HDF5)

e GNU debugger (Igdb)

e GCC C, C++, and Fortran compilers

» Java (for developing service node programs)

e Application placement tools:

Application Level Placement Scheduler (ALPS) application launch and
schedule utility

Cluster Compatibility Mode allows users to run cluster-based individual
software vendor applications on Cray systems.

Checkpoint/restart

e Optional products:

C, C++, and Fortran 95 compilers from PGl and PathScale
glibc library (the compute node subset)

Partitioned Global Address Space (PGAS) programming models including
Fortran 2008 with coarrays and Unified Parallel C (UPC)

Berkeley UPC

Workload management Systems (PBS Professional, Moab TORQUE)
TotalView debugger

DDT debugger

Cray Apprentice2 performance data visualization tool

CrayPat performance analysis tool

Intel Compiler Support

11

Workload Management and Application Placement for the Cray Linux Environment

— Cray Compiling Environment (CCE)
e Cray C and compilers
e Cray C++ compiler
e Fortran 2003 compiler

* The Cray C compiler supports Unified Parallel C and the Cray Fortran
compiler supports coarrays and several other Fortran 2008 features. All
CCE compilers support OpenMP.

e Cray Application Development Supplement (CADES) for stand alone Linux
application development platforms

* Operating system services. The operating system, Cray Linux Environment
(CLE), istailored to the requirements of service and compute nodes. A
full-featured SUSE Linux operating system runs on service nodes, and a
lightweight kernel, CNL, runs on compute nodes.

« Paradld file systems support. Cray supports the Lustre paralel file system. CLE
also enables the Cray system to use file systems such as PanFS, NFS and GPFS
(Genera Paralld File System) by projecting them to compute nodes using Cray
Data Virtualization Services (DVS).

e System management and administration tools

— System Management Workstation (SMW), the single point of control for
system administration.

— Hardware Supervisory System (HSS), which monitors the system and handles
component failures. HSS is independent of computation and service hardware
components and has its own network.

— Comprehensive System Accounting (CSA), a software package that performs
standard system accounting processing. CSA is open-source software that
includes changes to the Linux kernel so that the CSA can collect more types
of system resource usage data than under standard Fourth Berkeley Software
Distribution (BSD) process accounting.

An additional CSA interface enables the project database to use
customer-supplied user, account, and project information that reside on a
separate Lightweight Directory Access Protocol (LDAP) server.

12 S-2496-31

System Overviews [1]

1.2 Cray XE Features

Cray XE5 and Cray XE6 systems build on the base of the scalability and resiliency
introduced in Cray XT systems. Cray XE systems represent a substantial modification
and improvement to the Cray M PP architecture. The following list highlights some of
the changes introduced in the Cray XE platform:

S-2496-31

The system interconnection network links compute and service nodes. The active
component of the system interconnect is the Cray Gemini ASIC, which offers
improved latency, performance, resiliency, and stability over the Cray SeaStar.

It provides support for network address translation, memory registration and
access (as mentioned above), application performance information, quiescence
and reroute upon link failure, and warm swap of blades within the system. Most
Cray XE systems use afull 3D torus network topology.

Cray XE systems also use a simple memory model with the added ability to
take advantage of a global shared address space memory model supported by
the Cray Gemini application-specific integrated circuit (ASIC). This enables
applications programmers to use Partitioned Global Address Space (PGAS)
programming models such as Unified Parallel C or Fortran 2008 with coarrays,
which can address remote memory directly, without relying on another
communication method such as MPICH. For more information see Using the
GNI and DMAPP APIs.

For more information on both Cray XT and Cray XE system software, see Cray Linux
Environment (CLE) Software Release Overview and Managing System Software for
Cray XE and Cray XT Systems.

13

Workload Management and Application Placement for the Cray Linux Environment

14 S-2496-31

Running Applications [2]

The apr un utility launches applications on compute nodes. The utility submits
applicationsto the Application Level Placement Scheduler (ALPS) for placement and
execution, forwards your login node environment to the assigned compute nodes,
forwards signals, and managesthe st di n, st dout , and st der r streams.

This chapter describes how to run applications interactively on compute nodes and
get application status reports. For a description of batch job processing, see Chapter
4, Using Workload Management Systems on page 37.

2.1 Using the apr un Command

S-2496-31

Use the apr un command to specify the resources your application requires, request
application placement, and initiate application launch.

The format of the apr un command is:

aprun [-a arch] [-b] [-B][-cc cpulist | keyword][-cp cpu_placement_file_ name]
[-d depth] [-D value] [-F accessmode] [-L node list] [-msizgh|hs]] [-n pes]
[-N pes per_node] [-gq] [-r cores|[-S pes per_numa node] [-sl| list_of nhuma_nodes]
[-sn numa_nodes per_node] [-ss] [-t sec] executable [arguments for_executable]
where:

-a arch Specifies the architecture type of the compute node on which the

application will run; archisxt . If you are using apr un to launch a
compiled and linked executable, you need not include the - a option;
ALPS can determine the compute node architecture type from the
ELF header (see the el f (5) man page).

-b Bypasses the transfer of the executable program to the compute
nodes. By default, the executable is transferred to the compute nodes
during the apr un process of launching an application. For an
example, see Running Compute Node Commands on page 99.

-B Reuses the width, depth, nppn, and memory request options that are
specified with the batch reservation. This option obviates the need to
specify apr un options- n, - d, - N, and - m apr un will exit with
errors if these options are specified with the - B option.

15

Workload Management and Application Placement for the Cray Linux Environment

16

-cc cpu list| keyword

Binds processing elements (PES) to CPUs. CNL does not migrate
processes that are bound to a CPU. This option applies to all
multicore compute nodes. The cpu_list is not used for placement
decisions, but is used only by CNL during application execution. For
further information about binding (CPU affinity), see Using apr un
CPU Affinity Optimizations on page 62.

The cpu_list is acomma-separated or hyphen-separated list of logical
CPU numbers and/or ranges. As PEs are created, they are bound to
the CPU in cpu_list corresponding to the number of PEs that have
been created at that point. For example, the first PE created is bound
to the first CPU in cpu_list, the second PE created is bound to the
second CPU in cpu_list, and so on. If more PEs are created than
givenin cpu_list, binding starts over at the beginning of cpu_list and
starts again with the first CPU in cpu_list. The cpu_list can also
contain an x, which indicates that the application-created process at
that location in the fork sequence should not be bound to a CPU.

Out-of-range cpu_list values are ignored unless all CPU values are
out of range, in which case an error message is issued. For example,
if you want to bind PEs starting with the highest CPU on a compute
node and work down from there, you might use this - cc option:

% aprun -n 8 -cc 10-4 ./a.out

If the PEs were placed on Cray X6 24-core compute nodes, the
specified - cc range would be valid. However, if the PEs were placed
on Cray XT5 eight-core compute nodes, CPUs 10-8 would be out

of range and therefore not used.

S-2496-31

Running Applications [2]

The following keyword values can be used:

The cpu keyword (the default) binds each PE to a CPU within
the assigned NUMA node. You do not have to indicate a specific
CPU.

If you specify adepth per PE (aprun -d depth), the PEsare
constrained to CPUs with a distance of depth between them to
each PE's threads to the CPUs closest to the PE's CPU.

The - cc cpu option is the typical use case for an MPI
application.

Note: If you oversubscribe CPUs for an OpenMP application,
Cray recommends that you not usethe - cc cpu default.
Testthe-cc none and-cc numa_node options and
compare results to determine which option produces the better
performance.

The nunma_node keyword constrains PEs to the CPUs within the
assigned NUMA node. CNL can migrate a PE among the CPUs
in the assigned NUMA node but not off the assigned NUMA
node. For example, on 8-core nodes, if PE2 isassigned to NUMA
node 0, CNL can migrate PE2 among CPUs 0-3 but not among
CPUs 4-7.

If PEs create threads, the threads are constrained to the same
NUMA-node CPUs as the PEs. Thereis one exception. If depth
is greater than the number of CPUs per NUMA node, once the
number of threads created by the PE has exceeded the number of
CPUs per NUMA node, the remaining threads are constrained

to CPUs within the next NUMA node on the compute node.

For example, on 8-core nodes, if depth is 5, threads 0-3 are
constrained to CPUs 0-3 and thread 4 is constrained to CPUs 4-7.

The none keyword allows PE migration within the assigned
NUMA nodes.

-cp cpu_placement_file_name (Deferred implementation)

Provides the name of a CPU binding placement file. This option
applies to all multicore compute nodes. This file must be located
on afile system that is accessible to the compute nodes. The CPU
placement file provides more extensive CPU binding instructions
than the - cc options.

S-2496-31

17

Workload Management and Application Placement for the Cray Linux Environment

18

- D value

-d depth

The - D option valueis an integer bitmask setting that controls debug
verbosity, where:

e A valueof 1 providesasmall level of debug messages
e A valueof 2 provides amedium level of debug messages
« A valueof 4 provides ahigh level of debug messages

Because this option is a bitmask setting, value can be set to get any
or all of the above levels of debug messages. Therefore, valid values
are 0 through 7. For example, - D 3 provides al small and medium
level debug messages.

Specifies the number of CPUs for each PE and its threads. ALPS
alocates the number of CPUs equal to depth times pes. The- cc
cpu_list option can restrict the placement of threads, resulting in
more than one thread per CPU.

The default depthis 1.

For OpenMP applications, use both the OVP_NUM_ THREADS
environment variable to specify the number of threads and the
aprun -d option to specify the number of CPUs hosting the
threads. ALPS creates- n pesinstances of the executable, and the
executable spawns OVP_NUM_THREADS-1 additional threads per
PE. For an OpenMP example, see Running an OpenMP Application
on page 82.

Note: For a PathScale OpenMP program, set the
PSC_OMP_AFFI NI TY environment variable to FALSE

For Cray systems, compute nodes must have at least depth CPUs.
For Cray XT4 systems, depth cannot exceed 4. For Cray XT5 and
Cray XE5 systems, depth cannot exceed 12. For Cray X6 compute
blades, depth cannot exceed 24.

S-2496-31

Running Applications [2]

S-2496-31

-L node list

- m size[h|hg]

Specifies the candidate nodes to constrain application placement.
The syntax alows a comma-separated list of nodes (such as

-L 32, 33, 40), arange of nodes (suchas-L 41-87),0ra
combination of both formats. Node values can be expressed in
decimal, octal (preceded by 0), or hexadecimal (preceded by 0x).
The first number in a range must be less than the second number
(8- 6, for example, isinvalid), but the nodesin alist can be in any
order.

This option is used for applications launched interactively; use
thegsub -1 nmppnodes=\"node_list\ " option for batch and
interactive batch jobs.

If the placement node list contains fewer nodes than the number
required, afatal error is produced. If resources are not currently
available, apr un continues to retry.

A common source of nodelistsisthecnsel ect command. Seethe

cnsel ect (1) man page for details.

Specifies the per-PE required Resident Set Size (RSS) memory size
in megabytes. K, M, and G suffixes (case insensitive) are supported
(16M = 16m = 16 megabytes, for example). If you do not include the
- moption, the default amount of memory available to each PE equals

the minimum value of (compute node memory size) / (number of
CPUs) calculated for each compute node.

For example, given Cray XT5 compute nodes with 32 GB of memory

and 8 CPUs, the default per-PE memory sizeis32 GB / 8 CPUs =
4 GB. Consider another example; given a mixed-processor system

with 8-core, 32-GB Cray XT5 nodes (32 GB / 8 CPUs = 4 GB) and
4-core, 8-GB Cray XT4 nodes (8 GB / 4 CPUs = 2 GB), the default

per-PE memory size is the minimum of 4 GB and 2 GB = 2 GB.

19

Workload Management and Application Placement for the Cray Linux Environment

If you want hugepages (2 MB) allocated for a Cray XT
application, use the h or hs suffix. The default and maximum
hugepage size for Cray SeaStar systemsis 2 MB. The default
for Cray Gemini systemsis 2 MB; it can be modified by the
HUGETLB_DEFAULT_PAGE_SI ZE environment variable. For
more information on Cray Gemini hugepage sizes, see Changing
the Default Hugepage Size on Cray XE Systems (Deferred
implementation) on page 23.

-m sizeh Requests size of huge pages to be alocated to each
PE. All nodes use as much memory asthey are able
to allocate and 4 KB base pages thereafter.

-m sizehs Requires size of huge pages to be allocated to
each PE. If the request cannot be satisfied, an error
message is issued and the application launch is
terminated.

Note: To use huge pages, you must first load the huge pages
library during the linking phase, such as:

% cc -c ny_hugepages_app. c
% cc -o my_hugepages_app ny_hugepages_app. o -l hugetl bfs

Then set the huge pages environment variable:
% set env HUGETLB_MORECORE yes

Or
% export HUGETLB_MORECORE=yes

-n pes Specifies the number of processing elements (PEs) that your
application requires. A PE is an instance of an ALPS-launched
executable. You can express the number of PEsin decimal, octal, or
hexadecimal form. If peshasaleading O, it isinterpreted as octa
(-n 16 specifies 16 PEs, but - n 016 isinterpreted as 14 PES).

If pes has aleading Ox, it isinterpreted as hexadecimal (-n 16
specifies 16 PEs, but - n 0x 16 isinterpreted as 22 PEs). The default
valueis 1.

- N pes per_node

Specifies the number of PEsto place per node. For Cray systems, the
default is the number of available NUMA nodes times the number
of cores per NUMA node.

The maximum pes_per_node is 24 for systems with Cray X6
compute blades.

20 S-2496-31

Running Applications [2]

-F excl usive| share

excl usi ve mode provides a program with exclusive access to

all the processing and memory resources on a node. Using this
option with the cc option binds processes to those mentioned in
the affinity string. shar e mode access restricts the application
specific cpuset contents to only the application reserved cores
and memory on NUMA node boundaries, meaning the application
will not have access to cores and memory on other NUMA nodes
on that compute node. The excl usi ve option does not need to
be specified because exclusive access mode is enabled by defaullt.
However, if nodeShar e issetto sharein/ et c/ al ps. conf then
you must usethe - F excl usi ve to override the policy set in this
file. You can check the value of nodeShar e by executing apst at
-sSvv | grep access.

-q Specifies quiet mode and suppresses al apr un-generated non-fatal
messages. Do not use this option with the - D (debug) option; apr un
terminates the application if both options are specified. Even with
the - g option, apr un writes its help message and any ALPS fatal
messages when exiting. Normally, this option should not be used.

-r cores Enables core specialization on Cray compute nodes. Core
specialization supports only one system services core, thus 1 isthe
only valid value for cores.

- S pes_per_numa_node

Specifies the number of PEs to allocate per NUMA node. You

can use this option to reduce the number of PES per NUMA

node, thereby making more resources available per PE. For 8-core
Cray XT5 and Cray XE5 nodes, the default is 4. For 12-core

Cray XT5 and Cray XE5 nodes, the default is 6. For 16-core

Cray X6 compute nodes, the default valueis 4. For 24-core Cray X6
compute nodes, the default is6. A zero value is not allowed and
causes a fatal error. For further information, see Using apr un
Memory Affinity Options on page 61.

S-2496-31 21

Workload Management and Application Placement for the Cray Linux Environment

-sl list_of numa_nodes

Specifies the NUMA node or nodes (comma separated or hyphen
separated) to use for application placement. A spaceis required
between - sl and list_of numa nodes. Thelist_of numa nodes
value can be- sl <0, 1> on Cray XT5 compute nodes, - sl

<0, 1, 2, 3> on Cray X6 compute nodes, or arange such as - sl
0-1and-sl 0- 3. The default isno placement constraints. You
can use this option to determine whether restricting your PEs to one
NUMA node per node affects performance.

List NUMA nodesin ascending order; -sl 1-Oand-sl 1,0 are
invalid.

-sn numa_nodes per_node

-SS

-t sec

22

Specifies the number of NUMA nodes per node to be allocated.
Insert a space between - sn and numa_nodes_per_node. The
numa_nodes_per_node value can be 1 or 2 on Cray XT5 compute
nodes, or 1, 2, 3, 4 on Cray X6 compute nodes. The default

is no placement constraints. You can use this option to find

out if restricting your PEs to one NUMA node per node affects
performance.

A zero valueisnot allowed and is afatal error.

Specifies strict memory containment per NUMA node. When - ss
is specified, a PE can alocate only the memory that islocal to its
assigned NUMA node.

The default is to allow remote-NUMA-node memory allocation to
all assigned NUMA nodes. You can use this option to find out if
restricting each PE's memory access to local-NUMA-node memory
affects performance. For more information, see the Memory Affinity
NOTES section.

Specifies the per-PE CPU time limit in seconds. The sec timelimit is
constrained by your CPU time limit on the login node. For example,
if your time limit on the login node is 3600 seconds but you specify a
-t value of 5000, your application is constrained to 3600 seconds
per PE. If your time limit on the login nodeisunl i ni t ed, the sec
valueis used (or, if not specified, the time per-PE is unlimited). You
can determine your CPU time limit by using thel i ni t command
(csh) ortheul i mit -a command (bash).

Separates the names of executables and their associated options
for Multiple Program, Multiple Data (MPMD) mode. A spaceis
required before and after the colon.

S-2496-31

Running Applications [2]

2.1.1 Changing the Default Hugepage Size on Cray XE Systems (Deferred
implementation)

The Cray Gemini MRT (Memory Relocation Table) is a feature of the interconnect
hardware on Cray XE systems that enables application processes running on different
compute nodes to directly access each other's memory, when that memory is backed

by hugepages.

Without the Cray Gemini MRT, only 2GB of the application's address space can be
directly accessed from a different compute node. Your application might not run if
you do not place your application's memory on hugepages.

Seethel i bhuget | bf s(7) man page for information about how to use
|'i bhuget | bf s to place your application's memory on hugepages.

CLE supports setting the Cray Gemini MRT page size to one of six different
hugepage sizes: 128KB, 512KB, 2MB, 8MB, 16MB, and 64MB. Set the

I i bhuget | bf s environment variable HUGETLB_DEFAULT PAGE S| ZE before
invoking apr un to ask CLE to use a particular Cray Gemini MRT page size on your
application's compute nodes. If you do not set HUGETLB_DEFAULT_PACGE_SI ZE,
CLE setsthe MRT page size to 2MB.

I i bhuget | bf s enables you to place different segments of your application's
memory on different hugepage sizes. Generally, you should avoid using

hugepage sizes that are smaller than the MRT page size (as specified by
HUGETLB_DEFAULT_ PAGE_SI ZE), because such hugepages cannot be mapped by
the MRT. Also, using more than one hugepage size may cause your application to run
out of physical memory due to fragmentation.

You should choose an appropriate MRT page size based on the characteristics of
your application. If you choose an MRT page size that is too large, your application
may run out of memory due to internal fragmentation. |f you choose an MRT page
size that istoo small, your application may run out of MRT entries, or thrash if the
MRT registration cacheisin use.

The format of the HUGETLB_DEFAULT _PAGE_SI ZE environment variableis:

HUGETLB_DEFAULT_PAGE_S| ZE=[dddd | ddddk |ddddK | ddddm | ddddM |
ddddg | ddddG]

Where dddd consists of decimal digits, or hexadecimal digits preceded by Ox. Here,
k or K implies Kilobytes, m or M implies Megabytes, g or G implies Gigabytes, no
value designator implies bytes.

S-2496-31 23

Workload Management and Application Placement for the Cray Linux Environment

2.2 Understanding Application Placement

The apr un placement optionsare- n, - N, - d, and - m ALPS attempts to use the
smallest number of nodes to fulfill the placement requirements specified by the - n,
-N,-d,-S,-sl,-sn, and/or - mvalues. For example, the command:

% aprun -n 24 ./a.out

places 24 PEs on:

e Cray XT4 single-socket, quad-core processors on 6 nodes
e Cray XT5 dual-socket, quad-core processors on 3 nodes

e Cray XT5 dual-socket, six-core processors on 2 nodes

» Cray X6 dua-socket, eight-core processors on 2 nodes

e Cray X6 dual-socket, 12-core processors on 1 node

The memory and CPU affinity options are optimization options, not placement
options. You use memory affinity options if you think that remote-NUMA-node
memory references are reducing performance. You use CPU affinity optionsif you
think that process migration is reducing performance.

