
Performance Measurement and Analysis
Tools S-2376-63

Contents
About CrayPat...5

Performance Analysis..6

In-depth Analysis: Using Cray Apprentice2...7

Microsoft Windows 7 Systems..7

Apple Macintosh Systems...7

Source Code Analysis: Using Reveal..7

Online Help..8

CrayPat Help System..9

Cray Apprentice2 Help System...9

Reveal Help System..9

Reference Files...10

Upgrade from Earlier Versions..10

CrayPat..11

Instrument the Program...11

Automatic Profiling Analysis..11

MPI Automatic Rank Order Analysis ...11

Run the Program and Collect Data..12

Analyze the Results...12

Initial Analysis: Using pat_report...12

CrayPat-lite..14

Start CrayPat-lite...14

Use CrayPat-lite..15

Switch from CrayPat-lite to CrayPat..16

Determine Whether a Binary is Already Instrumented..16

Use pat_build ..17

Basic Profiling..17

Use Automatic Profiling Analysis ...17

Use Predefined Trace Groups...18

Trace User-defined Functions...21

Enable Tracing and the CrayPat API...21

Instrument a Single Function...21

Prevent Instrumentation of a Function..21

Instrument a User-defined List of Functions..21

Create New Trace Intercept Routines for User-defined Functions..22

Create New Trace Intercept Routines for Everything..22

()

 2
--

pat_build Environment Variables..22

Advanced Users: The CrayPat API...23

Use CrayPat API Calls..24

Header Files..24

API Calls..25

Advanced Users: OpenMP..27

CrayPat Run Time Environment..29

Control Run Time Summarization..29

Control Data File Size..29

Select a Predefined Experiment..30

Trace-enhanced Sampling..31

Improve Tracebacks..31

Measure MPI Load Imbalance...31

Monitor Performance Counters...31

Run Time Environment Variables..33

Use pat_report ...49

Data Files..49

Generate Reports..50

Predefined Reports...50

User-defined Reports..53

Export Data..54

pat_report Environment Variables..54

Automatic Profiling Analysis..55

MPI Automatic Rank Order Analysis ...55

Use Automatic Rank Order Analysis ...55

Force Rank Order Analysis...56

Use Cray Apprentice2..60

Launch Cray Apprentice2..60

Open Data Files...61

Basic Navigation..61

View Reports...62

Overview Report..62

Profile Report..63

Text Report..64

Environment Report..64

Traffic Report...64

Mosaic Report...64

Activity Report...65

()

 3
--

Call Tree..65

I/O Rates...66

Hardware Reports...66

GPU Time Line..66

IO And Other Plotable Data Items...68

Reveal..70

Launch Reveal...70

Generate Loop Work Estimates...71

Generate a Program Library..71

Explore the Results...72

For More Information...72

Use CrayPat on XK and XC Series Systems...73

Module Load Order..73

pat_build Differences...73

Run Time Environment Differences...74

pat_report Differences..74

Cray XC Series Hardware Counter Differences..75

Cray XC Series CPU Network Counter Differences..75

Cray XC Series Systems With Intel Xeon Phi Coprocessors..76

Use CrayPat on Intel Xeon Phi ...77

Use CrayPat on CS300 Systems...78

()

 4
--

About CrayPat
The Cray Performance Measurement and Analysis Tools (or CrayPat) are a suite of optional utilities that enable
the user to capture and analyze performance data generated during the execution of a program on a Cray
system. The information collected and analysis produced by use of these tools can help the user to find answers
to two fundamental programming questions: How fast is my program running? and How can I make it run faster?

Release 6.3.0

This update of Cray Performance Measurement and Analysis Tools (CrayPat) S-2376 supports the 6.3.0 release
of CrayPat, CrayPat-lite, Cray Apprentice2, Reveal and the Cray PAPI components, which collectively are referred
to as the Cray Performance Measurement and Analysis Tools.

Scope and Audience

This guide is intended for programmers and application developers who write, port, or optimize software
applications for use on Cray XE, Cray XK, or Cray XC series systems running the Cray Linux Environment (CLE)
operating system, or Cray CS300 systems running the CentOS operating system. We assume the user is already
familiar with the application development and execution environments and the general principles of program
optimization, and that the application is already debugged and capable of running to planned termination. If more
information about the application development and debugging environment or the application execution
environment is needed, see the Cray Programming Environment User's Guide (S-2529) and Workload
Management and Application Placement for the Cray Linux Environment (S-2496).

Cray XE, Cray XK, Cray XC series, and Cray CS300 systems feature a variety of processors, coprocessors, GPU
accelerators, and network interconnects, and support a variety of compilers. Because of this, exact results may
vary from the examples discussed in this guide.

Additional information specific to Cray XK and Cray XC series systems can be found at Use CrayPat on XK and
XC Series Systems on page 73. Additional information specific to Cray CS300 systems can be found at Use
CrayPat on CS300 Systems on page 78.

Typographic Conventions

Monospace Monospaced text indicates program code, reserved words, library functions,
command-line prompts, screen output, file names, path names, and other software
constructs.

Monospaced Bold Bold monospaced text indicates commands that must be entered on a command
line or in response to an interactive prompt.

Oblique or Italics Oblique or italicized text indicates user-supplied values in commands or sytax
definitions.

Proportional Bold Proportional bold text indicates a graphical user interface window or element.

()

 5
--

\ (backslash) A backslash at the end of a command line is the Linux® shell line continuation
character; the shell parses lines joined by a backslash as though they were a single
line. Do not type anything after the backslash or the continuation feature will not
work correctly.

Alt-Ctrl-f Monospaced hyphenated text typically indicates a keyboard combination.

Feedback

Visit the Cray Publications Portal at http://pubs.cray.com and make comments online using the Contact Us button
in the upper-right corner or Email pubs@cray.com. Your comments are important to us and we will respond within
24 hours.

Performance Analysis
The performance analysis process consists of three basic steps.

1. Instrument the program, to specify what kind of data is to be collected under what conditions.

2. Execute the instrumented program, to generate and capture the desired data.

3. Analyze the resulting data.

The Cray Performance Measure and Analysis Tools (CrayPat) suite consists of the following major components:

▪ CrayPat-lite, a simplified and easy-to-use version of CrayPat that provides basic performance analysis
information automatically, with a minimum of user interaction. For more information about using CrayPat-lite,
see CrayPat-lite on page 14.

▪ CrayPat, the full-featured program analysis tool set. CrayPat in turn consists of the following major
components.

▪ pat_build, the utility used to instrument programs

▪ the CrayPat run time environment, which collects the specified performance data during program
execution

▪ pat_report, the first-level data analysis tool, used to produce text reports or export data for more
sophisticated analysis

▪ Cray Apprentice2, the second-level data analysis tool, used to visualize, manipulate, explore, and compare
sets of program performance data in a GUI environment.

▪ Reveal, the next-generation integrated performance analysis and code optimization tool, which enables the
user to correlate performance data captured during program execution directly to the original source, and
identify opportunities for further optimization.

▪ Cray PAPI components, which are support packages for those who want to access performance counters. For
more information, see Monitor Performance Counters on page 31.

All Cray-developed performance analysis tools, including the man pages and help system, are available only
when the perftools-base module is loaded, with the exception of the PAPI components, which can also
be accessed when the papi module is loaded.

NOTE: The perftools-base and papi modules are mutually exclusive. One or the other may be
loaded, but not both at the same time.

()

Performance Analysis 6
--

http://pubs.cray.com
mailto:pubs@cray.com
mailto:pubs@cray.com

In-depth Analysis: Using Cray Apprentice2
Cray Apprentice2 is a GUI tool for visualizing and manipulating the performance analysis data captured during
program execution. After using pat_report to open the initial .xf data file(s) and generate an .ap2 file, use
Cray Apprentice2 to open and explore the .ap2 file in further detail.

Cray Apprentice2 can display a wide variety of reports and graphs, depending on the type of program being
analyzed and the data collected during program execution. The number and appearance of the reports generated
using Cray Apprentice2 is determined by the kind and quantity of data captured during program execution, which
in turn is determined by the way in which the program was instrumented and the environment variables in effect at
the time of program execution.

Cray Apprentice2 is not integrated with CrayPat. Users may not set up or run performance analysis experiments
from within Cray Apprentice2, nor can they launch Cray Apprentice2 from within CrayPat. Rather, use pat_build
first, to instrument the program and capture performance data; then use pat_report to process the raw data and
convert it to .ap2 format; and then use Cray Apprentice2, to visualize and explore the resulting data files.

Feel free to experiment with the Cray Apprentice2 user interface, and to left- or right-click on any area that looks
like it might be interesting. Because Cray Apprentice2 does not write any data files*, it cannot corrupt, truncate, or
otherwise damage the original experiment data using Cray Apprentice2.

NOTE: However, under some circumstances it is possible to use the Cray Apprentice2 text report to
overwrite generated MPICH_RANK_ORDER files. If this happens, use pat_report to regenerate the rank order
files from the original .xf data files, if desired. For more information, see MPI Automatic Rank Order
Analysis on page 55.

Microsoft Windows 7 Systems
The optional Windows 7 version of Cray Apprentice2 is launched just like any other Windows program. Double-
click on the Cray Apprentice2 icon, and then use the file selection window to navigate to and select the data file to
open. Alternatively, double-click on an .ap2 data file to launch Cray Apprentice2 and open that data file.

NOTE: The Windows version of Cray Apprentice2 is supported on Microsoft Windows 7 only. It does not
work on earlier versions of the Windows operating system and is untested on Microsoft Windows 8 at this
time.

Apple Macintosh Systems
The optional Apple Macintosh version of Cray Apprentice2 is launched just like any other Macintosh program.
Double-click on the Cray Apprentice2 icon, and then use the file selection window to navigate to and select the
data file to open. Alternatively, double-click on an .ap2 data file to launch Cray Apprentice2 and open that data
file.

NOTE: The Macintosh version of Cray Apprentice2 was tested on Mac OS 10.6.8. It does not run on the
Apple iPad at this time.

()

In-depth Analysis: Using Cray Apprentice2 7
--

Source Code Analysis: Using Reveal
Reveal is Cray's next-generation integrated performance analysis and code optimization tool. Reveal extends
Cray's existing performance measurement, analysis, and visualization technology by combining run time
performance statistics and program source code visualization with Cray Compiling Environment (CCE) compile-
time optimization feedback.

Reveal supports source code navigation using whole-program analysis data and program libraries provided by the
Cray Compiling Environment, coupled with performance data collected during program execution by the Cray
performance tools, to understand which high-level serial loops could benefit from improved parallelism. Reveal
provides enhanced loopmark listing functionality, dependency information for targeted loops, and assists users
optimizing code by providing variable scoping feedback and suggested compiler directives.

To begin using Reveal on the Cray system, verify that the perftools-base module is loaded:

$ module load perftools-base
Launch the Reveal application using the reveal command:

$ reveal
NOTE: Reveal requires that the workstation be configured to host X Window System sessions. If the
reveal command returns an "cannot open display" error, contact the system administrator for help in
configuring X Window System hosting.

Users may specify data files to be opened when launching Reveal. For example, this command launches Reveal
and opens both the compiler-generated program library file and the CrayPat-generated run time performance data
file, thus enabling users to correlate performance data captured during program execution with specific lines and
loops in the original source code:

$ reveal my_program_library.pl my_performance datafile.ap2
Alternately, Reveal opens a file selection window and the user can then select the data file(s) to open. For more
information about using the reveal command, see the reveal(1) man page.

Online Help
The CrayPat man pages, online help, and FAQ are available only when the perftools-base module is loaded.

The CrayPat commands, options, and environment variables are documented in the following man pages:

▪ craypat-lite(1) - basic usage information for CrayPat-lite

▪ intro_craypat(1) - basic usage and environment variables for CrayPat

▪ pat_build(1) - instrumenting options and API usage for CrayPat

▪ hwpc(5) - optional CPU performance counters that can be enabled during program execution for CrayPat

▪ uncore(5) - optional Intel performance counters that reside off-core that can be enabled during program
execution for CrayPat

▪ nwpc(5) - optional network performance counters that can be enabled during program execution for CrayPat

▪ nbpc(5) - optional AMD Interlagos Northbridge performance counters that can be enabled during program
execution for CrayPat (Cray XE and Cray XK systems only)

▪ cray_rapl(5)- optional Intel Running Average Power Limit (RAPL) counters that can be enabled to provide
socket-level data during program execution for CrayPat (Cray XC series systems only)

()

Online Help 8
--

▪ cray_pm(5)- optional Cray Power Management (PM) counters that can be enabled to provide node-level data
during program execution for CrayPat (Cray XC series systems only)

▪ accpc(5) - optional GPU accelerator performance counters that can be enabled during program execution

▪ accpc_k20(5) - optional performance counters specific to the NVIDIA K20 accelerators

▪ accpc_x2090(5) - optional performance counters specific to the NVIDIA X2090 accelerators

▪ accpc_k20m(5) - optional performance counters specific to the NVIDIA K20m and NVIDIA K40s accelerators

▪ pat_report(1) - reporting and data-export options

▪ pat_help(1) - accessing and navigating the command-line driven online help system CrayPat

▪ grid_order(1) - optional CrayPat standalone utility that can be used to generate MPI rank order placement
files (MPI programs only)

▪ reveal(1) - introduction to the Reveal integrated code analysis and optimization assistant

Additional useful information can be found in the following man pages.

▪ intro_mpi(3) - introduction to the MPI library, including information about using MPICH rank reordering
information produced by CrayPat (man page available only when the cray-mpich module is loaded)

▪ intro_papi(3) - introduction to the PAPI library, including information about using PAPI to address hardware
and network program counters

▪ papi_counters(5) - additional information about PAPI utilities

CrayPat Help System
CrayPat includes an extensive command-line driven online help system, which features many examples and the
answers to many frequently asked questions. To access the help system, type this command:

$ pat_help
The pat_help command accepts options. For example, to jump directly into the FAQ, type this command:

$ pat_help FAQ
Once the help system is launched, navigation is by one-key commands (e.g., / to return to the top-level menu)
and text menus. It is not necessary to enter entire words to make a selection from a text menu; only the significant
letters are required. For example, to select "Building Applications" from the FAQ menu, it is sufficient to enter
Buil.

Help system usage is documented further in the pat_help(1) man page.

Cray Apprentice2 Help System
Cray Apprentice2 features a GUI Javahelp system as well as numerous pop-ups and tool-tips that are displayed
by hovering the cursor over an area of interest on a chart or graph. To access the online help system, click the
Help button, or right-click on any report tab and then select Panel Help from the pop-up menu.

Reveal Help System
Reveal features an integrated help system as well as numerous pop-ups and tips that are displayed by hovering
the cursor over an area of interest in the source code. To access the integrated help system, click the Help button.

()

Online Help 9
--

Reference Files
When the perftools-base module is loaded, the environment variable CRAYPAT_ROOT is defined. Advanced
users will find files in the subdirectories under $CRAYPAT_ROOT/share and $CRAYPAT_ROOT/include to be useful.

$CRAYPAT_ROOT/share/config

Contains build directives (see pat_build (1) man page) and Automatic Profiling Analysis (see Use Automatic
Profiling Analysis on page 17), CrayPat Report Cleanup, and CrayPat-lite (see CrayPat-lite on page 14)
configuration files.

$CRAYPAT_ROOT/share/counters

Contains hardware-specific performance counter definition files. (See Monitor Performance Counters on page
31.)

$CRAYPAT_ROOT/share/traces

Contains predefined trace group definitions. (See Use Predefined Trace Groups on page 18.)

$CRAYPAT_ROOT/include

Files used with the CrayPat API. (See Advanced Users: The CrayPat API on page 23.)

Upgrade from Earlier Versions
When upgrading from an earlier version of the Cray Performance Analysis Tools suite, note the following issues.

▪ File compatibility is not maintained between versions. Programs instrumented using earlier versions of
CrayPat must be recompiled, relinked, and reinstrumented using the current version of CrayPat.
Likewise, .xf and .ap2 data files created using earlier versions of CrayPat or Cray Apprentice2 cannot be
read using the current release.

▪ If the user has upgraded to release 6.3.0 from an earlier version, the earlier version likely remains on the
user's system in the /opt/cray/modulefiles/perftools directory. (This may vary depending on the site's
software administration and default version policies.) To revert to the earlier version, unload the current
version and then load the older module.

▪ For example, to revert from CrayPat 6.3.0 to CrayPat 6.2.5 to read an old .ap2 file, enter these commands:

$ module unload perftools-base
$ module unload instrumentation_module(if loaded)
$ module load perftools/6.2.5

▪ To return to the current default version, reverse the commands:

$ module unload perftools/6.2.5
$ module load perftools-base
$ module load instrumentation_module(if desired)

()

Reference Files 10
--

CrayPat
To use the Cray Performance Measurement and Analysis Tools, first load the programming environment of choice
(including CPU or other targeting modules as required), and then load the perftools-base module.

$ module load perftools-base
$ module load perftools
For successful results, the perftools-base and perftools instrumentation modules must be loaded before
compiling the program to be instrumented, instrumenting the program, executing the instrumented program, or
generating a report. If the user wants to instrument a program that was compiled before the perftools-base
module was loaded, under some circumstances relinking it may be sufficient, but as a rule it's best to load the
perftools-base and perftools modules and then recompile. When instrumenting a program, CrayPat
requires that the object (.o) files created during compilation be present.

$ ftn -o executable sourcefile.o
For more information about compiling and linking, see the compiler's documentation.

Instrument the Program
After the perftools-base and perftools instrumentation modules are loaded and the program is compiled
and linked, the user can instrument the program for performance analysis experiments. This is done using the
pat_build command. In simplest form, it is used like this:

$ pat_build executable
This produces a copy of the original program, which is named executable+pat (for example, a.out+pat) and
instrumented for the default experiment. The original executable remains untouched.

The pat_build command supports a large number of options and directives, including an API that enables the
user to instrument specified regions of code. These options and directives are documented in the pat_build(1)
man page. The CrayPat API is discussed in Advanced Users: The CrayPat API on page 23.