Note: For examples showing how to use memory affinity options, see Using
apr un Memory Affinity Options on page 91. For examples showing how to use
CPU affinity options, see Using apr un CPU Affinity Options on page 93.

2.2.1 Cray XE Systems Features Specific to Application Placement

24

Cray Gemini has some differences that, while not directly visible to the user, impact
application placement within the system:

* Node Trandation Table (NTT) — assists in addressing remote nodes within the
application and enables software to address other NICs within the resource space
of the application. NTTs have a value assigned to them called the granularity
value. There are 8192 entries per NTT, which represents a granularity value of
1. For applications that use more than 8192 compute nodes, the granularity value
will be greater than 1.

* Protection Tag (pTag) — an 8-bit identifier that provides for memory protection
and validation of incoming remote memory references. ALPS assigns a
pTag-NTT pair to an application. This prevents application interference when
sharing NTT entries.

» Cookies— an application-specific identifier that helps sort network traffic meant
for different layers in the software stack.

S-2496-31

Running Applications [2]

* Programmable Network Performance Counters — memory mapped registersin the
Cray Gemini ASIC that ALPS manages for use with CrayPat (Cray performance
analysis tool). Applications can share a Cray Gemini, but only one application
can have reserved access to performance counters. Thus compute nodes are
assigned in pairs to avoid any conflicts.

These parameters interact to schedule applications for placement.

2.3 Gathering Application Status and Information on the Cray

System

S-2496-31

Before running applications, you should check the status of the compute nodes.
There are two ways to do this: using theapst at and the xt nodest at commands.

Theapst at command provides status information about reservations, compute
resources, pending and placed applications, and cores. The format of the apst at
command is:

apstat [-a][-c][-A apid.. | -Rresd..][-n|-no] [-p] [-r] [-S][-V]
[-X] [-Z]

You can use apst at to display the following types of status information:
e dl applications

» placed applications

« applications by application IDs (APIDs)

» applications by reservation IDs (ReslDs)

* nodes and cores

* pending applications

» confirmed and claimed reservations

For example:

% apstat -a
Total placed applications: 3

Pl aced Apid ResID User PEs Nodes Age State Command
48062 39 bill 2 1 2h39m run MPI _| ssend_perf
48108 1588 jim 4 1 Ohl5mrun gtp
48109 1589 sue 4 2 0hO7m run bench6

25

Workload Management and Application Placement for the Cray Linux Environment

An APID isaso displayed in the apst at display after apr un execution results.
For example:

% aprun -n 2 -d 2 ./onpl

Hello fromrank O (thread 0) on ni d00540

Hello fromrank 1 (thread 0) on ni d00541

Hello fromrank O (thread 1) on ni d00540

Hello fromrank 1 (thread 1) on ni d00541
Application 48109 resources: utine ~0s, stine ~0s%

Theapst at - n command displays the status of the nodes that are UP and core
status. Nodes are listed in sequentia order:

% apstat -n
NID Arch State HWRv Pl PgSz Avl Conf Placed PEs Apids

48 XT UP | 4 1 1 4K 2048000 512000 512000 1 28489
49 XTUP | 4 1 1 4K 2048000 512000 512000 1 28490
50 XTUP I 4 - - 4K 2048000 0 0 0
51 XTUuUP I 4 - - 4K 2048000 0 0 0
52 XTUP || 4 1 1 4K 2048000 512000 512000 1 28489
53 XTUP I 4 - - 4K 2048000 0 0 0
54 XTUuUP I 4 - - 4K 2048000 0 0 0
55 XTUP I 4 - - 4K 2048000 0 0 0
56 XT U I 8 1 1 4K 4096000 512000 512000 1 28490
58 XT U I 8 - - 4K 4096000 0 0 0
59 XTUP I 8 - - 4K 4096000 0 0 0
Conput e node sunmary

arch config up use held avail down

XT 20 11 4 0 7 9

Theapst at - no command displays the same information as apst at - n,
but the nodes are listed in the order that ALPS used to place an application.
Site administrators can specify non-sequential node ordering to reduce system
interconnect transfer times.

% apstat -no

NID Arch State HWRv Pl PgSz Avl Conf Placed PEs Apids

14 XT UP B 24 24 - 4K 8192000 8189952 0 0

15 XT U B24 1 - 4K 8192000 341248 0 0

16 XT UP B 24 24 24 4K 8192000 8189952 8189952 24 290266
17 XT UP B 24 24 24 4K 8192000 8189952 8189952 24 290266
18 XT UP B 24 24 24 4K 8192000 8189952 8189952 24 290266
19 XT UP B 24 24 24 4K 8192000 8189952 8189952 24 290266
20 XT UP B 24 24 24 4K 8192000 8189952 8189952 24 290266
21 XT UP B 24 24 24 4K 8192000 8189952 8189952 24 290266
32 XT UP B 24 24 24 4K 8192000 8189952 8189952 24 290266
33 XT UP B 24 24 24 4K 8192000 8189952 8189952 24 290266
34 XT UP B 24 24 24 4K 8192000 8189952 8189952 24 290266
35 XT UP B 24 24 24 4K 8192000 8189952 8189952 24 290266
36 XT UP B 24 24 24 4K 8192000 8189952 8189952 24 290266
.snip...

Conput e node sunmary
arch config up use held avail down
XT 1124 1123 379 137 607 1

26 S-2496-31

Running Applications [2]

where HWis the number of coresin the node, Rv is the number of cores held in a
reservation, and Pl isthe number of cores being used by an application. If you
want to display a0 instead of a- inthe Rv and Pl fields, add the - z option to the
apst at command.

apst at isalso modified to indicate that applications have core specialization

enabled.

Thefollowing apst at - n command displays ajob using core specialization,
demarked by the + sign:

% apstat -n

NID Arch State HWRv Pl PgSz Avl Conf Placed PEs Apids
84 XT UP B 8 8 7+ 4K 4096000 4096000 4096000 8 1577851
85 XT UP B 8 2 1+ 4K 4096000 4096000 4096000 8 1577851
86 XTUP B 8 8 8 4K 4096000 4096000 4096000 8 1577854

For apid 1577851, atotal of 10 PEs are placed. On ni d00084, eight cores are
reserved but the 7+ indicates that seven PEs were placed and one core was used for
system services. A similar situation appears on ni d00085 three cores are reserved,
two application PEs are placed on two cores, and one core is used for system services.
For more information, see Core Specialization on page 32.

2.3.1 apst at Display Support for Cray XE Systems

apst at provides display support for application placement on Cray XE compute
nodes. The following example shows the changed output to the apst at - av

display:

apstat -av

Application detail
Ap[6] : apid 290282, pagg 25130, resld 31, user crayuser,
gid 1037, account 0, time 0, normal
Batch System I D = 315113
Created at Tue May 25 17:36:24 2010
Originator: aprun on NID 2, pid 25221
Nurmber of commands 1, control network fanout 32
Net wor k: pTag 181, cooki e Oxde6d0, NTTgran/entries 1/336, hugePageSz 0O
Cmd[0] : msgrate -n 5376 -N 16 -sn 4 -ss, 1333MB, XT, nodes 336
Pl acement |ist entries: 5376

S-2496-31 27

Workload Management and Application Placement for the Cray Linux Environment

28

Most of these values were discussed in greater detail in Cray XE Systems Features
Specific to Application Placement on page 24 but the following items are brief
descriptions of the new apst at display values:

e pTag - 8-bit protection tag identifier assigned to application
» cookie - 32-bit identifier used to negotiate traffic between software application

e NTTgran/entries- The NTT granularity value and number of entries assigned to
the application. Valid granularity valuesare 1, 2, 4, 8, 16 or 32.

» hugePageSz - Indicates hugepage size value for the application.

Changestotheapst at - p option indicate when an application is pending based on
Cray Gemini resource conflicts:

» PerfCtrs - Indicates that a node considered for placement was not available
because it shared a network chip with a node using network performance counters

e pTags- Indicates the application was not able to allocate afree pTag

For further information, see the apst at (1) man page.

S-2496-31

Running Applications [2]

2.3.2 Using the xt nodest at Command

% xt nodest at
Current Allocation Status at Thu May 27 16: 25: 43 2009

n3
n2
nl
c2n0
n3
n2
nl
c1n0
n3
n2
nl
cOn0

ccceccecc
bbbbbccc
bbbbbbbb
bbbbbbbb
aaaaaaaa
aaaaaaaa
aaaaaaaa
SSSSSaaa

aaa

aaa
SSSSSaaa

s01234567

Legend:

nonexi st ent node

free interactive conpute node

al l ocated, but idle conpute node
down conput e node

adm ndown comnput e node

syst em dedi cat ed node (DVS)

*N X >

The xt nodest at command is another way to display the current job and node
status. Each character in the display represents a single node. For systemsrunning a
large number of jobs, multiple characters may be used to designate a job.

-------- CCCCCCCC -------- CCCCCCCC =-------- CCC-=---- ==-==-==--
CCCCCCCC CCCCCCCC cCcccecccC Ccccceccec cccecececee ccececececece cccececce
bbbbbbbb bbbbbbbb bbbbbbbb bbbbbbbb bbbbbbbb bbbbbbbb bbbbbbbb
bbbbbbbb bbbbbbbb bbbbbbbb bbbbbbbb bbbbbbbb bbbbbbbb bbbbbbbb
bbbbbbbb aaaaaaaa bbbbbbbb aaaaaaaa bbbbbbbb aabbbbbb bbbbbbbb
aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa
aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa
aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa Saaaaaaa aaaaaaaa aaaaaaaa
aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaa aaaaaaaa aaaaaaaa
aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaa aaaaaaaa aaaaaaaa
aaaaaaaa ------ Fo oo aaa -------- S
01234567 01234567 01234567 01234567 01234567 01234567 01234567

servi ce node

free batch conpute node
suspect conpute node

down or adnmi ndown service node

<~V

Avai | abl e conpute nodes: 0 interactive, 145 batch

Job ID

a
b
c

221176
221180
221182

S-2496-31

User Si ze Age conmand |ine

user 12 342 0h05m appl
user 12 171 0h04m app2
user 12 86 0h04m | u. A 64+pat

Thext nodest at command displays the allocation grid, alegend, and ajob listing.
The column and row headings of the grid show the physical location of jobs: C
represents a cabinet, ¢ represents a chassis, s represents aslot, and n represents a
node.

Note: If xt nodest at indicates that no compute nodes have been allocated for
interactive processing, you can still run your job interactively by using the qsub
- I command Then launch your application with the apr un command.

29

Workload Management and Application Placement for the Cray Linux Environment

% xt procadnmin -

NI D

0

3

4

<sni p>
20

21

22

23

Usethext procadni n - Acommand to display node attributes that show both the
logical node IDs (NI D heading) and the physical node I1Ds (NODENANE heading).
The following example shows the attributes of a system with X10 service nodes and
24-core compute nodes:

(HEX) NODENAME TYPE ARCH OS CORES AVAI LMEM PAGESZ CLOCKMHZ

0x0 c¢0-0c0s0n0 service xt (service) 6 16000 4096 2400

0x3 ¢0-0c0s0n3 service xt (service) 6 16000 4096 2400

0x4 ¢0-0c0s1n0 service xt (service) 6 16000 4096 2400
0x14 c0-0c0s5n0 conpute xt CNL 24 32000 4096 2100
0x15 ¢0-0c0s5n1 conpute xt CNL 24 32000 4096 2100
0x16 c¢0-0c0s5n2 conpute xt CNL 24 32000 4096 2100
0x17 ¢0-0c0s5n3 conpute xt CNL 24 32000 4096 2100

For more information, see the xt nodest at (1) and xt pr ocadni n(8) man pages.

2.4 Using the cnsel ect Command

30

The apr un utility supports manual and automatic node selection. For manual
node selection, first use the cnsel ect command to get a candidate list of
compute nodes that meet the criteria you specify. Then, for interactive jobs
usethe aprun - L node_list option. For batch and interactive batch jobs, add
- | nppnodes=\ " node_list\ " to the job script or the gsub command line.

The format of thecnsel ect command is:

cnselect [-1] [-L fiddname] [-V] [-c] [[-e]expression]
where:
e - | liststhe names of fields in the compute nodes attributes database.

Note: Thecnsel ect utility displays nodei ds, sorted by ascending NID
number or unsorted. For some sites, node IDs are presented to ALPS in
non-sequentia order for application placement. Site administrators can specify
non-sequentia node ordering to reduce system interconnect transfer times.

e - L fieldname lists the current possible values for a given field.
e -V printsthe version number and exits.

e - givesacount of the number of nodes rather than a list of the nodes
themselves.

* [- e] expression queries the compute node attributes database.

S-2496-31

Running Applications [2]

You can use cnsel ect to get alist of nodes selected by such characteristics as
the number of cores per node (cor enask), the amount of memory on the node
(in megabytes), and the processor speed (in megahertz). For example, to run an
application on Cray XT5 8-core nodes with 16 GB of memory or more, use:

% cnsel ect coremask. eq. 255 . and. avail nem gt. 16000
128- 223, 256- 351, 384- 447
% aprun -n 16 -L 128-223 ./appl

To run an application on Cray X6 24-core or 16-core nodes with 32 GB of memory,
use:

% cnsel ect coremask. eq. 16777215 .or. corenask. eq. 65535
.and. avail mem eq. 32000
14- 17, 32- 39, 56- 63

Note: Thecnsel ect utility returns- 1 to st dout if thecor emask criteria
cannot be met; for example cor enask. eq. 65535 on a system that has no
16-core compute hodes.

You can also use cnsel ect to get alist of nodesif a site-defined label exists. For
example, to run an application on six-core nodes, you might use:

% cnsel ect -L labell

HEX- CORE

TWELVE- CORE

% cnsel ect -e "l abel 1. eq."' HEX- CORE' "
60- 63, 76, 82

% aprun -n 6 -L 60-63,76,82 ./appl

If you do not include the - L option on the apr un command or the - | nppnodes
option on the gsub command, ALPS automatically places the application using
available resources.

2.5 Understanding How Much Memory is Available to

Applications

S-2496-31

When running large applications, you should understand how much memory will be
available per node. Cray Linux Environment (CLE) uses memory on each node for
CNL and other functions such as I/O buffering. The remaining memory is available
for user executables; user data arrays; stacks, libraries and buffers; and the SHMEM
symmetric stack heap.

The amount of memory CNL uses depends on the number of cores, memory size,
and whether optiona software has been configured on the compute nodes. For a
quad-core node with 8 GB of memory, 7.2 to 7.5 GB of memory is available for
applications.

The default stack sizeis 16 MB. You can determine the maximum stack size by using
thel i m t command (csh) ortheul i Mt - a command (bash).

31

Workload Management and Application Placement for the Cray Linux Environment

Note: The actual amount of memory CNL uses varies depending on the total
amount of memory on the node and the OS services configured for the node.

You can usethe apr un - m size option to specify the per-PE memory limit. For
example, this command launches xt hi on cores 0 and 1 of compute nodes 472 and
473. Each node has 8 GB of available memory, allowing 4 GB per PE.

% aprun -n 4 -N 2 -m4000 ./xthi | sort

Application 225108 resources: utine ~0s, stine ~0s
PE 0 ni d00472 Core affinity
PE 1 ni d00472 Core affinity
PE 2 ni d00473 Core affinity
PE 3 ni d00473 Core affinity
% aprun -n 4 -N 2 -m4001 ./ xt hi
Cl ai m exceeds reservation's nmenory

I n
[eNeoNeNe]

1
1
1
1
| sort
r

You can change MPI buffer sizes and stack space from the defaults by setting certain
environment variables. For more details, seethei nt r o_npi (3) man page.

2.6 Core Specialization

32

CLE 3.1 offersa new core-specialization functionality. Core specialization binds a set
of Linux kernel-space processes and daemons to a single core within a Cray compute
node to enable the software application to fully utilize the remaining cores within its
cpuset . Thisrestricts all possible overhead processing to one core per node within
the reservation and may improve application performance. To help users calculate the
new "scaled-up" width for a batch reservation that uses core speciaization, CLE
introduces the apcount tool.

Note: apcount will work only if your system has uniform compute node types.
See the apcount (1) manpage for further information.

This behavior is requested by specifying - r for the apr un command along with

the - B option. The - B option will pass batch options corresponding with - n, - N,
- d, and - mto the apr un command. Table 1 shows representative values for core
specialization scenarios on Cray systems.

Table 1. Core/PE Distribution for r =1

Compute # of Cores Service Compute Nyax
Blade Type Affinity Cores Cores
Cray XESor 8 7 0-6 7
Cray XT5
Cray XES5or 12 11 0-10 11
Cray XT5
Cray X6 16 15 0-14 15
Cray X6 24 23 0-22 23
S-2496-31

Running Applications [2]

2.7 Launching an MPMD Application

Theapr un utility supports multiple-program, multiple-data (MPMD) launch mode.
To run an application in MPMD mode under apr un, use the colon-separated - n
pes executablel : - n pes executable? : ... format. For MPI applications, all of the
executables share the same MPI _ COVM_WORL D process communicator.

For example, this command launches 128 instances of pr ogr aml and 256 instances
of progr an?:

aprun -n 128 ./progranl : -n 256 ./progran®

A spaceisrequired before and after the colon.

Note: MPMD applications that use the SHMEM parallel programming model,
either standalone or nested within an MPI program, are not supported on Gemini
based systems.

2.8 Managing Compute Node Processors from an MPI Program

MPI programs should call the MPl _Fi nal i ze() routine at the conclusion of the
program. This call waits for al processing elements to complete before exiting. If
one of the programsfailsto call MPl _Fi nal i ze() , the program never completes
and apr un stops responding. There are two ways to prevent this behavior:

* Usethe PBS Professional elapsed (wall clock) time limit to terminate the job after
aspecified timelimit (suchas-1 wal | ti ne=2: 00: 00).

e Usetheaprun -t secoption toterminate the program. This option specifies the
per-PE CPU time limit in seconds. A process will terminate only if it reaches the
specified amount of CPU time (not wallclock time).

For example, if you use:

% aprun -n 8 -t 120 ./ myprogl

and a PE uses more than two minutes of CPU time, the application terminates.

2.9 About apr un Input and Output Modes

The apr un utility handles standard input (st di n) on behalf of the user and
handles standard output (st dout) and standard error messages (st der r) for user
applications.

2.10 About apr un Resource Limits

apr un utility does not forward its user resource limits to each compute node (except
for RLI M T_CORE and RLI M T_CPU, which are aways forwarded).

S-2496-31 33

Workload Management and Application Placement for the Cray Linux Environment

You can set the APRUN_XFER LI M TS environment variableto 1 (export
APRUN_XFER_LI M TS=1or set env APRUN_XFER LI M TS 1) to enable the
forwarding of user resource limits. For more information, seethegetrlimt (P)
man page.

2.11 About apr un Signal Processing

34

The apr un utility forwards the following signals to an application:

SI GHUP
SI G NT
SIGQUI T
S| GTERM
S| GABRT
SI GUSRL
SI GUSR2
S| GURG
SI GW NCH

The apr un utility ignores SI GPI PE and SI GTTI N signals. All other signals
remain at default and are not forwarded to an application. The default behaviors that
terminate apr un also cause ALPS to terminate the application with a SI GKI LL
signal.

S-2496-31

Running User Programs on Service
Nodes [3]

To compile a program that you want to run on alogin or other service node, call the
compiler directly.

» For PGI programs, use the pgcc, pgCC, or pgf 95 command.

» For GCC programs, usethegcc, g++, or gf or t r an command.

» For PathScale programs, use the pat hcc, pat hCC, or pat h95 command.
e For Cray compilers, usethecc, CC, or f t n command.

e For Intel compilers, usethei cc,i cpc, fpp,orifort command.

These compilers will find the appropriate header files and libraries in their normal
Linux locations.

For example, to run program my_ut i | i t y on aservice node, first compile the
program:

% nodul e | oad pg
% pgCC -0 ny_utility ny_utility.C

Thenrunny _utility:
%ny_utility
I'n mai n(0)

In functionx(0)
Back in main()

S-2496-31 35

Workload Management and Application Placement for the Cray Linux Environment

36 S-2496-31

Using Workload Management Systems [4]

Your Cray system may include the optional PBS Professional or Moab TORQUE
workload management system (WMS). If so, your system can be configured with a
given number of interactive job processors and a given number of batch processors. A
job that is submitted as a batch process can use only the processors that have been
allocated to the batch subsystem. If ajob requires more processors than have been
allocated for batch processing, it remains in the batch queue but never exits.