Automatic Profiling Analysis
The default experiment is Automatic Profiling Analysis, which is an automated process for determining which
pat_build options are mostly likely to produce meaningful data from the program. For more information about
using Automatic Profiling Analysis, see Use Automatic Profiling Analysis on page 17.

()

Instrument the Program 11
--

MPI Automatic Rank Order Analysis
CrayPat is also capable of performing Automatic Rank Order Analysis on MPI programs, and of generating a
suggested rank order list for use with MPI rank placement options. Use of this feature requires that the program
be instrumented in pat_build using either the -g mpi or -O apa option. For more information about using MPI
Automatic Rank Order Analysis, see MPI Automatic Rank Order Analysis on page 55.

Run the Program and Collect Data
Instrumented programs are executed in exactly the same way as any other program; either by using the aprun
command if the site permits interactive sessions or by using the system's batch commands.

When working on a Cray system, always pay attention to file system mount points. While it may be possible to
execute a program on a login node or while mounted on the ufs file system, this generally does not produce
meaningful data. Instead, always run instrumented programs on compute nodes and while mounted on a high-
performance file system that supports record locking, such as the Lustre file system.

CrayPat supports more than fifty optional run time environment variables that enable the user to control
instrumented program behavior and data collection during execution. For example, in C shell to collect data in
detail rather than in aggregate, consider setting the PAT_RT_SUMMARY environment variable to 0 (off) before
launching the program.

$ setenv PAT_RT_SUMMARY 0
NOTE: Switching off data summarization will record detailed data with timestamps, which can nearly
double the number of reports available in Cray Apprentice2, but at the cost of potentially enormous raw
data files and significantly increased overhead.

The CrayPat run time environment variables are documented in the intro_craypat(1) man page and
discussed in CrayPat Run Time Environment on page 29. The full set of CrayPat run time environment
variables is listed in Run Time Environment Variables on page 33.

Analyze the Results
Assuming the instrumented program runs to completion or planned termination, CrayPat outputs one or more
data files. The exact number, location, and content of the data file(s) will vary depending on the nature of the
program, the type of experiment for which it was instrumented, and the run time environment variable settings in
effect at the time of program execution.

All initial data files are output in .xf format, with a generated file name consisting of the original program name,
plus pat, plus the execution process ID number, plus the execution node number. Depending on the program run
and the types of data collected, CrayPat output may consist of either a single .xf data file or a directory
containing multiple .xf data files.

NOTE: When working with dynamically linked programs, it is recommended that pat_report be invoked
on the .xf file promptly after the completion of program execution, in order to produce an .ap2 file. This
ensures that the mapping of addresses in dynamic libraries to function names will use the same versions
of those libraries that were used when the program was run.

()

Run the Program and Collect Data 12
--

Initial Analysis: Using pat_report
To begin analyzing the captured data, use the pat_report command. In simplest form, it looks like this:

$ pat_report myprog+pat+PID-nodet.xf
The pat_report command accepts either a file or directory name as input and processes the .xf file(s) to
generate a text report. In addition, it also exports the .xf data to a single .ap2 file, which is both a self-contained
archive that can be reopened later using the pat_report command and the exported-data file format used by
Cray Apprentice2.

The pat_report command provides more than thirty predefined report templates, as well as a large variety of
user-configurable options. These reports and options are documented in the pat_report(1) man page and
discussed in Use pat_report on page 49.

NOTE: If upgrading from an earlier version of CrayPat, see Upgrade from Earlier Versions on page 10 for
important information about data file compatibility.

The pat_report command also supports data export options, such as the ability to generate .xml or .html files.
For more information, see the pat_report(1) man page.

()

Analyze the Results 13
--

CrayPat-lite
CrayPat-lite is a simplified, easy-to-use version of the Cray Performance Measurement and Analysis Tool set.
CrayPat-lite provides basic performance analysis information automatically, with a minimum of user interaction,
and yet offers information useful to users wishing to explore a program's behavior further using the full CrayPat
tool set. Once the CrayPat-lite perftools-base module has been loaded, an instrumentation module can then
be loaded for further experimentation.

CrayPat-lite Options

The CrayPat-lite instrumentation modules support four basic experiments:

▪ perftools-lite - A sampling experiment, which reports execution time, aggregate MFLOP count, the top
time-consuming functions and routines, MPI behavior in user functions (if the application is an MPI program),
and generates the data files listed above.

▪ perftools-lite-events - A tracing experiment, which generates a profile of the top functions traced as
well as node observations and possible rank order suggestions.

▪ perftools-lite-gpu - Focuses on the program's use of GPU accelerators.

▪ perftools-lite-loops - Loop estimates, for use with Reveal.

Start CrayPat-lite
Prerequisites

Ensure the perftools-base module is already loaded. Follow these steps to load one of the perftools-
lite instrumentation modules.

1. Load one of the four perftools-lite instrumentation modules (from CrayPat-lite Options).

$ module load perftools-lite

2. Compile and link the program.

$ make program

3. Run the program on the Cray system.

$ aprun a.out

()

Start CrayPat-lite 14
--

At the end of the program's normal execution, CrayPat-lite produces the following output:

▪ A text report to stdout, profiling the program's behavior, identifying where the program spends its execution
time, and offering recommendations for further analysis and possible optimizations.

▪ An .rpt file, capturing the same information in a text file.

▪ An .ap2 file, which can be used to examine the program's behavior more closely using Cray Apprentice2 or
pat_report.

▪ One or more MPICH_RANK_ORDER_FILE files (each with different suffixes), containing suggestions for optimizing
MPI rank placement in subsequent program runs. The number and types of files produced is determined by
the information captured during program execution. The files can include rank reordering suggestions based
on sent message data from MPI functions, time spent in user functions, or a hybrid of the two.

Use CrayPat-lite
Prerequisites
Ensure the perftools-base module has already been loaded.

1. Load the perftools-lite module.

$ module load perftools-lite

2. Compile and link the program.

$ make program

Any .o files generated during this step are saved automatically.

3. Run the program.

$ aprun a.out

4. Review the resulting reports from the default profiling experiment. To continue with another experiment, delete
or rename the a.out file.

$ rm a.out

This will force a subsequent make command to relink the program for a new experiment.

5. Swap to a different instrumentation module.

$ module swap perftools-lite perftools-lite-event

6. Rerun make to relink the program.

$ make program

()

Use CrayPat-lite 15
--

7. Since the .o files were saved in Step 2, this merely relinks the program. Run the program again.

$ aprun a.out

8. Review the resulting reports and data files, and determine whether to explore the program's behavior further
using the full CrayPat tool set or use one of the MPICH_RANK_ORDER_FILE files to create a customized rank
placement. (For more information about customized rank placements, see the instructions contained in the
MPICH_RANK_ORDER_FILE and the intro_mpi(3) man page.)

To disable CrayPat-lite during a build, unload the perftools-lite instrumentation module. To re-enable
CrayPat-lite, load the desired perftools-lite instrumentation module. Once built using CrayPat-lite, an
executable is instrumented and will initiate CrayPat functionality at run time whether or not the CrayPat-lite
module is loaded.

Switch from CrayPat-lite to CrayPat
To switch from using CrayPat-lite to using the full CrayPat tool set, unload the perftools-lite module and
load the perftools module.

$ module unload perftools-lite
$ module load perftools
The perftools-lite and perftools modules are mutually exclusive. One or the other may be loaded, but
not both at the same time.

Determine Whether a Binary is Already Instrumented
To determine whether a binary has already been instrumented using CrayPat or CrayPat-lite, use the strings
command to search for CrayPat/X. For example, if the binary is named a.out, use the following command line.
If the binary is instrumented, it will return the CrayPat version number and other information.

$ strings a.out | grep 'CrayPat/X'
CrayPat/X: Version 6.3.0 Revision 14319 09/02/15 13:51:12
This detects only whether a binary has been instrumented using CrayPat or CrayPat-lite. If the binary has been
instrumented using another tool, such as the MPI profiling mechanism, instrumenting it again with CrayPat may
not succeed, or if it does appear to succeed, the resulting instrumented program may not execute correctly or
produce invalid results.

()

Switch from CrayPat-lite to CrayPat 16
--

Use pat_build
The pat_build command is the instrumenting component of the CrayPat performance analysis tool. After loading
the perftools-base and perftools instrumentation modules and recompiling the program, use the
pat_build command to instrument the program for data capture.

CrayPat supports two categories of performance analysis experiments: tracing experiments, which count some
event such as the number of times a specific system call is executed, and asynchronous (sampling) experiments,
which capture values at specified time intervals or when a specified counter overflows.

The pat_build command is documented in more detail in the pat_build(1) man page. For additional information
and examples, see pat_help build.

Basic Profiling
The easiest way to use the pat_build command is by accepting the defaults.

$ pat_build myprogram
This generates a copy of the original executable that is instrumented for the default experiment, Automatic
Profiling Analysis. A variety of other predefined experiments are available (see Select a Predefined Experiment on
page 30), however, Automatic Profiling Analysis is usually the best place to start.

Use Automatic Profiling Analysis

Prerequisites
There are no prerequisites for this Task.

The Automatic Profiling Analysis feature lets CrayPat suggest how the program should be instrumented, in order
to capture the most useful data from the most interesting areas.

1. Instrument the original program.

$ pat_build my_program
This produces the instrumented executable my_program+pat.

2. Run the instrumented executable.

$ aprun my_program+pat

()

Basic Profiling 17
--

This produces the data file my_program+pat+PID-nodet.xf, which contains basic asynchronously derived
program profiling data.

3. Use pat_report to process the data file.

$ pat_report my_program+pat+PID-nodet.xf
This produces three results:

▪ a sampling-based text report to stdout
▪ an .ap2 file (my_program+pat+PID-nodet.ap2), which contains both the report data and the associated

mapping from addresses to functions and source line numbers

▪ an .apa file (my_program+pat+PID-nodet.apa), which contains the pat_build arguments recommended
for further performance analysis

4. Reinstrument the program, this time using the .apa file.

$ pat_build -O my_program+pat+PID-nodet.apa
It is not necessary to specify the program name, as this is specified in the .apa file. Invoking this command
produces the new executable, my_program+apa, this time instrumented for enhanced tracing analysis.

5. Run the new instrumented executable.

$ aprun my_program+apa
This produces the new data file my_program+pat+PID2-nodet.xf, which contains expanded information
tracing the most significant functions in the program.

6. Use pat_report to process the new data file.

$ pat_report my_program+pat+PID2-nodet.xf
This produces two results:

▪ a tracing report to stdout
▪ an .ap2 file (my_program+pat+PID2-nodet.ap2) containing both the report data and the associated

mapping from addresses to functions and source line numbers

When certain conditions are met (job size, data availability, etc.), pat_report also attempts to detect a grid
topology and evaluate alternative rank orders for opportunities to minimize off-node message traffic, while also
trying to balance user time across the cores within a node. These rank-order observations appear on the profile
report, and depending on the results, pat_report may also generate one or more MPICH_RANK_ORDER files for use
with the MPICH_RANK_REORDER_METHOD environment variable in subsequent application runs.

For more information about MPI rank order analysis, see MPI Automatic Rank Order Analysis on page 55.

For more information about Automatic Profiling Analysis, see the APA topic in pat_help.

()

Use Predefined Trace Groups 18
--

Use Predefined Trace Groups
After Automatic Profiling Analysis, the next-easiest way to instrument the program for tracing is by using the -g
option to specify a predefined trace group.

$ pat_build -g tracegroup myprogram
These trace groups instrument the program to trace all function references belonging to the specified group. Only
those functions actually executed by the program at run time are traced. tracegroup is case-insensitive and can
be one or more of the values listed below.

If the tracegroup name is preceded by the ! ("bang") character, the functions within the specified tracegroup are
not traced.

Table 1. Predefined Trace Groups

Value Function

adios Adaptable I/O System API

aio Functions that perform Asynchronous I/O

armci Aggregate Remote Memory Copy

blacs Basic Linear Algebra communication subprograms

blas Basic Linear Algebra subprograms

caf Co-Array Fortran (Cray CCE compiler only)

chapel Chapel language compile and run time library API

cuda NVIDIA Compute Unified Device Architecture run time and driver API

dl Functions that perform dynamic linking

dmapp Distributed Memory Application API for Gemini and Aries

ffio Functions that perform Flexible File I/O (Cray CCE compiler only)

fftw Fast Fourier Transform library

ga Global Arrays API

gni Generic Network Interface API

hdf5 Hierarchical Data Format library

heap Dynamic heap

huge Linux huge pages

io Functions and system calls that perform I/O

()

Use Predefined Trace Groups 19
--

Value Function

lapack Linear Algebra Package

math POSIX.1 math definitions

mpi MPI

netcdf Network common data form (manages array-oriented scientific data)

oacc OpenAccelerator API

omp OpenMP API

pblas Parallel Basic Linear Algebra Subroutines

petsc Portable Extensible Toolkit for Scientific Computation (supported for "real" computations only)

pgas Parallel Global Address Space

pthreads POSIX threads

realtime POSIX real time extensions

scalapack Scalable LAPACK

sheap Shared heap

shmem SHMEM

spawn POSIX real time process creation

stdio All library functions that accept or return the FILE* construct

string String operations

syscall System calls

sysfs System calls that perform miscellaneous file management

sysio System calls that perform I/O

upc Unified Parallel C (Cray CCE compiler only)

xpmem cross-process memory mapping

The files that define the predefined trace groups are kept in $CRAYPAT_ROOT/share/traces. To see exactly which
functions are being traced in any given group, examine the Trace* files. These files can also be used as
templates for creating user-defined tracing files. (See Instrument a User-defined List of Functions on page 21.)

NOTE: There is a dependency between the way in which a program is instrumented using pat_build and
the information subsequently available for use in pat_report. For example, a program must be

()

Use Predefined Trace Groups 20
--

instrumented to collect MPI information (either by using the -g mpi option listed above or by using one of
the user-defined tracing options listed below) in order to see MPI data on any of the reports produced by
pat_report. For more information, see Predefined Reports on page 50.

Trace User-defined Functions
Use the pat_build command options to instrument specific functions, to instrument a user-defined list of
functions, to block the instrumentation of specific functions, or to create new trace intercept routines.

Enable Tracing and the CrayPat API
To change the default experiment from Automatic Profiling Analysis to tracing, activate any API calls added to the
program, and enable tracing for user-defined functions, use the -w option.

$ pat_build -w myprogram

The -w option has other implications which are discussed in the following sections.

Instrument a Single Function
To instrument a specific function by name, use the -T option.

$ pat_build -T tracefunc myprogram

If tracefunc is a user-defined function, the -w option must also be specified in order to create a trace wrapper for
the function. (See Use Predefined Trace Groups on page 18.) If the -w option is not specified, only those function
entry points that have predefined trace intercept routines are traced.

If tracefunc contains a slash (/) character, the string is interpreted as a basic regular expression. If more than
one regular expression is specified, the union of all regular expressions is taken. All functions that match at least
one of the regular expressions are added to the list of functions to trace. The match is case-sensitive. For more
information about UNIX regular expressions, see the regexec(3) man page.

One or more regular expression qualifiers can precede the slash (/) character. The ! qualifier means reverse the
results of the match, the i qualifier means ignore case when matching, and the x qualifier means use extended
regular expressions.

Prevent Instrumentation of a Function
To prevent instrumentation of a specific function, use the -T ! option.

$ pat_build -T !tracefunc myprogram

If tracefunc begins with an exclamation point (!) character, references to tracefunc are not traced.

()

Trace User-defined Functions 21
--

Instrument a User-defined List of Functions
To trace a user-defined list of functions, use the -t option.

$ pat_build -t tracefile myprogram

The tracefile is a plain ASCII text file listing the functions to be traced. For an example of a tracefile, see any
of the predefined Trace* files in $CRAYPAT_ROOT/share/traces.

To generate trace wrappers for user-defined functions, also include the -w option. If the -w option is not specified,
only those function entry points that have predefined trace intercept routines are traced.

Create New Trace Intercept Routines for User-defined Functions
To create new trace intercept routines for those functions that are defined in the respective source file owned by
the user, use the -u option.

$ pat_build -u myprogram

To prevent a specific function entry-point from being traced, use the -T ! option.

$ pat_build -u -T '!entry-point' myprogram

Create New Trace Intercept Routines for Everything
To make tracing the default experiment, activate the CrayPat API, and create new trace intercept routines for
those functions for which no trace intercept routine already exists, use the -w option.

$ pat_build -w -t tracefile... -T symbol... myprogram

If -t, -T, or the trace build directive are not specified, only those functions necessary to support the CrayPat
run time library are traced. If -t, -T, or the trace build directive are specified, and -w is not specified, only those
function points that have predefined trace intercept routines are traced. If the list of functions to be traced includes
any user-defined functions, the -w option must also be specified to generate trace wrappers.

pat_build Environment Variables
The following environment variables affect the operation of pat_build.

PAT_BUILD_CLEANUP By default or if set to a nonzero value, the intermediate directory is removed. Set
to zero to retain the directory after pat_build completes.

PAT_BUILD_LINK_DIR Specify an alternate directory in which the original program was linked. All
relocatable objects and libraries are located relative to the link directory. All
relocatable files and libraries used to create the original program must be available
in the same directory that they were in at the time the original program was
created.

()

pat_build Environment Variables 22
--

PAT_BUILD_EMBED_RTENV Specifies one or more comma-separated CrayPat run time environment variables
to embed in the instrumented program. The CrayPat run time environment
variables must be set at the time the instrumented program is created. By default,
all CrayPat run time environment variables that are set at the time the
instrumented program is created are embedded in the instrumented program. If
PAT_BUILD_EMBED_RTENV is set to zero, no CrayPat run time environment
variables are embedded.

rtenv=name=value;name=value;...

Embeds the run time environment variable name in the instrumented program and
sets it to value value. If a run time environment variable is set using both this
directive and in the execution environment, the value set in the execution
environment takes precedence and this value is ignored.

For more information about run time environment variables, see the
intro_craypat(1) man page.

PAT_BUILD_OPTIONS Specifies the pat_build options that are evaluated before any options on the
command line.

PAT_BUILD_PAPI_DIR Specifies the location of the PAPI run time library. If this environment variable is
set, the directory path is valid, and the libpapi.a or libpapi.so file exists in the
specified directory, the respective file is used to satisfy the PAPI requirements of
the CrayPat run time library when the instrumented program is created.
Default: /opt/cray/papi/current_version

PAT_BUILD_PRMGT If set to nonzero, forces Process Management (PMI) entry points to be loaded into
the instrumented program. If set to zero, no additional PMI entry points are loaded
into the instrumented program. If not set (default), PMI entry points are loaded into
the instrumented program only if the programming models present in the input
program dictate the need for PMI.

PAT_BUILD_USER_OK By default, function entry points selected for tracing that do not exist in one of the
trace function groups are candidates for interception if the entry point is in a
source file owned by the user executing the pat_build command. To allow other
entry points to be candidates for tracing, specify a comma-separated list of strings
which represent all or part of the directory or source path of the file(s) in which
these entry points are defined.

PAT_BUILD_VERBOSE Specifies the detail level of the progress messages related to the instrumentation
process. This value corresponds to the number of -v options specified.

PAT_LD_OBJECT_TMPDIR Allows the user to change the location of the directory where CrayPat copies of
object files that are in a /tmp directory. When set, pat_build writes copies of object
files into the $PAT_LD_OBJECT_TMPDIR/.craypat/program-name/PID-of-link
directory. The default value for PAT_LD_OBJECT_TMPDIR is $HOME.

To disable copying of object files, set this environment variable to 0 (zero).

()

Advanced Users: The CrayPat API 23
--

Advanced Users: The CrayPat API
There may be times when a user may want to focus on a certain region within the code, either to reduce sampling
overhead, reduce data file size, or because only a particular region or function is of interest. In these cases, use
the CrayPat API to insert calls into the program source and to turn data capture on and off at key points during
program execution. By using the CrayPat API, it is possible to collect data for specific functions upon entry into
and exit from the functions, or even from one or more regions within the body of the function.

Use CrayPat API Calls

1. Load the perftools-base module.

$ module load perftools-base

2. Load the perftools instrumentation module.

$ module load perftools

3. Include the CrayPat API header file in the source code. Header files for both Fortran and C/C++ are provided
in $CRAYPAT_ROOT/include.

4. Modify the source code to insert API calls where wanted.

5. Compile code.

Use the pat_build -w option to build the instrumented executable. Additional functions can also be specified
using the -t or -T options. The -u option (see Create New Trace Intercept Routines for User-defined
Functions on page 22) may be used, but it is not recommended as it forces pat_build to create an entry point
for every user-defined function, which may inject excessive tracing overhead and obscure the results for the
regions.

6. Run the instrumented program, and use the pat_report command to examine the results.

Header Files
CrayPat API calls are supported in both Fortran and C. The included files are found in $CRAYPAT_ROOT/include.

The C header file, pat_api.h, must be included in the C source code.

The Fortran header files, pat_apif.h and pat_apif77.h, provide important declarations and constants and should
be included in those Fortran source files that reference the CrayPat API. The header file pat_apif.h is used only
with compilers that accept Fortran 90 constructs such as new-style declarations and interface blocks. The
alternative Fortran header file, pat_apif77.h, is for use with compilers that do not accept such constructs.

When the perftools-base module is loaded it defines a compiler macro called CRAYPAT. This macro can be
useful when adding any of the following API calls or include statements to the program to make them
conditional:

#if defined(CRAYPAT)
<function call>
#endif

()

Advanced Users: The CrayPat API 24
--

This macro may be activated manually by compiling with the -D CRAYPAT argument or otherwise defined by using
the #define preprocessor macro.

API Calls
The following API calls are supported. All API usage must begin with a PAT_region_begin call and end with a
PAT_region_end call. The examples below show C syntax. The Fortran functions are similar.

PAT_region_begin (int
id, const char *label)

PAT_region_end (int id) Defines the boundaries of a region. A region must consist of a sequence of
executable statements within a single function, and must have a single entry at
the top and a single exit at the bottom. Regions must be either separate or
nested: if two regions are not disjoint, then one must entirely contain the other. A
region may contain function calls. (These restrictions are similar to the
restrictions on an OpenMP structured block.)

For each region, a summary of activity including time and performance counters
(if selected) is produced. The argument id assigns a numerical value to the
region and must be greater than zero. Each id must be unique across the entire
program.

The argument label assigns a character string to the region, allowing for easier
identification of the region in the report.

These functions return PAT_API_OK if the region request was valid and
PAT_API_FAIL if the request was not valid.

Two run time environment variables affect region processing:
PAT_RT_REGION_CALLSTACK and PAT_RT_REGION_MAX. See the
intro_craypat(1) man page for more information.

PAT_record (int state) If called from the main thread, PAT_record controls the state for all threads on
the executing PE. Otherwise, it controls the state for the calling thread on the
executing PE.

The PAT_record function sets the recording state to one of the following
values and returns the previous state before the call was made.

Calling PAT_STATE_ON or PAT_STATE_OFF in the middle of a traced function
does not affect the resulting time for that function. These calls affect only
subsequent traced functions and any other information those traced functions
collect.

PAT_STATE_ON If called from the main thread, switches recording on for all threads on the
executing PE. Otherwise, switches recording on for just the calling child thread.

PAT_STATE_OFF If called from the main thread, switches recording off for all threads on the
executing PE. Otherwise, switches recording off for just the calling child thread.

PAT_STATE_QUERY If called from the main thread, returns the state of the main thread on the
executing PE. Otherwise, returns the state of the calling child thread.

All other values have no effect on the state.

()

Advanced Users: The CrayPat API 25
--

PAT_trace_user_l (const
char *str, int expr, ...)

Issues a TRACE_USER record into the experiment data file if the expression expr
evaluates to true. The record contains the identifying string str and the
arguments, if specified, in addition to other information, including a timestamp.

Returns the value of expr. This function applies to tracing experiments only. This
function is supported for C and C++ programs only, and is not available in
Fortran.

PAT_trace_user_v (const
char *str, int expr, int
nargs, long *args)

Issues a TRACE_USER record into the experiment data file if the expression expr
evaluates to true. The record contains the identifying string str and the
arguments, if specified, in addition to other information, including a timestamp.

nargs indicates the number of 64-bit arguments pointed to by args. These
arguments are included in the TRACE_USER record.

Returns the value of expr. This function applies to tracing experiments only.

PAT_trace_user (const
char *str)

Issues a TRACE_USER record containing the identifying string str into the
experiment data file. Returns PAT_API_OK if the trace record is written to the
experiment data file successfully, otherwise, PAT_API_FAIL is returned. This
function applies to tracing experiments only.

PAT_trace_function
(const void *addr, int
state)

Activates or deactivates the tracing of the instrumented function indicated by the
function entry address addr. The argument state is the same as state above.
Returns PAT_API_OK if the function at the entry address was activated or
deactivated, otherwise, PAT_API_FAIL is returned. This function applies to
tracing experiments only.

PAT_flush_buffer
(unsigned long *nbytes)

Writes all the recorded contents in the data buffer to the experiment data file for
the calling PE and calling thread. The number of bytes written to the experiment
data file is returned in the variable pointed to by nbytes. Returns PAT_API_OK if
all buffered data was written to the data file successfully, otherwise, returns
PAT_API_FAIL. After writing the contents, the data buffer is empty and begins
to refill. See intro_craypat(1) to control the size of the write buffer.

PAT_counters (int
category, const char
*names, unsigned long
values, int *nevents)

Returns the names and current count value of any counter events that have been
set to count on the hardware category. The names of these events are returned
in the names array of strings, the number of names is returned in the location
pointed by to nevents, and the counts are returned for the thread from which the
function is called. The values for these events are returned in the values array of
integers, and the number of values is returned in the location pointed by to
nevents. If both names and values are set to zero then what nevents points to is
set to the number of events. The function returns PAT_API_OK if all the event
names were returned successfully and PAT_API_FAIL if they were not.

The values for category are:

PAT_CTRS_ACCEL- Performance counters that reside on any GPU accelerator

PAT_CTRS_CPU - Performance counters that reside on the CPU

PAT_CTRS_NETWORK- Performance counters that reside on the network
interconnect
PAT_CTRS_NB - Performance counters that reside on the AMD Interlagos
Northbridge communication packet routing block

()

Advanced Users: The CrayPat API 26
--

PAT_CTRS_PM - Counters that measure the Cray Power Management on a
compute node
PAT_CTRS_RAPL - Counters that measure the Intel Running Average Power
Level on a CPU socket
PAT_CTRS_UNCORE - Performance counters that reside in logical control units off
of the CPU

To get just the number of events returned, set names or values to zero.

The event names to be returned are selected at run time using the PAT_RT_PERFCTR environment variable. If no
event names are specified, the value of nevents is zero.

The data collected by the PAT_trace_user API functions is not currently shown on any report. Advanced users
may want to collect it and extract information from a text dump of the data files.

For more information about CrayPat API usage, see the pat_build(1) man page and the APA topic in pat_help.

Advanced Users: OpenMP
For programs that use the OpenMP programming model, CrayPat can measure the overhead incurred by entering
and leaving parallel regions and work-sharing constructs within parallel regions, show per-thread timings and
other data, and calculate the load balance across threads for such constructs.

For programs that use both MPI and OpenMP, profiles by default show the load balance over PEs of the average
time in the threads for each PE, but the user can also see load balances for each programming model separately.
For more information about reporting load balance by programming model, see the pat_report(1) man page.

The Cray CCE compiler automatically inserts calls to trace points in the CrayPat run time library in order to
support the required CrayPat measurements.

The PGI compiler automatically inserts calls to trace points. For all other compilers, including earlier releases of
the PGI compiler suite, the user is responsible for inserting API calls.

The following C functions are used to instrument OpenMP constructs for compilers that do not support automatic
instrumentation. Fortran subroutines with the same names are also available.

void PAT_omp_parallel_enter (void);
void PAT_omp_parallel_exit (void);
void PAT_omp_parallel_begin (void);
void PAT_omp_parallel_end (void);
void PAT_omp_loop_enter (void);
void PAT_omp_loop_exit (void);
void PAT_omp_sections_enter (void);
void PAT_omp_sections_exit (void);
void PAT_omp_section_begin (void);
void PAT_omp_section_end (void);

Note that the CrayPat OpenMP API does not support combined parallel work-sharing constructs. To instrument
such a construct, it must be split into a parallel construct containing a work-sharing construct.

Use of the CrayPat OpenMP API function must satisfy the following requirements.

▪ If one member of an _enter/_exit or _begin/_end pair is called, the other must also be called.

()

Advanced Users: OpenMP 27
--

▪ Calls to _enter or _begin functions must immediately precede the relevant construct. Calls to _end or
_exit functions must immediately follow the relevant construct.

▪ For a given parallel region, all or none of the four functions with prefix PAT_omp_parallel must be called.

▪ For a given "sections" construct, all or none of the four functions with prefix PAT_omp_section must be
called.

▪ A "single" construct should be treated as if it were a "sections" construct consisting of one section.

()

Advanced Users: OpenMP 28
--

CrayPat Run Time Environment
The CrayPat run time environment variables communicate directly with an executing instrumented program and
affect how data is collected and saved. Detailed descriptions of all run time environment variables are provided in
the intro_craypat(1) man page, and in this publication in Run Time Environment Variables on page 33.
Additional information can be found in the online help system under pat_help environment.

This section provides a summary of the run time environment variables, and highlights some of the more
commonly used ones and what they are used for.

Control Run Time Summarization
Environment variable: PAT_RT_SUMMARY
Run time summarization is enabled by default. When it is enabled, data is captured in detail, but automatically
aggregated and summarized before being saved. This greatly reduces the size of the resulting experiment data
files but at the cost of fine-grain detail. Specifically, when running tracing experiments, the formal parameter
values, function return values, and call stack information are not saved.

To study data in detail, and particularly to use Cray Apprentice2 to generate charts and graphs, disable run time
summarization by setting PAT_RT_SUMMARY to 0. Doing so can more than double the number of reports available
in Cray Apprentice2. However, it does so at the expense of greatly increased data file system and significant
execution overhead.

NOTE: Users who use the PAT_RT_SUMMARY environment variable to turn off run time summarization
often find it helpful to set PAT_RT_EXPFILE_PES to 0, in order to reduce redundancy by collecting data
only from PE 0.

Control Data File Size
Depending on the nature of the experiment and the duration of the program run, the data files generated by
CrayPat can be quite large. To reduce the files to manageable sizes, considering adjusting the following run time
environment variables.

For sampling experiments, try these:

PAT_RT_CALLSTACK
PAT_RT_EXPFILE_PES
PAT_RT_SAMPLING_INTERVAL
PAT_RT_SAMPLING_MASK
PAT_RT_SUMMARY

()

Control Run Time Summarization 29
--

For tracing experiments, try these:

PAT_RT_CALLSTACK
PAT_RT_EXPFILE_PES
PAT_RT_SUMMARY
PAT_RT_TRACE_FUNCTION_ARGS
PAT_RT_TRACE_FUNCTION_MAX
PAT_RT_TRACE_FUNCTION_NAME
PAT_RT_TRACE_FUNCTION_SIZE
PAT_RT_TRACE_THRESHOLD_PCT
PAT_RT_TRACE_THRESHOLD_TIME

Users performing sampling or trace-enhanced sampling experiments on programs running on large numbers of
nodes often find it helpful to set PAT_RT_INTERVAL to values larger than the default of 10,000 microseconds.
This reduces data granularity, but also reduces the size of the resulting data files.

Select a Predefined Experiment
Environment variable: PAT_RT_EXPERIMENT
By default, CrayPat instruments programs for Automatic Profiling Analysis. However, if a program is instrumented
for a sampling experiment by using the pat_build -S option, or for tracing by using the pat_build -w, -u, -T, -t, or
-g options, then the user can use the PAT_RT_EXPERIMENT environment variable to further specify the type of
experiment to be performed.

The valid experiment types are:

samp_pc_time The default sampling experiment samples the program counters at regular intervals and
records the total program time and the absolute and relative times each program counter was
recorded. The default sampling interval is 10,000 microseconds by POSIX timer monotonic
wall-clock time, but this can be changed using the PAT_RT_SAMPLING_INTERVAL_TIMER
run time environment variable.

samp_pc_ovfl This experiment samples the program counters at the overflow of a specified hardware
performance counter. The counter and overflow value are specified using the
PAT_RT_PERFCTR environment variable. The default overflow counter is cycles and the
default overflow frequency equates to an interval of 1,000 microseconds.

samp_cs_time This experiment is similar to the samp_pc_time experiment, but samples the call stack at the
specified interval and returns the total program time and the absolute and relative times each
call stack counter was recorded.

samp_cs_ovfl This experiment is similar to the samp_pc_ovfl experiment but samples the call stack.

trace Tracing experiments trace the functions that were specified using the pat_build -g, -u, -t, -T,
-O, or -w options and record entry into and exit from the specified functions. Only true function
calls can be traced; function calls that are inlined by the compiler or that have local scope in a
compilation unit cannot be traced. The behavior of tracing experiments is also affected by the
PAT_RT_TRACE_DEPTH, PAT_RT_TRACE_FUNCTION_ARGS, and

()

Select a Predefined Experiment 30
--

PAT_RT_TRACE_FUNCTION_DISPLAY environment variables, all of which are described in
more detail in the intro_craypat(1) man page.

If a program is instrumented for tracing using PAT_RT_EXPERIMENT to specify a sampling experiment, trace-
enhanced sampling is performed.

Trace-enhanced Sampling
Environment variable: PAT_RT_SAMPLING_MODE
If using pat_build to instrument a program for a tracing experiment and then using PAT_RT_EXPERIMENT to
specify a sampling experiment, trace-enhanced sampling is enabled and affects both user-defined functions and
predefined function groups.

See PAT_RT_SAMPLING_MODE in Run Time Environment Variables on page 33 for further detail.

Improve Tracebacks
In normal operation, CrayPat does not write data files until either the buffer is full or the program reaches the end
of planned execution. If the program aborts during execution and produces a core dump, performance analysis
data is normally either lost or incomplete.

If this happens, consider setting PAT_RT_SETUP_SIGNAL_HANDLERS to 0, in order to bypass the CrayPat run
time library and capture the signals the program receives. This results in an incomplete experiment file but a more
accurate traceback, which may make it easier to determine why the program is aborting.

Alternatively, consider setting PAT_RT_WRITE_BUFFER_SIZE to a value smaller than the default value of 8MB,
or using the PAT_flush_buffer API call to force to CrayPat to write data. Both will cause CrayPat to write data
more often, which results in a more-complete experiment data file.

Measure MPI Load Imbalance
Environment variable: PAT_RT_MPI_SYNC
In MPI programs, time spent waiting at a barrier before entering a collective can be a significant indication of load
imbalance. The PAT_RT_MPI_SYNC environment variable, if set, causes the trace wrapper for each collective
subroutine to measure the time spent waiting at the barrier call before entering the collective. This time is reported
by pat_report in the function group MPI_SYNC, which is separate from the MPI function group, which shows the
time actually spent in the collective.

This environment variable affects tracing experiments only and is set on by default.

Monitor Performance Counters
Environment variable: PAT_RT_PERFCTR

()

Improve Tracebacks 31
--

Use this environment variable to specify CPU, Intel uncore, network, accelerator, power management, and AMD
Interlagos Northbridge events to be monitored while performing tracing experiments.

Counter events are specified in a comma-separated list. Event names and groups from all three components may
be mixed as needed; the tool is able to parse the list and determine which event names or group numbers apply
to which components. To list the names of the individual events on the system, use the papi_avail and
papi_native_avail man pages.