Note: At any time, the system administrator can change the designation of any
node from interactive to batch or vice versa. This does not affect jobs already
running on those nodes. It applies only to jobs aready in the queue and jobs
submitted later.

The basic process for creating and running batch jobs is to create ajob script that
includes apr un commands, then use the gsub command to run the script.

4.1 Creating Job Scripts

A job script may consist of directives, comments, and executable statements:

#PBS - N job_name

#PBS -1 resource type=specification
#

command

command

PBS Professional and Moab TORQUE provide a number of resource_type options for
specifying, allocating, and scheduling compute node resources, such as nppwi dt h
(number of processing elements), nppdept h (number of threads), mppnppn
(number of PEs per node), and nppnodes (manua node placement list). See Table 2
and the pbs_r esour ces(7B) man page for details.

S-2496-31 37

Workload Management and Application Placement for the Cray Linux Environment

4.2 Submitting Batch Jobs

To submit ajob to the workload management system, load the pbs or nbab module:

% nodul e | oad pbs

Or

% nodul e | oad noab

Then use the gsub command:

% qsub [-1 resource type=specification] jobscript

where jobscript is the name of a job script that includes one or more apr un
commands.

The gsub command scans the lines of the script file for directives. Aninitia linein
the script that has only the characters #! or the character: isignored and scanning
starts at the next line. A line with #! / bi n/ shell invokes shell from within the
script. Scanning continues until the first executable line. An executable lineis not
blank, not a directive, and does not start with #). If directives occur on subsequent
lines, they are ignored.

When you run the script, gsub displays the Job ID. You can use the gst at
command to check on the status of your job and the gdel command to remove a
job from the queue.

If aqsub option is present in both a directive and on the command line, the
command line takes precedence. If an option is present in a directive and not on the
command line, that option and its argument, if any, are processed as if you included
them on the command line.

Table 2 listsapr un options and their counterpart gsub -1 options:

Table 2. apr un versus gsub Options

apr un Option gsub -1 Option Description

-n 4 -1 nppwi dt h=4 Width (number of PES)

-d 2 -1 nppdept h=2 Depth (number of CPUs hosting
OpenMP threads)

-N 1 -1 nppnppn=1 Number of PEs per node

-L 56,7 -1 nppnodes=\"5, 6, 7\" Candidate node List

-m 1000 -1 nmppmem=1000 Memory per PE

For further information about gsub - | options, seethe pbs_r esour ces(7B)
man page.

38 S-2496-31

Using Workload Management Systems [4]

For examples of batch jobs that use apr un, see Running a Batch Job Script on
page 87.

4.3 Getting Job Status

The gst at command displays the following information about all batch jobs
currently running:

e Thejobidentifier (Job i d) assigned by the WMS
e Thejob name (Nane)
e Thejob owner (User)
e CPUtimeused (Ti me Use)
e Thejob state Sis:
— E (jobisexiting)
— H{(jobisheld)
— Q(jobisin the queue)
— R{(jobisrunning)
— S (job is suspended)
— T (job is being moved to a new location)
— W(job iswaiting for its execution time)

e The queue (Queue) in which the job resides

For example:
% gst at
Job id Nane User Time Use S Queue
84. ni d00003 test _ost4 7 usera 03:36: 23 R workqg
33. ni d00003 run. pbs userb 00: 04: 45 R workqg
34. ni d00003 run. pbs userb 00: 04: 45 R workqg
35. ni d00003 STDI N userc 00: 03: 10 R workqg

If the - a option is used, queue information is displayed in an aternative format.

% gstat -a
Req'd Req'd El ap

Job ID User nane Queue Jobnane SessI D NDS TSK Menory Time S Tine
84. ni d00003 usera wor kq test_ost4_7 1 1 -- -- Q
33. ni d00003 userb wor kq run. pbs -- 1 1 -- -- Q
34. ni d00003 userb wor kq run. pbs - 1 1 -- -- Q
35. ni d00003 userc wor kq STDI N 1 1 Q

For details, see the gst at (1B) man page.

S-2496-31 39

Workload Management and Application Placement for the Cray Linux Environment

4.4 Removing a Job from the Queue

Theqgdel command removes a batch job from the queue. Asauser, you can remove
any batch job for which you are the owner. Jobs are removed from the queue in the
order they are presented to gdel . For more information, see the qdel (1B) man

page.

40 S-2496-31

Dynamic Shared Objects and Libraries

(DSLs) [5]

5.1 Introduction

Cray supports linking with dynamic shared objects on Cray systems. Dynamic
shared objects allow for use of multiple programs that require the same segment of
memory address space to be used during linking and compiling. This functionality
enables many previously unavailable applications to run on Cray systems and may
reduce executable size and improve optimization of system resources. Also, when
shared libraries are changed or upgraded, users will not need to recompile dependent
applications. Cray Linux Environment uses Cray Data Virtualization Service (Cray
DVS) to project the shared root onto the Cray system to compute nodes. Thus, each
compute node using its DV S-projected file system transparently calls shared libraries
located at a central location.

5.2 About the Compute Node Root Run Time Environment

S-2496-31

CLE facilitates compute node access to the Cray system shared root by projecting it
through Cray DVS. DVSis an 1/O forwarding mechanism that provides transparent
access to remote file systems while reducing client load. DV'S allows users and
applications running on compute nodes access to remote POSI X -compliant file
systems such as NFS.

ALPS is updated to run with applications that use read-only shared objects. When a
user runs an application, ALPS launches the application to the compute node root.
After installation, using the compute node root is enabled by default. However, the
administrator can define the default case (DSO support enabled or disabled) per
site policy. It isaso possible for users to override the default setup by setting an
environment variable, CRAY_ROOTFS.

41

Workload Management and Application Placement for the Cray Linux Environment

5.2.1 DSL Support

CLE supports DSLs for following cases:
« linking and loading against programming environments supported by Cray
« Use of the Python interpreter on compute nodes

Launching terminal shells and other programming language interpreters using the
compute node root are not currently supported by Cray.

5.2.2 Cray DVS Loadbalance Mode

42

DV S supports three access modes:
* Serial mode — clients communicate with one DV S server

* Cluster parallel mode — clients can communicate with multiple DV'S servers
on a per-file basis

* Loadbalance mode — clients only communicate with one server; multiple servers
project the underlying read-only file system

L oadbalance mode is a new client access mode for DV S used exclusively for the
compute node root run time environment. The clients, Cray system compute nodes,
automatically select the server based on node ID (NID) from the list of available
server nodes specified at install time. Loadbalance mode is only valid for read-only
mount points. In the case of compute node root servers, the underlying file systemis
the NFS-exported shared root. Loadbal ance mode accommodates automatic failover
to another DV S server.

S-2496-31

Dynamic Shared Objects and Libraries (DSLs) [5]

Figure 1. Cray DVS Loadbalance Mode Used in the Compute Node Root Run
Time Environment

" I
Cray System
Application Application Application Application
DVS Client DVS Client DVS Client DVS Client

DVS Server DVS Server

Boot Node

FS Server

Disk FS

5.3 Configuring DSL

The shared root / et ¢/ opt/ cray/ cnrt e/ root s. conf file contains
site-specific values for custom root file systems. To specify a different pathname
for r oot s. conf edit the configuration file/ et ¢/ sysconfi g/ xt. conf and
change the value for the variable, CRAY_ROOTFS_CONF. Inther oot s. conf
file, the system default compute node root used is specified by the symbolic name
DEFAULT. If no default value is specified, / will be assumed. In the following
example segment of r oot s. conf , the default case uses the root mounted at on the
compute nodes at / dsl :

DEFAULT=/ dsl
I NIl TRAMFS=/
DSL=/ dsl

S-2496-31 43

Workload Management and Application Placement for the Cray Linux Environment

A user may override the system default compute node root value by setting the
environment variable, CRAY_ROOTFS, to avalue from ther oot s. conf file.
This setting effectively changes the compute node root used for launching jobs.
For example, to override the use of / dsl the user would enter something like the
following at the command line on the login node:

% export CRAY_ROOTFS=I NI TRAMFS

If the system default isusing i ni t r anf s, enter something like the following at
the command line on the login node to switch to using the compute node root path
specified by DSL:

% export CRAY_ROOTFS=DSL

An administrator can modify the contents of thisfile to restrict user access. For
example, if the administrator only wants to allow applications to launch using the
compute node root, ther oot s. conf file would read like the following:

% cat /etc/opt/cray/cnrte/roots. conf
DEFAULT=/ dsl

For more information, see Managing System Software for Cray XE and Cray XT
Systems.

5.4 Building, Launching, and Workload Management Using
Dynamic Objects

5.4.1 Linker Search Order

44

Search order is an important detail to consider when compiling and linking
executables. The dynamic linker uses the following search order when loading a
shared object:

e Vaueof LD_LI BRARY_PATH environment variable

* Value of DT_RUNPATH dynamic section of the executable, which is set using the
| d - rpat h command. You can add a directory to the run time library search
path using the | d command. However, setting the library search path is added
automatically when using a supported Cray system programming environment
component. For more information please see the | d(1) manpage.

S-2496-31

Dynamic Shared Objects and Libraries (DSLs) [5]

» The contents of the human non-readable cachefile/ et ¢/ | d. so. cache. The
/etc/ld.so.conf containsalist of commaor colon separated path names to
which the user can append custom paths.

* Thepaths/liband/usr/lib.

L oading a programming environment modul e before compiling will appropriately set
the LD_LI BRARY_PATH environment variable. Conversely, unloading modules

by using a command such as nodul e pur ge will clear the stored value of

LD LI BRARY_PATH. Other useful environment variablesarelistedinthel d. so(8)
manpage. If a programming environment module is loaded when running an
executable that uses dynamic shared objects, it should be the same programming
environment used to build the executable. For example, if a program is built using the
PathScale compiler, the user should load the module Pr gEnv- pat hscal e when
setting the environment to launch the application.

Example 1. Compiling an application

Compile the following program, r educe_dyn. ¢, dynamically by including the
compiler option dynani c.

The C version of the program, r educe_dyn. c, looks like:

[* program reduce_dyn.c */
#i ncl ude <stdio. h>
#i ncl ude "npi.h"

int min (int argc, char *argv[])

{

int i, sum mype, npes, nres, ret;

ret MPl _Init (&argc, &argv);

ret MPl _Comm si ze (MPI _COWM WORLD, &npes);
ret MPI _Comm rank (MPI_COVM WORLD, &nype);
nres = 0,

sum = 0;

for (i = nype; i <=100; i += npes)
{

sum = sum + i;

}
(void) printf ("My PE:% My part: %\ n", mype, sum;
ret = MPl _Reduce (&sum &nres, 1, MPl _| NTEGER, MPI _SUM 0, MPI _COVM WORLD) ;

if (mype == 0)
(void) printf ("PE % Total is:%\n", mype, nres);

ret = MPl_Finalize ();
}

Invoke the C compiler using cc and the dynarmi ¢ option:

% cc -dynam ¢ reduce_dyn.c -o reduce_dyn

S-2496-31 45

Workload Management and Application Placement for the Cray Linux Environment

Alternatively, you can use the environment variable, XTPE_LI NK_TYPE, without
any extra compiler options:

% export XTPE_LI NK_TYPE=dynami c
% cc reduce_dyn.c -0 reduce_dyn

You can tell if an executable uses a shared library by executing thel dd command:

% | dd reduce_dyn
libsci.so => /opt/xt-libsci/10.3.7/pgi/lib/libsci.so (0x00002b1135e02000)

libfftwd.so.3 => /opt/fftw3.2.1/1ib/libfftw3.so.3 (0x00002b1146e92000)
libfftwdf.so0.3 => /opt/fftw 3.2.1/1ib/libfftwdf.so.3 (0x00002b114710a000)
libsma.so => /opt/npt/3.4.0.1/xt/sma/lib/libsm. so (0x00002b1147377000)
libnpich.so.1.1 => /opt/npt/3.4.0.1/ xt/ npich2-pgi/lib/libnpich.so.1.1 (0x00002b11474a0000)
librt.so.1 =>/1ib64/librt.so.1 (0x00002b114777a000)
libpm .so => /opt/npt/3.4.0.1/xt/pm/lib/libpm.so (0x00002b1147883000)
libalpslli.so.0 => /opt/npt/3.4.0.1/xt/util/lib/libalpslli.so.0 (0x00002b1147996000)
libal psutil.so.0 => /opt/npt/3.4.0.1/xt/util/lib/libalpsutil.so.0 (0x00002b1147a99000)
libportals.so.1 => /opt/xt-pe/2.2.32DSL/1ib/libportals.so.1 (0x00002b1147b9c000)
libpthread.so.0 => /1ib64/Iibpthread.so.0 (0x00002b1147ca8000)
libmso.6 => /1ib64/1ibmso.6 (0x00002b1147dc0000)
libc.so.6 => /1ib64/1ibc.so.6 (0x00002b1147f15000)
/1ib64/1d-1inux-x86-64.s0.2 (0x00002b1135ce6000)

There are shared object dependencies listed for this executable. For more
information, please consult the | dd(1) manpage.

Example 2. Launching an application with the Application Level Placement
Scheduler (ALPS) using the compute node root

If the system administrator has set up the compute node root run time environment for
the default case, then the user executes apr un without any further argument:

% aprun -n 6 ./reduce_dyn

However, if the administrator sets up the system to usei ni t r anf s, then the user
will have to set the environment variable appropriately:

% export CRAY_ROOTFS=DSL

% aprun -n 6 ./reduce_dyn | sort

Application 1555880 resources: utinme 0, stine 8
PE:O0 My part:816

My PE:1 My part:833

M PE: 2 My part: 850

My PE:3 My part: 867
M
My

S

PE:4 My part: 884
PE:5 My part: 800
PE: 0 Total is:5050

46 S-2496-31

Dynamic Shared Objects and Libraries (DSLs) [5]

S-2496-31

Example 3. Running an application using a workload management system

Running a program interactively using a workload management system such as PBS
or Moab TORQUE with the compute node root is essentially the same as running
with the default environment. One exception isthat if the compute node root is not
the default execution option, you must set the environment variable after you have run
the batch scheduler command, qsub:

% qsub -1 -1 nppw dt h=4
% export CRAY_ROOTFS=DSL

Alternatively, you can use - V option to pass environment variables to the PBS or
Moab TORQUE job:

% export CRAY_ROOTFS=DSL
% qsub -V -1 -1 nmppwi dt h=4

Example 4. Running a Program Using a Batch Script

Create the following batch script, r educe_scri pt, tolaunch ther educe_dyn
executable:

#! / bi n/ bash

#reduce_scri pt

Define the destination of this job

as the queue naned "workqg":

#PBS -q workq

#PBS -1 nppwi dt h=6

Tell WVMB to keep both standard output and
standard error on the execution host:
#PBS -k eo

cd /1 us/ ni dO0008/ crayuser name

nmodul e | oad PrgEnv- pgi

aprun -n 6 ./reduce_dyn

exit O

Then launch the script using the gsub command:

% export CRAY_ROOTFS=DSL

% qsub -V reduce_script

1674984. sdb

% cat reduce_script. 01674984

Warning: no access to tty (Bad file descriptor).
Thus no job control in this shell.

PE:5 My part: 800

PE:4 My part: 884

PE:1 My part:833

PE:3 My part:867

PE:2 My part: 850

PE:O My part:816

PE: 0 Total is:5050

Application 1747058 resources: utime ~0s, stinme ~0s

SSESES

47

Workload Management and Application Placement for the Cray Linux Environment

5.5 Troubleshooting

5.5.1 Error While Launching with apr un: "error while loading shared
libraries"

If you an encounter an error such as the following:

error while loading shared libraries: libsci.so: cannot open shared object file: No such file or directory

your environment is likely not configured to launch applications using shared objects.
Set the environment variable CRAY _ROOTFS to the appropriate value as prescribed
in Example 2.

5.5.2 Running an Application Using a Non-Existent Root

If you erroneously set CRAY_ROOTFS to a file system not specified in
root s. conf, apr un will exit with the following error:

% set CRAY_ROOTFS=WRONG _FS

% aprun -n 4 -N 1 ./reduce_dyn

aprun: Error fromDSL library: Could not find shared root symbol WRONG FS,
specified by env variable CRAY_ROOTFS, in config file: /etc/opt/cray/cnrtel/roots.conf

aprun: Exiting due to errors. Application aborted

5.5.3 Performance Implications of Using Dynamic Shared Objects

There isapossibility that using dynamic libraries will introduce delaysin application
launch times because of shared object loading and remote page faults. Thisdelay is
an inevitable result of the linking process taking place at execution and the relative
inefficiency of symbol lookup in DSOs. Likewise, since executables are linked
dynamically there may be a small but measurable performance degradation during
execution. If this delay is not acceptable, the solution is to link the application
statically.

48 S-2496-31

Using Cluster Compatibility Mode in CLE [6]

6.1 Cluster Compatibility Mode

A Cray XE or Cray XT system is not a cluster but a massive parallel processing
(MPP) computer. An MPP is simply one computer with many networked processors
used for distributed computation, and, in the case of Cray XT and Cray XE
architectures, a high-speed communications interface that facilitates optimal
bandwidth and memory operations between those processors. When operating as an
M PP machine, the Cray compute node kernel (Cray CNL) typically does not have a
full set of the Linux services available that are used in cluster ISV applications.

Cluster Compatibility Mode (CCM) is a software solution that provides the services
needed to run most cluster-based independent software vendor (I1SV) applications
out-of-the-box with some configuration adjustments. CCM supports ISV applications
running in four simultaneous cluster jobs on up to 256 compute nodes per job
instance. It isbuilt on top of the compute node root runtime environment (CNRTE),
the infrastructure used to provide dynamic library support in Cray systems.

S-2496-31 49

Workload Management and Application Placement for the Cray Linux Environment

6.1.1 CCM implementation

CCM istightly coupled to the workload management system. It enables users to
execute cluster applications alongside workload-managed jobs running in atraditional
MPP batch or interactive queue (see Figure 2). Support for dynamic shared objects
and expanded services on compute nodes using the compute node root runtime
environment (CNRTE) provide the services to compute nodes within the cluster
queue. Essentially, CCM uses the batch system to logically designate part of the Cray
system as an emulated cluster for the duration of the job.

Figure 2. Cray Job Distribution Cross Section

-

ccm_queue

N service Nodes Cluster Compatibility Mode
Free Compute Nodes [: batch queuep y
Traditional Batch Job)
Cluster Compatibility Mode E MPP job batch queue
Application

Users provision the emulated cluster by launching a batch or interactive job in PBS or
Moab using a CCM-specific queue. The nodes the user specifiesin the qsub line are
no longer available for MPP jobs for the duration of the job. The user then launches
the application using ccnr un. When the job terminates, the applications cleanup and
the nodes are returned to the free pool of computes (see Figure 3).

50 S-2496-31

Using Cluster Compatibility Mode in CLE [6]

Figure 3. CCM Job Flow Diagram

MPP/workq Free MPP compute nodes

Nodes are provisioned and placed
in ccm_queue using qsub

gsub -V -l -g ccm_queue -Imppwidth=xxx Imppnppn=x

User runs application using ccmrun with a batch

el =il &g/ script or interactively

Iccmlogin NidXXXXX

"Application 1190032
resources: utime ~985s,
time ~13s"

MPP/workq '

While the application runs, ccmlogin provides an
interactive “window” to job

Application terminates and CCM processes
cleanup

Cluster job nodes are returned as free MPP
compute nodes

6.2 Installation and Configuration of Applications for CCM

Users are encouraged to install programs using their local scratch directory and set
paths accordingly to use CCM. However, if an ISV application requires root access,
then the site administrator will have to install the application on the boot node's
shared root in xt opvi ew. Compute nodes will then be able to mount the shared
root using the compute node root runtime environment and use services necessary
for the ISV application.

6.3 Using CCM

6.3.1 CCM Commands

6.3.1.1 ccnrun

S-2496-31

The user must first load the ccmmodule and can then use the following two
commands: ccnr un and ccri ogi n.

ccnr un, asthe name implies, starts the cluster application. The head node is the first
node in the emulated cluster where ccnr un sets up the CCM infrastructure and
propagates the rest of the application. Options supplied to ccnr un will be ignored.
The following is the syntax for ccnr un:

cCnNT un application [application_parameters]

51

Workload Management and Application Placement for the Cray Linux Environment

6.3.1.2 ccnl ogi n

ccm ogi n isacommand that allows an interactive user to open an SSH session to
the CCM head node and then other nodes through either SSH or RSH. ccl ogi n
takes al options you provide to SSH. For more information, see the ssh(1) man

page.