For more information on individual counters, see PAT_RT_PERFCTR in Run Time Environment Variables on page
33

NOTE: Remember, to get useful information, papi_avail or papi_native_avail must be run on the
compute nodes via the aprun command, not run from the login node or esLogin command line.

Hardware Counters

Alternatively, predefined counter group numbers can be used in addition to, or in place of, individual event names
to specify one or more predefined performance counter groups. The valid counter CPU group numbers are listed
in the hwpc(5) man page.

Network Counters

Alternatively, predefined network counter group names can be used in addition to or in place of individual event
names, to specify one or more predefined network counter groups. The valid predefined network counter names
are listed in the nwpc(5) man page.

For more information about available network performance counters:

▪ On Gemini-based systems, either read the technical note Using the Cray Gemini Hardware Counters or view
the counters->gemini topics in pat_help.

▪ On Aries-based systems, either read the technical note Using the Aries Hardware Counters or view the
counters->aries topics in pat_help.

Network performance counter environment variables should be set only during tracing experiments. They are
not useful for sampling experiments other than samp_pc_time.

Accelerator Counters

Alternatively, an acgrp value can be used in place of the list of event names, to specify a predefined performance
counter accelerator group. The valid acgrp names are listed in the accpc(5) man page or on the system in
$CRAYPAT_ROOT/share/counters/CounterGroups.accelerator, where accelerator is the accelerator GPU used on
the system.

NOTE: If the acgrp value specified is invalid or not defined, acgrp is treated as a counter event name.
This can cause instrumented code to generate "invalid ACC performance counter event name"
error messages or even abort during execution. Always verify that the acgrp values specified are
supported on the type of GPU accelerators that are being used.

Accelerated applications cannot be compiled with -h profile_generate, therefore GPU accelerator performance
statistics and loop profile information cannot be collected simultaneously.

Power Management Counters

Cray XC series systems support two types of power management counters. The PAPI Cray RAPL component
provides socket-level access to Intel Running Average Power Limit (RAPL) counters, while the similar PAPI Cray

()

Monitor Performance Counters 32
--

Power Management (PM) counters provide compute node-level access to additional power management
counters. Together, these counters enable the user to monitor and report energy usage during program execution.

CrayPat supports experiments that make use of both sets of counters. These counters are accessed through use
of the PAT_RT_PERFCTR set of run time environment variables. When RAPL counters are specified, one core per
socket is tasked with collecting and recording the specified events. When PM counters are specified, one core per
compute node is tasked with collecting and recording the specified events. The resulting metrics appear on text
reports.

To list the available events, use the PAPI_native_avail command on a compute node and filter for the desired
PAPI components. For example:

$ aprun papi_native_avail -i cray_rapl
$ aprun papi_native_avail -i cray_pm

For more information about the RAPL and PM counters, see the cray_rapl(5) and cray_pm(5) man pages.

Run Time Environment Variables
The run time environment variables communicate directly with an executing instrumented program and affect how
data is collected and saved.

PAT_RT_ACC_ACTIVITY_BUFFER_SIZE Specifies the size in bytes of the buffer used to collect records for the
accelerator time line view in Cray Apprentice2. Size is not case-
sensitive and can be specified in kilobytes (KB), megabytes (MB), or
gigabytes (GB).

Default: 1MB

PAT_RT_ACC_RECORD Overrides the programming model for which accelerator performance
data is collected. The valid values are:

off Disables collection of accelerator performance data.

cce Collect performance data for applications compiled with CCE
and using OpenACC directives.

cuda Collect performance data for CUDA applications.

pgi Collect performance data for applications using PGI
accelerator directives.

Default: unset

PAT_RT_ACC_FORCE_SYNC Forces accelerator synchronization in order to enable collection of
accelerator time for asynchronous events.

Default: not enabled

PAT_RT_BUILD_ENV Indicates if any run time environment variables embedded in the
instrumented program using the pat_build rtenv directive are
ignored. If set to 0, all embedded environment variables in the

()

Run Time Environment Variables 33
--

instrumented program are ignored. If set to 1, all embedded
environment variables are used.

Default: 1
A comma-separated list of environment variable names may follow 0
or 1. This is an exception list. If a list appears after 0, all embedded
environment variables are ignored (unset) except the ones listed.
Conversely, if a list appears after 1, all embedded environment
variable are used except the ones listed.

If an environment variable that is embedded in the instrumented
program is also set in the execution environment, the value set in the
execution environment takes precedence and the value embedded in
the instrumented program is ignored.

For more information about the rtenv directive, see pat_build (1)
man page.

PAT_RT_CALLSTACK Specifies the depth to which to trace the call stack for a given entry
point when sampling or tracing. For example, if set to 1, only the
caller of the entry point is recorded.

Default: 100 or to the main entry point, whichever is less

PAT_RT_CALLSTACK_BUFFER_SIZE Specifies the size in bytes per thread of the run time summary buffer
used to collect function call stacks. Size is not case-sensitive and
can be specified in kilobytes (KB), megabytes (MB), or gigabytes
(GB).

Default: 4MB

PAT_RT_COMMENT Specifies an arbitrary string that is inserted into the experiment data
file. The string is included in the report analysis done by pat_report.

Default: unset

PAT_RT_CONFIG_FILE Specifies one or more configuration files that contain environment
variables. Multiple file names are separated with the comma (,)
character. Lines in the file that begin with the # character are
interpreted as comments and ignored. If the file name specified
begins with a question mark (?) character, and the file does not exist
or is otherwise inaccessible, no fatal error is generated.

Environment variables are of the form defined by sh and ksh:
name=value.

After all files specified by the PAT_RT_CONFIG_FILE environment
variable are processed, if the file $HOME/.craypatrc exists, its
contents are processed. Next, if the file ./craypatrc exists, its
contents are processed.

The environment variables appear in the file(s) one per line. Each
subsequent environment variable name replaces the value of the
previous one with the same name. Typically, the
PAT_RT_CONFIG_FILE environment variable is used by site

()

Run Time Environment Variables 34
--

administrators to define default system-wide CrayPat run time
environment variables. Users should exercise caution when
changing PAT_RT_CONFIG_FILE or adding additional configuration
files to it.

Default: unset

PAT_RT_EXIT_AFTER_INIT If nonzero, terminate execution after the initialization of the CrayPat
run time library is complete.

Default: 0

PAT_RT_EXPERIMENT Identifies the experiment to perform.

By default, CrayPat instruments programs for Automatic Profiling
Analysis. However, if a program is instrumented for a sampling
experiment by using the pat_build -S option, or for tracing by using
the pat_build -w, -u, -T, -t, or -g options, then use the
PAT_RT_EXPERIMENT environment variable to further specify the
type of experiment to be performed.

If a program is instrumented for tracing and PAT_RT_EXPERIMENT
is used to specify a sampling experiment, trace-enhanced sampling
is performed, subject to the rules established by the
PAT_RT_SAMPLING_MODE environment variable setting.

Depending on the options selected, it is possible to generate
extremely large data files.

The valid experiments are:

samp_pc_time Samples the program counter at a given time
interval. This returns the total program time and
the absolute and relative times each program
counter was recorded. The default interval is
10,000 microseconds. The default POSIX interval
timer measures monotonic wall-clock time. This is
changed using the
PAT_RT_SAMPLING_INTERVAL_TIMER run time
environment variable.

samp_pc_ovfl Samples the program counter at a given overflow
of a CPU performance counter. The CPU counter
and its overflow value are separated by the @
symbol and specified in a comma-separated list in
the run time variable PAT_RT_PERFCTR, i.e.,
event-name@overflow-value. The default overflow
counter is cycles and the default overflow
frequency equates to an interval of 1,000
microseconds.

samp_cs_time Samples the call stack at a given time interval.
This returns the total program time and the
absolute and relative times each call stack
counter was recorded, and is otherwise identical
to the samp_pc_time experiment.

()

Run Time Environment Variables 35
--

samp_cs_ovfl Samples the call stack at a given overflow of a
CPU performance counter. This experiment is
otherwise identical to the samp_pc_ovfl
experiment.

trace When tracing experiments are done, selected
functions are traced and produce a data record in
the run time experiment data file, if the function is
executed. The functions to be traced are defined
by the pat_build -g, -u, -t, -T, or -w options
specified when instrumenting the program. For
more information about instrumenting programs
for tracing experiments, see the pat_build(1)
man page.

NOTE: Only true function calls can be
traced. Function calls that are inlined by
the compiler or that have local scope in a
compilation unit cannot be traced.
Tracing experiments are also affected by
the settings of other environment
variables, all of which have names
beginning with PAT_RT_TRACE_.

PAT_RT_EXPFILE_APPEND If nonzero, append the experiment data records to an existing
experiment data file. If the experiment data file does not already
exist, it is created.

If both PAT_RT_EXPFILE_APPEND and
PAT_RT_EXPFILE_REPLACE are set, PAT_RT_EXPFILE_APPEND
is ignored and the existing data file is replaced.

Default: 0

PAT_RT_EXPFILE_DIR Identifies the path name of the directory in which to write the
experiment file. If the name of the directory begins with the @
character, checks for ensuring that the directory resides on a record-
locking file system, such as Lustre, are not performed.

See PAT_RT_EXPFILE_MAX for more information about writing to a
directory that resides on a file system that does not support record
locking.

Default: the current execution directory

PAT_RT_EXPFILE_FIFO If nonzero, the experiment data file is created as named FIFO pipe
instead of a regular file. The instrumented program will block until the
user executes another program that opens the pipe for reading. For
more information, see the mkfifo(3) man page.

Default: 0

PAT_RT_EXPFILE_FSLOCK Specifies the file record-locking attribute that overrides what CrayPat
determines from evaluating the /etc/mtab file. This attribute

()

Run Time Environment Variables 36
--

indicates the type of file system locking supported. The valid values
are:

0 No file record-locking is supported.

1 File record-locking is supported across all compute nodes
and within the node itself.

local File record-locking is supported only within the node.

Default is unset.

PAT_RT_EXPFILE_MAX The maximum number of experiment data files created. If more than
one data file is created, a directory is created to contain the resulting
data files.

Default: 256
If the number of PEs used to execute the instrumented program is
less than 256, a single data file is created for each PE (up to 256
files). If 256 or more PEs are used, the number of data files created
is the square root of the number of PEs used for program execution,
rounded up to the next integer value. If the value of
PAT_RT_EXPFILE_MAX is -1 or greater than or equal to the number
of PEs used for program execution, one data file per PE is created.

If PAT_RT_EXPFILE_MAX is set to 0, all PEs executing on a
compute node write to the same data file. In this case the number of
data files created depends on how the PEs are scheduled on the
compute nodes and the directory need not reside on a file system
that supports record locking.

PAT_RT_EXPFILE_NAME Replaces the name portion of the experiment data file that was
appended to the directory. The suffix, and other information, is
appended to this name. If the value given to
PAT_RT_EXPFILE_NAME ends with / or /+ any preceding name is
interpreted as the name of a directory into which the experiment data
files are written. If the name of the file begins with the @ character,
the file is not removed if the instrumented program terminates during
the initialization phase of CrayPat.

Default: the base name of the file

PAT_RT_EXPFILE_PES Records data and writes the recorded data to its respective data file
only for the specified PEs. If set to *, values from every PE are
recorded.

Default: * (all PEs)

If not using the default, the PEs to be recorded are specified in a
comma-delimited list, with each specification represented as one of
the following:

n Value n.

n-m Values n through m, inclusive.

n%p Every pth value from 0 through n.

()

Run Time Environment Variables 37
--

n-m%p Every pth value from n through m.

For example, the following values are all valid specifications.

0,4,5,10 Record PEs 0, 4, 5, and 10

15%4 Record PEs 0, 4, 8, and 12

4-31%8 Record PEs 4, 12, 20, and 28

PAT_RT_EXPFILE_REPLACE If nonzero, replace an existing experiment data file with the new
experiment data file. All data in the previous file is lost. If both
PAT_RT_EXPFILE_APPEND and PAT_RT_EXPFILE_REPLACE are
set, PAT_RT_EXPFILE_APPEND is ignored and the existing data file
is replaced.

Default: 0

PAT_RT_EXPFILE_SUFFIX The suffix component of the experiment data file name.

Default: .xf

PAT_RT_EXPFILE_THREADS Record data for the specified thread only. If set to *, values from
every thread are recorded.

Default: * (all threads)

If not using the default, the threads to be recorded are specified in a
comma-delimited list, with each specification represented as one of
the following:

n Value n.

n-m Values n through m, inclusive.

n%p Every pth value from 0 through n.

n-m%p Every pth value from n through m.

For example, the following values are all valid specifications.

0,2 Record threads 0 and 2.

7%2 Record threads 0, 2, 4, and 6.

PAT_RT_HEAP_BUFFER_SIZE Specifies the size in bytes of the run time summary buffer used to
collect dynamic heap information. This environment variable affects
tracing experiments only.

Default: 2MB

MPI_MSG_BINS Specifies the size boundaries of the histogram bins used to capture
MPI messages sent between ranks. The specification is a comma-
separate list of values. The maximum number of values indicating
each bin size is 30. Zero and infinitely are implied.

This environment variable affects data collection only when in run
time summary mode.

()

Run Time Environment Variables 38
--

Default: 16,256,4kb,64kb,1mb,16mb

PAT_RT_MPI_MSG_TRACKING If set to 0, data collection for the mosaic view in Apprentice2 is
disabled.

Default: 1.

PAT_RT_MPI_SYNC Measure load imbalance in programs instrumented to trace MPI
functions. If set to 1, this causes the trace wrapper for each
collective subroutine to measure the time for a barrier call prior to
entering the collective. This time is reported by pat_report in the
function group MPI_SYNC, which is separate from the MPI function
group.

If PAT_RT_MPI_SYNC is set, the time spent waiting at a barrier and
synchronizing processes is reported under MPI_SYNC, while the time
spent executing after the barrier is reported under MPI.

To disable measuring MPI barrier and sync times, set this
environment variable to 0. This environment variable affects tracing
experiments only.

Default: 1 (enabled)

PAT_RT_MPI_THREAD_REQUIRED Specifies the MPI thread-level support for the instrumented program
to use. This is a cardinal number that represents the MPI thread-
level support. For more information, see the MPI_Init_thread(3)
man page.

Default: As specified in the MPI_Init_thread function call in the
original program.

PAT_RT_MSG_FILE Writes messages generated by the run time library to the specified
file. By default, all run time library messages are written to standard
error. If the specified file can not be created, the messages are
written to standard error. The specified file should be created on a
file system that supports global file locking to reduce the chance of
messages from different ranks being interleaved.

Default: unset

PAT_RT_MSG_VERBOSE If set, specify the PEs from which to accept and record info-level
messages. If set to *, messages from every PE are accepted.

Default: unset

Alternatively, the PEs to be recorded can be specified in a comma-
delimited list, with each specification represented as one of the
following:

n PE n.

n-m PEs n through m, inclusive

n%p Every pth PE from 0 through n

n-m%p Every pth PE from n through m

()

Run Time Environment Variables 39
--

PAT_RT_PARALLEL_MAX Specifies the maximum number of unique call site entries to collect
for any OpenMP trace points generated by the CCE or PGI
compilers when the OpenMP programming model is used. A call site
is the text address at which the respective OpenMP trace point is
called.

See the pat_build(1) man page for more information about
compiler-generated trace points.

Default: 1024

PAT_RT_PERFCTR Specifies the performance counter events to be monitored during the
execution of a program instrumented for tracing experiments.

Counter events are specified in a comma-separated list. Event
names and groups from all three components may be mixed as
needed; the tools is able to parse the list and determine which event
names or group numbers apply to which components. To list the
names of the individual events on the system, use the papi_avail(1)
and papi_native_avail(1) commands.

For lists of available network performance counters:

On Gemini-based systems, either read the technical note Using the
Cray Gemini Hardware Counters, read the files
$CRAYPAT_ROOT/share/counters/Counters.papi_gemini or
$CRAYPAT_ROOT/share/counters/Counters.papi_gemini.xml, or view
the countersgemini topics in pat_help.

On Aries-based systems, either read the technical note Using the
Aries Hardware Counters, read the files
$CRAYPAT_ROOT/share/counters/Counters.papi_aries or
$CRAYPAT_ROOT/share/counters/Counters.papi_aries.xml, or view
the countersaries topics in pat_help.

Depending on the counter selected, individual counter events can be
specified in one of several ways:

▪ use the performance counter event name, as given by
papi_avail or papi_native_avail

▪ use the performance counter event name followed by the @
symbol and a value, to indicate a non-default overflow value
used by the sampling-by-overflow experiments

▪ use the performance counter event name followed by the = sign
and a value, to assign a value to a configuration event on an
Aries network router

Additionally, if the event name is surrounded by parentheses and the
event name is determined to be invalid, no WARNING message is
issued and the name is ignored.

Alternatively, counter group numbers can be used in addition to or in
place of individual event names, to specify one or more predefined
performance counter groups. The valid counter CPU and GPU group
numbers are listed in the hwpc(5) and accpc(5) man pages

()

Run Time Environment Variables 40
--

respectively. Predefined network counter groups have names
instead, and are listed in the nwpc(5) man page.

In addition, this environment variable supports the use of keywords.
The keywords currently recognized are:

▪ domain:u - specify that CPU counters are active in the user's
domain

▪ domain:k - specify that CPU counters are active in the kernel
(OS) domain

▪ domain:x - specify that CPU counters are active in the
exception domain

▪ mpx - enable multiplexing for CPU events

▪ { - if the keyword { appears in a list of event names, and any
event name that appears in the list after this keyword is
determined to be invalid, no WARNING message is issued and
all invalid names are ignored

▪ } - if the keyword } appears in a list of event names, revert to
the default behavior of issuing a WARNING message if any
event name that appears after this keyword is invalid

The behavior of the PAT_RT_PERFCTR environment variable is also
affected by the PAT_RT_PERFCTR_FILE and
PAT_RT_PERFCTR_FILE_GROUP environment variables. These are
described in detail in the intro_craypat(1) man page.