6.3.2 Starting a CCM Batch Job

You can use either PBS or Moab TORQUE to reserve the nodes for the cluster
using the gsub command then proceed to launch the application using ccnr un.
All standard qsub options are supported with ccnr un. An example using the
application isv_app is shown below:

Example 5. Launching An ISV Application Using CCM
% qsub -1 -1 nppw dt h=32 -q ccm_queue

gsub: waiting for job 434781.sdb to start
gsub: job 434781. sdb ready
Initializing CCM Environnent, please wait

Once the user prompt re-appears run the application using ccnr un:

% ccnrun i sv_app job=e5 cpus=32
A batch script for the above would look like this:

#PBS -1 nppwi dt h=32

#PBS -q ccm_queue

#PBS -j oe

#PBS - S / bi n/ bash

cd $PBS_O WORKDI R

export PATH=${PATH}:/mt/lustre_server/ccnuser/isv_app/ Conmands
In-s ../e5.inp e5.inp

export TMPDI R=${ PBS_O WORKDI R}/ t enp

nkdi r $TMPDI R

ccnrun i sv_app job=e5 cpus=32 interactive

6.3.3 X11 Forwarding in CCM

52

Applications that require X11 forwarding (or tunneling) can use the qsub - V option
to pass the DI SPLAY variable to the emulated cluster. Then users can forward X
traffic using ccnl ogi n asin the following:

ssh -Y login

gsub -V -q=ccm queue - nmppwi dt h=1

ccnrun i sv_app

ccm ogin nid 00212

S-2496-31

Using Cluster Compatibility Mode in CLE [6]

6.4 Individual Software Vendor (ISV) Example
Example 6. Launching the UMT/pyMPI Benchmark Using CCM

The UMT/pyMPI benchmark tests MPI and OpenMP parallel scaling efficiency,
thread compiling, single CPU performance and Python functionality.

The following example runs through the UM T/pyMPI benchmark using CCM and
assumes you haveinstalled it in your user scratch directory. Ther unSud son. py
Python script runs the benchmark. The - V passes environment variables to the cluster

job:
nmodul e | oad ccm
gsub -V -q ccmqueue -1 -l nppwi dth=2 -1 nppnodes=471
cd top_of _directory_where_extrated

a="pwd’
export LD LI BRARY_PATH=${a}/ Teton: ${a}/ cng2Kul | / sour ces: ${a}/ CM5_CLEAN src: ${ LD LI BRARY_PATH}
ccnrun -n2 ${a}/Install/pyMPl-2.4b4/ pyMPl python/runSud son. py

The following runs the UMT test contained in the packaged:

nodul e | oad ccm

gsub -V -q ccm queue -1 -l nppwi dth=2 -1 nppnodes=471
gsub: waiting for job 394846.sdb to start

gsub: job 394846. sdb ready

Initializing CCM environnent, Please Wit

wai ting for jid....

waiting for jid....

CCM Start success, 1 of 1 responses

machi ne=> cd UMI_TEST

machi ne=> a="pwd’

machi ne=> ccnrun -n2 ${a}/Install/pyMl-2.4b4/ pyMPl python/runSud son. py
witing grid file: grid_2 13x13x13.cny

Constructing nesh.

Mesh construction conplete, next building region, opacity, material, etc.
mesh and data setup conplete, building Teton object.

Setup conpl ete, beginning time steps.

CYCLE 1 timerad = 3e-06

Templters = 3 Fluxlters = 3 GTAlters = 0

TrMax = 0. 0031622776601684 in Zone 47 on Node 1

TeMax = 0. 0031622776601684 in Zone 1239 on Node 1

Recomended tine step for next rad cycle = 6e-05

kkkkkkhkkkhx Run TIITB StatlSthS *kkkkkkhkkkhx

Cycl e Advance Accunul at ed
Ti me (sec) Angl e Loop Tinme (sec)
RADTR = 47.432 39. 991999864578

CYCLE 2 tinmerad = 6. 3e-05

The benchmark continues to go through several iterations before completing.

S-2496-31 53

Workload Management and Application Placement for the Cray Linux Environment

6.5 Troubleshooting

6.5.1 CCM Initialization Fails

Immediately after the user enters their gsub command line and they see output like
the following:

Initializing CCM environnent, Please Wit
Cluster Conpatibility Mbde Start failed, 1 of 4 responses

This error is usually caused when / et ¢ files (e.g. nsswi t ch. conf,

resol v. conf, passwd, shadow, etc) are not specialized to the cnos class view.
If you encounter this error, the system administrator must migrate these files form the
| ogi n classview to the cnos class view. For more information, see Managing
System Software for Cray XE and Cray XT Systems.

6.5.2 Logging Into Head Node is Slow

If logging into the head node of ajob is slow or hanging, then thisis likely dueto a
faulty configuration of CSA accounting. CSA accounting should not be enabled in the
cnos classview and should only be enabled for | ogi n classviews.

Procedure 1. Disabling CSA Accounting for the cnos class view

1. Enter xt opvi ewinthecnos view:

boot: ~ # xtopview -c cnos -x /etc/opt/cray/sdb/node_cl asses

2. Edit/ et ¢/ pam d/ conmon- aut h- pc:

class/cnos:/ # vi [etc/pam d/ comon- aut h- pc

and remove or comment the following line:

session optional [opt/cray/jobl/defaul t/lib64/security/pamjob.so

6.5.3 Using a Transport Protocol Other Than TCP

CCM only supports the TCP transport protocol. You will receive an error if you try
to use Infiniband:

|'i bibverbs: Fatal: couldn't open sysfs class 'infiniband_verbs'

6.6 Caveats and Limitations
6.6.1 ALPS will not accurately reflect CCM job resources

Since CCM is transparent to the user application, ALPS utilities such asapst at do
not accurately reflect resources used by a CCM job.

54 S-2496-31

Using Cluster Compatibility Mode in CLE [6]

6.6.2 Limitations

S-2496-31

The following limitations apply to supporting cluster queues with CLE 3.1 on Cray
systems:

Applications must fit in the physical node memory because swap space is not
presently supported in CCM.

Core specialization is not supported with CCM.

CCM does not include support for applications built in Cray Compiling
Environment (CCE) with Fortran 2008 with coarrays or Unified Parallel C (UPC)
compiling options, nor any Cray built libraries built with these implementations.
Applications built using the Cray SHMEM library are also not compatible with
CCM.

55

Workload Management and Application Placement for the Cray Linux Environment

56 S-2496-31

Using Checkpoint/Restart [7]

S-2496-31

The Cray checkpoint/restart facility allows you to save job state to a checkpoint file
and restart the job from its latest checkpoint at alater time. Cray checkpoint/restart
is based on Berkeley Lab Checkpoint Restart (BLCR). Supported workload
management systems are Moab TORQUE and (Deferred implementation) PBS
Professional.

Parallel applications must use MPI or SHMEM;; other parallel programming models
are not supported. In general, MPI-2 applications are supported, but MPI process
management is not supported. No changes to application source code are required
to checkpoint and restart a job.

Cray checkpoint/restart provides these commands:

« ghol d, which checkpoints ajob, releases resources assigned to the job, and
places the job in hold state in the job queue.

* gchkpt, which checkpoints ajob, but the job keeps running.

e grl s, which releases a checkpointed job from hold state; the job resumes
running.

e (rerun, which restarts a previously checkpointed job that has completed, is still
gueued in the completed state, and has not yet exited the workload management
system.

Note: A system variable sets the amount of time ajob will remain in the queue
in the completed state. Once a job has been removed from the queue, you can
no longer use gqr er un to restart it.

For details about these commands, see the ghol d(1), gchkpt (1), gr | s(1), and
gr er un(1) man pages.

Note: Use the Cray checkpoint/restart commands, not the BLCR commands.
The native BLCR cr _checkpoi nt and cr _rest art commands are not
supported. Also, use the Cray man pages, the BLCR cr _checkpoi nt (1) and
cr _restart (1) man pages document some features that are not supported on
Cray systems.

To use checkpoint/restart, you need to load the workload management system module
(moab or (Deferred implementation) pbs) and the bl cr module. Loading the

bl cr module causes subsequent compilations to link the libraries needed to make
the application checkpointable.

57

Workload Management and Application Placement for the Cray Linux Environment

58

Note: When you compile an application with checkpoint/restart support (that is,
you load the bl cr module), each processing element spawns a thread. You should
take this into account when specifying apr un placement options.

You should be aware of the following factors in using checkpoint/restart:

You cannot checkpoint/restart applications launched interactively through apr un.
Checkpointing/restarting applications using TCP/IP sockets is not supported.

Files are handled by reference only. The checkpoint facility captures the state
only of those files that are open at checkpoint time.

Linux asynchronous I/O is not supported.
Applications that connect stdin, stdout , and stderr toa TTY are not supported.

Checkpoint/restart does not support applications being debugged with an
interactive debugger.

For an example showing how to create, checkpoint, and restart a job, see Using
Checkpoint/Restart Commands on page 94.

S-2496-31

Optimizing Applications [8]

8.1 Using Compiler Optimization Options

S-2496-31

After you have compiled and debugged your code and analyzed its performance, you
can use a humber of technigues to optimize performance. For details about compiler
optimization and optimization reporting options, see the Cray C and C++ Reference
Manual, Cray Fortran Reference Manual, PGl User's Guide, the Using the GNU
Compiler Collection (GCC) manual, the PathScale Compiler Suite User Guide, the
Intel C++ Compiler Professional Edition for Linux, or the Intel Fortran Compiler
Professional Edition for Linux manuals.

Optimization can produce code that is more efficient and runs significantly faster than
code that is not optimized. Optimization can be performed at the compilation unit
level through compiler driver options or to selected portions of code through the use
of directives or pragmas. Optimization may increase compilation time and may make
debugging difficult. It is best to use performance analysis data to isolate the portions
of code where optimization would provide the greatest benefits.

You also can use apr un affinity options to optimize applications.

In the following example, a Fortran matrix multiply subroutine is optimized. The
compiler driver option generates an optimization report.

Source codeof mat ri x_mul ti ply. f90:

subroutine mxm(x,y, z, mn)
real *8 x(mn), y(mn), z(n,n)

do k =
do
d

o —
= e
I+= >

n
1, m
) =

x(is] x(i,3) +y(ik)*z(k, j)

enddo
enddo
enddo

end

PGI Fortran compiler command:

%ftn -c -fast -Mnfo matrix_nultiply.f90

59

Workload Management and Application Placement for the Cray Linux Environment

60

Optimization report:

nmxm

5, Interchange produces reordered |oop nest: 7, 5, 9

9, Generated 3 alternate loops for the inner |oop
Gener ated vector sse code for inner |oop
Generated 2 prefetch instructions for this |oop
Gener ated vector sse code for inner |oop
Generated 2 prefetch instructions for this |oop
Gener ated vector sse code for inner |oop
Generated 2 prefetch instructions for this |oop
Gener ated vector sse code for inner |oop
Generated 2 prefetch instructions for this |oop

To generate an optimizations report (loopmark listing) using the Cray Fortran
compiler, enter:

% nodul e swap PrgEnv-pgi PrgEnv-cray
%ftn -ra -c matrix_multiply.f90

Optimization report (filematri x_rmul tiply.|st):

%880 Loopmar k Legend %880

Primary Loop Type Modi fiers
a - vector atom c nenory operation
A - Pattern matched b - bl ocked
C - Collapsed f - fused
D - Deleted i - interchanged
E - Coned m - streaned but not partitioned
I - Inlined p - conditional, partial and/or conputed
M - Miltithreaded r - unrolled
P - Parallel/Tasked s - shortloop
V - Vectorized t - array syntax tenp used
W - Unwound w - unwound
1. subroutine mxnm(x,y, z, mn)
2. real *8 x(mn), y(mn), z(n,n)
3.
4, D----- <do k =1,n
5. D2----< doj =1,n
6. D2 A-< doi =1,m
7. D2A x(i,j) =x(i,j) +vy(i,k)*z(k,j)
8. D2 A-> enddo
9. D2----> enddo
10. D----- > enddo
11.
12. end

ftn-6002 ftn: SCALAR File = matrix_multiply.f90, Line = 4
A loop starting at line 4 was elininated by optim zation.

ftn-6002 ftn: SCALAR File = matrix_multiply.f90, Line =5
A loop starting at line 5 was elininated by optim zation.

ftn-6202 ftn: VECTOR File = matrix_multiply.f90, Line = 6
A loop starting at line 6 was replaced by a library call.

S-2496-31

Optimizing Applications [8]

8.2 Using apr un Memory Affinity Options

S-2496-31

On Cray systems, each compute node has local-NUMA-node memory and
remote-NUMA-node memory. Remote-NUMA-node memory references, such

as aNUMA node 0 PE accessing NUMA node 1 memory, can adversely affect
performance. To give you run time controls that may optimize memory references,
Cray has added apr un memory affinity options.

Applications can use one or all NUMA nodes of a Cray system compute node. If an
application is placed using one NUMA node, other NUMA nodes are not used. In
this case, the application processes are restricted to using local-NUMA-node memory.
This memory usage policy is enforced by running the application processes within a
cpuset. A cpuset consists of cores and local memory on a compute node.

When an application is placed using all NUMA nodes, the cpuset includes all
node memory and all CPUs. In this case, the application processes allocate
local-NUMA-node memory first. If insufficient free local-NUMA-node memory
is available, the allocation may be satisfied using remote-NUMA-node memory.
In other words, if there is not enough NUMA node 0 memory, the allocation may
be satisfied using NUMA node 1 memory. The one exception isthe - ss (strict
memory containment) option. For this option, memory accesses are restricted

to local-NUMA-node memory even if both NUMA nodes are available to the
application.

The apr un memory affinity options are:

e - S pes_per_numa_node

e -sn numa_nodes per_node

e -sl list_of numa nodes

e -SS

For details, see Using the apr un Command on page 15.

You can use these apr un options for each element of an MPMD application and can
vary them with each MPMD element.

Only Cray XT5, Cray XE5 or Cray X6 compute nodes are considered for the
application placement if any of the following are true:

* The-snvaueis2.
e The- sl list has more than one entry.

e The-sl listisNUMA node 1 (Cray XT4 systems have single-NUMA-node
compute nodes, defined as NUMA node 0).

e The- Svaueaong with a- Nvalue requires two NUMA nodes (suchas- N 4
-S 2).

61

Workload Management and Application Placement for the Cray Linux Environment

You can usecnsel ect corenmask. eq. 16777215 to get alist of Cray X6
compute nodes. You can usethecnsel ect corenmask. eq. 255 or cnsel ect
cor emask. eq. 4095 command to get alist of Cray XT5 compute nodes. You
canusetheaprun -L orgsub -I nppnodes optionsto specify thoselists or a
subset of those lists. For additional information, see the apr un(1), cnsel ect (1),
and gsub(1) man pages.

8.3 Using apr un CPU Affinity Optimizations

CNL can dynamically distribute work by allowing PEs and threads to migrate from
one CPU to another within a node. In some cases, moving processes from CPU

to CPU increases cache misses and translation lookaside buffer (TLB) misses and
therefore reduces performance. Also, there may be cases where an application runs
faster by avoiding or targeting a particular CPU. The apr un CPU dffinity options let
you bind a process to a particular CPU or the CPUs on aNUMA node. These options
apply to al Cray multicore compute nodes.

Applications are assigned to a cpuset and can run only on the CPUs specified by
the cpuset. Also, applications can allocate memory only on memory defined by the
cpuset. A cpuset can be a compute node (default) or aNUMA node.

The CPU affinity options are:

e -cc cpulist | keyword

» (Deferred implementation) - cp cpu_placement_file_name
For details, see Using the apr un Command on page 15.

These apr un options can be used for each element of an MPMD application and can
vary with each MPMD element.

Cray XT4 systems have single-NUMA-node compute nodes. Their default CPU
affinity keyword isthe same as for other Cray systems— aprun -cc cpu.

8.4 Exclusive Access

62

A new - F affinity option is available for apr un to provide a program with exclusive
access to al the processing and memory resources on a node.

This option was initially introduced with the CLE 2.2.UPO1 update package. This
option assigns all compute node cores and compute node memory to the application's
cpuset . Using it together with the - cc option allows an application programmer to
bind processes to those mentioned in the affinity string.

S-2496-31

Optimizing Applications [8]

There are two modes: excl usi ve and shar e. The share mode restricts the
application specific cpuset contents to only the application reserved cores and
memory on NUMA node boundaries. For example, if an application requests and is
assigned cores and memory on NUMA node 0, then only NUMA node O cores and
memory are contained within the application cpuset . The application will not have
access to the cores and memory on other NUMA nodes on that compute node.

Administrators can modify / et ¢/ al ps. conf to set apolicy for access modes. |If
nodeShar e is not specified in thisfile, the default remains excl usi ve; setting
to shar e makes the default share access mode. Users can override the system-wide
policy by specifying apr un - F excl usi ve at the command line or within their
respective batch scripts. For additional information, see the apr un(1) man page.

8.5 Optimizing Process Placement on Multicore Nodes

S-2496-31

Because multicore systems can run more tasks simultaneously, overall system
performance can increase. The trade-offs are that each core has less local memory
(because it is shared by the cores) and less system interconnection bandwidth (which
is also shared).

Processes are placed in packed rank-sequentia order, starting with the first node.
So, for a 100-core, 50-node job running on dual-core nodes, the layout of ranks on
Coresis:

Node 1 Node 2 Node 3 Node 50
Core 0 1 0 1 0 1 0 1
Rank 0 1 2 3 4 5 98 99

MPI supports multiple interconnect device driversfor asingle MPI job. Thisallows
each process (rank) of an MPI jaob to create the most optimal messaging path to every
other process in the job, based on the topology of the given ranks.

Two device drivers are supported: the SMP driver and the Portals device driver.

The SMP device driver is based on shared memory and is used for communication
between ranks that share a node. The Portals device driver is used for communication
between ranks that span nodes.

To attain the fastest possible run time, try running your program on only one core
of each node. (In this case, the other cores are allocated to your job but idle.) This
allows each process to have full access to the system interconnection network.

63

Workload Management and Application Placement for the Cray Linux Environment

64

For example, you could use the commands:

% cnsel ect coremask.gt.1
20- 175
% aprun -n 64 -N 1 -L 20-175 ./progl

to launch pr og1 on one core of each of 64 multicore nodes.

S-2496-31

Example Applications [9]

This chapter gives examples showing how to compile, link, and run applications.

Verify that your work areaisin a Lustre-mounted directory. Then use the modul e
i st command to verify that the correct modules are loaded. Each following
example lists the modules that have to be loaded.

9.1 Running a Basic Application
This example shows how to compile program si npl e. ¢ and launch the executable.

One of the following modules required:

Pr gEnv-cray

Pr gEnv- pgi

Pr gEnv-gnu

Pr gEnv- pat hscal e
PrgEnv-i nt el

Create a C program, si npl e. c:
#i ncl ude "npi . h"

int main(int argc, char *argv[])
{
int rank;
i nt nunprocs;
MPI _I nit(&argc, &rgv);
MPI _Conmm r ank(MPI _COVM WORLD, &r ank) ;
MPI _Comm si ze(MPI _COVM WORLD, &unpr ocs) ;

printf("hello frompe % of %\ n",rank, nunprocs);
MPI _Finali ze();
}

Compile the program:

%cc -o sinple sinple.c

S-2496-31 65

Workload Management and Application Placement for the Cray Linux Environment

Run the program:

% aprun -n 6 ./sinple

hello frompe 0 of 6
hello frompe 5 of 6
hello frompe 4 of 6
hello frompe 3 of 6
hello frompe 2 of 6
hello frompe 1 of 6
Application 135891 resources: utinme ~0s, stine ~0s

9.2 Running an MPI Application

66

This example shows how to compile, link, and run an MPI program. The MPI
program distributes the work represented in a reduction loop, prints the subtotal for
each PE, combines the results from the PEs, and prints the total.

One of the following modules required:

Pr gEnv-cray

Pr gEnv- pgi

Pr gEnv-gnu

Pr gEnv- pat hscal e
PrgEnv-int el

Create a Fortran program, npi . f 90:

program reduce
i nclude "npif.h"

integer n, nres, ierr

call MPI _INIT (ierr)

call MPI _COMM RANK (MPI _COVM WORLD, nype, i err)
call MPI_COW SI ZE (MPI _COVM WORLD, npes, i err)

nres =0
n=2~0

do i =nype, 100, npes

n=n+i
enddo

print *, "My PE', nype, ' My part:',n

call MPI_REDUCE (n,nres, 1, MPl _I NTEGER, MPI _SUM 0, MPI _COMM WORLD, i err)
if (nype == 0) print *,' PE:.', nype, ' Total is:',nres

call MPI_FINALIZE (ierr)

end

Compile mpi . f 90:

% ftn -o nmpi npi.f9o0

S-2496-31

Example Applications [9]

Run program npi :

% aprun -n 6 ./npi | sort

PE: 0 Total is: 5050
My PE: 0 M part: 816
My PE: 1 M part: 833
My PE: 2 M part: 850
My PE: 3 M part: 867
My PE: 4 M part: 884
My PE: 5 M part: 800

Application 3016865 resources: utinme ~0s, stine ~0s

If desired, you could use this C version of the program:

/* program reduce */

#i ncl ude <stdio. h>
#i ncl ude "npi . h"

int main (int argc, char *argv[])

{
int i, sum nype, npes, nres, ret;
ret = MPl_Init (&argc, &argv);
ret = MPI_Comm size (MPI_COW WORLD, &npes);
ret = MPI_Comm rank (MPI_COW WORLD, &nype);
nres = 0O;
sum = 0O;

for (i = nype; i <=100; i += npes) {
sum = sum + i;

}

(void) printf ("My PEE% M part: %\ n", nype, sum;
ret = MPI _Reduce (&sum &nres, 1, MPl _| NTEGER, MPI _SUM 0, MPI _COVM WORLD) ;

if (nype == 0)
{
(void) printf ("PE: %l Total is:%l\n",nype, nres);
}
ret = MI_Finalize ();

9.3 Using the Cray shnem put Function

This example shows how to use the shrem put 64() function to copy a contiguous
data object from the local PE to a contiguous data object on a different PE.

S-2496-31

One of the following modules required:

PrgEnv-cray

Pr gEnv- pgi

Pr gEnv- gnu

Pr gEnv- pat hscal e
PrgEnv-int el

67

Workload Management and Application Placement for the Cray Linux Environment

Source code of C program (shnem put . ¢):

/*
* sinple put test
*/

#i ncl ude <stdi o. h>
#i nclude <stdlib. h>
#i ncl ude <npp/ shnem h>

/* Dinension of source and target of put operations */
#define DM 1000000

long target[DIM;
long local [DIM;

mai n(i nt argc, char **argv)
{

register int i;

int ny_partner, ny_pe;

/* Prepare resources required for correct functionality
of SHVEM on XT. Alternatively, shnem.init() could
be called. */

start_pes(0);

for (i=0; i<DIM i++) {

target[i] = OL;

local[i] = shmem.nmy_pe() + (i * 10);
}

ny_pe = shmem.ny_pe();

i f(shmem n_pes() %) ({
if(ny_pe == 0) printf("Test needs even nunber of processes\n");
/* Clean up resources before exit. */
shmem finalize();
exit(0);
}

shmem barrier_all();

/* Test has to be run on two procs. */
my_partner = ny_pe %2 ? nmy_pe - 1 : ny_pe + 1;

shnem put 64(target, | ocal,D Mny_partner);

/* Synchroni ze before verifying results. */
shnmem barrier_all();

/* Check results of put */
for(i=0; i<DIM i++) {
if(target[i] != (ny_partner + (i * 10))) {
fprintf(stderr,"FAIL (1) on PE % target[%l] = % (%)\n",

shmem ny_pe(), i, target[i], ny_partner+(i*10));
shnmem finalize();
exit(-1);

}

68 S-2496-31

Example Applications [9]

}

printf("

PE %l: Test

passed.\n", ny_pe);

/* Clean up resources. */

shmem finalize();

}

Compileshnem _put . ¢ and create executable shnmem put :

% cc -0 shnem put shmem put.c

Run shnmem put :

% aprun -n 12 -L 56 ./shmem put

PE 5. Test
PE 6: Test
PE 3: Test
PE 1. Test
PE 4: Test
PE 2: Test
PE 7: Test
PE 11: Test
PE 10: Test
PE 9: Test
PE 8: Test
PE 0: Test
Application
Application

passed.
passed.
passed.
passed.
passed.
passed.
passed.
passed.
passed.
passed.
passed.
passed.

57916 exit

codes: 255

57916 resources: utinme ~1s, stine ~2s

9.4 Using the Cray shnem get Function

This example shows how to use the shrem _get () function to copy a contiguous
data object from a different PE to a contiguous data object on the local PE.

One of the following modules required:

PrgEnv-cray
Pr gEnv- pgi

Pr gEnv- gnu
Pr gEnv- pat hscal e

PrgEnv-inte

Note: The Fortran module for Cray SHMEM is not supported. Use the | NCLUDE
"mpp/ shmem f h' statement instead.

S-2496-31

69

Workload Management and Application Placement for the Cray Linux Environment

9.5 Running Partitioned Global Address Space (PGAS)

Applications

70

Source code of Fortran program (shnem get . f 90):

program reduction

i ncl ude ' mpp/ shmem f h'

real val ues, sum
comon /c/ val ues

real work

call start_pes(0)

val ues=ny_pe()

call shmembarrier_all!

sum= 0.0

doi = 0,numpes()-1
call shmem get (work, val ues,
I Sumit

sum = sum + wor k

enddo

print*, 'PE ,nmy_pe(),"’

call shmembarrier_all
call shmem finalize

end

1, i)

Synchroni ze all PEs

I Get next value

conput edsun¥' , sum

Compileshnmem get . f 90 and create executable shnmem get :

% ftn -o shmem get shnem get.f90

Run shnen®:

% aprun -n 6 ./shnmem get

PE
PE
PE
PE
PE
PE

N WhHUlO

[EEY

conput edsun¥
conput edsun¥
conput edsun¥
conput edsun¥
conput edsun¥
conput edsun¥

Application 137031 resources:

15.
15.
15.
15.
15.
15.

00000
00000
00000
00000
00000
00000

utinme ~0s, stine ~0s

To run Unified Parallel C (UPC) or Fortran 2008 coarrays applications, use the Cray
C compiler. These are not supported for PGI, GCC, PathScale, or Intel C compilers.

This example shows how to compile and run a Cray C program that includes Unified
Parallel C (UPC) functions.

S-2496-31

Example Applications [9]

Modules required:

Pr gEnv-cray

On Cray XE systems check that these additional modules are loaded. These are part
of the default modules on the login node loaded with the module Base- opt s, but
you will encounter an error with PGAS applications on Gemini systems with these
modules unloaded:

udr eg
ugni
drmapp

9.5.1 Running an Unified Parallel C (UPC) Application

The following is the source code of program upc_cr ay. c:

#i ncl ude <upc. h>
#i ncl ude <stdio. h>
int main (int argc, char *argv[])
{ . .
int i;
for (i = 0; i < THREADS; ++i)
{
upc_barrier;
if (i == MYTHREAD)
printf ("Hello world fromthread: %\ n", MTHREAD);
}

return O;

}

Compileupc_cray. ¢ and run executablecr ay_upc:

% cc -h upc -0 upc_cray upc_cray.c

% aprun -n 2 ./upc_cray

Hello world fromthread: O

Hello world fromthread: 1

Application 251523 resources: utine ~0s, stine ~0s

Note: You need toincludethe- h upc option on the cc command line.

9.5.2 Running a Fortran 2008 Application Using Coarrays

S-2496-31

The following is the source code of program si npl e_caf . f 90:

program si npl e_caf
inmplicit none

i nteger :: npes, nype,i

real :: local _array(1000),total
real 11 coarray[*]

nype thi s_i mage()

npes num_i mages()

if (npes < 2) then

71

Workload Management and Application Placement for the Cray Linux Environment

print *, "Need at least 2 images to run"

stop
end if
do i =1, 1000

| ocal _array(i) = sin(real (nype*i))
end do

coarray = sumn(l ocal _array)
sync al

if (nype == 1) then
total = coarray + coarray[2]

print *, "Total frominmages 1 and 2 is
end if

end program si npl e_caf

" total

Compilesi npl e_caf . f 90 and run the executable:

% ftn -hcaf -o sinple_caf sinple_caf.f90
[opt/cray/xt-asyncpe/3.9.39/bin/ftn: |INFQ
% aprun -n2 sinpl e_caf
Total fromimages 1 and 2 is 1.71800661
Application 39512 resources: utine ~0s,

9.6 Running a Fast_mv Application

72

i nux target

stinme ~0s

is being used

These examples show the f t n command line functions to use vector, scaar, and

array | og() functions

Modules required:
I'i bf ast

and one of the following:

Pr gEnv- pgi
Pr gEnv- pat hscal e

Source code of program manl og8. f 90:

programtest | og8
real (8) rslt(40), x(40)

d

N

oj=1, 40
x(j)=
rslt(j
end do

print * 'log(1)=", rslt(1)
print *,'log(40)=", rslt(40)
end

i
)= log(x(j))

S-2496-31

Example Applications [9]

This PGI command calls scalar log from Fast_mv:

\ % nodul e | oad PrgEnv- pgi
% ftn -Mache_align manl 0g8.f90 -Ifast_nv
% aprun -n 1 ./a.out
log(1)= 0. 000000000000000
| og(40) = 3. 688879454113936
Application 238832 resources: utine ~0s, stine ~0s

This PGI command calls vector log from Fast_mv:

% nodul e | oad PrgEnv- pgi
% ftn -fastsse -Mache_align manl 0g8.f90 -Ifast_nmv
% aprun -n 1 ./a.out
log(1)= 0. 000000000000000
| 0og(40) = 3.688879454113936
Application 238844 resources: utinme ~0s, stine ~0s

This PathScale command calls scalar log from Fast_mv:

\ % nodul e | oad PrgEnv-pathscal e
% ftn manl 0g8.f90 -1fast_nv
% aprun -n 1 ./a.out
log(1)= 0.E+0
| 0og(40)= 3.6888794541139363
Application 238861 resources: utine ~0s, stine ~0s

This PathScale command calls vector log from Fast_mv:

\ % nodul e | oad PrgEnv-pat hscal e
%ftn -Ofast manl 0g8.f90 -Ifast_nv
% aprun -n 1 ./a.out
log(1)= 0.E+0
| 0g(40)= 3.6888794541139363
Application 238865 resources: utinme ~0s, stine ~0s

This PathScale command calls array log from Fast_mv. The - LNO vi ntr =2
argument is not required for exp() , but it isrequired for other functions the compiler
recognizes, including | og() .
% nodul e | oad PrgEnv-pat hscal e
%ftn -8 -LNO vintr=2 nmanl 0g8.f90 -I|fast_nv
% aprun -n 1 ./a.out
log(1)= 0.E+0
| 0g(40)= 3.6888794541139363
Application 238869 resources: utinme ~0s, stine ~0s

9.7 Running a PETSc Application

This example (Copyright 1995-2004 University of Chicago) shows how to use PETSc
functions to solve alinear system of partial differential equations.

S-2496-31 73

Workload Management and Application Placement for the Cray Linux Environment

Note: There are many ways to use the PETSc solvers. This exampleisintended to
show the basics of compiling and running a PETSc program on a Cray system. It
presents one simple approach and may not be the best template to use in writing
user code. For issues that are not specific to Cray systems, you can get technical
support through pet sc- user s@rcs. anl . gov.

The source code for this example includes a comment about the use of the
npi exec command to launch the executable. Use apr un instead.

Modules required:

pet sc

and one of the following:

Pr gEnv-cray

Pr gEnv- pgi

Pr gEnv- gnu

Pr gEnv- pat hscal e
PrgEnv-i nt el

Source code of program ex2f . F:

Description: Solves a linear systemin parallel with KSP (Fortran code).
Al so shows how to set a user-defined nonitoring routine.

|
|
|
|
I Program usage: npiexec -np ex2f [-help] [all PETSc options]
|

/5T

I Concepts: KSP"basic parallel exanple

I Concepts: KSP"setting a user-defined nonitoring routine

! Processors: n

PT*/

|

program main
inmplicit none

Thi s program uses CPP for preprocessing, as indicated by the use of
PETSc include files in the directory petsc/include/finclude. This
convention enabl es use of the CPP preprocessor, which allows the use
of the #include statenments that define PETSc objects and vari abl es.

Use of the conventional Fortran include statenments is al so supported
In this case, the PETsc include files are located in the directory
pet sc/i ncl ude/ f ol di ncl ude.

Si nce one nust be very careful to include each file no nore than once
ina Fortran routine, application programers nust exlicitly |ist
each file needed for the various PETSc conponents within their
program (unlike the C/ C++ interface).

See the Fortran section of the PETSc users manual for details.

74 S-2496-31

Example Applications [9]

#i
#i
#i
#i
#i
#i

The following include statenments are required for KSP Fortran prograns:

petsc. h - base PETSc routines

petscvec. h - vectors

petscmat . h - matrices

petscpc. h - preconditioners

pet scksp. h - Kryl ov subspace net hods
Include the following to use PETSc random nunbers

petscsys. h - systemroutines

Addi tional include statenents nay be needed if using additiona
PETSc routines in a Fortran program e.g.,
petscviewer.h - viewers

petscis. h - index sets
ncl ude "include/fincl ude/ petsc. h"
ncl ude "include/fincl ude/ petscvec. h"
ncl ude "include/fincl ude/ petscmat. h"
ncl ude "include/fincl ude/ petscpc. h"
ncl ude "include/fincl ude/ pet scksp. h"
ncl ude "include/fincl ude/ petscsys. h"

Vari abl es:
ksp - linear solver context
ksp - Kryl ov subspace nethod cont ext
pc - precondi tioner context
X, b, u - approx solution, right-hand-side, exact solution vectors
A - matrix that defines linear system
its - iterations for convergence
norm - normof error in solution
rctx - random nunber generator context

Note that vectors are declared as PETSc "Vec" objects. These vectors
are mat hermatical objects that contain nore than just an array of
doubl e precision nunbers. |.e., vectors in PETSc are not j ust

doubl e precision x(*).
However, |ocal vector data can be easily accessed via VecGetArray().
See the Fortran section of the PETSc users manual for details.

doubl e precision norm
Petsclnt i,j,11,3J,mn,its
Petsclint Istart,lend,ione
Pet scError Code ierr

Pet scVPI | nt rank, si ze
PetscTruth flg

Pet scScal ar v, one, neg_one

Vec X, b, u
Mat A
KSP ksp

Pet scRandom r ct x

These variables are not currently used.
PC pc
PCType ptype
doubl e precision to

S-2496-31

75

Workload Management and Application Placement for the Cray Linux Environment

I Note: Any user-defined Fortran routines (such as MyKSPMoni t or)
I MJST be declared as external.

external MyKSPMbdni t or, MyKSPConver ged

call Petsclnitialize(PETSC NULL_CHARACTER, i err)

m= 3

n =3

one = 1.0

neg_one = -1.0

i one =1

call PetscOptionsCGetlnt(PETSC NULL_CHARACTER, '-m ,mflg,ierr)
call PetscOptionsCGetlnt(PETSC NULL_CHARACTER,'-n',n,flg,ierr)
call MPI _Conm rank(PETSC_COVMM WORLD, rank, ierr)

call MPI _Conm si ze(PETSC_COVMM WORLD, si ze,ierr)

Conpute the matrix and right-hand-si de vector that define
the linear system Ax = b.

Create parallel matrix, specifying only its global dinensions.
When using MatCreate(), the matrix format can be specified at
runtime. Also, the parallel partitioning of the matrix is
determ ned by PETSc at runtine.

cal |l Mat Creat e(PETSC_COVM WORLD, A i err)
cal |l Mat Set Si zes(A, PETSC_DECI DE, PETSC_DECI DE, ntn, n¥n,ierr)
cal | Mat Set FronOpti ons(A,ierr)

I Currently, all PETSc parallel matrix formats are partitioned by
I contiguous chunks of rows across the processors. Deternine which
! rows of the matrix are |locally owned.

cal | Mat Get Omner shi pRange(A, Istart,lend,ierr)

Set matrix elenents for the 2-D, five-point stencil in parallel.

- Each processor needs to insert only elenents that it owns
locally (but any non-local elenents will be sent to the
appropriate processor during matrix assenbly).

- Always specify global row and colums of matrix entries.

- Note that Mat SetVal ues() uses 0-based row and col um nunbers
in Fortran as well as in C

Note: this uses the | ess common natural ordering that orders first

all the unknowns for x = h then for x = 2h etc; Hence you see JH= 11 +- n
instead of JJ =11 + mas you mght expect. The nore standard ordering
would first do all variables for y = h, theny = 2h etc.

do 10, Il=Istart,lend-1
v =-10
i =11/n

76 S-2496-31

Example Applications [9]

j =11 - i*n
if (i.gt.0) then

JJ =11 - n

call WMat SetVal ues(A, ione,I1l,ione,JJ, v, | NSERT_VALUES, ierr)
endi f
if (i.lt.m1) then

JJ =11 +n

call Mat SetVal ues(A,ione,I1,ione,JJ,v,| NSERT_VALUES, i err)
endi f
if (j.gt.0) then

JJ =11 -1

call Mat SetVal ues(A,ione,I1,ione,JJ,v,| NSERT_VALUES, i err)
endi f
if (j.1t.n-1) then

JJ =11 +1

call WMat SetVal ues(A,ione,I1,ione,JJ, v, | NSERT_VALUES, ierr)
endi f
v =4.0
call Mat SetVal ues(A,ione,Il,ione,I1,v, | NSERT_VALUES, ierr)

10 conti nue

Assenbl e matri x,
Mat Assenbl yBegi n(),

call
call

Create parallel vectors.
- Here, the parallel
PETSc at runtine.
if desired --

Mat Assenbl yEnd()

or use the nore general
- Wen solving a linear system the vectors and nmatrices MJST
be partitioned accordingly.
appropriately partitioned natrices and vectors when Mat Create()
and VecCreate() are used with the sanme communi cator.
We form 1l vector fromscratch and then duplicate as needed.

PETSc aut

- Note:
cal |
call VecSet FronOptions(u,ierr)
call VecDuplicate(u,b,ierr)
call VecDuplicate(b,x,ierr)
Set exact sol ution;

using the 2-step process:

Conput ati ons can be done while nessages are in transition,
by pl aci ng code between these two statenents.

Mat Assenbl yBegi n(A, MAT_FI NAL_ASSEMBLY, i err)
Mat Assenbl yEnd(A, MAT_FI NAL_ASSEMBLY, i err)

partitioning of the vector is determ ned by
We coul d al so specify the |ocal

di mrensi ons
routine VecCreate().

omatically generates

VecCr eat eMPl (PETSC_COVM WORLD, PETSC_DECI DE, nfn, u, i err)

t hen conpute right-hand-side vector.
By default we use an exact solution of a vector with all

elenents of 1.0; Alternatively, using the runtime option
-random sol forns a solution vector with random conponents.
call PetscOpti onsHasNane(PETSC _NULL_CHARACTER,
& "-random exact _sol",flg,ierr)

if

els

S-2496-31

(flg .eq. 1) then

Pet scRandonCr eat e(PETSC_COW WORLD, rct x, i err)

call

call PetscRandonSet FronOptions(rctx,ierr)
call VecSet Randon(u, rctx,ierr)

call PetscRandonmDestroy(rctx,ierr)

e

call VecSet(u,one,ierr)

77

Workload Management and Application Placement for the Cray Linux Environment

endi f
call MatMult (A u,b,ierr)

I View the exact solution vector if desired

call PetscOpti onsHasNane(PETSC _NULL_CHARACTER, &
& "-view exact_sol",flg,ierr)
if (flg .eq. 1) then
call VecVi emu, PETSC VI EWER_STDOUT_WORLD, i err)
endi f

I Create |linear solver context
cal | KSPCreat e(PETSC_COVM WORLD, ksp, i err)

I Set operators. Here the matrix that defines the linear system
I also serves as the preconditioning nmatrix.

cal | KSPSet Oper at or s(ksp, A, A, DI FFERENT_NONZERO PATTERN, i err)

I Set linear solver defaults for this problem (optional).