Default: unset

PAT_RT_PERFCTR_FILE Specifies, in a comma-separated list, the names of one or more files
that contain performance counter specifications. Within the files,
lines beginning with the # character are interpreted as comments
and ignored. See PAT_RT_PERFCTR for a description of an event
specification.

Default: unset

PAT_RT_PERFCTR_FILE_GROUP Specifies, in a comma-separated list, the names of one or more files
that contain performance counter group definitions. A group
definition consists of at least one valid performance counter event.
Use the papi_avail and papi_native_avail commands to determine
the names of valid events.

The format of the file is: group-name=event1,...

The definition of the group is terminated with a <newline>
character. There may be multiple unique group names defined in a
single file. Lines that do not match this syntax are ignored.

If the first file name in the list is the character 0 (zero), the default
counter groups are not loaded and therefore are not available for
selection using PAT_RT_PERFCTR.

The file containing the group definitions for the default groups is in
$CRAYPAT_ROOT/share/counters.

()

Run Time Environment Variables 41
--

Default: unset

PAT_RT_RECORD Specifies the initial data collection and recording state for the
instrumented program. If set to zero, no performance data is
collected or recorded when the program starts execution. Use the
PAT_record API call to turn on data collection and recording; see
the pat_build(1) man page for more information.

Default: unset

PAT_RT_REGION_CALLSTACK Specifies the depth of the stack for which the CrayPat API functions
PAT_region_begin and PAT_region_end are maintained. In
other words, it is the maximum number of consecutive
PAT_region_begin references that can be made without an
intervening PAT_region_end. Setting this environment variable to
zero (0) disables data collection for all regions. This environment
variable affects tracing experiments only.

Default: 128

PAT_RT_REGION_MAX Specifies the largest numerical ID that may be used as an argument
to the CrayPat API functions PAT_region_begin and
PAT_region_end. Values greater than this cause the API function
to be ignored. Setting this environment variable to zero (0) disables
data collection for all regions. This environment variable affects
tracing experiments only.

Default: 100

PAT_RT_REPORT_CLEANUP If the report directive is set to y in pat_build when the program is
instrumented, a textual report is written to stdout when the
instrumented program successfully completes execution. This
environment variable specifies how the temporary files used for
report generation are removed after the report is produced. The valid
values are skip, fail, and force, where skip does not remove
any files, fail removes files only if there is an error in report
generation, and force always removes files.

Default: fail

PAT_RT_REPORT_CMD This environment variable supports two or more comma-separated
arguments, report-command and report-options, which can be used
to specify the pathname of the executable file that produces the text
report and then a comma-separated list of one or more report
options to be passed to pat_report.

If only report-command is set, a default text report is produced when
the program terminates successfully. If report-options are also
included, the user can control the content and format of the resulting
report. The valid report-options options are listed in the
pat_report(1) man page.

Defaults:

()

Run Time Environment Variables 42
--

report-command - $CRAYPAT_ROOT/bin/pat_report
report-options - none

PAT_RT_REPORT_METHOD If the report directive is set to y in pat_build when the program is
instrumented, a textual report is written to stdout when the
instrumented program successfully completes execution. This
environment variable defines the mechanism used to create the text
report. Valid values are pe0 and team. The pe0 argument uses only
PE zero to control all aspects of report generation, while the team
argument uses all PEs to share control of all aspects of report
generation. To disable report generation, set this environment
variable to 0.

Implementation of the team argument is deferred.

Default: pe0

PAT_RT_SAMPLING_DATA Specify additional data when collecting in non-summarized mode.
See the pat_help plots topic for details on how to view the data.

Collecting additional data in a non-summarized mode is supported
only in full-trace mode. See PAT_RT_SUMMARY for a description of
full-trace mode. The valid options are:

cray_pm Cray PM counters

cray_rapl RAPL energy counters

heap heap (see mallinfo(3))

memory current memory state

perfctr selected performance counters as specified by
PAT_RT_PERFCTR and PAT_RT_PERFCTR_FILE

rusage resource usage (see getrusage(2))

sheap shared heap for programs that use DMAPP

By default, if this environment variable is set, the additional data
requested is sampled once for every 100 sampled program counter
addresses. Alternatively, an option may be followed by '@ratio' to
indicate the frequency at which the data is to be sampled. For
example, if ratio is 1, the additional data requested is collected each
time the program counter is sampled. If the ratio is 1000, the
additional data requested is collected once every 1000 program
counter samples.

Default: not set

PAT_RT_SAMPLING_INTERVAL Specifies the interval, in microseconds, at which the instrumented
program is sampled. To specify a random interval, use the following
format:

lower-bound,upper-bound[,seed]

After a sample is captured, the interval used for the next sampling
interval is generated using rand(3) and will be between lower-

()

Run Time Environment Variables 43
--

found and upper-bound. The initial seed (seed) for the sequence of
random numbers is optional. See srand(3) for more information.

This environment variable affects sampling experiments. It can also
be used to control trace-enhanced sampling experiments, provided
the program is instrumented for tracing, but the
PAT_RT_EXPERIMENT environment variable is used to specify a
sampling-type experiment, and subject to the
PAT_RT_SAMPLING_MODE environment variable setting.

PAT_RT_SAMPLING_INTERVAL_TIMER Specifies the type of POSIX interval timer used for sampling-by-time
experiments. The following values are valid:

0 wall-clock (real) time
1 wall clock (real) time guaranteed to be monotonic

The environment variable affect sampling experiments. It can also be
used to control trace-enhanced sampling experiments, provided the
program is instrumented for tracing but the PAT_RT_EXPERIMENT
environment variable is used to specify a sampling-type experiment,
and subject to the PAT_RT_SAMPLING_MODE environment setting.
See the timer_create(2) man page for more information.

Default: 1

PAT_RT_SAMPLING_MODE Specifies the mode in which trace-enhanced sampling operates.
Trace-enhanced sampling allows a sampling experiment to be
executed on a program instrumented for tracing. It affects both user-
defined functions and predefined function groups. The value may be
one of the following:

0 Ignore trace-enhanced sampling. The normal tracing experiment
is performed.

1 Enable raw sampling. Any traced entry points present in the
instrumented program are ignored.

3 Enable bubble sampling. Traced entry points and any functions
they call return a sample PC address mapped to the traced entry
point.

When set to a nonzero value, all sampling experiments and
parameters that control sampling apply to the executing
instrumented program. Tracing records are not produced.

Default: 0

PAT_RT_SAMPLING_SIGNAL Specifies the signal that is issued when a POSIX interval timer
expires or a CPU performance counter overflows.

This environment variable affects sampling experiments. It can also
be used to control trace-enhanced sampling experiments, provided
the program is instrumented for tracing but the
PAT_RT_EXPERIMENT environment variable is used to specify a
sampling-type experiment, and subject to the
PAT_RT_SAMPLING_MODE environment variable setting.

()

Run Time Environment Variables 44
--

This environment variable accepts the names of signals as given in
the signal(7) man page; for example, SIGALRM, SIGPROF, etc. The
signal as specified as a cardinal number is also accepted. Note that
a given signal may be used by other components or features of the
instrumented program, and some signals may interfere with CrayPat
initialization or run time data collection.

Default: 27 (SIGPROF)

PAT_RT_SAMPLING_MASK Specifies a bitmask that is AND'd with the PC address acquired
during a sampling experiment. This can reduce the number of unique
addresses collected. The default value is 0xffffffffff and is
specified in hexadecimal notation.

PAT_RT_SETUP_SIGNAL_HANDLERS If zero, the CrayPat run time library does not catch signals that the
program receives; this results in an incomplete experiment file but a
more accurate traceback for an aborted program with a core dump.

Default: 1

PAT_RT_STACK_SIZE Specifies the size in bytes of the MAIN thread's run time stack. This
size is used to determine the validity of a frame pointer while
unwinding the call stack. This value may be increased to
accommodate large data objects defined within a function. This value
may be decreased if a segmentation fault occurs as a result of
CrayPat following invalid frame pointer information while unwinding
the call stack.

Default: 64MB

PAT_RT_SUMMARY If set to a nonzero value, run time summarization is enabled and the
data collected is aggregated. This greatly reduces the size of the
resulting experiment data files but at the cost of fine-grain detail, as
formal parameter values, function return values, and call stack
information are not recorded.

If set to 0, run time summarization is disabled and performance data
is captured in detail.

Disabling run time summarization can be valuable, particularly
planning to use Cray Apprentice2 to study the data. However, be
advised that setting this environment variable to 0 can produce
enormous experiment data files, unless the CrayPat API is also used
to limit data collection to a specified region of the program.

Default: 1 (enabled)

PAT_RT_THREAD_ALLOW Specifies how created threads are monitored and recorded. If set to
a nonzero value, every thread created after the main entry point has
executed is monitored and its data recorded. Set to zero to ignore all
data collection for created threads.

Default: 1 (enabled)

()

Run Time Environment Variables 45
--

PAT_RT_THREAD_CANCEL_NTRIES Specifies the number of attempts the main thread makes in waiting
for all created threads to terminate. An attempt is made every 0.25
seconds. Once all attempts have been completed by the main
thread, the rest of the shutdown procedures can complete.

Once the shutdown procedures begin, any thread that has not
terminated is forced to exit, possibly causing the thread's collected
data not to be recorded in the data file.

Default: 120 (30 seconds)

PAT_RT_THREAD_MAX Specifies the maximum number of threads that can be created and
for which data is recorded. See PAT_RT_EXPFILE_THREADS to
manage the recording of data for individual threads.

Default: 1000000

PAT_RT_TRACE_API If 0, suppress the events and any data records produced by all
embedded CrayPat API functions in the instrumented program. For
more information about the CrayPat API, see the pat_build(1) man
page.

Default: 1 (enabled)

PAT_RT_TRACE_DEPTH Specifies the maximum depth of the run time call stack for traced
functions during run time summarization.

Default: 512

PAT_RT_TRACE_FUNCTION_ARGS Specifies the maximum number of function argument values
recorded each time a function is called during a tracing experiment.
This environment variable applies to tracing experiments only and is
ignored in trace summary mode.

Default: all argument values to a function are recorded in full trace
mode

PAT_RT_TRACE_FUNCTION_DISPLAY If set to a nonzero value (enabled), write the function names which
have been instrumented in the program to stdout. This
environment variable affects tracing experiments only.

Default: 0 (disabled)

PAT_RT_TRACE_FUNCTION_MAX The maximum number of traces generated for all instrumented
functions for a single thread. This environment variable affects
tracing experiments only.

Default: the maximum number of traces is unlimited

PAT_RT_TRACE_FUNCTION_NAME Specify by name the instrumented functions to trace. The value is a
comma-separated list of one of two forms:

function-name1, ..., function-namen
or

function-name, function-name:last

()

Run Time Environment Variables 46
--

In the first form tracing records are produced every time the
instrumented function function-name is executed. In the second form
tracing records are produced only for the instrumented function
function-name until function-name is executed last number of
times.

If the function name is *, any value specified applies to all
instrumented functions. For example:

*:0 - prevents all instrumented functions from recording trace data,
whereas,

*:0,function-name - specifies that only the instrumented function
function-name will record trace data.
This environment variable affects tracing experiments only.

Default: unset

PAT_RT_TRACE_FUNCTION_SIZE Specify the size in bytes of the instrumented function to trace in a
program instrumented for tracing. The size is given as min, max,
where min is the lower limit and max is the upper limit, specified in
bytes. A trace record is produced only when the size of the
instrumented function lies between min and min, max. This
environment variable affects tracing experiments only.

Default: unset

PAT_RT_TRACE_HEAP If set to 0, disable the collection of dynamic heap information. This
environment variable affects tracing experiments only.

Default: 1 (enabled), if malloc is present

PAT_RT_TRACE_HOOKS Enable/disable instrumentation inserted as a result of tracing options
specified when compiling the program. (See the pat_build(1) man
page.) The syntax is a comma-separated list of compiler
instrumentation types and toggles in the form name:a,name:a...,
where name represents the nature of the compiler instrumentation
and a is either zero to disable the specified event or nonzero to
enable it. If no name is specified and PAT_RT_TRACE_HOOKS is set to
zero, all compiler-instrumented tracing is disabled.
PAT_RT_TRACE_HOOKS interacts with PAT_RT_SUMMARY. For more
information, see Default, below.

The valid values for name are:

acc GPU accelerator events

chapel Chapel events

func Function entry and return events

loops Loop timing events

omp OpenMP events

Default: 1 (collect data for all compiler-inserted trace points) if
PAT_RT_SUMMARY is unset or set to a nonzero value (that is, if run
time summarization is enabled); acc:1,omp:1 (collect data for GPU

()

Run Time Environment Variables 47
--

accelerator events and OpenMP events but ignore all other compiler-
inserted trace points) if PAT_RT_SUMMARY is set to 0 (that is, if run
time summarization is disabled).

PAT_RT_TRACE_OVERHEAD Specify the number of times the functions used to calculate the
calling overhead are called upon run time initialization and
termination. To suppress overhead calculations, set this to 0. The
larger the value, the more accurate the overhead calculation.

Default: 100

PAT_RT_TRACE_THRESHOLD_PCT Specify a threshold to enforce when executing in full trace mode.
The format is ncalls,pct where pct is between 1 and 100. If a
function's total time relative to its executing thread's total time falls
below the percentage pct, trace records for the function are no
longer produced. The function must be called at least ncalls time(s)
in order to activate the threshold.

For example, if PAT_RT_TRACE_THRESHOLD_PCT is set to
1000,15, and a function's total time relative to the executing
thread's time falls below 15 percent after being called at least 1,000
times, trace records for the function are no longer written to the
experiment data file.

This environment variable affects tracing experiments only.

Default: unset

PAT_RT_TRACE_THRESHOLD_TIME Specify a threshold to enforce when executing in full trace mode.
The format is ncalls,microsecs. If a function's average time per call
falls below the time specified by microsecs, trace records for the
function are no longer produced. The function must be called at least
ncalls time(s) in order to activate the threshold.

For example, if PAT_RT_TRACE_THRESHOLD_TIME is set to
2500,500, and a function's average time per call falls below 500
microseconds after being called at least 2,500 times, trace records
for the function are no longer written to the experiment data file.

This environment variable affects tracing experiments only.

Default: unset

PAT_RT_WRITE_BUFFER_SIZE Specify the size, in bytes, of a buffer that collects measurement data
for a single thread.

Default: 8MB

()

Run Time Environment Variables 48
--

Use pat_report

The pat_report command is the text reporting component of the Cray Performance Analysis Tools suite. After
using the pat_build command to instrument the program, set the run time environment variables as desired, and
then execute the program, use the pat_report command to generate text reports from the resulting data and
export the data for use in other applications.

The pat_report command is documented in detail in the pat_report(1) man page. Additional information can be
found in the online help system under pat_help report.

Data Files
The data files generated by CrayPat vary depending on the type of program being analyzed, the type of
experiment for which the program was instrumented, and the run time environment variables in effect at the time
the program was executed. In general, the successful execution of an instrumented program produces one or
more .xf files, which contain the data captured during program execution.

Unless specified otherwise using run time environment variables, these file names have the following format:

a.out+pat+PID-node[s|t].xf

Where:

Table 2. Data File Formats

File Name Format

a.out The name of the instrumented executable.

PID The process ID assigned to the instrumented executable at run time.

node The physical node ID upon which the rank zero process was executed.

[s|t] The type of experiment performed, either s for sampling or t for tracing.

If the file system supports record locking across compute nodes, program execution produces a directory of data
files. The directory is named using the syntax described above, but the individual .xf data files in the directory
have sequential, numerical file names. If PAT_RT_EXPFILE_MAX is set to 0, the individual data files created take
the form where the node number is part of the name, and all PEs executing on a given node write their data to that
file.

Use the pat_report command to process the information in individual .xf files or directories containing .xf files.
Upon execution, pat_report automatically generates an .ap2 file, which is both a self-contained archive that can
be reopened later using the pat_report command and the exported-data file format used by Cray Apprentice2.

()

Data Files 49
--

If the executable was instrumented with the pat_build -O apa option, running pat_report on the .xf file(s) also
produces an .apa file, which is the file used by Automatic Profiling Analysis. See Use Automatic Profiling
Analysis on page 17.

Generate Reports
To generate a report, use the pat_report command to process the .xf file or directory containing .xf files.

$ pat_report a.out+pat+PID-nodet.xf

The complete syntax of the pat_report command is documented in the pat_report(1) man page.

Running pat_report automatically generates an .ap2 file, which is both a self-contained archive that can be
reopened later using the pat_report command and the exported-data file format used by Cray Apprentice2. Also,
if the executable was instrumented with the pat_build -O apa option, running pat_report on the .xf file(s) or the
associated .ap2 file produces an .apa file, which is the file used by Automatic Profiling Analysis. See Use
Automatic Profiling Analysis on page 17.

The pat_report command is a powerful report generator with a wide range of user-configurable options.
However, the reports that can be generated are first and foremost dependent on the kind and quantity of data
captured during program execution. For example, if a report does not seem to show the level of detail being
sought when viewed in Cray Apprentice2, consider rerunning the program with different pat_build options, or
different or additional run time environment variable values. Note that setting PAT_RT_SUMMARY set to zero
(disabled) will enable time-line panels in Cray Apprentice2, but will not affect the reports available from
pat_report.

Predefined Reports
The easiest way to use pat_report is by using an -O option to specify one of the predefined reports. For example,
enter this command to see a top-down view of the calltree.

> pat_report -O calltree datafile.xf
In many cases there is a dependency between the way in which a program is instrumented in pat_build and the
data subsequently available for use by pat_report. For example, instrument the program using the pat_build -g
heap option (or one of the equivalent user-defined pat_build options) in order to get useful data on the
pat_report -O heap report, or use the pat_build -g mpi option (or one of the equivalent user-defined pat_build
options) in order to get useful data on the pat_report -O mpi_callers report.