! - By extracting the KSP and PC contexts fromthe KSP context,
! we can then directly directly call any KSP and PC routi nes

! to set various options.

! - The followi ng four statenents are optional; all of these

! paraneters could alternatively be specified at runtine via
! KSPSet Fronptions(). Al of these defaults can be
! overridden at runtinme, as indicated bel ow

! We comment out this section of code since the Jacobi
! preconditioner is not a good general default.

cal |l KSPGet PC(ksp, pc,ierr)
ptype = PCIACCBI
call PCset Type(pc, ptype,ierr)

tol = 1.e-7
cal |l KSPSet Tol er ances(ksp, tol , PETSC_DEFAULT_DOUBLE_PREC! SI ON,
& PETSC_DEFAULT_DOUBLE_PRECI SI ON, PETSC_DEFAULT_| NTECER, i err)

I Set user-defined nonitoring routine if desired

call PetscOpti onsHasNane(PETSC NULL_CHARACTER, ' -ny_ksp_nonitor', &

& flg,ierr)
if (flg .eq. 1) then
cal | KSPMoni t or Set (ksp, MyKSPMoni t or, PETSC_NULL_OBJECT, &
& PETSC_NULL_FUNCTI ON, i err)
endi f

Set runtime options, e.g.,

-ksp_type <type> -pc_type <type> -ksp_nonitor -ksp_rtol
These options will override those specified above as |ong as
KSPSet FromOptions() is called _after_ any other custom zation
routi nes.

78 S-2496-31

Example Applications [9]

Set

cal | KSPSet FronOpti ons(ksp,ierr)
convergence test routine if desired

call PetscOpti onsHasNane(PETSC _NULL_CHARACTER,

& ' -ny_ksp_convergence' ,flg,ierr)

if (flg .eq. 1) then
cal | KSPSet Conver genceTest (ksp, MyKSPConver ged,

& PETSC_NULL_OBJECT, i err)

endi f

Sol ve the linear system

call KSPSol ve(ksp, b, x,ierr)

Check the error

cal |l VecAXPY(x, neg_one, u,ierr)
call VecNorn(x, NORM 2, normierr)
cal | KSPGetlterati onNunber(ksp,its,ierr)
if (rank .eq. 0) then
if (norm.gt. 1.e-12) then
wite(6,100) normits
el se
wite(6,110) its
endi f
endi f

100 format (' Norm of error ',el0.4,' iterations ',ib)
110 format (' Normof error < 1l.e-12,iterations ',i5)

Free work space. Al PETSc objects should be destroyed when they
are no | onger needed.

cal | KSPDestroy(ksp,ierr)
call VecDestroy(u,ierr)
call VecDestroy(x,ierr)
call VecDestroy(b,ierr)
call MatDestroy(A ierr)

Al ways call PetscFinalize() before exiting a program This routine

finalizes the PETSc libraries as well as M

provi des summary and di agnostic information if certain runtine
options are chosen (e.g., -log_summary). See PetscFinalize()
manpage for nore information.

call PetscFinalize(ierr)
end

MyKSPMonitor - This is a user-defined routine for nonitoring

S-2496-31

79

Workload Management and Application Placement for the Cray Linux Environment

the KSP iterative sol vers.

| nput Paraneters:
ksp - iterative context
n - iteration nunber
rnorm- 2-norm (preconditioned) residual value (may be estimated)
dunmmy - optional user-defined nonitor context (unused here)

subrouti ne MyKSPNMoni t or (ksp, n, rnorm dunmy, i err)
inmplicit none
#i ncl ude "incl ude/fincl ude/ petsc. h"

#i ncl ude "include/finclude/ petscvec.h
#i ncl ude "include/finclude/ petscksp.h

KSP ksp
Vec X

Pet scError Code ierr

Pet scl nt n, dummy

Pet scMPl I nt rank
doubl e precision rnorm

! Build the solution vector
cal | KSPBui | dSol uti on(ksp, PETSC _NULL_OBJECT, x, i err)

I Wite the solution vector and residual normto stdout

! - Note that the parallel viewer PETSC VI EWER STDOUT_WORLD
! handl es data frommultiple processors so that the

! output is not junbled.

call MPI_Comm rank(PETSC_COWMM WORLD, rank, ierr)
if (rank .eq. 0) wite(6,100) n

call VecVi ew(x, PETSC VI EWNER_STDOUT_WORLD, i err)
if (rank .eq. 0) wite(6,200) n,rnorm

100 format('iteration ',i5," solution vector:')

200 format('iteration ',i5,"' residual norm', el0.4)
ierr =0
end

MyKSPConverged - This is a user-defined routine for testing
convergence of the KSP iterative sol vers.

I nput Paraneters:
ksp - iterative context
n - iteration nunber
rnorm- 2-norm (preconditioned) residual value (nmay be esti nmated)
dummy - optional user-defined nonitor context (unused here)

subrouti ne MyKSPConver ged(ksp, n,rnormfl ag, dunmy,ierr)
implicit none

#i ncl ude "incl ude/fincl ude/ petsc. h"

80

S-2496-31

Example Applications [9]

#i ncl ude "incl ude/fincl ude/ petscvec. h"
#i ncl ude "incl ude/fincl ude/ petscksp. h"

KSP

ksp

Pet scError Code ierr

Pet scl nt n, dummy
KSPConver gedReason fl ag
doubl e precision rnorm

if (rnorm.le. .05) then

flag = 1
el se
flag = 0

endi f

ierr = 0

end
Use the following makef i | e. F:
.SUFFI XES: .nmod .o .F
Compilers, linkers and fl ags.
FC = ftn
LI NKER = ftn
FCFLAGS =
LI NKLAGS =
Fortran optim zation options.
FOPTFLAGS = -
. F.o:

$(FC) -c ${FOPTFLAGS} ${FCFLAGS} $*.F
all : ex2f
ex2f : ex2f.o
$(LINKER) -0 $@ex2f.o0
S-2496-31

81

Workload Management and Application Placement for the Cray Linux Environment

Create and run executable ex 2f , including the PETSc run time option - mat _vi ew
to display the nonzero values of the 9x9 matrix A:

% make -f makefile.F

row O:
row 1:
row 2:
row 3:
row 4:
row 5:
row 6:
row 7:
row 8:
row O:
row 1:
row 2:
row 3:
row O:
row 1:
row 2:
row 3:

% aprun -n 2 ./ex2f -mat_view
(0, 4) (11 '1) (31 'l)
(O, '1) (11 4) (21 '1) (4,
(11 'l) (21 4) (51 'l)
(0, 'l) (31 4) (41 'l) (61
(1L, -1) (3, -1) (4 4 (5
(2, -1) (4 -1) (5 4) (8
(31 'l) (61 4) (71 'l)
(4, -1) (6, -1) (7, 4 (8,
(51 'l) (71 'l) (81 4)
(0, 0.25) (3, -1)
(1, 0.25) (2, -1)
(1, -0.25) (2, 0.266667) (3,
(0, -0.25) (2, -0.266667) (3,
(0, 0.25) (1, -1) (3, -1)
(0, -0.25) (1, 0.266667) (2,
(1, -0.266667) (2, 0.267857)
(0, -0.25) (3, 0.266667) (4,

row 4:

(1, -0.266667)
Norm of error < 1.e-12,iterations
Application 155514 resources: utinme O,

(3,

- 0. 266667)

9.8 Running an OpenMP Application

82

This example shows how to compile and run an OpenMP/MPI application.

One of the following modules required:

Pr gEnv
Pr gEnv
Pr gEnv
Pr gEnv
Pr gEnv

-cray
- pgi
-gnu

- pat hscal e

-intel

-1)
-1)
-1) (7, -1)
-1)

_1)

-1)
0.287081)

-1) (4, -1)

- 1)

(4, 0.288462)
7

stime 12

Note: To compile an OpenMP program using a PGI or PathScale compiler,
include - np on the compiler driver command line. For a GCC compiler, include
- f opennp. Forin Intel compiler, include - opennp. No option isrequired for

the Cray compilers; - h onp isthe default.

For a PathScale OpenMP program, set the PSC_OWVP_AFFI NI TY environment
variable to FALSE.

S-2496-31

Example Applications [9]

Source code of C program xt hi . c:
#defi ne _GNU_SOURCE
#i ncl ude <stdi o. h>
#i ncl ude <uni std. h>
#include <string. h>
#i ncl ude <sched. h>
#i ncl ude <npi. h>
#i ncl ude <onp. h>
/* Borrowed fromutil-Iinux-2.13-pre7/schedutils/taskset.c */
static char *cpuset_to_cstr(cpu_set_t *mask, char *str)
{
char *ptr = str;
int i, j, entry_made = O;
for (i =0; i < CPU_SETSIZE; i++) {
if (CPU_ISSET(i, mask)) {
int run = O;
entry_made = 1;
for (j =i + 1; j < CPU_SETSIZE; j++) {
if (CPU_I SSET(j, mask)) run++;
el se break;
}
if (!'run)
sprintf(ptr, "%, ", i);
else if (run == 1) {
sprintf(ptr, "%, %,", i, i + 1);
i ++;
} else {
sprintf(ptr, "%l-%,", i, i + run);
i += run;
}
while (*ptr = 0) ptr++;
}
}
ptr -= entry_made;
*ptr = 0;
return(str);
}

int main(int argc, char *argv[])
{
int rank, thread;
cpu_set _t corenask;
char clbuf[7 * CPU_SETSI ZE], hnbuf[64];

MPl _Init(&argc, &argv);

MPI _Cormm r ank(MPI _COVM WORLD, &rank);
menset (cl buf, 0, sizeof(clbuf));

menset (hnbuf, 0, sizeof (hnbuf));

(voi d) get host nane(hnbuf, si zeof (hnbuf));

#pragnma onp parallel private(thread, corenask,

{
thread = onp_get _t hread_num();

(voi d)sched_getaffinity(0, sizeof(corenask),

cpuset _to_cstr(&coremask, clbuf);
#pragma onp barrier

S-2496-31

cl buf)

&cor emask) ;

83

Workload Management and Application Placement for the Cray Linux Environment

printf("Hello fromrank %, thread %, on %. (core affinity = %)\n",
rank, thread, hnbuf, clbuf);

}
MPl _Finalize();
return(0);

}
L oad the PrgEnv-pathscale module:

% nodul e swap PrgEnv-pgi PrgEnv-pathscal e

Set the PSC_OVP_AFFI NI TY environment variable to FALSE:

% set env PSC_OVP_AFFI NI TY FALSE

or
% export PSC_OVP_AFFI NI TY=FALSE

Compile and link xt hi . c:

%cc -np -0 xthi xthi.c

Set the OpenM P environment variable equal to the number of threads in the team:

% set env. OVP_NUM THREADS 2

or

% export OVP_NUM THREADS=2

Note: If you are running Intel-compiled code, you must use one of the alternate
methods when setting OVP_NUM_THREADS:

e Increasetheapr un - d depth value by one.

e Usetheaprun-cc nuna_node &ffinity option.

84 S-2496-31

Example Applications [9]

S-2496-31

Run program xt hi :

% export OVP_NUM THREADS=24
% aprun -n 1 -d 24 -L 56 xth
Appl i cation 57937 resources:

Hello fromrank O
Hello fromrank
Hell o from rank
Hell o from rank
Hello fromrank
Hell o from rank
Hell o from rank
Hell o fromrank
Hell o from rank
Hell o from rank
Hell o fromrank
Hell o from rank
Hell o from rank
Hello fromrank
Hell o from rank
Hell o from rank
Hell o fromrank
Hell o from rank
Hell o from rank
Hell o fromrank
Hell o from rank
Hell o from rank
Hello fromrank
Hell o from rank

[eleleleojoolololoooojolelelecloolojoloNoNol

The apr un command created one instance of xt hi , which spawned 23 additional

t hread
t hr ead
t hread
t hread
t hr ead
t hread
t hread
t hr ead
t hread
t hread
t hr ead
t hr ead
t hread
t hr ead
t hread
t hread
t hr ead
t hread
t hr ead
t hr ead
t hread
t hread
t hr ead
t hread

0
10
11,
12,
13,
14
15,
16,
17,
18,
19,
1,
20,
21,
22,
23,

O©Co~NoUhwN

threads running on separate cores.

Here's another run of xt hi :

% export OVP_NUM THREADS=6

% aprun -n 4 -d 6 -L 56 xthi
Application 57948 resources:

Hell o fromrank O,
Hell o fromrank
Hell o from rank
Hell o fromrank
Hello fromrank
Hell o from rank
Hello fromrank
Hello fromrank
Hell o from rank
Hello fromrank
Hello fromrank
Hell o from rank
Hello fromrank
Hello fromrank
Hell o from rank
Hello fromrank
Hello fromrank
Hell o from rank
Hello fromrank
Hello fromrank

WwhNhdNNMdMNNMNNMNNRPRPRPRPPRPPRPOOOOO

t hr ead
t hr ead
t hread
t hr ead
t hr ead
t hread
t hr ead
t hr ead
t hread
t hr ead
t hr ead
t hread
t hr ead
t hr ead
t hread
t hr ead
t hr ead
t hread
t hr ead
t hr ead

0,

RPOUOPPWNMNPRPOOPMWNPFRPOUOMWNPE

uti
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on

| s
uti
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on

sort

me ~1s, stinme ~0s
(core affinity
affinity
affinity
affinity
affinity
affinity
affinity
affinity
affinity
affinity
affinity
(core affinity

(core affinity

(core affinity

(core affinity

(core affinity

ni d00056

ni d00056
ni d00056
ni d00056
ni d00056
ni d00056
ni d00056
ni d00056
ni d00056
ni d00056
ni d00056

ni d00056

ni d00056
ni d00056
ni d00056
ni d00056

ni d00056
ni d00056
ni d00056
ni d00056
ni d00056
ni d00056
ni d00056
ni d00056

ort

(core
(core
(core
(core
(core
(core
(core
(core
(core
(core

(core
(core
(core
(core
(core
(core
(core
(core

affi
af fi
af fi
affi
af fi
af fi
affi
af fi

nme ~1s, stinme ~1s

ni d00056
ni d00056
ni d00056
ni d00056
ni d00056
ni d00056
ni d00056
ni d00056
ni d00056
ni d00056
ni d00056
ni d00056
ni d00056
ni d00056
ni d00056
ni d00056
ni d00056
ni d00056
ni d00056
ni d00056

(core
(core
(core
(core
(core
(core
(core
(core
(core
(core
(core
(core
(core
(core
(core
(core
(core
(core
(core
(core

affi
affi
af fi
affi
affi
affi
affi
affi
af fi
affi
affi
af fi
affi
affi
af fi
affi
affi
affi
affi
affi

nity
nity
nity
nity
nity
nity
nity
nity

nity
nity
nity
nity
nity
nity
nity
nity
nity
nity
nity
nity
nity
nity
nity
nity
nity
nity
nity
nity

0)
10)
11)
12)
13)
14)
15)
16)
17)
18)
19)

1)
20)
21)
22)
23)

2)

3)

4)

5)

6)

7)

8)

9)

0)
1)

3)
4)
5)
6)
7
8)
9)
10)
11)
12)
13)
14)
15)
16)
17)
18)
19)

85

Workload Management and Application Placement for the Cray Linux Environment

Hello fromrank 3, thread 2, on ni d00056. (core affinity = 20)
Hello fromrank 3, thread 3, on ni d00056. (core affinity = 21)
Hello fromrank 3, thread 4, on ni d00056. (core affinity = 22)
Hello fromrank 3, thread 5, on ni d00056. (core affinity = 23)

Theapr un command created four instances of xt hi which spawned five additional
threads per instance. All PEs are running on separate cores and each instanceis
confined to NUMA node domains on one compute node.

9.9 Running an Interactive Batch Job

86

This example shows how to compile and run an OpenMP/MPI application (see
Running an OpenMP Application on page 82) on 16-core Cray X6 compute nodes
using an interactive batch job.

Modules required:

pbs or noab

and one of the following:
PrgEnv- cr ay

Pr gEnv- pgi

Pr gEnv-gnu

Pr gEnv- pat hscal e
PrgEnv-int el

Usethecnsel ect command to get alist of eight-core, dual-socket compute nodes:

% cnsel ect coremask. eq. 65535
14-17,128- 223, 256- 351, 384- 479, 512- 607, 640- 715

Initiate an interactive batch session:
% qsub -1 -1 nppw dth=8 -1 nppdepth=4 -1 nppnodes=\"14-15\"
Set the OpenM P environment variable equal to the number of threads in the team:

% set env. OMP_NUM THREADS 4

or

% export OMP_NUM THREADS=4

S-2496-31

Example Applications [9]

Run program onp:

% aprun -n 8 -d 4 -L14-15 ./xthi | sort
Application 57953 resources: utine ~2s, stine ~2s

Hello fromrank 0, thread 0, on nid00014. (core affinity = 0)
Hello fromrank 0, thread 1, on ni d00014. (core affinity = 1)
Hello fromrank 0, thread 2, on nid00014. (core affinity = 2)
Hello fromrank 0, thread 3, on nid00014. (core affinity = 3)
Hello fromrank 1, thread 0, on nid00014. (core affinity = 4)
Hello fromrank 1, thread 1, on ni d00014. (core affinity = 5)
Hello fromrank 1, thread 2, on nid00014. (core affinity = 6)
Hello fromrank 1, thread 3, on nid00014. (core affinity = 7)
Hello fromrank 2, thread 0, on nid00014. (core affinity = 8)
Hello fromrank 2, thread 1, on ni d00014. (core affinity = 9)
Hello fromrank 2, thread 2, on ni d00014. (core affinity = 10)
Hello fromrank 2, thread 3, on nid00014. (core affinity = 11)
Hello fromrank 3, thread 0, on ni d00014. (core affinity = 12)
Hello fromrank 3, thread 1, on ni d00014. (core affinity = 13)
Hello fromrank 3, thread 2, on nid00014. (core affinity = 14)
Hello fromrank 3, thread 3, on ni d00014. (core affinity = 15)
Hello fromrank 4, thread 0, on nid00015. (core affinity = 0)
Hello fromrank 4, thread 1, on nid00015. (core affinity = 1)
Hello fromrank 4, thread 2, on nid00015. (core affinity = 2)
Hello fromrank 4, thread 3, on nid00015. (core affinity = 3)
Hello fromrank 5, thread 0, on nid00015. (core affinity = 4)
Hello fromrank 5, thread 1, on nid00015. (core affinity = 5)
Hello fromrank 5, thread 2, on nid00015. (core affinity = 6)
Hello fromrank 5, thread 3, on nid00015. (core affinity = 7)
Hello fromrank 6, thread 0, on nid00015. (core affinity = 8)
Hello fromrank 6, thread 1, on ni d00015. (core affinity = 9)
Hello fromrank 6, thread 2, on nid00015. (core affinity = 10)
Hello fromrank 6, thread 3, on ni d00015. (core affinity = 11)
Hello fromrank 7, thread 0, on ni d00015. (core affinity = 12)
Hello fromrank 7, thread 1, on ni d00015. (core affinity = 13)
Hello fromrank 7, thread 2, on ni d00015. (core affinity = 14)
Hello fromrank 7, thread 3, on nid00015. (core affinity = 15)

9.10 Running a Batch Job Script

In this example, a batch job script requests six PES to run program npi .

Modules required:

pbs or noab

and one of the following:

Pr gEnv-cray

Pr gEnv- pgi

Pr gEnv-gnu

Pr gEnv- pat hscal e
PrgEnv-inte

S-2496-31 87

Workload Management and Application Placement for the Cray Linux Environment

9.11 Running

88

Createscri pt 1:

#! / bi n/ bash

#

Define the destination of this job

as the queue naned "workqg":

#PBS -q workq

#PBS -1 nppwi dt h=6

Tell WVB to keep both standard output and
standard error on the execution host:
#PBS -k eo

cd /1 us/ni do008/ user1

aprun -n 6 ./ npi

exit O

Set permissions to executable:

% chnod +x scriptl

Submit the job:

% qsub scriptl

The gsub command produces a batch job log file with output from npi (see
Running an MPI Application on page 66). Thejob outputisinascri pt 1. onnnnn
file.

% cat scriptl.o0238830 | sort
Application 848571 resources: utinme ~0s, stine ~0s

My PE: 0 M part: 816
My PE: 1 M part: 833
My PE: 2 M part: 850
My PE: 3 M part: 867
My PE: 4 MW part: 884
My PE: 5 M part: 800

PE: 0 Total is: 5050

Multiple Sequential Applications

To run multiple sequential applications, the number of processors you specify asan
argument to qsub must be equal to or greater than the largest number of processors
required by a single invocation of apr un in your script. For example, in job script
mul t _seq, the-1 nppw dt h valueis 6 because the largest apr un n valueis®6.

Modules required:

pbs or noab

and one of the following:

Pr gEnv-cray

Pr gEnv- pgi

Pr gEnv-gnu

Pr gEnv- pat hscal e
PrgEnv-int el

S-2496-31

Example Applications [9]

S-2496-31

Create script mul t _seq:

#! / bi n/ bash

#

Define the destination of this job

as the queue naned "workqg":

#PBS -q workq

#PBS -1 nppwi dt h=6

Tell WVB to keep both standard output and
standard error on the execution host:
#PBS -k eo

cd /1 us/ni do00015/ userl

aprun -n 2 ./sinmple

aprun -n 3 ./npi

aprun -n 6 ./shnmem put
aprun -n 6 ./shmem get
exit O

The script launches applications si npl e (see Running a Basic Application on
page 65), npi (see Running an MPI Application on page 66), shmem put (see
Using the Cray shimem _put Function on page 67), and shmem _get (see Using the
Cray shnmem get Function on page 69).

Set file permission to executable;
% chnod +x nmult _seq

Run the script:

% qsub mult_seq

List the output:

% cat nult_seq. 0465713
hello frompe 0 of 2
hello frompe 1 of 2

My PE: 0 M part: 1683
M PE: 1 MW part: 1717
My PE: 2 M part: 1650
PE: 0 Total is: 5050
PE 0: Test passed.
PE 1: Test passed.
PE 2: Test passed.
PE 3: Test passed.
PE 4: Test passed.
PE 5: Test passed.
PE 0 conput edsunr 15. 00000
PE 1 conput edsunr 15. 00000
PE 2 conput edsunr 15. 00000
PE 3 conput edsunr 15. 00000
PE 4 conput edsun¥ 15. 00000
PE 5 conput edsunr 15. 00000

89

Workload Management and Application Placement for the Cray Linux Environment

9.12 Running Multiple Parallel Applications

If you are running multiple parallel applications, the number of processors must be
equal to or greater than the total number of processors specified by callsto apr un.
For example, injob script mul t _par,the-1 nppwi dt h valueis 11 because
the total of theapr un n valuesis 11.

Modules required:

pbs or npab

and one of the following:

Pr gEnv-cray

Pr gEnv- pgi

Pr gEnv- gnu

Pr gEnv- pat hscal e
PrgEnv-i ntel

Createmul t _par:

#! / bi n/ bash

#

Define the destination of this job

as the queue naned "workqg":

#PBS -q workq

#PBS -1 nppwi dt h=11

Tell WVMB to keep both standard output and
standard error on the execution host:
#PBS -k eo

cd /1 us/ni do0007/ userl

aprun -n 2 ./sinmple &

aprun -n 3 ./npi &

aprun -n 6 ./shmemput &

aprun -n 6 ./shmemget &

wai t

exit O

The script launches applications si npl e (see Running a Basic Application on
page 65), npi (see Running an MPI Application on page 66), shmrem put (see
Using the Cray shimem _put Function on page 67), and shnmem _get (see Using the
Cray shnmem get Function on page 69).

Set file permission to executable;

% chnod +x nul t _par

Run the script:

% qsub mul t _par

90 S-2496-31

Example Applications [9]

List the output:

% cat nult_par.o07231
hello frompe 0 of 2
hello frompe 1 of 2

Application 520255 resources: utinme ~0s, stine
My PE: 0 M part: 1683
My PE: 2 M part: 1650
My PE: 1 M part: 1717

PE: 0 Total is: 5050

Application 520256 resources: utinme ~0s, stine
PE 0: Test passed.

PE 5: Test passed.
PE 4: Test passed.
PE 3: Test passed.
PE 2: Test passed.
PE 1. Test passed.

Application 520258 exit codes:
Appl i cation 520258 resources:

PE 0 conput edsunr
PE 5 conput edsunr
PE 4 conput edsun¥
PE 3 conput edsunr
PE 2 conput edsunr
PE 1 conput edsunr

Appl i cation 520259 resources:

64

utinme ~0s, stine
15
15
15
15
15
15
utime ~0s, stine

00000
00000
00000
00000
00000
00000

9.13 Using apr un Memory Affinity Options

In some cases, remote-NUMA-node memory references can reduce the performance
of applications. You can use the apr un memory affinity options to control
remote-NUMA-node memory references. For the - S, - sl , and - sn options,
memory allocation is satisfied using local-NUMA-node memory. If thereis not
enough NUMA node 0 memory, NUMA node 1 memory may be used. For the - ss,
only local-NUMA-node memory can be allocated.

9.13.1 Using the aprun - S Option

S-2496-31

This example runs each PE on a specific NUMA node 0 CPU:

% aprun -n 4 ./xthi | sort

Application 225110 resources: utime ~0s, stine
PE 0 ni d0O0045 Core affinity = 0
PE 1 ni d00045 Core affinity =1
PE 2 ni d0O0045 Core affinity = 2
PE 3 ni d0O0045 Core affinity = 3

~0s

This example runs one PE on each NUMA node of nodes 45 and 70:

% aprun -n 4 -S 1 ./xthi | sort
Application 225111 resources: utime ~0s, stine
PE 0 ni d0O0045 Core affinity = 0
PE 1 ni d0O0045 Core affinity = 4
PE 2 ni d0O0070 Core affinity = 0
PE 3 ni dO0070 Core affinity = 4

~0s

91

Workload Management and Application Placement for the Cray Linux Environment

9.13.2 Using the aprun -sl Option

This example runs all PEs on NUMA node 1:

% aprun -n 4 -sl 1 ./xthi | sort
Application 57967 resources: utine ~1s, stine ~1s

Hello fromrank 0, thread 0, on nid00014. (core affinity = 4)
Hello fromrank 1, thread 0, on nid00014. (core affinity = 5)
Hello fromrank 2, thread 0, on nid00014. (core affinity = 6)
Hello fromrank 3, thread 0, on nid00014. (core affinity = 7)
This example runs all PEs on NUMA node 2:

% aprun -n 4 -sl 2 ./xthi | sort

Application 57968 resources: utine ~1s, stine ~1s

Hello fromrank 0, thread 0, on nid00014. (core affinity = 8)
Hello fromrank 1, thread 0, on nid00014. (core affinity = 9)
Hello fromrank 2, thread 0, on ni d00014. (core affinity = 10)
Hello fromrank 3, thread 0, on ni d00014. (core affinity = 11)

9.13.3 Using the aprun -sn Option

This example runs four PEs on NUMA node O of node 45 and four PEson NUMA
node O of node 70:

% aprun -n 8 -sn 1 ./xthi | sort
Application 2251114 resources: utime ~0s, stinme ~0s
PE 0 ni d0O0045 Core affinity = 0
PE 1 ni d0O0045 Core affinity = 1
PE 2 ni d0O0045 Core affinity = 2
PE 3 ni d0O0045 Core affinity = 3
PE 4 ni d0O0070 Core affinity = 0
PE 5 ni dO0070 Core affinity =1
PE 6 ni d0O0070 Core affinity = 2
PE 7 ni d0O0070 Core affinity = 3

9.13.4 Using the aprun -ss Option

92

When - ss is specified, a PE can alocate only the memory loca to its assigned
NUMA node. The default isto allow remote-NUMA-node memory allocation. For
example, by default any PE running on NUMA node O can allocate NUMA node 1
memory (if NUMA node 1 has been reserved for the application).

S-2496-31

Example Applications [9]

This example runs PEs 0-3 on NUMA node 0, PEs 4-7 on NUMA node 1, PEs 8-11
on NUMA node 2, and PEs 12-15 on NUMA node 3. PEs 0-3 cannot allocate NUMA
node 1, 2, or 3 memories, PEs 4-7 cannot allocate NUMA node 0, 2, 3 memories, €etc.

% aprun -n 16 -sl 0,1,2,3 -ss ./xthi | sort

Application 57970 resources: utine ~9s, stine ~2s
PE 0 ni d00014. (core affinity = 0-3)

PE 10 ni dO0014. (core affinity = 8-11)
PE 11 ni d00014. (core affinity = 8-11)
PE 12 ni d00014. (core affinity = 12-15)
PE 13 ni d00014. (core affinity = 12-15)
PE 14 ni d00014. (core affinity = 12-15)
PE 15 ni d00014. (core affinity = 12-15)
PE 1 ni d00014. (core affinity = 0-3)

PE 2 ni d00014. (core affinity = 0-3)

PE 3 ni d00014. (core affinity = 0-3)

PE 4 ni d00014. (core affinity = 4-7)

PE 5 ni d0O0014. (core affinity = 4-7)

PE 6 ni d00014. (core affinity = 4-7)

PE 7 ni d00014. (core affinity = 4-7)

PE 8 ni d0O0014. (core affinity = 8-11)
PE 9 ni d00014. (core affinity = 8-11)

9.14 Using apr un CPU Affinity Options

The following examples show how you can use apr un CPU affinity optionsto bind a
process to a particular CPU or the CPUs on aNUMA node.

9.14.1 Using the aprun -cc cpu_list Option

S-2496-31

This example binds PEs to CPUs 0-4 and 7 on an 8-core node:

% aprun -n 6 -cc 0-4,7 ./xthi | sort

Application 225116 resources: utinme ~0s, stine ~0s
PE 0 ni d0O0045 Core affinity 0

PE 1 ni d0O0045 Core affinity
PE 2 ni dO0045 Core affinity
PE 3 ni d00045 Core affinity
PE 4 ni d0O0045 Core affinity
PE 5 ni d0O0045 Core affinity

~NDWN PR

93

Workload Management and Application Placement for the Cray Linux Environment

9.14.2 Using the aprun -cc keyword Options

Processes can migrate from one CPU to another on a node. You can usethe- cc
option to bind PEs to CPUs. This example usesthe - cc cpu (default) option to
bind each PE to a CPU:

% aprun -n 8 -cc cpu ./xthi | sort
Application 225117 resources: utine ~0s, stine ~0Os

PE 0 ni dO0045 Core affinity = 0
PE 1 ni d00045 Core affinity = 1
PE 2 ni d0O0045 Core affinity = 2
PE 3 ni d0O0045 Core affinity = 3
PE 4 ni d0O0045 Core affinity = 4
PE 5 ni d0O0045 Core affinity = 5
PE 6 ni d0O0045 Core affinity = 6
PE 7 ni d0O0045 Core affinity =7

This example usesthe - cc numa_node option to bind each PE to the CPUs within
aNUMA node:

% aprun -n 8 -cc numa_node ./xthi | sort
Application 225118 resources: utine ~0s, stine ~0s

PE 0 ni d0O0045 Core affinity = 0-3
PE 1 ni dO0045 Core affinity = 0-3
PE 2 ni d0O0045 Core affinity = 0-3
PE 3 ni d00045 Core affinity = 0-3
PE 4 ni dO0045 Core affinity = 4-7
PE 5 ni d0O0045 Core affinity = 4-7
PE 6 ni d0O0045 Core affinity = 4-7
PE 7 ni dO0045 Core affinity = 4-7

9.15 Using Checkpoint/Restart Commands

To checkpoint and restart a job, first load these modules:

noab
bl cr

This example shows the use of the ghol d and gchkpt checkpoint commands and
theqr| s and gr er un restart commands.

Source code of cr. c:

#i ncl ude <stdio. h>
#i ncl ude <uni std. h>
#i ncl ude <errno. h>
#i ncl ude "npi.h"

#i ncl ude <signal . h>

static void sig_handler(int);

static unsigned int Cnt = O; /* Counter that is
i ncrenented each tine app is checkpointed. */

static int ne;

94 S-2496-31

Example Applications [9]

i nt
main (int argc, char *argv[])

{

int all, ret;
int sleep_tine=100000;

ret = MPlI_Init(&rgc, &argv);
ret = MPI_Comm rank (MPI_COVM WORLD, &re);
ret = MPI_Comm si ze(MPI _COW WORLD, &all);

if (me == 0) {

if (signal (SI GCONT, sig handler) == SIG ERR) {
printf("Can't catch SI GCONT\n");
ret = MPl_Finalize();
exit(3);

}

printf ("Partition size is = %\n", all);

}

ret = 999;
while (ret !'=0) {

Cnt += 1,
ret = sleep(sleep_tine);
if (ret '=0) {

printf("PE % PID % interrupted at cnt: %\ n",

sleep_time = ret;
}
}

printf ("Finished with count at: &d, exiting \n",

ret = MPlI_Finalize();

static void
si g_handl er (i nt signo)

printf("\n");

Load the modules and compilecr . c:

% nmodul e | oad noab
% nmodul e 1 oad bl cr
%cc -0 cr cr.c

S-2496-31

ne,

Cnt);

get pi d(),

Cnt);

95

Workload Management and Application Placement for the Cray Linux Environment

% gst at
Job id

87151. ni dO0O003

96

Create script cr _scri pt:

#! / usr/ bi n/ ksh

#PBS -1 nppwi dt h=2

#PBS -1 nppnppn=1

#PBS -j oe

#PBS -1 wal | ti ne=6: 00: 00
#PBS -c enabl ed

cd to directory where job was subnitted from
cd /1 us/ni d00015/ user 12/ c

export MPI CH_VERSI ON_DI SPLAY=1
aprun -n 2 -N1 ./cr

wait;

Launch the job:

% qsub cr_script
87151. ni dO0003

The WMS returns the job identifier 87151. ni d00003. Usejust the first part
(sequence number 87151) in checkpoint/restart commands.

Check the job status:
Nanme User Time Use S Queue
cr_script user 12 00: 00: 00 R workqg

Thejobisrunning (gst at state SisR).
Check the status of application cr :

% apst at
Conput e node sunmary
arch config up use held avail down
XT 72 72 2 0 70 0

No pendi ng applications are present

Total placed applications: 1

Placed Apid Resld User PEs Nodes Age St at e Commrand
331897 6 userl2 2 2 0h0O3m run cr

The application isrunning (St at e isr un).

S-2496-31

Example Applications [9]

Checkpoint the job, placeit in hold state, and recheck job and application status:
% ghol d 87151

% gst at
Job id Nane User Time Use S Queue
87151. ni dO0003 cr_script user 12 00: 00: 00 H workqg
% apst at
Conput e node sunmary
arch config up use held avail down
XT 72 72 0 0 72 0

No pendi ng applications are present
No pl aced applications are present

The job is checkpointed and its state changes from run to hold. Applicationcr is
checkpointed (apst at St at e field ischkpt), then stops running.

Note: The ghol d command checkpointed the job because it was submitted with
the- ¢ enabl ed option.

Release the job, get status to verify, then restart it:
%qrls 87151

% gst at
Job id Nane User Time Use S Queue
87151. ni d0O0003 cr_script user 12 00: 00: 00 R workqg
% apst at
Conput e node sunmary
arch config up use held avail down
XT 72 72 2 0 70 0

No pendi ng applications are present

Total placed applications: 1

Placed Apid Resld User PEs Nodes Age St at e Commrand
331899 7 user 12 2 2 0hOOM run cr

Thejobisrunning (gst at SfieldisRand application St at e isr un).

S-2496-31 97

Workload Management and Application Placement for the Cray Linux Environment

Checkpoint the job but keep it running:
% qchkpt 87151

% gst at
Job id Nane User Time Use S Queue
87151. ni dO0003 cr_script user 12 00: 00: 00 R workqg
% apst at
Conput e node sunmary
arch config up use held avail down
XT 72 72 2 0 70 0

No pendi ng applications are present

Total placed applications: 1
Placed Apid Resld User PEs Nodes Age St at e Commrand
331899 7 user 12 2 2 0h02m run cr

Thegst at Sfield changed to R, and the application state changed from chkpt to

run.

Use qdel to stop the job:
% qdel 87151

% gst at
Job id Nane User Time Use S Queue
87151. ni dO0003 cr_script user 12 00: 00: 00 C workqg

Usethe gr er un command to restart a completed job previously checkpointed:

% grerun 87151

% gst at
Job id Nane User Time Use S Queue
87151. ni d0O0003 cr_script user 12 00: 00: 00 R workqg
% apst at
Conput e node summary
arch config up use held avail down
XT 72 72 2 0 70 0

No pendi ng applications are present

Total placed applications: 1
Pl aced Apid Resld User PEs Nodes Age St at e Conmand
331901 8 user 12 2 2 0hOOmMm run cr

You can use gr er un to restart ajob as long as the job remains queued in the

completed state.

98

S-2496-31

Example Applications [9]

At any step in the checkpoint/restart process, you can usetheqst at - f optionto
displays details about the job and checkpoint files:

% qgstat -f 87151
Job 1d: 87151. ni d0O0003
Job_Name = cr_scri pt
Job_Owner = user 12@i d00004
<sni p>
Checkpoi nt = enabl ed
<sni p>
coment = Job 87151. ni dO0O003 was checkpoi nted and continued to /lus/scratc
h/ BLCR_checkpoi nt _dir/ckpt.87151. ni d00003. 1237761585 at Sun Mar 22 17
39: 45 2009

<sni p>
checkpoint _dir = /lus/scratch/ BLCR checkpoint_dir
checkpoi nt _name = ckpt.87151. ni d00003. 1237761585
checkpoint _time = Sun Mar 22 17:39:45 2009
checkpoint _restart_status = Successfully restarted job

You can get details about the checkpointed filesin checkpoi nt _di r:

% cd /1 us/scratch/BLCR checkpoint _dir

%ls -al

<sni p>

drwx------ 3 user12 devl 4096 2009-03-22 17:35 ckpt.87151. ni d00003. 1237761347
drwx------ 3 user12 devl 4096 2009-03-22 17:39 ckpt.87151. ni d00003. 123776158
% cd ckpt.87151. ni d00003. 123776158

%Ils

331899 cpr.context info.7828
% cd 331899

%ls

context.0 context.1

Thereisacont ext . nfilefor each widthvalue (-1 nppw dt h=2).

9.16 Running Compute Node Commands
You can usetheapr un - b option to run compute node BusyBox commands.

The following apr un command runs the compute node gr ep command to find
references to Menilrot al in compute nodefile/ pr oc/ meni nf o:

% aprun -b grep MenTotal /proc/nmem nfo
MenTot al : 8124872 kB

9.17 Using the High-level PAPI Interface

PAPI provides simple high-level interfaces for instrumenting applications written in C
or Fortran. This example shows the use of the PAPI _start _counters() and
PAPI _st op_count er s() functions.

S-2496-31 99

Workload Management and Application Placement for the Cray Linux Environment

Modules required:

Xt - papi

and one of the following:
Pr gEnv-cray

Pr gEnv- pgi

Pr gEnv- gnu

Pr gEnv- pat hscal e
PrgEnv-int el

Source of papi _hl . c:

#i ncl ude <papi . h>
voi d mai n()

{

int retval, Events[2]= {PAPI_TOT_CYC, PAPI_TOT_I NS};

| ong_l ong val ues[2];

if (PAPI _start_counters (Events, 2) != PAPI_OK) {
printf("Error starting counters\n");
exit(1);

}

/* Do sone conputation here... */

if (PAPI _stop_counters (values, 2) != PAPI _OK) {
printf("Error stopping counters\n");
exit(1);

}

printf("PAPI _TOT_CYC
printf("PAPI _TOT_INS
}

Compile papi _hl . c:

% 1d\n", values[O0]);
% I1d\n", values[1]);

% cc -o papi_hl papi_hl.c
Run papi _hl :

% aprun ./ papi _hl

PAPI _TOT_CYC = 4020

PAPI _TOT INS = 201

Application 520262 exit codes: 19

Application 520262 resources: utine ~0s, stine ~0s

100

S-2496-31

Example Applications [9]

9.18 Using the Low-level PAPI Interface

S-2496-31

PAPI provides an advanced low-level interface for instrumenting applications.
The PAPI library must be initialized before calling any of these functions;
initialization can be done by issuing either a high-level function call or a

call to PAPI _library_init(). Thisexample shows the use of the

PAPI _create_eventset(),PAPI _add_event(),PAPI start(),and
PAPI _read() functions.