The predefined reports currently available can be listed with pat_report -O -h. They include:

accelerator Show calltree of accelerator performance data sorted by host time.

accpc Show accelerator performance counters.

acc_fu Show accelerator performance data sorted by host time.

acc_time_fu Show accelerator performance data sorted by accelerator time.

acc_time Show calltree of accelerator performance data sorted by accelerator time.

()

Generate Reports 50
--

acc_show_by_ct (Deferred implementation) Show accelerator performance data sorted
alphabetically.

affinity Shows affinity bitmask for each node. Can use -s pe=ALL and -s th=ALL
to see affinity for each process and thread, and use -s
filter_input=expression to limit the number of PEs shown.

profile Show data by function name only

callers (or ca) Show function callers (bottom-up view)

calltree (or ct) Show calltree (top-down view)

ca+src Show line numbers in callers

ct+src Show line numbers in calltree

heap Implies heap_program. heap_hiwater, and heap_leaks. Instrumented
programs must be built using the pat_build -g heap option in order to
show heap_hiwater and heap_leaks information.

heap_program Compare heap usage at the start and end of the program, showing heap
space used and free at the start, and unfreed space and fragmentation at the
end.

heap_hiwater If the pat_build -g heap option was used to instrument the program, this
report option shows the heap usage "high water" mark, the total number of
allocations and frees, and the number and total size of objects allocated but
not freed between the start and end of the program.

heap_leaks If the pat_build -g heap option was used to instrument the program, this
report option shows the largest unfreed objects by call site of allocation and
PE number.

kern_stats Show kernel-level statistics including average kernel grid size, average block
size, and average amount of shared memory dynamically allocated for the
kernel.

load_balance,
load_balance_program,
load_balance_group

Implies load_balance_program, load_balance_group, and
load_balance_function. Show PEs with maximum, minimum, and
median times.

load_balance_function For the whole program, groups, or functions, respectively, show the
imb_time (difference between maximum and average time across PEs) in
seconds and the imb_time% (imb_time/max_time * NumPEs/(NumPEs
- 1)). For example, an imbalance of 100% for a function means that only
one PE spent time in that function.

load_balance_cm If the pat_build -g mpi option was used to instrument the program, this
report option shows the load balance by group with collective-message
statistics.

()

Generate Reports 51
--

load_balance_sm If the pat_build -g mpi option was used to instrument the program, this
report option shows the load balance by group with sent-message statistics.

load_imbalance_thread Shows the active time (average over PEs) for each thread number.

loop_times Inclusive and Exclusive Time in Loops. If the compiler -h
profile_generate option was used when compiling and linking the
program, then this table will be included in a default report and the following
additional loop reporting options are also available.

loop_callers Loop Stats by Function and Caller. Available only if the compiler -h
profile_generate option was used when compiling and linking the
program.

loop_callers+src Loop Stats by Function and Callsites. Available only if the compiler -h
profile_generate option was used when compiling and linking the
program.

loop_calltree Function and Loop Calltree View. Available only if the compiler -h
profile_generate option was used when compiling and linking the
program.

loop_calltree+src Function and Loop Calltree with Line Numbers. Available only if the compiler
-h profile_generate option was used when compiling and linking the
program.

profile_loops Profile by Group and Function with Loops. Available only if the compiler -h
profile_generate option was used when compiling and linking the
program.

mesh_xyz Show the coordinates in the network mesh.

mpi_callers Show MPI sent- and collective-message statistics.

mpi_sm_callers Show MPI sent-message statistics.

mpi_coll_callers Show MPI collective-message statistics.

mpi_dest_bytes Show MPI bin statistics as total bytes.

mpi_dest_counts Show MPI bin statistics as counts of messages.

mpi_sm_rank_order Calculate a suggested rank order based on MPI grid detection and MPI point-
to-point message optimization. Uses sent-message data from tracing MPI
functions to generate suggested MPI rank order information. Requires the
program to be instrumented using the pat_build -g mpi option.

mpi_rank_order Calculate a rank order to balance a shared resource such as USER time over
all nodes. Uses time in user functions, or alternatively, any other metric
specified by using the -s mro_metric options, to generate suggested MPI
rank order information.

()

Generate Reports 52
--

mpi_hy_rank_order Calculate a rank order based on a hybrid combination of
mpi_sm_rank_order and mpi_rank_order.

nids Show PE to NID mapping.

nwpc Program network counter activity.

profile_nwpc NWPC data by Function Group and Function. Table shown by default if NWPC
counters are present in the .ap2 file.

profile_pe.th Show the imbalance over the set of all threads in the program.

profile_pe_th Show the imbalance over PEs of maximum thread times.

profile_th_pe For each thread, show the imbalance over PEs.

program_time Shows which PEs took the maximum, median, and minimum time for the
whole program.

read_stats
write_stats If the pat_build -g io option was used to instrument the program, these

options show the I/O statistics by filename and by PE, with maximum,
median, and minimum I/O times.

samp_profile+src Show sampled data by line number with each function.

thread_times For each thread number, show the average of all PE times and the PEs with
the minimum, maximum, and median times.

By default, all reports show either no individual PE values or only the PEs having the maximum, median, and
minimum values. The suffix _all can be appended to any of the above options to show the data for all PEs. For
example, the option load_balance_all shows the load balance statistics for all PEs involved in program
execution. Use this option with caution, as it can yield very large reports.

User-defined Reports
In addition to the -O predefined report options, the pat_report command supports a wide variety of user-
configurable options that enable the user to create and generate customized reports. These options are described
in detail in the pat_report(1) man page and examples are provided in the pat_help online help system.

To create customized reports, pay particular attention to the -s, -d, and -b options.

-s These options define the presentation and appearance of the report, ranging from layout and labels, to
formatting details, to setting thresholds that determine whether some data is considered significant enough
to be worth displaying.

-d These options determine which data appears on the report. The range of data items that can be included
also depends on how the program was instrumented, and can include counters, traces, time calculations,
mflop counts, heap, I/O, and MPI data. As well, these options enable the user to determine how the
displayed values are calculated.

()

Generate Reports 53
--

-b These options determine how data is aggregated and labeled in the report summary.

For more information, see the pat_report(1) man page. Additional information and examples can be found in the
pat_help online help system.

Export Data
When using the pat_report command to view an .xf file or a directory containing .xf files, pat_report
automatically generates an .ap2 file, which is a self-contained archive file that can be reopened later using either
pat_report or Cray Apprentice2. No further work is required in order to export data for use in Cray Apprentice2.

The pat_report -f option also enables the user to export data to ASCII text or XML-format files. When used in
this manner, pat_report functions as a data export tool. The entire data file is converted to the target format and
the pat_report filtering and formatting options are ignored.

The pat_report -f html option generates reports in html-format files that can be read with any modern web
browser. When invoked, this option creates a directory named *_html, where * is the root name of the data file,
and which contains all of the generated data files. The default name of the primary report file is pat_report.html.
This file name can be changed using the -o option.

pat_report Environment Variables
The pat_report environment variables affect the way in which data is handled during report generation.

PAT_REPORT_IGNORE_VERSION
PAT_REPORT_IGNORE_CHECKSUM If set, turns off checking that the version of CrayPat being used to generate

the report is the same version, or has the same library checksum, as the
version that was used to build the instrumented program.

PAT_REPORT_OPTIONS If the -z option is specified on the pat_report command line, this
environment variable is ignored.

If the -z option is not specified, then, if this environment variable is set
before pat_report is invoked, the options in this environment variable are
evaluated before any other options on the command line.

If this environment variable is not set when pat_report is invoked, but was
set when the instrumented program was run, then the value of this variable
as recorded in the experiment data file is used.

PAT_REPORT_PRUNE_NAME Prune (remove) functions by name from a report. If not set or set to an
empty string, no pruning is done. Set this variable to a comma-delimited list
(__pat_, __wrap_, etc.) to supersede the default list, or begin this list with
a comma (,) to append this list to the default list. A name matches if it has
a list item as a prefix.

()

Export Data 54
--

PAT_REPORT_PRUNE_SRC If not set, the behavior is the same as if set to '/lib'.

If set to the empty string, all callers are shown.

If set to a non-empty string or to a comma-delimited list of strings, a
sequence of callers with source paths containing a string from the list are
pruned to leave only the top caller.

PAT_REPORT_PRUNE_NON_USER If set to 0 (zero), disables the default behavior of pruning based on
ownership (by user invoking pat_report) of source files containing the
definition of a function.

PAT_REPORT_VERBOSE If set, produces more feedback about the parsing of the .xf file and
includes in the report the values of all environment variables that were set
at the time of program execution.

Automatic Profiling Analysis
Assuming the executable was instrumented using the pat_build -O apa option (which is the default behavior),
running pat_report on the .xf data file also produces an .apa file containing the recommended parameters for
reinstrumenting the program for more detailed performance analysis. For more information about Automatic
Profiling Analysis, see Use Automatic Profiling Analysis on page 17.

MPI Automatic Rank Order Analysis
By default MPI program ranks are placed on compute node cores sequentially, in SMP style, as described in the
intro_mpi(3) man page. The MPICH_RANK_REORDER_METHOD environment variable may be used to override
this default placement, and in some cases achieve significant improvements in performance by placing ranks on
cores so as to optimize use of shared resources such as memory or network bandwidth.

The Cray Performance Analysis Tools suite provides several ways to help optimize MPI rank ordering. If the
program's patterns of communications are understood well enough to specify an optimized rank order without
further assistance, the grid_order utility may be used to generate a rank order list that can be used as an input
to the MPICH_RANK_REORDER_METHOD environment variable. For more information, see the grid_order(1) man
page.

Alternatively, to use CrayPat to perform automatic rank order analysis and generate recommended rank-order
placement information, follow these steps.

Use Automatic Rank Order Analysis

Prerequisites
There are no prerequisites for this task.

()

Automatic Profiling Analysis 55
--

1. Instrument the program using either the pat_build -g mpi or -O apa option.

2. Execute the program.

3. Use the pat_report command to generate a report from the resulting .xf data files.

When certain conditions are met (job size, data availability, etc.), pat_report will attempt to detect a grid
topology and evaluate alternative rank orders for opportunities to minimize off-node message traffic, while
also trying to balance user time across the cores within a node. These rank-order observations appear on the
resulting profile report, and depending on the results, pat_report may also automatically generate one or
more MPICH_RANK_ORDER files for use with the MPICH_RANK_REORDER_METHOD environment variable in
subsequent application runs.

Force Rank Order Analysis
To force pat_report to generate an MPICH_RANK_ORDER file, use one of these options.

▪ -O mpi_sm_rank_order

▪ -O mpi_rank_order

▪ -O mpi_hy_rank_order

-O mpi_sm_rank_order

The -O mpi_sm_rank_order option displays a rank-order table based on MPI sent-message data (message sizes
or counts, and rank-distances). pat_report attempts to detect a grid topology and evaluates alternative rank
orders that minimize off-node message traffic. This has a prerequisite that pat_report was invoked with either the
-g mpi or -O apa option. If successful, a MPICH_RANK_ORDER.Grid file is generated which can be used to dictate the
rank order of a subsequent job. Instructions for doing so are included in the file.

NOTE: The grid detection algorithm used in the sent-message rank-order report looks for, at most,
patterns in three dimensions. Also, note that while use of an alternative rank order may improve
performance of the targeted metric (i.e., MPI message delivery), the effect on the performance of the
application as a whole is unpredictable.

A number of related -s options are available to tune the mpi_sm_rank_order report. These include:

mro_sm_metric=Dm|Dc Used with the -O mpi_sm_rank_order option. If set to Dm, the metric is the sum
of P2P message bytes sent and received. If set to Dc, the metric is the sum of
P2P message counts sent and received.

Default: Dm
mro_mpi_pct=value Specify the minimum percentage of total time that MPI routines must consume

before pat_report will suggest an alternative rank order. This requires that the
profile table be displayed in order to get the Total MPI Time.
Default: 10 (percent)

rank_cell_dim=m1xm2x... Specify a set of cell dimensions to use for rank-order calculations. For example,
-s rank_cell_dim=2x3.

rank_grid_dim=m1Xm2X... Specify a set of grid dimensions to use for rank-order calculations. For example,
-s rank_grid_dim=8x5x3.

()

MPI Automatic Rank Order Analysis 56
--

-O mpi_rank_order

The -O mpi_rank_order option generates an alternate rank-order based on a resource metric that can be
compared across all PEs and balanced across all nodes. The default metric is USER Time, but other HWPC or
derived metrics may be specified. If successful, this generates a MPICH_RANK_ORDER.USER_Time file.

The following related -s options are available to tune the mpi_rank_order report. These include:

mro_metric=ti|... Any metric can be specified, but memory traffic hardware performance counter
events are recommended.
Default: ti

mro_group=USER|MPI|... If specified, the metric is computed only for functions in the specified group.
Default: USER

-O mpi_hy_rank_order

The -O mpi_hy_rank_order option generates a hybrid rank-order from the MPI sent-message and shared-
resource metric algorithms in an attempt to gain improvements from both. This is done only for experiments that
contain MPI sent-message statistics and whose jobs ran with at least 24 PEs per node. If successful, this
generates a MPICH_RANK_ORDER.USER_Time_hybrid file.

This option supports the same -s options as both -O mpi_sm_rank_order and -O mpi_rank_order.

Observations and Suggestions
The following is an example showing the rank-order observations generated from default pat_report processing
on data from a 2045 PE job running on 32 PEs/node. Additional explanations are found in lines beginning with the
+ character.

================ Observations and suggestions ========================

MPI Grid Detection:

 There appears to be point-to-point MPI communication in a 35 X 60
+ ---
+ This is the grid that pat_report identified by studying MPI message
+ traffic. It can be changed by the user via the -s rank_grid_dim option.
+ ---

 grid pattern. The 20.3% of the total execution time spent in MPI
+ ---
+ This MPI-based rank order is calculated only if this application
+ shows that significant (>10%) time is spent doing MPI-related work.
+ ---

 functions might be reduced with a rank order that maximizes
 communication between ranks on the same node. The effect of several
 rank orders is estimated below.

 A file named MPICH_RANK_ORDER.Grid was generated along with this
 report and contains usage instructions and the Custom rank order
 from the following table.
+ ---
+ Note that the instructions for using each MPICH_RANK_ORDER file are

()

MPI Automatic Rank Order Analysis 57
--

+ included within that file.
+ ---

 Rank On-Node On-Node MPICH_RANK_REORDER_METHOD
 Order Bytes/PE Bytes/PE%
 of Total
 Bytes/PE

 Custom 4.050e+09 34.77% 3
 SMP 2.847e+09 24.45% 1
 Fold 1.025e+08 0.88% 2
 RoundRobin 6.098e+01 0.00% 0
+ ---
+ This shows that the Custom rank order was able to arrange the ranks
+ such that 34% of the total MPI message bytes sent per PE stayed within
+ each local compute node (the higher the percentage the better). In
+ this case, the Custom order was a little better than the default SMP
+ order.
+ ---

Metric-Based Rank Order:

 When the use of a shared resource like memory bandwidth is unbalanced
 across nodes, total execution time may be reduced with a rank order
 that improves the balance. The metric used here for resource usage
 is: USER Time
+ ---
+ USER Time is the default, but can be changed via the -s mro_metric
+ option.
+ ---

 For each node, the metric values for the ranks on that node are
 summed. The maximum and average value of those sums are shown below
 for both the current rank order and a custom rank order that seeks
 to reduce the maximum value.

 A file named MPICH_RANK_ORDER.USER_Time was generated
 along with this report and contains usage instructions and the
 Custom rank order from the following table.

 Rank Node Reduction Maximum Average
 Order Metric in Max Value Value
 Imb. Value

 Current 8.95% 6.971e+04 6.347e+04
 Custom 0.37% 8.615% 6.370e+04 6.347e+04
+ ---
+ The Node Metric Imbalance column indicates the difference between the
+ maximum and average metric values over the set of compute nodes. A
+ lower the imbalance value is better, as the maximum value is brought
+ down closer to the average.
+ ---

Hybrid Metric-Based Rank Order:

 A hybrid rank order has been calculated that attempts to take both
 the MPI communication and USER Time resources into account.
 The table below shows the metric-based calculations along with the
 final on-node bytes/PE value. A MPICH_RANK_ORDER.USER_Time_hybrid

()

MPI Automatic Rank Order Analysis 58
--

 file was generated along with this report and contains usage
 instructions for this custom rank order.

 Rank Node Reduction Maximum Average On-Node
 Order Metric in Max Value Value Bytes/PE%
 Imb. Value of Total
 Bytes/PE

 Current 8.95% 6.971e+04 6.347e+04 23.82%
 Custom 2.70% 6.43% 6.523e+04 6.347e+04 30.28%
+ ---
+ It will usually be the case that the hybrid node imbalance and the
+ on-node bytes/PE values are not quite as good as the best values in
+ the MPI grid-based and the metric-based tables, but the goal is to
+ get them as close as possible while gaining benefits from both
+ methodologies.
+ ---

()

MPI Automatic Rank Order Analysis 59
--

Use Cray Apprentice2
Cray Apprentice2 is an interactive X Window System tool for visualizing and manipulating performance analysis
data captured during program execution.

The number and appearance of the reports that can be generated using Cray Apprentice2 is determined solely by
the kind and quantity of data captured during program execution. For example, setting the PAT_RT_SUMMARY
environment variable to 0 (zero) before executing the instrumented program nearly doubles the number of reports
available when analyzing the resulting data in Cray Apprentice2. However, it does so at the cost of much larger
data files.

Launch Cray Apprentice2
To begin using Cray Apprentice2, load the perftools-base module. If this module is not part of the default
work environment, type the following command to load it:

$ module load perftools-base

To launch the Cray Apprentice2 application, enter this command:

$ app2 &

Alternatively, specify the file name to open on launch:

$ app2 myfile.ap2 &

NOTE: Cray Apprentice2 requires the workstation be configured to host X Window System sessions. If
the app2 command returns an "cannot open display" error, see the system administrator for
information about configuring X Window System hosting.