Modules required:
xt - papi
and one of the following:

Pr gEnv-cray

Pr gEnv- pgi

Pr gEnv-gnu

Pr gEnv- pat hscal e
PrgEnv-int el

Source of papi _I|.c:

#i ncl ude <papi . h>

voi d mai n()

{
int EventSet = PAPI NULL;
| ong_l ong val ues[1];

[* Initialize PAPI library */

if (PAPI_library_init(PAPI_VER CURRENT) != PAPI _VER_CURRENT) {
printf("Error initializing PAPI library\n");
exit(1);

}

/* Create Event Set */

if (PAPI _create_eventset (& ventSet) != PAPI _OK) {
printf("Error creating eventset\n");

exit(1);

}

/* Add Total Instructions Executed to eventset */

if (PAPI _add_event (EventSet, PAPI_TOT_INS) != PAPI _K) {
printf("Error adding event\n");
exit(1);

}

[* Start counting ... */

if (PAPI _start (EventSet) != PAPI_OK) {
printf("Error starting counts\n");
exit(1);

}

/* Do sone conputation here...*/

if (PAPI _read (EventSet, values) != PAPI_CK) {
printf("Error stopping counts\n");

101

Workload Management and Application Placement for the Cray Linux Environment

exit(1);
}
printf("PAPI _TOT_INS = %1d\n", values[0]);
}
Compilepapi _Il.c:
%cc -o papi Il papi_Il.c
Run papi _I|:

% aprun ./ papi _||I

PAPI _TOT_INS = 97

Application 520264 exit codes: 18

Application 520264 resources: utinme ~0s, stine

9.19 Using CrayPat

This example shows how to instrument a program, run the instrumented program,

and generate CrayPat reports.
Modules required:

Xt - cr aypat

and one of the following:

Pr gEnv-cray

Pr gEnv- pgi

Pr gEnv-gnu

Pr gEnv- pat hscal e
PrgEnv-int el

Source code of pal. f 90:

program main
include 'npif.h'

call MPI_Init(ierr) ! Required
call MPI_Comm rank(MPI _COW WORLD, nype,ierr)
call MPI_Comm si ze(MPI _COW WORLD, npes,ierr)

print *,"hello frompe', nype,' of', npes

do i =1+nype, 1000, npes ! Distribute the work

call work(i, mype)
enddo

call MPI_Finalize(ierr) ! Required
end

Source code of pa2. c:

void work_(int *N, int *MYPE)
{
int n=*N, nype=* WPE;

if (n == 42) {

102

S-2496-31

Example Applications [9]

printf("PE %: sizeof(long) = %\ n", mype, si zeof (1 ong));
printf("PE %: The answer is: %\n", nype, n);
}
}

Compilepa2. c and pal. f 90 and create executable per f :

% cc -c pa2.c
%ftn -o perf pal.f90 pa2.0

Run pat _bui | d to generate instrumented program per f +pat :

% pat _build -u -g npi perf perf+pat
INFO A trace intercept routine was created for the function ' MAIN_'.
INFO A trace intercept routine was created for the function 'work_".

The tracegroup (- g option) isnpi .
Run per f +pat :

% aprun -n 4 ./perf+pat | sort

CrayPat/ X: Version 5.0 Revision 2635 06/04/09 03:13:22
Experinent data file witten:

I mt/lustre_server/user 12/ perf+pat +1652- 30t dt . xf
Application 582809 resources: utinme ~0s, stine ~0s

hell o from pe 0 of 4
hell o from pe 1 of 4
hell o from pe 2 of 4
hell o from pe 3 of 4

PE 1. sizeof(long) = 8
PE 1. The answer is: 42

Note: When executed, the instrumented executable creates directory
progname+pat +PlDkeyletters, where . PID isthe process ID that was assighed to
the instrumented program at run time.

S-2496-31 103

Workload Management and Application Placement for the Cray Linux Environment

Run pat _report togenerate reportsper f . r pt 1 (using default pat _r eport
options) and per f . r pt 2 (usingthe- O cal | t r ee option).

% pat _report perf+pat+1652-30tdt.xf > perf.rptl

pat _report: Creating file: per f +pat +1652- 30t dt . ap2

Data file 1/1: [......]

% pat _report -O calltree perf+pat+1652-30tdt.xf > perf.rpt2
pat _report: Using existing file: per f +pat +1652- 30t dt . ap2
Data file 1/1: [.....]

% pat _report -Ocalltree -f ap2 perf+pat +1652- 30t dt. xf
Qutput redirected to: perf+pat+1652-30tdt. ap2

Note: The-f ap2 optionisusedto createa*. ap?2 file for input to
Cray Apprentice2 (see Using Cray Apprentice2 on page 106).

Listperf.rpt1:

CrayPat/ X: Version 5.0 Revision 2635 (xf 2571) 06/04/09 03: 13: 22
Nurmber of PEs (MPl ranks): 4
Nunber of Threads per PE: 1
Nunber of Cores per Processor: 4

<sni p>

Table 1: Profile by Function G oup and Function

Time % | Time |Inb. Tine | Imb. | Calls | Group
| | | Time % | | Function
I I I I | PE="HDE
100. 0% | 0.000151 | - -- | 257.0 | Total
| == m el
| 98.9% | 0.000150 | - -- | 253.0 | USER
e e
|| 81.0%]| 0.000122 | 0.000002 | 2.3% | 1.0 | MAIN_
|| 14.5% | 0.000022 | 0.000001 | 4. 8% | 1.0 |exit
| 2.1% | 0.000003 | 0.000001 | 20.1%| 1.0 |main
| 1.2%| 0.000002 | 0.000000 | 10.2% | 250.0 |work_
| |: ===
| 1.1% | 0.000002 | - - 4.0 | MPI
I

<sni p>
Table 2: Load Balance with MPI Message Stats

Time % | Time | Goup
| | PE

100. 0% | 0.000189 | Tot al
98.6% | 0.000186 | USER

| 25.5%| 0.000193 |pe.1

104 S-2496-31

Example Applications [9]

24.7%| 0.000187 | pe.

o

24.3%| 0.000183 | pe.2

I
I
| 24.1%| 0.000182 |pe.3
I

1.4% | 0.000003 | MPI

0.4%| 0.000003 | pe.
0.4%| 0.000003 | pe.

0.3%| 0.000003 | pe.

| 1
| 2
| 0.3% | 0.000003 |pe.O
| 3

<sni p>
Table 5: Program Wl |
Process | Process |PE
Time | H Mem |
| (MBytes) |
0. 033981 | 20 | Tot al
[2o
| 0.034040 | 19.742 |pe.2
| 0.034023 | 19. 750 | pe.3
| 0.034010 | 19.754 |pe.O
| 0.033851 | 19.750 |pe. 1
| ==
========= Additional details

Experinent: trace

<sni p>

Esti mat ed mi ni mum over head per call

Clock Time, Menory H gh Water

Mar k

of a traced function,

whi ch was subtracted fromthe data shown in this report

(for raw data, use the option:
m cr oseconds

Ti me 0.241

Nunmber of traced functions:

(To see the list,

S-2496-31

speci fy:

-s over head=i ncl ude) :

102

-s traced_functions=show)

105

Workload Management and Application Placement for the Cray Linux Environment

Listperf.rpt2:
CrayPat/X: Version 5.0 Revision 2635 (xf 2571) 06/04/09 03:13:22

Nunber of PEs (MPI ranks): 4
Nunmber of Threads per PE: 1
Nunber of Cores per Processor: 4
<sni p>

Table 1: Function Calltree View

Time % | Time | Calls |Calltree
I | | PE='HI DE

100. 0% | 0.000181 | 657.0 | Total

69.7% | 0.000126 | 255.0 | MAIN_

| 67.7%] 0.000122 | 1.0 | MAI N_(excl usive)
| 1.0% | 0.000002 | 250.0 |work_
|: =
12.2% | 0.000022 | 1.0 |exit
1.8% | 0.000003 | 0 |main

========= Additional details == ==

Experiment: trace

<sni p>

Esti mated mi ni nrum overhead per call of a traced function,
whi ch was subtracted fromthe data shown in this report
(for raw data, use the option: -s overhead=include):

Ti me 0.241 mcroseconds

Nunber of traced functions: 102
(To see the list, specify: -s traced_functions=show)

9.20 Using Cray Apprentice2

In the CrayPat example (Using CrayPat on page 102), we ran the instrumented
program per f and generated file per f +pat +1652- 30t dt . ap2.

To view this Cray Apprentice2 file, first load the appr ent i ce2 module.

% nodul e | oad apprentice2

Then launch Cray Apprentice2:

% app2 perf +pat +1652- 30t dt . ap2

106 S-2496-31

Example Applications [9]

Display the resultsin call-graph form:

Figure 4. Cray Apprentice2 Callgraph
&l Apprentice250 ________ BA=EG

Eile Help
¥ perf+pat+1652-30tdt.ap2 X |

@eexn

I-"Ovenﬁew x”]-vErwironmnt x_| w Callgraph X |

work
{e=32.7673Y

(1] [v]
E Seart:h:| l @ Sl e LR
perf+pat+1652-30tdt.ap2 (48 events in 0.051s) Nz

S5-2496-31 107

Workload Management and Application Placement for the Cray Linux Environment

108 S-2496-31

Further Information [A]

A.1 Related Publications

Cray systems run with a combination of Cray proprietary, third-party, and open
source products, as documented in the following publications.

A.1.1 Publications for Application Developers

S-2496-31

Cray Application Developer's Environment User's Guide

Cray Application Developer's Environment Installation Guide

Cray Linux Environment (CLE) Software Release Overview

Cray C and C++ Reference Manual

Cray Fortran Reference Manual

Cray compiler command options man pages (cr aycc(1), cr ayft n(1))
PGI User's Guide

PGI Tools Guide

PGI Fortran Reference

PGI compiler command options man pages. pgcc(1), pgCC(1), pgf 95(1)
GCC manuals: http://gcc.gnu.org/onlinedocs/

GCC compiler command options man pages: gcc (1), g++(1), gf ort ran(l)
PathScale manuals: http://www.pathscal e.com/docs.html

PathScale compiler command options man pages. pat hcc(1), pat hCC(1),
pat h95(1), eko(7)

Cray XT compiler driver commands man pages. cc(1), CC(1), f t n(1)
Modules utility man pages: nodul e(1), rodul ef i | e(4)

Application launch command man page: apr un(1)

109

http://gcc.gnu.org/onlinedocs/
http://www.pathscale.com/docs.html

Workload Management and Application Placement for the Cray Linux Environment

e Paralé programming models:
— Cray MPICH2 man pages (read the i nt r o_npi (3) man page first)
— Cray SHMEM man pages (read thei nt r o_shnmem(3) man page first)
— OpenMP documentation: http://www.openmp.org/
— Cray UPC man pages (read thei nt r o_upc(3c) man pagefirst)

Unified Parallel C (UPC) documents: Berkeley UPC
website (http://upc.lbl.gov/docs/) and Intrepid UPC website
(http://Amww.intrepid.com/upc/cray_xt3_upc.html).

e Cray scientific library, XT-LibSci, documentation:

Basic Linear Algebra Subroutines (BLAS) man pages

— LAPACK linear algebra man pages

— ScaLAPACK pardld linear algebra man pages

— Basic Linear Algebra Communication Subprograms (BLACS) man pages

— Iterative Refinement Toolkit (IRT) man pages (read thei ntro_i rt (3) man
page first)

— SuperLU sparse solver routines guide (SuperLU Users Guide)
e AMD Core Math Library (ACML) manual

e FFTW 2.1.5 and 3.1.1 man pages (read thei ntro_f ftw2(3) or
i ntro_fftw3(3) man page first)

» Portable, Extensible Toolkit for Scientific Computation (PETSc) library, an
open source library of sparse solvers. Seethei nt r o_pet sc(3) man page and
http://www-unix.mcs.anl .gov/petsc/petsc-as/index.html

* NetCDF documentation (http://www.unidata.ucar.edu/software/netcdf/)
e HDF5 documentation (http://www.hdfgroup.org/HDF5/whatishdf5.html)
e Lustrel f s(1) man page

» PBSProfessional 9.0 User's Guide

» PBSProfessiona man pages (qsub(1B) , gst at (1B), and qdel (1B))
¢ Moab TORQUE documentation (http://www.clusterresources.com/)

« TotalView documentation (http://www.total viewtech.com/)

* GNU debugger documentation (see the |l gdb(1) man page and the GDB User
Manual at http://www.gnu.org/software/gdb/documentation/).

¢ PAPI man pages (read thei nt r o_papi (3) man page first)

110 S-2496-31

http://www.openmp.org/
http://upc.lbl.gov/docs/
http://www.intrepid.com/upc/cray_xt3_upc.html
http://www-unix.mcs.anl.gov/petsc/petsc-as/index.html
http://www.unidata.ucar.edu/software/netcdf/
http://www.hdfgroup.org/HDF5/whatishdf5.html
http://www.clusterresources.com/
http://www.totalviewtech.com/
http://www.gnu.org/software/gdb/documentation/

Further Information [A]

S-2496-31

PAPI manuals (see http://icl.cs.utk.edu/papi/)

Using Cray Performance Analysis Tools

CrayPat man pages (read thei nt r o_cr aypat (1) man page first)
Cray Apprentice2 man page (app2(1))

CLE man pages

SUSE LINUX man pages

Linux documentation (see the Linux Documentation Project at
http://www.tldp.org and SUSE documentation at http://www.suse.com)

111

http://icl.cs.utk.edu/papi/
http://www.tldp.org
http://www.suse.com

Workload Management and Application Placement for the Cray Linux Environment

112 S-2496-31

Cray X6 Compute Node Figures [B]

This release supports Cray X6 compute bladesin Cray XE and Cray XT systems.
Each Cray X6 compute blade has AMD G34 sockets and includes four compute

nodes with four NUMA nodes each (one per processor die); up to 96 processor cores

per blade, or 2,304 processor cores per cabinet. Each Cray X6 compute node is

designed to efficiently run up to 24 MPI tasks, or aternately can be programmed to
run OpenMP within a compute node and MPI between nodes. Each NUMA node is
logically coupled with its own memory in the compute node and can access remote
NUMA node memory through HyperTransport links on the compute node. Requests
between compute nodes are facilitated by the Cray SeaStar or Cray Gemini ASICs.

Cray
SeaStar

S5-2496-31

NUMA Node 2

Figure 5. Cray XT6 Compute Node
NUMA Node 0
.
HyperTransport I
Links

NUMA Node 1

.

I

Socket 0

NUMA Node 3

Socket 1

113

Workload Management and Application Placement for the Cray Linux Environment

Figure 6. Cray XE6 Compute Node

NUMA Node 0 NUMA Node 2
- e
HTO |~
Hyper
—Transport
Links
.
Cray —
Gemini
NUMA Node 1 NUMA Node 3
. - .H .HI

Socket 0 Socket 1

Y

To 2nd Node

114 S5-2496-31

	Workload Management and Application Placement for the Cray Linux
	Workload Management and Application Placement for the Cray Linux
	System Overviews [1]
	1.1 Cray System Features
	1.2 Cray XE Features

	Running Applications [2]
	2.1 Using the aprun Command
	2.1.1 Changing the Default Hugepage Size on Cray XE Systems (Defe

	2.2 Understanding Application Placement
	2.2.1 Cray XE Systems Features Specific to Application Placement

	2.3 Gathering Application Status and Information on the Cray Syst
	2.3.1 apstat Display Support for Cray XE Systems
	2.3.2 Using the xtnodestat Command

	2.4 Using the cnselect Command
	2.5 Understanding How Much Memory is Available to Applications
	2.6 Core Specialization
	2.7 Launching an MPMD Application
	2.8 Managing Compute Node Processors from an MPI Program
	2.9 About aprun Input and Output Modes
	2.10 About aprun Resource Limits
	2.11 About aprun Signal Processing

	Running User Programs on Service Nodes [3]
	Using Workload Management Systems [4]
	4.1 Creating Job Scripts
	4.2 Submitting Batch Jobs
	4.3 Getting Job Status
	4.4 Removing a Job from the Queue

	Dynamic Shared Objects and Libraries (DSLs) [5]
	5.1 Introduction
	5.2 About the Compute Node Root Run Time Environment
	5.2.1 DSL Support
	5.2.2 Cray DVS Loadbalance Mode

	5.3 Configuring DSL
	5.4 Building, Launching, and Workload Management Using Dynamic Ob
	5.4.1 Linker Search Order

	5.5 Troubleshooting
	5.5.1 Error While Launching with aprun: "error while loading shar
	5.5.2 Running an Application Using a Non-Existent Root
	5.5.3 Performance Implications of Using Dynamic Shared Objects

	Using Cluster Compatibility Mode in CLE [6]
	6.1 Cluster Compatibility Mode
	6.1.1 CCM implementation

	6.2 Installation and Configuration of Applications for CCM
	6.3 Using CCM
	6.3.1 CCM Commands
	6.3.1.1 ccmrun
	6.3.1.2 ccmlogin

	6.3.2 Starting a CCM Batch Job
	6.3.3 X11 Forwarding in CCM

	6.4 Individual Software Vendor (ISV) Example
	6.5 Troubleshooting
	6.5.1 CCM Initialization Fails
	6.5.2 Logging Into Head Node is Slow
	6.5.3 Using a Transport Protocol Other Than TCP

	6.6 Caveats and Limitations
	6.6.1 ALPS will not accurately reflect CCM job resources
	6.6.2 Limitations

	Using Checkpoint/Restart [7]
	Optimizing Applications [8]
	8.1 Using Compiler Optimization Options
	8.2 Using aprun Memory Affinity Options
	8.3 Using aprun CPU Affinity Optimizations
	8.4 Exclusive Access
	8.5 Optimizing Process Placement on Multicore Nodes

	Example Applications [9]
	9.1 Running a Basic Application
	9.2 Running an MPI Application
	9.3 Using the Cray shmem_put Function
	9.4 Using the Cray shmem_get Function
	9.5 Running Partitioned Global Address Space (PGAS) Applications
	9.5.1 Running an Unified Parallel C (UPC) Application
	9.5.2 Running a Fortran 2008 Application Using Coarrays

	9.6 Running a Fast_mv Application
	9.7 Running a PETSc Application
	9.8 Running an OpenMP Application
	9.9 Running an Interactive Batch Job
	9.10 Running a Batch Job Script
	9.11 Running Multiple Sequential Applications
	9.12 Running Multiple Parallel Applications
	9.13 Using aprun Memory Affinity Options
	9.13.1 Using the aprun -S Option
	9.13.2 Using the aprun -sl Option
	9.13.3 Using the aprun -sn Option
	9.13.4 Using the aprun -ss Option

	9.14 Using aprun CPU Affinity Options
	9.14.1 Using the aprun -cc cpu_list Option
	9.14.2 Using the aprun -cc keyword Options

	9.15 Using Checkpoint/Restart Commands
	9.16 Running Compute Node Commands
	9.17 Using the High-level PAPI Interface
	9.18 Using the Low-level PAPI Interface
	9.19 Using CrayPat
	9.20 Using Cray Apprentice2

	Further Information [A]
	A.1 Related Publications
	A.1.1 Publications for Application Developers

	Cray X6 Compute Node Figures [B]
	List of Figures
	Figure 1. Cray DVS Loadbalance Mode Used in the Compute Node Roo
	Figure 2. Cray Job Distribution Cross Section
	Figure 3. CCM Job Flow Diagram
	Figure 4. Cray Apprentice2 Callgraph
	Figure 5. Cray XT6 Compute Node
	Figure 6. Cray XE6 Compute Node

	List of Examples
	Example 1. Compiling an application
	Example 2. Launching an application with the Application Level P
	Example 3. Running an application using a workload management sy
	Example 4. Running a Program Using a Batch Script
	Example 5. Launching An ISV Application Using CCM
	Example 6. Launching the UMT/pyMPI Benchmark Using CCM

	List of Procedures
	Procedure 1. Disabling CSA Accounting for the cnos class view

	List of Tables
	Table 1. Core/PE Distribution for r=1
	Table 2. aprun versus qsub Options