The app2 command supports two options: --limit and --limit_per_pe. These options enable the user to restrict
the amount of data being read in from the data file. Both options recognize the K, M, and G abbreviations for kilo,
mega, and giga; for example, to open an .ap2 data file and limit Cray Apprentice2 to reading in the first 3 million
data items, type this command:

$ app2 --limit 3M data_file.ap2 &

The --limit option sets a global limit on data size. The --limit_per_pe sets the limit on a per processing
element basis. Depending on the nature of the program being examined and the internal structure of the data file
being analyzed, the --limit_per_pe is generally preferable, as it preserves data parallelism.

The --limit and --limit_per_pe options affect only .ap2 format data files created with versions of pat_report
prior to release 5.2.0. These options are ignored when opening data files created using pat_report release 5.2.0
or later and will be removed in a future release.

()

Launch Cray Apprentice2 60
--

For more information about the app2 command, see the app2(1) man page.

Open Data Files
If a valid data file or directory was specified on the app2 command line, the file or directory is opened and the data
is read in and displayed.

If a valid data file or directory was not specified on the command line, the File Selection Window is displayed and
there is a prompt to select a data file or directory to open.

NOTE: The exact appearance of the File Selection window varies depending on which version of the
Gimp Tool Kit (GTK) is installed on the X Windows System workstation.

After selecting a data file, the data is read in. When Cray Apprentice2 finishes reading in the data, the Overview
report is displayed.

Basic Navigation
Cray Apprentice2 displays a wide variety of reports, depending on the program being studied, the type of
experiment performed, and the data captured during program execution. While the number and content of reports
varies, all reports share the following general navigation features.

▪ The File menu enables the user to open data files or directories, capture the current screen display to a .png
file, or exit from Cray Apprentice2.

▪ The Data tab shows the name of the data file currently displayed. Multiple data files may be open
simultaneously for side-by-side comparisons of data from different program runs. Click a data tab to bring a
data set to the foreground. Right-click the tab for additional options.

▪ The Report toolbar shows the reports that can be displayed for the data currently selected. Hover the cursor
over an individual report icon to display the report name. To view a report, click the icon.

▪ The Report tabs show the reports that have been displayed thus far for the data currently selected. Click a tab
to bring a report to the foreground. Right-click a tab for additional report-specific options.

▪ The main display varies depending on the report selected and can be resized. However, most reports feature
pop-up tips that appear when the cursor to hovers over an item, and active data elements that display
additional information in response to left or right clicks.

▪ On many reports, the total duration of the experiment is shown as a graduated bar at the bottom of the report
window. Move the caliper points left or right to restrict or expand the span of time represented by the report.
This is a global setting for each data file: moving the caliper points in one report affects all other reports based
on the same data, unless those other reports have been detached or frozen.

Most report tabs feature right-click menus, which display both common options and additional report-specific
options. The common right-click menu options are described in Common Panel Actions. Report-specific
options are described in View Reports on page 62.

()

Open Data Files 61
--

Table 3. Common Panel Actions

Option Description

Screendump Capture the report or graphic image currently displayed and save it to
a .png file.

Detach Panel Display the report in a new window.

Remove Panel Close the window and remove the report tab from the main display.

Panel Help Display report-specific help, if available.

View Reports
The reports Cray Apprentice2 produces vary depending on the types of performance analysis experiments
conducted and the data captured during program execution. The report icons indicate which reports are available
for the data file currently selected. Not all reports are available for all data.

The following sections describe the individual reports.

Overview Report
The Overview Report is the default report. Whenever a data file is opened, this is the first report displayed.

The Overview Report provides a high-level view of the program's performance characteristics, and is divided into
five main areas of concern. These are:

▪ Profile: The center of the Overview window displays a bar graph designed to give a high-level assessment of
how much CPU time (as a percentage of wall-clock time) the program spent doing actual computation, versus
Programming Model overhead (i.e., MPI communication, UPC or SHMEM data movement, OpenMP parallel
region work, etc.) and I/O.

▪ If the program uses GPUs, a second bar graph is displayed showing GPU time relative to wall-clock time. The
numbers in the GPU bar graph are the percentages of total time that were spent in the specified GPU
functions, and thus are not expected to equal 100% of the wall-clock time.

▪ Function/Region Profile: The Function/Region Profile in the upper-left corner of the Overview Report
highlights the top time-consuming functions or regions in the code. Click on the pie chart to jump to the Profile
Report.

▪ Load Imbalance: The Load Imbalance summary in the lower-left corner of the Overview Report highlights load
imbalance, if detected, as a percentage of wall-clock time. Click on the scales to jump to the Call Tree Report.

▪ If an "i" ("information") icon is displayed, use the cursor to hover over it to see additional grid detection
information and rank placement suggestions.

▪ Memory Utilization: The Memory Utilization summary in the upper-right corner of the Overview Report
highlights poor memory hierarchy utilization, if detected, including TLB and cache utilization.

▪ If an "i" ("information") icon is displayed, use the cursor to hover over it to see additional observations.

▪ Data Movement: The Data Movement summary in the lower-right corner of the Overview Report identifies
data movement bottlenecks, if detected.

()

View Reports 62
--

Profile Report
The Profile Report is a good general display showing where the program spent the most time, a good indicator of
how much time the program is spending performing which activities, and a good place to start looking for load
imbalance. Depending on the data collected, this report initially displays as one or more pie charts. When the
Profile Report is displayed, look for:

▪ In the pie chart on the left, the calls, functions, regions, and loops in the program, sorted by the number of
times they were invoked and expressed as a percentage of the total call volume.

▪ In the pie chart on the right, the calls, functions, regions, and loops, in the program, sorted by the amount of
time spent performing the calls or functions and expressed as a percentage of the total program execution
time.

▪ Hover the cursor over any section of a pie chart to display a pop-up window containing specific detail about
that call, function, region, or loop.

▪ Right-click on any call or function on a pie chart to display the "Fastbreak" option. Click Fastbreak to jump
directly to this call or function in the Call Tree graph.

▪ Right-click the Report Tab to display a pop-up menu that will show or hide compute time. Hiding compute time
is useful for focusing on the communications aspects of the program.

To explore this further, click any function of interest to display a Load Balance Report for that function.

The Load Balance Report shows:

▪ The load balance information for the function selected on the Profile Report. This report can be sorted by
either PE, Calls, or Time. Click a column heading to sort the report by the values in the selected column.

▪ The minimum, maximum, and average times spent in this function, as well as standard deviation.

▪ Hover the cursor over any bar to display PE-specific quantitative detail.

Alternately, click the Toggle (the double-headed arrow in the upper right corner of the report tab) to view the
Profile Report as a bar graph, or click the Toggle again to view the Profile Report as a text report. In both bar
graph and text report modes, the Load Balance and "Fastbreak" functions are available by clicking or right-
clicking on a call or function.

The text version of the Profile Report is a table showing the time spent by function, as both a wall clock time
and percentage of total run time. This report also shows the number of calls to the function, the number of call
sites in the code that call the function, the extent to which the call is imbalanced, and the potential savings
that would result if the function were perfectly balanced.

This is an active report. Click on any column heading to sort the report by that column, in ascending or
descending order. In addition, if a source file is listed for a given function, the user can click on the function
name and open the source file at the point of the call.

Look for routines with high usage, a small number of call sites, and the largest imbalance and potential
savings, as these are the often the best places to focus optimization efforts.

Together, the Profile and Load Balance reports provide a good look at the behavior of the program during
execution and can help identify opportunities for improving code performance. Look for functions that take a
disproportionate amount of total execution time and for PEs that spend considerably more time in a function
than other PEs do in the same function. This may indicate a coding error, or it may be the result of a data-
based load imbalance.

To further examine load balancing issues, examine the Mosaic report (if available), and look for any
communication "hotspots" that involve the PEs identified on the Load Balance Report.

()

View Reports 63
--

Text Report
The Text Report option enables the user to access pat_report text reports through the Cray Apprentice2 user
interface and to generate new text reports with the click of a button.

Environment Report
The Environment Report lists the values of the system environmental variables that were set at the time the
program was executed. This does not include the pat_build or CrayPat environment variables that were set at
the time of program execution.

These reports provide general information about the conditions under which the data file currently being examined
was created. As a rule, this information is useful only when trying to determine whether changes in system
configuration have affected program performance.

Traffic Report
The Traffic Report shows internal PE-to-PE traffic over time. The information on this report is broken out by
communication type (read, write, barrier, and so on). While this report is displayed, the user can:

▪ Hover over an item to display quantitative information.

▪ Zoom in and out, either by using the zoom buttons or by drawing a box around the area of interest.

▪ Right-click an area of interest to open a pop-up menu, which enables the user to hide the origin or destination
of the call or go to the call site in the source code, if the source file is available.

▪ Right-click the report tab to access alternate zoom in and out controls, or to filter the communications shown
on the report by the duration of the messages.

▪ Filtering messages by duration is useful to capture a particular group of messages. For example, to see only
the messages that take the most time, move the filter caliper points to define the desired range, then click the
Apply button.

The Traffic Report is often quite dense and typically requires zooming in to reveal meaningful data. Look for
large blocks of barriers that are being held up by a single PE. This may indicate that the single PE is waiting
for a transfer, or it can also indicate that the rest of the PEs are waiting for that PE to finish a computational
piece before continuing.

Mosaic Report
The Mosaic Report depicts the matrix of communications between source and destination PEs, using colored
blocks to represent the relative point-to-point send times between PEs. By default, this report is based on average
communication times. Right-click on the report tab to display a pop-up menu that gives the option of basing this
report on the Total Calls, Total Time, Average Time, or Maximum Time.

The graph is color-coded. Light green blocks indicates good values, while dark red blocks may indicate problem
areas. Hover the cursor over any block to show the actual values associated with that block.

Use the diagonal scrolling buttons in the lower right corner to scroll through the report and look for red "hot spots."
These are generally an indication of bad data locality and may represent an opportunity to improve performance
by better memory or cache management.

()

View Reports 64
--

Activity Report
The Activity Report shows communication activity over time, bucketed by logical function such as synchronization.
Compute time is not shown.

Look for high levels of usage from one of the function groups, either over the entire duration of the program or
during a short span of time that affects other parts of the code. Calipers may be used to filter out the startup and
closeout time, or to narrow the data being studied down to a single iteration.

Call Tree
The Call Tree shows the calling structure of the program as it ran and charts the relationship between callers and
callees in the program. This report is a good way to get a sense of what is calling what in the program, and how
much relative time is being spent where.

Each call site is a separate node on the chart. The relative horizontal size of a node indicates the cumulative time
spent in the node's children. The relative vertical size of a node indicates the amount of time being spent
performing the computation function in that particular node.

Nodes that contain only callers are green in color. Nodes for which there is performance data are dark green,
while light-green nodes have no data of their own, only inclusive data bubbled up from their progeny.

By default, routines that do not lead to the top routines are hidden.

Nodes that contain callees and represent significant computation time also include stacked bar graphs, which
present load-balancing information. The yellow bar in the background shows the maximum time, the pale purple
in the foreground shows the minimum time, and the purple bar shows the average time spent in the function. The
larger the yellow area visible within a node, the greater the load imbalance.

While the Call Tree report is displayed, options are:

▪ Hover the cursor over any node to further display quantitative data for that node.

▪ Double-click on leaf node to display a Load Balance report for that call site.

▪ If a "?" (question mark) icon is displayed on any node, this indicates that significant additional information
pertinent to this node is available: for example, that the node has the highest load-imbalance time in the
program and thus is a good candidate for optimization. Hover the cursor over the "?" icon to display
additional information.

▪ Right-click the report tab to display a popup menu. The options on this menu enable the user to change this
report so that it shows all times as percentages or actual times, or highlights imbalance percentages and the
potential savings from correcting load imbalances. This menu also enables the user to filter the report by time,
so that only the nodes representing large amounts of time are displayed, or to unhide everything that has
been hidden by other options and restore the default display.

▪ Right-click any node to display another popup menu. The options on this menu enable the user to hide this
node, use this node as the base node (thus hiding all other nodes except this node and its children), jump to
this node's caller, or go to the source code, if available.

▪ Use the zoom control in the lower right corner to change the scale of the graph. This can be useful when the
user is trying to visualize the overall structure.

▪ Use the Search control in the lower center to search for a particular node by function name.

▪ Use the >> toggle in the lower left corner to show or hide an index that lists the functions on the graph by
name. When the index is displayed, the user can double-click a function name in the index to find that
function in the Call Tree.

()

View Reports 65
--

I/O Rates
The I/O Rates Report is a table listing quantitative information about the program's I/O usage. The report can be
sorted by any column, in either ascending or descending order. Click on a column heading to change the way that
the report is sorted.

Look for I/O activities that have low average rates and high data volumes. This may be an indicator that the file
should be moved to a different file system.

NOTE: This report is available only if I/O data was collected during program execution. See Use pat_build
on page 17 and the pat_build(1) man page for more information.

Hardware Reports
The Hardware reports are available only if hardware counter information has been captured. There are two
Hardware reports:

▪ Hardware Counters Overview

▪ Hardware Counters Plot

Hardware Counters Overview Report

The Hardware Counters Overview Report is a bar graph showing hardware counter activity by call and function,
for both actual and derived PAPI metrics. While this report is displayed, options are:

▪ Hover the cursor over a call or function to display quantitative detail.

▪ Click the "arrowhead" toggles to show or hide more information.

Hardware Counters Plot

The Hardware Counters Plot displays hardware counter activity over time as a trend plot. Use this report to look
for correlations between different kinds of activity. This report is most useful when there is interest in knowing
when a change in activity happened rather than in knowing the precise quantity of the change.

Look for slopes, trends, and drastic changes across multiple counters. For example, a sudden decrease in
floating point operations accompanied by a sudden increase in L1 cache activity may indicate a problem with
caching or data locality. To zero-in on problem areas, use the calipers to narrow the focus to time-spans of interest
on this graph, and then look at other reports to learn what is happening at these times.

To display the value of a specific data point, along with the maximum value, hover the cursor over the area of
interest on the chart.

GPU Time Line
The GPU Time Line shows concurrent activity on the CPU (host) and GPU (accelerator). This helps the user
visualize if and how CPU and GPU events overlap in time.

NOTE: This report is available only with a full trace data file.

()

View Reports 66
--

CPU Call Stack and GPU Stream
The GPU Time Line report is divided into two general areas. The upper half of the window shows CPU Stack and
GPU Stream data over time, and contains the related controls.

Stack

The Stack display shows the call stack levels of the program running on the CPU, starting with 0 (main) at the top.
Use the scroll bar controls at the right end of the display to move through the call stack levels. If the window is
resized so that all levels are visible, the scroll bar controls are inactive.

Each box in the Stack display represents an interval of execution, typically an instance of a function call. Vertically
stacked boxes represent functions calling other functions. Green boxes are transfers between the CPU and GPU,
red boxes are wait-related functions, and all others are blue. Hovring the cursor over a box to see a popup that
describes the event and any related GPU events also change color to highlight the relationship. Alternatively, left-
clicking while hovering will turn the popup into a separate window.

Stream

The Stream displays shows the related GPU activity during the same period in time. Each box represents GPU
stream activity, and the user can use the scroll bar controls at the right end of the Stream display to move through
the stream activity levels. The color-coding and hover/popup behavior are the same as for the Stack section.

You can use the windowshade control between the Stack and Stream displays to change the relative sizes of the
displays.

time line

The horizontal scroll bar immediately below the Stream display shows the time interval represented by the Stack
and Stream displays. The red vertical bar is the center-point of the current display, and also the value shown in
the Time entry field. You can left-click anywhere on the scroll bar to re-center the display on another point in time.
The scale of this scroll bar is determined by the Magnify control.

Magnify

The Magnify control determines the scale of the horizontal time line that in turn defines the region shown in the
Stack and Stream displays. At a setting of 1.0, the time line duration is the same as the entire duration of the
program. Use higher magnification levels to reveal finer granularity in the data.

Time

Entering a value in the Time entry field will jump directly to that point in time during program execution and re-
center the display on that point in time.

Func

The Func entry field enables the user to search for instances of a specific function by name. As the function name
is entered, a drop-down list appears, showing all matching names within the program. After entering or selecting a
function, use the Prev and Next buttons to move to the previous or next instance of the function.

Histogram
The lower portion of the GPU Time Line report window shows the histogram and related controls.

Kern, In, Out, Wait

The radio buttons to the left of the histogram select what information is displayed in the histogram and are
mutually exclusive. Wait displays an aggregate of CPU functions that wait for something else to complete. Kern,
In, and Out are GPU-related and quantify where time on the GPU is spent. Each histogram shows how much time
was spent in the selected category during the specified interval. The measurements are in percent, with the full
height of the window representing 100%.

()

View Reports 67
--

PE, TH

The PE and TH entry boxes enable filtering of what is displayed by PE and thread. These are set to zero by
default.

time line, Zoom

By default, the time line below the histogram represents the entire duration of the program execution, unless the
Zoom control is used to change the scale. The red vertical bar is the center-point of the current display. The
horizontal scroll bar below the histogram is generally inactive, unless the Zoom control is used to zoom-in on
some activity.

IO And Other Plotable Data Items
The plots report plots non-summarized (over-time) per PE data items synchronized with the call stack. Plots
report is available with full trace or sample data files with the pat_build -Drtenv=PAT_RT_SUMMARY=0 option. See
pat_help plots and pat_help plots PAT_RT_SAMPLING_DATA for sample data collection environment
variables.

Display
Areas

Plots display has four display areas. The first three are aligned horizontally so that they are
synchronized in time. From top to bottom they are:

▪ The Call Stack

▪ The Data Graph

▪ Time Scale

▪ Navigation, display control, status message area

The Call
Stack

The call stack shows the function calls of the program running on the CPU, starting with 1 (usually
main) at the top. For samp_pc_time experiments all functions are on one level.

The Data
Graph

The data graph plots collected data over time, synchronized with the call stack. By default the first
two plots are displayed. The plots displayed and the ordering can be controlled by clicking on the
plots button in the lower left and selecting which plots to display. If no data is available, the plot
will not be displayed and a message will be issued to the right of the PE:/Thread: entry boxes
below.

Time Scale The time scale shows the segment of the run time that is displayed. The amount of time
displayed is controlled by the Zoom function; what segment of time is displayed is controlled by
the scroll bar immediately below the time scale.

Navigation
Controls

(Note: A carriage return or enter is required after entering data in the entry boxes.)

Zoom Slider and
Entry Box

Zoom is controlled by moving the slider or entering a number in the entry
box.

Time Entry Box Enter a time value to center the display on that time.

Function Name
Entry Box/ Prev/
Next Buttons

Enter a function name to center the display at the beginning of that call
function. Use the zoom controls to better view short running functions. Use
the Prev/Next buttons to navigate previous or next call of that function. All
visible instances of the selected function are highlighted.

PE Selection
Box

The PE selection box shows the PE where data was collected. Enter a PE
number to see the data from a specific PE. Some data is either not available
or not collected on every PE. If no data is collected on the selected PE
during the time interval displayed the plot will be removed from the display.

()

View Reports 68
--

Thread
Selection Box

The thread selection box shows the thread where the data was collected.
Enter a thread number to see the data from a specific thread. Some data is
either not available or not collected on every thread. If no data is collected on
the selected thread during the time interval displayed the plot will be
removed from the display.

Plots Menu
Button

Clicking on the plots button brings up a dialog box allowing selection and
ordering of the plots in the display. Some plots may not display if no data is
collected for that plot.

()

View Reports 69
--

Reveal
Reveal is Cray's next-generation integrated performance analysis and code optimization tool. Reveal extends
Cray's existing performance measurement, analysis, and visualization technology by combining run time
performance statistics and program source code visualization with Cray Compiling Environment (CCE) compile-
time optimization feedback.

Reveal supports source code navigation using whole-program analysis data provided by the Cray Compiling
Environment, coupled with performance data collected during program execution by the Cray performance tools,
to understand which high-level serial loops could benefit from improved parallelism. Reveal provides enhanced
loopmark listing functionality, dependency information for targeted loops, and assists users optimizing code by
providing variable scoping feedback and suggested compiler directives.

Reveal can be used to open and explore a performance analysis data file, a program library file, or both at the
same time. Reveal may also be used to open one type of data file for a program, and then open the other type
later, to begin searching for correlations between code performance and optimizations. In general, though, the
most common way to use Reveal consist of three steps: capturing run time performance data to generate loop
work estimates, generating a program library file to capture and analyze compiler optimizations, and then
integrating the two sets of data.

NOTE: Reveal works with the Cray Compiling Environment (CCE) only. It does not work with other third-
party compilers at this time.

Launch Reveal
To begin using Reveal, load the perftools-base module, and then enter the reveal command:

$ module load perftools-base
$ reveal

If no files are specified on the command line, the user can open an existing program library file by selecting the
File -> Open option.

To launch Reveal and open a specific program_library file:

$ reveal my_program_library.pl

NOTE: The .pl file name extension is not required. It is added in these examples to help improve clarity.

To launch Reveal and specify both a program_library and a performance_data file:

$ reveal my_program_library.pl my_program.ap2

Reveal includes an integrated help system. All other information about using Reveal is presented in the help
system, which is accessible whenever Reveal is running by selecting Help from the menu bar.

()

Launch Reveal 70
--

Reveal is a GUI tool that requires that the workstation support the X Window System. Depending on the system
configuration, the ssh -X option may be necessary to enable X Window System support in the shell session.
Depending on the workstation configuration, X Window System hosting may also need to be enabled on the
workstation or load an X Window client such as Xming.

Generate Loop Work Estimates
Loop work estimates are generated by compiling and linking with the CCE -h profile_generate option, and then
using CrayPat to instrument the program for tracing, run the instrumented executable, and collect loop statistics.
To generate a loop work estimate, follow these steps.

Make sure the following modules are loaded.

$ module load PrgEnv-cray
$ module load perftools-base
Compile and link the program with -h profile_generate.

$ ftn -c -h profile_generate my_program.f
$ ftn -o my_program -h profile_generate my_program.o

NOTE: This option disables most automatic compiler optimizations, which is why Cray recommends
generating this data separately from generating the program_library file. The program_library is most
useful when generated from fully optimized code.

Instrument the program for tracing.

$ pat_build -w my_program
This generates a new binary named my_program+pat.

Execute the instrumented program.

$ aprun -n pes ./my_program+pat
This generates one or more raw data files in .xf format.

Process the raw data file for use by Reveal.

$ pat_report -o my_program.ap2 my_programXXX.xf > loops_report
This generates a performance data file (my_program.ap2) and a text report (loops_report).

Generate a Program Library
To generate a program_library.pl file, make sure the Cray (CCE) programming environment module is loaded,
and then use the CCE -h pl option to generate the program_library in the current working directory.

$ module load PrgEnv-cray

$ ftn -O3 -hpl=my_program.pl -c my_program_file1.f90
$ ftn -O3 -hpl=my_program.pl -c my_program_file2.f90
$ ftn -O3 -hpl=my_program.pl -c my_program_file3.f90
$...

()

Generate Loop Work Estimates 71
--

NOTE: The -h profile_generate option disables most automatic compiler optimizations, which is why
Cray recommends generating the program_library file separately from the loop work estimate. The
program_library is most useful when generated from fully optimized code.

The program library must be kept with the program source. Moving just the program_library file to another
location and then opening it with Reveal is not supported.

Explore the Results
After collecting performance data from program execution and generating a program_library file, launch Reveal
and use it to integrate the results and explore opportunities for code optimization.

$ reveal my_program.pl my_program.ap2

Alternatively, launch Reveal with either the program library or performance data file, and then use the FileOpen
option to integrate the two data sets.

For More Information
Reveal is a evolving product, therefore documentation and training for this product are still in development.
Reveal includes an integrated help system: further information about using Reveal is presented in the help
system, which is accessible whenever Reveal is running by selecting Help from the menu bar.

()

Explore the Results 72
--

Use CrayPat on XK and XC Series Systems
Cray XK and Cray XC series systems include GPU accelerators. To take advantage of these accelerators,
programmers must modify their code, either by inserting Cray CCE OpenACC directives, PGI accelerator
directives, or CUDA driver API code.

For the most part, the Cray Performance Analysis Tools behave the same on Cray XK and Cray XC series
systems with accelerated code as they do on Cray XE systems with conventional code, with the following
caveats, exceptions, and differences.

Module Load Order
In order for the Cray Performance Analysis Tools to function correctly on Cray XK and Cray XC series systems,
module load order is critical. Always load the accelerator target module before loading the performance tools
module. The following example shows a valid module loading sequence for compiling and instrumenting code to
run on a Cray XK systems equipped with AMD Interlagos CPUs and NVIDIA K20 Tesla GPUs.

$ module load PrgEnv-cray
$ module load craype-interlagos (optional)
$ module load craype-accel-nvidia35
$ module load perftools-base
$ module load perftools
On actual Cray systems, the correct craype module for the type of CPU installed on the system compute nodes
is typically loaded by default; therefore it is not necessary for the user to load the module. On esLogin systems
and standalone Linux systems being used as cross-compiler code development workstations, it may be
necessary to load the appropriate CPU target (craype) module, depending on the local configuration. Always
verify that the correct CPU target module is loaded for the Cray system on which the resulting code will be
executed. The choice of CPU target module can have a significant impact on the behavior and execution speed of
the resulting compiled code.

pat_build Differences
In general, pat_build behaves the same with code containing compiler accelerator directives or CUDA driver API
code as it does with conventional code. There are no pat_build options unique to Cray XK or Cray XC series
systems.

NOTE: Accelerated applications cannot be compiled using the CCE -h profile_generate option,
therefore accelerator performance statistics and loop profile information cannot be collected
simultaneously.

()

Module Load Order 73
--

Run Time Environment Differences
The CrayPat run time environment supports three environment variables that apply to Cray XK and
Cray XC series systems only. These are:

PAT_RT_ACC_ACTIVITY_BUFFER_SIZE Specifies the size in bytes of the buffer used to collect records for the
accelerator time line view in Cray Apprentice2. Size is not case-
sensitive and can be specified in kilobytes (KB), megabytes (MB), or
gigabytes (GB).

Default: 1MB

PAT_RT_ACC_RECORD Overrides the programming model for which accelerator performance
data is collected. The valid values are:
off - Disables collection of accelerator performance data.

cce - Collect performance data for applications compiled with CCE
and using OpenACC directives.
cuda - Collect performance data for CUDA applications.

pgi - Collect performance data for applications using PGI
accelerator directives.
Default: unset

PAT_RT_ACC_FORCE_SYNC Forces accelerator synchronization in order to enable collection of
accelerator time for asynchronous events.
Default: not enabled

pat_report Differences
Assuming data was collected for accelerator regions, pat_report automatically produces additional tables
showing performance statistics for the accelerated regions. In addition, pat_report now includes six new
predefined reports that apply to Cray XK and Cray XC series systems only. These are:

accelerator Show calltree of GPU accelerator performance data sorted by host time.

accpc Show accelerator performance counters.

acc_fu Show accelerator performance data sorted by host time.

acc_time_fu Show accelerator performance data sorted by accelerator time.

acc_time Show calltree of accelerator performance data sorted by accelerator time.

acc_show_by_ct (Deferred implementation) Show accelerator performance data sorted alphabetically.

()

Run Time Environment Differences 74
--

Cray XC Series Hardware Counter Differences
Because Cray XC series systems use Intel processors, there are significant differences in the hardware counters
available for use. For more information, see the hwpc(5) man page.

On Cray systems with Intel Sandybridge processors, the values reported for floating point operations may be
significantly larger than the number of operations actually specified in the program. There are two reasons for this.
First, operations must be calculated from instruction counts that include speculatively issued instructions. Second,
for the general case, more counts are required than can be supported by the physical hardware counters, and so
PAPI multiplexing is used for the CrayPat default event set. If it is known that, for example, only single precision
operations are of interest, then a smaller set of events can be used, which can be counted without multiplexing.

Note the following details:

Floating point operations cannot be counted directly, but the various types of floating point instructions can be
counted, and so an operation count can be calculated with a weighted sum, where each summand is an
instruction count times the number of operations resulting from one instruction of that type.

For a weighted sum for all types of floating point operations, it would suffice to get combined counts for all
instructions that produce the same number of operations. This would reduce the number of events that must be
counted.

The reduction in the number of events described in the preceding paragraph is limited by the facts that subevents
of FP_COMP_OPS_EXE and SIMD_FP_256 cannot be combined, and that at least one combined event,
FP_COMP_OPS_EXE:SSE_FP_SCALAR_SINGLE:SSE_SCALAR_DOUBLE, does not produce correct results.

With hyper-threading enabled, the number of physical counters available for FP events is 4, and this is not
enough to accommodate the events required for the weighted sum. So either multiplexing must be used or
multiple runs must be made to count subsets of these events. In order to give at least approximate values from a
single run, the CrayPat default event set uses multiplexing.

These details were discovered independently by CrayPat developers experimenting with simple computational
kernels, but have been reported by other groups as well. For more information, see the PAPI website at http://
icl.cs.utk.edu/papi/.

Cray XC Series CPU Network Counter Differences
Because Cray XC series systems use the Aries interconnect, there are significant differences in the network
counters available for use. For more information, see the nwpc(5) man page. For more detailed information about
the individual counters that make up the groups, see $CRAYPAT_ROOT/share/counters/CounterGroups.aries.

For in-depth information about the Aries Performance Counters, see the publication Using the Aries Hardware
Counters (S-0045), available on the Cray website.

()

Cray XC Series Hardware Counter Differences 75
--

http://icl.cs.utk.edu/papi/
http://icl.cs.utk.edu/papi/

Cray XC Series Systems With Intel Xeon Phi
Coprocessors

CrayPat supports Cray XC series systems equipped with the Intel Xeon Phi coprocessors (codenamed Knights
Corner) operating in autonomous mode. This implementation has the following dependencies, supported
functionality, known limitations, and usage requirements.

Dependencies

This release depends on the following minimum product versions.

▪ Cray Linux Environment (CLE) Release 5.2 UP00

▪ Intel Composer Suite

Supported Functionality

The following functionality is supported.

▪ Sampling of MPI and OpenMP jobs in autonomous mode.

▪ Tracing of MPI and OpenMP jobs in autonomous mode. Note that OpenMP timing information is associated
with the calling function. The pat_region API can be used around OpenMP regions for localized timing
information.

▪ Cray Apprentice2 runs on the login node and includes performance information for jobs that ran on the Xeon
Phi.

▪ A subset of the predefined trace groups is supported. The pat_build utility will issue a message if an
unsupported groups is requested.

Known Limitations

The following functionality is not supported at this time.

▪ Reveal

▪ CrayPat-lite

▪ static linking

▪ PAPI: no performance counter support is available.

▪ tracing statistics associated with an OpenMP region

▪ Offload mode is not supported in general, however, tracing and use of pat_region API calls around loops
containing Intel offload directives may return useful information. Sampling is not supported in offload mode at
this time.

()

 76
--

Use CrayPat on Intel Xeon Phi
To use CrayPat on a system equipped with Intel Xeon Phi coprocessors operating in autonomous mode, follow
these steps.

1. Load the Intel programming environment.

$ module swap PrgEnv-cray PrgEnv-intel

2. Unload any modules that may conflict.

$ module unload cray-libsci atp craype-sandybridge craype-ivybridge

3. Load the KNC module.

$ module load craype-intel-knc

4. Load the perftools-base module.

$ module load perftools-base

5. Load an instrumentation module.

$ module load perftools

6. Build the executable with dynamic linking.

$ cc -lopenmp hello.c \
-Wl,-rpath=$INTEL_PATH/compiler/lib/mic \
-Wl,-rpath=/opt/cray/k1om/lib64

7. Once the executable is compiled, use pat_build as normal to instrument the program and pat_report or
Apprentice2 to report the resulting data.

()

Use CrayPat on Intel Xeon Phi 77
--

Use CrayPat on CS300 Systems
This implementation has the following known dependencies and limitations.

Dependencies

This release depends on the following minimum product versions.

▪ CCE (Cray Compiling Environment) 8.2.5 or later

▪ CSML (Cray Scientific and Math Libraries) 12.2.0 or later

▪ LibSci_acc 3.0.1 or later

▪ MVAPICH 1.9 or later

Known Limitations

This release has the following known limitations.

▪ CrayPat requires functionality available only through the Cray Compiling Environment (CCE). The PrgEnv-
cray module suite must be loaded prior to using CrayPat. Other compilers are not supported on this platform.

▪ CrayPat supports applications built with the MVAPICH implementation of MPI, configured for use with CCE,
and dynamic linking. Applications built with other versions of MPI or built with static linking are not supported.

▪ A subset of the predefined trace groups is supported. The pat_build utility ignores unsupported trace groups
if specified.

()

 78
--

	Contents
	About CrayPat
	Performance Analysis
	In-depth Analysis: Using Cray Apprentice2
	Microsoft Windows 7 Systems
	Apple Macintosh Systems

	Source Code Analysis: Using Reveal
	Online Help
	CrayPat Help System
	Cray Apprentice2 Help System
	Reveal Help System

	Reference Files
	Upgrade from Earlier Versions

	CrayPat
	Instrument the Program
	Automatic Profiling Analysis
	MPI Automatic Rank Order Analysis

	Run the Program and Collect Data
	Analyze the Results
	Initial Analysis: Using pat_report

	CrayPat-lite
	Start CrayPat-lite
	Use CrayPat-lite
	Switch from CrayPat-lite to CrayPat
	Determine Whether a Binary is Already Instrumented

	Use pat_build
	Basic Profiling
	Use Automatic Profiling Analysis

	Use Predefined Trace Groups
	Trace User-defined Functions
	Enable Tracing and the CrayPat API
	Instrument a Single Function
	Prevent Instrumentation of a Function
	Instrument a User-defined List of Functions
	Create New Trace Intercept Routines for User-defined Functions
	Create New Trace Intercept Routines for Everything

	pat_build Environment Variables
	Advanced Users: The CrayPat API
	Use CrayPat API Calls
	Header Files
	API Calls

	Advanced Users: OpenMP

	CrayPat Run Time Environment
	Control Run Time Summarization
	Control Data File Size
	Select a Predefined Experiment
	Trace-enhanced Sampling

	Improve Tracebacks
	Measure MPI Load Imbalance
	Monitor Performance Counters
	Run Time Environment Variables

	Use pat_report
	Data Files
	Generate Reports
	Predefined Reports
	User-defined Reports

	Export Data
	pat_report Environment Variables
	Automatic Profiling Analysis
	MPI Automatic Rank Order Analysis
	Use Automatic Rank Order Analysis
	Force Rank Order Analysis
	-O mpi_sm_rank_order
	-O mpi_rank_order
	-O mpi_hy_rank_order
	Observations and Suggestions

	Use Cray Apprentice2
	Launch Cray Apprentice2
	Open Data Files
	Basic Navigation
	View Reports
	Overview Report
	Profile Report
	Text Report
	Environment Report
	Traffic Report
	Mosaic Report
	Activity Report
	Call Tree
	I/O Rates
	Hardware Reports
	GPU Time Line
	CPU Call Stack and GPU Stream
	Histogram

	IO And Other Plotable Data Items

	Reveal
	Launch Reveal
	Generate Loop Work Estimates
	Generate a Program Library
	Explore the Results
	For More Information

	Use CrayPat on XK and XC Series Systems
	Module Load Order
	pat_build Differences
	Run Time Environment Differences
	pat_report Differences
	Cray XC Series Hardware Counter Differences
	Cray XC Series CPU Network Counter Differences

	Cray XC Series Systems With Intel Xeon Phi Coprocessors
	Use CrayPat on Intel Xeon Phi

	Use CrayPat on CS300 Systems

